
Systems Reference Library

IBM System/360

Basic FORTRAN IV Language

This publication describes and illustrates the
use of the Basic FORTRAN IV language for the IBM
System/360 Operating System, the IBM System/360
Disk Operating System, the IBM System/360 Tape
Operating System, and the IBM System/360 Basic
Programming Support Tape System.

File No. S360-25
GC28-6629-2 OS

DOS
TOS
BPS

PREFACE

This publication is designed to support
four implementations of the Basic FORTRAN
IV language for the IBM System/360. The
language described is implemented for the
IBM System/360 Operating System, the IBM
System/360 Disk Operating System, the IBM
System/360 Tape Operating System, and the
IBM System/360 Basic Programming Support
Tape System. Differences among the lan­
guage implementations are indicated in the
programmer's guide for each system •.

The material in this publication is
arranged to provide a quick definition and
syntactical reference to the Basic FORTRAN
IV language by means of a box format. In
addition, sufficient text to describe each
element and examples of possible use are
given.

Appendixes contain additional informa­
tion useful in writing a FORTRAN program.
This information consists of a table of
source program characters, a comparison of
the four language implementations, a list
of FORTRAN-supplied subprograms, sample
programs, a list of FORTRAN IV features and
statements not available in Basic FORTRAN
IV, and a list of Basic FORTRAN IV features
not available in USAS Basic FORTRAN.

The reader should have some knowledge of
an existing FORTRAN language before using
this publication. A useful source of
information is the FORTRAN IV For System/360
Programmed Instruction Course, Forms
R29-0080 through R29-0087. This course is
available through IBM representatives.

Third Edition (July, 1969)

Compiler restrictions and programming
aids are contained in the programmer's
guide for the respective system. The
appropriate programmer's guide and this
language publication are both required pub­
lications. The programmer's guides are as
follows:

IBM System/360 Operating System:
FORTRAN IV (E) Programmer's Guide,
Form C28-6603

IBM System/360 Disk and Tape Operating
System: FORTRAN IV Programmer's Guide,
Form C24-5038

IBM S stem/360 Basic Pro ramming Su ort:
FORTRAN IV Tape Programmer's Guide,
Form C24-5038

References are made to information con­
tained in the programmer's guides and in
the following publications:

IBM System/360 FORTRAN IV Language, Form
C28-6515

IBM System/360 Operating System:
FORTRAN IV Library Subprograms, Form
C28-6596

A comparison of FORTRAN IV compilers is
given in the publication IBM FORTRAN IV
Reference Data, Form X28-6383.

This is a major revision of, and makes obsolete, Form C28-6629-:-1·
This edition clarifies text and corrects errors that appeared in the
previous edition, and should be reviewed for revi~ed, adde~, and deleted
material. Changes to text, and small changes to illustrations, are
indicated by a vertical line to the left of the change; changed or added
illustrations are denoted by the symbol o to the left of the caption.

Changes are periodically made to the specifications herein; any such
change will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments concerning the contents of this publication to IBM
corporation, Programming Publications, 1271 Avenue of the Americas, New
York, New York 10020.

© International Business Machines Corporation 1966, 1969

INTRODUCTION . . • • . . . 5

ELEMENTS OF THE LANGUAGE . 6
Statements • · • 6

Coding FORTRAN Statements 7
Constants 8

Integer Constants . . • . 8
Real and Double-Precision Constants 9

Symbolic Names . . • 10
Variables 11

Variable Names 11
Variable Types and Lengths 12
Type Declaration by the Predefined
Specification 12
Type Declaration by Explicit
Specification Statements . . .

Arrays
Declaring the Size and Type of an
Array

. . 12
. 13

Arrangement of Arrays in Storage .
13
14
14 Subscripts

Expressions
Arithmetic Operators • .

. . 16

.. 16

ARITHMETIC ASSIGNMENT STATEMENT

CONTROL STATEMENTS • • .
GO TO Statements

Unconditional GO TO Statement
Computed GO TO Statement .

Additional Control Statements
Arithmetic IF Statement
DO Statement . • • .

•• 20

•• 22
• • 22

••• 22
. 23

. . 23
. 23
. 24

• • 28 CONTINUE Statement .
PAUSE Statement
STOP Statement .

• • • . . 29

END Statement
• 29

29

INPUT/OUTPUT STATEMENTS 30
Sequential Input/Output Statements . . . 32

READ Statement . . . 32
Formatted READ . . 33
Unformatted READ 33

WRITE Statement 33
Formatted WRITE 34
Unformatted WRITE . • 34

FORMAT Statement 35
Various Forms of a FORMAT Statement 36
I Format Code 37
D, E, and F Format Codes . . . 38
Examples of Numeric Format Codes . • 38
Scale Factor - P 40
A Format Code 41
H Format Code and Literal Data ..• 42
X Format Code . . • . • . . . • 43
T Format Code 43
Group Format Specification 44

CONTENTS

END FILE Statement •
REWIND Statement

• • • • • 44

BACKSPACE Statement
Direct Access Input/Output

DEFINE FILE Statement

.• • 45
• • 45

Statements • 45
• 47

Direct Access Programming
Considerations • • 48

• • 49 READ Statement •
WRITE Statement • • • • 51
FIND Statement • • • • • • • • • 52

General Examples -- Direct Access
Operations • • • • 53

SPECIFICATION STATEMENTS • • • 55
DIMENSION Statement • • .. • 55
Explicit Specification Statements •• 56
COMMON Statement • • • • • • • • • 57
Arrangement of variables in Common • • 59
EQUIVALENCE Statement ••••••• 60
Storage Arrangement of Variables in
Equivalence Groups 61

SUBPROGRAMS • • • • • 63
Naming Subprograms • 63
Functions • • • • • • • • • 6 4

Function Definition •••••• 64
Function Reference • . 64

Statement Functions • • • • • • • .• • 64
FUNCTION Subprograms • • • .• • • • 66

RETURN and END Statements in a
FUNCTION Subprogram ••• 67

SUBROUTINE Subprograms • • • • • • 68
CALL Statement • • • • • • • • • • • 6 9
RETURN Statement in a SUBROUTINE
Subprogram • - - • - • • • • • •

Arguments in a FUNCTION or
SUBROUTINE Subprogram

EXTERNAL Statement

70

.• 70
71

APPENDIX A: SOURCE PROGRAM CHARACTERS. • 7 3

APPENDIX B: BASIC FORTRAN IV
IMPLEMENTATION DIFFERENCES

APPENDIX C: FORTRAN-SUPPLIED
SUBPROGRAMS

APPENDIX D: SAMPLE PROGRAMS '·
Sample Program 1 ,. • •
Sample Program 2 • • • • • • •

• 74

75

• • 79
.• • • 79

80

APPENDIX E: FORTRAN IV FEATURES NOT IN
BAS IC FORTRAN IV • .• • • 8 6

APPENDIX F: IBM BASIC FORTRAN IV
EXTENSIONS TO USAS BASIC FORTRAN 87

INDEX • 89

ILLUSTRATIONS

FIGURES

Figure 1. Sample Program 1 ••
Figure ,2. Sample Program 2
(Part 1 of 3) ••••••••

TABLES

Table 1. Determining the Type of

• 79

82

the Result of + - * / ** 19
Table 2. Conversion Rules for
Arithmetic Assignment Statements ••• 20
Table 3. Implementation
Differences • • • • • • • • • • • •• 74
Table 4. In-Line Mathematical
Function Subprograms • • • • • • • 75
Table 5. Out-of-Line
Mathematical Function Subprograms • • 77
Table 6. Out-of-Line Service
Subprograms • • • • • • • • • • • • • 78

INTRODUCTION

IBM System/36 0 Basic FORTRAN IV for the Operating System, the 'I' ape
Operating System, the Disk Operating System, and the Basic Progranuning
Support Tape System consists of a language, a library of subprograms 1

and a compiler .•

The Basic FORTRAN IV language is especially useful in writing pro­
grams for applications that involve mathematical computations and other
manipulation of numerical data. The name FORTRAN is derived from
FORmula TRANslator.

Source programs written in the Basic FORTRAN IV language consist of a
set of statements constructed by the programmer from the language ele­
ments described in this publication.

In a process called compilation,, a program called the FORTRAN compil­
er analyzes the source program statements and translates them into a
machine language program called the object program, which will be suit­
able for execution on IBM system/360. In addition,, when the FORTRAN
compiler detects errors in the source program, it produces appropriate
diagnostic error messages. The FORTRAN programmer's guides, listed in
the pref ace, contain information about compiling and executing FORTRAN
programs.

The FORTRAN compiler operates under control of an operating system
which .provides input/output and other services.. Object programs
generated by the FORTRAN compiler also operate under operating system
control and depend on it for similar services.

The IBM System/360 Basic FORTRAN IV language is compatible with and
encompasses the United States of America Standard (USAS) Basic FORTRAN,,
X3.10-1966, including its mathematical subroutine provisions. Basic
FORTRAN IV is a subset of FORTRAN IV, as described in the publication
IBM systern/360 FORTRAN IV Language. Appendixes E and F contain lists of
differ~nces between FORTRAN IV, Basic FORTRAN IV,, and USA Basic FORTRAN.

Introduction 5

ELEMENTS OF THE LANGUAGE

STATEMENTS

Source programs consist of a set of statements from which the compil­
er generates machine instructions,, constants, and storage areas. A
given FORTRAN statement effectively performs one of three functions:

1. causes certain operations to be performed (e.g,." add,, multiply.,
branch)

2. Specifies the nature of the data being handled

3. Specifies the characteristics of the source program

FORTRAN statements usually are composed of certain FORTRAN key words
used in conjunction with the basic elements of the language: constants,
variables, and expressions. The categories of FORTRAN statements are as
follows: ,

6

1. Arithmetic Statements: These statements cause calculations to be
performed and the result to replace the current value of a desig­
nated variable or subscripted variable.

2. Control Statements: These statements enable the user to govern the
flow and terminate the execution of the object program.

3. Input/Output Statements: These statements, in addition to control­
ling input/output devices, enable the user to transfer data between
internal storage and an input/output medium.

4. FORMAT Statement: This statement is used in conjunction with cer­
tain input/output statements to specify the form in which data
appears on an input/output device.

5,. Specification Statements: These statements are used to declare the
properties of variables, arrays, and subprograms (such as type and
amount of storage reserved).

6.. Statement Function Definition Statement: This statement specifies
operations to be performed whenever the statement function name
appears in the program.

7. Subprogram Statements: These statements enable the user to name
and define functions and subroutines, which can be compiled separ­
ately or with the main prog·ram.

The basic elements of the language are discussed in this chapter.
The actual FORTRAN statements in which these elements are used are dis­
cussed in following sections.. The term proqram unit refers to a main
program or a subprogram. The phrase executable statements refers to
those statements in categories 1., 2., and 3 .•

The order of a Basic FORTRAN program unit is:

1. subprogram statement, if any..

2.. Specification statements, if any. (Explicit specification state­
ments that initialize variables or arrays must follow other speci­
fication statements that contain the same variable or array names.)

3. Statement function definitions, if any.

4. Executable statements., at least one of which must be present.

5.. END statement..

FORMAT statements can appear anywhere in a program unit.

CODING FORTRAN STATEMENTS

The statements of a FORTRAN source program can be written .on a stan­
dard FORTRAN coding form, Form X28-7327. Each line on the coding form
represents one 80-column card. FORTRAN statements are written one to a
card within columns 7 through 72. If a statement is too long for one
card., it may be continued on as many as 19 successive cards by placing
any character., other than a blank or zero,, in column 6 of each continua­
tion card. For the first card of a statement1, column 6 must be blank or
zero.

As many blanks as desired may be written in a statement to improve
its readability. They are ignored by the compiler. Blanks, however,
that are inserted in literal data are retained and treated as blanks
within the data.1

Columns 1 through 5 of the first card of a statement may contain a
statement number consisting of from 1 through 5 decimal digits. Blanks
and leading zeros in a statement number are ignored. Statement numbers
may appear anywhere in columns 1 through 5 and may be assigned in any
order; the value of statement numbers does not affect the order in which
the statements are executed in a FORTRAN program,.

Columns 73 through 80 are not significant to the FORTRAN compiler and
may., therefore., be used for program identification, sequencing., etc.

Comments to explain the program may be written in columns 2 through
80 of a card,, if the letter c is placed in column 1.. Comments may
appear between FORTRAN statements; a comments card may not immediately
precede a continuation card,. Comments are not processed by the FORTRAN
compiler, but are printed on the source program listing.

1E-level FORTRAN programmers may exercise a compiler option that permits
blanks in key words, names,, and constants ..

Elements of the Language 7

CONSTANTS

A constant is a fixed, unvarying quantity. Three types of constants
can be used: integer, real, and double-precision.

INTEGER CONSTANTS

r--1
I Definition I
~--------------------------------------~------------------------------~
I Integer constant -- a whole number written without a decimal point.. I
I It occupies four locations of storage {i.e., four bytes).. I
I I
I Maximum Magnitude: 2147483647, i.e., (231-1}. I
'---~-------------J

An integer constant may be positive,, zero, or negative; if unsigned.,
it is assumed to be positive. Its magnitude must not be greater than
the maximum and it may not contain embedded commas.

Examples:

8

Valid integer constants:

0
+91
173
-2147483647

Invalid integer constants:

27..
3145903612
5,396

{Contains a decimal point)
{Exceeds the allowable range)
{Contains an embedded comma)

REAL AND DOUBLE-PRECISION CONSTANTS

,--...z'-----------------------------,
I Definition I
!--~

Real or Double-Precision Constant -- has one of three forms: a I
basic real or double-precision constant, a basic real or double- I
precision constant followed by a decimal exponent, or an integer I
constant followed by a decimal exponent. I

A basic real constant is a string of fewer than eight decimal
digits with a decimal point. A basic double-precision constant is a
string of eight or more decimal digits with a decimal point.

A constant can be explicitly specified as real or double­
precision by appending an exponent to a basic real constant, a basic
double-precision constant, or an integer constant. An exponent con­
sists of the letter E or the letter D followed by a signed or
unsigned 1- or 2-digit integer constant. The letter E specifies a
real constant; the letter D specifies a double-precision constant.

A real constant occupies four storage locations (byte,s); a
double-precision const~t occupies eight storage locations:(bytes).

Magnitude:

Precision:

(either real or double precision)
O or 16-65 (approximately 10-78 } through
16 63 (approximately 1075)

Creal) 6 hexadecimal digits
(approximately 7.2 decimal digits)

(double precision) 14 hexadecimal digits

I
I

'

' I
I
I
I
I
I

I (approximately 16.8 decimal digits) I
'---~-------------J

A real or double-precision constant may be positive, zero, or nega­
tive Cif unsigned, it is assumed to be positive) and must be of the
allowable magnitude. It may not contain embedded commas. The decimal
exponent permits the expression of a real or double-precision constant
as the product of a basic real constant, or an integer constant multi­
plied by 10 raised to a desired power.

Examples:

Valid real constants:

+O.
-999.9999
7.0E+O
1976L. 25E+1

7E3 }
7 .• OE3
7.0E+03

(i.e., 7.0 x 10° = 7.0)
(i.e., 19761.25 x 101 = 197612.5)

(i.e •• 7.0 x 103 = 7000.0)

Vali.d double-precision constants:

21.98753829457168
1.0000000
79D3
7.9D03 }
7. 9D+3
7.9D+03
7.90-03
7.9DO
O. ODO

<i.e •. ,

(i .• e. ii
<L. e. ,,
(i .• e •. ,

7.9 x

7.9 x
7 .• 9 x
o.o x

103 = 7900. 0)

10-3 = o .• 0079)
10° = 7. 9)
10° = o. 0)

Elements of the Language 9

I.

Invalid real and double-precision constants:

0
3,471.1
1.E

1 .• 2E+l13
23.5E+97

21. 30-90

(Missing a decimal point or a decimal exponent)
(Embedded comma>
(Missing a 1- or 2-digit integer constant

following the E. Note that it is not inter­
preted as 1.0 x 10°>

(E is followed by a 3-digit integer constant)
(Magnitude outside the allowable range; that is,

23.5 x 109 7 > 1663)
(Magnitude outside the allowable range; that is,

21.3 x 10-90 < 16-65)

SYMBOLIC NAMES

·--,
I De£inition I
1---~
I Symbolic Name -- consists of from one through six alphameric charac- I
I ters [i.e., numeric (0 through 9) or alphabetic CA through Zand I
I $)1, the first of which must be alphabetic. I l,_ ___ J

Symbolic names are used in a program unit . Ci. e .. , a main program or a
subprogram) to identify elements in the following classes.

