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This publication provides information
describing the internal organization and
operation of the FORTRAN IV (H) compiler.

I+ is part of an integrated library of IBM
System/360 Operating System Program Logic
Manuals. Other publications required for
an understanding of the FORTRAN IV (H)

compiler are:

IBM System/360: Principles of Operation,
Order No. GA22-6821

IBM System/360 Operating System:

FORTRAN 1V Language, Order No. GC28-6515

Introduction to Control Program Logic,
Program Logic Manual, Order
No. GY28-6605

FORTRAN IV (G and H) Programmer's Guide,
Order No. GC28-6817

Although not required, the following
publications are related to this
publication and should be consulted:

IBM System/360 Operating System:

Sequential Access Methods, Program Logic

Manual, Order No. GY28-6604

Concepts _and Facilities, Order
No. GC28-6535

Supervisor and Data Management Macro
Instructions, Order No. GC28-6647

Linkage Editor and Loader, Order
No. GC28-6538

Linkage Editor, Program Logic Manual,
Order No. GY28-6610

System Generation, Order No. GC28-6554

This manual consists of two sections.

PREFACE

Section 1 is an introduction that
describes the FORTRAN IV (H) compiler as a
whole, including its relationship to the
operating system. The major components of
the compiler and the relationships among
them are also described.

Section 2 consists of a discussion of
the major components. Each component is
discussed in terms of its functions; the
level of detail provided is sufficient to
enable the reader to understand the general
operation of the component. In the
discussion of each function of a component,
the routines that implement that function
are identified by name. The inclusion of a
compound form of the routine names provides
a frame of reference for the comments and
coding supplied in the program listing.

The program listing for each identified
routine appears on the microfiche card
having the second portion of the compound
name of that routine in its heading. For
example, the routine referred to in this
manual as STALL-IEKGST is listed on the
microfiche card headed IEKGST. This
section also discusses common data, such as
tables, blocks, and work areas, but only to
the extent required to understand the logic
of the components, Flowcharts and routine
directories are included at the end of this
section,

Following Section 2 are a number of
appendixes, which contain descriptions of
tables used by the compiler, intermediate
text formats, the overlay structure of the
compiler, object-time library subprograms,
and other reference material.

If more detailed information is
required, the reader should refer to the
comments and coding in the FORTRAN IV (H)
program listing.
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This section contains general
information describing the purpose of the
FORTRAN IV (H) compiler, its relationship
to the operating system, its input/output
data flow, its organization, and its
overlay structure.

PURPOSE OF THE COMPILER

The IBM System/360 Operating System
FORTRAN IV (H) compiler transforms source
modules written in the FORTRAN IV language
into object modules that are suitable for
input to the linkage editor for subsequent
execution on the System/360. At the user's
option, the compiler produces optimized
object modules (modules that can be
executed with improved efficiency).

THE_COMPILER AND OPERATING SYSTEM/360

The FORTRAN IV (H) compiler is a
processing program that communicates with
the System/360 Operating System control
program for input/output and other
services. A general description of the
control program is given in the publication
IBM System/360 Operating System:
Introduction to Control Program Logic,
Program Logic Manual, Form Y28-6605.

A compilation, or a batch of
compilations, is requested using the job
statement (JOB), the execute statement

(EXEC), and data definition statements
(DD). Cataloged procedures may also be
used. A discussion of FORTRAN 1V

compilation and the available cataloged
procedures is given in the publication IBM
System/360 Operating System: FORTRAN IV (G
and H) Programmer's Guide, Form C28-6817.

The compiler receives control from the
calling program (e.g., job scheduler or
another program that calls, links to, or
connects the compiler). Once the compiler
receives control, it communicates with the
control program through the FORTRAN system
director, a part of the compiler that
controls compiler processing. After
compiler processing is completed, control
is returned to the calling program.

FORTRAN source module.

SECTION 1: INTRODUCTION

INPUT/OUTPUT DATA FLOW

The source modules to be compiled are
read in from the SYSIN data set. Compiler
output is placed on the SYSLIN, SYSPRINT,
SYSPUNCH, SYSUT1, or SYSUT2 data set,
depending on the options specified by the
FORTRAN programmer. {(The SYSPRINT data set

is always required for compilation.)

The overall data flow and the data sets
used for the compilation are illustrated in
Figure 1.

COMPILER ORGANIZATION

The IBM System/360 Operating System
FORTRAN IV (H) compiler consists of the
FORTRAN system director, four logical
processing phases (phases 10, 15, 20, and
25), and an error-handling phase (phase
30).

control is passed among the phases of
the compiler via the FORTRAN system
director. After each phase has been
executed, the FORTRAN system director
determines the next phase to be executed,
and calls that phase. The flow of control
within the compiler is illustrated in Chart
00. (Charts are located at the end of
Section 2.)

The components of the compiler operating
together produce an object module from a
The object module
is acceptable as input to the linkage
editor, which prepares object modules for
relocatable loading and execution.

The object module consists of control
dictionaries (external symbol dictionary
and relocation dictionary), text
(representing the actual machine
instructions and data), and an END
statement. The external symbol dictionary
(ESD) contains the external symbols that
have been defined or referred to in the
source module., The relocation dictionary
(RLD) contains information about address
constants in the object module.

The functions of the components of the
compiler are described in the following
paragraphs.

Section 1: Introduction 11
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Figure 1. Input/Output Data Flow

FORTRAN SYSTEM DIRECTOR

The FORTRAN system director (FSD)
controls compiler processing. It
initializes compiler operation, calls the
phases for execution, and distributes and
keeps track of the main storage used during
the compilation. 1In addition, the FSD
receives the various input/output requests
of the compiler phases and submits them to
the control program.

PHASE 10°

Phase 10 accepts as input (from the
SYSIN data set) the individual source
statements of the source module. If a
source module listing is requested, the
source statements are recorded on the
SYSPRINT data set. If the XREF option is
selected, a two-part cross reference is
recorded on the SYSPRINT data set
immediately following the source listing.
If the EDIT option is selected, the source
statements are recorded on the SYSUT1 data
set, which phase 20 uses as input to
produce a structured source listing. If
the ID option is selected, calls and
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function references are assigned an
internal statement number (ISN).

Phase 10 converts each source statement
into a form usable as input by succeeding
phases. This usable input consists of an
intermediate text representation (in
operator-operand pair format) of each
source statement. In addition, phase 10
makes entries in an information table for
the variables, constants, literals,
statement numbers, etc., that appear in the
source statements. Phase 10 also places
data about COMMON and EQUIVALENCE
statements in the information table so that
main storage space can be allocated
correctly in the object module. During
this conversion process, phase 10 also
analyzes the source statements for
syntactical errors. If errors are
encountered, phase 10 passes to phase 30
(by making entries in an error table) the
information needed to print the appropriate
error messages.

PHASE 15

Phase 15 gathers additional information
about the source module and modifies some



intermediate text entries to facilitate
optimization by phase 20 and instruction
generation by phase 25. Phase 15 is
divided into two segqments that perform the
following functions:

e The first segment translates phase 10
intermediate text entries (in
operator-operand pair format)
representing arithmetic operations into
a four-part format, which is needed for
optimization by phase 20 and
instruction-generation by phase 25.
This part of phase 15 also gathers
information about the source module
that is needed for optimization by
phase 20,

e The second segment of phase 15 assigns
relative addresses and, where
necessary, address constants to the
named variables and constants in the
source module. This segment also
converts phase 10 intermediate text (in
operator-operand pair format)
representing DATA statements to a
variable-initial value format, which
makes later assignment of a constant
value to a variable easier.

Phase 15 also passes to phase 30 the
information needed to print appropriate
messages for any errors detected during
phase 15 processing. (This is done by
making entries in the error table.)

PHASE 20

Phase 20 processing depends on whether
or not optimization has been requested and,

if so, the optimization level desired.

If no optimization is specified, phase
20 assigns registers for use during
execution of the object module. However,
phase 20 does not take full advantage of
all registers and makes no effort to keep
frequently used quantities in registers to
eliminate the need for some machine
instructions,

If the first level of optimization is
specified, phase 20 uses all available
registers and keeps frequently used
quantities in registers wherever possible.
Phase 20 takes other measures to reduce the
size of the object module, and provides
information about operands to phase 25.

If the second level of optimization is
specified, phase 20 uses other techniques
to make a more efficient object module.
The net result of these procedures is to
eliminate unnecessary instructions and to
eliminate needless execution of
instructions.

If both the EDIT option and the second
level of optimization are selected, phase
20 produces a structured source program

listing on the SYSPRINT data set.

PHASE 25

Phase 25 produces an object module from
the combined output of the preceding phases
of the compiler,

The text information {(instructions and
data resulting from the compilation) is in
a relocatable machine language format. It
may contain unresolved external symbolic
cross references (i.e., references to
symbols that do not appear in the source
module)., The external symbol dictionary
contains the information required by the
linkage editor to resolve external symbolic
cross references, and the relocation
dictionary contains the information needed
by the linkage editor to relocate the
absolute text information.

Phase 25 places the object module
resulting from the compilation on the
SYSLIN data set if the LOAD option is
specified, and on the SYSPUNCH data set if
the DECK option is specified. Phase 25
produces an object module listing on the
SYSPRINT data set if the LIST option is
specified. In addition, phase 25 produces
a storage map if the MAP option is
specified.

PHASE 30

Phase 30 is called after phase 25
processing is completed only if errors are
detected by previous phases. Phase 30
records messages describing the detected
errors on the SYSPRINT data set.

STRUCTURE OF THE COMPILER

The FORTRAN IV (H) compiler is
structured in a planned overlay fashion,
which consists of 13 segments, One of
these segments constitutes the FORTRAN
system director and is the root segment of
the planned overlay structure. Each of the
remaining 12 segments constitutes a phase
or a logical portion of a phase. A
detailed discussion of the compiler's
planned overlay structure is given in
Appendix F.

Section 1: Introduction 13



SECTION 2: DISCUSSION OF MAJOR COMPONENTS

The following paragraphs and associated
flowcharts at the end of this section
describe the major components of the
FORTRAN IV (H) compiler. Each component is
described to the extent necessary to
explain its function(s) and its general
operation.

FORTRAN SYSTEM DIRECTOR

The FORTRAN system director (FsSD)
controls compiler processing; its overall
logic is illustrated in Chart 01i. (For a
complete list of FSD subroutines, see Table
6.) The FSD receives control from the job
scheduler if the compilation is defined as
a job step in an EXEC statement. The FSD
may also receive control from another
program through use of one of the system
macro instructions (CALL, LINK, or ATTACH).

The FSD:

e Initializes the compiler.

e Loads the compiler phases.

e Distributes storage to the phases.

e Processes input/output requests.

e Generates entry code (initialization
instructions) for main programs,
subprograms, and subprogram secondary
entries.

® Deletes compilation.

e Terminates compilation.

COMPILER INITIALIZATION

The initialization of compiler
processing by the FSD consists of three
steps:

e Parameter processing,

e Storage acquisition.
e Data field initialization.

Parameter Processing

When the FSD is given control, the
address of a parameter list is contained in
a general register. If the compiler
receives control as a result of either an
EXEC statement in a job step or an ATTACH
or CALL macro instruction in another
program, the parameter list has a single
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entry, which is a pointer to the main
storage area containing an image of the
options (e.g., SOURCE, MAP) specified for
the compilation. If the compiler receives
control as a result of a LINK macro
instruction in another program, the
parameter list may have a second entry,
which is a pointer to the main storage area
containing substitute ddnames (i.e.,
ddnames that the user wishes to substitute
for the standard ones of SYSIN, SYSPRINT,
SYSPUNCH, SYSLIN, SYSUT1, and SYSUT2.

COMPILER OPTIONS: To determine the options
specified for the compilation and to inform
the various compiler phases of these
options, the FSD scans and analyzes the
storage area containing their images and
sets indicators to reflect the ones
specified. These indicators are placed
into the communication table -- IEKAAA (see
Appendix A, "Communication Table®) during
data field initialization. The various
compiler phases have access to the
communication table and, from the
indicators contained in it, can determine
which options have been selected for the
compilation,

SUBSTITUTE DDNAMES: If the user wishes to
substitute ddnames for the standard ones,
the FSD must establish a correspondence
between the DD statements having the
substitute ddnames and the DCBs (Data
control Blocks) associated with the ddnames
to be replaced. To establish this
necessary correspondence, the FSD scans the
storage area containing the substitute
ddnames, and enters each such ddname into
the DCBDDNM field of the DCB associated
with the standard ddname it is to replace.

Storage Acquisition

The FSD issues GETMAIN's to obtain main
storage for work and table areas the
compiler will need. Usually, the FSD
acquires the entire remaining region (MVT),
partition (MFT), or machine (PCP).

However, if the user has included a SIZE
parameter on his EXEC card, the FSD
acquires main storage equal (approximately)
to this figure minus compiler code size.



Data Field Initialization

Data field initialization affects the
communication table, which is a central
gathering area used to communicate
information among the phases of the
compiler, The table contains information
such as:

e Pointers indicating the next available
locations within the various storage
areas.,

= Pointers to the initial entries in the
various types of chains (see "Appendix
A, Information Table" and "Appendix B,
Intermediate Text").

e Name of the source module being
compiled.

e An indication of the phase currently in
control.

The various fields of the communication
table, which are filled during a
compilation, must be initialized before the
next compilation. To initialize this
region, the FSD clears it and places the
option indicators into the fields reserved
for them.

PHASE LOADING

The FSD loads and passes control to each
phase of the compiler by means of a
standard calling sequence. The execution
of the call causes control to be passed to
the overlay supervisor, which calls program
fetch to read in the phase. Control is
then returned to the overlay supervisor,
which branches to the phase. The phases
are called for execution in the following
sequence: phase 10, phase 15, phase 20,
and phase 25. However, if errors are
detected by previous phases, phase 30 is
called after the completion of phase 25
processing.

STORAGE DISTRIBUTION (CHART 02)

Phases 10, 15, and 20 require main
storage space in which to construct the
information table (see Appendix A,
"Information Table") and to collect
intermediate text entries. These phases
obtain this storage space by submitting
requests to the FSD (at entry point
IEKAGC), which allocates the required

Section 2:

space, if available, and returns to the
requesting phase pointers to both the
beginning and end of the allocated storage
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Phase 10 Storage

Phase 10 can use alli of the available
storage space for building the information
table and for collecting text entries. At
each phase 10 request for main storage in
which to collect text entries or build the
information table, the FSD reallocates a
portion (i.e., a subblock) of the storage
for text collection, and returns to phase
10 either via the communication table or
the storage area P10A-IEKCAA (depending
upon the type of text to be collected in
the subblock; see Appendix B, "Phase 10
Intermediate Text") pointers to both the
beginning and end of the allocated storage
space. If the subblock is allocated for
phase 10 normal text or for the information
table, the pointers are returned in the
communication table. If the subblock is
allocated for a phase 10 text type other
than normal text, the pointers are returned
via the storage area P10A-IEKCAA. After
the storage has been allocated, the FSD
adjusts the end of the information table
downward by the size of the allocated
subblock. This process is repeated for
each phase 10 request for main storage
space.

Subblocks to contain phase 10 text or
dictionary entries are allocated in the
order in which requests for main storage
are received. (When phase 10 completely
fills one subblock with text entries, it
requests another.) A request for a
subblock to contain a particular type of
entry may immediately follow a request for
a subblock to contain another type of
entry. Consequently, subblocks allocated
to contain the same type of entries may be
scattered throughout main storage. The FSD
must keep track of the subblocks so that,
at the completion of phase 10 processing,
unused or unnecessary storage may be
allocated to phase 15,

Phase 15 Storage

Phase 15, in collecting the text or
dictionary entries that it creates, can use
only those portions of main storage that
are (1) unused by phase 10, or (2) occupied
by phase 10 normal text entries that have
been processed by phase 15. The FSD first
allocates all unused storage (if necessary)
to phase 15. If this is not sufficient,
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the FSD then allocates the storage occupied
by phase 10 normal text entries that have
undergone phase 15 processing. If either
of these methods of storage allocation
fails to provide enough storage for phase
15, the compilation is terminated.

Pointers to both the beginning and end
of the allocated subblock portion are
passed to phase 15 via the communication
table. If an additional request is
received after the last subblock portion is
allocated, the FSD determines the last
phase 10 normal text entry that was
processed by phase 15. The FSD then frees
and allocates to phase 15 the portion of
storage occupied by phase 10 normal text
entries between the first such text entry
and the last entry processed by phase 15,

Phase 15 Storage Inventory: After the
processing of PHAZ15, the first segment of
phase 15, is completed, the FSD recovers
the subblocks that were allocated to phase
10 normal text. These subblocks are
chained as extensions to the storage space
available at the completion of PHAZ15
processing. The chain, which begins in the
FSD pointer table, connecting the various
available portions of storage is scanned
and when a zero pointer field is
encountered, a pointer to the first
subblock allocated to phase 10 normal text
is placed into that field. The chain
connecting the various subblocks allocated
to phase 10 normal text is then scanned and
when a zero pointer field is encountered, a
pointer to the first subblock allocated to
SF skeleton text is placed into that field.
once the subblocks are chained in this
manner, they are available for allocation
to CORAL, the second segment of phase 15,
and to phase 20.

After the processing of CORAL is
completed, the FSD likewise recovers the
subblocks allocated for phase 10 special
text. The chain connecting the various
portions of available storage space is
scanned and when a zero pointer field is
encountered, a pointer to the first
subblock allocated for phase 10 special
text is placed into that field. After the
subblocks allocated for phase 10 special
text are linked into the chain as described
above, they, as well as all other portions
of storage space in the chain, are
available for allocation to phase 20.

Phase 20 Storage

Fach phase 20 request for storage space
is satisfied with a portion of storage
available at the completion of CORAL
processing. The portions of storage are
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allocated to phase 20 in the order in which
they are chained. Pointers to both the
beginning and end of the storage allocated
to phase 20 for each request are placed
into the communication table.

INPUT/OUTPUT REQUEST PROCESSING

The FSD routine IEKFCOMH receives the
input/output requests of the compiler
phases and submits them to QSAM (Queued
Sequential Access Method) for
implementation (see the publication IBM
System/360 Operating System: Sequential
Access Methods, Program Logic Manual, Form
Y28-6604).

Request Format

Phase requests for input/output services
are made in the form of READ/WRITE
statements requiring a FORMAT statement.
The format codes that can appear in the
FORMAT statement associated with such
READ/WRITE requests are a subset of those
available in the FORTRAN IV language. The
subset consists of the following codes: 1Iw
(output only), Tw, AwW, wX, wH, and Zw
(output only).

Request Processing

To process input/output requests from
the compiler phases, the FSD performs a
series of operations, which are a subset of
those carried out by the IEKFCOMH/IEKFIOCS
Library routines to implement sequential
READ/WRITE statements requiring a format.

GENERATION OF INITIALIZATION INSTRUCTIONS

The FSD subroutine IEKTLOAD works with
STALL to generate the machine instructions
for entry into a program. These
instructions are referred to as
initialization instructions and are divided
into three catagories:

e Entry coding for a main program.

e Entry coding for subprograms with no
secondary entry points.

e Main entry coding for subprograms with
secondary entry points.



once generated, these instructions are
entered into TXT records (see "Phase 25,
Text Information®™ for a discussion of TXT
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Entry Coding for a Main Program

The initialization instructions
generated by subroutine IEKTLOAD for a main
n
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program perform the following functio

e Branch past the eight-byte name field
to the store multiple instruction.

e Save the contents of registers 14
through 12 in the save area of the
calling program.

e Load the address of the prologue into
register 2 and the address of the save
area into register 3.

e Store the location of the called
program's save area into the third word
of the calling program's save area.

e Store the location of the calling
program's save area into the second
word of the called program's save area.

e Branch to the prologue. (For an
explanation of prelegue and epilogue,
see "Phase 25, Prologue and Epilogue
Generation.")

The prologue instructions perform the
following functions:

e Load register 12,
used.

if register 12 is

e Load register 15 for the following call
to IBCOM.

e Call IBCOM for main program
initialization.

e Load register 13 with the address of
the called program's save area.

e Branch to the first instruction in the
body of the program.

Section 2:

Entry Coding for Subprograms with No
Secondary Entry Points

The initialization instructions
generated by subroutine IEKTLOAD for the
entry points into a subprogram with no
secondary entry points perform the
following functions:

* Branch past the eight-byte name field
to the store multiple instruction.

* Save the contents of general registers
1% through 12 in the save area of the
calling program.

¢ Load the address of the calling
program's save area into register 4.

e Load the address of the prologue into
register 12 and the address of the save
area into register 13.

e Store the location of the calling
program's save area into the second
word of the called program's save area.

e Store the location of the called
program's save area into the third word
of the calling program's save area.

e Branch to the prologue. (For an
explanation of prologue and epilogue,
see "Phase 25, Prologue and Epilogue
Generation.™)

The prologue instructions perform the
following functions:

e Initialize call by value arguments (if
any) and also imitialize adcons for

call by name arguments (if any).
e Branch to the first instruction in the
body of the called program.

Main Entry Coding for Subprograms with
Secondary Entry Points

The initialization instructions
generated by subroutine IEKTLOAD for the
main entry point into a subprogram with
secondary entry points perform the
following functions:

s Branch past the eight-byte name field
to the store multiple instruction.

e Save the contents of registers 14
through 12 in the save area of the
calling program.

e Load the address of the prologue into

register 2 and the address of the
epilogue into register 3.
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e Load the location of the calling
program's save area into register 4.

e Load the location of the called
program's save area into register 13.

e Store the address of the epilogue into
the first word of the called program's
save area and the location of the
calling program's save area into the
second word of the called program's
save area.

e Store the location of the called
program's save area into the third word
of the calling program's save area.

* Branch to the prologue.

The main entry prologue instructions
(generated by phase 25) perform the same
functions described previously under "Entry
Coding for Subprograms with No Secondary
Entry Points."

Subprogram Secondary Entrv Coding

This coding is generated entirely by
phase 25 but is mentioned here for
completeness. The requirements of
secondary entry coding are essentially the
same as main entry coding. For this reason
many of the main entry instructions are
used by phase 25 through an unconditional
branch into that section of code. Main
entry instructions that precede and include
the instruction which loads the prologue
and epilogue addresses cannot be used,
since each secondary entry point has its
own associated prologue and epilogue.
Therefore, secondary entry instructions
perform the following functions:

e Branch past the eight-byte name field
to the store multiple instruction.

e Save the contents of registers 14
through 12 in the save area of the
calling program.

e Load the address of the prologue into
register 2 and the address of the
epilogue into register 3.

e Load register 15 with the address of
the instruction in the main entry
coding that loads register 4.

e Branch into the main entry coding.

The secondary entry prologue
instructions (generated by phase 25)
perform the same functions described
previously for subprogram main entry
coding, except that the branch is directed
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to the desired entry point in the body of
the called program rather than the first
instruction.

Subprogram secondary entry coding does
not occupy storage within the
"Initialization Instructions"™ section of
text information. That section is reserved
for:

¢ Main program entry coding, if the
source module being compiled is a main
program.

e Subprogram main entry coding, if a
subprogram is being compiled.

The secondary entry coding is generated for
each occurrence of an ENTRY statement,
followed immediately by its associated
prologue and epilogue. Secondary entry
coding follows the main prologue and
epilogue which, in turn, follow the main
body of the program. For each additional
secondary entry point, equivalent
instructions will be generated.

DELETION OF A COMPILATION

The FSD deletes a compilation if an
error of error level code 16 (see the
publication IBM System/360 Operating
System: FORTRAN IV (G and H) Programmer's
Guide, Form C28-6817) is detected during
the execution of a processing phase.

The phase detecting the error passes
control to the FSD at entry point
SYSDIR-IEKAA9. If the error was detected
by phase 10, the FSD deletes the
compilation by having phase 10 read records
(without process- ing them) until the END
statement is encountered. If the error was
encountered in a phase other than phase 10,
the FSD simply deletes the compilation.

COMPILER TERMINATION

The FSD terminates compiler processing
when an end-of-file is encountered in the
input data stream or when a permanent
input/output error is encountered. If,
after the deletion of a compilation or
after a source module has been completely
compiled, the first record read by the FsSD
from the SYSIN data set contains an
end-of-file indicator, control is passed to
the FSD (at the entry point ENDFILE), which
terminates compiler processing by returning
control to the operating system. If a
permanent error is encountered during the
servicing of an input/output request of a



phase, control is passed to the FSD (at
entry point IBCOMRTN), which writes a
message stating that both the compilation
and job step are deleted. The FSD then
returns control to the operating system.
In either of the above cases, the FSD
passes to the operating system as a
condition code the value of the highest
error level code encountered during
compiler processing. The value of the code
is used to determine whether or not the
next job step is to be performed.

PHASE 10

The FSD reads the first record of the
source module and passes its address to
phase 10 via the communication table.
Phase 10 converts each FORTRAN source
statement into usable input to subsequent
phases of the compiler; its overall logic
is illustrated in Chart 03. Phase 10
conversion produces an intermediate text
representation of the source statement
and/or detailed information describing the
variables, constants, literals, statement
numbers, data set reference numbers, etc.,
appearing in the source statement. During
conversion, the source statement is
analyzed for syntactical errors.

The intermediate text is a strictly
defined internal representation (i.e.,
internal to the compiler) of a source
statement. It is developed by scanning the
source statement from left to right and by
constructing operator-operand pairs. In
this context, operator refers to such
elements as commas, parentheses, and
slashes, as well as to arithmetic,
relational, and logical operators. Operand
refers to such elements as variables,
constants, literals, statement numbers, and
data set reference numbers. An
operator-operand pair is a text entry, and
all text entries for the operator-operand
pairs of a source statement are the
intermediate text representation of that
statement.

