
IBM System/3S0 Operating System 

FORTRAN IV (H) Compiler 

Program Logic Manual 

Program Number 360S-PO-500 

File No. S360-25(Os) 
Form GY28-6642-4 

Program Logic 

This publication describes the internal design of 
the IBM System/360 Operating System FORTRAN IV (H) 
compiler program. This compiler transforms source 
modules written in the FORTRAN IV language into object 
modules that are suitable for input to the linkage 
editor for subsequent execution on System/360. At the 
user's option, the compiler optimizes its object 
modules so that they can be executed with improved 
efficiency. 

This manual is directed to IBM customer engineers 
who are responsible for program maintenance. It can be 
used to locate specific areas of the program and to 
relate these areas to the corresponding program 
listings. Because program logic information is not 
necessary for program operation and use, distribution 
of this manual is restricted to persons with 
program-maintenance responsibilities. 



Fifth Edition (June 1970) 

This is a major revision of, and makes obsolete, the previous edition, 
Form Y28-6642-3. changes to the text, and small changes to 
illustrations, are indicated by a vertical line to the left of the 
change; changed or added illustrations are denoted by the symbol • to 
the left of the caption. 

The specifications contained in this publication correspond to Release 
19 of the IBM System/360 Operating System. 

changes are periodically made to the specifications herein; any such 
changes will be reported in subsequent revisions or Technical 
Newsletters. 

Requests for copies of IBM publications should be made to your IBM 
representative or to the IBM branch office serving your locality. 

Address comments concerning the contents of this publication to IBM 
corporation, Programming Publications, 1271 Avenue of the Americas, New 
York, N. Y. 10020. 



This publication provides information 
describing the internal organization and 
operation of the FORTRAN IV (H) compiler. 
It is part of an integrated library of IBM 
System/360 Operating System Program Logic 
Manuals. Other publications required for 
an understanding of the FORTRAN IV (H) 
compiler are: 

IBM System/360: Principles of Operation, 
Form A22-6821 

IBM System/360 Operating System: 

Introduction to Control Program Logic, 
Program Logic Manual, Form Y28-6605 

FORTRAN IV (G and H) Programmer's Guide, 
Form C28-6817 

Although not required, the following 
publications are related to this 
publication and should be consulted: 

IBM £~~em/360 Operating System: 

Sequential Access Methods, Program Logic 
Manual, Form Y28-6604 

~2ncep!s and Facilities, Form C28-6535 

supervisor and Data Management Ma~~2 
!nstructions, Form C28-6647 

Linkage Editor, Form C28-6538 

~inkage Edit~Program LQgic M~gua!, 
Form Y28-6610 

2ystem Generation, Form C28-6554 

This manual consists of two sections. 

PREFACE 

Section 1 is an introduction that 
describes the FORTRAN IV (H) compiler as a 
whole, including its relationship to the 
operating system. The major components of 
the compiler and the relationships among 
them are also described. 

Section 2 consists of a discussion of 
the major components. Each component is 
discussed in terms of its functions; the 
level of detail provided is sufficient to 
enable the reader to understand the general 
operation of the component. In the 
discussion of each function of a component, 
the routines that implement that function 
are identified by name. The inclusion of a 
compound form of the routine names provides 
a frame of reference for the comments and 
coding supplied in the program listing. 
The program listing for each identified 
routine appears on the microfiche card 
having the second portion of the compound 
name of that routine in its heading. For 
example, the routine referred to in this 
manual as STALL-IEKGST is listed on the 
microfiche card headed IEKGST. This 
section also discusses common data, such as 
tables, blocks, and work areas, but only to 
the extent required to understand the logic 
of the components. Flowcharts and routine 
directories are included at the end of this 
section. 

li'ollowing section 2 are a number of 
appendixes, which contain descriptions of 
tables used by the compiler, intermediate 
text formats, the overlay structure of the 
compiler, and other reference material. 

If more detailed information is 
required, the reader should refer to the 
comments and coding in the FORTRAN IV (H) 
program listing. 





SECTION 1: INTRODUCTION. 
Purpose of the Compiler • 
The Compiler and operating 
Input/Output Data Flow • • 
Compiler Organization 

• • • • • • • 11 
• • • • • • • 11 
System/360 • 11 

• 11 
• 11 

FORTRAN System Director 
Phase 10 • • 

· • • • • • • 12 
• • • • • • • 12 

Phase 15 • 
Phase 20 • 
Phase 25 • 
Phase 30 • 

Structure of the Compiler 

SECTION 2: DISCUSSION OF MAJOR 

• 12 
• 13 

13 
• 13 
• 13 

COMPONENTS • • • • • • • • • • • • • 14 
FORTRAN System Director • • • • 14 

Compiler Initialization • 14 
Parameter Processing • • • • • • 14 
Storage Acquisition • • • 14 
Data Field Initialization • 15 

Phase Loading • • • • • • • • • 15 
Storage Distribution (Chart 02) ••• 15 

Phase 10_Storage • • •• 15 
Phase 15 Storage • • • • • • • • 15 
Phase 20 Storage • • • • • • • • • • 16 

Input/Output Request Processing 16 
Request Format • • • • • • • • • 16 
Request Processing • • • • • 16 

Generation of Initialization 
Instructions • •• • • • 16 

Entry Coding for a Main Program •• 17 
Entry coding for Subprograms with 
No Secondary Entry Points ••••• 17 
Main Entry Coding for Subprograms 
with Secondary Entry Points 
Subprogram Secondary Entry Coding 

• 17 
• 18 
• 18 Deletion of a Compilation 

Compiler Termination • • • • • 
Phase 10 • • • • • • • • • • • 

• • 18 

Source Statement Processing 
19 
20 

• 20 Dispatcher Subroutine • 
Preparatory Subroutine • • 
Keyword Subroutine(s) 
Arithmetic Subroutine(s) 

• • • • • 20 

Utility Subroutine(s) •••• 
Subroutine STALL-IEKGST (Chart 04) 

constructing a Cross Reference • 
Phase 10 Preparation for XREF 
Processing • • • • 
XREF Processing 

Phas~ 15 • • • • • • • • • • • 
PHAZ15 Processing • • • • 

Text Blocking • • • • • • • • 
Arithmetic Translation • 
Gathering Constant/Variable Usage 
Information • • • • • • • • • 
Gathering Forward-Connection 
Information • • • • • • 
Reordering the Statement Number 
Chain • • • • • • • • • • • • 
Gathering Backward-Connection 
Information • • • • • • • • • 

21 
22 
23 

• 23 
26 

26 
27 

• 27 
28 

• 29 
29 

34 

35 

• 36 

• 37 

CORAL Processing • • • • • • • 39 
Translation of Data Text • • 40 
Relative Address Assignment 40 
Rechaining Data Text • • • • 43 
DEFINE FILE Statement Processing 43 
NAMELIST Statement Processing 43 
Initial Value Assignment • • • • 44 
Reserving Space in the Adcon Table • 44 
Creating Relocation Dictionary 
Entries •• • • • • • • • • • • 
Creating External Symbol 
Dictionary Entries • 

Phase 20 • • • • • • • • • • • 

44 

• • 45 
45 

Control Flow • • • • • • • • • • 46 
47 Register Assignment • • • • • 

Basic Register Assignment -- OPT=O • 
Full Register Assignment -- OPT=l 

47 

<Chart 14) • • • • • • • • • • • 50 
Branching Optimization -- OPT=l • • • 54 

Reserved Registers • • • • • • • 55 
Reserved Register Addresses 55 
Block Determination and Subsequent 
Processing • • • • • • • • • • • • • 55 

Structural Determination • • • • • • • 55 
Determination of Back Dominators • • 57 
Determination of Back Targets and 
Depth Numbers • • • • • 
Identifying and Ordering Loops for 
Processing • • • • • • • 

Busy-On-Exit Information ••••• 
Structured Source Program Listing 
Loop Selection • • • • • • • 

Pointer to Back Target • • 
Pointers to First and Last Blocks 
Loop Composite Matrixes • 

Text Optimization -- OPT=2 • 
Common Expression Elimination --
OPT=2 • • • • • • • • • • • 
Backward Movement -- OPT=2 • • • 
Strength Reduction -- OPT=2 

Full Register Assignment -- OPT=2 
(Chart 14) •••••••••••• 
Branching Optimization -- OPT=2 

Phase 25 • • • • • • • • • • 
Text Information • •••• 

Address Constant Reservation 
Text Conversion • • • • • • 
Storage Map Production • • • 
Prologue and Epilogue Generation • 

Phase 30 • • • • • • • • 
Message Processing • • • 

58 

59 
59 
61 
61 
62 

• 62 
62 
63 

64 
65 
66 

67 
68 
68 
69 
69 
70 
74 

• 74 
75 
75 

APPENDIX A: TABLES. • • • • • .115 
Communication Table (NPTR) •• 115 
Classification Tables • • • • • .115 
NADCON Ta.ble • • • • • • • • • • 119 
Information Table • • • • • • • • • • .120 

Information Table Chains ••••••• 120 
Chain Construction • • • • • • • • • • 120 
Operation of Information Table Chains 121 

Dictionary Chain operation. .121 
Statement Number Chain Operation •• 122 



Common Chain Operation ••••••• 123 
Equivalence Chain Operation •• 123 
Literal Constant Chain Operation •• 124 
Branch Table Chain Operation. .124 

Information Table Components. • .124 
Dictionary ••••••••••••• 124 
Statement Number/Array Table. .128 
COMMON Table. • •••••• 132 
Literal Table • • • • .134 
Branch Tables ••••••• 135 

Function Table. • • • • • • • .136 
Text Optimization Bit Tables. • .137 
Register Assignment Tables. • •• 139 

Register Use Table • • • .139 
NAMELIST Dictionaries •• 141 
Diagnostic Message Tables .142 

Error Table • • • • • • • • • • .142 
Message Pointer Table ••• 142 

APPENDIX B: INTERMEDIATE TEX'I' 
Phase 10 Intermediate Text 

Intermediate Text Chains • 
Format of Intermediate Text Entry 
Examples of Phase 10 Intermediate 

.143 

.143 

.143 

.144 

Text • • • • • • • • • • • • • • • .146 
Phase 15/Phase 20 Intermediate Text 
Modifications • • • • • • • • 

Phase 15 Intermediate Text 
Modifications 

Unchanged Text • • • • • • 
Phase 15 Data Text • • • • 
statement Number Text •••• 

Phase 20 Intermediate Text 

.151 

.151 
••• 151 

.151 

.152 

Modification. • • • • • • .156 
Standard Text Formats Resulting From 
Phases 15 and 20 Processing ••• 151 

APPENDIX C: ARRAYS • • • 167 

APPENDIX D' TEXT OPTIMIZATION EXAMPLES 175 

Example 1: Common Expression 
Elimination •••••••••••• 115 
Example 2: Backward Movement •••• 116 
Example 3: Simple-Store Elimination 117 
Example 4: Strength Reduction ••• 118 

APPENDIX E: ADDRESS COMPUTATION FOR 
ARRAY ELEMENTS • • • • • • • • 

Absorption of Constants in 
Subscript Expressions • • • • • 
Arrays as Parameters • • • • 

• .180 

• .180 
• .181 

APPENDIX F: COMPILER STRUCTURE •• 182 

APPENDIX G: DIAGNOSTIC MESSAGES •••• 181 

APPENDIX H: THE TRACE AND DUMP 
FACILITIES • 

Trace 
Dump •• 

•••••• 192 
• • • • • • 192 

• • • • • • • 193 

APPENDIX I: FACILITIES USED BY THE 
COMPILER • • • • • • ~ • • • • 
Structure Statement ~ • • • • 
Built-in Functions • 

LAND •• 
LOR • • • • 
LXOR • • • • • • 
LCOMPL • • • ~ • • • • • 
SHFTL and SHFTR 
TBIT • • • • • • • • 
MOD 24 • • • • • 

Bit-Setting Facilities. 
BlTON • • • • • • • • • 
BITOFF • 
BITFLP • 

• .194 
• .194 
• .195 
• .195 
• .195 
• .196 
• .196 
• .196 
• .191 
• .197 
• .197 
• .191 
• .198 
• .198 

APPENDIX J: MICROFICHE DIRECTORY ••• 199 

INDEX • .207 



FIGURES 

Figure 1. Input/Output Data Flow 12 
Figure 2. Format of Prepared 
Source Statement ••••••• 21 
Figure 3. Text Blocking 30 
Figure 4. Text Reordering via 
the Pushdown Table ••••• 32 
Figure 5. Forward-Connection 
Information • • • • • • • • • • 37 
Figure 6. Backward-Connection 
Information • • • • • • 39 
Figure 7. Back Dominators 56 
Figure 8. Back Targets and Depth 
Numbers • • • • • • • • • • • 57 
Figure 9. Storage Layout for 
Text Information Construction • 70 
Figure 10. An example of 
information Table Chains .121 
Figure 11. Dictionary Chain ••• 122 
Figure 12. Format of Dictionary 
Entry for Variable •••• • .125 
Figure 13. Function of Each 
Subfield in the Byte A Usage Field 
of a Dictionary Entry for a 
Variable or Constant ••• .125 
Figure 14. Function of Each 
subfield in the Byte B Usage Field 
of a Dictionary Entry for a 
Variable. • • • • • • • • • .125 
Figure 15. Format of Dictionary 
Entry for Variable After 
CSORN-IEKCCR Processing for XREF .127 
Figure 16. Format of Dictionary 
Entry for Variable After Coordinate 
Assignment ••••••••• 127 
Figure 17. Format of Dictionary 
Entry for Variable After COMMON 
Block Processing .........127 
Figure 18. Format of Dictionary 
Entry for a Variable After Relative 
Address Assignment •••••••• 128 
Figure 19. Format of Dictionary 
Entry for Constant •••••••• 128 
Figure 20. Format of a Statement 
Number Entry • • • • • .128 
Figure 21. Function of Each 
subfield in the Byte A Usage Field 
of a Statement Number Entry .129 
Figure 22. Function of Each 
Subfield in the Byte B Usage Field 
of a Statement Number Entry .129 
Figure 23. Format of a Dictionary 
Entry for Statement Number After 
Subroutine LABTLU-IEKCLT 
Processing for XREF •••••••• 129 
Figure 24. Format of Statement 
Number Entry After the Processing 
of Phases 15, 20, and 25 ••••• 130 
Figure 25. Function of Each 
Subfield in the Block Status Field 130 
Figure 26. Format of Dimension 
Entry ••••••••••••••• 131 

ILLUSTRATIONS 

Figure 27. Format of a COMMON 
Block Name Entry •••••• .132 
Figure 28. Format of COMMON Block 
Name Entry After COMMON Block 
Processing •••••••••••• 133 
Figure 29. Format of an 
Equivalence Group Entry •••••• 133 
Figure 30. F'ormat of Equivalence 
Group Entry After Equivalence 
Processing ••••••••• 133 
Figure 31. Format of Equivalence 
Variable Entry •••••••••• 134 
Figure 32. Format of Equivalence 
Variable Entry After Equivalence 
Processing • • • • •• • 134 
Figure 33. Format of Literal 
Constant Entry •••••••••• 134 
Figure 34. Format of Literal 
Constant Entry After Literal 
Processing •••••••• .135 
Figure 35. Format of Literal Data 
Entry • • • • • • • •• • .135 
Figure 36. Format of Initial 
Branch Table Entry •••••••• 135 
Figure 37. Format of Initial 
Branch Table Entry After Phase 25 
Processing • • • • •• .136 
Figure 38. Format of Standard 
Branch Table Entry After Phase 25 
Processing ••••••••• 136 
Figure 39. Format of Namelist 
Name Entry ••••••••• 141 
Figure 40. Format of Namelist 
Var iable Entry ••••••• • 141 
Figure 41. Format of Namelist 
Array Entry •••••• 141 
Figure 42. Intermediate Text 
Entry Format •••••••• 144 
Figure 43. Phase 10 Normal Text •• 146 
Figure 44. Phase 10 Data Text •• 147 
Figure 45. Phase 10 Namelist Text 148 
Figure 46. Phase 10 Define File 
Text ••••••••••••• 149 
Figure 47. Phase 10 SF Skeleton 
Text ••••••••••••• 149 
Figure 48. Phase 10 Format Text .150 
Figure 49. Format of Phase 15 
Data Text Entry •••••••••• 151 
Figure 50. Function of Each 
Subfield in Indicator Field of 
Phase 15 Data Text Entry •• 151 
Figure 51. Format of Statement 
Number Text Entry • • • • • • • • .152 
Figure 52. Function of Each 
Subfield in Indicator Field of 
Statement Number Text Entry •• 152 
Figure 53. Format of a Standard 
Text Entry ••••••••••••• 156 
Figure 54. Format of Phase 20 
Text Entry •••••••• • .157 
Figure 55. Compiler Overlay 
Structure • • • • • • • •• • .182 



TABLES 

Table 1. FORMAT Statement 
Translation • • • • • .. • • 24 
Table 2. Operators and Forcing 
Strengths •••• • • • • • • 31 
Table 3. Base and Operand 
Register Assignment (OPT=O) •••• 48 
Table 4. Text Entry Types • • • • 64 
Table 5. Operand Characteristics 
That Permit Simple-store 
Elimination • • • • • • • • • 66 
Table 6. FSD Subroutine 
Directory (Part 1 of 2) • 79 
Table 7. Phase 10 Source 
statement Processing • • • • • 83 
Table 8. Phase 10 Subroutine 
Directory (Part 1 of 3) ••• 8 84 
Table 9. Phase 15 Subroutine 
Directory (Part 1 of 2) 92 
Table 10. Phase 15 COMMON Areas • • 94 
Table 11. Criteria for Text 
Optimization · · · · · · · · · .105 
Table 12. Phase 20 Subroutine 
Directory (Part 1 of 2) .106 
Table 13. Phase 20 Utility 
Subroutines · · · · · · · · · .108 
Table 14. Phase 25 Subroutine 
Directory (Part 1 of 2) .111 
Table 15. Phase 30 Subroutine 
Directory · · · · · · · · · · .112 
Table 16. Communication Table 
[NPTR(2,36)] · · · · · · · · .116 
Table 17. Keyword Pointer Table 
(IPTR) . . · · · · · · · · · • 118 
Table 18. Keyword Table (ITBLE) 
(Part 1 of 2) · · · · · · · · .118 
Table 19. Classification Codes 
Assigned During Source Statement 
Packing . · · · · · · · · · · · · .119 

Table 20. NADCON Table • • • • 
Table 21. Operand Modes • 

• .119 
• .126 

Table 22. Operand Types • • .126 
IEKLFT Table 23. Function Table -

(12, 128) ••••••••• 
Table 24. Text Optimization Bit 

• .136 

Tables. • • • • • • • • • • • .138 
Table 25. Local Assignment Tables .139 
Table 26. BVA Table •••••••• 140 
Table 27. Global Assignment Tables 140 
Table 28. Adjective Codes (Part 1 
of 3) ••••••• 144 
Table 29. Phase 15/20 Operators 
(Part 1 of 5) ••••••••••• 153 
Table 30. Meanings of Bits in 
Mode Field of Standard Text Entry 
Status Mode Word • • • • • 156 
Table 31. Status :r'ield Bits and 
Their Meanings • • • • • • • .158 
Table 32. Phases and Their 
Segments . . . . . . . . . · · .183 
Table 33. Segment 1 Composition · .183 
Table 34. Segment 2 Composition · .183 
Table 35. Segment 4 Composition · .184 
Table 36. Segment 5 Composition · .184 
Table 37. Segment 6 Composition · .184 
Table 38. Segment 7 Composition · .184 
Table 39. Segment 8 Composition · .185 
Table 40. Segment 9 Composition · .185 
Table 41. Segment 10 Composition .185 
Table 42. Segment 11 Composition .185 
Table 43. segment 12 Composition .186 
Table 44 • Segment 13 composition .186 
Table 45. Basic TRACE Keyword 
Values and Output Produced · . . · .192 
Table 46. Microfiche Directory 
(Part 1 of 8) . . . . . . · . . · .199 



Chart 00. 
Chart 01. 
Chart 02. 
Chart 03. 
Chart 04. 
Chart 05. 
Chart 06. 
Chart 07. 
Flow • • • 
Chart 08. 

Compiler Control Flow • • 76 
FSD overall Logic • • • • 77 
FSD Storage Distribution 78 
Phase 10 Overall Logic • 81 
Subroutine STALL-IEKGST • 82 
Phase 15 Overall Logic • 87 
PHAZ15 Overall Logic 88 
ALTRAN-IEKJAL Control 

• 89 
GENER-IEKLGN Text 

Generation • • • • • • • • 90 
Chart 09. CORAL Overall Logic • • • 91 
Chart 10. Phase 20 Overall Logic • 95 
Chart 11. Common Expression 
Elimination (XPELIM-IEKQXM) •••• 96 
Chart 12. Backward Movement 
(BACMOV-IEKQBM) ••••••• 97 

CHARTS 

Chart 13. strength Reduction 
(REDUCE-IEKQSR) ••••• 98 
Chart 14. Full Register 
Assignment (REGAS-IEKRRG) •• 99 
Chart 15. Table Building 
(FWDPAS-IEKRFP) ••••• • .100 
Chart 16. Local Assignment 
(BKPAS-IEKRBP) ••••••••.•• 101 
Chart 17. Global Assignment 
(GLOBAS-IEKRGB) •••• • .102 
Chart 18. Text Updating 
(STXTR-IEKRSX) • • • • • •• • .103 
Chart 19. Text Updating 
(STXTR-IEKRSX) (Continued) .•••• 104 
Chart 20. Phase 25 Processing ••• 109 
Chart 21. Subroutine END-IEKUEN •• 110 
Chart 22. Phase 30 (IEKP30) 
Overall Logic ••••••••••• 113 





This section contains general 
information describing the purpose of the 
FORTRAN IV (H) compiler, its relationship 
to the operating system, its input/output 
data flow, its organization, and its 
overlay structure. 

PURPOSE OF THE COMPILER 

The IBM System/360 Operating System 
FORTRAN IV (H) compiler transforms source 
modules written in the FORTRAN IV language 
into object modules that are suitable for 
input to the linkage editor for subsequent 
execution on the System/360. At the user's 
option, the compiler produces optimized 
object modules (modules that can be 
executed with improved efficiency). 

THE COMPILER AND OPERATING SYSTEM/360 

The FORTRAN IV (H) compiler is a 
processing program that communicates with 
the System/360 Operating System control 
program for input/output and other 
services. A general description of the 
control program is given in the publication 
IBM System/360 Operating System: 
Introduction to Control Program Logic, 
Program Logic Manual, Form Y28-6605. 

A compilation, or a batch of 
compilations, is requested using the job 
statement (JOB), the execute statement 
(EXEC), and data definition statements 
(DO). cataloged procedures may also be 
used. A discussion of FORTRAN IV 
compilation and the available cataloged 
procedures is given in the publication IBM 
System/360 Operating System: FORTRAN IV (G 
and H) Programmer's Guide, Form C28-6817. 

The compiler receives control from the 
calling program (e.g., job scheduler or 
another program that calls, links to, or 
connects the compiler). Once the compiler 
receives control, it communicates with the 
control program through the FORTRAN system 
director, a part of the compiler that 
controls compiler processing. After 
compiler processing is completed, control 
is returned to the cq,lling program. 

SECTION 1: INTRODUCTION 

INPUT/OUTPUT DATA FLOW 

The source modules to be compiled are 
read in from the SYSIN data set. Compiler 
output is placed on the SYSLIN, SYSPRINT, 
SYSPUNCH, SYSUT1, or SYSUT2 data set, 
depending on the options specified by the 
FORTRAN programmer. (The SYSPRINT data set 
is always required for compilation.) 

The overall data flow and the data sets 
used for the compilation are illustrated in 
Figure 1. 

COMPILER ORGANIZATION 

The IBM System/360 Operating System 
FORTRAN IV (H) compiler consists of the 
FORTRAN system director, four logical 
processing phases (phases 10, 15, 20, and 
25), and an error-handling phase (phase 
30). 

Control is passed among the phases of 
the compiler via the FORTRAN system 
director. After each phase has been 
,executed, the FORTRAN system director 
determines the next phase to be executed, 
and calls that phase. The flow of control 
within the compiler is illustrated in Chart 
00. <Charts are located at the end of 
Section 2.) 

The components of the compiler operating 
tog'ether produce an object module from a 
FORTRAN source module. The object module 
is acceptable as input to the linkage 
editor, which prepares object modules for 
relocatable loading and execution. 

The object module consists of control 
dictionaries (external symbol dictionary 
and relocation dictionary), text 
(representing the actual machine 
instructions and data), and an END 
statement. The external symbol dictionary 
(ESD) contains the external symbols that 
have been defined or referred to in the 
source module. The relocation dictionary 
(RLD) contains information about address 
constants in the object module. 

The functions of the components of the 
compiler are described in the following 
paragraphs. 

Section 1: Introduction 11 



SYSIN 

II 
SOURCE EDIT MAP LOAD 

Option 

1 
Option 

Source 
Module 
Listing 

I ntermediCIJe 
Object Module 

Output fOI" 
EDIT 

SYSPRINT SYSUTl 

--L 
[

structure] 
Source 
Listing 

SYSPRINT 

Storage 
Map 

SYSPRINT 

Figure 1. Input/Output Data Flow 

FORTRAN SYSTEM DIRECTOR 

(ESD, TXT, 
RLD, and END 
card images) 

SYSLIN 

The FORTRAN system director (FSD) 
controls compiler processing. It 
initializes compiler operation, calls the 
phases for execution, and distributes and 
keeps track of the main storage used during 
the compilation. In addition, the FSD 
receives the various input/output requests 
of the compiler phases and submits them to 
the control program. 

PHASE 10 

Phase 10 accepts as input (from the 
SYSIN data set) the individual source 
statements of the source module. If a 
source module listing is requested, the 
source statements are recorded on the 
SYSPRINT data set. If the XREF option is 
selected, a two-part cross reference is 
recorded on the SYSPRINT data set 
immediately following the source listing. 
If the EDIT option is selected, the source 
statements are recorded on the SYSUTl data 
set, which phase 20 uses as input to 
produce a structured source listing_ If 
the ID option is selected, calls and 

12 

DECK LIST XREF For ALL 

oprn Option Opr" Compi lations 

1 1 
Object Module Object I ntermed i ate Error and 
(ESD, TXT, Program Output for Warning 
RLD, and END Listing XREF Messages 
card images) (if Any) 

SYSPUNCH SYSPRINT SYSUT2 SYSPRINT 

1 
Cross-
Reference 
Listing 

SYSPRINT 

function references are assigned an 
internal statement number (ISN). 

Phase 10 converts each source statement 
into a form usable as input by succeeding 
phases. This usable input consists of an 
intermediate text representation (in 
operator-operand pair format) of each 
source statement. In addition, phase 10 
makes entries in an information table for 
the variables, constants, literals, 
statement numbers, etc., that appear in the 
source statements. Phase 10 also places 
data about COMMON and EQUIVALENCE 
statements in the information table so that 
main storage space can be allocated 
correctly in the object module. During 
this conversion process, phase 10 also 
analyzes the source statements for 
syntactical errors. If errors are 
encountered, phase 10 passes to phase 30 
(by making entries in an error table) the 
information needed to print the appropriate 
error messages. 

PHASE 15 

Phase 15 gathers additional information 
about the source module and modifies some 



intermediate text entries to facilitate 
optimization by phase 20 and instruction 
generation by phase 25. Phase 15 is 
divided into two segments that perform the 
following functions: 

• The first segment translates phase 10 
intermediate text entries (in 
operator-operand pair format) 
representing arithmetic operations into 
a four-part format, which is needed for 
optimization by phase 20 and 
instruction-generation by phase 25. 
This part of phase 15 also gathers 
information about the source module 
that is needed for optimization by 
phase 20. 

• The second segment of phase 15 assigns 
relative addresses and, where 
necessary, address constants to the 
named variables and constants in the 
source module. This segment also 
converts phase 10 intermediate text (in 
operator-operand pair format) 
representing DATA statements to a 
variable-initial value format, which 
makes later assignment of a constant 
value to a variable easier. 

Phase 15 also passes to phase 30 the 
information needed to print appropriate 
messages for any errors detected during 
phase 15 processing. (This is done by 
making entries in the error table.) 

PHASE 20 

Phase 20 processing depends on whether 
or not optimization has been requested and, 
if so, the optimization level desired. 

If no optimization is specified, phase 
20 assigns registers for use during 
execution of the object module. However, 
phase 20 does not take full advantage of 
all registers and makes no effort to keep 
frequently used quantities in registers to 
eliminate the need for some machine 
instructions. 

If the first level of optimization is 
specified, phase 20 uses all available 
registers and keeps frequently used 
quantities in registers wherever possible. 
Phase 20 takes other measures to reduce the 
size of the object module, and provides 
information about operands to phase 25. 

If the second level of optimization is 
specified, phase 20 uses other techniques 
to make a more efficient object module. 
The net result of these procedures is to 
eliminate unnecessary instructions and to 
eliminate needless execution of 
instructions. 

If both the EDIT option and the second 
level of optimization are selected, phase 
20 produces a structured source program 
listing on the SYSPRINT data set. 

PHASE 25 

Phase 25 produces an object module from 
the combined output of the preceding phases 
of the compiler. 

The text information (instructions and 
data resulting from the compilation) is in 
a relocatable machine language format. It 
may contain unresolved external symbolic 
cross references (i.e., references to 
symbols that do not appear in the source 
module). The external symbol dictionary 
contains the information required by the 
linkage editor to resolve external symbolic 
cross references, and the relocation 
dictionary contains the information needed 
by the linkage editor to relocate the 
absolute text information. 

Phase 25 places the object module 
resulting from the compilation on the 
SYSLIN data set if the LOAD option is 
specified, and on the SYSPUNCH data set if 
the DECK option is specified. Phase 25 
produces an object module listing on the 
SYSPRINT data set if the LIST option is 
specified. In addition, phase 25 produces 
a storage map if the MAP option is 
specified. 

PHASE 30 

Phase 30 is called after phase 25 
processing is completed only if errors are 
detected by previous phases. Phase 30 
records messages describing the detected 
errors on the SYSPRINT data set. 

STRUCTURE OF THE COMPILER 

The FORTRAN IV (H) compiler is 
structured in a planned overlay fashion, 
which consists of 13 segments. One of 
these segments constitutes the FORTRAN 
system director and is the root segment of 
the planned overlay structure. Each of the 
remaining 12 segments constitutes a phase 
or a logical portion of a phase. A 
detailed discussion of the compiler's 
planned overlay structure is given in 
Appendix F. 

Section 1: Introduction 13 



SECTION 2: DISCUSSION OF MAJOR COMPONENTS 

The following paragraphs and associated 
flowcharts at the end of this section 
describe the major components of the 
FORTRAN IV (H) compiler. Each component is 
described to the extent necessary to 
explain its function(s) and its general 
operation. 

FORTRAN SYSTEM DIRECTOR 

The FORTRAN system director (FSD) 
controls compiler processing; its overall 
logic is illustrated in Chart 01. (For a 
complete list of I"SD subroutines, see Table 
6.> The FSD receives control from the job 
scheduler if the compilation is defined as 
a job step in an EXEC statement. The FSD 
may also receive control from another 
program through use of one of the system 
macro instructions (CALL, LINK, or ATTACH). 

The FSD: 

• Initializes the compiler. 
• Loads the compiler phases. 
• Distributes storage to the phases. 
• Processes input/output requests. 
• Generates entry code (initialization 

instructions) for main programs, 
subprograms, and subprogram secondary 
entries. 

• Deletes compilation. 
• Terminates compilation. 

COMPILER INITIALIZATION 

The initializat,ion of compiler 
processing by the FSD consists of three 
steps: 

• Paramete'r processing. 
• Storage acquisition. 
• Data field initialization. 

Parameter Processi~ 

When the FSD is given control, the 
address of a parameter list is contained in 
a general register. If the compiler 
receives control as a result of either an 
EXEC statement in a job step or an ATTACH 
or CALL macro instruction in another 
program, the parameter list has a single 

14 

entry, which is a pointer to the main 
storage area containing an image of the 
options (e.g., SOURCE, MAP) specified for 
the compilation. If the compiler receives 
control as a result of a LINK macro 
instruction in another program, the 
parameter list may have a second entry, 
which is a pointer to the main storage area 
containing substitute ddnames (i.e., 
ddnames that the user wishes to substitute 
for the standard ones of SYSIN, SYSPRINT, 
SYSPUNCH, SYSLIN, SYSUT1, and SYSUT2. 

COMPILER OPTIONS: To determine the options 
specified for the compilation and to inform 
the various compiler phases of these 
options, the FSD scans and analyzes the 
storage area containing their images and 
sets indicators to reflect the ones 
specified. These indicators are placed 
into the communication table -- IEKAAA (see 
Appendix A, RCommunication TableR) during 
data field initialization. The various 
compiler phases have access to the 
communication table and, from the 
indicators contained in it, can determine 
which options have been selected for the 
compilation. 

SUBSTITUTE DDNAMES: If the user wishes to 
substitute ddnames for the standard ones, 
the FSD must establish a correspondence 
between the DD statements having the 
substitute ddnames and the DCBs (Data 
Control Blocks) associated with the ddnames 
to be replaced. To establish this 
necessary correspondence, the FSD scans the 
storage area containing the substitute 
ddnames, and enters each such ddname into 
the DCBDDNM field of the DCB associated 
with the standard ddname it is to replace. 

Storage Acquisition 

The FSD issues GETMAIN's to obtain main 
storage for work and table areas the 
compiler will need. Usually, the FSD 
acquires the entire remaining region (MVT), 
partition (MFT), or machine (PCP). 
However, if the user has included a SIZE 
parameter on his EXEC card, the FSD 
acquires main storage equal (approximately) 
to this figure minus compiler code size. 



Data Field Initialization 

Data field initialization affects the 
communication table, which is a central 
gathering area used to communicate 
information among the phases of the 
compiler. The table contains information 
such as: 

• User specified options. 

• Pointers indicating the next available 
locations within the various storage 
areas. 

• Pointers to the initial entries in the 
various types of chains (see "Appendix 
A, Information Table" and "Appendix B, 
Intermediate Text"). 

• Name of the source module being 
compiled. 

• An indication of the phase currently in 
control. 

The various fields of the communication 
table, which are filled during a 
compilation, must be initialized before the 
next compilation. To initialize this 
region, the FSD clears it and places the 
option indicators into the fields reserved 
for them. 

PHASE LOADING 

The FSD loads and passes control to each 
phase of the compiler by means of a 
standard calling sequence. The execution 
of the call causes control to be passed to 
the overlay supervisor, which calls program 
fetch to read in the phase. Control is 
then returned to the overlay supervisor, 
which branches to the phase. The phases 
are called for execution in the following 
sequence: phase 10, phase 15, phase 20, 
and phase 25. However, if errors are 
detected by previous phases, phase 30 is 
called after the completion of phase 25 
processing. 

STORAGE DISTRIBUTION (CHART 02) 

Phases 10, 15, and 20 require main 
storage space in which to construct the 
information table (see Appendix A, 
"Information Table") and to collect 
intermediate text entries. These phases 
obtain this storage space by submitting 
requests to the FSD (at entry point 
IEKAGC), which allocates the required 

space, if available, and returns to the 
requesting phase pointers to both the 
beginning and end of the allocated storage 
space. 

Phase 10 Storage 

Phase 10 can use all of the available 
storage space for building the information 
table and for collecting text entries. At 
each phase 10 request for main storage in 
which to collect text entries or build the 
information table, the FSD reallocates a 
portion (i.e., a subblock) of the storage 
for text collection, and returns to phase 
10 either via the communication table or 
the storage area Pl0A-IEKCAA (depending 
upon the type of text to be collected in 
the subblock; see Appendix B, "Phase 10 
Intermediate Text") pointers to both the 
beginning and end of the allocated storage 
space. If the subblock is allocated for 
phase 10 normal text or for the information 
table, the pointers are returned in the 
communication table. If the subblock is 
allocated for a phase 10 text type other 
than normal text, the pointers are returned 
via the 'storage area Pl0A-IEKCAA. After 
the storage has been allocated, the FSD 
adjusts the end of the information table 
downward by the size of the allocated 
subblock. This process is repeated for 
each phase 10 request for main storage 
space. 

Subblocks to contain phase 10 text or 
di.ctionary entries are allocated in the 
order in which requests for main storage 
are received. (When phase 10 completely 
fills one subblock with text entries, it 
requests another.) A request for a 
subblock to contain a particular type of 
entry may immediately follow a request for 
a subblock to contain another type of 
entry. Consequently, subblocks allocated 
to contain the same type of entries may be 
scattered throughout main storage. The FSD 
must keep track of the subblocks so that, 
at the completion of phase 10 processing, 
unused or unnecessary storage may be 
allocated to phase 15. 

Phase 15 Stora~ 

Phase 15, in collecting the text or 
dictionary entries that it creates, can use 
only those portions of main storage that 
are (1) unused by phase 10, or (2) occupied 
by phase 10 normal text entries that have 
been processed by phase 15. The FSD first 
allocates all unused storage (if necessary) 
to phase 15. If this is not sufficient, 

Section 2: Discussion of Major Components 15 



the FSD then allocates the storage occupied 
by phase 10 normal text entries that have 
undergone phase 15 processing. If either 
of these methods of storage allocation 
fails to provide enough storage for phase 
15, the compilation is terminated. 

Pointers to both the beginning and end 
of the allocated subblock portion are 
passed to phase 15 via the communication 
table. If an additional request is 
received after the last subblock portion is 
allocated, the FSD determines the last 
phase 10 normal text entry that was 
processed by phase 15. The FSD then f+ees 
and allocates to phase 15 the portion of 
storage occupied by phase 10 normal text 
entries between the first such text entry 
and the last entry processed by phase 15. 

Phase 15 Sto.rage Inventory: After the 
processing of PHAZ15, the first segment of 
phase 15, is completed, the FSD recovers 
the subblocks that were allocated to phase 
10 normal text. These subblocks are 
chained as extensions to the storage space 
available at the completion of PHAZ15 
processing. The chain, which begins in the 
FSD pointer 'table, connecting the various 
available portions of storage is scanned 
and when a zero pointer field is 
encountered, a pointer to the first 
subblock allocated to phase 10 normal text 
is placed into that field. The chain 
connecting the various subblocks allocated 
to phase 10 normal text is then scanned and 
when a zero pointer field is encountered, a 
pointer to the first subblock allocated to 
SF skeleton 'text is placed into that field. 
Once the subblocks are chained in this 
manner, they are available for allocation 
to CORAL, the second segment of phase 15, 
and to phase 20. 

After the processing of CORAL is 
completed, the FSD likewise recovers the 
subblocks allocated for phase 10 special 
text. The chain connecting the various 
portions of available storage space is 
scanned and when a zero pointer field is 
encountered, a pointer to the first 
subblock allocated for phase 10 special 
text is placed into that field. After the 
subblocks allocated for phase 10 special 
text are linked into the chain as described 
above, they, as well as all other portions 
of storage space in the chain, are 
available for allocation to phase 20. 

Phase 20 Storage 

Each phase 20 request for storage space 
is satisfied with a portion of storage 
available at the completion of CORAL 
processing. The portions of storage are 

16 

allocated to phase 20 in the order in which 
they are chained. Pointers to both the 
beginning and end of the storage allocated 
to phase 20 for each request are placed 
into the communication table. 

INPUT/OUTPUT REQUEST PROCESSING 

The FSD routine IEKFCOMH receives the 
input/output requests of the compiler 
phases and submits them to QSAM (Queued 
Sequential Access Method) for 
implementation (see the publication IBM 
System/360 Operating System: sequentral 
Access Methods, Program Loqic Manual, Form 
Y28-6604). 

Request Format 

Phase requests for input/output services 
are made in the form of READ/WRITE 
statements requiring a FORMAT statement. 
The format codes that can appear in the 
FORMAT statement associated with such 
READ/WRITE requests are a subset of those 
available in the FORTRAN IV language. The 
subset consists of the following codes: I~ 
(output only), T~, A~, ~X, ~H, and Z~ 
(output only>. 

Request Processing 

To process input/output requests from 
the compiler phases, the FSD performs a 
series of operations, which are a subset of 
those carried out by the IEKFCOMH/IEKFIOCS 
Library routines to implement sequential 
READ/WRITE statements requiring a format. 

GENERATION OF INITIALIZATION INSTRUCTIONS 

The FSD subroutine IEKTLOAD works with 
STALL to generate the machine instructions 
for entry into a program. These 
instructions are referred to as 
initialization instructions and are divided 
into three catagories: 

• Entry coding for a main program. 

• Entry coding for subprograms with no 
secondary entry points. 

• Main entry coding for subprograms with 
secondary entry points. 



Once generated, these instructions are 
entered into TXT records (see "Phase 25, 
Text Information" for a discussion of TXT 
records). 

Entry Coding for a Main Program 

The initialization instructions 
generated by subroutine IEKTLOAD for a main 
program perform the following functions: 

• Branch past the eight-byte name field 
to the store multiple instruction. 

• Save the contents of registers 14 
through 12 in the save area of the 
calling program. 

• Load the address of the prologue into 
register 2 and the address of the save 
area into register 3. 

• store the location of the called 
program's save area into the third word 
of the calling program's save area. 

• Store the location of the calling 
program's save area into the second 
word of the called program's save area. 

• Branch to the prologue. (For an 
explanation of prologue and epilogue, 
see "Phase 25, Prologue and Epilogue 
Generation.") 

The prologue instructions perform the 
following functions: 

• Load register 12, if register 12 is 
used. 

• Load register 15 for the following call 
to IBCOM. 

• Call IBCOM for main program 
initialization. 

• Load register 13 with the address of 
the called program's save area. 

• Branch to the first instruction in the 
body of the program. 

Entry Coding for Subprograms with No 
Secondary Entry Points 

The initialization instructions 
generated by subroutine IEKT.LOAD for the 
entry points into a subprogram with no 
secondary entry points perform the 
following functions: 

• Branch past the eight-byte name field 
to the store multiple instruction. 

• Save the contents of general registers 
14 through 12 in the save.area of the 
calling program. 

• Load the address of the calling 
program's save area into register 4. 

• Load the address of the prologue into 
register 12 and the address of the save 
area into register 13. 

• Store the location of the calling 
program's save area into the second 
word of the called program's save areaM 

• Store the location of the called 
program's save area into the third word 
of the calling program's save area. 

• Branch to the prologue. (For an 
explanation of prologue and epilogue, 
see "Phase 25, Prologue and Epilogue 
Generation.") 

The prologue instructions perform the 
following functions: 

• Initialize call by value arguments (if 
any) and also initialize adcons for 
call by name arguments (if any). 

• Branch to the first instruction in the 
body of the called program. 

Main Entry Coding for ~ubp~2g£~ms ~ith 
secondary Ent~ Points 

The initialization instructions 
generated by subroutine IEKTLOAD for the 
main entry point into a subprogram with 
secondary entry points perform the 
following functions: 

• Branch past the eight-byte name field 
to the store multiple instruction. 

• Save the contents of registers 14 
through 12 in the save area of the 
calling program. 

• Load the address of the prologue into 
register 2 and the address of the 
epilogue into register 3. 

section 2: Discussion of Major Components 17 



• Load the~ locat~ion of the calling 
program's save area into register 4. 

• Load the- locat~ion of the called 
program's SaVE! area into register 13. 

• store the address of the epilogue into 
the first word of the called program's 
save are~a and the location of the 
calling progra.m's save area into the 
second word of the called program's 
save area. 

• Store the liocation of the called 
program's save area into the third word 
of the calling program's save area. 

• Branch to the prologue. 

The main entry prologue instructions 
(generated by phase 25) perform the same 
functions described previously under "Entry 
Coding for Subprograms with No Secondary 
Entry Points." 

Subprogram secondary Entry Codi~ 

This coding is generated entirely by 
phase 25 but is mentioned here for 
completeness. The requirements of 
secondary entry coding are essentially the 
same as main entry coding. For this reason 
many of the main entry instructions are 
used by phase 25 through an unconditional 
branch into that section of code. Main 
entry instructions that precede and include 
the instruction which loads the prologue 
and epilogue addresses cannot be used, 
since each secondary entry point has its 
own associated prologue and epilogue. 
Therefore, secondary entry instructions 
perform the following functions: 

• Branch past the eight-byte name field 
to the store multiple instruction. 

• Save the contents of registers 14 
through 12 in the save area of the 
calling program. 

• Load the address of the prologue into 
register 2 and the address of the 
epilogue into register 3. 

• Load register 15 with the address of 
the instruction in the main entry 
coding that loads register 4. 

• Branch into the main entry coding. 

The secondary entry prologue 
instructions (generated by phase 25) 
perform the same functions described 
previously for subprogram main entry 
coding, except that the branch is directed 

18 

to the desired entry point in the body of 
the called program rather than the first 
instruction. 

Subprogram secondary entry coding does 
not occupy storage within the 
"Initialization Instructions" section of 
text information. That section is reserved 
for: 

• Main program entry coding, if the 
source module being compiled is a main 
program. 

• Subprogram main entry coding, if a 
subprogram is being compiled. 

The secondary entry coding is generated for 
each occurrence of an ENTRY statement, 
followed immediately by its associated 
prologue and epilogue. Secondary entry 
coding follows the main prologue and 
epilogue which, in turn, follow the main 
body of the program. For each additional 
secondary entry point, equivalent 
instructions will be generated. 

DELETION OF A COMPILATION 

The FSD deletes a compilation if an 
error of error level code 16 (see the 
publication IBM System/360 Operating 
System: FORTRAN IV (G and H) Programmer's 
Guide, Form C28-6817) is detected during 
the execution of a processing phase. 

The phase detecting the error passes 
control to the FSD at entry point 
SYSDIR-IEKAA9. If the error was detected 
by phase 10, the FSD deletes the 
compilation by having phase 10 read records 
<without process- ing them) until the END 
statement is encountered. If the error was 
encountered in a phase other than phase 10, 
the FSD simply deletes the compilation. 

COMPILER TERMINATION 

The FSD terminates compiler processing 
when an end-of-file is encountered in the 
input data stream or when a permanent 
input/output error is encountered. If, 
after the deletion of a compilation or 
after a source module has been completely 
compiled, the first record read by the FSD 
from the SYSIN data set contains an 
end-of-file indicator, control is passed to 
the FSD (at the entry point ENDFILE), which 
t~rminates compiler processing by returning 
control to the operating system. If a 
permanent error is encountered during the 
servicing of an input/output request of a 



phase, control is passed to the FSD (at 
entry point IBCOMRTN), which writes a 
message stating that both the compilation 
and job step are deleted. The FSD then 
returns control to the operating system. 
In either of the above cases, the FSD 
passes to the operating system as a 
condition code the value of the highest 
error level code encountered during 
compiler processing. The value of the code 
is used to determine whether or not the 
next job step is to be performed. 

PHASE 10 

The FSD reads the first record of the 
source module and passes its address to 
phase 10 via the communication table. 
Phase 10 converts each FORTRAN source 
statement into usable input to subsequent 
phases of the compiler; its overall logic 
is illustrated in Chart 03. Phase 10 
conversion produces an intermediate text 
representation of the source statement 
and/or detailed information describing the 
variables, constants, literals, statement 
numbers, data set reference numbers, etc., 
appearing in the source statement. During 
conversion, the source statement is 
analyzed for syntactical errors. 

The intermediate text is a strictly 
defined internal representation (i.e., 
internal to the compiler) of a source 
statement. It is developed by scanning the 
source statement from left to right and by 
constructing operator-operand pairs. In 
this context, operator refers to such 
elements as commas, parentheses, and 
slashes, as well as to arithmetic, 
relational, and logical operators. Operand 
refers to such elements as variables, 
constants, literals, statement numbers, and 
data set reference numbers. An 
operator-operand pair is a text entry, and 
all text entries for the operator-operand 
pairs of a source statement are the 
intermediate text representation of that 
statement. 

The following six types of intermediate 
text are developed by phase 10: 

• Normal text is the intermediate text 
representation of source statements 
other than DATA, NAMELIST, DEFINE FILE, 
FORMAT, and statement functions. 

• Data text is the intermediate text 
representation of DATA statements and 
initialization values in type 
statements. 

• Namelist text is the intermediate text 
representation of NAMELIST statements. 

• Define file text is the intermediate 
text representation of DEFINE FILE 
statements. 

• Format text is the intermediate text 
representation of FORMAT statements. 

• SF skeleton text is the intermediate 
text representation of statement 
functions using sequence numbers as 
operands of the intermediate text 
entries. The sequence numbers replace 
the dummy arguments of the statement 
functions. This type of text is, in 
effect, a "skeleton" macro instruction. 

The various text types are discussed in 
detail in Appendix B, "Intermediate Text." 

The detailed information describing 
operands includes such facts as whether a 
variable is dimensioned (i.e., an array) 
and whether the elements of an array are 
real, integer, etc. such information is 
entered into the information table. 

The information table consists of five 
components, as follows: 

• The dictionary contains information 
describing the constants and variables 
of the source module. 

• The statement number/array table 
contains information describing the 
statement numbers and arrays of the 
source module. 

• The common table contains information 
describing COMMON and EQUIVALENCE 
declarations. 

• The literal table contains information 
describing the literals of the source 
module. 

• The branch table contains information 
describing statement numbers that 
appear in computed GO TO statements. 

A detailed discussion of the information 
table is given in Appendix A, "Information 
Table." 

The intermediate text and the 
information table complement each other in 
the actual code generation by the 
subsequent phases. The intermediate text 
indicates what operations are to be carried 
out on specific operands; the information 
table provides the detailed information 
describing the operands that are to be 
processed. 

Section 2: Discussion of Major Components 19 



SOURCE STATEMENT PROCESSING 

To process source statements, each 
record (one card image) of the source 
module is first read into an input buffer 
by a preparatory subroutine (GETCD-IEKCGC). 
If a source module listing is requested, 
the record is recorded on an output data 
set (SYSPRINT). If both the EDIT option 
and the second level of optimization 
(OPT=2) are selected, the record and some 
control information used by phase 20 to 
produce a structured source listing are 
recorded on the SYSUTl data set. Records 
are moved to an intermediate buffer until a 
complete source statement resides in that 
buffer. Unnecessary blanks are eliminated 
from the source statement, and the 
statement is assigned a classification 
code. A dispatcher subroutine 
(DSPTCH-IEKCDP) det.ermines from the code 
which subroutine is to continue processing 
the source statement. Control is then 
passed to that subroutine, which converts 
the source statement to its intermediate 
text representation and/or constructs 
information table entries describing its 
operands (see Table 7 for a list of the 
subroutines that process each type of 
statement). After the entire source 
statement has been processed, the n~xt 
statement is read and processed as 
described above. The recognition of the 
END statement causes phase 10 to complete 
its processing and return control to the 
FSD, which then calls phase 15 for 
execution. 

The functions of phase 10 are performed 
by six groups of subroutines: 

• Dispatcher subroutine 

• Preparatory subroutine 

• Keyword subroutine(s) 

• Arithmetic subroutine(s) 

• Utility subrout:ine(s) 

• STALL-IEKGST subroutine 

Dispatcher Subroutine 

The dispatcher subroutine 
(DSPTCH-IEKCDP) controls phase 10 
processing. Upon receiving control from 
the FSD, the DSPTCH-IEKCDP subroutine 
initializes phase 10 processing and then 
calls the preparatory subroutine 
(GETCD-IEKCGC) to read and prepare the 
first source statement. After the 

20 

statement is prepared, control is returned 
to DSPTCH-IEKCDP, which determines whether 
or not a statement number is associated 
with the source statement being processed. 
If there is a statement number, the 
XCLASS-IEKDCL subroutine is called to 
construct a statement number entry (see 
Appendix A, "Information Table") and a 
corresponding text entry. DSPTCH-IEKCDP 
then determines, from the classification 
code assigned to the source statement (see 
"Preparatory Subroutine"), which subroutine 
(either keyword or arithmetic) is to 
continue the processing of the statement, 
and passes control to that subroutine. 
When the source statement is completely 
processed, control is returned to the 
DSPTCH-IEKCDP subroutine, which calls the 
preparatory subroutine to read and prepare 
the next source statement. 

Preparatory Subroutine 

The preparatory subroutine 
(GETCD-IEKCGC) reads each source statement, 
records it on the SYSPRINT data set if the 
SOURCE option is selected, and on the 
SYSUT1 data set if the EDIT option and the 
second level of optimization are selected, 
packs and classifies it, and assigns it an 
internal statement number (ISN).1 Packing 
eliminates unnecessary blanks, which may 
precede the first character, follow the 
last character, or be imbedded within the 
source statement. Classifying assigns a 
code to each type of source statement. The 
code indicates to the DSPTCH-IEKCDP 
subroutine which subroutine is to continue 
processing the source statement. A 
description of the classifying process, 
along with figures illustrating the two 
tables (the keyword pointer table and the 
keyword table) used in this process, is 
given in Appendix A, "Classification 
Tables." The ISN assigned to the source 
statement is an internal sequence number 
used to identify the source statement. The 
source statement and classification 
information about the source statement 
reside in the storage areas, NCDIN and 
NCARD of the phase 10 common area, as 
illustrated in Figure 2. 

1Logical IF statements are assigned two 
internal statement numbers. The IF part 
is given the first number and the 
"trailing" statement is given the next. 



NCARD 
r-----------------------------------------, 
IPointer to first character of (1 word) I 
Ipacked source statement beyond I 
Ikeyword1 I 
~-----------------------------------------~ 
IInternal statement number (1 word) I 
I (ISN) I 
~-----------------------------------------~ 
IStatement number indicator (*0 (1 word) I 
lif present; 0 if not present) I 
~-----------------------------------------~ 
IClassification code (1 word) I L _________________________________________ J 

NCDIN 
r-----------------------------------------, 
IStatement number (5 bytes) I 
~-----------------------------------------~ 
IPacked source statement (n bytes) I 
~-----------------------------------------~ 
IGroup mark2 (1 byte) I 
~-----------------------------------------~ 
11 For arithmetic statements and statement I 
I functions, this field points to the firstl 
Icharacter of the packed statement. I 
12 End of statement marker ('4F' in I 
Ihexadecimal). I L _________________________________________ J 

Figure 2. Format of Prepared Source 
statement 

~ord Subroutine(s) 

A keyword subroutine exists for each 
keyword source statement. A keyword source 
statement is any permissible FORTRAN source 
statement other than an arithmetic 
statement or a statement function. The 
function of each keyword subroutine is to 
convert its associated keyword source 
statement (in NCDIN) into input usable by 
subsequent phases of the compiler. These 
subroutines make use of the utility 
subroutines and, at times, the arithmetic 
subroutines in performing their functions. 
To simplify the discussion of these 
subroutines, they are divided into two 
groups: 

1. Those that construct only information 
table entries. 

2. Those that construct information table 
entries and develop intermediate text 
representations. 

Table Entry Subroutines: Only one keyword 
subroutine belongs to this group (see Table 
8). It is associated with a COMMON, 
DIMENSION, EQUIVALENCE, or EXTERNAL keyword 
statement. 

This subroutine scans its associated 
statement (in NCDIN) from left to right and 
constructs appropriate information table 
entries for each of the operands of the 

statement. The types of information table 
en"tries that can be constructed by these 
subroutines are: 

• Dictionary entries for variables and 
external names. 

• Common block name entries for common 
block names. 

• Equivalence group entries for 
equivalence groups. 

• Equivalence variable entries for the 
variables in an equivalence group. 

II Dimension entries for arrays. 

The formats of these entries are given 
in Appendix A, "Information Table." 

Table Entry and Text Subroutines: The 
keyword subroutines, other than the table 
entry subroutine, belong to this group (see 
Table 8). Each of these subroutines 
converts its associated statement by 
developing an intermediate text 
representation of the statement, which 
consists of text entries in 
operator-operand pair format, and 
constructing information table entries for 
the operands of the statement. The 
processing performed by these subroutines 
is similar and is described in the 
following paragraphs. 

Upon receiving control from the 
DSPTCH-IEKCDP subroutine, the keyword 
subroutine associated with the keyword 
statement being processed places a special 
operator into the text area. This operator 
is referred to as a primary adjective code 
and defines the type (e.g., DO, ASSIGN) of 
the statement. A left-to-right scan of the 
source statement is then initiated. The 
first operand is obtained, an information 
table entry is constructed for the operand 
and entered into the information table 
(only if that operand was not previously 
entered), and a pointer to the entry's 
location in that table is placed into the 
text area. The mode (e.g., integer, real) 
and type (e.g., negative constant, array) 
of the operand are then placed into text. 

Scanning is resumed and the next 
operator is obtained and placed into the 
text area. The next operand is then 
obtained, an information table entry is 
constructed for the operand and entered 
into the information table (again, only if 
that operand was not previously entered), 
and a pointer to the entry's location is 
pla.ced into the text entry work area. The 
mode and type of the operand are placed 
into the work area. The text entry is then 
placed into the next available location in 

Section 2: Discussion of Major Components 21 



the subblock allocated for text entries of 
the type being created. 

This process is terminated upon 
recognition of the end of the statement, 
which is marked by a special text entry. 
The special ·text entry contains an end mark 
operator and the ISN of the source 
statement as an operand. 

Note: certain keyword subroutines in this 
group, namely those that process statements 
that can contain an arithmetic expression 
(e.g., IF and CALL statements) and those 
that process statements that contain I/O 
list items (,e. g., READ/WRITE statements), 
pass control to the arithmetic subroutines 
to complete -the processing of their 
associated keyword statements. 

Arithmetic Subroutine(s) 

The arithmetic subroutine or subroutines 
(see Table 8) receive control from the 
DSPTCH-IEKCDP subroutine, or from various 
keyword subroutines. These subroutines 
make use of -the utility subroutines in 
performing their functions, which are to: 

• Process arithmetic statements. 

• Process statement functions. 

• complete the processing of certain 
keyword statements (READ, WRITE, CALL, 
and IF). 

Arithmetic subroutines are processed 
according to their functions, as follows: 

Arithmetic Statement Processing: In 
processing an arithmetic statement, the 
arithmetic subroutines develop an 
intermediate text representation of the 
statement, and construct information table 
entries for its operands. These 
subroutines accomplish this by following a 
procedure similar to that described for 
keyword (table entry and text) subroutines. 

If one operator is adjacent to another, 
the first operator does not have an 
associated operand~ In the example 
A=B(I)+C, the operator + has variable C as 
its associated operand, whereas the 
operator ) has no associated operand. If 
an operator has no associated operand, it 
is assumed that the operand is a zero 
(null) • 

Statement FWlction Processing: In 
converting a statement function to usable 
input to subsequent phases of the compiler, 
the arithmetic subroutines develop an 
intermediate text representation of the 

22 

statement function using sequence numbers 
as replacements for dummy arguments. These 
subroutines also construct information 
table entries for those operands that 
appear to the right of the equal sign and 
that do not correspond to dummy arguments. 
The following paragraphs describe the 
processing of a statement function by the 
arithmetic subroutines. 

When processing a statement function, 
the arithmetic subroutines: 

• Scan the portion of the statement 
function to the left of the equal sign, 
obtain each dummy argument, assign each 
dummy argument a sequence number (in 
ascending order), and save the dummy 
arguments and their associated sequence 
numbers for subsequent use. 

• Scan the portion of the statement 
function to the right of the equal sign 
and obtain the first (or next) operand. 

• Determine whether or not the operand 
corresponds to a dummy argument. If it 
does correspond, its .associated 
sequence number is placed into the text 
area. If it does not correspond, a 
dictionary entry for the operand is 
constructed and entered into the 
information table, and a pointer to the 
entry's location is placed into the 
text area. (An opening parenthesis is 
used as the operator of the first text 
entry developed for each statement 
function and a closing parenthesis is 
used as the operator of the last text 
entry developed for each statement 
function.) 

• Resume scanning, obtain the next 
operator, and place it into the text 
area. 

• Obtain the operand to the right of this 
operator and process it as described 
above. 

Keyword Statement Completion: In addition 
to processing arithmetic statements and 
statement functions, the arithmetic 
subroutines also complete the processing of 
keyword statements that may contain 
arithmetic expressions or that contain I/O 
list items. The keyword subroutine 
associated with each such keyword statement 
performs the initial proce'ssing of the 
statement, but passes control to the 
arithmetic subroutines at the first 
possible occurrence of an arithmetic 
expression or an I/O list item. (For 
example, the keyword subroutine that 
processes CALL statements passes control to 
the arithmetic subroutines after it has 
processed the first opening parenthesis of 
the CALL statement, because the argument 



that follows this parenthesis may be in the 
form of an arithmetic expression.) The 
arithmetic subroutines complete the 
processing of these keyword statements in 
the normal manner. That is, they develop 
text entries for the remaining 
operator-operand pairs and construct 
information table entries for the remaining 
operands. 

Utility Subroutine(s) 

The utility subroutines (see Table 8) 
aid the keyword, arithmetic, and 
DSPTCH-IEKCDP subroutines in performing 
their functions. The utility subroutines 
are divided into the following groups: 

• Entry placement subroutines. 
• Text generation subroutines. 
• Collection subroutines. 
• Conversion subroutines. 

Entry Placement Subroutines: The utility 
subroutines in this group place the various 
types of entries constructed by the 
keyword, arithmetic, and DSPTCH-IEKCDP 
subroutines into the tables or text areas 
(i.e., subblocks) reserved for them. 

Text Generation Subroutines: The utility 
subroutines in this group generate text 
entries (supplementary to those developed 
by the keyword and arithmetic subroutines) 
that: 

• Control the execution of implied DOs 
appearing in input/output statements. 

• Increment DO indexes and test them 
against their maximum values. 

• Signify the end of a source statement. 

Collection Subroutines: These utility 
subroutines perform such functions as 
gathering the next group of characters 
(i.e., a string of characters bounded by 
delimiters) in the source statement being 
processed, and aligning variable names on a 
word boundary for comparison to other 
variable names. 

Conversion Subroutines: These utility 
subroutines convert integer, real, and 
complex constants to their binary 
equivalents. 

Subroutine STALL-IEKGST (Chart 04) 

The STALL-IEKGST subroutine completes 
phase 10 processing by: 

• Generating entry code for the object 
module. 

• Translating phase 10 format text into 
object code for the object module and 
freeing space formerly occupied by the 
format text. 

• Checking to see if any literal data 
text exists and, if it does, generating 
object code for the literal data text. 

• Processing a~y equivalence entries that 
were equivalenced before being 
dimensioned. 

• setting aside space in the object 
module for the problem program save 
area and for c.omputed GO TO statement 
branch tables created by phase 10. 

• Checking the statement number section 
of the information table for undefined 
statement numbers. 

• Rechaining variables in the dictionary 
by sorting alphabetically the entries 
in each chain. 

• Assigning coordinates based on the 
usage count set by phase 10 when the 
OPT option is greater than zero. 

• Processing common entries in the 
information table by computing the 
displacement of each variable in the 
common block from the start of the 
common block. 

• Processing equivalence entries in the 
information table. 

Generating FORMAT Code: If the source 
module contains READ/WRITE statements 
requiring FORMAT statements, the associated 
phase 10 format text must be put into a 
form recognizable by the IHCFCOMH Library 
routine. The STALL-IEKGST subroutine calls 
subroutine FORMAT-IEKTFM which develops the 
necessary format by obtaining the phase 10 
intermediate text representation of each 
FORMAT statement, and translating each 
element (e.g., H format code and field 
count) of the statement according to Table 
1. The FORMAT-IEKTFM subroutine enters the 
translated statement along with its 
relative address into TXT records. It also 
inserts the relative address of the 
translated statement into the address 

Section 2: Discussion of Major Components 23 



Table 1. FORMAT Statement Translation 

r-------------------T----------------------------T--------------------------------------, I I I Translated Format (in hexadecimal) I 
I FORMAT I ~------------T------------T------------~ 
I specification I Description I 1st byte I 2nd byte I 3rd byte I 
~-----------------·--+----------------------------f------------f------------t------------~ 

beginning of statement 02 I 
n( group count 04 n I 
n field count 06 n I 
nP 
Fw.d 
Ew.d 
Dw.d 

scaling factor 08 n* I 
F-conversion OAw I d 

d 
d 

E-conversion OC w I 
D-conversion OE w I 

Iw I-conversion 10 w I 
Tn column set 12 n I 
Aw A-conversion 14 w I 
Lw L-conversion 16 w I 
nX 
nHtext 

skip or blank 18 n I 

or 
'te'xt' 
) 

/ 
Gw.d 

literal data 

group end 
record end 
G-conversion 
end of statement 

1A 

1C 
1E 
20 
22 

n 

w 

I 
I 
I 
I 
1 
I 
I 

text 

d 

Zw Hexadecimal conversion 24 w I 
~-----------,--------~----------------------------~------------~------------~------------~ 
I*The first hexadecimal bit of the byte indicates the scale factor sign (0 if positive, I 
I 1 if negat,ive). The next seven bits contain the scale factor magnitude. I L _______________________________________________________________________________________ J 

constant for the statement number 
associated with the FORMAT statement. 

Processi~~guivalence Entrie~: The 
STALL-IEKGST subroutine completes the 
processing of any equivalence entries in 
the information table that were not 
completed by prior routines in phase 10. 
These equivalence entries are the ones that 
were equivalenced before being dimensioned. 
The STALL-IEKGST subroutine computes 
displacements for each variable in the 
equivalence group. 

Proces~!g~itera! constants Used as 
Arguments: The S'l'ALL- IEKGST subroutine 
checks a pointer i.n the communication table 
(NPTR (1,27» to see whether or not there 
are literal constants to process. If there 
are, the STALL-IEKGST subroutine calls 
IEKTLOAD and passes to it the location and 
length of the literal string that is used 
by the IEKTLOAD subroutine to generate 
literal text in the object module. All 
literal constants used as arguments are put 
on a double word boundary. 

The STALL-IEKGST subroutine follows the 
chain in the literal constant dictionary 

24 

entry and continues to call subroutine 
IEKTLOAD to process this text. After all 
the literal data text has been generated, 
the STALL-IEKGST. subroutine adjusts the 
location counter by the amount of text 
generated. Literals used in DATA 
statements are not chained, and are not 
processed until CORAL is invoked. 

Reserving Space for the Save Area: The 
STALL-IEKGST subroutine sets aside 16 bytes 
for the save area of the program being 
compiled. 

Space in the object module for branch 
tables created by phase 10 for computed GO 
TO statements is also reserved by the 
STALL-IEKGST subroutine. 

Checking for Undefined Statement Numbers: 
The STALL-IEKGST subroutine performs a 
dictionary scan for undefined statement 
numbers. This action is taken to ensure 
that every statement number that is 
referred to is also defined. The 
STALL-IEKGST subroutine scans the chain of 
statement number entries in the information 
table (see Appendix A: "Statement 
Number/Array Table") and examines a bit in 
the byte A usage field of each such entry. 
This bit is set by phase 10 to indicate 
whether or not it encountered a definition 



of that statement number. If the bit 
indicates that the statement number is not 
defined, the STALL-IEKGST subroutine places 
an entry in the error table for later 
processing by phase 30. 

Rechaining Entries for Variables: The 
STALL-IEKGST subroutine scans dictionary 
entries for variables. Previously executed 
routines in phase 10 sorted each variable 
chain alphabetically and left the pOinter 
at the mid-item of the chain (for 
dictionary search speed). The STALL-IEKGST 
subroutine resets the pointer to the first 
(alphabetically lowest) item in the chain. 
The rechaining frees storage in each entry 
for later use by CORAL in phase 15. It 
then sets the adcon field of each 
dictionary entry for a variable to zero. 
The STALL-IEKGST subroutine also constructs 
dictionary entries for the imaginary parts 
of complex variables and constants. 

Assigning Coordinates: The STALL-IEKGST 
subroutine calls subroutine IEKKOS which 
assigns coordinates to variables and 
constants in the following manner: 

• The first 59 unique variables and/or 
constants that appear in the text 
created by phase 10 are assigned 
coordinates 2 through 60, 
respectively.~ The coordinates are 
assigned in order of increasing 
coordinate number. (A coordinate 
between 2 and 60 may be assigned to a 
base variable if fewer than 59 unique 
variables and constants appear in the 
text. ) 

• The next 20 unique variables are 
assigned coordinates 61 through 80, 
respectively. The coordinates are 
assigned in order of increasing 
coordinate number. (If constants are 
encountered after coordinate 60 has 
been assigned, they are not assigned 
coordinates.> 

• The coordinates 81 through 128 are 
reserved for assignment to base 
variables (see "Adcon and Base Variable 
Assignment" under "CORAL Processing"). 

Subroutine IEKKOS assigns to the first 
variable or constant in phase 10 text a 
coordinate number of 2, which indicates 
that the usage information for that 
variable or constant, regardless of the 

~The coordinate 1 is assigned to items such 
as unit numbers (i.e., data set reference 
numbers), complex variables in COMMON, 
arrays that are equivalenced, variables 
that are equivalenced to arrays, and 
variables that are equivalenced to 
variables of different modes. 

block in which it appears, is to be 
recorded in bit position 2 of the MVS, MVF, 
and MVX fields. The IEKKOS subroutine 
assigns to the second variable or constant 
a coordinate number of 3 and records its 
usage information in bit position 3 of the 
three fields. subroutine IEKKOS continues 
this process until coordinate 60 has been 
assigned to a variable or constant. When 
coordinate number 60 has been assigned, the 
IEKKOS subroutine only assigns coordinates 
to the next 20 unique variables. 
Subroutine IEKKOS does not assign 
coordinates to or gather usage information 
for unique constants encountered after 
coordinate number 60 has been assigned. It 
assigns these variables coordinates 61 
through 80, 
respectively. It records the usage 
information for each variable at the 
assigned bit location in the three fields. 
The IEKKOS subroutine does not assign 
coordinates to or gather usage information 
for unique variables encountered after 
coordinate number 80 has been assigned. 

Subroutine IEKKOS uses a combination of 
the MCOORD vector, the MVD table, and the 
byte-C usage fields of the dictionary 
entries (see Appendix A, "Dictionary") to 
assign, keep track of, and record 
coordinate numbers. The MCOORD vector 
contains the number of the last coordinate 
assigned. The MVD table is composed of 128 
entries, with each entry containing a 
pointer to the dictionary entry for the 
variable or constant to which the 
corresponding coordinate number is assigned 
or to the information table entry for the 
base variable to which the corresponding 
coordinate is assigned. The coordinate 
number assigned to a variable or constant 
is recorded in the byte-C usage field of 
the dictionary entry for that variable or 
constant. 

Subroutine IEKKOS does not assign 
coordinates to or record usage information 
for unique constants encountered in text 
aftE:!r coordinate number 60 has been 
assigned and unique variables encountered 
in text after coordinate number 80 has been 
assigned. If subroutine IEKKOS encounters 
a new constant after coordinate 60 has been 
assigned or a new variable after coordinate 
80 has been assigned, it records a zero in 
the byte-C usage field of its associated 
dictionary entry. Phase 20 optimization 
deals only with those constants and 
variables that have been assigned 
coordinate numbers greater than or equal to 
2 and less than or equal to 80. 

Processing Common Entries in the 
Information Table: The STALL-IEKGST 
subroutine processes common entries in the 
information table. It computes the 
displacements of variables and arrays from 

Section 2: Discussion of Major Components 25 



the start of the common block that contains 
them and calculates the total size in bytes 
of each comnlon block. Subroutine 
STALL-IEKGST records the displacements in 
the dictionary entries for the variables 
and the block size in the common table 
entry for the name of the common block. 
The displacements are used later to assign 
relative addresses to common variables. 
The block size is used by phase 25 to 
generate a control section for the common 
block (see Appendix A: "Common Table"). 
The STALL-IF..KGST subroutine also places a 
pointer to t:.he common table entry for the 
block name in the dictionary entry for each 
variable or array in that common block. 

Processing Eguivalence Entries in the 
Information Table:: Subroutine STALL-IEKGST 
gathers additional information about 
equivalence groups and the variables in 
them. It computes a group headi.. and the 
displacement) of each variable in the group 
from this head. It records this 
information in the common table entries for 
the group and for the variables, 
respectively (see Appendix A: "Common 
Table"). Subroutine STALL-IEKGST 
identifies and flags in their dictionary 
entries variables and arrays put into 
common via the EQUIVALENCE statement. It 
also checks the variables and arrays for 
errors to verify that the associated common 
block has not been improperly extended 
because of the EQUIVALENCE declaration. If 
a common block is legitimately enlarged by 
an equivalence operation, the STALL-IEKGST 
subroutine recomputes the size of the 
common block and enters the size into the 
common table entry for the name of the 
common block. 

If the name of a variable or array 
appears in more than one equivalence group, 
subroutine STALL-IEKGST recognizes the 
combination of groups and modifies the 
dictionary entries for the variables to 
indicate the equivalence operations. The 
STALL-IEKGST subroutine checks arrays that 
appear in more than one equivalence group 
to verify that conflicting relationships 
have not been established for the array 
elements. 

During the processing of both common and 
equivalence information, a check is made to 
ensure that variables and arrays fallon 
boundaries appropriate to their defined 
types. If a variable or array is 
improperly aligned, subroutine STALL-IEKGST 
places an entry in the error table for 
processing by phase 30. 

i..The head of an equivalence group is that 
variable in the group from which all other 
variables or arrays in the group can be 
addressed by a positive displacement. 

26 

CONSTRUCTING A CROSS REFERENCE 

If the XREF option is selected, a 
two-part cross reference is constructed and 
written on the SYSPRINT data set 
immediately following the source listing. 
The first part of the cross reference is a 
list of all symbols used by the program and 
the ISNs of the statements in which each 
symbol appears. The symbols are written in 
alphabetic order and grouped by character 
length, first one-character symbols in 
alphabetic order, then two-character 
symbols in alphabetic order, etc. The 
second part of the cross reference is a 
sequential list of the statement numbers 
used on the program each followed by the 
ISN of the statement in which the statement 
number is defined and also by a list of the 
ISNs of statements that refer to the 
statement number. 

XREF processing occurs during phase 10 
and in a small separate overlay segment 
between phases 10 and 15. This segment, 
XREF-IEKXRF, is called only if the XREF 
option is selected. 

Phase 10 Preparation for XREF Processing 

If the XREF option is chosen, phase 10 
subroutines LABTLU-IEKCLT and CSORN-IEKCCR 
perform additional processing for statement 
numbers and symbols. Also, phase 10 
subroutine IEKXRS, which is not used unless 
the XREF option is chosen, is called. 

The LABTLU-IEKCLT subroutine fills the 
adcon table, which is used as an XREF 
buffer, with XREF entries for statement 
number definitions and statement number 
references. The format of an XREF entry 
for statement numbers and symbols is: 

<--------~-------4 bytes------------------> 
r-------------------T---------------------, 
IPointer to next I I 
IXREF entry. I ISN I L ___________________ ~ _____________________ J 

• Relative to the beginning of the buffer. 

Each time the buffer is full, the 
LABTLU-IEKCLT subroutine calls IEKXRS to 
write the buffer on SYSUT2. (The contents 
of SYSUT2 is later read in by subroutine 
XREF-IEKXRF and processed to produce a 
cross reference.> A count of the number of 
times the buffer is written out is kept in 
the communication table NPTR (2,20). Each 
time it finishes writing the buffer on 
SYSUT2, subroutine IEKXRS returns control 
to the LABTLU-IEKCLT subroutine. 



Subroutine LABTLU-IEKCLT uses parts of 
the dictionary entries for statement 
numbers as pointers to keep track of its 
processing. It also adds a word (word 9) 
to each statement number dictionary entry 
to be used as a sequence chain field so 
that subroutine XREF-IEKXRF can create a 
sequential list of statement numbers used 
in the program. 

The words used by the LABTLU-IEKCLT 
subroutine in dictionary entries for 
statement numbers are: 

Word 5 - A pointer to the most recent 
statement number entry in the 
adcon table (XREF buffer) if the 
statement number reference being 
processed by subroutine 
LABTLU-IEKCLT is not a definition 
of a statement number. Word 5 is 
not used for statement number 
entries that correspond to 
definitions of statement numbers. 

Word 6 - Bytes 1 and 2 -- The number of 
times the XREF buffer has been 
written on SYSUT2 at the time the 
statement number entry is 
processed by subroutine 
LABTLU-IEKCLT. 

Bytes 3 and 4 -- A pointer to the 
first XREF buffer entry for the 
statement number. 

Word 7 - Contains an ISN if the reference 
is to a de£inition of a statement 
number; contains -1 if the 
statement number has been 
previously defined. 

Word 9 - Statement·number sequence chain 
field. 

The CSORN-IEKCCR subroutine processes 
symbols for XREF much the same way as sub
routine LABTLU-IEKCLT processes statement 
numbers. However, for symbols, no 
processing is required for definitions and 
there is no sequencing. 

The CSORN-IEKCCR subroutine adds one 
word to the dictionary entries for 
variables making a total of ten words in 
each entry. Word 10 for a variable entry 
is used in the same way as word 6 for a 
statement number entry. The first half of 
word 10 indicates the number of times the 
buffer has been written on SYSUT2 at the 
time the variable entry is processed by 
subroutine CSORN-IEKCCR. The second half 
of word 10 contains a pointer to the first 
XREF buffer entry for the symbol. The 
first half of word 8 is used as a pointer 

to the last (most recent) XREF buffer entry 
for the symbol. 

Subroutine IEKXRS is also used during 
symbol processing to write the XREF buffer 
out on SYSUT2 whenever the buffer becomes 
full. 

XREF Processing 

If the XREF option is selected, the FSD 
calls the XREF-IEKXRF subroutine after the 
completion of subroutine STALL-IEKGST 
processing and before phase 15. The 
XREF-IEKXRF subroutine is a separate 
overlay segment that overlays phase 10 and 
is overlaid by phase 15. 

Subroutine XREF-IEKXRF reads from SYSUT2 
all buffers that were written out by IEKXRS 
during subroutine LABTLU-IEKCLT and 
subroutine CSORN-IEKCCR processing. It 
then sets up linkage between buffers for 
the symbol or statement number to create 
one sequential chain of lSNs and writes out 
the symbol or statement number with its 
ISNs on SYSPRINT. This process continues 
until all symbols and statement numbers 
with their ISNs are written on SYSPRINT. 
Control is then returned to the FSD that 
calls phase 15. 

PHASE 15 

Before phase 15 gains control, phase 10 
has read the source statements, built the 
information table, and restructured the 
source statements into operator-operand 
pairs. When given control, phase 15 
translates the text of arithmetic 
expressions, gathers information about 
branches and variables, converts phase 10 
data text to a new text format, assigns 
relative addresses to constants and 
variables, and generates address constants 
when needed, to serve as address 
references. Thus, phase 15 modifies and 
adds to the information table and 
translates phase 10 normal and data text to 
their phase 15 formats. 

Phase 15 is divided into two overlay 
segments, PHAZ15, and CORAL. Chart 05 
shows the overall logic of the phase. 
Table 9 is a directory of all the 
subroutines used by phase 15. 

PHAZ15 translates and reorders the text 
entries for arithmetic expressions from the 
operator-operand format of phase 10 to a 
four-part format suitable for phase 20 
processing. The new order permits phase 25 

Section 2: Discussion of Major Components 27 



to generate machine instructions in the 
correct sequence. PHAZ15 blocks the text 
and collects information describing the 
blocks. The information, needed during 
phase 20 opt.imization, includes tables on 
branching locations and on constant and 
variable usage. 

