
~

I

(

IBM

SALES and SYSTEMS GUIDE

IBM System/360 Operating System

FORTRAN IV (H)

Program logic Manual

Program Number 360S-FO-500

This publication describes the internal
design of the IBM System/360 Operating
System FORTRAN IV (H) compiler program.
Program Logic Manuals are intended for use
by IBM customer engineers involved in pro
gram maintenance, and by system programmers
involved in altering the program design.
Program logic information is not necessary
for program operation and use; therefore,
distribution of this manual is limited to
persons with program maintenance or modi
fication responsibilities.

RESTRICTED DISTRIBUTION

Y20-0012-0

PREFACE

This publication provides customer engi
neers and other technical personnel with
information describing the internal organi
zation and operation of the FORTRAN IV (H)
compiler. It is part of an integrated
library of IBM system/360 Operating System
Program Logic Manuals. Other publications
required for an understanding of the
FORTRAN IV (H) compiler are:

IBM System/3600perating System: Princi
ples of Operation, Form A22-6821

IBM System/360 Operating System: FORTRAN
IV, Form C28-6515-4

IBM System/360 Operating System: Intro
duction to Control Program Logic, Pro
gram Logic Manual, Form Z28-6605

IBM System/360 operating System: FORTRAN
IV Programmer's Guide" Form C28-6602

Although not required., the following
manuals are related to this publication and
should be consulted:

IBM System/360 Operating System: Seguen
tial Access Methods, Program Logic
Manual, Form Z28-6604

IBM System/360 Operating System: Con
cepts and Facilities" Form C28-6535

IBM System/360 Operating System: Control
Program Services, Form C28-6541

IBM System/360 Operatinq System: Linkage
Editor, Program Logic Manual. Form
Z28-6610

IBM System/360 Operating System: system
Generation. Form C28-6554

This manual consists of two parts:

1. An Introduction. describing the
FORTRAN IV (H) compiler as a whole,
including its relationship to the
operating system. The major compo
nents of the compiler and the rela
tionships among them are also des
cribed.

2.. A Body, containing a description of
each component. Each component is
described in sufficient detail to ena
ble the reader to understand its oper
ation. and to provide a frame of
reference for the comments and coding
supplied in the program listing. Com
mon data, such as tables., blocks" and
work areas are discussed only to the
extent required to understand the
logic of each component. Flowcharts
and subroutine directories are includ
ed at the end of this section.

Following the second part are
of appendixes. which contain
material.

a number
reference'

If more detailed information
required, the reader should refer to
comments" remarks. and coding in
FORTRAN IV (H) program listing.

is
the
the

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format.. Page
impressions for photo-offset printing were obtained from an IBI.'!l 1403
Printer using a special print chain.

This publication is intended for use by IBM personnel only and may not be made
available to others without the approval of local IBM management.

Address comments concerning this publication to the IBM Corporation, Programming
Systems Publications, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602.

© International Business Machines Corporation, 1966

..

II.

.(

(

SECTION 1: INTRODUCTION. 5

Purpose of the Compiler. • 5

The Compiler and Operating System/360... 5

Input/Output Data Flow

Compiler Organization.
FORTRAN System Director
Phase 10. • • • • •
Phase 15. • • • •
Phase 20. .• • • •
Phase 25 ••
Phase 30. • • • • • • • • • • •

structure of the Compiler .•

SECTION 2: DISCUSSION OF MAJOR
COMPONENTS. • • • • • •

FORTRAN System Director. • •
Compiler Initialization

Parameter Processing •
Data Field Initialization. •

Phase Loading • • • • •
Storage Distribution. •

-Phase 10 Storage • • • .• • •
Phase 15 Storage .•
Phase 20 Storage • •

Input/Output Request Processing
Request Format • • • ••
Request Processing • • •

Deletion of a Compilation •
Compiler Termination. • • •

Phase 10 • • • • • • • • • • •
Source Statement Processing

Dispatcher Subroutine. •
Preparatory Subroutine •
Keyword Subroutines. •
Arithmetic Subroutines •
Utility Subroutines.

Phase 15 • • • • • • • • •

5

6
6
7
7
7
7
8

8

9

9
9
9
9
9
9

• • • 10
• • • 12

12
• 14
• 14
• 14

• •• 14
• 14

• 14
• 15
• 16

16
• • • 16
•• • 17

• 18

• 19
• • • 19 STALL Processing. • .• •

Rechaining Entries for Variables • 19
Checking for Undefined Statement

Numbers • • • • • .• •
Processing of Common Entries in
the Information Table • • •

Processing of Equivalence
Entries in the Information
Table • • • • • • .• • •

20

• 20

• 20
PHAZ15 Processing • •• • • • •

Text Blocking. • • • • • • •
Arithmetic Translation • • •
Gathering Constant/Variable

• • • 20

Usage Information • • •• •
Gathering Forward Connection

Information • .• •

• • • 21
• • • 24

27

• 29

CONTENTS

Reordering the Statement Number
Chain . • .. '. • .• .. • '. • • .. • • 31

Gathering Backward Connection
Information • • • • • •

CORAL Processing. • • • • • .• • •
Translation of Data Text • •
Relative Address Assignment. •
Rechaining Data Text •
Reserving Space in the Adcon

• 31
• • 34

• 34
• • 34

• 37

Table • • • • • • • • • • • • 37
Producing a Storage Map. • • • • • 37

Phase 20 • • • • • • • • • • • 38
Control Flow.. .• • • • 39
Register Assignment •• • • • • • • .• 39

Basic Register Assignment. • • • • 40
Full Register Assignment • • 42

Branching Optimization. • •• • • 46
Reserved Registers • • • • • • .• • 46
Reserved Register Addresses. • • • 47
Block Determination and
Subsequent Processing. • • • 47

Structural Determination. • • • • • • 47
Determination of Back Dominators • 52
Determination of Back Targets

and Depth Numbers • • •
Identifying and Ordering Loops
for Processing. • • • • •

Busy-On-Exit Information. ••
Loop Selection. • .• • • • • •

Pointer to Back Target .• •

• • 52

• • 53
• • 54

• • • • 55

Pointer to Forward Target.
Pointers to First and Last

• 56
56

Blocks. • • • • • • • • • .• 57
Loop Composite Matrixes. • •

Text Optimization • • • • • .• •
Common Expression Elimination.
Forward Movement • • • • .• • • •
Backward Movement. • • •• • • •
Constant Expression Reordering •
Strength Reduction • .• • • •

Full Register Assignment During
Complete Optimization. • • •

Branching Optimization During
Complete Optimization. • • • •

• 57
• 57

58
• 59
• 60
.• 61
• 65

• 66

• 67

Phase 25 • • • • • • • • • • • 67
Text Information. • • • • 67

Adcon Table Entry Reservation. • • 70
Constant Processing. • • • .• • •• 70
Variable and Array processing: • • 71
FORMAT Statement Processing. • • • 71
NAMELIST Statement Processing. • • 71
Initialization Instructions. • •.• 72
Adcon T;able Processing • • • • • .• 73
Phase 15 Data Text Processing. • • 73
Prologue and Epil0gue Generation • 74
Text Conversion. • • • • •• 74

External Symbol Dictionary.. 78
Relocation Dictionary • • • • • 78

Phase 30 • • • • • • • • • • 78

Message processing •

APPENDIX A: TABLES....

Communication Table (NPTR)

Classification Tables.

Information Table. • •
Information Table Chains ••
Chain Construction. • •• •
Operation of Information Table

Chains • • • • .• • • • • • '. •

• 78

•• .122

.122

.123

.126

.126

.127

• •• 127
Dictionary Chain Operation •
Statement Number Chain Operation
Common Chain Operation • • • • •
Equivalence Chain operation. • •
Literal Constant Chain Operation
Branch Table Chain Operation

.127

.128
• 129
• 129
.130
,.130

Information Table Components. • • •• 130
.130 Dictionary • • • • • .•

Statement Number/Array
Common Table • •
Literal Table. •
Branch Table

Table .134
•••• 138

Subprogram Table •

Register Assignment Tables •
Register Use Table • • • • •

Operator Table

NAMELIST Dictionaries.

.140
• •• 141

.142

.145
• •• 145

.146

.147

Diagnostic Message Tables. • • • • ,.148
Error Table •••• _ •••••••• 148
Message Pointer Table • • • .•• 148

APPENDIX B: INTERMEDIATE TEXT
Phase 10 Intermediate Text

Intermediate Text Chains •
Format of Intermediate Text
Entry • • • .• • • • • •

Examples of Phase 10
Intermediate Text •

Phase 15/Phase 20 Intermediate Text
Modifications • • • • •

Phase 15 Intermediate Text
Modifications.·.. •

Unchanged Text • •
Phase 15 Data Text
Statement Number Text. • •
Standard Text. • '.

Phase 20 Intermediate Text
Modification • • • •

• •• 149
• •• 149

• .149

• •• 150

• •• 151

'. • .154

' ••• 154
• •• 155
• •• 155

,.155
• •• 159

• •• 160
Standard Text Formats Resulting

from Phases 15 and 20 Processing • .161

APPENDIX C: ARRAYS. · '. · · · · .170

APPENDIX D: TEXT OPTIMIZATION
EXAMPLES. . . . '. . · . · · · · .178

Example 1: Common Expression
Elimination . · . · · · . . · · .178

Example 2: Forward Movement ••.• 179
Example 3: Backward Movement ••• 180
Example 3": Simple-store
Elimination ••••••••••• 181

Example 4: Constant Expression
Reordering •••••••••••• 182

Example 5: strength Reduction. • • ,18 3

APPENDIX E: IHCFCOMH.. • •• 185

READ/WRITE routines '. '. • • • .185
READ/WRITE Statements Not Using

NAMELIST. • • • • • • .185
READ/WRITE Statement Using

NAMELIST ••••••••••••• 188

Device Manipulation Routines • • .188

Write-To-Operator Routines • • •• 189

Utility Routines • • • • .189

Conversion Routines. • • .190

APPENDIX F: IHCFIOSH. • .195

Blocks And Table • •• •
Unit Blocks •

• .195
• •• ,.195

Unit Block Sections. • , •• ' •• 195
Unit Assignment Table

Default Values •
• •• 196

• •• 196

Buffering. • • • • • • .196

Communication with the Control Program .197

Operation ••• ,. • • ,. • • • •.• 197
Initialization. • • • • • .197

No Previous Operation. • • •• 197
Previous Operation Read/Write ••• 197
Previous Operation Backspace ••• 197
Previous Operation Write

End-of-Data Set or Read Taking
"END=" Exit •••.••.•••••• 197

Previous Operation Rewind.. • .198
Read. • • • • • • • • • •• 198
Write ••••• _ • • •••••• 198
Device Manipulation •••• 198

Backspace. • • • • • • • • .198
Rewind •••••••••••••• 199
Write End-of-Data Set ••••••• 199

Closing • • • • • • • • • •• 199

Error Processing • .199

APPENDIX G: ADDRESS COMPUTATION FOR
ARRAY ELEMENTS. • ••••••••• 203

Absorption of Constants in
subscript Expressions. • • .203

Arrays as Parameters. .• • • • • .204

APPENDIX H: COMPILER STRUCTURE. · · · .205

APPENDIX I: DIAGNOSTIC MESSAGES · · · .214

INDEX. •. 218

•

..

I~",
~~i,

(-

(

('-

Figure O. Input/Output Data Flow~ • •• 6
Figure 1. Storage Inventory for Phase

10 Normal, SF Skeleton, and Data Text ~ 11
Figure 2. Chaining of Unused Text

Area Main Storage • • • • • • •• • • • 13
Figure 3. Format of Prepared Source
Statement • • • • • • • • • 16

Figure 4. Text Blocking • • •
Figure 5. Text Reordering Via the

Pushdown Table.. • ,. • • • • • •
Figure 6. Forward Connection

Information • • • '. '. • • • '.
Figure 7. Backward Connection

Information • • • • • • • '. • • •
Figure 8. Back Dominators ••
Figure 9. Back Targets and Depth

Numbers • • ~ '. • • • • • • • • •

• • 23

• 25

• • • 30

33
49

51
Figure 10. Multiplicative-Multiplicative
or Additive-Additive Transformation 62

Figure 11. Additive-Multiplicative
Transformation. • • '. • • • • • • • 63

Figure 12. Storage Layout for Text
Information Construction. • • • • • •

Figure 13. Information Table Chains •
Figure 14. Dictionary Chain • • •• •
Figure 15. Format of Dictionary Entry

• 69
.127
.128

for Variable. •• • • • • • • • • • • .130
Figure 16. Function of Each Subfield
in the Byte A Usage Field of a
Dictionary Entry for a variable •••• 131

Figure 17. Function of Each Subfield
in the Byte B Usage Field of a
Dictionary Entry for a Variable

Figure 18. Format of Dictionary Entry
for Variable After Sorting •••

Figure 19. Format of Dictionary Entry
for Variable After Commom Block

.131

.132

Processing. • • • • • • • • • • .133
Figure 20. Format of Dictionary Entry
for Variable After PHAZ15 Processing •• 133

Figure 21. Format of Dictionary Entry
for a Variable After Relative Address
Assignment. • • • • '. • • • • • .133

Figure 22. Format of Dictionary Entry
for Constant. • • • • • • • • • .133

Figure 23. Format of Dictionary Entry
for Constant After Sorting. • • • .134

Figure 24. Format of Dictionary for
Constant After PHAZ15 Processing •••• 134

Figure 25. Format of Dictionary Entry
for Constant After Relative Address
Assignment. • • • • • '. • • • • • • • .134

Figure 26. Format of a Statement
Number Entry •••••••••••••• 135
Fig~re 27. Function of Each Subfield
in the Byte A Usage Field of a
Statement Number Entry ••••••••• 135

Figure 28. Function of Each Subfield
in the Byte B Usage Field of a
Statement Number Entry ••••••••• 136

FIGURES

Figure 29. Format of Statement Number
Entry After the Processing of Phases
15, 20, and 25 ••••••••••••• 136

Figure 30. Function of Each Subfield
in the Block Status Field ••••••• 137

Figure 31. Format of Dimension Entry •• 138
Figure 32. Format of a Common Block

Name Entry,. • • • •• • • • • • • ,.139
Figure 33. Format of Common Block

Name Entry After Common Block
Processing. • • • • ••••••• 139

Figure 35. Format of an Equivalence
Group Entry • • • • • • '. • • • • 139

Figure 36. Format of Equivalence
Group Entry After Equivalence
Processing ••••••••••••••• 140

Figure 37. Format of Equivalence_
Variable Entry ••••••••••••• 140

Figure 38. Format of Equivalence
Variable Entry After Equivalence
Processing. • • • • • • • • • • • .140

Figure 39. Format of Literal Constant
Entry ••••••••••••••••• 140

Figure 40. Format of Literal Constant
Entry After Relative Address
Assignment • • •• • • • • • •• 141

Figure 41. Format of Literal Data
Entry ••••••••••••••••• 141

Figure 42. Format on Initial Branch
Table Entry •••••••••••••• 141

Figure 43. Format of Initial Branch
Table Entry After Phase 25
Processing ••••••••••• 142

Figure 44. Format of Standard Branch
Table Entry •••••••••••••• 142

Figure 45. Format of Standard Branch
Table Entry After Phase 25
Processing • • • • • • • .142

Figure 46. Format of Namelist Name
Entry. • • • • • • • • • • • • .146

Figure 47. Format of Namelist
Variable Entry. • • • • • • • • .146

Figure 48. Format of Namelist Array
Entry. • • • • • • .146

Figure 49. Intermediate Text Entry
Format ••••••••••••••••• 150

Figure 50. Phase 10 Normal Text •••• 152
Figure 51. Phase 10 Data Text ••••• 152
Figure 52. Phase 10 Namelist Text ••• 153
Figure 53. Phase 10 Format Text ••••• 154
Figure 54. Phase 10 SF Skeleton Text •• 154
Figure 55. Format of Phase 15 Data
Text Entry ••••••••••••••• 155

Figure 56. Function of Each Subfield
in Indicator Field of Phase 15 Data
Text Entry ••••••••••••••• 155

Figure 57. Format of Statement Number
Text Entry ••••••••••••••• 156

Figure 58. Function of Each Subfield
in Indicator Field of Statement
Number Text Entry ••••••••••• 159

/

Figure 59. Format of a Standard Text (" Entry ,.159
Figure 60. Format of Phase 20 Text
Entry160

Figure 61. compiler Overlay Structure .206

•

•

TABLES

(
Table 1. Operators and Forcing Table 22. Global Assignment Tables. · .145
Strengths · · · · · · · · · · · · · · · 24 Table 23 .• Operator Table. · · · · · · .146

Table 2. Item Types and Registers Table 24. Adjective Codes · · · · · '. .150
ASSigned in Basic Register Table 25. Phase 15/20 Operators · · '. .157
Assignment. · · · · · · · · · · · · 40 Table 26. Meanings of Bits in Mode

Table 3. Text Entry Types · · · · · 58 Field of Standard Text Entry. · · '. · .160
~ Table 4. Operand Characteristics That Table 27. Status Field Bits and Their

Permit Simple-Store Elimination · · · · 61 Meanings. · · · · · · · · · · · · · · .160
Table 5. FORMAT Statement Translation .. 71 Table 28,. Processing of Format Codes. .186
Table 6. FSD Subroutine Directory · · · 83 Table 29. IHCFCOMH Subroutine
Table 7. Phase 10 Source Statement Directory · · · · · · · · · · · · .194
Processing .• '. · · · '. · · · · · · · 85 Table 30. IHCFIOSH Subroutine

Table 8. Phase 10 Subroutine Directory · · · · · · · · · · · · .202
Directory · · · · · · · · · · · 86 Table 31. Phases and Their Segments · .207

Table 9. Phase 15 Subroutine Table 32. Segment-1 Composition · .. · .• 207
Directory · · · · · · '. · · · · · · 96 Table 33. Segment-2 Composition · .208

Table 10. Criteria for Text Table 34. Segment-3 Composition · · · .208
Optimization. · · · · · · · · · · ,.110 Table 35. Segment-4 Composition · · · .208

Table 11. Phase 20 Subroutine Table 36. Segment-5 Composition · '. · .208
Directory · · · · · · · · · · · · · · .111 Table 37. Segment-6 composition · .208

Table 12. Phase 20 Utility Table 38. Segment-7' composition · ,.209
Subroutines · · · · · · · · · • 114 Table 39 • Segment-8 composition · · · .209

Table 13. Phase 25 Subroutine Table 40. Segment-9 Composition · · · .209
Directory · · · · · · '. · · • 117 Table 41 • Segment-10 Composition. · · .210

Table 14. Phase 30 Subroutine Table 42. segment-11 Composition. · · .210
Directory · '. · · · · · · · .121 Table 43. Segment-12 Composition. · · .210

Table 15. Communication Table Table 44. Segment-13 Composition. · · .211
(NPTR(2.35». · · · · · · · · · · .123 Table 45. Segment-14 Composition. .211

Table 16. Keyword Pointer Table · · · .124 Table 46. Segment-15 Composition.. · · .211

(Table 17. Keyword Table · · · .125 Table 47. Segme~t-16 Composition. · '. .211
Table 18. Operand Modes · .132 Table 48. Segment-17 Composition. · · .212
Table 19. Operand Types '. · · · · .132 Table 49. Segment-18 Composition. · · .212
Table 20. Subprogram Table. · · · .144 Table 50~ Segment-19 Composition. · · .212
Table 21. Local AsSignment Tables · · .145 Table 51. Segment-20 Composition. · · .213

•

CHARTS

Chart 00.
Chart 01-
Chart 02.
Chart 03.
Chart 04.
Chart 05.
Chart 06.
Chart 07.
Chart 08.
Chart 09.
Chart 10.
Chart 11.

(XPELIM) •
Chart 12.
Chart 13.
Chart 14.

(AGGLUT) •
Chart 15.
Chart 16.

(REGAS) •

Compiler Control Flow • • 80
FSD Overall Logic • • • • ,. • 81
FSD Storage Distribution. • • 82
Phase 10 Overall Logic.'. 84
Phase 15 Overall Logic. • 90
STALL Overall Logic • • • 91
PHAZ15 Overall Logic. • 92
ALTRAN Control Flow • • 93
GENER - Text Generation • 94
CORAL Overall Logic • • • 95
Phase 20 Overall Logic. • 99
Cmmn Xpressn Elmntn
• • • • • • • • • • • • .100
Forward Movement (FORMOV) •• 101
Backward Movement (BACMOV). ,.102
Constant Xprssn Reordrng
• • • • • • • • • • • • • • • 103
Strength Reduction (REDUCE) .104
Full Register Assignment

.105

Chart 17. Table Building (FWDPAS) ••• 106
Chart 18. Local Assignment (BKPAS) ••• 107
Chart 19. Global Assignment (GLOBAS) •• 108
Chart 20. Text Updating (STXTR) •• ' •• 109
Chart 21. Phase 25 (Initial Text Info

Const). • • ••••••••••• 115
Chart 22. Phase 25 (Text Conversion) •• 116
Chart 23. Phase 30 (IEKP30) Overall
Logic. 120

Chart 24. IHCFCOMH Logic and Utility
Rtn . • '••..• ,. • '. III 191

Chart 25. Implementation of RD/WR
Srce Stmnts • .• • • • • • • • • • .192

Chart 26. Dvce Mnpltn, WR to oprtr"
RD/WR NMLST .• • • • • • • • • • • • • .193

Chart 27. IHCFIOSH Overall Logic •••• 200
Chart 28. Execution-Time I/O Recovery

Prog 201

(

(

•

This section contains general informa
tion describing the purpose 'of the FORTRAN
IV (H) compiler, its relationship to the
operating sys~em, its input/output data
flow, its organization, and its structure.

PURPOSE OF THE COMPILER

The IBM Systern/360 Operating System
FORTRAN IV (H) compiler transforms source
modules written in the FORTRAN IV language
into object modules that are suitable for
input to the linkage editor for subsequent
execution on the System/360.. At the user's
option, the compiler produces optimized
object modules (modules that can be execut
ed with improved efficiency).

THE COMPILER AND OPERATING .SYSTEM/360

The FORTRAN IV (H) compiler is a pro
cessing program which communicates with the
System/360 Operating System control program
for input/output and other services. A
general description of the control program
is given in the publication IBM System/360
Operating System: Introduction to Control
Program Logic, Program Logic Manual.

A compilation, or a batch of compila
tions, is requested using the job statement

SECTION 1: INTRODUCTION

(JOB), the execute statement (EXEC)., and
data definition statements (DD). Alterna
tively, cataloged procedures may be used.
A discussion of FORTRAN IV compilation and
the available cataloged procedures is given
in the publication IBM Systern/360 Operating
System: FORTRAN IV Programmer's Guide .•

The compiler receives control from the
calling program (e.g., job scheduler or
another program that calls, links to, or
attaches the compiler). Once the compiler
receives control., it communicates with the
control program through the FORTRAN system
director, a part of the compiler that
controls compiler processing. After com
piler processing is completed, control is
returned to the operating system.

INPUT/OUTPUT DATA FLOW

The source modules to be compiled are
read in from the SYSIN data set. Compiler
output is placed on the SYSLIN., SYSPRINT,
or SYSPUNCH data set, depending on the
options specified by the FORTRAN program
mer. (The SYSPRINT data set is always
required for compilation.)

The overall data flow and the data sets
used for the compilation are illustrated in
Figure 0 .•

section 1: Introduction 5

SYSIN

SOURCE MAP LOAD
Option Option Option

1 1 1
Object Module

Source
Storage (ESD, TXT,

Module
Listing Map RLD, and END

card images)

SYSPRINT SYSPRINT SYSLI N

Figure O. Input/Output Data Flow

COMPILER ORGANIZATION

The IBM System/360 Operating System
FORTRAN IV (H) compiler consists of the
FORTRAN system director, four logical pro
cessing phases (phases 10. 15., 20, and 25) <,
and an error-handling phase (phase30).

Control is passed among the phases of
the compiler via the FORTRAN system direc
tor. After each phase has been executed,
the FORTRAN system director determines the
next phase to be executed, and calls that
phase. The flow of control within the
compiler is illustrated in Chart 00.

The components of the compiler operating
together produce an object module from a
FORTRAN source module. The object module
is acceptable as input to the linkage
editor, which prepares object modules for
relocatable loading and execution.

The object module consists of control
dictionaries (external symbol dictionary
and relocation dictionary), text
(representing the actual machine instruc
tions and data), and an END statement. The

6

DECK LIST For all
Option Option compilations

1 1 1
Object Module Object Error and

(ESD, TXT, Warning
Program

RLD, and END Listing
messages

card images} (if any)

SYSPUNCH SYSPRINT SYSPRINT

external symbol dictionary (ESO) contains
the external symbols that have been defined
or referred to in the source module. The
relocation dictionary (RLD) contains infor
mation about address constants in the
object module.

The functions of the components of the
compiler are described in the following
paragraphs.

FORTRAN SYSTEM DIRECTOR

The FORTRAN system director (FSD) con
trols compiler processing.. It initializes
compiler operation, calls the phases for
execution, and distributes. and keeps track
of the main storage used during the comp1-
lation. In addition, the FSD receives the
various input/output requests of the com
piler phases and submits them to the con
trol program.

•

0

(

(

PHASE 10

Phase 10 accepts as input (from the
SYSIN data set) the individual source
statements of the source module. If a
source. module listing is requested, the
source statements are recorded on the SYS
PRINT data set. 'Phase 10 converts each
source statement into a form usable as
input by succeeding phases. This usable
input consists of an intermediate text
representation (in operator-operand pair
format) of each source statement. In addi
tion, phase 10 makes entries in an informa
tion table for the variables, constants,
literals, statement numbers, etc., that
appear in the source statements. During
this conversion process, phase 10 also
analyzes the source statements for syntac
tical errors. If errors are encountered"
phase 10 passes to phase 30 (by making
entries in the error table) the information
needed to print the appropriate error mes
sages.

PHASE 15

Phase 15 gathers additional information
about the source module and modifies some
intermediate text entries to facilitate
optimization by phase 20 and instruction
generation by phase 25. Phase 15 is divid
ed into three segments that perform the
following functions:

• The first segment adds data to the
information table about COMMON and
EQUIVALENCE statements so that main
storage space can be allocated correct
ly in the object module.

• The next segment tranlates text entries
(in operator-operand pair format) rep
resenting arithmetic operations into a
four-part form, which is needed for
optimization by phase 20 and
instruction-generation by phase 25.
This part of phase 15 also gathers
information about the source module
that is needed for optimization by
phase 20.

• The last segment of phase 15 assigns
relative addresses, and where
necessary, address constants to the
named variables and constants in the
source module. This segment also con
verts intermediate text (in operator
operand pair format) representing DATA
statements to a variable-initial value
form, which facilitates later
assignment of a constant value to a
variable. In addition, this segment
produces a storage map if the MAP
option is specified.

Phase 15 also passes to phase 30 the
information needed to print the appropriate
messages for the errors detected during
phase 15 processing. (This is done by
making entries in the error table.)

PHASE 20

Phase 20 processing depends on whether
or not optimization has been requested and,
if so, the degree of optimization desired.

If optimization has not been specified.
phase 20 assigns registers for use during
execution of the object module. However.
phase 20 does not take full advantage of
all registers and makes no effort to keep
frequently used quantities in registers to
eliminate the need for some machine
instructions.

If a moderate amount of optimization is
specified, phase 20 uses all available
registers and keeps frequently used quanti
ties in registers wherever possible. Phase
20 takes other measures to reduce the size
of the object module, and provides informa
tion about operands to phase 25.

If complete optimization has been speci
fied, phase 20 uses other techniques to
make a more efficient object module. The
net result of these procedures is to elimi
nate unnecessary instructions and to elimi
nate needless execution of instructions.

During processing. phase 20 also records
directly on the SYSPRINT data set messages
describing any errors it detects.

PHASE 25

Phase 25 produces an object module from
the combined output of the preceding phases
of the compiler.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine language form. It
may contain unresolved external symbolic
cross references (i. e. " references to sym
bols that do not appear in the source
module). The external symbol dictionary
contains the information required by the
linkage editor to resolve external symbolic
cross references., and the relocation dic
tionary contains the information needed by
the linkage editor to relocate the text
information.

Phase 25 places the object module
resulting from the compilation on the SYS-

section 1: Introduction 7

LIN data set if the LOAD option is speci
fied, and on the SYSPUNCH data set if the
DECK option is specified. Phase 25 also
produces an object module listing on the
SYSPRINT data set if the LIST option i.
specified. Messages for any errors detect
ed during phase 25 processing are also
recorded directly on SYSPRINT.

PHASE 30

Phase 30 ,is called after phase 15 pro
cessing is completed only if errors are
detected by phases 10 or 15. Phase 30

8

records on the SYSPRINT data set messages
describing the detected errors.

STRUCTURE OF THE COMPILER

The FORTRAN IV (H) compiler is struc
tured in a planned overlay fashion, which
consists of 20 segments. The root segment
is the FORTRAN system director. Each of
the remaining 19 segments constitutes a
phase or a logical portion of a phase. A
detailed discussion of the compiler's
planned overlay structure is given in
Appendix H.

.~
I \
\~

c

&

(

(

The following. paragraphs and associated
flowcharts at the end of this section
describe the major components of the
FORTRAN IV (H) compiler. Each component is
described to the extent necessary to
explain its function(s) and general opera
tion.

FORTRAN SYSTEM DIRECTOR

The FORTRAN System Director (FSD) con
trols compiler processing; its overall
logic is illustrated in Chart 01,. The FSD
receives control from the job scheduler if
the compilation is defined as a job step in
an EXEC' statement. The FSD may also
receive control from another program
through use of one of the syste.m macro
instructions (CALL~ LINK, or ATTACH).

The FSD performs compiler
initialization, phase loading, storage dis
tribution (including storage inventory),
input/output request processing, compila
tion deletion, and compiler termination.

COMPILER INITIALIZATION

The initialization of compiler process
ing by the FSD consists of two steps:

• Parameter processing.
• Data field initialization.

Parameter Processing

When the FSD is given control, the
address of a parameter list with a single
entry is contained in a register. The
entry in that list contains a pointer to a
main storage area that contains an image of
the options (e.g., SOURCE, MAP) specified
for the compilation. The FSD scans this
storage area and sets indicators to reflect
the options specified. These indicators
are placed into the communication table
(refer to Appendix A, "communication
Table") during data field initialization.

SECTION 2: DISCUSSION OF MAJOR COMPONENTS

Data Field Initialization

Data field initialization is concerned
with the communication table, which is a
central gathering area used to communicate
information among the phases of the compil
er. It contains information such as:

• User specified options.

• Pointers indicating the next available
locations within the various storage
areas.

• Pointers
various
Appendix
Appendix

to the initial entries in
types of chains (refer
A. "Information Table"

B., "Intermediate Text").

the
to

and

• Name of the source module being com
piled.

• An indication of the phase currently in
control.

The various fields of the communication
table, which are filled during a compila
tion, must be initialized before the next
compilation. To initialize this region,
the FSD clears it and places the option
indicators into the fields reserved for
them.

PHASE LOADING

The FSD loads and passes control to each
phase of the compiler by means of a stand
ard calling sequence. The execution of the
call causes control to be passed to the
overlay supervisor, which calls program
fetch to read in the phase. Control is
then returned to the overlay supervisor.
which branches to the phase. The phases
are called for execution in the following
sequence: phase 10, phase 15, phase 20, and
phase 25. However, if errors are detected
by phase 10 or phase 15, phase 30 is called
after the completion of phase 15 process
ing.

STORAGE DISTRIBUTION

Phases 10, 15, and 20
storage space in which to
information table (refer

require main
construct the

to Appendix A,

Section 2: Discussion of Major Components 9

/

"Information Table") and to collect inter
mediate text entries. These phases obtain
this storage space by submitting requests
to the FSD (at entry point GETCOR), which
allocates the required space, if available.
and returns to the requesting phase poin
ters to both the beginning and end of the
allocated storage space. If main storage
space is not available, the FSD deletes the
compilation.

The main storage space available for
building the information table or for col
lecting text entries is assembled into the
FSD in the form of define storage (DS)
statements. The distribution of the avai
lable storage by the FSD depends upon the
phase requesting the storage.. For this
reason, the remainder of this discussion is
divided into three parts: the first relat
ing to phase 10, the second to phase 15,
and the third to phase 20.

Phase 10 storage

Phase 10 can use all of the available
storage space for building the information
table and for collecting text entries. At
first, the FSD presents the entire block of
available main storage space to phase 10
for use in building the information table.
At each phase 10 request for main storage
in which to collect text entries, the FSD
reallocates a portion (i.e., a sub-block)
of the s'torage (first allocated to the
information table) for text collection, and
returns to phase 10 either via the communi
cation table or the storage area P10A
(depending upon the type of text to be
collected in the sub-block~ refer to Appen
dix B, "Phase 10 Intermediate Text") poin
ters to both the beginning and end of the
allocated storage space.. If the sub-block
is allocated for phase 10 normal text, the
pointers are returned in the communication
table. If the sub-block is allocated for a
phase 10 text type other than normal text.
the pointers are returned via the storage
area P10A. After the storage has been
allocated, the FSD adjusts the end of the
information table downward by the size of
the allocated sub-block. This process is
repeated for each phase 10 request for main
storage space in which to collect text
entries. (If the last information table
entry and the sub-block to be allocated for
text collection would overlap, the availa-

10

ble storage is split. with one part being
allocated for building the information
table and the other for collecting text
entries.)

The size of each sub-block allocated for
the collection of phase 10 text entries
depends upon the type of the text entries
that are to be placed into the sub-block,.
All sub-blocks allocated to contain the
same type of phase 10 text entries are of
the same size.

Sub-blocks. to contain phase 10 text
entries are allocated in the order in which
requests for main storage are received.
(When phase 10 completely fills one sub
block with text entries, it requests
another.) A request for a sub-block to
contain a particular type of text entries
may immediately follow a request for a
sub-block to contain another type of text
entries.. Consequently, sub-blocks allocat
ed to contain the same type of text entries
may be scattered throughout main storage.
The FSD must keep track of the sub-blocks
so that, at the completion of phase 10
processing, unused or unnecessary storage
may be allocated to phase 15. The manner
iri which the FSD keeps track of sub-blocks
allocated to phase 10 is deScribed in the
following paragraph.

Phase 10 Storage Inventory: The FSD
employs a pointer table and chains (see
Figure 1) to keep track of the sub-blocks
allocated for phase 10 text entries. If
the sub-block allocated is the first to be
used for the collection of a particular
type of phase 10 text, the FSD places a
pointer to that sub-block into the pointer
table. After the initial link is esta
blished, the size of the sub-block is
placed into the sub-block itself. If a
second sub-block is allocated for the same
purpose, the FSD places a pointer to it
into the first word of the first sub-block
allocated for that purpose. The size of
the sub-block is then placed into the
sub-block itself. If a third sub-block is
allocated for the same purpose., the same
procedure is followed, with a' pointer to
the third sub-block being placed into the
first word of the second sub-block. Figure
1 illustrates this concept as applied to
sub-blocks allocated to contain phase 10
normal., SF skeleton., and data text. (The
pointer field of the last sub-block of each
type is always zero.)

(f'\,·
~;

(

FSD Pointer Table

Pointer

Pointer

Pointer

(

Figure 1.

-

-

-

-.

. ---,--

I

t
Start .

Pointer I Size I
First sub-block allocated for
normal test entries

Pointer I Size I
First sub-block allocated for
SF skelton text entries

Pointer I Size I
First sub-block allocated for
data text entries

Painter I Size I
Second sub-block allacated for
normal text entries

Pointer I Size I
Second sub-block allacated for
SF ske I ton text entri es

Pointer I Size I
Third sub-block allocated for
normal text entries

Pointer I Size I
Second sub-block allocated for
data text entries

0 I Size I
last sub-block allocated for
SF skelton text entries

0 I Size I
last sub-block allocated for
data text entries

0 I Size I
last sub-block allocated far
normal text entries

Current Storage Available for Information Table

Current end of information table storage, which
may float downward if additional storage is
required by phase 10 for text collection

Available Storage
(initially all allocated
to information table)

storage Inventory for Phase 10 Normal, SF Skeleton, and Data Text

Section 2: Discussion of Major Components 11

/

Phase 15 storage

Phase 15. in collecting the text entries
that it creates, can use only those por
tions of main storage that are (1) unused
by phase 10, and (2) occupied by phase 10
normal text entries that have been pro
cessed by phase 15. The FSD first allo
cates all unused storage (if necessary) to
phase 15. If this is not sufficient, the
FSD then allocates the storage occupied by
phase 10 normal text entries that have
undergone phase 15 processing.

The .nain storage not used by phase 10
consists of:

• The portion between the last sub-block
allocated to phase 10 for text collec
tion and the end of the information
table.

• Those portions of the sub-blocks allo
cated to phase 10 that do not contain
text entries. (The last sub-block
allocated to each type of phase 10 text
may not be completely filled.)

After phase 10 processing is complete.
the FSD splits the storage area between the
last sub-block allocated to phase 10 and
the last information table entry" allocates
one part to the information table, and
treats the other part as an unused text
storage area. The individual portions of
unused storage, excluding the portion allo
cated to the information table, are then
chained together (see Figure 2). The first
phase 15 request for storage for text
collection is satisfied with the unused
portion between the last sub-block allocat
ed to phase 10 and the end of the informa
tion table. Pointers to both the beginning
and end of the storage are passed to phase
15 via the communication table. Each sub
sequent phase 15 request for text area
storage is satisfied with an unused portion
of a phase 10 sub-block. (Sub-block por
tions are allocated in the order in which
they are chained.) Pointers to both the
beginning and end of the allocated sub
block portion are passed to phase 15 via
the communication table. If an additional
request is received after the last sub
block portion is allocated, the FSD
determines the last phase 10 normal text
entry that was processed by phase 15. The
FSD then frees and allocates to phase 15

12

the portion of storage occupied by phase 10
normal text entries between the first such
text entry and the last entry processed by
phase 15.

Phase 15 storage Inventory: After the
processing of PHAZ15, the second segment of
phase 15, is completed.. the FSD recovers
the sub-blocks that were allocated to phase
10 normal and SF skeleton text. These
sub-blocks are chained as extensions to the
storage space available at the completion
of PHAZ15 processing. The chain, which
begins in the FSD pointer table, connecting
the various available portions of storage
is scanned and when a zero pointer field is
encountered" a pointer to the first sub
block allocated to phase 10 normal text is
placed into that field. The chain
connecting the various sub-blocks allocated
to phase 10 normal text is then scanned and
when a zero pOinter field is encountered, a
pointer to the first sub-block allocated to
SF skeleton text is placed into that field.
Once the sub-blocks are chained in this
manner, they are available for allocation
to CORAL, the third segment of phase 15,
and to phase 20.

After the processing of CORAL is com
pleted. the FSD likewise recovers the sub
blocks allocated for phase 10 data text.
The chain connecting the various portions
of available storage space is scanned and
when a zero pointer field is encountered. a
pointer to the first sub-block allocated
for phase 10 data text is placed into that
field. After the sub-blocks allocated for
phase 10 data text are linked into the
chain as described above" they, as well as
all other portions of storage space in the
chain, are available for allocation to
phase 20.

Phase 20 storage

Each phase 20 request for storage space
is satisfied with a portion of storage
available at the completion of CORAL pro
cessing,. The portions of storage are
allocated to phase 20 in the order in which
they are chained. Pointers to both the
beginning and end to the storage allocated
to phase 20 for each request are placed
into the communication table.

t

..

c

(

(

C"

Available
Storage

Start~

Figure 2.

_End

Completely Filled with Phase 10 Text Entries

I! 0 I
Unused Portion
of Sub-block

Pointer I

I
I

Unused Portion I

: of Sub-block

rl Pointer I
I
I Unused Portion
I of Sub-block

Pointer I
I Unused Portion of last Phase 10
I Sub-block (first sub-block I
I portion allocated to Phase 15)

Pointer I
FSD first allocates this portion of unused storage to Phase 15.
Sub-block portions are then 01 located in the order in which
they are chained together.

I-- End of information table.
(Fixed after phose 10 processing.)

Information Table

Chaining of Unused Text Area Main Storage

Section 2: Discussion of Major components 13

INPUT/OUTPUT REQUEST PROCESSING

The FSD routine IEKFCOMH receives the
input/output requests of the compiler phas
es and submits them to BSAM (Basic Sequen
tial Access Method) for implementation
(refer to IBM System/360 Operating System:
Seguential Access Methods, Program Logic
Manual.)

Reguest Format

Phase requests for input/output services
a~e made in the form of READ/WRITE state
ments requ1r1ng a FORMAT statement. The
format codes that can appear in the FORMAT
statement associated with such READ/wRITE
requests are a subset of those available in
the FORTRAN IV language. The subset con
sists of the following codes: I~ (output
only), T!!, A~. ~X, ~H. and Z~ (output
only) •

Reguest Processing

To process input/output requests from
the compiler phases, the FSD performs a
series of operations, which are a subset of
those carried out by the IHCFCOMH/IHCFIOSH
combination (see Appendixes E and F) to
implement READ/WRITE statements requiring a
format.

DELETION OF A COMPILATION

The FSD deletes a compilation if either
of the following occurs:

• An error of error level code 16 (refer
to the publication IBM System/360 Oper
ating System: FORTRAN IV Programmer's
Guide) is detected during the execution
of a processing phase.

• The value of the error level code
returned from phase 30 is 8 and the
LOAD option has not been specified.

In the former case, the phase detecting
th.e error passes control to the FSD at
entry point SYSDIR. If the error was
detected by phase 10, the FSD deletes the
compilation by calling phase 10, which
reads records (without processing them)
until the END statement is encountered.
Control is then returned to the FSD, which
initializes the compiler for the next com
pilation. If the error was encountered in

14

a phase other than phase 10, the FSD simply
initializes the compiler for the next com- {;\ .~J
pilation. ~

In the latter case, phase 30 returns
control to the FSD at the next sequential
instruction. If the error level code
passed to the FSD is 8 and the LOAD option
has not been specified, the FSD initializes
the compiler for the next compilation.

Note: Phase 25 returns an error' level code
~to the FSD if errors are detected
during the translation of FORMAT state
ments. However, in this case, the FSD does
not delete the compilation if the LOAD
option has not been specified.

COMPILER TERMINATION

The FSD terminates compiler processing
when an end-of-file is encountered in the
input data stream or when a permanent
input/output error is encountered. If,
after the deletion of a compilation or
after a source module has been completely
compiled., the first record read by phase 10
from the SYSIN data set contains an end-of
file indicator, control is passed to the
FSD (at the entry point ENDFILE), which
terminates compiler processing by returning
control to the operating system. If a
permanent error is encountered during the
servicing of an input/output request of a
phase, control is passed to the FSD (at
entry point IBCOMRTN), which writes a
message stating that both the compilation
and job step are deleted. The FSD then
returns control to the operating system.
In either of the above cases, the FSD
passes to the operating system as a condi
tion code the value of the highest error
level code encountered during compiler pro
cessing. The value of the code is used to
determine whether or not the next job step
is to be .performed.

PHASE 10

Phase 10 converts each FORTRAN source
statement into usable input to subsequent
phases of the compiler; its overall logic
is illustrated in Chart 03. Phase 10
conversion produces an intermediate text
representation of the source statement
and/or detailed information describing the
variables, constants, literals, statement
numbers, data set reference numbers, etc.,
appearing in the source statement. During
conversion, the source statement is ana
lyzed for syntactical errors.

c

(

(

c

The intermediate text is a strictly
defined internal representation (i. e, ••
internal to the compiler) of a source
statement. It is developed by scanning the
source statement from left to right and by
constructing operator-operand pairs. In
this context, operator refers to such ele
ments as commas, p~rentheses, and slashes,
as well as to arithmetic, relational. and
logical operators,. Operand refers to such
elements as variables, constants" literals ..
statement numbers" and data set reference
numbers. An operator-operand pair is a
text entry. and all text entries for the
operator-operand pairs of a source state
ment are the intermediate text representa
tion of that statement.

There are five types of intermediate
text developed by phase 10. They are:
normal, data, namelist. format.. and state
ment function (SF) skeleton,.

• Normal text is the intermediate text
representation of source statements
other than DATA, NAMELIST. FORMAT. and
statement functions.

• Data text is
representation
initialization
ments,.

the intermediate text
of DATA statements and
values in type state-

• Namelist text is the intermediate text
representation of NAMELIST statements.

• Format text is the intermediate text
representation of FORMAT statements.

• SF skeleton text is the intermediate
text representation of statement func
tions using sequence numbers as oper
ands of the intermediate text entries.
The sequence numbers replace the dummy
arguments of the statement functions.
This type of text is, in effect, a
"skeleton" macro.

The various text types are discussed in
detail in Appendix B" "Intermediate Text."

The detailed information describing
operands includes such facts as whether a
variable is dimensioned (i.e., an array)
and whether the elements of an array are
real" integer,. etc. such information is
entered into the information table.

The information table consists of five
components: dictionary" statement
number/array table" common table, literal
table, and branch table.

• The dictionary contains information
describing the constants and variables
of the source module.

• The statement number/array table con-

tains information describing the state
ment numbers and arrays of the source
module.

• The common table contains information
describing COMMON and EQUIVALENCE dec
larations.

• The literal table contains information
describing the literals of the source
module.

• The branch table contains information
describing statement numbers appearing
in computed GO TO statements.

A detailed discussion of the information
table is given in Appendix A, "Information
Table. "

The intermediate text and the informa
tion table complement each other in the
actual code generation by the subsequent
phases,. The intermediate text indicates
what operations are to be carried out on
what operands; the information table pro
vides the detailed information describing
the operands that are to be processed.

SOURCE STATEMENT PROCESSING

To process source statements, each
record (one card image) of the source
module is first read into an input buffer
by a preparatory subroutine (GETCD). If a
source module listing is requested, the
record is recorded on an output data set
(SYSPRINT). Records are moved to an inter
mediate buffer until a complete source
statement resides in that buffer. Unneces
sary blanks are eliminated from the source
statement, and the statement is assigned a
classification code. A dispatcher subrou
tine (DSPTCH) determines from the code
which subroutine is to continue processing
the source statement. Control is then
passed to that subroutine, which converts
the source statement to its intermediate
text representation and/or constructs
information table entries describing its
operands. After the entire source state
ment has been processed, the next is read
and processed as described above. The
recognition of the END statement causes
phase 10 to complete its processing and
return control to the FSD, which calls
phase 15 for execution.

The functions of phase 10 are performed
by five groups of subroutines:

• Dispatcher subroutine.
• Preparatory subroutine.
• Keyword subroutines.
• Arithmetic subroutines.
• Utility subroutines.

Section 2: Discussion of Major components 15

Dispatcher Subroutine

The dispatcher subroutine (DSPTCH) con
trols phase 10 processing. Upon receiving
control from the FSD, the DSPTCH subroutine
initializes phase 10 processing and then
calls the preparatory subroutine (GETCD) to
read and prepare the first source state
ment. After the statement is prepared.
control is returned to DSPTCH" which deter
mines if a statement number is associated
with the source statement being processed.
If there is a statement number" the DSPTCH
subroutine constructs a statement number
entry (refer to Appendix A. "Information
Table") for the statement number. A text
entry for the statement number is also
created. The DSPTCH subroutine then deter
mines, from the code assigned to the source
statement (refer to "Preparatory
Subroutine"), which subroutine (either key
word or arithmetic) is to continue the
processing of the statement, and passes
control to that subroutine. When the
source statement is completely processed"
control is returned to the DSPTCH subrou
tine, which calls the preparatory subrou
tine to read and prepare the next source
statement.

Preparatory Subroutine

The preparatory subroutine (GETCD) reads
each source statement, packs and classifies
it, and assigns it an internal statement
number (ISN)1. Packing eliminates unneces
sary blanks, which may precede the first
character, follow the last character, or be
imbedded within the source statement.
Classifying assigns a code to each type of
source statement. The code indicates to
the DSPTCH subroutine which subroutine is
to continue processing the source state
ment. A description of the classifying
process, along with figures illustrating
the two tables (the keyword pointer table
and the keyword table) used in this pro
cess, is gi ven in Appendix A"
"Classification Tables." The ISN assigned
to the source statement is an internal
sequence number used to identify the source
statement. The source statement, after
being prepared, resides in the storage area
NCDIN in the format illustrated in Figure
3.

1Logical IF statements are
internal statement numbers.
given the first number and
statement is given the next.

16

assigned two
The IF part is
the "trailing"

r---,
IPointer to first character of (1 word) I
Ipacked source statement beyond I
Ikeyword1 I
.----------------------~-----------------~
IInternal statement number (1 word) I
~---~
IStatement number indicator (*0 (1 word) \
lif present; 0 if not present) I
~---~
IClassification code (1 word) I

~---~
IStatement number (5 words) I
.---i
IPacked source statement (n words) I
~--i
IGroup mark2 (1 word) I

.---~ 11For arithmetic statements and statement I
I functions" this field pOints to the firstl
Icharacter of the packed statement. I
12 End of statement marker. I L ___ J

Figure 3. Format of Prepared Source State
ment

Keyword Subroutines

A keyword subroutine exists for each
keyword source statement. A keyword source
statement is any permissable FORTRAN source
statement other than an arithmetic state
ment or a statement function. The function
of each keyword subroutine is to convert
its associated keyword source statement (in
NCDIN) into input usable by subsequent
phases of the compiler. These subroutines
make use of the utility subroutines and. at
times" the arithmetic subroutines in per
forming their functions. To simplify the
discussion of these subroutines, they are
divided into two groups:

1. Those that construct only information
table entries.

2. Those that construct information table
entries and develop intermediate text
representations.

Note: One keyword subroutine, namely that
which processes the IMPLICIT statement. is
not assigned to either of the above stated
groups. The processing performed by this
subroutine (XIMPC) is somewhat specialized.
The function of this subroutine is defined
in Table 8.

Table Entry Subroutines: Only four key
word subroutines belong to this group
(refer to Table 8),. Each is associated
with a COMMON, DIMENSION, EQUIVALENCE. or
EXTERNAL key word statement.

(j

c

(
The processing performed by these sub

routines is similar. Each scans its asso
ciated statement (in NCDIN) in a left-to
right fashion and constructs appropriate
information table entries for each of the
operands of the statement. The types of
information table entries that can be
constructed by these subroutines are:

• Dictionary entries for variables and
external names.

• Common block name entries for common
block names.

• Equivalence group entries for equival
ence groups.

• Equivalence variable entries for the
variables in an equivalence group.

• Dimension entries for arrays.

The formats of these entries are given
in Appendix A. "Information Table."

Table entry and Text Subroutines: The
keyword subroutines, other than those that
are grouped as table entry subroutines,
belong to this group (refer to Table 8).
Each of these subroutines converts its
associated statement by developing an
intermediate text representation of the
statement. which consists of text entries
in operator-operand pair format, and con
structing information table entries for the
operands of the statement. The processing
performed by these subroutines is similar
and is described in the following para
graphs.

Upon receiving control from the DSPTCH
subroutine" the keyword subroutine asso
ciated with the keyword statement being
processed places a special operator into a
text entry work area. This operator is
referred to as a primary adjective code and
defines the type (e.g., DO,ASSIGN) of the
statement. A left-to-right scan of the
source statement is then initiated. The
first operand is obtained, an information
table entry is constructed for the operand
and entered into the information table
(only if that operand was not previously
entered). and a pointer to the entry's
location in that table is placed into the
text entry work area. The mode (e.g.,
integer, real) and type (e,.g., negative
constant, array) of the operand are then
placed into the work area. The text entry
thus developed is placed into the next
available location in the sub-block allo
cated for text entries of the type being
created.

Scanning is resumed and the next opera
tor is obtained and placed into the text
entry work area. The next operand is then

obtained, an information table entry is
constructed for the operand and entered
into the information table (again" only if
that operand was not previously entered),
and a pointer to the entry's location is
placed into the text entry work area. The
mode and type of the operand are placed
into the work area. The text entry is then
placed into the next available location in
the sub-block allocated for text entries of
the type being created.

This process is terminated upon recogni
tion of the end of the statement" which is
marked by a special text entry. The spe
cial text entry contains an end mark opera
tor and the ISN of the source statement as
an operand.

Note: Certain keywork subroutines in this
group, namely those that process statements
that can contain an arithmetic expression
(e.g., IF and CALL statements) and those
that process statements that contain I/O
list items (e.g., READ/WRITE statements),
pass control to the arithmetic subroutines
to complete the processing of their asso
ciated keyword statements.

Arithmetic Subroutines

The arithmetic subroutines (refer to
Table 8) receive control from the DSPTCH
subroutine, or from various keyword subrou
tines, and make use of the utility subrou
tines in performing their functions, which
are to:

• Process arithmetic statements.

• Process statement functions.

• complete the processing of certain key
word statements (READ, WRITE, CALL, and
IF.)

The following paragraphs describe the
processing of the arithmetic subroutines
according to their functions.

Arithmetic Statement Processing: In pro
cessing an arithmetic statement, the arith
metic subroutines develop an intermediate
text representation of the statement. and
construct information table entries for its
operands. These subroutines accomplish
this by following a procedure similar to
that described for keyword (table entry and
text) subroutines.

If one operator is adjacent to another,
the first operator does not have an asso
ciated operand. In the example A=B(I)+C,
the operator + has variable C as its
associated operand. whereas the operator)

Section 2: Discussion of Major Components 17

/

has no associated operand.
has no associated operand.,
operand is assumed.

If an operator
a zero (null)

Statement Function Processing: In convert
ing a statement function to usable input to
subsequent phases of the compiler. the
arithmetic subroutines develop an inter
mediate text representation of the state
ment fUnction using sequence numbers as
replacements for dummy arguments. These
subroutines also construct information
table entries for those operands that
appear to the right of the equal sign and
that do not correspond to dummy arguments.
The following paragraphs describe the pro
cessing of a statement function by the
arithmetic subroutines.

When processing a statement function.
the arithmetic subroutines:

• Scan the portion of the statement func
tion to the left of the equal sign.
obtain each dummy argument. assign each
dummy argument a sequence number (in
ascending order), and save the dummy
arguments and their associated sequence
numbers for subsequent use.

• Scan the portion of the statement func
tion to the right of the equal sign and
obtain the first (or next) operand,.

• Determine if the operand corresponds to
a dummy argument. If it does corres
pond, its associated sequence number is
placed into the text entry work area,.
If it does not correspond,. a dictionary
entry for the operand is constructed
and entered into the information table.
and a pointer to the entry" s location
is placed into the text entry work
area. (An opening parenthesis is used
as the operator of the first text entry
developed for each statement function
and a closing parenthesis is used as
the operator of the last text entry
developed for each statement function.)

• Place the text entry into the next
available location 1n the sub-block
allocated for SF skeleton text.

• Resume scanning. obtain the next opera
tor, and place it into the text entry
work area.

• Obtain the o~erand to the right of this
operator and process it as described
above.

Keyword Statement completion: In addition
to processing arithmetic statements and
statement functions, the arithmetic subrou
tines also complete the processing of key
word statements that may contain arithmetic
expressions or that contain I/O list items.

18

The keyword subroutine associated with each
such keyword statement performs the initial ("
processing of the statement,. but passes " -..,!
control to the arithmetic subroutines at
the first possible occurrence of an arith
metic expression or an I/O list item. (For
example. the keyword subroutine that proc-
esses CALL statements passes control to the
arithmetic subroutines after it has pro
cessed the first opening parenthesis of the
CALL. because the argument that follows
this parenthesis may be in the form of an
arithmetic expression.) The arithmetic
subroutines complete the processing of
these keyword statements in the normal
manner. That is. they develop text entries
for the remaining operator-operand pairs
and construct information table entries for
the remaining operands.

Utility Subroutines

The utility subroutines (refer to Table
8) aid the keyword. arithmetic~ and DSPTCH
subroutines in performing their functions.
The utility SUbroutines are divided into
the following groups:

• Entry placement subroutines.
• Text generation subroutines.
• Collection subroutines.
• Conversion subroutines.

Entry Placement Subroutines: The utility
subroutines in this group place the various
types of entries constructed by the key
word, arithmetic, and DSPTCB subroutines
into the tables or text areas (i. e.,
SUb-blocks) reserved for them.

Text Generation Subroutines: The utility
subroutines in this group generate text
entries (supplementary to those developed
by the keyword and arithmetic subroutines)
that:

• Control the execution of implied DO's
appearing in I/O statements.

• Increment DO indexes and test them
against their maximum values.

• Signify the end of a source statement.

Collection Subroutines: These utility sub
routines perform such functions as gather
ing the next group of characters (i.e., a
string of characters bounded by delimiters)
in the source statement being processed.
and aligning variable names on a word
boundary for comparison to other variable
names.

Conversion Subroutines: These utility sub
routines convert integer,. real. and complex

o

(

c

..

constants to their binary equivalents and,
if requested, verify that a converted con
stant is of integer mode.

PHASE 15

Before phase 15 gains control, phase 10
has read the source statements, built the
information table, and restructured the
source statements into operator-operand
pairs. When given control, phase 15 proc
esses common and equivalence entries in the
common table, translates the text of arith
metic expressions, gathers information
about branches and variables, converts
phase 10 data text to a new text format,
assigns relative addresses to constants and
variables, and generates address constants
when needed, to serve as address referen
ces. Thus. phase 15 modifies and adds to
the information table and translates phase
10 normal and data text to their phase 15
formats,.

Phase 15 is divided into three overlay
segments, STALL, PHAZ15" and CORAL. Chart
04 shows the overall logic of the phase.

STALL processes both common and equival
ence entries in the inf ormation table,. It
finds the maximum size of each common
block" assigns locations to variables in
each common block, and plans the storing of
operands equated by EQUIVALENCE statements.
It also determines the head of arrays
referred to in EQUIVALENCE statements.
(The head is the lowest-valued starting
address of two or more arrays after their
repositioning has been planned by equival
ence processing.) CORAL later uses the
head during the computation of relative
addresses for variables and arrays,.

PHAZ15 translates and reorders the text
entries for arithmetic expressions from the
operator-operand format of phase 10,' to a
four-part form suitable for phase-20 pro
cessing. The new order permits phase 25 to
generate machine instructions in the cor-

~ rect sequence. PHAZ15 blocks the text and
collects information describing the blocks.
The information, needed during the phase 20
optimization" includes tables on branching
locations" and on constant and variable
usage.

CORAL, the last overlay segment of phase
15, performs five functions. It first
converts phase 10 data text to a form more
easily evaluated by phase 25. CORAL then
assigns relative addresses to all varia
bles" constants" and arrays. During one
phase of relative address assignment, CORAL
rechains phase 15 data text in order to
simplify the generation of text card images

by phase 25. CORAL also assigns address
constants, when needed, to serve as address
references for all operands. Lastly, as a
user option. CORAL prints a storage map of
named items (variables" arrays, and exter
nal references) as recorded in the informa
tion table.

STALL PROCESSING

STALL first rechains entries for varia
bles in the dictionary by sorting alphabet
ically the entri~s within each chain. The
rechaining frees storage in each entry for
la ter us e by CORAL,.

As a second function, STALL checks the
statement-number section of the information
table, noting undefined statement numbers.

STALL then processes common entries in
the information table,. It computes the
offset (displacement) of each variable in a
common block from the start of the common
block. The offsets are subsequently used
to assign relative addresses to common
variables. The offsets are recorded in the
dictionary entries for the variables. The
total size of each common block is also
calculated. The block size is used by
phase 25 to generate a control section for
the common block,.

Lastly" STALL processes equi valence
entries in the information table.. The
processing plans the placing of the oper
ands of each equivalence group at the same
location in storage. During the processing
STALL recognizes a variable that must be
made equivalent to previously processed
variables in common.

Chart 05 shows the overall processing of
STALL.

Rechaining Entries for Variables

The STALL subroutine DCTSRT begins by
rechaining entries for variables in the
information table. Each dictionary entry
created by phase 10 contains two chain
address fields (refer to Appendix A.
"Information Table Components"). DCTSRT
frees one of the chain address fields for
later use by CORAL. It does this by
sorting alphabetically within each length
grouping and then re9haining the entries.
After the entries have been rechained, the
dictionary consists of one chain for each
variable-name length. The chains of
entries describing symbols of 3 or less
characters are arranged in descending

section 2: Discussion of Major Components 19

alphabetic order, while the chains of
entries describing symbols of 4 or more
characters are arranged in ascending alpha
betic order. As an integral part of
rechaining, DCTSRT also constructs dic
tionary entries for the imaginary parts of
complex variables and constants.

Checking for Undefined Statement Numbers

After subroutine DCTSRT has rechained
the dictionary" subroutine LABSCN checks
for undefined statement numbers. This
action is taken to insure that every state
ment number that is referred to is also
defined. LABSCN scans the chain of state
ment number entries in the information
table (refer to Appendix A, "Statement
Number/ Array Table") and examines a bit in
the byte A usage field of each such entry.
This bit is set by phase 10 to indicate
whether or not it encountered a definition
of that statement number. If the bit
indicates that the statement number is not
defined, LABSCN places an entry in the
error table for later processing by phase
30.

Processing of Common Entries in the
Information Table

After the statement numbers have been
checked, subroutine COMN processes common
entries in the information table. It com
putes the offsets (displacements) of varia
bles and arrays from the start of the
common block containing them and calculates
the total size in bytes of each common
block. COMN records the offsets in the
dictionary entries for the variables and
the block size in the common table entry
for the name of the common block (refer to
Appendix A, "Common Table"). It also plac
es a pointer to the common table entry for
the block name in the dictionary entry for
each variable or array in that common
block.

Processing of Eguivalence Entries in the
Information Table

Subroutine EQU next gathers additional
information about equivalence groups and
the variables in them. It computes a group

20

head~ and the offset (displacement) of each
variable in the group from this head. It
records this information in the common
table entries for the group and for the
variables., respectively (refer to Appendix
A, "Common Table"). EQU identifies and
flags in their dictionary entries variables
and arrays put into common via the EQUIVAL
ENCE statement. It also error-checks the
variables and arrays to verify that the
associated common block has not been impro
perly extended because of the equivalence
declaration. If a common block is legiti
mately enlarged by an equivalence opera
tion, subroutine EQU recomputes the size of
the common block and enters the size into
the common table entry'for the name of the
common block.

If the name of a variable or array
appears in more than one equivalence group,
EQU recognizes the combination of groups
and modifies the dictionary entries for the
variables to indicate the equivalence oper
ations. EQU checks arrays appearing in
more than one equivalence group to verify
that conflicting relationships have not
been established for the array elements.

During the processing of both common and
equivalence information, subroutine TESTBN
is given control to check that variables
and arrays fallon boundaries appropriate
to their defined types. If a variable or
array is improperly aligned., TESTBN places
an entry in the error table for processing
by phase 30.

PHAZ15 PROCESSING

The functions of PHAZ15 are text block
ing, arithmetic translation" information
gathering, and reordering of the statement
number chain. Information gathering occurs
only if optimization has been selectedi it
takes place concurrently with text blocking
and arithmetic translation during the same
scan of intermediate text. Reordering of
the statement number chain occurs after
PHAZ15 has completed the blocking" arith
metic translation, and information gather
ing.

PHAZ15 first divides intermediate text
into blocks for convenience in obtaining
information from the text. Each block
begins with a statement number definition
and ends with the text entry just preceding
the next statement number definition.

~The head of a equivalence group is that
variable in the group from which all other
variables or arrays in the group can be
addresses by a positive displacement.

o

•

c

c

..

(

~ ..

PHAZ15 records information describing a
text block in a statement number text entry
and in an information table statement num
ber entry.

During the same scan of text in which
blocking occurs, PHAZ15 translates arith
metic expressions. The conversion is from
the operation-operahd pairs of phase 10 to
a four part format ("phase 15 text"). The
new format follows the sequence in which
algebraic operations are performed. In
general, phase 15 text is in the same order
in which phase 25 will generate machine
instructions.~ PHAZ15 copies, unchanged
into the text area, phase 10 text that does
not require arithmetic translation or other
special handling .•

During the building of phase 15 text for
a given block (if optimization has been
selected), PHAZ15 constructs tables of
information on the use of constants and
variables in that text block.. It stores
information on variables and constants that
are used within a block, and variables that
are defined within a block. PHAZ15 also
gathers information on variables not first
used and then defined. The foregoing usage
information is recorded in the statement
number text for each block for later use by
phase 20.

Concurrently with text blocking" arith
metic translation r and gathering of
constant/variable usage information., PHAZ15
discovers branching text entries and
records the branching or "connection"
information. This information, consisting
initially of a table of branches from each
text block ("forward connections">. is
stored in a special array.. Branching
(connection) information is used during
phase 20 optimization.

After PHAZ15 has completed the previous
ly mentioned processing., it reorders the
statement number chain of the information
table. The original order of statement
numbers, as phase 10 recorded them, was in
order of their occurrence in source state
ments as either definitions2 or operands.
The new sequence after phase 15 reordering
is according to source statement occurrence
as definitions only. The new order is
established to facilitate phase 20 process
ing.

Lastly, PHAZ15 acquires a table of
"backward connection" information consist
ing of branches into each statement number.

~If optimization is selected. phase 20 may
further manipulate the phase 15 text.
2A statement number occurs as a definition
when that statement number appears to the
left of a source statement.

or text block. PHAZ15 derives this infor
mation from the forward connection informa
tion it previously obtained. ThUS,. connec
tion information is of two types. forward
and backward. PHAZ15 records a table of
branches from each text block and a table
of branches into each text block. Connec
tion information of both types is used
during phase 20 optimization.

Charts 06. 07,. and 08 depict the flow of
control during PHAZ15 execution.

Text Blocking

During its scan and conversion of phase
10 text. PHAZ15 sections the module into
text blocks, which are the basic unit upon
which the optimization and register assign
ment processes of phase 20 operate. A text
block is a series of text entries that
begin with the text entry for a statement
number and end with the text entry that
immediately precedes the text entry for the
next statement number. When PHAZ15 encoun
ters a statement number definition (i.e ••
the phase 10 text entry for a statement
number) it begins a text block. It does
this by constructing a statement number
text entry (refer to Appendix B, "Phase 15
Intermediate Text Modifications"). PHAZ15
also places a pointer to the statement
number text entry into the statement number
entry (information table> for the associat
ed statement number.

PHAZ15 resumes its scan and converts the
phase 10 text entries following the state
ment number definition to their phase 15
formats.. After each phase 15 text entry is
formed and chained into text, PHAZ15 places
a pointer to that text entry into the P2
field of the previously constructed state
ment number text entry. This field is
thereby continually updated to point to the
last phase 15 text entry.

When the next statement number defini
tion is encountered" PHAZ15 begins the next
text block in the previously described
manner. A pointer to the text entry that
ends the preceding block has already been
recorded in the P2 field of the statement
number text entry that begins that block.
Thus. the boundaries of a text block are
recorded in two places: the beginning of
the block is recorded in the associated
statement number entry (information table>~
the end of the block is recorded in the P2
field of the associated statement number
text entry. All text blocks in the module
are identified in this manner.

Figure 4 illustrates the concept of text
blocking. In the figure. two text blocks

Section 2: Discussion of Major Components 21

are shown: one beginning with statement
number 10; the other with statement number
20. The statement number entry for state
ment number 10 contains a pointer to the
statement number text entry for statement
number 10, which contains a pointer to the

22

text entry that immediately precedes the ()
statement number text entry for statement :...
number 20. Similar pointers exist for the
text block starting with statement number
20.

•

c

(

(

I

I

Statement Number Entry for
Statement Number 10

I I I I 10 I

Statemen.t Number Entry for
Statement Number 20

I I I I 20 I

* LDF is the mnemonic for the statement number operator

Figure 4. Text Blocking

PHASE 15 TEXT

LDF* /
/

/-- 10

~

LDF* /
/ /-20

LDF* /

/ /
--

section 2: Discussion of Major Components 23

Arithmetic Translation

Arithmetic translation is the reordering
of arithmetic expressions in phase 10 text
format to agree with the order in which
algebraic operations are performed. Arith
metic expressions may exist in IF" CALL,
ASSIGN, and GOTO statements and I/O data
list, as well as in arithmetic statements
and statement functions.

When PHAZ15 detects a primary adjective
code for a phase 10 text entry that may
need arithmetic translation, it passes
control to the arithmetic translator
(ALTRAN). For simple expressions not hav
ing operator-operand pairs (terms) needing
further special handling, the arithmetic
translator reorders the expression so that
the terms appear in phase 15 text in the
order in which arithmetic operations should
be performed.

While reordering expressions" the ari th
metic translator determines whether or not
a term needs special handling before it can
be placed in the phase 15 text area.
(Special handling is required for complex
expressions, terms involving unary minuses
(e. g. " A=- B). subscripts, sta tement func
tion references, etc.} If special handling
is required" one or more subroutines are
called to perform the needed processing.

After reordering and, if required, spe
cial handling" subroutine GENER places the
processed text items in the phase 15 text
area in four-part format.

REORDERING ARITHMETIC EXPRESSIONS: The
reordering of arithmetic expressions is
done by means of a pushdown table. This
table is a last-in, fi'rst-out (LIFO) list.
After the table is initialized (i.e., the
first operator-operand pair of an arithmet
ic expression is placed into the table),
the arithmetic translator (ALTRAN) compares
the operator of the next operator-operand
pair (term) in text with the operator of
the pair at the top of the pushdown table.
As a result of each comparison., either a
term is transferred from phase 10 text to
the table, or an operator and two operands
(triplet) are brought from the table to the
phase 15 text area, eliminating the top
term in the pushdown table.

The comparison made to determine whether
a term is to be placed into the pushdown or
whether a triplet is to be taken from the
pushdown is always between the operator of
a term in phase 10 text and the operator of
the top term in the table. Each comparison
is made on the basis of relative forcing
strength. A forcing strength is a value
assigned to an operator that determines
when that operator and its associated oper-

24

ands are to be placed in phase 15 text.
The relative values of forcing strengths
reflect the hierarchy of algebraic opera
tions. The forcing strengths for the var
ious operators appear in Table 1.

Table 1. Operators and Forcing Strengths
r----------------------------T------------,
I I Forcing I
I Operator I strength I
~----------------------------+------------i
End Mark 1 I
= 2 I
) 3 I
, 6 I
.OR. 7 I
.AND. 8 I
• NOT. 9
.EQ._ .NE., 10
.GT LT.,
• GE., .LE.
+, -, minus (11
*, / 12

1** 13
I(f --left parenthesis after 14
I a function name
I
I(s --left parenthesis after 15
I an array name
I(16 L ____________________________ ~ ____________ J

When the arithmetic translator (ALTRAN)
encounters the first operator-operand pair
(phase 10 text entry) of a statement, the
pushdown table is empty_ Since the tran
slator cannot yet make a comparison between
text entry and table element, it enters the
first text entry in the top position of the
table. The translator then compares the
forcing strength of the operator of the
next text entry with that of the table
element. If the strength of the text
operator is greater than that of the top
(and only) table element, the text entry
(operator-operand pair) becomes the top
element of the table. The original top
element is effectively "pushed down" to the
next lower position. In Figure 5, the
number-l section of the drawing shows the
pushdown table at this time.

The operator of the next text entry
(operator c--operand c at section 2) is
compared with the top table element
(operator B--operand B at section 1) in a
similar manner.

When a comparison of forcing strengths
indicates that the strength of the text
operator (operator C, section 2) " is less
than or equal to that of the top table
element (operator B), the table element is
said to be "forced." The forced operator
(operator B) is placed in the new phase-iS
text entry (section 3 of the figure) with
its operand (operand B) and the operand of
the next lower table entry (operand A).

()

c

(

1. Text in Pushdown Table 2. Phase 10 Text Entries

Operator Operand Operator Operand

Top Element Op B Oprnd B Op C Oprnd C Current phase 10 text entry

OpA Oprnd A Op D Oprnd D Next phase 10 text entry

4. New Top Element of Pushdown 3. New Phase 15 Text Entry

OpA Op B Oprnd A Oprnd B

Operator Operand 1 Operand 2 Operand 3

NOTE: A phase 15 text entry having an arithmetic operator may be envisioned as
aperand 1 = operand 2 - operator - operand 3, where the equal sign is implied.

Figure 5. Text Reordering Via the Pushdown Table

Note that ALTRAN has generated a new oper
and t (see section 3) called a "temporary."
. ~ temporary is a compiler-generated operand
in which a preliminary result may be held
during object-module execution. 1 With oper
ator B, operand B" and operand A (a
triplet) removed from the pushdown table,
the previously entered operator-operand
pair (operator A, section 1) now becomes
the top element of the table (section 4).
ALTRAN assigns the previously generated
temporary t as the operand of this pair.
This temporary represents the previous
operation (operator B--operand A--operand
B).