The following six types of intermediate
text are developed by phase 10:

e Normal text is the intermediate text
representation of source statements
other than DATA, NAMELIST, DEFINE FILE,
FORMAT, and statement functions.

e Data text is the intermediate text
representation of DATA statements and
initialization values in type
statements.
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e Namelist text is the intermediate text
representation of NAMELIST statements,

e Define file text is the intermediate
text representation of DEFINE FILE
statements.

e Format text is the intermediate text
representation of FORMAT statements.

e SF skeleton text is the intermediate
text representation of statement
functions using sequence numbers as
operands of the intermediate text
entries. The sequence numbers replace
the dummy arquments of the statement
functions. This type of text is, in
effect, a "skeleton" macro instruction.

The various text types are discussed in
detail in Appendix B, "Intermediate Text."

The detailed information describing
operands includes such facts as whether a
variable is dimensioned (i.e., an array)
and whether the elements of an array are
real, integer, etc. Such information is
entered into the information table.

The information table consists of five
components, as follows:

e The dictionary contains information
describing the constants and variables
of the source module.

e The statement number/array table
contains information describing the
statement numbers and arrays of the
source module.

e The common table contains information
describing COMMON and EQUIVALENCE
declarations.

e The literal table contains information
describing the literals of the source
module.

e The branch table contains information
describing statement numbers that
appear in computed GO TO statements.

A detailed discussion of the information
table is given in Appendix A, "Information
Table. "

The intermediate text and the
information table complement each other in
the actual code generation by the
subsequent phases. The intermediate text
indicates what operations are to be carried
out on specific operands; the information
table provides the detailed information
describing the operands that are to be
processed.
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SOURCE STATEMENT PROCESSING

To process source statements, each
record (one card image) of the source
module is first read into an input buffer
by a preparatory subroutine (GETCD-IEKCGC).
If a source module listing is requested,
the record is recorded on an output data
set (SYSPRINT). If both the EDIT option
and the second level of optimization
(OPT=2) are selected, the record and some
control information used by phase 20 to
produce a structured source listing are
recorded on the SYSUT1 data set. Records
are moved to an intermediate buffer until a
complete source statement resides in that
buffer. Unnecessary blanks are eliminated
from the source statement, and the
statement is assigned a classification
code. A dispatcher subroutine
(DSPTCH-1EKCDP) determines from the code
which subroutine is to continue processing
the source statement. Control is then
passed to that subroutine, which converts
the source statement to its intermediate
text representation and/or constructs
information table entries describing its
operands (see Table 7 for a list of the
subroutines that process each type of
statement). After the entire source
statement has been processed, the next
statement is read and processed as
described above. The recognition of the
END statement causes phase 10 to complete
its processing and return control to the
FSD, which then calls phase 15 for
execution.

The functions of phase 10 are performed
by six groups of subroutines:

e Dispatcher subroutine

e Preparatory subroutine

e Keyword subroutine(s)

e Arithmetic subroutine(s)

e Utility subroutine(s)

¢ STALL-IEKGST subroutine

Dispatcher Subroutine

The dispatcher subroutine
(DSPTCH-IEKCDP) controls phase 10
processing. Upon receiving control from
the FSD, the DSPTCH-IEKCDP subroutine
initializes phase 10 processing and then
calls the preparatory subroutine
(GETCD-IEKCGC) to read and prepare the
first source statement. After the
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statement is prepared, control is returned
to DSPTCH-IEKCDP, which determines whether
or not a statement number is associated
with the source statement being processed.
If there is a statement number, the
XCLASS-IEKDCL subroutine is called to
construct a statement number entry (see
Appendix A, "Information Table®) and a
corresponding text entry. DSPTCH-IEKCDP
then determines, from the classification
code assigned to the source statement (see
"Preparatory Subroutine"), which subroutine
(either keyword or arithmetic) is to
continue the processing of the statement,
and passes control to that subroutine.
When the source statement is completely
processed, control is returned to the
DSPTCH-IEKCDP subroutine, which calls the
preparatory subroutine to read and prepare
the next source statement.

Preparatory Subroutine

The preparatory subroutine
(GETCD-IEKCGC) reads each source statement,
records it on the SYSPRINT data set if the
SOURCE option is selected, and on the
SYSUT1 data set if the EDIT option and the
second level of optimization are selected,
packs and classifies it, and assigns it an
internal statement number (ISN).1 Packing
eliminates unnecessary blanks, which may
precede the first character, follow the
last character, or be imbedded within the
source statement. Classifying assigns a
code to each type of source statement. The
code indicates to the DSPTCH-IEKCDP
subroutine which subroutine is to continue
processing the source statement. A
description of the classifying process,
along with figures illustrating the two
tables (the keyword pointer table and the
keyword table) used in this process, is
given in Appendix A, "Classification
Tables." The ISN assigned to the source
statement is an internal sequence number
used to identify the source statement. The
source statement and classification
information about the source statement
reside in the storage areas, NCDIN and
NCARD of the phase 10 common area, as
illustrated in Figure 2.

1logical IF statements are assigned two
internal statement numbers. The IF part
is given the first number and the
"trailing" statement is given the next.



NCARD

r 1
|Pointer to first character of (1 word) |
lpacked scurce statement beyond i
| keyword® |
F i
|Internal statement number (1 word) |
| (ISN) |
’ {
|Statement number indicator (#0 (1 word) |
jif present; 0 if not present) |
L 4
r 1
|Classification code (1 word) |
L 4
NCDIN

r - 1
| statement number (5 bytes) |
[ J
1} 1
|Packed source statement (n bytes) |
8 4
r 1
|Group mark2 (1 byte) |
L 4
T h
|1For arithmetic statements and statement |
|functions, this field points to the first|
| character of the packed statement. |
| 2End of statement marker ('4F' in |
| hexadecimal) ¢ |
L 1

Format of Prepared Source
Statement

Figure 2.

Keyword Subroutine(s)

A keyword subroutine exists for each
keyword source statement. A keyword source
statement is any permissible FORTRAN source
statement other than an arithmetic
statement or a statement function. The
function of each keyword subroutine is to
convert its associated keyword source
statement (in NCDIN) into input usable by
subsequent phases of the compiler. These
subroutines make use of the utility
subroutines and, at times, the arithmetic
subroutines in performing their functions.
To simplify the discussion of these
subroutines, they are divided into two
groups:

1. Those that construct only information
table entries.

2. Those that construct information table
entries and develop intermediate text
representations.,

Table Entry Subroutines: Only one keyword
subroutine belongs to this group (see Table
8). It is associated with a COMMON,
DIMENSION, EQUIVALENCE, or EXTERNAL keyword
statement.

This subroutine scans its associated
statement (in NCDIN) from left to right and
constructs appropriate information table
entries for each of the operands of the
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statement, The types of information table
entries that can be constructed by these
subroutines are:

e Dictionary entries for variables and
external names,

e Common block name entries for common
block names.

e Equivalence group entries for
equivalence groups.

e Equivalence variable entries for the
variables in an equivalence group.

e Dimension entries for arrays.

The formats of these entries are given
in Appendix A, "Information Table.,"

Table Entry and Text Subroutines: The
keyword subroutines, other than the table
entry subroutine, belong to this group (see
Table 8). Each of these subroutines
converts its associated statement by
developing an intermediate text
representation of the statement, which
consists of text entries in
operator-operand pair format, and
constructing information table entries for
the operands of the statement. The
processing performed by these subroutines
is similar and is described in the
following paragraphs.

Upon receiving control from the
DSPTCH-IEKCDP subroutine, the keyword
subroutine associated with the keyword
statement being processed places a special
operator into the text area. This operator
is referred to as a primary adjective code
and defines the type (e.g., DO, ASSIGN) of
the statement. A left-to-right scan of the
source statement is then initiated. The
first operand is obtained, an information
table entry is constructed for the operand
and entered into the information table
(only if that operand was not previously
entered), and a pointer to the entry's
location in that table is placed into the
text area. The mode (e.g., integer, real)
and type (e.g., negative constant, array)
of the operand are then placed into text.

Scanning is resumed and the next
operator is obtained and placed into the
text area. The next operand is then
obtained, an information table entry is
constructed for the operand and entered
into the information table (again, only if
that operand was not previously entered),
and a pointer to the entry's location is
placed into the text entry work area. The
mode and type of the operand are placed
into the work area. The text entry is then
placed into the next available location in

Discussion of Major Components 21



the subblock allocated for text entries of
the type being created.

This process is terminated upon
recognition of the end of the statement,
which is marked by a special text entry.
The special text entry contains an end mark
operator and the ISN of the source
statement as an operand.

Note: Certain keyword subroutines in this
group, namely those that process statements
that can contain an arithmetic expression
(e.g., IF and CALL statements) and those
that process statements that contain I/0
list items (e.g., READ/WRITE statements),
pass control to the arithmetic subroutines
to complete the processing of their
associated keyword statements.

Arithmetic Subroutine(s)

The arithmetic subroutine or subroutines
(see Table 8) receive control from the
DSPTCH-IEKCDP subroutine, or from various
keyword subroutines. These subroutines
make use of the utility subroutines in
performing their functions, which are to:

¢ Process arithmetic statements.
e Process statement functions.

e Complete the processing of certain
keyword statements (READ, WRITE, CALL,
and IF).

Arithmetic subroutines are processed
according to their functions, as follows:

Arithmetic Statement Processing: In
processing an arithmetic statement, the
arithmetic subroutines develop an
intermediate text representation of the
statement, and construct information table
entries for its operands. These
subroutines accomplish this by following a
procedure similar to that described for
keyword (table entry and text) subroutines.

If one operator is adjacent to another,
the first operator does not have an
associated operand. In the example
A=B(I)+C, the operator + has variable C as
its associated operand, whereas the
operator ) has no associated operand. If
an operator has no associated operand, it
is assumed that the operand is a zero
(null).

Statement Function Processing: 1In
converting a statement function to usable
input to subsequent phases of the compiler,
the arithmetic subroutines develop an
intermediate text representation of the
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statement function using sequence numbers
as replacements for dummy arguments. These
subroutines also construct information
table entries for those operands that
appear to the right of the equal sign and
that do not correspond to dummy arguments.
The following paragraphs describe the
processing of a statement function by the
arithmetic subroutines.

When processing a statement function,
the arithmetic subroutines:

e Scan the portion of the statement
function to the left of the equal sign,
obtain each dummy argumient, assign each
dummy arqument a sequence number (in
ascending order), and save the dummy
arquments and their associated sequence
numbers for subsequent use.

e Scan the portion of the statement
function to the right of the equal sign
and obtain the first (or next) operand.

e Determine whether or not the operand
corresponds to a dummy argument. If it
does correspond, its associated
sequence number is placed into the text
area., If it does not correspond, a
dictionary entry for the operand is
constructed and entered into the
information table, and a pointer to the
entry's location is placed into the
text area. (An opening parenthesis is
used as the operator of the first text
entry developed for each statement
function and a closing parenthesis is
used as the operator of the last text
entry developed for each statement
function.)

e Resume scanning, obtain the next
operator, and place it into the text
area.

e Obtain the operand to the right of this
operator and process it as described
above,

Keyword Statement Completion: In addition
to processing arithmetic statements and
statement functions, the arithmetic
subroutines also complete the processing of
keyword statements that may contain
arithmetic expressions or that contain I/O
list items. The keyword subroutine
associated with each such keyword statement
performs the initial processing of the
statement, but passes control to the
arithmetic subroutines at the first
possible occurrence of an arithmetic
expression or an I/0 list item. (For
example, the keyword subroutine that
processes CALL statements passes control to
the arithmetic subroutines after it has
processed the first opening parenthesis of
the CALL statement, because the argument




that follows this parenthesis may be in the
form of an arithmetic expression.) The
arithmetic subroutines complete the
processing of these keyword statements in
the normal manner. That is, they develop
text entries for the remaining
operator-operand pairs and construct
information table entries for the remaining
operands.

Utility Subroutine(s)

The utility subroutines (see Table 8)
aid the keyword, arithmetic, and
DSPTCH-IEKCDP subroutines in performing
their functions. The utility subroutines
are divided into the following groups:

Entry placement subroutines.,
Text generation subroutines.
Collection subroutines,
conversion subroutines.

Entry Placement Subroutines: The utility
subroutines in this group place the various
types of entries constructed by the
keyword, arithmetic, and DSPTCH-IEKCDP
subroutines into the tables or text areas
(i.e., subblocks) reserved for them.

Text Generation Subroutines: The utility
subroutines in this group generate text
entries (supplementary to those developed
by the keyword and arithmetic subroutines)
that:

e Control the execution of implied DOs
appearing in input/output statements,

e Increment DO indexes and test them
against their maximum values.

e Signify the end of a source statement.

Collection Subroutines: These utility
subroutines perform such functions as
gathering the next group of characters
(i.e., a string of characters bounded by
delimiters) in the source statement being
processed, and aligning variable names on a
word boundary for comparison to other
variable names.

conversion Subroutines: These utility
subroutines convert integer, real, and
complex constants to their binary
equivalents.
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Subroutine STALL-IEKGST (Chart 04)

The STALL-IEKGST subr

LI 2Rl LTAILANSS A

phase 10 processing by:

e Generating entry code for the object
module.

e Translating phase 10 format text into
object code for the object module and
freeing space formerly occupied by the
format text.

e Checking to see if any literal data
text exists and, if it does, generating
object code for the literal data text.

e Processing any equivalence entries that
were equivalenced before being
dimensioned.

e Setting aside space in the object
module for the problem program save
area and for computed GO TO statement
branch tables created by phase 10,

e Checking the statement number section
of the information table for undefined
statement numbers.

e Rechaining variables in the dictionary
by sorting alphabetically the entries
in each chain.

e Assigning coordinates based on the
usage count set by phase 10 when the
OPT option is greater than zero.

e Processing common entries in the
information table by computing the
displacement of each variable in the
common block from the start of the
common block.

e Processing equivalence entries in the
information table.

Generating FORMAT Code: If the source
module contains READ/WRITE statements
requiring FORMAT statements, the associated
phase 10 format text must be put into a
form recognizable by the IHCFCOMH Library
routine. The STALL-IEKGST subroutine calls
subroutine FORMAT-IEKTFM which develops the
necessary format by obtaining the phase 10
intermediate text representation of each
FORMAT statement, and translating each
element (e.g., H format code and field
count) of the statement according to Table
1. The FORMAT-IEKTFM subroutine enters the
translated statement along with its
relative address into TXT records.
inserts the relative address of the
translated statement into the address

It also
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Table 1. FORMAT Statement Translation

------- T - e |
{ H | Translated Format (in hexadecimal) |
| FORMAT [ b T T -
| Specification | Description | 1st byte | 2nd byte | 3rd byte |
F } —mm oo oo e 1
| | beginning of statement | 02 | | |
| n( | group count i o4 | n | |
| n | field count | 06 1 n | |
| nP | scaling factor | 08 | n* | |
| Fw.d | F-conversion | oA | w | d |
| Ew.d | E-conversion | oc | w | d |
| Dw.d | D-conversion | OE | w | 4 |
| Iw | I-conversion | 10 | w | |
| Tn | column set | 12 | n | |
1 Aw | A-conversion | 14 | w | |
| Lw | L-conversion | 16 | w | |
| nX | skip or blank | 18 | n | |
| nHtext | | | | |
| or | literal data | ia | n | text |
| ‘text! | | | | |
| ) | group end | ic | | |
| / | record end | 1E | | |
| Gw.d | G-conversion | 20 | w | d
| i end of statement | 22 | { |
| Zw | Hexadecimal conversion | 24 | w |
lf 1 L 1 1 _J'
i*The first hexadecimal bit of the byte indicates the scale factor sign (0 if positive, |
| 1 if negative). The next seven bits contain the scale factor magnitude. |
L ]

constant for the statement number
associated with the FORMAT statement.

Processing Equivalence Entries: The
STALL-IEKGST subroutine completes the
processing of any equivalence entries in
the information table that were not
completed by prior routines in phase 10.
These equivalence entries are the ones that
were equivalenced before being dimensioned.
The STALL-IEKGST subroutine computes
displacements for each variable in the
equivalence group.

Processing Literal Constants Used as
Arguments: The STALL-IEKGST subroutine
checks a pointer in the communication table
(NPTR (1,27)) to see whether or not there
are literal constants to process. If there
are, the STALL-IEKGST subroutine calls
IEKTLOAD and passes to it the location and
length of the literal string that is used
by the IEKTLOAD subroutine to generate
literal text in the object module. All
literal constants used as arguments are put
on a double word boundary.

The STALL-IEKGST subroutine follows the
chain in the literal constant dictionary

24

entry and continues to call subroutine
IEKTLOAD to process this text. After all
the literal data text has been generated,
the STALL-IEKGST subroutine adjusts the
location counter by the amount of text
generated. Literals used in DATA
statements are not chained, and are not
processed until CORAL is invoked.

Reserving Space for the Save Area: The
STALL-IEKGST subroutine sets aside 76 bytes
for the save area of the program being
compiled.

Space in the object module for branch
tables created by phase 10 for computed GO
TO statements is also reserved by the
STALL-IEKGST subroutine.

Checking for Undefined Statement Numbers:
The STALL-IEKGST subroutine performs a
dictionary scan for undefined statement
numbers. This action is taken to ensure
that every statement number that is
referred to is also defined. The
STALL-IEKGST subroutine scans the chain of
statement number entries in the information
table (see Appendix A: "Statement
Number/Array Table") and examines a bit in
the byte A usage field of each such entry.
This bit is set by phase 10 to indicate
whether or not it encountered a definition




of that statement number. If the bit
indicates that the statement number is not
defined, the STALL-IEKGST subroutine places
an entry 1in the error table for later
processing by phase 30.

Rechaining Entries for Variables: The
STALL-IEKGST subroutine scans dictionary
entries for variables. Previously executed
routines in phase 10 sorted each variable
chain alphabetically and left the pointer
at the mid-item of the chain (for
dictionary search speed). The STALL-IEKGST
subroutine resets the pointer to the first
{(alphabetically lowest) item in the chain.
The rechaining frees storage in each entry
for later use by CORAL in phase 15. It
then sets the adcon field of each
dictionary entry for a variable to zero.
The STALL-IEKGST subroutine also constructs
dictionary entries for the imaginary parts
of complex variables and constants.

Assigning Coordinates: The STALL-IEKGST
subroutine calls subroutine IEKKOS which
assigns coordinates to variables and
constants in the following manner:

e The first 59 unique variables and/or
constants that appear in the text
created by phase 10 are assigned
coordinates 2 through 60,
respectively.?* The coordinates are
assigned in order of increasing
coordinate number. (A coordinate
between 2 and 60 may be assigned to a
base variable if fewer than 59 unique
variables and constants appear in the
text.)

e The next 20 unigue variables are
assigned coordinates 61 through 80,
respectively. The coordinates are
assigned in order of increasing
coordinate number. (If constants are
encountered after coordinate 60 has
been assigned, they are not assigned
coordinates.)

s The coordinates 81 through 128 are
reserved for assignment to base
variables (see "Adcon and Base Variable
Assignment® under "CORAL Processing").

Subroutine IEKKOS assigns to the first
variable or constant in phase 10 text a
coordinate number of 2, which indicates
that the usage information for that
variable or constant, regardless of the

1The coordinate 1 is assigned to items such
as unit numbers (i.e., data set reference
numbers), complex variables in COMMON,
arrays that are equivalenced, variables
that are equivalenced to arrays, and
variables that are equivalenced to
variables of different modes.
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‘block in which it appears,

is to be
recorded in bit position 2 of the MVS, MVF,
and MVX fields. The IEKKOS subroutine
assigns to the second variable or constant
a coordinate number of 3 and records its
usage information in bit position 3 of the
three fields. Subroutine IEKKOS continues
this process until coordinate 60 has been
assigned to a variable or constant. When
coordinate number 60 has been assigned, the
IEKKOS subroutine only assigns coordinates
to the next 20 unique variables.

Subroutine IEKKOS does not assign
coordinates to or gather usage information
for unique constants encountered after
coordinate number 60 has been assigned. It
assigns these variables coordinates 61
through 80,

respectively. It records the usage
information for each variable at the
assigned bit location in the three fields.
The IEKKOS subroutine does not assign
coordinates to or gather usage information
for unique variables encountered after
coordinate number 80 has been assigned.

Subroutine IEKKOS uses a combination of
the MCOORD vector, the MVD table, and the
byte-C usage fields of the dictionary
entries (see Appendix A, "Dictionary") to
assign, keep track of, and record
coordinate numbers. The MCOORD vector
contains the number of the last coordinate
assigned. The MVD table is composed of 128
entries, with each entry containing a
pointer to the dictionary entry for the
variable or constant to which the
corresponding coordinate number is assigned
or to the information table entry for the
base variable to which the corresponding
coordinate is assigned. The coordinate
number assigned to a variable or constant
is recorded in the byte-C usage field of
the dictionary entry for that variable or
constant.

Subroutine IEKKOS does not assign
coordinates to or record usage information
for unique constants encountered in text
after coordinate number 60 has been
assigned and unique variables encountered
in text after coordinate number 80 has been
assigned. If subroutine IEKKOS encounters
a new constant after coordinate 60 has been
assigned or a new variable after coordinate
80 has been assigned, it records a zero in
the byte-C usage field of its associated
dictionary entry. Phase 20 optimization
deals only with those constants and
variables that have been assigned
coordinate numbers greater than or equal to
2 and less than or equal to 80.

Processing Common Entries in the

Information Table: The STALL-IEKGST

subroutine processes common entries in the
information table. It computes the
displacements of variables and arrays from
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the start of the common block that contains
them and calculates the total size in bytes
of each common block. Subroutine
STALL-IEKGST records the displacements in
the dictionary entries for the variables
and the block size in the common table
entry for the name of the common block.

The displacements are used later to assign
relative addresses to common variables.

The block size is used by phase 25 to
generate a control section for the common
block (see Appendix A: "Common Table").
The STALL-IEKGST subroutine also places a
pointer to the common table entry for the
block name in the dictionary entry for each
variable or array in that common block.

Processing Equivalence Entries in the
Information Table: Subroutine STALL-IEKGST
gathers additional information about
equivalence groups and the variables in
them. It computes a group head?® and the
displacement) of each variable in the group
from this head. It records this
information in the common table entries for
the group and for the variables,
respectively (see Appendix A: "Common
Table"), Subroutine STALL-IEKGST
identifies and flags in their dictionary
entries variables and arrays put into
common via the EQUIVALENCE statement. It
also checks the variables and arrays for
errors to verify that the associated common
block has not been improperly extended
because of the EQUIVALENCE declaration. If
a common block is legitimately enlarged by
an equivalence operation, the STALL-IEKGST
subroutine recomputes the size of the
common block and enters the size into the
common table entry for the name of the
common block.

If the name of a variable or array
appears in more than one equivalence group,
subroutine STALL-IEKGST recognizes the
combination of groups and modifies the
dictionary entries for the variables to
indicate the equivalence operations. The
STALL-IEKGST subroutine checks arrays that
appear in more than one equivalence group
to verify that conflicting relationships
have not been established for the array
elements.

During the processing of both common and
equivalence information, a check is made to
ensure that variables and arrays fall on
boundaries appropriate to their defined
types. If a variable or array is
improperly aligned, subroutine STALL-IEKGST
places an entry in the error table for
processing by phase 30.

iThe head of an equivalence group is that
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive displacement.
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CONSTRUCTING A CROSS REFERENCE

If the XREF option is selected, a
two-part cross reference is constructed and
written on the SYSPRINT data set
immediately following the source listing.
The first part of the cross reference is a
list of all symbols used by the program and
the ISNs of the statements in which each
symbol appears. The symbols are written in
alphabetic order and grouped by character
length, first one-character symbols in
alphabetic order, then two-character
symbols in alphabetic order, etc. The
second part of the cross reference is a
sequential list of the statement numbers
used on the program each followed by the
ISN of the statement in which the statement
number is defined and also by a list of the
ISNs of statements that refer to the
statement number,

XREF processing occurs during phase 10
and in a small separate overlay segment
between phases 10 and 15. This segment,
XREF-IEKXRF, is called only if the XREF
option is selected.

Phase 10 Preparation for XREF Processing

If the XREF option is chosen, phase 10
subroutines LABTLU-IEKCLT and CSORN-IEKCCR
perform additional processing for statement
numbers and symbols. Also, phase 10
subroutine IEKXRS, which is not used unless
the XREF option is chosen, is called.

The LABTLU-IEKCLT subroutine fills the
adcon table, which is used as an XREF
buffer, with XREF entries for statement
number definitions and statement number
references. The format of an XREF entry
for statement numbers and symbols is:

< 4 bytes >
| S ) Attt ]
|Pointer to next | |
| XREF entry#* | ISN |
L . i

* Relative to the beginning of the buffer.

Each time the buffer is full, the
LABTLU-IEKCLT subroutine calls IEKXRS to
write the buffer on SYSUT2. (The contents
of SYSUT2 is later read in by subroutine
XREF-IEKXRF and processed to produce a
cross reference.) A count of the number of
times the buffer is written out is kept in
the communication table NPTR (2,20). Each
time it finishes writing the buffer on
SYSUT2, subroutine IEKXRS returns control
to the LABTLU-IEKCLT subroutine.



Subroutine LABTLU-IEKCLT uses parts of
the dictionary entries for statement
numbers as pointers to keep track of its
processing. It also adds a word (word 9)
to each statement number dictionary entry
to be used as a sequence chain field so
that subroutine XREF-IEKXRF can create a
sequential list of statement numbers used
in the program.

The words used by the LABTLU-IEKCLT
subroutine in dictionary entries for
statement numbers are:

Word 5 - A pointer to the most recent
statement number entry in the
adcon table (XREF buffer) if the
statement number reference being
processed by subroutine
LABTLU-IEKCLT is not a definition
of a statement number, Word 5 is
not used for statement number
entries that correspond to
definitions of statement numbers.

Word 6 - Bytes 1 and 2 -- The number of
times the XREF buffer has been
written on SYSUT2 at the time the
statement number entry is
processed by subroutine
LABTLU-IEKCLT.