CORAL, the second overlay segment of 
phase 15, performs a number of functions. 
It first converts phase 10 data text to a 
form more eas ily E~valuated by subroutine 
DATOUT-IEKTDT. CORAL then assigns relative 
addresses to all variables, constants, and 
arrays. During OIle phase of relative 
address assignment, CORAL rechains phase 15 
data text in order to simplify the 
generation of text card images by 
subroutine DATOUT-IEKTDT. CORAL also 
assigns address constants, when needed, to 
serve as address references for all 
operands. 

PHAZ15 PROCESSING 

The funct:ions of PHAZ15 are text 
blocking, arithmetic translation, 
information gathering, and reordering of 
the statement number chain. Information 
gathering occurs only if optimization 
(either intermediat~ or complete) has been 
selected; it takes;place concurrently with 
text blocking and arithmetic translation 
during the same scan of intermediate text. 
Reordering of the statement number chain 
occurs after PHAZ:l5 has completed the 
blocking, arithmetic translation, and 
information gathering. 

PHAZ15 divides intermediate text into 
blocks for convenience in obtaining 
information from the text. Each block 
begins with a statement number definition 
and ends with the text entry just preceding 
the next statement number definition. An 
attempt is made to limit blocks to less 
than 80 text items as an aid to register 
routines in phase 20. PHAZ15 records 
information describing a text block in a 
statement number text entry and in an 
information table statement number entry. 

During the same scan of text in which 
blocking occurs, PHAZ15 translates 
arithmetic expressions. The conversion is 
from the operation-operand pairs of phase 
10 to a four-part format (phase 15 text). 
The new fonnat follows the sequence in 
which algebraic operations are performed. 
In general, phase 15 text is in the same 
order in which phase 25 will generate 

28 

machine instructions. 1 PHAZ15 copies, 
unchanged (except for rearrangement) into 
the text area, phase 10 text that does not 
require arithmetic translation or other 
special handling. 

During the building of phase 15 text for 
a given block (if optimization has been 
selected), PHAZ15 constructs tables of 
information on the use of constants and 
variables in that text block. It stores 
information on variables and constants that 
are used within a block, and variables that 
are defined within a block. If complete 
optimization has been selected, PHAZ15 also 
gathers information on variables not first 
used and then defined. The foregoing usage 
information is recorded in the statement 
number text for each block for later use by 
phase 20. 

Concurrently with text blocking, 
arithmetic translation, and gathering of 
constant/variable usage information, PHAZ15 
discovers branching text entries and 
records the branching or connection 
information. This information, consisting 
initially of a table of branches from each 
text block (forward connections), is stored 
in a special array. Branching (connection) 
information is used during phase 20 
optimization. 

After PHAZ15 has completed the 
previously mentioned processing, it 
reorders the statement number chain of the 
information table. The original sequence 
of statement numbers, as phase 10 recorded 
them, was in the order of their occurrence 
in source statements as either definitions2 
or operands. Phase 15 reorders the 
statement numbers in the same sequence as 
they appeared as definitions in the source 
program. The new sequencing is established 
to facilitate phase 20 processing. 

Last, PHAZ15 acquires a table of 
backward connection information consisting 
of branches into each statement number or 
text block. PHAZ15 derives this 
information from the forward connection 
information it previously obtained. Thus, 
connection information is of two types, 
forward and backward. PHAZ15 records a 
table of branches from each text block and 
a table of branches into each text block. 
Connection information of both types is 
used during phase 20 optimization. 

1If optimization is selected, phase 20 may 
further manipulate the phase 15 text. 

2A statement number occurs as a definition 
when that statement number appears to the 
left of a source statement. 



Charts 06, 07, and 08 depict the flow of 
control during PHAZ15 execution. Table 10 
lists the COMMON areas of phase 15. 

Text Blocking 

During its scan and conversion of phase 
10 text, PHAZ15 sections the module into 
text blocks, which are the basic units upon 
which the optimization and register 
assignment processes of phase 20 operate. 
A text block is a series of text entries 
that begins with the text entry for a 
statement number and ends with the text 
entry that immediately precedes the text 
entry for thenext statement number. (The 
statement number may be either programmer 
defined or compiler generated.) When 
PHAZ15 encounters a statement number 
definition (i.e., the phase 10 text entry 
for a statement number), it begins a text 
block. It does this by constructing a 
statement number text entry (refer to 
Appendix B, "Phase 15 Intermediate Text 
Modifications"). PHAZ15 also places a 
pointer to the statement number text entry 
into the statement number entry 
(information table) for the associated 
statement number. 

PHAZ15 resumes its scan and converts the 
phase 10 text entries following the 
statement number definition to their phase 
15 formats. After each phase 15 text entry 
is formed and chained into text, PHAZ15 
places a pointer to that text entry into 
the BLKEND field of the previously 
constructed statement number text entry. 
This field is, thereby, continually updated 
to point to the last phase 15 text entry. 

When the next statement number 
definition is encountered, PHAZ15 begins 
the next text block in the previously 
described manner. A pointer to the text 
entry that ends the preceding block has 
already been recorded in the BLKEND field 
of the statement number text entry that 
begins that block. Thus, the boundaries of 
a text block are recorded in two places: 
the beginning of the block is recorded in 
the associated statement number entry 
(information table); the end of the block 
is recorded in the BLKEND field of the 
associated statement number text entry. 
All text blocks in the module are 
identified in this manner. 

Note: For each ENTRY statement in the 
source module, phase 10 generates a 
statement number text entry and places it 
into text preceding the text for the ENTRY 
statement. Phase 10 also ensures that the 
statement following an ENTRY statement has 
a statement number; if a statement number 
is not provided by the programmer, phase 10 
generates one. Thus, the text entries for 
each ENTRY statement form a separate text 
block, which is referred to as an entry 
block. 

Figure 3 illustrates the concept of text 
blocking. In the illustration, two text 
blocks are shown: one beginning with 
statement number 10; the other with 
statement number 20. The statement number 
entry for statement number 10 contains a 
pointer to the statement number text entry 
for statement number 10, which contains a 
pointer to the text entry that immediately 
precedes the statement number text entry 
for statement number 20. Similar pointers 
exist for the text block starting with 
statement number 20. 

Arithmetic Translation 

Arithmetic translation is the reordering 
of arithmetic expressions in phase 10 text 
format to agree with the sequence in which 
algebraic operations are performed. 
Arithmetic expressions may exist in IF, 
CAI.L, and ASSIGN statements and 
input/output data-lists, as well as in 
ari.thmetic statements and statement 
functions. 

When PHAZ15 detects a primary adjective 
code for a statement that needs arithmetic 
translation, it passes control to the 
arithmetic translator (ALTRAN-IEKJAL). If 
the phase 10 text for the statement does 
not require any type of special handling, 
ALTRAN-IEKJAL reorders it into a series of 
phase 15 text entries that reflect the 
sequence in which arithmetic operations are 
to be carried out. During the reordering 
process, ALTRAN-IEKJAL calls various 
supporting routines that perform checking 
and resolution (e.g., the resolution of 
operations involving operands of different 
modes) functions. 

Section 2: Discussion of Major Components 29 



INFORMATION TABLE Statement Number Entry for 
Statement Number 10 

Statement Number Entry for 
Statement Number 20 

IT 

* lDF is the mnemonic for the statement number operator 
t This field exists only if the XREF option is used (see Fig 

• Figure 3. Text Blocking 

I I 10 I 

---, t : 
_...J 

_._-

ure 24). 

Throughout the reordering process, 
ALTRAN-IEKJAL is checking for text that 
requires special handling before it can be 
placed into the phase 15 text area. 
[Special handling is required for complex 
expressions, terms involving unary minuses 
(e.g., A=-B), subscript expressions, 
statement function references, etc.] If 
special text processing is required, 
ALTRAN-IEKJAL calls one or more subroutines 
to perform the required processing. 

During reordering and, if required, 
special handling, subroutine GENER-IEKLGN 
is called to format the phase 15 text 
entries and to place them into the text 
area. 

REORDERING ARITHMETIC EXPRESSIONS: The 
reordering of arithmetic expressions is 
done by means of a pushdown table. This 
table is a last-in, first-out list. After 
the table is initialized (i.e., the first 
operator-operand pair of an arithmetic 
expression is placed into the table), the 
arithmetic translator (ALTRAN-IEKJAL) 
compares the operator of the next 
operator-operand pair (term) in text with 
the operator of the pair at the top of the 
pushdown table. As a result of each 
comparison, either a term is transferred 
from phase 10 text to the table, or an 
operator and two operands (triplet) are 
brought from the table to the phase 15 text 
area, eliminating "the top term in the 
pushdown table. 

The comparison made to determine whether 
a term is to be placed into the pushdown 

30 

I I I I ~t=J 
PHASE 15 TEXT 

lDF* I 
/ 

/--- 10 

~ 

lDF* I =L-1-20 

~ 

lDF* I =r I --

table or whether a triplet is to be taken 
from the pushdown table is always between 
the operator of a term in phase 10 text and 
the operator of the top term in the table. 
Each comparison is made on the basis of 
relative forcing strength. A forcing 
strength is a value assigned to an operator 
that determines when that operator and its 
associated operands are to be placed in 
phase 15 text. The relative values of 
forcing strengths reflect the hierarchy of 
algebraic operations. The forcing 
strengths for the various operators appear 
in Table 2. 

When the arithmetic translator 
(ALTRAN-IEKJAL) encounters the first 
operator-operand pair (phase 10 text entry) 
of a statement, the pushdown table is 
empty. Since the translator cannot yet 
make a comparison between text entry and 
table element, it enters the first text 
entry in the top position of the table. 
The translator then compares the forcing 
strength of the operator of the next text 
entry with that of the table element. If 
the strength of the text operator is 
greater than that of the top (and only) 
table element, the text entry 
(operator-operand pair) becomes the top 
element of the table. The original top 
element is effectively "pushed down" to the 
next lower position. In Figure 4, the 
number-l section of the drawing shows the 
pushdown table at this time. 

The operator of the next text entry 
(operator C--operand C at section 2) is 
compared with the top table element 



(operator B--operand B at section 1) in a 
similar manner. 

Table 2. Operators and Forcing strengths 
r----------------------------T------------, 
I I Forcing I 
I Opera tor I Strength I 
~----------------------------+------------~ 
End Mark 1 

, 
.OR. 
• AND. 
• NOT. 
• EQ., 
.GT. , 
• GE., 
+, -, 
*, / 
** 
(f 

(s 

• NE., 
• LT., 
• LE. 
minus ( 

left parenthesis after 
a function name 
left parenthesis after 
an array name 

2 
3 
6 
7 
8 
9 

10 

11 
12 
13 
14 

15 

16 L ____________________________ ~ ___________ _ 

When a comparison of forcing strengths 
indicates that the strength of the text 
operator (operator C, section 2), is less 
than or equal to that of the top table 
element (operator B), the table element is 
said to be "forced." The forced operator 
(operator B) is placed in the new phase 15 
text entry (section 3 of the illustration) 
with its operand (operand B) and the 
operand of the next lower table entry 
(operand A). Note that subroutine 
ALTRAN-IEKJAL has generated a new operand ~ 
(see section 3) called a "temporary." A 
temporary is a compiler-generated operand 
in which a preliminary result may be held 
during object-module execution. 1 With 
operator B, operand B, and operand A (a 
triplet) removed from the pushdown table, 
the previously entered operator-operand 
pair (operator A, section 1) now becomes 
the top element of the table (section 4). 
The ALTRAN-IEKJAL subroutine assigns the 
previously generated temporary ~ as the 
operand of this pair. This temporary 
represents the previous operation (operator 
B--operand A--operand B). 

1A given temporary may be eliminated by 
phase 20 during optimization. 

Comparisons and text-to-table exchanges 
continue, a higher strength text operator 
"pushing" a phase 10 text entry into the 
table and a lower strength text operator 
"forcing" the top table operator and its 
ope:rands (triplet) from the table. In each 
case, the forced table items become the new 
phase 15 text entry. An exception to the 
general rule is a left parenthesis, which 
has the highest forcing strength. 
Operators following the left parenthesis 
can be forced from the table only by a 
right parenthesis, although the intervening 
operators (between the parentheses) are of 
lower forcing value. When the translator 
reaches an end mark in text, its forcing 
strength of 1 forces all remaining elements 
f·rom the table. 

SPECIAL PROCESSING OF ARITHMETIC 
EXPRESSIONS: As stated before, arithmetic 
translation involves reordering a group of 
phase 10 text entries to produce a new 
group of phase 15 text entries representing 
the same source statement. certain types 
of entries, however, need special handling 
(for example, subscripts and functions). 
When it has been determined that special 
handling is needed, control is passed to 
one or more other subroutines (see Chart 
07) that perform the desired processing. 

The following expressions and terms need 
special handling before they are placed in 
phase 15 text: complex expressions, terms 
involving a unary minus, terms involving 
exponentiation, commutative expressions, 
subscript expressions, subroutine or 
function subprogram references, statement 
function references, and expressions 
involved in logical IF statements. 

Complex Expressions: A complex expression 
is converted into two expressions, a real 
expreSSion and an imaginary one. For real 
elements in the expression, complex 
temporaries are generated with zero in the 
imaginary part and the real element in the 
real part. For example, the complex 
expression B + C + 25. is treated as: 

r-----------------------------------------, 
I B + C + 25. I 
I real real real I 
~--.---------------------------------------~ 
I B + C + o. I 
I imag imag imag I L _________________________________________ J 

Section 2: Discussion of Major Components 31 



1. Text in Pushdown Table 2. Phase 10 Text Entries 

E;perator 

Top Element Op B 

OpA 
------~---------~ 

Operand 

Oprnd B 

Oprnd A 

Operator Operand 

Op C Oprnd C 

Op D Oprnd D 

Current phase 10 text entry 

Next phase 10 text entry 

1 
4. New Top Element of Pushdown 3. New Phase 15 Text Entry 

~_p_A ____ ~ _________ ~ Op B Oprnd A Oprnd B 

Operator Operand 1 Operand 2 Operand 3 

NOTE: A phase 15 text entry having an arithmetic operator may be envisioned as 
operand 1 =0 operand 2 .• operator - operand 3, where the equal sign is implied. 

Figure 4. Text :Reordering via the Pushdown Table 

An expression is not treated as complex 
if the "result" operand (left of the equal 
sign in the source statement) is real. In 
this case, the translator places only the 
real part of the expression in phase 15 
text. But if a complex multiplication, 
division, or exponentiation is involved in 
the expression, the real and imaginary 
parts will appear in phase 15 text, but 
only the real part of the result will be 
used at execution time. 

Terms Containing a Unary Minus: In terms 
that contain unary minuses, the unary 
minuses are combined with additive 
operators (+, -)to reduce the number of 
operators. This combining, done by 
subroutine UNARY-IEKKUN, may result in 
reversed operators or operands or both in 
phase 15 text. For example, -(B-C) becomes 
C-B, and A+(-B) becomes A-B. This process 
reduces the number of machine instructions 
that phase 25 must generate. 

QQerations Involving Powers: Several kinds 
of special handling are provided by 
subroutine UNARY-IEKKUN for operations 
involving powers. Multiplications by 
powers of two are converted to left shift 
operations. A constant integer power of 
two raised to a constant integer power is 
converted to the equivalent left shift 
operation. Last, a constant or variable 
raised to a constant integer power is 
converted to a series of multiplications 
(and a division operation into 1, if the 
power is negative). This conversion is a 
function of the level of optimization 
selected. 'rhis handling requires less 
execution time than using an exponentiation 
subroutine. 

32 

Commutative operations: If an operation is 
commutative (either operand can be operated 
upon, such as in adding or multiplying), 
the two operands are reordered to agree 
with their absolute locations in the 
dictionary. 

Subscripts: Subroutines SUBMULT-IEKKSM and 
SUBADD-IEKKSA perform subscript processing. 
Subscripted items are processed one at a 
time throughout the subscript. If the 
subscript itself is an expression, it is 
first processed via the translator. Text 
entries are then generated to multiply the 
subscript variable by the dimension factor 
and length. Each subscript item is handled 
in a similar manner. When all subscript 
items have been processed, phase 15 text 
entries are generated to add all subscript 
values together to produce a single 
subscript value. 

In general, during compilation, 
constants in subscript expressions are 
combined, and their composite value is 
placed in the displacement field of the 
phase 15 text entry for the subscript item 
(see Appendix B, "Phase is/Phase 20 
Intermediate Text Modifications"). Phase 
25 uses the value in the displacement field 
to generate, in the resultant object 
instructions, the displacement for 
referring to the elements in the array. 
This combining of constants reduces the 
number of instructions needed during 
execution to compute the subscript value. 

Expressions Referring to In-Line Routines 
or Subprograms: Expressions containing 
references to in-line routines or 
subprograms are processed by the following 
subroutines: FUNDRY-IEKJFU, BLTNFN-IEKJBF, 
and DFUNCT-IEKJDF. 



Arguments that are expressions are 
reduced by the translator to a single 
temporary, which is used as the argument. 
If an argument is a subscripted variable, 
subscript processing (previously discussed) 
reduces the subscript to a single 
subscripted item. Either subroutine 
DFUNCT-IEKJDF (for references to library 
routines) or subroutine BLTNFN-IEKJBF (for 
references to in-line routines) then 
conducts a series of tests on the argument 
and performs the processing determined by 
the results of the tests. 

If a function is not external and is in 
the function table (IEKLFT) (see Appendix 
A, "Function Table"), it is determined if 
the required routine is in-line. If the 
function is in-line and its mode (or the 
mode of its arguments) is not as expected, 
it is assumed that the function is 
external. If there are no error 
conditions, subroutine BLTNFN-IEKJBF either 
generates text or substitutes a special 
operator (such as those for ABS or FLOAT) 
in the phase 15 text so that phase 25 can 
later expand the function. Phase 15 
provides some in-line routines itself.~ 
Instead of placing a special operator in 
text, phase 15 inserts a regular operator, 
such as the operator for AND or STORE. 

If the mode of arguments in a library 
function is not as expected, another test 
is performed. The test determines whether 
or not a previous reference was made 
correctly for these arguments. If the 
previous reference was as expected, it is 
assumed that an error exists. Otherwise, 
the function is assumed to be external. 

If a function is assumed to be external 
(either used in an EXTERNAL statement or 
does not appear in the function table), 
text is generated to load the addresses of 
any arguments that are subscripted 
variables into a parameter list. (If none 
of the arguments are subscripted variables, 
the load address items are not required.) 
A text entry for a subroutine or a function 
call is then generated. The operator of 
the text entry is for an external function 
or subroutine reference. The entry points 
to the dictionary entry for the name. The 
text representation of the argument list is 
then generated and placed into the phase 15 
text chain. 

~BLTNFN-IEKJBF expands the following 
functions: TBIT, SNGL, REAL, AI MAG , 
DCMPLX, DCONJG, and CONJG. 

If a function is in the function table, 
but docs not represent an in-line routine, 
text is generated to load the addresses of 
any arguments that are subscripted 
variables into a parameter list. (Load 
address items are not required if none of 
the arguments are subscripted variables. ) 
A text entry having a library function 
operator is generated. This entry points 
to the dictionary entry for the function. 
The text representation of the argument 
list is then generated and placed into the 
phase 15 text chain. 

Parameter List Optimization: Subroutine 
DFUNCT-IEKJDF performs parameter list 
optimization. If two or more parameter 
lists are identical, all but one can be 
eliminated. Likely candidates for 
optimization are those parameter lists with 
(1) the same number of parameters and (2) 
the same nonzero parameters. When two such 
lists are found, individual parameters are 
compared to determine whether the lists are 
actually identical or merely of the same 
format. 

To make the comparison easier, the 
Parameter List Optimization Table is 
formed. Its format is: 

r----------T----------T---------T---------, 
I I I I Pointer I 
I I I Ito next I 
I I I I entry of I 
I INumber of IPointer Ilike for-I 
INmnber of Inonzero Ito NADCONlmat in I 
I parameters I parameters I table Ithis I 
lin list lin list I entry I table I 
~----------+----------+---------+---------~ 
I 1 byte I 1 byte I 1 byte I 1 byte I L __________ ~ __________ ~ _________ ~ _________ J 

For each unique parameter list, an entry is 
made in the table describing the number of 
parameters in the list, the number of non 
zero parameters in the list, a pointer to 
the adcon table (see Appendix A: "NADCON 
Table") and a pointer to the next parameter 
list optimization table entry that contains 
a like parameter list format, but unlike 
individual parameters. When a new 
parameter list is generated, the parameter 
list optimization table is scanned for a 
possible identical list. If one is found, 
the parameters in the new list are compared 
with the parameters in the old list. If 
the lists are identical, a pointer to the 
old list is used as the new list's pointer. 
If the lists are not identical, an entry 
for the new list is made in the table and 
chained to the last like (in format) entry. 
For example: 

