
File No. 8360-25 (OS) 
Order No. GY28-6638-2 

IBM System/360 Operating System 

FORTRAN IV (G) Compiler 

'Program Logic Manual 

Program Number 360S-F0-520 

This publication describes the internal logic of the 
FORTRAN IV (GI compiler. 

Program Logic Manuals are intended for use by IBM 
customer engineers involved in program maintenance, and 
by systems programmers involved in altering the program 
design. Program logic information is not necessary for 
program operation and use; therefore, distribution of 
this manual is limited to persons with program main
tenance or modification responsibilities. 

The FORTRAN IV (GI compiler is a processing program 
of the IBM System/360 operating System. It translates 
one or more source modules written in the FORTRAN 
language into an object module that can be processed 
into an executable load module by the linkage editor. 

Restricted Distribution 

Program Logic 



This publication provides customer 
engineers and other technical personnel 
with information describing the internal 
organization and operation of the FORTRAN 
IV (G) compiler. It is part of an inte~ 
grated library of IBM System/360 Operating 
system Program Logic Manuals. ..other publi
cations required for an understanding of 
the FORTRAN IV (G) compiler are: 

!BM sy:st~!!!/3 §.Q._Qperat!.mL§Y§.tem: 

Principles of Operation, Form A22-6821 

Introduction to Control Program Loqic, 
Program Logic Manual, Form Y28-6605 

fQB!BAN_!y_!§_and_!il__Prog~ammer's Guide, 
Form C28-6817 

Any reference to a Programmer's Guide 
in this publication applies to FORTRAN 
!Y-<G and Hl_Programmer's.Guide, Form 
C28-6817. The FORTRAN IV (G) Program
mer's Guide, Form C28-6639, <to which 
references may exist ·in this publica
tion) has been replaced by the com
bined G and H Programmer's Guide. 

Although not required, the following 
publications are related to this publica
tion and should be consulted: 

IBM sy:stem/360 Operation Sy:stem: 

§~~!!!,ia! Acc~§.§.-~~thod§.L-f~Qgram Logic 
~!!!!:!!!• Form Y28-6604 

Third Edition (December .1972) 

Concepts and Facilitie§., Form C28-6535 

supervisor and Data Management Macro
Instructions, Form C28-6647 

Linkage Editor, Program Logic ~!!!:!!!• 
Form Y28-6610 

Sy:stem Generation, Form C28-6554 

This publication 
sections: 

consists of two 

Section 1 is an introduction that 
describes the FORTRAN IV (G) compiler as a 
whole, including its relationship to the 
operating- system. The major components of 
the compiler and relationships among them 
are also described in this section. 

Section 2 consists of a discussion of 
compiler operation. Each component of the 
compiler is described in sUff icient detail 
to enable the reader to understand its 
operation, and to provide a frame of 
reference for the comments and coding supp
lied in the program listing. Common data 
such as tables, blocks, and work areas is 
discussed only to the extent required to 
understand the logic of each component. 
Flowcharts are included at the end of this 
section. 

Following Section 2, are appendixes that 
contain reference material. 

If more detailed information is 
required, the reader should see the com
ments, remarks, and codirrg in the FORTRAN 
IV (G) program listing. 

This is a reprint of GY28-6638-l incorporating changes in Technical 
Newsletters GY28-6826, dated November 15, 1968 (Release 17), 
GY28~6829, dated July 23, 1969 (Release 18), and GY28-68q7, dated 
January 15, 1971 (Release 20). 

Changes are periodically made to the specifications herein; any 
such changes will be reported in subsequent revisions or Technical 
Newsletters. 

Requests for copies of IBM publications should be made to your IBM 
representative or to the IBM branch office serving your locality. 

Address comments concerning the contents of this publication to 
IBM Corporation, Programming Publications, 1271 Avenue of the Americas, 
New York, New York 10020. 

© Copyright International Business Machines Corporation 1968, 1970 



SECTION 1: INTRODUCTION TO THE COMPILER 9 
Purpose of the Compiler 9 
Machine configuration 9 
compiler and System/360 Operating 
System • • • • • • • • • • • • • • • 9 
Compiler Design • • • • • • • • • • 9 
Limitations of the Compiler 9 
Compiler Implementation ·• • 10 

POP Language • • • • • • • • • • • • • 10 
Compiler Organization • • • • • • 10 

Control Phase: Invocation CIEYFORT) 12 
Phase 1: Parse CIEYPARl • • • 12 
Phase 2: Allocate (IEYALL) •• 12 
Phase 3: Unify (IEYUNF) •• 12 
Phase 4: Gen (IEYGEN) ••••••• 12 
~base 5: Exit (IEYEXT) • • 13 
Roll (IEYROL) • • • • • 13 

compiler Storage Configuration • 15 
compiler output • • • • • • 15 

Object Module • • • • • • • • • 17 
Components of the Object Module 17 
Object Module General Register 
Usage • • • • • • • • .• 

Source Module Listing 
Object Module Listing 
Storage Maps • • • • • • 
Error Messages • • • • • 

common Error Messages 
Compiler Data Structures • 

Rolls ~nd Roll Controls • • • • • 
ROLL ADR Table • • • • • • • 
BASE, BOTTOM, and TOP Tables 
Special Rolls • • • • 
Central Items, Groups, and Group 

20 
• 20 

20 
21 
21 
21 
21 
21 
22 
23 

• 24 

stats • • • • • • • • • 24 
other Variables 26 

Answer Box • • 26 
Multiple Precision Arithmetic 26 
Scan Control • • • • • 26 
Flags • • • • • • • • • 27 
Quotes • •. • • • • • • 27 
Messages • • • • • • • • • • 27 

_Compiler Arrangement and General 
Register Usage • • • • • • • • 28 

29 
30 

Pointers • • ~ • • • • 
Drivers ••••••••••• 

Operation Drivers • • ••• 
control Drivers • • • • • • . 

• • • • 30 
• 31 

SECTION 2: COMPILER OPERATION 33 
Invocation Phase CIEYFORTl • 33 

IEYFORT, Chart 00 33 
IEYPRNT, Chart OOA4 • • • • 33 
PRNTHEAD, Chart 01A2 • • • • • 34 
IEYREAD, Chart 01A4 • • • • 34 
IEYPCH, Chart 02A3 • • 34 
PRNTMSG, Chart 03A1 34 
IEYMOR, Chart 01D1 • • • • • 34 
IEYNOCR • • • • • • • • • 34 
IEYRETN, Chart 03A2 • • • • 35 
OPTSCAN, Chart AA • 35 
DDNAMES, Chart AB • • • • • • • 35 

CONTENTS 

HEADOPT, Chart AC 
TIMEDAT, Chart AD 

• 35 
• 35 

output from IEYFORT • • • • 
Phase 1 of the Compiler: Parse (IEYPAR> 

• 35 
36 
37 

• • 37 
Flow of Phase 1, Chart 04 • • • • 

PRINT and READ SOURCE, Chart BA 
38 STA INIT, Chart BB •• 

LBL FIELD XLATE, Chart BC 
STA XLATE, Chart BD 

• • • • • 38 

STA FINAL, Chart BE 
ACTIVE END STA XLATE, Chart BF • • 
PROCESS POLISH, Chart BG • 

Output from Phase 1 •. • • • • • 
Polish Notation • • • 
Source Listing • • • • • • • 

Phase 2 of the Compiler: Allocate 
( IEYALL) • • • • • • • • • • • • • 

Flow of Phase 2, Chart 05 
ALPHA LBL AND L SPROGS, Chart CA • 
ALPHA SCALAR ARRAY AND SPROG, . 
Chart CA • • • • • 
PREP EQUIV AND PRINT ERRORS, Chart 
CB • • • • 
BLOCK. DATA PROG ALLOCATION, Chart 
ct . . . . . . . 
PREP DMY DIM AND PRINT ERRORS, 
Chart· CD • • • • • • ~ • • • • 
PROCESS DO LOOPS, Chart CE • • 
PROCESS LBL AND LOCAL SPROGS, 
Chart CF • • • • • • • • • • • ' • • 

38 
• 39 
• 39 

39 
• 39 
• 39 
• 42 

• 44 
• 45 
• 45 

• 45 

• 45 

• 46 

• 46 
• 46 

• 46 
• 46 BUILD PROGRAM ESD, Chart CG 

ENTRY.NAME ALLOCATION, Chart CH 
COMMON ALLOCATION AND OUTPUT, 
Chart CI • • • • • • • • 
EQUIV ALLOCATION PRINT ERRORS, 

• • 46 

• 47 

Chart CK • • • • • • • • • • • • 47 
BASE AND BRANCH TABLE ALLOC, Chart 
CL • • • • • • • • • • • • 
SCALAR ALLOCATE, Chart CM 
ARRAY ALLOCATE, Chart CN • 
PASS 1 GLOBAL SPROG ALLOCATE, 

• • • 47 
• 47 

• • 47 

Chart co • • • • • • • • • • • • 48 
SPROG ARG ALLOCATION, Chart CP • 48 
PREP NAMELIST, Chart CQ • • • 48 
LITERAL CONST ALLOCATION, Chart CR • 48 
FORMAT ALLOCATION, Chart CS • 48 
EQUIV MAP, Chart CT • • • • • • • • 48 
GLOBAL SPROG ALLOCATE, Chart CU • • 48 
BUILD NAMELIST TABLE, Chart CV • • • 48 
BUILD ADDITIONAL BASES, Chart CW • • 49 
DEBUG ALLOCATE, Chart ex • • • • • • 49 

Output From Phase 2 • • • • • • • • • 49 
Error Messages Produced by Allocate 49 
Unclosed DO Loops • • • • • • 49 
Storage Maps Produced by Allocate • 50 
Subprogram List • •. • • -• • • • • • 51 
Cards Produced by Allocate • • • • • 51 

Phase 3 of the Compiler: Unify UEYUNFl 51 
Flow of Phase 3, Chart 07 •••••• 52 

ARRAY REF ROLL ALLOTMENT, Chart DA • 52 
CONVERT TO ADR CONST, Chart DB • • • 52 
CONVERT TO INST FORMAT, Chart DC • • 52 



DO NEST·UNIFY, Chart DD 53 
IEYHOL Moa11le • • • • • 53 

Phase 4 of the compiler: Gen 
(I EYGEN > • • • • • • • • • • • • 5 3 

Flow of Phase 4, Chart 08 53 
ENTRY CODE GEN, Chart EA 54 
PROLOGUE GEN, Chart EB • • • • • 54 
EPILOGUE GEN, Chart EC • • • 54 
GET POLISH, Chart ED • • 54 
LBL PROCESS, Chart EF • • • • • 54 
STA GEN, Chart EG 54 
STA GEN FINISH, Chart EH • • 55 

Phase 5 of the compiler: Exit (IEYEXTl • 55 
Flow of Phase 5, Chart 09 • • • • 55 

PUNCH TEMP AND CONST ROLL, Chart FA 55 
PUNCH ADR CONST ROLL, Chart FB • 56 
PUNCH CODE ROLL, Chart FC 56 
PUNCH BASE ROLL, Chart FD -56 
PUNCH BRANCH ROLL, Chart FE • • 56 
PUNCH SPROG ARG ROLL, Chart FF • • • 56 
PUNCH GLOBAL SPROG ROLL, Chart FG • 57 
PUNCH USED LIBRARY ROLL, Chart FH • 57 
PUNCH ADCON ROLL, Chart Fl • • 57 
ORDER AND PUNCH RLD ROLL, Chart FJ • 57 
PUNCH END CARD, Chart FK 57 
PUNCH NAMELIST MPY DATA, Chart FL • 57 

Output From Phase 5 57 

APPENDIX A: THE POP LANGUAGE •• 127 
POP Instructions • • • • • • • .127 

Transmissive Instructions •••••• 127 
Arithmetic and Logical Instructions .130 
Decision Making Instructions • • .131 
Jump Instructions •••••••••• 133 
Roll Control Instructions •••••• 133 
Code Producing Instructions •• 134 
Address Computation Instructions ••• 134 
Indirect Addressing Instruction .135 

Labels : • • • • • • • • • .135 
Global Labels ••••••••• 135 
Local Labels ••••••••••••• 136 

Assembly and Operation ••••••••• 136 
POP Interpreter ••••••••••• 136 
Assembler Language References to POP 
Subroutines • • • • • • • • .137 
Global Jump Instructions • • • • .137 
Local Jump Instructions ••••••• 138 

APPENDIX 
Roll 0: 
Roll 1: 
Roll 2: 
Roll 2: 
Roll ,3: 
Roll . 4: 
Roll 4: 
Roll 5: 
Roll 7: 
Roll 8: 
Roll 9: 
Roll 10: 
Roll 11: 
Roll 12: 
Roll 13: 
Roll 13: 
Roll 14: 
Roll 1·5: 
Roll 15: 

B: ROLLS USED 
LIB Roll 
SOURCE Roll • 

IN THE COMPILER .140 

IND VAR Roll 
NONSTD SCRIPT Roll 
NEST SCRIPT Roll 
POLISH Roll • • • • 
LOOP SCRIPT Roll 
LITERAL CONST Roll 
GLOBAL SPROG Roll • 
FX CONST Roll 
FL CONST Roll • • • 

• • • • • • 140 
• • •• 140 

•• 141 
• • .• • • • 141 

•• 141 
•• 141 

• • • • 142 
• .142 
•• 142 

• • • • ·• .. 143 
•• 143 
... 143 
•• 143 
• .143 

DP CONST Rall • • • • • 
COMPLEX CONST Roll • • • • 
DP COMPLEX CONST Roll • 
TEMP NAME Roll ••• 143 
STD SCRIPT Roll • • • • 
TEMP Roll • • • • • 
DO LOOPS OPEN Roll • • • • 
LOOPS OPEN Roll • • • • • • 

•• 1414 
•• 144 
•• 144 
• • lllll 

Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 
Roll 

16: ERROR MESSAGE Roll • • • .144 
16: TEMP AND CONST Roll .144 
17: ERROR CHAR' Roll. • •• 145 
17: ADCON Roll • • • • • .145 
18: !NIT Roll • • • • • • • • .145 
18: DATA SAVE Roll ••• 145 
19: EQUIVALENCE TEMP (EQUIV TEMP) . . . . . . . . . . . . .145 
20: EQUIVALENCE HOLD (EQUIV HOLD> 

20: 
21: 
22: 
23: 
23: 
24: 
25: 
26: 
26: 
27: 
28: 
29: 
30: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
36: 
37: 
37: 
38: 
39: 
39: 
40: 
40: 
41: 
42: 
42: 
43: 
44: 
44: 
45: 
46: 

47: 
47: 
48: 
48: 
49: 
50: 
51: 
52: 
52: 
53: 
54: 
55: 
56: 
56: 
57: 
58: 
59: 
60: 
60: 
62: 
62: 

. . . . . . . . .. 
REG Roll • • •. • • • • • 
BASE TABLE Roll • • 
ARRAY Roll • • • • • 
DMY DIMENSION Roll • • • 
SPROG ARG Roll • • • • • 
ENTRY NAMES Roll 
GLOBAL DMY Roll • 
ERROR Roll • • • • 
ERROR LBL Roll 
LOCAL DMY Roll 
LOCAL SPROG Roll 

•• 145 
.146 

•• 146 
••• 146 

.147 

.147 
•• 147 

.148 
•• 148 

.148 
•• 148 

.149 
EXPLICIT Roll • • • • • • • 
CALL LBL Roll • • • 

•• 149 
.149 
.149 
.149 

ERROR SYMBOL Roll • • 
NAMELIST NAMES Roll 
NAMELIST ITEMS Roll • 
ARRAY DIMENSION Roll 
BRANCH TABLE Roll • • 
TEMP DATA NAME Roll • • 
TEMP POLISH Roll • • • • 
FX AC Roll • • • • 
EQUIVALENCE Roll • • • • 
BYTE sc;:ALAR Roll • • •• 
USED LIB FUNCTION Roll 
COMMON DATA Roll • • • • 
HALF WORD SCALAR Roll • • 
COMMON NAME Roll 
TEMP PNTR Roll • • • • • 
IMPLICIT Roll • • • • • • 
EQUIVALENCE OFFSET Roll • 
FL.AC Roll ••••• 
LBL Roll 

• •• 150 
.150 
.150 

•• 150 
.151 
.151 
.151 
.151 
.152 

• • .·152 
••• 152 

.152 

.153 

.153 

.153 
• • • 153 

.153 
••• 154 

.154 
SCALAR Roll • • • • 
HEX CONST Roli • • • • • 
DATA VAR Roll • • • 
LITERAL TEMP (TEMP LITERAL) 

• .154 

• • • • • • . . • • • • . • . .155 
COMMON DATA TEMP Roll • • .155 
FULL WORD SCALAR Roll • • .155 
COMMON AREA Roll ••••••• 155 
NAMELIST ALLOCATION Roll ••• 155 
COMMON NAME TEMP Roll • • .156 
EQUIV ALLOCATION Roll • • .156 
RLD Roll • • • • • • • • .156 
COMMON ALLOCATION Roll .156 
LOOP CONTROL Roll ••••••• 156 
FORMAT Roil •••••••••• 157 
SCRIPT Roll • • • .157 
LOOP DATA Roll • • • • .157 
PROGRAM SCRIPT Roll • .158 
ARRAY PLEX Roll ••• ~ •••• 158 
ARRAY REF Roll •••••••• 159 
ADR CONST Roll ••• 159 
AT Roll • • • • • •• 159 
SUBCHK Roll • ., • • • • • • • .160 
NAMELIST MPY DATA Roll .160 
GENERAL ALLOCATION Roll •••• 160 
CODE Roll • • • • • • • • .160 



Roll 60: NAMELIST MPY DATA Roll 
Roll 62: GENERAL ALLOCATION Roll 
Roll 62: CODE Roll ••••••••• 
Roll 63: AFTER POLISH Roll • 

•• 160 
•• 160 
• • 160 

• 161 
•• 161 
•• 161 
•• 161 

Work and Exit Rolls 
WORK Roll 
EXIT Roll 

APPENDIX C: POLISH NOTATION FORMATS 
General Form • • • • 
Labeled Statements • 
Array References 
ENTRY Statement 
ASSIGN Statement • 
Assigned GO TO Statement • 
Logical IF Statement • 
RETURN Statement • • • 
Arithmetic and Logical Assignment 
Statement • • • • • • • • • • • 
Unconditional GO TO Statement 
Computed GO TO Statement • 
Arithmetic IF Statement 

•• 163 
•• 163 
• .163 

.163 
•• 164 
•• 164 
• .164 
• • 164 

.164 

•• 164 
.165 

• .165 
•• 165 

DO Statement • • • • • • • 
CONTINUE Statement • • • 

• • • • 165 

PAUSE and STOP Statements 
END Statement . . • • • • 
BLOCK DATA Statement • • • 

•• 166 
••e•c••l66 

• • 166 
• 166 

DATA StatemPnt and DATA in Explicit 
Specification Statements 
I/O List • • • • 
Input S+-.atements 

FORMATTED READ 
NAMELIST READ 
UNFORMATTED READ • 
READ Standard Unit 

output Statements • • • • 
FORMATTED WRITE 
NAMELIST WRITE • 
UNFORMATTED WRITE 
PRINT 
PUNCH 

Direct Access Statements • 
READ, Direct Access 
WRITE, Direct Access 
FIND . . . . . . 
DEFINE FILE 

END FILE Statement 
REWIND Statement • • 
BACKSPACE Statement 
Statement Function • 
FUNCTION statement . 

• • • • • • 1b6 
•• 167 
• • 167 

• • • • • 16 7 
.168 

••• 168 
.lb8 
.lb8 

•• lb8 
• • • 169 

• . 169 
• • 169 

.lb9 
• • 16C) 

.169 
• 170 
.170 
• 170 
. 170 
• 171 

• • 171 
• • • 171 

• • 171 
Function <Statement or subprogram> 
Reference • 171 

• 171 
.172 

Subroutine Statement • 
CALL Statement • • • • 
Debug Facility Statements • • • • • • • 17 2 

AT • • • • • • • • • • • 172 
• • • 172 TRACE ON • 

TRACE OFF 
DISPLAY 

• •• 4 .172 
• • . 17 3 

APPENDIX D: OBJECT CODE PRODUCED BY 
THE COMPILER • • • • • • • • • • • • 175 
Branches • • • • • • • • • • • • •• 175 

.175 
• • • 175 

• 176 
.176 

Computed GO TO Statement • • • • 
DO Statement • • • • • • • • ••• 
Statement Functions • • • • 
subroutine and Function Subprograms 

Input/Output Operations ••..••.• 177 
Formatted Read and Write Statements .177 
Second List Item, Formatted •••• 177 
Second List Array, Formatted .•••• 178 
Final List Entry, Formatted ....• 178 
Unformatted Read and Write Statements 178 
Second List Item, Unformatted •.•• 178 
Second List Array, Unformatted •••• 178 
Final List Entry, Unformatted ••.• 178 
Backspace, Rewind, and Write Tapemark 178 
STOP and PAUSE Statements •• 179 
NAMELIST READ and WRITE • • • • .179 
DEFINE FILE Statement .179 
FIND Statement • ~ •• 179 
Direct Access READ and WRITE 
Statements • • • • 
FORMAT Statements 

FORMAT Beginning and Ending 
Parentheses 
Slashes • • • • 
Internal Parentheses 
Repetition Of Individual FORMAT 
Specifications • • • • • • • • • 
I,F,E, and D FORMAT Codes 
A FORMAT Code 
Literal Data • 
x FORMAT Code 
T FORMAT Code 
Scale Factor-P • 
G FORMAT Code 
L FORMAT code 
z FORMAT code 

Debug Facility •• 
DEBlJG :1tatPment ••••••• 

Reginninq of Input/Output 1 • 

End of Input/Output 
UNIT Option 
TRACE Option • • • 
0lJBTRACE Option 
INIT Option 
[;IJBCHK Opt ion 

AT Statem<>nt •• 
TRACE ON ~;t d ternent 
TRACE OFF Statement 
DISPLAY Statement 

APPENDIX E: MI'. ;cELLANF.OlJS REFERENCE 
DATA • • • • . • • • • • • • • 

• • 17 9 
• • 18 0 

.180 

. 180 
•• 180 

• • 18 0 
. .180 
•• 180 
•• 180 
• .181 
•• 181 

• 181 
•• 181 

.181 
•• 181 

• 181 
.181 
. 181 

•• 181 
•• 181 
• • 182 
• .182 

• 182 
•• 183 
•• 183 
• .183 

. 183 
•• 183 

.185 
Parse Lahel List ••••••• 
Supplementary Parse Lahel List 
Allocate Label List •••• 
Supplementary Allocate Label List 
Unify Label List. • • • • • • •• 
Supplementary llnif y Label List • 
Gen Label List • • • • • • • • 
Supplementary G0n Label List •• 
Exit Label List •••• 
supplementary Exit Label List 

•• 185 
•• 185 

• ••• 193 

APPENDIX F: OBJECT-TIME LIBRARY 

.193 
•• 196 
•• 196 
• .198 
•• 198 
•• 208 

• 208 

•• 212 
• .212 

SUBPROGRAMS • • • • • 
Library Functions • • • • • 
Composition of the Library • • • • • • • 212 

System Generation Options 
Module summaries . • • • • • 
Library Interrelationships • 

•• 212 
• • 213 
•• 214 
• • 215 Initialization ••••• 

Input/Output Operations . • • . . . 216 



Define File ••••••••••••• 218 
Sequential Read/Write without Format .218 

Initial Call • • • • • .218 
Second Call • • • • • . • • • • 219 
Additional List Item Calls • .219 
Final call • • • • • • •••• 219 
System Block Modification and 
Reference ••••••••••••• 219 
Error conditions •••••••••• 220 

Sequential READ/WRITE With Format •• 221 
Processing the Format Specification 221 

Direct Access READ/WRITE Without 
Format ••••••••••••••• • 224 

Initialization Branch ••••••• 224 
successive Entries for List Items .225 
Final Branch •••••••••••• 225 
Error Conditions •••••••••• 226 

Direct Access READ/WRITE With Format .226 
FIND • • • •••••• 226 
READ And WRITE Using NAMELIST •• 226 

Read • • • • • • • ••••• • 226 
Write •••••••••••••• • 227 
Error conditions • • • • • • • .227 

Stop and Pause (Write-to-Operator> •• 227 
Stop • • • • 227 
Pause • • • • • • • 227 

Backspace • • • • • • 227 
Rewind • • • • • 228 
End-File • • •••••• 228 

Error Handling .228 

compiler-Directed Errors: IHCIBERH •• 228 
Program Interrupts. • • • • .229 

Action for Interrupts 9, 11, 12, 
13, and 15 • • • • • • • • 229 
Action for Interrupt 6 • • .229 

Library-Detected Errors •• 230 
Without Extended Error Handling .230 
With Extended Error Handling • ·• • • 231 

Abnormal Termination Processing .231 
codes 4 and 12 ••••••••••• 231 
Codes 0 and 8 • • • • • • • • • • • 231 

Extended Error Handling Facility ••• 232 
Option Table--IHCUOPT ••••••• 232 
Altering the Option Table--IHCFOPT .232 
Error Moni tor--IHCERRM • • • • 233 
Extended Error Handling 
Trackback--IHCETRCH ••• 233 

Conversion • • • • • • • • • • • • • 234 
Mathematical and Service Routines ••• 234 

Mathematical Routines •••••••• 234 
Service Subroutines • • • • • • .234 

IHCFDVCH (Entry Name DVCHK) •• 234 
IHCFOVER (Entry Name OVERFL) •••• 235 
IHCFSLIT (Entry Names SLITE, 
SLITET) • • • • • • • • • 
IHCFEXIT (Entry Name EXIT) 
IHCFDUMP (Entry Names DUMP and 

• .235 
•• 235 

PDUMP) • • ••••••••• 235 
IHCDBUG ••••••••• • • • • .236 

Termination •••••••• 239 

GLOSSARY • 

INDEX 

• 259 

.263 



FIGURES 

Figure 1. overall Operation of 
the Compiler • • • • • • • • • • 11 
Figure 2. Compiler Organization 
Chart • • • • • • • • • • • •••• 14 
Figure 3. Compiler Storage 
Configuration • • • • • • •• 15 
Figure 4. compiler output 16 
Figure 5. Object Module 
Configuration • • • • • 17 
Figure 6. Example of Use of save 
Area • • • • • • • • • • • • 18 
Figure 7. Roll Containing K 
Bytes of Information • • • • 23 
Figure 8. Roll Containing L 
Bytes of Reserved Information and 
K Bytes of New Information • 24 
Figure 9. Roll With a Group Size 
of Twelve • • • • • • • • • • • 25 
Figure 10. Roll with Variable 
Group Size • • • • • • • • • • 25 
Figure 11. First Group Stats 
Table . . . . . . . . . . . . • 26 
Figure 12. Second Group Stats 
Table . . . . • • . . . . . • . 26 
Figure 13. Scan Control Variables 27 

TABLES 

Table 1. Internal configuration 
of Operation Drivers • • • • • • • • 31 
Table 2. Internal Configuration 
oF control Drivers (Part 1 of 2) • • 32 
rdble 3. Rolls Used by Parse ••• 36 
fable 4. Rolls Used by Allocate • 44 
Tnble 5. Rolls Used by Unify 52 
Table 6. Rolls Used by Gen • 53 
'fable 7. Rolls Used by Exit 55 
Table 8. POP Instruction 
Cross-Reference List •••••••• 139 

ILLUSTRATIONS 

Figure 14. Quotes Used in the 
Compiler . . • • . ·. . . . . 27 
Figure 15. Compiler Arrangement 
with Registers 28 
Figure 16. Calling Paths for 
Library Routines • . . . . . 215 
Figure 17. Control Flow for 
Input/output Operations • . • 217 
Figure 18. IHCUATBL: The Data 
Set Assignment • . • . . • • . 239 
Figure 19. DSRN Default Value 
Field of IHCUATBL Entry . . . • 240 
Figure 20. Format of a Unit Block 
for a Sequential Access Data Set 240 
Figure 21. Format of a Unit Block 
for a Direct Access Data Set . • 242 
Figure 22. General Form of the 
Option Table (IHCUOPT) • • • • 242.1 
Figure 23. Preface of the Option 
Table (IHCUOPT) • . • • • • • • 242.2 
Figure 24. Composition of an 
Option Table Entry • . . • 242.2 
Figure 25. Original Values of 
Option Table Entries • 242.3 

Table 9. Routines Affected by 
Extended Error Handling Option 212 
Table 10. Format Code Translations 
and Their Meanings . . • • • • • 222 
Table 11. IHCFC\lll'H Subroutine 
Directory • . . . . . • • . • • • 234 
Table 12. IHCDBUG Transfer Table • 236 
Table 13. DCB Default Values 240 
Table 14. IHCFCOMH/IHCECOMH 
Transfer and Subroutine Table • 242.3 



CHARTS 

(Part 1 of 4) 59 
(Part 2 of 41 •• 60 
(Part 3 of 4l • • 61 
(Part 4 of 41 •• 62 

Chart oo. IEYFORT 
Chart 01. IEYFORT 
Chart 02. IEYFORT 
Chart 03. IEYFORT 
Chart AA. OPTSCAN 
Chart AB. DDNAMES • • 

• • • • • • • 63 

Chart AC. HEADOPT • • • • 
64 
65 
66 Chart AD. TIMEDAT. • • • • 

Chart 04.1. PHASE 1 - PARSE (Part 
1 of 21 •••••••••••••• 67 
Chart 04.2. PHASE 1 - PARSE (Part 
2 of 21 • • • • • • • • • 68 
Chart BA. WRITE LISTING AND READ 
SOURCE • • • • • • • • • • • •. • 68 
Chart BB. INITIALIZE FOR 
PROCESSING STATEMENT • • • • • • • • 69 
Chart BCl. PROCESS LABEL FIELD 
(Part 1 of 21 • • • •••••••• 70 
Chart BC2. PROCESS LABEL FIELD 
<Part 2 of 21 • • • • • • • • • 70 
Chart BD. PROCESS STATEMENT • • • • 71 
Chart BE. COMPLETE STATEMENT AND 

·MOVE POLISH • • • • • • • • • • • • 72 
Chart BF. PROCESS END STATEMENT •• 73 
Chart BG. PROCESS POLISH • 74 
Chart 05. PHASE 2 - ALLOCATE 
(Part 1 of 21 • • • ••• • 75 
Chart 06. PHASE 2 - ALLOCATE 
<Part 2 of 21 ••••••••• 76 
Chart CA. MOVE BLD NAMES TO DATA 
VAR ROLL • • • • • • • • • • • • 77· 
Chart CB. PREPARE EQUIVALENCE DATA 78 
Chart cc. ALLOCATE BLOCK DATA • • • 79 
Chart CD. PREPROCESS DUMMY 
DIMENSIONS • • • • • • • • • • 
Chart CE. CHECK FOR UNCLOSED DO 

• 80 

LOOPS • • • • • • • • • • • • • 81 
Chart CF. CONSTRUCT BRANCH TABLE 
ROLL • • • • • • • • • • • • • • • • 82 
Chart CG. ALLOCATE HEADING AND 
PUNCH ESP CARDS • .. • . • • • • • • 8 3 
Chart CH. CHECK ASSIGNMENT OF 
FUNCTION VALUE • • • • • • • • 
Chart CI. COMMON ALLOCATION 
Chart CK. EQUIVALENCE DATA 
ALLOCATION • • • • • • • • • • 
Chart CL. SAVE AREA, BASE AND 
BRANCH TABLE.ALLOCATION 
Chart CM. ALLOCATE SCALARS 
Chart CN. ALLOCATE ARRAYS • 
Chart CO. ADD BASES FOR 
SUBPROGRAM ADDRESSES • • • • • 
Chart CP. ALLOCATE SUBPROGRAM 

84 
• • 85 

86 

87 
88 
89 

90 

ARGUMENT LISTS • • • • • • • • • • • 91 
Chart CQ. PREPARE NAMELIST TABLES • 92 
Chart CR. ALLOCATE LITERAL 
CONSTANTS • • • • • • • • • • 
Chart CS. ALLOCATE FORMATS 
Chart CT. MAP EQUIVALENCE • • • 

• 93 
• • 94 

95 
Chart CU. ALLOCATE SUBPROGRAM 
ADDRESSES • • • • • • • • • • • • • 96 

Chart CV. BUILD AND PUNCH 
NAMELIST TABLES • • • • • • , • 97 
Chart CW. BUILD BASES • • • • • 98 
Chart ex. DEBUG ALLOCATE • • • • • 99 
Chart 07. PHASE 3 - UNIFY~ •••• 100 
Chart DA. BUILD ARRAY-REF ROLL •• 101 
Chart DB. MAKE ADDRESS CONSTANTS .102 
Chart DC. CONSTRUCT INSTRUCTIONS .103 
Chart DD. PROCESS NESTED LOOPS .104 
Chart 08. PHASE 4 - GEN •••••• 10·5 
Chart EA. GENERATE ENTRY CODE ••• 106 
Chart EB. PROLOGUE CODE GENERATION 107 
Chart EC. EPILOGUE CODE GENERATION 108 
Chart ED. MOVE POLISH NOTATION •• 109 
Chart EF. PROCESS LABELS •• 110 
Chart EG. GENERATE STMT CODE ••• 111 
Chart EH. COMPLETE OBJECT CODE •• 112 
Chart 09. PHASE 5 - IEYEXT .113 
Chart FA. PUNCH CONSTANTS AND 

•• 114 
•• 115 
•• 116 
•• 117 

TEMP STORAGE • • • • • • • • • • 
Chart FB. PUNCH ADR CONST ROLL 
Chart FC. PUNCH OBJECT CODE • • 
Chart FD. PUNCH BASE TABLE 
Chart FE. PUNCH BRANCH TABLE 
Chart FF. PUNCH SUBPROGRAM 

• • • 118 

ARGUMENT LISTS • • • • • • • • • • • 119 
Chart FG. PUNCH SUBPROGRAM 
ADDRESSES • • • • • • • .120 
Chart FH. COMPLETE ADDRESSES FROM 
LIBRARY •••••••••••••• 121 
Chart FI. PUNCH ADDRESS CONSTANTS .122 
Chart FJ. PUNCH RLD CARDS ••••• 123 
Chart FK. PUNCH END CARDS , •••• 124 
Chart FL. PUNCH NAMELIST TABLE 
POINTERS , ••••••• , •• 125 
Chart GO. IHCFCOMH/IHCECOMH 
(Part 1 of 4) •••••••• 
Chart GO. IHCFCOMH/IHCECOMH 

• 243 

<Part 2 of 4) •••••••••• 243.1 
Chart GO. IHCFCOMH/IHCECOMH 
<Part 3 of 4) •••••••••• 243.2 
Chart GO. iHCFCOMH/IHCECOMH 
(Part 4 of 4) •••••••••• 243.3 
Chart Gl. IHCFIOSH/IHCEFIOS 
(Part 1 of 2> ••••••••••• 244 
Chart Gl. IHCFIOSH/IHCEFIOS 
<Part 2 of 2) •••••••••• 244.1 
Chart G2. IHCDIOSE/IHCEDIOS 
(Part 1 of 51 ••••••••••• 245 
Chart G2. IHCDIOSE/IHCEDIOS 
{Part 2 of 5) •••••••••• 245.1 
Chart G2. IHCDIOSE/IHCEDIOS 
(Part 3 of 5) •••••••••• 245.2 
Chart G2. IH.CDIOSE/IHCEDIOS 
(Part 4 of 5) •••••••••• 245.3 
Chart G2. IHCDIOSE/IHCEDIOS 
(Part 5 of 5) ••••••••••• 246 
Chart G3. IHCNAMEL ••••• • • .247 
Chart G4. IHCFINTH/IHCEFNTH 
(Part 1 of 3) ••••••••••• 248 
Chart G4. IHCFINTH/IHCEFNTH 
(Part 2 of 3) •••••••••• 248.1 



Chart G4. IHCFINTH/IHCEFNTH Chart G9. IHCFOPT (Part 3 of 3) . • 257 
(Part 3 of 3) . . . . . . . . . • 24S. 2 Chart GlO. IHCTRCH/IHCERTCH . . • 25S 
Chart G5. IHCADJST • . . . . • 249 Chart Gll. IHCFDUMP • . . . . . • 25S. 1 
Chart G6. IHCIBERH • . . . . • 250 Chart Gl2. IHCFEXIT . . • 25S.2 
chart G7. IHCSTAE (Part 1 of 21 • 251 Chart Gl3. IHCFSLIT . • 25S. 3 
Chart G7. IHCSTAE (Part 2 of 21 • 252 Chart G14 • IHCFOVER • . • 25S. 4 
Chart GS. IHCERRM (Part 1 of 2) • 253 Chart GlS. IHCFDVCH • . • 25S.5 
Chart GS. IHCERRM <Part 2 of 21 • 254 Chart G16. IHCDBUG (Part 1 Of 41 • 25S. 6 
Chart G9. IHCFOPT (Part 1 of 31 • 255 Chart G16. IHCDBUG (Part 2 of 4) • 25S. 7 
Chart G9. IHCFOPT (Part 2 of 31 • 256 Chart G16. IHCDBUG (Part 3 of 4) • 25S. s 

Chart G16. IHCDBUG (Part 4 Of 4) • 25S. 9 





This section contains general informa
tion describing the purpose of the FORTRAN 
IV (G) compiler, the minimum machine confi
guration required, the relationship of the 
compiler to the operating system, compiler 
design and implementation, and compiler 
output. The various rolls,~ variables, 
registers, pointers, and drivers used by 
the compiler are also discussed. 

PURPOSE OF THE COMPILER 

The IBM System/360 Operating system 
FORTRAN IV (G) compiler is designed to 
accept programs written in the FORTRAN IV 
language as defined in the publication IBM 
System/360: FORTRAN IV Language, Form 
C28-6515. 

The compiler produces error messages for 
invalid statements, and, optionally, a 
listing of the source module, storage maps, 
and an object module acceptable to the 
System/360 Operating system linkage editor. 

MACHINE CONFIGURATION 

The minimum system configuration 
required for the use of the IBM System/360 
Operating System with the FORTRAN IV (G) 
compiler is as follows: 

• An IBM System/360 Model 40 computer 
with a storage capacity of 128K bytes 
and a standard and floating-point 
instruction set. 

• A device for operator communication, 
such as an IBM 1052 Keyboard Printer. 

• At least one direct-access device pro
vided for system residence. 

COMPILER AND SYSTEM/360 OPERATING SYSTEM 

The FORTRAN IV (G) compiler is a proces-
sing program of the IBM system/360 

~Most of the tables 
are called rolls. 
rolls is given 
Controls.•) 

used by the compiler 
(Further explanation of 

in •Rolls and Roll 

SECTION 1: I!;!TROOUCTION TO '.£HE COMPI~ 

Operating System. As a processing program, 
the compiler communicates with the control 
program for input/output and other ser
vices. A general description of the con
trol program is given in the publication 
IBM System/360 Operating System: Introduc
tion to con~rol Program Logic, Program 
Logic Manual. 

A compilation, or a batch of compila
tions, is requested using the job statement 
(JOB), the execute statement (EXEC), and 
data definition statements (DD>. Alterna
tively, cataloged procedures may be used. 
A discussion of FORTRAN IV compilation and 
the available cataloged procedures is given 
in the publication IBM~tem/360 Operating 
System: FORTRAN IV (G) Programmer's Guide. 

The compiler receives control initially 
from the calling program <e.g., job sche
duler or another program that CALLs, LINKs 
to, or ATTACHes the compiler). once the 
compiler receives control, it uses the QSAM 
access method for all of its input/output 
operations. After compilation is com
pleted, control is returned to the calling 
program. 

COMPILER DESIGN 

The compiler will operate within a total 
of BOK bytes of main storage. This figure 
includes space for the compiler code, data 
management access routines, and sufficient 
working space to meet other storage 
requirements stated throughout this 
publication. 

Any additional storage available is used 
as additional roll storage. 

LIMITATIONS QF THE COMPILER 

The System/360 Operating System FORTRAN 
IV CG> compiler and the object module it 
produces can be executed on all system/360 
models from Model 40 and above, under 
control of the operating system control 
program. All input information must be 
written in either BCD or EBCDIC representa
tion. The compiler is designed to process 
all properly written programs so that the 
object code produced by the compiler is 
compatible with the existing mathematical 
library subroutines. 

Section 1: Introduction to the Compiler 9 



If ten source read errors occur during 
the compilation, or if it is not possible 
to use SYSPRINT, the operation of the 
compiler is terminated. The operation of 
the compiler is also limited by the availa
bility of main storage space. The compila
tion is terminated if: 

• The roll storage area i.s exceeded 

• Any single roll exceeds 64K bytes, 
thereby making it unaddressable 

• The WORK or EXIT roll exceeds its 
allocated storage-

~: If any of these conditions occur 
during the first phase of the compilation, 
the statement currently being processed may 
be discarded; in this case, the compilation 
continues with the next statement. 

COMPILER IMPLEMENTATION 

The primary control and processing rou
tines (hereafter referred to as "POP rou
tines" or "compiler routines") of the com
piler are primarily written in machine
independent pseudo·instructions called. POP 
instructions. 

Interpretation of the pseudo instruc,
tions is accomplished by . routines written 
in the System"."360 Operating System .assembl
er language. These routines (hereafter 
referred to as "POP subroutines"> are an 
integral part of the compiler.and perform 
the ope.rations specified by the POP ins
tructions, e.g., saving of backup informa
tion, maintaining data indicators, and gen
eral housekeeping. 

control of the compiler operation is 
greatly affected by source language syntax 
rules during the first phase of the compil• 
er, Parse. During this phase, identifiers 
and explicit declarations encountered in 
parsing are placed in tables .and a Po!.ish 
notation form of the program is produced. 
(FOrfurther information on Polish nota
tion, see · Appendix c, "Polish Notation 
Formats."> 

10 

The compiler quite frequently uses the 
method of recursion in parsing, analysis, 
and optimization. All optimizing and code 
generating routines, which appear in later 

_phases, operate directly on the tables and 
Polish notation produced by Parse• 

The compiler is -also designed so that 
reloading of the compiler is unnecessary in 
order to accomplish multiple compilations. 

POP LANGUAGE 

.The FORTRAN IV (G) compiler is written 
in a combination of two languages: 
system/360 Operating System assembler 
guage, which. is used where it is 
efficient, and the POP language. 

the 
lan
most 

The POP language. is a mnemonic macro 
programming language whose instructions 
include functions that are frequently per
.formed by a compiler. POP instructions are 
written for assembly by the system/360 
operating system assembler, .with the POP 
instructions defined as macros. Each POP 
instruction is assembled as a pair of 
address constants which together indicate 
an instruction code and an operand. A 
statement or instruction written in the POP 
language is called a POP. The POP instruc
tions are described in Appendix A. 

COMPILER ORGANIZATION 

-The System/360 Operating system FORTRAN 
IV <G> compiler is composed of a control 

.phase, Invocation, and five processing 
-phases: . <see. Figure 1>: Parse,, Allocate, 
Unify,· Gen, .and. Exit. The operating system 
na.mes for these phases ·are, respectively, 
IEYFORT, · .. IEYPARi IEYA.LL, IEYUNF, IEYGEN, 
and IEYEXT. (The first level control and 
second. le.vel processing .c::ompiler .routines 
use.a in each phase ar:e shown in Figure 2. > 
In addition, Move is a pre-assembled work 
area, IEYROL. 



IEYFORT 
r-------------1 r-------------1 r-------------1 

SYSIN----------->I Source 1----->I Control 1----->I Invocation 1-----> @ 
. I Module I I Program I I Phase I 

L-------------J L-------------J L-------------J 

® 
I r-------------1 
I r--->f Source Module! 
I I I listing I 
V IEYPAR l l-------------J 

r-------------, I 
Parse ~-----------~ 

I <.Phase 1> I I 
L------T ______ J I r-------------1 

I L--->f Source Modulel 
I !diagnostics I I L _____________ J. 

V IEYALL r-------------1 
r-------------1 r--->IStorage Maps I I Allocate I I L ________ ..:_ ____ J 

I <Phase 2) ~----------,.-~ 
-L ___ ..:_ __ T ______ J I r-------------:1 

I l--->IESD and TXT 
I !Cards .I 
V IEYUNF L-------------J 

r-------------1 
I Unify I 
I (Phase 3) I 
L------T------J 

I 
V IEYGEN 

r:-------------1 
I Ge·n I 
I <Phase 4 > I r-------------1 
L------T ______ J r---> I Object Module I 

I I I listing I I I L _____________ J 

V IEYEXT I r-------------1 
r-------.,..-----, I !Object Module! 

Exit ~-~----------+--->ITXT cards I 
I (Phase 51 I I L-------------J L ______ T ______ J I 

I I r-~--~--------1 
I I IESD, RLD, andl 
V IEYFORT l--->IEND cards I 

r-------------1 
I Invocation 1 · 
I Phase I 
L------i-----:-J 

. * .. 
• * * • 

L-------------J 

. * *. ' , . * Multiple *· N.o . r----... --------1 
* · Compilations • •-------------->I Control I 

*· · ·* !Program I 
* • ··* L J 

~. ·*. -------------* YES v 
~ 

Figure 1. Overall Operation of the .. Compl.ler 

SYS PRINT 

SYS PRINT 

SYS PRINT 

SYSPUNCH/SYSLIN 

SYSPRINT 

SYSPUNCH/SYSLIN 

SYSPUNCH/SYSLIN 

section 1: Introduction to the compiler 11 



Control Phase: Invocation CIEYFORT) 

The Invocation phase (IEYFORT) is loaded 
upon invocation of the compiler and remains 
in core storage throughout compilation. It 
is entered initially from the calling pro
gram,. from each module at -the end of its 
processing, and from Exit after compilation 
is complete. 

At the initial entry, the Invocation 
phase initializes bits in IEYFORTl from the 
options specified by the programmer for .the 
compilation, opens data sets, and fetches 
the modules IEYPAR, IEYALL, IEYUNF, IEYGEN, 
and IEYEXT via a series of LOAD macro 
instructions. These modules remain in core 
storage for a series of main-program and 
subprogram compilations unless it is deter
mined that additional space required for 
tables is not avai·lable. When this occurs, 
modules that precede the active one are 
deleted, and compilation _is resumed. If 
more space is required, modules that follow 
the currently active one are deleted. 

When a module completes processing, it 
returns to IEYFORT, which ensures the pre
sence of the next module and transfers to 
it. During initialization for a subpro
gram, IEYFORT ensures that all modules are 
loaded. 

The last entry is made from the Exit 
phase at the completion of a compilation. 
When the entry is made from Exit, the 
Invocation phase checks for multiple compi
lations. If another compilation is 
required, the compiler is reinitialized and 
the main storage space allocated for the 
expansion of rolls is assigned to the next 
compilation;· otherwise, control is returned 
to the calling program. 

Phase 1: Parse (IEYPAR) 

Parse accepts FORTRAN statements in card 
format from SYSIN and scans these to pro
duce error messages on the SYSPRINT data 
set, a source module listing (optional), 
and Polish notation for the program. The 
Polish notation is maintained on internal 
tables for use by subsequent phases. In 
addition, Parse produces the roll entries 
defining the symbols used in the source 
module. 

Phase 2: Allocate (IEYALL) 

Allocate, which operates immediately 
after Parse, uses the roll entries produced 

12 

by Parse to perform the storage allocation 
for the variables defined in the source 
module. The addressing inf9rmation thus 
produced is then left in main storage to be 
used by the next phase. 

The ESD cards for the object module 
itself, COMMON blocks and subprograms, and 
TXT cards for NAMELIST tables, li~eral 
constants and FORMAT statements are pro
duced by Allocate on the SYSPUNCH and/or 
SYSLIN data sets. Error messages for 
COMMON and EQUIVALENCE statements, unclosed 
DO loops and undefined labels are produced 
on SYSPRINT; on the MAP option, maps of 
data storage are also_produced. 

Phase 3: Un!iY-J.!~!2~rt 

The Unify phase optimizes the usage of 
general registers within DO loops by 
operating on roll data which describes 
array references. The optimization applies 
to references which include subscripts of 
the form ax~b, where a and b are positive 
constants and x is an active induction 
variable (that is, x is a DO-controlled 
variable and the reference occurs within 
the DO loop controlling it>, and where the 
array does not have any adjustable dimen
sions. The addressing portion of the 

. object j.nstruction for each .. such array 
reference is constructed to minimize the 
number of registers used for the reference 
and the number of registers which must be 
changed as each induction variable changes. 

Phase 4: Gen (IEYGEN) 

Gen uses the Polish notation produced by 
Parse and 'the memory allocation information 
produced by Allocate. From this informa
tion, Gen produces the code, prologues, and 
epilogues required for the object module. 
In order to produce the object code, Gen 
resolves labeled statement references 
(i.e., a branch target label) and subpro
gram entry references. 

The final output from Gen is a 
form of the machine language code 
internally maintained for writing 
Exit phase. 

complete 
which is 

by the 



Phase 5: Exit UEYEXT> 

Exit, which is the last processing phase 
of the compiler, produces the TXT cards for 
the remaining portion of the object module, 
the RLD cards <which contain the relocat
able information), and the END card. This 
output is placed optionally on the SYSLIN 
data set for linkage editor processing 
and/or SYSPUNCH if a ca.rd deck has been 
requested. Additionally, a listing of the 
generated code may be written on the SYS-

PRINT data set in a format similar to that 
produced by an assembly program. 

Roll contains static rolls and roll 
information always required for compiler 
operations. These are described under the 
heading •Rolls and Roll controls• later in 
this section. 

section 1: Introduction to the compiler 13 



r-----~----~------------------------------------------------------------------------1 I r---PRINT AND READ SOURCE I 
I I STA INIT I 
f r---START COMPILER I LBL FIELD XLATE f 
I PARSE--~ I STA XLA TE I 
I I I STA FINAL I 
I I I REGISTER IBCOM. I 

I f PROCESS POLISH. I 
L---STATEMENT PROCESS----~ ACTIVE END STA Y.LATE f 

' ·. . l---STA FINAL END f 

ALLOCATE-----START 

UNIFY--------START ,--
1 
I 
I 
I r---START 

I 
I 

GEN-·----1 

r---PREP EQUIV AND PRINT ERRORS 
BLOCK DATA PROG ALLOCATION 
PREP DMY DIN AND PRINT ERRORS 
PROCESS DO LOOPS 
PROCESS LBL AND LOCAL SPROGS 
BUILD PROGRAM ESD 
ENTRY NAME ALLOCATION 
COMMON ALLOCATION AND OUTPUT 
BASE AND BRANCH TABLE ALLOC 
EQUIV ALLOCATION PRINT ERRORS 
FORMAT AI.LOCATION 
SCALAR ALLOCATE 
ARRAY ALLOCATE 

ALLOCATE-------~ PASS 1 GLOBAL SPROG ALLOCATE 
f SPROG ARG ALLOCATION 
I PREP NAMELIST 
I LITERAL CONST ALLOCATION 
f EQUIV MAP 
f GLOBAL SPROG ALLOCATE 
f BUILD NAMELIST TABLE 
f ALPHA LBL AND L SPROG 
I BUILD ADDITIONAL BASES 
I ALPHA SCALAR ARRAY AND SPROG 
I LITERAL CONST ALLOCATION 
f CALCULATE BASE AND DISP 
L---DEBUG ALLOCATE 

r---ARRAY REF ROLL ALLOTMENT 
UNIFY----------~ DO NEST UNIFY 

GEN 

I CONVERT TO ADR CONST 
L---CONVERT TO INST FORMAT 

r---MOVE ZEROS TO T AND C 
f ENTRY CODE GEN 
f PROLOGUE GEN 
L---EPILOGUE GEN 

r---GET POLISH I 
L---GEN PROCESS----------~ LBL PROCESS 

f STA GEN 
L---STA GEN FINISH 
r---PUNCH TEMP AND CONST ROLL 
f PUNCH ADR CONST ROLL 
I PUNCH CODE ROLL 
I PUNCH BASE ROLL 
J PUNCH BRANCH ROLL 
1 PUNCH SPROG ARG ROLL 

EXIT---------EXIT PASS------------~ PUNCH GLOBAL SPROG ROLL 
,-- I PUNCH USED LIBRARY ROLL 
I I PUNCH ADCON ROLL 
f f ORDER AND PUNCH RLD ROLL 
I f PUNCH END CARD 
I I PRINT HEADING 
f f PRINT A LINE 
I L---PRINT COMPILER STA'IISTICS 

L-------------------------------------------------------------------------------------··-Figure 2. Compiler Organization Chart 

14 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



r-.-----~T----------T------------------, 

!Load I I . I 
I Module I I Content or I 
!Name IComponentslFunction I 
~-------+----------+------~-------~---~ 

Low ·I IEYFORT IEYFORT Invocation and 
Core control 

IEYFORTl 

IEYFORT2 

IEYROL 

IEYINT 

Option bits 

Loads and deletes 
other modules 

Roll statistics 
(bases, tops, 
bottoms> 

Group statistics 
(displacement 
group si~es> 

WORK roll 
I 
!EXIT roll· 
I 
!Roll address 
I 
IPOP Jump Table 

table I 
I 
I 
I 
I 

I 
IPOP machine 
I language sub-
1 routines 

I 
I 

Roll Storage is Allocated from this 

IIEYPAR 
I 
I 
I 
I 
IIEYALL 
I 
IIEYUNF 
I 
IIEYGEN 

High I 

IEYPAR 

IEYALL 

IEYUNF 

IEYGEN 

IPar~e phase l 
I I 
!Quotes and I 
I messages I 
I I 
!Allocate phase I 
I . I 
(Unify phase I 
I I 
!Generate phase I 
I I 

core I IEYEXT IEYEXT I Exit phase I 
L-------i...---------i------------------J 

Figure 3. Compiler Storage configuration 

COMPILER STORAGE CONFIGURATION 

Figure 3 illustrates the relative posi
tions, but not the relative sizes of the 
component parts of the FORTRAN compiler as 
they exist in main storage. The component 
parts of ·each phase are described in Sec
tion 2. 

COMPILER OUTPUT 

The source module<s> to be compiled 
appear as input to the compiler on the 
SYSlN data set. The SYSLIN, SYSPRINT, and 
SYSPUNCH data sets are used (depending on 
the options specified by the user) to 
contain the output of the compilation. 

The output of the compiler is repre
sented in EBCDIC form and consists .of any 
or all of the following: 

Object Module (linkage editor input> 

Source Module listing 

Object Module listing 

Storage maps 

Error messages Cal,ways produced) 

Relocatable card images for punchin~ 

The overall data flow and the data sets 
used for compilation are illustrated in 
Figure 4. The type of output is determined 
·by compile time parameters. 

section 1: Introduction to the Compiler 15 



r---------------------------------------------------------------------------------------1 

r----------------1 
I Error and I 

r----For all-------------->I Warning I 
I compilations I Messages I 
I I <if· any> I I L ________________ J 

I 
I 
I 
I 
~----LIST 
I 
I 
I 

SYS IN I 
r--------1 I 
I Source I I 
!Module I ~----DECK 
L ____ T ___ J I 

I I 
I I 
v I 

r---------1 I 
!FORTRAN I 1 
I IV (GI ~->~ 
!Compiler! I 
L--------J ~----LOAD 

I 
I 
I 
I 

r----------------1 I Object I 
Option----------> I Module I 

I · listing I 
L----------------J 

r----------------1 
!Object Module I 

Option---------->! (ESD, TXT, RLD I 
IEND) Card Images! 
L----------------J 

r----------------1 
!Object Module I 

Option---------->! (ESD, TXT, RLD, I 
IEND) card Images! 
L----------------J 

r----------------1 

SYSPRINT 

SY SPRINT 

SYSPUNCH 

SYSLIN 

I 
~----MAP Option----------->! Storage I SYSPRINT 

I 
I 

l 
I 
I 
I 
I 
I 
L----SOURCE 

I . 

I Map I 
L----------------J 

r----------------1 
I Source I 

Option--------> I Module I SYSPRINT 
I Listing I 
L----------------J 

L---------------------------------------------------------------------------------------
F igu re 4. Compiler Output 

16 



OBJECT MODULE 

The configuration of the object module 
produced by the FORTRAN IV (G) compiler is 
shown in Figure 5. 

Entry point---> r---------------------1 
I Heading I 
·---------------------~ 
tsave area I 
~---------------------~ 
I Base table I 
·---------------------~ 
!Branch table I 
~---------------------~ 
!Subprogram argument I 
f lists I 
~---------------------~ 
!Subprogram addresses I 
·---------------------~ 
!EQUIVALENCE variables! 
~---------------------~ 
f Scalar variables I 
·---------------------~ 
f Arrays I 
~---------------------~ 
f NAMELIST tables I 
·---------------------~ 
ILiteral constants I 
t<except those used I 
fin DATA and PAUSE f 
jstatements> I 
·---------------------~ 
!FORMAT statements I 
·---------------------~ 
ITemporary storage f 
land constants I 
·---------------------~ 
!Program text I 
L---------------------J 

Figure 5. Object Module configuration 

Components of the Object Module 

The following paragraphs describe the 
components of the object module produced by 
the FORTRAN IV (G) compiler. 

HEADING: The object module heading 
includes all initializing instructions 
required prior to the execution of the body 

of the object module. Among othe'r func
tions, these instructions set general 
register 13 (see "Object Module General 
Register Usage"> and perform various opera
tions, depending on whether the program is 
a main program or a subprogram and on 
whether it calls subprograms. (See "Code 
Produc(_d for SUBROUTINE and FUNCTION 
Subprograms."> 

SAVE AREA: The save area, at maximum 72 
bytes long, is reserved for information 
saved by called subprograms. Figure 6 
shows an example of the use of this area in 
program Y, which is called by program X, 
and which calls program z. 

The first byte of the fifth word in the 
save area (Save Area of Y + 16) is set to 
all ones by program Z before it returns to 
program Y. Before the return is made, all 
general registers are restored to their 
program Y values. 

BAS~_TA~LE: The base table is a list of 
addresses from which the object module 
loads a general register prior to accessing 
data; the general register is then used as 
a base in the data referencing instruction. 

Because an interval of 4096 bytes of 
storage can be referenced by means of the 
machine instruction D field, consecutive 
values representing a single control sec
tion in this table differ from each other 
by at least 4096 bytes. Only one base 
table entry is constructed for an array 
which exceeds 4096 bytes in length; hence, 
there is a possibility that an interval of 
more than 4096 bytes exists between conse
cutive values for a single control section 
in the table. 

The addresses compiled into this table 
are all relative, and are modified by the 
linkage editor prior to object module 
execution. Those entries constructed for 
references to COMMON are modified by the 
beginning address of the appropriate COMMON 
block; those entries constructed for 
references to variables and constants 
within the object module itself are modi
fied by the beginning address of the appro
priate object module. 

Section 1: Introduction to the compiler 17 



r---------~--------------------------------------~-----~------~-----------------------~~, 
<---4 bytes-~--> I 
r-------~--------1 

!Subprogram I 
Yf epilogue address! 

<---Stored by initial entry code. 
I 
I 
I 
I 
I 
I 

Save Area of 

·----------------~ +4 !Program X save I <---stored by program Y· 
!area address I 
·-----------------~ 

+8 !Program Z save I <---Stored by program z, if it calls subroutines• 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

+12 

+16 

+20 

+72 

jarea address I 
·----------------~ 
!Register 14 I 
·----------------~ 
!Register 15 I 
·----------------~ 
!Register O I 
·----------------~ Values on leaving program Y, stored by program z. 
l I 
I I 
I I 
·----------------1 
!Register 12 I 
L----------------J 

L-----------------------------------------------~----------------~---------------------
Figure 6. Example of Use of Save Area 

BRANCH TABLE: This table contains one 
fullword entry for each ~:2,!!ch ta~9.£t-!~~~! 
(a label referred to in a branch statement> 
and statement function in the source 
module. In addition, one entry occurs for 
each label produced by the compiler in 
generating the object module. These labels 
refer to return points in DO loops and to 
the statement following complete Logical IF 
statements, and are called made labels. 

In the object module code, any branch is 
performed by loading general register 14 
(see "Object Module General Register 
Usage"> from this table, and using a BCR 
instruction. The values placed in this 
table by the compiler are relative ad
dresses. Each value is modified by the 
base address of the object module by the 
linkage editor. 

SUBPROGRAM ARGUMENT LISTS: This portion of 
the object module contains the addresses of 
the arguments for all subprograms called. 
In calling a subprogram, the object module 
uses general register 1 to transmit a 
location in this table. The subprogram 
then acquires the addresses · of its arg,u
ments from that location and from as many 
subsequent locations as there are argu
ments. The sign bit of the word containing 
the address of the last argument for each 
subprogram is set to one. 

18 

SUBPROGRAM ADDRESSES: This list contains 
one-entry--foreach FUNCTION or SUBROUTINE 
subprogram referenced by the object module. 
The entry will hold the address of that 
subprogram when it is supplied by the 
linkage editor. The compiler reserves the 
correct amount. of space for the list, based 
on the number of subprograms referred to by 
the source module. 

EQUIVALENCE VARIABLES: This area of the 
object module contains unsubscripted 
variables and arrays, listed in EQUIVALENCE 
sets which do not refer to COMMON. 

SCALAB_ __ Y~!~~~~~: All non-subscripted 
variables which are not in COMMON and are 
not members of EQUIVALENCE sets. appear in 
this area of the object module. 

ARRAYS: All arrays which are not in 
COMMON, and are not members of EQUIVALENCE. 
sets appear in this area of the object 
module. 

NAMELIST TABLES: For each NAMELIST name 
and DISPLA~statement in the source module, 
a NAMELIST table is constructed by the 
compiler and placed in this area of the 
object module. Each table consists of one 
entry for each scalar variable or array 
listed following .the NAMELIST name or in 
the DISPLAY statement. and begins with four 
words of the following form: 



---------T-------------'-----------------1 
I Byte I I 
!Word I 1 2 3 4 I 
~--------- ----------------------,.-------i 
I 1 I 
I I name field I 
I 2 I I 
I ~-------------------------------~ 
I 3 I l 
I I not used l 
I 4 I l 
L--------.L----------------'--------------J 

where the name field contains the NAMELIST 
name, right justified. For the DISPLAY 
statement, the name is DBGnn#, where nn is 
the number of the DISPLAY statement within 
the source program or subprogram. 

Table entries for scalar variables have 
the following form: 

--------T------------------------------1 
I Byte I l 
!Word l 1 2 3 4 I 
~-----~-- -------------------------------1 
I 1 l I 
I I name field I 
l 2 I I 
I ~-------------------------------1 
I 3 l address field l 
l ~------,-------T----------------1 
) 4 J type I mode I not use1 I 
L---------.L------.L-------.L----------------J 

where: 

name field 
contains the name of the scalar vari
able, right justified. 

address field 
contains the relative address of the 
variable within the object module. 

type field 
contains zero to indicate a scalar 
variable. 

mode field 
contains the mode of the variable, 
coded as fQllows: 

2 
3 
4 = 
5 
6 
7 
B = 
9 = 
A 

Logical, 1 byte 
Logical, fullword 
Integer, halfword 
Integer, fullword 
Real, double precision 
Real, single precision 
Complex, double precision 
Complex, single precision 
Literal (not currently 

compiler-generated) 

NAMELIST table entries for arrays have 
the following form: 

---------T-------------------------------1 
I Byte I I 
JWord I 1 2 3 4 I 
~--------- -------------------------------~ 
I 1 I I 
I I name field I 
I 2 I I 
l ~-------------------------------1 
I I I 
l 3 I address field I 
I ~--,.-----T-------T---~---T-------~ 
I I I I no. I . I 
I 4 !type )mode Jdimens. I length I 
l ~-------+-------.L-------.L-------~ 
l Jindica-lfirst dimension factor I 
I 5 I tor I field I 
I ~-------+-----~-----------------~ 
) Jnot Jsecond dimension factor! 
I 6 Jused I field I 
I ~-------+-----------------------~ 
) Jnot !third dimension factor I 
J 7 Jused I field I 
I l-------.L-----------------------~ 
l I 
I I 
l I 
I etc. etc. I 
L-----------------------------------------J 
where: 

name field 
contains the name of the array, right 
justified. 

address field 
contains the 
beginning of 
object module. 

relative address of the 
the array within the 

.mode field 
contains the mode of the arLay ele
ments, coded as for scalar variables, 
above. 

no. di mens. 
contains the number of dimensions in 
the array; this value may be 1-7. 

length field 
contains the length of the array ele
ment in bytes. 

indicator field 
is set to zero 
defined to have 
otherwise, it is 

if the array has been 
variable dimensions; 
set to nonzero. 

first dimension factor field 
contains the total size of the array 
in bytes. 

second dimension factor f ie1d 
contains the address of the second 
multiplier for the array <nl*L, where 
nl is the size of the first dimension 
in elements, and L is the number of 
bytes per element>. 

Section 1: Introduction to the Coltlpile?; 19 



third dimension factor field 
contains the address of the third 
multiplier for the array (nl*n2•L, 
where nl is the size of the first 
dimension in elements, n2 is the size 
of the second dimension, and L is the 
number of bytes per element>. 

A final entry for each NAMELIST table is 
added after the last variable or array name 
to signify the end of that particular list. 
This entry is a fullword in length and 
contains all zeros. 

LITERAL CONSTANTS: This area contains a 
list--of--the-1Iteral constants used in the 
source module, except for those specified 
in DATA and PAUSE statements. 

FORMAT STATEMENTS: The FORMAT statements 
speciiiea-In~he--source module are con
tained in this area of the object module. 
The statements are in an encoded form in 
the order of their appearance in the source 
module. (See "Appendix D: Code Produced 
by the Compiler.") The information contains 
all specifications of the statement but not 
the word FORMAT. 

TEMPORARY STORAGE AND CONSTANTS: This area 
always begins on a double precision boun
dary and contains, in no specific order, 
the constants required by the object module 
code and the space for the storage of 
temporary results during computations. Not 
all of the source module constants neces
sarily appear in this area, since as many 
constants as possible are used as immediate 
data in the code produced. Some constants 
may appear which are not present in the 
source module, but which have been produced 
by the compiler. 

~R02B~--!~~!: If the object module con
tains statement functions, the code for 
these statements begins the program text 
and is preceded by an instruction that 
branches around them to the first execut
able statement of the program. (See 
"Statement Functions" in Appendix D for 
further explanation of this code.> Follow
ing the code for the statement functions is 
the code for the executable statements of 
the source module. 

The object module produced by the 
FORTRAN IV (G) compiler uses the System/360 
general registers in the following way: 

20 

Register 0: Used as an accumulator. 

Register 1: Used as an accumulator and 
beginning address of the 
in branches to sub-

to hold the 
argument list 
programs. 

Register 2: Used as an accumulator. 

Register 3: Used as an accumulator. 

Registers 4 through 7: Contain index 
values as required for references to 
array variables, where the subscripts 
are linear functions of DO variables and 
the array does not have variable 
dimensions. 

Registers 8 and 9: Contain index values 
as required for references to array 
variables, where the subscripts are of 
the form x+c, where x is a non DO
controlled variable and c is a constant. 

Register 9: Contains index values as 
required for references to array 
variables where the subscripts are non
linear of the form I*J, where I and J 
are the variables. 

Registers 10 through 12: contain base 
addresses loaded from the base table. 

Register 13: Contains the beginning 
address of the object module save area; 
this value is loaded at the beginning of 
program execution. Register 13 is also 
used for access to the base table, since 
the base table follows the save area in 
main storage. 

Register 14: Contains the return 
address for subprograms and holds the 
address of branch target instructions 
during the execution of branch 
instructions. 

Register 15: Contains the entry point 
address for subprograms as they are 
called by the object module. 

SOURCE MODULE LISTING 

The optional source module listing is a 
symbolic listing of the source module; it 
contains indications of errors encountered 
in the program during compilation. The 
error message resulting from an erroneous 
statement does not necessarily cause ter
mination of compiler processing nor the 
discarding of the statement. Recognizable 
portions of declaration statements are 
retained, and diagnosis always proceeds 
until the end of the program. 

OBJECT MODULE LISTING 

The optional object module listing uses 
the standard System/360 Operating System 



assembler mnemonic operation codes and, 
where possible, refers to the symbolic 
variable names contained in the source 
module. Labels used in the source module 
are indicated at the appropriate places in 
the object code listi119. 

STORAGE MAPS 

The optional storage map consists of six 
independent listings of storage informa
tion. Each listing specifies the names and 
locations of a particular class of vari
able. The listings are: 

• COMMON variables 

• EQUIVALENCE variables 

• Scalar variables 

• Array variables 

• NAMELIST tables 

• FORMAT statements 

A list of the subprograms called is also 
produced. 

ERROR MESSAGES 

Errors are indicated by listing the 
statement in its original form with the 
erroneous phrases or characters undermarked 
by the dollar sign character, followed by 
comments indicating the type of the error. 
This method is described in more detail in 
•phase 1 of the Compiler: Parse (IEYPAR)." 

common Error Messages 

The message NO CORE AVAILABLE is pro
duced (through IEYFORT) by all phases of 
the compiler when the program being com
piled exhausts the main storage space 
available to the compiler. This message is 
produced only when the PRESS MEMORY routine 
cannot provide unused main storage space on 
request from the compiler. 

The message ROLL SIZE EXCEEDED is pro
duced <through the Invocation phase, 
IEYFORT> by all phases of the compiler when 
the size of any single roll or rolls is 
greater than permitted. The following cir
cumstances cause this message to be 
produced: 

• The WORK roll exceeds the fixed storage 
space assigned to it. 

• The EXIT roll exceeds the fixed storage 
space assigned to it. 

• Any other roll, with the exception of 
the AFTER ,POLISH roll and the CODE 
roll, exceeds 64K bytes of storage. In 
this case, the capacity of the ADDRESS 
field of a pointer to the roll is 
exceeded and, therefore, the informa
tion on the roll is unaddressable. The 
AFTER POLISH and CODE rolls are 
excepted, since pointers to these rolls 
are not required. 

The compilation terminates following the 
printing of either of these messages. · 

COMPILER DATA STRUCTURES 

The POP language is designed to manipul
ate certain well-defined data structures. 

Rolls, which are the tables primarily 
used by the compiler, are automatically 
handled by the POP instructions; that is, 
when information is moved to and from 
rolls, controls indicating the status of 
the rolls are automatically updated. 

Items (variables) with fixed structures 
are used to maintain control values for 
rolls, to hold input characters being pro
cessed, and to record Polish notation, etc. 
These item structures are also handled 
automatically by the POP instructions. 

The arrangement of the parts of the 
compiler is significant because of the 
extensive use of relative addressing in-the 
compiler. General registers are used to 
hold base addresses, to control some rolls, 
and to assist in the interpretation of the 
POP instructions. 

ROLLS AND ROLL CONTROLS 

Most of the tables employed by the 
compiler are called rolls. This term de
scribes a table which at any point in time 
occupies only as much storage as is 
required for the maximum amount of inf orma
tion it has held during the present compi
lation <exceptions to this rule are noted 
later>. Another distinctive feature of a 
roll is that it is used so that the last 
information placed on it is the first 
information retrieved . it uses a •push 
up• logic. 