Comparisons and text-to-table exchanges
continue, a higher strength text operator
"pushing" a phase 10 text entry into the
table and a lower strength text operator
"forcing" the top table operator and its
operands (triplet) from the table. In each
case, the forced table items become the new
phase 15 text entry. An exception to the
general rule is a left parenthesis, which
has the highest forcing strength. Opera
tors following the left parenthesis can be
forced from the table only by a right
parenthesis" although the intervening oper
ators (between the parentheses) are of
lower forcing value. When the translator
reaches an end mark in text, its forcing

1A given temporary may be eliminated by
phase 20 during optimization.

strength of "in forces all remaining ele
ments from the table •

SPECIAL PROCESSING OF ARITHMETIC EXPRES
SIONS: As stated before, arithmetic tran
slation involves reordering a group of
phase 10 text entries to produce a new
group of phase 15 text entries representing
the same source statement. Certain types
of entries, however, need special handling
(for example, subscripts and library
functions). When it has been determined
that special handling is needed, control is
passed to one or more other subroutines
(refer to Chart 07) that perform the
desired processing.

The following expressions and terms need
special handling before they are placed in
phase 15 text: complex expressions, terms
involving a unary minus, terms involving
powers of two, commutative expressions.,
subscript expressions, routine or subpro
gram references, statement function ref
erences, and expressions involved in logi
cal IF statements.

Complex Expressions: A complex expression
is converted into two expressions, a real
expression and an imaginary one. For real
elements in the expression, complex tempo
raries are generated with zero in the
imaginary part and the real element in the
real part. For example, the complex
expression B + C + 25 is treated as:

Section 2: Discussion of Major Components 25

r---,
I B + C + 25 I
I real real real I
~----------------~------------------------i
I B + C + 0 I
I imag imag imag I L ___ J

An expression is not treated as complex
if the "result" operand (left of the equal
sign in the source statement) is real. In
this case, the translator places only the
real part of the expression in phase 15
text. But if a complex multiplication.,
division, or exponentiation is involved in
the expression., the real and imaginary
parts will appear in phase 15 text" but
oqly the real part of the result will be
used at execution time.

Terms Containing a Unary Minus: In terms
that contain unary minuses, the unary min
uses are combined with additive operators
(+,-) to reduce the number of operators.
This combining, done by subroutines UNARY
and SWITCH, may result in reversed opera
tors or operands or both in phase 15 text.
For example, -(B-C) becomes C-B, and A+(-B)
becomes A-B. This process reduces the
number of machine instructions that phase
25 must generate.

Operations Involving Powers of Two: Sever
al kinds of special handling are provided
by subroutines UNARY and EXPON for opera
tions involving powers of two.. Multi
plication and division by powers of two are
converted, respectively, to left and right
shift operations.. A constant integer power
of two raised to a constant integer power
is converted to the equivalent left shift
operation. Lastly, a constant or variable
raised to a constant integer power between
-6 and +6 is converted to a series of
multiplications (and a division into one"
if necessary). This handling requires less
execution time than using an exponentiation
subroutine.

Commutative Operations: If an operation is
commutative (either operand can be operated
upon, such as in addition or
multiplication), the two operands are reor
dered to agree with their chain order in
the dictionary.

Subscripts: Subroutines SBGLUT, SUBADD,
SUBMLT, and SUBSCR perform subscript pro
cessing. Subscripted items are processed
one at a time throughout the subscript. If
the subscripted item itself is an expres
sion, it is first processed via the tran
slator. Text entries are then generated to
multiply the subscript variable by the
dimension factor and length. Each sub
script item is handled in a similar manner.
When all subscript items have been pro
cessed, phase 15 text entries are generated

26

to add all subscript values together to
produce a single subscript value.

In general, during compilation, con
stants in subscript expressions are com
bined, and their composite value is placed
in the displacement field of the phase 15
text entry for the subscript item. (Refer
to Appendix Bi, "Phase 15/Phase 20 Inter
mediate Text Modifications.") Phase 25 uses
the value in the displacement field to
generate., in the resultant object instruc
tions, the displacement for referring to
the elements in the array. This combining
of constants reduces the number of instruc
tions needed during execution to compute
the subscript value.

Expressions Referring to In-Line Routines
or SUbprograms: Expressions containing
references to in-line routines or subpro
grams are processed by the following sub
routines: FUNDRY" LIBRTN, NEGCHK, XPARAM,
BLTNFN,' and DFUNCT.

Arguments that are expressions are
reduced by the translator to a single
"temporary," which is used as the argument.
If an argument is a subscripted variable,
subscript processing (previously discussed)
reduces the subscript to 'a single sub
scripted item. Either subroutine LIBRTN
(for references to library routines) or
subroutine BLTNFN (for references to in
line routines) then conducts a series of
tests on the argument and perform the
processing determined by the results of the
tests.

If a function is not external and is in
the IFUNTB table (refer to Appendix A,
"Subprogram Table"), the IFUNT table is
scanned to determine if the required
routine is in-line. Then, the mode and
number of arguments are tested. If the
routine is in-line and the mode and number
of arguments are as expected, DFUNCT either
generates text or substitutes a special
operator (such as those for ABS or FLOAT)
in the phase 15 text so that phase 25 can
later expand the function. PHAZ15 provides
in-line routines itself.1 Instead of plac
ing a special operator in text., PHAZ15
inserts a regular operator, such as the
operator for AND or STORE .•

If the mode and/or number of arguments
in the function is not as expected, another
test is performed. The test determines if
a previous reference was made correctly for
these arguments. If the previous reference
was as expected, an error' is assumed to

1BLTNFN expands the following functions:
TBIT, LAND., LOR, LXOR, ADDR, SNGL, REAL,
AIMAG,DCMPLX, CMPLX, DCONJG., and CONJG.

o

c

(

,.

(

•

,.

c

exist. Otherwise~ the function is assumed
to be external.

If a function is external (either used
in an EXTERNAL statement or does not appear
in the IFUNTB table)~ text is generated to
load the addresses of any arguments that
are subscripted variables into a parameter
list in the adcon table. (If none of the
arguments are subscripted variables, the
load address items are not required.) A
text entry for a subprogram or function
call is then generated. The operator of
the text entry is for an external function
or subprogram reference. This entry points
to the dictionary entry for the name. The
text representation of the argument list is
then generated and placed into the phase 15
text chain.

If a function is not external, is in the
lFUNTB table, but does not represent an
in-line routine" text is generated to load
the addresses of any arguments that are
subscripted variables into a parameter list
in the adcon table. (If none of the
arguments are subscripted variables" the
load address items are not required.) A
text entry having a library function opera
tor is generated. This entry points to the
lFUNTB entry for the function. The text
representation of the argument list is then
generated and placed into the phase 15 text
chain.

Expressions Containing statement Function
References: For expressions containing
statement function references" the argu
ments of the statement function text are
reduced to single operands (if necessary).
These arguments and their mode are stored
in an argument save table (NARGSV), which
serves as a dictionary for the statement
function skeleton pointed to by the dic
tionary entry for the statement function
name. The argument save table is used in
conjunction with the usual pushdown proce
dure to generate phase 15 text items for
the statement function reference. When the
translator encounters an operand that is a
dummy argument, the actual argument corres
ponding to the dummy is looked up in the
argument save table and replaces the dummy
argument.

Logical Expressions: Subroutines ALTRAN"
ANDOR, RELOPS" and NOT perform a special
process, called anchor point" on logical
expressions containing relational opera
tors" ANDs, ORs, and NOTs, so that., at
object time" unnecessary logical tests are
eliminated. With anchor-point
"optimization," only the minimum number of
object-time logical tests are made before a
branch or fall-through occurs. For exam
ple, with anchor-point handling" the state
ment IF (A .AND. B .AND. C) GO TO 500 will
produce (at object time) a branch to the

next statement if A is false, because Band
C need not be tested. Thus" only a minimum
number of operands will be tested. Without
anchor-point handling of the expression
during compilation~ all operands would be
tested at object time. Similar special
handling occurs for text containing logical
ORs.

When a primary adjective code for a
logical IF statement or an end-of-DO IF is
placed in the pushdown table, a scan of
phase 10 text determines if the associated
statement can receive anchor-point han
dling. The statement can receive anchor
point handling if two conditions are met.
There must not be a mixture of ANDs and ORs
in the statement. A logical expression, if
it is in parentheses" must not be negated
by the NOT operator. If these two
conditions are not met, special handling of
the logical expression does not occur.

Gathering Constant/Variable usage
Information

During the conversion of the phase 10
text entries that follow the beginning of a
text block (i.e., the text entries that
follow a statement number definition) to
phase 15 format, the PHAZ15 subroutine MATE
gathers usage information for the variables
and constants in that block. This informa
tion is required during the processing of
the intermediate- and complete-optimized
paths through phase 20 (refer to "Phase
20"). If optimized processing is not
selected" this. information is not compiled.
Subroutine MATE records the usage informa
tion in three fields (MVS, MVF, and MVX).
each 128 bits long" of the statement number
text entry for the block (refer to Appendix
B, "Phase 15 Intermediate Text
Modifications"). The MVS field indicates
which variables are defined (i.e., appear
in the operand 1 position of a text entry)
within the text of the block. The MVF
field indicates which variables, constants,
and base variables (refer to CORAL PROCESS
ING, "Adcon and Base Variable Assignment")
are used (i.e., appear in either the oper
and 2 or operand 3 position of a text
entry) within the text of the block. The
MVX field indicates which variables are not
first used and then defined (i.e., not
busy-on-entry) within the text of the
block.

Subroutine MATE records the usage infor
mation for a variable or constant at a
specific bit location within the three
fields,. (Base variables are processed dur
ing CORAL PROCESSING.) The bit location at
which the usage information is recorded is
determined from the coordinate assigned to

Section 2: Discussion of Major Components 27

-~----,--~.--. ---~ ----

the variable or constant when it is first
encountered in text.

Coordinates are assigned to variables
and constants in the following manner:

• The first 59 unique variables and/or
constants appearing in the text created
by phase 15 are assigned coordinates 2
through 60, respectively.1 The coordi
nates are assigned in order of increas
ing coordinate number. (A coordinate
between 2 and 60 may be assigned to a
base variable if fewer than 59 unique
variables and constants appear in the
text.)

• The next 20 unique variables are
assigned coordinates 61 through 80,
respectively. The coordinates are
assigned in order of increasing coordi
nate number. (If constants are encoun
tered after coordinate 60 has been
assigned, they are not assigned coordi
nates.)

• The coordinates 81 through 128 are
reserved for assignment to base varia
bles (refer to CORAL PROCESSING, "Adcon
and Base Variable Assignment").

Subroutine MATE assigns the first varia
ble or constant in phase 15 text a coordi
nate number of 2, which indicates that the
usage information for that variable or
constant, regardless of the block in which
it appears, is to be recorded in bit
position 2 of the MVS, MVF, and MVX fields.
MATE assigns the second variable or con
stant a coordinate number of 3 and records
its usage information in bit position 3 of
the three fields. MATE continues this
process until coordinate 60 has been
assigned to a variable or constant. After
coordinate number 60 has been assigned,
MATE only assigns coordinates to the next
20 unique variables. (MATE does not assign
coordinates to or gather usage information
for unique constants encountered after
coordinate number 60 has been assigned.)
It assigns these variables coordinates 61
through 80" respectively. It records the
usage information for each variable at the
assigned bit location in the three fields.
MATE does not assign coordinates to or
gather usage information for unique varia
bles encountered after coordinate number 80
has been assigned.

Subroutine MATE uses
the MCOORD vector, the MVD
byte-C usage fields of
entries (refer to Appendix

a combination of
table, and the
the dictionary
A, "Dictionary")

1The coordinate 1 is assigned to simple
variables that are made equivalent to vari
ables of different modes, and to arrays.

28

to assign, keep track of, and record coor
dinate numbers. MCOORD contains the number
of the last coordinate assigned. The MVD
table is composed of 128 entries, with each
entry containing a pointer to the dictiona
ry entry for the variable or constant to
which the corresponding coordinate number
is assigned or to the information table
entry for the base variable to which the
corresponding coordinate is assigned. The
coordinate number assigned to a variable or
constant is recorded in the byte-c usage
field of the dictionary entry for that
variable or constant.

Subroutine MATE does not assign coordi
nates to or record usage information for
unique constants encountered in text after
coordinate number 60 has been assigned and
unique variables encountered in text after
coordinate number 80 has been assigned. If
MATE encounters a new constant after coor
dinate 60 has heen assigned or a new
variable after coordinate 80 has been
assigned, it records a zero in the byte-c
usage field of its associated dictionary
entry. Phase 20 optimization deals only
with those constants and variables that
have been assigned coordinate numbers
greater than or equal to 2 and less than or
equal to 80.

After a phase 15 text entry has been
formed" subroutine MATE is given control to
determine and record the usage information
for the text entry. It examines the text
entry operands in the order: operand 2,
operand 3, operand 1. If operand 2 has not
been assigned a coordinate (indicating that
this is the first occurrence of the operand
in the module), subroutine MATE assigns it
the next coordinate, enters the coordinate
number into the byte-C usage field of the
dictionary entry for the operand, and plac
es a pointer to that dictionary entry into
the MVD table entry associated with the
assigned coordinate number. After MATE has
assigned the coordinate, or if the operand
was previously assigned a coordinate, it
records the usage information for the oper
and. The operand's associated coordinate
bit in the MVF field (of the statement
number text entry for the block containing
the text entry under consideration) is set
on, indicating that the operand is used in
the block. MATE executes a similar proce
dure to process operand 3 of the text
entry.

If operand 1 of the text entry has not
been assigned a coordinate, MATE assigns it
the next and records the following usage
information for operand 1:

• Its associated coordinate bit in the
MVX field is set on only if the asso
ciated coordinate bit in the MVF field
is not on. (If the associated MVF bit

o

.. ,

•

•

(

(

is on, operand 1 of the text entry was
previously encountered in the block as
a use and therefore is not not busy-on
entry.)

• Its associated coordinate bit in the
MVS field is set on, indicating that it
is defined within the block.

This process is repeated for all the
phase 15 text entries that are formed
following the construction of a statement
number text entry and preceding the
construction of the next statement number
text entry. When the next statement number
text entry is constructed, all the usage
information for the preceding block has
been recorded in the statement number text
entry that begins that block. The same
procedure is followed to gather the usage
information for the next text block.

Gathering Forward Connection Information

An integral part of the processing of
PHAZ15 is the gathering of forward connec
tion information, which indicates Which
text blocks pass control to which other
text blocks. Forward connection informa
tion is used during phase 20 optimization.

Subroutines TXTREG and TXTLAB record
forward connection information in a table
called RMAJOR. Each RMAJOR entry is a
pOinter to the statement number entry asso
ciated with a statement number that is the
object of a branch or a fall-through.
Because each statement number entry con
tains a pointer to the text block beginning
with its associated statement number text
entry (refer to nText Blockingn), each
RMAJOR entry points indirectly to a text
block.

When PHAZ15 begins a new text block, it
places a pointer to the next available
entry inRMAJOR into the forward connection
field of the associated statement number
entry (refer to Appendix A, "Statement
Number/Array Table"). The statement number
entry associated with the text block there
by points to the first entry in RMAJOR in
which the forward connection information
for that block is to be recorded.

PHAZ15 then processes the phase 10 text
entries following the statement number
definition that caused PHAZ15 to begin the
new text block. If it encounters a text
entry for a IF, GO TO, or ,compiler generat
ed branch following the statement number

definition (and before the next). it passes
control to subroutine TXTREG. which records
in the next available entry in RMAJOR a
pointer to the statement number entry for
each statement number that may be branched
to as a result of the execution of the IF,
GO TO, or generated branch. A number of
such text entries may be encountered in the
text following the statement number defini
tion and TXTREG records a pointer to the
statement number entry for each statement
number that may be branched to as a result
of execution. (If two or more brqnches to
the same statement number appear in the
text following the statement number defini
tion and before the next, TXTREG makes only
entry in RMAJOR for the statement number to
be branched to.)

When PHAZ15 encounters the next state
ment number definition, before beginning a
new text block, it passes control to sub
routine TXTLAB, which records in RMAJOR the
fall-through connection information for the
current block. This is a pointer to the
statement number entry associated with the
next statement number definition.. The cur
rent text block may fall-through to the
next and, hence., this connection informa
tion is required. The fall-through connec
tion is flagged as the last for the current
block. When the fall-through connection
has been recorded, all the forward connec
tion information for the text block has
been gathered. Each entry that has been
made in RMAJOR for the block, the first of
which is pointed to by the statement number
entry associated with the block and the
last of which is flagged as such. points
indirectly to a block to which that block
may pass control.

Figure 6 illustrates the end result of
gathering forward connection information
for sample text blocks. Only the forward
connection information for the blocks
beginning with statement numbers 10 and 20
is shown. In the figure., it is assumed
that:

• The block started by statement number
10 may branch to the blocks started by
statement numbers 30 and 40 and will
fall-through to the block started by
statement number 20 if neither of the
branches is executed .•

• The block started by statement number
20 may branch to the blocks started by
statement numbers 40 and 50 and will
fall-through to the block started by
statement number 30 if neither of the
branches is executed.

Section 2: DiSCUssion of Major components 29

.-.------~ .. ---- -,., .. _- ~,~~~-

PHASE 15 TEXT

LDF 1 I 1_ 10

L Statement Number Entry for 10

LDF I I 1 - 20

1111 11101
L Statement Number Entry for 20

LDF I I I - 30

I I I I I 20 I
Statement Number Entry for 30

L-.

] 1 1 1 I 1 30 1
LDF 1 I 1- 40

RMAJOR

L.....t. _30 I-- Statement Number Entry for 40

_40

J I I I I I 40 I . -20 ~

~ _40 I

..... 50 L-.

I
. -- Statement Number Entry for 50

LDF 1 I I 50 -30

,I I I I II 50 I

~ o
Figure 6. Forward Connection Information

30

..

(

Reordering the Statement Number Chain

After text blocking. arithmetic transla
tion" and, if optimization has been speci
fied., the gathering of constant/variable
usage information have been completed, sub
routine VSETUP reorders the statement num
ber chain of the information table (refer
to Appendix A, "Information Table"). The
original order of the entries in this
chain., as recorded by phase 10, was in the
order of the occurrence of their associated
statement numbers as either definitions or
operands. The. new sequence of the entries
after reordering is according to the occur
rence of their associated statement numbers
as definitions only.

Although the actual reordering takes
place after the scan of the phase 10 text,
preparation for it takes place during the
scan. As each statement number definition
is encountered, a pointer to the related
statement number entry is recorded. ThUS,
during the course of processing, a table of
pointers to statement number entries, which
reflects the order in which statement num
bers are defined in the module, is built.
The order of the entries in this table also
reflects the order of the text blocks of
the module.

After the scan, VSETUP uses this table
to reorder the statement number entries.
It places the first table pointer into the
appropriate field of the communication
table (refer to Appendix A, "Communication
Table"); it places the second table pointer
into the chain field of the statement
number entry that is pointed to by the
pointer in the communication table; it
places the third table pointer into the
chain field of the statement number entry
that is pointed to by the chain field of
the statement number entry that is pointed
to by the pointer in the communication
table; etc. When VSETUP has performed this
process for all pointers in the table, the
entries in the statement number chain are
arranged in the order in which their asso
ciated statement numbers are defined in the
module. The new order of the chain also
reflects the order of the text blocks of
the module.

Gathering Backward Connection Information

After the statement number chain has
been reordered, and if optimization has
been specified., subroutine VSETUP gathers
backward connection information. This
information indicates which text blocks
receive control from which other text
blocks. Backward connection information is

used extensively throughout phase 20 optim
ization.

Subroutine VSETUP uses the reordered
statement number chain and the information
in the forward connection table (RMAJOR) to
determine the backward connections. It
records backward connection information in
a table called CMAJOR. Each CMAJOR entry
made by VSETUP for a particular text b~ock
(block I) is a pointer to the statement
number entry for a block from which block I
may receive control. Because each state
ment number entry contains a pointer to its
associated text block (refer to "Text
Blocking"), each CMAJOR entry for block I
points indirectly to a block from which
block I may receive control.

Subroutine VSETUP gathers backward con
nection information for the text blocks
according to the order of the statement
number chain; it first determines and
records the backward connections for the
text block associated with the initial
entry in the statement number chain; it
then gathers the backward connection infor
mation for the block associated with the
second entry in the chain; etc.

For each text block, VSETUP initially
records a pointer to the next available
entry in CMAJOR in the backward connection
field (JLEAD) of the associated statement
number entry (refer to Appendix A,
"Statement Number/Array Table"). The
statement number entry thereby points to
the first entry in CMAJOR in which the
backward connection information for the
block is to be recorded.

Then, to determine the backward connec
tiop information for the block (block I).
VSETUP obtains, in turn, each entry in the
statement number chain. (The entries are
obtained in the order in which they are
chained.) After VSETUP has obtained an
entry, it picks up the forward connection
field (ILEAD) of that entry. This field
points to the initial RMAJOR entry for the
text block associated with the obtained
statement number entry. (Recall that the
RMAJOR entries for a block indicate the
blocks to which that block may pass con
trol.)VSETUP searches all RMAJOR entries
for the block associated with the obtained
entry for a pointer to the statement number
entry for block I. If such a pointer
exists, the text block associated with the
obtained statement number entry may pass
control to block I. Therefore,; block I may
receive control from that block and VSETUP
records a pointer to its associated state
ment number entry in the next available
entry in CMAJOR. VSETUP repeats this pro
cedure for each entry in the statement num
ber chain. Thus, it searches all RMAJOR en
tries for pointers to the statement number

Section 2: Discussion of Major Components 31

entry for block I and records in CMAJOR a
pointer to the statement number entry for
each text block from which block I may
receive control. VSETUP flags the last
entry in CMAJOR for block I. When the
statement number chain has been completely
searched, VSETUP has gathered all the back
ward connection information for block I.
Each entry that VSETUP has made for block
I, the first of which is pointed to by the
statement number entry for block I and the
last of which is flagged, points indirectly
to a block from which block I may receive
control .•

Subroutine VSETUP gathers the backward
connection information for all blocks in
the above manner. When all of this infor
mation has been gathered, control is
returned to the FSD, which calls CORAL, the
third segment of phase 15.

Figure 7 illustrates the end result of
the gathering of backward connection infor-

32

mation for sample text blocks. Only the
backward connections for the blocks begin
ning with statement numbers 40 and 50 are
shown. In the figure, it is assumed that:

• The block started by statement number
40 may ~eceive control from the execu
tion of branch instructions that reside
in the blocks started by statement
numbers 10 and 20 and that it may
receive control as a resglt of a fall
through from the block started by
statement number 30.

• The block started by statement number
50 may receive control from the execu
tion of a branch instruction that
resides in the block started by state
ment number 20 and that it may receive
control as a result of a fall-through
from the block started by statement
number 40.

c

'"

c

(PHASE 15 TEXT

LDF T I I -- 10

L Statement Number Entry for 10
~--

LDF I I I - 20

: / / / I /10/

[
Statement Number ~or ~

CMAJOR LDF I 1 I - 30

l I I I I I 20 I ,--.. -10 CJ _20

* -30 Statement Number ~r 30
,-f---oo _20

/

L--.
i I I I I I 30 I * _40

LDF I I I -- 40

Statement Number Entry for 40 I

"I I I I I I 40 I
L-oo

Statement Number Entry for 50
LDF T 11 - 50

: / / / I / 50 /

L-oo

Figure 7. Backward Connection Information

Section 2: Discussion of Major Components 33

... --".- .. -----.• ~--.•. --"~~~~~~

CORAL PROCESSING

CORAL" the last overlay segment of phase
15~ performs five functions. It first
converts phase 10 data text to a .form more
easily evaluated by phase 25. CORAL then
assigns addresses relative to the start of
an object module to all symbolic operands

variables" constants., and arrays. Dur
ing the assignment of relative addresses to
variables, CORAL rechains the data text in
order to simplify the generation of text
card images by phase 25. CORAL assigns
space in the address constant table
(NADCON) for unknown references -- call-by
name variables, library routines" and name
list names. This reserved space will be
filled by later phases. Lastly, as a user
option, CORAL prints a storage map of named
items variables, arrays, and external
references as recorded in the
information table.. (Chart 09 shows the
overall logic flow of CORAL) .•

Translation of Data Text

The first section of CORAL., subroutine
NDATA, translates data text entries from
their phase 10 format to a form more easily
processed by phase 25. Each phase 10 data
text entry (except for initial housekeeping
entries) contains a pointer to a variable
or constant in the information table. Each
variable in the series of entries is to be
assigned to a constant appearing in another
entry.. Placed in separate entries, varia
ble and constant appear to be unrelated.
In each phase 15 data text entry, after
translation, each related variable and con
stant are paired (they appear in adjacent
fields of the same entry) .•

The following example shows how a series
of phase 10 data text entries are translat
ed by NDATA to yield a smaller number of
phase 15 text entries.. with each related
constant and variable paired. Assume a
statement appearing in the source module as
DATA, A,B/2*0/. The resulting phase 10
text entries appear as follows (ignoring
the chain, mode, and type fields, and the
two initial housekeeping entries):

34

r--------------------~-------------------,
I Adjective I I
I Code for: I Pointer I
.--------------------+--------------------~
I I Pointer to A I
I I in dictionary I
.--------------------+--------------------i
I .. I Pointer to B I
I I in dictionary I
~--------------------t--------------------i
I / I 2 I
.--------------------t--------------------i
I * I Pointer to 0 I
I I in dictionary I
.--------------------+--------------------~
I / I 0 I L ____________________ ~ ____________________ J

Note that the variables A and B and the
constant value 0 appear in separate text
entries. The NDATA translation of the
above phase 10 entries (ignoring the con
tents of the indicator and chain fields,
and two optional fields needed for special
cases) appears as follows:

r---------~--------T----------T----------,
I Indicator I Chain IP1 Field IP2 Field t
.---------+---------+---------~+----------i
t I I pointer I pointer I
I I I to A in I to 0 in I
I I I dictionary I dictionary I
.---------+---------+----------+----------i
I I I pointer I pointer I
I I I to B in I to 0 in I
I I I dictionary I dictionary I L _________ ~ _________ ~ __________ ~ __________ JI

In this case, each variable and its speci
fied constant value appear in adjacent
fields of the same phase 15 text entry.
The reader should refer to Appendix B ..
"Phase 15/20 Intermediate Text
Modification" for the detailed format of
the phase 15 data text entry and the use of
the special fields not discussed.

Relative Address Assignment

The chief function of CORAL is to assign
relative addresses to the operands
(constants and variables) of the source
module. The addresses indicate the loca
tions" relative to zero, at which the
operands will reside in the object module
resulting from the compilation. The rela
tive address assigned to an operand con
sists of an address constant and a dis
placement. These two elements., when added
together, form the relative address of the
operand. The address constant for an oper
and is the base address value used to refer
to that operand in main storage. Address
constants are recorded in the adcon table
(NADCON) and are the elements to which the

o

c

(

"

(

(~.

relocation factor is added to relocate the
object module for execution.. The displace
ment for an operand indicates the number of
bytes that the operand is displaced from
its associated address constant. Displace
ments are in the range of 0 to 4095 bytes.
The relative address assigned to an operand
is recorded in the information table entry
for that operand in the form of:

1. A numeric displacement from its asso
ciated address constant.

2. A pointer to an information table
entry that contains a pointer to the
associated address constant in the
adcon table.

Relative addresses are assigned through
use of a location counter. This counter is
initially set to zero and is continually
updated by the size (in bytes) of the
operand to which an address is assigned.
The value of the location counter is used
to:

• Contain the displacement to be assigned
to the next operand.

• Determine when the next address con
stant is to be established.. (When the
location counter achieves a value in
excess of 4095, a new address constant
is established.)

CORAL assigns addresses to source module
operands in the following order:

• Constants.

• Variables.

• Arrays.

• Hollerith characters when used as argu
ments.

• Equivalenced variables and arrays.

• Common variables and arrays, including
variables and arrays made common using
the EQUIVALENCE statement.

The manner in which addresses are assigned
to each of these operand types is described
in the following paragraphs. Because con
stants, variables, and Hollerith characters
are processed in the same manner, they are
described together.

Constants, Variables, and Hollerith Charac
ter Strings Used as Arguments: Subroutine
CONST first assigns relative addresses to
the constants of the module. Then~ subrou
tine VARA assigns addresses to the varia
bles and Hollerith character strings. (In
the subsequent discussion, constants, vari
ables, and Hollerith character strings are

referred to collectively as operands.) The
first operand is assigned a displacement of
zero, which is the initial value of the
location counter. Operands that are
assigned locations within the first 4096
bytes of the object module are not expli
citly assigned an address constant. Such
operands use the base address value loaded
into reserved register 12 as their address
constant (refer to Phase 20" "Branching
Optimization"). The displacement is
recorded in the information table entry for
that operand.. The location counter is then
updated by the size in bytes of the oper
and.

The next operand is assigned a displace
ment equal to the current value of the
location counter. The displacement is
recorded in the information table entry for
that operand. The location counter is then
updated. and tested to see if it exceeds
4095. If it does not, the next operand is
processed as described above.

If sufficient operands exist to cause
the location counter to achieve a value in
excess of 4095, the first address constant
is establiShed. The value of this address
constant equals the location counter value
that caused its establishment.. This
address constant becomes the current
address constant and is saved for subse
quently assigned relative addresses. The
location counter is then reset to zero and
the next operand is considered.

After the first address constant is
established, it is used as the address
constant portion of the relative addresses
assigned to subsequent operands. The dis
placement for these operands is equal to
the value of the location counter at the
time they are considered for relative
address assignment.

When the location counter again reaches
a value in excess of 4095, another address
constant is established. Its value is
equal to the current address constant plus
the displacement that caused the establish
ment of the new address constant. This new
address constant then becomes current and
is used as the address constant for subse
quent operands.. The location counter is
then reset to zero and the next operand is
processed. This overall process is repeat
ed until all operands (constant, variables,
and Hollerith strings) are processed.
Source module arrays are then considered
for relative address assignment.

Arrays: Subroutine VARA assigns 7ach array
of the source module that is not ~n common
a relative address that is less than (by
the span of the array) the relative address
at which the array will reside in the
object module. (The concepts of span is

Section 2: Discussion of Major Components 35

discussed in Appendix G.) The actual rela
tive address at which an array will reside
in the object module is derived from the
sum of address constant and displacement
that are current at the time the array is
considered for relative address assignment.
The array span is subtracted from the
relative address to facilitate subscript
calculations.

VARA subtracts the span in one of two
ways. If the span is less than the current
displacement" it subtracts the span from
that displacement. and assigns the result
as the displacement portion of the relative
address for the array. In this case" the
address constant assigned to the array is
the current address constant. If the span
is greater than the current displacement"
VARA subtracts the span from the sum of the
current address constant and displacement.
The result of this operation is a new
address constant, which does not become the
current address constant. VARA assigns the
new address constant and a displacement of
zero to the array. It then adds the total
size of the array to the location counter.
obtains the next array, and tests the value
of the location counter. If the value of
the location counter does not exceed 4095,
VARA does not take any additional action
before it processes the next array. If the
location counter value exceeds 4095, VARA
establishes a new address constant. resets
the location counter. and processes the
next array. After all arrays have relative
addresses, VARA returns control to CORAL.
which calls subroutine EQVAR to assign
address to equivalence variables and arrays
that are not in common.

Equivalence Variables and Arrays Not in
Common: In aSSigning relative addresses to
equivalence variables and arrays" subrO,u
tine EQVAR attempts to minimize the number
of required address constants by using, if
possible, previously established address
constants as the base addresses for equi
valence elements. EQVAR processes equival
ence information on a group-by-group basis.
and assigns a relative address, in turn, to
each element of the group. Prior to pro
cessing" EQVAR determines the base value
for the group. The base value is the
relative address of the head~ of the group.
The base value equals the sum of the
current address constant and displacement
(location counter value). After EQVAR has
determined the base value, it obtains the
first (or next) element of the group and
computes its relative address. The rela
tive address for an element equals the sum

1The head of an equivalence group is the
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive displacement.

36

of the base value for the group and the
offset of the element. The offset for an
element is the number of bytes that the
element is displaced from the head of the
group (refer to "Common and Equivalence
Processing"). EQVAR then compares the com
puted relative address to the previously
established address constants. If an
address constant exists such that the dif
ference between the computed relative
address and the address constant is less
than 4095, EQVAR assigns that address con
stant to the equivalence element under
consideration. The displacement assigned
in this case is the difference between the
computed relative address of the element
and the address constant. EQVAR then proc
esses the next element of the group.

If the desired address constant does not
exist, EQVAR establishes a new address
constant and assigns it to the element.
The value of the new address constant is
the relative address of the element. EQVAR
then assigns the element a displacement of
zero, and processes the next element of the
group,. When all elements of the group are
processed, EQVAR computes the base value
for the next group, if any. This base
value is equal to the base value of the
group just processed plus the size of that
group. The next group is then processed.

Common Variables and Arrays: Subroutine
COMVAR considers each common block of the
source module, in turn, for relative
address assignment. For each common block,
COMVAR assigns relative addresses to (1)
the variables and arrays of that block, and
(2) the variables and arrays equivalenced
into that common block. (The processing of
variables and arrays equivalenced into com
mon is described in a later paragraph.)

Because common blocks are considered
separate control sections, COMVAR assigns
each common block of the source module a
relocatable origin of zero. It achieves
the origin of zero by assigning to the
first element of a common block a relative
address conSisting of an address constant
and a displacement whose sum is zero. For
example, both the address constant and the
displacement for the first element in a
block can be zero. Also, the address
constant can be -16 and the displacement
+16. Note that the address constant in the
latter case is negative. Negative address
constants are permitted, and may be a
by-product of the assignment of addresses
to common variables and arrays. They
evolve from the manner in which the rela
tive addresses are assigned to arrays. A
relative address assigned to an array is
equal to its actual relative address minus
the span of that array. The actual rela
tive address of each array in a common
block is equal to the offset computed for

o

c

(

(. ,
.'

it during the common and equivalence pro
cessing of the first segment of phase 15.
STALL. From the offset of each array in
the common block under consideration, COM
VAR subtracts the span of that array. The
result then replaces the previously comput
ed offset for the array. If the result of
one or more of these computations yields a
negative value" COMVAR uses the most nega
tive as the initial address constant for
the common block. It then assigns each
element (variable or array) in the common
block a relative address. This address
consists of the negative address constant
and a displacement equal to the absolute
value of the address constant plus the
offset of the element.

If the computations which subtract spans
from offsets do not yield a negative value,
COMVAR establishes an address constant with
a value of zero as the initial address
constant for the common block. It then
assigns each element in the block a rela
tive address consisting of the address
constant (with zero value) and a displace
ment equal to the offset of the element.

If at any time the displacement to be
assigned to an element exceeds 4095, COMVAR
establishes a new address constant. This
address constant then becomes the current
address constant and is saved for inclusion
in subsequently assigned addresses. After
the new address constant is established,
the relative address assigned to each sub
sequent element consists of the current
address constant and a displacement equal
to the offset of that element minus the
value of the current address constant.
After the entire common block is processed
variables and arrays that are equivalenced
into that common block are assigned rela
tive addresses.

Variables and Arrays Eguivalenced into Com
mon: Subroutine COMVAR processes variables
and arrays that are equivalenced into com
mon in much the same manner as EQVAR
processes those that are equivalenced, but
not into common. However" in this case,.
the base value for the group is zero. Only
those address constants established for the
common block into which the variables and
arrays are equivalenced are acceptable as
address constants for those variables and
arrays.

Adcon and Base Variable Assignment: As
CORAL establishes a new address constant
and enters it into the adcon table, it also
places an entry in the information table.
This special entry. called an "adcon varia
ble." points to the new address constant.
All operands that have been assigned rela
tive addresses will have pointers to the
adcon variable for their address constant.
The adcon variables generated for operands

are assigned coordinates via MCOORD and
the MVD table. Coordinates 81 through 128
are reserved for base variables; however,
some base variables may be assigned coordi
nates less than 81 if less than 80 coordi
nates are assigned during the gathering of
variable and constant usage information.
(Refer to PHAZ15, "Gathering
Constant/Variable Usage Information.") Hav
ing been assigned coordinates. the adcon
variables are now called base variables.
Only those operands receiving coordinate
assignments are available for full register
assignment during phase 20.

Rechaining Data Text

During the assignment of relative
addresses to variables, subroutine DATACH
rechains the data text entries. Their
previous chaining (set by phase 10) was
according to their order of appearance in
the source program. DATACH now chains the
data text entries according to the order of
relative addresses it assigns to variables.
Thus data text entries are now chained in
the same relative order in which the varia
bles will appear in the object module.
This order simplifies the generation of
text card images by phase 25.

Reserving Space in the Adcon Table

After relative address assignment is
completed, subroutine EXTRNL reserves space
in the adcon table for certain special
references. It scans the operands of the
information table to detect any of these
references: call-by-name variables, names
of library routines, namelist names, and
external references. The byte-B usage
field of each information table entry
informs EXTRNL if a particular reference
belongs to one of these categories. For
each special reference that EXTRNL detects,
it reserves four bytes in the adcon table.
Phase 25 places the needed address con
stants in the reserved spaces,.

Producing a Storage Map

Lastly, as a user option~ subroutine
STMAP produces a storage map of named
items. These items include variables,
arrays, function or subroutine references,
and statement functions (SF). For each of
these, except function or subroutine ref
erences" the map contains the name, loca
tion, type, and tag. (The tag indicates

Section 2: Discussion of Major Components 37

whether a variable appeared in a COMMON or
EQUIVALENCE statement or in both. It is
set by phase 10 or by CORAL.) For a
function or subroutine reference the map
lists the name and whether the reference is
external or in IFUNTB table.

PHASE 20

The primary function of phase 20 is to
produce a more efficient object module
(perform optimization). However. even if
the applications programmer has specified
no optimization, phase 20 assigns registers
for use during execution of the object
module.

For a given compilation" the applica
tions programmer may specify no optimiza
tion, an intermediate amount of optimiza
tion" or complete optimization. Thus. the
functions performed by phase 20 depend on
the optimization specified for the compila
tion.

38

• If no optimization has been specified.
phase 20 assigns to intermediate text
entry operands the registers they will
require during object module execution
(this is called basic register
assignment). As part of this function.
phase 20 also provides information
about the operands needed by phase 25
to generate machine instructions. Both
functions are implemented in a single.,
block-by-block, top-to-bottom (1. e .••
according to the order of the statement
number chain), pass over the phase 15
text output. The end result of this
processing is that the register and
status fields of the phase 15 text
entries are filled in with the informa
tion required by phase 25 to convert
the text entries to machine language
form (refer to Appendix B" "Phase 20
Intermediate Text Modifications").
Basic register assignment does not take
full advantage of the available general
and floating-point registers, and it
does not specify the generation of
machine instructions that keep operand
values in registers (wherever possible)
for use in subsequent operations
involving them,.

• If an intermediate amount of optimiza
tion has been specified" two processes
are carried out:

1. The first process" call full reg
ister assignment, performs the
same two functions as basic reg
ister assignment,. However, full
register assignm~nt takes greater
advantage of available registers

and provides information that ena
bles machine instructions to be
generated that keep operand values
in registers for subsequent opera
tions. An attempt is also made to
keep the most frequently used
operands in registers throughout
the execution of the object
module. Full register assignment
requires a number of passes over
the phase 15 text,. The basic unit
operated upon is the text block
(refer to phase 15. "Text
Blocking").. The end result of
full register assignment, like
that of basic register assignment,
is that the register and status
fields of the phase 15 text
entries are filled in with the
information required by phase 25.

2. The second process, called branch
optimization" generates RX-format
branch instructions in place of
RR-format branch instructions
wherever possible. The use of
RX-format branches eliminates the
need for an instruction to load
the branch address into a general
register,. However, branch optimi
zation first requires that the
sizes of all text blocks in the
module be determined so that the
branch address can be found.

If complete optimization has been spec
ified, other measures are taken to
improve object-module efficiency. Com
plete optimization is performed on a
"loop-by-loop" basis. Therefore,
before processing can be initiated,
phase 20 must determine the structure
of the source module in terms of the
loops within it and the relationships
(nesting> among the loops. Then phase
20 determines the order in which loops
are processed" beginning with the
innermost (most frequently executed>
loop and proceeding outward. Complete
optimization involves three general
procedures:

1. The first, called text optimiza
tion" eliminates unnecessary text
entries from the loop being pro
cessed. For example, redundant
text entries are removed and,
wherever possible" text entries
are moved to outer loops. where
they will be executed less often.

2.. The second procedure is full reg
ister assignment, which is essen
tially the same as in intermediate
optimization, but is more effec
tive" because it is done on a
loop-by-loop basis.

c

f"
L

c

(

(

3. The final procedure is branching
optimization, which is the same as
in the intermediate-optimized
path.

CONTROL FLOW

In phase 20" control flow may take one
of three possible paths, depending on the
level of optimization chosen (refer to
Chart 10). Phase 20 consists of a control
routine (LPSE~) and six routine groups .•
The control routine controls execution of
the phase. All paths begin and end with
the control routine. The first group of
routines performs basic register assign
ment. This group is only executed in the
control path for non-optimized processing.
The second group performs full register
assignment. Control passes through this
group in the paths for both
intermediate-optimization and complete
optimization.. The third group of routines
performs branch optimization and is also
used in the paths for both
intermediate-optimization and complete
optimization. The fourth group determines
the structure of the source module and is
used only in the path for
complete-optimization. The fifth group
performs loop selection and again is only
executed in complete-optimization. The
final group performs text optimization and
is only used in complete-optimization.

The control routine governs the sequence
of processing through phase 20. The pro
cessing sequence to be followed is deter
mined from degree of optimization specified
by the FORTRAN programmer. If no optimiza
tion is specified, the basic register
assignment routines are brought into play.
The unit of processing in this path is the
text block. Each block is passed by the
control routine to the basic register
assignment routines for processing. When
all blocks are processed, the control rou
tine passes control to the FSD., which calls
phase 25.

When intermediate-optimization is speci
fied. the control routine passes the entire
mqdule to the full register assignment
routines and then to the routines that
compute the size of each text block. When
all block size information is gathered. the
control routine calls the routine that
computes. using the block size information.
the displacements required for branching
optimization. Control is then passed to
the FSD.

When the control path for complete
optimization is selected" the unit of pro
cessing is a loop. rather than a block. In

this case, the control routines initially
pass control to the routines of phase 20
that determine the structure of the module.
When the structure is determined, control
is passed to the loop selection routines,
to select the first (innermost) loop to be
processed. The control routines then pass
control to the text-optimization routines
to process the loop. When text optimiza
tion for a loop is completed" the control
routine marks each block in the loop as
completed. This action is taken to ensure
that the blocks are not reprocessed when a
subsequent (outer) loop is processed. The
control routine again passes control to the
loop selection routines to select the next
loop for text optimization. This process
is repeated until text optimization has
processed each loop in the module.. (The
entire module is the last loop,.)

After text optimization has processed
the entire module. the control routine
removes the block completed marks and con
trol is passed to the loop selection rou
tines to reselect the first loop. Control
is then passed to the full register assign
ment routines. When full register assign
ment for the loop is complete. the control
routine marks each block in the loop as
completed and passes control to the loop
selection routines to select the next loop.
This process is repeated for each loop in
the module. (The entire module is the last
loop .•) When all loops are processed" the
control routine passes control to the rou
tines that compute the size of each text
block and then to the routine that com
putes, using the block size information"
the displacements required for branching
optimization. Control is then passed to
the FSD.

REGISTER ASSIGNMENT

Two types of register assignment can be
performed by phase 20: basic and full.
Before describing either type. the concept
of status. which is integrally connected
with both types of assignment., is dis
cussed.

Each text entry has associated opera~d
and base address status information that ~s
set up by phase 20 in the status field of
that text entry (refer to Appendix B.
"Phase 20 Intermediate Text Modification").
The status information for an operand or
base address indicates such things as
whether or not it is in a register and
whether or not it is to be retained in a
register for subsequent use; this informa
tion indicates to phase 25 the machine
instructions that must be generated for
text entries.

Section 2: Discussion of Major Components 39

The relationship of status to phase 25
processing is illustrated in the following
example. Consider a phase 15 text entry of
the form A = B + C. To evaluate the text
entry" the operands Band C must be added
and then stored into A. How~ver, a number
of machine instruction sequences could be
used to evaluate the expression. If oper
and B is in a register, the result can be
achieved by performing an RX-format add of
C to the register containing B., provided
that the base address of C is in a reg
ister. (If the base address ofC is not in
a register, it must be loaded before the
add takes place.) The result can.then be
stored into A, again~ provided that the
base address of A is in a register.

If both Band C are in registers" the
result can be evaluated by executing an
RR-format add instruction. The result can
then be stored into A. Thus, for phase 25
to generate code for the text entry" it
must have the status of operands and base
addresses of the text entry.

The following facts about status should
be kept in mind throughout the following
discussions of basic and full register
assignment:

1. Phase 20 indicates to phase 25 when it
is to generate code that loads oper
ands and base addresses into reg
isters" whether it is to generate code
that retains operands and base
addresses in registers, and whether
operand 1 is to be stored.

2. Phase 20 makes note of the operands
and base addresses that are retained
in registers and are available for
subsequent use.

Basic Register Assignment

Basic register assignment involves two
functions: assigning registers to the oper
ands of the phase 15 text entries and
indicating the machine instructions to be
generated for the text entries. In per
forming these functions, basic register
assignment does not use all of the availa
ble registers, and it restricts the assign
ment of those that it does use to special
types of items (i.e." operands and base
addresses). The registers assigned during
basic register assignment and the item(s)
to which each is assigned are outlined in
Table 2.

40

Table 2. Item Types and Registers Assigned 0"
in Basic Register Assignment. .

r--~------------T-------------------------'
I Register lItem Type I
~-~-------------+-------------------------i
I Floating-Point
I Register
I
I 0 Arithmetic text entry
I operands that are real.
I
I 2 Imaginary part of the
I result of a complex func-
I tion.
I
IGeneral Purpose
Register

0-1

5

6

7

14

I Arithmetic text entry
I operands that are inte
Iger, or logical operands. I
I
I Branch addresses and
Iselected logical operands
I
Operands that represent
index values.

Base addresses

1. Used for computed GO
TO operations.

2. Logical result of
comparison opera
tions.

15 Used for computed GO TOI
operations. I _______________ ~ _________________________ J

Basic register assignment essentially
treats system/360 as if it had a single
branch register, a single base register"
and a single accumulator. Thus, operands
that are branch addresses are assigned the
branch register, base addresses are
assigned the base registerw and arithmetic
operations are performed using a single
accumulator. (The accumulator used depends
upon the mode of the operands to be operat
ed upon.)

The fact that basic register assignment
uses a single accumulator and a single base
register is the key to understanding how
text entries having an arithmetic operator

, are processed. To evaluate the arithmetic
interaction of two operands using a single
accumulator, one of the operands must be in
the accumulator. The specified operation
can then be performed by using an RX-format
instruction. The result of the operation
is formed in the accumulator and is availa
ble for subsequent use. Note that in
operations of this type, neither of the
interacting operands remains in a register.

c

()

(Applying this concept to the processing
of text entries that are arithmetic in
nature, consider that a phase 15 text entry
representing the expression A = B + C is
the first of the source module. For this
text entry to be evaluated using a single
accumulator and base register, basic reg
ister assignment must tell phase 25 to
generate machine code that:

• Loads the ~ase address of B into the
base register.

• Loads B into the accumulator.

• Loads the base address of C into the
base register. (This instruction is
not necessary if C is assigned the same
base address as B.)

• Adds C to the accumulator (RX-format) .•

• Loads the base address of A into the
base register (if necessary).

• Stores the accumulated result in A.

If this coding
two items would
last base address
ed result. These
SUbsequent use.

sequence were executed.
remain in registers: the

loaded and the accumulat
items are available for

Now consider that a text entry of the
form D = A + F immediately follows the
above text entry_ In this case" A. which
corresponds to the result operand of the
previous text entry" is in the accumulator.
Thus, for this text entry., basic register
assignment specifies code that:

• Loads the base address of F into the
base register. (If the base address of
F corresponds to the last loaded base
address" this instruction is not neces
sary.)

• Adds F to the accumulator (RX-format
add).

• Loads the base address of D into the
base register (if necessary).

• stores the accumulated result in D.

The above coding sequences are the basic
ones specified by basic register assignment
for arithmetic operations. The first is
specified for text entries in which neither
operand 2 nor operand 3 (see Figure 5)
corresponds to the result operand (operand
1) of the preceding text entry. The second
is specified for text entries in which
either operand 2 or operand 3 corresponds
to the result operand. If operand 3 cor
responds to the result operand, the two
operands exchange roles, except for divi-

sion. In the case of division, operand 3
is always in main storage.

If both operands 2 and 3 correspond to
the result operand of the previous text
entry., an RR-format operation is specified
to evaluate the interactions of the oper
ands .•

In the actual process of basic register
assignment" a single pass is made over the
phase 15 text output. The basic unit
operated upon is the text block. As the
processing of each block is completed. the
next is processed. When all blocks are
processed, control is returned to the FSD.

a top-to
the first
all text
the next

Text blocks are processed in
bottom manner., beginning with
text entry in the block. When
entries in a block are processed,
text block is processed similarly.

For any text entry, the machine code to
be generated is first specified by setting
up the status field of the text entry.
Registers are then assigned to the operands
and base addresses by filling in the
register fields of. the text entry.

status Setting: Subroutine SSTAT sets the
operand and base address status information
for a text entry in the following order:
operand 2, operand 2 base address, operand
3" operand 3 base address, operand 1., and
operand 1 base address.

To set the status of operand 2, SSTAT
determines the relationship of that operand
to the result operand (operand 1) of the
previous text entry. If operand 2 is the
same as the result operand" SSTAT sets the
status of operand 2 to indicate that it is
in a register and. therefore" need not be
loaded~ otherwise, it sets the status to
indicate that it is in main storage. SSTAT
uses a similar procedure to set the status
of operand 3.

To set the status of the base address of
operand 2" SSTAT determines the relation
ship of that base address to the current
base address (see note). If they corres
pond. SSTAT sets the status of the base
address of operand 2 to indicate that it is
in a register and" therefore, need not be
loaded; otherwise wise" it sets the status
to indicate that it is in main storage.

SSTAT sets the statuses of
addresses of operands 3 and 1 in a
manner.

the base
similar

~ The current base address is the last
base address loaded for the purpose of
referring to an operand. This base address
remains current until a subsequent operand
that has a diff~rent base address is

Section 2: Discussion of Major components 41

encountered. When this occurs, the base
address of the subsequent operand must be
loaded. That base address then becomes the
current base address" etc.

SSTAT sets status of operand 1 to indi
cate whether or not the result of the
interaction of operands 2 and 3 is to be
stored into operand 1. If operand 1 is
either an actual operand or a temporary
that is not used in the subsequent text
entry, it sets the status of operand 1 to
indicate that the store is to be performed;
otherwise. it sets the status to indicate
that a store into operand 1 is unnecessary.

Register Assignment: After the status
field of the text entry is completed,
subroutine SPLRA assigns registers to the
operands of the text entry and their asso
ciated base addresses in the same order in
which statuses were set for them.

The assignment of registers depends upon
the statuses of the operands of the text
entry. To assign a register to operand 2"
SPLRA examines the status of that operand.
and, if necessary, of operand 3. If the
status of operand 2 indicates that it is in
a register or if the statuses of operands 2
and 3 indicate that neither is a register,
SPLRA assigns operand 2 a register. It
selects the register according to the type
of operand (refer to Table 2), and places
the number of that register into the R2
field of the te~t entry.

To assign a register to the base address
of operand 2" SPLRA determines the status
of operand 2. If the status of that
operand indicates that it is not in a
register, it assigns a register to the base
address of operand 2. The appropriate
register is selected according to Table 2,
and the r~~~ster number is placed into the
B2 field of the text entry. If the status
of operand 2 indicates that it is in a
register, SPLRA does not assign a register
to the base address of operand 2. SPLRA
uses a similar procedure in assigning a
register to the base address of operand 3.

If the status of operand 3 indicates
that it is in a register. SPLRA assigns the
appropriate register (refer to Table 2) to
that operand, and enters the number of that
register into the R3 field.

Operand 1 is always assigned a register.
SPLRA selects the register according to the
type of operand 1 <refer to Table 2) " and
places the number of that register into the
R1 field.

The base address of operand 1 is
assigned a register only if the status of
operand 1 indicates that it is to be stored
into. If such is the case, SPLRA selects

42

the appropriate register" and records the 0"
number of that register in the B1 field.
If the status of operand 1 indicates that
it is not to be stored into, SPLRA does not
assign a register to the base address of
operand 1.

When all the operands of the text entry
and their associated base addresses are
aSSigned registers. the next text entry is
obtained. and the status setting and reg
ister assignment processes are repeated.
After all text entries in the block are
processed" control is returned to the con
trol routine of phase 20. which then makes
the next block available to the basic
register assignment routines. When the
processing of all blocks is completed.
control is passed to the FSD.

Full Register Assignment

During full .register assignment. as dur
ing basic register assignment, registers
are assigned to the text entry operands and
their associated base addresses, and the
machine code to be generated for the text
entries is specified. To improve object
module efficiency. these functions are per
formed in a manner that reduces the number
of instructions required to load base
addresses and operands. This process redu
c~s the number of required load instruc
tions by taking greater advantage of all
available registers, by assigning the reg
isters as needed to both base addresses and
operands. by keeping as many operands and
base addresses as possible in registers and
available for subsequent use, and by keep
ing the most active base addresses and
operands in registers where they are avai
lable for use throughout execution of the
entire object module.

During full register assignment, reg
isters are assigned at two levels:
"locally" and "globally." Local assignment
is performed on a block-by-block basis.
Global assignment is performed on the basis
of the entire modUle (if intermediate
optimization has been specified).

For local assignment, an attempt is made
to keep operands whose values are defined
within a block in registers and available
for use throughout execution of that block.
This is done by assigning an. available
register to an operand at the point at
which its value is defined. (The value of
an operand is defined when that operand
appears in the operand 1 position of a text
entry.) The same register is assigned to
subsequent uses (i.e., operand 2 or operand
3 appearances) of that operand within the
block. thereby ensuring that the value of

c

f
the operand will be in the assigned reg
ister and available for use.. However" if
more than one subsequent use of the defined
operand occurs in the block., additional
steps must be taken to ensure that the
value of that operand is not destroyed
between uses. Thus" when the text entries
in which the defined operand is used are
processed, the code specified for them must
not destroy the contents of the register
containing the defined operand.

Because all available registers are used
during full register assignment" a number
of operands whose values are defined within
the block can be retained in registers at
the same time.

Applying the above concept to an exam
ple, consider the following sequence of
phase 15 text entries~

A = X + Y
C = A + Z
F = A + C

A register is assigned to A at the point at
which its value is defined, namely in the
text entry A = X + Y.. The same register is
assigned to the subsequent uses of A. The
value of A will be accumulated in the
assigned register and can be used in the
subsequent text entry C = A + Z. However,
because A is also used in the text entry
F = A + C, the contents of the register
containing A cannot be destroyed by the
code generated for the text entry
C = A + Z. ThUS" when the text entry C = A
+ Z is processed., instructions are speci
fied f·or that text entry that use the
register containing A, but that do not
destroy the contents of that register.

In the example, C is also defined and
subsequently used.. To that defined operand
and its subsequent uses, a register is
assigned. The assigned register is differ
ent from that assigned to A. The value of
C will be accumulated in the assigned
register and can be used in the next text
entry. The text entry F = A + C can then
be evaluated without the need of any load
operand instructions.. because both the
interacting operands (A and C) are in
registers.

This type of processing typifies that
performed during local assignment for each
block. When all blocks are processed.,
global assignment for the source module is
carried out.

Global assignment increases the effi
ciency of the object module as a whole by
assigning registers to the most active
operands and base addresses. The activi
ties of all operands and base addresses are
computed prior to global assignment. The

first register available for global assign
ment is assigned to the most active operand
or' base address~ the next available reg
ister is assigned to the next most active
operand or base address ~ etc.. As each such
operand or base address is processed, a
text entry, the function of which is to
load the operand or base address into the
assigned register.. is generated and placed
into the first block (i. e. " entry block) of
the module. When the supply of operands
and base addresses. or the supply of avai
lable registers, is exhausted, the process
is terminated.

All global assignments are recorded for
use in a subsequent text scan, which incor
porates global assignments into the text
entries, and completes the processing of
operands that have neither been locally or
globally assigned to registers (e.g,.. an
infrequently used operand that is used in a
block but not defined in that block).

The full register assignment process is
divided into five areas of operation: con
trol (subroutine REGAS). table building
(subroutine FWDPAS), local assignment
(subroutine BKPAS)., global assignment
(subroutine GLOBAS), and text updating
(subroutine STXTR). The control routine of
phase 20 (LPSEL) passes control to the full
register assignment control routine., which
directs the flow of control among the other
full register assignment routines.

The actual assignment of registers is
implemented through the use of tables built
by the table-building routine" with assis
tance from the control routine. Tables are
built using the set of coordinate numbers
and associated dictionary pointers created
by phase 15 (MCOORD and MVD) for indexing.
The table-building routine constructs two
sets of parallel tables. One set, used by
the local assignment routine, contains
information about a text block~ the second
set, used by the global assignment rou~
tihes, contains information about the
entire module. (The local assignment and
global assignment tables are outlined in
Appendix A" "Register Assignment Tables.")

The flow of control through the full
register assignment routines is as follows:

1. The control routine (REGAS) makes a
pass over the MVD table and the dic
tionary entries for the variables and
constants in the loop passes to it,
and constructs the eminence table
(EMIN) for the module, which indicates
the availability of the variables for
global assignment. The routine then
calls the table-building routine to
process the first block in the module.

2. The table-building routine (FWDPAS)

Section 2: Discussion of Major components 43

builds the required set of local
assignment tables for the block and.,
at the same time. adds information to
the global assignment tables under
construction. It then passes control
to the local assignment routine to
process the block. When processing of
the block is completed, control is
returned to REGAS .•

3_ The local assignment routine (BKPAS)
uses the tables supplied for the block
to perform local register assignment.
and returns control to FWDPAS when its
processing is completed_

4. The control routine (REGAS) selects
the next block in the module~ and
passes it to the table-building rou
tine, which then passes control to the
local assignment routine. This pro
cess continues until all blocks in the
module have' been processed by the
table-building and local assignment
~outines.

5. The control routine passes control to
the global assignment routine, which
performs global assignment for the
module .•

6. When global assignment is complete~
the control routine calls the text
qpdating routine (STXTR) to complete
register assignment by entering the
results of global assignment into the
text entries for the module. Control
is then returned to the control rou
tine of phase 20 (LPSEL).

Table Building for Register Assignment:
The table-building routine performs a for
ward scan of the intermediate text entries
for the block under consideration and
enters information about each text entry
into the local and global tables (refer to
Appendix A" "Register Assignment Tables") ..
The local assignement tables can accommo
date information for 100 text entries. If
a block contains more than 100 text
entries" the table-building routine builds
the local tables for the first 100 text
entries and passes this set of tables to
the local assignment routine. The local
assignment routine processes the text
entries represented ~n the set of local
tables.. The table-building routine then
creates the local tables for the next 100
text entries in the block and passes them
to the local assignment routine. When the
table-building routine encounters the last
text entry for the block. it passes control
to the local assignment routine" although
there may be fewer than 100 entries in the
local tables.

The global
relating to

tables contain information
variables and constants

referred to within the module. rather than
to text entries. The global tables can
accommodate information for 126 variables
and constants in a given module. Variables
and constants in excess of this number
within the module are not processed by the
global assignment routine.

Local Assignment: Local assignment is
implemented via a backward pass over the
text items for the block (or portion of a
block) under consideration. The text items
are referred to by using the local assign
ment tables. which supply pointers to the
text items_

The local assignment routine examines
each operand in the text for a block and
determines (from the local ,assignment
tables) if the operand is eligible for
local assignment. To he eligible. an oper
and must be defined an~ used (in that
order) within a block. Because local
assignment is performed via a backward pass
over the text, an eligible operand will be
encountered when it is used (i.e.. in the
operand 2 or 3 position) before it is
defined.

When an operand of a text entry is
examined, the local assignment routine
(BKPAS) consults the local assignment
tables to determine that operand" s eligi
bility. If the operand is eligible. BKPAS
assigns a register to it. The register
assigned is determined by consulting· the
register usage table (TRUSE). TRUSE is a
work table that contains an entry for every
register that may be used by the local
assignment routine. A zero entry for a
particular register indicates that the reg
ister is avai:lable for local assignment. A
nonzero entry indicates that the register
is unavailable and identifies the variable
to which the register is assigned. The
register usage table is mOdified each time
a register is assigned or freed.

BKPAS records the register assigned to
the used operand in the local assignment
tables and in the text item containing the
used operand. It sets the status of the
operand in the text entry to indicate that
it is in a register.. If subsequent uses of
the operand are encountered prior to the
definition of the operand"BKPAS uses the
register assigned to the first use. and
records its identity in the text item. It
then sets the status bits for the operand
to indicate that it is in a register and is
to be retained in that register.

When a definition of the operand is
encountered, BKPAS enters the register
assigned to the operand into the text item
and sets the status for the operand to
indicate its residence in a register. Once
the register is assigned to the operand at

c

..

o

(

(

its definition point, BKPAS frees the reg
ister by setting the entry in the register
usage table to zero., making the register
available for assignment to another oper
and.

If the block being processed contains a
CALL statement., no common variables may be
considered for local assignment and no real
operands can be assigned to registers
across that reference. In addition, if the
block contains a reference to a function
subprogram, no local assignment may be made
for real operands across the reference to
that function. The local assignment rou
t~ne assumes that:

1.

2.

All mathematical functions return the
result in general register 0 or
floating-point register 0, according
to the mode of the function.

The imaginary portion
result is returned in
register 2.

of a complex
floating-point

If no register is available for assign
ment to an eligible operand. an overflow
condition exists. In this case, BKPAS must
free a previously assigned register for
assignment to the current operand. It
scans the local assignment tables and sel
ects a register. It then modifies the
local assignment tables. text entries for
the block, and register usage table to
negate the previous assignment of the
selected register. The required register
is now available, and processing continues
in the normal fashion.

Global Assignment: The global assignment
routine (GLOBAS>, unlike the local assign
ment routine., does not process any of the
text entries for the module. The global
assignment routine operates only through
the set of global tables. The results of
global assignments are entered into the
appropriate text entries by the text updat
ing routine.

Before assigning registers. the global
assignment routine modifies the' global
assignment tables to produce a single
activity table for all operands and base
addresses in the module.

Global assignment is then
based on the activity of the
operands and base addresses.

performed
eligible

GLOBAS determines the eligibility of an
operand or base address by consulting the
appropriate entry in the global assignment
tables. Eligible operands are divided into
two categories: floating point and fixed
point. The two categories are processed
separately, with floating-point quantities
processed first.

A register usage table (RUSE) of the
same type as described under local assign
ments (TRUSE) is used by the global assign
ment routine. For each category of oper
ands, GLOBAS selects the eligible operand
with the highest total activity and assigns
it the first available register of the same
mode. It records the assignment in the
register usage table and in the global
aSSignment tables. GLOBAS then selects the
eligible operand with the next highest
activity and treats it in the same ma~ner.
Processing for each group continues until
the supply of eligible operands or the
supply of available registers is exhausted.

If the module contains any CALL state
ments. real and common variables are ineli
gible for global assignment. If the module
contains any references to function subpro
grams no global assignment can be performed
for real quantities. In other words. if a
module contains both a reference to a
subroutine and to a function subprogram,
global assignment is restricted to integer
and logical operands that are not in com
mon.

Text Updating: The text updating routine
(STXTR) completes full register assignment.
It scans each text entry within the series
of blocks comprising the module. looking at
operands 2. 3, and 1. in that order. within
each text entry. As each operand is pro
cessed. STXTR interrogates the completed
global assignment table to determine if a
global assignment has been made for the
operand. If it has. STXTR enters the
number of the register assigned into the
text entry and sets the operand status bits
to indicate that the operand is in a
register and is to be retained in that
register.

If both a local and a global assignment
have been made for an operand, the global
assignment supersedes the local assignment
and STXTR records the number of the global
ly assigned register in the text items
pertaining to that operand. It also sets
the status bits for such an operand to
indicate that it is in a register and is to
be retained in that register.

If a register has not been assigned
either locally or globally for an operand,
STXTR determines and records in the text
entry the required base register for the
base address of that operand. If the base
address corresponds to one that has been
assigned a register during global assign
ment, STXTR assigns the same register as
the base register for the operand. If a
register has not been assigned to the base
address of the operand during global
assignment, it assigns a spill register
(register 0 or 15) as the base register of
the operand. STXTR sets the operand's base

section 2: Discussion of Major Components 45

status bits to indicate whether or not the
base address is in a register. (The base
address will be in a register if one was
assigned to it during global assignment.)
It then assigns the operand itself a spill
register (general register 0 or 1 or
floating-point register O. depending upon
its mode).

As part of its text updating function.
STXTR allocates temporary storage where
needed for temporaries that have not been
assigned to a register, keeps track of the
allocated temporary storage, and completes
the register fields of text entries to
ensure compatability with phase 25. On
exit from the text updating routine, all
text items in the module are fully formed
and ready for processing by phase 25. The
text updating routine returns control to
the full register assignment control rou
tine (REGAS) upon completion of its func
tions. REGAS, in turn. returns control to
the control routine of the phase (LPSEL).

BRANCHING OPTIMIZATION

This portion of phase 20 optimizes
branching within the object module. The
optimization is achieved by generating RX
format branch instructions in place of
RR-format branch instructions wherever
possible.

The use of RX-format branches eliminates
the need for an instruction to load the
branch address into a general register
preceding each branching instruction.
ThUS" branching optimization decreases the
size of the object module by one instruc
tion for each RR-format branch instruction
in the object module that can be replaced
by an RX-format branch instruction. It
also decreases the number of address con
stants required for branching.

Phase 20 optimizes branching instruc
tions by calculating the size of each text
block (number of bytes of object code to be
generated for that block) and by determin
ing those blocks that can be branched to
via RX-format branch instructions.

Subroutine BLS calculates the sizes of
all text blocks after full register assign
ment for the module is completed. Subrou
tine LYT then uses the gathered block size
information to determine the blocks that
can be branched to by means of RX-format
branch instructions. BLS calculates the
number of bytes of object code by:

1. Examining each text item operation
code and the status of the operands
(1. e . ." in registers or not).

46

2. Determining. from a reference table.
the number of bytes of code that is to
be generated for that text item.

BLS accumulates these values for each block
in the module,. In addition, it increments
the block size count by the appropriate
number of bytes for each encountered ref
erence to an in-line routine and for each
required prologue and epilogue" if a sub
program program is being compiled (refer to
Phase 25, "Prologue and Epilogue
Generation").

After BLS computes all block sizes,
subroutine LYT determines those text blocks
that can be branched to via RX-format
branch instructions. A text block, once
converted to machine code., can be branched
to via an RX-format branch instruction if
the relative address of the beginning of
that block is displac.ed less than 4096
bytes from an address that is loaded into a
reserved register.

The following text discusses reserved
registers, the addresses loaded into them,
and the processing performed by LYT to
determine the source module blocks that can
be branched to via RX-format branch
instructions.

Reserved Registers

Reserved registers are allocated to con
tain the starting address of the adcon
table and subsequent 4096-byte blocks of
the object module. The criterion used by
phase 20 in reserving registers for this
purpose is the number of text entries that
result from phase 15 processing. (Phase 15
counts the number of text entries that
result from its processing and passes the
information to phase 20.) For relatively
small source modules (approximately 70
source statements), phase 20 reserves only
one register. For sufficiently large
source modules (approximately 280 source
statements) f, a maximum of four is reserved.
The registers are reserved, as needed, in
the f·ollowing order: register 13, 11, 10,
and 9.

Note: Phase 20 also reserves register 12
~ntain the relative address of the
"constants" portion of text information
(see Figure 12). It is used to refer to
the constants and/or variables that occupy
locations within the first 4096 bytes of
the text information portion of the object
module.

o

c

(

Reserved Register Addresses

The addresses placed into the reserved
registers as a result of the execution of
the initialization instructions (refer to
Phase 25. "Initialization Instruction")
are:

• Register 13 address of main program
(or subprogram) save area. 1

• Register 11 (if reserved) - address of
the save area plus 4096.

• Register 10 (if reserved) - address of
the save area plus 2(4096).

• Register 9 (if reserved) - address of
the save area plus 3(4096).

Block Determination and Subseguent
processing

Because the instructions resulting from
the compilation are entered into text
information immediately after the adcon
table (see Figure 12), certain text blocks
are displaced less than 4096 bytes from an
address in a reserved register. Such
blocks can be branched to by RX-format
branch instructions that use the address in
a reserved register as the base ad.dress for
the branch.

To determine the blocks that can be
branched to via RX-format branch instruc
tions. subroutine LYT computes the dis
placement (using the block size
information) of each block from the address
in the appropriate reserved register. The
first reserved register address considered
is that in register 13. If a block dis
placed less than 4096 bytes from that
address exists. LYT enters the displacement
of that block (from the address) into the
statement number entry for the statement
number associated with the beginning of
that block. It also places in that state
ment number entry an indication that the
block can be transferred to via an RX
format branch instruction. and records the
number of the reserved register to be used
in that branch instruction.

When LYT has processed all blockS
displaced less than 4096 bytes from the
address in register 13. it processes those
displaced less than 4096 bytes from the

1Register 13 is used to refer to the adcon
table, which resides in text information
immediately after the initialization
instructions (see Figure 12).

addresses in registers 11. 10, and 9 (if
reserved) in a similar manner.

The information placed in the statement
number entries is used during code genera
tion, a phase 25 process. to generate
RX-format branch instructions.

STRUCTURAL DETERMINATION

To achieve complete optimization. the
structural determination routines of phase
20 (TOPO and BAKT) identify module loops
and specify the order in which they are to
be processed. Loops are identified by
analyzing the block connection information
gathered by phase 15 and recorded in the
forward connection (RMAJOR) and backward
connection (CMAJOR) tables. ,The connection
information indicates the flow of control
within the module and, therefore .• reflects
which blocks pass control among themselves
in a cyclical fashion.

Loops are ordered for processing start
ing with the innermost. or most often
executed. loop and working outward. The
inner-to-outer loop sequence is specifed so
that:

• Text entries will not be relocated into
loops that have already been
processed .• 2

• The full register capabilities of
System/360 can first be applied to the
most frequently executed (innermost)
loop.

Loop identification is a sequential pro
cess, which first requires that a back
dominator be determined for each text
block. The back dominator of a text block
(block I) is defined as the block nearest
to block I through which control must pass
before block I receives control for the
first time. The back dominators of all
text blocks must be determined before loop
identification can be continued. After all
back dominators have been determined. a
chain of back dominators is effectively
established for each block. This chain
consists of the back dominator of the
block, the back dominator of the back
dominator of the block. etc.

2The text optimization process relocates
text entries from within a loop to an outer
loop. Thus, if an outer loop were pro
cessed first, text entries from an inner
loop might be relocated to the outer loop,
thereby requiring that the outer loop be
reprocessed.

Section 2: Discussion of Major components 47

Figure 8 illustrates the concept of back
dominators. Each block in the figure rep
resents a text block. The blocks are
identified by single letter names. The
back dominator of each block is identified
and recorded above the upper right-hand
corner of that block.

When all back dominators are identified,
a back target and a depth number for each
text block are determined. A block (block
I) has a back target (block J) if:

48

• There exists a path from block I to
itself that does not pass through block
J.

• Block J is the nearest block in the

chain of back dominators of block I
that has only one forward connection.

The text blocks constituting a loop are
identifiable because they have a common
back target, known as the back target of
the loop.

The depth number for a block indicates
the degree to which that block is nested
within loops. For example. if a block is
an element of a loop that is contained
within a loop with a depth number of one.
that block has a depth number of two. All
blocks constituting the same loop (i.e.,
all blocks having a common target) have the
same depth number.

c

c

c

(Entry

o

Figure 8. Back Dominators

section 2: Discussion of Major Components 49

The depth numbers computed for the
blocks that comprise the various loops are
used to determine the order in which the
loops are to be processed.