Section 2: Discussion of Major Components 33 



r----------T----------T-------T-----------, 
I I I IPointer to I 
I iNumber of INADCON INext Entry I 
I Number of INonzero I Table I of Like I 
Iparametersl,)?arameters I Pointer I Format I 
~----------+:.;.,.-- .... -------+-------+-----------~ 

~~~----t----~~----t-------t-----------1 I 
~----------+----------+-------+-----------1 
I 10 I 7 I I -'-
~----------+----------+-------+-----------~ 
I 30 I 25 I I ; 

ct:=;20 t 16 t t ----------~ 
~1 0 t 7 -t' ---~--t-----:=:-~~ 
~ + --I., .-1.. .", 

20 I 16 I I -----+ I 

r-----r----I-----r----l---J[--I-----~----~J 
ct:=;30 I 25 I I I l __________ .il. ___________ J. _______ .L ___________ J 

Parameter list optimization is limited 
to (1) 100 entries in the parameter list 
optimization table or (2) 255 entries in 
the adcon table. No further parameter list 
optimization is attempted if either limit 
is exceeded. 

Expressions containing statement Function 
References: For expressions containing 
statement function references, the 
arguments of the statement function text 
are reduced to single operands (if 
necessary). These arguments and their mode 
are stored in an argument save table 
(NARGSV), which serves as a dictionary for 
the statement function skeleton pointed to 
by the dictionary entry for the statement 
function name. The argument save table is 
used in conjunction with the usual pushdown 
procedure to generate phase 15 text items 
for the statement function reference. When 
the translator encounters an operand that 
is a dummy argument, the actual argument 
corresponding to the dummy is picked up 
from the argument save table and replaces 
the dummy argument. 

Logical Expressions: Subroutines 
ALTRAN-IEKJAL, ANDOR-IEKJAN, and 
RELOPS-IEKKRE perform a special process, 
called anchor point, on logical expressions 
containing relational operators, ANDs, ORs, 
and NOTs, so that, at object time, unneces
sary logical tests are eliminated. With 
anchor-point "optimization," only the 
minimum number of object-time logical tests 
are made before a branch or fall-through 

34 

occurs. For example, with anchor-point 
handling, the statement IF(A.AND.B.AND.C) 
GO TO 500 will produce (at object time) a 
branch to the next statement if A is false, 
because Band C need not be tested. Thus, 
only a minimum number of operands will be 
tested. Without anchor-point handling of 
the expression during compilation, all 
operands would be tested at object time. 
similar special handling occurs for text 
containing logical ORs. 

When a primary adjective code for a 
logical IF statement or an end-of-DO IF is 
placed in the pushdown table, a scan of 
phase 10 text determines whether or not the 
associated statement can receive 
anchor-point handling~ The statement can 
receive anchor-point handling if two 
conditions are met. There must not be a 
mixture of ANDs and ORs in the statement. 
A logical expression, if it is in 
parentheses, must not be negated by the NOT 
operator. If these two conditions are not 
met, special handling of the logical 
expression does not occur. 

Gathering Constant/Variable Usage 
Information 

During the conversion of the phase 10 
text entries that follow the beginning of a 
text block (i.e., the text entries that 
follow a statement number definition) to 
phase 15 format, the PHAZ15 subroutine 
MATE-IEKLMA gathers usage information for 
the variables and constants in that block. 
This information is required during the 
processing of the optimizer path through 
phase 20 (see "Phase 20"). If optimizer 
processing is not selected, this 
information is not compiled. Subroutine 
MATE-IEKLMA records the usage information 
in three fields (MVS, MVF, and MVX), each 
128 bits long, of the statement number text 
entry for the block (see Appendix B, "Phase 
15 Intermediate Text Modifications"). The 
MVS field indicates which variables are 
defined (i.e., appear in the operand 1 
position of a text entry) within the text 
of the block. The MVF field indicates 
which variables, constants, and base 
variables (see "Adcon and Base Variable 
Assignment" under "CORAL Processing") are 
used (i.e., appear in either the operand 2 
or operand 3 position of a text entry) 
within the text of the block. The MVX 
field indicates which variables are defined 
but not first used (not busy-on-entry) 
within the text of the block. The MVX 
information is gathered for the second 
level of optimization only. 



Subroutine MATE-IEKLMA records the usage 
information for a variable or constant at a 
specific bit location within the three 
fields. (Base variables are processed 
during CORAL processing.) The bit location 
at which the usage information is recorded 
is determined from the coordinate assigned 
to the variable or constant by subroutine 
IEKKOS. 

After a phase 15 text entry has been 
formed, subroutine MATE-IEKLMA is given 
control to determine and record the usage 
information for the text entry. It 
examines the text entry operands in the 
order: operand 2, operand 3, operand 1. 
If operand 2 has not been assigned a 
coordinate, subroutine MATE-IEKLMA assigns 
it the next coordinate, enters the 
coordinate number into the dictionary entry 
for the operand, and places a pointer to 
that dictionary entry into the MVD table 
entry associated with the assigned 
coordinate number. After MATE-IEKLMA has 
assigned the coordinate, or if the operand 
was previously assigned a coordinate, it 
records the usage information for the 
operand. The operand's associated 
coordinate bit in the MVF field (of the 
statement number text entry for the block 
containing the text entry under 
consideration) is set to on, indicating 
that the operand is used in the block. 
Subroutine MATE-IEKLMA executes a similar 
procedure to process operand 3 of the text 
entry. 

If operand 1 of the text entry has not 
been assigned a coordinate, the MATE-IEKLMA 
subroutine assigns the next coordinate to 
it and records the following usage 
information for operand 1: 

• Its associated coordinate bit in the 
MVX field is set to on only if the 
associated coordinate bit in the MVF 
field is not on. (If the associated 
MVF bit is on, operand 1 of the text 
entry was previously used in the block 
and, therefore, is not not busy-on
entry.) 

• Its associated coordinate bit in the 
MVS field is set to on, indicating that 
it is defined within the block. 

This process is repeated for all of the 
phase 15 text entries that are formed 
following the construction of a statement 
number text entry and preceding the 
construction of the next statement number 
text entry. When the next statement number 
text entry is constructed, all of the usage 
information for the preceding block has 
been recorded in the statement number text 
entry that begins that block. The same 
procedure is followed to gather the usage 
information for the next text block. 

Gathering Forward-Connection Information 

An integral part of the processing of 
PHAZ15 is the gathering of 
forward-connection information, which 
indicates the specific text blocks that 
pass control to other specified text 
blocks. Forward-connection information is 
used during phase 20 optimization. 

Forward-connection information is 
recorded in a table called RMAJOR. Each 
RMAJOR entry is a pointer to the statement 
number entry associated with a statement 
number that is the object of a branch or a 
fall-through. Because each statement 
number entry contains a pointer to the text 
block beginning with its associated 
statement number (see "Text Blocking"), 
each RMAJOR entry points indirectly to a 
text block. 

For each new text block, PHAZ15 places a 
pointer to the next available entry in 
RMAJOR into the forward-connection field of 
the associated statement number entry (see 
Appendix A, "Statement Number/Array 
Table"). Thus, the statement number entry 
associated with the text block points to 
the first entry in RMAJOR in which the 
forward-connection information for that 
block 'is to be recorded. 

After starting a text block, PHAZ15 
converts the phase 10 text following the 
statement number definition to phase 15 
text. As each phase 15 text entry is 
formed, it is analyzed to determine whether 
it is a GO TO or compiler generated branch • 
If it is either, a pointer to the statement 
number entry for each statement number to 
which a branch may be made as a result of 
the execution of the GO TO or generated 
branch is recorded in the next available 
entry in RMAJOR. (If two or more branches 
to the same statement number appear in the 
block only one entry is made in RMAJOR for 
the statement number to which a branch is 
to be made.) 

When PHAZ15 encounters the next 
statement number definition, it starts a 
new block. If the new block is an entry 
block, PHAZ15 saves a pointer to its 
associated statement number entry for 
subsequent use and processes the text for 
the block. 

If the new block is neither an entry 
block nor an entry point (i.e., a block 
immediately following an entry block), 
PHAZ15 records the fall-through connection 

section 2: Discussion of Major Components 35 



information (if any) for the previous 
block. If the previous block is terminated 
by an unconditional branch, it does not 
fall-through to the new block. If the 
previous block can fall-through to the new 
block, PHAZ15 records a pointer to the 
statement number entry for the new block in 
the next location of RMAJOR. It then flags 
this as the last forward connection for the 
previous block. 

If the new blo~k is an entry point 
(i.e., a block i~nediately following an 
entry block), PHAZ15 records the 
fall-through connection (if any) for the 
previous non-entry block. It does this in 
the manner described in the previous 
paragraph. It then records the 
forward-connection information for all 
intervening entry blocks (i.e., entry 
blocks between the previous non-entry block 
and the new block). (PHAZ15 has saved 
pointers to the statement number entries 
for all intervening entry blocks.) Each 
such entry block passes control directly to 
the new block and therefore has only one 
forward connection. To record the forward 
connection information for the intervening 
entry blocks, PHAZ15 places a pointer to 
the next availablE~ entry in RMAJOR into the 
forward connection field of the statement 
number entry for the first intervening 
entry block. In this RMAJOR entry, PHAZ15 
records a pOinter to the statement number 
entry for the new block. It flags this 
entry as the last, and only, RMAJOR entry 
for the entry block. PHAZ15 repeats this 
procedure for the remaining intervening 
entry blocks (if any). PHAZ15 then 
proceeds to process the new text block. 

When all the connection information for 
a block has been gathered, each RMAJOR 
entry for the block, the first of which is 
pointed to by the statement number entry 
for the block and the last of which is 
flagged as such, points indirectly to a 
block to which that block may pass control. 

Figure 5 illustrates the end result of 
gathering forward--connection information 
for sample text blocks. Only the 
forward-connection information for the 
blocks beginning with statement numbers 10 

36 

and 20 is shown. In the illustration, it 
is assumed that: 

• The block started by statement number 
10 may branch to the blocks started by 
statement numbers 30 and 40 and will 
fall-through to the block started by 
statement number 20 if neither of the 
branches is executed. 

• The block started by statement number 
20 may branch to the blocks started by 
statement numbers 40 and 50 and will 
fall-through to the block started by 
statement number 30 if neither of the 
branches is executed. 

Reordering the Statement Number Chain 

After text blocking, arithmetic 
translation, and if complete optimization 
has been specified, the gathering of 
constant/variable usage information, been 
completed, subroutine PHAZ15-IEKJA reorders 
the statement number chain of the 
information table (see Appendix A, 
RInformation TableR). The original 
sequence of the entries in this chain, as 
recorded by phase 10, was in the order of 
the occurrence of their associated 
statement numbers as either definitions or 
operands. The new sequence of the entries 
after reordering is made according to the 
occurrence of their associated statement 
numbers as definitions only. 

Although the actual reordering takes 
place after the scan of the phase 10 text, 
preparation for it takes place during the 
scan. As each statement number definition 
is encountered, a pointer to the related 
statement number entry is recorded. Thus, 
during the course of processing, a table of 
pointers to statement number entries, which 
reflects the sequence in which statement 
numbers are defined in the module, is 
built. The order of the entries in this 
table also reflects the sequence of the 
text blocks of the module. 



INFORMATION TABLE PHASE 15 TEXT 

LDF I I I -..10 

Statement Number Entry for 10 L 
I 

LDF 1 I I -.. 20 I I I 1101'1 I I I-l 
L 

_J 

Statement Number Entry for 20 

I LDF I I I -.. 30 
I I I 1201'1 I TI ~J I 

Statement Number Entry for 30 
I '---+ 

J I I 130 I' I I TI ~ J LDF I I 1_ 40 

I RMAJOR 
Statement Number Entry for 40 

~ --.. 30 I---
I --.. 40 

-II I 1401'1 I TI~J * --.. 20 t-------
I ---- --.. 40 

--.. 50 
I 

Statement Number Entry for 50 ~ 

* -30 LDF I I-50 I I I 150 I, I I TI ~J I 
I I 

• Figure 5. Forward-Connection Information 

After the scan, subroutine PHAZ15-IEKJA 
uses this table to reorder the statement 
number entries. It places the first table 
pointer into the appropriate field of the 
communication table (see Appendix A, 
"Communication Table"); it places the 
second table pointer into the chain field 
of the statement number entry that is 
pointed to by the pointer in the 
communication table; it places the third 
table pointer into the chain field of the 
statement number entry that is pointed to 
by the chain field of the statement number 
entry that is pointed to by the pointer in 
the communication table; etc. When 
subroutine PHAZ15-IEKJA has performed this 
process for all pointers in the table, the 
entries in the statement number chain are 
arranged in the sequence in which their 
associated statement numbers are defined in 
the module. The new order of the chain 
also reflects the sequence of the text 
blocks of the module. 

Gathering Backward-Connection Information 

After the statement number chain has 
been reordered, and if optimization has 

I 

----+ 

been specified, subroutine PHAZ15-IEKJA 
gathers backward-connection information. 
This information indicates the specified 
text blocks that receive control from 
specific other text blocks. 
Backward-connection information is used 
extensively throughout phase 20 
optimization. 

Subroutine PHAZ15-IEKJA uses the 
reordered statement number chain and the 
information in the forward connection table 
(RMAJOR) to determine the backward 
connections. It records 
backward-connection information in a table 
called CMAJOR in subroutine C1520-IEKJA2. 
Each CMAJOR entry made by subroutine 
PHAZ15-IEKJA for a particular text block 
(block I) is a pointer to the statement 
number entry for a block from which block I 
may receive control. Because each 
statement number entry contains a pointer 
to its associated text block (see "Text 
Blocking"), each CMAJOR entry for block I 
points indirectly to a block from which 
block I may receive control. 

Subroutine PHAZ15-IEKJA gathers 
backward-connection information for the 
text blocks according to the order of the 
statement number chain. It first 

Section 2: Discussion of Major Components 37 



determines and records the 
backward-connections for the text block 
associated with t.he ini tial entry in the 
statement number chain, then gathers the 
backward-connection information for the 
block associated with the second entry in 
the chain; etc. 

For each text block, subroutine 
PHAZ15-IEKJA initially records a pointer to 
the next available entry in CMAJOR in the 
backward-connection field (JLEAD) of the 
associated statement number entry (see 
Appendix A, "Statement Number/Array 
Table"). Thus, the statement number entry 
points to the first entry in CMAJOR in 
which the backward-connection information 
for the block is to be recorded. 

Then, to determine the 
backward-connection information for the 
block (block I), subroutine PHAZ15-IEKJA 
obtains, in turn, each entry in the 
statement number chain. (The entries are 
obtained in the sequence in which they are 
chained.) After the PHAZ15-IEKJA 
subroutine has obtained an entry, it picks 
up the forward-connection field (ILEAD) of 
that entry. This field points to the 
initial RMAJOR entry for the text block 
associated with the obtained statement 
number entry. (~ote: RMAJOR entries for a 
block indicate the blocks to which that 
block may pass control.) Subroutine 
PHAZ15-IEKJA searches all RMAJOR entries 
for the block associated with the obtained 
entry for a pointer to the statement number 
entry for block I. If such a pointer 
exists, the text block associated with the 
obtained statemen·t number entry may pass 
control to block I. Therefore, block I may 
receive control from that block and 
subroutine PHAZ15-IEKJA records a pointer 
to its associated statement number entry in 
the next available entry in 
CMAJOR. Subroutine PHAZ15-IEKJA repeats 
this procedure for each entry in the 
statement number chain. Thus, it searches 
all RMAJOR entries for pointers to the 
statement number entry for block I and 

38 

records in CMAJOR a pointer to the 
statement number entry for each text block 
from which block I may receive control. 
The PHAZ15-IEKJA subroutine flags the last 
entry in CMAJOR for block I. When the 
statement number chain has been completely 
searched, subroutine PHAZ15-IEKJA has 
gathered all the backward-connection 
information for block I. Each entry that 
the PHAZ15-IEKJA subroutine has made for 
block I, the first of which is pointed to 
by the statement number entry for block I 
and the last of which is flagged, points 
indirectly to a block from which block I 
may receive control. 

Subroutine PHAZ15-IEKJA gathers the 
backward-connection information for all 
blocks in the aforementioned manner. When 
all of this information has been gathered, 
control is returned to the FSD, which calls 
CORAL, the second segment of phase 15. 

Figure 6 illustrates the end result of 
the gathering of backward-connection 
information for sample text blocks. Only 
the backward-connections for the blocks 
beginning with statement numbers 40 and 50 
are shown. In the illustration, it is 
assumed that: 

• The block started by statement number 
40 may receive control from the 
execution of branch instructions that 
reside in the blocks started by 
statement numbers 10 and 20 and that it 
may receive control as a result of a 
fall-through from the block started by 
statement number 30. 

• The block started by statement number 
50 may receive control from the 
execution of a branch instruction that 
resides in the block started by 
statement number 20 and that it may 
receive control as a result of a 
fall-through from the block started by 
statement number 40. 



INFORMATION TABLE PHASE 15 TEXT 

Statement Number Entry for 10 .... LDF I 1- 10 
I I ., 

I I I 1
10 II I I 1 J : L 1 

LDF I 1 - 20 
Statement Number Entry for 20 J 1 

H Ilm~J L J 

\ \ ~ 
I I -- 30 LDF 

I 

CMAJOR J 

-- - 10 Statement Number Entry for 30 I 
I 

\_J -- 20 J 
I \ 

\30 \1 \ \ \ 30 
L-..-. 

1. - I 
\ 

\_40 LDF 
,.-I-- -- 20 I 

* -+ 40 J 

Statement Number Entry for 40 J 
I 

\ i 
--

~ 1 1 1
40 

\1 \ I \ _J --
L..-......, 

-- 50 LDF 
\ 1 Statement Number Entry for 50 J I --

I 

HiCDJ I \ I 
I I 

~ 

• Figure 6. Backward-Connection Information 

CORAL PROCESSING 

CORAL, the second segment of phase 15, 
performs the following functions: 

• Data text conversion 

• Relative address assignment 

• Data text rechaining 

• Namelist statement processing 

• Define file text processing 

• Initial value assignment 

• Adcon table space reservation 

CORAL consists of a main subroutine, 
CORAL-IEKGCR, which controls the flow of 
space allocation for variables, constants, 
and any adcons necessary for local 
variables, COMMON, EQUIVALENCE, and 
EXTERNAL references. Embedded in 
subroutine CORAL-IEKGCR are the routines 
that process constants, local variables, 
and external references. The CORAL-IEKGCR 
subroutine calls other routines in phase 15 

to accomplish various functions. These 
routines are: 

• IEKGCZ, which keeps track of space 
being allocated; generates adcons 
needed for address computation in the 
object module; rechains data text in 
the. sequence of variable assignment; 
generates adcons necessary for COMMON, 
EQUIVALENCE, and EXTERNAL references; 
and sets up error table entries to be 
used by phase 30 if errors occur. 

• NDATA-IEKGDA, which processes phase 10 
data text. 

• EQVAR-IEKGEV, which handles COMMON and 
EQUIVALENCE space allocation. 

• NLIST-IEKTNL, which processes namelist 
text. 

• DFILE-IEKTDF, which processes define 
file text. 

• DATOUT-IEKTDT, which processes data 
text. 

Chart 09 shows the overall logic flow of 
CORAL. 

Section 2: Discussion of Major Components 39 



Translation of Dai:a Text 

The first: section of CORAL, subroutine 
NDATA-IEKGDA, translates data text entries 
from their phase 10 format to a form more 
easily processed by another CORAL 
subroutine, DATOWf-IEKTDT. Each phase 10 
data text entry (except for initial 
housekeeping entries) contains a pointer to 
a variable or constant in the information 
table. Each variable in the series of 
entries is t:o be assigned to a constant 
appearing in another entry. Placed in 
separate entries, variable and constant 
appear to be unrelated. In each phase 15 
data text entry, after translation, each 
related vari.able and constant are paired 
(they appear in adjacent fields of the same 
entry) • 

The following example shows how a series 
of phase 10 data text entries are 
translated by the NDATA-IEKGDA subroutine 
to yield a s.malle:r number of phase 15 text 
entries, with each related constant and 
variable paired. Assume a statement 
appearing in the source module as DATA 
A,B/2*0/. The resulting phase 10 text 
entries appear as follows (ignoring the 
chain, mode, and t.ype fields, and the 
initial housekeeping entry): 

r-----------------'---T--------------------, 
I Adjective I I 
I Code for: I Pointer I 
r--------------------+--------------------~ 
I 0 I Pointer to A I 
I I in dictionary I 
~--------------------+--------------------~ 
I I Pointer to B I 
I I in dictionary , 
~--------------------+--------------------~ I / ,2 , 
~--------------------+--------------------~ 
I * ,Pointer to 0 , 
I I in dictionary , 
~--------------------+--------------------i 
, / I 0 I L ____________________ ~ ____________________ J 

Note that the variables A and B and the 
constant value 0 appear in separate text 
entries. The NDATA-IEKGDA subroutine 
translation of the above phase 10 entries 
(ignoring the cont·ents of the indicator and 
chain fields l, and two optional fields 
needed for special cases) appears as 
follows: 

40 

r---------T---------T----------T----------, 
,Indicator I Chain IP1 Field IP2 Field I 
~---------+---------+----------+----------i 
I I I pointer I pOinter , 
, I I to A in I to 0 in I 
, I I dictionary I dictionary I 
~---------+---------+----------+----------i 
I I I pointer I pointer I 
I I Ito B in Ito 0 in I 
I I I dictionary I dictionary I L ________ ~ _________ ~ __________ ~ _________ J 

In this case, each variable and its 
specified constant value appear in adjacent 
fields of the same phase 15 text entry. 
For the detailed format of the phase 15 
data text entry and the use of the special 
fields not discussed, see Appendix B, 
"Phase 15/20 Intermediate Text 
Modification". 

Relative Address Assignment 

The chief function of CORAL is to assign 
relative addresses to the operands 
(constants and variables) of the source 
module. The addresses indicate the 
locations, relative to zero, at which the 
operands will reside in the object module 
resulting from the compilation. The 
relative address assigned to an operand 
consists of an address constant and a 
displacement. These two elements, when 
added together, form the relative address 
of the operand. The address constant for 
an operand is the base address value used 
to refer to that operand in main storage. 
Address constants are recorded in the adcon 
table (NADCON) and are the elements to 
which the relocation factor is added to 
relocate the object module for execution. 
The displacement for an operand indicates 
the number of bytes that the operand is 
displaced from its associated address 
constant. Displacements are in the range 
of 0 to 4095 bytes. The relative address 
assigned to an operand is recorded in the 
information table entry for that operand in 
the form of: 

1. A numeric displacement from its 
associated address constant. 

2. A pointer to an information table 
entry that contains a pointer to the 
associated address constant in the 
adcon table. 

Relative addresses are assigned through 
use of a location counter. This counter is 
continually updated by the size (in bytes) 
of the operand to which an address is 
assigned. The value of the location 
counter is used to: 



• Compute the displacement to be assigned 
to the next operand. 

• Determine when the next address 
constant is to be established. (If the 
displacement reaches a value in excess 
of 4095, a new address constant is 
established.) 

CORAL assigns addresses to source module 
operands in the following order: 

• Constants. 

• Variables. 

• Arrays. 

• Equivalenced variables and arrays. 

• COMMON variables and arrays, including 
variables and arrays made common using 
the EQUIVALENCE statement. 

The manner in which addresses are assigned 
to each of these operand types is described 
in the following paragraphs. Because 
constants and variables are processed in 
the same manner, they are described 
together. 

Constants and Variables: Subroutine 
CORAL-IEKGCR first assigns relative 
addresses to the constants of the module. 
As each constant is assigned a relative 
address, subroutine CORAL-IEKGCR calls the 
FSD subroutine, IEKTLOAD, to place the 
constant in the object module in the form 
of TXT records. Addresses are then 
assigned to variables. (In the subsequent 
discussion, constants and variables are 
referred to collectively as operands.) The 
first operand is assigned a displacement of 
zero plus the length of the save area, 
parameter list, and branch table. Operands 
that are assigned locations within the 
first 4096 bytes of the range of base 
register 13 are not explicitly assigned an 
address constant. Such operands use the 
base address value loaded into reserved 
register 13 as their address constant. The 
displacement is recorded in the information 
table entry for that operand. The location 
counter is then updated by the size in 
bytes of the operand. 

The next operand is assigned a 
displacement equal to the current value of 
the location counter minus the base address 
va~ue in register 13. The displacement is 
recorded in the information table entry for 
that operand. The location counter is then 
updated, and the value of the displacement 
is tested to see whether or not it exceeds 
4095. If it does not, the next operand is 
processed as described above. 

If sufficient operands exist to cause 
the displacement to achieve a value in 
excess of 4095, the first address constant 
is established. The value of this address 
constant equals the location counter value 
that caused its establishment. This 
address constant becomes the current 
address constant and is saved for 
subsequently assigned relative addresses. 
The displacement value is then reset to 
zero and the next operand is considered. 

After the first address constant is 
established, it is used as the address 
constant portion of the relative addresses 
assigned to subsequent operands. 

When the value of the displacement again 
reaches a value in excess of 4095, another 
address constant is established. Its value 
is equal to the current address constant 
plus the displacement that caused the 
establishment of the new address constant. 
This new address constant then becomes 
current and is used as the address constant 
for subsequent operands. The displacement 
is then reset to zero and the next operand 
is processed. This overall process is 
repeated until all operands (constants and 
variables) are processed. Source module 
arrays are then considered for relative 
address assignment. 

Array~: Subroutine CORAL-IEKGCR then 
assigns to each array of the source module 
that is not in COMMON a relative address 
that is less than (by the span of the 
array) the relative address at which the 
array will reside in the object module. 
(The concept of span is discussed in 
Appendix E.) The actual relative address 
at which an array will reside in the object 
module is derived from the sum of address 
constant and displacement that are current 
at the time the array is considered for 
relative address assignment. The array 
span is subtracted from the relative 
address to facilitate subscript 
calculations. 

Subroutine CORAL-IEKGCR subtracts the 
span in one of two ways. If the span is 
less than the current displacement, it 
subtracts the span from that displacement, 
and assigns the result as the displacement 
portion of the relative address for the 
array. In this case, the address constant 
assigned to the array is the current 
address constant. If the span is greater 
than the current displacement, the 
CORAL-IEKGCR subroutine subtracts the span 
from the sum of the current address 
constant and displacement. The result of 
this operation is a new address constant, 
which does not become the current address 
constant. Subroutine CORAL-IEKGCR assigns 
the new address constant and a displacement 
of zero to the array. It then adds the 

section 2: Discussion of Major Components 41 



total size of the array to the location 
counter, obtains the next array, and tests 
the value of the displacement. If the 
value of the displacement does not exceed 
4095, the CORAL-IEKGCR subroutine does not 
take any additional action before it 
processes the next array. If the 
displacement value exceeds 4095, the 
CORAL-IEKGCR subroutine establishes a new 
address constant, resets the displacement 
value and processes the next array. After 
all arrays have relative addresses, 
subroutine CORAL-IEKGCR calls subroutine 
EQVAR-IEKGEV to assign address to 
equivalence variables and arrays that are 
not in common. 

Eguivalence Variables and Arrays Not in 
COMMON: In assigning relative addresses to 
equivalence variables and arrays, 
subroutine EQVAR-IEKGEV attempts to 
minimize the number of required address 
constants by using, if possible, previously 
established address constants as the base 
addresses for equivalence elements. 
Subroutine EQVAR-IEKGEV processes 
equivalence information on a group-by-group 
basis, and assigns a relative address, in 
turn, to each element of the group. Prior 
to processing, subroutine EQVAR-IEKGEV 
determines the base value for the group. 
The base value is the relative address of 
the head1 of the group. The base value 
equals the sum of the current address 
constant and displacement (location counter 
value). After the EQVAR-IEKGEV subroutine 
has determined the base value, it obtains 
the first (or next) element of the group 
and computes its relative address. The 
relative address for an element equals the 
sum of the base value for the group and the 
displacement of the element. The 
displacement for an element is the number 
of bytes tha't the element is displaced from 
the head of the group (see "COMMON and 
EQUIVALENCE Processingn ). The EQVAR-IEKGEV 
subroutine then compares the computed 
relative address to the previously 
established address constants. If an 
address cons'tant is such that the 
difference between the computed relative 
address and the address constant is less 
than 4095, the EQVAR-IEKGEV subroutine 
assigns that address constant to the 
equivalence element under consideration. 
The displacement assigned in this case is 
the difference between the computed 
relative address of the element and the 
address constant. Subroutine EQVAR-IEKGEV 
then processes the next element of the 
group. 

1The head of an equivalence group is the 
variable in the group from which all other 
variables or arrays in the group can be 
addressed by a positive displacement. 

42 

If the desired address constant does not 
exist, subroutine EQVAR-IEKGEV establishes 
a new address constant and assigns it to 
the element. The value of the new address 
constant is the relative address of the 
element. The EQVAR-IEKGEV subroutine then 
assigns the element a displacement of zero, 
and processes the next element of the 
group. When all elements of the group are 
processed, subroutine EQVAR-IEKGEV computes 
the base value for the next group, if any. 
This base value is equal to the base value 
of the group just processed plus the size 
of that group. The next group is then 
processed. 

COMMON Variables and Arrays: Subroutine 
EQVAR-IEKGEV considers each COMMON block of 
the source module, in turn, for relative 
address assignment. For each COMMON block, 
subroutine EQVAR-IEKGEV assigns relative 
addresses to (1) the variables and arrays 
of that block, and (2) the variables and 
arrays equivalenced into that COMMON block. 
(The processing of variables and arrays 
equivalenced into COMMON is described in a 
later paragraph.) 

Because COMMON blocks are considered 
separate control sections, the EQVAR-IEKGEV 
subroutine assigns each COMMON block of the 
source module a relocatable origin of zero. 
It achieves the origin of zero by assigning 
to the first element of a COMMON block a 
relative address consisting of an address 
constant and a'displacement whose sum is 
zero. For example, both the address 
constant and the displacement for the first 
element in a block can be zero. Also, the 
address constant can be -16 and the 
displacement +16. Note that the address 
constant in the latter case is negative. 
Negative address constants are permitted, 
and may be a by-product of the assignment 
of addresses to COMMON variables and 
arrays. They evolve from the manner in 
which the relative addresses are assigned 
to arrays. A relative address assigned to 
an array is equal to its actual relative 
address minus the span of that array. The 
actual relative address of each array in a 
common block is equal to the displacement 
computed for it during COMMON and 
EQUIVALENCE processing. From the 
displacement of each array in the COMMON 
block under consideration, subroutine 
EQVAR-IEKGEV subtracts the span of that 
array. The result then replaces the 
previously computed displacement for the 
array. If the result of one or more of 
these computations yields a negative value, 
the EQVAR-IEKGEV subroutine uses the most 
negative as the initial address constant 
for the COMMON block. It then assigns each 
element (variable or array) in the COMMON 
block a relative address. This address 
consists of the negative address constant 
and a displacement equal to the absolute 



value of the address constant plus the 
displacement of the element. 

If the computations that subtract spans 
from displacements do not yield a negative 
value, subroutine EQVAR-IEKGEV establishes 
an address constant with a value of zero as 
the initial address constant for the COMMON 
block. It then assigns each element in the 
block a relative address consisting of the 
address constant (with zero value) and a 
displacement equal to the displacement of 
the element. 

If, at any time the displacement to be 
assigned to an element exceeds 4095, the 
EQVAR-IEKGEV subroutine establishes a new 
address constant. This address constant 
then becomes the current address constant 
and is saved for inclusion in subsequently 
assigned addresses. After the new address 
constant is established, the relative 
address assigned to each subsequent element 
consists of the current address constant 
and a displacement equal to the 
displacement of that element minus the 
value of the current address constant. 
After the entire common block is processed, 
variables and arrays that are equivalenced 
into that common block are assigned 
relative addresses. 

variables and Arrays Equivalenced into 
Common: Subroutine EQVAR-IEKGEV processes 
variables and arrays that are equivalenced 
into common in much the same manner as 
those that are equivalenced, but not into 
common. However, in this case, the base 
value for the group is zero. Only those 
address constants established for the 
common block into which the variables and 
arrays are equivalenced are acceptable as 
address constants for those variables and 
arrays. 

Adcon and Base Variable Assiqnment: As 
CORAL establishes a new address constant 
and enters it into the adcon table, it also 
places an entry in the information table. 
This special entry, called an "adcon 
variable," points to the new address 
constant. All operands that have been 
assigned relative addresses will have 
pointers to the adcon variable for their 
address constant. The adcon variables 
generated for operands are assigned 
coordinates, via the MCOORD vector and the 
MVD table. Coordinates 81 through 128 are 
reserved for base variables; however, some 
base variables may be assigned coordinates 
less than 81 if less than 80 coordinates 
are assigned during the gathering of 
variable and constant usage information 
(see PHAZ15, "Gathering Constant/ Variable 
Usage Information"). Having been assigned 
coordinates, the adcon variables are now 
called base variables. Only those operands 
receiving coordinate assignments are 

available for full register assignment 
during phase 20. 

Rechaining Data Text 

During the assignment of relative 
addresses to variables, subroutine IEKGCZ 
rechains the data text entries. Their 
previous chaining (set by phase 10) was 
according to their sequence in the source 
program. The IEKGCZ subroutine now chains 
the data text entries according to the 
sequence of relative addresses it assigns 
to variables. Thus, data text entries are 
now chained in the same relative sequence 
in which the variables will appear in the 
object module. This sequence simplifies 
the generation of text card images by phase 
25. 

DEFINE FILE Statement Processing 

If the source module contains DEFINE 
FILE statements, subroutine DFILE-IEKTDF 
converts phase 10 define file text to 
object-time parameters. These parameters 
provide the Library routine IHCFDIOSE with 
the information required to implement 
direct access READ, WRITE, and FIND 
statements. 

A parameter entry is made for each unit 
specified in a DEFINE FILE statement. This 
entry contains the unit number, the 
relative address of the number of records, 
a character ('L', 'E', or lUi) indicating 
the type of formatting to be used, the 
relative address of the maximum record 
size, an indicator for the size (four bytes 
or two bytes) of the associated variable, 
and the relative address of the associated 
variable. 

Subroutine DFILE-IEKTDF places the 
parameter entries along with their relative 
addresses into TXT records. It also places 
the relative address of the first define 
file entry into the communication table for 
later use by phase 25. 

NAMELIST Statement Processing 

If the source module contains READ/WRITE 
statements using NAMELIST sta'tements, 
subroutine NLIST-IEKTNL converts phase 10 
namelist text to object-time namelist 
dic,tionaries. The object-time namelist 
dictionaries provide the Library routine 
IHC.FCOMH with the information required to 

sectio:n 2: Discussion of Major Components 43 



implement READ/WRITE statements using 
namelists (see Appendix A, "Namelist 
Dictionaries n

). The dictionary developed 
for each list in a NAMELIST statement 
contains the following: 

• An entry for the namelist name. 

• Entries for the variables and arrays 
associated wi"th the namelist name. 

• An end mark of zeros terminating the 
list. 

Each entry for a variable contains the 
name, mode (e.g., integer*2 or real*4), and 
relative address of the variable. Both the 
address and the mode are obtained from the 
dictionary entry for the variable. 

Each entry for an array contains the 
name of the array, the mode of its 
elements, the relative address of its first 
element, and the information needed to 
locate a particular element of the array. 
Subroutine NLIST-IEKTNL obtains the 
foregoing informa1:ion from the information 
table. 

The NLIST-IEKTNL subroutine places the 
entries of the namelist dictionary along 
with their relati,re addresses into TXT 
records. It also places the relative 
address of the beginning of the name list 
dictionary into the address constant for 
the namelist name. 

Initial Value Assignment 

CORAL assigns the initial values 
specified for variables and arrays in phase 
15 data text. in the following manner: 

1. The relative address of the variable 
or array to be assigned an initial 
value(s) is obtained and placed into 
the address field of a TXT record. 

2. Each constant (one per variable) that 
has been specified as an initial value 
for the variable or array is then 
obtained and entered into a TXT 
record. (A number of TXT records may 
be required if an array is being 
processed.) 

Such action effectively assigns the 
initial value, because the relative address 
of the initial value has been set to equal 
the relative address of its associated 
variable or array element. 

44 

Reserving Space in the Adcon Table 

After relative address assignment is 
completed, subroutine CORAL-IEKGCR calls 
the IEKTLOAD subroutine (via IEKGCZ) to 
place an adcon in the object module for 
special references. Subroutine 
CORAL-IEKGCR scans the operands of the 
information table to detect any of these 
references: call-by-name variables, names 
of library routines, namelist names, and 
external references. The byte-A and byte-B 
usage fields of each information table 
entry informs subroutine CORAL-IEKGCR 
whether or not a particular reference 
belongs to one of these categories. For 
each special reference that the 
CORAL-IEKGCR subroutine detects, subroutine 
IEKGCZ calls subroutine IEKTLOAD to place 
the needed address constants in the 
reserved spaces of the object module. 

Creating Relocation Dictionary Entries 

The relocation dictionary is composed of 
entries for the address constants of the 
object module. One relocation dictionary 
entry (an RLD record) is constructed by 
subroutine CORAL-IEKGCR for each address it 
encounters. If the address constant is for 
an external symbol, the RLD record 
identifies the address constant by 
indicating: 

• The control section to which ·the 
address constant belongs. 

• The location of the address constant 
within the control section. 

• The symbol in the external symbol 
dictionary whose value is to be used in 
the computation of the address 
constant. 

If the address constant is for a local 
symbol (i.e., a symbol that is located in 
the same control section as the address 
constant), the RLD record identifies the 
address constant by indicating the control 
section to which the address constant 
belongs and its location within that 
section. 

For a more detailed discussion of the 
use and format of an RLD record, refer to 
the publication IBM System/360 Operating 
System: Linkage Editor, Program Logic 
Manual, Form Y28-6610. 



Creating External Symbol Dictionary Entries 

The external symbol dictionary contains 
entries for external symbols that are 
defined or referred to within the module. 
An external symbol is one that is defined 
in one module and referred to in another. 
One external symbol dictionary entry (an 
ESD record) is constructed by subroutine 
IEKGCZ for each external symbol it 
encounters. The entry identifies the 
symbol by indicating its type and location 
within the module. The ESD records 
constructed by subroutine IEKGCZ are: 

• ESD-O -- This is a section definition 
record and an entry point definition 
record for the source module being 
compiled. 

• ESD-2 -- This record is generated for 
an external subprogram name. 

• ESD-5 -- This record is a section 
definition record for a common block 
(either named or blank). 

For a more complete discussion of the 
use and the format of these records, refer 
to the publication IBM System/360 Operating 
System: Link~e Editor, Program Logic 
Manual. 

PHASE 20 

The primary function of phase 20 is to 
produce a more efficient object module 
(perform optimization). However, even if 
the applications programmer has specified 
no optimization, phase 20 assigns registers 
for use during execution of the object 
module. 

For a given compilation, the 
applications programmer may specify OPT=O 
(no optimization), or either of the 
following levels of optimization: OPT=l or 
OPT=2. Thus, the functions performed by 
phase 20 depend on the optimization 
specified for the compilation. 

• If no optimization (OPT=O) has been 
specified, phase 20 assigns to 
intermediate text entry operands the 
registers they will require during 
object module executionCthis is called 
basic register assignment). As part of 
this function, phase 20 also provides 
information about the operands needed 
by phase 25 to generate machine 
instructions. Both functions are 
implemented in a single, 
block-by-block, top-to-bottom (i.e., 
according to the order of the statement 

number chain), pass over the phase 15 
text output. The end result of this 
processing is that the register and 
status fields of the phase 15 text 
entries are filled in with the 
information required by phase 25 to 
convert the text entries to machine 
language form (see Appendix B, "Phase 
20 Intermediate Text Modifications"). 
Basic register assignment does not take 
full advantage of the available general 
and floating-point registers, and it 
does not specify the generation of 
machine instructions that keep operand 
values in registers (wherever possible) 
for use in subsequent operations 
involving them. 

• If the OPT=l level of optimization has 
been specified, two processes are 
carried out: 

1. The first process, called full 
register assignment, performs the 
same two functions as basic 
register assignment. However, 
full register assignment takes 
greater advantage of available 
registers and provides information 
that enables machine instructions 
to be generated that keep operand 
values in registers for subsequent 
operations. An attempt is also 
made to keep the most frequently 
used operands in registers 
throughout the execution of the 
object module. Full register 
assignment requires a number of 
passes over the phase 15 text. 
The basic unit operated upon is 
the text block (see Phase 15, 
"Text Blocking"). The end result 
of full register assignment, like 
that of basic register assignment, 
is that the register and status 
fields of the phase 15 text 
entries are filled in with the 
information required by phase 25. 

2. The second process, called branch 
optimization, generates RX-format 
branch instructions in place of 
RR-format branch instructions 
wherever possible. The use of 
RX-format branches eliminates the 
need for an instruction to load 
the branch address into a general 
register. However, branch 
optimization first requires that 
the sizes of all text blocks in 
the module be determined so that 
the branch address can be found. 

• If the OPT=2 level of optimization has 
been specified, optimization is 
performed on a nloop-by-Ioop" basis. 
Therefore, before processing can be 
initiated, phase 20 must determine the 

Section 2: Discussion of Major Components 45 



structure of the source module in terms 
of the loops within it and the 
relationships (nesting) among the 
loops. 'rhen phase 20 determines the 
order in which loops are processed, 
beginning with the innermost (most 
frequently executed) loop and 
proceeding outward. The second level 
of optimization involves three general 
procedures: 

1. The first, called text 
optimization, eliminates 
unnecessary text entries from the 
loop being 
processed. For example, redundant 
text entries are removed and, 
wherever possible, text entries 
are moved to outer loops, where 
they will be executed less often. 

2. The second procedure is full 
register assignment, which is 
essentially the same as in the 
first level of optimization, but 
is more effective, because it is 
done on a loop-by-loop basis. 

3. The final procedure is branching 
optimization, which is the same as 
in the OPT=l path. 

CONTROL FLOW 

In phase 20, control flow may take one 
of three possible paths, depending on the 
level of optimization chosen (see Chart 
10). Phase 20 consists of a control 
routine (LPSEL-IEKPLS) and six routine 
groups. (Table 12 is a directory of the 
subroutines used by these six groups. In 
addition, Table 13 contains the list of 
utility routines called by the subroutines 
in the vario1ls groups.) The control 
routine controls execution of the phase. 
All paths begin and end with the control 
routine. The first group of routines 
performs basic register assignment. This 
group is executed only in the control path 
for non-optimized processing. The second 
group performs full register assignment. 
Control passes through this group in the 
paths for both levels of optimization. The 
third group of routines performs branch 
optimization and is also used in the paths 
for both levels of optimization. The 
fourth group determines the structure of 
the source module and is used only in the 
path for OPT=2 optimization. The fifth 
group performs loop selection and again is 
only executed in OPT=2 optimization. The 
final group performs text optimization and 
is used only in OPT=2 optimization. 

46 

The control routine governs the sequence 
of processing through phase 20. The 
processing sequence to be followed is 
determined from the optimization level 
specified by the FORTRAN programmer. If no 
optimization is specified, the basic 
register assignment routines are brought 
into play. The unit of processing in this 
path is the text block. When all blocks 
are processed, the control routine passes 
control to the FSD, which calls phase 25. 

When OPT=l optimization is specified, 
the control routine passes the entire 
module to the full register assignment 
routines and then to the routine that 
computes the size of each text block and 
sets up the displacements required for 
branching optimization. Control is then 
passed to the FSD. 

When the control path for OPT=2 
optimization is selected, the unit of 
processing is a loop, rather than a block. 
In this case, the control routines 
initially pass control to the routines of 
phase 20 that determine the structure of 
the module. When the structure is 
determined, control is passed to the loop 
selection routines, to select the first 
(innermost) loop to be processed. The 
control routines then pass control to the 
text-optimization routines to process the 
loop. When text optimization for a loop is 
completed, the control routine marks each 
block in the loop as completed. This 
action is taken to ensure that the blocks 
are not reprocessed when a subsequent 
(outer) loop is processed. The control 
routine again passes control to the loop 
selection routines to select the next loop 
for text optimization. This process is 
repeated until text optimization has 
processed each loop in the module. (The 
entire module is the last loop.) 

After text optimization has processed 
the entire module, the control routine 
removes the block-completed marks and 
control is passed to the loop selection 
routines to reselect the first loop. 
Control is then passed to the full register 
assignment routines. When full register 
assignment for the loop is complete, the 
control routine marks each block in the 
loop as completed and passes control to the 
loop selection routines to select the next 
loop. This process is repeated for each 
loop in the module. (The entire module is 
the last loop.) When all loops are 
processed, the control routine passes 
control to the routine that computes the 
size of each text block and sets up the 
displacements required for branching 
optimization. Contr~l is then passed to 
the FSD. 



REGISTER ASSIGNMENT 

Two types of register assignment can be 
performed by phase 20: basic and full. 
Before describing either type, the concept 
of status, which is integrally connected 
with both types of assignment, is 
discussed. 

Each text entry has associated operand 
and base address status information that is 
set up by phase 20 in the status field of 
that text entry (see Appendix B, "Phase 20 
Intermediate Text Modification"). The 
status information for an operand or base 
address indicates such things as whether 
ornot it is in a register and whether or 
not it is to be retained in a register for 
subsequent use; this information indicates 
to phase 25 the machine instructions that 
must be generated for text entries. 

The relationship of status to phase 25 
processing is illustrated in the following 
example. Consider a phase 15 text entry of 
the form A = B + C. To evaluate the text 
entry, the operands Band C must be added 
and then stored into A. However, a number 
of machine instruction sequences could be 
used to evaluate the expression. If 
operand B is in a register, the result can 
be achieved by performing an RX-format add 
of C to the register containing B, provided 
that the base address of C is in a 
register. (If the base address of C is not 
in a register, it must be loaded before the 
add takes place.) The result can then be 
stored into A, again, provided that the 
base address of A is in a register. 

If both Band C are in registers, the 
result can be evaluated by executing an 
RR-format add instruction. The result can 
then be stored into A. Thus, for phase 25 
to generate code for the text entry, it 
must have the status of operands and base 
addresses of the text entry. 

The following facts about status should 
be kept in mind throughout the discussions 
of basic and full register assignment: 

1. Phase 20 indicates to phase 25 when it 
is to generate code that loads 
operands and base addresses into 

registers, whether or not it is to 
generate code that retains operands 
and base addresses in registers, and 
whether or not operand 1 is to be 
stored. 

2. Phase 20 notes the operands and base 
addresses that are retained in 
registers and are available for 
subsequent use. 

Basic Register Assignment -- OPT=O 

Basic register assignment involves two 
functions: assigning registers to the 
operands of the phase 15 text entries and 
indicating the machine instructions to be 
generated for the text entries. In 
performing these functions, basic register 
assignment does not use all of the 
available registers, and it restricts the 
assignment of those that it does use to 
special types of items (i.e., operands and 
base addresses). The registers assigned 
during basic register assignment and the 
item(s) to which each is assigned are 
outlined in Table 3. 

Basic register assignment essentially 
treats System/360 as though it had a single 
branch register, a single base register, 
and a single accumulator. Thus, operands 
that are branch addresses are assigned the 
branch register, base addresses are 
assigned the base register, and arithmetic 
operations are performed using a single 
accumulator. (The accumulator used depends 
upon the mode of the operands to be 
opera ted upon.) 

The fact that basic register assignment 
uses a single accumulator and a single base 
register is the key to understanding how 
text entries having an arithmetic operator 
are processed. To evaluate the arithmetic 
interaction of two operands using a single 
accumulator, one of the operands must be in 
the accumulator. The specified operation 
can then be performed by using an RX-format 
instruction. The result of the operation 
is formed in the accumulator and is 
available for subsequent use. Note that in 
operations of this type, neither of the 
interacting operands remains in a register. 

Section 2: Discussion of Major Components 47 



• Table 3. Base and Operand Register Assignment (OPT=O) 
r--------------T-----------------------------------------------------------------------, 
I Register IUse I 
~--------------+-----------------------------------------------------------------------~ 
General Purpose 

o 
1 
2 
3 
4 

5 

6 

7 
8 
9 

10 
11 
12 
13 

14 

15 

Integer or logical operand 
Integer or logical operand 
Not assigned 
Not assigned 
Integer mult. for subscripting 

1. Branch register 
2. Increment and comparand (BT and BF) 
3. Operand 3 (1*2 divide) 
4. Integer mult. for subscripting 

1. Operand representing an index value 
2. secondary spill base for data 
3. Spill base for branching (BT and BF) 

Primary spill base for data 
Logical result of compare operations 
Not assigned 
Not assigned 
Not assigned 
Secondary reserved base register 
Primary reserved base register 

1. Number of elements (computed GO TO) 
2. Spill base for branching (computed GO TO) 
3. Branch register (computed GO TO) 
Index (computed GO TO) 

Floating-Point 

o 1. Real operand 
2. Real part of complex function result 

2 I imaginery part of complex function result L ______________ ~ ______________________________________________________________________ _ 

Applying this concept to the processing 
of text entries that are arithmetic in 
nature, consider that a phase 15 text entry 
representing the expression A = B + C is 
the first of the source module. For this 
text entry to be evaluated using a single 
accumulator and base register, basic 
register assignment must tell phase 25 to 
generate machine code that: 

48 

• Loads the base address of B into the 
base register. 

• Loads B into the accumulator. 

• Loads the base address of C into the 
base register. (This instruction is 
not necessary if C is assigned the same 
base address as B.) 

• Adds C to the a.ccumulator (RX-format 
add). 

• Loads the base address of A into the 
base register (if necessary). 

• Stores the accumulated result in A. 

If this coding sequence were executed, 
two items would remain in registers: the 
last base address loaded and the 
accumulated result. These items are 
available for subsequent use. 

Now consider that a text entry of the 
form D = A + F immediately follows the 
above text entry. In this case, A, which 
corresponds to the result operand of the 
previous text entry, is in the accumulator. 
Thus, for this text entry, basic register 
assignment specifies code that: 

• Loads the base address of F into the 
base register. (If the base address of 
F corresponds to the last loaded base 
address, this instruction is not 
necessary.) 



• Adds F to the accumulator (RX-format 
add) • 

• Loads the base address of D into the 
base register (if necessary). 

• stores the accumulated result in D. 

The foregoing coding sequences are the 
basic ones specified by basic register 
assignment for arithmetic operations. The 
first is specified for text entries in 
which neither operand 2 nor operand 3 (see 
Table 3) corresponds to the result operand 
(operand 1) of the preceding text entry. 
The second is specified for text entries in 
which either operand 2 or operand 3 
corresponds to the result operand. If 
operand 3 corresponds to the result 
operand, the two operands exchange roles, 
except for division. In the case of 
division, operand 3 is always in main 
storage. 

If both operands 2 and 3 correspond to 
the result operand of the previous text 
entry, an RR-format operation is specified 
to evaluate the interactions of the 
operands. 

In the actual process of basic register 
assignment, a single pass is made over the 
phase 15 text output. The basic unit 
operated upon is the text block~ As the 
processing of each block is completed, the 
next block is processed. When all blocks 
are processed, control is returned to the 
FSD. 

Text blocks are processed in a 
top-to-bottom manner, beginning with the 
first text entry in the block. When all 
text entries in a block are processed, the 
next text block is processed similarly. 

For any text entry, the machine code to 
be generated is first specified by setting 
up the status field of the text entry. 
Registers are then assigned to the operands 
and base addresses by filling in the 
register fields of the text entry. 

Status Setting: Subroutine SSTAT-IEKRSS 
sets the operand and base address status 
information for a text entry in the 
following order: operand 2, operand 2 base 
address, operand 3, operand 3 base address, 
operand 1, and operand 1 base address. 

To set the status of operand 2, 
subroutine SSTAT-IEKRSS determines the 
relationship of that operand to the result 
operand (operand 1) of the previous text 
entry. If operand 2 is the same as the 
result operand, the SSTAT-IEKRSS subroutine 
sets the status of operand 2 to indicate 
tha.t it is in a register and, therefore, 
need not be loaded; otherwise, it sets the 
status to indicate that it is in main 
storage. Subroutine SSTAT-IEKRSS uses a 
similar procedure to set the status of 
operand 3. 

To set the status of the base address of 
operand 2, subroutine SSTAT-IEKRSS 
determines the relationship of that base 
address to the current base address (see 
note). If they correspond, the SSTAT-IEKRSS 
subroutine sets the status of the base 
address of operand 2 to indicate that it is 
in a register and, therefore, need not be 
l~aded; otherwise, it sets the status to 
indicate that it is in main storage. 

Subroutine SSTAT-IEKRSS sets the 
statuses of the base addresses of operands 
3 and 1 in a similar manner. 

Note: The current base address is the last 
base address loaded for the purpose of 
referring to an operand. This base address 
remains current until a subsequent operand 
that has a different base address is 
encountered. When this occurs, the base 
address of the subsequent operand must be 
loaded. That base address then becomes the 
current base address, etc. 

The SSTAT-IEKRSS subroutine sets status 
of operand 1 to indicate whether or not the 
result of the interaction of operands 2 and 
3 is to be stored into operand 1. If 
operand 1 is either an actual operand (a 
variable defined by the programmer) or a 
temporary that is not used in the 
subsequent text entry, it sets the status 
of operand 1 to indicate that the store 
operation is to be performed; otherwise, it 
sets the status to indicate that a store 
into operand 1 is unnecessary. 

Register Assignment: After the status 
field of the text entry is completed, 
subroutine SPLRA-IEKRSL assigns registers 
to the operands of the text entry and their 
associated base addresses in the same order 
in which statuses were set for them. 

The assignment of registers depends upon 
the statuses of the operands of the text 
entry. To assign a register to operand 2, 

Section 2: Discussion of Major Components 49 



subroutine SPLRA-IEKRSL examines the status 
of that operand, and, if necessary, of 
operand 3. If the status of operand 2 
indicates that it is in a register or if 
the statuses of operands 2 and 3 indicate 
that neither is a register, subroutine 
SPLRA-IEKRSL assigns operand 2 to a 
register. It selects the register 
according to the type of operand (see Table 
3), and places the number of that register 
into the R2 field of the text entry. 

To assign a register to the base address 
of operand 2, subroutine SPLRA-IEKRSL 
determines the status of operand 2. If the 
status of that operand indicates that it is 
not in a register, it assigns a register to 
the base address of operand 2. The 
appropriate register is selected as shown 
in Table 3, and the register number is 
placed into ,the B2 field of the text entry. 
If the status of operand 2 indicates that 
it is in a register, subroutine 
SPLRA-IEKRSL does not assign a register to 
the base address of operand 2. The 
SPLRA-IEKRSL subroutine uses a similar 
procedure in assigning a register to the 
base address of operand 3. 

If the status of operand 3 indicates 
that it is in a register, subroutine 
SPLRA-IEKRSL assigns the appropriate 
register (see Table 3) to that operand, and 
enters the number of that register into the 
R3 field. 

Operand 1 is always assigned a register. 
Subroutine SPLRA-IEKRSL selects the 
register according to the type of operand 1 
(see Table 3), and places the number of 
that register into the R1 field. 

The base address of operand 1 is 
assigned a register only if the status of 
operand 1 indicates the result is to be 
stored into operand 1. If such is the 
case, subroutine SPLRA-IEKRSL selects the 
appropriate register, and records the 
number of that register in the B1 field. 
If the status of operand 1 indicates that 
the result is not to be stored into operand 
1, subroutine SPLRA-IEKRSL does not assign 
a register to the base address of operand 
1. 

When all the operands of the text entry 
and their associated base addresses are 
assigned registers, the next text entry is 
obtained, and the status setting and 
register assignment processes are repeated. 
After all text entries in the block are 
processed, control is returned to IEKRSS, 
which then makes the next block available 

50 

to the basic register assignment routines. 
When the processing of all blocks is 
completed, control is passed to IEKPLS, and 
then to the FSD. 

Full Register Assignment -- OPT=l (Chart 
14) 

During full register assignment (also 
refer to "Full Register Assignment 
OPT=2"), as during basic register 
assignment, registers are assigned to the 
text entry operands and their associated 
base addresses, and the machine code to be 
generated for the text entries is 
specified. To improve object module 
efficiency, these functions are performed 
in a manner that reduces the number of 
instructions required to load base 
addresses and operands. This process 
reduces the number of required load 
instructions by taking greater advantage of 
all available registers, by assigning the 
registers as needed to both base addresses 
and operands, by keeping as many operands 
and base addresses as possible in registers 
and available for subsequent use, and by 
keeping the most active base addresses and 
operands in registers where they are 
available for use throughout execution of 
the entire object module. 

During full register assignment, 
registers are assigned at two levels: 
"locally" and "globally." Local assignment 
is performed on a block-by-block basis. 
Global assignment is performed on the basis 
of the entire module (if intermediate 
optimization has been specified). 

For local assignment, an attempt is made 
to keep operands whose values are defined 
within a block in registers and available 
for use throughout execution of that block. 
This is done by assigning an available 
register to an operand at the point at 
which its value is defined. (The value of 
an operand is defined when that operand 
appears in the operand 1 position of a text 
entry.) The same register is assigned to 
subsequent uses (i.e., operand 2 or operand 
3 appearances) of that operand within the 
block, thereby ensuring that the value of 
the operand will be in the assigned 
register and available for use. However, 
if more than one subsequent use of the 
defined operand occurs in the block, 
additional steps must be taken to ensure 
that the value of that operand is not 
destroyed between uses. Thus, when the 
text entries in which the defined operand 
is used are processed, the code specified 
for them must not destroy the contents of 



the register containing the defined 
operand. 

Because all available registers are used 
during full register assignment, a number 
of operands whose values are defined within 
the black can be retained in registers at 
the same time. 

Applying the above concept to an 
example, consider the following sequence of 
phase 15 text entries; 

A X + Y 
C A + Z 
F A + C 

A register is assigned to A at the point at 
which its value is defined, namely in the 
text entry A = X + Y. The same register is 
assigned to the subsequent uses of A. The 
value of A will be accumulated in the 
assigned register and can be used in the 
subsequent text entry C = A + Z. However, 
because A is also used in the text entry 
F = A + C, the contents of the register 
containing A cannot be destroyed by the 
code generated for the text entry 
C = A + Z. Thus, when the text entry 
C = A + Z is processed, instructions are 
specified for that text entry that use the 
register containing A, but that do not 
destroy the contents of that register. 

In the example, C is also defined and 
subsequently used. To that defined operand 
and its subsequent uses, a register is 
assigned. The assigned register is 
different from that assigned to A. The 
value of C will be accumulated in the 
assigned register and can be used in the 
next text entry. The text entry F = A + C 
can then be evaluated without the need of 
any load operand instructions, because both 
the interacting operands (A and C) are in 
registers. 

This type of processing typifies that 
performed during local assignment for each 
block. When all blocks are processed, 
global assignment for the source module is 
carried out. 

Global assignment increases the 
efficiency of the object module as a whole 
by assigning registers to the most active 
operands and base addresses. The 
activities of all operands and base 
addresses are computed during local 
assignment prior to global assignment. The 
first register available for global 
assignment is assigned to the most active 

operand or base address; the next available 
register is assigned to the next most 
active operand or base address; etc. As 
each such operand or base address is 
processed, a text entry, the function of 
which is to load the operand or base 
address into the assigned register, is 
generated and placed into the entry 
block(s) of the module. When the supply of 
operands and base addresses, or the supply 
of available registers, is exhausted, the 
process is terminated. 

All global assignments are recorded for 
use in a subsequent text scan, which 
incorporates global assignments into the 
text entries, and completes the processing 
of operands that have neither been locally 
nor globally assigned to registers (e.g., 
an infrequently used operand that is used 
in a block but not defined in that block). 

The full register assignment process is 
divided into five areas of operation: 
control (subroutine REGAS-IEKRRG), table 
building (subroutine FWDPAS-IEKRFP), local 
assignment (subroutine BKPAS-IEKRBP), 
global assignment (subroutine 
GLOBAS-IEKRGB), and text updating 
(subroutine STXTR-IEKRSX). The control 
routine of phase 20 (LPSEL-IEKPLS) passes 
control to subroutine REGAS-IEKRRG that 
directs the flow of control among the other 
full register assignment routines. 

The actual assignment of registers is 
implemented through the use of tables built 
by the table-building routine, with 
assistance from the control routine. 
Tables are built using the set of 
coordinate numbers and associated 
dictionary pointers created by phase 15 
(the MCOORD vector and MVD) for indexing. 
The table-building routine constructs two 
sets of parallel tables. One set, used by 
the local assignment routine, contains 
information about a text block; the second 
set, used by the global assignment 
routines, contains information about the 
entire module. (The local assignment and 
global assignment tables are detailed in 
Appendix A, "Register Assignment Tables.") 

The flow of control through the full 
register assignment routines is, as 
follows: 

1. The control routine (REGAS-IEKRRG) 
makes a pass over the MVD table and 
the dictionary entries for the 
variables and constants in the loop 
passed to it, and constructs the 
eminence table (EMIN) for the module, 

Section 2: Discussion of Major Components 51 



which indicates the availability of 
the variables for global assignment. 
Then the REGAS-IEKRRG subroutine calls 
the table building routine to process 
the blocks in the loop (the complete 
module for OPT=l ). 

2. The table-building routine 
(FWDPAS-IEKRFP) builds the required 
set of local assignment tables and 
adds information to the global 
assignment tables under construction. 
Subroutine FWDPAS-IEKRFP selects the 
first block of the loop and builds the 
tables for that block. It then passes 
control to the local assignment 
routine to 
process the block and the tables (see 
Chart 15). 

3. The local assignment routine 
(BKPAS-IEKRBP) uses the tables 
supplied for the block to perform 
local register assignment, and returns 
control to subroutine FWDPAS-IEKRFP 
when its 
processing is completed (see Chart 
16). 

4. The FWDPAS-IEKRFP subroutine selects 
the next block of the loop and again 
builds tables. This process continues 
until all blocks of the loop have been 
processed. Control is then returned 
to the REGAS-IEKRRG subroutine. 

5. Subroutine REGAS-IEKRRG passes control 
to the global assignment routine 
GLOBAS-IEKRGB, which performs global 
assignment for the module (see Chart 
17). 

6. When global assignment is complete, 
the cont,rol routine calls the text 
updating routine, STXTR-IEKRSX, to 
complete register assignment by 
entering the results of global 
assignment int~o the text entries for 
the module. Control is then returned 
to the LPSEL-IEKPLS subroutine. 

Table Building for Register Assignment 
(Chart 15): The table-building routine, 
FWDPAS-IEKRFP, performs a forward scan of 
the intermediate text entries for the block 
under consideration and enters information 
about each text entry into the local and 
global tables (see Appendix A, "Register 
Assignment Tables"). The local assignment 
tables can accommodate information for 100 
text entries. If, however, a block 

52 

contains more than 100 text entries, the 
table-building routine builds the local 
tables for the first 100 text entries and 
passes this set of tables to the local 
assignment routine. The local assignment 
routine processes the text entries 
represented in the set of local tables. 
The table-building routine then creates the 
local tables for the next 100 text entries 
in the block and passes them to the local 
assignment routine. When the 
table-building routine encounters the last 
text entry for the block, it passes control 
to the local assignment routine, although 
there may be fewer than 100 entries in the 
local tables. 

The global tables contain information 
relating to variables and constants 
referred to within the module, rather than 
to text entries. The global tables can 
accommodate information for 126 variables 
and constants in a given module. Variables 
and constants in excess of this number 
within the module are not processed by the 
global assignment routine. 

Local Assignment (Chart 16): Local 
assignment is implemented via a backward 
pass over the text items for the block (or 
portion of a block) under consideration. 
The text items are referred to by using the 
local assignment tables, which supply 
pointers to the text items. 

The local assignment routine, 
BKPAS-IEKRBP, examines each operand in the 
text for a block and determines (from the 
local assignment tables) whether or not the 
operand is eligible for local assignment. 
To be eligible, an operand must be defined 
and used (in that order) within a block. 
Because local assignment is performed via a 
backward pass over the text, an eligible 
operand will be encountered when it is used 
(i.e., in the operand 2 or 3 position) 
before it is defined. 

When an operand of a text entry is 
examined, the local assignment routine 
(BKPAS-IEKRBP) consults the local 
assignment tables to determine that 
operand's eligibility. If the operand is 
eligible, subroutine BKPAS-IEKRBP assigns a 
register to it. The register assigned is 
determined by consulting the register usage 
table for local assignment (TRUSE). TRUSE 
is a work table that contains an entry for 
every register that may be used by the 
local assignment routine. A zero entry for 
a particular register indicates that the 
register is available for local assignment. 
A nonzero entry indicates that the register 
is unavailable and identifies the variable 



to which the register is assigned. The 
register usage table is modified each time 
a register is assigned or freed. The first 
time a register is assigned, a 
corresponding entry in the register usage 
table fo~lobal assignment (RUSE) is set. 
This entry implies that the register is 
unavailable for global assignment. 

Subroutine BKPAS-IEKRBP records the 
register assigned to the used operand in 
the local assignment tables and in the text 
item containing the used operand. It sets 
the status of the operand in the text entry 
to indicate that it is in a register. If 
subsequent uses of the operand are 
encountered prior to the definition of the 
operand, the BKPAS-IEKRBP subroutine uses 
the register assigned to the first use, and 
records its identity in the text item. It 
then sets the status bits for the operand 
to indicate that it is in a register and is 
to be retained in that register. 

When a definition of the operand is 
encountered, subroutine BKPAS-IEKRBP enters 
the register assigned to the operand into 
the text item and sets the status for the 
operand to indicate its residence in a 
register. Once the register is assigned to 
the operand at its definition point, the 
BKPAS-IEKRBP subroutine frees the register 
by setting the entry in the register usage 
table to zero, making the register 
available for assignment to another 
operand. 

If the block being processed contains a 
CALL statement or a reference to a function 
subprogram, common variables, arguments, 
and real operands cannot be assigned to 
registers across that reference. The local 
assignment routine assumes that: 

1. All mathematical functions return the 
result in general register 0 or 
floating-point register 0, according 
to the mode of the function. 

2. The imaginary portion of a complex 
result is returned in floating-point 
register 2. 

If no register is available for 
assignment to an eligible operand, an 
overflow condition exists. In this case, 
subroutine BKPAS-IEKRBP must free a 
previously assigned register for assignment 
to the current operand. It scans the local 
assignment tables and selects a register. 
It then modifies the local assignment 
tables, text entries for the block, and 
register usage table to negate the previous 
assignment of the selected register. The 
required register is now available, and 
processing continues in the normal fashion. 

GlobaLAssignment (Ch~rt 111: The global 
assignment routine (GLOBAS-IEKRGB), unlike 
the local assignment routine, does not 
process any of the text entries for the 
module. The global assignment routine 
operates only through the set of global 
tables. The results of global assignments 
are entered into the appropriate text 
entries by the text updating routine. 

Before assigning registers, the global 
assignment routine modifies the global 
assignment tables to produce a single 
activity table for all operands and base 
addresses in the module. 

Global assignment is then performed 
based on the activity of the eligible 
operands and base addresses. 

The GLOBAS-IEKRGB routine determines the 
eligibility of an operand or base address 
by consulting the appropriate entry in the 
global assignment tables. Eligible 
operands are divided into two categories: 
floating point and fixed point. The two 
categories are processed separately, with 
floating-point quantities processed first. 

The register usage table for global 
assignment (RUSE) is of the same type as 
described under local assignment (TRUSE). 
For each category of operands, the 
GLOBAS-IEKRGB routine selects the eligible 
operand with the highest total activity and 
assigns it the first available register of 
the same mode. It records the assignment 
in the register usage table and in the 
global assignment tables. The 
GLOBAS-IEKRGB routine then selects the 
eligible operand with the next highest 
activity and treats it in the same manner. 
Processing for each group continues until 
the supply of eligible operands or the 
supply of available registers is exhausted. 

If the module contains any CALL 
statements or function subprogram 
references, arguments and real and common 
variables are ineligible for global 
assignment. In other words, if a module 
contains either a reference to a subroutine 
or to a function subprogram, global 
assignment is restricted to integer and 
logical operands that are not in common or 
in the parameter list. 

Text Updating (Charts 18 and 19): The text 
updating routine (STXTR-IEKRSX) completes 
full register assignment. It scans each 
text entry within the series of blocks 
comprising the module, looking at operands 
2, 3, and 1, in that order, within each 
text entry. As each operand is processed, 
subroutine STXTR-IEKRSX interrogates the 
completed global assignment table to 
determine whether or not a global 
assignment has been made for the operand. 

Section 2: Discussion of Major Components 53 



If it has, subrou1:ine STXTR- IEKRSX enters 
the register assigned into the text entry 
and sets the operand status bits to 
indicate that the operand is in a register 
and is to be retained in that register. 

If both a local and a global assignment 
have been made for an operand, the global 
assignment supersedes the local assignment 
and the STX'I'R- IEKRSX subroutine records the 
globally assigned register in the text 
items pertaining t.O that operand. It also 
sets the status bits for such an operand to 
indicate that it is in a register and is to 
be retained in that register. 

If a register has not been assigned 
either locally or globally for an operand, 
subroutine STXTR-IEKRSX.determines and 
records in the text entry the required base 
register for the base address of that 
operand. If the base address corresponds 
to one that has been assigned to a register 
during global assignment, the STXTR-IEKRSX 
subroutine assigns the same register as the 
base register for the operand. If a 
reqister has not been assigned to the base 
address of the operand during global 
assignment, it assigns a spill register 
(register 15) as the base register of the 
operand. Subroutine STXTR-IEKRSX sets the 
operand's base status bits to indicate 
whether or not the base address is in a 
register. (The base address will be in a 
register if one was assigned to it during 
global assignment.) It then assigns the 
operand itself a spill register (general 
register 0 or 1 or floating-point register 
0, depending upon its mode). 

As part of its text updating function, 
subroutine STXTR-IEKRSX allocates temporary 
storage where needed for temporaries that 
have not been assigned to a register, keeps 
track of the allocated temporary storage, 
and completes the register fields of text 
entries to ensure compatibility with phase 
25. On exit from the text updating 
routine, all text items in the module are 
fully formed and ready for processing by 
phase 25. The text updating routine 
returns control to subroutine REGAS-IEKRRG 
upon completion of its functions. The 
REGAS-IEKRRG subroutine, in turn, returns 
control to subroutine LPSEL-IEKPLS. 

BRANCHING OPTIMIZA'I'ION -- OPT=1 

This portion of phase 20 optimizes 
branching within the object module. The 
optimization is achieved by generating 
RX-format branch instructions in place of 
RR-format branch instructions wherever 
possible. 

54 

The use of RX-forrna-t branches eliminates 
the need for an instruction to load the 
branch address into a general register 
preceding each branching instruction. 
Thus, branching optimization decreases the 
size of the object module by one 
instruction for each RR-format branch 
instruction in the object module that can 
be replaced by an RX-format branch 
instruction. It also decreases the number 
of address constants required for 
branching. 

Phase 20 optimizes branching 
instructions by calculating the size of 
each text block (number of bytes of object 
code to be generated for that block) and by 
determining those blocks that can be 
branched to via RX-format branch 
instructions. 

Subroutine BLS-IEKSBS calculates the 
sizes of all text blocks after full 
register assignment for the module is 
completed. It then uses the gathered block 
size information to determine the blocks to 
which a branch can be made by means of 
RX-format branch instructions. The 
BLS-IEKSBS subroutine calculates the number 
of bytes of object code by: 

1. Examining each text item operation 
code and the status of the operands 
(i.e., in registers or not). 

2. Determining, from a reference table, 
the number of bytes of code that is to 
be generated for that text item. 

The BLS-IEKSBS subroutine accumulates these 
values for each block in the module. In 
addition, it increments the block size 
count by the appropriate number of bytes 
for each reference to an in-line routine 
that it encounters. 

Next, subroutine BLS-IEKSBS computes all 
block sizes and determines those text 
blocks to which a branch can be made via 
RX-format branch instructions. Once 
converted to machine code, a branch can be 
made to a text block via an RX-format 
branch instruction if the relative address 
of the beginning of that block is displaced 
less than 4096 bytes from an address that 
is loaded into a reserved registero 

The following text discusses reserved 
registers, the addresses loaded into them, 
and the processing performed by subroutine 
BLS-IEKSBS to determine the source module 
blocks to which a branch can be made via 
RX-format branch instructions. 



Reserved Registers 

Reserved registers are allocated to 
contain the starting address of the adcon 
table and subsequent 4096-byte blocks of 
the object module. The criterion used by 
phase 20 in reserving registers for this 
purpose is the number of text entries that 
result from phase 15 processing. (Phase 
15counts the number of text entries that 
result from its processing and passes the 
information to phase 20.) For small source 
modules (up to 880 text entries), phase 20 
reserves only one register in addition to 
register 13. For large source modules 
(more than 1760 text entries), a maximum of 
four additional registers is reserved. The 
registers are reserved, as needed, in the 
following order: register 13, 12, 11, 10, 
and 9. 

Reserved Register Addresses 

The addresses placed into the reserved 
registers as a result of the execution of 
the initialization instructions (see 
"Generation of Initialization Instructions" 
under "FORTRAN System Director") are: 

• Register 13 -- address of the save 
area. 

• Register 12 (if reserved) -- address of 
the save area plus 4096 or address of 
the first adcon for the program. 

• Register 11 (if reserved) -- address of 
the register 12 plus 4096. 

• Register 10 (if reserved) -- address of 
the register 12 plus 2(4096). 

• Register 9 (if reserved) -- address of 
the register 12 plus 3(4096). 

Block Determination and Subsequent 
Processing 

Because the instructions resulting from 
the compilation are entered into text 
information immediately after the "B" block 
labels (see Figure 9), certain text blocks 
are displaced less than 4096 bytes from an 
address in a reserved register. A branch 
can be made to such blocks by RX-format 
branch instructions that use the address in 
a reserved register as the base address for 
the branch. 

To determine the blocks to which a 
branch can be made via RX-format branch 
instructions, subroutine BLS-IEKSBS 
computes the displacement (using the block 
size information) of each block from the 
address in the appropriate reserved 
register. The first reserved register 
address considered is that in register 13. 
For each block that has a displacement of 
less than 4096 bytes from that address, 
subroutine BLS-IEKSBS enters the 
displacement into the statement number 
entry for that block. It also places in 
that statement number entry an indication 
that a transfer can be made to the block 
via an RX-format branch instruction, and 
records the number of the reserved register 
to be used in that branch instruction. 

When subroutine BLS-IEKSBS has processed 
all blocks displaced less than 4096 bytes 
from the address in register 13, it 
processes those that are displaced less 
than 4096 bytes from the addresses in 
registers 12, 11, 10, and 9 (if reserved) 
in a similar manner. 

The information placed in the statement 
number entries is used during code 
generation, a phase 25 process, to generate 
RX-format branch instructions. 

STRUCTURAL DETERMINATION 

To achieve OPT=2 optimization, the 
structural determination routines of phase 
20 (TOPO-IEKPO and BAKT-IEKPB) identify 
module loops and specify the sequence in 
which they are to be processed. Loops are 
identified by analyzing the block 
connection information gathered by phase 15 
and recorded in the forward-connection 
(RMAJOR) and backward-connection (CMAJOR) 
tables. The connection information 
indicates the flow of control within the 
module and, therefore, reflects which 
blocks pass control among themselves in a 
cyclical fashion. 

Loops are ordered for processing 
starting with the innermost, or most often 
executed, loop and working toward the 
outermost. The inner-to-outer loop 
sequence is specifed so that: 

Section 2: Discussion of Major Components 55 



• Text entries \'1ill not be relocated into 
loops that have already been 
processed • .1. 

• The full register capabilities of 
System/360 can first be applied to the 
most frequently executed (innermost) 
loop. 

Loop identification is a sequential 
process, which requires that a back 
dominator be determined for each text 
block. The back dominator of a text block 
(block I) is defined as the block nearest 
to block I through which control must pass 
before block I receives control for the 
first time. The back dominators of all 
text blocks must be determined before loop 
identification can be continued. After all 
back dominators have been determined, a 
chain of back dominators is effectively 
established for ea.ch block. This chain 
consists of the back dominator of the 
block, the back dominator of the back 
dominator of the block, etc. 

Figure 7 illustrates the concept of back 
dominators. Each block in the illustration 
represents a. text block. The blocks are 
identified by single letter names. The 
back dominat.or of each block is identified 
and recorded above the upper right-hand 
corner of that block. 

When all back dominators are identified, 
a back target and a depth number for each 
text block is determined. A block (block 
I) has a back target (block J) if: 

• There ex.ists a path from block I to 
itself that does not pass through block 
J. 

• Block J is the nearest block in the 
chain of back dominators of block I 
that has only one forward connection. 

The text blocks constituting a loop are 
identifiable because they have a common 
back target, known as the back target of 
the loop. 

The depth numbe'r for a block indicates 
the degree to which that block is nested 
within loops. For example, if a block is 

.1.The text optimization process relocates 
text entries from within an inner loop to 
an outer loop. Thus, if an outer loop 
were processed first, text entries from an 
inner loop might be relocated to the outer 
loop, thereby requiring that the outer 
loop be reprocessed. 

56 

an element of a loop that is contained 
within a loop with a depth number of one, 
that block has a depth number of two. All 
blocks constituting the same loop (i.e., 
all blocks having a common target) have the 
same depth number. 

The depth numbers computed for the 
blocks that comprise the various loops are 
used to determine the sequence in which the 
loops are to be processed. 

Figure B illustrates the concepts of 
back targets and depth numbers. Again each 
block in the illustration represents a text 
block, which is identified by a single 
letter name. In this illustration, the 
back target of each block is identified and 
recorded above the upper right-hand corner 
of that block. The depth number :for the 
block is recorded above ~he upper left-hand 
corner of the block. Note that blocks that 
pass control among themselves in a looping 
fashion have a common back target and the 
same depth number. Also note that the 
blocks of the two inner loops have the same 
depth numbers, although they have different 
back targets. 

Entry 
o 

B 

Exit 

Figure 7. Back Dominators 



Entry 
o 0 

A 

A 

Exit 

Figure 8. Back Targets and Depth Numbers 

When the back target and depth number of 
each text block has been determined, loops 
are identified and the sequence in which 
they are to be processed is specified. The 
loops are sequenced according to the depth 
number of their blocks. The loop whose 
blocks have the highest depth number is 
specified as the first to be processed, the 
loop whose blocks have the next highest 
depth number is specified as the second to 
be processed, etc. When the processing 
sequence of all loops has been established, 
the innermost loop is selected for 
processing. 

The following paragraphs describe the 
processing performed by the structural 
determination routines to: 

• Determine the back dominator of each 
text block. 

• Determine the back target and depth 
number of each text block. 

• Identify and sequence loops for 
processing. 

Determination of Back Dominators 

Subroutine TOPO-IEKPO determines the 
back dominator of each text block by 

exam1n1ng the connection information for 
that block. The first block processed by 
subroutine TOPO-IEKPO is the first block 
(entry block) of the module. Blocks on the 
first level (i.e., blocks that receive 
control from the entry block) are processed 
next. Second-level blocks (i.e., blocks 
that receive control from first-level 
blocks) are then processed, etc. 

The TOPO-IEKPO subroutine assigns to the 
entry block a back dominator of zero, 
because it has no back dominator; it 
records the zero in the back dominator 
field of the statement number entry for 
that block (see Appendix A, "Statement 
Number/Array Table"). The TOPO-IEKPO 
subroutine assigns each block on the first 
level either its actual back dominator or a 
provisional back dominator. If a 
first-level block receives control from 
only one block, that block must be the 
entry block and is the back dominator for 
the first-level block. Subroutine 
TOPO-IEKPO records a pOinter to the 
statement number entry for the entry block 
in the back dominator field of the 
statement number entry for the first-level 
block. If a first-level block receives 
control from more than one block, 
subroutine TOPO-IEKPO assigns to it a 
provisional back dominator, which is the 
entry block of the module. All blocks on 
the first level are processed in this 
manner. 

Subroutine TOPO-IEKPO also assigns each 
block on the second level either its actual 
back dominator or a provisional back 
dominator. If a second-level block 
receives control from only one block, its 
back dominator is the first-level block 
from which it receives control. The 
TOPO-IEKPO subroutine records a pointer to 
the statement number entry for the 
first-level block in the back dominator 
field of the statement number entry for the 
second-level block. If more than one block 
passes control to a second-level block, 
subroutine TOPO-IEKPO assigns to that block 
a provisional back dominator. The 
provisional back dominator assigned is a 
first-level block that passes control to 
the second-level block under consideration. 
Processing of this type is performed at 
each level until the last, or exit, block 
of ·the module is processed. Subroutine 
TOPO-IEKPO then determines the actual back 
dominators of blocks that were assigned 
pro'visional back dominators. 

'For each block assigned a provisional 
back dominator, subroutine TOPO-IEKPO makes 
a backward trace over each path leading to 
the block (using CMAJOR). The blocks at 
which two or more of the paths converge are 
flagged as possible candidates for the back 
dominator of the block. When all paths 

Section 2: Discussion of Major Components 57 



have been treated" the relationship of each 
possible candidate to the other possible 
candidates is examined. The TOPO-IEKPO 
subroutine assign::; the candidate at the 
highest level (i.e., closest to the entry 
block of the module) as the back dominator 
of the block under consideration; it 
records a pointer to the statement number 
entry for the assigned back dominator in 
the back dominator field of the statement 
number entry for the block under 
consideration. After the back dominators 
of all text blocks are identified, 
subroutine BAKT-IEKPB determines the back 
target and depth number of each text block. 

Determination of Back Targets and Depth 
Numbers 

Subroutine BAKT-IEKPB determines the 
back target of each text block through an 
analysis of the backward connection 
information (in CMAJOR) for that block. 
Block J is the back target of block I if: 

1. A path exists from block I to itself, 
and block J is the nearest block, in 
the chain of back dominators of block 
I, not on that path. 

2. Block J has only one forward 
connection. 

If a block J exists that satisfies 
condition 1 but not condition 2, then the 
back target of block J is also the back 
target of block Iu 

If a block J satisfying condition 1 does 
not exist, then the back target of block I 
is zero. 

When the back target of a block is 
identified, that block is also assigned a 
depth number. 

Back targets and depth numbers are 
determined for text blocks in the same 
sequence as back dominators are determined 
for them. The first block of the module is 
the first processed, first-level blocks are 
considered next, etc. 

The BAKT-IEKPB subroutine assigns the 
first or entry block both a back target and 
depth number of zero, because it does not 
have a back target and is not in a loop. 
It records the depth number (zero) in the 
loop number field of the statement number 
entry for the entry block (see Appendix A, 
"Statement Number/Array Table"). 

The processing performed by subroutine 
BAKT-IEKPB for each of the other blocks 
depends upon whether one or more than one 

58 

block passes control to that block. If 
more than one block passes control to the 
block under consideration, subroutine 
BAKT-IEKPB makes a backward trace over all 
paths leading to that block to locate its 
primary path. The primary path of a block 
(if one exists) is a path that starts at 
that block and converges on that block 
without passing through any block in the 
chain of back dominators of that block. 

If such a path exists, subroutine 
BAKT-IEKPB obtains and examines the nearest 
block in the chain of back dominators of 
the block under consideration. If the 
obtained block has a single forward 
connection, subroutine BAKT-IEKPB assigns 
that block as the back target of the block 
under consideration. The BAKT-IEKPB 
subroutine then assigns a depth number to 
the block. The number is one greater than 
that of its back target, because the block 
is in a loop, which must be nested within 
the loop containing the back target. 
Subroutine BAKT-IEKPB records the depth 
number in the loop number field of the 
statement number entry for the block. 

If the obtained block has more than one 
forward connection, subroutine BAKT-IEKPB 
assigns its back targe't as the back target 
of the block under consideration. The 
BAKT-IEKPB subroutine then records in the 
statement number entry for the block a 
depth number one greater than that of its 
back target. 

If a block that receives control from 
two or more blocks does not have an 
associated primary path, that block, if it 
is in a loop at all, is in the same loop as 
one of the blocks in its chain of back 
dominators. To identify the loop 
containing the block (block I), subroutine 
BAKT-IEKPB obtains and examines the nearest 
block to block I in its chain of back 
dominators that has two or more forward 
connections. The BAKT-IEKPB subroutine 
makes a backward trace over all paths 
leading to the obtained block to determine 
whether or not block I is an element of 
such a path. If block I is an element of 
such a path, it is in the same loop as the 
obtained block, and subroutine BAKT-IEKPB, 
therefore, assigns block I the same back 
target and depth number as the obtained 
block; it records the depth number in the 
statement number entry for block I. 

If block I is not an element of any path 
leading to the obtained block, subroutine 
BAKT-IEKPB obtains the next nearest block 
to block I in its chain of back dominators 
that has two or more forward connections 
and repeats the process. If block I is not 
an element of any path leading to any block 
in its chain of back dominators, block I is 
not in a loop, and the BAKT-IEKPB 



subroutine assigns it both a back target 
and depth number of zero. 

A block that receives control from only 
one block, if it is in a loop at all, is in 
the same loop as one of the blocks in its 
chain of back dominators. To identify the 
loop containing a block (block I) that 
receives control from only one block, 
subroutine BAKT-IEKPB obtains and examines 
the nearest block to block I in its chain 
of back dominators that receives control 
from two or more blocks. The BAKT-IEKPB 
subroutine makes a backward trace over all 
paths leading to the obtained block to 
locate its primary path (if any). If the 
obtained block has a primary path, 
subroutine BAKT-IEKPB retraces it to 
determine whether or not block I is an 
element of the path. If it is, block I is 
in the same loop as the obtained block, 
and, BAKT-IEKPB therefore assigns block I 
the same back target and depth number as 
the obtained block; BAKT-IEKPB then records 
the depth number in the statement number 
entry for block I. 

If the obtained block does not have a 
primary path, or if it does have a primary 
path, which, however, does not have block I 
as an element, the BAKT-IEKPB subroutine 
considers the next nearest block to block I 
in its chain of back dominators that 
receives control from two or more blocks. 
The process is repeated until a primary 
path containing block I is located (if any 
such path exists). If block I is not in 
the primary path of any block in its chain 
of back dominators, block I is not in a 
loop and subroutine BAKT-IEKPB assigns it 
both a back target and depth number of 
zero. 

Identifying and ordering LOops for 
Processing 

Subroutine BAKT-IEKPB orders blocks for 
processing on the basis of the determined 
back target and depth number information. 
Blocks that have a common back target and 
the same depth number constitute a·loop. 
The BAKT-IEKPB subroutine flags the loop 
with the highest depth number (therefore, 
the most deeply nested loop) as the first 
loop to be processed. It assigns the 
blocks constituting that loop a loop number 
of one, indicating that they form the 
innermost loop, which is the first to 
undergo optimization. (Subroutine 
BAKT-IEKPB records the value 1 in the loop 
number field of the statement number entry 
for each block in that loop.) The 
BAKT-IEKPB subroutine flags the loop with 
the next highest depth number as the second 
loop to be processed. It assigns the 

blocks in that loop a loop number of two, 
indicating that they form the second (or 
next outermost) loop to be processed. (A 
value of 2 is recorded in the loop number 
field of the statement number entry for 
each block in that loop.) Subroutine 
BAKT-IEKPB repeats this procedure until the 
loop with a depth number of one is 
processed. It then assigns the highest 
loop number to the blocks with a depth 
number of zero, indicating that they do not 
form a loop. 

If at any time, groups of blocks with 
the same depth number but different back 
targets are found, each group is in a 
different loop. Therefore, each such loop 
is, in turn, processed before blocks having 
a lesser depth number are considered. 
Thus, if the blocks of two loops have the 
same depth number, subroutine BAKT-IEKPB 
assigns the blocks of the first loop the 
next loop number. It assigns the blocks of 
the second loop a loop number one greater 
than that assigned to the blocks of the 
first loop. 

When loop numbers are assigned to the 
blocks of all module loops, the sequence in 
which the loops are to be processed has 
been specified. control is passed to the 
routine that determines the busy-on-~xit 
information and then to the loop selection 
routine to select the first (innermost) 
loop to be operated upon. This loop 
consists of all blocks having a loop number 
of one. 

BUSY-ON-EXIT INFORMATION 

Before the module can be processed on a 
loop-by-Ioop basis, the variables in each 
block must be classified as either 
busy-on-exit from the block or not 
busy-on-exit from the block. A variable is 
busy immediately preceding a use of that 
variable, but is not busy immediately 
preceding a definition of that variable. 
Thus, a variable is busy-on-exit from the 
blocks that are along all paths connecting 
a use and a prior definition of that 
variable. This means that in subsequent 
blocks the variable can be used before it 
is defined. The busy-on-exit condition for 
a variable assures that its proper value 
exists in main storage or in a register 
along each path in which it is subsequently 
used. 

Information about the regions in which a 
variable is busy or not busy determines 
whether or not a definition of that 
variable can be moved out of a loop. For 
example, if a variable is busy-on-exit from 
the back target of a loop, text 

section 2: Discussion of Major Components 59 



optimization (see "Text Optimization") 
would not attempt to move to the back target 
a redefinition of ·that variable, because if 
moved, the value of the variable, as it is 
processed along various paths from the back 
target, might not be the desired value. 
Conversely, if the variable is not 
busy-on-exit, the redefinition can be moved 
without affecting the desired value of the 
variable. Thus, text optimization respects 
the redefinitions of variables that are 
busy-on-exit from the back target of a 
loop. 

The information about regions in which a 
variable is busy or not busy also 
determines whether or not load and store 
operations of a register assigned to the 
variable are required. For example, in 
full register assignment (see "Full 
Register Assignment--OP'I=2"), variables 
that are assigned. registers during global 
assignment and that are busy-on-exit from 
the back target of the loop must have an 
initializing load of the register placed 
into the back target. The load is required 
because the variable may be used before its 
value is defined. Conversely, if the 
globally assigned variable is not 
busy-on-exit from ·the back target, an 
initializing load is unnecessary. 

Phase 15 provides phase 20 with not 
busy-on-entry information for each operand 
that is assigned a coordinate (an MVD table 
entry). The not busy-on-entry information 
is recorded in the MVX field of the 
statement number text entry for each text 
block (see Phase 15, "Gathering 
Constant/Variable Usage Information"). An 
operand is not busy-on-entry to a block, if 
in that block that operand is defined but 
not used or defined before it is used. 
Phase 20 converts the not busy-on-entry 
information to busy-on-entry information. 
An operand is busy-on-entry to a block, if 
in that block that operand is used but not 
defined or used before it is defined. 
Finally, phase 20 converts the 
busy-on-entry information to busy-on-exit 
information. The backward-connection 
information in CMAJOR is used to make the 
final conversion. 

The routine that performs the 
conversions is BIZX-IEKPZ. This routine 
determines busy-on-exit information for 
each constant, variable, and base variable 
having an associated MVD table entry or 
coordinate. However, because only 
constants and base variables are used, they 
are busy-on-exit throughout the entire 
module. Therefore, the remainder of this 
discussion deals with the determination of 
busy-on-exit information for variables. 

60 

Because HETURN statements (exit blocks) 
and references to subprograms not supplied 
by IBM constitute implicit uses of 
variables in corrunon, all corrunon variables 
and arguments to such subprograms are first 
marked as busy-on-entry to exit blocks and 
blocks containing the references. The 
common variables and arguments are found by 
examining the information table entries for 
all variables in the MVD table. The module 
is then searched for blocks that are exit 
blocks and that contain references to 
subprograms not supplied by IBM. The 
coordinate bit for each previously 
mentioned variable is set to on in the MVF 
field of the statement number text entry 
for each such block, while the same 
coordinate bit in the MVX field is set to 
off. This defines the variable to be 
busy-on-entry to such a block. During this 
process, a table, consisting of pointers to 
exit blocks, is built for subsequent use. 

After the previously discussed blocks 
have been appropriately marked for common 
variables and arguments, subroutine 
BIZX-IEKPZ, working with the coordinate 
assigned to a variable, converts the not 
busy-on-entry information for the variable 
to a table of pointers to blocks t.o which 
the variable is busy-on-entry. (The not 
busy-on-entry information for the variable 
is contained in the MVX fields of the 
statement number text entries for the 
various text blocks.) At the same time, 
the variable's coordinate bit in each MVX 
field is set to off. The busy-on-entry 
table and CMAJOR are then used to set to on 
the MVX coordinate bit in the statement 
number text entry for each block from which 
the variable is busy-on-exit. This 
procedure is repeated until all variables 
have been processed. Control is then 
returned to the LPSEL-IEKPLS subroutine. 

To convert not busy-on-entry information 
to busy-on-entry information, subroutine 