Bytes 3 and 4 -- A pointer to the
first XREF buffer entry for the
statement number.

Word 7 - Contains an ISN if the reference
is to a definition of a statement
number; contains -1 if the
statement number has been
previously defined.

Word 9 - Statement number sequence chain
fieldo

The CSORN-IEKCCR subroutine processes
symbols for XREF much the same way as sub-
routine LABTLU-IEKCLT processes statement
numbers. However, for symbols, no
processing is required for definitions and
there is no sequencing.

The CSORN-IEKCCR subroutine adds one
word to the dictionary entries for
variables making a total of ten words in
each entry. Word 10 for a variable entry
is used in the same way as word 6 for a
statement number entry. The first half of
word 10 indicates the number of times the
buffer has been written on SYSUT2 at the
time the variable entry is processed by
subroutine CSORN-IEKCCR. The second half
of word 10 contains a pointer to the first
XREF buffer entry for the symbol. The
first half of word 8 is used as a pointer
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to the last (most recent) XREF buffer entry
for the symbol.

Subroutine IEKXRS is alsc used during
symbol processing to write the XREF buffer
out on SYSUT2 whenever the buffer becomes

full.

If the XREF option is selected, the FSD
calls the XREF-IEKXRF subroutine after the
completion of subroutine STALL-IEKGST
processing and before phase 15. The
XREF-IERXRF subroutine is a separate
overlay segment that overlays phase 10 and
is overlaid by phase 15.

Subroutine XREF-IEKXRF reads from SYSUT2
all buffers that were written out by IEKXRS
during subroutine LABTLU-IEKCLT and
subroutine CSORN-IEKCCR processing., It
then sets up linkage between buffers for
the symbol or statement number to create
one sequential chain of ISNs and writes out
the symbol or statement number with its
ISNs on SYSPRINT. This process continues
until all symbols and statement numbers
with their ISNs are written on SYSPRINT.
Ccontrol is then returned to the FSD that
calls phase 15.

PHASE 15

Before phase 15 gains control, phase 10
has read the source statements, built the
information table, and restructured the
source statements into operator-operand
pairs. When given control, phase 15
translates the text of arithmetic
expressions, gathers information about
branches and variables, converts phase 10
data text to a new text format, assigns
relative addresses to constants and
variables, and generates address constants
when needed, to serve as address
references. Thus, phase 15 modifies and
adds to the information table and
translates phase 10 normal and data text to
their phase 15 formats.

Phase 15 is divided into two overlay
segments, PHAZ1S5, and CORAL, Chart 05
shows the overall logic of the phase.
Table 9 is a directory of all the
subroutines used by phase 15.

PHAZ15 translates and reorders the text
entries for arithmetic expressions from the
operator-operand format of phase 10 to a
four-part format suitable for phase 20
processing. The new order permits phase 25
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to generate machine instructions in the
correct sequence. PHAZ1S5 blocks the text
and collects information describing the
blocks. The information, needed during
phase 20 optimization, includes tables on
branching locations and on constant and
variable usage.

CORAL, the second overlay segment of
phase 15, performs a number of functions.
It first converts phase 10 data text to a
form more easily evaluated by subroutine
DATOUT-IEKTDT. CORAL then assigns relative
addresses to all variables, constants, and
arrays. During one phase of relative
address assignment, CORAL rechains phase 15
data text in order to simplify the
generation of text card images by
subroutine DATOUT-IEKTDT. CORAL also
assigns address constants, when needed, to
serve as address references for all
operands.

PHAZ15 PROCESSING

The functions of PHAZ15 are text
blocking, arithmetic translation,
information gathering, and reordering of
the statement number chain. Information
gathering occurs only if optimization
(either intermediate or complete) has been
selected; it takes place concurrently with
text blocking and arithmetic translation
during the same scan of intermediate text.
Reordering of the statement number chain
occurs after PHAZ15 has completed the
blocking, arithmetic translation, and
information gathering.

PHAZ15 divides intermediate text into
blocks for convenience in obtaining
information from the text. Each block
begins with a statement number definition
and ends with the text entry just preceding
the next statement number definition. An
attempt is made to limit blocks to less
than 80 text items as an aid to register
routines in phase 20. PHAZ15 records
information describing a text block in a
statement number text entry and in an
information table statement number entry.

During the same scan of text in which
blocking occurs, PHAZ15 translates
arithmetic expressions. The conversion is
from the operation-operand pairs of phase
10 to a four-part format (phase 15 text).
The new format follows the sequence in
which algebraic operations are performed.
In general, phase 15 text is in the same
order in which phase 25 will generate
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machine instructions.! PHAZ15 copies,
unchanged (except for rearrangement) into
the text area, phase 10 text that does not
require arithmetic translation or other
special handling.

During the building of phase 15 text for
a given block (if optimization has been
selected), PHAZ15 constructs tables of
information on the use of constants and
variables in that text block. It stores
information on variables and constants that
are used within a block, and variables that
are defined within a block. If complete
optimization has been selected, PHAZ1S5 also
gathers information on variables not first
used and then defined. The foregoing usage
information is recorded in the statement
number text for each block for later use by
phase 20.

Concurrently with text blocking,
arithmetic translation, and gathering of
constant/variable usage information, PHAZ15
discovers branching text entries and
records the branching or connection
information. This information, consisting
initially of a table of branches from each
text block (forward connections), is stored
in a special array. Branching (connection)
information is used during phase 20
optimization.

After PHAZ15 has completed the
previously mentioned processing, it
reorders the statement number chain of the
information table. The original sequence
of statement numbers, as phase 10 recorded
them, was in the order of their occurrence
in source statements as either definitions2
or operands. Phase 15 reorders the
statement numbers in the same sequence as
they appeared as definitions in the source
program. The new sequencing is established
to facilitate phase 20 processing.

Last, PHAZ15 acquires a table of
backward connection information consisting
of branches into each statement number or
text block. PHAZ15 derives this
information from the forward connection
information it previously obtained. Thus,
connection information is of two types,
forward and backward. PHAZ15 records a
table of branches from each text block and
a table of branches into each text block.
Connection information of both types is
used during phase 20 optimization.

17f optimization is selected, phase 20 may
further manipulate the phase 15 text.

2A statement number occurs as a definition
when that statement number appears to the
left of a source statement.



Charts 06, 07, and 08 depict the flow of
control during PHAZ15 execution. Table 10
lists the COMMON areas of phase 15.

Text Blocking

During its scan and conversion of phase
10 text, PHAZ15 sections the module into
text blocks, which are the basic units upon
which the optimization and register
assignment processes of phase 20 operate.
A text block is a series of text entries
that begins with the text entry for a
statement number and ends with the text
entry that immediately precedes the text
entry for thenext statement number. (The
statement number may be either programmer
defined or compiler generated.) When
PHAZ15 encounters a statement number
definition (i.e., the phase 10 text entry
for a statement number), it begins a text
block. It does this by constructing a
statement number text entry (refer to
Appendix B, "Phase 15 Intermediate Text
Modifications"). PHAZ15 also places a
pointer to the statement number text entry
into the statement number entry
(information table) for the associated
statement number.

PHAZ15 resumes its scan and converts the
phase 10 text entries following the
statement number definition to their phase
15 formats. After each phase 15 text entry
is formed and chained into text, PHAZ15
places a pointer to that text entry into
the BLKEND field of the previously
constructed statement number text entry.
This field is, thereby, continually updated
tc point to the last phase 15 text entry.

When the next statement number
definition is encountered, PHAZ15 begins
the next text block in the previously
described manner. A pointer to the text
entry that ends the preceding block has
already been recorded in the BLKEND field
of the statement number text entry that
begins that block. Thus, the boundaries of
a text block are recorded in two places:
the beginning of the block is recorded in
the associated statement number entry
(information table); the end of the block
is recorded in the BLKEND field of the
associated statement number text entry.
All text blocks in the module are
identified in this manner.
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Note: For each ENTRY statement in the
source module, phase 10 generates a
statement number text entry and places it
into text preceding the text for the ENTRY
statement. Phase 10 also ensures that the
statement following an ENTRY statement has
a statement number; if a statement number
is not provided by the programmer, phase 10
generates one. Thus, the text entries for
each ENTRY statement form a separate text
block, which is referred to as an entry
block.

Figure 3 illustrates the concept of text
blocking. In the illustration, twc text
blocks are shown: one beginning with
statement number 10; the other with
statement number 20. The statement number
entry for statement number 10 contains a
pointer to the statement number text entry
for statement number 10, which contains a
pointer to the text entry that immediately
precedes the statement number text entry
for statement number 20. Similar pointers
exist for the text block starting with
statement number 20.

Arithmetic Translation

Arithmetic translation is the reordering
of arithmetic expressions in phase 10 text
format to agree with the sequence in which
algebraic operations are performed.
Arithmetic expressions may exist in IF,
CALL, and ASSIGN statements and
input/output data-lists, as well as in
arithmetic statements and statement
functions.

When PHAZ15 detects a primary adjective
code for a statement that needs arithmetic
translation, it passes control to the
arithmetic translator (ALTRAN-IEKJAL). If
the phase 10 text for the statement does
not require any type of special handling,
ALTRAN-IEKJAL reorders it into a series of
phase 15 text entries that reflect the
sequence in which arithmetic operations are
to be carried out. During the reordering
process, ALTRAN-IEKJAL calls various
supporting routines that perform checking
and resolution (e.g., the resolution of
operations involving operands of different
modes) functions.
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INFORMATION TABLE Statement Number Entry for

Statement Number 10
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PHASE 15 TEXT

LDF* - 10

Statement Number Entry for
Statement Number 20

[ 1=]
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L

|
|

LDF* —= 20

* LDF is the mnemonic for the statement number operator
t This field exists only if the XREF option is used (see Figure 24).

Figure 3. Text Blocking

Throughout the reordering process,
ALTRAN-IEKJAL is checking for text that
requires special handling before it can be
placed into the phase 15 text area.
[Special handling is required for complex
expressions, terms involving unary minuses
(e.g., B=-B), subscript expressions,
statement function references, etc.] If
special text processing is required,
ALTRAN-IEKJAL calls one or more subroutines
to perform the required processing.

During reordering and, if required,
special handling, subroutine GENER-IEKLGN
is called to format the phase 15 text
entries and to place them into the text
area.

REORDERING ARITHMETIC EXPRESSIONS: The
reordering of arithmetic expressions is
done by means of a pushdown table. This
table is a last-in, first-out list. After
the table is initialized (i.e., the first
operator-operand pair of an arithmetic
expression is placed into the table), the
arithmetic translator (ALTRAN-IEKJAL)
compares the operator of the next
operator-operand pair (term) in text with
the operator of the pair at the top of the
pushdown table. As a result of each
comparison, either a term is transferred
from phase 10 text to the table, or an
operator and two operands (triplet) are
brought from the table to the phase 15 text
area, eliminating the top term in the
pushdown table.

The comparison made to determine whether
a term is to be placed into the pushdown
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table or whether a triplet is to be taken
from the pushdown table is always between
the operator of a term in phase 10 text and
the operator of the top term in the table.
Each comparison is made on the basis of
relative forcing strength. A forcing
strength is a value assigned to an operator
that determines when that operator and its
associated operands are to be placed in
phase 15 text. The relative values of
forcing strengths reflect the hierarchy of
algebraic operations. The forcing
strengths for the various operators appear
in Table 2.

When the arithmetic translator
(ALTRAN-IEKJAL) encounters the first
operator-operand pair (phase 10 text entry)
of a statement, the pushdown table is
empty. Since the translator cannot yet
make a comparison between text entry and
table element, it enters the first text
entry in the top position of the table.

The translator then compares the forcing
strength of the operator of the next text
entry with that of the table element. If
the strength of the text operator is
greater than that of the top (and only)
table element, the text entry
(operator-operand pair) becomes the top
element of the table. The original top
element is effectively "pushed down" to the
next lower position., In Figure 4, the
number-1 section of the drawing shows the
pushdown table at this time.

The operator of the next text entry
(operator C--operand C at section 2) is
compared with the top table element



(operator B--operand B at section 1) in a
similar manner.

Table 2. Operators and Forcing Strengths

r T 1
| | Forcing |
| Operator | Strength |.
— } 1
|End Mark | 1 |
|= | 2 |
R | 3 |
Ly i 6 i
| «OR. i 7 {
| - AND. | 8 |
| « NOT. | 9 |
|.EQ., .NE., I 10 [
]+GTe, «LT., | |
|.GE., .LE. | |
|+, -, minus( | 11 |
|*, 7 | 12 !
| ** | 13 I
| (f -- left parenthesis after| 14 |
| a function name | |
| (s -- left parenthesis after}| 15 |
| an array name | |
I ¢ | 16 |
L L 1

When a comparison of forcing strengths
indicates that the strength of the text
operator (operator C, section 2), is less
than or equal to that of the top table
element (operator B), the table element is
said to be "forced." The forced operator
(operator B) is placed in the new phase 15
text entry (section 3 of the illustration)
with its operand (operand B) and the
operand of the next lower table entry
(operand A). Note that subroutine
ALTRAN-IEKJAL has generated a new operand t
(see section 3) called .a "temporary." A
temporary is a compiler-generated operand
in which a preliminary result may be held
during object-module execution.1 With
operator B, operand B, and operand A (a
triplet) removed from the pushdown table,
the previously entered operator-operand
pair (operator A, section 1) now becomes
the top eiement of the table (section 4).
The ALTRAN-IEKJAL subroutine assigns the
previously generated temporary t as the
operand of this pair. This temporary
represents the previous operation (operator
B--operand A--operand B).

————— - ——————— - - ——

1A given temporary may be eliminated by
phase 20 during optimization.

Comparisons and text-to-table exchanges
continue, a higher strength text operator
"pushing" a phase 10 text entry into the
table and a lower strength text operator
"forcing" the top table operator and its
operands (triplet) from the table. In each
case, the forced table items become the new
phase 15 text entry. An exception to the
general rule is a left parenthesis, which
has the highest forcing strength.

Operators following the left parenthesis
can be forced from the table only by a
right parenthesis, although the intervening
operators (between the parentheses) are of
lower forcing value. When the translator
reaches an end mark in text, its forcing
strength of 1 forces all remaining elements
from the table.

SPECIAL PROCESSING OF ARITHMETIC
EXPRESSIONS: As stated before, arithmetic
translation involves reordering a group of
phase 10 text entries to produce a new
group of phase 15 text entries representing
the same source statement. Certain types
of entries, however, need special handling
(for example, subscripts and functions).
When it has been determined that special
handling is needed, control is passed to
one or more other subroutines (see Chart
07) that perform the desired processing.

The following expressions and terms need
special handling before they are placed in
phase 15 text: complex expressions, terms
involving a unary minus, terms involving
exponentiation, commutative expressions,
subscript expressions, subroutine or
function subprogram references, statement
function references, and expressions
involved in logical IF statements.

Complex Expressions: A complex expression
is converted into two expressions, a real
expression and an imaginary one. For real
elements in the expression, complex
temporaries are generated with zero in the
imaginary part and the real element in the
real part. For example, the complex
expression B + C + 25, 1is treated as:

] 1
| B + C + 25, |
| real real real |
¢ {
| B + c + 0. |
| imag imag imag |
L ]
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1. Text in Pushdown Table

2. Phase 10 Text Entries

Operator Operand Operator Operand
Top Element OpB Oprnd B — Op C Oprnd C Current phase 10 text entry
Op A Oprnd A OpD Oprnd D Next phase 10 text entry
4. New Top Element of Pushdown 3. New Phase 15 Text Entry
Op A t - [ Op B I t Opind A Oprnd B
Operator Operand 1 Operand 2 Operand 3
NOTE: A phase 15 text entry having an arithmetic operator may be envisioned as
operand 1 = operand 2 - operator - operand 3, where the equal sign is implied.
Figure U4. Text Reordering via the Pushdown Table

An expression is not treated as complex
if the "result" operand (left of the equal
sign in the source statement) is real. 1In
this case, the translator places only the
real part of the expression in phase 15
text. But if a complex multiplication,
division, or exponentiation is involved in
the expression, the real and imaginary
parts will appear in phase 15 text, but
only the real part of the result will be
used at execution time.

Terms Containing a Unary Minus: In terms
that contain unary minuses, the unary
minuses are combined with additive
operators (+, -) to reduce the number of
operators. This combining, done by
subroutine UNARY-IEKKUN, may result in
reversed operators or operands or both in
phase 15 text. For example, -(B-C) becomes
C-B, and A+(-B) becomes A-B. This process
reduces the number of machine instructions
that phase 25 must generate.

Operations Involving Powers: Several kinds
of special handling are provided by
subroutine UNARY-IEKKUN for operations
involving powers. Multiplications by
powers of two are converted to left shift
operations., A constant integer power of
two raised to a constant integer power is
converted to the equivalent left shift
operation., Last, a constant or variable
raised to a constant integer power is
converted to a series of multiplications
(and a division operation into 1, if the
power is negative). This conversion is a
function of the level of optimization
selected. This handling requires less
execution time than using an exponentiation
subroutine,
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Commutative Operations: If an operation is
commutative (either operand can be operated
upon, such as in adding or multiplying),
the two operands are reordered to agree
with their absolute locations in the
dictionary.

Subscripts: Subroutines SUBMULT-IEKKSM and
SUBADD-IEKKSA perform subscript processing.
Subscripted items are processed one at a
time throughout the subscript. If the
subscript itself is an expression, it is
first processed via the translator. Text
entries are then generated to multiply the
subscript variable by the dimension factor
and length. Each subscript item is handled
in a similar manner. When all subscript
items have been processed, phase 15 text
entries are generated to add all subscript
values together to produce a single
subscript value.

In general, during compilation,
constants in subscript expressions are
combined, and their composite value is
placed in the displacement field of the
phase 15 text entry for the subscript item
(see Appendix B, "Phase 15/Phase 20
Intermediate Text Modifications"). Phase
25 uses the value in the displacement field
to generate, in the resultant object
instructions, the displacement for
referring to the elements in the array.
This combining of constants reduces the
number of instructions needed during
execution to compute the subscript value,

Expressions Referring to In-Line Routines
or Subprograms: Expressions containing
references to in-line routines or
subprograms are processed by the following
subroutines: FUNDRY-IEKJFU, BLTNFN-IEKJRF,
and DFUNCT-IEKJDF.




Arguments that are expressions are
reduced by the translator to a single
temporary, which is used as the argument.

If an argument is a subscripted variable,
subscript processing (previously discussed)
reduces the subscript to a single
subscripted item. Either subroutine
DFUNCT-IEKJDF (for references to library
routines) or subroutine BLTNFN-IEKJBF (for
references to in-line routines) then
conducts a series of tests on the argument
and performs the processing determined by

the results of the tests.

If a function is not external and is in
the function table (IEKLFT) (see Appendix
A, "Function Table"), it is determined if
the required routine is in-line. If the
function is in-line and its mode (or the
mode of its arguments) is not as expected,
it is assumed that the function is
external. If there are no error
conditions, subroutine BLTNFN-IEKJBF either
generates text or substitutes a special
operator (such as those for ABS or FLOAT)
in the phase 15 text so that phase 25 can
later expand the function. Phase 15
provides some in-line routines itself.1
Instead of placing a special operator in
text, phase 15 inserts a regular operator,
such as the operator for AND or STORE.

If the mode of arguments in a library
function is not as expected, another test
is performed. The test determines whether
or not a previous reference was made
correctly for these arguments. If the
previous reference was as expected, it is
assumed that an error exists. Otherwise,
the function is assumed to be external.

If a function is assumed to be external
(either used in an EXTERNAL statement or
does not appear in the function table),
text is generated to load the addresses of
any arguments that are subscripted
variables into a parameter list. (If none
of the arguments are subscripted variables,
the load address items are not required.)

A text entry for a subroutine or a function
call is then generated. The operator of
the text entry is for an external function
or subroutine reference. The entry points
to the dictionmary entry for the name. The
text representation of the argument list is
then generated and placed into the phase 15
text chain.

1BLTNFN-IEKJBF expands the following
functions: TBIT, SNGL, REAL, AIMAG,
DCMPLX, DCONJG, and CONJG.
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If a function is in the function table,
but does not represent an in-line routine,
text is generated to load the addresses of
any arguments that are subscripted
variables into a parameter list. (Load
address items are not required if none of
the arguments are subscripted variables.)
A text entry having a library function
operator is generated. This entry points
to the dictionary entry for the function.
The text representation of the argument
list is then generated and placed into the
phase 15 text chain.

Parameter List Optimization: Subroutine
DFUNCT-IEKJDF performs parameter list
optimization. If two or more parameter
lists are identical, all but one can be
eliminated. Likely candidates for
optimization are those parameter lists with
(1) the same number of parameters and (2)
the same nonzero parameters. When two such
lists are found, individual parameters are
compared to determine whether the lists are
actually identical or merely of the same
formate.

To make the comparison easier, the
Parameter List Optimization Table is

formed. 1Its format is:
Fr T T - L) - |
| | | |Pointer |
| | | |to next |
| | |entry of |
| |Number of |Pointer |like for-|
| Number of |nonzero | to NADCON|mat in |
| parameters|parameters |table |this |
lin list {in list |entry {table |
L 4 l 4 4
v T T r 1
| 1 byte | 1 byte | 1 byte | 1 byte |
_________ S S R

For each unique parameter list, an entry is
made in the table describing the number of
parameters in the list, the number of non
zero parameters in the list, a pointer to
the adcon table (see Appendix A: "NADCON
Table") and a pointer to the next parameter
list optimization table entry that contains
a like parameter list format, but unlike
individual parameters. When a new
parameter list is generated, the parameter
list optimization table is scanned for a
possible identical list. If one is found,
the parameters in the new list are compared
with the parameters in the old list. If
the lists are identical, a pointer to the
old list is used as the new list's pointer.
If the lists are not identical, an entry
for the new list is made in the table and
chained to the last like (in format) entry.
For example:
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r— T T T

| | | |Pointer to
| INumber of |NADCON |Next Entry
| Number of |Nonzero Table |of Like
ParameterslParameters1PointerlFormat

S

|
| |
T T T
| 20 | 16 | | -————+]
 ——1 — :
O—20 | 16 I [
1 4 1 —_— 1
r L] T T
| 10 | 7 | | 1
b= + e 1
| 30 I 25 | I t
S 4 4 4 4
L—20 | 16 [ | |
b= 4 4 4 |
S—s10 | 7 | | —_— |
+ 4 + + 4
L—s20 | 16 l l — |
b —4 + + |
| | | | |
| | | | |
L 4 s 4 4
L—s30 I 25 | | |
| IS L 1 L J

Parameter list optimization is limited
to (1) 100 entries in the parameter list
optimization table or (2) 255 entries in
the adcon table. WNo further parameter list
optimization is attempted if either limit
is exceeded.

Expressions Containing Statement Function
References: For expressions containing
statement function references, the
arguments of the statement function text
are reduced to single operands (if
necessary). These arguments and their mode
are stored in an argument save table
(NARGSV), which serves as a dictionary for
the statement function skeleton pointed to
by the dictionary entry for the statement
function name. The argument save table is
used in conjunction with the usual pushdown
procedure to generate phase 15 text items
for the statement function reference. When
the translator encounters an operand that
is a dummy argument, the actual argument
corresponding to the dummy is picked up
from the argument save table and replaces
the dummy argument.

Logical Expressions: Subroutines
ALTRAN-IEKJAL, ANDOR-IEKJAN, and
RELOPS-IEKKRE perform a special process,
called anchor point, on logical expressions
containing relational operators, ANDs, ORs,
and NOTs, so that, at object time, unneces-
sary logical tests are eliminated. With
anchor-point "optimization," only the
minimum number of object-time logical tests
are made before a branch or fall-through
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occurs. For example, with anchor-point
handling, the statement IF(A.AND.B.AND.C)
GO TO 500 will produce (at object time) a
branch to the next statement if A is false,
because B and C need not be tested. Thus,
only a minimum number of operands will be
tested. Without anchor-point handling of
the expression during compilation, all
operands would be tested at object time.
Similar special handling occurs for text
containing logical ORs.

When a primary adjective code for a
logical IF statement or an end-of-DO IF is
placed in the pushdown table, a scan of
phase 10 text determines whether or not the
associated statement can receive
anchor-point handling. The statement can
receive anchor-point handling if two
conditions are met. There must not be a
mixture of ANDs and ORs in the statement.

A logical expression, if it is in
parentheses, must not be negated by the NOT
operator. If these two conditions are not
met, special handling of the logical
expression does not occur,

Gathering Constant/Variable Usage
Information

During the conversion of the phase 10
text entries that follow the beginning of a
text block (i.e., the text entries that
follow a statement number definition) to
phase 15 format, the PHAZ15 subroutine
MATE-IEKLMA gathers usage information for
the variables and constants in that block.
This information is required during the
processing of the optimizer path through
phase 20 (see "Phase 20"). If optimizer
processing is not selected, this
information is not compiled. Subroutine
MATE-IEKLMA records the usage information
in three fields (MVS, MVF, and MVX), each
128 bits long, of the statement number text
entry for the block (see Appendix B, "Phase
15 Intermediate Text Modifications"). The
MVS field indicates which variables are
defined (i.e., appear in the operand 1
position of a text entry) within the text
of the block. The MVF field indicates
which variables, constants, and base
variables (see "Adcon and Base Variable
Assignment®™ under "CORAL Processing") are
used (i.e., appear in either the operand 2
or operand 3 position of a text entry)
within the text of the block. The MVX
field indicates which variables are defined
but not first used (not busy-on-entry)
within the text of the block. The MVX
information is gathered for the second
level of optimization only.



Subroutine MATE-IEKLMA records the usage
information for a variable or constant at a
specific bit location within the three
fields. (Base variables are processed
during CORAL processing.) The bit location
at which the usage information is recorded
is determined from the coordinate assigned
to the variable or constant by subroutine
IEKKOS.