section 1: Introduction to the Compiler 21 



With the exception of the WORK and EXIT 
rolls, the rolls of the compiler are main
tained in an area called the roll storage 
~~~~· The rolls in .this area are both 
named and numbered. While the references 
to rolls in this document and in the 
compiler comments are primarily by name, 
the names are converted to corresponding 
numbers at assembly.time and the .rolls are 
arranged .in storage and referred to by 
nurr,ber. 

If the roll storage area is considered 
to . be one block of continuou~ storage, the 
rolls are placed in this area in. ascending 
sequence by roll number; that is, roll 0 
begins at the base address of the roll 
storage area; rolls 1, 2, 30 etc., follow 
roll zero in sequence, with the roll whose 
number is largest terminating the roll 
storage area. 

Initially, all rolls except roll 0 are 
empty and occupy no space; this·. is a.ccomp
lished by having the beginning and .. end of 
all rolls located at the same place. (Roll 
O, the LIB roll, is a fixed-length roll 
which contains all of its data. initially,) 
When information is to be placed on a roll 
and no space is available due.to a conflict 
with the next roll, rolls greater in.number 
than the roll in question are moved down 
(to higher addresses>.· to make the space 
available. This is accomplished by physic
ally moving the information on.the rolls a 
fixed number of storage locations and alt
ering the controls to indicate the change. 
Thus, roll 0 never changes in size, loca
tion, or contents; all other rolls expand 
to higher addresses as required. When 
information is removed from a roll, the 
space which had been occupied by that 
information is left vacant; therefore, it 
is not necessary to move rolls for each 
addition of information. · 

With the exception of the area occupied 
by roll O, the roll.storage area actually 
consists of any number of non-contiguous 
blocks of 4096 bytes of storage. The space 
required for roll 0 is not part of one of 
these blocks. Additional blocks of storage 
are acquired by the compiler whenever cur
rent roll storage is exceeded. If the 
system is unable to fulfill a request for 
roll storage, the PRESS MEMORY routine is 
entered to find roll space that is no 
longer in use. If 32 or more bytes are 
found, the compilation continues. If fewer 
than 32 bytes are found, the compilation of 
the current program .is terminated, the 
message NO CORE AVAILABLE is printed, and 
space is freed. If there are multiple 
programs, the next one is c9mpiled. 

The following paragraphs describe the 
controls and statistics maintained by the 
compiler in order to control the storage 

22 

allocation for rolls and the functioning of 
the "push up" logic. 

ROLL ADR Table 

The ROLL ADR table is a 1000-byte table 
maintained in IEYROL. Each entry in this 
table holds the beginning address of a 
block of storage which has been assigned to 
the roll storage area. The first address 
in the table is always the beginning 
address of roll O. The second address is 
that of the first 4K-byte block of storage 
and, therefore, the beginning address of 
roll 1. Initially, the last address 
recorded on the table is the beginning 
address of a block which holds the C.ODE and 
AFTER POLISH rolls, with the CO~roll 
beginning-at the first location in the 
block. 

As information is recorded on rolls 
during the operation of the compiler, addi
tional storage space may eventually be 
required. Whenever storage is needed for a 
roll which precedes the CODE roll, an 
additional 4K block is requested from the 
system and its address is inserted into the 
ROLL ADR table immediately before the entry 
describing the CODE roll base. This inser
tion requires that any entries describing 
the CODE and AFTER POLISH rolls be moved 
down in the ROLL ADR table. The inf orma
tion on all rolls following (greater in 
number than) the roll requiring the space 
is then moved down a fixed number of words. 
The roll which immediately precedes the 
CODE roll moves into the new block of 
storage. This movement of the .rolls 
creates the desired space for the roll 
requiring it. The.movement of rolls does 
not respect roll boundaries; that is, it is 
entirely possible that any roll or rolls 
may bridge two blocks of storage. 

When additional storage space is 
required for the AFTER POLISH roll, a block 
is requested from the system and its begin
ning address is added to the bottom of the 
ROLL ADR table. When the CODE roll 
requires more space, a new block is added 
in the same manner, the AFTER POLISH roll 
is moved down into the new block, and the 
vacated space is available to the CODE 
roll. 

The CODE and AFTER POLISH rolls are 
handled separately because the amount of 
information which can be expected to reside 
on them makes it impractical to move them 
frequently in order to satisfy storage 
requirements for all. other rolls. The CODE 
roll is also somewhat unique in that it is 
assigned a large amount of space before it 
is used; that is, the AFTER POLISH roll 



aoes not begin at the same location as does 
the CODE roll. 

BASE, BOTTOM, and TOP Tables 

In order to permit dynamic allocation as 
well as to permit the use of the"push up" 
logic, tables containing the variables 
BAS~, BOT1'0M, .· and TOP . are maintained to 
record th~ CUrrent:statUS Of each Of .the 
rolls. The~e ~ariables indicate' addresses 
of rolls. Information stored on rolls is 
in units of fullwords; hence, these 
addresses are always multiples of four. 
The .length of each of the tables is deter
mined by ~~e number of rolls, and the roll 
number. is an index to the appropriate word 
in each table for the roll. 

Each of the variables occupies a full
word and has the following configu,ration: 

0 
1 1 
1 2 

1 2 
9 0 

3 
1 

r-------------T------------T--------------1 
l I Entry number I I 
I !into the I Displacement I 
1 fRoLL ADR 1 <12 bits> 1 
I !Table I I 
L-------------i------------i--------------J 

The entry number.points to an entry in the 
ROLL .ADI~. table and, hence, to ,the beginning 
address of a block of roll storage. The 
displacement is a byte count from the 
beginning ofthe indicated .storage block to 
the location to which.the variable (BASE, 
BOTTOM, or TOP) refers •. 

It is significant to ·note that the 
displacement field in these variables occu
pies twelve bits. If the displacement 
field is increased beyond its maximum .value 
(4095>, the overflow increases the. entry 
number into'the ROLL ADR table; this is the 
desired result, since it simply causes the 
variable to point to the next entry in the 
table ·and effectively indicate the next 
location in the roil storage area, the 
beginning of the next block. 

The first status variable for each roll, 
BASE, indicates the beginning address of 
that roll, minus four. The second vari
able, BOTTOM, indicates. the address of the 
most recently entered word on the roll. 

If the roll is completely empty, its 
BOTTOM is equal to its BASE; otherwise, 
BOTTOM always exceeds BASE by a multiple of 
four •. Figure 7 illustrates a roll which 
contains information. 

4 bytes 

BASE (n) l_> r--~------------1<-----unused 
TOP (n) ) . I I 

~---------------~ 
~-----------~---~ . ~----------7--,--.~ 
~----------~----~ I • I K byt_es 

I I . ~7-----------7--~. 
BOTTOM(n>.---->I I 

L---------------J 
Figure 7. Roll Containing. K Bytes of 

Information 

·when. information i.s to be added to . a 
roll, it is stored at the address pointed 
to by BOTTOM, plus four, and BOTTOM is 
increased by four. When a word is to be 
retrieved from a roll, it is read from the 
address specified by BOTTOM, and, under 
most.circumstances, BOTTOM is reduced by 
four, thus indicating that the word is no 
longer occupied by the roll. This altera
tion of the value of BOTTOM is termed 
E!:~!!i!!9.• Tf the information. retrieved from 
a roll is to remain on the roll as well as 
at the destination, BOTTOM is not changed. 
This. operation· is indicated by the use of•. 
the word "keep" in the POP instructions 
that perform it •. 

The current length <in bytes) of a roll 
is determined by subtracting its BASE from 
its BOTTOM. Note that this is true even 
though the· entry number field appears in 
these. variables, .since each increase in 
entry number indicates 4096 bytes occupied 
by the roll. Thus, there is.;no limitation 
on the size of a roll from this source. 

For each roll, an additional status 
variable, called TOP, is maintained. TOP 
enables the prograrilto prote~t a portion of 
the roll from destruction, while allowing 
the use of the roll as though it were 
empty. Protecting a roll in this way is 
called reserving the roll. The contents of 
TOP <always greater than or equal to the 
contents of BASE) indicate a false BASE.for 
the roll. The area between BASE and TOP, 
when TOP does not equal BASE, cannot be 
altered or removed from the roll. Ascend
ing locations from TOP constitute the new, 
empty roll. 

Like BASE, TOP points to the word imme
diately preceding the first word into which 
information can. be stored. A value is 
automatically stored in this unused word 
when the roll is reserved; the value is the 
previous value of TOP, minus the value of 
BASE and is called the reserve mark. 
Storage of this value permits-more than-one 
segment of the roll to be reserved. 

Section 1: Introduction to the compiler 23 



A single roll Croll n), then, containing 
K bytes of information, ·· <where K is always 
a multiple of four) and having no reserved 
status, has the following settings for its 
status variables: 

BOTTOM = BASE + K = TOP + K 

Figure 7 also illustrates this roll. If 
the same roll contains L bytes reserved and 
K additional bytes of information, the 
settings of its status variables are as 
follows: 

BOTTOM = TOP + K = BASE + L + K + 4 

This roll is shown in Figure 8. 
the relationships given above 
because of the structure of 
BOTTOM, and TOP variables. 

4 bytes 
r---------------, 

Note that 
are valid 

the BASE, 

BASE (nl----->I !<---unused 
~---------------i 
I I 
~---------------i 
I I 
~---------...,----·--i 
I I 
I I L bytes 
I I 
~---------------i 
I I 
~-----~---------i 
I I 
~-----~---------i 

TOP <n>------>I !<---previous 
~--------------- TOP-BASE 
I I 
~---------------i 
I I 
~---------------i 
I I 
I I K bytes 
I I 
~---------------i 
I I 
~---------------i 
I I 
~---------------i 

BOTTOM Cn>--->I I 
L---------------

Figure 8. Roll Containing L Bytes of Re-
served Information and K Bytes 
of New Information 

Special Rolls 

The WORK roll and the EXIT roll are 
special rolls in that they · are not main

. tained in the roll storage area, but rather 
appear in IEYROL with a fixed amount of 
storage allocated to each. They are · rolls 

24 

in the sense that they employ the same push 
up logic which is used .for the other rolls; 
however, they are not numbered, and their 
controls are, therefore, not maintained in 
the tables used for the other rolls. 

The WORK roll is used as a temporary 
storage area during the operations of the 
compiler. Because information is moved to 
and from the roll frequently it is handled 
separately from other rolls. 

The EXIT roll warrants special treatment 
because it is used frequently in maintain
ing exit and entrance addresses for compil
er routines. 

The bottom of the WORK roll is recorded 
in general register 4, WRKADR; general 
register 5, EXTADR, holds the address of 
the bottom of the EXIT roll. These values 
are absolute addresses rather than in the 
format of the BOTTOM variable recorded for 
other rolls. 

For a more detailed explanation of the 
WORK and EXIT rolls, see Appendix B "Rolls 
Used by the Compiler." 

CENTRAL ITEMS: The items SYMBOL 1, SYMBOL 
2, SYMBOL 3, DATA O, DATA 1, DATA 2 1 DATA 3 
and DATA 4, two bytes each in length, and 
DATA s, eight bytes in length, contain 
variable names and constants. These items 
are called central due to the nature and 
frequency of their use. They occupy 
storage in the order listed, with DATA 1 
aligned to a doubleword boundary. 

In general, SYMBOL .1, 2, and 3 hold 
variable names; DATA 1 and 2 are used to 
hold real constants, DATA 3 and 4 to hold 
integer constants, DATA 1, 2, 3 and 4 to 
hold double precision and complex con
stants, and DATA 1, 2, 3, 4 and 5 to hold 
double-precision complex constants. 

GROUPS: While the basic unit of inforwa
tion stored on rolls is a fullword, many 
rolls contain logically connected informa
tion which requires more than a singleword 
of storage •. such a collection of inforwa
tion is called a group and always occupies 
a multiple of four bytes. A word of a 
group of more than one word is sometiwes 
called a rung of the group. 

Regardless .of the size of the group on a 
given roll, the item BOTTOM for the roll 
always points to the last word on the roll. 
Figure 9 shows a roll with a group size of 
twelve. · 



4 bytes 
r---------------1 
I I 

' ~---------------i 
1st group ~ r---------------1 

<--{BASE (n) 

,TOP (n) 

~---------------i 
I I 

2nd group ~~:=::::=::=::=::.--===1 
~---------------i 
I I 

,~---------------i 

3rd group-~ t---------------1 
~---------------i 
I I <-- BOTTOM 
L---------------J 

Cn> 

Figure 9. Roll 
Twelve 

With a Group Size .of 

For some rolls, ·the size of the group is 
not fixed. In these cases a construct 
called a "plex" is used. The first word of 
each plex holds the number of words in the 
plex, exclusive of itself; the remainder 
holds the information needed in the group. 
(See Figure 10.) 

4 bytes 
r-------------1 

BASE (nl} I I <---no. words 
->~-------------i in group 

TOP (n) ~-------------i 
I 3 I 
~-------------i-
t-------------11 group 

' information 
t-------------1~ 
~-------------i 
I 4 I 
~-------------i 
I , I 
~-------------i 
I I plex 
~-------------i 
I . I 
~----~--------i 
I I 
~-------------i' 

l~------~---~~-_i,' J ~ plex 

BOTTOM (n) t-------------1\ 
L--------------J . 

Figure 10. Roll with Variable Group Size 

The assignment of roll storage does not 
respect group boundaries; thus, groups may 
be split between two blocks of roll 
storage. 

•GROUP STATS: Since the size of the group 
varies from roll to roll, this charac
teristic of each roll must be tabulated in 
order to provide proper manipulation of the 
roll. In addition, the groups on a roll 
are frequently searched against the values 
held in the central items (SYMBOL 1, 2, 3, 
etc.,>. Additional characteristics of the 
roll must be tabulated in order to provide 
for this function. Four variables tabu
lated in the group stats tables are 
required to maintain this information. 
(See Section 2 "IEYROL Module."> 

The first group stats table contains a 
1-word entry for each roll. The entry is 
divided into two halfword values. The 
first of these is the displacement in bytes 
from SYMBOL 1 for a group search; that is, 
the number of bytes to the right of the 
beginning of SYMBOL 1 from which a compara
tive search with the group on the roll 
should begin. This value is zero for rolls 
which contain variable names (since these 
begin in SYMBOL 1>, eight for rolls which 
contain real, double-precision, complex or 
double-precision complex constants (since 
these begin in DATA 1), and twelve for 
rolls which contain integer constants. 

The second value in the first group 
stats table is also a displacement; the 
distance in bytes from the beginning of the 
group on the roll to the byte from which a 
comparative search with the central items 
should begin. 

The second group stats table also holds 
a 1-word entry for each roll; these entries 
are also divided into two halfword values. 
The first of these is the number of conse
cutive bytes to be used ·in a comparative 
search, and refers to both the group on the 
roll and the group in the central items 
with which it is being compared. 

The second item in the second table is 
the size of the group on the roll, in 
bytes. For rolls which hold plexes, the 
value of this item is four. 

For example, the DP CONST roll, which is 
used to hold the double-precision constants 
required for the object module, has an 
8-byte group. The settings of the Group 
Stats for this roll are 8 1 0 1 8, and 8, 
respectively. The first 8 indicates that 
when this roll is searched in comparison 
with the central items, the search should 
begin eight bytes to ·the right of SYMBOL 1 
Cat DATA 1>. The o indicates' that there is 
no displacement in the group itself; that 
is, no information precedes the value to be 
compared in the group. The second 8 is the 
size of the value to be searched. The 
final_B is the number of bytes per group on 
the roll. . 

section 1: Introduction to the Compiler 25 

, 



The group stats for the ARRAY roll 
<which holds the names and dimension inf or
mation of arrays) are o, O, 6, .and 20. 
They indicate that the search begins at 
SYMBOL 1, that the search begins 0 bytes to 
the right of the beginning of the group on 
the roll, that the number of bytes to be 
searched is 6, and that the group 6 size on 
the roll is 20 bytes. 

Figures 11 and 12 show the two group 
stats tables containing the information on 
the DP CONST roll and the ARRAY roll 
discussed above. It should be noted that 
the information contained on these two 
tables is arranged according to roll num
bers. In other words, the group stats for 
roll 5 are in the sixth entry in the tables 
(starting with entry number O>. 

4 bytes 
r-----------T------------1 
~-----------+------------~ 
~-----------~------------~ 
I I 
I I 
I I 
~----------.-T------------~ 

DP CONST roll---> I · 81 0 I 
~-----------~------------~ 
I I 
I I 
I I 
~------~----T------------~ 

ARRAY roll---> I · 0 I 0 I 
~-----------~------------~ 
I I 
I I 
I I 
~-----------T------------~ 
L-----------~------------J 

Figure 11. First. Group Stats Table 

4 bytes 
r-----~-----T------------1 

~-----------+------------~ 
~-----------i------------~ 
I I 
I I 
I I 
~----------~T------------~ 

DP CONST roll---> I 8 I 8 I 
~-~---~-----~-----------~~ 
I I 
I I 
I I 
~-----------T----~-------~ 

ARRAY roll---> I 61 2 0 I 
~----·--~---~-~---------~~ 
I · I 
I I 
I I 
~-----------T-----~---~--~ 
L-----------~------------J 

Figure 12. Second Group Stats Table 

26 

OTHER VARIABLES 

In addition to the_ central items, 
several other variables used in the compil
er perform functions which are significant 
to·the understanding of the POP instruc-

· tions. These are described in the follow
ing paragraphs. 

Answer Box ----------

The variable ANSWER BOX, which is re
corded in the first byte of the first word 
of each EXIT roll group, is used ta· hold 
the true or false responses from POP 
instructions. The value "true" is repre
sented by a nonzero value in this variable, 
ana "false" by zero. The value is checked 
by POP jump instructions. 

Most of the arithmetic performed in the 
compiler is fullword arithmetic. When 
double-precision arithmetic is required, 
the variables MPAC .1 and MPAC 2, four bytes 
each in length, are used as a double
precision register. These variables are 
maintained in main storage. 

Scan Control 

Several variables are used in the 
character scanning performed by the first 
processing phase of the compiler, Parse. 
Their names, and terms associated with 
their values, are frequently used in 
describing the POP instructions. 

The variable CRRNT CHAR holds the source 
statement character which is currently 
being inspected; the variable is four bytes 
long. The position (scan arrow> of the 
current character within the input state
ment (its column number, where a continuous 
coiumn count is maintained over each state
ment> is held in the low-order bit posi
tions of the fullword variable CRRNT CHAR 
CNT. 

Non-blank characters are called "active 
characters," except when literal or IBM 
card code information is being scanned. 
The variable LAST CHAR CNT; which occupies 
one word of storage, holds the column 
number of the active character previous to 
the one in CRRNT CHAR. 



1 
Column number: 1234567890 

DO 50 I = 1, 4 
A(I) = B{I) **2 
DO 50 J=l, 5 

50 C(J+l) = A(I) 

In the processing of the source module 
which contains the above statements, state
ment 50 is currently being parsed. The 
current character from the input buffer is 
J. The settings of the scan control 
variables are shown in Figure 13. 

r-----------------------------------------1 
I {EBCDIC) J I 
L-----------------------------------------J 

CRRNT CHAR 

r-----------------------------------------1 
I 9 I 
L----------------~-----------------------J 

CRRNT CHAR CNT 
Cscan arrow) 

r-----------------------------------------1 
I 1 e I 
L-----------------------------------------J 

LAST CHAR CNT 

Figure 13. Scan Control Variables 

Several flags are used in the compiler. 
These 1-word variables have two possible 
values: on, represented by nonzero, and 
off, represented by zero. The name of the 
flag indicates the significance of the "on" 
setting in all cases. 

Quotes 

Quotes are sequences of characters pre
ceded by a halfword character count; they 
are compared with the input data to deter
mine a statement type during the Parse 
phase. These constants are grouped 
together at the end of phase 1. The 
location labeled QUOTE BASE is the begin
ning location of the first quote; instruc-

tions which ref er to quotes are assembled 
with address fields which are relative to 
this location. 

Figure 14 shows some of the quotes used 
by the compiler and how they are arranged 
in storage. 

4 bytes 
r------------------------------1 

QUOTE BASE I 00 02 N D I 
~------------------------------1 
I 00 08 I M I 
·------------------------------1 
I E N s I I 
t------------------------------1 
I 0 N b b I 
~-~----------------------------1 
I 00 07 M p I 
t------------------------------1 
I L I c I I 
·------------------------------1 
I T b b b I 
t------------------------------1 
I 00 07 L 0 I 
~------------------------------1 
I G I c A I 
t------------------------------1 
I L b b b I 
t------------------------------1 
I I 
I I 
I I 
t------------------------------1 
I 00 06 F 0 I 
~------------------------------1 
I R M A T I 
t------------------------------1 
I I 
I I 
I I 
L------------------------------J 

Figure 14. Quotes Used in the Compiler 

Messages 

The messages used in the compiler, which 
are also grouped together at the end of 
Phase 1, are the error messages required by 
Parse for the source module listing. The 
first byte of each message holds the condi
tion code for the error described by the 
message. The second byte of the message is 
the number of bytes in the remainder of the 
message. The message follows this halfword 
of information. 

The location labeled MESSAGE B~SE is the 
beginning location of the first message; 
instructions which refer to messages are 
assembled with address fields relative to 
this location. 

Section 1: Introduction to the compiler 27 



COMPILER ARRANGEMENT AND GENERAL REGISTER 
USAGE 

Figure 15 shows the arrangement of the 
compiler in main storage with the Parse 
phase shown in detail. General registers 
that hold base locations within the compil
er are shown pointing to the locations they 
indicate. Note that the labels CBASE and 
PROGRAM BASE 2 appear in each phase of the 
compiler; the general registers CONSTR and 
PGB2 contain the locations of those labels 
in the operating phase. 

General register 2, PGB2, holds the 
beginning address of the g!Qba!_i!!me_!~bl~, 
a table containing the addresses of compil
er routines which are the targets of jump 
instructions. (See Appendix A for further 
discussion of this table and the way in 
which it is used.) The global jump table 
appears in each phase of the compiler and 
is labeled PROGRAM BASE 2; thus, the value 
held in general register 2 is changed at 
the · beginning of each phase of the 
compiler. 

r------------T------------------T--------------------------------------------1 
I Register I Label I contents I 
~------------.1.------------------.L------------------------·--------------------~ 
I Invocation Phase · I 
~------------T------------------T--------------------------------------------~ 
J POPPGB--->I POP TABLE I POP Jump Table I 
I I ~--------------------------------------------~ 
I 1 POP SETUP I POP Machine Language Subroutines I 
I I ~--------------------------------------------1 
I I I Data for POP Subroutines I 
~------------+------------------+-------------------------------~------------~ 
I ROLLBR--->I ROLL BASE I Roll Statistics (Bases, Tops, Bottoms> I 
I I ~--------------~-----------------------------~ 
I I I Group Stats <Displacements, Group Sizes> I 
I I ~----------~---------------------------------~ 
1 1 1 woRK Roll 1 
I I ~--------------------------------------------~ 
I I I EXIT Roll I 
I I ~--------------------------------------------~ 
I I I ROLL ADR Table I 
I I ~--------------------------------------------~ 
I I I Roll Storage I 

I I I Roll Storage* I 
~------------t------------------+--------------------------------------------~ 
I CONSTR--->I CBASE I Parse Data Items I 
I I ~--------------------------------------------~ 
I I J Parse Routines I 
I I ~--------------------------------------------~ 
I PGB2----->J PROGRAM BASE 2 I Parse Global Jump Table I 
I I ~--------------------------------------------~ 
I I I Parse Routines containing assembler I 
I I I language branch targets I 
I I ~--------~-----------------------------------~ 
I I QUOTE BASE I Quotes I 
I I ~--------------------------------------------~ 
I I MESSAGE BASE I Messages I 
~------------.L------------------.L--------------------------------------------~ 
I PHASE 2: Allocate I 
~---------------------------------------------------------------------~------~ 
I PHASE 3: Unify I 
~----------------------------------------------------------------------------~ 
I PHASE 4: Gen I 
~----------------------------------------------------------------------------~ 
I PHASE 5: Exit I 
~----------------------------------------------------------------------------~ 
l*Roll storage is allocated in 4K-byte blocks, beginning from the higher endl 
I of storage contiguous with Parse. Additional block~ are obtained, asl 
I needed, from preceding (lower) 4K-byte blocks of storage. I 
L----------------------------------------------------------------------~-----J 

1 Figure 15. Compiler Arrangement with Registers 

28 

low 
storage 

high 
storage 



Compiler routines which contain assem
bler language instructions and are either 
branched to by other asse~bler language 
instructions or which themselves perform 
internal branches, follow the global jump 
table. General register 2 is used as a 
base register for references to both the 
global jump table and these routines. 
Figure 15 shows this register in Parse. 

General register 3, called POPADR in the 
compiler code, is used in the sequencing of 
the POP operations. It holds the address 
of the current POP, and is incremented by 2 
as each POP is interpreted. 

General register 4, called WRKADR, holds 
the address of the current bottom of the 
WORK roll. 

General register 5, called EXTADR, holds 
the address of the current bottom of the 
EXIT roll. 

General register 6, called POPXIT, holds 
the return location for POP subroutines. 
When POPs are being interpreted by POP 
SETUP, the return is to POP SETUP; when 
machine language instructions branch to the 
POPs, it is to the next instruction. 

General register 7, called ADDR, 
the address portion of the current 
instruction (eight bits); it is also 
in the de~oding of the operation 
port.ion of POP instructions. 

holds 
POP 

used 
code 

General register a, called POPPGB, holds 
the beginning address of the machine lan
guage code for the POP instructions and the 
POP jump table. Figure 15 shows this 
register, which is used as a base for 
references to these areas. 

General register 9, called CONSTR, holds 
the beginning address of the data ref erred 
to by the compiler routines. This area 
precedes the routines themselves, and is 
labeled CBASE, as indicated in Figure 15. 
This register is, therefore, used as a base 
register for references to data as well as 
for references to the routines in the 
compiler; its value is changed at the 
beginning of each phase. 

General register 10, 
beginning address of the 
is, the beginning address 
<see Figure 15). The 
register remains constant 
operation of the compiler. 

ROLLBR, holds the 
roll area; that 
of the base table 
value in this 

throughout the 

General register 11, RETURN, holds 
return addresses for the POP subroutines. 

The remaining general registers are used 
temporarily for various purposes in the 
compiler. 

POINTERS 

Information defining a source module 
variable <its name, dimensions, etc.> is 
recorded by the compiler when the name of 
the variable appears in an Explicit speci
fication or DIMENSION statement. For 
variables which are not explicitly defined, 
this information is recorded when the first 
use of the variable is encountered. All 
constants are recorded when they are first 
used in the source module. 

All references to a given variable or 
constant are indicated by a pointer· to the 
location at which the information defining 
that variable or constant is stored. ~he 
use of the pointer eliminates redundancy 
and saves compiler space. 

The pointer is a 1-word value in the 
following format: 

1 byte 1 byte 2 bytes 
r---------T----------y--------------------1 
I TAG I OPERATOR I ADDRESS I 
L---------i----------i--------------------J 
where: 

TAG 
is a 1-byte item whose value is repre
sented in two parts: MODE, occupying 
the upper four bits, indicates whether 
the variable or constant is integer., 
real, complex or logical; SIZE, indi
cated in the lower four bits, speci
fies the length of the variable or 
constant <in bytes) minus one. CSee 
Figure 15. 1>. 

r-------T-------------T-------T-----------1 
I Value I MODE I Value I SIZE I 
~-------t-------------+-------+-----------~ 
I o I Integer I o I 1 byte I 
) 1 I Real I 1 I 2 bytes I 
I 2 I Complex I 3 I 4 bytes I 
I 3 I Logical I 7 I 8 bytes I 
I 4 I Literal/ I F I 16 bytes I 
I I Hexadecimal I I I 
L-------i-------------i-------i-----------J 
Figure 15.1 TAG Field MODE and SIZE Values 

OPERATOR 
is a 1-byte item which contains the 
roll number of the roll on which the 
group defining the constant or vari
able is stored. 

ADDRESS 
is a 2-byte item which holds the 
relative address Cin bytes> of the 
group which contains the information 
for the constant or variable; the 
address is relative to the tOP of the 
roll. 

Section 1: Introduction to the Compiler 29 



( 

The pointer contains all. the informption 
required to determine an absolute location 
in the roll storage area. The roll number 
(from the OPERATOR f.ield) . is first ~sed . as 
an index · into the TOP tpble. The ADDRESS 
field· of the ·pointer is then added to the 
TOP, · and. the result is handled as .. follows: 

1. Its entry number field (bits 12 
through .19) is used as an index into 
the .ROLL ADR table. 

.Its displacement ·field (bits 20 
through 31) is,. added. to the base 
address found in the ROLL ADR t.able. 
The result of. step 2 is the address 
indicated by the pointer. · 

~ple·: ·Using a pointer whose OPERATOR 
field· contains the value 2 and whose 
ADDRESS field contains the value 4, and the 
following tables: 

TOP ROLL ADR 
r----T----T-----1 r---------------1 

o I I I I o I I 
r----+----+-----i ~---------------i 

1 I I I I 1 I I 
2 I I 2 I 20 I 2 I 1000 I 

. .,_ ___ ,,L ____ .L-----i ~---------------i 
I I I I 
I I I I 
I • 1. I I 
I I I I 

the location 1024 is determined. · Note that 
for larger values in the pointer and in 
TOP, the entry number field.of TOP can be 
mo~ified by the addition of ADDRESS. In 
this case the result of the addition holds 
2 and 24 in the entry number and displace
ment fields, respectively~ 

. since relative addresses are recorded in 
po7nters, it is not necessary to alter a 
pointer··when the roll pointed to is moved. 
No~e also that the relative address in the 
point7r ~ay exceed 4096 bytes wit~ no 
compli~a~ion.of the addressing scheme. The 
only limitation on.the size. of a roll comes 
a?out because of the size of the ADDRESS 
field of. the pointer: 16 bits permit 
values le.ss than 64K bytes to be 
represented. 

30 

For the purposes of object code genera
tion, the mode and size of the constant or 
variable is .available to influence the type 
of.operations which can be employed, e.g., 
integer or floating, fullword, or 
doubleword. 

DRIVERS 

In the generation of Polish notation 
from the source language statements, 
"drivers" are also used. These "drivers" 
are values that are one word long and have 
the same format as the pointer. The two 
types of drivers used by the compiler are 
discussed in the following paragraphs. 

Operation Drivers 

One type of driver 
driver, which indicates 
icaloperations· to be 
field~ of the .driver are: 

is the operation 
arithmetic or log-

performed. The 

TAG 
is a 1-byte i.tem whose value is repre
sented in two parts: MODE, occupying. 
the upper four bits, indicates the 
mode of the operation, e.g., integer,. 
floating-point, complex or logical; 
SIZE, indicated in the lower four 
bits, specifies the length of the 
result of the operation <in bytes) 
minus· one. 

OPERATOR 
is a 1~byte item containing a value 
which indicates the operation to be 
performed, e.g., addition, subtrac
tion, etc. · The values for OPERATOR 
are larger than the number of any 
roll, and hence, also serve to distin
guish a driyer from a pointer • 

ADDRESS 
is a 2-byte item containing a value 
which indicates the "forcing strength" 
of the operation specified by the 
driver; its values range from zero to 
ten. 

The forcing strengths associated with 
the operation drivers are given in Table 1.; 



Table 1. Internal configuration of Opera-
tion Drivers 

r-----~--------T----T--------T------------1 

I I I IADQRE§§ I 
I I I I <Forcing J 
I Dr~ ve!:_ I '.I~Q1 I Q~§RATOR J Strength> I 
r--------------+----+--------+------------~ 
1sprog2 I oo I 40 I oo oo I 
1---------------+----+--------+~----------~~ 
I Power I 00 I 42 ] 00 01 I 
r--~---------~-+----+-----~--+------------~ 
!Unary Minus I 00 I 43 I 00 02 I 
r--------------+----+--------+------------~ 
I Multiply I 00 I 44 I 00 03 J 
r----~--------+----+--------+------------~ 
!Divide I oo I 45 I oo 03 I 
r--------------+----+--------+-----------~~ 
I Add I oo I 46 I oo o4 J 
r----~-----~--+----+--------+------------~ 
!Subtract I 00 I 47 I 00 04 J 
r-~------------+----+------~-+------------~ 
I GT I 0 0 I 4 8 I 0 0 0 5 1 
1---------------+-~--+------~-+------------~ 
I GE I 00 I 49 I 00 05 l 
1---------------+----+--------+------------~ 
I LT I 00 I 4A I 00 05 I 
1-----~---------+----+--------+------------~ 
I LE I 0 0 I 4 B I 0 0 0 5 I 
1---------------+----+--------+------------~ 
I EQ ! 0 0 I 4 c I 0 0 0 5 I 
r--------~-----+----+--------+------------~ 
I NE I 00 I 4D I 00 05 I 
1--------------:...t----+--------+~--------~--'~ 
I NOT I 00 I 4E I 00 06 I 
r--------------+----+--------+~-----------~ 
I AND I 0 0 I 4 F I 0 0 0 7 I 
r--~-----------+----+--------+------------~ 
I OR I 00 I 50 I 00 08 I 
r--------------+----+--------+------------~ 
I Plus and Below I I I I 
]Phony3 I 00 l 3F I 00 09 I 
r--------------+----+--------+------------~ 
I EOE'+ I 00 I 3F I 00 OA I 
r------~-------i ____ i ________ i ____________ ~ 

Ji.The MODE and SIZE settings are placed in! 
I the driver when it is used. I 
] 2 Indicates a function reference. I 
l 3 Used to designate the beginning of anl 
1 expression. I 
l'+Means "end of expression" and is used! 
I for that purpose. J 

L-----------------------------------------J 

Control Drivers 

The other type of driver used in the 
generation of Polish notation is called the 
control driver. It is used to indicate the 
type-Ott:°he-statement for which code is to 
be written. The control driver may also 
designate some other control function such 
as an I/O list, an array reference, or an 
error linkage. 

, The fields of the control driver differ 
from those of the operation driver in that 
zero is contained in the TAG field, 255 in 
the OPERATOR field (the distinguishing mark 
for control drivers>, and a unique value in 
the ADDRESS field. The value ' in · the 
ADDRESS field is an entry number into a 
table of branches to routines that process 
each statement type or control function; it 
is used in this way during the operat'ions 
of Gen. The formats of the operation 
drivers and control drivers are given in 
Appendix E. 

Table 1 lists the operation drivers and 
the values contained in each field. The 
control drivers are given in Table 2. The 
ADDRESS field is the only field given 
because the TAG and OPERATOR fields are 
constant. All values are represented in 
hexadecimal. 

Section 1: Introduction to the Compiler 31 



Table 2. Internal Configuration of Con- Table 2. Internal configuration of Con-
trol Drivers (Part 1 of 2> trol Drivers (Part 2 of 2> 

r----------------------------T------------1 r----------------------------T------------1 
I I I I I I 
I QEiV~E I ~DRf;_§..§. I I Qri~ I &Q.Qg~§.2 I 
I I I l I I 
r-------------------------~--+------------~ r----------------------------+------------~ 
I AFDS l 8 I I ERR= I 210 I 
r-------------------~--------+------------~ ·----------------------------+--------~---~ 
I ARRAY I 23C I I EXP and ARG I 480 I 
r----------------------------+------------~ r----------------------------+-----~------~ 
I ASSIGN I 20 I I FIND I 4C I 
r----------------------------+------------~ r----------------------------+------------~ 
I ASSIGNZD GOTO I 1C I I FORMAT I 208 I 
r----------------------------+------------i (----------------------------+------------~ 
I ASSIGNMENT l 4 I I FORMAT STA I 30. I 
·----------------------------+------------~ ·-------:----------------------+------------~ 
l AT l 68 I I GOTO I 14 I 
r----------------------------t---~--------1 ·----------------------------+------------~ 
I BSREF I 34 I I IF I 24 I 
r----------------------------+------------~ r----------------------------+------------~ 
l CALL l 2C I I IOL n9 CLOSE I 218 I 
r---~------------------------+------------i r------------------------~---+------------~ 
I CGOTO I 18 I I IOL DO DATA I 21C l 
·----------------------------+------------~ ·----------------------------+------------~ 
I CONTINUE l 28 I I IO LIST I 214 I 
r----------------------------+------------~ r----------------------------+------------~ 
l DATA l 3C l 1 LOGICAL IF I 60 I 
r----------------------------+------------i r----------------------------+------------~ 
I DEFii~E FILE l 44 I I NAMELIST I 204 . I 
r----------------------------+------------~ r----------------------------+------------~ 
I DIRECT IO I 200 l I PAUSE I 38 l 
r----------------------------+------------~ r-~--------------------------+------------~ 
I DISPLAY ID l 74 I I READ WRITE I 48 I 
r----------------------------+------------~ r----------------------------+------------~ 
I DO I 10 I I RETURN I 50 I 
r----------------------------+------------~ r----------------------------+------------~ 
I DUMi.'l!Y l 68 I I STANDARD PkINT UNIT . I 234 I 
r----------------------------+------------~ r----------------------------+------------~ 
I END I c I I STANDARD PUNCH UNIT I 238 I 
·----------------------------+------------~ r----------------------------+------------~ 
I END= I 20C . I I STANDARD READ UNIT I 230 I 
~----------------------------+------------~ (----------------------------+------------~ 
I ERROR LINK 1 I 54 I t STOP I 64 I 
·----------------------------+------------~ ·----------------------------+------------~ 
I ERROR LINK 2 I 58 I I SUBPROGRAM I 40 I 
r----~----------------:-------+------------~ r------~---------------------+------------~ 
I ERROR LINK 3 I 5C I I TRACE OE'F I 70 I 
L----~----------------------i ____________ J r----------------------------+------------~ 

I TRACE ON I 6C I 
L----------------------------i ____________ J 

32 



This section describes in detail the 
Invocation phase and the five processing 
phases of the compiler and their operation. 
The IeYROL module is also described. 

INVOCATION PHASE (IEYFORT) 

The Invocation phase is the compiler 
control phase and is the first and last 
phase of the compiler. (The logic of the 
phase is illustrated in Chart 00.) If the 
compiler is invoked in an EXEC statement, 
control is received from the ,operating 
system control program. However, control 
may be received from other programs through 
use of one of the system macro instruc
tions: .cAL~, LINK, or ATTACH. 

IEYFORT performs compiler initializa
tion, expansion of roll storage assignment, 
input/output request processing, and com
piler termination. The following para
graphs describe these operations in greater 
detail. 

IEYFORT, CHART 00 

IEYFORT is the basic control routine of 
the Invocation phase. Its operation is 
invoked by the operating system or by 
another program through either the CALL, 
LINK, or ATTACH macro instructions. The 
execution of IEYFORT includes scanning the 
specified compiler options, setting the 
ddnames for designated data sets, initia
lizing heading information, and acquiring 
time and date information from the system. 

IEYFORT sets pointers and indicators to 
.the options,, data sets, and heading infor
mation specified for use by the compiler. 
The options are given in 40 or fewer 
characters, and are preceded in storage by 
a binary count of the option information. 
This character count immediately precedes 
the first location which contains the 
option data. The options themselves are 
represented in EBCDIC. 

On entry to IEYFORT, general register 1 
contains the a.ddress of a group of three or 
fewer pointers. Pointer 1 of the group 
holds the beginning address of an area in 
storage that contains the execute options 
specified by the programmer (set in the 
OPTSC~N routine). 

SECTION 2: COMPILER OPERATION 

Pointer 2 contains the address of the 
list of DD names to be used by the compiler 
(set in the DDNAMES routine>. 

Pointer 3 contains the address of the 
heading information. Heading data may 
designate such information as the continua
tion of pages, and the titles of pages. 

If the FORTRAN compiler is invoked by 
the control program (i.e., called by the 
system), pointers 2 and 3 are not used. 
However, if the compiler is invoked by some 
other source, all pointers may be used. 
The latter condition is determined through 
an interrogation of the high order bi~ of a 
pointer. If this bit is set, the remaining 
pointers are nonexistent. Nevertheless, 
pointers 1 and 3 may exist while pointer 2 
is nonexistent: in this case, pointer 2 
contains all zeros. 

During the operation of IEYFCJRT, the 
SYSIN and SYSPRINT data sets are always 
opened through use of the OPEN macro 
instruction. The SYSLIN and SYSPUNCH data 
sets are also opened depending upon the 
specification of the LOAD and DECK options. 
The block sizes of these data sets are set 
to SO, 120, SO and SO, respectively. These 
data sets may be blocked or unblocked 
(RECFM=F, FB, or FBA) depending upon the 
DCB specification in the DD statements. 
IEYFORT concludes the compiler initializa
tion process .with a branch to the first 
processing phase of the compiler, Parse 
<IEYPAR). 

From this point in the operation of the 
compiler, each processing phase calls the 
next phase to be executed. However, the 
Invocation phase is re-entered periodically 
when the compiler performs such input/ 
output operations as printing, punching, or 
reading. The last entry to the Invocation 
phase is at the completion of the compiler 
operation. 

IEYPRNTL-fha~!-~ 

IEYPRNT is the routine that is called by 
the compiler when any request for printing 
is issued. The routine sets and checks the 
print controls such as setting the line 
count, advancing the line count, checking 
the lines used, and controlling the spacing 
before and after the printing of each line. 
These control items are set, checked, and 
inserted into the SYSPRINT control format, 

Section 2: Compiler Operation 33 



and the parameter information and print 
addresses are initialized .for SYSPRINT. 

If there is an error during the printing 
operation, EREXITPR sets the error code 
resulting from the print error. Any error 
occurring during an input/output operation 
results in a termination of compiler 
operation. 

PRNTHEAD, Chart 01A2 

PRNTHEAD is called by IEYPRNT after it 
has been determined that the next print 
operation begins on a new page. The pro
gram name and the new page number placed 
into the heading format and any parameter 
information and origin addresses are 
inserted into the SYSPRINT format. If an 
optional heading is specified by the pro
grammer, it is inserted into the print line 
format. A PUT macro instruction is issued 
to print the designated line, and all print 
controls are advanced for the next print 
operation. 

IEYREAD, Chart 01A4 

IEYREAD is called by the compiler at the 
time that a read operation is indicated. 
It reads input in card format from SYSIN 
using the GET macro instruction. IEYREAD 
can handle concatenated data sets. 

If an error occurs during the read 
operation, the routine EREXITIN is called. 
This routine checks the error code 
generated and prints the appropriate error 
message. 

When a punch output operation is 
requested by the compiler, control is tran
sferred to the IEYPCH routine. The LOAD 
and DECK options are checked to determine 
what output to perform. 

Any errors· detected during 
in a transfer of control to 
for SYSPUNCH, or EREXITLN, 
routine. The routine sets a 
no further output is placed on 
file. 

34 

output result 
the EREXITPC, 
for SYSLIN, 
flag so that 
the affected 

PRNTMSG, Chart 03Al 

PRNTMSG is called when any type of 
message is to be printed. The print area 
is initialized with blanks and the .origin 
and displacement controls are set. The 
message is printed in two segments; each 
segment is inserted into the print area 
after the complete message length is deter
mined and the length and origin of each 
segment has been calculated. Once the 
entire message has been inserted, the car
riage control for printing is set and 
control is transferred to the system to 
print the message. 

IEYMOR, Chart OlDl 

IEYMOR is called when additional roll 
storage area is needed for compiler opera
tion. This routine may be entered from any 
of the processing phases of the compiler. 
The GETMAIN macro instruction is issued by 
this routine and transfers control to the 
system for the allocation of one 4K-byte 
block of contiguous storage. The system 
returns to IEYMOR with the absolute address 
of the beginning of the storage block in 
general register 1. Once the requested 
storage space has been obtained, IEYMOR 
returns to the invoking phase. If the 
system is unable to allocate the requested 
storage, inactive modules of the compiler 
are deleted. Those preceding the currently 
active module are deleted first; then those 
following it are deleted, if necessary. 
Should additional space be needed after all 
inactive modules are deleted, compiler 
operations are terminated. 

When IEYMOR returns to the invoking 
phase with the absolute address of the 
storage block in general register 1, the 
invoking phase then stores the contents of 
register 1 in the ROLL ADR table. 

The ROLL ADR table is used by the 
compiler to record the addresses of the 
different blocks of storage that have been 
allocated for additional roll capacity. 
The contents of the table are later used in 
IEYRETN for releasing of the same storage 
blocks. 

IEYNOCR· 

IEYNOCR is called by PRESS MEMORY 
<IEYPAR) whenever it is unable to obtain at 
least 32 by~es of unused storage. IEYNOCR 
prints the message NO CORE AVAILABLE, 
branches to a subroutine that checks to see 
if there are any source language cards to 
be disregarded, and then exits to IEYRETN. 



IEYRETN, Chart Q3A£ 

The compiler termination routine 
(IEYRETN) is invoked by Exit (IEYEXT> or by 
one of the input/output routines after the 
detection of an error. 

The routine first obtains the error 
condition code returned by the compiler and 
tests this value against any previous value 
received during the compilation. The com
piler communications area for the error 
code is set to the highest code received 
and a program name of "Main" is set in the 
event of multiple compilations. The rou
tine then checks general register 1 for the 
address of the ROLL ADR table. Each entry 
of the ROLI, ADR tab1e indicates the begin
ning of a 4K-byte block of roll storage 
that must be released. A FREEMAIN macro 
instruction is issued for each block of 
storagE indicated in the table until a zero 
entry is encountered (this denotes the end 

,of the ROLL ADR table I. 

The presence of more than one source 
monule 1n the input stream is checked by 
interrogating the end-of-file indication 
and the first card following this notation. 
lf another compilation is indicated, the 
line, card, and page count control items 
are reinitialized and all save registers 
used by the Invocation phase are restored. 
The number of diagnostic messages generated 
for the compilation is added to a total 
count for the multiple. compilation and the 
diagnostic error co1mt is reset to zero. 
The first processing phase of the compiler, 
Parse <IEYPAR>, is called and the operation 
of the compiler proceeds as described in 
the previous paragraphs and those pertain
ing to the processing phases. 

If another compilation is not i.ndicated, 
a check is made to determine if there. was a 
multiple compilation. If there was a mul
tiple compilation, an indication of the 
total number of diagnostic messages 
generated for all of the compilations is 
printed. Also, routine IEYFINAL closes the 
data set files used by the compiler Cby 
means of the CLOSE ~4cro instruction>. The 
terminal error condition code is obtained 
and set for . the return to the invo)cing 
program, and all saved registers .are 
restored before the return .is made. 

Routine IEYFINAL also receives control 
from other.compiler routines when an input/ 
output error is detected. 

OPTSCAN determines the existence of the 
parameters specifying the compiler options. 
If options are specified, the validity of 
.eacn option is checked against the parame
ter. table and the pointer to these options 
is set once the options have been vali
date:j. The program name is noted jepending 
upon the presence or absence of the NAME 
parameter. However, if these options are 
not specified, the first pointer of the 
group of three supplied to the compiler by 
the system contains zero. 

DDNAMES scans the entries made for the 
names of the data sets to be used by the 
compiler. The entries corresponding to 
SYSN, SYSIN, SYSPRIHT, and SYSPUNCH are 
checked; if an alternate name has been 
provided, it is inserted into the DCB area. 

HEADOPT determines the existence of the 
optional heading information. If such 
information exists, its length is deter
mined, it is ~entered for printing, and 
then is inserttd into the Printmsg Table, 
with pointer 3 being set. 

TIMEDAT serves only to obtain the time 
and date information from the system and to 
insert the data into the heading line. 

OUTPUT .f'ROM IEYFORT 

The following paragraphs describe the 
error messages produced during the opera
tion of the Invocation phase. These mes
sages denote the progress of the compila
tion, and denote the condition which 
results in the termination of the compiler. 

IEY028I NO CORE AVAILABLE 
TERMINATED 

COMPILATION 

The system was unable to provide a 
4K-byte block of additional roll 
storage and PRESS MEMORY was 
entered. It, too, was unable to 
obtain space. The condition code 
is 16. 

section 2: compiler Operat,ion 35 



IEY029I DECK OUTPUT DELETED 

The DECK option has been specified, 
and an error occurred during the 
process of punching the designated 
output. No error condition code is 
generated .for this error. 

IEY030I LINK EDIT OUTPUT DELETED 

The LOAD option has been specified, 
and an error occttrred during the 
process of generating the load 
module. The condition code is 16. 

1EY031I ROLL SIZE EXCEEDED 

This message is proauced when: (1) 
The WORK or EXIT roll has exceeded 
the storage capacity assigned; or 
(2) Another roll used by the com
piler has exceeded 64K bytes of 
storage, thus making it unaddress
able. (This condition applies to 
all rolls except the AFTER POLISH. 
and CODE rolls.> The condition 
code is 16. 

IEY032I NULL PROGRAM 

This message is produced when an 
end-of-data set is encountered on 
the input data set prior to any 
valid source statement. The condi
tion code is o. 

IEY034I I/O ERROR (COMPILATION TERMINATED] 
xxx ••• xxx 

This message is produced when an 
input/output error is detected dur
ing compilation. If the error 
occurred on SYSPU~CH, compilation 
is continued and the COMPILATION 
TERMINATED portion of the message 
is not printed. The condition code 
is 8. If the error occurred on 
SYSIN, SYSPRINT, or SYSLIN, compi
lation is terminated.. The condi
tion code is 16. xxx ••• xxx is the 
character string formatted by the 
SYNADAF macro instruction. For an 
interpretation of this information, 
see the publication IBM system/360 
~rating system: supervisor and 
Data Management Macro-Instructions, 
Form C28-6647. 

IEY03SI UNABLE TO OPEN ddname 

36 

This message is produced 
required ddname data 
card is missing or the 
misspelled. 

when the 
definition 
ddname is 

Multiple Compilations 

where: 

Th~ following message appears at 
the end of a multiple compilatjon 
to indicate the total number of 
errors that occurred. The message 
will not appear if the compiler is 
terminated because of an error con
dition or if the compilation con
sisted of only one main or one 
subprogz·am. 

•STATISTICS* NO DIAGNOSTICS THIS 
STEP 

or 

•STATISTICS* nnn DIAGNOSTICS THIS 
STEP 

nnn is the total number of diagnostic 
messages for the multiple compilation 
expressed as a decimal integer. 

PHASE 1 OF THE COMPILER: PARSE lIEYPARI 

The first processing phase of the 
FORTRAN IV CG> compiler, Parse, accepts 
FORTRAN statements in card format as input 
and translates them. Specification state
ments are translated to entries on rolls 
which define the symbols of the program. 
Active statements are translated to Polish 
notation. The Polish notation and roll 
entries produced by Parse are its P£!~~£~ 
2utp~~· In addition, Parse writes out all 
erroneous statements and the associated 
error messages. Parse produces a full 
source module listing when the SOURCE 
option is specified. 

The following description of Parse con
sists of two parts. The first part, "Flow 
of Phase 1," describes the overall logic of 
the phase by means of both narrative and 
flowcharts. 

The second part, "Output from Phase 1," 
describes the Polish notation produced by 
Parse. The construction of this output, 
from which subsequent phases produce object 
code, is the primary function performed by 
Parse. See Appendix c for the Polish 
format for each statement type. 

The source listing format and the error 
messages produced by Parse are also 
discussed. 

The rolls manipulated by Parse are 
listed in Table 3 and are mentioned in the 
following description of the phase. At the 
first mention of a roll, its nature is 
briefly described. See Appendix B for a 
complete description of a format of a roll. 



Table 3. Rolls Used by Parse 
r------------------T---------------------1 
!Roll Roll 
INo, Roll Name No. 0 Lib____ -28 

1 source 29 
2 Ind Var 30 
4 Polish 31 
5 Literal Const 32 
6 Hex Const 33 
7 Global 35 
8 Fx Const 36 
9 Fl Const 37 

10 Dp Const 38 
11 Complex Const 
12 Dp complex 

I 
I 13 
I 14 
I 14 
l 15 
I 16 
I 11 
I 18 
I 19 
I 20 
I 

Const 
Temp Name 
Temp 
Error Temp 
DO Loops Open 
Error Message 
Error Char 
Init 
Xtend Lbl 
Xtend Target 

Lbl 
I 22 Array 
I 24 Entry Names 
I 25 Global Dmy 
I 26 Error 
I 27 Local Dmy 

39 
40 
41 
42 

43 
411 
45 
46 
53 
54 
55 
56 
59 
60 
63 

Roll Name 
i:OC"aI-sprog 
Explicit 
Call Lbl 
Namelist Names 
Namelist Items 
Array Dimension 
Temp Data Name 
Temp Polish 
Equivalence 
Used Lib 

Function 
Common Data 
common Name 
Implicit 
Equivalence 

Offset 
Lbl 
Scalar 
Data var 
Literal Temp 
Format 
Script 
Loop Data 
Program Script 
AT 
Subchk 
After Polish 

L-------------------~---------------------

Section 2: Compiler Operation 36.1 





FLOW OF PHASE 11 CHART 04 

START COMPILE~ initializes the operation 
of Parse, setting flags from tne user 
options, reading and writing out (on 
option) any initial corrunent cards in the 
source module, and leaving the first card 
of the first statement in an input area. 
This routine concludes with the transfer of 
control to STATEMENT PROCESS. 

STATEMENT PROCESS (G0631) controls the 
operation of Parse. The first routine 
called by STATEMENT PROCESS is PRINT AND 
READ SOURCE. On return from that routine, 
the previous source statement and its error 
messages have been written out (as defined 
by user options>, and the statement to be 
processed <including any corrunent cards> 
plus the first card of the next statement 
will be on the SOURCE roll. (This roll 
holds the source statements, one character 
per byte.) STATEMENT PROCESS then calls 
STA INIT to initialize for the processing 
of the statement and LBL FIELD XLATE to 
process the label field of the statement. 

On return from LBL FIELD XLATE, if an 
error has been detected in the label field 
or in column 6, STATEMENT PROCESS restarts. 
Otherwise, STA XLATE and STA FINAL are 
called to complete the translation of the 
source statement. on return from STA 
FINAL, if the last statement of the source 
module has not been scanned, STATEMENT 
PROCESS restarts. 

When the last card of a source module 
has been scanned, STATEMENT PROCESS deter
mines whether it was an END card; if not, 
it writes a message. The routine then sets 
a flag to indicate that no further card 
images should be read, and calls PRINT AND 
READ SOURCE to write out the last statement 
for the source listing <depending on wheth
er the SOURCE option was specified or was 
indicated as the default condition at sys
tem generation time>. 

When no END card appears, two tests are 
made: (ll If the last statement was an 
Arithmetic IF statement, the Polish nota
tion must be moved to the AFTER POLISH 
roll; <2> If the last statement-Was-of-a 
type which does not continue in sequence to 
the next statement (e.g., GO TO, RETURN), 
no code is required to terminate the object 
module, and the Polish notation for an END 
statement is constructed on the POLISH 
roll. If the NEXT STA LBL FLAG is-off; 
indicating that the last statement was not 
of this type, the Polish notation for a 
STOP or RETURN statement is constructed on 
the POLISH roll, depending on whether the 
source module is a main program or a 
subprogram. 

After the Polish notation for the STOP 
or RETURN has been constructed on the 
POLISH roll, the Polish notation for the 
END statement is then constructed. 

Parse keeps track of all inner DO loops 
that may possibly have an extended range. 
Parse tags the LABEL roll entriesfor those 
labels within the DO loops that are poss
ible re-entry points from an extended 
range. These tags indicate the points at 
which general registers 4 through 7 must be 
restored. The appropriate LOOP DATA roll 
groups are also tagged to indicate to the 
Gen phase which of the inner DO loops may 
possibly have an extended range. Gen then 
produces object code to save registers 4 
through 7. 

After processing the last statement of 
the ·source module, a pointer to the LOOP 
DATA roll is placed on the ~£~IPT_tQ!!r -the 
IND VAR roll is released, and, if the 
source--m<iauie was a main program, the 
routine REGIS~ER IBCOM (G0707) is called to 
record IBCOM as a required subprogram. For 
all source modules, the information 
required for Allocate is then moved to the 
appropriate area, and the Parse phase is 
terminated. 

PRINT and READ SOURCE, Chart BA 

PRINT AND READ SOURCE (G0837) serves 
three functions: 

1. It writes out the previous source 
statement and its error messages as 
indicated by user options. 

2. It reads the new source statement to 
be processed, including any comment 
cards, as well as the first card of 
the statement following the one to be 
processed. 

3. It performs an initial classification 
of the statement to be processed. 

The statement to be written out is found 
on the SOURCE roll. one line at a time is 
removed from this roll and placed in a 
120-byte output area from which it is 
written out. The new statement being read 
into the SOURCE roll is placed in an 
80-byte input area and replaces the state
ment being written out as space on the 
SOURCE roll becomes available. Any blank 
card images in the source module are elimi
nated before they reach the SOURCE roll. 
comment cards are placed on the SOURCE roll 
exactly as they appear in the source 
module. The last card image placed on the 
SOURCE roll is the first card of the source 
statement following the one about to be 

Section 2: compiler operati-0n 37 



processed; therefore., any comment . cards 
that appear between two statements are 
processed with the statement which precedes 
them. When an END card has been read, no 
further reading is performed. 

The initial classification of the state
ment that occurs during the operation of 
this routine determines, at most, two 
characteristics about the statement to be 
processed: (1) If it is a statement of the 
assignment type, i.e., either an arithmetic 
or logical assignment statement or a state
ment function, or (2) If it is a Logical IF 
statement, whether the statement "S" (the 
consequence of the Logical IF) is an 
assignment statement. Two flags are· s.et to 
indicate the results of this classification 
for later routines. 

At the conclusion of this routine, all 
of the previous source statements and their 
errors have been removed from the SOURCE 
roll and are written out. In addition, all 
of the statements to be processed <up to 
and includinq the first card of the state
ment following it) have been placed on the 
SOURCE roll. 

STA INIT, Chart BB 

STA INIT (G0632) initializes for the 
Parse processing of a source statement. It 
sets the CRRNT CHAR CNT and the LAST CHAR 
CNT to 1, and places the character from 
column 1 of the source card in the variable 
CRRNT CHAR. 

It then determines,. from a count made 
during input of the statement, the number 
of card images in the statement; multiply
ing this value by 80, STA INIT sets up a 
variable (LAST SOURCE CHAR) to indicate the 
character number of the last character in 
the statement. 

The routine finally releases the TEMP 
NAME roll and sets several flags -and 
variables to constant initial values before 
returning to STATEMENT PROCESS. 

LBL FIELD XLATE (G0635) first saves ,the 
address of the current WORK and EXIT roll 
bottoms. It then inspects the first six 
columns of. the first card of a statement. 
It determines whether a label appears, and 
records t.he label if . it does. If any 
errors are detec.ted in t.he .label field ·or 
in column 6 of the source card, LBL FIELD 
XLATE records these errors for later pr.int-

38 

ing and returns to STATEMENT PROCESS 
(through SYNTAX FAIL) with the ANSWER BOX 
set to false. 

Pointers to all labels within DO loops 
are placed on the XTENQ_LB~-~oll~ Labels 
that are jump targets (other than jumps 
within the DO loop) are tagged to indicate 
to Gen at which points to restore general 
registers·4 through 7. 

If the statement being processed is the 
statement following an Arithmetic IF state
ment, LBL FIELD XLATE moves the Polish 
notation for the Arithmetic IF statement to 
the AFTER POLISH roll after adding a point
er to the label of the present st.atement to 
it. 

STA X~ATE, Chart BD 

Under the control of STA XLArE CG0636) 
the source module statement on the SOURCE.: 
roll is processed and the Polish notation 
for that statement is produced on the 
POLISH roll, which holds Polish notation 
for source statements, one statement at a 
time. Errors occurring in the statement 
are recorded for writing on the source 
module listing. 

The addresses of the bottoms of the WORK 
and EXIT rolls are saved. Then, if the 
statement is of the assignment type (the 
first flag set by PRINT AND READ SOURCE is 
on), STA XLATE ensures that a BLOCK DATA 
subprogram is not being compiled and falls 
through to .ASSIGNMENT STA XLATE (G0637). 
If a BLOCK DATA subprogram is being com
piled, STA XLATE returns after recording an 
invalid statement error message. If the 
statement is not of the assignment type, a 
branch is made to LITERAL TEST (G0640>, 
which determines the nature of the state
ment from its first word(s), and branches 
to the appropriate routine for processing 
the statement. The names of the statement 
processing routines indicate their f unc
ti.ons; for example, DO statements are 
translated by DO STA XLATE, while Computed 
GO TO statements are translated by CGOTO 
STA XLATE. 

With the exception of LOGICAL IF S'I'A 
XLATE, the statement processing routines 
terminate their operation through STA XLA'.l'E 
EXIT. LOGICAL IF STA XLATE moves the 
second flag set by PRINT AND READ SOURCE 
(which indicates whether the statement "S" 
is an assignment statement) into the first 
flag, and calls STA XLATE as a subroutine 



for the translation of the statement "S." 
When all of the Logical IF statement, 
including "S," has been translated, LOGICAL 
IF STA XLATE also terminates through STA 
XLATE EXIT. 

STA XLATE EXIT (G0723) determines 
whether errors in the statement are of a 

severity level which warrants discarding 
the statement. If such errors exist, and 
the statement is active (as opposed to a 
specification statement), the Polish nota
tion produced for the statement is removed 
and replaced by an invalid statement driver 
before a return is made to STATEMENT 
PROCESS. Otherwise, the Polish notation is 
left intact, and a return is made to 
STATEMENT PROCESS. 

Section 2: compiler Operation 38.1 





STA FINAL (G0633) increases the state
ment number by one for the statement just 
processed. It then determines whether any 
Polish notation has been produced on the 
POLISH roll; if no Polish notation is 
present, STA FINAL returns to STATEMENT 
PROCESS. 

If the statement produced Polish nota
tion of a type which may not close a DO 
loop, STA FINAL bypasses the check for the 
close of a DO loop. Otherwise, STA FINAL 
determines whether the label (if there is 
one) of the statement corresponds to the 
label of the terminal statement of a DO 
loop. If so, the label pointer (or poin
ters, if the statement terminates several 
DO loops> is removed from the DO ~OO~£_Q~~~ 
roll, which holds pointers to DO loop 
terminal statements until the terminal 
statements are found. 

When the statement is the target of a DO 
loop, extended range checking is continued. 
DO loops which have no transfers out of the 
loop are eliminated as extended range can
didates. In addition, the nest level count 
is reduced by one and the information 
concerning the array references in the 
closed loop is moved from the SCRIPT roll 
to the PROGRAM SCRIPT roll. 

STA FINAL then places the label pointer 
(if it is required) on the Polish notation 
for the statement, and, at STA FINAL END, 
adds the statement number to the Polish. 

Except when the statement just processed 
was an Arithmetic IF statement, STA FINAL 
END terminates its operation by moving the 
Polish notation for the statement to the 
AFTER POLISH roll. In the case of the 
Arithmetic IF, the Polish notation is not 
moved until the label of the next statement 
has been processed by LBL FIELD XLATE. 
When the Polish notation has been moved, 
STA FINAL returns to STATEMENT PROCESS. 

ACTIVE END STA XLATE (G0642) is invoked 
by STATEMENT PROCESS when the END card has 
been omitted and the last statement in the 
source module has been read. If the last 
statement was not a branch, the routine 
determines whether a subprogram or a main 
program is being terminated. If it is a 
subprogram, the Polish notation for a 
RETURN is constructed; if it is a main 
program, the Polish notation for a STOP 
statement is constructed. If the last 
statement was a branch, this routine 
returns without doing anything. 

PROCESS POLISH (G0844) moves a count of 
the number of words in the Polish notation 
for a statement, and the Polish notation 
for that statement, to the AFTER POLISH 
roll. 

OUTPUT FROM PnASE 1 

The output from Parse is the Polish 
notation and roll entries produced for 
source module active statements, the roll 
entries produced for source module specifi
cation statements, and the source module 
listing (on option SOURCE) and error mes
sages. The following paragraphs describe 
the Polish notation and the source and 
error listings. See Appendix B for 
descriptions of roll formats. 

Polish Notation 

The primary output from Phase 1 of the 
compiler is the Polish notation for the 
source module active statements. This 
representation of the statements is pro
duced one statement at a time on the POLISH 
roll. At the end of the processing of each 
statement, the Polish notation is trans
ferred to the AFTER POLISH roll, where it 
is held until it is required by later 
phases of the compiler. 

The format of the Polish notation dif
fers from one type of statement to another. 
The following paragraphs describe the gen
eral rules for the construction of Polish 
notation for expressions. The specific 
formats of the Polish notation produced for 
the various FORTRAN statements are given in 
Appendix c. 

Polish notation is a method of writing 
arithmetic expressions whereby the tradi
tional sequence of "operand 1 " "operation" 
"operand2 " is altered to a functional nota
tion of "operation" "operand2 " "operand1 ." 

Use of this notation has the advantage of 
eliminating the need for brackets of 
various levels to indicate the order of 
operations, since any "operand" may itself 
be a sequence of the form "operation" 
"operand" "operand," to any level of 
nesting. 

Assuming expressions which do not 
include any terms enclosed in parentheses, 
the following procedure i.s used to con
struct the Polish notation for an 
expression: 

Section 2: compiler operation 39 



1. At the beginning of the expression, an 
artificial driver is placed on the 
WORK roll: this driver is the Plus and 
Below Phony driver, and has a lower 
forcing strength than any arith
metic or logical operator. (Forcing 
strengths are given in Table 1.) 

2. As each variable name or constant in 
the expression is encountered, a 
pointer to the defining group is 
placed on the POLISH roll. 

3.' When an operator is encountered, the 
corresponding driver is constructed 
and it is compared with the last 
driver on the WORK roll: 

a. If the current driver has a higher 
forcing strength than the driver 
on the bottom of the WORK roll 
(the "previous" driver, for the 
purposes of this discussion>., the 
current driver is added to the 
WORK roll and the analysis of the 
expression continues. 

b. If the current driver has a forc
ing strength which is lower than 
or equal to the forcing strength 
of the previous driver, then: 

(1) If the previous driver is the 
Plus and Below Phony driver, 
the current driver replaces 
the previous driver on the 
WORK roll (this situation can 
only occur when the current 
driver is an EOE driver, indi
cating the end of the expres
sion> and the analysis of the 
expression is terminated. 

(2) If the previous driver is not 
the Plus and Below Phony driv
er, the .previous driver is 
removed from the WORK roll and 
placed on the POLISH roll, and 
the comparison of the current 
driver against the previous 
driver is repeated (that is, 
using the same current driver, 
this procedure is repeated 
from 3). 

The sequence of 
when the analysis 
terminated removes 
WORK roll. 

operations which occurs 
of an expression is 

the EOE driver from the 

Ex~Ele_!: The expression A + B produces 
the Polish notation 

40 

A 
B 
+ 

where: 

A represents a pointer to .. the defining 
group for the variable.A 

+ represents the Add driver. This nota
tion is produced from the top down: when it 
is read from the bottom up, the sequence 
described above for Polish notation is 
satisfied. 

EXElanation: 
occur in the 
notation: 

The following 
production of 

1. The Plus and Below Phony 
placed on the WORK roll. 

operations 
this Polish 

driver is 

2. A·pointer to A is placed on the POLISH 
roll. 

3. An Add driver is constructed and com
pared with the Plus and Below Phony 
driver on the bottom of the WORK roll: 
the Add driver has a higher forcing 
strength and i~ therefore added to the 
WORK roll (according to rule 3a,, 
above). 

4. A pointer to B is placed on the POLISH 
roll. 

5. An EOE (end of expression) driver is 
constructed and compared with the Add 
driver on the bottom of the WORK roll: 
the EOE driver has a lower forcing 
strength, and the Add driver is there
fore removed from the WORK roll and 
added .to the POLISH roll <rule 3b2). 

6. The EOE driver is compared with the 
Plus and Below Phony driver on the 
bottom of the WORK roll: the EOE 
driver has a lower forcing strength, 
and therefore (according to rule 3b1) 
replaces the Plus and Below Phony 
driver on the WORK roll. 

.., . The analysis of the expression 
terminated and the EOE driver 
removed from the WORK roll. 
Polish notation for the expression 
on the POLISH roll. 

ExamEle 2: The expression 
produces the Polish notation 

A 
B 
c 
/, 
+ 

A + . B 

is 
is 

The 
is 

/ c 

which, ·.read from. the bottom up, is + / c B 
A. 



Explanation: 
occur in the 
notation: 

. The following operations 
production of this ·Polish 

1. The Plus and Below. Phony driver is 
placed on the WORK roll. 

2. A pointer to A is placed on the POLISH 
roll• 

3. An Add driver is constructed and c.om
pared with the Plus and Below Phony 
driver; the Add driver has the higher 
forcing strength and is placed on the 
WORK roll. 

4. A pointer to B is placed on the POLISH 
roll. 

. 5:. A Divide driver is constructed and . 
compared with the Add driver; the 
Divide driver has the ·.higher forcing 
strength and is placed on the WORK 
roll •. 

6. A pointer to c is placed on the POLISH 
roll. 

7. An EOE driv·er is constructed and com
pared with the Divide driver; since 
the EOE driver has the lower forcing 
strength, the Divide driver is moved 
to the POLISH roll. 

a. The EOE driver is compared with the 
Add driver; since the EOE driver has 
the lower forcing strength, the Add 
driver is moved to the POLISH roll. 

9. The EOE .driver is compared with the 
Plus and Below Phony driver; since the 
EOE driver has .the lower forcing 
strength, it replaces the Plus and 
Below Phony driver on the WORK roll, 
and the analysis of the expression 
terminates with the removal of one 
group from the WORK roll. 

Example 3: The expression A / B - .c 
produces the Polish notation 

A 
B 
/ 
c 

which, read from the .bottom up, is - c / B 
A. 

Explanation: 
occur in the 
notation: 

The .following operations 
production of this Polish 

1. The Plus and Below Phony driver is 
placed on the WORK roll. 

2 • A pointer to A is placed on the POLISH 
roll.· 

3. A Divide driver is constructed and 
compared with the Plus and Below Phony 
driver; the Divide driver has the 
higher forcing strength and is added 
to the WORK roll. 

4. A pointer to B is placed on the POLISH 
roll. 

5. A Subtract driver is constructed and 
compared with the Divide driver; the 
·Subtract driver has· •a lower forcing 
strength, therefore the Divide. driver 
is moved .to the POLISH.roll. 

6. The Subtract driver· is. compared with 
the Plus and Below Phony driver; the 
Subtr.act driver has the higher forcing 
strength and is added to the WORK 
roll. 

7. A pointer to C is placed on the POLtSH 
roll. 

e. An EOE driver is constructed and com
pared with the Subtract driver; since 
the EOE driver has a lower forcing 
strength, the Subtract driver is moved 
to the POLISH roll. 

9. The EOE driver is compared with the 
Plus and Below Phony driver; the EOE 
driver replaces. the Plus and Below 
Phony driver on the WORK roll and the 
analysis of the expression is ter-
minated. 

Recursion is used in the translation . of 
an expression when a left parenthesis is 
found; therefore, the term enclosed .. in . the 
parentheses is handled as a separate 
expression. The following three examples 
illustrate the resulting Polish notation 
when more complicated expressions are. 
transformed: 

Expre~ion 
1. A-B*(C+D) 
2. (A-B)/(C*D) 
3. X/Z/(X-C)+C**X 

Polish Notation 
-*+DCBA 
/*DC-BA 
+**XC/-CX/ZX 

The following should be noted with re
spect to the exponentiation operation: 

• Exponentiations on the same level are 
scanned right to left. Thus, the 
expression A**B**C**D .is equivalent to 
the expression A**(B**<C**D>>. 

• Two groups ar.e added to the POLISH .roll 
to indicate each exponentiation opera~ 
tion. .The first of these is the Power 
driver; the second is a pointer to the 
groqp on the global subprogram roll 
(GLOBAL SPROG roll) which defines the 

Section 2: Compiler Operation 41 



required exponentiation routine. Thus, 
the expression A ** B produces the 
following Polish notation: 

.Pointer to A. 
Pointer-to B 
Power driver 
Pointer to exponentiation routine 

The concept of Polish notation is 
extended in the FORTRAN IV (G) compiler to 
in9lude not only the representation of 
arithmetic expressions, but also the repre
sentation of all parts of the active state
ments -of the FORTRAN language. The parti
cular notation produced for each type of 
statement is described in Appendix c. Once 
an entire source statement has been pro
duced on the POLISH roll, phase 1 copies 
this roll to the AFTER POLISH roll and the 
processing of the next statement begins 
with the POLISH roll empty. 

source Listing 

The secondary output from Parse is the 
source module listing. If a source listing 
'is requested by the user (by means of the 
option SOURCE), source module cards are 
listed exactly as they appear on the input 
data set with error messages added on 
separate lines of the listing. If no 
source module listing is requested, Parse 
writes only erroneous statements and their 
error messages. 

The following paragraphs describe the 
error recording methods used in phase 1, 
the format of the source listing and the 
error messages generated. 

ERROR RECORDING: As a rule, Parse attempts 
to continue processing source statements in 
which errors are found. However, certain 
errors are catastrophic and cause Parse to 
terminate processing at the point in the 
statement where the error occurred. 

Statements which cannot be compiled 
properly are replaced by a call to the 
FORTRAN error routine IHCIBERH. 

Throughout Parse, three techniques of 
error recording are used. The first of 
these is used when the error is not cata
strophic. This method records the char
acter position in the statement at which 
the error was detected (by means of IEYLCE, 
IEYLCT, or IEYLCF instructions) and the 
number of the error type on the ERROR roll; 
after recording this information, Parse 
,continues to scan the statement. 

The second and third techniques of error 
recording are used when the error detected 

42 

is catastrophic, at least to part of the 
statement being scanned. The second tech
nique is a jump to an error recording 
routine, such as ALLOCATION FAIL or SUB
SCRIPTS FAIL, which records the error and 
jumps to FAIL. The.third technique is the 
use of one of the instructions, such as 
IEYCSF or IEYQSF, which automatically jump 
to SYNTAX-FAIL if the required condition is 
not met. SYNTAX FAIL also exits through 
FAIL. 

If the statement being processed is 
active and errors have been detected in it, 
FAIL removes any Polish notation which has 
been produced for the statement from the 
POLISH roll, replacing it with- an error 
indicator. FAIL then restores WORK and 
EXIT roll controls to their condition at 
the last time they were saved and. returns 
accordingly. 

Some translation routines modify the 
action of the FAIL routine through the use 
of the IEYJPE instruction so that FAIL 
returns immediately to the location follow
ing the IEYJPE instruction. The transla
tion routine can then resume the processing 
of the statement from that point. 

FORMAT OF THE SOURCE MODULE LISTING: Error 
information for a source module card con
taining errors appears on the listing lines 
iilUllediately following that card. For each 
error encountered, a $ sign is printed 
beneath the active character preceding the 
one which was being inspected when the
error was detected. The only exception 
would be in the case of a SYNTAX error. In 
such a case, the $ sign undermarks the 
character being inspected when the error is 
detected. The listing line which follows 
the printed card contains only the $ sign 
markers. 

The next line of the listing describes 
the marked errors. The errors are numbered 
within the card (counting from one for the 
first error marked); the number is followed 
by a right parenthesis, the error number, 
and the type of the error. Three errors 
are described on each lin~, for as many 
lines as are required to list all the 
marked errors on the source card. 

The following is an illustration of the 
printed output from phase 1: 



DIMENSION ARY<2001, BRY(200) CRYCS,10,10) 
$ 

1) IEY004I COMMA 

IF CAA + BB) 15, 20, 250000 
$ 

1) IEYOlOI SIZE 
ARY(J) = BRY 

$ $ 
1) IEY002I LABEL 2) IEY012I SUBSCRIPT 

GTO 30 
$ 

1) IEY013I SYNTAX 

ERROR TYPES: The types of errors detected 
and reported by Parse are described in the 
following paragraphs. For each error type, 
the entire message which appears on the 
source output is given; the condition code 
and a description of the causes of this 
error follows the message. 

IEYOOlI ILLEGAL TYPE: 'Ihis message is 
associated with the source module statement 
when the type of a variable is not correct 
for its usage. Examples of situations in 
which this message would be given are: (1) 
'Ihe variable in an Assigned GO TO statement 
is not an integer vaciat::le: (2) In an 
assignment statement, the variable on the 
left of the equal sign is of logical type 
and the expression on the right side is 
not. The condition code is a. 

IEY002I LABEL: This message appears with a 
statement which should be labeled and is 
not. Examples of such statements are: (1) 
A FORMAT statement; <2> The statement fol
lowing a GO TO statement. The condition 
code for the error is o. 

IEY003I~~AM~____b]~~T~: The name of a vari
able, CO~MON block, NAMELIS'I, or subprogram 
exceeds six characters in length. If two 
variable names appear in an expression 
without a separating operation symbol, this 
message is produced. The condition code is 
4. 

IEY004I CO~: A comma is supposed 
appear in a statement and it does not. 
condition code is O. 

to 
The 

IEY005I ILLEGAL LABEL: The usage of a 
label is invalid for example, if an attempt 
is made to branch to the label of a FORMAT 
statement, ILLEGAL LABEL is produced. The 
condition code is 8. 

IEY006I 'DUPLICATE LABEL: A label appearing 
in the label field of a statement is 
already defined <has appeared in the label 
field of a previous statement>. The condi
tion code is a. 

!~XQQI!_!Q_£Q~~~!£!: The name of a vari
able or subprogram is used improperly, in 
the sense that a previous statement or a 
previous portion of the present statement 
has established a type for the name, and 
the present usage is in conflict with that 
type. Examples of such situations are: 
(1) The name listed in a CALL statement is 
the name of a variable, not a subprogram; 
(2! A single name appears more than once in 
the dummy list of a statement function: (3) 
A name listed in an EXTERNAL statement has 
already been defined in another context.· 
The condition code is 8. 

!~~QQ~!--~~~Q£~I!Q~: Storage assignments 
specified by a source module statement 
cannot be performed due to an inconsistency 
between the present usage of a variable 
name and some prior usage of that name, or 
due to an improper usage of a name when it 
first occurs in the source module. 
Examples of the situations causing the 
error are: (1) A name listed in a COMMON 
block has been listed in another COM~ON 
block: 2) A variable listed in an EQUIVA
LENCE statement is followed by more than 
seven subscripts. The condition code is 8. 

IEYOO~I ORDER: The statements of a source 
module are used in an improper sequence. 
This message is produced, for example, 
when: Cl) An IMPLICIT statement appears as 
anything other than the first or second 
statem€nt of the source module; <2> An 
ENTRY statement appears within a DO loop. 
The condition code is 8. 

IEY010I SIZE: A number used in the source 
module does not conform to the legal values 
for its use. Examples are: (1) 'The size 
specification in an Explicit specification 
statement is not one of the acceptable 
values; <21 A label which is used in a 
statement exceeds the legal size for a 
statement label; (3) An integer constant is 
too large. The condition code is 8. 

IEYOllI UNDIMENSIONED: A variable name 
Inaicates-an-array-(i~e., subscripts follow 
the name>, and the variable has not been 
dimensioned. The condition code is 8. 

IEY012I SUBSCRIPT: scripts--usea--rn- an 
either too large or 
array. The condition 

The number of sub
array reference is 
too small for the 

code is 8. 

IEY013I SYNTAX: The statement or part 0£ a 
statement to which it refers does not 
conform to FORTRAN IV syntax. If a state
ment cannot be identif ie~, this error mes~ 
sage is used. Other cases in which it 
appears are: ( 1) A non-digit appears in 
the label field: <2> Fewer than three 
labels follow the expression in an Arith
metic IF statement. The condition code is 
s .. 

Section 2: Cowpiler Operation 43 



IEY014I CONVERT: In a DATA statement or in 
an Explicit specification statement con
taining data values, the mode of the con
stant is different from the mode of the 
variable with which it is associated. The 
compiler converts the constant to the 
correct mode. Therefore, this message is 
simply a notification to the programmer 
that the conversion is performed. The 
condition code is O. 

IEY015I NO END CARD: 
does not contain an END 
condition code is O. 

The source module 
statement. The 

IEY016I ILLEGAL STA.: The statement to 
which it is attached is invalid in the 
context in which it has been used. 
Examples of situations in which this mes
sage appears are: Cl> The statement S in a 
Logical IF statement (the result of the 
true condition> is a specification state
ment, a DO statement. etc.; 2> An ENTRY 
statement appears in the source module and 
the source module is not a subprogram. The 
condition code is B. 

IEY017I ILLEGAL STA. WRN A RETURN I 
statement appears in any source module 
other than a SUBROUTINE subprogram. The 
condition code is O. 

IEY018I NUMBER ARG: A reference to a 
library subprogram appears with the in
correct number of arguments specified. 
The condition code is 4. 

IEY027I CONTINUATION CARDS DELETED: More 
than 19 continuation lines were read for 1 
statement. All subsequent lines are 
skipped until the beginning of the next 
statement is encountered. The condition 
code is 8. 

IEY033I COMMENTS DELETED: More than 30 
cotmnent lines were read between the initial 
lines of 2 consecutive statements. The 
31st comment line and all subsequent com
ment lines are skipped until the beginning 
of the next statement is encountered. 
(There is no restriction en the number of 
comment lines preceding the first state
ment.) The condition code is 0. 

IEY036I ILLEGAL LABEL WRN: The label on 
t.his-nonexecutable-statement has no valid 
use beyond visual identification, and may 
produce errors in the object module if the 
same label is the target of a branch-type 
statement. (Only branches to executable 
statements are valid.) This message is 
produced, for example, when an END state
ment is labeled. The message is issued as 
a warning only. The condition code is 4. 

44 

IEY037I PREVIOUSLY DIMENSIONED WRN. : The 
array--flagged--has-l;een-previously dimen
sioned. The dimensions that were given 
first are used. Examples of this error are 
(1) a DIMENSION statement defining an array 
with a subsequent COMMON statement defining 
the s3me array with new dimensions, or <21 
array dimersions specified in a Type state
ment and also in a subsequent DIMENSION 
and/or COMMON statement. The condition 
code is 4. 

IEY038I SIZE WRN.: A variable has data 
initializing values that exceed the size of 
the scalar, the array, or the array ele
ment. Examples of this error are (1) the 
specification REAL A/'ABCDE'/ where A has 
not been previously dimensioned <i.e., A is 
a scalar>, or <21 the specification 
DATA A(l)/7H ABCDEFG/ where A has been 
previously dimensicned. The condition code 
is 4. 

PHASE 2 OF THE COMPILER: ALLOCATE CIEYALLI 

Phase 2 of the compiler performs the 
assignment of storage for the variables 
defined in the source module. The results 
of the allocation operations are entered on 
tables which are left in storage for the 
next phase. In addition, Allocate writes 
(on option> the object module ESD cards, 
the TXT cards for NAMELIST tables, literal 
constants, and FORMAT statements, and pro
duces error messages and storage maps 
<optionally) on the SYSPRINT data set. 

The following paragraphs describe the 
operations of Allocate in two parts. The 
first part, "Flow of Phase 2," describes 
the overall logic of the phase by ffieans of 
narrative and flowcharts. 

The second part, "Output from Phase 2 1 " 

describes the error messages and memory 
maps which are produced on the source 
module listing during the operation of the 
phase, as well as the ESD and TXT cards 
produced. It also describes the types of 
error detection performed during Allocate. 

Rolls manipulated by Allocate are listed 
in Table 4, and are briefly described in 
context. Detailed descriptions of roll 
structures are given in Appendix B. 



Table 4. Kolls Used by Allocate 

,--------------------T--------------------1 
I Roll I Roll 
INo. Roll Name INo. 
I 1 Source I 39 

5 Literal Const I 
7 Global Sprog I 40 

14 Temp I 41 
15 Do Loops Open I 42 
18 Init I 
19 Equiv Temp I 43 
20 Equiv Hold I 44 
21 Base Table I 45 
22 Array I 47 
23 Dmy Dimension I 
24 Entry Names I 48 
25 Global Dmy I 
26 Error Lbl I 48 
27 Local Dmy I 49 
28 Local Sprog l 
29 Explicit I 50 
30 Error Symbol I 
31 Namelist Names I 52 
32 Namelist Items I 
34 Branch Table I 53 
37 Equivalence I 60 

Roll Name 
Halfword 
Scalar 

Common Name 
Implicit 
Equivalence 
Offset 

Lbl 
Scalar 
Data Var 
common Data 

'Iemp 
Namelist 
Allocation 

Common Area 
Common Name 

Temp 
Equiv 
Allocation 

Common 
Allocation 

Format 
Subchk 

37 Byte Scalar I 68 General 
38 Used Lib I Allocation 

Function I 
I 39 common Data I 
L--------------------.L------------·--------

Section 2: Compiler Operation 44.1 





FLOW OF PHASE 2, CHART 05 

START ALLOCATION (G0359) controls the 
operation of the Allocate phase. The pri
mary function of this routine is to call 
the subordinate routines which actually 
perform the operations of the phase. 

The operation of Allocate is divided 
into three parts: the first part performs 
initialization; the second part (called 
pass 1) makes an estimate of the number of 
base table entries required to accommodate 
the data in the object module; the third 
part actually assigns storage locations for 
the object module components, leaving indi
cations of the assignment in main storage 
for use by subsequ~nt phases. 

The first part of Allocate's operation 
is performed by calling the routines ALPHA 
LBL AND L SPROG, PREP EQUIV AND PRINT 
ERRORS, BLOCK DATA PROG ALLOCATION, PREP 
DMY DIM AND PRINT ERRORS, PROCESS DO LOOPS, 
PROCESS LBL AND LOCAL SPROGS, BUILD PROGRAM 
ESD, ENTRY NAME ALLOCATION, COMMON 
ALLOCATION AND OUTPUT, and EQUIV ALLOCATION 
FRINT ERRORS. 

After return from EQUIV ALLOCATION PRINT 
ERRORS, START ALLOCATION initializes for 
and begins pass 1. The variable PROGRAM 
EREAK, which is used to maintain the rela
tive address being assigned to an object 
roodule component, is restored after being 
destroyed during the allocation of COMMON 
and EQUIVALENCE. . The groups in the BASE 
TABLE roll <which becomes the object module 
base-table) are counted, and the value ten 
is added to this count to provide an 
estimate of the size of· the object module 
base table. The BASE TABLE roll is then 
reserved so that groups added to the roll 
can be separated from those used in the 
count. The value one is assigned to the 
variable AREA CODE, indicating that storage 
to be assigned is all relative to the 
beginning of the obje~t module and carries 
its ESD number. 

When these operations are complete, 
START ALLOCATION calls EASE AND BRANCH 
TABLE ALLOC, and upon return from this 
routine again increases the variable 
PROGRAM BREAK by the amount Of storage 
allocated to EQUIVALENCE. START ALLOCATION 
continues its operation by calling BUILD 
ADDITIONAL EASES, PREP NAMELISTN SCALAR 
ALLOCATE, ARRAY ALLOCATE, PASS 1 GLOBAL 
SPROG ALLOCATE, SPROG ARG ALLOCATION, 
LITERAL CONST ALLOCATION and FORMAT 
ALLOCATICN• 

After the operation of FORMAT 
ALLOCATION, the last part of Allocate is 
begun. The variable PROGRAM BREAK is re
initialized to the value . it was assigned 

prior to pass 1. The BAS!!. TABLE roll 
groups are counted to determine the total 
size of the roll after groups have been 
added by pass 1; again,· five extra groups 
(or ten words> are added to the count to 
provide for data values which will appear 
in the object m6dule, but which are not yet 
defined, The PASS 1 FLAG is then turned 
off, and START ALLOCATION calls DEEUG 
ALLOCATE, ALPHA SCALAR ARRAY AND SPROG, 
BASE AND BRANCH TABLE ALLOC, GLOBAL SPROG 
ALLOCJ1TE, SPROG ARG ALLOCATION, EQUIV MAP, 
SCALAR ALLOCATE, ARRAY ALLOCATE, BUILD 
NAMELIST TABLE, LITERAL CONST ALLOCATION, 
and FORMAT ALLOCATION. 

At RELEASE ROLLS, START ALLOCATION con
cludes its operation by releasing rolls, 
increasing the PROGRAM BREAK to ensure that 
the next base begins on a doubleword boun
dary, and calling CALCULATE BASE AND DISP 
and BUILD ADDITIONAL BASES in order to 
guarantee that at least three bases are 
allotted for the TEMP AND CONST roll. 
After this calculation~-Allocate-prepares 
for and relinquishes control to Unify. 

ALPHA LBL AND L SPROGS, Chart CA 

This routine <G0543l is the first rou
tine called by START ALLOCATION. It moves 
the binary labels from the LBL roll and the 
statement function names from the LOCAL 
SPROG roll to the DATA VAR roll. ThE: order 
of the labels and statement function nal!'es 
on their respective rolls is maintained, 
and the location on the DATA VAR roll at 
which each begins is recorded. The names 
are moved because Allocate destroys them in 
storing allocation information, and Exit 
needs them for writing the object module 
listing. 

This routine moves the names of scalars, 
arrays, and called subprograms to the DATA 
VAR roll from the rolls on which they are 
placed by Parse. The order of names is 
preserved and the beginning location for 
each type of name on the DATA VAR roll is 
saved. 

Subscript information on the EQUIVALENCE 
QFFSET roll (which indicates the subscripts 
used in EQUIVALENCE statements in the 
source module> is used by this routine 

section 2: Compiler Operation 45 



(G0362) to calculate the relative ad
dresses of array elements ref erred to in 
statements. (Pointers to the EQUIVALENCE 
CFFSET roll are found on the £QQ!Y~1~~£~ 
roll for all subscripted references in 
EQUIVALENCE statements.> The addresses 
computed are relative to the beginning of 
the array. When an array reference in a 
source module EQUIVALENCE statement is out
side the array, designates an excessive 
number of dimensions, or specifies too few 
dimensions, an error message is printed by 
this routine. 

BLOCK DATA PROG ALLOCATION, Chart CC 

This routine (G03611 controls the allo
cation of data specified in DATA, COMMON, 
DIMENSION, EQUIVALENCE, and Type statements 
in a BLOCK DATA subprogram. Since all data 
specified in EQUIVALENCE must be allocated 
under COMMON, this routine registers an 
error upon encountering on the EQUIVALENCE 
roll. The routine terminates with a jump 
to RELEASE ROLLS (G0360), which, in turn, 
terminates the Allocate phase. 

PREP DMY DIM AND PRINT ERP.CRS, Chart CD 

This routine CG0365) constructs the DMY 
DI.MENSION roll, placing a pointer to the 
ENTRY--NAMES~roll group defining the ENTRY 
with which-a dummy array is connected, and 
a pointer to the array for each dummy array 
containing a dummy dimension. 

Before the roll is constructed, this 
routine ' ensures that each array having 
dummy dimensions is itself a dummy, and 
that each dummy dimension listed for the 
array is either in COMMON or is a global 
dummy variable in the same call. If any of 
these conditions are not satisfied, error 
messages are written. 

PROCESS DO LOOPS, Chart CE 

This routine (G0371) inspects the DO 
LOOPS OPEN roll for the purpose of deter
mining whether DO loops opened by the 
source module have been left unclosed; that 
is, whether the terminal statement of a DO 
loop has been omitted from the source 
module. The DO LOOPS CPEN roll holds 
pointers to labels of target statements for 
DO loops until the loops are closed. If 
any information is present on this roll, 
loops have been left unclosed. 

46 

On encountering information on the DO 
LOOPS OPEN roll, this routine records the 
undefined labels for listing as DO loop 
errors, and (on option) lists them. It 
also sets the high order bit of the TAG 
field of the ~§~_!2!! group which refers to 
the undefined label to zero; this indicates 
to Gen that the loop is not closed. 

This routine (G0372l constructs the 
ERANCH TABLE roll, which is to become the 
object module branch table. The routine 
first pro~esses the LBL roll. For each 
branch target label found on that roll, a 
new BRANCH TABLE roll group is constructed, 
and the label on the LBL roll is replaced 
with a pointer to the group constructed. 
Undefined labels are also detected and 
printed during this process. 

When this operation is complete, the 
LOCAL SPROG roll <which lists the names of 
all-statement-functions) is inspected, and 
for each statement function. a group is 
added to the BRANCH TABLE roll, and part of 
the statement function name is placed with 
a pointer to the constructed group. 

This routine (G0374l constructs and 
punches the ESD cards for the object module 
itself <the program name> and for each 
ENTRY to the object module. It also 
assigns main storage locations to the 
object module heading by increasing the 
PROGRAM BREAK by the amount of storage 
required. 

This routine (G03761 does nothing if the 
source module is other than a FUNCTION 
subprogram. If, however, the source module 
is a FUNCTION, this routine places the 
names of all ENTRYs to the source module on 
the EQUIVALENCE roll as a single 
EQUIVALENCE set; it also ensures that the 
ENTRY name has been used as a scalar in the 
routine. If the variable has not been 
used, an appropriate error message is 
printed and the scalar variable is defined 
by this routine. 



COMMON ALLOCATION AND OUTPUT, Chart CI 

This routine (G0377> allocates all COM
MON storage, one block at a time, generat
ing the COMMON ALLOCATION roll (which holds 
the name, base--pointer;--and- displacement 
for all COMMON variables) in the process. 
Groups are added to the BASE TABLE roll as 
they are required to provide for references 
to variables in COMMON. The ESD cards for 
COMMON are constructed and written out. 
All errors in COMMON allocation are written 
on the source listing and the map of COMMON 
storage is also written Con option). 

EQUIV ALLOCATION PRINT ERRORS, Chart CK 

This routine (G0381) allocates storage 
for EQUIVALENCE variables, creating the 
EQUIVALENCE ALLOCATION roll in the process. 
For each variable appearing in an EQUIVA
LENCE set, except for EQUIVALENCE variables 
which refer to COMMON (which have been 
removed from the EQUIVALENCE roll during 
the allocation of COMMON storage>, the name 
of the variable and its address are 
recorded. 

The information pertaining to EQUIVA
LENCE sets is stored on the EQUIV ALLOCA
TION roll in order of ascending addresses. 
Required bases are added to the BASE TABLE 
roll, and all remaining EQUIVALENCE errors 
are printed. 

BASE AND BRANCH TABLE ALLOC, Chart CL 

This routine (G0437l assigns main 
storage for the object module save area, 
base table, and branch table. The required 
base table entries are added as needed, 
PROGRAM BREAK is increased, and the base 
pointer and displacement for each of these 
areas is recorded in a save area for use by 
Gen. During pass 1 of Allocate, this 
assignment of storage is tentative and 
depends on the estimate of the size of the 
base table. The second time this routine 
is operated, the actual number of base 
table entries required in the object module 
has been determined by pass 1 and the space 
allocation is final. 

SCALAR ALLOCATE, Chart CM 

Each group on the SCALAR roll is 
inspected by this routine (G0397), which 
defines all nonsubscripted variables. It 

allocates storage for the variables listed 
on the roll, except for those which are in 
COMMON or members of EQUIVALENCE sets. The 
first time SCALAR ALLOCATE operates, it 
determines the number of base table entries 
required to accommodate references to the 
object module scalar variables. The inf or
mation on the SCALAR roll is not altered, 
nor is any other roll built or modified by 
the routine. 

At the second operation of the routine, 
the SCALAR roll is modified, and the actual 
storage locations (represented by the base 
pointer and displacement> to be occupied by 
the scalar variable are either computed and 
stored on the SCALAR roll or copied from 
the COMMON or EQUIV ALLOCATION roll to the 
SCALAR ro 11. 

All "call by name" dummy variables are 
placed on the FULL WORD SCALAR roll; as 
each remaining scalar is inspected, its 
mode is determined. If it is of size 8 or 
16 (double-precision real or single- or 
double-precision complexl, storage is allo
cated immediately. If the variable does 
not require doubleword alignment, it is 
moved to one of three rolls depending on 
its size: FULL WORD SCALAR, HALF WORD 
SCALAR, or BYTE SCALAR. 

When all groups on the SCALAR roll have 
been processed in this manner, the 
variables on the FULL WORD SCALAR roll, 
then the HALF WORD SCALAR roll, then the 
BYTE SCALAR roll are assigned storage. The 
map of scalars is produced Con option) by 
this routine. 

ARRAY ALLOCATE, Chart CN 

This routine (G0401), like SCALAR ALLOC
ATE, is called twice by START ALLOCATE. 
The first time it is called, it determines 
the number of base table entries required 
for references to the object module arrays. 
The second time the routine is operated, it 
actually assigns storage for the arrays, 
and records the appropriate base pointer 
and displacement on the ARRAY roll. 

As each array name is found on the ARRAY 
roll, it is compared with those on the 
COMMON, EQUIV, and GLOBAL DMY rolls. For 
COMMON and EQUIVALENCEd arrays, the alloca
tion information is copied from the appro
priate roll. Since all dummy arrays are 
•call by name" dummies, dummy array groups 
are always replaced with pointers to the 
GLOBAL DMY roll. For each array to be 
assigned storage, new base table entries 
are constructed as required. In no case is 
more than one base used for a single array. 

Section 2: Compiler Operation 47 



Since arrays are.allocated in the order 
of their appearance, some unused storage 
space may appear between consecutive arrays 
due .to the required alignment. The array 
map is produced Con option> by this 
routine. 

This routine CG0402) counts the groups 
on the GLOBAL SPROG and USED LIB FUNCTION 
rolls (which hold, respectively, thenon= 
library and .library subprogram names 
referred to in the source module> to deter
mine the number of. base table entries 
required for references to the subprogram 
addresses region of the object module. The 
required BASE TABLE roll groups are added. 

SPROG ARG ALLOCATION, Chart CP 

This routine (G0442) adds the number of 
arguments to subprograms (and thus, the 
number of words in the argument list area 
of the object module) to the PROGRAM BREAK, 
thus allocating storage for this portion of 
the object module. BASE TABLE roll groups 
are added as required. 

PREP NAMELIST, Chart CQ 

This routine (G0443) determines the 
amount of main storage space required for 
each object module NAMELIST table. The 
NAMELIST ALLOCATION roll is produced during 
this routine's operation; it contains, for 
each NAMELIST data item, the name of the 
item and a pointer to .the SCALAR or ARRAY 
roll group defining it. If any data name 
mentioned in a NAMELIST is not the name of 
a scalar or array, the appropriate error 
message is printed by this routine. 

The NAMELIST NAMES roll is left holding 
the NAMELIST name and the absolute location 
of the beginning of the corresponding 
object module NAMELIST table. Required 
BASE TABLE roll groups are added by this 
routine. 

This routine CG0444> is called twice by 
START ALLOCATION. Its first operation de
termines the number of BASE TABLE roll 
groups which should be added to cover the 

48 

literal constants in the object module. 
The second operation of the routine 
actually assigns storage for all literal 
constants <except those appearing in source 
module DATA and PAUSE statements) and 
writes Con option> th.e TXT cards for them. 

This routine (G0445) is called twice by 
START ALLOCATION. The first time it is 
called is during the operation of pass 1. 
In pass 1, the PROGRAM BREAK is increased 
by the number of bytes occupied by each 
FORMAT. 

The second time that FORMAT ALLOCATION 
is called, each FORMAT is written out and 
the FORMAT roll is rebuilt. The base and 
displacement information and a pointer to 
the label of the FORMAT statement are the 
contents of the rebuilt FORMAT group. The 
map of the FORMAT statements used in the 
ob;ect module is also written out Con 
option> by this routine. 

EQUIV MAPL Chart CT 

This routine CG0441> adjusts the values 
on the EQUIVALENCE ALLOCATION roll to the 
corrected (for the correct allocation of 
the base table, since this routine operates 
after the completion of pass 1) base point
er and displacement, and constructs the 
BASE TABLE roll groups required. The map 
of EQUIVALENCE variables is produced (on 
option> by this routine. 

GLOBAL SPROG ALLOCATE, Chart cu 

This routine (G0403) goes through the 
GLOBAL SPROG and USED LIB FUNCTION rolls, 
inserting the base pointer and displacement 
for each of the subprograms listed there; 
this is the allocation of storage for the 
subprogram addresses region of the object 
module. The ESD cards for .the subprograms 
are written, the required BASE TABLE roll 
groups are added, and a list of the subpro
grams called is produced Con option). 

BUILD NAMELIST TABL~£har!~ 

This routine CG0405> operates after pass 
1 Of Allocate. It uses the NAMELIST NAMES 
roll in determining the base and displace-



roent for . each NAMELIST reference in the 
source module. ·The BASE TABLE roll ·groups 
are added ~s required. The PROGRAM BREAK 
is increased as indicated, and the TXT 
cards are written out according to the base 
and displacement calculations for each 
entry on the NAMELIST ALLOCATION roll. A 
map of the NAMELIST table~ is produced (on 
option> by this routine. 

This routine (G0438> is called whenever 
it may be necessary to construct a new BASE 
TABLE roll group. It determines whether a 
new base is required and, if so, consttucts 
it. 

DEBUG ALLOCATE, Ch~E~...f! 

This routine CG0545) processes the 
inforrr.ation on the INIT and SUBCHK rolls, 
marking the groups on the SCALAR, ARRAY, 
and GLOBAL DMY rolls which define the 
variables listed. When all the information 
on the SUBCHK roll has been processed, the 
routine returns. 

OUTPUT FROM PHASE 2. 

The foliowing paragra~hs describe the 
output from Allocate: error messages, 
maps, and cards. Allocate also produces 
roll entries describing the assignment of 
main storage. See ~ppendix B for descrip~ 
tions of the roll formats. 

The source module listing, with error 
indications and error messages for the 
errors detected during initial processing 
of the source statements, is produced by 
phase 1 of the compiler. Certain program 
errors can occur, however, which cannot.be 
detected until storage allocation takes 
place. These errors are detected and 
reported (if a listing has been requested>, 
at the end of the listing by ALLOCATE; the 
error messages are described in the follow
ing paragraphs. 

.::.F...;:U-.NC=..:;T:.:I::.;0-.:N;::-..,.;E=R=Rc.;:O""'R: When the program being 
compiled is a FUNCTION subprogram, a check 
is made to determine whether a scalar with 
the same name as the FUNCTION and each 

ENTRY is defined. If no such scalars are 
listed on the SCALAR roll, the message 

IEY019I FUNCTION ENTRIES UNDEFINED 

is written on the 
The message is 
undefined names. 

source m6dule listing. 
followed by a list of the 
The condition cede i.s 4. 

COMMON ERRORS: Errors Of two types can exfst-In--the- definitions of EQUIVALENCE 
sets which refer to the COMMON area. The 
first type of error exists because of a 
contradiction in the allocation specified, 
e.g., t~e EQUIVALENCE sets (A,B(6),C(2>> 
and <B<8>,CC11>. The second error type is 
due to an attempt to extend the beginning 
of the COMMON area, as in COMMON A,B,C and 
EQUIVALENCE CA,FC10)). 

An additional error _in the assignment of 
COMMON storage occurs if the source program 
att'empts to allocate a variable to a loca
tion which does not fall on the appropriate 
boundary. Since each COMMON block is 
assumed to begin on. a double-pLecision 
boundary, this error can be produced in 
either <or bothf the COMMON statement and 
an EQUIVALENCE statement which refers to 
COMM0".11. 

When each block of COMMON storage has 
been allocated, the message 

IEY020I COMMON. BLOCK I I ERRORS 

is printed if any ~rror has been detected 
<the block name is provided>. The message 
is followed by a list of the variables 
which could not be allocated .due to the 
errors. The condition code is 4. 

Unclosed DO Loops 

If DO loops are initiated in the source 
module, but their terminal statements do 
not exist, Allocate finds pointers to the 
labels of the nonexistent terminal state
ments on the DO .LOOPS OP'.EN roll. If 
pointers are found on the roll, the message 

IEY021I UNCLOSED DC LOOPS 

is printed, f ollowe~ by a list of 
labels which appeared in DO statements 
were .not defined in the source module! 
conditi6n code is a. 

the 
and 
The 

Section 2: Compiler Operation 49 



UNDEFINED ~AEELS: If any labels are used 
in the source module but are not defined, 
they constitute label errors. Allocate 
checks for this situation. At the conclu
sion of this check, the message 

IEY022I UNDEFINED LABELS 

is printed. If there are undefined labels 
used in the source module, they a.re listed 
on the lines following the message. The 
condition code is 8. 

EQUIVALENCE ERRORS: Allocation errors due 
to the arrangement of EQUIVALENCE state
roents which do not refer to COMMCN 
variables may have two causes. The first 
of these is the conflict between two EQUIV
ALENCE sets: for example, <A,B(6),C(3)) and 
(B(8l,C(l)). 

The second is due to incompatible boun
dary alignment. in the EQUIVALENCE set. The 
first variable in each EQUIVALENCE set is 
assigned to its appropriate boundary, and a 
record is kept of the size of the variable. 
Then, as each variable in the set is 
processed, if any variable of a greater 
size requires alignment, the entire set is 
rooved accordingly. If any variable is 
encountered of the size which caused the 
last alignment, or of lower size, and that 
variable is not on the appropriate boun
dary, this error has occurred. 

If EQUIVALENCE errors of either of these 
types occur, the message 

IEY023I EQUIVALENCE ALLOCATION ERRORS 

is printed. The message is followed by a 
list of the variables which could not be 
allocated according to source module speci
fications. The condition code is 4. 

Another class of EQUIVALENCE error is 
the specification, in an EQUIVALENCE set, 
of an array element which is outside the 
array. These errors are summarized under 
the heading 

IEY024I EQUIVALENCE DEFINITION ERRORS 

on the source module listing. 
tion code is 4. 

The condi-

DUMMY DIMENSION ERRORS: If variables spe
cified as dummy array din:erisions are not. in 
CO~MON and are not global dummy variables, 
they constitute error.s. These are summa
rized under the heading 

IEY025I DUMMY DIMENSION ERRCRS 

on the source module listing. 
ti on code is 4. 

50 

The condi-· 

BLOCK DATA ERRORS: If variables specified 
within the BLOCK DATA subprograw have not 
also been 'defined as COMMONI they consti
tute errors. The message 

IEY026I BLOCK DATA PROGRAM ERRORS 

is produced on the 
followed by a 
variables in error. 
4. 

source module listing 
summarization of the 

The condition code is 

Allocate produces the storage maps de
scribed below during its operations: these 
maps are printed only if the MAP option is 
specified by the prograwmer. 

COMMON MAP: The map of each COMMON block 
is produced by Allocate. The map is headed 
by two title lines: the first of these is 

COMMON I narne I MAP SIZE n 

and the second is the pair of words 

SYMBOL LOCATION 

printed five times across the line. The 
title lines are followed by a list of the 
variables assigned to the COMMON block and 
their relative addresses, five variables 
per line, in order of ascending relative 
addresses. The name contained within the 
slashes is the name of the COMMON block. 
The amount of core occupied by the block 
(nt is given in hexadecimal and represents 
the number of bytes occupied. 

Allocate prints a list of the subpro
grams called by the source module being 
compiled. This list is printed only if the 
MAP option is specified by the programmer. 
The subprogram list is headed by the line 

SUBPROGRAMS CALLED 

and contains the names of the subroutines 
and functions referred to in the source 
module. 

SCALAR MAP: The scalar map is produced by 
AIIocate-and consists of two title lines, 
the first o~ which reads 

SCALAR MAP 

and the second of whi'ch is identical to the 
second title line of the COMMON maps. The 



title is followed by a list of the non-
COMMON scalar variables, five variables per 
line, and their relative addresses, in 
crder of ascending relative addresses. 

ARRAY MAP: The first title line of the 
array map reads 

ARRAY MAP 

In all other respects, the array map is 
identical to the scalar map. 

~.QQIVALENC~ __ MAP: The first title line of 
the map of ECUIVALENCE sets reads 

EQUIVALENCE CATA MAP 

The second line for both maps is standard. 
The variables listed in the EQUIVALENCE map 
are those not defined as COMMON. 

NAMELIST M~~: This map shows the locations 
of the NAMELIST tables. The first title 
line reads 

NAMELIST MAP 

and the second line is standard. The 
symbol listed is the ~AMELIST name asso
ciated with each of the tables. 

FOR~T MAP: This map gives the labels and 
locations of FORMAT staterrents. The first 
title line is 

FORMAT STATEMENT MAP 

and the second tltle is the same as the 
others described. The symtol listed is the 
label of the FORMAT statement. 

Cards Produced by Allocate 

Allocate produces both ESD and TXT 
cards, provided that a DECK option or a 
LOAD option has been specified by the 
programmer. All ESD cards required by the 
object module are produced during this 
phase. These include cards for the CSECT 
in which the object module is contained for 
each COMMON block and for each subprogram 
referred to by the object module. 

The ESD cards that are produced by 
Allocate are given in the following order 
according to type: 

ESD, type 0 - contains the name of the 
program and indicates the begin
ning of the object module. 

ESD, type 1 - contains the entry point to a 
SUBROUTINE or FUNCTION subpro
gram, or the name specified in 
the NAME option, or the name 
MAIN. The name designated on the 
card indicates where control is 
given to begin execution of the 
module. 

ESD, type 2 - contains the names of subpro
grams referred to in the source 
module ny CALL statements, 
EXTERNAL statements, explicit 
function references, and implicit 
function references. 

ESD, type 5 - contains information about 
each COMMON block. 

The TXT cards produced during this phase 
fill the following areas of the object 
module: 

0 The NAMELIST tables 

o The literal constants 

• The FORMAT statements 

The other TXT cards required for the 
object module are produced by later phases 
of the compiler. 

The third phaseof the compi:-ler opti
mizes the subscripting operations perfor~ed 
by the object module by deciding, on the 
basis of frequency of use, which subscript 
expressions within DO loops are to appear 
in general registers, and which are to be 
maintained in storage. 

'l'he following paragraphs, "Flow of Phase 
3," describe the operation of Unify by 
means of narrative and flowcharts. 

The rolls manipulated by Unify are 
listed in Table 5 and are mentioned in the 
following discussion of the phase; these 
rolls are briefly described in context. 
See Appendix B for a complete description 
of any roll used in the phase. 

section 2: compiler Operation 51 



Table 5. Rolls. Used by Unify 
r--------------------T--------------------1 

Roll Ntimber I Roll Name I 
2 I Nonstd Script I 
3 I Nest· Script I 
4 loop ScI ipt I 

13 Std script I 
lll 'Iemp I 
20 Reg I 
21 Ease Table I 
22 Array. I 
52 Loop Control I 
54 Script I 
55 loop Data I 
56 Program Script I 
57 Arr.ay Ref I 

I 58 Adr Const I L,_ ___________________ i ____________________ J 

FLOW OF PHASE 3, CHART 07 

START UNIFY (GOlll) controls the opera
tion of this phase of the compiler: It 
initializes for the phase by setting the 
proper number of groups on the ARRAY REF 
1011 to zero (this function is performed by 
the routine ARRAY REF ROll ALLOTMENT) and 
moving the information transmitted on the 
PROGRAM SCRIPT roll to the SCRIPT roll. 
When the initialization is complete, the 
reserve blocks on the SCRIPT roll are in 
order from the outermost lcop of the last 
source module DO nest Cat the top of the 
roll> to the innermost loop of the first 
source module DO nest (at the bottom of the 
roll>. 

After initialization, S'IAR'I UNIFY begins 
the optimizing process by inspecting the 
last.group of a reserve block on the SCRIP'I 
roll; a value of zero in this group indi
cates the end of the SCRIP'I roll informa
tion. When the value is nonzero, DO NEST 
UNIFY is cal1ed to process the information 
.for an entire nest of co leaps. On return 
from this routine, the nest has been pro
cessed; the count of temporary storage 
locations required is updated, and START 
UNIFY repeats its operations for the next 
nest of loops. 

When all loops have been processed, 
START UNIFY makes a complete pass on the 
ARRAY REF roll, setting up the instruction 
format for the ar·ray references from point
ers which have been left on the roll 
(CONVERT TO INST FORMAT actually sets up 
the instruction fields>. When all groups 
on the ARRAY REF roll have been processed, 
a jump is made to CONVERT 'IO ADR CONST. 
This routine sets up groups as required on 
the ADR CONST roll from data on the LOOP 
CUNTROL~roII-.~-When the LOOP CONTROL roll 
has been processed, this routine-terminates 
the Unify phase by calling Gen. 

52 

ARRAY REF ROLL ALLOTMENT Chart DA 
---~~-------------~--L---------

This· routine CG0145) constructs the 
ARRAY REF roll. The groups on this roll 
are initialized with values of zero. 
Pointers to the roll have been placed on 
the SCRIPT roll and in the Polish notation 
by Parse, but information has not actually 
been put on the roll before this routine is 
called. 'The number of groups required has 
been transmitted from Parse. 

This routine (G01131 constructs the ADR 
CONST roll from the base address informa
tion on the LOOP CONTROL roll. 

When the third word of the LOOP CONTROL 
roll group contains an area code and dis
placement, ~nif y requires a base address 
which it does not find in the base table. 
Since no values can be added to the ba~e 
table by Unify, the required value must be 
placed in the temporary storage and con
stant area of the object module. The ADR 
CONST roll holds the information required 
for Exit to placf! the value in a temporary 
storage and constant location and to pro
duce the RLD card required to get the 
proper modification of the value in that 
location at load time. This routine builds 
that information on the ADR CONST roll by 
allocating the temporary storage and c::on
stant locations for the area codes and 
displacement values it finds on the LCOP 
CONTROL roll. See Appendix B for further 
explanation of the rolls involved. 

This routine (G0112> sets up the first 
word (zer.o rung> of each ARRAY REF roll 
group by testing the contents of the later 
words (the register rungs> of the same 
roll. The result is the skeleton of the 
instruction ~o be used for an array 
reference. When the second and third words 
of the group point to a general register, 
they are shifted into the appropriate posi
tion and inserted into the zero rung. (See 
Appendix B for the configuration of the 
ARRAY REF roll group.) At each entry to 
this routine, one word is processed and 
that word is cleared to zero before the 
routine exits. 



DO NEST UNIFY, Chart DD 

This routine (G0115} first initializes 
for the processing of one nest of DO loops. 
For each DO loop. a reserve block exists on 
the SCRIPT roll and one group exists on the 
LOOP DATA . roll. These blocks and groups 
are ordered so that, reading from the 
bottom of the rolls up, a nest level of one 
indicates the end of a nest of loops; that 
is, for each nest, the bottom block repre
sents the inner loop and the top block 
represents the outer loop. 

DO NEST UNIFY serves a control function 
in this phase, arranging information to be 
processed by DO LOOP UNIFY and LEVEL ONE 
UNIFY; it is these latter routines which 
actually perform the optimization of sub
scripting by means of register assignment. 
The main result of the optimization is that 
in.the initialization code for each loop, 
only that portion of each subscript which 
depends on the DO loop variable is 
computed. 

DO LOOP UNIFY expects to find a reserved 
block on the bottom of the NEST SCRIPT roll 
describing a loop one nest level deeper 
than the loop described by the bottom 
reserved block on the SCRIPT roll. More
over, both the block on the .SCRIPT roll and 
the block on the NEST SCRIPT roll must 
already reflect the allocation of arrays by 
Allocate; that is, both plocks must have 
been processed by NOTE ARRAY ALLOCATION 
DATA, another routine called by DO NEST 
UNIFY• This arrangement is required·. so 
that DO LOOP UNIFY can pass information 
from the loop being processed (on the NEST 
SCRIPT roll> to the next outer loop (on the 
SCRIPT roll}. 

A special case is made of the reserved 
block describing a loop of· nest level one, 
since there is no outer loop to which 
information can be passed. The routine 
LEVEL ONE UNIFY processes in place of DO 
LOOP UNIFY in this case; it expects to find 
the reserved block describing the level one 
loop on the NEST SCRIPT roll. 

IEYROL MODULE 

. The IEYROL module is loaded into main 
storage by program :!;etch, along with the 
Invocation phase and the five processing 
phases. rt: contains twci static rolls <the 
WORK roll and the EXIT roll>, roll statis
tics, group stats, and the ROLL ADR table. 
Throughout the operation of the compiler, 
it mainta:ins·a record of the storage space 
allocated by the control program to the 
dynamic rolls. 

Phase 4 of the ComE;i..ler: Gen <IEYGEN> 

Gen proauces object code from the Polish 
notation and roll infor~ation left by pre
vious phases of the compiler. The.· code 
produced by this phase appears, one state
ment at a time, on the CODE roll, .and is 
saved there until it is written out by 
EXIT. . . 

The following paragraphs, "Flow of Phase 
4," describe the operation of this phase by 
means of narrative and flowcharts. 

The rolls manipulated by Gen are listed 
in Table 6 and are mentioned in the follow
ing description of the phase; these rolls 
are briefly described in context. See 
Appendix B for a complete description of 
all of the rolls used in the phase. 

Table .6. Rolls Used by Gen 
r--------------------T--~------~--------~-1 

I Roll I Roll I 
I~ Roll Name I ~2.!. Roll Name I 
I 1 Source-- I 24 Entry Names I 
I 4 Polish I 25 Global Dmy I 
I 8 Fx Const I 34 Branch Table I 
I 9 Fl Const I 36 Fx Ac I 
I 10 Dp Const I 40 Terr.p Pntr I 
I 11 Complex Const I 42 Fl Ac I 
I 12 Dp Complex l 43 Lbl I 
I Const I 44 Scalar I 
I 14 Temp I 45 Data Var I 
.I 15 Do Loops Open J 52 Loop control I 
I 15. Loops open I 55 Loop Data I 
I 16 Temp and Const I 56 ArrayPlex I 
I 17 Adcon I 57 Array Ref r 
I 18 Data save · I 59 At · I 
I 22 Array I 62 Code I 
I 23 Droy Dimension I 63 After Polish I 
I 23 Sprog Arg I I 
L...;. __ -._""°-------------..L--------------------J 

FLOW OF PHASE 4, CHART 08 

START GEN (G0491) initializes for the 
operation of the Gen phase. It then calls 
ENTRY CODE GEN to produce the object head
ing code and PROLOGUE .GEN and EPILOGUE GEN 
for the required prologues and epilogues. 
On return from . EPILOGUE GEN, START GEN 
falls through to GEN PROCESS • 

GEN PROCESS (G0492} controls the repeti
tive operations of Gen. It first calls GET 
POLISH, which moves the Polish notation for 
one statement from the AFTER POLISH roll to 
the POLISH roll. Using the Polish notation 
just moved, GEN PROCESS determines whether 
the statement to be processed was labeled; 
if it was, the routine LBL PROCESS is 
called. If the source statement was not 

section 2: compiler operation 53 



labeled, or when LBL PROCESS returns, GEN 
PROCESS calls STA GEN and STA GEN FINISH. 
On return from STA GEN FINISH, GEN PROCESS 
restarts. 

The termination of the Gen phase of the 
compiler occurs when an END statement has 
been p~ocessed. END STA GEN jumps directly 
to TERMINATE PHASE-after the object code. is 
produced, rather than returning to GEN 
PROCESS. TERMINATE PHASE is described in 
Chart EG and in the accompanying text. 

ENTRY CODE GEN (G0499) first determines 
Whether the source module is a subprogram. 
If it is not, the heading code for a main 
program is placed on the CODE roll, the 
location counter is adjusted, and the rou
tine returns. 

If the source module is a subprogram, 
ENTRY CODE GEN determines the number of 
entries to the subprogram, generates code 
for the main entry. and for each secondary 
entry and, when all required entry code has 
been produced, it then returns. 

PROLOGUE GEN (G0504) processes the main 
entry and each additional ENTRY to the 
source subprogram, producing the required 
prologues. Prologue code transfers argu
ments as required and is, therefore, not 
produced if no arguments are listed for the 
ENTRY. The prologue code terminates with a 
branch to the code for the appropriate 
entry point to the subprogram~ in prepara
tion for the insertion of the address of 
that entry point, this routine records the 
location of the branch instruction on the 
ENTRY NAMES roll. If the source module is 
not a subprogram, PROLOGUE GEN exits. 

EPILOGUE GEN (G0508) processes the main 
entry and each.additional ENTRY to a sub
program, producing the required epilogues. 
Epilogue code returns argument values and 
returns to the calling program. If this 
routine determines that the source module 
is not a subprogram, main program prologue 
and epilogue code are produced. 

This routine (G0712l moves the Polish 
notation for a single statement fromthe 

54 

AFTER POLISH roll to the POLISH roll. The 
Polish notation is moved from the beginning 
of the AFTER POLISH roll, and a pointer is 
maintained to.indicate the position on Lhe 
roll at which the next statement begins. 

Note: Unlike the other rolls, data from 
~AFTER POLISH roll is obtained on a 
first-in first-out basis (i.e., the BASE 
rather than the BOTTOM pointer is used). 
This is done to maintain the sequence of 
the source program. 

LBL PROCESS (G0493) stores the label 
pointer left on the WORK roll by GEN 
PROCESS in STA LBL BOX. It then inspects 
the LBL roll group defining the label, and 
determines whether the label is a jump 
target. If so, the base register table is 
cleared to indicate that base values must 
be reloaded. 

If the label is not the target of a 
jump, or when the base register table has 
been cleared, the AT roll is inspected. 
For each AT roll entry Cana, therefore, AT 
statement) referring to the labele~ state
ment being processed, made labels are con
structed for the debug code and for the 
next instruction in line, pointers to these 
labels are recorded on the AT roll, and an 
unconditional branch to the debug code is 
placed on the CODE roll. 

When all AT references to the present 
label have been processed, an instruction 
is placed on the CODE roll to inform Exit 
that a label was present and that a branch 
table entry may be required. Then, if the 
trace flag is on (indicating the presence 
of the TRACE option in the source DEBUG 
statement>, the debug linkage for rRACE and 
the binary label are placed on the CODE 
roll. If the trace flag is off, or when 
the code has been completed, LBL PROCESS 
returns. 

STA GEN (G0515> uses the control driver 
left on the WORK roll by GEN PROCESS to 
index into a jump table (STA RUN TABLE), 
jumping to , th~ appropriate routine for 
constructing the object code for the spe
cific type of statement being processed. 
This operation is called a "run" on the 
driver~ other "runs" occur in Gen for 
building ·specific instructions or for 
generating data references. 

The names of the code generating rou
tines indicate the functions they perform~ 



for example, assignment statements are pro
cessed by ASSIGNMENT STA GEN, while GO TO 
statements are processed by GO TO STA GEN. 
These routines construct the code for the 
stat.ement on the CODE roll and, when the 
code is complete, return to GEN PROCESS. 

END STA GEN processes the END statement 
and provides the normal termination of the 
Gen phase by jumping to TERMINATE PHASE 
after producing the code. The code pro
duced for the END statement is identical to 
that for the STOP statement if a main 
program is being compiled or a RETURN 
statement if a subprogram is being com
piled. If an AT statement precedes the 
END, an unconditional branch instruction .is 
constructed to return frorr. the debug code 
to the main line of code. 

TERMINATE PHASE lG0544) pr0pares for and 
calls the Exit phase of the compiler. 

STA GEN FINISH, Chart EH 

STA GEN FINISH (G0496) determines wheth
er the present statement is the closing 
statement of any Do loops; if it is, this 
routine generates the code required for the 
DO loop closing and repeats the check for 
additional loops to be closed. 

When all DO closings have been pro
cessed, STA GEN FINISH resets pointers to 
temporary locations, clears accumulators, 
and returns to GEN PROCESS. 

PHASE 5 OF THE COMPILER: EXIT CIEYEXT) 

Exit produces the SYSPUNCH and/or SYSLIN 
output requested by the programmer, except 
for the ESD cards and TXT card produced by 
the Allocate phase. It also produces the 
listing of the object module on SYSPRINT, 
if it has been requested by the programmer. 

The description of this phase of the 
compiler is divided into two parts. The 
first of these, •Flow of ?hase S,• de
scribes the overall logic cf the phase by 
means of narrative and flowcharts. 

The second part of the description of 
the phase, •output from Phase s,• describes 
the output written by the phase. 

The rolls used by Exit are listed in 
Table 7, and are briefly described in 
context. For further dP.scription of rolls, 
see Appendix B. 

Table 7. Rolls Used by Exit 
r------------------y----------------------1 

Roll Numuer 
7 

16 
17 
20 
23 
38 
45 
46 
51 
52 
58 
62 

Roll Name 
Global Sprog 
Temp and Const 
ADC ON 
CSECT 
Sprog Arg 
Used Lib Function 
BCD 
Base Table 
RLD 
Branch Table· 
Adr Const 
Code 

------------------~----------------------

FLOW OF PHASE 5, CHART 09 

The routine EXIT PASS (G0381) controls 
the operation of this phase. After initia
lizinq, this routine calls PUNCH NAMELIST 
MPY DATA and PUNCH TEMP AND CONST ROLL. 
The routine PUNCH ADR CONST ROLL is then 
called and, if an object module listing was 
requested, the heading for that listing is 
written out. 

After thls operation, EXIT PASS calls 
PUNCH CODE ROLL, records the me~ory 

requirements for the code, and prints the 
compiler statistics. PUNCH BASE ROLL, 
PUNCH BRANCH ROLL, PUNCH SPROG ARG ROLL, 
PUNCH GLOBAL SPROG ROLL, PUNCH USED LIBRARY 
ROLL, PUNCH ADCON ROLL, ORDER AND PUNCH RLD 
ROLL, and PUNCH END CARD are then called in 
order. On return from the last of these, 
EXIT PASS releases rolls and exits to the 
Invocation phase of the compiler. 

This routine CG0382) initializes the 
location counter for the temporary storage 
and constant area of the object module. It 
then initializes a pointer to the TEMP AND 
CONST roll and begins the processing of 
that roll from top to bottom.. Each group 
on the roll is moved to the output area; 
when the output area is full, a TXT card is 
written. When the entire TEMP AND CONST 
roll has been processed, a jump is made to 
PUNCH PARTIAL TXT CARD, which writes out 
any partial TXT card remaining in the 
output area and returns to EXIT PASS. 

Section 2: Compiler Operation 55 



The information on the ACR CONST roll is 
used by this routine (G0383) to produce TXT 
cards for temrorary storage and constant 
area locations which contain addresses. 
RLD roll entries are also produced to cause 
correct modification of these locations by 
the linkage editor. The beginning address 
of the temporary storage and constant area 
is computed. Then, for each ADR CONST roll 
entry, the TEMP AND CONST roll pointer is 
added to that value to produce the address 
at which an address constant will be 
stored. This address is placed in the TXT 
card and on the RLD roll, the address 
constant from the ADR CONST roll initial
izes that location, and the area code from 
the ADR CONST roll is placed on the RLD 
roll. <see Appendix B for roll descrip
tions.) 

PUNCH CODE ROLL, Chart FC 

PUNCH CODE ROLL (G0384) initializes a 
location counter and a pointer to the CODE 
roll. Inspecting one group at a time, it 
determines the nature of the word. If it 
is a statement number, PUNCH CODE ROLL 
simply stores it and repeats the operation 
with the next word. 

If a group is a constant, it is placed 
in the output area for SYSPUNCH and/or 
SYSLIN. This category includes literals 
which appear in-line and, thus, the con
stant to be written may occupy several 
groups on the roll. 

Groups representing code are placed in 
the output ar~a and, if an object module 
listing has been requested, the line 
entered into the output area is listed 
before it is punched. The contents of the 
CATA VAR roll are used f cr the listing of 
the operands. 

If the group on the CODE roll is an 
indication of the definition of an address 
constant, the location counter is stored 
accordingly, and the operation of the rou
tine continues with the next group. 

PUNCH CODE ROLL also determines whether 
the group is an indication of the defini
tion of a label, if it is, the routine 
defines the label on the ERANCH TABLE roll 
as required, inserts the label in the 
output line for the object module listing 
and repeats with the next group on the 
roll. 

When all groups on the roll have been 
processed, a transfer to PUNCH PARTIAL TXT 

56 

CARD is made; that routine writes out any 
incomplete TXT card which may be · in the 
output area, and returns to EXIT PASS. 

PUNCH BASE ROLL, Chart FD 

PUNCH BASE ROLL (G0399) initializes a 
pointer to the BASE TABLE roll and initial
izes the location counter to the beginning 
address of the object module base table. 
It then enters each group on th~ BASE TABL~ 
roll into the 'IXT card output. area; it also 
records the object module ESD number and 
the location counter on the RLD roll for 
later production of the rtLD cards. 
Whenever the output area is full, a TXT 
card is written. When all groups on the 
BASE TABLE roll have been processed, the 
routine makes a jurrp to PUNCH PARTIAL TXT 
CARD, which writes out any incomplete card 
in the output area and returns to EXIT 
PASS. 

This routine (G04001 first initializEs a 
pointer to the BRANCH TABLE roll, and the 
location counter to the beginning location 
of the otject module branch table. When 
these operations are completed, the routine 
inspects the BRANCH TABLE roll from top to 
bottom, making the requisite entries on the 
RLD roll and entering the addresses trom 
the roll in the TXT card output area. 'IXT 
cards are written when the output area is 
full. When all BRANCH TABLE roll g~oups 
have been processed, the routine jumps to 
PUNCH PARTIAL TXT CARD, which writes out 
any incomplete card in the output area and 
returns to EXIT PASS. 

EQ~£tl_§PROG ARG ROLL, Chart FF 

PUNCH SPROG ARG ROLL (G0402) initializes 
a pointer to the SPROG ARG roll and ini
tializes the location counter to the begin
ning address of the subprogram arguments 
area of the object module. 

The routine then inspects the grou~s on 
the SPROG ARG roll. If the first word of 
the group contains the value zero <indicat
ing an argument whose address will be 
stored dynamically), the group is placed in 
the TXT card output area, and the card is 
written if the area is full. The routine 
then repeats with the next group on the 
roll. 



If the SPROG ARG roll group does not 
.contain·· zero, the group is then inspected 
to determine whether it refers to a tem
porary location. If it does, the correct 
location <address of the tem~orary storage 
and constant area plus the relative address 
within that area.· for this location) is 
determined. The required RLD roll entries 
are then made, the address is moved to the 
output area, and PUNCH SFROG ARG ROLL 
repeats this process with the next group on 
the roll. 

If the group from the SPROG ARG roll 
contained neither a zero nor a temporary 
location, the argument referenced must have 
been a scalar, an array, a· label or a 
subprogram. In any of .these cases, a base 
table pointer and a displacement are on the 
~ointed roll. From these, this routine 
computes the location of the variable or 
label or the .subprogram address, .enters it 
in the TXT card output area, and records 
the RLD inforroation required on the RLD 
roll. The routine then repeats with the 
next group o!l the SPROG ARG roll. 

This routine exits to EXIT PASS through 
PUNCH PARTIAL TXT CARD when all SPROG ARG 
roll groups have been processed. 

PUNCH GLOBAL SPROG RQLLL_Che!~_FG 

This routine CG0403) first inverts the 
GI.iOBAL SPROG rpll and moves one word from 
that roll to the WORK roll. If these 
actions indicate that there is no informa
tion on the roll, the routine exits.· 

Otherwise, for each group on the GLOBAL 
SPROG roll, this routine enters the ESD 
number for the subprogram and the location 
at which its address is to be stored on the 
RLD roll. The routine also writes a word 
containing the value zero for each subpro
gram listed (these words become the object 
module subprogram a1dresses region>. When 
all groups on the GLOBAL SPROG roll have 
been processed, the routine exits through 
PUNCH PARTIAL TXT CARD, which writes out 
any incomplete card remaining in the output 
area before returning to EXIT PASS• 

PUNCH USED LIBRARY ROLL, Chart FH 

This routine (G0404) performs the same 
function for the Y2!ig__~IB FUNCTIO~_-!:Q!! 
that the previous routine performs for the 
GLOBAL SPROG roll, thus completing the 
subprogram addresses region of the object 
module. The techniques used for the two 
rolls are identical. 

This routine (G0405> returns inunediately 
to EXIT PASS if there is no information on 
the ADCON roll. Otherwise, it writes out 
one TXT-card-for each group it finds on the 
roll. obtaining the area code, the address 
constant, and the address of the constant 
from the ADCON roll. The ESD number and 
the address of the constant are placed on 
the RLD roll for subsequent processing. A 
TXT card is punched containing the. con
stant. The operation of PUNCH ADCON ROLL 
terminates when all groups on the roll have 
been processed. 

QBQER_~~D PUNCH RLD ROLL, Chart FJ 

· This routine (G0416) sorts the RLD roll 
and processes the groups on that roll, 
producing the object module RLD cards. The 
card images'are'set up, and the RLD cards 
are actually written out as they are com
pleted. When all information on the roll 
has been processed, this routine returns to 
EXIT PASS. 

PUNCH END CARD (G0424) produces the 
object module END card. It moves the 
required information. into the card image 
and initiates the write operation; it then 
returns to EXIT PASS. 

PUNCH NAMELIST MPY DATA, Chart FL 

This routine (G0564) is responsible for 
the punching of TXT and RLD cards for those 
words in the object module NAMELIST tables 
which contain pointers to array dimension 
multipliers. The multipliers themselves 
are placed on the TEMP AND CONST roll. The 
required information is found on the 
NAMELIST MPY DATA roll; when all groups 
have been processed, this routine returns 
to EXIT PASS. 

OUTPUT FROM PHASE 5 

Four types of output are produced by the 
Exit phase of the compiler: TXT cards, RLD 
car~s, the object module listing. and the 
compiler statistics. The cards are pro
duced on SYSPUNCH and/or SYSLIN, according 
to the user's options. The listing, if 

section 2: Compiler Operation 57 



requested, is produced on SYSPRINT. The 
compiler statistics for the compilation are 
produced on SYSPRINT. 

The formats of the TXT and RLD cards are 
described in the publicaticn IBM system/2&Q 
Operating System: Linkag~-~QitQE-~EQgr~~ 
Loqic_J1~~~!· The object module listing 
consists of the following fields: 

58 

• Location, which is the hexadecimal 
address relative to the beginning of 
the object module control section, of 
the displayed instruction. 

• Staterrent number <entitled STA NUM), 
which is the consecutive statement 
number assigned to the source module 
statement for which the displayed 
instruction is part of the code pro
duced. This value is given in decimal. 

• Label, which is the statement label, if 
any, applied to the statement for which 
the code was produced. The statement 
label is given in deciroal. 

• operation code (entitled OP>, which is 
the symtolic operation code generated. 

• Operand, which is given in assembly 
format but does not contain any vari
able names. 

• Operand (entitled ECD OPERAND), which 
contains the symbolic name of the vari
able ref erred to in the source module 
statement which resulted in the code. 

The compiler statistics are the final 
output from phase 5. The formats for the 
messages which provide compiler statistics 
for the compilation are as follows: 

•OPTIONS IN EFFECT* option{,option} ••• 
•OPTIONS IN EFFECT* option{,option} ••• 
•STATISTICf* SOURCE STATEMENTS=nnnnnnnn 1 , 

PRGGRAM SIZE=nnnnnnnn2 

and 

•STATIS'I'ICS• NO DIAGNOSTICS GENERA'I'E:O 

or 

*STATISTICS* nnn DIAGNOSTICS GENE.RA'I'ED, 
HIGHEST SEVERITY CODE IS n 

where: 

nnnnnnnn 1 is the number 
ments expressed 
integer. 

of source state
as a decin·al 

nnnnnnnn 2 is the size, in bytes, 0£ the 
object module expressed as a 
decimal integer. 

nnn 

n 

is the number of diagnostics 
generated expressed as a deci1ral 
integer. 

is the condition code. 

The first statistics message <giving 
source statements and prograro size> is 
suppressed whenever a BLOCK DATA subprogram 
is compiled; however, the two options-in
effect messa~es and one of the other statis
tics messages will still appear. 



Chart 00. IEYFORT (Part 1 of 4) 

lEYFORT 

• ••••A2••••••••• • 
: IEYFORT : ............... 

l :••••B2•••••••••: 
• INITIAL! ZE • 
• AND SET SAVE • 
: REGISTERS : ........ 1 ........ 

:••••c2•••••••••: 
• ENABLE • 
• INTERRUPTS BY • 
: SPIE MACRO • ................. 

.... . . 
: A3 : .... 

IEYFOl ! •••••AJ•••••••••• 
::~~~~:·-·-~~~= 
• INITIALIZE • 
• TIME AND DATE • : .. ;~~~~;;~~ .. : 

1 ••••••BJ••••••••••• 
• SYSTEM OPEN • 

FOR SYSIN AND 
• SYSPRINT * . ........... . 

l .•. 
CJ ' .• .. 

.• •. NO 
*. LOAD OPTION .. •---1 •. . . .. . . • .. • ' 

IEYPRNT 

* ••••A4••******* • 

: IEYPRNT : ............... 

1 
:••••B4•••••••••: . . 
*INITIALIZE SAVE• 
: REGISTERS : ................. 

l :••••C4•••••••••: 
* SAVE • 
• LINE COUNT * 
• ORIGIN . 

l i YES (:;•: 

.. ...... i ........ 
. •. 

: DS : .... 
IEYF22 l •••••n5•••••••••• :·•••02•········: . . 

•INITIALIZE BASE• 
: REGISTERS : ................. 

l •••••E2•••••••••• 
=~~:~<.:!~·-·-~~= 
• SCAN * * COMPILER * * OPTIONS * 

••••••DJ••••••••••• 
SYSTEM 

OPEN FOR 
SYSLIN ............. 

.... 1 . . 
* EJ •-> . . .... 

IEYF05 • •. 
•EJ * 

• • •. NO 
*.DECK OPTIONS • •---i . . . . •. .• . .. • 

.04 • 
•. *PRNTHEAD 01A2* 

.• •. YE.S •-•-•-•-•-•-•-•-• *. BEGIN NEW • *-------->* PRINT * 
•. PAGE • • • PAGE HEADING • •. . . . . • .. • 

::::: :->l• •NO 

IE'fF25 :••••Eli•••••••••: 
* ADVANCE • 
:LINE COUNT ONE : . . ................. 

.. ..... I ...... 
. . 
: E4 : .... 

........ r ....... 
. •. 

iYES :•:;•: l . •. 
F2 *· . • •. 

• • DD NAMES •. NO . . . . •. . . 
••••••FJ••••••••••• 

SYSTEM 
OPEN FOR * SYSPUNCH •. SPECIFIED • •---1 

•. . . . ........... . 
* YES * **** * **** l l : .:~.: : .~~. !-> 

IEYFlO 

=~~~~~::::~g: : .. ::~;::::::···: 
• SCAN • *LINES/PAGE FOR • 
: REP~g~~:rnNTS : :PRINTING FORMAT: ........ r ....... 

. •. 
H2 *· 

. ............... . 

l . . • . . • *· NO 
•••••HJ•••••••••• 

•.HEADING DATA • •---1 •. . . •. . . • ... : IEYPAR : ............... i YES (~~:: 
•••••J2••········ 
=~~~~;:·-·-~~~:: 
• INITIALIZE • 
• HEADING • : .. ~~~~~;;~~ .. : 

. L . . 
: AJ : .... 

'" . . . • . 
.• MAX •.YES* * *. LINES USED • •---->* 05 • •. . . . . •. . . . ... ·ro 

·'· G4 •. . . •. :••••G5•••••••••: 

NO • * CARRIAGE •. YES • ADVANCE • 
---•. CONTROL=O • •------->*LINE COUNT ONE • •. . . . . •. . . . . .. . . . . ............... . 

.,------------------------] 
.• . 

H4 • .. 
.• MAX •.YES* • *. LINES USED • •---->• 05 * •. . . . . •. . . • ... 

• NO 

::::::---->1 
:••••J4••·······: 
• STORE LINE * 
• COUNT INTO • 
: SYSPRT FORMAT : ................. 

l 
•••••I<4••········ * SET • ••••KS••••••••• 
•PARAMETERS AND • • RETURN • 
•PRINT ADDRESSES•-------->• TO COMPILER • 

: INTO S'fSPRT : * ** ** •• ••••••••• • 

Section 2: compiler Operation 59 



Chart 01. IEYFORT (Part 2 of 4) 

ERE.XITPR 

****Ai********* . . 
* EREXITPR . . . . . . . . . . . . .. . . 

v 
*****Bl********** 
* SET * 
+ ERrtOR CODE * 
*KESUL'I'ING FROM * * PR.INT ERROR * . ................. 

l_>:~i: .. . . .... 
IEYMOk 

•• ••c1••••••••• . . 
• IEYMOR . ............... 

j 
••• • +Dl********** . . 
• ISSUE GETfJ'.AIN * 
~FOR 4K BYTES OF*<--
• STORAGE: * . . .................. 

l . . . 
El *· . . . 

YES • * ---+. SUCCESSFUL . . . .. . . . . 
ro 

**••*Fl*****"***** . . 
* DELETE * 
*INACTIVE-MODULE* . . . . ..... ........... . 

l . .. 
• • WER~ *· YES *. ;t\NY DEt.ETED • *---' . .. . . . . 

ro 
*****Hl•'4'••••**** . . 
* rtETURN WITH * 
• POSITIVE * 
+CONDITION CODE * . . ••• ** •••••••••••• 

-------~---1 

6-0 

v •••••Jl••········ * ·RETURN * * WITH '* NON-POSl TIVE * 
*CONDITION COD£ * .. . ...... ... ........ . 

PRN'tHEAD 

****A2********* . . 
* PRNTrlI.AD * . . ............... 

j 
*****82********** . . 
• ADVANCE • 
• PRINT PAGE * 
• COO.:lT • . . ................. 

l 
•••••c2••••****** . . 
+ CONVERT + 
* PAGE COUNT TO * 
+ DECIMAL * . . ................. 

l 
+++•+D2++++.+++++• . . 
+SET PAGE COUNT + 
+ INTO HEADING * 
+ FORMAT * . . .......... ...... . 

l 
*****E2++ •+++++ ++ . . 

SET PROGRAM 
• NAi1E INTO * 
:HEADING FOR.."1AT : 

··········-········ 
l 

*****F2********** • • 
+SET PARAAETERS * 
+ AND ADDRESSf.S * * INTO SYSPRT + . . 
'"'"")"''"" 
** ++ •G2********** . .. 
* SET * * LINE ·COUNT TO .* 
: TWO : 
** ••••••••••••••• 

l 
. *·· 

H2 * 

. .... . . 
* B3 * . . .... 
! 

******B3*********** 

PRINT HEADING . . . ........... . 
l •••••c3•••••••••• . . 

* AUVA~CE * 
•LINE COUNT TWO * . . . . . ............... . 
:·::·=->! . . .... 

PR:iu05 
*****D3********** . . 
* SET LINI: * COUNT AND 

ORIGIN . . ................. 
l 

*****E3********** 
* SLT * * CAR:KIAGE 
+ CONTt?.OL TO * * SKIPPlNG LINE * . . .................. 

j 
****F3********* . . 

* RETURN * 

. . . ... 
"+ • .. NO * * *. OPTIONAL • *---->* 03 + 
•. HEADING • * * * . . . . . ... . ... l YES 

•••••J.2••········ * OBTiU'N • 
* OFFSET AND * 
+ CONTROL BLOCK • 
* INFORMATION • . . ................ . 

l .... . . 
* B3 * . . .... 

IEY.READ 

+•••A4••••••••• . . 
+ IEYREAD * . . . . ............. . 
I 

*****B4********** . . 
* SET BASE * * AND SAVE. * * REGISTERS * . . . ....•.•......... l ~ ... . . 

: cs :--1 . ... . •. c4 •. •••••cs•••••••••• . * • . • • 
• * *. NO *SET PARAMI:;'IE"RS * *. FIRST CARD • *-------->·+ AND ADDRESSES * *· READ ... * * FOR SYSlN * 

+. * * FORMAT * 

'~""~' '·i·;,, ········i········ 

*****D4*****••••• ******D5*********** . . 
* OBT/l.IN CARD * * OHIGIN AND * * RESET FLAG . . . ............... . 
: ·::· :->! .... 
*****E4"'********* . . 
* RESTORE * 
*SAVE REGISTERS * . . . . ................. 

j 
****F4********* 

* RETURN * * TO COMPILr.R * . . ................ .... . . 
: G4 :--1 .... ~ 

*****G4********** . . 
* SAVE -CARD * * ORIGIN OR l:.OF + 
* NOTATION * . . . ................ . 

! .... . . 
* E4 ,.. 
• * . ... 

SYSTEM GE'I 
ROUTINE., 

+ OBTAINS EOF + . ...........• 

l . •. 
E5 •. 

•• *· 
NO .+ *· 

· 1--•.CONCATENATED • * 
*.DA'l.'A S.E.'lS. * . . . . . ... 

(~~:: i YES 

*****FS*****~**** * SET SVJITCh .B * 
+ }'OR * CONCATENA'l.'ED 
* DATA SETS=O * . . ................... 

l .... . . 
• cs • . . . ... 



Chart 02. IEYFORT (Part 3 of 4) 

EREXITIN 

••••'At••······· . . 
* EREXITIN . ................ 

I 
y . 

*****Bl********** . . 
* OBTAIN * 

SYSIN ERROR 
COUNT . ................. 
I 
y 

•*• EREXINOS 
Cl *• *****C2********** .. .. . ' . . 

•* *• YES * SET * 
•.ERROR CODE 0 .-----:>•TERMINAL ERROR * 

*• .• * CODE * .. .. .. .. 
ro 
y 

•••••Dl********** . . 
• SETUP BAD , *· 
* CARD IMAGE 
* MESSAGE * . ................. 

l 
y 

•••••El********** 
*PRNTMSG 03A l * ·-·-·-·-·-·-·-·-·· * ·PRINT * ERROR * * MESSAGE * .................. 

I 
y 

*****Fl********** . . 
* SET * 
*TEfU4 I NAL E~ROR * 
* CODE * . . .................. 

l 
y ..... 

•-01 • 
* CS• . . 

I 
y 

•••••02••········ . . 
*SET UP.· BAO CARD* 
*AND ABORT COMP * 
: MESSAGES : .................. 

I 
y 

•••••e2•••••••••• 
*PRNTMSG 0 3A 1 * ·-·-·-·-·-·-·-·-· * PRINT * MESSA~~:S . . .. ...... r ....... . 

y ..... 
•03 • 
• A3* . ·• 

JEYPCH 

****A3********* . . 

lEYPCH . ............. . 
I 

• A4. •1 . . .... 
y 

******A4*********** SYSTEM 
* PUT ROUTINE, 

INSERT FILE 
* PARAMETERS .............. 
: ·::·:J 
• ·•··. I y JEYF70 V 

•••••83••········ . . 
* lNlTJAL.JZE * * BASE AND SAVE * 
* REGISTERS. * ........ r ....... 

y .•. 
C3. *• .. .. 

•* *• NO 
*• .:OAD tlPT!O~* •*---i 

•• ' •• J 
•• •• v 

* YES **** l : G3 : 

y ... 
03 •• 

•* .l.OAO ·». 
•* FILE . *• YES 

*•.!ERM1NATE0.· .• ·*1 
•• •* I *• .•• v ·. i NO :-::•: 

y 

i!l'••••E3********** . . 
*SET PARAMETERS * * AND ADDRESSES * * FOR SYSPCH * . . ... -.........•... 

I 
v 

******F3"'°*••••••••• 
SYSTEM * PUT ROUTINE 
INSERTS 

* PARA'.METER 
ADDRESSES . ............ .. 

: ·::·:->I . . 
•••• v 

IEYF60 .·•· 
'G3 ..i: • ··- .. p.:• DECK '0Pr.10N •:. -NJo .. .. .. . . 
... ·'* v 

rES 
v ... 

H3 *• 
•* DECK *• 

. . 
• B4 * . . 

•* Fll.E *• YES 
*•_TERMINATED ·•1 .. .. .. .. 

•• •• v 
• NO 
1 

! 
1 
y 

'•••••..J3•••••:*•••• * 1NS£RT '* 
PROGRAM 

•· 'S£QUENC·E 
NUMBERS 

. . ....... ,. ........... . 
I 
'Y 

.. ~.~3*'**** .. ••• . ' ·• 

. . 
• 84- • . . 

*****84••········ . . 
• RESTORE - * 
*SAVE REGISTERS • . . . . ...•............ 

y 
****C4********* . . 

* RETURN 
* TO COMPILER * . ............. . 

•.SET !PARAMETERS * • ·* 
* ;F.fJR SYSPCff •-->• A.4 * . . . . . . , ................. . 

EREXITPC 

****AS******•** . . 
EREXITPC . ............. . 

I 
y 

•••••OS********** . . 
SET FLAG * 

TO TURN OFF 
SYSPCH . ............... . 
I 
y 

•••••cs•~•••••••• . . SET 
ERROR CODE 

VALUE 

I 
v 

*****OS•******.*** . . ' . 
* SET FLAG TO * 
* TURN OFF LOAD * 
* LINKAGE * . .. ............... . 

I 
v 

*****ES********** . . 
* SET ERROR • * CODE FOR LINK * . * EOl T· .QUTPUT • 

. . 
,* B4 * . . 

Section 2.: compiler Operation 61 



Chart 03. IEYFORT (Part 4 of 4) 

PRNTMESG 

****Al******•** . . 
PRNTMSG ............... 

I 
v 

*****Bl********** . . 
* INITIALIZE * * PRINT BUFFER 
: WITH BL.ANKS * 
................. 

I 
v •••••c1•••••••••• * SET UP * * PR I NT BUFFER * ORIGIN AND 

: DISPLACEMENT ................. 
I 
v •••••01••········ . . 

* GET MESSAGE * 
LENGTH AND 

ORIGIN . .....•........... 

I 
v 

*****El********** . . 
* PLACE * 
*lST MSG SEGMENT* * JN PRINT * * BUFFER * ................. 

I 
v 

*****Fl********** * GET * * LENGTH AND * 
* ORIGIN OF 2ND * 
* MSG SEGMENT * . . .••.•••••....•... 

I 
v 

*****Gl********** . . . 
* PLACE 2ND * * SEGMENT 1 N * * PRINT BUFFER * . . ................... 

r 
v 

****•Hl********** . . 
SET * 

CARRIAGE 
CONTROL . ................. 
l ••••••.Jt••········· 

62 

SYSTEM PUT 
ROUTINE WRITE 

* MESSAGE * 
.............. 

I 
v 

****Kl********* . . 
* RETURN 

. ... . . 
* A3 * . . .... 
I 

. . 
* A4 •--. 
• • I v 

IEYRTN IEYFINAL V ... FREE POOL 

••••A2********* . . 
IEYRETN ............... 

v 
*****B2*********• . . 
* INITIAL.IZE * 
* BASE AND SAVE * 
* REGISTERS * . ................. 

I 
v •••••c2•••••••••• 

* OBTAIN * * COMPILER * 
*COMMUNICATIONS * 
* ORIGIN * ................. 

I 
v 

•••••D2••········ . . 
* GET CONDITION * 
* CODE RETURNED * 
* BY COMPIL.ER • . . . ............... . 

I 
v 

!****E2*********! 

*TEST L.AST ERROR* 
* CODE VS * 

PREVIOUS 
* SETTING * ................. 

I 
v 

•••••F2•••******* 
• SET • 
* FINAL. ERROR • 
*CODE TO HIGHEST• 
*VALUE RETURNED * . . ................. 

I 

•••••A3•••••••••• 
* RE-INITIALIZE * 
•· BASE AND * 
*SAVE REGISTERS * 
* FOR COMPILER * * TERMINATION * ................. 

I 
v ... 

B3 •• .. .. 
•* LOAD •• NO 

*• OPTION •*1 
•.SPECIFIED.• .. . . 

A4 *• .. .. 
•• DECK *• NO 

•••. ~¥6~~~0 .• ··-1 
*• •* I •• •• v i YES 

v 
••••••84•••········ 

PRINT DATA 
SET STATUS 

MESSAGE 

. . 
* C4 * . . .... 

•• •• v ••••••••••••• 
• YES •••• I I • . ..... . 
I : G3 : : C4 :->I .... 
V IEYFNLlO V 

•••••C3*•******** ****•C4*********• . . . . . . . . ISSUE 
CLOSE FDR 

SYSLIN . . ................... 
I 
v 

•••••03•••······· 
*FREEPOOL 03A5* ·-·-·-·-·-·-·-·-· • FREE STORAGE * 
* USED BY 

: •••• ~~~~!~ •••••• 

I 
v 

* ISSUE CLOSE * 
* FOR SYSIN ANO * 
• SYSPRINT + . . ................. 

I 
v 

•••••04••••······ 
*FREEPOOL 03A5* ·-·-·-·-·-·-·-*-• * FREE STORAGE •--. * USED BY SYSIN * I 
* AND SYSPHINT * I ••••••••••••••••• v 

. . 
: E4 :--, 
•••• v 

.... . . 
* HS * . . 

.•. IEYRSO •*• 
E3 •.· .. .. 

•*" *• NO 
* • SYSL IN OUTPUT •*"1 

•• •* .. . . 
•• •• v 

·,I YES : •::•: . . .... 
v 

**"****F3*********** 

PRINT DATA 
SET STATUS 

MESSAGE . ........... . 
:·::·:->I . . 
•••• v 

E4 *• .. . . 
•* RELEASE *• NO 

*• *• STORAGE •* • •--1 
*• •* I •• ... v 

* YES 
• **** * I 

: .::.:->I 
v 

*****F4********** . . 
*OBTAIN ADDRESS * 
* OF BLOCK TO * 
* RELEASE . ................ . 

I 

. . 
* H2 * . . 

v 
*****G2********** . . IEYFNL05 ••• v 

*****G4********** . . 
*ISSUE FREE.MAIN * 
*FOR RELEASE OF * 
* STORAGE * 

• INSERT 'MAIN' • 
• FOR PROGRAM *I * NAME OF NEXT * 
* PGM * ••••••••••••••••• v .... . . 
: H2 :--, 
•••• v 

IEYR60 •*• 
H2 *• .. .. 

.... . ' . 
* E4 * . . 

• • ANOTHER * • NO 
*• COMPIL.ATIDN •*---i 

•·•. .•·• I •• •• v 

: A3 : 

.
1 

YES * •••• • 

v •••••J2••········ . . 

G3 *• .. .. 
•* DECK *• NO 

*• OPTION •*I 
•.SPECIFIED.i* .. . .. 

•• •• v 

.
1 

YES : •::•: . . 
v 

•****H3********** . . . . ISSUE 
CLOSE FOR 
SVSPUNCH . ................. 

I 
v •••••J3••········ 

*FREEPOOL 03A5* 

................. 
I 
v ... 

H4 *• .. .. 
•* END OF *• YES 

*• STORAGE TO • •--, 
*• RELEASE •* I 

*• •* I •• •• v 
* NO **** 

I 
v . . 

* F4 * . . 
. . 
* H2 * . . 

* RE-INITIAL.IZE * 
*LINE, CARD AND * 
* PAGE COUNT * 

·-·-·-·-·-·-·-·-· . . * FREE STORAGE •-->* A4 * ................. 
I 
v 

•••**K2********** 

* USED BV * • * 
* SYSPUNCt-1 * . ................ . 

: RESTORE : * ••••K 3 ***•***** * 
•SAVE REGISTERS •~~~->• IEYPAR * . . . 

•****AS*********• 

* FREE POOL 

I 
v •••••as•••••••••• . . 

LOAD DATA 
SET BUFFER 

ADDHESS . ................ . 
I 
v 

•••••cs•••••••••• . . 
* COMPUTE 
*SIZE OF AREA TO* 
* BE FREED * 

I 
v •••••os•••••••••• . . 

*ISSUE FREEMAIN * 
* FOR DATA SET * 
* STORAGE 

I 
v 

****ES********* . . 
RETURN 

. . 
* HS * . . ...... 
I 
v 

*****HS********** . . 
* SET ERROR * 
*CODE FOR RETURN* 
* TO CALLER * . ............... . 

I 
v 

••••Js••••••••• . . 
RE_TUilN 



Chart AA. OPTS CAN 

****A2********* . . 
* OPTS CAN * . . 

v 
*****B2********** . . 
* GET * 
*PARAMETER LIST * 
* LENGTH * 
................. 

I 
I 
v .•. 

C2 *• .. .. 
NO.• AMY*• 

I *• OPTIONS •* 
•.SPECIFIED.• ·- .. v •••• 

**** * YES 
: E3 : I • • I 

v .•. 
02 •• .. .. 

YES •* *• ! •.COMMA PRESENT.• .. .. 
*• •• .. .. 

I ro 
I :••••E2•:•••••••: 

* SET TO SCAN * ONLY 8 CHAR. * 
•IGNORE ANY OVER* 

I : ••••••• : ••••••• : 

I I 
I •••••F2•: •••••••• I • • 

* ADVANCE * 
*PARAMETER SCAN * I : POINTER * .................. 

I 
~--->1 

PROSSQT 

I 
v .•. 

G2 *• .. .. 
•* PROGRAM *• YES 

*• NAME •*1 •.SPECIFIED.• 
•• •* 

•• •• v 
• NO **** 

..... . . 
* A3 * . . .... 
I 

PRS20 V 
*****A3********** . . 
* SET JNOJCATOR * 
*IN POINTER FOR * 
* COMPILER * 
................. 

I 
v 

PRS22 •*• PRS23 •*• 
B3 •· a• •. •••••es•••••••••• .. .. .. .. . . 

.• *• NO •* *• YES * 
*• NAME= QUOTE .•~~~->•• LINECNT= .•~~~->• SET FLAG 

*• •* •• QUOTE •* * .. .. .. .. .. .. . ... . ............... . 
: •::• :_> •

1 
YES * NO . . .... 

PRS25 V 
•••••C3******•*** . . 
* SET PROGRAM 

I 

• NAME JN * I 
:coMPI~~:A COMM. : I ................. J 
:·::·:->! • • <-----------------------.... 

PRSOUT V 
•••••03•••······· . . 
* RESET * * SCAN CONTROL * 
* FLAGS * . ................ . 

I 
• •••• • I 

: E3 :->1 .... 
OPTSlO V 

•••••E3•••••••••• * OBTAIN * 
* SYSTEM * 
*GENERATED NAME * 
* OR PGM NAME • . . ................. 

I 
v 

•••••F3******•*•* +' SAVE * 
NAME FOR 

* MULTIPLE * 
: COMPILATIONS * . ............... . 

l 
v ... 

G3 *• 
OPTS20 

•* •. ****G4*****•••• 
.• WAS *• YES * 

*• NAME OPTION .•---->" RETURN 
*• GIVEN •* * .. .. . ............. . .... 

* NO . . 
I v .•. 

. H1 ·. *• *****H2~********* 
•* *• * COMPARE * 

•* LINECNT *• NO * PARAMETERS * 
*• SPECIFIED .•~~~-·>*SPECIFIED WITH * 

*• •* * PARAM TABLE * .. .. .. .. 
* YES 

I 
PRS30 V 

*****.JI********** . . 
PREPARE 

+ CONVERT 
LJNECNT ................. 

I 
v .... . . 

• 03 • . . 

. ............... . 
I 
v .•. 

J2 ... .. .. 
YES •* PARAM *• 

I *• IN TABLE •* .. .. .. .. 
v •••• 

**** * NO 

: A3 : I 
• • v .... . . 

• 03 • . . 

• C3 * . . 
v 

:••••H3****•••••: . 
• INSERT SYSTEM * 
* NAME * . ............... . 

I 
v 

••••J3••••••••• . . 
RETURN . . ............. . 

Section 2: Compiler Operation 63 



Chart AB. 

64 

DD NAMES 

••••A2********* . . 
DDNAMES * ................ 

I 
I 
v 

•••••c2•••••••••• . . 
* OBTAIN * 
*LENGTH OF DATA * 
* SET NAMES * ................. 

I 
v .•. 

02 •• .. .. 
•* DOES *• NO 

*• LIST EXIST .•-------~ .. .. .. .. .... I YES 

v 
*****E2***•****** . . 
* ADVANCE LIST 
* POINTER TO 

FIRST ENTRY . . ................. 

v 
*****G2********** . . 
* INSERT * 
*ENTRY 1 NTO DCB * 
• FOR SY'iL IN * . . ................. 

I 
v 

*****H2********** . 
MOVE 

POINTER TO 
FIFTH ENTRY ................. 

I . 

I 
v .•. 

J2 •• .. .. 

I 
v 

****E3********* . 
RETURN 

•* DOES *• NO * * 
*• ENTRY EXIST •*-->• H4 * .. .. . . .. . . .. .. 

* YES 

I 
v .... . . 

* A4· * . . .... 

.... 
* * A4 *I * . • .... 

v 
*****A4********** . . 
• INSERT • 
*ENTRY INTO DCB*· 
* FOR SYSIN * . ".' . ..............••.. 

I 
v ····••84••········ • * 

MOVE * 
PQINTER TO * * SIXTH ENTRY .. ................. 

I 
v .•. 

C4 *• 
' ·* *• 

•* .. DOES *• NO * * 
*• ENTRY EXIST •*-->* H4 * 

*• . •• • * 
*• •• .. .. i YES 

v 
•••••D4********** . . 
* INSERT * 
*ENTRY INTO DCB * 
* FOR SYSPRT . ...........•.•.. 

I 
v 

*****E4********** . .. 
*MOVE POINTER TO* 
* SEVENTH ENTRY * . . . 
***************** 

I v ... 
F4 *• .. .. 

•* DOES *• NO * * 
*• ENTRY EXIST .•-->* H4 * .. .. . . 

•• •* .... i YES 

v 
*****G4********** . . 
* INSERT * 
*ENTRY INTO DCB * 
* FOR SYSPCH * . . .....•......•.•• 

:·::·:J 
• ••••• I 

DDNMPUT I 
v 

****H4********* . 
* RETURN ................ 



Chart AC. HEAD OPT 

****A2********* 
* * * .. HE ADOPT 

······r .... * * 
v 

*****B2********** 
* * * OBTAIN LENGTH * 
* OF HEADING * 
* OPTION * .. .. 
***************** 

I 
v .... 

C2 *• 
•* * • ****C3********* 

•* *• NO • * 
*•HEADING LIST .•·~~~~->* RETURN * 

*• EXIST •* * * 
*• •* *************** 

*· •* * YES 

I 
v 

*****02********** .. .. 
* SET UP * * CENTERING OF * 
* PAGE HEADING * 
.. * 
***************** 

I 
v 

*****E2********** .. .. 
*FORCE 119 CHAR * 
* LIMIT FOR * 
* OPTIO~AL * 
* HEADING * 
***************** 

I 
v 

*****F2********** 
* SET * 
*HEADING ORIGIN * 
*AND LENGTH INTO* 
*PRINT MSG TABLE* 
* * ***************** 

I 
v 

****G2********* 
* * 
* 
* 

RETURN 

................. * * 

Section 2: compi1er operation 65 



Chart AD. 

66 

TIMEDAT 

****A2********* . . . 
* TJMEDAT * • • ••••••••••••••• 

v 
*****82********** 
* SET UP * 
* UNIT * 
* SPECIFICATION * 
•FOR TIME OF DAY* • • •••••••••••••••••• 

v •••••c2•••••••••• 
* GET * 
* TIME AND DATE * 
* FROM SYSTEM * 
* SUPERVISOR * 
• • ••••••••••••••••• 

v 
*****D2********** • • 
" INSERT * 
* TIME INTO * 
* HEADING LINE * • • ••••••••••••••••• 

I 
v 

*****E2********** • • * INSERT * 
*DATE INTO LINE * .. . 
• • 

v 
****F2********* • • * RETURN * • • ••••••••••••••• 



Chart 04.1. 

START 
COMPILf;R 

STATEMEN'I' 
PROCESS 

PHASE l - PARSE (Part 1 of 2) 

G0630 

****A2********* • • * IEYPAR * . . ................. 

l 
*****B2********** . . 
* PROGRAM * 
*INITIALIZATION * . . . . 
***************** 

I 
******C2*********** 

READ ONE 
CARD INTO * INPUT AREA 

************* 

I 
*****02********** * TURN ON FLAGS * * INDICATING * 
•FIRST STMT AND * 
*PREVIOUS PRINT * * COMPLETE * ................... 
. . .... :·::·=->! 

G0631 
******E2*********** 

PRT/RD SRC-BAA2 . -·-·-·-·-·-·-·· PRINT OLD STMT 
* AND ERRORS * 

READ NEW 

************* 

G0632 I 
*****F2*********:4i * STA INIT-BBA2 * 
·-·-·-·-·-·-·-·-· * I NI TIA LI ZE * 

FOR NEW 
* STATE~~NT * 
***************** 

G0635 I 
*****G2********** 
*LBL XLATE BCA2* ·-·-·-·-·-·-·-·-· * PROCESS LABEL * * FIELD AND * * COL 6 * ................. 

l ... 
H2 • 

·* LP...BEL *. 
YES • * OR *· !--* . COL 6 . * 

*· ERRORS . * . . ..• . . . . 
:·:~•: 1. NO 

**** 

G0636 
*****J2••········ 
*STA XLATE- BDAl* 
·-·-·-·-·-·-·-·-· * PROCESS * 

ENTIRE * STATEMENT + ......•.......... 

l 
**** . . 

* B4 * . . .... 

THIS IS THE FIRST 
CARD OF THE FIRST 
STATEMENT. INITIAL 
COMMENTS ARE WRITTEN 
OUT IN THIS OPERATION. 

AT COMPLE'I'ION OF 
PRINT AND READ 
SOURCE, STMT TO 
BE PROCESSED IS 
ON SOURCE ROLL. 

**** . . 
* B4 * • • .... 

G0633 1 
*****B4********** 
*STA FINAL- BEA2* ·-·-·-·-·-·-·-·-· +COMPLT POLISH. * 
*CLOSE DO LOOPS.* * MOVE POLISH. * 
***************** 

l ... 
C4 *· 

·* LAST *· NO .+ STMT OF *· !--+.SOURCE MODULE.* 
*.PROCESSED.* 

*.. • * .... 
+ •••• • 1. YES 

* E2 * . . 
**** 

.•. 
D4 *· . . . . 

YES • * LAST *. !--*. STMT FLAG = • * 
+{END CARD).* • . . * ..... .••••. 

1
. NO 

* F4 * . . .... 
*****£4••········ . . 
* RECORD * * 'NO END CARD' * * ERROR MESSAGE * . . 
***************** .... I . . 
* F4 *-> . . .... 
*****F4********** . . 
* SET INDICATOR * 
* FOR READ * * COMPLETE . . .......•.....••.• 

I 
*****G4********** 
*PRT/l<D SRC-BAA2+ ·-·-·-·-·-·-·-·-· *PRINT OLD STMT * * AND ERRORS. * * READ NEW STMT * 
***************** 

l 
**** . . . 

* BS * . . 
**** 

Section 2: 

**** . . 
* B5 * • • . ... 
! . •. 

BS *· . • *· 
YES .+ WAS *· l--*. THERE AN END • * *· CARD • * . . . . 

*· .• :·::•: 1. NO . . 
. •. 

cs *. 
. * *· .• LAST *· NO 

*.STMT AN ARITH.*---
*. IF * 

*· . * * ..• 

G0844 i YES 

*****DS********** 
*PROC POL BGA2* 
·-·-·-·-·-·-·-•-* * COPY POLISH * * ROLL TO AFTER * * POLISH ROLL * 
***************** l <----------

fj 063003 ·*· 
ES *· . . . . 

YES • * LAST *· l--* . STATEMENT A 4 * 
*· BRANCH • * *. ' . * *· .• 

:·::•: l+NO . . 
G0642 

*****F5********** 
*ACT END ST BFA2* 

·-·- ·- ·- ·- ·- *- ·- * * BUILD * 
*RETURN OR STOP * 
* POLISH * 
***************** 

G0634 I 
*****GS********** 
*STA FN END BED~* 

·-·-·-·-·-·-·-·-· *COMPLETE POLISH* * WITH STMT CNT * * AND MOVE * 
***************** 

:·::·:->j . . .... 
I 063004 

*****HS********** . . 
* PLACE * * END DR IVER ON * * POLISH * . . 
***************** 

G0634 I 
*****JS********** 
+STA FN END BED~* 

·-·- ·-·- *- ·-·-·-. *COMPLETE POLISH* * WITH STMT CNT * 
* AND MOVE * 
***************** 

1 
***** 
•04..2• 
* B2* .. . 

Compiler Operation 67 





Chart 04.2. PHASE 1 - PARSE (Part 2 of 2) 

***** **** •OQ~+ * * 
* B2* * 83 * 
* * • * 
* **** 

J. #63181 < < t 
B2 *· *****83********** 

·* *. * • . * XTEND *. YES * CLEAR RESERVE * * LBL ROLL • *-------->•MARK FROM XTEND* 
* . RESERVED • * * LBL ROLL * 

• . * * * 
•. ·* ***************** 

: •:;• =->l* NO . . 
**** I 063178 

*****C2********** . . 
REr-'..OVE 

* GROUP FROM * <----------------* XTEND LBL ROLL * . . 
***************** 

l 
. •. i 063188 

D2 *. *****04********** . * *. * SET LOOP * . * XTEND *. YES * DATE POINTER * * LBL ROLL . *----------------:--::---------------->*ON SCRIPT ROLL,* 
*. EMPTY • * * RELEASE * 

*· ·* * IND VAR ROLL * 
•-.·~o ********i****•••• 

1 v 
.. •. ~063179 ·*· ·*· 

E2 *. E3 *· E4 *· 
·* *· ·* *· ·* *· ·* END *· YES ·* TEMP *· YES ·* PGM A *· YES *· OF DO LOOP • *------->*. ROLL EMPTY ·.•-1 *. SUBPROGRAM • *------> 

*· ·* *· ·* *· .• *· .• *· ·* •. ·* 
*· ·* *· ·* *· ·* .i. NO [ NO :::~:: .i. NO 

*****Fl********** F2 *· *****F3********** F4 *· * * . * GROUP * . * TAG GROUP AS * * *. 
REMOVE * NO • * TAGGED AS *. * POSSIBLE * . * BLOCK *. YES 

GROUP FROM •<--------*. POSSIBLE • * *EXTENDED RANGE * *. DATA • *-------> 
WORK ROLL * *.RE-ENTRY • * * CANDIDATE ON * *. PROGRAM • * * * *.POINT.* *LOOP DATA ROLL * *. . * 

······::!:::····· '"''''" '-i·;,, ········[········ ·-i·:, 
* * *****G2********** *****G3********** *****G4********** 

* * * TAG "TliOSE * * * 
* PUT * * LABELS ON LBL * *SET SYMBOL AND * 
* GROUP ON T&~P * *ROLL WHICH MAY * *MODE FOR IBCOM * 
* ROLL * * BE RE-ENTRY * * ROU'I'!NE CALL * 
***************** 

l 
**** . . 

* C2 * . . 

* POINTS * * * 
***************** ***************** 

I J 
*****H3** *-***** ** *****H4* ********* 
* * * * * * * MOVE IBCOM * 
*CLEAR TEMP ROLL* * POINTER TO * * * AFTER POLISH * -* * ROLL * 
***************** ***************** l·: '""""' ) '-------------

• • *****J4********** 
**** * * 

-* INITIALIZE * * FOR OPERATION * * OF ALLOCATE * • • 
***************** 

l 
**·**!<4••·~···-·· . . 

* IEYALL * . . 
***·***-****-**·*** 

Section 2: Compiler Operation 67.1 



Chart BA. 

PRINT A CARD 

68 

WRITE LISTING AND READ SOURCE 

G0837 

•••*A2********* * PRINT * 
*AND READ SOURCE* 
• * ................. 

v •••••02••········ . . 
* TURN * * OFF NO PRINT 
* FLAG * . ................. 

I 
v .•. 

C2 *• 
•* •• 

•=i: .::1:2•=•1YES 

.•. 
02 •• ... .. 

•* SOURCE *• YESV 
*• LISTING •* 

•.REQUESTED•* .. .. .. .. 
ro 
v 

*****E2********** . . 
* TURN * ON NO PRINT 
* FL~G * . ................. 

I< 
f83707 v 

*****F2********** . . 
* INITIALIZE * * STATEMENT CO * COUNT . . ................. 

rl.-a-3-.7-0-1--:1. ''''''' 
G2 *• *****G3***•****** 

•• *• • • 
•* PRINT *• YES "* MOVE 1 CD TO * 

*• OF STMT •+---->*SOURCE ROLL AND* 
•.COMPLETE •* * SET CONTROL * 

•• •* *. .. .. . ............... . 
ro l 
v ••• 

******H2*********** H3 *• 
•* *• 

•* END *• YES 

• * 
... 64 • 

* * .... 
I 
v 

******64•••········ 
INITIALIZE 

* FOR NEW STMT1 * 
READ ONE CARD * AND PRESCAN * 

STMT . ••.....•••.. 
.--------J 

v 
1083703 •*• 

C4 *• .. .. 
•* *• NO 

•.MORE TO READ •* .. .. 
*• •* .... 

* YES 

I 
183703 V 

******04*********** 
* WAIT FOR LAST * 

READ COMPLETE 
*AND READ ONE * 

CARD ••••......•.. 

PRINT ONE * 
CARD AND ITS 

* ERROR MSGS * 
••••......•.. 

*• *• S~:~~~~~T •* •*~< 
*• •* 

*• •• 
* NO I . 
v .... 

• * 
• 81' • #083704 v 
• • *****J4********** * TURN OFF * * FLAGS * * INDICATING NO * 

* MORE READ ANO * 
* NO MORE PRINT * 
***************** 

v 
****K4*•******* . . 

RETURN 

INIT 
READ A .CARD 

READ A CARD 



Chart BB. INITIALIZE FOR PROCESSING STATEMENT 

G0632 

****A2********* 
* * * 
* 

STA INIT * * *************** 

I 
v 

*****B2********** 
* * * INITIALIZE * 
* CHARACTER * 
* COUNTS * 
* * ***************** 

I 
v 

*****C2*****.***** 
* * *SET CRRNT CHAR * 
*TO FIRST SOURCE* 
* CHARACTER * 
* ***************** 

I 
v 

*****02********** 
* SET * 
*COUNT OF SOURCE* 
*STMT CHARACTERS* 
*TO NO. CARDS X * 
* 80 * 
***************** 

v 
*****E2********** 
* * 
* * * CLEAR FLAGS * 
* * * * ***************** 

v 
****F2********* 

* * 
* 
* 

RETURN 

*************** 
* 
* 

Section 2: Compiler Operation 69 



Chart BCl. 

STATUS CONTROL 

DIGIT 
<..."ONVERSION 

CONVERT ONE DIGIT 

REGISTER LABEL 

70 

PROCESS LABEL E'IELD (Part 1 of 2) 

G0635 

****A2*******•* . . 
*LBL FIELD XLATE* • • ·········••**** 

l •••••e2•••••••••• * SAVE ADDRESS * * .OF CURRENT * 
*BOTTOM OF WORK * * ROLL AND EX IT * * ROLL * ................. 

I •••••c2•••••••••• 
*SET STMT LABEL * * POINTER TO 0 * * AND SKIP TO * 
*FIRST NON-BLANK* 
+ CHARACTER * ...•.••••.•...... 

l 
• •• #063503 • •. 

02 •. 03 •• .. . . . . . . 
. * CHAR *· NO .• MUST THIS *. NO •.• ~0¥~IN L~SS .... ·-------->•. *. ST~Ia~t VE ••• ·-------v . . .. .. . . . .... 

*· . * * .. * *BC2* 

rES rES • ·~~· 

*****E2********** *****E3********** • • • • * INITIALIZE * * LABEL MISSING * * FOR DIGIT * * MESSAGE TO * 
• CONVERSION * * ERROR ROLL * • • • • ................. . ............... . 
: ·;:· :->l l . . ..... 
**** *BC2* 

#063501 .•. * C2* 
F2 *. * * . • •. * 

.• •. NO 

··l~'..'.i'.;~:.·----------1.~ .. ""' 
*****G2•********* *****G3********** * CONVERT * * SYNTAX * * ONE DIGIT TO * * MESSAGE TO * 
*BINARY. SKIP TO* * ERROR ROLL. * 
*NEXT NON-BLANK • * RESTORE WORK * 
* CHARACTER * *AND EXIT ROLLS * ................. . ............... . 

. J.. l 
·* *. ****H3********* . * CHAR *. YES * RETURN * *. COUNT LESS • *---! * (EXIT FALSE) * *· THAN 6 • * * * • . ·* ••••••••••••••• • ... l* NO :•;:•: 

• • •••• 
•••••J2••········ * MOVE LABEL * 
*TO LBL ROLL AND* * LABEL POINTER * * TO STA LBL * * POINTER * ................. 

l ... 
K2 *. *****K3********** • * *. * MULTIPLE * . * LABEL *. NO * DEFINITION * *. UNDEFINED • *------>* ERROR MSG TO * 

•. . * * ERROR ROLL * •• .. * • * ··.rhs ········1 .. ······ 
••••• • •••• +BC2• •BC2* 
• A.2• * A2• • * •• • • 

"i· 



Chart BC2. 

PROCESS POLISH 

NON-ACTIVE END 
FLAG INDICATES 
PR.EV IOUS STMT 
ALWAYS BRANCHES 
W'HE.N IT IS ON. 
USED IN TEXT· FOR 
GENERATION OF 

PROCESS LABEL FIELD (Part 2 of 2) 

***** 
*BC2* 
* C2* .. . 

...... 
+BC2• 
* A2• . . . 

~063502 l 
*****A2********** • • * MARK * * LABEL AS * * DEFINED * . . 
•~•****BC2******* 

r 
·*. . *· 

B2 •. B3 *. *****B4****"***** 
·* *. . * INNER *· * * ·* IN A *· YF.S ·* DO *· NO * PUT LABEL * *· DO LOOP .*-------->*. CLOSED FLAG .. •-------->* ON * *. . * *. ON • * *XTEND LBL ROLL * 
• . .• •. * • * •. ·* *· ·* ••••••••••••••••• 

------------------> r: __________ A ___________ i YES 1 
I 06350~ • •. J .•. 1063581 ••• 

C2 *. _ C 3 *. C4 *. 
* *· ·* IS- *· ·* IS *· 

NO ·* LAST *· NO ·* LABEL *· NO ·* LABEL ON *· 
---*. STMT AN ARITH .. * - <--*.. PREVIOUS • *<--------*. XTI:.ND TARG • * *. IF • * *. TARGET • * *. LBL • * *. .• *· . * *.ROLL • * 

• .. • *··* *··* 
rES i YES . rES 

*****02********** *****D3********** D4 *· *****D5********** 
*PUT POINTER TO * * TAG GROUP ON * ·* GROUP *· * TAG GROUP ON * * THIS LABEL. * *XTEND LBL ROLL * ·* TAGGED AS *· YES *XTEND LBL ROLL * 
*MOVE POLISH TO * <----* AS POSSIBLE * *. POSSI.BLE • +-------->* AS POSSIBLE * * AFTER POLISH * *RE-ENTRY POINT * *.RE-ENTRY ·* *RE-ENTRY POINT * 
* ROLL * * * *.POINT.* * * 

___ ::::::::!******* ** ++•••*******++••• * • r ;0 ******** *****+••• 
1063505 \{ 

*****E2********** *****E4********** 
*SET NON-ACTIVE * * * 
*END FLAG TO NXT* * REMOVE GROUP * 
* STA LBL FLAG * ------------------------------* FROM *<----------------
*AND CLEAR NEXT * *XTEND TARG LBL * 
* STA LBL FLAG * * ROLL * 
***************** ***************** 

CODE FOR END STMT. 

1 . .. 
F2 *· 

.• *· ****F3********* . * CHAR *· NO * RETURN * 
•. COUNT .. *------>• (EXIT TRUE) * 

*· = • * • • *· 6 ·* *************** • ... rES 
... 

G2 *· 
·* *· ****G3********* . * *. YES + RETURN * * .. CHAR A ZERO • *-------->+ {EXIT TRUE) * 

•.. . * * * 
*. ·* *************** •. . . 

* NO 

1 (SYNTAX FAIL! 
*****H2********** * SYNTAX MSG TO * * ERROR ROLL. * * RESTORE WORK * 
*AND EX IT ROLLS * . . 
***************** 

l 
*****J2********** 
* SCAN * * TO NEXT * * NON- BLANK * 
* CHARACTER * . . 
***** ************ 

l 
****K2********* 

* RETURN * * (EXIT FALSE) * • • ............... 
Section 2: Compiler Operation 70.1 





Chart BD. PROCESS STATEMENT 

GD636 •*• 
*****A2********** A3 * • 

****Al********* * * •* *• * * * SAVE * •* ASSIGN- *• NO * STA XLATE <>--~~~>• LOCATIONS OF •~~~->*• MENT TVPE .•·~~~~~~~~ 

* WORK AND EXIT * *•STATEMENT.•· . . .. .. ................. . ... rES 
v 

•*• •••••02•••······· 63 •• 
****Bl********* * RECORD * •* *• * * * ILLEGAL * YES •* IN *• * RETURN •<~~~-• STATEMENT •<~~~-•. BLOCK DATA •* 

* * * MESSAGE * *• ROUTINE •* ............... . . .. .. ................. . ... 
* NO 

v 
G0637 •*• 

C2 *• ••••c1••••••••• .• •. 
*ASSIGNMENT STA * •* *• YES 
* XLATE •~~~->•.STMT FUNCTION·•·-. ~~~~~~~~ ARITH FUNC 

DEF STA 
XLATE 

. .. .. ••.•.••..•..... .. .. .. .. 
ro 
v 

•••••02•········· * CONSTRUCT * 
* POLISH FOR * 
*- VARIABLE 

EXPRESSION 
* * .........•....... 

I 
v 

•••••03********** * UPDATE ROLL * * ANO CONSTRUCT * 
• POLISH FOR * 

FUNCTION * . ............... . 
I 

v 
*****84********** 
* * * SCAN STMT * * TO DETERMINE 
* TYPE 
* . ............... . 

I 
v 

*****C4********** * UPDATE ROLLS * * ANO/OR 
* CONSTRUCT * POLISH FOR * STATEMENT * ................. 

I 