Figure 9 illustrates the concepts of
back targets and depth numbers.. Again each
block in the figure represents a text
block, which is identified by a single
letter name. In this figure, the back
target of each block is identified and
recorded above the upper right-hand corner
of that block. The depth number for the
block is recorded above the upper left-hand
corner of the block. Note that blocks that
pass control among themselves in a looping
fashion have a common back target and the
same depth number. Also note that the
blocks of the two inner loops have the same
depth numbers" although they have different
back targets.

When the back target and depth number of
each text block has been determined, loops
are identified and the order in which they

50

are to be processed is specified. The 0
loops are ordered according to the depth I'

number of their blocks. The loop whose
blocks have the highest depth number is
specified as the first to be processed; the
loop whose blocks have the next highest
depth number is specified as the second to
be processed; etc. When the processing
order of all loops has been established.
the innermost loop is selected for process-
ing.

The following paragraphs describe the
processing performed by the structural
determination routines to:

• Determine the back dominator of each
text block.

• Determine the back target and depth
number of each text block.

• Identify and order loops for process
ing.

o

(Entry
o 0

A

A

Exit

Figure 9. Back Targets and Depth Numbers

section 2: Discussion of Major components 51

Determination of Back Dominators

Subroutine TOPO determines the back dom
inator of each text block by examining the
connection information for that block. The
first block processed by TOPO is the first
block (entry block) of the module. Blocks
on the first level (i.e., blocks that
receive control from the entry block) are
processed next. Second-level blocks (i.e ••
blocks that receive control from first
level blocks) are then processed, etc .•

TOPO assigns the entry block a back
dominator of zero, because it has no back
dominator; it records the zero in the back
dominator field of the statement number
entry for that block (refer to Appendix A.,
"Statement Number/Array TableR). TOPO
assigns each block on the first level
either its actual back dominator or a
provisional back dominator. If a first
level block receives control from only one
block, that block must be the entry block
and is the back dominator for the first
level block. TOPO records a pointer to the
statement number entry for the entry block
in the back dominator field of the
statement number entry for the first level
block. If a first-level block receives
control from more than one block, TOPO
assigns it a provisional back dominator,
which is the entry block of the module.
All blocks on the first level are processed
in this manner.

TOPO also assigns each block on the
second level either its actual back
dominator or a provisional back dominator.
If a second-level block receives control
from only one block, its back dominator is
the first-level block from which it
receives control. TOPO records a pointer
to the statement number entry for the
first-level block in the back dominator
field of the statement number entry for the
second-level block. If more than one block
passes control to a second-level block,
TOPO assigns that block a provisional back
dominator. The provisional back dominator
assigned is a first-level block that passes
control to the second-level block under
consideration. Processing of this type is
performed at each level until the last, or
exit, block of the module is processed.
TOPO then determines the actual back domi
nators of blocks that were assigned provi
sional back dominators.

For each block assigned a provisional
back dominator, subroutine TOPO makes a
backward trace over each path leading to
the block (using CMAJOR). The blocks at
which two or more of the paths converge are
flagged as possible candidates for the back
dominator of the block. When all paths
have been treated. the relationship of each

52

possible candidate to the other possible
candidates is examined. TOPO assigns the 0
candidate at the highest level (i.e., clo
sest to the entry block of the module) as
the back dominator of the block under
consideration; it records a pointer to the
statement number entry for the assigned
back dominator in the back dominator field
of the statement number entry for the~lock
under consideration. After the back domi
nators of all text blocks are identified.
subroutine BAKT determines the back target
and depth number of each text block.

Determination of Back Targets and Depth
Numbers

Subroutine BAKT determines the back tar
get of each text block through an analysis
of the backward connection information (in
CMAJOR) for that block. Block J is the
back target of block I if:

1. Block J is the nearest block in the
chain of back dominators of block I.

2. Block J has only one forward connec
tion.

3. There exists
itself that
block J.

a path from block I to (,f"".
does not pass through ~.

If a block J exists that
the above conditions except
then the back target of block
back target of block L.

satisfies all
the second.

J is also the

If a block J satisfying conditions 1 and
3 does not exist, then the back target of
block I is zero.

When the back
identified, that
depth numher.

target of a block is
block is also assigned a

Back targets and depth numhers are det
ermined for text blocks in the same order
as hack dominators are determined for them.
The fir~,block of the module is the first
processed; first-level blocks are consid
ered next; etc.

BAKT assigns the first or entry block
both a back target and depth number of
zero., because it does not have a hack
target and is not in a loop. It records
the depth number (zero) in the loop number
field of the statement number entry for the
entry block (refer to Appendix A.
"Statement Numher/Array Tahle").

The processing performed by BAKT for
each other block depends upon whether one
or more than one hlock passes control to

c

(-

(

c

that block. If more than one block passes
control to the block under consideration,
BAKT makes a backward trace over all paths
leading to that block to locate its primary
path. The primary path of a block (if one
exists> is a path that starts at that block
and converges on that block without passing
through any block in the chain of back
dominators of that 'block.

If such a path exists. BAKT obtains and
examines the nearest block in the chain of
back dominators of the block under consid
eration. If the obtained block has a
single forward connection, BAKT' assigns
that block as the back target of the block
under consideration. BAKT then assigns a
depth number to the block. The number is
one greater than that of its back target,
because the block is in a loop, which must
be nested within the loop containing the
back target. BAKT records the depth number
in the loop number field of the statement
number entry for the block.

If the obtained block has more than one
forward connection, BAKT assigns its back
target as the back target of the block
under consideration. BAKT then records in
the statement number entry for the block a
depth number one greater than that of its
back target.

If a block that receives control from
two or more blocks does not have an asso
ciated primary path, that block., if it is
in a loop at all" is in the same loop as
one of the blocks in its chain of back
dominators. To identify the loop contain
ing the block (block 1) " BAKT obtains and
examines the nearest block to block I in
its chain of back dominators that has two
or more forward connections. BAKT makes a
backward trace over all paths leading to
the obtained block to determine whether or
not block I. is an element of such a path.
If block I is an element of such a path, it
is in the same loop as the obtained block,
and BAKT therefore assigns block I the same
back target and depth number as the
obtained block; it records the depth number
in the statement number entry for block I.

If block I is not an element of any path
leading to the obtained block~ BAKT obtains
the next nearest block to block I in its
chain of back dominators that has two or
more forward connections and repeats the
process,. If block I is not an element of
any path leading to any block in its chain
of back dominators, block I is not in a
loop" and BAKT assigns it both a back
target and depth number of zero.

A block that receives control from only
one block, if it is in a loop at all, is in
the same loop as one of the blocks in its

chain of back dominators. To identify the
loop containing a block (block I) that
receives control from only one block, BAKT
obtains and examines the nearest block to
block I in its chain of back dominators
that receives control from two or more
blocks. BAKT makes a backward trace over
all paths lea9ing to the obtained block to
locate its primary path (if any). If the
obtained block has a primary path, BAKT
retraces it to determine if block I is an
element of the path. If it is, block I is
in the same loop as the obtained block"
and, BAKT therefore assigns block I the
same back target and depth number as the
obtained block; it records the depth number
in the statement number entry for block I.

If the obtained block does not have a
primary path, or if it does have a primary
path, which, however. does not have block I
as an element, BAKT considers the next
nearest block to block I in its chain of
back dominators that receives control from
two or more blocks. The process is repeat
ed until a primary path containing block I
is located (if any such path exists). If
block I is not in the primary path of any
block in its chain of back dominators,
block I is not in a loop and BAKT assigns
it both a back target and depth number of
zero.

Identifying and Ordering Loops for
Processing

Subroutine BAKT orders blocks for pro
cessing on the basis of the determined back
target and depth number information.
Blocks that have a common back target and
the same depth number constitute a loop,.
BAKT flags the loop with the highest depth
number (therefore, the most deeply nested
loop) as the first loop to be processed.
It assigns the blocks constituting that
loop a loop number of one" indicating that
they form the innermost loop, which is the
first to undergo complete optimization.
(BAKT records the value 1 in the loop
number field of the statement number entry
for each block in that loop.) BAKT flags
the loop with the next highest depth number
as the second loop to be processed. It
assigns the blocks in that loop a loop
number of two, indicating that they form
the second (or next outermost) loop to be
processed. (A value of 2 is recorded in
the loop number field of the statement
number entry for each block in that loop.)
BAKT repeats this procedure until the loop
with a depth number of one is processed.
It then assigns the highest loop number to
the blocks with a depth number of zero,
indicating that they do not form a loop.

Section 2: Discussion of Major Components 53

If at any time, groups of blocks with
the same depth number but different back
targets are found, each group is in a
different loop. Therefore, each such loop
is" in turn, processed before blocks having
a lesser depth number are considered.
Thus, if the blocks of two loops have the
same depth number, BAKT assigns the blocks
of the first loop the next loop number. It
assigns the blocks of the second loop a
loop number one greater than that assigned
to the blocks of the first loop.

When loop numbers are aSSigned to the
blocks of all module loops, the order in
which the loops are to be processed has
been specified. Control is passed to the
routine that determines the busy-on-exit
information and then to the loop selection
routine to select the first (innermost)
loop to be operated upon. This loop con
sists of all blocks having a loop number of
one.

BUSY-ON-EXIT INFORMATION

Before the module can be processed on a
loop-by-Ioop basis, information indicating
which variables are busy-on-exit from which
text blocks must be gathered. A variable
is busy immediately preceding a use of that
variable, but is not busy immediately
preceding a definition of that variable.
Thus, a variable is busy-on-exit from the
blocks which are along all paths connecting
a use and a prior definition of that
variable. This means that in subsequent
blocks the variable can be used before it
is defined. The busy-on-exit condition for
a variable assures that its proper value
exists in main storage or in a register
along each path in which it is subsequently
used.

Information about the regions in which a
variable is busy or not busy determines
whether or not a definition of that varia
ble can be moved out of a loop. For
example~ if a variable is busy-on-exit from
the back target of a loop, text optimiza
tion (see "Tex'.; optimization") would not
attempt to mo"-e to the back target a
redefinition of that variable. because, if
moved, the value of the variable. as it is
processed along various paths from the back
target" might not be the desired one.
Conversely, if the variable is not busy-on
exit" the redefinition can be moved without
affecting the desired value of the
variable. Thus, text optimization respects
the redefinitions of variables that are
busy-on-exit from the back target of a
loop.

54

The information about regions in which a c.
variable is busy or not busy also deter
mines whether or not loads and stores of a
register assigned to the variable are
required. For example. in full register
assignment (see "Full Register Assignment
During Complete optimization"). variables
that are aSSigned registers during global
assignment and that are busy-on-exit from
the back target of the loop must have an
initializing load of the register placed
into the back target. The load is required
because the variable may be used before its
value is defined. Conversely" if the glo
bally assigned variable is not busy-on-exit
from the back target, an initializing load
is unnecessary.

Phase 15 provides phase 20 with not
busy-on-entry information for each operand
that is assigned a coordinate (an MVD table
entry). The not busy-on-entry information
is recorded in the MVX field of the state-
ment number text entry for each text block
(see phase 15, "Gathering Constant/Variable
Usage Information"). An operand is not
busy-on-entry to a block. if in that block
that operand is only defined or defined
before it is used. Phase 20 converts the
not busy-on-entry information to busy-on
entry information. An operand is busy-on
entry to a block, if in that block that
operand is only used or used before it is ~
defined. Finally" phase 20 converts the ~/
busy-on-entry information to busy-on-exit
information. The backward connection
information in CMAJOR is used to make the
final conversion.

The routine that performs the conver
sions is BIZX. This routine determines
busy-on-exit information for each constant"
variable, and base variable having an asso
ciated MVD table entry or coordinate. How
ever, because constants and base variables
are only used, they are busy-on-exit
throughout the entire module. Therefore"
the remainder of this discussion deals with
the determination of busy-on-exit informa
tion for variables.

Because RETURN statements (exit blocks)
and references to subprograms not supplied
by IBM constitute implicit uses of varia
bles in common" all common variables and
arguments to such subprograms are first
marked as busy-on-entry to exit blocks and
blocks containing the references. The com
mon variables and arguments are found by
examining the information table entries for
all variables in the MVD table. The module
is then searChed for blocks that are exit
blocks and that contain references to sub
programs not supplied by IBM. The coordi-
nate bit for each previously mentioned C.,
variable is set on in the MVF field of the
statement number text entry for each such
block, while the same coordinate bit in the

("

(

c

MVX field is set off. This
variable to be busy-on-entry
block. During this process., a
sisting of pointers to exit
built for subsequent use.

defines the
to such a
table" con
blocks. is

After the blocks discussed above have
been appropriately marked for common varia
bles and arguments. BIZX. working with the
coordinate assigned to a variable" converts
the not busy-on-entry information for the
variable to a table of pointers to blocks
to which the variable is busy-on-entry.
(The not busy-on-entry information for the
variable is contained in the MVX fields of
the statement number text entries for the
various text blocks.) At the same time,
the variable's coordinate bit in each MVX
field 'is set off. The busy-on-exit table'
and CMAJOR are then used to set on the MVX
coordinate bit in the statement number text
entry for each biock from which the varia
ble is busy-on-exit.. This procedure is
repeated until all variables have been
processed. Control is then passed to the
control routine of phase 20 (LPSEL).

To convert not busy-on-entry information
to busy-on-entry information, BIZX starts
with the second MVD table entry, which
contains a pointer to the variable assigned
coordinate number two, and works down the
chain of text blocks. The associated MVX
coordinate bit in the statement number text
entry for each block is examined. If the
coordinate bit is off, the corresponding
MVF coordinate bit is inspected. If the
MVF coordinate bit is on. a pointer to the
associated text block is placed into the
busy-on-entry table. This defines the
variable to be busy-on-entry to the block
(i. e. " the variable is used in the block
before it is defined). If the associated
MVX coordinate bit is on, indicating that
the variable is not busy-on-entry" BIZX
sets the bit off and proceeds to the next
block. This process is repeated until the
last text block has been processed.

After BIZX has set off the MVX coordi
nate bit (associated with the variable
under consideration) in. each statement num
ber text entry and built a table of poin
ters to blocks to which the variable is
busy-on-entry, it determines the blocks
from ~hich the variable is busy-on-exit.

starting with the first entry in the
busy-on-entry table" BIZX obtains (from
CMAJOR) pointers to all blocks that are
backward connections of that entry. Each
backward connecting block is examined to
determine whether or not it meets one of
three criteria" which are:

• The block contains a definition of the
variable (L e .• " the variable' s MVS
coordinate bit is on).

• The variable has already been marked as
busy-on-exit from the block.

• The block corresponds to the busy-on
entry table entry being processed.

If the block meets one of these
criteria, the variable is busy-on-exit from
the block and its associated MVX coordinate
bit is set on. (The backward connections
of that block are not explored.) .

If the backward connecting block does
not meet anyone of these criteria, the
variable is marked as busy-on-exit from
that block and that block's backward con
nections are, in turn, explored. The same
criteria are then applied to the backward
connecting blocks. The backward connection
paths are explored in this manner until a
block in every path satisfies one of the
criteria.

If" during the examination of the back
ward connections, an entry block (i.e., a
block lacking backward connections) is
encountered. the blocks in the table of
exit blocks, which was previously built by
BIZX, are used as the backward connections
for the entry block. Processing then con
tinues in the normal fashion.

When blocks in all backward connecting
paths have satisfied one of the criteria.
BIZX obtains the next entry in the busy-on
entry table and repeats the process. This
continues until the busy-on-entry table has
been exhausted.

When the busy-on-entry table has
exhausted, the procedure of building
busy-on-entry table and converting it
busy-on-exit information is repeated
the next MVD table entry. When all
table entries have been processed"
passes control to LPSEL., which calls
loop selection routines.

LOOP SELECTION

been
the
to

for
MVD

BIZX
the

The loop selection routines of phase 20
(TARGET" BASVAR" and BSYONX) select the
loop to be processed and provide the text
optimization and full register assignment
routines with the information required to
process the loop.

The loop to be processed is selected
according to the value of a loop number
parameter, which is passed to the loop
selection routines. The control routine of
phase 20 (LPSEL) sets this parameter to one
after the process of structural
determination is complete. The loop selec
tion routine TARGET is called to select the

Section 2: Discussion of Major Components 55

loop whose blocks have a corresponding loop
number. The selected loop is then passed
to the text optimization routines. When
text optimization for the loop is complet
ed. the control routine increments the
parameter by one. sets the loop number of
the blocks in the loop just processed to
that of their back target, and marks those
blocks as completed. The control routine
again calls TARGET. which selects the loop
whose blocks correspond to the new value of
the parameter. The selected loop is then
passed to the text optimization routines,.
This process is repeated until the outer
most loop has been text-optimized.

After text optimization has processed
the entire module (i. e.. the last loop) "
the control routine removes the block com
pletion marks, initializes the loop number
parameter to 1. and passes control to
TARGET to res elect the first loop. Control
is then passed to the full register assign
ment routines. When full register assign
ment for the loop is completed, the control
routine marks the blocks of the loop as
completed,. It then increments the paramet
er by 1 and passes control to TARGET to
select the next loop. Full register
assignment is then carried out on the loop.
This process is repeated until the outer
most loop has undergone full register
assignment. (When full register assignment
has been carried out on the outermost loop"
the. control routine passes control to the
routines that compute the size of each text
block and then to the routine that computes
the displacements required for branching
optimization,.)

The loop selection routine TARGET uses
the value of the loop number parameter as a
comparand to select the loop to be pro
cessed. TARGE~ compares the loop number
assigned to each text block to the paramet
er. It marks each block having a loop
number corresponding to the value of the
parameter as an element of the loop to be
processed,. It does this by setting on a
bit in the block status field of the
statement number entry for the block (refer
to Appendix A, "statement Number/Array
Table"). When all such blocks are marked.
the loop has been selected.

The information required by the text
optimization and full register assignment
routines to process the . loop consists of
the following:

56

• A pointer to the back target of the
loop.

• A pointer to the forward target of the
loop (if any).

• Pointers to both the
blocks of the loop,.

first and,last ~

• The loop composite matrixes.

After the loop has been selected. this
required information is gathered.

Pointer to Back Target

The text optimization and full register
assignment routines place both relocated
and generated text entries into the back
target of the loop. Although the back
target of the loop was previously identifi
ed during structural determination. it was
not saved. Therefore, its identity must be
determined again.

The loop selection routine TARGET deter
mines the back target of the loop by
obtaining the first block of the selected
loop. It then analyzes the blocks in the
chain of back dominators of the first block
to locate the nearest block in the chain
that is outside the loop and that passed
control to only one block. That block is
the back target of the loop, and TARGET
saves a pointer to it for use in the
subsequent processing of the loop.

Pointer to Forward Target

The text optimization and full register
assignment routines place both relocated
and generated text entries into the forward
target of the loop. The forward target of
a loop (if it exists) is the single block
to which the loop passes control after its
execution is complete.

To locate the forward target (if any),
the loop selection routine BSYONX analyzes
the backward connection information (in
CMAJOR) for each block that is not in the
selected loop. It marks all such blocks
that receive control directly from a block
in the selected loop as exit blocks. If
only one exit block exists. that block is
the forward target of the loop. (The
forward target must not be entered from a
block not in the loop.) BSYONX saves a
pointer to the forward target for use in
the subsequent processing of the loop.

If the above condition is not met, the
loop does not have a defined forward tar
get.

c

(

Pointers to First and Last Blocks

The pointers to the first and last
blocks of the selected loop indicate to the
text optimization and full register assign
ment routines where they are to initiate
and terminate their processing. To make
these pointers available. and loop selec
tion routine TARGET merely determines the
first and last blocks of the selected loop
and saves pointers to them for use in the
subsequent processing of the loop. To
determine the first and last blocks, TARGET
searches the statement number chain for the
first and last entries having the current
loop number. The block associated with
those entries are the first and last in the
loop.

LoOp Composite Matrixes

The loop composite matrixes, LMVS, LMVF,
and LMVX, provide the text optimization and
full register assignment routines with a
summary of which operands are defined with
in the selected loop., which operands are
used within that loop, and which operands
are busy-on-exit from that loop. (An oper
and is busy-on-exit from the loop if it is
used before it is defined in any path along
which control flows from the loop.)

The LMVS matrix indicates which operands
are defined within the loop. The loop
selection routine BASVAR forms LMVS by
combining, via or OR operation, the indivi
dual MVS fields in the statement number
text entry of every block in the selected
loop.

The LMVF matrix indicates which operands
are used within the loop. BASVAR forms it
by combining., via an OR operation" the
individual MVF fields in the statement
number text entry of every block in the
selected loop.

The LMVX matrix indicates which operands
are busy-on-exit from the selected loop.
BSYONX forms it during its search for the
forward target of the loop.. BSYONX exam
ines the text entries of each block that is
not in the selected loop and that receives
control from a block in that loop.. Any
operand in the text entries of such a block
that is either only used in the block or
used before it is defined is busy-on-ex~t
from the loop. BSYONX sets on the bit ~n
the LMVX matrix that corresponds to the
coordinate assigned to each such operand to
reflect that it (i.e., the operand) is
busy-on-exit from the loop.

TEXT OPTIMIZATION

The text optimization process of phase
20 detects text entries within the loop
under consideration that do not contribute
to the loop's successful execution. These
non-essential text entries are either com
pletely eliminated or are relocated to a
block outside of the current loop. Because
the most deeply-nested loops are presented
for optimization first. the number of text
entries in the most strategic sections of
the object module will approach a minimum.

The processing of text optimization is
divided into five logical sections: common
expression elimination, forward movement,
backward movement, strength reduction, and
constant expression reordering .•

• Common expression elimination optimizes
the execution of a loop by eliminating
unnecessary re-computations of identi
cal arithmetic expressions.

• Forward movement optimizes the execu
tion of a loop by relocating to the
forward target computations essential
to the module but not essential to the
current loop.

• Backward movement optimizes the execu
tion of a loop by relocating to the
back target computations essential to
the module but not essential to the
current loop.

• Constant expression reordering optimi
zes the execution of a loop by reorder
ing text entries involving the interac
tion of constants.. The resultant text
entry may be eliminated or may be
relocated into the back target .•

• Strength reduction optimizes the
incrementation of DO indexes and the
computation of subscripts within the
current loop.. Modification of the DO
increment may allow multiplications to
be relocated into the back target. If
the DO increment is not busy-on-exit
from the loop. it may be completely
replaced by a new DO increment that
becomes both a subscript value and a
test value at the bottom of the DO .•

The first three of the above sections
are similar in that they examine text
entries in strict order of occurrence with
in the loop.

The last two sections do not examine
individual text entries within the loop:
instead, the TYPES table" constructed prior
to their execution, is consulted for optim
ization possibilities. Furthermore. an
interaction of entries in the TYPES table

Section 2: Discussion of Major Components 57

must exist before processing can proceed.
The TYPES table contains pointers to type
3, 4" 5, 6, and 7 text entries. The
various types" their definitions, and the
section(s) of text optimization that pro
cess them are outlined in Table 3. Poin
ters to type 1 and type 2 text entries are
not entered into the TYPES table. The
reason is that such types have already been
processed during backward movement.

Table 3. Text Entry Types

The following text describes the pro- C
cessing performed by each of the sections '. "
of the text optimization. An example' ~
illustrating the type of processing of each
section is given in Appendix D. These
examples should be referred to when reading
the text describing the processing of the
sections.

r--------T---T--------------------------------,
I TYPE I DEFINITION I PROCESSED BY I
~--------+---+--------------------------------~ I Type 1 I A text entry having an absolute constant~ I Backward Movement I
I I in either the operand 2 or operand 3 I I
I I position.' I I
~--------+---+--------------------------------i
I Type 2 I A text entry having stored constants2 in I Backward Movement I
I I both the operand 2 and operand 3 positions. I I
~--------+---+--------------------------------i
I Type 3 I An inert text entry (i.e., a text entry I Strength Reduction I
I I that is a function of itself and an addi- I I
I I tive constant~ e.g., J=J+l) I I

~--------+---+--------------------------------i
I Type 4 I A subscript text entry I Constant Expression Reordering I

~-----~-+---+--------------------------------i
I Type 5 I A text entry whose operand 1 (a temporary) I Strength Reduction and I
I I is a function of a variable (or temporary) I Constant Expression Reordering I
I I and a constant, and whose operator is I I
I I multiplicative (*, /, or ~). I I ;'(-

~--------+---+--------------------------------i ~/ I Type 6 I A text entry whose operand 1 (a temporary) I Strength Reduction and I
I I is a function of a variable (or temporary) I Constant Expression Reordering I
I I and a constant" and whose operator is I I
I I additive (+, -, or -). I I
~--------+---+--------------------------------i
I Type 7 I A branch text entry I Strength Reduction I
~--------~---~--------------------------------i
I 1Absolute constants are those that agree with the definition of numerical constants I
I as stated in the publication IBM System/360 Operating System: FORTRAN IV,. I
I I
I 2A stored constant is a variable that is not defined within a loop, and thus its I
I value remai~s constant throughout execution of that loop. I L ___ J

Common Expression Elimination

The object of common expression elimina
tion, which is carried out by subroutine
XPELIM., is to eliminate any unnecessary
arithmetic expressions. This is accom
plished by eliminating text entries, one at
a time, until the entire expression disap
pears. An arithmetic text entry is unne
cessary if it represents a value
(calculated elsewhere in the loop) that may
be used without modification. A value may
be used without modification if, between
appearances of the same computation, oper
ands 2 and 3 of the text entry are not
redefined. The following paragraphs dis
cuss the processing that occurs during
common expression elimination.

58

Within the current loop, XPELIM examines
each uncompleted block (i.e., a block that
is not part of an inner loop) for text
entries that are candidates for elimina
tion. A text entry is a candidate if it
contains an arithmetic" logical, or sub
script operator. Once a candidate is
found., XPELIM attempts to locate a matching
text entry. A text entry matches the
candidate if operand 2" operand 3, and the
operator of that text entry are identical
to those of the candidate. If either
operand. 2 or 3 of the matching text entry
is redefdned between that text entry and
the candidate, the match is not accepted.
The search for the matching text entry C',
takes place in the following locations:

• In the same block as the candidate .•

(

(

between the first text entry and the
candidate.

• In a back dominator (see note) of the
block in which the candidate resides.

Note: Only back dominators that are not
elements of previously processed loops
and that are within the confines of the
current loop are considered. The first
back dominator considered is the one
nearest to the block being processed.
The next considered is the back domina
tor of the nearest back dominator, etc.

When a matching text entry is found.
XPELIM performs elimination in the follow
ing way:

• If operand 1 of the matching text entry
is not redefined between that text
entry and the candidate, XPELIM substi
tutes that operand for operand 2 of the
candidate and converts the operator to
a store .•

• If, on the other hand. operand 1 is
redefined" XPELIM generates a text
entry to save the value of operand 1 in
a temporary and inserts this text entry
into text immediately after the match
ing text entry. It then replaces oper
and 2 of the candidate with this tem
porary" and converts the operator to a
store.

• Finally. if operand 1 of the candidate
is a temporary generated by phase 15,
XPELIM replaces all uses of the tem
porary with the new operand 2 of the
candidate and deletes the candidate.
Thus, the value of the matching text
entry is propagated forward for possi
ble participation in another candidate.
This provides the link to the next text
item of the complete common expression.

All text entries in the block under
consideration are processed in the pre
viously described manner. When the entire
block is processed" the next uncompleted
block in the loop is selected and its text
entries undergo common expression elimina
tion. When all uncompleted blocks in the
loop are processed, control is returned to
the control routine of phase 20, which
passes control to the portion of phase 20
that continues text optimization through
forward movement.

The overall logic of common expression
elimination is illustrated in Chart 11. An
example of common expression elimination is
given in Appendix D.

Forward Movement

Forward movement, which is carried out
by subroutine FORMOV, optimizes a loop by
moving text entries from the loop to the
forward target of the loop, an area where
they are executed less often. If the loop
does not have a defined forward target,
forward movement is bypassed and backward
movement is initiated. Only text entries
that are not required in the loop are moved
during forward movement. An example of
such a text entry is one whose operand 1 is
not needed elsewhere in the loop. The
following paragraphs describe the process
ing that occurs during forward movement.

Within the loop currently being optim
ized. FORMOV examines each uncompleted
block in the chain of back dominators of
the forward target (starting with the near
est back dominator of the forward target
and proceeding as described in common
expression elimination) for text entries
that are candidates for forward movement.
(The block is examined in a bottom-to-top
fashion.) A text entry is a candidate for
forward movement if:

• The text entry contains an arithmetic
or logical operator.

• Operand 1 of the text entry is not used
in another text entry in the loop.

When a candidate is found, FORMOV per
forms forward movement of the candidate in
one of two ways:

• If the operands of the candidate are
not defined in the text entries between
candidate and the forward target. FOR
MOV moves the entire candidate to the
beginning of the forward target.

• If an operand of the candidate is
defined and if the expression (i.e ••
operand 2-operator-operand 3) in the
candidate contains a variable and tem
porary, joined by a commutative opera
tor" FORMOV generates a text entry to
store the variable in a new temporary.
It then replaces the candidate with
this text entry. moves the candidate to
the forward target, and replaces the
variable with a reference to the new
temporary .•

All the text entries in the block under
consideration are processed in the pre
viously described manner. When the entire
block is processed, the next uncompleted
block in the loop that is also a back
dominator of the forward target is selected
and its text entries undergo forward move
ment. When all uncompleted blocks that are
back dominators of the forward target and

section 2: Discussion of Major Components 59

within the confines of the loop are pro
cessed, control is returned to the control
routine of phase 20" which passes control
to the portion of phase 20 that continues
text optimization through backward move
ment.

The overall logic of forward movement is
illustrated in Chart 12. An example of
forward movement is given in Appendix D.

Backward Movement

Backward movement" which .is performed by
subroutine BACMOV" moves text entries from
a loop to an area that is executed less
often, the back target of the loop. During
backward movement, each uncompleted block
in the loop being processed is examined for
text entries that are candidates for back
ward movement. To be a candidate for
backward movement, a text entry must:

• Contain an arithmetic or logical opera
tor.

• Have operands 2 and 3 that are not
defined within the loop.

When a candidate is found, BACMOV car
ries out backward movement of that candi
date in one of two ways:

60

• If operand 1 of the candidate is not
busy-on-exit from the back target of
the loop and if operand 1 of the
candidate is not defined elsewhere in
the loop" BACMOV moves the entire can
didate to the back target of the loop.
(An operand is not busy-on-exit from
the back target if that operand is
defined in the loop before it is used.>

• If operand 1 of the candidate is busy
on-exit from the back target of the
loop or if it is defined elsewhere in
the loop, BACMOV generates a text entry
to perform the computation of the
expression in the candidate and store
the result in a new temporary. It
moves this text entry to the end of the
back target of the loop and then repla-

ces the expression in the candidate
with operand 1. the new temporary. of
the generated text entry.

All the text entries in the block under
consideration are processed in the pre
viously described manner. When the entire
block is processed, the next uncompleted
block in the ~oop is selected and its text
entries undergo backward movement. When
all uncompleted blocks in the loop are
processed, control is returned to the con
trol routine of phase 20, which passes
control to the portion of phase 20 that
continues text optimization through
strength reduction.

The overall logic of backward movement
is illustrated in Chart 13. .An example of
backward movement is given in Appendix D.

Two additional optimization processes
are performed concurrently with backward
movement. They are the elimination of
simple stores and of arithmetic expressions
that appear in text entries and are func
tions of integer constants.

Elimination of Simple Stores: BACMOV
removes unnecessary simple stores (i. e."
text entries of the form "operand 1 =
operand 2") from the block that is current
ly undergoing backward movement. The fol
lowing paragraphs describe the processing
that occurs during simple-store elimina
tion.

During the scan of each uncompleted
block for text entries to be moved to the
back target, BACMOV checks for simple
stores that are candidates for elimination.
A simple store is a candidate for elimina
tion if its operand 1 is a variable.

When a candidate is found, BACMOV exam
ines the characteristics of its operands to
determine if the candidate can be eliminat
ed. The various combinations of operand
characteristics that permit a candidate to
be eliminated are given in table 4. If the
characteristics of the operands of -the
candidate conform to anyone of these ten
combinations" BACMOV eliminates the candi
date.

c

..

c

(

Table 4. Operand Characteristics That Permit Simple-Store Elimination
r--------------T---------T---------T--------------T-------------r-----------------------,
IOperand 1 IOperand 110perand 210perand 1 usedloperand 1 re-IOperand 1 redefined be-I
Ibusy-on-exit I refined I redefined I in block belowldefined belowllow between redefini- I
Ifrom block Ibelow in Ibelow in Iredefinition Ibeforeredef-Ition of operand 2 and I
I Iblock I block lof operand 2 linition of Ifirst use of operand 1 I
1 I 1 I loperand 2 Ithat follows redefini- I
I I I I I Ition of operand 2 I
~--------------+---------+---------+--------------+-------------+-----------------------~
11. No I No I No I X I X I X I
~--------------+---------+---------+--------------+-------------+-----------------------~
12. No I Yes I No I X I X I X I
~--------------+---------t---------+--------------+-------------t-----------------------i
13. Yes I Yes I No I X 1 X 1 X I
~--------------+---------+---------+--------------t-------------t-----------------------~
14. No I No I Yes I No I X I X 1
~--------------+---------t---------+--------------+-------------+-----------------------i
15. No I Yes I Yes 1 No I Z I X I
~--------------+---------+---------+--------------t-------------+-----------------------~
16. No I Yes 1 Yes I Yes I Yes 1 X I
~--------------t---------t---------+--------------+-------------+-----------------------~
17. No 1 Yes I Yes I Yes I No I Yes I
~--------------+---------+---------t--------------+-------------t-----------------------i
18. Yes I Yes I Yes I No I Z I X I
~--------------+---------t---------+--------------+-------------+-----------------------~
19. Yes I Yes I Yes I Yes I Yes I X I
~--------------+---------+---------+--------------+-------------+-----------------------~
110. Yes 1 Yes 1 Yes I Yes I No I Yes I
~--------------~---------L---------~--------------~-------------~-----------------------i
IX = condition cannot exist because of previous characteristics of operands. I
IZ = characteristic is irrelevant. I L ___ J

It does this by replacing the uses of
operand 1 (of the candidate to be
eliminated) with operand 2 of the candidate
in text entries between either:

• The candidate and the first redefini
tion of either operand .•

• The candidate and the end of the block
(i.e., if a redefinition of either
operand does not occur).

BACMOV then deletes the candidate. An
example of simple-store elimination is
illustrated in Appendix D .•

Elimination of Text Entry Expressions
Involving Integer Constants: During the
scan of a block for text entries to be
moved to the back target" BACMOV also
checks for text entries whose operators are
arithmetic and whose operands 2 and 3 are
both integer constants. When such a text
entry is found, BACMOV eliminates the
arithmetic expression in the text e~try by:

• Calculating the result of the expres
sion.

• Creating a new dictionary entry for the
result" which is a constant.

• Replacing the arithmetic expression
with the result.

The text entry is thereby reduced to a
simple store" which may be eliminated by
simple-store elimination.

Constant Expression Reordering

Constant expression reordering" which is
performed by subroutine AGGLUT, optimizes
the loop being processed by reducing the
number of calculations that must be per
formed within the loop to evaluate arith
metic operations involving constants. For
example, assume that the arithmetic opera
tion Al3.0*4.0, represented by the pair of
text entries T=Al3,.0 and T1=T*4,.O, appears
within a loop. The number of calculations
that must be performed within the loop to
evaluate this operation can be reduced by
dividing 4,.0 by 3.0 outside the loop and
inserting the result back into the loop in
such a fashion that the operation is reor
dered and simplified to A*T2 (where T2
equals the result of 4.0 divided by 3.0).
The resultant text for the above operation
would appear as T1=A*T2" which remains in
the lOOp" and T2=4. 0/3. 0, which is per
formed outside the loop.

The following paragraphs discuss the
processing that occurs during constant
expression reordering.

Section 2: Discussion of Major ,components 61

Within the loop currently being pro
cessed, AGGLUT examines each uncompleted
block for pairs of text entries that are
candidates for constant reordering. A pair
of text entries to be a candidate must meet
all of the following conditions:

• Both text entries have arithmetic oper
ators.

• The expressions in both text entries
are functions of a variable (or
temporary) and a real constant (type 5
or type 6 text entries).

• Operand 1 of both text entries is a
temporary.

• The text entries have a common tempora
ry that is defined in one text entry
and used in the other.

Note: The text entry in which the common
temporary is defined must precede the text
entry in which it is used.

A pair of text entries with these char
acteristics represents an arithmetic opera
tion· that may be reordered and simplified
by means of transformations and an operator
table.

The transformations indicate the operand
movement required to reorder the expression
represented by the pair of candidate text
entries. There are two transformations:

1. One is applied to candidate pairs when
the text entries for both have either
multiplicative or additive operators.
The application of this transformation
(see Figure 10) reorders the operation
represented by the candidate pair and
simplifies its calculation by elimi
nating a text entry. (The text entry
eliminated is the text entry of the
candidate pair in which the common
temporary is defined.)

2. The second transformation is applied
to candidate pairs. one text entry of
which has an additive operator (see
note), and the other of which has a
multiplicative operator. The applica
tion of this transformation (see Fig
ure 11) reorders the arithmetic
expression represented by the candi
date pair and generates additive con
stants. which may be subsequently used
to eliminate text entries.

Note: The text entry in which the common
temporary is defined must have the additive
operator.

r---,
TS = C/7.0 (candidate pair) T9 = TS/D

Tl0 = 7.0 * D T9 = C/Tl0

(computes result (arithmetic expression
of constant interaction) in reordered form)

~-------.----------~---~
I Note: This figure illustrates the movement of the operands of a candidate pair, thel
Itext entries of which both have multiplicative operators. The operators in thel
Iresultant text entries, Tl0=7.0*D and T9=C/Tl0, are obtained from the operator table. I
IThe text entry Tl0=7.0*D which computes the result of the interaction of the constants, I
lis placed into the back target. (In this application; D is assumed to be a stored I
Iconstant.) I l ___ J

Figure 10. Multiplicative-Multiplicative or Additive-Additive Transformation

62

(. ~ .j

c

(

(

r---,
T2 = R+D (candidate pair) T3 = T2*4.0

T3 = T2+T4

(computes result (new definition of (arithmetic expression
of constant interaction) common temporary) in reordered form)

~--~--i
INote: This figure illustrates the movement of the operands of a candidate pair. Onel
Itext entry contains an additive operator; the other contains a multiplicative operator. I
IThe operators in the resultant text entries are obtained from the operator table. Thel
Itext entry T4=D*4.0, which computes the result of the interaction of the constants, isl
Iplaced in the back target. (In this application, b is assumed to be a stored I
I constant,.) I L ___ J

Figure 11. Additive-Multiplicative Transformation

The operator table (refer to Appendix All
"Operator Table") indicates the operators
that are required to reorder the arithmetic
operation represented by a pair of candi
date text entires. Arguments to the table
are, respectively:

• The operator of the text entry in which
the common temporary is defined.

• The operator of the text entry in which
the common temporary is used.

The operators obtained from the table are.
respectively:

• The operator of the text entry used to
combine the constants.

• The operator of the text entry rep
resenting a new definition of the com
mon temporary if any is required.

• The operator of the text entry that
represents the arithmetic operation in
reordered form.

Note: If the operators of the candidate
pair are either both multiplicative or both
additive, a new definition of the common
variable is not required to reorder the
arithmetic operation.

Use of Transformations and Operator Table:
Subroutine AGGLUT uses the transformations
and the operator table in combination to
determine the text entries that are
required to reorder the arithmetic opera
tion represented by the candidate pair. It

determines the operands of the required
text entries from the appropriate transfor
mation, which is selected according to the
nature of the operators of the candidate
pair. It determines the operators of the
required text entries by matching the oper
ators of the candidate pair to the opera
tors in the argument fields of the entries
in the operator table. When the entry
whose arguments match the operators in the
candidate pair is found. AGGLUT obtains the
functions (i.e.. the operators to be used
in the required text entries) of that entry
and uses them as the operators of the
required text entries.

Residence of Text Entries After Reordering:
The text entries that result from the
processing carried out by subroutine AGGLUT
on a candidate pair occupy the following
locations:

• The text entry that computes the result
of the interactions of the constants
resides in the back target of the loop
(see note).

• The text entry representing a new defi
nition of the common temporary" if any
such text entry is required" replaces
the text entry of the candidate pair in
which the common temporary was defined.

• The text entry representing the arith
metic operation in reordered form
replaces the text entry of the candi
date pair in which the common temporary
was used.

section 2: Discussion of Major Components 63

Note: This text entry does not exist if
the interacting constants are both abso
lute. Prior to placing the resultant text
entries into their appropriate locations.
AGGLUT determines if both interacting con
stants are absolute. . If they are" it
computes the result of their interactions
and constructs a dictionary entry for the
result. The result is used as the
appropriate used operand of the text entry
that represents the arithmetic expression
in reordered form,.

Processing Procedure: The left-most column
of the operator table is divided into three
groups:

• Group A--Multiplicative-multiplicative.

• Group B--Additive-Multiplicative.

• Group C--Additive-Additive.

The proceSSing performed during constant
expression reordering follows the order of
these groups. AGGLUT first processes can
didate pairs whose text entries both have
mul tiplica ti ve operators, (i,. e." pairs of
type 5 text entries); it next processes
candidate pairs~ one text entry of which
has an additive operator (a type 6 text
entry) and the other a multiplicative oper
ator (a type 5 text entry); and then
processes candidate pairs whose text
entries both have additive operators (pairs
of type 6 text entries).

During constant expression reordering.
AGGLUT first attempts to locate pairs of
type 5 (group A) text entries tQat are
candidates. If it finds any, it processes
them,. AGGLUT then attempts to locate pairs
of text entries one of which is type 6 and
the other type 5 (group B) that are candi
dates. If it locates any such pairs, it
processes them. (If any group B candidate
pairs are found, group A processing is
repeated.) Finally, AGGLUT attempts to
locate pairs of type 6 (group C) text
entries that are candidates. If it finds
any" it processes them.

All the candidate pairs in the block
under consideration are processed in the
previously described manner. When the
entire block is processed. the next uncom
pleted block in the loop is selected and
its text entries undergo constant expres
sion reordering. When all uncompleted
blocks in the loop are processed, control
is returned to the control routine" which
passes control to the portion of phase 20
that continues text optimization through
strength reduction.

The overall logic of constant expression
reordering is illustrated in Chart 14. An

64

example of this process is presented in
Appendix D.

Additional Processing: After all type 6
candidate pairs have been processed. an
additional process. the elimination of a
type 6 text entry, is carried out if
operand 1 of any of the remaining type 6
text entries is the index value of a
subscripted variable (e.g ... xes T4, where
T4 corresponds to operand 1 of a type 6
text entry). If such is the ~ase.. the
index value of the subscripted variable is
a function of a variable (or temporary) and
an additive constant. (Consider that the
index value is defined as T4=T2+K" which is
a type 6 text entry.) Subroutine AGGLUT
renders the type 6 text entry unnecessary
and eliminates it by:

• Reducing the index value of the sub
scripted variable by the amount of the
additive constant that appears in the
type 6 text entry whose operand 1
corresponds to the index value,.

• ~ncreasing (by the above amount) either
of the two elements (displacement or
address constant) that combines with
the index value to yield the address of
the subscripted variable.

Note: The address of a subscripted varia
ble is equal to the sum of (1) the index
value computed from the subscript paramet
ers. (2) the displacement assigned to the
array containing the subscripted variable.
and (3) the address constant (base address)
assigned to the array containing the sub
scripted variable,.

AGGLUT reduces the index value of the
subscripted variable by the amount of the
additive constant by replacing the index
value with the used variable (or temporary)
of the type 6 text entry whose operand 1
corresponds to the index value,.

Whether constant expression reordering
increases the displacement or the address
constant depends upon the nature of the
additive constant.

If the additive constant is an absolute
constant and its magnitude is such that.
when it is added to the displacement
assigned to the array containing the sub
scripted variable" the result is less than
4096, AGGLUT incorporates the additive con
stant into the displacement,. It accom
plishes this by adding the additive con
stant to the contents of the DP field of
the subscript text entry (refer to Appendix
A" "Phase 15 Intermediate Text
Modifications"). (When phase 25 generates
machine code for the subscript text entry.
it adds the contents of the DP field to the

0", ,
./

c

(

(

(..

displacement assigned to the array that
contains the subscripted variable.)

If the additive constant is either an
absolute constant, whose magnitude is such
that the 4096 restriction is violated, or a
stored constant, AGGLUT incorporates the
additive constant into an address constant.

It does this by:

• Creating a new variable and replacing
the subscripted variable with the new
variable.

• Constructing a dictionary entry for the
new variable and assigning it an
address constant.

• Generating a text entry., the function
of which is to insert into the address
constant assigned to the new variable
the sum of the value of the address
constant assigned to the array contain
ing the replaced subscript variable and
the additive constant.

• Placing the generated text entry into
the back target of the loop.

In either case" the address that results
from combining the index value, the dis
placement, and the address constant
(associated with the subscript text entry
that results from constant expression
reordering) is equivalent to the address
that would result from combining the index
value, the displacement" and the address
constant as~ociated with the original sub
script text entry, where that text entry
left unchanged.

strength Reduction

Strength reduction,. which is performed
by subroutine REDUCE, optimizes loops that
are controlled by logical IF statements,.
(DO loops are converted to loops controlled
by logical IF statements during Phase 10
processing.) Such loops are optimized by
modifying the expression (e.g., JS20) in
the IF statement; this enables certain text
entries to be moved from the loop to the
back target of the loop, an area of lower
frequency of execution. The processing of
strength reduction is divided into two
sections:

• Elimination of multiplicative text.
• Elimination of additive text.

Both of these sections perform strength
reduction" but each has a separate set of
criteria for considering a loop as a candi
date for reduction. However, the manners

in which these sections implement reduction
are essentially the same.

Elimination of Multiplicative Text: To
eliminate multiplicative text. REDUCE exam
ines the loop being processed to determine
if it is a candidate for strength reduc
tion. The loop is a candidate if:

• The loop contains an inert text entry
(a type 3 text entry).

• Operan? 1 of the inert text entry is
used 1n another text entry (in the
loop) whose operator indicates mUlti
plication and whose other used operand
is a constant~ (a type 5 entry).

• Operand 1 of the inert text entry is
the variable appearing in the expres
sion of the logic IF statement that
controls the loop .•

If the loop is a candidate, REDUCE
implements strength reduction in one of two
ways:

1. If the constants in the inert text
entry and the multiplicative text
entry are both absolute constants.,
REDUCE:

a. Calculates a new constant (K)
equal to the product of the abso
lute constants.

b. Generates another inert text entry
and inserts it into the loop
immediately after the original
inert text entry. The additive
constant in this text entry is K.

c. Modifies the expression in the
logical IF by:

1. Replacing the branch variable
(see note) with operand 1 of
the generated inert text
entry.

2. Replacing the branch constant
(see note) with a constant
equal to the product of the
branch constant and K.

d. Deletes the original inert text
entry if operand 1 of that text
entry is not busy-on-exit from the
loop.

e. Moves the multiplicative
entry to the back target of
loop.

text
the

~This other text entry is referred to as a
multiplicative text entry.

section 2: Discussion of Major Components 65

f. Replaces operand 1 of the multi
plicative text entry with operand
1 of the generated inert text
entry.

g. Replaces the uses of operand 1 of
the multiplicative text entry that
remain in the loop with operand 1
of the generated inert text entry.

Note: The branch variable is the variable
in the expression of the logical IF that is
tested to determine if the loop is to be
reexecuted. The branch constant is the
constant to which the branch variable is
compared. For example" IF (JS3) where J is
the branch variable and 3 is the branch
constant.

2. If either of the constants in the
inert text entry or the multiplicative
tex,t entry is a stored constant,
REDUCE performs similar processing to
that described above. However~ prior
to generating the inert text entry, it
generates two additional text entries
and places them into the back target
of the loop. The first text entry
multiplies the two constants. Operand
1 of this text entry becomes the
additive constant in the generated
inert text entry. The second text
entry multiplies operand 1 of the
first generated text entry by the
branch constant. Operand 1 of the
second text entry becomes the new
branch constant of the logical IF.

If additional multiplicative text
entries exist within the loop, the above
process is repeated. Repetitive processing
of this type results in a number of gener
ated inert text entries~ which may be
eliminated from the loop by the processing
of the second section of strength reduc
tion.

Elimination of Additive Text: To eliminate
additive text, REDUCE examines the loop
being processed to determine if it is a
candidate for strength reduction. The loop
is a candidate if:

• The loop contains an inert text entry
(type 3>.

• Operand 1 of the inert text entry is
used in the loop in another text entry
whose operator indicates addition2
(type 6).

If the loop is a candidate, the process
ing performed by REDUCE to eliminate the
additive text entry is essentially the same

2This text entry is referred to as an
addi ti ve text entry,.

66

as that performed to eliminate a multi
plicative text entry.

The overall logic
is illustrated in
showing both methods
is given in Appendix

of strength
Chart 15.
of strength
D.

reduction
An example

reduction

FULL REGISTER ASSIGNMENT DURING COMPLETE
OPTIMIZATION

During complete optimization, full reg
ister assignment is carried out on module
loops, rather than on the entire module" as
is the case for intermediate optimization.
Regardless of whether a loop or the entire
module is being processed, the full reg
ister assignment routines operate essen
tially in the same manner. However" the
optimization effect of full register
assignment, when carried out on a loop-by
loop basis, is more pronounced. Because
the most deeply-nested loops are presented
for full register assignment first, the
number of register loads ip the most
strategic sections of the object module
will approach a minimum. The processing of
a loop by full register assignment differs
from its processing of the entire module
only in the area of global assignment,. An
understanding of the processing performed
on a loop, other than global assignment"
can be derived from the previous discussion
of full register assignment (refer to "Full
Register Assignment"). Global assignment
for a loop is described in the following
text.

When processing a loop, the global
assignment routine (GLOBAS> incorporates
into the current loop" wherever possible"
the global assignments made to items (i.e.,
operands and base addresses> in previously
processed loops. It does this to ensure
that the same register is assigned in both
loops if an item eligible for global
assignment in the current loop was globally
assigned in a previously processed loop.

Before the global assignment routine
assigns an available register to the most
active item of the current loop. it deter
mines whether that item was globally
assigned in a previously processed loop.
(As global aSSignment is carried out on
each loop, all global assignments for that
loop are recorded • and saved for use when
the next loop is considered.) If the item
was not globally assigned in a previously
processed loop, GLOBAS assigns it the first
available register. If the item was glo
bally assigned in a previously processed
loop, the global assignment routine then
determines whether the register aSSigned to
the item in the previously processed loop

o

(

is currently available. If that register
is available. GLOBAS also globally assigns
it to the same item in the current loop .•
If the register is not available, the
global assignment of that item in the
previously processed loop cannot be incor
porated into the current loop. GLOBAS
therefore assigns the item an available
register different from that assigned to it
in the previously processed loop. GLOBAS
selects the eligible item with the next
highest activity in the current loop and
treats it in the same manner. Processing
continues in this fashion until the supply
of eligible items or the supply of availa
ble regis.ters is exhausted.

As each global assignment is made to an
active item, GLOBAS checks to determine
whether or not that item is busy-on-exit
from the back target of the loop. If the
item is busy-on-exit, GLOBAS generates a
text entry to load that item into the
assigned register and inserts it into the
back target of the loop. The load is
required to guarantee that the item is in a
register and available for subsequent use
during loop execution. If the item is
not-busy-on-exit. the load text item is not
required. If any globally assigned item is
defined within the loop and is also busy
on-exit from the loop, GLOBAS generates a
text entry to store that item on exit from
the loop. The generated store is needed to
preserve the value of suchan operand for
use when it is required during the
execution of an outer loop .•

GLOBAS records all global assignments
made for the current loop for use in the
subsequent updating scan (see "Full Reg
ister Assignment") and also for incorpora
tion. wherever possible, into subsequently
processed loops.

BRANCHING OPTIMIZATION DURING COMPLETE
OPTIMIZATION

During complete optimization, branching
optimization is carried out in the same
manner as during intermediate optimization.
After all loops have undergone full reg
ister assignment, BLS is given control to
calculate the size of each block. When the
sizes of all blocks have been calculated,
subroutine LYT uses the block size informa
tion to determine the blocks that can be
branched to by means of RX-format branch
instructions.

PHASE 25

Phase 25 produces an object module from
the combined output of the preceding phases
of the compiler. An object module consists
of four elements:

• Text information.
• External symbol dictionary.
• Relocation dictionary.
• Loader END record.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine language form. It
may contain unresolved external symbolic
cross references (i.e., references to sym
bols that do not appear in the object
module). The external symbol dictionary
contains the information needed to resolve
the external symbolic cross references
appearing in the text information. The
relocation dictionary contains the informa
tion needed to relocate the text informa
tion for execution. The END record informs
the linkage editor of the length of the
object module and the address of its main
entry point .•

An object module resulting from a compi
lation consists of a single control sec
tion. unless common blocks are associated
with the module. An additional control
section is included in the module for each
common block. .

The object module produced by Phase 25
is recorded on the SYSLIN data set if the
LOAD option is specified by the FORTRAN
programmer, and on the SYSPUNCH data set if
the DECK option is specified. If the LIST
option is specified. Phase 25 develops and
records on the SYSPRINT data set an assem
bler language listing of the instructions
and data of the object module. Error
messages produced during phase 25 (if any)
are also recorded on the SYSPRINT data set.

TEXT INFORMATION

Text information consists of the machine
language instructions and data resulting
from the compilation. Each text informa
tion entry (a TXT record) constructed by
phase 25 can contain up to 56 bytes of
instructions and data, the address of the
instrucitons and data relative to the
beginning of the control section, and an
indication of the control section that
contains them. A more detailed discussion
of the use and format of TXT records is
given in the publication IEM System/360
Operating System: Linkage Editor, Program
Logic Manual.

Section 2: Discussion of Major Components 67

The major portion of phase 25 processing
is concerned with text information con
struction. In building text information,
phase 25 obtains each item that is to be
placed into text information. converts the
item to machine language form wherever
necessary, enters the item into a TXT
record, and places the relative address of
the item into the TXT record.

Phase 25 assigns relative addresses ~y
means of a location counter, which 1S
continually updated to reflect the location

68

at which the next item is to be placed into
text information. Whenever phase 25 begins c=J
the construction of a new TXT record, it
inserts the current value of the location
counter into the address field of the TXT
record. The address field of the TXT
record thereby indicates the relative
address of the instructions and data that
are placed into the record.

Figure 12 shows the layout of storage
that Phase 25 assumes in setting up text
information.

o

o

..

(j

4096
Bytes

Address
Registers
12-

13-

t- 11_

4096

Constants

Variable and Arrays

Translated FORMAT statements
and abject-time name list
dictionaries

Initialization Instructions

Save Area

Address Constants -
(Adcons)

Prologue

Epilogue

Instructions
(resulting from text conversion)

Subprogram Secondary Entry Coding

B~Ytes Prologue

Epilogue
10_~--------~~~----------4

4096
Bytes

~9-
Instructions

(resulting from text conversion)

}
For main program or
subprogram main
entry point

}
For mai n entry
point into
subprogram only

}
For secondary
entry point into
a subprogram

Figure 12. Storage Layout for Text Information Construction

section 2: Discussion of Major Components 69

Phase 25 constructs text information by:

• Reserving
referenced
module.

adcon table entries for the
statement numbers of the

• Entering the constants of the source
module into TXT records.

• Reserving storage within text informa
tion for the variables and arrays of
the module.

• Translating FORMAT statements (i. e .• ,
phase 10 format text) to a form recog
nizable by IHCFCOMH and entering the
translated statements into TXT records.
(IHCFCOMH, a member of the operating
system library (SYS1. FORTLIB)., performs
object-time implementation of I/O
statements. IHCFCOMH is explained in
Appendix E.)

• converting NAMELIST statements (i.e ••
phase 10 namelist text) to object-time
namelist dictionaries., which are used
by IHCFCOMH to implement READ-WRITE
statements using NAMELIST statements.

• Generating the main program or subpro
gram initialization instructions and
entering them into TXT records.

• Completing the processing of the ad con
table entries and entering the resul
tant entries into TXT records.

• Assigning the initial values. as speci
fied, to the variables and arrays
appearing in phase 15 data text.

• Generating the prologue and epilogue
instructions for a subprogram and
entering these instructions into TXT
records.

• Converting phase 15/20 standard text
into System/360 machine code and enter
ing the code into TXT records.

Chart 21 shows the logic of phase 25
processing., down to, but not including.
conversion of text to machine code.

Adcon Table Entry Reservation

Prior to beginning its construction of
text information, subroutine LYTl reserves
address constants for the referenced state
ment numbers of the module and for the
statement numbers appearing in computed GO
TO statements. The address constants are

70

reserved so that the relative addresses of
the statements associated with such state
ment numbers can be recorded, and subse
quently obtained during execution of the
object module. when branches to those
statements are required.

To reserve address constants for state
ment numbers, subroutine LYTl scans the
chain of statement number entries in the
statement number/array table. For each
encountered statement number that is ref
erenced, LYTl inserts into the appropriate
field of the associated statement number
entry a pointer to the next available entry
in the adcon table. The actual value to be
placed into the address constant set aside
for a statement number is determined during
text conversion (a subsequent phase 25
process), when the text representation of
that statement number is encountered.

~ If branching optimization is being
implemented, LYTl only reserves address
constants for statement numbers that are
associated with text blocks that can not be
branched to via RX-format branch instruc
tions.

c

After all statement numbers are pro- C.'~.
cessed, address constants are likewise res- .
erved for the statement numbers appearing
in computed GO TO statements.. LYTl scans
the branch table chain (refer to Appendix
A., "Branch TableR). and sets aside an entry
in the ADCON table for each statement
number for which a branch table entry was
constructed. It also records a pointer to
the address constant reserved for each fall
through statement number in the initial
branch table entry for that statement num-
ber. LYTl does not record pointers to the
address constants set aside for the actual
statement numbers of the computed GO TO
statements in their associated standard
branch table entries. The values to be
placed into the address constants for
statement numbers in computed GO TO state
ments are also determined during text con
version.

Constant Processinq

Subroutine INITIL obtains the constants
of the source module from their information
table entries and places them into text
information via TXT records. The address
field of each such record specifies rela
tive addresses for the constants that cor
respond to the relative addresses assigned
to them by CORAL in Phase 15.

o

(

•

(

Variable and Array processing:

Subroutine INITIL reserves storage with
in text information for the variables and
arrays of the module between the last
constant and the first translated FORMAT
statement, or the first object-time namel
ist dictionary, if FORMAT statements do not
exist in the module. To accomplish this.
INITIL assigns to the first translated
FORMAT statement (or object-time namelist
dictionary) a relative address equal to the
number of bytes occupied by the constants.
variables, and arrays of the module.

FORMAT Statement Processing

If the source module contains READ/WRITE
statements requiring FORMAT statements. the
associate phase 10 format text must be put
into a form recognizable by IHCFCOMH. Sub
routine FORMAT develops the necessary form
by obtaining the phase 10 intermediate text
representation of each FORMAT statement.
and translating each element (e.g.,. H for
mat code and field count) of .the statement
according to Table 5.. FORMAT enters the
translated statement along with its rela
ti ve address into TXT records.. It also
inserts the relative address of the tran
slated statement into the address constant

Table 5. FORMAT Statement Translation

for the statement number associated with
the FORMAT statement.

NAMELIST Statement processing

If the source module contains READ/wRITE
statements using NAMELIST statements, sub
routine NLIST converts phase 10 namelist
text to object-time namelist dictionaries.
The object-time namelist dictionaries pro
vide IHCFCOMH with the information required
to implement READ/WRITE statements using
namelists (refer to Appendix A" "Namelist
Dictionaries"). The dictionary developed
for each list in a NAMELIST statement
contains the following:

• An entry for the namelist name,.

• Entries for the variables and arrays
associated with the namelist name.

• An end mark of zeros terminating the
list.

Each entry for a variable contains the
name, mode (e.g., integer*2 or real*4), and
relative address of the variable. Both the
address and the mode are obtained from the
dictionary entry for the variable.

Each entry for an
name of the array, the
ments,

array contains the
mode of its ele-

r-------------------T----------------------------T--------------------------------------,
I I I Translated Form (in hexadecimal) I
I FORMAT I .------------T------------T------------i
I Specification I Description list byte I 2nd byte I 3rd byte I
.-------------------+----------------------------+------------+------------+------------i

n(
n
nP
Fw.d
Ew.d
Dw.d
Iw
Tn
Aw
Lw
nX
nHtext
or
'text'
)

/
Gw.d

I beginning of statement 02
I group count 04
I field count 06
I scaling factor 08
I F-conversion OA
IE-conversion OC
I D-conversion OE
I I-conversion 10

column set 12
A-conversion 14
L-conversion 16
skip or blank 18

literal data lA

group end lC
record end lE
G-conversion 20
end of statement 22

n
n

w
w
w
w
n
w
w
n

n

w

d
d
d

text

d

Zw Hexadecimal conversion 24 w
.-------------------~----------------------------~------------~------------~-----------i
I *The first hexadecimal bit of the byte indicates the scale factor sig.n (0 if positive. I
11 if negative).. The next seven bits contain the scale factor magnitude. I L ___ J

Section 2: Discussion of Major components 71

the relative address of its first element.
and the information needed to locate a
particular element of the array. NLIST
obtains the above information, excluding
the array namew from the information table.

NLIST places the. entries of the namelist
dictionary along with their relative
addresses into TXT records. It also places
the relative address of the beginning of
the namelist dictionary into the address
constant for the namelist name.

Initialization Instructions

Phase 25 generates the machine instruc
tions for entry into a main program, a
subprogram. ora subprogram secondary entry
point. These instructions are referred to
as initialization instructions and are
divided into three catagories:

• Main program entry coding., which is
generated by subroutine ATTACH.

• Subprogram main entry coding" which is
generated by subroutine SUBR.

• Subprogram secondary entry coding.
which is generated by subroutine ENTRY.

Once generated, these instructions are
entered into TXT records.

Main Program Entry Coding: The initializa
tion instructions generated by subroutine
ATTACH for a main program perform the
following functions:

72

• Save the contents of general registers
14 through 12.

• Load the reserved registers with their
associated addresses.. (The address
lOaded into register 13 is that of the
save area. The address loaded into
register 11, if reserved, is that of
the save area plus 4096 bytes. The
address loaded into register 10. if
reserved. is that of the save area plus
8192 bytes. The address loaded into
register 9, if reserved~ is that of the
save area plus 12288 bytes.)

• Load the address of the main program
save area into register 4, and store
register 4 into the save area of the
calling program.

• Save register 13 in the new save area.

• Load register 15 with the address of
IHCFCOMH.

• Branch and link to subroutine IBFINT
(arithmetic interruption subroutine of
I HCFCOMH) so that it can set the inter
ruption mask.

• Load register 13 from register 4.

• Branch to apparent entry point.

• Load register 15 with the address of
IHCFCOMH.

• Branch and link to STOP entry point in
IHCFCOMH.

• Constant for STOP O.

• Set up a save area that receives the
contents of the main program registers,
if a subprogram is called.

• Set up the address constants to be
loaded into the reserved registers.

Note: At execution time, subroutine IBFINT
is given control to set the interruption
mask.

Subprogram Main Entry Coding: The initial
ization instructions generated by subrou-
tine SUBR for the main entry point into a ~
subprogram perform the following functions: ~

• Save the contents of general registers'
14 through 12.

• Load the addresses of the prologue and
epilogue of the subprogram into reg
isters. (For an explanation of prolo
gue and epilogue, refer to "Prologue
and Epilogue Generation.")

• Load the reserved registers with their
associated addresses.

• Load the address of the save area of
the subprogram into register 13.

• Save the address of the save area of
the calling routine and the address of
the epilogue of the subprogram in the
save area of the subprogram.

• Branch to the prologue.

• Set up a save area in which the con
tents of the registers used by the
subprogram· are saved. should that sub
program~ in turn, call another subpro
gram.

• Set up address constants in which the
addresses of the prologue and epilogue I~
of the subprogram and the addresses to ~
be placed into the reserved registers
are inserted.

subprogram Secondary Entry Coding: The
initialization instructions for a subpro
gram secondary entry point are essentially
the same as those required for the main
entry point. For this reason, phase 25
makes use of a number of the initialization
instructions for the main entry point in
processing secondary, entry points .•

Main entry point initialization instruc
tions that precede and include the instruc
tion that loads the prologue and epilogue
addresses cannot be used, because each
secondary entry point has its own associat
ed prologue and epilogue. Therefore, for
secondary entry points, subroutine ENTRY
generates initialization instructions that
perform the following functions:

• Save the contents of general registers
14 through 12.

• Load the addresses of the prologue and
epilogue of the secondary entry point
into registers.

• Branch to the subprogram main entry
point initialization instruction that
loads the reserved registers with their
associated addresses.

• set up address constants in which the
addresses of the prologue and epilogue
of the secondary entry point are
placed.

Subprogram secondary entry coding does
not occupy storage within the
"Initialization Instructions n section of
text information (see Figure 12). That
section is reserved for:

• Main program entry coding, if the
source module being compiled is a main
program.

• Subprogram main entry coding, if a
subprogram is being compiled.

The initialization instructions for sec
ondary entry points are generated by sub
routine ENTRY when the text representation
of an ENTRY statement is encountered during
the processing of intermediate text. These
instructions reside in the nInstructions"
section of text information.

Adcon Table Processing

Entries
consist of
addresses)
constants
variables,
entries for

in the compile-time adcon table
the true address constants (base
assigned by CORAL for local

and variables and for common
pointers to information table
arguments and external ref-

erence address constants, temporaries and
constants generated by phase 20, and res
erved address constants, which are set
aside for statement numbers. The output
that the phase 25 subroutine NADOUT gener
ates for the object-time adcon table con
sists of TXT records and RLD records in the
case of true address constants. The RLD
records provide the information needed to
relocate the true address constants. (A
type 5 ESD is output for each common
block.) For argument address constants,
NADOUT obtains the relative addresses of
the arguments from their information table
entries and places them into TXT records .•
It also includes RLD records for them. For
an external reference address constant.
NADOUT also includes a type 2 ESD record in
addition to the TXT and RLD records.
NADOUT outputs temporaries and generated
constants in TXT records. It does not
accompany them with RLD records .•

NADOUT does not process address con
stants for statement numbers and for state
ment numbers appearing in computed GO TO
statements at this time. However, it res
erves storage for them within the "address
constants" section of text information. It
does this by incrementing the location
counter by the number of address constants
set aside for such items times four. The
value of the updated location counter is
then assigned as the relative address of
the "prologue" if a subprogram is being
compiled or of the "instructionsn if a main
program is being compiled.

As previously stated., the values to be
placed into the address constants for
statement numbers and statement numbers in
computed GO TO statements are determined
during text conversion, when that process
encounters the END statement.

Phase 15 Data Text Processing

The phase 25 subroutine DATOUT assigns
the initial values specified for variabies
and arrays in phase 15 data text in the
following manner:

1. The relative address of the variable
or array to be assigned an initial
value or values is obtained and placed
into the address field of a TXT
record.

2. Each constant (one per variable) that
has been specified as an initial value
for the variable or array is then
obtained and entered into the TXT
record. (A number of TXT records may
be required if an array is being
processed.)

section 2: Discussion of Major Components 73

Such action effectively assigns the ini
tial value~ because the relative address of
the initial value has been set to equal the
relative address of its associated variable
or array element.

Prologue and Epilogue Generation

Phase 25 generates the machine code: (1)
to transmit parameters to a subprogram" and
(2) to return control to the calling rou
tine after execution of the subprogram.
Parameters are transmitted to the subpro
gram by means of a prologue. Return is
made to the calling routine by means of an
epilogue. Prologues and epilogues are pro
vided for subprogram secondary entry points
as well as for the main entry point.

Prologue: A prologue (generated by subrou
tine PROLOG) is a series of load and store
instructions that transmit the values of
"call by value" parameters and the address
es of "call by name" parameters to the
subprogram.. (These parameters are
explained in the publication IBM System/360
Operating system: FORTRAN IV.)

When subroutine PROLOG generates a pro
logue, it enters the prologue into TXT
records and inserts its relative address
into the address constant reserved for the
prologue address during the generation of
initialization instructions,.

Epilogue: An epilogue (generated by sub
routine EPILOG) is a series of instructions
that (1) return to the calling routine the
values of "call by value" parameters (if
any>, (2) restore the registers of the
calling routine, and (3) return control to
the calling routine. (If "call by value"
parameters do not exist, an epilogue con
sists of only those instructions required
to restore the registers and to return
control.)

When subroutine EPILOG generates an epi
logue, it enters the epilogue into TXT
records and inserts its relative address
into the address constant reserved for the
epilogue address during the generation of
initialization instructions. (When phase
25 encounters the text representation of a
RETURN statement" a branch to the epilogue
is generated.)

Residence of prologues and Epilogues: The
prologues and epilogues for secondary entry
points do not reside in the "Prologue and
Epilogue" section of text information (see
Figure 12). This section is reserved for
the prologue and epilogue of the main entry
point. The prologue and epilogue for a
secondary entry point into a subprogram are

74

generated immediately after the secondary C
entry coding for the secondary entry point,. ,)
and reside in the "Instructions" section of .. '
the text information following the secon-
dary entry coding.

Text Conversion

The final function of phase 25 is the
conversion of intermediate text into Oper
ating System/360 machine code. (The text
conversion process is controlled by subrou
tine MAINGN.) In converting the text.
phase 25 obtains each text entry and.
depending upon the nature of the operator
in the text entry, passes control to one of
seven processing paths to convert the text
entry.

The seven processing paths are:

• Statement Number Processing.
• ENTRY Statement Processing.
• I/O Statement Pro.cessing.
• CALL Statement Processing.
• Code Generation.
• RETURN Statement Processing.
• END Statement Processing.

The logic of text conversion is illus
trated in Chart 22.

STATEMENT NUMBER PROCESSING: When the
operator of the text entry indicates a
statement number" MAINGN passes control to
subroutine LABEL. LABEL then inserts the
current value of the location counter.
which is the relative address of the state
ment associated with the statement ,number.
into the address constant for the statement
number. When the associated statement is
converted to machine code and placed into
text information, it resides at an address
equal to the value placed into the address
constant. All branches to that statement
are effected through the use of the address
constant.

Note: If branching optimization is being
implemented, only statement number that can
not be branched to via RX format branch
instructions (i.e., statement numbers that
are not within the range of registers 13,
11, 10, and 9) are processed as described
above.

..

After the relative address has been
placed into the address constant for the
statement number., subroutine LABEL deter
mines if that statement number appears in a
computed GO TO statement. If it does,
LABEL also inserts the relative address
into the appropriate field of the branch
table entry" or entries, for that statement
number. The relative address recorded in

c

..

(

the branch table entry is placed into the
storage reserved for it within text infor
mation (refer to "Adcon Table processing")
when the text representation of the END
statement is encountered.

ENTRY STATEMENT PROCESSING: When the oper
ator of an intermediate text entry indi
cates an ENTRY statement,subroqtine MAINGN
passes control to subroutines ENTRY, PRO
LOG, and EPILOG. These subroutines gener
ate the following for the subprogram secon
dary entry point:

• subprogram secondary
(refer to the section
Instructions").

entry coding
"Initialization

• Prologue and epilogue (refer to
"Prologue and Epilogue Generation-).

The machine code instructions that con
stitute the above are entered into TXT
records.

I/O STATEMENT PROCESSING: When the opera
tor of the text entry indicates an I/O
statement, an I/O list item. or the end of
an I/O list, MAINGN passes control to
subroutine IOSUB, which generates an
appropriate calling sequence to IHCFCOMH to
perform, at object-time, the indicated
operation.

The calling sequence generated for an
I/O statement depends on the type of the
statement (e.g., READ, BACKSPACE). The
calling sequence generated for an I/O list
item depends on the I/O statement type with
which the list item is associated and on
the nature of the list item, i. e. " whether
the item is a variable or an array. The
calling sequence generated for an end of an
I/O list depends on whether the end I/O
list operator signals:

• The end of an I/O list associated with
a READ/WRITE requiring a FORMAT state
ment.