• An array and the elements of that array (see "Arrays")

• A variable (see "Variables")

• A statement function (see "Statement Functions")

• An intrinsic function Csee Appendix C)

• A FUNCTION subprogram (see "FUNCTION Subprograms")

• A SUBROUTINE subprogram Csee "SUBROUTINE Subprograms")

• An external procedure that cannot be classified as either a
SUBROUTINE or FUNCTION subprogram (see "EXTERNAL Statement")

Symbolic names must be unique within a class in a program unit ana
can identify elements of only one class, with the following exceptions .•

A FUNCTION subprogram name must also be a variable name in the
FUNCTION subprogram.

10

Once a symbolic name is used as a FUNCTION subprogram name, a
SUBROUTINE subprogram name, or an external procedure name in any unit
of an executable program, no other program unit of that executable
program can use that name to identify an entity of these classes in
any other way.

VARIABLES

A FORTRAN variable is a symbolic representation of a quantity that
occupies a storage area. The value specified by the name is always the
current value stored in the area. For example, in the following state­
ment both A and B are variables:

A = 5.0+B

The value of B is determined by some previous statement and may change
from time to time. The value of A is calculated whenever this statement
is executed and changes as the value of B changes.

VARIABLE NAMES

The use of meaningful variable names can serve as an aid in document­
ing a program. That is!, someone other than the programmer may look at
the program and understand its function. For example, to compute the
distance a car traveled in a certain amount of time at a given rate of
speed1, the following statement could have been written:

x = y * z

where * designates multiplication. However, it would be more meaningful
to someone reading this statement if the programmer had written:

DIST = RATE * TIME

Examples:

Valid variable names:

B292S
RATE
$VAR

Invalid variable names:

B292704
4ARRAY
SI,.X

(Contains more than six characters>
(First character is not alphabetic)
(Contains a special character)

Elements of the Language 11

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the variable
represents,. Thus, an integer variable represents integer data, and a

I real variable represents real data, and a double-precision variable
represents double-precision data.

The number of ·storage locations reserved for variables depends on the
type of the variable. Integer and real variables have four storage
locations (bytes) reserved; double-precision variables have eight
storage locations (bytes) reserved.

A programmer may declare the type of a variable by using the:

• Predefined specification contained in the FORTRAN language

• Explicit specification statements

The explicit specification statement overrides the predefined
specification.

TYPE DECLARATION BY THE PREDEFINED SPECIFICATION

The predefined specification is a convention used to specify
variables as integer or real,, as follows:

1.. If the first character of the variable name is I, J, K, L, M, or N,
the variable is integer .•

2,. If the first character of the variable name is any other alphabetic
character, the variable is real .•

This convention is the traditional FORTRAN method of implicitly spe­
cifying the type of a variable as being either integer or real. In all
examples that follow in this publication, it is presumed that this spe­
cification applies unless otherwise noted.

TYPE DECLARATION BY EXPLICIT SPECIFICATION STATEMENTS

I
Explicit specification statements differ from the predefined specifi­

cation, in that an explicit specification statement declares the type of
a particular variable by its name, rather than by its initial character .•

For example, assume that an explicit specification statement declared
that the variable named ITEM is real. Then ITEM is treated as a real
variable but all other variables beginning with the character I are
treated as integer variables.

These statements are discussed in greater detail in the chapter
"Specification Statements."

12

ARRAYS

A FORTRAN array is a set of variables identified by a single variable
name. A particular variable in the array may be referred to by its
position in the array (e.g.,, first variable, third variable, seventh
variable, etc .•). consider the array named NEXT which consists of five
variables1, each currently representing the following values: 273, 41,
8976, 59,, and 2.

NEXT(1) is the location containing 273
NEXT(2) is the location containing 41
NEXT(3) is the location containing 8976
NEXT(4) is the location containing 59
NEXT(5} is the location containing 2

Each variable (element) in this array consists of the name of the
array (i .• e .• , NEXT) immediately followed by a number enclosed in paren­
theses, called a subscript quantity. The variables that the array com­
prises are called subscripted variables. Therefore, the subscripted
variable NEXT(1) has the value 273; the subscripted variable NEXTC2> has
the value 41, etc.

The subscripted variable NEXT(I) refers to the "Ith" subscripted
variable in the array, where I is an integer variable that may be
assigned a value of 1. 2, 3, 4, or 5.

To refer to any element in an array, the array name must be sub­
scripted. The array name alone does not represent the first element.

Consider the following array named LIST described by two s'lJbscript
quantities, the first ranging from 1 through 5, the second from 1
through 3:

column 1 Column 2 Col.,umn 3
Row 1, 82 4 7
Row 2 12 13 14
Row 3 91 1 31
Row 4 24 16 10
Row 5 2 8 2

Suppose it is desired to refer to the number in row 2, column 3; this
reference would be coded as:

LIST (2,3)

Thus,, LIST (2,3) has the value 14 and LIST (4,1) has the value 24.

Ordinary mathematical notation might use LIST i,j to represent any
element of the array LIST. In FORTRAN, this is written as LISTCI,J)
where I equals 1,2.3,4, or 5 and J equals 1,2, or 3.

DECLARING THE SIZE AND TYPE OF AN ARRAY

The size (number of elements) of an array is specified by the number
of subscript quantities of the array and the maximum value or each sub­
script quantity. This information must be given for all arrays before
using them in a FORTRAN program so that an appropriate amount of storage
may be reserved. Declaration of this information is made by a DIMENSION
statement, a COMMON statement, or by one of the explicit specification
statements; these statements are discussed in detail in the chapter
•specification Statements.• The type of an array name is determined by

Elements of the Language 13

the conventions for specifying the type of a variable name. Each ele­
ment of an array is of the type specified for the array name.

ARRANGEMENT OF ARRAYS IN STORAGE

Arrays are stored in ascending storage locations, with the value of
the first of their subscript quantities increasing most rapidly and the
value of the last increasing least rapidly .•

For example,. the arr.ay LISTi; whose values are given in the previous
example, is arranged in storage as follows:

82 12 91 24 2 4 13 1 16 8 7 14 31 10 2

The array named A, described by one subscript quantity, which varies
from 1 to 5, appears in storage as follows:

AC1) A(2) A(3) A(4) ACS)

The array named B,, described by two subscript quantities, with the
first varying over the range from 1 to 5,, and the second varying from 1
to 3, appears in ascending storage locations in the following order:

B(l,1) B(2,1) B(3,1) B(4,1) BC5,1)-1

r----------------------------"'."1--------J
L> B(l,2) B(2,2) BC3,2) BC4,2) B(5,2)-1
r-----------------;--------------------J
~> BC1,3) B(2,3) B(3,3) B(4,3) B(5,3)

Note that B(l,2) and B(l,3) follow in storage B(S.,1) and BC5,2),,
respectively.

The following list is the order of an array named c, described. by
three subscript quantities, with the first varying from 1 to 3, the
second varying from 1 to 2, and the third varying from 1 to 3:

C(l,1,1) CC2,1,1) C(3,1,1) C(l,2,1) C(2,2,1) C(3,2,1)-J
~--

' ~> C(l,1,2) C(2,1,2) C(3,1,2) C(l,2,2) C(2,2,2) C(3,2,2)-1
~---~
L> C(l,1,3) C(2,1,3) C(3,1,3) C(l,2,3) C(2,2,3) C(3,2,3)

Note that C(l,1.2) and C(l,1,3) follow in storage CC3,2,1) and
C(3,2,2), respectively.

SUBSCRIPTS

A subscript is an integer subscript quantity or a set of integer sub­
script quantities separated by commas, which is used to identify a par­
ticular element of an array. The number of subscript quantities in any
subscript must be the same as the number of dimensions of the array with
which the subscript is associated. A subscript is enclosed in paren­
theses and is written immediately ,after the array name. A maximum of
three subscript quantities can appear in a subscript.

14

.--,
I General Form I
~--~

Subscript Qua~tities -- may be one of seven forms: I

Where:

v
k
v+k
v-k
c*v
c*v+k
c*v-k

y represents an unsigned., nonsubscripted, integer variable.

I
I
I
I
I
I
I
I
I
I
I

£ and ~ each represent an unsigned integer constant. I
L--J

Whatever subscript form1 is used,, its evaluated result, as well as the
intermediate result, must always be greater than 0 and less than or equ­
al to 32,767. For example, when reference is made to the subscripted.
variable VCI-2) ,, the value of I should be greater than 2 and less than
or equal to 32,767. In any case, the evaluated result must be within
the range of the array.

Examples:

Valid subscripted variables:

ARRAY (!HOLD)
NEXT (19)
MATRIX (I-5)

A(5*L)
W(4*M+3)
Z(2*I+3,6*J+8.3*K-2)

Invalid subscripted variables:

ARRAY (-I)

COST(A+2)

ARRAY(I+2.)

NEXT(-7*J)

W(I(2))
LOT (0)

TEST (K*2)

TOTAL (2+K)

Q (I, J., K, L)

(The subscript quantity I may not be signed)
CA is not an integer variable unless defined as

such by an explicit specification statement)
(The constant within a subscript quantity must be

an integer)
(The constant within a subscript quantity must be

unsigned)
(The subscript quantity I may not be subscripted)
(A subscript quantity may neither be nor assume a

value of zero)
(If multiplication is indicated, the constant must

precede the variable. Thus, TEST (2*K) is
correct)

<If addition is indicated, the variable must pre­
cede the constant. Thus., TOTAL (K+2) is correct)

(No more than three subscript quantities may be
used)

1If more than one subscript form i·s used, the product of all subscript
quantities must be less than or equal to 131,068 in Operating System
FORTRAN IV (E) and less than or equal· to 32,767 in the other three
"'~7 C!-t-,:ioms.

Elements of the Language 15

EXPRESSIONS

Basic FORTRAN IV provides only one kind of expression: the
arithmetic expression. The value of an arithmetic expression is always
a number whose type is integer, real, or double precision. Expressions
may appear in arithmetic assignment statements and in certain control
statements.

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a primary that may be
a single constant, variable, subscripted variable, function reference,
or another expression_enclosed in parentheses. The primary may be
either integer, real, or double precision.

If the primary is of type integer,, the expression is integer. If it
is of type real, the expression is real, etc.

Examples:

Primary
3
A
3.14D3
B(2*I)

SIN(X)
(A+B*C)

Type of Primary
Integer constant
Real variable
Double-precision constant
bauble-precision subscripted
variable Cspecif ied as
such in an explicit
specification statement)

Real function reference
Parenthesized real expression

Type of Expression
Integer
Real
Double precision
Double precision

Real
Real

In the expression B(2*I>, the subscript (2*I>, which must always
represent an integer, does not affect the type of the expression. That
is, the type of the expression is determined solely by the type of pri­
mary appearing in that expression.

More. complicated arithmetic expressions containing two or more pri­
maries may be formed by using arithmetic operators that express the
computation~s) to be performed.

Arithmetic Operators

The arithmetic operators are as follows:

16

Arithmetic Operator

**
* /
+

Definition
Exponentiation
Multiplication
Division
Addition
Subtraction

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: The following are the
rules for constructing arithmetic expressions that contain arithmetic
operators:

1. All desired computations must be specified explicitly.. That is1, if
more than one primary appears in an arithmetic expression, they
must be separated from one another by an arithmetic operator. For
example, the two variables A and B will not be multiplied if
written:

AB

If multiplication is desired, then the expression must be written
as follows:

A*B or B*A

2.. No two arithmetic operators may appear in sequence in the same
expression. For example, the following expressions are invalid:

A*/B and A*-B

The expression A*-B could be written correctly as follows:

A* (-B)

In effect, -B will be evaluated first and then A will be multiplied
by the result. (For additional uses of parentheses, see Rule 3 .•)

3.. Order of Computation: Computation is performed from left to rig-ht
according to the hierarchy of operations shown in the following
list..

Operation
Evaluation of functions
Exponentiation (**)
Multiplication and division (* and /)
Addition and subtraction (+ and -)

Hierarchy
1st
2nd
3rd
4th

This hierarchy is used to determine which of two consecutive opera­
tions is performed first. If the first operator is higher than or
equal to the second, the first operation is performed. If it is
not, the second operator is compared to the third, etc. When the
end of the expression is encountered, all of the remaining opera­
tions are performed in reverse order.

For example, in the expression A*B+C*D**I, the operations are per­
formed in the following order:

1.
2 .•
3 .•
4.

A*B
D**I
C*Y
X+Z

Call the result X (multiplication)
Call the result Y <exponentiation)
Call the result Z (multiplication)
Final operation (addition)

(X+C*D**I>
(X+C*Y)
(X+Z)

If there are consecutive exponentiation operators, the evaluation
is from right to left. Thus_, the expression:

A**B**C

is evaluated as follows:

1. B**C Call the result z
2. A**Z Final operation

Elements of the Language 17

A unary plus or minus has the same hierarchy as a plus or minus in
addition or subtraction. Thus,

A=-B is treated as A=O-B

A=-B•c is treated as A=O-<B•c>

A=-B+C is treated as A=(O-B)+C

Parentheses may be used in arithmetic expressions,, as in algebra,
to specify the order in which the arithmetic operations are to be
computed. Where parentheses are used, the expression within the
parentheses is evaluated before the result is used. This is equi­
valent to the definition above since a parenthesized expression is
a primary.

For example, the following expression:

B+ ((A+B) *C) +A**2

is effectively evaluated in the following order:

1. (A+B) Call the result x B+(X*C)+A**2
2. (X*C) Call the result y B+Y+A**2
3. B+Y Call the result w W+A**2
4,. A**2 Call the result z W+Z
5. W+Z Final operation

4,. The type of the result of an operation depends on the type of the
two operands (primaries> involved in the operation. Table 1 shows
the type of the result of the operations +,, -., *, /, and **·

Assume that the type of the variables l,, J, K, c, and D has been
specified as follows:

Variable Names
I,J,K
c
D

~
Integer variable
Real variable
Double-precision variable

Then the expression I*J/C**K+D is evaluated as follows:

02erations ~
I*J (Call the result X) Integer
C**K (Call the result n Real
X/Y (Call the result Z) Real
Z+D Double precision

Thus, the final type of the entire expression is double precision,
but the type changed at different stages in the evaluation. Note
that, depending on the values of the variables involved, the result
of the expression I*J*C may differ from that of the expression
I*C*J.

5. The type of the result of an exponentiation (**> operation depends
on the type of the two operands involved, as shown in Table 1. For
example, if an integer is raised to a real power, the type of the
resuit is real.. Note, however, that a negative real or double­
precision quantity must not be followed by a real or double­
precision exponent, since the result is, in general, complex and
cannot be represented as a real or double-precision value.

18

• Table 1. Determining the Type of the Result of + - * / **
r--------------T-----------T-----------T------------------------~------1
I + - * / ** I INTEGER I REAL I DOUBLE PRECISION I
t--------------+-----------+------~----+-------------------------------i
I INTEGER I Integer I Real I Double precision I

t--------------+-----------+-----------+-------------------------------i
I REAL I Real I Real I Double precision I

t--------------+-----------+-----------+-------------------------------i
I DOUBLE I Double I Double I Double precision I

I PRECISION I precision I precision I I
t--------------~-----------1.-----------L-------------------------------i
f Note: When one integer is divided by another, the quotient is also anl
!integer. If necessary, the result is truncated. For example, 5/2 I
f gives a quotient of 2. I ._ __________ , ___ J

Elements of the Language 19

ARITHMETIC ASSIGNMENT STATEMENT

.--,
I General Form I
1--~
l~=Q I
I I
I I
I Where: ~ is a subscripted or nonsubscripted variable,. f
I I
I I
I Q is an arithmetic expression. I
l-~--J

This FORTRAN statement closely resembles a conventional algebraic
equation; however, the equal sign specifies replacement rather than
equivalence. That is, the expression to the right of the equal sign is
evaluated, and the resulting value replaces the current value of the
variable to the left of the equal sign,.

The type of the variable, represented by a,, is converted according to
the type of the arithmetic expression Q1, as shown in Table 2.

• Table 2. Conversion Rules for Arithmetic Assignment Statements
------------T----------------T------------------T---------------------1

I Type I I I I
I Typ of ~I INTEGER I REAL I DOUBLE PRECISION I
I of.~ I I I I
~------------ ----------------+------------------+---------------------~
I INTEGER I Assign I Fix and Assign I Fix and Assign I
~------------+--------------~-+------------------+---------------------~ I REAL I Float and I Assign I Real Assign I
I I Assign I I I
~------------+----------------+------------------+---------------------~
1 ·DOUBLE I DP Float and I DP Float and I Assign I
I PRECISION I 'Assign I Assign I I
~------------i----------------i------------------L---------------------~

1. Assign means transmit the resulting value, without change. If the
significant digits of the resulting value exceed the specified
length, results are unpredictable.

2,. .Real· Assign means transmit to ~ as much precision of the most sig­
nificant part of the resulting value as real data can contain.

3. Fix means truncate the fractional portion of the resulting
value and transform to the form of an integer.

4. Float means transform the resulting value to the form of a real
number retaining in the process as much precision of the value
as a real number can contain.