~~~~~~~~~~~->!<:~~~~~~~~~~~~ 
v 

STA XLATE EXIT 

60732 ••• 
E3 *• 

•* *• ****E4********* 
•* *• NO * * *•SEVERE ERRORS.•~~~->• RETURN EXIT 
*• •• • 

*• •• • .............. . .. .. i YES 

v 
•*• 

F3 *• 
•* *• ****F4********* 

•* ACTIVE *• NO * * 
*• STATEMENT .•~~~->• RETURN EXIT ... .. . . .. .. . ............. . 

*• •• 
* YES I , 

I 
v 

*•***G3********** 
* * * REMOVE POL I SH * 
* AND REPLACE * 
•WITH ERROR LINK* 
• * 
***************** 

I 
v 

****H3********* 
* * RETURN EXIT 

* .•.•.•..•...••. 

Section 2: 

LITERAL TEST 

THIS OPERATION 
IS PERFORMED BY 

THE STA XLATE 
ROUTINES 

Compiler Operation 71 



Chart BE. COMPLETE STATEMENT AND MOVE POLISH 

****Al********* . . 
* STA FINAL * . . 
*************** 

l 
*****Bl********** . . 
* INCREMENr * 
+STATEMENT COUNT* . . 

•. ••••c2••••••••• 
. * *· NO * * *· hNY POLISH .•-------->* RETDRN 
•. . • * • . . * ••••••••••••••• . . 

!Jl . 

* YES 

1 . .. . THIS FLAG ON 1 ND I CATES 
ONE OF THE: STATEMENTS 
WHICH MAY NOT TERMINATE 
DO LOOPS 

. . 
* 84 * . . 

**** 

H63302 l 
*****B4********** . . 
* MOVE GROUP 
* BACK TO DO * 
*LOOPS OPEN ROLL* . . 
***************** 

---------->1 # 063303 ••• 
C4 *· • * ... 

·* THIS *· NO 

***** 
*BE * 
*05 * .. 

• 

* .. STMT LABELED .*---------------> . . . . 
*· ·* • ... 

V
i YES STA FINAL END 

G0634 
*****D~********** *****DS********** • • * • 

*:~UMP FLAG ON*:.::::~-----------------------------------------------------> * PUT POINTER * * PUT STMT * * TO -LABEL ON *-------->* NUMBER ON * . . . . POLISH * * POLISH * . ..·· * * * * ••••............• . ....•........... 
• NO 

:·::·:->j . . 
•• •• v 

i/ ________________________ J 
~Uti3301 .•. .. .. 

SI:.L 
NOTE 

NOTE 

El *. . . . 
. * Dh"l'A ON *. NO 

*. 'f'1IE DO LOOPS • •-------------------------------~-.,-----------------------* .OPJ.:.N HOLL.* •. . •. . . 
rES 

*****Fl********** . . 
* MOV1:: ONE * 
·+ Gr{OUP OFF Tl-ff * 
+ IWLL * . . .................. 

l 

E4 *· ·* *· ****ES********* 
.. * THIS STMT *. YES * * 

•.AN ARITHMETIC.*-------->* RETURN * 
*. IF • * * * •. • * *****•·••••••*** .... 

ro 
*****Fq********** 
* * ****FS**'******* 
*MOVE POLISH FOR* * * * STMT TO AFTER *------~>* RETURN * 
* POLISH ROLL * * * 
* • *************** 
***************** 

.. • .. • •. • • . ~063377 
Gl *· G2 *· G3 *· *****GU********** • • . . • • . . .. •.. * • 

.. * THIS *. YES • * INNER *. NO .. * ANY *. NO * CLEAR * *· ST.MT 'TARGET • *-------->•. DO CLOSED • •-------->*.TRANSFERS OUT .. •------>*XTEND LBL 'ROLL ·* 
*.. OF 'LOOP .. * * FLAG * *. OF LOOP • * * * 

'*. * *. ON *· . * * * •.. . . •. . . . ... • ................ . 
* ro i <:::_______ [ YES 

; B4 ~ #063i~~**H 2 ********** *****Hl********** 
**'** * REMOVE * * • 

•GROUP DEFINING * 
* DO VARIABLE * * FROM IND VAR 
• ROLL * 
******••·········· 

l 
**'* **J2**** **~ *** 

* CLEAR * XTEND TARGET 
• LBL ROLL . . 
***************** 

'""''" ! •••••J3••'-*•••• • • THE TEST COMPARES 
STA LB'L PNTR 

•RESE-RVE PROGRAM* 
* SCRIPT ROLL~ * * COPY SCRIPT * * SET INNER 'DO * 

-----*CLOSED FLAG OR * <---------------• . WI'TH THE GROUP 
FROM 'THE ROLL 

72 

! Rg~~i~E~~~tE : 
**""•**********"'*"* 

l 
*****K2*****-**** • 
*MOVE NEXT GROUP• 
* FROM SCRIPT * * ROLL 'TO L'OOP '* 
:0~~ r~eo=·= **********"***•·••* 

L:·::·: . . .... 

. . 
,.. ................... . 



Chart BF. PROCESS END STATEMENT 

G0642 

****A2********* 
* * * ACTIVE END * 

STA XLATE * ........................... 

I 
I 
v 

•*• 
82 .... 

•* *• ****83********* 
•* LAST *• YES * * 

*• STATEMENT A .•·~~~~->• RETURN * 
•• BRANCH •* * * 

*• •* *************** 
*• •* i ND 

v 
•*• 

C2 *• *****C3********** 
•* *. * * •*SUBPROGRAM *• NO * BUILD * 

*• BEING +-~~~~:>* STOP POLISH * 
•.COMPILED •* * * 

*• •* * • 
*• •* ***************** 

i ... I 
*****02********** v 
* * ****03********* 
* PLACE * * * * RETURN DRIVER •~~~~->* RETURN * 
* ON POLISH * * * 
* * *************** 
***************** 

.i.:, 

section 2: Compiler Operation 73 



Chart BG. 

711. 

PROCESS POLISH 

G0844 

****A2********* • • 
• PROCESS * 
• POLISH * ................. 

v 
*****82********** . " * GET NUMBER * 
* OF WORDS ON * 
* POLISH ROLL * 
• • 
***************** 

v 
*****C2********** • • 
* PLACE * 
*COUNT ON AFTER * 
* POLISH ROLL * 
• • 
***************** 

I 
v 

*****02********** • • 
* COPY POLISH * * ROLL TO AFTER * 
* POLISH ROLL * 
• • 
***************** 

I 
v 

*****E2********** • • " . 
*RELEASE POLISH * 
* ROLL * • • 
***************** 

v 
****F2********* " . * RETURN * • • ••••••••••••••• 



Chart 05. PHASE 2 - 11.LLOCA'IE <Part 1 of 2) 

G0359 

••••At••••••••• 
• STllRT • 
• ALLOCATIOll • • • 

·······r-.. 
•••••81•••······· • • • • • IllITIALIZll • • • • • 

®~:-.... r .. -· 
•••••Cl•••••••••• 
•A LBL/LSPG-CA111• 

·-·-·-·-·-·-·-·-· •PU'l' LAllllLS 1U1D • 
•STMT l'UllC RllMllS• 
• OR BCD ROLL • ••••••••••••••••• 

G0362 l •••••D1•••••••••• 
•PR BQ/PrBR-CllAl• ..... _ ...... _ "'-·-·-·-· :cRffii ~~MF: 
•OUTSIDB HJIAY • 

········i···· .. ·· 

... 
11 •• . . .. 

• •3LOClt DATA. *• WO 
*• SPEC'IPI&D • •---

*• •• .. . . .... r ••••D1••••••••• 
o CllAR't CC • 
: Al : .......... , .... 

G0361 

~ 
PROG 
llLLOCATIOR 

G;;;~;----i 
•••••C2•••••••••• 
Olllft'/PIGTBRR-CDA2• ·-·-·-·-·-·-·-·-· •ASSOCIATE DUMMY• 
:Di:fiJ!IiJlall~s,: 

······"'·········· 
G0371 l •••••D2•••••••••• 

•PRC DO LPS-Cl!!A2• •-'t-•-•-•-•-1'-•-· 
•CBBCll POR URCLS• 
•DO LOOPS ARD PR• 
•AllD llARK ERRS • ••••••••••••••••• 

dm I •••••£2••········ •LBLIL SPGS-CPA2• ·-·-·-·-·-·-·-·-·· • COllSTROCT • •-CB TABLE • 
• ROLL • 

~.:~·····1·····-· 
•••••r2•••••••••• 
•81. PGM l!SD-CGA2• ·-·-·-·-·-·-·-·-· • ALLOC lll!ADillG • 
•BLl'I ARD PCB ZSD• •POR PRO AR ZM'.I' • ••••••••••••••••• 

..... I •••••G2•••••••••• 
•ZMT llllALL-·CD2 • ·-·-·-·-·-·-·--· • IP SOORCB ll • 

=~~·o~~OBPOR: 
••••••••••••••••• 

l •••••B2•••••••••• • • 
• SllVI! OBJECT • 
•MODOLB LOCA'l'IOll• 
o COOllTBR • • • 

~·~······1···-··· 

=~·Xf!·,~~~~~= ....... ········• •ALLOC CM STG, *-----
:ms~ft5zlBB: ·····'··········· 

G0381 •••••Al•••••••••• 
:~W-~~.!t!f:~~t~: -->• llLLOCllTB llDOR • 
:roR la:1~XsPRINT: .. ..... T ....... 
•••••83•••······· 
• TORR OR PLAG • 

:RE~~~~~~~T : 
• MODOLE LDC • 
• COUNTER • 

""""!""'"' 
•11•o•c3•••••••••• 
• DETM • 
•SIZE BLE• 
•llDD 5 TO• 
: SIZBlo VE : 

••••••••••••••••• 

I •••••D3•••••••••• 
• IRDICATB • 
• PIU!SBllT • 
• ALLOCllTIOll IS • 
• Ill OBJECT • 
• MODULE • , .. :: ..... T ....... 
•••••Bl•••••••••• 
•BIB TBL AL-CLll2• ·-·-·-·-·-·-·-·-· :~ Uil m .. : :.ftll.T .. 111.: 

•••••Pl•••••••••• • • 
• IRCllBASE • 
•LOCATIOR COOllT • 
•BY BQOIV SIZE • • • 

... ::"""!"""" •••••Gl•••••••••• 
•BLD IUl BS-Clll.2 • ·-·-·-·-·-·-·-·-· • BOIID BllSl!l • 
• TABLE 1!NTRIES o 
• IllDICllTBO • 

®.::······1········ 

•••••Bl•••••••••• 
•PIU!P llllL8T-CQA2• 
·-·-·-·-·-·-·-·-· 
• IU.LOC -- • • LIST TBL llDD • 

~·:~r~·= 
•••••Jl••········ •SCALAR ALL CUll10 

·-·-·-·-·-·-·-·-· • ALL ALLOC • 
• SCllUUIS ARD • 
:.~~~;2.!ffff ••• : L ________ _ 

~~~~~------1 GQq02 

•••••Bil•••••••••• •••••BS•••••••••• 
•IUIRllY ALL CRA2 • •GBL SPG AL-CDl\2• ·-·-·-·-·-·-·-·-· '·-·-·-·-·-$-·-·-· •ALLOCA.TE ARRAYS•-------->• ADD BASES FOR • 
• AND ADD REO' D • • SUBPROGRAM • 
• BASES • • ADDRESSES • 

""""""""" m::"""l"'""' 

OD OLE 
AS 

llELL AS Pl!R
POIUIING SOME 
INITIAL 
llLLOCATIOll 

•••••CS•••••••••• 
•SPG ARG AL-CPA2• ·-·-·-·-·-·-·-·-· •'ALLOCATE' ARG • 

:RE~~mf> ~~gES : , .. :: ..... T ....... 
•••••DS•••••••••• 
•LIT CllS AL-CRiil• ·-·-·-·-·-·-·-·-· * ALLOC .LI r ERAL • 
• CONSTA.Nrs ADO • 

®.:~11.Tm11.: 
•••••ES•••••••••• 
• FORMAr ALL CSl\2 • ·-·-·-·-·-·-·-·-. • AI.Loe :roa!l!!Ar • 
: .~T\l~s11,.m : 

• ... 1 .. T ...... 
•••••FS•••••••••• 
~RBSTORB Der MOD• 
•.LOC CNTER DErM • 
•TRUB SIZE. BllSE • 
:'l'~E, l ENO P~s: 

r·--------------=::] ....... . 
•••••G4•...,•••••••• •••••GS•••••••••• •DEBUG llLL-CXA2 • •llSCLR/SPRG-CAlll• ·-·-·-·-·-·-·-·-· ·-·-·-... ·-·-·-·-. • !!ARK IllIT llND •-------->•ENTER llAllBS ON • 
• SOSC91t • • BCD R:>LL • 
• VARIABLES • • * 

-~............... , .. ::""'l""" 
•••••&••••••••••• •••••BS••••O••••• •GBL SPG AL co112• •BIB TBL AL-CLA.2• ·-·-·-·-·-·-·-·-· ·-·-·-·-·-·-·-·-. • IU.LOC SUBRTll "<--------•ALLOC SllVB llREA• 
•ADDR PRillT MAP o • BASE TBL l!.llD o * POllCS EBDS • • BRARCB rMJLE • 

OO>:"""["""" oo.::"""""""" 
•••••Jll•••••••••• •••••JS••~••••••• 

=~=-~;-~-~!~: :~i~!!.~.=~~~-= 
• ALLOCllTE •-------->• CORRF.CT llLLOC • 
•ARGOMl!llT LISTS • •l!QOill OIU'll llND • 
1' • • PRINT !llA.P • ................. ········r······· 

Section 2: 

••••KS••••••••• 
: CHART oi2 : 
• • ••••••••••••••• 

compiler Operation 75 



Chart 06. 

'76 

PHASE 2 - ALLOCATE (Part 2 of 2) 

•••• •06 • 
: a2. •-l 

G03;;.. ~ 
•••••B2•••••••••• 
•SCllLPJI ALL CMA1 •. 

·-·-·-·-·-·-·-·-· •CORRECT SCALl!.R • 
: ~AIDN, : 
••••••••••••••••• 

G0401 I 
•••••c2•••••••••• 
•llRRAY ALL CMA2 • ·-·-·-·-·-·-·-·-· • CORRECT ARRAY • 
• ALLOCATION, • 
• PRINT MAP • 

."::·····r ...... 
•••••02•••······· 
•BLD HMLST-Clll!.2 • ·-·-·-·-·-·-·-·-· OCONSTR AllD PCB • * TXT CDS FOR • 
• NAMELIST TBL • 

_::·····r .. ···· 
•••••B2•••••••••• 
•LIT CNS Al.-CRA2• ·-·-·-·-·-·-·-·-· . • ALLOC LITERAL • 
•CONS !IND PUNCH • 
• TXT CARDS • 

_::·····r······ 
•••••F2•••••••••• 
•FORMAT ALL CSA2• 

·-·-·-·-·-·-·-·-· •ALLOCATE l'ORllAT• 
: s~rrs1:dlmca : 

········r:===~-------------~-------------~ 

--------:--i 
•••••Bil•••••••••• :a R~LLS• : 
• ··o WORD • 
•BO FOR• • • ...... r······ 
•••••c••••••••••·• •C BASE • 
•ARD CDINT• 
•FORT !IND.• 
• COKST LLS • • • 

... ::·····r······ 
•••••01&•••······· 
•BLD AD BS-CllA2 • ·-·-·-·-·-·-·-·-· o BUlLO 3 BASES • 
• FOR TEMP 1u.o • 
• CONST AREA • ....... r······ 
•••••E4••••• .. •••• • • 
• PREPARE FOR • 
• DNIFY PHASE· ' • .. . 
• • 

·······r······ 
••••Fii••••••••• • • o IEYUNF • • • ••••••iti•••••• ... 

RELEASE 
ROLLS 



Chart CA. MOVE BLD i~AMES TO DA'I'A VAR ROLL 

G05~3 

••••Al********* * ALPHA * 
·• LBL AND L * 
• SPROGS * ............... 

l 
*****Bl********** * RELEASE DATA * 
: ~~Rpg~~~fas~ : 
* NEW GROUP ON * 
*DATA VAR ROLL.• .................. 

I •••••c1•••••••••• * SAVE POINTER * * TO LABELS.. * * SET UP 
• POINTER * TO LBL ROLL. * 

;::::;::1········· 
• • •••• .•. ALPHA L SPROG 

Dl *· *****D2••******** ·* *• * SAVE A VAR • .• ENTIRE *· YES *ROLL I' R AS* 
*• LBL ROLL ·*-------->* • 

• ... PROCESSED. * * * 
*· ·* * F * .. .. ....... . ..... . 

• NO 

l 
*****El********** • • •MOVE NEXT LABEi,• 
* TO * * DATA VAR ROLL * . . ...........•..... 

! .... 
• • • 01 • 
• • .... 

I •••••:B2•········· • • *SETUP • * POINTER ROLL • . . 
• • ......•..•....... 

! 
• ••• • • * Gli * . . 
•••• 

****Al********* * ALPHA * 
• SCALAR ARRAY * 
• AND SPROG * ................ 

l 
•••••B3********** * SAVE • 
• DATA VAR ROLL • 
• POillTER AS > * POINTER TO + * SCALARS * • •••••••••••••••• 

l 
****•C3••+••••*'+• • • 
• SET UP • 
• POINTER TO • 
• SCALAR ROLL • • • ••••••••••••••••• 

l 
*****D3*******••• •AID VAR RL-CAFQ• 
·-···-·-·-·-·-·-· • MOVE • 
•SCALAR NAMES TO• 
•DATA VAR ROLLS • . ................ . 

l 
*****E3••+++••••• .. . 
• SAVE DATA VAR • 
•ROLL POINTER TOO 
• ARRAYS • . . ........ r ...... 
*****F3**""******* • • * SET UP • 
* PO!NTER TO * 
• ARRAY ROLL • • • ................. 

j 
*****G3********** •AID VAR RL-CAFq• ·-·-·-·-·-·-·-·-· * MOVE • 
•ARRAY NAMES TO • 
• DATA VAR ROLL • ....... T ..... .. 
*****H3+•++++++++ * SAVE DATA VAR • 
•ROLL POINTER AS• * POINTER TO • * GLOBAL + * SUBPROGRAM + ........ , ....... . 
•••••Jl•••••••••* • • •SET UP POINTER • * TO GLOBAL • 
• SPROG ROLL • • • ............. "' ..... . 

! •••• • • 
• sq * • • •••• 

. ... 
• • • B4· • 
• • •••• 

i 
•••••bq+++••••••• 
•AID VAR RL-CAFQ• ·-·-·-·-·-·-·-·-· •MOVE SUBPROGRAM• 
• NAMES TO • 
• DATA VAR ROLL • .. ..... T ....... 
•••••c4•••••••••• 
• SAVE VAR • 
*ROLL P R AS~ 
+ POIN + 
" USED RY * * N ES + • •••••••••••••••• 

I 
+•+++Dli********** • • •SET UP POINT:E:R + 
• TO USED LIB * 
• FUNCTION ROLL, • . . 
•••*••··········· 

! ..... . . 
• Glf. * • • •••• 

****F4•+••••••• * ALPHA 'IO • * DATA VAR ROLL * • • 

: :~~::~:1········ 
• • .... . •. 

G4 +, 

.• *· ****GS••******• .+ ENTIRE +. YES * * *. ROLL • •-~--->* RETURN 
•.PROCESSED.* + • •. .. . ....•......... . ..... r 

+++•+Hll********** *MOVE NEXT NAME • * (8 BYTES) • 
• 'IO • * DATA VAR ROLL * • • ········1 ....... . 

•••• • • 
• G4 * • • ...... 

Section 2: compiler Operation 77 



Chart CB. PREPARE EQUIVALENCE DATA 

60362 .•. 
A2 *• 

****Al********* •* *• ****A3****•**** 
• PREP EQUIV * •* *• NO • * 

78 

AND PRINT ---->•.EQUIVALENCE .•---->• RETURN , * 
ERRORS •.. DATA ·.• * · * ................ •• •* ••••••••••••••• .. .. 

: •::• =-> .
1 

YES 

* * .... 
v •••••e2•••••••••• * CALCULATE * * OFFSET FOR * * EQUIVALENCE * * VARIABLE ANO * 

* RECORD * ................. 
I 
v ... 

C2 *• *****C3********** .. ~- . . 
•* BAD *• YES * . * 

*• DEFINITION .•---->*RECORD NAME AS * 
*• •* * ERROR * 

•• •• .• ·* .. .. . ............... . r0 I 
v 

•*• 
02 •• 

•* ALL *• 
•* DATA •.·No 

*• PROCESSED ·--i. .. .. .. .. 
•• •• v 

.. 
1 

YES : •::•: .. .. 
v •••••e2•••••••••• .. * * SET UP * HEADING FOR * 

: ERROR LIST. : ................. 
I 
v 

******F2*********** 
PRINT LIST DF 

* EQUIVALENCE * 
* DEF ERRORS * 

v 
'****G2**•****•• * ... 

: ,RETURN 

............... 

PRINT 
ERROR SYMBOL 



Chart cc. ALLOCATE BLOCK DATA 

G0361 
*****A2********** 

****Al****•**** *CM ALL/OUT-CIA2* . . ·-·-·-·-·-·-·-·-· * BLOCK DATA *----:>• ALLOC ALL COM * 
*PROG ALLOCATION* *STRG.PRNT ERRS•* 

*************** *MAPS PNCH ESDS * 
-................ . 

I 
v ••••••s2••••••••••• 

PUNCH 
REMA I NJ NG 

• ESDS IF ANY * 
•...•••...••. 

I v 
*****C2********** 
*SCALAR ALL CMA2* 

·-·-·-·-·-·-·-·-· *ALL.CC SCALARS, -• 
* ADD RECIUI RED * 
* BASES * .........••...... 

I 
v •••••02••••······ 

*ARRAY ALL CNA2* ·-·-·-·-·-·-·-·-· *ALLOCATE ARRAYS* 
* ANO * * REQ. BASES ................. 

I 
v •••••e2•••••••••• . . 

FLIP 
EQUIVALENCE * 

ROLL * 
..••............. 
• . I 
: F2 :->1 
•••• v 

136102 ••• 
F2 *• *****F3********** 

•* t NFO * • * * •* GROUP ON *• YES * RECORD 
*• EQUIVALENCE •*---->• NAME + ERROR 

*• ROLL •* * TYPE .. . . .. .. re 
v 

f36101 ... 
G2 *• .. .. 

•* MORE *• YES * * 
*•DATA ON ~OLL •*-->* F2 * .. .. . . .. . . .. .. 

• NO 

I 
v 

••••••J2••········· 
PRINT 

BLOCK DATA 
ERRORS 

I 
v ..... 

*06 • 
• e•• 

RELEASE 
ROLLS 

i 
v .... . . 

* F2 * . . 

BECAUSE 
ALL EOUI V 
DATA MUST 
BE IN COMMON 

Section 2: Compiler Operation 79 



Chart co. 

80 

PREPROCESS DUMMY DIMENSIONS 

G0365 

*••*A2***••***' 
* PREP OMY DIM * 
* AND PRINT 
* ERRORS * 
····~••t!"it***** JI: 

I 
v 

:*~**B2*****il-*~*: 
• INITIALIZE * 

POINTER TO 
APPRO ROLL 

***************** I 
.****•I 
.;. C2 •->I . . 

*fHHt V 

CHECK 
DMY OJJ.1ENSION 

#036601 •*• G0367 •*• 
C2 * • C3 * • 

•• -tt. •• *• 

. . 
* C4 * . . 

•••1:1-
1 
I 

G0418 v 
******C4**iH1·4•***** 

****CS********* 
•* ALL *• YES •* ANY *• NO * . . . 
t.•.P~~~~~~EO·*·•---->•· •• gt~~~~S .• ·*---. -> 4 PRJNT ERRORS ---.-.): RETURN 

•• ... -11-. •* 
*·.·~o *•.·;ES 

I 
v 

I 
• • I 
• 03 •->I 
• • I 
**** v 

*************** 

•• • f36702 ••• ff.36703 
02 *• 03 *• •••••U4****i!il**** 

•* NEXT *• •* *• * * 
•*ARRAY HAVE *• NO •* END *:. YES * RECORD b!ARKCR * 

*• DUMMY .•--, *• OF A DUMMY .•---->* ON NAMELJST t 
*D!~ENSJO~~-.,. I •· •. LIST •• •• * ITEMS ROLL * 

• • •• v *• •* 
ii- YES * **** * NO l : G2 : I 

.... v 
E2 *• *****E3•"'"***•*~*• 

,.» *• * CLA~SlFY ~XT * 
.• ARRAY *• YES * [)MY IF ANV 

*• A 'OUMM.Y OR ·"---.->it WiTt-1 OMY DIM ll 

*•I NCOMMON ,. * "! PNTR TO ARRAY * 
*• •" * ON ERROR ROLL * 

*• ... *************lt**-ll * NO I 

I 
v 

•·*** •F2** *•****•* * • 
ft RECORD II 
u ARRAY NAME AS ~ 

* ERROR w 

··········~·•**** 
* ..... * I 
* G2 *-> 1 • .... • I 

#3{>602 v 
:***~G2*'° ~.,;*****: 
C. P~EPARE 
*TO PROCESS ~EXT* 
* ARRAY ~ 

······~·····*~&•• 

I 
v 

*"** . . 
* C2 t: . . 

I 
v 

**** . . 
.. 03 * . . 

***************** * * I * 03 {t 

* *•**-• I , * ***i. * 
* E4 11~>1 /\ 
... * I I 

**** V I YES 
!136704 •4• 136705 •*e 

E4 *• E5 *• 
•* ANY *• •* *• 

•*MORE A~RAYS*• NO •* MORE *• 
*•WJTH DMY DIM .. •----->*• DUMMY •* 

*• JN THIS •* ' *• LISTS •* 
*•LIST •* *• •* 

*• •* *•. •* i YES ).:~ 
V .. C4 * 

•••·••F4********** * * * CH~CK DMY QIM * 
*NXT ARRAY-MUST * 
*8E OMV IN SAME * 
*LIST OR IN COM-* 
* MON RCD ERR'S ~ 

•******"" .. ft******* 

I 
v 

**** . . 
* E4_ * . . . 
**** 



Chart CE,, CHECK FOR UNCLOSED DO LOOPS 

G0371 

****A2********* 
* PROCESS " * DO LOOPS * 
* * iHi************* 

I 
v 

*****82********** 
* .. * FLIP THE * 
* DO LOOPS OPEN * 
* ROLL " .. .. 
*************•*** 

: *::~·:->! 
* * **** v #037101 .... #037102 

C2 *• *****C3********** 
•* DATA *• * * 

•* ON THE *• NO *SET UP HEADING * 
*·DO LOOPS OPEN.•·~~~~->* FOR DO LOOPS * 

*• ROLL •* * ERROR LIST * ... . .. 
*• •* * YES 

I 
v 

*****02********** .. " * MOVE BAD * 
•·LABEL TO ERROR " 
* LBL ROLL * 
" " ****************• 

I 
v 

• «:·. 
E2 *• • * UNDE- *,• 

•*F !NED MARK •·· YES 
*• ON LBL ROLL •*-i 

*· • * 
*• •* 

*•. •* v. 
* NO **** 
I 
I 
v 

*****F2******~*** 

* * * SET UNCLOSED * 
*DO MARK IN LBL * 
* ROLL GROUP • 

" " ***************** 

! 
v 

ii-5-il-* .. " * C2 * " .. 
**** 

* * * C2 ii " .. 
***~ 

* 
**********~****** 

I 
v 

******03**********~ 

* PRINT * 
DO ERROR LIST .. " 
************* 

I 
v 

****E3***·R****~ 

* * ·· * RETURN * 
* *************** 

PRINT ERROR LBL 
ROLL 

Section 2: Compiler Operation 81. 



Chart CF. CONSTRUCT BRANCH TABLE ROLL 

G0372 

****A2********* 
•PROCESS LBL ANO* J LOCAL SPROG : 

............... . . 
* Bo\ * . . .... 
I 

v •••••e2•••••••••• . . . ·f037206 y 

* FLIP * * THE LBL ROLL * . . . .•.........••.••• 

: ·::·:_>, . . 
•••• v 

1037201 ••• 
C2 *• .. .. 

•* DATA *• NO 
* • ON THE LBL •*I 

*• ROLL •* .. .. 
•• •• v 

.
1 

YES : •::•: . . .... 
v 

•••••02•········· . . 
* MOYE * * LABEL TO •ORK * 
* ROLL * . . 
········i········ 

v 
••• 1037202 

E2 *• *****E3********** .. .. . . . 
•* LABEL *• YES * SET FIRST 11'2 * *• DEFINED .•---->• BYTE OF LABEL * * • •* * GROUP TO ZERO * .. .. . . .. .. . ............... . 

*****B•***•****** . . 
* COPY * TEMP ROLL TO * 
* LBL ROLL * . . ............... . 

I 
v :••••c••••••••••: 

*SET UP HEADING * 
* FOR UNDEFINED * * LABELS * . ............... . 

I 
v 

••••••o•••••••••••• 
PRINT 

UNDEFINED 
* LABEL LIST ............. 

I 
v •••••E••••••••••• . . 

* FL"IP * 
*THE LOCAL SPROG* 
* ROLL * . ...............• 

: ·::·:->I . 
•••• v 

PAI NT ERROR LBL 
ROLL 

ro 
v 

*****F2********** 
* CLEAR * * FIRST BYTE OF * 
* LABEL * * GROUP-MOYE TD * 
*ERROR LBL ROLL * 

1037207 •• •. 1037208 

82 

................. 
I 
v .... . . 

* K3 * . . 

THE TAG 
FIELD OF THE 
POINTER STILL 
INDICATES THE 
TYPE OF LABEL 

I 
v ... 

G3 *• .. .. 
•* JUMP *• NO 

•.TARGET LABEL •*1 .. .. 
. .. .. 

•• •• v 

: •::• :-> •
1 

YES : •::•: . . .... 
1037203 v 

*****H3********** 
*MAKE NEW BRANCH* 
* TABLE ROLL * 
* ENTRY AND 
* RETURN PTR • 
* TO IT * ..•••..•......... 

I 
v •••••J3•••······· * REPLACE * * LABEL GROUP * 

*WIT.H POINTER TO• 
* BRANCH TABLE * . . ................. 
:·::·:->! . . .... 

1037205 y 
*****K3********** . . 
* MOVE * 
* GROUP TO TEMP *I * ROLL * . . 
••••••••••••••••• v .... . . 

• C2 • . . 

F4 *• , *****F5********** 
•* DATA *• • COPY THE * 

•• (lN THE *• NO * COMMON DATA 
*• LOCAL SPROG • •---->* TEMP ROLL TO * 

* • ROLL •* *THE LOCAL SPROG* 
*• •* * ROLL * .. .. . ............... . 

rE· I 
v I 

*****G4********** V 
* * ****G5*********-

MOVE NEXT * * * GROUP TO * RETURN * 
* CENTRAL ARCA * . ................. 

I 
v 

*****H4********** 
*MAKE NEW BRANCH* 
* TABLE ROLL * * ENTRY AND 

RETURN PTA * 
* TO IT * . ............... . 

I 
v 

•••••J4••········ . . 
* PUT POINTER * 
*ON COMMON DATA * 
* TEMP ROLL * . . ................. 

I 
v ..... . . 

* Fo\ * . . 



Chart CG. ALLOCATE HEADING AND PUNCH ESD CARDS 

G0374 

••••A2********* * BUILD * * PROGRAM ESO * . . ................ 

v •••••e2•••••••••• . . . . 
* INITIALIZE * . . . . ................. 

I 
v .•. 

02 •• •••••03••········ 
•* DATA *• * SET UP * •* ON ENTRY * • NO * PROGRAMMER • *• NAMES .•---->*SPEClFIED NAME * 

* • ROLL •* * IN CENTRAL * .. .. . . .. .. . ............... . j YES ) .. . 

#03!:~!*E2•~******** : G2 : . . . . ... 
•FLIP THE ENTRY * 
*NAMES ROLL AND * 
*MOVE ONE GROUP * 
* OF-F * ................. 

I 
v 

*****F2***•****** 
* SAVE * 
*GROUP ON COMMON* 
*NAME TEMP ROLL11* 
* ADD BLANKS TO * 
* NAME * ................. 

:-::·:->! .... 
1037402 y 

*****G2********** . . 
* PUT .J SYMBOL * 
*IN FIRST BLANK * * OF NAME • . ................. 

I 
v 

*****H2****•***** . . 
* PUT PROGRAM • 
* NAME IN PUNCH * * BUFFER 

•......••..••••.. 

I 
v ••••••J2••········· 

PUNCH PROGRAM 
* NAME * ............. 

I 
v .... . . 

* B-4 * . . 

PUNCH ESD 

.PUNCH' REMAJN]NG 
ESD 

. . 
• 64 • . . .... 
I 
v 

*****84********** . . 
* SET * 
* UP FOR LO ESD ·•· .. ' . . ................. 

I 
v ••••••c•••••••••••• 

"PUNCH 
PROGRAM NAME 

' * AS l;D ESD 

............. 

I 
v •••••o••••••••••• 

* ADO * * LENGTH OF * INITIAL PROG * • 
*CODE TO PROGRAM* 
* BREAK * . ............... . 
•••• I 

: E• !->I . . 
•••• y 

1037405 •• • 1037406 
Eo\ *• *****ES********** 

•* *• . • COPY • 
•* OAT A LEFT *• NO • COMMON NAME • 

• • ON ENTRY .•---->* · TEMP ROLL TO * 
*• NAMES •* *ENTRY.NAME ROLL* .. .. . . . .. .. . •.....•.....•... 

r~S' 1 

v v 
*****F4********** ****•*FS*********** * MOVE GROUP TO * · * CENTRAL AND * 
* COMMON NAME *' * TEMP ROLL . .................. , 

I 
v 

*****G4********** 
'* ' ''.ADD * 
* BLANKS TO * 

·•NAME. ADO ENTRY• 
* CODE TO PROG * 
* BREAK * . ............... . 
. I 

v 
******H4*********** 

' 'PUT 
ESO JN 

BUFFER-PUNCH 
'·• JF"COMPLETE * 

' CARD 
•••••*••••••• , I 

v .... . . 
: E4 : 

Section 2: 

PUNCH ANY 
REMAINING ESD 

*' CARDS * ............. 
I 
v 

****GS********* . . 
RETURN 

Compiler Operation 83 



Chart CH. 

84 

CHECK ASSIGNMENT OF FUNCTION VALUE 

G0376 

**4*A2********* . . 
ENTRY NAME ii 

* ALLOCATION * ................ 
I 
y ... 

B2 *• 
•* *• "****83********• • * SOURCE * • NO * * 

*•A SUBPROGRAM .•-.--->* RETURN .. .. . .. .. . ............. . ..... i YES 

y ... 
C2 *• 

•* *• ****C3********* 
•* *• YES * * 

*•A SUHROUTlNE .•---->• RETURN .. .. . .. .. . ............. . .. .. 
* NO 

I 
y 

•••••02••········ . . . 
• FL IP * 
*THE ENTRY NAMES* 
* ROLL * ................. .... I . . 
* E2 •-> . . 
•••• v 

fG37601: •*• 
E2 *• .. .. 

•* DATA ON *• NO 

*• •N!~~SE~~~~•* •*~ 
*• •* I . •• •• v 

* YES **** 

I 
y 

*****F2********** . . 
•MOVE NEXT GROUP* 
* TO THE COMMON * 
:NAME TEMP ROLL : 

. . 
•· 04 • . . 

................. . . I • GJ * . . 
I •••• 

y I 
••• 1037602 v 

G2 *• •••••G3********** .. .. . . 
•* SCALAR * • YES * SET MOOE * 

*• WITH SAME .•---->• OF S.CALAR IN * 
* • NAME •* * POINTER • .. .. . .. ... .. ................ . 

ro I 
y y 

•••••H2********** ••••4H3********** . . . . 
* REGISTER NAME * • PUT POINTER * 
* OF ENTRY FO~ • *ON COMMON NAME * 
* ERROR LI ST * • TEMP ROLL * . ................. 

I 
y 

•••••J2••········ 
• ADD • 
* SCALAR ROLL * 
*GROUP FOR ENTRY* 
* NAME - DEFINE • . . .•••........•..•. 

I 
y .... . . 

* G3 * . . 

.. . . ................ . 
I 
y 

•••••.J3••········ . . 
* ADD SCALAR * 
*TO EQUIVALENCE * 
* ROLL * . . ............... . 

I 
y . ... . . 

* E2 * . . 

.... . . 
• SI\ * . . .... 
I 

f037603 y •••••a.-•••••••••• * COPY THE * 
* COMMON * 
•NAME TEMP ROLL * 
* TO THE ENTRY * 
* NAMES ROLL * ·······r······ 

y 
•••••c••••••••••• . . 
* PUT A MARKER * * SYMBOL ON * EQUIVALENCE 

ROLL . ............... . 
I 
y 

•••••04••········ . . 
*SET UP HEADING * 
* FOR FUNCTION • * ERROR LIST . . .................. 

I 
y 

••••••e.-••••••••••• 
PRINT 

FUNCTION 
* ERROR LIST ............. 

I 
y 

****Flt.******•** . . 
RETURN . ................ 

ALL ENTRY NAMES 
TO A FUNCTION 

ARE 
EQUfVALENCEO 

PRINT 
ERROR· SYMBOL. 

ROLL 



Chart CI. 

ALREADY ON 
COMMON 

ALLOCAtJON 
ROLL INDICATES 

fHIS 

COMMON ALLOCATION 

'60377 

••••A2••••••••• * COMMON • 
• ALL DC A 'f tUN * 
• AND OUTPUT * ............... 

I 
v 

•••••02••········ • • 
• 1NtTIAL.lZ'3 
• FOR COMMON * ALLOCATlON . . 
······~·r······· 

v 
••• #037709 

C2 *• *****C3•••••••••* •* *• * CLEAR * •* ANY' •• NO * CONTROL'S ANO * 
*• BLOCK NAMtS .•~--->* ROLLS FO~ 

•• ON ROLL' .,,tt * Al.LOCATION * 
*•' •* * OF COMMON * .. .. . ............... . 

·rm 
v 

:·~~•p2··~~4~~··: 
* . MOVE NEXt • 
•N~ME TO COMMON * 
: A.RE.~ ROL.L. : .................... 
: ·::·:->I 
• • I •••• v 

#031'701 .... 
E2 *• .. .. 

. v ••••oJ••••••••• • • * RETURN * . . ................. 
.... . . 

• EJ •.-..:....i 
• ' • I •••• v 

#037105 _ .. , 

·. ...t::-~ !t~ ... 
•* - ENC> OF. •• YES •* MOR'E *• NO 

*•* •. ~A ~~O~~R._ • *,. •--· -->~ • * ~Lg~K ~~t~~~ *•*I 
.. •.. ,..i. · *• •* I 

' • • •• •• •• v 

.... . .. 
• 84' • . . .... 
I 

#037706 v •••••!;\••········· . . 
*COPY ALL BLCCK * 
*NAMES AND DATA t 
*BACK FROM tEMP * 
* ROLLS * .................. 

I v •••••c4•••••••••• * ALLOCAtE ALL * * EOUt VALENCE * 
•DATA REFERRING * * TO COMMON • * BLOCK * ....... r······ 

#()377l l v ····••04•-lt«••••••*• 
PUNCH 

E.50 CA.Rt'I FOA: 
• BLOCK . ..... r ..... 

v ... 
E4 •• •• * iO 

..... 
•
1 

NO . •

1 
YES : •::•: .... 

.::~:: OPt ~~: .>lNO 
• 'fE"S 

••••••F .. !••••••••• 
v v .•. . .. 

F2 *• F3 *• 
•* •,. .• 1 NEXT. *• •* NEXT *• NO •* NAME SAME *• YES 

*• VARIASL£ tN .•---...., it.,AS.LASt NAME •*-1 
•. ANOTHER •• '•.ALLOCATEb.• 

*•BLOCK•* *• •'!" •• •• • • •• v 
.
1 

Yt:S •

1 
NO (::·: 

.... 
v f03770J· v 

!****G2*********! !***~G3**~'.it••••: 
* RECORD • * 'COPY a1,.0CK * 
•NAME AS COMMON * •· NAME AND ·oAtA * * ERROR tt • to TEMP. J:l:OLL * . . .. . . 
·········1, :....... ..~ .. ~-~~r······· 

' .... . . 
#037102 V ! E3 • 

•••••H2********** * • * ALLOCATE • . •••• * SYORAGE FOR * * VARIABLE. RE- * * CORO ON GEN•L • 
*A~LOCATION ROLL* .•...•...•..•..•. 

I 
v .... . . 

• £2 • . . .... 

PRtNT I 
·M~~Ag~NgL~~e • I 
··~~·~j:_·_··-·-·~~--' 

I v 
, ••~•fl.(;4t:!Hif~ii-•••• 
• ·coPv tEN'L • 
* ALLOCA t tori! • 
•ROLL~TO COMMON• 
tt 'ALLOCA l t ON • 
* ROLL ·, • .................. . ' 'I .· 
******H~*~********* 

Pii'I NT MAP 

.............. 
I v ••••••J•••········· 

PRINT 
ERRORS FOR 

BLOCK ................ 

v 
****K4-ii-•••••••• 

* COMMON * 
*ALLdCAYtON AND * 
* OUTPUT • .................... 

Section 2t 

RETURN TO 
PROCESS NEXT 
COMMON BLOCK 

COIDPiler operation 85 



Chart CK. 

EQUIV 
ALLOCATION 

INTEGRATE 

PRESENCE ON 
GEHL ALLOC 
ROLL INDICATES 
THIS 

86 

EQUIVALENCE DATA ALLOCATION 

G0381. 
*****A3********** 

••••A2********* * CLEAR * * EOUI v. * * OBJECT * * ALLOCATION •---->• MODULE * PRINT ERROR * * " LOCATION 
*************** * COUNTER * ................. 

I .... 
* * 
: 82 :1<-----------~ 
•••• v 

G0382 •*• 
82 •• 

•* DATA *• 
•* ON *• NO 

~ •• ~au~~~tENC~. ··---, 
*• •* I •• •• v 

*I YES : •::•: 

* * 
v •••••c2•••••••••• * FLIP * * EQUIVALENCE * * ROLL AND * * INITIALIZE * 

................. 

. . I 
: 02 :->1 
•••• v 

f,038501 ••• 
02 •• .. .. 

•* DATA *• NO 
*eTO PROCESS ON.----, 

•••• ROLL •• •• I 
•• •• v i YES : •::•: 

v .•. . ... 
E2 *• E3 *• 

•• *• •• *• 
•* ENTRY *• YES , •* CONFLICT *• NO 

*• ALLOCATED •*---->•.WITH PRESENT •*l * • BEFORE •* *• SET • * .. .. .. .. .. .. . ... ro res 
1038503 v y. *****F2•••••••••• •••••F3********** 

* ALLOCATE * * * 
• ABSOLUTE ADDR * * RECORD * 
* RECORD ON GEN * *NAME FOR ERROR * 
* ALLOC ROLL * * LIST * 

* .................. 

I 
v 

*****G2********** 
* * * INCREMENT * 
*PTR TO GET NEXT* 
* GROUP * ................. 

I 
v .... 

* * • 02 .. 

* * .... 

................. ,<_ 
I 

138902 v 
*****G3********** 
* * * PRUNE * 
*ENTRY FROM WORK* 
• * 
.................. 

I 
v .... 

* * • 02 • 

* * 

* * • a• • 
* * . ... 
I 

G0384 V 
•••••84••········ * ALLOCATE ALL * 
* SETS WITH * 
*NAMES LISTED ON* 
*GEN ALLOC •ROLL * * + MOVE INFO * ................. 

I 

I 
v 

!****E4*********! 

* INCREMENT * 
*PROJECT MODULE * 
* PROGRAM BREAK * 
* * •................ 

I 
v 

*****F4********** 
* * •COPY INFO GEHL * 
* ALLOC ROLL TO * 
* SOURCE ROLL * 

* * .............•... 
I 
v 

*****G4********** 
* MAKE .FINAL * 
*ALLOC ANO MOVE * * INFO TO EQUIV * 
*Al-LOC ROLL FROM* 
* GEN ALLOC * ................. 

I 
v . ... 

* * * B2 * 
* * 

* * * C5 * 
* * .... 
I 
v 

•••••cs•••••••••• 
* SAVE LOCATION * 
* CNTR AS FIRST * 
* ADDRESS -FTER * * EQUIV DATA * 

* ................. 
I 
I 
v ••••••os••••••••••• 

PRINT 
EQUIV 

ERRORS ................. 

I 
v ••••es••••••••• 

* * * RETURN 



Chart CL. SAVE AREA, BASE AND BRANCH TABLE ALLO:ATION 

G0437 

••••A2********* * BASE ANO * * BRANCH TABLE * * ALLOCATION * ............... 

v 
•••••02••········ *SAVE BASE TBL. * 
* PTR AND * * 01 $PLACEMENT * * FOR START OF 
* SAVE AREA * ................. 

I 
v •••••c2•••••••••• 

"* * * INCREASE * * PROGRAM BREAK * 
* BY SAVE AREA * * SIZE * .................. 

I 
v 

•••••02••········ * SAVE BASE TBL * 
*PTR ANO DISPLA-* 
• CEMENT FOR * * START OF BASE * 
* TABLE * .................. 

I 
v •••••e2•••••••••• 

* * * INCREASE * 
• PROGRAM BREAK * 
* BY BASE TABLE * 
* SIZE * •......••......•. 

I 
v 

•****F2********** 
* * * CONSTRUCT * 
* REDUI RED BASE * * TABLE ENTRIES * 
* * •.......•.....••. 

I 
v 

****•G2********** * SAVE BASE TBL * 
•PTR OJSPLACEMT * 
* FOR START OF * * BRANCH TABLE 

* .................. 
I 
v 

•••••H2•••••••••• 
•INCREASE PROG. * 
• BREAK BY 
• SIZE BRANCH * 
•TABLE AND MAKE * 
:.;:~;;.;~!~!;~.: 

I 
v •••••J2••········ 

* * • CONSTRUCT * * REQUIRED BASE • 
: TABLE ENTRIES : ................. 

v 
****K2••••••••• 

* * * RETURN 

* 

THIS VARIABLE 
IS USED 
TO HOL.D OBJECT 
MODULE: ADDRESSES 
BEING ALLOC. 

BUIL.D 
ADDITJONAL 
BASES 

BUILD 
ADDITIONAL 
BASES 

Section 2: Compiler Operation 87 



Ch~rt OM. ~OAT~ SCAl.1\RS 

·,••.•*. '.. . tt,~· ·: '.l2 -:<-i 
G0397 t0.39701 -~- ••• ~··· .L. YES 

•,••••.A2***••••••: •*A3 *••. •*A4 •·.. . •*A.5 *:e*• 
.·•~•Al**~******tt ~ • •* ALL *•NO ~· A *• ~Q ' •* *• 
:scALA~ ALLOCATE:----.>: UUTIALIZE :-· --->•. •.P~g~~~~~D-* ··-· -.-·->· .. ~~MMY $,CAL.A~. ··---.->•·;~LL BY NAM: ••• 

····~tf;*olfi!:••~··· * • •• •• •• •• •• •• •• ... • ••••••• 
*·***:************* * '(ES . 4 YES * NO 

I I ! I .~... .. .... 
• • * • 
* P2 • * 02 * • • • * •••"Ii •••• 

#03970(> VSEE NOlE 2 SEE NOTE 2 •••·• tt:C3•••41i..,••••• •••••c4••·•••~•.it• • •••••cs•••••••••• • * • • .• • 
• ALLOCATE FULL * .... AL.1.,;ocATE H:Al.f ... .. ALLOCATE * 
* WQRD SCALARS-•--.-->• WORD ~CALARS-·•---.->* BYTE SCALARS-* 
*RECORD AND MAP. • *RECORD AND MAP -.• *.RECORD AND MAP * .... . . 

• 02 • . . * . * * ·~ • • ................. ................. ········r·-··· .... 
I 

f03,'l707 v 
it*~*:t!D2****•***~"t 
~ . 
• SET *: 
* MODE OF NEXT * 
• SCALAR * 
i!'· • ......... r ........ 

,. ~SEE NOTE l. 
l'.;2 •• .. .. f039704 SEE N.OTE 2 

•••.it:•E3.•••~••••*• . ' . 
•* *• YES * ALLOC~TE 

*•C:OMPLEX MODE .•.-.--->* STORA.GE AND • 
·~... e.* •* t : R.ECOR~lPP~IN,T : 

• "'· ·• I •••••*:tt:••••••**'I!'* 
• ND I I 
I j .~ .. v • • 

"t:SEE NOTE l .. K2 * 
F2 •• * * ·* ... . t:•t1;• • * , OOUBl,.E *• YES 

~<11. PRE;:CIS.lON ··* ' 
*• NODE .• ... .. , 

••• tt 

ro 
v 

••• 10397()3 
G2 *• ***•*G3••••tt•tt••• .. ... . . 

e;.* . "!' • YES t: MOVE GROU~ TO ft 
*•Sl:10RT l;N.T~.GER,9;•-.--->• HALF W,QRD *"t 

*• • • * ~CAL.AR E\OLL * 
""· •• ' .. ti: 

tt. -~ •*:••.·~··~·~11•t•--tt: .~ ... 
.• , NQ tt * 

v 
.... ~ 103970;!: 

t12 ':• *""**~H3********:** 
... •• • ti: 

1': K2 .. • • .... 
~=;l:tO~T l.O.~lC~~=•~>:TO~g~~EG~g~rAR :___, 

•• •• •, ROl..l,. it I 
•e:. .•• ·' ... =···········~··••*:: v 

: •::• :-> ~l NO : •::•: 

. . ··•·· ··~1; 
l0397Q8 v •••••J2•••••••*:•• . .. 

: ~p~~LrR~D TQ : 

* SCALAR ROLL • . . 
::::::·T······· 
: K2 .. :->·1 
··•·· f039705. v 

tt"!'••*K2•***·*·*·***·* . ~ 

* P.REf?A~E * •ro PROCESS N.EXl'.• 
* S~AL1'R • 
• • 
·~·······r··· .. ····· 

•it .. ~ . . 
• A3 •, .. . .... 

NOTE 2-
I~ DURING PASS l• 
NO MAP IS PRl,..TEO 
AND ALLOCATION IS 
NOT RECORDED- FOR 
COMMON AND EOV 1-
V,_LEN<;:E S(:Al.ARS•. 
INFO IS P.J CKEO UP 
FROM. OTt:fER ROLLS 

II 
·:'t***DS********* .:: . • " . * 

. • RETURN * • • .................... 



Chart CN .. ALLOCATE ARRAYS 

G0401 

••••A2********* * ARRAY • 
ALLOCATE . . ............... 

v 
*****B2********** . . . 

INITIALIZE . . . ................. 
:·::·=->I . . 
•••• v 

1040101 ••• 
c2 *• ••010• 

••••••C3*********** .. .. 
•• ALL *• YES 

* • ARRAYS • •----> 
•.PROCJ;:SSEO•* .. ... .... ro 

.•. 
D4ie *• 

•• NEXT •• •* ARRAY IN *• YES 
•.c;oMMON Eouiv".•j 

*•OR Dl,IMMY "'* .. .. .. .. '\/ 

•1 ~o ! ·::•: 
• • 
···~ v 

***•*E2*'*1t*1l*itil-*it • • * A,Ll..QCATE * 
• STORAGE ANO * 
*R~~QRO 1.0CA.UON• . . ·······r ...... 

V· 
**'**Fa•••••••••• 
• l!NTER * * lNfO ~N ARRAY ~ 
it f4AP..-, PRUll'. * 
it (:OMPLl;TE L. l NI; • • • ....... T ...... 
«•••*G2'1:it~••••il"•* . . 
• CAJ;..<;UL,ATE;: ANO * 
*RECORO BA.SE P.l'Rtt 
1tAN0 QI SPL.f!tl H4 * 
* CEN.TRA.l.. * 

~::::~::r···m ..... " 
ln4.QlJH! ••t1 

Ha *• .. .. 
~· *• ¥ES 

*• PA~S. l •*1· •.. .. '• ._ .. .. ~" " 
·1 ~P. : ·::· :. 

" . •'f.•• 
v •t•••J<-1t•••••'-"*" • • . . 

• Rl;PL.AC:I!' GROVP' • 
f ON ~Ql,.l,. 'It . . 
;::::;::·i._ ....... .it•· 
'!J, ~ 

··~~ tQ4QIQ3 V . •·•••ttK2••••tt•-.•~• • • 
•, PREP,A,qe'. •· 
°'.~Qc li'~QCESJ; N~»T•1·· 
~ ~RRAY • · 
• • 
••••-tt.•ti:·•.~··-····-.·- v 

.. it. .... . . 
t C? * • • tt.•.'t:t. 

PRINT 
ANY PART!Al. 

~INE 

······-······ 
••••c•••••••••• * • • ---->* RETURN * • • * ........... , .... 

Compiler Operation 



Chart co. 

90 

ADD BASES FOR SUBPROGRAM ADDRESSES 

G0402 

****A2********* 
* PASS l GLOBAL * 
*SPROG ALLOCATE * • • 
*************** 

I 
v 

*****82********** • • 
* ALIGN TO * 
* FULL WORD * 
* BOUNDARY * 
• • 
***************** 

v 
*****C2********** 
*DETERMINE BASE * 
* PTR AND * 
* DISPLACF-MENT * 
*FOR PRESENT LOC* 
• • 
*·**************** 

I 
v 

*****02********** 
* COMPUTE * 
* LENGTH OF * 
* OBJECT MODULE * 
*SUBPROGRAM ADR * 
• • 
***************** 

v 
*****E2********** 
*COMPUTE LENGTH * 
* OF OBJECT * 
* MODULE * 
• SUBPROGRAM * 
* ACOR * 
***************** 

I 
v 

****F2********* • • • • 
RETURN * 

• 
*************** 

BUILD 
ADDITIONAL 
BASES 



Chart CP. ALLOCATE SUBPROGRAM ARGUMENT LISTS 

G0442 

****A2********* * SPROG ARGo * * ALLOCATION * ... ... ................. 

v 
·"· 82 •• 

•* *• ****B3********* 
•* ZERO *• YES * * *• ARGUMENTS .•----->* RETURN * •• •• • * 

•• •* ·····~········· *• •* i NO 

I 
v 

*****C2********** 
... " * AL·IGN TO A * 
* FULL WORD * 
* BOUNDARY * 
... " 
***************** 

v 
*****02********** * DETERMINE AND * * SAVE BASE PTR * * AND DISPLACE- * 
*MENT FOR START * * ·oF ARGUMENTS * 
***************** 

v 
*****E2********** 
* INCREASE * * PROGRAM BREAK * 
* BY SIZE OF * 
*ARGUMENT LISTS * 
" " ••••••••••••••••• 

v 
*****F2********** " ... * CONSTRUCT * * REQUIRED BASE * 
* TABLE ENTRIES * " ... 
***************** 

v 
****G2********* 

... " * RETURN • 
" • ••••••••••••••• 

Section 2: Compiler Operation 91 



Chart CQ. PREPARE NAMELIST TABLES 

G0443 

****A2********* . . 
. • PREP 
* NAMELIST * ................ 

v 
*****B2********** . . 
* FLIP NAMELIST * * NAMES AND * 
•NAMELJST ITEMS * 
* ROLLS * ................. 

: ·::·:->I . . 
•••• v 

104430 l ••• 1044307 
C2 *• *****C3********** 

•* *• * COPY THE * •* DATA *• NO * COMMON DATA * 
•.ON THE NAMES • •---->• TEMP ROLL TO * 

•• ROLL •* *NAMELIST NAMES * 
*• •* * . ROLL * .. .. . ............... . res 

v 
•••••02•••······· . . 
* ALLIGN TO * 

v 
****03••······· . . 

FULL WORD * * RETURN * 
BOUNDARY * . . ·········~····· ................. 

I 
v •••••e2•••••••••• * MOVE * 

*HAMEL I ST NAMES * 
* ROLL GROUP TO * * COMMON DATA * 

TEMP ROLL ................. 
I 
v 

*****F2********** 
*DETERMINE BASE * * POINTER AND * DI SPL.ACEMENT '* FOR PRESENT * LOCATION ................. 

I 
v 

•••••G2•••••••••• . . 
* INCREASE * 
• PROGRAM BREAK • 
•BY 16 PUT ZERO * 
* ON WORK • ................. 
• ••••• I 
: H2 :->I 
•••• v 

fo4.-302 •*• f044306 

. 

H2 *• *****H3********** • * * • • MOVE MARKER * 
•* DATA *• NO * SYMBOL TO • 

•.ON THE ITEMS •"!!"---->• NAMELtST * 
•• _ROLL •*. *' Al.L:.OCATlON * 

•.;: f •·* · • . Aa.L: ·, .*· 

.. r;es ········r .. u··· 
v I 

••• v 
J2 • . •••••J3•••······· .. .. . . 

•* ALREADY *• YES * INCREASE * 
* • DEF 1 NED •*I * PROGRAfl'I BREAK • 

*• •* * BY ENTRY SIZE * 
*• •* * CN WORK * •• •• v ••••••••••••••••• 

. ,NO .····. I 
: 04 : i .... . ... . . 

V • C2 • 
•••••K2**•******* * . * . . 
* REGISTER * 
* VARIABLE AS A *I * SCALAR • . . 
••••••••••••••••• v .... . . 

• e• • . . .... 

.... . . 
* Bo1' * • • ...... 
! 

1044303 ••• 
04 •• 

•• *• •* *• YES * • A SCALAR • •----, 
~!!'.. .• .• I 

.... •• v 

•
1 

NO ·: ~::• :· . " . .... 
.~. t0~4304 c• •· •••••cs•••••••••• 

•* * • * D£TERMINE * •* *• YES •· NUMBER OF * 
*• AN ARRAY ••~~~->•OtMENStONS FOR * 

*• •* • StZE OF TABLE * 
*• •* *, ENTRY * 

•·., ·~o ;::::;::·,·•~··••• 
*" • .... ., 

*****D4*~******** ,f.Q4-.e~2~·•D5•~•·•••tt••• 
* • *· • 
*RECORD VAR I ABLE• *; AOb 12 TO * 
* NAME AS * •~SIZE OF ENTRY * 
*NA.MEL t ST ERROR * *: ON WORK * 
* • •: * ....... ~[****** ......... , ....... . 

. . 
* H2 * V • * ••••·•es••,•.••••••• **** *.MOVE .. NAMELIST * 

*· l·TEMS .RCL.L • 
* GROUP tO * 
*· NAMELI ST * 
*AL.L.OCATIDN ROLL* ..••.......•.•... 

I 
v .... 

*' • * H2 ··• • • ..... 



Chart CR. 

THE PRESENT 
POINTE.R IS 
CONPAREO TO 
A POINTER TO 
A NEW GROUP 

ALLOCATE LITERAL CONSTANTS 

•••*A.2* .......... . 
•LlTE.f:l:AL CONs·r .. . 
• ALt.CCAT!OH * . . ....................... 

I 
J 
v 

•••••B2******•••• . . 
* 1N1TlALll:!£ 4 
•PTRS TO LirERAL• * CONST mll.l.. * .. .........•....... 
: ·::· :_> l . .. l 
•••• v 

l-044401 ••• 
C2 *• •• *• 

•* ALL •• YES 
•-. CONSTANTS .. *I 

•.PROCESSED.• ... .. 
•• •• v 

* HO **** 
I : E4 : 
l • • I •••• 
" •••••n2•••••••••• . . 

* CONPUT€ ANO * 
* SAVE PTA FOR * 
* NEXT G'ROUP QN * 
• ROLL * ................. 

I 
v ... 

E2 *• 
•* .PAUSE *• 

•* OR DATA *• YES * • 
•.ST14T LITERAL .,•-->* C2 * .. .. . . .. .. ... .. 

• NO 

I 
y 

•••••-F2••········ . . 
* INCREASE * * PROGRAM BREAK • 
*BY NO. 6 YTES IN* 

: ..... :~;: ...... : 
l 
v 

*****G2********** 
*DE T-ERM 1 NE BA SE * 
* PTR AND * DISPLACEMENT 
* FOR PRESENT * 
* LOCATION * ....•............ 

l 
v .•. 

H2 *• ... .. 
•* *• NO 

•. PASS 1 •*1 .. .. .. .. 
•• •• v i YES : •::•: 

1044402 v 
•••••.J2••········ 
•THROW AWAY BASE* 
• PTR 01 SP.LMT * 
* ANO PTRS TO • 
* THIS LtTERAt.. * . ................. 

l 
v .... . . 

• C2 * . . 

. . 
* :S4 • . . ..... 
l 
v ••• ,.. •• .S4••······•*•• 

MOVE LITE-RA"L 
•TO 'OUT.PUT A.Afa\ '* 

-PUNCH !F C.ARD * CORRECT * .. ................ .. 

l 
v 

•••••t:lf••••······· * PUT BASE "P'TR * 
* ·AND * 
•·DJ'S'PLA-CEMENT ON* 
• ·Lt'TEAAL CONST * 
ilf ROLL • .................... 

I 
v . .... . . 

* C2 * . . ....... 
.... . . 

• £-4 • . . .... 
l 

fQ44'404 v 
*****E4****•••••• . . 
* THROW * 

.AWA'Y OLO 4 
: ~INTERS * . ...•...•...•••.• 

l v ... 
F4 *• 

•* *• ****FS••••••••• •* •. YES • * *• PASS I • •---->• RETURN .. .. . .. .. . ............... . ..... i NO 

v 
***"**G4••••••••••• 

PUNCl-1 . 
ANY PMHIAL 

CARD 

········••tt•tt 
I • *•**H•••••••*** . . 

RETURN • . . ............... . 

section 2: 

PUNCH 
REMAJNtNG 
TXT CAllD 

compiler Operation 



Chart CS. 

BUILD FORMATS 

ALLOCATE FORMATS 

G0445 

****A2********* . . 
FORMAT 

* ALLOCATION * ...•........... 
I 
v 

*****B2********** . . SET 
* POINTER TO 
* FORMAT ROLL . ................. 
: ·::·:->I 

144502 
•••••64••········ . . 

NOTE 
r->* ADO IT I ONAL 

*BASES REOUIREO • . . . ..•............. 

1446~~·· .:. ••• I I 
C2 *• C3 *• d .. .. .. .. 

•* DATA *• NO •* PASS *• YES 
*• TO PROCESS .•---->*• 1 OPE"ATION •* .. .. .. .. .. .. .. .. .. .. . ... 

* YES * NO 

II : ·::·:->I 
•••• v 

v 1044501 ••• 
•••••02•••······· 03 •. * COMPUTE ANO * • * * • * SAVE POINTER * •* FORMAT *• NO 

v 
****C4***"'***** . . 

RETURN . 

#044503 
••••••04••········· ••••••os••••••••••• . 

* TO NEXT * *• TO PROCESS .•----> 
PUNCH ANY 

DATA LEFT ON 
* l"XT CARD 

-.---.-> 
PRINT MAP 

LINE 
REMAINING FORMAT * *• .• 

GROUP * *• •* ................. . ... 
l 
v 

*****E2****•***** * INCREASE * * PROGRAM * BREAK BY * 
*NUMBER OF BYTES* * JN FORMAT * .................. 

I 
v .•. 

F2 *• .. .. 
•* *• YES 

*• PASS 1 •*1 .. .. .. .. 
•• •• v 

.
1 

NO : •::•: . . . 
144602 v 

•tt••••G2*********** 
MOVE f""ORMAT 

TO OUTPUT 
AREA PUNCH 

IF CARD 
;.:CJMl'LE'.TE ... ,: .. ···r····· 

v ..... .. . 
. • C2 • .. ' . 

•••• 

rES 

v 
*****E3********** . . 

OBTAIN 
*NUMBER OF WORDS• 
* FOR FORMAT * 

I 
v 

•••••F3********** 
*CALCULATE BASE * 
• AND * 
* DISPLACEMENT * 

FOR FORMAT 

I 
. v 
:****G3*********! 

REBUILD 
* FORMAT ROLL • 
•WITH PASE PNTR • . . ................. 

I 
v 

******H:J*•*****~*** 
• ~INT. l"Oft'MA.T 
, ·_'a.,~,- IF· . . • .~-~:r:m ............... 

I 
v .... . . 

• 03 • . . .... 

. ........... . 
I 
I 
v 

****ES********* 
RETURN 



Chart CT. 

DATA l HOLDS 
THE ADDRESS 
OF THE 
VARIABLE 

MAP EQUIVALENCE 

G0441 

****A2********* . . 
EQUIV 

MAP ................ 
I 
v ... 

82 •• 
.• •. ••••83••······· 

•* ANY *• NO * * 
*• EQUIVALENCE .+~~~->• RETURN 

*• DATA •* * + .. .. . ............. . .. .. 
* YES 

I 
v 

••••-••c2••••••••••• 
PRINT 

HEADING FOR 
EQUIV MAP ............. 
I 
v 

•••••02••········ 
*DETERMINE DELTA* 
*FOR EQUIVALENCE* 
* ADDRESSES DCB * 
* TO BASE TABLE * 
* SIZE * ................. 

I 
v 

*****E2********** . . 
FLIP THE 

* EQUIV * 
:ALLOCATION P.OLL: .................. 
. . I 
: F2 :->1 
..... v 

IO•VUOl ••• ~f044102 v 
F2 *• *****F3********** 

.•DATA ON•. * _COPY • 
•* EQUIV *• NO * COMMON NAME * *• ALLOCATION •* * TEMP ROLL TO * 
*• ROLL •* * EQUIV ALLO- * 

*• •* * CATION ROLL * ··i·;,. ········1········ 

v v 
•••••G2********** *****G3•••••***** 
* MOVE NEXT * * * 

GROUP TO * * 
CENTRAL• *UPDATE PROGRAM * 
I NC REASE * BREAK * 

• ADDRESS * * ................. . ............... . 
I I 
v v 

*****H2********** ******H3**********• . . 
* ENTER INFQ IN * * MAP. PRINT IF • 
: LINE COMPLETE : ................. 

I 
v 

•••••J2••········ 
*DETERMINE BASE * 
* POINTER AND 
* DISPLACEMENT * FOR VARIABLE . ········r······· 

v 
*****K2********** * ~UT GMIUP * * FOR VARIAM.E 
* ON COMMeN •-----, 
• NAMES • I 
.... !~::.:~;; ... : v .... . . 

: F2 : 

PRINT 
PARTIAL LINE 

'*· OF MAP 

. 
I 
v 

••••J3••······· . 
RETURN . ............. . 

section 2: CoJllPiler operation 95 



•:tt:*i•. 
•• ""1 " ~~- ' ... .. .,t\'., .. 

~J ~ 

"\. o~ .. ~ 
*' ·~ ~~;!\•: 

S~Q.OG. ~Ll::.O~ATE 
l\,N.~ eu·T.PU,T 



Chart cv. BUILD AND PUNCH NAMELIST TABLES 

* P~J;N,~ MEA.l:>it.NG. -11; 
FOR ~.q;MELI:-ST; 

*' MA.P ll? it; 
Rli:QUES.lEO.' 

........... ,~•«r•it*.-lt.*.*; 

...... "!".. t 
: ~~c :-~.f. 
•, *' [ 
~~~.-; 'vl· 

TH(: 1;..AT,liERI 
KOt,.QS TH~ 
ITEMS, F.ROM' 
"f.1;1£ NA.MEL.l'S.T 

IJ.1-ST. 

#,Q4-;Q~O 1, "'- ~ • :li.Q4.~S-Q.5 
E2- * "t *-*~**E3;•"''*::1t-'-..•iti~il!i. 

... ~. 0.A.TA ~, ~ COP.'( CQMMOl)t ~ 
• °" LEFT.- ON, ..... N.O "I> f.tATA tEMP· tt-

*·"t NAMEt;. J;S;i;: ,._ ____ • .>~ ROI.:.~. *' 
-=... l'tl.AME;S .,...,, ._,_ Y-0, N.AME"t:..lS11 ~ 

.., • .R,Ol .. I;. .. *' it N-IJME S, RDU,." *· 
~--... _.. *:~""'-lt•*'*>• .. ~•ili.iliitil;4';it, 

*' Yl;::S ~ 
I; I' 
I• I 
~ t 
* ~ ~"'°'**:•"'1.lf.2~..;.-. •. -,*~*-*'*l 4'i'lt~-.,**E3i*;it*:il;·"'lll*lil<-.,;~ 

EN'T:ER N,A,ME ii. . Bt,t,N.<;H' A.~ P,-Rt~!\11;" 
LO(; tN,, l!:M.R' "'i- RE.MA.1-N.JiN.& *> 
k.1.~E' l?JiH:Ni~ tNf,'~ ~I? 

l;ff l!. nNe ~ * '*EQUE-Sittl;Jl: •. 
Cti:IJlotPt..E-T;E 

*""'"""i"""'~""' 

~ 
[ 
v 

fl\~*--11!*.GZ.4::*:-lt;.••*·**·~*< 
* 8UT! a.~SE A?)!.£>; *; 
~ D-.l SP.1:'...ACEM.£;~'1: *
*; QF. N.AMEl..IST· * 
*· 'F,ABl,.E- 0.f*. (:D_M,:- ., 
*: ~Q~ O;AT;I\. T~~_MP,· ~ 
"':lfi~*'lt-i*.**·*·~··lt;tlf., .. 

h 

~ 
v 

'll!-ll\**·4:t:f'2."*'*•'ll:*,**'·•tli·*-•• 
•. ~,V,E NAMIH,.f.SJ'; *· 
-lf1 NAME A.ND: 2: * 
~ "f:ORO-S. OF . Q·. r.:o. *-: 
"Ill .~OQE; RO"-t.. ~Nil· ~: 
9i- QU'J'.5?t1T• •; 
~-~~ ... ~.., ....... , ...... ~4:·*~··· 

~--~~ Pi 
:: ~2- :->J' .. ., n .,....... \(' 

ilct ... Q,50'!; ...... 
J~ •• , 

-;:~.O:A,T,A· Qf'll4i.-,. 
... ~ ~A:ME4c_IrS:r. •·'"!. NQ, 

"ia; AL.~OC«,1'.11.0N,: ... ~ 
*;. RQll...l. ._.._, b 

*•-:: . ..1'; Ii 
"'r.-,. .. 41 v: 

•, Y~_S-. ~·""' 
i{ ~. . ~ \{ : l!f~: 

-.~'*'" ~-91;-ll~. *':: .. 
"""8-4: ~· .... ~ 
~.~~ 

.... 
* .. 6.4 • . . .... 
I 

i40SQ6 Y. 
***·*-*64•••• .. ••••• *' MOVE FIRST 4 * 
* •OROS OF * * lTE:M· E:N.T.RY * 
-. tO COO-£ ROU .. 
* AN.O. PUNCtt • 

***'*'******•*-**"*** 

t v ... 
C,4 *•· 

• -it- *• 
•* ..... No 

* • V·ARI A13L.E AN • ._.__,_ 
*• AR.RAV- •* l' 

·- ••• t ... •* v: 
* 'iES. ***·• 

t : J·~· : 

I' ....... 
( 
v 

·~••-11-.04,***•*****-* . . 
tli MO.VE ALL. 
-It D·J: M,Et,.l,~ 1: ON 
•FA.C(;;TO.~.S TO CODE* 
-.: FU:fLI:-. . *' 
•. ~-lt.'9'--lli***·**·*'ih~-lt**-* 

! ...... . 
* .J·? * 
-it. -I!< 

*· -II'( 
*. HA -II: .. .. .,., .. 

,. 
s, 

*-~•.*-*H.t\1-""i*"*·*'*·~-*-11:·••· .. ... 
~- *· 
*"L.'P'Q·AT:E l?.R(IG~A.M· *' 
-Iii ~€AK._ a: .. 
~*'~A+.'ll;-!l)Ai*.*'*i4*!*-~·· 

M ., 
._.; .. ,-I'; 

~ "" *· E2. iii .. .. 
-llll•.•; 



Chart cw. BUILD BASES 

G043B 

****A2********* 
* BUILD * 
* ADDITIONAL * 
* BASES * 
*************** 

**** * * * 82 •-> 
* * 
**** v 

*****82********** 
* * * OBTAIN . * 
*PRESENT PROGRAM* 
* LOCATION * 
* * ***************** 

I 
v 

•*• 
C2 *• 

•* * • ****C3********* 
•* MAX FOR *• YES * RETURN * 

*• LAST BASE .•----->* * 
*• •* * * 

*• •* *************** 
*• •* i "" 

v 
*****02********** 
* * * INCREMENT * 
*BASE ALLOCATION* 
* * * * ***************** 

v 
*****E2********** 
* * * REGISTER * 
* NEW BASE * * ALLOCATION * 
* ***************** 

. L :., 

I 
v 

**** * * * 62 * 
* * **** 



chart ex. DEBUG ALLOCATE 

G0545 

****A2••******* * DEBUG * 
ALLOCATE * 

.••..•••.••.... 

:·::·:_>, . . 
•••• v .•. 

62 *• *****83***•****** .. .. . . 
•* DATA *• NO * INVERT * 

•.ON INIT ROLL .•~~~->•THE SUBCHK ROLL* .. .. . . 
*• •• • .. .. . ..•...•..••.•••. 

i YES •••••• I I ·: C3 :->I 
•••• v 

v ••• 
*****C2********** C3 *• 
• MOVE * •* *• ****C4****•**** * VARIABLE NAME * •* DATA *• NO * * 
*OFF OF ROLL TO * *• ON SUBCHK .•~~~->• RETURN 
• CENTRAL AREA * *• ROLL •* * . .. .. . ............. . 
••••••••••••••••• •• ·* I . YES 

! I 
••• v 

02 •• •••••03••••······ 
•* *• * MOVE * 

•*, MATCHING *• NO * VARIABLE NAME * 
*• GROUP ON • *l *OFF OF ROLL TO * *• SCALAR •* * CENTRAL AREA * 

•.ROLL •* * .. .. . ............... . 
i YES I I 

•••••E2•~········ I 'E"3·~· •• • * I •* •.• 
* SET THE INIT I •* MATCHING *• NO 

! ~~!L!~ ~~EL I •G~~~:v 0~o~t0~!L•-, 
: ••••• ::~~: ••••• : I • · •. .• · • I I • YES I 

I< I I 
.~. v I 

F2 •. •••••FJ••········ I •* *• * SET * •* MATCHING *• NO *THE SUBCHK BIT * 
*• GROUP ON •*l • IN THE GLOBAL * 

•• ARRAY •• •.OMV ROLL GROUP •• I 
•.ROLL •* .. .. . ............... . 

rES 1 1<-, ~ 
I I i 

:••••G2•~·-·····: I 
• SET THE INIT I * BIT IN THE 

ARRAY ROLL 
• GROUP • 

********i:mm• I 
I 
v ... 

H2 •• .. .. 
.• ~ATCHING *• NO 

*GROUP .ON GLOBAL•---, 
•.OMV ROLL •* I 

*• •* I 
•• •• y i YES :•::•: 

v 
•••••J2••········ * SET • 
*THE INIT BIT IN* 
•THE GLOBAL OMV * 
* ROLL GROUP * 

I 
v .... . . 

• B2 • . . 

.•. 
G3 *• .. .. 

•* MATCHING ~. NO 
*• *• GR~~:A~N •* •) 

•.ROLL •• I 
•• •• v 

* YES **** 
I 
I 
v 

*****H3****•••••• . . 
*SET THE SUBCHK * 
* BIT IN THE * 

:ARRAY ROLL 
GROlJP ................. 

I 
I 
v .... . . 

* CJ * . . 

. . 
* CJ * . . 

Section 2: Compiler Operation '99 



Chart 07. 

100 

PHASE 3 - UNIFY 

GOlll 

****A2•****** .. * . . 
STAR'T UNIFY : ............... 

I 
G0145 V 

•••••e2•••••••••• 
*ARY REF AL-OAA2• ·-·-·-·-·-·-·-.. -· * .ALLOCATE * 
*GROUPS FOR ROLL* . . ................. 
: ·::·:->I 
..... v .•. 

C2 *• *****C3*•******** •* * • *COPY AREA FROM * •* DATA ON *• Yl;:S * RESERVE START * 
*• PROGRAM .•---->*TO SCRIPT ROLL * 

* • SCRIPT • * * RESERVEO AREA * 
*•ROLL •* * * .. .. . ............... . 

ro ) .. . 
#11106 V * C2 * •••••02••········ • • . . 

* RESERVE * 
*PROGRAM SCRIPT * 
* ROLL * . 
;:~~:;::r······ 

v 
•••••e2•••••••••• . . 

MOVE NEXT 
* GROUP FROM 
* SCRIPT ROLL ........ r .. ····· 

v .•. 
F2 *• .. .. 

•* END *• YES 
*•OF. ROLL DATA •*j .. .. .. .. 

•• •• y 

.
1 

rlo :·::• ! 
. . . 
v 

•••••c;2••········ . . 
* REPLACE * 
*GROUP ON SCRJPT* 
* ~OLL * . . '!"•••············· 

G0115 l 
•****H2****1r*lf** .. 
•oo Nl=ST UthPPA2• .. -·-·-·-•-it-• ..... t-• 
• PROCESS • * NEST OP * * LOOP$ • ........ r······· 

v ... 
J2 ~" •••••J3•••tt•••••• .. .. . . 

• * LPOP TEMP •"' NO * SET .REQ LQOP • 
··s~~~M~E~N!ro~:· ·---.->:TEM;t:~~T C~T LPDP: 

•• •* • • "" "'. . .......... ,. .. ,.,, .. . i Y~S I 
v v 

tt"t•• •••• ,. . . . 
• E~ • if: t;:2 ,. . . . . ....... .. .... 

.... . . 
* A4 * . . ..... 
I 
v 

•••**A4•••••••••• . . 
* AELEASE * 
*PROGRAM SCRIPT * 
* ROLL * 

············*···· 

I v 
•••••a•••••••=-••• . . 
* SET UP * POINTER TO * 
*ARR A Y REF ROLL * . . . ................. . 
·: ·::· =->l . . 
•••• v 

•*• GOl 13 
C4 *• 

11*•* POINTER*•-*• YES * ••:~~~;:;·;~*** * 
*110UTStOE ROLL .•~~~->• AODR CONST 

*• •* * DBA2 * •• ... ••••••t1•••••••• 
*• •* i NO 

. v 
*****04••········ . . 
*SET REG RUNG = * 
*4 AND INCREASE * * POINTER * . . ·······r······ 

G0112 V 
*****E4•********* 
•CNVT/FORMT-DCA2* 

·-·-·-·-·-·-·-·-· * CONSTRUCT * * INSTRUCTION * * FORM.FOR REG2 * 
........... ******* 

I 
v 

*****F4********** . . 
• * INCREASE REG 
* RUNG BY 4 * . . ·······r······ 

GOii~ V 
*****G4********** 
•CNYT l'FORMT-DCA2• ·-·-·-·-·-·-·-·-· *CONSTRUCT INST • 
• FORMAT FOR * 
* REGJSTER 2 * ................. 

I 
·V .... . . 

• C4 * . . .... 



Chart DA. BUILD ARRAY REF ROLL 

G0145 

••••A2••••***** 
* ARRAY REF • 
• ROLL * * ALLOTMENT * 

***•*********** 

x 
*****Bl•••******* 
* GET * 
• BEGINNING • 
* ADDRESS OF * 
•ARRAY REF ROLL • 
* * ***************** 

Y. 
•••••C2•••••••••• 
• * 
• GET ADDRESS ·* 
* OF PARSE SAVE • 
* AREA • 
......•......•... 

' x .•• 
•••••D2••***~**** 03 *• 
* * • •NO. OF .-.. ••••04•******** 
• GET NUMBER * . •* ENTRIES *• YES * * 
*OF ARRAY REF *•••••·~·X•. EQUAL ZERO .•.~.~ •••• X• RETURN * 
• ROLL ENTRIES * *• •* * • * * *. •• • •••••••••.••••• 
·········~······· *• ... 
**** . . • NO 

* E2 *••• • • • . x ••..•...•.••.•.•••..•••.• 
**** • #14501 x 

•••••E2••******** 
• • * LOAD GROUP * 
•INDICATED WITH • 
•INITIAL ZEROS • 

• ................. 

x .•. 
•••••F2•••••***** F3 •· 
• • •* ALL *• ••••F4•••••·fl'*** 

INDEX TO • •* ENTRIES •. YES • • 
• NEXT ENTRY • •• , •••• ,X•~ PROCESSED .• ••• ,.,,.X• RETURN * 
• POl'H ON ROLL • . •, .• " • . .. .. . ****""·······~·· .,. ••••• ** •• J':lt•••• • • • • 

* NO 

x 
••tt• 

• * 
" E2 " • • ..... 

Sect!c;>n 2; compiler OperatiQn 10'.J, 



Chart DB. 

102 

MAKE ADDRESS CONSTANTS 

G0113 

••••A2********* * CONVERT TO * 
AOR CONST * ............... 

I 
I 
v •••••82•········· . . 

*SET UP POINTER * 
* FOR LOOP * * CONTROL ROLL ................. 
: ·::· :->l 
•••• v 

1011301 ••• 
C2 *• *****C3********** .. .. . . 

•* POINTER *• YES * SET UP DATA 
•.OUTSIDE ROLL .•---->*AND INITIALIZE * 

*• •* * FOR GEN * .. .. . . .. . ............... . 

i"" I 
•••••02••········ v 
• • ••••03********* . . 

INCREASE 
POINTER . . ................. 
I 
v 

*****E2********** . . 
* MOVE 
:BASE INFO TO WO: 

I 
v ... 

F2 *• .. .. 
•* REFER TO *• YES 

JEYGEN 

*• TEMP AND .•---------, 
* • CONST • * 

•.ROLL •* .. .. 
ro 
v ... 

G2 *• .. . . 
•* GENERAL *• YES 

*• REGISTER .•--------
*• •• .. .. 

··.·:a I 

.... J....... ... I 
•.TAG.FIELD= o.• >I •. .• I *• •• .. .. 

ro I 
.•. to 11302 v 

J2 •. •••••J3••••······ 
• * WORD * • * * 

•* EQUAL TO •, YES * 
*• OR LARGER .•---->* PRUNE WO 

* • THAN 0 •* .. .. .... 
* NO 

I 
v .... . . 

* A4 * . . 
. ... . 

* C2 * . . 

. . 
* A4 * 
• '* .... 

I 

I 
#011303 v 

*****A4********** . . 
*FOR BASE ( CVEN * 
* CODE * 
*DISPLACEMENT)* 
* IN DAT A 3 * ................. 

I 

I 
v ... 

84 •• 
•* •• 

.•GRP 11.ATCHES*• YES 
•.ON ADR CCNST .•-, 

• • ROLL •• I 
• • •* I • • •• v 

* NO **** 
I • • I * F4 * I • • 
v 

*****C4********** . . 
*SET POINTER TO * 
* NEW GROUP ON * 
*AOR CONST RULL * 

•••••04••········ . . 
* PLACE BASE AS * 
*NEW GRP ON AOR * 

CONST ROLL . ............... . 
I 
v 

*****E4********** 
*INCREAS[ PTH 8Y* 
* TEMP LDC FOR * 
*LOCPS BY 4 ANO * 
* PUT ON ADH * 
* CONST « ................. 

I 
• • I * F4 •->I • ••••• I 

#11304 v 
*****F4********** 
* REPLACE BASE * 
* WITH TEMP PTR * 
* ON LOOP * 
* CCNTROL ROLL . .•••.•..•..•.•..• 

I 
v .... . . 

* C2 * . . 

THE WQRO 
DOES NOT 
CONTAIN AN 
AREA CODE 
AND DISPLACEMENT 
INDIC.ATING A 
NEED FOR A 
TEMPORARY 
LOCATION 



Chart DC. CONSTRUCT INSTRUCTIONS 

GOl 12 

****A2********* * CONVERT TO * 
* INST FORMAT * 
* * *************** 

I 
I 
v 

*****82********** 
* GET * * REG RUN OFF * 
*ARRAY REF ROLL * 
* FROM POINTER * 
* * ***************** 

l 
v 

•*• 
C2 *• 

•* *• ****C3********* 
•* GENERAL *• NO * * 

*• REG. NOTED .•------>* RETURN * 
*• ·* * * 

*• •* *************** 
*• ·* * YES 

I 
v 

*****02********** 
* * * MASK * 
*REG. RUNG VALUE* 
* * 
* * ***************** 

I 
v 

*****E2********** 
* PLACE * 
* VALUE IN R2 * 
* POSITION FOR * * INSERTION ON * 
* ROLL * 
***************** 

I 
v 

•*• 
F2 *• 

•* *• 
•* Rl *• R2 

*• OR •*----, 
*• R2 ·* I 

*• •* I 
*· ·* v 

* Rl **** 

I 
v 

*****G2********** 
* * SHIFT * 

VALUE TO RI * 
* POS lT ION 
* ***************** 
•••• I 

: H2 =->1 * * 
**** v 

*****H2********** 
* * *INSERT VALUE IN* 
* ZERO RUNG OF * 
*ARRAY REF ROLL * 
* * ***************** 

I 
v 

****J2********* 
* * 
* 
* 

RETURN 

*************** 
* 
* 

* * * H2 * 
* * 
**** 

Section 2: compiler Operation 103 



Chart DD. PROCESS NESTED LOOPS 

GOl 15 

••••A2********* . . 
tt 00 NEST UNlFV tt . . ••...•..•.•.•.. .... ! 
• • I 
• 82 •~>1 • • I 

v •••••e2•••••••••• . . 
•INlTIALIZE LOOP* 
* TEMP CNT ANO * 
tt NEXT LEVEL * . . ••..•...........• 

l 

. ... . . 
* A3 • . . .... 
! v 

*****A3****"***'* . . 
RESERVE 

NEST SCRl PT 
ROLL . •..•••....•••.... 

I 

I 
v 

*****BJ*••••••••• . . 
* COPY SCRIPT * 
*ROLL UNTO NEST * 
• SCRIPT ROLL * . . .................. 

I 
v ... v •••••c2•••••••••• . . C3 *• *****C4********** 

•* *• *SET OUTER LOOP * 
* PLACE IND. * •* NEST •• YES * CONTROLS ANO 
*VAR. COE FF• OF tt 
tt NEST IN WO * *• LEVEL ~1 •*---->* OETERMJN[ 

*• •* * SCRIPT • •.•...•.•.•••.... *• •* * ALLOCAT!ON tt . . .. . ............... . 
l 
v 

···••b2•••······· . . 
* tbNVERT * 
* ARRAY Of="FSETS * . . . . •..•.••......••.. 

I 
! 
I 
v 

•••••e2•••••••••• * COMPARE tt 
* NEST LEVEL OF • 
* LOOP WITH * 
* PRE Vt OUS NEST * 
* LEVEL * ................. .... I 
• • I 
* F2 *->1 
• • l 

v 
#011502 .... 

FZ •• 

• NO 

I 
I 
v 

*****D3********** 
• PLAC[ lNlflAL * 
*REG. COUNT AND * 
* )NO., VAR. * 
*COEFF. ON NESt 4 
* StRtPT * .................... 

! 
v .... . . 

* B2 * . . 

•* IS * • •••• 
• tt NL2 * • NO • * 

*• L'ES'S THAN .•-->• HZ * 
•. NL t •* * • .. .. .. .. 

• vts 

l v 
••• f011504 

G2 *• •••**G3•••••••••• .. .. . . 
•* NL2 •-. YES II PLACE IND VAR * 

•,. NOT £0UAL -.•---->•-OF 1NNE.R NESTED* 
•• TO" NLt •• • LOOP IN w·o • ... .. " .. ... -..·• ................ . 

• ···•·. r 'Nb 1 
: H2 :-->·I l ..... 1 

'4011503 v v 
*****H.z·lt•••••tt11•• *****H3***•****** . . .. -· sn 

NEST L-EVEL 
)NOH: ATOR 4 . 

it••••••·•'l4lHt•'•1t•• 

l 
v. •••••J2•····· •••.• . . 

PLA(:E "NES1T • 
1f t.E:Yl:L ON 1t 
•'P'ROG~AM SCf~HPT -. * 'ROLl.. >t ................... 

l 
v ..... 

" . 
• A3 • . . ...... 

l>LA-CC:: NEST 
* l.EVEL ON • 
*PROGRAM SCRlPt • 
• ROLL • ................... 

I 

l 
I ., 

•••••J3••·-······ . . 
* PUT 'tND • 
•VAR (OEf=-):' rc.J:eNT• 
,. 1'N ·tf\ • . . 
·········~·····--· I 

v ..•.. . . 
• ¥"4' .. . . ..... 

v 
****04••••····· . 

HE TURN . . ....•.........• 

. ... . . 
• F4 •--, 
tt * 1 

**** I 
v 

:***•F4*********: 
* PUT POINTER * 
• TO ARRAY~ 
* OFFSEt IN WO . . ...••••.•.......• 

I 
v 

•****G4•••••••••• . . 
DETERMlNE 

SCRIPT 
ALLOCATION . ................ ,.. 

I 
v 

••••4H4******4*** 
* SET * * AVAlLABl.E * 
•REGISTER COUNT * 
* ·FOR SCRlPT * 
* EXPRESS 1-0N * . .................. . 

l 
v ... 

.J4 *-. *****JS••••*'***** 
•* •• • • 

• * MORE '*• v-ES •-SET NEST LEVEL * 
*• NESl-ED L·ODPS ,. •----· -->•TO PRO-C.ESS :NEXT* 

*• •'* • -Ltl'OP * .. .. . . 
*• -·· ................. . i NO l 

v v .... ····• • * • '* 
•- f'12 ·* • F2 * .. . . . . ... 



Chart 08. 

START GEN 

GEN PROCESS 

PHASE 4 - GEN 

G0491 

****A2********* . 
IEYGEN 

I 
v 

•••••a2•••••••••• . . 
INITIAL12.E ................. 
l 

G0499 V 
•••••c2•••••••••• 
•ENT CO GEN-EAA2* ·-·-·-·-·-·-·-·-· * PRODUCE CODE * 
* FOR HEADING * 
* ANO ALL ENTR. * ................. 

j 
G0504 V 

•••••02••········ 
*PROLOG GEN-EBA2* ·-·-·-*-·-·-·-·-· PRODUCE ALL * 

REQUIRED 

=-~~~ .. ~~~~-i~~~-= 
l 

GOSOB V 
4***•E2•••••••••• 
*EPILOG GEN-ECA2* ·-·-·-·-·-·-·-·-· PRODUCE * 
* REQUIRED * 
* EPILOGUE CODE * ................. 

I 
• • l 
• F2 *->I • . I 

G0712 V 
*****F2********** 
:~;~.~~=!~~-;~:~: 
* MOVE POL 1 SH * 
• FOR STMT TO 
* POLI SH ROLL * ................. 

l 
v 

*****G2•••***•*** 
• _MOVE * * STMT NUMB.ER * 
•FROM POLISH TO * 
* STORAGE * . 
••>•H••r•••••H 

v 
****•_H2********** . . 
•MOVE NEXT GROUP• 
* FROM POLlSH • 
• HOLL T·O WOR.K * 
• ROL·L .................. ,... 

l 
v ... 

.J2 ... .. . .. 

POLISH 
NOT AT ION 
IS ON AFTER 
POLISH ROLL 

•* *• t'!IO 
•~LABEL .POl.NTER .. •1 -•. .. ... --· •• ... v 

* Y.ES •••• 

I 
v .... . . 

* A4 -* . . ··-·· 

. 
• C4 '* . . 

**** . . 
* A4 * . . ..... 
I 

G0493 v 
*****A4********** 
•LBL PROC - EF A2* ·-·-·-·-·-·-·-·-· * REMOVE AND * 

PROCESS 
* LABEL 
***************** 

l 
v 

*****84********** *****BS********** 
• * * * 
*MOVE NEXT GROUP* * INDICATE 
* FROM POLISH •---->* STATEMENT * 
* ROLL TO WORK •NUMBER ON CODE * 
* ROLL * * ROLL * ................. . ............... . 
. . 
• C4 •---, 
• • I< 

G0515 V 
*****C4********** 
* STA GEN-EGA2 * ·-·-·-·-·-·-·-·-· +GEN OBJECT CODE* 
•FOR STMT IF END* 
* STMT TERM PHS * ... ................... . 

I 
G0496 V 

*****04••········ 
*STA GENFIN EHA2* ·-·-·-·-·-·-·-·-· * GEN CODE FOR * 
•DO CLOSE RESET * 
* TEMP PNTRS * ................. 

I 
v .... . . 

* F2 * . . 

Section 2; 

I 

CODE IS 
PRODUCED 
ON THE CODE 
ROLL 

Compile~ operation 10:5 



Chart EA. 

10.6 

GENERATE ENTRY CODE 

G0499 

•***A2********* . . 
* ENTRY * 

CODE GEN .•.•.•...•.•••. 

I 
v ... 

82 *• *****B3********** .. .. . . 
•* SOURCE *• NO * PUT MAIN * 

*•A SUBPROGRAM .•---->*PROGRAM HEADING* 
*• •* * ON COOC::: ROLL * .. .. . .. .. .. •....••.•••...•. 

. res I 
f049901 V SET UP V 

*****C2********** *****C3********** 
* * * SET UP * * INITIALIZE A * * SAYE AREA 
*POINTER TO THE * * LOCATION AT 
* ENTRY NAMES * * CURRENT LDC· 
* ROLL * * ................. . ............... . 

I 
v ... 

02 *• .. .. 
•*NOe GROUPS *• YES 

*• ON ENTRY •*l *•NAMES = t .• .. .. .. .. 
• NO 

...... ..!........ I 
• BUILD A LABEL • I * RECORD INJT • * * PGM LDC BUILD * * CODE TO EXIT * * FOR LABEL * ..••.•..•..••.••. I 

I< . 
#049902 v 

*****F2********** • * * INSERT * 
*PROGRAM NAME IN* 
* CODE * . . ................. 

I 
v 

*****G2********** * PUT CODE * 
FOR INITIAL * SUBPROGRAM * * ENTRY ON * * CODE ROLL * ................. 

I 
GENERATE V 

*****H2********** * GENERATE * * ADDRESS * 
* CONSTANT * * FOR PROLOGUE 
* +EPILOGUE * ................. 

I 
v •••••J2•••······· . . 