• The end of an I/O list associated with
a READ/WRITE not requiring a FORMAT
statement.

Once the calling sequence is generated.
subroutine IOSUB enters it into TXT
records.

CALL STATEMENT PROCESSING: When the opera
tor of the text entry indicates a CALL
statement, MAINGN passes control to subrou
tine CALLER to generate a standard direct
linkage calling sequence, which uses
general register 1 as the argument reg
ister. The argument list is located in the
adcon table in the form of addr~ss con
stants. Each address constant for an argu
ment contains the relative address of the

argument. CALLER enters
sequence into TXT records.

the calling

CODE GENERATION: Code generation converts
text entries having operators other than
those for statement numbers and ENTRY.
CALL, I/O, RETURN. and END statements into
System/360 machine code. To convert the
text entry. code generation uses four
arrays and the information in the text
entry. The four arrays are:

• Register array,. This array is reserved
for register and displacement informa
tion.

• Directory array. This array contains
pointers to the skeleton arrays and the
bit strip arrays associated with opera
tors in text entries that undergo code
generation.

• Skeleton array. A skeleton array
exists for each type of operator in an
intermediate text entry that is to be
processed by code generation. The
skeleton array for a particular opera
tor consists of all the machine code
instructions. in skeleton form and i~
proper sequence, needed to convert the
text entry containing the operator into
machine code. These instructions are
used in various combinations to produce
the desired object code. (The skeleton
arrays are shown in Appendix C.)

• Bit strip array. A bit strip ~rray
exists for each type of operator ~n a
text entry that is to undergo code
generation. The bit strip array for a
particular operator contains strips of
bits. One strip is selected for each
conversion involving the operator. The
bits in each strip are preset (either
on or off) in such a fashion that when
the strip is matched against the skele
ton array, the strip indicates the
combination of instructions that is to
be used to convert the text entry.
(The bit strip arrays are shown with
their associated skeleton arrays in
Appendix C.)

In code generation, the actual base
registers and operational registers (i.e.,
registers in which calculations are to be
performed), assigned by phase 20 to the
operands of the text entry to be converted
to machine code, are obtained from the text·
entry and placed into the register array.
Any displacements needed to load the base
addresses of the operands are also placed
into the register array. The displacement~
referred to in this context are the dis
placements of the base addresses of the
operands from the start of the adcon table
containing the addresses. These displace
ments are obtained from the information

section 2: Discussion of Major Components 75

table entries for the operands. This
action is taken to facilitate subsequent
processing.

The operator of the text entry to be
converted is used as an index to the
directory array. The entry in this direc
tory array, which is pointed to by the
operator index, contains pointers to the
skeleton array and the bit strip array
associated with the operator,.

The proper bit strip is then selected
from the bit strip array. The selection
depends on the status of operand 2 and
operand 3 of the text entry. This status
is set up by phase 20 and is indicated in
the . text entry by four bits (see Appendix
A, "Phase 20 Intermediate Text
Modifications"): the first two bits indi
cate the status of operand 2~ the second
two bits indicate the status of operand 3.

The status of operand 2 and/or operand 3
can be one of the following:

00 The operand is in main storage and
is to remain there after the present
code generation. Therefore, if the
operand is loaded into a register
during the present code generation,
the contents of the register can be
destroyed without concern for the
operand.

01 The operand is in main storage and
is to be loaded into a register,.
The operand is to remain in that
register for a subsequent code gen
eration~ therefore, the contents of
the register are not to be dest
royed.

10 The operand is in a register as a
result of a previous code genera
tion. After the register is used in
the present code generation process,
its contents can be destroyed.

11 The operand is in a register and is
to remain in that register for a
subsequent code generation. The
contents of the register'are not to
be destroyed.

This four bit status field is used as an
index to select a bit strip from the bit
strip array associated with the operator.
The combination of instructions indicated
in the bit strip conforms to the operand
status requirements: i. e., if the status of
operand 2 is 11, the generated instructions
make use of the register containing operand
2 and do not destroy its contents. The
combination, however, excludes base load
instructions and the store into operand 1.

76

Once the bit strip is selected., it is
moved to a work area. The strip is modi
fied to include any required base load
instructions. That is, bits are set on in
the appropriate positions of the bit strip
such that, when the strip is matched to the
skeleton array, the appropriate instruc
tions for loading base addresses are
included in the object code. The skeletons
for these load instructions are part of the
skeleton array,.

The code generation process determines
if the base address of operand 2 and/or
operand 3 must be loaded into a register by
examining the status of these base address
es in the text entry. Such status is
indicated by four bits: the first two bits
indicate the status of the base address of
operand 2~ the second two bits indicate the
status of the base address of operand 3.
If this status field indicates that a base
address is to be loaded, the appropriate
bit in the bit strip is set on. (The bit
to be operated upon is known. because the
format of the skeleton array for the opera
tor is known.)

Before the actual match of the bit strip
to the skeleton array takes place., the code
generation process determines:

• If the base address of operand 1 must
be loaded into a register.

• If the result produced by the actual
machine code for the text entry is to
be stored into operand 1.

This information is again indicated in the
text entry by four bits: the first two bits
indicate the status of the base address of
operand 1~ the second two bits indicate
whether or not a store into operand 1 is to
be included as part of the object code. If
the base address of operand 1 is to be
loaded and/or if operand 1 is to be stored
into, the appropriate bites) in the bit
strip is set on.

The bit strip is then matched against
the skeleton array. Each skeleton instruc
tion corresponding to a bit that is set on
in the bit strip is obtained and converted
to actual machine code. The operation code
of the skeleton instruction is modified, if
necessary, to agree with the mode of the
operand of the instruction. The mode of
the operand is indicated in the text entry.
The symbolic base" index" and operational
registers of the skeleton instructions are
replaced by actual registers. The base and
operational registers to be used are con
tained in the register array. If an oper
and is to be indexed. the index register to
be used is obtained. (The index register
is saved during the processing of the text
entry whose operand 1 represents the actual

("1 . ,
./

..

c

c

..

(

index value to be used.> The displacement
of the operand from its base address. if
needed, is obtained from the information
table entry for the operand. (The contents
of the displacement field are added to this
displacement if a subscript text entry is
being processed.) These elements are then
combined into a machine instruction, which
is entered into a TXT record. (If the
skeleton instruction that is being convert
ed to machine code is a base load instruc
tion, the base address of the operand is
obtained from the object-time adcon table.
The register (13) containing the address of
the adcon table and the displacement of the
operand's base address from the beginning
of the adcon table are contained in the
register array.)

Branch Processing: The code generation
portion of phase 25 generates the machine
code instructions to complete branching
optimization. The processing performed by
code generation, if branching optimization
is being implemented, is essentially the
same as that performed to produce an Object
module in which branching is not optimized.
However, before a skeleton instruction
(corresponding to an on bit in the selected
and modified bit strip) is assembled into a
machine code instruction, code generation
detf"r'llines if that instruction either:

• Loads into a register the address of an
instruction to which a branch is to be
made and which is displaced less than
4096 bytes from the address in a res
erved register~.

• Is an RR-format branch instruction that
branches to an instruction that is
displaced less than 4096 bytes from the
address in a reserved register2•

Note: A load candidate usually immediately
precedes a branch candidate in the skeleton
array.

Code generation determines if the
instruction to be branched to is displaced
less than 4096 bytes from an address in a
reserved register by interrogating an indi
cator in the statement number entry for the
statement number associated with the block
containing the instruction to be branched
to. This indicator is set by phase 20 to
reflect whether or not that block is dis
placed less than 4096 bytes from an address
in a reserved register.

The completion of branching opt~mization
proceeds in the following manner.. If a

1This type
referred to
2This type
referred to

of text entry is subsequently
as a load candidate.
of text entry is subsequently

as a branch candidate.

skeleton instruction corresponding to an on
bit in the bit strip is a load condidate.
it is not included as part of the instruc
tion sequence generated for the text entry
under consideration. If a skeleton
instruction corresponding to an on bit in
the bit strip is a branch candidate, it is
converted to an RX-format branch instruc
tion. The conversion is accomplished by
replacing operand 2 (a register) of the
branch candidate with an actual storage
address of the form Q (O.Br). Q represents
the displacement of the instruction (to be
branched to) from the address that is in
the appropriate reserved register (Br).

If the instruction to be branched to is
the first in the text block., both the
displacement and the reserved register to
be used for the RX-format branch are
obtained from the statement number entry
associated with the block containing the
instruction. (This information is placed
into the statement number entry during
phase 20 processing.)

If the instruction to be branched to is
one that is subsequently to be included as
part of the instruction sequence g'enerated
for the text entry under consideration3 •

the displacement of the instruction from
the address in the appropriate reserved
register is computed and used as the dis
placement of the RX-format branch instruc
tion. The reserved register used in such a
case is the one indicated in the statement
number entry associated with the block
containing the text entry currently being
processed by code generation.

RETURN STATEMENT PROCESSING: When the
operator of the text entry indicates a
RETURN statement, MAINGN passes control to
subroutine RETURN, which generates a branch
to the epilogue.. The epilogue address is
obtained from the subprogram save area.
The address of the epilogue is placed into
the save area during the execution of
either the subprogram main entry coding or
the subprogram secondary entry coding
(refer to the section "Initialization
Instructions") .•

END STATEMENT PROCESSING: When the opera
tor of the text entry indicates an END
statement, MAINGN passes control to subrou
tine END. which completes the processing of
the module by entering the address con
stants (i.e., relative addresses) for
statement numbers and statement numbers
appearing in computed GO TO statements into

3Skeleton arrays for certain operators con
tain RR format branch instructions that
trans·fer control to other instructions of
that skeleton.

Section 2: Discussion of Major components 77

text information and by generating loader
END loader record.

Subroutine END enters the address con
stant (i.e.. relative address) for each
statement number and for each statement
number in a computed GO TO statement into a
TXT record. The address inserted into each
such record places the address constant
into the storage reserved for it during
ADCON table processing.

The loader END record must be the last
record of the object module. Its functions
are to signal the end of the object module
and to inform the linkage editor of the
size (in bytes) of the control section and
the address of the main entry point of the
control section.

EXTERNAL SYMBOL DICTIONARY

The external symbol dictionary contains
entries for external symbols that are
defined or referred to within the module .•
An external symbol is one that is defined
in one module and referred to in another.
One external symbol dictionary entry (an
ESD record) is constructed by phase 25 for
each external symbol it encounters. The
entry identifies the symbol by indicating
its type and location within the module.
The ESD records constructed by phase 25
are:

• ESD-O This is a section definition
record for the source module being
compiled.

• ESD-l This record defines an entry point
for the source module being com
piled.

• ESD-2 This record is generated for an
external subprogram name.

• ESD-5 This is a section definition
record for a common block (either
named or blank).

For a more complete discussion of the
use and the format of these records. refer
to the publication IBM System/360 Operating
System: Linkage Editor. Program· Logic
Manual.

RELOCATION DICTIONARY

The relocation dictionary is composed of
entries for the address constants of the
object module. One relocation dictionary
entry (an RLD record) is constructed by

78

phase 25 for each address constant it
encounters.. If the address constant is for
an external symbol. the RLD record iden
tifies the address constant by indicating:

• The control section to which the
address constant belongs.

• The location of the address constant
within the control section.

• The symbol in the external symbol dic
tionary whose value is to be used in
the computation of the address con
stant.

If the address constant is for a loc,al
symbol (i.e., a symbol that is located in
the same control section as the address
constant), the RLD record identifies the
address constant by indicating the control
section to which the address constant
belongs and its location within that con
trol section.

For a more detailed discussion of the
use and format of an RLD record, refer to
the publication IBM System/360 Operating
System: Linkage Editor. Program Logic
Manual.

PHASE 30

Phase 30 records (on the SYSPRINT data
set) appropriate messages for syntactical
errors encountered during the processing of
phases 10 and 15; its overall logic is
illustrated in Chart 23. As errors are
encountered by these phases, error table
entries are created and placed into an
error table. Each such entry consists of
an internal statement number (i. e." a com
piler generated number assigned to each
source statement for identification
purposes) for the statement that is in
error, and a message number. (If the error
cannot be localized to a particular state
ment, no internal statement number is
entered in the error table entry. Phase 30
simulates the internal statement number
with a zero.)

Message Processing

· Using the message number in the error
table entry multiplied by four. phase 30
locates, within the message pointer table
(refer to Appendix A. -Diagnostic Message
Tables-) " the entry corresponding to the
mesSage number. This message pointer table
entry contains (1) the length of the mes
sage associated with the message number,

--- --,~----~------ ------- ----------- ,-------"

c'

c

c

(

and (2) a pointer to the text of the
message associated with the message number.
After phase 30 obtains the pointer to the
message text. it constructs a parameter
list, which consists of:

• The internal statement number appearing
in the error table entry.

• A pointer to the message text associat
ed with the message number.

• The length of the message.

• The message number.

Having constructed the parameter list.
phase 30 calls subroutine MSGWRT, which
writes the message on the SYSPRINT data
set. After the message is written, the
next error table entry is obtained and
processed as described above.

As each error table entry
processed, the error level code

is being
(either 4

or 8) associated with the message number is
obtained from the error code table
(GRAVERR) by using the message number in
the error table entry as an index. The
error level code indicates the seriousness
of the encountered error. (See the publi
cation IBM System/360 Operating System:
FORTRAN IV Programmer's Guide for explana
tions of all the messages capable of being
generated by the compiler.) The obtained
error level code is saved for subsequent
use only if it is greater than the error
level codes associated with message numbers
appearing in previously processed error
table entries. Thus, after all error table
entries have been processed#, the highest
error level code (either 4 or 8) has been
saved. The saved error level code is
passed to the FSD when phase 30 processing
is completed. This code is used by the FSD
to determine whether or not the compilation
is to be deleted.

Section 2: Discussion of Major Components 79

Chart 00. compiler Control Flow

* * ... A2 ..

* * ****
I
V

*****A2**********
-"*.AI* ••• --**. *FSO 01A2*

.. FROM ... *-*-*-*-*-*-*-*-*
CALLING +.---->* INITIALIZE. ..
PROGRAM" .. CALL

********** ... **** ... PHASE 10 ..

80

I
V

*****82*********
.PH}O 03A2*
--*-*-*-*-*-*-*
.CONVERT SOURCE ..
-TO INFORMATION ...
-TABLE ANO TEXT ..

I
V

*****C2**********
FSD OlA2
--*-*-*-*-*-*-*
... CALL ..
.. PHASE 15 ..

* * _._-**---*--*---*
I
V

*****02*********·
.PHIS 0483*
--*-*-*-*-*-*-*
... CONVERT PHASE ...
*10 TEXT.ASSIGN ...
.. ADDRESSES ...

········1 .. ·· .. ·· :'i:':
V V

*****E2*********. *****E3********** *****E4********** *****E5**********
FSO OlA2 *PH20 lOCI. *FSD 01A2* *PH25 2181-
--*-*-*-*-*-*-*NO *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
IF ERRORS.CALL +.~-----> ASSIGN REGIS- *------->* CALL *------->* BUILD
*30. NO ERRORS. *ERROR * TERS.OPTIMIZE * * PHASE 25 * * OBJECT *
* CALL PHASE 20 * * IF REQUESTED * * MODULE *
***************** ***************** *.*************** *****************

1
ERROR !

* *

v .*. .*.

* J5 *
* * ****

*****G2********** G3 *. G4 *. *****G5**********
PH30 23B3 .* *. .* *. * *
--*-*-*-*-*-*-* • .* ANY *. YES .* LOAD *. NO * DELETE

OUTPUT *--.->*. ERRORS OF .*---->*. OPTION *---->* COMPILATION
ERROR * *. LEVEL 8 .* _.SPECIFIED.* * * MESSAGES * *..* *..*

***************** *. .* *. .*

i< NO i YES

V
*****H3**********
* * CALL *

PHASE 20 *
* * * * *****************

I
V

* * * E3 •
* * ****

OPERATIONS
WITHIN OOTTED

LINES
PERFORMED BY

FSD

I
V

*****H5********** * CALL PHASE 10 * * TO READ TO
... END CARD ...
*(IF NECESSARY) *
* * ***.***.*********

:*::*:->1
**.* v .*.

J5 * •
• * *. * • NO.* LAST * •

• A2 *<--*. COMPILATION .*
* * *. .*

**** *..*
* •• -

lYES

V
·K5******

• TO *
* OPERATING

SYSTEM
** ** ... ********

..

c

c

(

(

Chart 01. FSD Overall Logic

* *
* A3 *
* * ****

I
IEKAAOO V

*****A2********** *****A3********** *****A4**********
****Al********* * * * * *DSPTCH 03A2*

* FROM * * PROCESS * * INITIALIZE * *-*-*-*-*-*-*-*-*
CALLING *---> * PARAMETERS *------->* FOR *------->* BUILD TEXT

* PROGRAM * * * COMPILATION * AND INFORM- *
*************** ATION TABLE *

SEE TABLE 6 FOR A BRIEF
DESCRIPTION OF EACH
SUBROUTINE OF THE FSD. .--------J I

*01 *
* G2*

ENTRY POINT FOR
PHASE 10

SUBROUTINE OR
FOR SERIOUS

ERROR(LEVEL 16)

SYSDIR

****02*********
* FROM *

CALLING *
* PHASE *

I

I
ENTRY POINT
FOR I/O
ERROR

.~. IIBCOMRTN
F2 *.

.* *. ~ ****F3*********
.* PHASE 10 *. YES * FROM *

. SUBROUTINE . IBCOM:It *
.. *
.. ***************

* •• * I

ro
v

*****G2**********
* * *
~>: WRA~~s~~~OR :<: ______________ ~

* WITH CODE *

I
v

• *.
H2 *.

.* *.
.* EOF *. YES

. SWITCH .,
. SET .

. .
* •• * V ro (::*:

v
*****J2**********
* * * BE SURE * * TO READ TO

'END' CARD
* *****************

I
v

* * * A3 *
* *

section 2:

v
*****54**********
* * ReCOVER

UNUSED
TEXT AREA

I
V

*****C4**********
STALL 05B3
--*-*-*-*-*-*-*
*PROCESS COMMON *
* AND EOUIVAL- *
* ENCE *

I
V

*****04**********
PHAZlS 0682
--*-*-*-*-*-*-*
* PROCESS
* PHASE 10
* TEXT *

1
V

*****E4**********
* *

*
*

RECOVER
UNUSED

TEXT AREA
*
*

I
V

*****F4**********
CORAL 0962
--*-*-*-*-*-*-*

RELATIVE
ADDRESS *

ASSIGNMENT *

I
V

*****G4**********
* * * RECOVER *
* UNUSED TEXT *

AREA

I
v

.* •

ENTRY POINT
FOR END-OF

FILE
ENCOUNTER

ENOFILE

****C5*********
* FROM *

PHASE 10 *
*

v .*.
E5 * • . * *. YES.* IS *.

1 *. END FILE .*
.MISPLACED.

. .
V * •• *

* *
: *::*: *1 NO

V
****F5********* * RETURN TO * 1>* CALL I NG *

* PROGRAM *
**** ***************

* * * F5 * * •

H4 *. *****H5**********
.* ERROR *. *IEKP30 2383*

.* OR *. YES *-*-*-*-*-*-*-*-*
.WARNING MESS-.------->* WRITE

. AGES. * MESSAGES
. .

* •• * *****************

ro I
v

V .*.
*****J4********** J5 *.
LPSEL 10C1 .*~.
--*-*-*-*-*-*-* NO.* DELETE *. * ASSIGN REGIS- *<-------*. COMPILATION .*
* TERS.OPTIMIZE * *. .*
* IF REQUESTED * *..*
***************** * •• *

I * YES

I I
I *~**
1**
V *·A3 *

*****K4********** * *
INITIL 2181 ****
--*-*-*-*-*-*-* * *
* BUILD *->* A3 *

OBJECT * * *
* MODULE *

Discussion of Major Components 81

Chart 02. FSD storage Distribution

GETCOR

ENTRY POINT
FOR MAIN
STORAGE
REQUEST

****a3*"'******-
... FROM ...

REQUESTING *
... PHASE * * ... _****-*._.***

I
v .*.

*****C2********** C3 *.* *.
DETERMINE TYPE'" YES . PHASE 10 *. * OF TEXT AND *< I. CALLING .*
... AMOUNT'" *. .*
... ... *..*
***************** * •• *

I ro

v v .*. .*. .*.
02 *. 03 *. 04 * •

• * *. .* *. .* * • • * MAIN *. NO .* IS *. NO .* PHASE 20 *. YES
. STORAGE .------->*. FREE BLOCK .*------->*. CA~LING _*,

.AVAILABLE. *.AVAILABLE.* *. .*
.. *..* *..*

. . *. .* *. .* v i YES i YES i NO ::i;:
v v V

*****E2********** *****E3********** *****E4*********-
... CONVERT MAIN DETERMINE ...

CHAIN ONTO *STORAGE LIMITS'" ... AMOUNT OF ...
... BLOCKS TO· >* TO SUBSCRIPTS *<l ... PHASE 10 TEXT ...
... RECOVER'" ... AND STORE'" ... PROCESSED ...
... LATER'" *
***************** ***************** *****************

I
v .*.

V
****F3********* * ZERO BLOCK *

ANO RETURN
~ .*F4 *_*.

YES.* MAIN *. NO

82

.

*. STORAGE _,
.AVAILABLE.

. . * •• * v
* *****

*01 * * G2*
* *

c

c

c

(

Table 6. FSD Subroutine Directory

r----------T--, I Subroutine I Function I
~---------+--------------~---i

AFIXPI Exponentiation of integers by integers.

AFRXPI

GETCOR

IEKAAOO

IEKFCOMH

IEKFIOCS

IEKUATPT

IHCFMAXI

IHCFMAXR

SYSDIR

SYS'1'AB

Exponentiation of reals by integers.

Allocates and keeps track of main storage used in the construction of the
information table and for collecting text entries.

Initializes compiler processing and calls the phases for execution.

Controls compile-time I/O.
E.)

(Corresponds to IHCFCOMH; refer to Appendix

Interface between IEKFCOMH and BSAM.
Appendix F.)

Unit assignment table for IEKFIOCS,.

(corresponds to IHCFIOSH; refer to

Maximizing service routine for integers.

Maximizing service routine for reals.

Deletes compilation if requested.

Dumps internal text and tables.

SYSTRC Diagnostic trace routine. L __________ ~ ___ _

Section 2: Discussion of Major Components 83

Chart 03.

ENTRY IS TO
DISPATCHER
(DSPTCH)

Phase 10 Overall Logic

*****A2**********
****Al********* .. * see TABLE 8 FOR A

oeseR I PT I ON OF THE
SUBROUT 1 NES OF
PHASE 10.

.. FROM ... •

.. FSD *-.->* INITIALIZE ..

* * * .*.*********...

84

;::::;::*1·*******
* * •• **

V
*****62*********. *****63*********-* GET CD" .. XCLASS ...
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* -READ,LIST, AND •• -------:>*PROCESS STATE- ...
-PREPARE SOURCE MENT NUMBER ...
.. STATEMENT" .. (J F PRESENT) • ... _ _...... '!'

V
*****C3**********
... DETERMINE ..
.. ROUTE FROM ..
-CLASSIFICATION ...
... CODE ..
* * .* •• *.*.**** ••• **

. I i······
V

*****03*******·*·
* * * PROCESS
... SOURCE
.. STATEMENT ..

* * •• ***.******

I
v .*.

E3 .,

SEE TABLE 7

.* *. ****E4**·*·***-.* END *. YES .. TO PHASE 15 ...
. STATEMENT .------->* VIA FSD ..

. . * .. *..* *************** *. ,.
* NO L **.*

* * >* 62 ..
* *

o

o

Table 7. Phase 10 Source Statement Processing
r------------------~------------------T--1
I I Main Processing I I
I statement Type I Subroutine I Subroutines Used I
r------------------+-------------------+--~
I ARITHMETIC I XARITH I COMAST, GRPKEQ, MINSLS, PRELOG, RTPRQT., TXTBLD~ I
~------------------+-------------------+--~
I STATEMENT I XASF/XASF2 I GETWD, ERROR, PUTX" CSORN. SYMTLU I
I FUNCTION I I I
r------------------+-------------------+--~
I DIMENSION I XDIM I GETWD, CSORN. ERROR, SYMTLU I
r------------------+-------------------+--~ I EQUIVALENCE I XEQUI I GETWD" SYMTLU, ERROR, LITCON I
r------------------+-------------------+--~
I COMMON I XCOMON I GETWD, SYMTLU, ERROR I
r------------------+-------------------+--~
I EXTERNAL I XEXT I GETWD. ERROR, SYMTLU I
r------------------+-------------------+--i
I TYPE (INTEGER, I XTYPE I GETWD, ERROR, SYMTLU, PUTX I
I REAL, ETC.) I I I
~----------------+-------------------+--~ I DO I XDO I GETWD, ERROR" LITCON, SYMTLU, PUTX, CDOPAR I
r------------------+-------------------+--i I SUBROUTINE, CALLI XSUBPG I GETWD, ERROR, SYMTLU, PUTX I
I ENTRY, FUNCTION I I I
Ir------------------+-------------------+--~
I READ, WRITE, I X lOOP I GETWD, ERROR, CSORN, PUTX, LITCON I
I PRINT, PUNCH . I I I
~------------------+-------------------+--i
I NAMELIST I XNMLST I GETWD, SYMTLU, PUTX, ERROR I
.------------------+-------------------+--~
I BACKSPACE, I XBCKRW I GETWD, SYMTLU, PUTX, ERROR I

(
I REWIND, I I I
I END FILE I I I
~------------------+-------------------+--i
I RETURN I XRETN I GETWD, CSORN, ERROR, PUTX I
~------------------+-------------------+--i
I IF I XIF I PUTX, ERROR I
.------------------+-------------------+--~
I ASSIGN I XASGN I GETWD, LITCON, ERROR, SYMTLU, PUTX I
r------------------+-------------------+--~
I BLOCK DATA I XBLOK I PUTX, ERROR I
r------------------+-------------------+--i
I FORMAT I XFMT I CSORN, PUTX I
r------------------+-------------------+--~
I CONTINUE I XCONT I ERROR, PUTX I
r------------------+-------------------+--~
I GO TO I XGO I GETWD, ERROR, SYMTLU, LITCON, PUTX I
r------------------+-------------------+--~
I DATA I XDATA I GETWD, CSORN, ERROR, PUTX I
r------------------+-------------------+--~ I STOP I XSTOP I PUTX I
~------------------+-------------------+--~
I PAUSE I XPUSE I GETWD, ERROR, CSORN, PUTX I
~------------------+-------------------+--~
I END I XEND I ERROR, PUTX I
~------------------~------------------~----------------------------~-------------------~ I ~The subroutines used by subroutine XARITH employ the following utility subrou- I
I tines: GETWD" CSORN, PUTX, COMPAT, ERROR, and SYMTLU. I L-_______________________ ~ __ J

Section 2: Discussion of Major Components 85

Table 8. Phase 10 Subroutine Directory
r----------T-------------------------------~---,
, subroutine, Type , Function ,
r----------+-------------------------------+--~

86

CDOPAR ,Utility (entry placement) constructs information table entries and I
, pushdown table entries for the index in i- ,
I tial value. index increment, and index,
, maximum value appearing in DO statements. , , ,

COMAST Arithmetic Develops intermediate text and builds ,
information table entries for variables ,
and constants connected by a comma or an ,
asterisk delimiter,. , ,

COMPAT Utility (collection) Places variable names on word buundaries I
for comparison to other variable names. I ,

CLOSE Utility (text generation) Generates the text entry that signifies ,
the end of the intermediate text represen
tation of a source statement.

CSORN

DSPTCH

ERROR

GENDO

GETCD

GETWD

GRPKEQ

INTCON

LABTLU

LITCON

MINSLS

PERLOG

Utility (entry placement)

Dispatcher

Utility (entry placement)

utility (text generation)

Preparatory

Utility (collection)

Arithmetic

Utility (conversion)

utility (entry placement)

utility (conversion)

,Arithmetic ,
I
I
I
I Arithroetic ,

Directs the entering of variables and
constants into the information table.

Control phase 10 processing, passes con
trol to the preparatory subroutine to
prepare the source statement. determines
from the code assigned to the statement
which subroutine is to continue processing
the statement and passes control to that
subroutine.

Builds error table entries for the syntac
tical errors detected by phase 10 and
places them into the error table.

Generates the intermediate text required
to increment a DO index and to test the
index against its maximum.

Reads. lists (if requested). packs. and
classifies each source statement.

Obtains the next group of characters in
the source statement being processed.

Develops intermediate text and builds
information table entries for variables
and constants connected by an equal sign
or a group mark (end of statement symbol).

Calls subroutine LITCON to convert a con
stant and then verifies that the converted
constant is of integer mode.

Places statement number entries into the
information table.

Converts integer. real. and complex con
stants to their binary equivalents.

Develops intermediate text and builds
information table entries for variables
and constants connected by a minus or
slash delimiter.

Develops intermediate text and builds
information table entries for variables

C, : J

c

(
PH10

PH10A

PUTX

RTPRQT

SYMTLU

TXTBLD

XARITH

XASF

XASF2

XASGN

XBCKRW

(' XBLOK

utility (connnon data area)

utility (connnon data area)

utility (entry placement)

Arithmetic

utility (entry placement)

Arithmetic

Arithmetic

Arithmetic

and constants connected by a period delim
iter.

Phase 10 COMMON area.

Phase 10 COMMON area.

Places text entries into the appropriate
sub-blocks. obtains the next operator of
the source statement, and places the oper
ator into the text entry work area.

Develops intermediate text
information table entries
and constants connected by a
thesis or a quote delimiter.

and builds
for variables
right par en-

Places the dictionary entries constructed
for the variables and constants of the
source module into the information table.

Develops intermediate text and builds
information table entries for variables
and constants connected by a left paren
thesis" or for complex constants .•

Controls the processing of arithmetic
statements. CALL arguments, expressions
appearing in IF statements, I/O list
items, simple variable and array names
appearing in NAMELIST statements. complex
literals appearing in DATA statements, and
arithmetic expressions appearing in state
ment functions. subroutine XARITH scans
the expression and passes control to one
of the following supporting subroutines,
depending on the nature of the delimiter
recognized: COMAST" GRPKEQ" MINSLS., PER
LOG" RTPRQT, and TXTBLD.

Scans the portion of a
to the left of the
each dummy argument.
sequence number.

statement function
equal sign, obtains
and assigns it a

Arithmetic Insures that all dummy arguments appearing
in the argument list of a statement func
tion are used in the expression to the
right of the equal sign in that statement
function.

Key Word (table entry and text) Develops an intermediate text representa
tion of the ASSIGN statement" constructs
information table entries for its oper
ands, and analyzes the ASSIGN statement
for syntactical errors.

Key Word (table entry and text) Develops intermediate text representations
of the BACKSPACE, REWIND, and END FILE
statements, builds information table
entries for the operands of these state
ments, and analyzes these statements for
syntactical errors.

Key Word (table entry and text) Develops an intermediate text representa
tion of the BLOCK DATA statement., set a
switch in the communication table to indi
cate that a BLOCK DATA subprogram is being

Section 2: Discussion of Major Components 87

XCLASS

XCOMON

XCONT

XDATA

XDIM

XDO

XEND

XEQUI

XEXT

XFMT

XGO

XIF

88 .

compiled, and analyzes the BLOCK DATA O.~'
statement for syntactical errors.

Utility (text generation) Generates intermediate text for statement
numbers.

Key Word (table entry) Constructs information table entries for
block names, variables, and arrays appear
ing in COMMON statements, chains common
block name entries and associated varia
bles and arrays together, and analyzes
COMMON statements for syntactical errors.

Key Word (table entry and text) Develops and intermediate text representa
tion of the CONTINUE statement, and veri
fies that there is a statement number
associated with it.

Key Word (table entry and text) Develops an intermediate text representa
tion of the DATA statement, constructs
information table entries for the operands
of the DATA statement, processes the data
specifications in TYPE statements, and
analyzes DATA statements for syntactical
errors.

Key Word (table entry) Constructs information table entries for
the arrays appearing in DIMENSION, COMMONi
and TYPE statements, and analyzes arrays
for syntactical errors.

Key Word (table entry and text) Develops, with the aid of subroutines
CDOPAR and GENDO, the intermediate text
required to control a DO loop.

I
Key Word (table entry and text) Develops an intermediate text representa- I

tion of the END statement and analyzes the
END statement for syntactical errors.

Key Word (table entry) Builds information table entries for eqUi
valence groups and their associated varia
bles, chains equivalence groups and asso
ciated variables together, and analyzes
EQUIVALENCE statements for syntactical
errors.

Key Word (table entry) Constructs information table entries for
the subprogram names appearing in the
EXTERNAL statement, signals the subpro
grams as external, and analyzes the EXTER
NAL statement for syntactical errors.

Key Word (table entry and text) Develops an intermediate text representa
tion of the FORMAT statement .•

Key Word (table entry and text) Develops intermediate text representations
of the GO TO (unconditional, assigned, and
computed) statements, constructs informa
tion table entries for the operands of
these statements. and analyzes these
statements for syntactical errors.

Key Word (table entry and text) Develops an intermediate text representa
tion of that portion of IF statements
which precedes the opening parenthesis and
passes control to subroutine XARITH to
complete the processing of these state
ments .•

o

c

(

XIMPC

XIMPD

XIOOP

XNMLST

XPUSE

XRETN

XSTOP

XSTRUC

XSUBPG

Key Word (special) Sets the type of the variables beginning
with the characters stated in the IMPLICIT
statement according to the type specifi
cations stated in the IMPLICIT statement,
and analyzes the IMPLICIT statement for
syntactical errors.

Utiltiy (text generation) Develops intermediate text representations
of implied DO's appearing in I/O state
ments.

Key Word (table entry and text) Develops intermediate text representations
of I/O statements, constructs information
table entries for their operands, and
analyzes I/O statements for syntactical
errors. (I/O list items are processed by
subroutine XARITH.)

Key Word (table entry and text) Develops an intermediate text representa
tion Of the NAMELIST statement and con
structs information table entries for its
operands. (Passes control to subroutine
XARITH to process the simple variable of
array names.)

Key Word (table entry and text) Develops an intermediate text representa
tion of the PAUSE statement, constructs
information table entries for its operands
(if any), and analyzes the PAUSE statement
for syntactical errors.

Key Word (table entry and text Develops an intermediate text representa
tion of the RETURN statement, constructs
information table entries for its operands
(if any), and analyzes the RETURN state
ment for syntactical errors.

Key Word (table entry and text) Develops an intermediate text representa
tion of the STOP statement and analyzes
that statement for syntactical errors.

Dummy key word subroutine.

Key Word (table entry and text) Develops intermediate text representations
of CALL, SUBROUTINE, ENTRY, and FUNCTION
statements, constructs information table
entries for the operands of these state
ments" and analyzes these statements for
syntactical errors. (This subroutine
passes control to subroutine XARITH to
process the arguments appearing in CALL
statements.)

XTYPE Key Word (table entry and text) Develops intermediate text representations
of TYPE statements, constructs information
table entries for their operands, and
analyzes the TYPE statements for syntacti
cal errors.

----------~-------------------------------~--

Section 2: Discussion of Major components 89

Chart 04.

****A3*********
* * FROM FSD

***** ... **** ... ****

I
V

*****63**********
-STALl. 0563*
--*-*-*-*-*-*-*

PROCESS *
COMMON AND

... EQUIVALENCE *

I
V

*****C3**********
PHAZ15 0662
--*-*-*-*-*-*-* * PROCESS *

PHASe: 10 *
... TEXT *

I
V

*****03**********
CORAL 0982
--*-*-*-*-*-*-*
... RELATIVE *
... ADDRESS

ASSIGNMENT

V
****E3*********

... TO PHASE ...
20 VIA FSD *

* ***************

90

Phase 15 OVerall Logic

SEe: TABLE 9 FOR A
BRIEF DESCRIPTION
OF THE SUBROUTINES
OF PHASE 15

c

(

Chart 05. STALL Overall Logic

****A3*********
.. FROM *

FSO *

V
*****83*********
.. LABseN ..
--*-*-*-*-*-*-*
.. SCAN FOR NON- ...
__ OEFINED STATE- ...
.. MENT NUMBERS ..
******.**********

I
V

*****C3**********
.. OCTSRT ..
--*-*-*-*-*-*-*
.. SORT ANO ..

RECHAIN
.. DICTIONARY
••• **************

I
V

*****03*********
... CDMN ..
--*-*-*-*-*-*-*
.. PROCESS ..

COMMON
... BLOCKS ..
****************.

I
V

*****E3**********
.. EQU ..
--*-*-*-*-*-*-*

PROCESS ..
EQUIVALENCE

* GROUPS

V
****F3*********

... TO PHAZ15 *
VIA FSD

* * ***************

Section 2: Discussion of Major Components 91

Chart 06. PHAZ15 Overall Logic

·*·*A2********* · . FROM FSD

v
*****82*********· · .
... INITIALIZE
* • .

I
V

*****C2*********· · GET A PHASE ...
... C2 *-->* 10 TEXT ...
... ENTRY ...
****... j

v .*. 02 *. *****03********** *****04*********-
.*STATE- *. ... INDICATE IF ... *GENER 0862 •

• *MENT NUMBER-. YES ... STATEMENT'" *-*-*-*-*-*-*-*-*
. TeXT ENTRY ••• ~~---> NUMBER]S +.-------:>* CREATE NEW ... *. .* -FOR ENTRY POINT- ... TEXT BLOCK ...

..
* •• -ro

v .•.
.****El********** E2 *.
GENER 0882 .* *.
--*-*-*-*-*-*-* YES.* IS *.
... OUTPUT *<-------*. OPERATOR .*
... ENO'" *. END .*
... STATEMENT ... *..*
***************** *. .*

I ro
v v

•••••••• j.* ••••••
v

**** . .
... C2 -. .

.*. .*. .*.
Fl *. F2 *. *****F3***.*.**** F4 *. .****FS****.***** .* *. .* *. *AL TRAN 0701* .* IS *. ... ARIF ...

YES.* ANY *. .*ARITHMETIC *. YES *-*-*-*-*-*-*-*-* .* STATE- *. YES *-*-*-*-*-*-*-*-*

I
·.A~~:~~~E .*.* *.*!R~~~~:610~*.*------->: AR~~~:~~~C :------->*.*~EN~E~~~TH:* ••• ------->: g:l~~A~i :

.. *..* * TRANSLATION * *. IF .* *
. . *. .* ***************** *. .* *************.*** ro ro .EO ,

v v * * .*. .*. • C2 *
Gl *. G2 *. *****G3********** * *

.* *. .* '*. '* * .***
V NO .* -. .* PRO- *. YES * PROCESS *

.OPTIMIZATION . *. CESSING .*------->* TEXT
.SELECTED . *. NEEDED .* * ENTRY
.. *..* or" or oo-'oorooo-

*****Hl********** *****H2********** *****H3**********
* VSETUP * *GENER 08B2* *GENER 0882*
--*-*-*-*-*-*-* *-*-*-*-*-*-----* *-*-*-*-*-*-*-*-*
• BUILD. * PASS ON * * COMPLETE TEXT *
* CMA..JOR PHASE 10 * * ENTRY. OUTPUT -

* - TEXT ENTRY * * TEXT ENTRY *
****************- ***************** *****************

'-------> 1<:------->,
V

****Jl*********
... TO CORAL ...
* VIA FSO . .

*******-*******

92

v
**** . .

* C2 *
* *

o

o

C,·''\ , ,

(

(

r '"--,

Chart 07,. ALTRAN Control Flow

NOT

FINISH

~
NEGrK

-BL~FN J
OP1CHK

DFUN CT_
_LIBRTN

XPlRAM

OP1CHK

UNA RY

_,SWITCH

L-PO~ER2
ALTRAN --_+-.... EXPO N

MQDTST

L-FUNRDY -NEGCHK

ENER

TST
r--COlD

rMODTST

PL

AND OR • GEfRTN

REL OPS

MODTST

SUB MLT
I

BGLUT

STRNG

UBSCR

UBADD

PAREN

ST~ST~RDTST

NOTE: The logic and flow of the arithmetic translator is too complex to be represented on one or two conventional
nt5Wcharts. Chart 07 indicates the relationship between the arithmetic translator (sub'routine ALTRAN) and its lower
level subroutines. An arrow flowing between two subroutines indicates that the subroutine at the origin of the
arrow may, in the course of its processing, call the subroutine indicated by the arrowhead. In some cases, a sub
routine called by ALTRAN may, in turn, call one or more subroutines to assist in the performance of its function.
The level and sequence of subroutines is indicated by the lines and arrowheads.

In reality, all of the pathways shown connecting subroutines are two-way; however, to simplify the chart, only
forward flow has been indicated by the arrowheads .All of the subroutines return control to the subroutine that
called them when they complete their processing. (If a subroutine detects an error serious enough to warrant the
deletion of the compilation, the subroutine passes control to the FSD, rather than return control to the sub
routine that called it.)

The specific functions of each of the subroutines associated with the arithmetic translator are given in the sub
routine directory following the charts for phase 15.

Section 2: Dis·cussion of Major Components 93

Chart 08. GENER - Text Generation

****A2********·
... FROM * * CALLING
... ROUTINE ...
**************.

V
.462******
* *
* ... INITIALIZE

* •
******* •• ** •••• *.

I
V

·****C2********·*
... GETEXT ...
--*-*-*-*-*-*-*-* * GET STORAGE *
... FOR NEW ...
... TEXT ENTRY ... ****
***************** I . 05 •

• *

.~. I
02 *. *****03********** *****04********** V .* 15 *. SET TEXT'" ****05********-.* OPERATOR *. NO ... PASS ON'" ... CHAIN. BLOCK RETURN *

*. PHASE 15 .~.------->. PHASE 10 *------->* SIZE. AND *------->* TO
. ITEM. ... TeXT ENTRY'" * BLOCk END'" ... CALLER ...
.. ••• ************ *. .* •••• ******.*.**** .********* ••••••• rES

v .*.
E2 *. *****E3*******.*.

.* *. ... TXT LAB ... **** .* STATEMENT *. YES *-*-*-*-*-*-*-*-* * * *. NUMBER .*------->* RECORD *---->* D5 ... *. TEXT.. ... CONNECTION * * *
.. * INFORMATION * ****

. . ***************** ro

TXTLAB RECORDS FALL
THROUGH CONNECTIONS AND
SETS UP STATEMENT NUMBER
TEXT ENTRIES.

*****F2**********
• TXTREG *

TXTREG RECORDS CONNECTION INFORMATION,
OBTAINS DICTIONARY SPACE FOR TE;:MPORARIES

&:~~S A M~~~LM~~' S~:~O~~~ Nf v~:AI) CAt~D T~P-*-*-*-*-*-*-*-*-* * PROCESS
• REGULAR
• TEXT ENTRY *
.**-.*.******

I
V

·*G2**·*·**
* SET TEXT • * CHAIN, BLOCK *
* SIZE, AND
• BLOCK END
* * •••• **.***.******

94

!
**** * • * 05 ...

* *

SUBROUTINE MATE).

c

I~
(~ .
~ ,

C·"\ , .

(
Chart 09. CORAL Overall Logic

··**A2********· . .
FROM FSO

V
*****62*.*.*.**** *****83*********-
.. NOATA" ... CONST ...
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* .. PROCESS •• -------:>*ASSIGN RELATIVE-
.. DATA ADDRESSES ..
.. STATEMENTS" ... TO CONSTANTS ...
***** ••• ********* *.*.**** •••• ****.

j
*****C3*·····**··
.. VARA ..
--*-*-*-*-*-*-*
-ASSIGN RELATIVE
.. ADDRESSES ..
.. TO VARIABLES ..
*************.* ••

1 *** •• 03.********_
.. EQVAR ..
--*-*-*-*-*-*-*
-ASS IGN ADORESS-*
*es TO EQUIVAL- ..
*ENCE VARIABLES ..
*** ••••••••• *****

I
v

··***E3*****·*·*· ... COMVAR ...
--*-*-*-*-*-*-* .ASSIGN AODRESS-*
.. ES TO COMMON ...
.. VARIABLES ...
• *.*.*.******* •••

I
V

*****F3********"·
.. eXTRNL ..
*_tl-*_*_*_*_*_tt-*
.. COMPLETE REL- ..
.. ATIVE ADDRESS ..
.. ASSIGNMENT ..
.... ***************

v .*. H3 ••
• * MAP *.NO *. OPTION •

.SPECIFIED.
. . * •• * rES

v
·*·**J3··*"*··*··
• STMAP •
-~.--*-.. - .. -*-..
• GENERATE ..

STORAGE *
• MAP * *****.*****.*.***

<-----'

v
*··*K3**·***·*·

• * * TO FSD *
* * *** ••• **.******

Section 2: Discussion of Major Components 95

Table 9. Phase 15 Subroutine Directory
r----------~---------T---,
I I Associated I I
ISubroutinelPhase 15 I Function I
I I Segment I I
~----------+----------+---~

96

AD SCAN CORAL Scans the adcon table for an address constant that references I

ALTRAN1 PHAZ15

ANDOR1 PHAZ15

ARIF PHAZ15

BLTNFN1 PHAZ15

BSIZE STALL

C1520

CMSIZE CORAL

PHAZ15

COMN STALL

COMVAR CORAL

CONST CORAL

CORAL CORAL

CPLTST1 PHAZ15

DATACH CORAL

DCTSRT STALL

DFUNCT1 PHAZ15

DUMP15 PHAZ15

EQU STALL

EQVAR CORAL

ERDATA CORAL

EXPON1 PHAZ15

the relative address computed for a variable. I

Controls the arithmetic translation process.

Checks the mode of the arguments passed to it, decomposes IF
statements. and generates text entries for AND and OR opera
tions.

Optimizes the coding derived from the branching portion of an
arithmetic IF statement.

Determines whether or not a given
in-line function, and generates
erenced in-line function.

name
phase

represents a valid
15 text for the ref-

Computes the size (in bytes) of a variable or array based on
its mode and dimensions (if any).

Common data area used by phases 15 and 20.

Checks the displacement computed by subroutine SPAN to see if
it lies within the range of 0 to 4096 bytes.

Generates the text required for complex multiplication or
division (i.e •• a call to a library routine>.

Processes the common table entries constructed by phase 10 for
the operands appearing in COMMON statements.

Assigns relative addresses to common variables and variables
equivalenced into common.

Assigns relative addresses to all constants in the dictionary.

Controls the relative address assignment fUnction of phase 15.

Checks triplets for complex operands and controls text genera
tion for the same.

Chains the data text created by subroutine NDATA in the order
in which it will be processed by phase 25.

Sorts the dictionary constructed by phase 10.

Determines if a reference is to an in-line, library, or
external function.

Records errors detected during PHAZ15 processing.

Establishes a "head" for each equivalence group and computed
the displacement of each variable in the group from the group
head.

Assigns relative addresses to equivalence variables except
those that are equivalenced into common.

Places entries into the error table for errors detected during
the processing of common blocks and equivalence groups.

Generates the text required for exponentiation operations,.

J

..

10

o

EXTRNL CORAL

FINISH1 PHAZ15

FUNRDy1 PHAZ15

GENER PHAZ15

GENRTN1 PHAZ15

GETEXT PHAZ15

GMAT PHAZ15

IFUNTB

LABSCN STALL

LIBRTN1 PHAZ15

LOOKER1 PHAZ15

(MATE PHAZ15

MODIFY1 PHAZ15

MODTST1 PHAZ15

NDATA CORAL

NEGCHK1 PHAZ15

NSTRNG1 PHAZ15

OP1CHK1 PHAZ15

PAREN1 PHAZ15

PH15

PHAZ15 PHAZ15

PHSTAL

POWER21 PHAZ15

PRTEXT CORAL

c RDTST1 PHAZ15

RELOPS1 PHAZ15

Completes the relative address assignment process by
address constants for quantities not previously
addresses.

reserving
assigned

Completes the processing required for a statement when its
primary adjective code is forced from the pushdown table.

Creates pushdown entries for references to implicit library
functions.

outputs phase 15 text consisting of unchanged phase 10 text.
phase 15 standard text, and phase 15 statement number text.

Builds appropriate phase 15 text entries for items forced from
the pushdown table.

Provides subroutine GENER with the main storage needed for a
text entry.

Creates an abbreviated one-word dictionary entry for temporar
ies.

Common data area, which is the FORTRAN supplied subprogram
table.

Scans the statement number entry chain for statement numbers
that are referenced, but not defined.

Determines if the use of a library routine name is valid. and
performs automatic typing where necessary.

Looks up names in the IFUNTB (subprogram) table.

Records usage information in the MVS. MVF. and MVX fields if
the optimized path through phase 20 is selected .•

Changes modes for logical expressions.

Checks for mixed-mode conditions in the triplet supplied to it.

Converts phase 10 data text to phase 15 data text.

Checks for negative operands in the argument list of a
function.

Determines the forcing strength of operators.

Determine if operand 1 is to be an actual operand or a
temporary.

Removes the or -(from the pushdown table when the corres-
ponding) is encountered.

Common data area used by phase 15.

controlling subroutine of PHAZ15 processing.

Common data area used during relative address assignment.

Determines whether or not the argument passed to it is an
integral power of two.

Prints out phase 15 data text.

Builds text for replacement statements (e.g., A=B, A=B(I).
A(I}=B. A(I)=B(I}).

Calls subroutine GENER to output text entries for relational

Section 2: Discussion of Major Components 97

operators. (Output may be either a relational or branch
operation.) C

SBEROR STALL

SBGLUT1 PHAZ15

SIZE CORAL

SPAN CORAL

STALL STALL

STMAP2 CORAL

STTEST1 PHAZ15

SUBADD1 PHAZ15

SUBMLT1 PHAZ15

SUBSCR1 PHAZ15

SWITCH1 PHAZ15

TESTBN STALL

TESTWD CORAL

TXTLAB PHAZ15

TXTREG PHAZ15

UNARy1 PHAZ15

VARA CORAL

Places entries into the error table for errors detected during
the processing of COMMON and EQUIVALENCE declarations.

Optimizes subscript computations by evaluating subscript con-
stants.

Computes the total size (in bytes) of a variable or constant.

Computes the span of an array.

Controlling subroutine of STALL processing.

Writes a storage map if the MAP option is specified.

Calls RDTST to process replacement statements.

Generates the text to add the terms in a subscript computation.

Generates the text to multiply the first term in a subscript
computation by its associated length factor, or, in the case of
variable dimension, to multiply the nth dimension by length.

Determines if a subscript text entry in the pushdown table
should be entered into phase 15 text, and calls subroutine
GENER to output the text entry when appropriate.

Inverts the order of the operands supplied to it.

Tests the mode and displacement of a variable to determine
whether or not a boundary violation exists.

Determines whether or not a given variable is to be processed
by subroutine VARA.

Processes statement number text entries for subroutine GENER~
creates entries in RMAJOR.

Processes standard phase 15 text entries for subroutine GENER
and makes RMAJOR entries.

Checks for negativeness in the triplet supplied to it, and
modifies the triplet (if negativeness is present) to opt~mize
subsequent code generation. Also detects multiplication'and
division operations and attempts to implement them by generat
ing shift operations.

Assigns relative addresses to all variables in the dictionary
except for variables in COMMON and/or EQUIVALENCE statements,
external functions, namelist names, and variables called by
name and not by value.

XPARAM1 PHAZ15 Inserts the appropriate function operator into phase 15 text
and builds the parameter list for the referenced subprogram in
the adcon table and in text. ~ __________ ~ _________ L ___ ~

I 1This subroutine is used during arithmetic translation. I L ___ J

98

()

(--

(

Chart 10.

---*·At-·_·"'··"'· * * FROM FSO ...

* ***************
I

Phase 20 Overall Logic

SEE TABLE 11 FOR A BRIEF
DESCRIPTION OF THE MA.JOR
SUBROUTINES OF PHASE 20.

* * ... C5

'~'I r· ---..!.NO I
Cl *. *****C2********** *****C3********** C4 *. V

•• -* NON- *- •• YES V : OBTAIN FIRST : !_*_*_~:!~!_*_*_: •• -* LAST *- •• YES .****C5*********.
..OP~!;~ZED.* ••• --~--->: (NEXT) BLOCK ~------>: Si~DS!~~¥~~S .;------->*_ •. BLOCK .* ••• ~~--->: TO FSD

. REGISTERS ... *..*
* •• * ***************** ***************** * •• -ro

•

v .'. 01 *. *****02********** *****03*********-
.* *. * TOPO BAKT ... • * COMPLETE *. YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *. OPTIMIZED .*------->* DETERMINE *<------>*DETERMINE BACK ...

. PATH. -SACK DOMINATORS- -TARGET AND LOOP-*..* ... FOR BLOCKS * *NUMBER FOR BLKS*
'i'~o '·**·***1******** .****************

*~**
* ,
* J3 * V
* * *****E2********** *****E3********** * BIZX * * *

--*-*-*-*-*-*-* ... SET LOOP * * DETERMINE *------->* NUMBER
* BUSY-ON-EXIT * * PARAMETER
• DATA * TO 1 *
.*it**it****** ••• ** **.*.it_**********

I
V

:*::*:->1
* * ****

V
*****F3********** * TARGET *
--*-*-.-.-*-*-* * SELECT LOOP. *
* GET BACK T AR- *
* GET OF LOOP *
****it************

I
*****GI********** *****G2********** *****G3********** *****G4********** *****G5**********
* BSYONX. * BA5VAR * *XPELIM I1Bl* *FORMOV 12A2* *BACMOV 13A2*
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*

DETERMINE *<---->*SET EMIN ARRAY ••• ------->* COMMON' >* FORWARD' >* BACKWARD *
* FORWARD * * FORM LMVS * • EXPRESSION * MOVEMENT * * MOVEMENT
- TARGET - * AND LMVF'" ... ELIMINATION - * * *
-*--****--******- .**.**-***---**-* *-*-*-*****---**- ***.*-*.* •• *****. ** ••• *.*--**** •• *

**.* I * *
:*::*:~ I

.-. V
*.it**HI********** *****HZ*.-**._*_. H3 _. -****H4********** *.***HS**********
* * * * .* *. *REOUCE ISA2* *AGGLUT 1462*
* INCREMENT - * MARK BLOCKS * NO.* LAST *. *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
* LOOP NUMBER *<-------* IN LOOP *<-------*. LOOP .*<-------* STRENGTH *<-------* CONSTANT *
* PARAMETER * * COMPLETED * *. .* * REDUCTION * * EXPRESSION *
* * *..* * REORDERING -
-*********-****** *******-********* * •• * ***.****-*._**--* *-**********--***

I :*::·;->i YES

v **** v .*. .*. .*.
JI *. *****J2********** J3 *. J4 -. :****JS*********:

.* PRO- *. * BLS * .* *. .* * •
• * CESSING *. REG *-*-*-*-*-*-*-*-* YES .* REGISTER *. NO .* COMPLETE *. YES * SET LOOP

*. TEXT OR., COMPUTE *<-------*. ASSIGNMENT ••• ------->*. OPTIMIZED •• >* NUMBER *
. REGS. . SIZE OF * *.COMPLETED.* *. PATH.* * PARAMETER *
.. * BLOCKS * *..* *..* * TO 1 *

* •• * V *****._********** * •• * * •• * *****************
* TEXT it*** I * * NO I
! : KS E I I :**::*:*->

* * ***.
: F3 : *****K2*~******** *****K3********** *****K4*~******** *****K5*~********

* LYT * *REGAS 1682* * BASVAR * * TARGET *
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
* DETERMINE * FULL *<-------*SET EMIN ARRAY *<-------* SELECT LOOP. *
* RX-FORMAT - REGISTER * * (FORM LMVS * * GET BACK TAR- *

BRANCHES. * ASSIGNMENT * AND LMVF). * GET OF LOOP *
.** •• *-**** ***.*.********.** *.*************** ***.*************

I L ,**n.
V >* H3 *

**** * * • *
* C5 *
* * **** Section 2: Discussion of Major Components 99

Chart 11. Cmmn Xpressn Elmntn (XPELIM)

-"AI--·_·_·_·
.. FROM ..

LPSEL ..
.. * .* ... ***********

v .*. *"***a 1 ****** •• ** -****63****"***** B4 ...
.... .. XPELOC" .* *.
.. OBTAIN *-*-*-*-*-*-*-*-* .* COMMON *. YES
.. FIRST .. SCAN FOR *-----~>*. TEXT ENTRY _,
.. SLOCK .. LOCAL COMMON .. *. FOUND .*
.... .. TEXT ENTRY .. *..*
******.********** ***** •••••••• ****... ... v

.****. I hi *1 NO :*::*: * Cl *-> * *
*.**** NO ****

V .*. SEe TABLE 10 .*. V
*****CI******.*.* C2 *. C3 *. *****c.**********
.. EXAMINE" .* *. .* op- *.

FIRST TEXT" .* BASIC *. YES .-ERANOS 2+3 *. .. OBTAIN FIRST ..
.. ENTRY IN ~*------->*. CRITERIA .*------->*. INTRA-BLOCK .* .. BACK
.. BLOCK "*. MET .* *. TEMPORAR-.* DOMINATOR
.. .. *..* *. IES .*
••• *******.*.*.** *. .* *. .* .*** ••• **********

*.... *1 NO "I YES **** I
: 02 !-> : D4 !->
.. .. < -

**** ****
v V

*****02*** ••• **** ****.04**********
* PASS TO * * OBTAIN FIRST ...

NEXT TEXT * * TEXT ENTRY *
• ENTRY IN * * IN BACk *
.. BLOCK ... • DOMINATOR ..
.. * .. *
*****·***1········ *::::··*·1 *.*** •••

: E4 !->
.. *

v ~* v .•. .*.
E2 *. E4 * • • * *. .* OP- *.

NO .:. B~~~K .::. i NO ::~:~~:iLi~: .::.
. . *.LOOP •• •• •• * •• *

j<YES I YES

V V .*. see TABLE 10
** •• *F 2******* •• * .**.*F3*.******.. F4 *.
... PASS TO * ... PASS TO NEXT • .* *.
... NEXT * .. TeXT ENTRY * NO.* PRIMARY *.
... TEXT * * IN BACK .<-------.. CRITERIA .-
* BLOCK. • DOMINATOR • •• MET •• *. .. .*
*******T******* ******"T******- :*::*~:rES

v v ••• * V see TABLE 10 .*. .*. .*. G2 •• G3 *. 64 *.
·**·Gl********* .* *. .* *. .* *. ** ••

* TO * YES.* END *. •• END *. NO .* SECOND- •• NO * -
• LPSEL .<-------*. OF CURRENT .* *. BACK .*, *.ARY CRITERIA .*->* 02 ..
- ... *. LOOP .* *.DOMINATOR.. *. MET.. • *
--**-*-*---***.* *..* *.**

100

. . *. .* v *. .* .r (=:)-> i YES (::) i YES

H2 •• .****H3***.*****- -.**-H ••• -*-*.-_ •••••••••••••••••••••••••••••••
• * WAS •• * PASS TO. * ELIMINATE - SUBROUTINES USED •

NO .* NEW BLOCK *. * NEXT BACK - ARITHMETIC - •••••••••••••••••••••••••••••• i *. IN INNER.* - DOMINATOR - - eXPRESSION - UTILITIES (seE TABLE •
-. LOOP.. ... - - OR ENTIRE * 12).XPLACE.XCHANG, •
.. * • - TeXT ENTRY * XSCAN.AND FOLLOW •

* *~.* * *. *;':S **···**·*1··*····· ······**·L·*-::::*······························

* Cl * * *
* ... * 02 * ._*- * '* v **** .*. .-.

J3 '*. J4 * •
• * *. .* THIS * • • * END *. NO .* BACK DOM- '*. NO * '*

. CURRENT ••• ------->. INATOR IN .*-->* 04 *
. LOOP . *. INNER.* * *
.. *.LooP .*

- •• * * •• * • YES -YES

L * ***** I
>* 02 * V • * **.-

* * * H3 *
* * ***.

(

.Chart i2. Forward Movement (FORMOV)

.•.
A2 * •

••••• Al ••• ***.*.. .*··Fg~~~RD*·*. NO .***.A3 •• *** ••• *.
FROM *---->*. TARGET .*---->* TO
LPSEL * *. EXIST .* • LPSEL * •••••• ** ••• **** *..* ** •••••••• ** •••

. .

: *::. :->.1 YES . .
* •••

V
····*62*··*·****· * OBTAIN FIRST •
• (NEXT)BACK •

>* DOMINATOR OF * * FORWARD •
TARGET

** •••• **** •• *.***

1
V .•.

C2 * •
• * THIS *. -.--ca-.-._._.-.* BACt(DOM- •• YES. •

. tNATOR OUT- .---->* TO •
. SIOE. * LPSEL

-.LOOP .* ••• ** •• ***.****
* •• -ra

V .•.
02 *. *****03 ••••• ** ••• • * THIS *. * EXAMINE FIRST *

YES .* BACK OOM- *. NO * (BOTTOM) TEXT.
. tNATOR IN .---->* ENTRY IN THIS * *. INNER .* * BACK *

-.LooP .* * DOMINATOR * *.**
..... ::::::··*1········ :.::.:

. . * E3 *-> I
.*** V .*. V

E3 *. • ••• *E4********.-.* *. * GET NEXT TeXT *
seE TABLE 10.* BASIC *. NO * ENTRY IN BACK.

. CRITERIA ••• ~---:> DOMINATOR ..
.. MET .. " *(BOTTOM-TO-lOP .. ·····t:· J :-.ml~I :

... .-.
Fa *. F4 * • • * *. .* THIS ...

SEE TABLE 10.* PRIMARY *. NO .* LAST TEXT *. YES
.~~ITERIA ME!._" •• i~~~~I~~Tg~~~.--,

.. *..* I * •• * * •• * v
*1 YES *LNO *.* •• ****. * 82 •

>* E3 * .. *
* *

v *** • .•.
G3 *. * ••• *G4.*** •••••••••••••••••••••••••••••••••••• • * *. * GENERATE TEXT * SUBROUTINES USED •

SEE TABLE 10 .* SECONDARY *. NO *TO REPLACE TEXT., •••••••••••••••••••••••••••••
. CRITERIA .------->*EHTRY.MOVE TEXT. UTJLITIES(SEE TABLE 12)

. MET. * ENTRY TO FQR-" ZPLACE, ZCHANG,
.. * WARD TARGET ... AND FOLLOW •

*. •• **** •• ********.* •••••••••••••••••••••••••••••••
• YES I

V

V

**** . .
* E4 * . .
***.

NOTE - IF THE EXPRESSION IN THE TEXT
ENTRY IS NOT OF THE FORM
TI - OPERATOR - X(WHERE TI IS A TEMP
ORARY AND X A VARIABLE), FORWARD
MOVEMENT CANNOT TAKE PLACE

*****J3********** ••••••••••••••••••••••••••
* MOVE TEXT * SUBROUTINES USED • * ENTRY TO * ••••••••••••••••••••••••••

FORWARD *
TARGET DEL TEX. MOVTEX .. · .. ··*r .. · .. **··························

V

**** * •
* E4 * . .

section 2: Discussion of Major Components 101

Chart 13. Backward Movement (BACMOV)

*****A2**********
**-*AI*-"'-.-"-- ... OBTAIN FIRST ...

... FROM (NEXT) BLOCK ...

... LPSEL *------->* IN CURRENT *<1 LOOP ...
***************

********j********

102

.*. .*NO
82 *. 83 * • • * WAS *. .* THIS *. ****64*********

.*THIS BLOCK *. YES .*LAST BL.OCK. *. YES. ... TO ...
. IN INNER .------->*. IN CURRENT .*------->* LPSEL *. LOOP.* A *. LOOP.* ...

*-•••• e- I *-._ .• e- ***************

1 NO :::*: ...
* * r---------> ****

v
*****C2**********
... OBTAIN FIRST ...
... (NEXT) TeXT ...
... ENTRY IN *<---,
... BLOCK : I

I **** * * ... C2 ...

* * **** v .*.
02 * •

• * * • • * END *. YES
. OF _, *. BLOCK .*

. . * ... it V

*1 NO : *::*: *E3*, ****
v **** .*. V

E2 *. *****E3********** •••••••••••••••••••••••••• • * THIS *. ... ELIMINATE ... SUBROUTINES useD ..
• *TEXT ENTRY *. YES ... SIMPLE STORE - •••••••••••••••••••••••••• *. A SIMPLE .*------->* IF POSSIBLE *
. STORE . *' $UBSUM. DEL TEX
.. * • *. *1 N~ ********[;::::;

* * v .*. SEE TABLE 10 .*.
F2 *. F3 *. .****F4********** •••••••••••••••••••••••••••••• • * ARE *. .* op- *. * ELIMINATE * SUBROUTINES USED •

NO :* CR~~~~iA *:*_Y_ES _____ >*::~~~N~~T~~~R*:*.-YE-S-----:>:SI~~EI~~~~~¥NG :···uTiLiTiES{SEE·TABLE-i2)···:
. MET . *.CONSTANTS.* * THE CONSTANTS * YPLACE.VCHANG. *..* *..* * * PERTRY.ANO SUSTRV •

* ••• * *·*I·~O ********r**·****······························

see TABLE 10

seE TABLE 10

v * * .*. * E3 *
G3 *. * * .* ARE *.

.* PRIMARY *. NO
*. CRITERIA .,

. MET .
. .

* •• * v *1 VES : *::* :

* * ****
v .*.

H3 *. *****H4**********
.* ARE *. *INSERT TEXT TO * .* SECONDARY *. NO * SAVE VALUE. *

. CRITERIA .------->* REPLACE EX- *
. MET. * PRESSION WITH *
.. * OPERAND 1 *

. . *****************

*1 YES L>! *::* !
* * ****

V
*****J3********** •••••••••••••••••••••••••• * MOVE ENTIRE * SUBROUTINES USED •

*
*

TEXT ENTRY * ••••••••••••••••••••••••••
TO BACK *
TARGET OELTEX,MOVTEX

********j********
v

**** * * * C2 *
* * ****

o

("

(

Chart 14 .• Constant Xprssn Reordrng (AGGLUT)

·***A2*********
... FROM *
... LPSEL
*
********4******

I : 63 :

I * *"*.*

.~. I
62 *. V

.* *. ****83********-
.* DOES *. NO ... TO *

. BACK TARGET .-------">* LPSEL ...
. EXIST . *

....*.** •• ******** *. .*

iYES

V
*****cz***··***·* * GROUPA ...
--*-*-*-*-*-*-* I>: Typ~E~~~~~E 5 :
* INTERACTIONS ...
********j********

v .*. .*.
02 *. *****03*****.*.*. 04 * • • * *. ... GROUpe'" .* *. ****

.* FIRST *. NO *-*-*-*-*-*-*-*-* .* *. NO *
. TIME .------->* REORDER *------->*. TYPE6-TYPE4 .*---->* 63 * *. .* ... TYPE 6-TYPE 6 ... *. .*

.. ... INTERACTIONS ... *..*
* •• * *.**********.**** * •• *

I i YES i YES

... GROUpe* *. L****E2J .. ,,***** E4 .~. ".
--*-*-*-*-*-*-* YES.* STORED *. NO

REORDER ... i._ CONSTANT ••• =--------,
... TYPE 6-TVPE 5 ... *..* I'
... INTERACTIONS ... *. .* I

v V
*****F3****.*.*** *****FS********** * FORM NEW ADO *
.. ADDRESS CON- * * ABSOLUTE * STANT IN * * VALUE INTO *
.. BACK TARGET * 01 SPLACEMENT *

* " *****************

I 1<
V

*****G4**********
" * DELETE
* TYPE 6 * * TEXT ENTRY *
* *****************

I
v

" " * B3 *
" *

Section 2:

I

Discussion of Major Components 103

Chart 15. Strength Reduction (REDUCE)

.*.
A2 *.

--**AI._.-* __ ** .* DOES *. ****A3*********
... FROM'" .* BACK TAR- *. NO * TO ...

LPSEL *------->*. GET OF LOOP .*------->* LPSEL
. EXlST . *

*************** *..* ***************

"i':" 1 ".
v .*.

*****82********** B3 *.
... NORMIZ * .* ANy
--*-*-*-*-*-*-* .* INERT -.

FORM LIST *------->*.TEXT ENTRIES .*
... OF INERT * *. FOUND .*
* TEXT ENTRIES * *..*
***************** *. .*

jYES
V

SEe TABLE 10 .*. .*.
*****C2********** C3 *. C4 *. * TVPLOC * .* ANY *. .* ANY *. * * *-*-*-*-*-*-*-*-* YES .* TeXT EN- *. NO .* TEXT EN- *. NO

* C2 *-->* TEST FOR *<-------*. TRIES ... ITH .*'.-"------:>*. TRIES WITH _*1 * ... * PRIMARY * *. * OPER- .* A *. + OPER- .* **** ... CRITERIA * *.ATQRS.* *.ATQRS.*
***************** * •• * * •• * I * jYES

.~. V see TABLE 10 I
02 *. *****04********** V

.* *. * TYPLOC * ****05*********
.* CRJTERIA *. NO *-*-*-*-*-*-*-*-* * TO *

*. MET * TEST FOR LPSEL *
. . PRIMARY

. . CRITERIA * ***************

*****El********** E2 *. E4 *.
* MBRAN * .* BOTH *. .* *.

or" ·······r· .. ~* A

NO*-*-*-*-*-*-*-*-* YES .* CONSTANTS *. .* CRITERIA *. NO r * IS OPERAND 1 *<-------*. ABSOLUTE .* *. MET •
OF INERT BRANCH *. .* *. .*
* VARIABLE· *..* *. .*

:·::·i ···rm

.. 'r' 'r"

10Q

v v V
*****Fl********** *****F2********** *****F4**********
* COMPUTE NEW * * MBRAN * * MBRAN *
* CONSTANT IN- * *-*-*-*-*-*-*-*-*NO * * YES*-*-*-*-*-*-*-*-*NO

~'::::T"': l~;~li~:~",l-->:.::': ~-:::!~!!;11::::~

v v v V
*****Gl********** *****G2********** *****G3********** *****G5**********
* GETDlK * * GENERATE TEXT * • MBRAN * * MBRAN *
--*-*-*-*-*-*-* * TO COMPUTE *-*-*-*-*-*-*-*-*BUSY YES*-*-*-*-*-*-*-*-*
* ESTABLISH * * ADDITIVE AND *MODIFY LOGICAL • 1< * OTHER USES *

NEW * * BRANCH * -EXPRESSION. IN- * * OF OPERAND 1 * CONSTANT * * CONSTANTS * *OICATE BUSYNESS* * IN LOOP *
***************** ***************** ***************** *****************

1 1~8~Y INO

v V v V
*****H2********** *****H3********** *****H4********** *****H5**********
* MOVTEX * * OEL TEX * * DEL TEX * * DELETE *
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* * CHAIN TEXT * * DELETE ORIG- * >* DELETE ADD- *< • DELETE ORIG- *

TO BACK * * INAL INERT * ITIVE TEXT * * INAL INERT * * TARGET * * TEXT ENTRY * * ENTRY * TEXT ENTRY *
***************** ***************** ***************** *****************

'-------->1 1
v v

*****J2********** *****J4**********
* INERT * * MOVTEX *
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*

GENERATE * MOVE ADDITIVE *----,
* INERT TEXT * * TEXT ENTRY TO * I
* ENTRY * * BACK TARGET ...
***************** *****************

1
V

*.***kl********** *****K2********** *****K3********** 4o****K4********** ***4o*K5**********
* DEL TEX * * MBRAN * * DEL TEX * • MovTEX * * REPLACE *
--*-*-*-*-*-*-* NOT*-*-*-*-*-*-*-*-*BUSY *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* v * USES OF *
* DELETE ORIG- *<:-------4.MODIFY LOGICAL *------->* DELETE MUL- *------->*MOVE MULTIPLIC-*------->* OPERAND 1
... INAL INERT * BUSY-EXPRESSION. IN-* A * TIPLICATIVE * * ATIVE TEXT TO * * IN LOOP
• TEXT ENTRY * *OlCATE BUSYNESS* * TEXT ENTRY * * BACK TARGET * *
******.********** ******.********** ***************** ***************** *****************

I
v

* * * C2 *
* *

"

c

(

Chart 16. Full Register Assignment (REGAS)

****A2***·*·*** * FROM ..
.. LPSEL ..
* *
******* •••••• **

V
*****82********·
* * .. BUILD
.. EMIN ARRAY *

FOR LOOP *
. •••• ***.**** ••

I
v :* ••• C2.*** •• ***:

.. DETERMINE *

.. RESERVED * * REGISTERS ..
* * • ***********.*.*.