BIZX-IEKPZ starts with the second MVD table 
entry, which contains a pointer to the 
variable assigned coordinate number two, 
and works down the chain of text blocks. 
The associated MVX coordinate bit in the 
statement number text entry for each block 
is examined. If the coordinate bit is off, 
the corresponding MVF coordinate bit is 
inspected. If the MVF coordinate bit is 
on, a pointer to the associated text block 
is placed into the busy-on-entry table. 
This defines the variable to be 
busy-on-entry to the block (i.e., the 
variable is used in the block before it is 
defined). If the associated MVX coordinate 
bit is on, indicating that the variable is 
not busy-on-entry, subroutine BIZX-IEKPZ 
sets the bit to off and proceeds to the 
next block. This process is repeated until 
the last text block has been processed. 



After the BIZX-IEKPZ subroutine has set 
to off the MVX coordinate bit <associated 
with the variable under consideration) in 
each statement number text entry and built 
a table of pointers to blocks to which the 
variable is busy-on-entry, it determines 
the blocks from which the variable is 
busy-on-exit. 

starting with the first entry in the 
busy-on-entry table, subroutine BIZX-IEKPZ 
obtains <from CMAJOR) pointers to all 
blocks that are backward connection paths 
of that entry. Each backward-connecting 
block is examined to determine whether or 
not it meets one of three criteria, as 
follows: 

• The block contains a definition of the 
variable <i.e., the variable's MVS 
coordinate bit is on). 

• The variable has already been marked as 
busy-on-exit from the block. 

• The block corresponds to the 
busy-on-entry table entry being 
processed. 

If the block meets one of these 
criteria, the variable is busy-on-exit from 
the block and its associated MVX coordinate 
bit is set to on. (The backward connection 
paths of that block are not explored.) 

If the backward-connecting block does 
not meet anyone of these criteria, the 
variable is marked as busy-on-exit from 
that block and that block's backward 
connection paths are, in turn, explored. 
The same criteria are then applied to the 
backward-connecting blocks. The backward 
connection paths are explored in this 
manner until a block in every path 
satisfies one of the criteria. 

If, during the examination of the 
backward connection paths, an entry block 
(i.e., a block lacking backward connection 
paths) is encountered, the blocks in the 
table of exit blocks, which was previously 
built by subroutine BIZX-IEKPZ are used as 
the backward connection paths for the entry 
block. Processing then continues in the 
normal fashion. 

When blocks in all backward connection 
paths have satisfied one of the criteria, 
the BIZX-IEKPZ subroutine obtains the next 
entry in the busy-on-entry table and 
repeats the process. This continues until 
the busy-on-entry table has been exhausted. 

When the busy-on-entry table has been 
exhausted, the procedure of building the 
busy-on-entry table and converting it to 
busy-on-exit information is repeated for 

the next MVD table entry. When all MVD 
table entries have been processed, 
subroutine BIZX-IEKPZ passes control to the 
LPSEL-IEKPLS subroutine, which calls the 
loop selection routines. 

STRUCTURED SOURCE PROGRAM LISTING 

If both the EDIT option and OPT=2 
optimization are selected, after subroutine 
BIZX-IEKPZ has compiled the busy-on-exit 
information, control is passed to 
subroutine SRPRIZ-IEKQAA, which records on 
the SYSPRINT data set a structured source 
program listing. This listing indicates 
the loop structure and logical continuity 
of the source program. (A complete 
description of the structured source 
listing is given in the publication ~ 
System/360 Operating System: FORTRAN IV (G 
and H) Programmer's Guide, Form C28-6817.) 

To produce the listing, subroutine 
SRPRIZ-IEKQAA reads the SYSUT1 data set 
prepared by phase 10 and associates, by 
means of statement numbers, the individual 
source statements with the text blocks 
formed from them. By analysis of the loop 
number information gathered for the text 
blocks, the SRPRIZ-IEKQAA subroutine then 
identifies the source statements that make 
up a particular loop and flags them on the 
listing by corresponding loop number. 
Subroutine SRPRIZ-IEKQAA also uses the 
previously gathered back dominator 
information to compute listing indentions 
for the statements. The indentions show 
dominance relationships; that is, 
subroutine SRPRIZ-IEKQAA indents the 
statements that form a text block from the 
statements that form the back dominator of 
that block. 

LOOP SELECTION 

The phase 20 loop selection routine 
(TARGET-IEKPT) selects the loop to be 
processed and provides the text 
optimization and full register assignment 
routines with the information required to 
process the loop. 

The loop to be processed is selected 
according to the value of a loop number 
parameter, which is passed to the loop 
selection routine. The phase 20 control 
routine (LPSEL-IEKPLS) sets this parameter 
to one after the process of structural 
determination is complete. The 
TARGET-IEKPT routine is called to select 
the loop whose blocks have a corresponding 
loop number. The selected loop is then 

Section 2: Discussion of Major Components 61 



passed to the text optimization routines. 
When text optimization for the loop is 
completed, the control routine increments 
the parameter by one, sets the loop number 
of the blocks in the loop just processed to 
that of their back target, and marks those 
blocks as completed. The LPSEL-IEKPLS 
routine again calls the TARGET-IEKPT 
routine, which selects the loop whose 
blocks correspond to the new value of the 
parameter. The selected loop is then 
passed to the text optimization routines. 
This process is repeated until the 
outermost loop has been text-optimized. 

After text optimization has processed 
the entire module (i.e., the last loop), 
the control routine removes the block 
completion marks, initializes the loop 
number parameter to 1, and passes control 
to the TARGET-IEKPT routine to reselect the 
first loop. Control is then passed to the 
full register assignment routines. When 
full register assignment for the loop is 
completed, the control routine marks the 
blocks of the loop as completed. It then 
increments the parameter by 1 and passes 
control to the TARGET-IEKPT routine to 
select the next loop. Full register 
assignment is then carried out on the loop. 
This process is repeated until the 
outermost loop has undergone full register 
assignment. (When full register assignment 
has been carried out on the outermost loop, 
the LPSEL-IF~PLS routine passes control to 
the routine that computes the size of each 
text block and also the displacements 
required for branching optimization.) 

The TARGET-IEKPT routine uses the value 
of the loop number parameter as a basis for 
selecting the loop to be processed. The 
TARGET-IEKPT routine compares the loop 
number assigned to each text block to the 
parameter. It marks each block having a 
loop number corresponding to the value of 
the parameter as an element of the loop to 
be processed. It does this by setting on a 
bit in the block status field of the 
statement number entry for the block (see 
Appendix A, "Statement Number/Array 
Table"). When all such blocks are marked, 
the loop has been selected. 

The information required by the text 
optimization and full register assignment 
routines to process the loop consists of 
the following: 

62 

• A pointer to the back target of the 
loop (if any) .. 

• Pointers to both the first and last 
blocks of the loop. 

• The loop composite matrixes. 

After the loop has been selected, this 
required information is gathered. 

Pointer to Back Target 

The text optimization and full register 
assignment routines place both relocated 
and generated text entries into the back 
target of the loop. Although the back 
target of the loop was previously 
identified during structural determination, 
it was not saved. Therefore, its identity 
must be determined again. 

The TARGET-IEKPT routine determines the 
back target of the loop by obtaining the 
first block of the selected loop. It then 
analyzes the blocks in the chain of back 
dominators of the first block to locate the 
nearest block in the chain that is outside 
the loop and that passed control to only 
one block. That block is the back target 
of the loop, and the TARGET-IEKPT routine 
saves a pointer to it for use in the 
subsequent processing of the loop. 

Pointers to First and Last Blocks 

The pointers to the first and last 
blocks of the selected loop indicate to the 
text optimization and full register 
assignment routines where they are to 
initiate and terminate their processing. 
To make these pointers available, the 
TARGET-IEKPT routine merely determines the 
first and last blocks of the selected loop 
and saves pOinters to them for use in the 
subsequent processing of the loop. To 
determine the first and last blocks, the 
TARGET-IEKPT routine searches the statement 
number chain for the first and last entries 
having the current loop number. The blocks 
associated with those entries are the first 
and last in the loop. 

Loop composite Matrixes 

The loop composite matrixes, LMVS, LMVF, 
and LMVX, provide the text optimization and 
full register assignment routines with a 
summary of which operands are defined 
within the selected loop, which operands 
are used within that loop, and which 
operands are busy-on-exit from that loop. 
(An operand is busy-on-exit from the loop 
if it is used before it is defined in any 
path along which control flows from the 
loop.) ----



The LMVS matrix indicates which operands 
are defined within the loop. The 
TARGET-IEKPT routine forms LMVS by 
combining, via an OR operation, the 
individual MVS fields in the statement 
number text entry of every block in the 
selected loop. 

The LMVF matrix indicates which operands 
are used within the loop. The TARGET-IEKPT 
routine forms it by combining, via an OR 
operation, the individual MVF fields in the 
statement number text entry of every block 
in the selected loop. 

The LMVX matrix indicates which operands 
are busy-on-exit from the selected loop. 
LMVX is formed by the TARGET-IEKPT routine. 
It examines the text entries of each block 
that is not in the selected loop and that 
receives control from a block in that loop. 
Any operand in the text entries of such a 
block that is either used but not defined 
in the block or used before it is defined 
is busy-on-exit from the loop. The 
TARGET-IEKPT routine sets to on the bit in 
the LMVX matrix that corresponds to the 
coordinate assigned to each such operand to 
reflect that it (i.e., the operand) is 
busy-on-exit from the loop. 

TEXT OPTIMIZATION -- OPT=2 

The text optimization process of phase 
20 detects text entries within the loop 
under consideration that do not contribute 
to the loop'S successful execution. These 
non-essential text entries are either 
completely eliminated or are relocated to a 
block outside of the current loop. Because 
the most deeply nested loops are presented 
for optimization first, the number of text 
entries in the most strategic sections of 
the object module will approach a minimum. 

The processing of text optimization is 
divided into three logical sections: 

• Common expression elimination optimizes 
the execution of a loop by eliminating 

unnecessary recomputations of identical 
arithmetic expressions. 

• Backward movement optimizes the 
execution of a loop by relocating to 
the back target computations essential 
to the module but not essential to the 
current loop. 

• Strength reduction optimizes the 
incrementation of DO indexes and the 
computation of subscripts within the 
current loop. Modification of the DO 
increment may allow multiplications to 
be relocated into the back target. If 
the DO increment is not busy-on-exit 
from the loop, it may be completely 
replaced by a new DO increment that 
becomes both a subscript value and a 
test value at the bottom of the DO 
loop. 

The first two of the foregoing sections 
are similar in that they examine text 
entries in strict order of occurrence 
within the loop. 

The last section does not examine 
individual text entries within the loop; 
instead, the TYPES table, constructed prior 
to their execution, is consulted for 
opt~imization possibilities. Furthermore, 
an interaction of entries in the TYPES 
table must exist before processing can 
proceed. The TYPES table contains pointers 
to type 3, 5, 6, and 7 text entries. The 
various types, their definitions, and the 
section(s) of text optimization that 
process them are outlined in Table 4. 
Pointers to type 1 and type 2 text entries 
are not entered into the TYPES table. The 
reason is that such types have already been 
processed during backward movement. 

The following text describes the 
processing performed by each of the 
sections of the text optimization. Table 
11 summarizes the criteria for performing 
text optimization in each section. An 
example illustrating the type of processing 
of each section is given in Appendix D. 
These examples should be referred to when 
reading the text describing the processing 
of the sections. 

section 2: Discussion of Major Components 63 



Table 4. Text Entry Types 
r-------T---------------------------------------------T--------------------------------, 
I Type I Defini tion I Processed by I 

~--------+---------------------------------------------f--------------------------------~ 
I Type 1 I A text entry having an absolute constant~ I I 
I I in both the operand 2 and operand 3 I Backward Movement (elimination) I 
I I position. I I 
~--------+---------------------------------------------+--------------------------------i 
I Type 2 I A text entry having stored constants2 in I Backward Movement (movement) I 
I I both the operand 2 and operand 3 positions. I I 
~--------+---------------------------------------------+--------------------------------i 
I Type 3 I An inert text entry (i.e., a text entry I I 
I I 1:hat is a function of itself and an addi- I Strength Reduction I 
I I 1:ive constant; e.g., J=J+l'. I I 
~-------+----------------------------------------------f--------------------------------i 
I Type 5 I A text entry whose operand 1 (a temporary) I I 
I I is a function of a variable (or temporary) I Strength Reduction I 
I I and a constant, and whose operator is I I 
I I multiplicative (* or / l. I I 
~-------+---------------------------------------------f--------------------------------i 
I Type 6 I A text entry whose operand 1 (a temporary) I I 
I I is a function of a variable (or temporary) I Strength Reduction I 
I I and a constant, and whose operator is I I 
I I additive (+ or - ). I I 
~-------t----------------------------------------------f--------------------------------i 
I Type 7 I A branch text entry I Strength Reduction I 
~-_------i----------------------------------------------i--------------------------------i 
I~Absolute constants are those that agree with the definition of numerical constants as I 
I stated in the publication IBM System/360 operating System: FORTRAN IV Language, Form I 
I C28-6515. I 
12A stored constant is a variable that is not defined within a loop and, thus, its I 
I value remains constant throughout execution of that loop. I L ________________________________________________________________________________________ J 

CommQn E~ression Elimination -- OPT=2 

The object of common expression 
elimination, which is carried out by 
subroutine XPELIM-IEKQXM, is to get rid of 
any unnecessary arithmetic expressions. 
This is accomplished by eliminating text 
entries, one at a time, until the entire 
expression disappears. An arithmetic text 
entry is unnecessary if it represents a 
value (calculated elsewhere in the loop) 
that may be used without modification. A 
value may be used without modification if, 
between appearances of the same 
computation, operands 2 and 3 of the text 
entry are not redefined. The following 
paragraphs discuss the processing that 
occurs during common expression 
elimination .. 

Within the current loop, subroutine 
XPELIfvl-IEKQXM examines each uncompleted 
block (i.e., a block that is not part of an 
inner loop) for text entries that are 
candidates for elimination. A text entry 
is a candidate if it contains an 
arithmetic, binary, logical, or subscript 
operator. Once a candidate is found, the 
XPELIM-IEKQXM subroutine attempts to locate 
a matching text entry. A text entry 
matches the candidate if operand 2, operand 
3, and the operator of that text entry are 

64 

identical to those of the candidate. If 
either operand 2 or 3 of the matching text 
entry is redefined between that text entry 
and the candidate, the match is not 
accepted. The search for the matching text 
entry takes place in the following 
locations: 

• In the same block as the candidate, 
between the first text entry and the 
candidate. 

• In a back dominator (see note) of the 
block in which the candidate resides. 

Note: Only back dominators that are 
not elements of previously processed 
loops and that are within the confines 
of the current loop are considered. 
The first back dominator considered is 
the one nearest to the block being 
processed. The next considered is the 
back dominator of the nearest back 
dominator, etc. 

When a matching text entry is found, 
subroutine XPELIM-IEKQXM performs 
elimination in the following way: 

• If operand 1 of the matching text entry 
is not redefined between that text 
entry and the candidate, subroutine 
XPELIM-IEKQXM substitutes that operand 



for operand 2 of the candidate and 
converts the operator to a store. 

• If, however, operand 1 is redefined, 
subroutine XPELIM-IEKQXM generates a 
text entry to save the value of operand 
1 in a temporary and inserts this text 
entry into text immediately after the 
matching text entry. It then replaces 
operand 2 of the candidate with this 
temporary, and converts the operator to 
a store. 

• Finally, if operand 1 of the candidate 
is a temporary generated by phase 15, 
the XPELIM-IEKQXM subroutine replaces 
all uses of the temporary with the new 
operand 2 of the candidate and deletes 
the candidate. Thus, the value of the 
matching text entry is propagated 
forward for a possible match with 
another candidate. This provides the 
link to the next text item of the 
complete common expression. 

All text entries in the block under 
consideration are processed in the 
previously described manner. When the 
entire block is processed, the next 
uncompleted block in the loop is selected 
and its text entries undergo common 
expression elimination. When all 
uncompleted blocks in the loop are 
processed, control is returned to the phase 
20 control routine, which passes control to 
the portion of phase 20 that continues text 
optimization through backward movement. 

The overall logic of common expression 
elimination is illustrated in Chart 11. An 
example of common expression elimination is 
given in Appendix D. 

Backward Movement -- OPT=2 

Backward movement, which is performed by 
subroutine BACMOV-IEKQBM, moves text 
entries from a loop to an area that is 
executed less often, the back target of the 
loop. During backward movement, each 
uncompleted block in the loop being 
processed is examined for text entries that 
are candidates for backward movement. To 
be a candidate for backward movement, a 
text entry must be type 2. Therefore, it 
must: 

• Contain an arithmetic or logical 
operator. 

• Have operands 2 and 3 that are not 
defined within the loop. 

When a candidate is found, subroutine 
BACMOV-IEKQBM carries out backward movement 
of that candidate in one of two ways: 

• If operand 1 of the candidate is not 
busy-on-exit from the back target of 
the loop and if operand 1 of the 
candidate is not defined elsewhere in 
the loop, the BACMOV-IEKQBM subroutine 
moves the entire candidate to the back 
target of the loop. (An operand is not 
busy-on-exit from the back target if 
that operand is defined in the loop 
before it is used.> 

• If operand 1 of the candidate is 
busy-on-exit from the back target of 
the loop or if it is defined elsewhere 
in the loop, subroutine BACMOV-IEKQBM 
generates a text entry to perform the 
computation of the expression in the 
candidate and store the result in a new 
temporary. It moves this text entry to 
the end of the back target of the loop 
and then replaces the expression in the 
candidate with operand 1, the new 
temporary, of the generated text entry. 

All the text entries in the block under 
consideration are processed in the 
previously described manner. When the 
entire block is processed, the next 
uncompleted block in the loop is selected 
and its text entries undergo backward 
movement. When all uncompleted blocks in 
the loop are processed, control is returned 
to the phase 20 control routine, which 
passes control to the portion of phase 20 
that continues text optimization through 
strength reduction. 

The overall logic of backward movement 
is illustrated in Chart 12. An example of 
backward movement is given in Appendix D. 

Two additional optimization processes 
are performed concurrently with backward 
movement. They are the elimination of 
simple stores and of arithmetic expressions 
thai: appear in text entries and are 
functions of constants. 

Elimination of Simple Stores: The 
BACMOV-IEKQBM subroutine effects the 
removal of unnecessary simple stores (i.e., 
texi: entries of the form "operand 1 = 
operand 2") from the block that is 
currently undergoing backward movement. 
The following paragraph describes the 
processing. 

Subroutine BACMOV-IEKQBM selects as 
candidates for elimination any simple store 
in which operand 1 is a non subscripted 
variable. Pointers to the candidates are 
passed to the SUBSUM-IEKQSM subroutine, 
which determines if elimination is indeed 
possible according to the conditions 

Section 2: Discussion of Major components 65 



illustrated in Table 5. At the same time, 
subroutine SUBSUM-IEKQSM replaces all uses 
of operand 1 of the candidate with operand 
2 of the candidate in text entries between 
either: 

• The cand.idate and the first 
redefinition of either operand. 

• The candidate and the end of the block. 

The BACMOV-IEKQBM subroutine then deletes 
those candidates so marked by subroutine 
SUBSUM-IEKQSM. An example of simple-store 
elimination is illustrated in Appendix D. 

Table 5. Operand Characteristics That 
Permit Simple-Store Elimination 

r--------T---------T----------T----------, 
I I IOperand 2 I Operand 1 I 
IOperand 110perand llRedefined IUsed After I 
I Busy-on- I Redefined I Before IOperand 2 I 
IExit fromlLater in IOperand 1 IRedefined I 
I Block I Block IRedefined I I 
~---------+---------+----------+----------~ 
I No I No I No I X I 
~---------+---------+----------+----------~ 
I No I No I Yes I No I 
~---------+---------+----------+----------~ 
I No I Yes I No I X I 
~---------+---------+----------+----------~ 
I No I Yes , Yes I No , 
~---------+---------+----------+----------~ 
I Yes , Yes 'NO , X I 
~--------+---------+----------+----------~ 
I Yes I Yes , Yes I No , 
~---------.L------.---.L----------.L----------~ 
'X = condition cannot exist because of I 
'previous characteristics of operands. , L _________________________________________ J 

Elimination of Text Entry Expressions 
Involving Integer Constants (Type 1): 
During the scan of a block for text entries 
to be moved to the back target, subroutine 
BACMOV-IEKQBM also checks for text entries 
whose operators are arithmetic and whose 
operands 2 and 3 are both integer 
constants. When such a text entry is 
found, the BACMOV·-IEKQBM subroutine 
eliminates the arithmetic expression in the 
text entry by: 

• calcula1:ing the result of the 
expression. 

• Creating a nelli dictionary entry for the 
result, which is a constant. 

• Replacing the arithmetic expression 
with the result. 

The text entry is thereby reduced to a 
simple store, which may be eliminated by 
simple-store elimination. 

66 

Strength Reduction -- OPT=2 

Strength reduction, which is performed 
by subroutine REDUCE-IEKQSR, optimizes 
loops that are controlled by logical IF 
statements. (DO loops are converted to 
loops controlled by logical IF statements 
during phase 10 processing.) such loops 
are optimized by modifying the expression 
(e.g., J ~ 20) in the IF statement; this 
enables certain text entries to be moved 
from the loop to the back target of the 
loop, an area executed less frequently. 
Strength reduction processing is divided 
into two sections: 

• Elimination of multiplicative text. 

• Elimination of additive text. 

Both of these sections perform strength 
reduction, but each has a separate set of 
criteria for considering a loop as a 
candidate for reduction. However, the 
manner in which each section implements 
reduction essentially is the same. 

Elimination of Multiplicative Text: To 
eliminate multiplicative text, subroutine 
REDUCE-IEKQSR examines the loop being 
processed to determine whether or not it is 
a candidate for strength reduction. The 
loop is a candidate if: 

• The loop contains an inert text entry 
(type 3). 

• operand 1 of the inert text entry is 
used in another text entry (in the 
loop) whose operator indicates 
multiplication and whose other used 
operand is a constant~ (type 5). 

• Operand 1 of the inert text entry is 
the variable appearing in the 
expression of the logical IF statement 
that controls the loop. 

If the loop is a candidate, subroutine 
REDUCE-IEKQSR implements strength reduction 
in one of two ways: 

1. If the constants in the inert text 
entry and the multiplicative text 
entry are both absolute constants, the 
REDUCE-IEKQSR subroutine: 

a. calculates a new constant (K) 
equal to the product of the 
absolute constants. 

~This other text entry is referred to as a 
multiplicative text entry. 



b. Generates another inert text entry 
and inserts it into the loop 
immediately after the original 
inert text entry. The additive 
constant in this text entry is K. 

c. Modifies the expression in the 
logical IF statement by: 

(1) Replacing the branch variable 
(see note) with operand 1 of 
the generated inert text 
entry. 

(2) Replacing the branch constant 
(see note) with a constant 
equal to the product of the 
branch constant and the 
absolute constant in the 
multiplicative text entry. 

d. Deletes the original inert text 
entry if operand 1 of that text 
entry is not busy-on-exit from the 
loop. 

e. Moves the multiplicative text 
entry to the back target of the 
loop. 

f. Replaces operand 1 of the 
multiplicative text entry with 
operand 1 of the generated inert 
text entry. 

g. Replaces the uses of operand 1 of 
the multiplicative text entry that 
remain in the loop with operand 1 
of the generated inert text entry. 

Note: The branch variable is the 
variable in the expression of the 
logical IF statement that is 
tested to determine whether or not 
the loop is to be re-executed. 
The branch constant is the 
constant with which the branch 
variable is compared. For 
example, in IF (J ~ 3) where J is 
the branch variable and 3 is the 
branch constant. 

2. If either of the constants in the 
inert text entry or the multiplicative 
text entry is a stored constant, the 
REDUCE-IEKQSR subroutine performs 
similar processing to that described 
above. However, prior to generating 
the inert text entry, it generates an 
additional text entry and places it 
into the back target of the loop. 
This text entry multiplies the two 
constants. Operand 1 of this text 
entry becomes the additive constant in 
the generated inert text entry. In 
the case where the constant in the 
multiplicative text entry is a stored 
constant, a second additional text 

entry is generated and placed into the 
back target of the loop. This second 
text entry multiplies the branch 
constant by the constant in the 
multiplicative text entry. Operand 1 
of the second text entry becomes the 
new branch constant of the logical IF. 

If additional multiplicative text 
entries exist within the loop, the 
foregoing process is repeated. Repetitive 
processing of this type results in a number 
of generated inert text entries, which may 
be eliminated from the loop by the 
processing of the second section of 
strength reduction. 

Elimination of Additive Text: To eliminate 
additive text, subroutine REDUCE-IEKQSR 
examines the loop being processed to 
determine whether or not it is a candidate 
for strength reduction. The loop is a 
candidate if: 

• The loop contains an inert text entry 
(type 3). 

• operand 1 of the inert text entry is 
used in the loop in another text entry 
whose operator indicates addition1 
(type 6). 

If the loop is a candidate, the 
processing performed by subroutine 
REDUCE-IEKQSR to eliminate the additive 
text entry is essentially the same as that 
performed to eliminate a multiplicative 
text entry. 

The overall logic of strength reduction 
is illustrated in Chart 13. An example 
showing both methods of strength reduction 
is given in Appendix D. 

FULL REGISTER ASSIGNMENT -- OPT=2 (CHART 
14) 

During OPT=2 optimization, full register 
assignment is carried out on module loops, 
rather than on the entire module, as is the 
case for OPT=l optimization. Regardless of 
whether a loop or the entire module is 
being processed, the full register 
assignment routines operate essentially in 
the same manner. However, the optimization 
effect of full register assignment, when 
carried out on a loop-by-loop basis, is 
more pronounced. Because the most deeply 
nested loops are presented for full 
register assignment first, the number of 

1This text entry is referred to as an 
additive text entry. 

section 2: Discussion of Major Components 67 



register loads in the most strategic 
sections of the object module approaches a 
minimum. The processing of a loop by full 
register assignment differs from the 
processing of the entire module only in the 
area of global assignment. An 
understanding of the processing performed 
on a loop, other than 
global assignment, can be derived from the 
previous discussion of full register 
assignment (see "Full Register Assignment 

OPT=l"). Global assignment for a loop 
is described in the following text. 

When processing a loop, the global 
assignment routine (GLOBAS-IEKRGB) 
incorporates into the current loop, 
wherever possible, the global assignments 
made to items (iee., operands and base 
addresses) in previously processed loops. 
It does this to ensure that the same 
register is assigned in both loops if an 
item eligible for global assignment in the 
current loop was globally assigned in a 
previously processed loop. 

Before the global assignment routine 
assigns an available register to the most 
active item of the current loop, it 
determines whether that item was globally 
assigned in a previously processed loop. 
(As global assignment is carried out on 
each loop, all global assignments for that 
loop are recorded and saved for use when 
the next loop is considered.) If the item 
was not globally assigned in a previously 
processed loop, the GLOBAS-IEKRGB routine 
assigns it the first available register. 
If the item was globally assigned in a 
previously processed loop, the global 
assignment routine then determines whether 
or not the register assigned to the item in 
the previously p:rocessed loop is currently 
available. If that register is available, 
the GLOBAS-IEKRGB routine also globally 
assigns it to thE! same item in the current 
loop. If the register is not available, 
the global assignment of that item in the 
previously processed loop cannot be 
incorporated into the current loop. The 
GLOBAS-IEKRGB routine, therefore, assigns 
the item an available register different 
from that assigned to it in the previously 
processed loop. The GLOBAS-IEKRGB routine 
selects the eligible item with the next 
highest activity in the current loop and 
treats it in the same manner. Processing 
continues in this fashion until the supply 
of eligible items or the supply of 
available registers is exhausted. 

As each global assignment is made to an 
active item, the GLOBAS-IEKRGB routine 
checks to determine whether or not that 
item is busy-on-exit from the back target 
of the loop. If the item is busy-on-exit, 
the GLOBAS-IEKRGB routine generates a text 
entry to load that item into the assigned 

68 

register and inserts it into the back 
target of the loop. The load is required 
to guarantee that the item is in a register 
and available for subsequent use during 
loop execution. If the item is not 
busy-on-exit, the text item is not required 
to be loaded. If any globally assigned 
item is defined within the loop and is also 
busy-on-exit from the loop, the 
GLOBAS-IEKRGB routine generates a text 
entry to store that item on exit from the 
loop. The generated store is needed to 
preserve the value of such an operand for 
use when it is required during the 
execution of an outer loop. 

The GLOBAS-IEKRGB routine records all 
global assignments made for the current 
loop for use in the subsequent updating 
scan (see "Full Register Assignment -
OPT=l") and also for incorporation, 
wherever possible, into subsequently 
processed loops. 

BRANCHING OPTIMIZATION -- OPT=2 

During OPT=2 optimization, branching 
optimization is carried out in the same 
manner as during OPT=l optimization. After 
all loops have undergone full register 
assignment, subroutine BLS-IEKSBS is given 
control to calculate the size of each 
block. When the sizes of all blocks have 
been calculated, the BLS-IEKSBS subroutine 
uses the block size information to 
determine the blocks to which a branch can 
be made by means of RX-format branch 
instructions. 

PHASE 25 

Phase 25 completes the production of an 
object module from the combined output of 
the preceding phases of the compiler. An 
object module consists of four elements; 

• Text information. 
• External symbol dictionary. 
• Relocation dictionary. 
• Loader END record. 

The text information (instructions and 
data resulting from the compilation) is in 
a relocatable machine language format. It 
may contain unresolved external symbolic 
cross references (i.e., references to 
symbols that do not appear in the object 
module). The external symbol dictionary 
contains the information needed to resolve 
the external symbolic cross references that 
appear in the text information. The 



relocation dictionary contains the 
information needed to relocate the text 
information for execution. The END record 
informs the linkage editor of the length of 
the object module and the address of its 
main entry point. 

An object module resulting from a 
compilation consists of a single control 
section, unless common blocks are 
associated with the module. An additional 
control section is included in the module 
for each common block. 

The object module produced by phase 25 
is recorded on the SYSLIN data set if the 
LOAD option is specified by the FORTRAN 
programmer, and on the SYSPUNCH data set if 
the DECK option is specified. If the LIST 
option is specified, phase 25 develops and 
records on the SYSRINT data set a 
pseudo-assembler language listing of the 
instructions and data of the object module. 
If the MAP option is specified, phase 25 
also produces a storage map. If the 10 
option is specified, phase 25 inserts 
information into the object module which is 
used by the object-time traceback routine 
of the Library. 

TEXT INFORMATION 

Text information consists of the machine 
language instructions and data resulting 
from the compilation. Each text 
information entry (a TXT record) 
constructed by phase 25 can contain up to 
56 bytes of instructions and data, the 
address of the instructions and data 
relative to the beginning of the control 
section, and an indication of the control 
section that contains them. A more 
detailed discussion of the use and format 
of TXT records is given in the publication 
IBM System/360 Operating System: Link~ge 
Editor, Program Logic Manual, Form 
Y28-66i0. 

The major portion of phase 25 processing 
is concerned with text information 
construction. In building text 
information, phase 25 obtains each item 
that is to be placed into text information, 
converts the item to machine language 
format wherever necessary, enters the item 
into a TXT record, and places the relative 
address of the item into the TXT record. 

Phase 25 assigns relative addresses by 
means of a location counter, which is 
continually updated to reflect the location 
at which the next item is to be placed into 
text information. Whenever phase 25 begins 
the construction of a new TXT record, it 

inserts the current value of the location 
counter into the address field of the TXT 
record. Thus, the address field of the TXT 
record indicates the relative address of 
the instructions and data that are placed 
into the record. 

Figure 9 shows the layout of storage 
that phase 25 assumes in setting up text 
information. 

Phase 25 constructs text information by: 

• Reserving address constants for the 
referenced statement numbers of the 
module. 

• Completing the processing of the adcon 
table entries and entering the 
resultant entries into TXT records. 

• Generating the prologue and epilogue 
instructions and entering these 
instructions into TXT records. 

• Converting phase is/phase 20 text into 
System/360 machine code and entering 
the code into TXT records. 

Chart 20 shows the overall logic of 
phase 2S processing. 

Address constant Reservation 

Before it constructs text information, 
subroutine MAINGN-IEKTA reserves address 
constants for the referenced statement 
numbers of the module and for the statement 
numbers appearing in computed GO TO 
statements. The address constants are 
reserved so that the relative addresses of 
the statements associated with such 
statement numbers can be recorded and, 
subsequently, obtained during execution of 
the object module, when branches to those 
statements are required. 

To reserve address constants for 
statement numbers, subroutine MAINGN-IEKTA 
scans the chain of statement number entries 
in the statement number/array table. For 
each encountered statement number to which 
reference is made, subroutine MAINGN-IEKTA 
inserts a base and displacement into the 
associated statement number entry. When 
the text representation of that statement 
number is encountered, a relative address 
is placed in the statement number entry. 

Note: If branching optimization is being 
implemented, subroutine MAINGN-IEKTA does 
not perform the processing described in the 
previous paragraph. 

Section 2: Discussion of Major Components 69 



Register 13 ~ 

Register 12 -+-
(if needed)* 

Entry Code 

Format Text 

Save Area 

Adcon for Register 12 

Branch Tables 
1---

Parameter Lists 

Constants, Variables, Arrays 

Adcons 

Namelist Dictionaries 

DEFI NE FI LE Parameter Lists 

Phase 20 Temporaries 
f--

'B' Block Label Adcons 

Object Program Instructions 

Epilogue 

Prologue 

Entry Code for Secondary Entry Point** 

Epilogue for Secondary Entry Point** 

Prologue for Secondary Entry Point** 

'·See "Relative Address Assignment" under "CORAL Processing." 

Phase which 
a lIocates space 

STALL-IEKGST 
phase 10 

STALL-IEKGST 
phase 10 

STALL-IEKGST 
phase 10 

STALL-IEKGST 
phase 10 

STALL-IEKGST 
phase 10 

PHAZ15 
phase 15 

-
CORAL 
phase 15 

CORAL 
phase 15 

CORAL 
phase 15 

CORAL 
phase 15 

phase 20 

phase 25 

phase 25 

phase 25 

phase 25 

phase 25 

phase 25 

phase 25 

Phase which 
uses space 

STALL-IEKGST 
and phase 25 

STALL-IEKGST 
phase 10 

phase 25 

phase 25 

phase 25 

phase 25 

CORAL 
phase 15 

CORAL 
phase 15 

CORAL 
phase '15 

CORAL 
phase 15 

phase 25 

phase 25 

phase 25 

phase 25 

phase 25 

phase 25 

phase 25 

--
phase 25 

*'·See last paragraph of "Generation of Initialization Instructions" under "FORTRAN System Director." 

• Figure 9. storage Layout for Text Information Construction 

After all statement numbers are 
processed, bases and displacements are 
likewise assigned to adcons for the 
statement numbers appearing in computed GO 
TO statements. The MAINGN-IEKTA subroutine 
scans the branch -table chain (see Appendix 
A, "Branch Tables"), and assigns a base and 
displacement for each branch table. 
Subroutine MAINGN-IEKTA does not record 
pointers to the address constants set aside 
for the actual statement numbers of the 
computed GO TO statements in their 
associated standard branch table entries. 
The values to be placed into the address 
constants for statement numbers in computed 
GO TO statements are also determined during 
text conversion. 

Text Conversion 

Phase 25 converts intermediate text into 
System/360 machine code. (The text 

70 

conversion process is controlled by 
subroutine MAINGN-IEKTA.) In converting 
the text, phase 25 obtains each text entry 
and, depending upon the nature of the 
operator in the text entry, passes control 
to one of six processing paths to convert 
the text entry. 

The six processing paths are: 

• Statement Number Processing. 
• Input/output Statement Processing. 
• CALL Statement Processing. 
• Code Generation. 
• RETURN Statement Processing. 
• END Statement Processing. 

See Table 14 for the complete list of 
subroutines called by phase 25. 

STATEMENT NUMBER PROCESSING: When the 
operator of the text entry indicates a 
statement number, subroutine MAINGN-IEKTA 
passes control to subroutine LABEL-IEKTLB. 
The LABEL-IEKTLB subroutine then inserts 



the current value of the location counter, 
which is the relative address of the 
statement associated with the statement 
number, into the statement number entry. 
All branches to that statement are made 
through the use of the relative address for 
that statement number. 

Note: If branching optimization is being 
implemented, only statement numbers to 
which a branch cannot be made via RX-format 
branch instructions (i.e., statement 
numbers that are not within the range of 
registers 13, 12, 11, 10, and 9) are 
processed as described above. 

After the relative address has been 
placed into the statement number entry, 
subroutine LABEL-IEKTLB determines whether 
or not that statement number appears in a 
computed GO TO statement. If it does, 
subroutine LABEL-IEKTLB also inserts the 
relative address into the appropriate field 
of the branch table entry, or entries, for 
that statement number. The relative 
address recorded in the branch table entry 
is placed into the storage reserved for it 
within text information (see "END statement 
Processing") when the text representation 
of the END statement is encountered. 

INPUT/OUTPUT STATEMENT PROCESSING: When 
the operator of the text entry indicates an 
input/output statement, an I/O list item, 
or the end of an I/O list, the MAINGN-IEKTA 
subroutine passes control to subroutine 
IOSUB-IEKTIS, which generates an 
appropriate calling sequence to IHCFCOMH to 
perform, at object-time, the indicated 
operation. 

The calling sequence generated for an 
input/output statement depends on the type 
of the statement (e.g., READ, BACKSPACE). 
The calling sequence generated for an I/O 
list item depends on the input/output 
statement type with which the list item is 
associated and on the nature of the list 
item, i.e., whether the item is a variable 
or an array. The calling sequence 
generated for an end of an I/O list depends 
on whether the end I/O list operator 
signals: 

• The end of an I/O list associated with 
a READ/WRITE that requires a FORMAT 
statement. 

• The end of an I/O list associated with 
a READ/WRITE that does not require a 
FORMAT statement. 

Once the calling sequence is generated, 
subroutine IOSUB-IEKTIS enters it into TXT 
records. 

CAL:L STATEMENT PROCESSING: When the 
operator of the text entry indicates a CALL 
sta'tement, subroutine MAINGN-IEKTA passes 
control to subroutine FNCALL-IEKVFN to 
generate a standard direct-linkage calling 
sequence, which uses general register 1 as 
the argument register. The argument list 
is located in the adcon table in the form 
of address constants. Each address 
constant for an argument contains the 
relative address of the argument. The 
FNCALL-IEKVFN subroutine enters the calling 
sequence into TXT records. 

CODE GENERATION: Code generation converts 
text entries having operators other than 
those for statement numbers, ENTRY, CALL, 
RETURN, END, and input/output statements 
into System/360 machine code. To convert 
the text entry, code generation uses four 
arrays and the information in ,the text 
entry. The four arrays are: 

• Register array. This array is reserved 
for register and displacement 
information. 

• Directory array. This array contains 
pointers to the skeleton arrays and the 
bit-strip arrays associated with 
operators in text entries that undergo 
code generation. 

• Skeleton array. A skeleton array 
exists for each type of operator in an 
intermediqte text entry that is to be 
processed by code generation. The 
skeleton array for a particular 
operator consists of all the machine 
code instructions, in skeleton form and 
in proper sequence, needed to convert 
the text entry containing the operator 
into machine code. These instructions 
are used in various combinations to 
produce the desired object code. (The 
skeleton arrays are shown in Appendix 
C.) 

• Bit-strip array. A bit-strip array 
exists for each type of operator in a 
text entry that is to undergo code 
generation. One strip is selected for 
each conversion involving the operator. 
The bits in each strip are preset 
(either on or off) in such a fashion 
that when the strip is matched against 
the skeleton array, the strip indicates 
the combination of instructions that is 
to be used to convert the text entrYD 
(The bit strip arrays are shown with 
their associated skeleton arrays in 
Appendix C.) 

In code generation, the actual base 
registers and operational registers (i.e., 
registers in which calculations are to be 
performed), assigned by phase 20 to the 
operands of the text entry to be converted 

section 2: Discussion of Major Components 71 



to machine code, are obtained from the 
text entry and placed into the register 
array. Any displacements needed to load 
the base addresses of the operands are also 
placed into the register array. The 
displacements referred to in this context 
are the displacements of the base addresses 
of the operands from the start of the adcon 
table that contains the base addresses. 
These displacements are obtained from the 
information table entries for the operands. 
This action is taken to facilitate 
subsequent processing. 

The operator of the text entry to be 
converted is used as an index to the 
directory array. The entry in this 
directory array, which is pointed to by the 
operator index, contains pointers to the 
skeleton array and the bit-strip array 
associated with the operator. 

The proper bit strip is then selected 
from the bit-strip array. The selection 
depends on -the status of operand 2 and 
operand 3 of the text entry. This status 
is set up by phase 20 and is indicated in 
the text entry by four bits (see Appendix 
A, "Phase 20 Intermediate Text 
Modifications"): the first two bits 
indicate the status of operand 2; the 
second two bits indicate the status of 
operand 3. 

The status of operand 2 and/or operand 3 
can be one of the following: 

72 

00 The operand is in main storage and 
is to remain there after the present 
code generation. Therefore, if the 
operand is loaded into a register 
during the present code generation, 
the contents of the register can be 
destroyed without concern for the 
operand. 

01 The operand is in main storage and 
is to be loaded into a register. 
The operand is to remain in that 
register for a subsequent code 
generation; therefore, the contents 
of the register are not to be 
destroyed. 

10 The operand is in a register as a 
result of a previous code 
generation. After the register is 
used in the present code generation 
process, its contents can be 
destroyed. 

11 The operand is in a register and is 
to remain in that register for a 
subsequent code generation. The 
contents of the register are not to 
be destroyed. 

This four-bit status field is used as an 
index to select a bit strip from the bit
strip array associated with the operator. 
The combination of instructions indicated 
in the bit strip conforms to the operand 
status requirements: i.e., if the status 
of operand 2 is 11, the generated 
instructions make use of the register 
containing operand 2 and do not destroy its 
contents. The combination, however, 
excludes base load instructions and the 
store into operand 1. 

Once the bit strip is selected, it is 
moved to a work area. The strip ~s 
modified to include any required base load 
instructions. That is, bits are set to on 
in the appropriate positions of the bit 
strip in such a way that, when the strip is 
matched to the skeleton array, the 
appropriate instructions for loading base 
addresses are included in the object code. 
The skeletons for these load instructions 
are part of the skeleton array. 

The code generation process determines 
whether or not the base address of operand 
2 and/or operand 3 must be loaded into a 
register by examining the status of these 
base addresses in the text entry. such 
status is indicated by four bits: the 
first two bits indicate the status of the 
base address of operand 2; the second two 
bits indicate the status of the base 
address of operand 3. If this status field 
indicates that a base address is to be 
loaded, the appropriate bit in the bit 
strip is set to on. (The bit to be 
operated upon is known, because the format 
of the skeleton array for the operator is 
known. ) 

Before the actual match of the bit strip 
to the skeleton array takes place, the code 
generation process determines: 

• If the base address of operand 1 must 
be loaded into a register. 

• If the result produced by the actual 
machine code for the text entry is to 
be stored into operand 1. 

This information is again indicated in the 
text entry by four bits: the first two 
bits indicate the status of the base 
address of operand 1; the second two bits 
indicate whether or not a store into 
operand 1 is to be included as part of the 
object code. If the base address of 
operand 1 is to be loaded and/or if operand 
1 is to be stored into, the appropriate 
bit(s) in the bit strip is set to on. 

The bit strip is then matched against 
the skeleton array. Each skeleton 
instruction corresponding to a bit that is 



set to on in the bit strip is obtained and 
converted to actual machine code. The 
operation code of the skeleton instruction 
is modified, if necessary, to agree with 
the mode of the operand of the instruction. 
The mode of the operand is indicated in the 
text entry. The symbolic base, index, and 
operational registers of the skeleton 
instructions are replaced by actual 
registers. The base and operational 
registers to be used are contained in the 
register array. If an operand is to be 
indexed, the index register to be used is 
obtained. (The index register is saved 
during the processing of the text entry 
whose third operand represents the actual 
index value to be used.) The displacement 
of the operand from its base address, if 
needed, is obtained from the information 
table entry for the operand. (The contents 
of the displacement field of the text entry 
are added to this displacement if a 
subscript text entry is being processed.) 
These elements are then combined into a 
machine instruction, which is entered into 
a TXT record. (If the skeleton instruction 
that is being converted to machine code is 
a base load instruction, the base address 
of the operand is obtained from the 
object-time adcon table. The register (12) 
containing the address of the adcon table 
and the displacement of the operand's base 
address from the beginning of the adcon 
table are contained in the register array.) 

Branch Processing: The code generation 
portion of phase 25 generates the machine 
code instructions to complete branching 
optimization. The processing performed by 
code generation, if branching optimization 
is being implemented, is essentially the 
same as that performed to produce an object 
module in which branching is not optimized. 
However, before a skeleton instruction 
(corresponding to an on bit in the selected 
and modified bit strip) is assembled into a 
machine code instruction, code generation 
determines whether or not that instruction: 

• Loads into a register the address of an 
instruction to which a branch is to be 
made and which is displaced less than 
4096 bytes from the address in a 
reserved register. 1 

• Is an RR-format branch instruction that 
branches to an instruction that is 
displaced less than 4096 bytes from the 
address in a reserved register. 2 

1This type of text entry is subsequently 
referred to as a load candidate. 

2This type of text entry is subsequently 
referred to as a branch candidate. 

Note: A load candidate usually 
immediately precedes a branch candidate 
in the skeleton array. 

code generation determines whether or 
not the instruction to which a branch is to 
be made is displaced less than 4096 bytes 
from an address in a reserved register by 
interrogating an indicator in the statement 
number entry for the statement number 
associated with the block containing the 
instruction to which a branch must be made. 
This indicator is set by phase 20 to 
reflect whether or not that block is 
displaced less than 4096 bytes from an 
address in a reserved register. 

The completion of branching optimization 
proceeds in the following manner. If a 
skeleton instruction corresponding to an on 
bit in the bit strip is a load candidate, 
it is not included as part of the 
instruction sequence generated for the text 
entry under consideration. If a skeleton 
instruction corresponding to an on bit in 
the bit strip is a branch candidate, it is 
converted to an RX-format branch 
instruction. The conversion is 
accomplished by replacing operand 2 (a 
register) of the branch candidate with an 
actual storage address of the format Q 
(O,Br). D represents the displacement of 
the instruction (to which a branch is to be 
madE~) from the address that is in the 
appropriate reserved register (Br). 

If the instruction to which a branch is 
to be made is the first in the text block, 
both the displacement and the reserved 
register to be used for the RX-format 
branch are obtained from the statement 
number entry associated with the block 
containing the instruction. (This 
information is placed into the statement 
number entry during phase 20 processing.) 

If the instruction to which a branch is 
to be made is one that is subsequently to 
be included as part of the instruction 
sequence generated for the text entry under 
consideration,3 the displacement af the 
instruction from the address in the 
appropriate reserved register is computed 
and used as the displacement of the 
RX-format branch instruction. The reserved 
register used in such a case is the one 
indicated in the statement number entry 
associated with the block containing the 
text entry currently being processed by 
code generation. 

3Skeleton arrays for certain operators 
contain RR format branch instructions that 
transfer control to other instructions of 
that skeleton. 

Section 2: Discussion of Major Components 73 



RETURN STATEMENT PROCESSING: When the 
operator of the text entry indicates a 
RETURN statement, subroutine MAINGN-IEKTA 
passes control to subroutine RETURN-IEKTRN, 
which generates a branch to the epilogue. 
The epilogue address is obtained from the 
save area. The address of the epilogue is 
placed into the save area during the 
execution of either the subprogram main 
entry coding or the subprogram secondary 
entry coding. The address of the epilogue 
is placed into the save area during the 
compilation of a main program or subprogram 
with no secondary entry points (refer to 
the section "Initialization Instructions"). 

END STATEMENT PROCESSING (CHART 21): When 
the operator of the text entry indicates an 
END statement, subroutine MAINGN-IEKTA 
passes control to subroutine END-IEKUEN, 
which completes the processing of the 
module by entering the address constants 
(i.e., relative addresses) for statement 
numbers and statement numbers appearing in 
computed GO TO statements into text 
information and by generating the END 
record. 

Subroutine END-IEKUEN calls the 
ENTRY-IEKTEN subroutine to determine 
whether or not the program being compiled 
is a main program or a subprogram and to 
take the appropriate action. If it is a 
subprogram, the ENTRY-IEKTEN subroutine 
calls subroutine EPILOG-IEKTEP and 
PROLOG-IEKTPR (see "Prologue and Epilogue 
Generation"). If it is a main program, 
subroutine ENTRY-IEKTEN generates code to 
call IHCFCOMH and generates a branch to the 
appropriate place in text. If there are 
secondary entry points, text is scanned to 
determine where they are located. An 
epilogue and prologue are generated for 
each entry pOint with a branch to the 
corresponding point in the object code. 
Subroutine ENTRY-IEKTEN returns control to 
the END-IEKUEN subroutine. 

Subroutine END-IEKUEN places TXT and RLD 
records in 1:he object module for the 
following: adcon for the save area, adcon 
for the prologue, adcon for the epilogue, 
adcon for register 12 (if needed), adcons 
for branch tables, adcons for parameter 
lists, and adcons for 'B' block labels. 
The END-IEKUEN sw)routine generates TXT 
information for each temporary. Subroutine 
END-IEKUEN calls lEND (FSD entry point) to 
generate the loader END record that must be 
the last record of the object module. Its 
functions are to signal the end of the 
object module and to inform the linkage 
editor of the size (in bytes) of the 
control section and the address of the main 
entry point of the control section. The 
END-IEKUEN subroutine then returns control 
to the FSD through subroutine MAINGN-IEKTA. 

74 

storage Map Production 

As a user option, subroutine IEKGMP 
produces a storage map of the symbols used 
in the source program. The map contains 
the following information: 

Name 
Tag 

Type 

Add. 

Symbol 
S 

Explanation 
The variable appeared to the 
left of an equal sign in the 
source program.. (stored 
into) 

F The variable appeared to the 
right of an equal sign in the 
source program. (fetched) 

A 

C 

E 

The variable was used as an 
argument. 

The variable appeared in a 
COMMON statement. 

The variable appeared in an 
EQUIVALENCE statement. 

XR The variable is a 
call-by-name parameter to the 
source program. 

XF The variable is a subroutine 
or function name. 

ASF The variable is the name of 
an arithmetic statement 
function. 

Identifies the type of variable 
Type * length -- in bytes. 

Is the relative address of the 
variable within the object module 
(in hexadecimal). 

The total size of the object module is 
also given. 

A map of each COMMON block is generated 
to give the relative location of each 
variable in that COMMON block. A map of 
variables equivalenced into common is also 
provided. 

In addition, subroutine TENTXT-IEKVTN 
generates a map of statement numbers. 

Prologue and Epilogue Generation 

Phase 25 generates the machine code: 
(1) to transmit parameters to a subprogram, 
and (2) to return control to the calling 
routine after execution of the subprogram. 
Parameters are transmitted to the 
subprogram by means of a prologue. RetUrn 



is made to the calling routine by means of 
an epilogue. Prologues and epilogues are 
provided for subprogram secondary entry 
points as well as for the main entry point. 

Prologue: A prologue (generated by 
subroutine PROLOG-IEKTPR) is a series of 
load and store instructions that transmit 
the values of "call by value" parameters 
and the addresses of ncall by name" 
parameters to the subprogram. (These 
parameters are explained in the publication 
IBM System/360 Operating System: FORTRAN 
IV Language, Form C28-6515.) 

When subroutine PROLOG-IEKTPR generates 
a prologue, it enters the prologue into TXT 
records and inserts its relative address 
into the address constant reserved for the 
prologue address during the generation of 
initialization instructions. 

~ilogue: An epilogue (generated by 
subroutine EPILOG-IEKTEP) is a series of 
instructions that (1) return to the calling 
routine the values of ncall by value" 
parameters (if they are stored into or used 
as arguments), (2) restore the registers of 
the calling routine, and (3) return control 
to the calling routine. (If "call by 
valuen parameters do not exist, an epilogue 
consists of only those instructions 
required to restore the registers and to 
return control.) 

When subroutine EPILOG-IEKTEP generates 
an epilogue, it enters the epilogue into 
TXT records and inserts its relative 
address into the address constant reserved 
for the epilogue address during the 
generation of initialization instructions. 
(When phase 25 encounters the text 
representation of a RETURN statement, a 
branch to the epilogue is generated.) 

PHASE 30 

Phase 30 records appropriate messages 
(on the SYSPRINT data set) for syntactical 
errors encountered during the processing of 
previous phases; its overall logic is 
illustrated in Chart 22. (Table 15 shows 
the subroutines called by phase 30.) As 
errors are encountered by these phases, 
error table entries are created and placed 
into an error table. Each such entry 
consists of two parts. The first part 
contains a message number. (If the error 
cannot be localized to a particular 
statement, no internal statement number is 
entered in the error table entry. Phase 30 
simulates the internal statement number 
with a zero.) The second part contains 
either an internal statement number if the 
entry is for a statement that is in error, 

a dictionary pointer to a variable if the 
entry is for a variable that is in error, 
or an actual statement number if the entry 
is for an undefined statement number. 

Message Processing 

Using the message number in the error 
table entry multiplied by four, phase 30 
locates, within the message pointer table 
(see Appendix A, "Diagnostic Message 
Tables"), the entry corresponding to the 
message number. This message pointer table 
entry contains (1) the length of the 
message associated with the message number, 
and (2) a pointer to the text of the 
message associated with the message number. 
After phase 30 obtains the pointer to the 
message text, it constructs a parameter 
list, which consists of: 

• Either the internal statement number, 
dictionary pointer, or statement number 
appearing in the error table entry. 

• A pointer to the message text 
associated with the message number. 

• The length of the message. 

• The message number. 

• The error level. 

Having constructed the parameter list, 
phase 30 calls subroutine MSGWRT-IEKP31, 
which writes the message on the SYSPRINT 
data set. After the message is written, 
the next error table entry is obtained and 
processed as described above. 

As each error table entry is being 
processed, the error level code (either 4, 
8, or 16) associated with the message 
number is obtained from the error code 
table (GRAVERR) by using the message number 
in the error table entry as an index. The 
error level code indicates the seriousness 
of the encounter error. (For explanations 
of all the messages the compiler generates, 
see the publication IBM System/360 
Operating System: FORTRAN IV (G and H) 
programmer's Guide, Form C28-6817.) The 
obtained error level code is saved for 
subsequent use only if it is greater than 
the error level codes associated with 
message numbers appearing in previously 
processed error table entries. Thus, after 
all error table entries have been 
processed, the highest error level code 
(either 4, 8, or 16) has been saved. The 
saved error level code is passed to the FSD 
when phase 30 processing is completed. 
This code is used as a return code by the 
scheduler to determine whether or not 
succeeding steps are to be executed. 

section 2: Discussion of r-1:ajor Components 75 



Chart 00. Compiler Control Flow 

. ... 
• • 
• A2 • • • .... 

IEKAAOO t 
••••• A2·······.·· 

•••• Al......... .FSD 01A2 • 
• FROM CALLING • .-.-.-.-.-.-.-.-. 
• PROGR~M .-------->. INITIALIZE. • 
• • .CALL PHASE 10 • ............... . . 

16 

................. 

1 
·'~ ••• B2 •••• •••• •• • PH10 03A2 • . -.-.-.-.-.-.-.-. 
• CONVERT SOURCE • 
• TO INFORMATION • 
• 'rABLE AND TEXT • . , ....... 1" ...... 

• •••• C2·· •• •••••• .1"SD 01A2 • . -.-.-.-.-.-.-.-. · . • CALL PHASE 15 • · . ••••••••••••••••• 

1 
••••• 02 •••••••••• 
• PH15 05A3 • . -.-.-.-.-.-.-.-. 
• CONVERT PHASE • 
• 1.0 TEXT. ASSIGN. 
• ADDRESSES • 

········1········ 

.4> ••• E2.......... • •••• E3.......... • •••• E4.......... • •••• E5 •••••••••• 
• ];'SD 01A2 • .PH20 10C2 • .FSD 01A2 • .PH25 20Al • . -.-.-.-.-.-.-.-. .-.-.-.-.-.-.-.-. .-.-.-.-.-.-.-.-. .-.-.-.-.-.-.-.-4o • .-------->. ASSIGN REGIS- .-------->. .-------->. BUILD OBJECr • 
• CALL PHASE 20 • • TERS.OPTIMIZE • .CALL PHASE 25 • • MODULE • 

: ............... : :.H'.~~~~~~I~~ •• : : ............... :. 4< · ...... T .. ··· .. 

NOTE: 
OPERATIONS 
WITHIN DOTTED LINES 
ARE PERFORMED BY FSD. 

••••• F4 ••••••••• * ••• *.F5 •••••••••• 
• PH30 22B3 4< .FSD 01A2 * 
.-.-.-.-.-.-.-.-* .-.-*-.-.-*-.-.-* 
• OUTPUT ERROR *<-------- .IF ERRORS C~LL * 
* MESSAGES * ERRORS * PHASE 30 * 
* * * * 
••••••••• * ••••• *. • •••• * •••• *** •• ** 

I I~~RORS 

------------------------> ... 
H5 * . ••• * .• •. 

• • NO.. LAST * • 
• ~2 .<----•• COMPILArION •• .. .. .. 
•••• *..* 

* .. * 

r" 
··.·J5·*······· 

• TO OPERArING • 
• SYSTEM • • • ••••• * ••• * ••••• 



• Chart 01. FSD Overall Logic 

IEKAAOO 

•••• • • 
• A3 • • • •••• 

AGAIN ! 03A2 
••••• A2.......... • •••• A3.......... • •••• AII •••••••••• 

•••• Al......... • IEKAINIT.. • ·DSPTCH-IEKCOP • 
: FR~~og~k~ING :------->:-*-*-;;~C;S;-*- : ________ >:I~6~~f'rl~¥0&OR :-------->:B~i~D·T~x;-:N;-: 
• ................ : PARAMETERS :: :: IN~~~~~TION : 

SEE TABLE 6 FOR 
BRIEF DESCRIPTION 
OF EACH SUBROU'rINE 
OF THE FSD. 

................. . ....... ;::::~~~-------:::::::j ....... . ENTR~ POINr 
FOR ENO-OF-FILE 
ENCOUNTER 

ENDFILE 

IEKAA9 

•••• 01......... ENTRY POINT FOR 
• FROM CALLING • PHASE 10 
• PHASE • SUBROUTINE OR 
• • FOR SERIOUS 
••••••••••••••• ERROR (LEVEL 16) 

IEKIORTN 

• ••• F2········· 
ENTRY POINT • • 
FOR I/O • FROM IBCOM • 
ERROR· • 

00I, .. ·····1:::::::---

• • ••• G2·········· • • 
• WRITE ERROR • ---_-_______ >. MESSAGE WITH • 
• CODE • • • ...... ·T .... · .. 

.•. 
H2 •• 

• •••• B3···.····.· 
.STALL-IEKGST • . -.-.-.-.-.-.-.-. 
• PROCESS COMMON • 
: AND m~g~VAL- : .. · .... 1 ...... · 

.•. 
C3 •• 

•• * . 
•• BLOCK DATA •• YES 

•• SUBPROGRAM •• ---
*. .• .. . . .. .. r 

•• ••• D3.·· ••• • ••• 
• PHAZ15 06B2 • 

····BS ••••••••• 
• FROM PHASE 10 • 
• OR 0111.3 • • • ............... 

... 
DS •• .. .. 

YES •• IS END FILE •• .-.-.-.-.-.-.-.-. 
• PROCESS PHASE • -----------------------------.. MISPLACED •• 
• 10 TEXT • .. .. 
• • *. . .. ••••••••••••••••• * •.• 

<---------- r our 

•••• .···ES ••••••••• 
• • • RETURN ro • 
• ES .---->.CALLING PROGRAM. • •• • .... . ............. . 

••••• F3.......... • •••• FII •••••••••• 
• CORAL 09Al. • REASSIGN AREA • 
.-.-.-.-.-.-.-.-. • PREV USED FOR • 
• RELATIVE .-------->. PH10 SPECIAL • 
• ADDRESS. .ANO NORMAL TEXT. 
• ASSIGNMENT.· • ................. .. ...... 1" ...... 

... 
Gil •• .. .. 

YES •• BLOCK DATA •• 
---•• SUBPROGRAM •• .. .. .. .. . ... 
GO ON ro 

.• *. • ••• • ••• ·HII.·· •• • ••• • 
·LPSEL-IEKPLS • 

•• EOF SWITCH •• YES. • 
•• SET •• ---->. ES • *. .• •• 

*..* •••• 
* •• * r 

••••• J2 ••• • •••••• 
• • • READ TO 'END' .• 
• CARD IF • 
• NECESSARY • • • ••••••••••••••••• 

1 .... 
• • 
• A3 • • • •••• 

.-.-.-.-.-.-.-.-. 
• ASSIGN REGS. • 
• OPTIMIZE IF • 
• REQUESTED • 

-_::::::::1····:::: 

• •• ··JII···.··· •• • 
·MAINGN-IEKTA • .-.-.-.-.-.-.-.-. 
• BUILD OBJECT • 
• MODULE • · . .. .. · .. T ...... · 

. .. 
KII •• • •••• KS •••••••••• 

•••• .IEKP30 2263 >I< 

•• ERROR OR •• ~ES .-.-.-.-.-.-.-.-. 
•• WARNING •• -------->. • 

Section 2: 

•• MESSAGES •• .WRIrE MESSAGES >I< 

*. .• * • .. .. . ............... . 1 <:~ _____________________ J .... · . • 11.3 • · . •••• 
Discussion of Major Components 77 



Chart 02. FSD Storage Distribution 

IEKAGC 

ENTRY POINT 
FOR MAIN 
STORAGE 
REQUEST 

****B3****."'*** 
* FROM * 
* REQUESTING * 
* PHASE * 

*** •• * •• ******* 

1 
. *. . *. 

c2 •• c3 * • 
. * *. .'" *. 

NO • '" MAIN *. YES • * IS FREE *. 

r
--*. STORAGE •• <--------*. BLOCK •• 

•• AVAILABLE. * *. AVAILABLE. * 
*. . '" *.. * * .. * * .. * 

**.** * YES * NO 

:~~;: 1 L------------------------v 
OVERRITE • * • 

78 

• ****D2 ••• *.* •• ** D4 *. 
•• . * *. 
* DETERMINE * • * PHASE 20 •• YES 
* TYPE AND * *. CALLING '*---1 
* AMOUNT * *. • * 
*. *. .* 
******··1*****·*** ·'1·' ~o :;~*: 

*. ** *E2 .** * *..... ..* •• E3 *. ** * *. *.* •• ** .ElI. ** * * ***. * 
* • * CONVERT MAIN * * DETERMINE * 
* CHAIN ONTO * .STORAGE LIMITS * * AMOUNT OF * 
* BLOCKS TO .-----.--->* TO SUBSCRIPTS *<-- * PHASE 10 TEXT * 
* RECOVER. • AND STORE * • PROCESSED * 
* LATER *. * * • 

*** •• **.**.****.. **·*·***1········· ·······:1:······· 

F4 •• 
·.**F3.** ••••• * •• *. 

* G2* 
* * * 

• ZERO BLOCK * YES.. MAIN •• NO 
* AND RETURN * -----*. STORAGE • *---1 
* • *.AVAILABLE.* 
.** ••••• *.****. ••• * .,. • * 

* *.*** 
*01 • 
* G2* 
* * * 



• Table 6. FSD Subroutine Directory (Part 1 of 2) 
r-------------T----------------------------------···--------------------------------------, 
I Subroutine I Function I 
r------------+-------------------------------------------------------------------------~ 

ADCON- Internal adcon table. 
IEKAAD 

AFIXPI
IEKAFP 
(AFIXPI)* 
(FIXPI)* 
(FIXPI#)* 

DCLIST
IEKTDC 

ERCOM
IEKAER 

IEKAAA 

IEKAAOO 

(ENDFILE)* 

(IEKAA9)* 

(IEKAGC)* 

(IEKIORTN)* 

IEKAAOl 

IEKAA02 
(PAGEHEAD)* 

IEKAINIT 

IEKATB 

IEKATM 
(PHASB)* 
(PHASS)* 
(PHAZSS)* 
(TIMERC)* 
(TOUT) * 
(TSP)* 
(TST) * 

IEKFCOMH 
(IBCOM)* 
(IBCOM#)* 

Performs exponentiation of integers. 

Prints out assembly listing of source program. 

Error message table. 

Communication table. 

Initializes compiler processing and calls the phases for execution. 
Entry point for compiler. 

Receives control when end of data set is detected on input. Returns 
control to operating system. 

IEKAA9 deletes compilation if requested. 

IEKAGC allocates and keeps track of main storage used in the 
construction of the information table and for collecting text entries. 

Entry from IBCOM on I/O error. 

Defines default options. 

Defines DDNAMES for the compiler and page headings. Common area for 
IEKAAOO and IEKAINIT. 

Processes parameters for OS/360 and gets core for the compiler. 

Provides diagnostic dumps of internal text and tables. 

Timing routine. 

Controls formatted compile-time input/output. 
routine IHCFCOMH.) 

(Corresponds to Library 

IEKFIOCS Interface between compiler, IEKFCOMH, and QSAM. 
(FIOCS)* 
(FIOCS#)* 

~-------------~-------------------------------------------------~-----------------------~ I *Secondary entry point I L _______________________________________________________________________________________ J 

Section 2: Discussion of Major Components 79 



Table 6. FSD Slli)routine Directory (Part 2 of 2) 

r------------T-------------------------------------------------------------------------, I Subroutine I Function I 
1---------------+--------------------------------------------------------------------------~ 

IEKTLOAD Builds ESD, TXT, RLD, and loader END records. 
(ESD)* 
(IEKUND)* 
(IEKURL)* 
(IEKUSD)* 
(IEKTXT)* 
(IEND) * 
(RLD) * 
(TXT) * 

PUTOUT
IEKAPT 
(PUTOUT) * 

Maximizing service routine for integers and reals, diagnostic trace 
routine; bypasses IEKFCOMH for some error messages. 

~-------------.L---------------------------------------__________________________ , _________ ~ 
I *Secondary entry point I L _________________ . ______________________________________________________________________ J 

80 



• Chart 03. Phase 10 Overall Logic 

ENTRY IS TO DISPATCHER 
<DISPTCH- IEKCDP) AT 
ENTRY POINT IEKCIN 

•••• • • 
• B3 • • • 

..... B1.......... ~····:::::::::::::::::····~·l·· .. ···B3 ......... . 
• • •• * • *GETCD-IEKCGC • * * .• * . *---------------* 
: FROM FSD :----.--->: INITIALIZE :----:--->:~~~kR~I~6uR~~D: 
• •• • * STATEMENT * 

................. . ....... ::::::::: ____ ~----:::::J ....... . 

DISPATCHER 
(DISPTCH-IEKCDP) 
IS WITHIN 
DOTTED LINES 

. *. 
C2 *. *****C3********** .• *. *XCLASS-IEKDCL * . * *. YES • *---------------* 

*. STATEMENT • *----. --->* PROCESS 
*. NUMBER • * * STATEMENT 

*. . * * NUMBER * 

··I~~:---------j----:::::J········ 
*****D2********** 
*DETERMINE ROUTE* 
* FROM * 
*CLASSIFICATION * 
* CODE * • * 
********j******** 

·············t············· 
**.**E2********** 
* '" .PROCESS SOURCE * 
• STATEMENT • SEE TABLE 7 
* * * * ****.************ 

1 
. *. 

F2 *. *****F3.*.******* 
.• *. * * .* END *. YES *TO PHASE 15 VIA* 

*. STATEMENT .*-------->* FSD * 
*. .* • * *. . * • • 

* •• * ***.**>1-***** ••• *. 
• NO 

~ 
.*** 

* • 
• B3 * 
* * **** 

SEE TABLE 8 FOR A 
DESCRIPTION OF THE 
SUBROUTINES OF PHASE 10. 

section 2: Discussion of Major Components 81 



chart 04. Subroutine STALL-IEKGST 

····A2 •••••• • •• 
: ~n~~TFs~ : · . ·· .... 1· .... · 
·····B2·········· 
• IEKTLOAO • . -.-.-.-.-.-.-.-. 
• GENERATE • 
• ENTRY CODE • • • 
········i········ 

,. , 
C2 ., ••••• C3 •••••••••• 

,. ANY., • IEKTLOAD • 
,. LITERAL ., YES .-.-.-.-.-.-.-.- • 

• , ., CONSTANTS, .' .-------->: ~~~E~~~TIM§ : 
...* •.• 

··I~~~------------:::::]········ 
, ., 

••••• 01.......... D2 ., ••••• 03 •••••••••• 
• SET. ,. ANY., • • 
: ~I.AP~~IAF~~D :< ______ ~~.: ·~~fil~lf~~gE·: .:~~ ____ >:CO~g~T~N~ItSET: 
• BRANCH TABLES • 1\ ., , • • EQUIV ENTRIES • · · l ., ,. · · .. ·····T ...... · ________ ~~: __ -__________ :::::::J ....... 

------·----------·---------v 
DICTIONARY SEARCH , ., 
••••• El.......... E2 ., ••••• E3 •••••••••• · ... .... . . 
• RESET POINTERS • NO ,. ANY ., YES • SET • 

-->.FOR EACH 'CHAIN .<-------.-., UNDEFINED ,.------->. UP ERROR • 
• OF TABLE. ., STMT, NOS,. • MESSAGE • 
• ENTRIES· ., ,. • • 
········1········ ..... . ............... . 

, ., 
Fl., ••••• F2 •••••••••• 

,. ANY., • GENERATE • 
, • COMPLEX ." YES • AND CHAIN • 

• , ITEMS •• -------->. IMAGINARY • • , IN CHAIN ,. • PORTIONS INTO • 
• 0 ,. • TABLE • 

··I~~------------==:]········ 
.•. . .. 

Gl ., G2 ., ••••• G3 •••••••••• 
,. ALL ., ,.., • IEKKOS • 

NO ,. TABLE ., YES ,. ., YES .-.-.-.-.-.-.-.-. 
---., CHAINS ,.-------->., OPT=2 ,.-------->. ASSIGN • 

• ,PROCESSED,. ., ,. • COORDINATES • 
• , , • ." • .BASEO ON USAGE • . , ,. ., ,. . ............... . 

• • NO J 
1<------------------------

. *. .*. Hl ., H2 ., ••••• H3 •••••••••• 0..' 0..0 . COMPUTE • 
NO ,. ANY • , NO ,. ., YES • DISPLACEMENT • 

---., EQUIVALENCE ,.<-------.-., ANY COMMON ,.----·---->.ANO ENTRY BLOCK • 
• 0 ,. 1\ ., o. • POINTERS • 

. , o· l ·0 ,. · • 
··I·~S ________ ~~~: ____________ :::::::r ...... 

··.··Jl.· ....... . · . • COMPUTE • 
• OFF-SETS AND • 
• GROUP HEADS • • • 

---::::::::r ...... . 

.... ·Kl········· 
• RETURN .. 
: C~~SBl : 
••••••••••••••• 

82 



• Table 7. Phase 10 Source statement Processing 
r------------------T-------------------T------------------------------------------------, 
I I Main Processing I I 
I Statement Type I Subroutine . I Subroutines Used I 
~------------------+-------------------+------------------------------------------------i 
I Arithmetic I XARITH-IEKCAR I IEKCCR, IEKCDP, IEKCGW, IEKCPX, IEKCS1, I 
I I I IEKCS2 I 
~------------------+--------------.-----+------------------------------------------------i 
I Statement I DSPTCH-IEKCDP I IEKCCR, IEKCDP, IEKCGW, IEKCPX, IEKCS1, I 
I Function I XARITH-IEKCAR I IEKCS2 I 
~------------------+-------------------+------------------------------------------------i 
I DIMENSION, I XSPECS-IEKCSP I IEKCCR, IEKCDP, IEKCGW, .IEKCLC, IEKCS1, IEKCS2, I 
I EQUIVALENCE, I I IEKCS3 I 
I COMMON I I I 
~------------------t-------------------t------------------------------------------------~ 
I EXTERNAL I DSPTCH-IEKCDP I IEKCGW, IEKCS3 I 
~------------------+-------------------+------------------------------------------------i 
I Type, DATA I XDATA-IEKCDT I IEKCGW, IEKCLC, IEKCDP, IEKCCR, IEKCPX, I 
I I I IEKCS3, IEKCSP, IEKCS2 I 
~------------------+-------------------+---------.---------------------------------------i 
I DO I XDO-IEKCDO I IEKCGW, IEKCDP, IEKCLT, IEKCS3, IEKCCR, I 
I I I IEKCS2, IEKCPX I 
~------------------+-------------------+------------------------------~-----------------i 
I SUBROUTINE, CALL, I XSUBPG-IEKCSR I IEKCGW, IEKCDP, IEKCS3, 'IEKCLC, IEKCLT I 
I ENTRY, FUNCTION I I IEKCPX I 
~------------------+-------------------+---------.---------------------------------------1 
I READ, WRITE, I XIOOP-IEKCIO 1 IEKCAR, IEKCCS, IEKCDP, IEKCGW, IEKCLT, I 
I PRINT, PUNCH, I I IEKCPX, IEKCS1, IEKCS2, IEKCS3 I 
I FIND I I I 

I ~------------------+-------------------+------------------------------------------------~ 
I DEFINE FILE, I XTNDED-IEKCTN I IEKCGW, IEKCDP, IEKCCR, IEKCS1, IEKCLC, I 
I IMPLICIT, I I IEKCS2, IEKCPX, IEKCS3 I 
I STRUCTURE, I I I 
I NAMELIST I I I 
~-----------------+-------------------+---------.---------------------------------------~ 
I BACKSPACE, I I I 
I REWIND, I XIOPST-IEKDIO I IEKCGW, IEKCDP, IEKCPX, IEKCCR, IEKCLT, I 
I END FILE, I I IEKCS2, IEKCS3 I 
I RETURN, ASSIGN, I I I 
I FORMAT, PAUSE, I I I 
I STOP, END I I I 
~------------------+-------------------+------------------------------------------------~ 
I IF, CONTINUE, I DSPTCH-IEKCDP I IEKCPX I 
I BLOCK DATA I I I 
~------------------+-------------------+------------------------------------------------~ 
I GO TO I XGO-IEKCGO I IEKCDP, IEKCGW, IEKCLT, IEKCPX, IEKCS3 I L __________________ ~ ___________________ ~ ________________________________________________ J 

Section 2: Discussion of Major Components 83 



Table 8. Phase 10 Subroutine Directory (Part 1 of 3) 
r-------------T--------------------------------T----------------------------------------, 
'Subroutine I Type , Function I 
~-------------+--------------------------------+----------------------------------------i 
CSORN-IEKCCR utility (collection, conversion, Secondary entry point IEKCCR directs thel 
(IEKCLC)* entry placement) entering of variables and constants into 
(IEKCS1)* information table 
(IEKCS2)* 
(IEKCS3)* Secondary entry point IEKCLC converts 

integer, real, and complex constants to 
their binary equivalents. 

DSPTCH-IEKCDP Dispatcher, Keyword, and 
(IEKCIN)* utility (entry placement) 

FORMAT- IEKTl"M Miscellaneous 

GETCD-IEKCGC Preparatory 
(IEKAREAD) * 

GETWD-IEKCGW Utility (collection) 

Secondary entry point IEKCS1 places 
variable names on full word boundaries 
for comparison to other variable names. 

Secondary entry point IEKCS2 places 
dictionary entries constructed for 
variables and constants of the source 
module into the information table. 

Secondary entry point IEKCS3 combines 
the functions of entries IEKCS1 and 
IEKCS2 (above) for variable names. 

Controls phase 10 processing, passes 
control to the preparatory subroutine to 
prepare the source statement, determines 
from the code assigned to the statement 
which subroutine is to continue process
ing the statement, and passes control to 
that subroutine. 

Develops intermediate text 
representations of the BLOCK DATA, 
CONTINUE, EXTERNAL, and IF statements 
and that portion of a statement function 
to the left of the equal sign; builds 
information table entries for the 
operands of these statements; and 
analyzes these statements for 
syntactical errors. 

Builds error table entries for the 
syntactical errors detected by phase 10 
and places them in the error table. 

IEKCIN is the initial entry point to 
IEKCDP. 

Generates format text from phase 10 
intermediate text. 

Reads, lists (if requested), packs, and 
classifies each source statement. 

IEKAREAD is a secondary entry point to 
IEKCGC. 

Obtains the next group of characters in 
the source statement being processed. 

IEKKOS Utility (table entry) IAssigns coordinates based on usage count 
Ito variables and constants. 

~-------------i--------------------------------i----------------------------------------i 
,*Secondary entry point , L ____________ . ___________________________________________________________________________ J 

84 



• Table 8. Phase 10 Subroutine Directory (Part 2 of 3) 
.------------T--------------------------------T----------------------------------------, 
I Subroutine I Type I Function I 
~-------------+--------------------------------+----------------------------------------~ 
IEKXRS \ Miscellaneous IWrites XREF buffer on SYSUT2. 

I I 
LABTLU-IEKCLT Utility (entry placement) IPlaces statement number entries into the 

linformation table. 
I 

PH10-IEKCAA Utility (common data area) I Work area and communication region for 

PUTX-IEKCPX Utility (entry placement) 

STALL-IEKGST utility (table entry and text 
generation) 

XARITH-IEKCARIArithmetic 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
XCLASS-IEKDC:Llutility (text generation) 

I 
I 
I 
I 
I 
I 
I 

XDATYP-IEKCDT Keyword <table entry and text 

XDO-IEKCDO 

generation) 

Keyword <table entry and text 
generation) 

phase 10. 

Places text entries into the appropriate 
subblocks, obtains the next operator 
from the source statement, and places 
the operator in the text entry work 
area. 

Generates entry code for object module, 
calls IEKTFM to translate format text to 
object code, generates object code for 
literal data text, processes equivalence 
entries (those that were equivalenced 
before being dimensioned), sets aside 
space in the object module for the 
problem program save area and for 
computed GO TO branch tables, checks for 
undefined statement numbers, rechains 
variables, assigns coordinates based on 
usage count, processes COMMON entries, 
and processes EQUIVALENCE entries. 

Controls the processing of arithmetic 
statements, CALL arguments, expressions 
in IF statements, I/O list items, the 
expression portion of a statement 
function, and the branch tables of an 
arithmetic IF statement. Builds 
information table entries for the 
operands of the previously mentioned 
statements, and analyzes the statements 
for syntactical errors. 

Controls the processing of source and 
compiler-generated statement numbers, 
generates the intermediate text required 

Ito increment a DO index and to compare 
I t:he index with its maximum value, and 
Iprocesses CALL arguments of the form 
I §_label. 
I 
IDevelops intermediate text representa-
I t:ions of DATA and TYPE statements, 
linformation table entries for the 
loperands of DATA and TYPE statements, 
land analyzes these statements for 
Isyntactical errors. 
I 
IDevelops the intermediate text and 
linformation table entries for the DO 
Istatement and implied DOs appearing in 
linput/output statements and analyzes 
Ithem for syntactical errors. L ____________ ~ ________________________________ ~ _______________________________________ _ 

section 2: Discussion of Major Components 85 



Table 8. Phase:tO Subroutine Directory (Part 3 of 3) 
r------------T--------------------------------T----------------------------------------, 
I Subroutine I Type I Function I 
~------------t--------------------------------t----------------------------------------~ 
XGO-IEKCGO Keyword (table entry and text IDevelops intermediate text representa-

generation) Itions of the GO TO (unconditional, 
,assigned, and computed) statements, 
Iconstructs information table entries for 
Ithe operands of these statements, and 
lanalyzes these statements for 
Isyntactical errors. 

XIOOP-IEKCIO 

XREF-IEKXRF 

Keyword (table entry and text 
generation) 

Miscellaneous 

XSPECS-IEKCSPIKeyword (table entry) 
I 
I 
I 
I 
I 

XSUBPG-IEKCSRIKeyword (table entry and text 
I generation) 
I 
I 
I 
I 
I 
I 
I 
I 
I 

XTNDED-IEKCTNIKeyword (table entry and text 
I generation) 
I 
I 
I 
I , , 
I , 

'XIOPST-IEKDIO'Keyword (table entry and text 
, , generation) , , 
, I , , , , , , , , , , 

I 
IDevelops intermediate text representa-
tions of input/output statements, 
constructs information table entries for 
their operands, and analyzes 
input/output statements for syntactical 
errors. (I/O list items are processed 
by subroutine XARITH-IEKCAR.) 

Reads in XREF buffer from SYSUT2. 
Prints out a cross-reference listing 
directly after the source listing. 

constructs information table entries for 
Ivariables and arrays appearing in 
COMMON, DIMENSION, and EQUIVALENCE 
statements and analyzes these statements 
for syntactical errors. 

Develops intermediate text representa
tions of CALL, SUBROUTINE, ENTRY, and 
FUNCTION statements; constructs 
information table entries for the 
operands of these statements; and 
analyzes these statements for 
syntactical errors. (This subroutine 
passes control to subroutine 
XARITH-IEKCAR to process the arguments 
appearing in CALL statements.) 

Develops intermediate text for NAMELIST 
and DEFINE FILE statements; constructs 
information table entries for variables 
and arrays appearing in the NAMELIST, 
DEFINE FILE, and STRUCTURE statements; 
resets the implicit mode table according 
to the specification of the IMPLICIT 
statement; and analyzes these statements 
for syntactical errors. 

Develops intermediate text representa
tions of ASSIGN, RETURN, FORMAT, PAUSE, 
BACKSPACE, REWIND, END FILE, STOP, and 
END statements; constructs information 
table entries for the operands of the 
ASSIGN, BACKSPACE, REWIND, and END FILE 
statements; and for the operands (if 
any) of the RETURN, PAUSE, and STOP 
statements; and analyzes all of these 

" statements for syntactical errors. l _____________ .L __________________ . _______________ ..l-______________________________________ _ 

86 



Chart 05. 

····A3·· ...... . 
• FROM FSD • 
• CHART 00 • • • 

······1·· .. .. 
··.·.B3 ......... . 
• PHAZ15 06B2 • . -.-.-.-.-.-.-.-. 
• PROCESS • 
• PHASE 10 • 
• TEXT • 

········1········ 

·····C3 ......... . 
• CORAL 09A1 • . -.-.-.-.-.-.-.-. 
• RELATIVE • 
• AODRESS • 
• ASSIGNMENT • 

········1········ 

•••• 03 ••••••••• 
• TO PHASE • 
• 20 VIA FSO • • • ••••••••••••••• 

Phase 15 Overall Logic 

SEE TABLE 9 FOR A 
BRIEF DESCRIPTION 
g~ ~u~S~Ur~?UTINES 

Section 2: Discussion of Major Components 81 



Chart 06. PHAZ15 Overall Logic 

PHAZ15 

····A2 ••••••••• 
• FROM FSO • 
• CHART 01 • · . ...... 1 ...... 
••••• B2···.·.···· • • • • 
• INITIALIZE • • • • • 

120 .. ······!········ 

••••• c2.·· •.••••• ••••• • 
• • • GET A PHASE • 
• C2 .---->. 10 TEXT • 
• • • ENTRY • ••••• • 

········1········ 

,., 20 08B2 
02 •• • •••• D3.......... • •••• 04 •••••••••• 

•• STATE- •• • INDICATE IF • • GENER-IEKLGN • 
• • MENT NUMBER •• YES • STATEMENT. .-.-.-.-.-.-.-.-. 

•• TEXT ENTRY , .-------->. NUMBER IS *-------->. CREATE NEW • 
•• •• .FOR ENTRY POINT. • TEXT BLOCK • .. .. . .. . 

··l··~O ................. ········1········ 

•••• • • 100 08B2 ••• • C2 • 
••••• El ••••••••• ~ E2 •• • • 
• GENER-IEKLGN • ,.., •••• 
• -.-.-.-.-.-.-.-. YES ,. IS ., 

OUTPUT .<--------.. OPERATOR •• 
ENO. •• END •• 

• STATEMENT ~ ., •• ................ ~ .... 
r 
••• 07 

F2 •• • •••• F3 •••••••••• 
..., • ALTRAN-IEKJAL • • ••• 

• • ARITHMETIC •• YES .-.-.-.-.-.-.-.-. • • 
•• TRANSLATION •• -------->. PERFORM .---->. C2 • 

•• NEEDED , • • ARITHMETIC. • • 
•• • • • TRANSLATION· •••• .. .. . ............... . 
r . .. .•. 

Gl •• G2 •• • •••• G3 •••••••••• .. .. .... . . 
NO •• •• ,. iPROC- ., YES • PROCESS • 

---•• OPTIMIZATION •• 
•• SELECTEO •• 

*. .• * ..• 

101 I YES 

·.·.·Hl •••••••••• 
• • • • 
• BUILO • 
• CMAJOR • · ,~ 

--_::::::::1········ 

•••• Jl ••••••••• 
• TO CORAL • 
• VIA FSO • · . ••••••••••••••• 

88 

23 

•• \ ESSING •• -------->. TEXT • 
•• NEEDED • • • ENTRY • .. .. . . 

"1':0 08.2 ········1····:::: 
••••• H2.......... • •••• H3 •••••••••• 
• GENER-IEKLGN • • GENER-IEKLGN • .-.-.-.-.-.-.-.-. .-.-.-.-.-.-.-.-. 
• PASS ON. • COMPLETE TEXT • 
• PHASE 10. • ENTRY OUTPUT • 
• TEXT ENTRY. • TEXT ENTRY • 

....... ·1::::::::----·-----:::::::]······· · 
•••• · . • C2 • · . . ... 



Chart 07. 

Primary 
Adjective Code 

! 
IEKJFI 

ALTRAN-IEKJAL Control Flow 

! 
IEKLOK 

Function 
References 

! 
IEKJDF 

OEKIPR}' 

IEKJ8F 

ALTRAN - IEKJAL. 

IEKKUN 
(lEKJEX)* 

Arithmetic 
Operators 

IEKJCP 

~MO)' 

! 

1 
IEKKPA 

IEKKST 

l 
IEKLGN 

Subscript 
Operators 

IEKKSA 

IEKKSM 

Relational 
Operators 

! 
IEKKRE 

T 
IEKJGR 

Logical 
Operators 

! 
IEKJAN 
(lEKKNO)* 

*Secondary entry point of routine immediately above 

NOTE: The logic and flow of the arithmetic translator is too complex to be represented on one or two conventional flowcharts. Chart 07 indicates 
the relationship between the arithmetic trcmslator (subroutine ALTRAN) and its lower-level subroutines. An arrow flowing between two 
subroutines indicates that the subroutine at the origin of the arrow may, in the course of its processing, call the subroutine indicated by 
the arrowhead. In some cases, a subroutine called by ALTRAN may, in turn, call one or more subroutines to assist in the performance of 
its function. The level and sequence of subroutines is indicated by the lines and arrowheads. 

In reality, all of the pathways shown connecting subroutines are two-way; however, to simplify the chart, only forward flow has been 
indicated by the arrowheads. All of the subroutines return control to the subroutine that called them when they complete their processing. 
(If a subroutine detects an error serious enough to warrant the deletion of the compilation, the subroutine passes control to the FSD, rather 
than return control to the subroutine that called it.) 

The specific functions of each of the subroutines associated with the arithmetic translator are given in the subroutine directory following 
the charts for phase 15. 

section 2: Discussion of Major Components 89 



Chart 08. GENER-IEKLGN Text Generation 

GENER- IEKLGN 
···.A2· •••••••• 

• FROM • 
• CALLING • 
• ROUTINE • ............... 

1 
·····B2·········· • • • • • INITIALIZE • • • • • ••••••••••••••••• 

,,,. 1 

20 

90 

·····C2 •••••••••• 
• • • GET STORAGE • 
• FOR NEW • 
• TEXT ENTRY • • • • ••• ................. . . 

1 
· os • • • 

••• 199 9000 ·1··· 
02 •• • •••• 03.......... • ••• ·.04 •••••••••• 

• • IS •• • •• SET TEXT. • ••• 0S ••••••••• 
•• OPERATOR •• NO • PASS ON. • CHAIN BLOCK • • RETURN • 

•••• PH~~~lS •••• -------->: T~~~S~N~gY :-------->: ~f~~f< ~tm :------->: CAt£ER : .... . .. . . ............. . .. .. ................. . ............... . 
r" 

••• 10 
E2 •• • .•••• E3.......... .TXTLAB-IEKLAB RECORDS 

•••• • TXTLAB-IEKLAB • •••• FALL-THROUGH CONNECTIONS 
•• STATEMENT •• YES .-.-.-.-.-.-.-.-. • • ANO SETS UP STATEMENT 

•• NUMBER •• ------->. RECORD .---->. DS. NUMBER TEXT ENTRIES. 
•• TEXT.. • CONNECTION. • • 

•• • • • INFORMATION • • •••• .. .. . ............... . r 
••••• F2·········· 
• TXTREG-IEKLRG • . -.-.-.-.-.-.-.-. 
• PROCESS • 
• REGULAR • 
• TEXT ENTRY •• • 

········1········ 

••• •• G2 •••••••• •• 
• SET TEXT • 
: C~i~E BkggK : 
• BLock END • • • 
········1········ 

•••• • • 
• DS • • • •••• 



Chart 09 • CORAL Overall Logic 

•• ,j. ••••••••••••••••••••••• 

CORAL-IEKGCR 

****Al********* 
* FROM FSD * 
* CHART 01 * 
* * · .. ···T ...... 

· *. 

* OPERATIONS WITHIN 
DOTTED LINES ARE 
PERFORMED BY 
CORAL-IEKGCR 

Bl *. *****B2********** 
.* *. . * NDATA-IEKGDA * 

.* *. YES. *-*-*-*-*-*-*-*-* 
*. ANY DATA • *---.---->* PROCESS PHASE * 

*. .* * 10 DATA TEXT * 
*..* * * 

* .• * • ***************** 
* NO. J 1 <---------+:~~~~~~~~::: .......... ~~~ 

*****Cl********** .• *****C2**********· 
* ASSIGN * * IEKTLOAD * 
* RELATIVE * .• *-*-*-*-*-*-*-*-* 
* ADDRESSES TO *<------->*GENERATE TEXT/ * 
* CONSTANTS * * ADCONS FOR * 

!***************! :***~~'*~~~****: 1 . : .......... 1" ........ : 
*****Dl********** *****D2********** 
* ASSIGN * * IEKGCZ * 
* RELATIVE *. *-*-*-*-*-*-*-*-* 
* ADDRESSES TO *<------->* COMPUTE BASE *<---
*LOCAL VARIABLES* * AND DISPLACE- * 
* * * ME NT * 
***************** ***************** 

1 ' 
.'. 1 

El *. *****E2********** 
• * ANY *. • * EQVAR-IEKGEV * 

.* COMMON OR *. YES. *-*-*-*-*-*-*-*-* 
*. EQUIVALENCE .*---.---->*ASSIGN REL ADDR* 

*. *. • * • * : :TO ~~~~~~a~UIV: 

··I~~~-------l-----=::]········ 
*****Fl********** 
* * * PROCESS * . 
* EXTERNAL *<-----------------------------
* REFERENCES * 
* * ***************** 

1 
· *. Gl *. *****G2********** 

• * *. . * NLIST-IEKTNL * 
.* ANY *. YES. *-*-*-*-*-*-*-*-* 

*. NAME LIST . *---.---->* PROCESS NAME *<--
*. .* *LIST AND GENER-* 
*..* *ATE DICTIONARY * 

··I~~:--------l-----::::::::j········ 
· *. Hi *. *****H2**********. *****H3********** 

.* *. . * DATOUT-IEKTDT * -.-->* IEKTLOAD * 
.* ANY *. YES. *-*-*-*-*-*-*-*-* • *-*-*-*-*-*-*-*-* 

*. DATA • *---. ---->* PROCESS DATA *<------->* PLACE TEXT 
*. .* * AND GENERATE * • * IN OBJ MOD 
*..* * CONSTANTS * -.-->* * 

FSD 

··C:--------l----::::::::r .... ·.. . ... ::::::::::::::::: ... 
· *. Jl *. *****J2********** 

.* *. • * DFILE-IEKTDF * 
.* ANY *. YES. *-*-*-*-*-*-*-*-* 

*. DEFINE FILE • *---.---->* PROCESS DEF *<--
*. .* * FILE AND * 

*. . * * GENERATE TEXT * 

··I~~------!-----::::::::j········ 
****Kl********* 

* TO FSD * 
* CHART 01 * 
* * *************** 

section 2: Discussion of Major Components 91 



Table 9. Phase 15 Subroutine Directory (Part 1 of 2) 

r--------------T----------T-------------------------------------------------------------, 
I I Associated I I 
I IPhase 15 I I 
I Subroutine I Segment I Function I 
~--------------+----------+-------------------------------------------------------------1 
ALTRAN-IEKJAL PHAZ15 Controls the arithmetic translation process. 

ANDOR-IEKJAN 
(IEKKNO)* 

BLTNFN-IEKJBF 

CNSTCV-IEKKCN 

CORAL-IEKGCR 

CMSIZE-IEKGCZ 

CPLTST-IEKJCP 
(IEKJMO)* 

DATOUT- IEK~rDT 

DFILE-IEKTDF 

DFUNCT-IEKJDF 
(IEKKPR)* 

DUMP15-IEKLER 

EQVAR-IEKGEV 

FINISH-IEKJFI 

FUNRDY-IEKJFU 

GENER-IEKLGN 

(5) 

PHAZ15 
(5) 

PHAZ15 
(5) 

PHAZ15 
(5 ) 

CORAL 
(6) 

CORAL 
(6) 

PHAZ15 
( 5) 

CORAL 
(6) 

CORAL 
(6) 

PHAZ15 
(5) 

PHAZ15 
(5 ) 

CORAL 
(6) 

PHAZ15 
(5) 

PHAZ15 
( 5) 

PHAZ15 
(5) 

Checks the mode of the arguments passed to it, decomposes IF 
statements, and generates text entries for AND and OR 
operations. 

Generates phase 15 text for in-line functions by either 
expanding the function or creating a phase 15 text item 
(which is expanded by phase 25). 

Performs compile time conversion of constants. 

Controls the flow of space allocation for variables, 
constants, and adcons necessary for local variables, COMMON, 
EQUIVALENCE, and external references; processes constants, 
local variables, and external references. 

Keeps track of space being allocated; generates adcons for 
address computation; rechains data text, generates adcons for 
COMMON, EQUIVALENCE, and external references; and sets up 
error table entries for phase 3Q. 

Checks the mode of the operands in an arithmetic triplet mak
ing adjustments where necessary and controls text generation 
for the triplet. 

Puts phase 15 data text into object module. 

Processes define file text. 

Determines if a reference is to an in-line, library, or ex
ternal function, and determines the validity of arguments to 
the subprogram; inserts the appropriate function operator 
into phase 15 text and builds the parameter list in the adcon 
table and in text for the subprogram referred to; performs 
parameter list optimization. 

Records errors detected during PHAZ15 processing. 

Handles COMMON and EQUIVALENCE space allocation. 

completes the processing required for a statement when its 
primary adjective code is forced from the pushdown table. 

Creates pushdown entries for references to implicit library 
functions. 

Generates phase 15 text consisting of unchanged phase 10 
text, phase 15 standard text, and phase 15 statement number 
text. 

GENRTN-IEKJGR PHAZ15 Builds appropriate phase 15 text entries for simple items 
(5) forced from the pushdown table. 

~--------------i----------i---------------------------__________________________________ ~ 
I*Secondary entry point I L ________________________________________________________________________________________ J 

92 



Table 9. Phase 15 Subroutine Directory (Part 2 of 2) 
r--------------T----------T-------------------------------------------------------------, 
I I Associated I I 
I IPhase 15 I I 
I Subroutine I Segment I Function I 
~--------------+----------+-------------------------------------------------------------~ 
LOOKER-IEKLOK PHAZ15 ISearches the function table (IEKLTB) to determine if a given 

MATE-IEKLMA 

NDATA-IEKGDA 

NLIST-IEKTNL 

OP1CHK-IEKKOP 
(IEKKNG)* 

PAREN-IEKKPA 

PHAZ15-IEKJA 

RELOPS-IEKKRE 

STTEST-IEKKST 

SUBADD-IEKKSA 

SUBMLT-IEKKSM 

I TXTLAB-IEKLAB 
I 
I 
ITXTREG-IEKLRG 
I 
I 
IUNARY-IEKKUN 
I (IEKKSW) * 
I (IEKJEX) * I 

(5) Ifunction is FORTRAN supplied. 

PHAZ15 
(5) 

CORAL 
(6) 

CORAL 
(6) 

PHAZ15 
(5) 

PHAZ15 
(5) 

PHAZ15 
(5) 

PHAZ15 
(5) 

PHAZ15 
(5) 

PHAZ15 
(5) 

PHAZ15 
(5) 

PHAZ15 
(5) 

PHAZ15 
(5) 

PHAZ15 
(5) 

I 
I 
Records usage information in the MVS, MVF, and MVX fields if 
one of the optimizer paths through phase 20 is selected. 

Converts phase 10 data text to phase 15 data text. 

Processes namelist text. 

Determines whether or not operand 1 should be a temporary 
and checks for negative arguments. 

Removes the ( or -( from the pushdown table when the corre
sponding ) is encountered. 

Controlling routine of PHAZ15. Determines if the phase 10 
text for a statement needs arithmetic translation. If so, 
ALTRAN-IEKJAL is called. Otherwise GENER-IEKLGN is called to 
put out unchanged phase 10 text. Builds CMAJOR if OPT=2. 

Calls subroutine GENER--IEKLGN to generate text entries for 
relational operators. (output may be either a relational or 
branch operation.) 

Builds text for replacement statements [e.g., A=B, A=B(I), 
A(I)=B, A(I)=B(I) 1. 

Generates text to add the terms in a subscript computation, 
determines if a subscript text entry in the pushdown table 
should be entered into phase 15 text, and calls subroutine 
GENER-IEKLGN to genera·te the text entry when appropriate. 

Generates the text to multiply the first term of a subscript 
computation by its associated length factor, or, in the case 
of variable dimension, to multiply the ~th dimension by 
length. 

Processes statement number text entries for subroutine 
GENER-IEKLGN and creates entries in RMAJOR. 

Processes standard phase 15 text entries for subroutine 
GENER-IEKLGN and makes RMAJOR entries. 

Optimizes arithmetic triplets and processes the exponentia
tion operator. 

~--------------~----------~----------------------.---------------------------------------~ 
I*Secondary entry points. I L _______________________________________________________________________________________ J 

Section 2: Discussion of Major Components 93 



Table 10. Phase 15 COMMON Areas 
r--------------T-----------------------------------------------------------------------, 
I Name I Function I 
~--------------+-----------------------------------------------------------------------~ 
I IEKGAl I CORAL COMMON data area. I 
I I I 
I PH15-IEKJ.A1 I Phase 15 COMMON data area. I 
I I I 
I CMAJOR-IEKJA2 I Backward connection table. I 
I I I 
I IEKJA3 I Function information tables. I 
I I I 
I RMAJOR-IEKJA4 I Forward connection table. I 
I I I 
I IEKLTB I Function table COMMON area. I L ______________ ~ _______________________________________________________________________ J 

94 



Chart 10. Phase 20 Overall Logic 

LPSEL-IEKPLS 

····A1·····.··. 
• FROM FSD • 
• CHAIN 01 • • • ••••••••••••••• 

SEE TABLE 12 FOR A BRIEF 
DESCRIPTION OF THE MAJOR 
SUBROUTINES OF PHASE 20. 

• ••• • • 
C1···.. l~~~i~~~~::~~~~~~~~~~---------~~:~:::::::::::::--------------::~l.:~ 901~·~:·:--1 

•••• • •• SSTAT-IEKRSS • •••• • ••• CS ••••••••• 
• :. OPT=O .:.~~~----->: ?~i~~~ ~M~~ :------->:-·S~T·S;A;U~-·-:-------->.:· ~~K .,:.~~~----->: TO FSD : 

•• •• • •• AND ASSIGN • •• •• • CHART 01 • 
•••• • •• REGISTERS • •••• • •••••••••••••• .. .. ................. ................. . .. . I NO • 

... 
D1 •• • •••• D2.......... • •••• D3 •••••••••• 

•••• • TOPO-IEKPO. • BAKT-IEKPB • 
•• •• YES .-.-.-.-.-.-.-.-. .-.-.-.-.-.-.-.-. 

•• OPT=2 •• -------->. DETERMINE .<------->.DETERMINE BACK. 
•• •• .BACK DOMINATORS. .TARGET AND LOOP. 
•••• • FOR BLOCKS. .NUMBR FOR BLKS • 

1000 'T~ ........ I........ .. ............. .. 
••••• E1.......... • •••• E2.......... • •••• E3 •••••••••• 
• •• BIZX-IEKPZ·. • 
.INITIALIZE FOR • .-.-.-.-.-.-.-.-. • SET LOOP • 
• OPTIMIZED. • DETERMINE .-------->. NUMBER • 
• REGISTER. • BUSY-ON-EXIT • • PARAME'IER • 
• ASSIGNMENT. • DATA. • TO 1 • ········r······· ................. ~:;;:~::1········· 

•••• • • • • • ••• 
• J3 • 2 
• • ·····F3·.· •• ••••• •••• • TARGET-IEKPT • . -.-.-.-.-._.-.-. 

• SELECT LOOP. • 
• GET BACK 'IAR- • 
• GET or LOOP • ........ r .. ::~: 12A2 

••••• G3.......... • •••• GS •••••••••• 
:-~~f~;~;~f~~~~-: :-:~~~~~;:f~~~~-: 
• COMMON .---------------------------------->. BACKWARD 
• EXPRESSION • • MOVEMENT 
• ELIMINA'IION • •• ••••••••••••••••• • •••••••••••••••• 
•••• • • 

• H3 .--t • • •••• 500 ••• 
••••• H1.......... • •••• H2.......... 130 H3 •. • •••• Hq •••••••••• 
: INCREMENT: : MARK BLOCKS: NO •••• LAST •••• :-!~~~;~;~~~~~!-: 
• LOOP NUMBER .<--------. IN LOOP .<--------.. LOOP •• <-----.• --. STRENGTH .<----------------
• PARAMETER. • COMPLETED. •• •• • REDUCTION • · .. . .... . . ••••••••••••••••• ••••••••••••••••• •• •• • •••••••••••••••• 

j :.;:.:->1. YES 

•••• ••• 2000 205 ••• • •• 
J1 •• • •••• J2.......... J3 •• Jq •• • •••• Js •••••••••• 

•• PRO- • • • BLS-IEKSBS • • • • • • • • • • • 
•• CESSING •• REG .-.-.-.-.-.-.-.-. YES •• REGISTER •• NO •• COMPlETE- •• • SET LOOP • 

•• TEXT OR '.--1 · COMPUTE BLOCK .<--------•• ASSIGNMENT •• -------->.. OPTIMIZED •• • NUMBER • 
•••• REGS..... : SI~~ANg~~S RX: •• ;?MPLET~~.. • ••• PATH •••• : PA~~MfTER : 

··j·;EXT •••••• ·········l···::::· ..... ···l·· •••• ·::::···1········· 
~ : KS : _>: cs : _>: KS : : KS :_> 

•••• •••• •• •• •• • • •••• •••• • ••• • F3 • 1qB2 230 • • • •••• K3.......... • •••• KS •••••••••• 
•••• • REGAS-IEKRRG • • TARGET-IEKPT • . -.-.-.-.-.-.-.-. .-.-.-.-.-.-.-.-. 

FULL • <-----.. ----------------------------. SELECT LOOP. • 
REGISTER • • GET BACK TAR- • 

• ASSIGNMENT • • GET OF LOOP • ••••••••••••••••• • •••••••••••••••• 
l .... 

• • ->. H3 • • • •••• 

Section 2: Discussion of Major Components 95 



Chart 11. Cornmon Expression Elimination (XPELIM-IEKQXM) 

XPELIM-IEKQXM 

····Al········· 
• FROM • 
• LPSEL-IEKPLS • 
• CHART 10 • 

..... .. 1'...... 1000 r------------------------------------------------
••••• Bl.......... • •••• B2 •••••••••• · .. . 
• GET • • GET FIRST • 
• FIRST .-----•• -->. TEXT ENTRY IN • 
• BLOCK. • BLOCK • · .. . 
·········:::::::-------::::=:1········ 

••• 9800 
NO 

5100 C2 •• • •••• C3.......... C4 •• 
•••• • • •• END •• • ••• C5 ••••••••• 

•• •• YES • GET NEXT. •• OF •• YES • TO • 
•• END OF BLOCK •• -------->. TEXT BLOCK .-------->.. CURRENT •• -------->. LPSEL- IEKPLS • 

•• • • • • •• LOOP • • • CHART 10 • 
*..* * .. *..* •• ************* .. .. ................. . .. . r · 

5000 2000 ,.SEE TABLE 11 1900 
••••• Dl. •••••••• D2 •• • •••• D3 •••••••••• 
.. • ... *. .. • 
• GET • NO •• BASIC •• YES • SCAN FOR • 

r
->.NEXT TEXT ENTRY·<----··---·. CRITERIA •• -------->. LOCAL COMMON • 

• • •• MET.. • TEXT ENTRY • · . .... . . 
:·D:·~·······~········ :·::·::~l··· ········1········· .... . . 

•••• 4800 ••• 4000 
••••• E2.......... E3 •• • •••• E4 •••••••••• 
• .. .* *. .. .. 
• GET FIRST. NO •• •• YES • ELIMINATE • 
• (NEXT) BACK .<--------•• ENTRY FOUND •• -------->. EXPRESSION ON .---1 
• DOMINATOR • •• •• • TEXT ENTRY • · . .... . . 
········1········· ..... . ....... ~ ........ :.::.: 

96 

••• 3100 
F2 •• • •••• F3 •••••••••• 

•••• • GET • 
YES •• END •• NO • FIRST TEXT • 

----------------- •• CURRENT LOOP •• -------->. ENTRY IN BACK • 
•• •• • DOMINATOR • 
*..* .. • 

'. · . · __________ :::::::: roo ... 
. .. 

G3 •• .. .. 
NO •• OPERANDS •• 

---.2+3 USED ELSE- •• 
•• WHERE IN •• 

·.LOOP •• .. .. r' 
3200 •• SEE TABLE 11 2100 

YES 

H3 •• H4 •• 
. * *. .* *. 

• • PRIMARY •• YES •• SECONDARY •• 

•••• 

•• CRITERIA •• -------->.. CRITERIA •• SEE TABLE 11 
•• MET •• •• MET •• 

*. .• *... 
*. .• * ..• 

::------>I<=------------------J NO 

·····J3·········· • • 
• GET NEXT TEXT • 
• ENTRY IN BACK • 
• DOMINATOR • • • 
········1········ 

... 
K3 •• .. .. 

NO •• END BACK • • YES 
-----------.. DOMINATOR •• ---1 .. .. 

*. .• * ..• • • ••• • • 
• E2 • • • .... 



Chart 12. Backward Movement (BACMOV-IEKQBM) 

1000 
*****A2********** *****A3********** 

BACMOV-IEKQBM 

****Al********* * * * * 
* FROM * * GET * * GET FIRST * 
* LPSEL-IEKPLS *-------->* FIRST *-------->* TEXT ENTRY IN *<----------------1 
* CHART 10 * * BLOCK * * BLOCK * 

*************** * * * * ........ ~::::~ _________ ~:::::J ....... . 
v YES .*. . *. 5100 B2 *. B3 *. B4 * • 

• * *. .* *. .* *. ****B5********* 
• * *. YES .*PROCESSING *. NO • * IS THERE *. NO *TO LPSEL-IEKPLS* 

---------------->* .ENO OF BLOCK • *-------->*. LIBRARY • *-------->*.. ANOTHER • *------->* CHART 10 * 
*. .* *.FUNCTION .* *. BLOCK .* * * 
*..* *.ARGS .* *..* *************** 

* •• * * •• * * •• * 

:*::*:->1* NO 1* YES * 

**** 
5000 .*. .*. 

*****Cl* ******** 2000 C2 *. 8100 C3 *. 
* * • * *. • * *. 
* GET NEXT * • *PROCESSING *. YES • * ARGUMENT *. YES 
* TEXT ENTRY IN * *. LIBRARY .*------->*. PROCESSING '*---1 
* BLOCK * *. FUNCTION • * *. FINISHED • * 
* * *.ARGS .* *..* 
** •• *.***.******* ••• * * •• * 

NOTE:: 

A

j
<_:*::*: 1* NO t_:;*::*: :.::.: 

• * • • **** 
.*** **** 

9100 1500 2200 
** •• *01 •• **.**** .**.*02.******.** *****03***** ••• ** 
* * * KORAN-IEKQKO * * KORAN-IEKQKO. **** 
• ATTEMPT TO * YES.-*-*-.-.-*-*-*-*NO .-*-*-*-*-*-*-*-*NO * * 
* PROMOTE SPLIT .<--1<----* VALID *-------->* VALID BACK- .---->* Cl * 
• TEMPORARIES * * BRANCH * • WARD MOVE * * * 
* • * ITEM * * CANDIDATE * **** 
*.********.*.***. *******.***.***** ******.*.******** 

* ** tYES 
* * *.** **** 
* Dl· * * * * 
• * * E2 *--! ->* El * 

**** * * * * 
***. .*** 

.*. .*. 
2400 El *. 3000 E2 •• ***.*E3.********* 

•• *. .* *. * • 
• * *. NO .* LIBRARY *. YES * SAVE * 

1
->.. STORE ITEM • *-------->*. FUNCTION • *-------->*POINTER TO TEXT*---l 

* • • * A • • •• * ENTRY * 
*..* *... • * 

* •• * * •• * ***************** 

:·E:*: 1* YES 1* NO :.::*: 
• • * • 
•• *. **** 

8200 3100 .*. .*. 

FOR OPTIMIZATION CRITERIA 
FOR BACKWARD MOVEMENT, 
SEE TABLE 11. 

*.***Fl.*.** •• *** *****F2****.***.* F3 *. 9000 F4 *. 
* * * * .* *. .* *. 
* TRY TO * * OPERANDS * .* PRIMARY *. NO .*PROCESSING *. YES 
* ELIMINATE * * 2 AND 3. *-------->*. CRITERIA .*-------->*. LIBRARY '*---1 
• SIMPLE STORE * * COMBINED * * • MET • * *. FUNCTION • * 
* * * * *..* *.ARGS .* 
•• ***.****.*.**** *******.********* •• • * *. • * 

1 
* YES * NO **** 

1 

1_>:*::*: : C2 : 
* * **** 
**** ... . .. 

Gl *. 4000 G3 *. 
•• *. .* * • 

• * STORE *. NO .* LIBRARY *. YES 
•• ELIMINATED .*----- *. FUNCTION '*---1 

*. • * * • ARGUMENT • * 
*. .* *. .* 

* •. ,.* * •• * 
* YES * NO **** 

L **** l *.** * * • * * • * Cl * 
>. Cl * ->* Hl * * * 

* * * * **** 
.*** **.* 

4200 .*. • •• 
Hl *. *****H2********** H3 *. ***.*H4********** 
.*.. * * .* *. * * 

.* SECONDARY *. NO *TRY TO PERFORM * .* LIBRARY *. YES .MOVE ARGUMENTS * 

r
->.. CRITERIA • *-------->* COMPUTATION *-------->*. FUNCTION • *-------->. TO *---~ 

* MET * *IN BACK TARGET * * • * * BACK TARGET * 
...* * * *..* * * 

•• • * *********.******* *. •• **.*****.*.** •• * • 

• ·H:·: 1* YES 1_:;*::*: :.;;.: 

•••• • • • ••• •••• 3800 ••• 
••••• Jl •••• *..... • ••• *J2 ••••• *.... J3 •• 
• *. LORAN-IEKQLO • •••• ** •• 
• MOVE TEXT * .-.-*-.-.-.-.-.-. •• LIBRARY •• YES. • 
• ENTRY TO *-------->. UPDATE VECTOR .-------->*. FUNCTION •• ---->. C2 • 
• BACK TARGET • • FIELDS FOR • •• •• • * 
• •• TEXT BLOCKS * •••• .* •• •••••••••••• ****. • ••••••••• *...... • ••• 

• NO 

! •••• * • • Cl • 
* • •• ** 

section 2: Discussion of Major Components 97 



Chart 13. Strength Reduction (REDUCE-IEKQSR) 

.... 
• • 
• A3 • • • 

REOUCE- IEKQSR ... 
AZ •• 

9000 
·1·::--------- LEGEND 

ADD 
MULT 

ADDITIVE 
MULTIPLICATIVE •••• A1 ••••• *... .... · ... A3 ••••••••• 

• FROM. •• DOES •• NO • TO • 
• LPSEL-IEKPLS .-------->.. BACK •• -------->. LPSEL-IEKPLS • 
• CHART 10. •• TARGET.. A. CHART 10 • ........... *... .. EXIST.· ••••••••••••••• .. .. 

!'" ... 
BZ •• 

•• ANY·. 
•• INERT •• NO 

•• TEXT •• -----
•• ENTRIES •• .. .. .... . ... .. .. . . . . 

:·::·:->1· YES =·r!·: :·r:·: 
.... -b -b 

SEE TABLE 11 1000... 3000... 3500.... 6100 
••••• C1.......... CZ •• C3 •• C4 •• • •••• C5 •••••••••• 

=-T~~!'~;~~~lP-:t-: YES •• ·:NY MULT·· •• NO •• ·~DD~¥lvE·· •• NO •••• ~~ ~m5T •••• YES : CALCULATE : 
INVESTIGATE .<------•. TEXT ENTRIES •• --------> •• TEXT ENTRIES •• --- •• CONSTANT •• -------->. NEW (BRANCH) • 

• PRIMARY. •• (.,n .• •. (+,-).. A •• ABS.. • CONSTANT >1< 

• CRITERIA· •••• ••• •••• • • ................. .. .. .. .. .. .. . ............... . 1 · · YE' • NO 

.'. 'BE TABL' 11 1 6200 1 01 .. . .... 03.......... . .... D4 •••••••••• 

•• •• PRIMARY·' •• NO • .... • :-I~~~~:;~~~S!t-:: ~~~~R~~~ ~~~ : 
•• CRITERIA •• --->. C3 • • INVESTIGATE • .NEW BR CON AND. 

• • MET • • •• • PRIMARY. • PLACE IN BACK • 
•• •• •••• • CRITERIA. • TARGET • 

'1;·3 .. · .... T .... ·.. ..· .. · .. 1·::::::::-----------
••• 7100 ••• 

E1 •• • •••• EZ.......... E3 •• • •••• E4 •••••••••• 
•• ARE -. • • •••• • • 

• :. C~~Sfi~¥liS .: .::~~--.--->:NEW Ctkggt~I~E) : .: ~RI¥n~~R~ET • : .~ :ORIG~~t;A~~ CON: 
•• ENTRIES •• • CONSTANT. • • •• A .WITH NEW BR CON • 

•• ABS •• • • •••• • • 

7200 '1:0 600: ...... r· .. · .. ,EE TABLE 11 ':r"' "': ...... r ...... 

98 

••••• F1.......... • •••• FZ.......... F3 •• • •••• F4 •••••••••• 
• GENERATE NEW •• • •••• • DELETE • 
• TEXT ENTRY. • GENERATE. YES •• SECONDARY •• NO • ORIGINAL • 
• AND PLAc:e: .-----·--->.NEW INERT TEXT .<--------•. CRITERIA MET •• --- • INERT • 