* BUILD SAVE 
AREA AD CON 

* CODE FOR EXIT . ................. 
I 
v .... . . 

• 84- • . . .... 

v 
••••03••······· . . . . RETURN 

. ... . . 
• 84 • . . .... 

I 
v . .. 

84 •• 
•* *• ****BS********* 

•* ALL *• YES * * 
*• GROUPS .•~~~->• RETURN 

*•PROCESSED.* * .. .. . ............. . . ... 
ro 
v 

*****C4********** . . 
REDUCE 

*COUNT OF GROUPS* 
* TO PROCESS * . ............... . 
: ·::·:_>I . . 
..... v 

#-049903 .... 
04 ... 

•* *• ****OS********* 
• * ALL * • YES * * *• GROUPS .•~~~->• RETURN * 

•.PROCESSED.• * .. .. . ............. . . ... 
* NO 

I 
I 
v 

*****E4******•*** . . 
* REDUCE * 
*COUNT OF GROUPS* 
* TO PROCESS * ................. 

I 
v 

*****F4********** . . 
* lNSERT * * ENTRY NAME JN * 
* CODE * . .................. 

I 
v 

*****G4********** . . 
* PUT CODE * * FOR ENTRY ON 
* CODE ROLL . ................. 

I 
v 

*****H4********** . . 
* BUILD INITIAL * 
* PROGRAM ENTRY * 
* AD CON CODE * 
.............•..• 

I 
v •••••J4•••······· . . 

GENERATE" 
PROLOGUE 
+EPILOGUE ..... ~~~~~~ ..... . 

I 
v .... . . 

.• 04 • . . 



Chart EB. PROLOGUE CODE GENERATION 

G0504 

****A2********* . . 
* PROLOGUE GEN * . . ............... 

v 
*****B2********** . . 

INITIALIZE * * POINTER TO 
* ENTRY NAMES * 
• ROLL * •.....•.......... 

I 
v •••••c2•••••••••• 

*INITIALIZE CNT * 
*OF GROUPS TO BE* 
* PROCESSED ON * * ENTRY NAMES 
* ROLL * ..........•...... 
: ·::· :_>, 
• • I •••• y 

• 050401 ••• 
02 •• 

•* ALL *• ****03********* 
• * GROUPS *• YES * * · *• PROCESSED .•~~~->• RETURN .. .. . . ... .. ···········"!"••• *• •* 

ro 
v 

*****E2********** *****E3********** 
* * * BUILD A * * REDUCE COUNT * * LABEL * 
*OF GROUPS TO BE•~~~->•INSTRUCTION FOR• 
* PROCESSED * * PROLOGUE * 

. . 
* F2 •---, • • I 

v 
*****F2********** 
*CONSTRUCT CODE * 
* FOR LOADING * * ARGUMENTS. IF * 
* ANY * . ................. 

l 
v 

*****G2********** * CONTRUCT CODE * 
*FOR COMPUTATION• 
* OF DUMMY * 
*DIMENSIONS, IF • 
* ANY * ................. 

l 
v 

......•......•..• 

I 
v ... 

F3 *• ... .. 
. •* DEBUG *• NO 

*U~!:. :~E~::::~·•-,1 * YES 

I I 
*****G3•~········ 'I * BUILD DEBUG * 
• LINKAGE, UNIT • I * CODE AND UNIT * * NO. -IN CODE * 
: ••••• ~~~~ •••••• : . I 

I< I 
ts04L4 .~. 

H3 *• 

. ... . . 
* B4 • . . .... 
I 
v •••••84••········ * PUT LOCATION * 

* OF CLOSE OF * * PROLOGUE IN * . ENTRY NAMES • 
* ROLL . GROUP • 

·······T······· 

iOS402 V 
****•C4********** . . •••••cs•••••••••• 

" '. * * UPDATE * * CLEAR * * POINTER TO •~~~->• BASE REGISTER * 
* ENTRY NAMES * * TABLE * 

ROLL * ................. . ............... . 
I 
v ..... . . 

* D2 * . . 

*****H2********** * CONSTRUCT * * CODE FOR 
.. .. .., .. 

* CLOSE OF * * PROLOGUE * . ................. 
I 
v .... . . 

• 94 • . . 

•* SUbTRAC~ *• NO * * 
*• SPECIFIED •*-->* F2 * .. .. . . . .. . . . ... 

* YES 

I 
v 

•••••J3********** * BUILD * 
* DEBUG LINKAGE * 
* ANO SUl3TRACE * 
* START CODE ON * 
* CODE ROLL * ................. 

I 
v .... . . 

* F2 * . . 

Section 2: Compiler Operation f()7 



Chart EC. EPILOGUE CODE GENERATION 

G0508 

••••A2••••••••• . . 
• EPILOGUE GEN 

#050803 
B2 *• •••••63•••••••••• 

• •S~BPROGRAM• •. YES : OBT"AIN NO. * 
*• ENTERING TO •*•••H•.- .. X• QF·GROUPS TO 

*• PROCESS .• • PROCESS 

.... . . 
• G 1 • 

.. . . . . 
• ND 

x 
•••••C2•••••••••• 
• SET • 
• LABEL • 
•INSTRUCTION FOR• 
• MAIN PROGRAM • 

ENTRY .................. 

x 
•••••02•••······· . . 
•BUILD CODE FCR • 
• CLOSE OF • 
• EPILOGUE flF 

MAHl PROG ................. 

x 
•••••E2•••••••••• . 
• BUILD * 
• MAIN PROLOGUE • 
• CODE • 

x 
••••F2••••••••• 

RETURN 

H 50804 • •. 
Gl 

•• ·SunTRACE·· •• NO • ••••• 
SP£CIFIEU .• •••• X• G4 • .. . . .. . . 

• YES 

x 
*** ••H l•• ** •••.••• 

8U!LD DEBUG 
L lNKAGE A~lO • • • 

SUBTRACE *•• •• X• G4 • 
ENO CODES • • • 
!RETURN! ................. 

108 

. . . 
• C3 •.X. . . .... 

#050~01 ••• 
C3 •. .. . . •••••C4••******** . . 

• • ALL •. YES • PRUNE • 
•. GROUPS •*•• ....... X•LAST ENTRY FROM• 

•.PROCESSED.• WORK ROLl . . . . .. . .. 
• NO 

x 
•••• * D3 •• ***ti.* •• . . 
•SET BASE TABLE * 
•AS REQUIRED FOR* 
* EPILOGUE • 

x 
****•E3•••••••••• 
•BUILD INSTRUCT • 
* FOR DUMMY • 
•ARGUMENT VALUE • 
* TRANSFER • 

.•. 

x 
••••04••••••••* . 

RETURN 

1050802 
F3 *• ••••*F4********** 

•* ENTRY *• • * **** 
•* DEFINED *• NO • PRUNE • * * 

*• AS SCALAR ~··•••••••X•LASJ ENTRY FROM+· •••• X+- Gl • 
• • • • * WORK ROLL * • * .. 

x 
•••••G3********** 
• BUILlJ LOAD 

INSTRUCTION 
AND CL EAR 

ACCUMULATOR 

. . 
• Gl • . . 

.... . . 
* G4 *·•• . . .... . 

1050845 x 

. 

•••••G4•••••••••• 
:BUILD CODE FOR : 

CLOSE OF 
EPILOGUE OF 

* SUBPROG * .......•.....•... 

•••tt•H4'•~*•*•**** 
:DECREASE NUMBER: • • 
•_.OF GROUPS TO • ..... X• C3 • 
• PROCESS • • * . ...•..........•.. 



Chart ED. MOVE POLISH NOTATION 

G0712 

****A2********* 
* * * GET POLISH * 
*************** 

I 
v 

*****82********** 
* * *SET UP POINTER * 
*TO AFTER POLISH* 
* ROLL * 
* * ***************** 

I 
v 

*****C2********** 
* * * COPY.POLISH * 

FOR STMT TO * 
* POLISH ROLL * 
* ***************** 

I 
v 

*****02********** 
* * *UPDATE CONTROLS* 
* FOR AFTER * 
* POLISH ROLL * 

* ***************** 

I 
v 

****E2******* ... * 
* * . 
* 

RETURN 

*************** 
* 
* 

Section 2: compiler Operation 109 



Chart EF. 

110 

PROCESS LABELS 

60493 

••••A2********* . . 
* LBL PROCESS * 
* • 
**•············ 

I 
v •••••02••········ . . 

• STORE POINTER * 
*TD LABEL IN STA* * LBL BOX * 
* • ••.........•..... 

l 

y ... 
D2 *• .. .. 

•* *• NO 
*• ..JUMP TARGET •*I .. .. .. .. .. .. res 

v 
*****E2********** . . 
* CLEAR THE * * BASE REGlSTER * : ..... :r .... : I 

1049301 v 
*****F2***,,.•***** . . 
• PUT LABEL * 
* CODE ON CODE * 
* ROLL * 
* ................. 

v ... 
H2 *• .. .. 

•* DATA *• NO 
*• ON AT •*--i 

•••• ROLL •• •• I 
•• •• v 

: •::• =-> •
1 

YES (::•: . . 
•••• v 

f49302 ••• 
J2 •• .. .. 

•* AT *• NO 
*STMT. FOR THIS.•1 

*• LABEL •* .. .. 
•• •• v 

* YES **** 
I : C4 : 
v • • .... . . 

* BJ * . . 

* 83 • 

* * .... 
I 
v •••••83••········ 

*MAKE LABEL FOR * 
*DEBUG CODE-PUT • 
*BRANCH ON CODE * 
* ROLL * . .••........•.•.. 

l 
v 

*****C3********** 
•PUT POINTER TO * 
* MADE LABEL ON * 
* AT ROLL-WORD * 
* 2 OF GROUP * 

* .................. 
I 
v 

•••••03••········ * MAKE LABEL • 
*FOR NEXT 1 NST- * 
* RUCTION - PUT * 
* LABEL CODE ON * 
* CODE ROLL * . ..••............ 

I 
v 

*****E3•••••••••• 
*PUT POINTER TO * 
* MADE LABEL ON * * AT ROLL-WORD * 
* 3 OF GROUP ................. 

I 
v 

*****F3***•****** 
• * * CLEAR WORD I * OF AT ROLL 

GROUP . ...•............ 
I 
y .... . . 

: J2 : 

FIRST WORD 
OF AT ROLL 
GROUP IS 
COMPARED WITH 
STA Ll3L SOX 

. . 
* C4 • . . .... 

I 
v 

149305 ••• 
C4 *• .. • •. ••••cs••••••••• •* TRACE *• NO * * *• SPECIFIED .•~~~->• RETURN .. .. . .. .. . .............• .. .. 

rES 

v 
•••••04••········ * PUT DEBUG * * LINKAGE FOR * 
* TRAC£ ON CODE * 
* ROLL * 

I 
v 

•••••E4********** 
* * PUT BINARY 
* LABEL ON 

CODE ROLL . .................. 

I 
v 

••••F4*****•*** . . 
RETURN 



Chart EG. GENERATE STMT CODE 

G0515 

****A2********* .. .. 
* STA GEN * .. .. 

*************** 

v .... 
82 *• 

•* STMT *• 
•* FUNCTION *• YES 

*• MADE LABEL • ...__, 
*• PTR = 0 •* 

*• •* 
*• •* i NO 

v .... 
C2 *• 

•* STMT *• •* FUNCTION *• YESV 
*• DRIVER ON •* 

*• WORK •* 
*• •* 

*• •* 

i"' 
v 

*****D2********** 
* BUILD * * CODE FOR * 
* STATEMENT * 
* FUNCTION MADE * 
* LABEL " 
***************** 

I r 
#051502 v 

*****E2********** .. .. 
* GENERATE • 
" CODE FOR * 
* STATEMENT * .. • 
***************** 

I 
v 

****F2********* . .. 
* RETURN * .. .. ................. 

THE .JUMP TO 
APPROPRIATE 
CODE GENERATION 
THE CONTROL 
DRIVER IN WO 
AND THE STA 
RUN TABLE. 

GOS44 

****A4********* 
* TERMINATE * 
* PHASE * .. .. 

*************** 
I 

I 
v 

*****84********** .. 
.. PREPARE .. 
*FOR EXIT PHASE * .. .. .. • -.....••..•......• 

I 
v 

***** •09 * 
* A2* .. .. .. TO PHASE 5-

EXl T 

Section 2: Compiler Operation 111 



Chart '.EH. COMPLETE OBJECT CODE 

G0496 

****A2********* 
* STA GEN * 
* FINISH * 
* *************** 

I 

**** I 
* " I • e2 *->I 
* * I 
**** v 

#049603 •*• 
a2 •. 

•* DATA •• 

* 

•* ON DO *• NO 
*• LOOPS OPEN •*----i 

*• ROLL •* I· 
*· ·* *• •* v 

*ii YES :·::·: 

* * 
**** 

v 
*****C2********** 
* * * MOVE * 
*GROUP OFF ROLL * 
* .. 
* * ***************** 

I 
v 

•*• #049601 
02 *· •••••03********** 

•* *• * * • * Po I NT ER = * • NO * * 
*oLABEL OF THIS.*~~~~->* REPLACE OROUP * 

*• STMT •* * bN ROLL * 
*· •* * * •• •* ***************** 

* YES I 
I **** 

I
I : E3 :->! 

**** I v # 049602 v 
*****E2********** *****E3********** 
* * * * * CONSTRUCT * * RESET TEMP * 
*DO CLOSING CODE* * POINTERS AND * 
* ON CODE ROLL * * ACCUMULATORS * 
* * ******~********** 

I 
I 
v 

**** * * * 82 * • * 
**** 

* ***************** 

I 
v 

****F 3********.* 
* '* ~ RETURN '* 
* * *********.***.*'** 



Chart 09. PHASE 5 - IEYEXT 

G03~1 

••-e•A2••• •••••• . . 
• EX11' Pl\S!i • . . ······-········· 

l 
•••••B2••~••••••• . . . 

INITil'.l.IZE . ................. 
I •••••c2•••••••••• 

•PCH NMLMPY-?LA2• ·-·-·-·-·-·-·-·-. •PCB fliMLIST TBL • 
• WORDS HLDNG, • 
• POINTERS • ................. 

Gom I •••••D2•••••••••• 
•PCH THP/CN- FAA2• ·-·-·-·-·-·-·-·-. • PCH TEMP STGE • 
• A.ND CONSTANT • 
• AREA • ................. 

60383 ···.I •••••E2•••••e•••• 
•PCH ADCON-FB1'2 • ·-·-·-·-·-·-·-·-· • PCB RLD CARDS • 
• FOR TEMP AND • 
• CONST l\REA • ...•..•.......... 

l .•. 
F2 •. 

• •OBJtCT •. 
-.• LISTING •. !10 

*• REQUESTED • •---•. . . •.. . . • .... 
rES 

••••1'•G2.••••••••••• 
* PRINT HEa.OING • 
.. FOR L!STING 0 

~~;~~------l 
•••••AJ•••••••••• 
•PCH BSE RL-FOA2• 

·-·-·-·-·-·-·-·-· • PCH OBJ MOD • 
: BAS~LfiA¥~~b REC: 
•••••••••••e••••• 

oo... I •••••B3•••••••••• 
•PCH BR RL-FEA2 • ·-·-·-·-·-·-·-·-· •PCH OBJ MODULE • 

:RECg~D TmEiNFO: . ............... . 
l .•. 

C3 •. . . .. 
• •SUBPROGRAM •. NO *"" ARGUMENT .. •---•. . . .. . . • ... 

G0402 i YES 

•••••03••••······ •PCH SP ARG-FF1'2• ·-·-·-·-·-·-·-·-· •PCB SUBPRGR ARG• 
• LISTS RECORD * 
• RLD !NFO * .............. ., .. 

G0403 I<~---------
•••••E3••········ •PCB GBL SP-FGA2• ·-·-·-·-·-·-·-·-· • Pea SUBPRGR • 
• 1'DDR !Um RCD • * RLO INFO * . ............... . 

G0404 I •••••Fl•••••••••• •PCB LIB RL-FBA2 • · ·--·-··-·-·-·-·-·-· • COMPL SQBPRGR • 
• ADDRESSES AND * 
• RECORD RLD • 

. .. ::·····r······ 
•••••G3•••••••••4 
•PCB l\DCON-PIA2 • ·-·-·-·-·---·-·-· • PCB l\DR CONST • 
•!'.ND RECORD RLD • 
• INFO • ••••••••••••••••• 

..... l 
·~•••B3•••••••••• •PCB RU> .4!f.-PJA2• ·-·-·-·-·-·-·-·-· • ·PORCH OBJECT • 
•MOD llLD ·Cl\RDS * . . 

~~"""['""'" 
··•••J3••••<······ -.PCB ~Im Cl>-PllA2• .. _ ........... -._. ...... _._. 
• flltli:B .l>BJEcT o 
•MODULE l!ND•CARD• • • ..................... 

L-----'-~-----. 

-----------i 
•••••i:ill•••······· . . . . 
*RELEt.SE ROLL.S . . . ............... . 

l ••••c4••••••••• 
* CHART 03 * 
: A2 ............... 

TO INVOCATION 
PHASE 

section .2.: C-OJ!!Pil.<er -Operation 



Chart FA. 

114 

PUNCH CONSTANTS AND TEMP STORAGE 

G0382 

****A2••••••••• 
• PUNCH TEMP • 
•AND CONST ROLL • 
• • ••••••••••••••• 

y 
•••••e2•••••••••• • • 
• INITIALIZE • 
• LOCATION • 
•COUNTER AND TXT• 
• CARD • 
··············~·· 

y 
•••••c2•••••••••• • • 
• INITIALIZE • 
•POINTER TO TEMP• 
•ANO CONST ROLL • 
• TOP ~ 

••••••••••••••••• 

:·::·=->I • • •••• v 
103820 l ••• 

02 •• .. .. 
•* ROLL *• YES 

••••••03••········· 
• • 

•• PROCESSED .•~~--~> 
PUNCH 

ANY PARTIAL 
CARD •. c. .. .. .. .. 

r 
y 

•••••e2•••••••••• • • • • • • 
INCREMENT 

POINTER 
• • • • ••••••••••••••••• 

y 
•••••F2••••••••v• 
•MOVE NEXT GROUP• 
• FROM ROLL TO • 
• BUFFERo PUNCH • 
• tF CARD • 
• COMPLETE • ••••••••••••••••• 

I 
v 

•••• • • 
• 02 • 
• • •••• 

• • 
• •••••••••••• 

v 
****E3********* 

• • 
• RETURN • • • • •••••••••••••• 

PUNCH PARTIAL 
TXT CARD 



Chart FB. PUNCH ADR CONST ROLL 

G0383 

****A2********* 
* * * PUNCH ADR * 
* CONST ROLL * 
*************** 

v 
*****62********** 
* DETERMINE BE- * 
*GINNING ADR OF * 
* TEMPORARY STG * 
* AND CONST * 
* AREA * 
***************** 

:·::·:->! 
* * **** v 

#038301 •*• 
C2 *• 

•* *• ****C3********* 
• * DATA * • NO * * 

•.ON ADR CONST .•~~~~->* RETURN * 
*• •* 

*· ·* 
*• •* 

* YES 

I 
I 
v 

*****02********** 
* INITIALIZE * 
* LOCATION * * COUNTER FROM * 
* POINTER AND * 
* BEGINNING ADR * 
***************** 

I 
v 

*****E2********** * PLACE AREA * 
* CODE FROM * 
* AOR CONST * 
* ROLL ON * 
* RLD ROLL * 
***************** 

I 
v 

*****F2********** 
* * * SET LDC CTR * 
*INTO RUNG l OF * 
* RLD ROLL * 
* * ***************** 

I 
v 

*****G2********** 
* PUT LOCATION * 
* FROM ADR * 
* CONST ROLL * 
* IN OUTPUT * 
* AREA * 
***************** 

v 
******H2*********** 

* PUNCH PARTIAL * 
CARD 

* 
************* 

I 
v 

**** 
* * * C2 * 
* * 
**** 

* 

* * *************** 

WO TO TXT CARO 

PUNCH PARTIAL 
TXT CARD 

Section 2: Compiler Operation 115 



Chart FC. 

116 

PUNCH OBJECT CODE 

G0384 

****A2******•** . . 
PUNCH 

••• ~~~i.~~i.~ •••• 

I 
v 

•••••s2••••~••••• 
·* INITIALIZE • 

LOCATION * 
COUNTER + 
CODE ROLL 

* POINTER * ................. 
• ••••• I 
* C2 •->1 
• • I 

v ... 
C2 *• 

•• *• 
******C3*********** 

•*DATA STILL *• NO * PUNCH ANY 
REMAINING 

*PARTIAL CARD * * • TO BE • *----> 
*•PROCESSED•* .. .. . . .. 

* YES 

I 
I 
v 

•••••02••········ 
* GET * 

NEXT * 
INSTRUCTION * . . . ................. 

I 
v ... 

E2 *• 
•• *• 

............. 
I 
v 

****03••······· . . 
RETURN 

*****E3********** . . 
• * A * • YES * * 

*• STATEMENT .•---->•STORE IT IN STA*! 
* • NUMBER • * * NUM * 

•• •* • • 
•• •• ••••••••••••••••• v 

* NO **** 

I 
v ... 

F2 *• .. .. ******F3*********** 

. . 
* C2 * . . 

. ... . . 
• 84 • . . .... 

I 
v ... 

B~ *• *****BS********** 
•*ADDRESS*• * * •* CONSTANT *• YES * STORE * 

*• DEFINITION •*---->* LOCATION * 
*• •* * COUNTER 

*· •* • .. .. .. ............... . 
ro J 
v .•. 

C4 •. •••••cs•••••••••• 
• * A *• * DEFINE LABEL * 

.~ LABEL •~ YES * ON BRANCH * 
*• INSTRUCTION .•---->• TABLE ROLL. I= * 

*• •* * NECESSARY PUT * 
*• •* * IN LIST AREA * 

··.·~o ........ r ...... . 
I .~ .. 

* • 
V * C2 * 

******04••········· • • 

* MOVE INSTR TO * 
OUTPUT AREA 

*PUNCH IF FULL* . ........... . 
I 
v .... 

• * 
* C2 * . . 

*****F4*****•**** 
* REINITIALIZE * •* A *-. YES * PUNCH ANY 

REMA INfNG 
*PART l AL CARD * 

• *LOCATION COUNTR* 
•.PROGRAM l:JREAKe •----> .. .. .. . . .. .. ---->* TO JST FULL *I 

•WORD AFTER TEMP* 
* + CONST AREA * 

ro 
v ... 

G2 *• ******G3•••*******'* .. . . 
• * *• YES •MOVE TO OUTPUT * 

•·.~ CONSTANT•*.•----> .~:~~ ~g~~~e:i~+ ---,1 .. .. 
•• •• ••••••••••••• v 

* NO **** I • • 
I * C2 * . . .... 
v .•. 

H2 *• .•. .. 
•* AN *• YES * 

*• INSTRUCTION •*----> 

******H3•*•*•****** 
MOVE ·OAl'A TO 

OUTPUT AREA * 
PUNCH IF 
COMPLETE I ... .. .. . . .. .. . ............ . i NO 

v .... 
J2 •• ••••••J3••••······· .. .. 

•* *• YES * . 

v .... . 
* C2 * . . 

*•LIST FLAG ON .•----> 
• • •* .. . . .. .. L.IST CODE 

I 
* NO 

I 
v .... . . 

• 84 • . . .... 

.. ........... . v .... . . . 
• 84 • . . 

••••••••••••••••• v .... . . 
* C2 * . . 



Chart FD. 

SWEEP BASE 
BRANCH ROLL 

PUNCH BASE TABLE 

G0399 

****A2********* 
* PUNCH * 
* BASE ROLL 
* ********·****•** 

I 
I 
v 

*****B2********** 
* * I NIT! ALI ZE 
* BASE TABLE 
* LOCATION * 
* COUNTER * 
***************** 

l 

I 
v 

*****C2********** 
* * * !l:HTIAL!ZE * 
*POINH'R TO BASE* 
* TABLE ROLL * 

* ***************** 
t 

I 
v 

*****02********** 
* * * INITIALIZE * 
*TXT CARD OUFFER* 
* * 
***************** 

I 
**** l 

* * I. * E2 •->I 
* * I 
**** v 

G0400 •*• 
E2 *• 

•* 
******E3*********** 

•* ALL *• YES PUNCH * 
*• ROLL .•~~~~-> ANY PARTIAL 

*•PROCESSED.* * CARD * 
*• •* 

* NO 

I 
I 
v 

*****F2********** 
* * * INCREMENT * 
*POINTER TO ROLL* 

* 
***************** 

I 
t 
I 
v 

*****G2********** 
* * * RECORD ESQ * 
* + LDC COUNTER * 
* ON RLD ROLL * 
***************** 

I 

! 
v 

*****H2********** 
* * * MOVE GROUP TO * 
*BUFFER PUNCH IF* 
* CARO COMPLETE * 
* " ***************** 

I 

I 
v 

**** 
* * * E2 * * • ....... 

************* 

I 
v 

****F.3********* 
* * 

RETURN * 
* *************** 

section: 2: compiler operation 117 



Chart FE. 

SWEEP BASE 
BRANCH ROLL 

118 

PUNCH BRANCH TABLE 

G0400 

****A2********* 
* PUNCH * * BRANCH ROLL 

* *************** 
I 

I 
v 

*****62********** 
* * * INITIALIZE 
* BRANCH TABLE 
* LOC COUNTER * 
* * ***************** 

I 
v 

*****C2********** 
* * * INITIALIZE * 
* POINTER TO * * aRANCH TABLE * 
* ROLL * 
***************** 

I 
v 

*****02********** 
* * * INITIALIZE * 
*TXT CARO BUFFER* 
* * 
* * ***************** 

**** 1 
: E2 =->I 
* * **** v 

#040001 ·*· 
E2 *• 

•* *• 
******E3*********** 

•* ALL *• YES * PUNCH 
*• ROLL .•~~~~-> ANY PARTIAL 

*•PROCESSED•* CARO 

*• •* * NO 

I 
v 

*****F2********** 
* * * I NC RE ME NT * 
*POINTER TO ROLL* 
* * 

* ***************** 
I 

l 
v 

*****G2********** 
* * RECORD ESD * 
*AND LDC COUNTER* 
* ON RLO ROLL * 
* * ***************** 

I 
v 

*****H2********** 
* MOVE 
* GROUP TD * * BUFFER, PUNCH * 
* IF CARO * * COMPLETE * 
***************** 

l 
v 

**** 
* * * E2 * 
* * 
**** 

************* 

I 
I 
v 

****F3********* 
* * * RETURN * 
* * *************** 



Chart FF. PUNCH SUBPROGRAM ARGUMENT LISTS 

G0402 

****A2********* 
PUNCH 

SPRDG ARG 
* ROLL 
** ************* 

C2 .. .. ******C3*********** 

•* ALL *• YES * PUNCH ANY 
REMAINING 

*PARTIAL CARD * *• ROLL .•----> 
*•PROCESSED.• .. . . .. .. 

* NO 

I 
v 

*****02•••••••••* . . 
INCREMENT * 

*POINTER TO ROLL* . . 
I 
v ... 

I 
v 

••••o3•******** . 
RETURN 

E2 *• *****E3*****•**** 
• * *. MOVE GROUP * 

•* *• YES TO TXT 

*• *• GROUP=O •* • •---->: 0~0~~~ ~~EA :1 .. . . .. .. * CARD COMPLETE * I 
••••••••••••••••• v 

* NO 

I 
I 
v 

it- 40203 ••• 
F2 *• *****F3********** •• •• * • 

•* TEMP *• YES * COMPUTE * 
*• AND CONST .•---->* APPROPRIATE * 

*• POINTER •* LOCATION * .. .. .. .. . ............... . 
* NO 

I 
i040204 v 

*****G2*******•** . 
COMPUTE 

APPROPRIATE 
LOCAT CON 

I 
l<c-~~~~~~~--' 
I 
v 

**4**H2********** . . . 
*RECORD RLD INFO* . 
***************** 

! 
v 

*****J2 ********** . 
INSURE 

'MINUS' TAG 
MARK . ................. 
I 
v 

*•***K2********** . . 
MOVE * 

*DAT A TO OUTPUT •-, 
• AREA • I 

• I 

••••••••••••••••• v . . 
* CZ * . . 

.... . . 
* C2 * . . .... 

PUNCH 
PARTIAL 
TXT CARD 

Section 2: Compiler Operation 119 



Chart FG. PUNCH SUBPROGRAM ADDRESSES 

G0403 

****A2*•******* 
* PUNCH * GLOBAL SPROG 
* ROLL * ............... 

I 
I 

I 
v 

*****1:32••········ . . 
FL'IP THE * GLOBAL SPROG 

* ROLL 

... 
C2 *• 

·* •. 
• * OAT A * • NO * 

*• ON THE ROLL .•---->' . . .. .. .. .. .. 
* YES 

I 
I 
v 

•••••02******'**** . . 
TURN OFF 

* ~.UBPROGRAM lt 
*FLAG. MOVE WORD* 
• OFF * .................. 

I 
I 

1 

****C3*• ******* 
RETURN 

················ 

I<-----------------
1 

'#040:301 v 
*"**•E2•*•******* . . 

MOVE ESD • 
* NOMBCR TO 'RLD -• 
* ROLL * . ..................... 

I 

I 
I 
v 

••"••*F2****-***'** . . 
DETfHMINE 

* LOCATION OF * 
1t SUBPG'M ADORE SS * . . .................. 

. •.. 
G2 *• 

• It •• 

'•* '•·· YES 
•.sutJPRQG. FLA'G;,,"*---, 

• • ON "•* I 
•·. -. ll I 

•-. ... v 
• NO 
I 

I 
I 
v 

•••••'H2•·······-•••1I• . 
·• 5 TORE 
lt LOCA'r·ION IN '* 
'* LOC-. 'COUNTLH lt . . 
.............. 11 •• -.:i. ..... 

,\ 

1 ,I 
I 
v ·······J·2*•'*········· . . 

* T:NfT'!'A·L'IZE 
'* OUT'PUT i\RE·A-. 
-. T\JR'N ON 
"* SUBPR'OG • FL 'AG '* **'* .•• ,.-... :. .......... -. 

I 
I 
v .••... . . 

* ·94 '• .. . 
·-·if• 

. 
• 84 ti . . .... 

#040302 

. ... . . 
* E;4 • . . 

** .. **tl4•••······· . . 
STORE 

*LOCATION ON RLO* 
* ROLL * 

#040304 
•••••c4•••••••••• 
* MOVE * * 0 TO OUTPUT 
*AREA 9 PUNCH IF * 
* CARD COMPLETE * . . ................ . 

04 

! 
I 
v ... .. 

•• *. ******OS*********** 
•* DATA *• NO * PUNCH 

ANY PART I AL 
CARD 

*• ON THE ROLL .•----> .. .. 
*. . • 

... "* 
* YES 

J 
************* 

I 
v 

****ES**'******* . . 
RETURN . 

• .• ••4••••······ 



Chart FH. COMPLETE ADDRESSES FROM LIBRARY 

GD404 

••**A2*****·**** * PUNCH USED • * LIBRARY 
* AOL\. * ............... 

v 
•••••82•••······· 
* * • FLIP * 

· ·• THE USED LIB * 
* ROLL .................... 

I v 
•*• 

C2 *• 
•• *• ••••c3••••••••• 

•* *• NO * * *• DATA ON THE .•~~~->• RETURN 
*• ROLL •* * .. .. . ............. . .. .. 

* YES 

1 

. ... . . 
• 84 • . . .... 
I 
v 

*****84••········ . . 
* STORE * 
*LOCATION ON RLD* 
* ROLL . ............... . 

I 
v 

*****C4********** 
* MOVE * * 0 TO OUTPUT * 
*AREA1 PUNCH IF * 
* CARD COMPLETE * . . . ............... . 

I 
• • I 
: 04 :->1 
•••• v 

v 
•••••02•••••····· * TURN OFF * 

# 40404 ..... 

* SUBPROGRAM * 
•FLAG,, MOVE WORD* 
* OFF ROLL * 
• * ................. 

1 
* •••• * I 
* E2 •->1 
• • I 

v ... 
E2 * • ****'*E3********** .. .. . . 

•* ESD * • YES * MOVE NEXT ··:.o (lGNORE!.·•~~~->: WO§~s~~6v+ :--...-, 
•• •• • • 1 

• • •• .................. v 
* NO **** I * • 

l : 04 : 

#40402' v 
*****F2*'****'***** . . 
* MOVE i!t * ·ESO NUMBER TO • 
* R\.D "ROU * . . ....... ,.. ........ .. 

I 
I 

l 
v 

*****G2*'********'* . . 
* DET'ERMI'NE * 
* LOCATION OF * * FUNCTION • 
* A00RESS * •'•••············· 

l 
v ... 

'H2 .... .. .. ·* 11-;. YES 
*11oSl:.IB0PR.0GR FL~'G._~----, 

-*• •• ON '•* •* .1 
•-. ..... 'V 

• NO •••• 

l ,, 
l 
v 

···•1f*"*J2•'11•• ......... . . . 
• · ~H:ORE:· ~ 
*L'OC AT ·roN l N L~O'"C;,. 
• 'COUNTi:R 1t .. . ........ ,. ... ; •• ,. .... '* ...... .. 

l 
i 

I v 
'tl-1t*"**K2'*•-.•:W·• *•'•·• 
·• 111'1·1 tl-:A'Ll·Z:E 11 
• 'OU'fPl.JT ·~:RE')o. '* 

.. . 
* 84 • . . 

ltf. . !URN ON ·•--......., 
;susPROGR·A"M 'F'L-'A'G: l 
...................... , •• ,.,..... 'V 

•·•11-'* . .. 
1f 'Bi\:.., . " 
~·"''* 

.... 

04 •• ******OS*********"** 
•• *• 

•* *• NO * PUNCH 
ANY PARTIAL 

CARD 
*• DATA ON THE .. •----> 

*• ROLL •* 
*· •• . ... 

* YES 

l 
v . . 

* E2 * . . . ... 

. ............. . 
I 
I v 

• "!"***~S••••••••*" • 

RETURN 



Chart FI. 

122 

PUNCH ADDRESS CONSTANTS 

G0405 

****A2********* 
* * * PUNCH * 
* ADCON ROLL * 

*************** 
I 

**** ' .. * I * 82 *-> 
* * I **** v 

•*• 
82 *• 

·* *· ****~3********* 
•* *• NO * * 

*•DATA ON ROLL .•~~~~->* RETURN * 
*• ·* * * *• •* *************** 

*· •* 

j'" 
v 

*****C2********** 
* * * SET AREA * 
*CODE FROM LAST * 
* WORD ON ROLL * 
* * ***************** 

I 
v 

*****02********** 
* SET ADDRESS * 
* WHERE CONST * 
*IS TO BE LOADED* 
*FROM NEXT WORD * 
* ON ROLL * 
***************** 

I 
v 

******E2********•** 
* MOVE INFO * 

TO OUTPUT 
AREA AND PUNCH* 

************* 

v 
*****F2********** 
* * * SET * * UP RLO ROLL * 
* ENTRY * 
* * ***************** 

I 
v 

**** * * * 82 * 
* * 
**** 



Chart FJ. PUNCH RLD CARDS 

G0565 
••••*A2********** 

****Al+++•+++++ • * 
+ ORDER AND + + SORT 
+ PUNCH RLD +~~~->+ RLD CARDS ON 
+ ROLL * * ROLL ••••••••••••••• • * ................. 

I 
#41615 y 

*****B2********** 
+•++ *SET ESO NUMBER * 

PUNCH RLD * * *FROM AREA CODE * 
ROLL * B2 +-->• ANO PUT IN * 

* * * RLO CARD 
**** IMAGE ................. 

I 
#41601 v 

•••••c2•••••••••• 
* SET * 

+ + + LAST LOAD * 
* C2 +-->+ ADDRESS FROM + 
* * + RLO GROUP + ................. 

I 
v ... 

02 •• .. .. 

THE SORT PUTS 
ENTRIES WITH LIKE 
ESO NUMBERS TOGETHER, 
AOR. CONST ANO 
TEMP AND CONST ROLLS 
ARE USED AS TEMP 
STORAGE 

#41603 

...... . . 
• 85 .. . . .... 

I 
v ... .. 

•* :It. 

•* *• YES 
*·~~OM ON CAR?.·*---,

1 .. . . . ... 
* NO 

······cs.!......... 
1

1 

PUNCH AN RLD 
CARO 

************* I 

!<------_] 
I 

#41604 v 

•* *• NO * PUNCH 
REMAINING 

DATA 

•••••05••••••••** 
*PLACE PREVIOUS * 
* VALUE IN CARO * 
* MARKED FOR NO * 
* CONTINUATION * 
ii ANO UPDATE 

•.MORE DATA ON .+~~~-> 
*• ROLL •* .. .. .. .. 

* YES 

I 
v .•. 

E2 *• .. .. 
•* ESD NO = *• NO * • TO PREV I DUS • +--, 
•·•. .• .• I 

•• •• v 
* YES **** L .·•··. . . • 65 • 

>* E4 * * * . . .... 

****E3********* . . 
RETURN 

. ............... . 

.... . .... 
E4 *• ES *• 

•* *• •*·ROOM *• 
•* *• YES YES .•FOR NEW tSD*• 

.->*.ROOM ON CARO • *---. .--*• NO. ON CARD •* 
I •·•. .•·• I I •·.. ..·• 
I *• •* I v *• .• 

**** * NO I **** * NO 
* :It I I* • 
: Elf : II I: B2 : l I **** 

···:::::·~:·:::···· Jl,I 
* CARO ................ 

I 

1<----

v 
*****FS********** . 
* SAVE NEW ESO 
* NO. 

1 
141602 v 

*****G4********** 
*PLACE PREVIOUS * 
* VALUE IN CARO * 
* MAI-I.KE() FOR 
* CGNTINUATIOl\I * 
• ANO UPDATE * 
***************** 

I 
v .... . . 

* C2 * . . 

Section 2: 

PUNCH AN RLO 
* CARI) 

. ... . . 
* C2 * . . 

Compiler Operation 



Chart FK. 

12:4 

PUNCH END CARDS 

G0.424 

****-A2********* 
* * * PUNCH 
* END CARO 

***********·**** 

I 
v 

*****82********** 
* * 
* * *SET UP END CARD* 
* * 
* * ***************** 

I 
v 

******C2****~****** 

* * PUNCH END CARD 
* * 

************* 

I 
I 
v 

****02********* 
* * 
* RETURN 

**************~ 

* 
* 



Chart FL. PUNCH NAMELIST TABLE POINTERS 

G0564 

****A2********* * PUNCH * * NAMELIST MPV * 
* DATA * ............... 

r 
v 

•*• 
62 •• 

•* *• ****B3********* 
•* DATA ON *• NO * * 

•.NAMELIST MPY .•---->* RETURN * 
*•DATA ROLL•* * * .. .. . ............. . .. .. i YES 

v •••••c2•••••••••• 
* • 
*CALCULATE NEXT * 
* ADDRESS IN • * TEMPORARY * * STORAGE AREA •. .•••........••... 

:·::·:->! 
* • .... 

1056401 v 
•••••02••········ * MOVE LOCATION * 
* OF POINTER * * FROM NAMELl ST * * MPV DATA * 
* ROLL * .....•••...•••.•• 

I 
v ... 

E2 •. 
•* *• ****E3***•***** 

•* *• NO * * 
* • * • AN~~~~~G •* *---->: RETURN .. .. 

*• •• i YES 

v 
*****F2********** 
* * *INITIAL! ZE TXT * 
* CARD TO LOAD * 
4 LOCATION 
* INDICATED * ................. 

I 
v 

*****G2********** 
* SET * * UP RLD ENTRY * 
* FOR WORD IN * 
*NA MEL I ST TABLE * 
• * ..•.....•.•••.••. 

I 
v 

**•**H2********** • ·* 
*MOYE MU~TIPL1ER* 
• TO TEMP ANO * 
• CONST ROLL * 
* * ................. 

I 
v •••••J2••········ 

* * * MOVE * 
*POINTER TO TXT * 
* CARO lMAGE * . . ................. 

I 
v .... 

• * • a• • 
* * .... 

. ... . . 
• 84 • . . .... 
I 
v 

***•••B4*********** 
PUNCH THE TXT 

* CARD * . ........... . 
I 
v 

*****'"********** . . 
INCREASE 

• TEMPORARY * 
:STORAGE POINTER: . ................ . 

I 
v ..... . . 

* 02 * . . .... 

Section 2: compiler Operation 125 





This appendix deals with the POP lan
guage, the language in which the FORTRAN IV 
(G) compiler is written. The parts of the 
appendix describe this language in the 
following way: 

• The fi£st part describes the POP 
instructions, which are grouped accord
ing to their functions. 

• The second part describes the labels 
used in the routines of the compiler. 

• The third part discusses the assembly 
and operation of the compiler, as it is 
affected by th~ use of the POP lan
guage. This part ends with a cross
reference list giving the mnemonic for 
each instruction, the hexadecimal code 
which represents it, and the instruc
tion group in which it is described. 

POP INSTRUCTIONS 

For the purpose of describing their 
operation, the POP instructions have been 
divided into groups according to the pri
mary function which they perform. Where a 
particular POP instruction pertains to more 
than one group, it is de~cribed in the 
group which discusses its most important 
functions. 

In the descriptions of the instructions, 
the following notational conventions are 
employed: 

1. Parentheses are used to indicate •the 
contents of;• thus (G) stands for the 
contents of storage address G, where 
all addresses are fullword addresses. 

2. The arrow is used to indicate trans
mission in the direction of the arrow; 
(G) + 1 --> G reads: the contents of 
storage address G, plus one, are 
transmitted to storage address G. 

3. Wn <n=l,2,3, ••• ) refers to the 
BOTTOM, BOTTOM-1, • • • . etc. ' words on 
the WORK roll. 

It should be noted that in many cases 
the address field, G, of the instruction 
contains a value other than a storage 
address (for instance, a roll name). In 
most of these cases, the symbolic reference 
which is used is defined in the program by 
means of an EQU card. 

APPENDIX A: THE POP LANGUAGE 

The mnemonic codes for the POP instruc
tions are of the form IEYxxx. In the 
following discussion, the characters IEY 
are omitted from the mnemonics in the 
interest of ease of reading, and only the 
xxx portion of· the code appears. 

TRANSMISSIVE INSTRUCTIONS 

The instructions described in this sec
tion are primarily involved in moving 
information from place to place in storage. 

APH G: Assign and Prune Half 

The upper halfword of (WO) --> the 
lower halfword of G, where G is a 
storage address; the upper halfword 
of G remains unaltered; the BOTTOM 
of the WORK roll is reduced by 
four, thus pruning WO. 

ARK G: Assign Relative to Pointer and Keep 

(WO) --> P + (G), where Pis the 
address defined by the pointer in 
Wl and G is a storage address; the 
BOTTOM of the WORK roll is reduced 
by four, thus pruning the value 
assigned and keeping the pointer. 

ARP G: Assign Relative to Pointer 

(WO) --> P + (G), where P is the 
address defined by the pointer in 
Wl and G is a storage address; the 
BOTTOM of the WORK roll is reduced 
by eight, thus pruning the current 
WO and Wl. 

ASK G: Assign to Storage and Keep 

(WO) --> G, where G is a storage 
address; the BOTTOM of the WORK 
roll is unchanged. 

ASP G: Assign to storage and Prune 

(WO) --> G, where G is a storage 
address; the BOTTOM of the WORK 
roll is reduced by four, thus prun
ing the current WO. 

BOP G: Build on Polish 

The control driver G is built on 
the POLISH roll, where the G field 
of the instruction is the lower 
eight bits of the ADDRESS portion 

Appendix A: The POP Language 127 



of the 
field of 
and the 
255.) 

desired driver. (The TAG 
the pointer contains zero, 

OPERATOR field contains 

CAR G: Copy and Release 

Copy roll G, where G is a roll 
number, to roll T, and release roll 
G (i.e., restore it to its condi
tion before the last reserve); the 
number T is found in WO; the BOTTOM 
of the WORK roll is reduced by 
four. If roll G is in the reserved 
state when this instruction is 
executed, the instruction sets its 
BOTTOM to (TOP) minus four; if the 
roll is not reserved, BOTTOM is set 
to (BASE). 

CLA G: Clear and Add 

Clear WO; (G) --> WO, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged. 

CNT G: Count 

CPO G: 

The number of words on roll G --> 
wo, where G is a roll number; the 
BOTTOM of the WORK roll is 
increased by four. 

Copy Plex On 

The plex pointed to by the pointer 
in WO is copied to roll G, where G 
is the number of the target roll, 
except for the first word of the 
plex (which holds the number of 
words in the plex, exclusive of 
itself). The BOTTOM of the WORK 
roll is reduced by four, thus prun
ing the pointer. The BOTTOM of 
roll G is increased by four for 
each word moved; the BOTTOM of the 
original roll is unchanged. 

CRP G: Copy Relative to Pointer 

Copy roll S to roll G, where G is a 
roll number, beginning with the 
group indicated by the pointer in 
WO, to the BOTTOM of the roll. The 
roll number S is also provided by 
the pointer in WO. The BOTTOM of 
roll S is decreased by the number 
of bytes moved. The BOTTOM of roll 
G is increased by the number of 
bytes moved. The BOTTOM of the 
WORK roll is unchanged; thus, the 
pointer remains. 

EAD G: Extract Address 

128 

The ADDRESS portion Of (G) --> wo, 
where G is a storage address; the 

EAW G: 

BOTTOM of the WORK 
increased by four. 

Effective Address to Work 

roll is 

G --> WO, where G is a storage 
address; the BOTTOM of the WORK 
roll is increased by four. 

ECW G: Effective constant Address to Work 

G --> wo, where G is a storage 
address which refers to a constant 
under a constant base. The BOTTOM 
of the WORK roll is increased by 
four. 

EOP G: Extract Operator 

The OPERATOR portion of (G) --> WO 
(right adjusted), where G is a 
storage address; the BOTTOM of the 
WORK roll is increased by four. 

ETA G: Extract Tag 

FET G: 

TAG portion of CG) --> TAG portion 
of WO, where G is a storage 
address; the BOTTOM of the WORK 
roll is increased by four. 

Fetch 

(G) --> WO, where G is a storage 
address; the BOTTOM of the WORK 
roll is increased by four. 

FLP G: Flip 

Invert the order of roll G, where G 
is a roll number, word for word. 

FRK G: Fetch Relative to Pointer and Keep 

(P + (G)) --> wo, where P is the 
address defined by the pointer in 
WO and G is a storage address; the 
BOTTOM of the WORK roll is 
increased by four; thus, the 
pointer remains in Wl. 

FRP G: Fetch Relative to Pointer 

(P + CG)) -->WO, where Pis the 
address defined by the pointer in 
WO and G is a storage address; the 
BOTTOM of the WORK roll is 
unchanged; thus, the pointer is 
destroyed. 

FTH G: Fetch Half 

The lower halfword of (G) --> upper 
halfword of WO, where G is a 
storage address; the lower half-



IAD G: 

IOP G: 

word of WO is set 
BOTTOM of the 
increased by four. 

to 
WORK 

zero; 
roll 

the 
is 

Insert Address 

The ADDRESS portion of (G) --> the 
ADDRESS portion of the pointer in 
WO, where G is a storage address; 
the BOTTOM of the WORK roll is 
unchanged. 

Insert Operator 

G --> OPERATOR portion 
pointer in wo. where the G 
the instruction is the 
OPERATOR value; the BOTTOM 
WORK roll is unchanged. 

of the 
field of 
desired 
of the 

ITA G: Insert Tag 

TAG portion of (G) --> TAG portion 
of the pointer in WO, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged. 

ITM G: Insert Tag Mode 

Mode portion of the TAG field of 
(G) --> mode portion of the TAG 
field of the pointer in WO, where G 
is a storage address; the BOTTOM of 
the WORK roll is unchanged. 

LCE G: Last Character Error 

The last character count and the 
address G --> ERROR roll, where G 
is the address of the message for 
the error. The count of errors of 
the severity associated with the 
message is increased by one, and 
the MAX STA ERROR NUMBER (which 
indicates the highest severity 
level of errors for the present 
statement) is updated as required. 

LCF G: Last Character Error if False 

If (ANSWER BOX) ::: false,. the last 
character count and the address 
G --> ERROR roll, where G is the 
address of the message for the 
error. The count of errors of the 
severity associated with the mes
sage is increased by one, and the 
MAX STA ERROR NUMBER is updated as 
required. If (ANSWER BOX) ::: true, 
the instruction does nothing. 

LCT G: Last Character Error if True 

If (ANSWER BOX) ::: true, 
character count and the 
G --> ERROR roll, where 
address of the message 

the last 
address 

G is the 
for the 

error. The count of errors of the 
severity associated with the mes
sage is increased by one, and the 
MAX STA ERROR NUMBER is updated as 
required. If (ANSWER BOX) = false, 
the instruction does nothing. 

LGP G: Load Group from Pointer 

Loads the group specified by the 
pointer in WO into SYMBOL 1, 2, and 
3, DATA O, 1, 2, 3, 4, and 5. The 
number G is the number of bytes to 
be loaded; if G=O, the entire group 
is loaded. The BOTTOM of the WORK 
roll is unchanged; hence, the 
pointer remains in WO. 

LSS G: Load Symbol from Storage 

Loads the (G and G+4), where G is a 
storage address, into SYMBOL 1, 2, 
and 3, and DATA O. 

MOC G: Move on Code 

G halfwords, where G is an even 
number, are to be moved from the 
WORK roll to the CODE roll. A word 
containing a special value in the 
first two bytes and the number of 
words transferred in the last two 
bytes are first placed on the CODE 
roll. G/2 words of information are 
then moved from the WORK roll to 
the CODE .roll; the BOTTOM of the 
CODE roll is increased by four for 
each word placed on the roll; the 
BOTTOM of the WORK roll is reduced 
by four for each word moved from 
the roll. A location counter is 
increased by the number of bytes of 
object code placed on the roll. 

MON G: Move on 

(WO) --> roll G, where G is the 
roll number; the BOTTOM of roll G 
is increased by four; the BOTTOM of 
the WORK roll is decreased by four. 

NOG G: Number of Groups 

NOZ G: 

The number of groups on roll G --> 
WO, where G is the roll number; the 
BOTTOM Of the WORK roll is 
increased by four. 

Nonzero 

A nonzero value --> G, where G is a 
storage address. 

Appendix A: The POP Language 129 



PGO G: Place Group On 

A group from SYMBOL 1 1 2 1 and 3 and 
DATA o, 1, 2, 3, 4, and 5 --> roll 
G, where G is the roll number, by 
group status; the BOTTOM of roll G 
is increased by group size. 

PGP G: Place Group from Pointer 

The group in SYMBOL 1. 2, 3. DATA 
o, 1, 2, 3, 4, and 5 is placed on a 
roll according to the pointer in 
wo. The number G is the number of 
bytes to be moved; if G=O, an 
entire group is moved; the BOTTOM 
of the WORK roll is unchanged. 

PLD G:. Precision Load 

(G and G+4) --> MPAC 1 and MPAC 2, 
where G is a storage address. 

PNG G: Pointer·to New Group 

Builds a pointer to the first byte 
of the next group to be added to 
roll G, where G is the roll number, 
and places the pointer in WO; the 
BOTTOM of the WORK roll is 
increased by four. 

POC G: Place on Code 

The data located at storage address 
G+4 and following is to be moved to 
the CODE roll. The number of half
words to be moved is stored in 
location G and is an even number. 
A word containing a special value 
in the first two bytes and the 
number of words of data in the last 
two bytes---rs- first placed on the 
CODE roll. The indicated data is 
then moved to the CODE roll, and 
the BOTTOM of the CODE roll is 
increased by four for each word 
placed on the roll. A location 
counter is increased by the number 
of bytes of object code placed on 
the roll. 

PST G: Precision Store 

(MPAC 1 and MPAC 2) --> G and G+4, 
where G is a storage address. This 
instruction performs a doubleword 
store. 

SWT G: Switch 

130 

Interchanges (WO) and (G), where G 
is a storage address; the BOTTOM of 
the WORK roll is unchanged. 

ZER G: Zero 

0 --> G, where G is a storage 
address. 

ARITHMETIC AND LOGICAL INSTRUCTIONS 

The following instructions are primarily 
designed to perform arithmetic and logical 
manipulations. 

ADD G: Add 

(G) + <WO) --> WO, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

AFS G: Add Four to Storage 

(G) + 4 --> G, where G is a storage 
address. 

AND G: And 

(G) AND (WO) --> WO; that is, a 
logical product is formed between 
(G) and (WO), and the result is 
placed in wo. The BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed •. 

DIM G: Diminish 

(G) - 1 --> G, where G is a storage 
address. 

DIV G: Di vi de 

(WO) / (G) --> G, where G is a 
storage address; the remainder, if 
any, from the division is lost; a 
true answer is returned if there is 
no remainder; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

IOR G: Inclusive Or 

The inclusive OR of (WO) and (G), 
where G is a storage location, is 
formed, and the result is placed in 
WO. The BOTTOM of the WORK roll is· 
unchanged; hence, the initi·a1 con
tents of WO are destroyed. 

LLS G: Logical Left Shift 

(WO) are shifted left G places; the 
result is left in WO; bits shifted 
out at the left are lost, and 
vacated bit positions on the right 
are filled with zeros. 



LRS G: Logical Right Shift 

(WO) are shifted right G places; 
the result is left in WO; bits 
shifted out at the right are lost, 
and vacated bit positions on the 
left are filled with zeros. 

MPY G: Multiply 

CG) * (WO) --> wo, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

PSP G: Product Sign and Prune 

The exclusive OR of (WO) and (G), 
where G is a storage location, 
replace the contents of G; the 
BOTTOM of the WORK roll is reduced 
by four, thus pruning WO. 

SUB G: Subtract 

(WO) - CG) --> wo, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

TLY G: Tally 

CG) + 1 --> G, where G is a storage 
address. 

DECISION MAKING INSTRUCTIONS 

These instructions inspect certain con
ditions and return either a true or false 
answer in the ANSWER BOX. some of the 
instructions also transmit stored informa
tion from place to place. 

CSA G: Character Scan with Answer 

If G = (CRRNT CHAR), the scan arrow 
is advanced and a true answer is 
returned; otherwise, the scan arrow 
is not advanced and a false answer 
is returned. 

LGA G: Load Group with Answer 

The group from the BOTTOM of roll 
G, where G is the roll number and 
roll G has been flipped, is loaded 
into SYMBOL 1, 2, 3, DATA O, 1, 2, 
3, 4, and 5 (as many words as 
necessary); if the roll is empty or 
if the group is a marker symbol, a 

false answer is returned; other
wise, a true answer is returned; 
the BOTTOM of roll G is reduced by 
group size. 

MOA G: Move off with Answer 

If roll G, where G is the roll 
number, is empty, a false answer is 
returned. Otherwise, the BOTTOM of 
roll G is reduced by four, pruning 
the word moved; the BOT'rOM of the 
WORK roll is increased by four; a 
true answer is returned. 

QSA G: Quote Scan with Answer 

If the quotation mark (sequence of 
characters) beginning at storage 
address G (the first byte in the 
quotati~n mark is the number of 
bytes in the quotation mark) is 
equal to the quotation mark start
ing at the scan arrow, advance the 
scan arrow to the next active 
character following the quotation 
mark, and return a true answer; 
otherwise, do not advance the scan 
arrow and return a false answer. 

SAD G: Set on Address 

If G = ADDRESS portion "of the 
pointer in WO, return a true answ
er; otherwise, return a false 
answer. 

SBP G: Search by Stats from Pointer 

Search the roll specified by the 
pointer in WO, beginning with the 
group following the one specified 
by the pointer for a group which is 
equal to the group in the central 
items SYMBOL 1, 2, 3 1 etc., accord
ing to the group stats values 
stored at locations G+4 and G+B 
(these values are in the same order 
as those in the group stats 
tables). The roll number multip
lied by four is stored at location 
G. If a match is found, return a 
true answer, replace the pointer in 
WO with a pointer to the matching 
group, and continue in sequence. 
If no match is found, return a 
false answer, prune the pointer in 
WO, and continue in sequence. This 
instruction is used to continue a 
search of a roll according to group 
stats values other than those norm
ally used for the roll. 

SBS G: Search by Stats 

If the roll, whose number multip
lied by four is in storage at 
location G, is empty, return a 

Appendix.A: The POP Language 131 



false answer. Otherwise, search 
that roll against the central items 
SYMBOL 1, 2, and 3 and DATA o, 1, 
2, 3, 4, and s,.as defined by the 
group stats values stored at loca
tions G+4 and G+8 (these values are 
in the same order as those in the 
group stats tables); if a match is 
found, place a pointer to the 
matching group in WO, increase the 
BOTTOM of the WORK roll, and return 
a true answer; if no match is 
found, return a false answer. This 
instruction is used to search a 
roll according to group stats 
values other than those normally 
used for that roll. 

SCE G: Set if Character Equal 

If G = lCRRNT CHAR), return a true 
answer; otherwise, return a false 
answer; in neither case is the scan 
arrow advanced. 

SCK G: Set on Character. Key 

If (CRRNT CHAR) displays any of the 
character keys of G, where G is a 
character code whose bit settings 
describe a group of characters, 
return a true answer; otherwise, a 
false answer is returned; in neith
er case is the scan arrow advanced. 

SFP G: Search from Pointer 

search the roll specified by the 
pointer in WO, beginning with the 
group following the one specified 
by the pointer in WO, for a group 
which is equal to the group in 
SYMBOL 1, 2, 3 1 DATA 0 1 1 ••• , etc., 
by roll statistics. If a match is 
found, return a true answer, 
replace the pointer in WO with a 
pointer to the matching group, and 
jump to G, where G must be. a local 
address. If no match is found, 
return a false answer, prune the 
pointer in WO (reduce the BOTTOM of 
the WORK roll by four>, and con
tinue in sequence. 

SLE G: Set if Less or Equal 

132 

If (WO) s (G), where G is a storage 
address, a true answer is returned; 
otherwise, a false answer is 
returned. The comparison made con
siders the two values to be signed 
quantities. 

SNE G: Set if Not Equal 

If (WO) * (G), where G is a storage 
address, a true answer is returned; 
otherwise, a false answer is 
returned. 

SNZ G: Set if Nonzero 

If (G) * o, where G is a storage 
address, return a true answer; 
otherwise, return a false answer. 

SOP G: Set on Operator 

If G = OPERATOR portion of the 
pointer in WO, return a true answ
er; otherwise, return a false 
answer. 

SPM G: Set on Polish Mode 

If the mode portion of the TAG 
field of the (G) = the mode portion 
of the TAG field of the pointer in 
Pl, where G is a storage addess, 
return a true answer; otherwise, 
return a false answer. 

SPT G: Set on Polish Tag 

If the TAG field of the (G) the 
TAG field of the pointer in Pl, 
where G is a storage ?ddress, 
return a true answer; otherwise, 
return a false answer. 

SRA G: search 

If roll G, where G is the roll' 
number, is empty, return a false 
answer; otherwise, search roll G 
against the central items SYMBOL 1, 
21 and 3 and DATA O, 1, 2, 3, 4, 
and 5, as defined by the roll 
statistics; if a match is found, 
place a pointer to the matching 
group in WO, increase the BOTTOM of 
the WORK roll, and return a true 
answer; if no match is found, 
return a false answer. 

SRD G: Set if Remaining Data 

STA G: 

If roll G, where G is the roll 
number, is not empty, return a true 
answer; otherwise, return a false 
answer. 

Set on Tag 

If the TAG portion of (G) = the TAG 
portion .of the pointer in WO, where 
G is a storage address, return a 
true answer; otherwise, return a 
false answer. 



STM G: Set on Tag Mode 

If. the . mode_ portion of the TAG 
field of the (G) = the mode portion 
of the TAG field of the pointer in 
WO, where G is a storage address, 
return a true answer: otherwise, 
return a false answer. 

JUMP INSTRUCTIONS 

The following instructions cause the 
normal sequential operation of the POP 
instructions to be altered, either uncondi
tionally or conditionally. see the sec
tions. "'Labels" and "Assembly and Operation" 
in this Appendix for further discussion of 
jump instructions. 

CSF G: Character Scan or Fail 

If G = (CRRNT'CHAR), advance the 
scan arrow to .the next active 
character; otherwise, jump to 
SYNTAX FAIL. 

JAF G: Jump if Answer False 

If (ANSWER. BOX) = false, jump to G; 
where G is either a .global or a 
local address: otherwise, continue 
in sequence. one of two operation 
codes is produced for this instruc
tion depending on whether G is a 
global or local label. 

JAT G: Jump if Answer True 

If (ANSWER BOX) = true, jump to G, 
where G is either · a global or a 
local address: otherwise, continue 
in sequence. one of two operation 
codes is produced for this instruc
tion depending on whether G is a 
global or a local label. 

JOW G: Jump on Work 

If {WO) = o, decrease the BOTTOM of 
the WORK roll by four and jump to 
G1 where G is either a global or a 
local address; otherwise, reduce 
word O by one,· --> WO, and continue 
in sequence. one of two operation 
codes is produced for this instruc
tion, depending on whether G is a 
global or a local label. 

JPE G: Jump and Prepare for Error 

The following values are saved in 
storage: the location of the next 
instruction, the last character 
count, the BOTTOM of the EXIT roll, 
and the BOTTOM of the WORK roll. 

The JPE FLAG is set to nonzero, and 
a· jump is taken to G, which may 
only be a local address. 

JRD G: Jump Roll Down 

This instruction manipulates a 
pointer in WO. If the ADDRESS 
field of that pointer is equal to 0 
(pointing to the word preceding the 
beginning of a reserved area>, the 
ADDRESS field is increased to four. 
If the ADDRESS field of the pointer 
is equal to any legitimate value 
within the roil, it is increased by 
group size. If the ADDRESS field 
of the pointer indicates a location 
beyond the BOTTOM of the roll, the 
pointer is pruned (the BOTTOM of 
the WORK roll is reduced by four>, 
and a jump is made to the location 
G, which must be a global. address. 

JSB G: Jump to subroutine 

Return information is placed on the 
EXIT roll; j1lmp to G, which is a 
global address. 

JUN G: Jump Unconditional 

Jtililp to G, which is either a global 
or a local address. one of two 
operation codes is produced for 
this instruction, depending on 
whether G is a global or a local 
label .. 

QSF G: Quote Scan or Fail 

XIT 

If the quotation mark <sequence of 
characters> beginning at storage 
address G <the value of the first 
byte in the quotation mark is the 
number of bytes in the qUotation 
mark) is equal to the quotation 
mark starting at the scan arrow, 
advance the scan arrow to the first 
active character beyond .the quota~ 
tion mark; otherwise, jump to SY:N~ 
TAX FAIL. 

Exit 

Ecxit from the interpreter; the code 
which follows is written: in 
assembler language. 

ROLL CONTROL INSTRUCTIONS 

These instructions are 
the control of the rolls 
compiler. 

concerned with 
used in the 

Appendix: A: The POP Language 133 



POW G: Prune off Work 

Reduce the BOTTOM of the WORK ~oll 
by four times G, where G is an 
integer, thus pruning G words off 
the WORK roll. 

REL G: Release 

Restore roll G, where G is the roll 
number, to the condition preceding 
the last reserve; this sets BOTTOM 
to (TOP) reduced by four if the 
ro11 is reserved, or to (BASE} if 
the ro11 is not reserved; TOP is 
set to the value it had before the 
reserve. 

RSV G: Reserve 

Reserve roll G, where G is the ro11 
number, by storing (TOP) (BASE) 
on the roll, increasing BOTTOM by 
four, and setting TOP to (BOTTOM); 
this protects the area between BASE 
and TOP, and allows ascending 
addresses from TOP to be used as a 
new, empty roll. 

CODE PRODUCING INSTRUCTIONS 

These POP instructions construct object 
module code on the CODE roll. ·Each object 
module instruction constructed results in 
the placing of a 2-word group on the CODE 
roll. The instruction generated, in bi
nary, is left justified in this group. In 
the case of halfword instructions, the 
remainder of the first word is filled with 
zero. The second word contains a pointer 
to the instruction operand, except in the 
case of 6-byte instructions when the last 
two bytes of the group contain the value 
zero. 

BID G: Build Instruction Double 

134 

The instruction indicated · by G, 
where G is an instruction number 
which indicates the exact instruc
tion to be generated, is built on 
the CODE roll, where WO contains a 
pointer to the first operand and Wl 
contains a pointer to the second 
operand. The BOTTOM of the CODE 
roll is increased by eight. The 
BOTTOM of the WORK roll is reduced 
by eight; thus, both pointers are 
pruned. A location counter is in
creased by one for each byte of the 
instruction. 

BIM G: Build Instruction by Mode 

The instruction indicated by G, 
where G is an instruction number 
which indicates the class of the 
instruction only. For--example, 
LOAD INSTR as opposed to LE INSTR 
is built on the CODE roll, where WO 
contains a pointer to th~ second 
operand.. A pointer to the accumu
lator which holds the fi·rst operand 
is contained in the variable CRRNT 
ACC. The instruction mode is 
determined by inspecting the TAG 
fields of the pointers; the BOTTOM 
of the CODE ro11 is increased by 
eight; the BOTTOM of the WORK roll 
is reduced by four, thus pruning 
the pointer. A location counter is 
increased by one for each byte of 
the generated instruction. 

BIN G: Build Instruction 

The instruction indicated by G1 

where G is an instruction number 
which indicates the exact instruc
tion to be built, is constructed on 
the CODE roll. The WORK ro11 holds 
from zero to three words of infor
mation required for producing the 
instruction. For instructions 
requiring no operands, nothing 
appears on the WORK roll. For 
instructions requiring one operand, 
a pointer to that operand appears 
in WO. For two operand instruc
tions, a pointer to the first 
operand appears in WO and a pointer 
to the second operand is in Wl. 
For input/output instructions, Wl 
holds a constant which' becomes part 
of the instruction. For storage
to-storage move instructions, W2 
holds the length. The BOTTOM of 
the CODE roll is increased by eight 
to reflect the addition of the 
group. The BOTTOM of the WORK roll 
is reduced by four for each word of 
information found on that roll; 
thus, all the information is 
pruned. A location counter is 
increased by one for each byte of 
the instruction. 

ADDRESS COMPUTATION INSTRUCTIONS 

The POP instructions whose G fields 
require storage addresses may be used to 
refer to WORK roll groups, provided the 
storage address of the desired group is 
first computed. This computation must be 
performed at execution time, since the 
location of WO, for exam:ple, varies as the 
program is operated. The instructions in 
this category perform these computations and 
jump to the appropriate POP, which then op
erates using the computed address. 



WOP G: WO POP 

Compute the address of the current 
WO and jump to the POP indicated by 
G. where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

W1P G: Wl POP 

Compute the address of the current 
Wl and jump to the POP indicated by 
G, where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

W2P G: W2 POP 

Compute the address of the current 
W2 and jump to the POP indicated by 
G, where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

W3P G: W3 POP 

Compute the address of the current 
W3 and jump to the POP indicated by 
G• where G is a POP .instruction 
which normally accepts a storage 
address in its G field. 

W4P G: W4 POP 

Compute the address of the current 
W4 and jump to the POP indicated by 
G• where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

INDIRECT ADDRESSING INSTRUCTION 

Indirect addressing is provided for POP 
instructions whose address fields normally 
require storage addresses by means of the 
following instruction. 

IND G: Indirect 

The address contained in the 
storage address INDIRECT BOX is 
transmitted to the POP indicated by 
G, where G is a POP instruction 
which requires a storage address in 
its G field, and a jump is made to 
that POP. The POP "G" operates in 
its normal fashion, using the tran
smitted address. · 

LABELS 

In the POP language. storage locations 
containing instructions or data may be 
named with two types of labels, global 
labels and local labels. Global labels are 
unique within each phase of the compiler 
(but not from one phase to another); these 
labels may be referred to from any point in 
the phase. Local labels are also unique 
within each phase (but not between phases); 
however, these labels may be referred to 
only within the global area (that is, the 
area between two consecutive global labels) 
in which they are defined. 

GLOBAL LABELS 

The global labels which appear on a 
System/360 assembler listing of the compil
er are distinguished from local labels in 
that the global labels do not begin with a 
pound sign. Most of the global labels are 
of the form Gdddd. where each d is a 
decimal digit and the 4-digit value dddd is 
unique for the global label. Labels of 
this form are generally assigned in ascend
ing sequence to the compiler routines. All 
remaining global labels are limited to a 
length of seven characters. 

In contrast, the routine and data names 
used throughout this publication are 
limited only to a length of 30 characters. 
A comment card containing the long name 
used here precedes the card on which each 
global label is defined. In addition. the 
longer name appears as a comment on any 
card containing a POP instruction which 
refers to the global label. 

Example: 

. G0336 STA GEN FINISH 
G0336 IEYMOA G0494 MOA DO LOOPS OPEN ROLL 

Explanation: The second card shown defines 
the global label G0336. The first card, a 
comment card. indicates the longer name of 
the routine, STA GEN FINISH. The second 
car~ contains a reference to the label 
G0494; the longer form of this label is DO 
LOOPS OPEN ROLL, as indicated by the 
comment. 

occasionally. several comment cards with 
identical address fields appear in sequence 
on the listing. This occurs when more.than 
one long label has been applied to a single 
instruction or.data value. The long labels 
are indicated in the comments fields of the 
cards. · · 

Appendix A: The POP Language 135 



Example: 

* ACTES'l' AC TEST 

* ACT EST TES'l'AC 

ACTEST IEYSOP G0504 SOP· FL AC OP MARK 

• 

EXplanation: The three cards shown define 
the global, label ACT:E:ST. One long fo:nn of 
this label i.s AC TEST, as indicated by the 
conunent on the fin:;t card. The second carQ. 
indicates that the name TESTAC has also 
been applied to this loc~tion, and that it 
also corresponds to ACTEST. 

LOCAL LABELS 

All local l,.abels.consist of a pound sign 
followed by six d,ecimal digits. If the 
preceding global label is of the form 
Gdddd, the first four digits are identical 
to those in the global name. The remaining 
two digits of the local label do not follow 
any particular sequence;. they are,. however, 
unique in t.he global area. · 

The local 
appearance in 
containing a 
instruction. 

EXample: 

label is defined 
the .· name field 

POP or assembler 

by its 
of a card 

language 

* G0268 
G0.2 6 ~. PROCESS SCALAR ROl;.L 

IEYSRD G04~2 SRD SCALAR RO~ 

•. 
#026811 IEYJ:OW #026.821 
#026802 IEYITA G0359 ITA CED TAG ~ 

Explanation: The global· label G0268 is 
defin.ed Qy- the secon<l card in the sequence 
shown. The next two ca:r:ds define, respec
tively, the local labels #02~811 and, 
#026802. In addl,.tion, the third, card in 
the sequence contains a· reference to. the 
local labd #026821, which is pre!ijiumably 
defined elsewhe:r:e within the gl,.obal area 
shown here. · 

ASSEMBLY AND. OPERATION 

The compiler is. assembled with each POP 
l,.ni;;tructipn def.'ined. as a macro. Unless 
•Qui(::k Link• output has been de.signated to 
the macro l:>y · i;neCins of.' the (lss.enibl,e:r: 
instruction· SETG 'QLK•, th,e resvltinc;J. code 

consists of two 1-byte address constants 
per POP instruction. This 16-bit value 
represents an 8-bit numeric operation code 
and an 8-bit operand or relative address. 

The definition of the 8-bit operand or 
relative address varies according to the 
POP instruction used• Roll numbers appear 
in this field for instructions requiring 
them. For instructions which ref er to 
storage locations re la ti ve to . CBASE <see 
"Compiler Arrangement and General Register 
Usage•) or to other base addresses, the 
word number relative to the appropriate 
base is used •. The format for jump instruc
tions is discussed in the following 
paragraphs. 

When Quick Link is specified, machine 
language instructions are generated for the 
following POP instruction. (See •Assembler 
Language References to POP Subroutines.") 

POP INTERPRETER 

The assembled POP code is interpreted by 
a short machine language routine, POP 
SETUP, which appears with the POP subrou
tines at th.e beginning of the compiler. 

POP SETUP inspects each pair of address 
constants in sequence, and, using the 8-bit 
operation code as an index into the POP 
jump table, a table which correlates opera
tion codes for the POPs with the addresses 
of the POP sub:r:outines, transfers control 
to the appropriate POP subroutine. 

Thus, on encountering the hexadecimal 
val,.ue 081A, POP SETUP indexes into the POP 
jump table (labeled, POPTABLE) at the eighth 
byte, counting from zero. The value found 
C!..t this l,oc:ation is 01~8 (hexadecimal> ; 
this is the address, relative to the base 
of th.e Pop jump table, of tl~e POP subrou
tine for the. POP numb_ereQ. 08 (IEYSUB). 
When th.is value :i;s addeQ. t.o the beginning 
address of the POP jump table,, the absolute 
addres.s of IEYS.UB :Ls p:r:oduceQ., and POP 
SETUP perfoms a b:r:a.nch to that location. 

IEYSUB th.en operates, using the relative 
address 1A (which it finds in general 
register 7, ADDRl, and returns via POPXI,T, 
register 6; in this c:a$e t,he return :i,s to 
POP SETUP, which th.~m c;:ontinues with the 
next POP in s.equence. The registe?;' POPAD~ 
is used to k,eep track of the loc;:ation of 
the POP be.i.ng execute.d. 

Th.is $equentii\\l operation can be inter
rupteQ. by'means of POP jump (branch) 
instructions, which c;;a.us.e an inst:r:uction 
<>ther thar., · '!:be - rie.xt in se<lu,ence to be 
operated nell:t• The :l{J:T PQP i_nst-..-.•,,t:ioT' 



also alters the sequence by causing the 
interpreter to release control, performing 
a branch to the assembler language instruc
tion following the XIT. This device is 
employed to introduce assembler language 
coding into the compiler routines when this 
is more efficient than the use of POPs. 
Assembler language sequences sometimes ter
minate with a branch to POP SETUP, so that 
it may resume the execution of POP 
instructions. 

ASSEMBLER LANGUAGE REFERENCES TO POP 
SUBROUTINES 

In some of t.he routines of the. compiler, 
the operation of POP SETUP is bypassed ~Y 
assembler language instructions which make 
direct reference to the POP subroutines. 
In .these sequences, a pair of machine 
language instructions performs the function 
of a single POP instruction. For example, 
the instructions · · 

LA ADDR,ONE-CBASE{0,0) 
BAL POPXIT,FETQ 

accomplish the 
instruction 

IEYFET ONE 

function of the POP 

but bypass the operation of POP SETUP. The 
IEYFET routine, <referred to by its label 
FETQ) returns, via POPXIT, to the next 
instruction. Note that the fir.et instruc
tion of the pair sets ADDR to the correct 
value for the operand of the IEYFET opera,.. 
tion; this wou!d be done by POP SETUP if it 
interpretc:!d lBYFET ONE. . 

' GLOBAL JQMl? 1NS'l'IUJCTIO~S 

The la.be!s :r:ef erred to in POP global 
jump instructions, jump instructions which 
branch, to global.labels, a::Lway$ end w:ith 
the charQ.Qter .J~ Tbese.glol?al la:Pels :r;:efet' 
to the global. jump .. table, a table whQS.e 
fullword ~nt:J'ies . coii:t;a,.i,n ... '!:he relati Ve 
addresses of global labels which are the 
targets of bli:ancl:lee. Eacn pbas.e o£ tne 
compiler bas a global; j.ump table. 'l'he 
table is l,abeled .JUM:P TABl.oE ... 

Reference!;!. iil. J;IOP: glob,a,l juIDP i.:nstruc
tions to the globc;i1 j.ump tab!e are 
ass.embled as :r:elati ve word aQ..d:i;esses in 
t;}).a,t tabl;e. E:ach entcy in tne t.a:t>le con
tains the aaaress, relative in bytes to 
<;BASE, of the lQ.bel; whos.e spelUng is 
identical; tQ t:hat. of tl~e gl;olli'tl jump tal>:Le 
entry except tbat it cloe$ ·~ot. inclw~e tJ:i_e 
terminal; .;i;. 

Thus, the instruction IEYJUN G0192J is 
assembled as 5002, for example, where the 
global jump table begins: 

.------, 
G0075J I SAO I 

·--------~ 
G0111J I 752 I 

·--------~ 
G0192J I B02 I 

·--------~ 
I I 
I I 
I I 

On encountering this instruction, POP SETUP 
loads its address field C02>, multiplied by 
four (08), into the register ADDR. It then 
jumps to the POP subroutine for IEYJUN. 

The IEYJUN subroutine uses ADDR as an 
index into JUMP TABLE, finding the value 
B02. This value is placed in the register 
TMP and a branch is made to the location 
defined by the sum of the contents of TMP 
and the contents of CONSTR, which holds the 
location CBASE. Thus, if the location 
CBASE is lOBO, the location branched to is 
1BB2, the location of the routine labeled 
G0192, and the instruction at that location 
is operated next. 

Since the POP subroutines for global 
jumps branch directly to the target loca
tion, the instruction at that location must 
be a machine language instruction rather 
than a POP. Moreover, all jump target 
routines which contain local jumps must 
reset POPADR to reflect the new location. 
Thus, routines which are jump targets and 
which are written in POPs begin with the 
instructio,n 

EALR POPADR, POPPGB 

which sets POPADR to the location of the 
first POP instruction in the routine and 
branches to POP BASE, the address of which 
is held in POPPGB. At POP BASE, the 
contents of: POP.APR are saved in LOCAL JUMP 
BASE, POl'XIT is set to the beginning loca
tion. of J?OP SETUP, and POP SETUP begins 
operating. For the sake of brevity. this 
instruction i,s coded as 

BALR A,,B 

in some routines. 

Rout.ines in wbich the POP instructions 
have been replaced by pairs of assembler 
language instructions and which contain 
local jumps begin with the instruction 

BALR A,O 
or 
BALR POPAPR• O, 



instead of 
since the 
desired. 

the instruction given above, 
branch to POP SETUP is not 

Because global jump targets begin with 
this machine language code, it is not 
possible for POP instructions to continue 
in sequence into new global routines. When 
this operation is intended, an IEYXIT or an 
IEYJUN instruction terminates the first 
routine. 

LOCAL JUMP INSTRUCTIONS 

POP local jump instructions, jump 
instructions which transfer control out of 
the normal sequence to local labels, must 
occur in the same global area as the one in 
which the local label referred to is 
defined. 

The address portions of POP local jump 
instructions are assembled to contain the 
distance in halfwords from the beginning of 
the global area plus two to the indicated 
local label. This value is a relative 
halfword address for the target, where the 
base used is the location of the first POP 
instruction in the global area. 

Decimal 
Location 

100 
102 

120 

140 

138 

Label 
G0245 

Symbolic 
Instruction 
BALR A,B 
IEYCLA G0566 

#024503 IEYLGA G0338 

IEYJUN #024503 

Hexadecimal 
Instruction 

062A 

9A12 

5809 

Explanation: The local jump instruction 
illustrated at location 140 is assembled so 
that its address field contains the loca
tion of the label #024503 (120), relative 
in halfwords to the beginning location of 
the global area plus two (102). Thus, the 
address field of the IEYJUN instruction 
contains the value 09. 

When the POP local jump instruction is 
interpreted, the contents of the location 
LOCAL JUMP BASE are added to the address 
field of the POP instruction to produce the 
absolute address of the jump target. LOCAL 
JUMP BASE is set to the beginning address 
of the global area plus two as a result of 
the BALR instruction which begins the glob
al routine; this function is performed at 
POP BASE, as described in "Global Jump 
Instructions." 

When local jumps are performed directly 
in machine language, the relative address
ing described above is also used; in this 
case, however, the base address is in the 
register POPADR as a result of the BALR 
instruction heading the routine. 

POP instruction mnemonics are listed in 
Table 8. 



Table 8. POP Instruction Cross-Reference List 
r-------------------------------------------T-------------------------------------------1 

Mnemonic Hex Instruction Group Mnemonic Hex Instruction Group 
ADD 04 Arithmetic/Logical LGA 9A Decision Making 
AFS BC Arithmetic/Logical LGP 80 Transmissive 
AND B4 Arithmetic/Logical LLS 98 Arithmetic/Logical 
APH A4 Transmissive LRS B6 Arithmetic/Logical 
ARK 86 Transmissive LSS BO Transmissive 
ARP OE Transmissive MOA SC Decision Making 
ASK 12 Transmissive MOC 9E Transmissive 
ASP 14 Transmissive MON SE Transmissive 
BID 7E code Producing MPY OA Arithmetic/Logical 
BIM 7C code Producing ·NOG lE Transmissive 
BIN 7A Code Producing NOZ 3E Transmissive 
BOP 60 Transmissive PGO 22 Transmissive 
CAR lA Transmissive PGP 9C Transmissive 
CLA 06 Transmissive PLD 90 Transmissive · 
CNT lC Transmissive PNG 20 Transmissive 
CPO B2 Transmissive POC 94 Transmissive 
CRP 62 Transmissive POW 16 Roll control 
CSA 24 Decision Making PSP 92 Arithmetic/Logical 
CSF 26 Jump PST 8C Transmissive 
DIM 8E Arithmetic/Logical QSA 2A Decision Making 
DIV B8. Ari thmetic/LOgical QSF 2C Jump 
EAD 2E Transmissive REL 64 Roll Control 
EAW 18 Transmissive RSV 66 Roll control 
ECW 18 Transmissive SAD 6A Decision Making 
EOP 30 Transmissive SBP BA Decision Making 
ETA 32 Transmissive SBS 96 Decision Making 
FET 34 Transmissive SCE 28 Decision Making 
FLP 46 Transmissive SCK 6E Decision Making 
FRK 84 Transmissive SFP A6 Decision Making 
FRP 10 Transmissive SLE 70 Decision Making 
FTH AE Transmissive · SNE 7.4 Decision Making 
IAD 36 Transmissive SNZ 72 Decision Making 
IND D2 Indirect Addressing SOP 6C Decision Making 
IOP 38 Transmissive SPM A2 Decision Making 
IOR SA Arithmetic/Logical SPT AC Decision Making 
ITA 3A Transmissive SRA 76 Decision Making 
ITM · AO Transmissive SRO 78 Decision Making 
JAF 4A Jump (global) STA 68 Decision M?king 

JAT 

JOW 

JPE 
JRD 
JSB 
.JUN 

S6 Jump <local) STM 3c Decision Making 
48 Jump <global) SUB 08 Arithmetic/Logical 
54 Jump .<local> SWT OC Transmissive 
4E Jump (global) TLY 42 Arithmetic/Logical 
SA Jump (local) WOP C8 Address Computation 
52 Jump WlP CA Address Computation 
82 Jump W2P CC Address Computation 
50 Jump W3P CE Address Computation 
4C Jump (global) W4P DO Address Computation 
58 Jump (local) XIT 44 Jump 

LCE 00 Transmissive ZER 40 Transmissive 
LCF AA Transmissive 

I LCT A8 Transmissive 
L--------------------------~----------------i-~----------~------------------------------

Appendix A: The POP Language 139 



APPENDIX B: ROLLS USED IN THE COMPILER 

This appendix describes each of the 
rolls used in the compiler, giving the 
group size, the structure and content of 
the information in the group, and the roll 
number. Each roll is described as it 
appears in . each of the phases of the 
compiler. This information is useful in 
observing the actions taken by the various 

·phases, since a significant portion of the 
work performed by the compiler is the 
construction and manipulation of informa-

' tion on rolls. 

The rolls are ordered in this appendix ·· 
as they are in storage, by roll number.· In 
some cases, a single, number is assigned to 
several rolls. In these cases, the rolls 
with identical numbers are presented 
chronologically, and the overlay of one 
roll on another indicates that the previous 
roll is no ·longer ·required when the new 
roll is. used. The group stats values for 
rolls with · the same number are always 
identical. 

The . . roll number is the entry number in 
the roll . stati.stics tables for the appro
priate set of .. statistics; that is, the roll 
,number multiplied by four is the relative 
address of the correct entry in the group 
stats, BASE, BOTTOM, and TOP tables. 

ROLL 0: LIB ROLL 

This roll contains one group for-every 
name by which a library subprogram can be 
referred to in the source module. The roll 
is· contained in IEYROL and remains 
unchanged in size arid in content throughout 
compilation. 

The group 
twelve bytes. 

size for the LIB roll 
Each group has· the form: 

4 bytes 

is 

r----------------------· _______ _.. ______ ....... , 
!<-----------subprogram------------'- I 
l-------------------T---------T--------~i 
1------name-,:-------> I TAG I 0 I 
l---------T---------f----------L---------i 
I TAG I flag I no.. arguments I 
L---------L--'-------..L.----------~------J 
The TAG appearing in the.seventh byte of 
the group provides the mode and size of the 
FUNCTION value, if the subpro~ram ·is a 
FUNCTION. The TAG in byte 9 ~ndicates the 
mode and size of the arguments to the 
subprogram. For FUNCTIONS, the flag (byte 

i4o 

10) indicates either in-line 
which generation routine must 
that a call is to be generated 
flag is equal to zero). 

(including 
beused) or 

<when the 

This roll is used and.then destroyed by 
Allocate.•· 

ROLL 1 : ·.SOURCE ROLL 

This roll holds source module statements 
while they are being processed during the 
operations of Parse. The roll is not used 
by any later phase of the compiler •. 

source statements appear on this roll 
one card column per byte. Thus, each card 
of a source statement occupies 20 groups on 
the roll. The grdup size is four bytes. 
The statement 

A (I, J) =B CI, J) •2+C CI', J) **2 

would therefore appear on the SOURCE roil 
as: 

4 bytes 

r---------T----------T----------T---------1 I b I b I b I b I 
~---------t...;---~--...;.--t----------t---------i I b .. , . b I A I ( I 
~--------~+---------t--~-------t-------~i I I .. I , .. I J I ) I 
~------·...:'-t----------t---------+--------i I = I B I ( I I I 
~-----+---------+----------+--~----~i 
I, .I J I> I* I 
~------...:--+----------+----------+---------i 
I 2 I + I c I < I 
l---------t----------+----------+--------i I I I ,- I J I > I 
~-------t----------+----------t---------i 
f * I• I 2 I b I 
~-------t---------t----------t---~-----i 
I b I b I b I b I 
~-------..L..---------..L..---------.L--------i 
I I 
I I 
I .. I 
~---------T----------T----------,---------f I b I b I b I b I 
L-------~----------..L..---------.L---------J 
where b stands for the character blank, and 
a total of 20 words is occupied by the 
statement. 



ROLL 2: IND VAR ROLL 

This roll holds a pointer to the induc
tion variable <the DO variable) 'used in 
each DO ·1oop. ·.The pointer specifies the 
appropriate group on the SCALAR roll. Each 
pointer is placed on the roll by Parse as 
the DO loop is encountered in the source 
module. When the loop is closed, the 
pointer is deleted. 

The roll is not used in subsequent 
phases of the compiler. ·The group size for 
the· IND VAR roll is.four bytes• 

ROLL 2: ·NONSTD SCRIPT ROLL 

This roll exists only in Unify; the 
information held ·on ·. it is· taken from the 
SCRIPT roll. The group size for the NONSTD 
SCRIPT roll is variablel with a minimwn of 
20 bytes. Each group on the roll describes 
an array reference. 

The format of the NONSTD SCRIPT roll 
group is: 

4 bytes 

,--------T-----~-------....;..----------------~1 
!traits I frequency I 
r--------J..;.------~----~~-----------~-----i I pointer to ARRAY REF roll . I 
r-------~~--------~-----------------------i I pointer . to the ARRAY roll . . I 
~---·----------------------------------~ 
I offset I 
~-------------~------------~-------------i I induction variable coefficient l 
r----------------~----....;..~~----------~----i 
I l 
I I 
I I 
r----------· -------~----------------------i !induction variable coefficient I 
1;.. ___________ -.;.._;. __ ~----------------------J 

where the first byte o.f :the first word 
contains the trait, which indicates either 
joined or not joined; the value of this 
item is always zero (not joined) for this 
roll. The joined value indicates that· · the 
subs.cript described must appear. in a gener
al register at the time of the reference. 
The remaining three bytes· of the first word 
indicate the number of times this subscript 
expression is used. 

The next two words contain pointers to 
rolls holding information on the array and 
the array reference to which this group 
refers. 'The fourth word .holds the array 
offset; this va1ue accounts for element 
size and includes all modification due to 

constant subscripts. The• remaining words 
hold the induction variable coefficient 
used in this reference for each loop in the 
nest, beginning with nest level one <the 
outermost loop) and ending with the highest 
nest level at this array reference. 

ROLL 3: NEST SCRIPT ROLL 

• This ··roll contains •information concern-
ing array references· in nested DO loops. 
The information for this roll is taken from 
the SCRIPT roll as· each nest of loops is 
encountered~ one nest at a time. The roll 
exists on1y · in Unify. The group size of 
the NEST SCRIPT roll is variable with a 
nu.nimwn of 20 bytes. The format of the 
NEST SCRIPT roll is as follows: 

4 bytes 

.-------'-T-----~--------------------------1 I traits I frequency · I 
~-------~.l,.;..~-~~-----~~~------------·------i 
!pointer to ARRAY REF roll I 
~---------------------------------------~ 
!pointer to the ARRAY roll I 
~~---------------------------------------i 
!offset - I 
r--------------------...;------------------i 
!induction variable coefficient I 
r-------~------------------------------i 
I I 
I I 
I I ._;,.. _____ .__;....._,. ____ ~_.;;.;._.;;.·_.. __________________ i 

!induction variable coefficient I ._ _______ ;,.. ____ .;; __ ~--------~-----;,.. __________ J 

where the first byte of the first word 
indicates · joined or not joined. The 
remaining three bytes of the ·first word 
indicate the number of times that this 
subscript expression· is use.d. The next two 
words of the group contain pointers to 
rolls which hold information on the array 
and the array reference to which this entry 
refers. The fourth word holds the actual 
adjusted off set for this array reference. 
The last words of the group contain the 
coefficients of induction variables used in 
the array reference, .beginning with the 
nest level one variable and ending with the 
highest nest· level. 

ROLL 4: .POLISH ROLL 

This roll is used to bold the Polish 
notation generated by Parse, one statement 
at a time. <The Polish notation is moved 
to the AFTER POLISH roll at the end of each 
statement.) Therefore, the roll contains 

Appendix B: Rolls used'.'in the .Compiler 141 



pointers, drivers, and an occasional con
stant. The terms PO and P1 are used to 
refer to the bottom and next-to-bottom 
groups on the POLISH roll, respectively. 

In Gen, the Polish notation is moved 
back onto the POLISH roll from the AFTER 
POLISH roll, one statement at a time. It 
is used in the production of object code. 

The group size for the POLISH roll is 
four bytes. The format of the Polish 
notation which appears on this roll is 
described completely in Appendix c. 

The POLISH roll is not used in the other 
phases of the compiler and no information 
is left on it through these phases. 

ROLL 4: LOOP SCRIPT ROLL 

This roll contains information on 
references encountered in the 
module. The group size for the LOOP 
roll is variable; the minimum is 20 
Its format is: 

4 bytes 

array 
source 
SCRIPT 
bytes. 

r--------T-------------~-~-------~-----1 

I traits I frequency I 
~--------i--------------------------------~ 
!pointer to the ARRAY REF roll I 
~-----------------------------------------~ 
!pointer to the ARRAY roll I 
!-----------------------------------------~ 
I offset I 
~-----------------------------------------~ 
!induction variable coefficient I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------~ 
!induction variable coefficient I 
L-----------------------------------------J 
All items are the same as described for the 
NEST SCRIPT roll (roll 3). 

The LOOP SCRIPT roll exists only in 
Unify. It is used by this phase to further 
separate subscripts into two ca~egories: 
standard, those which must appear in gener
al registers at the time of reference, and 
nonstandard. 

ROLL 5: LITERAL CONST ROLL 

This roll holds literal constants, which 
are stored as plexes. The group size for 
the LITERAL CONST roll is variable. Each 
plex has the form: 

142 

4 bytes 
r-----------------------------------------1 
I n I 
!-----------------------------------------~ 
I k I 
f----------T---------T---------T----------i 
I C1 I C2 I C3 I c I 
1----~----..L---------.L. ________ i __________ ~ 

I I 
I I 
I I 
f---~-----T------~-T---------T----------i 
I c I I I I L_ _________ .L_ ________ .L_ ________ i_~ _______ J 

where n is the number of words in the plex, 
exclusive of the word which holds n, k is 
the number of bytes in the literal con
stant, and c (the k character) may fall in 
any byte of the last word of the plex. If 
the literal constant appeared in a source 
module DATA or PAUSE statement, the high 
order bit of the second word of the plex 
(k) is set to one; otherwise, it is zero. 

Entries are made on the LITERAL CONST 
roll only during Parse. It is used to hold 
the literal constants throughout the com
piler; its format, therefore, does not 
vary. 

ROLL 7: GLOBAL SPROG ROLL 

In Parse this roll holds the names of 
all SUBROUTINES and non-library FUNCTIONS 
referred to in the source module. It also 
holds the names of all subprograms listed 
in EXTERNAL statements in the source 
module, including library subprograms. In 
addition, the compiler itself generates 
calls to the library exponentiation rou
tines; the names of these routines are 
entered on the GLOBAL SPROG roll. 

The group size 
is eight bytes. 
GLOBAL SPROG roll 
ing format: 

for the GLOBAL SPROG roll 
All groups placed on the 

by Parse have the follow-

4 bytes 
r-----------------------------------------1 
l<--------------subprogram----------------1 
~--------------------T----------T---------~ 
1-------name-------->I TAG I 0 I L--------------------.L. _________ i _________ J 

The TAG appearing in the seventh byte of 
the group indicates the mode and size of 
the FUNCTION value for FUNCTIONS; it has no 
meaning for SUBROUTINES. 

In Allocate, the information on the roll 
is altered to: 



4 bytes 
r--------------------T--------------------1 
I ESD number I displacement I 
~--------------------i--------------------~ 
I base table pointer I 
l--------------------------------------,,,---J 

The ESD number is the one assigned to the 
subprogram. The displacement and the base 
table pointer, taken together, indicate the 
location assigned by Allocate to hold the 
address of the subprogram. The specified 
BASE TABLE roll group holds an address; the 
displacement is the distance in bytes from 
that address to the location at which the 
address of the subprogram will be stored in 
the object module. 

In Gen, the GLOBAL SPROG roll is used in 
the construction of object code, but it is 
not altered. 

In Exit, the roll is used in the produc
tion of RLD cards, but is not altered. 

~R~O_L_L~_8_:'--_F~X~~C~O-'-NST ROLL 

This roll holds the fullword integer 
constants which are used in the source 
module or generated by the compiler. The 
constants are held on the roll in binary, 
one constant per group. The group size for 
the FX CONST roll is four bytes. 

The format of the FX CONST roll is 
identical for all phases of the compiler. 
The roll remains in the roll area for all 
phases, even though it is not actually used 
in Allocate and Unify. 

ROLL 9: FL CONST ROLL 

This roll holds the single-precision 
real (floating point) constants used in the 
source module or generated by the compiler. 
constants are recorded on the roll in 
binary (floating point format}, each con
stant occupying one group. The group size 
for the FL CONST roll is four bytes. 

The FL CONST roll remains 
area for all phases of 
although it is not actually 
ate or Unify. The format 
identical for all phases. 

in the roll 
the compiler, 

used in Alloc
of this roll is 

ROLL 10: DP CONST ROLL 

This roll holds the double-precision 
(8-byte} real constants used in the source 
module or defined by the compiler. 

The constants are recorded in binary 
{double-precision floating point format}, 
one constant per group. The group size for 
the DP CONST roll is eight bytes. 

The DP CONST roll is present in this 
format through all phases of the compiler. 

ROLL 11: COMPLEX CONST ROLL 

This roll holds the complex constants of 
standard siz€ {eight bytes} used in the 
source module or generated by the compiler. 
Each complex constant is stored on the roll 
as a pair of 4-byte binary floating-point 
numbers, the first represents the real part 
of the constant and the second represents 
the imaginary part. 

The COMPLEX 
format described 
the compiler. 
bytes. 

CONST roll exists in the 
above for all phases of 
The group size is eight 

ROLL 12: DP COMPLEX CONST ROLL 

This roll holds the complex constants of 
optional size (16 bytes} which are used in 
the source module or generated by the 
compiler. Each constant is stored as a 
pair of double-precision binary floating 
point values. The first value represents 
the real part of the constant; the second 
value represents the imaginary part. The 
group size for the DP COMPLEX CONST roll is 
16 bytes. 

The DP COMPLEX CONST roll exists in this 
format for all phases of the compiler. 

ROLL 13: TEMP NAME ROLL 

This roll is used as temporary storage 
for names which are to be placed on the 
ARRAY or EQUIVALENCE roll. The group size 
for the TEMP NAME roll is eight bytes. The 
format of the group is: 

Appendix B: Rolls Used in the Compiler 143 



4 byte$ 
r-.-..~--.............. __ .._ ..... _____________ ...... _______ ~----------1 

l<-------~--------name-.:...---""-----------1 
l---~~~-~-------~~---T---~------T-------~-i 
1----------~------""->I TAG I 0 I 
L-~----------------i----------i---------J 

The TAG appearing in the se~enth byte of 
the group indicate$, in the fonnat of the 
TAG field of a pointer, the mode and size 
of the variable. 

The T:EMP NAME roil i$ used only during 
Parse and Al.locate; it does not appear in 
any later pha$e of the compiler. 

ROLL 13: STD.SCR!Pl' ROLL 

The information on this roll pertains to 
array references for which the subscript 
expressiofi must appear in a general regist
er <joined>. 

'l'he roll exists only in unify and the 
infonnation contained therein i$ taken from 
the SCRIPT :toll. Its structure and con
tents are identical to those of the NONSTD 
SC:R!Pl' :roll (roll 2) with the exception 
that the traits on this roll always indic
ate joined. The group size is variable 
with a minimum of 20 bytes. 

ROLL 1.ru TEMP .ROLL 

This roll is used as 
in Parse and is not used 
of the compiler. The 
TEMP roll is four bytes. 

temporary storage 
in any later phase 
group size for the 

This roll is used as temporary $torage 
for error information in Parse and is not 
used in the other.phases of the. compiler. 
The group size for the ERROR TEMP roll is 
four bytes .. 

ROLL 15: DO LOOPS OPEN ROLL 

In :Parse. as DO statements are encoun
tered., pointers to the target labels of the 
DO statements are placed on this roll. 
When the target statement itself is encoun
tered. the pointer is removed. 

!n Al.locate, the roll may contain some 
pof..nters ·left :from Parse:.H any are pres
ent, they indicate linclosed DO loops~ the 
rbll is checked by Allocate and any infor
mation on it is removed. 

144 

This roll is not used after Allocate. 
The group size for the DO LOOPS OPEN roll 
is four bytes. 

ROLL 15: LOOPS OPEN ROLL 

This roll contains the increment and 
terminal values of the induction variable 
used in a DO loop and transfer data for the 
reiteration of the loop. 

Gen creates the roll by establishing an 
entry each time a DO loop is encountered. 
The iiiformation is used in generating the 
object code. As a loop is closed, the 
bottom group from the LOOPS OPEN roll is 
pruned. 

The group size is 
groups are placed in the 
The configuration of a 
group is as follows: 

4 bytes 

four bytes. Four 
roll at one time. 

LOOPS OPEN roll 

r-----------------------------------------1 I pointer to n3 <increment> I 
~-----------~-----------------------------~ I pointer to n2 (terminal value> I 
~---~-~---------~---------w---------------~ I LOOP DATA pointer . I 
!----------~------------------------------~ I pointer to return point made label I 
L-----------------------------------------J 

ROLL 16: ERROR MESSAGE ROLL 

This roll is used only in Parse. It is 
used during the printing of the error 
messages for a single card of the source 
module. Each group holds the beginning 
address of an error message required for 
the card. It is used in conjunction with 
the ERROR CHAR roll, whose corresponding 
group holds the column nutnber in the card 
with which the error is associated. The 
group size for the ERROR MESSAGE roll is 
four bytes. 

ROLL 16: TEMP AND CONST ROLL 

This roll is produced in Gen and is used 
in Gen and Exit. !t holds all constants 
required for the object module and zeros 
for all temporary storage locations 
required in the.object module. 

Binary constants are moved to this roll 
by 'Gen from the various CONST rolls. This 
roll becomes the object module's.temporary 



storage and constant .area. The group size 
for the TEMP AND CONST roll is four bytes. 

ROLL 17: ERROR CHAR ROLL 

This roll is used only during Parse, and 
is not used in any subsequent phase of the 
compiler. 

While a single source module · card and 
its error messages .are being prepared for 
output, this roll holds th.e column number 
with which an error: message is to be 
associated. The address of the error · mes
sage is held iri the corresponding group on 
the ERROR MESSAGE ro.11. The group size for 
the ERROR .CHAR roll is four bytes. 

This roll is used only in Exit, , and is 
not used in previous phases of the compil
er. It holds address. constants, the loca
tions .. at whi.ch they are. to be stored, and 
relocation ·information. The group .size is 
16 bytes. The first word o.f the group 
holds an a.rea code, indicating the control 
section in which the constant exists. ·The· 
second word of the. ·group holds the address 
into which the .constant is to be placed; 
the third holds the constant. The last 
word of the group indicates the relocation 
factor (ESD number> to be used for the 
constant. 

ROLL lS: !NIT ROLL 

The group size for the INIT roll is 
eight bytes. The roll is, initialized in 
Parse, and used and destroyed in Allocate. 
Each group on the :toll 'hol.ds the name of a 
scalar variable or array listed in the INIT 
option of. a DEBUG statement in the source 
module. The format of the group is: 

4 bytes 
r-~------------._...._,__ ___ ~~-.:...·..:...--------· . __ , :----, 
J <--------"---:variable name-------------:...-:..1 
r---'------'--'-----'-----T--'-'---'"'-'------·-----'-'--'f' 
1----'--------'----...;-'->'~, , , , Q· , . '. J 
\._._ __ ;_ ___ ..:_ _________ J. ____________ :__. ____ J 

ROLL 18: DATA SAVE ROLL 

This roll is used only in Gen, where it 
holds the Polish notation for portions of 
DATA statements or Explicit specification 
statements which refer to control sections 
different from the control section present...: 
ly in process. The roll is a temporary 
storage location for this information, 
since data values are written out for one 
control section at a time. The group size 
is four bytes. 

goLL_!.2l__XTEND LABEL (XTEND LBL) ROLL 

This roll is used only by Parse. It 
holds the pointers to the 1AB~1-~Q11 for 
all labels defined within the innermost DO 
loops that· are possible exten:led ·range 
candidates. The group size of the ~TE!iQ 
LABEL roll is four bytes. Each group holds 
a pointer to the LABEL roll. The format •of 
the group on the roll is: 

1. byte. 3 bytes 
r--------T-------------~------------------1 

ITAG !LABEL roll pointer I \. ________ i ________________________________ J 

If the label is a possible re-entry point 
from. the .extended range ·of a DO loop, . the· 
TAG byte contains a X'OS'. Otherwise, the 
TAG byte contains a x•oo•. 

B,Q1!.!.J:.9: . EQUIVALENCE TEMP (EQUIV TEMP) 
ROLL 

This roll is used to hold EQUIVALENCE 
roll data temporarily in Allocate, and is 
not used in any other phase of the 
compiler. The group size for the 
EQUIVALENCE TEMP or EQUIV TEMP roll ·is 
twelve bytes. The format of the group on 
the roll is: 

4 bytes 
r-----------------------------------------1 
l<---------------variable-----------------1 
r--------------------T--------------------~ 
1-------name-------->I 0 I ..... _..:, __ ;_ ______________ i ____________________ -1 

1 offset l 
1.-----------------------------------------J 
The .of,fset is the relative address of the 
beginning of · the variable within the 
EQUIVALENCE group (set> of which it is a 
member •. This roll holds this ·information 
during the allocation of storage for 
EQUIVALENCE.variables. 

Appendix B! Rolls Used in the Compiler 1:45 



ROLL 20: XTEND TARGET LABEL (XTEND TARG 
LBL) ROLL 

This roll is used only by Parse. The 
group size of the XTEND TARGET LABEL roll 
is four bytes. Each group holds a pointer 
to the LABEL roll for each label that 
appears in any transfer statement (e.g., GO 
TO, Arithmetic IF statements) within a DO 
loop. These groups indicate transfers out 
of an innermost DO loop and a possible 
extended range. The format of the group is 
the same. as Roll 19, ~TEllD L~BEL_~Oll. 

1 byte 3 bytes 
r----~--T~-----~-----------------------1 

ITAG !LABEL roll pointer I 
L--------i-------~-----------------------J 

If the TAG byte contains a X'40', this 
indicates that the target label also 
appears in a transfer statement outside the 
DO loop and may be a possible re-entry 
point <if the label is defined within the 
loop). Otherwise, the TAG byte contains a 
x•oo•. · 

EOL~_iQ_.!__§QUIVALENCE HOLD (EQUIV HOLD) 
EOL~ 

This roll is used to hold EQUIVALENCE 
roll data temporarily in Allocate, and is 
not used in any other phase of the compil
er. The group size for the EQUIVALENCE 
HOLD roll is twelve bytes. The format of 
the group on the roll is: 

4 bytes 
r-----------------------------------------1 
l<---------------variable-----------------1 
~---~--------------T--------------------1 
1-------name-----~->1 0 I 
~--------------------i--------------------~ 
I offset I 
L-----------------------------------------J 
The offset is the relative address of the 
beginning of the variable within the 
EQUIVALENCE group (set) of which it is a 
member. This roll holds this information 
during the allocation of storage for 
EQUIVALENCE variables. 

ROLL 20: REG ROLL 

This roll contains inf orrnation concern
ing general registers required in the 
execution of DO loops in the object module. 

The group size of the REG roll is twelve 
bytes. The roll is used only in Unify. 
Each group has the following format: 

146 

4 bytes 
r-----------T-----------------------------1 
I traits I frequency I 
~-----------i-----------------------------~ 
I ARRAY REF pointer I 
~-----------------------------------------~ I LOOP CONTROL pointer I 
L-----------------------------------------J 

The frequency indicates how many times 
within a loop the register is used. The 
registers are symbolic registers that are 
converted to real registers and/or tem
porary storage locations. The pointer to 
the ARRAY REF roll is actually a thread 
which indicates each place that this 
register is required in the loop. The last 
word, the pointer to the LOOP coNrROL roll, 
designates where the register in question 
was initialized. (The particular informa
tion is contained in the second word of the 
entry on the LOOP CONTROL roll.) 

ROLL 21: BASE TABLE ROLL 

This roll is constructed by Allocate,, 
and remains in the roll area for all 
remaining phases of the compiler. The BASE 
TABLE roll becomes the object module base 
table, which holds the base addresses used 
in referring to data in the object mod.ule. 

The group size for this roll is eight 
bytes. one group at a time is added to 
this roll by Allocate. The first word 
holds the area code which indicates the 
relocation factor by which the base table 
entry must be modified at object time: each 
unique area code also defines an object 
module control section. The second word 
holds a relative address within the control 
section defined by the area code: this is 
the value which is in the corresponding 
base table entry prior to modification by 
the linkage editor. 

The entire BASE TABLE roll is con
structed by Allocate. 

ROLL 22: ARRAY ROLL 

This roll is used throughout the compil
er to hold the required information de
scribing arrays defined in the source 
module. 

In Parse, the name and dimension infor
mation is added to the roll for each array 
definition encountered. The group size for 
the ARRAY roll is 20 bytes. The format of 
the group is: 



4 bytes 
r-----------------------------------------1 
l<--------------array name----------------1 
(-------------------T----------T----------1 
1------------------>I TAG I 0 I 
r-------------------~----------~----~-----i 
J ARRAY DIMENSION pointer I 
~-----------------------------------------1 
I number of elements I 
~-----------------------------------------i 
I array offset I 
L-----------------------------------------J 
The TAG appearing in the seventh byte of 
the group indicates, in the format of the 
TAG field of a pointer, the mode and size 
of the array variable. The pointer in the 
third word of the group points to the 
beginning of the plex on the ARRAY 
DIMENSION roll, which describes the dimen
sions of the array. The number of elements 
in the array is a constant, unless the 
array has dummy dimensions; in the latter 
case, Parse puts a dummy pointer to a 
temporary location in this word of the 
group. 

The array offset is the summation of the 
multipliers for the array subscripts. If 

the array dimensions are nl, n2, ••• n7, then 
the multipliers are 1, nl, nl*n2, n1*n2*n3, 
••• n1*n2*n3*n4*n5*n6, where the size of the 
element of the array is not considered. 
This value, after it is multiplied by the 
element size,, is used as a s.ubtractive 
offset for array references. The off set is 
placed on the roll as a constant unless the 
array has dummy dimensions; in the latter 
case, a dummy pointer to a temporary loca
tion is placed in the last word of the 
group. 

In Allocate, the first two words of the 
ARRAY roll group are replaced with the 
following: 

4 bytes 
r---------T----------T--------------------1 
I TAG IDBG/CEAD I displacement I 
r---------~---------~--------------------1 
I base table pointer I 
L-----------------------------------------J 

The TAG is unchanged, except in location, 
from Parse. The DBG/CEAD flag is logically 

Appendix B: Rolls Used in the Compiler 146.1 





split into two hexadecimal values. The 
first of these indicates debug references 
to the variable; its value is 1 for INIT, 2 
for SUBCHK, 0 for neither, and 3 for both. 
The second hexadecimal value is nonzero if 
the array is in COMMON, a member of an 
EQUIVALENCE set, used as an argument to a 
subprogram, or a dummy; it is zero other
wise. The displacement and the base table 
pointer, taken together, indicate the 
beginning address of the array. The base 
table pointer specifies the BASE TABLE roll 
group to be used in references to the 
array; the displacement is the distance in 
bytes from the address held in that group 
to the location at which the array begins. 
If the array is a dummy, the base table 
pointer is replaced by a pointer to the 
GLOBAL DMY roll group defining the array, 
and the displacement is zero. 

The third, fourth, 
the ARRAY roll group are 
Allocate. 

and fifth words of 
not modified by 

The ARRAY roll remains 
throughout the compiler, and 
sulted, but not modified, 
following Allocate. 

ROLL 23: DMY DIMENSION ROLL 

in storage 
it is con

by the phases 

This roll is used first in Allocate, 
where it holds pointers to the array 
definition and the entry statement with 
which dummy array dimensions are asso
ciated. The group size of the DMY DIMEN
SION roll is four bytes. Two groups are 
added to the roll at a time to accommodate 
this information; the format is: 

4 bytes 
r----------------------------------"l I ARRAY pointer f 
~-----------------------------,---------~ I ENTRY NAMES pointer [ i_ _____________________________________ J 

In Gen, the DMY DIMENSION roll is used 
in the generation of temporary locations 
for the dummy dimensions. This operation 
is performed when code is being produced 
for the prologue with which the dummy 
dimension is associated. 

The DMY DIMENSION rol.1 is not used by 
later phases of the compiler. 

ROLL 23: SPROG ARG ROLL 

This roll becomes the subprogram argu
ment list area of the object module. The 

roll is constructed by Gen and holds point
ers to the arguments to subprograms in the 
order in which they are presented in the 
subprogram reference. These pointers may, 
therefore, point to the SCALAR, ARRAY, 
GLOBAL SPROG, or TEMP AND CONST rolls (the 
last roll holds arguments which are 
expressions or constants). The value zero 
is placed on this roll for arguments whose 
addresses are computed and stored in the 
object module argument list area. 

The TAG fields of the pointers on this 
roll contain the value zero except for the 
TAG field of the last pointer for a single 
subprogram reference; this field contains 
the value 80. 

The contents of the SPROG ARG roll are 
punched by Exit. The group size for the 
SPROG ARG roll is four bytes. 

ROLL 24: ENTRY NAMES ROLL 

In Parse, this roll holds all ENTRY 
names defined in the source subprogram, and 
pointers to the locations on the GLOBAL DMY 
roll at which the definitions of the dummy 
arguments corresponding to the ENTRY begin. 
The group size for the ENTRY NAMES roll is 
16 bytes. 'rhe format of the group is: 

4 bytes 
r----------------------------------------"l 
!<--------------ENTRY name----------------1 
1------------------T--,--------,.--------~ 
1-----------------> I o f 
~--------------------..L_------------------~· 
I dummy pointer r 
1-------------------------------------~ 
I o I .___ ______________________________________ J 

The dummy arguments corresponding to the 
ENTRY are listed on the GLOBAL. DMY roll in 
the order in which they are presented in 
the ENTRY statement. 

In Allocate, the ENTRY NAMES roll is 
used in the check to determine that scalars 
with the same names as all ENTRYs have been 
set. A pointer to the scalar is placed in 
the fourth word of the group by .. this phase. 

In Gen, during the production of the 
initialization coae <the object module 
heading), the first word of the group is 
replaced by a pointer to the ADCON roll 
indicating the location of the prologue, 
and the second word is replaced by a 
pointer to the ADCON roll indicating the 
location of the epilogue. During the pro
duction of code for the prologue, the first 
pointer (the first wora of the group) is 
replaced by a pointer to the ADCON roll 

Appendix B: Rolls Used in the compiler 147 



which indicates the · entry point for the 
ENTRY. 

This roll is not required after the Gen 
phase~ 

ROLL 25: GLOBAL DMY ROLL 

In Parse, each group on the roll con
tains the name of a dummy listed in a dummy 
argument list for the principle entry or 
for an ENTRY statement in a source sUbpro
gram. A flag a1so appears in each group 
which indicates whether the dummy is a 
"call by name" or a "call by value" dummy. 
The group size is eight bytes. The format 
of the group in Parse:is: 

4 bytes 

.-----------------------------------------, 
!<--------------dummy name----------------1 
~-------~-----------T-------~-·---------i 
1------------------->I flag I 
L--------------------i--------------------J 
where the dummy name occupies the first six 
bytes of the group. 

Label dummies, indicated by asterisks in 
the source module, are not listed on this 
roll. With this exception, however, the 
dummy lists from the source subprogram are 
entered on this roll as they appear in the 
source statements. The end of each dummy 
list is signaled by a marker symbol on the 
roll. Since each of the dummy lists is 
represented on the roll, the name of a 
single dummy may appear more than once. 

In Allocate, the information in each 
group is replaced by: 

4 bytes 
,-----~---T----------T--------------------, 
I TAG I DBG/flag I displacement I 
~--------i~---------i--------------------i I base table pointer · I 

L-----------------------------------------J 
where the base table pointer indicates the 
group on the BASE TABLE roll to be used for 
references to the dummy, and the displace
ment (in the third and fourth bytes) indi
cates the distance in bytes from the 
address stored in that BASE TABLE roll 
group to the location of the dummy. The 
"flag" occupies the second hexadecimal 
character of the second byte and is 
unchanged from Parse, indicating call by 
name if it is on. The first hexadecimal 
value in that JJyte indicates debug 
references-to the variable;· its value is 1 
for INIT, 2 for SUBCHK, 0 for neither, and 
3 for both. The TAG indicates the mode and 
size of the dummy. 

148 

The GLOBAL DMY roll is used but unmodi
fied in Gen and Exit. 