5. DP Float means transform the resulting value to the form of a
double-precision number.

L--J

20

Assume that the type of several variables has been specified as
follows:

Variable names
I, J,, W

~
Integer variables

A., B,, D
E
F

Real variables
Double-precision variable
Real array

Then the following examples illustrate valid arithmetic statements
using constants, variables, and subscripted variables of different
types:

Statements
A = B

w = B

A = I

I = I + 1

B = I**J+D

A = B*D

A = I+E

A= FC5,4)

J = E

E = A

Description
The value of A is replaced by the current value of B .•

The value of.Bis truncated to an integer value, and
this value replaces the value of w.

The value of I is converted to a real value, and this
result replaces the value of A.

The value of I is replaced by the value of I + 1.

The value of I is raised to the power J and the
result is converted to a real value to which the
value of D is added. This result then replaces the
value of B.

The most significant part 6£ the product of B and D
replaces the value of A.

The value of I is converted to double precision and
added to E. The result of the addition is trun­
cated from double precision to real and replaces
the value of A.

The value of F(5,4) replaces the value of A.

The value of I is converted to double precision, and
this value replaces the value of E..

The value of E is truncated to an integer value, and
this value replaces the value of J,.

The value of A is converted to double precision, and
this value replaces the value of R.

Arithmetic Assignment Statement 21

CONTROL STATEMENTS

Normally. FORTRAN statements· are executed sequentially. That is.
after one statement has been executed1, the statement immediately follow­
ing it is executed. This section discusses the statements that may be
used to alter and control the normal sequence of execution of statements
in the program. ·

GO TO STATEMENTS

GO TO statements permit transfer of control to an executable state­
ment specified by number in the GO TO statement. Control may be trans­
ferred either unconditionally or conditionally. The GO TO statemehts
are:

1. Unconditional GO TO statement

2. Computed GO TO statement

Unconditional GO TO Statement

,.--,
I General Form I
~--~
I GO TO xxxxx I
I I

I I Where: xxxxx is the number of an executable statement. I
L--J

This GO TO statement causes control to be transferred to the state­
ment specified by the statement number. Every subsequent execution of
this GO TO statement results in a transfer to that same statement. Any
executable statement immediately following this statement should have a
statement number; otherwise, it can never be referred to or executed.

Example:

GO TO 25
10 A = B + C

25 C = E**2

Explanation:

In the above example, each time the GO TO statement is executed, con­
trol is transferred to statement 25.

22

computed GO TO Statement

r--1
I General Form I
1---------------------------------~------------------------------------~
I GO TO <~.~2 ,~3, ••• ,~) ., !:. I
I I I I Where: ~1 ,~2 , ••• ·~n, are the numbers of executable statements. I
I I
I ! is a nonsubscripted integer variable whose current value I
I is in the range: 1 ~ ! ~ n I
L--l

This statement causes control to be transferred to the statement num­
bered ~, ~2 , ~3 , •.•• 1• or ~n, depending on whether the current value of
i. is 1, 2, 3, .••• , or n, respectively. If the value of ! is outside the
allowable range,, the next statement is executed.

Example:

GO TO (25~ 10~ 7)~ ITEM

7 C = E**2+A

25 L = C

10 B = 21. 3E02

Explanation:

In this example, if the value of the integer variable ITEM is 1,
statement 25 will be executed next.. If ITEM is equal to 2, statement 10
is executed next,, and so on .•

ADDITIONAL CONTROL STATEMENTS

Arithmetic IF Statement

.--,
I General Form I
~--~
I IF (~) ~·~2.~3 I
I I
I Where: ~ is an arithmetic expression. I

I I ~1 ,~2 ,~3 are the numbers of executable statements. I
'--------------------------~--~--l

This statement causes control to be transferred to the statement num­
bered &r ~2 , or ~3 when the value of the arithmetic expression (~) is
less than1, equal to,, or greater than zero,, respectively.. The first
executable statement following the arithmetic IF statement should have a
statement number; otherwise,, it can never be referred to or executed.

Control Statements 23

Example:

IF (A(J,K)**3-B)10~ 4, 30
4 D = B + C

30 C = D**2

10 E = (F*B)/D+l

Explanation:

In the above example, if the value of the expression A(J,K)**3-B is
negative,, the statement numbered 10 is executed next. If the value of
the expression is zero, the statement numbered 4 is executed next. If
the value of the expression is positive,, the statement numbered 30 is
executed next ..

DO Statement

r-------~--~---,
I General Form I
~-----------------------·--------------------------------------""""--------~.

End of DO Initial Test
Range Variable Value Value Increment
~~ '~ ~.~ '-v--' "~

DO i =

Where: x is the number of an executable statement which appears
after the DO statement.

! is a nonsubscripted integer variable.

m1 , m2 ., and m3 , are either unsigned integer constants great­
er than zero-or unsigned nonsubscripted integer variables
whose value is greater than zero. !!!_2 may not exceed 231-2
(2,147,,483,646) in value. m3 is optional; if it is omitted,
its value is assumed to be i. In this case, the preceding
comma must also be omitted.

The DO statement is a command to execute at least once the statements
that physically follow the DO statement, up to and including the state­
ment numbered x.. These statements are called the range of the DO.. The
first time the-statements in the range of the DO are executed, ~is
initialized to the value !!!1_; each succeeding time ! is increased by the
value m3 • When, at the end of the iteration., i is equal to the highest
value that doe$ not exceed m2 , control passes to the statement following
the statement numbered x. Thus 1, the number of times the ·statements in
the range of the DO are-executed is given by the expression:

24

r ,
I !!!2 - !!!1 I
I ------- I +1
I !!!3 I
L J

where the brackets represent the largest integral· value not exceeding
the value of the expression within the brackets. If !!!.:a is less than !!!.1 .,

the statements in the range of the DO are executed once. Upon comple­
tion of the DO, the DO variable is undefined and Should not be used
until assigned a value Ce.g., in a READ list).

There are several ways in which looping (repetitively executing the
same statements) may be accomplished when using the FORTRAN language .•
For example, assume that a manufacturer carries 1,, 000 different machine
parts in stock. Periodically, he may find it necessary to compute the
amount of each different part presently available. This amount may be
calculated by subtracting the number of each item used, OUTCI>, from the
previous stock on hand, STOCK(!) .•

Example 1:

I=O
10 I=I+l

STOCK (I) =STOCK (I) -OUT (I)
IFU-1000) ·10, 30, 30

30 A=B+C

Explanation:

The first, second, and fourth statements required to control the pre­
viously shown loop could be replaced by a single DO statement as shown
in example 2.

Example 2:

DO 25 I = 1,, 1000
25 STOCK(!) = STOCK(I)-OUT(I)

A= B+C

Explanation:

I

In example 2, the DO variable, I, is set to the initial value of 1.
Before the second execution of statement 25, I is increased by the
increment, 1, and statement 25 is again executed. After 1000 executions
of the DO loop, I equals 1000. Since I is now equal to the highest
value that does not exceed the test value, 1000, control passes out of
the DO loop and the third statement is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 1000 or 1001.

Control Statements 25

Example 3:

DO 25 I=l, 101, 2
J = I+K

25 ARRAY(J) :::: BRAY(J)
A = B + C

Explanation:

In example 3, statement 25 is the end of the range of· the DO loop.
The DO variable, I, is set to the initial value of 1. Before the second
execution of the DO loop, I is increased by the inc~ement, 2, and the
second and third statements are executed a se~ond time. After the fifth
execution of the DO loop!, I equals 9. Since I is now ~qual to the high­
est value that does not exceed the test value, 10, control passes out of
the DO loop and the fourth statement is executed next.. Note that the DO
variable, I, is now undefined; its value is not necessarily 9 or 11.

Programming Considerations in Using a DO Loop

1. The indexing parameters of a DO statement C!_, !!!u ffi:u tn3) should
not be changed by a statement within the range of the DO loop.

2. There may be other DO statements within the ra.nge of a DO state­
ment. All statements in the range of the inner DO must be in the
range of the outer DO. A set of DO statements satisfying this rule
is called a nest of DO's.

Example 1:

DO 50 I = 1, 4

A(I) = BCI>**2

DO 50 J=2, 5

50 C (J) = A(I) }
Range of

Inner DO

Example 2:

DO 10 INDEX = L, M

N = INDEX + K

DO 15 J = 1, 100, 2

15 'l'A.BLE(J) = SUM (J, N)-1

10 B (N) = A (N)

}
Ra.nge of
Inner DO

'Range of
Outer DO

Ra.nge of
Outer DO

3. A transfer out of the range of any DO loop is permissible at any
time.

26

4. The extended range of a DO is defined as those statements in.the
program unit containing the DO statement that are executed between
the transfer out of the innermost DO of a nest of DO's and the
transfer back into the range of this innermost DO. The folloNing
restrictions apply:

• Transfer into the range of a DO is permitted only if such a
transfer is from the extended range of the DO .•

• No DO statements are permitted in the extended range of the DO.

• The indexing parameters C!_,!!!1_,!!_!2 ,!!!3) cannot be changed in the
extende.d range of the DO .•

Note that a statement that is the end of the range of more than one
DO statement is within the innermost DO loop. The statement label
of such a terminal statement may not be used in any GO TO or arith­
metic IF statement that occurs anywhere but in the range of the
most deeply contained DO with that terminal statement.

Example:
DO DO

_______ D_0 4

DO

2 5

..,____- 7

Explanation:

In the preceding example, the transfers specified by the numbers
1, 2., and 3 are permissible,, whereas those specified by 4, 5, 6,,
and 7 are not.

5. The indexing parameters <_!;,!!!1_,fil2 ,,m3 > may be changed by statements
outside the range of the DO statement only if no transfer is made
back into the range of the DO statement that uses those.parameters.

6.. The last statement in the range of a DO loop C statement ~> must be
an executable statement. It cannot be a GO TO statement of any
form,, or a PAUSE., STOP,, RETURN,, arithmetic IF, or another DO
statement.

7.. The use of, and return from,, a subprogram from within any DO loop
in a nest of DO's is permitted.

Control Statements 27

CONTINUE Statement

r-----..:.-----------------------·------------------'-------------·---------------,
I General Form I
i----------------------------------~-------------------------------~---~
I I
I CONTINUE I
L-..... _;----------------------------.... ------------.... ------------------------1

CONTINUE is a dummy statement that may be placed anywhere in the
source program without affecting the sequence of execution. It may be
used as the last statement in the range of a DO in order to avoid ending
the DO loop with a GO TO, PAUSE, STOP., RETURN, arithmetic IE', or another
DO statement.

·Example 1:

DO 30 I = 1,, 20
7 IF (A(I)-B(I)) 5,30,30
5 A(I) =A(I) +1.0

B(I) = B(I) -2.0

GO TO 7
30 CONTINUE

C = A(3) + BC7)

Explanation:

In example 1, the CONTINUE statement is used as the last statement in
the range of the DO in order to avoid ending the DO loop with the state­
ment GO TO 7.

Example 2:

DO 30 I=l,20
IF(A(I)-B(I}}S,40~40

5 A(I) = C(!)
GO TO 30

40 A(I) = O .• 0
30 CONTINUE

Explanation:

In example 2., the CONTtNtJE statement provides a branch point enabling
the programmer to bypass the execution of statement 40 .•

28

PAUSE Statement

.-----------------~~...---~----.--~~~~~-----------------------~------,
I General Form I
..--------------~---~ I PAUSE I
I PAUSE ~ I
I I
I Where: n is a string of from one through five decimal digits. I
L--J

PAUSE !!. or PAUSE 00000 is displayed., depending on whether !! was spec-
ified,. The program waits until operator intervention causes it to ·
resume execution,, starting with the next statement after the PAUSE
statement. For further information .• see the FORTRAN programmer• s guides
listed in the Preface.

STOP Statement

..-------------------~---,
I General Form I
~--~
I I
I STOP I
I STOP !! I
I I
I Where: ~ is a string of from one through five decimal digits. I
L--J

I

The STOP statement terminates the execution of the object program.
STOP !! is displayed if !! is specified,. For further information., see the
FORTRAN programmer's guides listed in the Preface.

END statement

r---~------,
I General Form I
~---~
I I
I END I
L------------------------------------·----------------------------------J

The END statement is a nonexecutable statement that defines the end
of a source program or source subprogram for the compiler. Physically,

I it must be the last statement of each pro. gram or subprogram. It must
have blanks in columns 1 through 6 and may not·be continued. The END
statement does not terminate program execution. To terminate execution,
a STOP statement, or a RETURN statement in the main program, is
required.

control Statements 29

INPUT/OUTPUT STATEMENTS

Input/output statements are used to transfer and control the flow of
data between internal storage and an input/output device, such as a card
reader,, printer,, punch,, magnetic tape unit, or disk storage unit.. The
data that is to be transferred belongs to a data set. Data sets are
composed of one or more records. Typical records are punched car.ds,
printed lines,, or the images of either on magnet~c tape or disk.

Operation: In order for the input or output opera ti on to take place 1,
the programmer must specify the kind of operation' he desires: for
example, READ, WRITE, or BACKSPACE,.

Data Set Reference Number: A FORTRAN programmer refers to a data set by
its data set reference number. CThe FORTRAN programmer's guides listed
in the Pref ace explain how data set reference numbers are associated
with data sets,.> In the statement specifying the type of input/output
operation, the programmer must specify the data set reference number
corresponding to the data set he wishes to operate on.

I/O List: Input/output statements in FORTRAN are' primarily concerned
with the transfer of data between storage locations defined in a FORTRAN
program and records that are external to the program. On input1, data is
taken from a record and placed into storage locations that are not
necessarily contiguous. on output, data is gathered from diverse
storage locations and placed into a record. An I/O list is used to spe­
cify which storage locations are used. The I/O list can contain vari­
able names, subscripted array names,, unsubscripted array names, or array
names accompanied by indexing s·pecifications in a form called an implied
DO. No function references or arithmetic expressions <except
expressions used as subscripts) are permitted in an .I/O list.

If a variable name or sub~cripted array name appears in the I/O list,
one item is transmitted betw~en a storage location.and a recofd•

·"··

If an unsubscripted array name appears in the H.st, t'he ·entire array
is transmitted in the order in which it is stored.. (If the array has
more than one dimension, it is stored in ascending storage .locations

1
,

with the value of the first subscript quantity increasing most rapidly
and the value of the last increasing least rapidly. An example is given
in the section nArrangement of Arrays in Storage.n)

!fan implied DO appears in the I/O list, the elements qf the
array(s) specified by the impli,ed .no are transmitted:. The implied DO
specification is enclosed in parentheses. Withiri t,he parentheses are
one or more subscripted array names., separated by commas with a comma
following the last name, followed by indexing parameters i=m1 ,, m21 m3 •

The indexing parameters are as defined foi::-.the DQstat~ment. Their
range is the list of the DO-implied list and, for input lists, i, m1 ,,

m2 ,, and m3 may appear within that range 9nly in subscripts.

30

!!'or example, assume that A is a variable and that B., c,, and D are
one-dimensional arrays each containing 20 elements.. Then the statement:

WRITE (3) A, B, (C(I), I=l,4), D(4)

writes the current value of variable Air the entire array B, the first
four elements of the array c, and the fourth eleme~t of D.. (The 3 fol­
lowing the WRITE is the ·data set J:eference number.)

Implied DO's can be nested if required. For example, to read an ele­
ment into array B after values are read into each row of a 10 x 20 array
A,, the following would be written:

READ (1) ((A(I, J) ,J=l, 10) ,B (I},, I=l, 20)

The order of the names in the list specifies the order in which the
data is transferred between the record and storage locations.

Formatted and Unformatted Records: Data can be transmitted either under
control of a FORMAT statement or without the use of a FORiv"iAT statement.

When data is transmitted with format control, the data in the record
is coded in a form that can be read by the programmer or can satisfy the
needs of machine representation. The transformation for input takes the
character codes and construct$ a machine representation for an item .•
The output transformation takes the machine representation of an item
and constructs character codes suitable for printing. Most transforma­
tions involve numeric representations that require base conversion. To
obtain format contJ;:ol, the programmer must include a FORMAT statement in
the program and must give the statement number of the FORMAT statement
in the REiu> or WRITE statement specifying the input/output operation.

When data is transmitted without format control, no FORMAT statement
is used.. ln this case., there is a one-to-one correspondence between
internal storage locations (bytes> and. external record positions. A
typical use of unformatted data is for information that is written out
during a pJ,"oqrarn. not ex~mi?led by the programmer1, and then read back in
later in the program, or in another program, for additional processing.

For unformatted data1, the I/O list determines the length of the
record.. For example, an output record is complete when the current
values of all the items in the I/O list have been placed in it, plus any
control.words i-equired by the input/output routines or Data Management.
For further information, see the Basic FORTRAN IV programmer's guides
listed in the Preface.