After a phase 15 text entry has been
formed, subroutine MATE-IEKLMA is given
control to determine and record the usage
information for the text entry. It
examines the text entry operands in the
order: operand 2, operand 3, operand 1.
If operand 2 has not been assigned a
coordinate, subroutine MATE-IEKLMA assigns
it the next coordinate, enters the
coordinate number into the dictionary entry
for the operand, and places a pointer to
that dictionary entry into the MVD table
entry associated with the assigned
coordinate number. After MATE-IEKLMA has
assigned the coordinate, or if the operand
was previously assigned a coordinate, it
records the usage information for the
operand. The operand's associated
coordinate bit in the MVF field (of the
statement number text entry for the block
containing the text entry under
consideration) is set to on, indicating
that the operand is used in the block.
Subroutine MATE-IEKLMA executes a similar
procedure to process operand 3 of the text
entry.

If operand 1 of the text entry has not
been assigned a coordinate, the MATE-IEKLMA
subroutine assigns the next coordinate to
it and records the following usage
information for operand 1i:

e Its associated coordinate bit in the
MVX field is set to on only if the
associated coordinate bit in the MVF
field is not on. (If the associated
MVF bit is on, operand 1 of the text
entry was previously used in the block
and, therefore, is not not busy-on-
entry.)

¢ Its associated coordinate bit in the
MVS field is set to on, indicating that
it is defined within the block.

This process is repeated for all of the
phase 15 text entries that are formed
following the construction of a statement
number text entry and preceding the
construction of the next statement number
text entry. When the next statement number
text entry is constructed, all of the usage
information for the preceding block has
been recorded in the statement number text
entry that begins that block. The same
procedure is followed to gather the usage
information for the next text block.
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Gathering Forward-Connection Information

An integral part of the processing of
PHAZ15 is the gathering of
forward-connection information, which
indicates the specific text blocks that
pass control to other specified text
blocks. Forward-connection information is
used during phase 20 optimization.

Forward-connection information is
recorded in a table called RMAJOR. Each
RMAJOR entry is a pointer to the statement
number entry associated with a statement
number that is the object of a branch or a
fall-through. Because each statement
number entry contains a pointer to the text
block beginning with its associated
statement number (see "Text Blocking"),
each RMAJOR entry points indirectly to a
text block.

For each new text block, PHAZ15 places a
pointer to the next available entry in
RMAJOR into the forward-connection field of
the associated statement number entry (see
Appendix A, "Statement Number/Array
Table"™). Thus, the statement number entry
associated with the text block points to
the first entry in RMAJOR in which the
forward-connection information for that
block is to be recorded.

After starting a text block, PHAZ15
converts the phase 10 text following the
statement number definition to phase 15
text. As each phase 15 text entry is
formed, it is analyzed to determine whether
it is a GO TO or compiler generated branch.
If it is either, a pointer to the statement
number entry for each statement number to
which a branch may be made as a result of
the execution of the GO TO or generated
branch is recorded in the next available
entry in RMAJOR. (If two or more branches
to the same statement number appear in the
block only one entry is made in RMAJOR for
the statement number to which a branch is
to be made.)

When PHAZ15 encounters the next
statement number definition, it starts a
new block. If the new block is an entry
block, PHAZ15 saves a pointer to its
associated statement number entry for
subsequent use and processes the text for
the block.

If the new block is neither an entry
block nor an entry point (i.e., a block
immediately following an entry block),
PHAZ15 records the fall-through connection
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information (if any) for the previous
block. If the previous block is terminated
by an unconditional branch, it does not
fall-through to the new block. If the
previous block can fall-through to the new
block, PHAZ15 records a pointer to the
statement number entry for the new block in
the next location of RMAJOR. It then flags
this as the last forward connection for the
previous block.

If the new block is an entry point
(i.e., a block immediately following an
entry block), PHAZ15 records the
fall-through connection (if any) for the
previous non-entry block. It does this in
the manner described in the previous
paragraph. It then records the
forward-connection information for all
intervening entry blocks (i.e., entry
blocks between the previous non-entry block
and the new block). (PHAZ15 has saved
pointers to the statement number entries
for all intervening entry blocks.) Each
such entry block passes control directly to
the new block and therefore has only one
forward connection. To record the forward
connection information for the intervening
entry blocks, PHAZ15 places a pointer to
the next available entry in RMAJOR into the
forward connection field of the statement
number entry for the first intervening
entry block. In this RMAJOR entry, PHAZ15
records a pointer to the statement number
entry for the new block. It flags this
entry as the last, and only, RMAJOR entry
for the entry block. PHAZ15 repeats this
procedure for the remaining intervening
entry blocks (if any). PHAZ15 then
proceeds to process the new text block.

When all the connection information for
a block has been gathered, each RMAJOR
entry for the block, the first of which is
pointed to by the statement number entry
for the block and the last of which is
flagged as such, points indirectly to a
block to which that block may pass control.

Figure 5 illustrates the end result of
gathering forward-connection information
for sample text blocks. Only the
forward-connection information for the
blocks beginning with statement numbers 10
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and 20 is shown. In the illustration, it

is assumed that:

e The block started by statement number
10 may branch to the blocks started by
statement numbers 30 and 40 and will
fall-through to the block started by
statement number 20 if neither of the
branches is executed.

¢ The block started by statement number
20 may branch to the blocks started by
statement numbers 40 and 50 and will
fall-through to the block started by
statement number 30 if neither of the
branches is executed.

Reordering the Statement Number Chain

After text blocking, arithmetic
translation, and if complete optimization
has been specified, the gathering of
constant/variable usage information, been
completed, subroutine PHAZ15-IEKJA reorders
the statement number chain of the
information table (see Appendix A,
"Information Table"). The original
sequence of the entries in this chain, as
recorded by phase 10, was in the order of
the occurrence of their associated
statement numbers as either definitions or
operands. The new sequence of the entries
after reordering is made according to the
occurrence of their associated statement
numbers as definitions only.

Although the actual reordering takes
place after the scan of the phase 10 text,
preparation for it takes place during the
scan. As each statement number definition
is encountered, a pointer to the related
statement number entry is recorded. Thus,
during the course of processing, a table of
pointers to statement number entries, which
reflects the sequence in which statement
numbers are defined in the module, is
built. The order of the entries in this
table also reflects the sequence of the
text blocks of the module.
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Figure 5. Forward-Connection Information

After the scan, subroutine PHAZ15-IEKJA
uses this table to reorder the statement
number entries. It places the first table
pointer into the appropriate field of the
"Communication Table"); it places the
second table pointer into the chain field
of the statement number entry that is
pointed to by the pointer in the
communication table; it places the third
table pointer into the chain field of the
statement number entry that is pointed to
by the chain field of the statement number
entry that is pointed to by the pointer in
the communication table; etc. When
subroutine PHAZ15-IEKJA has performed this
process for all pointers in the table, the
entries in the statement number chain are
arranged in the sequence in which their
associated statement numbers are defined in
the module. The new order of the chain
also reflects the sequence of the text
blocks of the module.

Gathering Backward-Connection Information

After the statement number chain has
been reordered, and if optimization has
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been specified, subroutine PHAZ15-IEKJA
gathers backward-connection information.
This information indicates the specified
text blocks that receive control from
Backward-connection information is used
extensively throughout phase 20
optimization.

Subroutine PHAZ15-IEKJA uses the
reordered statement number chain and the
information in the forward connection table
(RMAJOR) to determine the backward
connections. It records
backward-connection information in a table
called CMAJOR in subroutine C1520-IEKJA2.
Each CMAJOR entry made by subroutine
PHAZ15~IEKJA for a particular text block
(block I) is a pointer to the statement
number entry for a block from which block I
may receive control. Because each
statement number entry contains a pointer
to its associated text block (see "Text
Blocking"), each CMAJOR entry for block I
points indirectly to a block from which
block I may receive control.

Subroutine PHAZ15-IEKJA gathers
backward-connection information for the
text blocks according to the order of the
statement number chain. It first
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determines and records the
backward-connections for the text block
associated with the initial entry in the
statement number chain, then gathers the
backward-connection information for the
block associated with the second entry in
the chain; etc.

For each text block, subroutine
PHAZ15-1IEKJA initially records a pointer to
the next available entry in CMAJOR in the
backward-connection field (JLEAD) of the
associated statement number entry (see
Appendix A, "Statement Number/Array
Table"). Thus, the statement number entry
points to the first entry in CMAJOR in
which the backward-connection information
for the block is to be recorded.

Then, to determine the
backward-connection information for the
block (block I), subroutine PHAZ15-IEKJA
obtains, in turn, each entry in the
statement number chain. (The entries are
obtained in the sequence in which they are
chained.) After the PHAZ15-IEKJA
subroutine has obtained an entry, it picks
up the forward-connection field (ILEAD) of
that entry. This field points to the
initial RMAJOR entry for the text block
associated with the obtained statement
number entry. (Note: RMAJOR entries for a
block indicate the blocks to which that
block may pass control.) Subroutine
PHAZ15-TEKJA searches all RMAJOR entries
for the block associated with the obtained
entry for a pointer to the statement number
entry for block I. If such a pointer
exists, the text block associated with the
obtained statement number entry may pass
control to block I. Therefore, block I may
receive control from that block and
subroutine PHAZ15-IEKJA records a pointer
to its associated statement number entry in
the next available entry in
CMAJOR. Subroutine PHAZ15-IEKJA repeats
this procedure for each entry in the
statement number chain. Thus, it searches
all RMAJOR entries for pointers to the
statement number entry for block I and
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records in CMAJOR a pointer to the
statement number entry for each text block
from which block I may receive control.
The PHAZ15-IEKJA subroutine flags the last
entry in CMAJOR for block I. When the
statement number chain has been completely
searched, subroutine PHAZ15-IEKJA has
gathered all the backward-connection
information for block I. Each entry that
the PHAZ15-IEKJA subroutine has made for
block I, the first of which is pointed to
by the statement number entry for block I
and the last of which is flagged, points
indirectly to a block from which block I
may receive control.

Subroutine PHAZ15-IEKJA gathers the
backward-connection information for all
blocks in the aforementioned manner. When
all of this information has been gathered,
control is returned to the FSD, which calls
CORAL, the second segment of phase 15.

Figure 6 illustrates the end result of
the gathering of backward-connection
information for sample text blocks. Only
the backward-connections for the blocks
beginning with statement numbers 40 and 50
are shown. In the illustration, it is
assumed that: '

e The block started by statement number
40 may receive control from the
execution of branch instructions that
reside in the blocks started by
statement numbers 10 and 20 and that it
may receive control as a result of a
fall-through from the block started by
statement number 30.

e The block started by statement number
50 may receive control from the
execution of a branch instruction that
resides in the block started by
statement number 20 and that it may
receive control as a result of a
fall-through from the block started by
statement number 40,
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CORAL PROCESSING to accomplish various functions. These

CORAL, the second segment of phase 15,

performs the following functions:

e Data text conversion

¢ Relative address assignment

e Data text rechaining

¢ Namelist statement processing

e Define file text processing

e Tnitial value assignment

e Adcon table space reservation

CORAL consists of a main subroutine,
CORAL-IEKGCR,
space allocation for variables,
and any adcons necessary for local

variables, COMMON, EQUIVALENCE, and
EXTERNAL references. Embedded in

subroutine CORAL-IEKGCR are the routines

that process constants, local variables,
and external references.

which controls the flow of
constants,

The CORAL-IEKGCR
subroutine calls other routines in phase 15

routines are:

IEKGCZ, which keeps track of space
being allocated; generates adcons
needed for address computation in the
object module; rechains data text in
the. sequence of variable assignment;
generates adcons necessary for COMMON,
EQUIVALENCE, and EXTERNAL references;
and sets up error table entries to be
used by phase 30 if errors occur.

NDATA-IEKGDA, which processes phase 10
data text.

EQVAR-IEKGEV, which handles COMMON and
EQUIVALENCE space allocation.

NLIST-IEKTNL, which processes namelist
text.

DFILE-IEKTDF, which processes define
file text.

DATOUT-IEKTDT, which processes data
text.

Chart 09 shows the overall logic flow of
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CORAL.
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Translation of Data Text

The first section of CORAL, subroutine
NDATA-IEKGDA, translates data text entries
from their phase 10 format to a form more
easily processed by another CORAL
subroutine, DATOUT-IEKTDT. Each phase 10
data text entry (except for initial
housekeeping entries) contains a pointer to
a variable or constant in the information
table. Each variable in the series of
entries is to be assigned to a constant
appearing in another entry. Placed in
separate entries, variable and constant
appear to be unrelated. In each phase 15
data text entry, after translation, each
related variable and constant are paired
(they appear in adjacent fields of the same
entry).

The following example shows how a series
of phase 10 data text entries are
translated by the NDATA-IEKGDA subroutine
to yield a smaller number of phase 15 text
entries, with each related constant and
variable paired. Assume a statement
appearing in the source module as DATA
A,B/2%0/. The resulting phase 10 text
entries appear as follows (ignoring the
chain, mode, and type fields, and the
initial housekeeping entry):

r A - T 1
| Adjective | |-
| Code for: | Pointer |
- - 1
| 0 | Pointer to A |
| | in dictionary |
F 1 , i
| ‘ | Pointer to B |
| | in dictionary |
L 4o 4
) ]

I / I 2 |
b } . 1
| * | Pointer to 0 |
| | in dictionary |
b { 4
| 4 | 0 |
L 1 —_d

Note that the variables A and B and the
constant value 0 appear in separate text
entries. The NDATA-IEKGDA subroutine
translation of the above phase 10 entries
(ignoring the contents of the indicator and
chain fields, and two optional fields
needed for special cases) appears as
follows:

40

B St L SR L
|Indicator| Chain |P1 Field |P2 Field |
t 1 oo O i
| | | pointer | pointer |
| | jto A in |to 0 in |
| | |dictionary|dictionary|
L 4 4 4 4
r T T . T . 1
| | | pointer |pointer |
| ] |to B in |to 0 in |
| | |dictionary|dictionary|
L i L 4 P

In this case, each variable and its
specified constant value appear in adjacent
fields of the same phase 15 text entry.

For the detailed format of the phase 15
data text entry and the use of the special
fields not discussed, see Appendix B,
"Phase 15/20 Intermediate Text
Modification".

Relative Address Assignment

The chief function of CORAL is to assign
relative addresses to the operands
(constants and variables) of the source
module. The addresses indicate the
locations, relative to zero, at which the
operands will reside in the object module
resulting from the compilation. The
relative address assigned to an operand
consists of an address constant and a
displacement. These two elements, when
added together, form the relative address
of the operand. The address constant for
an operand is the base address value used
to refer to that operand in main storage.
Address constants are recorded in the adcon
table (NADCON) and are the elements to
which the relocation factor is added to
relocate the object module for execution.
The displacement for an operand indicates
the number of bytes that the operand is
displaced from its associated address
constant. Displacements are in the range
of 0 to 4095 bytes. The relative address
assigned to an operand is recorded in the
information table entry for that operand in
the form of:

1. A numeric displacement from its
associated address constant.

2. A pointer to an information table
entry that contains a pointer to the
associated address constant in the
adcon table.

Relative addresses are assigned through
use of a location counter. This counter is
continually updated by the size (in bytes)
of the operand to which an address is
assigned. The value of the location
counter is used to:



e Compute the displacement to be assigned
to the next operand.

e Determine when the next address
constant is to be established. (If the
displacement reaches a value in excess
of 4095, a new address constant is
established.)

CORAL assigns addresses to source module

operands in the following order:
¢ Constants.
e Variables.
e Arrays.
¢ Equivalenced variables and arrays.

* COMMON variables and arrays, including
variables and arrays made common using
the EQUIVALENCE statement.

The manner in which addresses are assigned
to each of these operand types is described
in the following paragraphs. Because
constants and variables are processed in
the same manner, they are described
together.

constants and Variables: Subroutine
CORAL-IEKGCR first assigns relative
addresses to the constants of the module.
As each constant is assigned a relative
address, subroutine CORAL-IEKGCR calls the
FSD subroutine, IEKTLOAD, to place the
constant in the object module in the form
of TXT records. Addresses are then
assigned to variables. (In the subsequent
discussion, constants and variables are
referred to collectively as operands.) The
first operand is assigned a displacement of
zero plus the length of the save area,
parameter list, and branch table. Operands
that are assigned locations within the
first 4096 bytes of the range of base
register 13 are not explicitly assigned an
address constant. Such operands use the
base address value loaded into reserved
register 13 as their address constant. The
displacement is recorded in the information
table entry for that operand. The location
counter is then updated by the size in
bytes of the operand.

The next operand is assigned a
displacement equal to the current value of
the location counter minus the base address
value in register 13, The displacement is
recorded in the information table entry for
that operand. The location counter is then
updated, and the value of the displacement
is tested to see whether or not it exceeds
4095. 1If it does not, the next operand is
processed as described above,
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If sufficient operands exist to cause
the displacement to achieve a value in
excess of 4095, the first address constant
is establiished. The value of this address
constant equals the location counter value
that caused its establishment. This
address constant becomes the current
address constant and is saved for
subsequently assigned relative addresses.
The displacement value is then reset to
zero and the next operand is considered.

After the first address constant is
established, it is used as the address
constant portion of the relative addresses
assigned to subsequent operands.

When the value of the displacement again
reaches a value in excess of 4095, another
address constant is established. 1Its value
is equal to the current address constant
plus the displacement that caused the
establishment of the new address constant.
This new address constant then becomes
current and is used as the address constant
for subsequent operands. The displacement
is then reset to zero and the next operand
is processed. This overall process is
repeated until all operands (constants and
variables) are processed. Source module
arrays are then considered for relative
address assignment.

Arrays: Subroutine CORAL-IEKGCR then
assigns to each array of the source module
that is not in COMMON a relative address
that is less than (by the span of the
array) the relative address at which the
array will reside in the object module.
(The concept of span is discussed in
Appendix E.) The actual relative address
at which an array will reside in the object
module is derived from the sum of address
constant and displacement that are current
at the time the array is considered for
relative address assignment. The array
span is subtracted from the relative
address to facilitate subscript
calculations.

Subroutine CORAL-IEKGCR subtracts the
span in one of two ways. If the span is
less than the current displacement, it
subtracts the span from that displacement,
and assigns the result as the displacement
portion of the relative address for the
array. In this case, the address constant
assigned to the array is the current
address constant. If the span is greater
than the current displacement, the
CORAL-IEKGCR subroutine subtracts the span
from the sum of the current address
constant and displacement. The result of
this operation is a new address constant,
which does not become the current address
constant. Subroutine CORAL-IEKGCR assigns
the new address constant and a displacement
of zero to the array. It then adds the
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total size of the array to the location
counter, obtains the next array, and tests
the value of the displacement. If the
value of the displacement does not exceed
4095, the CORAL-IEKGCR subroutine does not
take any additional action before it
processes the next array. 1If the
displacement value exceeds 4095, the
CORAL-IEKGCR subroutine establishes a new
address constant, resets the displacement
value and processes the next array. After
all arrays have relative addresses,
subroutine CORAL-IEKGCR calls subroutine
EQVAR-IEKGEV to assign address to
equivalence variables and arrays that are
not in common.

Equivalence Variables and Arrays Not in
COMMON: In assigning relative addresses to
equivalence variables and arrays,
subroutine EQVAR-IEKGEV attempts to
minimize the number of required address
constants by using, if possible, previously
established address constants as the base
addresses for equivalence elements.
Subroutine EQVAR-IEKGEV processes
equivalence information on a group-by-group
basis, and assigns a relative address, in
turn, to each element of the group. Prior
to processing, subroutine EQVAR-IEKGEV
determines the base value for the group.
The base value is the relative address of
the head?® of the group. The base value
equals the sum of the current address
constant and displacement (location counter
value). After the EQVAR-IEKGEV subroutine
has determined the base value, it obtains
the first (or next) element of the group
and computes its relative address. The
relative address for an element equals the
sum of the base value for the group and the
displacement of the element. The
displacement for an element is the number
of bytes that the element is displaced from
the head of the group (see "COMMON and
EQUIVALENCE Processing"). The EQVAR-IEKGEV
subroutine then compares the computed
relative address to the previously
established address constants. If an
address constant is such that the
difference between the computed relative
address and the address constant is less
than 4095, the EQVAR-IEKGEV subroutine
assigns that address constant to the
equivalence element under consideration.
The displacement assigned in this case is
the difference between the computed
relative address of the element and the
address constant. Subroutine EQVAR-IEKGEV
then processes the next element of the
group.

iThe head of an equivalence group is the
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive displacement.
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If the desired address constant does not
exist, subroutine EQVAR-IEKGEV establishes
a new address constant and assigns it to
the element. The value of the new address
constant is the relative address of the
element. The EQVAR-IEKGEV subroutine then
assigns the element a displacement of zero.
and processes the next element of the
group. When all elements of the group are
processed, subroutine EQVAR-IEKGEV computes
the base value for the next group, if any.
This base value is equal to the base value
of the group just processed plus the size
of that group. The next group is then
processed.

COMMON Variables and Arrays: Subroutine
EQVAR-IEKGEV considers each COMMON block of
the source module, in turn, for relative
address assignment. For each COMMON block,
subroutine EQVAR-IEKGEV assigns relative
addresses to (1) the variables and arrays
of that block, and (2) the variables and
arrays equivalenced into that COMMON block.
(The processing of variables and arrays
equivalenced into COMMON is described in a
later paragraph.}

Because COMMON blocks are considered
separate control sections, the EQVAR-IEKGEV
subroutine assigns each COMMON block of the
source module a relocatable origin of zero.
It achieves the origin of zero by assigning
to the first element of a COMMON block a
relative address consisting of an address
constant and a displacement whose sum is
zero. For example, both the address
constant and the displacement for the first
element in a block can be zero. Also, the
address constant can be -16 and the
displacement +16. Note that the address
constant in the latter case is negative.
Negative address constants are permitted,
and may be a by-product of the assignment
of addresses to COMMON variables and
arrays. They evolve from the manner in
which the relative addresses are assigned
to arrays. A relative address assigned to
an array is equal to its actual relative
address minus the span of that array. The
actual relative address of each array in a
common block is equal to the displacement
computed for it during COMMON and
EQUIVALENCE processing. From the
displacement of each array in the COMMON
block under consideration, subroutine
EQVAR-IEKGEV subtracts the span of that
array. The result then replaces the
previously computed displacement for the
array. If the result of one or more of
these computations yields a negative value,
the EQVAR-IEKGEV subroutine uses the most
negative as the initial address constant
for the COMMON block. It then assigns each
element (variable or array) in the COMMON
block a displacement. This displacement is
equal to the absolute



value of the address constant plus the
relative address of the element.

If the computations that subtract spans
from displacements do not yield a negative
value, subroutine EQVAR-IEKGEV establishes
an address constant with a value of zero as
the initial address constant for the COMMON
block. It then assigns each element in the
block a relative address consisting of the
address constant (with zero value) and a
displacement equal to the displacement of
the element.

If at any time the displacement to be
assigned to an element exceeds 4095, the

address constant. This address constant
then becomes the current address constant
and is saved for inclusion in subsequently
assigned addresses. After the new address
constant is established, the relative
address assigned to each subsequent element
consists of the current address constant
and a displacement equal to the
displacement of that element minus the
value of the current address constant.
After the entire common block is processed,
variables and arrays that are equivalenced
into that common block are assigned
relative addresses.

Variables and Arrays Equivalenced into
Common: Subroutine EQVAR-IEKGEV processes
variables and arrays that are equivalenced
into common in much the same manner as
those that are equivalenced, but not into
common. However, in this case, the base
value for the group is zero. Only those
address constants established for the
common block into which the variables and
arrays are equivalenced are acceptable as
address constants for those variables and
arrays.

Adcon and Base Variable Assignment: As
CORAL establishes a new address constant
and enters it into the adcon table, it also
places an entry in the information table.
This special entry, called an "adcon
variable, " points to the new address
constant. All operands that have been
assigned relative addresses will have
pointers to the adcon variable for their
address constant. The adcon variables
generated for operands are assigned
coordinates, via the MCOORD vector and the
MVD table. Coordinates 81 through 128 are
reserved for base variables; however, some
base variables may be assigned coordinates
less than 81 if less than 80 coordinates
are assigned during the gathering of
variable and constant usage information
(see PHAZ15, "Gathering Constant/ Variable
Usage Information"). Having been assigned
coordinates, the adcon variables are now
called base variables. Only those operands
receiving coordinate assignments are
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available for full register assignment
during phase 20.

Rechaining Data Text

During the assignment of relative
addresses to variables, subroutine IEKGCZ
rechains the data text entries. Their
previous chaining (set by phase 10) was
according to their sequence in the source
program. The IEKGCZ subroutine now chains
the data text entries according to the
sequence of relative addresses it assigns
to variables., Thus, data text entries are
now chained in the same relative sequence
in which the variables will appear in the
object module. This sequence simplifies
the generation of text card images by phase
CORAL.

DEFINE FILE Statement Processing

If the source module contains DEFINE
FILE statements, subroutine DFILE-IEKTDF
converts phase 10 define file text to
object-time parameters. These parameters
provide the Library routine IHCFDIOSE with
the information required to implement
direct access READ, WRITE, and FIND
statements.

A parameter entry is made for each unit
specified in a DEFINE FILE statement. This
entry contains the unit number, the
relative address of the number of records,
a character (‘L', 'E', or 'U') indicating
the type of formatting to be used, the
relative address of the maximum record
size, an indicator for the size (four bytes
or two bytes) of the associated variable,
and the relative address of the associated
variable.

Subroutine DFILE-IEKTDF places the
parameter entries along with their relative
addresses into TXT records. It also places
the relative address of the first define
file entry into the communication table for
later use by phase 25.

NAMELIST Statement Processing

If the source module contains READ/WRITE
statements using NAMELIST statements,
subroutine NLIST-IEKTNL converts phase 10
namelist text to object-time namelist
dictionaries. The object-time namelist
dictionaries provide the Library routine
IHCFCOMH with the information required to
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implement READ/WRITE statements using
namelists (see Appendix A, "Namelist
Dictionaries®"). The dictionary developed
for each list in a NAMELIST statement
contains the following:

e An entry for the namelist name.

e Entries for the variables and arrays
associated with the namelist name.

e An end mark of zeros terminating the
list.