ROLL 26: ERROR ROLL 

This roll is used only in Parse and 
holds the location within the statement of 
an error, and the address of the error 
message for all errors encountered within a 
single statement. As the statement is 
written on the source listing, the informa
tion in the ERROR roll groups is removedp 
leaving the roll empty for the processing 
of the next statement. 

The group size is four bytes. Two 
groups are added to this roll at a time: 
(1) the column number of the error, count
ing from one at the beginning of the source 
statement and increasing by one for every 
card column in the statement, and· (2) the 
address of the message associated with the 
particular error encountered. 

ROLL 2 6: ERROR LBL ROLL 

This roll is used only in Allocate, 
where it holds labels which are referred to 
in the source module, but which are unde
fined. These labels are held on this roll 
prior to being written out as undefined 
labels or unclosed DO loops. The group 
size for the ERROR LBL roll is four bytes. 

ROLL 27: LOCAL DMY ROLL 

This roll holds the names of the dummy 
arguments to a statement function while the 
statement function is being processed by 
Parse. The group size is eight bytes. The 
format of the group is: 

4 bytes 
r---------------------------~-------------, 
!<-------------~dummy name~-----------~---1 
~--,.------------------T----------~---------i 
1------------------->I o I L__ __________________ i._ ___________________ J 

The information' is removed from the roll 
when the processing of the statement func
tion is complete. 

This roll does not appear in any subse
quent phase of the compiler: however, 
pointers to it appear in the Polish nota
tion produced by Parse and these pointers 
are, therefore, processed by Gen. · 



ROLL 28: LOCAL SPROG ROLL 

In Parse, the roll holds the names of 
all statement functions as they are encoun
tered in the ·source module. The group size 
for the LOCAL SPROG roll is eight bytes. 
The format of the group is: 

4 bytes 
r----------------------~------~---------1 
l<------~----stmt. function-------~-----! 

.-------~----------T----------T----------~ 
1-------name-------> I TAG I O I 
L-------------------i----------..1.---~-----J 

The TAG appearing in the seventh byte of 
the group indicates, in the format of the 
TAG field of a pointer, the mode and size 
of the function value. 

In Allocate, the first four bytes of 
each group are replaced by a pointer to the 
BRANCH TABLE roll group which has been 
assigned to hold the address of the state
ment function. 

The LOCAL SPROG roll is used by Gen and 
Exit, but it is not modified in those 
phases. 

ROLL 29: EXPLICIT ROLL 

This roll is used 
where it holds the 
defined by Explicit 
ments. The group 
roll. is eight bytes. 
group in both phases 

in Parse and Allocate, 
names of all variables 
specification state

size for the EXPLICIT 
The format of the 

is: 

4 bytes 
r-------~~------------------------------1 
!<------------variable name---------------1 
~-------------------T----------T---~-----~ 
1------------------> I TAG I 0 I 
L-------------------i----------i----------J 
where the TAG (seventh byte) indicates the 
mode and size of the variable. 

Groups are entered on this roll by 
Parse; the roll is consulted by Allocate, · 
but not altered. 

ROLL 30: CALL LBL ROLL 

This roll is used only in Parse, where 
it holds pointers to the LBL roll groups 
defining labels which are passed as argu
ments in source module CALL statements. 
The pointers are held on this roll only 
temporarily, and are packed two pointers to 

a group. Pointers are 
when the labels are found 
CALL statements. The 
CALL LBL is eight bytes. 

added to the roll 
as arguments in 

group size for the 

gOLL 30: ERROR SYMBOL ROLL 

This roll is used only in Allocate, 
where it holds any symbol which is in 
error, in preparation for printing. The 
group size for the ERROR SYMBOL roll is 
eight bytes. The symbol (variable name, 
subprogram name) occupies the first six 
bytes of the group. The remaining two 
bytes are set to zero. 

ROLL 31: NAMELIST NAMES ROLL 

In Parse, this roll holds the NAMELIST 
names defined in the NAMELIST statement by 
the source module. The group size for the 
NAMELIST NAMES roll is twelve bytes. These 

.groups are placed on the roll in the 
following format: 

4 bytes 
r-----------------------------------------1 
l<---------------NAMELIST-----------------1 
·~--~--------------T--------------------~ 
1---~--name-------->I 0 I 
·---------------------L--------------------~ 
I pointer to NAMELIST items I 
L~--------~-----------------------------J 

where the pointer indicates the first vari
able in the list associated with the NAME
LIST name. In Allocate, the content of the 
group on the NAMELIST NAMES roll.is changed 
to reflect the placement of the correspond
ing NAMELIST table in the object module. 
The format of the first two words of the 
modified group is: 

4 bytes 
r--------------------T--------------------1 
I 0 I displacement I 
·---------------------L--------------------~ 
I base table pointer I 
L--------------~-------------------------J 

where the base table pointer indicates the 
group on the BASE TABLE roll to be used for 
references to the NAMELIST table, and the 
displacement (bytes 3 and 4) indicates the 
distance in bytes from the address in that 
BASE TABLE roll group to the location of 
the beginning of the NAMELIST table. 

This roll is used, but not modified, in 
Gen and Exit. 

Appendix B: Rolls Used in the Compiler 149 



ROLL 32: NAMELIST ITEMS ROLL 

.This roll holds the variable names 
listed in the namelists tlefined by the 
source module. The group size for the 
NAMELIST ITEMS roll is eight bytes. Infor
mation is placed on the roll by Parse in 
the following form: 

4 bytes 
.-------~--------------------------------, 
l<---------------variable-----------------1 
~--------------------T-~-----------------~ 
1-------name-------->I O 1 
L--------------------~--------------------J 

A marker symbol separates namelists on the 
roll. 

The roll is used in 
Allocate and is destroyed. 
appear in later phases. 

this 
It 

ROLL 33: ARRAY 0 DIMENSION ROLL 

format by 
does not 

This roll is used to hold dimension 
information for the arrays defined in the 
source module. The group size for the 
ARRAY DIMENSION roll is variable. The 
information is placed on the roll by Parse 
in the form of a plex, as follows: 

4 bytes 
r-------------------------'.""----------------1 
I n I 
~-----------------------------------------~ 
I dimension I 
~---------------------------------~-------~ 
I multi plier I 
~----------------------------------------~ 
I dimension I 
~-----------------------------------------~ I multi plier I 
~----------------------------------------i 
I I 
1 I 
I I 
~-----------------------------------------i I dimension I 
~----------------------------------------~ 
I multi plier I 
L----------------------------------------'-J 
where n is the number of words in the plex, 
exclusive of itself. As. many dimensions 
and. corresponding multipliers appear as 
there are dimensions declared for the 
array. 

Unless the array is a dummy and has 
dummy dimensions, each dimension and multi
plier is a constant. When dummy dimensions 
do appear in the array definition, the 
corresponding dimension on this roll is a 

150 

pointer to the tlummy dimension variable on 
the SCALAR roll, and all affected multip
liers are pointers to temporary locations 
(on the TEMP AND CONST roll). The multip
liers for an array with dimensions nl, n2, 
n3, ••• , n7 are 1, n1, nl*n2, ••• , 
nl•n2•n3•n4•n5•n6. 

The ARRAY DIMENSION roll is present, but 
not modified in Unify, Gen, and.Exit. 

ROLL 34: BRANCH TABLE ROLL 

This roll becomes the object module 
branch table. During Allocate, where the 
roll is first used, the size of the roll is 
determined, and some groups are actually 
placed on it. These groups contain the 
value zero, and each group refers to a 
source module label. 

In Gen, the information for the BRANCH 
TABLE roll groups is supplied as each 
labeled statement is processed. The group 
size for the BRANCH TABLE roll is eight 
bytes. The format of the group is: 

4 bytes 
r-----------------------------------------1 
I area code I 
~----------------------------------------i 
I relative address I 
L-----------------------------------------J 
where the area code provides the reference 
for linkage editor modification of the 
corresponding branch table word, and the 
relative address is the relative location 
of the label in the control section (area) 
in which it appears. Branch table (and, 
hence, BRANCH TABLE roll) entries are pro
vided for all branch target labels, state
ment functions, and made labels <labels 
constructed by the compiler to refer to 
return points in DO loops and to the 
statements following Logical IF state
ments). 

The roll is retained in the Gen format 
until it is written out by Exit. 

ROLL 35: TEMP DATA NAME ROLL 

This roll is used only in Parse, where 
it holds pointers and size information for 
variables listed in DATA statements or in 
Explicit specification statements which 
specify initial values. Information is 
held on this roll while the statement is 
being processed. 



The group size for the TEMP DATA NAME 
roll is four bytes. Four groups are added 
to the TEMP DATA NAME roll for each vari
able listed in the statement being scanned. 
They are in .the following sequence: 

4 bytes 
r-----------------------------------------, 
I element size (bytes) I 
t-------------------------------------~--i I pointer to variable I 
1-----------------------------------------i 
I number elements set I 
t------------------------------~---------i 
I element number I 
L------------~------------------~-------J 

The third group specifies the number of 
elements of the variable being set by the 
DATA statement or the Explicit specifica
tion statement. If a full array is set, 
this is the p.umber of elements ·in the 
array; if a specific array element is set, 
this word contains the value one. 

The fourth group indicates the first 
element number being set. If a full array 
is being set, this word holds the value 
zero; otherwise, it holds the element 
number. 

ROLL 36: TEMP POLISH ROLL 

This roll is used only in Parse, where 
it holds the Polish notation for a single 
DATA group during the scanning of that 
group. In an Explicit specification state
ment, a DATA group is defined to be a 
single variable and the associated con
stants; in a DATA statement, a DATA group 
is the set of variables listed between a 
pair of slash characters and the constants 
associated with that set. 

This roll is used because any error 
encountered in a DATA group will cause the 
Polish notation for the entire group to be 
canceled. In an Explicit specification 
statement, the type information on the 
variable is retained when the data is bad; 
if, however, the type information is bad, 
the data is also lost. The group size is 
four bytes. 

ROLL 3 6: FX AC ROLL 

This roll is used in Gen only and is a 
fixed length roll of 16 groups. The groups 
ref er to the 16 general registers in order. 

The group size for the FX AC roll is 
four bytes. Each group on the roll con-

tains a pointer to the value which is held 
in the corresponding general register at 
the present point in the object module; as 
the contents of the general registers are 
changed, the pointers are changed. The 
pointers are used primarily to indicate 
that the general register is in use and the 
mode of the value in it. They are used for 
optimizing only in the case of the general 
registers which are loaded from the base 
table and the general registers used for 
indexing. If the general .register corre
sponding to a specific group is not in use, 
the group holds the value zero. 

ROLL 37: EQUIVALENCE ROLL 

In Parse, this roll holds the names of 
all variables listed in source module 
EQUIVALENCE statements. One group is used 
for each variable name listed in the source 
statement, and EQUIVALENCE sets are 
separated from each other by a marker 
symbol. The group size for the EQUIVALENCE 
roll is twelve bytes. The format of the 
group is: 

4 bytes 
r-~-----------------------------~-------, 
l<---------------variable-;.------~~------1 
t-------------------T----------~:.--------i 
1--name------------> I . 0 I 
1--------------------:.L----- ___ __;,i 
I EQUIVALENCE OFFSET pointer I 
l--------~--------------------------------J 
The pointer to the EQUIVALENCE OFFSET roll 
points to the first word of a plex on that 
roll which holds the subscript information 
supplied in the EQUIVALENCE statement. If 
no subscript was used on the variable in 
the EQUIVALENCE statement, the value zerp 
appears in the third word of the group on 
the EQUIVALENCE roll. 

The roll is used and destroyed in Alloc
ate, during the assignment of storage for 
EQUIVALENCE variables. 

ROLL 37: BYTE SCALAR ROLL 

This roll is used only in Allocate, 
where it holds (temporarily) the names of 
1""."byte sc.alar variables. The group size 
for the BYTE SCALAR roll is eight bytes. 
The format of the group is: 

Appendix B: Rolls Used in the Compiler 151 



LI bytes 
r-----------------------------------------1 
!.<-------------scalar name----------------1 
l----------""'.---------.T----------T----------1 
1------~------------> I TAG I 0 I 
L-------~-----------i----------i---------J 

where the TAG field indicates the mode and 
size of the variable. 

ROLL 38: USED LIB FUNCTION ROLL 

In Parse, the roll holds the names and 
other information for all library FUNCTIONS 
.which are actually referenced in the source 
module. The group size for the USED LIB 
FUNCTION roll is twelve bytes. The infor
mation is placed on the roll in the follow
ing format: 

LI bytes 
r----------------------------------~-----1 
l<---------------FUNCTION--~------~-----1 

~-------------------T----------T-----------1 
1-------name------->I TAG I 0 I 
~---------T---------t--------~.L.----------1 
I 'l'AG I flag I no. arguments I 
L---------i~--------i----------~---------J 

The TAG appearing in byte 7 indicates the 
mode and size of the function value. The 
TAG appearing in byte 9 indicates the mode 
a.nd size of the arguments to the FUNCTION. 
The flag in byte 10 indicates whether the 
FUNCTION is in-line and, if it is, which 
generation routine should be used. If the 
flag is zero, a call is to be generated. 
The last two bytes hold the number of 
arguments to the FUNCTION. The maximum 
number of arguments allowed for the MIN and 
MAX FUNCTIONS is 161 000. 

In Allocate, the information in the 
first two words of the group is altered to: 

LI bytes 
r-------~----------T--------------------1 
I TAG I 0 I displacement I 
~---------i------~~-i---------~----------1 
I base table pointer I 
L-----------------------------------------J 
where the base table pointer indicates the 
group on the BASE TABLE roll to be used in 
referring to the address of the subprogram. 
The displacement is the distance in bytes 
from the contents of the base table entry 
to the location at which the address of the 
subprogram will be stored. The TAG byte is 
unchanged, except in location, from Parse. 

The USED LIB FUNCTION roll is consulted 
by Gen in the construction of object code, 
but it is not modified. It is also pre
sent, but not modified, in Exit. 

152 

ROLL 39: COMMON DATA ROLL 

This roll holds the names of all COMMON 
variables as defined in source module COM
MON statements. A marker symbol separates 
COMMON blocks on this roll. All informa
tion is placed on this roll in Parse. 

The group size is eight bytes. The 
first six bytes of each group hold the 
nameof the COMMON variable; the remaining 
two bytes are set to zero, as follows: 

LI bytes 
r~----~----------------------------------1 
!<------------variable name---------------1 
~-------------------T------~--------------1 
1~--~------------>I o I 
L-------------------i---------------------J 

In ~!locate, the information on this 
roll is used and destroyed. The roll is 
not used in later phases. 

ROLL 39: HALF WORD SCALAR ROLL 

The roll is used only in Allocate, where 
it holds (temporarily) the names of half
word scalar variables defined in the source 
module. The group size for the HALF WORD 
SCALAR roll is eight bytes. The format of 
the group is: 

LI bytes 
r--------------~------~-----------------1 
!<~-----------scalar name----------------1 
~-----------------T----------T~---------1 
1------------------>I TAG I 0 I 
L-------~----------..L.---------i __________ J 

where the TAG indicates the mode and size 
of the variable. 

ROLL LI 0: COMMON NAME ROLL 

In Parse, this roll holds the name of 
each COMMON block, and a pointer to the 
location on the COMMON DATA roll at which 
the specification of the variables in that 
block begins. The group size for the 
COMMON NAME roll is twelve bytes. The 
format of the group is: 

LI bytes 
r------------------~~----------~-------1 
1<~------------block name-------~-------1 

~~--~---------------T-----------~--------1 
1------------------->I o I 
~~-----------------'-----------~-------i 
I COMMON DATA pointer I 
'----~----------------~------~---------J 



The pointer points to the first variable in 
the list of names which follows the block 
name in the COMMON statement; since a 
single COMMON block may be mentioned more 
than once in source module COMMON state
ments, the same COMMON name may appear more 
than once on this roll. The information is 
placed on this roll as COMMON statements 
are processed by Parse. 

In Allocate, the roll is rearranged and 
the last word of each group is replaced by 
the size of the COMMON block in bytes, 
after duplicate COMMON names have been 
eliminated. The size is written out by 
Allocate and the roll is destroyed. 

ROLL 40: TEMP PNTR ROLL 

The group size for the TEMP PNTR roll is 
four bytes. This roll is used only in Gen, 
and holds pointers to those groups on the 
TEMP AND CONST roll that represent object 
module temporary storage locations. The 
information recorded on this roll is main
tained so that temporary storage created 
for one statement can be reused by subse
quent statements. 

ROLL 41: IMPLICIT RO~ 

The roll is used only in Parse and 
Allocate, where it holds the information 
supplied by the source module lMPLICIT 
statement. The group size for the IMPLICIT 
roll is four bytes. Its format is: 

1 byte 1 byte 1 byte . 1 byte 
r----------T---------T---------T----------1 I letter I 0 I TAG I 0 I L----------i _________ i _________ .._ _________ J 

This information is placed on the roll by 
. Parse. The TAG field in the third byte of 
the group indicates, in the format of the 
TAG field of a pointer, the mode and size 
assigned to the letter by means of the 
IMPLICIT statement. 

The IMPLICIT roll is used by Allocate, 
and destroyed. 

ROLL 4 2: EQUIVALENCE OFFSET ROLL 

This roll is constructed during the 
operation of Parse and holds the subscripts 
from EQUIVALENCE variables in the form of 
plexes. The group size for the EQUIVALENCE 
OFFSET roll is variable. Each plex has the 
form: 

4 bytes 
.-----------------------------------------, 
I n I 
1-----------------------------------------i I subscript 1 I 
~~----------------------------------------i 
I subscript 2 I 
1-----------------------------------------i 
I l 
I I 
I I 
~--------------------~------~-----------i 
I subscript n I 
L------------------------------------,--""'--J 
where n is the number of words in the plex 
exclusive of itself and, therefore, also 
the number of subscripts. Each subscript 
is recorded as an integer constant. 

The connection between a plex on this 
roll and the corresponding EQUIVALENCE 
variable is made by a pointer which appears 
on the EQUIVALENCE roll and points to the 
first word of the appropriate plex on this 
roll. · 

In Allocate, the EQUIVALENCE OFFSET roll 
is used in the allocation of storage for 
EQUIVALENCE variables. It is destroyed 
during this phase, and does not appear in 
the later phases of the compiler. 

ROLL 42: FL AC ROLL 

This roll 
fixed length 
groups refer 
registers, in 

is used in Gen 
roll of four 
to the four 

order • 

only, and is a 
groups. The 

floating-point 

The group size for the FL AC roll is 
four bytes. Each group on the roll con
tains a pointer to the value which is held 
in the register at the present point in the 
object program; as the contents of the 
registers change, the pointers are changed • 
These pointers are used primarily to indic
ate that the register is in use and the 
mode of the value in it. If the register 
is not in use, the corresponding group on 
this roll contains zero. 

ROLL 43: LBL ROLL 

This roll holds all labels used and/or 
defined in the source module. Each label 
is entered on the roll by Parse when it is 
first encountered, whether in the label 
field or within a statement. 

.The group size for the LBL roll is four 
bytes. In Parse, the format of the LBL 
ro11·group is: 

Appendix B: Rolls Used in the Compiler 153 



1 byte 3 bytes 
r~-------T----------~--------------------1 

. I TAG I binary label I 
l----------1.-------------------------------~ 

where the .first byte is treated as the TAG 
field of a pointer, and the remaining three 
bytes contain the label, converted to a 
binary integer. 

In the TAG field, the mode portion (the 
.first four bits> is used to indicate 
whether the label has been defined; the 
remainder of the TAG field is used to 
indicate whether the label is the target of 
a jump, the label of. a FORMAT« or neither. 

The leftmost four bits of the TAG byte 
are used as follows: 

8 Label is defined 

O = Label is undefined 

The rightmost four bits of the TAG byte 
indicate the following: 

1 = This is the label of the target 
of a jump (GO TO} statement. 

3 This is the labe.l of a FORMAT 
statement. 

5 = This label is a possible re
entry point within an innermost 
DO loop that may have a possible. 
extended range. (Parse inserts 
the hexadecimal 5 to indicate to 
Gen that the label is a possible 
re-entry point; the Gen phase 
then restores those registers 
that were saved before the 
exte.nded range was entered.> 

o = None of the above conditions. 

In Allocate, the lowe.r three bytes. of 
each LBL roll group defining a jump target 
label are replaced by the lower three bytes 
of a pointer to the BRANCH TABLE roll 
group. which will hold the location of the 
label at object time. Each group definirig 
a FORMAT statement label is replaced <lower 
three bytes only> with a pointer to the 
FORMAT roll group which holds the base 
pointer and displacement for the FORMAT·. 
Groups defining the targets of unclosed DO 
loops are cleared to zero. 

In Gen~ the LBL roll is used to find the 
pointers to the BRANCH TABLE and FORMAT 
rolls~ but it is not altered. 

154 

ROLL 44: SCALAR ROLL 

In Parse, ·the names of all unsubscripted 
variables which are not dummy arguments to 
statement functions are listed on the roll 
in the order of their appearance in active 
(non-specification> statements in the 
source module •. Variables which are defined 
in specification statements, but which are 
never used in the source module, are not 
entered on the roll. The group size for 
the SCALAR roll is eight bytes. The format 
of the group is: 

4 bytes 
r-----------------------------------------1. 
l<-------------scalar name--------'---------1 
·--------------------T----------T---------~ 
1------------------->I TAG I 0 I l ____________________ i __________ i _________ J 

The TAG field appearing in the seventh byte 
of the group indicates the mode and size of 
the variable in the format of the TAG field 
of a pointer. 

In Allocate, the information le:ft on the 
SCALAR roll by Parse is replaced by infor
mation indicating the storage assigned for 
the variable. The resulting format of the 
group is: 

4 bytes 
r---------T----------T--------------------1 
I TAG f DBG/CEAD I displacement I ·---------i __________ i ____________________ ~ 

l base table pointer l 
·L--------------------'----------------------J 
The TAG field appearing in the first byte 
is unchanged, except in location, from the 
TAG field held in the SCALAR roll group 
during Pars.e. The DBG/CEAD flag <in the 
second byte) is logically split into two 
·hexadecimal values. The first of these 
indicates debug references to the variable; 
the value is 1 for a scalar referred to in 
the INIT option; otherwise, the value is 
zero. The second hexadecimal value is 
nonzero if the variable is in COMMON, a 
member of an EQUIVALENCE set, or ·an argu
ment to a subprogram or a global dummy; 
otherwise, it is zero. The displacement in 
bytes 3 and 4, and the base table pointer 
in the second word, function together to 
indicate the. storage location assigned for 
the variable.. The base table pointer spe
cifies a BASE TABLE roll group: the dis
placement is the distance in bytes from the 
location contained in that group to the 
location of the scalar variabl.e. If the 
scalar . is a call by name dummy, the base 
table pointer is replaced by a painter to 
the GLOBAL DMY roll group defining it,. and 
the displacement is zero. 



The SCALAR roll is checked, but modi
fied, during Unify, Gen, and Exit.· 

ROLL 44: HE:X CONST RQ!t!;t 

This roll 
st ants used 
statements. 

holds the hexadecimal con
in source module DATA 

The format of the roll is identical for 
all phases of the compiler. The group size 
is 16 bytes. Two hexadecimal characters 
are packed to a byte, and constants which 

occupy fewer than 16 characters are right
adjusted in the group with leading zeros. 

In Parse, this roll holds the names of 
variables listed in DATA statements and 
variables for which data vaiues are pro~ 
vided in E::xplici t speci:Hcation statements. 
The names are entered on the roll when they 
are found ih these statements. rhe group 
size for this roll is ei~ht bytes. The 
groups have the following form: 

Appeneiix l3: R6lls Used in the corripilef i 54 ~ i 





4 bytes 
r--------------------------------------1 
!<------------variable name--------------1 
i---------------""."----T---------------.----....;i 
1------------------->I o I 

. L-------------------~-------------------J 
This information is used to ensure that 

no data values are provided in the source 
,module for dummy variables. The informa
tion is left on the roll throughout Parse, 
but is cleared before Allocate operates. 

In Allocate, binary labels and the names 
of statement functions, scalar variables, 
arrays, global subprograms, and used 
library functions are placed on the roll in 
order. The group size for this roll is 
four bytes. Each label entered on the roll 
occupies one word; the names occupy two 
words each and are left-justified, leaving 
the last two bytes of each name group 
unused. 

The encoded information is placed on 
this roll by Allocate as its operations 
modify the rolls on which the information 
was originally recorded by Parse. Thus, 
all the labels appear first, in the order 
of their appearance on the LBL roll, etc. 
The information is used by the Exit phase 
in producing the object module listing (if 
the LIST option is specified by the user). 

ROLL 46: LITERAL TEMP (TEMP LITERAL) ROLL 

This roll is used only in Parse, where 
it holds literal constants temporarily 
while they are being scanned. The group 
size for the LITERAL TEMP or TEMP LITERAL 
roll is four bytes. Literal constants are 
placed . on the roll one character per byte, 
or four characters per group. 

ROLL 47: COMMON DATA TEMP ROLL 

This roll holds the information from the 
COMMON DATA roll temporarily during the 
operation of Allocate, which is the only 
phase in which this roll is used. The 
group size for the COMMON DATA TEMP roll is 
eight bytes. The format of the group is 
identical to that of the COMMON DATA roll, 
namely: 

4 bytes 
r-----------------------------------------1 
l<--------------variable-----------------1 
i--------------------T--------------------i 
1-------name-------->I 0 I 
L--------------------~----~--------------J 

ROLL 47: FULL WORD SCALAR .ROLL 

This roll is used only in Allocate, 
where it holds the names of all fullword 
scalar variables defined by the source 
module. The group size is eight bytes. 
The format of the group on the roll is: 

4 bytes 
r---------------------------------------1 
!<-------------scalar name----------------1 
~--------------------T----------,---------i 1------------------->I TAG I 0 I 
L--------------------~---------~-------J 

where the TAG indicates the mode and size 
of the variable. This information is held 
on this roll only temporarily during the 
assignment of storage for scalar variables •. 

ROLL 4 8: COMMON AREA ROLL 

This roll is used only in Allocate, 
where it holds COMMON block names and sizes 
temporarily during the allocation of COMMON 
storage. The group size for the COMMON 
AREA roll is twelve bytes. The format of 
the group on the roll is: 

4 bytes 
r-----------------------------------------1 
!<----~---------block name--~-------------1 

1-----------------T----------------i 
1---------------->I o I 
~--------------------.1--------------~-----i I block size (bytes> I L__ ____________________________________ J 

ROLL 48: NAMELIST ALLOCATION ROLL 

This roll is used only in Allocate, 
where it holds information regarding NAME
LIST items temporarily during the alloca
tion of storage for the NAMELIST tables. 
The group size for this roll is twelve 
bytes. The format of the group is: 

4 bytes 
r-----------------------------------------1 
!<------------variable name---------------1 
~------------------T-----------~------i 
1------------------->I o I 
~--------------------~-------------------i 
I pointer I 
L-----------------------------------~----J 

where the pointer indicates the group 
defining the variable ,on either the SCALAR 
or ARRAY roll. 

Appendix B: Rolls Used in the compiler . 155 



ROLL 4 9: COMMON NAME. TEMP ROLL 

This z::o11 is used only in Allocate, 
whez::e it holds the information fz::om th.e 
COMMON NAME roll tempQ.z::arily. The group 
size fo:r: the COMMON NAME TEMP roll is 
twelve bytes. The format of the group is 
therefoz::e identical to that of the COMMON 
NAME roll: 

4 bytes 

r-----------------------------------------1 
!<--------------block name----------------1 
~--------------------T--------------------i 
I -----------.-------->I o I 
l-------------------.1.--------------------i 
I COMMON DATA pointer I 

L---------------------------------------J 
where the COMMON DATA pointer points to the 
list of variables in the COMMON block. 

ROLL 50: EQUIV ALLOCATION ROLL 

This roll is used only during Allocate, 
and is not used in any other .phase of the 
compiler. When the allocation of storage 
for EQUIVALENCE variables has been com
pleted, the information which has been 
produced on the GENERAL ALLOCATION roll is 
moved to this roll. The group size for the 
EQUIV ALLOCATION roll is twelve bytes. The 
format of the group is, therefore, ident
ical to that on the GENERAL ALLOCATION 
roll: 

4 bytes 
r---------------------------------------1 
l<---------------variable-----------------1 
l--------------------T--------------------i 
1-------name------->I displacement I 
~-------------------.1.-------------------i 
I base table pointer I 

L-----------------------------------------J 
where the base table pointer indicates the 
group on the BASE TABLE roll which will be 
used for references to the variable. The 
displacement is the distance in bytes from 
the location indicated in the BASE TABLE 
roll group to the location of the variable. 

ROLL 51: RLD ROLL 

This roll is used only in Allocate and 
Exit: it is not used in Parse. In both 
Allocate an.d Exit, the roll holds the 
information required for the production of 
RLD cards. The group size for the RLD roll 
is eight bytes. The. group format is: 

156 

4 bytes 

r------------------------------,.----------1 I area code I ESD # I 
l------------------------------..1.----------i I address I 
L----------------------------------------J 
where the area code indicates the control 
section in which the variable or constant 
is contained. The ESD number governs the 
modification of the location by the linkage 
editor, and the address is the location 
requiring modification. 

Information is placed on this roll by 
both Allocate and Exit, and the RLD cards 
are written from the information by Exit. 
The entries made on the RLD roll by Alloc
ate concern the NAMELIST tables; all 
remaining entries are made by Exit. 

ROLL 52: COMMON ALLOCATION ROLL 

This roll is used only in Allocate and 
is not used in any other phase of the 
compiler. When the allocation of COMMON 
storage has been completed, the information 
which has been produced on the GENERAL 
ALLOCATION roll is moved to this roll. The 
group size for the COMMON ALLOCATION roll 
is twelve bytes. The format of the group 
is, therefore, identical to that on the 
GENERAL ALLOCATION roll: 

4 bytes 
r----------------------------------------1 
l<---------------variable-----------------1 
~--------------------T--------------------~ 
1-------name-------->I displacement I 
~--------------------..1.--------------------~ 
I base table pointer I L_ ________________________________________ J 

where the base table pointer indicates the 
group on the BASE TABLE roll which will be 
used for references to the variable. 

The displacement is the distance in 
bytes from the location indicated in the 
BASE TABLE roll group to the location of 
the variable. 

ROLL 52: LOOP CONTROL ROLL 

This roll is created by Unify and is 
used by Gen. The i.nformation contained on 
the roll indicates the contz::ol of a loop. 

The group size for the LOOP CONTROL roll 
is twelve bytes. The foz::mat of the LOOP 
CONTROL roll group in Unify and Gen is: 



4 bytes 
r---------T-----------------------------·1 I traits I coefficient ] 

~-----------£-~-----~----------------------1 I register (this loop> I 
!-----------------------------------------~ I base or register (outer loop> I 
~--------------.------------------------~-.J 

where the first byte of the first wox-d 
<traits) indicates whethe.r the coefficient 
is initiated by a direct load. The remain.;. 
ing three bytes is the coefficient, which 
is the multiplier for the induction vari
able. Tlie second four bytes is the regis
ter where the coefficient is required. The 
base is the source of initialization of the 
register; it can be either a constant, 
register, or an address. · 

goLL 2_3: FOR~AT ROLL 

This. roll is first used in Parse, where 
the FOR.t-'1..AT statements are placed on it. 
See Appendix D for the description of the 
encoding of the FORMAT statement. 

Each group of the FORMAT roll is in the 
form of a plex (the group size is given in 
word O>. The configuration of a FORMAT 
group in Parse is: 

4 bytes 
r-----------------------------------------1 l size of the. group l 
~---------------...,--------------------------\ I pointer to the LBL roll J 
·-------------------------------------i: 
J number of bytes in the FORMAT f: 
1----------------------------------------i 
I I 
I I 
t I 
L----------------------------------------J 
Word 0. contains a value which indicates the 
number of words in the group on the roll. 
The pointer to the LBL roll points to the 
label of the corresponding FORMAT state
ment. 'I'he next word gives the number of 
bytes of storage occupied by this particu
lar FORMAT statement. The ellipses denote 
that the encoded FORMAT follows this con
trol inforrnati-0n. 

In Allocate, the FORMATS are replaced by 
the following: 

4 bytes 
r------------------T-...,------------------1 I 0 I displacement l 
·----------------L----------.,--------f f base table pointer I 
L-----------------------------------------J 

which, taken together, indicate the begin
ning location of the FORMAT statement. 
These groups are packed to the BASE of the 
roll; th<;1.t is, this information for tqe 
first FORMAT appears in the first two words 
on the roll, the informa.tion for the second 
FORMAT appears in words 3 and 4, etc. 

The LBL roll group which defines the 
label of the FORMAT statement holds a 
pointer to the displacement recorded for 
the statement on this roll. 

The FORMAT roll is retained in this form 
for the. remainder of the compilation. 

ROLL 54: §£S1PT ROLL 

This roll is -·created by P<;1.rse as each 
appropriate array reference is encountered. 
The array reference indicated includes sub
scripts (one or morel which use the 
instruction variable in a linear fashion. 
Unify uses the contents of the roll. 

The group size o.f the SCRIPT roll is 16 
bytes, plus an additional 4 bytes for each 
DO loop that is open at the point of tile 
array reference represented by the entry. 
The group format of the SCRIPT ro-11 in 
Pa.rse and Unify is as described for the 
NONSTD SCRIPT roll. 

ROLL 55: LOOP DATA ROLL. 

This roll contains the initializing and 
terminating data, and indicates the induc
tion variable and the.nesting level of the 
particular loop from which this entry was 
created. 

The rol.l is created in Parse at the time 
that the loop is epcountered. I'he group 
size of the LOOP DATA roll is 2.0 bytes. 
The group format of the roll in Parse is: 

4 bytes 
. . . r---------T-----------------------------1 l TAG t nest level I 

··--------.l.-------------------------------1 
I pointer to _induction variable [ 
·-----------------------------------------~ l pointer to n1 (initial value> [ 
L.----------------------------------------J 
where the TAG byte contains a . x• 80 • when .an 
inner DO loop c.ontains a possible . extended 
range. The x•ao• is placed there by Pars¢ 
and.tested by Gen. The Gen phase then 
produces object code to save general regis:.;. 
ters 4 through 7 at the beginning of this ' 
DO loop so that the registers are not 

Appendix B: Rolls used in the compiler 157 



altered in the extended range. The next 
three bytes indicate the nest level of the 
loop. The second word is a pointer to the 
SCALAR. roll group which describes the 
induction variable. The third word of the 
group points to the initializing value for 
the induction variable, which may be repre
sented on the FX CONST roll or the SCALAR 
roll. 

During the operation of the Unify phase, 
the roll is completed with pointers to the 
LOOP CONTROL roll. During Unify, the LOOP 
CONTROL roll is also created; therefore, 
insertion of the pointers is done while the 
loop control data is being established. 

The following illustration shows the 
configuration of the LOOP DATA roll as it 
is used in Unify: 

4 bytes 
r----------------~----------------------~1 
I nest level I 
f---,~-----------------------------------~ 
) SCALAR pointer (induction variable) I 
f-----------------------------------------i 
] FX CONST pointer or SCALAR pointer I 
f-----------------------------------------i 
) LOOP CONTROL pointer (start init.) I 
f-----------------------------------------i 
J LOOP CONTROL pointer (end init.) I 
L----------------~-----------------------J 

The last two words (eight bytes> of the 
group are inserted by Unify. These point
ers point to the first and last LOOP 
CONTROL roll groups concerned with this 
loop. 

This roll is a duplicate of the SCRIPT 
roll. The contents of the SCRIPT roll are 
transferred to the PROGRAM SCRIPT roll in 
Parse as each loop is closed. Each loop is 
represented by a reserved block on the 
roll. 

The group size of the PROGRAM SCRIPT 
roll. is 16 bytes, plus an additional 4 
bytes for each riest le·vel up to and includ
ing the one containing the reference repre
sented by the entry. The format of the 
PROGRAM SCRIPT ·rotl group in Parse and 
Unify is as follows: 

158 

4 bytes 
r----------T------------------------------1 
I traits I frequency I 
·----------~~-----~-----------------------~ 
I ARRAY REF pointer I 
·-----------------------------~-----------~ 
J ARRAY pointer I 
··--------~--------------------------------~ 
l ARRAY offset pointer I 
·-----------------------------------------~ l induction variable coefficient I 
·---------------------.--------------------~ 
I induction variable coefficient I 
] Cnest level = 2> I 
·-------~---------------------------------~ I . I 
I I 
I I 
~----------------------------~------------~ 
l induction variable coefficient I 
I (nest level = n> I 
L-----------------------------------------J 
See the NONSTD SCRIPT roll for further 
description. 

This roll is used only in Gen, where it 
handles subscripts (array references) which 
are · not handled by Unify. The group size 
for the ARRAY PLEX roll is twelve bytes. 
Tne format of the group on the roll is: 

4 bytes 
r-----------------------------------------1 
I pointer to array I 
·----------------------~--------~---------~ 
I pointer to index I 
·-----------------------------------------~ I displacement I 
L-----------------------------------------J 
The pointer in the first word of the group 
points to the ARRAY REF roll when the 
>ubscript used contains DO dependent linear 
subscripts (which are handled by Unify) and 
non-linear variables. Otherwise, the 
pointer refers to the ARRAY roll. 

The second word of the group holds a 
pointer to the index value to be used in 
the subscripted array reference. '!'his 
pointer points to general register 9 on the 
FX AC roll if the index value has been 
loaded into that register; if the index 
value has been stored in a temporary loca
tion, the pointer indicates the proper 
location on the TEMP AND CONST roll; if the 
index value is a fixed constant, the 
pointer indicates the proper group on the 
FX CONST roll. When the information in 
this word has been used to construct the 
proper instruction for the array reference, 
the word is cleared to zero. 



The displacement, in the third word of 
the group, appears only when the first word 
of the group holds a pointer to the ARRAY 
roll. otherwise, the displacement is on 
the ARRAY REF roll in the group indicated 
by the pointer in the first word, and this 
word contains the value zero. This value 
is the displacement value to be used in the 
instruction generated for the array 
reference. 

ROLL 57: ARRAY REF ROLL 

Pointers to this roll are inserted into 
the Polish notation by Parse. At the time 
that these pointers are established, the 
ARRAY REF roll is empty. The pointer is 
inserted into the Polish notation when · an 
array reference includes linear loop
controlled subscripts. 

The roll is initially created by Unify 
and completed by Gen. The group size of 
the ARRAY REF roll is 16 bytes. The format 
of the ARRAY REF roll group as it appears 
in Unify is as follows: 

0 
1 1 1 1 1 2 
1 2 5 6 9 0 

3 
1: r _ _; __ ...;. __________ T ____ T __ ...;_T ________ '-: ____ '-:1 

I IR1 IR.a I offset I l----------_; ___ J.. ____ J.. ____ i ___ ....; ___ . ________ i 
I pointer to register (R1) or to the I 
I TEMP AND CONST roll I 
l------------------------------;-----------i 
I pointer to register (R2 ) or to the I 
I TEMP AND CONST roll I 
l----------------------------------------i 
I pointer to the ARRAY roll · I ._ ________________________ ....; _____________ J 

The first word of the group contains the' 
low 20 bits of an instruction which is 
being formatted by the compiler~ "R1 and R.a 
are the two register fields to be filled 
with the numbers of the registers to be 
used for the array reference. Word 2 of 
the group contains the pointer indicating 
the register to be assigned for R1 • 'Word 3 
of the group indicates the register R2 • 

When R1 and R.a have been assigned~ the 
second and third words are set to zero. 

Gen c0mpletes the entry by adding· the 
operation code to the instruction that is 
being built. The format of an ARRAY REF 
roll group in Gen is: 

0 
1 1 1 1 1 2' 
1 2 5 6 9 0 

3 
1 

r--~-----------T----:-T----T--:------"....:------1 
top code · 1R1 IR.a I. offs~t I' 
~-------------....:.,L__; _ _;.,L__....;_..L_ ____ ....; ________ ....;i 
I .0 or TEMP AND CONST roll I 
I pointer I 
~-----------------------------------------i 
I O or TEMP AND CONST roll I 
I pointer I 
~---------------------------------------i 
!ARRAY pointer I .__ ___________________________________ J 

ROLL 58: ADR CONST ROLL 

This roll contains relocatable inf orma
tion' that is to be used by Exit.' . 

Unify creates the roll which contains a 
pointer to the TEMP AND CONST roll and an 
area code and displacement. The pointer 
indicates an entry on the TEMP AND CONST 
roll which must be relocated according to 
the area code. The displacement · is the 
value to be placed in that temporary 
storage and constant area location. 

The group size of the ADR CONST roll ·· is 
eight bytes. The format of the ADR CONST 
roll group in Unify is: 

4 bytes 
r-------------------T------------------1 I area code I displacement I 1---------------'-:_..L__ ______ -:-_,_ _____ .__ ___ i 
I TEMP AND· CONST pointer ( .__ _______________________________________ J 

These groups are constructed by Unify to 
provide additional base table values for 
indexing._ , 

ROLL 59: AT ROLL 

This roll is constructed in Parse and 
used in Gen. It is not used in ·· the 
remaining phases. The group size for this 
roll is twelve bytes. The form;;i.t of the 
group is: 

4 bytes 

r---------------------------------------1 I · · AT label pointer I 
~--'-_;--'_;_;~..;._; _____ _; ___ -:-_ _;....; ________ '-:i 
I · · · debug label pointer; · t 
~_;_; ________ ...; __ ~_; __ -:-_ _; __ ...;. __ ~_; __ ....: ___________ i 
I . return label pointer · . I. L_..;_ _ _....; __ _....; ____ ....;.:..: _ _; ____ _;.__ ___ .._ __ .:_ __ :._ ____ :__J. 

All.three of the pointers in the group 
point to the LBL roll.' ·The first points 'td 
the label indicated· in the sciurceinodule'AT 

Appendix B: Rolls Used in the compiler 15'9 



statement. The second points to the made 
label supplied by .·the compiler for the code 
it has written to perform the debugging 
operations. The third label pointer indi
cates the made label supplied for the point 
in the code to which the debug .code 
returns; that is, the code which follows 
the branch to the debugging code. 

ROLL 60: SUBCBK ROLL 

This roll is initialized in Parse and 
used in Allocate. It does not appear in 
later phases. The group size for this roll 
is eight bytes.. The format of the group 
is: 

4 bytes 
,.-----------------------------------, !<----------variable name-------------1 
·1--------------------T--------------------i 1---------------->I o I 
·L~-----------------~-.L.-------------------J 

Each group holds the name of an array 
listed.in the SUBCHK option of a source 
module DEBUG statement. 

ROLL 60: NAMELIST MPY DATA ROLL 

This roll is set up during the donstruc~ 
tion of the NAMELIST tables in Allocate. 
In.Exit, the roll is used to complete the 
information in the NAMELIST tables. The 
roll is not used in the other phases of the 
compiler. The group size for the NAMELIST 
MPY DATA roll is eight bytes. 'rhe fomat 
of the group on this roll is: 

4 bytes r-----.--.....-------------------------..-.-.-..... -.--1. 
I multiplier constant I 
~----------...-----------------------------.-.------1 
I address I 
'----------------------~-------------------J 

The multiplier constant refers to an 
array dimension for an array mentioned in a 
NAMELIST list. The address is the location 
in a NAMELIST table at which a pointer to 
the multiplier constant must appear. In 
Exit, the- constant is placed in the tem
porary storage and constant area of the 
object module; and a TXT card is punched to 
load its address into the location speci• 
fied in the second word of the group. 

160 

ROLL 62: GENERAL ALLOCATION ROLL 

This ~oll is used only during Allocate, 
and is not used in any other phase of the 
compiler. During the .various allocation 
operations performed by this phase, the 
roll holds the information which ultimately 
resides on the remaining ALLOCATION rolls. 
The group size for the GENERAL ALLocATION 
roll is twelve bytes. The format of the 
group is: 

4 bytes 
.-----------------------------------------1 l<---------------variable-----------------1 
1-----------------,.--------------------i 
1--~---naine------->I displacement I 
1--------------------..1---------------------i I base table pointer I 
L-----------:---------------""------------~- .... --.J 

where the base table pointer indicates the 
group on the SASE TABLE roll which will .be 
used for references to the ;rariable •. 

The displacement is 
bytes from the location 
BASE TABtE roll group 
the variable. 

the distance in 
indicated in the 
to the location of 

During the allocation of coMMoN, the 
third word of each group holds a relative 
address until all of a coMMoN block has 
been allocated, when the relative address 
is replaced by the pointer as indicated 
above.. . . During.. the . allocation of :EQ\:Jl:VA-" 
LENCE variables, relative addresses within 
the EQUIVALENCE variables are used and theft 
replaced by pointers as :for COMMON. 

ROLL 62: CODE ROLL 

This ro11 holds the object code 
generated by the compiler, in birta:ry. This 
roll is first used in Gen; where the object 
code for the entire source mod.tile is built 
up oh the roil. 

The group size for the CODE roii is 
eight bytes. TWo types . of groups are 
placed on the roli during the opetations 6£ 
Gen. 'the first type of group is added to 
the roll by the instructions IEYB!N, IEYBfM 
and IEYBID. ln this type of group, the 
biharyinstruction is left-justified in the 
eight bytes. when the instruction occupie~ 
sonly two bytes, the first word is com"' 
pleted with zeros. When the instruction 
occupies two or tour bytes; the second word 
of the group holds a pointer to the d.efin~ 
ing group for the operand. of the instruc"" 
tion. When the instruction is a 6~byte 
instruetion, the 1ast two bytes of th~ 
group contain zero, and nt> pointer tc> the 



operand appears. A unique value is placed 
on the CODE roll by these instructions to 
indicate the beginning of a new control 
section. 

The second type of group entered on the 
CODE roll appears as a result of the 
operation of one of the instructions IEYPOC 
and IEYMOC. These groups do not observe 
the 8-byte group size of the roll, but 
rather begin with a word containing a 
special value in the upper two bytes; this 
value indicates an unusual group. The 
lower two bytes of this word contain the 
number of words in the following informa
tion. This word is followed by the binary 
instructions. 

The object module code is written out 
from this roll by the Exit phase of the 
compiler. 

ROLL 63: AFTER.POLISH ROLL 

This roll is constructed in 
remains untouched until Gen, and 
stroyed in that phase. 

Parse, 
is de-

The AFTER POLISH roll holds the Polish 
notation produced by Parse. The Polish for 
one statement is moved off of the POLISH 
roll and added to this roll when it is 
completed; thus, at the end of Parse, the 
Polish notation for the entire source 
module is on this roll. 

In Gen, the Polish notation is returned 
to the POLISH roll from the AFTER POLISH 
roll for the production of object code. At 
the conclusion of the Gen phase, the roll 
is empty and is no longer required by the 
compiler. The group size for this roll is 
four bytes. 

WORK AND EXIT ROLLS 

Because of the nature and frequency of 
their use, the WORK roll and the EXIT roll 
are assigned permanent storage locations in 
IEYROL, which is distinct from the storage 
area reserved for all other rolls. As a 
result, these rolls may never be reserved 
and are manipulated differently by the POP 
instructions. The group stats and the 
items BASE and TOP are not maintained for 
these rolls. The only control item main
tained for these rolls corresponds to the 
item BOTTOM, and is carried in the general 
register WRKADR (register 4) for the WORK 
roll and EXTADR (register 5) for the EXIT 
roll. 

WORK ROLL 

The WORK roll is often used to hold 
intermediate val.ues. The group size for 
this roll is four bytes. The name WO is 
applied to the bottom of the WORK roll (the 
last meaningful word>, Wl refers to the 
next-to-bottom group on the WORK roll, etc. 
In the POP instructions these names are 
used liberally, and must be interpreted 
with care. Loading a value into WO is 
storage into the next available word, 
(WRKADR) + 4, unless specifically otherwise 
indicated, while storage from WO to another 
location involves access to the contents of 
the last word on the roll, (WRKADR). 
WRKADR is normally incremented following a 
load operation and decremented following a 
store. 

EXIT ROLL 

The EXIT roll holds exit addresses for 
subroutines and, thereby, provides for the 
recursion used throughout the compiler. 
The ANSWER BOX is also recorded on the EXIT 
roll. The group size for the EXIT roll is 
twelve bytes. The first byte is the ANSWER 
BOX. The remaining information on the roll 
is recorded when a subroutine jump is 
performed in the compiler code; it is used 
to return to the instruction following the 
jump when the subroutine has completed its 
operation. 

The values placed on the EXIT roll 
differ, depending on the way in which the 
subroutine jump is performed. As a result 
of the interpretation of the IEYJSB POP 
instruction, the last three bytes of the 
first word contain the location of the 
IEYJSB plus two (the location of the POP 
instruction following the IEYJSB, the 
return point); the second word of the group 
holds an address within the IEYJSB subrou
tine; the third word contains the location 
of the global label for the routine from 
which the subroutine jump was made plus two 
(the value of LOCAL JUMP BASE in that 
routine). 

As an example of how a subroutine jump 
is accomplished by means of machine lan
guage instructions, the following instruc
tions are used: 

L TMP 1 G0052J 

BAL ADDR,JSB STORE IN EXIT 

to replace the POP instruction 

IEYJSB G0052J 

Appendix B: Rolls Used in the Compiler 161 



In this case, no value is placed in the 
last three bytes of the first word: the 
second word holds the address of the 
instruction following the BAL: the third 
word holds the location of the global label 
inunediately preceding the BAL plus two (the 
value of POPADR when the jump is taken, 
which is also the value of LOCAL JUMP BASE, 

162 

the base address to be used for local jumps 
in the routine from which the subroutine 
jump was made). 

On return from a subroutine, these 
values are used to restore POPADR and LOCAL 
JUMP BASE and they are pruned from the EXIT 
roll. 



This appendix shows the format of the 
Polish notation which is generated by the 
compiler .for each type of statement in the 
FORTRAN IV (G) language. 

GENERAL FORM 

The format of the Polish notation 
depends on the statement type, but always 
terminates with the control driver which 
indicates the type of statement: 

4 bytes 
r---------------------------~--1~ 1------------------------------i 
I . I Polish for 
I • I statement 
I • I 
~----------~------------------i 
~------------------------------ii 
!control driver I 
~------------------------------i 
!statement number I l ______________________________ J 

The statement number is an integer whose 
value is increased by one for each state
ment processed. This value is used only 
within the compiler. 

LABELED STATEMENTS 

For labeled statements, a pointer to the 
label is inserted between the control driv
er and the statement number: 

4 bytes 
r------------------------------1~ 
~------------------------------i 
I · I 
I • I Polish for 
I • I statement 
1------------------------------i . 
1------------------------------i' 
I control driver I 
1------------------------------i 
I label I 
~------------------------------i 
!pointer to statement label I 
1------------------------------i 
!statement number I l ______________________________ J 

The label information is not included in 
the following descriptions of the Polish 
notation for individual statement types. 

APPENDIX C: POLISH NOTATION FORMATS 

ARRAY REFERENCES 

The Polish notation for an array 
reference whose subscripts are all linear 
functions of DO variables consists simply 
of a pointer to the appropriate group on 
the ARRAY REF roll. The Polish notation 
generated for all other references to an 
array element is: 