For formatted data, the l/O list and the FORMAT statement determine
the form of the record. For further information,, see the section
"FORMAT Statement" in this publication and the Basic FORTRAN IV program­
mer's guides listed' in the Preface.

Input/Output Statements 31

There are two types of input/output statements: sequential and
direct access.. Sequential input/output statements are used for storing
and retrieving data sequentially.. These statements are device indepen­
dent and can be used for data sets on either sequential or direct access
devices.

The direct access input/output statements are used to store and
retrieve data in an order specified by the user. These statements can
be used only for a data set on a direct access storage device anp are
thus not available in Basic Programming Support Basic FORTRAN IV. They
can be compiled but not executed by Tape Operating System Basic FORTRAN
I~ . .

SEQUENTIAL INPUT/OUTPUT STAT.EMENTS

There are five sequential input/output statements: READ, WRITE, END
FILE1, REWIND,, and BACKSPACE.. The READ and WRITE statements cause
transfer of records of sequential data sets. The END FILE statement
defines the end of a data set; the REWIND and BACKSPACE statements con­
trol the positioning of data sets.. In addition to these five state­
ments,, the FORMAT statement, although not an input/output statement:, is
used with certain forms of the READ and WRITE statements. The FORMAT
statement is not executable and can be placed anywhere in the program.

READ STATEMENT

r-------------------------------------~----------------------~---------1
IGeneral Form I
~---~---~
IREAD (~,,£) list I
I I
JWhere: ~ is an unsigned integer constant or an integer variable that I
I ·represents a data set reference number. 1
I I
I £ is optional and is the statement number of the FORMAT state-I
I ment describing the data being read.. I
I I
I list is optional and is an I/O list. I
L---~~-------------J

The READ statement may ta~e many forms. The value of ~.must always
be specified but under appropriate conditions1, !2 and list can be
omitted .•

32

The basic forms of the READ statement are:

Form
READ (a,b) list
READ (~)-list

Purpose
Formatted READ
Unformatted READ

Formatted READ

The form READ (a,b) list is used to read data from the data set asso­
ciated with data set-reference number a into the variables whose names
are given in the list. The data is transmitted from the data set to
storage according to the specifications in the FORMAT statement, which
is statement number _Q.

Example:

READ (1,, 98) A,B, (C CI,,K) ,,I=l,,10)

Explanation: The above statement causes input data to be read from the
data set associated with data set reference number 1 into the variables
A., B, C(l,,K) C(2,,K),, ••• , C(10,K) in the format specified by the FORMAT
statement whose statement number is 98.

Unformatted READ

The form READ (~) list is used to read a single record from the data
set associated with data set reference number a into the variables whose
names are given in the list. Since the data is unformatted, no FORMAT
statement number is given.. This statement is used to read unformatted
data written by a WRITE (~) list statement. If the list is omitted, a
record is passed over without being processed.

Example:

READ (J) A,B,C

Explanation: The above statement causes data to be read from the data
set associated with data set reference number J into the variables A, .B,,
and c.

WRITE STATEMENT

,--,
IGeneral Form I
~-----------------------~--~
IWRITE <~,!?_) list I
I I
IWhere: ~ is an unsigned integer constant or an integer variable and I
I represents a data set r.ef erence number. I
I I
I Q is optional and is the statement number of the FORMAT state-I
I ment describing the data being written. I
I' I
I list is optional and is an I/O list. I ._ ___ J

The WRITE statement may take many different forms. For example, the
list or the parameter .Q may 'be omitted.

Input/Output Statements 33

The basic forms of the WRITE statement are:

Form
WRITE (a!. b) list
WRITE(a) list

Formatted WRITE

Purpose
Formatted WRITE
Unformatted WRITE

The form WRITE Ca1,b) list is used to write data into the data set
whose reference number is-a-from the variables whose names are given in
the list. The data is transmitted from storage to the data set accord­
ing to the specifications in the FORMAT statement, whose statement
number is b.

Example:

WRITE { 31, 75) A, (B (I, 3J, I=l, 10, 2) I c

Explanation: The above statement causes data to be written from the
variables A, B(l,3),, BC3r,3>, B(5,3),, B(7,3), B(9,3),, and C into the data
set associated with data set reference number 3 in the format specified
by the FORMAT statement whose statement number is 75 .•

Unformatted WRITE

The form WRITE (a) list is used to write a single record from the
variables whose names are-given in the list into the data set whose data
set reference number is a.. This data can be read back into storage with
the unformatted form of the READ statement, READ Ca) list. The list
cannot be omitted. - ~~ ~~

Example:

WRITE (L) ((A (I, J) , I=l, 10, 2) , B CJ., 3) ,, J=l,, K)

Explanation: The above statement causes data to be written from the
variables A(1,1), A(3,,1>:, ••• , A(9,1), B(l,3), AC1,2), AC3,2), •.••• ,
A(9,,2), BC2,3), .••• , B(K.,3) into the data set associated with the data
set reference number L. Since the record is unformatted, no FORMAT
statement number is given. Therefore., no FORMAT statement number should
be given in the READ. statement used to read the data back into storage .•

34

FORMAT S~ATEMENT

r--1
!General Form I
1--~
I~ FORMAT Cc1.,c2 , ,en>
I
I Where:
I
I

xxxxx is a statement number (1 through 5 digits> .•

£1-1£2,1•••1£n a.re format codes.
I
!The format codes are:
laiw
1@0~.~
l~E~.~
II@.F~-~
l~A~
I' literal'
l~H
l~X
I
IT~
I
lat ..• ,.)
I
Where:

(Describes integer data fields)
(Describes double-precision data fields)
(Describes real data fields)
(Describes real data fields)
(Describes character data fields)
(Transmits literal data)
(Transmits literal data)
(Indicates that a field is to be skipped on input or filled

with blanks on output)
(Indicates the position in a FOR'I'RAN record where transfer

of data is to start)
(Indicates a group format specification)

~ is optional and is an unsigned integer constant used to
denote the number of times the format code is to be
repeated. If ~ is omitted, the code is used only once.

~ is an unsigned integer constant that is less than or equal
to 255 and specifies the number of characters of data in the
field .•

d is an unsigned integer constant specifying the number of
decimal places to the right of the decimal point, Le •. , the
fractional portion,.

E is optional and represents a scale factor.. It is speci­
fied as an unsigned or negatively signed integer constant
followed by the letter P.

r is an unsigned integer constant designating a character
position in a record.

The FORMAT statement is used in conjunction with the I/O list in the
READ and WRITE statements to specify the structure of a FORTRAN record
and the form of the data fields within the record. In the FORMAT state­
ment,, the data fields are described with format codes; the order in
which these format codes is specified gives the structure of the
FORTRAN record,. The I/O list gives the names of the data items to make
up the record.. The length of the list in conjunction with the FORMAT
statement specifies the length of the record <see the section "Various
Forms of a FORMAT statement"). Throughout this section, the examples
show punched card input and printed line output. The concepts apply to

Input/Output Statements 35

all input/output media. In the examples, the character ~ represents a
blank.

The following list gives general rules for using the FORMAT
statement:

1. A FORMAT statement is not executed; its function is to supply
inf orrnation to the object program. It may be placed anywhere in
the source program .•

2. When defining a FORTRAN record by a FORMAT statement, it is impor­
tant to consider the maximum size record allowed on the input/
output device. For example, if a FORTRAN record is to be punched
for output, the record should not be longer than 80 characters. If
it is to be printed,, it should not be longer than the printer's
line length. For input, the FORMAT statement should not define a
FORTRAN record longer than the record referred to in the data set.

3.. When formatted records are prepared for printing, the first
character of the record is not printed.. It is treated as a car­
riage control character. It can be specified in a FORMAT statement
with either of two forms of literal data; either 'x' or lH~, where
~ is one of the following:

x
blank

0

1

+

Meaning
Advance one line before printing

Advance two lines before printing

Advance to first line of next page

No advance

For devices other than the printer, the first character of the
record is treated as data,.

4. If the I/O list is omitted from the READ or WRITE statement., a
record is skipped on input or a blank record is inserted on output
unless the record was transmitted between the data set and the
FORMAT statement <see "H Format Code and Literal Data").

Various Forms of a FORMAT Statement

All of the format codes in a FORMAT statement are enclosed in a pair
of parentheses.. Within these parentheses,, the format codes are
delimited by the separators: comma and slash.

Execution of a formatted READ or formatted WRITE statement initiates
format control. Each action of format control depends on information
provided jointly by the I/O list, if one exists, and the format specifi­
cation. There is no I/O list item corresponding to the format descrip­
tors x, H1, and literals enclosed in apostrophes.. These communicate
information directly with the record.

Whenever an I, D, Bi, F, or A code is encountered, format control
determines whether there is a corresponding element in the I/O list. If
there is such an elementi, appropriately converted information is trans­
mitted. If there is no corresponding element,, the format control
terminates.

If format control reaches the last outer right parenthesis of the
format specification and another element is specified in the I/O list,

36

control is transferred to the group repeat count of the group format
specification terminated by the last right parenthesis that precedes the
right parenthesis ending the FORMAT statement..

The question of whether there are further elements in the I/O list is
asked only when an I, D., E, F, or A code or the final right parenthesis
of the format specification is encountered. Before this is done, T, X,
and H codes, literals enclosed in apostrophes, .and slashes are pro­
cessed. If there are fewer elements in the I/O list than there are for­
mat codes, the remaining format codes are ignored.

Comma: The simplest form of a FORMAT statement is the one shown in the
box at the beginning of this section with the format codes!, separated by
commas, enclosed in a pair of parenthesis. One FORTRAN record is
defined by the beginning of the FORMAT statement (left parenthesis) to
the end of the FORMAT statement (right parenthesis). For an example,
see the section "Examples of Numeric Format Codes .• "

Slash: A slash is used to indicate the end of a FORTRAN record format.
For example, the following statement describes two FORTRAN record
formats:

25 FORMAT

The first, third, etc., records are transmitted according to the format
I3, F6. 2 and the second., fourth, etc., records are transmitted according
to the format DlO .• 3, F6 .• 2.

Consecutive slashes can be used to introduce blank output records or
to skip input records. If there are g consecutive slashes at the begin­
ning or end of a FORMAT statement, g input records are skipped or g
blank records are inserted between output records. If g consecutive
slashes appear anywhere else in a FORMAT statement, the number of
records skipped or blank records inserted is n-1. For example, the fol­
lowing statement describes three FORTRAN record formats:

25 FORMAT (1X.10I5//1X,8E14.5)

on output, it causes double spacing between the line written with format
1X,,10I5 and the line written with the'format 1X.,8E14.5.

I Format Code

The I format code is used in transmitting integer data.. For example,
if a READ statement refers to a FORMAT statement containing I format
codes, the input data is stored in internal storage in integer format.
The magnitude of the data to be transmitted must not exceed the maximum
magnitude of an integer constant..

Input: Leading, embedded, and trailing blanks in a field of the input
card are interpreted as zeros .•

Output: If the number of significant digits and sign required to repre­
sent the quantity in the storage location is less than !!_, the leftmost
print positions are filled with blanks.. If it is greater than w,
a$terisks are printed instead of the number. -

Input/Output Statements 37

D,, E, and F Format codes

The D, E,, and F format codes are used in transmitting real or double
precision data. The data must not exceed the maximum mag-nitude for a
real or double-precision constant.

Input: Input must be a real or double-precision number which, optional­
ly, may have a D or E exponent. An exponent may be expressed without
the letter, simply as a signed integer constant, such as 02.380+02b for
the value 2.3800+020. The decimal point also may be omitted. If it is
present

1
, its position overrides the position indicated by the S! portion

of the format field descriptor,, and the number of positions specified by
~ must include a place for it. If the data has a D or E exponent and
the format field descriptor includes a P scale factor, the scale factor
has no effect. Each data item must be right justified in its field,,
since leading, trailing, and embedded blanks are treated as zeros.
These three format codes are interchangable for input. It makes no dif­
ference, for example, whether D, E, or F is used to describe a field
containing 12.42E+08.

Output: For data written under a D or E format code, unless a P scale
factor is specified, output consists of an optional sign (required for
negative values), a· decimal point, the number of significant digits spe­
cified by ~. and a D or E exponent requiring four positions. The ~ spe­
cification must provide for all these positions, including the one for a
sign when the output value is negative. If additional space is avail­
able, a leading zero may be written before the decimal point.

For data written under an F format code, !'! must provide sufficient
spaces for an integer segment if ·it is other than zero, a fractional
segment containing Q digits, a decimal point, and, if the output value
is negative, a sign. If insufficient positions are provided for the
integer portion, including the decimal point and sign (if any),
asterisks are written instead of data. If excess positions are pro­
vided, the number is preceded by blanks.

For D, E, and F, fractional digits in excess of the number specified
by £ are dropped after rounding.

Examples of Numeric Format Codes

The following examples illustrate the use of the format codes I, F,
D, and E.

Example 1:

75 FORMAT (I3 ,FS. 2 ,E10. 3.,010. 3)

READ (1,75) N,A,B,C

Explanation:

1. Four input fields are described in the FORMAT statement and four
variables are in the I/O list. Therefore, each time the READ state­
ment is executed, one input card is read from the data set asso­
ciated with data set reference number 1.

38

2. When an input card is read, the number in the first field of the
card (three columns) is stored in integer format in location N.
The number in the second field of the input card (five columns) is
stored in real format, in location A, etc.

3. If there were one more variable in the I/O list, say M, another
card would be read and the information in the first three columns
in that card wou.ld be stored in integer format in location M. The
rest of the card would b~ ignored.

4. If there were one ~ess variable in the list (say c was omitted)J
the format specification Dl0.3 would be ignored.

5.. This FORMAT statement defines only one record format. '!'he section
•various Forms of a FORMAT Statement" explains how to define more
than one record format in a FORMAT statement.

Example 2:

Assume that the following statements were given:

75 FORMAT (I4,F6,.3,D10.3)
READ (1, 75) N,A, B

where N is integer, A is real, and B is double precision and that the
following input cards are read:

Column 1 ~ ~1 21

Input

I I

1
~311)56.43~02.380+02~

I I

2343~. 5538~-7-6540-06
I I

331l$46.1~~~4.673~~
Cards

I I

Format I4 F6.3 010.3

Then the variables N, A,, and B receive values as though the following
had been punched:

N

0311

2343

3310

Explanation:

~

56.432

155.381

346.18

B

2 .• 3800+020

-7.6540-06

4.6730+00

Leading,, trailing, and embedded blanks in an input field are treated
as zeros.. Therefore, since the value for B on the first input card was
not right-justified in the field,, the exponent is 20, not 2.

Example 3: Assume that the following statements were given:

76 FORMAT
WRITE

('l~ 1 I3,F6.2,E10.3)
(3,76) N,A,B

Input/Output Statements 39

and that the variables N, A, and B have the following values:

N A B

031 034.40 123.380E+02

130 031.1 1156.1E+02

428 -354. 32 834.~21E-03

000 01.132 83.121E+06

Then, the following lines are printed:

Column 1 4 10 20

31 34.40 0.123E 05

130 31.10 0.115E 06

428****** 0.835E 00

0 1.13 0.831E 08

Explanation:

1. The integer portion of the third value of A exceeds the format
specification, so asterisks are printed instead of a value. The
fractional portion of the fourth value of A exceeds the format
speqification, so the fractional portion is rounded.

2. Note that,, for the variable B, the decimal point is printed to the
left of the first significant digit and that only three significant
digits are printed because of the format specification ElO .• 3.
Excess digits are rounded off from the right.

Scale Factor - P

The P scale factor may be specified as the first part of a D, E,, or F
field descriptor to change the location of the decimal point in real
numbers. The effect of the P scale factor is:

scale factor
external number = internal number x 10

Input: A scale factor may be specified for any real data, but it is
ignored for any data item that contains an exponent in the external
field. For example, if the input data is in the form xx.xxxx and is to
be used internally in the form .xxx.xxx, then the format code used to
effect this change is 2PF7. 4. Or, if the input data is in the form xx .•
xxx.x and is to be used internally in the form xxx.x.xx, then.the format
code used to effect this change is -2PF7.4.

Output: A scale factor can be specified for real numbers with or
without E or D decimal exponents. For numbers without an E or D decimal
exponent, the effect is the same as for input data except that the
decimal point is moved in the opposite direction. For example, if the
number has the internal form xx.xxx.x and is to be written out in the
form xxxx.xx, the format code used to effect this change is 2PF7. 4 .•

For numbers with an E or D decimal exponent,, when the decimal point
is moved,, the exponent is adjusted to account for it, i,. e., . the value is

40

not changed. For example, if the internal number 238. were printed
according to the format El0.3, it would appear as 0.238E~03. If it
were printed according to the format 1PE10 .. 3,, it would appear as
2.380EtS02.