Each entry for a variable contains the
name, mode (e.g., integer*2 or real*4), and
relative address of the variable. Both the
address and the mode are obtained from the
dictionary entry for the variable.

Each entry for an array contains the
name of the array, the mode of its
elements, the relative address of its first
element, and the information needed to
locate a particular element of the array.
Subroutine NLIST-IEKTNL obtains the
foregoing information from the information
table,

The NLIST-IEKTNL subroutine places the
entries of the namelist dictionary along
with their relative addresses into TXT
records. It also places the relative
address of the beginning of the namelist
dictionary into the address constant for
the namelist name.

Initial Value Assignment

CORAL assigns the initial values
specified for variables and arrays in phase
15 data text in the following manner:

1. The relative address of the variable
or array to be assigned an initial
value(s) is obtained and placed into
the address field of a TXT record.

2. Each constant (one per variable) that
has been specified as an initial value
for the variable or array is then
obtained and entered into a TXT
record. (A number of TXT records may
be required if an array is being
processed.)

Such action effectively assigns the
initial value, because the relative address
of the initial value has been set to equal
the relative address of its associated
variable or array element.
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Reserving Space in the Adcon Table

After relative address assignment is
completed, subroutine CORAL-IEKGCR calls
the IEKTLOAD subroutine (via IEKGCZ) to
place an adcon in the object module for
special references. Subroutine
CORAL-IEKGCR scans the operands of the
information table to detect any of these
references: call-by-name variables, names
of library routines, namelist names, and
external references. The byte-A and byte-B
usage fields of each information table
entry informs subroutine CORAL-IEKGCR
whether or not a particular reference
belongs to one of these categories. For
each special reference that the
CORAL-IEKGCR subroutine detects, subroutine
IEKGCZ calls subroutine IEKTLOAD to place
the needed address constants in the
reserved spaces of the object module.

Creating Relocation Dictionary Entries

The relocation dictionary is composed of
entries for the address constants of the
object module. One relocation dictionary
entry (an RLD record) is constructed by
subroutine CORAL-IEKGCR for each address it
encounters. If the address constant is for
an external symbol, the RLD record
identifies the address constant by
indicating:

e The control section to which the
address constant belongs.

e The location of the address constant
within the control section.

e The symbol in the external symbol
dictionary whose value is to be used in
the computation of the address
constant.

If the address constant is for a local
symbol (i.e., a symbol that is located in
the same control section as the address
constant), the RLD record identifies the
address constant by indicating the control
section to which the address constant
belongs and its location within that
section.

For a more detailed discussion of the
use and format of an RLD record, refer to
the publication IBM System/360 Operating
System: Linkage Editor, Program Logic
Manual, Form Y28-6610.




Creating External Symbol Dictionary Entries

The external symbol dictionary contains
entries for external symbols that are
defined or referred to within the module.
An external symbol is one that is defined
in one module and referred to in another.
One external symbol dictionary entry (an
ESD record) is constructed by subroutine
IEKGCZ for each external symbol it
encounters. The entry identifies the
symbol by indicating its type and location
within the module. The ESD records
constructed by subroutine IEKGCZ are:

* ESD-0 -- This is a section definition
record and an entry point definition
record for the source module being
compiled.

e ESD-2 -- This record is generated for
an external subprogram name.

e ESD-5 -- This record is a section
definition record for a common block
(either named or blank).

For a more complete discussion of the
use and the format of these records, refer
to the publication IBM System/360 Operating

System: Linkage Editor, Program Logic
Manual.

PHASE 20

The primary function of phase 20 is to
produce a more efficient object module
{perform optimization). However, even if
the applications programmer has specified
no optimization, phase 20 assigns registers
for use during execution of the object
module,

For a given compilation, the
applications programmer may specify OPT=0
(no optimization), or either of the
following levels of optimization: OPT=1 or
OPT=2. Thus, the functions performed by
phase 20 depend on the optimization
specified for the compilation.

e If no optimization (OPT=0) has been
specified, phase 20 assigns to
intermediate text entry operands the
registers they will require during
object module execution (this is called
basic register assignment). As part of
this function, phase 20 also provides
information about the operands needed
by phase 25 to generate machine
instructions. Both functions are
implemented in a single,
block-by-block, top-to-bottom (i.e.,
according to the order of the statement

number chain), pass over the phase 15
text output. The end result of this
processing is that the register and
status fields of the phase 15 text
entries are filled in with the
information required by phase 25 to
convert the text entries to machine
language form (see Appendix B, "Phase
20 Intermediate Text Modifications").
Basic register assignment does not take
full advantage of the available general
and floating-point registers, and it
does not specify the generation of
machine instructions that keep operand
values in registers (wherever possible)
for use in subseguent operations
involving them.

e If the OPT=1 level of optimization has
been specified, two processes are
carried out:

1. The first process, called full
register assignment, performs the
same two functions as basic
register assignment. However,
full register assignment takes
greater advantage of available
registers and provides information
that enables machine instructions
to be generated that keep operand
values in registers for subsequent
operations. An attempt is also
made to keep the most frequently
used operands in registers
throughout the execution of the
object module. Full register
assignment requires a number of
passes over the phase 15 text.

The basic unit operated upon is
the text block (see Phase 15,
"Text Blocking”). The end result
of full register assignment, like
that of basic register assignment,
is that the register and status
fields of the phase 15 text
entries are filled in with the
information required by phase 25.

2. The second process, called branch
optimization, generates RX-format
branch instructions in place of
RR-format branch instructions
wherever possible. The use of
RX-format branches eliminates the
need for an instruction to load
the branch address into a general
register. However, branch
optimization first requires that
the sizes of all text blocks in
the module be determined so that
the branch address can be found.

e If the OPT=2 level of optimization has
been specified, optimization is
performed on a "loop-by-loop" basis.
Therefore, before processing can be
initiated, phase 20 must determine the
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structure of the source module in terms
of the loops within it and the
relationships (nesting) among the
loops. Then phase 20 determines the
order in which loops are processed,
beginning with the innermost (most
frequently executed) loop and
proceeding outward. The second level
of optimization involves three general
procedures:

1. The first, called text
optimization, eliminates
unnecessary text entries from the
loop being
processed. For example, redundant
text entries are removed and,
wherever possible, text entries
are moved to outer loops, where
they will be executed less often,

2. The second procedure is full
register assignment, which is
essentially the same as in the
first level of optimization, but
is more effective, because it is
done on a loop-by-loop basis.

3. The final procedure is branching
optimization, which is the same as
in the OPT=1 path.

CONTROL FLOW

In phase 20, control flow may take one
of three possible paths, depending on the
level of optimization chosen (see Chart
10). Phase 20 consists of a control
routine (LPSEL-IEKPLS) and six routine
groups. (Table 12 is a directory of the
subroutines used by these six groups. 1In
addition, Table 13 contains the list of
utility routines called by the subroutines
in the various groups.) The control
routine controls execution of the phase.
All paths begin and end with the control
routine. The first group of routines
performs basic register assignment. This
group is executed only in the control path
for non-optimized processing. The second
group performs full register assignment.
Control passes through this group in the
paths for both levels of optimization. The
third group of routines performs branch
optimization and is also used in the paths
for both levels of optimization. The
fourth group determines the structure of
the source module and is used only in the
path for OPT=2 optimization. The fifth
group performs loop selection and again is
only executed in OPT=2 optimization. The
final group performs text optimization and
is used only in OPT=2 optimization.
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The control routine governs the sequence
of processing through phase 20. The
processing sequence to be followed is
determined from the optimization level
specified by the FORTRAN programmer.
optimization is specified, the basic
register assignment routines are brought
into play. The unit of processing in this
path is the text block. When all blocks
are processed, the control routine passes
control to the FSD, which calls phase 25,

If no

When OPT=1 optimization is specified,
the control routine passes the entire
module to the full register assignment
routines and then to the routine that
computes the size of each text block and
sets up the displacements required for
branching optimization. Control is then
passed to the FSD.

When the control path for OPT=2
optimization is selected, the unit of
processing is a loop, rather than a block.
In this case, the control routines
initially pass control to the routines of
phase 20 that determine the structure of
the module. When the structure is
determined, control is passed to the loop
selection routines, to select the first
(innermost) loop to be processed. The
control routines then pass control to the
text-optimization routines to process the
loop. When text optimization for a loop is
completed, the control routine marks each
block in the loop as completed. This
action is taken to ensure that the blocks
are not reprocessed when a subsequent
(outer) loop is processed. The control
routine again passes control to the loop
selection routines to select the next loop
for text optimization. This process is
repeated until text optimization has
processed each loop in the module.
entire module is the last loop.)

(The

After text optimization has processed
the entire module, the control routine
removes the block-completed marks and
control is passed to the loop selection
routines to reselect the first loop.
control is then passed to the full register
assignment routines. When full register
assignment for the loop is complete, the
control routine marks each block in the
loop as completed and passes control to the
loop selection routines to select the next
loop. This process is repeated for each
loop in the module. (The entire module is
the last loop.) When all loops are
processed, the control routine passes
control to the routine that computes the
size of each text block and sets up the
displacements required for branching
optimization. Control is then passed to
the FSD.



REGISTER ASSIGNMENT

Two types of register assignment can be
performed by phase 20: basic and full.
Before describing either type, the concept
of status, which is integrally connected
with both types of assignment, is
discussed.

Each text entry has associated operand
and base address status information that is
set up by phase 20 in the status field of
that text entry (see Appendix B, "Phase 20
Intermediate Text Modification"). The
status information for an operand or base
address indicates such things as whether
ornot it is in a register and whether or
not it is to be retained in a register for
subsequent use; this information indicates
to phase 25 the machine instructions that
must be generated for text entries.

The relationship of status to phase 25
processing is illustrated in the following
example, Consider a phase 15 text entry of
the form A = B + C. To evaluate the text
entry, the operands B and C must be added
and then stored into A. However, a number
of machine instruction sequences could be
used to evaluate the expression. If
operand B is in a register, the result can
be achieved by performing an RX-format add
of C to the register containing B, provided
that the base address of C is in a
register. (If the base address of C is not
in a register, it must be loaded before the
add takes place.) The result can then be
stored into A, again, provided that the
base address of A is in a register,

If both B and C are in registers, the
result can be evaluated by executing an
RR-format add instruction. The result can
then be stored into A. Thus, for phase 25
to generate code for the text entry, it
must have the status of operands and base
addresses of the text entry.

The following facts about status should
be kept in mind throughout the discussions
of basic and full register assignment:

1. Phase 20 indicates to phase 25 when it
is to generate code that loads
operands and base addresses into
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registers, whether or not it is to
generate code that retains operands
and base addresses in registers; and
whether or not operand 1 is to be
stored.,

2. Phase 20 notes the operands and base
addresses that are retained in
registers and are available for

subsequent use.

Basic Register Assignment -- OPT=0

Basic register assignment involves two
functions: assigning registers to the
operands of the phase 15 text entries and
indicating the machine instructions to be
generated for the text entries. 1In
performing these functions, basic register
assignment does not use all of the
available registers, and it restricts the
assignment of those that it does use to
special types of items (i.e., operands and
base addresses). The registers assigned
during basic register assignment and the
item(s) to which each is assigned are
outlined in Table 3.

Basic register assignment essentially
treats System/360 as though it had a single
branch register, a single base register,
and a single accumulator. Thus, operands
that are branch addresses are assigned the
branch register, base addresses are
assigned the base register, and arithmetic
operations are performed using a single
accumulator. (The accumulator used depends
upon the mode of the operands to be
operated upon.)

The fact that basic register assignment
uses a single accumulator and a single base
register is the key to understanding how
text entries having an arithmetic operator
are processed. To evaluate the arithmetic
interaction of two operands using a single
accumulator, one of the operands must be in
the accumulator. The specified operation
can then be performed by using an RX-format
instruction. The result of the operation
is formed in the accumulator and is
available for subsequent use, Note that in
operations of this type, neither of the
interacting operands remains in a register.
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General Purpose|

Floating—-Point

e

|

| 0 1. Real operand

| 2. Real part of complex function result

| 2 imaginery part of complex function result
-

|

|

| 0 | Integer or logical operand

| 1 |Integer or logical operand

| 2 |Not assigned

| 3 |Not assigned

| 4 | Integer mult. for subscripting

| |

| 5 | 1. Branch register

| | 2. Increment and comparand (BT and BF)
] | 3. Operand 3 (I*2 divide)

| | 4. Integer mult. for subscripting

| |

| 6 | 1. Operand representing an index value
| | 2. Secondary spill base for data

] | 3. Spill base for branching (BT and BF)
| |

[ 7 |Primary spill base for data

| 8 |Logical result of compare operations

| 9 |Not assigned

| 10 |Not assigned

| 11 |Not assigned

| 12 | Secondary reserved base register

i 13 |Primary reserved base register

|

| 14 1. Number of elements (computed GO TO)
| 2. Spill base for branching (computed GO TO)
I 3. Branch register (computed GO TO)

] 15 Index (computed GO TO)

|

|
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Applying this concept to the processing
of text entries that are arithmetic in
nature, consider that a phase 15 text entry
representing the expression A2 = B + C is
the first of the source module. For this
text entry to be evaluated using a single
accumulator and base register, basic
register assignment must tell phase 25 to
generate machine code that:

e I.oads the base address of B into the
base register.

e Loads B into the accumulator.

e Loads the base address of C into the
base register. (This instruction is
not necessary if C is assigned the same
base address as B.)

¢ Adds C to the accumulator (RX-format
add) .

L8

e Loads the base address of A into the
base register (if necessary).

e Stores the accumulated result in A.

If this coding sequence were executed,
two items would remain in registers: the
last base address loaded and the
accumulated result. These items are
available for subsequent use.

Now consider that a text entry of the
form D = A + F irmmediately follows the
above text entry. In this case, A, which
corresponds to the result operand of the
previous text entry, is in the accumulator.
Thus, for this text entry, basic register
assignment specifies code that:

e Loads the base address of F into the
base register. (If the base address of
F corresponds to the last loaded base
address, this instruction is not
necessary.)



e Adds F to the accumulator (RX-format
add) .

e TLoads the base address of D into the
base register (if necessary).

e Stores the accumulated result in D.

The foregoing coding sequences are the
basic ones specified by basic register
assignment for arithmetic operations, The
first is specified for text entries in
which neither operand 2 nor operand 3 (see
Table 3) corresponds to the result operand
(operand 1) of the preceding text entry.
The second is specified for text entries in
which either operand 2 or operand 3
corresponds to the result operand. If
operand 3 corresponds to the result
operand, the two operands exchange roles,
except for division. In the case of
division, operand 3 is always in main
storage.

If both operands 2 and 3 correspond to
the result operand of the previous text
entry, an RR-format operation is specified
to evaluate the interactions of the
operands.

In the actual process of basic register
assignment, a single pass is made over the
phase 15 text output. The basic unit
operated upon is the text block. As the
processing of each block is completed, the
next block is processed, When all blocks
are processed, control is returned to the
FSD.

Text blocks are processed in a
top-to-bottom manner, beginning with the
first text entry in the block. When all
text entries in a block are processed, the
next text block is processed similarly.

For any text entry, the machine code to
be generated is first specified by setting
up the status field of the text entry.
Registers are then assigned to the operands
and base addresses by filling in the
register fields of the text entry.

Status Setting: Subroutine SSTAT-IEKRSS
sets the operand and base address status
information for a text entry in the
following order: operand 2, operand 2 base
address, operand 3, operand 3 base address,
operand 1, and operand 1 base address.
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To set the status of operand 2,
subroutine SSTAT-IEKRSS determines the
relationship of that operand to the result
operand (operand 1) of the previous text
entry. If operand 2 is the same as the
result operand, the SSTAT-IEKRSS subroutine
sets the status of operand 2 to indicate
that it is in a register and, therefore,
need not be loaded; otherwise, it sets the
status to indicate that it is in main
storage. Subroutine SSTAT-IEKRSS uses a
similar procedure to set the status of
operand 3.

o]
h

To set the status of the base address
operand 2, subroutine SSTAT-IEKRSS
determines the relationship of that base
address to the current base address (see
note). Ifthey correspond, the SSTAT-IEKRSS
subroutine sets the status of the base
address of operand 2 to indicate that it is
in a register and, therefore, need not be
loaded; otherwise, it sets the status to
indicate that it is in main storage.

Subroutine SSTAT-IEKRSS sets the
statuses of the base addresses of operands
3 and 1 in a similar manner.

Note: The current base address is the last
base address loaded for the purpose of
referring to an operand. This base address
remains current until a subsequent operand
that has a different base address is
encountered. When this occurs, the base
address of the subsequent operand must be
loaded. That base address then becomes the
current base address, etc.

The SSTAT-IEKRSS subroutine sets status
of operand 1 to indicate whether or not the
result of the interaction of operands 2 and
3 is to be stored into operand 1. If
operand 1 is either an actual operand (a
variable defined by the programmer) or a
temporary that is not used in the
subsequent text entry, it sets the status
of operand 1 to indicate that the store
operation is to be performed; otherwise, it
sets the status to indicate that a store
into operand 1 is unnecessary.

Register Assignment: After the status
field of the text entry is completed,
subroutine SPLRA-IEKRSL assigns registers
to the operands of the text entry and their
associated base addresses in the same order
in which statuses were set for them.

The assignment of registers depends upon
the statuses of the operands of the text
entry. To assign a register to operand 2,
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subroutine SPLRA-IEKRSL examines the status
of that operand, and, if necessary, of
operand 3. If the status of operand 2
indicates that it is in a register or if
the statuses of operands 2 and 3 indicate
that neither is a register, subroutine
SPLRA-IEKRSL assigns operand 2 to a
register. It selects the register
according to the type of operand (see Table
3), and places the number of that register
into the R2 field of the text entry.

To assign a register to the base address
of operand 2, subroutine SPLRA-IEKRSL
determines the status of operand 2. If the
status of that operand indicates that it is
not in a register, it assigns a register to
the base address of operand 2. The
appropriate register is selected as shown
in Table 3, and the register number is
placed into the B2 field of the text entry.
If the status of operand 2 indicates that
it is in a register, subroutine
SPLRA-IEKRSL does not assign a register to
the base address of operand 2. The
SPLRA-IEKRSL subroutine uses a similar
procedure in assigning a register tc the
base address of operand 3.

If the status of operand 3 indicates
that it is in a register, subroutine
SPLRA-IEKRSL assigns the appropriate
register (see Table 3) to that operand, and
enters the number of that register into the
R3 field.

Operand 1 is always assigned a register.
Subroutine SPLRA-IEKRSL selects the
register according to the type of operand 1
(see Table 3), and places the number of
that register into the R1 field.

The base address of operand 1 is
assigned a register only if the status of
operand 1 indicates the result is to be
stored into operand 1. If such is the
case, subroutine SPLRA-IEKRSL selects the
appropriate register, and records the
number of that register in the Bl field.
If the status of operand 1 indicates that
the result is not to be stored into operand
1, subroutine SPLRA-IEKRSL does not assign
a register to the base address of operand
1.

When all the operands of the text entry
and their associated base addresses are
assigned registers, the next text entry is
obtained, and the status setting and
register assignment processes are repeated.
After all text entries in the block are
processed, control is returned to IEKRSS,
which then makes the next block available
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to the basic register assignment routines.
When the processing of all blocks is
completed, control is passed to IEKPLS, and
then to the FSD.

Full Register Assignment -- OPT=1 (Chart
14)

During full register assignment (also
refer to "Full Register Assignment --
OPT=2"), as during basic register
assignment, registers are assigned to the
text entry operands and their associated
base addresses, and the machine code to be
generated for the text entries is
specified. To improve object module
efficiency, these functions are performed
in a manner that reduces the number of
instructions required to load base
addresses and operands. This process
reduces the number of required load
instructions by taking greater advantage of
all available registers, by assigning the
registers as needed to both base addresses
and operands, by keeping as many operands
and base addresses as possible in registers
and available for subsequent use, and by
keeping the most active base addresses and
operands in registers where they are
available for use throughout execution of
the entire object module.

During full register assignment,
registers are assigned at two levels:
"locally®™ and "globally." Local assignment
is performed on a block-by-block basis.
Global assignment is performed on the basis
of the entire module (if intermediate
optimization has been specified).

For local assignment, an attempt is made
to keep operands whose values are defined
within a block in registers and available
for use throughout execution of that block.
This is done by assigning an available
register to an operand at the point at
which its value is defined. (The value of
an operand is defined when that operand
appears in the operand 1 position of a text
entry.) The same register is assigned to
subsequent uses (i.e., operand 2 or operand
3 appearances) of that operand within the
block, thereby ensuring that the value of
the operand will be in the assigned
register and available for use. However,
if more than one subsequent use of the
defined operand occurs in the block,
additional steps must be taken to ensure
that the value of that operand is not
destroyed between uses. Thus, when the
text entries in which the defined operand
is used are processed, the code specified
for them must not destroy the contents of



the register containing the defined
operand.

Because all available registers are used
during full register assignment, a number
of operands whose values are defined within
the block can be retained in registers at
the same time.

example,
phase 15 text entries;

A=X+Y
C=A+72
F=A+C

A register is assigned to A at the point at
which its value is defined, namely in the
text entry A = X + Y. The same register is
assigned to the subsequent uses of A. The
value of A will be accumulated in the
assigned register and can be used in the
subsequent text entry C = A + Z. However,
because A is also used in the text entry

F =A + C, the contents of the register
containing A cannot be destroyed by the
code generated for the text entry

C = A+ Z. Thus, when the text entry

C = A + Z is processed, instructions are
specified for that text entry that use the
register containing A, but that do not
destroy the contents of that register.

In the example, C is also defined and
subsequently used. To that defined operand
and its subsequent uses, a register is
assigned. The assigned register is
different from that assigned to A. The
value of C will be accumulated in the
assigned register and can be used in the
next text entry. The text entry F = A + C
can then be evaluated without the need of
any load operand instructions, because both
the interacting operands (A and C) are in
registers.

This type of processing typifies that
performed during local assignment for each
block. When all blocks are processed,
global assignment for the source module is
carried out.

Global assignment increases the
efficiency of the object module as a whole
by assigning registers to the most active
operands and base addresses. The
activities of all operands and base
addresses are computed during local
assignment prior to global assignment. The
first register available for global
assignment is assigned to the most active
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operand or base address; the next available
register is assigned to the next most
active operand or base address: etc. As
each such operand or base address is
processed, a text entry, the function of
which is to load the operand or base
address into the assigned register, is
generated and placed into the entry
block(s) of the module. When the supply of
operands and base addresses, or the supply
of available registers, is exhausted, the
process is terminated.

All global assignments are recorded for
use in a subseguent text scan, which
incorporates global assignments into the
text entries, and completes the processing
of operands that have neither been locally
nor globally assigned to registers (e.g.,
an infrequently used operand that is used
in a block but not defined in that block).

The full register assignment process is
divided into five areas of operation:
control (subroutine REGAS-IEKRRG), table
building (subroutine FWDPAS-IEKRFP), local
assignment (subroutine BKPAS-IEKRBP),
global assignment (subroutine
GLOBAS-IEKRGB), and text updating
(subroutine STXTR-IEKRSX). The control
routine of phase 20 (LPSEL-IEKPLS) passes
control to subroutine REGAS-IEKRRG that
directs the flow of control among the other
full register assignment routines.

The actual assignment of registers is
implemented through the use of tables built
by the table-building routine, with
assistance from the control routine.
Tables are built using the set of
coordinate numbers and associated
dictionary pointers created by phase 15
(the MCOORD vector and MVD) for indexing.
The table-building routine constructs two
sets of parallel tables. One set, used by
the local assignment routine, contains
information about a text block; the second
set, used by the global assignment
routines, contains information about the
entire module. (The local assignment and
global assignment tables are detailed in
Appendix A, "Register Assignment Tables.")

The flow of control through the full
register assignment routines is, as
follows:

1. The control routine (REGAS-IEKRRG)
makes a pass over the MVD table and
the dictionary entries for the
variables and constants in the loop
passed to it, and constructs the
eminence table (EMIN) for the module,
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which indicates the availability of
the variables for global assignment.
Then the REGAS-IEKRRG subroutine calls
the table building routine to process
the blocks in the loop (the complete
module for OPT=1 ).

2. The table-building routine
(FWDPAS-IEKRFP) builds the required
set of local assignment tables and
adds information to the global
assignment tables under construction.
Subroutine FWDPAS-IEKRFP selects the
first block of the loop and builds the
tables for that block. It then passes
control to the local assignment
routine to
process the block and the tables (see
Chart 15).

3. The local assignment routine
(BKPAS-IEKRBP) uses the tables
supplied for the block to perform
local register assignment, and returns
control to subroutine FWDPAS-IEKRFP
when its
processing is completed (see Chart
16).

4, The FWDPAS-IEKRFP subroutine selects
the next block of the loop and again
builds tables. This process continues
until all blocks of the loop have been
processed. Control is then returned
to the REGAS-IEKRRG subroutine.

5. Subroutine REGAS-IEKRRG passes control
to the global assignment routine
GLOBAS-IEKRGB, which performs global
assignment for the module (see Chart
17).

6. When global assignment is complete,
the control routine calls the text
updating routine, STXTR-IEKRSX, to
complete register assignment by
entering the results of global
assignment into the text entries for
the module. Control is then returned
to the LPSEL-IEKPLS subroutine.

Table Building for Register Assignment
(Chart 15): The table-building routine,
FWDPAS-TIEKRFP, performs a forward scan of
the intermediate text entries for the block
under consideration and enters information
about each text entry into the local and
global tables (see Appendix A, "Register
Assignment Tables"™). The local assignment
tables can accommodate information for 100
text entries., If, however, a block
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contains more than 100 text entries, the
table-building routine builds the local
tables for the first 100 text entries and
passes this set of tables to the local
assignment routine. The local assignment
routine processes the text entries
represented in the set of local tables.