I
V

*·***02***···**··
* * • SET POINTERS
.. TO START OF *
.. FIRST BLOCK ..

**********.*.** ••

I
v .*.

E2 * • • * WAS *. r>*::. BLt~~~~N .::. YES

. .
. .

* NO

*****F2*!********
*FWDPAS 17A3.
--*-*-*-*-*-*-*
-aUILD REGISTER. * ASSIGNMENT ...
... TABLES ..
**********.*.**** 1<:----'

v .*. G2 *.
.* * • • * END *. YES

*. OF *. LOOP .*
. . *. .* ro

l**·*H2*~**** •• **
* * .. SET POINTERS *

TO START OF ..
... NEXT BLOCK ..

v .*.
63 *.

.* *.
.* CALL *. NO

*. OR FUNCTION •
. IN LOOP .

. .
. .

jYES

V
***·*C3·*·*··*·*·
... MAKE COMNON ..
.. VARIABLES IN- *
... ELIGIBLE FOR ..
.. GL.OBAL
- ASSIGNMENT -
*-**-*-***.* •• ** • 1<:--'

v
*****03**********
*GLOBAS 19A2.
--*-*-*-*-*-*-* * PERFORM *
* GLOBAL -* ASSIGNMENT
.****** •• **

1
V

****·E3***·******
* * .. SET POINTER * TO START OF •
* FIRST BLOCK *
******** ••• *.****

I
V

*-***F3**··***··* .STXTR 2082*
--*-*-*-*-*-*-*

L:r:r~~ fl
····*G.··· .. ·····* * * * SET POINTER
• TO START OF
• NEXT BLOCK
* .** *

.~. ~A
H3 *.

.* ••
.* END *. NO *. OF • •• LOOP ••

*. • • •• • *

['"
V

·*··J3······
• TO * • LPSEL
* * *

Section 2: Discussion of Major Components 105

Chart 17. Table Building (FWDPAS)

..iI-**
*17 iI

* A3*
* *
*

FROM REGASI

V
*****A3**********
.. SET FLAGS il
ii- FOR CALL OR il
ii- MATH FUNCTION il

ii- IN BLOCK *
* *****************

V
*****C3**********
.. OBTAIN NEXT *
* TEXT ENTRY. *

~------->* ASSIGN J * <-------------,
: VALUE :

I
V

'**03*******
.. OBTAIN NEXT *
* OPERAND * i >* (PROCESSING *<---------,
.. ORDER IS 2,
.. 3, 1) ..

I
V

*****E3********** * ADD CURRENT il
ii- ACTIVITY TO *
* ACTIVITY SUM *
iI- IN BVA AND
.. WABP OR WA *

I
v .*. I

F3 * • *****F4********** • * IS *. * * .* OPERAND *. YES DOWNGRADE
*. IN LOGICAL • *-----> * EMIN VALUE

. .
•• OPERATION.* * FOR OPERAND i!-

. . *
* •• *

• NO

I
v .*.

G3 *. *****G4**********
.* IS *. * ENTER J *

~*:* OP~~~~~ 1 *:*~>: O~~~~~DOiN I *.PROCESSED.*" WJ ENTRY
.. * FOR OPERAND *

I · .. ····:1:·······

*****H2********** H4 *.
BKPAS 18A2 .* *.
--*-*-*-*-*-*-* YES.* LOCAL *.

PERFORM *<-----------------*. TABLES .*
LOCAL * *. FULL .*

* ASSIGNMENT * *. .* ':i': I

106

*****J3********** J4 *. I
BKPAS 18A2 .* * ~
--*-*-*-*-*-*-* YES.* END - •• NO
* PERFORM *<-------*. OF .*
* LOCAL * *. BLOCK .* * ASSIGNMENT * *..*
***************** * •• * I .

v

*16 *
* G2*
• *
* TO REGAS

(

(

(.,

,/

Chart 18. Local Assignment (BKPAS)

FROM FWDPAS
* ... **
*18 * * A2*

* * *****A2*****"****
* * SET POINTER *

~>: TE~~ ~~~~y :
* IN BLOCK
* * ********.*.****.*

I
v .*.

82 * •
• * ALL. -.

YES .* TEXT EN- *.
r-------*- TRIES PRO- _*<--,
v *. CESSED .*

.**** *..*
*17 ... * •• *
**~;. *, NO

TO FWOPAS

V
··***C2*******···
... OBTAIN NEXT ...
... OPERAND ...

>* (ORDER 1 S *<--,
... 2.3.1) ...

* *** •••••• *** •••••

I
v .*. 02 *. *****03**.*.*.** • • * IS *. • * OPERAND 1 *. NO ... OBTAIN

. BEING .------->* ASSOCIATED ...
-.PROCESSED.- ... WJ ENTRY ...

. .
*. ••

jYES

V ·····E2*········· * e * OBTAIN ...
... ASSOCIATED

WJ ENTRY

* * * ••• *************
,
v .*.

F2 *.
.* -.

YES .* *.
<-*. VAL.UE = 0 .*

. .
. .

* •• -

ro

y

·····G2*·**······ ... USE VALUE ...
... OF J IN WJ ...

TO OBTAIN ...
eVRA ENTRY

... FOR OPERAND ...

.*** ••••• *****.*.

I
y

*****H2····****·* ... PUT VAUE IN ...
... eVRA INTO
... OPERAND REG-
... ISTER FIELD ...
... OF TEXT ENTRY ... -"-"r---
L****J2.~*.* ••• **

* SET eVRA *
* ENTRY TO O. *

FREE REGISTER *
* IN RUSE *
* TABLE *
*******.**_.**** ..

, I
v NO .e. .*.

E3 *. E_ *. *****ES**********
.* *. .* *. * ..

.* *. YES .* IS THIS *. YES • OBTAIN NEXT ..
... VALUE = 0 ------->*. OPERAND ------->* (PRIOR) *

. . *. 3.* * TEXT ITEM
.. *..* * *

. . *. .* ***************** ro ~
y

*****F3**********
* * * OBTAIN
• ASSOCIATED *
* BVRA ENTRY *

* **.************ .. *

I
y .*. G3 *.

.* *.
.* *. NO

•• VALue = 0
. . *. .* *. .* rES

v .*.
H3 *.

•• ANY *.
NO .* REGISTER *.

FREE IN .*
. RUSE .

. . *. .*

rES
Y I

.*J3*.***** *****J4**********

:~~Ti~ :~~~ (~1:: v : I~N~~:A(~1UiN :
.. ENTER MCOORD *------->* TEXT ENTRY *
* VALUE IN RUSE" * FIELD FOR *
* * * OPERAND *
..** ... ********.**.. ..***************

L .. _~J * MODIFY TEXT. *
* BVRA. AND *

>* RUSE TO *
* FREE A *

REGISTER *
***** •• **** .. *****

Section 2: Discussion of Major Components 107

Chart 19. Global Assignment (GLOBAS>

FROM REGAS **
*19 * ... ,,2-

... ... *****A2*********-... * COMBINE ...

L->: ~:B~~g ~~=p
... LOOP

• * *****************

1
*****S2******-·*... INCORPORATE ...

RA FROM *
INNER LOOP ...

... INTO RAL

• * ************.****

I
v

.* • •• *.*Cl.*******.* C2 *.
... RESERVE 000-
... EVEN ... YES.* INERT *.
... REGISTER *<-------*. VARIABLE .*
... PAIR'" *. IN .*
... ... ·.LOOP .* .***............. *. .*

I ro

v .* •
• ****01 ••••••• **. 02 *. *****03*********-
... ASSIGN TO* MATH *. -CONSIDER INTE- *
... COMPARAND'" .* FUNCTION *. YES ... GER VARIABL.ES ...
... AND INCREMENT • >*_ REFERRED TO .*------->* _ITH EMIN 5 ...
... OF INERT'" *. IN LOOP .* A'" AND FREE GEN- ...
... VARIABLE'" *..* *ERAL REGISTERS ... _ _-_... 'T:" ····_·r--·

108

v v
* •••• E2 ••• *.*.... *****e3* •••• **** •
... CONSIDER REAL'" ... FINO ELIGIBLE *
:~~~~A~Li~D W~~~E: : (~~~;'L~I:~!H :<
*FLOATING POINT * * EST ACTIVITY * l * REGISTERS _.. *
***************** *****************

I I
v V

*****F2*******-** .****F3**********
• FIND ELIGIBLE * • ASSIGN FREE * * VARIABLE WITH * * REGISTER BY

>* (NEXT) HIGH- * * UPDATING
.. EST ACT I VI TV .. * RAL AND RUSE
.. * * ENTRIES ..

.. · .. ···1····· .. · ···· .. ··1··· .. · ..

v .*.
*****G2********** G3 *.
.. ASSIGN FREE * .* ANY *.
- REGISTER BY * .* MORE REG- 4. YES
.. UPDATING. *.ISTERS + ELI- •
.. RAL AND RUSE *.GIBLE VAR.* * ENTRIES * -IABLES.* *n*n**i*·"··" *·*·~o

v I .*. V
H2 *. ****-H3**********

.* ANY *. .. PASS GLOBAL *
YES .* MORE REG- *. NO * TABLES AND *

.ISTERS + ELt-. RUSE TABLE
*.GIBLE VAR.. * TO CONTROL

-tABLES.* * ROUTINE * *.*.* *ur .. •
v

***** *16 * * E3·
* * .
TO

REGAS

..

«

("
, '

Chart 20. Text Updating (STXTR)

FROM REGAS
*20 ...
... 82·

* * *
I
V

·*···S2*******·*
... INITALIZE ...

POINTER TO
FIRST TEXT

ENTRY IN ...
... BLOCK ... ••• * •••••••••••••

1
v .*.

C2 *. *.*. .* *.* END *. YES
... C2 *->*. OF .*---,
...... BLOCK v *.*. *..* .*.*. * •• * *16 ...

1 NO ~~
TO REGAS

V

····.02*·***···*-* * *
* *
*

SET UP
WORK
AREAS

** ••• * ••• *****.*.

I
V

····*E2*···***··· ... SET POINTER ...
TO PROCESS ...
OPERANDS IN ...
ORDER 2,3,1 ...

* * ****** ••• ********

1
v .*. .*. .*. F2 *. F3 *. F4 *. • •••• FS ••••••••••

• * HAS *. .* IS *. .* *. ... ALLOCATE ...
• *A REGISTER *. NO .* OPERAND *. YES .* IS THIS *. YES ... STORAGE TO ...

r--------------->*.SEEN ASSIGNEO.*------->*. A TEMPO- ••• ------~>*. OPERAND 1 .*------->* THE TEMP- ...
-TO THE OP-.* *. RARY .* *. .* ... QRARY

-.ERANO.- *..* *..*
* •• * * •• * * •• * .****** •••• * •••• * i YES * NO ro

v v
*****G2********** .****G4*********-
...... ... FREE THE ...
... PROCESS ... STORAGE

REGISTER < ALLOCATED
... NUMBER TO THIS
... TEMPORARY
***************** *****************

I
v .*. V

*****Hl********** H2 *. *****H3*********.* *. ... ESTABLISH ...
EXAMINE'" NO.* ALL *. THE BASE ...

... THE NEXT *<-------*. OPERANDS .*<-------* REGISTER *<:--------------------------------------~

... OPERAND'" -.EXAMINED .* ... FIELD ...
... *..*

***************** *. .* ***************** rES
v

*****J2**********
* * ... PROCEED ...
... TO NEXT TEXT ...
... ENTRY

* *****************

I
v

**** * * ... C2 ...

* * ****

section 2: Discussion of Major Components 109

Table 10. criteria for Text Optimization
r------------------~---------------------T----------------------T----------------------,
I Process I Basic I Primary I Secondary I
~------------------t----------------------t----------------------t----------------------~ I Common Isubscript,. arithmetic IMatching operand 2, IMatching operand 2. I
I Expression lor logical operator; loperand 3, and loperand 3,. and I
I Elimination Ibinary operator I operator loperator with I
I (XPELIM) I I I no intervening I
I I I I redef ini tions I
~------------------t----------------------t----------------------t----------------------i
I Forward IArithmetic or logical IOperand 1 unused IOperand 1. operand 2, I
I Movement I operator lin the loop loperand 3 undefined I
I (FORMOV) I I I below the text item I
~-----------------t----------------------t----------------------t----------------------i I Backward IArithmetic or logical IOperand 2 and IOperand 1 not busy I
I Movement I operator loperand 3 undefined Ion exit from target; I
I (BACMOV) I lin the loop loperand 1 undefined I
I I I lelsewhere in the loop I
~------------------t----------------------t----------------------t----------------------i I Strength IAdditive operator; I Interaction of inert IFunction of absolute I
I Reduction linert variable Ivariable with additivelconstants or stored I
I (REDUCE) I lor multiplicative I constants I
I I I operator I I
~-----------------t----------------------t----------------------t----------------------i I Constant IAdditive or multipli- IInteraction of addi- IFunction of absolute I
I Expression lcative operator; Itive or multiplicative I constants or stored I
I Reordering Iconstant operand loperator with I constants I
I (AGGLUT) I I another I I L __________________ i-_____________________ ~ ______________________ ~ ______________________ J

c
110

(-

(~/

Table 11. Phase 20 Subroutine Directory
r----------T--,
I Subroutine I Function I
~----------+--~

ACCEPT Performs final acceptance test on variables which are candidates for local

AGGLUT

ALLCOR

BACMOV

BAKT

BASVAR

BIZX

BKDMP

BKP

BKPAS

BLK

BLS

BLSDTA

BSTRIP

BSYONX

CNT

CXIMAG

DISCHK

FCLT50

FOLLOW

FORMOV

FREE

FwDPAS

FWDPSl

FWP

GLOBAS

GLOBSl

GLS

register assignment.

Controls constant expression reordering.

Allocates main storage to temporaries when necessary during text updating.

Controls backward movement.

Computes the loop number of each module block.

Assigns eminence value.s to base variables., and sets up composite MVF and
MVS matrixes.

Computes the proper MVX setting for each variable in each block of the
module.

printing routine for full register assignment.

Common block for local register assignment.

Controls local register assignment.

Common block for structural determination routines.

Computes the total size of each block in the module.

Block data for branching optimization.

Block data for branching optimization.

Identifies forward target (if any) of a loop and sets up composite MVX
matrix.

Block data area for phase 20.

Processes imaginary parts of complex functions during local register
assignment.

Performs a displacement check on a subscript text items during local
register assignment.

Performs special checks on text items· whose function codes are less than
50.

Determines if interfering block causes redefinition of a variable.

Controls forward movement.

Releases busy registers during overflow conditions (local assignment).

Table-building routine for full register assignment.

Determines if text operands are register candidates prior to local
register assignment .•

Common block for local register assignment.

Assigns most active variables to registers across the loop.

Provides (if necessary) loads and stores for variables globally assigned
outside the loop.

Common block for global assignment.

Section 2: Discussion of Major Components 111

GROUPA

GROUPB

GROUPC

GTBASE

HI LOWS

INDTRY

INERT

INVERT

LOC

LPSEL

LYT

MBRAN

MRCLEN

NORMIZ

NPRFUN

OPT

PERTRY

PRELUD

PROPl

REDUCE

REG

REGAS

RELCOR

SEARCH

SEG4

SETREG

SETUP

SHARE

SPLRA

SRPRIZ

SSTAT

STDMP

112

Performs reordering of type 5 with type 5 entries.

Performs reordering of type 6 with type 5 entries.

Performs reordering of type 6 with type 6 entries.

Gets a base register for operands of text items during text updating.

Determines if an even-odd register pair is available for indexing.

Determines if an inert variable is valid for the entire loop.

Produces new inert text entries for strength reduction.

Gets text pointers in a backward direction.

Block data for register assignment.

Controls sequencing of loops and passes control to text optimization and
register assignment routines.

Determines which module blocks can be reached via RX branch instructions.

Controls alternation of the compare and test entry for strength reduction.

Performs special checks on text items whose function codes are greater
than 55.

Builds type tables for use by strength reduction and constant reordering.

Controls phase 20 printing.

Common'block for phase 20.

Performs compile-time mode conversions.

Determines if block under consideration has a branch which transfers out
of the loop.

Processes operand 1 of text item being processed by local register
assignment.

Controls strength reduction.

Common block for register assignment.

Controls full register assignment.

Releases temporary main storage so it can be reused.

Provides register loads upon entering the module.

Computes size of prologues" epilogues. and entry code.

Updates text items to reflect global register assignments.

Performs initialization for each text item during local assignment.

Determines if the register assigned to operand 2 or 3 can be assigned to
operand 1 during local register assignment.

Assigns registers during basic register assignment.

Prints a flowchart indicating the structure of the module.

Sets status information for operands and base addresses of text entries.

Printing routine for basic register assignment.

..

o

c

STX

(STXTR

SUB TRY

TAGLOC

TARGET

TOPO

TRNSFM

TYPLOC

XCHANG

XPELIM

XPELOC

XPLACE

XSCAN

YCHANG

YPLACE

ZCHANG

Common block for text updating.

Controls text updating.

Checks conditions for elimination during backward movement.

Determines new operators for constant expression reordering.

Identifies the members of a loop and its back target .•

Computes the immediate back dominator of each block in the module.

Performs special checks on text items whose function codes are in the
range of 50 to 55 inclusive.

Locates interactions of text entries for constant expression reordering.

Determines stored constants for common expression elimination.

Controls common expression elimination.

Locates common text entries in a local block during common expression
elimination.

Performs manipulations for common expression elimination.

Performs local block scan for common expression elimination.

Determines stored constants for backward movement.

Performs manipulations for backward movement.

Determines stored constants for forward movement.

(ZPLACE Performs manipulations for forward movement. L __________ ~ ___ _

(

Section 2: Discussion of Major Components 113

Table 12. Phase 20 Utility Subroutines
r----------T--, I Subroutine I Function I
~---------+--i

CIRCLE

CLASIF

DELTEX

FILTEX

GETDIC

GETDIK

GETSPC

KORAN

LORAN

MOD FIX

MOV

MOVTEX

MOZ

OBTAIN

PARFIX

PERFOR

SUBACT

SUBSUM

WRITEX

YSCAN

Examines composite vectors, or each local vector if necessary.

Classifies operands of the current text entry.

Deletes the current text entry by rechaining.

Fills text space according to the arguments.

Gets space for temporary cells.

Gets space for constants.

Gets space for new text item.

Performs bit manipulation for text optimization.

Updates composite MVS and MVF matrixes.

Adjusts text entry for possible mode change.

Common block for text optimization.

Moves text entries by rechaining, and updates MVS and MVF vectors.

Common block for text optimization.

Obtains next local block for processing.

Changes parameter list to correspond to text replacements.

Performs combination of constants at compile time.

Performs replacement of operands with equivalent values.

Replaces, if possible. operand values with equivalent values.

Printing routine for text optimization.

Performs local block scan for backward movement.

ZSCAN Performs local block scan for forward movement. L __________ ~ __ J

114

tI ~,
~J

(

(

(

Chart 21. Phase 25 (Initial Text Info Const)

••• .. At-· ... ••• .. •• .. FROM ..
FSO ..

* ************ •••

I
SEE TABLE 13 FOR A BRIEF
DESCRIPTION OF THE SUB
ROUTINES OF PHASE 25.

••••••••••••• j ••
v .*.

Bl *. • •• **82*****.**** •• ***83*********-
.* *. .. NADOUT" .. OATOUT ..

•• BLOCK DATA *. YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
. SUBPROGRAM .------->* PROCESS *------->* PROCESS ..

. . .. ADCON" .. DATA
. . TABLE"" STATEMENTS ..

. . *********.******* ***** •••• *.*.*.**

I~ I
v V

** •• *Cl********** *****C2********** .****C3 •• *******-
.. LYTI END ..
--*-*-*-*-*-*-* .ENTER CONSTANTS- *-*-*-*-*-*-*-*-*
.. RESERVE *------->* INTO TEXT" .. COMPLETE ..
.. ADDRESS" .. INFORMATION PROCESSING

CONSTANTS OF MGOULE ..
**** ••• ****.**.*. ***.*.*.****.*.*. *.**********.****

I
V

*****02**********
* * -RESERVE STORAGE*
* FOR VARIABLES * * AND ARRAVS *

I
v .*.

V
****03********·

* TO * * FSD
*

E2 *. *****E3**********
.* *. * NLtST *

.* ANY *. YES *-*-*-*-*-*-*-*-*
. NAMELIST .------->* BUILD

. TEXT. * NAMELIST
.. * DICTIONARIES *

*·i:~O ********j********

v .*.
F2 *. *****F3**********

.* *. * FORMAT *
.* ANY *. YES *-*-*-*-*-*-*-*-*

. FORMAT .------->* TRANSLATE
. TEXT. * FORMAT *
.. * TEXT *

* •• * ***************** ro I
v .*.

NOTE-SUBROUTINE INITIL
CONTROLS THE CONSTRUCTION
OF TEXT INFORMATION DOWN
TO. BUT NOT INCLUDING,
THE CONVERSION OF TEXT.
INITIL]S CONTAINED WITH
IN THE DOTTED LINES.

*****F5**********
* NADOUT *
--*-*-*-*-*-*-*

* ADCON * * TABLE *
***************** 1

<--->* PROCESS *

G2 *. *****G3********** *****G5**********
.* *. * SUBR * * PROLOG *

.*SUBPROGRAM *. YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
. BEING .------->* GENERATE SUB- *<--------------------------> <--->* GENERATE *

.COMPILED . * PROGRAM MAIN * I ** PROLOGUE **
.. * ENTRY CODING *

*'i'~O ********j******** I *****************

I v I v .*.
*****H2********** H3 *. *****H5**********
* ATTACH * .* *. I * EPILOG *
--*-*-*-*-*-*-* .* ANY *. NO *-*-*-*-*-*-*-*-*
* GENERATE *------->*.PHASE 15 DATA.*, <--->* GENERATE *
* MAIN PROGRAM * *. TEXT .* * EPILOGUE *
"* ENTRY COOING * "*..*
***************** * •• * V

A ... YES .****
I *22 * I **:!*
v

*****.13**********
* DATOUT *
--*-*-*-*-*-*-*

PROCESS *~

: ~:~; * I
***************** v

*22 *
* AI-
* *
*

~······································v··············
*****K2**********
* NADOUT *
--*-*-*-*-*-*-* * PROCESS * AOCQN ...
* TABLE "*
*"****************

Section 2:

TO PHASE 25
TEXT CONYERS ION
(SUBROUTINE MAINGN)

Discussion of Major Components 115

Chart 22. Phase 25 (Text Conversion)

*22 *
* Al*
* * * ·1······················· ., : ~g=~gg~~ NiE:~INGN

CONVERSION. IT

U6

V IS CONTAINED IN
*****AI********** THE DOTTED LINES
* * GET FIRST *

(NEXT) TEXT
ENTRY *

* *****************

I
v .*.

*****A4********** * RETURN *
--*-*-*-*-*-*-*

<->* GENERATE *
* BRANCH TO *
* EPILOGUE *

81 *. *****82********** *****64********** .* ENTRY *. * TENTXT * * JOSUe *
.-RETURN, 1/0*. YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*

-END, SYATEMENT.*------->* DETERMINE *<:--------------------------> <--->* GENERATE
. NUMBER . * TYPE OF * * CALL TO *
.. * TEXT ENTRY * * IHCFCOMH *

. . ***************** *****************

*1 NO L * **** *
>* Al *
* * v .*.

Cl *. *****C2********** *****C3**********
.* *. * FNCALL * * CALLER *

.* *. YES *-*-*-*-*-*-*-*-*. *-*-*-*-*-*-*-*-* *. CALL ------->*IF TO FUNCTION.*<----->* GENERATE *
. . * GENERATE CODE * * CALLING *..* -TO STORE RESUL T* * SEQUENCE *

. . ********.******** *****************

*1 NO L * **** *
>* Al *
* *

v **** .*.

*****C4********** * LABEL *
--*-*-*-*-*-*-*

<->* LOCATION * * COUNT TO * AOCDN ENTRY *

RETURN

I/O STATEMENT
OR
END I/O LIST

STATEMENT

NUMBER

Dl *. *****02*********. *****03*********-.* *. * LSTGEN * * IOSUB *
*****04********** ENTRY *****OS**********
* ENTRY * * PROLOG *

.* I/O -. YES *-*-*-*-*-*-*-*-*. *-*-*-*-*-*-*-*-*
. LIST ••• -------:> GENERATE CODE *<------->* GENERATE *

. ITEM. * TO LOAD BASE * * CALL TO *
.. * OF LIST ITEM * * IHCFCOMH *

. . ***************** *****************

*1 NO L * **** *
>* Al *
* * ****

V
*****El**********
* * * SET UP

REGISTER *
* ARRAY *
* * *****************

I
V

*****Fl**********
* * * *

SELECT
BIT

STRIP
*
* *
* *****************

I
V

*****GI********** * MODIFY *
* STRIP FOR

BASE LOADS
AND STORE *

*

********i:~*-*-*-**-*-*-----------------,
v .*.

HI * • • * FIRST * •
• *(NEXT) BIT *. NO

. OF StRIP ., *. ON .*
. .

. .

i YES NO

V .*.
*****Jl********** J2 *. * * .* END *.
--*-*-*-*-*-*-* v .* OF *.

GENERATE *------->*. BIT .*
* INSTRUCTION * *. STRIP .*
* MATCHING BIT * *..*
***************** *. .*

PERFORMED BY
APPROPRIATE
CODE GENERATION
SUBROUTINE (SEE
TABLE 13)

* YES

I
v

* * * Al *
* *

<--~ :-*-:E~E::;:;E*-*-:<----->:-*-:E~E::;:;E*-*-:
* SECONDARY * * PROLOGUE *
* ENTRY CODING * * *
***************** *****************

END

*****F4**********
* END '*
--*-*-*-*-*-,*-*

>* COMPLETE
* PROCESSING *
* OF MODULE *

V
****G4*********

* TO * FSD

f
V

*****ES**********
* EPILOG *
--*-*-*-*-*-*-*
* GENERATE *
* EPILOGUE
* * *****************

o

c

(

(

Table 13. Phase 25 Subroutine Directory
r----------T--,
I Subroutine I Function I
~----------+--~

ABSGEN1 Generates instructions for ABS, lABS, and DABS in-line functions.

ADMDGN1

ATTACH

BDATA

BITNFp1

BRANCH1

BRCOMB1

BRCOMp1

BRLGL1

BTBF1

BXHCOM

CALLER

CGNDTA

CMPLGN1

DATOUT

DBLGEN1

DCLIST

DIMGEN1

DIVGEN1

END

ENTRY

EPILOG

FAZ25

FLTGEN1

FNCALL

FORMAT

GOTOKK

IEKTLOAD

IEKWAG1

Generates instructions for the AMOD and DMOD in-line functions.

Generates main program entry coding.

Initializes the masks and flags used by phase 25.

Generates instructions for the BITON, BITOFF. and BITFLP in-line func
tions.

Generates the instructions for all unconditional branching.

Generates instructions for computed GO TO operations.

Generates instructions for assigned GO TO operations.

Generates instructions for text entries whose operator is a relational
operator operating upon two operands or one operand and zero.

Generates instructions for branch true and branch false operations.

Common data area used by phase 25.

Generates calling sequences for CALLs (other than those to IHCFCOMH) and
function references.

Initializes the arrays used during code generation.

Generates instructions for the COMPL and LCOMPL in-line functions.

Processes phase 15 data text by entering into text information the initial
data values at the appropriate variable locations.

Generates instructions for the DBLE in-line function.

Produces a listing of the address constants of the object module.

Generates instructions for the DIM and IDIM in-line functions.

Generates instructions for all half- and full-word integer division.

Completes the processing of the object module.

Generates subprogram secondary entry coding.

Generates the epilogues associated with a subprogram and its secondary
entry points (if any).

Cornmon data area used by phase 25.

Generates instructions for the FLOAT and DFLOAT in-line functions.

Generates the instructions to store the result returned by a function
subprogram.

Translates FORMAT statements to a form acceptable to IHCFCOMH.

Used by subroutine MAINGN to branch to the code generation subroutines.

Builds ESD, TXT, RLD, and loader END records.

Generates the instructions to implement the ASSIGN statement.

Section 2: Discussion of Major Components 117

INITIA

INITIL

INTMPY1.

IOSUB/
IOSUB2

LABEL

LBITTF1.

LDADDR1.

LDBGEN1.

LGLNOT1.

LISTER

LYTl

MAINGN/
MANGN2

MINUS1.

MOD241.

MXMNGN1.

NADOUT

NDORGN1.

NLIST

NTFXGN1.

PACKER

PLSGEN1.

PROLOG

RETURN

SHFT21.

SHFTRL1.

SIGNGN1.

STOPPR1.

STRGEN1.

SUBGEN1.

118

Interface between FSD and subroutine INITIL.

Controls the construction of that portion of text information down to but
not including text conversion.

Generates instructions for all half- and full-word integer division.

Generate calling sequences for calls to IHCFCOMH.

Processes statement numbers by entering the current value of the location
counter into the address constant reserved for the statement number.

Generates the instructions for the TBIT in-line function.

Generates the instructions for all load address operations.

Generates the instructions for all load byte operations.

Generates the instructions for logical NOT operations.

Produces a listing of the final compiler generated instructions.

Reserves address constants for statement numbers.

Control the text conversion process of Phase 25.

Generates the instructions for all subtraction operations.

Generates the instructions for the MOD24 in-line function.

Generates the instructions for the MAX2 and MIN2 in-line functions.

Enters the address constants developed during the compilation into text
information.

Generates the instructions for the AND and OR in-line functions.

Builds the object-time name list dictionaries.

Generates the instructions for the INT. IDINT. IFIX. and HFIX in-line
functions .•

Packs the various parts of each instruction produced during code genera
tion into a TXT record.

Generates the instructions for all addition operations and for real
multiplication and division operations .•

Generates prologues for subprograms and secondary entry points (if any) .•

Processes the RETURN statement by generating a branch to the epilogue.

Generates the instructions for all right- and left-shift operations.

Generates the instructions for the SHFTR and SHFTL in-line functions.

Generates the instructions for the SIGN, ISIGN, and DSIGN in-line
functions.

Generates character strings in calls to IHCFCOMH for STOP and PAUSE
statements.

Generates the instructions for all store operations.

Generates the instructions for subscript text entries.

C· , ,/

..

(

I SUBR
I
I TENTXT
I
I
I TSTSET1
I
I
I

Generates subprogram main entry coding.

Controls the processing of END. RETURN, I/O,
statement numbers. and end of I/O list indicators.

and ENTRY statements,

Generates the instructions to (1) compare two operands across a relational
operator, and (2) set operand 1 to either true or false depending upon the
outcome of the comparison.

I UNRGEN1 I Generates the instructions for unary minus operations (e.g., A=-B). I
~----------~--i
I 1Code generation subroutine. I L ___ J

Section 2: Discussion of Major Components 119

Chart 23. Phase 30 (IEKP30) Overall Logic

****A3*********
.. FROM *

FSO

*****-.********

I
V

*****83**********

* *
* *

INITIALIZE

************-****

I
V

*****C3**********
.OBTAIN MAXIMUM ..
... ENTRIES AND *
*ACTUAL ENTRIES * * FROM COMMON ..

* * *****************

I
v .*.

SEE TABL.E 14
FOR A BRIEF

DESCRIPTION OF
EACH SUBROUTINE

OF PHASE 30.

03 *. *****04*********-
.*ACTUAL *. .. SET UP ERROR ..

• *NO. GREATER*. YES .. MESSAGE *
. THAN THAT ••• -------> ANO *----------------,

. ALLOWED . * LENGTH ...
..

. . *****************

: *::* !-> *1 NO

* * **** V
*****E3**********
* * .. OBTAIN FIRST
* (NEXT) ERROR
* TABLE ENTRY ...

* * *****************

I
v

* * * F5 *->
* *

.*. V
F3 *. *****F4*********. *****F5**********

.*MESSAGE-. .. SET UP * ... MSGWRT *
... NUMBER ... NO * ADDRESS * *-*-*-*-*-*-*-*-*

.L/T 1000 AND .------->* FOR ERROR •• -------:>* WRITE *
. G/T 0 . * MESSAGE * ERROR •

. . * * MESSAGE *
. . ********.******** ***************** j YES 1

v .*.
*****G3********** G5 *. * OBTAIN * .* LAST *.

ERROR LEVEL * NO.* ERROR *.
CODE FROM r*. TABLE .*

GRAVERR *. ENTRY .*
* TABLE * *. .*
***************** v * •• *

I
:*::*: *1 YES

V .*. V

H3 *. *****H4********** *****H5**********
.* ERROR *. * SAVE * * PASS SAVED ...

• *LEVEL CODE *. YES * ERROR * ERROR *
.G/T PREVIOUS ••• -------> LEVEL * LEVEL *

. ONES. * CODE'" CODE *
. . *

* •• *

j<NO

v
*****J3********** * GET ... * ASSOCIATED ... * MESSAGE ...
* POINTER TABLE *
* ENTRY *

I
V

*****K3**********
* * BUILD ...
* * LIST ...

PARAMETER n
* * ***************** v

120

* * * F5 *
* * ****

I
**********.-*****

V
****J5*********

* TO * FSO

o

..

Table 14. Phase 30 Subroutine Directory
r----------T--,
I Subroutine I Function I
~----------+--i
I IEKP30 I Controls phase 30 processing. I
I I I
I MSGWRT I Writes the error messages using the FSD. I l __________ ~ __ J

(

Section 2: Discussion of Major Components 121

APPENDIX A: TABLES

This appendix contains text and figures
that describe and illustrate the major
tables used and/or generated by the FORTRAN
System Director and the compiler phases.
The tables are discussed in the order in
which they are generated or first used. In
addition, table modifications resulting
from the compilation process are explained,
where appropriate, after the initial for
mats of the tables have been explained.

COMMUNICATION TABLE (NPTR)

The communication table (referred to as
the NPTR table in the program listing)., as
a portion of the FORTRAN System Director,
resides in main storage throughout the
compilation. It is a central gathering

122

area used to communicate necessary informa
tion among the various phases of the com
piler.

Various fields in the communication
table are examined by the phases of the
compiler.. The status of these f.ields det
ermines:

• Options specified by the source pro
grammer .•

• Specific action to be taken by a phase.

If
option
is not
null,
action
trates
cation

the field in question is null, the
has not been specified or the action
to be taken. If the field is not
the option has been specified or the
is to be taken. Table 15 illus-
the organization of the communi

table.

..

c

(
Table IS. Communication Table (NPTR(2,3S»
r--T--------------T-----------------------,
I 11 IPointer to I-character I
I I Isymbol chain I
~+--------------+-----------------------i
I 21Previous IPointer to 2-character I
I IClassificationlsymbol chain I
I I code (phase I I
I 110) I I
~--+--------------+-----------------------i
I 31 0ptions (e.g., 1 Pointer to 3-character I
I ISOURCE. MAP) Isymbol chain I
r--+--------------+-----------------------i
I 41 IPointer to 4-characterl
1 I Isymbol chain 1
~--+--------------+-----------------------i
1 SIOisplacement IPointer to S-character 1
I Ifor temporary Isymbol chain 1
I I (phase 20) I I
~--+--------------+-----------------------i
I 61Maximum line IPointer to 6-character I
I I count Isymbol chain I
r--+--------------+-----------------------i
I 71 Reserved I Reserved I
~--+--------------+-----------------------i
I 81Type of text I Reserved I
I I (phase 10) I I
~--+--------------+-----------------------i
I 91 pointer to IPointer to last avail- I
I Inext availablelable phase 10 text I
I Iphase 10 text lentry I
I I entry I I
~--+--------------~-----------------------i
1101 Name of routine I
I I (subprogram/main program) I
~--+--------------T-----------------------i
IIIIPhase switch ITrace switch I
~~-+--------------+-----------------------i
1121Last error I I
I Itable entry I I
~--+--------------+-----------------------i
113 IGETCO"ENO" I I
I I card indicator I I
~--+--------------+-----------------------i
1141 Pointer to IPointer to 4-byte I
I 1 parameters Iconstant chain I
~--+--------------+-----------------------i
11SIAddr. const. IPointer to 8-byte con- 1
1 lentry number Istant chain I
~--+--------------+-----------------------i
1161page count IPointer to 16-byte con-I
1 1 Istant chain I
~--+--------------+-----------------------i
1171current line IPointer to statement I
I I count Inumber chain 1
~--+--------------+----------------.-------i
lIS I Reserved 11,34 copied here byl
I I Iphase 20 1
~--+--------------+-----------------------i
119 I Reserved 12,34 copied here byl
I 1 Iphase 20 I
~--+--------------+-----------------------i
120 I Reserved I Reserved I
,~--+--------------+-----------------------i
1 21 1 Reserved 1 Pointer to common I
I I laddress constants I
~--+--------------+-----------------------i

(-.

./

1221Pointer to INext available error I

1 dictionary Itable entry
lentry for I

I IIBCOM I I
~--+--------------+-----------------------i
1231External func-IPointer to end of I
1 Ition or CALL Istatement number chain I
I I indicator I I
~--+--------------+-----------------------i
1241pointer to in-IOptimization switch I
1 Iline function I I
I I storage I I
l--+--------------+-----------------------i
12S1 IPointer to common chain I
~--+--------------+-----------------------i
I 26 I Reserved I Pointer to equivalence I
I I I chain I
l--+--------------+-----------------------i
I 27 I Pointer to IPointer to data text I
I Iliteral con- I chain I
I Istant chain I I
~--+--------------+-----------------------i
1281Instruction IPointer to normal text I
I I count I chain I
l--+--------------+-----------------------i
1291Pointer to IPointer to next avail- I
I Ibranch table table information table I
I I chain I entry I
l--+--------------+-----------------------i
130lBLOCK OATA IPointer to end of I
I I subprogram linformation table I
I I switch I I
l--+--------------+-----------------------i
I 31 I FUNCTION SUB- ISUBROUTINE SUBPROGRAM I
I IPROGRAM switchlswitch I
~--+--------------+-----------------------i
1321Pointer to IPointer to format text I
I \namelist text Ichain I
I I chain I \
.--+--------------+-----------------------i
1331Size of con- ISize of variables I
I Istants I I
.--+--------------+-----------------------i
1341Adcon table IAdcon entry number I
I I number I I
.--+--------------+-----------------------i
13Slsize of common\Delete/error switch \ L __ ~ ______________ ~ _______________________ J

CLASSIFICATION TABLES

Classifying, a function of the prepara
tory subroutine (GETCO) of phase 10,
involves the assignment of a code to each
type of source statement. This code indi
cates to the OSPTCH subroutine which sub
routine (either keyword or arithemtic) is
to continue the processing of that soUrce
statement. The following paragraph des
cribes the processing that occurs during
classifying. The tables used in the
classifying process are the keyword pointer
table and the keyword table. They are
illustrated in Tables 16 and 17, respec
tively.

Appendix A: Tables 123

If the source statement has not been
signaled as arithmetic during source state
ment packing (see note). the classifying
process determines the type of the source
statement by comparing the first character
of the packed source statement with each
cfiaracter in the keyword pointer table. If
that first character corresponds to the
initial character of any keyword" the key
word pointer table is then used to obtain a
pointer to a location in the keyword table.
This location is the first entry in the
keyword table for the group of keywords
beginning with the matched character. All
characters of the source statement, up to
the first delimiter, are then compared with

'that group of keywords. If a match
results, the classification code associated
with the matched entry is assigned to the
source statement. If a match does not
result, or if the first character of the
source statement does not correspond to the
first character of any of the keywords, the
source statement is classified as an inval
id statement.

Note: The packing process, which precedes
classifying" marks a source statement as
arithmetic if, in that statement, an equal
sign that is not bounded by parentheses is
encountered. If the source statement has
been marked as arithmetic" it is classified
accordingly by the classifying process.

124

Table 16. Keyword Pointer Table
r------------T-----------~---------------,
! Character ! Number1 I Displacement2 I
I (1 word) I (1 word) I (1 word) I
.------------+-----------+----------------~
I A 1 0
I
I B 2 8 ,

C 5 30

D 7 80

E 5 159

F 2 203

G 1 221

H o o

I 5 227

J o o

K o o

L 2, 271

M 1 297

N 2 303

o o o

P 3 321

Q o o

R 5 342

s 3 384

T 2 413

u o o

v o o

w 1

x o o
y o o

zoo
.------------~-----------~----------------~
11This field contains the number of key!
I words beginning with the associated I
I character. I
12This field contains the displacement I
I from the beginning of the key word table I
I for the group of key words associated!
I with character. I L ___ J

C,,': , ,

o

c

Table 11. Keyword Table
r---,
I Number of Characters I
I In Key Word Minus 1 Key Word Classification Code I
I (1 byte) (1 word/character) (1 byte) I
~---~

5 ASSIGN 1

8 BACKSPACE 2

8 BLOCKDATA 3

lq COMPLEXFUNCTION q

1 CONTINUE 5

6 COMPLEX 6

5 COMMON 1

3 CALL 8

22 DOUBLEPRECISIONFUNCTION 10

H DOUBLEPRECISION 11

8 DIMENSION lq

6 DISPLAY 15

q DEBUG 16

(3 DATA 11

1 DO 18

10 EQUIVALENCE 19

1 EXTERNAL 20

6 ENDFILE 21

q ENTRY 22

2 END 23

1 FUNCTION 2q

5 FORMAT 25

3 GOTO 21

lq INTEGERFUNCTION 28

1 IMPLICIT 29

6 INTEGER 30

1 IF (Arithmetic) 31

1 IF (Logical> 32

lq LOGICALFUNCTION 33

(~: 6 LOGICAL 34

3 MOVE 35

Appendix A: Tables 125

7 NAMELIST 36

5 NORMAL 37

4 PAUSE 38

4 PRINT 39

4 PUNCH 40

.11 REALFUNCTION 41

5 REWIND 42

5 RETURN 43

3 READ 44

3 REAL 45

9 SUBROUTINE 46

8 STRUCTURE 47

3 STOP 48

7 TRACEOFF 49

6 TRACEON 50

4 WRITE 51 L-___ _

INFORMATION TABLE

The information table (referr~d to as
NDICT or NDICTX) is constructed by Phase 10
and modified by subsequent phases. This
table contains entries that describe the
operands of the source module.. The infor
mation table consists of five components:
dictionary, statement number/array table,
common table, literal table, and branch
table.

INFORMATION TABLE CHAINS

The information table is arranged as a
number of chains. A chain is a group of
related entries., each of which contains a
pointer to another entry in the group.
Each chain is associated with a component
of the information table.

The information table can contain the
following chains:

• A maximum of nine dictionary chains:
one for each allowable FORTRAN variable
length (1 through 6 characters) and one
for each allowabLe FORT~~N constant
size (4, 8, or 16 bytes). Each dic
tionary chain for variables contains

126

entries that describe variables of the
same length. Each dictionary chain for
constants contains entries that des
cribe constants of the same size.

• One statement number/array chain for
entries that describe statement num
bers.

• Two common table chains: one for
entries describing common blocks and
their associated variables, and one for
entries describing equivalence groups
and their associated variables.

• One literal table chain for entries
that describe literal constants used as
arguments in CALL statements.

• One branch table chain composed of
entries for statement numbers appearing
in computed GO TO statements.

Entries describing the various operands
of the source module are developed by Phase
10 and placed into the inforroa~icr. table in
the order in which the operands are encoun
tered during the processing of the source
module. For this reason, a particular
chain's entries may be scattered throughout
the information table and entries describ
ing diffeLent types of operands may occupy
contiguous locations within the information
table. Figure 13 illustrates this concept.

C)
..>'

c

(

(

r----------------------------------,
~ I ;' I /

~ ({y / /
r---lT----T---1T~~~---lT--JTi---~~--~t-~t--~---_;,;
I I I I ISTMT/I ISTMT/I I I I I
IDICTICOMMIBRANIDICTIARRAYILITIARRAYICOMMILITIBRANIDICTI
11111112 I 1111212121213 I
;r~~---"--~L----:1"--"-----"f---L---L----'l---'

/ / J i / J / / / ~7~--------------~

Figure 13. Information Table Chains

CHAIN CONSTRUCTION

The construction of a chain requires (1)
initialization of the chain, and (2) poin
ter manipulation. Chain initialization is
a two step process:

1. The first entry of a particular type
(e.g. " an entry describing a variable
of length one) is placed into the
information table at the next availa
ble location.

2. A pointer to this first entry is
placed into the communication table
entry (refer to the section,
nConununication Table") reserved for
the chain of which this first entry is
a member.

subsequent entries are linked into the
chain via pointer manipulation, as des
cribed in the following paragraphs.

The conununication table entry containing
the pointer to the initial entry in the
chain is examined and the first entry in
the chain is obtained. The item that is to
be entered is compared to the initial
entry. If the two are equal, the item is
not reentered: if unequal, the first entry
in the chain is checked to see if it is
also the last. (An entry is the last in a
chain if its "chain" field is zero.>

If the chain entry under consideration
is the last in the chain, the new item is
entered into the information table at the
next available location, and a pointer to
its location is placed into the chain field
of the last chain entry. The new entry is
thereby linked into the chain and becomes
its last member.

If the entry under consideration is not
the last in the chain" the next entry is
obtained by using its chain field. The
item to be entered is compared to the entry

that was obtained. If the two are equal.
the item is not reentered: if unequal, the
entry under consideration is checked to see
if it is the last in the chain: etc.

This process is continued until a com
parable entry is found or the end of the
chain is found. If a comparable entry is
found, the item is not re-entered. If the
new item is not found in the chain, it is
then linked into the chain.

OPERATION OF INFORMATION TABLE CHAINS

The following
operation of the
information table.

paragraphs describe the
various chains in the

Dictionary Chain Operation

The operation of a dictionary chain is
based upon "binary tree" notation. This
notation provides two chains" high and low
(with a common starting point>, for the
entries describing variables of the same
length or constants of the same size. The
common starting point is the first entry
placed into the information table for a
variable of a particular length or a con
stant of a particular size. The following
example illustrates the manner in which
phase 10 employs the binary tree notation
to construct a dictionary chain.

Assume
appear in
presented.

D C

that
the

E F

the following variables
source module in the order

A B

Appendix A: Tables 127

--,-.-.--.- ... -.-~~---- ---~" ----------

When phase 10 encounters the variable D,
it constructs a dictionary entry for it
(refer to "Dictionary"), places this entry
at the next available location in the
information table, and records a pOinter to
that entry into the appropriate field of
the communication table (refer to
"Communication Table"). The entry for D is
the common starting point for the chain of
entries describing variables of length one.
(When a dictionary entry is placed into the
information tahle, both the high and low
chain fields of that entry are zero.)

When phase 10 ~ncounters the variable C,
it constructs a dictionary entry for it.
Phase 10 then obtains the dictionary entry
that i~ the common starting point and
compares C to the variable in that entry.
If the two are unequal, phase 10 determines
if the variable to be entered is greater
than or less than the variable in the
obtained entry. In this case, C is less
than D in the collating sequence, and,
therefore., phase 10 examines the low chain
field of the obtained entry, which is that
for D. This field is zero, and the end of
the chain has been reached. Phase 10
places the entry for C into the next
available location in the information table
and records a pointer to that entry in the
low chain field of the dictionary entry for
D.. The entry for C is thereby linked into
the chain.

When the variable E is encountered,
phase 10 carries out essentially the same
procedure: however., because E is greater
than D, phase 10 examines the high chain
field of the entry for D. It is zero,
which denotes the end of the chain. Phase
10 therefore places the dictionary entry
for E into the next available location in
the information table and records a pointer
to that entry in the high chain field of
the dictionary entry for D.

When the variable F is encountered,
phase 10 constructs a dictionary entry for
it and compares it to the variable in the
entry that is the common starting point for
the chain. Because E is greater than D,
phase 10 examines the high chain field of
the entry for D. This field is not zero
and, hence. the end of the chain haS not
yet been reached. Phase 10 obtains the
entry (for E) at the location pointed to by
the non-zero chain field (of the entry for
D) and compares F to the variable in the
obtained entry. The variable F is greater
than the variable E. Therefore, phase 10
examines the high chain field of the entry
for E. This field is zero and the end of
the chain has been reached. Phase 10
places the entry for F into the next
available location in the information table
and records a pointer to that entry in the
high chain field of the entry for E.

128

Phase 10 carries out similar procedures
to link the entries for the variables A and
B into the chain.

(If one of the comparisons made between
a variable to be entered into the dictiona
ry and a variable in an entry already in
the dictionary results in a match, the
variable has previously been entered and is
not reentered.)

Figure 14 illustrates the manner in
which the entries for the variables are
chained after the entry for B has been
linked into the chain.

r---,
I I
I~~ I

! ~"-- ~ -F /f't'B !
I ~ I
I I
~---i
INote: The pointers from the top of onel
Ivariable to the top of another variable I
Irepresent high chain pointers. The poin-I
Iters from the bottom of one variable tol
Ithe bottom of another variable represent I
Ilow chain pointers. I l ___ J

Figure 14. Dictionary Chain

Statement Number Chain Operation

The statement number chain constructed
by phase 10 is linear: that is, each
statement number entry (refer to "Statement
Number/Array Table") is pointed to by the
chain field of the previously constructed
statement number entry. The first state
ment number entry is pointed to by a
pointer in the communication table.

To construct the statement number chain,
phase 10 places the statement number entry
constructed for the first statement number
in the module into the next available
location in the information table. It
records a pointer to that entry in the
appropriate field of the communication
table. (When a statement number entry is
placed into the information table, its
chain field is zero.) Phase 10 links all
other statement number entries into the
chain by scanning the previously construct
ed statement number entries (in the order
in which they are chained) until the last
entry is found. The last entry is denoted
by a zero chain field. Phase 10 then
places the new entry at the next available
location in the information table and
records a pointer to that entry in the zero

c

(

(

(~

chain field of the last entry in the chain.
The new entry is thereby linked into the
chain and becomes its last member.
(Throughout the construction of the state
ment number chain. phase 10 makes compari
sons to insure that a statement number is
only entered once.)

COmmon Chain operation

The chain constructed by phase 10 for
the common information appearing in the
source module is bi-linear; that is, phase
10 links together:

1. The individual common block name
entries (refer to "Common Table") that
it develops for the common block names
appearing in the module.

2. The dictionary entries (refer to
"Dictionary") that it develops for the
variables appearing in a particular
common block. (The dictionary entry
for the first variable appearing in a
common block is also pointed to by the
common block name entry for the common
block containing the variable.)

To construct the common chain, phase 10
places the common block name entry that it
constructs for the first common block name
appearing in the module at the next availa
ble location in the information table. It
records a pointer to this entry in the
appropriate field of the communication
table. Phase 10 then obtains the first
variable in the common block, constructs a
dictionary entry for it, places the entry
at the next available location in the
information table, and records a pointer to
that entry in the P1 field of the common
block name entry for the common block
containing the variable. Phase 10 obtains
the next variable in the common block.
constructs a dictionary entry for it, plac
es the entry in the information table, and
records a pointer to that entry in the
common chain field of the dictionary entry
constructed for the variable encountered
immediately prior to the variable under
consideration. (This entry is found by
scanning the chain of dictionary entries
for the variables in the common block until
a zero common chain field is detected.>
Phase 10 obtains the next variable in the
common block, etc.

When phase 10 encounters a second unique
common block name, it constructs a common
block name entry for it, places the entry
in the information table, and records a
pOinter to that entry in the chain field of
the last common block name entry, which is
found by scanning the chain of such entries

until a
Phase 10
that it
appearing
the chain
nero

zero chain field is detected.
then links the dictionary entries
constructs for the variables
in the second common block into

in the previously described man-

If a common block name is repeated in
the source module a number of times, phase
10 constructs a common block name entry
only for the first appearance. However, it
does include as members of the common block
the variables associated with the second
and subsequent mentions of the common block
name. Phase 10 constructs a dictionary
entry for the first variable associated
with the second mention of the common block
name and places it into the information
table. It then scans the chain of dic
tionary entries constructed for the varia
bles associated with the first mention of
the common block name. When the last entry
in the chain is found. it records in the
common chain field of that entry a pointer
to the dictionary entry for the new varia
ble. Phase 10 links the dictionary entry
it constructs for the second variable asso
ciated with the second mention of a common
block name to the dictionary entry for the
first variable associated with the second
mention of that name; etc.

If a third mention of a particular
common block name is encountered. phase 10
processes the associated variables in a
similar manner. It links the dictionary
entries constructed for these variables as
extensions to the dictionary entries devel
oped for the variables associated with the
second mention of the common block name.

Equivalence Chain Operation

The chain constructed by phase 10 for
the equivalence information appearing in
the source module is also bi-linear. Phase
10 links together:

1. The individual equivalence group
entries (refer to "Common Table") that
it constructs for the equivalence
groups appearing in the module.

2. The equivalence variable entries
(refer to "Common Table") that it
constructs for the variables appearing
in a particular equivalence group.
(The equivalence variable entry for
the first variable appearing in an
equivalence group is pointed to by the
equivalence group entry for the group
containing the variable.)

The
chain
tion

construction of the equivalence
by phase 10 parallels its construc-

Appendix A: Tables 129

of the common chain. It links the equival
ence group entries in the same manner as it
does common block name entries. and links
equivalence variable entries in the same
manner as the dictionary entries for the
variables in a common block.

Literal Constant Chain Operation

Phase 10 constructs the literal constant
chain in the same manner as it constructs
the statement number chain. It records a
pointer to the first literal constant entry
(refer to "Literal Table") it enters in the
information table in the appropriate field
of the communication table. For each other
literal constant entry. phase 10 records a
pointer to its location in the information
table in the chain field of the previously
developed literal constant .entry. which is
found by scanning the chain of such entries
until a zero chain field is found.

Branch Table Chain Operation

The phase 10 construction of the branch
table chain parallels that of the statement
number chain. It records a pointer to the
firs·t branch table entry (refer to "Branch
Table") it places into the information
table in the appropriate field of the
communication table. For each other branch
table entry. phase 10 records a pointer to
its location in the information table in
the chain field of the previously developed
branch table entry.

INFORMATION TABLE COMPONENTS

The following text describes the con
tents of each component of the information
table and presents figures illustrating the
phase 10 formats of the entries of each
components. Modifications made to these
entries by subsequent phases of the compil
er are also illustrated in figure form.

130

Dictionary

The dictionary contains entries that
describe the variables and constants of the
source module. The information gathered
for each variable or constant is derived
from an analysis of the context in which
the variable or constant is used in the
source module.

VARIABLE ENTRY FORMAT: The format of the
dictionary entries constructed by phase 10
for the variables of the source module is
illustrated in Figure 15.

r---,
I Byte A usage field (1 word) I
.---i
I Low chain field (1 word) I
~---i I Byte B usage field (1 word) I
~---i I High chain field (1 word) I
.---i
I Mode/type field (2 words) I
~---i I P1 field (1 word) I
.---i
I Byte C usage field (1 word) I
I (Used by phase 15) I
.---i
I Used by Phase 15 (1 word) I
.---i
I Used by Phase 15 (1 word) I
.---i
I Common chain field (1 word) I
.----------------------~-----------------i
I Name field (2 words) I L ___ J

Figure 15. Format of Dictionary Entry for
Variable

Byte A Usage Field: This field is con
tained in a full word. the high-order three
bytes of which are not used. This field
indicates a portion of the characteristics
of the variable for which the dictionary
entry was created. The byte A usage field
is divided into eight subfields.each of
which is one bit long. The bits are
numbered from 0 through 7. Figure 16
indicates the function of each subfield in
the byte A usage field.

C·.\·· , .

o

(

c

r------------T----------------------------,
I Subfield I Function I
~------------+----------------------------~
I Bit 0 'on' I not used I
~------------+----------------------------~
I Bit 1 'on' I symbol used I
~-----------+----------------------------~
I Bit 2 'on' I variable is in common I
~------------+----------------------------~
I Bit 3 'on' I variable is an array usedl
I I to contain an object-time I
I I FORMAT statement. I
~------------+----------------------------~
I Bit 4 'on' I variable is equated I
~------------+----------------------------~
I Bit 5 'on' I variable has appeared in ani
I I equivalence group that hasl
I I been processed by STALL I
I I (used by phase 15) I
~------------+----------------------------~
I Bit 6 'on' I symbol is an external func-I
I I tion name I
~------------+----------------------------~
I Bit 7 'on' I not used I L ____________ ~ ____________________________ J

Figure 16. Function of Each Subfield in
the Byte A Usage Field of a
Dictionary Entry for a Variable

Low Chain Field: The low chain field is
used to maintain linkage between the var
ious entries in the chain. It contains
either a painter to an entry that collates
lower in the collating sequence or an
indicator (zero), which indicates that
entries in the chain that collate lower
than itself have not yet been encountered.

Byte B Usage Field: The byte B usage field
is contained in a full word, the high-order
three bytes of which are not used. This
field indicates additional characteristics
of the variable entered into the dictionar
y. It is divided into eight subfields,
each of which is one bit long. The bits
are numbered from 0 through 7. Figure 17
illustrates the function of each subfield
in t3e byte B usage field.

r------------T----------------------------,
I Subfield I Function I
~------------+----------------------------~
I Bit 0 'on' I variable is "call by value"l
I I parameter I
~------------+----------------------------~
I Bit 1 'on' I variable is "call by name"l
I I parameter I
~------------+----------------------------~
I Bit 2 'on' I variable is used as ani
I I argument I
~------------+----------------------------~
I Bit 3 'on' I variable is used in NAME-I
I I LIST statement I
~------------+----------------------------~
I Bit 4 'on' I variable has appeared in al
I I previous DATA statement I
I I (phase 15) I
~------------+----------------------------~
I Bit 5 'on' I variable is used as a sub-I
I I script I
~------------+----------------------------~
I Bit 6 'on' I variable is in common, orl
I I in an equivalence group andl
I I has been assigned a rela-I
I I tive address (phase 15) I
~------------+----------------------------~
I Bit 7 'on' I variable appears in DATAl
I I statement I L ____________ i-___________________________ J

Figure 17. Function of Each Subfield in
the Byte B Usage Field of a
Dictionary Entry for a Variable

High Chain Field: The high chain field is
used to maintain linkage between the var
ious entries in the chain. It contains
either a pointer to an entry that collates
higher in the collating sequence or an
indicator (zero), which indicates that
entries in the chain that collate higher
than itself have not yet been encountered.

Mode/Type Field: The mode/type field is
divided into two subfields. each one word
long. The first word (mode subfield) is
used to indicate the mode of the variable
(e.g., integer, real); the second word
(type subfield) is used to indicate the
type of the variable (e.g., array, external
function). Both the mode and type are
numeric quantities and correspond to the
values stated in the mode and type tables
(see Tables 18 and 19),

Appendix A: Tables 131

Table 18. Operand Modes
r---------------------T-------------------, I Mode of Operand I Internal I
I I Representation I
I , (in hexadecimal) ,
r---------------------t-------------------i

Logical*l 2
Logical*4 3
Integer*2 4
Integer 5
Real*8 6
Real*4 7
Complex*16 8
Complex*8 9
Literal A
statement number B
Hexadecimal C
Namelist D

---------------------~-------------------

Table 19. Operand Types
r---------------------T-------------------,
, Type of Operand , Internal ,
, I Representation ,
, , (in hexadecimal) ,
~---------------------t-------------------i
I Scalar ,0
'Dummy scalar , 1
Array ,2
Dummy array I 3
External function I 4
Constant , 5
Statement function, 6
Negative scalar , 8
Negative dummy scalar' 9
Negative array I A
Negative dummy array , B
(in text) ,
Dummy array
(in dictionary)
Negative external

function
Negative constant
Negative statement

,
I , , , ,

function ,

B

C

D
E

L _____________________ ~ __________________ _

P1 Field: The P1 field contains either a
pointer to the dimension information in the
statement number/array table if the entry
is for an array (i.e., a dimensioned
variable), or a pointer to the text gener
ated for the statement function (SF) if the
entry is for an SF name. If the entry is
neither for the name of an array nor the
name of a statement function. the field is
zero.

132

Common Chain Field: This field is used to
maintain linkages between the variables in
a common block. It contains a pointer to
the dictionary entry for the next variable
in the common block. (If the variable for
which a dictionary entry is constructed is
not in common, this field is not used.)

Name Field: This field contains the name
of the variable (right-justified) for which
the dictionary entry was created.

MODIFIC TIONS TO DICTIONARY ENTRIES FOR
VARIABLES: During compilation, certain
fields of the dictionary entries for varia
bles may be modified. The following exam
ples illustrate the formats of dictionary
ent.ries for variables at various stages of
phase 15 processing. Only changes are
indicated; * stands for unchanged.

Dictionary Entry for Variable After Dic
tionary sorting: The format of a dictiona
ry entry for a variable after the dictiona
ry has been sorted during STALL is illus
trated in Figure 18.

r---, I *. (1 word) I
~---i I Freed by sorting (1 word),
~---i , * (1 word) I
~---i
I New chain field (1 word) I
~---i , * (2 words) I
~---i
I * (1 word) I
~---i
I * (1 word) I
~---i
I * (1 word) I
~---i
I * (1 word) I
r---i
I * (1 word) I
.---i
I * (2 words) I L ___ J

Figure 18. Format of Dictionary Entry for
Variable After Sorting

Dictionary Entry for Variable After Common
Block Processing: The format of a dic
tionary entry for a variable after common
block processing is illustrated in Figure
19.

o

(

r---,
! * (1 word)!
~---~
! Freed by sorting (1 word)!
~---~
! * (1 word)!
~---i
! New chain field (1 word)!
~---~
! * (2 words)!
~---~
! * (1 word)!
~---i
! * (1 word)!
~---i
! Displacement from start of (1 word)!
I common block (if variable is I
! in common) ,
~---i
! Pointer to common block name (1 word)!
! entry for block containing !
! variable !
~---i
! * (1 word)!
~---i
! * (2 words)! l ___ J

Figure 19. Format of Dictionary Entry for
Variable After Commom Block
Processing

Dictionary Entry for Variable After PHAZ15
Processing: The format of a dictionary
entry for a variable after PHAZ15 process
ing is illustrated in Figure 20.

r---,
! * (1 word)!
~--i
I Freed by sorting (1 word)!
~---~ , * (1 word)!
~---~
! New chain field (1 word)!
~---~
! * (2 words)!
~---~
! * (1 word)!
~---~
! Coordinate number for variable (1 word)!
~---i
! Displacement from start of (1 word)!
! common block (if variable is !
! in common) !
~--~
! Pointer to coromon block name (1 word) I
I entry for block containing I
I variable !
~---~
I * (1 word)!
~---~
! * (2 words)! l ___ J

Figure 20. Format of Dictionary Entry for
Variable After PHAZ15 Process
ing

Dictionary Entry for Variable After Rela
tive rddress Assignment: The format of a
dictionary entry for a variable after rela
tive address assignment is illustrated in
Figure 21.

r---,
! * (1 word) I
.---~
, Pointer to entry containing (1 word)!
! pointer to the address con- !
! stant for the variable !
~--~ , * (1 word)!
~---~
, New chain field (1 word)!
~---~ , * (2 words)!
.---~ , * (1 word)!
.---i
, Coordinate number for variable (1 word)!
~---i
, Displacement from associated (1 word),
I address constant ,
~---i
, Pointer to common block name (1 word) I
,entry for block containing ,
! variable ,
~---~ , * (1 word),
~---i
I * (2 words), l ___ J

Figure 21. Format of Dictionary Entry for
a Variable After Relative
Address Assignment

CONSTANT ENTRY FORMAT: The format of the
dictionary entries constructed by phase 10
for the constants of the source module is
illustrated in Figure 22.

r---,
, Byte A usage field (1 word),
.---i
, Low chain field (1 word) I
~---~
, Byte B usage field (1 word),
~---~
, High chain address field (1 word)!
~---~
, Mode/type field (2 words)!
.---i
! Not used (1 word),
~---~
! Byte C usage field (used by (1 word) I
! phase 15) ,
~---~
, Used by phase 15 (1 word) I
~---~
, Constant field (4 words), l ___ J

Figure 22. Format of Dictionary Entry for
Constant

Appendix A: Tables 133

The byte A usage, low chain" byte B
usage, high chain, and mode/type fields of
a dictionary entry for a constant contain
the same information as a dictionary entry
for a variable.

Constant Field: The field contains the
binary equivalent of the constant for which
the dictionary entry was constructed.

MODIFICATIONS TO DICTIONARY ENTRIES FOR
CONSTANTS: During compilation, certain
fields of the dictionary entries for con
stants may be modified. The following
examples illustrate the formats of dic
tionary entries for constants at various
stages of phase 15 processing. Only chan
ges are indicated~ * stands for unchanged.

Dictionary Entry for Constant After Dic
tionary Sorting: The format of a dictiona
ry entry for a constant after the dictiona
ry has been sorted is illustrated in Figure
23.

r---,
I * (1 word} I
~---~ I Freed by sorting (1 word) I
r---~
I * (1 word) I
~---i I New chain field (1 word) I
r---~-------------------------------------~
I * (2 words) I
~---~
I * (1 word) I
~---i
1* (1 word) I
r---~
I * (1 word) I
~---i
I * (4 words} I L ___ J

Figure 23. Format of Dictionary Entry for
Constant After Sorting

Dictionary Entry for Constant After PHAZ15
Processing: The format of a dictionary
entry for a constant after the processing
of PHAZ15 is illustrated in Figure 24.

134

r---,
I * (1 word) I
~---~ I Freed by sorting (1 word} I
~---i
I * (1 word) I
;---i
I New chain field (1 word) I
;---i
I * (2 words) I
;------------------------------~----------i
I * (1 word} I
~---~ I Coordinate number for constant (1 word) I
~---i
I * (1 word) I
;---i
I * (4 words) I L ___ J

Figure 24. Format of Dictionary for Con
stant After PHAZ15 Processing

Dictionary Entry for Constant After Rela
tive Address Assignment: The format of a
dictionary entry for a constant after the
relative address assignment processes is
complete is illustrated in Figure 25,.

r---l
I * (1 word) I
~---i I Pointer to entry containing (1 word} I
I pointer to the address con- I
I stant for the constant I
;---i
I * 1 WORD} I
~--~i I New chain field (1 WORD) I
~---i I * (2 words) I
~---i
I * (1 word} I
~---~ I Coordinate number for constant (1 word} I
~---~ I Displacement from associated (1 word} I
I address constant I
;--~ I * (4 words) I L __ J

Figure 25. Format of Dictionary Entry for
Constant After Relative Address
Assignment

Statement Number/Array Table

The statement number/ array table con
tains statement number entries, which des
cribe the statement numbers of the source
module, and dimension entries, which des
cribe the arrays of the source module.

o

(
STATEMENT NUMBER ENTRY FORMAT: The format
of the statement number entries constructed
by phase 10 is illustrated in Figure 26.

r---,
,Byte A usage field (1 word),
r---~
, Chain field (1 word),
r-~---------------------------------------~
I Not used (1 word) I
~---~
I Pointer field (1 word) I
~---i
, Byte B usage field (1 word),
r---i
, Image field (1 word) I
~---~
, Used by Phase 20 (1 word),
~---i
, Used by Phase 20 (1 word),
~---~
, Used by Phase 15 (1 word),
~---~
I Used by Phase 15 (1 word) I
~---~
I Used by Phase 20 (1 word) I
~---------------------------------------i
I Used by Phase 15 (1 word) I
r---~
I Not used . (1 word) I L ___ J

Figure 26. Format of a Statement Number
Entry

Byte A Usage Field: This field is con
tained in a full word, the high-order three
bytes of which are not used. This field
indicates a portion of the characteristics
of the statement number for which the entry
was created. The bytes A usage field is
divided into eight subfields, each of which
is one bit long. The bits are numbered
from 0 through 7. Figure 27 indicates the
function of each subfield of this field.

r------------T----------------------------,
I Subfield ,Function I
.------------t----------------------------~
I Bit 0 'on' , statement number defined I
.------------t----------------------------i I Bit 1 'on' , statement number referenced,
.------------t----------------------------i
, Bit 2 'on' I referenced in an ASSIGN I
I I statement I
.------------t----------------------------i
, Bit 3 I not used I
~------------t----------------------------i
, Bit 4 'on' I statement number of a FOR-I
, I MAT statement ,
.------------t----------------------------~
, Bit 5 'on' , statement number of a GOI
, I TO, PAUSE. RETURNw STOP, or'
I , DO statement ,
.------------t----------------------------i
I Bit 6 'on' , statement number used as ani
I I argument ,
.------------t----------------------------i
, Bit 7 'on' ,statement number is thel
I , object of a branch , L ____________ ~ ____________________________ J

Figure 27. Function of Each Subfield in
the Byte A Usage Field of a
Statement Number Entry

Chain Field: The chain field is used to
maintain linkage between the various
entries in the chain. It contains either a
pointer to the next statement number entry
in the chain or an indicator (zero), which
indicates the end of the statement number
chain.

Pointer Field: This field contains a poin
ter to the text entry constructed by phase
10 for the associated statement number.

Byte B Usage Field: This field is con
tained in a full word, the high-order three
bytes of which are not used. The byte B
usage field indicates additional charac
teristics of the statement number for which
the entry was constructed. The byte B
usage field is divided into eight sub
fields, each of which is one bit long. The
bits are numbered 0 through 7. Figure 28
indicates the function of each subfield in
the byte B usage field.

Appendix A: Tables 135

r------------T----------------------------,
! Subfield ! Function ,
~--~---------+----------------------------i
, Bit 0 'on' , statement number is within'
! ! a DO loop and is trans-I
, , ferred to from outside the!
, ! range of the DO loop !
~-----------+----------------------------i
, Bit 1 'on' , compiler generated state-I
I ! ment number !
~------------+----------------------------i
, Bits 2-6 ,not used ,
~------------+----------------------------i
! Bit 7 'on' ! statement number is used in!
I ! a computed GO TO statement ! L ____________ ~ ____________________________ J

Figure 28. Function of Each Subfield in
the Byte B Usage Field of a
statement Number Entry

Image Field: This field contains the
binary representation of the statement num
ber for which the entry was created.

MODIFICATIONS TO STATEMENT NUMBER ENTRIES:
During the processing of phases 15, 20., and
25, each statement number entry created by
phase 10 is updated with information that
describes the text block associated with
the statement number. Figure 29 illus
trates the format of a statement number
entry after the processing of phases 15, 20
and 25. Only changes are indicated: *
stands for unchanged. The phase making the
indicated change is specified within paren
theses.

136

r---,
! * (1 word)!
~---i
I New chain field (phase 15) (1 word),
.---i , * (1 word)!
.---i
I Address constant pointer field (1 word)!
, (phase 20 or phase 25) I
~---i
! * (1 word),
~--~i
I * (1 word) I
~---i
, Loop number field (phase 20) (1 word)!
~---------------------------------------i
, Back dominator field (1 word),
, (phase 20) !
~---i
! Forward connection field (1 word),
, (ILEAD) (phase 15) !
~---i
, Backward connection field (1 word),
I (JLEAD) (phase 15) ,
~--i
, Block status field (phase 20) (1 word)!
.---i
, Text pointer field (phase 15) (1 word)!
~---i , * (1 word), L ___ J

Figure 29. Format of Statement Number
Entry After the Processing of
Phases 15, 20, and 25

New Chain Field: The new chain field
(after phase 15 processing) cbntains a
pointer to the entry for the statement
number that is defined in the source module
immediately after the statement number for
which the statement number entry under
consideration was constructed. (Phase 15
modifies the phase 10 chain pointer when it
rechains the statement number entries to
correspond to the order in which statement
numbers are defined in the source module.)
This field is not modified by subsequent
phases.

Address Constant Pointer Field: The
address constant pointer field (after phase
25 processing) contains either:

• An indication of a reserved register
and a displacement, if branchig optimi
zation is being implemented and if the
text block (associated with the state
ment number entry under consideration)
can be branched to via an RX-format
branch instruction (refer to the phase
20, nBranching Optimization").

c

• A pointer to the address constant res-
erved for the statement number (refer O·"~
to phase 25, nADCON Table Entry
Reservation").

(

(

LoOp Number Field: The loop number field
contains the number of the loop to which
the text block (associated with the state
ment number entry under consideration)
belongs. This field is set up and used by
phase 20. Just before the loop number is
assigned, this field contains a depth num
ber.