A repetition code can precede the D,, E, or F format code. For
example, 2P3F7.4 is valid.

warD;inq: Once a scale factor has been established, it applies to all
subsequently interpreted o. E,. and F codes in the same FORMAT statement
until another scale factor is encountered. The new scale factor is then
established.. A fact:,or of 0 may be used to discontinue the effect of a
previous scale factor .•

A Format Code

The A format code is used in transmitting data that is stored inter­
nally in character format. The number of characters transmitted under
the A format code depends on the length of the corresponding variable in
the I/O list, i.e., four for integer and real, and eight for double
precision. Each alphabetic or special character is given a unique
internal code. Numeric data is converted digit by digit into internal
format, rather than the entire numeric field being converted into a
single binary number. Thus, the A format code can be used for numeric
fields, but not for numeric fields requiring arithmetic.

Input: The maximum number of characters stored ih internal storage
depends on the length of the variable in the I/O list.. If the number of
characters of data in the field (w) is greater than the length of the
variable <y>, then~ minus y characters are skipped from the left before
the remaining input characters are read and stored in the variable. If
w is less than v, then w characters from the field in the input card are
read and the remaining rightmost characters in the variable are filled
with blanks.

Output: If w is greater than the length of the variable in the I/O list
(assume the length is yl, then the printed field will contain y charac­
ters right-justified in the field,, preceded by leading blanks. If ~ is
less than v, the leftmost w characters from the variable will be printed
and the rest of the data will be truncated. .

Example 1: Assume that B has been specified as double precision., that N
and M are integers., and that the following statements are given:

25 FORMAT (3A7)

READ (1, 25) B,, N, M

When the READ statement is executed,, one input card is read from the
data set associated with data set reference number 1 into the variables
B, N,, and M in the format specified by FORMAT statement number 25. The
following list shows the values stored for the given input cards
OS represents a blank).

Input Card

ABCDEFG46~AT~11234567

HIJKLMN76543213334445

B

ABCDEFG~

HIJKLMN~

N M

AT~l 4567

4321 4445

Input/Output Statements 41

Example 2: Assume that A and B are real variables, that c is a double­
precision variable, and that the following statements are given:

26 FORMAT (• JS' ., A6 , AS , A6)

WRITE (3,26) A,B,C

When the WRITE statement is executedr, one line is written on the data
set associated with data set reference number 3 from the variables A, B,
and c in the format specified by FORMAT statement 26. The following
list shows the printed output for values of A1, B, and C (l) represents a
blank):

A B c Printed Line

A1B2 C3D4 E5F6G7H8 ~MA1B216c3D4E5F6G7

H Format Code and Literal Data

Literal data can appear in a FORMAT statement in one of two ways: it
can be enclosed in apostrophes or it can follow the H format code. For
example,, the following FORMAT statements are equivalent:

25 FORMAT (' 1969 INVENTORY REPORT')

25 FORMAT C22H 1969 INVENTORY REPORT)

No item in the I/O list corresponds to the literal data. The data is
read or written directly into or from the FOR.IV.AT statement. (ThA FORMAT
statement can contain other types of format codes with corresponding
variables in the I/O list.)

Input: Ihformation is read from the input card and replaces the literal
data in the FOrut.iAT statement. If the H format code is used, ~ charac­
ters are read. If apostrophes are used,, as many characters as there a.re
spaces between the apostrophes are read. For example, the following
statements:

8 FORMAT (' HEADINGS')

(1,8)

cause the first nine characters of the next record to be read from the
data set associated with data set reference number 1 into the FORMAT
statement 8, replacing the blank and the eight characters H, E, A, D, I,
N, G, and s,.

Output: The literal data from the FOR~.AT statement is written on the
output data set. If the H format code is used, the !! characters follow­
ing the H are written. If apostrophes are used, the characters enclosed
in apostrophes are written. For example, the following statements:

8 FORMAT C14HOMEAN AVERAGE:, F8.4)

WRITE (3, 8) AVRGE

cause the following record to be written if the value of AVRGE is
12.3456:

MEAN AVERAGE: 12.3456

42

Note: If the literal data is enclosed in apostrophes, an apostrophe
character in the data is represented by two successive apostrophes. For
example, DON'T is represented as DON''T ..

X Fqrmat Code

The X format code specifies a field of w characters to be skipped on
input or filled with blanks on output.. For example, the following
statements:

5 FORMAT (!10 ,10X,, 4110)

READ (1,5) I,J,K,L,M

cause the first ten characters of the input card to be read into vari­
able I, the next ten characters to be skipped over without transmission,
and the next four fields of ten characters each to be read into the
variables J, K,, L,, and M.

T Format Code

The T format code specifies the position in the FORTRAN record where
the transfer of da~a is to begin. (Note that for printed output, the
first character of the output data record is used for carriage control
and is not printed. Thus,, if TSO,• Z' is specified in a FORMAT state­
ment,, a Z will be the SOth character of the output record, but it will
appear in the 49th print position.) For example, the following
statements:

5 FORMAT (T40,, '1969 INVENTORY REPORT' ,,TSO,

X' DECEMBER'., T1, OPART NO. 10095')

WRITE (31, 5)

cause the following line to be printed:

Print Print Print
Position 1 Position 39 Position 79
I I I
v v v
PART NO. 10095 1969 INVENTORY REPORT DECEMBER

The T format code can be used in a FORMAT statement with any type of
format code,, as with FORMAT ('0',T40 1,IS).

Input/Output Statements 43

Group Format Specification

The group format specification is used to repeat a set of format
codes and to control the order in which the format codes are used.

The group repeat count ~ is the same as the repeat indicator a which
can be placed in front of other format codes. For example, the follow­
ing statements are equivalent:

10 FORMAT (I3,2(I4,I5),I6)

10 FORMAT (I3, <I4,I5,I4,I5),I6)

Group repeat specifications control the order in which format codes
are used since control returns to the last group repeat specification
when there are more items in the I/O list than there are format codes in
the FORMAT statement (see "Various Forms of a FORr.'.!AT Statement").. Thus,
in the previous example, if there were more than six items in the I/O
list,, control would return to the group repeat count 2 which precedes
the specification CI4,I5).

If the group repeat count is omitted, a count of 1 is assumed. For
example, the statements:

15 FORMAT CI3, (F6 .• 2,010. 3))

READ Cl,15) N,A,B,C,D,E

cause values to be read from the first record for N, A,, and B, according
to the format codes I3, F6. 2, and 010 .• 3, respectively. Then, because
the I/O list is not exhausted, control returns to the last group repeat
specification, the next record is read, and values are transmitted to c
and D according to the format codes F6.2 and DlO. 3, respectively.. Since
the I/O list is still not exhausted, another record is read and a value
is transmitted to E according to the format code F6.2 -- the format code
010 .. 3 is not used .•

The format codes within the group repeat specification can be
separated by commas and slashes,. For example, the following statement
is valid:

40 FORMAT (2I3/(3F6.2,,F6.3/D10.3,3D10.2))

The first record is transmitted according to the specification 2I3,
the second,, fourth,, etc. , records are transrni tted according to the
specification 3F6.2., F6.3, and the third1, fifth, etc., records are
transmitted according to the specification 010.3, 3010.2, until the I/O
list is exhausted.

END FILE STATEMENT

.---,
I Gene~al Form I
~--1
I END FILE ~ I
I I
I Where: ~ is an unsigned integer constant or integer variable that I
I represents a data set ref ere nee number.. I ._ ___ J

The END FILE statement defines the end of the data set associated
with~-

44

REWIND STATEMENT

r--1 I General Form I
1--~ I REWIND ~ I
I I
I Where: ~ is an unsigned integer constant or integer variable that I
I represents a data set reference number. I ,l,_ ___ J

Tne REWIND statement causes a subsequent READ or WRITE statement re-
f erring to ~ to read data from or write data into the first record of the
data set associated with ~-

BACKSPACE STATEMENT

r--1 I General Form I
~--~ I BACKSPACE ~ I
I I
I Where: ~ is an unsigned inte9er constant or integer variable that I
I represents a data set reference number. I L--------------------------------·-· _____________________________ J

The BACKSPACE statement causes the data set associated with a to
backspace one record. If the data set associated with ~ is already at
its beginning1, execution of thrs statement has no effect. For further
information,, see the Basic FORTRAN IV programmer• s guides listed in the
Preface.

DIRECT ACCESS INPUT/OUTPUT S.TATEMENTS

There are four direct access input/output statements1 : READ, WRITE,
DEFINE FILE., and FIND. The READ and WRITE statements cause transfer of
data into or out of internal storage.. These statements allow the user
to specify the location within a data set from which data is to be read
or into which data is to be written .•

The DEFINE FILE statement specifies the characteristics of the data
set(s) to be used during a .direct access operation. The FIND statement
overlaps record retrieval from a direct access device with computation
in the program. In addition to these four statements 1, the FORMAT
statement (described previously) specifies the form in which data is to
be transmitted,. The direct access READ and WRITE statements and the
FIND statement are the only input/output statements that may refer to a
data set reference number defined by a DEFINE FILE statement.

1 The direct access input/output statements are not available in Basic
Programming support Basic FORTRAN IV. They may be compiled but not
executed by Tape Operating system Basic FORTRAN IV.

Input/Output Statements 45

Each record in a direct access data set has a unique record number
associated with it. The programmer must specif.y in the READ, WRITE, and
FIND statements not only the data set reference number., as for sequen­
tial input/output statements, but also the number of the record to be
read,, written,, or found.. Specifying the record number permits opera­
tions to be performed on selected records of the ~ata set, instead of on
records in their sequential order.

The number of the record physically following the one just processed
is made available to the program in an integer variable known as the
associated variable. Thus,, if the associated variable is used in a READ
or WRITE statement to specify the record nwnberr, sequential processing
is automatically secured.. The associated variable is specified in the
DEFINE FILE statement

1
, which also gives the number, size., and type of

the records in the direct access data set.

46

DEFINE FILE STATEMENT

The DEFINE FILE statement describes the characteristics of any data
set to be used during a direct access input/output operation. To use
the direct access READ,, WRITE,, and FIND statements in a program" the
data set(s) must·be described with a DEFINE FILE statement. Each data
set must be described once 1, and this description may appear once in each
program or subprogram. Subsequent descriptions have no effect.

The DEFINE FILE statement must logically precede <i.e. 1• must be
•executed• prior to) any input/output statement referring to the data
set described in the DEFINE FILE statement.

r-------------- ---, I General Form I
1---·-------------------~

DEFINE FILE ~ (~, !'.~, f~, ~) ,, ~:a (!!!2,• !'.2, f21• Y2) ,, • • • ,, ~ (illn, !:n, !_n1, Yn)

Where: ~ represents an integer constant that is the data set
reference number .•

~ represents an integer constant that specifies the number
of records in the data set associated with a .•

_!: represents an integer constant that specifies the maximum
size of each record associated with a,. The record size is
measured in characters (bytes) 1• storage locations (bytes) r•
or storage units (words). (A storage unit is the number of
storage locations divided by four and rounded to the next
highest integer .• > The method used to measure the record
size depends upon the specification for f ·

f specifies that the data set is to be read or written
either with or without format control: f may be one of the
following letters:

L indicates that the data set is to be read or written
either with or without format control,. The maximum record
size is measured in number of storage locations (bytes).

E indicates that the data set is to be read or written
under format control (as specified by a FORMAT statement).
The maximum record size is measured in number of
characters (bytes) .•

U indicates that the data set is to be read or written
without format control.. The maximum record size is mea­
sured in numbe~ of storage units <words).

y represents a nonsubscripted integer variable called an
associated variable.. At the conclusion of each READ or
WRITE operation, y is set to a value that indicates the
storage location of the record that immediately follows the
last.record transmitted. At the conclusion of a FIND opera­
tion" y is set to a value that indicates the storage loca­
tion of the record found • ._ ___ __

The associated variable cannot appear in the I/O list of a READ or
WRITE statement for a data set associated with the DEFINE FILE
statement.

Input/Output Statements 47

Examples:

This DEFINE FILE statement describes two data sets, referred to by
data set reference numbers 8 and 9.. The data in the first data set con­
sists of 50 records, each with a maximum length of 100 storage loca­
tions,. The L specifies that the data is to be transmitted either with
or without format control.. I2 is the associated variable that serves as
a pointer to the next record.

The data in the second data set consists of 100 records,, each with a
maximum length of 50 storage locations. The L specifies that the data
is to be transmitted either with or without format control.. J3 is the
associated variable that serves as a pointer to the next record .•

If an E is substituted for each L in the preceding DEFINE FILE state­
ment;, a FORMAT statement is required and the data is transmitted under
format control. If the data is to be transmitted without format con­
trol1, the DEFINE FILE statement can be written as:

DEFINE FILE 8 csot' 25t'U1e-I2) t' 9(100~13.eoU . .eoJ3)

DIRECT ACCESS PROGRAMMING CONSIDERATIONS

When programming for direct access input/output operations1, the user
must establish a correspondence between FORTRAN records and the records
described by the DEFINE FILE statement. All of the conventions of
FORMAT control discussed in the section •FORMAT Statement" are
applicable .•

For example, to process the data set described by the statement:

DEFINE FILE 8 (10,48,,L,,KS)

the FORMAT statement used to control the reading or writing could not
specify a record longer than 48 characters. The statements:

FORMAT(4F12.1)
or

FORMAT (1121, 9F4. 2)

define a FORTRAN record that corresponds to those records described by
the DEFINE FILE statement. The records can also be transmitted under
FORMAT control by substituting an E for the L and rewriting the DEFINE
FILE statement as:

DEFINE FILE 8 (10, 48,,E1,K8)

To process a direct access data set without format control, the
number of storage locations specified for each record must be greater
than or equal to the maximum number of storage locations in a record to
be written by any WRITE statement referencing the data set. For
example, if the I/O list of the WRITE statement specifies transmission
of the contents of 100 storage locations,, the DEFlNE FILE statement can
be either:

48

DEFINE FILE 8 (50.,100,,L1,K8)
or

DEFINE F.ILE 8 C50,,2511 U,,K8)

Programs may share an associated variable only as a COMMON variable.
The following example shows how this can be accomplished .•

COMMON IUAR
DEFINE FILE 8(100,10,L,IUAR)

I TEMP= I UAR
CALL SUBI(ANS,ARG)

8 IF (IUAR-ITEMP) 20,16,,20

SUBROUTINE SUBI(A,B)
COMMON IUAR

In this example, the program and the subprogram share the associated
variable !UAR.. An input/output operation that refers to data associated
with data set reference number 8 and is performed in the subroutine
causes the value of the associated variable to be changed. The asso­
ciated variable is then tested in the main program in statement 8.

READ STATEMENT

The READ statement causes data to be transferred from a direct access
device into internal storage. The data set being read must be defined
with a DEFINE FILE statement.

r--·--------------------------1
I General Form I
t--~-----------~

READ (~'!:_,Q) list I

Where: a is an unsigned integer constant or integer variable that
represents a data set reference number; ~ must be followed
by an apostrophe ('').

r is an integer expression that represents the relative
position of a record within the data set associated with a.

b is optional and, if given., is the statement number of the
FORMAT statement that describes the data being read.

I
I
I
I
I
l
I
I
I
I
I
I

list is optional and is an I/O list. I L,_ __ J

The I/O list must not contain the associated variable defined in the
DEFINE FILE statement for data set a.

Input/Output Statements 49

Example:

DEFINE FILE 8(500,,100,,L1,ID1), 9(100.,28,L,ID2)
DIMENSION M(10)

ID2 = 21

10 FORMAT (5120)
9 READ (8'16,10) (M(K) ,,K=l,,10)

13 READ (9' ID2+5) A, B,, C,D,E.,F I G

READ statement 9 transmits data from the data set associated with
data set reference number 8, under control of FORMAT statement 10;
transmission begins with record 16. Ten data items of 20 charac~ers
each are read as specified by the I/O list and FORMAT statement 10. Two
records are read to satisfy the I/O list, because each record contains
only five data items (100 characters),. The associated variable ID1 is
set to a value of 18 at the conclusion of the operation.

READ statement 13 transmits data from the data set associated with
data set reference number 9., without format control; transmission begins
with record 26. Data is read until the I/O list for statement 13 is
satisfied. Because the DEFINE FILE statement for data set 9 specified
the record length as 28 storage locations, the I/O list of statement 13
calls for the same amount of data (the seven variables are type real and
each occupies four storage locations),. The associated variable ID2 is
set to a value of 27 at the conclusion of the operation.. If the value
of ID2 is unchanged, the next execution of statement 13 reads record 32.

The DEFINE FILE statement in the previous example can also be written
as:

DEFINE FILE 8(500,100,E,ID1),9(100,7,U#ID2)

The FORMAT statement may also control the point at which reading
starts. For example, if statement 10 in the example was:

10 FORMAT (//5120)

records 16 and 17 are skipped, record 18 is read, records 19 and 20 are
skipped, record 21 is read, and IDl is set to a value of 22 at the con­
clusion of the READ operation in statement 9.