The table-building routine then creates the
local tables for the next 100 text entries
in the block and passes them to the local
assignment routine. When the
table-building routine encounters the last
text entry for the block, it passes control
to the local assignment routine, although
there may be fewer than 100 entries in the
local tables.

The global tables contain information
relating to variables and constants
referred to within the module, rather than
to text entries. The global tables can
accommodate information for 126 variables
and constants in a given module. Variables
and constants in excess of this number
within the module are not processed by the
global assignment routine.

Local Assignment (Chart 16): Local
assignment is implemented via a backward
pass over the text items for the block (or
portion of a block) under consideration.
The text items are referred to by using the
local assignment tables, which supply
pointers to the text items.

The local assignment routine,
BKPAS-IEKRBP, examines each operand in the
text for a block and determines (from the
local assignment tables) whether or not the
operand is eligible for local assignment.
To be eligible, an operand must be defined
and used (in that order) within a block.
Because local assignment is performed via a
backward pass over the text, an eligible
operand will be encountered when it is used
(i.e., in the operand 2 or 3 position)
before it is defined.

When an operand of a text entry is
examined, the local assignment routine
(BKPAS-IEKRBP) consults the local
assignment tables to determine that
operand's eligibility. If the operand is
eligible, subroutine BKPAS-IEKRBP assigns a
register to it. The register assigned is
determined by consulting the register usage
table for local assignment (TRUSE). TRUSE
is a work table that contains an entry for
every register that may be used by the
local assignment routine. A zero entry for
a particular register indicates that the
register is available for local assignment.
A nonzero entry indicates that the register
is unavailable and identifies the variable




to which the register is assigned. The
register usage table is modified each time
a register is assigned or freed. The first
time a register is assigned, a
corresponding entry in the register usage
table for global assignment (RUSE) is set.
This entry implies that the register is

unavailable for global assignment.

Subroutine BKPAS-IEKRBP records the
register assigned to the used operand in
the local assignment tables and in the text
item containing the used operand. It sets
the status cf the operand in the text entry
to indicate that it is in a register. If
subsequent uses of the operand are
encountered prior to the definition of the
operand, the BKPAS-IEKRBP subroutine uses
the register assigned to the first use, and
records its identity in the text item. It
then sets the status bits for the operand
to indicate that it is in a register and is
to be retained in that register.

When a definition of the operand is
encountered, subroutine BKPAS-IEKRBP enters
the register assigned to the operand into
the text item and sets the status for the
operand to indicate its residence in a
register. Once the register is assigned to
the operand at its definition point, the
BKPAS-IEKRBP subroutine frees the register
by setting the entry in the register usage
table to zero, making the register
available for assignment to another
operand.

If the block being processed contains a
CALL statement or a reference to a function
subprogram, common variables, arguments,
and real operands cannot be assigned to
registers across that reference. The local
assignment routine assumes that:

1. All mathematical functions return the
result in general register 0 or
floating-point register 0, according
to the mode of the function.

2. The imaginary portion of a complex
result is returned in floating-point
register 2.

If no register is available for
assignment to an eligible operand, an
overflow condition exists., In this case,
subroutine BKPAS-IEKRBP must free a
previously assigned register for assignment
to the current operand. It scans the local
assignment tables and selects a register.
It then modifies the local assignment
tables, text entries for the block, and
register usage table to negate the previous
assignment of the selected register. The
required register is now available, and
processing continues in the normal fashion.
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Global Assignment (Chart 17): The global
assignment routine (GLOBAS-IEKRGB), unlike
the local assignment routine, does not

module. The global assignment routine
operates only through the set of global
tables. The results of global assignments
are entered into the appropriate text
entries by the text updating routine.

Before assigning registers, the global
assignment routine modifies the global
assignment tables to produce a single
activity table for all operands and base
addresses in the module.

Global assignment is then performed
based on the activity of the eligible
operands and base addresses.

The GLOBAS-IEKRGB routine determines the
eligibility of an operand or base address
by consulting the appropriate entry in the
global assignment tables. Eligible
operands are divided into two categories:
floating point and fixed point. The two
categories are processed separately, with
floating-point quantities processed first.

The register usage table for global
assignment (RUSE) is of the same type as
described under local assignment (TRUSE).
For each category of operands, the
GLOBAS-IEKRGB routine selects the eligible
operand with the highest total activity and
assigns it the first available register of
the same mode. It records the assignment
in the register usage table and in the
global assignment tables. The
GLOBAS-IEKRGB routine then selects the
eligible operand with the next highest
activity and treats it in the same manner.
Processing for each group continues until
the supply of eligible operands or the
supply of available registers is exhausted.

If the module contains any CALL
statements or function subprogram
references, arguments and real and common
variables are ineligible for global
assignment. In other words, if a module
contains either a reference to a subroutine
or to a function subprogram, global
assignment is restricted to integer and
logical operands that are not in common or
in the parameter list.

Text Updating (Charts 18 and 19): The text
updating routine (STXTR-IEKRSX) completes
full register assignment. It scans each
text entry within the series of blocks
comprising the module, looking at operands
2, 3, and 1, in that order, within each
text entry. As each operand is processed,
subroutine STXTR-IEKRSX interrogates the
completed global assignment table to
determine whether or not a global
assignment has been made for the operand.
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If it has, subroutine STXTR-IEKRSX enters
the register assigned into the text entry
and sets the operand status bits to
indicate that the operand is in a register
and is to be retained in that register.

If both a local and a global assignment
have been made for an operand, the global
assignment supersedes the local assignment
and the STXTR~IEKRSX subroutine records the
globally assigned register in the text
items pertaining to that operand. It also
sets the status bits for such an operand to
indicate that it is in a register and is to
be retained in that register.

I1f a register has not been assigned
either locally or globally for an operand,
subroutine STXTR-IEKRSX determines and
records in the text entry the required base
register for the base address of that
operand. If the base address corresponds
to one that has been assigned to a register
during global assignment, the STXTR-IEKRSX
subroutine assigns the same register as the
base register for the operand. If a
register has not been assigned to the base
address of the operand during global
assignment, it assigns a spill register
(register 15) as the base register of the
operand. Subroutine STXTR-IEKRSX sets the
operand's base status bits to indicate
whether or not the base address is in a
register. (The base address will be in a
register if one was assigned to it during
global assignment.) It then assigns the
operand itself a spill register (general
register 0 or 1 or floating-point register
0, depending upon its mode).

As part of its text updating function,
subroutine STXTR-IEKRSX allocates temporary
storage where needed for temporaries that
have not been assigned to a register, keeps
track of the allocated temporary storage,
and completes the register fields of text
entries to ensure compatibility with phase
25. On exit from the text updating
routine, all text items in the module are
fully formed and ready for processing by
phase 25. The text updating routine
returns control to subroutine REGAS-IEKRRG
upon completion of its functions. The
REGAS-IEKRRG subroutine, in turn, returns
control to subroutine LPSEL-IEKPLS.

BRANCHING OPTIMIZATION -- OPT=1

This portion of phase 20 optimizes
branching within the object module. The
optimization is achieved by generating
RX-format branch instructions in place of
RR-format branch instructions wherever
possible.
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The use of RX-format branches eliminates
the need for an instruction to load the
branch address into a general register
preceding each branching instruction.
Thus, branching optimization decreases the
size of the object module by one
instruction for each RR-format branch
instruction in the object module that can
be replaced by an RX-format branch
instruction. It also decreases the number
of address constants required for
branching.

Phase 20 optimizes branching
instructions by calculating the size of
each text block (number of bytes of object
code to be generated for that block) and by
determining those blocks that can be
branched to wvia RX-format branch
instructions.

Subroutine BLS-IEKSBS calculates the
sizes of all text blocks after full
register assignment for the module is
completed, It then uses the gathered block
size information to determine the blocks to
which a branch can be made by means of
RX-format branch instructions. The
BLS-IEKSBS subroutine calculates the number
of bytes of object code by:

1. Examining each text item operation
code and the status of the operands
(i.e., in registers or not).

2. Determining, from a reference table,
the number of bytes of code that is to
be generated for that text item.

The BLS-IEKSBS subroutine accumulates these
values for each block in the module. 1In
addition, it increments the block size
count by the appropriate number of bytes
for each reference to an in-line routine
that it encounters.

Next, subroutine BLS-IEKSBS computes all
block sizes and determines those text
blocks to which a branch can be made via
RX-format branch instructions. Once
converted to machine code, a branch can be
made to a text block via an RX-format
branch instruction if the relative address
of the beginning of that block is displaced
less than 4096 bytes from an address that
is loaded into a reserved register.

The following text discusses reserved
registers, the addresses loaded into them,
and the processing performed by subroutine
BLS-IEKSBS to determine the source module
blocks to which a branch can be made via
RX-format branch instructions.



Reserved Registers

Reserved registers are allocated to
contain the starting address of the adcon
table and subsequent 4096-byte blocks of
the object module. The criterion used by
phase 20 in reserving registers for this
purpose is the number of text entries that
result from phase 15 processing. (Phase
15counts the number of text entries that
result from its processing and passes the
information to phase 20.) For small source
modules (up to 880 text entries), phase 20
reserves only one register in addition to
register 13. For large source modules
(more than 1760 text entries), a maximum ©
four additional registers is reserved. The
registers are reserved, as needed, in the
following order: register 13, 12, 11, 10,
and 9.
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Reserved Register Addresses

The addresses placed into the reserved
registers as a result of the execution of
the initialization instructions (see
"Generation of Initialization Instructions"
under "FORTRAN System Director") are:

® Register 13 -- address of the save
area.
e Register 12 (if reserved) -- address of

the save area plus 4096 or address of
the first adcon for the program.

e Register 11 (if reserved) -- address of
the register 12 plus 4096.

¢ Register 10 (if reserved) -- address of
the register 12 plus 2(4096).

e Register 9 (if reserved) -- address of
the register 12 plus 3(4096).

Block Determination and Subsequent
Processing

Because the instructions resulting from
the compilation are entered into text
information immediately after the "B" block
labels (see Figure 9), certain text blocks
are displaced less than 4096 bytes from an
address in a reserved register. A branch
can be made to such blocks by RX-format
branch instructions that use the address in
a reserved register as the base address for
the branch.
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To determine the blocks to which a
branch can be made via RX-format branch
instructions, subroutine BLS-IEKSBS
computes the displacement (using the block
size information) of each block from the
address in the appropriate reserved
register. The first reserved register
address considered is that in register 13.
For each block that has a displacement of
less than 4096 bytes from that address,
subroutine BLS-IEKSBS enters the
displacement into the statement number
entry for that block. It also places in
that statement number entry an indication
that a transfer can be made to the block
via an RX-format branch instruction, and

£ & =]
records the number of the reserved register

to be used in that branch instruction.

When subroutine BLS-IEKSBS has processed
all blocks displaced less than 4096 bytes
from the address in register 13, it
processes those that are displaced less
than 4096 bytes from the addresses in
registers 12, 11, 10, and 9 (if reserved)
in a similar manner.

The information placed in the statement
number entries is used during code
generation, a phase 25 process, to generate
RX-format branch instructions.

STRUCTURAL DETERMINATION

To achieve OPT=2 optimization, the
structural determination routines of phase
20 (TOPO-IEKPO and BAKT-IEKPB) identify
module loops and specify the sequence in
which they are to be processed., Loops are
identified by analyzing the block
connection information gathered by phase 15
and recorded in the forward-connection
(RMAJOR) and backward-connection (CMAJOR)
tables. The connection information
indicates the flow of control within the
module and, therefore, reflects which
blocks pass control among themselves in a
cyclical fashion.

Loops are ordered for processing
starting with the innermost, or most often
executed, loop and working toward the
outermost. The inner-to-outer loop
sequence is specifed so that:
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¢ Text entries will not be relocated into
loops that have already been
processed.

e The full register capabilities of
System/360 can first be applied to the
most frequently executed (innermost)
loop.

Loop identification is a sequential
process, which requires that a back
dominator be determined for each text
block. The back dominator of a text block
(block I) is defined as the block nearest
to block I through which control must pass
before block I receives control for the
first time. The back dominators of all
text blocks must be determined before loop
identification can be continued. After all
back dominators have been determined, a
chain of back dominators is effectively
established for each block. This chain
consists of the back dominator of the
block, the back dominator of the back
dominator of the block, etc.

Figure 7 illustrates the concept of back
dominators. Each block in the illustration
represents a text block. The blocks are
identified by single letter names. The
back dominator of each block is identified
and recorded above the upper right-hand
corner of that block.

When all back dominators are identified,
a back target and a depth number for each
text block is determined. A block (block
I) has a back target (block J) if:

e There exists a path from block I to
itself that does not pass through block
Jl

e Block J is the nearest block in the
chain of back dominators of block I
that has only one forward connection.

The text blocks constituting a loop are
identifiable because they have a common
back target, known as the back target of
the loop.

The depth number for a block indicates
the degree to which that block is nested
within loops. For example, if a block is

i1The text optimization process relocates
text entries from within an inner loop to
an outer loop. Thus, if an outer loop
were processed first, text entries from an
inner loop might be relocated to the outer
loop, thereby requiring that the outer
loop be reprocessed.
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an element of a loop that is contained
within a loop with a depth number of one,
that block has a depth number of two. All
blocks constituting the same loop (i.e.,
all blocks having a common target) have the
same depth number.

The depth numbers computed for the
blocks that comprise the various loops are
used to determine the sequence in which the
loops are to be processed.

Figure 8 illustrates the concepts of
back targets and depth numbers. Again each
block in the illustration represents a text
block, which is identified by a single
letter name. In this illustration, the
back target of each block is identified and
recorded above the upper right-hand corner
of that block. The depth number for the
block is recorded above the upper left-hand
corner of the block. Note that blocks that
pass control among themselves in a looping
fashion have a common back target and the
same depth number. Also note that the
blocks of the two inner loops have the same
depth numbers, although they have different
back targets.

Entry

-

Lo

H

Exit

Figure 7. Back Dominators
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Figure 8. Back Targets and Depth Numbers

When the back target and depth number of
each text block has been determined, loops
are identified and the sequence in which
they are to be processed is specified. The
loops are sequenced according to the depth
number of their blocks. The loop whose
blocks have the highest depth number is
specified as the first to be processed, the
loop whose blocks have the next highest
depth number is specified as the second to
be processed, etc. When the processing
sequence of all loops has been established,
the innermost loop is selected for
processing.

The following paragraphs describe the
processing performed by the structural
determination routines to:

e Determine the back dominator of each
text block.

e Determine the back target and depth
number of each text block.

e Identify and sequence loops for
processing,.

Determination of Back Dominators

Subroutine TOPO-IEKPO determines the
back dominator of each text block by
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examining the connection information for
that block. The first block processed by
subroutine TOPO-IEKPO is the first block
{entry biocki) of the module. Blocks on the
first level (i.e., blocks that receive
control from the entry block) are processed
next. Second-level blocks (i.e., blocks
that receive control from first-level
blocks) are then processed, etc.

The TOPO-IEKPO subroutine assigns to the
entry block a back dominator of zero,
because it has no back dominator; it
records the zero in the back dominator
field of the statement number entry for
that block (see Appendix A, "Statement
Number/Array Table"). The TOPO-IEKPO
subroutine assigns each block on the first
level either its actual back dominator or a
provisional back dominator. If a
first-level block receives control from
only one block, that block must be the
entry block and is the back dominator for
the first-level block. Subroutine
TOPO-IEKPO records a pointer to the
statement number entry for the entry block
in the back dominator field of the
statement number entry for the first-level
block. If a first-level block receives
control from more than one block,
subroutine TOPO-IEKPO assigns to it a
provisional back dominator, which is the
entry block of the module. All blocks on
the first level are processed in this
manner,

Subroutine TOPO-IEKPO also assigns each
block on the second level either its actual
back dominator or a provisional back
dominator. If a second-level block
receives control from only one block, its
back dominator is the first-level block
from which it receives control. The
TOPO-IEKPO subroutine records a pointer to
the statement number entry for the
first-level block in the back dominator
field of the statement number entry for the
second-level block. If more than one block
passes control to a second-level block,
subroutine TOPO-IEKPO assigns to that block
a provisional back dominator. The
provisional back dominator assigned is a
first-level block that passes control to
the second-level block under consideration.
Processing of this type is performed at
each level until the last, or exit, block
of the module is processed. Subroutine
TOPO-IEKPO then determines the actual back
dominators of blocks that were assigned
provisional back dominators.

For each block assigned a provisional
back dominator, subroutine TOPO-IEKPO makes
a backward trace over each path leading to
the block (using CMAJOR). The blocks at
which two or more of the paths converge are
flagged as possible candidates for the back
dominator of the block. When all paths
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have been treated, the relationship of each
possible candidate to the other possible
candidates is examined. The TOPO-IEKPO
subroutine assigns the candidate at the
highest level (i.e., closest to the entry
block of the module) as the back dominator
of the block under consideration; it
records a pointer to the statement number
entry for the assigned back dominator in
the back dominator field of the statement
number entry for the block under
consideration. After the back dominators
of all text blocks are identified,
subroutine BAKT-IEKPB determines the back
target and depth number of each text block.

Determination of Back Targets and Depth
Numbers

Subroutine BAKT-IEKPB determines the
back target of each text block through an
analysis of the backward connection
information (in CMAJOR) for that block.
Block J is the back target of block I if:

1. A path exists from block I to itself,
and block J is the nearest block, in
the chain of back dominators of block
I, not on that path.

2. Block J has only one forward
connection.

If a block J exists that satisfies
condition 1 but not condition 2, then the
back target of block J is also the back
target of block I.

If a block J satisfying condition 1 does
not exist, then the back target of block I
is zero.

When the back target of a block is
identified, that block is also assigned a
depth number.

Back targets and depth numbers are
determined for text blocks in the same
sequence as back dominators are determined
for them. The first block of the module is
the first processed, first-level blocks are
considered next, etc.

The BAKT-IEKPB subroutine assigns the

first or entry block both a back target and
depth number of zero, because it does not
have a back target and is not in a loop.
It records the depth number (zero) in the
loop number field of the statement number
entry for the entry block (see Appendix A,
"Statement Number/Array Table").

The processing performed by subroutine

BAKT-IEKPB for each of the other blocks
depends upon whether one or more than one
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block passes control to that block, If
more than one block passes control to the
block under consideration, subroutine
BAKT-IEKPB makes a backward trace over all
paths leading to that block to locate its
primary path. The primary path of a block
(if one exists) is a path that starts at
that block and converges on that block
without passing through any block in the
chain of back dominators of that block.

If such a path exists, subroutine
BAKT-IEKPB obtains and examines the nearest
block in the chain of back dominators of
the block under consideration. If the
obtained block has a single forward
connection, subroutine BAKT-IEKPB assigns
that block as the back target of the block
under consideration. The BAKT-IEKPB
subroutine then assigns a depth number to
the block. The number is one greater than
that of its back target, because the block
is in a loop, which must be nested within
the loop containing the back target.
Subroutine BAKT-IEKPB records the depth
number in the loop number field of the
statement number entry for the block.

If the obtained biock has more than one
forward connection, subroutine BAKT-IEKPB
assigns its back target as the back target
of the block under consideration. The
BAKT-IEKPB subroutine then records in the
statement number entry for the block a
depth number one greater than that of its
back target.

If a block that receives control from
two or more blocks does not have an
associated primary path, that block, if it
is in a loop at all, is in the same loop as
one of the blocks in its chain of back
dominators. To identify the loop
containing the block (block I), subroutine
BAKT-IEKPB obtains and examines the nearest
block to block I in its chain of back
dominators that has two or more forward
connections. The BAKT-IEKPB subroutine
makes a backward trace over all paths
leading to the obtained block to determine
whether or not block I is an element of
such a path. If block I is an element of
such a path, it is in the same loop as the
obtained block, and subroutine BAKT-IEKPB,
therefore, assigns block I the same back
target and depth number as the obtained
block; it records the depth number in the
statement number entry for block I.

If block I is not an element of any path
leading to the obtained block, subroutine
BAKT-IEKPB obtains the next nearest block
to block I in its chain of back dominators
that has two or more forward connections
and repeats the process. If block I is not
an element of any path leading to any block
in its chain of back dominators, block I is
not in a loop, and the BAKT-IEKPB



subroutine assigns it both a back target
and depth number of zero.

A block that receives control from only
one block, if it is in a loop at all, is in
the same loop as one of the blocks in its
chain of back dominators. To identify the
loop containing a block (block I) that
receives control from only one block,
subroutine BAKT-IEKPB obtains and examines
the nearest block to block I in its chain
of back dominators that receives control
from two or more blocks. The BAKT-IEKPB
subroutine makes a backward trace over all
paths leading to the obtained block to
locate its primary path (if any). If the

subroutine BAKT-IEKPB retraces 1t to
determine whether or not block I is an
element of the path. If it is, block I is
in the same loop as the obtained block,
and, BAKT-IEKPB therefore assigns block I
the same back target and depth number as
the obtained block; BAKT-IEKPB then records
the depth number in the statement number
entry for block I.

If the obtained block does not have a
primary path, or if it does have a primary
path, which, however, does not have block I
as an element, the BAKT-IEKPB subroutine
considers the next nearest block to block I
in its chain of back dominators that
receives control from two or more blocks.
The process is repeated until a primary
path containing block I is located (if any
such path exists). If block I is not in
the primary path of any block in its chain
of back dominators, block I is not in a
loop and subroutine BAKT-IEKPB assigns it
both a back target and depth number of
zZero.

Identifying and Ordering Loops for
Processing

Subroutine BAKT-IEKPB orders blocks for
processing on the basis of the determined
back target and depth number information.
Blocks that have a common back target and
the same depth number constitute a-loop.
The BAKT-IEKPB subroutine flags the loop
with the highest depth number (therefore,
the most deeply nested loop) as the first
loop to be processed. It assigns the
blocks constituting that loop a loop number
of one, indicating that they form the
innermost loop, which is the first to
undergo optimization. (Subroutine
BAKT-IEKPB records the value 1 in the loop
number field of the statement number entry
for each block in that loop.) The
BAKT-IEKPB subroutine flags the loop with
the next highest depth number as the second
loop to be processed. It assigns the
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blocks in that loop a loop number of two,
indicating that they form the second (or
next outermost) loop to be processed. (A
value of 2 is recorded in the loop number
field of the statement number entry for
each block in that loop.) Subroutine
BAKT-IEKPB repeats this procedure until the
loop with a depth number of one is
processed. It then assigns the highest
loop number to the blocks with a depth
number of zero, indicati ng +hat they a
form a loop.
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If at any time, groups of blocks with
the same depth number but different back
targets are found, each group is in a
different locp. Therefore, each such loop
is, in turn, processed before blocks having
a lesser depth number are considered.

Thus, if the blocks of two loops have the
same depth number, subroutine BAKT-IEKPB
assigns the blocks of the first loop the
next loop number. It assigns the blocks of
the second loop a loop number one greater
than that assigned to the blocks of the
first loop.

When loop numbers are assigned to the
blocks of all module loops, the sequence in
which the loops are to be processed has
been specified. Control is passed to the
routine that determines the busy-on-exit
information and then to the loop selection
routine to select the first (innermost)
loop to be operated upon. This loop
consists of all blocks having a loop number
of one,

BUSY-ON-EXIT INFORMATION

Before the module can be processed on a
loop-by-loop basis, the variables in each
block must be classified as either
busy-on-exit from the block or not
busy-on-exit from the block. A variable is
busy immediately preceding a use of that
variable, but is not busy immediately
preceding a definition of that variable.
Thus, a variable is busy-on-exit from the
blocks that are along all paths connecting
a use and a prior definition of that
variable. This means that in subsequent
blocks the variable can be used before it
is defined. The busy-on-exit condition for
a variable assures that its proper value
exists in main storage or in a register
along each path in which it is subsequently
used.

Information about the regions in which a
variable is busy or not busy determines
whether or not a definition of that
variable can be moved out of a loop. For
example, if a variable is busy-on-exit from
the back target of a loop, text
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optimization (see "Text Optimization")

would not attempt to move to the back target

a redefinition of that variable, because if
moved, the value of the variable, as it is
processed along various paths from the back
target, might not be the desired value.
conversely, if the variable is not
busy-on-exit, the redefinition can be moved
without affecting the desired value of the
variable. Thus, text optimization respects
the redefinitions of variables that are
busy-on-exit from the back target of a
loop.

The information about regions in which a
variable is busy or not busy also
determines whether or not load and store
operations of a register assigned to the
variable are required. For example, in
full register assignment (see "Full
Register Assignment--OPT=2"), variables
that are assigned registers during global
assignment and that are busy-on-exit from
the back target of the loop must have an
initializing load of the register placed
into the back target. The load is required
because the variable may be used before its
value is defined. Conversely, if the
globally assigned variable is not
busy-on-exit from the back target, an
initializing load is unnecessary.

Phase 15 provides phase 20 with not
busy-on-entry information for each operand
that is assigned a coordinate (an MVD table
entry). The not busy-on-entry information
is recorded in the MVX field of the
statement number text entry for each text
block (see Phase 15, "Gathering
Constant/Variable Usage Information"). An
operand is not busy-on-entry to a block, if
in that block that operand is defined but
not used or defined before it is used.
Phase 20 converts the not busy-on-entry
information to busy-on-entry information.
An operand is busy-on-entry to a block, if
in that block that operand is used but not
defined or used before it is defined.
Finally, phase 20 converts the
busy-on-entry information to busy-on-exit
information. The backward-connection
information in CMAJOR is used to make the
final conversion.