Back Dominator Field: The back dominator
field contains a pointer to the statement
number entry associated with the back domi
nator of the text block associated with the
statement number entry under consideration.
This field is set up and used by phase 20.

Forward Connection Field (ILEAD): The for
ward connection field contains a pointer to
the initial RMAJOR entry for the blocks to
which the text block associated with the
statement number entry under consideration
connects. This field is set up by phase 15
and used by phase 20.

Backward Connection Field (JLEAD): The
backward connection field contains a poin
ter to the initial CMAJOR entry for the
blocks that connect to the text block
associated with the statement number entry
under consideration. This field is set up
by phase 15 and used by phase 20.

Block Status Field: The block status field
is contained in a full word, the low-order
three bytes of which are not used. This
field indicates the status of the text
block associated with the statement number
entry under consideration. The block sta
tus field is divided into eight subfield,
each of which is one bit long. The bits
are numbered 25 through 32. Figure 30
indicates the function of each subfield in
the block status field.

r-------------T---------------------------,
I Subfield I Function I
~-------------t---------------------------1
I Bit 25 I Used for various reasons I
I I by the routines that I
I I explore connections (e·g·,1
I I the associated block hasl
I I previously been considered I
I Bit 26 I in the search for the backl
I I dominator of the block) I
~-------------t---------------------------i
I Bit 27 ., on' I the associated block exits I
I I from a loop I
~-------------t---------------------------i
I Bit 28 'on' I the associate block is al
I I fork (i.e., it has two orl
I I more forward connections) I
~-------------t---------------------------i
I Bit 29 I same as bits 25 and 26 I
.-------------t---------------------------i
I Bit 30 'on' I the associated block is inl
I I the current loop I
~-------------+---------------------------i I Bit 31 'on' I the associated block hasl
I I been completely processed I
I I along the complete-I
I I optimized path I
~-------------t---------------------------i
I Bit 32 'or' I the associated block is ani
I I entry block I L _____________ ~ __________________________ J

Figure 30. Function of Each Subfield in
the Block Status Field

Text Pointer Field: The text pointer field
contains a pointer to the phase 15 text
entry for the statement number with which
the statement number entry under
consideration is associated. This field is
not used by phase 10: it is filled in by
phase 15, and is unchanged by subsequent
phases.

DIMENSION ENTRY FORMAT: The format of the
dimension entries constructed by phase 10
is illustrated in Figure 31 .•

Appendix A: Tables 137

r---, I Dimension number field (1 word) I
~---~ I Not used (1 word) I
~---~
I Array size field (1 word) I
~---~
I Not used (1 word} I
~---~
I Element length field (1 word) I
~---~ I Second dimension factor field (1 word) I
~---~ I Third dimension factor field (1 word) I
~---~
I Fourth dimension factor field ·(1 word) I
~---~ I Fifth dimension factor field (1 word} I
~---~
I Sixth dimension factor field (1 word) I
~---~
I Seventh dimension factor field (1 word) I
~---~
I Pointer to last subscript par- (1 word) I
I ameter I
~---~
I Not used (1 word) I L ___ J

Figure 31. Format of Dimension Entry

Dimension Number Field: The dimension num
ber field contains the number of dimensions
(1 through 7) of the associated array.

Array Size Field:
contains either the
associated array or
variable dimensions.

The array size field
total size of the

zero, if the array has

Element Length Field: The element length
field contains the length of each element
(first dimension factor) in the associated
array.

Second Dimension Factor Field: The field
contains either a pointer to the dictionary
entry for the second dimension factor,
which has a value of D1*L, or a pointer to
the dictionary entry for the first sub
script parameter used to dimension the
associated array, if that array has varia
ble dimensions.

Third Dimension Factor Field: This field
contains either a pointer to the dictionary
entry for the third dimension factor, which
has a value of D1*D2*L, or a pointer to the
second subscript parameter used to dimen
sion the associated array, if that array
has variable dimensions. This field is not
used if the associated array is has a
single dimension.

Fourth Dimension Factor Field: This field
contains either a pointer to the dictionary

138

entry for the fourth dimension factor,
which has a value of D1*D2*D3*L, or a
pointer to the third subscript parameter
used to dimension the associated array, if
that array has a variable dimensions. This
field is not used if the associated array
has fewer than three dimensions.

Fifth Dimension Factor Field: This field
contains either a pointer to the dictionary
entry for the fifth dimension factor, which
has a value of D1*D2*D3*D4*L, or a pointer
to the dictionary entry for the fourth
subscript parameter used to dimension the
associated array, if that array has varia
ble dimensions. This field is not used if
the associated array has fewer than four
dimensions.

Sixth Dimension Factor Field: This field
contains either a pointer to the dictionary
entry for the sixth dimension factor, which
has a value of D1*D2*D3*D4*D5*L, or a
pointer to the dictionary entry for the
fifth subscript parameter used to dimension
the associated array. if that array has
variable dimensions. This field is not
used if the associated array has fewer than
five dimensions.

Seventh Dimension Factor Field: This field
contains either a pointer to the dictionary
entry for the seventh dimension factor,
which has a value of D1*D2*D3*D4*D5*D6*L.
or a pointer to the dictionary entry for
the sixth subscript parameter used to
diInension the associated array, if that
array has variable dimensions. This field
is not used if the associated array has
fewer than six dimensions.

Pointer To Last Subscript Parameter: This
field contains a pointer to the dictionary
entry for the seventh subscript parameter
used to dimension the associated array, if
that array has variable dimensions. This
field is not used if the associated array
has fewer than seven dimensions.

Common Table

The common table contains: 1) common
block name entries, which describe common
blocks, 2) equivalence group entries, which
describe equivalence groups, and 3) equi
valence variable entries, which describe
equivalence variables.

COMMON BLOCK NAME ENTRY FORMAT: The format
of the common block name entries construct
ed by phase 10 is illustrated in Figure 32.

o

(--

r---,
1 Character number field (1 word) I
~---~
1 Chain field (1 word) 1
~---~
1 Not used (1 word)!
~---~
! P1 field (1 word)!
~---~ 1 Not used (1 word) 1
~---~
1 Used by phase 15 (1 word) 1
~---~
1 Name field (2 words) 1
~---~
1 Not used (5 words) I L ___ J

Figure 32. Format of a Common Block Name
Entry

Character Number Field: The character num
ber field contains the number of characters
in the common block name.

Chain Field: The chain field is used to
maintain linkage between the various common
block name entries. It contains either a
pointer to the next common block name entry
or an indicator (zero), which indicates
that additional common blocks have not yet
been encountered.

PI Field: The PI field contains a pointer
to the dictionary entry for the first
variable in this common block.

Name Field: The name field contains the
name (right-justified) of the common block
for which this common block name entry was
constructed.

MODIFICATIONS TO COMMON BLOCK NAME ENTRIES:
During compilation, certain fields of com
mon block name entries may be modified.
Figure 33 illustrates the format of a
common block name entry after common block
processing by STALL, the first segment of
phase 15. Only changes are indicated: *
stands for unchanged.

r---,
1* (1 word) 1
~---~ 1* (1 word) 1
~---~
1* (1 word) 1
.---i
1* (1 word)!
~---~
1* (1 word) 1
~---i
ITotal size of common block (1 word) 1
~---~
1* (2 words) 1
~---i 1* (5 words) 1 L ___ J

Figure 33. Format of Common Block Name
Entry After Common Block Pro
cessing

EQUIVALENCE GROUP ENTRY FORMAT: The format
of the equivalence group entries construct
ed by phase 10 is illustrated in Figure 35.

r---,
1 Number field (1 word) 1
~---------------·-------------------------i
1 Chain field (1 word) 1
~--------------------------------~--------~
1 Not used (1 word) 1
.---~
1 P1 field (1 word) 1
~---i
1 Not used (1 word) 1
~---+
, Used by phase 15 (1 word)!
~---i
1 Not used (7 words) 1 L ___ J

Figure 35. Format of an Equivalence Group
Entry

Number Field: The number field contains
the number of variables being equivalenced
in this equivalence group.

Chain Field: The chain field is used to
maintain linkage between the various equi
valence groups. It contains a pointer to
the next equivalence group entry.

P1 Field: The P1 field contains a pointer
to the equivalence variable entry for the
first variable in the equivalence group.

MODIFICATIONS TO EQUIVALENCE GROUP ENTRIES:
During compilation, certain fields of equi
valence group entries may be modified.
Figure 36 illustrates the format of an
equivalence group entry after equivalence
processing by STALL, the first segment of
phase 15. Only changes are indicated: *
stands for unchanged.

Appendix A: Tables 139

r---,
I * (1 word) I
~---~
I * (1 word) I
~---~
I * (1 word) I
~---1
I * (1 word) I
~---1
1* (1 word) I
~---~
I Pointer to the "head" of (1 word) I
I the equivalence group I
~---1
I * (7 words) I L ___ J

Figure 36. Format of Equivalence Group
Entry After Equivalence Pro
cessing

EQUIVALENCE VARIABLE ENTRY FORMAT: The
format of the equivalence variable entries
constructed by phase 10 is illustrated in
Figure 37.

r---,
I Used by phase 15 (1 word) I
~---1
I Offset field (1 word) I
~---~
I Not used (1 word) I
~---1
I Pi field (1 word) I
~---1
I Not used (1 word) I
~---1
I Chain field (1 word) I
~---1
I Not used (7 words) I L-__ J

Figure 37. Format of Equivalence Variable
Entry

Offset Field: The offset field contains
the displacement of this variable from the
first element in the equivalence group.

P1 Field: The Pi field contains a pointer
to the dictionary entry for this equival
ence variable.

Chain Field: The chain field is used to
maintain linkage between the various varia
bles in the equivalence group. It contains
a pointer to the equivalence variable entry
for the next variable in the equivalence
group.

MODIFICATIONS TO EQUIVALENCE VARIABLE
ENTRIES: During compilation. certain
fields of equivalence variable entr1es may
be modified. Figure 38 illustrates the
format of an equivalence variable entry
after equivalence processing by STALL. the
first segment of phase 15. Only changes
are indicated; * stands for unchanged.

140

r---,
I Null indicator (1 word) I
~---~
I Displacement of variable (1 word) I
I from group "head" I
~---1
I * (1 word) I
~---~
I * C1 word) I
~---~
I * (1 word) I
.---~
I * (1 word) I
~---~
I * (7 words) I
.---~
IThe null indicator indicates to the rela-I
Itive address assignment portion of phasel
115 that main storage has been previously I
lallocated to this variable. This implies I
Ithat the variable: (1) is also in common. I
lor (2) appears in more than one equival-I
\ence group. I L ___ J

Figure 38. Format of Equivalence Variable
Entry After Equivalence Pro
cessing

Literal Table

The literal table contains literal con
stant entries. which describe literal con
stants used as arguments in CALL state
ments. and literal data entries, which
describe the literal data appearing in DATA
statements. (Entries for literal data
appearing in DATA statements are not
chained. They are pointed to from data
text.)

LITERAL CONSTANT ENTRY FORMAT: The format
of the literal constant entries constructed
by phase 10 is illustrated in Figure 39.

r---,
I Length field (1 word) I
~---~
I Used by phase 15 (1 word) I
.---1
I Not used (1 word) I
~---~
I Used by phase 15 (1 word) I
~---1
\ Not used (1 word) I
~---1
I Chain field (1 word) I
~---~
I Literal constant field (1-255 words) I L ___ J

Figure 39. Format of Literal Constant
Entry

c

c

(
Length Field: The length field contains
the length (in bytes) of the literal con
stant.

Chain Field: The chain field is used to
maintain linkage between the various liter
al constant entries. It contains a pointer
to the next literal constant entry.

Literal Constant Field: The literal con
stant field contains the actual literal
constant for which the entry was construct
ed. The field ranges from 1 to 255 words
(1 character/word, left-justified) depend
ing Of. the size of the literal constant.

MODIFICATIONS TO LITERAL CONSTANT ENTRIES:
During compilation, certain fields of
literal constant entries may be modified.
Figure 40 illustrates the format of a
literal constant entry after relative
address assignment by CORAL, the third
segment of phase 15. Only changes are
indicated; * stands for unchanged.

r---,
I * (1 word) I
~---i
I Pointer to entry containing (1 word) I
I pointer to the address con- I
I stant for the literal constant I
~---i
I * (1 word) I
~---i
I Displacement from associated (1 word) I
I address constant I
.---i
I * (1 word) I
~---i
I * (1 word) I
.---i
I * (1-255 words) I L ___ J

Figure 40. Format of Literal Constant
Entry After Relative Address
Assignment

LITERAL DATA ENTRY FORMAT: The format of
the literal data entries constructed by
phase 10 is illustrated in Figure 41.

r---,
I Length field (1 word) I
~---i
I Literal data field (1-255 words) I L ___ J

Figure 41. Format of Literal Data Entry

Length Field: The length field contains
the length (in bytes) of the literal data
for which the entry was constructed.

Literal Data Field: The literal data field
contains the actual literal data. The

field ranges from 1 to 255
character/word, left-justified)
on the size of the literal data.

words (1
depending

Branch Table

The branch table contains initial branch
table entries and standard branch table
entries. An initial branch table entry is
constructed by phase 10 upon encounter of
each computed GO TO statement of the source
module. Standard branch table entries are
constructed by phase 10 for each statement
number appearing in the computed GO TO
statement.

INITIAL BRANCH
format of the
constructed by
Figure 42.

TABLE ENTRY FORMAT: The
initial branch table entries
phase 10 is illustrated in

r---,
I Indicator field (1 word) I
.---i
I Used by phase 25 (1 word) I
.---i
I Not used (1 word) I
~---i
I Chain field (1 word) I
~---~
I Not used (1 word) I
.---~ I PI field (1 word) I
~---i
I Used by phase 25 (1 word) I
.---~ I Not used (6 words) I L ___ J

Figure 42. Format on Initial Branch Table
Entry

Indicator Field: The indicator field is
non-zero for an initial branch table entry.
This indicates that the entry is for
compiler-generated statement numcer for the
"fall through" statement. (The fall
through statement is executed if the value
of the control variable is larger than the
number of statement numbers in the computed
GO TO statement.)

Chain Field: The chain field is used to
maintain linkage between the various branch
table entries. It contains a pointer to
the next branch table entry.

P1 Field: The P1 field contains a pointer
to the statement number/array table entry
for the statement number for the compiler
generated statement number for the fall
through statement.

Appendix A: Tables 141

MODIFICATIONS TO INITIAL BRANCH TABLE
'ENTRIES: During compilation certain fields
of initial branch tabel entries may be
modified. Figure 43 illustrates the format
of an initial branch table entry after the
processing of phase 25 is complete. Only
changes are indicated; * stands for
unchanged.

r---,
I * (1 word) I
~---~
I Pointer to address constant (1 word) I
I reserved for fall through I
I statement number I
~---~
I * (1 word) I
~---~
I * (1 word) I
~---~
I * (1 word) I
~--~
I * (1 word) I
~---~
I Relative address of statement (1 word) I
I associated with fall through I
I statement number I
~---~
I * (6 words) I L ___ J

Figure 43. Format of Initial Branch Table
Entry After Phase 25
Processing

STANDARD BRANCH TABLE
format of the standard
constructed by phase
Figure 44.

ENTRY FORMAT: The
branch table entries
10 is illustrated in

r---,
I Indicator field (1 word) I
~---~ I Not used (1 word) I
~---~
I Not used (1 word) I
~---~
I Chain field (1 word) I
~---~ I Not used (1 word) I
~---~
I PI field (1 word) I
~---~
! Used by phase 25 (1 word) I
~---~ I Not used (6 words)! L ___ J

Figure 44. Format of Standard Branch Table
Entry

Indicator Field: This field is zero for
standard branch table entries.

Chain Field:
tain linkage

142

This field is used to main
between the various branch

table entries. It contains a pointer to
the next branch table entry.

PI Field: The PI field contains a pointer
to the statement number/array table entry
for the statement number (appearing in a
computed GO TO statement) for which the
standard branch table entry was construct
ed.

MODIFICATIONS TO STANDARD BRANCH TABLE
ENTRIES: During compilation, certain
fields of standard branch table entries may
be modified. Figure 45 illustrates the
format of a standard branch table entry
after the processing of phase 25 is com
plete. Only changes are indicated; *
stands for unchanged.

r---,
I * (1 word) I
~---~
I * (1 word)!
~---~
! * (1 word)!
~---~
! * (1 word) I
~---~
I * (1 word)!
~---~
! * (1 word) I
~---~ I Relative address of statement (1 word) I
! associated with this statement !
! number !
.---~
I * (6 words) I L ___ J

Figure 45. Format of Standard Branch Table
Entry After Phase 25
Processing

SUBPROGRAM TABLE

The subprogram table (referred to as
IFUNT or IFUNTB) contains entries for the
IBM supplied subprograms and in-line rou
tines. The subprograms reside on the
FORTRAN system library (SYS1.FORTLIB),
while the in-line routines are expanded at
compile time. The subprogram table is used
by phase 15 to establish
subprogram/argument compatability. That
is, phase 15 changes subprogram names (if
necessary) so that the referenced subpro
gram or in-line routine is made to agree
with the mode of the argument{s} to it.
For example, if the FORTRAN programmer
references the MOD in-line routine, and if
the argument to be operated upon is of real
mode, phase 15 replaces the reference to
MOD with a reference to AMOD to ensure

c

(

(

argument comparability1.

Each entry in the subprogram table (see
Table 19) contains three fields: usage (4
bytes), mode (2 bytes), and name (6 bytes).

Usage Field: For an in-line routine, the
usage field contains an indication of the
mode of the result returned from it (see
Table 18). For a subprogram, the usage
field is initially zero. If a subprogram
is referred to in the source module (either
explicitly when the subprogram referred to
agrees with the mode of the argument to be
operated upon" or implicitly either when
the subprogram referred to is changed to
ensure compatability or when exponentiation

1This process is called automatic typing.

or complex multiplication and division
operation are converted to a function
reference), the arithmetic translator sets
on the high order bit of the usage field in
the entry for that subprogram. The rela
tive address assignment portion of phase 15
interrogates in the high-order bit in the
usage field for each subprogram. If on. an
address constant is reserved for the sub
program. and a pointer to that address
constant is placed into the usage field of
the entry for that subprogram.

Mode Field: The mode field contains an
indication of the mode of the arguments to
the subprogram (see Table 18).

Name Field: The name field contains the
name of the subprogram. right-justified.

Appendix A: Tables 143

Table 20. Subprogram Table r----------T---------T---------T----------, C r----------T---------T---------T----------, I Index I Usage I Mode I Name I
I Index I Usage I Mode I Name I .----------t---------t---------t----------~ .----------t---------f---------t----------i 63 6 DMAXl

1 8 CDABS 64 7 AMAXl
2 9 CABS 65 7 MAX 1
3 6 DEXP 66 5 AMINO
4 7 EXP 67 0 MIN
5 8 CDEXP 68 5 MINO
6 9 CEXP 69 6 DMINl
7 6 DSIN 70 7 AMINl
8 7 SIN 71 7 MINl
9 8 CDSIN 72 5 FIXPI#

10 9 CSIN 73 6 FDXPD#
11 6 DCOS 74 7 FRXPR#
12 7 COS 75 6 FDXPI#
13 8 CDCOS 76 7 FRXPI#
14 9 CCOS 77 8 FCDXI#
15 6 DSQRT 78 9 FCXPI#
16 7 SQRT 79 8 CDDVD#
17 8 CDSQRT 80 9 CDVD#
18 9 CSQRT 81 8 CDMPY#
19 0 LOG 82 9 CMPY#
20 6 DLOG 83 MAX2#
21 7 ALOG 84 MIN2#
22 8 CDLOG 85 7 7 DIM
23 9 CLOG 86 5 5 IDIM
24 0 LOG10 87 6 6 DMOD
25 6 DLOG10 88 5 5 MOD
26 7 ALOG10 89 7 7 AMOD
27 8 CDLG10 90 6 6 DSIGN
28 9 CLOG10 91 7 7 SIGN
29 6 DATAN 92 5 5 ISIGN (~

30 7 ATAN 93 6 6 DABS ~/
31 6 DATAN2 94 7 7 ABS
32 7 ATAN2 95 5 5 lABS
33 6 DSINH 96 6 6 IDINT
34 7 SINH 97 7 7 AINT
35 6 DCOSH 98 5 7 INT
36 7 COSH 99 4 7 HFIX
37 6 DTANH 100 5 7 IFIX
38 7 TANH 101 6 5 DFLOAT
39 6 DTAN 102 7 5 FLOAT
40 7 TAN 103 6 7 DBLE
41 6 DCOTAN 104 0 BITON
42 7 COTAN 105 0 BITOFF
43 6 DARSIN 106 0 BITFLP
44 7 ARSIN 107 7 AND
45 6 DARCOS 108 7 OR
46 7 ARCOS 109 7 COMPL
47 6 DERF 110 0 MOD24
48 7 ERF 111 3 LCOMPL
49 6 DERFC 112 3 SHFTL
50 7 ERFC 113 3 SHFTR
51 6 DGAMM 114 3 TBIT
52 7 GAMMA 115 3 LAND
53 6 DLGAMA 116 3 LOR
54 7 ALGAMA 117 3 LXOR
55 0 LGAMA 118
56 119 5 ADDR
57 120 7 6 SNGL
58 121 7 9 REAL
59 122 7 9 AIMAG
60 5 AMAXO 123 8 6 DCMPLX
61 0 MAX 124 9 7 CMPLX (' , ,

62 5 MAX 0 125 8 8 DCONJG ,/ __________ ~ _________ i_ ________ ~ __________ J
126 9 9 CONJG

----------~---------~---------~----------

144

(

..

(

REGISTER ASSIGNMENT TABLES

The register assignment tables are a set
of one-dimensional arrays used by the full
register assignment routines of phase 20.
There are three types of tables: local
assignment tables· (refer to table 21>,
global assignment tables (refer to table
22), and register usage tables. The reg
ister usage tables are work tables used by
the local and global assignment routines in
the process of full register assignment.

Table 21. Local Assignment Tables
r----T----------------------------T-------,
I Name I Function IOrigin11
~----+----------------------------+-------~
J Serves as index to TXP, BVR,IFWDPAS

BVRA, BVA. I
I

TXP Gives the storage 10cationlFWDPAS
of the text item associatedl
with each value of J. I

I
BVR contains the MCOORD valuelFWDPAS

associated with operand 1 ofl
the text item represented byl
J. I

I
BVRAIIndicates the registerlBKPAS

I locally assigned to the I
Iquantity represented by J. I
I I

BVA IRepresents the activity I FWDPAS
Iwithin the block of thel
Iquantity represented by J;I
lalso contains indicator bits I
Idescribing the quantity. I
I I

IWJ2 I Indicates whether a variablelFWDPAS
I lis eligible for locall
I I assignment. Indexed via thel
I IMCOORD values obtained froml
I I BVR. I
~----~----------------------------~-------~
11This column indicates the name of thel
I register assignment routine that ini-I
I tially creates the particular table. I
12Although WJ is distinctly a local I
I assignment table., it is indexed by thel
I quantity MCOORD (which is used to index I
I the global assignment tables) rather I
I than by the local assignment table I
I index, J. I L ___ J

Table 22. Global Assignment Tables
r------~------------------------T--------,

I Name I Function I origin I
~-----+-------------------------+--------~

MCOORD Serves as an index to Phase 15
MVD, EMIN. RA, RAL, WABP,
WA and WJ.

MVD Gives the location of the Phase 15
dictionary entry for the

EMIN

variable associated with
the given value of
MCOORD •

Indicates whether the REGAS
variable associat~d with
a particular MCOORD value
is eligible for global
assignment.

RA Indicates the number of GLOBAS
the first register glo-

I
RAL

bally assigned to the
variable represented by
the MCOORD value; pro-
vides continuity in glo-
bal assignment from inner
to outer loops.

Indicates the register GLOBAS
globally assigned to the
variable represented by
the MCOORD value.

WA Indicates the total FWDPAS
activity for the variable
represented by the MCOORD
value. Calculated by
adding 4. to the value
each time a definition of
the variable is encoun-
tered and adding 3. to
the value for a use of
the variable.

IWABP Indicates the activity of FWDPAS
I base variables. Calcu-
I lated in the same manner
I as the WA table. , L ______ ~ ______________________ ~ __ ~ ________ J

Register Use Table

The format of the register use tables,
TRUSE and RUSE, are the same for the local
and global assignment routines. Each table
is sixteen words long. Words 1 through 11
represent general registers 1 through 11,
words 12, 14, and 16 represent floating
point registers 2, 4 and 6, and words 13
and 15 are unused.

If the contents of TRUSE(i) and RUSE(i)
is equal to zero. then register i is
available for assignment. If the value

Appendix A: Tables 145

contained in TRUSE(i) or RUSE(i) is between
2 and 128, inclusive, then the register i
is assigned to the variable whose MCOORD
value is equal to the contents of TRUSE(i)
or RUSE(i). If the contents of TRUSE(i) or
RUSE (i) has a value between 252 and 255,
register i is unavailable for assignment
and is reserved for special use (see next
paragraph) •

Register Use Considerations.: Registers 15
and 14 are not available for use by reg
ister assignment. They are reserved, and
used for branching during the execution of
the object module resulting from the compi
lation.

Register 13 is not available for use by
register assignment. It is reserved, and
used during the execution of the object
module to contain the address of the save
area set aside for the object module (refer
to phase 25., "Initialization
Instructions"). This register is also used
to reference the adcon table.

Table 23. Operator Table

Register 12 is not available for use by
register assignment. It is set aside to
contain the starting address of the
"Constants" portion of text information.

Registers 11, 10. and 9 mayor may not
be available for use by register assignment
Their use depends upon the number of
required reserved registers. (Refer to
phase 20, "Branching Optimization") .•

OPERATOR TABLE

The operator table (see Table 23) is
used in the text-optimization process of
constant expression recording. The opera
tor table indicates the operators in the
text entries that results from the applica
tion of constant expression reordering on a
candidate pair of text entries.

r------------T--------------T--------------T--------------T--------------T--------------,
I I Argument 1 I Argument 2 I Function 1 I Function 2 I Function 3 I
I Group I (Definition) I (Use) I (Constant I (New Defin- I (Reordered I
I I I I Result) I ition) I Expression) I
~------------+--------------+--------------+--------------+--------------+--------------~
I I * I * I * I I * I
I I * I / I / I I * I
I I * I ~ I ~ I New I ~ I
I I / I * I ., I Definition I * I
I A I / I / I * I Not I / I
I I / I ~ I * I Required I J I
I l.f I * I * I I,. I
I I ~ I / I / I I ~ I
I l.f I ~ I ~ I I * I
~------------+--------------+--------------+--------------+--------------+--------------~
I I + I * I * I * I + I
I I + I / I / I / I * I
I B I I * I * I * I I
I I I / I / I / I I
I I 1* I * I * I I
I I I / I / I / I I
~------------+--------------+--------------+--------------+--------------+--------------~
I I + I + I + I I + I
I I + I I I I I
I I + I I I New I I
I I I + I I Definition I + I
I C I I I + I Not I I
I I I I + I Required I I
I I I + I + I I I
I I I I I I I
I I I I I I + I
~------------~--------------~- -----~--------------~--------------~--------------i
INote: To accommodate non- mmunicative operations., the operators 4- Subtract Reverse andl

t!~~~R~~~~~~~~==~---------------------------------------J

146

(

NAMELIST DICTIONARIES

Namelist dictionaries are developed by
phase 25 for the NAMELIST statements
appearing in the source module. These
dictionaries provide IHCFCOMH with the
information required to implement
READrwRITE statements using NAMELISTs. The
name list dictionary constructed by phase 25
from the phase 10 namelist text representa
tion of each NAMELIST statement contains an
entry for the namelist name and entries for
the variables and arrays associated with
that name.

NAMELIST NAME ENTRY FORMAT: The format of
the entry constructed for the namelist name
is illustrated in Figure 46.

r---,
I Name field (2 words) I L-__ J

Figure 46. Format of Namelist Name Entry

Name Field: The name field contains the
namelist name, right-justified, with lead
ing blanks.

NAMELIST VARIABLE ENTRY FORMAT: The format
of the entry constructed for a variable
appearing in a NAMELIST statement is illus
trated in Figure 47.

r---, I Name field (2 words) I
~---i
I Address field (1 word) I
~----------T----------~-----------------i
I Item Type I Mode I Not used I
I field I field I (2 bytes) I
I (1 byte) I (1 byte) I I L ___________ ~ __________ ~ __________________ J

Figure 47. Format of Namelist Variable
Entry

Name Field: The name field contain the
name of the variable, right-justified, with
leading blanks.

Address Field: The address field contains
the relative address of the variable.

Item Type Field: This field is zero for a
variable.

Mode Field: The mode field contains the
mode of the variable.

NAMELIST ARRAY ENTRY FORMAT: The format of
the entry constructed for an array appear
ing in a NAMELIST statement is illustrated
in Figure 48.

r---,
I Name field (2 words. I
~---~
, Address field (1 word) ,
~----------T---------T-----------T--------i
, Item Type I Mode I Number of ,Element I
I field I field I dimensionsllength ,
, , , field ,field,
I (1 }:;yte) I (1 byte) I (1 byte) I (1 byte) I
~----------t---------~-----------~--------i
I Indicator I First dimension I
I field I factor field I
I (1 byte) I (3 bytes> I
~----------t------------------------------i
I Not used I Second dimension I
I I factor field I
I (1 byte) I (3 bytes) I
.----------t------------------------------i
I Not used I Third dimension I
I I factor field I
I (1 byte) I (3 bytes) I
.----------~------------------------------i I Etc. (refer to "Dimension Entry Format") I L ___ J

Figure 48. Format of Namelist Array Entry

Name Field: The
name of the array,
leading blanks.

name field contains the
right-justified, with

Address Field: The address field contains
the relative address of the beginning of
the array.

Item Type Field:
for an array.

This field is non-zero

Mode Field: This field contains the mode
of the elements of the array.

Number of Limensions Field: This field
contains the number of dimensions (1
through 7) of the associated array.

Element Length Field: The element length
field contains the length of each element
in the associated array.

Indicator Field: This field is zero if the
associated array has variable dimensions;
otherwise, it is non-zero.

First Dimension Factor Field: If the asso
ciated array does not have variable dimen
sions, this field contains the total size
of the array. If the array has variable
dimensions, this field contains the rela
tive address of first subscript parameter
used to dimension the array.

Second Dimension Factor Field: If the
associated array does not have variable
dimensions, this field contains the loca
tion of th~ second dimension factor (D1*L).
If the array has variable dimensions, this
field contains the relative address of the

Appendix A: Tacles 147

second subscript parameter used to dimen
sion the array.

Third Dimension Factor Field: If the asso
ciated array does not have variable dimen
sions, this field contains the location of
the third dimension factor (DI*D2*L). If
the array has variable dimensions, this
field contains the relative address of the
third subscript parameter used to dimension
the array.

DIAGNOSTIC MESSAGE TABLES

There are two major diagnostic tables
associated with error message processing by
phase 30: the error table and the message
pointer table.

ERROR TABLE

The error table is constructed by phases
10 and 15. As source statement errors are
encountered by these phases, corresponding
entries are made to the error table. Each

148

error table entry consists of 2 one-word
fields. The first field contains either
the internal statement number for the
statement in which the error occurred or a
pointer to the dictionary entry for a
symbol that is in error (e. g. -, a variable
that is incorrectly used in an EQUIVALENCE
statement); the second field contains the
message number associated with the parti~u
lar error. The message numbers that can
appear in the error table are those asso
ciated with messages of error code levels 4
and 8 (refer to the publication IBM
System/360 Operating System: FORTRAN IV
programmer"s Guide).

MESSAGE POINTER TABLE

The message pointer table contains an
entry for each message number that may
appear in an error table entry. Each entry
in the message pointer table consists of a
single word. The high-order byte of the
word contains the length of the message
associated with the message number. The
three low-order bytes contain a pointer to
the text for the message associated with
the message number.

--~.----- -~-------- . ---

C: .-
- -

c

(

(

(

Intermediate text is an internal rep
resentation of the source module from which
the machine instructions of the object
module are generated. The conversion from
intermediate text to machine instructions
requires information about variables, con
stants, arrays, statement numbers, in-line
functions, and subscripts. This informa
tion, derived from the source statements,
is contained in the information table, and
is referenced by the intermediate text.
The information table supplements the
intermediate text in the generation of
machine instructions by phase 25.

PHASE 10 INTERMEDIATE TEXT

Phase 10 creates intermediate text (in
operator-operand pair format) for use as
input to subsequent phases of the compiler.
There are five types of intermediate text
produced by phase 10:

• Normal text - the operator-operand pair
representations of source statements
other than DATA, NAMELIST, FORMAT, and
Statement Functions (SF).

• Data text - the operator operand pair
representations of DATA statements and
the initialization constants in expli
cit type statements.

• Namelist text - the operator-operand
pair representations of NAMELIST state
ments.

• Format text - the internal representa
tions of FOR~~T statements.

• SF skeleton text - the operator-operand
pair representations of statement func
tions using sequence numbers as oper
ands of the intermediate text entries.
The sequence numbers replace the dummy
arguments of the statement functions.
This type of text is, in effect, a
"skeleton" macro.

Note: The intermediate text representa
tions are comprised of individual text
entries. Each intennediate text type is
allocated unique sub-blocks of ma1n stor
age. The sub-blocks that constitute an
intermediate text area are obtained by
phase 10, as needed, via requests to the
FSD (see FORTRAN System Director, "Storage
Distribution n) •

APPENDIX B: INTERMEDIATE TEXT

Intermediate Text Chains

Each intermediate text area (i.e., the
sub-blocks allocated to a particular type
of text) is arranged as a chain, which
links together (1) the text entries that
are developed and placed into that area,
and (2) in some cases, the intermediate
text representation for individual state
ments.

The normal text chain is a linear chain
of normal text entries; that is each normal
text entry is pointed to by the previously
developed normal text entry.

The data text chain in bi-linear.
means that:

This

1. The text entries that constitute the
intermediate text representation of a
DATA statement are linked by means of
pointers. Each text entry for the
statement is pointed~o by the pre
viously developed text entry for the
statement.

2. The intermediate text representations
of individual DATA statements are
linked by means of pointers, each
representation being pointed to by the
previously developed representation.
(A special chain address field within
the first text entry developed for
each DATA statement is reserved for
this purpose.)

The namelist text chain operates in the
same manner as the data text chain,.

The format text chain consists of linka
ges between the individual intermediate
text representation of FORMAT statements.
The pOinter field of the second text entry
in the intermediate representation of a
FORMAT statement points to the intermediate
text representation of the next FORMAT
statement. (The individual text entries
comprising the intermediate text represen
tatio~ of a FORMAT statement are not
chained.)

The SF skeleton text chain is linear
only in that each text entry developed for
an operator-operand pair within a particu
lar statement function is pointed to by the
previous text entry developed for that same
statement function. The intermediate
text representations for statement func
tions are not chained together. However

Appendix B: Intermediate Text 149

a skeleton can readily be obtained by means
of the pointer contained in the dictionary
entry for the name of the statement func
tion.

Format of Intermediate Text Entry

Those statements that undergo conversion
from source representation to intermediate
text representation are divided into
operator-operand pairs, or text entries.
Figure 49 illustrates the format of an
intermediate text entry constructed by
phase 10.

r--------------------------------,
I Adjective code field (1 word) I operator
~--------------------------------i
I Chain field (1 word) I
~--------------------------------i
I Mode field (1 word) I
~--------------------------------i
I Type field (1 word) I
~--------------------------------i
I Pointer field (1 word) I operand L ________________________________ J

Figure 49. Intermediate Text Entry Format

Adjective Code Field: The adjective code
field corresponds to the operator of the
operator-operand pair. Operators are not
entered into text entries in source form~
they are converted to a numeric value as
specified in the adjective code table (see
Table 24). It is the numeric representa
tion of the source operator that actually
is inserted into the text entry. Primary
adjective codes (operators that define the
nature of source statements) also have
numeric values.

Table 24. Adjective Codes

r--------T-----------T--------------------,
I I Mnemonic I I
ICode (inl (where I I
I decimal) I applicable} I Meaning I
~--------+-----------+--------------------i

150

1 .NOT. I NOT
I

4 .AND. AND

5

6 .OR.

B

9

10 +

Right arithmetic
parenthesis

OR

Equal sign

Comma

Plus

11

12

13

14

15

16

17

19

20

21

22

25

26

71

193

205

208

209

210

211

213

214

215

216

217

218

219

220

221

222

*
/

**
(f

.LE.

.GE.

.LT.

.GT.

.NE.

(s

LDF

Minus

Multiply

Divide

Exponentiation

Function parenthesis

Less than or equal

Greater than or
equal

Less than

Greater than

Not equal

Left subscript
parenthesis

Left arithmetic
parenthesis

End mark

GOTO, and implied
branches

BLOCK DATA

DATA

SUBROUTINE,
FUNCTION, or ENTRY

FORMAT

End of I/O list

CONTINUE

Object time format
variable

BACKSPACE

REWIND

END FILE

IWRITE unformatted
I
IREAD unformatted
I
IWRITE formatted
I
IREAD formatted
I
IBeginning of I/O
I list
I
IStatement number
I definition

c

c

(

(

223 GLDF

225

226

230

231

232

233 RET

234 STOP

235

238

241

243

244

245 NDOIF

246

247 LIST

IGenerated statement
Inumber definition

WRITE using NAMELIST

READ using NAMELIST

I/O end-of-file
parameter

I/O error parameter

BLANK

RETURN

STOP

PAUSE

ASSIGN

Arithmetic
assignment statement

Arithmetic IF

Relational IF

End of DO 'IF'

CALL

I/O or NAMELIST list
item

I 248 NAMELIST
I
I 249 END END
I
I 250 Computed GO TO
I
I 251 I/O unit number
I
I 252 FORMAT L ________ ~ ___________ ~ ___________________ _

Chain Field: The chain field is used to
maintain linkage between intermediate text
entries. It contains a pointer to the next
text entry.

Mode and Type Fields: The mode and type
fields contain the mode and type of the
operand of the text entry. Both items
appear as numeric quantities in a text
entry and are obtained from the mode and
type table (see Tables 17 and 18) '.

Pointer Field: The pointer field contains
a pointer to the information table entry
for the operand of the operator-operand
pair. However, if the operand is a dummy
argument of a statement function, the poin
ter field contains a sequence number. which
indicates the relative position of the
argument in the argument list.

Note: The text entries for FORMAT state
ments are not of the above form. FORMAT
text entries consist of the characters of
the FORMAT statement.in source form packed
into successive text entries.

Examples of Phase 10 Intermediate Text

An example of each type of phase 10 text
(normal. data, namelist. format. and SF
skeleton) is presented below. For each
t~pe. a source language statement is first
g1ven. This is followed by the phase 10
text representation of that statement.

The phase 10 normal text representation
of the arithmetic statement 100 A = B + C *
D / E is illustrated in Figure 50.

Appendix B: Intermediate Text 151

r-----------------T-----------------T-----------------T----------------T----------------, C ' ,
I Adjective I I 1 I 1 •• ',. I
1 Code I Chain 1 Mode I Type I Pointer 1
~-----------------+-----------------+-----------------+----------------+----------------~
1 Statement 1 I I 1 I
1 number I I statement 1 1 I
1 definition I I number 1 0 1 ---... 100 I

L;{---~~i~h~e~ic-- -t ---------------t------;~;l-------t---;~;l;~~------t-=:;:~----------1

~---:---- t -----------t------;~;l-------t---;~;l;~~------t-~~----------1

L;{---~--- t t------;~;l-------t---;~al;~~------t-~-~----------1

t:J---; -- ! -----------t------~;I-------t---~~~i~~------t-~~----------1
- - - - -----------+-----------------+----------------+----------------~

/ 1 1 Real I Scalar1 I ~ E I L:f --t To next ~~~~;l--t-----------------t----------------t----------------1

I End mark2 1 text entry I 0 1 0 I ISN3 I
,r ~-----------------+-----------------+-----------------+----------------+----------------~

1 1 word I 1 word 1 1 word 1 1 word I 1 word 1
~-----------------~-----------------~-----------------~----------------~----------------~
I 1Nonsubscripted variable. 1
I 20perator of the special text entry that signals the end of the text representation 1
1 of a source statement. 1
I 3Compiler generated sequence number used to identify each source statement. 1 l ___ J

Figure 50. Phase 10 Normal Text

The phase 10 data text representation of
A.B/2.1,3HABC/,C,D/l.,l./ is illustrated in Figure 51.

the DATA statement DATA

r-----------------T-----------------T-----------------T----------------T----------------,
1 Adjective I 1 I 1 I
I Code 1 Chain 1 Mode 1 Type 1 Pointer I

~------.-----------+-----------------+-----------------+----------------+----------------~
I 1 1 liTO text for I
1 1 1 1 1--. next DATA l-

e;{ :ATA t ----------t------~----------t---~------------t----~~~~=~=~~---1 ---.
r.:J- + -------+-----------------+----------------+----------------~
~ 0 1 1 Real 1 Scalar 1--. A 1
r.:J + ------~-------+-----------------+----------------+----------------~
~ I I Real 1 Scalar 1--' B 1
~r-~r---~/-----------frl - t------;~;1-------t---~~~~;~~-----t~-2~1---------1

~-----~-----------t-----------------t------~i~~~;i----t---~~~~~;~~-----t~-3~~;~-------1

-----------------f-----------------+-----------------+----------------+----------------~
/ 1 1 Real I Scalar 1--. C 1

----------------- -----------------+-----------------+----------------+----------------~
, 1 Real 1 Scalar 1--' D 1

-----------------+-----------------+-----------------+----------------+----------------~
/ I 1 Real 1 Constant 1---" 1. 1

----------------- -----------------+-----------------+----------------+----------------~
, I I Real I Constant 1----- 1. I

----------------- -----------------+-----------------+----------------+----------------~
/ I 0 1 0 10 1 0 1

~-----------------+-----------------+-----------------+----------------+----------------~
1 1 word 1 1 word I 1 word I 1 word 1 1 word I C' l _________________ ~ _________________ ~ _________________ ~ ________________ ~ ________________ J

Figure 51. Phase 10 Data Text

152

(- The phase 10 namelist text representation of the NAMELIST statement NAMELIST
/NAME1/A,B.C/NAME2/D.E.F/NAME3/G where A and F are arrays is illustrated in Figure 52.

r-----------------T-----------------T-----------------T-----------T---------------------,
I Adjective I I I I I
I Code I Chain I Mode I Type I Pointer I
.-----------------+-----------------+-----------------+-----------+---------------------i
I NAMELIST I I 0 I 0 I ~ NAMEl I
~ / t -------------t------;~~l-------t---~-------t------;~-~~~~-f~;----1

I I I I I -... next NAMELIST I
I I I I I block

~ LIST t ---t------;~~1-------t---~;;~;---t--~-~--------------1
r==f-----------------f-----------------+-----------------+-----------+---------------------i
~ LIST I I Real I Scalar I ~B I
L:{ LIST + t------;~~1-------t---;~~1~-t--~-~--------------1

----------------- -----------------+-----------------+-----------+---------------------i
NAMELIST I I 0 I 0 I - NAME2 I

----------------- -----------------+-----------------+-----------+---------------------i
/ I I Real I 0 I To text for

I I I I I --+ next NAMELIST I
I I I block

~----------------- -----------------+-----------------+-----------+---------------------i
LIST I Real I Scalar I --. D I

----------------- -----------------+-----------------+-----------+---------------------i
LIST I Real I Scalar I .-.. E I

~-----------------+-----------------+-----------------+-----------+---------------------i
LIST I Real I Array I ~ F I

----------------- -----------------+-----------------+-----------+---------------------i
NAMELIST I I 0 I 0 I ~ NAME3 I

~----------------- -----------------+-----------------+-----------+---------------------i
/ I I Real I 0 I To text for

I I I I I --.. next NAMELIST I

c:t---i~;;----------t------~----------t------;~~l-------t---;~~l~;--t--~-~~~~=~=~~------~ --
.-----------------+-----------------+-----------------+-----------+---------------------i
I 1 word I 1 word I 1 word I 1 word I 1 word I L _________________ ~ _________________ ~ _________________ ~ ___________ ~ ____________________ J

Figure 52. Phase 10 Namelist Text

Appendix B: Intermediate Text 153

The phase 10 format text representation of the FORMAT statement 5 FORMAT
(2HOA,A6//5X,3<I4,E12.5,3F12.3,'ABC'» is illustrated in Figure 53. C
r-----------------T-----------------T-----------------T----------------T----------------,
I Pointer I I I I I
I Code I Chain I Mode I Type I Pointer I
~-----------------+-----------------+-----------------+----------------+----------------~
I Statement I I I I I
I number I I Statement I I I
I definition I I number I 0 I 5 I
~ t --t-----------------t----------------t-;~-~~;~-f~~----1

I I I I 1 next FORMAT I-..

cj ::::T -t A. A6 t------; /5~-------t---~3(~---------t-~:~~=~=~~------1 -- -..
~-----------------+-----------------+-----------------+----------------+----------------~
I 2 .• 5, I 3F12 I .3,' I ABC' 1 »*1. 1
~-----------------+-----------------+-----------------+----------------+----------------~
I 1 word I 1 word 1 1 word I 1 word I 1 word 1
~-----------------~-----------------~-----------------~----------------~----------------1
I 1.Group mark. I l ___ J

Figure 53. Phase 10 Format Text

The phase 10 SF skeleton text representation of the statement function ASF (A,B,.C)
A+D*B*E/C is illustrated in Figure 54.

r-----------------T-----------------T-----------------T----------------T----------------,
I Adjective I Chain 1 Mode I Type I Pointer I

~-----=~~=--------t-----------------t-----------------+----------------t----------------~ ~ I (I I 0 1 0 1 1 I
~f-----------------+-----------------+-----------------+----------------+----------------~
~ + I I Real I Scalar I --- D 1
~!-----;-----------t-----------------t------o----------t---o------------t----;-----------1

----------------- -----------------+-----------------+----------------+----------------1
* I Real I Scalar 1--' E 1

- - ------------- -----------------+-----------------+----------------+----------------~
/ 1 I 0 I 0 I 3 I

~~-----------------+-----------------+-----------------+----------------+----------------~
~ I I I I Number of 1

I I I 1 I dummy I
I) I 1 0 I 0 I arguments I

~~-----------------+-----------------+-----------------+----------------+----------------~
~ End mark I 0 I 0 I 0 1 0 1

~-----------------+-----------------+-----------------+----------------+----------------~
I 1 word 1 1 word 1 1 word 1 1 word I 1 word I l _________________ L _________________ ~ _________________ ~ ________________ ~ ________________ J

Figure 54. Phase 10 SF Skeleton Text

PHASE 15/PHASE 20 INTERMEDIATE TEXT
MODIFICATIONS

During phase 15 and phase 20 text pro
cessing, the intermediate text entries are
modified to a form more suitable for optim
ization and object-code generation. The
intermediate text modifications made by
each phase are discussed separately in the
following paragraphs.

154

PHASE 15 INTERMEDIATE TEXT MODIFICATIONS

The intermediate text input to phase 15
is the intermediate text created by phase
10. The intermediate text output of phase
15 is an expanded version of phase 10
intermediate text. The intermediate text
output of phase 15 is divided into four
categories: c

• Unchanged text.
• Phase 15 data text.
• statement number text.
• Standard text.

Unchanged Text

The unchanged text is the phase 10
normal text that is not processed by phase
15. Unchanged text is passed on to subse
quent phases in phase 10 format with but
one modification: the contents of the oper
ator and chain fields are switched.

Phase 15 Data Text

To facilitate the assignment of initial
data values to their associated variables,
phase 15 converts the phase 10 data text
for DATA statements to phase 15 data text,
which is in variable-constant format. The
format of the phase 15 data text entries is
illustrated in Figure 55.

r---,
\ Indicator field (1 word)!
~---~
\ Chain field (1 word) \
~---~
\ Pi field (1 word) \
~---~
\ P2 field (1 word) \
~---~
\ Offset field (1 word) \
~---~
\ Number field (1 word) \ L ___ J

Figure 55. Format of Phase 15 Data Text
Entry

Indicator Field: The indicator field indi
cates the characteristics of the initial
data value (constant) to be assigned to the
associated variable. This field is con
tained in a full word, the high-order three
bytes of which are not used. The indicator
field is divided into eight subfields, each
of which is one bit long. The bits are
numbered from 0 through 7. Figure 56
indicates the function of each subfield in
the indicator field.

r------------T----------------------------,
\ Subfield \ Function \
~------------+----------------------------~
\ Bit 0 \ not used \
~------------+----------------------------~
I Bit 1 I not used I
.------------+----------------------------~
I Bit 2 I not used I
.------------+----------------------------~
I Bit 3 I not used \
~------------+----------------------------~
I Bit 4 'on' \ initial data value is nega-I
\ I tive constant I
~------------+----------------------------~
I Bit 5 'on' I initial data value is a\
I I Hollerith constant \
~------------+----------------------------~
I Bit 6 'on' I initial data value is inl
I \ hexadecimal form I
~------------+----------------------------~
I Bit 7 'on' \ data table entry is sixl
\ I words long (variable is ani
I I array element). I L ____________ ~ ____________________________ J

Figure 56. Function of Each Subfield in
Indicator Field of Phase 15
Data Text Entry

Chain Field: The chain field is used to
maintain linkage between the various phase
15 data text entries. It contains a poin
ter to the next such entry.

Pi Field: The Pi field contains a pointer
to the dictionary entry for the variable to
which the initial data value is to be
assigned.

P2 Field: The P2 field contains a
to the dictionary entry for the
data value (constant) which is
assigned to the associated variable.

pointer
initial
to be

Offset Field: The offset field contains
the displacement of the subscripted varia
ble from the first element in the array
containing that variable. If the variable
to which the initial data value is to be
assigned is not subscripted, this field
does not exist.

Number Field: The number field contains an
indication of the number of successive
items to which the initial data value is to
be assigned. If the initial data value is
not to be assigned to more than one item,
this field does not exits.

Statement Number Text

The statement number text is an expanded
version of the phase 10 intermediate text
created for statement numbers. It is
expanded to provide additional fields in

Appendix B: Intermediate Text 155

which statistical information about the
text block associated with the statement
number is stored. The format of statement
number text entries is illustrated in Fig
ure 57.

r---,
I Chain field (1 word) I
~---~
I Operator field (1 word) I
~---~
I Pi field (1 word) I
~---~
I Block size field (1 word) I
~---~
I Indicator field (1 word) I
~---~
I P2 field (1 word) I
~---~ I Use vector field (MVF) (4 words) I
~---~
I Definition vector field (MVS) (4 words) I
~---~
I Busy-on-exit (4 words) I
I Vector field (MVX) I L ___ J

Figure 57. Format of Statement Number Text
Entry

156

Chain Field: The chain field is used to
maintain the linkage between the various
intermediate text entries. It contains a
pointer to the next text entry.

Operator Field: The operator field con
tains an internal operation code (numeric)
for a statement number definition (see
Table 25).

Pi F'ield: The P1 field contains a pointer
to the statement number/array table entry
for the statement number.

Block Size Field: The block size field
contains the number of text entries within
the block (started by the statement number
for which the current text entry is made).

c

c

c

{
Table 25. Phase 15/20 Operators 32 BGZ I Branch greater than
r--------T-----------T--------------------, I zero
I Code (inlMnemonic I I I
I I (where I I 33 BLZ I Branch less than
I decimal) I applicable) I Meaning I I zero
~--------+-----------+--------------------~ I

1 I • NOT. I NOT 34 BNEZ Branch not equal
I I zero
I I

2 I U Unary minus 35 BGEZ Branch greater than
I or equal zero
I

4 I .AND. AND 36 BLEZ Branch less than or
I equal zero

5 I Right parenthesis
I 37 BEZ Branch equal to zero

6 I .OR. OR
41 BF Branch false

8 ST Store
42 BT Branch true

9 'r Argument
43 LDB Load byte

10 + Plus
44 LIBF Library function

11 Minus call

12 * Multiply 45 RS Right shift

13 / Divide 46 LS Left shift

14 LA Load address 47 BXHLE Branch on index

(
15 EXT External function or 50 LE Less than or equal

subroutine CALL
51 GE Greater than or

16 BG Branch greater than equal

17 BL Branch less than 52 EQ Equal

18 BNE Branch not equal 53 LT Less than

19 BGE Branch greater than 54 GT Greater than
or equal

55 NE Not equal
20 BLE Branch less than or

equal 56 MAX2 MAX2 in-line routine

21 BE Branch equal 57 MIN2 MIN2 in-line routine

22 SUB Subscript 58 DIM DIM in-line routine

23 LIST I/O list 59 IDIM IIDIM in-line routine

24 BC Branch computed 60 DMOD DMOD in-line routine

25 Left parenthesis 61 MOD MOD in-line routine
I

26 End mark I 62 AMOD AMOD in-lin~ routine
I

27 B Branch I 63 DSIGN DSIGN in-line rou-
I tine

28 BA Branch assigned I
I 64 SIGN SIGN in-line routine

29 BBT Branch bit true I

(', I 65 ISIGN ISIGN in-line rou-
30 BBF Branch bit false I tine

I
31 LBIT Logical value of bit I 66 DABS DABS in-line routine

Appendix B: Intermediate Text 157

67 ABS

68 lABS

69 IDINT

71 INT

72 HFIX

73 IF IX

74 DFLOAT

75 FLOAT

76 DBLE

77 BITON

78 BITOFF

78 BITFLP

80 ANDF

81 ORF

82 COMPL

83 MOD24

84 LCOMPL

85 SHFTR

86 SHFTL

100 LR

101 RC

102 RR

103

193

200

201

202

158

ABS in-line routine \
\

lABS in-line routine \
\

IDINT in-line rou- \
tine I

\
INT in-line routine \

\
HFIX in-line routine \

IFIX in-line routine

DFLOAT in-line rou
tine

FLOAT in-line rou
tine

DBLE in-line routine

BITON in-line rou
tine

BITOFF in-line rou
tine

BITFLP in-line rou
tine

ANDF in-line routine

ORF in-line routine

COMPL in-line rou
tine

MOD24 in-line rou
tine

LCOMPL in-line rou
tine

SHFTR in-line rou
tine

SHFTL in-line rou
tine

Load register (phase
20 only)

\Restore main storage
\ (phase 20 only)
\
\Restore register
\ (phase 20 only)
\
\Register usage
I (phase 20 only)
I
IBLOCK DATA
I
\ COMMON
I
I EQUIVALENCE
I
I EXTERNAL

\

205

208

209

210

211

213

214

215

216

217

218

219

220

221

222 LDF

223 GLDF

224

225

226

227

230

231

232

233 RET

234 STOP

235

249 END

DATA

FUNCTION

FORMAT

END I/O

CONTINUE

Object time FORMAT

BACKSPACE

REWIND

END FILE

WRITE unformatted

READ unformatted

WRITE formatted

READ formatted

Begin I/O

Statement number
definition

Generated statement
number definition

IMPLICIT

WRITE using NAMELIST

READ using NAMELIST

Statement function

I/O end-of-file
parameter

I/O error parameter

BLANK

RETURN

STOP

PAUSE

END

251 I/O unit number l ________ ~ __________ i ___________________ _

Indicator Field: The indicator field is
contained in a full word, the high-order
three bytes of which are not used. This
field indicates some of the characteristics
of the text entries in the associated
block. The indicator field contains eight
subfields, each of which is one bit long .•

c

c

(

(:

The subfields are numbered 25 through 32.
Figure 58 indicates the function of each
subfield in the indicator field.

r-------------T---------------------------,
1 Subfield I Function 1
~-------------+---------------------------~
1 Bits 25-28 1 not used I
~-------------+---------------------------~
I Bit 29 'on' I associated block contains I
I I an I/O operation I
~-------------+---------------------------~
I Bit 30 'on' I associated block contains 1
1 I a reference to a library I
I I function I
~-------------+---------------------------~
I Bit 31 I not used I
~-------------+---------------------------~
I Bit 32 'on' I associated block contains 1
1 I an abnormal function ref-I
1 I erence 1 L _____________ ~ ___________________________ J

Figure 58. Function of Each Subfield in
Indicator Field of Statement
Number Text Entry

P2 Field: The P2 field contains a pointer
to the last intermediate text entry within
the block.

Use Vector Field (MVF): The use vector
field is used to indicate which variables
and constants are used in the associated
block. Variables and constants, as they
are encountered in the module by phase 15,
are assigned a unique coordinate (1 bit) in
this vector field. In general, if the ith
bit is on (1), the variable or constant
assigned to the ith coordinate is used in
the associated block.

Definition Vector Field (MVS): The defini
tion vector field is used to indicate which
variables are defined in a block. Varia
bles and constants, as they are encountered
by Phase 15, are assigned a unique coordi
nate (1 bit) in this vector field. In
general, if the ith bit is on (1), the
variable assigned to the ith coordinate is
defined in the associated block.

Busy-On-Exit Vector Field (MVX): The busy
on-exit vector field in phase 15 indicates
which variables are not first used and then
defined within the text block (not
busy-on-entry). This field is converted by
phase 20 to busy-on-exit data, which
indicates which operands are busy-on-exit
from the block. Variables and constants,
as they are encountered by phase 15, are
assigned a unique coordinate (1 bit) in
this vector field. In general, during
phase 15, if the ith bit is on (1). the
variable assigned to the ith coordinate is
not busy-on-entry to the block. During
phase 20, if the ith bit is on, the

variable or constant assigned to the ith
coordinate is busy-on-exit from the block.

Standard Text

The standard text is an expanded and
modified form of phase 10 intermediate text
that is more suitable for optimization.
The format of standard text entries is
illustrated in Figure 59.

r---,
I Chain field (1 word) I
~---~
I Operator field (1 word} 1
~---~
1 Pl field (1 word) I
r---~
I P2 field (1 word) I
~---~
I P3 field (1 word} I
r------T---------T-------T------T---------~
1 Not I Used by I Not 1 S I Mode I
I used I phase 201 used 1 fieldl field I
I (bits I (bits I (bits I (bit I (bits I
I 0-1) I 2-13) I 14-25) I 26) I 27-31) I
~------+-------~-------~------~---------~
I Not I I
I used I Used by phase 20 I
I (bits I (bits 8-31> I
I 0-7) I I
~------~----------------------------------~
I Displacement field (1 word) I L ___ J

Figure 59. Format of a Standard Text Entry

Chain Field: The chain field is used to
maintain the linkage between the various
intermediate text entries. It contains a
pointer to the next text entry.

Operator Field: The operator field con
tains an internal operation code (numeric)
that indicates either the nature of the
statement or the operation to the performed
(see Table 25).

P1 Field: The Pl field contains
pointer to the dictionary entry
ment number/array table entry for
of the text entry, or zero (0) if
does not exist.

either a
or state
operand 1
operand 1

P2 Field: The P2 field contains either a
pointer to the dictionary entry for operand
2 of the text entry. a pointer to an IFUNTB
entry, or zero (0) if operand 2 does not
exist.

P3 Field: The P3 field contains either a
pointer to the dictionary entry for operand
3 of the text entry, a pointer to a
parameter list in the adcon table, an

Appendix B: Intermediate Text 159

Table 26. Meanings of Bits in Mode Field of Standard Text Entry
r-----------T---------T---,
1 Mode 1 Bits 1 Meaning 1
~-----------+---------+---~
I general I 27-28 I 00 - logical I
I 1 1 01 - integer I
1 1 I 10 - real 1
~-----------+---------+--~----------~ I operand 11 29 1 0 - short mode(logical*l, integer*2, real*4) I
1 1 1 1 - long mode (10gical*4, integer, real*8) I
~-----------+---------+---~
1 operand 21 30 1 0 - short mode (logical*l, integer*2, real*4) I
I 1 1 1 - long mode Uogical*4. integer, real*8) I
~-----------+---------+---~
1 operand 31 31 1 0 - short mode (logical*l, integer*2, real*4) 1
1 1 1 1 - long mode (10gical*4. integer, real*8) 1 L ___________ ~ _________ ~ ___ J

actual constant (for shifting operations),
or zero (0) if operand 3 does not exist.

S Field: The S field indicates whether or
not a text entry is involved in a subscript
computation. (If the S bit is on (1)., the
text entry is part of a subscript computa
tion.)

Mode Field: The mode field indicates the
general mode of the expression and the mode
of the operands. The bits are set by phase
15. The meanings of the bits in the mode
field are given in Table 26.

Displacement Field: The displacement field
appears only for subscript and load address

text entries; it contains a constant dis
placement (if any) computed from constants
in the subscript expression.

PHASE 20 INTERMEDIATE TEXT MODIFICATION

The intermediate text input to phase 20
is the output text from phase 15. The
intermediate text output of phase 20 is of
the same form as the standard text output
of phase 15. The format of the phase 20
output text is illustrated in Figure 60.

r---,
1 Chain field 1 (1 word) I
~---~
1 Operator field 1 (1 word) 1
~---~
1 P1 field 1 (1 word) 1
~---~
I P2 field 1 (1 word) I
~---~
1 P3 field 1 (1 word) 1
~----------T------------------T--------------------------T-----------T------------------~
INot used 1 status field I Not used I S field 1 1 Mode field 1 1
1 (bits 0-1) I (bits 2-13) I (bits 14-25) 1 (bit 26) I (bits 27-31) 1
~----------+-----------~-----~-----T------------T-------~----T------~-----T------------~
INot used 1 R1 field I B1 field 1 R2 field I B2 field I R3 field I B3 field I
1 (bits 0-7)1 (bits 8-11) 1 (bits 12-15) 1 (bits 16-19) I (bits 20-23) 1 (bits 24-27) 1 (bits 28-31)1
~----------~-----------~-----------~------------~------------~------------~------------~
1 Displacement field 1 (1 word) 1
~---~
11 The chain field, mode field, operator field, P1 field, P2 field, P3 field, S field, 1
I and displacement field are as defined in a phase 15 standard text entry. (Phase 20 I
1 does not alter these fields.) 1

o

L ___ J C
:. \ Figure 60. Format of Phase 20 Text Entry

160

c-

(

Rl, R2, and R3 Fields: The Rl, R2, and R3
fields (each is 4 bits long) are filled in
by phase 20 during register assignment, and
are referred to by phase 25 during the code
generation process. The assigned registers
are the operational registers for operand
1, operand 2, and operand 3, respectively.

Bl, B2, and B3 Fields: The Bl, B2, and B3
fields (each is 4 bits long) are filled in
by phase 20 during register assignment, and
are referred to by phase 25 during the code
generation process. The assigned registers
are the base registers for operand 1,
operand 2. and operand 3, respectively.

status Field: The status field is composed
of 12 bits that are set by phase 20 to
indicate the status of the operands and the
status of the base addresses of the oper
ands in a text entry. The information in
the status field is used by phase 25 to
determine the machine instructions that are

to be generated for the text entry. The
status field bits and their meanings are
illustrated in Table 29.

STANDARD TEXT FORMATS RESULTING FROM PHASES
15 AND 20 PROCESSING

The following formats illustrate the
standard text entries developed by phase 15
and phase 20 for the various types of
operators. When the fields of the text
entries differ from the standard defini
tions of the fields, the contents of the
fields are explained. In addition, notes
that explain the types of instructions
generated by phase 25 are also included to
the right of the text entry format, when
appropriate. For an explanation of the
individual operators see Table 25.

Table 27. Status Field Bits and Their Meanings
r--------------------T-----------T--,
I Operandi I I I
I Base Address I Bit I Meaning I

~--------------------+-----------+--~
I I 2 I 0 - base address in storage I
I Operand 2 I I 1 - base address in register I
I base address I I I
I status I 3 I 0 - do not retain base address in register I
I I I 1 - retain base address in register I

~--------------------+-----------+--~
I I 4 I 0 - base address in storage I
I Operand 3 I I 1 - base address in register I
I base address I I I
I status I 5 I 0 - do not retain base address in register I
I I I 1 - retain base address in register I
~--------------------+-----------+--~
I I 6 I 0 - operand in storage I
I Operand 2 I I 1 - operand in register I
I status I I I
I I 7 I 0 - do not retain operand in register I
I I I 1 - retain operand in register I

~--------------------+-----------+--~
I I 8 I 0 - operand in storage I
I Operand 3 I I 1 - operand in register I
I status I I I
I I 9 I 0 - do not retain operand in register I
I I I 1 - retain operand in register I

~~-------------------+-----------+--~
I I 10 I 0 - base address in storage I
I Operand 1 I I 1 - base address in register I
I base address I I I
I status I 11 I 0 - do not retain base address in register I
I I I 1 - retain base address in register I
~--------------------+-----------+--~
I I 12 I 0 - generate store into operand 1 I
I Operand 1 I I 1 - do not generate store into operand 1 I
I status I I I
I I 13 I - not used I L ____________________ ~ ___________ ~ __ J

Appendix B: Intermediate Text 161

Branch Operator (B)

r---,
\Chain {1 word) I
~---i
IBranch operator {1 word) I
~---i
IP1 {1 word) I
~---i
I {1 word) I
~---i
I (1 word) \
~----------T---------T----------~-T------i
I I status I I \ I
~----------~r----T---~r----T----'~~~-T----i
I I I I I I I I L ___________ ~ ____ ~ ___ ~ ____ ~ ___ ~ ____ ~ ____ J

Logical Branch Operators (BT. BF)

r---,
I Chain (1 word) I
~---i
ILogical branch operator {1 word) I
~---i
IPl (1 word) I
~---i
IP2 (1 word) I
~---i
I {1 word) I
r----------T---------~----------T-T------i
I I status I I I Mode I
~----------~r----T---~r----T----'~-~-T----i
I I I I R2 I B2 I I I L ___________ ~ ____ L ____ ~ ____ L ____ ~ ____ ~ ____ J

Binary Operators (+. - *, /. OR. and AND)

r---,
I Chain (1 word) \
~---i
I Binary operator (1 word) I
~---i
IPl (1 word) I
~---i
IP2 (1 word) I
~---i
\P3 (1 word) \
~----------T---------T----~------T-T------i
I I status I I \ Mode I
~----------~r----T---~r----T----,L-~-T----i
I I Rl \ Bl \ R2 \ B2 \ R3 I B3 I L ___________ ~ ____ L ____ L ____ L ____ L ____ L ____ J

162

Pi: The Pi field contains a pointer to the
statement number/array table entry for the
statement number branched to.

Note: Phase 25 decides if an RR or an RX
branch instruction should be generated.

Pi: The Pi field contains a pointer to the
statement number/array table entry for the
statement number being branched to.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

Note: The test of the logical variable
will be done with a BXH or BXLE for BT and
BF. respectively.

c

c

(

(

Test and Set Operators (GT, LT, GE# LE, EQ, and NE)

r--,
IChain (1 word) I
~---~
ITest and set operator (1 word} I
~---~
IP1 (1 word} I
~---~
IP2 (1 word} I
~---~
IP3 (1 word) I
~----------T---------T-----------T-T------~
I I Status I I I Mode I
~----------~r----r_--~r----T----'~-~-T----~
I I R1 I B1 I R2 I B2 I R3 I B3 I L ___________ ~ ____ ~ ___ ~ ____ ~ ____ ~ ____ ~ ____ J

In-line Functions (MAX2, MIN2, DIM. 101M, DMOD, MOD, AMOD" DSIGN, SIGN, ISIGN, LAND, LOR,
LCOMPL, IDIM, BITON, BITOFF, AND, OR, COMPL, MOD24, SHFTR, and SHFTL)

r---------------------------------------,
I Chain (1 word} I
~---~
IFunction Operator (1 word) I
~---~
IP1 (1 word) \
~--~
IP2 (1 word) I
.---~
IP3 (1 word) I
~----------T---------T-----------T-T------~
I I status I I I Mode I
.----------~r----T---~r----T----'~-~-T----~
I I R1 I B1 \ R2 I B2 I R3 I B3 I L ___________ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J

Testing a Byte Logical Variable (LDB)

r---,
I Chain (1 word) I
~--~
ILDB operator (1 word} I
~---~
IP1 (1 word) I
.---~
IP2 (1 word) I
r---~
I (1 word) I
.----------T---------T-----------T-T------~
I I status I I I Mode I
.---------~~r----T---~r----T----'~-~-T----~
I I R1 I I R2 I I R3 I B3 I L ___________ ~ ____ ~ ____ ~ ____ ~ __ ~~ ____ ~ ____ J

Note: The LOB operator is used to load a
register with a byte logical variable.

Appendix B: Intermediate Text 163

Branch on Index Low or Equal, or Branch on Index High

r---------------------------------,
I Chain (1 word) I
~---------------------------------i
I Add operator (1 word) I
~--------------------------------i
I Pi (1 word) I
~---------------~-----------------i
I P2 (1 word) I Text
~---------------------------------i Entry 1
I P3 (1 word) I
~--T---------T-----------T-T------i
I I Status I I I I
~--~r----T---~r_---T----'~-~-T----i
I I I I R2 I I R3 I B3 I L ___ ~ ____ ~ ____ ~ ____ i_ __ _L ____ ~ ____ J

r---------------------------------,
I Chain (1 word) I
~--------------------------------i
I Branch operator (1 word) I
~---------------------------------i
I Pi (1 word) I
~---------------------------------i
I P2 (1 word) I Text
~---------------------------------i Entry 2
I P3 (1 word) I
~--T---------T-----------T-T------i
I I Status I I I I
~--~ r----T---~ r_---r----, ~-i-T----i
I I I I R2 I I R3 I B3 I L ___ ~ ____ ~ ____ ~ ____ ~ ___ _L ____ ~ ____ J

computed GO TO Operator

r---,
I Chain (1 word) I
~---i
Icomputed GO TO operator (1 word) I
~---i
IPl (1 word) I
~---i
IP2 (1 word) I
~---------------------------------------i
IP3 (1 word) I
~----------T---------T-----------T-T------i
I I Status I I I I
~----------~r----T---~r----T----'~-~~T----i
I I I I I B2 I R3 I B3 I L ___________ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J

164

Note: A BXHLE instruction will be generat
ed by phase 25 when an add operator is
followed by a branch operator.

Pi and P2 of text entry 1 equals P2 of
text entry 2.

Pi: The Pi field of text entry 2 contains
a pointer to the statement number/array
table entry for the statement number being
branched to.

Pi: Pi contains the number of items in the
branch table that are associated with the
computed GO TO operator.

P2: P2 contains a pointer to the informa
tion table entry for the branch table.

P3: P3 contains a pointer to the indexing
value for the computed GO TO statement.

()

c

(

Branch Operators (BL, BLE, BE, BNE, BGE, BG, BLZ, BLEZ, BEZ, BNEZ, BGEZ, and BGZ)

r---,
I Chain (1 word) I
~---~
IBranch operator (1 word) I
~---~
IP1 (1 word) I
~---~
IP2 (1 word) I
~---~
IP3 (1 word) I
~---------T---------T-----------T-T------~
I I status I I I Mode I
~----------~r----T---~r----T----'~-~-T----~
I I I ,R2, B2 I R3 , B3 I L ___________ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J

Binary Shift Operators (RS, LS)

r---,
,Chain (1 word) I
~---~
IBinary shift operator (1 word) I
~---i
IPl (1 word) I
~---~
IP2 (1 word) I
~---~
IShift quantity (1 word) I
~----------T---------T-----------T-T------i
, I Status , I I Mode I
~----------~r----T---~r----T----'~-~-T----~
, 'I I R2 I B2 I R3 I B3 I L ___________ ~ ____ ~ ___ ~ ____ ~ ____ ~ ____ ~ ____ J

Load Address Operator (LA)

r--,
,Chain (1 word) I
~---~
ILoad address operator (1 word) I
~---1
IP1 (1 word),
~---i
IP2 (1 word) I
~---i
IP3 (1 word) I
~---------T---------T-----------T-T------~
I I status I lSI Mode I
~----------~r----T---~r----T----'~-~-T----i
I I R1 I I R2 I ,R3 I B3 I
~-----------~----~----~----~----~----~----~
I Displacement (1 word) I L ___ J

Pi: The Pi field contains a painter to the
statement number/array table entry for the
statement number being branched to.

Note: Operands 2 and 3 must be compared
before the branch. For the BLZ, BLEZ, BEZ,
BNEZ. BGEZ, and BGZ operators, operand 3 is
zero and a test on zero is generated.

Note: The purpose of the load address
operator is to store an address of an
element of an array in a parameter list.
The Pi field defines the parameter list.