• IN BACK. • ENTRY. •• .•• • TEXT • 
• TARGET.. • ••• • • ENTRY • 

...••.•.......... ········1········ ..... ········1········· 

Z700 ••• 9900 
NOTE·: 
OPERAND 1 
BECOMES 
NEW 
(ADDITIVE) 
CONSTANT 

GZ •• • •••• G4 •••••••••• 
•• IS BR •• .REPLACE OPND 1 • 

• • VAR = •• NO • OF MULT. OR • 
•• ORIGINAL •• ---------------------------------->. ADD TEXT • 

•• INERT VAR.. A .ENTRY WITH NEW. 
•• •• • INERT VAR • 

7000 

':r:;" ········1········ 

HZ •• • •••• H4 •••••••••• 
•• IS •• • MOVE • 

•• BRANCH •• YES .MULTIP~ICATIVE • 
•• VARIABLE •• ------------------------------- • TEXT )!:NTRY TO • 

•• BUSY-ON- •• • BACK TARGET • 
·.EXIT •• •• 

··.·:0 ········1········ 

1 ... ..... Jz.......... J4 .. 

(ALL OTHER USES 
OF OPND 1, WHICH 
REMAIN IN THE 

~~O~EP~I~~D ~rSO 

•• •• WAS •• • ••• 
• REPLACE • •• NON-INERT •• MULT • • 
.ORIGINAL BR VAR. ..ENTRY MULT OR •• ---->. C2 • 
• WITH NEW INERT • •• ADD •• •• 
• VAR • •••• • ••• ................. . ... ! .~ 

...... 1 
• C4 • • •• 
• • K4 •• 
•••• •• WAS •• 

• • BRANCH •• NO 
• • VARIABLE •• ---1 ·.REPLACED •• .. . . .. .. 

i YES : .::.: 

-b •• .... . ... · . • A3 • · . .... 



Chart 14. Full Register Assignment (REGAS-IEKRRG) 

REGAS-IEKRRG 

.···A2····.···· • FROM • 
• LPSEL-IEKPLS • 
• CHART 10 • .... ··1· .. · .. 
·····B2····.····· • • • BUILD • 
• EMIN ARRAY • 
• FOR LOOP • • • 
········1········ 

·····C2·········· • • 
• DETERMINE • 
• RESERVED • 
• REGISTERS • • • 
········1········ 

·····D2···· ... ··· • • • SET POINTERS • 
• TO START OF • 
• FIRST BLOCK • • • ••••••••••••••••• 

151\1 
·····F2····.·.··· • FWDPAS-IEKRFP • . -*-.-.-.-.-.-.-. *BUILD REGISTER .-----
• ASSIGNMENT • 
• TABLES • ••••••••••••••••• 

1 
. ·.··G2···· .. ···· • BKPAS-IEKRBP • . -.-.-.-.-.-.-.-. 
• PERFORM • 
• LOCAL • 
• ASSIGNMENT • ••••••••••••••••• 

-----------~ 
80 ••• 

B3 •• .. .,. 
•• CALL •• NO 

•• OR FUNCTION •• --
•• IN LOOP •• .. . . .. .. 

!'"' 
••• ·.C3 •• •• •••• •• 
• MAKE COMMON • 
• VARIABLES IN- • 
• ELIGIBLE FOR • 
• GLOBAL • 
• ASSIGNMENT • • •••••••••••••••• 

85 1<--~:::---.···.D3·.·· .... ·. • GLOBAS-IEKRGB • .-.-.-.-.-.-.-.-. 
• PERFORM • 
• GLOBAL • 
• ASSIGNMENT • 

········1········ 

····.E3····.····. • • • SET POINTER • 
• TO STAR'! OF • 
• FIRST BLOCK • • • ........ r .. ~~~: 
•.••• F3···· ••• ·•• • STXTR- IEKRSX • .-.-.-.-.-.-.-.-. 
• PERFORM .<----------------• TEXT UP- • 
• DATING • • •••••••••••••••• 

... 
H3 •• 

. * *. •• END •• NO 

····.G4 •••••••.• • • • SET POINTER • 
• TO START OF • 
• NEXT BLOCK • • • • •••••••••••••••• 

" 

•• OF •• -----------------•• LOOP •• .. . . .. .. 
!'" 

.··.J3.··· .. ··· 
• TO • • LPSEL-IEKPLS • 
• CHART 10 • ••••••••••••••• 

Section 2: Discussion of Major Components 99 



chart 15. Table Building (FWDPAS-IEKRFP) 

FWDPAS- IEKRFP 

• ••• • • 
• A2 • • • •••• 

! ... 
••••• A2.......... • •••• A3.......... A4 •• 

•••• Al......... • •• • •••• • ••• AS ••••••••• 
• FROM.. •• INITIALIZE. ..PROCESSING •• YES • TO • 
• REGAS-IEKRRG .-------•. >. INITIALIZE .-------->.FOR PROCESSING .-------->.. COMPLETE •• -------->. REGAS-IEKRRG • 
• CHART 14.. •• TEXT BLOCK. •• •• • CHART 14 • ............... . .. . .. ,. . ............. . 

••••••••••••••••• ••••••••••••••••• •• •• A 
• NO 

{, ____________________________________________________________________________ J 
700 ,.. 11 1690 

Bl •• • •••• B2.......... • •••• B3.......... • •••• B4 •••••••••• 
•• IS •• • •• •• • 

•• BLOCK BACK •• YES. •• INITIALIZE.. • 
• TARG. OF INNER •• -------->. UPDATE RUSE .-------->. TRUSE TABLE .-------->. INITIALIZE WJ • 

100 

• , LOOP • • • TABLE • A. •• TABLE • .. .. . . j. .. . .. t:~ ____________ .. _:::::::::::::::::___ ................. . ..... · ·1······ .. . 
. .. 

C2 •• • •••• C3.......... • •••• C4 •••••••••• 
•••• ,. CAN ., • FWDPS1-IEKRFl •• • 

• • YJ;;S •• NEXT BLK OF., .-.-.-.-.-.-.-.-. • GET FIRST • 
... A2 .<--_.-•. LOOP BE PUT •• <--------. BUILD LOCAL .<--------. (NEXT) TEXT • 
.... •• IN TABLES.. .ASSGNMT TABLES. .ENTRY IN BLOCK. 
•••• • • , • • FOR THE BLOCK •• • .. .. ................. . ............... . 

• NO 

-----------.-----------------------------~~~--------~ 16A2 

• •• ··E4.·······.· 
• BKPAS-IEKRBP • . -.-.-.-.-+-.-.-. 
• PERFORM • 
• LOCAL • 
• ASSIGNMENT • 

········1········ 

.•. 
F4 ., ,. ., 

•• END •• YES 
•• OF •• -----------------., LOOP ,. 

*. . * * .. * . 
• NO 

t •••• • • 
• A2 • • • .... 



Chart 16. Local Assignment (BKPAS-IEKRBP) 

BKPAS-IEKRBP , ., 
••••• A2.......... A3 ., ••••• AS •••••••••• 

•••• Al......... • • ,.., • PREVENT • 
• FROM. • GET. ,. EXTERNAL •• YES • LOCAL • 
• FWDPAS-IEKRFP .-------->. BLOCK TO BE .--------> •• CALL IN BLOCK •• ---------------------------------->.ASSIGNMENT FOR • 
• CHART is. • PROCESSED • ., •• • EXTERNAL • 
••••••••••••••• • • .,.. • VARIABLES • 

................. ··r:~~---------.----------------------------::::::::l::::::::---
10 ••• 

••••• Bl.......... BS •• 
• • .• *. 
• GET FIRST • NO •• ALL • , 
• (NEXT) TEXT .<----------------------------------------------------------------------------------. ,TEXT ENTRIES , • 
• ENTRY IN BLOCK. ..PROCESSED •• •• •••• *. .• 

········1········· : C3 : ··l··~ES ·r· 
••• 20,.. • •• 

••••• Cl.......... C2 •• C3 •• C4 •• 
• • •••• •••• •••• • ••• CS •••••••• • 
• INITIALIZE. •• OPERAND 1 •• NO •• OPERAND 2 •• NO •• OPERAND 3 •• NO • TO • 
• FOR TEXT .--------> •• OF INTEREST •• --------> •• OF INTEREST •• --------> •• OF INTEREST •• ----- • FWDPAS-IEKRFP • 
• ENTRY· •• ,. •• •• •• •• • CHART is • 
• • *..* *..* *..* ••••••••••••••• ••••••••••••••••• *. .• *. .• * ..• 

~-----------------------J::-------------------J=-----------.------j YE' 22 . *. . *. 120 
Dl •• D2 •• • •••• D3 •••••••••• ..··.DS •••••••••• 

•• IS •• •• IS •• • RECORD • • • •• OPERAND •• NO •• OPERAND A •• NO • DEFINITION • • ACCOUNT • •• ZERO , .-------->.. TEMPORARY •• -------->. POINT OF • -->. FOR SPECIAL • 
•• • • • • • • • TEMPORARY • • CASES • *. .• *... • • • • .. .. .. .. . ............... . 

• YES • YES 1 l .... l .... • • • • 
•••• •••• v 

99930 ••• ••• • •• 

········1········ 

->: C3 : ->: C3 : 1---.----------1 

••••• El.......... E2 •• E3 •• E4 •• ····.ES ....•..... 
• SET OPl OF • •••• •••• •••• • UPDATE TEXT • 
• SUBSCR. ITEM. YES •• CASE 2.. NO •• PROCESSING •• YES NO •• OPERAND 1 •• • ENTRY WITH • 
• AND CURRENT .<--------.. SUBSCRIPT •• <--------.. OPERAND 1 •• --- j---.. USED IN BLOCK •• • OPERAND TO • •• • • • • • • •• • • 
• ZERO· *... *..* *..* 
········1········ .'!.'~o ..... ··.·~ES 

:.:;.: 34 ••• 37 r------------

• REGISTER AND .--
• STATUS • 
• INFORMATION • ••••••••••••••••• 

100 

• • F2 •• • •••• F3 •••••••••• 
•••• •••• • PREVENT • 

•• DEFINI- •• NO • LOCAL • 
•• TION POINT IN •• -------->.ASSIGNMENT FOR. 

•• BLOCK • • • TEMPORARY • 
*..* • • •• •• • •••••••••••••••• 

1
· YES l .... 

->: C3 : • • •••• 40 ••• 
••••• G2.......... G4 •• • •••• GS •••••••••• 
• FLAG DEFINITION. ••••• IEKRPl • 
• POINT FOR TEMP.. ..PROCESSING •• YES .-.-.-.-.~.-.-.-. 
• USED .-------------------------------->.. OPERAND 1 •• -------->. ASSIGN • 
• IN BLOCK • •• •• • REGISTER TO • 
•• ••••• OPERAND • ••••••••••••••••• •• •• • •••••••••••••••• .. ____________________________________________________________________________ i NO l->::~::l 

••• 130 300 ••• 
Hi •• • •••• H2.......... H3 •• • •••• H4.......... • •••• HS •••••••••• 

• • •• • • • • OPl •• • TRY TO ASSIGN •• • 
•• PREVIOUS •• YES • RECORD. •• ASSIGNED •• YES • TO CURRENT. • RECORD • 

•• ASSIGNMENT IN •• -------->. REGISTER. --> •• FIXED-POINT •• -------->.OPRND THE SAME .-------->. ASSIGNMENT • 
• , EFFECT •• • ASSIGNMENT • ..REGISTER •• • REG. AS. • INFORMATION • 
•••• • • •••• • OPERAND 1.. • •• •• ••••••••••••••••• •• •• ••••••••••••••••• • •••••••••••••••• 

·NO l ·NO I 

1 ->:.:;.: 1 ~ 
• • •••• .... . . 

• •• 320 3S1 • C3 • 
Jl •• • •••• J3.......... • •••• J4.......... • • 

•• •• • SEARCH·· • •••• • ••• 
•• FLOATING •• NO • FOR AVAILABLE • • RECORD • • • 

•• POINT •• ------------------------------- • REG. FREE ONE .-------->. ASSIGNMENT .---->. C3 • 
•• MADE •• • IF NECESSARY • • INFORMATION. • • .. .. .... . ... .. ,. ................. . ............... . 

• YES 

l-------------------------v 
140 ••• 130 

••••• Kl.......... K2 •• • •••• K3.......... • •••• K4 •••••••••• 
• SEARCH. •• WAS •• • TRY TO.. • • ••• 
• FOR AVAILABLE • NO •• OPERAND 1 •• YES • ASSIGN TO. • RECORD • • • 
• REG. FREE ONE .<--------.. ASSIGNED A •• -------->. CURRENT OPRND .-------->. ASSIGNMENT .---->. C3 • 
• IF NECESSARY • •• REG... • THE SAME REG.. A • INFORMATION. • • 
• • ••• • • AS OPERAND 1 • j. . .... ........ [:::::::---------------:~:~:---------------:::::::::::::::::--- ................ . 

Section 2: Discussion of Major Components 101 



Chart 17. Global Assignment (GLOBAS-IEKRGB) 

GLOBAS- IEKRGB 8000 500 
••••• A2.......... • •••• A3.......... • •••• A4.......... • •••• A5 •••••••••• 

•••• Al......... • •• • .COMPUTE NUMBER.. • 
• FROM.. •• COMPUTE. • OF OPERANDS • • CALCULATE • 
• REGAS-IEKRRG .-------.->. INITIALIZE .-------->. REGISTER .-------->. THAT ARE .-------->. BASE REGISTER. 
• CHART 14.. •• AVAILABILITY • .CANDIDATES FOR • • ACTIVITY • 
••••••••••••••• • •• •• ASSIGNMENT·· • ••••••••••••••••• ••••••••••••••••• ••••••••••••••••• • •••••••••••••••• 

r--------------;~~-----~~--------------~~-------------____________________________________________ J 
••••• Bl.......... B2 •• • •••• B3 •••••••••• 
• PREVENT GLOBAL. •• IS •• • DOWNGRADE ALL. 
• ASSIGNMENT TO • • • THIS AN •• YES .VARIABLES THAT • 
• BUSY-ON-EXIT, .-------.->.. OUTERMOST •• -------->. ARE STORED IN • 
• STORED. •• LOOP.. .THIS OUTERMOST. 
• VARIABLES • • • • • • LOOP • ·········:::::::: _____________ :~l·~o ········1········ 

·····El· •••••••• • • 
• UPDATE TEXT • 
... TO REFLECT • 
• ASSIGNMENT • · . ................. 

A 

10 ••• 27 ••• 
c2 •• C3 •• 48 

•• ANY •• •• ANY.. • ••• C4 ••••••••• 
•• FLOATING PT •• NO •• FIXED PTS •• NO • TO • 

.REGS AND ELIGI-.-------->.. REGS AND •• -------->. REGAS-IEKRRG • 
•• BLE VARS •• A •• ELIGIBLE •• • CHART 14 • 

•• •• •• VARS •• • •••••••••••••• 
•• •• •• •• A 

11 i YES I YES 

••••• D2.......... • •••• D3 •••••••••• 
• •• SEARCH-IEKRS • 
• SEARCH FOR. .-.-.-.-.-.-.-.- • 
• CANDIDATE WITH • • GET CANDIDATE • 
.. HIGHEST. • FOR BXH OR • 
• ACTIVITY. • BXLE INST. • 

········1········· ;:~~:;::l········· 
.... 

••• 11 
E2 •• • •••• E3 •••••••••• 

. * *. • • 
•• VARIABLE •• NO • SEARCH FOR • 

... OR CONSTANT •• ----> .CANDIDATE WITH • 
•• FOUND •• • HIGHEST • 
•••• • ACTIVITY • .. .. . ............... . 

18 rES 
·····F2 •••••••••• · ... • SEARCH FOR 
• AVAILABLE 
'" REGISTER · . ................. 

1 
••• 34 ••• 46 

••••• Gl. •••••••• G2 •• G3 •• • •••• G4 ••••••••• 
* • .* *. .* *. • • 
* • YES •• *. NO .* •• NO "'IF BXH OR BXLE,. 
*ASSIGN REGISTER"'<--------*. REGISTER • *----- "'. FOUND • *-------->* DO FINAL .<----------------, 
• • •• FOUND •• •• •• • PROCESSING • * • *... *.. * • • 

........ :::::::: _____________ :~:~ _________________ :J.;.S ................ . 
V NO 

••• ,., 35 •• , 
Hi *. H2 ., ••••• H3.......... H4 •• H5 ., 

•• REG, •• •• IS •• • TRY TO • •••• •• * . 
•• ASSIGNED ., NO • • ITEM ., YES • ASSIGN THE 3 • • • •• YES • • MORE ., 

•• TO ITEM IN ,.------.--> •• INCREMENT FOR, .-------->.REGS NECESSARY .--------> •• ASSIGNMENT •• --------> •• CANDIDATES •• 

102 

• , INNER ,. •• BXLE, BXH ,. .FOR BXLE OR BXH. •• SUCCESS- ,. A., , • 
•• LOOP •• •••• • • ., FUL •• ." • *. .• *. .• ••••••••••••••••• * .. * * ..• [: ___________________ I~ _______________________________ ------:;----->1 NO :.!;::S 

..... J4.......... . . · . . ... 
• ASSIGN VARIABLE • 
• OR CONSTANT TO • 
• REGISTER • · . ................. 

1 
·····K4 •••••••••• · . • UPDATE TEXT • 
• TO REFLECT .-----
• ASSIGNMENT • · . ................. 



Chart 18. Text Updating (STXTR-IEKRSX) 

STXTR-IEKRSX 
····A2 ••••••••• 

• FROM • 
• REGAS-IEKRRG • 
• CHART 14 • .. · .. ·1· .. · .. 
·····B2·· •• •••••• • • 
• INITIALIZE • 
• GET FIRST TEXT • 
• ENTRY • • • 

----------------:::=::1········ 
10 ,., 

C2 ., 
,.., ····C3 ••••••••• 

,. ., YES • TO • 
• , END OF BLOCK ,.-------->. REGAS-IEKRRG • 

• , ,. • CHART 14 • . , ,. . ............. . 
* ..• 

30 r 
·····D2·· ••• •• •• • 
• GET ANY • 
• COMPLETED • 
• ASSIGNMENTS FOR. 
• TEXT ENTRY • • • 

21 3:·······1········ 

••••• E1. •••••••• • •••• E2 •••••••••• 
• •• • • GET • .INITIALIZE FOR • 
• NEXT TEXT ENTRY. • PROCESSING • 
• •• ACCORDING TO • 
• •• OPERATOR • ••••••••••••••••• • •••••••••••••••• 

530 ..... F1.1........ 13~:!::::~!~:~-------------:::::::=:::::::-------------------------------:::::::1... ..... 
• • ,. IS ., •• •• 
• STORE. , • OPRND 2 ., YES.. • UPDATE TEXT • 
• RESULTS INTO • ., TO BE PROC- ,.-------->.INITIALIZE FOR .----- .TO SHOW GLOBAL. 
• TEXT. ., ESSED ,. • OPERAND 2 • • ASSIGNMENT • * * *... •• •• ................. ., ,. ................. . ............... . 

Aj .i.NO .'. .f.YES 
••••• Gl. •••••••• G2 ., ••••• G3.......... 220 G4 ., G5 ., 
• • ,. IS ., • • ,. IS ., ,. op, ., 
• SAVE INFO,. ,. OPRND 3 ., YES. • ,. OPERAND A ., NO ,. GLOBALLY., 
• RELATING TO • ., TO BE PROC- ,.-------->.INITIALIZE FOR .-------->., TEMPORARY ,.-------->., ASSIGNED , • 
• NEXT TEXT ENTRY. ., ESSED ,. • OPERAND 3. A., ,. ., ,. · . .". . . ., ,. .". ................. ., ,. ................. ., ,. ., ,. 

Aj 1· NO •• 1.:ES .. 1.:0 
.19 • .19 • 

,., • B3. • B3 • 
••••• Hl. •••••••• H2 ., ••••• H3.......... • • • • 
'" PERFORM FINAL. ,. IS ., • '" • '" 
.PROCESSING FOR. NO ,. OPRND 1 ., YES. • 
• SPECIAL .<--------., TO BE PROC- ,.-------->.INITIALIZE FOR .-----
• CASES. ., ESSED ,. • OPERAND 1 • · . .". . . ................. ., ,. . ......•......... 

• 

Section 2: Discussion of Major Components 103 



Chart 19. Text Updating (STXTR-IEKRSX) (Continued) 

..... 
·19 • 
• B3· •• . 
! 

300 ••• 
B3 •• 

•• WHICH •• 

r--------------------------------------~·::~~~i::!~~::·"-----------------------------------1 

••• 310 ••• 330 ••• 
Cl ., C3 ., C5 ., 

•• WAS •• ,. WAS ., •• WAS ., 
•• OPRND 2 •• YES •• OPRND 1 •• NO YES.* OPRND 3 •• 

• , ASSIGNED BY • ·---1 .. ASSIGNED BY •• -----------------, J--.' ASSIGNED BY , • • , BKPAS •• ., BKPAS ,. •• BKPAS ,. 
*. .• *. .• *. . * *. .• *. .• *: ••• 

1
· NO :ii:: 1· YES :ii:: 1· NO . . . . 

• • 
. *. . *. . *. 01 ., ••••• 02.......... 03 ., D5 •• 

•• IS •• • USE. ,. MUST ., •• IS ., 
•• OPRND = •• YES • SAME REG. AS • • .OPRNO 1 BE •• NO NO ,'" OPRNO = ., 

•• OPRND 1 OF • ·-------->·OPl OF PREVIOUS· ., STOREO • ·---1 r--·' OPRNO 1 OF , • ., PREVIOUS ,. • TEXT ENTRY • • , , • ., PREVIOUS ,* 
.,ENTRY,. • • ., ,. .,ENTRY,. 

*. .• ••••••••••••••••• *. .• * ..• 
• NO 1 1· YES :ij;: :.;~.: 1· YES 

• • • • • • ••• 
,., 10330 10350 ,., 

E2 ., ••••• E3.......... E4 ., ••••• E5 •••••••••• 
,.., • • ,. MUST •• • USE • 

YES ,. •• • SET STATUS. YES ,. OPRNO 1 ., • SAME REG. AS • <-------.---------.. REG, 0 •• • TO GENERATE .<--------.. BE STORED ,. .OPl OF PREVIOUS • 
• , ,. • STORE. •• ,. • TEXT ENTRY • 
*..* • • *... • • 

•••••• ··i'~O ········1········· ··1·'~o ········1········· 
• Fl .-> ~ · ..... ,.. :!i:: .. , 10370 90330 , •• 

325 Fl.. • • F3 ., ••••• F4.......... F5 •• 
•• IS ., • ,. IS ., • • ..., 

, • BASE ., YES • • OPERAND ., NO • SET STATUS. NO ,. ., 
•• REGISTER OK '·---1 ., A TEMPORARY •• --- • TO PREVENT· J--.' REG. 0 , • • , ,. ., ,. • STORE· ., ,. 

*. .• *. .• • • *.. * *. .• *. .• ••••••••••••••••• * ..• 

1
· NO :~i;: 1· YES ! :.;~.: 1 YES 

• ••••• •••• • •••• • 18 • .18 • 
,., • F2. • F2. 

10325 Gl ., ••••• G2.......... • •••• G3.......... • • • • 
,. IS •• • RECOR-IEKRRL •• • • • 

,. OPRNO •• YES .-.-.-.-.-.-.-.-. • ALLOCATE • 
•• A TEMPORARY • "'-------->. FREE STORAGE • • STORAGE FOR • 

• , , • • FOR TEMPORARY • • TEMPORARY • 

104 

•• , • • IF POSSIBLE •• • 

. oe------------:=::c::::------
360

::::::::F:::::--
•• •• ·H3 ••• ••••••• · . • FINO BASE • 
• REG, FOR • 
• OPERANO • • • 
········1········ 

·····J3·········· • RECORD • 
• BASE INFO, • 
• FOR • 
• APPROPRIATE • 
• OPERANO • 

········1········ 
..... 
• 18 • 
• F2· .. 

• 



Table 11. criteria for Text Optimization 
r------------------T----------------------T----------------------T----------------------, 
, Process' Basic , Primary , Secondary , 
r------------------+----------------------+------.----------------+----------------------~ 
,common ,Subscript, arithmetic, I Matching operand 2, IMatching operand 2, I 
, Expression I logical, or loperand 3, and loperand 3, and , 
I Elimination Ibinary operator I operator loperator with I 
, I I I no intervening I 
I I , ,redefinitions I 
~------------------+----------------------+----------------------+----------------------~ 
, Backward IArithmetic or logical 'Operand 2 and IOperand 1 not busy I 
, Movement I operator loperand 3 undefined Ion exit from target; I 
, I lin the loop loperand 1 undefined , 
, I I I elsewhere in the loop , 
~------------------+----------------------+------.----------------+----------------------~ 
, St.rength IAdditive operator; I Interaction of inert 'Function of absolute I 
I Reduction linert variable Ivariable with additivelconstants or stored I 
I I lor mul tiplicati ve I constants I 
I I I operator I I L _________________ ~ ______________________ ~ ______________________ ~ ______________________ J 

section 2: Discussion of Major Components 105 



Table 12. Phase 20 Subroutine Directory (Part 1 of 2) 
r---------------T--------------------------------------------------------T-------------, 
/Subroutine I Function I Type I 
~---------------f--------------------------------------------------------f-------------~ 
/BACMOV-IEKQBM Controls backward movement, produces new inert text Text I 
I entries for strength reduction, builds type tables for optimization I 
/ strength reduction, and performs compile-time mode I 
I conversions. I 
I I 
IBAKT-IEKPB Computes the loop number of each module block. structural / 
I determination I 
I I 
IBIZX-IEKPZ Computes the proper MVX setting for each variable in structural I 
I each block of the module. determination 
I 
BKDMP-IEKRBK 

BKPAS-IEKRBP 

BLS-IEKSBS 

CXlMAG-IEKRCI 

FCLT50-IEKRFL 
(TNSFM-IEKRTF)* 
(RELCOR-IEKRRL)* 

FREE-IEKRFR 

FWDPAS-IEKRFP 

FWDPS1-IEKRF1 

GLOBAS-IEKRGB 

IEKPBL 

LOC-IEKRL1 

LPSEL-IEKPLS 

Produces TRACE for full register assignment. 

Controls local register assignment. 

Register 
assignment 

Register 
assignment 

Computes the total size of each block in the module and Branching 
determines which module blocks can be reached via optimization 
RX-format branch instructions. 

Processes imaginary parts of complex functions during 
local register assignment. 

Performs special checks on text items whose function 
codes are less than 50. 

Secondary entry point TNSFM-IEKRTF performs special 
checks on text items whose function codes are in the 
range of 50 to 55 inclusive. 

Secondary entry point RELCOR-IEKRRL releases temporary 
main storage so it can be reused. 

Releases busy registers during overflow conditions 
(local assignment). 

Table-building routine for full register assignment. 

Determines whether or not text operands are register 
candidates prior to local register assignment. 

Assigns most active variables to registers across the 
loop. 

BLOCK DATA subroutine for register assignment. 

COMMON data area for structural determination. 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Structural 
determination 

Controls sequencing of loops and passes control to text Control 
optimization and register assignment routines routine 

REDUCE-IEKQSR Controls strength reduction. Text 
optimization 

~----------------~--------------------------------------------------------~-------------~ 
I*secondary entry point I L _______________________________________________________________________________________ J 

106 



Table 12. Phase 20 Subroutine Directory (Part 2 of 2) 
r---------------T--------------------------------------------------------T-------------, 
I Subroutine I Function I Type I 
~----------------+--------------------------------------------------------+-------------~ 
REGAS-IEKRRG Controls full register assignment. Register 

SEARCH-IEKRS 

SPLRA-IEKRSL 

SSTAT-IEKRSS 

STXTR-IEKRSX 

TALL-IEKRLL 

TARGET-IEKPT 

TOPO-IEKPO 

Provides register loads upon entering the module. 

Assigns registers during basic register assignment. 

assignment 

Register 
assignment 

Register 
assignment 

Sets status information for operands and base addresses Register 
of text entries. optimization 

Controls text updating. Register 
assignment 

Assigns storage for temporaries. Register 
assignment 

Identifies the members of a loop and its back target. Text 
optimization 

Computes the immediate back dominator of each block in Structural 
the module. determination 

XPELIM-IEKQXM I Controls common expression elimination. Text 
I optimization 

~----------------~-------------------------------.-------------------------~-------------~ 
I*secondary entry point I L _______________________________________________________________________________________ J 

Section 2: Discussion of Major Components 107 



• Table 13. Phase 20 Utility Subroutines 
r---------------T----------------------------------------------------------------------, 
I Subroutine I Function I 
~---------------t----------------------------------------------------------------------~ 
CIRCLE-IEKQCL 
(FOLLOW-IEKQF). Examines composite vectors, or each local vector if necessary. 

CLASIF-IEKQCF Classifies operands of the current text entry, changes parameter list 
(PARFIX-IEKQPX). to correspond to text replacements, and adjusts text entry for 
(MODFIX-IEKQMF). possible mode change. 

GETDIK-IEKPGK 
(FILTEX-IEKPFT). 
(GETDIC-IEKPGC). 
(INVERT-IEKPIV). 
(OVFL-IEKPOV)· 

IEKARW 

IEKPOP 

KORAN-IEKQKO 
(LORAN-IEKQLO)* 

Fills text space according to the arguments, gets space for tem
poraries, gets space for constants, and obtains previous text entry. 

Calls FIOCS# to rewind the required data set. 

Common data area for phase 20. 

Performs bit manipulation for text optimization, updates composite 
LMVS and LMVF matrixes. 

MOVTEX-IEKQMT Moves text entries, deletes current text entry by"rechaining, and 
(DELTEX-IEKQDT)* updates MVS and MVF vectors. 

PERFOR-IEKQPF Performs combination of constants at compile time. 

SRPRIZ-IEKQAA Records structured source program listing on the SYSPRINT data set. 
( -IEKQAB)* 

SUBSUM-IEKQSM Replaces operands with equivalent values and, if possible, operand 
values with equivalent values. 

TYPLOC-IEKQTL Locates interaction of text entries for strength reduction. 

WRITEX-IEKQWT Prints diagnostic trace information when text optimization and TRACE 
option are specified. 

IXSCAN-IEKQXS 
I (YSCAN-IEKQYS) * 
I (ZSCAN-IEKQZS) * 

Performs local block scan for backward movement, for common expression 
elimination, and for strength reduction. 

~----------------~----------------------------------------------------------------------~ 
I*Secondary entry point I L _______________________________________________________________________________________ J 

108 



Chart 20. Phase 25 Processing 

IEKTA ... 
A2 •• • •••• A3 •••••••••• 

·.··Al......... •••• • • 
• FROM FSD. • • ANY •• YES • ASSIGN BASE • 
• CHART 01 .-------->..' B' BLOCK •• -------->. AND DISP. • 
• • •• LABELS •• • TO 'B' BLOCK • 
••••••••••••••• ••• • • LABEL AD CONS • 

:'::':--1 ··1·~~:-------------~:::::j········ 
•••• v ... . .. 

Bl •• B2 •• • •••• B3 •••••••••• .... .... . . 
.• LAST •• NO • • ANY •• YES • ASSIGN BASE • 

•• TEXT •• -----1.. BRANCH •• -------->. AND DISP. • • • ENTRY • • •• TABLES • • • TO BRANCH • 
•••• •••• • TABLES • 

··1··;ES ---------:~I~~:--------------::::::::j········ 
• • ••• c2 •• ••• ••• •• •••• cl ••••• • •• * • • 

• TO FSD. • GET FIRST • 
• CHART 01. • (NEXT) TEXT • 
• •• ENTRY • •••••••••••••••• • ••••••••••••••••• 

1 ... 
D2 •• • •••• D3 •••••••••• 

•• RETURN •• • TENTXT-IEKVTN • 

NOTE: SUBROUTINE 
MAINGN-IEKTA 
CONTROLS TEXT 
CONVERSION 

• :. I/~TM¥~D, .: .:~~----->:-;E;M·E~T·T;P~-!<---------.----------------__ > 
•• NO... .PRODUCE LBL MAP. 
•.••• .IF END OF TEXT • .. .. . ............... . 

1
· NO l ... . 

->! Bl ! • • •••• 
•• ••• E2 •••••••••• • • 
• SET UP • 
• REGISTER • 
• ARRAY • • • 
········1········ 

•• ••• F2 •• •••••••• • • 
• SELECT • 
• BIT • 
• STRIP • • • ••••••••••••••••• 

1 
••••• G2 •• ••• ••• •• • • • MODIFY STRIP • 
• FOR BASE • 
• LOADS AND • 
• STORES • 

········1········ 

... 
H2 .,. • •••• H3 •••••••••• 

•••• • FNCALL-IEKVFN • 
•• •• YES .-.-.-.-.-.-.-.-. 

•• CALL •• -------->. GENERATE • 
• ,. •• • CALLING • 

•.•. .•.• ! ••• ~~2~~~~~ •••• ! 

1
· NO l .... 

->! Bl ! 
• • •••• .. . 

J2 •• • •••• J3 •••••••••• 
•••• • SUBGEN-IEVSU • 

•• I/O •• YES .-.-.-.-.-.-.-.-. 
•• LIST •• -------->. GENERATE • 

•• ITEM • • • TEXT FOR • 
•••• • LIST ITEM • .. .. . ............... . 

1
· NO l ... . 

->! Bl : • • •••• 
• • ••• K2 •••• • •• ••• • • •• PERFORMED BY APPROPRIATE 
.-.-.-.-.-.-.-.-. CODE GENERATION SUBROUTINE 
• GENERATE • 
• INSTRUCTIONS • 
• FROM SKELETON • ••••••••••••••••• 

l .... 
• • ->. Bl • • • •••• 

· .... B5···· .. ···· • RETURN-IEKTRN • .-.-.-.-.-.-.-.-. <--->. GENERATE • 
• BRANCH TO • 
• EPILOGUE • ••••••••••••••••• 

..... C5.···.···· . 
• IOSUB-IEKTIS • . -.-.-.-.-.-.-.-. <--->.GENERATE BRANCH. 
• TO IHCFCOMH • • • • •••••••••••••••• 

• •••• D5 •• •••••••• • LABEL-IEKTLB • .-.-.-.-.-.-.-.-. <-->. ENTER LOC. • 
• CTR. IN • 
• LABEL ENTRY • ••••••••••••••••• 

21A2 
· .. ··E5.········· • END-IEKUEN • .-.-.-.-.-.-.-.-. 

<--->. COMPLETE • 
• PROCESSING • 
• OF MODULE • • •••••••••••••••• 

·····F5····.····· ·IEKGMP • .-.-.-.-.-.-.-.-. <--->. PRODUCE • 
• STORAGE • 
• MAP • • •••••••••••••••• 

Section 2: Discussion of Major Components 109 



Chart 21. Subroutine END-IEKUEN 

••••• A2.......... • •••• A3 •••••••••• 
•••• Al......... • ENTRY-IEKTEN • • EPILOG-IEKTEP • 

• FROM· .-.-.-.-.-.-.-.-. .-.-.-.-.-.-.-.-. 
• MAINGN-IEKTA .--·------>.DETERMINE TYPE .<------.--. GENERATE • 
• CHART 20. • OF PROLOGUE • II • EPILOGUE • 
••••••••••••••• .EPILOGUE TO GEN.. • 

110 

········1········ ········1········ 

••••• B2.......... • •••• B3 •••••••••• 
• OUTPUT ADCONS • • PROLOG-IEKTPR • 
• :!;,OR PROLOGUE, • .-.-.-.-.-.-.-.-. 
• SAVE AREA, • ---.--. GENERATE • 
• EPILOGUE. • PROLOGUE • · .. . ................. . ............... . 

1 ... 
C2 •• • •••• C3 •••••••••• .... . . 

• .~ ANY •• YES • OUTPUT ADCONS • 
• • BRANCH •• -------->. FOR BRANCH *. TABLES •• • TABLES .. .. . . 

··I~~:---------:::::]········ ... 
D2 •• • •••• D3 •••••••••• .... . . 

· * ANY • • YES • OUTPUT ADCONS • 
•• PARAMETER •• -------->. FOR PARAMETER • *. LISTS • • • LISTS • .... . . 

··I~~----------:::::]········ ... 
E2 •• • •••• E3 •••••••••• .... . . . * •. YES • OUTPUT • 

*.ANY P20 TEMP ••• -------->. P20 TEMP. • .. .. . . .... . . 
··I~~:----------~::::J········ ... 

F2 •• • •••• F3 •••••••••• ,.... . . 
• >I< ANY •• YES • OUTPU'I • 

•• I E' BLOCK •• -------->.ADCONS FOR 'B' • 
>1<. LA EELS •• • BLOCK LABELS • .. .. . . 

··I~~:-------------:::::]········ 
·····G2·········· · . • OUTPUT END • 
• CARD FOR OBJ. • 
• MODULE • · . •• * •••••••••••••• 

1 
····H2········· 

• TO • 
• MAINGN-IEKTA • 
• CHART 20 .. ................ 



Table 14. Phase 25 Subroutine Directory (Part 1 of 2) 
r---------------T----------------------------------------------------------------------, I Subroutine I Function I 
~----------------+----------------------------------------------------------------------~ 
ADMDGN-IEKVAD~ Generates instructions for the AMOD, DMOD, ABS, lABS, DABS, AND, OR, 

BITNFP-IEKVFP~ 

BRLGL-IEKVBL~ 

CGEN-IEKWCN 

END-IEKUEN 

ENTRY-IEKTEN 

EPILOG-IEKTEP 

FAZ25-IEKP25 

FNCALL-IEKVFN 

GOTOKK-IEKWKK 

IOSUB-IEKTIS/ 
IOSUB2-IEKTIO 

LABEL-IEKTLB 

LISTER-IEKTLS 

MAINGN-IEKTAI 
MAINGN2-IEKVM2 

PACKER-IEKTPK 

PLSGEN-IEKVPL~ 

PROLOG-IEKTPR 

RETURN-IEKTRN 

COMPL, LCOMPL, and DBLE in-line functions. 

Generates instructions for the following text entries: BITON, 
BITOFF, BITFLP, TBIT, MOD24, SHFTR, and SHFTL in-line functions. 

Generates instructions for the following text entries: Operator is 
a relational operator operating upon two operands or upon one 
operand and zero, assigned GO TO operators, computed GO TO 
operators, unconditional branching, branch true and branch false 
operations, and ASSIGN statement. 

Common data area in which the arrays used during code generation are 
initialized. 

Performs final processing of the object module. 

Calls routines PROLOG-IEKTPR and EPILOG-IEKTEP to generate prologues 
and epilogues for subroutines and secondary entry points. Generates 
prologues and epilogues for the main program. 

Generates the epilogues associated with a subprogram and its 
secondary entry points (if any). 

Common data area used by phase 25. 

Generates calling sequences for CALL statements (other than those to 
IHCFCOMH) and function references. Generates the instructions to 
store the result returned by a function subprogram. 

Used by subroutine MAINGN-IEKTA to branch to the code generation 
subroutines. 

Generates calling sequences for calls to IHCFCOMH. 

Processes statement numbers by entering the current value of the 
location counter into the statement number entry in the dictionary. 

Produces a listing of the final compiler-generated instructions. 

Assign base and displacement for 'B' block label adcons and branch 
tables. Control the text conversion process of phase 25. 

Packs the various parts of each instruction produced during code 
generation into a TXT record. 

Generates the instructions for the following text entries: real 
multiplication and division operations, addition and subtraction 
operations, half- and full-word integer multiplication. half- and 
full-word integer division, and MOD in-line function. 

Generates prologues for subroutines and secondary entry pOints (if 
any) • 

Processes the RETURN statement by generating a branch to the 
epilogue. 

STOPPR-IEKTSR Generates character strings in calls to IHCFCOMH for STOP and PAUSE 
I statements. 
~----------------~----------------------------------------------------------------------1 
I~Code generation subroutines. I L _______________________________________________________________________________________ J 

Section 2: Discussion of Major Components 111 



Table 14. Phase 25 Subroutine Directory (Part 2 of 2) 
r----------------T----------------------------------------------------------------------, 
I Subroutine! Function I 
r---------------t----------------------------------------------------------------------~ 

SUBGEN-IEKVSU1 Generates instructions for the following text entries: subscript 

TENTXT-IEKVTN 

TSTSET-IEKVTS1 

UNRGEN-IEKVUN1 

operations, right and left shift operations, store operations, and 
list item operations. 

Controls the processing of END, RETURN, and input/output statements, 
statement numbers, and end of I/O list indicators. Produces label 
map. 

Generates the instructions to (1) compare two operands across a 
relational operator, and (2) set operand 1 to either true or false 
depending upon the outcome of the comparison. Generates the 
following in-line functions: FLOAT, DFLOAT, INT, IDINT, IFIX, HF1X, 
DIM, 1D1M, SIGN, 1S1GN, DS1GN, MAX 2 , and M1N2. 

Generates the instructions for the following text entries: unary 
minus operations (e.g., A=-B), logical NOT operations, load byte 
operations, load address operations, AND, OR, and XOR operations. 

IEKGMP Produces a storage map. 
~----------------~-----------------------------------------------------------------------~ 
I 1Code generation subroutines. I L _______________________________________________________________________________________ J 

Table 15. Phase 30 Subroutine Directory 
r----------T----------------------------------------------------------------------------, 
I Subroutine I Function I 
r---------+----------------------------------------------------------------------------~ 
I IEKP30 I Controls phase 30 processing. I 
I I I 
I MSGWRT- I Writes the error messages using the FSD. I 
I IEKP31 I I L __________ ~. ____________________________________________________________________________ J 

112 



chart 22. Phase 30 (IEKP30) Overall Logic 

IEKP30 

****A3********* 
* FROM * 
* FSD * 
* CHART 01 * ....... 1" ..... 

*****B3********** 
* * * * * INITIALIZE * 
* * * * 
········1········ 

*****C3********** 
*OBTAIN MAXIMUM * 
* ENTRIES AND * 
*ACTUAL ENTRIES * 
* ~'ROM COMMON * 
* * 
········1········ 

. *. 

SEE TABLE 15 
FOR A BRIEF 

DESCRIPTION OF 
EACH SUBROUTINE 

OF PHASE 30 • 

D3 *. *****D4****"'***** 
.*ACTUAL *. * SET UP ERROR * 

.*NO. GREATER*. YES * MESSAGE * 
*. THAN THAT • *-------->'" AND *----------------

*. ALLOWED .* * LENGTH '" 
*. . * • * 

* •• * ***************** 

: *::* :->1* NO 

* * **** 
LDERCOM 

*****E3********** 
* * * OBTAIN FIRST * 
* (NEXT) ERROR * 
* TABLE ENTRY * 
* * 
********1********* : *;;* L> 

* * **** 
.*. STRESS1 OFFSET 

F3 *. *****F4********** **"''''*F5********** 
.*MESSAGE*. * SET UP * * MSGWRT-IEKP31 * 

• * NUMBER *. NO * ADDRESS * *-*-*-*-*-*-*-*-* 
*.LlT 1000 AND .*-------->* FOR ERROR *-------->* WRITE * 

*. G/T 0 .* * MESSAGE * * ERROR * 
*. • * * * * MESSAGE * 

*·1";" ••••••••••••••••• ········1········ 

. *. 
*****G3********** G5 *. 
* OBTAIN * • * LAST *. 
* ERROR LEVEL * NO • * ERROR * • 
* CODE FROM * r--*. TABLE • * 
* GRAVERR * *. ENTRY • * 
* TABLE * *. • * 

········1········ 1::::: ··l*·~ES 

.*. OUT 
H3 *. *****H4********** *****H5********** 

• * ERROR *. * SAVE * * PASS SAVED * 
.*LEVEL CODE *. YES * ERROR * * ERROR * 

*. G/T PREVIOUS • *-------->* LEVEL * * LEVEL * 
*. ONES .* * CODE * * CODE * 
*..* • • * • 

HASH ··I~~:--------------::::::::i········ ········1****"'**** 

*****J3********** 
* GET * ****J5**"''''***** 
* ASSOCIATED * * TO '" 
* MESSAGE * * FSD * 
* POINTER TABLE * * CHART 01 '" 
* ENTRY * "'******"''''****** .... · .. T .. · .... 
"''''***K3**'''***''''''*''' 
* * '" BUILD * 
'" PARAMETER "'---l * LIST *. 

:"'************"'''': 
*"'** 

'" * '" F5 * 
* * "'**'" 

section 2: Discussion of Major Components 113 





This appendix contains text and figures 
that describe and illustrate the major 
tables used and/or generated by the FORTRAN 
System Director and the compiler phases. 
The tables are discussed in the order in 
which they are generated or first used. In 
addition, table modifications resulting 
from the compilation process are explained, 
where appropriate, after the initial 
formats of the tables have been explained. 

COMMUNICATION TABLE (NPTR) 

The communication table (referred to as 
the NPTR table in the program listing), as 
a portion of the FORTRAN System Director, 
resides in main storage throughout the 
compilation. It is a central gathering 
area used to communicate necessary 
information among the various phases of the 
compiler. 

various fields in the communication 
table are examined by the phases of the 
compiler. The status of these fields 
determines: 

• Options specified by the source 
programmer. 

• Specific action to be taken by a phase. 

If the field in question is null, the 
option has not been specified or the action 
is not to be taken. If the field is not 
null, the option has been specified or the 
action is to be taken. Table 16 
illustrates the organization of the 
communication table. 

CLASSIFICATION TABLES 

Classifying, a function of the 
preparatory subroutine (GETCD-IEKCGC) of 
phase 10, involves the assignment of a code 
to each type of source statement. This 

APPENDIX A: TABLES 

code indicates to the DSPTCH-IEKCDP 
subroutine which subroutine (either keyword 
or arithmetic) is to continue the 
processing of that source statement. The 
following paragraph describes the 
processing that occurs during classifying. 
The tables used in the classifying process 
are the keyword pointer (IPTR) and the 
keyword table (ITBLE), which exist in 
GETCD-IEKCGC. They are illustrated in 
Tables 17 and 18, respectively. 

'rhe source statement might be classified 
during source statement packing if the 
statement classification is one of those 
listed in Table 19. For example, an 
arithmetic statement would be assigned the 
code 56 (see note). Otherwise, the 
classifying process determines the type of 
the source statement by comparing the first 
character of the packed source statement 
with each character in the keyword pointer 
table. If that first character corresponds 
to the initial character of any keyword, 
the keyword pointer table is then used to 
obtain a pointer to a location in the 
keyword table. This location is the first 
entry in the keyword table for the group of 
keywords beginning with the matched 
character. All characters of the source 
statement, up to the first delimiter, are 
then compared with that group of 
keywords.If a match results, the 
classification code associated with the 
matched entry is assigned to the source 
statement. If a match does not result, or 
if the first character of the source 
statement does not correspond to the first 
character of any of the keywords, the 
source statement is classified as an 
invalid statement. 

Not~: The packing process, which precedes 
classifying, marks a source statement as 
arithmetic if, in that statement, an equal 
sign that is not bounded by parentheses is 
encountered. If the source statement has 
been marked as arithmetic, it is classified 
accordingly by the classification process. 

Appendix A: Tables 115 



• Table 16. Communication Table [NPTR(2,36)] (Part 1 of 2) 

r------------------------------------------T-----------------------------------------, 
\ 1 (4 bytes) \ 2 (4 bytes) \ 

r--+--------·----------------------------------+-----------------------------------------i 
\ l\Relative location of temporary for \Pointer to l-character symbol chain I 
I I FLOAT/FIX (COHAL, phase 25) I I 
~--+--------.----------------------------------+-----------------------------------------i 
\ 2\Previous classification code (phase 10); IPointer to 2-character symbol chain I 
I \register currently assigned (phase 20, I I 
I IOPT=O only) I I 
~--+------------------------------------------+-----------------------------------------~ 
I 3\Options: DUMP, XL, XREF, ID, EDIT, MAP, IPointer to 3-character symbol chain I 
I I LOAD, DECK, LIST, BCD, SOURCE I I 
~-+------------------------------------------+-----------------------------------------~ 
I 41Pointer to most recently generated IPointer to 4-character symbol chain I 
I I EQUIVALENCE g:r"OUP entry (phase 10); I I 
I Irelative location of first temporary I I 
I I (CORAL, phase 25). I I 
~-+--------------,----------------------------t-----------------------------------------~ 
I 51Current NADCON index (PHAZ15); NADCON IPointer to 5-character symbol chain I 
I lindex for first adcon (CORAL); NADCON I I 
I lindex for first temporary (phase 20, 25). I I 
~--+------------------------------------------+-----------------------------------------i 
I 61Maximum line count IPointer to 6-character symbol chain I 
~-+------------------------------------------t-----------------------------------------~ 
I 71NADCON index for last statement number IPointer to last dictionary entry in stmt I 
I I Inumber chain (XREF--phase 10); number of I 
I I Ireserved registers set aside for data I 
I I Iplus RX branching, in addition to I 
I I Iregister 13 (phase 20 prior to Branching I 
I I I Optimization, OPT * 0, optimization not I 
I I Idowngraded); number of reserved registers I 
I I lused for data plus RX branching, in I 
I I laddition to registers 13 & 12 (phase 25, I 
I I IOPT * 0, optimization not downgraded). I 
~-+------------------------------------------+-----------------------------------------~ 
I alType of text (phase 10); pOinter to next I I 
I Iphase 10 text item (PHAZ 15); pointer to I I 
I I.TXX or .QXX temporary chain (phase 20); I I 
I Itext creation indicator: set to 254 I I 
I Iduring processing of a case 2 subscript I I 
I Iwhich requires an adcon text item to be I I 
I linserted before (phase 20, OPT=O only). I I 
~--+--------,----------------------------------+-----------------------------------------i 
I 91 Pointer 'to next available text entry I Pointer to end of text. I 
~-+------------------------------------------~-----------------------------------------i 
1101 Name of routine I 
I I (subprogram/main program) I 
~--+------------------------------------------T-----------------------------------------i 
IlllPhase in control indicator ITrace switch; optimization downgrade I 
I I Iswitch-bit 13 (PHAZ15, phase 20). I 
~-+------------------------------------------+-----------------------------------------i 
1121Index to last available error table entry. I I 
~--+------------------------------------------+-----------------------------------------i 
1131END card indicator (phase 10) IPointer to first card of source pgm. I 
~-+--------.----------------------------------+-----------------------------------------~ 
1141Relative location of parameter lists IPointer to 4-byte constant chain I 
I I (PHAZ15, phase 25) I I 
~-+--------------·----------------------------t-----------------------------------------~ 
1151NADCON index for 1st parameter list IPointer to a-byte constant chain I 
I I (PHAZ15, phase 25) I I 
~-+------------------------------------------+-----------------------------------------i 
116\Page count IPointer to 16-byte constant chain I 
~--+------------------------------------------+-----------------------------------------i 
1171Current line count IPointer to statement number chain I l __ ~ __________________________________________ ~ _________________________________________ J 

116 



• Table 16. Communication Table [NPTR(2,36)] (Part 2 of 2) 
r------------------------------------------T-----------------------------------------, 
I 1 I 2 I 

r-f------------------------------------------f-----------------------------------------~ 
1181Relative location for register 13 INumber of branch table entries (STALL); I 
I I Irelative location for register 12. I 
~--f------------------------------------------f-----------------------------------------~ 
1191Active base register: 0 for reg. 13, INADCON index for first temporary I 
I 14096 for reg. 12. 1 (phase 20). 1 
~--+------------------------------------------f--,---------------------------------------~ 
120lSecondary entry points if nonzero INumber of times XREF buffer has been I 
I 1 Iwritten out (phase 10); pointer to 1 
I I Itemporary used for subscript index 1 
I I levaluation (Register Optimization). 1 
~--f------------------------------------------f-----------------------------------------~ 
I 211 Location counter, except in phase 20 INADCON index for first COMMON area I 
1 I (other than branching optimization) where 1 I 
I lit is relative location for active base I I 
I I register 1 I 
~--+------------------------------------------f-----------------------------------------~ 
1221pointer to dictionary entry for IBCOM IIndex to next available error table entry 1 
~-f------------------------------------------f-----------------------------------------~ 
1231External function and/or CALL indicator IPointer to end of stmt. number chain I 
I I I (STALL) I 
~-f------------------------------------------f-----------------------------------------~ 
1241Program uses FLOAT/FIX or MOD function if IOptimization level I 
I I nonzero; arithmetic interrupt indicator; I I 
I Itext optimization (IBCOM); pointer to .SXXI I 
I Itemporary chain (phase 20, OPT=O only). 1 I 
~-f------------------------------------------f-----------------------------------------~ 
1251Pointer to first dictionary entry IPointer to COMMON chain I 
~--+------------------------------------------f------------------------------------------~ 
1261Pointer to DEFINE FILE text (phase 10); IPointer to EQUIVALENCE chain I 
I Irelative location of DEFINE FILE parameter 1 I 
I Ilists (CORAL, phase 25). I 1 
~-f------------------------------------------f-----------------------------------------~ 
1271Pointer to literal constant chain IPointer to data text chain; subscript of 1 
1 I I required skeleton (phase 25). I 
~--+------------------------------------------f-----------------------------------------~ 
128 1 Pointer to DIOCS entry IPointer to normal text chain I 
~--+------------------------------------------f-----------------------------------------~ 
1291pointer to branch table chain IPointer to next available information I 
I I 1 table entry I 
~--f------------------------------------------f-----------------------------------------~ 
130lBLOCK DATA subprogram switch IPointer to end of information table I 
~--+------------------------------------------f-----------------------------------------~ 
1311FUNCTION SUBPROGRAM switch ISUBROUTINE SUBPROGRAM switch 1 
~--+------------------------------------------f-----------------------------------------~ 
1321 Pointer to namelist text chain; local I Pointer to fO,rmat text chain; local 1 
I Ivariable (phase 25). Ivariable (phase 25) I 
~--+------------------------------------------f-----------------------------------------~ 
1331size of constants; relative location of ISize of variables; relative location of I 
I lepilogue (CORAL, phase 25). lepilogue (CORAL, phase 25). I 
~--+------------------------------------------f-----------------------------------------~ 
1 34 I Current displacement from active reg. INADCON index for first adcon (CORAL); 1 
I 1 (phase 20) Icurrent NADCON index (phase 20). I 
~--+----~-------------------------------------f-----------------------------------------~ 
1351Relative location of adcon for first IDelete/error switch 1 
I Istatement number; branching optimization 1 1 
I I (phase 25). 1 I 
~-+------------------------------------------f-,----------------------------------------~ 
1361Number of source statements 1 I L __ ~ __________________________________________ i _________________________________________ J 

Appendix A: Tables 117 



Table 17. Keyword Pointer Table (IPTR) 
r------------T-----------T----------------, 
I Character I Number1 I Displacement2 I 
I (1 byte) I (1 byte) I (2 bytes) I 
~------------+-----------+----------------~ 

A 2 I 0 
I 
I 

B 2 I 12 
I 
I 

C 5 I 34 

D 8 84 

E 5 175 

F 3 220 

G 1 244 

H 0 0 

I 3 250 

J 0 0 

K 0 0 

L 2 286 

M 1 312 

N 2 318 

0 0 0 

P 3 336 

Q 0 0 

R 5 357 

S 3 399 

T 2 428 

U 0 0 

V 0 0 

W 1 447 

X 0 0 

y 0 0 

zoo 
~------------.L-.----------J.----------------~ 
11This field contains the number of key- I 
I words beginning with the associated I 
I character. I 
12This field contains the displacement I 
I from the beginning of the keyword table I 
I for the group of keywords associated I 
I with the character. I L ________________________________________ J 

118 

• Table 18. Keyword Table (ITBLE) (Part 1 
of 2) 

r----------T-----------------------T------, 
I Length-l1 I Key Word2 Icode3 I 
~----------+-----------------------+------~ 

5 ASSIGN 1 

1 AT 9 

8 BACKSPACE 2 

8 BLOCKDATA 3 

7 CONTINUE 5 

5 COMMON 7 

3 CALL 8 

14 COMPLEXFUNCTION 4 

6 COMPLEX 6 

8 DIMENSION 14 

3 DATA 17 

22 DOUBLEPRECISIONFUNCTION 10 

14 DOUBLEPRECISION 11 

1 DO 18 

9 DEFINEFILE 13 

6 DISPLAY 15 

4 DEBUG 16 

10 EQUIVALENCE 19 

6 ENDFILE 21 

3 END (followed by group I 23 
mark) 4 I 

I 
4 ENTRY I 22 

I 
7 EXTERNAL I 20 

I 
5 FORMAT I 25 

~----------J.-----------------------J.------~ 
11This part of the entry for each keyword I 
I is one byte in length and contains a I 
I value equal to the number of characters I 
I in that keyword minus one. I 
12This part of the entry for each keyword I 
I contains an image of that keyword at one I 
I byte per character. I 
13This part of the entry for each keyword I 
I is one byte in length and contains the I 
I classification code for that keyword. I 
14 Represented in hexadecimal as '4FI I l _________________________________________ J 



Table 18. Keyword Table (Part 2 of 2) 
r---------T-----------------------T------, 
I Length-l~1 Key Word2 Icode3 I 
~----------+-----------------------+------~ 

7 FUNCTION 24 

3 FIND 12 

3 GOTO 27 

7 IMPLICIT 29 

14 INTEGERFUNCTION 28 

6 INTEGER 30 

14 LOG ICALFUNCTION 33 

6 LOGICAL 35 

3 MOVE 34 

7 NAMELIST 36 

5 NORMAL 37 

4 PAUSE 38 

4 PRINT 39 

4 I PUNCH 40 

3 READ 44 

5 RETURN 43 

5 REWIND 42 

11 REALFUNCTION 41 

3 REAL 45 

3 STOP 48 

9 SUBROUTINE 46 

8 STRUCTURE 47 

7 TRACEOFF 49 

6 TRACEON 50 

4 WRITE 51 
~----------~-----------------------~------~ 
I~This part of the entry for each keyword I 
I is one byte in length and contains a I 
I value equal to the number of characters I 
I in that keyword minus one. I 
12This part of the entry for each keyword I 
I contains an image of that keyword at one I 
I byte per character. I 
13 This part of the entry for each keyword I 
I is one byte in length and contains the I 
I classification code for that keyword. I L ________________________________________ J 

Table 19. Classification Codes Assigned 
During Source Statement Packing 

r----------------------------------T------, 
IStatement Classification/Condition I Code~1 
~----------------------------------+------~ 
ILogical IF 31 
I 
IArithmetic IF 32 
I 
I Arithmetic 56 
I 
IExcessive continuation cards 57 
I 
IUnclassifiable 59 
I 
IUnbalanced parentheses 61 
I 
IBad label 62 
~----------------------------------~------~ 
I~These codes are not in the keyword I 
I tables. I L _________________________________________ J 

NADCON TABLE 

'l?he NADCON table, built by PHAZ15 and 
CORAL and partially overwritten by phase 
20, contains: 

1. Parameter list pointers. 

2. Adcons for local variables and 
constants. 

3. Adcons for variables in COMMON and for 
those equivalenced into COMMON. 

4. Adcons for external references. 

The information in the table is used by 
CORAL and phase 25. Each table entry is 
one word in length; the format of the table 
is shown in Table 20. 

Table 20. NADCON Table 
r-----------------------------------------, 
IParameter list pointer entries (one word I 
Iper entry) I 
~-----------------------------------------~ 
IAdcon entries for local variables and I 
Iconstants (one word per entry) I 
~-----------------------------------------~ 
IAdcon entries for variables in COMMON andl 
Ithose equivalenced into COMMON (one word I 
Iper entry) I 
~----------~------------------------------~ 
IAdcon entries for external references I 
I (one word per entry) I L _________________________________________ J 

Appendix A: Tables 119 



Parameter entries are created by PHAZ15. 
Each entry is a pointer to the dictionary 
entry for the parameter. Indicators denote 
ends of parameter lists and also parameters 
shared by more than one function or 
subroutine call. 

Adcon entries are created by CORAL and 
then inserted by CORAL into the adcon 
portion of the object module (see Figure 
9). Pointers to temporaries are created by 
phase 20 and placed in the portion of the 
table used previously by CORAL. 

Phase 25 inserts the parameters and 
temporaries into the object module. The 
right-hand portion of Figure 9 indicates 
the sequence in which storage is assigned 
in the object module and the data which is 
entered into that storage. 

The information table (referred to as 
NOICT or NDICTX) is constructed by Phase 10 
and modified by subsequent phases. This 
table contains en"tries that describe the 
operands of the source module. The 
information table consists of five 
components: dictionary, statement 
number/array table, common table, literal 
table, and branch table. 

INFORMATION TABLE CHAINS 

The information table is arranged as a 
number of chains. A chain is a group of 
related entries, E::!ach of which contains a 
pointer to another entry in the group. 
Each chain is associated with a component 
of the information table. 

The information table can contain the 
following chains: 

• A maximum of nine dictionary chains: 
one for each allowable FORTRAN variable 
length (1 through 6 characters) and one 
for each allowable FORTRAN constant 
size (4, 8, or 16 bytes). Each 
dictionary chain for variables contains 
entries that describe variables of the 

120 

same length. Each dictionary chain for 
constants contains entries that 
describe constants of the same size. 

• One statement number/array chain for 
entries that describe statement 
numbers. 

• Two cornmon table chains: one for 
entries describing common blocks and 
their associated variables, and one for 
entries describing equivalence groups 
and their associated variables. 

• One literal table chain for entries 
that describe literal constants used as 
arguments in CALL statements. 

• One branch table chain composed of 
entries for statement numbers appearing 
in computed GO TO statements. 

Entries describing the various operands 
of the source module are developed by Phase 
10 and placed into the information table in 
the order in which the operands are 
encountered during the processing of the 
source module. For this reason, a 
particular chain's entries may be scattered 
throughout the information table and 
entries describing different types of 
operands may occupy contiguous locations 
within the information table. Figure 10 
illustrates this concept. 

CHAIN CONSTRUCTION 

The construction of a chain requires: 
(1) initialization of the chain, and (2) 
pointer manipulation. Chain initialization 
is a two-step process: 

1. The first entry of a particular type 
(e.g., an entry describing a variable 
of length one) is placed into the 
information table at the next 
available location. 

2. A pointer to this first entry is 
placed into the communication table 
entry (see nCommunication Table n) 
reserved for the chain of which this 
first entry is a member. 

Subsequent entries are linked into the 
chain via pointer manipulation, as 
described in the following paragraphs. 



r----------------------------------------------------------------~~~-----------------, 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I --------------------------------------_________________________________________________ J 

Figure 10. An Example of Information Table Chains 

The communication table entry containing 
the pointer to the initial entry in the 
chain is examined and the first entry in 
the chain is obtained. The item that is to 
be entered is compared to the initial 
entry. If the two are equal, the item is 
not re-entered; if they are unequal, the 
first entry in the chain is checked to see 
if it is also the last. (An entry is the 
last in a chain if its "chain" field is 
zero. ) 

If the chain entry under consideration 
is the last in the chain, the new item is 
entered into the information table at the 
next available location, and a pointer to 
its location is placed into the chain field 
of the last chain entry. The new entry is 
thereby linked into the chain and becomes 
its last member. 

If the entry under consideration is not 
the last in the chain, the next entry is 
obtained by using its chain field. The 
item to be entered is compared to the entry 
that was obtained. If the two are equal, 
the item is not re-entered; if they are 
unequal, the entry under consideration is 
checked to see if it is the last in the 
chain; etc. 

This process is continued until a 
comparable entry is found or the end of the 
chain is found. If a comparable entry is 
found, the item is not reentered. If the 
new item is not found in the chain, it is 
then linked into the chain. 

OPERATION OF INFORMATION TABLE CHAINS 

The following paragraphs describe the 
operation of the various chains in the 
information table. 

The operation of a dictionary chain is 
based upon "balanced tree" notation. This 
notation provides two chains, high and low 
(with a common midpoint), for the entries 
describing variables of the same length or 
constants of the same size. The initial 
midpoint is the first entry placed into the 
information table for a variable of a 
particular length or a constant of a 
part.icular size. When two entries have 
been made on the high side of the midpoint, 
the first entry on the current midpoint's 
high-chain becomes the new midpoint. 
Similarly, when two entries have been made 
on the low side of the midpoint, the first 
entry on the current midpoint's low-chain 
becomes the new midpoint. 

A change of midpoint for a variable of a 
part.icular length or a constant of a 
particular size causes a pointer to the new 
midpoint to be recorded in the 
communication table. The following example 
illustrates the manner in which phase 10 
employs the balanced tree notation to 
construct a dictionary chain. 

Assume that the following variables 
appear in the source module in the order 
presented. 

o C E F A B 

When phase 10 encounters the variable 0, 
it constructs a' dictionary entry for it 
(see "Dictionary"), places this entry at 
the next available location in the 
information table, and records a pointer to 
that entry into the appropriate field of 
the communication table (see "Communication 
Table"). The entry for 0 is the initial 
midpoint for the chain of entries 
describing variables of length one. (When 
a dictionary entry is placed into the 

Appendix A: Tables 121 



information table, both the high- and 
low-chain fields of that entry are zero.) 

When phase 10 encounters the variable C, 
it constructs a dictionary ent.ry for it. 
Phase 10 then obtains the dictionary entry 
that is the initial midpoint and compares C 
to the variable in that entry. If the two 
are unequal, phase 10 determines whether or 
not the variable to be entered is greater 
than or less than the variable in the 
obtained entry. In this case, C is less 
than D in the collating sequence, and, 
therefore, phase 10 examines the low-chain 
field of the obtained entry, which is that 
for D. This field is zero, and the end of 
the chain has been reached. Phase 10 
places the entry for C into the next 
available location in the information table 
and records a pointer to that entry in the 
low-chain field of the dictionary entry for 
D. The entry for C is thereby linked into 
the chain. 

When the variable E is encountered, 
phase 10 carries out essentially the same 
procedure; however, because E is greater 
than 0, phase 10 examines the high-chain 
field of the entry for D. It is zero, 
which denotes the end of the chain. 
Therefore, phase 10 places the dictionary 
entry for E into the next available 
location in the information table and 
records a pointer to that entry in the 
high-chain field of the dictionary entry 
for D. 

When the variable F is encountered, 
phase 10 constructs a dictionary entry for 
it and compares it to the variable in the 
entry that is the common starting point for 
the chain. Because F is greater than D, 
phase 10 examines the high-chain field of 
the entry for D. This field is not zero 
and, hence, the end of the chain has not 
yet been reached. Phase 10 obtains the 
entry (for E) at the location 'pointed to by 
the nonzero chain field (of the entry for 
D) and compares F to the variable in the 
obtained entry. The variable F is greater 
than the variable E. Therefore, phase 10 
examines the high-chain field of the entry 
for E. This field is zero and the end of 
the chain has been reached. Phase 10 
places the entry for F into the next 
available location in the information table 
and records a pointer to that entry in the 
high-chain field of the entry for E. since 
two entries have now been made on the high 
side of the current midpoint, the first 
variable on D's high-chain becomes the new 
midpoint. 

Phase 10 carries out similar procedures 
to link the entries for the variables A and 
B into the chain. 

122 

(If one of the comparisons made between 
a variable to be entered into the 
dictionary and a variable in an entry 
already in the dictionary results in a 
match, the variable has previously been 
entered and is not reentered.) 

Figure 11 illustrates the manner in 
which the entries for the variables are 
chained after the entry for B has been 
linked into the chain. 

r---------------------~-------------------, 

I ~ I 
I ~ I 
I A ~ I 
I ~ I 
I I 
11st I 
13rd mid- I 
Ipoints I 
I I 
I I 
~-----------------------------------------~ 
I Note: High and low chains are maintained I 
Ifor all entries. ~hen the entry for F isl 
Imade, the mid-point shifts from D to E. I 
I When the entry for A is made, the H:id- I 
Ipoint shifts from E to D. I L-----____________________________________ J 

Figure 11. Dictionary Chain 

statement Number Chain Operation 

The statement number chain constructed 
by phase 10 is linear; that is, each 
statement number entry (see "statement 
Number/Array Table") is pointed to by the 
chain field of the previously constructed 
statement number entry. The first 
statement number entry is pointed to by a 
pointer in the communication table. 

To construct the statement number chain, 
phase 10 places the statement number entry 
constructed for the first statement number 
in the module into the next available 
location in the information table. It 
records a pointer to that entry in the 
appropriate field of the communication 
table. (When a statement number entry is 
placed into the information table, its 
chain field is zero.) Phase 10 links all 
other statement number entries into the 
chain by scanning the previously 



constructed statement number entries (in 
the sequence in which they are chained) 
until the last entry is found. The last 
entry is denoted by a zero chain field. 
Phase 10 then places the new entry at the 
next available location in the information 
table and records a pointer to that entry 
in the zero chain field of the last entry 
in the chain. The new entry is thereby 
linked into the chain and becomes its last 
member. (Throughout the construction of 
the statement number chain, phase 10 makes 
comparisons to insure that a statement 
number is entered only once.) 

Common Chain operation 

The chain constructed by phase 10 due to 
COMMON statements appearing in the source 
module is bi-linear; that is, phase 10 
links together: 

1. The individual COMMON block name 
entries (see "COMMON Table") that it 
develops for the COMMON block names 
appearing in the module. 

2. The dictionary entries (see 
"Dictionary") that it develops for the 
variables appearing in a particular 
common block. (The dictionary entry 
for the first variable appearing in a 
COMMON block is also pointed to by the 
COMMON block name entry for the COMMON 
block containing the variable.) 

To construct the COMMON chain, phase 10 
places the COMMON block name entry that it 
constructs for the first COMMON block name 
appearing in the module at the next 
available location in the information 
table. It records a pointer to this entry 
in the appropriate field of the 
communication table. Phase 10 then obtains 
the first variable in the COMMON block, 
constructs a dictionary entry for it, 
places the entry at the next available 
location in the information table, and 
records a pointer to that entry in the Pi 
and P2 field of the COMMON block name entry 
for the COMMON block containing the 
variable. Phase 10 obtains the next 
variable in the common block, constructs a 
dictionary entry for it, places the entry 
in the information table, records a pointer 
to that entry in the COMMON chain field of 
the dictionary entry constructed for the 
variable encountered immediately prior to 
the variable under consideration (this 
entry location is obtained from the P2 
field of the COMMON block name entry), and 

records a pointer to the information table 
for the new COMMON variable in the P2 
field. Thus, the P2 field of the COMMON 
block name entry always contains a pointer 
to the information table entry for the last 
variable of a given COMMON block. Phase 10 
obtains the next variable in the COMMON 
block, etc. 

When phase 10 encounters a second unique 
COMMON block name, it constructs a COMMON 
block name entry for it, places the entry 
in the information table, and records a 
pointer to that entry in the chain field of 
the last COMMON block name entry, which is 
found by scanning the chain of such entries 
until a zero chain field is detected. 
Phase 10 then links the dictionary entries 
that it constructs for the variables 
appearing in the second COMMON block into 
the chain in the previously described 
manner. 

If a COMMON block name is repeated in 
the source module a number of times, phase 
10 constructs a COMMON block name entry 
only for the first appearance. However, it 
does include as members of the COMMON block 
the variables associated with the second 
and subsequent mentions of the COMMON block 
name. Phase 10 constructs a dictionary 
entry for the first variable associated 
with the second mention of the COMMON block 
name and places it into the information 
table. It then records a pointer to the 
dictionary entry for the new variable in 
the COMMON chain field of the last variable 
associated with the first mention of the 
COMMON block name. Phase 10 links the 
dictionary entry it constructs for the 
second variable associated with the second 
mention of a COMMON block name to the 
dictionary entry for the first variable 
associated with the second mention of that 
name; etc. 

If a third mention of a particular 
COMMON block name is encountered, phase 10 
processes the associated variables in a 
similar manner. It links the dictionary 
entries constructed for these variables as 
extensions to the dictionary entries 
developed for the variables associated with 
the second mention of the COMMON block 
name. 

Equivalence Chain Operation 

The chain constructed by phase 10 due to 
EQUIVALENCE statements appearing in the 
source module is also bi-linear. Phase 10 
links together: 

Appendix A: Tables 123 



1. The individual equivalence group 
entries (see "COMMON Table") that it 
constructs for the equivalence groups 
appearing in the module. 

2. The equivalence variable entries (see 
"COMMON Table") that it constructs for 
the variables appearing in a 
particular equivalence group. (The 
equivalence variable entry for the 
first variable appearing in an 
equivalence group is pointed to by the 
equivalence group entry for the group 
containing the variable.) 

The construction of the equivalence 
chain by phase 10 parallels its 
construction of the COMMON chain. It links 
the equivalence group entries in the same 
manner as it does COMMON block name 
entries, and links equivalence variable 
entries in the same manner as the 
dictionary entries for the variables in a 
COMMON block. (The location of the last 
EQUIVALENCE group entry generated is 
recorded in the appropriate field of the 
communication table; the location of the 
last EQUIVALENCE variable entry generated 
is recorded locally in the keyword 
subroutine that processes the EQUIVALENCE 
statement) • 

Literal Constant Chain Operation 

The chain constructed by phase 10 for 
the literal constant information appearing 
in the source module is linear. The 
literal constants are chained in reverse 
order of occurrence. Phase 10 records a 
pointer to the most recent literal constant 
entry generated. As each new entry is 
made, it is chained to the previous entry 
and it, in turn, is recorded as the most 
recent. 

124 

Branch Table Chain Operation 

The phase 10 construction of the branch 
table chain parallels that of the statement 
number chain. It records a pointer to the 
first branch table entry (see "Branch 
Table") that is placed into the information 
table in the appropriate field of the 
communication table. In the chain field of 
the previously developed branch table 
entry, phase 10 records a pointer to the 
location in the information table for any 
new branch table entry. Unlike statement 
number entry processing, no label 
comparison is necessary. Thus, scanning 
the chain is avoided by recording the 
location of the last branch table entry in 
the P2 field of the first Initial Branch 
Table entry. 

INFORMATION TABLE COMPONENTS 

The following text describes the 
contents of each component of the 
information table and presents 
illustrations of phase 10 formats of the 
entries for each component. Modifications 
made to these entries by subsequent phases 
of the compiler are also illustrated. 

Dictionary 

The dictionary contains entries that 
describe the variables and constants of the 
source module. The information gathered 
for each variable or constant is derived 
from an analysis of the context in which 
the variable or constant is used in the 
source module. 

VARIABLE ENTRY FORMAT: The format of the 
dictionary entries constructed by phase 10 
for the variables of the source module is 
illustrated in Figure 12. 



<-----------------4 bytes-----------------> 
r----------------------------------------, 
I High-chain field I 
~----------T-----------T-----------------i 
IByte A IByte B I I 
lusage fieldlusage fieldlDIS field I 
~-----------~-----------~-----------------~ 
I Low-chain field I 
~----------------------... T--------,---------~ 
IMode field IType field I 
~-----------T-----------~-----------------~ 
IUsed by I I 
Isubroutine I I 
I STALL- I I 
IIEKGST IPl field I 
~-----------~-----------------------------~ 
ICOMMON displacement field I 
~-----------T-----------------------------~ 
IStore-FetchlcOMMON chain field I 
I field I I 
~-----------~-----------T-----------------~ 
IUsed for XREF IName field I 
I processing I I 
~----------------------~-----------------i 
I Name field I 
~-----------------------------------------~ 
INote: This field exists only if the XREFI 
I option is used (see Figure 15). I L _________________________________________ J 

• Figure 12. Format of Dictionary Entry for 
Variable 

High-Chain Field: The high-chain field is 
used to maintain linkage between the 
various entries in the chain. It contains 
either a pointer to an entry that collates 
higher in the collating sequence or an 
indicator (zero), which indicates that 
entries in the chain that collate higher 
than itself have not yet been encountered. 

Byte A Usage Field: This field is 
contained in the first byte of the second 
word. This field indicates a portion of 
the characteristics of the variable for 
which the dictionaty entry was created. 
The byte A usage is divided into eight 
subfields, each of which is one bit long. 
The bits are numbered from 0 through 7. 
Figure 13 indicates the function of each 
subfield in the byte A usage field. 

~ B Usa~Field: The byte B usage field 
is contained in the second byte of the 
second word. This field indicates 
additional characteristics of the variable 
entered into the dictionary. It is divided 
into eight subfields, each of which is one 
bit long. The bits are numbered from 0 
through 7. Figure 14 illustrates the 
function of each subfield in the byte B 
usage field. 

r------------T----------------------------, 
I Subfield I Function I 
~------------+----------------------------1 
I Bit 0 'on' I variable appears in a I 
I I STRUCTURE statement I 
~------------+----------------------------~ 
I Bit 1 'on' I symbol referred to I 
~------------+----------------------------~ 
I Bit 2 'on' I variable is in COMMON I 
~------------+----------------------------~ 
I Bit 3 'on' I not used I 
~------------+----------------------------~ 
I Bit 4 'on' I variable is equivalenced I 
~------------+----------------------------1 
I Bit 5 'on' I variable has appeared in ani 
I I EQUIVALENCE group that has I 
I I been processed by I 
I I subroutine STALL-IEKGST I 
I I (used by phase 15) I 
~-~----------+----------------------------~ 
I Bit 6 'on' I variable is an external I 
I I subprogram name I 
~------------+----------------------------i 
I Bit 7 'on' I variable appears in Type I 
I I statement I L ____________ ~ ____________________________ J 

Figlrre 13. Function of Each Subfield in 
the Byte A Usage Field of a 
Dictionary Entry for a Variable 
or Constant 

r------------T----------------------------, 
I Subfield I Function I 
~------------+----------------------------i 
I Bit 0 'on' I variable is "call by value" I 
I I parameter I 
~------------+----------------------------~ 
I Bit 1 'on' I variable is "call by name" I 
I I parameter I 
~------------+----------------------------~ 
I Bit 2 'on' I variable is used as an I 
I I argument I 
~------------+----------------------------~ 
I Bit 3 'on' I variable has appeared in a I 
I I previous DATA statement I 
I I (phase 15) I 
~------------+----------------------------~ 
I Bit 4 'on' I not used I 
~------------+----------------------------i 
I Bit 5 'on' I variable is used as a I 
I I subscript I 
~------------+----------------------------i 
I Bit 6 'on' I variable is in COMMON, or I 
I I in an EQUIVALENCE group andl 
I I has been assigned a I 
I I relative address (phase 15) I 
.------------+----------------------------i 
I Bit 7 'on' I variable appears in DATA I 
I I statement I L ____________ ~ ____________________________ J 

Figlrre 14. Function of Each Subfield in 
the Byte B Usage Field of a 
Dictionary Entry for a Variable 

Appendix A: Tables 125 



DIS Field: The DIS field contains either 
the displacement of a structured variable 
from the head of its structure group or the 
number of dummy arguments for a statement 
function name. If the variable is neither 
structured nor a statement function name, 
this field contains a count of the number 
of times the variable appears in the source 
program. 

Low-Chain Field: The low-chain field is 
used to maintain linkage between the 
various entries in the chain. It contains 
either a pointer to an entry that collates 
lower in the collating sequence or an 
indicator (zero), which indicates that 
entries in the chain that collate lower 
than itself have not yet been encountered. 

Mode/Type Field: The mode/type field is 
divided into two subfields, each two bytes 
long. The first two bytes (mode subfield) 
are used to indicate the mode of the 
variable (e.g., integer, real); the second 
two bytes (type subfield) are used to 
indicate the type of the variable (e.g., 
array, external function). Both the mode 
and type are numeric quantities and 
correspond to the values stated in the mode 
and type tables (see Tables 21 and 22). 

Pl Field: The Pl field contains either a 
pointer to the dimension information in the 
statement number/array table if the entry 
is for an array (i.e., a dimensioned 
variable), or a pointer to the text 
generated for the statement function (SF) 
if the ent~y is for an SF name. If the 
entry is neither for the name of an array 
nor the name of a statement function, the 
field is zero. 

COMMON Displacement Field: The 
displacement of the variable, if it is in 
COMMON, is placed in this field by phase 
10. This information will be moved to the 
DIS field by CORAL and replaced with a 
pointer to the dictionary entry for its 
COMMON block. 

Store-Fetch Field: The Store-Fetch field 
contains information about the variable. 
If the variable is stored into, bit 0=1; if 
the variable is fetched, bit 1=1. 

126 

Table 21. Operand Modes 
r---------------------T-------------------, 
I I Internal I 
I I Representation I 
I Mode of Operand I (in hexadecimal) I 
~---------------------+-------------------i 

No mode (e.g., basel 0 
variables) I 

Logical*l I 2 
Logical*4 I 3 
Integer*2 , 4 
Integer , 5 
Real*8 I 6 
Real*4 I 7 
Complex*16 , 8 
Complex*8 I 9 
Literal I A 
Statement number I B 
Hexadecimal I C 
Namelist I D 
Repeat constant I F L _____________________ ~ ___________________ J 

Table 22. Operand Types 
r---------------------T-------------------, 
, I Internal I 
I I Representation I 
IType of Operand I (in hexadecimal) I 
~---------------------+-------------------i 
I Scalar 0 
IDummy scalar 1 
I Array 2 
IDummy array 3 
IExternal subprogram 4 
I Constant 5 
,Statement function 6 
INegative scalar 8 
INegative dummy scalar 9 
INegative array A 
INegative dummy array B 
INegative external C 
! subprogram 
INegative constant D 
INegative statement E 
, function 
IQXX temporary F 
I (created by text 
I optimization) I L _____________________ ~ __________________ _ 

COMMON Chain Field: This field is used to 
maintain linkages between the variables in 
a COMMON block. It contains a pointer to 
the dictionary entry for the next variable 
in the COMMON block. (If the variable for 
which a dictionary entry is constructed is 
not in COMMON, this field is not used.) 

Name Field: This field contains the name 
of the variable (right-justified) for which 
the dictionary entry was created. 



MODIFICATIONS TO DICTIONARY ENTRIES FOR 
VARIABLES: During compilation, certain 
fields of the dictionary entries for 
variables may be modified. The following 
examples illustrate the formats of 
dictionary entries for variables at various 
stages of phase 10 and phase 15 processing. 
Only changes are indicated; * stands for 
unchanged. 

Dictionary Entry for Variable After 
Preparation for XREF'Processing: The 
format of a dictionary entry for a variable 
after subroutine CSORN-IEKCCR processing is 
illustrated in Figure 15. 

XREF Buffer Pointer -- Last En~: This 
field contains a pointer to the most recent 
XREF buffer entry for the symbol. 

XREF Buffer Count: This field contains a 
count of the number of times the XREF 
buffer has been written out on SYSUT2 at 
the time that this dictionary entry is 
modified by subroutine CSORN-IEKCCR. 

<-----------------4 bytes-----------------> 
r----------------------------------------, 
1* 1 
~----------T---------T--------------------~ 
1* 1* 1* 1 
~----------~---------~--------------------~ 
1* 1 
~:.....-------------------T--------------------~ 
1* 1* 1 
~---------T---------~--------------------~ 
1 * 1 * 1 
~----------~------------------------------~ 
1 * 1 
~---------T------------------------------~ 
1* 1 * 1 
~----------~---------T--------------------~ 
IXREF buffer point 1* 1 
1-- last entry 1 1 
~--------------------~--------------------~ 
1 * 1 
~--------------------T--------------------~ 
IXREF buffer count IXREF buffer pointer 1 
1 1-- first entry I L ____________________ ~ ____________________ J 

Figure 15. Format of Dictionary Entry for 
Variable After CSORN-IEKCCR 
Processing for XREF 

XREF Buffer Pointer -- First Entry: This 
field contains a pointer to the first XREF 
buffer entry for this symbol. 

Dictionary Entry for Variable After 
Co-ordinate Assignment: The format of a 
dictionary entry for a variable after 

co-ordinate assignment by the STALL-IEKGST 
subroutine is illustrated in Figure 16. 

<---.-------------- 4 bytes-----------------> 
r-----------------------------------------, 
1 * 1 
~----------T----------T-------------------~ 
1 * 1* 1 * 1 
~----------~----------~-------------------~ 
1* 1 
~---------------------7-------------------~ 
1 * 1* 1 
~---·-------T----------~-------------------~ 
I Coordinate I * I 
Inumber fori I 
I variable I I 
~----------~------------------------------i 
1* 1 
~-----------------------------------------~ 
1* 1 
~-----------------------------------------i 
1 * 1 
~-----------------------------------------~ 
1* 1 L _________________________________________ J 

Figure 16. Format of Dictionary Entry for 
Variable After Coordinate 
Assignment 

Diction~En~or Variable After COMMON 
Block Processing: The format of a 
dictionary entry for a variable after 
COMMON block processing is illustrated in 
Figure 17. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
1 * 1 
~-----------T----------T-------------------i 
1* 1* IDisplacement from 1 
1 1 Istart of COMMON 1 
1 1 1 block 1 
~----------~----------~-------------------i 
1* 1 
~---------------------7-------------------~ 
1* 1* I 
~----------7----------~-------------------~ 
1* 1* 1 
~----------~------------------------------i 
ICOMMON block pointer 1 
~-----------------------------------------~ 
1* 1 
~-----------------------------------------i 
1* 1 
~-----------------------------------------i 
1* 1 L _________________________________________ J 

Figure 17. Format of Dictionary Entry for 
Variable After COMMON Block 
Processing 

Appendix A: Tables 127 



<-----------------4 bytes-----------------> 
r----------------------------------------, 
1* 1 
~----------T----------T-------------------i 
1* 1* ,Displacement from , 
1 1 Ibase value 1 
~----------~----------~-------------------i 
1 Pointer to entry for address constant 1 
1 of variable 1 
~--------------------T-------------------i 
1* 1 * 1 
~----------T----------~-------------------i 
1 * 1* 1 
~---------~------------------------------i 
1* 1 
~-----------------------------------------i 
1 * , 
~----------------------------------------i 
I * I 
~-----------------------------------------i 
1 * I L _________________________________________ J 

Figure 18. Format of Dictionary Entry for 
a Variable After Relative 
Address Assignment 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
I Backward chain field , 
~-----------T-----------T-----------------i 
IByte A IByte B' 1 
IUsage fieldlUsage fieldlUsed by phase 15 1 
~----------~-----------~-----------------i 
, Forward chain field , 
~-----------------------T-----------------i 
1 Mode field IType field , 
~----------T-----------~-----------------i 
,Used by I I 
Isubroutine I zero , 
I STALL- I I 
I IEKGST I , 
~----------~-----------------------------i 
I constant field I 
~----------------------------------------i 
I constant field 1 

~----------------------------------------i 
I Constant field I 
~-----------------------------------------~ 
, Constant field 1 L _________________________________________ J 

Figure 19. Format of Dictionary Entry for 
Constant 

Dictionary Entry for Variable After 
Relative Address Assignment: The format of 
a dictionary entry for a variable after 
relative address assignment is illustrated 
in Figure 18. 

CONSTANT ENTRY FORMAT: The format of the 
dictionary entries constructed by phase 10 
for the constants of the source module is 

128 

illustrated in Figure 19. It is similiar 
to that for a variable. The changes the 
entry undergoes during processing are the 
same except that a constant does not under
go XREF or CO~~ON processing. Also, for 
constants referred to irr.plicitly, PHAZ15 
sets a referenced bit to on. (Bit 1 in the 
byte A usage field; see Figure 13.) 

Statement Number/Arr~ Tab!g 

The statement number/array table 
contains statement number entries, which 
describe the statement numbers of the 
source module, and dimension entries, which 
describe the arrays of the source module. 

STATEMENT NUMBER ENTRY FORMAT: The format 
of the statement number entries constructed 
by phase 10 is illustrated in Figure 20. 

Chain Field: The chain field is used to 
maintain linkage between the various 
entries in the chain. It contains either a 
pointer to the next statement number entry 
in the chain or an indicator (zero), which 
indicates the end of the statement number 
chain. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
1 Chain Field I 

~--------T--------T----------T------------i 
, Byte A 1 Byte B 1 Used by 1 Used by 1 
I Usage ,Usage 1 phase 20 , phase 20 I 
~--------~--------i----------~------------i 
I Pointer field I 
~-----------------------------------------i 
1 Image field I 
~-----------------------------------------i 
I Used for XREF processing I 
~-----------------------------------------i 
1 Used for XREF processing I 
~-----------------------------------------i 
I Used for XREF processing I 
~-----------------------------------------i 
1 Used by phase 20 , 
~-----------------------------------------i 
I Note: This field exists only if the XREFI 
1 option is used (see Figure 23). I L _________________________________________ J 

Figure 20. Format of a Statement Number 
Entry 

Byte A Usage Field: This field is 
contained in the first byte of the second 
word. This field indicates a portion of 
the characteristics of the statement number 
for which the entry was created. The byte 



A usage field is divided into eight 
subfields, each of which is one bit long. 
The bits are numbered from 0 through 7. 
Figure 21 indicates the function of each 
subfield of this field. 

Byte B Usage Field: This field is 
contained in the second byte of the second 
word. The byte B usage field indicates 
additional characteristics of the statement 
number for which the entry was constructed. 
The byte B usage field is divided into 
eight subfields, each of which is one bit 
long. The bits are numbered 0 through 7. 
Figure 22 indicates the function of each 
subfield in the byte B usage field. 

Pointer Field: If the entry is for the 
first statement number, this field contains 
a pointer to the last statement number 
entry. otherwise, the field contains 
zeros. 

Image Field: This field contains the 
binary representation of the statement 
number for which the entry was created. 

r------------T----------------------------, 
1 Subfield 1 Function 1 
~-----------t----------------------------~ 
1 Bit 0 'on' 1 statement number defined 1 
~------------+----------------------------~ 
1 Bit 1 'On' 1 statement number referred 1 
lito 1 
~------------+----------------------------~ 
1 Bit 2 'On' I referred to in an ASSIGN I 
I 1 statement 1 
~-----------t----------------------------~ 
I Bit 3 I not us ed I 

~------------+----------------------------~ 
I Bit 4 'On' I statement number of a I 
I I FORMAT statement I 

~------------+----------------------------~ I Bit 5 'on' I statement number of a GO I 
I I TO, PAUSE, RETURN, STOP, orl 
I I DO statement I 
~------------+----------------------------~ 
, Bit 6 'on' , statement number used as ani 
I I argument I 
~-----------t----------------------------~ 
I Bit 7 'On' I statement number is the I 
I I object of a branch I L ____________ ~ ____________________________ J 

Figure 21. Function of Each Subfield in 
the Byte A Usage Field of a 
Statement Number Entry 

MODIFICATIONS TO STATEMENT NUMBER ENTRIES: 
During the processing of subroutines 
LABTLU-IEKCLT and STALL-IEKGST in phase 10, 
phases 15, 20, and 25, each statement 
number entry created by phase 10 is updated 
with information that describes the text 
block associated with the statement number. 
During phase 10, if the XREF option is 
selected, subroutine LABTLU-IEKCLT makes 
changes in statement number dictionary 
entries for later use by subroutine 
XREF-IEKXRF (see Figure 23). 

r------------T----------------------------, 
I Subfield 1 Function 1 
~------------t----------------------------~ 
I Bit 0 'on' I statement number is within I 
I I a DO loop and is 1 
I 1 transferred to from outside 1 
I I the range of the DO loop 1 
~------------t----------------------------~ I Bit 1 'on' I compiler generated I 
1 I statement number 1 
~------------t----------------------------~ 
1 Bits 2-5 1 not used 1 
~------------t----------------------------~ 
I Bit 6 'on' I statement number appears inl 
I I END or ERR parameter of I 
I I READ statement (branching I 
I I optimization) I 
~------------t----------------------------~ 
I Bit 7 'On' I statement number is used inl 
I 1 a computed GO TO statement 1 L ____________ ~ ____________________________ J 

Figure 22. Function of Each Subfield in 
the Byte B Usage Field of a 
Statement Number Entry 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
1 * 1 
~---------T---------T---------T-----------~ 
1* 1* 1* 1* 1 
~---------~---------~---------~-----------~ 
I * I 
~-----------------------------------------~ 
1 * I 
~-----------------------------------------~ 
IXREF buffer pointer -- last entry 1 
~-------------------T---------------------~ 
IXREF buffer count IXREF buffer pointer 1 
I I -- first entry 1 
~-------------------~---------------------~ 
IDefinition field 1 
~-----------------------------------------~ 
1* 1 
~-----------------------------------------~ 
Isequence chain field 1 L _________________________________________ J 

Figure 23. Format of a Dictionary Entry 
for Statement Number After 
Subroutine LABTLU-IEKCLT 
Processing for XREF 

Appendix A: Tables 129 



XREF Buffer Point:er -- Last Entry: This 
field contains a pointer to the most recent 
XREF buffer entry for this statement 
number, unless this dictionary entry is a 
definition of a statement number. If this 
dictionary entry is a definition of a 
statement number, this field is not used. 

XREF Buffer Count: This field contains a 
count of the number of times the XREF 
buffer has been written out on SYSUT2 at 
the time this dictionary entry is modified 
by subroutine LABTLU-IEKCLT. 

XREF Buffer Pointer -- First En~: This 
field contains a pointer to the first XREF 
buffer entry for this statement number. 

Definition Field: This field contains an 
ISN if this statement number dictionary 
entry corresponds to a definition of a 
statement number. The field contains -1 if 
the statement number has been previously 
defined. 

sequence Chain Field: This field chains 
the statement numbers in numerical order. 

Figure 24 illustrates the format of a 
statement number entry after the processing 
of the STALL-IEKGST subroutine and phases 
15, 20, and 25. Only changes are 
indicated; * stands for unchanged. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
1 New Chain field 1 
~---------T---------T----------T---------i 
1* 1* 1 Block 1 Loop 1 
1 1 1 Status 1 number 1 
I 1 I Field 1 I 
~----------·.L---------.L----------.L---------i 
1 Address constant pointer field I 
~----------------------------------------i 
1* I 
~----------T------------------------------i 
I Loop I Text pointer field I 
I number I I 
Isave area I I 
~---------.L------------------------------i 
IForward connection field (ILEAD) I 
~-----------------------------------------i 
IBackward connection field (JLEAD) I 
~-----------------------------------------i 
IBlock size field (BSZ) I 
~----------------------------------------i 
1* I l _________________________________________ J 

Figure 24. Format of statement Number 
Entry After the Processing of 
Phases 15, 20, and 25 

New Chain Field: The new chain field 
contains a pointer to the entry for a 
statement number. The number is the one 
that is defined in the source module 

130 

immediately after the statement number for 
which the statement number entry under 
consideration was constructed. (The 
STALL-IEKGST subroutine modifies the phase 
10 chain pointer when it rechains the 
statement number entries to correspond to 
the order in which statement numbers are 
defined in the source module.) This field 
is not modified by subsequent phases. 

Block Status Field: The block status field 
indicates the status of the text block 
associated with the statement number entry 
under consideration. The block status 
field is divided into eight subfields, each 
of which is one bit long. The bits are 
numbered 0 through 7. Figure 25 indicates 
the function of each subfield in the block 
status field. 

r-------------T---------------------------, 
I Subfield I Function 1 
~-------------+---------------------------i 
I Bit 0 I Used for various reasons I 
I I by the routines that I 
I I explore connections (e.g., I 
I I the associated block has I 
I I previously been considered I 
I Bit 1 I in the search for the back I 
1 1 dominator of the block) I 
.-------------t---------------------------i 
I Bit 2 'On' I the associated block exits I 
I I from a loop I 
.-------------t---------------------------i 
1 Bit 3 • On' 1 the associated block is a 1 
I I fork (i.e., it has two or 1 
I 1 more forward connections) I 
.-------------t---------------------------i 
I Bit 4 I same as bits 0 and 1 I 
.-------------t---------------------------i 
I Bit 5 'on' I the associated block is inl 
I I the current loop I 
.-------------t---------------------------i 
I Bit 6 'on' I the associated block has I 
I I been completely processed 1 
I 1 along the OPT=2 path I 
.-------------t---------------------------i 
1 Bit 7 'on' I the associated block is ani 
1 I entry block I L _____________ .L ___________________________ J 

Figure 25. Function of Each Subfield in 
the Block status Field 

Loop Number Field: The loop number field 
contains the number of the loop to which 
the text block (associated with the 
statement number entry under consideration) 
belongs. This field is set up and used by 
phase 20. Just before the loop number is 
assigned, this field contains a depth 
number. 

Back Dominator Field: The back dominator 
field contains a pointer to the statement 
number entry associated with the back 
dominator of the text block associated with 
the statement number entry under 



consideration. This field, set up and used 
by phase 20, occupies the address constant 
pointer field. 

Address constant Pointer Field: The 
address constant pointer field (after phase 
25 processing) contains either of the 
following: 

• An indication of a reserved register 
and a displacement of the address 
constant for the statement number (see 
Phase 25, "Address constant 
Reservation") • 

• Zero, if: 

1. unreferenced 

2. referenced, but not by END or ERR 
parameter of a READ statement, and 
within range of a reserved 
register. 

Text Pointer Field: The text pointer field 
contains a pointer to the phase 15 text 
entry for the statement number with which 
the statement number entry under 
consideration is associated. This field is 
not used by phase 10; it is filled in by 
phase 15, and is unchanged by subsequent 
phases. 

Forward Connection Field (ILEAD): The 
forward connection field contains a pointer 
to the initial RMAJOR entry for the blocks 
to which the text block associated with the 
statement number entry under consideration 
connects. This field is set up by phase 15 
and used by phase 20. The base and 
displacement of the block are stored in 
this field by phase 20, Branching 
Optimization. 

Backward Connection Field (JLEAD): The 
backward connection field contains a 
pointer to the initial CMAJOR entry for the 
blocks that connect to the text block 
associated with the statement number entry 
under consideration. This field is set up 
by phase 15 and used by phase 20. During 
phase 25 the relative location of the block 
is stored in the field. 

Block Size Field (BSZ): The block size 
field contains the number of bytes of code 
generated in the block associated with the 
statement number entry under consideration. 
It does not include the padding for the 
first occurence in the block of required 
boundary alignment. This field is set up 
and used by phase 20, Branching 
optimization. The following flags are set 
in this field: 

bit 1, 

bit 4, 
bit 5, 

bit 8, 

bit 9, 

for branch true or false in 
this block; 
if block is B-block; 
if block ends with branch other 
than computed GO TO; 
if the conditional NOP follows 
an even number of half-words in 
the block; 
for conditional NOP in this 
block. 

DIMENSION ENTRY FORMAT: The format of the 
dimension entries constructed by phase 10 
is illustrated in Figure 26. 

Array Size Field: The array size field 
contains either the total size of the 
associated array or zero, if the array has 
variable dimensions. 

Dimension Number Field: The dimension 
number field contains the number of 
dimensions (1 through 7) of the associated 
array. 

Element Length Field: The element length 
field contains the length of each element 
(first dimension factor) in the associated 
array. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
I Array size field I 
.-------------------T---------------------i 
IDimension number IElement length field I 
Ifield I I 
.-------------------~---------------------i 
I First subscript pointer field I 
.-----------------------------------------i 
I Second subscript pointer field I 
.-----------------------------------------i I Third subscript pointer field I 
.-----------------------------------------i 
I Fourth subscript pointer field I 
.-----------------------------------------i 
I Fifth subscript pointer field I 
.-----------------------------------------i 
I sixth subscript pointer field I 
.-----------------------------------------i 
I Used only for variable I 
I dimensions I L _________________________________________ J 

Figure 26. Format of Dimension Entry 

First Subscript Pointer Field: The field 
contains either a pointer to the dictionary 
entry for the second dimension factor, 
which has a value of Dl*L (see "Appendix F: 
Address Computation for Array Elements"), 
or a pointer to the dictionary entry for 
the first subscript parameter used to 
dimension the associated array if that 
array has variable dimensions. This field 
is not used if the associated array has a 
single non-variable dimension. 

Appendix A: Tables 131 



Second Sub~cript Pointer Field: This field 
contains either a pointer to the dictionary 
entry for the third dimension factor, which 
has a value of Dl*D2*L, or a pointer to the 
second subscript parameter used to 
dimension ·the associated array if that 
array has variable dimensions. This field 
is not used if the associated array has a 
single dimension, or has two non-variable 
dimensions. 

Third Subscript Pointer Field: This field 
contains either a pointer to the dictionary 
entry for the fourth dimension factor, 
which has a value of Dl*D2*D3*L, or a 
pointer to the third subscript parameter 
used to dimension the associated array if 
that array has variable dimensions. This 
field is not used if the associated array 
has fewer than three dimensions, or has 
three non-variable dimensions. 

Fourth Subscript Pointer Fie14: This field 
contains either a pointer to the dictionary 
entry for the fifth dimension factor, which 
has a value of Dl*D2*D3*D4*L, or a pointer 
to the dictionary entry for the fourth 
subscript parameter used to dimension the 
associated array if that array has variable 
dimensionsu This field is not used if the 
associated array has fewer than four 
dimensions, or has four non-variable 
dimensions. 

Fifth Subscript~ointer Fi~ld: This field 
contains either a pointer to the dictionary 
entry for the sixth dimension factor, which 
has a value of Dl*D2*D3*D4*D5*L, or a 
pointer to the dictionary entry for the 
fifth subscript parameter used to dimension 
the associated array if that array has 
variable dimensions. This field is not 
used if the associated array has fewer than 
five dimensions, or has five non-variable 
dimensions. 

Sixth Subscript Pointer Field: This field 
contains either a pointer to the dictionary 
entry for the seventh dimension factor, 
which has a value of Dl*D2*D3*D4*D5*D6*L, 
or a pointer to the dictionary entry for 
the sixth subscript parameter used to 
dimension the associated array if that 
array has variable dimensions. This field 
is not used if the associated array has 
fewer than six dimensions, or has six 
nonvariable dimensions. 

Pointer to Last Subscript Parameter: This 
field contains a pointer to the dictionary 
entry for the seventh subscript parameter 
used to dimension the associated array if 
that array has variable dimensions. This 
field is not used if the associated array 
has fewer than seven dimensions, or has 
seven nonvariable dimensions. 

132 

COMMON Table 

The COMMON table contains: (1) COMMON 
block name entries, which describe COMMON 
blocks; (2) equivalence group entries, 
which describe equivalence groups; and (3) 
equivalence variable entries, which 
describe equivalence variables. 

COMMON BLOCK NAME ENTRY FORMAT: The format 
of the COMMON block name entries 
constructed by phase 10 is illustrated in 
Figure 27. 

Chain Field: The chain field is used to 
maintain linkage between the various COMMON 
block name entries. It contains either a 
pointer to the next COMMON block name entry 
or an indicator (zero), which indicates 
that additional common blocks ha.ve not yet 
been encountered. 

Pi Field: The Pi field contains a pointer 
to the-dictionary entry for the first 
variable in this COMMON block. 

P2 Field: The P2 field contains a pointer 
to the dictionary entry for the last 
variable in this COMMON block. 

Name Field: The name field contains the 
name (right-justified) of the COMMON block 
for which this COMMON block name entry was 
constructed. 

Character Number Field: The character 
number field contains the number of 
characters in the COMMON block name. 

ISN Field: The ISN field contains the ISN 
assigned to the statement in which this 
COMMON block name first occurs. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
, Chain field , 
~-----------------------------------------~ 
, Pi field , 
~-----------------------------------------~ 
, P2 field , 
~-----------------------------------------~ 
, Name field I 
~-----------------------------------------~ 
, Name field I 
~--------------------T--------------------~ 
,Character number IISN field , 
, field, , 
L ___ . _____ -------------.L--------------------J 
Figure 27. Format of a COMMON Block Name 

Entry 



MODIFICATIONS TO COMMON BLOCK NAME ENTRIES: 
During compilation, certain fields of 
COMMON block name entries may be modified. 
Figure 28 illustrates the format of a 
COMMON block name entry after COMMON block 
processing by subroutine STALL-IEKGST and 
CORAL. Only changes are indicated; 
*stands for unchanged. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
1 * 1 
~-----------------------------------------~ 
1 * 1 
~-----------------------------------------~ 
I Total size of COMMON block 1 
~-----------------------------------------~ 
1 * 1 
~----------------------------------------~ 
1* 1 
~--------------------T--------------------~ 
1* 1 ESDID 1 L ____________________ ~ ____________________ J 

Figure 28. Format of COMMON Block Name 
Entry After COMMON Block 
Processing 

~QUIVALENCE GROUP ENTRY FORMAT: The format 
of the equivalence group entries 
constructed by phase 10 is illustrated in 
Figure 29. 

Indicator Field: The indicator field is 
nonzero if a variable in this group is 
subscripted and its DIMENSION statement has 
not been processed. 

Chain Field: The chain field is used to 
maintain linkage between the various 
equivalence groups. It contains a pointer 
to the next equivalence group entry. 

<-----------------4 bytes-----------------> 
r----------T------------------------------, 
IIndicator I Chain field 1 
Ifield 1 1 
~----------~------------------------------~ 
I Pi field 1 
~----------------------------------------~ 
1 Used by phase 15 1 
~-----------------------------------------~ 
I ISN field 1 L _________________________________________ J 

Figure 29. Format of an Equivalence Group 
Entry 

Pi Field: The Pi field contains a pointer 
to the equivalence variable entry for the 
first variable in the equivalence group or 
for the first variable in the COMMON block. 

ISN Field: The ISN field contains the ISN 
assigned to the statement in which any name 
of the EQUIVALENCE group first occurs. 

MODIFICATIONS TO EQUIVALENCE GROUP ENTRIES: 
During compilation, certain fields of 
equivalence group entries may be modified. 
Figure 30 illustrates the format of an 
equivalence group entry after equivalence 
processing by subroutine STALL-IEKGST. 
Only changes are indicated; * stands for 
unchanged. 

<-----------------4 bytes-----------------> 
r----------T------------------------------, 
I * 1* 1 
~----------~------------------------------~ 
1* 1 
~-----------------------------------------~ 
IPointer to the "head" of the equivalence 1 
1 group 1 
~-----------------------------------------~ 
1 * 1 L _________________________________________ J 

Figure 30. Format of Equivalence Group 
Entry After Equivalence 
Processing 

EQUIVALENCE VARIABLE ENTRY FORMAT: The 
format of the equivalence variable entries 
constructed by phase 10 is illustrated in 
Figure 31. 

Indicator Field: The indicator field is 
nonzero if the equivalence variable is 
subscripted prior to being dimensioned. 

Pi Field: The Pi field contains a pointer 
to the dictionary entry for this 
equivalence variable. 

NumQer 2LSu!2~cripts Field: The number of 
subscripts field contains the total number 
of subscripts used by a variable being 
equivalenced, with subscripts, prior to 
being dimensioned. 

Appendix A: Tables 133 



<-----------------4 bytes-----------------> 
r---------T------------------------------, 
IIndicator , Pi field , 
Ifield , , 
~----------+------------------------------i 
'Number of , Chain field I 
,subscripts, , 
~----------L------------------------------i 
I Offset field , 
~-----------------------------------------~ 
, Subscript field 1 
~----------------------------------------i 
1 1 
, 1 
I 1 
~-----------------------------------------i 
1 Subscript field 1 L ________________________________________ J 

Figure 31. Format of Equivalence Variable 
Entry 

Chain Field: The chain field is used to 
maintain linkage between the various 
variables in the equivalence group. It 
contains a pOinter to the equivalence 
variable entry for the next variable in the 
equi valence group .• 

Offset Field: The offset field contains 
the-displacement of this variable from the 
first element in the equivalence group. 

Subs~:ript Field: The subscript field(s) 
contains the actual subscript(s) specified 
for a variable being equivalenced, with 
subscripts, prior to being dimensioned. 

MODIFICATIONS TO EQUIVALENCE VARIABLE 
ENTRIES: During compilation, certain 
fields of equivalence variable entries may 
be modified. Figure 32 illustrates the 
format of an equivalence variable entry 
after equivalence processing by the 
STALL-IEKGST subroutine. Only changes are 
indicated; * stands for unchanged. 

134 

<-----------------4 bytes-----------------> 
r----------T------------------------------, 
1 * 1 * 1 
~----------+------------------------------~ 
1 * 1* 1 
~----------~------------------------------i 
IDisplacement of variable from group head 1 
~-----------------------------------------~ 
I * I .-----------------------------------------i , , 
I 1 
, I 
.-----------------------------------------i 
'* 1 
L ________________________________________ J 

Figure 32. Format of Equivalence Variable 
Entry After Equivalence 
Processing 

Literal Table 

The literal table contains literal 
constant entries, which describe literal 
constants used as arguments in CALL 
statements, and literal data entries, which 
describe the literal data appearing in DATA 
statements. (Entries for literal data 
appearing in DATA statements are not 
chained. They are pointed to from data 
text.) 

LITERAL CONSTM~T ENTRY FORMAT: The format 
of the literal constant entries constructed 
by phase 10 is illustrated in Figure 33. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
1 Chain field , 
~----------T-------T----------------------~ 
1 Length I 255 IUsed by STALL-IEKGST I 
I field " , 
~----------~-------~----------------------~ 
, Literal constant field I 
, (variable length) , L _________________________________________ J 

Figure 33. Format of Literal Constant 
Entry 

Chain Field: The chain field is used to 
maintain linkage between the various 
literal constant entries. It contains a 
pointer to the previous literal constant 
entry. 

Length Field: The length field contains 
the length (in bytes) of the literal 
constant. 



Literal constant Field: The literal 
constant field contains the actual literal 
constant for which the entry was 
constructed. The field ranges from 1 to 
255 bytes (1 character/byte, 
left-justified) depending on the size of 
the literal constant. 

MODIFICATIONS TO LITERAL CONSTANT ENTRIES: 
During compilation, certain fields of 
literal constant entries may be modified. 
Figure 34 illustrates the format of a 
literal constant entry after literal 
processing by STALL-IEKGST. Only changes 
are indicated; * stands for unchanged. 

<-----------------4 bytes-----------------> 
r----------------------------------------, 
I * I 
~----------T----------T-------------------~ 
1* 1* IRelative location I 
I I lin object module I L __________ ~ __________ ~ ___________________ ~ 

1* 1 L _________________________________________ J 

Figure 34. Format of Literal Constant 
Entry After Literal Processing 

LITERAL DATA ENTRY FORMAT: The format of 
the literal data entries constructed by 
phase 10 is illustrated in Figure 35. 

r----------------------------------------, 1 Length field (1 word) I 
~-----------------------------------------~ 
I Literal data field (1-255 bytes) 1 L _________________________________________ J 

Figure 35. Format of Literal Data Entry 

Length Field: The length field contains 
the length (in bytes) of the literal data 
for which the entry was constructed. 

Literal Data Field: The literal data field 
contains the actual literal data. The 
field ranges from 1 to 2S5 bytes (1 
character/byte, left-justified) depending 
on the size of the literal data. 

The branch tables contain initial branch 
table entries and standard branch table 
entries. An initial branch table entry is 
constructed by phase 10 as it encounters 

each computed GO TO statement of the source 
module. Standard branch table entries are 
constructed by phase 10 for each statement 
number appearing in the computed GO TO 
statement. 

INITIAL BRANCH TABLE ENTRY FORMAT: The 
format of the initial branch table entries 
constructed by phase 10 is illustrated in 
Figure 36. 

<------------------ 4 bytes-----------------> 
r----------T------------------------------, 
IIndicator IChain field 1 
I field 1 1 
~----------i------------------------------~ 
I Pi field I 
~-----------------------------------------i 
1 Used by phase 25 1 
~-----------------------------------------~ 
I Used by phase 25 1 L _________________________________________ J 

Figure 36. Format of Initial Branch Table 
Entry 

Indicator Field: The indicator field is 
nonzero for an initial branch table entry. 
This indicates that the entry is for 
compiler-generated statement number for the 
"fall-through" statement. (The 
fall-through statement is executed if the 
value of the control variable is equal to 
zero or larger than the number of statement 
numbers in the computed GO TO statement.) 

Chain Field: The chain field is used to 
maintain linkage between the various branch 
table entries. It contains a pointer to 
the next branch table entry. 

Pi Field: The Pi field contains a pointer 
to the statement number/array table entry 
for the compiler-generated statement number 
for the fall-through statement. 

MODIFICATIONS TO INITIAL BRANCH TABLE 
ENTRIES: During compilation, certain 
fields of initial branch table entries may 
be modified. Figure 37 illustrates the 
format of an initial branch table entry 
after phase 25 processing is complete. 
Only changes are indicated; * stands for 