The routine that performs the
conversions is BIZX-IEKPZ. This routine
determines busy-on-exit information for
each constant, variable, and base variable
having an associated MVD table entry or
coordinate. However, because only
constants and base variables are used, they
are busy-on-exit throughout the entire
module. Therefore, the remainder of this
discussion deals with the determination of
busy-on-exit information for variables.
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Because RETURN statements (exit blocks)
and references to subprograms not supplied
by IBM constitute implicit uses of
variables in common, all common variables
and arguments to such subprograms are first
marked as busy-on-entry to exit blocks and
blocks containing the references. The
common variables and arguments are found by
examining the information table entries for
all variables in the MVD table. The module
is then searched for blocks that are exit
blocks and that contain references to
subprograms not supplied by IBM. The
coordinate bit for each previously
mentioned variable is set to on in the MVF
field of the statement number text entry
for each such block, while the same
coordinate bit in the MVX field is set to
off. This defines the variable tc be
busy-on-entry to such a block. During this
process, a table, consisting of pointers to
exit blocks, is built for subsequent use.

After the previously discussed blocks
have been appropriately marked for common
variables and arguments, subroutine
BIZX-IEKPZ, working with the coordinate
assigned to a variable, converts the not
busy-on-entry information for the variable
to a table of pointers to blocks to which
the variable is busy-on-entry. (The not
busy-on-entry information for the variable
is contained in the MVX fields of the
statement number text entries for the
various text blocks.) At the same time,
the variable's coordinate bit in each MVX
field is set to off. The busy-on-entry
table and CMAJOR are then used to set to on
the MVX coordinate bit in the statement
number text entry for each block from which
the variable is busy-on-exit. This
procedure is repeated until all variables
have been processed. Control is then
returned to the LPSEL-IEKPLS subroutine.

To convert not busy-on-entry information
to busy-on-entry information, subroutine
BIZX-IEKPZ starts with the second MVD table
entry, which contains a pointer to the
variable assigned coordinate number two,
and works down the chain of text blocks.
The associated MVX coordinate bit in the
statement number text entry for each block
is examined. If the coordinate bit is off,
the corresponding MVF coordinate bit is
inspected. If the MVF coordinate bit is
on, a pointer to the associated text block
is placed into the busy-on-entry table.
This defines the variable to be
busy-on-entry to the block (i.e., the
variable is used in the block before it is
defined). If the associated MVX coordinate
bit is on, indicating that the variable is
not busy-on-entry, subroutine BIZX~IEKPZ
sets the bit to off and proceeds to the
next block. This process is repeated until
the last text block has been processed.



After the BIZX-IEKPZ subroutine has set
to off the MVX coordinate bit (associated
with the variable under consideration) in
each statement number text entry and built
a table of pointers to blocks to which the
variable is busy-on-entry, it determines
the blocks from which the variable is
busy-on-exit.

Starting with the first entry in the
busy-on-entry table, subroutine BIZX-IEKPZ
obtains (from CMAJOR) pointers to all
blocks that are backward connection paths
of that entry. Each backward-connecting
block is examined to determine whether or
not it meets one of three criteria, as
follows:

e The block contains a definition of the
variable (i.e., the variable's MvVS
coordinate bit is on).

e The variable has already been marked as
busy-on-exit from the block.

e The block corresponds to the
busy-on-entry table entry being
processed,

If the block meets one of these
criteria, the variable is busy-on-exit from
the block and its associated MVX coordinate
bit is set to on. (The backward connection
paths of that block are not explored.)

If the backward-connecting block does
not meet any one of these criteria, the
variable is marked as busy-on-exit from
that block and that block's backward
connection paths are, in turn, explored.
The same criteria are then applied to the
backward-connecting blocks. The backward
connection paths are explored in this
manner until a block in every path
satisfies one of the criteria.

If, during the examination of the
backward connection paths, an entry block
(i,e., a block lacking backward connection
paths) is encountered, the blocks in the
table of exit blocks, which was previously
built by subroutine BIZX-IEKPZ are used as
the backward connection paths for the entry
block. Processing then continues in the
normal fashion.

When blocks in all backward connection
paths have satisfied one of the criteria,
the BIZX-IEKPZ subroutine obtains the next
entry in the busy-on-entry table and
repeats the process. This continues until
the busy-on-entry table has been exhausted.,

When the busy-on-entry table has been
exhausted, the procedure of building the
busy-on-entry table and converting it to
busy-on-exit information is repeated for
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the next MVD table entry. When all MVD
table entries have been processed,
subroutine BIZX-IEKPZ passes control to the
LPSEL-IEKPLS subroutine, which calls the
loop selection routines.

STRUCTURED SOURCE PROGRAM LISTING

If both the EDIT option and OPT=2
optimization are selected, after subroutine
BIZX-IEKPZ has compiled the busy-on-exit
information, control is passed to
subroutine SRPRIZ-IEKQAA, which records on
the SYSPRINT data set a structured source
program listing. This listing indicates
the loop structure and logical continuity
of the source program. (A complete
description of the structured source
listing is given in the publication IBM
System/360 Operating System: FORTRAN IV (G
and H) Programmer's Guide, Form C28-6817.)

To produce the listing, subroutine
SRPRIZ-IEKQAA reads the SYSUT1 data set
prepared by phase 10 and associates, by
means of statement numbers, the individual
source statements with the text blocks
formed from them. By analysis of the loop
number information gathered for the text
blocks, the SRPRIZ-IEKQAA subroutine then
identifies the source statements that make
up a particular loop and flags them on the
listing by corresponding loop number.
Subroutine SRPRIZ-IEKQAA also uses the
previously gathered back dominator
information to compute listing indentions
for the statements. The indentions show
dominance relationships; that is,
subroutine SRPRIZ-IEKQAA indents the
statements that form a text block from the
statements that form the back dominator of
that block.

LOOP SELECTION

The phase 20 loop selection routine
(TARGET-IEKPT) selects the loop to be
processed and provides the text
optimization and full register assignment
routines with the information required to
process the loop.

The loop to be processed is selected
according to the value of a loop number
parameter, which is passed to the loop
selection routine. The phase 20 control
routine (LPSEL-IEKPLS) sets this parameter
to one after the process of structural
determination is complete. The
TARGET-IEKPT routine is called to select
the loop whose blocks have a corresponding
loop number. The selected loop is then
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passed to the text optimization routines.
When text optimization for the loop is
completed, the control routine increments
the parameter by one, sets the loop number
of the blocks in the loop just processed to
that of their back target, and marks those
blocks as completed. The LPSEL-IEKPLS
routine again calls the TARGET-IEKPT
routine, which selects the loop whose
blocks correspond to the new value of the
parameter. The selected loop is then
passed to the text optimization routines.
This process is repeated until the
outermost loop has been text-optimized.

After text optimization has processed
the entire module (i.e., the last loop),
the control routine removes the block
completion marks, initializes the loop
number parameter to 1, and passes control
to the TARGET-IEKPT routine to reselect the
first loop. Control is then passed to the
full register assignment routines. When
full register assignment for the loop is
completed, the control routine marks the
blocks of the loop as completed. It then
increments the parameter by 1 and passes
control to the TARGET-IEKPT routine to
select the next loop. Full register
assignment is then carried out on the loop.
This process is repeated until the
outermost loop has undergone full register
assignment. (When full register assignment
has been carried out on the outermost loop,
the LPSEL-IEKPLS routine passes control to
the routine that computes the size of each
text block and also the displacements
required for branching optimization.)

The TARGET-IEKPT routine uses the value
of the loop number parameter as a basis for
selecting the loop to be processed. The
TARGET-IEKPT routine compares the loop
number assigned to each text block to the
parameter. It marks each block having a
loop number corresponding to the value of
the parameter as an element of the loop to
be processed. It does this by setting on a
bit in the block status field of the
statement number entry for the block (see
Appendix A, "Statement Number/Array
Table™). When all such blocks are marked,
the loop has been selected.

The information required by the text
optimization and full register assignment
routines to process the loop consists of
the following:

e A pointer to the back target of the
loop (if any).

e Pointers to both the first and last
blocks of the loop.

e The loop composite matrixes.
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After the loop has been selected, this
required information is gathered.

Pointer to Back Target

The text optimization and full register
assignment routines place both relocated
and generated text entries into the back
target of the loop. Although the back
target of the loop was previously
identified during structural determination,
it was not saved. Therefore, its identity
must be determined again.

The TARGET-IEKPT routine determines the
back target of the loop by obtaining the
first block of the selected loop. It then
analyzes the blocks in the chain of back
dominators of the first block to locate the
nearest block in the chain that is outside
the loop and that passed control to only
one block. That block is the back target
of the loop, and the TARGET-IEKPT routine
saves a pointer to it for use in the
subsequent processing of the loop.

Pointers to First and Last Blocks

The pointers to the first and last
blocks of the selected loop indicate to the
text optimization and full register
assignment routines where they are to
initiate and terminate their processing.

To make these pointers available, the
TARGET-IEKPT routine merely determines the
first and last blocks of the selected loop
and saves pointers to them for use in the
subsequent processing of the loop. To
determine the first and last blocks, the
TARGET-IEKPT routine searches the statement
number chain for the first and last entries
having the current loop number. The blocks
associated with those entries are the first
and last in the loop.

Loop Composite Matrixes

The loop composite matrixes, LMVS, LMVF,
and LMVX, provide the text optimization and
full register assignment routines with a
summary of which operands are defined
within the selected loop, which operands
are used within that loop, and which
operands are busy-on-exit from that loop.
(An operand is busy-on-exit from the loop
if it is used before it is defined in any
path along which control flows from the
loop.)



The LMVS matrix indicates which operands
are defined within the loop. The
TARGET-IEKPT routine forms LMVS by
combining, via an OR operation, the
individual MVS fields in the statement
number text entry of every block in the
selected loop.

The LMVF matrix indicates which operands
are used within the loop. The TARGET-IEKPT
routine forms it by combining, via an OR
operation, the individual MVF fields in the
statement number text entry of every block
in the selected loop.

The LMVX matrix indicates which operands
are busy-on-exit from the selected loop.
LMVX is formed by the TARGET-IEKPT routine.
It examines the text entries of each block
that is not in the selected loop and that
receives control from a block in that loop.
Any operand in the text entries of such a
block that is either used but not defined
in the block or used before it is defined
is busy-on-exit from the loop. The
TARGET-IEKPT routine sets to on the bit in
the LMVX matrix that corresponds to the
coordinate assigned to each such operand to
reflect that it (i.e., the operand) is
busy-on-exit from the loop.

TEXT OPTIMIZATION -- OPT=2

The text optimization process of phase
20 detects text entries within the loop
under consideration that do not contribute
to the loop®s successful execution. These
non-essential text entries are either
completely eliminated or are relocated to a
block outside of the current loop. Because
the most deeply nested loops are presented
for optimization first, the number of text
entries in the most strategic sections of
the object module will approach a minimum,.

The processing of text optimization is
divided into three logical sections:

e Common expression elimination optimizes
the execution of a loop by eliminating
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unnecessary recomputations of identical
arithmetic expressions.

e Backward movement optimizes the
execution of a loop by relocating to
the back target computations essential
to the module but not essential to the
current loop.

e Strenath reduction optimizes the
incrementation of DO indexes and the
computation of subscripts within the
current loop. Modification of the DO
increment may allow multiplications to
be relocated into the back target. If
the DO increment is not busy-on-exit
from the loop, it may be completely
replaced by a new DO increment that
becomes both a subscript value and a
test value at the bottom of the DO
loop.

The first two of the foregoing sections
are similar in that they examine text
entries in strict order of occurrence
within the loop.

The last section does not examine
individual text entries within the loop;
instead, the TYPES table, constructed prior
to their execution, is consulted for
optimization possibilities. Furthermore,
an interaction of entries in the TYPES
table must exist before processing can
proceed. The TYPES table contains pointers
to type 3, 5, 6, and 7 text entries. The
various types, their definitions, and the
section(s) of text optimization that
process them are outlined in Table 4.
Pointers to type 1 and type 2 text entries
are not entered into the TYPES table. The
reason is that such types have already been
processed during backward movement.

The following text describes the
processing performed by each of the
sections of the text optimization. Table
11 summarizes the criteria for performing
text optimization in each section. An
example illustrating the type of processing
of each section is given in Appendix D.
These examples should be referred to when
reading the text describing the processing
of the sections.
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Table 4. Text Entry Types

| it 1 et e 1
| Type | Definition | Processed by ]
b e e e i
| Type 1 | A text entry having an absolute constant?l |

| | in both the operand 2 and operand 3 | Backward Movement (elimination} |
| | position. | |
¢ Y. 4 {
| Type 2 | A text entry having stored constants2 in | Backward Movement (movement) |
| | both the operand 2 and operand 3 positions. | |
L __+ — I __.'
v T

| Type 3 | An inert text entry (i.e., a text entry | |
I | that is a function of itself and an addi- | Strength Reduction |
| | tive constant; e.q., J=J+1). | |
O rommmmom oo e e 1
| Type 5 | A text entry whose operand 1 (a temporary) | |
| | is a function of a variable (or temporary) | Strength Reduction |
| | and a constant, and whose operator is ] |
| | multiplicative (* or / ). | |
e o S 1
| Type 6 | A text entry whose operand 1 (a temporary) | |
| | is a function of a variable (or temporary) | Strength Reduction |
] | and a constant, and whose operator is | |
| | additive (+ or - ). [ [
e frmm oo o e .
| Type 7 | A branch text entry | Strength Reduction |
L L Y 4
r h)
|1Absolute constants are those that agree with the definition of numerical constants as |
| stated in the publication IBM System/360 Operating System: FORTRAN IV Lanquage, Form |
| €28-6515. |
|2A stored constant is a variable that is not defined within a loop and, thus, its |
| value remains constant throughout execution of that loop. |
L -_— —1

identical to those of the candidate. If
either operand 2 or 3 of the matching text
entry is redefined between that text entry
and the candidate, the match is not
accepted. The search for the matching text
entry takes place in the following
locations:

Common Expression Elimination -- OPT=2

The object of common expression
elimination, which is carried out by
subroutine XPELIM-IEKQXM, is to get rid of
any unnecessary arithmetic expressions.
This is accomplished by eliminating text
entries, one at a time, until the entire
expression disappears. An arithmetic text
entry is unnecessary if it represents a
value (calculated elsewhere in the loop)
that may be used without modification. A e In a back dominator (see note) of the
value may be used without modification if, block in which the candidate resides.
between appearances of the same
computation, operands 2 and 3 of the text
entry are not redefined. The following

e In the same block as the candidate,
between the first text entry and the
candidate.

Note: Only back dominators that are
not elements of previously processed

paragraphs discuss the processing that
occurs during common expression
elimination.

Within the current loop, subroutine
XPELIM-IEKQXM examines each uncompleted

block (i.e., a block that is not part of an

inner loop) for text entries that are
candidates for elimination. A text entry
is a candidate if it contains an
arithmetic, binary, logical, or subscript
operator. Once a candidate is found, the

XPELIM-IEKQXM subroutine attempts to locate

a matching text entry. A text entry

matches the candidate if operand 2, operand

3, and the operator of that text entry are
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loops and that are within the confines
of the current loop are considered.
The first back dominator considered is
the one nearest to the block being
processed. The next considered is the
back dominator of the nearest back
dominator, etc.

When a matching text entry is found,
subroutine XPELIM-IEKQXM performs
elimination in the following way:

* If operand 1 of the matching text entry
is not redefined between that text
entry and the candidate, subroutine
XPELIM-IEKQXM substitutes that operand



for cperand 2 of the candidate and
converts the operator to a store,

e Tf, however; operand 1 is redefined;
subroutine XPELIM-IEKQXM generates a
text entry to save the value of operand
1 in a temporary and inserts this text
entry into text immediately after the
matching text entry. It then replaces
operand 2 of the candidate with this
temporary, and converts the operator to
a store.

e Finally, if operand 1 of the candidate
is a temporary generated by phase 15,
the XPELIM-IEKQXM subroutine replaces
all uses of the temporary with the new
operand 2 of the candidate and deletes
the candidate. Thus, the value of the
matching text entry is propagated
forward for a possible match with
another candidate. This provides the
link to the next text item of the

complete common expression.

All text entries in the block under
consideration are processed in the
previously described manner. Wwhen the
entire block is processed, the next
uncompleted block in the loop is selected
and its text entries undergo common
expression elimination. When all
uncompleted blocks in the loop are
processed, control is returned to the phase
20 control routine, which passes control to
the portion of phase 20 that continues text
optimization through backward movement.

The overall logic of common expression
elimination is illustrated in Chart 11i. An
example of common expression elimination is
given in Appendix D.

Backward Movement -- OPT=2

Backward movement, which is performed by
subroutine BACMOV-IEKQBM, moves text
entries from a loop to an area that is
executed less often, the back target of the
loop. During backward movement, each
uncompleted block in the loop being
processed is examined for text entries that
are candidates for backward movement. To
be a candidate for backward movement, a
text entry must be type 2. Therefore, it
must:

e Contain an arithmetic or logical
operator.

e Have operands 2 and 3 that are not
defined within the loop.
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When a candidate is found, subroutine
BACMOV-IEKQBM carries out backward movement
of that candidate in one of two ways:

e If operand 1 of the candidate is not
busy-on-exit from the back target of
the loop and if operand 1 of the
candidate is not defined elsewhere in
the loop, the BACMOV-IEKQBM subroutine
moves the entire candidate to the back
target of the loop. (An operand is not
busy-on-exit from the back target if
that operand is defined in the loop
before it is used.)

e If operand 1 of the candidate is
busy-on-exit from the back target of
the loop or if it is defined elsewhere
in the loop, subroutine BACMOV-IEKQBM
generates a text entry to perform the
computation of the expression in the
candidate and store the result in a new
temporary. It moves this text entry to
the end of the back target of the loop
and then replaces the expression in the
candidate with operand 1, the new
temporary, of the generated text entry.

All the text entries in the block under
consideration are processed in the
previously described manner. When the
entire block is processed, the next
uncompleted block in the loop is selected
and its text entries undergo backward
movement. When all uncompleted blocks in
the loop are processed, control is returned
to the phase 20 control routine, which
passes control to the portion of phase 20
that continues text optimization through
strength reduction.

The overall logic of backward movement
is illustrated in Chart 12. An example of
backward movement is given in Appendix D.

Two additional optimization processes
are performed concurrently with backward
movement. They are the elimination of
simple stores and of arithmetic expressions
that appear in text entries and are
functions of constants.

Elimination of Simple Stores: The
BACMOV-IEKQBM subroutine effects the
removal of unnecessary simple stores (i.e.,
text entries of the form "operand 1 =
operand 2") from the block that is
currently undergoing backward movement.

The following paragraph describes the
processing.

Subroutine BACMOV-IEKQBM selects as
candidates for elimination any simple store
in which operand 1 is a nonsubscripted
variable. Pointers to the candidates are
passed to the SUBSUM-IEKQSM subroutine,
which determines if elimination is indeed
possible according to the conditions
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illustrated in Table 5. At the same time,
subroutine SUBSUM-IEKQSM replaces all uses
of operand 1 of the candidate with operand
2 of the candidate in text entries between
either:

e The candidate and the first
redefinition of either operand.

* The candidate and the end of the block.

The BACMOV-IEKQBM subroutine then deletes
those candidates so marked by subroutine
SUBSUM-IEKQSM. An example of simple-store
elimination is illustrated in Appendix D.

Table 5. Operand Characteristics That

Permit Simple-Store Elimination

r T T T 1
| | |Ooperand 2 |Operand 1 |
|Ooperand 1|Operand 1|Redefined |Used After|
|Busy-on- |Redefined|Before |Operand 2
|Exit from|Later in |Operand 1 |Redefined

|
|
I
i
|

| Block | Block |Redefined |

b + : ¢

| No | No | No | X

[ 1 4

3 T T

| No | No | Yes No

b 4 4

r T T

| No | Yes | No | X |

L 3 1 4 4

r T T T h

| No | Yes | Yes | No |

- + + t !

] Yes | Yes | No | X |

l,_ 3} 1 4 4
T J T 1

| Yes | Yes | Yes | No |

II> 1 4 L _JI

|X = condition cannot exist because of |

|previous characteristics of operands. |

L J

Elimination of Text Entry Expressions
Involving Integer Constants (Type 1):
During the scan of a block for text entries
to be moved to the back target, subroutine
BACMOV-IEKQBM also checks for text entries
whose operators are arithmetic and whose
operands 2 and 3 are both integer
constants. When such a text entry is
found, the BACMOV-IEKQBM subroutine
eliminates the arithmetic expression in the
text entry by:

e Calculating the result of the
expression.

e Creating a new dictionary entry for the
result, which is a constant.

e Replacing the arithmetic expression
with the result.

The text entry is thereby reduced to a

simple store, which may be eliminated by
simple~-store elimination.
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Strength Reduction -- OPT=2

Strength reduction, which is performed
by subroutine REDUCE-IEKQSR, optimizes
loops that are controlled by logical IF
statements. (DO loops are converted to
loops controlled by logical IF statements
during phase 10 processing.) Such loops
are optimized by modifying the expression
(e.g., J < 20) in the IF statement; this
enables certain text entries to be moved
from the loop to the back target of the
loop, an area executed less frequently.
Strength reduction processing is divided
into two sections:

e Elimination of multiplicative text.
¢ Elimination of additive text.

Both of these sections perform strength
reduction, but each has a separate set of
criteria for considering a loop as a
candidate for reduction. However, the
manner in which each section implements
reduction essentially is the same.

Elimination of Multiplicative Text: To
eliminate multiplicative text, subroutine
REDUCE-IEKQSR examines the loop being
processed to determine whether or not it is
a candidate for strength reduction. The
loop is a candidate if:

e The loop contains an inert text entry
(type 3).

e Operand 1 of the inert text entry is
used in another text entry (in the
loop) whose operator indicates
multiplication and whose other used
operand is a constant® (type 5).

e Operand 1 of the inert text entry is
the variable appearing in the
expression of the logical IF statement
that controls the loop.

If the loop is a candidate, subroutine
REDUCE-IEKQSR implements strength reduction
in one of two ways:

1. If the constants in the inert text
entry and the multiplicative text
entry are both absolute constants, the
REDUCE-IEKQSR subroutine:

a. Calculates a new constant (K)
equal to the product of the
absolute constants.

1This other text entry is referred to as a
multiplicative text entry.
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b. Generates another inert text entry
and inserts it into the loop
immediately after the original
inert text entry. The additive
constant in this text entry is K.

c. Modifies the expression in the
logical IF statement by:

(1) Replacing the branch variable
(see note) with operand 1 of
the generated inert text
entry.

(2) Replacing the branch constant
(see note) with a constant
equal to the product of the
branch constant and the
absolute constant in the
multiplicative text entry.

d. Deletes the original inert text
entry if operand 1 of that text
entry is not busy-on-exit from the
loop.

e. Moves the multiplicative text
entry to the back target of the
loop.

f. Replaces operand 1 of the
multiplicative text entry with
operand 1 of the generated inert
text entry.

g. Replaces the uses of operand 1 of
the multiplicative text entry that
remain in the loop with operand 1
of the generated inert text entry.

Note: The branch variable is the
variable in the expression of the
logical IF statement that is
tested to determine whether or not
the loop is to be re-executed.
The branch constant is the
constant with which the branch
variable is compared. For
example, in IF (J < 3) where J is
the branch variable and 3 is the
branch constant.

If either of the constants in the
inert text entry or the multiplicative
text entry is a stored constant, the
REDUCE-IEKQSR subroutine performs
similar processing to that described
above. However, prior to generating
the inert text entry, it generates an
additional text entry and places it
into the back target of the loop.

This text entry multiplies the two
constants. Operand 1 of this text
entry becomes the additive constant in
the generated inert text entry. In
the case where the constant in the
multiplicative text entry is a stored
constant, a second additional text
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entry is generated and placed into the
back target of the loop. This second
text entry multiplies the branch
multiplicative text entry. Operand 1
of the second text entry becomes the
new branch constant of the logical IF.

If additional multiplicative text
entries exist within the loop, the
foregoing process is repeated. Repetitive
processing of this type results in a number
of generated inert text entries, which may
be eliminated from the loop by the
processing of the second section of
strength reduction.

Elimination of Additive Text: To eliminate
additive text, subroutine REDUCE-IEKQSR
examines the loop being processed to
determine whether or not it is a candidate
for strength reduction. The loop is a
candidate if:

e The loop contains an inert text entry
(type 3).

e Operand 1 of the inert text entry is
used in the loop in another text entry
whose operator indicates additiont
(type 6).

If the loop is a candidate, the
processing performed by subroutine
REDUCE-IEKQSR to eliminate the additive
text entry is essentially the same as that
performed to eliminate a multiplicative
text entry.

The overall logic of strength reduction
is illustrated in cChart 13, An example

showing both methods of strength reduction
is given in Appendix D.

FULL REGISTER ASSIGNMENT -- OPT=2 (CHART
14)

During OPT=2 optimization, full register
assignment is carried out on module loops,
rather than on the entire module, as is the
case for OPT=1 optimization. Regardless of
whether a loop or the entire module is
being processed, the full register
assignment routines operate essentially in
the same manner. However, the optimization
effect of full register assignment, when
carried out on a loop-by-loop basis, is
more pronounced. Because the most deeply
nested loops are presented for full
register assignment first, the number of

1This text entry is referred to as an
additive text entry.
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register loads in the most strategic
sections ofthe object module approaches a
minimum. The processing of a loop by full
register assignment differs from the
processing of the entire module only in the
area of global assignment. An
understanding of the processing performed
on a loop, other than

global assignment, can be derived from the
previous discussion of full register
assignment (see "Full Register Assignment
-- OPT=1"). Global assignment for a loop
is described in the following text.

When processing a loop, the global
assignment routine (GLOBAS-IEKRGB)
incorporates into the current loop,
wherever possible, the global assignments
made to items (i.e., operands and base
addresses) in previously processed loops.
It does this to ensure that the same
register is assigned in both loops if an
item eligible for global assignment in the
current loop was globally assigned in a
previously processed loop.