4 bytes 
r------------------.----------1 
!array driver I 
·-----------------------------i 

~~~=~~~~::::::::::::=:::::~(Polish for 
l--~--~~----:__----~~~-1\suhscript 1 

·-----------------------------i 
I multiplier I 
·-----------------------------i 
!argument driver I 

r::::===-~-==:::~:::::::::::]t=~~!~~i~r2 
·----------~---------------i~ 
·~--------------------------i 
I multiplier I 
·-----------------------------i 
!argument driver I 
·---------------------------i 
I I 
I I 

~:::::::::::::~::::::::::::j1=~~!~~i~r7 
·-----------------------------i~ 
~----------------------------i· 
I multiplier I 
·-----------------------------i 
!argument driver I 
·----------------------------i 
!dummy array pointer I 
L-----------------------------J 

The pointer to the array may indicate 
either (1) the ARRAY roll, when none of the 
subscripts used in the array reference are 
linear functions of DO variables, or (2) 
the ARRAY REF roll, when some, but not 
all, of the subscripts are linear functions 
of DO variables. The subscripts for which 
Polish notation appears are those which are 

Appendix c: Polish Notation Fonnats 163 



not linear functions of DO variables. Only 
the required number of subscripts appear. 

The multiplier following each subscript 
is the multiplier for the corresponding 
array dimension. This value is an integer 
unless the array is a dummy including dummy 
dimensions which affect this array dimen
sion; in this case, the m\lltiplier is 
represented by a pointer to the TEMP AND 
CONST roll. 

ENTRY STATEMENT 

The Polish notation generated for the 
ENTRY statement is: 

4 bytes 
r-----------------------------------------1 
!pointer to ENTRY name I 
~------------------------------------------! 
!ENTRY driver I 
l:----------~-------------------------------1 
!statement number I 
L-----------------------------------------J 

The pointer points to the ENTRY NAMES 
roll. 

ASSIGN STATEMENT 

The Polish notation generated for the 
ASSIGN.statement is: 

4 bytes 
r-----------------------------------------1 
I pointer to label I 
l:------------------------------------------1 
!pointer to variable I 
~------------------------------------------! 
!ASSIGN driver I 
l:------------------------------------------1 
!statement number I 
L---------------------~-------------------J 

ASSIGNED GO TO STATEMENT 

The Polish notation generated for this 
statement is: 

4 bytes 
r-----------------------------------------1 I pointer to variable I 
t------------------------------------------1 
!assigned GO TO driver I 
!-------------------------------------------! 
!statement number I 
L-----------------------------------------J 

164 

LOGICAL IF STATEMENT 

The Polish notation generated for this 
statement is: 

4 bytes 
r------------------------------1 
t-----~--------~-,---------------1tPolish for 

I • I logical 

~---,------------~---------------~~·expression 

~==============================~~; I • I Polish for 

~__:::::=:::::::::::~-::::::::::::::::::::::l ~~~tement 
!logical IF driver I 
~-------------------------------! 
!statement number I 
L------------------------------J 

RETURN STATEMENT 

The following Polish notation is pro
duced for the RETURN statement: 

4 bytes 
r~---------------------------------------1 
!pointer to I I 
~------------------------------------------! 
!RETURN driver I 
~------------------------------------------! 
tstatement number I 
L-----------------------------------------J 

The pointer to I does not appear if the 
statement is of the form RETURN. 

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT 

The Polish notation produced for this 
statement is: 

4 bytes 
r------------------------------1 
!pointer to variable to be set I 
~--------------------------:...----!· 
t. ----------. ----~-----·---------. -1~ Polish for 
I • I right side 
I • I 
~-------------------------------! 
!-------------------------------! I assignment driver I 
~-------------------------------! 
!statement number I 
L------------------------------J· 



The Polish notation for the right side 
of the assignment statement is in the 
proper form for an expression, and includes 
array references where they appear in the 
source statement. The variable to be set 
may also be an array element; in this case, 
the pointer to the variable to be set is 
replaced by the Polish notation for an 
array reference. 

UNCONDITIONAL GO TO STATEMENT 

The Polish notation produced for this 
statement is: 

4 bytes 
,-----------------------------------------1 
!Pointer to label I 
l--------------------------------~--------i 
!GO TO driver I 
~----------------------------------~-----i 
!statement number I 
L-----------------------------------------J 

COMPUTED GO TO STATEMENT 

The following Polish notation is pro
duced for this statement.: 

4 bytes 
r------------------------------1 
I pointer to xl l 
l------------------------------i 
!pointer to x2 I 
l------------------------------i 
I I branch 
I I points 
I I 
~------------------------------i Jpointer to xn I 

~------------------------------i 
!number of branch points I 
~---------------------------i 
!pointer to variable I 
l------------------------------i 
!computed GO TO driver I 
~------------------------------i I stateroent number I 
L------------------------------J 

ARITHMETIC IF STATEMENT 

The following Polish notation is pro
duced for this statement: 

4 bytes 
r------------------------------1 · 
~-------------:---------------1l:~~;:~sf~~ 
I • 1{ 
~------------------------------i' 
~------------------------------i' 

~po~~~:=-~~-:=-.----------------~~branch 
!pointer to x2 I points 
~------------------------------i 
I pointer to x3 I 
~----------------------------ii 
!pointer to label next stmt. I 
~------------------------------i 
IIF driver I 
l------------------------------i 
!statement number I 
L------------------------------J 

The label of the next statement is 
inserted following the IF driver because 
the next statement may be one of the branch 
points referenced; if it is, code will be 
generated to fall through to that statement 
in the appropriate case(s). 

DO STATEMENT 

The following is the Polish notation 
produced for the statement DO x i = ml, m2, 
m3: 

4 bytes 
r-----------------------------------------1 
f pointer to M, (test value) I 
~---------------------------------------1 
!pointer to M3 (increment) I 
~----------------------------------------1 
!pointer to LOOP DATA roll I 
~-----------------------------------------1 
!pointer to LBL roll I 
~-----------------------------------------i 
IDO driver I 
~-----------------------------------------i 
!statement number 1 L__ ______________________________________ J 

The pointer to m3 appears, even if the 
increment value is implied. 

Appendix C: Polish Notation Formats 1.65 



CONTINUE STATEMENT 

The Polish notation produced for this 
statement is: 

4 bytes 
.-----------------------------------------1 
!CONTINUE driver I 
~--------.;..-------~---------~--------------~ 
Jstatement number I 
L-----------------------------------------J 

PAUSE AND STOP STATEMENTS 

The Polish notation produced for these 
statements is: 

4 bytes 
r------------------------------~---------1 
!pointer to constant I 
1---------------------------~------------.;..~ 
I PAUSE or STOP driver I 
~-----------------------------------------~ 
!statement number I 
L-----------------------------------------J 

the 
the 

For both the PAUSE statement and 
STOP statement, the constant appears on 
LITERAL CONST roll, regardless of 
nature in the source statement. 
constant appears in the statement, 
pointer to the constant points to 
literal constant zero. 

its 
If no 

the 
the 

END STATEMENT 

The Polish notation generated for the 
END statement is: 

4 bytes 
.-----------------------------------------1 
IEND driver I 
~----'------~-----~----------------------~ 
I statement number . I 
L----'------'--------------------------.;..-----J 

BLOCK DATA STATEMENT 

The Polish notation generated for the 
BLOCK DATA statement is: 

4 bytes 
r----------~----------------------~-----1 
IBLOCK DATA driver I 
I---------~----.;_--------------------------~ 
!statement number I 
L-----------------------------------------J 

166 

DATA STATEMENT AND DATA IN EXPLICIT 
SPECIFICATION STATEMENTS 

For each statement (DATA or Explicit 
specification) in which data values for 
variables are specified, a Polish.record is 
produced. This record ends with a DATA 
driver and a statement number. For each 
variable initialized by the statement, the 
following appears: 

4 bytes 
r-----------------------------------------1 
I pointer to variable I 
~-----------------------------------------~ 
!offset I 
L~---------------------------------------J 

The off set is the element number at which 
initialization begins; if it does not 
apply, this word contains the value zero. 

This information is followed by the pair 
of groups 

4 bytes 
r-----------------------------------------1 
!repetition count I 
!-----------------------------------------~ 
I pointer to constant I 
L-----------------------------------------J 

or, when the constant is literal, the three 
groups 

4 bytes 
r-----------------------------------------1 
!repetition count I 
~-----.;..-----------------------------------~ 
I pointer to constant I 
~-----------------------------------------~ 
I number of elements I L_ ________________________________________ J 

where the last group indicates the number 
of elements of an array to be filled by the 
literal constant. For array initializa
tion, one or more of the "constant" groups 
may appear. 



I/O LIST 

The Polish notation for an I/O List 
contains pointers to the variables in the 
list, Polish notation for array references 
where they appear, and pointers and drivers 
to indicate implied DO loops. 

The I/O list 

((C(I),I=l,10>,A,B) 

for example, results in the following 
Polish notation: 

q bytes 

.---------------------------:...------------, 
!pointer to.Ma (test value> I 
1-.:..~--~---~-------------------------------i 
I pointer to M3 (increment> I 
·-----------------------------------------i 
!pointer to LOOP DATA roll I 
·-----------------------------------------i 
!implied DO driver I 
!--------------.---------------"-----------+ 
I pointer to c · I 
·-------------'----------:...--·----------------i 
11 (number of subscrii:.ts > I 
1---------------'--------------------------i 
Jpointer to I (subscript> I 
1-----------------------------------~----i 
!argument driver . I 

·--------------------------------------:...-i !array driver I 

·-----------------------------------------i I IOL DO close driver I 

·-----------------------------------------i jpointer to A I 
1-------------------:.._.:.._:... ___________ .------· 
I point.er to B , . . .. ·. . I L __ .._;_ _____________ ;... __________ ._ ___________ J· 

The area between, · and· including, the 
impli'ed DO driver and the array driver is 
an array reference, as it would appear 
wherever C(I) was referred to in source 
module statements. 

INPUT STATEMENTS 

The following paragraphs discuss the 
Polish notation produced for all· forms of 
the READ. statement except direct access. 

FORMATTED READ 

For the form READ <a,b> list, the for
matted READ, the Polish notation generated· 
is: 

q bytes 
r------------------------------, 
!pointer to a (data set> I 
·----.:..-------------------------i 
!FORMAT driver I 
·-------------------------------! 
I pointer to i;"<)RMAT I 
·------------------------'-------i 
IEND= driver I 
·----~-------------------------i 
!pointer to END label I 
·---------------------·---------i 
IERR= driver I 
·----------'----------.:..·------------! 
jpointer to ERR label I ·--;_ ____________________ .. -------·i .· 

~~:~=~~~~~~======== .. =~======~=. ==~~· I · . · ' ·· · I Polish fdr 
I · . I I/o list 
I · I . ·------------- -----.c--------~-·- --1 
1-------------------------------i 
!code word I 
·-------------------------------! 
IIBCOM entry, formatted READ I 
1---------------------'----------i 
!pointer to IBCOM I 
·---------------------.:..---------! 
IREAD/WRITE flag, zero= WRITE, I 
I nonzero= READ I 
·------------------------------i 
IREAD WRITE driver I 
·---------------· -- ----~------- --1 
I statement number I L. __ .:_ ______ ..;..:. __________________ J. 

The pointer to the FORMAT· 'poi·nts either 
to the label of the FORMAT statement or to 
the array in which the FORMAT is stored. 
The END= and ERR= drivers and the pointers 
following them appear only if the END and 
ERR options are used in the statement; 
either one or both may appear, and in any 
order with respect to each other. If no 
I/O list appears ··in the statement; the 
Polish for the I/O list is omitted, but the 
IOL driver appears nonetheless. 

The code word contains zero in its 
high-order three bytes, and, in its low
order byte, a unique code specifying .the 
operation and unit for the input/output 
statement. This code word distinguishes 
among the various READ statements and is 
inserted in the code produced for them. 

Input/output operations . a re performed .. by 
the RUNTIME routines. IBCOM is a transfer 
routine in RUNTIME through which all input/ 
output except NAMELIST is performed. ' The 
IBCOM entry for formatted READ indicates an 
entry point to this routine. (See Appendix 
D for further discussion .of IBCOM.) The 
pointer to IBCOM points to the routine · .on 
the GLOBAL SPROG roll. 

Appendix C: Polish Notation F'ormats 16'7 



NAMELIST READ 

For the form READ (a, x l, the. NAMELIST 
READ, the following changes are .made to the 
Polish notation given above.: 

1. The FORMAT driver is replaced by a 
NAMELIST driver. 

2. The pointer to the FORMAT is replaced 
by a pointer to the NAMELIST. 

3. The code word value is changed. 

4. The IBCOM entry is ·replaced by the 
value zero, since NAMELIST input/ 
output is not handled through IBCOM. 

5. The pointer to IBCOM is replaced by a 
pointer to the NAMELIST READ routine. 

6. No I/O list may appear. 

UNFORMATTED READ 

For the form READ <a> list, the unfor-
1t1atted READ, the following changes are made 
to the Polish notation given above: 

1. The FORMAT driver is removed. 

2. The pointer to the FORMAT is removed. 

3. The IBCOM entry, 
replaced by the 
matted READ. 

READ STANDARD UNIT 

formatted READ, is 
IBCOM entry, unfor-

For the form READ b, list, the standard 
unit READ statement, the following changes 
are made to the Polish notation given 
above: 

1. No END= or ERR= drivers may appear, 
nor may the corresponding pointers to 
labels. 

2. The code word value is changed. 

OUTPUT STATEMENTS 

The fellowing paragraphs discuss the 
Polish notation produced for all forms of 
the ~RITE statement except direct access, 
and for the PRINT and PUNCH statements. 

FORMATTED WRITE 

For the form 
formatted WRITE, 
generated is: 

168 

WRtTE 
the 

Ca,b) list, the 
Polish notation 

4 bytes 
r------------------------------1 
!pointer to a (data set) I 
·------------------------------i 
!FORMAT driver I 
·------~--------~--------------i 
!pointer to FORMAT I 
·----·-------------------------~i 
I END= driver I 
·-----------~----------~-------~ 
!pointer to END label I 
·------------------------------i 
I ERR= driver I 
·------------------------------i 
!pointer to ERR label I 
·------------------------------i 
I IOL driver I 
·------------------------------+ 
r--------------:---------------1(i~~i~rs~or 

~--------------: _______________ ~, . 

·------------------------------i 
Icade word I 
·----------~-------------------i 
]IBCOM entry, formatted WRITE I 
·--------------------:---""'.------i 
!pointer to IBCOM I 
·------------------------------i 
IREAD/WRITE flag, zero= WRITE, I 
I nonzero= READ I 
·------------------------------i 
IREAD WRITE driver I 
·-----------·-------------------i 
]statement number I 
L-----------------------------J 

The pointer to the FORMAT points either 
to the label of the FORMAT statement or to 
the array in which the FORMAT is stored. 
The END= and the ERR= drivers and the 
pointers following them appear only if the 
END and ERR options are used in the state
ment; either one or both may .appear, and in 
any order re la ti ve to each other. . If no 
I/O list appears in the statement, the 
Polish for the I/O list is omitted, but the 
IOL driver appears nonetheless. 

The code word contains zero in its 
high-order three bytes, and, in its low
order byte, a unique code specifying the 
operation and. unit for the input/output 
statement. This code word distinguishes 
among the various output statements and is 
inserted in the code produced for them. 

Input/output operations are perf orrned by 
the RUNTIME routines. IBCOM is the initial 
entry of a transfer vector in IHCFCOMH 
through which all input/output except NAME
LIST is performed. <IBCFCOMB is further 
discussed in' Appendix F.> The pointer to 



IBCOM points to the routine on the GLOBAL 
SPROG roll. 

NAMELIST WRITE 

For the form WRITE (a, x>, the NAMELIST 
WRITE, the following changes are made to 
the Polish notation given above: 

1. The FORMAT driver. is replaced by a 
NAMELIST driver. 

2. The pointer to the FCRMAT is replaced 
by a pointer to the NAMELIST. 

3. The code word value is changed. 

4~ The IBCOM entry is replaced by the 
value zero, since NAMELIST input/ 
output is not handled through IBCOM. 

5. The pointer to IBCOM is replaced by a 
pointer to the NAMELIST WRITE routine. 

6. No I/O list may appear. 

UNFORMATTED WRITE 

F.or the form WRITE <a> list, the unfor
matted WRITE, the following changes are 
made to the Polish notation given above: 

1. The FORMAT driver is removed. 

2. The pointer to the FORMAT is removed. 

3. 'Ihe IBCOM entry, formatted WRITE, is 
replaced by the IBCCM entry, unfor
matted WRITE. 

PRINT 

The Polish notation generated for the 
form PRINT b, list is identical to that 
given for the formatted WRITE statement, 
with the following changes: 

1. No END= or ERR= drivers may appear, 
nor may the corresponding pointers to 
labels·.·· 

2. The code word value is changed. 

PUNCH 

The Polish notation for the statement 
PUNCH b, list is as given for the formatted 
WRITE with the following changes: 

1. No END= or ERR= drivers may appear, 
nor may the corresponding pointers to 
labels. 

2. The code word value is changed. 

The following paragraphs discuss the 
Polish notation produced for the direct 
access input/output statements. 

READ, DIRECT ACCESS 

For the forms READ <a'b,b> list and READ 
(~'rl list, the following Polish notation 
is generated: 

4 bytes 
r---.,.--------------------------1 
I pointer to a (data set) I 
t------------------------------i 
!direct IO driver I 
·-----~------------------------i 
t--------------~---------------1(Polish for 

. I • I · r 
I • 1( 
t---------,-----------------,.----iJ 
t---------·---------------------i 
)expression driver I 
•------------------------------i 
!pointer to b I 
·------~-----------------------i 
I ERR= driver I 
·------------------------------~ I pointer to ERR label I 
t------------------------------i 
IIOL driver I 

f :::::::::::::~:::::::::::::::l?~~~i~~s!or 
i--------------~---------------~~ ·------------------------------i 
Jcode word I 
·------------------------------i 
IIBCOM entry, READ I 
·----·--------------------------~ 
I po~.r,ter to IBCOM I 
·------------------------------i I !:EAD/WRITE flag, zero= WRITE, I 
1 nonzero= READ I 
·-------------~----------------~ 
!READ WRITE driver I 
·--------------------------"·---~ 
f statement number I 
l-----~------------------------J 

Appendix C: Polish Notation Formats 169 



The END= and ERR= drivers and the point
ers following them appear only if the END 
and ERR options are used in the ·source 
statement; either one or both may appear, 
and in a.nY order with respect to each 
other. If b does not appear in the source 
statement (the second form>, the corres
ponding pointer does not appear in the 
Polish notation. If the I/O list does not 
appear in the source statement, the Polish 
notation for the I/O list is omitted from 
the Polish. but the IOL driver appears 
nonetheless. 

The code word contains zero in its 
high-order three bytes, and, in its low
order byte, a unique code specifying the 
operation and unit for the input/output 
statement. This code word distinguishes 
the direct access statements from other 
input/output statements and is inserted in 
the code produced for them. 

WRITE, DIRECT ACCESS 

The Polish notation produced for the 
forms WRITE <a'r,b) list and WRITE (a'r> 
list is identical to that produced for the 
corresponding forms of the READ, direct 
access statement with the following 
exceptions: 

1. The IBCOM entry, READ is replaced by 
the appropriate IBCOM entry, WRITE. 

2. The value of the code word is changed. 

FIND 

The Polish notation produced for this 
statement is identical to that for an 
unformatted direct access READ statement 
given .above, with the exception that the 
code word is changed to indicate the FIND 
statement. 

DEFINE FILE 

170 

The form of this statement is: 

DEFINE FILE al (m1,11,fl,v1),a2 
Cm2,12,f2,v2>, ••• ,an(mn,ln,fn,vn> 

The Polish notation produced for it is: 

· 4 bytes 

;---------------------------, 
!pointer to al I 
·---------------------------i tpointer to ml I 
·---------------------------i 
!pointer to 11 I file 1 data 
·---------------------------- i 
IE, L, or U I 
·---------------------------i !pointer to vl I 
·----~----------------------i 
!pointer to a2 I 
·---------------------------i 
I I 
I · · I file 2 data 
I I 
l---------------------------i 
)pointer to v2 I 
·---------------------------i 
I I 
I I 
I I 
l------------------------··--i 
)pointer to an I 
·---------------------------i 
I I 
1 I file n data 
I I 
l---------------------------i 
!pointer to vn I 
l---------------------------i 
)DEFINE FILE driver I 
·---------------------------i !statement number I 
L---------------------------J 

where the fourth word of each set of file 
data holds the BCD character E, L, or u in 
the high-order byte and zeros in the 
remaining bytes·. 

The Polish notation produced for END 
FILE is: 

4 bytes 
r-----·------------------------------------1 
I pointer to a <data set> I 
·-----------------------------------------i IIBCOM entry for END FILE I 
·-----------------------------------------i !pointer to IBCOM I 
l-----------------------------------------i I BSREF driver · I 
·-----------------------------------------i 
!statement number I 
L-----------------------------------------J 



REWIND STATEMENT 

The Polish notation produced for the 
REWIND statement is identical to that for 
the END FILE statement with the exception 
that the IBCOM entry for END FILE is 
replaced by the IBCOM entry for REWIND. 

BACKSPACE STATEMENT 

The Polish notation produced for the 
BACKSPACE statement is identical to that 
for the END FILE statement, except that the 
IBCOM entry for END FILE is replaced by the 
IBCOM entry for BACKSPACE. 

The Polish notation generated for a 
statement function is: 

4 bytes 
r------------------------------1 
!pointer to function name l 
~------------------------------~ 
I I 
~------------------------------~ 
I I Polish for 
I j right side 
I I 
~------------------------------~ 
I I 
~------------------------------~ 
!statement function driver I 
~-----------------------------~ 
!statement number I 
L------------------------------J 

FUNCTION STATEMENT 

The Polish notation produced for the 
FUNCTION statement is: 

4 bytes 
r-----------------------------------------1 I pointer to ENTRY name I 
~--------------.---------------------------~ 
!FUNCTION driver I 
~-----------------------------------------~ 
!statement number I 
L---------------------------------------~-J 

where the pointer points to the ENTRY NAMES 
roll. · 

The Polish notation generated for a 
reference to a function is: 

4 bytes 
r------------------------------1 
f subprogram driver I 
~----.-----------------------.,.---~ 
Jpointer to function name I 
~------------------------------~ 
Jnumber of arguments I 
r------------------------------~ 
!expression driver I 
~------------------------------~ 
I I 
r------------------------------~ 
'I I Polish for 
I I argument 1 
I I 
~------------------------------~ 
!expression driver I 
r------------------------------~ 
I I 
~------------------------------~ 
I I Polish for 
I I argument 2 
I I 
~------------------------------~ 
Jexpression driver I 
r------------------------------~ 
I I 
I I 
I I 
r------------------------------~ 
I I 
r------------------------------~ 
I I Polish fo.r 
I I argument n 
I I 
r------------------------------~ 
texpression driver r 
r------------------------------~ 
!pointer to function name I 
L------------------------------J 

This Polish notation is part of the 
Polish notation for the expression in which 
the function reference occurs. 

SUBROUTINE STATEMENT 

The Polish notation generated for the 
SUBROUTINE statement is: 

4 bytes 
r-----------------------------------------1 
jpointer to ENTRY name I 
~----------------------------------------~ 
!SUBROUTINE driver I 
r-----------------------------------------~ 
jstatement number I 
L-----------------------------------------J 

where the pointer points to the ENTRY.NAMES 
roll. 

Appendix C: Polish Notation Formats 171 



CALL STATEMENT 

The Polish notation for the CALL state
ment is:•· 

4 bytes 
r------------~-'~-------~------1 
tsubprogram driver ·. I 
r--------'----------------------i 
!pointer to subprogram name I 
r------------------------------i 
!number 0£ arguments I 
·------------------------------i 
!expression driver I 
r---------,----,-----------------i 
I I 
·------------------------------i 
I 
I I 
I 
r------------------------------i 
!expression driver I 
·------------------------------i 
I I 
r----•-------------------------i 
l I 
I I 
I I 
r------------------------------i 
!expression driver I 
·------------------------------i 
I I 
I I 
I I 
r-~------------..:. __ ....; ____________ i 
I I 
·------------------------------i 
I I 
I I 
I · I 
·-----------------~---'---------i 
!expression driver I 
r----------'--------------------i 
)pointer to subprogram name I 
·------------------------------i !pointer to xl I 
.--------------~---------------~ I pointer to x2 I 
·------------------------------i 
I I 
I I 
I • I ·----".""-----'--------------------i 
)pointer to xn I 
r------------------------------i 
!number of label arguments I 
·--------------'--------------~ !computed GO TO driver . I 
r------------------------------i 
!CALL driver I 
·------------------'------------i 
!statement number I 
._ ______________________ ..... _...; ____ J 

POlish for 
argument 1 

Polish for 
argument 2 

Polish for 
argument n 

label 
arguments 

Label arguments are not counted in the 
"number of arguments" which appears as the 
third word of the Polish notation1 and no 

172 

representation ·of them appears in the 
Polish notation for the arguments. All 
label arguments are grouped together at the 
bottom of the Polish as indicated. If no 
label. arg0ments exist, the section from the 
•pointer to xl" to and including the "com
puted GO TO driver" does not appear. 

DEBUG FACILITY STATEMENTS 

The following paragraphs describe the 
Polish notation produced for the statements 
of the debug facility. 

AT 

The Polish notation generated for the AT 
statement is: 

4 bytes 
r-----------------------------------------1 
I pointer to AT group I 
.-----------------------------------------1 
I AT driver I 
·-----------------------------------------1 
I statement number I 
L~------------~---------------------------J 

The pointer points to the AT roll group 
which contains the information relating to 
the AT statement represented by the Polish 
notation. 

TRACE ON 

The Polish notation generated for the 
TRACE ON statement is: 

4 bytes 
r-----------------------------------------1 
I TRACE ON driver I 
.-----------------------------------------i 
I statement number · I ._ ________________________________________ J 

TRACE OFF 

The Polish notation generated for the 
TRACE OFF statement is: 

4 bytes 
r----------------------'-------------------1 I TRACE OFF driver I .,____ ________________ ...; _____ ....; ___ ...; ___________ i 
I statement number I 
·L---------'----....;---------------------------J 



DISPLAY 

The Polish notation generated for the 
DISPLAY statement is: 

4 bytes 
r--------------------------'-'---------------, 
I pointer to NAMELIST WRITE I 
r-----------------------------------------i 
I o I 
~-------------------~---------~---------i 
I NAMELIST pointer I 
r-----------------------------------------i 
I DISPLAY driver I 
~--------~---------------------------~--i 
I statement number I 
L-----------------------------------------J 

where the pointer to NAMELIST WRITE points 
to this routine on the GLOBAL SPROG roll: 
the value zero is placed on the roll for 
conformity with other NAMELIST input/output 
statements: the NAMELIST pointer points to 
a group constructed for the DISPLAY state
ment on the NAMELIST NAMES roll~ 

Appendix c: Polish Notation Formats 173 





APPENDIX D: OBJECT CODE PRODUCED BY THE COMPILER -------------------------------------------------

This appendix describes the code pro
duced by the FORTRAN IV (G) compiler for 
various types of source module statements. 

ERA NC HES 

All branch instructions in the object 
module consist of a load from the branch 
table, followed by a BCR instruction, eith
er conditional or unconditional, which uses 
the branch table value as its target. 

The production of this code depends on 
the operation of Allocate, which replac~s 
all jump target labels on the LBL roll with 
pointers to entries in the object module 
branch table. Using this information, Gen 
can write the load and branch instructions 
even·though the address of the target may 
not yet be known. 

When Gen encounters a lateled statement 
which is a jump target, it sets the appro
priate entry in the branch table to the 
address of the first instruction it pro
duces for that statement. 

The following code is generated for the 
Computed Go To statement: 

L 
SLL 
BALR 
LTR 
BNH 
LA 
CR 
BH 
L 
BR 

15,variable 
15,2 
14,0 
15,15 
4n+22C0,14) 
1 4 4nCO,O> 
15,1 
4n+22C0,14> 
1, 18U5, 14> 
1 

n address constants 

where variable is the Computed Go To vari
able, n is the number of branch points, and 
4n is the length of the list of n address 
constants. 

The use of a DO loop in a FORTRAN 
program can be described by the following 
example: 

DO 5 I ml,m2,m3 

5 CONTINUE 

When the DO statement is processed dur
ing phase 4, the following takes place: 

1. The code 

L RO,ml 
A ST RO,I 

is generated, where the label A is 
constructed by Gen. 

2. The address of the instruction labeled 
A is placed in the branch table. 

3. An entry is made on the DO LOOPS OPEN 
roll which contains pointers to m2, 
m3, the label A, I, and the label 5. 

On receiving the Polish notation for the 
CONTINUE statement in the example, phase 4 
produces the following code: 

L 
L 
L 
L 
BXLE 

RO,I 
Rl, branch table 
R2,m3 
R3,m2 
RO,R2,0(Rl) 

where the load from the branch .table sets 
Rlto the address of the created label A. 
When this code has been completed, phase 4 
remov·es the bottom entry from the oo LOOPS 
OPEN roll. 

Appendix D: Object Code Produced by the compiler 175 



STATEMENT FUNCTIQ~§ 

The following code is generated at the 
beginning of each statement function: 

STM 2,3,18(15) 
STM 6,12,26(15) 
LR 7,14 
LR 9, 1 
LR 6,15 
B 54 (0, 15) 

nine-word buffer 

·rtie buffer is followed by the code for 
the statement function itself, including 
the code to load the return value. The 
following code closes the statement 
function: 

LR 
LM 
LM 
BR 

14,7 
2,3,18(6) 
6,12,26(6) 
14 

SUBROUTINE AND FUHCTION SUBPROGRAMS 

The following code is generated to save 
required information at the main entry to 
each SUBROUTINE and FUNCTICN subprogram: 

B x co, 15) 
DC ALlClength of Ident) 
DC CLn<Ident) 
STM 14,12,12(13) 
LM 2,3,40(15) 
LR 4,13 
L 13,36(0,15) 
ST 13,8(0,4) 
STM 3,4,0(13) 
BR 2 
DC (ADDRESS SAVE AREA) 
DC (ADDRESS PRCLOGUE) 
DC (ADDRESS EPILOGUE) 

This code is followed by the following 
code for saving required infor111ation for 
each of the ENTRYs to the subprogram (the 
sequence of code appears once for each 
ENTRY, in the order·of the ENTRYs>: 

176 

B XC0,151 
DC ALlClength of Identl 
DC CLn<Ident> 
STM 14, 12, 12 (13) 
LM 2,3,32(1~1 
L 15,28(0,15) 
B 20 (.0, l ~) 
DC (ADDRESS MAIN ENTRY) 
DC <ADDRESS PROLOGUE> 
DC <ADDRESS EPILOGUE) 

The save code for the ENTRYs to the 
subprogram is followed by a PROLOGUE, which 
transfers arguments to the subprogram, and 
an EPILOGUE, which returns arguments to the 
calling routine for the main entry to the 
subprogram and for each ENTRY to the 
subprogram. 

The.following code is produced 
RETURN statement: 

SR 15, 15 
L 14 1 0C0,131 
ER 14 

for the 

which branches to the appropriate EPILOGUE. 

The following code is produced for the 
RETURN I statement: 

L 
SLL 
L 
BR 

15,I 
15,2 
14, oco, 131 
14 

which also branches to the appropriate 
EPILOGUE. 

The PROLOGUE code generated for each 
entry point to the subprogram moves argu
ments .:ts required and branches to the 
entry. The following code is generated to 
move each call by name argument: 

L 2,n CO, 1) 
ST 2,global dmy 

where n is the argument number (the argu
ments for each entry point are numbered 
from one> multiplied by four. 

The following code is generated to move 
each call by value argument: 

L 2,nrn,u 
MVC global dmy(xl,0(21 

where n is the argument number multiplied 
by four, and x is the size of the dummy• 

code ·to calculate dummy dimensions fol'"' 
lows the code to move arguments. 



The following code is' generated at 
close of all PROLOGUEs: 

BALR 2, 0 
L 3 1 6(0,2) 
BR 3 
DC (ADDRESS QI:' COOE ENTRY POINT) 

the The EPILOGUE code gene?:ated t;or ea.ch 
entry point to a subprogram moves arguments 
back to the calling routine and returns to 
it, as dictat.ed by the. RETURN or RETURN I 
statement. 

Appendb D: Ob.jec.t Code Produced by th• CQJl!piler 116.1 





The first instructions in each EPILOGUE 
are: 

L 
L 

1, !j co, 13) 
1,24(0,1) 

The following code is generated 
return each call by value argument: 

L 2 1 n(O, ll 
MVC 0Cx,2l,global dmy 

to 

where n is the argument number multiplied 
by four and x is the size of the dummy. 

For FUNCTION subprograms, the 
instruction is generated: 

following 

Lx O,entry name 

where x is the instruction mode. If the 
FUNCTION is complex, two load instr•1ctions 
are required. 

The following code is generated for the 
closing of each EPILOGUE: 

L 
L 
LM 
MVI 
BR 

13,!J(0,13) 
l!J, 12(0, 13) 
2,12,28(13) 
12(13), 255 
l!J 

The following paragraphs describe the 
code produced for the FORTRAN input/output 
statements. The generated instructions set 
up necessary parameters and branch into the 
IBCOM# transfer table. This table has the 
following format: 

IBCOM# Main entry, formatted READ 
+!J M.ain entry, formatted WRITE 
+8 Second list item, formatted 

+12 Second list array, formatted 
+16 Final entry, end of I/O list 
+20 Main entry, unformatted l.{EAD 
+2!J Main entry, unformatted WRITE 
+28 Second list item, unformatted 
+32 second list array, unformatted 
+36 Final entry, end of I/O list 
+!JO Backspace tape 
+!J!J Rewind tape 
+!JS Write tapemark 
+52 STOP 
+56 PAUSE 
+60 IBERR execution error monitor 
+6!J IBFINT interruption processor 
+68 IBEXIT job termination 

FORMATTED READ AND WRITE STATEMENrs 

is: 
The code produced for these statements 

CNOP 
L 
BAL 
DC 
DC 
DC 
DC 

o, !j 

15, =V(IBCOM#) 
14,N(15) 
XLO.!J'PI',XLO.!J'UI',AL3(0NIT) 
AL1CFI>,AL3(FORMAT) 
AL4(EOFADD) 
AL!J CERRADD I 

"optional" 
"optional" 

where: 

PI 

UI 

FI 

N 

0 if neither 
specified 

EOF nor ERR 

is specified 

is 

= 1 if EOF only 
2 if ERR only 
3 if both 
specified 

is specified 
EOF and ERR are 

0 if unit is an integer constant 
1 if unit is a variable name 
4 if unit is the standard system 
unit 

x•oo• if FORMAT is a statement 
label 
X'Ol' if FORMAT is an array name 

0 for READ 
!j for WRITE 

UI = 4 is used for debug and for READ b, 
list, PRINT b, list and PUNCH b, list. 

SECOND LIST ITEM, FORMATTED 

The code produced is: 

L 15,=V(IBCOM#) 
BAL 14,8(15) 
DC XLl'L',LXO.!J'T'.XLO.!J'X' 

XLO.!J'B',~Ll.4'D' 

where: 

L the size.in bytes of the item 

T 2 for a logical 1-byte item 
3 for a logical fullword item 
!j for a halfword integer item 

= 5 for a fullword integer item 
6 for a double-precision real item 
7 for a single-precision real item 
8 for a double-precision complex 
item 
9 for a single~precision complex 
item 
A for a literal item <not currently 
compiler-generated) 

Aopendix D: Object Code Produced by the Compiler 177 



x,, B; · .. a:nd n are, respectively. the 
inde:it.,· bast::,. and displacement .which 
spet:ify the item address .. 

SECOND LIST ARRAY~ FORMATTED 

The code produce¢ is: 

L 
BAL 
DC 
DC 

15, =V(.J'.BCOM#) 
]:4., 12(15) 
LXl" SPAll!J' ~ AL3 t ADDRESS) 
xI.1·· L' ,Xto. 4'T 1 'I XL2. 4' ELEMENTS" 

SPAN foot used) 

ADDRESS = the beginning l<>cation ·of the 
array 

L the s±:ze in bytes of the array 
element 

T = the values given for items 

ELEMENTS := the number of elements in the 
array 

F!NAL LIST ENTRY., FORMATTED 

The code produced is: 

L 
BAL 

15, =V{IBCOM#) 
14, 16<15> 

UNFORMATTED READ AND WRITE STATEMENTS 

is: 
The code produced for these statements 

CNOP 
L 
BAL 
DC 
DC 
DC 

0,4 
15, =Vt IBCOM#l 
1:4, N'( 15) 
XLO. 41 PI1 , XLO-. 4 ~ UI, AL3 (UNIT) 
AL4t.EOFADD) "optional" 
AL4 '<ERRADD) "optional" 

where: 

PI 1 'O!, UNIT, EOFA:bD and .ERRADD have the 
same values a:s those gi ve:n in the for
ina t:ted READ/WRITE definition. 

N = 20 for READ = 24 for WRITE 

SECOND LIST ITEM., UNFORMATTED 

The code produc~d is: 

.L 
BAL 
DC 

. where: 

15~ ;.,VU:ScOM#) 
. 14, 280.5) 

XLl • t•, XLO. 4• -0•, xt.o. 4• x•, 
XLO. 4 f BI" XL1. I.I ID' 

L = the size in bytes of the it•em 

x, B and D are1 respectively, the 
index, base1 and displacement which 
specify +.be address of the i tern. 

S'ECOND LIST ARRAY, UNFOR:~A'l'TED 

The code produced is: 

L 
BAL 
DC 
DC 

15, =V Cl:SC-OM# > 
14 1 32 (L) 
XLl' SPAN' , AL3 ·(ADDRESS> 
XLl''t.' 1 AL3'(ELEMENTS) 

where SPAR, ADDRESS. L, and ELEMENTS have 
the meanings described in second list. 
array, formatted. 

FINAL LIST ENTRY~ UNFORMATTED 

'I'he code produced is: 

L 15, =V<IBCOM#> 
BAL 14, 36 (15) 

BACKSPACE, REWIND, ·AND WRITE TAPEMARK 

The code pr:oduced is: 

CNOP 
L 
BAL 
DC 

whe·re: 

«>t 4 
15 1 =V(IBCOM#) 
14, NUS) 
X:Ll 1 FLAG', AL3-CUN!Tl 

FLAG= 'O if Unit is an integer 

N 

= any other bit pattern if unit is 
a variable. 

= 40 for BACKSPACE 
= '44 for REWIND 
- ·4B f•or write tapemark 



STOP AND PAUSE STATEMENTS 

The code produced for these statements 
is-: 

L 
BAL 
DC 
DC 

where: 

15, =VUBCOM#) 
14 1 N(15) · 
AL1 (LENGTH.) 
C1 TEXT' 

LENGTH is the number of bytes in the 
., TEXT • message 

TEXT is an alphameric number or message 
(TEXT= 1 4040401.!0FO' if the STOP or 
PAUSE message is blank). 

N = 52 for STOP 
= 56 for PAUSE 

NAMELIST READ AND WRITE 

The code produced is:* 

CNOP 
L 
BAL 
DC 
DC 
DC 
DC 

where:: 

0,4 
l:S I =V (FWRNL#) 
14,0 (15) 
XLO.'lf'PJ:• .,xLo.,4•01• ,AL3fUNIT) 
AL4(NAMELIST) 
ALI.I (EOFADD) 
ALI.I ( ERRADD) 

PI, UI, and UNIT are as des·cribed for 
formatted READ and WRITE 

* '!'he "L 
write; 
"l. 

l'S ~ =V (FWRNL~D n :shown is 
the code produced ;for read 

15 ,+V(.FRDNL#} • •• 

DEFINE FILE STATEMENT 

for 
is 

The form of the parameters :specified in 
the statement is: 

The following code is 9enerated in the 
object module prologue: 

LA 
L 
BALR 

where: 

R1 = 1 

L = 15 

Ru LIST 
L, =VCDIOCS#) 
R;a1 L 

The following parameter list is also 
9enerated: 

DC 
DC 
DC 

DC 
DC 
DC 

x• a1 • , AL3 Cmll) 
C'f 1 ',AL3(r:i.l 
X'OO',AL3CV1 ) 

X'an' 1 AL3Cmn> 
C'fn',AL3Crn) 
X1 80' ,AL3 Cvn> 

The third DC in the group is changed t·o 

DC X'01 1 1 AL3(vi) 

if the associated variable is a halfword 
variable.. In the last 9roup, it becomes 
X' 81 1 ,AL.3 <vnl in this case .. 

FIND STATEMENT 

'The code produced is; 

CNOP 
L 
BAL 
DC 
DC 

:o, 4 
15, =V{IBCOMit) 
14,20 (15) 
xLO. 11 • PI' ., XL{) .• 4 • ur• , AL3 '<UNIT) 
XL1' VI .. , AL3 <rl 

UI = O if the unit is a ·constant 
= 1 if the unit is a variab1e name 

VI = 00 if the record nuniber is a 
constant 

= 01 if the record number is a 'Vari
able name 

Note that 20 i.s the IBCOM ent:ry :poi.nt 
for an unformatted !READ .. 

DIRECT ACCESS READ AND WRITE STATEMENTS 

The .code produced for these _statements 
is: 

CNOP 
L 
BAL 
DC 
DC 
DC 
DC 

o .. 4 
15,=VUBCOM4f;) 
14,NUS) 
XL0.4'PI1 ,XLO. q•ur1.AL3lON!T) 
AL1 (FI) , AL3 {FORMAT) 
AL1 (VI),, AI.3 lrl 
AL4 <ERRADD) "may only appear for 
READ" 

Appendix D: Object Code ;Produced ,by the C0mpil:er 17'9 



where: 

PI 

UI 

FI 

= 8 if ERR is not specified 
= A if ERR is specified, which is 

only possible for READ 

O if the unit is an integer· 
constant 
1 if the unit is a variable name 

00 if the FORMAT is a statement 
label 

= 01 if the FORMAT is an array name 

VI 00 if r (the record number) is a 
constant 
01 if r is a variable name 

The entry points which may appear (N) 
are O, 4, 20, or 24. If 20 or 24 appears 
(indicating an unformatted operation), the 
second DC does not appear. 

FORMAT STATEMENTS 

FORMAT statements are stored after lit
eral constants in the object module. 

The FORMAT specifications are recoded 
from their source module form so that each 
unit of information in the FORMAT statement 
occupies one byte of storage. Each integer 
which appears in the FORMAT statement 
(i.e., a scale factor, field width, number 
of fractional digits, repetition count) is 
converted to a 1-byte binary value. Decim
al points used to separate field width from 
the number of fractional digits in the 
source module FORMAT statement are dropped: 
all other characters appearing in the 
source module statement are represented by 
1-byte hexadecimal codes. The following 
sections describe the encoding scheme which 
is used. 

FORMAT Beginning and Ending Parentheses 

The beginning and ending parentheses of 
the FORMAT statement are represented by the 
hexadecimal codes 02 and 22, respectively. 

Slashes 

The slashes 
statement are 
imal code lE. 

180 

appearing in the FORMAT 
represented by the hexadec-

Internal Parentheses 

Parentheses used to enclose groups of 
FORMAT specifications within the FORMAT 
statement are represented by the codes 04 
and lC for the left and right parenthesis, 
respectively. The code for the left paren
thesis is always followed by the 1-byte 
value of the repetition count which pre
ceded the parenthesis in the source module 
statement. A value of one is inserted if 
no repetition count appeared. 

Repetition of Individual FORMAT 
Specifications 

Whenever the source module FORMAT state
ment contains a field specification of the 
£orm aiw, aFw.d, aEw.d, aDw.d, or aAw, 
where the repetition count "a" is present, 
the hexadecimal code 06 is produced to 
indicate the field repetition. This code 
is followed by the 1-byte value of "an. 

I,F,E, and D FORMAT Codes 

The I and F FORMAT codes are represented 
by the hexadecimal values 10 and OA, re
spectively. The I code is followed by the 
1-byte field width value: the F code is 
followed by two bytes, the first containing 
the field width (w) and the second contain
ing the number of fractional digits {d). 

E and D FORMAT codes are represented by 
the hexadecimal values OC and OE, respec
tively. This value is always followed by 
two bytes which represent the field width 
and the number of fractional digits, 
respectively. 

A FORMAT Code 

The A FORMAT code is represented by the 
hexadecimal value 14. This representation 
is always followed by the 1-byte value of 
w, the number of characters of data. 

Literal Data 

The H FORMAT code and the quotation 
marks used to enclose literal data are both 
represented by the hexadecimal value .lA. 
This code is followed by the character 
count Cw in the case of the H specif ica-



tion, the number of characters enclosed in 
quotation marks in the case of the use of 
quotation marks). The literal data follows 
the character count. 

x FORMAT Code 

The specification wX results in the 
production of the hexadecimal code 18 for 
the X; this is followed by the 1-byte value 
of w. 

T FOill".iAT Code 

The T FORMAT code is represented by the 
value 12. The print position, w, is repre
sented by a 1-byte binary value. 

Scale Factor-P 

The P scale factor in the source module 
FORMAT statement is represented by the 
hexadecimal value 08. This code is fol
lowed by the value of the scale factor, if 
it was positive. If the scale factor was 
negative, 128j_ is added to i.t before it is 
stored following the P representation. 

G FORMAT Code 

The G FORMAT Code is represented by the 
hexadecimal value 20. This value is always 
followed by two bytes which represent the 
field width and the number of significant 
digits, respectively. 

L FORMAT Code 

The L FORMAT code is represented by the 
hexadecimal value 16. This value is fol
lowed by the 1-byte field width. 

z FORMAT Code 

The Z FORMAT code is represented by the 
hexadecimal value 24. This value is. fol
lowed by the 1-byte fieldwidth. 

DEBUG FACILITY 

The following paragraphs describe the 
code produced for the FORTRAN Debug Facili
ty statements. The generated instructions 
set up parameters and branch into the 
DEBUG# transfer table. The object-time 
routines which support-the Debug Facility 
are described in Appendix E. 

DEBUG STATEMENT 

When the source module includes a DEBUG 
statement, debug calls are generated before 
and after each sequence of calls to IBCOM 
for source module input/output statements. 
Additional debug calls are generated to 
satisfy the options listed in the DEBUG 
statement. 

Beginning of Input/Output 

The following code appears before the 
first call to IBCOM for an input or output 
operation: 

L 
CNOP 
BAL 

15,=VCDEBUG#) 
0,4 
14,44(0,15) 

End of Input/Output 

The following code appears 
last call to IBCOM for an input 
operation: 

L 
CNOP 
BAL 

15 r =V (DEBUG#) 
o, 4 
14,48(0,15) 

UNIT Option 

after the 
or output 

When the DEBUG statement does not 
include the UNIT option, the object-time 
debug routine automatically writes debug 
output on SYSOUT. When UNIT is specified, 
the .following code. is generated at the 
beginning of the object module: 

L 
CNOP 
BAL 
DC 

15, =V (DEBUG#) 
o, 4 
14,12(0,15) 
F'DSRN' 

Appendix D: Object Code Produced by the Compiler 181 



where DSRN is the data set reference number 
to be used for all subsequent debug output. 

TRACE Option 

When the TRACE option is specified in 
the source module DEBUG statementr the 
TRACE cal.I is inserted inunediately before 
the code for every labeled statement. The 
code is: 

L 
CNOP 
BAL 
DC 

15,=V<DE;l3UG#) 
0,4 
14,0<0,15) 
F 1 LABEL1 

where LABEL is the label of the following 
statement. 

SUBTRACE Option 

When the SUBTRACE option is listed in 
the source DEBUG statement, two sequences 
of code are produced: one at the entry to 
the object module, and one prior to each 
RETURN. 

SUBTRACE ENTRY: The debug call is made at 
the beginning of the object module. The 
call is: 

L 
CNOP 
BAL 

15,=VCDEBUG#) 
0,4 
14, 4co,15) 

At the time of the call, register 13 
contains the add~ress of the SAVE AREA, the 
fifth word of which contains the address of 
the subprogram identification. Bytes 6 
through 11 of the subprogram identification 
are the subprogram name. 

SUBTRACE RETURN: The debug call is made 
inunediately--before the RETURN statement. 
The call is: 

L 
CNOP 
BAL 

15 1 =V (DEBUG#) 
0,4 
14,BC0,15) 

When the INIT option is given in the 
source module DEBUG statement, a debug call 
is produced for every assignment to a 
variable, or to a listed variable if a list 
is provided. The call immediately follows 
each assignment, including those which 
occur as a result of a READ statement or a 

182 

subprogram call. Three calls may occur, 
depending on the type of variable (scalar 
or array) and the _method of assignment. 

INIT SCALAR VARIABLE: The following code 
is produced after each assignment of value 
to · a scalar variabl.e. -covered by the INIT 
option: -

L 
CNOP 
BAL 
DC 
DC 

where:. 

15, =V (DEBUG#) 
o, 4 
14,16(0,15) 
CL6'NAME 1 ,CL2' I 

XL1 1 L 1 ;XL0.4 1 T1 ,XL0.4'X' ,XL0.4 1 B1 , 

XLl. 4 1 D1 

NAME is the name of the variable which 
was set. 

L is the I.ength of the variable in 
bytes. 

T is the type code for the variable: 

2 for a l.ogical 1-byte item 
3 for a l.ogical. ful.lword item 
4 for a halfword integer item 

= 5 for a fullword integer item 
= 6 for a double-precision real item 

7 for a s.ingle-prec.ision real item 
8 for a double-precision complex 
item 

= 9 for a single-precision complex 
item 

= A for a literal item Cnot currently 
compiler generated) 

x, B, and D are, respectively, the 
index, base, and displacement which loc
ate the i tern. 

INIT ARRAY ITEM: The following code is 
produced after each assignment of value to 
an array element: 

L 
CNOP 
BAL 
DC 
DC 

DC 

where: 

15,=VCDEBUG#) 
o. 4 
14, 20C0,15) 
CL6'NAME1 iCL2 1 ' 

XL1 1 L 1 ,XL0.4'T',XL0.4'X' ,XL0.4'B', 
XLl. 4 1 D1 

XLl 'TAG' ,AL3 (ADDRESS) 

ADDRESS IS THE 
array element if 
pointer to the 
array element if 

LOCATION OF THE FIRST 
TAG = 0 1 or ADDRESS is a 
location of the first 
TAG -:/' O. 

NAME, L, T, x, B, and D are as described 
for a scalar variable. 

!NIT FULL ARRAY: The following code is 
produced when a full array is set by means 
of an input statement specifying the array 



name or when the array name appears as an 
argument to a subprogram: 

.L 
CNOP 
BAL 
DC 
DC 
DC 
DC 

where: 

15 1 =V <DEBUG#) 
0,4 
14,24(0,15) 
CL6'NAME~ 1 CL2' 
A(ADDRESS) 
XL1'L',XL0.4'T',XL2.4'00000' 
A(ELEMENTS) 

ADDRESS is the location of the first 
array e;I.ement. 

ELEMENTS is a pointer to a word contain
ing the number of elements in the array. 

NAME, L, and T are as described for a 
scalar variable. 

A debug call is produced for each 
ref·erence to an array element when the 
SUBCHK option appears without a list of 
array names; when the list is given, only 
references to the listed arrays produce 
debug calls. The debug call appears before 
the reference to the array, and is: 

L 
CNOP 
BAL 
DC 
DC 
DC 

where: 

15,=V(DEBUG#) 
0,4 
14,28<0,15) 
CL6' NAME' 1 CL2' 
XLl'TAG',AL3(ADDRESS) 
AL4(ELEMENTS) 

NAME is the array name. 

ADDRESS is the location of the first 
array element if TAG = O, or ADDRESS is 
a pointer to the location of the first 
array element if TAG * o. 

ELEMENTS is a pointer to a word contain
ing the number of elements in the array. 

AT STATEMENT 

The AT statement specifies the label, L, 
of a statement whose operation should be 

immediately preceded by th.e operati,on of 
tQe statements followi~g the AT. As a 
result of the AT. statement, . an uncondi
tional branch to the location of the first 
statement following the AT is inserted 
before the first instruction generated for 
the statement labeled L. This branch pre
cedes any TRACE or SUBTRACE calls which may 
be written for statement L. 

The branch, like all branches performed 
in the object module, consists of a load 
from the branch table, followed by a BCR 
instruction. The branch table entry 
referred to is one constructed for a label 
which the compiler provides for the state
ment following the AT. 

TRACE ON STATEMENT 

The debug call produced for the TRACE ON 
statement appears at the location of the 
TRACE ON statement itself; the call is: 

L 
CNOP 
BAL 

15,=V(DEBUG#) 
o, 4 
111, 32(0,15) 

TRACE OFF STATEMENT 

The debug call produced for the TRACE 
OFF statement appears .at the location of 
the TRACE OFF statement itself; the call 
is: 

L 
CNOP 
BAL 

15,=V<DEBUG#) 
0,4 
14,36(0,15) 

DISPLAY STATEMENT 

The code for the DISPLAY statement is: 

L 
CNOP 
BAL 
DC 
DC 

15,=V(DEBUG#) 
o, 4 
111, 40(0,15) 
A<NAMELIST) 
A(FWRNL#) 

where NAMELIST is the address of the NAME
LIST table generated from the DISPLAY list 
by the compiler. This code appears at the 
location of the DISPLAY statement itself. 

Appendix D: Object Code Produced bythe compiler 183 





The information provided in this appen
dix has its primary use in connection with 
a listing of the compiler. The label lists 
indicate the chart on which a specific 
label can be found, or, for routines which 
are not flowcharted, they provide a 
description of the routine. 

PARSE LABEL LIST 

The labels enumerated in the following 
list are used in the flowcharts provided 
for the illustration of the major routines 
used in Parse. 

Chart 
Label ID Routig~ Nam~ 
G0630 ~ START COMPILER 
G0631 04 STATEMENT PROCESS 
G0837 BA PRINT AND READ SOURCE 
Gl)632 BB STA !NIT 
G0635 BC LBL FIELD XLATE 
G0636 BD STA XLATE 
G0633 BE STA FINAL 
G0642 BF ACTIVE END STA XLATE 
G0844 BG PROCESS POLISH 

SUPPLEMENTARY PARSE LABEL LIST 

The routines described in this section 
are listed by G number labels which are 
presented in ascending order. These rou
tines are those used in the operation of 
Parse which are not shown in the section of 
flowcharts for the phase. 

Routine 
!!abel ~~-
G02 87 REASSIGN 

MEMORY 

G0637 ASSIGNMENT 
STA XLATE 

G0638 ARITH FUN 
DEF STA 
XLATE 

Comments 
Obtains additional core 

storage, if possible, 
for a specific roll by 
pushing up the rolls 
that precede the re
questing roll in the 
block of storage. If 
this is not possible, 
it requests more core 
storage and, if none is 
available, enters PRESS 
MEMORY. 

Constructs the Polish 
notation for an assign-
ment statement. 

Constructs the Polish 
notation for an arith-
metic function defini-
tion statement. 

APPENDIX E: MISCELLANEOUS REFERENCE DATA 

Routine 
Label Name 
G0639 ASSIGNMENT 

VAR CHECK 

G0640 LITERAL 
TEST 

G0641 END STA 
. XLATE 

G0643 DO STA 
XLATE 

G0644 DO STA 
CONTROL 
XLATE 

G0645 DIMENSION 
STA XLATE 

G0646 GOTO STA 
XLATE 

G0647 CGOTO STA 

G0648 ASSIGNED 
GOTO STA 
XLATE 

G0649 ASSIGN STA 
XLATE 

Comments 
Checks the mode of as

signment variable and 
the expression for con
flict in type sperii
f ication. 

Determines the statement 
type and transfers to 
the indicated statement 
processing routine. 

Determines the nature of 
the statement and 
transfers to the appro
priate translation rou
tine for non-END; 
translates END. 

Constructs 
notation 
statement. 
innermost 

the Polish 
for the DO 

Locates the 
DO statement 

in a nest of DO's, and 
sets up extended range 
checking. 

Interprets 
control 
in the DO 
constructs 
notation 
controls. 

the loop 
specification 
statement and 

the Polish 
for these 

Determines the validity 
of the specifications 
in the DIMENSION state
ment and constructs 
roll entries. 

Determines the type of 
GO TO statement, and 
constructs the Polish 
notation for a GO TO 
statement. 

constructs the Polish 
notation for a Computed 
GO TO statement. 

Constructs the Polish 
notation for an As
signed GO TO statement. 

Controls the construc
tions of the Polish 
notation for an ASSIGN 
statement. 

Appendix E: Miscellaneous Reference Data 185 



Routine 
Label Name 
G06SO I"rsrrA~ 

XLATE 

G0651 LOGICAL Il" 
STA XLATE 

G0652 IMPLICIT 
STA XLA.TE 

G0653 REGISTER 
RANGE 

G0654 REGISTER 
H'1PLICIT 
CHAR 

G0655 SCAN FOR 
TYPE QT 
AND SIZE 

G06S6 CONTINUE 
STA XLATE 

G0657 CALL STA. 
XLATE 

G0658 EXTERNAL 
STA XLATE 

G0659 FORMAT S'IA 
X.LATE 

G0660 FORMAT S'J;'A 
END 

G0661 FORMAT 
LIST SCAN 

G0662 FORMAT 
B,ASIC SCAN 

G0663 !SCAN TEST 

186 

£Q!!!!!!~!:!.t~ 
constructs· the 

notation for 
statement. 

constructs the 
notation for a 
IF statement. 

Polish 
an IF 

Polish 
logical 

Checks the IMPLICIT 
statement and controls 

·the construction of the 
roll entries for the 
statement.: 

Controls 
tries 

character en
for an IMPLICIT 

statement. 

Places the characters in 
the IMPLICIT statement 
on the IMPLICIT roll. 

Determines the mode and 
size of the variables 
in specifica~ion state
ments. 

Constructs the Polish 
notation for a continue 
statement. 

Constructs the Polish 
notation for a CALL 
statement. 

Validates the use of the 
EXTERNAL statement and 
constructs roll en
tries. 

Validates the use of the 
FORMAT statement and 
controls the construc
tion of the Polish 
notation for the st;;i.te
ment. 

Builds the FORMAT roll 
from the information 
obtained from the proc
essing of tbe state
ment. 

Checks the form o.f the 
literal content of the 
FORMAT statement. 

Interprets the FORMAT 
list and constructs the 
Polish notation for the 
list. 

Checks the size of the 
intete:r; constant o.r 
variable specified. 

Routine 
Label Name corrunents 
G0664 PACK!I"CODE Interorets the specifica

tion for the H format 
code. 

G0665 PACK F01:U.,iAT controls the registering 
QUOTE of the contents of a 

literal quote specified 
in a FOR~AT statement. 

G0666 REWIND STA 
XLATF 

G0667 BACKSPACE 
STA. XLATE 

G0668 END FILE 
STA XLATE 

G0669 END FILE 
END 

G0670 BLOCK DATA 
STA XLA'I'E 

G0671 STOP STA 
XLATE 

G0672 STOP CODE 
ENTRY 

G0673 PAUSE STA 
XLATE 

G0674 PAUSE STOP 
COMMON 

G0675 PAUSE STOP 
END 

G0676 !NIT 
LITERAL 
FOR STOP 
PAUSE 

G0677 NAMELIST 
STA XLATE 

G0678 COM?-10N STA 
XLATE 

Constructs the 
notation for a 
statement. 

Polish 
REWIND 

constructs the Polish 
notation for a 
BACKSPACE statement. 

Constructs the 
notation for 
FILE statement. 

completes the 
notation for 
output control 
ments. 

Polish 
an END 

Polish 
input/ 
state-

Validates the use of the 
BLOCK DATA statement. 

Sets up the Polish nota
tion for the STOP 
statement. 

Sets up the Polish nota
tion for the STOP 
statement. 

controls the 
ti on of 
statement. 

interpreta
the PAUSE 

Checks the form of the 
specified statement and 
controls the construc
tion of the Polish 
notation for the 
statement. 

Registers the constructed 
Polish notation on the 
POLISH roll. 

Controls the interpreta
tion of the message 
specified in the PAUSE 
statement. 

constructs th,e roll 
entries for the 
NAMELIST statement. 

constructs the roll 
entries for tbe COMMON 
specification. 



Routine 
Label Name 
G0679 TEST ID 

ARRAY OR 
SCALAR 

conunents 
Validates the identif ica

tion of the array or 
scalar used in COMMON. 

G0680 DOUBLE PRE Checks the use of the 
STA XLATE DOUBLE PRECISION state

ment and controls the 
interpretation of the 
statement. 

G0681 TYPE STA Interprets and constructs 
XLATE the roll entries for 

the type specification 
statement. 

G0682 SCAN FOR 
SIZE 

G0683 TYPE 
SEARCH TEST 
AND REG 

G0684 ENTRY STA 
XLATE 

G0685 

G0686 

G0687 

G0688 

G0689 

G0690 

FUNCTION 
STA XLATE 
TYPED 
FUNCTION 
STA XLATE 
FUNCTION 
ENTRY STA 
XLATE 
XLATE 

SUBROUTl.NE 
STA XLATE 
SUBROUTINE 
ENTRY STA 
XLATE 

SUBPROGRAM 
END 

G0691 SPROG NAME 
SCAN AND 
REG 

Checks the size specifi
cation for the vari
ables in type state
ments. 

Checks the identification 
of the variables in the 
type specification 
in statement for pre
vious definition and 
defines if correct. 

constructs 
notation 

the 
and 

entries for an 
statement. 

Polish 
roll 

ENTRY 

These routines control 
the construction of the 
Polish notation for a 
FUNCTION subprogram by 
invoking the routines 
which interpret the 
contents of the state
ment. 

These routines control 
the construction of the 
Polish notation for a 
SUBROUTINE subprogram 
by invoking the routine 
which interprets the 
contents of the state
ment. 

Common closing routine 
for ENTRY, FUNCTION, 
and SUBROUTINE state-
ments. 

Checks the identification 
of the SUBROUTINE or 
FUNCTION subprogram for 
conflicts in defini
tl.on. 

Routine 
Label Name 
G0692 TEST ORDER 

Conunents 
Checks the order in which 

the SUBROUTINE or FUNC
TION statement appears 
in the source module. 

G0693 DMY SEQ Checks the designation of 
SCAN the dummy variables for 

call by name or call by 
value. 

G0694 GLOBAL DMY Checks the identification 
SCAN AND of the global dununy for 
TEST a possible conflict in 

definition. 

G0695 DEFINE 
FILE STA 
XLATE 

G0696 DATA STA 
XLATE 

G0697 DATA CONST 
XLATE 

G0698 INIT DATA 
VAR GROUP 

G0699 DATA CONST 
ANALYSIS 

G0700 DATA VAR 
, TEST AND 

SIZE 

G0701 MOVE TO 
TEMP 
POLISH ROLL 

G0702 READ STA 
XLATE 

G0704 READ WRITE 
STA XLATE 

G0.705 END QT 
XLATE 

Constructs the Polish 
notation for the DEFINE 
FILE statement. 

Constructs the 
notation and 

Polish 
roll 
DATA entries for the 

statement. 

Interprets the constants 
specified in the DATA 
statement. 

Determines and 
the number of 
specified in 
statement. 

sets up 
elements 
the DATA 

Validates the 
tion of the 
used in 
statement. 

specifica
constants 

the DATA 

Checks the definition of 
the variables specified 
in the DATA statement 
for usage conflict, and 
registers the variables 
if no conflict is 
found. 

Moves information for 
DATA statement to TEMP 
POLISH roll from WORK 
roll. 

Checks the type of READ 
statement and controls 
the interpretation of 
the statement. 

Interprets the 
of the READ 
statement and 
structs the 
notation for 
statement. 

Constructs the 
notation for 
quote. 

elements 
or WRITE 

con-
Polish 

the 

Polish 
the END= 

Appendix E: Miscellaneous Re.ference Data 187 



Routine 
Label Name 
G0706 ERR QT 

XLATE 

G0707 REGISTER 
IBCOM 

G0708 REGISTER 
ERROR LINK 

G0709 READ B STA 
XLATE 

G0710 PUNCH STA 
XLATE 

G0711 PRINT STA 
XLATE 

G0712 F2 IO 
XLATE 

G0713.IOL LIST 
XLATE 

G0714 FIND STA 
XLATE 

G0715 RETURN STA 
XLATE 

comments 
Constructs . the Polish 

notation for the ERR= 
quote in the READ 
statement. 

Inserts a roll entry for 
a call to IBCOM. 

Sets the roll entry for 
the generation of error 
linkage. 

Initialize for the con-
struction of the Polish 
notation for the in-
dicated statement. 

constructs the Polish 
notation for the in
dicated input/output 
statement and inter
prets FORMAT designa
tions associated with 
the input/output state
ment. 

Interprets and constructs 
the Polish notation for 
the list associated 
with the indicated 
input/output statement. 

constructs the 
notation for 
statement. 

Polish 
the FIND 

Constructs the Polish 
notation for the RETURN 
statement. 

G0716 EQUIVALENCE Constructs the roll en-
STA XLATE tries for the EQUIVA

LENCE statement 

G0717 DIMENSION 
SEQ 
XLATE 

G0718 TEMP MAKER 

G0719 SPECIFI
CATION 
STA EXIT 

G0720 JUMP END 
G0721 ACTIVE END 
G0722 HEAD STA 

EXIT 

188 

Constructs the roll en
tries for the dimen
sions designated for an 
array. 

Increments 
temporary 
used for 
sions. 

' 
p~inter for 

locations 
dwnrny dimen-

set flags and return. 

Routine 
Label Name 
G0723 STA XLATE 

EXIT 

G0724 

G0725 
G0726 

G0727 

G0728 

G0729 

G0730 

ILLEGAL 
STA FAIL 
ORDER FAIL 
ALLOCATION 
FAIL 
ILLEGAL 
NUMBER 
FAIL 
SUBSCRIPT 
FAIL 
ID CONFLICT 
FAIL 
TYPE 
CONFLICT 
FAIL 

G0731 VAR SCAN 

G0732 ARRAY SCAN 

G0733 SUBSCRIPT 
ANALYSIS 

G0734 SCRIPT ITEM 
ANALYSIS 

Comments 
Replaces the Polish nota

tion for a statement 
with error linkage if 
indicated. 

These routines set up 
diagnostic messages for 
the type of error indi
cated by the routine 
name. 

Checks definition of 
variables in the source 
module; defines as 
scalar if undefined. 

Constructs 
notation 
entries for 
ferences. 

the Polish 
and roll 
array re-

Determines the nature of 
an array reference for 
purposes of subscript 
optimization. 

Determines whether a 
subscript expression is 
a linear function of a 
DO variable, and sets 
ANSWER BOX. 

G0735 NOTE LINEAR Registers a linear sub-
SCRIPT script expression on 

SCRIPT roll. 

G0736 RESTORE 
NONLINEAR 
SCRIPT 

G0737 MOVE ON 
EXIT FALSE 

G0738 SCRIPT 
SCALAR 
ANALYSIS 

Builds the Polish nota
tion for a nonlinear 
subscript expression on 
Polish roll. 

Moves one group from WORK 
roll to POLISH. roll, 
sets ANSWER BOX to 
false, and returns. 

Determines whether a 
scalar used in a sub
script is a DO variable 
and sets ANSWER BOX. 



Routine 
Label Name 
G0739 SCRIPT 

CONST 
ANALYSIS 

G0740 DEFINE 
SCRIPT 
GROUP 

G0741 REGISTER 
SCRIPT 
GROUP 

G0744 TERM SCAN 

G0745 ELEMENT OP 
SEQ SCAN 

G0746 UNAPPENDED 
SPROG ARG 

G0747 FUNCTION 
ELEMENT 

G0748 CONST 
ELEMENT 

G0749 SCALAR 
ELEMENT 

G0750 ELEMENT 
MOVE 

G0751 OP SCAN 
CHECK 
DEPOSIT 

comments 
Separates constant used 

in a subscript expres-
sion as either induc-
ti on variable coeffi-
cient or additive 
constant. 

Creates new group con-
taining zeros on the 
SCRIPT roll. 

Def in es a subscript ex-
pression on the SCRIPT 
roll by setting the 
traits, displacement, 
and array reference. 

Initializes the construc
tion of Polish notation 
for a new term in an 
expression. 

constructs the Polish 
notation for a term in 
an arithmetic ex
pression. 

Exits from expression 
scanning on finding an 
array or subprogram 
name not followed by a 
left parenthesis; en
sures reference is 
correct. 

Determines whether a 
function call in an 
expression is to a 
statement function, a 
library function, or a 
global subprogram; 
calls SPROG ARG SEQ 
SCAN to scan arguments. 

Scanning expression, if 
compiler finds non
letter, non-left paren
thesis, it goes here; 
determines if really a 
constant. 

Ensures that scalar is 
registered. 

Moves pointer to POLISH 
roll for any element in 
expression. 

Determines the operation 
indicated in an expres
sion, sets up the 
appropriate driver, and 
falls through to OP 
CHECK AND DEPOSIT. 

Routine 
Label Name 
G0752 OP CHECK 

AND DEPOSIT 

G0753 GEN AND REG 
EXPON SPROG 

G0754 REG COMPLEX 
SPROG 

Comments 
The current and 

operations are 
according to 
dence, and a 
notation is 
structed. 

previous 
set up 

a prece
Pol is h 

con-

Determines the nature of 
an exponentiation, and 
records the required 
subprogram on the 
GLOBAL SPROG roll. 

Determines the nature of 
an operation involving 
complex variables· and 
registers the appropri
ate routine on the 
GLOBAL SPROG roll. 

G0755 A MODE PICK Checks and sets mode of 
AND CHECK operator by inspecting 

the first of a pair of 
operands. 

G0756 MODE PICK 

G0757 B MODE PICK 
AND CHECK 

G0758 MODE CHECK 

Actually places mode 
field in driver. 

With second operand and 
driver set by A MODE 
PICK AND CHECK, resets 
driver mode; if complex 
raised to a power, 
ensures power is 
integer. 

Determines whether 
of operands are 
in relational and 
ical operations. 

modes 
valid 
log-

G0759 NUMERIC EXP Determines that an opera-
CHECK tion or an expression 

is numeric, as opposed 
to logical, for 
compatibility. 

G0760 NUMERIC EXP Uses NUMERIC EXP CHECK, 
bottom of CHECK AND then prunes 

PRUNE POLISH roll. 

G0761 SPROG ARG 
SEQ SCAN 

G0762 ARG TEST 
AND PRUNE 

G0763 TEST FOR 
ALTERABLE 

Constructs the Polish 
notation for the argu
ment list designated 
for a subprogram. 

Tests the number and type 
of arguments to library 
routine; moves label 
arguments to CALL LBL 
roll. 

Determines whether a 
scalar has been passed 
as a subprogram 
argument. 

Appendix E: Miscellaneous Reference Data 189 



Routine 
Label ~ame __ 
G0764 ID SCAN 

NO USE 

comments 
Sets--a- flag tested in 

MODE SET so that low
order bits of roll are 
not altered when vari
able is defined; state
ment does not use 
variable. 

G0765 ID CLASSIFY Goes to ID CLASSIFY after 
NO USE setting flag to indi

cate variable has not 
been used and mode 
should not be set. 

G0766 ID SCAN 

G0767 ID CLASSIFY 

G0768 REGISTER 
SCALAR 

G0769 REGISTER 
GLOBAL 
SPROG 
REGISTER 
RUNTIME GS 

G0770 REGISTER 
GLOBAL 
SPROG ROLL 

~0771 MODE SET 

G0772 CONST SCAN 

G0773 REGISTER 
COMPLEX 
CONST 

G0774 REGISTER 
FL CONST 

compiles name from source 
in central area and 
goes to ID CLASSIFY. 

Determines the classifi
cation of a name 
scalar, array, subpro
gram, etc., and leaves 
pointer in WO; exits 
false if name not 
defined. 

Records new name on 
SCALAR roll. 

if name is 
a defined sub

if not re
on GLOBAL 

Determines 
already 
program; 
cords it 
SPROG roll. 

Records name 
SPROG roll. 

on GLOBAL 

Determines the mode of 
the indicated variable, 
logical, integer, com
plex, etc., and inserts 
code in pointer in wo. 

controls the translation 
and recording of 
constants. 

Records complex and 
double-precision com
plex constants not pre
viously defined on 
appropriate roll. 

Records single- and 
double-precision real 
constants on appropri
ate roll when not pre
viously defined. 

G0775 REGISTER Records constant in WO as 

190 

WORK CONST new integer constant if 
not defined. 

Routine 
Label Name 
G0776 REGISTER 

FX CONST 

G0777 CONST 
ANALYSIS 

comments 
Records new integer con

stant if not previosuly 
defined. 

Determines 
constant 
proper 
tine. 

the type of a 
and jumps to 

conversion rou-

G0778 CPLX CONST Cot,1.verts a complex 
ANALYSIS constant. 

G0779 CHECK CONST Checks for unary minus 
SIGN sign on constant. 

G0780 SCAN CONST 
SIGN 

Scans first character of 
a constant for a sign; 
sets up driver if unary 
minus. 

G0782 HEXADECIMAL Converts a hexadecimal 
CONST SCAN constant. 

G0783 REGISTER 
HEX CONST 

G0784 LBL ARG 
SCAN 

G0785 SCAN 
HOLLERITH 
ARGUMENT 

G0786 LITERAL 
CONST SCAN 

G0787 LITERAL 
CONST SCAN. 
PAUSE 

G0788 REGISTER 
LITERAL 
CONST 

G0789 INIT PACK 
LITERAL 

G0790 PACK 
LITERAL 
COMPLETE 

G0791 PACK 
LITERAL 
CONST 

G0792 LOOK FOR 
ONE QUOTE 

Records new c onstant on 
HEX CONST roll if not 
previously defined. 

Checks validity of a 
label.· argument to a 
subprogram and records 
label as jump target. 

Scans an IBM card code 
argument to a sub
program, and records as 
literal constant. 

Distinguishes literal 
constants from logical; 
converts and records. 

Packs a literal constant. 

Records literal constant 
on LITERAL CONST roll 
if not previously de
fined. 

Initializes 
sion of 
constant. 

for conver
a literal 

Moves literal constant 
onto TEMP LITERAL roll 
if packed. 

Converts a 
stant 
input. 

literal con-
from source 

Checks for a quotation 
mark not followed by a 
second quotation mark; 
sets ANSWER BOX. 



Routine 
Label Name 
G0793 PACK TWO 

Fl:WM WORK 
G0794 PACK ONE 

FROM WORK 

G0795 PACK CRRNT 
CHAR 

G0796 PACK CHAR 

Comments 
Packs low-order byte from 

last one or two groups 
on WORK roll onto 
LITERAL TEMP roll. 

Packs current character 
onto LITERAL TEMP roll. 

General ro~tine to actu-
ally place a byte in a 
word which, when com
plete, is placed on the 
LITERAL TEMP roll. 

G0797 SYMBOL SCJ\N Assembles identifier from 
input in SYMBOL 1, 2, 
and 3, and returr:s. 

G0798 LOGICAL 
CONST SCAN 

G0799 JUMP LBL 
SCAN 11.ND 
MOVE 

G0800 FORMAT LBL 
SCAN 

G0801 FORMAT LBL 
TEST 

G0802 LBL SCAN 

G0803 REGISTER 
LBL 

G0804 NEXT ZERO 
LEVEL COMMA. 
NEXT ZERO 
COMMA 
OR R PAREN 

G0805 NEXT ZERO 
COMMA 
OR CS 

Scans logical constants 
from source input and 
records as integers. 

Scans label, defines it 
as jump target and 
pointer on POLISH roll. 
Locates transfers from 
innermost DO loops that 
are possible extended 
range candidates. Also 
c.hecks for possible 
re-entry points into 
innermost DO loops, and 
tags such points. 

Scans a label, registers 
it if necessary, and 
ensures that it is a 
FORMbT label if already 
def in ed. 

Tests that pointer 
indicates format 
Cvs. jump 
label) ; if not, 
is an error, 

in WO 
label 

target 
there 

Scans referenced label, 
defines on LBL roll if 
required, produces er
ror messages, leaves 
pointer in WO. 

Records label on LBL roll 
if not previously 
defined; leaves pointer 
in wo. 

Scans source input to 
next comma not in 
parentheses or to close 
off a pair of paren-
theses. 

Scans source input until 
next comma or slash 
not in parentheses. 

Routine 
Label Na!!!~--
G080 6 NEXT 

CLOSING 
SLASH 

G0807 NEXT ZERO 
COMMA SLASH 
OR CJ;<P 

G0808 NEXT ZERO 
R PAREN 

G0809 COMMA TEST 

G0810 INTEGER 
TERM 
SCAN AND 
MOVE 

GO 811 INTEGER 
CONST SCAN 
AND MOVE 

G0812 INTEGER VAR 
SCAN AND 
MOVE 

G0813 INTEGER 
TEST 

G0814 SIGNED 
INTEGER 
SCAN 

G0815 INTEGER 
SCAN 

G0816 DP CONST 
MAKER 

G0817 DP ADJUST 
CONST 

comments 
scans-source input until 

second of the next p<;1ir 
of slashes not enclosed 
in parentheses. 

Scans source input until 
next comma or slash not 
enclosed in parentheses 
or a closing right 
parenthesis. 

Scans source input until 
next zero level right 
parenttlesis. 

Advances scan arrow and 
returns ANSWER BOX true 
if next active charac
ter is a comma; if it 
is a letter, sets up 
missing comma message, 
does not advance, and 
returns true; if it is 
neither, retuz;ns false. 

Scans integer constant or 
variable, defines on 
appropriate ro11, puts 
pointer on POLISH roll. 

Scans integer constant; 
defines on FX CONST 
roll if required; puts 
pointer on POLISH roll. 

scans integer. variable; 
defines on roll. if re
quired; puts pointer on 
POLISH roll. 

Determines whether a 
pointed to variable or 
c;onstant is an integer. 

Scans and converts signed 
integer constant; de
fines. on FX CONST roll 
if required. 

Sc;ans and converts an 
unsigned integer con
stant and register on 
FX CONST roll if 
requ:i,red. 

Builds a double-precision 
constant from source 
input. 

Used in converting float
iug point numbers; 
adjusts for E or D 
field, 

Appendix E: MiscE1llaneous Refe,rence Data 191 



Routine 
Label Name 
G0818 CONVERT TO 

FLOA.T 

G0820 CLEAR TWO 
AND EXI'l' 
TRUE 

G0821 CLEAR ONE 
AND EXIT 
TRUE 

G0823 EXIT TRUE 
EXIT TRUE 
ML 

G0824 CLEAR ONE 
AND EXIT 
FALSE 

G0825 EXIT FALSE 

G0826 CLEAR TWO 
AND EXIT 

G0827 CLEAR ONE 
AND EXIT 

Comments 
Converts integer constant 

to floating point. 

Remove the specified num
ber of groups from the 
WORK roll, set ANSWER 
BOX to true, and re
turn. 

Sets ANSWER BOX to true 
and returns. 

Removes one 
WORK roll, 
BOX to 
returns. 

group from 
sets ANSWER 

true, and 

Sets ANSWER BOX to false 
and returns. 

Remove specified number 
of groups from WORK 
roll and return. 

G0829 EXIT Returns. 
EXIT ML 
EXIT ON ROLL 

G0832 SYNTAX FAIL 
ML 
ILLEGAL 
SYNTAX FAIL 
SYNTAX FAIL 

G0833 FAIL 

G0834 STATUS 
CONTROL 

G0835 DIGIT CONV 
SCAN 

G0836 CONV ONE 
DIGIT 

G0838 PRINT A 
CARD 

192 

Records syntax error mes
s age and goes to FAIL. 

If JPE flag off, restores 
WORK and EXIT roll 
addresses from last 
status control, house
keeps Polish notation 
through STA XLATE EXIT, 
and returns with ANSWER 
BOX set to false; if 
the flag is on, values 
are restored for JPE 
and exit is to the 
location following last 
JPE POP instruction. 

saves addresses of WORK 
and EXIT roll bottoms. 

Converts integer from 
decimal to binary, and 
leaves in DATA area. 

Converts decim~l digit to 
binary, and leaves in 
DATA area. 

Controls printing of· 
source listing and 
error messages. 

Routine 
Label Name 
GOS39 TESTFOR 

ERROR 
MESSAGE 

G0840 PRINT 
MESSAGES 

G0841 TEST AND 
ZERO PRINT 
BUFFER 

G0842 INIT READ 
A CARD 

G0843 READ A 
CARD 

G0845 SKIP TO 
NEXT CHAR 
MASK 

Co!!!!!!ent§. 
Determines whether error 

messages are to be 
printed; if so, prints 
dollar sign markers. 

Prints line of error 
messages. 

Clears output area for 
printer. 

scans source input for 
assignment statement 
(flag ll or Logical IF 
with assignment for 
consequence (flag 2). 

Puts card onto SOURCE 
roll and re-enters INIT 
READ A CARD at proper 
point. 

Scans input to next 
source character not of 
a class of characters 
specified as input to 
routine. 

G0846 REENTRY Entry point used to con-
SKIP TO NEXT tinue masking operation 
CHAR MASK on a new card. 

G0847 NEXT CHAR Advance scan arrow to 
NEXT next active character. 
CHARACTER 

G0848 NEXT CHAR 
r-u. 
NEXT CHARACTER 
ML 

G0849 BCD TO 
EBCDIC 

GOSSO DIGIT CONV 
INITIAL 

G0851 Iv"..APTl TO 
TMPl 

G1034 BUILD LOOP 
DATA GROUP 

G1035 DATA TERM 
ANALYSIS 

G1037 CONST 
REGISTER 
EXIT 

Converts CRRNT CHAR from 
BCD to EBCDIC. 

Initializes for the con
version of a number 
from decimal to binary 
(resets digit counts, 
clears DATA area, etc.) 

Converts value in format 
of TOP or BOTTOM, a 
virtual address, to a 
true address. 

Constructs group 
DATA roll. 

on LOOP 

Checks for and sets flag 
if it finds unary minus 
in DATA statement. 

Common exit routine for 
constant recording rou
tines; leaves pointer 
to constant in WO. 



Routine 
Label Name 
G1038 T AND F 

CONST SCAN 

Comments 
Scans for logical 

stants T and F in 
statements. 

con
DATA 

G1039 EXIT ANSWER General routine used by 
all EXITs which set 
ANSWER BOX to store 
value in ANSWER BOX and 
return. 

G1040 DEBUG STA 
XLATE 

G1041 AT STA 
XLATE 

Gl042 TRACE STA 
XLATE 

Translates DEBUG state
ment. 

Constructs AT roll entry 
from AT statement. 

Constructs Polish nota
tion for TRACE state
ment. 

G1043 DISPLAY STA Constructs Polish nota
tion and roll entries 
for DISPLAY statement. 

G1044 

G1070 

XLATE 

IEYSKP 
SKIP TO 
NEXT 
PROGRAM 

PRESS 
MEMORY 

Calls IEYFORT to skip to 
end of present source 
module when roll stor
age is exhausted. 

Called by REASSIGN MEMORY 
to obtain additional 
core storage from roll 
space that is no longer 
in use. If it obtains 
32 or more bytes, exit 
is back to REASSIGN 
MEMORY. Otherwise, 
exit is to IEYNOCR in 
IEYFORT to print NO 
CORE AVAILABLE message. 

ALLOCATE LABEL LIST 

The labels enumerated in the following 
list are used in the flowcharts provided 
for the illustration of the major routines 
used by Allocate. 

Chart 
Label ID Routine Name 
G0359 OS- START ALLOCATION 
G0451 CA ALPHA LBL AND L SPROGS 

CA ALPHA SCALAR ARRAY AND 
SPROG 

G0362 CB PREP EQUIV AND PRINT 
ERRORS 

G0361 cc BLOCK DATA PROG ALLOCATION 
G0365 CD PREP DMY DIM AND PRINT 

ERRORS 
G0371 CE PROCESS DO ;LOOPS 
G0372 CF PROCESS LBL AND LOCAL 

SPROGS 
G0374 CG BUILD PROGRAM ESD 

Chart 
Label _ID _ Routine Name 
G0376 CH ENTRY NAME ALLOCATION 
G0377 CI COMMON ALLOCATION AND 

OUTPUT 
G0381 CK EQUIV ALLOCATION PRINT 

ERRORS 
G0437 CL BASE AND BRANCH TABLE 

ALLOC 
G0397 CM SCALAR ALLOCATE 
G0401· CN ARRAY ALLOCATE 
G0402 co PASS 1 GLOBAL SP ROG 

ALLOCATE 
G0442 CP SPROG ARG ALLOCATION 
G0443 CQ PREP NAI".iELIST 
G0444 CR LITERAL CONST ALLOCATION 
G0445 cs FORMAT ALLOCATION 
G0441 CT EQUIV MAP 
G0403 cu GLOBAL SPROG ALLOCATE 
G0405 CV BUILD NAMELIST TABLE 
G0438 CW BUILD ADDITIONAL BASES 
G0545 ex DEBUG ALLOCATE 

SUPPLEMENTARY ALLOCATE LABEL LIST 

The routines described in this section 
are listed by G number labels which are 
presented in ascending order. These rou
tines are those used in the operation of 
Allocate which are not shown in the section 
of flowcharts for the phase. 

Routine 
Label Name 
G0363 PREPROCESS 

EQUIV 

G0364 REGISTER 
ERRORS 
SYMBOL 

G0366 CHECK DMY 
DIMENSION 

G0367 GLOBAL DMY 
TEST 

G0368 DMY DIM 
TEST AND 
REG 

comments 
Checks the data contained 

on the EQUIVALENCE roll 
and computes the 
required addresses. 

Checks the ERROR SYMBOL 
roll for the presence 
Of the error just 
detected. All dupli-
cate entries are pruned 
from the roll and all 
new entries placed on 
the roll. 

The dummy dimension is 
checked for definition 
as a global dummy vari
able, or in COMMON. 

sets a pointer to the 
dummy array on the 
ENTRY roll; a pointer 
to the ARRAY roll is 
also set for each dummy 
array. 

The DMY DIMENSION roll is 
rebuilt with the infor
mation obtained from 
the COMMON DATA TEMP, 
TEMP, and GLOBAL DMY 
rolls. 

Appendix E: Miscellaneous Reference Data 193 



Routlfie 
t.abel Name ; 
G0369 DMY' DIM 

TE$1'.l' 

G0370 DMY 
CLASSIFY 

G0373 REGlSTER 
BRANCH 
TABLE 

G0375 PUNCH 
REAAINl'NG 
ESD BUFFER 
PUNCH 
·R.EMA:INlNG 
CARD 

G0378 SEARCH 
ROLL BY 
MAGNITUDE 

G0379 PRINT 
COMMON 
ERRORS 

G0380 PRINT 
COMMON 
HEAbI'NG 

G0382 EQUIV 
ALLOCATION 

G0383 FLP AND 
PROCE·SS 
E:Quiv 

G0384 .PROCESS 
EQUIV 

G0385 INTEGRATE 

C{jmments· 
'!'he ·dimension data is 

chet:ked for having been 
previously defined on 
the NAMELIS'l' ITEMS and 
COMMON DATA rolls. 

Classifies a dummy, de
fining it as scalar if 
undefined; if it is an 
·array sets call by name 
tag. · 

Places work cohtaining 
2ero. on the BRANCH 
'TABLE roll. 

'.Punches a card. 

The GENERAL ALLOCA'l'!O'N 
roll is searched to 
che·ck if the largest 
equivalenced area has 
been ·allocated. 

sets up for, and prints, 
COMMON allocation er
rors., 

COMMON ·storaqe map head
inq is printed. 

Buil·ds the EQUIV 
AL'.L'OCATION roll from 
the boundary cal cu"" 
lat~d..; re·cords the 
absolute addres·s as
signed to the vari• 
·ables. 

Inverts the contents of 
the EQUIVALENCE roll·. 

const.ructs compl'ete 
EQUiVAt.ENCE sets on the 
\::.h'e 'GENERAL ALLOCATION 
roll using information 
on the EQUIVALENCE 
roH>. 

Assigns locations rel~r
tive t.t> the first vari~ 
able listed for a11 
variabl-e·s in an EQ'UI'VA.~ 
t.E:NCE set if not al
ready :atlocated. 

Routine 
Label Name 
G0386 TEST FOR 

BOUNDARY 

G0387 CSECT EQUIV 
ALLOCATION 

G0388 PRINT CSECT 
EQUIV MAP 

G0389 BUILD 
COMMON 
ALL ROLL 

G0391 SEARC.H FOR 
LARGE 
ARRAYS 

G0392 BUILD A 
NEW CSEc·T 

G0393 PRINT A 
ARRAY 
CSECT MAP 

G0394 coNv T'.EMP3 
TO 'H:E:X 

G'0395 GLOBAL DMY 
ALIDCATE 

<;03 9'6 T•EST ·, iFOR 
CALL 'BY 
NAME 

comtnents 
Sets and checks the 

smallest equivalenced 
area and highest bound
ary required for allo
cation of the variables 
indicated; resets pro
gram break according to 
requirement •. 

controls the allocation 
of EQUIVALENCE sets 
equal to or greater 
than 3K bytes into a 
new control section. 

Sets up ·and formats the 
printing of the storage 
map fi>:t EQUIVALENCE 
sets equal to Or qreat
er than 3K bytes. 

Calculates the base and 
'displacement for EQUIV
ALENCE sets equal to or 
greater than 3K bytes 
and registers these 
sets on the COMMON 
ALLOCATION roll. 

Determines the size of 
arrays not defined as 
-EQUIVALENCE or COMMON. 
Obtains the arrays that 
are equal to or greater 
than 3K bytes. 

Sets the program name and 
obtains a new control 
s-ection for the alloca
tion uf arrays and 
~EQUIVALENCE sets. 

se't:s the information for 
the printing of the map 
£or arrays equal to or 
greater than 3K bytes. 

Con'Verts the contents of 
the bempora:ty register 
to hexadecimal~ 

Assigns storage f·or glob
al dummy ·variables; 
expands the contents ·of 
the BASE TABLE ro11., as 
:teGiuired. 

Det·errtd.nes whether the 
indicated variable was 
·called by name or 
'Called by value. 



Routine 
La.be! Na!!!L_ 

G0398 ALLOCATE 
SCALAR 
BOUNDARY 

G0399 ALLOCATE 
SCALAR 

Sets up allocation of 
scalars .according to 
the size of the 
variable. 

Formats the allocation of 
scalars not defined as 
global dummies in COM
MON or in EQUIVALENCE 
sets. ·Initializes for 
the printing of the 
scalarmap·· and calcu
lates· the base and 
displacement. 

G0400 CED SEARCH Determines if the vari
able is defined as a 
global dummy, in COMMON 
or · ·. in an EQUIVALENCE 
set. If it is, it sets 
the ANSWER BOX = true. 

G0404 ALLOCATE 
SP ROG 

G0406 ADJUST AND 
OUTPUT NAME 

G0407 PUNCH NAME 
LIST AND 
FIELD 

Sets the type of the ESD 
cards that are to be 
punchedand initializes 
for the allocation of 
subprogram addresses. 

Setsthe format 
punching of 

for the 
the 
and NAMELIST name, 

adjusts for storage. 

setsthe format for the 
punching of the address 
allocated for each 
NAl>'lELIST according to 
storage .required. 

G0408 OUTPUT l'llODE Sets .. the format for the 
WORD punching of the mode of 

the NAMELIST variable. 

G-0409 ADVANCE 
PROG BREAK 
AND PU'NCH 

G0410 PUNCH 
LITERAL 

G0411 MOVE TO 
PUNCH BUFF 

G0412 PUNCH TXT 
CARD 

Increases the item PRO
GRAM BREAK according to 
the storage allocation 
required for the 
variables indicated. 

Obtains .the number of 
bytes and the address 
of the roll indicated 
for punching bf literal 
constants .. 

Moves the indicated data 
to. the appropriate 
punch buffer .• 

Punches the indicated 
· TXT card after setiting 
·up the address and 
buf.fer .informa.tion. 

Routine 
Label Name 
G0li13 PUNCH 

REMAINING 
TXT CARD 

G0li14 PUNCH ESD 
G0415 PUNCH LD 

ESD 

G0416 PRINT ERROR 
LBL ROLL 

comments 
Punches the remaining 

card indicated, after 
the area from which 
data was being taken 
has been punched. 

Punches the indicated ESD 
cards for the program 
area .indicated. 

Prints the contents of 
this roll which con
tains. the errors noted 
during operation. 

G0417 CONVERT LBL Converts the label of an 
erroneous .statement to 
BCD for printing. 

G0418 PRINT ERROR Prints the contents -Of 
SYl'llBOL the .. ERROR SYMBOL roll. 

G0420 PRINT 
SCALAR OR 
ARRAY MAP 

G0421 PRINT !NIT 
MAP 

G0422 TEST AND 
PRINT MAP 

G-0423 PRINT MAP 
HEADING 

G0424 PRINT 
FORMAT MAP 

G0425 PRINT 
HEADING 
MESSAGE 

G0426 PRINT MAP 
PRINT MAP 
ML 

G0431 PRINT 
REMAINING 
BUFFER 

G0432 PRINT ERROR 
REMAINING 
BUFFER 

G0433 ALLOCATE 
FULL WORD 
MEMORY 

G0434 ALLOCATE 
MEMORY 

G'-043'5 ALLOCATE 
-BY 'TYPE 

Prints the indicated map. 

Checks the existence of 
processing of a storage 
map. Initiates th,e 
printing. of the . indi,.. 
cated map if one is .not 
ali::eady being printed .. 

Prints-the heading of the 
indicated storage map 
for the variables 
designated. 

Prints map of FORMAT 
statements. 

Prints the 
dicated 
messages;. 

heading in-
. for. error .,.,, 

Prints the variables as-
• sociated with the stor
age map heading' ~rom 
the rolls indicated., ... 

Print the remaining in"'"' 
formati•on in the print 
buffer after the .· data 
ihas been obtained from 
the indicated storage 
area. 

Initializes £or 
allocation of a 
word of •storage .. 

the 
full 

Al].ocate storage accord
ing to the type of the 
variab.l·e indicabed; 
fullword, hal:fwo:rd:, .'.Or 
.byte. 

Appendix E:: :Mis-ce1l1<meons Refer.en.ce D.ata ;L~5 



Routine 
Label ~eme __ 
G043G CALCULATE 

SIZE AND 
BOUNDARY 

G0439 CALCULATE 
BASE AND 
DISP 

G0440 REGISTER 
BASE 

G0446 BUILD 
FORMATS 

G0447 INCREMENT 
PNTR 

comments 
Determines the size and 

the boundary required 
for the variable indi
cated. 

Determines the base table 
entry and displacement 
for variable being 
allocated, constructing 

. a new base table entry 
if necessary. 

. constructs a new BASE 
TABLE roll group. 

The base and displacement 
for FORMAT statements 
are calculated and the 
PROGRAM BREAK increased 
as required. 

Increases the address 
field of the pointer to 
the indicated roll so 
that the pointer points 
to the next group on 
the roll. 

G0448 ID CLASSIFY Variables are checked for 
a previous classifica
tion as a global dummy, 
a scalar, an · array, 
global sprog, used 
library function, or a 
local sprog. 

G0449 REGISTER 
SCALAR 

G0450 MODE SET 

Builds new group onto the 
SCALAR roll. 

Sets the 
variable 
floating, 
implicit, 

mode of the 
to fixed or 
explicit or 

or not used. 

G0455 CLEAR THREE Prunes three groups from 
and 

ans-
AND EXIT the WORK roll, 
TRUE exits with a true 

wer in ANSWER BOX. 

G0456 CLEAR TWO 
AND EXIT 
TRUE 

G0457 CLEAR ONE 
AND EXIT 
TRUE 

G0458 EXIT TRUE 
EXIT TRUE 
ML 

196 

Prunes two groups from 
the WORK roll, and 
exits with a true 
answer in ANSWER BOX. 

Prunes one group from the 
. WORK roll, and exits 
with a true answer in 
ANSWER BOX. 

Set ANSWER BOX to true 
and exit. 

Routine 
Label Name 
G0460 CLEAR TWO 

AND EXIT 
FALSE 

G0461 CLEAR ONE 
AND EXIT 
FALSE 

G0462 EXIT FALSE 

G046LI CLEAR FOUR 
AND EXIT 

Comments 
Prunes two groups from 

the WORK roll, and 
exits with a false 
answer in ANSWER BOX. 

Prunes one group from the 
WORK roll, and exits 
with a false answer in 
ANSWER BOX • 

Sets ANSWER BOX to false, 
and exits. 

Prunes four groups from 
the WORK roll, and 
exits. 

G0465 CLEAR THREE Prunes three groups from 
AND EXIT the WORK roll, and 

exits. 

G0466 CLEAR TWO Prunes two groups from 
AND EXIT the WORK roll, and 

exits. 

G0467 CLEAR ONE Prunes one group from the 
AND EXIT WORK roll, and exits. 

G0468 EXIT Obtains return address 
from the EXIT roll, and 
transfers to that 
address. 

UNIFY LABEL LIST 

The labels enumerated in the following 
list are used in the flowcharts provided 
for the illustration of the major routines 
used by Unify. 

Chart 
Label _m_ Routine Name 
G0111 07 START UNIFY 

G0145 DA ARRAY REF ROLL ALLOTMENT 

G0113 DB CONVERT TO ADR CONST 

G0112 DC CONVERT .TO INST FORMAT 

G0115 DD DO NEST UNIFY 

SUPPLEMENTARY UNIFY LABEL LIST 

The routines described in this section 
are listed by G number labels which are 
presented in ascending order. These rou
tines are those used in the operation of 
Unify which are not shown in the section of 
flowcharts for the phase. 



Routine 
Label Name 
G0114 CALL GEN 

G0116 NOTE ARRAY 
ALLOCATION 
DATA 

G0117 LEVEL ONE 
UNIFY 

G0118 DO LOOP 
UNIFY 

G0119 SWEEP 
SCRIPT 
EXP NOTE 

G0120 ZERO COEF 
UNIFY 

Comments 
Transfers to 

phase of the 
the Gen 

compiler. 

Processes SCRIPT roll 
block to reflect stor
age allocation. 

Sets variables for the 
processing of a single 
loop or the outer loop 
of a nest of loops. 

Controls the processing 
of script data asso
ciated with current 
innermost loop. 

Compares the area code 
and the outer coeffi
cient of all other 
entries on the NEST 
SCRIPT roll to the bot
tom entry on the roll. 

sweeps the script entries 
for the innermost loop, 
determining whether the 
outer coefficient is 
zero and that the inner 
coefficients are also 
the same. Depending 
upon the condition, the 
loops are re-registered 
on the LOOP SCRIPT 
roll. 

G0121 NOTE SCRIPT Establishes the nature of 
EXP the script entries as 

G0122 ESTABLISH 
STD SCRIPT 
EXP 

G0123 NOTE HI 
FREQ STD 

G0124 SCRIPT EXP 
UNIFY 

standard or non-
standard. 

Forms the LOOP CONTROL 
and REG roll entries 
for each STD SCRIPT 
pointer found in wo, 
also registering the 
STD SCRIPT LOOP CONTROL 
rung. 

Checks the frequency used 
for a particular stand
ard script expression, 
and sets the frequency 
count. 

controls the processing 
of innermost LOOP 
SCRIPT roll entries 
with matching area code 
and outer coefficients; 
also links each NONSTD 
roll entry with each 
STD roll entry,· compar
ing the induction 
coefficients. 

Routine 
Label Name 
G0126 STANDARD 

EXPS UNIFY 

G0127 CONVERT 
NONSTD 
SCRIPT TO 
STD 

G0128 SIGN ALLOC 
DISPLACE
MENT 

G0129 DELTA GE 
4087 UNIFY 

G0130 DELTA LE 
4087 UNIFY 

G0131 ESTABLISH 
REG 
STRUCTURE 

G0132 EST. REG 
GROUP 

G0133 ESTABLISH 
LOOP 
CONTROI..,. ....... _ . 

comments 
Processes STD SCRIPT roll 

when NON STD roll 
entries have all been 
processed or have never 
existed. Moves entries 
to next outermost loop. 

Picks a NONSTD roll entry 
with a minimum dis
placement and processes 
it as if it were a 
standard script. 

Utility routine to spread 
the sign of negative 
displacements. 

Processes paired STD or 
NONSTD roll entries 
with DELTA greater than 
4087 bytes. Generates 
second register and 
LOOP CONTROL entries. 

Processes paired STD or 
NONSTD roll entries 
with DELTA less than 
4087 bytes. DELTA is 
placed in each ARRAY 
REF entry in the chain. 

controls formation of 
LOOP CONTROL and REG 
roll groups for SCRIPT 
pointer in WO. 

Foirn~ .. REG roll entry for 
SCRIPT pointer in WO. 

Entry to establish loop 
control which sets up 
stamps for impending 
LOOP·CONTROL group. 

G0134 EST. LOOP .... Forms LOOP CONTROL group 
'CONTROL for SCRIPT El.ntry in W1. 

Ct\:'.~-

G0135 FORM OUTER 
SCRIPT 

G0136 NOTE SECOND 
REG THREAD 

Processes paired STD or 
NON STD roll entries 
with best match in 
inner coefficients. 
Forms SCRIPT entry for 
next outermost loop 
with coefficient dif
ferences in coefficient 
slots. 

Runs the ARRAY REF 
thread, removing. each 
link to provide for the 
second register. 

Appendix E: Miscellaneous Reference Data 197 



Routine 
Label Name 
G0137 UPDATE 

FREQS 

G0138 REG SCRIPT 
EXP 

G0139 PRUNE 
SCRIPT REL 
TO PNTR 

G0140 NOTE ARRAY 
REF DELTA 

G0141 REALIZE 
REGISTERS 
SWEEP 

G0142 NOTE HI 
FREQ REG 

G0143 ASSIGN 
TEMPS FOR 
REGS 

Comments 
Sums the frequencies of 

the STD or NONSTD pair 
to indicate increased 
usage. 

Registers ·the STD or 
NONSTD. in WO on the STD 
or NONSTD roll. 

Utility routine to remove 
SCRIPT groups. 

Adjusts the information 
indicated from the 
SCRIPT allocation ac
cording to the displa
cement to the asso
ciated ARRAY REF roll 
entries. 

Sweeps the REG roll, as
signing available reg
isters to the registers 
and temps, according to 
the frequency of use of 
the registers in the 
REG roll. 

which 
roll 
the 
of 

Utility routine 
notes the REG 
group indicating 
highest frequency 
use. 

Places next temp into the 
ARRAY REF run and ad
justs the LOOP CONTROL 
stamps to reflect temp 
usage. 

G0144 CONVERT REG Performs the actual 
TO USAGE transfer of REG or TEMP 

roll entries . into the 
ARRAY REF threads. 

GEN LABEL LIST 

The labels contained inthe following 
list are illustrated in the flowcharts 
provided with the description of the Gen 
phase of the compiler. 

198 

Chart 
Label ID Routine Name 
'Go491 ~ START GEN 

G0499 EA ENTRY CODE GEN 

G0504 EB PROLOGUE GEN 

G0508 EC EPILOGUE GEN-

G0712 ED GET POLISH 

G0493 EF LBL PROCESS 

G0515 EG ·sTA GEN 

G0496 EH STA GEN FINISH 

SUPPLEMENTARY GEN LABEL LIST 

The routines described in this section 
are listed by G number labels which are 
presented in ascending order. These. rou
tines are those used in the operation of 
Gen but not shown in the section pertaining 
to the phase. 

Routine 
Label Name 
G0494° CLINCH 

comments 
Clears the base register 

table .• 

G0497 ZERO THE Clears the accumulators 
ACS to be used. 

G0498 MOVE ZEROS Fills the indicated 
TO T AND c number of groups on the 

TEMP AND CONST roll 
with zeros. 

G0500 INSERT PROG Puts name of source 
NAME IN module on CODE roll. 
CODE 

G0501 MAIN 
PROGRAM 
ENTRY 

G0502 PRO AND EPI 
ADCON GEN 

Builds instructions for 
the entry into the main 
program. 

Determines the address 
constant for prologues 
and epilogues for the 
instruction that is 
created. 

G0503 ADCON MAKER Builds ADCON roll group 
ad con 

CODE 
GEN and places 

instruction on 
roll.;. 

G0505 LOAD DMYS 
GEN 

Builds the code to load 
the dununy arguments 
specified in a 
subprogram;. 



Routine 
Label Name 
G0506 BUILD DMY 

ARRAY DIM 

G0507 CALCULATE 
DMY DIM 

G0509 RESTORE DMY 
GEN 

G0510 TEST CALL 
BY NAME 

G0511 BUILD A 
MOVE DMY 
GROUP 

G0512 BUILD A 
STORE DMY 
ADD 

G0513 INCREMENT 
DMY PNTR 

G0514 BUILD A 
LOAD TWO 

G0516 ASSIGNMENT 
STA GEN 

G0517 AFDS S'fA 
GEN 

G0518 AFDS INIT 

comments 
Determines the· dUmmy 

array dimensions speci
fied in the arguments 
for the subprogram. 

Calculates the dummy 
array dimensions speci
fied as arguments to a 
subprogram, and builds 
the appropriate in
structions. 

Restores the dummy argu
ments for value trans
fer at the end of a 
subprogram. 

Determines whether the 
arguments to a subpro~ 

gram were designated as 
call by name values. 

These routines build 
the instructions that 
transmit the indicated 
values transferred by 
the dummy arguments · to 
subprogram. 

controls the construction 
of the code for an 
assignment statement. 

controls and constructs 
the instructions for an 
arithmetic function 
definition statement. 

Initializes the construc
tion of the code for an 
aritlunetic function 
definition statement by 
constructing the label 
and jump instructions. 

G0519 ASSIGN STA Constructs the object 
ASSIGN GEN code for an 

statement. 

G0520 IF STA GEN 

G0521 LOGICAL IF 
STA GEN 

constructs the object 
code for 
statement. 

Constructs 
.code for 
statement. 

an IF 

the object 
a Logical IF 

Routine 
Label Name 
G0522 BUILD JUMP 

INST 

GOS23 GO TO STA 
GEN 

G05;24 ASSIGN GO 
TO STA GEN 

G0525 GO TO JUMP 
GEN 

G0526 CG OTO STA 
GEN 

G0527 CGOTO FOR 
CALL RETURN 
GEN 

G0528 CONTINUE 
STA GEN 

G0529 BLOCK DATA 
GEN· 

G0530 .STA INIT 

G0531 DATA STA 
GEN 

G0532 ALIGN DATA 

G0533 INIT FOR 
VAR 

G0534 MOVE DATA 

G0535 MOVE TO 
CARD IMAGE 

comments 
constructs ·· a branch in

struction, with input 
indicating type and 
branch point~ · 

These routines control 
and. construct the 
object code required to 
execute the indicated 
type of GO TO state
ment. 

These routines construct 
the object code for a 
GO TO statement that is 
the subprogram return. 

Returns. 

Sets up the rolls and 
data used in the con
struction of the object 
code for the BLOCK DATA 
statement. 

Stores the statement 
number and leaves 
statement drives in WO~ 

Determines the use 
mOde of the 
variables and 
structs the object 
based on 
information. 

Adjusts the data 
instruction format. 

and 
data 
con
code 
this 

for 

Obtains the base, size, 
displacement1 and area 
code of the indicated 
variable and adjusts 
the instruction format 
for the variable 
according to the infor
mation obtained. 

sets up the beginning of 
the data for card 
format. 

Obtains the location of 
the indicated data for 
transfer to instruction 
format. 

Appendix E~ Miscellaneous Reference Data 199 



Label 
G0536 

G0537 

G0538 

G0539 

Routine 
Name 
MOVE TO 
CARD REPEAT 

Comments 
Controls the insertion of 

the data into the card 
format and the punching 
of the appropriate TXT 
card. 

PUNCH 
CARD 

A TXT Write a TXT card from 
data whose location is 

PUNCH A TXT 
CARD ML 
PUNCH TXT 
ENTRY2 

provided. 

G0542 CALCULATE. Determines size of a 
VAR SIZE variable from TAG field 

of pointer in WO. 

G0543 END STA GEN Builds code· for AT if 
required and branches 
to TERMINATE PHASE. 

G0547 BSREF STA Controls the construction 
GEN of the object code for 

a BACKSPACE, REWIND, or 
END FILE statement. 

GOS48 STOP PAUSE constructs the object 
STA GEN code for a STOP or 

PAUSE statement. 

GOS49 LOAD IBCOM Builds an instruction for 
a call to the IBCOM 
routine. 

GOSSO RETURN STA Builds the object code 
GEN for a RETURN statement. 

GOSS! ENTRY STA 
GEN 
SPROG 
STA GEN 

Constructs the label in
struction for an ENTRY 
statement or the entry 
into a subprogram. 

G05S2 DEFINE FILE Constructs the object 
STA GEN code instructions for 

GOSS3 GRNTEE A 
TEMP 

GOSS4 ILLEGAL 
AFDS STA 
GEN 

the DEFINE FILE 
statement. 

Ensures that the constant 
from DEFINE FILE is 
registered on the TEMP 
AND CONST roll. 

Generates an error link 
for a statement func
tion which was invalid. 

GOS55 ILLEGAL STA Constructs a no-operation 

200 

GEN ENTRY .instruction and an 
error link for the 
statement in error. 

Routine 
Label Name 
G0556 IO STA GEN 

GOSS? INIT IO 
LINK GEN 

GOSS8 UNIT IO 
ARG 

GOSS9 DIRECT IO 
~RG 

G0560 FORMAT IO 
ARG 

G0561 IO INITIAL 
ENTRY GEN 

G0562 BUILD UNIT 
ARG 

G0563 BUILD A 
LINK ARG 

G0564 BUILD 
FORMAT ARG 

GOS6S GRNTEE IO 
LINK ADD 

G0566 IOL DO 
CLOSE GEN 

G0567 IO LIST 
GEN RUN 

comments 
Determines the type of 

input/output statement 
that is indicated and 
transfers to the rou
tines that process that 
particular type of 
statement. 

Initiates and sets data 
for the generation of 
the input/output link
age. 

Determines the logical 
unit number of the 
input/output device. 

Sets up controls for the 
construction of the 
object code for direct
access input/output 
statements. 

Sets up data pertaining 
to the FORMAT for the 
construction of the 
object code of an 
input/output statement 
under format control. 

Sets up code for the call 
to IBCOM to control 
execution of the indi
cated input/output 
statement. 

Constructs argument pass
ed for unit number in 
input/output linkages. 

constructs the 
code for the 
designated 
input/output 
men ts. 

object 
arguments 
in the 

state-

Constructs the object 
code for the designated 
format control of an 
input/output statement. 

constructs 
code for 
linkage. 

the object 
input/output 

Generates object code for 
closing of implied DO 
in I/O list. 

Determines whether I/O 
list is DO implied. 



Routine 
Label Name 
G056S IOL DO 

OPEN GEN 

G0569 IOL ARRAY 
GEN 

G0570 IO LIST 
PNTR GEN 
IOL PNTR 
GEN 

G0571 IO LIST 
ARRAY·PNTR 
GEN 

G0572 BUILD 
ELEMENTS 
ARG 

comments 
Sets up the data for the 

generation of instruc
tions for input/output 
DO loop. 

Generates linkage 
secondary array 
to IBCOM. 

for 
entry 

Determines the type of 
the I/O list, and con
trols the construction 
of the object code for 
the list. 

Sets up the data and 
determines the type of 
array list. 

Builds an argument for 
input/output linkage 
for a single element in 
an I/O list. 

G0573 IO LIST DMY Builds the object code 
ARRAY for a dununy array I/O 

list. 

G0574 GLOBAL DMY 
TEST 

G0575 IO STA END 
IO STA END 
GEN 

G0576 BUILD IO 
LINK 

G0577 LOAD 
ADDRESS 
IBCOM 

G0578 !NIT IBCOM 
PNTR AND 
ENTRY 

G0579 CALCULATE 
LENGTH AND 
TYPE 

GOSSO DO STA GEN 

Determines whether the 
variable in · question 
has been defined in 
usage as a global 
dununy. 

Generates call for end of 
I/O list. 

controls construction of 
the object code to ter
minate an input/output 
operation. 

Inserts the absolute call 
to the system input/ 
output routine, IBCOM. 

Initializes for process
ing of input/output 
statements by storing 
code word· and IBCOM 
pointer from POLISH 
roll. 

Determines the length and 
type of variables de
signated in input/ 
output statements. 

Determines the nature of 
the DO statement, sets 
up the data for the 
code of the statement. 

Routine 
Label Name 
G05ii1 LOOPS OPEN 

GEN 

G0582 INIZ LOOP 
GEN 

G0583 INIZ GIVEN 
COEFF GEN 

G0584 DO CLOSE 
SBR 

G0585 FIND COEFF 
INSTANCE 

G0586 NOTE TEMP 
REQ 

G0587 INITIALIZE 
BY LOAD GEN 

Comments 
Obtains the DO cpntrol 

data and controls the 
construction of the 
appropriate instruc
tions. 

Determines the nature of 
the indicated DO loop 
after determining 
whether a loop exists. 

constructs the object 
code for the initiali
zation of the indicated 
induction variable 
coefficient. 

constructs the object 
code for the close of a 
DO loop after setting 
up controls for the 
increment and terminal 
values of the loop 
iteration. 

Determines the existence 
of the indicated nature 
of a loop through com
parison of the desig
nated traits and 
coefficient. 

Determines whether a 
register has been 
assigned for the script 
expression in question 
or whether a temporary 
storage is required. 

Generates the load of 
registers to be used 
throughout a DO loop. 

G0588 GRNTEE TEMP Builds a store instruc
STORED GEN · tion for the temporary 

storage used by the 
script expression. 

G0589 GRNTEE 
SOURCE REG 
LOADED 

G0590 !NCR GIVEN 
COEFF GEN 

Determines the area and 
location for the regis
ter to be used by the 
script expression, and 
generates the load 
instruction for the 
indicated temporary 
storage. 

Determines the nature and 
use of the loop incre
ment and builds the 
appropriate instruc
tions for the execution 
of the increment. 

Appendix E: Miscellaneous Reference Data 201 



Routine 
Label Name 
G0607 CALL STA 

GEN 

G0608 FLP AND 
PREP VAR 

G0609 EXP GEN 
BY MODE 

Comments 
calls the routines which 

build the object code 
for the CALL statement. 

Flips .POLISH roll and 
moves first variable to 
WORK roll. 

Controls the determining 
of the mode of the 
indicated expression. 

G0610 EXP GEN AND Generates code for ex-
GRNTEE AC pression on bottom of 

POLISH roll and ensures 
that result is in a 
register. 

G0611 GRNTEE EXP Guarantees that the mode 
of the expression is 
positive. 

G0612 EXP GEN Obtains the expression 
for GEN processing. 

G0613 GEN RUN Determines the operation 
mode of the entity in 
question. 

G0614 NOT GEN inverts sign indicator 
UNARY MINUS for variable on bottom 
GEN Of WORK roll. 

G0615 DIV GEN controls production of 
object code for divide 
operation. 

G0616 INTEGER 
DIV GEN 

Generates code for inte
ger divide. 

G0617 SUB GEN Generates code for sub
tract. operation. 

G0618 ADD GEN Generates code for add 
operation. 

G0619 MPY GEN Controls production of 
object code for multi
ply operation. 

G0620 INTEGER MPY Gen~rates code. for inte-
GEN ger multiply. 

G0621 INTEGER MPY common end for multiply 
DIV END and divide generation 

routines; 
register usage. 

records 

G0622 SUM OR PROD Guarantees that one of 

202 

GRNTEE the two elements on 
WORK roli is in a 
register and that mode 
of operator is correct. 

Routine 
Label Name 
G0623 DRIVER GEN 

G0624 AND GEN 

G0625 AND FiNISH 
GEN 

G0626 OR GEN 

G0627 OR FINISH 
GEN 

Comments 
If an array driver, goes 

to SCRIPT PREP; .if not, 
exits false indicating 
end of an expression. 

Generates code for an AND 
operation. 

Actually builds an AND 
operation on CODE roll. 

Generates code for an OR 
operation. 

Actually builds an OR 
operation on CODE roll. 

G0628 PREPARE FOR Sets up the data for the 
LOGICAL GEN statement containing a 

logical operation. 

G0629 EQ GEN 

G0630 NE GEN 

G0631 LT GEN 

G0632 GT GEN 

G0633 GE GEN 

G0634 LE GEN 

G0635 RELATIONAL 
GEN 

G0636 PHEPARE FOR 
RELATIONAL 

G0637 POWER GEN 

G0638 POWER AND 
COMPLEX MPY 
DIV GEN 

Generates code for an EQ 
relational operation. 

Generate~ code for an NE 
relational operation. 

Generates code for an LT 
relational operation. 

Generates code for a GT 
relational operation. 

Generates code for a GE 
relational operation. 

Generates code for an LE 
relationai operation. 

Builds the object code 
ins.tructions based on 
the relational condi
tion specified in the 
logical operation. 

converts and adjusts data 
for construction of the 
object code of a rela
tional comparison. 

Builds 
linkage 
roll. 

exponentiation 
on the CODE 

Sets up the data for 
operations involving 
multiplication or divi
sion of · exponentiated 
or complex variables. 



Routine 
Label Name 
G0639 INTEGER 

POWER GEN 

G0640 SPROG GEN 

G0641 SPROG GEN 
SUB 

G0642 SPROG END 
GEN 

G0643 SPROG ARG 
SEQ GEN 

G0644 REG SPROG 
ARG 

G0645 GRNTEE ADR 
GEN 

G0646 TEST CONST 
ARG 

G0647 TEST AND 
STORE REGS 

G0648 GRNTEE AC 
GEN 

G0649 GRNTEE NEW 
AC GEN 

G0650 PICK A NEW 
AC 

G0651 PICK FL 
AC 

G0652 PICK A 
COMPLEX AC 

Comments 
Builds the appropriate 

load and multiply 
instructions for expo
nentiation depending on 
the mode of the 
operation. 

Determines the nature of 
the operand of a CALL 
statement or of a 
subprogram. 

Generates the code for a 
subprogram call includ
ing argument calcu
lations. 

Constructs the object 
code for the return or 
close of a subprogram. 

Controls the interpreta
tion. of the sequenc.e of 
arguments designated to 
a subprogram. 

controls the register 
assignment to sub
program arguments as 
they are encountered in 
sequence. 

Guarantees that the 
subprogram arguments 
are assigned and builds 
the indicated load and 
store instructions. 

Determines mode of a con-
stant . subprogram 
arg\Jment. 

Tests to determine if any 
register used as an 
accumulator contains 
data; if so, generates 
code to store the con
tents in a temporary 
location. 

Stores the contents of 
WO in an accumulator if 
not already designated. 

These routines deter-
mine the accumulator to 
be used in an indicated 
operation depending 
upon the mode of the 
variable in question. 

Routine 
Label Name 
G0653 CLEAR A 

PAIR 
G0654 PICK A 

PAIR 
G0655 PICK A 

PAIR END 

G0656 TEST FOR 
BEST PAIR. 

G0657 GRNTEE 
POSITIVE 
GEN 

G0658 COMP FX 
CONST 

G0659 COMP FL 
CONST 

G0660 COMP DP 
CONST 

G0661 COMP 
COMPLEX 
CONST 

Comments 
These routines determine 

and clear a pair .•of 
fixed or floating ac
cumulators depending on 
the type of the reg
ister in wo. These 
routines are used in 

·integer, multiply, 
divide. and complex 
operations •. 

Determines the two opti
mal accumulators to be 
us.ed for the operation 
indica.ted. · 

Sets the mode of the 
indicates accumulator 
to positive if not 
already set, and 
generates appropriate 
code. 

set the mode of the in
dicated constant. 

· sets the mode of the 
indicated constant. 

G0662 CORRECT FOR complements the value in 
SIGN DATA 1 DATA1. 

G0663 INCLINE 
FUNCTION 
GEN 

G0664 CONVERSION 
FUNCTION 
GEN 

G0665 ABS 
FUNCTION 
GEN 

G0666 MOD 
FUNCTION 
GEN 

G0667 INT FUNC-
TION GEN 

G0668 AIMAG FUNC
TION GEN 

G0669 CMPLEX 
FUNCTION 
GEN 

G0670 TWO ARG. 
INLINE 
COMMON 

G0671 CONJG FUNC
TION GEN 

Sets up table for the 
generation of code for 
in-line functions. 

Generates code to perform 
an in-line mode conver~ 
sion. 

These routines generate 
the object code in
structions for the in
line function indicate.d 
by the name of the rou
tine. 

Appen~ix E: Miscellaneo11s Reference Data 2Q3 



Routine 
Label Name 
G0672 SIGN FUNCT 

GEN 
G0673 DIM FUNCT 

GEN 

G0674 GRNTEE 
BOTH MODES 

G0675 GRNTEE 
MODE Wl 

G0676 LOGICAL
CONVERSION 

G0677 FX 
CONVERSION 

G0678 FL 
CONVERSION 

G0679 CONVERT TO 
COMPLEX 
END 

G0680 TEST A FL 
CONST 

G0681 DP 
CONVERSION 

204 

Conunents 
(see Label G0665) 

sets the mode of the data 
in WO and Wl to posi
tive if not already 
set. 

Determines the mode of 
the variable in Wl and 
transfers to the appro
priate conversion rou
tine depending on the 
mode of WO. 

Places the logical vari
able contained in WO 
into an accumulator. 

Places the variables con
tained in WO and Wl in 
an accumulator if the 
mode is I*2i otherwise, 
a conversion to float
ing point is made. 

Tests the contents of WO 
and Wl for floating 
variables or constants. 
If the contents are not 
floating variables or 
constants, it deter
mines the nature of the 
data, registers the 
variable or constant, 
and assigns an accumu
lator for the oper
ation. 

Generates code to clear 
the imaginary register 
and loads the real 
register in real to 
complex conversion. 

Exits false i£ pointer in 
WO is not to a floating 
constanti otherwise, it 
loads the constant into 
central area and exits 
true. 

Determines the nature of 
the double-precision 
variable or constant 
indicated, converts 
into the indicated for
mat, assigns an accumu
lator, depending on the 
mode of the variable. 

Routine 
Label Name 
G0682 TEST DP 

CONST 

G0683 COMPLEX 
CONVERSION 

G0684 DP COMPLEX 
CONVERSION 

G0685 COMPLEX 
AC TEST 

G0686 AC END AND 
CONV RETEST 

G0687 CONVERT 
RETEST 

G0688 REGISTER 
WORK CONST 

G0689 REGISTER FX 
CONST 

G0690 REGISTER FL 
CONST 

G0691 REGISTER DP 
CONST 

G0692 REGISTER 

comments 
Exits false if pointer in 

WO is not to a double
precision constanti 
otherwise, loads con
stant into central area 
and exits true. 

Determines the mode and 
nature of the two com
ponents of the complex 
variable or constant. 

Determines the mode and 
registers the indicated 
double-precision com
plex variable or 
constant. 

Sets up FL AC roll for 
proper pointers to a 
value converted to 
complex. 

Used during conversion, 
to set up AC roll, and 
to determine whether 
conversion is complete. 

Sets up WORK roll so that 
GRNTEE MODE Wl can 
determine whether a 
conversion is complete. 

Records constant in WO as 
an integer constant. 

Register the constant 
from DATA area on the 
indicated roll if not 
already definedi con-
stant is compiler gen-
erated. 

COMPLEX CONST 
G0693 REGISTER DO 

COMPLEX CONST 

G0695 FLOAT A FX 

G0696 FIX A FL 

G0697 FLOAT AND 
FIX COMMON 

G0708 TEST AC 
AC TEST 

Converts a floating con
stant or generates code 
to convert a floating 
variable to fixed mode. 

converts a fixed mode 
constant or generates 
code to convert a fixed 
variable to floating 
mode. 

common exit for routines 
which write code to 
float or fix variables. 

Determines whether the 
mode of the indicated 
accumulator is fixed or 
floating. 



Routine 
Label Name 
G0709 AC END 

G0710 GRNTEE AC 
ZERO 

G0711 SPOIL STO 
REG 

G0713 

G0714 

G0715 

CLEAR THREE 
AND EXIT 
TRUE 
CLEAR TWO 
AND EXIT 
TRUE 
CLEAR ONE 
AND EXIT 
TRUE 

G0716 EXIT TRUE 
EXIT TRUE 
ML 

G0718 

G0719 

G0720 

CLEAR THREE 
AND EXIT 
FALSE 
CLEAR TWO 
AND EXIT 
FALSE 
CLEAR ONE 
AND EXIT 
FALSE 

Comments 
Determines whether one or 

two accumulators are 
being used. 

Assures that the accumu
lator being used in the 
operation is register 
zero. 

Clears appropriate entry 
on AC roll for a 
register which has been 
stored. 

Remove indicated number 
of groups from WORK 
roll, set ANSWER BOX to 
true, and return. 

Sets ANSWER BOX to true 
and returns. 

Remove indicated number 
of groups from WORK 
roll, set ANSWER BOX to 
false, and return. 

G0721 EXIT FALSE Sets ANSWER BOX to false 

G0723 

G0724 

G0725 

EXIT FALSE and returns. 
ML 

CLEAR 
EXIT 

THREE Remove indicated 

CLEAR THREE 
AND EXIT 
CLEAR TWO 
EXIT 
CLEAR TWO 
AND EXIT 
CLEAR ONE 
EXIT 
CLEAR ONE 
AND EXIT 

of groups from 
roll and return. 

number 
WORK 

G0727 EXIT 
EXIT ML 

Returns. 

G0728 EXIT ANSWER Sets ANSWER BOX and exits 
ML for EXIT routines which 

set ANSWER BOX. 

Routine 
Label Name 
G0730 ADCON MADE 

LBL MAKER 

G0731 CHECK JUMP 
LBL 

G0732 MADE LBL 
MAKER 

Comments 
Builds ADCON roll and 

returns a pointer to 
the start of a group on 
the roll. 

Determines whether point
er in WO refers to a 
jump target label. 

Creates 
TABLE 
label,. 
pointer 
created. 

entry 
roll 

and 
to 

on BRANCH 
for made 

returns 
group 

G0733 SCRIPT PREP Sets up the data for the 
calculation of the 
indicated script ex
pression. 

G0734 CALCUIATE 
SCRIPT 

G0735 TEST END 
SCRIPT 

G0736 CALCUIATE 
OFFSET AND 
SIZE 

G0737 GRNTEE REG 
9 

G0738 TEST AND 
STORE REG 9 

G0739 BUILD A 
SHIFT 9 

G0744 BID INIT 
G0745 BIM INIT 
G0746 BIM BID 

INIT 
G0747 

G0748 EXIT FULL 

BID 
BIDPOP 

Determines the mode and 
operation of the vari
ables containe~ in the 
script expression. 

Determines the end of the 
script expression. 

Determines the size of 
each element contained 
within an expression, 
and the displacement 
pertaining to each 
array. 

Place the index values 
for arrays in register 
9 if not already set. 

Builds a shift register 9 
instruction for sub
scripting~ shift length 
is determined by array 
element size. 

Initializes data for the 
contsruction of the in
struction designated by 
the BID, BIN, or BIM 
POP instructions. 

Used on entry to BIN when 
BIN fills the EXIT 
roll. 

This is the assembler 
language routine which 
constructs the instruc
tion designated by the 
BIDPOP instruction. 

Appendix E: Miscellaneous Reference Data 205 



Routine 
Label Name 
G0750 BIN 

BINPOP 

G0751 NOTE A 
CSECT 

G0752 BIM 
BIMPOP 

G0753 RX FORMAT 

G0754 RR FORMAT 

G0755 ADDRESS 
MAKER 

G0756 BUILD A 
BASE REG 

G0757 SCALAR 
OPERAND 

ARRAY 
OPERAND 

GLOBAL 
SPROG 
OPERAND 

USED FUNC
TION LIB 
OPERAND 

NAMES LIST 
OPERAND 

FORtJ'AT LBL 
OPERAND 

GLOBAL DMY 
OPERAND 

G0758 DMY LBL 
COMMON 

comments 
This is the assembler 

language routine which 
constructs the instruc
tion designated by the 
BINPOP instruction. 

This routine obtains the 
control section in 
which the current 
instruction being gen
erated is to be placed. 

This is the assembler 
language routine which 
constructs the instruc
tion designated by the 
BIMPOP instruction. 

General routine used to 
build all RX type 
instructions. 

This routine implements 
the RR format designa
tion for the instruc
tion being generated. 

Used to build all base, 
displacement, and index 
type addresses~ 

Determines the base loca
tion within a particu
lar control section at 
which the object code 
instructions begin. 

Builds address for the 
specified type of oper
and. 

Generates address for 
FOMAT references. 

G0759 LBL OPERAND Builds address for refer
LOCAL SPROG ences to labels and 
OPERAND statement functions. 

Routine 
Label Name 
G0760 SPROG ARG 

OPERAND 

G0761 BRANCH 
TABLE 
OPERAND 

G0762 BRANCH 
TABLE 
COMMON 

G0763 BRANCH 
SPROG 
COMMON 

G0764 T AND C 
OPERAND 

G0765 T AND C 
COMMON 

G0766 T AND C B 
COMMON 

G0767 LOCAL DMY 
OPERAND 

G0768 FX CONST 
OPERAND 

G0769 FX FL CONST 
SEARCH AND 
REG 
FL CONST 
OPERAND 

Ornents 
Builds address for refer-

ence to subprogram 
argument list. 

Builds address for refer
ences to made labels. 

Used by LBL and BRANCH 
TABLE OPERAND routines 
to contstruct address. 

Used by LBL, BRANCH TABLE 
and SPROG ARG OPERAND 
to construct address. 

Constructs address for 
references to temporary 
storage or constants. 

Used for T AND c OPERAND 
and pointers to con-
stant rolls. 

common exit for all 
branch and temporary 
and constant operand 
routines. 

Determines the base loca
tion for the indicated 
operand and builds the 
code data from this 
information. 

Determines the size of 
the fixed constant 
operand and constructs 
the instruction depend
ing upon this inf or
mation. 

Moves single-precision 
constant pointed to 
TEMP AND CONST roll if 
not already on roll. 

G0770 FX FL CONST Performs part of move of 
COMMON constant to TEMP AND 

CONST roll. 

G0771 SEARCH AND 
REG SP 
CONST 
SEARCH AND 
REG FX 
CONST 
SEARCH AND 
REG FL 
CONST 

Searches TEMP AND CONST 
roll, registers con
stant if not already 
there, and returns 
pointer to TEMP AND 
CONST roll group. 



Routine 
Label Name 
G0772 REGSP 

CONST 

Comments 
Registers single-preci

sion constant on TEMP 
AND CONST roll. 

G0773 DP FL CONST Construct address for 
OPERAND references to double-

G0774 

COMPLEX 
CONST 
OPERAND 

SEARCH AND 

precision real and 
single-precision com
plex constants. 

Ensures that a double-
REG DP CONST precision real or 
SEARCH AND 
REG COMPLEX 
CONST 

G0775 REG DP 
CONST 

G0776 DP COMPLEX 
CONST 
OPERAND 

G0777 SEARCH AND 
REG DP 
COMPLEX 
CONST 

G0778 REG DP 
COMPLEX 
CONST 