unchanged. 

Appendix A: Tables 135 



<------------------4 bytes-----------------> 
r---------T------------------------------, 
1* 1* I 
~----------~------------------------------~ 
1* I 
~----------------------------------------~ 
IRelative address of statement associated 1 
Iwith fall-through statement number 1 
~----------------------------------------~ 
IPointer to address constant reserved for 1 
Ifall-through statement number 1 L _________________________________________ J 

Figure 37. Format of Initial Branch Table 
Entry After Phase 25 
Processing 

STANDARD BRANCH TABLE ENTRY FORMAT: The 
format of the standard branch table entries 
constructed by phase 10 is the same as the 
format for initial branch table entries. 

Indicator Field: This field is zero for 
standard branch table entries. 

Chain Field: This field is used to 
maintain linkage between the various branch 
table entries. It contains a pointer to 
the next branch table entry. 

Pi Field: The Pi field contains a pointer 
to the statement number/array table entry 
for the statement number (appearing in a 
computed GO TO statement) for which the 
standard branch table entry was 
constructed. 

MODIFICATIONS TO STANDARD BRANCH TABLE 
ENTRIES: During compilation, certain 
fields of standard branch table entries may 
be modified. Figure 38 illustrates the 
format of a standard branch table entry 
after the processing of phase 25 is 
complete. Only changes are indicated; * 
stands for unchanged. 

<-----------------4 bytes-----------------> 
r---------T------------------------------, 
1 * I * I 
~----------~------------------------------~ 
I * I 
~----------------------------------------~ 
IRelative address of statement associated I 
Iwith this statement number I L _________________________________________ J 

Figure 38. Format of Standard Branch Table 
Entry After Phase 25 
Processing 

136 

FUNCTION TABLE 

The function table (IEKLFT) contains 
entries for the IBM supplied func,tion 
subprograms and in-line routines. The 
subprograms reside on the 
FORTRAN system library (SYS1.FORTLIB), 
while the in-line routines are expanded at 
compile time. The function table is used 
by phase 15 to determine the validity of 
the arguments to the function subprogram. 

Each entry in the function table (see 
Table 23) contains two fields: an index 
field (2 bytes) and a function name field 
(6 bytes). 

Function Name Field: This field contains 
the names of all library and in-line 
functions. It is searched in ascending 
order beginning with field 1 and then with 
field 2. Field 1 contains the four 
low-order characters of the name; field two 
contains the two high-order characters of 
the name. 

Table 23. Function Table -- IEKLFT 
(12, 128) 

r- 2 bytes .,- 6 bytes 

Field 1 Field 2 
Index 

Function Name 
I 
I 

Index Field: This field contains a pointer 
to entries in the following tables: 

FUNTB1(128) -- This table contains 128 
l-byte entries pointing back 
to the function table. 

FUNTB2(128) -- This table contains 128 
l-byte entries which give 
the mode of the arguments 
for all library and in-line 
functions. 



FUNTB3(128) -- This table contains 60 
i-byte entries which give 
the mode of the result for 
all in-line functions. The 
first 68 bytes of the table 
are not used. 

FUNTB4(68) -- This table contains 68 
4-byte locations reserved 
for dictionary pOinters to 
library routines. 

TEXT OPTIMIZATION BIT TABLES 

There are nine major bit tables used 
extensively throughout text optimization. 
These tables (each four words or 128 bits 
in length) contain bits that are preset. 
Only the first 86 bit positions in each 
table are meaningful and each of these is 
associated with a particular text entry 
operator. The settings (on or off) given 
to these bits indicate either the validity 
of operand positions in a text entry with a 
particular operator or the candidacy of a 
text entry with a particular operator for 
text optimization procedures. 

Three of these tables, MVW, MVU, and MVV 
are tested by subroutine KORAN-IEKQKO and 
indicate the validity of the operand 
positions in a text entry with a given 
operator. The MVW table indicates the 
validity of the operand 1 position; the MVU 
table indicates the validity of the operand 

2 position; and the MVV table indicates the 
validity of the operand 3 position. For 
example, if the bit in MVW that corresponds 
to a particular operator is set to on, then 
the operand 1 position of a text entry 
having that operator contains a valid or 
actual operand. If the bit is set to off, 
the operand 1 position of the text entry 
does not contain an actual operand. (In 
the latter case, the operand 1 position may 
still contain information that is pertinent 
to the text entry; however, it does not 
contain an actual operand.) 

The remaining six tables, MBM, MSGM, 
MGM, MXM, MSM, and MBR are also tested by 
subroutine KORAN-IEKQKO and indicate the 
candidacy of a text entry with a particular 
operator for text optimization procedures. 
The MBM table indicates whether or not text 
entries with a particular operator are to 
be considered for backward movement; the 
MXM table indicates whether or not text 
entries with a particular operator are to 
be considered for common expression 
elimination; the MSM table indicates 
whether or not text entries with a 
particular operator are to be considered 
for strength reduction; and the MBR table 
indicates whether or not the operator is a 
branch. 

The text optimization bit tables are 
illustrated in Table 24. In this table, 
the operator associated with each bit 
position in the bit tables is identified. 
The bits settings for each operator as they 
appear in the bit tables is also shown. An 
x signifies that the bit is oni a blank 
signifies that the bit is off. 

Appendix A: Tables 137 



Table 24. Text Optimization Bit Tables 

Bit Tables Bit Tables 

Bit Operator 1---,- Bit Operator --,------

MVW MVU MW MSGM MBM MXM MSM MBR MGM MVW MVU MW MSGM MBM MXM MSM MBR MGM 

1 ·NOT· X X X X 44 LlBF X X X 

2 UNARY MINUS X X X X 45 RS X X X X X X 

3 46 LS X X X X X X 

4 ·AND· X X X X X 47 BXHLE --
5 } 48 - f--- --
6 ·OR· X X X X X 49 

7 • XOR· X X X X X X 50 ·LE· X X X X X 

8 ST X X X 51 ·GE· X X X X X 

9 , (ARG) X X X X 52 ·EQ· X X X X X 

10 + X X X X X X X X 53 ·LT· X X X X X 

11 - X X X X X X X X 54 ·GT· X X X X X 

12 * X X X X X X X 55 ·NE· X X X X X 

13 / X X X X X X X 56 MAX2 X X X X X 

14 LA X X X X 57 MIN2 X X X X X 
-

15 EXT X 58 DIM X X X X X 

16 BG X X X X X 59 101M X X X X X 

17 Bl X X X X X 60 DMOD X X X X X 

18 BNE X X X 61 MOD X X X X X 

19 BGE X X X X X 62 AMOD X X X X X 

20 BlE X X X X X 63 DSIGN X X X X X 

21 BE X X X 64 SIGN X X X X X 

22 SC X X X X X X X 65 ISIGN X X X X X 

23 I/O LIST X X X 66 DABS X X X X 

24 BCOMP X X 67 ABS X X X X 

25 ( 68 lABS X X X X 

26 EM 69 IDINT X X X X 

27 B 70 

28 BA X X 71 INT X X X X 

29 BBT X X X 72 HFIX X X X X 

30 B~F X X X 73 IFIX X X X X 

31 lBIT X X X X X 74 DFlT X X X X 

32 BGZ X X 75 FlT X X X X 

33 BlZ X X 76 DBlE X X X X 

34 BNEZ X X 77 BITON X X 

35 BGEZ X X 78 BITOFF X X 

36 BlEZ X X 79 BITFlP X X 

37 BEZ X X 80 AN OF X X X X X 

38 81 ORF X X X X X 

39 NMlST X X 82 COMPl X X X X 

40 83 MOD24 X X X X 

41 BF X X 84 lCOMPl X X X X 

42 BT X X 85 SHFTR X X X X X 

43 LOB X X X 86 SHFTl X X X X X 

138 



REGISTER ASSIGNMENT TABLES 

The register assignment tables are a set 
of one-dimensional arrays used by the full 
register assignment routines of phase 20. 
There are three types of tables: local 
assignment tables (see Table 25), global 
assignment tables (see Table 27),and 
register usage tables. The register usage 
tables are work tables used by the local 
and global assignment routines in the 
process of full register assignment. 

Register Use Table 

The format of the register use tables, 
TRUSE and RUSE, are the same for the local 
and global assignment routines. Each table 
is 16 words long. Words 2 through 11 
represent general registers 2 through 11; 
words 12, 14, and 16 represent 
floating-point point registers 2, 4, and 6; 
words 1, 13, and 15 are unused. 

If the contents of TRUSE(i) and RUSE(i) 
is equal to zero, then register i is 
available for assignment. If the value 
contained in TRUSE(i) or RUSE(i) is between 
2 and 128, inclusive, then the register i 
is assigned to the variable whose MCOORD 
value is equal to the contents of TRUSE(i) 
or RUSE(i). If the contents of TRUSE(i) or 
RUSE(i) has a value between 252 and 255, 
register i is unavailable for assignment 
and is reserved for special use (see next 
paragraph) • 

Register Use Considerations: Registers 15 
and 14 are not available for use by 
register assignment. They are reserved and 
used for branching during the execution of 
the object module resulting from the 
compilation. 

Table 25. Local Assignment Tables 
r----T----------------------------T-------, 
I Name I Function IOrigin1 1 
~----+----------------------------+-------~ 
J Serves as index to TXP, BVP,IFWDPAS-

BVRA, BVA. IIEKRFP 
I 

TXP Gives the storage location I FWDPAS-

BVP 

of the text item associated IIEKRFP 
with each value of J. I 

contains the MCOORD value 
associated with operand 1 
the text item represented 
J. 

I 
I FWDPAS-

oflIEKRFP 
byl 

I 

BVRA Indicates the register 
locally assigned to the 
quantity represented by J. 

I 
IBKPAS
IIEKRBP 
I 

BVA Represents the activity 
within the block of the 
quantity represented by 
also conta~ns indicator 
describing the quantity 
Table 25). 

I 
IFWDPAS-
IIEKRFP 

J; I 
bits I 
(seel 

I 
I 

WJ2 Indicates whether a variablelFWDPAS-
is eligible for local IIEKRFP 
assignment. Indexed via thel 
MCOORD values obtained from I 
BVP. Text item number of I 
first definition = J. I 

~----~----------------------------~-------~ 
11This column indicates the name of the I 
I register assignment routine that I 
I initially creates the particular table. I 
12Although WJ is distinctly a local I 
I assignment table, it is indexed by the I 
I quantity MCOORD (which is used to index I 
I the global assignment tables) rather I 
I than by the local assignment table I 
I index, J. I l _________________________________________ J 

Appendix A: Tables 139 



Table 26. BVA Table 
r---T-------------------------------------, 
IBitl Meaning I 
~---t-------------------------------------~ 

o Not used. 

1 Text item is candidate for forward 
movement. 

2 Pl is a temporary used as an 
argument. 

3 Inhibit 'inter-block' register 
assignment for text item. 

4 Text item is candidate for 
'inter-block· register assignment. 

5 Text item is candidate for 
floating-point downgrading if a CALL 
statement is found. 

6 Text item is candidate for register 
classification. 

7 Pl is the result of an integer mod 
function. 

8 The operand has been encountered 
before. 

9 Text item is the imaginary result of 
a complex function. 

10 The operand is defined by a function 
call. 

11 Pl is floating-point. 

12 One of the operands is the result of 
an integer multiply or divide. 

13 Zero length temporary indicator. 

14 Case II subscript indicator. Text 
item was changed to a Case II from 
Case I. 

15 

BVA - Local Activity. 

31 
~--~-------------------------------------i 
I Note: The BVA table consists of a I 
Ifullword for each text in the block. I l _________________ . _________________________ J 

140 

Table 27. Global Assignment Tables 
r------T-------------------------T--------, 
I Name I Function IOrigin I 
~------+-------------------------+--------~ 
MCOORDIServes as an index to Phase 151 

IMVD, EMIN, RA, RAL, WABP, I 
IWA and WJ. I 
I I 
I I 

MVD IGives the location of the Phase 15 

EMIN 

RA 

RAL 

WA 

Idictionary entry for the 
Ivariable associated with 
the given value of 
MCOORD. 

Indicates whether the REGAS
variable associated with IEKRRG 
a particular MCOORD value 
is eligible for global 
assignment. 

Indicates the number of GLOBAS-
the first register IEKRGB 
globally assigned to the 
variable represented by 
the MCOORD value; 
provides continuity in 
global assignment from 
inner to outer loops. 

Indicates the register 
globally assigned to the 
variable represented by 
the MCOORD value. 

i 
i 
iGLOBAS-
IIEKRGB 
I 
I 
I 
I 

Indicates the total I FWDPAS-
activity for the variable IEKRFP 
represented by the MCOORD 
value. Calculated by 
adding 4. to the value 
each time a definition of 
the variable is 
encountered and adding 3. 
to the value for a use of 
the variable. 

IWABP Indicates the activity of FWDPAS-
I 
I 
I 

base variables. IEKRFP 
Calculated in the same 
manner as the WA table. l ______ ~ _________________________ ~ _______ _ 



Register 13 is not available for use by 
register assignment. It is reserved and 
used during the execution of the object 
module to contain the address of the save 
area set aside for the object module (see 
"Generation of Initialization Instructions" 
under "Section 2: Discussion of Major 
Components" in this publication). Register 
13 is also used to: 

• Branch tables for computed GO TO 
statements 

• Parameter list for external references 
• Local constants, variables, and arrays 
• Adcons for external references 

If the above items exceed 4096 bytes, 
the adcons are referred to by register 12. 

Register 12 is not available for use by 
register assignment. 

Registers 11, 10, and 9 mayor may not 
be available for use by register 
assignment. Their use depends upon the 
number of required reserved registers (see 
Phase 20, "Branching Optimization"). 

NAMELIST DICTIONARIES 

Namelist dictionaries are developed by 
CORAL for the NAMELIST statements appearing 
in the source module. These dictionaries 
provide IHCNAMEL with the information 
required to implement READ/WRITE statements 
using NAMELIST statements. The namelist 
dictionary constructed by CORAL from the 
phase 10 namelist text representation of 
each NAMELIST statement contains an entry 
for the namelist name and entries for the 
variables and arrays associated with that 
name. 

NAMELIST NAME ENTRY FORMAT: The format of 
the entry constructed for the namelist name 
is illustrated in Figure 39. 

r----------------------------------------, 
, Name field (2 words) , L _________________________________________ J 

Figure 39. Format of Namelist Name Entry 

Name Field: The name field contains the 
namelist name, right-justified, with 
leading blanks. 

NAMELIST VARIABLE ENTRY FORMAT: The format 
of the entry constructed for a variable 
appearing in a NAMELIST statement is 
illustrated in Figure 40. 

r-----------------------------------------, 
\ Name field (2 words) \ 
.-----------------------------------------i 
\ Address field (1 word), 
~----------T----------T------------------~ 
, Item Type I Mode I Not used , 
, field I field , (2 bytes) I 
, (1 byte) ,(1 byte) , , L ___________ i __________ i __________________ J 

Figure 40. Format of Namelist Variable 
Entry 

Name Field: The name field contains the 
name of the variable, right-justified, with 
leading blanks. 

Address Field: The address field contains 
the relative address of the variable. 

Item Type Field: This field is zero for a 
variable. 

Mode Field: The mode field contains the 
mode of the variable. 

NAMELIST ARRAY ENTRY FORMAT: The format of 
the entry constructed for an array 
appearing in a NAMELIST statement is 
illustrated in Figure 41. 

r-----------------------------------------, 
, Name field (2 words) I 
.-----------------------------------------i 
, Address field (1 word) , 
.----------T---------T-----------T--------~ 
, Item Type, Mode ,Number of ,Element, 
,field ,field ,dimensions, length , 
I , , field I field , 
I (1 byte) , (1 byte), (1 byte) , (1 byte), 
.----------f---------i-----------i--------~ 
, Indicator I First dimension factor field, 
I field I (3 bytes) , 
, (1 byte) I , 
.----------f------------------------------~ 
I Not used I Second dimension factor fieldl 
, (1 byte) , (3 bytes) , 
.----------t------------------------------~ 
, Not used I Third dimension factor field I 
I (1 byte) , (3 bytes) , 
.----------i------------------------------i 
I Etc. (refer to "Dimension Entry Format") , L ________________________________________ J 

Figure 41. Format of Namelist Array Entry 

Name Field: The name field contains the 
name of the array, right-justified, with 
leading blanks. 

Address Field: The address field contains 
the relative address of the beginning of 
the array. 

Appendix A: Tables 141 



Item Type Field: This field is nonzero for 
an array. 

Mode Field: This field contains the mode 
of the elements of the array. 

Number of Dimensions Field: This field 
contains the-number o~dimensions (1 
through 7) of the associated array. 

~!emen~_~eng!:.~Field: The element length 
field contains the length of each element 
in the associated array. 

Indicator Field: This field is zero if the 
associated array has variable dimensions; 
otherwise, it is nonzero. 

First Dimension Factor Field: If the 
associated array-does not have variable 
dimensions, this field contains the total 
size of the array. If the array has 
variable dimensions, this field contains 
the relative address of first subscript 
parameter used to dimension the array. 

Second Dimension Factor Field: If the 
associated array does not have variable 
dimensions, this field contains the 
location of the second dimension factor 
(Dl*L). If the array has variable 
dimensions, this field contains the 
relative address of the second subscript 
parameter used to dimension the array. 

Third Dimension Factor Field: If the 
associated array does not have variable 
dimensions, this field contains the 
location of the third dimension factor 
(Dl*D2*L). If the array has variable 
dimensions, this field contains the 
relative address of the third subscript 
parameter used to dimension the array. 

There are two major diagnostic tables 
associated with error message processing by 

142 

phase 30: the error table and the message 
pointer table. 

ERROR TABLE 

The error table is constructed by phases 
10 and 15. As source statement errors are 
encountered by these phases, corresponding 
entries are made in the error table. Each 
error table entry consists of 2 one-word 
fields. The first field contains the 
message number associated with the 
particular error. The message numbers that 
can appear in the error table are those 
associated with messages of error code 
levels 4 and 8 (refer to the publication 
IBM System/360 Operating System: FORTRAN 
IV (G and H) Programmer's Guide). The 
second field contains either an internal 
statement number, if the entry is for a 
statement that is in error, a dictionary 
pointer, if the entry is for a symbol that 
is in error (e.g., a variable that is 
incorrectly used in an EQUIVALENCE 
statement), or a statement number, if the 
entry is for an undefined statement number. 

MESSAGE POINTER TABLE 

The message pointer table contains an 
entry for each message number that may 
appear in an error table entry. Each entry 
in the message pointer table consists of a 
single word. The high-order byte of the 
word contains the length of the message 
associated with the message number. The 
three low-order bytes contain a pointer to 
the text for the message associated with 
the message number. 



Intermediate text is an internal 
representation of the source module from 
which the machine instructions of the 
object module are generated. The 
conversion from intermediate text to 
machine instructions requires information 
about variables, constants, arrays, 
statement numbers, in-line functions, and 
subscripts. This information, derived from 
the source statements, is contained in the 
information table, and is referred to by 
the intermediate text. The information 
table supplements the intermediate text in 
the generation of machine instructions by 
phase 25. 

PHASE 10 INTERMEDIATE TEXT 

Phase 10 creates intermediate text (in 
operator-operand pair format) for use as 
input to subsequent phases of the compiler. 
There are six types of intermediate text 
produced by phase 10: 

• Normal text -- the operator-operand 
pair representations of source 
statements other than DATA, NAMELIST, 
DEFINE FILE, FORMAT, and Statement 
Functions (SF). 

• Data text -- the operator - operand 
pair representations of DATA statements 
and the initialization constants in 
explicit type statements. 

• Namelist text -- the operator-operand 
pair representations of NAMELIST 
statements. 

• Define file text -- the 
operator-operand pair representation of 
DEFINE FILE statements. 

• SF skeleton text -- the 
operator-operand pair representations 
of statement functions using sequence 
numbers as operands of the intermediate 
text entries. The sequence numbers 
replace the dummy arguments of the 
statement functions. This type of text 
is, in effect, a "skeleton" macro. 

• Format text -- the internal 
representations of FORMAT statements. 

Note: Intermediate text representations 
are, for subblock allocation, divided into 
only two main types: special (DATA, 
NAMELIST, DEFINE FILE, FORMAT, and SF 

APPENDIX B: INTERMEDIATE TEXT 

skeleton text), and normal (text other than 
special text). The intermediate text 
representations are comprised of individual 
text entries. Each intermediate main text 
type is allocated unique subblocks of main 
storage. The subblocks that constitute an 
intermediate text area are obtained by 
phase 10, as needed, via requests to the 
FSD (see "Storage Distribution" under 
"FORTRAN System Director"). 

Intermediate Text Chains 

Each intermediate text area (i.e., the 
subblocks allocated to a particular type of 
text) is arranged as a chain that links 
together (1) the text entries that are 
developed and placed into that area, and 
(2) in some cases, the intermediate text 
representation for individual statements. 

The normal text chain is a linear chain 
of normal text entries; that is, each 
normal text entry is pointed to by the 
previously developed normal text entry. 

The data text chain is bi-linear. This 
means that: 

1. The text entries that constitute the 
intermediate text representation of a 
DATA statement are linked by means of 
pointers. Each text entry for the 
statement is pointed to by the 
previously developed text entry for 
the statement. 

2. The intermediate text representations 
of individual DATA statements are 
linked by means of pointers, each 
representation being pointed to by the 
previously developed representation. 
(A special chain address field within 
the first text entry developed for 
each DATA statement is reserved for 
this purpose.) 

The namelist text chain operates in the 
same manner as the data text chain. 

The define file text chain is a linear 
chain of define file text entries, each 
define file text entry is pointed to by a 
previously developed define file text 
entry. A zero chain signals the end of all 
define file text for a program. 

The SF skeleton text chain is linear 
only in that each text entry developed for 

Appendix B: Intermediate Text 143 



an operator-operand pair within a 
particular statement function is pointed to 
by the previous text entry developed for 
that same statement function. The 
intermediate text representations for 
separate statement functions are not 
chained together. However, a skeleton can 
readily be obtained by means of the pointer 
contained in the dictionary entry for the 
name of the statement function. 

The format text chain consists of 
linkages between the individual 
intermediate text representations of FORMAT 
statements. The pointer field of the 
second text entry in the intermediate 
representation of a FORMAT statement points 
to the intermediate text representation of 
the next FORMAT statement. (The individual 
text entries that make up the intermediate 
text representation of a FORMAT statement 
are not chained.) 

Format of Intermediate Text Entry 

Those statements that undergo conversion 
from source representation to intermediate 
text representation are divided into 
operator-operand pairs, or text entries. 
Figure 42 illustrates the format of an 
intermediate text entry constructed by 
phase 10. 

<-----------------4 bytes-----------------> 
r---------T------------------------------, 
IAdjective I I 
Icode fieldlChain field I 
I (operator) 1 I 
~---------~----------T-------------------~ 
IMode field IType field I 
~----------T----------~-------------------~ 10 IPointer field (operand) I L __________ ~ ______________________________ J 

Figure 42. Intermediate Text Entry Format 

Adjective Code Field: The adjective code 
field corresponds to the operator of the 
operator-operand pair. Operators are not 
entered into text entries in source form; 
they are converted to a numeric value as 
specified in the adjective code table (see 
Table 28). It is the numeric 
representation of ·the source operator that 
actually is inserted into the text entry. 
Primary adjective codes (operators that 
define the nature of source statements) 
also have numeric values. 

Chain Field: The chain field is used to 
maintain linkage between intermediate text 
entries. It contains a pOinter to the next 
text entry. 

144 

Mode and Type Fields: The mode and type 
fields contain the mode and type of the 
operand of the text entry. Both items 
appear as numeric quantities in a text 
entry and are obtained from the mode and 
type table (see Tables 21 and 22). 

Pointer Field: The pointer field contains 
a pOinter to the information table entry 
for the operand of the operator-operand 
pair. However, if the operand is a dummy 
argument of a statement function, the 
pointer field contains a sequence number, 
which indicates the relative position of 
the argument in the argument list. 

Note: The text entries for FORMAT 
statements are not formatted as described 
in the foregoing. FORMAT text entries 
consist of the characters of the FORMAT 
statement in source format packed into 
successive text entries. 

Table 28. Adjective Codes (Part 1 of 3) 
r--------T-----------7--------------------, 
I I Mnemonic I I 
Icode (inl (where 1 I 
I decimal) I applicable) I Meaning I 
~--------+-----------+--------------------~ 

1 • NOT. NOT 

4 • AND. 

5 

6 .OR. 

7 .XOR. 

8 

9 

10 + 

11 

12 * 
13 / 

14 ** 
15 (f 

16 • LE. 

17 .GE. 

18 .EQ. 

AND 

Right arithmetic 
parenthesis 

OR 

Exclusive OR 

Equal sign 

Comma 

Plus 

Minus 

Multiply 

Divide 

Exponentiation 

Function parenthesis I 
I 

Less than or equal I 

Greater than or 
equal 

Equal 

I 
I 
I 
I , 
I 

19 .LT. Less than I ________ ~ ___________ ~ ____________________ J 



Table 28. Adjective Codes (Part 2 of 3) 
r--------T-----------T--------------------, 
I I Mnemonic I I 
1 Code (inl (where I I 
I decimal) I applicable) I Meaning 1 
r--------t-----------t--------------------~ 

20 .GT. Greater than 

21 

22 

25 

26 

71 

193 

205 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

.NE. 

(s 

Not equal 

Left subscript 
parenthesis 

Left arithmetic 
parenthesis 

End mark 

GO TO, and implied 
branches 

BLOCK DATA 

DATA 

SUBROUTINE, 
FUNCTION, or ENTRY 

FORMAT (text) 

End of I/O list 

CONTINUE 

Relative record 
number 

Object time format 
variable 

BACKSPACE 

REWIND 

END FILE 

WRITE unformatted 

READ unformatted 

WRITE formatted 

READ formatted 

Beginning of I/O 
list 

222 LDF Statement number 
definition 

--------~-----------~--------------------

Table 28. Adjective Codes (Part 3 of 3) 
r--------T-----------T--------------------, 
I I Mnemonic I I 
I Code (in I (where I I 
I decimal) 1 applicable) I Meaning 1 
~--------t-----------t--------------------~ 

223 GLDF IGenerated statement 
Inumber definition 
I 

225 IWRITE using NAMELIST 
I 

226 IREAD using NAMELIST 
I 

227 I FIND 
1 

230 11/0 end-of-file 
1 parameter 
1 

231 11/0 error parameter 
I 

232 1 BLANK 
1 

233 RET I RETURN 
I 

234 STOP 1 STOP 
1 

235 1 PAUSE 
1 

238 I ASSIGN 
1 

240 I Beginning of DO 
I 

241 I Arithmetic 
lassignment statement 
I 

242 NDOIF lEnd of DO 'IF' 
I 

243 \Arithmetic IF 
I 

244 Relational IF 

246 

247 

248 

249 

250 

251 

252 

253 

LIST 

END 

CALL 

I/O or NAMELIST list 
item 

NAME LIST 

END 

Computed GO TO 

I/O unit number 

FORMAT (statement 
numbers) 

NAMELIST name l ________ ~ ___________ ~ ___________________ _ 

Appendix B: Intermediate Text 145 



Examples of Phase 10 Intermediate Text 

An example of each type of phase 10 text 
(normal, data, namelist, define file for
mat, and SF skeleton> is presented below. 
For each type, a source language statement 
is first givEm. This is followed by the 
phase 10 text representation of that 
statement. 

The phase 10 Q2!~~1_~~~~ representation 
of the arithmetic statement 

100 A B + C * D / E 

is illustrated in Figure 43. 

r-----------------T-----------------T-----------------T-----------T----T----------------, 
I Adjecti ve I I I I I I 
I Code I Chain I Mode I Type I 0 I Pointer I 
~-----------------+-------------.----+-----------------+-----------+----+----------------~ 
I Statement I I I I I I 
I number I I Sta tement, 'I I 
I defini tion I 'number' 0 'I ---+- 100 , 

L:t---~~i~h~~~i~----t-----------------t------~~~l-------t---~~~1~;~-t----t~~----------1 
L:t---=-------------t-----------------t------~~~l-------t---~~~1~~~-t----t~-~----------1 
L:t---~-------------t-----------------t------~~~l-------t---~~~1~;~-t----t~-~----------1 
~~-----------------+-----------------+-----------------+-----------+----+----------------~ 
L.i * I I Real I Scalar", , --.. D I 
L:f---~-------------t-----------------t------~~~l-------t---~~~1~;~-t----t~-;----------1 
L:t-----------------t-;~-~~~~-~~~~~l--t-----------------t-----------t----t----------------1 

, End mark2 , text entry I 0 ,0 'I ISN3 I 
~ f-----------------r-----------------+-----------------+-----------+----+----------------~ 

l I I I 1 , I 
I 1 byte , 3 bytes I 2 bytes , 2 bytes ,byte, 3 bytes I 
~-----------------i-----------------i-----------------i ___________ i ____ L ________________ ~ 

, 1Nonsubscripted variable. I 
I 20perator of the special text entry that signals the end of the text representation , 
, of a source statement. , 
I 3Compiler generated sequence number used to identify each source statement. I L _______________________________________________________________________________________ J 

• Figure 43. Phase 10 Normal Text 

146 



The phase 10 data text representation of 
the DATA statement-------

DATA A,B/2.1,3HABC/,C,D/1.,1.! 

is illustrated in Figure 44. 

r-----------------T-----------------T-----------------T-----------T----T----------------, 
I Adjective I I I I I I 

I Code I Chain I Mode I Type I 0 I Pointer I 

t-----------------+-----------------+------------·-----+-----------+----+--------------~-~ 
I I I I I I To text for I 

I I I I I I---+-next DATA h 
I DATA I I 0 I ISN I I statement I I 

t-----------------+-----------------+-----------------+-----------+----+--~-------------~ I 
I 0 I I Real I Scalar I I --+- A I + 

L:t-----~-----------t-----------------t------;~~l-------t---~~~1~~--t----t~~-----------1 
~~----------------~+-----------------+-----------------+-----------+----+----------------~ 
Ltoi I I I Real I Constant I I ~ 2.1 I 

L:t-----~-----------t-----------------t------~i~~~~l----t---~~~~~~~~t----t~3~~~~-------1 
~t - - -- - --- - +-----------------+-----------------+-----------+----+----------------~ 
~ / I I Real I Scalar I I ~ C I 

~-----------------+-----------------+-----------------+-----------+----+----------------~ 
~, I I Real I Scalar I I ---+- D I 
~t-----------------+-----------------+-----------------+-----------+----+----------------~ 
~ / I I Real I Constant I I---+-1 • I 

L:t-----~-----------t------o----------t------;~~l-------t---~~~~~~~~t----t~1~----------1 
t-----------------+-----------------+-----------------+-----------+----+----------------~ 
I I I I I 1 I I 
I 1 byte I 3 bytes I 2 bytes I 2 bytes Ibytel 3 bytes I L _________________ ~ _________________ ~ _________________ ~ ___________ ~ ____ ~ ________________ J 

Figure 44. Phase 10 Data Text 

Appendix B: Intermediate Text 147 



The phase 10 namelist text representa
tion of the NAMELIST statement 

N~..MELIST /NAME1/A, B" C/NAME2/D, E, F/NAME3/G 

where A and F are arrays is illustrated in 
Figure 45. 

r-----------------T--------------T-----------------T-----------T----T-------------------, 
1 Adjective 1 1 1 1 1 1 
1 Code 1 Chain 1 Mode 1 Type 1 0 1 Pointer 1 
~-----------------+--------------+-----------------+-----------+----+-------------------~ 
1 NAMELIST 1 1 NAMELIST 1 0 1 1---- NAME 1 1 

~~-----------------:r=-------------+-----------------+-----------+----+-------------------~ 
L.-..f / 1 1 0 1 0 liTo text for 1 

I 1 1 1 I 1--+ next NAMELIST 
1 1 1 1 1 1 block 1 

L:t---~~~;----------iF-------------t------~~~l-------t---~~~~;---t----t~~--------------1 
L:t LIST -ii-------------t------~~~l-------t---;~~l~~--t----t~~--------------1 
L:t---~~~;----------ii--o----------t------~~~l-------t---;~~1~~--t----t~~--------------1 
c:t NAMELIST -ii-------------t----~~~;~~;;-----t---o-------t----t~~~~~2----------1 
~ -~-------------+-----------------+-----------+----+--~----------------~ 
L-t / 1 I 0 1 0 liTo text for 

1 1 1 1 1 1---... next NAMELIST 1 
1 1 1 I I I block 

L:t---~~;;----------ii-------------t------~~~l-------t---~~:1~~--t----t~~--------------1 
It------ --- -t ----·--+-----------------+-----------+----f--------------------~ 
L..--f LIST 1 1 Real I Scalar I 1--+ E 1 
It------ --- ------1=-------------+.-----------------+-----------+----+-------------------~ 
~ LIST 1 0 1 Real 1 Array I 1---- F 1 
c:t---~~~~~~~~------~-------------t----~~~;~~~;-----t---o-------t----t~~~~;3----------1 
L:t---~----------- -t--------------t------o----------t---o-------t----t----;~-~~;~-f~~----~ 

1 1 1 1 1 I----next NAMELIST I 
1 1 1 1 1 1 statement h 

L:t---~~~;----------~--o----------t------~~~l-------t---~~~1~~--t----t~~--------------1 : 
r-----------------t--------------t-----------------t-----------t-1--t-------------------1 + 
1 1 byte I 3 bytes 1 2 bytes 1 2 bytes Ibytel 3 bytes 1 L _________________ ~ ______________ i _________________ i ___________ i ____ ~ ___________________ J 

Figure 45. Phase 10 Namelist Text 

148 



The phase 10 define file text 
representation of the DEFINE FILE statement 

where a~ is the input/output unit number, 
m~ is the number of records, r~ is the 
maximum record length, f~ is the format 
code, and v~ is the associated variable, is 
illustrated in Figure 46. 

r-----------------T-----------------T-----------------T-----------T----T----------------, 
I Adjective I I I I' I 
I Code I Chain I Mode 'Type I 0, Pointer I 
~-----------------+-----------------+-------------.----+-----------+----+----------------~ 
I I/O unit number I I Integer I Constant, , • a 1 , 

L:t----------~------t-----------------t----~~~~;~~------t--~~~~~~~~-t----t-----~--~~------1 
L:f----- --- ~------t-----------------t----~~~~;~~------t--~~~~~~~~-t----t-----~--~~------1 

L:f--f;~~~~-~~d~(f~)T-~~i~~~~-~~-~~~~-t----~~~~;~~------t--~~~1~~---t----t-----~--~~------1 
I , define file text' I' I , 
, I entry I I I' , 

~ F-----------------f-----------------+-----------------+-----------+----+----------------~ I , , I I 1 , , 
I 1 byte I 3 bytes , 2 bytes I 2 bytes Ibytel 3 bytes I l _________________ ~ _________________ ~ _________________ ~ ___________ ~ ____ ~ ________________ J 

Figure 46. Phase 10 Define File Text 

The phase 10 SF skeleton text 
representation of the statement function 

ASF (A,B,C) = A+D*B*E/C 

is illustrated in Figure 47. 

r-----------------T-----------------T-----------------T-----------T----T----------------, 
I Adjective I , I I' , 
,Code I Chain , Mode 'Type I 0, Pointer , 
~-----------------+-----------------+-----------------+-----------+----+----------------~ 
I (I ,0 I 0 ,,1 I 

L:f-----+- - - -----t- ---t------~~~1-------t---~~~1~~--t----t~~-----------1 
L:t-----------------+-----------------+-----------------+-----------+----+----------------~ 

* I I 0 I 0 'I 2 , 
L:t-----------------+-----------------+-----------------+-----------+----+----------------~ * I 'Real I Scalar I ,----.. E I 
L:f-----------------+-----------------+-----------------+-----------+----+----------------~ 

/ I I 0 I 0 I' 3 I 
L:t-----------------+-----------------+------------------+-----------+----+----------------~ 

) I I 0 I 0 I' I 
L:f-----------------+-----------------+-----------------+-----------+----+----------------~ 

End mark I 0 I 0 I 0 I' 0 , 
~-----------------+-----------------+-----------------+-----------+----+----------------~ 
I I I I I 1 I I 
I 1 byte I 3 bytes I 2 bytes I 2 bytes ,by tel 3 bytes , l _________________ ~ _________________ ~ _________________ ~ ___________ ~ ____ ~ ________________ J 

Figure 47. Phase 10 SF Skeleton Text 

Appendix B: Intermediate Text 149 



The phase 10 Kormat text representation 
of the FORMAT statement 

5 FORMAT C2HOA,A6//SX,3 
(I4,E12.S,3F12.3,'ABC') 

is illustrated in Figure 48. 

r------------------r-----------------T-----------------T-----------T----T----------------, 
, Pointer, I I I I I 
,Code ,Chain I Mode I Type ,0, Pointer , 
~----------------t-----------------t-----------------t-----------t----t---·-------------~ 
,Statement, , '" , 
'number' , " I Statement , 
I definition, ,11, 0 l' I number 5 , 

L:F------------------f-----------------t-----------------t-----------t----t----------------~ 
, , , I I' To text , 
, I I " ,for next 'i 
, , , " I FORMAT , 
'FORMAT' ,ISN, 0 I' statement ,I l.I --------~----------------+-----------------+-----------+----+----------------~ I 

l---(--~----------j------;~o~-------j------~~-~-------j---~6-~----j-~--j-/5~~-----------j I 
~-----------------t-----------------t-----------------t-----------t----t----------------~ 
, ' ,3(I, 4, 'El I 2 , .5, , 
~-----------------·t-----------------t-----------------t-----------t----t----------------~ 
I 3 I F12 I .3 " , , A I BC' I 
~-----------------t-----------------t-----------------t-~---------t----+----------------~ 
') ') t 15 :1. I .Df) 'iSIS , 1) "fifi6 I 
~-----------------+-----------------t-----------------+-----------+----+----------------~ 
I I I I I 1 I , 
, 1 byte , 3 bytes I 2 bytes I 2 bytes ,byte, 3 bytes , 
~-----------------~-----------------~-----------------~-----------~--.-~----------------~ 
,1Group mark ('4F' in hexidecimal) , L _______________________________________________________________________________________ J 

• Figure 48. Phase 10 Format Text 

150 



PHASE 15/PHASE 20 INTERMEDIATE TEXT 
MODIFICATIONS 

During phase 15 and phase 20 text 
processing, the intermediate text entries 
are modified to a format more suitable for 
optimization and object-code generation. 
The intermediate text modifications made by 
each phase are discussed separately in the 
following paragraphs. 

PHASE 15 INTERMEDIATE TEXT MODIFICATIONS 

The intermediate text input to phase 15 
is the intermediate text created by phase 
10. The intermediate text output of phase 
15 is an expanded version of phase 10 
intermediate text. The intermediate text 
output of phase 15 is divided into four 
categories: 

• Unchanged text 

• Phase 15 data text 

• Statement number text 

• Standard text 

Unchanged Text 

The unchanged text is the phase 10 
normal text that is not changed but 
rearranged in format by phase 15 (see 
Figure 42). Unchanged text is passed on to 
subsequent phases with these modifications: 

1. The mode and type fields are each 
expanded to a fullword. 

2. A new word is inserted between the 
chain field and the mode field. 

3. The adjective code is moved from the 
first byte of the chain field to the 
third byte of this new word. 

Phase 15 Data Text 

To facilitate the assignment of initial 
data values to their associated variables, 
phase 15 converts the phase 10 data text 
for DATA statements to phase 15 data text, 
which is in variable-constant format. The 
format of the phase 15 data text entries is 
illustrated in Figure 49. 

Indicator Field: The indicator field 
indicates the characteristics of the 
initial data value (constant) to be 
assigned to the associated variable. This 
field is one byte in length. The indicator 
field is divided into eight subfields, each 
of which is one bit long. The bits are 
numbered from 0 through 7. Figure 50 
indicates the function of each subfield in 
the indicator field. 

<-----------------4 bytes-----------------> 
r----------7------------------------------, 
IIndicator I Chain field I 
Ifield I I 
~----------~------------------------------~ 
IPl field I 
~-----------------------------------------i 
IP2 field I 
~-----------------------------------------~ 
,Offset field I 
~-----------------------------------------i 
'Number field I L _________________________________________ J 

Figure 49. Format of Phase 15 Data Text 
Entry 

r------------7----------------------------, 
I Subfield ,Function , 
~------------+----------------------------i 
, Bit 0 I not used , 
~------------t----------------------------~ I Bit 1 I not used , 
~------------+----------------------------~ 
, Bit 2 I not used , 
~------------+----------------------------i 
I Bit 3 , not used I 
~------------t----------------------------~ I Bit 4 'on' I initial data value is I 
, , negative constant , 
~------------t----------------------------~ 
I Bit 5 'on' I initial data value is a , 
I I literal constant , 
~------------t----------------------------~ 
I Bit 6 'on' I initial data value is in , 
I , hexadecimal form I 
~------------t----------------------------~ 
, Bit 7 'on' , data table entry is six , 
I , words long (variable is an I 
I , array element). , L ____________ ~ ____________________________ J 

Figure 50. Function of Each Subfield in 
Indicator Field of Phase 15 
Data Text Entry 

Chain Field: The chain field is used to 
maintain linkage between the various phase 
15 data text entries. It contains a 
pOinter to the next such entry. 

Appendix B: Intermediate Text 151 



P1 Field: The Pi field contains a pointer 
to the dictionary entry for the variable to 
which the initial data value is to be 
assigned. 

P2 Field: The P2 field contains a pointer 
to the dictionary entry for the initial 
data value (constant) which is to be 
assigned to the associated variable. 

Offset Field: The offset field contains 
the displacement of the subscripted 
variable from the first element in the 
array containing that variable. If the 
variable to which the initial data value is 
to be assigned is not subscripted, this 
field does not exist. 

Number Field: The number field contains an 
indication of the number of successive 
items to which the initial data value is to 
be assigned. If the initial data value is 
not to be assigned to more than one item, 
this field does not exist. 

statement Number Text 

The statement number text is an expanded 
version of the phase 10 intermediate text 
created for statement numbers. It is 
expanded to provide additional fields in 
which statistical information about the 
text block associated with the statement 
number is stored. The format of statement 
number text entries is illustrated in 
Figure 51. 

<------------------4 bytes-----------------> 
r----------------------------------------, 
IChain field I 
~-------------------T----------T----------i 
IText item count I Operator IIndicator I 
I I field Ifield I 
~------------------~----------~----------i 
IP1 field I 
~-----------------------------------------i 
IBLKEND field I 
~----------------------------------------i 
IUse vector field (MVF) (4 words) I 
~-----------·------------------------------i 
IDefinition vector field (MVS) (4 words) I 
~----------------------------------------i I Busy-on-exit (4 words) I 
Ivector field (MVX) I L _________________________________________ J 

Figure 51. Format of Statement Number Text 
Entry 

152 

Chain Field: The chain field is used to 
maintain the linkage between the various 
intermediate text entries. It contains a 
pointer to the next text entry. 

Text Item Count: The text item count is 
the total number of text items in the 
block, including the statement number text 
item itself and any end marks. 

operator Field: The operator field 
contains an internal operation code 
(numeric) for a statement number definition 
(see Table 29). 

Indicator Field (ABFN): The indicator 
field is one byte long. This field 
indicates some of the characteristics of 
the text entries in the associated block. 
The indicator field contains eight 
subfields, each of which is one bit long. 
The subfields are numbered 0 through 1. 
Figure 52 indicates the function of each 
subfield in the indicator field. 

r-------------T---------------------------, 
I Subfield I Function I 
~-------------t---------------------------i 
I Bits 0-3 I not used I 
~-------------+---------------------------i 
I Bit 4 'on' I associated block contains I 
I I an input/output operation I 
~-------------t---------------------------i 
I Bit 5 'on' I associated block contains I 
I I a reference to a library I 
I I function I 
~-------------+---------------------------i 
I Bit 6 I not used I 
~-------------+---------------------------i 
I Bit 1 'on' I associated block contains I 
I I an abnormal function I 
I I reference I L _____________ ~ ___________________________ J 

Figure 52. Function of Each Subfield in 
Indicator Field of statement 
Number Text Entry 

P1 Field: The P1 field contains a pOinter 
to the statement number/array table entry 
for the statement number. 

BLKEND Field: The BLKEND field contains a 
pointer to the last intermediate text entry 
within the block. 

Use Vector Field (MVF): The use vector 
field is used to indicate which variables 
and constants are used in the associated 
block. Variables and constants, as they 
are encountered in the module by subroutine 
STALL-IEKGST are assigned a unique 



co-ordinate (1 bit) in this vector field. 
In general, if the ith bit is set to on 
(1), the variable or constant assigned to 
the ith coordinate is used in the 
associated block. This field is used for 
OPT=1,2 only. 

Definition Vector Field (MVS): The 
definition vector field is used to indicate 
which variables are defined in a block. 
Variables and constants, as they are 
encountered by subroutine STALL-IEKGST are 
assigned a unique coordinate (1 bit) in 
this vector field. In general, if the !th 
bit is set to on (1), the variable assigned 
to the ith coordinate is defined in the 
associated block. This field is used for 
OPT=1,2 only. 

Busy-On-Exit Vector Field (MVX): The 
busy-on-exit vector field in phase 15 
indicates which variables are not first 
used and then defined within the text block 
(not busy-on-entry). This field is 
converted by phase 20 to busy-on-exit data, 
which identifies those operands that are 
busy-on-exit from the block. Variables and 
constants, as they are encountered by 
subroutine STALL-IEKGST are assigned a 
unique coordinate (1 bit) in this vector 
field. In general, during phase 15, if the 
ith bit is set to on (1), the variable 
assigned to the coordinate is not 
busy-on-entry to the block. During phase 
20, if the ith bit is set to on, the 
variable or-constant assigned to the !th 
coordinate is busy-on-exit from the block. 
This field is used for OPT=2 only. 

• Table 29. Phase 15/20 Operators (Part 1 
of 5) 

r--------T-----------T--------------------, 
I I Mnemonic I I 
Icode (inlCwhere I I 
I decimal) I applicable) I Meaning I 
~--------+-----------+--------------------~ 

1 • NOT. I NOT 
I 
I 

2 U lUnary minus 
I 

4 • AND. I • AND., LAND in-line 
I routine 
I 

5 Right par~nthesis 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

• OR. 

.XOR. 

ST 

+ 

* 
/ 

LA 

EXT 

BG 

BL 

BNE 

BGE 

BLE 

BE 

SUB 

LIST 

BC 

EM 

B 

.OR., LOR in-line 
routine 

.XOR., LXOR in-line 
routine 

Load/Store 

Argument 

Plus 

Minus 

Multiply 

Divide 

Load address 

External function or 
subroutine CALL 

Branch greater than 

Branch less than 

Branch not equal 

Branch greater than 
or equal 

Branch less than or 
equal 

Branch equal 

Subscript 

I/O list 

Branch computed 

Left parenthesis 

End mark 

Branch 

28 BA Branch assigned 
--------~-----------~--------------------

Appendix B: Intermediate Text 153 



• Table 29. Phase 15/20 Operators (Part 2 
of 5) 

r--------T-----------T--------------------, 
I I Mnemonic I I 
ICode (inl (where I I 
I decimal) I applicable) I Meaning I 
~-------t-----------t--------------------1 

29 BBT Branch bit true I 
I 
I 

30 BBF Branch bit false I 

31 LBIT Logical value of bit 

32 

33 

34 

35 

36 

37 

39 

41 

42 

43 

44 

45 

46 

47 

48 

50 

51 

52 

53 

54 

55 

56 

57 

BGZ 

BLZ 

BNEZ 

BGEZ 

BLEZ 

BEZ 

NMLS 

BF 

BT 

LDB 

LIBF 

RS 

LS 

BXHLE 

ASSIGN 

LE 

GE 

EQ 

LT 

GT 

NE 

MAX 2 

MIN2 

Branch greater than 
zero 

Branch less than 
zero 

Branch not equal to 
zero 

Branch greater than 
or equal to zero 

Branch less than or 
equal to zero 

Branch equal to zero 

NAMELIST operands 
(phase 20 only) 

Branch false 

Branch true 

Load byte 

Library function 
call 

Right shift 

Left shift 

Branch on index 

Assign 

Less than or equal 

Greater than or 
equal 

Equal 

Less than 

Greater than 

Not equal 

MAX2 in-line routine 

MIN2 in-line routine 

I 

L ________ ~ ___________ ~ ____________________ J 

154 

• Table 29. Phase 15/20 Operators (Part 3 
of 5) 

r--------T-----------T----------'----------, 
I I Mnemonic I I 
ICode (inl (where I I 
I decimal) I applicable) I Meaning I 
~--------t-----------t--------------------i 

58 DIM DIM in-line routine 

59 IDIM 

60 DMOD 

61 MOD 

62 AMOD 

63 DSIGN 

64 SIGN 

65 ISIGN 

66 DABS 

67 ABS 

68 lABS 

69 IDINT 

71 INT 

72 HFIX 

73 IFIX 

74 DFLOAT 

75 FLOAT 

76 DBLE 

77 BITON 

78 BITOFF 

19 BITFLP 

80 AND 

81 OR 

82 COMPL 

IDIM in-line routine 

DMOD in-line routine 

MOD in-line routine 

AMOD in-line routine 

DSIGN in-line 
routine 

SIGN in-line routine 

ISIGN in-line 
routine 

DABS in-line routine 

ABS in--line routine 

lABS in-line routine 

IDINT in-line 
routine 

INT in-line routine 

HFIX in-line routine 

IFIX in-line routine 

DFLOAT in-line 
routine 

FLOAT in-line 
routine 

DBLE in-line routine 

BITON in-line 
routine 

BITOFF in-line 
routine 

BITFLP in-line 
routine 

AND in-line routine 

OR in-line routine 

COMPL in-line 
routine 

83 MOD24 MOD24 in-line 
routine L ________ ~ ___________ ~ ____________________ J 



Table 29. Phase 15/20 Operators (Part 4 
of 5) 

r--------T-----------T--------------------, 
I I Mnemonic I I 
ICode (inl (where I I 
I decimal) I applicable) I Meaning I 
r--------+-----------+--------------------~ 

84 LCOMPL LCOMPL in-line 

85 SHFTR 

86 SHFTL 

100 LR 

101 RC 

102 RR 

103 

104 

203 

208 

210 

211 

212 

213 

214 

215 

216 

routine 

SHFTR in-line 
routine 

SHFTL in-line 
routine 

Load register (phase 
20 only) 

Restore main storage 
(phase 20 only) 

Restore register 
(phase 20 only) 

Register usage 
(phase 20 only) 

STORE (phase 20 
only) R13 as 
operand 2 

Register usage 
(phase 20 only) 

FUNCTION or 
SUBROUTINE or ENTRY 

END input/output 
list 

CONTINUE 

Relative record 
number 

Variable FORMAT 

BACKSPACE 

REWIND 

END FILE 

217 WRITE unformatted L _______ ~ ___________ ~ ____________________ J 

Table 29. Phase 15/20 Operator (Part 5 of 
5) 

r---'-----T-----------T--------------------, 
I I Mnemonic I I 
ICode (inl (where I I 
I decimal) I applicable) I Meaning I 
~--------+-----------+--------------------~ 

218 READ unformatted 

219 

220 

221 

222 

223 

225 

226 

227 

230 

231 

233 

234 

235 

249 

251 

252 

LDF 

GLDF 

RET 

STOP 

END 

WRITE formatted 

READ formatted 

Begin input/output 
list 

statement number 
definition 

Generated statement 
number definition 

WRITE using NAMELISTI 
I 
I 

READ using NAMELIST I 
I 
I 

FIND I 

Input/output end-of-
file parameter 

Input/output error 
parameter 

RETURN 

STOP 

PAUSE 

END 

Input/output unit 
number 

FORMAT statement 
number 

I 
I 

253 NAMELIST name 
--------~-----------~--------------------

Standard Text 

The standard text is an expanded and 
modified form of phase 10 intermediate text 
that is more suitable for optimization. 
The format of standard text entries is 
illustrated in Figure 53. 

Appendix B: Intermediate Text 155 



<-----------------4 bytes-----------------> 
r----------------------------------------, 
1 Chain field I 
~---------------------T---------T---------i 
Iset by phase 20 IOperator IMode I 
IUsed by phase 25 I field I field I 
~----------------T----~---------~---------i 
ISet by phase 20 I I 
IUsed by phase 251pl field I 
~----------------+------------------------i 
I Set by phase 20 I I 
IUsed by phase 251p2 field I 
~----------------+------------------------i 
Iset by phase 20 I I 
IUsed by phase 251p3 field I 
~----------------~------------------------i 
I Displacement field I L _________________________________________ J 

Figure 53. Format of a Standard Text Entry 

Chain Field: ThE~ chain field is used to 
maintain the linkage between the various 
intermediate text entries. It contains a 
pointer to the next text entry. 

Operator F~eld: The operator field 
contains an internal operation code 
(numeric) that indicates either the nature 
of the statement or the operation to be 
performed (see Table 29). 

Pi Field: The Pi field contains either a 
pointer to the dictionary entry or 
statement number/array table entry for 
operand 1 of the text entry, or zero (0) if 
operand 1 does not exist. 

P2 Field: The P2 field contains either a 
pointer to the dictionary entry for operand 
2 of the text entry or zero (0) if operand 
2 does not exist. 

P3 Field: The P3 field contains either a 
pointer to the dictionary entry for operand 
3 of the text entry, a pointer to a 
parameter list in the adcon table, an 
actual constant (for shifting operations), 
or zero (0) if operand 3 does not exist. 

Mode Field: The mode field indicates the 
general mode of the expression and the mode 
of the operands. The bits are set by phase 
15. The mode field can be referred to only 
as the fourth byte of the status mode word, 
which consists of a status field (2 bytes), 
an operator field (1 byte), and the mode 
field (1 byte). The status portion of the 
status mode word is explained later under 
"Phase 20 Intermediate Text Modification." 
The meanings of the bits in the mode field 
are given in Table 30. 

Displacement Field: The displacement field 
appears only for subscript and load address 
text entries; it contains a constant 
displacement (if any) computed from 
constants in the subscript expression. 

PHASE 20 INTERMEDIATE TEXT MODIFICATION 

The intermediate text input to phase 20 
is the output text from phase 158 The 
intermediate text output of phase 20 is of 
the same format as the standard text output 
of phase 15. The format of the phase 20 
output text is illustrated in Figure 54. 

Rl, R2, and R3 Fields: The Rl, R2, and R3 
fields (each 4 bits long) are filled in by 
phase 20 during register assignment, and 
are referred to by phase 25 during the code 
generation process. The assigned registers 
are the operational registers for operand 
1, operand 2, and operand 3, respectively. 

Table 30. Meanings of Bits in Mode Field of Standard Text Entry Status Mode Word 
r-----------T---------T-----------------------------------------------------------------, 
I Mode I Bits I Meaning I 
~----------+---------+-----------------------------------------------------------------i 
I general I 26 I 1 - indicates to phase 20 that this text entry is part of a I 
I I I subscript computation. I 
~-----------+---------+-----------------------------------------------------------------i 
I general I 27-28 I 00 - LOGICAL I 
1 1 1 01 - INTEGER 1 
I 1 I 10 - REAL or COMPLEX I 
~-----------+---------+-----------------------------------------------------------------i 
I operand 11 29 1 0 - short mode (LOGICAL*l, INTEGER*2, REAL*4, COMPLEX*8) 1 
1 1 1 1 - long mode (LOGICAL*4, INTEGER*4, REAL * 8 , COMPLEX*16) I 
~-----------+----.-----+-----------------------------------------------------------------~ 
1 operand 21 30 1 0 - short mode (LOGICAL*l, INTEGER*2, REAL*4, COMPLEX*8) 1 
1 I 1 1 - long mode (LOGICAL*4, INTEGER*4, REAL*8, COMPLEX*16) I 
~-----------+---------+-----------------------------------------------------------------~ 
1 operand 31 31 1 0 - short mode (LOGICAL*l, INTEGER*2, REAL*4, COMPLEX*8) I 
1 I I 1 - long mode (LOGICAL*4, INTEGER*4, REAL*8, COMPLEX*16) I L ___________ ~ _________ ~ _________________________________________________________________ J 

156 



<----------------------------------------4 bytes----------------------------------------> 
r---------------------------------------------------------------------------------------, 
I Chain field1 I 
r---------------------------------------T-----------------------T----------------------~ 
I Status field I Operator field 1 I Mode field1 I 
~----------T-----------T-----------------~-------·----------------~----------------------~ 
I Rl I Bl I Pl field1 I 
~----------+-----------+----------------------------------------------------------------+ 
I R2 I B2 I P2 field 1 I 
~----------+-----------+----------------------------------------------------------------~ 
I R3 I B3 I P3 field1 I 
~----------~-----------~----------------------------------------------------------------~ 
I Displacement field1 I 
~---------------------------------------------------------------------------------------~ 
11 The chain field, mode field, operator field, Pl field, P2 field, P3 field, and I 
I displacement field are as defined in a phase 15 standard text entry. (Phase 20 does I 
I not alter these fields.) I L _______________________________________________________________________________________ J 

Figure 54. Format of Phase 20 Text Entry 

~~nd B3 Fields: The Bl, B2, and B3 
fields (each 4 bits long) are filled in by 
phase 20 during register assignment, and 
are referred to by phase 25 during the code 
generation process. The assigned registers 
are the base registers for operand 1, 
operand 2, and operand 3, respectively. 

Status Field: The status field, the first 
two bytes of the status mode word, is set 
by phase 20 to indicate the status of the 
operands and the status of the base 
addresses of the operands in a text entry. 
The information in the status field is used 
by phase 25 to determine the machine 
instructions that are to be generated for 
the text entry. The status field bits and 
their meanings are illustrated in Table 31. 

STANDARD TEXT FORMATS RESULTING FROM PHASES 
15 AND 20 PROCESSING 

The following formats illustrate the 
standard text entries developed by phase 15 
and phase 20 for the various types of 
operators. When the fields of the text 
entries differ from the standard 
definitions of the fields, the contents of 
the fields are explained. In addition, 
notes that explain the types of 
instructions generated by phase 25 are also 
included to the right of the text entry 
format, when appropriate. For an 
explanation of the individual operators see 
Table 29. 

Appendix B: Intermediate Text 157 



• Table 31. Status Field Bits and Their Meanings 
r--------------------T-----------T------------------------------------------------------, 
I Operand/ I I I 
I Base Address I Bi t I l-1eaning I 
~-------------------+-----------+------------------------------------------------------~ 

Operand 2 
base address 
status 

o 1 - subscript text item has been examined but not 

1 

2 

3 

completely processed <internal to Register 
Optimization) 

1 - text item contains inert variable. Set by 
Register Optimization and used for 
communication with Text Optimization; text 
item is to be ignored. 

o - base address in storage 
1 - base address in register 

o - do not retain base address in register 
1 - retain base address in register 

~--------------------+-----------+------------------------------------------------------~ 
I I 4 I 0 - base address in storage I 
I Operand 3 I I 1 - base address in register I 
I base address I I I 
I status I 5 I 0 - do not retain base address in register I 
I I I 1 - retain base address in register I 
~----------.----------+-----------+------------------~-----------------------------------~ 
I I 6 I 0 - operand in storage I 
I Operand 2 I I 1 - operand in register I 
I status I I I 
I I 1 I 0 - do not retain operand in register I 
I I I 1 - retain operand in register I 
~----------.----------+-----------+------------------------------------------------------~ 
I I 8 I 0 - operand in storage I 
I Operand 3 I I 1 - operand in register I 
I status I I I 
I I 9 I 0 - do not retain operand in register I 
I I I 1 - retain operand in register I 
~--------------------+-----------+------------------------------------------------------~ 
I I 10 I 0 - base address in storage I 
I operand 1 I I 1 - base address in register I 
I base address I I I 
I status I 11 I 0 - do not retain base address in register I 
I I I 1 - retain base address in register I 
~----------------.----+-----------+------------------------------------------------------~ 
I Operand 1 I 12 I 0 - generate store into operand 1 I 
I status I I 1 - do not generate store into operand 1 I 

~-------------------+-----------+------------------------------------------------------~ 
I I 13 I 1 - if bits 6 & 1 are set to 1 and bit 12 is set I 
I I I to 0, generate register to register load in I 
I I I addition to store. I 
I I 14 I 1 - divide item actually MOD function (set and I 
I I I used by Register Optimization). If FC=44 or I 
I I I 15, load addresses precede. I 
I I 15 I 1 - .QXX temporary created for this item I L _______________ . ____ i ___________ i ______________________________________________________ J 

158 



Branch Operator (B) 

<-----------------4 bytes-----------------> 
r-----------------------------------------, , Chain , 
~--------------------T----------T---------~ 
, status ,Branch, Mode, 
, ,operator , , 
~-----T-----T--------~----------~---------~ 
'Ri' 'Pi , 
~-----+-----+-----------------------------~ , , , , 
~-----+-----+-----------------------------~ , , , , 
~-----~-----~-----------------------------~ , , L _________________________________________ J 

Logical Branch Operators (BT, BF) 

<----------------4 bytes------------------> 
r-----------------------------------------, 
, Chain , 
~-------------------T----------T---------~ 
, status I Logical I Mode' 
I I branch I I 
I 'operator I , 
~-----T-----T--------~----------~---------~ 
I Ri I IPi I 
~----+-----+-----------------------------~ 
I R2 IB2 IP2 I 
~-----+-----+-----------------------------~ 
I I I I L _____ ~ _____ ~ _____________________________ J 

Binary Operators (+, -, *, /, OR, and AND) 

<----------------4 bytes------------------> 
r-----------------------------------------, 
, Chain , 
~-------------------T----------T---------~ 
I status I Binary , Mode I 
I I operator I I 
~-----T-----T--------~----------~---------~ 
I Ri IBi IPi , 
~-----+-----+-----------------------------~ 
I R2 IB2 IP2 I 
~-----+-----+-----------------------------~ 
'R3 IB3 IP3 , L ____ ~ _____ ~ _____________________________ J 

Pi: The Pi field contains a pointer to the 
statement number/array table entry for the 
statement number to which a branch was 
made. 

Note: Phase 25 decides whether an RR or an 
RX branch instruction should be generated. 

Pi: The Pi field contains a pointer to the 
statement number/array table entry for the 
statement number to which a branch is being 
made. 

P2: The P2 field contains a pointer to the 
dictionary entry for the logical variable 
being tested. 

Note: The test of the logical variable 
will be done with a BXH or BXLE for BT and 
BF, respectively. 

Appendix B: Intermediate Text 159 



Test and Set Operators (GT, LT, GE, LE, EQ, 
and NE) 

<------------------4 bytes------------------> 
r-----------------------------------------, 
I Chain I 
~--------------------T----------T---------i 
I Status ITest and I Mode I 
I Iset I I 
I I operator I I 
~-----T------T---------.l.----------.l.---------i 
I Rl IBl IPl I 
~-----+-----+-----------------------------i 
I R2 IB2 IP2 I 
~-----+-----+-----------------------------i 
I R3 IB3 IP3 I L ____ .l. _____ .l. _____________________________ J 

In-line Functions (MAX2, MIN2, DIM, 101M, 
OMOO, MOD, AMOO, OSIGN, SIGN, ISIGN, LAND, 
LOR, LCOMPL, 101M, BITON, BITOFF, AND, OR, 
COMPL, M0024, SHFTR, and SHFTL) 

<----------------4 bytes------------------> 
r----------------------------------------, 
I Chain I 
~--------------------T----------T---------i 
I Status IFunction I Mode I 
I I operator I I 
~-----T-----T--------.l.----------.l.---------i 
I Rl IBl IPl I 
~-----+-----+-----------------------------i 
I R2 IB2 IP2 I 
~-----+-----+-----------------------------i 
I R3 IB3 IP3 I 
~-----+-----+-----------------------------i 
I I I I L _____ .l. _____ L _____________________________ J 

Testing a Byte Logical Variable (LOB) 

<----------------4 bytes------------------> 
r-----------------------------------------, 
I Chain I 
~-------------------T----------T---------i 
I Status I LOB I Mode I 
I I operator I I 
~-----T-----T--------.l.----------.l.---------i 
I Rl IBl I I 
~-----+-----+-----------------------------i 
I R2 IB2 I I 
~-----+-----+-----------------------------i 
I R3 IB3 I I L ____ .l. _____ .l. _____________________________ J 

160 

Note: The LOB operator is used to load a 
register with a byte logical variable. 



Branch on Index Low or Equal, or Branch on 
Index High 

<-------------4 bytes-------------> 
r---------------------------------, 
I Chain I 
~----------------T--------T-------~ 
I status I Add I Mode I 
I I operator I I 
r----T-----T----~--------~-------~ 
I R1 I B1 I P1 I 
~-----+-----+---------------------~ 
I R2 I B2 I P2 I Text 
~-----+-----+---------------------~ Entry 1 
I R3 I B3 I P3 I L _____ ~ _____ ~ _____________________ J 

<-------------4 bytes-------------> 
r---------------------------------, 
I Chain I 
~----------------T--------T-------~ 
I Status I Branch I Mode I 
I I operator I I 
~-----T-----T----~--------~-------~ 
I R1 I I P1 I 
~-----+-----+---------------------~ 
I R2 I B2 I P2 I Text 
~-----+-----+---------------------~ Entry 2 
I R3 I B3 I P3 I L _____ ~ _____ ~ _____________________ J 

Computed GO TO Operator 

<----------------4 bytes------------------> 
r-----------------------------------------, 
I Chain I 
~--------------------T----------T---------~ 
I status I Computed I Mode I 
I IGO TO I I 
I I operator I I 
r----T-----T--------~----------~---------~ 
I R1 I IP1 I 
~-----+-----+-----------------------------~ 
I R2 I IP2 I 
~-----+-----+-----------------------------~ 
I R3 IB3 IP3 I L _____ ~ _____ i _____________________________ J 

Note: A BXHLE instruction will be 
generated by phase 25 when an add operator 
is followed by a branch operator. 

P1 and P2 of text entry 1 equals P2 of 
text entry 2. 

P1: The P1 field of text entry 2 contains 
a-pointer to the statement number/array 
table entry for the statement number to 
which a branch is being made. 

P1: P1 contains the number of items in the 
branch table that are associated with the 
computed GO TO operator. 

P2: P2 contains a pointer to the 
information table entry for the branch 
table. 

P3: P3 contains a pointer to the indexing 
value for the computed GO TO statement. 

Appendix B: Inter~ediate Text 161 



Branch Operators (BL, BLE, BE, BNE, BGE, 
BG, BLZ, BLEZ, BEZ, BNEZ, BGEZ, and BGZ) 

<----------.------4 bytes------------------> 
r----------------------------------------, 
I Chain I 
t--------------------T----------T---------~ 
I Statues I Branch I Mode I 
~-----T----·-T--------.L----------.L---------~ 
I Rl fBi IPl I 
~-----+-----+-----------------------------~ 
I R2 IB2 IP2 I 
~-----+----.-+-----------------------------~ 
I R3 IB3 IP3 I L _____ .L _____ .L _____________________________ J 

Binary Shift Operators (RS, LS) 

<----------------4 bytes------------------> 
r-----------------------------------------, 
I Chain I 
t--------------------T----------T---------~ 
I Status I Binary I Mode I 
I I shift I I 
I I operator I I 
~-----T-----T--------.L----------.L---------~ 
I Rl IBl IPl I 
~-----+-----+-----------------------------~ 
I R2 IB2 IP2 I 
t-----+-----+-----------------------------~ 
I I IShift quantity I L _____ .L _____ .L _____________________________ J 

Load Address Operator (LA) 

<-----------------4 bytes------------------> 
r-----------------------------------------, 
I Chain I 
t--------------------T----------T---------~ 
I Status I Load I Mode I 
I I address I I 
I I operator , I 
t-----T-----T--------.L----------.L---------~ 
I Rl IBl IPl I 
~-----+------+----------------------------~ 
I R2 IB2 IPl I 
t-----+------+------------------------------~ 
I R3 IB3 IP3 I 
~-_---.L----_.L-----------------------------~ 
I Displacement I L ___________________________________________ J 

162 

Pi: The Pi field contains a pointer to the 
statement number/array table entry for the 
statement number to which a branch is being 
made. 

Note: Operands 2 and 3 must be compared 
before the branch. For the BLZ, BLEZ, BEZ, 
BNEZ, BGEZ, and BGZ operators, operand 3 is 
zero and a test on zero is generated. 

Note: The purpose of the load address 
operator is to store an address of an 
element of an array in a parameter list. 
If bit 1 of the status field is 1, the LA 
stores the last argument into the parameter 
list. 

The Pi field points to a dictionary 
entry which points to the adcon table. 

LA (14) is always followed by CALL (15) 
or a library function (44). 



Subscript Text Entry -- Case 1 

<----------------4 bytes------------------> 
r-----------------------------------------, 
I Chain I 
r-------------------T----------T---------~ 
I Status ISubscript IMode I 
I I operator I I 
~-----T-----T--------~----------~---------~ 
I R1 IB1 IP1 I 
~-----+-----+-----------------------------~ 
I R2 IB2 IP2 I 
~-----+-----+-----------------------------~ 
I R3 IB3 IP3 I 
~-----~-----~-----------------------------~ 
I Displacement I L _________________________________________ J 

Subscript Text Entry -- Case 2 

<----------------4 bytes------------------> 
r----------------------------------------, 
I Chain I 
r-------------------T----------T---------~ 
I Status ISubscript IMode I 
I I operator I I 
~-----T-----T--------~----------~---------~ 
I I IP1 I 
~-----+-----+-----------------------------~ 
I R2 IB2 IP2 I 
~-----+-----+-----------------------------~ 
I R3 IB3 IP3 I 
~-----~-----~-----------------------------~ 
I Displacement I L _________________________________________ J 

In-line routines (DABS, ABS, lABS, IDINT, 
INT, HFIX, DFLOAT, FLOAT, DBLE) 

<----------------4 bytes------------------> 
r-----------------------------------------, 
I Chain I 
r-------------------T----------T---------~ 
I Status I Operator I Mode I 
~-----T-----T--------~----------~---------~ 
I R1 IBl IP1 I 
~-----+-----+-----------------------------~ 
I R2 IB2 IP2 I 
~-----+-----+-----------------------------~ 
I I INot used I L _____ ~ ____ ~ _____________________________ J 

P2: The P2 field contains a pointer to the 
dictionary entry for the variable being 
indexed. 

P3: The P3 field contains a pointer to the 
dictionary entry for the indexing value 
unless the indexing value is a constant; 
then P3 * 0 and the displacement field 
contains a displacement. 

Note: For Case 2 subscript text entries, 
the subscript text entry is combined with 
the next text entry to form a single RX 
instruction. (Case 2 will be formed by 
phase 15 only when the second text entry 
has the store operator. Phase 20 will 
change Case 1 text entries to Case 2 text 
entries when appropriate.) 

P1 is zero and either P2 or P3 of the 
next text entry will be zero. 

If the operator of the next text entry 
is a store, the subscript applies to Pl. 
If the next operator is not a store, the 
subscript applies to operand = O. 

If the next operator is a 'LIST,' the 
subscript applies to P1 for READ or to P2 
for WRITE. 

Appendix B: Intermediate Text 163 



EXT and LIBF Operators 

<----------------4 bytes------------------> 
r----------------------------------------, 
I Chain I 
~-------------------T----------T---------i 
I Status I Operator I Mode I 
~----T-----'-T--------.L----------.L---------_t 
I R1 I B1 IP1 I 
~---+------+-----------------------------_t 
I R2 I B2 IP2 I 
~----+-----,-+-----------------------------_t 
I R3 I B3 IP3 I L ____ .L ______ .L _____________________________ J 

Arguments for Functions and Calls 

<-----------------4 bytes------------------> 
r----------------------------------------, 
I Chain I 
~----------------·----T----------T---------_t 
I Status I Argument I Mode I 
I I operator I I 
~-----T----·-T----·----.L----------.L---------i 
I I IP1 I 
~-----+-----+-----------------------------_t 
I I IP2 I 
~-----+-----+-----------------------------_t 
I I I P3 (for complex) I L _____ .L _____ .L _____________________________ J 

Special Argument Text Entry for Complex 
Statements 

<----------------fJ bytes------------------> 
r----------------------------------------, 
I Chain I 
~-------------------T----------T---------i 
I Status I Argument I Mode I 
I I operator I I 
~-----T-----T--------.L----------.L---------i 
I R1 IB1 IP1 I 
~----+-----+-----------------------------_t 
I I I I 
~-----+-----+-----------------------------_t 
I I I I L ____ .L _____ .L ______________________________ J 

164 

P1: P1 is zero for the EXT operator of a 
subroutine call. 

P2: The P2 field contains either a pointer 
to the dictionary entry for an external 
function or a subroutine name, or a pOinter 
to the IFUNTB entry for a library function. 

P3: The P3 field contains either zero or a 
symbolic register number and a displacement 
that points to the object-time parameter 
list of the external function, library 
function, or subroutine. 

Note: No registers are needed for this 
type of text entry. 

For calls and ABNORMAL functions, P1 
P2. For NO~~L functions and library 
functions, P1 = O. 

See the next text entry for the case of 
complex statements. 

Note: For complex statements, the first 
text entry of the argument list contains 
the register information for the imaginary 
part of the complex result. 



Assigned GO TO Operator (BA) 

<----------------4 bytes~-----------------> 
r-----------------------------------------, 
I Chain I 
~-------------------T----------T---------~ 
I Status I Assigned I Mode , 
I ,GO TO, I 
I , operator , , 
~----T-----T--------~----------~---------~ 
I , I I 
~-----+-----+-----------------------------~ 
I R2 IB2 IP2 I 
~-----+-----+-----------------------------~ 
I I I I L _____ ~ _____ ~ _____________________________ J 

READ Operator for I/O List 

<----------------4 bytes------------------> 
r-----------------------------------------, 
I Chain I 
~-------------------T----------T---------~ 
I I READ I I 
I I operator I , 
~-----T-----T--------~----------~---------~ 
I Rl IBl IPl I 
~-----+-----+-----------------------------~ 
I I I I 
~-----+-----+-----------------------------~ 
I I IP3 I L ____ ~ _____ ~ _____________________________ J 

WRITE Operator for I/O List 

<----------------4 bytes------------------> 
r----------------------------------------, 
I Chain I 
~--------------------T----------T---------~ 
I status I WRITE I Mode I 
I I operator , I 
~----T-----T--------~----------~---------~ 'Ri IBi , I 
~----+-----+-----------------------------~ 
, , IP2 I 
~-----+-----+-----------------------------~ 
I , IP3 I L __ ., ___ ..L _____ ~ _____________________________ J 

P2: The P2 field contains a pointer to the 
variable being used in the assigned GO TO 
statement. 

Pi: The Pi field contains a pOinter to the 
I/O list for the READ statement. If this 
is an indexed READ, Rl is the register to 
be used. 

Not~: If the P3 field contains a nonzero, 
an entire array is being read. This causes 
a different instruction sequence to be 
generated. 

P2: The P2 field contains a pointer to the 
I/O list for the WRITE statement. Rl and 
Bl are the index and base registers to be 
used for the WRITE. 

Note: If the P3 field contains a nonzero, 
an-entire array is being written. This 
causes a different instruction sequence to 
be generated. 

Appendix B: Intermediate Text 165 



Logical Branch Operators (BBT, BBF) 

<----------------4 bytes------------------> 
r----------------------------------------, 
I Chain I 
~-------------------T----------T---------~ 
I Status I Logical I Mode I 
I I Branch I I 
I I operator I I 
~----T-----T--------~----------~---------~ 
I R1 I IP1 I 
~----+-----+-----------------------------~ 
I IB2 IP2 I 
~----+-----+----.-------------------------~ 
I I IP3 I L-____ ~ _____ ~ _____________________________ J 

LBIT Operator 

<----------------4 bytes------------------> 
r-----------------------------------------, 
I Chain I 
~-------------------T----------T---------~ 
I Status I LBIT I Mode I 
I I operator I I 
~-----T------T--------~----------~---------~ 
I R1 IB1 IP1 I 
~-----+-----+-----------------------------~ 
I IB2 IP2 I 
~-----+-----+-----------------------------~ 
I I IP3 I L-____ ~ _____ ~ _____________________________ J 

166 

P1: The P1 field contains a pointer to the 
statement number/array table entry for the 
statement number to which a branch is being 
made. 

P2: The P2 field contains a pointer to the 
dictionary entry for the logical variable 
being tested. 

P3: The P3 field contains a pointer to the 
dictionary entry for the number of the bit 
being tested. 

P2: The P2 field contains a pointer to the 
dictionary entry for the logical variable 
being tested. 

P3: The P3 field contains a pointer to the 
dictionary entry for the number of the bit 
being tested. 



The major arrays of the compiler are the 
bit-strip and skeleton arrays, which are 
used by phase 25 during code generation. 
The following illustrations detail the 
bit-strip and skeleton arrays associated 
with the operators of text entries that 
undergo code generation. The skeleton 
array for each operator is illustrated by a 
series of assembly language instructions, 
consisting of a basic operation code, which 
is modified to suit the mode of the 
operands, and by operands, which are in 
coded form. The operand codes and their 
meanings are, as follows: 

Bn 

BD 

base register for operand n 

base register used for loading an 
operand's base address 

Rn operational register for operand n 

X index register when necessary 

To the right of the skeleton array for 
an operator is the bit-strip array for the 
operator. Each bit strip in the bit-strip 
array consists of a vertical string of O's, 
l's, and X·s. A particular strip is 
selected according to the status 
information, which is shown above that 
strip. For example, if the combined status 
of operands 2 and 3 is 1010 (reading 
downward), the bit strip under that status 
is to be used during code generation. (Toe 
status of operand 2 is indicated in the 
first two vertical positions, reading 
downward; the status of operand 3 is 
indicated in the second two vertical 
positions, reading downward.~) The meanings 
of the various bit settings in each bit 
strip are, as follows: 

o -- The associated skeleton array 
instruction is not to be included 
as part of the machine code 
sequence. If a horizontal line 
containing all zeros appears after 
an instruction in a skeleton, the 
zero may be changed to a one to 
perform the desired function. This 
usually happens for base register 
loads and result stores. 

~In some cases, operand 3 does not exist 
and only the status of operand 2 is 
indicated. 

APPENDIX C: ARRAYS 

1 -- The associated skeleton array 
instruction is to be included as 
part of the machine code sequence. 

X -- The associated skeleton instruction 
mayor may not be included as part 
of the machine code sequence, 
depending upon whether or not the 
associated base address is to be 
loaded, or whether or not a store 
into operand 1 is to be performed. 

Note 1. KK is an indexing parameter used 
by Phase 25 which has a unique 
value for each skeleton. 

Note 2. FC refers to the Phase 15/20 
operators in Table 29. 

IEKVPL: Used for All Subtract Operations 
r-----T------------------T----------------, 
I I Skeleton I I 
I Index I Instructions I Status I 
~-----+------------------+----------------~ 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,D(0,BD) XXXXXXXXOOOOOOOO 
2 LH R2,D(0,B2) 0000111100000000 
3 LH Rl,D(X,B2) 1100000000000000 
4 L B3,D(0,BD) XXOOXXOOXXOOXXOO 
5 LCR R3,R3 0010001000000010 
6 LR Rl,R2 0000110100001101 
7 LH R3,D(0,B3) 0100010001000100 
8 LCR Rl,R3 0001000000000000 
9 SH Rl,D(X,B3) 1000100010001000 

10 5R R1,R3 0100010101110101 
11 AH R3,D(X,B2) 0010000000000000 
12 AH R1,D(X,B2) 0001000000000000 
13 AR R3,R2 0000001000000010 
14 L B1,D(0,BD) XXXXXXXXXXXXXXXX 
15 5TH Rl,D(O,Bl) XXXXXXXXXXXXXXXX _____ ~ __________________ ~ ________________ J 

Appendix C: Arrays 167 



IEKVTS: Used for the INT, IOINT, IFIX, and 
HFIX In-Line Routines 

r-----T------------------T----------------, 
I I , INT, , 
" , IFIX, , 
, , Skeleton , HFIX IOINT, 
,Index, Instructions ,Status Status, 
~-----+------------------+----------------~ 

0011 0011 
0101 0101 

1 SOR 0,0 1111 0000 
2 L B2,0(0,BO) XXOO XXOO 
3 LD R2,0(0,B2) 0100 0100 
4 LO 0,0(0,B2) 1000 1000 
5 LDR 0,R2 0111 0111 
6 AW 0,60(0,12) 1111 1111 
7 STO 0,64(0,13) 1111 1111 
8 L Rl,68(0,13) 1111 1111 
9 BALR 15,0 1111 1111 

10 BC 10,6(0,15) 1111 1111 
11 LNR Rl,Rl 1111 1111 
12 L Bl,O(O,BO) XXXX XXXX 
13 STH Rl,O(O,Bl) XXXX XXXX _____ L __________________ L ________________ J 

IEKVAD: Used for the ABS (FC=67), lABS 
(FC=68), and OABS (FC=66) In-Line 
Routines (KK=25) 

r---------T-------'-------------T----------, 
, 'Skeleton I , 
, Index' Instructions I Status , 
~---------+--------------------+----------~ 
" I 0011 , 
" , 0101 , 

" I' I 1 I L B2,0(0,BO), XXOO , 
I 2 'LH R2,0(0,B2) I 1100 , 
, 3 ,LPR Rl,R2 ,1111, 
, 4 'L Bl,D(O,BO), XXXX , 
, 5 ,STH Rl,D(O,Bl) , XXXX , L _________ L_----_______________ ~ __________ J 

IEKVFP: Used for 'the MOD24 In-Line Routine 
r---------T--------------------T----------, 
, , Skeleton' , 
, Index' Instructions ,Status, 
~---------+--------------------+----------~ 
" , 0011 , 
" , 0101 , 

" " , 1 'L B 2, D ( 0, BO) , xx 0 0 , 
, 2 I L R2,D(X,B2), 1100 , 
, 3 'LA Rl,0(0,R2), 1111 , 
, 4 ,L Bl,D(O,BD), xxxx , 
, 5 ,ST Rl,D(O,Bl), xxxx , L _________ L ____________________ ~ __________ J 

168 

IEKVTS: Used for the MAX2 and MIN2 In-Line 
Routines 

r-----T------------------T----------------, 
I , Skeleton, 1 
IIndex' Instructions 1 Status I 
~-----+------------------+----------------~ 

00000000111111111 
00001111000011111 
0011001100110011 
0101010101010101 

1 L B2,D(0,BD) XXXXXXXXOOOOOOOO 
2 LH R2,D(0,B2) 0000111100000000 
3 LH Rl,D(0,B2) 1100000000000000 
4 CR Rl,R2 0000001000000010 
5 CH R3,D(0,B2) 0001000000000000 
6 CH Rl,D(0,B2) 0010000000000000 
7 L B3,D(0,BD) XXOOXXOOXXOOXXOO 
8 LH R3,D(0,B3) 0100010001000100 
9 CR R2,R3 0100010101110101 

10 CH R2,D(0,B3) 0000100000001000 
11 CH Rl,D(0,B3) 1000000010000000 
12 LR Rl,R2 0000110100001101 
13 LR Rl,R3 0001000000000000 
14 BALR 15,0 1111111111111111 
15 BC N,6(0,15)~ 1111111111111111 
16 LR Rl,R2 0000001000000010 
17 LR Rl,R3 0100010101110101 
18 LH Rl,0(0,B2) 0011000000000000 
19 LH Rl,D(0,B3) 1000100010001000 
20 L Bl,O(O,BD) XXXXXXXXXXXXXXXX 
21 STH Rl,O(O,Bl) XXXXXXXXXXXXXXXX 

~-----~------------------~----------------~ 
I~For MAX2,N=2i for MIN2,N=4. I L _________________________________________ J 

IEKVFP: Used for the SHFTR and SHFTL 
In-Line Routines 

r-----T------------------T----------------, 
, , Skeleton' , 
I Indexl Instructions I Status , 
~~----+------------------+----------------~ 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,D(0,BD) XXXXXXXXOOOOOOOO 
2 L R2,D2(X,B2) 1111111100000000 
3 LR Rl,R2 0000111100001111 
4 L B3,D(0,BD) XXOOXXOOXXOOXXOO 
5 LH R3,D3(X,B3) 1100110011001100 
6 SRL Rl,0(0,R3) 1111111111111111 
7 L Bl,D(O,BD) XXXXXXXXXXXXXXXX 
8 ST Rl,D(O,Bl) XXXXXXXXXXXXXXXX _____ ~ __________________ ~ ________________ J 



IEKVAD: Used for the DBLE In-Line Routines 
r---------T--------------------T----------, 
I I Skeleton 1 I 
I Index I Instructions 1 Status 1 
~---------+--------------------+----------~ 

1 0011 1 
1 0101 
1 

1 L B2,D(0,BD) 1 XXOO 
2 SDR Rl,Rl 1 1111 
3 LER 0,R2 1 0010 
4 LE Rl,D(0,B2) 1 1100 
5 LER R2,Rl 1 0100 
6 LDR Rl,O 1 0010 
7 LER Rl,R2 1 0001 
8 L Bl,D(O,BD) 1 XXXX 
9 STD Rl,D(O,Bl) I XXXX _________ i ____________________ i _________ _ 

IEKVAD: Used for DMOD (FC=60) and AMOD 
(FC=62) In-Line Routines (KK=22) 

r-----T------------------T----------------, 
1 I Skeleton 1 I 
IIndexl Instructions 1 Status I 
~-----+------------------+----------------~ 

100 00000011111111 
10000111100001111 
10011001100110011 
10101010101010101 
1 

1 L B2,D(0,BD) IXXXXXXXXOOOOOOOO 
2 LD R2,D(0,B2) 10000111100000000 
3 LD Rl,D(0,B2) 11111000000000000 
4 L B3,D(@,BD) XXOOXXOOXXOOXXOO 
5 LD R3,D(0,B3) 0100010001000100 
6 LDR Rl,R2 0000111111111111 
7 DDR Rl,R3 0111011101110111 
8 DD Rl,D(0,B3) 1000100010001000 
9 AD Rl,n(0,13)* 1111111111111111 

10 MDR Rl,R3 0111011101110111 
11 MD Rl,D(0,B3) 1000100010001000 
12 LCDR Rl,Rl 1111111111111111 
13 AD Rl,D(0,B2) 1111111100000000 
14 ADR Rl,R2 0000000011111111 
15 L Bl,D(O,BD) XXXXXXXXXXXXXXXX 
16 STD Rl,D(O,Bl) XXXXXXXXXXXXXXXX 

~-----i------------------i----------------~ 
I*Note that n is the displacement assigned I 
I by the compiler to the constant I 
I 4EOOOOOOOOOOOOOO. Note also that this I 
I instruction is generated twice with the 1 
I operation code changed to AW for the I 
I first of the two generations. 1 L _________________________________________ J 

IEKVTS: Used for SIGN, ISIGN, and DSIGN 
In-Line Routines 

r-----T------------------T----------------, 
I I Skeleton I I 
1 Indexl Instructions 1 Status I 
~-----+------------------+----------------~ 

1 0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,D(0,BD) XXXXXXXXOOOOOOOO 
2 LH R2,D(0,B2) 0000111100000000 
3 LTR R3,R3 0010001000100010 
4 LH Rl,D(0,B2) 1111000000000000 
5 L B3,D(0,BD) XXOOXXOOXXOOXXOO 
6 LH R3,D(0,B3) 0100010001000100 
7 LR Rl,R2 0000001000000010 
8 LPR Rl,R2 0000110100001101 
9 LPR Rl,Rl 1101000011010000 

10 LTR R3,R3 0101010101010101 
11 TM 128,D(0,B3) 1000100010001000 
12 BALR 15,0 1111111111111111 
13 BC 14,6(0,15) 1000100010001000 
14 BC 10,6(0,15) 0111011101110111 
15 LR Rl,Rl 1111111111111111 
16 BC 15,12(0,15) 0010001000100010 
17 LPR Rl,Rl 0010001000100010 
1.8 L Bl,D(O,BD) XXXXXXXXXXXXXXXX 
1.9 STH Rl,D(O,Bl) XXXXXXXXXXXXXXXXI _____ i __________________ i ________________ J 

IEKVTS: Used for DIM and IDIM In-Line 
Routines 

r-----T------------------T----------------, 
I I Skeleton I I 
IIndexl Instructions I Status \ 
~-----+------------------+----------------~ 

0000000011111111\ 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,D(0,BD) XXXXXXXXOOOOOOOO 
2 LH R2,D(0,B2) 0000111100000000 
3 LH Rl,D(0,B2) 1101000000000000 
4 LCR Rl,R3 0010001000000010 
5 AH Rl,D(0,B2) 0010000000000000 
6 L B3,D(0,BD) XXOOXXOOXXOOXXOO 
7 LH R3,D(0,B3) 0100010001000100 
8 LR Rl,R2 0000110100001101 
9 SH Rl,D(0,B3) 1000100010001000 

10 AR Rl,R2 0000001000000010 
11 SR Rl,R3 0101010101110101 
12 BALR 15,0 1111111111111111 
13 BC 10,6(0,15) 1111111111111111 
14 SR Rl,Rl 1111111111111111 
15 L Bl,D(O,BD) XXXXXXXXXXXXXXXX 

I 16 STH Rl,D(O,Bl) XXXXXXXXXXXXXXXX L _____ i __________________ i ________________ J 

Appendix C: Arrays 169 



IEKVUN: Used for NOT Operations 
r---------T--------------------T----------, 
I I Skeleton I I 
I Index I Instructions I Status I 
~---------+--------------------+----------i 

0011 
0101 

1 L B2,0(0,BD) XXOO 
2 LA R1,1(0,0) 1101 
3 BCTR R1,0 0010 
4 LCR R1,R1 0010 
5 X R1,0(X,B2) 1000 
6 L R2,02(0,B2) 0100 
7 XR R1,R2 0101 
8 L B1,0(0,BO) XXXX 
9 ST R1,0(0,B1) XXXX _________ ~ ____________________ ~ __________ J 

IEKVUN: Used for All Load Address 
Operations 

r-----T------------------T----------------, 
I I Skeleton I I 
I Index I Instructions I Status I 
~-----+------------------+----------------i 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B3,0(0,BO) 0000000000000000 
2 LH R3,0(0,B3) 1100110011001100 
3 L B2,0(0,BO) 0000000000000000 
4 LA R1,0(R3,B2) 1111111111111111 
5 L B1,0(0,BO) 0000000000000000 
6 ST R1,0(0,B1) 1111111111111111 
7 LA 0,128(0,0) 0000000000000000 
8 MVI 128,0(0,B1) 0000111100000000 _____ L __________________ L ________________ J 

IEKVUN: Used for All Load Byte operations 
r-----T------------------T----------------, 
I I Skeleton I I 
I Index I Instructions I Status I 
~-----+------------------+----------------i 
I I 10000000011111111 1 
I I 1000011110000111~1 
1 I 100110011001100111 
I I 101010101010101011 
I I I I 
I 1 IL B3,0(0,BO) 100000000000000 00 1 
I 2 ISR R3,R3 111111111000000001 
I 3 IIC R3,0(X,B3) 111111111111111111 
I 4 IL B1,0(0,BO) 100000000000000001 
I 51ST R3,0(0,Bl) 100000000000000001 L _____ L __________________ ~ ________________ J 

170 

IEKVAO: Used for COMPL and LCOMPL In-Line 
Routines 

r---------T--------------------T----------, 
I 1 Skeleton I I 
I Index I Instructions I Status I 
~---------+--------------------+----------i 

0011 
0101 
0000 
0000 

1 L B2,0(0,BO) XXOO 
2 L R2,0(0,B2) 0100 
3 LA R1,1(0,0) 1101 
4 LCR R1,Rl 1111 
5 X R1,02(X,B2) 1000 
6 XR R1,R2 0101 
7 BCTR R1,0 0010 
8 L B1,0(0,BO) XXXX 
9 ST R1,0(0,B1) XXXX _________ L ____________________ ~ _________ _ 

IEKVBL: Used for All Branch True and 
Branch False Operations 

r-----T-----------------T-----------------, 
1 I Skeleton I 1 
IIndexl Instructions I Status I 
~-----+-----------------+-----------------i 
I 1 10000000011111111 I 
I 1 10000111100001111 1 
I I 10011001100110011 1 
1 I 10101010101010101 1 
I I 1 I 
1 1 IL B2,0(0,BO) 10 0 0000 0000000000 I 
I 2 I L R2, O( 0, B2) 11111111100000000 1 
1 3 ISR R3,R3 11100110011001100 1 
1 4 1 L Bl, O( 0, BO) 11111111111111111 I 
I 5 I BXH R2, 0 (R3, B1) 11111111111111111* I 
1 6 I BXLE R2, 0 (R3, B1) 11111111111111111* I 
~-----L-----------------~-----------------i 
1 *One of these two instructions will be I 
I added to the bit strip by subroutine I 
I MAINGN-IEKTA depending on the 1 
I operation. I L _________________________________________ J 



IEKVPL: Used for all Half-Word Integer 
Division Operations and for the 
MOD In-Line Routine 

r-----T------------------T----------------, 
1 1 Skeleton 1 1 
1 Index 1 Instructions 1 Status I 
~-----+------------------+---------~------~ 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,D(0,BD) 0000000000000000 
2 LH R2,D(0,B2) 0000111100000000 
3 LH Rl,D(0,B2) 1111000000000000 
4 L B3,D(0,BD) 0000000000000000 
5 LH R3,D(X,B3) 1100110011001100 
6 LR Rl,R2 0000111100001111 
7 SRDA Rl,32(0,0) 1111111111111111 
8 DR Rl,R3 1111111111111111 
9 D Rl,D(X,B3) 0000000000000000 

10 L Bl,D(O,BD) 0000000000000000 
11 STH Rl+l,D(O,Bl) 0000000000000000 
12 STH Rl,D(O,Bl)* 0000000000000000 

~-----~------------------~----------------~ 
I*For MOD in-line routine only. I L ________________________________________ J 

IEKVSU: Used for Case 1 and Case 2 
Subscript Operations 

r-----T------------------T----------------, 
1 1 Skeleton 1 I 
1 Indexl Instructions 1 Status 1 
~-----~------------------~----------------~ 
1 Case 1 1 
~-----T------------------T----------------~ 
1 1 ~00000000111111111 
1 1 100001111000011111 
1 1 10011001100110011 1 
1 I 101010101010101011 
~-----f------------------+----------------~ 
1 1 IL B3,D(0,BD) 100000000000000 00 1 
1 2 ILH R3,D(0,B3) 111001100000000 00 1 
1 3 IL B2,D(0,BD) 100000000000000001 
1 4 ILH R2,D(R3,B2) 11111111100000000 1 
1 5 IL Bl,D(O,BD) 1000000000000000 0 1 
1 6 ISTH R2,D(0,Bl) 100000000000000001 
~----~------------------~----------------~ 
1 Case 2 1 
~-----T------------------T----------------~ 
1 I 10000000011111111 1 
1 I 10000111100001111 1 
1 1 100110011001100111 
I I 10101010101010101 1 
~-----+------------------f----------------~ 
1 1 IL B3,D(0,BD) 100000000000000 00 1 
I 2 ILH R3,D(0,B3) 11100110011001100 1 
1 3 IL B2,D(0,BD) 100000000000000001 
1 4 ILH R2,D(R3,B2) 10000000000000000 1 
I 5 IL Bl,D(O,BD) 100000000000000 00 1 
I 6 ISTH R2,D(0,Bl) 1000000000000000 0 1 L _____ ~ __________________ ~ ________________ J 

IEKVUN: Used for All Unary Minus 
Operations 

r-----T------------------T----------------, 
I I Skeleton I 1 
1 Index I Instructions 1 Status I 
~-----f------------------f----------------~ 
I 1 100000000111111111 
I I 100 001111000011111 
I I 100110011001100111 
I I 101 010101010101011 
I I I I 
1 1 IL B2,D(0,BD) 100000000000000001 
I 2 ILH R2,D2(X,B2) 111111111000000001 
1 3 ILCR Rl,R2 111111111111111111 
1 4 IL Bl,D(O,BD) 100000000000000001 
I 5 ISTH Rl,Dl(X,Bl) 100000000000000001 L _____ ~ __________________ ~ ________________ J 

IEKVBL: Used for All Assigned GO TO 
Operations 

r-----T------------------T----------------, 
I I Skeleton I I 
IIndexl Instructions 1 Status I 
~-----+------------------f----------------~ 
1 I 100 000000111111111 
I I 100001111000011111 
I 1 100110011001100111 
I I 101010101010101011 
I 1 1 I 
1 1 IL B2,D(0,BD) 10 0000000000000 00 1 
1 2 IL R2,D(0,B2) 111111111000000001 
1 3 IBCR 15,R2 111111111111111111 L _____ ~ __________________ ~ ________________ J 

IEKVBL: Used for All Computed GO TO 
Operations 

r-----T------------------T----------------, 
I I Skeleton 1 I 
I Index I Instructions I Status 1 
~-----f------------------f----------------~ 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B3,D(0,BD) 0000000000000000 
2 L R3,D3(0,B3) 1100110011001100 
3 LR Rl,R3 0101010101010101 
4 LA R2,Pl(0,0) 1111111111111111 
5 CLR Rl,R2 1111111111111111 
6 BALR R2,0 1111111111111111 
7 SLL Rl,2(0,0) 1111111111111111 
8 BC 2,14(O,R2) 1111111111111111 
9 L R2,D(Rl,B) 1111111111111111 

10 BCR 15,R2 1111111111111111 _____ ~ __________________ ~ ________________ J 

Appendix C: Arrays 171 



IEKVSU: Used for All Store Operations 
r-----T------------------T----------------, 
1 1 Skeleton 1 1 
1 Index 1 Instructions 1 Status 1 
~-----+------------------+----------------i 
I 1 100000000111111111 
1 1 100001111000011111 
1 1 10011001100110011 1 
1 1 101010101010101011 
1 1 1 1 
1 1 tL B2,D(0,BD) 100000000000000 00 1 
1 2 ILH R2,D(0,B2) 111111111000010001 
1 3 IL Bl,D(O,BD) 100000000000000001 
1 4 ISTH R2,D(X,Bl) 100000000000000001 L _____ ~ __________________ ~ ________________ J 

IEKVAD: Used for the AND and OR In-Line 
Routines 

r-----T------------------T----------------, 
1 1 Skeleton 1 1 
1 Index 1 Instructions 1 Status 1 
~----t------------------+----------------i 
I I 100000000111111111 
1 1 100001111000011111 
I 1 100110011001100111 
I I 101010101010101011 
I I I I 
I 1 IL B2,D(0,BD) 100000000000000001 
I 2 IL Rl,D(X,B2) 111111111000000001 
I 3 IL B3,D(0,BD) 100000000000000001 
I 4 IN Rl,D(X,B3) 111111111111111111 
I 5 IL B1,D(0,BD) 100000000000000001 
I 6 J ST R1, D(O, B1) 100000000000000001 L _____ ~ __________________ ~ ________________ J 

IEKVSU: Used for All Right- and Left-Shift 
operations 

r-----T------------------T----------------, 
I I Skeleton I 1 
I Index I Instructions I Status 1 
~-----+------------------+----------------i 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L 82,D(0,BD) 0000000000000000 
2 LH R2,D(0,B2) 1111111100000000 
3 LR R1,R2 0000111100001111 
4 SRA Rl,P3(0,0) 1111111111111111 
5 HDR R1,R2 0000000000000000 
6 L 81,D(0,BD) 0000000000000000 
7 STH Rl,D(0,B1) 0000000000000000 _____ ~ __________________ ~ ________________ J 

172 

IEKVTS: Used for the FLOAT and DFLOAT 
In-Line Routines 

r---------T--------------------T----------, 
1 1 Skeleton 1 1 
1 Index 1 Instructions 1 Status 1 
.---------+--------------------+----------i 

0011 
0101 

1 L B2,D(0,BD) XXOO 
2 LH R2,D(0,B2) 1100 
3 LD Rl,60(0,12) 1111 
4 STD R1,72(0,13) 1111 
5 LTR R2,R2 1111 
6 BALR 15,0 1111 
7 BC 4, 16 ( 0 , 15) 1111 
8 ST R2,76(0,13) 1111 
9 AD Rl,72(0,13) 1111 

10 BC 15,26(0,15) 1111 
11 LPR 0,R2 1111 
12 ST 0,76(0,13) 1111 
13 SD R1,72(0,13) 1111 
14 L Bl,D(O,BD) XXXX 
15 STD R1,D(0,B1) XXXX 

---------~--------------------~----------

IEKVPL: Used for All .Fixed Point 
Multiplication operations 

r-----T------------------T----------------, 
1 1 Skeleton 1 1 
1 Index 1 Instructions 1 Status 1 
.-----+------------------+----------------i 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,D(0,BD) 0000000000000000 
2 LH R2,D(0,B2) 0000111100000000 
3 LH Rl,D(X,B2) 1100000000000000 
4 L B3,D(0,BD) 0000000000000000 
5 LH R3,D(0,B3) 0100010001000100 
6 LR R1,R2 0000110100001101 
7 LR R1,R3 0001000000000000 
8 MR Rl-l,R3 0100010101110101 
9 MR R1-1,R2 0000001000000010 

10 MH Rl,D(X,B3) 1000100010001000 
11 MH R1,D(X,B2) 0011000000000000 
12 L B1,D(0,BD) 0000000000000000 
13 STH R1,D(0,B1) 0000000000000000 L _____ ~ __________________ ~ ________________ J 



IEKVPL: Used for all Full-Word Integer 
Division Operations and for the 
MOD In-Line Routine 

r-----T------------------T----------------, 
1 1 Skeleton 1 1 
1 Indexl Instructions I Status 1 
~----+------------------+----------------~ 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,DCO,BD) 0000000000000000 
2 LH R2,DCO,B2) 0000111100000000 
3 LH Rl,DCO,B2) 1111000000000000 
4 L B3,DCO,BD) 0000000000000000 
5 LH R3,DCX,B3) 0100010001000100 
6 LR Rl,R2 0000111100001111 
7 SRDA Rl,32CO,0) 1111111111111111 
8 DR Rl,R3 0111011101110111 
9 D Rl,DCX,B3) 1000100010001000 

10 L Bl,DCO,BD) 0000000000000000 
11 STH Rl+l,DCO,Bl) 0000000000000000 
12 STH Rl,DCO,Bl)* 0000000000000000 

~----~------------------~----------------~ 
1* For MOD in-line routine only. 1 L _____________________________ ~ ___________ J 

IEKVTS: Used to Compare Operands Across a 
Relational Operator and Set the 
Result to True or False 

r-----T------------------T----------------, 
I I Skeleton I 1 
I Index I Instructions I Status I 
~-----+------------------+----------------~ 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,DCO,BD) 0000000000000000 
2 LH R2,DCX,B2) 1111111100000000 
3 L B3,DCO,BD) 0000000000000000 
4 LH R3,DCO,B3) 0100010001000100 
5 CH R2,DCX,B3) 1000100010001000 
6 CR R2,R3 0111011101110111 
7 LA Rl,lCO,O) 1111111111111111 
8 BALR 15,0 1111111111111111 
9 BC M,6CO,15) 1111111111111111 

10 SR Rl,Rl 1111111111111111 
11 L Bl,DCO,BD) 0000000000000000 
12 ST Rl,DCO,Bl) 0000000000000000 L _____ ~ __________________ ~ ________________ J 

IEKVON: Used for All Logical Operations 
r-----T------------------T----------------, 
I I Skeleton I I 
IIndexl Instructions I Status I 
~-----+------------------+----------------~ 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,DCO,BD) 0000000000000000 
2 L R2,DCO,B2) 0000111100000000 
3 L Rl,D2CO,B2) 1101000000000000 
4 L B3,DCO,BD) 0000000000000000 
5 L R3,DCO,B3) 0100010001000100 
6 L Rl,D3CX,B3) 0000100000001000 
7 LR Rl,R2 0000010100000101 
8 NR Rl,R2 0000101000001010 
9 NR Rl,R3 0101010101110101 

10 N Rl,D2CO,B2) 0010000000000000 
11 N Rl,D3CX,B3), 1000000010000000 
12 L Bl,DCO,BD) 0000000000000000 
13 ST Rl,D1CO,Bl) 00000000000000001 _____ ~ __________________ ~ ________________ J 

IEKVPL: Used for All Addition Operations 
and for Real Multiplication and 
Real Division Operations 

r-----T------------------T----------------, 
I I Skeleton I 1 
IIndexl Instructions I Status 1 
~-----+------------------+----------------~ 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,DCO,BD) XXXXXXXXOOOOOOOO 
2 LH R2,DCO,B2) 0000111100000000 
3 LH Rl,DCX,B2) 1101000000000000 
4 L B3,DCO,BD) XXOOXXOOXXOOXXOO 
5 LH R3,DCO,B3) 0100010001000100 
6 LH Rl,DCX,B3) 0000000000000000 
7 LR Rl,R2 0000110100001101 
8 AR Rl,R2 0000001000000010 
9 AR Rl,R3 0101010101110101 

10 AH Rl,DCX,B2) 0010000000000000 
11 AH Rl,DCX,B3) 1000100010001000 
12 L Bl,DCO,BD) XXXXXXXXXXXXXXXX 
13 STH Rl,DCO,Bl) XXXXXXXXXXXXXXXX 

~-----~------------------~----------------~ 
I~ot~ For real multiplication and 1 
Idivision operations, the basic operation I 
Icodes will be replaced by the required I 
I codes. I L _________________________________________ J 

Appendix C: Arrays 173 



IEKVBL: Used for Text Entries Whose 
Operator is a Relational Operator 
Operating on Two Nonzero Operands 

IEKVBL: Used for Text Entries Whose 
Operator is a Relational Operator 
Operating on One Operand and Zero 

r-----T------------------T----------------, r-----T------------------T----------------, 
I I Skele"ton I I I I Skeleton I I 
I Index I Instructions I Status I IIndexl Instructions I Status I 
~-----+------------------+----------------~ ~-----+------------------+----------------~ 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,D(0,BD) 0000000000000000 
2 LH R2,D(O,B2) 1111111100000000 
3 L B3,D(O,BD) 0000000000000000 
4 LH R3,D(X,B3) 0100010001000100 
5 CH R2,D(X,B3) 1000100010001000 
6 CR R2,R3 0111011101110111 
7 LTR R2,R2 0000000000000000 
8* L Rl,Pl 1111111111111111 
9 BCR M,Rl 1111111111111111 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

1 L B2,D(O,BD) 0000000000000000 
2 LH R2,D(0,B2) 1111111100000000 
3 L B3,D(0,BD) 0000000000000000 
4 LH R3,D(X,B3) 0000000000000000 
5 CH R2,D(X,B3) 0000000000000000 
6 CR R2,R3 0000000000000000 
7 LTR R2,R2 1111111111111111 
8* L Rl,Pl 1111111111111111 
9 BCR M,Rl 1111111111111111 

~-----~------------------~----------------~ ~-----~------------------~----------------~ 
I*IEKVBL will generate instruction 8 only I I*IEKVBL will generate instruction 8 only I 
I if Pl points to a B-block. I I if Pl points to a B-block. I l _________________________________________ J l _________________________________________ J 

IEKVFP: Used for the LBIT, BBT, and BBF In-Line Routines 
r-------T------------------------T---------------------------T---------------------------, 
I I I BBT,BBF I LBIT I 
I I ~------------T--------------+------------T--------------~ 
I I Skeleton I Simple I Subscripted I Simple I Subscripted I 
I Index I Instructions I Variable I Variable I Variable I Variable I 
~-------+-----------------------+------------+--------------+------------+--------------~ 

1 L B2,D(O,BO) X X X X 
2 LA 15,D+N/8(X,B2) 0 1 0 1 
3 TM M,D+N/8(B2) 1 0 1 0 
4 TM M,O(15) 0 1 0 1 
5 T~1 M, D+N/8 (R2) 0 0 0 0 
6 L 15,Pl" 1 1 0 0 
7 BCR MM,15 1 1 0 0 
8 BALR 15,0 0 0 1 1 
9 LA Rl,l(O,O) 0 0 1 1 

10 Be 1,10(0,15) 0 0 1 1 
11 SR Rl,Rl 0 0 1 1 
12 L Bl,O(O,BO) 0 0 X X 
13 ST Rl,D(O,Bl) 0 0 x X 

~-------~-----------------------~------------~--------------~------------~--------------~ 
I N = The bit to be loaded or tested. I 
I I 
I M MSKTBL(MOD(N,8)+1). MSKTBL is an array of masks used by IEKVFP. I 
I I 
I MM 1 FOR BBT. I 
I I 
I MM = 8 FOR BBF. I L ______________________________________________________________________________________ J 

174 



APPENDIX D: TEXT OPTIMIZATION EXAMPLES 

This appendix contains examples that illustrate the effects of text optimization on 
sample text entry sequences. An example is presented for each of the four sections of 
text optimization. 

This example illu~trates the concept of common expression elimination. The text 
entries in block A are to undergo common expression elimination. Block B is a back 
dominator of block A. Block B contains text entries that are common to those in block A. 

(1) 
Block B 

n=I*4 
T2 = J * 12 
T3 = Tl + T2 
T4 = X (s T3 
A = T4 + Y 

Block A 

T7 = I * 4 
T8 = J * 12 
T9 = T7 + T8 
no = X (s T9 
B = TlO + Z 

Eliminate 
T9 = n + T2 

B 

A 

Eliminate 
T7 = I * 4 

(4) 

Unchanged 

.. 

TlO = X (s T3 
B = no + z 

(2) 
B 

Unchanged 

A 

T8 = J * 12 
T9 = n + T8 
no = x (s T9 
B = no + z 

B 

Eliminate 
TlO = X (s T3 

A 

Eliminate 
T8 = J * 12 

(5) 

Unchanged 

• 

B = T4 + Z 

A 

(3) 

Unchanged 

-
T9 = T1 + T2 
no = x (s T9 
B = no + z 

NOTE: The items Ti are temporaries and (s represents a subscript operator 

Appendix D: Text Optimization Examples 175 



Example 2: Backward Movement 

This example illustrates both 
methods of backward movement. 
The text entries in block A are 
to undergo backward movement. 
Block B is the back target of the 
loop containing block A. 

176 

(1) 
Block B 

E = W+ Z 

A 1 
X=E+U 
n=A+B 
T2 = Tl + C 
E = T2 + D 

(3) 
B 

E = W + Z 

Tl=A+B 
T2=Tl+C 

~ 1 A 

X = E + U 

E=T2+D 

Move 
Tl=A+B 

Move the 
expression 
T2 + D 

(2) 

E = W + Z 

Tl=A+B 

1 
Move 
T2 = n + C ... 

A 

X=E+U 

T2=Tl+C 
E = T2 + D 

(4) 
B 

E = W+ Z 

Tl=A+B 
T2 = Tl + C 
Tj = T2 + D 

.. 1 A 

X=E+U 

E = Tj 

NOTE: The text entry X = E + U cannot be moved, because its operand 2 is 
defined elsewhere in the loop. The text entry E = T2 + D cannot be 
moved, because operand 1 (E) is busy-on-exit from the back target; 
however, the expression T2 + D can be moved. 

.. 



Example 3: Simple-Store Elimination 

The following example illustrates the concept of simple-store elimination, an 
integral part of the processing of backward movement. 

r---------------------------------------------------------------------------------------, 

(1) 

Z=X 
A=Z+B 
D=F*Z 
X=2*M 
Z =Y /4 

N=Z+G 

Eliminate Z = X 

(2) 

A=X+B 
D=F*X 
X=2*M 
Z=Y/4 

N=Z+G 

~---------------------------------------------------------------------------------------~ I Note: Uses of operand 1 of the simple store that appear below the redefinition of I 
I either operand of the simple store are not replaced. I L _______________________________________________________________________________________ J 

Appendix D: Text Optimization Examples 177 



Example 4: stren~th Reduction 

This example illustrates both methods of strength reduction. In the example, 
strength reduction is applied to a DO loop. The evolution of the text entries that 
represent the DO loop and the functions of these text entries are also shown. The 
formats of the text entries in all cases are not exact. They are presented in this 
manner to facilitate understanding. 

consider the DO loop: 

1=3 
DO 10 J=1,3 
A=X(I,J) 

10 CONTINUE 

As a result of the processing of phases 10 and 15, and backward movement, the DO loop 
has been converted to the following text representation. 

Back 
Target 

Loop 

178 

r----------------T--------------------T-----------------------------------------, 
I Text Entry I Function I Evolution I 
----------------+--------------------+-----------------------------------------i 

I = 3 IInitializes I Stated in source module, converted to 

J 1 

Tl 1*4 

I phase 10 text and then to phase 15 
text.It resides in the back target of the 
loop because of text blocking. 

Initializes J 

Multiplies first 
subscript parameter 
by its dimension 
factor 

Generated phase 10 text entry, converted 
to phase 15 text entry. It resides in the 
back target of the loop because of text 
blocking. 

Generated by phase 15 when it encounters 
the subscript parameter I during its 
processing of phase 10 text. It resides 
in the back target of the loop as a 
result of the processing of backward 
movement. 

~----------------+--------------------+-----------------------------------------i 
IY ~~2 = J * 12 IMultiplies second IGenerated by phase 15 when it encounters 
, I subscript parameter Ithe subscript parameter J during its 

T3 

A 

J 

Iby its dimension Iprocessing of phase 10 text. 
I factor. I 

I 
Tl + T2 Computes index valuelGenerated by phase 15 after the last sub-

X (s T3 

J + 1 

for the subscripted Iscript parameter in the phase 10 text 
variable X. Irepresentation of the subscripted 

Ivariable has been processed. 
I 

stores X(I,J) into A The phase 10 text entry forced and 
converted to phase 15 text after the 
index value for the subscripted variable 
has been established. 

Increments DO index. Generated by phase 10 and converted to 
phase 15 text representation. 

IF(JS3)GOTO Y Tests DO index Generated by phase 10 and converted to 
phase 15 text representation. against its maximum 

and controls branch
ling. 

~----------------~--------------------~-----------------------------------------i 
INot~~ ThE~ statement number Y is generated by phase 10. Also, it is assumed I 
Ithat the array X is of the format X(3,3) and that its elements are real I 
I (length 4). I l __________ . _____________________________________________________________________ J 



The following illustration shows the application of strength reduction to the loop. 

(1) 

1=3 
J = 1 
Tl=I*4 

--. , 

Y T2 = J * 12 
T3 = Tl + T2 
A = X (s T3 
J = J + 1 
IF (J s. 3) GOTOY 

I 

Eliminate 
Multiplicative 
Text from Loo p 

(2) 

.. 
.. 
.. 

1=3 
J = 1 
Tl=I*4 
M = J * 12 

... 

-. 
Y T3 = T1 + M 

A = X (s T3 
M = M + 12 
IF (M ~ 36) GOTOY 

I 

Eliminate 
Additive 
Text from Loo 

(3) 

. ... 

. . . . 
1=3 
J = 1 
Tl=I*4 
M = J * 12 
N = 36 + T1 
P=Tl +M 

p ... 

t r 

Y A = X (s P 
P = P + 12 
IF (P s. N) GOTOY 

I 

Appendix D: Text optimization Examples 179 



APPENDIX E: ADDRESS COMPUTATION FOR ARRAY ELEMENTS 

Data references in the form of 
subscripted variable expressions in FORTRAN 
are converted into object code that 
includes address arithmetic and indexed 
references to main storage addresses. 
Since the conversion involves all phases of 
the compiler, a summary of th~ method is 
given here. 

Consider an array A of n dimensions 
whose element length is L, and whose 
dimensions are Dl,' D2, D3, •••• Dn. If such 
an array is assigned main storage starting 
at the address Pll, then the element A(Jl, 
J2, J3, ••• ,Jn) is located at: 

P 

1·~i.~·J it 
,/' . 
~ P11 + (Jl-1)*L + (J2-1)*Dl*L + 

(J3-1)*Dl*D2*L + ••• + (In-l)*D1*D2*D3* 
••• *D (n-l> *L 

This may be expressed as: 

P = POO + J1*L + J2*(D1*L) + J3*(D1*D2*L) 
+ ••• + In*(D1*D2*D3* ••• *D(n-1)*L) 

where: 

POO Pl1 - (L+D1*L + D1*D2*L + ••• + 
Dl*D2* .:. *D(n-1)*L) 

For fixed dimensioned arrays, the 
quantities Dl*L, Dl*D2*L, D1*D2*D3*L, 
, which are referred to as dimension 
factors, are computed at compile time. The 
sum of these quantities, which is referred 
to as the span of the array, is also 
computed at compile time. (Phase 15 
assigns to an array a relative address 
equal to its actual relative address minus 
the span of the array.) 

In the object code, P is finally formed 
as the sum of a base register, an index 
register, and-a displacement. The phase 15 
segment CORAL assoc~ates an address 
constant with each fixed dimensioned array 
such that Pa~POO~Pa+4095, where Pa is the 
address inserted into the address constant 
at program fetch time. The effective 
address is then formed using a base 
register containing the address constant, a 
displacement equal to POO - Pa, and an 
index register, which contains the result 
of a computation of the form: 

180 

eee 

L 2,Jl \ 
~~~~< 