Appendix B: Intermediate Text 165

subscript Text Entry - Case 1

r---,
I Chain (1 word) I
~---i
Isubscript operator (1 word) I
~---i
IPl (1 word) I
~---i
IP2 (1 word) I
~--~
IP3 (1 word) I
~----------T---------T-----------T-T------i
I I status I lSI Mode I
~----------~r----T---~r----T----'~-~-T----i
, I Rl I Bl I R2 , B2 I R3 I B3 I
~-----------~----~----~----~----~----~----i
I Displacement (1 word) I L ___ J

Subscript Text Entry - Case 2

r---,
,Chain (1 word) I
~---i
ISubscript operator (1 word),
~---i
I (1 word} I
~---i
IP2 (1 word} I
~---i
IP3 (1 word) I
~----------T---------T-----------T-T------i
I I Status I lSI Mode I
~----------~r----T---~r----T----'~-~-T----i
I I I I I B2 I R3 I B3 I
~-----------~----~----~----~---~----~----i
I Displacement (1 word} I L ___ J

P2: The P2 field contains a pointer to the
dictionary entry for the variable being
indexed.

P3: The P3 field contains a pointer to the
dictionary entry for the indexing value.

Note: For Case 2 subscript text entries,
the subscript text entry is combined with
the next text entry to form a single RX
instruction. (Case 2 will be formed by
phase 15 only when the second text entry
has the store operator. Phase 20 will
change Case 1 text entries to Case 2 text
entries when appropriate.)

Pi is zero and either P2 or P3 of the
next text entry will be zero.

In-line routines (DABS, ABS, lABS., IDINT, INT, HFIX, DFLOAT, FLOAT, DBLE)

r---,
I Chain (1 word) I
~---i
I Operator (1 word) I
~---i
IPl (1 word) I
~---i
IP2 (1 word) I
~---i
I (1 word) I
~----------T---------T-----------T-T------i
I I Status I I I Mode I
~----------~r----T---~r----T----'~-~-T----i
I I Rl I Bl I R2 I B2 I I I L ___________ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J

166

o

(

(

EXT. and LIBF Operators

r---,
I Chain (1 word) I
~---i
I Operator (1 word) I
~---i
IP1 (1 word) I
~--i
IP2 (1 word) I
~---~
IP3 (1 word) I
~--------T---------T-----------T-T------i
I I ,Status I , I !
.----------ir----T---ir----T----,i-i-T----i
! I R1 I B1 I , , ! I L ___________ i ____ i ____ i ____ i ____ i ____ i ____ J

Arguments for Functions and Calls

r---,
I Chain (1 word)!
~--i
,Argument operator (1 word)!
~--i
IP1 (1 word) !
~---i
!P2 (1 word)!
~--i
IP3 (for complex) (1 word)!
~----------T----~------T---------T-T------i
, , ! ! , !
~----------ir----T----,i---T----,i-i-T----i
, ,!"'! I L ___________ i-___ i-___ i ____ i-___ i ____ i ____ J

Pi: P1 is zero for the EXT operator of a
subroutine call.

P2: The P2 field contains either a pointer
to the dictionary entry for an external
function or a subroutine name. or a pointer
to the IFUNTB entry for a library function.

P3: The P3 field contains either zero or a
symbolic register number and a displacement
that points to the object-time parameter
list of the external function. library
function, or subroutine.

Note: No registers are needed for this
type of text entry.

For calls and ABNORMAL functions, Pi =
P2. For NORMAL functions and library func
tions, P1 = o.

See the next text entry for the case of
complex statements.

Special Argument Text Entry for Complex Statements

r---, I Chain (1 word) I
.---------------------------------------~i !Argument operator (1 word)!
~---------------------------------------~i
IP1 (1 word)!
.---i
I (1 word)!
.---i ! (1 word) I
~---------T---------T-----------T-T------i
I ! status ! I I !
.----------ir----T---ir----T----,i-i-T----i
I ! Ri , Bi I , , , , L ___________ i ____ i-___ i ____ i-___ i-___ i ____ J

Note: For complex statements. the first
text entry of the argument list contains
the register information for the imagina~y
part of the complex result.

Appendix B: Intermediate Text 167

Assigned GO TO Operator (BA)

r---,
IChain (1 word) I
~---~
IAssigned GO TO operator (1 word) I
~---~
I (1 word) I
~---~ IP2 (1 word) I
~---~
I (1 word) I
~----------T-----------~--------T~T------~
I I Status J I I I
~----------~r----T----'~--T----'~-~-T----~
I I I I R2 I B2 I I I l ___________ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J

READ/WRITE Operators for I/O lists

READ

r---,
I Chain (1 word) I
~---~
IREAD operator (1 word) I
~---~
IPl (1 word) I
~---~
I (1 word) I
~---~
IP3 (1 word) I
~----------T-----------~--------T-T------~
I I Status I I I I
~----------~r----T----'~---T----'~-~-T----~
I I Rl I Bl I I I I I l ___________ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J

WRITE

r---,
I Chain (1 word) I
~--~
IWRITE operator (1 word) I
~---~
I (1 word) I
~---~
IP2 (1 word) I
~---~
IP3 (1 word) I
~----------T-----------T---------T-T------~
I I Status I I I I
~---------~r----T----'~---T----'~-~-T----~
I I Rl I Bl I I I I I l ___________ ~ ____ ~ ___ ~ ____ ~ ____ ~ ____ ~ ____ J

168

P2: The P2 field contains a pointer to the
variable being used in the assigned GO TO
statement.

Pi: The Pi field contains a pointer to the
I/O list for the READ statement.

Note: If the P3 field contains a zero, an
entire array is being read. This causes a
different instruction sequence to be gener
ated.

P2: The P2 field contains a pointer to the
I/O list for the WRITE statement.

Note: If the P3 field contains a ze.ro, an
entire array is being written. This causes
a different instruction sequence to be
generated.

C:.' .,./

I~
I '

~

o

Logical Branch Operators (BBT. BBF)

r---,
I Chain (1 word) I
~---~
ILogical Branch Operator (1 word) I
~---i
IP1 (1 word) I
~---i
IP2 (1 word) I
~---i
IP3 (1 word) I
~---------T---------T-----------T-T------i
I I Status I I I Mode I
~----------~r----T---~r----T----'~-~-T----i
I I R1 I I I B2 I I I l ___________ ~ ____ ~ ____ L ____ ~ ____ ~ ____ ~ ____ J

LBIT Operator

r---,
IChain (1 word) I
~---i
ILBIT operator (1 word) I
~---------------------------------------~i
IP1 (1 word) I
~---i
IP2 (1 word) I
~---i

(IP3 (1 word) I
~----------T---------T-----------T-T------i
I I status I I I Mode I
~----------~r----T---~r----T----'~-~-T----i
I I I I I B2 I I I l ___________ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J

P1: The P1 field contains a painter to the
statement number/array table entry for the
statement number being branched to.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

P3: The P3 field contains a pointer to the
dictionary entry for the number of the bit
being tested.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

P3: The P3 field contains a pointer to the
dictionary entry for the number of the bit
being tested.

Appendix B: Intermediate Text /169

APPENDIX C: ARRAYS

The major arrays of the compiler are the
bit strip and skeleton arrays, which are
used by phase 25 during code generation.
The following figures illustrate the bit
strip and skeleton arrays associated with
the operators of text entries that undergo
code generation. The skeleton array for
each operator is illustrated by a series of
assembly language instructions, consisting
of a basic operation code, which is modi
fied to suit the mode of the operands, and
operands, which are in coded form. The
operand codes and their meanings are as
follows:

Bn--base register for operand n

BD--base register used for loading an
operand's base address

Rn--operational register for operand n

X--index register when necessary

To the right of the skeleton array for
an operator is the bit strip array for the
operator. Each bit strip in the bit strip
array consists of a vertical string of 0' s"
l's, and XiS. A particular strip is
selected according to the status informa
tion, which is shown above that strip. For
example, if the combined status of operands
2 and 3 is 1010 (reading downward), the bit
strip below that status is to be used
during code generation. (The status of
operand 2 is indicated in the first two
vertical posi..tions, reading downward; the
status of operand 3 is indicated in the
second two vertical positions, reading
downward'-) '. The meanings of the v:arious
bit settings in each bit strip are as
follows:

'-In some cases, operand 3 does not exist
and only the status of operand 2 is indi
cated.

170

O--The associated skeleton array
instruction is not to be included
as part of the machine code
sequence.

1--The associated skeleton array
instruction is to be included as
part of the machine code sequence.

X--The associated skeleton instruc
tion mayor may not be included as
part of the machine code sequence,
depending upon whether or not the
associated' base address is to be
loaded, or whether or not a store
into operand 1 is to be performed.
(In some cases, O's rather than
Xes appear for base register loads
and the subject store
instruction.)

MINUS: Used for All Subtract Operations
r-----T------------------T----------------,
1 1 Skeleton 1 1
1 Index 1 Instructions 1 Status 1

C' ,)

·-----+------------------+0000000011111111~ C
0000111100001111
001100110011"0011
0101010101010101

1 L B2,D(0"BD) XXXXXXXXOOOOOOOO
2 LH R2,D(O,B2) 0000111100000000
3 LH R1,D(X,B2) 1100000000000000
4 L B3,D(O,BD) XXOOXXOOXXOOXXOO
5 LCR R3,R3 0010001000000010
6 LR R1.,R2 0000110100001101
7 LH R3,D(0,B3) 0100010001000100
8 LCR R1,R3 0001000000000000
9 SH R1,D(X,B3) 1000100010001000

10 SR R1,R3 0100010101110101
11 AH R3,D(X,B2) 0010000000000000
12 AH R1,D(X,B2) 0001000000000000
13 AR R3,R2 10000001000000010
14 L B1 , D(O,BD) IXXXXXXXXXXXXXXXX
15 STH R1,D(0,B1) IXXXXXXXXXXXXXXXX L _____ ~ __________________ ~ ________________ J

o

(
NTFXGN: Used for the INT, IDINT, IFIX, and

HFIX In-Line Routines
r-----T------------------T----------------,
I 1 lINT, 1
1 1 1 IFIX, 1
1 1 Skeleton 1 HFIX IDINTI
1 Index I Instructions 1 Status Status I
~-----+------------------+----------------i

0011 0011 I
0101 0101 I

I
1 SDR 0,0 1111 0000 1
2 L B2,D(O,BD) XXOO XXOO I
3 LD R2,D(O,B2) 0100 0100 I
4 LD O,D(0.,B2) 1000 1000 I
5 LDR O,R2 0111 0111 I
6 AW 0.,60(0,12) 1111 1111 I
7 STD 0,64(0,13) 1111 1111 I
8 L R1,68(O,13) 1111 1111 I
9 BALR 15,0 1111 1111 1

10 BC 10,6(0.15) 1111 1111 I
11 ILNR R1,R1 1111 1111 I
12 IL B1"D(0.,BD) XXXX XXXX I
13 ISTH R1,D(O"Bl> XXXX XXXX I _____ ~ __________________ ~ ________________ J

ABSGEN: Used for the ASS, lABS and DABS
In-Line Routines

r---------.--------------------T----------,
I I Skeleton 1 I
I Index 1 Instructions I Status I

(~---------+--------------------+----------i
1 1 I 0011 I
I 1 1 0101 I
1 I I 1
1 1 1 L B2,D(0,BD) 1 XXOO 1
1 2 1 LH R2,D (0"B2) 1 1100 1
1 3 1 LPR R1,R2 1 1111 1
1 4 1 L B1,D(0,BD) 1 xxxx 1
1 5 1 STH Rl,D(O,Bl) 1 XXXX I L _________ L-___________________ ~ __________ J

MOD24: Used for the MOD24 In-Line Routine
r---------T--------------------T----------,
1 1 Skeleton 1 1
1 Index 1 Instructions 1 Status 1
~---------+--------------------+----------i
1 1 1 0011 1
1 1 1 0101 1
1 1 I 1
1 1 1 I
1 1 1 L B2,D(0,BD) 1 XXOO 1
1 2 I L R2,D(X,B2} 1 1100 1
1 3 1 LA R1,O(0,R2) 1 1111 1
1 4 1 L B1,D(O,BD) 1 xxxx 1
1 51ST R1,D(O,B1) 1 xxxx 1 L _________ ~ ____________________ ~ __________ J

MXMNGN: Used for the MAX2 and MIN2 In-Line
Routines

r-----T------------------T----------------,
1 1 Skeleton 1 1
1 Index I Instructions I Status I
.-----+------------------+----------------i

10000000011111111
10000111100001111
10011001100110011
10101010101010101
1

1 L B2,D(0,BD) IXXXXXXXXOOOOOOOO
2 LH R2,D(O,B2) 10000111100000000
3 LH R1"D (0, B2) 11100000000000000
4 CR R1~R2 10000001000000010
5 CH R3,D(0,B2) 0001000000000000
6 CH R1,D(O,B2) 0010000000000000
7 L B3.D(O,BD) XXOOXXOOXXOOXXOO
8 ILH R3,D(0,B3) 0100010001000100
9 fCR R2.R3 0100010101110101

10 ICH R2.,D(O,B3) 0000100000001000
11 ICH R1,D(0,B3) 1000000010000000
12 ILR R1,R2 0000110100001101
13 ILR R1,R3 0001000000000000
14 IBALR 15.0 1111111111111111
15 IBC N,6(O,15)1 1111111111111111
16 ILR R1,R2 0000001000000010
17 ILR R1,R3 0100010101110101
18 ILH R1,D(0,B2) 0011000000000000
19 ILH R1,D(0,B3) 1000100010001000
20 IL B1,D(O,BD) XXXXXXXXXXXXXXXX
21 I STH R1., D (0, B1) xxxxxxxxxxxxxxxx

~-----~------------------~----------------i
11 For MAX 2., N=2; for MIN2, N=4. 1 L ___ J

SHFTRL: Used for the SHFTR and SHFTL In-
Line Routines

r-----T------------------T----------------,
1 1 Skeleton 1 1
1 Indexl Instructions I Status 1
.-----+------------------+----------------i

10000000011111111
10000111100001111
10011001100110011
10101010101010101
1

1 L B2,D(0.BD) IXXXXXXXXOOOOOOOO
2 L R2,D2 (X,B2) 11111111100000000
3 LR R1,R2 10000111100001111
4 L B3,D(0"BD) IXXOOXXOOXXOOXXOO
5 LH R3,D3(X,B3) 11100110011001100
6 SRL R1,O(O,R3) 11111111111111111
7 L B1,D(0,BD) IXXXXXXXXXXXXXXXX
8 ST R1,D(0,B1) IXXXXXXXXXXXXXXXXI _____ ~ __________________ ~ ________________ J

Appendix C: Arrays 171

SIGNGN: Used for SIGN, ISIGN, and DSIGN CMPLGN: Used for COMPL and LCOMPL In-Line 0
In-Line Routines Routines '~, _.

r-----T------------------T----------------l
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------i

100000000111111111
10000111100001111 1
100110011001100111
10101010101010101 1
1 1

1 L B2,D(0,BD) 1XXXXXXXXOOOOOOOOI
2 LH R2,D(0.,B2) 100001111000000001
3 LTR R3,R3 100100010001000101
4 LH Rl.,D(O, B2) 11111000000000000 I
5 L B3,D(0,BO) XXOOXXOOXXOOXXOOI
6 LH R3,D(0,B3) 0100010001000100
7 LR R1,R2 0000001000000010
8 LPR R1,R2 0000110100001101
9 LPR R1#R1 1101000011010000

10 LTR R3,R3 0101010101010101
11 TM 128,D(0,B3) 1000100010001000
12 BALR 15,0 1111111111111111
13 BC 14,6(0,15) 1000100010001000
14 BC 10,6(0,15) 0111011101110111
15 LNR R1,R1 1111111111111111
16 BC 15,12(0,15) 0010001000100010
17 LPR R1,R1 0010001000100010
18 L B1., D (0, BD) XXXXXXXXXXXXXXXX
19 STH Rl, D (0, Bl) XXXXXXXXXXXXXXXX I l _____ ~ __________________ ~ ________________ J

DBLGEN: Used for the DBLE In-Line Routines
r---------T--------------------T----------l
I I Skeleton I 1
I Index I Instructions 1 Status 1
~---------+--------------------+----------i

0011
0101

1 L B2,D(0,BD) XXOO
2 SDR R1,R1 1111
3 LER 0"R2 0010
4 LE Rl,D(0,B2) 1100
5 LER R2,R1 0100
6 LDR R1,O 0010
7 LER R1,R2 0001
8 L B1,D(0.,BD) XXXX
9 STO Rl,D(O,B1) XXXX _________ L-___________________ ~ __________ J

172

r---------T-------------~------T----------,
1 1 Skeleton 1 1
1 Index I Instructions I Status I
~---------+--------------------+----------i

0011
0101
0000
0000

1 L B2,D(O,BD) XXOO
2 L R2,D(0,B2) 0100
3 LA R1,l(0,0) 1101
4 LCR Rl,R1 1111
5 X Rl,02(X,B2) 1000
6 XR Rl,R2 0101
7 BCTR Rl,O 0010
8 L B1,O(0,BO) XXXX
9 ST Rl,0(O,B1) XXXX

---------~--------------------~----------

AOMDGN: Used for DMOD and AMOD In-Line
Routines

r-----~-----------------T----------------,
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------i

10000000011111111
10000111100001111
10011001100110011
10101010101010101
I

1 L B2,0(0,BD) IXXXXXXXXOOOOOOOO
2 LD R2,D(0"B2) 10000111100000000
3 LD R1.,D(O,B2) 11111000000000000

STO Rl,Temp1 Idone by AOMDGN
4 L B3.,0 (0, BO) XXOOXXOOXXOOXXOO
5 LD R3,D(O,B3) 0100010001000100
6 LOR Rl,R2 0000111111111111
7 IDOR R1,R3 0111011101110111
8 10D Rl,0(0,B3) 1000100010001000
9 lAD R1,n(0,12) 1111111111111111

10 I MDR R1"R3 0111011101110111
11 IMD R1,D(O,B3) 1000100010001000
12 I LCOR R1, R1 1111111111111111
13 lAD R1,O(0.B2)1 1111111100000000
14 IADR Rl,R2 0000000011111111
15 IL B1.,0(0,BO) XXXXXXXXXXXXXXXX
16 ISTD R1,O(O,Bl) xxxxxxxxxxxxxxxx

~-----~------------------~----------------i
Is-When the statuses and base address I
I statuses of operands 2 .and 3 are zero, a I
I store of operand 2 into a temporary willi
I be done as indicated and the add will be I.
I from the temporary location. I L _______________________________________ · __ J

c

f

LGLNOT: Used for NOT Operations
r---------T--------------------T----------1
I I Skeleton I I
I Index I Instructions I Status I
~---------+--------------------+----------~

0011
0101

1 L B2,D(0.BD) XXOO
2 LA Rl,l CO, 0) 1101
3 BCTR Rl,O 0010
4 LCR Rl,Rl 0010
5 X R1,DCX.B2) 1000
6 L R2.D2CO,B2) 0100
7 XR R1,R2 0101
8 L' B1,DCO,BD) XXXX
9 ST R1,D(O,Bl) XXXX L _________ ~ ____________________ ~ ________ __

DIMGEN: Used for DIM and IDIM In-Line
Routines

r-----T------------------T----------------,
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

I 100000000111111111
I 100001111000011111
I 100110011001100111
I 10101010101010101 1
I I I

1 IL B2"DCO,BO) IXXXXXXXXOOOOOOOOI
2 ILH R2,DCO, B2) 10000111100000000 I
3 ILH Rl,D(O.B2) 111010000000000001
4 I LCR Rl,R3 10010001000000010 I
5 IAH R1,DCO,B2) 1001000000QOOOOOOI
6 IL B3,DCO.BD) IXXOOXXOOXXOOXXOOI
7 ILH R3 .• D(0,.B3) 101000100010001001
8 ILR Rl.R2 100001101000011011
9 ISH R1.DCO.B3) 110001000100010001

10 IAR Rl,R2 100000010000000101
11 ISR R1,R3 101010101011101011
12 I BALR 15,,0 111111111111111111
13 IBC 10,,6CO.15) 111111111111111111
14 ISR R1,Rl 111111111111111111
15 IL BL,DCO.BD) I XXXXXXXXXXXXXXXX 1
16 ISTH Rl,DCO.B1l IXXXXXXXXXXXXXXXXI L-____ ~ ________________ ~ _______________ J

BTBF: Used for All Branch True and Branch
False Operations

r-----T----------------~-----------------,
I 1 Skeleton I I
I Indexl Instructions 1 Status I
~-----+-----------------+-----------------~
I I 10000 000011111111 I
I I 10000111100001111 I
1 I 10011001100110011 1
I 1 10101010101010101 1
1 I I I
I 1 I L B2,D(O,BD) 10000000000000000 I
I 2 IL R2.DCO.B2) 11111111100000000 I
I 3 ISR R3.R3 11100110011001100 I
I 4 IL Bl,D(O.BD) 11111111111111111 I
I 5 IBXH R2.0CR3,Bl) 11111111111111111*1
I 6 IBXLE R2.0(R3,B1) 11111111111111111*1
~-----~-----.------------~-----------------~
I*One of these two instructions will bel
ladded to the bit strip by subroutine I
IMAINGN depending on the operation. I L ___ J

LDADDR: Used for All Load Address Opera-
tions

r-----T------------------T----------------,
I I Skeleton 1 1
I Index 1 Instructions 1 Status 1
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B3.DCO,BD) 0000000000000000
2 LH R3.D(0.B3) 1100110011~01100
3 L B2.DCO,BD) 0000000000000000
4 LA Rl.DCR3,B2) 1111111111111111
5 L Bl,D(O,BD) 0000000000000000
6 ST Rl,D(O,B1) 1111111111111111
7 LA O,128CO,O) 0000000000000000
8 MVI 128,DCO.B1) 0000111100000000 _____ ~ __________________ ~ ________________ J

LDBGEN: Used for All Load Byte Operations
r-----T------------------T----------------,
I I Skeleton I I
I Index I Instructions I Status I
.-----+------------------+----------------~
I I 100000000111111111
I I 10000111100001111 1
1 1 100110011001100111
1 I 101010101010101011
I I I I
1 1 IL B3,DCO,BD) 1000QOOOOOOOOOOOOI
I 2 ISR R3.R3 111111111000000001
1 3 IIC R3.DCX.B3) 111111111111111111
14 ·IL Bl,D(O,BD> 100000000000000001
I 51ST R3.D(0,Bl) 100000000000000001 L _____ ~ __________________ ~ ________________ J

Appendix C: Arrays 173

SUBGEN: Used for Case 1 and Case 2 Sub-
script Operations

r-----T-~--------------~----------------l
I I Skeleton I 1
I Index I Instructions 1 Status 1
~-----~------------------~----------------i
I Case 1 1
~-----T------------------T----------------i
I 1 100000000111111111
I 1 100001111000011111
I I 100110011001100111
I I 101010101010101011
~-----+------------------+----------------i
I 1 IL B3,D(O,BD) 10000000000000000 I
I 2 ILH R3,D(O,B3) 111001100000000001
131L B2,D(O,BD) 100000000000000001
I 4 ILH R2,D(O,B2) 11 1111111000000001
I 5 IL Bl,D(O,BD) 100000000000000001
I 6 ISTH R2,D(O,B1) 100000000000000001
~-----~------------------~---------------i
I Case 2 1
~-----T--------------~---T----------------~
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
1 I 101010101010101011
~----+------------------t-------·-------i
I 1 IL B3,D(O,BD) 100000000000000001
I 2 ILH R3,D(O,B3) 11100110011001100 1
I 3 1 L B2,D (0, BD) 10000000000000000 I
I 4 ILH R2,D(O,B2) 100000000000000001
I 5 IL B1,DCO,BD) 100000000000000001
I 6 ISTH R2,D(0,Bl) 100000000000000001 L-____ ~ __________________ ~ _______________ J

UNRGEN: Used for All Unary Minus Opera-
tions

r-----~--------------T----------------,
1 I Skeleton I I
I Index I Instructions 1 Status 1
~----+------------------+----------------i
I 1 100000000111111111
I 1 100001111000011111
1 1 100110011001100111
I I 101010101010101011
1 1 I I
I 1 I L B2, D C 0, BD) 10000000000000000 I
I 2 ILH R2.,D2(X,B2) 111111111000000001
I 3 ILCR Rl,R2 111111111111111111
I 4 IL Bl,D(O,BD) 100000000000000001
I 5 ISTH Rl,Dl(X,B1) 100000000000000001 L-____ ~ __________________ ~ ________________ J

174

BRCOMB: Used for All Computed GO TO Opera- C'.,
tions .

r----~-----------------T----------------,
I I Skeleton 1 I
I Index I Instructions I Status I
~-----t-----------------~t------------~---i

1 0000000011111111
I 00Q0111100001111

0011001100110011
01.01010101010101

1 L B3,D(O,BD) 0000000000000000
2 L R3,D3(0.B3) 1100110011001100
3 LR R1,R3 0101010101010101
4 LA R2"Pl (0, 0) 1111111111111111
5 CLR Rl, R2 1111111111111111
6 BALR R2,O 1111111111111111
7 SLL Rl,,2(0.0) 1111111111111111
8 BC 2,14(O,R2) llllllil11111111
9 L R2,DCR1.B) 11111111111111111

10 BCR 15,R2 111111111111111111 _____ ~ __________________ ~ ________________ J

BRCOMP: Used for All Assigned GO TO Opera-
tions

r-----T------------------T---------------,
I I Skeleton I I
I Indexl Instructions I Status I
.-----t----------------t----'---------i
I l 10000000011111111 1
I I 100001111000011111 r'
I I I 00110011001100111 ~
I 1 10101010101010101 1
I 1 I I
I 1 IL B2,D(0,BD) 100000000000000001
I 2 IL R2,D<O,B2) 111111111000000001
I 3 IBCR 15,R2 111111111111111111 L _____ ~ _________________ ~ _______________ J

STRGEN: Used for All Store Operations
r-----~-----------------T----------------,
1 1 Skeleton I 1
1 Indexl Instructions 1 Status 1
.-----t------------------+--------------i
1 1 100000000111111111
I 1 10000111100001111 1
1 1 10011001100110011 1
1 I 10101010101010101 1
I I 1 1
1 1 1 L B2,D (0, BD) 100000000000000001
1 2 ILH R2,D(0.B2) 111111111000010001
I 3 IL B1,D(O,BD) 100000000000000001
I 4 ISTH R2,D(X,Bl) 100000000000000001 L _____ ~ __________________ ~ _______________ J

c

(

(

INTMPY: Used for All Fixed Point Multi-
plication Operations

r-----T------------------T----------------,
, I Skeleton I I
1 Index 1 Instructions 1 Status 1
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2.,D(O,BD) 0000000000000000
2 LH R2,D(0.B2) 0000111100000000
3 LH R1,D(X,B2) 1100000000000000
4 L B3,D(0,BD) 0000000000000000
5 LH R3,D(O,B3) 0100010001000100
6 LR Rl,R2 0000110100001101
7 LR Rl.,R3 0001000000000000
8 MR R1-1,R3 0100010101110101
9 MR R1-1.,R2 0000001000000010

10 MH R1.,D (X, B3) 1000100010001000
11 MH R1,D(X,B2) 0011000000000000
12 L B1,D(0,BD) 0000000000000000
13 STH Rl.,D(O, B1) 0000000000000000 I

-----~------------------~----------------j

DIVGEN: Used for all Full-Word Integer
Division Operations and for the
MOD In-Line Routine

r-----T------------------T----------------,
1 I Skeleton' 1
1 Indexl Instructions 1 Status 1
~-----+------------------+----------------i
1 0000000011111111
1 0000111100001111
I 0011001100110011
1 0101010101010101
1
, 1 L B2,D(O,BD) 0000000000000000
, 2 LH R2,D(O,B2) 0000111100000000
1 3 LH Rl,D(0,B2) 1111000000000000
I 4 L B3,D(O,BD) 0000000000000000
, 5 LH R3,D(X.B3) 0100010001000100
I 6 LR Rl,R2 0000111100001111
I 7 SRDA R1,32(O,O) 1111111111111111
I 8 DR R1,R3 0111011101110111
, 9 D R1,D(X,B3) 1000100010001000
I 10 L B1,D(0,BD) 0000000000000000
I 11 STH R1+1,D(O,Bl) 0000000000000000
I 12 STH R1,D(O,B1)* 0000000000000000
~----~------------------~----------------i
1* For MOD in-line routine only. I L ___ J

DIVGEN: Used for all Half-Word Integer
Division Operations and for the
MOD In-Line Routine

r-----T------------------T----------------,
I I Skeleton I ,
,Indexl Instructions I Status I
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,D(O,BD) 0000000000000000
2 LH R2,D(0.B2) 0000111100000000
3 LH R1,D(0.B2) 1111000000000000
4 L B3,D(O,BD) 0000000000000000
5 LH R3,D(X,B3) 1100110011001100
6 LR R1,R2 0000111100001111
7 SRDA R1,32(O,O) 1111111111111111
8 DR R1,R3 1111111111111111
9 D R1,D(X.B3) 0000000000000000

10 L B1,D(O,BD) 0000000000000000
11 STH Rl+1,D(O,Bl) 0000000000000000

I 12 STH R1,D(O,B1)* 00000000000000001
~-----~------------------~----------------i
1* For MOD in-line routine only. I L ___ J

TSTSET: Used to Compare Operands Across a
Relational Operator and Set the
Result to True or False

r-----T----------------T---------------"1
I I Skeleton, I
1 Index I Instructions 1 Status 1
~-----+------------------+----------------i
1 0000000011111111
1 0000111100001111
I 0011001100110011

0101010101010101

1 L B2,D(O,BD) 0000000000000000
2 LH R2,D(X"B2) 1111111100000000
3 L B3,D(O,BD) 0000000000000000
4 LH R3,D(O,B3) 0100010001000100
5 CH R2,D(X,B3) 1000100010001000
6 CR R2,R3 0111011101110111
7 LA Rl,l(O.,O) 1111111111111111
8 BALR 15,0 1111111111111111
9 BC M,6(0,15) 1111111111111111

10 SR R1,R1 1111111111111111
11 jL B1,D(O,BD) 0000000000000000
12 1ST R1,D(O,B1) 0000000000000000 L _____ ~ ________________ ~ _______________ J

Appendix C: Arrays 175

LOGCL: Used for All Logical Operations FLTGEN: Used for the FLOAT and DFLOAT
r-----T------------------T----------------, In-Line Routines
I I Skeleton I I r---------T--------------------T----------1
I Index I Instructions I Status I I I Skeleton I I
~----~+------------------+_---------------i I Index I 'Instructions I Status I
I I 0000000011111111 ~---------+--------------------+----------i
I I 0000111100001111 0011
I I 0011001100110011 0101
I I 0101010101010101
I I 1 L B2, D (Q"BD) XXOO
I 1 IL B2"D (0, BD) 0000000000000000 2 LH R2,D(0,B2) 1100
I 2 IL R2,D(O,B2) 0000111100000000 3 LD R1,60(0,12) 1111

3 IL R1"D2 (0.,B2) 1101000000000000 4 STD R1, 72 (0,13) 1111
4 IL B3.D(0.BD) 0000000000000000 5 LTR R2,R2 1111
5 IL R3., D (0 • B3) 0100010001000100 6 BALR 15,0 1111
6 IL R1.,D3 (X,B3) 0000100000001000 7 BC 4,16(0,15) 1111
7 ILR R1"R2 0000010100000101 8 ST R2,,76(0,13) 1111
8 INR R1,R2 0000101000001010 9 AD R1" 72 (0,13) 1111
9 INR R1,R3 0101010101110101 10 BC 15,26(0,15) 1111

10 IN Rl,D2(0,B2) 0010000000000000 11 LPR O,R2 1111
11 IN R1,D3(X,B3) 1000000010000000 12 ST 0., 76 (0, 13) 1111
12 IL Bl" D (0., BD) 0000000000000000 13 SD R1,72(O,13) 1111
13 1ST R1, D1(0, BD 0000000000000000 14 L B1,D(O,BD) XXXX _____ .1. ________________ .1. ________________ J

15 STD Rl.,D(O,Bl) XXXX _________ .1. ____________________ .1. __________

PLSGEN: Used for All Addition Operations
and for Real Multiplication and NDORGN: Used for the AND and OR In-Line
Division Operations Routines

r-----T------------------T----------------,
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------i

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2"D (0, BD) 0000000000000000
2 LH R2.,D(O,B2) 00001.11100000000
3 LH R1"O(X, B2) 1101000000000000
4 L B3, D (0" BD) 0000000000000000
5 LH R3,D(0,B3) 0100010001000100
6 LH Rl,D(X,B3) 0000000000000000
7 LR R1,R2 0000110100001101
8 AR R1,R2 0000000000000000
9 AR Rl,R3 0101010101110101

10 IAH R1.D(X,B2) 0010000000000000
11 IAH R1.D(X.B3) 1000100010001000
12 IL B1.D(0,BD) 00000000000000001
13 ISTH Rl,D(O,Bl) 00000000000000001

~-----.l.------------------.1.----------------i
INote: For real multiplication and divi-I
I sion operat.ions., the basic operation I
I codes will be replaced by the required I
I codes. I L ___ J

r-----~-----------------T----------------~
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------i

I 100000000111111111
I 100001111000·011111
I 100110011001100111
I 101010101010101011
I I I

1 IL B2.D(0.,BD) 100000000000000001
21L R1.D(X,B2) 111111111111111111
3 IL B3,D(0.,BD) 100000000000000001
4 IN R1.,D(x.,B3) 111111111111111111
5 IL B1,D(0.,BD) 100000000000000001
6 1ST R1.D(0.,B1) 111111111111111111 _____ .1. __________________ .1. _____ ~ __________ J

SHFT2: Used for All Right- and Left-Shift
Operations

r-----T------------------T----------------,
I I Skeleton I I
I Indexl Instructions I Status I
~-----+------------------+_---------------i

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2.D(0.BD) 0000000000000000
2 LH R2.D(0.B2) 1111111100000000
3 LR R1~R2 0000111100001111
4 SRA R1.P3(O,O) 1111111111111111

r ,;
;;/

5 HDR R1,R2 0000000000000000
6 L B1,O(O,BO) 0000000000000000 C)
7 STH R1.D(0~B1) 0000000000000000 L-____ .l.-_________________ .1. ________________ J

116

(

BRLGL: Used for Text Entries Whose Opera
tor is a Relational Operator Oper
ating on Two Non-Zero Operands

r-----T------------------T----------------,
I I Skeleton I I
I Indexl Instructions I Status I

~-----+------------------+----------------1
10 000000011111111
10000111100001111
10011001100110011
10101010101010101
I

1 L B2,D(O,BD) 10000000000000000
2 LH R2,D(O,B2) 11111111100000000
3 L B3,D(0,BD) 10000000000000000
4 LH R3,D(X,B3) 10100010001000100
5 CH R2,D(X,B3) 11000100010001000
6 CR R2,R3 10111011101110111
7 LTR R2,R2 10000000000000000
8 L R1,P1 11111111111111111
9 BCR M,R1 11111111111111111 _____ ~ __________________ ~ ________________ J

BRLGL: Used for Text Entries Whose Opera
tor is a Relational Operator Oper
ating on One Operand and Zero.

r-----T------------------T----------------,
I I Skeleton I I
I Index I Instructions I Status I

~-----+------------------+----------------1
0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,D(0.BD) 0000000000000000
2 LH R2,D(0,B2) 1111111100000000
3 L B3,D(O,BD) 0000000000000000
4 LH R3,D(X.B3) 0000000000000000
5 CH R2,D(X,B3) 0000000000000000
6 CR R2,R3 0000000000000000
7 LTR R2,R2 1111111111111111
8 L R1,Pl 1111111111111111
9 BCR M,R1 11111111111111111 L _____ ~ __________________ ~ ________________ J

LBITTF: Used for the LBIT., BBT, and BBF In-Line Routines
r-------T-----------------------T---------------------------Tr--------------------------,
I I I BBT,BBF II LBIT I
I I ~---------------------------++--------------------------~
I I Skeleton I simple subscripted II simple subscripted I
I Index I Instructions I variable variable II variable variable I
~-------+-----------------------+---------------------------++--------------------------1

1 L B2 , D (0, BD) X X I I X X
2 LA 15,D+N/8 (X,B2) 0 1 II 0 1
3 TM M,D+N/8(B2) 1 0 II 1 0
4 TM M,O(15) 0 1 II 0 1
5 TM M,D+N/8<R2} 0 0 II 0 0
6 L 15, P1 1 1 II 0 0
7 BCR MM,15 1 1 II 0 0
8 BALR 15,0 0 0 II 1 1
9 LA R1,1(0,0) 0 0 II 1 1

10 BC 1.,10(O,15} 0 0 II 1 1
11 SR R1, R1 0 0 1\ 1 1
12 L B1,D(0,BD) 0 0 II X X
13 ST R1,D(O,B1} 0 0 II X X

~-------~-----------------------~---------------------------~~--------------------------1
I N = The bit to be loaded or tested. I
I I
I M = MSKTBL(MOD(N,8)+1). MSKTBL is an array of masks used by LBITTF. I
I I
I MM = 1 FOR BBT·. I
I I
I MM 8 FOR BBF. I L ___ J

Appendix C: Arrays 177

APPENDIX D: TEXT OPTIMIZATION EXAMPLES

This appendix contains
sample text entry sequences.
text optimization.

examples that illustrate the effects of text optimization on
An example is presented for each of the five sections of

Example 1: Common Expression Elimination

This example illustrates the concept of common expression elimination. The text
entries in block A are to undergo common expression elimination. Block B is a back
dominator of block a. Block B contains text entries that are common to those in block A.

(1)
Block B

..
Tl=I*4
T2=J*12
T3 = Tl + T2
T4=X(sT3
A = T4 + Y
....

Block A

T7=1*4
T8 = J * 12
T9=T7+T8
TlO = X (5 T9
B = TlO + Z

Eliminate
T9 = Tl + T2

B

A

Eliminote
T7=1*4

(4)

Unchanged

•

no = X (5 T3
B=T10+Z
..

B

•
A

(2)

Unchanged

..

T8=J'12
T9=Tl+T8
TlO = X (5 T9
B = no + Z

. . .

Eliminate
no = X (5 T3

A

Eliminate
T8 = J • 12

(5)

Unchanged

B = T4 + Z

NOTE: The items Ti are temporaries and (5 represents a subscript operator

178

(3)
B

Unchanged

• -
A

T9 = Tl + T2
no = X (5 T9
B = TIO + Z
....

c

c

(
Example 2: Forward Movement

This example illustrates both methods of forward movement. Block A, containing
the text entries to be moved, is a back dominator of the forward target of the loop.
which is block B.

(l)
Block A

Tl =A+B
T2=TI+C
Q = T2 + D
C=E+F

Block B

A

Move
Q = T2 + D ..

B

(2)

T1=A+B
T2=T1+C

C=E+F

Move T:' = T1 + C
(note generated
text entry)

Q = T2 + D

NOTE: The text entry C = E + F cannot be moved, because operand 1
(C) is used elsewhere in the loop

•

179

Example 3: Backward Movement

This example illustrates both methods
block A are to undergo backward movement.
containing block A.

of backward movement.
Block B is the back

180

(1)
Block B

E = W+ Z

A 1
X=E+U
n=A+B
T2 = n + C
E = T2 + D

(3)
B

E = W + z

n =A+B
T2=n+C

• 1 A

X=E+U

E = T2 + D

Move
T1=A+B

Move the
expression
T2 + D

(2)

..
E = W + Z

n=A+B
Move

1
T2 = n + C

•
A

X=E+U

T2=n+C
E = T2 + D

(4)
B

E = W + Z

Tl =A+B
T2=Tl+C
Tj=T2+D

• 1 A

X=E+U

E = Tj

NOTE: The text entry X = E + U cannot be moved, because Its operand 2 is
defined elsewhere in the loop. The text entry E = T2 + D cannot be
moved, because operand 1 (E) is busy-on-ex i t from the back target;
however, the expression T2 + D can be moved.

•

The text entries in
target of the loop

o

c

(

Example 3': Simple-Store Elimination

The following example illustrates the concept of simple-store elimination • an
integral part of the processing of backward movement. Note that the characteristics
of the operands of the simple store correspond to the last combination of
characteristics stated in Table 4.

r---,

(1)

Z=X
A=Z+B
D = F * Z
x = 2 * M
Z=Y/4

N=Z+G

Eliminate Z = X

(2)

A=X+B
D=F*X
X=2*M
Z=Y/4

N=Z+G

~---~ I Note: Uses of operand 1 of the simple store that appear below the redefinition of I
I either operand of the simple store are not replaced. I L ___ J

181

Example 4: Constant Expression Reordering

The following text and figures describe
and illustrate the concept of constant
expression reordering. The text entries to
be operated upon and the type 5 and type 6
tables are shown. Candidate pairs are
indicated by arrows. Note that reordering
involving type6-type5 candidate pairs caus
es the text entries to switch roles (i.e.,
switch tables>. In this example text
entries to compute the result of the inter
acting constants do not appear in the back
target, because, in all cases, both con
stants are absolute.

The initial text entries and
entries are:

table

r-------------T-------------~------------,
I TYPE 5 I TYPE 6 I TEXT I
~-------------t-------------t-------------~
I T4=T3*4.0 I T3=T2+8.0 I Tl=N-3.0 I
I I I T2=Tl*5.0 I
I T2=Tl*5.0 I Tl=N-3.0 I T3=T2+8.0 I
I I I T4=T3*4.0 I
I I I A=X(T4 I L _____________ ~ _____________ ~ _____________ j

The type 5 text entries do not consti
tute a candidate pair because they lack a
common temporary. However, three type
6-type 5 candidate pairs exist and undergo
constant expression reordering.

r-------------T-------------T-------------,
I TYPE 5 I TYPE 6 I TEXT I
~-------------t-------------t-------------~
I T4=T3*4.0~T3=T2+8.0 I Tl=N-3.0 I
I I I T2=Tl*5.0 I
I T2=Tl*5.0 I Tl=N-3 .• 0 I T3=T2*4.0 I
I I I T4=T3+32.0 I
I I I A=X(T4 I L _____________ ~ _____________ L-____________ J

r-------------T--~---------T-------------l
I TYPE 5 I TYPE 6 I TEXT I
~--------.-----t-------------t-------------~
I T3=T2*4.0 I T4=T3+32.0 I Tl=N*5.0 I
I I I T2=Tl-15.0 I
I T2=Tl*5.0.-j-Tl=N-3 .• 0 I T3=T2*4 I
I I I T4=T3+32.0 I
I I I A=X(T4 I L _____________ ~ _____________ ~ _____________ j

182

r-------------T-------------T-------------,
I TYPE 5 I TYPE 6 I TEXT I
~-------------t-------------t-------------~
I T3=T2*4.0~ T4=T3+32 .• 0 I Tl=N*5.0 I
I ~ I T2=Tl*4.0 I
I Tl=N*5.0 I T2=Tl-15.0 I ~3=T2-60.0 I
I I I T4=T3+32.0 I
I I I A=X(T4 I L _____________ ~ ____________ ~ _____________ J

The remaining type 5 text
constitute a candidate pair and
constant expression reordering.

entries
undergo

r-------------T-------------T-------------,
I TYPE 5 I TYPE 6 I TEXT I
.--~----------t-------------t-------------i
I T2=Tl*4.0 I T4=T3+32.0 I T2=.N*20.0 I
I + I I T3=T2-60.0 I
I Tl=N*5.0 I T3=T2-60.0 I T4=T3+32.0 I
I I I A=X(T4 I L _____________ ~ ____________ ~ ____________ J

The type 6 text entries are candidates
and are processed.

r-------------T-------------T-------------,
I TYPE 5 I TYPE 6 I TEXT I
.-------------t-------------t~------------~
I T2=N*20.0 I T4=T3+32.0 JT2=N*20.0 I
I I + IT4=T2+(-28.0) I
I I T3=T2-60.0 IA=X(T4 I L _____________ ~ ____________ ~ ___________ J

The type 6-type5 pair that remains does
not constitute a candidate pair" because
the text entry in which the common tempora
ry is defined does not have an additive
operator.

r--------------------T--------------------,
I TYPE 5 I TYPE 6 I
.--------------------t--------------------i
I T2=N*20.0 I T4=T2+(-28.0) I L ____________________ ~ ____________________ J

Because operand 1 of the remaining type
6 text entry is used as a subscript, the
type 6 text entry can be eliminated by
replacing the subscript with the used tem
porary of that text entry and incorporating
the additive constant of that text entry
into the displacement of the subscripted
variable. The resultant text appears as:

T2=N*20.0
A=X(T2

r
I. '- .

I ; C\

Example 5: Strength Reduction Consider the DO loop:

1=3
This example illustrates both methods of

strength reduction. In the example,
strength reduction is applied to a DO loop.
The evolution of the text entries that
represent the DO loop, and the functions of
these text entries are also shown. The
formats of the text entries in all cases
are not exact. They are presented in this
manner to facilitate understanding.

DO 10 J=l,3
A=xn,J)

10 CONTINUE

As a result of the processing of phases 10
and 15, and backward movement, the DO loop
has been converted to the following text
representation.

Back
Target

Loop

r--,-------------T--------------------T---,
I Text Entry I Function I Evolution I
~----------------+--------------------+---~

I = 3 Initializes I Stated in source module, converted tol

J 1

T1 I * 4

Initializes J

Multiplies first
subscript parameter
by its dimension
factor

phase 10 text and then to phase 15 text. I
It resided in the back target of the loop\
because of text blocking. \

Generated phase 10 text
to phase 15 text entry.
back target of the loop
blocking.

\
entry, converted \
It resided in the\
because of text I

I
I

Generated by phase 15 when it encounters \
the subscript parameter I during its pro-\
cessing of phase 10 text. It resides in I
the back target of the loop as a £esult\
of the processing of backward movement. \

~----------------+--------------------+---~
Y T2 = J * 12 Multiplies second \Generate~ by phase 15 when it encounters

subscript parameter \the subscript parameter J during its pro-
by its dimension Icessing of phase 10 text.
factor. I

I
T3 = T1 + T2 Computes index value I Generated by phase 15 after the last sub-

A = X (T3

J = J + 1

for the subscripted Iscript parameter in the phase 10 text
variable X. Irepresentation of the subscripted varia

Ible has been processed.
I

Stores X(I,J) into A The phase 10 text entry forced and con-
verted to phase 15 text after the index
value for the subscripted variable has
been established.

Increments DO index .• Generated by phase 10 and converted to
phase 15 text representation.

IF(JS3)GOTO Y Tests DO index
against its maximum
and controls branch-

Generated by phase 10 and converted to
phase 15 text representation.

ing.
~----------------~--------------------~---i
INote: The statement number Y is generated by phase 10. Also, it is assumed I
Ithat the array X is of the form XC3,3) and that its elements are real (length I
pn. \ L ___ J

183

The following figure illustrates the application of strength reduction to the loop ..

(l)

· . · .
· . · .
· . · ..

· .
1=3
J = 1
T1=i*4

11
YT2=J*12

T3=T1+T2
A=X(sT3
J = J + 1
IF (J.$ 3) GOTOY

~

184

(2)

. . .

..
1=3
J = 1
T1=1*4
M = J * 12

e
Eliminate
Multiplicativ
Text from Loo p •

~

YT3=T1+M
A=X(sT3
M = M + 12
IF (M s. 36) GOTOY

--~

Eliminate
Additive
Text from Loo

(3)

....

. ...
1=3
J = 1
T1=1*4
M =J * 12
N = 36 + M
P=T1+M

P •

r-1

YA=X(sP
P=P+12
IF (p.s N) GOTOY

~

(J

o

(

(

IHCFCOMH, a member of the FORTRAN system
library (SYS1.FORTLIB), performs object
time implementation of the following
FORTRAN source statements:

• READ and WRITE.

• BACKSPACE, REWIND, and END FILE (device
manipulation).

• STOP and PAUSE (write to operator).

In addition, IHCFCOMH processes object
time errors detected by the various FORTRAN
library subprograms, processes arithmetic
type program interruptions, and terminates
load module execution. The load module is
produced by the linkage editor and
contains:

• The object module produced by the com-
piler.

• IHCFCOMH.
• IHCFIOSH.
• Required subprograms.

All linkages from the object module
(produced by the compiler) to IHCFCOMH are
via compiler-generated calling sequences.
Each time one of the above mentioned source
statements is encountered during the compi
lation, an appropriate calling sequence to
IHCFCOMH is generated and included as part
of the object module. At object time,
these calls are executed, and control is
passed to IHCFCOMH to perform the specified
operation.

The routines of IHCFCOMH are divided
into the following categories:

• READ/WRITE routines.
• Device manipulation routines.
• Write-to-operator routines.
• Utility routines.
• Conversion routines.

The overall logic of IHCFCOMH is illus
trated in Chart 24.

CONSIDERATION: IHCFCOMH, itself, does not
perform the actual initialization of data
sets, reading/writing of data sets, or
device manipulation. It submits requests
for such operations to the FORTRAN
Input/Output System (IHCFIOSH), which is
discussed in Appendix F. IHCFIOSH, in
turn. interprets the requests and submits
them to BSAM (Basic Sequential Access
Method) for execution.

APPENDIX E: IHCFCOMH

READ/WRITE ROUTINES

The READ/wRITE routines of IHCFCOMH
implement the various types of READ/wRITE
statements of the FORTRAN IV language. For
simplicity, the discussion of these rou
tines is divided into two parts:

• READ/WRITE statements not using NAMEL-
1ST.

• READ/WRITE statements using NAMELIST.

READ/WRITE Statements Not Using NAMELIST

For the implementation of READ/wRITE
statements not using NAMELIST, IHCFCOMH
consists of the opening, I/O list, and
closing sections. Within the discussion of
each section, a READ/WRITE operation is
treated in one of two ways:

• As a READ/WRITE requiring a format.

• As a READ/WRITE not requiring a format.

OPENING SECTION: The compiler generates a
calling sequence to the opening section of
IHCFCOMH when it detects a READ/WRITE
statement that does not use a NAMELIST.

The opening section determines the
nature of the operation (READ or WRITE and
whether or not a format is required) and
initializes the data set for reading or
writing. subsequent opening section pro
cessing is dependent upon the nature of the
operation.

READ Reguiring a Format: If the operation
is that of READ requ1r1ng a format, the
opening section reads a record, containing
data to be input to the list items, into an
I/O buffer. The location and size of the
record are saved, a pointer to the I/O
buffer is initialized to the first location
in that record, and the address of the
FORMAT statement associated with the READ
is saved. (The address of the FORMAT
statement is passed as an argument to the
opening section.) If the FORMAT statement
is of the variable type, control is passed
to a portion of IHCFCOMH that translates
variable FORMAT statements to acceptable
form. After the translation, the scan of
the FORMAT statement is then initiated. If
the FORMAT statement is not variable, it is
in acceptable form and the scan of the

Appendix E: IHCFCOMH 185

statement is immediately initiated. The
first format code (either control or con
version type) of the FORMAT statement is
then obtained.

A conversion type code (e,.g." an I
format code) requires an I/O list item.
Upon first encounter of a conversion type
code in the scan of the FORMAT statement,
the opening section completes its process
ing of a READ requiring a format and
returns control to the next sequential
instruction of the calling routine within
the load module. The calling routine
obtains the list item associated with the
conversion code and calls the I/O list
section of IHCFCOMH.

For control type codes (e.g., an H
format code or a group count), an I/O list
item is not required. Control passes to
the control routine associated with the
format code under consideration to perform
the indicated operation (see Table 28).
Control then passes to the scan portion,
which obtains the next format code,. The
above operation is repeated for all control
type codes until either the end of the
FORMAT statement or the first conversion
type code is encountered.

WRITE Requiring a Format: If the operation
is that of WRITE requiring a format, the
opening section proceeds in a manner simi
lar to its processing of a READ requiring a

Table 28. Processing of Format Codes
r------------T---------------T----------T---,
IFORMAT Code I Description I Type I Corresponding Action Upon Code I
~------------+---------------+----------+---~

n(

n

nP

Tn

beginning of control Save location for possible repetition of the
statement format codes; clear counters.

group count control

field count control

scaling factor control

column reset control

Save n and location of left parenthesis for
possible repetition of the format codes in the
group.

Save n for repetition of format code which
follows.

Save n for use by F, E, and D conversions.

Reset current position within record to nth
column or byte.

nX skip or blank control Skip n characters of an input record or insert
In blanks in an output record.
I

'text' or nHlliteral data control IMove n characters from an input record to the
I IFORMAT statement, or n characters from the
I IFORMAT statement to an output record.
I I

Fw.d IF - conversion conversionlExit to the object program to return control to
Ew.d 'IE - conversion conversionlsubroutine FIOLF or FIOAF. Using information
Dw.d ID - conversion conversionlpassed to the I/O list section, the address and
Iw II - conversion conversionllength of the current list item are obtained

lAw A - conversion conversionland passed to the proper conversion routine
IGw.d G - conversion Iconversion together with current position in the I/O
ILw L - conversion conversion buffer, the scale factor, and the values of w
IZw Z - conversion conversion and d.
I
I> group end control Test group count. If greater than 1, repeat
I format codes in group; otherwise continue to
I process FORMAT statement from current position.
I
1/ record end control Input or output one record using subroutine
I IHCFIOSH. t
I I
I end of control If no I/O list items remain to be transmitted, I
I statement return control to the object program to link tol
I subroutine FENDF, the closing section; if list I
I items remain, input or output one record using I C'
I subroutine IHCFIOSH. Repeat format codes from I v

I last first level left parenthesis. I L ____________ ~ _______________ ~ __________ ~ _____________________________ ~-----------------J

186

(

(,

format. However" instead of reading a
record, the opening section obtains and
initializes an 1/0 buffer for output.

READ Not Requiring a Format: If the opera
tion is that of READ not requiring a
format, the opening section of IHCFCOMH
reads a record into an I/O buffer. This
section saves the location and size of the
record, initializes the buffer pointer and
returns control to the next sequential
instruction of the calling routine within
the load module. The calling routine
obtains a list item and calls the 1/0 list
section of IHCFCOMH.

WRITE Not Requirinq a Format: If the
operation is that of WRITE not requiring a
format, the opening section of IHCFCOMH
proceeds in a manner similar to its pro
cessing of a READ not requiring a format.
However" instead of reading a record, the
opening section obtains and initializes an
I/O buffer for output.

I/O LIST SECTION: The compiler generates a
calling sequence to the I/O list section of
IHCFCOMH when it encounters an I/O list
item associated with a READ/wRITE stat~ent
that does not use a NAMELIST.

The I/O list section performs the actual
input of data to the list item if a READ
statement is being implemented, and the
actuai output of data from the list item if
a WRITE statement is being implemented,.

READ/WRITE Requirinq a Format: In process
ing a list item for any READ or WRITE
requiring a format" the I/O list section
passes control to the conversion routine
that puts the list item in a format accord
ing to its associated conversion type for
mat code. (The appropriate conversion rou
tine is determined by the scan portion of
IHCFCOMH. Its selection is a function of
the format code being processed by the scan
portion. The address of the conversion
routine is made available to the I/O list
section.) For input, the conversion rou
tine obtains data from the I/O buffer and
converts the data to the form dictated by
the format code. The converted data is
then moved into the list item. For output,
the conversion routine obtains the data in
the list item, converts it to the form
dictated by the format code, and places the
converted result in the I/O buffer.

After the conversion routine has pro
cessed the list item, the I/O list section
determines if the format code applied to
the list item just processed is to be
repeated for the next list item. It looks
at the field count (if any) associated with
the format code. (The field count indi
cates the number of times a particular
conversion type format code is to be

repeated for successive list items.) If
the format code is to be repeated and if
the item just processed was a variable,
control is returned to the calling routine
within the load module. The calling rou
tine obtains the next list item and again
links to the I/O list section. The conver
sion routine that processed the previous
list item is then given control. This
action applies the same format code to the
new list item.

If the format code is to be repeated and
the list item just processed was an array
element, the next element of the array is
obtained. The format code is repeated for
this element. There is no return to the
calling routine of the load module until
all of the array elements have been satis
fied,. If the format code is not to be
repeated, control is passed to the scan
portion of IHCFCOMH to continue the scan of
the FORMAT statement.

If the scan portion determines that a
group of format codes is to repeated, the
FORMAT statement pointer is adjusted to the
first code in the group,. The codes of the
group are then repeated. If a group is not
to be repeated, the next format code is
obtained. For a control type code, control
is passed to its associated control rou
tine. For a conversion type code, control
is returned to the calling routine within
the load module, which obtains the list
item associated with the conversion ~ode.
The calling routine again links to the I/O
list section to process the list item.

READ/WRITE Not Requirinq a Format: In
processing list items for a READ or WRITE
statement not requ1r1ng a format, the I/O
list section determines the size of the
list item (i.e., the number of bytes res
erved for the list item). The list item
may be either a variable or an array. In
either case, the number of bytes specified
by the size of the list item is moved from
the I/O buffer to the list item on input"
and reversed on output. Control is then
returned to the calling routine wi thin t,he
load module to obtain the next list item.

CLOSING SECTION: The compiler generates a
linkage to the closing section of IHCFCOMB
after it has processed all list items
associated with a READ/WRITE statement that
does not use NAMELIST. The closing section
terminates input/output operations,.

READ/wRITE Requirinq a Format: If a READ
operation is being implemented, the closing
section simply returns control to the call
ing routine within the load module. If the
operation is a WRITE the last record is
written and control is returned to the
calling routine.

Appendix E: IHCFCOMH 187

READ/WRITE Not Requiring a Format: If a
READ is being implemented. successive
records are read until the record that
indicates the end of the logical record is
recognized.. (A FORTRAN logical record con
sists of the total number of records neces
sary to contain all I/O list items within a
single WRITE statement.) Control is then
returned to the calling routine within the
load module. If the operation is WRITE.
the record count (i.e.. the number of
records in the logical record) is placed
into the control word field of the last
record. the last record is written. and
control is returned to the calling routine.

READ/WRITE Statement Using NAMELIST

Included in the calling sequence to
IHCNAMEL1 generated by the compiler when it
detects a READ or WRITE using a NAMELIST is
a pointer to the object-time namelist dic
tionary associated with the READ or WRITE.
This dictionary contains the names and
addresses of the variables and arrays into
which data is to be read or from which data
is to be written. The dictionary also
contains the information needed to select
the conversion routine that is to convert
the data to be placed into the variables or
arrays. or to be taken from the variables
and arrays.

READ USING NAMELIST:The data set· contain
ing the data to be input to the variables
or arrays is initialized and successive
records are read until the one containing
the namelist name corresponding to that in
the namelist dictionary is encountered.
The next record is then read and processed.

The record is scanned and the first name
is obtained. The name is compared to the
variable and array names in the namelist
rictionary. If the name does not agree. an
error is signaled and load module execution
is terminated. If the name is in the
dictionary .• processing of the matched vari
able or array is initiated.

Each initialization constant assigned to
the variable or an array element is
obtained from the input record. (One con
stant is required for a variable. A number
of constants equal to the number of ele
ments in the array is required for an
array. A constant may be repeated for
successive array elements if appropriately

1IHCNAMEL is included in the load module
only if reads and writes using NAMELISTS
appear in the compiled program. Calls are
made directly to FRDNL# (for READ) or to
FWRNL# (for WRITE).

188

specified in the input record.) The
appropriate conversion routine is selected
according to the type of the variable or
array element. Control is then passed to
the conversion routine to convert the con
stant and to enter it into its associated
variable or array element.

The process is repeated for the second
and subsequent names in the input record.
When an entire record has been processed,
the next is read and processed.

Processing is terminated upon recogni
tion of the &END record. Control ~s then
returned to the calling routine within the
load module.

WRITE USING NAMELIST: The data set upon
which the variables and arrays are to be
written is initialized. The namelist name
is obtained from the namelist dictionary
associated with the WRITE, moved to an I/O
buffer. and written. The processing of the
variables and arrays is then initiated.

The first variable or array name in the
dictionary is moved to an I/O buffer fol
lowed by an equal sign. The appropriate
conversion routine is selected according to
the type of the variable or array elements.
Control is then passed to the conversion
routine to convert the contents of the
variable or the first array element and to
enter it into the I/O buffer. A comma is
inserted into the buffer following the
converted quantity. If an array is being
processed, the contents of its second and
subsequent elements are converted, using
the same conversion routine, and placed
into the I/O buffer, separated by commas.
When all of the array elements have been
processed or if the item processed was a
variable. the next name in the dictionary
is obtained. The process is repeated for
this and subsequent variable or array
names.

If, at any time. the record length is
exhausted. the current record is written
and processing resumes in the normal fashi
on.

When the last variable or array
processed, the contents of the
record are written. the characters
moved to the buf:::er and written,
trol is returned to the calling
within the load module.

DEVICE MANIPULATION ROUTINES

has been
current

&END are
and con
routine

The device manipulation routines of
IHCFCOMH implement the BACKSPACE. REWIND.
and END FILE source statements. These

c

()

("

routines receive control from object-time
execution of calling sequences that are
generated by the compiler when those state
ment types are encountered.

The implementation of REWIND and END
FILE statements is straight-forward. The
device manipulation routines submit the
appropriate 'control request to IHCFIOSH.
the I/O interface module.. Control is then
returned to the calling routine within the
load module.

The BACKSPACE statement is processed in
a similar fashion. However, before control
is returned to the calling routine. it is
determined if the record backspaced over is
an element of a data set that does not
require a format. If not, control is
returned to the calling routine. If the
record is an element of such a data set,
that record is read into an I/O buffer and
the record count is obtained from its
control word. Backspace control requests,
equal to the record count, are then issued
and control is returned to the calling
routine.

WRITE-TO-OPERATOR ROUTINES

The write-to-operator routines of
IHCFCOMH implement the STOP and PAUSE
source statements. These routines receive
control from the object-time execution of
calling sequences that are generated by the
compiler upon recognition of the statement
types.

STOP: A write-to-operator (WTO) macro
instruction is issued to display the
message associated with the STOP statement
on the console. Load module execution is
then terminated by passing control to the
program termination routine of IHCFCOMH.

PAUSE: A write-to-operator-with-reply
(WTOR) macro-instruction is issued to dis
play the message associated with the PAUSE
statement on the console and to enable the
operator's reply to be transmitted. A WAIT
macro-instruction is then issued to deter
mine when the operator's reply has been
transmitted. After the reply has been
received, control is returned to the call
ing routine within the load module.

UTILITY ROUTINES

The utility routines of IHCFCOMH perform
the following functions:

• Process object-time error messages.

• Process arithmetic-type program inter
ruptions.

• Terminate load module execution .•

• Aid IHCFIOSH in processing I/O errors
and end-of-data set.

ERROR MESSAGES: The error message process
ing routine receives control from various
FORTRAN library subprograms when they
detect object-time errors.

Error message processing consists of
initializing the data set upon which the
message is to be written, and writing the
message. Control is then passed to the
load module termination routine of IHCFOMH.

ARITHMETIC INTERRUPTIONS: The arithmetic
interruption routine of IHCFCOMH initially
receives control from the object-time exe
cution of a compiler-generated calling
sequence. The call is placed at the start
of the executable code of a main program so
that this routine is given control to set
the program interruption mask. Subsequent
entries into this routine are via
arithmetic-type interruptions.

This routine sets the program interrup
tion mask by means of a SPIE macro
instruction. The instruction specifies the
type of arithmetic interruptions that are
to cause control to be passed to the
routine and the location within the routine
to which control is to be passed if the
specified interruptions occur. After the
mask has been set, control is returned to
the calling routine within the load module.

The first step taken by this routine in
processing arithmetic interruptions is to
determine its type. If exponential
overflow or underflow has occurred, the
appropriate indicators, which are ref
erenced by subroutine OVERFL (a FORTRAN
library subprogram), are set. If any type
of divide check has caused the interrupt,
the indicator referenced by subroutine
DVCHK (also a FORTRAN library subprogram)
is set.

Regardless of the type of interruption
that has given control to it, the arithmet
ic interruption routine writes out the old
program PSW for diagnostic purposes .•

After the interruption has been pro
cessed, control is returned to the inter
rupted routine at the point of interrup
tion.

LOAD MODULE TERMINATION: The load module
termination routine of IHCFCOMH receives
control from various library subprograms
(e.g., DUMP and EXIT) and from various

Appendix E: IHCFCOMH 189

other IHCFCOMH routines {e .• g., the routine
that processes the STOP statement).

This routine terminates load module exe
cution by closing all FORTRAN data sets
that are open., by issuing a SPIE macro
instruction with no parameters to indicate
the IHCFCOMH no longer desires to give
special treatment to program interruptions
and does not want maskable interruptions to
occur, and by returning control to the
operating system..

I/O ERRORS AND END-OF-DATA SET: The
routines of IHCFCOMH, which aid IHCFIOSH in
processing I/O errors and end-of-data set,
receive control from IHCFIOSH when such
events are encountered during reading or
writing.

If an end-of-data set has been encoun
tered, a check is made to determine if the
END= " address " parameter was specified in
the READrwRITE. If the parameter is pre
sent., control is returned to the address
indicated in the parameter. If the param
eter is not present" an error is signaled
and control is passed to the error message
processing routine of IHCFCOMH.

A similar procedure is followed when an
I/O error has been encountered; however, in
this case, it is determined if the ERR=
"address" parameter was specified in the
READ/wRITE.

list items or convert data to be taken from
I/O list items.

These routines receive control either
from the I/O list section of I HCFCOMH
during its processing of list items for
READ/WRITE statements requiring a format.
from the routines that process READ/WRITE
statements using a NAMELIST, or from the
DUMP and PDUMP subprograms.

Each conversion routine is associated
with a conversion type format code and/or a
type. If an I/O list item for READ/WRITE
statement requiring a format is being pro
cessed, the conversion routine is selected
according to the conversion type format
code which is to be applied to the list
item. If a list item for a READ/WRITE
using a NAMELIST is being processed, the
conversion routine is selected according to
the type of the list item.

If a READ statement is being implement
ed, the conversion routine obtains data
from the I/O buffer" converts it according
to its associated conversion type format
code or type, and enters the converted data
into the list item. The prucess is rev
ersed if a WRITE statement is being imple
mented.

For the DUMP and PDUMP subprograms, the
format code parameter passed to them deter-

CONVERSION ROUTINES mines the selection of the output conver
sion routine to be used to place the output
in the desired form.

The conversion routines of IHCFCOMH
either convert data to be placed into I/O

190

c

()

(

(/

Chart 24. IHCFCOMH Logic and Utility Rtn

see TABLE 29 FOR A BRIEF
DISCUSSION OF EACH ROUTINE
OF IHCFCOMH.

-*A3******·
... LOAD *

MODULE

****.**********

V
*****83*********·
* * DETERMINE

REQUEST
* TYPE ..
* * *****************

I

THE LOAD MODULE ENTERS
IHCFCOMH VIA A COMPILER
GENERATED CALLING SEQUENCE

v
.-. * * .. *.. * .. REQUEST TYPE .CHART .MAJOR PROCESSING -SUBROUTINES CALLED ..
.. ROUTINES"
*===::::=====================================:::=============::::============================= *
.. READ/WRITE RE- *25A2" FRDWF.FWRWF.FIOLF. *JHCFIOSH.FCVII.FCYIO.FCVEI.FCVEO, .. * QUIRING A FORMAT * .. FIOAF.FENDF *FCVDI,FCVDO,FCVLI,FCVLO,FCVZI,FCVZO,*
* * *FCVFI,FCVFO,FCVAI,FCVAO,FCVGI,FCVGO *
* * * ***.***
* * * * * * READ/WRITE NOT *25F2 *FRONF,FWRNF,FIOLN, *]HCF]OSH * REQUIRING A FORMAT * *FIOAN,FENDN * *
* * * * *

* * * * * * READ USING *26El *FRONL *IHCFIOSH,FCVEI ,FCVDI ,FCVAI,
* NAMELIST * * *FCVLI,FCVGI,FCVCI,FCVFI,FCVII
* * * * * ***
* * * * * * WRITE USING *26ES *FWDNL *IHCFIOSH,FCVEO,FCVDO,FCVAO,FCVLO, * * NAMELIST * * *FCVGO,FCVCO,FCVIO,FCVFO
* * * * ***.*********************
* * * * * * DEVICE *26B3 *FBKSP,FRWND, *IHCFIOSH *
* MANIPULA.TION * *FEOFM * *
* * * * * ***
* * * * * * WRITE TO *26G3 *FSTOP,FPAUS *NONE
* OPERATOR * * ..
* * *.. * *****-***

UTILITY ROUTINES

****G 1 *********
* FROM FSTOP *

****G2*********
* FROM *

****G3*********
* FROM *

****G4*********
* FROM *

LOAD * OR
- IBFERR *

V
*****Hl**********
*IBEXIT *
--*-*-*-*-*-*-*
*CLOSE DATA SETS.
.. (TERMINATE *
* EXECUTION) *

········1········

V
****Jl*********

* TO * * OPERA.TING
* SYSTEM

* LIBRARY
SUBPROGRAMS

V
*****H2**********
*IBFERR *
--*-*-*-*-*-*-*
* PROCESS *

ERRORS

V
****J2*********

* TO * * IBEXIT
*

IHCFIOSH

, V
*****H3**********
*EXCEPT/FERROR *
--*-*-*-*-*-*-* * DETERMINE IF *
* PARAMETER
* SPECIFIED *

V
****J3*********

* TO LOAD * * MODUL.E IF *
* SPECIFIED *

I F PARAMETER NOT
SPECIFIED, EXIT IS
TO IBFERR

MOOULE

V
*****H4**********
*IBFINT *
--*-*-*-*-*-*-*

PROCESS *
* ARITHMETIC * INTERRUPTION *

V
****J4*********

* TO * * LOAD * * MOOULE *

****G5*********
* FROM *
* IHCFCOMH

V
*****H5**********
*IHCFIOSH ..
--*-*-*-*-*-*-*

SERVICE *
I/O *

* REQUEST *

V
****J5*********

* TO * * IHCFCOMH

Appendix E: IHCFCOMH 191

Chart 25.

READ/WRITE
REQUIRING A

FORMAT

READ/WR I TE NOT
REQUIRING A

FORMAT

192

Implementation of RD/WR Srce Stmnts

*25 *

IHCFCOMH LOAD MODULE

* A2* FRDWF/FWRWF
* * *****A2********** * *PERFORM OPENING*

L-->:OP~~~;~~~T~OR :

*25 *

* REQUIRING *
* A FORMAT *

I
I

FIOAF/FIOLF V
*****B2********** *****84********** * PERFORM I/O * *GET LIST ITEM. * * LIST SECTION * * CALL I/O LIST *
* OPERATIONS *<--------------- ----------------.. SECTION OF *<--, * ON LIST ITEM * IHCFCOMH * . .

I
~

..C:::>._*_ NO I
*. LIST .~

. ITEM .
. .

* •• *
jYES

ff~ V
*****02********** *****04**********
* * * * CLOSE OUT * * CALL CLOSING
* I/O *<--------------- ----------------* SECTION OF * * OPERATION * IHCFCOMH :

I

IHCFCOMH

I
V

*****E4**********
• * * CONTINUE WITH *
* LOAD MODULE * * EXECUTION

LOAD MODULE

* F2* FRDNF/FWRNF
* * *****F2********** * *PERFORM OPENING*
L-->:OP~~~~;~~¥T~OR :

* NOT REQUIRING * * A FORMAT *

I
i

FIOLN/FIOAN V
*****G2********** *****G4********** * PERFORM I/O * *GET LIST ITEM. * * LIST SECTION * * CALL 1/0 LIST *
* OPERATIONS *<:--------------- ----------------.* SECTION OF *< * ON LIST ITEM * * IHCFCOMH *
* * * *
***************** *****************

I
~ _.

H4 * •
• * * • • * LAST *. NO

*.. LIST *. ITEM .*
. .

* •• *
jYES

FENDN v
*****J2********** *****J4**********
* * * * * CLOSE OUT * * CALL CLOS I NG *
* I/O *< __ -----------------------------* SECTION OF

OPERATIONS * * IHCFCQMH

I
· *****************

I
V

*****K4********** · . * CONTINUE WITH * * LOAD MODULE *
EXECUTION

THIS CALL IS
GENERATED BY
COMPILER WHEN
I/O LIST ITEM
I S ENCOUNTERED

THIS CALL IS
GENERATED BY
COMPILER WHEN
ALL I/O LIST ITEMS
ARE PROCESSED

THIS CALL IS
GENERATED BY
COMPILER WHEN
I/O LIST ITEM
IS ENCOUNTERED

THIS CALL IS
GENERATED BY
COMPILER WHEN
ALL I/O LIST ITEMS
ARE PROCESSED

•

c

(

chart 26.