G0779 TEST DOUBLE 
WORD 
BOUNDARY 

G0780 ARRAY REF 
OPERAND 

G0781 LOAD REG 
FROM TEMP 

G0782 ARRAY PLEX 
OPERAND 

single-precision com-
plex constant is on the 
TEMP AND XONST roll and 
returns a pointer to 
it. 

Registers a new double
precis ion constant on 
the TEMP AND CONST 
roll. 

constructs address for 
reference to a double
precis ion complex con
stant. 

Ensures that a double
precis ion complex con
stant is on the TEMP 
AND CONST roll and 
returns a pointer to 
it. 

Registers a new double
prec1s1on complex con~ 
stant on the TEMP AND 
CONST roll. 

Determines if the address 
designated to the vari
able or constant in WO 
begins on a doubleword 
boundary. 

Handles array reference 
pointers to obtain 
scripted arrays ad
dresses. 

Generates a load of a 
base register from a 
temporary storage loca
tion. 

Handles building address
es when array plex is 
the indicated operand. 

G0783 SRCH AND ST Stores register 9 in a 
X9 FROM temporary register if 
ARRAY PLEX needed for generation 

of array plex address
es. 

Routine 
Label Name 
G0784 STORE IN 

·TEMP 

G0785 STORE AND · 
RETURN 
TEMP 

G0786 SEARCH 
TEMP ROLL 

·comments 
Generates code to store 

that register in a tem
porary location if WO 
is a pointer to a 
register. 

Uses a temporary location 
in checking temporary 
pointers for the indi
cated constants. 

Beginning with a pointer 
to the TEMP PNTR roll 
in WO, searches for an 
available temporary al
ready defined. Returns 
true, with pointer to 
TEMP AND CONST roll if 
found; otherwise, re
turns false. 

G0787 OPERAND RUN Selects processing rou-

G0930 SPOIL STO 
VAR 
SPOIL STORE 
VAR 

G0931 SPOIL STORE 
VAR NON 
READ IO 

G0932 CLEAR ONE 
AND SPOIL 
CEAD 

G0933 SPOIL CEAD 

tine for present 
operand from pointer. 

Determines whether point
ed to variable is being 
used in subscript which 
is now contained in 
register 8 or 9; if so, 
spoils that register. 

Determines whether a 
stored variable which 
has.not appeared in a 
READ should be stored. 

Determines if pointed.to 
variable is COMMON, 
EQUIVALENCE, alterable, 
or,dummy; if so, spoils 
any register containing 
a subscript which uses 
any CEAD variable; and 
prunes one group from 
WORK. 

same as 
SPOIL 
does 
roll. 

CLEAR ONE AND 
CEAD except it 
not prune WORK 

G0934 TEST A CEAD Tests to determine if 
variable pointed to by 
WO is COMMON, EQUIVA
LENCE, alterable, or 
dummy. 

G0935 NO ARG 
SPROG END 
GEN 

Entry point for generat
ing a subprogram call 
without arguments. 

Appendix E: Miscellaneous Reference Data 207 



Routine 
Label Name 
G0937 SIMPLE 

SCRIPT PREP 

G0938 CLEAR 3 
EXIT BIN 

G0939 CLEAR 1 
EXIT BIN 

G0940 EXIT BIN 

comments 
Builds--ARRAY PLEX roll 

for subscripts handled 
in registers 8 and 9. 

Exits from BIN, BIM and 
BID POP subroutines 
which remove the indi
cated number of groups 
from WORK. 

Exits from BIN, BIM, and 
BID POP subroutines. 

G0941 SUBCHK GEN Builds code for SUBCHK 
entry if required. 

G0942 SIMPLE 
SCRIPT 
OPERAND 

G0943 TEST FOR 
HIT 

G0944 LOAD 
SIMPLE X 
REG 

G0945 PICK A NEW 
SIMPLE X 
REG 

G0946 CALC ELEM 
SIZE AND 
SHIFI' 

G0947 AT STA GEN 

G0948 TRACE ON 
STA GEN 

G0949 TRACE OFF 
STA GEN 

Generates the 
compute a 
value to be 
register 8 or 

code to 
subscript 
held in 

9. 

Determines whether reg
ister 8 or 9 already 
contains the present 
subscript. 

Generates code to .set up 
register 8 or 9. 

Determines whether regis
ter 8 or 9 will be used 
for subscript which 
must be loaded. 

Calculates array element 
size and the length of 
shift necessary to mul
tiply by that value. 

Generates the object code 
for an AT statement. 

Genera.tes DEBUG linkage 
for a TRACE ON 
statement. 

Generates DEBUG linkage 
for a TRACE OFF 
statement. 

G0950 DEBUG Generates initial linkage 
INITIAL to DEBUG. 
LINKAGE GEN 

G0951 DEBUG VAR Generates address for 
ADR GEN !NIT or SUBCHK 

variable. 

G0952 DEBUG Generates number of ele-
ELEMENTS ments for DEBUG link-
GEN age. 

208 

Routine 
Label Names 
G0953 BIN 

VARIABLE 
NAME 

G0954 RETURN 
SCALAR OR 
ARRAY PNTR 

Comments 
Puts name of 

CODE roll. 
variable on \ 

a 

Returns pointer to a 
SCALAR or ARRAY roll 
group from less direct 
reference. 

G0955 DEBUG .INIT Generates DEBUG linkage 
GEN for !NIT variables. 

G0956 DEBUG SHORT Generates DEBUG linkage 
LIST !NIT for !NIT of a full ar-
GEN ray. 

G0957 DEBUG DMY Generates DEBUG linkage 
!NIT GEN for !NIT of a dummy 

variable. 

G0958 DISPLAY STA Generates DEBUG linkage 
GEN for a DISPLAY 

statement. 

G0959 DEBUG !NIT Generates DEBUG calls 
ARG GEN after a CALL statement. 

EXIT LABEL LIST 

The labels enumerated in the following 
list are used in the flowcharts provided 
for the illustration o·f the major routines 
used by Exit. 

Label 
G0381 
G0382 
G0383 
G0384 
G0399 
G0400 
G0402 
G0403 
G0404 
G0405 
G0416 
G0424 
G0564 

Chart 
ID 

--o9 
FA 
FB 
FC 
FD 
FE 
FF 
FG 
FH 
FI 
FJ 
FK 
FL 

Routine Name 
EXIT PASS 
PUNCH TEMP AND CONST ROLL 
PUNCH ADR CONST ROLL 
PUNCH CODE ROLL 
PUNCH BASE ROLL 
PUNCH BRANCH ROLL 
PUNCH SPROG ARG R01'L 
PUNCH GLOBAL SPROG ROLL 
PUNCH USED LIBRARY ROLL 
PUNCH ADCON ROLL 
PUNCH RLD ROLL 
PUNCH END CARD 
PUNCH NAMELIST MPY DATA 

SUPPLEMENTARY EXIT LABEL LIST 

The routines described in this section 
are listed by G number labels which are 
presented in ascending order. ~ese rou
tines are those used in the operation of 
Exit which are not shown in the section of 
flowcharts for the phase. 



Routine 
Label Name __ 
G038S SWEEP CODE 

ROLL 
SWEEP CODE 
ROLL ML 

G0386 PUNCH INST 
PUNCH INST 
ML 

G0388 PUNCH TWO 
HALFWORDS 

G0389 PUNCH ONE 
HALFWORD 

G0390 PUNCH 
THREE 
HALFWORDS 

G0391 PUNCH CODE 

G0392 ABS PUNCH 

G0393 RELOC 
CONST. 
PUNCH 

G0394 ABS CONST 
PUNCH 
ABS CONST 
PUNCH ML 

G0396 DEFINE LBL 

G0397 ADCON 
PUNCH 

G0398 POC DAT~ 
PUNCH 

G0401 SWEEP BASE 
BRANCH 
ROLL 

G0406 HALF WORD 
WO TO TXT · 
CARD 

G0407 WO TO TXT 
CARD 
WO TO TXT 
CARD ML 

comments 
Deteiiiiii'ies the nature of 

a word on the CODE roll 
and processes it ac-
cording to type. 

Determines the type of 
instruction to be 
punched <one, two, or 
three halfwords>. 

Sets up a two halfword 
instruction format. 

Sets up a one halfword 
instruction format. 

Sets up a three halfword 
instruction format. 

Punches the indicated 
instruction in the 
indicated format. 

Sets up for the punching 
of object module abso
lute constants. 

Sets the format for the 
punching of a relocat
able absolute constant. 

Punches the indicated ab-
solute constants in 
the object module. 

Defines indicated label 
on BRANCH TAELE roll. 

Punches the address con
stant indicated in WO. 

Sets up the information 
needed for the listing 
and punching of code 
contained on the CODE 
roll. 

Initializes for the 
punching of the groups 
contained on the BASE 
and BRANCH TABLE rolls. 

A halfword instruction 
format is set up for 
the contents of WO. 

Transfers the contents of 
WO to the output. area 
to be punched. 

.Routine 
Label ~!~---(;o4o9 MOVE CODE 

TO TX'I' CARD 

G0410 INITIALIZE 
TXT CARD 

G0411 INITIALIZE 
TXT CARD ML 

GC412 PUNCH 
PARTIAL 
TEXT CARD 

G0413 PUNCH A 
CARD ML 

G0414 PUNCH AN 
ESD CARD 

G0417 DEPOSIT 
LAST ESD 
NO. ON 
RLD CARD 

G0418 DB SECOND 
RLD WORD 
WITH CONT 

G0419 DB SECOND 
RLD WORD 
WITH NO 
CONT 

G01120 DB SECOND 
RLD WORD 

G0421 DEPOSIT 
W()RD ON 
RLD CARD 

G0422 PUNCH AN 
RLD CARD 

G042'3 TERMINATE 
RLD 
PUNCHING 

G0425 LIST CODE 

G0426 RS OR SI 
FOR.MAT 

Comments 
Transfers the indicated 

code to the output area 
to be punched. 

Initializes the format 
for the punching of the 
TX'I' cards. 

Punches any part of a 'IX'!' 
card. 

Punches a complete TXT 
card. 

Sets the format 
punching of 
card. 

for the 
an ESD 

Obtains and ·deposits the 
last ESD number on the 
indicated RLD card for 
punching. 

Sets the format of a card 
with a continuation to 
a second card. 

Turns off the continua
tion indicator for the 
punching of the RLD 
card. · 

Places the second word 
into the RLD format in 
the output area. 

Places the indicated word 
into the appropriate 
location in the RLD 
format. 

Punches the indicated RLD 
card. 

Determines whether the 
RLD card is full and 
sets controls accord
ingly. 

sets up the format for 
the object module list
ing, and determines the 
instruction format for 
each indicated instruc
tion to be printed. 

Determines whether the 
indicated instruction 
is RS or SI fo~at. 

Appendix E: Miscellaneous Reference Data 209 



Routine 
Label Name. 
Gcilr27 RSFORMAT 

G0428 SI FORMAT 

G0429 RX FORMAT 

G0430 RR FORMAT 

G0431 SS FORMAT 

GQ432 ADCON L.IST 

G0433 DC LIST 

G0434 PRINT 
ADC ON 
LBL 

G0435 PRINT A 
MADE LBL 

G0436 MADE LBL 
ADCON LBL 
COMMON 

G01f31 PRINT A 
LBL 

G.0438 PRINT ECD. 
OPERAND 

G0439 PRINT A 
L.!NE 
PRINT A. 
:t.I.NE. PLUS 
QNE ML 

G0440 PRIN'l' A 
LINE ML 

comments 
sets\ip-th.e RS format for 

the indicated instruc
tion. 

Sets.up. th~ SI format for 
the. indicated instruc
tion. 

Sets up the RX format for 
the indicated instruc'
tiori. 

Sets up the RR format f.or 
the indicated instruc
tion. 

Sets up the ss format for 
the indicated instruc
tion. 

Sets up the format <DC 
format) for the address 
c.onstants in the object 
module that are to be 
listed. 

Lists DC constants .• 

Sets controls for the 
printing of the indi
cated address constant. 

Sets controls for the 
printing of the indi
cated label that has 
been created by the 
co.mpiler. 

Inserts the 
label into. 
output area. 

indicated 
the print 

Prints. the indicated 
label on the object 
module Us.ting. · 

Inserts the in.dicated op
erand in.to the. appro
priate posit.ion of the 
object listing in the. 
output area. 

Print the indicated line 
one.~ a fu1.1 line has 
been. set. up. in the o.ut
put area. 

Routine 
Label Name 
i3o443 i?ii!N.T~

HEADING 
PRINT 
HEADING 
ML 

G04.44 PRINT 
COMPILER 
STA.TISTICS 

G.0445 PRINT CSECT 
MEMORY 
REQMTS 

G0446 

G0447 

GQ448 

G0449 

G0450 

G0452 

G04.53 

G0454 

G0455 

G0456. 

MESS 

PRINT 
CSECT 
TOTAL 
1'1ESSAGE ML 

PRINT. 
CSECT 
MESSAGE 

CONV AND 
PRINT 
02 (B2) ML 

CONV AND 
PRINT 
D1Bl ML 

CONV AND 
PRINT D2 ML 
CONV AND 
PRINT Dl ML 

CONV AN:O 
PRINT Bl ML 
CONV AND 
PRINT B2 ML 

CONV AND 
PRINT R2 ML 
CONV AND 
PRINT X2 ML 

CONV Atm 
PRINT 12 ML 

CONV A.N.D 
PRINT Rl ML 
CONV AND 
PRINT· L1 ML 

CONV W.O AND 
PRINT 
CONVERT WO 
AND·PRUIT 

coroments 
Prints""".,. the indicated 
. heading that is to 

appear on the··object 
. module listing. 

sets up the indicated . 
message in .. the - print 
outpu_t area. 

Sets up the 
message in 
output area. 

sets up the 
message in 
output area. 

sets ; up the 
message in 
output area. 

indicated 
the print 

indicated 
the print 

indicated 
the print 

Converts the inaicated 
general register desig
nation for the RX, RS, 
and RR formats. 

Converts 
address 
register 
for the 
formats. 

the indicated 
and general 

designation 
SI and SS 

Converts the indicated 
address and general 
register designations 
to instruction format. 

converts the indicated 
address and general 
register designations 
to instruction format. 

converts the indicated 
address and general 
register designations 
to instruction format. 

.Converts the indicated 
address and general 
register designations 
to instruction format. 

converts the indicated 
address and general 
register designations 
to instruction format. 

Converts. the contents of 
w.o to decimal and in
s.erts into print output 
area. 



Routine 
Label Name 
G0458 CONV AND 

PRINT PLUS 
ONE ML 

G0459 PRINT A 
COMMA ML 

G0460 PRINT A 
LEFF PAREN 
ML 

G0461 PRINT A 
RIGHT PAREN 
ML 

G0462 PRINT A 
CHAR ML 

GOQ64 CLEAR ONE 
EXIT 
CLEAR ONE 
AND EXIT 

comments 
Converts a number to dec

imal and places in 
print buffer. 

Places a conana into print 
output area. 

Places a left parenthesis 
into the print output 
area. 

Places right 
thesis into the 
output area. 

paren
print 

Places the indicated 
character into the 
print output area. 

Prunes one word from the 
WORK roll and exits. 

Routine 
Label Name 
GOQ65 EXIT 

EXIT ML 
EXIT 
ANSWER ML 

G0566 RLD ALIGN 
SWEEP TE 

G0567 RLD ALIGN 
TEST 
SWEEP TEST 

G0569 GET ADR 
FROM PNTR 
ML 

Comments 
Obtains the last entry on 

the EXIT roll and 
transfers to the indi
cated location. 

Sorts RLD entries so that 
all RLDs in one CSECT 
appear together. 

Determines whether pres-
.... , ent RLD is in the 

CSECT now being con-
structed. 

Gets location on DATA VAR 
roll from pointer in 
WO. 

Appendix E: Miscellaneous Reference Data 211 



This appendix describes the logic of the 
FORTRAN IV library subprograms. As the 
compiler examines the user's FORTRAN source 
statements and translates them into an 
object module, it recognizes the need for 
certain operations the library is designed 
to perform. At the corresponding points in 
the object module, the compiler inserts 
calls to the appropriate library subpro
grams. At linkage edit time, copies of 
these library subprograms are made part of 
the load module. Then, at execution time, 
the library subprograms perform their 
various functions. The nature of the 
user's program determines which and how 
many library subprograms are included in 
his load module. 

The library performs a variety of func
tions, which are of five general types: 

• load module initialization and termina-
tion activities 

• input/output operations 
• error handling 
• data conversion 
• mathematical and service functions 

It is an important library responsibility 
to form an interface between the load 
module and the operating system: library 
subprograms interface with the data manage
ment access methods, provide exit routines 
for the system interrupt handler and 
abnormal termination processor, and call 
the supervisor for various services. 

The precise composition and size of a 
user's version of the FORTRAN IV library 
will depend on what options he chose at 
system generation time. The actual loca
tion of his permanent library copy (the 
partitioned data set SYSl.FORTLIB) is also 
dependent on his installation choice. 

A few subprograms, commonly thought of 
as FORTRAN IV library members, and dis
cussed in this appendix, are not actually 
members of SYSl~FORTLIB. Instead, they 
reside in the link library, to be loaded if 
needed by true library routines at execu
tion time. 

212 

SYSTEM GENERATION OPTIONS 

At 
makes 
exact 
These 

system 
several 

makeup of 
concern: 

generation time, the user 
choices which determine the 
his FORTRAN IV library. 

BOUNDARY ALIGNMENT OPTION: If this option 
is selected, the IHCADJST routine is 
included (as a member of the link library>. 
When specification interrupts occur, this 
routine is loaded to attempt correction of 
object program data misalignment. 

EXTENDED ERROR HANDLING OPTION: If this 
option is selected, expanded versions of 
some library routines are included. These 
provide: 

• more precise error messages 
• in some cases, more extensive library 

corrective action and continued 
execution 

• the ability for the user to choose his 
own or the library's corrective action 

The library modules affected by this option 
are listed in Table 9. A user's library 
will include either one set of modules or 
the other. 

Table 9. Routines Affected by Extended 
Error Handling Option 

r----------------~---T--------7-----------1 
I Without I With I 
I Extended· I Extended I 
I Error Handling I Error Handling I 
~--------------------+--------------------~ 
I IHCFCOMH I IHCECOMH I 
I IHCUOPT• I IHCUOPT* I 
I IHCDIOSE I IHCEDIOS I 
I IHCFIOSH I IHCEFIOS I 
I IHCFINTH I IHCEFNTH I 
I IHCTRCH** I IHCETRCH I 
I I IHCERRM••• I 
I I IHCFOPT I 
~--------------------i--------------------~ 
I •The size differs, although not thel 
I name. I 
I ••With Extended Error Handling, ICHTRCHI 
I becomes an entry point in IHCETRCH. I 
!***Without Extended Error Handling, I 
I IHCERRM is an entry point in IHCTRCH. I 
L-----------------------------------------J 



One other module is affected by system 
generation choice. IHCUATBL, the data set 
reference table, has both its length and 
some contents determined at this time. 

MODULE SUMMARIES 

IHCFCOMH/IHCECOMH 
This module <with its CSECT extension 
IHCCOMH2> handles the load module 
initialization and termination activi
ties, and sequential and direct access 
input/output operations. It also con
tains switches, addresses, and save 
areas <at constant displacements from 
its entry point IBCOM#) that are used 
by other library routines. 

IHCNAMEL 
This module directs NAMELIST read/ 
write operations (entry point FRDNL# 
for reads, entry point FWRNL# for 
writes>. 

IHCFIOSH/IHCEFIOS 
This module interfaces with the basic 
sequential access methods to do all 
sequential input/output for the load 
module. It is called (at entry point 
FIOCS#) by IHCFCOMH/IHCECOMH and 
IHCNAMEL to perform user-requested 
read/write and device manipulation 
operations, and by other library rou
tines (such as IHCERRM, IHCFDUMP, 
and IHCDBUG) to write error mes
ages, traceback maps, user-requested 
dumps, debug information, etc. 

IHCDIOSE/IHCEDIOS 
This module interfaces with the basic 
direct access methods to do all direct 
access input/output for the load 
module. It is called by the compiler
generated code (at entry point DIOCS#) 
for DEFINE FILE statements, and by 
IHCFCOMH/IHCECOMH (at entry point 
IBCENTRY) for READ, WRITE, and FIND. 

IHCFCVTH 
This module does data conversion 
required by other library routines. 
It is called <at entry point ADCON#) 
for formatted and namelist input/ 
output, and for other library opera
tions (such as traceback) that require 
EBCDIC output. 

IHCIBERH 
This module is called by the compiler
generated code <at entry point IBERH#I 
to terminate load module execution due 
to source statement error. 

IHCTRCH 
This module (entry point IHCERRMl is 
the library error handling routine 
when extended error handling has not 
been specified. It is called by other 
library routines to direct message 
printing and produce traceback maps. 

IHCETRCH 
This module produces traceback maps 
when the extended error handling faci
lity is present. It can be called by 
the error monitor IHCERRM <at entry 
point IHCTRCHl, or by the compiler
generated code <at entry point ERRTRA> 
at user request. 

IHCERRM 
This module is the error monitor when 
extended error handling has been spec
ified (otherwise, it is an entry point 
in IHCTRCH>. It can be called by 
other library routines detecting 
errors tat CSECT name IHCERRM>, by 
IHCFCOMH/IHCECOMH for termination 
error summary (entry .point IHCERREI, 
and by the compiler-generated code at 
user requP.st (entry point ERRMONl for 
handlinq of user-detected errors. 
IHCERRM uirects its error handling 
activities according to the entries in 
the option tablP., IHCUOPT. 

IHCUOPT 
This module is the option table. In 
addition to a prPface, it contains one 
entry for each library-defined and 
user-defined error condition. These 
entries are used by the error monitor 
IHCERRM to direct its handling of 
errors. 

IHCFOPT 
This module satis.fies user requests to 
examine and modify the option table 
IHCUOPT. It is called at entry points 
ERRSAV, ERRSTR, and ERRSET by the 
compiler-generated code. 

IHCFINTH/IHCEFNTH 
This module handles certain .program 
interrupts. It is called by the sys
tem interrupt handler at entry point 
AR ITH#. 

IHCADJST 
This module, which is included in the 
link library only if the user 
requested boundary alignment at system 
generation time, is loaded by 
IHCFINTH/IHCEFNTH to attempt correc
tion of data misalignment that has 
caused a specification interrupt. 

Appendix F: Object-Time Library Subprograms 213 



IHCSTAE 
This' module, which resides in the link 

'library. is the STAE abnormal termina
tion processor. When · IHCFCOMH/ 
IHCECOMH receives control (at · entry 
point · 'EXITRTNlV- from the system 
because the load module has been: sche
duled for abnormal termination, it 
loads IHCSTAE to attempt completion of 
outstanding input/output r'equests 
before execution ends. 

IHCUATBL 
This module is the unit' assignment 
table. It contains information about 
the user's data set references0 and is 
used by the library input/Output rou
tines in their operations. 

IHCFDVCH 
This module is called by the compiler
'generated code '(entry point DVCHIO at 
user request to determine if a divide 
che7k interrupt occurred~ 

IHCFOVER 
'' This module is called by the compiler

generated code (entry point OVERFLl at 
user request to determine'whether or 

·riot overflow or ·underflow interrupts 
occurred. 

IHCFSLIT:· 
This moduie i:s 'called by the compiler
generated code (entry points, SLITE, 
SLITET) at user request to set di test 
private switches <"pseudo-sense 
ligh~s">. 

IHCFEXIT 

214 

This module is called by the compiler
genetated code (entry point EXIT) at 
user request to terminate load module 
execution. 

IHCFDUMP . 
This ~odule is called by the compi],er-:: 

·; gene.rate.a code <entry ·· points DUMP, 
PDUMP) at user request to produce 'a 
dump of specified areas of main 
storage. 

!'' ;. 

IHCDBUG 
This module is called by the compiler

·generated code <entry point DEBUG#) to 
direct _the production ·of · ·user:.:, 
requested debugging information• 

~THE~!!.£~~--EQ!!'!~~§.: Information on 
these libraiy modulesean be found in the 
publication IBM · system/360 operating sys
tem: FORTRAN IV Library~-Mathematical- and 
Service Subprograms, Order No. GC28-6818. 

LIBRARY INTERRELATIONSHIPS 

It is helpful to recognize that there is 
not always a one-to-one relationship 
between library functions · and library 
modules. some functions require, the execu
tion of. several modules, and, conversely, 
some modules are involved with mor'e , than 
one function. 

certain library modules are ·called pri
marily by the compiler-generated code, but 
a :·large number are called only by other 
library modules or by the system. This 
relationshipis illustrated in Figure 16. 

In interfacing with each other, with the 
system and with the compiler-generated 
code, library modules use ~Q~2~~ndard call
ing and register-saving procedures. 



c 
0 
M 
p 
I 
L 
E 
R 

G 
E 
N 
E 
R 
A 
T 
E 
D 

0 
B 
J 
E 
c 
T 

Library routines 
entered initi,.'ly 
from compiler
generated code 

. . . -----
IHCDBUG 

IHCFDUMP 

IHCFDVCH 

IHCFEXIT 

IHCFOPT 

IHCFOVER 

IHCFSLIT 

IHCIBERH 

IHCNAMEL 

Library routines. 
entered only 

from other 
library routines 
or the system: 

IHCADJST 

IHCFCVTH 

tHCFINTH/ 

IHCEFNTH 

IHCFIOSH/ 
IHCEFIQS 

IHCSTAE 

IHCTRCH 

IHCUATBL 

IHCUOPT 

0 
p 

e 
R 
A 
T 
I 
N 
G 

s 
y 

s 
T 
E 
M 

c 
0 
D 
E 

Library routines that fall into both 
categories, being entered sometimes 
from the compiler-generated code, and 
sometimes from other library routines 
or the operating system: 

---------- - -- -----
' HCFCOMH/I HCECOMH 
I HCDIOSE/IHCEOIOS 
IHCETRCH 
IHCERRM 
Mathematical routines 

Figure 16. Calling Paths for Library Routines 

The library is responsible for the load 
module's initialization activities. Every 
compiler-generated main program begins with 
a branch to the IBFINT section of IHCFCOMH/ 
lHCECOMH. This library routine performs 
the following initialization procedure: 

• saves the load module entry point in 
its location MAINEP, and the main pro
gram's save area pointer in its loca
tion REG13. 

• Issues a SPIE macro instruction speci
fying library control for program 
interrupts 9, 11, 12, 13, 15, and, if 
boundary alignment was selected at sys
tem generation time, 6. 

• Issues a STAE macro instruction speci
fying library control if the system 
schedules the load module for abnormal 
termination. 

• Calls IHCFIOSH/IHCEFIOS to open the 
object error unit. 

Appendix F: Object-Time Librar:y Sqbprograms 2is 



control is then returned to the main pro
gram, which begins its processing. 

INPUT/OUTPUT OPERATIONS 

Processing FORTRAN input/output requests 
is mainly the responsibility of the 
library. For each request, the compiler 
sets up a call(s) to the appropriate entry 
point in the appropriate library routine. 
For NAMELIST READ/WRITE, the call is to 
IHCNAMEL, which then calls IHCFIOSH/ 
IHCEFIOS and IHCFCVTH. For DEFINE FILE, 
the call is to IHCDIOSE/IHCEDIOS. For all 
other operations, the call is to IHCFCOMH/ 
IHCECOMH. If the operation is sequential 
READ/WRITE, the IHCFCOMH/IHCECOMH routine 

216 

calls IHCFIOSH/IHCEFIOS (and also IHCFCVTH 
if format control is present>. If the 
operation is REWIND, BACKSPACE, or ENDFILE, 
the IHCFCOMH/IHCECOMH routine calls 
IHCFIOSH/IHCEFIOS. If the operation is 
direct access READ, WRITE, or FIND, routine 
IHCFCOMH/IHCECOMH calls IHCDIOSE/IHCEDIOS 
(and IHCFCVTH if format control is pre
sent>. If the operation is STOP with 
message, or PAUSE, routine IHCFCOMH/ 
IHCECOMH calls the· supervisor. This flow 
is outlined in Figure 17. For each direct 
access or sequential read/write request, 
the compiler-generated code issues multiple 
calls to IHCFCOMHl:IHCECOMH: an initial 
call, one call for each item (either vari
able or array) in the I/O list, and a final 
call. Thus, the FORTRAN statement READ 
(23,lOO>Z,Y,X results in five consecutive 
calls to IHCFCOMlVIHCECOMH. 



DEFINE 
FILE 

IHCDIOSE/ 
IHCEDIOS saves 
DEFINE FILE data; 
submits I /0 request 
to data management 

I 
I 
I 
I 
I 

access 
READ, 
WRITE, 
FIND 

COMPILER-GENERATED OBJECT CODE 

all other 
I /O requests 

IHCFCOMH/ 
IHCECOMH 
interprets 
request 

write to 
operator 
(STOP and 
PAUSE) 

IHCFCVTH 
converts 
and moves 
user's 1/0 
data 

sequential 
READ, WRITE, 
BACKSPACE, 
REWIND, 
ENDFILE 

NAME LIST 
READ/WRITE 

IHCNAMEL 
interprets 
request 

IHCFIOSH/IHCEFIOS 
submits request 
to data management 

-------.. ---, 
,.,_ __ -- - - - - - - - - - --, I 

load module 
I 

------- ---1 I_ 
operating 
system 

Basic Direct 
Access Methods 

Supervisor· 

Figure 17. control Flow for Input/Output Operations 

Appendix i's 

•If Format is present 

I I 
I I 

Basic Sequential. 
Access Methods 

.. For pre-formatting new data sets before writing user's data 

objeet-Tim1 Library subpro9rams 217 



bEFINE F!'.tE 

'!'he compiler-generated- code branches 
directly to IHCDIOSEl'IHCEDIOS at entry 
point DlOCS#-.· This section takes the 
address of the parameter list containing 
the data set characteristics supplied by 
the user arid places it in the appropriate 
unit assignmen·t table < IHCUA'I'BL) entry. 
There may be·more than one data set defined 
per DEFINE FILE statement, in which case 
DIOCS# loops.through the definitions, plac
ing. the parameter list addresses into the 
table. 

If a data set has been previously 
defined, the new de'finition_ is ignored. If 
the data set requested is sequential rather 
than: directt !HCERRM is called with. error 
condition 235 indicated. 1f the data set 
is the objebt error unit, IHCERRM is called 
with error 234 indicated. 

DIOCS# -also places the address of the 
section IHCD!OSE/IHCEDIOS that· handles. 
actual rea:ds and writes--IBCENTRY-,-into a 
fixed location in IHCFCOMH/IHCECOMH, . in 
order to est~blish addressability for later 
branching. If the user fails to place his 
DEFINE FILE statement ahead of his asso
ciated READ or WRITE statement, this 
address will' not be available,· and an error 
condition ~ill occur. 

DIOCS# returns to the compiler-generated 
code. 

SEQUENTIAL READ/WRITE WITHOUT FORMAT 

Initial call 

The initial call ·is to IHCFCOMH/ 
IHCECOMH, which saves END= and ERR= 
addresses, if they are .present, in its 
locations ENDFILE and IOERROR, respective
ly, and then branches to IHCFIOSH/IHCEFIOS, 
passing along the data s·et · reference 
number. 

IHCFIOSH/IHCEFIOS Use·s this data set 
reference number to consult the -correspond• 
ing entry in · the ta'ble l:HCO'.ATBL• tThi·s 
table is explained in Figures 18 and 19.) 
The initialization action taken by 
IHCFIOSH/IHCEFIOS 'depends on 'the na•t'ure Of 
the previous operation·. 'performed a·n' this 
data set. The previous ope::ration possibi
lities are: 

• no pr:evious operation 

• previous operation was ·read or write 

21'8 

• previous operation was backspace 

• previous operation was write end of 
file 

• previous operation was rewind 

NO PREVIOUS OPERATION: IHCFIOSH/IHCEFIOS 
mustcreate a unit block, Which Will con
tain the DCB, DECBs, and other library 
informatioti to be used in c'C:introlling 
operations. Space for the unit block is 
acquired wit'h a GETMAIN, and a pointer to 
it is stated in the IHCUATBL entry. <The 
contents of the unit block are outlined in 
Figure 20. l · 

IHCFIOSH/IHCEFIOS inserts certain stan
dard values.into the DCB in the unit block. 
It does this by moving in a i::opy of a 
nonfupctioning skeleton DCB, which speci
fies ·OSORG as ·ps, MACRF as (R,WI, DDNAME as 
FTnnFOOl, and gives addresses in. IHCFIOSH/ 
IHCEFIOS for SYNAD and EODAD~ and for 
EXLST, which specif.ies the OPEN ·exit rou
tine. , IHCEFIOSH/IHCEFIOS puts the data set 
reference number into the nn field of the 
DDNAME. This establishes for the system 
the connection between this DCB and the 
user's DD card, which must have ·the same 
name on it. 

IHCFIOSH/IHCEFIOS now issues an OPEN 
macro instruction, which merges the user's 
DD information, and label information if 
the data set already exists. When its open 
exit routine <IHCDCBXEl . gains. · control, 
IHCFIOSH/IHCEFIOS examines the DCB. If 
fields are zero, indicating the user has 
omitted corresponding DD parameters, 
IHCFIOSH/IHCEFIOS inserts library default 
values. (These default values are stored 
in the IHCUATBL entry.I 

After completion of _the OPEN macro, 
IHCFIOSH/IHCEFIOS places· the buffer 
address (esl in the housekeeping "section of 
the unit block. and also in the DECB(s). 
It also puts the DCB address. into the 
DECB(sl. If this is a read operation, it 
sets the first byte of the type of input/ 
output request field in the . DECB(sl to 
x •so•, indicating the reads . should be of 
blocksize; if this is a writ'e operation• it 
sets this byte to X' 00' ., indicating the 
writes should be of logical record length. 

If the initialization is for a read 
operation, lHCFIOSH/IHCEFIOS now issues a 
READ macro, with a CHECK, fil.ling the 
buffer. 'I'f' doubie buffering is in ·effect, 
it also issues a second READ macro, to 
begin filling the second buff·er.' ·-<This 
READ is not :checked until. IHCFI'O'SH/IHCEFlOS 
is entered the next time for this data 
set.> control ·is re·t:ur:ned .- to IHCFCOMH/ 
IHCECOMR, along with address and length of 
the data that was read. 



If the initialization ·.is for ·a write 
operation, IHCFIOSH/IHCEFIOS simply<returns 
to IHCFCOMH/IHC:ECOMH~ passing the address 
and length· of the buffer. <The· · a:ctual 
write ·operation will not take:plat'e until 
IHCFCOMH/IHCECOMH fills·thebuffe:r.) 

.·. 

EREVIQQ§~QE~BATIQ~==B~~~-OR_~E!TE! ln this 
case, the data set is already open and the 
unit block in existence• The DECB is set 
to indicate the proper action. <either· read 
or write). If· this .is awrite·request, 
control is ·returned to , IHCFCOMH/IlfCECOMH 
with buffer address ana length. If. it.is a 
read request, the REAo·mact-b is issued to 
fill the bU:ffer,· and ·the ·address and length 
of the data that was read is 'passed 'back tb 
IHCFCOMH/IHCECOMH. 

PREVIOUS OPERATION--BACKSPA'CE·: The opera
tion ·is· .· the same-:-~ a:s· -fdr "Previous 
ope.ration--Read or Write"' describe<i above, 
except that priming of buffer(s) may be 
needed. 

PREVIOUS OPERATION--END FILE: IHCFIOSH/ 
IHCEFIOS must first close the existing dat;a 
set, . and process a new oneo . To proceS'S a 
new data set, ·IHCFIOSH/IHCEFios' increments 
the sequenc'enumber Of the DDNAME field in 
the old DCB; for exampie, FT14F001 · is 
changed to FT14F002. The OPEN procedure 
desc:;ribed above under "No· Previous Opera.;,. 
tion" is then followed. (The library 
assumes the user has a FTl'mF002 DD ca.rd for 
this ·new data set. l The· usual ·read or 
write procedure is used. 

PREVIOUS OPERATION--REWIND: The data set 
has been-closed~-and-mostbe reop~ned. The 
procedure is the same as 'that described 
under "No Previous Operation.," beginning 
after the creating of the unit block. 

In all of the above cases, IHCFIOSH/ 
IHCEFIOS returns to IHCFCOMH/IHCECOMH, 
w};lich saves· the buffer pointer and length, 
and then returns' to the compiler-generated 
code. 

second Call 

The compiler-generated code calls 
IHCFCOMH/IHCECOMH, passing iriformatiorl 
about the first item in the l/O list ;(its 
addres.s, type, whether it is a variable or 
array, etc.>. If this is .a read ·reques'f. 
for a variable, IHCFCOMH/IHCECOMH takes the 
proper number of bytes from the buff.er arid 
moves them to the indicated add:res.s. 'For 
an array, IHCFCOMH/IHCECOMH repeats · the 
process, fillincj tHe array ·element by ele_;-, 
rnent. If this is a write reque~t f.o:r·a 
variable, IHCFCOMH/IHCECOMH takes the , it'em 
from the indicated address and moves it 

intb the bufHir. F'or an ··array, rnc.F'CbMHI 
IliCEG::bMH repeats the · pfocess·, Eirnptying the 
array: eleinent':'by element._· After ' adjusting 
~1:_:s_ buffer pointer so it points to either 
thenext data item or the next i:;1npty space, 
IHCFCOMH/IHCECOMH returns to the,, compiler
generated code. 

AdaiUoilal:tist itehi·calls 
-~~--~~-.,.-~--~-----.-~~--· 

The procedure is the sat'ne·as for the 
first list i tern, . with these . exceptions. 
When rncFc6MB/'IHCEc6MH is· processing a read 
request:· atrd" finds ·rt has emiitied the' t5ilf'f'
er, it calls IHCFIOSH/lHCEFH>S ·'td· 'issue'. 
another READ ma.era and refill it. If 
dOtib'le buffering; is in, effect, :i:Hc:FfosHY· 
IHCEFIUS' · pass~s 't'.he ci'ddress :Of the other 
bnff~r (a.fter ·cbeckin9 the ·READ ··macro for 
that buffei1-;, ·ahd. then iss,ues a 'READ macro 
instruction for the buffer just emptied, 
always keepin9 one· READ ahead• 

When · IHCFCOMH".IHCE<::OMM is processing a 
write request and finds it ha'S filled the 
buffer, it calls IHCFIOSH/IHCEFIOS to issue 
the · actual WRITE macro~ If dbuble huff e'I-""
ing is in effect, IHCF!OSB:IIHCEF!OS passes 
b,ack the address of the other buffer. 

Final Call 

Fbr a -read op'eration, the tilain progra'ttl 
passes contro.1' to IHCFCOMH/IHCECOMR which 
passes control on to IHCFIOSH/IHCEFIO'S. If 
IHCFIOSH/IHCEFIOS finds that, fo:i;- this data 
set, physical records are larger than log
ical records, it simply returns to 
IHCFCOMH/IHCECOMH, which returns' to the 
compiler-generated object code. If physi
cal records are shorter than logical rec
ords,. IHCFIGSB/IHCEFI0S issu~ii; READ macros 
until it reaches the· ,,end of'the l·ogical 
record. This· positi.:ons the. devide at 'the 
beginning of the next :J..09ic:a1··reoord,· in· 
preparlition for subsequent · 'Fc'JRTRAN READ 
reguest;.s · f'Or. this ·unit. · 

Fbr a write operat.~ior'l; IHCFCOMli/IHCECO!flB 
gives dori'trol to IHCFIOSH'/THCEFIOS• If the 
data set· is unblocked, or i:f it. is·· bloek,ed, 
and the ·buff'.er is: ' full, IHCFIO.SH/IHCEF;ICS'., 
issues ii· -final •WRITE macro. · 

system Block 'Modification and ·Reference 

' whfle, per!'otlltbt9· · its .·.'functions, 
IHCF1.0SH/I'l4CEF10S m~fy' inod'i:fy cetta:i'n fiEildS 
of the curre.nt DCB: · '' · " 

Appendix F': object-"rime Library Subprograms 21:'9 



DCBBLKSI--IHCFIOSH/IHCEFIOS changes this 
field before writing out a short 
block when RECFM=FB. IHCFIOSH/ 
IHCEFIOS restores it after issu
ing the corresponding CHECK 
macro. 

DCBOFLGS--before issuing a CLOSE (TYPE=T) 
macro to implement an ENDFILE 
request, IHCFIOSH/IHCEFIOS turns 
on the high order bit to make 
this look like an output data 
set. 

IHCFIOSH/IHCEFIOS also modifies some 
fields of the DECB<s>, in addition to its 
initialization: 

DECTYPE <byte 1)--for reads, set to indi
cate a read of blocksize; for 
writes, set to indicate a write 
of logical record size. 

DEC'TYPE (byte 2>--set to indicate read or 
write when the previous opera
tion for this data set was the 
opposite. 

DECLNGTH--filled in when a U-type record is 
to be written. 

In addition to referring to the DCB and 
DECB(s), IHCFIOSH/IHCEFIOS also examines 
the CSW field in the Input/Output Block 
<IOB) to get the residual count. (The DECB 
points to the IOB.) By subtracting the 
residual count from the DCB blocksize, 
IHCFIOSH/IHCEFIOS knows the actual length 
of the data read into the buffer. 

Error Conditions 

During their processing of unformatted 
sequential reads and writes, IHCFIOSH/ 
IHCEFIOS and IHCFCOMH/IHCECOMH check at 
various times for a number of error condi
tions, IHCFIOSH/IHCEFIOS checks for the 
following error conditions: the user's data 
set reference number is out of IHCUATBL 
range (error 220); he failed to supply.a DD 
card for the requested data set (error 219); 
and he specified anything other than Vari
able Spanned (VS) records (error 214); 
IHCFCOMH/IHCECOMH checks each I/O list item 
to see if it exceeds buffer size (error 
213). If one of these errors is detected, 
control is passed to IHCERRM. 

If extended error handling is in effect, 
control returns from IHCERRM to its caller,· 
which does the following: 

270. 

• conditions 219 or 220 IHCEFIOS 
returns to its original caller at the 
error displacement. (The error displa
cement is 2 bytes beyond the address 
originally passed to it in register O; 
the normal return point is 6 bytes 
beyond the address originally passed in 
register O.l 

• condition 214 if user-supplied 
corrective action is indicated or if 
the operation is a read, IHCEFIOS 
ignores the input/output request and 
returns to the error displacement. 
Otherwise, it changes the record format 
to VS and continues execution. 

• condition 213 -- IHCECOMH ignores the 
list item request, and any further list 
item requests for this read or write. 

If an end-of-file is detected when 
IHCFIOSH/IHCEFIOS issues a CHECK macro, its 
EODAD routine gains control. It branches 
to the user's END= address if one exists. 
If not, it branches to IHCERRM. Without 
extended error handling, this is a terminal 
error. With extended error handling, con
trol returns to IHCEFIOS after error mes
sage and traceback printing, and possible 
user corrective action. IHCEFIOS T-closes 
the data set, and returns to its original 
caller at the error displacement. 

If an input/output error is detected 
when IHCFIOSH/IHCEFIOS issues a CHECK 
macro, its SYNAD routine gains control. It 
issues a GETMAIN for extra space, and then 
issues a SYNADAF macro, which puts relevant 
information into the area. (If extended 
error handling exists, IHCEFIOS has the 
associated data set reference number con
verted and places it into the error 
message--218.) IHCFIOSH/IHCEFIOS next asks 
data management to accept the data in 
error, and restart the IOB chain. IHCERRM 
is then called. Without extended error 
handling, the error message and traceback 
are printed, and then IHCERRM branches to 
the user's ERR= address if there is one, 
and to the IBEXIT section of IHCFCOMH if 
there was not. With extended error handl
ing, IHCERRM goes to the user's option 
table exit routine if there is one and, in 
any case, prints out the error message and 
~raceback. Then it branches to the user's 
ERR= address, if there is one. If not, it 
returns to IHCEFIOS, which continues pro
cessing if the user supplied his own corre
ctive action; if not, IHCEFIOS returns to 
the error displacement vf the routine that 
originally called it. 



SEQUENTIAL READ/WRITE WITH FORMAT 

These operations are the same as for 
sequential read/write without format, 
except IHCFCOMH/IHCECOMH must scan and 
interpret the associated format specif ica
tion, and control the conversion and move
ment of list items accordingly. 

OPENING SECTION: Upon return from the 
initialization section of IHCFIOSH,( 
IHCEFIOS, IHCFCOMH/IHCECOMH begins examin
ing the format specification, the address 
of which is passed as an argument in the 
initial branch from the compiler-generated 
code. The format sp~cification may be one 
of two types: one declared in a FORMAT 
statement in the FORTRAN source program; or 
an array that the user has filled in with 
format information during execution <often 
referred to as object-time format specif i
cation). In the former case, the compiler 
has already translated the statement into 
an internal code. In the latter, the 
format information exists in its EBCDIC 
form, just as it would in a FORMAT 
statement. 

In the case of an object-time format 
specification, .IHCFCOMH/IHCECOMH must pick 
up the array contents and process them so 
they are in the same form as a format 
specification processed by the compiler. 
IHCFCOMH/IHCECOMH does this using the TRT 
instruction and its table TRTSTB. 

The translated format codes, and their 
meanings to IHCFCOMH/IHCECOMH, are listed 
in Table 10. 

In both cases, IHCFCOMH/IHCECOMH now 
begins scanning the format information. It 
reads it -- saving the control information 
-- until it finds the first conversion code 
(or the end of the FORMAT statement). Then 
it exits to the compiler-generated code. 

LIST ITEM CALLS !:OR_RE~Q_RE.QQEST: When 
IHCFCOMH/ is entered for the first list 
item, it determines from the conversion 
code which section of the conversion rou
tine IHCFCVTH to call. It passes inf orma
tion from the format specification, <such 
as scale and width), information about the 
list item <such as its address>, and buffer 
address and length. IHCFCVTH, and its 
associated subroutines, do both the conver
sion and the moving of the data from buffer 
to list item location or vice versa. 

In general, after a conversion routine 
has processed a list item, IHCFCOMH/ 
IHCECOMH determines whether or not that 
routine can be applied to the next list 
variable or array element <if an array is 
being processed). IHCFCOMH/IHCECOMH 
examines a field count in th·e format speci
fication that indicates the number of times 
a particular conversion code is to be 
applied to successive list variables or 
elements of an array. 

If the conversion code is to be repeated 
and if the previous list item was a vari
able, IHCFCOMH/IHCECOMH returns control to 
the main program. The main program again 
branches to IHCFCOMH/IHCECOMH and passes, 
as an argument, the main storage address 
assigned to the next list item. 

Appendix F: Object-Time Library Subprograms 221 



Table 10._ F.ormat_J~Qf:}e Tran~J.ations, and.~ Their Meanings tP~rt 1 of p 
·r:..,.-----:r-----.------T..,.-'°'-r".~------.--T·---..-------T------------------------------------------1 
.I' · .. · . I Code After l -.. -.-. . : ·-. _ I. - . I ·- I 
t:: .-1Comp~~~r6rh __ -· ... ··_I.-. 1- .. - . _ .- .. _, .. - --. .. -, "I 
1.- I IHCFCOM.H/ 1 •.. -. " -I I I 
I source t;I~cECOt11J . L I : I . I 
IFORMATITranslationl I I _ _ . __ . . __ . . . I 
I code I <in hex> I Description I Type 1co,rrespohdi1'¥,J. A¢tion by tecFCOMttl:p1~.ECOMH { 
~------f..,.:7:..,.-:----f-----:.,--..,.:------:+-----:-- .... --f----------...::-.--------"".--:,.,..,.-.,.--... -_ . ..::-:--...:-.-~ 
I begrnni:ng of stat:ement· · .I c:;ontrol. I save location for possible repetition of I 
1- - .. J - ·- -1: . J. - .. I the format codes; clear counters. 1 
I I .. · . , ,- . I _ -··:: - .· I I __ -.· _. . .· .... · .. . .. · 1. 
In( . : I 04n I group co.unt J~ontJ;ol I save !! and location of left parenthesis 
I . - I I <n=.;L;-:byte I · I for possible repetition of the format 
1 · - : Jvaltie .of l IGodes in the_ group. 
I I repeat count; I I -· ·· 
I set -t;o 1 if_ no I I 
I repeat count l I I 

I~ 06a fieid ,count l con,troi I save .! tor_ repetition ()~. fO:t'.niat_ code that 
I (a=l-byte I - - I follows. · 
I value of I I 
I , : repeat countl _I r 
I. - .· .. _ I-__ . I - .. _. - . _ 
JnP 108* scaling factortcontr()l !Save!! for ,use by;'Ji', JS; and, D conyersions. 
J · J -- I - I _ _ - - -
rrn J12n I column reset I control I Reset current, p~si tion within record 
J I <n=l-byte . I ·· In.th column qi byte. 
1., tvalue) I I · · 
1-· • 1- I t . - _ ... _ I 

dnX 18n . 1.sk.ip .or blank I control I Skip.!! characters. of an input record, or · 1 · 
-I ·. I (n:;:l-,byte I · I insert !! blanks in an output record. 'J 
I lva;\ue>. I I I 
I I I I... ·.. _ - . . ·· .·. . I 
I' text' lAw I literal data I control [Move !!! characters from (ln input _reco;rd- to_ I 
I or nH , I J . I the_ FORMAT s_ta'tement, or !!·. chaz;acters from I 
I I ,, I the FO~MAT -st:at_emen~ t,o an. output record.; I 

'~---..,...,.-~---:---:-::----i-----,-,-:----:---:J._...:_.,,_: _____ .1,-:;,---.,.-------...:---_-_---,---:-:--;_:._ ___ ;_ __ "."~·.;.. __ ...:.;;."."~ 
:i~es:. •is_ a 1-byte value of!!. if,!!. was p~sitive; if __ nega:tive, it is the va'l\1e_plUsl 
l · . 12-8-(decimal>. . , .. ..· · · · I 
I- • w ~ 1-byte value of fiel(l width. I 
1 d = 1-byte value of number of digits after the decimal pqint. _ _ I L---------------·-________ _: ______ _: _ _::._.:_ ___ _: _____ .;;_-:-----::--::-.;;_-----_--:--,-__:..:. _____ ..;._:.,.. ____ ;,.; __ :_ _ _. ____ J 

222 



Table 10. Format code Translations and Their Meanings (Part 2 of 2> 
r------T_..;. _______ .,.._T __ __. ........ _.,:: ______ T ____ .;...~----T--~--~--.o.-·------..::._____________ .:_ · . 
I I Code ·After f I I -- ---------, 
I !Compiler orl I I· I 
I I IHCFCOMH/ l I I I 
I source I IHCECOMH I I l 
I FORMAT I T7anslationt . . . . . . I .· I . . , I 
I Code I <in hex> I Description ·t Type I corresponding Action by IHCFCOMH/IHCECOMH I 
~------+-----------+--------------+----------+----------------------~-------------------~ 
I Fw. d I OA w. d I F-:-convers~on f c~nvers~on I IHCFCOMH/IHCECOt;1H passe~ th.e values of ~· I 
f Ew.d IOC w.d IE-convers~on fconvers7onf~ and .E --plus information about the list I 
I Dw.d I OE w.d ID-conve.rs~on I con'Vers~onf ·l!tem·: and 'the buffer-- to the appropriate I 
I Iw 110 w I I-convers~9n (conver~~on I section of IHCFCVTH for conversion. I 
!Aw . I 14 w IA-convers~on 1·c.o:nvers~onl I 
I Gw. d 120 w. d I G-:conversion 1·c.onversion I I 
ILw 116 w l'L-conv·ersion tconversionl I 
I Z'w 124 w I ~-conversion f ·conversion I I 
I t I I . . I . I 
ll llC !group end !control fTest qroup count. If it is greater than! 
I I I I 11, repeat forinat codes iri gro'up; other- I 
I I I I I wise,. contj,nue to proc'ess toRMAT statement I 
I I I I I from current position. I 
I I I l . I . I 
I/ llE !record end !control !Input or output one record using IHCF!OSH/I 
r I I I I IHCEF!OS/ and READ/WRITE macro I 
I I I I I instruction. I 
I I I l I I 
I I I end of I control I If no I/O list i terns remain to be f 
I I fstatement I !transmitted, return control to load module! 
I I I I tto 1ink to the closing section; if I/OI 
I t I I 11ist items remain, read or write onef 
I I I I trecord using input/output interface and! 
I I I I J the READ/WRITE macro instruction. Repeat I 
I • J I · · I 1,format codes from last parenthesis. ·1 
~------L---------~-.L-~---~--------~----------~---~---------~------------~---------------~ 
fNot~: • is a 1-byte value of !!1 if !! was positive: if negative, it is the value plusf 
I 128(decimalJ. I 
J w = 1-byte value of field width• I 
f d = 1-byte value. of number of digits after the decimal point. f 
1--------------------~--------------~--------------------------------------------------J 

If the Qonversion code is to be repeated 
anc1 if an array is being processed, 
!HCFCOMH/!HCECOMH computes the.main storage 
address of the next element in the array. 
The conversion routine that processed the 
previous element is then given control. 
This procedure is repeated until either all 
the array elements associated with a spe
cific conversion .code are processed or end 
of logical record is detected <error 212>. 
In the latter case, control is passed to 
IHCERRM. 

If the conversion code. is not to be 
repeated, control is •passed to the scan 
portion of IHCFCOMH/IHCECOMH to continue 
the scan of the format specification. If 
the scan portion determines that a group of 
.conversion codes is to be repeated, the 
conversion routines coi:respondhig to ·those 
codes are applied to the next p()rtion of 
the input data. This procedure is repeated 

until either the group.count is exhausted 
or the input data for the READ statement is 
exhausted. 

If a group of conversion codes is not to 
be repeated and if the end of the format 
specification is not encountered, the next 
format code is obtained. For a control 
type code, control is passed to the asso
ciated control routine to perform the indi
cated operation. For a conversion type 
code, control is returned to the compiler
generated code if the previous list. it.em 
was a variable. The compiler~geiierated 
code again branches to IHCFCOMH/IHCECOMH 
and passes, us an argument, the main 
storage address assigned to the next list. 
item. cont.ro1 is then passed to the conv
ersion routine associated wi'th the new 
conversion code. The conversion routine 
then processes the data for this list item. 
If the data that was just converted was 

Appendix F: Object-Time Library subprograms 223 



placed into an element of an array and if 
the entire array has not been filled, 
IHCFCOMH/IHCECOMH computes the main storage 
address of the next element in the array 
and passes control to the conversion rou
tine associated with the new conversion 
code. The conversion routine then pro
cesses the data for this array element. 

If, in the midst of its processing, 
IHCFCOMH/IHCECOMH finds that it has emptied 
the buffer it calls IHCFIOSH/IHCEFIOS to 
issue another READ macro instruction. 

If the scan portion encounters the end 
of the format specification and if all the 
list items are satisfied, control returns 
to the next sequential instruction within 
the compiler-generated code. This instruc
tion (part of the calling sequence to 
IHCFCOMH/IHCECOMH) branches to the closing 
section. If all the list items are not 
satisfied, control is passed to the input/ 
output interface to read (via the READ 
macro instruction> the next input record. 

LIST ITEM CALLS FOR WRITE REQUEST: 
IHCFCOMH/IHCECOMH processing is similar to 
that for a read request. The main dif
ference is that the conversion routines 
obtain data from the main storage addresses 
assigned to the list items rather than from 
an input buffer. The converted data is 
them transferred to an output buffer. If 
all the list items have not been converted 
and transferred prior to the encounter of 
the end of the format specification, con
trol is passed to the IHCFIOSH/IHCEFIOS 
routine. IHCFIOSH/IHCEFIO~ writes (via 
the WRITE macro instruction) the contents 
of the current output buffer onto the out
put data set. 

Formatting control for the remaining 
list items is then resumed at the group 
count of the left parenthesis corresponding 
to the last preceding right parenthesis, 
or, if none exists, from the first left 
parenthesis. 

If I·HCFCOMH/IHCECOMH detects an error in 
the format specification (condition 211>, 
it calls IHCERRM. Standard corrective 
action in the case of extended error handl
ing is to treat the invalid character as a 
terminal right parenthesis and continue 
execution. 

CLOSING SECTION: If the operation is a 
read- request;- the closing section simply 
returns control to the main program to 
continue execution. If the operation is a 
write requiring a format, the closinq sec
tion branches to the IHCFIOSH/IHCEFIOS 
routine. IHCFIOSH/IHCEFIOS writes (via the 
WRITE macro instruction) the contents of 
the current input/output buffer (the 
final record onto the output data set. 

224 

IHCFIOSH/IHCEFIOS then returns control to 
the closing section. The closing section, 
in turn, returns control to the compiler
generated code. 

DIRECT ACCESS READ/WRITE WITHOUT FORMAT 

Unformatted reading and writing for 
direct access data sets is handled by 
IHCFCOMH/IHCECOMH and IHCDIOSE/IHCEDIOS. 
The procedure is similar to that for 
sequential data sets. The compiler
generated object code calls IHCFCOMH/. 
IHCECOMH once for initialization, once for 
closing, and once in between for each item 
(variable or array) in the I/O list. 
IHCFCOMH/IHCECOMH calls IHCDIOSE/IHCEDIOS 
once for initialization, once for closing 
(if it is a write request>, and as many 
times in between as the input/output data 
requires. The actions of IHCFCOMH/IHCECOMH 
are identical to those for sequential 
unformatted read and write operations. The 
only exception is that IHCDIOSH/IHCEDIOS is 
called in place of IHCFIOSH/IHCEFIOS. 

Initialization Branch 

When IHCDIOSE/IHCEDIOS is given control, 
it checks the entry in IHCUATBL correspond
ing to the indicated data set reference 
number · to see if the data set has been 
opened. If not, IHCDIOSE/IHCEDIOS con
structs a unit block for that data set in 
an area acquired by a GETMAIN, and places a 
pointer to it in the IHCUATBL entry. (This 
unit block, which is slightly different 
from ones created by IHCFIOSH/IHCEFIOS, is 
diagrammed in Figure 21.> 

IHCDIOSE/IHCEDIOS next reads the Job 
File control Block (JFCB) via a RDJFCB 
macro instruction. The appropriate fields 
in the JFCB are examined to determine if 
the user included a request for track 
overflow and a BUFNO subparameter in his DD 
statement for this data set. If he did, 
they are inserted into the DCB skeleton in 
the unit block. If BUFNO was not included 
or was other than 1 or 2, a value of 2 is 
inserted in the DCB skeleton. IHCDIOSE/ 
IHCEDIOS next examines the data set dispo
sition field of the JCFB. If the data set 
is new and the requested operation is a 
write, IHCDIOSE/IHCEDIOS must first format 
the data set before it can do the actual 
writing. 

FORMATTING A NEW DATA SET: IHCDIOSE/ 
IHCEDIOS modifies~the--:JFci3-so that the 
disposition is old, and fills in the fol
lowing fields in the DCB in the unit block: 



.J2£!Ll:!~!~ 
BUFNO 
NCP 
DSORG 
MACR 
OPTCD 

DDNAME 

Se!tin9_2f_!!~!g_Q~f or~~~~ 
X' 02 1 Two buffers 
X' 02 1 Two DECBs 
X'40' Set for DSORG=PS 
x•oo20• Normal BSAM WRITE 
set to x•oo• or x•20• 
depending upon whether 
chained scheduling was not 
or was specified on the DD 
card as obtained from the 
JFCB. 
Set to FTnnFOOl, where 'nn' 
is the DSRN. 

Then an OPEN macro instruction, using BSAM, 
is issued (TYPE=J). The record length 
field, buffer address field, and DCB 
address field are filled in the DECB's. 
Then IHCDIOSE/IHCEDIOS issues sufficient 
WRITE macro instructions for fixed 
unblocked blank records to format the 
track(s). Record length and nwnber speci
fications are taken from the DEFINE FILE 
parameter list pointed to by IHCUATBL. 

The TRBAL field is used during BSAM 
writing to calculate whether there is 
enough room on the track for additional 
records after it has written the required 
number of fixed-length records. If the 
track is not full, data management does not 
create an RO record and the os utilities 
cannot process the data set. Therefore, if 
the track is not full, the library writes 
as many extra records as necessary until 
the track is complete. 

The data set is then closed. 
modified in the following way in 
it may be re-opened for BDAM and 
writing. 

The DCB is 
order that 
the actual 

DCB Fielg 
NCP 
DSORG 
MACR 

MACR + 1 
OPTCD 

Ne~!t.fog_f2Lfil2~-~EN 
x•oo• Reset for BDAM 
X' 02' DSORG=DA 
X'29' BDAM update 

X'28' 
x• 01 • 

and check 
BDAM WRITE by ID 
BDAM relative 
block address. 

The procedure then is the same as opening 
an old data set (see below>. 

OPENING A DATA SET WHOSE DISPOSITION IS 
OLD: The data set is opened for BDAM, wftfi 
the UPDAT option. In its open exit rou
tine, IHCDIOSE/IHCEDIOS supplies default 
values (from the IHCUATBL entry) for those 
omitted by the user. After the open, 
IHCDIOSE/IHCEDIOS inserts into the DECB's 
the address(es) of the buffer(s) obtained 
during control block opening. 

After doing this, or if the data set is 
already opened, IHCDIOSE/IHCEDIOS performs 
the following actions: 

• ~!!t.~: Upon initial branch, IHCDIOSE/ 
IHCEDIOS does no writing at this time, 
but only fills the buffer with zeros 
and passes buffer address and buffer 
length back to IHCFCOMH/IHCECOMH so the 
latter may begin moving in the list 
items. 

• Read: Upon initial branch, IHCDIOSE/ 
IHCEDIOS gets the relative record numb
er requested by the user, which has 
been passed along by IHCFCOMH/IHCECOMH. 
IHCDIOSE/IHCEDIOS examines the buff er 
to see if the record is already pre
sent. (This will be the case if the 
user previously requested a FIND for 
this record.) If not present, 
IHCDIOSE/IHCEDIOS issues a READ macro 
and, in either case issues a CHECK~ 
After updating the associated variable 
in the parameter list to point to the 
record following the one just read, 
IHCDIOSE/IHCEDIOS returns to IHCFCOMH/ 
IHCECOMH, passing the buffer address 
and length. 

WRITE OPERATION: When IHCFCOMH/IHCECOMH 
haS-filled-the-buffer with list items, it 
branches to IHCDIOSE/IHCEDIOS indicating a 
write request. IHCDIOSE/IHCEDIOS obtains 
the relative record number from the para
meter list passed along by IHCFCOMH/ 
IHCECOMH, and writes the record out via a 
WRITE macro instruction. It updates the 
associated variable in the parameter list 
to point to the record following the one 
just written. If single buffering is being 
used, it checks the write and returns to 
IHCFCOMH/IHCECOMH. If double buffering is 
being used, it postpones the check until 
its next call, and returns the address of 
the other buff er to IHCFCOMH/IHCECOMH. 

READ OPERATION: IHCDIOSE/IHCEDIOS handles 
any further read requests from IHCFCOMH/ 
IHCECOMH exactly as for the first (without 
checking for the data set being open). 

Final Branch 

WRITE OPERATION: 
IHCDIOSE/IHCEDIOS 
buffer. 

IHCFCOMH/IHCECOMH calls 
to write out the final 

READ OPERATION: IHCFCOMH/IHCECOMH 
to the compiler-generated code 
calling IHCDIOSE/IHCEDIOS. 

returns 
without 

Appendix F: Object-Time Library subprograms 225 



If IHCOIOSE/IHCEDIOS detects an input/ 
output error condition, it performs in a 
manner similar to IHCFIOSH/IHCEFIOS by 
issuing a SYNADAF macro, using the resul
tant information to build a 218 error 
message, and passing control to IHCERRM. 

IHCDlOSE/IHCEDIOS 
one time or another 
conditions: 

will also identify at 
the following error 

231--the data set indicated by the 
caller is sequential rather than 
direct. 

232--the record number requested is 
out of data set range. 

233--the indicated record length 
exceeds 32K-1. 

236--the read requested is for an 
uncreated data set. 

237--the specified record length is 
incorrect. 

In all these cases, IHCDIOSE/IHCEDIOS sets 
up the error message data and passes con
trol to IHCERRM. 

DIRECT ACCESS READ/WRITE WITH FORMAT 

Requests for direct access reads and 
writes with format are handled by IHCFCOMH/ 
IHCECOMH, with the assistance of IHCDIOSE/ 
IHCEDIOS and lHCFCVTH. The actions of 
IHCDIOSE/IHCEDIOS are exactly the same as 
for unformatted direct access reads and 
writes. The actions of IHCFCOMH/IHCECOMH 
are exactly the same as for sequential read 
and write requests with format, except it 
calls IHCDIOSE/IHCEDIOS instead of 
IHCFIOSH/IHCEFIOS. 

FIND 

Implementation of the FIND statement is 
very similar to implementation of the open
ing branch for a direct access read 
(explained above) . control is passed from 
the compiler-generated code to IHCFCOMH/ 
IHCECOMH and on to IHCDIOSE/IHCEDIOS. 
IHCDIOSE/IHCEDIOS opens the data set if 
need be, and then checks to see if the 
record is already in the buffer. If it is, 
IHCDIOSE/IHCEDIOS updates the associated 
variable. If not, it issues a READ macro. 
Then it returns through IHCFCOMH/IHCECOMH 
to the compiler-generated code. This READ 
begins filling the buffer. It is not 
checked until the next entry to IHCDIOSE/ 
IHCEDIOS for this data set. 

226 

READ AND WRITE USING NAMELIST 

Namelist reading and writing is handled 
by IHCNAMEL, with the assistance of 
IHCFIOSH/IHCEFIOS and IHCFCVTH. The 
compiler-generated object code branches 
only once to IHCNAMEL (to entry point 
FRDNL# for reads and to entry point FWRNL# 
for writes>, passing the address of the 
namelist dictionary containing the user's 
specifications. IHCNAMEL uses this dic
tionary information to direct its opera
tions, calling IHCFIOSH/IHCEFIOS to do the 
actual reading or writing, and the appro
priate sections of IHCFCVTH to convert data 
and move it from buffer to user area or 
vice versa. 

From the point of view of IHCFIOSH/ 
IHCEFIOS and IHCFCVTH, a namelist read or 
write is no different than any other for
matted sequential read/write operation. 
IHCNAMEL calls IHCFIOSH/IHCEFIOS .once to 
initialize the data set and once to close 
it, and as many times in between to read or 
write as the namelist data requires. 
IHCNAMEL calls IHCFCVTH as many times as 
the namelist data requires. 

The namelist dictionary, which is the 
compiled version of the user's NAMELIST 
statement, consists of a 2-word namelist 
name field (right-justified and padded to 
the left with blanks), and as many entries 
as there were items in the NAMELIST defini
tion. There are two types of entries: one 
for variables, and one for arrays. They 
are illustrated in Section 1, "Namelist 
Tables." 

Read 

IHCNAMEL first stores the END= and ERR= 
addresses, if they exist, in the proper 
locations in IHCFCOMH/IHCECOMH. This makes 
them available to IHCFIOSH/IHCEFIOS and 
IHCERRM if end-of-file or an input/output 
error occur. 

IHCNAMEL searches through the data read 
by IHCFIOSH/IHCEFIOS looking for the name
list name that is located in the dic
tionary. When it locates the namelist 
name, it picks up the next data item. It 
now searches through the dictionary 
entries, looking for a. matching variable or 
array name. When the name is located; 
IHCNAMEL obtains the associated specifica• 
tion information in that entry. 

Processing of the constant in the input 
data now begins. Each initialization con
stant assigned to the variabl.e or an array 
element is obtained from the input record. 



The appropriate conversion routine is . 
selected according to the type of the 
variable or array element. Control is then 
passed to the conversion routine to convert 
the constant and to enter ·it in·t.o: its 
.associated variable or array element. 

Note: One constant is required for a 
variable. A number of constants equal to 
the number of elements in the array is 
required for an array. A ~onstant may be 
repeated for successive array elements if 
appropriately specified in the input 
record. 

The process is repeated for the second 
and subsequent names in the input record. 
When an entire record has been processed, 
the next record is read and processed.· · 

Processing is terminated upon recogni
tion of the &END record. Control is then 
returned to the calling routine within the 
load module. 

IHCNAMEL takes the namelist name from 
the dictionary, puts it in the buff~r, and 
has IHCFIOSH/IHCEFIOS write it out. The 
processing of the variables and arrays 
listed in the dictionary then begins. 

The first variable or array name in the 
dictionary is moved to an output buffer 
followed by an equal sign. The appropriate 
conversion routine is selected according to 
the type of variable or array elements. 
control is then passed to the conversion 
routine to convert the contents of the 
variable or the tirst array element and to 
enter it into the output buffer. A comma 
is inserted into the buff er following the 
converted quantity. If.an array is being 
processed, the contents of its second and 
subsequent elements are converted, using 
the same conversion routine, and placed 
into the output buffer, separated by com
mas. When all of the array elements have 
been processed.or if the item processed was 
a variable, the next name in the dictionary 
is obtained. The process is repeated for 
this and subsequent variablr or array 
names~ 

If, at any time, the 
exhausted, the current 
and processing resumes 
fashion. 

record length is 
record is written 
in the normal 

When the last variable or array has been 
processed, the contents of the current 
record are written, the characters &END are 
moved ·to the buffer and written, and con.
trol is returned to the calling rou.tine 
within the load module. 

Error conditions 

IHCNAMEL calls IECERRM ·if it cannot find' 
a name in the ·dictionary <error 222>, if ·a 
~ame exceeds permissible length (221>, if 
1t·Cannot locate the required equal sign in 
~he input data' ( 223) I or· if a SUbSCript is' 
included fvr a variable or ·is out of range 
for an array. (224). · 

STOP AND PAUSE (WRITE-TO-OPERATOR) 

control is passed by the compiler~ 
gen:erated code to the FSTOP section of 
IHCFCOMH/IECECOM1I.; This section determines 
if there is a. user message attached~ If 
not, it simply branches to the IBEXIT 
section Of IHCFCOMH/IHCECOMH to terminate 
load module execution~ If there is a 
message, the FSTOP section issues the mes
sage to the console via SVC 35. It then 
branches to the IBEXIT section to terminate 
load module execution. 

Control is passed by the compiler,;.; 
generated code to the FPAUS section of. 
IHCFCOMH/IHCECOMH. FPAUS issues a SV~ 35 
including the user's message or identifier, 
or "00000" if there was none. It then 
issues a WAIT to determine when the reply 
has been transmitted. After the operator 
or terminal user replies:, IHCFCOMH/IHCECOMH 
returns control to the compiler-generated 
code. 

BACKSPACE 

control is passed from the compiler
generated code to the FBKSP section .of 
IHCFCOMH/lHCECOMH, ·which riasses control to 
IHCFIOSH/IHCEFIOS. 

For unblQC::ked records, IHCFIOSH/IHCEFIOS 
issues a physical backspace (BSP) to posi
tion to the desired record. If 2 bnff ers 
are used, it· must backspace twice. to 
account . for having read a record ahead. 
Before backspacing an output data. •Set ali 
WRITE : ·reqUes~ts are· Checked and an endfile 
mark' is written by: issuing •a·. T-CLOSE. If 
:the . record form is v, it.:·reads the recorq 
and examines the segment Descriptor Word :to 
determine if it has found• the first seg-

Appendix F: Object-Time Library Subprograms ';.2] 



ment. If it has, it issues another back
space. If it has not found the first 
segment, 2 backspaces are issued until the 
first segment is obtained, in which case it 
need only issue a final backspace. 

For FB and VB records it must keep track 
of the location within the block of the 
record it wants. For the case of blocked 
records a BACKSPACE statement does not 
necessarily imply issuing a physical back
space request. A phy~_ical backspace is 
only required when _the preceding logical 
record desired is in the block preceding 
the block presently in the buffer. 
IHCFIOSH/IHCEFIOS determines the length of 
the block read by subtracting the residual 
count in the ccw from the DCB blocksize. 
This information is used in calculating the 
proper logical record in the buffer to 
satisfy the FORTRAN BACKSPACE. Spanned 
records may require searching back through 
more than one physical record. 

Control 
IHCECOMH, 
program. 

REWIND 

is returned 
which returns 

to IHCFCOMH/ 
to the main 

The compiler-generated object code 
passes control .to the FRWND section of 
IHCFCOMH/IHCECOMH, which passes control to 
IHCFIOSH/IHCEFIOS. 

Il!CFIOSH/IHCEFIOS issues a CLOSE macro 
with the REREAD option for the indicated 
data set. This has the effect of rewinding 
it. A FREEPOOL macro is issued to release 
the buff er space. control returns through 
IHCFCOMH/IHCECOMH to the main program. 

END-FILE 

~ontrol is passed by 
generated object code to the 
of IHCFCOMH/IHCECOMH, which 
to IHCFIOSH/IHCEFIOS. 

the compiler
FEOFM section 
passes control 

If the previous operation for this data 
set was a read, IHCFIOSH/IHCEFIOS sets the 
DCBOFLGS bit to d~y a write operation. 
It issues a CLOSE macro with type T. This 
effects the writing of the end-of-file 
mark. (A 'T-CLOSE' rather than a full 
CLOSE is issued in order to handle any 
subsequent BACKSPACE requests.> A FREEPOOL 
macro is issued to release the buffer 
space. Return is through IHCFCOMH/IHCECOMH 
to the compiler-generated code. 

228 

ERROR HANDLING 

The library is designed to handle the 
following error conditions: 

• some compiler-detected source statement 
errors 

• library-detected errors 

• some program interrupts 

• scheduled load module abnormal 
termination 

• some user-defined and user-detected 
errors (only if extended error handling 
has been selected> 

Library operations for interrupts and for 
errors it detects itself depend on whether 
the extended error handling facility was 
selected at program installation time. 

The following library modules are con
cerned primarily with error handling: 

o IHCADJST 

• IHCERRM 

• IHCFINTH/IHCEFNTH 

• IHCFOPT 

• IHCIBERH 

• IHCSTAE 

• IHCTRCH/IHCETRCH 

• IHCUOPT 

In addition, IHCFCOMH/IHCECOMH is used for 
initialization, loading, and termination; 
IHCFCVTH is used for converting error mes
sage data; and IHCFIOSH/IHCEFIOS is used 
for printing error messages out. 

COMPILER-DETECTED ERRORS: IHCIBERH 

When the compiler examines and trans
lates the user's source statements, it may 
recognize one to be faulty, and nonexecut
able. At the corresponding location in the 
object code, the compiler inserts a branch 
to the library program IHCIBERH. The load 
module then executes in its usual fashion 
up to this point, when IHCIBERH gains 
control. 

If the faulty statement has an Internal 
Statement Number <ISN>, IHCIBERH translates 

.it into hexadecimal and inserts it into its 



error message--230. It also picks up the 
name of the user routine containing the 
faulty statement, and adds it to the mes
sage. After IHCERRM is utilized to have 
the message printed out, IHCIBERH goes to 
the IBEXIT section of IHCFCOMH/IHCECOMH to 
have load module execution terminated. 

PROGRAM INTERRUPTS 

Part of the library's initialization 
procedure is to issue a SPIE macro instruc
tion, informing the system that the library 
wishes to gain control when certain program 
interrupts occur. The SPIE, issued by 
IHCFCOMH/IHCECOMH, specifies library con
trol for the following interrupts: 

6--specification• 
9--fixed-point divide 

11--decimal divide 
12--exponent overflow 
13--exponent underflow 
15--floating-point divide 

The exit routine address specified for all 
of the above is ARITH#, the beginning of 
IHCFINTH/IHCEFNTH. (If interrupts 2, 3, 4, 
5, or 7 occur for the load module, the 
system begins abnormal termination proces
sing. codes 8, 10 and 14 are disabled when 
the task gains control, so these interrupts 
never occur.> 

IHCFINTH/IHCEFNTH receives control from 
the system, which passes the address of the 
Program Interrupt Element (PIE) in register 
1. IHCFINTH/IHCEFNTH first saves the 
interrupted program's registers 3-13 (the 
system saves only 14-2 in the PIEi. 
IHCFINTH/IHCEFNTH next examines the old 
Program Status Word (PSW) in the PIE to see 
if the interrupt was precise or imprecise, 
and, if the latter, whether single or 
multiple. (Imprecise interrupts are 
explained more fully in the publication !~~ 
system/360 Operating system: sup~~~i~2~ 
and Data Management Servi£~~· Order No. 

GC28-6646.) This information is inserted 
in the error message--210. The specific 
interrupt type(sl is then determined. 

Action for Interrupts 9, 11, 12, 13, and 15 

IHCFINTH/IHCEFNTH sets the switch OVFIND 
or DVCIND in IHCFCOMH/IHCECOMH to indicate 
that one of the three divide checks or 

•Issued only if the 
boundary alignment 
installation time. 

user 
option 

selected the 
at program 

exponent overflow or underflow has 
occurred. (These switches are referenced 
by the routines IHCFOVER and IHCFDVCH.J 
When extended error handling is not in 
effect, IHCFINTH takes the following corre
ctive actions: 

9--nothing 
11--nothing 
15--if the operation is O.O/O.O, the 

answer register<s> is set to o.o; 
if the operation is X.Y/O.O 
(X.Y*O.O>, the answer register<s> 
is set to the largest possible 
floating-point number 

12--the result register(sl is set to 
the largest possible floating-point 
number 

13--the result register(s) is set to 
0.0; if the underflow resulted from 
an add or subtract operation, the 
condition code in the old PSW is 
set to o. 

Note that for corrective actions with 12, 
13, and 15, it is necessary for IHCFINTH to 
first determine if the faulty instruction 
contains single or double precision 
operands. 

IHCFCVTH is called <twice) to convert 
the error message contents, and IHCFIOSH is 
called to print it out. Then IHCFINTH 
returns to the system interrupt handler, 
and load module execution eventually 
resumes at the instruction following the 
one that caused the interrupt. 

When extended error handling has been 
selected, IHCERRM is called to determine if 
the user desires his own corrective action 
for this error. (This procedure is 
described in the section "Extended Error 
Handling" below.> If no user action is 
specified, the standard actions described 
above are followed. In either instance, 
IHCERRM has the error message printed out. 

When a specification interrupt has 
occurred, IHCFINTH/IHCEFNTH loads IHCADJST, 
if not already loaded. After preparing the 
error message, it branches to INCADJST 
passing the PIE and other information. 

There is a great variety of error condi
tions that can cause a specification inter
rupt. (They are explained in the publica
tion IBM System/360: Principl~~_Qf__Q~~~= 
tion, Order No. A22-6821.l IHCADJST is 
designed to correct only one--the misalign
ment of operand data in core. For any 
other condition, IHCADJST causes an abnor
mal termination by cancelling the SPIE, 

Appendix F: Object-Time Library Subprograms 229 



backing up th.e PSW pointer to the instru:::
tion that caused the original interrupt,• 
ar.d returning to the system. · 

When IHCADJST determines that it has a 
data boundary alignment problern·to correct, 
it calls IHCFINTH/IHCEFNTH to have the 
error message (210) written out. Next 
IHCADJST issues a new SPIE, for protection 
(4) and addressing (5) exceptL:is, so that 
if an interrupt occurs while it.is trying 
to fetch .a copy of the operand data, its 
own special section--PAEXCPT--will gain 
control. If one of these eicceptions does 
occur, PAEXCPT calls IHCFINTH/IHCEFNTH to 
have the error message written, and then 
causes abnormal termination as described 
above. 

After IHCADJST has properly aligned the 
data in a temporary storage location and is 
ready to try to re-execute the original 
instruction, it issues yet another SPIE 
(overlaying the previous> for interrupts 4, 
1, 9, 11, 12, 13, and 15. If re-execution 
of the original instruction is successful, 
and the Rl field of the instruction re
executed was 14, 15, O, or 1, IHCADJST puts 
the new contents of that register into the 
PIE. If the condition code was changed by 
the re-execution, the new condition code is 
put into the PSW located in the PIE. If 
the instruction re-executed was a ST, STE, 
or STD, the data is moved to the correct 
location in the load module. The original 
load module SPIE is re-established, and 
control is returned directly to the super
visor, rather than via IHCFINTH/IHCEFNTH. 
Note that the correction of data misalign
ment is only temporary; the permanent loca
tions of user variables remain the same. 

If re-execution of the original instruc
tion causes a second interrupt, control is 
given to EXCPTN in IHCADJST. For code 7, 
IHCFINTR/IHCEFNTH is called to have the 
error message written, and IHCADJST then 
causes abnormal termination in the manner 
described above. For the other exceptions, 
the original PIE is reconstructed, the 
original SPIE re-established, an~ control 
passed back to IHCFINTH/IHCEFNTH to process 
this new interrupt in its usual fashion. 

LIBRARY-DETECTED ERRORS 

A number of the library routines 
examine their operational data for flaws. 

•In the case of instruction misalignment, 
when it is determined the next instruction 
is also misaligned and will cause abnormal 
termination just as well, the PSW pointer 
is not changed. 

230 

For example·, most of the mathematical rou
tines check to see if the arguments are 
within specified ranges; .IHCFCVTH, in some 
cases, sees whether the data it is asked to 
convert is·actually in the form specified. 

When a library routine finds an error, 
it sets up a branch to IHCERRM. If 
extended error handling has been selected 
for the library, this is a separate module. 
If not, it is simply the entry point name 
for module IHCTRCH (and module IHCERRM does 
not exist). Without extended error han
dling,· library-detected errors are ·almost 
always treated as terminal conditions. 

Without Extended Error Handling 

IHCTRCH is passed the number of the 
error condition and the message if one is 
to be printed for this particular case.• 
IHCTRCH's functions are to have the error 
message printed and, more significantly, to 
create the traceback map and have it 
printed. IHCTRCH employs IHCFCVTH to con
vert information to printable decimal and 
hexadecimal format, and IHCFIOSH to do the 
actual printing. Then IHCTRCH calls the 
IBEXIT section of the IHCFCOMH to terminate 
load module execution. Condition 218 is an 
exception if the user has specified an ERR= 
parameter on his READ source statement. In 
this case, IHCTRCH picks up this address 
from IHCFCOMH and passes control to it. 

The traceback information printed con
sists of routine names in the load module 
internal calling sequence, the IS~ of each 
branch instruction, and each routine's 
registers 14-1. In most cases, the map 
begins with the routine that called the 
library module that detected the error, 
then lists the routine that called that 
caller, and so on back to the compiler
generated main program. In the case of the 
mathematical routines, however, the trace
back map begins with that mathematical 
routine detecting the error. IHCTRCH gets 
the map information by using register 13 as 
a starting point and working its way back 
through the linked save areas. Because 
some library routines (e.g., IHCFCOMH) do 
not use standard saving procedures, the 
tracing can become rather complicated. 

IHCTRCH terminates the trace when it 
finds it has done one of three things: 

1. reached the compiler-generated main 
routine 

•Errors 211-214, 217, 219, 220, and 231-237 
have only IHCxxxI printed out, without any 
text. 



2. reached 13 levels of call 

3. found a calling loop 

In the second and third ,cases, it prints 
'TRACEBACK TERMINATED', and in all cases 
prints the main program entry point. 

IHCTRCH goes .immediately to· the IBEXIT 
section of IHCFC.OMH for termination if it. 
is entered a second time. This can happen 
if an input/output error occurs wnile 
IHCFIOSH is trying to print IHCTRCH's 
output. 

With Extended Error Handling 

When a.library routine. detects an: error 
and extended error handling is available, 
it branches to the error monitor routine 
IHCERRM. The operation of this routine is 
explained below in the section "Extended 
Error Hand,ling Facility." 

ABNORMAL TERMINATION PROCESSING 

When the load module has been scheduled 
by the system for abnormal termination, the 
library attempts to have any output buffer 
contents written out. 

During load module 
IHCFCQMH/IHCECOMH issues a 
cifying that if the load 
scheduled for abnormal 
address EXITRTNi. in. 
should be given control 

initialization, 
STAE macro, spe
module is ever 

termination, the 
I.HCFCOMH/IHCECOMH 

by the system. 

When EXITRTNl does gain control0 it 
loads IHCSTAE from the link library and 
branches to it, .passing a.long the system 
input/output status codes it received. 
These are: 

Code Cin 
Register 6) 

0 

8 

12 

Meaning 
Active input/output was 
quiesced and is restorable 

Active input/output was 
halted and is not restorable 

No active input/output at 
abnormal termination time 

No space available for work 
area 

IHCSTAE looks at this code and deter
mines which action it will take. 

After using IHCFCVTH to convert the 
abnormal termination code <either system or 
user) and the load module PSW into hexade
cimal, IHCSTAE inserts them into its error 
messages C240l, and issues the messages via 
WTO macro instructions. Then it returns to 
the supervisor, indicating <with a O in 
register 15) the abnormal termination is to 
be completed. 

Codes 0 and 8 

After using IHCFCVTH to convert the 
abnormal termination ~ode (either system or 
user) and the load module PSW into·· hexade
cimal, IHCSTAE inserts them into its mes
sages. Then, I.HCSTAE returns to the super
visor, indicating with a 4 in register 15 
that a retry attempt (RETRY in IHCSTAEl is 
wanted. When this section gains control, 
it first issues.another STAE macro instruc
tion specifying a new exit routine, so that 
in the event of a new abnormal termination 
condition arising, looping will not occur. 
Next, the system's STA.E ~ork area is tested 
to see whether there is active restorable 
input/output or no input/output active at 
.all. If the former, SVC 17 is issued 
<RESTORE macrol to prepare fo~ the resump
tion of the load module's .input/output 
activity. 

In both cases, IHCERRM is ·called to 
print message 240 and a traceback map. 
Before calling IHCERRM, however, IHCSTAE 
searches through the chained save areas 
(beginning with the supervisor's> to deter
mine whether or not the abnormal termina
tion condition will prevent the traceback 
map from listing the routine causing the 
abnormal termination; if it will, IHCSTAE 
appends a statement to this effect in its 
error message. 

If extended error handling is not in 
effect, IHCTRCH (entry point IHCERRM) exits 
to the IBEX.IT section of IHCFCOMH/IHCECOMH, 
If extended error handling is in effect, 
IHCERRM returns to IHCSTAE, which calls the 
IBEXIT section.of IHCFCOMH/IHCECOMH. The 
IBEXIT section calls IHCFIOSH/IHtEFIOS to 
complete pending output requests--that is, 
flush the buffers. (This is the normal 
load module termination process.> 
IHCFCOMH/IHCECOMH finally returns to the 
supervisor. 

In the event of a second abnormal ter
mination condition occurring, control is 
given to EXITRTN3 in IHCSTAE. No retry is 
attempted. Messages are issued, via WTO 
macro instructions, and control is returned 

Appendix F: object-Time Library Subprograms 231 



to the supervisor to complete abnormal 
termination. 

EXTENDED ERROR HANDLING FACILITY 

Three routines are centrally involved 
with extended error handling operation. 
They are: 

1. IHCUOPT--the option table 

2. IHCFOPT--the routine available to the 
user to reference and modify the 
option table 

3. IHCERRM--the routine that handles the 
errors according to the option table 
entries 

In addition, IHCETRCH is used to produce 
traceback maps. (When extended error han
dling has not been selected, IHCFOPT does 
not exist at all, IHCERRM does not exist as 
a module but only as an entry point in 
IHCTRCH, and IHCUOPT is only 8 bytes long.) 

The format of the option table is illus
trated in Figures 22 through 24. The table 
is referenced by displacement. It is 
sequential, but begins (after a preface> 
with error 207--the lowest library error. 
There is an entry for every number from 207 
to 301, although the library recognizes no 
error condition for some of them -- e.g., 
239 <they are reserved for future use). 
Thus, the entry for error 258 is 
(258-207+1)x8 bytes into the table (allow
ing for the preface>. A few library error 
numbers (900-904> are not in the table. 

Certain values are inserted in the 
option table at system generation time. 
These original values are listed in Figure 
25. The user has the power to alter some 
of these values temporarily--that is, alter 
the copy in main storage for the duration 
of the load module--by using FORTRAN source 
statements. All the library error entries 
except 230 and 240 can be altered. 

The user's source statement requests for 
referencing and altering the option ·table 
are handled by IHCFOPT, which is branched 
to directly by the compiler-generated code. 
IHCFOPT has three entry points for its 

232 

three functions: 
ERRSET. 

ERRSAV, ERRSTR, and 

ERRSAV AND ERRSTR: These two functions are 
quite simple. They are passed an error 
number and an address. ERRSAV takes a copy 
of the requested error number entry from 
the table and places it at the indicated 
address. ERRSTR takes the new 8-byte entry 
from the indicated user address and inserts 
it in the table, overlaying the original 
entry. 

ERRSAV and ERRSTR both first check to 
see that the error number is within the 
table range. If it is not, they issue 
message 902, employing IHCFCVTH and 
IHCEFIOS in the process. ERRSTR also 
checks bit 1 of byte 4 of the old table 
entry to make sure modification is permiss
ible. If it is not, it issues message 903, 
with the help of IHCFCVTH and IHCEFIOS. 
Return is to the calling program in all 
cases. 

~EE§ET: ERRSET also modifies table 
entries, but is more flexible than ERRSTR. 
It is passed either five or six parameters, 
and takes the following actions: 

• The error number: a reference only. 

• ~--~~-!i~it_£2~1_fQE_~1EY_fi~!~-2~: 
contents are moved in as is, unless the 
count is greater than 255, in which 
case the field is set to o, or unless 
the count is O, in which case no action 
is taken. 

• ~-~~~~~~~~~--£2~~1 __ f2E--~~1EY__fiel~ 
two: contents are moved in as is, 
unless they are negative or zero. If 
they are negative, the field is set to 
O; if they are O, no action is taken. 

• Traceback_E~9!:!~~te~L2E-~!:!EE!:~~~: if 
1, bit 6 of entry field four is turned 
off; if O, it is turned on; if any 
other number, no action is taken. 

• A user exit routine addressL_or ab~!!£~ 
thereofL __ f2E--~~1!:Y __ fie!2_ fiv~: the 
value is moved in as is. 

• (Optional parameter! - Either an error 
number higher than one--in the first 
12arameter, or, if the first~~~1~f 
is error 212, a reguest for print 
control: in the first case, all 
entries from the lower number to the 
higher are altered as indicated; in the 
second case, if a 1, bit 0 of field 
four is set to 1, if not a 1, it is 
set to O. 

ERRSET checks to make sure that the error 
number entry or entries indicated are 
within the table range. If not, it issues 



message 902, using IHCFCVTH and IHCEFIOS. 
ERRSET also checks to make sure that the 
entry or entries permit modification. If 
they do not, it issues message 903 using 
IHCFCVTH and IHCEFIOS. 

The error monitor is called in the 
following three cases: 

1. When a library module has discovered 
an error condition during its proces
sing <entry point IHCERRM) 

2. When the user's program has detected 
one of the user-defined errors (302-
899> and wishes to handle it according 
to his option table entry (entry point 
ERRMON) 

3. tiurinq normal load module termination 
processing, to give the error count 
summary <entry point IHCERRE> 

In the first two cases, the error monitor 
consults the corresponding entry in the 
option table IHCUOPT to determine what 
actions it will take for this particular 
error condition. 

After using the error number passed to 
it to locate the corresponding option table 
entry, the error monitor updates the error 
count field and compares it to the limit 
field. If the limit is now exceeded, it 
begins the termination process. This 
involves having IHCEFIOS print out message 
900 and the error message passed by the 
caller (if the option table indicates it is 
desir.ed), and having IHCETRCH produce the 
traceback map (if the option table so 
indicates>. Finally, the IBEXIT section of 
IHCECOMH is gi~en control. (The error 
monitor may be entered again to give the 
error summary. See "Error Summary."> 

If the error count limit is not yet 
exceeded, the error monitor has the caller 
error message and the traceback map pro
duced (if the table so indicates>, using 
IHCEFIOS and IHCETRCH, respectively. Then 
it sees whether or not a user exit routine 
is specified. If it is, IHCERRM branches 
to it passing along data supplied by the 
routine that detected the error. The 
nature of this data depends on the error 
detected. 

The user routine is required to return 
to the error monitor, indicating that it 
has either performed correctiv~ action 
itself Ca 1 in the first parameter>, or 
wants standard library corrective action Ca 
0 in the first parameterl. The error 

monitor issues a message reporting on this 
status, and then returns to its original 
caller, passing the correction code. The 
caller either resumes its normal proces
sing, or does its standard correction 
before continuing. 

If the error monitor finds no user exit 
address, it returns to the caller request
ing standard correction. 

SPECIAL CONDITIONS: The error monitor will 
not allow recursive usage. If it is 
entered a second time before its current 
processing is finished, it issues message 
901 and begins the termination procedure. 
The error monitor also checks to make sure 
the error number specified is within the 
option table range; if it is not, it issues 
message 902. 

The error monitor performs an additional 
step when it finds.the error to be 218. In 
this case, after going to the user exit 
routine if there was one, IHCERRM deter
mines from IHCECOMH if the user has spec
ified an ERR= address on his READ source 
statement. If so, IHCERRM branches to it. 

For error 218, the error monitor issues 
a FREEMAIN macro instruction to free the 
message area the calling routine acquired. 

ERROR SUMMARY: The summary routine (entry 
IHCERRE> simply loops through the option 
table, finding those entries for which 
errors have occurred during load module 
execution, and putting the error numbers 
and their accumulated counts in the mes
sage. It uses IHCFCVTH for conversion and 
IHCEFIOS for printing. If IHCEFIOS has 
identified an error ·condition for the 
object error unit, the summary is skipped. 

g~t~~~~d Error Handling Trackback--IHCETRCH 

IHCETRCH performs in the same manner as 
IHCTRCH, with these three exceptions: 

1. IHCETRCH is called by IHCERRM, rather 
than directly by the error~detecting 
routine. 

2. IHCETRCH does not have the error
detecting routine's message printed 
out, since this is done by IHCERRM. 

3. IHCETRCH can also be called by the 
user, through a source statement call
ing its entry point ERRTRA. A trace
back requested in this way is not 
necessarily connected with any error 
condition. IHCETRCH returns to the 
user program. 

Appendix F: Object-Time Library Subprograms 233 



Table 11. IHCFCVTH Subroutine Directory 

r----------T----------------------------------------------------------------------------1 Subroutinet Function '• 1 
~----------+----------------------------------------------------------------------------~ I FCVAI !Reads alphameric data. l 
I FCVAO Writes alphameric data. l 
I FCVCI Reads complex data. I 
I FCVCO Writes complex data. l 
I FCVDI Reads double precision data with an external exponent. I 
I FCVDO Writes double precision data with an external exponent. l 
I FCVEI Reads real data with an external exponent. I 
I FCVEO Writes real data with an external exponent. I 
I FCVFI Reads real data without an external exponent. I 
I FCVFO Writes real data without an external exponent. I 
I FCVGI Reads general type data. I 
I FCVGO Writes general type data. I 
I FCVII Reads integer data. I 
I FCVIO Writes integer data. I 
I FCVLI !Reads logical data. I 
I FCVLO !Writes logical data. I 
I FCVZI !Reads hexadecimal data. I 
I FCVZO !Writes hexadecimal data. I 
l----------i----------------------------------------------------------------------------J 
CONVERSION 

Routine IHCFCVTH, the library conversion 
routine, is called by IHCFCOMH/IHCECOMH to 
convert user input/output data under FORMAT 
control, by IHCNAMEL to convert user input/ 
output data under NAMELIST control, and by 
service routines (such as IHCFDUMP and 
IHCDBUG> and error handling routines <such 
as IHCERRM and IHCTRCH) to convert output 
data into printable (EBCDIC) hexadecimal 
and/or decimal form. 

IHCFCVTH is divided into a number of 
subroutines <see Table 11>. Each subrou
tine is designed to convert a particular 
type of input or output data. The library 
routine calling IHCFCVTH selects which con
version operation it wants, and branches to 
the appropriate subroutine. The calling 
routine passes the address of the existing 
data item, the address at which to place 
the result, the length, scale factor, and 
decimal point location of the existing data 
item 0 and other related information. 

The subroutine then converts and moves 
the data item, and returns to its caller. 

The library contains a large number of 
mathematical routines, and some service 
routines. When a particular routine has 
been requested by the user in his source 
program (by entry point name>, or when the 
compiler has recognized an implicit need 
for a mathematical function, it is branched 
to directly from the compiler-generated 
code. 

234 

MATHEMATICAL ROUTINES 

The mathematical routines are generally 
independent of the other library programs 
(except when they detect errors or cause 
arithmetic-type program exceptions). They 
perform their calculations, possibly with 
the assistance of another mathematical rou
tine or two, and return .directly to the 
compiler-generated code. The internal 
logic of these routines is documented in 
the publication IBM S stem 360 o eratin 
System: FORTRAN IV Library--Mat emat cal 
~~--§~~Y!£g __ §~QE~Q9'.!:e~2· Order No. GC28-
6818, under the section "Algorithms." 

SERVICE SUBROUTINES 

IHCFDVCH (Entry Name DVCHK) 

The function of IHCFDVCH is to test the 
status of the divide check indicator switch 
(DVCIND--located in IHCFCOMH/IHCECOMH) and 
return an answer in the location specified 
in the call. This switch is turned on <set 
to X' FF' by the library's interrupt handler) 
when it finds a divide exception has 
occurred. IHCFDVCH inserts a 1 in the 
calling program's answer location if the 
switch is on, or a 2 if it is off.* The 
answer location is the argument variable in 

*Before checking the switch, both IHCFDVCH 
and IHCFOVER issue .the special no
operation BCR 15,0, which drains pipe-line 
models <e.g. 0 Models 91 and 195> to 
ensure sequential execution.· 



the original FORTRAN statement CALL 
DVCHK(argl. Its address is pointed to by 
Register 1 when IHCFDVCH gains control. 

If the DVCIND switch is on, IHCFDVCH 
turns it off (set to X'OO'): if off, it is 
left off. IHCFDVCH returns to the calling 
program. 

IHCFOVER (Entry Name OV~B!'.'.bl 

IHCFOVER tests for overflow and under
flow, and performs in a manner similar to 
IHCFDVCH. The switch it tests is OVFIND -
which is also found in IHCFCOMH/IHCECOMH, 
and set by the library interrupt handler. 
OVFIND set to X'FF' indicates overflow has 
occurred, X'01' indicates underflow, X'OO' 
indicates neither. IHCFOVER sets the call
er's answer location to 1 for overflow, 3 
for underflow, and 2 for neither. 

If on, OVFIND is turned off; if off, 
left off. IHCFOVER returns to the calling 
program. 

IHCFSLIT performs two functions: sets 
the pseudo-sense lights (entry SLITE>, and 
reports back to the caller on their status 
(entry SLITETl. . 

The four pseudo-sense lights are four 
bytes in IHCFSLIT labelled SLITES. These 
switches are not connected with any system 
switches, nor directly with any system 
condition. They ·are internal to the load 
module, and have meaning only to the FOR
TRAN user, who, employing IHCFSLIT, both 
sets and interprets them. 

SETTING THE SWITCHES: SLITE either turns 
off all the switches <sets them to X1 00'l, 
or turns on one (sets it to X'FF'l. When 
the argument passed to it is o, SLITE turns 
all switches off. When the argument is 
1-4, it turns on the corresponding switch-
that is, an argument of 2 turns on the 
second (from left> byte of SLITES. 

TESTING THE SWITCHES: SLITET is passed two 
parameters, the first indicating the parti
cular switch to be tested, and the second 
pointing to a location for its answ·er. 
SLITET returns the answer 1 if it finds the 
switch on, and 2 if it is off. .If it finds 
the switch on, it turns it off; if it is 
off, it is left off. · · 

ERROR CONDITIONS: 
first test their 
range. For SLITE, 
SLITET, 1_.4. When 

Both SLITE and SLITET 
arguments for correct 

this must be . 0-4; for 
an argument is in error, 

they get the address of the integer output 
section of IHCFCVTH (FCVIO) from IHCFCOMH/ 
IHCECOMH, and branch to it to have the 
error message contents converted. Then 
IHCFSLIT branches to IHCERRM (see the sec
tion on library-detected errors). 

If extended error handling is not in 
effect, IHCERRM goes to the IBEXIT section 
of IHCFCOMH/IHCECOMH to terminate load 
module execution. If extended error han
dling is in effect, and IHCFSLIT, upon 
regaining control, finds the user did no 
special fixup, IHCFSLIT's standard correc
tive action is as follows: 

SLITE: no action at all 
SLITET: answer returned to caller is 2; 

no switches are changed 

IHCFEXIT (Entry Name EXIT) 

IHCFEXIT 
section of 
terminates 
usual way. 

simply branches to the IBEXIT 
IHCFCOMH/IHCECOMH, which then 
load module execution in its 

IHCFDUMP (Entry Names DUMP and PDUMP) 

IHCFDUMP's function is to have 
out on the object error unit.the 
contents specified in the call, 
format specified. The ·.absolute 
location of each request is also 
out. 

printed 
storage 
in the 
storage 
printed 

The call parameters are in ·this form: 

DC AL4(All 
DC AL4(Bl) 
DC AL4CF1) 

DC AL4CAn) 
DC AL4(Bn) 
DC XLl'FF',AL3CFn) 

where A and B are addresses of the outer 
limits of the storage to be dumped, ~nd F 
is either the integer format number itself, 
or the address of a location containing the 
number. The specifications are: 

0 hexadecimal 
1 = LOGICAL*l 
2 = LOGICAL*4 
3 = INTEGER*2 

.4 = INTEGER*4 
5 = REAL*4 
6 -· REAL*8 
7 COMPLEX*8 
8 = COMPLEX*16 
9 = lit/er al 

Appendix F: object-Time Library Subprograms 235 



If the user passes any other number, 
IHCFDUMP chooses 0 (hexadecimal> as a 
default format. 

The procedure is identical for DUMP and 
PDUMP, except for two things: 

• if DUMP finds an input/output correc
tive action routine is in process, it 
functions normally; PDUMP, however, 
instead of processing, goes to section 
ERR904 in IHCFCOMH/IHCECOMH to print 
error message 904 and to terminate load 
module execution. (An input/output 
corrective action routine in process is 
indicated by the first byte of SAVE in 
IHCFCOMH/IHCECOMH set to anything other 
than X'FF'.l 

• after normal processing, DUMP goes to 
the IBEXIT section of IHCFCOMH/IHCECOMH 
to terminate load module execution; 
PDUMP, however, returns to the caller 
for continued execution. 

IHCFDUMP uses IHCFCVTH and IHCFIOSH/ 
IHCEFIOS to assist in its operations. 
After getting the address of IHCFIOSH/ 
IllCEFIOS from IHCFCOMH/IHCECOMH, IHCFDUMP 
branches to initialize for printing. It 
next moves a section to be dumped into the 
IHCFIOSH/IHCEFIOS buffer, and determines 
the format type requested.* It passes this 
information to the FCVZO part of IHCFCVTH 
<'Z' output>, for conversion. Lastly, it 
branches to IHCFIOSH/IHCEFIOS to print out 
the line. IHCFDUMP loops in this manner 
until it exhausts the calling list. 

If, during the printing, IHCFIOSH/ 
IHCEFIOS indicat.es it has encountered an 
input/output error, IBCFDUMP skips the re
mainder of its work. 

IHCDBUG is called by the compiler
generated object code to implement most 
user DEBUG requests. Generally, IHCDBUG 
assembles debug information and uses 
IHCFIOSH/IHCEFIOS to write it out. IHCDBUG 
may also have occasion to use IHCFCVTH 
data conversion), IHCNAMEL <to produce 
PLAY requests), IHCUATBL (to obtain 
default object error unit number>, 
IHCFCOMH/IHCECOMH <in which to store 
registers). 

(for 
DIS

the 
and 

user 

*IHCFDUMP P.Xpects tl.e format type requested 
to correspond to the format of the data in 
main storage. Therefore, asking it to 
print out an INTEGER variable in REAL 
format, for example, will result in a 
garbled dump. 

236 

IHCDBUG has a single entry point-
DEBUG#--which is the head of a branch 
table. This table is outlined in Table 12. 

Table 12. IHCDBUG Transfer Table 
r------T--------T-------------------------1 
!Dis- !Branches! I 
I place-I to I I 
lment !Section I Function of Routine I 
~------+--------+-------------------------i 

0 TRACE !Pass label of statement 
lto be traced 

4 SUBTREN Pass subprogram name on 
entry 

8 SUBTREX Pass 'RETURN' on subpro
gram exit 

12 UNI'I' Initialize data set 
reference number for 
output 

16 INITSCLR Pass data for initialized 
variable 

20 INITARIT Pass data for initialized 
array element 

24 INITARAY Pass data for initialized 
!array 
I 

28 
I 
ISUBCHK !Pass data on referenced 

32 

I 
I 
ITRACEON 

!array element 
I 
!Turn on trace switch 

I I 
36 ITRACEOFF'ITurn off trace switch 

I I 
40 !DISPLAY !Display referenced items 

I I 
44 ISTARTIO !Begin input/output 

I !operation 
I I 

48 IENDIO IEnd input/output 
I !operation 

L------~--------~-------------------------

In addition to the 13 routines listed in 
the branch table, IHCDBUG uses the follow
ing subroutines: 

• OUTITEM, whic~ puts a data item into 
DBUFFER 

• OUTNAME, which puts 
array or variable into 

• OUTINT, which converts 
EBCDIC 

the name of 
DBUFFER 
an integer 

an 

to 

• OUTFLOAT, which puts a floating-point 
number into DBUFFER 

• OUTBUFFER, which controls the output 
operation for DBUFFER 

• ALLOCHAR, which moves a character to a 
save area 

• FREECHAR, .which extracts a character 
from a save area 

• OUTPUT, which transfers DBUFFER to 
IHCFIOSH/IHCEFIOS for printing 



The following items in IHCDBUG are 
initialized to zero at load module execu
tion time: 

• DSRN, the data set reference number 
• TRACFLAG, the trace flag 
• IOFLAG, the input/output in progress 

flag 
• DATATYPE, the variable type bits 

Whenever information is assembled for 
output, it is placed in a 77-byte area 
called DBUFFER. The first character of 
this area is permanently set to blank to 
specify single spacing. The next seven 
characters are the string--DEBUG--to pro
vide a label for the output. 

The functions of the various IHCDBUG 
sections are: 

TRACE 
If TRACFLAG is off, control is 
returned immediately to the caller• 
Otherwise, the characters 'TRACE' are 
moved to DBUFFER, the section OUTINT 
converts the statement number to EBCD
IC and places it in DBUFFER, and 
control is passed to OUTBUFFR. 

SUBTREN 
The characters 1 SUBTRACE 1 and the name 
of the program or subprogram are moved 
to DBUFFER and a branch is made to 
OUTBUFFR. 

SUBTREX 

UNIT 

The characters 1 SUBTRACE *RETURN*' are 
moved to DBUFFER and a branch is made 
to OUTBUFFR. 

The unit number argument is placed in 
DSRN and the routine returns to its 
caller. 

I NIT SC LR 
The data type is saved, the location 
of the scalar is computed, subroutine 
OUTNAME places the name of the scalar 
in DBUFFER, and a branch is made to 
OUT ITEM. 

INITARIT 
This routine saves the data type, 
computes the location of the array 
element, and (via the subroutine OUT
NAME) places the name of the array in 
DBUFFER. It then computes the element 
number as follows: 

XXX=(<YYY-ZZZ)/AAA)+l 

where: 
XXX is element number 
YYY is element location 
ZZZ is first array location 
AAA is element size 

and places a left parenthesis, the 
element nl.Bllber <converted to EECDIC by 
subroutine OUTINT>, and a right paren
thesis in DBUFFER following the array 
name. A branch is then made to 
OUT ITEM. 

INITARAY 
If IOFLAG is on, the character X'FF' 
is placed in DBUFFER, followed by the 
address of the argument list, and a 
branch is made to OUTBUFFR. Other
wise, a call to INITARIT is con
structed, and the routine loops 
through that call until all elements 
of the array have been processed. 

SUBCHK 
The location of the array element is 
computed. If it falls within the 
array boundaries, control is returned 
to the caller. If it is outside the 
array boundaries, SUBCHK places the 
characters 1 SUBCHK 1 into DBUFFER, and 
computes the element number. OUTINT 
converts this number into EBCDIC and 
moves it into DBUFFER. OUTNAME moves 
the array name into DBUFFER. Finally, 
OUTBUFFR is called. 

TRACE ON 
TRACFLAG is turned on <set to non
zero>, and control returned to caller. 

TRAC EOFF 
TRACFLAG is turned off <set to zero>, 
and control returned to caller. 

DISPLAY 
If IOFLAG is on, the characters 

'DISPLAY DURING I/O SKIPPED' 

are moved to OUTBUFFR. Otherwise, a 
calling sequence for the NAMELIST 
write routine CIHCNAMEL) is con
structed. If DSRN is equal to zero, 
the unit number for SYSOUT <in 
IHCUATBL+6) is used as the unit passed 
to the NAMELIST write routine. On 
return from the NAMELIST write, this 
routine exits. 

START IO 
BYTECNT is set to 251 to indicate that 
the current area is full, the IOFLAG 
is set to x•so• to indicate that 
input/outp~t is in progress, the 
CURBYTLC is set to the address of the 
SAVESTRl <where the location of the 
first main block will be), and the 
routine exits. (See the discussion of 
ALLOCHAR.) 

END IO 
The IOFLAG is saved in TEMPFLAG and 
IOFLAG is reset to zero so that this 
section may make .debug calls that 

Appendix F: Object-Time Library Subprograms 237 



result in output to a device. If no 
information was saved during the 
input/output, this routine exits. 

If information was saved, section 
FREECHAR is used to extract the. data 
from the save area and move it to 
DBUFFER. FREECHAR does this one 
character at a time until it finds a 
X'lS', indicating the end of the line. 
It then calls OUTPUT to have DBUFFER 
written out. If FREECHAR finds a 
X'FF', indicating a full array, it 
calls INITARAY to move the array data 
to DBUFFER. 

If no main storage or insufficient 
main storage was available for saving 
information during the input/output, 
the characters 

'SOME DEBUG OUTPUT MISSING' 

areplaced in DBUFFER after all saved 
information (if anyl has been written 
out. The subroutine 'OUTPUT is then 
used to write out the message, and 
this routine returns to the caller. 

OUT ITEM 
First, the characters ' = ' are moved 
to DBUFFER. Four bytes of data are 
then moved to a work area on a double
word boundary to avoid any boundary 
alignment errors when registers are 
loaded for logical or integer conver
sion. A branch on type then takes 
place. For fixed-point values, the 
routine OUTINT converts the value to 
EBCDIC and places it in DBUFFER. A 
branch to .OUTBUFFR then takes place. 

For floating-point values, subroutine 
OUTFLOAT places the value in DBUFFER. 
A branch to OUTBUFFR then takes place. 

For complex values, two calls to OU'l-
" FLOAT are made -- first with the real 
part, then with the imaginary part. A 
left parenthesis is placed in DBUFFER 
before the first call, a comma after 
the first call, and a right parenthe
sis after the second call. A branch 
to OUTBUFFR then takes place. 

For logical values, a T is placed in 
DBUFFER if the value was nonzero; 
otherwise, an F is placed in the 
DBUFFER. A branch to OUTBUFFR then 
takes place. 

OUTNAME 
Up to six characters of the name are 
moved to DBUFFER. OUTNAME returns to 
its .caller upon encountering a blank. 

OUTINT 
This is a closed subroutine.· If the 

238 

value (passed in R2) is equal to zero, 
the character 1 0 1 is placed in DBUFFER 
and the routine exits. If it is less 
than zero, a minus sign is placed in 
DBUFFER. The value is then converted 
to EBCDIC and placed in DBUFFER witr. 
leading zeros suppressed. The routine 
then exits. 

OUTFLOAT 
This subroutine calls the library 
module IHCFCVTH to put the floating~ 
point number out under G conversion 
with a format of G14.7 for single 
precision and G23.16 . for double 
precision. 

OUTBUFFR 
If the IOFLAG in IHCDBUG is set, 
indicating the library input/output 
routines are busy handling some other 
user input/output request, IHCDBUG 
must wait until the routines are free. 
This means it must accumulate and 
store its output data for the time 
being. To do this, OUTBUFFR calls 
ALLOCHAR--once for each character in 
DBUFFER, and one final time with X'lS' 
to indicate the end of the line. 

OUTBUFFER checks the IOFLAG. If it is 
not set, it then checks the input/ 
output corrective action switch in 
IHCFCOMH/IHCECOMH. If this switch 
indicates an input/output corrective 
action is in process, OUTBUFFER calls 
the ERR904 section of IHCFCOMH/ 
IHCECOMH to terminate execution. If 
there is no input/output corrective 
action in process, OUTBUFFR calls OUT
PUT for normal output processing. 

ALLOCHAR 
ALLOCHAR saves the data passed to it 
in 256-byte blocks of storage obtained 
by GETMAIN macro instructions. When 
BYTECNT is equal to 251, indicating 
the current block is full, a new 
GETMAIN is issued. If. no storage was 
available, an x•o1•, indicating the 
end of core storage, is placed in the 
last available byte position, IOFLAG 
is set to full, and the routine exits. 
Otherwise, the address of the new 
block is placed in the last four bytes 
of the previous block, preceded by 
X1 37' indicating end .of block with new 
block to follow. CURBYTLC is then set 
to the address of the new block and 
BYTECNT is set to zero. The character 
passed as an argument is then placed 
in the byte pointed to by CURBYTLC, 
one is added to both CURBYTLC and 
BYTECNT, and the routine exits. 

FREECHAR 
This · is a closed subroutine. If the 
current character extracted is X'37', 



indicating a new block follows the 
current block, the next four bytes are 
placed in CURBYTLC and the current 
block is freed. If the current 
character is X'07', indicating the end 
of core storage, the block is freed 
and a branch is made to ,the end 
input/output exit. Otherwise, the 
current character is passed to the 
calling routine and CURBYTLC is incre:-
mented by cine. 

OUTPUT 
If DSRN is zero, the SYSOUT unit 
number is obtained from IHCUATBL +6. 
A call is then made to the initializa
tion section of IHCFIOSH/IHCEFIOS. 
Upon return, OUTPUT transfers DBUFFER 
to the IHCFIOSH/IHCEFIOS buffer, and 
calls the write section of IHCFIOSH/ 
IHCEFIOS. If IHCFIOSH/IHCEFIOS indi
cates an input/output error, IHCDBUG 
ignores the rest of the current DEBUG 
request. 

TERMINATION 

Every compiler-generated program ends 
with a branch to the FSTOP section 'of 
IHCFCOMH/IHCECOMH. This section is a ter
mination procedure that: 

• puts the return code passed it into 
register 15. 

• if extended error handling has been 
specified, calls IHCERRM · to have the 
error summary produced. 

• calls IHCFIOSH/IHCEFIOS to close 
sequential files (IHCFIOSH/IHCEFIOS in 
turn calls IHCDIOSE/IHCEDIOS to close 
any direct access files>• 

• deletes IHCADJST, if it has · been 
loaded. 

• cancels the SPIE, restoring the old 
PICA if there·was one. 

• either 

a. cancels the STAE and returns to the 
supervisor if IHCSTAE has not been 
loaded (i.e., no abnormal termina
tion has been scheduled> 

b. cancels the STAE and issues an 
ABEND macro instruction if entry 'is 
from IHCST:\E 

The above termination procedure is used 
both for the normal end of load module 
execution and for most instances of 
library-initiated premature termination .. 
The only exceptions occur in IHCSTAE, 

when control is sometimes returned directly 
to the supervisor, bypassing the above 
procedure. 

r----------------------T----------T-:------1 
I Unit number CDSRN) I - . I I 
!being used for current I · · .· ·· I. .• · 1 ·· 
!operation · I n 1 x'l6 14 bytes I· 
·----'----T-------T-----.1.-T·-:----..;.---f--------f 
I ERRMSG I READ I PRINT I PUNCH I I 
I DSRN2 I DSRN3 I DSRNq I DSRN5 I~ ~ytesl. 
t--------.1.-------.1.-------.1.--------+-----~--1 ' 
IUBLOCKPl field6 I~ .byt~s I• 
~---------------------------------+~~-~----! 
I DSRNOl default values7 I B. bytes 1-· ·-----------.:.. ___________________ :..._+ ______ ..;." 
ILISTOl field 8 - · -I Li bytes I 
~---------------------------------+..;._;... __ :---! I I . . . I 
I I I 
I I I 
·---------------------------------+--------! 
IUBLOCKn field 6 I 4 bytes I 
~---------------------------------+--------! 
JDSRNn default values7 18 bytes! 
·--------------------:-------.------+--------! 
JLISTn field 8 J4 bytes! 
~---------------------------------.1.:...-------1 
l 1 n is the maximum number of units thatl 
I can be referred to .by the FORTRAN LOADI 
I MODULE. The size of the unit table isl 
I equal to (8 + n x 16) bytes. I 
l 2 Unit number (DSRN) of error output! 
I device. I 
I 3Unit number <DSRN> of input device for a I 
I read of the form: READ ~,list. I 
lqUnit number CDSRN> of output device. forl 
I a print operation of .the form: PRINT! 
I ~.list. I 
1sunit number (DSRN) of output device forl 
I a punch operation of the form: .~UNCHI 
I ~,list. I 
16The UBLOCK field contains either al 
I pointer to the unit block constructed! 
I for unit number n if the unit is being! 
} used at object time, or a value of 1 ifl 
I the unit is not being used. I 
7This field contains DCB default values,t 

which are inserted into the DCB if thet 
user does not supply them. They aret 
detailed in Figure 19. Only IHCFIOSH/I 
IHCEFIOS gets its default values fromt 
this field. I 

erf the unit is defined as a direct! 
access data set, the LIST field contains! 
a pointer to the parameter list thatl 
defines the direct access data set.I 
Otherwise, this field contains a valuet 
of 1. I 

L-----------------------------------------J. 
Figure 18. IHCUATBL: The Data Set Assign-

ment Table · 

Appendix F: Object-Time Library Subprograms 239 



Table 13. DCB Default Values 

r------------T~---------------------------------------T--------------------------------1 I I Sequential Data Sets I Direct Access Data Sets I 
I 1--------T ________ T _________ T _____ T-------+-------T----------------T-------~ 
I I l I I I I I LRECL or I ' I 
I ddname I RECFM1 I LRECL2 I BLKSIZE I DEN I BUFNO I RECFM I BLKSIZE I BUFNO I 

·~------------t--------t--------t---------+-----+-------+-------+----------------+-------~ 
I FI'03Fxxx I U I l 800 I 2 I 2 I FA IThe value I 2 I 
I I I I I I I !specified as thel 1 
I FI'OSFxxx I F I 80 l 80 I I 2 I F !maximum size of I 2 I 
I I I I I I I I a record in the I I 
I FI'06Fxxx I UA I 132 l 133 I I 2 I F !DEFINE FILE I 2 I 
I I I I I I I I statement. I 1 
I FI'07Fxxx l F I 80 I 80 I I 2 I F I I 2 I 
I I I I I I I I I I 
I all others I u I -- I 000 I 2 I 2 I F I I 2 1 
~------------i_ _______ i ________ i _________ i _____ i _______ i _______ i ________________ i _______ ~ 

l 1 For·records not under FORMAT control, the default is vs. I 
l'For records not under FORMAT control, the default is 4 less than shown. I 
L---------------------------------------------------------------------------------------J 

1 1 
<----- 2 bytes -----> <----- 2 bytes -----> <- byte -> <- byte -> <----~ 2 bytes -------> 
r--------------------T---------------------T----------T----------T----------------------1 
I not used I BLKSIZE I RECFM I BUFNO I LRECL I 
L--------------------i------~--------------i----------i----------i----------------------J 
Figure 19. DSRN Default Value Field of IHCUATBL Entry 

r------------T---------T---------------T------------T------------1 
I ABYTE I BBYTE I CBYTE I DBYTE I 4 bytes I 

1------------i--------~i---------------i------------+------------~ 
I Address of Buff er 1 I 4 bytes I 
~---------------------------------------------------+------------~ 
I Address of Buffer 2 I 4 bytes I 

1---------------------------------------------------+------------~ 
I Current buffer pointer (Note) I 4 bytes I 
r---------------------------------------------------+------------~ 
I Record displacement <RECPTR) (Note> I 4 bytes I 
r---------------------------------------------------+------------~ 
I Address of last DECB I 4 bytes I 
r---------------------------------------------------+------------~ 
I Mask for alternating buffers I 4 bytes I 

~---------------------------------------------------+------------~ 
I DECBl skeleton section I 20 bytes I 
~-------------------------T------------T------------f------------~ 
I Logical record length I Not used I LIVECNTl I 4 bytes I 

1-------------------------i------------i------------+------------~ 
I DECB2 skeleton section I 20 bytes I 
~-------------------------T------------T------------+------------~ 
I Work space I Not used I LIVECNT2 I 4 bytes I 1-------------------------i ____________ i ____________ +------------~ 
I DCB skeleton section I 88 bytes I 
L---------------------------------------------------i------------J 
Figure 20. Format of a Unit Block for a Sequential Access Data Set 

240 

Housekeeping 
Section 

Note: Used only for 
variable-length 
and/or blocked 
records 



• ~BYTE. This field, containing the data 
set type passed to subprogram IHCFIOSH/ 
IHCEFIOS by IHCFCOMH/IHCECOMH, is set 
to one of the following: 

FO -- Input data set which is to be 
processed under format control. 

FF -- output data set which is to be 
processed under format control. 

00 -- Input data set which is to be 
processed without format control. 

OF -- output data set which is to be 
processed without format control. 

• BBYTE. This field contains bits that 
are set and examined by IHCFIOSH/ 