50

WRITE STATEMENT

The WRITE statement causes data to be transferred from internal
storage to a direct access device. The data set being written must be
defined with a DEFINE FILE statement •

.--,
I General Form I
t------·--~
I WRITE Ca'r.,b) list I --- -
I Where: ~ is an unsigned integer constant or integer variable that

represents a data set reference number; ~ must be followed
by an apostrophe (').

I
I
I
I
I
I
I
I
I

~ is an integer expression that represents the relative
position of a record within the data set associated with a.

Q is optional and, if given, is the statement number of the
FORMAT statement that describes the data being written.

I list is optional and is an I/O list.
'---------·---l
Example:

DEFINE FILE 8 csoo,100.L.ID1)9(100,28,L,ID2)
DIMENSION M{10)

ID2=21

10 FORMAT (5I20)
8 WRITE (8'16,,10) (M(K) ,K=l,,10)

11 WRITE (9'ID2+5) A1,B,C,D,K,F,G

WRITE statement 8 transmits data into the data set associated with
the data set reference number 8, under control of FORMAT statement 10;
transmission begins with record 16. Ten data items of 20 characters
each are written as specified by the I/O list and FOIW.tAT statement 10.
Two records are written to satisfy the I/O list because each record con­
tains five data items (100 characters),. The associated variable IDl is
set to a value of 18 at the conclusion of the operation .•

WRITE statement 11 transmits data into the data set associated with
data set reference number 91, without format control; transmission begins
with record 26. The contents of 28 storage locations are written as
specified by the I/O list for statement 11. The associated variable ID2
is set to a value of 27 at the conclusion of the operation. Note the
correspondence between the records described (28 storage locations per
record) and the number of items called for by the I/O list (seven
variables, type real, each occupying four storage locations),.

The DEFINE FILE statement in the previous example can also be written
as:

DEFINE FILE 8(500,100,E,,IDl), 9(100,, 7,U1,ID2)

As with the READ statement:, a FORMAT statement also may be used to
control the point at which writing begins,.

Input/Output Statements 51

FIND STATEMENT

The FIND statement causes the next input record to be found while the
present record is being processed, thereby increasing the execution
speed of the object program. The program has no access to the record
that was found until a READ statement for that record is executed.

There is no advantage to a FIND statement preceding a WRITE state­
ment. If a WRITE statement for a record is executed between the time a
FIND statement and a READ statement are executed for that record, the
effect of the FIND statement is nullified •

.-------------------~---,
I General Form I
~--~--~
I FIND (~'E) I
I I
I Where: ~ is an unsigned integer constant or integer variable that· I
I represents a data set reference number; a must be followed I
I by an apostrophe (' l . - I
I I
I E is an integer expression that represents the relative I
I position of a record within the data set associated with ~· I ._ ___ J

The data set on which the record is being found must be defined with
a DEFINE FILE statement.

Example:

10 FIND cs•so>

15 READ (8'50) A,B

I While the statements between statements 10 and 15 are executed,
record 50 in the data set associated with data set reference number 8 is
found. If a WRITE statement refers to this record between the issuing
of the FIND statement and the READ statement,, the FIND operation is
nullified.

52

General Examples -- Direct Access Operations

Example 1:

DEFINE FILE 8(1000, 72.,L.,ID8)
DIMENSION A(100),B(100),C(100),D(100),E(100),F<100)

15 FORM.AT (6F12.4)
FIND (8'5)

ID8=1
DO 100 I=1,100
READ (8'ID8+4,15)A(I) ,B(I) ,C(I) ,D(I) ,E(I) ,F(I)

100 CONTINUE

DO 200 I=l,100
WRITE (8'ID8+4,,15)A(I) ,B(I),,C(I).,D(I) ,E(I) ,F(I)

200 CONTINUE

END

Explanation:

Example 1 illustrates the ability of direct access statements to
gather and disperse data in an order designated by th~ user.. The first
DO loop in the example fills arrays A through F with·data .from the 5th,
10th, 15th, ••.• , and SOOth record associated with data set reference
number 8. Array A receives the first value in every fifth record., B the
second value, and so on, as specified by FOR.1"AT statement 15_ and the I/O
list of the READ statement. At the end of the READ operation, each
record has been dispersed ipto arrays A through F. At the conclusion of
the first DO loop, IDS has ~\value of 501·.

The second DO loop in the example groups the data items from each
array• as specified by the I-/0 list of the WRITE statement and FOR.rvlAT
statement 15.. Each group of data items is placed in the data set asso­
ciated with data set reference number 8. Writing begins at.the 505th
record and continues at intervals of five., until record 1000 is written,
if IDS is not changed between the last READ and the first WRITE
statement.

Input/Output Statements 53

Example 2:

C MAIN PROGRAM
COMMON I

1 READ (1,2) I
2 FORMAT (I4)

I=IABS(I)
IF (I) 10,20,,10

10 CALL SUBl (A)
GO TO 70

20 CALL SUB2 (A)
70 CONTINUE

WRITE (9'I+1 1,100) X,Y,,Z
100 FORMAT C3F10.3)

END

Explanation:

SUBROUTINE SUB1 (AA)
COMMON J
DEFINE FILE 9(100,100,,E~J)

RETURN
END

SUBROUTINE SUB2 (BB)
COMMON K
DEFINE FILE 9(125,80,L,K)

RETURN
END

Example 2 illustrates the use of two different DEFINE FILE statements
to describe the characteristics of the data set associated with data set
reference number 9. If SUB1 is called, the data set contains 100 reco­
rds,, each with a maximum length of 100 characters; the data is to be
transmitted under format control., and the associated variable is J.. If
SUB2 is called, the data set contains 125 records, each with a maximum
length of SO storage locations; the data is to be transmitted either
with or without format control, and tb~; associated variable is K.
Because the associated variables are in COMMON with I, the information
is shared by the main program and the two subroutines.

54

SPECIFICATION STATEMENTS

The specification statements provide the compiler with information
about the nature of the data used in the source program. In addition,
they supply the information required to allocate locations in storage
for this data.

Specification statements must precede statement function definitions,
which must precede that part of the program containing at least one
executable statement. Specification statements describing data must
precede any statements that refer to that data,. For example, if an e1e­
ment of an array is to be made equivalent to a variable, the specifica­
tion statement that declares the size of the array Ce. g .• , a DIMENSION
statement) must precede the EQUIVALENCE statement.

The specification statement EXTERNAL is described in the chapter
"Subprograms.tt

DIMENSION STATEMENT

r--------------------------------------~------------------------------1
I General. Form I
~--~
I DI MENS I ON ~1 C kj_) • ~2 (k2) r• ~3 C ka) '' • • • 1 ~n C ~n) I
I I
I I
I Where: .2.j_, ~2 , .2.3 ,, ••• ,, .2.n are array names. I
I I
I I
I ~1k21ka,, .• , •• ,,kn are each composed of one through three I
I unsigned integer constants, separated by commas, represent- I
I ing the maximum value of each subscript in the array. I
1---J

The information necessary to allocate storage for arrays used in the
source program may be provided by the DIMENSION statement. The follow­
ing examples illustrate how this information may be declared .•

Examples:

DIMENSION A (10),, ARRAY (5,5,5}, LIST {10,100}

DIMENSION B{25,50),TABLE(S,8,4)

Specification Statements 55

EXPLICIT SPECIFICATION STATEMENTS

r--1
I General Form I
,1--~
~ ~<~1> ,~<~2),, .• , •.• ,~<~n>

Where: ~ is INTEGER, REAL 1, or DOUBLE PRECISION.

~.~, .••• ,~ are variable,, array, or function names (see the
chapter "Subprograms")

(~1), (~2), ••.• , <~n> are optional and give dimension informa­
tion for arrays. Each ~ is composed of one through three
unsigned integer constants,, separated by commas, represent­
ing the maximum value of each subscript in the array.

The explicit specification statements declare the ~ (INTEGER,
REAL,, or DOUBLE PRECISION) of a particular variable or array by its
name.i rather than by its initial character. This differs from the other
method of specifying the type of a variable or array <i .• e .• 1r predefined
convention),. In addition, the information necessary to allocate storage
for arrays (dimension information) may be included within the statement.
However, if this information does not appear in an explicit specifica­
tion statement, it must appear in a pre.ceding DIMENSION or COMMON state­
ment (see "DIMENSION Statement" or "COMMON Statement").

Example 1:

INTEGER DEV,SMALL

Explanation:

This statement declares the type of the variables DEV and SMALL as
integer and, thus,, overrides the implied declaration made by the prede­
fined convention.

Example 2:

REAL ITA,,JOB,,MATRIX (5, 2,, 6)

Explanation:

This statement declares the type of the array MATRIX and variables
ITA and JOB as real,. In addition, it declares the size (dimension) of
the array MATRIX. This statement overrides the implied declaration made
by the predefined convention.

Example 3:

DOUBLE PRECISION DOUB,, TWIN

Explanation:

This statement declares the type of the variables DOUB and TWIN as
double precision..

56

COMMON STATEMENT

.--,
I General Form I
1--~
I COMMON ~ <~1> ,Q<~2> ,,_£ (~3) 1•·· .•.• ·~ (~) I
I I
I Where: ~· .Q, .£, , ••• , ~ are variable or array names.. I
I I
I ~1 ,~2 .,~3 , •••• ~n are optional and are each composed of one I
I through three unsigned integer constants, separated by com- I
I mas, representing the maximum value of each subscript in the I
I array. I
L--J

The COMMON statement is used to define a storage area that can be
ref erred to by a calling program and one or more subprograms and to
specify the names of variables and arrays to be placed in this area.
Therefore, variables or arrays that appear in a calling program or sub­
program can be made to share the same storage lo'cations with variables
or arrays in other subprograms. Also, a common area can be used to
implicitly transfer arguments between a calling program and a subpro­
gram. Arguments passed in common are subject to the same rules with
regard to type, length, etc •. , as arguments passed in an argument list
(see the chapter "Subprograms").

If more than one COMMON statement appears in a calling program or
subprogram, the entries in the statements are cumulative. Redundant
entries are not permitted.

The COMMON statement can be used to provide dimension information for
an array if the array name first appears in the COMMON statement. If
the array has appeared first in an explicit specification·statement, the
array cannot be dimensioned in the COMMON statement.

The length of a conunon area can be increased by using an EQUIVALENCE
statement (see "EQUIVALENCE Statement">.

Since the entries in common share storage locations,, the order in
which they are enter'=d is significant.. Consider the following examples:

Example 1:

Calling Program

COMMON A, B, C, R(100)
REAL A,B,C
INTEGER R

CALL MAPMY (•••)

Subprogram

SUBROUTINE MAPMY (•••)

~COMMON X, Y, Z, S(100)
REAL X, Y,, Z
INTEGER S

Specification statements 57

Explanation:

In the calling program, the statement COMMON A,B,C,,R(100) would cause
412 storage locations (four locations per variable) to be reserved in
the following order:

Beginning of common arear-----~---------------1
I A I
~---------------------~
I B I
~--------------~-----~
I c I
r---------------------~
I R(l) I
I R(2) I
I I
I I
I I
I R(100) I
L---------------------J
t 4 storage locations t

The stat.ern.ent CO.Lv"JMON X, Y, Z, s (100j would then cause the variables
X, Y, Z,, and S(l) •.•• S(100) to share the same storage space as A, B, c,
and R(l) ••• R(lOO>, respectively. Note that values for X, Y, Z, and 8(1)
••• 8(100), because they occupy the same storage locations as A, B, C 1

and R(1) ••• R(100), do not have to be transmitted in the argument list of
a CALL statement.

Example 2:

Assume common is defined in a main program and in three subprograms
as follows:

Main program:

Subprogram 1:

Subprogram 2:
Subprogram 3:

COMMON

COMMON

COMMON
COMMON

A,B,C, (A and B are 8 storage locations,
c is 4 storage locations)

D,E,F (D and E are 8 storage locations,
F is 4 storage locations)

Q~R,S,T,U (4 storage locations each)
V,W,X,Y,Z (4 storage locations each)

The correspondence of these variables within common can be illustrated
as follows:

Main Program

COMMON A,B,C
.---------,
I I
J - - A - -(
I I
~----------~
I I
t - - B - -I
I I
t---------~
I c I
L----------J

4 storage
locations

58

Subprogram 1

COMMON D,E,F
r----------,
I I

<---> I- - -D - -f
I I
~----------~
I I

<---> I- - -E - -I
I I
~----------~

<---> I F I
L----------J

4 storage
locations

Subprogram 2 Subprogram 3

COMMON Q,R,S,T,U COMMON V,W,X,Y,Z

<---->

r----------,
I Q I
r----------~
I R I
~----------~
I s I
r----------~
I T I
~----------~
I u I
L----------J

4 storage
locations

<---->

<---->

<---->

<---->

<---->

r----------,
I v I
1c----------1
I w I
t----------~
I x I
r----------i
I Y I
t----------~
I z I
L----------J
4 storage
locations

In this case, the variables A,B,C arid D,E,F may be validly referred to
in their respective programs, as may Q,R,S,T,U and v,w~x,Y,Z. In addi­
tion, subprogram 1 may implicitly refer to c, u, and z by explicitly
referring to F.

ARRANGEMENT OF VARIABLES IN COMMON

Variables in a common block need not be aligned properly. However,
considerable object-time efficiency is lost unless the programmer
ensures that all of the variables have proper boundary alignment.

Proper alignment is achieved either by arranging the variables in a
fixed descending order according to length, or by constructing the block
so that dummy variables force proper alignment. If the fixed order is
used, the variables must appear in the following order:

double precision
real or integer

<length of 8)
(length of 4)

If the fixed order is not used, proper alignment can be ensured by
constructing the block so that the displacement of each variable can be
evenly divided by its length. The first variable is positioned as
though its length specification were eight. Therefore., a variable of
any length can be the first assigned.. To obtain the proper alignment
for other variables, it may be necessary to insert a dummy variable.
For example, if the variables I, A, and D are integer, real, and double
precision, respectively, and form a comrnon block that is defined as:

COMMON I I A,, D

then the displacement of these variables within common is illustrated as
follows:

l<------I------->l<-------A-------->l<----------------D--------------->I
I I I I
I 4 storage I 4 storage I 8 storage I
I locations I locations I locations I
I I I I
v v v I
displacement displacement displacement
0 storage 4 storage 8 storage
locations locations locations

The displacements of A and D are evenly divisible by their length.
However if A were omitted, the displacement of D would not be evenly
divisible by its length. In this case, proper alignment is ensured by
inserting a dummy variable with a length of four between I and D.

Specification Statements 59

EQUIVALENCE Statement

r---------------~------------------------------------~----------------,
I General Form I
1--~
I EQUIVALENCE (!!'r Q, Q,, • • •) , (Qr~' f 1 • • ,.) I
I I
I Where: !! 1 Q,.£,S!,,~,f, •• ,. are variables (not dummy arguments) that I
I may be subscripted. The subscripts may have two forms. If I
I the variable is singly-subscripted, it refers to the posi- I
I tion of the variable in the array (i.e., first variable,, I
I 25th variable, etc). If the variable is multi-subscripted, I
I it refers to the position in the array in the same fashion I
I as the position is referred to in an arithmetic statement. I
L---~---------------------J

The EQUIVALENCE statement provides the option for controlling the
allocation of data storage within a single program unit. In particular.,
when the logic of the program permits, the number of storage locations
used can be reduced by causing locations to be shared by two or more

I variables of the same or different types. Equivalence between variables
I implies storage sharing only, not mathematical equivalence.

Since arrays are stored in a predetermined order <see "Arrangement of
Arrays in Storage")., equivalencing two elements of two different arrays
may implicitly equivalence other elements of the two arrays. The
EQUIVALENCE statement must not contradict itself or any previously
established equivalences,.

Two variables in one common block or in two different common blocks
cannot be made equivalent. However, a variable in a program or a sub­
program can be made equivalent to a variable in a common block. If the
variable that is equivalenced to a variable in the conunon block is an
element of an array, the implicit equivalencing of the remaining ele­
ments of the array may extend the size of the conunon block (see example
2) .• The size of the common block must not be extended so that elements
are added before the beginning of the established common block.

Example 1:

Assume that in the initial part of a program,, an array., c, of size
100 x 100 is needed; in the final stages of the program c is no longer
used, but arrays A and B of sizes 50 x 50 and 100, respectively, are
used,. The elements of all three arrays are of the type real. Storage
space can then be saved by using the statements:

DIMENSION C(l00,100):, A(50 1,50), B(100)
EQUIVALENCE (C(1),A(1))., (C(2501) 1,B(l))

Array A, which has 2500 elements, can occupy the same storage as the
first 2500 elements of array c since the arrays are not both needed at
the same time. Similarly" array· B can be made to share storage with
elements 2501 to 2600 of array c.