READ USING
NAMELIST

-*--* *26 * * El-.. .
I
V

*****El*********·
... FRDNL *
--*-*-*-*-*-*-*
... IMPLEMENT *

READ USING
... NAMELIST ...

I
V •• 4.FI_· ______ •

* TO * LOAD
.. MODULE *

**************.

Dvce Mnpltn. WR to Oprtr, RD/WR NMLST

DEVICE MANIPULATION --_:II--
*26 *
* 83· * . .
I
V

*****83*********:11-
.. DETERMINE *

TYPE OF *
.. DEVICE
• MANIPULATION · *****************

..--------1-----..
I

BACKSPACE I
FBKSP v
·****02********** IMPLEMENT *
.. BACKSPACE *
.. SOURCE * * STATEMENT *
• *

REWIND

FRWNO V
*****03*********
.. IMPLEMENT *

REWIND *
SOURCE *

STATEMENT

END FILE

FEOFM V
*****04********** IMPLEMENT *

END FILE
SOURCE

STATEMENT

********** •••• *** ***************** ** ••• ************

"--I --------------->,· .. ··:ij:······,<------------~I
• MODULE *

WR[TE TO OPERATOR

*26 * * G3* . .

*
I
V

*****63**********
* DETERMINE *

~;**.~~!~~:~~.***~~
STOP I PAUSE I

I I
FSTOP V FPAUS V
*****H2********** *****H4********** * IMPLEMENT * * IMPLEMENT *

STOP * PAUSE *
* SOURCE * SOURCE *
* STATEMENT * STATEMENT

* *****************

I
V

****.}2*********
* TO * * IBEXIT .

*************.***

I
V

****J4*********
* TO *

LOAD *
MODULE *

WRITE USING
NAMELIST

*26 *
* E5* • *

*

I
V

*****E5**********
* FWRNL *
--*-*-*-*-*-*-*

IMPLEMENT
WRITE USING

* NAMELIST *

I
V

****F5*********
* TO * LOAD
* MODULE *

Appendix E: IHCFCOMH 193

Table 29. IHCFCOMH Subroutine Directory
r-·~·-------T---,

I Subroutine I Function I
~----------+---------------------------------~---~

EXCEPT Checks for presence of END= parameter, and passes control to the load module

FBKSP
FCVAI
FCVAO
FCVCI
FCVCO
FCVDI
FCVDO
FCVEI
FCVEO
FCVFI
FCVFO
FCVGI
FCVGO
FCVII
FCVIO
FCVLI
FCVLO
FCVZI
FCVZO
FENDF
FENDN
FEOFM
FERROR

FIOAF
FIOAN
FIOLF
FIOLN

if present.
Implements the BACKSPACE source statement.
Reads alphameric data.
Writes aiphameric data.
Reads complex data.
Writes complex data.
Reads double precision data with an external exponent.
Writes double precision data with an external exponent.
Reads real data with an external exponent.
Writes real data with an external exponent.
Reads real data without an external exponent.
Writes real data without an external exponent.
Reads general type data .•
Writes general type data.
Reads integer data.
Writes integer data.
Reads logical data.
Writes logical data.
Reads hexadecimal data.
Writes hexadecimal data.
Closing section for a READ or WRITE requ~r~ng a format.
Closing section for a READ or WRITE not requiring a format.
Implements the END FILE source statement.
Checks for the presence of the ERR= parameter. and passes control to the
load module if present.
I/O list section for list array of a READ or WRITE requiring a format.
I/O list section for list array of a READ or WRITE not requiring a format. I
I/O list section for a list variable of a READ or WRITE requiring a format.
I/O list section for a list variable of a READ or WRITE not requiring a
format.

FPAUS Implements the PAUSE source statement.
FRDNF Opening section of a READ not requiring a format.
FRDNL Processes READ statements using NAMELISTs.
FRDWF Opening section of a READ requiring a format.
FRWND Implements the REWIND source statement.
FSTOP Implements the STOP source statement.
FWRNF Opening section for WRITE not requiring a format.
FWRNL Processes WRITE statements using NAMELISTs.
FWRWF Opening section for WRITE requiring a format.
IBEXIT Closes all data sets and terminates execution.
IBFERR Processes object-time errors.
IBFINT Processes arithmetic-type program interruptions.
IHCFIOSHIServices I/O requests from IHCFCOMH. __________ ~ __ J

194

c

IHCFIOSH, the object time FORTRAN
Input/Output System, resides on the FORTRAN
system library (SYS1.FORTLIB). Its func
tion is to receive input/output requests
for IHCFCOMH and submit them to the access
method BSAM (Basic Sequential Access
Method) for implementation.

BLOCKS AND TABLE

IHCFIOSH uses the following blocks and
table during its processing of input/output
requests:

• Unit blocks.
• unit assignment table.

UNIT BLOCKS

IHCFIOSH generates unit blocks for the
unit numbers (i.e., data set reference
numbers) used in the various input/output
operations. The first input/output opera
tion using a particular unit number causes
IHCFIOSH to obtain (via a GETMAIN
macro-instruction) a block of storage for
use as the unit block for the specified
unit. Each unit block has the following
format:

r--------T-------T-------T-------,
IData Setl I I I
I Type I I I I
I (ABYTE) I BBYTE I CBYTE ILIVECNTI
~--------~-------~-------~-------~
I Buffer 1 I
~--------------------------------~
I Buffer 2 I
~--------------------------------~
I Block Pointer I
~--------------------------------~
I Record Offset I
~--------------------------------~
I I
I DECB SKELETON SECTION I
I I
~------------------------------~
I I
I I
I I
I DCB SKELETON SECTION I
I I
I I
I I l ________________________________ J

House
keeping
section

APPENDIX F: IHCFIOSH

Unit Block Sections

Each unit block is divided into three
sections: a housekeeping section, a DECB
skeleton, and a DCB skeleton.

HOUSEKEEPING SECTION: This section is
maintained by IHCFIOSH. The information
contained in it is used to make various
types of checks, to keep track of I/O
buffer locations, and to keep track of
addresses internal to the I/O buffers to
enable the processing of blocked records.
The fields of this section are described
below.

Data Set Type (ABYTE) Field: This field,
containing the data set type passed to
IHCFIOSH by IHCFCOMH, can be set to one of
the following:

FO input data set requ~r~ng a format
FF output data set requiring a format
00 input data set not requiring a

format
OF output data set not requiring a

format

BBYTE Indicator Field: This field contains
bits th3t are set and examined by IHCFIOSH
during its processing. The bits and their
usages are as follows:

o exit to (IHCFCOMH) on input error
1 error occurred
2 current buffer indicator
3 not used
4 end of current buffer indicator
5 blocked data set indicator
6 variable RECFM switch
7 not used

CBYTE Indicator Field: This field also
contains bits that are set and examined by
IHCFIOSH. The bits and their usages are
outlined below.

BIT ON

o data set open
1 data set not TCLOSEd
2 data set previously opened
3 buffer pool attached
4 data set not previously rewound
5 data set not previously backspaced
6 concatenation occurring - reread
7 not used

LIVECNT Field: This field indicates wheth
er any I/O operation performed for this
data set is unchecked. (A value of 1

Appendix F: IHCFIOSH 195

indicates that a previous read or write has
not been checked; a value of 0 indicates
that all previous read and write operations
for this data set have been checked.

Buffer 1 and Buffer 2 Fields: These fields
are filled with pointers to the I/O buffers
obtained during the opening of the data set
(performed by the OPEN or GETPOOL
macro-instruction).

Block Pointer Field: This field contains a
pointer to the I/O buffer currently in use
by IHCFCOMH.

Record Offset Field: This field contains a
pointer (within the current buffer) to the
next logical record.

DECB SKELETON: The DECB (Data Event Con
trol Block) skeleton is a block of storage
within the unit block. It is of the same
form as the DECB constructed by the control
programs for an L form of an s-type READ or
WRITE macro-instruction (refer to IBM
System/360 Operating System: IntroductIOn
to Control Program Logic, Program Logic
Manual). The various fields of the skele
ton are filled in by IHCFIOSH; the complet
ed skeleton is referred to by IHCFIOSH when
it issues a read/write request to BSAM.
For each I/O operation, IHCFIOSH supplies
an indication of the type of operation
(read or write), and the length of and a
pointer to the 1/0 buffer to be used.
IHCFIOSH also inserts the addresses of the
associated DCB skeleton into the DECB.

DCB SKELETON: The DCB (Data Control Block)
skeleton is a block of storage within the
unit block. It is of the same form as the
DCB constructed by the control programs for
a DCB macro-instruction under BSAM (refer
to IBM System/360 Operating System: Intro
duction to Control Program Logic, Program
Logic Manual). Its various fields are
filled in by the control programs when the
data set is opened or by IHCFIOSH (see
"Default Values") at DCB exit time.

UNIT ASSIGNMENT TABLE

The unit assignment table, conSisting of
two entries for each unit number, resides
within IHCFIOSH. The first entry for a
particular unit number contains either (1)
a pOinter to the unit block generated for
that unit number, or (2) a value of 0
(indicating that a unit block has not been
generated for the associated unit number).
The second entry contains the default
values for the unit (see "Default Values").

The unit assignment table is used as an
index to the unit blocks. The first ref-

196

erence to a particular unit number causes
IHCFIOSH to generate a unit block for that
number. The address of the unit block is
placed into the first entry in the unit
assignment table for the unit number. All
subsequent references to the unit number
are then made through the unit assignment
table.

Default Values

Default values are standard values that
IHCFIOSH inserts into the appropriate
fields (e.g., LRECL) of the DCB skeleton if
the user either:

• Causes the object module to be executed
via a cataloged procedure.

• In stating his own procedure for execu
tion, fails to include in the DCB
parameters of his DD statements. those
subparameters (e .• g., LRECL) he is per
mitted to include (see IBM Operating
System/360: FORTRAN IV Programmer's
Guide).

Note: Centrol is returned to IHCFIOSH
during data set opening so that it can
determine if the user has included these
subparameters in the DCB parameter. (If
the user has included these subparameters,
the control program performing data set
opening inserts the subparameter values,
before giving control to IHCFIOSH, into the
DCB skeleton fields reserved for those
values.) IHCFIOSH examines the DCB skele
ton fields corresponding to the used
permitted subparameters, and inserts the
standard values ti. e., default values) for
the nen-specified subparameters into the
DCB skeleton.

BUFFERING

All inputloutput operations are double
buffered. (The double buffering scheme can
be overridden by the user, if he specifies
in a DD statement: BUFNO=l.) This implies
that during data set opening, two buffers
are obtained. The addresses of these
buffers are given alternately to IHCFCOMH
as pointers to:

• Buffers to be filled (in the case of
output).

• Information that has been read in and C.
is to be processed (in the case of
input).

(

(.'" \

j

COMMUNICATION WITH THE CONTROL PROGRAM

of the control
E forms of

IBM operat
Services).

In requesting services
program, IHCFIOSH uses Land
S-type macro-instructions (see
ing Systeml360: Control Program

OPERATION

The processing of IHCFIOSH is divided
into five sections: initialization, read,
write, device manipulation, and closing.
When called upon by IHCFCOMH, a section
performs its function and then returns
control to IHCFCOMH. The overall logic of
IHCFIOSH is illustrated in Chart 21.

INITIALIZATION

The initialization
IHCFIOSH depends upon
previous I/O operation .•
sibilities are:

action taken by
the nature of the
The operation pos-

• No previous operation.
• Previous operation read/write .•
• Previous operation backspace .•
• Previous operation write end-of-data

set or read taking "END=" exit.
• Previous operation rewind.

No Previous Operation

If no previous operation has been per
formed on the unit specified in the I/O
request, the initialization section gener
ates a unit block for the unit number. The
data set to be created is then opened (if
the current operation is not REWIND or
BACKSPACE) via the OPEN macro-instruction.
The addresses of the I/O buffers, which are
obtained during the opening process and
placed into the DCB skeleton, are placed
into the appropriate fields of the house
keeping section of the unit block. The
DECB skeleton is then set to reflect the
nature of the operation (READ or WRITE),
the format of the records to be read or
written" and the address of the I/O buffer
to be used in the operation.

If the requested operation is that of
WRITE, a pointer to the buffer position at
which IHCFCOMH is to place the record to be
written and the block size or logical
record length (to accommodate blocked logi
cal records) are placed into registers., and
control is returned to IHCFCOMH.

If the requested operation is that of
READ, a record is read, via a READ macro
instruction, into the I/O buffer, and the
operation is checked for completion via the
CHZCK macro-instruction. A pointer to the
location of the record within the buffer,
along with the number of bytes read or the
logical record length, are placed into
registers, and control is returned to
IHCFCOMH.

Previous Operation Read/Write

If the previous operation performed on
the unit specified in the present I/O
request was either a READ or WRITE, the
initialization section determines the
nature of the present I/O request. If it
is a WRITE, a pointer to the buffer posi
tion at which IHCFCOMH is to place the
record to be written and the block size or
logical record length are placed into reg
isters, and control is returned to
IHCFCOMH.

If the operation to be performed is
READ, a pointer to the buffer location of
the record to be processed, along with the
number of bytes read or logical record
length, are placed into registers, and
control is returned to IHCFCOMH.

Previous Operation Backspace

If the previous operation performed on
the unit specified in the present I/O
request was a backspace, the initialization
section determines the type of the present
operation (READ or WRITE) and modifies the
DECB skeleton, if necessary, to reflect the
operation type. (If the operation type is
the same as that of the operation that
preceded the backspace request, the DECB
skeleton need not be modified.) Subsequent
processing steps are the same as those
described for "No Previous Operation",
starting at the point after the DECB skele
ton is set to reflect operation type.

Previous Operation Write End-of-Data Set or
Read Taking "END-" Exit

If the previous operation performed on
the unit specified in the present I/O
request was either that of the write end
of-data set or that of read taking the
"END=" exit, a new data set using the same
unit number is to be created. In this
case, the initialization section closes the

Appendix F: IHCFIOSH 191

data set. Then, in order to establish a
correspondence between the new data set and
the DD statement describing that data set,
IHCFIOSH increments the unit sequence
number of the ddname. (The ddname is
placed into the appropriate field of the
DCB skeleton prior to the opening of the
initial data set associated with the unit
number.> During t~e opening of the data
set, the ddname will be used to merge with
the appropriate DD statement. The data set
is then opened. Subsequent processing
steps are the same as those described for
"No Previous Operation", starting at the
point after the data set is opened.

Previous Operation Rewind

If the previous operation performed on
the unit specified in the present I/O
request was rewind" the ddname is ini tial
ized (set to FTxxF001) in order to esta
blish a correspondence between the initial
data set associated with the unit number
and the DD statement describing that data
set. The data set is then opened. Subse
quent processing steps are the same as
those described for "No Previous
Operation". starting at the point after the
data set is opened.

READ

The read section of IHCFIOSH performs
two functions:

• Reads physical records into the buffers
obtained during data set opening.

• Makes the contents of these buffers
available to IHCFCOMH for processing.

Each time this section is given control,
it makes the next record available to
IHCFCOMH. (In the case of blocked records,
the record presented to IHCFCOMH is logi
cal.> It places (1) a pointer to the
records location in the current I/O buffer
and (2) the number of bytes read or logical
record length into registers, and returns
control to IHCFCOMH.

This section does not read a physical
record each time it is given control. If
the records being read are either unblocked
or of U-format, IHCFIOSH issues a READ for
each input request. However" if the
records being processed are blocked, IHCFI
OSH only reads when all of the logical
records of the blocked record under consid
eration have been processed by IHCFCOMH.

198

The reading of records by this section
is overlapped (that is, while the contents (,' ,J
of one buffer are being processed. a physi-/
cal record is being read into the other).
When the contents of one buffer have been
processed, the read into the other buffer
is checked for completion. Upon completion
of the read operation, processing of that
buffers contents is initiated. In addi
tion, a read into the second buffer is also
initiated.

WRITE

The write section of IHCFIOSH performs
two functions:

• Provides IHCFCOMH with buffer space •
• Writes physical records.

Each time this section is given control,
it provides IHCFCOMH with buffer space in
which to place the record to be written.
It places a pointer to the location within
the current buffer at which IHCFCOMH is to
place the record and the block size or
logical record length into registers, and
returns control to IHCFCOMH.

This section does not write a physical
record each time it is given control. If (~
the records being written are unblocked or -
of U-format, IHCFIOSH issues a WRITE for
each output request. However w if the
records being written are blocked. IHCFIOSH
only writes when all of the logical records
that comprise the blocked record under
consideration have been placed into the I/O
buffer by IHCFCOMH.

The writing of records by this section
is also overlapped,. While IHCFCOMH is
filling one buffer. the contents of the
other buffer is being written •

DEVICE MANIPULATION

The device manipulation section of the
IHCFIOSB processes backspace, rewind, and
write end-of-data set requests.

Backspace

IHCFIOSB processes the backspace request
by issuing a BPS macro-instruction
(physical BACKSPACE). It then places the
data set type, which indicates the format
requirement, into a register and returns
control to IHCFCOMH. (IHCFCOMH needs the

(/

('

data set type to determine its subsequent
processing. Under certain conditions.
IHCFIOSH 'forces' the data set type.)

Rewind

IHCFIOSH processes the rewind request by
issuing a CLOSE macro-instruction. using
the REREAD option. This option has the
same effect as a rewind. Control is then
returned to IHCFCOMH.

Write End-of-Data Set

IHCFIOSH processes this request by issu
ing a CLOSE, Type=T, macro-instruction. It
then frees the I/O buffers by issuing a
FREE POOL macro-instruction., and returns
control to IHCFCOMH.

CLOSING

The function of the closing section of
IHCFIOSH is to terminate I/O operations.

It accomplishes this by examining the
entries in the unit assignment table to
determine which data sets are open. The
closing section then checks (via the CHECK
macro-instruction) all pending I/O opera
tions on the open data sets. and returns
control to IHCFCOMH.

ERROR PROCESSING

If an end-of-data set or an I/O error is
encountered during reading or writing. the
control program returns control to IHCFI
OSH. In the case of an I/O error. IHCFIOSH
sets a switch to indicate that the error
has occurred. Control is then returned to
the control program. The control program
completes its processing and returns con
trol to IHCFIOSH, which interrogates this
switch, finds it to be set, and passes
control to the I/O error subroutine of
IHCFCOMH.

In the case of an end-of-data set,
IHCFIOSH simply passes control to the end
of-data set subroutine of IHCFCOMH.

Appendix F: IHCFIOSH 199

Chart 27. IHCFIOSH Overall Logic

INITIALIZATION READ

****A3*********
• *
... FROM
... IHCFCOMH

V
*****63**********
* * DETERMINE * * OPERATION ...
* TYPE

WRITEI

SEE TABLE 30 FOR A BRIEF
DESCRIPTION OF THE FUNCTION
OF EACH IHCFIOSH ROUTINE.

DEVICE
MANIPULATION CLOSE

~------------~------------I------------~------------~ I I v I I
FINIT V FREAD .V. FRITE .*. FCNTL V FCLOS V

:****Cl*********: •• C2 ANy*-.. .*C3 *_.. :****C4*********: :****CS*********:
* DECODE DSRN *
*AND BUILD UNIT *<--,
* BLOCK (IF * I .. NECESSARY) *

I * u** *
* Cl *
* *

I
V

*****01**********
*OPEN DATA CON- *
*TROL BLOCK FOR *
DATA SET IF NOT
* PREVIOUSLY *
* OPENED *

I
v .*.

El *.
.* *.

.* DCB *. NO *. OPENED .*
.PROPERLY .

. .
* •• * * YES

I
V

*****Fl**********
* * * DETERMINE * * RECORD FORMAT *
* AND BLOCKING *
* * *****************

I
v .*.

Gl *.
.* IS *.

.* CURRENT *. YES
*. OPe DEVICE .*1 *. MANIP. .*

. . * •• * v

*1 NO : *::*:
**** v .*.

HI * •
• * * • • * READ *. WRITE

. OR .--,
. WRITE. I *. .* * •• *

rEAD I
******Jl*~********* I

READ I
BLOCK A I

*******.***** I
:*::*:->I <: ________ -J

* *
**** V

*****Kl********** * PASS CURRENT ...
*RECORD POINTER *
* AND LOGICAL *---. * RECORD LENGTH * V

.* MORE ReDS *. YES .* OUTPUT *. NO. * CHECK * CHECK ANY *
.THIS BLOCK TO.-, *. BUFFER .*-, * STATUS OF *--, OUTSTANDING *<--,

.:~ ~~gc:~. I -_ •. FULL •• -* I : UNIT : I * I~~¥~U~R :
* •• * v * •• * v ***************** v *****************

i NO :*::*: *1 YES :'::*: * :'::*: 1
I * * :04:,
I **** v v v .*. .*.

*****02********** *****03********** 04 *. 05 *. * READ * *WRITE CONTENTS * .* *. .* * ~
NEXT BLOCK INTO * OF THIS BUF- EOF.* DETER- *. REW .* LAST - •• NO
* THIS BUFFER. * * FER. SWITCH ,*_ MINE op- .*---, *. DSRN .* * SWITCH BUFFER * * BUFFER *. ERATION .* *. .*
* POINTERS * * POINTERS * *.TYPE .* *..*
***************** ***************** * •• * * •• *

I I *1 BKSP *LY~~** I *28 *
I ~~
v v V

*****E2********** *****E3********** *****E4**********
* * * * * ISSUE * * CHECK RESULT * * CHECK RESULT * BACKSPACE. *
* OF READ INTO *:1 * OF WRITE FROM * .. INDICATE * OTHER BUFFER * OTHER BUFFER * * OAT A SET
* * * * TYPE *
***************** v ***************** *****************

***** I L
:2~2: I . :::* *

*****F2**********
* *

* * =:i;: L *****F4***:::::::
* * * ISSUE CLOSE * * >*

*
ISSUE

MESSAGE
IHC219C

---, > (TYPE=T) *
* v * WITH LEAVE *
* ***** * OPTION

***************** *28 * *****************

* F2* I
V

*****G4**********
* * * FREE I/O *
* BUFFERS * * FOR THIS *

DATA SET

L **** *28 *
>* 82 *
* *

L *****E5**********
* * * ISSUE ...

>* CLOSE ...
* WITH REREAD *
* OPTION *
****************.

I ****
L>!2:2* ...

* •

* TO IHCFCOMH * *****
***************** *28 *

200

* 82*
* *

Chart 28. Execution-Time I/O Recovery Prog

THE I/O SUPERVISOR
IS ENTERED VIA BSAN
ROUTINE WHEN IHCFIOSH
ISSUES A MACRO-INSl.

*28 *
* 82* . . .

I
v .'.

82 *.
.* *.

*****B3********** , .
• * HAS AN *. YES ISSUE

. EOF BEEN -.------->* MESSAGE n
. READ. * IHC217I *
.. * *

. . ***************** v

" NO :*;:*: . .
v .*. .* •

• ****Cl******.*** (2 *. .****C3*********. (4 *. * RETURN TO * •••• * * • * *.
• BSAM. • NO.* I/O •• YES * BSAM RETRY * .* 1/0 *. YES
• IHCFtOSH. *<--,<----*. ERROR IN .*------->* APPROPRIATE *------->*. ERROR BEEN .*~

: IHC~~gMH : I .' •. IDS •• -* : o~u;~~~s: *.~~RRECT:~.. I
*** ••• *********** *. .* ••• **********.*** *. .* v

V
****01*********

* FORTRAN *
LOAD

* MODULE *

CONTINUES
NORMAL
PROCESSING

:'::': . i NO : Cl :

v
*****03*****.*.*. * ••• *04 •• *****.*-* IHCFCOMH * * • * DETERMINES * * RETURN * * IF AN INVALID *<-------* ABORT CODE
* BUFFER HAS * * TO IHCFCOMH *
* BEEN READ * *
***************** *****************

1<:----. v .'.
*****E2********** , . E3 *.

.* *. · · ISSUE
MESSAGE
IHC218I

* YES.* HAS *. .<-------*. BUFFER BEEN .*
* *.READ YET .*
* *..*

***************** *. .*

;~;:: ,-> II ro J
**** v

v .*.
*****F2********** F3 *.
* * .* RE- *.

PASS * .* WIND OR *. NO
* ABORT CODE * *. BACKSPACE • * * TO SCHEDULER *.BEEN IS- .*
* *.SUED .*
***************** *. .*

V
****G2*********

• * TO * * SCHEDULER *

ISSUES ABEND
MESSAGE AND
THEN CONTI NUES
NORMAL PRO
CESSING

jYES

V
*****G3********** , . , , VOID

ABORT CODE
IN IHCFCOMH

I
V

****H3********* * FORTRAN * * LOAD * MODULE

CONTINUES
NORMAL
PROCESSING

Appendix F: IHCFIOSH 201

Table 30. IHCFIOSH Subroutine Directory
r----------T------------------------------,
I Subroutine I Function I
~----------+------------------------------i
I FCLOS ITerminates I/O operations. I
I FCTRL IServices device manipulation I
I I requests. I
IFINIT IInitializes unit and data set. I
I FREAD IServices read requests. I
IFRITE IServices write requests. I L __________ ~ ______________________________ J

202

r~'
~)

f,
~-

(-

•

APPENDIX G: ADDRESS COMPUTATION FOR ARRAY ELEMENTS

Data references in the form of
subscripted variables expressions in
FORTRAN are converted into object code that
includes address arithmetic and indexed
references to main storage addresses.
Since the conversion involves all phases of
the compiler, a summary of the method is
given here.

Consider an array A of n dimensions
whose element length is L, and whose dimen
sions are 01 .• 02., 03, ••• ,On. If such an
array is assigned main storage starting at
the address P11, then the element A(Jl. J2,
J3., ••• ,In) is located at

P = Pll + (J1-1)*L + (J2-1)*01*L +
(J3-1)*01*02*L + ••• + (In-1)*01*02*03*
••• *O(n-1>*L

This may be expressed as:

P = POO + J1*L + J2*(01*L) + J3*(01*02*L)
+ ••• + In* <01*02*03* .••• *0 (n-1> *L)

where

POO = P11 - (Ol*L + 01*02*L
01*02* ••• *D(n-1)*L)

+ • ' ... +

For fixed dimensioned arrays, the quan
tities 01*L. 01*02*L, 01*02*03*L, ,
which are referred to as dimension factors,
are computed at compile time. The sum of
these quantities, which is referred to as
the span of the array, is also computed at
compile time. (Phase 15 assigns an array a
relative address equal to its actual rela
tive address minus the span of the array.)

In the object code, P is finally formed
as the sum of a base register. an index
register. and a displacement. The phase 15
segment CORAL associates an address con
stant with each fixed dimensioned array
such that Pa~POO~Pa+4095, where Pa is the
address inserted into the address constant
at program fetch time. The effective
address is then formed using a base reg
ister containing the address constant, a
displacement equal to POO Pa, and an
index register, which contains the result
of a computation of the form:

L
SLL
L
M
AR
L
M
AR

L
M
AR

2,J1
2,log2L
1.J2
0,L*D1
2,1
1.J3
O,Dl*D2*L
2,1

1"Jn
0.01*02* ••• *D (n-1>
2,,1

Absorption of Constants in subscript
Expressions

Subscript expressions may
stant parts whose contribution
effective address is computed
time. For example"

include con
to the final
at compile

would usually
the effect of
be absorbed
pile time.

be treated in such a way that
the 2. the 4, and the 6 would
into the displacement at com-

Consider an example of the form

A (J1+K1"J2+K2., ,In+Kn),

where A is a fixed dimensioned array and
K1, K2, • Kn are integer constants.
Phase 15 will insert the quantity

Kl*L + K2*(01*L) + K3*(D1*02*L) +
+ Kn(01*02* ••• *O(n-l)*L)

into the displacement (OP) field of the
corresponding subscript or load address
text entry. The constants will not other
wise be included in the subscript expres
sion. When phase 25 generates machine
code, the contents of the OP field are
added to the displacement. To ensure that
the resultant expression lies within the
range of 0 to 4095. phase 20 performs a
check. If the result is not in the range.
a dictionary entry is reserved for the
result of the addition, and a suitable add
text entry is inserted to alter the index
register immediately before the reference.

Appendix G: Address Computation for Array Elements 203

Arrays as Parameters

When an array is used as an argument.
the location of its first element, Pll. is
passed in the parameter list. The prologue

204

of the called subroutine contains machine
code to compute the corresponding POO loca
tion. When an array has variable dimen
sions .• no constant absorption takes place
and the dimension factors are computed for
each reference to the array.

(/

('\

The FORTRAN IV (H) compiler is struc
tured in a planned overlay fashion. A
planned overlay structure is a single load
module, created by the linkage editor in
response to overlay control statements.
These statements, a description of a
planned overlay structure. and instruction
in specifying such a program structure are
presented in the publication IBM System/360
Operating System: Linkage Editor. The pro
cessing performed by the linkage editor in
response to the overlay control statements
is described in the publication IBM
System/360 Operating System: Linkage Edi
tor, Program Logic Manual.

The compiler's planned overlay structure
consists of 20 segments, one of which is
the root. The root segment contains those
processing units (e.g." the FSD) and data

APPENDIX H: COMPILER STRUCTURE

areas (e.g .• , communication region) that are
used by two or more compiler phases. The
root segment remains in main storage
throughout execution of the compiler.

Each of the remaining 19 segments con
stitutes a phase. or a logical portion of a
phase. Phase segments are overlayed as
compiler processing requires the services
of another segment.

Figure 61 illustrates the compiler's
planned overlay structure. In the figure.
each segment is identified by number. Seg
ments associated with vertical line origi
nating from the same horizontal line over
lay each other as needed. The figure also
indicates the approximate size (in bytes)
of each segment.

Appendix H: Compiler Structure 205

..

(

1 ~2~. _________________

,L, ~ 7 (1.5)

18 (4.5) 1 18 (11)

10 (26) 111 (14.5)

19 (20)

17 (19.5)

2 (61)
13 (14) 14 (13) 16 (9.5)

9 (67)
20 (57)

12 (63.5) 15 (49.5)

3 L5) 5 (1.5)

4 (7)

• The number in parentheses times 1,000 equals the approximate segment length

Figure 61. Compiler Overlay structure ()

206

The longest path1 of this structure is
formed by segments 1, 7., 8., 11. and 12.
because, when they are in main storage, the
compiler requires approximately 210.000
bytes. Thus, the minimum main storage
requirement for the compiler is approxi
mately 210,000 bytes.

The linkage editor assigns the relocata
ble origin of the root segment (the origin
of the compiler) at O. The relocatable
origin of each segment is determined by 0
plus the length of all segments in the
path. For example, the origin of segments
3, 4, and 5 is equal to 0 plus the length
of segment 1 plus the length of segment 2.

The segments that constitute each of the
compiler phases are outlined in Table 31.
The remainder of this appendix is devoted
to a discussion of the segments of the
compiler's planned overlay structure.

Table 31. Phases and Their Segments
r--------T--------------------------------,
I Phase I Segment(s) Constituting Phase I
r--------t--------------------------------i
I Phase 10 I Segments 2" 3., 4, and 5 I
IPhase 151Segments 6, 7, 8. 9, and 10 I
I Phase 20 I Segments 8, 11., 12, 13, 14, 15" I
I I and 16 I
IPhase 251segments 18. 19, and 20 I
IPhase 30lSegment 17 I
~--------~--------------------------------i
INote: Segment 8 is considered a portion I
lof both Phases 15 and 20. It contains I
Idata areas used by both phases. I L ___ J

segment 1: This segment is the root of the
compiler's planned overlay structure. Seg
ment 1 is the FSD. It has a relocatable
origin at zero. Segment 1 is not over
layed. The composition of segment 1 is
illustrated in Table 32.

1A path consists of a segment and all
segments between it and the root segment.,
and including the root segment.

Table 32. Segment-1 Composition

r---------------------T-------------------, I Control Section I I
I Name I Entry Point(s) I
~---------------------~-------------------i

$SEGTAB
BLANK
ADCON
ERCOM
IEKFCOMH

IEKFIOCS

IEKAA01
$BLANKCOM
AFRXPI

SYSTAB
IEKAAOO

IEKUATPT
SYSTRC
IHCFMAXI

I HCFMAXR

$ENTAB

I BCOM
IBCOM#
FIOCS
FIOCS#

FRXPI#
FRXPI
SYSTAB
GET COR
ENDFILE
SYSDIR
PAGE

SYSTRC
MAXO
MINO
AMAXO
AMINO
MAX1
MIN1
AMAX1
AMIN1

L __ _

segment 2: This segment is a portion of
phase 10. It contains the preparatory.
dispatch" and utility subroutines of phase
10. It also contains a portion of the key
word and arithmetic subroutines. (The
arithmetic subroutines that perform the
initial and final processing of statement
functions are not in this segment.) Seg
ment 2 is common to segments 3, 4" and 5.
and its origin is immediately after segment
1. (A segment common to two or more
segments is part of the path of each
segment.) Segment 2 is overlayed by seg
ment 6. The composition of segment 2 is
illustrated in Table 33.

Appendix H: Compiler Structure 207

Table 33. Segment-2 composition

r---------------T-------------------------,
IControl Section I Entry Point(s} I
~--------------~-------------------------i

PH10
XARITH
XCLASS
Pl0A
GETWD
GENDO
XCONT
ERROR
XSTOP
RTPRQT
XPUSE
LITCON
GET CD
XGO
XEQUI
DSPTCH
XNMLST
CSORN
GRPKEQ
PERLOG
XDO
CDOPAR
XDATA
XBCKRW
XIMPD
SYMTLU
XEXT
XFMT
LABTLU
MINSLS
XEND
XIF
CLOSE
COMAST
COMPAT
INTCON
PUTX
TXTBLD
XIOOP
XRETN
$ENTAB

XARITH
XCLASS

For GENOO and the re
maining control sect
tions of this segment
(except for $ENTAB),
the control section
names and the entry
point names are the
same.

L-_______________________________________ _

Segment 3: This segment is a portion of
phase 10. It contains several key word
subroutines. Segment 3 depends upon seg
ment 2 in that it requires the use of
certain utility subroutines of that seg
ment. The origin of segment 3 is immedi
ately after segment 2. Segment 3 overlays,
and can be overlayed by, either segment 4
or segment 5. The composition of segment 3
is illustrated in Table 34.

Table 34. Segment-3 Composition
r---------------T-------------------------,
IControl Section I Entry Point(s) I
~--------------~-------------------------i
I XSUBPG For this segment, control I
I XBLOK section names and entry I
I XIMPC point names are the same. I L ___ J

208

Segment 4: This segment is a portion of
phase 10. It contains' several key word
subroutines and those arithmetic subrou
tines that perform the initial and final
processing of statement functions. Segment
4 depends upon segment 2 for utility servi
ces, and its origin is immediately after
segment 2. Segment 4 overlays, and can be
overlayed by, either segment 3 or segment
5. The composition of segment 4 is illus
trated in Table 35.

Table 35. Segment-4 Composition
r---------------T-------------------------,
IControl Section I Entry Point(s) I
.---------------~-------------------------i
I XTYPE For this segment. control I
I XDIM section names and entry I
I XCOMON point names are the same. I
I XASF I
I XASF2 I L ___ J

Segment 5: This segment is a portion of
phase 10. It consists of several key word
subroutines and is dependent upon segment 2
for utility services. The origin of seg
ment 5 is immediately after segment 2.
Segment 5 overlays, and can be overlayed
by, either segment 3 or segment 4. The
composition of segment 5 is illustrated in
Table 36.

Table 36. segment-5 Composition
r--------------------T--------------------, I Control Section I Entry Point(s) I
.--------------------L--------------------i
I XASGN XASGN I
I XSTRUC XSTRUC I L ___ J

Segment 6: This segment is a portion of
phase 15. It contains the subroutines that
sort the dictionary. and process COMMON and
EQUIVALENCE declarations. The origin of
segment 6 is immediately after segment 1
(the root segment). Segment 6 overlays
segment 2, and is overlayed by segment 7.
The composition of segment 6 is illustrated
in Table 37.

Table 37. Segment-6 Composition
r--------------------T---------------------,
I Control Section I Entry Point(s} I
~--------------------~--------------------i
I LABSCN For this segment-, I
I DCTSRT control section I
I COMN names and entry I
I EQU point names are the I
I SBEROR same. I
I STALL I
I BSIZE I
I TESTBN I L ___ J

o

(J

..

("

Segment 1: This segment is a portion of
phase 15.. It contains the subprogram table
(IFUNTB) '. which is used by both the PHAZ15
and CORAL segments of phase 15. The origin
of segment 1 is immediately after segment
1. Segment 1 overlays segment 6. The
composition of segment 1 is illustrated in
Table 38.

Table 38. Segment-1 Composition
r--------------------T--------------------,
I Control Section I Entry Point(s) I
~--------------------~-------------------~
I FUNTB I L ___ J

Segment 8: This segment is considered a
portion of both phases 15 and 20. It
contains data areas that are used by both
these phases. Included in this segment are
RMAJOR, CMAJOR, the full register assign
ment tables, and phase 15/20 work areas.
The origin of segment 8 is immediately
after segment 1. Segment 8 is overlaid by
segment 18, if abortive errors are not
encountered during the processing of phases
10 and 15. The composition of segment 8 is
illustrated in Table 39.

Table 39. Segment-8 Composition
r--------------------T--------------------, I Control section I Entry PointCs) I
~-------------------~--------------------~
I C1520 I L ___ J

segment 9: This segment is a portion of
phase 15, It contains the subroutines that
implement the PHAZ15 functions of that
phase, which are arithmetic translation,
text blocking, and information gathering.
The origin of segment 9 is immediately
after segment 8. Segment 9 is overlayed by
segment 10. The composition of segment 9
is illustrated in Table 40.

Table 40. Segment-9 Composition

r--------------------~-------------------, I Control Section I Entry Point(s) I
.--------------------~-------------------i

SUBSCR SUBSCR
PH15
MATE
STTEST
BLTNFN
DUMP15
EXPON
ANDOR
CPLTST
PHAZ15
SUBMLT
GENRTN
LOOKER
ALTRAN
MODTST
XPARAM
DFUNCT
RELOPS
FINISH
PAREN
LIBRTN
TXTREG
GENER
RDTST
GET EXT
ARIF
NEGCHK
UNARY
GMAT
TXT LAB
VSETUP
WRIT15
MNE
SBGLUT
FUNDRY
SUBADD
MODIFY
NOT
OP1CHK
POWER2
COMMD
NSTRNG
SWITCH

MATE
STTEST
BLTNFN
DUMP15
EXPON
ANDOR
CPLTST
PHAZ15
SUBMLT
GENRTN

ALTRAN
MODTST
XPARAM
DFUNCT
RELOPS
FINISH
PAREN
LIBRTN
TXTREG
GENER
RDTST
GETEXT
ARIF
NEGCHK
UNARY
GMAT
TXT LAB
VSETUP
WRIT15

SBGLUT
FUN DRY
SUBADD
MODIFY
NOT
OP1CHK
POWER2
COMMD
NSTRNG
SWITCH L __ _

Segment 10: This segment is a portion of
phase 15. It contains the subroutines that
implement the CORAL functions of the phase.
The origin of segment 10 is immediately
after segment 8. Segment 10 overlays seg
ment 9. Segment 10 is overlaid by segment
11, if syntactical errors are not encoun
tered by phase 10 and 15. If errors are
present, segment 10 is overlaid by segment
17. The composition of segment 10 is
illustrated in Table 41.

Appendix H: Compiler Structure 209

Table 41. Segment-10 Composition
r--------------------T--------------------,
I Control Section I Entry Point(s) I

~--------------------~--------------------~
EXTRNL
STMAP2
NDATA
VARA
CORAL
TESTWD
EQVAR
CQNST
CMSIZE
COMVAR
ADSCAN
DATACH
ERDATA
SIZE
PRTEXT
SPAN
CORLDT

EXTRNL

For NDATA and the
remaining control
sections of this
segment. the control
section names and
entry point names
are the same.

L-__ J

Seqment 11: This segment is a portion of
phase 20. It contains the controlling
subroutine of that phase. the loop selec
tion routines, and a number of frequently
used utility subroutines. The origin of
segment 11 is immediately after segment 8.
Segment 11 overlays segment 10, if source
module errors are not encountered by phases
10 and 15. If errors are encountered.
segment 11 overlays segment 11 after its
processing is completed, only if the errors
encountered are not serious enough to cause
the deletion of the compilation. The com
position of segment 11 is illustrated in
Table 42.

Table 42. Segment-11 Composition
r--------------------T--------------------,
I Control Section I Entry Point(s) I

~--------------------~-------------------~
CNT
OPT
GETDIK
GETDIC
LPSEL
NPRFUN
INVERT
GETSPC
FILTEX
TARGET
BASVAR
BSYONX

GETDIK
GETDIC
LPSEL
NPRFUN
INVER
GETSPC
FILTEX
TARGET
BASVAR
BSYONX L __ _

segment 12: This segment is a portion of
phase 20. It contains the text optimiza
tion subroutines and the utility subrou
tines used by them. segment 12 is executed
only if the complete-optimized path through
phase 20 is specified. The origin of
segment 12 is irr~ediately after segment 11.
During the course of complete optimization,

210

segment 12 overlays segment 14. Segment 12
is overlayed by segment 15 after all module
loops have been text-optimized. The compo
sition of segment 12 is illustrated in
Table 43.

Table 43. Segment-12 Composition
r--------------------T--------------------,
I Control section I Entry Point(s) I

~--------------------~--------------------~
NORMIZ NORMIZ I
MOV
REDUCE
MOZ
PARFIX
SUBACT
YCHANG
CLASIF
BACMOV
SUBTRY
GROUPA
GROUPC
GROUPB
SUBSUM
ZCHANG
PERTRY
MODFIX
LORAN
PERFOR
MOVTEX
OBTAIN
XSCAN
XPLACE
YPLACE
YSCAN
ZPLACE
ZSCAN
TAGLOC
MBRAN
AGGLUT
CIRCLE
DELTEX
XCHANG
XPELIM
KORAN
FOLLOW
XPELOC
TYPLOC
WRITEX
FORMOV
INDTRY
INERT

REDUCE

For PARFIX and the
remaining control
sections., the con
trol section names
and entry point
names are the same.

L __ _

segment 13: This segment is a portion of
phase 20. It consists of the subroutines
that perform basic register assignment.
Segment 13 is only executed in the non
optimized path through phase 20. The
origin of segment 13 is immediately after
segment 11. Segment 13 does not overlay
any other segment in phase 20, nor is it
overlaid by another segment in phase 20.
The composition of segment 13 is illustrat
ed in Table 44.

('J

(
Table 44. Segment-13 Composition
r--------------------T--------------------,
I Control Section I Entry Point(s) I
~-------------------~-------------------~
I TALL TALL I
I SPLRA SPLRA I
I SSTAT SSTAT I
I STDMP STDMP I L ___ j

segment 14: This segment is a portion of
phase 20. It consists of the subroutines
that determine (1) the back dominator, back
target, and loop number of each source
module block, and (2) the busy-on-exit
data. Segment 14 is only executed if the
complete-optimized path through phase 20 is
followed. This segment is only executed
once and is overlaid by segment 12. The
origin of segment 14 is immediately after
segment 11. The composition of segment 14
is illustrated in Table 45.

Table 45. segment-14 composition
r--------------------T--------------------,
I Control section I Entry Point(s) I
~--------------------~--------------------~
I BAKT BAKT I
I BLK I
I SRPRIZ SRPRIZ I
I TOPO TOPO I
I BIZX BIZX I L ___ J

Segment 15: This segment is a portion of
phase 20. It contains full register
assignment subroutines and the utility sub
routines used by them. Segment 15 is
executed in both the intermediate-optimized
and complete-optimized paths through phase
20. In the intermediate-optimized path,
segment 15 is overlayed by segment 16.
During complete-optimization, segment 15
overlays segment 12 after all loops have
been text-optimized and is overlayed by
segment 16 after all loops have undergone
full register assignment. The origin of
segment 15 is immediately after segment 11.
The composition of segment 15 is illustrat
ed in Table 46.

Table 46. Segment-15 Composition
r--------------------T--------------------,
I Control Section I Entry Point(s) I
~--------------------~--------------------~

REGAS REGAS
REG
PROP1
BKP
LOC
FWDPAS
FWP
BKPAS
GTBASE
ALLCOR
STX
GLOBAS
FCLT50
STXTR
GLS
MRCLEN
CXIMAG
FWDPS1
HILOWS
SETUP
GLOBS1
ACCEPT
DISCHK
SEARCH
FREE
SHARE
TRNSFM
SETJ;EG
RELCOR
PRELUD
BKDMP

PROPl

FWD PAS

BKPAS
GTBASE
ALLCOR

GLOBAS
FCLT50
STXTR

For MRCLEN and the
remaining control
sections, the con
trol section names
and entry point
names are the same.

L __ _

Segment 16: This segment is a portion of
phase 20. It consists of the subroutines
that 1) calculate the size of each text
block and 2} determine which text blocks
can be branched to via RX-format branch
instructions. Segment 17 is executed in
both the intermediate-optimized and
complete-optimized paths. Segment 16 over
lays segment 15 after full register assign
ment is completed. Segment 16 is not
overlayed within phase 20. The or1g1n of
segment 16 is immediately after segment 11.
The composition of segment 16 is illustrat
ed in Table 47.

Table 47. Segment-16 Composition
r--------------------T--------------------,
I Control Section I Entry PointCs) I
~--------------------~--------------------~
I SEG4 SEG4 I
I BLS BLS I
I LYT LYT I
I BLSDTA I
I BSTRIP I L ___ J

Segment 17:
origin of

This segment is phase 30. The
segment 17 is immediately after

Appendix H: Compiler Structure 211

segment 8. Segment 17 overlays segment 10.
if syntactical errors are encountered dur
ing the processing of phases 10 and 15. If
the errors detected by these phases are not
serious enough to cause deletion of the
compilation" segment 17" after its process
ing is completed, is overlaid by segment
11,. The composition of segment 17 is
illustrated in Table 48.

Table 48. Segment-17 composition
r--------------------T--------------------, I Control Section I Entry Points(s) I
~-------------------L--------------------i I IEKP30 IEKP30 I
I MSGWRT MSGWRT I ·L ___ J

segment 18: This segment is a portion of
phase 25. It contains a number of subrou
tines that are employed by both the initial
text information construction and the text
conversion portions of phase 25 (see Charts
21 and 22). The origin of segment 18 is
immediately after segment 7. Segment 18
overlays segment 8. The composition of
segment 18 is illustrated in Table 49.

Table 49. Segment-18 Composition
r--------------------T--------------------, I Control Section I Entry Points(s) I
~--------------------~--------------------i

FAZ25
BXHCOM
PROLOG
DCLIST
LISTER
END
LABEL
IEKTLOAD

INITIA
PACKER
EPILOG
$ENTAB

PROLOG
DCLIST
LISTER
END
LABEL
ESD
TXT
RLD
lEND
INITIA
PACKER
EPILOG

L __ _

212

Segment 19: This segment is a portion of
phase 25. It contains most of the subrou- (;~ __ ;I
tines that perform initial text information ;
construction (see Chart 21.) The origin of
segment 19 is immediately after segment 18.
Segment 19 is overlaid by segment 20. The
composition of segment 19 is illustrated in
Table 50.

Table 50. Segment-19 Composition
r--------------------T--------------------, I Control Section I Entry Point(s) I
~--------------------~--------------------i
I NADOUT For this segment" I
I SUBR the control section I
I ATTACH names and entry I
I FORMAT point names are the I
I INITIL same. I
I LYT1 I
I DATOUT I
I NLIST I L ___ J

Segment 20: This segment is a portion of
phase 25. It contains the subroutines that
perform text conversion (see Chart 22).
The origin of segment 20 is immediately
after segment 18. segment 20 overlays
segment 19. The composition of segment 20
is illustrated in Table 51.

----- - ~--------------- ------------.

(

•

Table 51. Segment-20 Composition
r--------------------T--------------------,
I Control Section I Entry Points(s) I
~--------------------~--------------------i

MANGN2
DBLGEN
IOSUB
LBITTF
BRCOMB
FLTGEN
DIMGEN
TSTSET
NTFXGN
RETURN
DIVGEN
MAINGN
CGEN
STRGEN
SHFT2
IOSUB2
CALLER
IEKWAG
TENTXT
LDADDR
BRCOMP
STOPPR
BRLGL
BRANCH
BTBF
LGLNOT
LDBGEN
ENTRY
SIGNGN
ABSGEN
GOTOKK
LSTGEN
SUBGEN
MXMNGN
LOGCL
FNCALL
CMPLGN
ADMDGN
NDORGN
MOD24
BITNFP
SHFTRL
PLSGEN
MINUS
INTMPY
UNRGEN
MODGEN

MANGN2
DBLGEN
IOSUB
LBITTF
BRCOMB
FLTGEN
DIMGEN
TSTSET
NTFXGN
RETURN
DIVGEN
MAINGN

For STRGEN and the
remainder of this
segment. the control
section names and
entry point names
are the same.

I
I
I
I
I
I
I
I
I ___ J

Appendix H: Compiler Structure 213

APPENDIX I: DIAGNOSTIC MESSAGES

The messages produced by the compiler
are explained in the publication IBM
System/360 Operating system: FORTRAN IV
Programmer's Guide. Each message is iden
tified by an associated number. The fol
lowing table associates a message number
with the phase and subroutine in which the
corresponding message is generated.

214

r---------T--------------~------~--,
I IRoutine in which I Phase in which I
I Message ,message number Imessage number I
I number lis generated lis generated I
~--------+--------------t--------------i
I 2 I XCLASS I
~--------t---------------i
I 3 I PERLOG I
~---------t----------------i
, 4, PERLOG I
~---------t----------------~
I 5 I RTPRQT I
~---------t---------------i
I 7 I MINSLS I
~---------t--------------_/
I 8, LITCON ,
~--------t----------------~
I 9 I LITCON I
~---------t----------------_/
, 10 I LITCON I
~--------t----------~----_/
I 12 I CSORN I
~-------+-----------------/
I 13 I PUTX I
~--------+----------------/
I 14 I INTCON I
~---------t-------------i
I 15 I CDOPAR I
~---------t---------------_/
I 16 I XGO I
.--------t---------------_/
I 17 I XGO I
:.---------t_--------------_/
I I I PHASE 10
I 18 I XGO ,
.--------t----------------_/
I 19\ XGO I
~---------t-------------_/
I 20 I XGO I
.---------t----------------i
I 21, XGO I
.---------t---------------i
I 22, XGO I
.---------t----------------_/ I 27 I XASGN I
.---------t-----------------/ I 29 I RTPRQT I
.---------t--------------_/
I 30 I XDO I
.--------t---------------_/
I 31 I CDOPAR I
~---------t_--------------_/
I 32 I XARITH I
.---------t--------------_/
I 33 I XARITH I
.---------t---------------_/
I 36 I DSPTCH I
.---------t----------------_/
I 37 I XASF I
.--------t----------------_/ I 40 I PERLOG I L ________ .L ______________ .L _____________ J

•

()

(-.

(,

..

r---------y----------------y--------------,
I 'Routine in whichlPhase in which I
I Message Imessage number Imessage number I
I number lis generated lis generated ,
~--------+----------------+--------------i
I 43 I COMAST I I
~--------+----------------i I
I 44 I COMAST I I
~-------+----------------i
I 45 I COMAST I
~--------+----------------i
, 46, XDIM I
~--------+----------------i
I 47, COMAST I
~--------+----------------i
I 48 I XARITH I
~---------+----------------i
I 49 I LITCON I
~-------+----------------i
I 50 I RPTRQT I
~---------+----------------i
, 51 I RPTRQT I
~-----+-------------i
I 52, GRPKEQ I
~--------+----------------i
I 53, GRPKEQ I
~--------+_---------------i
I 54 I GRPKEQ I
~---------+----------------i
I 55 I GRPKEQ ,
~-------+_---------------i
, 57, XSUBPG I
~--------+----------------i PHASE 10
I 58 I XSUBPG I
~--------+----------------i
, 59 I XSUBPG ,
~--------+_---------------i I 60, XARITH ,
~-------+----------------i
, 64, XNMLST I
~--------+----------------i
I 65, XNMLST I
~--------+------------i
, 66 I XNMLST I
~---------+_---------------i
I 67 I XNMLST I
~------+_---------------i
, 68 I XCOMON ,
~--------+----------------i
I 69 I XCOMON I

~---------+--------------i
, 70, XEQUI I
~-------+_---------------i
I 71, XEQUI I
~-------+--------------i
I 72 I XEQUI I

~--------+----------------1
I 73 I XEQUI I
~-------+--------------i
, 74, XEQUI ,
~---------+--------------i
, 75 I XCOMON I L _________ ~ ________________ ~ _____________ _

r---------T----------------y--------------,
I IRoutine in whichlPhase in which I
I Message Imessage number 'message number I
I number lis generated lis generated I
~-------+----------------+--------------i
I 76 I XARITH ,
~---------+----------------i
, 77, XIMPC I
~---------+----------------i
I 78 I XIMPC I
~---------+----------------i
I 79 I XIMPC I
~---------+----------------i
I 80 I XIMPC I

~---------+----------------i
I 81 I XIMPC ,
~---------+----------------i
, 82, XIMPC I
~---------+----------------i
, 83 I XIMPC I
~---------t--------------i
I 84 I XIMPC I
~--------t----------------i
I 85 I INTCON I

~---------t----------------i
I 89, XEXT I
.---------t----------------i
I 91 I XEXT I
~---------t----------------i
I 92 I XTYPE I
.---------t----------------i
I 93 I XTYPE I
.-------t----------------i
I 94 I XTYPE I PHASE 10
~--------t----------------i
I 95 I XTYPE I
.---------t----------------i
I 96 1 XTYPE I
~---------t----------------i
, 97, XSTRUC ,
.---------t----------------i
, 98 I XSTRUC ,
.---------t----------------i
, 100, XSTRUC ,
~---------t----------------i
I 102 I XBCKRW ,
.---------+_---------------i
I 103 I XBCKRW ,
~---------+_---------------i
, 104 I XBCKRW ,
.---------t--------------i
, 105, XCONT I
~---------t----------------i
I 106, XCONT I
~---------t----------------i
I 107 I XSTOP I
.---------t----------------i
I 109 I XPUSE ,
~---------t----------------i
I 110 I XPUSE ~

~---------t----------------i
I 111 I XPUSE I L _________ ~ _______________ ~ _____________ J

Diagnostic Messages 215

r---------y----------------T--------------,
I IRoutine in which I Phase in which I
I Message Imessage number Imessage number I
I number lis generated lis generated I
~---------+----------------+--------------~
I 112 I XDATA. SYMTLU,I I
II XPUSE, LABTLU I I
~---------+----------------i I
I 113, XRETN' ,
~---------+----------------i I
, 115 I XRETN I I
~---------+--------------~ I
I 117 I XBLOK I
~---------+----------------~
I 120 I XBLOK I
~--------+----------------~
I 121 I XDATA ,
~---------+--~-------------~
I 122 I XDATA I
~---------+----------------i
I 123 I XDATA I
~--------+----------------i
I 124 I XDATA I
~--------+--------------~
I 125, XDATA ,
~---------+----------------~
I 127 I XDATA I
~---------+----------------i
I 128 I CDOPAR I
~---------+----------------i
I 129 I XDATA I
~---------+----------------~
I 130 I XDATA ,
~---------+----------------i
I 132 I XDATA I
~--------+----------------i
I 133 I XDO ,PHASE 10
~---------+----------------i
, 134 I XDO I
~---------+----------------i
I 135 I CDOPAR I
~---------+----------------i
I 139 I PERLOG I
~---------+----------------i
I 140 I XFMT I
~---------+----------------i
I 141 I XFMT I
~---------+----------------i
I 142 I XASF I
~---------+----------------~
I 143 I XASF I
~---------+----------------i
I 144 I XASF I
~---------+--------------i
I 145 I XASF I
~---------+----------------i
I 146 I XASF I
~---------+----------------i
I 149 I XDIM I
~---------+----------------i
I 150 I X-oIM I
~---------+-------------i
I 151 I XDIM I
~--------+----------------~
I 152 I XSUBPG I
~---------+----------------i
I 156 I XIOOP I L _________ ~ _______________ ~ ______________ J

216

r---------T----------------T--------------,
I 'Routine in whichlPhase in which I (1)
I Message Imessage number Imessage number I '-~
I number lis generated lis generated I
~---------+----------------+--------------~
, 158 I XIMPD I I
~---------+----------------~ I
I 159 I XFMT I I
~---------+---------------~
I 160 I XIOOP I
~---------+---------------i
I 161 I XIOOP I
~--------+---------------i
I 162 I XIOOP I
~---------+----------------i
I 163 I XIMPD I
~---------+----------------i
I 164 I XIOOP I
~---------+--------------i
I 165 I XIOOP I
~---------+----------------i
I 176 I XIMPD I
~---------+----------------i
I 193 I XCLASS I
~--------+----------------i
I 194 I XTYPE I
~-------+----------------i PHASE 10
I 197 I XSTOP I
~---------+----------------i
I 199 I XSUBPG I
.---------+----------------i
I 200 I XDIM I
~---------+----------------i ~

~---~~=---!-----~:~~~:-----~ . ,
I 222 I LITCON I
~---------+----------------~
I 224 I XCLASS I
~---------+----------------~
I 229 I XASF2 I
~---------+---------------+--------------~
I 302 I EQU I I
~---------+----------------i I
I 304 I E.QU I I
~---------+----------------i I
, 306 I EQU I I
~---------+---------------i PHASE 15 I
, 308 I EQU I (STALL and I
~---------+----------------i CORAL) I
I 310 I EQU I I
~-----·---+----------------i I
I 312, EQU' I
.---------+---------------~ I
, 314 I TESTBN, , L _________ ~ ______________ ~ ___________ J

(/

•

..

r---------T----------------T--------------,
I IRoutine in whichlPhase in which I
I Message Imessage number Imessage number I
I number lis generated lis generated I
~---------t----------------t--------------i
I 318 I NDATA I
t---------t----------------i
I 322 I TESTBN I
~---------+_---------------i
I 332 I LABSCN I
~---------t----------------i
I 334 I COMN I
~---------t----------------~ PHASE 15
I 350 I NDATA I (STALL and
~---------t----------------i CORAL)
I 352 I NDATA I
~---------t----------------i
I 353 I EXTRNL I
~---------t----------------i
I 354 I CMSIZE I
~---------t----------------i
I 355 I CMSIZE I
t---------+_---------------t--------------~
I 500 I FORMAT I
~---------t----------------i
I 501 I EXPON I
~---------t----------------i
I 502 I EXPON I
t---------t----------------i
I 509 I PHAZ15 ,
~---------t----------------i
, 510, ANDOR I
~---------t----------------i
I 511 I NOT ,
~---------t----------------i
I 512 I FINISH ,
~---------t----------------i
I 515 I RELOPS I
~---------t----------------i
I 520 I ALTRAN I
~---------t----------------i
I 521 I ALTRAN I PHASE 15
~---------t----------------~ (PHAZ15)
I 522 I ALTRAN I
t---------t----------------i
I 524 I ALTRAN I
~---------t----------------i
I 523 I ALTRAN I
~---------t----------------i
, 525 I ALTRAN I
~---------t----------------i
I 526 I RELOPS I
t---------t----------------i
I 527 I ANDOR I
~---------t----------------i
I 528 I BLTNFN I
~---------t----------------i
I 529 I XPARAM I
~---------t----------------i
I 530 I SUBADD I
t---------t----------------i
I 531 I ALTRAN I
~---------t----------------i
I 541 I DFUNCT I
~---------t----------------i
, 542 I ALTRAN I L _________ ~ ________________ ~ _____________ _

r---------T----------------T--------------,
I IRoutine in which,Phase in which,
I Message Imessage number Imessage number I
I number lis generated lis generated I
~---------t----------------t--------------i
I 550 I ALTRAN I
~---------t----------------i
I 551 I GENER,GMAT I
~---------t----------------i
I 552, GETEXT I
.---------t----------------i
I 580 I ALTRAN I
.---------t----------------i
I 581 I SUBMLT I PHASE 15
t---------t----------------i (PHAZ15)
I 583 I TXTREG I
t---------t----------------i
I 584 I MATE I
~---------t----------------i
I 585 I FINISH I
t---------t----------------t--------------i
I 600 I TOPO I
~---------t----------------i
I 610 I TOPO I
t---------t----------------i
, 620 I GETDIC I
t---------t----------------i
, 621 I GETDIK I
t---------t----------------i
, 630 I GETDIC I
~---------t----------------i
I 631 I GETDIK I
I~---------t----------------i PHASE 20
, 640 I GETSPC ,
~---------t----------------i
I 650 I TOPO I
~---------t----------------i
I 660 I TOPO I
~---------t----------------i
I 670 I BAKT I
t---------t----------------i
I 671, BIZX ,
~---------t----------------i
, 680 I RELCOR I
t---------t----------------+_-------------~
I 700 I NADOUT I I
~---------t----------------i I
I 710 I FORMAT I I
~---------t----------------~ I
I 720 I FORMAT I I
~---------t----------------i PHASE 25 I
I 730 I FORMAT I I
~---------t----------------i I
I 740 I FOl{MAT I I
t---------t----------------i I
I 750 I FORMAT I I
~---------t----------------t--------------i
I 1000 I IEKP30 I I
~---------t----------------i PHASE 30 I
I 1 I IEKP30 I I L _________ i-_______________ ~ ______________ J

Diagnostic Messages 217

Absolute constant
definition of 58

Adcon table
generation of ESD. TXT,. and RLD records

for 73
in relative address assignment 34
reserving entries within 70

Adcon variable 37
Address assignment

(see relative 'address assignment)
Address constant

in relative address assignment 34
Adjective code

in intermediate text 150-151
Arithmetic expressions

reordering of 24-25
special processing of 25

Arithmetic sUbroutines 17
Arithmetic translation 24-27
Array I/O list items

object-time processing of 187
Arrays

address computation for elements of
203-204

as parameters 204
relative address assignment for 35-37
statement number/array table entry for

137-138
Assignment

of registers 39-46,66-67
of relative addresses 34-37

Back dominator
definition of 47
determination of 52

BACKSPACE statement
object-time implementation of 189

Back target
definition of 52
determination of 52-53

Backward connection information
gathering of 31-33

Backward movement
example of 180
processing performed during 60-61

Base value,. for equivalence group
definition of 36

Base variable 37
Basic register assignment 40-42
Basic sequential access method

compile-time use of 14
object-time use of 185

Bit strip arrays
composition of 75
format of 170-177
use of 76

Branch table
chaining in 126,130
contents of 141
entry formats 141-142
modifications to 142

Branching optimization 46-47.67

218

BSAM
(see basic sequential access method)

BSP macro-instruction
object-time use of 198

Buffers
object-time use of 196-198

Busy-on-exit information 54-55

CALL statements
generation of calling sequences for 75

Chains
construction of 127
definition of 126
in information table 126
in intermediate text 149

Classification
process of 123-124

Classification tables
format of 124-126
use of 123-124

CHECH macro-instruction
object-time use of 197.198

CLOSE macro-instruction
object-time use of 199

CMAJOR
construction of 31-32

Code generation 75-77
Common blocks

common table entries for 138-139
Common expression elimination

example of 178
processing performed during 58-59

Common table
chaining in 126,129-130
contents of 138
entry formats 138-140
modifications to 139-140

Communication table
format of 122-123
use of 122

Commutative operations
processing of 26

Compilation
deletion of 14

Compiler
initialization of 9
input/output data flow of 5-6
organization of 6
purpose of 5
relation to operating system 5
structure 8,205-213
termination of processing 14

Complete-optimized path
processing performed within 39

Complex expressions
processing of 25

Computed GO TO statements
compile-time processing of

70,74-75,77-78
Constant expression reordering

example of 182
processing performed during 61-65

,

(

•

(J

f

,

•

..

constants
absorption of 203
dictionary entries for 133-134
generation of TXT records for 70
relative address assignment for 35

Constant/variable usage information
gathering of 27-29

Control block. data
(see data control block)

Control block, data event
(see data event control block)

Control codes
(see format codes)

Conversion codes
(see format codes)

Conversion routines
in IHCFCOMH 190

Counter, location
(see location counter)

Data control block 196
Data control block skeleton section

in unit block 196
Data event control block 196
Data event control block skeleton section

in unit block 196
Data text

DCB

example of 152
final processing of 73-74
format of 155
rechaining of 37
translation of 34

(see data control block)
DCB skeleton section

(see data control block skeleton
section)

DECB
(see data event control block)

DECB skeleton s.ection
(see data event control block skeleton

section)
Default values

object-time insertion of into DCB
skeletons 196

Definition point
for a variable 42

Depth number
determination of 52-53

Device R~nipulation
object-time routines for

188-189,198-199
Diagnostic messages 214-217
Diagnostic message tables 148
Dictionary

chaining in 126,127-128
contents of 130
entry formats 130-134
modification to 132-134

Dictionary entries
rechaining of 19-20

Dimension entry
in statement number/array table 137-138

Dimension factor
definition of 203

Directory array 75
Dispatcher subroutine 16

DisplacemenL
in relative address assignment 35

Displacement field
in intermediate text 160

END FILE statement
object-time implementation of 189

END statement
processing of 77-78

ENTRY statement
processing of 75

Epilogue 74
Equivalence groups

common table entries for 139
Equivalence variables

common table entries for 140
Error level code 79
Error messages

generation of 78-79
Errors·

object-time processing of 189
Error table

format of 148
use of 78
construction of 78

ESD
(see external symbol dictionary)

ESD record
contents of 78

External symbol dictionary 78

Forcing strength 24
Format codes

control 186-187
conversion 186-187,190

FORMAT intermediate text
example of 154
translation of 71

Forward connection information
gathering of 29-30

Forward movement
example of 179
processing performed during 59-60

Forward target 56
FREEPOOL macro-instruction

object-time use of 199
Full register assignment 42-46,66-67

GETMAIN macro-instruction
object-time use of 195

Global assignment
in full register assignment 45,66

Head, for equivalence group
definition of 20

Hollerith character strings
relative address assignment for 35

IFUNTB
(see subprogram table)

IHCFCOMH library subprogram
closing section of 187-188
conversion routines of 190
device manipulation routines of
generation of calling sequences
I/O list section of 187
opening section of 185-187
read/write routines of 185-188

189
to 75

Index 219

write-to-operator routines of 189
IHCFIOSH library subprogram

buffering scheme of 196
closing section of 199
communication with control program 197
device manipulation section of 198-199
error processing of 199
initialization section of 197-198
read section of 198
tables used in 195-196
write section of 198
unit assignment table in 196
unit blocks in 195-196

Information ~able
chains within 126-127
components 126
operation of chains within 127-130

Initialization Instructions 72-73
Initialization section

in IHCFIOSH 197-198
In-line routine references

processing of 26
Input/output buffers

(see buffers)
Input/output list items

object-time processing of 187
Input/output requests

compile-time processing of 14
format of 14

Input/output statements
generation of calling sequences for 75
object-time implementation of 185-190

Intermediate-optimized path
processing performed within 39

Intermediate text
chaining in 149
types of 149,,155
entry formats 150,155-161
examples of 151-154,162-169

Internal statement number
compiler assigning of 16

Interruptions" arithmetic
object-time processing of 189

I/O list items
(see input/output list items)

I/O requests
(see input/output requests)

I/O statements
(see input/output statements)

ISN
(see internal statement number)

Keyword pOinter table
format of 124
use of 123-124

Keyword subroutines 16
Keyword table

format of 125-126
use of 123-124

LOcal assignment
in full register assignment 44-45

Logical expressions
processing of 21

List items
(see input/output list items)

L~teral constant
literal table entry for 140-141

220

Literal data
literal table entry for 141

Literal table
chaining in 126,130
contents of 140
entry formats 140-141
modifications to 141

LMVF
(see loop composite matrixes)

LMVS
(see loop composite matrices)

LMVX
(see loop composite matrixes

Location counter
use in building object module 68
use in assigning relative addresses 35

Loop composite matrixes 58
Loop numbers

assigning of 53-54
Loops

identification of 53-54
ordering of 53-54
selection of 55-56

Main program entry coding 72
Mask, program interruption

object-time settin.g of 189
Message pointer table

use of 78-79
format of 148

Mode/type field
in dictionary 131
in intermedtate text 151

MVD table 28, 54-55
MVF field 27-29
MVS field 27-29
MVX field 27-29, 54-55

Namelist dictionaries
construction of 71-72
format of entries in 147-148

Namelist text
conversion of 71-72
example of 153

Negative address constant 36
Non-optimized path

processing performed within 39
Normal text

example of 152

Object module 67
Object program

(see object module)
Object-time namelist dictionaries

(see namelist dictionaries)
Offset 20
OPEN macro-instruction

object-time use of 197
Operands

source statement scan of 17-18
Operators

source statement scan of 17-18
Operator table

format of 146
use of 63

Overlay structure
of compiler 205-213

Parameter processing 9

•

•

..

PAUSE statement
object-time implementation of 180

Preparatory subroutine 16
primary path

definition of 53
Prologue 74
Pushdown table 24-25

READ statement
object-time implementation of 185-188

Register array 75
Register assignment 39-46,66-67
Register assignment tables 145-146
Relative address assignment

for arrays 35-36
for common variables and arrays 36-37
for constants 35
for equivalence variables and arrays not

in common 36
for Hollerith character strings 35
for variables 35
for variables and arrays equivalenced

into common 37
Relocation dictionary 78
Reserved register addresses 47
Reserved registers 46-47
RETURN statement

processing of 77
REWIND statement

object-time implementation of 189
RLD

(see relocation dictionary)
RLD record

contents of 78
RMAJOR

construction of 29

SF
(see statement function)

SF skeleton text
example of 154

Simple store
definition of 60

Simple store elimination
example of 181
processing performed during 60-61

Skeleton arrays
composition of 75
format of 170-177
use of 76

Source module listing 15
Source statement scan 16-18
Span

definition of 203
SPIE macro-instruction

object-time use of 189,190
Standard text

examples of 161-169
format of 159-160

Statement functions
processing of 18,,27
text for 154

Statement number chain
reordering of 31

Statement number/array table
chaining in 126,128~129
contents of 134
entry formats 135-138

modifications to 136-137
Statement numbers

assigning address constants to 74-75
reserving adcon table space for 70
statement number/array table entries

for 135-136
text for 155-159

Statement number text
format of 155-159
construction of 21

Status
in code generation 76
in intermediate text
in register assignment

STOP statement

161
39

object-time implementation of 180
Storage allocation

for compiler 9-12
Storage map

production of 37
Stored constant

definition of 58
Strength reduction

example of 183-184
processing performed during 65-66

Structure
(see overlay structure)

Structural determination 47-54
Subprogram main entry coding 72
Subprogram references

processing of 26
Subprogram secondary entry coding 73
Subprogram table

use of 26-27,142-143
format of 144

Subscript expressions
computation of 203-204

Subscripts
processing of 26

Table building
for full register assignment 44

Tables
adcon 34,70,73
branch 141-142
classification 123-136
COIl'mon 138-140
communication 122,123
diagnostic message 148
dictionary 130-134
error 148
information 126-142
keyword 123-126
keyword pointer 123-124
literal 140-141
message pointer 148
operator 146
register assignment 145-146
statement number/array 134-138
unit assignment 196

Termination of compiler processing 14
Termination of load module execution

189-190
Text

(see intermediate text)
Text block

definition of 21
Text blocking 21-22

Index 221

Text conversion 74-78
Text information

composition of 67
construction of '8-70

Text optimization
examp~es of 178-184
processinq performed durin. 57-"

Text updatinq
in full reqister assi~ment 45-46

Transformations 62-63
TXT

(see text information)
TXT records

contents of 67

Unary minuses
processinq of 26

Unit assiqnment table

222

in IBCFIOla ",
unit blooks

in IMCFIosa 1'5~1"

Variables
dictionary entries for 130-132
point of definition for 42
relative address assi~ment for 35-37
reservin9 space in object module for 71

RITE statement
object-time implementation of 185-188

Write-to-operator routines
in IaCFCOMH 189

WTO macro-instruction
object-time use of 1.'

WTOR macro-instruction
object-time use of 1.9

I

•

•

•

Y20-0012-0

International Business Machines Corporation

Data Processing Division
112 East Post Road, White Plains, New Yolk 10601

II