IHCEFIOS during its processing. The 
bits and their meanings, when on, are 
as follows: 

0 -- exit to subroutine IHCFCOMH/ 
IHCECOMH on input/output error 

1 input/output error occurr~d 

2 

3 

4 

current buffer indicator 

not used 

end-of-current buffer indicator 

5 blocked data set indicator 

6 variable record format switch 

7 not used 

o CBYTE. This field also contains bits 
that are set and examined by subroutine 
IHCFIOSH/IHCEFIOS. The bits and their 
meanings, when on, are as follows: 

0 data control block opened 

1 data control block not T-closed 

2 data control block not previously 
opened 

3 buffer pool attached 

4 

5 

6 

data set not previously rewound 

not used 

concatenation occurring; reissue 
READ 

7 -- data set is DUMMY 

• Q~XT~· This field contains bits that 
are set and examined by IHCFIOSH/ 
IHCEFIOS during the processing of an 
input/output operation involving a 
backspace request. The bits and their 
meanings, when on, are as follows: 

0 a physical backspace has occurred 

1 previous operation was BACKSPACE 

2 not used 

3 end-of-file routine should retain 
buffers 

4-5 not used 

6 END FILE followed by BACKSPACE 

7 not used 

• Address of Buffer 1 and Address of 
Buffer 2. These fields contain poin
ters to the two input/output buffers 
obtained during the opening of the data 
control block for this data set. 

• Current Buffer Pointer. This field 
contains a pointer to the input/output 
buffer currently being used. 

• Record Offset (RECPTR). This field 
contains a pointer to the current log
ical record within the current buffer. 

• Address of Last DECB. This field con
tains a pointer to the DECB last used. 

• ~~~~f or __ ~l~~E!!e~!~g-~~ff ers. This 
field contains the bits which enable an 
exclusive OR operation to alternate the 
current buffer pointer. 

DECB SKELETON SECTIONS (DECBl AND DECB21: 
The--nEc8-<aata-even~cantraI-Eia~k>-ske1e-
ton sections are blocks of main storage 
within the unit block. They have the same 
format as the DECB constructed by the 
control program for an L format of an 
s-type READ or WRITE macro instruction (see 
the publication !~~~~ystem/360 Operating 
~y~~~~l Supervisor and Data Management 
Macro Instructions, Order No. GC28-6647). 
The various fields of the DECB skeleton are 
filled in by subprogram IHCFIOSH; the com
pleted block is referred to when IHCFIOSH 
issues a read/write request to BSAM. The 
read/write field is filled in when the OPEN 
macro is being executed. 

~gical_Re£2E~L!!~gth: This is the LRECL 
of the current data set. It is inserted by 
IHCFIOSH/IHCEFIOS during its open exit 
routine. 

• LIVECNTl and LIVECNT2. 
indicate~-Whether---any 

These fields 
input/output 

Appendix F: Object-Time Library Subprograms 241 



operation performed for the data set is 
unchecked. (A value of 1 indicates 
that a previous read or write has not 
been checked; a value of 0 indicates 
'that the previous read or write opera
tion on that DECB has been checked.) 

• Work Space. This field is used to 
align the logical record length of a 
variable record segment on a fullword 
boundary. 

DCB: The fields of this skeleton for DCB 
are filled in partly by IHCFIOSH/IHCEFIOS, 
and partly by the system as a result of an 
OPEN macro inst1:uction by IHCFIOSH/IHCEFIOS. 

r-------T-------T------T------T-----------1 
I I I not I not I I 
IIOTYPE ISTATUSUI used I used I 4 bytes I 
~-------,-.1.------.,...1.------.1.------+-----------i 
I RECNUM I 4 bytes I 
~-------T---------------------f-----------i 
I STATUSA I CURBUF I 4 bytes I 
~-------.1---------------------+-----------i 
I BLKREFA I 4 bytes I 
~-~-----T---------------------f-----------i 
I STATUSB I NXTBUF I . 4 bytes I 
~-------.1.---------------------+------------i 
I BLKREFB I 4 bytes I 
~--....,------------------------,--+-----------i 
I DECBA I 28 bytes I 

~-----------------------------+-----------i 
I DECBB I 28 bytes I 
~-----------------------------+-----------i 
I DCB I 104 bytes I 
L-----------------------------.1.-----------J 
Figure 21. Format of a Unit Block for a 

Direct Access Data Set 

The meanings of the various unit block 
fields are outlined below. 

!Q!.!R§: This field, containing the data 
set type passed to subprogram IHCDIOSE by 
the IHCFCOMH subprogram, can be set to one 
of the following: 

FO input data set requiring a format 

FF output data set requiring a format 

00 input data set not requiring a 
format 

OF -- output data set not requiring a 
format 

STATUSU: This field specifies the status 
of the· associated unit nuinber. ·"The. bits 
and their meanings when on are: 

242 

Bit Meaning 
O data control block for data 

set is open for BSAM 

. sii j'\'. , ~aril~g . 
1 error·.· occurred 

., ,._ . 

2 two buffers are being used 

3 

4-5 

6-7 

data control .block for data 
set: is open for B.DAM;-

10 U-formatspecified in 
- DEFINE-. FILE. s ta t.ement 

01 E format specified in 
DEFINE FILE statement 

11 L format specidied in 
DEFINE FILE statement 

not used 

Note: subprogram IHCDIOSE refers only to 
bitS 1, 2, and 3. 

RECNUM: This field contains the number of 
records in the data set as specified in the 
parameter list for the data set in a DEFINE 
FILE statement. It is filled in by the 
file initialization section after the data 
control block for the data set is opened. 

STATUSA: This field specifies the status 
of the buffer currently being used. The 
bits and their meanings when on are: 

Bit Meaning 
~o- READ macro instruction has 

2 

been issued 

WRITE macro instruction has 
been issued 

CHECK macro instruction has 
been issued 

3-7 not used 

CURBUF: This field contains.the address of 
the DECB skeleton currently being used. It 
is initialized to contain the address of 
the DECBA skeleton by the file initializa
tion section of IHCDIOSE after the data 
control block for the data set is opened. 

BLKREFA: This field contains an integer 
tfiar-1ridicates either the relative position 
within the data set of the record to be 
read, or the relative position within the 
data set at which the record is to be 
written. It is .. filled . in by. either the 
read or write section of subprogram IHC
DIOSE prior to any reading or.writing •. In 
addition, the address of this field is 
inserted into. the DECBA . skeleton by .. the 
file initialization section ·of- IHCDIOSE 
after the data control block for the data 
set is opened. 



STATUSB: This field soecifies the status 
of"the next buff er to' be used if two 
buffers are obtafned for this data set 
during data control block opening. The 
bits and thel.r meanings are the same as 
described for the STATUSA field. However, 
if only one buffer is obtained during data 
control block opening, this field is not 
used. 

NXTBUF: This field contains the address of 
tlie-I5ECB skeleton to be used next if two 
buffers are obtained · during data· control 
block opening. It is initialized to con
tain the address of the DECBB skeleton by 
the file initialization section of subpro
gram IHCDIOSE after the data control block 
for the data set ~s opened •. ·However, i.f 
only one buff er is obtained during data 
control block opening, this field is not 
used. 

BLKREFB: The contents of this field are 
the same as described for the BLKREFA 
field. It is filled in either by the read 
or the write section of subprogram IHCDIO:OE 
prior to any reading or writing. In addi
tion, the address of th~s field is inserted 
into the DECBB skeleton by the file initia
lization section of IHCDIOSE after the data 
control block for the data set is opened. 
However, if only one buffer is obtained 
during data control block opening, this 

described for the DECBA skeleton. The 
DECBB skeleton .. is completed in the same 
manner as described for the DECBA skeleton. 
However, if only. one. buffer is obtained 
during data control block opening, this 
field is not used. 

DCB SKELETON: This field contains the DCB 
(data control' block).ske1.eton for the asso
ciated data set. It.is of the same format 
as the QCB constructed by the control 
program for a DCB macro ,instruction under 
BDAM ~see the publication I~~~~~l~Q 
Oper~~!!g__§y~tem.:._~~Eervisor and Data· 
~~!@g~m~~-~2£~Q_!!!§truct!2!!§>. 

<--------,--------8 byt'es---------------....,--> .. 
r------------------------,--------------.,...-, 
I PREFACE I 
·----------------------,-------------------~ 
!Entry for library error condition 207 I 
~---------------------------~-------------~ I Entry. for library. error condition ~08 · I 
~-----------,,------,---,-----------.,...,,.-;:-,-""'-,--. ..,,~ 
!Entry for library error condition:209 I 
~----------------,------------,-------------~ 
I I 
I I 
I . , I' 

' - ~-------,-----.------------"." __ .,.. _____ .;__.;_ _____ f' 
. , :· (E.r1try .. Jot;. library er,ror copdition 300 . I 

DECBA SKEI,ETON: This fie le'! contains the ~--.,,.-,,....,..,-...,---•:7:-:-'.0-7---,::;--..,,.--...,-...;.,,-:...,-----~ 
DECB (data event control block) skeleton to !Entry for library error condition'301 I 
be used when readinq into or wr1t1ng from ~-------,----------------,------------------~ 
.the current buffer. It is the samP form as· !Optional .entry for .. user er~9r, condition I 

field is not used. 

the DECB constructed by the control program I 302 . . .,,. I 
for an L form of an S-type READ or WRITE ~---------~-------------------------------~ 
macro instruction under BDAM <see .the pub- I Optiona 1 entry for user error condition I 
lication IBM system/360 Operating !>ystem: I 303 ·. . ' ; ' . I 
Supervisor and Data· Management Macro r---------------------;-----,--------------, 
Instructions, Order No. GC28-6647). I I 

The various fields of the DECBA skeleton 
are filled in by the file initialization 
section of subprogram IHCDIOSE after the 
data control block for the ~ata set is 
opened. The completed· DECB is referred to 
when IHCDIOSE issues a read or a write 
request to BDAM. For· each input/output 
operation, IHCDIOSE supplies IHCFCOMH·with 
the address of and the size 0£ the buffer 
to be used for the operation. 

DECBB SKELETON: The DECBB skeleton is used 
when reading into or writing from the next 
buffer. Its contents are the same . as 

I . I 
·------------,-----------------------------~ 
!Optional entry for user error condition I 
I n-1 I 
·-----,,...----------------------------------~ 
!Optional entry for user error condition I 
I n (Note) I 
·-·-----,---,----------------.,------,.,---~------~ 
!Note: The user can specify from none tol 
I 598 of his own error. conditions; I 
I thus !!· can be a maximwn of 899. I 
L--------,------------~---,,----------------J 
Figure 22. General F.orm of the Option 

Table ( IHCUOPT). 

. ~ '; 

Appendix F: Object-Time Library subprograms 242.J 



1 1 1 1 
<---------------- 4 bytes ----------------> <- byte -> <- byte -> <- byte -> <-- byte --> 
r-~---------------------------------------T----------T----------T----------T-----------1 

I Field One I Field I Field I Field I Field I 
I I TwO I Three I Four I Five I 
L------------------------------------------i----------i----------i----------i-----------J -----------------------------------------------------------------------------------------Field 
one: 

Contents 
The number of entries in the option table. This is 95 plus the total number of 
user-supplied error conditions. 

Two: Bit one indicates whether boundary alignment was selected. l=yes; O=no. (Bits 
0 and 2-7 are reserved for future use.) 

Three: Indicates whether extended error handling was selected. X'FF'=no; X'OO'=yes. 

Four: 

Five: 

Contains a decimal 10. This is the number of times the boundary alignment error 
message will be printed when extended error handling has ~ been specified. 

Reserved for future use. 

Figure 23. Preface of the Option Table (IHCUOPT> 

1 1 1 1 
<~ byte -> <- byte -> <- byte -> <- byte -> <---------------- 4 bytes ------------------> 
1--------T----------T----------T----------T--.------------------------------------.------1 
I Field I Field I Field I Field I Field Five I 
I One I Two I Three I Four I I 
L---------i----------i----------i----------i--------------------------------------------J 
Field Contents 
One: The number of times the library should allow this error to occur before 

terminating load module execution. A value of zero means unlimited occurrence. 
(Trying to set the field to greater than 255 results in its being set to zero.) 

Two: The number of times the corresponding error message is to be printed before 
message printing is suppressed. A value of zero means no message is to be 
printed. 

Three: The number of times this error has already occurred in execution of the present 
load module. 

Four: 

Five: 

Bit 0--

1 

2 

3 

4 
5 

6 

7 

M~~ning 
If control character is supplied for overflow lines, set to 1. 
If control character is not supplied for overflow lines, set to o. 
If this table entry can be user-modified, set to 1. 
If this table entry cannot be user-modified, set to o. 
If more than 255 errors of this type have occurred so that 255 should be 
added to Field Three, set to 1. 
If less than 255 errors of.this type have occurred, set to O. 
If buffer contents is not to be printed with error messages, set to 1. 
If buffer contents is not to be printed, set to o. 
Reserved for future use. 
If error message is to be printed for every occurrence, set to 1. 
If error message is not to be printed, set to O. 
If traceback map is to be printed, set to 1. 
If traceback map is not to be printed, set to O. 
Reserved for future use. 

The address of the user's exit routine. If one is not supplied <in other words, 
if library is to take its own standard corrections), the final bit is set to 1. 

-----------------------------------------------------------------------------------------
Figure 24. Composition of an Option Table Entry 

21'2.2 



1 1 1 1. 
<- byte -> <- byte -> <- byte -> <- byte -> <---------------- 4 bytes ------------------> 
r---------T----------T----------T----------T--------------------------------------------1 
I Field I Field I Field 1 Field I Field Five 1 
I one I Two I Three I Four I I 
L---------i----------i----------~----------i--------------------------------------------J 
-----------------------------------------------------------------------------------------Field 
One: 

Contents 
Set to 10, except for errors 208, 210, and 215, which are set to O (unlimited), 
and for errors 217 and 230, which are set to 1. 

Two: Set to 5, except for error 210, which is set to 10, and for errors 217 and 230, 
which are set to 1. 

Three: Set to o. 

Four: Bit 
-0-

setting 
0 

1 
2 
3 

1, except for errors 230 and 240 
0 

4 
5 
6 
7 

0 
0 
0 
1 
0 

Five: Set to 1. 

~: These system generation values are also inserted initially into any user error 
entries. 

Figure 25. Original Values of Option Table Entries 

Table 14. IHCFCOMH/IHCECOMH Transfer and Subroutine Table 
r---------------T---------------T-------------------------------------------------------1 
I Displacement I Branches to I I 
I from IBCOM# I Section I Function of Routine I 
r---------------+---------------t-------------------------------------------------------~ 
I 0 I FRDWF I Opening section, formatted READ 
I 4 I FWRWF I Opening section, formatted WRITE 
I 8 I FIOLF I I/O list section, formatted list variable 
I 12 I FIOAF I I/O list section, formatted list array 
I 16 I FENDF I Closing section, formatted READ or WRITE 
I 20 I FRDNF I Opening section, nonformatted READ 
I 24 I FWRNF I Opening section, nonformatted WRITE 
I 28 I FIOLN 1· I/O list section, nonformatted list variable 
I 32 I FIOAN I I/O list section, nonformatted list array 
I 36 I FENDN I Closing section, nonformatted READ or WRITE 
I 40 I FBKSP I Implements the BACKSPACE source statement 
I 44 I FRWND I Implements the REWIND source statement 
I 48 I FEOFM I Implements the ENDFILE source statement 
I 5 2 I FSTOP I Write-To-Operator, terminate job 
I 56 I FPAUS I Write-To-Operator, resume execution 
I 64 I IBFINT I Load module initialization 
I 68 I IBEXIT I Load module termination 
L---------------i---------------i-------------------------------------------------------

Appendix F: Object-Time Library subprograms 242.3 





Chart GO. IHCFCOMH/IHCECOMH (Part 1 of 4) 

FRDWF •••••Al•••••••••• . . 
• SET IOSWF FOR • 
•FORMATTED INPUT• . . 
• • ................. 

I •••••Bl•••••••••• • • 
• Sl\VE END• AND • 
•ERR= ADDRESSES o . . . . 
••••••••••••••••• 

1 . •. 

NOTE: 

Cl *• •••••C2•• •••••••• 
• • •. •OlOCSI t 

• • DIRECT *• YES •-•-•-•-•-• .. •-•-• *• ACCESS DATA • •-------->• OPEN C IF • 
•. SET • • • NEEDED) AND • 

•. • • • READ • .. . . . ............... . 
ro 

•••••01•········· •FIOCSI • ·-·-·-·-· -·-· -· -· • OPEH (IF • 
• NEEDED) AND • 
• READ • ................. 

I<-----------------------
·····El•••••••••• . . 
• SAVE BUFFER • 
• INFORMl\TION • . . . . ................. 

FWRWF •••••Fl•••••••••• . . 
• SET lOSWF FOR ' <-----:..------------------------------------• FORMATTl::O • 

. '· Gt •. •••t•G2•••••••••• 
.• •. t SCANFO T • 

• •OBJECT-TI"4E•. NO • INFORMI\ ' 
•. FORMAT • •---·-- .. ->•SAVIHG C *<--

•. • • A •SPECIPICA • .. . . . . 
• •• ·;ES ••••••.,r••"'" 

l ... •••••Hl•••••••••• H2 '• . . . . .. 
• TRANSLATE • • • FIRST •. NO 
• FORMl\T •----- •. CONVERSION • •---
• INn>RMATION • •. CODE • • . . .. . . ................. . ... r !l'•••.J2••······· 

•RETURN TO MAIN • 
• PROG. • • • ••••••••••••••• 

• OUTPUT • . . ................. 

FRDNF •••••Al&•••••••••• • • 
: ~~-J8~=[T~~~ : 
• INPUT • • • 

FWl!NF •••••AS•••••••••• . . 
• SET IOSWF t~OR • 
• NON-FORMATTED • 
• OUTPUT • . . 

. ...... -i:==-------=:]···· .... 
•••••&&&•••••••••• • • o SAVE ENO- AND • 
•ERR~ ADDRESSES • • • • • ········r······· 

... Cl& •. •••••c5•••••• •••• • • *• •DIOCSfl • 
.• DIRECT •. YES .... , .... _ .................... . 

•. ACCESS DATA , •-------->• OPEN UF 
•. SET • • t NJ::EDED> ANO 

•. , t • Rt;AD/WRil'E • •. . . . ............... . 
i"o 

•••••Olt•••••••••• 
•FIOCSI • ·-·-·-·-·-·-· ........ • OPEN IIF • 
• NEEDED l AND • 
• READ/WRITE • 

....... ·1 ::::::: ______________ _ 
•••••E&a•••••••••• • • ••••ES••••••••• 
o SAVE BUFFt.k • • ~ETUkN TO Mkltl • 
• INFORMATION •-------->• P~OGRAr-: • . . . . . . .............. . ................. 

Appendix F: Object-Time Library Subprograms 243 





Chart GO. IHCFCOMH/IHCECOMH (Part 2 Of 4) 

FEHDF FEHDN •••••Al•••••••••• •••••A2•••••••••• . . . . . . . . 
•SET 1/0 SWITCH • •SET 1/0 SWITCH • • • • • . . . . ........ i :~~~~::~---------~:::::::i ....... . 

. .. . .. 
Bl •. 82 •. . • •. . • •. ••••83••······· 

• • •. READ • • •. YES t t 
'•READ OR WRITE.•-------->•. DIRECT ACCESS. •-------->•RETURN TO MAIN t •. . . .. . . . . .. . . .. . . . ............. . 

•• • • •. • • I\ 

• WRITE i HO 

... 

•••••c2•••••••••• 
*FIOCSI t ·-·-·-·-·-·-·-·-· . ·-----------------• CLEAN-UP • • • ................. 

01 • . ·····•02• ••••••••• 
. • •. •otocs• • 

• • •. YES •-•-•-•-•-•-•-•-• 
•.DIRECT ACCESS.•-------->• PUT OUT FINAL • 

•. • • • BUFFER • .. . . . . . . . . . ............... . 
...... ..!.::..... I 
*FlOCSI • ••••E2••••••••• ·-·-·-·-·-·-·-·-· . . ' PUT OUT FINP.L •-------->*RETURN TO MAIN • 
• BUFFER • • • . . .............. . ..... ....... .... . 

FlOLN 
•••••Fl•"•••••••• . . . . 
•SET I/O SWITCH • . . . 

FIOAH ••••• F2•••••••••• . . 
SET ARR"'Y 

SWITCH . . . .. .............. . 
l <---~----------------··---] 
. •, . .. . .. Gl G2 •. Gl •. •••••Gii•••••••••• 

' • "' • • • • •" "• •OJOCSI • 
• • •. READ • • •. Y!:S • • •. YES •-•-•-•-•-•-•-•-• 

•.READ UH WRITt:. •-------->•.BUFFER EMPTY • •-------->•.DIRECT ACCESS.•-------->• 
• • • "• • • •. • • • Ff1£SH READ .. . . . . . . .. . . . . . . . . •. . . . . . . . ............... . 

li WHIT~ 1 NO i· HO : ·::·=->I .... . . . . .... 
. •. . "" . 

• , Hl "· • • " " :~;~~~•••••••••: :·~~1·~~;~~~;••: 
• •EHIFFER FllLL.•. YES •-•-•-•-•-•-•-•-• •AMOUNT OF DATA • 

•, YET • •----- •-------->•FROM BUFFER TO • 
• • FRESH READ • • LIST ADDRESS • •. . . . . . . . . . . ................. . ............... . 

·~ l : ·::· =->1 . . .... . .. ••• ••Jl •••••••••• J2 •. •••••Jl••••······ 
" • • t •. •DIOCSI • ••••Jtt••••••••• 
•MOVE LlS'l' ITEM • • • •. YES •-•-•-•-•-•-•-•-• • • 
• INTO BUFFER • -->•.DIRECT ACCESS.•-------->• WRITE OIJT • •RETURN TO MAIN " 

• •. , • • BUFFER • • " ............... .. 

l 
••••Kl••••••••• . . 

•RETURN TO MA.IN • . . ............... 

.. . . . . . ............. . •. . . . ............... . 
i• NO l • •••• • 

->• Jl • . . 
•••• 

•••••K2•••••••••• 
•FIOCSI • ·-. -·-·- ·-·- ·-·-· • WRITE OUT • 
• BUFFER • . . . ............... . 

l ..... . ->• .:n • . . .... 
Appendix F: Object-Time Library Subprograms 243.1 



Chart GO. IHCFCOMH/IHCECOMH (Part 3 of 4) 

FSTOP • •. Al •. •••••A2•••• •••••• . . .. . . 
• •LOAD MODULE•. NO • • 

•.IN FOREGROUND. •-------->•ISSUE W'1'0 llACRO• •. .. . . .. . . . . .. . . . ............... . i YES 

•••••Bl•••••••••• • • 
• MESSAGE TO • 
o TERMINAL • . . 
• • ••••••••••••••••• l <-----------------------
•••••Cl••········ •IBEXIT o ·-·-·-·-·-·-·-·-. TERMINATE • 

EXECUTION • . . ................. 
I ••••Ol••••••••• o RETURN TO • 

.• SUPERVISOR * • • ............... 

FIOLF FIOl\F 
••• • • F2• • •• •• •• •• • ••••Fl•••••••••• . . . . 
• SET UP • • Sl::T. ARRAY • 
•PARAMETEkS FOR •<--------• SWITCH ON • 
• CONYERS ION • • . . . .. ......... ..... . 

l •••••G2•••• •••••• 
•IHCFCVTH • ·-·-·-·-·-· -·-·-. • CONVERT AND • 
t MOVE DATA • . . ................. 

..... .... .. ..... . 

FPAUS • •. All *• •••••A5•••••••••• . . .. . . 
• •LOAD MODULE•. NO • ISSUE WTOR • 

•,IN FOREGROUND,•-------->• MACRO o .. . . . . .. . . . . .. . . . ............... . 
rES 

•••••Bii•••••••••• • • • MESSAGE TO • 
• TERMINAL o • • • • 

. ....... i: :::::::_ ---------------
•••••Cl&••········ • • . . 
•WAIT FOR Ri:PLY * • • . . 
""""!"'"'" 
••••011••••• •••• . . 

•tf:J:;TURN TO MAIN • . . ............... 

1 r---~-------------------:1. NO ... H2 •. •••••HJ•••••••••• Htf •. 
• • • •FORMAT •. • • NO : : • • • • NEXT • • •. 

243.2 

•. REPETITION .•-------->• KJ::SUME SCAN •-------->•. CONVERS10N • • 
•. • • • • •. CODI:. • • .. .. . . . . : ............... : ....... . 

I.::: _______________ ----------------------------_ j ... 
••••J2••······· •RETURN TO llAIH • 

t PROGRAM • . . ............... 



chart 

FRWND 
t'BKSP 
FEOFM 

GO. 

•••• •A2• ••••••••• •Floes• • ·-·-·-·-·-·-·-·-· :IM~~~~~= g~sP,: 
• END-OF-FILE t ..... ........... . 

l ••••B2•••• ••••• . . 
• RETllH.N TO MAIN • . . ............... 

IHCFCOMH/IHCECOMH (Part 4 of 4) 

!BFINT ooo+tAQ•••••••••• . . . . 
l~iSUE tlPIE • . ............. .... 
l 

•••••£:14••········ . . . 
ISSUE STAE . . ................. 
l • ••••C4•••••• •••• 

•FIOCSI t ·-·-·-·-· -·-· -·-. • OP.EN OBJECT • 
• ERROR UNIT • . . ............. .... 

l •• ••Dll•••••• ••• . . 
•HETUHN TU MAHI • . . ............... 

IBt:XIT •••••A.,•••••••••• 
t IHC.lRRM t . -·-·- ·-·-·-· -·-· . . 
• ERROR SUMMARY • . . . ............... . 

l •••••as•••••••••• 
*FIOCSlt • ·-·-·-·-·-·-·-·-· . . 
• CLOSE FILF.S . . ............... . 

l 
•••••c~•••••••••• . . . 
*DELETE I!'fCAOJST* 
• IF LOADl::.D ' * . . . . ................. 
. l 

: ••• •Li'.>• •••••••• : 

•t:ANC!:.L ~:PU:. ANlJ• 
• :..;'I'AE • . . . . . ............... . 

l 
•••• ~:·1• •••••••• 

• kt'l'llHN J'tJ • 
:;lfPhWI:;:iH • ............... 

Appendix F: Object-Time Library subprograms 243.3 



Chart Gl. IHCFIOSH/IHCEFIOS (Part 1 of 2) 

••••Al••••••••• . . 
• FIOCSI •--------------> . . ............... 

.... . . 
• Cl • . . .... 

DETERMINE OPERATION TYPE NOTE: THIS MODULE IS CALLED 
iiiiT'iAi.ii~Tiiiii-------, F-iiii;;-
REAo FkEAO 
WRITE FRITE 
DEVICE MANIPULATION FCTRL 
FINAL CALL FCLOSE 

BY IHCFCOMH/IHCECOMH FOR 

~~5R5~E8¥~~~E~I~~~~N~an~1~~~· 
FOR MESSAGE WRITING, 

---------------------------

FI NIT ! •••••c1•••••••• •• FREAD • •. 
C2 •. 

FRITE • •. 
CJ •. 

FCTRL •••••cti•••••••••• . . FCLOS •••••c5•••••••••• . . . . . . 
•DETERMINE DSRN • . . . . . . . . .. . ... . ... . . 

1 ... 
01 •• . . . . 

• • WAS •. 
• • PREVIOUS •. YES 

•. OPERATION A • •---! 
•. WRITf.. • • .. . . . ... 

l• NO : •::•: .... 
02° •••• . . .. 

NO • • OSRN ZERO •. 
---•.OR NEGATIVE.• 

, •ANY RCOS IN•. YES 
•. BLOCK TO BE • •----

•.PROCESSED.• . . . . . . . . . . . . i YES 

• ••••El•••••••••• 
• IHCERRM • ·-· -·-· -·-·-· -·-. • EHROR MlSSAGE • 
• 1HC2201 • . . , ....... [;::::; 

. . .... r----------------
: IF EXTENDED 
I ERJlOR HANDLING 
J IS NOT PRESENT, 
: IHCERRM ENDS 

l---~~=~:~~~----

. .. 

. . . . . ... 
ro 

••••• £2• ••••••••• 
• Rt:AD N~XT • 
• RECORD l NTO • 
• TH15 UUFfEt<. • 
• SWITCH £iUFFl::R • 
• POlNTJ::RS • . ............... . 

l 
••••• F2• ••••••••• . . 
•CHECI< RESULT OF• 
• HEJ\O INTO OTHEfl• 
: BUFfl::i< : ................. 

L,:·::·: . . .... 
Gl •. •••••G2•••••••••• 

• • •. •IHCERRM • 
.• DSRN FOR •. YES •-•-•-•-•-•-•-•-• 

-->•.DIRECT ACCESS.•-------->• ERNOR MESSAGE • 

244 

•. • • 1HC231I • . . . . . . . . . . ............... . 
• NO I l l _,(::·: 

:••••Hl•••••••••: :-;;-~;;~;~~~---

B~U;gKu~n • •ERROR HANDLING 
NECESSARY) :is NOT PRESENT, 

: IHCERRM ENDS . .. . . .. . ... . . . . . . 
l 

• •• • •Jl •••••••••• 
• OPl::N DATA, • 
• CONTROL BLOCK • 
• FOt< DATA SET l F• 
•NOT PREVIOUSLY • 
• OPENED • . . . . . . . . . . . . . . . . . 

1 ... 
1<1 •• . . .. 

• •DCB OPENED •. YES 
•. PROPERLY • •-----•. . . .. . . .. . . 

• NO 

i ..... 
•02 • 
• • H~• . 

1 EXECUTION 
L---------------

SlTUBYTE 
•••• •J 2• ••••••••• . . 
• 01:.'TEHMINE • -->• kECOHO FORMAT •-----
• AND BLOCK I NG • . . . . . . . . . . . . . . .. . . 

. . .. 
• • OUTPUT •. NO 

•. BUFFUt FULL • •---1 .. . . . . . . . . . . 
. . 'I 'LES : •::•: 

v •••••03••········ 
•WRITE CONTENTS • 
•OF THIS BUFFER • 
• SWITCtt BUFFER • 
• POINTERS • . . . ............... . 

l 
• • • • • E)• • •• • • • • •• . ' . 
•CHECK k!::SULT OF• 
• WtU Tl:. FfWM • 
• UTHEk U\JFFE~ . . ............... . 

__________ , L,: ·::·: 

•CHECK STATUS OF• 
• UNIT • . . . . . ............... . 

! . ... . . 
• Cl • . . 

.... . . 
• G4 • . . .... 
l 

• CHECK ANY • -->• OUTSTANDlNG • 
•INPUT OR OUTPUT• . . . ............... . 

l ... 
05 . . . . 

NO • • •. ---· 4. LAST OSHN , • . . . . . . .. . . 
!'~ 

••••ES••••••••• . . 
• RETURN • . . ............... 

•• • • F~• • • ••••• • 
• TO ADDRESS • 
• SPECIFIED IN •<-
•lND= PARAHLTER • . ............. . 

. . . . . . . .. 
G 3 •. G4 •. G5 •. 

• • IS •. • • •. • • • • 
• • CUH.l<ENT •, YES • •HAS AN EOF •. YES • •IS THERE AN•. YES 

-->•. OPERATION • •---1 •. BEEN RJ::AO • •-------->•.END PARAMJ::TER. •---
•. m.:vICE • • •• • • •• SPECIFIED •• 

•.MA.NIP.• •. .• •. .• . . . . .. . . .. . . 
1• NO =~~;: : •::• :_,1. NO 1. NO . . . ' .... 

OPENRW • • •. 
H3 •, H4 •, •••••H5•••••••••• 

• • •. • • •. • IHCERRM • 
, • •. WRITE • • l/O ERROR •. YES •-•-•-•-•-•-•-•-• 

•.1-(J::AO uR WRI1'1::.•-------->•. IN IOS .•---1 •ERROR MES!:iAGE •---
•, • • •, • • • IHC217I • . . . . . . . . . . •. . . •. . . . ............... . i mo l :~: '.-- > i 1<0 ::~;: l_ _____________ _ 

CR2 •• •••J J• ••• ••• • •• FIO~~!••J 4 • ••••• •• •• : IF EXTENDED 
• • • PAS.::l CUHRC.N'l' • :ERROR HANDLING 
• •HJ::COH.0 PUlNTl-."- • 1IS NOT PRESENT, 
: READ A BLOCI'. : R~~8k5~~~~¥H : i IHCERRM ENDS 

: • • • • • • • • • • • • • • • • : ••• '!~. ;~~~;:~ ••• : L--~=~~~~----

: · ;:· :-,[ j . .. . 
INVERT •••••Kl•••••••••• 

•INVERT BUFFERS • ••••}(IU ••• • • ••• 
• AND DECBS IF • • • 
•DATA SET DOUBLE• • RETURN • 
• BUFFERED • • • . . .............. . . ............... . 

! .... . . 
• G&I • . . .... 

.... . . 
• K5 •--1 • • .... 
••••KS••••••••• 

• RETURN ro • 
•CALLER AT ERROR•<--
• OFFSET • . ............. . 



chart Gl. IHCFIOSH/IHCEFIOS (Part 2 of 2) 

•••••A2•••••••••• * • ••••A3••••••••• 
• ISSUE ERROR • • RETURN ABORT • 
•MESSAGE 1HC218I•-------->•CODE TO IBCOM# • 
• TO CONSOLE • • • . . .............. . ................. 

" .... l •02 • 
• Bl •--i . . .... 

el••.•. •••••B2• •••••••• 

•••• •02 • 
• Bl& •--i . . . ... 

EOFM CTLRTN , •, RWND •••• • 83•••••••••• Bl& •. •••••B~••••• • •••• • •CURRENT•. t IF EXT ED • . . . . .. . . 
, • UNIT THE •, YES •ERROR H NG • • WRITE LAST • EOF , • DETERMINE •. Rf.W • ISSUE CLOSE • 

•.OBJECT ERROR , •-------->•PRESENT SW• • RECORD •<--------•. OPERATION • •-------->• WITH RENE.AD t 
•. UNIT • • • TO SU • • • •. 1YP~ • t • OPTION • 

*• • • t ERROR Y • . . .. . . . . . . . . . ............... . ................. .. . . . ............... . 
i"o 

•••••cl•••••••••• 
•DATA MANAGEMENT• 
• RETRY • 
t APPROPRIATE • 
•HUMBER OF TIMES• . . ................. 

1 .•. 
Dl •. . . .. 

• • I/O ERROR •. NO 

..... J........ .. .. ".r:... 1 
• • • ISSUE • •• t•c~• ••••• ••• 
• ISSUE CLOSE • • APPROPRIATI::: • t t 
• CTYPI:=TI WITH • • NUMBER OF BSP • • RETURN • 
• LEAVE OPTION t • C PhYSlCAL t • t 

• t • BACKSPACEJ t ••••• ••••••••·•• .•.... .. .. .... .. . . . ............... . 
l l •••••o3•••••••••• •••••Ol&••••• ••••• 

t • t ADJUST THI:. t 
• FREE 1/0 • •HI:::CPTR TO POIN1 t 

•' •. coR~~~TED. •' •-----------------! . .. . . .. . . 
• YES l .... 

•01 • 
->• JI.I • . . .... 

• BUFFERS FOR •-----l • TO PRE.CEOINC. t : THIS DATA SET : :LOGICAL HECUki.J : . . ... .. . . . . .. . . . . . ............... . __________ ,I 
•••••E2•••••••••• • IHCERRM • ••••El••••••••• ••••El&••••••••• . . •-•-•-•-•-•-•-•-• • RETURN TO • 
t ERROR MESSAGE •-------->•CA.LLJ::R AT ERKOR• : RETURN : 
t 1HC218 I t • OFFSET • . . .............. . ............... ................. 
f-;;-.=---
: ERROR HANDLING 

!I~H~~~~· 
: EXECtrrION ... _______________ _ 

.... 
•02 • 
• HJ •--i . . .... . .. 

Hl •. •••••Hl&•••••••••• 
• •CUH.REHT•. • IF EXTENU~ll • 

• • UNIT THE •. YES •EN.ROH HANDLING • 
• • ~!'"1Efi~t¥RRO~ •. •-------->:PK~~t:~f>p~~~!i !iW: 

t. .. • • EH HOM SUM.MAH. 'i • ·r ........ r ...... 
•••••Jl•••••• •••• • ••••JI&•• •••••••• 

••••J2•••• ••••• •IHCERRM • • • 
:cPJ.fl°A0:¥ ~RRoa:< ________ :-;a:c,;-~E;s:c;~-: :"J~~g~ ¥n~~r91: 
• OFFSET • • IHC2191 • • TO CONSOLE • ............... . . . . 

[~::~::~: ........ 1····· .... 
1 IF EXTBllDZD 

~uoa HAllDLING • • ;~;G:~ • :~:; • • • 
:x~.~..:-:::r· :coOE TO IBCOMI : 

L--~~~~---- ••••••••••••••• 

Appendix F: Object-Time Library Subprograms 244.1 





Chart G2. IHCDIOSE/IHCEDIOS (Part 1 of. 51 

CALLS FOR DEFINE FlLE 
••••A3••••••••• 

• COMPILER- • 
• GENERATED • 
• OBJECT CODE • ............... 

I •••••Bl•••••••••• 
•GETUAT • ·-·-·-·-·-·-·-·-· •GET UNIT NUMBER•<----------------
• IDSRtO • . . ................. 

I •••••Cl•••••••••• 
• INSERT UNIT • 
• NUMt:sER' S t 
•PARAMETER LIST • 
•ADDRESS IN UNIT• 
• ASSIGN TBL • .................. 
:~l:. ·-~1·: . . .... 

·'· Dl •. • ttt•O&t• tt tttttt 
• t LAST •. • GE'r NEXT UNIT t 

• •UNIT NUMBER•. NO • NUMUER tUSRNI t 
•.IN PARAMETER • •-------->•FROM PARA."1:..'l'ER • 

•. LIST • • • LIST t .. . . . . •. . . . ............... . 
rES 

•••••El•••••••••• 
• t:STABLISH • 
*"DDH.ESSABILITY • 
t IN lHCFCOMH/ • 
• I HC ECOKH FOR t 
• LATJ:;l( CALLS • 

·······r······ 
••••Fl••••••••• 

• C.:OMPI LEH- • 
t ta:Nt:t~ATlO t 
• ObJ i:;l."T LODE • ............... 

CONTINUE NORMAL 
PROCES~ING 

Appendix F: Object-Time Library Subprograms 245 





Chart G2. IHCDIOSE/IHCEDIOS (Part 2 of 5) 

••••Al••••••••• • • 
NOTE: THIS MODULE IS CALLED BY 

IBCFCOMH/ IBCECOMH TO IMPLEMENT 

• DIOCSI •--------------> -=~~~~~~~~~~~~l~~i~~-l nll5ch~Sm~. READ, WRITE AND . . ............... 

DASI NT 
•••••ct•••••••••• . . 
•GET ADDRESS OF • 
• DSRN • . . . . ................. 

l •••••01•••••····· 
•GETIJA.T • ·-·-·-·-·-·-·-·-· . . 

G!T DSRN • . ................. 

. .. 
Jl •. . . .. 

• • IS DSRN A •. YES 
•. DillECT ACCESS.•-----•. . . •. . . .. . . 

WRITE DASWRITE 
CLOSE DAS TERM ---------------------------

.... 
•02 • 
• C2 •--i . . .... 

DASREAD • *• C2 •.. •••••cl•••••••••• . . .. . . 
• • IS RECORD •. NO •OBTAIN ADDRESS • 

•. IN BUFFgR • •-------->•OF INPUT BUFFER•-----------------, .. . . . . .. . . . . •. . . . ............... . i <::: _____________________ ! 
.•. 

02 e. •••••Dl• 00000000 000000~0000000000 
• • •. • • o INSERT R.ELATIVE• 

• • IS THIS A •. YES • • •RECORD NO. INTO• 
•.FIND REQUEST • •----- READ A RECORD •<--------• BLKREFA OR • 

•. • • • • BLKREFB FIELD • .. . . . . . .. . . ................. . ............... . 
i"o 

•••••E2•••••••••• . . 
• CHECK FOR l/O • 
• COMPLETION • . . ................. 

l •••••r2•••••••••• 
• PLACE BUFFER • 
• POINTER AND • 
•BUFFER SIZE IN •-----
• REGISTERS • . . ................. 

. •. 
G2 •. . . •. 

• • FREVIOUS •. Y!S 
-->•. OPERATION • •---1 .. . . .. . . .. . . 

1• HO =~~:: . . . 
GETUB •••••H2•••••••••• 

•CONSTRUCT UNIT • 
• BLOCX. INSERT • 
• ADDR or UNIT • 

:~~~~ ¥ITT7: ................. 
~~B l •••••J2••········ 

• READ JOB FILE • : (s~~r?L1=~~ : ____ _ 
• BUPNO VA.LUE • 
e INTO DCB • ................. 

.... 
•02 • .... : E3 • •--i 

DA.SEND • •. •••••El•••••••••• Ell •. •••••E~•••••••••• 
•GET ASSOCIATED • • • •. • UPDATE ASSOC • 
• VARIABLE'S • • • IS THIS A •. YES • VARIABLE SO • -->• ADDRESS AND •-------->•.FIND REQUEST • •-------->•THAT IT POINTS • 

A •CURRENT RECORD • •. • • • TO RCD JUST • 
• NUMBER • •. • • • READ • ................. ·1:. ········1········· 

•••••F4•••••••••• 

CJ<DISP •••••HJ•••••••••• . . 
• EXAMINE • 

-->•.JFCBIND2 FIELD • 
• IN JFCB • . . ................. 

l ... 
JJ •• . . •. 

• • NEW DATP. •. YES 
•. SET TO BE • •---

•. CREATED • • •. . . . ... 

• UPDATE • ••••F~••••••••• 
• ASSOCIATED • • RETURN TO • 
• VARIABLE SO •-------->• CALLER • 
•THAT IT POINTS • • • 
•TO NEXT RECORD • •• • • • • • • • •• • • •• ................. 

. .. Gll •. . . . . 
• • •. YES 

---->•.WRITE REQUEST. •- --1 .. . . •. . . . ... 
• NO ••••• 

1 
CR NOT . •. "" .. . . •. 

FIND • • READ OR •. 
--- •.FIND REQUEST • • .. . . . . . . . ... 

•03 • 
• Bl• .. . 

i READ r----------------
• • • ••Jll• • • • • • • • • •------ ---1 IP EXTENDllD 
•IHCERRM • :ERROR BAllDLDIG 

:-~a:o:~:~s:c;:-: : 1~s~a:='' 
: IHC236I : I EDCUTIOll 

• • • • • • • • ••• • • • • • • 1----------------

i ~ ,-----------
•••••Kl•• ••••••••---------1 IP EXTDDED 

• NO l .... 
•Ol • 

->• El • . . .... l :o:·. 
->• J~ • . . .... 

•••••Kll•••••••••• 
:!t~P-1!~•-•-•-•-= : DROR IWIDLIMG 
• !JlROll MESSAGE • t IS ttOT PaESEHT, 
• IBC2J1I • I IBCl!JUU( DDS 

=•••••••••••••••= l UBCUTIOR ! ----------------
· · ··· •Oil • 
• JS• .. . 

• • ••••KS••••••••• 
•SET FIND SWITCH• • RETURN TO • 

-->• OFF •-------->• CALLER • . . . . . ............. . ................. 

Appendix F: Object-Time Library Subprograms 245.1 



Chart G2. IHCDIOSE/IHCEDIOS (Part 3 of Sl 

.... 
•03 • 
• Bl •--] . . ..... 

BSAMOPEN V •••••Bl•••••••••• . . 
• OPEN DCB FOR • 
• NEW DATA SET • . . . . ................. 

CR WRITE [. 
•••••cl•••••••••• 
• CREATE ANO • 
•FORMAT NEW DATA• 

:sE~1¥~1~c~~AM: . . ................. 
I 

1 
••• ••Dl •••••• •••• .. . . 
• CLOSE OCR FOR • 
• DATA SET • . .. ........... .... .. 
:~l:· •->! . . .... 
•••••El••••••''•• 
• OPF.N Dl'l• FUH • 
• DATA SET FOR • 
• DlREC_T /\LTF!>5 • 
' PROCES:ll m. • . .. . .. ... ... ..... . 

l •••••Fl•••••••••• 
• INSERT H.ECORD • 
• NUMBER l NTO • 
•RECNUM FIELD OF• 
• UNIT BLOCK • . . ... .. ...... ..... . 

l •••••Gl •••••••• •• 
• INSEH.T ADDR OF • 
•DECBA Sl<ELETON • 
• INTO CURBUF t 
• FIELD OF UNIT • 
• BLOCK • ................. 

l •••••Hl •••••••••• 
•INSERT ADDR OF • 
•DECBB SKELETON t 
• INTO NXTBUF • 
• FIEIJ> OF UNIT • 
•BLK IF 2 BUFFER• ................. 

l •••••Jl••········ 
•INSERT ADDR OF • 
• l/O BUFFERS • 
• INTO DECB • 
•SKELETON(S) IN •· 
• UNIT BLOCK • ................. 

l •••••Kl•••••••••• 
•INSERT ADDR OF • 
• BLKREFA INTO • 
•DECBA SKELETON •----
• IN UNIT BLOCJc: • • • ................. 

245.2 

•••••c2•••••••••• 
•INSERT ADDR OF • 
o BLKREFB INTO • 

-->•DECBB SKELETON • 
• IN UNIT BLOCK • 
•IF TWO BUFFERS • ................. 
=~~:. •->l . . .... . .. 

02 •. . . •. 
• • '• YES 

•.WRITE REQUEST.•-----•. . . •. . . .. . . 
• NO l .... 

•02 • ->• C2 • . . .... 

DASWRITE •••••Bl•••••••••• • • . . 
•WRITE A RECORD • . . . . . ............... . !SECONDARY 

ENTRY 

•••••cl•••••••••• 
• NNEXT • 

-->:o g~'!~:b : 
• DEP ING ON • 
•DATA Si::T FORMAT• . ............... . 

l •••••OJ•••••••••• 
•INSERT kELATIVE• 
•RECORD NO. INTO• 
• BLl<REFA OR • 
• BLKREFB FIELD • . . ,, ....... T ...... 
•••••EJ• •••••• ••• 
• PLACt.: BUFFER • 
• POIN1'1::H AND • 
•BU•'FEH SIZI:: IN • 
• H.EGlS1"1:.kS • . . . ............... . 

1 
·'· Fl •. 

• •l::NTU<EO•. 
NO .• FROM FILE •. !---•. INITlALlZATN • • 

•. St.:l."TlOH • • .. . . ..... 
::i;: , i "' 

••••t;J•••······ 
• H.ETURN TO • 
• IHCFCOMH/ • 
•. IHCJ:.COHH • ............... 



Chart G2. IHCDIOSE/IHCEDIOS (Part 4 of 5) 

DASTERM • •. 
BJ •. . . . . 

NO • •ANY PENDING•. 
---•. 1/0 •• 

•OPERATIONS. • . . . . • ... ins 
•••••cl•••••••••• . . 
• WAIT FOR I/O • 
• COMPLETION • . . . . ................. 

----------> l 
•••••03••········ 
• FREE MAIN • 
• STORAGE • 

OCCUPIED BY 
UNIT BLOCKS . ................. 
l 

•••••E3•••••••••• . . 
•CLOSE OCBS FOR • 
• DIRECT ACCESS • 
• DATA SETS • . . ................. 

j 
••••F3••••••••• 

• RETURN TO • 
• CALLER • . . ............... 

0 ••••G3••••••••• 0 

GETUAT . .. .. . . .. ..... .. 
l •••••Hl•••••••••• . . 

• SAVE OSRN IN • 
• DSRNPTR • ................. 

l . .. 
Jl •• . . .. 

• • OSRN *• YES 
•. NEGATIVE OR .•----

•.TOO LARGE.• .. . . .. . . i 00 

•••••1<.l••········ 
••••1<.2000000000 • t 

o o • GET UNIT t 
o RETURN •<--------• ASSIGNMENT • 
o • • TABLE POINTER o ............... . . ................. 

. •. G4 •. •••••GS•••••••••• . . .. . . 
• •CALLEO FH.OH•. NO • GET PARAMETER • -->•. DEFINE FILE • •-------->• FOR ERROR • 
•. • • •MESSAGE lHC2201• . . . . . 
·r~ ·······r······ 

•••••Hll•••••••••• •••••HS•••••••••• 
• • •PRCKHTFC • 
• GET PARAMETER • •-•-•-•-•-•-•-•-• 
• FOR ERROR O •LINK SAVE AREAS• 
•MESSAGE 1HC2201• •ANO SET UP FOR o 
• • o ERROR MSG • . ........... ..... . ............... . 

l ~~~:: •->! .... 
•••••J&i•••••••••• •••••JS•••••••••• 
•COMUlI'FC • • • 
•-•-•-•-•-•-•-•-• • INDICATE NO • 
• SET UP FOR + • RECORD PASSED + 
• ERROR MESSAGE • • • . . . . ................. . ............... . 

L:~i:·. j . . .... 
••••t<S••••••••• 

• RETURN TO • 
•CALLER AT ERROR• 
• OFFSET • ............... 

Appendix F.: Object-Time Library Subprogra~s 245.3 



Chart G2. 

246 

IHCDIOSE/IHCEDIOS (Part 5· of 5) 

••••Al••••••••• • • 
• PRCMNTfC • • • ••••••••••••••• 

I •••••Bl•••••••••• • • 
• LINK UP SAVE • 
• AREAS • • • • • ................. 

COMillTFC I •••••cl•••••••••• • • 
• SETUP .• 
•PAIUUIETERS FOR • 
• ERROR MESSAGE • • • 

....... r······ .-----------
••• • ·01·· • •• • •• • ·--------- • IF EXTENDED :!~~~~~•-•-•-•-: I zuoa llAllDLING 
t PROCESS ERROR • I IS NOT PUSENT, 
• MESSAGE • I IHCIUIRll llllDS 

=······r·····= L~~--

··••El••······· . . 
t RETURN t . . ............... 



Chart GJ. IHCNAMEL 

••••Al••••••••• • • 
• l'RDHLI • • • ••••••••••••••• 

l .•. 
Bl •, . . .. 

110 • • l/O ERROR o, 
--- •. FIXUP Ill , • 

•, PROC!SS , • •. . . .. . . i YES 

•••••c1•••••••••• . . 
• GlVE ERROR • 

IHC904I • . . . ................. 

l ••••01•••······ . . 
• TERMJ NATE JOB • . . .. ............ . 

•••••El•••••••••• . . 
•INITIALIZE FILE• -->• VIA FIOCSI • . . . . ................. 

l •••••Ft•••••••••• . . . . 
READ RECORD . . ................. 
l ... 

Gl •. . . .. 
• • •. NO 

•. NAME FOOND • •---•. . . •.. . . .. . . i YES 

.•. 
Hl •. 

-------------~ .•. 
02 •• . . •. 

NO • t NAME MORE • , 
---•.THAN 8 CHARS ,t .. . . .. . . .. . . 

rES 
•••••E2•••••••••• . . 
• GIVE ERROR • 
•MESSAGE IHC221I• . . . . ................. 

---------->[ 
•••••F2•••••••••• . . 
• GIVE ERROR • 
•MESSAGE IHC22lI• . . . . ................. 

1 .... . . 
.- Kl • . . .... 

•••••H2~••••••••• . . . . . . 
• • NAME IN •. NO - t GIVE ERROR • 

•. NAMELIST OICT~ •-------->•MESSAGE IHC222J• 
•. • • !t • •. . . . . .. . . . ............... . 

rES 
•••••Jl••········ . . 
•IMPLEMENT READ • 
•USING HAM!LIST ~• . . . . 
~:::: ~: :1· :::::::: ________________ _ .... 
••••JC1••······· . . 

RETURN • . . ............... 

••••Al••••••••• • • • l"llRllLI • • • . ..... T ..... 
. .. 

Bl •. .. .. 
• •IJ'O DURING '• NO 

•. l/O ERROR • •---
•. FIXUP • o . . . . . ... 

rES 

•••••cl•••••••••• • • • GIVE ERROR o 
o IHC904I o . . . 
• • 

·······r· .. ··· 
••••Dl••••••••• • • • TERMINATE JOB o • • . ............. . 

•••••El•••••••••• . . 
•I llITIALI ZE Fl LE• 
• VIA FIOCSI • <--
o • . . ................. 

l •••••F3•••••••••• . . 
•WRITE HAMELIST • 
• NAME • . . . . ................. 

l •••••Gl•••••••••• . . 
•IMPLEMENT WRITE• 
•USING NAMELIST • . . . . . ............... . 

I ••••Hl••••••••• . . 
• RETURN • . . ............... 

Appendix F: Object-Time Library Subprograms 247 



Chart G4. IHCFINTH/IHCEFNTH (Part 1 of 3) 

••••Al••••••••• . . 
• ARITHI • • • ............... 

j 
•••••BJ•••••••••• . . 
• OBTAIN • 
•INTERRUPT CODE • . . . . ................. 

1 ... 
Cl •. . . .. 

NO.• IS •. YES !--------------------· ... mmm .. · ·---! .. . . .. . . . . .... 
•03 • 
• .r~• . 

DETERMINE INTERRUPT TYPE 
---- ----- ----- ------------- -- ---

SPECIFICATION I SPEC 
DATA RETURN 
FX-PT. OVERFL. ALEkT 
FX-PT. DIVIDE FXOVC 
FL-PT. Sllil''<I. I ALEfl.T 
DEC. OVEkFL. ALF.R'l' 
DEC. DIVIDE OVCKI<. 
EXf'. OVERFL. FPOVF 
EXP. UNOEH.FL. FPUNF 
FL-PT. DIVIDE UVCHI< 

SPEC • •. 
Fl . . . . 

• •Is IHCADJf>T•. YES 
•. • LOADED •. •---.. . . . . . . 

ro 
• •• • •Gl • •• • • • • • •• . . . . 
• LOAD IHCADJST • . . . . . . .. . . . . . . . . . . . . 

l<----------
v 

• •• • •Hl • •• • • • • • • • 
• SET UP ERROR • 
•MESSAGE IHC2101• 
• FOR BOUNDARY • 
• ALIGN ERROR • . . . .. . . ... . . . . .. . . . 

l •••••Jl •••••••••• . . 
• SET UP • 
•PARAMETERS FOR • 
: IHCADJST : ..... ........... . 

j 
••••Kl••••••••• . . 

•GO TO IHCADJST • . . ............... 

248 

f'XUVC: • •, 
Fil •. " . YES • •I~ EXTENDED•. . . . . . . . . 1

-- -- ---- ---- -- -- -•. ;~R p~~~f~f N~, .. • 

l• NO ~oi:: •--! .... 
OVCHK • •. FIX ••• ••G3••• •• •• • •• G4 •. •••••-G5•••••••••• . . . . .. . . 

• SET UP ERROH • • • FL.OAT ING t, YES • DETERMINE • 
•MESSAGE 1HC2091•-------->•. POINT DlVllil· .. ·• •------··->•INTERRUPT TYPE • 
• • •. Ci:iECK • • • • . . . . . . . . . . . . . .. . . . . ... . . . . . . . . ............... . 

• NO l l .... 
•02 • ->: c3.• " 

• •• ••H5• • •• • • ••• • 
• PICJC UP DATA IN• 
• ERROR FROM • 
•FLOATING POlNt • 
• REGS • . . ................. 

J ... 
J5 •. 

• • ARE •. 
• • INTJ:;RRUPTS •. YES 

•.TO Bf. IGNORED. •---i .. . . . . . . .. . . 
• NO ••••• l .... •02 • 

•02 • • E3• 
->• C3 • • • . . . .... 



Chart G4. IHCFIN'I'H/IHCEFNTH (Part 2 of 3) 

..... 
•0.2 .. 
• Cl .., __ l .. . ...... -

·ALERT • •. •••••c2•••• ... ••••• ·cJ •. . . . . .... 
• SET ·UP ERROR • YES • • EXTENDED • .. 
•MESSAGE '1HC210.I•<--------•.ERR 'HANDU:NG , • 
• • ·•. "!\RESENT --·• .. . .,.. _; .·• 

--····r".. ·r 
••••·•02·• .. ••-.••••• ~••••o3••••• .. ·•••• 
•l!JICD\RM • •vt·ocs• • ·-·-·-· ... ·-·-·-·-· ·-··-· -·-·-·-·-·-... • WRITE :ERROR • • WRITJ:: ERRQ:R • 
• MESSAGE t • IHC21'0:I • . -· . ..................... . ................. .. 

:.~i·· 1 ! E3• •->-

•••• 
SJC.I.PlT .. •. 

EJ •. . . . ... 
• .. utm~RFLOW • • NO ---------------->•. OVER.FL.OW OR .• •--

•.DIVIDE :ex.• . . " . .. ... . I YES 

··~ ~·~ !•••·•Fl•••••••••.: .• •·2 ·•... ..•FJ • ..•. 
PI C,f( lll' UbW • Yt::S • • ·Dl·D US~H ·t. YES ... • EXT E"NOEO •. 

DATA •<--------•. FIX UP DATA .• •<--------·• .. 'ERH -HANDLING • • 
• • • • • •. PRESENT .. • . ·-- . . ..... . ... ....... .. ........... .. ". .. .. .. 

t::·----------~~~~~---·->i ~o 
t••••Gl•••••••••·• . . 
• ·GIVE .STANDARD • 
• FlXUP • . . . . ..............•.... 

I ••••H3•••••• ••• 
• RETURN TO t --- ------....... ----------------------------->• SUPERVISOR • <--• . ............... 

Appendix F: Object-Time Library Subprograms 248.1 



Chart G4. 

248.2 

IHCFINTH/IHCEFNTH (Part 3 of 31 

FPOVF .•. 
83 •• . . •. 

NO • • EXTENDED •. l---•. ERR HANDLING • • 
•. PRESENT • • .. . . .. .. . 

. . :~i:: i• YES 

•••••cJ•••••••••• . . 
• SET UP ERROR • 
•MESSAGE IHC207I• . . . . ................. 

t :~~·. 
->• GS • . . 

.... 
•03 • 
• Fl •--i . . .... 

•••••F2•• •••••• ••, IMPR F3 • • .. •. 
• SET UP ERROR .. • •. 
•MESSAGE 1HC210I• YES • • EXTENDED •. 
• FOR IMPRECISE •<--------•.ERR HANDLING • • 
• I NT • •. PRESENT • • . . . . . .. ... ... c:·:·: ____ -------_ :: i ;, 

• • • • •G)• • • • • • • • • • 
•OETlRMINE WHICH• 
•AND THl NUMBER • 
•OF BITS TO TURN• 
• ON • . . ................. 

l 
•••••HJ•••••••••• . . 

DETERMINE • 
INTERRUPT 
TYPElS> ................. 
l .... •02 • 
->• c] • . . 

FPUNF .•. 
Bil •. . . •. 

NO , • EXTENDED •. l--- •.ERR HANDLING • • 
•. PRESENT • • .. .. . • ... 

:oA;: l. YES .. 
• 

•••••eta•••••••••• • • 
:iJrs~I I:~~Sa1: • • • • ................. 

L:~i:·. . . 



Chart 

.... . . 
• JU •--i . . .... 

GS. 

•••••Al••········ • ISSUE SPIE TO • 
• TAKE CARE OF • 
•INTERRUPTS THAT• 
•CX:CUR IN MOVING• 
• DATA • ................. 

I •••••Bl•••••••••• • • • SJWE PREVIOUS • 
• PICA ADDRESS • . . . . ................. 

I •••••c1 •••••••••• . . 
• MOVE DATA TO • 
• DOUBLE WORD • 
• BOUNDARY • . . ................. 

I •••••01 •••••••••• 
•ISSUE SPIE FOR • 
• APPROPRIATE • 
• 1 NTERRU Pl' • 

HANDLING • . . ................. 
I •••••El•••••••••• 

•REEXECUTE INST • 
• WHICH CA.USED 
• ORIGINJ>.L 
: INTERRUPT ................. 

l 

IHCADJST 

. .. . .. 
Fl •. F2 •. 

• t •. • • WAS *• 
• • HEW •. NO • t COUOITION •. NO 

•. INI'ERRUPT • •-------->•.CODE AFFECTED.•---
•.OCCURRED • • •. • • .. . . . .. . . .. . . . ... i YES rES 

• •• ••Gl ••• ••• • • •• • ••• •G2• ••• •••• •• . . . . 
• ISSUE SPIE TO • • MOVE NEW • 
• RESTORE • •CONDITION CODE • 
• ORIGINAL PICA • • TO PIE • . . . . ................. 

j 
••••Hl• ••• ••••• 

• RET TO .U.ITHI • 
•TO PROCESS NEW • 
• I NTERRUPJ' • ............... 

. ............... . l <- ---- -----

•••••H2• • •• •• •• •• . . 
• ISSUE SPIE TO • 
• RESTOkE . • 
• ORIGINAL PICA • . . ................. 

I ••••J2•••······ . . 
• RETURN • . . ............... 

NOTE: THIS MODULE IS LOADED 
AND CALLED BY IHCFrnrn/lHCEFNTH 

•••••DJ•••••••••• . . 
• HOVE IUSTR TO • 
• WOH:K AREA *<----• . . . ................. 

••••Ata••••••••• . . 
• IHCAOJST • . . ................ 

j 
•••••B4•••••••••• 
• CHECK ADDR OF • 
•INSTR FOLLOWING• 
• THE ONE WHICH • 
•CAUSED BOUNDARY• 
• MISALIGNMENT • . ............... . 

1 .•. eta •. •••••cs•••••••••• 
• • NEXT •. • ISSUE A SPIE • 

• •INSTRUCTION•. YES • MACRO TO STOP • 
•. ON WRONG • •-------->• SPECIAL 

•.BOUNDARY • • • INTERRUPT 
•. • • • HANDLING • ·r ........ 1········· 

•••••DI&•••••••••• 
• OBTAIN • ••••D5••••••••• 
• IUSTHUCTION • Rl::TURN TO • 
• WHICH CAUSED • •SUPERVISOR FOR • 
•SPEC INTERRUPT • • ABEND • . . .............. . . ............... . 

l 1 . •. . .. 
EJ El& •. . . .. . . .. 

• •Is BuUNDARY•. NO Yt.:S • •INSTRUCTION•. 
•. VIOLATION • •---i ---•.LENGTH CODE=2. • 

•. HANDLED • • •. • • . . . . •. . . .. . . . ... 
i YES . ------------>i NO 

•••••Fl•••••••••• • ••• • Fli• • • • • ••• •• . . . . 
• MOVE OP CODE • •GET INSTRUC'l'ION• 
•AND Rl OF IN~~TR• • LENGTH • 
•TO A Tt.MP AH.t:A • • . . . 

l ... 
Gl •. . . .. 

• • I:;XTl::NIJl::tJ •. YE~; 
•. E.kH HANDLING • •-- -

•. lNl:LUDED • • . . . . • ... 
ru 

... 
HJ •. . . •. 

. ............... . 
I •••••GI&•••••••••• 

• MOUlFY ltlf.TH. • 
• A!JDRESS TO • 
•POINT TO l145TR • 
• WHll:H CAll!iE.D • 
• IN'! ERkUPT • . ............... . 

I 
NO • •IS MESSAGE •. 

•••••Hli•••••••••• 
• RESET P!iW • 
•AODRt:SS IN Pit: • !---•.TO BE WRITTEN.• .. . . .. . . .. . • • •••• • 1. YES 

• At • . . .... 
• ••••J3••········ 
• DECREMENT • 
• MESSAGE COUNT • 
• AND PLACE NEW • 
• COUNT IN • 
• IHCUOPT • . ............... . 

I<----------
·····xl······ ···· . . 
•CALL IHCFINTH/ • 
• IHCEFN"nl TO • 
• WRITE MESSAGE • . . ................. 

l .... 
• • ->• Al • . . 

•TO IN~TR WHICH •-----
• CAUSED • 
• INTERRUP1 • . ............... . 

Appendix F: Object-Time Library Subprograms 249 



Chart Gb. IHCIBERH 

250 

••••.•A3•••.•-•••-••• • • • COMPILER- • 
•GENERATED CODE • . . 
• • ........ !"' ..... 
:••••B3•••••-••••-: 
•OBTAlN INTERNAL• 
•.SEQUENCE NUMBER• 
• HSN> • . . ···············-··· 

l ••.•••CJ•-•••••-•••• . . 
*CONVERT ISN TO • 
•OEClMAL FORMAT • . . . . ................... 

l 
••.•••03•·· •••••·••·• • BRANCH TO • 
• IHCERRM TO 
._ HANDLE THE 
• WRITING Of 
• ERROR MSG ................. 

j 
••••-E3•••••••*• 

• lBEXIT RTN· OF • 
• lHCFCOMH/ • 
• IHlLCOMH • ............... 



c'hilr t of 2) 

NnTF.! THIS MODULE IS LOADED 
ANL> CALLEO BY THE RTAE EXIT 
ROUTINJ::: SECTION or 
IHCFr'l..)Ml-lJlHCF.:COMH 

RF~TORE 

•••••cl•••••••••• . . 
• INSERT lJO • 
•STl\TUS IN ERROR• 
• MSG • . ·····•• ··-···· ..... . 
(~~::->! 

v 

:·······1 ••···•••• ·: 
*SF'T POI?fl'ER TO • 
• ~'T'A.E 1 :~ :~fl.\'[ • 

T\HF.1\ 

l 
••--•.o•F.t•••••••••• . . 
•:,fT POINTER TU • 
• ~TIH: CUNTR<1L • 

BL<>CK 

j 
:-••••-Fl••••••-•••: 
•t;ET. SYSTEM/USEH• 
•.\PEND COOF. AND • 
• !'~()1;Ri\M PSW • . ............. _ ..... . 

j 
••••• {;1 • ••••••••• 
•Cf\LLCNV'T • ·--0!'-ot.-•-•·•···-·-· 
" r'nNVERT CODE 
• .a.tm rsw 

I v 
•••••HI •*•o•••••-• . . 
• t;ET "D:JR OF • 
• r1 ~-TRY P01J'l. HIE • . . 

EXITRTN2 •••••c2•• 0 •-•••••• . . 
•GET SYSTEM/USER• 
•ABEND CODE AND- • 
• PROGRAM PSW • . . ·················-· :·::·:.,] . . .... 
•••••02•• ........... .. 
•CALLCNVT • 

.. -·- ·-·- ·- ·-··-·-· • CONVERT A.SEND • 
• r.ODE AND P~W • 
• FOR M.E.S.SAGE ............. *'· ••.•• 

j 
• • • • • E2• • •• •••• • • 
• ISSUE: T\.IU WTO • 
•MACIW.S TO Wk!Tf:• 
• LRROR MES:iA.(;F' • 
• IHC2ti0t • 

l . 
F2 •. •·. . . • •IS ABEND IN•. YES 

•. ~IBRA~Y • •---
•. RfJU'!'INE , • •.. . . ... 

• N0 

l 
• • • • •G2 •-• • • •• •·• • • . . 
• RESTORE ::;TAE •, 
•SUPERVISOR SAVE• 
• A.RF./'. POI NTt:H • . ······••ll•il-•······· 

I< -- ---

i 
:-••••H2•••••••••: 

RESTORE • 
fl.Eta STE RS 

,, 
••••••o••••••.,••• •••••••t••••••••111i 

j j 
•••• •.11. ••••••• •• •••••J,2•.••• ••••.•• . . . . 
• SET RETURN • • SET RETURN 
•,C\Jl•E-1< IRF.TRY) •,-----1 CODE=O (NO RETRY I . . . ................. ::·:::::r······ 

••••J<.2•••• ••••• 
• RETURN. TO • 
• SUPERVISOR . ....... ... ..... 

••••A3••••••••• . . 
• IHCSTAF. • . . ............... 

l .......... 
IBCOHM • 

LIST • 
AND •---- ----------> 

OF SAVE• 
• EA • ···-·············· 

NOIO •••••Cl•••••••••• • • 
• INSERT I/O o 
•STATUS IN ERROR• 
• MSG • . . ········-········· L: ·:;·: . ... 

WTP •••••c11•••••••••• • • •GET SYSTEM/USER• 
•ABEND CODE AND • 
• PROGRAM PSW- • . . . ............... . 

l ..... ,, . 
: 02 : .... 

Appendix F: object-Time Library Subprograms 251 



Chart G7. IHCSTAE (Part 2 of 2) 

•••••Al••••••••• .---T--------------
: RETRY : .! ~=~~~0~ROM 

••••A3••••••••• • • 
• CALLCNVT • 

• • • • •• • • • • • • • • • l. _____________ _ . . ............... 
I •••••Bl•••••••••• . . 

• SAVE CONTROL t 
• BLOC~ POINTER • . . . . .................. 

I •••••Cl•••••••••• 
• ISSUE STAE • 
• MACRO TO • 
• SPECIFY A KEW • 
• EXIT RTN ADDR • . . ••..•••.•.......• 

I •••••Dl•••••••••• . . 
• GET ADDR OF • 
•PARMS IN I BCOMI • . . . . ................. 

I •••••El•••••••••• . . 
• GET ADDR OF • 
• STAE CONTROL • 
• BLOCJ< POINTER • . . ................. 

l ... 
Ft •. . . . . 

• • I/OTO BE•. NO 
•. RESTORED • •---•. . . .. . . .. . . i YES 

•••••Gt•••••••••• . . . . 
• RESTORE 1/0 . . . .................. 

I<----------
·····Hi·········· •ISSUE SPIE FOR • 
• PROTECTION • 
•ADDRESSING ANO • 
• SPECIFICATION • 
• INTERRUPTS • . . . . . . . ......... . 

I 
•••••.Jl ••········ • SEMCH THROUGH • 
• CHAINED SAVE • 
• AREAS, • 

:e~~~O~o~f~H ! ········r······· 
... 

Kl •. 
• • CAN •. 

• • TRACEBACK •. NO 
•. MAP BE • •---

•.COMPLETE • • .. . . • ... 
• YES 

•••••H2• ••• •••••• . . 
•ADD INDICATION • ---->: TO MESSA.GE • . . . . . . . . . . . . ..... . 

I 
* ..... . ........ . 

• UP • 
•P RS FOR • 
• ON • 
• E • . . . ............... . 

I •••••c3•••••••••• 
•FCVZO • ·-·-·-·-·-·-·-·-· •CONVERT SYSTEM • 
•ABEND CODE AND • 
• PSW TO HEX • . ...... r ...... 
••••o3••••••••• . . 

• RETURN • . . ............... 

. ... "" l ...... "--------------------------
•I HCERRM • : IF EXT.ENDED 
•-•-•-•-•-•-•-•-• 'ERROR SANDLING -->: ERR~llc~5~AGE : : IS NOT PRESENT, 
• • : IHCERRM ENDS 

""""!"""" L=""--
••••1c:2········· •CALL IBEXIT TO • 

• TERMINATE JOB • . . ............... 
l ____________ _ 

252 



Chart GB. IHCERRM (Part 1 of 2) .... . ... . . . . 
•AJ• •AS• . . . . .... . ... 

IHCERRE ! ! 
oo o ••Alo ooooooo oo---- .. -------------------- ooo ••A]Ooooooo ooo oo o o •A 5 o o • • • • • • • o 
* * : CALLED BY IBCPCOHH/ • PRINT • o 0 

:rN~~A§~~y : : IBCECONll FOR ERROR :TFo'fiC~ll8~T~UE: :Gfls~o~:~i ~~ : 
I SUMllARY DURING LOAD • ENTRY MESSAGE • o TABLE o 

* * : IEDULB TERMINATION • • o 

,~···r······ ~-------------- i~i~~::r······ ···· .. ·r······ 
:••••Bl••·······:----r~-;;------- :••••e3••·······: :••••BS•••······: 
•SAVE REGISTERS • I LIBRAD ROUTINE o PRINT MESSAGE o • GET NUMBER OF • 
: AND kHL,SAVE : : Dl:'l'ECTIHG :P'OR TBIS ERROR : : ENTRIES : : ...... T ..... : '=------ : ...... T ...... : ;:~~:;::r ...... : 
•••••c1 •••••••••• •••••cJ•••••••••• •••••cs•••••••••• 
o MAJtE INITIAL o • IHCETRCB • • • 
*CALL TO FIOCSI * •-•-•-0-0-0-0-0-o o GET NUMBER OF • 
* (GET BUl'PER o • O •ERRORS FOR THIS• 
• ADDRESS, * •GIVE TRACEBACK • • ENTRY • . . . . . . ········r······· ········r······· ········r······· 

. •. . .. . .. 
01 •. 03 •. •••••ocao•t•oooooo 05 •. . . •. .... . . .. . . . . . . 

• o ENTRY FOR •. YES • • • •FREE BUFFER•. YES o o • •ANY ERRORS •. HO 
•. SUMMARY • •---->• A~ o •. A.REA ••-------->•ISSUE P'REEMAIN o •.OF THIS TYPE • •---

o. • • • • •. • • • • •. • • •. . . .... .. . . . . .. . . 
• · 1·. :o •. ·1~~--------------::::::J •••• •• • • •. r£s 

. •. 
•••••El 0000000000 ooooozqoooooooooo ES •. 
o • oooog3000000000 • • • • •. 
o GET ERROR o • TERMINATE JOB • • o NO • •HAS HEADING•. 
• NUMBER • • VIA IBEX.IT o o PRINl' BEADING •<--------•.BE~ PRINTED • o . . . . . . .. . . . . ............... . . •. . . 
ooooooooooooooooo ooooooooooooooooo •. • • 

1 L--------------------->1· YES . .. . .. n •. •••••r2••········ P3 •. ................... •••••FS••········ 
• • l/O •. •INDICATE BUFFER• • • •. o o o PUT ERROR o 

• •ERROR ( 218) •. YES • AREA FOR o • • •. YES o GET EXIT o • NUMBER AND o 
•.OR ERROR 206 ... •-------->•MESSAGE MUST BE•-------->•. ERR I 218 • •-------->• ADDRESS IF • •ERROR COUNT IN • 

•. OR 226 • • • FREED • •. • • • SPECIFIED • • MESSAGE • .. . . . . .. .. . . . . . 
. . i ~~-------------~~~~: :: ~: ~:: :: : :: _ -------------_: ~ ! ~~ -------------_:: :: : :J........ . ...... ·1·.,,. ..... . 
. .. Gl •. •••••G5•••••••••• . . .. .... . . 

• • DUPLICATE •. YES • • • • 
•. EN'TRY • •---->• A.3 • • PRINT LINE • .. . . . . . . .. . . .... . . ·r, ........ 1::::::: __ _ 
•••••Bl•••••••••• •••••H5•••••••••• 
: S~~51'T~~ : : DECREMENT TO : 
• STORE ENTRY • • NEXT ENTRY • 
• ~D • • • . . . . ................. . ............... . 

1 l 
Jl • •. •. •••••J2•••••••.••• JS.•.•. 

• • •. • • YES •• • • •. • • 
• :• ~.&Rllf •:.~------>:,.&HNTdl8(i8~ : !---•.MORE ENTRIES .• 

•.•.TABLE••.• :1s ROT IN TABLE: •. •. • • • • 

··1··~ ········c:iii::: : ·::·: ··1··:0 . . .... .... 
:••••kl.•••••••••: ••••K5••••••••• 

~~ !.ii~To:Y! : ••.• ::~:•••••: 
········r······· ..... 

002 • 
• Al.• 
•• . Appendix F: Object-Time Library Subprograms 253 



Chart. GS. IHCERRM (Part 2 of 2) 

.... 
•02 • 
: Al·• •--.1 
•·••• v ... 

Al •. •·••••A2•• •••• •••• . . . . . . 
.. ·• I /0 'ERROR •. YES ·• SET SPECIAL • 

•.·EX!":' ADDRESS .•-------->• EXIT ·sWITCH • 
•. GIVEN • • • • •. . . . . . . . . . ................ . 

10NO l '•••• • 
->• .Cl • . . 

. •. 
Bl •. ••••·•·82• •••·•••••• 

• • . •_. •PRUIT EXECUTION• 
• • CONTINUE •. NO •TERMlNATl NG DUI::-• 

•. (.BAfEO ON • •-------->•TO ERROR COUNT • 
•. COUNTS 1 • • MESSAGE • . . . . . -•. . . . .............. ··-·. 

: ·;:· :->i YES L,~~i::. 
•••• v . •. c1 •. ••••·•c2••••••-•••• ••·•••c3•••••-••••• 

• t .PRltn' •. • t ·-• PRINT MES~AGF. t 
NO • t MESSAGE •. YES •GET ADORt;S.S AND• •AND SEX M.E~;~AG~>• 

---•. IBAS-FO ·ON • •-------->·• LENGTH OF •--------">• PRHUI:.:D • 
•. COUNTS·) .. t MESSAGE t t INDICATION . . .. . . . . . . . . . . . .. . . .. . . .. .. . . . ................ . 

(,-------. ----- -- -- ------------------------- ------__ J 
. -• .. 

• Dl •. :••••02•••••••••: :••••03••-•••·••••: 
• • l'K IN:f • • YE5 •G!::T AOORFSS ANO• • • 

-•. DU.ff'ER • •-------->• LEl.,l.TH -OF ._------->• PHI NT ~llFH·.:H __. 
,•. L"UNTFNT.S ., • •CUHRENT BUFFl::R • : • 

•.. .·. : ............... : ................ : 
. i ~:~------- ------- -- -- --------- -- -- ----- ---- --- _____ J 

v ..•. 
. El •. •••••l:.1•••••••••• •••••1::3•••••••••• 

• •. • • •I HCl::TRL"H • 
.. • THACEBACK •.. YES •-Rl::~OVE ONE !.iAVF• • - • -• - • - • - •- • - • -• 

foH:vu1::~;T1::n • •-------->•AHEA. FROM CHA.Ir~·-------->• • 
•.. • • . • • • CALL 1 RAl't:: . . . . . . . . . . . . . ·-·............. . ............... . 

• Nt·> 

:::·:: :->1 
. ·• . 

. •Fl •. •. :••••F2•••••••••: 
' •• U~U< .l:.XIT •• NO •Sl::T ·RETURN .conE• 

\ -- >•. :-~\JUE~T~~ •-------->: TO 0 .!---_] 
• .. -·. •• • • . . . • • • . • • • . • • i 

• YE~; • • • • 

1 
•••• •Gl •••••••• •• . . 
•~ET ·Ht::TtJHN CUO'E• 
• '.I'O. 1 • 

! :•-•••ill••·······: ·-·· ·-·-·-·-·-·-· . . 
!l'ALL .m;rR EXIT : . . . . . . . . . . . . . . . . . 

·l ..... . 
->: (;U : 

254 

.... 
•O:Z • 
• G2 •--i . . .... . 

. . 
• r,q • . . 

G2 •. •••• •GJ• •• • , .. ,.,, .. . . . . . 
• •FREE BUFFER•. YE~ • • 

•. AREA • •-------->•l.S~U.1:: FHEEMAIN • . . . . . . . . . . . ................ . 
· 1 ~ ~~ --------------------_ j ... 

Hl • •·••••Hl•••••~•••• 
• • Rl'.:!iTOHE -rnwH~) • 

• • TAKE •. Y!::!: • RH;:t !iTE-R~; AND • 
•.!:iP.!::CIAL 1-;X-IT .•---·---->•TUHN OFF l::NTIH ' 

'• • • • !IWITCH ' . . . . . . . . . . ............... . 
i"o 

• • •• •J 2• ••••••••• . . 
•TURN OF.I-' ENTHY • 
• .UWITCH • . . . . . . . . . . . .. . . .. . . 

l 
• • • •K2• • • • •• •• • . . 

-RETURN . . . . . . . . . . ..... . 

l •• ••J 3• •••••••• 
• EXI'I' TO • 
:sPECIFU:U POINT: .. . ... .. . . . . . .. 

• ••••J:;IU •• •• ••••• . . 
• R!::5'I'ORE ON!:: • 

>• SAVE AREA 1'0 • 
' CHA.IN • 

l 
•• • •• 1-'U' • • • • • • •• • 
• FIOCS# • ·-·-·-·-·-·-·-·-· • Hi::HHT-ll\L.JZE •· 
• flOCi# • . .................. .... . . 
: .(J4 : .. l 

. ·• . Li" •• . .. 
ME!> s A.ta. •. • ~~' ,: '· p::N~:~ • •' .J 

.... . . 
>• ,t• l • . . ..... 

I'~~ . . 
• (i2 • . . 

. '· Hij •. ,•••••H!:J•·•••••-•••• . . •. . . 
• • -USER EXIT •. '11::5 ' .PfUNT MES~AGE • 

•. TAKEN • •-------->•lNOICATING USER• 
•. • • • FIXUP ·• •. . .. _. . . . . . . ............... . 

i•NO [.••••. 

->: G2 : 

•••• •J"' ••••••••• . . 
• PR! NT Ht:;S5At;£ + 
• lNDlCA1'1NG + 
•STANDARD FIXUP + . . . ............... . 

l ..... . 
- >• G2 • . . 



chart G9. Il;ICFOP'l' (Part 1, of 3) 

&RRSET ••·++.•Al+••••+•••-• . •. 
• • *Sl\VF,:_ ~E.GISTER_S: t; .. . 
• • ....... T ....... 
•·••41•1;11 ··········~·-.. . .. 
•· GE'r ERROR •· 
•llUMBER AND SAi/i;:• 
•. . IT t; • • 

..... . . 
4! Alf- • . . T. 

•,•+tit:.Atu••.•.•••~•it;· 
., STORE NO. Of' • 
• MESSAGES TO • 
•PRl~T IN TABLE • * ENTR':i . • . . . 
•••••U•1 .. ••••.•• 

... 
Bil •. .. •• •.•B.5•••.••• • . .,•• .. .. .. . ·-

.ii!- N,UMBER G'l *·- ':(~S: •I_NDlCATE PHlNT • 
• .• OR EQ. TO 25b, • •-..,.-. ..,.-..,._..,.-::?-ot A,LL MESSNJf.S •-... _ . . . ... . ·- . 

~:::.:~::1 ........ .,. 
..... 

NEl\T 
•• .. •.•c1 .. •.••-•-••i1J:•• 
•FINOENTR, • 

. -----------------------------.. -. -------- ---_:f ___ --------___ ::: ::::: i ....... . 
·-·-·-·-·--•--•-.•- ._ "!GET· ADD.RESS OF· ., 
•E~RY· FOR TH.IS ._ 
•- ERR.O.R NO. .. 

·······r .. ···· ·::~:h = 
pi_ .. •.•. lGJ•O-Rl'fM 02 • it..,.~. OJ• • •. 

• •T:BLE ENT:~•- .. NO· •. • •. • ¥1A~'I' • .• •. YES .... ·- •: ERR.OR •·· • .• 
•. MODU"lABLE • •-.-----.-->•-· THROUGH • ·-------->• .. coNDITlON 212 •• 

•. • • •-.. (SWITCH .. • •.. • • 
•· • _. •. ON.l • • • "-· ._ • . . .. . •.. . . ... . . 

• 't-ES • NO. • NO 

l :·!~·: J 
•••••El•••••-••••• •- •. E:3 •·. 
•GE:i:'t.N-TRY • .- ._ •-. •-•-•-•-•-•·-•-ie.-• NO .. • !:ilX:. • •. 
• GET NO.. OF • i--- •. PARAMETERS. •. • 
•ERRORS ALL.OWED • •.!iUf>P-LIED· • • . . .. . . 
········-1········· :~i;: .. ·1· ~:~~·. 

Fl••.•. 
.. . .. 

YES • • PARAMETER •. 
-.--•.L_T OR EQ. TOO.• .. . . •.. . .... 

• NO 

l 
••• ••Gl • ••••-••·• • • . . 
• STORE NO. 01' • 
•ERRORS l\LU>WEO • 
•IN TABLE EN.TRY • . . ................. 

1 . .. 
Ht •. •••••K·2•·••••••••• 

• • •. •SET ERROR COUNT• 
.. •NO. /\LLOWED•. YES • TO- ALLOW' TO • 

•. GT OR EQ-- TO • •-------->•ZE.RO lA.LLOWo ALL• 
•.. 2~b· •. • • ERRORS I • •·. . . . . --- --- _:: r--____________ :::::J ....... . 

•••••J.l • ••• ·-· •••• 
•GETE_tf'l'RY • ·-·-·-·-·-·-·-·-. • GET NUMBER OF •-
• MESSAGES TO • 
• PRINT • ·········-········· 

l . .. 
Kl •. 

• • NO. •,. •••• 
• •MESSA.GES To•-... YES • • 

•. PR-IN.T LT OR • •---->• A2' • 
•. EQ, TO 0· •. • • • ... . . .. . . 

• HO 

! .... . . 
•- A4. • . • . 

• • ->: a1. • 

····-· 

•••••C4•.••••.••.••.• 
•GETENTRY • 
·~-•:..:. -•-:• -· -...... - •. 
• GET TRACEB_ACK •, 
+ INC>ICATIUN +. • • ........ i',. ..... u 

. .. 
04 ·-· . ·- .,_ 

Y~S • •CODE_ LT O~ •._ 
...,--•... EQ_ TO 0 ... •-

*-·· •• •. •,. • .... ro 
. '· Ell •. •••••ES•••••••••• ·-· .... . . 

. GT • • •. • lNDlCATi:.. • 
--~•. CODE 2 ~ •~------->• TRACEBACK 

•·. • • • H.EQUESTl:.D . . ." .. 
rT 

••-•••F4•-•••.•••-•••· • • 
INO-lCATE NO. • 
TRACEAAC~ • 

·-··· ..... , ....... •-•, 

. • ••••••• t:•• •••••• 

:<----------------- ----------------->! 
• •• • •GlU • • • ••,•• •• 
•GETEUTH.'t- • 

•-- ·- ·- ·- ·- ·- ·-·-. • GET U.SEk ._ 
ADOR.t::SS . ................. ,. 
l . •. 

H4- • .. . . •. 
Yt;S • • •. 
--- •. •. Zt;H.u; • •. • 

•. . . ... •. • 

ro 
····••J&l•-·········· . . 
• S'l'ORE: ADDRESS • 
•IN TABLE ENTRY • . . . . ····-········· .... 

---------->! 
. • . 

K~ •. . . . . 
•= •FI~~io~~:E •: .~~---J 

•.SWITCH· ON.• .. .. . . ... 
., YES 

! ..... 
•0.2 .. 
• Al• .. 

.... 
•Ol • 

• W> •--1. . . ...... 
• •• ••-H~• •-•,•••·••,•·• 
•UPDATE: ERR- t~O. • 
•· BY ON1: (TU~N • -->• Fltl.S'l T'IHl • 
•THROUt.iH -sw-1:r.cu. ·
• otH • . ..................... . 

l ... 
J5 •. 

• • ERROR •. 
• • NUHSER GT- • ., NO 

•.MAXIMUM T0 BE·. 41---i 
•. CHANGED • • ... . . 

•• .. • v 
• ~n:s • • •• l .. .. .. . 

•02 •• Cl • 
->:_ E2 • • •• •• • 

Appendix F: Object-'l'ime Library Subprograms 255 



Chart G9. IHCFOPT (Part 2 of 3) 

.... 
•02 • 
: Al• •--1 . . . . "' . •. Al •. •••••A2•• •••••••• 

• • •. •GETENTRY • 
• • • .. YES •-•-•-•-•-•-•-•-• 

•. ERROR 212 .•-------->• GET CONTROL • 
• • CHARACTER •. . . • ... • :;;• • 1. NO 

• Bl •-> . . .... 
•••••Bl•••••••••• 
•GETENTRY • ·-·-·-· -·-·-· -·-· •GET UPPER RANGE• 
• OF NO. TO BE • : .... ~~~~;~ ..... 

l 
•••••c1 •••• •••••• 
•TURN ON SWITCH • 
• INDICATING 
t FIRST TIME 

THROUGH 

l 
••• ••Dl •••••• •••• 
• STORE UPPER • 
• RANGE A.S • 
• MAXIMUM TO BE • 
• CHANGED • . 
•••••••••• $•ti• ••• 

l =~~·. 
->• HS • . . 

INDICATION • . ............... . 
l 

•••••82••········ 
• INDICATE NO • 
• CONTROL • 
•CHARACTER TO BE• 
• SUPPLIED • 

l . •. 
C2 •. .. . .. 

.• •. NO 
•.EQUALS CODE=l. •---

•. •. . .. . . . . 
rES 

•••••02•••••• •••• 
• I NO I CATE • 
• CONTROL • 
•CHARACTER TO BE• 
• SUPPLIED • . . . . . . . . . . . . . .. . . .. .. l •02 • 
• E2 •-> . . .... 

FINISHED 
• • •• • E2• • • • • • •• • • . . 

ERRSAV •••••A3• ••••••••• . . . . 
•SAVE REGISTERS • . . . . ................ . 

I v •••••B3•••••••••• . . 
GET ERROR 

NUMBER ................. 
l 

•••••C3•••••••••• 
•FINOENTR • ·-·-·-·-·-·-·-·-· •GET ADDRESS OF • 
• TABLE ENTRY • . ..... ........... . 

j 
•••••DJ•••••••••• . . 
•GET ADDRESS OF • 
• WHERE TO SA.VE • 
• ENTRY' • . . ............... . 

l 
•••••E3•••••••••• . . 
• MOVE TABLE TURN OFF 

SWITCHES •<-------- o ENTRY . . . . . . .. . . . . . . . . . . . . . .. . . . . . .. . . . . .. . . 
j 

••• •F2••••••••• . . 
RETURN 

256 

ERRS TR 
•••••Al.J•••••••••• . . . . 
•SAVE REGISTERS • . . . . ................. 

l •••••B&&•••••••••• . . 
• GET ERROR • 

NUMBER • • . . ................. 
l •••••Cll•••••••••• 

•FINDENTR • ·-·-·-·-·-·-·-·-· •GET ADDRESS OF • 
+ TABLE ENTRY • . . . ............... . 

l ... 
Dl.J •. . . •. . ... 

• • ENTRY •. NO • • 
•.•MODIFIABLE •. •---->: E2 : .. . . • ... j YES 

• ••••El.J•••••••••• 
•GET ADORE.SS OF +· 
• WHERE TO • 
• RESTORE TABLE • 
• ENTRY FROM • . . ............... . 

l 
: • • • • Fll • + + + • + + • •: 

• RESTORE TABLI:: • 
• ENTRY : . . . . . .. . .. . .. . . . . . . 

! .... . . 
• E2 • . . 

.... 



Chart G9. IHCFOPT (Part 3 of 3) 

FINDENTR • •. 
Al •• 

• • ERROR •. •••••A2•••••••••• • • YES • • NO. LT OR •. • SET UP FOR O !---•. EQ TO FIRST • O 
•. TABLE .• 

•.ENTRY.• .... --» ERROR NO. 902 • • • . . 
""""['"""" ••••• • NO 

:012: 1 .. . 
... 

Bl •. . . .. 
• •ERR NO. GT •. YES 

•.NO. OF TABLE • •----
•. ENTRIES .• .. . . .. . . 

ro 
•••••c1•••••••••• • • •GET TABLE Etrl'RY• 
• ADDR • . . . . ................. 

l .•. 
01 •• 

•••••B2•••••••••• 
•WRITE • ·-·-·-·-·-·-·-·-· • WRITE MESS,.GE • 
• 902 • • • ••••••••••••••••• l .... •02 • ->• E2 • • • .... 

. • •. ••••D2••••••••• 
• •TABLE ENTRY•. YES • • 

•. MODIFIABLE • •-------->• RETURN • 
•. • • I\ • • .. . . . ............. . .. . . 

l"o 
... 

El •. . . . . 
• • •. YES 

•. IS IT ERRS AV • •-----•. . . .. . . .. . . 
i"o 

•••••Pl•••••••••• . . 
•SET UP FOR ERR • 
• NO. 903 • • . . ................. 

1 
WRITE • •. Gl •. •••••G2• ••• •••••• . . .. . . 

• • FIOCSI •. NO • MAXE • 
•. INITIALIZED • •-------->•INITI,.LIZ,.TIOll • 

•. • • •CALL TO FIOCSI • .. . . . . 
••••;ES ••••••••1••••••• •• 

l <- ---- ---- -- -------------

• • • • • Hl • •·· • • • • • • . . 
t Pl11' ERROR NO. • • urro MESSAGE • . . . . ................. 

l •••••Jl••········ . . 
: "Cf IEr~~:GE : . . . . ....... r ...... 
••••JU••······· . . 

• RETURN • . . ............... 

GETENTRY • •. 
Al *• . . .. 

.• LAST •. YES 
•. PARAMETER • •---1 *• GOTTEN • • .. .. .... 

1• NO :~!:: 
• • . 

•••••Bl•••••••••• • • •UPDATE TO NEXT • 
• PARAMETER • • • • • • •••••••••••••••• 

l •••••Cl•••••••••• • • 
• GET NEXT • 
• PARAMETER • • • . . 
"""'"l"'""' 
••••Dl••••••••• • • 

• RETURN • • • ............... 

Appendix F: Object-Time Library Subprograms 257 



Chart G10. IHCTRG:li/lHCETRCH 

••·••A.J•••••·••tit 
• I)tCTRclV • 
• X:HCETRCH • . . ...... r ..... 

.•. 
•••• • B2'*••• •••• •• BJ *• 
• SET SWITCH TO • • • • .. 
•INDICATE ENTRY _• ·yEs • •- EXTENDED. •. 

FROM EIH<OR >I<••---•--•. ERR HANDLING • • 
MON I TOR • • • PRESENT • • :-..................... : .. . . . . .. . 

. ... ro 
lHCERRM 'c:l" •. • • 

•. • PRE- •. 
YES ·-.•CEDING. US'E .•.• 
---•• ·OF IHCTRCH • • 

•. DONE • t ... . . .. . . 
: ·::·'!_,1• No . ' . ' ..... . .•. 

. 03 •• 

-. • • • 'ERROR • • .•-. NO 
•.'CONDITION 217. •--

•. 'OR 218 ·• • •.. . . • ... i YES 

.·•· E3 •. . . . . 
• • EX·IT •. NO 

·•. -ADDRESS • •-->' 
•.SPECIFIED.·• . . . -· •.' .·• 

!'~ 
•it t'• Fl•'.•·••••·••·• 

•RETURN TO EXIT .• 
t ADD.RESS .• . . ..... •··•···· ...... . 

.• •·••Gl•_•'• ••-•• •·• 
"• kETURN TO • 
• I:8EXI'I'. WITH •<--
• ABORT CODE • ...•...........•... 

•••·•'•HJ•'••·••••••• . . 
'• P'k-1 NT ERROR • -->• HESS.AGE . '• . ..................... 

'---------- ·------------->! 
·····•J3••··········· . . 
• 'PRINT HEADER t 
t FOR TRACEBACK .• . . 
• • 

NOTE: IHCETRCH ls CALLED BY 
IHCERRM. UICTRCH. (ENTRY PO~NT ·rncEl\RM·l 
I.S CALLED BY LIBRARY ROUTINES 
DE'rECTING ERRORS. 

.. ... . .. 
* ·c1a • . . ··-·· 1 ··-••••c1a•-•••••••·•• • • • PRit'IT NAME OF o 

•CALLING ROUTINE• 
• • • • . .................... . 

l •••••01&••••······· .• . 
it"PRl'NT. CONTENTS ·e 
:: OF -REGS 111-1 ·: 

• • ....... .......... ..... -. 
1 .•. 

E4 •. •••·••E.$• titee·e•·•·•• 
• •T~cED BA~i<•. YES ·: PRINT 'MAIN : 

·•. TO MAIN • •------·-->• ENTRY POlNT • .. . .. . . •-. . . . ' - ' . 
··r~o ........ r ....... . 
.·•· ' .-.. r&& . •. FS it.. 

• 't Tt\BLE •. • • ... 
• • SIZE •. NO •. • EXTENDED •·.-NO 

•. - EXC•EEDED ·OR • •'--- •.ERR. HANDLING • •---.·1 
•. . LOOP • • •. PRESENt ·-. • 

•.FOUND.• •. • • .. .. . . .... ·· i '" j '" :::::: 
••••GI.I•••• ••••it• ••• • •G5•••••• •••·• . . . 
PH.I'NT TEKM1N'A1"E• • TURN ·ERH:OR • 

MESSAGE it •MONITOR. SWITCH t 
• • OFF • . . . . ......•....... ··-····· ... ····• ......... ·•·•·• 

L: ·::·: ,. . . .... 
•-. e·• H 5·• t't "•• ···•·• • 

.• ••••J4••···· ...... . . 
• ·POI NT ·To NEXT ·.• 
-. HIGHEST ·LEVEL •<-
_•CALLING ROUT I NE• ,, . 

• RETUR'N ro .• 
• C'A'LLER '• . . ················ 

·······]::::::: ____ ._~::::::::i ....... . 

258 

••·•'•"•K3•~•.•••••••• . . 
• .. CONVERT_ 'REG • 
•coirr!:NTS TO HEX• • • . - - ' ' ' - . . ........ r ....... 

....... . . 
-. ·era·· • • ...... 



Chart Gll. IHCFDUMP 

DUMP •+••*Al•·•••••••·•• 
• SET. SWITCH ON • 
• FOR MONITOR • 
•EXIT C EXITSW = • 
• X1 FF') • • • ................. 

l 

... -. 
• • 
'. A2 •-·-i • • .... 
•••-••A.2·········· •• 
• StT CARRIAGE • 
-• CONTROL FOR • 
•EJECT ICHAR IS •-·--
• c• 1 • > • .. . . ............ -..... .. 

• •. PDUMP 
Bl •. •••li •B2• ••• ••-•·• •• 

• • •. •SET "SWITCH OF-F • 
YES • • IS THIS 'A •.. • FOR MONITOR • 
-'--•. DUMP CALL -. •<---------• EXIT • 

•-. ... •(EXITSW=x•oo'•) • . . -. . . . . . ················•·· ro 
. .. 

Cl •. 
• •IS THIS•. 

NO • • A PDUMP •. 
<--•.DURING -AN l/O •.• 

•. FIXUP .-• •. .'• . . . . 
['" 

···-· •01 ••••••••• 
•-BRANCH TO l BCOM• 
•F•,IH: MSG -IHcqotH. . . ............... 

•• ... •El••·••••·•••-• . . 
• SET SWITCH TO • 

-->•INDICATE I/o IN·• 
• PROGRJ::SS • . . . . . . . . . . . .. . . ... . -. 

j 
•·•• • • r:1 • • ·-• •-···• • • . . 
·•oBTAr:N AOURESS .• 
• OF ARGUMENT • 

LIST ... .. . ... . .. . . . .. . . 
j 

•.•••• ( ;i •••••••••• . . 
• Sl::LECT f>i'STEM • 
• OlJI'PUT ·U-EVICE • . ,, . .................. 

j 
••·•••Hl ••••·•••·• •• . . 
• HAKE • 
•-INITIALIZAT-ION • 
•CA.LL TO Fl'C>CS# • .. . ..... -.. -........... . 

l .--. .. ··•Jl--+••······· . . 
·•sKI'P 'A LINE VIA• 
• Floes• • . . . . ....... r······ 
•••••K-1•••••·•:•••_• 
• $'AVE START OF • 
• RECORD -AND • 
•COMPl.rrE END OF -• 
• RECORD • . . 
·---····c;:~:; 

,. -. 
····· 

•••••c2•••••••·••• . . 
4i INITI-ALIZE + 
:ARGUMENT SWITCH:<--

' . ........... -........ . 
:·::·:->j 

•'•,•·• 
GETARG 

····••b2•• ··-······· . . 
• -'ASSUME '.f,I'RST • 
• LlHIT IS LOW . . ......... -....... . 

1 
-. '•· 

E2 •. . -. •·. 
• '• ONLY ONE •. YES 

•. ARGUMENT • • -----•. -. . . . •. . . 
ro 

-. •·. 

••••·•01••·••-•••••• . . 
•SET 'FOk -END Of -• -->·: ARGUMENTS • . ............... -.. . 

l •...•. . . 
: J,2 -: 

···-··· 

F-2 . •-. • ••••F3•-• ••·• •••• • 
-. -. -BYT·ES • • • • 

NO • • TO. BE •. YES ii GET BYTES • 
---·•-.. ·DU,..P:E-D • •--------->•BETWEEN LIMITS • 

•. BETWEEN • • .• • 
•.LIMIT.• • • •. -. . . .... -........... . . 

••-••'-Gl• • • • •••• •• . . 
• RESET -FOR 
• SECOND LI'MIT •<----------------• . . . ............. ·····-· 

1 ... H 2 • . •·••••HJ••••• •·• • • ·• .-. •. . . 
• • IS FORMAT •. NO •SET UP FOR HEX • 

•. CODE .L£G1\L • •-------->• FORMAT • .. ' . . . . .. . . . . . •. . . . ............... . 
• YES l 

----- --"--> 1<---"-------------------
... J2 .. ····••.J3••········ . . .. . . 

• • •. YES -+ -ALLOW FOR • 
•... COMPLEX ••.•-------->:IMAGINARY PART : 

···-.-~~· : ....... r ...... : 
!<------------------------

•••.• •It 2• ••• _....... •·••••tel••-···· ...... . 
• 'G'ET ·BUFFER + "•FCVZO • 
• POSIT-ION AND • •-•-•-.•-•-•-•-•-• 
• ADDRESS OF •--'------>+ HEXADECIMAL • 
• CURRENT DUMP • • CONVERSION • 
• LOCATION _ • • _ . _ • ........ -.......... . ................. . 

l ..... . ->• Al.I ·+ ,, . . ... 
Appendix F: 

····· . . 
: All :--1 .... ~ 

•••••All••••·•••••• . . 
• DUMP DESIRED • 
+ LOCATIONtSI • . . 
• • . ............... . 

l .•. 
'BQ •• • ····•.a5·•·····-····· . .. .. . . 

• • ARE •• ~es •R'ESE."T l/O ENDED• 
•. •.-~~~n~~tE. •. •-------->: sWlTCH : .. -. . . . .. . . . ····-· ............ . j NO J . 
•••••ell·•••••••••• c~ -•. . . . . . . 
•RES'E'l' ·ARGl)fili~NT • No • • IS THIS A •. 
• POINTER • ---•. 'DUMP 'ENTRY • -. . . •-. . -. . . -.. . . . ..... -............ • .... 

L: ·::·: 1· YF.S .... 
••••05•-········· 

• IBEX IT • ·------- --------. 
-. Tt:kMINATl:: J03 • ··-···-·-·········· 

.-.• •-£~······· .... • HE'I'URN 10 • -->·• CALLEH t . . . ............... . 

Object-Time Library Subprograms 258 .1 



Chart G12. 

258.2 

IHCFEXIT 

••••A3••••••••• . . 
• EXIT • . . ............... 

l •••••e3•••••••••• . . 
GET ADDR OF • 

IHCFCOMK/ • 
• IBCECOMH O . . ................. 

l 
••••c3••••••••• 

• BRANCH TO • 
• IBEXIT o . . ............... 



chart G13. IHCFSLIT 

••••Al••••••••• • • 
• SLITE • . . ............... 

I •••••Bl•••••••••• . . . . 
• GET I • • .... . . . . ................ . 

o C2 • l . ·1···. : ·::· :-> .... . .. •••••C2•••••••••• C3 •. 
•FCVIO • • • •. 
•-•-•-•-•-•-•-•-• YES • • •. 
• CONVERT BAD •<--------•. I GT 4 • • 
•DATA FOR ERROR • A •. • • 
• MSG • •. .• ................. • ... l Joo 

r------------------------•••••D2•••••••••• Dl •. 
I IP EXTZNDED • IHCERRM • • • •. i ERROR IWIDLIHG :-;;;o~-:&:s:G;-: __ !!~.:. I LT 0 ·:. 
1 IS llO'l' PRESElft', o 1HC216I • •. • • 

: IHCERRll. DIDS : 0 •• • 0 • 0 • • 0 0 0 0 • 0 : • • 0 • • 0 • • 

L--~~~---- l i 00 

. .. .. .. •••••El•••••••••• E2 •. EJ •. •••••Eq•••••••••• . . . . .. . . ... . . 
•GIVE A STANDARD• NO • •USER FIXED •.. .. • •. YES • GET HUMBER OF.• 
• FIX-UP •<--------•. UP DATA • • •. Io::.O • •-------->• SENSE LIGHTS • . .. .. . .. . . . . . .. . . .. . , . . ... ·····r:::::: _______________ :~ r ~s • • 1·.;;, ········1········· .... . . 

• Cl • • • •••••FJ•••••••••• •••••FCI•••••••••• 
•••• • TURN ON SENSE • • • 

••••G2••••••••• . . 
• SLITET • . . ............... 

I •••••H2•••••••••• . . 
• G!T I AND TBE • 
• ADOROFJ • . . . . ................. 

l .•. 
J2 •• .... . . .. 

• • YES .• •. 
• C2 •<----•. I GT • • • . . " •. .. .... .. . . .. . • i MO 

.•. 
K2 •. . . •. 

YES • • •. llO 
---•. I LE 0 • •-----•. . . .. . . .. . . . 

• LIGHT • •TURN ALL LIGHTS• 
• CORRESPONDING • • OFF • 
•TO THE VALUE OF• • • 
• I • • • ................. . ............... . 

L ____ ---- ---------->! 
••••GCI••••••••• . . 

RETURN • • 

.•. HJ •. •••••HCI•••••••••• 
• • IS •. • • 

• •SENSE LIGHT•. NO • • 
-->•.CORRESPONDING.•-------->• SET J=2 • 

•.TOION.• • • .. . . . . 
·r~ ....... T ....... 

•••••Jl••········ •••••Jll••········ . . . . 
• •TURN OPI' SERSE • •-------->• LIGHT • . . . . . . . ................. .. ..... r ...... 

Appendix F: 

••••Kil••••••••• . . 
• RETUIUI • • • • •••••••••••••• 

Object-Time Library Subprograms 258.3 



Chart Gl4. IHC.FOVER 

••••AJ••••••••• • • • OVER FL • • • ...... T ..... 
... . .. •••••81••••···-··· 82 •. 83 •. . . . . ... . .. .. 

• • NO.• *• NO.• •. 
• SET J~2 *<--------•. UND&Jtl'LOll • •<--------•.. OVERFLOW • • .. . .. .. ... . . . . .. ... .. . . .................. . . . . r T"" 

2S.8.4 

•••••C2•••••••••• •••~•c3••41!••••••• • • • • . - .. . 
• SET J•l • * SET J-=l • • • • • .. . . . 
........ ,... .. ... . : : :::::1::: ::: 

• • 
•TURN OVERFLOW/ • ------------------·--·--·---------------->• UNDERFLOW • 
• INDICATOR OFF • • • ................. 

l 
****·El********* • • * RETURN • • • ................. 



Chart G15. IHCFDVCH 

••••·A3••••••••• . . 
• DVCHK • . . .......••....... 

I . •. 
:••••a2•••••••••: •• E~v10E· •. 
• • YES • • CHECK • ... 
• SET J=l •<-------- •. INOlCATOR ON • • 
• • •. CX'FFt) .• . . .. . . ..... ... ......... .. ... . 

ro 
•••••c3••••••••• • . . . . 

SET J=2 . . ................. 
I 

:••••D3•••••••••: 
•' TURN DIVIDE • 

-- - - -- - -- - ----- .... >•CHECK INDICATOR• 
. • OFF (X'OOI : 

l 
••••E3••••••••• . . 

• RETURN 

Appendix F: Object-Time Library Subprograms 258.5 



Chart Gl6. IHCDBUG (Part 1 of q) 

TRACE • •. 
Fl •. . . •. 

.• •. NO 
•.TRACE FLAG OFF. •---•. . . .. . . .. . . 

r~ 
••••Gl••••••••• . . 

• RETURN • . . ............... 

•••••Hl•••••••••• • • 
• MOVE 1 TRACE 1 • 
• INTO DBUFFER "<- -. . . . ..•.••......•••.. 

I •••••Jl••········ • • •----OUTINT-----• 
• CONVERT LABEL 0 
• TO EBCDIC • • • .............•... 

258.6 

l .... •02 • ->• A4 • . . .... 

••••Al••••••••• • • • DEBOGI o • • ...... r····· 
... 

Bl •. .. .. .. .. 
••SELECT OPTION. • •. .. .. . . .. .. • 

1 
-------------------------TRACE TRACE GF01Fl 

-------------------------
UNIT 

IRIT VARillllLE 

iiiiii____ --iiFiiiF:q 
INITsci'.R --iiFoiF'S ------------------------- -------- --------INIT llRRAY ELEMENT I NITARI T GF02Al 

SUBCHK SUBCHK -------------------------
TRACE ON TRACEON 

TRACE OFF TRACEOFF 

--iiFo2t;j 
GF02Aq 

GF02oq DISPLAY __________________ DISPLAY GF02A5 

BEGIN-I/0--------------- STARTIO GF03Al 

FINISH 1/0 

SUBTREN 

=~~~~Fj?~~;;~~;:: 
• ARD RAHE OF • 
• PROGRAM INTO • 
• DBUFFER • • • ................. 

l .... •Olf • ->• Bit • . . .... 

END IO 

SUBTREX •••••Fl•••••••••• • • 
•MOVE ' SUBTRACE•• 
• RETURN•' INTO • • DBUFFER • • • ................. 

l .... •O&I • ->• BU • . . .... 

GF03A2 

UNIT •••••F4•••••••••• . . . 
• PLACE UNIT • 
•NUMBER IN DSRll • • • . •. . ............... . 

I ••••Glf••••••••• • • • RETURN • . . ............... 

INITSCLR •••••FS•••••••••• • • . . 
•SAVE DATA TYPE • . . 
• • . ............... . 

I •••••GS•••••••••• • • 
• COMPUTE • 
• LOCATION OF • 
• VARIABLE • • • ·······r······ 
•••••HS•••••••••• . . 
•----Ol1I'NAME----• 
•PLl\CE VARil\llLE • 
•NAME IN BUFFER • . . ................. 

l .... •02 • ->• A1 • . . .... 



Chart G16. I~CDBUG· (Part 2 of 4) 

.... 
•02 • 
• Al •--1 • • .... 

INITARIT 
•••••Al••••······ . . . . 
*SA.VE DATA TYPE • . . . . ................. 

l •••••Bl•••••••••• . . 
• COMPUTE • 
• LOCATION OF • 
• ARRAY ELEMENT o . . ................. 

l •••••c1•••••••••• 
•----OUTNAME----• 
• PLACE N1\ME OF • 
o ARRAY IN • 

DBUFFER • ................. 
l •••••01 •••••••••• . . 

•COMPUTE ELEMENT• 
•NUMBER AND MOVE• 
: TO DBUFFER • ... ............ .. 

l =~~·. ->• Bl • . . 

INITARAY • •. 
A2 •. . . .. 

• • •. YES 
• • IOFLAG ON • •---•. . . •. . . • ... 

ro 
•••••S2•••••••••• •INITARIT • ·-·-·-·-·-·-·-·-· -->• PROCESS ARRAY • 
+ ELEMENT • . . . ............... . 

1 .•. 
C2 •. . . .. 

NO • • •. 
--- •.END OF ARRAY .. • . . . . .. . . • ... 

r~ 
• ••••02••·······. 
• RETURN 

•••••E2•••• •••••• 
•TURN IOFLAG OFF• 
• AND INSERT • 
• ADORES:.> OF •<--
: ARGUMENT LIST : . . .. . . .. . . . . . .. . . 

l .... •Oll • ->: 84 •• . . .. 

SUBCRK •••••A3•••••••••• . . 
• COMPUTE • 
• LOCATION OF • 
• ARRAY ELEMENT • . . . ............... . 

l .•. 
83 •• 

• •ELEMENT•. 
• •LOCATION LE•. NO 

•. MAX ARAAY .. •---
•.LOCATION • • . . . . .. . . 

!'" 
••••cJ••••••••• . . 

RETURN . . ............. . 

:••••D3•••••••••: 
• MOVE 1 SUBCHK 1 • 

: INTO DBUFFEH :<--

I v 
• • • • • E 3• • • • • • • • •• . . 
•-- - -OUTNAME--- - • 
• PLACI:. Al<HA Y • 
:NAMl:. IN DblJFFER: . . . . . . . . . . . . .. . . . 

l 
• • • • • F 1• • • • • • •• • • . . 
•COMPUTf-. F:LF.MENT• 
" NUMllEK " 

l :••••t;J•••······: 
•----CUTI NT-----• 
• CONVlHT LABEL • 
• TO 1:.BCDIC • . . ................. 

l .... •Oii • 
->• Bll • . . .... 

Appendix F: 

. ... 
•02 • 
• A4 •--1 . . . ... 

TRAC EON •••••A4•••••••••• . . 
•SET TRACE FLAG • 
• ON • • • . . . ............... . 

j 
••••84•••······ . . 

• RETURN • . . ............... 

TRACEOFF 
•••••Oil•••••••••• . . 
•TURN TRACE FLAG• 
• OFF • . . . . . . . .. . .. . . . . . . 

j 
••••Ell•••••••••• 

KET URN 

DISPLAY • •. 
A5 •. .. . .. 

YES .. • •. 
---•. IOFLAG ON • • •. . . 

•• 0- • . ..... 
ro 

•••••BS•••••••••• 
• CONSTRUCT • 
• NAMELIST 
• CALLING 
• SEQUENCE . . . ............... . 

l 
•••••C5•••••••••• . . 
•GET UNIT NUMBER• 
• FOR OUTPUT • . . ............... . 

l 
•••••o~•·•••••••• . . 
• ---NAMELIST----• 
• OUTPUT • . . . ............... . 

j 
••••E~••••• •••• . . 

• RETURN • . . ............... 

• •• • •F~• •• •• • •• • • 
• MOVE MESSAGE • 
• 1 DISPLAY DURim .. • 

-->•l/O SKIPPED' TO• 
• DEIUFFER • . . ................. 

l :o:·. ->: Bii • • .... 

Object-Time Library Subprograms 258.7 



Chart G16. IHCDBUG (Part 3 of 41 

STARTIO 
·•••••A1~•········· • • 
• SET CURRENT • 
• ·AREA FULL .. . .. 
• • ·······-·········· 

I ••••-.21••·•••·••,.·•• • • 
• SET IOFLAG TO o 
•·INDICATE UO :ZN• 
o PROGRESS ·• ·• .,, ....................... 

I •••••cl••••••••··· 
•SET CU YTLC TO• 
• AD OF • 
• LO OJ' • 
• Fl IN • 
• BLOC'K • ············••:ti···· 

I 
••••01•· .. •••••• . . 

• RETURN • . . . ................ 

258.8 

·ENDIO •••••A2•••• ... ·•••·•.,. .. . 
o :SAVE lOFLllG • 
• ·l NFORMATI ON o • • . ·• 

-·····r--··· 
•••••82•••········ • • 
• ·SET lOF :AG TO ·• 
• ENABLE FUTURE ;o 
• DEBUG C:ALLS • :• .. . ............ "••••• 

1 .•. 
C2 •,. •••••C3•••••••••• 

'• • '· •--- ... OUTPUT----. t 
,•ENOUGH MAIN•, ·NO o WRITE HESSAG·E • 

'*• STORAG·E TO • •-------->• 'SOME DEBUG t 
·.-.·SAVE INFO.'• •OUTPUT MISSING' t •. ..• . . 
J~ ........ , ........ . 

02 •• 
. • •. -••••o3••••••••• 

.·•INFORMATION•. ·NO • t 
t;IN OLD IOFLAG.·•-------->• RETURN t .. . . . . .. .• .. .. ................. . .. . . 
: 

0 
:;• :->.l• YES .... 

•••••'E2• •••-.••~•·•• .. . . 
•---FREECHAR- -·--• -->• EXTRACT • 
·o CHARACTER • . . .................. 

1 ... 
F2 •. •••••Fl•·••••••••• . • •. • • ••••Fii••••••••• 

• •FULL ARRAY •. YE.S ·•MOVE FULL ARRAY• • • 
•. OUTPUT .·•-------->.. TO DBUFFER •-------->• RETURN • ... . . . . . . .. . . :• . . ............. . •. . . . .................. . 

l"o 
.•. 

G2 •. ••••·•GJ••••••••·•• . . .. . . 
• ·• •. NO •MOVE CHARACTER • 

•. END OF LINE , •-------->" TO DllUFFER .. . . . .. . . . . .. . .. . ............... . 
• YES l 
1 ····· ->= E2 : . . .... 

•• ... •·•a2·•••••••••• . . . 
•----OU'l'PUT---- • 
•WRITE OUT LI NE o . . . . ................... 

I ·•••••J2••········ .. . . . .. 
---•UPDATE POINTER o . . . . .................... 



Chart G~.6. IHCD,BUG (Part 4 of 4) 

..... 
•OQ • : a1.·•-.-i · 
•••• -OUTITEM ·, .•••••.Bl•••••••.••• • • 
:M~~o Eg~nM~GN: 
• • . . .......... _. ........ . 

1 •••••c1·•••••••••• 
·o PREVENT • 
• l'iLIGNMEllT • 
t ERRORS J'OR t 
•INTEGER/LOGICl'iL• . . ........ r ... , .... 

.•. 
Dl •. . . •. . . .. 

•-. .DATA TYPE • • .. .-. .... r· 

OUTt.<lG •••••Fl•••••••••• 
• HOVE 'F' TO • 
·• P01NT£R TO .. 
• INOJCllTE ZERO • 
• VA.LUE • .. . 
·················•·· l ... 

Gl •. . . .. 
YtS . • ·•. 
---•. VA-LUE=O • • . . . . .. . . .. . . 

i"o 
• •• • •Hl t'tott••••• . .. 
• MOVE 'T' TO t 
• POINTER 'o . .. ................... 

I 
••.• ••Jl •••• ···-· •• • • . . 

•->"UPOl'.TE POINTER • . . . . ................... 
! ..•.. 

·• . 
• 911 ·• . . ..... 

•••••F2•••••••••• 
•---OUTFLOA.T ... ---.• 
t CONVERT • 
'Ol'LOl'.TING-POlNT • 
t AND lMAGillARY • • • ..................... 

! 
•••1f•Glt •••·•-• •• o·o . . 
• • •MOVE TO BUFFER • . . . . .................... 

! ... -.. . . 
• 81t • . .• 
. .... 

OUTFIXEO •••••El•••••••••• . . 
• .. ---OUTIMT---- • 
* COMVEKT VALUE • 
• TO EBCDIC • • • ................... 

! ..... . . 
• Be& • . . .... 

·oUTREl'.1. •·••••GJ•·•,.••••••• 
•---oUTFLOl'.T-- ---. 
• CONVERT • 
•FLOl'.TING·POlNT • 
• ANO MOVE TO .._ 
• OBUFFER • ····-············· i 

. .... . . 
• tse& • .. . . ... 

Append~x .F: 

• ••• ·•04 .• 
.• 84 ·--1 . . ' .. ... 

OUTllllFFR •••••Bll•••••••••• . .• 
• SAVE RET.URN • 
•POINT llNO BASE • 
• REGISTER • • • ········r······· 

.•. Cll •. •••••CS.•••••••••• ..• .. . . 
• • · •. YES • SET J;OFLl'.G TO • 

•. IOFUG .ON • •--------»INDICllTE DEBUG •<--
•.. .• • OUTPUT • •.. . . . . 

..r~o ········r······· 
.•. . .. 

·011 •.. - 05 •• . . .. .. . .. 
NO • •110 DURING •. YES • • •. 

---•. 1/0 FIXUP • • -----•"" 'IOFLAG ·FULL • • .. . . .. . . .. ..• ... . . .. . . . ... 
•YES •NO 

I ..... ES.t ••••••• 
••••E4••••••••• • • 

•RETURN TO IBCOM• • • 
• l'OR ERROR MSG • • GET CHAAllCTER • . . .. . ................ . . ................. 

•••••711•••······· . . 
•----OUTPUT---- • -->• PRINT l'. "LINE • . . . . . ................ . 

1 •••••Gii•••••••••• . . 
•RESTORE RETURN • 
•POINT ·l'.NO Bl'.SE •<--
• REGISTER • .• . ................. 

J 
•••••F5•••••••••• • • •---ALLOCHA!t----• 
• PUT CHAAIU:TER • 
• IN Sl'.VE AREl'. • . . .................... 

1 ..... GS. ·•. . . •. 
., • *• NO 

•. ENO OF LINE • •- -.. .. . .. .• 
'*• .... 

r~ 
•••••H5••••·•••••• • • • SET CHAAl'.CTER • 
•1'0 l:NOICl'.TE ENO• 
• OF LINE • . . . ......... -....... . 

1 •••••.JS•••••••••• •---A -----• . .. 
<---------- .. -----• CH .IN • 

• EA • 

••••l<.1&••······· . . 
• RETURN ·o • • ............... 

. . .................. 





active character: A significant character 
in the interpretation of a source state
ment. Always non-blank except during pars
ing of literal or IBM card code infor
mation. 

ADDR: contains the address portion of the 
current POP instruction. 

ADDRESS (field): A 2-byte item that is 
part of the pointer (indicating an address 
on a roll) and a driver (indicating the 
forcing strength of an operation). 

ANSWER BOX: 
false answer 
which use 
execution. 

An item used to hold a true or 
for those POP instructions 

or return an answer in their 

BASE: A status variable maintained for 
each roll used by the compiler which con
tains the beginning address of that roll 
minus 4. 

Base Table: A list of absolute addresses 
from which the object module loads a 
general register prior to accessing data. 

BOTTOM: A status variable maintained for 
each roll which holds the address of the 
last word on the roll containing 
information. 

.:;:;B"'r""a"'n;;.;;c"'h;;.,_-'T:.;a""b=l=e: A list 
address of each branch 
statement function used 
module. 

containing the 
target label and 
in the source 

branch target label: A label which is the 
target of a branch instruction or 
statement. 

Central Items: Another name for SYMBOL 1-3 
and DATA 0-5. 

compiler phase: A program consisting of 
several routines w~itten in machine lan
guage and/or POP language; each phase per
forms a well-defined function in the trans
formation of the source module to the 
object module. 

compiler routines: The routines that com
prise each phase of the compiler and which 
may be written in machine language and/or 
POP language. 

CONSTR: contains the beginning address of 
the data. referred to by the compiler 
routines. 

GLOSSARY 

control driver: A driver in Polish nota
tion to indicate types of statements and 
other control functions. 

CRRNT CHAR: contains the character (from 
the input statement) that is currently 
being inspected. 

CRRNT CHAR CNT: Contains the column number 
of the contents of CRRNT CHAR; also called 
the 'scan arrow•. 

DATA O, 1, 2, 3, 4, 5: 
(except DATA 5, which is 
used to hold constants 
module and other data. 

Halfword variables 
two words long) 

used in the source 

error listing: The display of messages 
indicating error conditions detected in the 
processing of the source module. 

EXIT roll: A special roll used by the 
compiler for maintaining exit addresses 
from compiler routines when a POP subrou
tine jump instruction is executed. 

EXTADR: contains the address of the cur
rent "bottom" of the EXIT roll. 

forcing strength: A value contained in the 
driver which indicates the order of the 
indicated operation (e.g., multiplication 
and division operations precede addition 
and subtraction). 

global dummy variable: A dummy argument to 
a SUBROUTINE or FUNCTION subprogram. 

global label: A label used to define a 
program block. These labels may be 
referred to from any point in the P.rogram. 

group: The logical collection of informa
tion maintained on rolls; an· entry on a 
roll. 

group size: The number of bytes of infor
mation constituting the group on a roll. 

Group Stats: Information maintained for 
each roll used by the compiler; pertains to 
comparative search operations~ 

heading: Initializing instructions 
quired prior to the execution of the 
of the object module. 

re-· 
body 

IEYALL: The system name for the compiler 
phase Allocate. 

Glossary 259 



1EY':EXT: The system name for the compiler 
phase Exit. 

tEYF'ORT: The system name for the compiler 
Invocation phase. 

tEYGE~: The system name for the compiler 
phase - c;en. 

l£YPAA: The 
phase Parse. 

system name for the compiler 

tEYROL: The system name for that area of 
the compiler which holds the WORK a.nd EXIT 
roils and the roll controls and group 
stats·. 

IEYUNF: The system name for the compiler 
phase unify. 

indirect.addressing: A method of obtaining 
information held at one location by refer
ring to another location which contains the 
address of the value in question. 

INDIRECT BOX: used to contain the address 
needed in the indirect addressing operation 
performed by the POP instructions. 

INSTR: Contains the "operation code" por
tion of the current POP instruction. 

~: Synonymous with variable. 

jump: Synonymous with branch. 

keep: Indicates the moving of information 
contained on a roll to another storage 
location ~nd retaining the original infor
mation on the roll. 

LAST CHAR CNT: This item contains the 
column number of the last active character, 
i.e., the active character preceding the 
one currently be'ing inspected. 

local d~!!!!!!Y_~ariable: A dwnmy argument to 
a statement function. 

local label: A label defined within a 
program block which may be referred to only 
within that block. 

MPAC 1, MPAC 2: Two fullword items used by 
the compiler in double-precision arithmetic 
operations. 

holds the 
variable 
in the 

NAMELIST Table: A table which 
name, address, etc., for each 
listed in a single NAMELIST list 
source module. 

operation driver: A 1-word variable which 
is an element of Polish notation and indi
cates arithmetic and logical operations 
designated in source module statements. 

260 

OPERATOR (field>: A 1-byte item that is 
part of the pointer and driver indicating 
the roll used (pointer> or type of opera
tion to be performed <driver>. 

optimization: The reduction and re
organization of object code for the 
increased efficiency of the object module. 

PGB2: Contains the beginning 
the global jump table. 

address of 

plex: A variable length group on a roll; 
the first word holds the number of words 
exciusive of itself. 

pointer: This item is one element of 
Polish notation used to indicate references 
to variables or constants; indicates loca
tion of additional information on a roll. 

Polish notation: An intermediate language 
into which the source module is translated 
during processing and generation of the 
object module. 

POPADR: Holds the address of the POP 
instruction presently being executed. 

POP instruction: A component part of the 
POP language defined as a macro. 

POP interpreter: A program written in 
machine language for the purpose of execut
ing the POP subroutines; labeled POP SETUP. 

POP jump table: A table used by the POP 
interpreter in transferring control to the 
POP subroutines. Holds addresses of these 
routines. 

POPPGB: contains the beginning address 
the machine language code for the 
instructions and the POP jump table. 

of 
POP 

POPs, POP language: A macro language in 
which most of the compiler is written. 

POP subroutines: The subroutines used by 
the POP interpreter to perform the opera
tions of each POP instruction. 

program text: The object code produced for 
the object module. 

prune, pruning: A method of removing 
information from a roll, thereby making it 
inaccessible. in subsequent operations. 

quote: A sequence of characters preceded 
by a character count; used for comparisons 
with the input data. 

QUOTE BASE: The initial address of the 
first quote (Parse). 



~rsion: A method of call and recall 
employed by the routines and subroutines of 

·the compiler whereby routine X may call 
routine Y which. in turn. calls routine x. 

releasing rolls: The 
.information reserved on 
· for use by the compiler. 

method 
a roll 

of making 
available 

reserve mark: The 1-word value placed on a 
roll as a result of a reserve operation. 

reserving rolls: A method of roll manipu
lation whereby information contained on a 
roll remains unaltered regardless of other 
operations involving the roll. 

RETURN: contains the return· addresses for 
the POP subroutines. 

roll: A type of table used by the compiler 
whose location and size are changed 
dynamically. 

ROLLBR: contains the beginning address of 
the base table. 

roll control: A term applied collectively 
to those items used in roll maintenance and 
manipulation. 

roll number: A number 
roll in the compiler 
internal reference. 

assigned to each 
for the purpose of 

roll status i terns.: Those variables main
tained for each roll which contain the 
statisties needed in roll manipulation. 

roll_~ra~~= An area of the compiler 
in main storage that is allocated to the 
rolls. 

rung: 
roll. 

A word of a multiword group on a 

RUNTIME operations: several routines which 
support object code produced by the com
piler. 

save.....--:Area: An area of the object module 
)l?ed in linking to and from subprograms. 

scalar variables: 
ab1es. 

Nonsubscripted vari-

scan arrow: An item which refers to the 
position of the source statement. character 
currently being scanned. 

source module listing: The display of the 
statements constituting the source module. 

storage allocation: The assignment of main 
storage to variables used in the source 
module. 

storage map: The logical organization of a 
program or module and its components as 
they are maintained in main storage. (This 
map may also be displayed on an output 
device.) 

SYMBOL 1,2,3: Halfword variables used to 
hold variable names used in the source 
module and other data. 

TAG (field): A 1-byte item that is part of 
the pointer <indicating mode and size of 
the object pointed to) and driver (indicat
ing mode of operation). 

temporary .storage: An area of main storage 
used by the compiler to temporarily main
tain information for subsequent .use. 

terminal errors: Errors internal to the 
compiler causing termination of compilation 
of the source module. 

TOP: A status variable maintained for each 
roll which indicates the new BASE of the 
roll when reserved information is contained 
on the roll. 

traits: The TAG field (uppermost byte) of 
a word on a roll. 

translation: The .conversion from one type 
of language to another. 

WORK roll: A special roll used by the 
compiler for maintaining values temporarily 
during processing. 

WRKADR: The address maintained for the 
WORK roll that indicates the last word into 
which information has been stored; the 
"bottom" of the roll. 

We,W1,W2, .... : Acronyms used to refer to 
the last groups of the WORl< roll. 

Glossary 261 





Order No. GY28-6638-1, page revised 1/15/71 by TNL GN28-6847 

(Where more than one page reference is given, the major reference appears first.) 

active characters 
definition 259 
description 26 

ACTIVE END STA XLATE routine 14,39 
active statements 36,39 
ADCON roll 57,145 
ADDR register 

definition 259 
description 29 

address computation instructions 134,135 
cross-reference list 139 

address constants 17,20,52,56,57 
ADDRESS field 

definition 258 
description 29-30 

addressing 
indirect 136,259 
relative 29,138 

ADR CONST roll 
description 159 
in Exit 56 
in Unify 52 

AFTER POLISH roll 
description 23,161 
in Gen 53,54 
in Parse 37-40,42 

Allocate label lists 193-19b 
Allocate phase (IEYALL) 

cards produced 51 
definition 258 
detailed description 44-51 
general description 12 
location in storage 17 
rolls used by 44 
subprogram list 51 

allocation of main storage 28 
ALTER OPTION TABLE routine 232 
ALLOCATION FAIL routine 42 
ALPHA LBL AND L SPROG routine 14,45 
ALPHA SCALAR ARRAY AND SPROG routine' 14, 45 
ANSWER BOX variable 

definition 258 
description 26 
in Parse 38 

AREA CODE variable 45,55,57,146 
arithmetic and logical instructions 
130,131,139 

array 
description 18 
dummy 47,48 
in Allocate 48,49 
listing of 21 
position in object module 17 
roll 26,47,146 

ARRAY ALLOCATE routine 14,45,47 
ARRAY DIMENSION roll 150 

ARRAY PLEX roll 158 
ARRAY REF roll 52,159 
ARRAY REF ROLL ALLOTMENT 14,52 
ARAY REF ROLL ALLOTMENT routine 52 
ARRAY roll 

assigning storage for 47 
description 146 
group stats for 25 

artificial drivers 40 
ASSIGNMENT STA GEN routine 54 
AT roll 54,159 

base addresses 28 
BASE AND BRANCH TABLE ALLOC routine 

14, 45, 47 
BASE, BOTTOM, and TOP tables 23,28 
base table 

assigning storage for 47 
definition 259 
description 17 
position in object module 17 
use in Allocate 48 
use in Exit 57 

BASE TABLE roll 
description 
in Allocate 
in Exit 56 

BASE variable 
definition 

BCD roll 45 

l4b 
45-48 

23 
259 

BLOCK DATA PROG ALLOCATION routine 14,46 
BLOCK DATA subprogram 

allocation for 46 
Parse processing of 39 

BOTTOM variable 23 
definition 259 

branch table 
assigning storage for 47 
description 18 
position in object module 17 
use in Allocate 47 
use in Exit 56 

BRANCH TABLE roll 
description 150 
in Allocate 47 
in Exit 56 

branch target label 12,18 
BUILD ADDITIONAL BASES routine 14,45,49 
BUILD NAMELIST TABLE routine 14,45,48 
BUILD PROGRAM ESD routine 14,45,46 
BYTE SCALAR roll 47,151 

Index 263 



CALCULATE BASE AND DISP routine 14,45 
CALL LBL roll 149 
central items 

DATA 24,192,259 
definition 259 
description 24 
SYMBOL 24,191,259 

CGOTO STA XLATE routine. 38 
character scanning 26-27 
code producing instructions 134 
CODE roll 

description 160 
in Exi.t · 56 
in Gen 53, 54 
location 22 

COMMON ALLOCATION AND OUTPUT routine 
14,45,47 

COMMON ALLOCATION roll 47,156 
COMMON AREA roll 155 
COMMON·data 12 
COMMO~ DATA roll 
COMMON DATA TEMP 
COMMON NAME roll 
COMMON NAME TEMP 

152 
roll 

152 
roll 

COMMON statements 
allocation for 45 

COMMON variables 

155 

156 

allocation of storage for 45 
listing of 21 

compiler 
arrangement 28-29 
assembly and operation of 136 
code produced by 175-183 
data structures 22 
design of 9 · 
flags used 27 
general register usage 28 
initialization of 33 
limitations of 9 
machine configuration for 9 
messages 27 
organization of 10,14 
output from 16 
purpose of 9 
receiving control 33 
relationship to system 19 
rolls used in 140-162 
storage configuration 15 
termination of 33,35 

COMPLEX CONST roll 143 
CONSTR register 

definition 259 
description 28 

control block area (CTLBLK) 227 
control driver 

definition 259 
description 31 
formats of 185-211 

CONVERT TO ADR CONST routine 14,52 
CONVERT TO INST FORMAT routine 14,52 
CRRNT CHAR CNT variable 

definition 259 
description 26 
in Parse 38 

CRRNT CHAR variable 
definition· 259 ·· 
description 26 
in Parse 38 

264, 

data items 24,1921 259 
DATA SAVE roll 145 
data sets 

SYSIN 15,33 
SYSLIN 15,33 
SYSPRINT 15,33 
SYSPUNCH 15,33 

DATA statements 
allocation for 45 

DATA VAR roll 56,154 
DDNAMES routine 35 
DEBUG ALLOCATE routine 14,45,49 
decision making instructions 131,132 
DECK option 51 
DIMENSION statement 

allocation for 46 
variables specified on 29 

DISPLAY statement 
NAMELIST table for 18,19 

DMY DIMENSION roll 14 1 46,147 
DO loops 

in Allocate 46 
in Parse 39 
in Gen 55 
in Unify 12,51 1 52,53 

DO LOOPS OPEN roll 
description 144 
in Allocation 46 
in Parse 39 

DO LOOP UNIFY routine 53 
DO NEST UNIFY 14,53 
DO STA XLATE routine 38 
DP COMPLEX CONST roll 143 
DP CONST roll 

description 143 
general 25 

drivers 
ADDRESS field 30 
artificial 40 
control 31,185-211,259 
definition of 30 
EOE IJO, 41 
formats of 185-211 
operation 30,260 
OPERATOR field 30 
plus and below phony 40,41 
TAG field 30 

dummy array 46,47 
dummy dimension 46 

END card 13 
omission of 39 
produced by Exit 57 

END STA GEN routine 54,55 
ENTRY CODE GEN routine 14,53,54 
ENTRY NAME ALLOCATION routine 14,451 46 
ENTRY NAMES roll 54,147 
ENTRY roll 46 -· -
EOE driver 40,41 
EPILOGUE GEN routine 14,53,54 
epilogues 12,53,54 
EQUIV ALLOCATION PRINT ERRORS routine 
14,45,47 

EQUIV MAP routine 14,45,48 
EQUIVALENCE (EQUIV) ALLOCATION roll 



47,48,156 
EQUIVALENCE (EQUIV) HOLD 
EQUIVALENCE <EQUIV). roll 
EQUIVALENCE (EQUIV) TEMP 
EQUIVALENCE OFFSET roll 
EQUIVALENCE statements 
EQUIVALENCE variables 

roll 145 
46,47,151 

roll 14.5 
45, 15.2 

12,45 

allocation of storage for 
description 18 
listing of 21 
map of 48 
position in object module 

EREXITPR routine 34 
ERROR CHAR roll 144 
ERROR LBL roll 148 
ERROR MESSAGE roll 144 
error messages 21 
error recording 42 
ERROR roll 42,148 
errors 

detection of 42 
recording of 21,42 

ERROR SYMBOL roll 149 
ERROR TEMP roll 144 
ESD cards 

general 12 

4.5 

17 

produced by allocate 
Exit label list 208-211 
EXIT PASS routine 14,55 
Exit phase (IEYEXTl 

44,47,51 

definition 259 
detailed description 
general description 
location in storage 
rolls used by 55 

exit roll 
definition 259 
description 24,161 
general 10 
in IEYROL 53 
in Parse 38 
location in storage 

EXPLICIT roll 149 
EXTADR register 

definition 259 
description 29 

extended error handling 

FL AC roll 153 
FL CONST roll 143 
flags 27 
forcing strength 

definition 259 
description 30,31 
in Parse 40 
table 31 

55-58 
13 
15 

15 

facility 232,212 

FORMAT ALLOCATION routine 14,45,48 
FORMAT roll 48,157 
FOJUl'..AT statements 

description 20 
in Allocate 12,44,48 
listing of 21 
position in object module 17 

FORTRAN error routine (IHCIBERH> 42, 228 

FULL WORD SCALAR roll 47 1.155 
FUNCTION subprogram 46, 49. 
FX AC roll 151 
FX CONST roll 143 

Gen label list 198-208 
Gen phase (IEYGEN> 

definition 259 
detailed description 53-55 
general description 12 
location in storage 15 
rolls used by 53 

GEN PROCESS routine 14,53 
GENERAL ALLOCATION roll 160 
general register usage 

used by compiler 28-29 
used by object module 20 

GET POLISH routine 14, 5.3, 54 
global area 136 
GLOBAL DMY roll 47,49,148 
global jump table 28,137,138 
global jumps 137,138 
global label 136,137,259 
GLOBAL SPROG ALLOCATE. routine 14, 45, 48. 
GLOBAL SPROG roll 

description 142 
general 42 
in Allocate 48 
in Exit 56 

GO TO STA GEN routine 55 
GO TO statements, processing of 54,55 
group 

definition 259 
description 24,25 

group stats 
definition 25,259 
description 26 
location in storage 15 
sizes 25 

group stats table 26 

HALF WORD SCALAR roll 47,152 
heading 

position in object module 17 
HEADOPT routine 35 
HEX CONST roll 154 

lBEXIT routine 239 
IBFINT routine 215 
IEYALL <see Allocate phase) 
IEYEXT (see Exit phase> 
IEYFINAL routine 35 
IEYFORT (see Invocation phase) 
IEYGEN <see Gen phase> 
IEYJUN subroutine 138 
IEYMOR routine 34 

Index 265 



IEYPAR <see Parse phase) 
IEYPCH routine 34 
IEYPRNT routine 33 
IEYREAD routine 34 
IEYRETN routine 35 
IEYROL <see roll module) 
IEYUNF <see Unify phase) 
IF statement 37,38,39 
IHCADJST 229-230,249 
IHCDBUG 236-239,258.6 
IHCDIOSE 224-226,245 
IHCECOMH (see IHCFCOMH/IHCECOMH) 
IHCEDIOS 224-226,245 
IHCEFIOS 218-224,244 
IHCEFNTH 229-230,248 
IHCERRM 233,253 
IHCETRCH 233 1 258 
IHCFCOMH/IHCECOMH 

flowchart 243 
initialization operations 215 
input/output operations 218-226,227-228 
termination operations 239 
transfer and subroutine table 242.3 

IHCFCVTH 234 
IHCFDUMP 235-236,258.1 
IHCFDVCH 234,258.5 
IHCFEXIT 235,258.2 
IHCFINTH 229-230,248 
IHCFIOSH 218-224,244 
IHCFOPT 232-233,255 
IHCFOVER 235,258.4 
IHCFSLIT 235,258.3 
IHCIBERH 228-229,250 
IHCNAMEL 226-227,247 
IHCSTAE 231,251 
IHCTRCH 230-231,258 
IHCUATBL 239 
IHCUOPT 242.1-242.3 
IMPLICIT roll 153 
indirect addressing 135,260 
indirect addressing instruction 
IND VAR roll 

description 141 
in parse 37 

INIT roll 49,145 
Invocation phase (IEYFORT) 

definition 260 
detailed description 
general description 
location in storage 

33-36 
12 
15 

jump instructions 132,133 

keep 
definition 260 
general 23 

label lists 
Allocate 193-196 

266 

135 

Exit 208-211 
Gen 198-208 
Parse 185-193 
Unify 196-198 

labeled statement references 12 
labels 

branch target 12,18 
detailed description 135,136 
global 135, 136 
local 135, 136 
mode 17,54 

LAST CHAR CNT variable 
definition 259 
description 26 
in Parse 38 

LAST SOURCE CHAR variable 38 
LBL FIELD XLATE routine 14,37,38 
LBL process routine 14,53,54 
LBL roll 45,46,54,153 
LEVEL ONE UNIFY routine 53 
LIB roll 140 
LITERAL CONST ALLOCATION routine 14,45,47 
literal constants 

description 20 
in Allocate 12,44,45 
position in object module 17 

LITERAL CONST roll 143 
LITERAL TEMP (TEMP LITERAL) roll 155 
LOAD and DECK options 33 
LOCAL DMY roll 148 
local label 136,137,259 
LOCAL SPROG roll 45,46,149 
LOGICAL IF STA XLATE routine 38 
LOOP CONTROL roll 52,156 
LOOP DATA roll 

description 157 
in Parse 38 
in Unify 53 

LOOP SCRIPT roll 142 

made labels 17,54 
map 

of scalars 47 
storage 21,44,50,260 

MAP option. 51 
messages 

description 27 
location in storage 15 
printing of (IEYPRNT) 33 
produced by Allocate 48,49 
produced by Invocation 35,36 
produced by Parse 43 1 44 

minimum system configuration 9 
MOVE ZEROS TO T AND c routine 14 
MPACl and MPAC2 variables 

definition 259 
description 26 

multiple precision arithmetic 26 

NAMELIST ALLOCATION roll 48,49,155 
NAMELIST ITEMS roll 149,150 



NAMELIST MPY DATA roll 57,160 
NAMELIST name 

roll 48 
table for 19 

NAMELIST NAMES roll 48,149 
NAMELIST tables 

definition 259 
description 19 
in Allocate 12,44,47 
in Exit 57 
listing of 20,48 
position in object module 20 

NEST SCRIPT roll 
description 141 
in Ur.ify 53 

NONSTD SCRIPT roll 141 

object module 
configuration of 17 
description of 17 
general register usage 20 
listing of 20,21,54,57 
writing of 49 

object-time library subprograms 212-258.10 
operation driver 

definition 259 
description 30 
formats of 185-211 

OPERATOR field 
definition 259 
description 30-32 

optimization 52,53,259 
option table 242.1 
ORDER AND PUNCH RLD ROLL routine 14,55,57 

Parse phase (IEYPARI 
definition 260 
detailed description 
general description 
location in storage 
rolls used by 37 

36-42 
12 
15 

PASS 1 GLOBAL SPROG ALLOCATE 
14, 45, 48 

phases 
allocate 12,15,44-51 
components of 14 
Exit 13,15,55-57 
Gen 12,15,53-55 
Invocation 12,15,33-35 
Parse 12,15,36-44 
Unify 12,15,51-53 

pl ex 
definition 260 
description 25 

routine 

plus and below phony driver 40,41 
pointer 

ADDRESS field 29 
definition 260 
description 29 
OPERATOR field 29 
TAG field 29 

Polish notation 
arithmetic and logical assignment 

statement 164 
arithmetic expressions 39 
arithmetic IF statement 165 
array references 163 
ASSIGN statement 164 
assigned GO TO statement 164 
BACKSPACE statement 171 
BLOCK DATA statement 166 
CALL statement 172 
computed GO TO statement 165 
CONTINUE statement 165 
DATA statement 166 
debug statements 172-173 
DEFINE FILE statement 170 
definition of 259 
direct-access statements 170 
DO statement 165 
END FILE statement 171 
END statement 166 
ENTRY statement 164 
Explicit specification statements 166 
FIND statement 170 
formats 163-173 
FUNCTION statement 171 
general 10 
in Gen 12,53,54 
in Parse 13,36,39 
input/output lists 167-168 
labeled ~>tatements 163 
logical IF statement 164 
Pl\U~>E and '3TOP statements 165 
PRINT statement 169 
PUNCH statement 169 
READ statement 167,168,169 
RETURN statement 164 
REWIND statement 171 
statement function 171 
SUBROUTINE statement 171 
unconditional GO TO statement 165 
WRITE statement 168,169,170 

POP instructions 
ADD 130 
AFS 130 
AND 130 
APH 127 
ARK 127 
ARP 127 
ASK 127 
ASP 127 
BID 134 
BIM 134 
BIN 134 
BOP 127 
CAR 128 
CLA 128 
CNT 128 
CPO 128 
cross reference list 139 
CRP 128 
CSA 131 
CSF 133 
definition 259 
detailed description 127-135 
DIM 130 
DIV 130 
EAD 128 

Index 267 



EAW u·a 
· EC-w 128 
EOP 128 
E'I'A 128 
FET 128 
tt.'i> 12S 
titR 1.28 
FRP 128 
FTH 128 
-general description 10 
IAl) 12'9 
lNb 135 
lOP 129 
:toR no 
!TA 129 
l:TM 129 
JAF 133 
.JAT 133 
Jaw 133 
.Ji>.E 133 
·jRD 133 
JSB 133 
.J tJN i.33 
t.tE 129 
t.tF 129 
LCT 129 
t.GA 131 
LGP 129 
t:.t.S 130 
t.'RS 131 
tss 129 
MbA lh 
MOC 129 
MON 129 
MPY 131 
NOG 129 
NOZ 129 
PGO no 
i?GP iJ-0 
l'>tb i.30 
PNG 130 
P-ot i.30 
Eiow 134 
PSP 131 
-PST 130 
QSA 131 
QS:F 133 
REL 134 
RSV 134 
s:Ab Hl 
Si3·i? 131 
Si3s 131 
:stE 132 
St:K 132 
:srP u2 
SLE 132 
SNE 132 
SNZ 132 
:soP 132 
SPM 132 
t;'.Pt 132 
SR.A 132 
'SRO 132 
'STA 132 
STM 133 
SOB 131 
sWT no 
'I'L'l 131 

WOP 135 
W1J? 135 
W2P 135 . 
WJP 135 
W4P 135 
X!T 133 
ZER 130 

POP interpreter. 
definition 260 
description L36 
general 10 

POP jUlttp table 
definition 
description 
location in 

(POPTABLE) 
26·0 
28,131 

storage 15 
POP language 

cross-.reference list 139 
definition 2·60 
detailed description 127-138 
general description 10 
notation used 127 

POP SETt'IP routine 1l7 
POP subroutines 

assembler references to 137 
definition 260 
general 10 
location in storage 15 

POPADR register . 
definition 260 
description 29 

POPPGB register 
definition 260 
description 29 

POPXIT register 
descripti·on 29 

PREP DMY DIMAND PRINT ERRORS routine 1'4' 4 5 
PREP EQU!V AND PiHNT ERRORS routine 14, 45 
PREP NAMELIST routine 14,45,48 
PRESS MEMORY 21,221 193 
PRINT A LINE routine 111 
PRINT AND READ SOURCE routine 14,37 
PRINT HEADING routine i4 
PRINT TOTAL PROG REQMTS MESS routine 14 
printmsg table 35-36 
PRNTHEAD routine 34 
i>RNTMsG routine 34 
PROCESS DO LOOPS routine 14 1 45,46 
PROCESS LBL AND LOCAL SPROGS routine 

14., 115, 46 
l>.R.OCESS POLISH routine 111 1 3·9 
production of object code 

branches i75 
computed GO TO statement 175 
t>EFINE FILE statement 179 
direct"-·access READ and WRITE statements 

179 
Do loops 175 
DO statement 175 
FINb statements 179 
FORMAT statements 11rn, 1B1 
formatted -arrays 177 
formatted list items V17 
'functions 116 
input/output 117 
PAUSE statement 179 
READ and WRIT'E statements 177 
statement functions 176 
STOP st:atement 179 



subroutines 176 
unformatted arrays 178 
unformatted READ and WRITE statements 

178 
PROGRAM BREAK variable 45,46,47,48,49 
PROGRAM SCRIPT roll 

description 158 
in Parse 39 
in Unify 52 

program text 
definition 260 
description 20 
position in object module 17 

prologue 12,53,54 
PROLOGUE GEN routine 14,53,54 
pruning 

definition 260 
description 23 

pseudo instructions 10,127 
PUNCH ADCON ROLL routine 14,55,57 
PUNCH ADR CONST ROLL routine 14,55,56 
PUNCH BASE ROLL routine 14,55,56 
PUNCH BRANCH ROLL routine 14,55,56 
PUNCH CODE ROLL routine 14,55,56 
PUNCH END CARD routine 14,55,57 
PUNCH GLOBAL SPROG ROLL routine 14,55,57 
PUNCH NAMELIST MPY DATA routine 55,57 
PUNCH PARTIAL TXT CARD routine 55,56 
PUNCH SPROG ARG ROLL routine 14,55,56 
PUNCH TEMP AND CONST ROLL routine 14,55,56 
PUNCH USED LIBRARY ROLL routine 14,55,57 

quick link output 136 
quote 

definition 260 
description 27 
location in storage 15 
QBASE 27 

quote base (QBASEl 
definition 260 
description 27 

REASSIGN MEMORY 185 
recursion 

definition 261 
in compiler 10 

REG roll lll6 
REGISTER IBCOM routine 14,37 
register usage 

by compiler 28 
by object module 

relative addressing 
releasing rolls 

definition 261 
in Allocate 45 
in Invocation 35 

reserve mark 
definition 261 
description 23 

RETURN register 
definition 261 
description 29 

RETURN statement 

20 
29,137 

Polish notation for 37 

RLD cards 13,56 
RLD roll 55,56,57,156 
ROLL ADR table 

in IEYROL 53 
in Invocation 35 
location in storage 15 
use in allocating storage 22,35 
use in finding address of variable 30 
use in releasing storage 35 

roll control instructions 133 
roll controls 

general 21 
roll module ( IEYROLl 

definition 261 
detailed description 53 
general description 13 
location in storage 15 

roll statistics 
BASE, BOTTOM, TOP 22 
location in storage 15 

roll storage area 
definition 261 
general description 21 

ROLLBR register 
definition 261 
description 29 

rolls 
ADCON 57,145 
ADR CONST 52,56,159 
AFTER POLISH 23,37-40,42,53,54,161 
allocating storage for 21,22,34 
ARRAY 26,47,146 
ARRAY DIMENSION 150 
ARRAY PLEX 158 
ARRAY REF 52,159 
AT 54,159 
BASE TABLE 45-ll8,56,146 
BCD 45 
BRANCH TABLE 47,56,150 
BYTE SCALAR ll7,151 
CALL LBL 149 
CODE 22,53,54,56,160 
COMMON ALLOCATION 47,156 
COMMON AREA 155 
COMMON DATA 152 
COMMON DATA TEMP 155 
COMMON NAME 152 
COMMON NAME TEMP 156 
COMPLEX CONST 143 
DATA SAVE 145 
DATA VAR 56,154 
definition of 261 
detailed description 140-162 
DMY DIMENSION 14,46,147 
DO LOOPS OPEN 39,ll6,144 
DP COMPLEX CONST 143 
DP CONST 25,143 
ENTRY 46 
ENTRY NAMES 54,147 
EQUIV ALLOCATION 43,47,48,156 
EQUIVALENCE (EQUIV) 46,47,151 
EQUIVALENCE (EQUIV) HOLD 145 
EQUIVALENCE (EQUIV) TEMP 145 
EQUIVALENCE OFFSET 45,152 
ERROR 42,148 
ERROR CHAR 144 
ERROR LBL 148 
ERROR MESSAGE 144 

Index 269 



ERROR SYMBOL :149 
ERROR TEMP 144 
EXIT 10,151 24,38,53 1 161,259 
EXPLICIT 149 
FL AC 153 
FL CONST 143 
FORMAT 48,157 
formats 140-162 
FULL WORD SCALAR 47,155 
FX AC 151 
FX CONST 143 
GENERAL ALLOCATION 160 
general description 10,21 
GLOBAL DMY 47,49,148 
GLOBAL SPROG 42, 48 1 56,14.2 
HALF WORD SCALAR 47,152 
HEX CONST 154 
IMPLICIT 153 
IND VAR 37,141 
INIT 49 1 145 
LBL 45,46,54,153 
LIB 140 
LITERAL CONST 143 
LITERAL TEMP 155 
LOCAL DMY 148 
LOCAL SPROG 45,46,149 
location in storage 15 
LOOP CONTROL 52 1 156 
LOOP DATA 38,53,157 
LOOP SCRIPT 142 
NAMELIST ALLOCATION 48,49,155 
NAMELIST ITEMS 149,150 
NAMELIST MPY DATA 57,160 
NAMELIST NAMES 48,149 
NEST SCRIPT 53,141 
NONSTD SCRIPT 141 
POLISH 36-42 1 53,54 
PROGRAM SCRIPT 39,52,158 
pruning of 23 
REG 146 
releasing of 35,45,260 
reserving of 23,261 
RLD 55,56,57,156 
SCALAR 47,48,154 
SCRIPT 36,37,52,53,157 
size limitations 22 
SOURCE 37,38,140 
special 24 
SPROG AR.G 56, 147 
STD SCRIPT 144 
SUBC!IK 49,160 
TEMP 144 
TEMP AND CONST 45,55,57,144 
TEMP DATA NAME 150 
TEMP NAME 36,143 
TEMP POLISH 151 
TEMP PNTR 153 
used by Allocate 44 
used by Exit 55 
used by Gen 53 
used by Parse 36 
used by Unify 52 
USED LIB FUNCTION 48,55 1 152 
WORK 10,15,24,38-41,53,54,161,261 

rungs 

270 

definition 261 
description 24 

save area 
assigning storage for 47 
definition 261 
position in object module 17 

SCALAR ALLOCATE routine 14,45,47 
SCALAR roll 47 1 48,154 
SCALAR routine 14 
scalar variable 

definition 261 
listing of 21 
position in object module 17 

scan arrow 
definition 261 
description 26 

scan control variables 26,27 
SCRIPT roll 

description 157 
in Parse 36,37 
in Unify 52,53 

source module listing 
definition 261 
description 20,42 
format of 42 

SOURCE option 36 
SOURCE roll 

description 140 
in Parse 37,38 

special rolls 24 
specification statements 35 
SPROG ARG ALLOCATION routine 14,45,48 
SPROG ARG roll 56,147 
STA FINAL routine 14,37,39 
STA GEN FINISH routine 14,54,55 
STA GEN routine 14,54 1 5.5 
STA !NIT routine 14,38 
STA LBL BOX 54 
STA RUN TABLE 54 
STA XLATE EXIT routine 38 
STA XLATE routine 14 1 37,38,39 
START ALLOCATION routine 14 
START COMPILER routine 14,37 
START GEN routine 14 1 53 
START UNIFY routine 14,52 
STATEl-".ENT PROCESS routine 14 1 31 1 39 
status variable 23 
STD SCRIPT roll 144 
STOP statement 

Polish notation for 37 
storage map 

compiler 14 
definition 261 
description 21 
object module 17 
produced by Allocate 44,50 

SUBCHK roll 49,160 
subprogram addresses 

position in object module 17 
subprogram argument lists 

position in object module 17,51 
SUBSCRIPTS FAIL routine 42 
SYMBOL item 24,261 
syntax error 42 
SYNTAX FAIL routine 3B,42 
system names 11 



tables 
base 17,47,56,259 
BASE, BOTTOM, and TOP 23,28 
branch 18,46,56 
global jump 28,137 
group stats 25,26 
NAMELIST 12,18,19,20,44,48,49,57,260 
POP jump 15,28,136,260 
printmsg 35 
ROLL ADR 15,22,28 1 34 1 53 
STA RUN 54 
unit assignment 239 

TAG field 
definition 261 
description 29-31 

TEMP AND CONST roll 
description 144 
in Allocate 45 
in Exit 55,57 

TEMP DATA NAME roll 150 
TEMP NAME roll 

description 143 
in Parse 38 

TEMP POLISH roll 151 
TEMP PNTR roll 153 
TEMP roll 144 
temporary storage and constants 

description 20 
position in object module 17 

TERMINATE PHASE routine 54,55 
termination of compiler 33,35 
TIMEDAT routine 35 
TOP variable 23 

definition 261 
TRACE option 54 
transmissive instructions 127-130 
TXT cards 

general 12 
produced by Allocate 44,49,51 
produced by Exit 55,56,57,58 

type statements 
allocation for 46 

Unify label list 196-198 
Unify phase (IEYUNF) 

definition 260 
detailed description 51-53 
general description 12 
location in storage 15 
rolls used by 52 

unit assignment table CIHCUATBL) 239 
unit blocks 240,242 
USED LIB FUNCTION roll 

description 152 
in allocation 48 
in Exit 55 

variables 
ANSWER BOX 26 1 38,259 
AREA CODE 45,56,57,146 
BASE 23,259 
BOTTOM 23,259 
COMMON 21,46 
CRRNT CHAR 26,38,259 
CRRNT CHAR CNT 26,38,259 
EQUIVALENCE 18 1 21,44,'+5,48 
LAST CHAR CNT 26 1 38,260 
LAST SOURCE CHAR 38 
MPACl and MPAC2 26,260 
PROGRAM BREAK 1:15,46,47,48 
scalar 18,21,261 
scan control 26,27 
status 23 
TOP 23,261 

WORK roll 
definition 261 
description 24,161 
general 10 
in Exit 57 
in Gen 54 
in IEYROL 53 
in Parse 38,40,41 
location in storage 15 

WRKADR register 
definition 261 
description 29 

Index 271 



GY28-6638-2 

--.. - --® ----- ------ --- -.. -wm!lllJ-- - - ------- -- -_ _... - .. -
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/ Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601 

G:l 
><: 
N 
00 
I 

O'I 
O'I 
w 
00 
I 

N 