Example 2:

DIMENSION B(5), C(10,, 10), D(S,, 10, 15)
EQUIVALENCE (A,, B(l), C(5,3))1, (D(S.,10,2), E)

This EQUIVALENCE statement specifies that the variables A,, B (1), and
C (5,, 3) are assiqned the same storage locations and that variables D (5,
10,, 2) and E are assigned the same storage locations,. It also implies
that B(2) and CC6,3),, etc .. ,, are assigned the same storage locations.

60

Note that further equivalence specification of B(2) with any element of
array c other than C(6,3) is invalid.

The designations C(5,3) and 0(5.,10,2) could have been replaced with
the designations C(25) and 0(100) and the effect would have been the
same.

Example 3:
I

COMMQN A, B,, C
DIMENSION 0 (3)
EQUIVALENCE (B,0(1))

Explanation:

This would cause a common area to be established containing the vari­
ables A, B,, and c. The EQUIVALENCE statement would then ca use the vari­
able 0(1) to share the same storage location as B, 0(2) to share the
same storage location as c, and D(3) to extend the size of the common
area, in the following manner:

A <lowest location of the common area)
B, 0 (1)
c, 0(2)

DC3) (highest location of the common area)

The following EQUIVALENCE statement is invalid:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B, D(3))

because it would force D(l) to precede A, as follows:

D(l)
A, D (2)
B,, D (3)
c

(lowest location of the common area)

(highest location of the common area)

STORAGE ARRANGEMENT OF VARIABLES IN EQUIVALENCE GROUPS

Variables in an equivalence group may be in any order in main
storage,. However, considerable object-time efficiency is lost unless
the programmer ensures that all of the variables have proper boundary
alignment, as in the COMMON statement.

Proper alignment is achieved either by arranging the variables in a
fixed, descending order according to length or by constructing the group
so that dummy variables force proper alignment. If the fixed order is
used., the variables must appear in the following order:

length of 8 (double precision)
length of 4 Creal or integer)

If the fixed order is not used, proper alignment can be ensured by
constructing the group so that the displacement of each variable in the
group can be evenly divided by the length of the variable. (Displace­
ment is the number of storage locations Cbytes) from the beginning of
the group to the first storage location of the variable.) The first
variable in each group is positioned as if its length specification were
8.

Specification Statements 61

For example,, the variables A, I,, and DBLEP are real, integer,, and
double precision, respectively, and are defined as:

DIMENSION A(10) ,, I (16) ,, DBLEP (5)
EQUIVALENCE (A (1) , I (7) , DBLEP (1))

Then,, the displacement of these variables within the group is illus­
trated as follows:

!(1)<----------T------------------64 storage locations~------>IC16)
1

v
displacement
0 storage
locations

I A(1)<------------40 storage locations-------->A<lO)
I
I DBLEP(ll<--------40 storage locations----->DBLEP(5)
I
v
displacement
24 storage
locations

The displacements of A and DBLEP are evenly divisible by their lengths.
However, if the EQUIVALENCE statement were written as

EQUIVALENCE (A(l), I(6), DBLEP(l))

then DBLEP is improperly aligned <its displacement of 20 is not
evenly divisible by its length of 8).

Note that this discussion applies solely to the manner in which the
equivalence group is arranged in storage. This arrangement is not
affected by the order in which the variable and array names are listed
in the EQUIVALENCE statement. For example, the EQUIVALENCE statement
(A(l) ,I (7) ,DBLEP(l)) has exactly the same effect a.s
EQUIVALENCE (DBLEP(1),A(1),I(7)).

62

SUBPROGRAMS

It is sometimes desirable to write a program which, at various
points, requires the same computation to be performed with different
data for each calculation. It would simplify the writing of that pro­
gram if the statements required to perform the desired computation could
be written only once and. then could be ref erred to freely,, with each
subsequent reference having the same effect as though these instructions
were written at the point in the program where the reference was made.

For example, to take the cube root of a number, a program must be
written with this object in mind. If a general program were written to
take the cube root of any number, it would be desirable to be able to
combine that program Cor subprogram) with other programs where cube root
calculations are required.

The FORTRAN language provides for the above situation through the use
of subprograms.. There are two classes of subprograms: FUNCTION subpro­
grams and SUBROUTINE subprograms. In addition, there is a group of
FORTRAN-supplied subprograms C see Appendix C) .• FUNCTION subprograms
differ from SUBROUTINE subprograms in that FUNCTION subprograms return
at least one value to the calling program,, whereas SUBROUTINE subpro­
grams need not return any.

Statement functions are also discussed in this chapter since they are
similar to FUNCTION subprograms. The difference is: subprograms are a
different program unit from the program unit referring to them, while
statement function definitions and references are in the same program
unit.

NAMING SUBPROGRAMS

A subprogram name consists of from one through six alphameric charac­
ters,, the first of which must be alphabetic. A subprogram name may not
be a variable name and may not contain special characters other than
blanks (see Appendix A).. Blanks embedded in a subprogram name are
ignored. The type of a function determines the type of the result that
can be returned from it.

1. Type Declaration of a Statement Function: such declaration may be
accomplished in one of two ways: by the predefined convention or
by the explicit specification statements. Thus,, the rules for
declaring the type of variables apply to statement functions.

/
2. Type Declaration of FUNCTION Subprograms: The declaration can be

made by the predefined convention,, by an explicit specification in
the FUNCTION statement, or by an explicit specification statement
within the FUNCTION subprogram.

The type of a SUBROUTINE subprogram cannot be defined because the.
results that are returned to the calling program are dependent only on
the type of the variable names appearing in the argument list of the
calling program and/or the implicit arguments in common.

Subprograms 63

FUNCTIONS

A function is a statement of the relationship between a number of
variables. In order to use a function in FORTRAN, it is necessary to:

1. Define the function (i.e., specify what calculations are to be
performed).

2.. Refer to the function by name where required in the program•

Function Definition

There are three steps in the definition of a function in FORTRA..N:

1. The function must be assigned a unique name by which it may be
called Csee the section "Naming Subprograms") .•

2.. The dummy arguments of the function must be stated .•

3. The procedure for evaluating the function must be stated.

Items 2 and 3 are discussed in detail in the sections dealing with
the specific subprogram (for example, "Statement Functions," "FUNCTION
Subprograms," etc .•).

Function Reference

When the name of a function, followed by a list of its arguments,
appears in any FORTRAN expression, it references the function and causes
the computations to be performed as indicated by the function def ini­
tion. The resulting quantity replaces the function reference in the
expression and assumes the type of the function. The type of the name
used for the reference must agree with the type of the name used in the
definition.

STATEMENT FUNCTIONS

A statement function definition specifies operations to be performed
whenever that statemen~ function name appears as a function reference in
another statement in the same program .•

r--~,
I General Form I
1--------------------------------------~-----------~-----------------~
™(~,,~2,~3, .••.• ,~) = expression

Where: name is the statement function name (see the section "Naming
Subprograms">•

!!~, !!_2 , !!3 , ••• , !!n are dummy arguments.. They must be unique
<within the statement) nonsubscripted variables. There must
be at least one argument in the argument list.

expression is any arithmetic expression that does not contain
subscripted variables. Any statement function appearing in
this expression must have been defined previously • ._ ___ J

64

The expression to the right of the equal sign defines the operations
to be performed when a reference to this function appears in an assign­
ment statement. The expression defining the function must not contain a
reference to the function.

The dummy arguments enclosed in parentheses following the function
name are dununy variables for which the arguments given in the function
reference are substituted when the function reference is encountered. ~
maximum of 15 variables appearing in expression can be used as arguments
of the function. The same dummy arguments may be used in more than one
statement function definition and may be used as variables outside the
statement function definitions. An actual argument in a statement func­
tion reference may be any expression of the same.type as the correspond­
ing dummy argument.

All statement function definitions to be used in a program must pre­
cede the first executable statement of the program.

Example:

The statement:

FUNC(A,B) = 3.*A+B**2 .• +X+Y+Z

defines the statement function FUNC, where FUNC is the function name and
A and B are the dummy arguments. The expression to the right of the
equal sign defines the operations to be performed when the function
reference appears in an arithmetic statement.

The function reference might appear in a statement as follows:

C = FUNC CD, El

This is equivalent to:

C = 3 .• *D+E**2 .• +X+Y+Z

Note the correspondence between the dummy arguments A and B in the f unc­
tion definition and the actual arguments D and E in the function
reference.

Exa:tqples:

Valid statement function definitions and statement function
references:

Definition
SUM(A,B,C,D) = A+B+C+D
FUNC(Z) = A+X*Y*Z

Reference
NET = GRDS - SUM(TAX,,FICA,HOSP, STOCK)
ANS = FUNC (RESULT)
BIGSUM = SUM (A,,B, SUM(C,D,E,F) ,G)

Invalid statement function definitions:

SUBPRG(3,J,K)=3*I+J**3
SOMEF(A(I) ,B)=A(I)/B+3 .•
SUBPROGRAM(A,B)=A**2+B**2•

3FUNC(D)=3.14*E

ASF(A)=A+B(I)

BAD (A,, B) =A+B+BAD (C,D)

(Arguments must be variables)
(Arguments must be nonsubscripted)
(Function name exceeds limit of six
chara.cters)

(Function name must begin with an
alphabetic character)

(Subscripted variable in the
1 expression)
(Recursive definition not permitted)

subprograms 65

Invalid statement function references
as above).

(the functions ~re defined

WRONG = SUM(TAX,FICA)

MIX = FUNC (I)

(Number of arguments does not agree
with above definition)

(Mode of argument does not agree
with above definition)

FUNCTION SUBPROGRAMS

The FUNCTION subprogram is a FORTRAN subprogram consisting of a
FUNCTION statement followed by other statements including at least one
RETURN statement. It is an independently written program that is
executed wherever its name is referred to in another program.

,.--,
I General Form I
~--~
~ FUNCTION name C~:u ~2, ••• , ~n>

Where: ~ is INTEGER, REAL,, or DOUBLE PRECISION. The type
declaration may be made by the predefined convention,, by an
explicit specification in the FUNCTION statement, or by an
explicit specification statement within the FUNCTION
subprogram ..

~ is the name of the FUNCTION,.

~1 ,~2·····~n are dummy arguments. They must be
nonsubscripted variable, array or dummy names of a
SUBROUTINE or another FUNCTION subprogram. There must be at
least one argument in the argument list.

L--~-------------J

A type declaration in the FUNCTION statement overrides any type
declaration by an explicit specification statement within the FUNCTION
subprogram. The function must also be typed in the calling program if
the predefined convention is not used.

Since the FUNCTION subprogram is a separate program, the variable
names and statement numbers within it do not relate to any other
program.

The FUNCTION statement must be the first statement in the subprogram.
The FUNCTION subprogram may contain any FORTRAN statement except a
SUBROUTINE statement or another FUNCTION statement.

The name of the function must be assigned a value at least once in
the subprogram: either as the variable name to the left of the equal
sign in an assignment statement, as an argument of a CALL statement, or
in an input list CREAD statement) within the subprogram.

The dummy arguments of the FUNCTION subprogram (that is,
~j_,~2 ,~3 , ••• ,~n> may be considered to be aummy variable names. These
are replaced at the time of execution by the actual arguments supplied
in the function reference in the calling program. Additional informa­
tion about dummy arguments is in the section "Arguments in a FUNCTION or
SUBROUTINE Subprogram."

66

The relationship between variable names used as arguments in the cal­
ling program and the dummy variables used as arguments in the FUNCTION
subprogram is illustrated in the following example:

Example 1:

Calling Program

ANS = ROOT1*CALC(X,~,I)

Explanation:

FUNCTION Subprogram
FUNCTION CALC CA,B,J)

I J*2

CALC A**I/B

RETURN
END

In this example, the values of X, Y, and I are used in the FUNCTION
subprogram as the values of A,, B, and J, respectively. The value of
CALC is computed and this value is returned to the calling program,
where the value of ANS is computed,. The variable I in the argument list
of CALC in the calling program is not the same as the variable I appear­
ing in the subprogram.

Example 2:

Calling program

INTEGER CALC

ANS = ROOTl*CALC(N,M,,P)

Explanation:

FUNCTION Subprogram'

INTEGER FUNCTION CALC(I.,J,,K)

CALC = I+J+K**2

RETURN
END

The FUNCTION subprogram CALC is declared as type INTEGER.

RETURN and END Statements in a FUNCTION Subprogram

All FUNCTION subprograms must contain an END statement and at least
one RETURN statement. The END statement specifies, for the compiler,
the physical end of the subprogram; the RETURN statement signifies a
logical conclusion of the comput9-tion and returns the computed value and
control to the calling program.

Subprograms 67

Example:

FUNCTION DAV CD,E,,F)
IF (D-E) 10, 20, 30

10 A D+2.0*E

5 A= F+2.0*E

20 DAV = A+B**2

RETURN
30 DAV = B**2

RETURN
.END

SUBROUTINE SUBPROGRAMS

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in
many respects.. The rules for naming FUNCTION and SUBROUTINE subprograms
are similar. They both require an END statement, and they both contain
the same sort of dummy arguments. Like the FUNCTION subprogram, the
SUBROUTINE subprogram is a set of commonly used computations, but it
need not return any results. to the calling program, as does the FUNCTION
subprogram.

The SUBROUTINE subprogram is referenced by the CALL statement, which
consists of the word CALL followed by the name of the subprogram and its
parenthesized arguments ...

.---,
I General Form I
1--~

SUBROUTINE name (~i.16'~.2 ·~3·• ••. ·~n>

RETURN

END

where: name is the SUBROUTINE name (see the section "Naming
Subprograms") .•

~i., ~2 , ~3 , , •• ,. , ~ are dummy arguments. They must be nons ub­
scripted variable or array names., or the dummy names of
other SUBROUTINE or FUNCTION subprograms. (There need not
be any arguments.)

L--~-J

Since the SUBROUTINE subprogram is a separate program,, the variable
names and statement numbers within it do not relate to any other
program.

68

The SUBROUTINE statement must be the first statement in the subpro­
gram. The SUBROUTINE subprogram may contain any FORTRAN statement
except a FUNCTION statement or another SUBROUTINE statement.

The SUBROUTINE subprogram may use one or more of its arguments to
return values to the calling program.. Pilly arguments so used must appear.
on the left side of an arithmetic statement, in an input list within the
subprogram., as arguments of a CALL statement, or as arguments in a func­
tion reference. The SUBROUTINE name must not appear in any other state­
ment in the SUBROUTINE subprogram.

The dummy arguments (~1 ,~2.,~3 , ••.• ·~n> may be considered dummy vari­
able names that are replaced at the time of execution by the actual
arguments supplied in the CALL statement. Additional information about
dummy arguments is in the section •Arguments in a FUNCTION or SUBROUTINE
Subprogram.•

Example: The relationship between variable names used as arguments in
the calling program and the dummy variables used as arguments in the
SUBROUTINE subprogram is illustrated in the following example. The
object of the subprogram is to "copy" one array directly into another.

Calling Program

DIMENSION X(100),Y(100)

K = 100
CALL COPY (X,Y,K)

CALL Statement

SUBROUTINE Subprogram

SUBROUTINE COPY(A,B,N)
DIMENSION A(100) ,,B(100)
DO 10 I = 1, N

10 B(I) = A(I)

RETURN
END

The CALL statement is used to call a SUBROUTINE subprogram.

r--1
I General Form I
~--~
I CALL name <~1.~2,,~3, ••• ,~) I
I I
I Where: name is the name of a subroutine subprogram. I
I I
I ~1 .~2 ,~3 ,, •••• ~n are the actual arguments that are being sup- I
I plied to the SUBROUTINE subprogram. I ._ ___ J

Examples:

CALL OUT
CALL MATMPY (X, S., 40, Y, 7, 2)
CALL QDRTIC (X.,Y,Z,ROOT1,ROOT2)
CALL SUB1(X+Y*5,ABDF,SINE)

The CALL statement transfers control to the SUBROUTINE subprogram and
replaces the dummy variables with the values of the actual arguments
that appear in the CALL statement.

Subprograms 69

RETURN Statement in a SUBROUTINE Subprogram

,.---~--~---------,
I General Form I
1--i
I RETURN I
l-------~---J

This is the exit from a subprogram. The RETURN statement signifies
the conclusion of a computation. The subprogram transmits argument
values and returns control to the statement following the CALL in the
calling program. There may be several RETURN statements in a subpro­
gram. In a main program, a RETURN statement performs the same function
as a STOP statement.

ARGUMENTS IN A FUNCTION OR SUBROUTINE SUBPROGRAM

The dummy arguments of a subprogram appear after the FUNCTION or
SUBROUTINE name and are enclosed in parentheses.. They are, in effect,
replaced at the time of execution by the actual arguments supplied in
the CALL statement or function reference in the calling program. The
dummy arguments must correspond in number,, order., and. type to the actu­
al arguments.. For example, if the actual argument is an integer, then
the dummy argument must be an integer. If a dununy argument is an array,
the corresponding actual argument must be (1) an array, or (2) an array
element. In the first instance,, the size of the dummy array must not
exceed the size of the actual array. In the second, the size of the
dummy array must not exceed the size of that portion of the actual array
which follows and includes the designated element.