SLL t2, log2L 

L 1,J2 

M O,L*Dl 

AR 2,1 

L 1,J3 

M 0,Dl*D2*L 

AR 2,1 

L 1,Jn 

M 0,D1*D2* ••• *D(n-l) 

AR 2,1 

Absorption of Constants in Subscript 
Expressions 

Subscript expressions may include 
constant parts whose contribution to the 
final effective address is computed at 
compile time. For example, 

B(I-2,J+4,3*5-(L+7)-6) 

would usually be treated in such a way that 
the effect of the 2, the 4, and the 6 would 
be absorbed into the displacement at 
compile time. 

Consider an example of the form 

A(Jl+Kl, J2+K2, ••• , In+Kn) , 

where: 

A is a fixed dimensioned array 
Kl, K2, ••• , Kn are integer constants 



Phase 15 will insert the quantity 

Kl*L + K2*(Dl*L) + K3*(Dl*D2*L) + 
+ Kn(Dl*D2* ••• *D(n-l)*L) 

into the displacem~nt (DP) field of the 
corresponding subscript or load address 
text entry. The constants will not 
otherwise be included in the subscript 
expression. When phase 25 generates 
machine code, the contents of the DP field 
are added to the displacement. To ensure 
that the resultant expression lies within 
the range of 0 to 4095, phase 20 performs a 
check. If the result is not within the 
range, a dictionary entry is reserved for 
the result of the addition, and a suitable 

add text entry is inserted to alter the 
index register immediately before the 
reference. 

When an array is used as an argument, 
the location of its first element, Pll, is 
passed in the parameter list. The prologue 
of the called subroutine contains machine 
code to compute the corresponding POO 
location. When an array has variable 
dimensions, no constant absorption takes 
place and the dimension factors are 
computed for each reference to the array. 

Appendix E: Address Computation for Array Elements 181 



The FORTRAN (H) compiler is structured 
in a planned overlay fashion. A planned 
overlay structure is a single load module, 
created by the linkage editor in response 
to overlay control statements. These 
statements, a description of the planned 
overlay structure, and instructions in 
specifying such a program structure are 
presented in the publication !:§tL§.y§.:!:;g!!!~l§'Q 
QQer~ti~~§.y.§.te~~_Li~kag~~ditor. The 
processing performed by the linkage editor 
in response to overlay control statements 
is described in the publication IBM 
System/360 qQerati~g_£yst~_~~g~~gg 
EditQ~L_PrQg~am_~Qgic_~~~ua!. 

The compiler's planned overlay structure 
consists of 13 segments, one of which is 
the root. The root segment contains the 
FSD and includes the processing units 
(e.g., the compile-time input/output 

~ 
I 
~ , r (18.6)' 

4 - 15/20. 
r (6.1) 

::J 
:; 
0 
~ 
~ 

CIl 

19 
...t: 
Q.. 

U. 
I w 

c,,: -0 r (20.9) x , 
I 

M (30.2) ,. 0 
N 

~ 
0 

...t: 
Q.. 

I 

co n (23.4) 0 

~ o 
...t: 
Q.. 

I 

N 

" (62.4) 

N 

CIl 

19 
;0 if 

I 
N 
« 0-

:J: 
~ 

~ 
CIl 

1 
Q... 

I 

10 n (56.2) 

'The number in parentheses times 1,000 equals the approximate segment length. 

Figure 55. Compiler Overlay Structure 

182 

routines) and data areas (e.g., 
communication region) that are used by two 
or more phases. The root segment remains 
in main storage throughout the execution of 
the compiler. 

Each of the remaining 12 segments 
constitutes a phase or a major portion of a 
phase. Phase segments are overlaid as 
compiler processing requires the services 
of another segment. 

Figure 55 illustrates the compiler's 
planned overlay structure. In the 
illustration, each segment is identified by 
a number. Segments that originate from the 
same horizontal line overlay each other as 
needed. The illustration also indicates 
the approximate size (in bytes) of each 
segment. 

0 
N 

CIl 

19 
...t: (9.7) Q.. :. ,r 

0 
M 

0 CIl N 
19 CIl ...t: 

19 Q.. 
...t: (9.9) I Q.. 

~" 
N 
~ r (21.5) - , 

I,(') 
N 

~ 

" (33.8) 
0 

...t: 
Q.. 

I 

~ ,r (56.2) 

0 
N 

CIl 

a 
...t: 
Q.. 

I 

9 
n (53.7) 



The longest path1 of this structure is 
formed by segments 1, ~, 7, and 10 because, 
when they are in main storage, the compiler 
requires approximately 81,000 bytes. Thus, 
the minimum main storage requirement for 
the compiler is approximately 89,000 bytes. 

The linkage editor assigns the 
relocatable origin of the root segment (the 
origin of the compiler) at O. The 
relocatable origin of each segment is 
determined by summing the length of all 
segments in the path. For example, the 
origin of segment 10 is equal to the length 
of segment 1 plus the length of segment 4 
plus the length of segment 7. 

The segments that constitute each phase 
of the compiler are out~ined in Table 32. 
The remainder of this appendix is devoted 
to a discussion of the segments of the 
compiler's planned overlay structure. 

Table 32. Phases and Their Segments 
r--------T--------------------------------, 
I Phase ISegment(s) Constituting Phase I 
~--------+--------------------------------~ 
IPhase 10lSegment 2 I 
IXREF ISegment 3 I 
IPhase 151Segments 4, 5, 6 I 
IPhase 20lSegments 4, 7, 8, 9, 10, 11 I 
IPhase 251Segment 13 I 
IPhase 30lSegment 12 I 
~--------i--------------------------------~ 
I~ Segment 4 is loaded whenever I 
Iphases 15, 20, or 30 are loaded. It I 
Icontains data areas used by 15 and 20. I L _________________________________________ J 

Segment 1: This segment is the root 
segment of the compiler's planned overlay 
structure. Segment 1 is the FSD. It has a 
relocatable origin at 0 and is not overlaid 
by other compiler phases. The composition 
of segment 1 is illustrated in Table 33. 

§ggmgnt 2: This segment is phase 10. The 
origin of the segment is immediately 
following segment 1. At the completion of 
phase 10 operation, segment 2 is overlaid 
by segment 3 if the XREF option was chosen 
or by segment 4 if the option was not 
chosen. The composition of segment 2 is 
illustrated in Table 34. 

1A path consists of a segment, all segments 
between it and the root segment, plus the 
root segment. 

Table 33. Segment 1 Composition 
r---------------T-------------------------, 
IControl sectionlEntry Point(s) I 
~---------------+-------------------------~ 
IEKATB IEKATB 
IEKAAOl 
IEKAA02 
ADCON-IEKAAD 
PUTOUT-IEKAPT 
IEKATM 

DCLIST-IEKTDC 
AFIXPI-IEKAFP 
IEKAAOO 

IEKFIOCS 
IEKFCOMH 
IEKTLOAD 

ERCOM-IEKAER 
IIEKAAA 

PAGEHEAD 

PUTOUT 
PHAZSS, PHASB, TST,PHASS, 

TSP,TOUT,TIMERC 
IEKTDC 
FIXPI,AFIXPI,FIXPI# 
IEKAGC,ENDFILE,IEKAA9, 

IEKIORTN 
FIOCS#,FIOCS 
IBCOM#,IBCOM 
IEKUSD,ESD,TXT,IEKTXT, 

RLD,IEKURL,IEND,IEKUND 

L _______________ i ________________________ _ 

Table 34. Segment 2 Composition 
r---------------T-------------------------, 
Icontrol Section I Entry Point(s) I 
~---------------+-------------------------~ 
IEKAINIT 
STALL-IEKGST 
XSUBPG-IEKCSR 
LA.BTLU- IEKCLT 
XARITH-IEKCAR 
DSPTCH-IEKCDP 
XIOPST-IEKDIO 
GETCD-IEKCGC 
CSORN-IEKCCR 

XTNDED-IEKCTN 
IEKKOS 
XIOOP-IEKCIO 
PUTX-IEKCPX 
XDATYP-IEKCDT 
GETWD-IEKCGW 
XCLASS-IEKDCL 
FORMAT-IEKTFM 
XSPECS-IEKCSP 
XGO-IEKCGO 
XDO-IEKCDO 
PH10-IEKCAA 
IEKXRS 

IEKAINIT 
IEKGST 
IEKCSR 
IEKCLT 
IEKCAR 
IEKCDP,IEKCIN 
IEKDIO 
IEKAREAD 
IEKCCR,IEKCS3,IEKCS1, 

IEKCS2,IEKCLC 
IEKCTN 
IEKKOS 
IEKCIO 
IEKCPX 
IEKCDT 

IEKDCL 
IEKTFM 
IEKCSP 
IEKCGO 
IEKCDO 

L _______________ i ________________________ _ 

Seg~g~i_~: This segment ~ontains 
subroutine XREF-IEKXRF. Its origin is 
immediately following segment 1. If the 
XREF option is chosen, segment 3 overlays 
segment 2. If the XREF option is not 
selected, segment 3 is not used. and segment 
2 is overlaid by segment 4. 

Appendix F: Compiler Structure 183 



segm~nt~: This segment is considered a 
portion of both phases 15 and 20. It 
contains data areas used by both phases. 
The origin of segment 4 is immediately 
following segment 1. Segment 4 is overlaid 
by segment 13. The composition of segment 
4 is illustrated in Table 35. 

Table 35. Segment 4 Composition 
r---------------T-------------------------, 
IControl sectionlEntry Pointls) I 
~---------------t-------------------------~ 
ICMAJOR-IEKJA2 I I 
IRMAJOR-IEKJA4 I I L _______________ ~ _________________________ J 

§~gm~!!:!::_~: This segment is a portion of 
phase 15. It contains subroutines that 
implement t.he PHAZ15 functions of that 
phase which are arithmetic translation, 
text blocking, and information gathering. 
The origin of segment 5 is immediately 
following segment 4. Segment 5 is overlaid 
by segment 6. The composition of segment 5 
is illustrated in Table 36. 

Table 36. Segment 5 Composition 
r---------------T-------------------------, 
IControl sectionlEntry Point(s) I 
~---------------t-------------------------~ 
IEKLTB 
LOOKER-IEKLOK 
GENRTN-IEKJGR 
FUNRDY-IEKJFU 
CNSTCV-IEKKCN 
OP1CHK-IEKKOP 
SUBMULT-IEKKSM 
PHAZ15-IEKJA 
BLTNFN-IEKJBF 
STTEST-IEKKST 
RELOPS-IEKKRE 
FINISH-IEKJFI 
DFUNCT-IEKJDF 
MATE-IEKLMA 
ANDOR-IEKJAN 
CPLTST-IEKJCP 
UNARY-IEKKUN 
DUMP15-IEKLER 
PAREN-IEKKPA 
GENER-IEKLGN 
ALTRAN-IEKJAL 
TXTLAB-IEKLAB 
TXTREG-IEKLRG 
SUBADD-IEKKSA 
PH15-IEKJA1 
IEKJA3 

IEKJGR 
IEKJFU 
IEKKCN 
IEKKOP,IEKKNG 
IEKKSM 
IEKJA 
IEKJBF 
IEKKST 
IEKKRE 
IEKJFI 
IEKJDF,IEKKPR 
IEKLMA 
IEKJAN,IEKKNO 
IEKJCP,IEKJMO 
IEKKUN,IEKKSW,IEKJEX 
IEKLER 
IEKKPA 
IEKLGN 
IEKJAL 
IEKLAB 
IEKLRG 
IEKKSA 

L _______________ ~ _________________________ J 

184 

§gg~~!!!_£: This segment is a portion of 
phase 15. It contains the subroutines that 
implement the CORAL functions of the phase. 
The origin of segment 6 is immediately 
following segment 4. Segment 6 overlays 
segment 5 and is overlaid by segment 7. 
The composition of segment 6 is illustrated 
in Table 37. 

Table 37. Segment 6 Composition 
r---------------T-------------------------, 
IControl SectionlEntry Point(s) I 
~---------------+-------------------------~ 
IDFILE-IEKTDF IIEKTDF I 
INLIST-IEKTNL IIEKTNL I 
ICORAL-IEKGCR IIEKGCR I 
INDATA-IEKGDA IIEKGDA I 
IEQVAR-IEKGEV IIEKGEV I 
ICMSIZE-IEKGC2 IIEKGCZ I 
IDATOUT-IEKTDT IIEKTDT I 
IIEKGA1 I I L _______________ ~ _________________________ J 

segment 7: This segment is a portion of 
phase 20. It contains the controlling 
subroutine of that phase, the loop 
selection routine, and a number of 
frequently used utility subroutines. The 
origin of segment 7 is immediately 
following segment 4. Segment 7 overlays 
segment 6. The composition of segment 7 is 
illustrated in Table 38. 

Table 38. Segment 7 Composition 
r---------------T-------------------------, 
IControl sectionlEntry Point(s) I 
~---------------t-------------------------~ 
I LPSEL-IEKPLS IIEKPLS I 
IIEKARW I I 
ITARGET-IEKPT IIEKPT I 
IGETDIK-IEKPGK IIEKPGK,IEKPGC,IEKPIV, I 
I IIEKPFT,IEKPOV I 
IIEKPOP I I L _______________ ~ _________________________ J 

Segment 8: This segment is a portion of 
phase 20. It consists of the subroutines 
that determine (1) the back dominator, back 
target, and loop number of each source 
module block, and (2) the busy-on-exit 
data. Segment 8 is executed only if the 
OPT=2 path through phase 20 is followed. 



The segment is executed only once and is 
overlaid by segment 9. The origin of 
segment 8 is immediately following segment 
7. The composition of segment 8 is 
illustrated in Table 39. 

Table 39. Segment 8 Composition 
r---------------T-------------------------, 
IControl SectionlEntry Point(s) I 
~---------------+-------------------------~ 
ISRPRIZ-IEKQAA IIEKQAA,IEKQAB I 
I TOPO-IEKPO IIEKPO I 
IBAKT-IEKPB IIEKPB I 
IBIZX-IEKPZ IIEKPZ I 
IIEKPBL I I L _______________ ~ _________________________ J 

Segment 9: This segment is a portion of 
phase 20. It contains subroutines that 
perform common expression elimination and 
strength reduction as well as the major 
portion of the utility subroutines 'used 
during text optimization. Segment 9 is 
executed only if the OPT=2 path through 
phase 20 is specified. The origin of 
segment 9 is immediately following segment 
7. During the course of optimization, 
segment 9 overlays segment 8 and is 
overlaid by segment 10 after all module 
loops have been text-optimized. The 
composition of segment 9 is illustrated in 
Table 40. 

Table 40. Segment 9 Composition 
r---------------T-------------------------, 
IControl Section I Entry Point(s) I 
~---------------f-------------------------~ 
I KORAN-IEKQKO IIEKQLO 
IWRITEX-IEKQWT IIEKQWT 
ICIRCLE-IEKQCL IIEKQCL,IEKQF 
IPERFOR-IEKQPF IIEKQPF 
I TYPLOC-IEKQTL IIEKQTL 
IXSCAN-IEKQXS IIEKQXS,IEKQYS,IEKQZS 
\XPELIM~IEKQXM \IEKQXM 
I MOVTEX-IEKQMT \.IEKQMT, IEKQDT 
\CLASIF-IEKQCF IIEKQCF,IEKQPX,IEKQMF 
IBACMOV-IEKQBM IIEKQBM 
IREDUCE-IEKQSR IIEKQSR 
\SUBSUM-IEKQSM \IEKQSM L _______________ ~ _________________________ J 

§~ment 10: This segment is a portion of 
phase 20. It contains full register 
assignment subroutines, the utility 
subroutines used by them, and the 
subroutine that calculates the size of each 
text: block and determines which text blocks 
can be branched to via RX-format branch 
instructions. Segment 10 is executed in 
the optimized paths through phase 20. The 
origin of segment 10 is immediately 
following segment 7. The composition of 
segment 10 is illustrated in Table 41. 

Table 41. Segment 10 Composition 
r---------------T-------------------------, 
\Control section I Entry Point(s) I 
~---------------f-------------------------i 
BLS-IEKSBS IEKSBS 
CXIMAG-IEKRCI IEKRCI 
BKPAS-IEKRBP IEKRBP 
GLOBAS-IEKRGB IEKRGB 
FWDPS1-IEKRFl IEKRFl 
LOC-IEKRLl 
FCLT50-IEKRFL IEKRFL,IEKRRL,IEKRTF 
STXTR-IEKRSX IEKRSX 
FWDPAS-IEKRFP IEKRFP 
SEARCH-IEKRS IEKRS 
REGAS-IEKRRG IEKRRG 
FREE-IEKRFR IEKRFR 

IBKDMP-IEKRBK IEKRBK L _______________ ~ ________________________ _ 

Segment 11: This segment is a portion of 
phase 20. It consists of the subroutines 
that perform basic register assignment. 
Segment 11 is executed only in the OPT=O 
path through phase 20. The origin of 
segment 11 is immediately following segment 
7. Segment 11 does not overlay any other 
segment in phase 20, nor is it overlaid by 
another segment in phase 20. The 
composition of segment 11 is illustrated in 
Table 42. 

Table 42. Segment 11 Composition 
r------~--------T-------------------------, 
IControl section I Entry Point(s) I 
~---------------+-------------------------i 
ISSTAT-IEKRSS IIEKRSS I 
ITALL-IEKRLL IIEKRLL \ 
ISPLRA-IEKRSL IIEKRSL I L _______________ ~ _________________________ J 

Appendix F: Compiler Structure 185 



segment 12: This segment is phase 30. The 
origin of sE~gment 12 is immediately 
following segment 4. Segments 4 and 12 
overlay segment 13, if errors are 
encountered during the processing of 
previous phases. The composition of 
segment 12 is illustrated in Table 43. 