Before the global assignment routine
assigns an available register to the most
active item of the current loop, it
determines whether that item was globally
assigned in a previously processed loop.
(As global assignment is carried out on
each loop, all global assignments for that
loop are recorded and saved for use when
the next loop is considered.) If the item
was not globally assigned in a previously
processed loop, the GLOBAS-IEKRGB routine
assigns it the first available register.
If the item was globally assigned in a
previously processed loop, the global
assignment routine then determines whether
or not the register assigned to the item in
the previously processed loop is currently
available. If that register is available,
the GLOBAS-IEKRGB routine also globally
assigns it to the same item in the current
loop. If the register is not available,
the global assignment of that item in the
previously processed loop cannot be
incorporated into the current loop. The
GLOBAS-IEKRGB routine, therefore, assigns
the item an available register different
from that assigned to it in the previously
processed loop. The GLOBAS-IEKRGB routine
selects the eligible item with the next
highest activity in the current loop and
treats it in the same manner. Processing
continues in this fashion until the supply
of eligible items or the supply of
available registers is exhausted.

As each global assignment is made to an
active item, the GLOBAS-IEKRGB routine
checks to determine whether or not that
item is busy-on-exit from the back target
of the loop. If the item is busy-on-exit,
the GLOBAS-IEKRGB routine generates a text
entry to load that item into the assigned
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register and inserts it into the back
target of the loop. The load is required
to guarantee that the item is in a register
and available for subsequent use during
loop execution. If the item is not
busy-on-exit, the text item is not required
to be loaded. If any globally assigned
item is defined within the loop and is also
busy-on-exit from the loop, the
GLOBAS-IEKRGB routine generates a text
entry to store that item on exit from the
loop. The generated store is needed to
preserve the value of such an operand for
use when it is required during the
execution of an outer loop.

The GLOBAS-IEKRGB routine records all
global assignments made for the current
loop for use in the subsequent updating
scan (see "Full Register Assignment --
OPT=1") and also for incorporation,
wherever possible, into subsequently
processed loops.

BRANCHING OPTIMIZATION -- OPT=2

During OPT=2 optimization, branching
optimization is carried out in the same
manner as during OPT=1 optimization. After
all loops have undergone full register
assignment, subroutine BLS-IEKSBS is given
control to calculate the size of each
block. When the sizes of all blocks have
been calculated, the BLS-IEKSBS subroutine
uses the block size information to
determine the blocks to which a branch can
be made by means of RX-format branch
instructions.

PHASE 25

Phase 25 completes the production of an
object module from the combined output of
the preceding phases of the compiler. An
object module consists of four elements:

Text information.

External symbol dictionary.
Relocation dictionary.
Loader END record.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine language format. It
may contain unresolved external symbolic
cross references (i.e., references to
symbols that do not appear in the object
module). The external symbol dictionary
contains the information needed to resolve
the external symbolic cross references that
appear in the text information. The



relocation dictionary contains the
information needed to relocate the text
information for execution. The END record
informs the linkage editor of the length of
the object module and the address of its
main entry point.

An object module resulting from a
compilation consists of a single control
section, unless common blocks are
associated with the module. An additional
control section is included in the module
for each common block.

The object module produced by phase 25
is recorded on the SYSLIN data set if the
LOAD option is specified by the FORTRAN
programmer, and on the SYSPUNCH data set if
the DECK option is specified. If the LIST
option is specified, phase 25 develops and
records on the SYSRINT data set a
pseudo-assembler language listing of the
instructions and data of the object module.
If the MAP option is specified, phase 25
also produces a storage map. If the ID
option is specified, phase 25 inserts
information into the object module which is
used by the object-time traceback routine
of the Library.

TEXT INFORMATION

Text information consists of the machine
language instructions and data resulting
from the compilation. Each text
information entry (a TXT record)
constructed by phase 25 can contain up to
56 bytes of instructions and data, the
address of the instructions and data
relative to the beginning of the control
section, and an indication of the control
section that contains them. A more
detailed discussion of the use and format
of TXT records is given in the publication

IBM System/360 Operating System: Linkage
Editor, Program Logic Manual, Form
¥28-6610.

The major portion of phase 25 processing
is concerned with text information
construction. In building text
information, phase 25 obtains each item
that is to be placed into text information,
converts the item to machine language
format wherever necessary, enters the item
into a TXT record, and places the relative
address of the item into the TXT record.

Phase 25 assigns relative addresses by
means of a location counter, which is
continually updated to reflect the location
at which the next item is to be placed into
text information. Whenever phase 25 begins
the construction of a new TXT record, it
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inserts the current value of the location
counter into the address field of the TXT
record. Thus, the address field of the TXT
record indicates the relative address of
the instructions and data that are placed
into the record.

Figure 9 shows the layout of storage
that phase 25 assumes in setting up text
information.,

Phase 25 constructs text information by:

e Reserving address constants for the
referenced statement numbers of the
module.

e Completing the processing of the adcon
table entries and entering the
resultant entries into TXT records.

® Generating the prologue and epilogue
instructions and entering these
instructions into TXT records.

e Converting phase 15/phase 20 text into

System/360 machine code and entering
the code into TXT records.

Chart 20 shows the overall logic of
phase 25 processing.

Address Constant Reservation

Before it constructs text information,
subroutine MAINGN-IEKTA reserves address

constants for the referenced statement
mha»r n-F +he medule and For the statement
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numbers appearing in computed GO TO
statements. The address constants are
reserved so that the relative addresses of
the statements associated with such
statement numbers can be recorded and,
subsequently, obtained during execution of
the object module, when branches to those
statements are required.

To reserve address constants for
statement numbers, subroutine MAINGN-IEKTA
scans the chain of statement number entries
in the statement number/array table. For
each encountered statement number to which
reference is made, subroutine MAINGN-IEKTA
inserts a base and displacement into the
associated statement number entry. When
the text representation of that statement
number is encountered, a relative address
is placed in the statement number entry.

Note: If branching optimization is being
implemented, subroutine MAINGN-IEKTA does
not perform the processing described in the
previous paragraph.
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Phase which Phase which
allocates space uses space
STALL-IEKGST STALL-IEKGST
Entry Code phase 10 and phase 25
F t Text STALL-IEKGST STALL-IEKGST
Register 13 ormat fex phase 10 phase 10
STALL-IEKGST
Save Area phase 10 phase 25
Adcon for Register 12 STALL-IEKGST phase 25
phase 10
Branch Tables STALL-IEKGST phase 25
phase 10
. PHAZ15
Parameter Lists phase 15 phase 25
. CORAL CORAL
fecicter 12 Constants, Variables, Arrays phase 15 phase 15
(ifgneeded)"' Ad CORAL CORAL
cons phase 15 phase 15
ORAL CORAL
Namelist Dictionaries :hose 15 phase 15
. CORAL CORAL
DEFINE FILE Parameter Lists phase 15 phase 15
Phase 20 Temporaries phase 20 phase 25
'B' Block Label Adcons phase 25 phase 25
Object Program Instructions phase 25 phase 25
Epilogue phase 25 phase 25
Prologue phase 25 phase 25
Entry Code for Secondary Entry Point** phase 25 phase 25
Epilogue for Secondary Entry Point** phase 25 phase 25
Prologue for Secondary Entry Point** phase 25 phase 25

*See "Relative Address Assignment" under "CORAL Processing. "

**See last paragraph of "Generation of Initialization Instructions" under "FORTRAN System Director. "

Figure 9.

After all statement numbers are
processed, bases and displacements are
likewise assigned to adcons for the
statement numbers appearing in computed GO
TO statements, The MAINGN-IEKTA subroutine
scans the branch table chain (see Appendix
A, "Branch Tables"), and assigns a base and
displacement for each branch table.
Subroutine MAINGN-IEKTA does not record
pointers to the address constants set aside
for the actual statement numbers of the
computed GO TO statements in their
associated standard branch table entries.
The values to be placed into the address
constants for statement numbers in computed
GO TO statements are also determined during
text conversion.

Text Conversion

Phase 25 converts intermediate tex£ into
System/360 machine code. (The text
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Storage Layout for Text Information Construction

conversion process is controlled by
subroutine MAINGN-IEKTA.) In converting
the text, phase 25 obtains each text entry
and, depending upon the nature of the
operator in the text entry, passes control
to one of six processing paths to convert
the text entry.

The six processing paths are:

¢ Statement Number Processing.
e Input/output Statement Processing.
® CALL Statement Processing.
e Code Generation.

¢ RETURN Statement Processing.

e END Statement Processing.

See Table 14 for the complete list of
subroutines called by phase 25,

STATEMENT NUMBER PROCESSING: When the
operator of the text entry indicates a
statement number, subroutine MAINGN-IEKTA
passes control to subroutine LABEL-IEKTLB.
The LABEL-IEKTLB subroutine then inserts




the current value of the location counter,
which is the relative address of the
statement associated with the statement
number, into the statement number entry.
All branches to that statement are made
through the use of the relative address for

that statement number.

Note: If branching optimization is being
implemented, only statement numbers to
which a branch cannot be made via RX-format
branch instructions (i.e., statement
numbers that are not within the range of
registers 13, 12, 11, 10, and 2} are
processed as described above,

After the relative address has been
placed into the statement number entry,
subroutine LABEL-IEKTLB determines whether
or not that statement number appears in a
computed GO TO statement. If it does,
subroutine LABEL-IEKTLB also inserts the
relative address into the appropriate field
of the branch table entry, or entries, for
that statement number. The relative
address recorded in the branch table entry
is placed into the storage reserved for it
within text information (see "END Statement
Processing®™) when the text representation
of the END statement is encountered.

INPUT/QUTPUT STATEMENT PROCESSING: When
the operator of the text entry indicates an
input/output statement, an I/0 list item,
or the end of an I/0 list, the MAINGN-IEKTA
subroutine passes control to subroutine
IOSUB-IEKTIS, which generates an
appropriate calling sequence to IHCFCOMH to
perform, at obiject-time, the indicated
operation.

The calling sequence generated for an
input/output statement depends on the type
of the statement (e.g., READ, BACKSPACE).
The calling sequence generated for an I/O
list item depends on the input/output
statement type with which the list item is
associated and on the nature of the list
item, i.e., whether the item is a variable
or an array. The calling sequence
generated for an end of an I/0 list depends
on whether the end I/0 list operator
signals:

e The end of an I/0 list associated with
a READ/WRITE that requires a FORMAT
statement,

e The end of an I/0 list associated with
a READ/WRITE that does not require a
FORMAT statement.

Once the calling sequence is generated,
subroutine IOSUB-IEKTIS enters it into TXT
records.

Section 2:

CALL STATEMENT PROCESSING: When the
operator of the text entry indicates a CALL
statement, subroutine MAINGN-IEKTA passes
control to subroutine FNCALL-IEKVFN to
generate a standard direct-linkage calling
sequence, which uses general register 1 as
the argument register. The argument list
is located in the adcon table in the form
of address constants. Each address
constant for an argument contains the
reiative address of the argument. The
FNCALL-IEKVFN subroutine enters the calling
sequence into TXT records.

CODE GENERATION: Code generation converts
text entries having operators other than
those for statement numbers, ENTRY, CALL,
RETURN, END, and input/output statements
into System/360 machine code. To convert
the text entry, code generation uses four
arrays and the information in the text
entry. The four arrays are:

® Register array. This array is reserved
for register and displacement
information.

e Directory array. This array contains
pointers to the skeleton arrays and the
bit-strip arrays associated with
operators in text entries that undergo
code generation.

e Skeleton array. A skeleton array
exists for each type of operator in an
intermediate text entry that is to be
processed by code generation. The
skeleton array for a particular
operator consists of all the machine
code instructions, in skeleton form and
in proper sequence, needed to convert
the text entry containing the operator
into machine code. These instructions
are used in various combinations to
produce the desired object code. (The
skeleton arrays are shown in Appendix
c.)

e Bit-strip array. A bit-strip array
exists for each type of operator in a
text entry that is to undergo code
generation., One strip is selected for
each conversion involving the operator.
The bits in each strip are preset
(either on or off) in such a fashion
that when the strip is matched against
the skeleton array, the strip indicates
the combination of instructions that is
to be used to convert the text entry.
(The bit strip arrays are shown with
their associated skeleton arrays in
Appencdix C.)

In code generation, the actual base
registers and operational registers (i.e.,
registers in which calculations are to be
performed), assigned by phase 20 to the
operands of the text entry to be converted
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to machine code, are obtained from the
textentry and placed into the register
array. Any displacements needed to load
the base addresses of the operands are also
placed into the register array. The
displacements referred to in this context
are the displacements of the base addresses
of the operands from the start of the adcon
table that contains the base addresses.
These displacements are obtained from the
information table entries for the operands.
This action is taken to facilitate
subsequent processing.

The operator of the text entry to be
converted is used as an index to the
directory array. The entry in this
directory array, which is pointed to by the
operator index, contains pointers to the
skeleton array and the bit-strip array
associated with the operator.

The proper bit strip is then selected
from the bit-strip array. The selection
depends on the status of operand 2 and
operand 3 of the text entry. This status
is set up by phase 20 and is indicated in
the text entry by four bits (see Appendix
A, "Phase 20 Intermediate Text
Modifications"™): the first two bits
indicate the status of operand 2; the
second two bits indicate the status of
operand 3.

The status of operand 2 and/or operand 3
can be one of the following:

00 The operand is in main storage and
is to remain there after the present
code generation. Therefore, if the
operand is loaded into a register
during the present code generation,
the contents of the register can be
destroyed without concern for the
operand.

01 The operand is in main storage and
is to be loaded into a register,
The operand is to remain in that
register for a subsequent code
generation; therefore, the contents
of the register are not to be
destroyed.

10 The operand is in a register as a
result of a previous code
generation. After the register is
used in the present code generation
process, its contents can be
destroyed.

11 The operand is in a register and is
to remain in that register for a
subsequent code generation. The
contents of the register are not to
be destroyed.
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This four-bit status field is used as an
index to select a bit strip from the bit-
strip array associated with the operator.
The combination of instructions indicated
in the bit strip conforms to the operand
status requirements: i.e., if the status
of operand 2 is 11, the generated
instructions make use of the register
containing operand 2 and do not destroy its
contents. The combination, however,
excludes base load instructions and the
store into operand 1.

Once the bit strip is selected, it is
moved to a work area, The strip is
modified to include any required base load
instructions. That is, bits are set to on
in the appropriate positions of the bit
strip in such a way that, when the strip is
matched to the skeleton array, the
appropriate instructions for loading base
addresses are included in the object code.
The skeletons for these load instructions
are part of the skeleton array.

The code generation process determines
whether or not the base address of operand
2 and/or operand 3 must be loaded into a
register by examining the status of these
base addresses in the text entry. Such
status is indicated by four bits: the
first two bits indicate the status of the
base address of operand 2; the second two
bits indicate the status of the base
address of operand 3. If this status field
indicates that a base address is to be
loaded, the appropriate bit in the bit
strip is set to on. (The bit to be
operated upon is known, because the format
of the skeleton array for the operator is
known.)

Before the actual match of the bit strip
to the skeleton array takes place, the code
generation process determines:

e Tf the base address of operand 1 must
be loaded into a register.

e If the result produced by the actual
machine code for the text entry is to
be stored into operand 1.

This information is again indicated in the
text entry by four bits: the first two
bits indicate the status of the base
address of operand 1; the second two bits
indicate whether or not a store into
operand 1 is to be included as part of the
object code. If the base address of
operand 1 is to be loaded and/or if operand
1 is to be stored into, the appropriate
bit(s) in the bit strip is set to on.

The bit strip is then matched against
the skeleton array. Each skeleton
instruction corresponding to a bit that is



set to on in the bit strip is obtained and
converted to actual machine code. The
operation code of the skeleton instruction
is modified, if necessary, to agree with
the mode of the operand of the instruction.
The mode of the operand is indicated in the
text entry. The symbolic base, index, and
operational registers of the skeleton
instructions are replaced by actual
registers. The base and operational
registers to be used are contained in the
register array. If an operand is to be
indexed, the index register to be used is
obtained. (The index register is saved
during the processing of the text entry
whose third operand represents the actual
index wvalue to be used.) The displacement
of the operand from its base address, if
needed, is obtained from the information
table entry for the operand. (The contents
of the displacement field of the text entry
are added to this displacement if a
subscript text entry is being processed.)
These elements are then combined into a
machine instruction, which is entered into
a TXT record. (If the skeleton instruction
that is being converted to machine code is
a base load instruction, the base address
of the operand is obtained from the
object-time adcon table. The register (12)
containing the address of the adcon table
and the displacement of the operand's base
address from the beginning of the adcon
table are contained in the register array.)

Branch Processing: The code generation
portion of phase 25 generates the machine
code instructions to complete branching
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code generation, if branching optimization
is being implemented, is essentially the
same as that performed to produce an object
module in which branching is not optimized.
However, before a skeleton instruction
(corresponding to an on bit in the selected
and modified bit strip) is assembled into a
machine code instruction, code generation
determines whether or not that instruction:

e Loads into a register the address of an
instruction to which a branch is to be
made and which is displaced less than
4096 bytes from the address in a
reserved register.?

* Is an RR-format branch instruction that
branches to an instruction that is
displaced less than 4096 bytes from the
address in a reserved register.=2

1This type of text entry is subsequently
referred to as a load candidate.

2This type of text entry is subsequently
referred to as a branch candidate.
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Note: A load candidate usually
immediately precedes a branch candidate
in the skeleton array.

Code generation determines whether or
not the instruction to which a branch is to
be made is displaced less than 4096 bytes
from an address in a reserved register by
interrogating an indicator in the statement
nunber entry for the statement number
associated with the block containing the
instruction to which a branch must be made.
This indicator is set by phase 20 to
reflect whether or not that block is
displaced less than 4096 bytes from an
address in a reserved register.

The completion of branching optimization
proceeds in the following manner. If a
skeleton instruction corresponding to an on
bit in the bit strip is a load condidate,
it is not included as part of the
instruction sequence generated for the text
entry under consideration. If a skeleton
instruction corresponding to an on bit in
the bit strip is a branch candidate, it is
converted to an RX-format branch
instruction. The conversion is
accomplished by replacing operand 2 (a
register) of the branch candidate with an
actual storage address of the format D
(0,Br). D represents the displacement of
the instruction (to which a branch is to be
made) from the address that is in the
appropriate reserved register (Br).

If the instruction to which a branch is
to be made is the first in the text block,
both the displacement and the reserved
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branch are obtained from the statement
number entry associated with the block
containing the instruction. (This
information is placed into the statement
number entry during phase 20 processing.)

If the instruction to which a branch is
to be made is one that is subsequently to
be included as part of the instruction
sequence generated for the text entry under
consideration,?® the displacement of the
instruction from the address in the
appropriate reserved register is computed
and used as the displacement of the
RX-format branch instruction. The reserved
register used in such a case is the one
indicated in the statement number entry
associated with the block containing the
text entry currently being processed by
code generation.

3skeleton arrays for certain operators
contain RR format branch instructions that
transfer control to other instructions of
that skeleton.
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RETURN STATEMENT PROCESSING: When the
operator of the text entry indicates a
RETURN statement, subroutine MAINGN-IEKTA
passes control to subroutine RETURN-IEKTRN,
which generates a branch to the epilogue.
The epilogue address is obtained from the
save area. The address of the epilogue is
placed into the save area during the
execution of either the subprogram main
entry coding or the subprogram secondary
entry coding. The address of the epilogue
is placed into the save area during the
compilation of a main program or subprogram
with no secondary entry points (refer to
the section "Initialization Instructions").

END STATEMENT PROCESSING (CHART 21): When
the operator of the text entry indicates an
END statement, subroutine MAINGN-IEKTA
passes control to subroutine END-IEKUEN,
which completes the processing of the
module by entering the address constants
(i.e., relative addresses) for statement
numbers and statement numbers appearing in
computed GO TO statements into text
information and by generating the END
record,

Subroutine END-IEKUEN calls the
ENTRY-IEKTEN subroutine to determine
whether or not the program being compiled
is a main program or a subprogram and to
take the appropriate action. If it is a
subprogram, the ENTRY-IEKTEN subroutine
calls subroutine EPILOG-IEKTEP and
PROLOG-IEKTPR (see "Prologue and Epilogue
Generation®™). If it is a main program,
subroutine ENTRY-IEKTEN generates code to
call IHCFCOMH and generates a branch to the
appropriate place in text. If there are
secondary entry points, text is scanned to
determine where they are located. An
epilogue and prologue are generated for
each entry point with a branch to the
corresponding point in the object code.
Subroutine ENTRY-IEKTEN returns control to
the END-IEKUEN subroutine.

Subroutine END-IEKUEN places TXT and RLD
records in the object module for the
following: adcon for the save area, adcon
for the prologue, adcon for the epilogue,
adcon for register 12 (if needed), adcons
for branch tables, adcons for parameter
lists, and adcons for 'B' block labels.

The END-IEKUEN subroutine generates TXT
information for each temporary. Subroutine
END-IEKUEN calls IEND (FSD entry point) to
generate the loader END record that must be
the last record of the object module. Its
functions are to signal the end of the
object module and to inform the linkage
editor of the size (in bytes) of the
control section and the address of the main
entry point of the control section. The
END-IEKUEN subroutine then returns control
to the FSD through subroutine MAINGN-IEKTA.

T4

Storage Map Production

As a user option, subroutine IEKGMP
produces a storage map of the symbols used
in the source program. The map contains
the following information:

Name Symbol Explanation

Tag S The variable appeared to the
left of an equal sign in the
source program. (stored
into)

F The variable appeared to the
right of an equal sign in the
source program. (fetched)

A The variable was used as an
argument.

C The variable appeared in a
COMMON statement.

E The variable appeared in an
EQUIVALENCE statement.

XR The variable is a
call-by-name parameter to the
source program.

XF The variable is a subroutine
or function name.

ASF The variable is the name of
an arithmetic statement
function.

Type Identifies the type of variable --

Type * length -- in bytes.

Add. Is the relative address of the

variable within the object module
(in hexadecimal).

The total size of the object module is
also given,

A map of each COMMON block is generated
to give the relative location of each
variable in that COMMON block. A map of
variables equivalenced into common is also
provided.

In addition, subroutine TENTXT-IEKVTN
generates a map of statement numbers.

Prologue and Epilogue Generation

Phase 25 generates the machine code:
(1) to transmit parameters to a subprogram,
and (2) to return control to the calling
routine after execution of the subprogram.
Parameters are transmitted to the

subprogram by means of a prologue. Return



is made to the calling routine by means of
an epilogue. Prologues and epilogues are
provided for subprogram secondary entry
points as well as for the main entry point.

Prologue: A prologue (generated by
subroutine PROLOG-IEKTPR) is a series of
load and store instructions that transmit
the values of "call by value" parameters
and the addresses of "call by name"
parameters to the subprogram. (These
parameters are explained in the publication
IBM System/360 Operating System: FORTRAN
IV _langquage, Form C28-6515.)

When subroutine PROLOG-IEKTPR generates
a prologue, it enters the prologue into TXT
records and inserts its relative address
into the address constant reserved for the
prologue address during the generation of
initialization instructions.

Epiloque: An epilogue (generated by
subroutine EPILOG-IEKTEP) is a series of
instructions that (1) return to the calling
routine the values of "call by value"
parameters (if they are stored into or used
as arquments), (2) restore the registers of
the calling routine, and (3) return control
to the calling routine. (If "call by
value" parameters do not exist, an epilogue
consists of only those instructions
required to restore the registers and to
return control.)

When subroutine EPILOG-IEKTEP generates
an epiloque, it enters the epilogue into
TXT records and inserts its relative
address into the address constant reserved
for the epilogue address during the
generation of initialization instructions.
{When phase 25 encounters the text
representation of a RETURN statement, a
branch to the epilogue is generated.)

PHASE 30

Phase 30 records appropriate messages
(on the SYSPRINT data set) for syntactical
errors encountered during the processing of
previous phases; its overall logic is
illustrated in Chart 22. (Table 15 shows
the subroutines called by phase 30.) As
errors are encountered by these phases,
error table entries are created and placed
into an error table. Each such entry
consists of two parts. The first part
contains a message number, (If the error
cannot be localized to a particular
statement, no internal statement number is
entered in the error table entry. Phase 30
simulates the internal statement number
with a zero.) The second part contains
either an internal statement number if the
entry is for a statement that is in error,

Section 2:

a dictionary pointer to a variable if the

entry is for a variable that is in error,

or an actual statement number if the entry
is for an undefined statement number.

Message Processing

Using the message number in the error
table entry multiplied by four, phase 30
locates, within the message pointer table
(see Appendix A, "Diagnostic Message
Tables"), the entry corresponding to the
message number. This message pointer table
entry contains (1) the length of the
message associated with the message number,
and (2) a pointer to the text of the
message associated with the message number.
After phase 30 obtains the pointer to the
message text, it constructs a parameter
list, which consists of:

e Either the internal statement number,
dictionary pointer, or statement number
appearing in the error table entry.

e A pointer to the message text
associated with the message number.

e The length of the message.
¢ The message number.
e The error level.

Having constructed the parameter list,
phase 30 calls subroutine MSGWRT-IEKP31,
which writes the message on the SYSPRINT
data set. After the message is written,
the next error table entry is obtained and
processed as described above.

As each error table entry is being
processed, the error level code (either 4,
8, or 16) associated with the message
number is obtained from the error code
table (GRAVERR) by using the message number
in the error table entry as an index. The
error level code indicates the seriousness
of the encounter error. (For explanations
of all the messages the compiler generates,
see the publication IBM System/360
Operating System: FORTRAN IV (G and H)
Programmer's Guide, Form C28-6817.) The
obtained error level code is saved for
subsequent use only if it is greater than
the error level codes associated with
message numbers appearing in previously
processed error table entries. Thus, after
all error table entries have been
processed, the highest error level code
(either 4, 8, or 16) has been saved. The
saved error level code is passed to the FSD
when phase 30 processing is completed.

This code is used as a return code by the
scheduler to determine whether or not
succeeding steps are to be executed.
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