Table 43. Segment 12 Composition 
r---------------T-------------------------, 
IControl SectionlEntry Point(s) I 
~---------------+-------------------------~ 
I MSGWRT-IEKP31 IIEKP31 I 
IIEKP30-IEKP30 I I L _______________ ~ _________________________ J 

Segm~nt_!l: This segment is phase 25. The 
origin of segment 13 is immediately 
following segment 1. segment 13 overlays 
segment 4, 7, and either 10 or 11: segment 
11 is used for OPT=O only; segment 10 is 
used for OP1:1,2 only. The composition of 
segment 13 is illustrated in Table 44. 

186 

Table 44. Segment 13 Composition 
r---------------T-------------------------, 
IControl sectionlEntry Point(s) I 
~---------------+-------------------------~ 
MAINGN2-IEKVM2 IEKVM2 
PACKER-IEKTPK IEKTPK 
LABEL-IEKTLB IEKTLB 
RETURN-IEKTRN IEKTRN 
FNCALL-IEKVFN IEKVFN 
GOTOKK-IEKWKK IEKWKK 
LISTER-IEKTLS IEKTLS 
STOPPR-IEKTSR IEKTSR 
ENTRY-IEKTEN IEKTEN 
CGEN-IEKWCN 
BRLGL-IEKVBL 
IOSUB-IEKTIS 
PROLOG-IEKTPR 
MAINGN-IEKTA 
TENTXT-IEKVTN 
IOSUB2-IEKTIO 
END-IEKUEN 
EPILOG-IEKTEP 
IEKGMP 
ADMDGN-IEKVAD 
TSTSET-IEKVTS 
PLSGEN-IEKVPL 
SUBGEN-IEKVSU 
UNRGEN-IEKVUN 
BITNFP-IEKVFP 
FAZ25-IEKP25 

IEKVBL 
IEKTIS 
IEKTPR 
IEKTA 
IEKV'I'N 
IEKTIO 
IEKUEN 
IEKTEP 

IEKVAD 
IEKVTS 
IEKVPL 
IEKVSU 
IEKVUN 
IEKVFP 

L _______________ ~ ________________________ _ 



The messages produced by the compiler 
are explained in the publication IBM 
System/360 Operating System: FORTRAN IV (G 
and H) Programmer's Guide. Each message is 
identified by an associated number. The 
following table associates a message number 
with the phase and subroutine in which the 
corresponding message is generated. 

r---------T----------------T--------------, 
I IRoutine in WhichlPhase in Which I 
I Message IMessage Number IMessage Number I 
I Number lIS Generated lIs Generated I 
~---------+----------------+--------------~ 
I IEK001I IIEKP30 I PHASE 30 I 
~---------+----------------+--------------~ 

IEK002I XCLASS-IEKDCL 

IEK003I XARITH-IEKCAR 

IEK005I XARITH-IEKCAR 

IEK006I XARITH-IEKCAR, 
LABTLU-IEKCLT, 
DSPTCH-IEKCDP, 
XIOOP-IEKCIO, 
XCLASS-IEKDCL 

IEK007I XARITH-IEKCAR 

IEK008I CSORN-IEKCCR 

IEK009I CSORN-IEKCCR 

IEK010I CSORN-IEKCCR 

IEKOllI XARITH-IEKCAR 

IEK012I CSORN-IEKCCR# 

IEK013I XARITH-IEKCAR, 
PUTX-IEKCPX, 
CSORN-IEKCCR, 
XCLASS-IEKDCL 

IEK014I XDATYP-IEKCDT, 
XSPECS-IEKCSP 

IEK015I XARITH-IEKCAR 

IEK016I XGO-IEKCGO 

IEK017I XGO-IEKCGO 

IEK019I XGO-IEKCGO 

IEK020I XGO-IEKCGO 

IEK021I XGO-IEKCGO 

PHASE 10 

L _________ ~ ________________ ~ _____________ _ 

APPENDIX G: DIAGNOSTIC MESSAGES 

As part of its processing of errors, 
whenever the compiler encounters an error 
that is serious enough to cause deletion of 
a compilation, it prints out: COMPILATION 
DELETED. (For a more detailed explanation, 
refer to Appendix D of the aforementioned 
publication.) 

r---------T----------------T--------------, 
I IRoutine in WhichlPhase in Which I 
I Message IMessage Number IMessage Number I 
I Number lIs Generated lIS Generated I 
~---------+----------------+--------------~ 

IEK022I XGO-IEKCGO I 

IEK023I XTNDED-IEKCTN 

IEK024I XTNDED-IEKCTN 

IEK025I XTNDED-IEKCTN 

IEK026I XTNDED-IEKCTN 

IEK027I XIOPST-IEKDIO 

IEK028I XIOPST-IEKDIO 

IEK030I XDO-IEKCDO 

IEK031I XDO-IEKCDO 

IEK034I DSPTCH-IEKCDP 

IEK035I DSPTCH-IEKCDP 

IEK036I DSPTCH-IEKCDP 
PHASE 10 

IEK0391 XTNDED-IEKCTN 

IEK0401 XCLASS-IEKDCL 

IEK047I XARITH-IEKCAR, 
XDATYP-IEKCDT 

IEK0501 XARITH-IEKCAR 

IEK0521 DSPTCH-IEKCDP 

IEK0531 XARITH-IEKCAR, 
DSPTCH-IEKCDP 

IEK0561 XSUBPG-IEKCSR 

IEK057I XSUBPG-IEKCSR 

IEK0581 XSUBPG-IEKCSR 

IEK059I XSUBPG-IEKCSR _________ ~ ________________ ~ ______________ J 

Appendix G: Diagnostic Messages 187 



r---------T----------------T--------------, 
I IRoutine in WhichlPhase in Whichl 
I Message IMessage Number IMessage Number I 
I Number lIs Generated lIs Generated I 
~---------+----------------+--------------i 

IEK060I XARITH··IEKCAR, 
DSPTCH··IEKCDP 

IEK061I STALL-IEKGST 

IEK062I XSPECS·· IEKCSP 
STALL-IEKGST 

IEK064I XTNDED··IEKCTN 

IEK065I XTNDED·· I EKCTN 

IEK066I XTNDED-IEKCTN 

IEK067I XTNDED·· I EKCTN 

IEK069I XSPECS··IEKCSP 

IEK070I XSPECS··IEKCSP 

IEK072I XSPECS··IEKCSP 
PHASE 10 

IEK073I XSPECS-IEKCSP 

IEK074I XSPECS··IEKCSP 

IEK075I XSPECS-IEKCSP 

IEK076I IXTNDED-' IEKCTN 
I 

IEK077I I XTNDED-' IEKCTN 
I 

IEK078I IXTNDED-IEKCTN 
I 

IEK079I I XTNDED·· IEKCTN 
I 

IEK080I I XTNDED-' IEKCTN 
I 

IEK081I XTNDED-' IEKCTN 

IEK082I XTNDED-' IEKCTN 

IEK083I XTNDED-' IEKCTN 

IEK084I XTNDED-IEKCTN 

IEK086I XSPECS-IEKCSP 

IEK087I XSPECS-IEKCSP 

IEK088I XSPECS-· IEKCSP 

IEK090I DSPTCH-IEKCDP 

IEK091I DSPTCH·· IEKCDP 

IEK092I XDATYp·· IEKCDT 

IEK093I XDATYP-IEKCDT 

IEK094I XDATyp··IEKCDT _________ ~ ________________ L ______________ 

188 

r---------T----------------T--------------, 
I IRoutine in WhichlPhase in Whichl 
I Message IMessage Number IMessage Number I 
I Number lIs Generated lIs Generated I 
~---------t----------------+--------------i 

I 
IEK095I XDATYP-IEKCDT 

IEK096I XDATYP-IEKCDT 

IEK097I XTNDED-IEKCTN 

IEK098I XTNDED-IEKCTN 

IEK099I XTNDED-IEKCTN 

IEK100I XTNDED-IEKCTN 

IEK101I XDO-IEKCDO 

IEK102I XIOPST-IEKDIO 

IEK104I XIOPST-IEKDIO 

IEK109I XIOPST-IEKDIO 

IEK110I XIOPST-IEKDIO 

IEK111I XIOPST-IEKDIO 
PHASE 10 

IEKl12I XGO-IEKCGO, 
XSPECS-IEKCSP 

IEKl13I XIOPST-IEKDIO 

IEKl15I XIOPST-IEKDIO 

IEKl16I XDO-IEKCDO 

IEKl17I DSPTCH-IEKCDP 

IEK120I DSPTCH-IEKCDP 

IEK121I XDATYP-IEKCDT 

IEK122I XDATYP-IEKCDT 

IEK123I XDATYP-IEKCDT 

IEK124I XDATYP-IEKCDT 

IEK125I XDATYP-IEKCDT 

IEK129I XDATYP-IEKCDT 

IEK132I XDATYP-IEKCDT 

IEK133I XDO-IEKCDO 

IEK134I XDO-IEKCDO 

IEK135I XDO-IEKCDO 

IEK136I XDO-IEKCDO 

IEK137I XDO-IEKCDO 

IEK138I XDO-IEKCDO 
---------~----------------~--------------



r---------T----------------T--------------, 
I IRoutine in WhichlPhase in Which I 
I Message IMessage Number IMessage Number I 
I Number lIs Generated lIs Generated I 
~--------+----------------+--------------~ 

IEK139I DSPTCH-IEKCDP, 

IEK140I 

IEK141I 

IEK143I 

IEK144"I 

IEK145I 

IEK146I 

IEK141I 

IEK148I 

IEK149I 

IEK150I 

IEK151I 

IEK152I 

IEK153I 

IEK156I 

IEK151I 

IEK158I 

IEK159I 

IEK160I 

IEK161I 

IEK163I 

IEK164I 

XSPECS-IEKCSP, 
XDATYP-IEKCDT, 
XTNDED-IEKCTN 

DSPTCH-IEKCDP, 
XIOPST-IEKDIO 

XIOPST-IEKDIO 

DSPTCH-IEKCDP 

DSPTCH-IEKCDP 

DSPTCH-IEKCDP 

DSPTCH-IEKCDP 

DSPTCH-IEKCDP 

XSPECS-IEKCSP 

XIOPST-IEKDIO 

XSPECS-IEKCSP 

XSPECS-IEKCSP 

XSUBPG-IEKCSR 

XARITH-IEKCAR 

XIOOP-IEKCIO 

XARITH-IEKCAR 

XDO-IEKCDO 

XIOPST-IEKDIO 

XIOOP-IEKCIO, 
XDO-IEKCDO 

XIOOP-IEKCIO 

XDO-IEKCDO, 
XARITH-IEKCAR 

XARITH-IEKCAR, 
XDO-IEKCDO, 
XIOOP-IEKCIO 

I 
IEK165I XIOOP-IEKCIO I 

I 
IEK166I XIOOP-IEKCIO I 

I 
IEK161I XARITH-IEKCAR, I 

XSPECS-IEKCSP, I 
XIOPST-IEKDIO, I 
DSPTCH-IEKCDP, I 
XSUBPG-IEKCSR, I 

I XDO-IE~CDO I 

PHASE 10 

L _________ ~ ________________ ~ _____________ _ 

r---------T----------------T--------------, 
I IRoutine in WhichlPhase in Which I 
I Message IMessage Number IMessage Number I 
I Number lIs Generated lIs Generated I 
~---------+----------------+--------------~ 
I IEK168I XSUBPG-IEKCSR 
I 
I IEK169I XIOOP-IEKCIO 

IEK110I XIOOP-IEKCIO 

IEK171I XSUBPG-IEKCSR 

IEK116I XDO-IEKCDO 

IEK192I XGO-IEKCGO, 
XCLASS-IEKDCL 

IEK193I XCLASS-IEKDCL 

IE~K194I XDATYP-IEKCDT 

IEK191I XIOPST-IEKDIO 

IEK199I XSUBPG-IEKCSR 

IEK200I XARITH-IEKCAR 

IEK202I XDATYP-IEKCDT, 
XSPECS-IEKCSP 

IEK203I DSPTCH-IEKCDP 

IEK204I XIOPST-IEKDIO 

IEK205I XGO-IEKCGO 

IEK206I XARITH-IEKCAR 
PHASE 10 

IEK201I I DSPTCH-IEKCDP 

IEK208I DSPTCH-IEKCDP 

IEK209I XDATYP-IEKCDT 

IEK211I CSORN-IEKCCR 

IEK212I XIOPST-IEKDIO 

IEK224I XCLASS- IEKDCL, 
DSPTCH-IEKCDP 

IEK225I DSPTCH-IEKCDP 

IEK226I CSORN-IEKCCR 

IEK229I XARITH-IEKCAR 
~---------+----------------+--------------~ 
I IEK302I ISTALL-IEKGST I I 
I I I I 
I IEK303I ISTALL-IEKGST I I 
I I I PHASE 10 I 
I IEK304I ISTALL-IEKGST I (STALL-IEKGST) I 
I I I and I 
I IEK306I ISTALL-IEKGST I PHASE 15 I 
I I I (CORAL) I 
I IEK301I I CORAL-IEKGCR I I L _________ ~ ________________ ~ ______________ J 

Appendix G: Diagnostic Messages 189 



r---------T----------------T--------------, 
I IRoutine in Which I Phase in Which I 
I Message IMessage Number IMessage Number I 
I Number lIS Generated lIs Generated I 
~---------+----------------+--------------~ 

IEK308I STALL-IEKGST I 
I 

IEK310I STALL-' I EKGST 

IEK312I STALL-' IEKGST 

IEK314I STALL-IEKGST 

IEK31SI STALL-IEKGST 

IEK317I STALL-·IEKGST 

IEK318I NDATA-IEKGDA 

IEK319I NDATA-IEKGDA 
I 

IEK320I NDATA-IEKGDA 

IEK322I STALL-IEKGST 

IEK323I STALL-IEKGST 

IEK332I STALL-IEKGST 
I 

IEK334I STALL-IEKGST I 
I 

IEK3S0I NDATA-IEKGDA I 
I 

IEK3S2I NDATA-IEKGDA I 
I 

IEK3S3I CORAL-IEKGCR I 
I 

IEK3SSI CMSIZE-IEKGCZ I 
I 

IEK3S6I STALL-IEKGST I 

PHASE 10 
(STALt.-IEKGST) 

and 
PHASE 15 
<CORAL) 

~---------t----------------t--------------~ 
I IEK402I IIEKFIOCS I I 
I I I I 
I IEK403I IIEKFIOCS I FSD I 
I I I I 
I IEK404I IIEKFIOCS I I 
I I I I 
I IEK410I IIEKAINIT I I 
~---------+----------------+--------------~ 

IEKSOOI BLTNFN-IEKJBF 
DFUNCT-IEKJDF 

IEKS01I DFUNCT-IEKJDF, 
UNARY-IEKKUN 
(EXPON) 

IEKS02I UNARY-IEKKUN 
(EXPON) 

IEKS03I l\.LTRAN·-IEKJAL 

IEKS04I UNARY-IEKKUN 

IEKSOSI PHAZ1S-IEKJA 

IEKS06I ALTRAN--IEKJAL 

PHASE 15 
(PHAZ1S) 

_________ ~ ________________ ~ ______________ J 

190 

r---------T----------------T--------------, 
I IRoutine in WhichlPhase in Which I 
I Message IMessage Number IMessage Number I 
I Number lIs Generated lIs Generated I 
.---------t----------------t--------------i 

IEKS07I BLTNFN-IEKJBF 

IEKS08I BLTNFN-IEKJBF 

IEKS09I PHAZ1S-IEKJA 

IEKS10I ANDOR-IEKJAN 

IEKS12I FINISH-IEKJFI 

IEKS1SI RELOPS-IEKKRE 

IEKS16I FINISH-IEKJFI 

IEKS20I ALTRAN-IEKJAL 

IEKS21I ALTRAN-IEKJAL 

IEKS22I ALTRAN-IEKJAL 

IEKS23I ALTRAN-IEKJAL 

IEKS24I ALTRAN-IEKJAL 

IEKS2SI ALTRAN-IEKJAL 
RELOPS-IEKKRE 

IEKS29I DFUNCT-IEKJDF 
(IEKKPR) 

IEKS30I SUBADD-IEKKSA 

IEKS31I ALTRAN-IEKJAL 

IEKS41I DFUNCT-IEKJDF 

IEKS42I ALTRAN-IEKJAL 

IEKSSOI ALTRAN-IEKJAL, 
DFUNCT-IEKJDF 
(IEKKPR) 

IEKSS2I DFUNCT-IEKJDF 

IEKS70I GENER-IEKLGN, 
TXTLAB-IEKLAB, 
TXTREG-IEKLRG 

IEKS80I ALTRAN-IEKJAL, 
SUBMLT-IEKKSM, 
PHAZ1S-IEKJA, 
MATE-IEKLMA, 
FINISH-IEKJFI 

PHASE 15 
(PHAZ1S) 

.---------t----------------t--------------i 
I IEK600I ITOPO-IEKPO I I 
I I I PHASE 20 I 
I IEK610I ITOPO-IEKPO I I 
I I I I 
I IEK620I ITOPO-IEKPO I I l _________ ~ ________________ ~ ______________ J 



r---------T----------------T--------------, 
I IRoutine in WhichlPhase in Which \ 
I Message IMessage Number IMessage Number I 
I Number lIs Generated lIs Generated I 
~---------+----------------+--------------~ 

IEK630I TOPO-IEKPO I 
I 

IEK640I GETDIK-IEKPGK I 
I PHASE 20 

IEK650I GETDIK-IEKPGK I 
I 

IEK660I RELCOR-IEKRFL I 
I 

IEK661I FREE-IEKRFR I 
I 

IEK662I FWDPS1-IEKRF1 I 
I 

IEK670I BAKT-IEKPB I 
I 

IEK671I BIZX-IEKPZ I 
~---------+----------------+--------------~ 

IEK710I IEKTFM 

IEK720I IEKTFM 

IEK730I IEKTFM 
PHASE 10 

IEK740I IEKTFM 

IEK750I IEKTFM 

IEK760I IEKTFM 

IEK770I IEKTFM 
~---------+----------------+--------------~ 
I IEK800I IMAINGN-IEKTA, I PHASE 25 I 
I I TSTSET-IEKVTS, I I 
I I ADMDGN-IEKVAD I I 
~---------+----------------+--------------~ 
I IEK1000IIIEKP30 \ PHASE 30 I L _________ ~ ________________ ~ ______________ J 

Appendix G: Diagnostic Messages 191 



Included in the FORTRAN IV (H) compiler 
are two optional facilities which provide 
output that can be used to analyze compiler 
operation and to diagnose compiler 
malfunction. These two facilities are 
TRACE and DUMP. 

TRACE 

The TRACE facility can be used to trace 
the creation of and the modifications made 
to the information table and intermediate 
text, and to provide various other types of 
diagnostic information. This facility is 
activated by the inclusion of the TRACE 
keyword parameter in the PARM field of the 
EXEC statement used to invoke the compiler. 
The format of this parameter is: 

TRACE=value 

where: 

value may be either: (1) any QQ~ of 
the basic keyword values that appear 
in Table 45, or (2) any value that is 
formed by adding two or more of these 
basic keyword values. 

The type of diagnostic information to be 
provided by the compiler for a given 
compilation or batch of compilations is 
determined according to the value specified 
for the TRACE keyword. Table 45 defines 
the type of diagnostic information produced 
for each of the basic keyword values for 
the TRACE keyword. If one of these values 
is specified, the corresponding information 
is provided by the compiler. For example, 
if the basic keyword value of 4 is 
specified, the compiler generates PHAZ15 
diagnostic information. 

If the value given to the TRACE keyword 
is the sum of two or more basic keyword 
values, then the compiler will produce the 
type of information that corresponds to 
each basic keyword value that was added to 
form that value. For example, if the value 
20 (the sum of basic keyword values 4 and 
16) is specified, the compiler will 
generate both PHAZ15 diagnostic information 
and Phase 20 diagnostic information. 

192 

Table 45. Basic TRACE Keyword Values and 
Output Produced 

r-------T---------------------------------, 
IBasic I I 
I Keyword I Output Produced I 
IValues I I 
~-------+---------------------------------~ 
I 1 IPhase 10 diagnostic information I 
~-------+---------------------------------~ 
I 4 IPHAZ15 diagnostic information I 
~-------+---------------------------------~ 
1 16 IPhase 20 diagnostic information 1 
~-------+---------------------------------~ 

64 Printout of: 

1. Information table and 
intermediate text as they 
appear before the execution 
of STALL in Phase 10. 

2. Information table as it 
appears after the execution 
of STALL in Phase 10. 

3. Intermediate text as it 
appears after the execution 
of PHAZ15 in Phase 15. 

4. Information table as it 
appears after the execution 
of CORAL in Phase 15. 

5. Information table and 
intermediate text as it 
appears after the execution 
of Phase 20. 

~-------+---------------------------------~ 
I 128 IBlock size information for each 1 
1 Itext block (Phase 20) I 
~-------+---------------------------------~ 
1 256 IDiagnostic information from the 1 
I Iregister assignment routines I 
1 I (Phase 20) I 
~-------+---------------------------------~ 1 512 IDiagnostic information from the I 
I Itext optimization routines (Phasel 
I 120) I 
~-------+---------------------------------~ 
1 1024 IBusy-on-exit information for eachl 
1 Itext block (Phase 20) I 
~-------+---------------------------------~ 
I 2048 IAdditional diagnostic information 1 
I Ifrom the register assignment I 
I Iroutines (Phase 20) 1 
~-------+---------------------------------~ 
I 4096 IPrintout of intermediate text andl 
I linformation table before and I 
I lafter the execution of Phase 20 I L _______ ~ _________________________________ J 



DUMP 

The dump facility, if activated, will 
cause abnormal termination of compiler 
processing if a program interrupt occurs 
during compilation. It will also cause the 
main storage areas occupied by the 
compiler, as well as any associated data 
and system control blocks to be recorded on 
an external storage device. The dump 
facility is activated by including in the 
compile step of the job: (1) the word DUMP 

as a parameter in the PARM field of the 
EXEC statement, and (2) a SYSABEND data 
definition (DD) statement. 

Note: If the DUMP parameter is specified 
but the SYSABEND DD statement is omitted, 
abnormal termination, accompanied by an 
indicative dump, will occur if a program 
interrupt is encountered. If a program 
interrupt occurs and the DUMP parameter is 
not specified, the current compilation will 
be deleted and the next compilation will be 
attempted. 

Appendix H: The Trace and Dump Facilities 193 



APPENDIX I: FACILITIES USED BY THE COMPILER 

The following statement, built-in functions and bit-setting 
facilities are used by the compiler to produce more efficient object 
code and more efficient use of storage when compiling the compiler. To 
invoke those routines within the compiler which implement the facilities 
requires the inclusion of an additional option to the compiler. The 
option as specified below is coded: 

PARM.procstep=( ••• ,XL, ••• ) 

(Note: The XL subparameter is not positional.) 

Failure to pass the XL option to the compiler will result in its failure 
to process these features as documented below. The STRUCTURE statement 
will be unrecognized and the remaining extensions will be considered as 
external functions. 

STRUCTURE STATEMENT 

r----------------------------------------------------------------------, 
IGENERAL FORM I 
~----------------------------------------------------------------------~ 
ISTRUCTURE//V11,V12,V13,···//V21,V22,V23,···//Vn1"Vn2,Vn3,· •• Vn n I 
I WHERE: V:1.1,VlI..2,V13, ••• V21.,V22,V23, ••• Vn n I 
I I 
I represent names of variables that will be equated to I 
I displacement values. If these variables are declared in a I 
I Type statement, this statement must precede the STRUCTURE I 
I statement. I 
~----------------------------------------------------------------------~ 
I Note: The // immediately following the word STRUCTURE may be omitted. I L ______________________________________________________________________ J 

The variables may be implicitly or explicitly declared as any type or 
length. They must not be dimensioned and must not appear in COMMON or 
EQUIVALENCE statements. A variable may appear more than once in 
STRUCTURE statements within a single program or subprogram provided it 
is given the same displacement by each program. 

If D is the name of a structured variable, it must always appear in 
an executable statement with a single subscript, e.g., 0(1). An 
expression such as 0(1) refers to a variable of the type specified for D 
which is located in main storage at the base address specified by the 
value of the subscript expression, I, plus a displacement equal to the 
total number of bytes in the length specification of all the variables 
preceding D in the STRUCTURE statement in which it appears. For the 
object program to execute successfully, it is essential that the value 
of the subscript plus the displacement always be an integral multiple of 
the length of the referenced field. Displacements may not exceed 255. 
The subscript expression must be declared as integer or logical. 

EXAMPLE: 

194 

I.OGI CAr..*1 
INTEGER 
STRUCTURE 

ADJ, MT 
CH, PTR 
CH, PTR//ADJ//CH, MT 



Here the STRUCTURE statement is used to define a 2-word structure 
where the high-order byte of each word is overlapped by a i-byte field. 

r-------T--------------------------T-------~---------------------------1 

I , I " I 
I I I l I L _______ .L __________________________ .l. ______ -____________________________ J 

ADJ 

-------------------~-----.... --------- -------------------~~~ ...... ------CH PTR 

If J contains a pointer to such a structure, its fields may be 
referenced as ADJ(J), CH(J), MT(J), and PTR(J). 

If a structured variable is used incorrectly the compiler may issue a 
diagnostic message. A complete list of the FORTRAN IV (H) compiler 
messages appears in the publication IBM System/360 Operating System: 
~~~~~gg~~g~codes, Form C28-663i. 

BUILT-IN FUNCTIONS 

r----------------------------------------------------------------------, 
I GENERAL FORM I 
~----------------------------------------------------------------------~ 
I I 
1·.·= ••• LAND(a,b)... I 
I I 
I WHERE: a, b mar be any i-byte, 2-byte, or 4-byte logical or integer I 
I express~on. I L ______________________________________________________________________ J 

The value of LAND is obtained by adding the individual bits of the 
arguments. The resulting value will be considered to be Logical*4 but 
may be used as an integer. 

r----------------------------------------------------------------------, 
IGENERAL FORM I 
~---------------------------------------.-------------------------------~ 
I I 
I ••• = ••• LOR ( a, b)... I 
I I 
I WHERE: a, b may be any i-byte, 2-byte, or 4-byte logical or integer I 
I express~on. I L _______________________________________ . _______________________________ J 

The value of LOR is obtained by oring the individual bits of the 
arguments. The resulting value will be considered to be Logical*4 but 
may be used as an integer. 

Appendix I: Facilities Used By The Compiler 195 



r----------------------------------------------------------------------, 
IGENERAL FORM I 
~----------------------------------------------------------------------~ 
I I 
I ••• =: ••• LXOR ( a , b)... I 
I I 
I WHERE: a~ b mar be any i-byte, 2-byte, or 4-byte logical or integer I 
I express1on. I L ______________________________________________________________________ J 

The value of LXOR is obtained by exclusive oring the individual bits 
of the arguments. The resulting value will be considered to be 
Logical*4 but may be used as an integer. 

r----------------------------------------------------------------------, 
I GENERAL FORM I 
~----------------------------------------------------------------------~ 
I I 
1···=···LCOMPL(a) I 
I I 
I WHERE: a may be any i-byte, 2-byte, or 4-byte logical or integer I 
I expression. I L ______________________________________________________________________ J 

The value of LCOMPL is obtained by complementing the individual bits 
of the argument. The resulting value will be considered to be Logical*4 
but may be used as an integer. 

r-----------------------------------------------------------------------, 
IGENERAL FORM I 
~----------------------------------------------------------------------~ 
I ••• = ••• SHFTL(J.K) ••• ~ ••• = ••• SHFTR(J,K)... I 
I I 
I WHERE: J is a 4-byte variable. I 
I K is the actual number of bits to be shifted. I L ______________________________________________________________________ J 

The values of SHFTL and SHFTR are obtained by shifting the first 
argument left or right the number of bits specified by K. The resulting 
value will be considered to be Logical*4 but may be used as an integer. 

196 



r----------------------------------------------------------------------, 
IGENERAL FORM I 
~----------------------------------------------------------------------~ 
I···TBIT(A,K)... I 
I I 
I WHERE: A is any variable 4-bytes or less in length. I 
I K is the number assigned to the bit to be tested. I L ______________________________________________________________________ J 

The value of TBIT is • TRUE. or .FALSE. depending on whether bit 
position K of the variable A is on or off. Bit 0 is the leftmost bit of 
variable A. The resulting value will be declared as Logical*4. 

r----------------------------------------------------------------------, 
IGENERAL FORM I 
~----------------------------------------------------------------------~ 
I ••• = ••• MOD 24(A) I 
I I 
I WHERE: A must be a 4-byte integer variable. I L ______________________________________________________________________ J 

The value of MOD 24 is the same as its argument except that the 
high-order byte is set to zero. The resulting value will be declared 
Integer*4. 

BIT-SETTING FACILITIES 

r-----------------------------------------------------------------------, 
IGENERAL FORM I 
~----~-----------------------------------------------------------------~ 
IV = BITON(V,K) I 
I I 
I WHERE: V must be a single variable; it may be subscripted. I 
I K is the number assigned to the bit to be set. I L _______________________________________________________________________ J 

This facility sets the bit at position K in the variable V "on." Bit 
o is the leftmost bit of variable V. 

Appendix I: Facilities Used By The Compiler 197 



r----------------------------------------------------------------------, 
IGENERAL FORM I 
~----------------------------------------------------------------------~ 
IV=BITOFF(V,K) I 
I I 
I WHERE: V must be a single variable; it may be subscripted. I 
I K is the number assigned to the bit to be set. I L ______________________________________________________________________ J 

This facility sets the bit at position K in the variable V "off." 
Bit 0 is the leftmost bit of variable V. 

r----------------------------------------------------------------------, 
IGENERAL FORM I 
~---------.-------------------------------------------------------------~ 
I V=BITFLP ('V, K) I 
I I 
I WHERE: V must be a single variable; it may be subscripted. I 
I K is the number assigned to the bit to be set. I L _________ . _____________________________________________________________ J 

This facility sets the bit at position K in the variable V to its 
inverse. Bit 0 is the leftmost bit of variable V. 

In all of the bit-setting facilities K is restricted to integer 
values from 0 to 63 (OSKS63). If V is subscripted, the value of the 
subscript must be the same in both uses, to insure that only a single 
variable is referenced. 

198 



The microfiche directory (Table 46) is designed to help find named areas of code in 
the program listing, which is contained on microfiche cards at installation. Microfiche 
cards are filed in alphameric order by object module name. If a control section, entry 
point, or table is to be located on microfiche, find the name in column one and note the 
associated object module name. You can then find the item on microfiche, via the object 
module name; for example, object module IEKOBJTl is on card IEKOBJT1-l. 

The other columns. provide a description of the item, its phase, its overlay segment, 
its flowchart ID (where applicable), and its subroutine directory table number • 

• Table 46. Microfiche Directory (Part 1 of 8) 
r--------------T-----------------------------T--------T-----T-------T---------T---------, 
I I I I I I Chart I I 
I I I Object I I 110 I Sub- I 
I I I Module I I ~---------~ routine I 
I I IName andl I 1* - Only I Directory I 
I I ICSECT I I Overlay I Mentioned I Table I 
ISymbolic Name \Description I Name IPhaselsegmentlin Chart INumber I 
~--------------+-----------------------------+---------+-----+-------+---------+---------~ 
ADMDGN-IEKVAD ICode generation routine IEKVAD 25 I 13 Table 14 

I 
AFIXPI IEntry point IEKAFP FSD 1 Table 6 

I 
AFIXPI-IEKAFP IExponentiation Routine IEKAFP FSD 1 Table 6 

I 
ALTRAN-IEKJAL Arithmetic translation IEKJAL 15 5 07 Table 9 

routine 

ANDOR-IEKJAN Text generation routine for 
logical operators 

BACMOV-IEKQBM Text optimization routine 

BAKT-IEKPB structural determination 
routine 

BITNFP-IEKVFP Code generation routine 

BIZX-IEKPZ 

BKDMP-IEKRBK 

MVX routine 

TRACE routine for full 
register assignment 

BKPAS-IEKRBP Local register assignment 
routine 

BLS-IEKSBS Branching optimization 
routine 

BLTNFN-IEKJBF In-line function routine 

BRLGL-IEKVBL Code generation routine 

CGEN-IEKWCN Array initialization area 

CIRCLE-IEKQCL utility subroutine 

IEKJAN 15 

IEKQBM 20 

IEKPB 20 

IEKVFP 25 

IEKPZ 20 

IEKRBK 20 

IEKRBP 20 

IEKSBS 20 

IEKJBF 15 

IEKVBL 25 

IEKWCN 25 

IEKQCL 20 

5 Table 9 

9 12 Table 12 

8 10* Table 12 

13 Table 14 

8 10* Table 12 

10 Table 12 

10 16 Table 12 

10 Table 12 

5 07* Table 9 

13 Table 14 

13 Table 14 

9 Table 13 

CLASIF-IEKQCF Utility subroutine IEKQCF 20 9 Table 13 L ______________ ~ _____________________________ ~ __ . ______ ~ _____ ~ _______ ~ _________ ~ ________ _ 

Appendix J: Microfiche Dictionary 199 



• Table 46. Microfiche Directory (Part 2 of 8) 
r--------------T------------------------------T--------T-----T-------T---------T---------, 
I I I I I I Chart I I 
I I I Object I I lID I Sub- I 
I I I Module I I ~---------~routine I 
I I IName andl I 1* - Only I Directory I 
I I ICSECT I I Overlay I Mentioned ITable I 
'Symbolic Name I DE~scription I Name I Phase I Segment I in Chart I Number , 
~--------------+------------------------------t--------+-----+-------+---------+---------~ 
CMAJOR-IEKJA2 \Backward connection table IIEKJA2 15/20 4 I Table 10 I 

, I I I 
CMSIZE-IEKGCZ IBase and displacement routinelIEKGCZ 15 6 09* Table 9 I 

I , I 
CNSTCV-IEKKCN IConstant conversion routine IEKKCN 15 5 Table 9 , 

I I 
CORAL-IEKGCR ,Control routine for CORAL IEKGCR 15 6 09 Table 9 

Isegment of phase 15. 
I 

CPLTST-IEKJCP IArithmetic triplet routine IEKJCP 15 5 07* Table 9 
I 

CSORN-IEKCCR I Collection, conversion, and IEKCCR 10 2 Table 8 
lentry placement routine 
1 

CXIMAG-IEKRCI Local register assignment IEKRCI 20 10 Table 12 
routine 

DATOUT-IEKTDT DATA statement processing IEKTDT 15 6 09* Table 9 
routine 

DCLIST-IEKTDC Listing routine IEKTDC FSD 1 Table 6 

DELTEX-IEKQDT Entry point IEKQMT . 20 9 Table 13 

DFILE-IEKTDF DEFINE FILE statement routine IEKTDF 15 6 09* Table 9 

DFUNCT-IEKJDF In-line, external subprogram, IEKJDF 15 5 01* Table 9 
and library function routine 

DSPTCH-IEKCDP Dispatcher, key word, and IEKCDP 10 2 03 Table 8 
utility routine 

DUMP15-IEKLER Error recording routine IEKLER 15 5 Table 9 

ENDFILE Entry point IEKAAOO FSD 1 01 Table 6 

END-IEKUEN Object module completion IEKUEN 25 13 21 Table 14 
routine 

ENTRY-IEKTEN Epilogue and prologue IEKTEN 25 13 21* Table 14 
generating routine 

EPILOG-IEKTEP Subprogram epilogue IEKTEP 25 13 21* Table 14 
generating routine 

I 
EQVAR-IEKGEV ICOMMON and EQUIVALENCE IEKGEV 15 6 09* Table 9 

Iprocessing routine 
I 

ESD IEntry point IEKTLOAD FSD 1 Table 6 
I 

FAZ25-IEKP25 ICO~~ON data area IEKP25 25 13 Table 14 
I 

FCLT50-IEKRFL IText checking routine IEKRFL 20 10 Table 12 
I 

I FILTEX-IEKPF'T I Entry point IEKPGK 20 1 Table 13 
l ______________ ~ ______________________________ ~ _______ -~-----~-------~---------~---------

200 



• Table 46. Microfiche Directory (Part 3 of 8) 
r--------------T-----------------------------T--------T-----T-------T---------T---------, 
\ \ \ I I \ Chart I I 
\ \ I Object I I lID \ Sub- I 
\ I I Module \ I ~---------~ routine I 
I \ I Name and \ \ \ * - Only I Directory I 
I I \CSECT \ \ Overlay I Mentioned I Table I 
\Symbolic Name IDescription I Name I Phase I Segment I in Chart INumber I 
~--------------+----------------------~------+--------+-----+-------+---------+---------~ 
FINISH-IEKJFI Statement completion routine IEKJFI 115 5 07* Table 9 

I 
FIOCS, FIOCS# Entry points IEKFIOCS FSD 1 Table 6 

FIXPI, FIXPI# Entry points 

FNCALL-IEKVEN Calling sequence generating 
routine 

FOLLOW-IEKQF Entry point 

FORMAT-IEKTFM Generates format text for 
object module 

FREE-IEKRFR Local register assignment 
routine 

FUNRDY-IEKJFU Implicit library function 
reference routine 

FWDPAS-IEKRFP Table building routine 

FWDPS1-IEKRFl Local register assignment 
routine 

GENER-IEKLGN Text output routine 

GENRTN-IEKJGR Text entry routine 

GETCD-IEKCGC Preparatory subroutine 

GETDIC-IEKPGC Entry point 

GETDIK-IEKPGK utility subroutine 

GETWD-IEKCGW Utility subroutine 

GLOBAS-IEKRGB Global register assignment 
routine 

GOTOKK-IEKWKK Branching routine 

IBCOM, IBCOM# Entry points 

IEKAAOO 

IEKAAOl 

IEKAA02 

IEKAA9 

IEKAGC 

IIEKAINIT 
I 

Compiler initialization 
routine 

Default options. 

DDNAMES for compiler 

Entry point 

Entry point 

Processes parameters, gets 
core 

IEKAFP FSD 

IEKVFN 25 

IEKQCL 20 

IEK'rFM 10 

IEKRFR 20 

IEKJFU 15 

IEKRFR 20 

IEKRFl 20 

IEKLGN 15 

IEKJGR 15 

IEKCGC 10 

IEKPGK 20 

IEKPGK 20 

IEKCGW 10 

IEKRGB 20 

IEKWKK 25 

IEKFCOMH FSD 

IEKAAOO FSD 

IEKAAOl FSD 

IEKAA02 FSD 

IEKAAOO FSD 

IEKAAOO FSD 

IEKAINIT FSD 

1 Table 6 

13 20* Table 14 

9 Table 13 

2 Table 8 

10 Table 12 

5 Table 9 

10 15 Table 12 

10 15* Table 12 

5 08 Table 9 

5 07* Table 9 

2 03* Table 8 

7 Table 13 

7 Table 13 

2 Table 8 

10 17 Table 12 

13 Table 14 

1 Table 6 

1 01 Table 6 

1 Table 6 

1 Table 6 

1 01* Table 6 

1 02* Table 6 

2 Table 6 
L ______________ ~ _______________________ ~ _____ ~ ________ ~ _____ ~ _______ ~ _________ ~ ________ _ 

Appendix J: Microfiche Dictionary 201 



• Table 46. Microfiche Directory (Part 4 of 8) 
r--------------T-----------------------------T--------T-----T-------T---------T---------, 
I I I I I I Chart I I 
I I I Object I I lID I Sub- I 
I I I Module I I ~---------~ routine I 
I I IName andl I 1* - Only I Directory I 
I I ICSECT I I Overlay I Mentioned I Table I 
ISymbolic Name IDescription I Name IPhaselsegmentlin Chart INumber I 
~----------,----+-----------------------------i--------i-----i-------i---------i---------~ 
IEKAREAO Entry point IEKCGC 10 2 Table 8 

IEKARW Utility subroutine 

IEKATB Diagnostic trace routine 

IEKATM Timing routine 

IEKCIN Entry point 

IEKCLC Entry pOint 

IEKCS1, Entry points 
IEKCS2, IEKCS3 

IEKFCOMH 

IEKFIOCS 

IEKGAl 

IEKGMP 

IEKIORTN 

IEKJA2 

IEKJA3 

IEKJA4 

IEKJEX 

IEKJMO 

IEKKNG 

IEKKNO 

Formatted compile-time I/O 
routine 

Interface between compiler, 
IEKFCOMH and QSAM 

COMMON data area for CORAL 

St:orage map routine 

Entry point 

Backward connection table 

Function information tables 

Forward connection table 

Entry point 

Entry point 

Entry point 

Entry point 

IEKARW 20 

IEKATB FSD 

IEKATM FSD 

IEKCDP 10 

IEKCCR 10 

IEKCCR 10 

IEKFCOMH FSD 

IEKFIOCS FSD 

IEKGAl 15 

IEKGMP 25 

IEKAAOO FSD 

IEKJA2 

IEKJA3 

IEKJA4 

IEKKUN 

IEKJCP 

IEKKOP 

IEKJAN 

15/20 

15 

15/20 

15 

15 

15 

15 

IEKKOS Coordinate assignment routine IEKKOS 10 

IEKKPR Entry point IEKJDF 15 

IEKKSW Entry point IEKKUN 15 

IEKLTB Function table IEKLTB 15 

IEKPOV Entry point IEKPGK 20 

IEKP30 Controlling routine IEKP30 30 

7 

1 

1 

2 

2 

2 

1 

1 

6 

13 

1 

4 

5 

4 

5 

5 

5 

5 

2 

5 

5 

5 

7 

12 

Table 13 

Table 6 

Table 6 

03* Table 8 

Table 8 

Table 8 

Table 6 

Table 6 

Table 10 

20* Table 14 

Table 6 

Table 10 

Table 1 

Table 10 

07* 

07* 

07* 

04* 'l'able 8 

07* 

Table 10 

Table 13 

22 Table 15 

IEKQAB En'try point IEKQAA 20 8 Table 13 L ___________ • ___ i _____________________________ i ________ i _____ i _______ i _________ i _________ J 

202 



.Table 46. Microfiche Directory (Part 5 of 8) 
r--------------T-----------------------------T--------T-----T-------T---------T---------, 
I I I I I IChart I I 
I I I Object I I lID I Sub- I 
I I I Module I I ~---------~routine I 
I I IName andl I 1* - Only I Directory I 
I 1 ICSECT I I Overlay I MentionedlTable I 
ISymbolic Name IDescription I Name IPhaselsegmentlin Chart INumber I 
~--------------+-----------------------------t--------t-----t-------t---------t---------~ 
IEKTLOAD ESD, TXT, RLD, and loader END IEKTLOAD FSD 1 09* Table 6 

record building routine 

IEKTXT Entry point IEKTLOAD FSD 1 Table 6 

IEKUND Entry point IEKTLOAD FSD 1 Table 6 

IEKURL Entry point IEKTLOAD FSD 1 Table 6 

IEKUSD Entry point IEKTLOAD FSD 1 Table 6 

IEKXRS Utility routine for XREF IEKXRS 10 2 Table 8 

lEND Entry point IEK'I'LOAD FSD 1 Table 6 
I 

INVERT-IEKPIV Entry point IEKPGK 20 7 Table 13 

IOSUB-IEKTIS Calling sequence generating IEKTIS 25 13 20* Table 14 
routine 

IOSUB2-IEKTIO Calling sequence generating IEKTIO 25 13 Table 14 
routine 

I 
KORAN-IEKQKO Utility subroutine IEKQKO 20 9 12* Table 13 

LABEL-IEKTLB statement number routine IEKTLB 25 13 20* Table 14 

LABTLU-IEKCLT statement number utility IEKCLT 10 2 Table 8 
routine 

LISTER-IEKTLS Listing routine IEKrrLS 25 13 Table 14 

LOC-IEKRLl Register assignment data area IEKRLl 20 10 Table 12 

LOOKER-IEKLOK Subprogram table look up IEKLOK 15 5 07* Table 9 
routine 

LORAN-IEKQLO Entry point IEKQKO 20 9 12* Table 13 
I 

LPSEL-IEKPLS Control routine IEKPLS 20 7 I 10 Table 12 
I 

MAINGN-IEKTA Control routine IEKTA 25 13 I 20 Table 14 
I I 

MAINGN2-IEKVM2 Control routine IEKVM2 125 13 I ITable 14 
I I I 

MATE-IEKLMA MVS, MVF, and MVX routine IEKLMA 115 5 I I Table 9 
I I I 

MODFIX-IEKQMF Entry point IEKQCF 120 9 I ITable 13 
I I I 

I MOVTEX-IEKQMT Utility subroutine IEKQMT 120 9 I ITable 13 l ______________ ~ _____________________________ ~ ________ ~ _____ ~ _______ ~ _________ ~ _________ J 

Appendix J: Microfiche Dictionary 203 



• Table 46. Microfiche Directory (Part 6 of 8) 
r--------------T-----------------------------T--------T-----T-------T---------T---------, 
I I I I I I Chart I I 
I I I Object I I lID I Sub- I 
I I I Module I I ~---------~ routine I 
I I IName andl I 1* - Only I Directory I 
I I ICSECT I I Overlay I Mentioned I Table I 
ISymbolic Name IDescription I Name I Phase I Segment I in Chart INumber I 
~-----------.---+-----------------------------+--------+-----+-------+---------+---------~ 
MSGWRT-IEKP31 Error message writing routine IEKP31 30 12 22* Table 15 

NDATA-IEKGDA Data text routine 

OP1CHK-IEKKOP Operand one routine 

NLIST-IEKTNL NAMELIST statement routine 

PACKER-IEKTPK TXT record packing routine 

PAGEHEAD Entry point 

PAREN-IEKKPA Parenthesis routine 

PARFIX-IEKQPX Entry point 

PERFOR-IEKQPF Constant routine 

PHASB 

PHASS 

PHAZSS 

PHAZ15-IEKJ.A 

PH10-IEKCAA 

PH15-IEKJA1 

Entry point 

Entry point 

Entry point 

Control routine for PHAZ15 
segment of phase 15 

COMMON data area 

COMMON data area 

PLSGEN-IEKVPL Code generation routine 

PROLOG-IEKTPR Subprogram prologue 
generating routine 

PUTOUT Entry point 

PUTOUT-IEKAPT Se:r::vice routine 

PUTX-IEKCPX En'try placement utility 
routine 

REDUCE-IEKQSR Strength reduction routine 

REGAS-IEKRRG Full register assignment 
routine 

RELCOR-IEKRRL Entry point 

RELOPS-IEKKRE Relational operator routine 

IEKGDA 

IEKKOP 

IEKTNL 

IEKTPK 

15 

15 

15 

25 

IEKAA01 FSD 

IEKKPA 15 

IEKQCF 20 

IEKQPF 20 

IEKATM FSD 

IEKATM FSD 

IEKATM FSD 

IEKJA 15 

IEKCAA 10 

IEKJA1 15 

IEKVPL 25 

IEKTPR 25 

IEKAPT FSD 

IEKAPT FSD 

IEKCPX 10 

IEKQSR 20 

IEKRRG 20 

IEKRFL 20 

IEKKRE 15 

6 09* Table 9 

5 Table 9 

6 09* Table 9 

13 Table 14 

1 Table 6 

5 07* Table 9 

9 Table 13 

9 Table 13 

1 Table 6 

1 Table 6 

1 Table 6 

5 06 Table 9 

2 Table 8 

5 Table 1 

13 Table 14 

13 21* Table 14 

1 Table 6 

1 'lIable 6 

2 Table 8 

9 13 Table 12 

10 14 Table 12 

10 19* Table 12 

5 07* Table 9 

RETURN-IEKTRN RETURN statement routine IEKTRN 25 13 20* Table 14 
I 

I RLD En1:ry point IEKTLOAD I FSD 1 Table 6 l ______________ ~_, ____________________________ ~ ________ ~ _____ ~ _______ ~ _________ ~ _________ J 

204 



• Table 46. Microfiche Directory (Part 7 of 8) 
r--------------T-----------------------------T--------T-----T-------T---------T---------, 
I I I I I I Chart I I 
I I I Object I I lID 1 Sub- 1 
1 I 1 Module I I ~---------~routine I 
I I IName andl 1 1* - Only I Directory I 
I I ICSECT I I Overlay I MentionedlTable 1 
ISymbolic Name IDescription I Name IPhaselSegmentlin Chart INumber I 
~--------------+-----------------------------t--------+-----t-------t---------+---------~ 
RMAJOR-IEKJA4 IForward connection table IIEKJA4 115/201 4 1 Table 10 

I I I 1 I 
SEARCH-IEKRS ,Register loading routine IIEKRS 120 I 10 I 

, 1 I 1 I 
SPLRA-IEKRSL IBasic register assignment IIEKRSL 120 I 11 1 

I routine 1 1 
I 1 I 

SRPRIZ-IEKQAA IStructured source program IEKQAA 20 I 8 I 
Ilisting routine 1 1 
I 1 1 

SSTAT-IEKRSS ,Status setting routine IEKRSS 20 , 11 I 
, I I 

STALL-IEKGST ICOMMON and EQUIVALENCE IEKGST 10 2 1 
Istatement processing routine 1 
, I 

STOPPR-IEKTSR ,STOP and PAUSE statement IEKTSR 25 13 1 
,routine 1 
, I 

STTEST-IEKKST IReplacement statement routine IEKKST 15 5 I 
, I 

STXTR-IEKRSX ,Text updating routine IIEKRSX 120 10 I 
I 1 I 

SUBADD-IEKKSA ,Subscript computation routinelIEKKSA 15 5 I 
1 I 

SUBGEN-IEKVSU Code generation routine IIEKVSU 25 13 1 
I I 

SUBMLT-IEKKSM Subscript computation routine IEKKSM 15 5 I 

SUBSUM-IEKQSM 

TALL-IEKRLL 

TARGET-IEKPT 

TENTXT-IEKVTN 

TIMERe 

Operand and operand value 
replacement routine 

Assigns storage for 
temporaries 

Loop and back target routine 

Statement number processing 
and label map routine 

Entry point 

IEKQSM 

IEKRLL 

IEKPT 

IEKVTN 

IEKATM 

20 

20 

20 

25 

FSD 

9 

11 

7 

13 

1 

I 
I 
I 
1 
1 
I , 
I 
I 
I 
I 
I 
1 
I 

ITNSFM-IEKRTF Entry point IEKRFL 20 10 I 
I I 
I TOPO-IEKPO Back dominator routine IEKPO 20 8 I 
I , 
I TOUT Entry point IEKATM FSD 1 I 
I I 
ITSP Entry point IEKATM FSD 1 I 
I , I 

17* 

10* 

04 

07* 

18 

07* 

20* 

07* 

10* 

20* 

10* 

Table 12 

Table 12 

Table 13 

Table 12 

I Table 
I 

8 

I 
ITable 14 
I 
I 
ITable 
I 

9 

ITable 12 
I 
ITable 9 

I 
ITable 14 
I 
I Table 9 

I 
ITable 13 
I 
I 
Table 12 

Table 12 

Table 14 

Table 6 

Table 12 

Table 12 

Table 6 

Table 6 

I TST I Entry point IEKATM FSD 1 I Table 6 
, I , , 
,TSTSET-IEKVTS ,Code generation routine IEKVTS 25 13, ,Table 14 
I , I I 
I TXT IEntry point IEKTLOAD FSD 1 I ITable 6 L ______________ ~ _____________________________ ~ ________ ~ _____ ~ _______ ~ _________ ~ ________ _ 

Appendix J: Microfiche Dictionary 205 



• Table 46. Microfiche Directory ,(Part 8 of 8) 
r--------------T-----------------------------T--------T-----T-------7---------T---------, 
I I I I I I Chart I I 
'I I Object I I lID I Sub- I 
I I I Module I I ~---------~ routine I 
I I I Name and I I 1* - Only I Directory I 
I I ICSECT I I Overlay I Mentioned I Table I 
ISymbolic Name IDescription I Name IPhaselsegmentlin Chart INumber I 
~-------------+-----------------------------f--------+-----f-------+---------+-·--------~ 

TXTLAB-IEKLAB Statement number processing IEKLAB 15 5 08* Table 9 

TXTREG-IEKLRG Standard text processing IEKLRG 15 5 08* Table 9 
routine 

TYPLOC-IEKQTL Strength reduction routine IEKQTL 20 9 13* Table 13 

UNARY-IEKKUN Arithmetic triplet and IEKKUN 15 5 07* Table 9 
exponentiation operator 
routine 

UNRGEN-IEKVUN Code generation routine IEKVUN 25 13 Table 14 

WRITEX-IEKQWT Diagnostic trace printing IEKQWT 20 9 Table 13 
routine 

XARITH-IEKCAR Arithmetic routine IEKCAR 10 2 Table 8 

XCLASS-IEKDCL Text generation utility IEKDCL 10 2 03* Table 8 
routine 

XDATYP-IEKCDT DATA and TYPE keyword routine IEKCDT 10 2 Table 8 

XDO-IEKCDO DO keyword routine IEKCDO 10 2 Table 8 

XGO-IEKCGO GO TO keyword routine IEKCGO 10 2 Table 8 

XIOOP-IEKCIO Input/output statement IEKCIO 10 2 Table 8 
routine 

XIOPST-IEKDIO ASSIGN, RETURN, FORMAT, IEKD10 10 2 Table 8 
PAUSE, BACKSPACE, REWIND, END 
FILE, STOP, and END table 
entry routine 

XPELIM-IEKQXM Common expression elimination IEKQXM 20 9 11 Table 12 
rou·tine 

XREF-IEKXRF XREJ' routine IEKXRF 10 3 Table 8 

XSCAN-IEKQXS Local block scan routine IEKQXS 20 9 Table 13 

XSPECS-IEKCSP COMMON, DIMENSION, and IEKCSP 10 2 Table 8 
EQUIVALENCE table entry 
routine 

XSUBPG-IEKCSR CALL, SUBROUTINE, ENTRY, and IEKCSR 10 2 Table 8 
FUNCTION table entry routine 

XTNDED-IEKCTN DEFINE FILE, NAMELIST, IEKCTN 10 2 Table 8 
IMPLICIT, andSTRUCTURE table 
entry routine I 

I 
YSCAN-IEKQYS Entry point IIEKQXS 20 9 Table 13 

I 
I~SCAN POINT Entry point IIEKQXS 20 9 Table 13 L ______________ ~ _____________________________ ~ ________ ~ _____ ~ _______ ~ _________ ~ _________ J 

206 



ABS 33 
Absolute constant 64 
Activity table, global register 

assignment 53 
Adcon table 40,13,119 

space reservation 39,44 
starting address of 55 
in XREF processing 26 

ADCON-IEKAAD 19 
Adcon variable 43 
Addition, skeleton instructions 113 
Additive text, elimination of 61 
Address 

computation for array elements 180 
constant 11,13,41-42 

reservation of 69 
field of TXT record 69 
relative 39 
assignment of 13 

Adjective codes 144-145 
ADMDGN-IEKVAD 111,199 
AFIXPI 19,199 
AFIXPI-IEKAFP 19,199 
AlMAG 33 
ALTRAN-IEKJAL 29,34,89,92,199 
Anchor point 34 
AND 31,34 
ANDOR-IEKJAN 34,92,199 
Argument save table 34 
Arithmetic 

expressions 
elimination of 64-65 
reordering 31-32 
special processing 31 

operations, basic register 
assignment 41-48 

statements, processing 22 
subroutines 22-23 
translation 28,29-30,40 

Array 19 
elements, address computation 181 
relative address for 41 

Arrays 161 
bit strip 11-12 
as parameters 181 

ASSIGN statement 21,29 
Assigned GO TO operator 165 

Back dominators 56 
determination of 56,51 
in common expression elimination 64 

Back targets 56,51,184 
determination of 58-59 
pointer to 62 

BACKSPACE statement 11 
Backward connections 28 

field 39 
table 40,52 

Backward movement 65-66,105 
example of 116 

BACMOV-IEKQBM 65,66,106,199 
BAKT-IEKPB 55,58,59,106,199 
Balanced tree notation 121 
Base value of equivalence group 42 
Base variables 44 
Basic register assignment 41,185 
Binary 

operators 159 
shift operation 162 

Bit-setting facilities 191 
Bit strip arrays 11 
BITFLP 198 
BITNFP-IEKVFP 111,199 
BITOFF 198 
BITON 191 
BIZX-IEKPZ 60,106,199 
BKDMP-IEKRBK 106,199 
BKPAS-IEKRBP 52,53,106,199 
Blanks, in source statements 20 
BLKEND field 29,152 
Block determination for branching 
optimization 55 

BLS-IEKSBS 54,55,68,106,199 
BLTNFN-IEKJBF 32,33,92,199 
Branch 

candidate! 13 
constant ! 61 
instructibn optimization 54 
operator :(B) 153,159 
operator ~(other) 162 
optimization 45 

OPT=l 54 
OPT=2 68 

processing, phase 25 13 
table 135-136 

entry 11 
text entry 64 
true or false skeleton instructions 110 
variable 61 

Branch on index high, low, or equal 161 
Branching optimization 45 

block determination for 55 
OPT=l 54-55 
OPT=2 68 

BRLGL-IEKVBL 111,199 
Built-in functions 195 
Busy-on-entry 60 

table 60-61 
Busy-on-exit 

criteria 60 
data 184-185 
full register assignment OPT=2 68 
table 59-60 
vector field 153 

BVA table 140 
Byte A usage field 

for statement numbers 128-129 
for variables 125 

Byte B usage table field 
for statement numbers 129 
for variables 125 

Index 201 



CALL 22,29 
in global register assignment 53 
phase 25 processing of 71 

Call arguments 164 
Call-by-name 

parameters 74 
variables 44 

Calling sequence 71 
Cataloged procedures 11 
CGEN-IEKWCN 111,199 
CIRCLE-IEKQCL 108,199 
CLASIF-IEKQCF 108,199 
Classification 

code 20,,21 
tables 118-119 

CMAJOR 37,38,55,57,60,61 
CMAJOR-IEKJAZ 94,,184,200 
CMSIZE-IEKGCZ 92,200 
CNSTCV- IEKKCN 92 11 200 
Code generation, phase 25 71-73 
Collection subroutines 23 
Common 12,19,21,14 

areas table 94 
block 

name 21 
size 25 

chain 123 
displacement field 123 
entries 23,25 
expression elimination 64-65,105 

example of 175 
table 132 

communication table 14,15,79 
contents of 14,115-117 

commutative operations 32 
compiler 

initialization 14-15 
I/O flow 11-13 
generated branch 35 
organization of 11 
purpose of 11 
size of 14 
structure of 13 
termination 18-19 

complex 
expressions 31-:32 
variables 25 

Computed GO TO 
operators 161 
skeleton instructions 171 

CONJG 33 
constant 

complex 25 
dictionary entry 128 
relative addresses for 41 

Constant/variable usage information 34-35 
phase 15 27 

constructing text information 69-70 
control flow, phase 20 46 
Conversion subroutines 23 
Coordinates 25 

assignment of 23,25 
CORAL 16,39-44,184 
CORAL-IEKGCR 39,41,42,44,92,200 
CPLTST-IEKJCP 92,:200 
Cross reference 1:2 
CSORN-IEKCCR 84,200 

in XREF 27 

208 

Current base address, in register 
assignment 48 

CXIMAG-IEKRCI 106,200 
C1520-IEKJA2 37 

Data definition statements 11 
DATA statement 13,19,24,143 
Data text 

phase 10 19 
format, 147 

phase 15 format 151 
rechaining 39,43 
translation 40 

DATOUT-IEKTDT 39,40,92,200 
DCB 14 
DCBDDNM field 14 
DCLIST-IEKTDC 79,200 
DCMPLX 33 
DCONJG 33 
DECK option 12,13,69 
DEFINE FILE 

statement 19,39,143 
phase 10 19 
format 149 

text 19 
Definition vector field 152,153 
Deletion, of compilation 18 
DELTEX-IEKQDT 108,200 
Depth numbers 56-59 

determination of 58 
DFILE-IEKTDF 39,43,92,200 
DFUNCT-IEKJDF 32,33,92,200 
Diagnostic message 187-191 

tables 
error table 79,142 
message pointer 142 

DIMENSION statement 21 
Direct-linkage calling sequence 71 
Directory array 71 
Dispatcher subroutine 20 
Displacement for adcon 40 
Division skeleton instruction 173 
DO 23 

implied 23 
in strength reduction 66 

DSPTCH-IEKCDP 20,21,22,23,84,200 
Dummy arguments 22 
Dump 192-193 
DUMP15-IEKLER 92,200 

EDIT option 12,13,19,20 
EMIN table 51 
Eminence table 51 
End mark operator 21 
End of DO IF 34 
End of file 18 
END statement 11,18 

phase 25 processing of 74 
ENDFILE entry point 79,200 
ENDFILE statement 18,200 



END-IEKUEN 
Entry block 
Entry coding 

110,200 
29, 35, 56- 57 

main program 16 
subprogram main 17 
subprogram secondary 19 

Entry placement subroutine 22 
ENTRY statement 18,29 
ENTRY-IEKTEN 110,200 
EPILOG-IEKTEP 74,75,111,200 
Epilogue 17,19,69,74 
Equivalence 24,26 

group 21 
head 26 

variable 21 
EQUIVALENCE statement 12,19,21,26,42, 
74,118 

EQVAR-IEKGEV 39,42,43,92,200 
ERCOM-IEKAER 79 
Error 

code table 75 
levels 18,75 
phase 10 response to 12 
phase 15 response to 13 
table 12,75,79 

ESD entry point 80,200 
ESD record 45 
Execute statement 11,14 
Exit block 58,60 
EXT operator 164 
EXTERNAL statement 21,33 
External symbol dictionary 11,13,,45,68 

FAZ25-IEKP25 111,200 
FCLT50-IEKRFL 106,200 
Field count 24 
FILTEX-IEKPFT 108,200 
FINISH-IEKJFI 92,201 
FI:OCS,FIOCS# 79,201 
Fixed point multiplication skeleton 
instructions 172 

FIXPI,FIXPI# 79,201 
FLOAT 33 
FNCALL-IEKVFN 71,111,201 
FOLLOW-IEKQF 108,201 
Forcing strength 30-31 

definition of 30 
table 31 

Format 
codes with READ/WRITE 16 
of source statement after phase 10 20 
text 143 

phase 10 19 
format 150 
translation 24 

FORMAT statement l6,19,23,24,143 
FORMAT-IEKTFM 23,84,201 
FORTRAN system director 11,14-18 
Forward 

connection 28,35-36,37 
table 37,56 

target 63 
FREE-IEKRFR 106,201 
FSD 183 

pointer table (see NPTR) 

Full register assignment 46,185 
control 52 
global 51,53 
local 50-53 
OPT=l 50-54 
OPT=2 67-68 
table building 52 
text updating 52,54 

Full-word integer division skeleton 
instructions 173 

Function arguments 164 
Function table 33,136 
FUNRDY-IEKJFU 32,92,201 
FUNTBl 136 
FUNTB2 136 
FUNTB3 137 
FUNTB4 137 
FWDPAS-IEKRFP 52,106,201 
FWDPS1-IEKRFl 106,201 

GENER-IEKLGN 30,92,201 
GENRTN-IEKJGR 92,201 
GETCD-IEKCGC 19,84,201 
GETDIC-IEKPGC 108,201 
GETDIK-IEKPGK 108,201 
GETWD-IEKCGW 84,201 
GLOBAS-IEKRGB 51,52,53,68,106,201 
Global assignment 50-52,53 

full register assignment OPT=2 67-68 
tables 140 

GO TO statement 
computed 19,69,135 
:in gathering forward connection 

information 35 
GOTOKK-IEKWKK 111,201 
GRAVERR 75 

H format code 23 
Half-word integer division skeleton 
instructions 171 

Head of equivalence group 42 

IBCOM,IBCOM# 79,201 
IBCOMRTN 19 
ID option 69,116 
IEKAAA 14,79 
IEKAAD 79 
IEKAAOO 79,201 
IEKAAOl 79,201 
IEKAA02 79,201 
IEKAA9 18,79,201 
IEKAER 79 
IEKAGC 15,79,201 
IEKAINIT 79,201 
IEKAPT 80 
IEKAREAD 84,202 

Index 209 



IEKARW 108,202 
IEKATB 79,202 
IEKATM 79,202 
IEKCAA 15 
IEKCDP 20 
IEKCIN 84,202 
IEKCLC 84,202 
IEKCS1, CS2, CS3 84,202 
IEKFCOMH 16,79,202 
IEKFIOCS 16,79,202 
IEKGAl 94,202 
IEKGCZ 40,44,45,92 
IEKGMP 74,112,202 
IEKIORTN 79,202 
IEKJA2 202 
IEKJA3 94,202 
IEKJA4 202 
IEKJEX 93,202 
IEKJMO 92,202 
IEKKNG 93,202 
IEKKNO 92,202 
IEKKOS 25,84,202 
IEKKPR 92,202 
IEKKSW 93,202 
IEKLFT 33,136 
IEKLTB 94,202 
IEKPBL 106 
IEKPOP 108 
IEKPOV 108,202 
IEKP30 112,202 
IEKP31 112 
IEKQAB 108,202 
IEKTDC 79 
IEKTFM 85 
IEKTLOAD 16,17,80,203 

generating literal data text 24 
in relative address assignment 42 
space reservation 45 

IEKTXT 80,203 
IEKUND 80,203 
IEKURL 80,203 
IEKUSD 80,203 
IEKVBL 170 
IEKXRS 26,85,203 
lEND 74,80,203 
INVERT-IEKPIV 108,203 
IF statement 22,29 
IHCFCOMH 23,44 
ILEAD 38,131 
Implied DO 23 
Index register 73 
Inert text entry 63,65 
Information table 12,15 

210 

chains 120 
construction of 120 
operation of 

branch table 124 
common 122 
dictionary 121 
equivalence 123 
literal constant 123 
statement number 25,26,27,122 

components 19 
branch table 19,135-136 
common table 19,25,132-134 
dictionary 19,124-129 
literal table 19,134 

entries constructed by phase 10 21 

Initial value assignment 39,43 
Initialization 

of compiler 14-15 
of data fields 14-15 
instructions, generation of 16-18 

In-line routine 32-33,163 
in branching optimization 55 
functions 160 
skeleton instructions 16T-174 

Integer constants, elimination of 66 
Intermediate text 12,19,143-166 

chains 144-145 
phase 20 modifications 156 

Intermediate text entry 
format of 144 
modifications by phases 15 and 

20 150-166 
Internal statement number 12,20 

in phase 30 75 
IOSUB-IEKTIS 71,111,203 
IOSUB2-IEKTIO 111,203 
I/O data list 29 
I/O list items 22 
Input/Output requests 

processing of 16 
request format 16 

Input/Output statement 22 
phase 25 processing of 70--71 

INVERT-IEKPIV 108 
ISN 12,20 

JLEAD 39,131 
Job statement 11 

Keyword 
pointer table 118-119 
source sta tement 21 
subroutines 21 

table entry 21 
table entry and text 21 

table 118-119 
KORAN-IEKQKO 108,137,203 

LABEL-IEKTLB 
LABTLU-IEKCLT 

in XREF 26 
LAND 195 
LBIT operator 
LCOMPL 196 

70,111,203 
85,203 

166 

LIBF operator 164 
Library function 33 
Linkage editor 11,13 
LISTER-IEKTLS 111,203 
LIST option 12,13,69 
Listing, structured source program 61 
Literal 

data text 24 
table 134 

LMVF 62 
LMVS 62 



LMVX 62 
Load address 

operator 162 
skeleton instructions 110 

Load byte skeleton instructions 110 
Load candidate 13 
LOAD option 12,13 
Loader END record 68,14 
Local 

assignment tables 139 
register assignment 50,52 
symbol 44 

Location counter 40,15 
in relative address assignment 41 

LOC-IEKRL1 106,203 
Logical 

branch operations 159,166 
expressions 34 
IF statements 20,34 

in strength reduction 66 
skeleton instructions 113 

LOOKER-IEKLOK 93,203 
Loop 184 

composit matrixes 62 
identification 55 
number 58 

field 58 
parameter 61 

selection 61-63 
Loops 

depth numbers of 58 
identifying and reordering 59 
module 55 

LOR 195 
LORAN-IEKQLO 108,203 
LPSEL-IEKPLS 46,51,53,60,106,203 
LXOR 196 

Main storage, requests for 
phase 10 15 
phase 15 15-16 
phase 20 15 

MAINGN-IEKTA 69-10,11,111,203 
MAINGN2-IEKVM2 111,203 
MAP option 13,69 
Map, storage 13,14 
MATE-IEKLMA 34,35,93,203 
MBM 131 
MBR 131 
MCOORD vector 25,43,51,139 
Message 

number 15,142,181-191 
processing 15 
tables 142 

Messages, error 
after phase 25 13 
phase 30 processing of 15 

MGM 131 
Microfiche directory 199-206 
Mid-point of dictionary chain 
Mode 21 
Mode field in status mode word 
MODFIX-IEKQMF 108,203 
MOD24 191 

122 

156 

MOVTEX-IEKQMT 108,203 
MSGM 131 
MSGWRT-IEKP31 15,112,204 
MSM 131 
Multiplicative text, elimination of 66 
MVD table 25,43,51 

in busy-on-exit 60 
entry 35 

~7F 25,34,35,152 
field 60 

MVS 25,34,35,153 
MVU 131 
MVV 131 
MVW 131 
MVX 25,34,35,153 

field in busy-on-exit 60 
MXM 131 

NADCON table 40,119 
use in parameter list optimization 33 

Namelist 
dictionaries 43,141-142 

entry 44 
text 43,143 
phase 10 19 

format 148 
NAMELIST statement 19,43,143 
NARGSV 34 
NCARD/NCDIN 20,21 
NDATA-IEKGDA 39,40,93,204 
Negative address constants 22 
NLIST-IEKTNL 39,44,93,204 
Normal text 15,143 

phase 10 19 
format 146 

NOT 34 
operations, skeleton instructions 110 

Not busy on entry, definition of 34 
NPTR 24,26,116-118 
Null operand 22 

Object module 
definition of 11 
elements of 68-69 
generation of entry code 23 

Operand 19 
modes 126 
status for code generation 12 
types 126 

operator-operand pair 19 
Operators 19 

phases 15 and 20 153-155 
OPT=O 45 
OPT=l 45 
OPT=2 19 

structural determination 55-58 
Optimization 13 

first level 13 
levels 46 
none 13 
second level 13,19 

Index 211 



Options 
DECK 12,13 
determining 16 
EDIT 14,15,21,22 
ID 10,115 
LIST 12,13,69 
LOAD 12,13 
MAP 13,69 
SOURCE 20 
XREF 12,26 

OP1CHK-IEKKOP 93,204 
OR 34 
Overlay 182-186 

supervisor 15 

PACKER-IEKTPK 111,204 
Packing 20 
PAGE HEAD 19,204 
Parameter list 

optimization 33-34 
table 33 

processing 
PAREN-IEKKPA 
PARFIX-IEKQPX 
PERFOR-IEKQPF 
Permanent I/O 
PHASB 19,204 
Phase loading 
Phase 10 12 

of 14 
93,204 
108,204 
108,204 

error 18 

15 

con structuring a cross-reference 26-21 
control 20 
initialization 20 
intermediate text 19 

Phase 15 13-14 
CORAL processing 14,39-45 
intermediate text 21 
PHAZ15 processing 12,21-38 

Phase 20 13 
Branching optimization 

OPT=l 54-'56 
OPT=2 68 

busy-on-exit information 59-60 
control flow 46 
loop selection 62-63 
register assignment 

basic OPT=O 41-49 
full OPT=l 49-53 
full OPT=2 61-68 

structural determination 55-58 
structured source program listing 60 
text optimization OPT=2 63-68 

Phase 25 13,68 
address constant reservation 69-10 
prologue and epilogue generation 14-15 
storage map production 14 
text conversion 10-14 

Phase 30 13,15 
PHASS 19,204 
PHAZSS 19,204 
PHAZ15 15,204 
PHAZ15-IEKJA 36,93,204 
PH10-IEKCAA 15,85,204 
PH15-IEKJA1 94,204 
Planned overlay structure 182 

212 

PLSGEN-IEKVPL 111,204 
Powers 32 
Preparatory subroutine 19,20 
Primary adjective code 21,29 
Primary path 58,59 
Problem program save area 24 
Program fetch 15 
Prologue 11,18,69,14-15 
PROLOG-IEKTPR 14,111,204 
Pushdown table 30 
PUTOUT 80,204 
PUTOUT-IEKAPT 80,204 
PUTX-IEKCPX 85,204 

QSAM 14 

READ/WRITE 
operator for I/O lists 165 
statement 16,21,23,44,11 

REAL 33 
Real multiplication skelE!ton 
instructions 113 

REDUCE-IEKQSR 66-61,106,204 
REGAS-IEKRRG 52,54,101,204 
Register 

array 11 
assignment 

basic OPT=O 41-49 
full OPT=l 49-53 
full OPT=2 61-68 
phase 20 45-55,61-68 

tables 139 
usage 139,141 

table 51-52 
Registers 

reserved 16-11 
saving at main program entry 16-11 
saving at subprogram program entry 11 

Relational operators 34 
Relative address assignment 13,39,40-43 
RELCOR-IEKRRL 106,204 
Relocation 

dictionary 11,13,44,68-69 
factor 40 
of text entries for structural 
determination 56 

RELOPS-IEKKRE 34,93,204 
Reserved registers 54 
RETURN statement 60 

phase 25 processing of 13 
RETURN-IEKTRN 13,111,204 
RLD 

entry point 80,204 
record 45 

RMAJOR table 35,38,55 
RMAJOR-IEKJA4 94,205 
Root segment 13,182 
RUSE table 52,139 



Save areas 16-18 
Scale factor 24 
SEARCH-IEKRS 107,205 
secondary entry point 17 
Sequence numbers 22 
SF skeleton text 16,143 

phase 10 19 
format 149 

Shift skeleton instructions 172 
SHFTL 196 
SHFTR 196 
Simple stores 

elimination of 65 
example of 177 

SIZE parameter 14 
Skeleton 

array 71 
instructions 71-72 

SNGL 33 
Source 

module, listing of 12 
program, structured listing of 60 
statement processing table 83 

SOURCE option 20 
Space 

allocation, phase 15 39 
reservation of adcon table 44 

Span 41,180 
special argument text 164 
Special text 144 
spill register 53 
SPLRA-IEKRSL 49,107,205 
SRPRIZ-IEKQAA 60,108,205 
SSTAT-IEKRSS 49,50,107,205 
STALL-IEKGST 20,85,136,205 

functions of 23-26 
Standard text, phase 15 format of 157 
Statement 

functions 29,30,143 
processing of 22 
skeleton 34 

number 
chain reordering 28,36-37 
as a definition 28 
phase 15 format 151 
phase 25 processing of 69-70 
processing for XREF 26 

Statement number/array table 69,128-132 
block status field 130 
dimension entry format 131 
entry format 128 

after XREF 121 
after phases 15, 20, and 25 130 

Status 
field in status mode word 156-157 
information 46 
mode word 48 
of operands for code generation 72 
in register assignment 49 

STOPPR-IEKTSR 111,205 
Storage distribution 

phase 10 15 
phase 15 15 
phase 20 16 

Storage map 
contents of 74 
production of 74 

Store skeleton instructions 172 

Store-fetch information 125 
Stored constant 67 
Strength reduction 65-67 

example of 178-179 
STRUCTURE statement 194 
Structured source listing 12,13,19-20 
STTEST-IEKKST 93,205 
STXTR-IEKRSX 49,51,53,107,205 
SUBADD-IEKKSA 32,93,205 
SUBGEN-IEKVSU 112,205 
SUBMLT-IEKKSM 32,93,205 
Subprograms 17-18,32 

not supplied by IBM 59 
Subroutine directory 

FSD 79-80 
phase 10 84-86 
phase 15 92-93 
phase 20 106-107 
phase 25 111-112 
phase 30 112 

Subscript 
expressions 31-32 

absorption of constants in 180-181 
operators, skeleton instructions 171 
text entry 69,163 

Substitute ddnames 14 
SUBSUM IEKQSM 64,108,205 
Subtract operations, skeleton instructions 
for 167 

Symbol entry for XREF 26 
Symbols, processing for XREF 26 
SYSDIR-IEKAA9 18 
SYSIN data set 11-12,18 
SYSLIN data set 11-12,13 
SYSPRINT data set 11-12,13,19,26,27,61 
SYSPUNCH data set 11-12,13 
SYSUTl data set 11-12,19,60 
SYSUT2 data set 11-12,26,27 

Table entry subroutines 21 
TALL-IEKRLL 107,205 
TARGET-IEKPT 61-62,107,205 
TBIT 33,197 
TENTXT-IEKVTN 74,112,205 
Temporary 31 

in common expression elimination 64 
storage allocation in register 
assignment 53 

Termination of compiler 14,18-19 
Test and set operators 158 
Testing a byte logical variable 161 
Text 

additive text, elimination of 67 
block, definition of 29-30 
blocking 28 
conversion, phase 25 70-71 
data 19 
define file 19 
entry 

phase 20 format 157 
types 64 

format 19 
generation subroutines 22-23 
information, phase 25 69 
intermediate 19 
namelist 19 
normal, phase 10 15,19 

Index 213 



optimization 45,62-68 
bit tables 138-139 
criteria for (table) 105 

SF skeleton 16,19 
special, phase 10 16 

TIMERC 79,205 
TNSFM-IEKRTF 106,205 
TOPO-IEKTPO 55-57,106,205 
TOUT 79,205 
TRACE 192 
Translation of data text 40 
Tree notation, balanced 122 
Triplet 30 
TRUSE table 52,135,140-141 
TSP 79,205 
TST 79,205 
TSTSET-IEKVTS 112,205 
TXT entry point 80,205 
TXT records 23,69,80 
TXTLAB-IEKLAB 93,206 
TXTREG-IEKLRG 93,206 
TYPES table 62 
TYPLOC-IEKQTL 108,206 

Unary minus 30,32 
skeleton instructions 170 

UNARY-IEKKUN 32,93,206 
Undefined statement numbers 24 
UNRGEN-IEKVUN 112,206 
Usage count 23 
Use vector field 154 
Utility 

subroutines 22-'23 
list of 108 

Variable 
adcon 43 

214 

base 43 
dictionary entry 125 

after common block processing 128 
after coordinate assignment 128 
after dictionary rechaining 127 
after relative address 
assignment 128 

after XREF 127 
equivalence 26,124 

Variables 
rechaining 25 
relative addresses for 40-43 

WRITEX-IEKQWT 108,206 

XARITH-IEKCAR 83,85,206 
XCLASS-IEKDCL 85,206 
XDATYP-IEKCDT 85,206 
XDO-IEKCDO 85,206 
XGO-IEKCGO 86,206 
XIOOP-IEKCIO 86,206 
XIOPST-IEKDIO 86,206 
XPELIM-IEKQXM 64-65,96,107,206 
XREF 

buffer 26,86 
option 12,26-27,125,127,129,130 
phase 10 preparation for 26 
processing 26-27,125-130 

XREF-IEKXRF 26-27,86,183,206 
XSCAN-IEKQXS 108,206 
XSPECS-IEKCSP 86,206 
XSUBPG-IEKCSR 86,206 
XTNDED-IEKCTN 86,206 

YSCAN-IEKQYS 108,206 

ZSCAN-IEKQZS 108,206 





GY28-6642-4 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I060t 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, NawYork 10011 
[International] 

GJ 
K! 
tv 
co 
I 

0"1 
0"1 
+= 
tv 
I 

+= 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216