The actual arguments can be:

• Any type of constant

• Any type of subscripted or nonsubscripted variable

• An array name

• An arithmetic expression

• The name of a FUNCTION or SUBROUTINE subprogram

An actual argument that is the name of a subprogram must be identified
in the calling program by an EXTERNAL statement containing that name.

When the dummy argument is an array name, an appropriate DIMENSION or
explicit specification statement must appear in the subprogram. None of
the dummy arguments may appear in an EQUIVALENCE or COMMON statement.

If a dummy argument is assigned a value in the subprogram, the corre­
sponding actual argument must be a subscripted or nonsubscripted vari­
able name or an array name. A constant should not be specified as an
actual argument unless the programmer is certain that the corresponding
dummy argument is not assigned a value in the subprogram.

70

A referenced subprogram cannot define dummy arguments so that the
subprogram reference causes those arguments to be associated with other
dummy arguments within the subprogram or with variables in common. For
example, if the function DERIV is defined as:

FUNCTION DERIV (X,Y,Z)
COMMON W

and if the following statements are included in the calling program:

COMMON B

C = DERIV (A,B,A)

then X, Y, Z, and W cannot be defined (i.e., cannot appear to the left
of an equal sign in an arithmetic statement) in the function DERIV
because the actual argument list causes both A and B to be associated
with more than one value.

EXTERNAL Statement

r--1
I General Form I
~---~-----------------~
I EXTERNAL ~,.Q,£,.. .• I
I I
I Where: ~, _Q, £_, • • .• are names of FUNCTION or SUBROUTINE subprograms I
I that are passed as arguments to other subprograms. I
L.---~--J

The EXTERNAL statement is a specification statement and must precede
statement function definitions and executable statements.

If the name of a FORTRAN supplied in-line function is used in an
EXTERNAL statement, it is not expanded in-line when it appears as a
function reference.. Instead, it is assumed that the function is sup­
plied by the user or is part of the FORTRAN-supplied library. (The
FORTRAN supplied in-line and out-of-line functions are given in Appendix
c.)

The name of any subprogram that is passed as an argument to another
subprogram must appear in an EXTERNAL statement in the calling program.
For example, assume that SUB and MOLT are subprogram names in the fol­
lowing statements:

Example 1:

Calling Program

4
EXTERNAL MULT

CALL SUB (J,, MULT,, C) 6

Subprogram

SUBROUTINE SUB CK, Y,, Z)
IF (K) 4,6,6
D = Y CK, Z**2)

RETURN
END

Subprograms 71

Explanation:

In this example, the subprogram name MOLT is used as an argument in
the subprogram SUB.. The subprogram name MULT is passed to the dummy
variable Y, and the variables J and c are passed to the dummy variables
K and Z, respectively. Subprogram MOLT is called and executed only if
the value of K is negative.

Ex.ample 2:

CALL SUB (A,B,MULT {C,D),37)

SUBROUTINE SUB(W,X,Y,X)

RETURN
END

In this example, an EXTERNAL statement is not required because sub­
program MULT is not an argument; it is executed first and the result
becomes the argument.

/

72

APPENDIX A: SOURCE PROGRAM CHARACTERS

r---------------------------------T-----------------------------------1
I Alphabetic Characters I Numeric Characters I
1---------· -------------------------+--------------------------------~--~

A 0
B 1
c 2
D 3
E 4
F 5
G 6
H 7
I 8
J 9
K
L

M ~--------------------------------~--~
N I Special Characters I
0 ~-----------------------------------~
P I (blank)
Q I +
R I
s I /
T I =
u I
v I >
w I *
X I , (comma)
y I <
Z I • (apostrophe)
$ I &

'---------------------~------------i-----------------------------------

The 49 characters listed above constitute the set of characters
acceptable by FORTRAN, except in literal data where any valid card code
is acceptable.

Appendix A: Source Program Cha.racters 73

APPENDIX B: BASIC FORTRAN IV IMPLEMENTATION DIFFERENCES

The differences among the four implementations of the Basic FORTRAN
IV language are minor ~xcept for the absence of the direct access input/
output statements in Basic Programming Support FORTRAN IV.. These dif­
ferences are indicated in the body of this publication by footnotes and 1,

in addition1, are summarized in Table 3.

The following abbreviations are used in Table 3:

OS - Operating System Basic FORTRAN IV (E)
DOS - Disk Operating System Basic FORTRAN IV
TOS - Tape Operating System Basic FORTRAN IV
BPS - Basic Programming Support Tape System FORTRAN IV

Table 3.. Implementation Differences
r-~----~---------T-----------------T~---------------1
I OS I DOS/TOS I BPS I

r----------------+-----------------+-----------------+-----------------1
IDirect access IDirect access !Direct access fDirect access I
I input/output I input/output I input/output I input/output I
!statements jis available. lis available. A lis not available.I
I I· I program with I I
I I I direct access I I
I I I input/output I I
I I lmay be compiled I I
I I !using either DOS I I
I I I or TOS,, but it I I
I I !must be executed I I
I I !using DOS. I I
r----------------+-----------------+-----------------+-----------------i
I Key word and I Control card op- I 'I'he restriction I The restriction I
lblank ltion may be used lhas been removed;lhas been removed; I
lrestriction Ito either keep !there is no lthere is no I
I tor remove the !option to retain !option to retain I
I !restriction. See lit. lit. I
I IIBM System/360 I I I
I I Operating System: I I I
I I FORTRAN IV (E) I I I
I I Programmer' s I I I
I I Guide. I I I
r----------------+-----------------+-----------------+------------------i
!Maximum array 1131,068 storage 132,.767 storage 132,767 storage I
!size I locations I locations. I locations. I
~----------------+-----------------+-----------------+-----------------~
!Maximum !Depends upon 1256 characters 1256 characters I
!sequential fthe input/output jper record (TOS>·lper record. I
!record size !device in use. 1260 characters I I
I !See the FORTRAN I per record (DOS). I I
I I (E) Programmer's I I I
I I Guide above. I I I
~----------------+-----------------+-~---------------+-----------------~
I Subprogram names I Any valid FORTRAN I Any valid FORTRAN I Any valid FORTRA.N I
I jname may be used !name may be used.lname may be used.I
I I unless key word I I I
I f restriction is I I I
I jretained when keyl I I
I f words may not I I I
I I be used. I I I l ________________ i _________________ i _________________ i _________________ J

74

APPENDIX C: FORTRAN-SUPPLIED SUBPROGRAMS

The FORTRAN-supplied subprograms are of two types: mathematical sub­
programs and service subprograms. The mathematical subprograms corres­
pond to a FUNCTION subprogram; the service subprograms correspond to a
SUBROUTINE subprogram.

Subprograms are either in-line or out-of-line. An in-line subprogram
is inserted by the FORTRAN compiler at any point in the program where
there is a reference to the subprogram. The in-line subprograms are
mathematical function subprograms. 'I'hese subprograms are listed in
Table 4.

One asterisk in the Argument Type column of Table 4 identifies the
function as an intrinsic function in USAS Basic FORTRAN.

• Table 4. In-Line Mathematical Function Subprograms
r-----------------T------~---------------T------T----------T----------1

I IEntry I !No. ofl Argument !Function I
I Function I Name I Definition I Arg,. I Type I Value Type I
1-----------------+------+----------------+------+----------+----------~
I Absolute value I IABS I I Arg I I 1 I Integer *I Integer I
I I ABS I I 1 I Real * I Real I
I I DABS I I 1 I Double I Double I
I I I I I precision I precision I
1-----------------+------+----------------+------+----------+----------~
I Float I FLOAT I Convert from I 1 I Integer *I Real I
I IDFLOAT(integer to real I 1 !Integer !Double I
I I I I I I precision!
r-----------------+------+----------------+------+----------+----------~
!Fix IIFIX !Convert from I 1 !Real *!Integer I
I I !real to integer I I I I
r-----------------+------+----------------+------+----------+----------~
ITransfer of sign ISIGN ISign of Arg 2 I 2 !Real *!Real I
I IISIGN !times 1Arg1 1 I 2 !Integer *!Integer I
I IDSIGN I I 2 f Double !Double I
I I I I I precision I precision I
l------------------+------+----------------+------+----------+----------~
IPositive IDIM 1Arg1 -Min(Argu I 2 !Real IReal I
!difference IIDIM I Arg2) I 2 !Integer !Integer I
~-------------~---+------+----------------+------+----------+----------~
!Obtaining most ISNGL I I 1 !Double !Real I
I significant part I I I I precision I I
I of a double- I I I I I I
I precision I I I I I I
targument I I I I I I
1-----------------+------+----------------+------+----------+----------~
IExpress a real IDBLE I I 1 !Real !Double I
largument in I I I I I precisionf
I double-precision I I I I I I
I form I I I I I I
L-----------------i------L----------------L------~~---------..._ _________ J

Appendix C: FORTRAN-Supplied Subprograms 75

An out-of-line subprogram is located in a library and the compiler
generates an external reference to it. These subprograms are mathema­
tical· function subprograms and service subprograms. Out-of-line mathe­
matical function subprograms are listed in Table 5: out-of-line service
subprograms are listed in Table 6. A detailed description of all out­
of-line subprograms is contained in the publication IBM System/360:
FORTRAN IV Library subprograms, Form C28-6596.

Two asterisks in the Argument Type column of Table 5 identify the
function as a basic external function of USAS Basic FORTRAN.

Note: A variable used as an argument of any mathematical function sub­
program must.be of the type specified in the table. For example, if a
program uses FLOAT to convert integer to real,, the argument must be of
type integer.

76

eTable 5. Out-of-Line Mathematical FUnction Subprograms
,-----------------T------T----------------T------.-----------r----------1
I IEntry I INo. ofl Argument !Function I
!Function !Name IDefinition I Arg .. I Type !Value Type!
1-----------------+------+--~'-------------+------+----------+----------i
!Exponential IEXP I e~g I 1 !Real **!Real I
I IDEXP I e g · I 1 !Double !Double I
I I I I I precision I precision I
~-----------------+------+----------------+------+----------+----------i
1Natura1 LogarithmlALOG lln(Arg) I 1 !Real **!Real I
I IDLOG lln(Arg) I 1 IDouble !Double I
I I I I I precision I precision I
1------------------+------+----------------+------+----------+--~-------i
!Common Logarithm IALOG10llog10 (Arg) I 1 !Real !Real I
I IDLOG10llog10 (Arg) I 1 !Double !Double I
I I I I I precision I precision I
~-----------------+------+----------------+------+----------+----------i
IArctangent IATAN larctan(Arg) I 1 !Real **IR~al I
l<in radians) IDATAN 1arctan(Arg) I 1 !Double !Double I
I I I I I precision! precision!
~-----------------+------+----------------+------+----------+----------i
ITrigonometric ISIN lsin(Arg) I 1 !Real **IReal I
fSine IDSIN f sinCArg) I 1 !Double !Double I
I I I (Arg in radians> I I precision! precision!
~-----------------+------+----------------+------+----------+----------i
!Trigonometric tcos jcos(Arg) I 1 !Real **!Real I
!Cosine IDCOS lcosCArg) I 1 fDouble !Double I
I I I (Arg in radians> I I precision! precision!
~-----------------+------+----------------+------+----------+----------i
!Square Root !SQRT ICArg) 1 / 2 I 1 fReal **!Real I
I IDSQRT I (Arg) 1/ 2 I 1 f Double !Double I
I I I I I precision! precision!
~----------------+------+----------------+------+----------+----------'t
fHyperbolic !TANH ltanhCArg) · I 1 JReal **IReal I
fTangent IDTANH jtanhCArg) I 1 !Double !Double I
I I I I I precision I precision I
~-----------------+------+----------------+------+----------+----------i
!Modular IMOD 1Arg1 Cmod Arg 2) I 2 !Integer !Integer I
1Arithmetic1 IAMOD I I 2 !Real !Real I
!<Remaindering) IDMOD I I 2 !Double !Double I
I I I I I precision I precision I
1-----------------+------+----------------+------+----------+----------i
1Truncation1 IINT !Sign of Arg I 1 - !Real !Integer I
I IAINT ltimes largest I 1 !Real !Real I
I IIDINT !integer ~l~gl I 1 !Double !Integer I
I I I I I precision! I
1-----------------+------+----------------+------+----------+----------i
!Largest value IAMAXO IMaxCArg1 , I ~2 !Integer !Real I
I IAMAXl I ,Argn> I ~2 !Real !Real I
I I MAXO I I ~2 I Integer I Integer I
I I MAXl I I ~2 I Real I Integer I
I I DMAXl I I ~2 I Double I Double I
I I I I I precision I precision I
~-----------------+------+.----------------+------+----------+----------i
!Smallest value !AMINO 1Min(Arg1 , I ~2 I Integer !Real I
I I AMINl I ... , Argn> I ?2 I Real I Real I
I I MINO I I ~2 I Integer I Integer I
I IMINl I I ~2 !Real f Integer I
I I DMIN1 I I ~2 I Double I Double I
I I I I I precision I precision I
1---------·------.L-----.L----------------.L------.L----------.l.----------i
l 1 These functions are in-line in FORTRAN IV. A program written in Basicl
I FORTRAN IV that passes these names via an argument list and an I
I EXTERNAL statement may not be compiled correctly by a FORTRAN IV I
I compiler.. I ._ __ J

Appendix C: FORTRAN-Supplied Subprograms 77

Table 6. out-of-Line Service Subprograms
r---------------T-----------------------T------------------------------1
I Function I CALL Statement I Argument Information I
~---------------+-----------------------+------------------------------~

·I Alter status of I CALL SLITE (!) I!. is an integer express ion. I
!sense lights I I I
I I I If !. = 0, the four sense I
I I I lights are turned off. I
I I !If !. = 1, 2, 3# or 4, the I
I I I corresponding sense light isl
I I I turned on. I
~---------------+-----------------------+------------------------------~
!Test and recordfCALL SLITETC!_.,i> I! is an integer expression. I
!status of sensel I that has a value of 1, 2, 3,1
!lights I I or 4 and indicates which I
I I I sense light to test. I
I I Ii is an integer variable that I
I I I is set to 1 if the sense I
I I I light was on; or to 2 if thel
I I I sense light was off,. I
~---------------+-----------------------+------------------------------~
IDump storage on CALL DUMP (~j_ • .Qj_,f1 , ~ and .Q are variables that I
the output data ,~n,£.n,.!_n> indicate the limits of stor-1
set and termin- age to be dumped. (Either ~I
ate execution or .Q may be the upper or I

lower limits of storage, butl
both must be in the same I
program or subprogram or in I
common.) I

f indicates the dump format I
and may be one of the I
following: I

0 - hexadecimal I
4 - integer I
5 - real I
6 - double precision I

1---------------+-----------------------+-----------------------------~~
!Dump storage onjCALL PDUMP (~1 .,.Q1 ,f1 ,, I~, £., and .!. are as previously!
I the output data I . , .. , ~,,.Qn,,.!.n> I defined for DUMP. I
jset and con- I I I
ltinue execution! I I
~---------------+-----------------------+------------------------------~
jTest for dividelCALL DVCHK<i> Ii is an integer variable thatl
f check exception! I is set to 1 if the divide- I
I · I I check indicator was on; or I
I I I to 2 if the indicator was I
I I I off,. After testing, the I
I I I divide-check indicator is I
I I I turned off. I
1---------------+-----------------------+---------------~-------------~
!Test for expo- !CALL OVERFL<il Ii is an integer variable that!
f nent overflow I I is set to 1 if an exponent I
lor underflow I I overflow condition was the I
I I I last to occur; to 2 if no I
I I I overflow condition exists ; I
I I I or to 3 if an exponent I
I I I underflow condition was the I
I I I last to occur. After test- I
I I I ing., the overflow indicator I
I I I is turned off. I
~---------------+-----------------------+~---------~--~-------------~
I Terminate I CALL EXI'I' I None I
I execution I I I
'---------------i-----------------------i------------------------------J

78

APPENDIX D: SAMPLE PROGRAMS

SAMPLE PROGRAM 1

This sample program (Figure 1) is designed to find all of the prime
numbers between 2 and 1090. A prime number is an integer greater than 1
that cannot be evenly divided by any integer except itself and 1. Thus
2. 3, 5, 7, 11,. ,. .• are prime numbers. The number 9 is not a prime
number since it can be evenly divided by 3.

Figure 1. sample Program 1

Appendix D: Sample Programs 79

SAMPLE PROGRAM 2

The n points <xi, Yi> are to be used to fit an m degree polynomial by
the least-squares method.

In order to obtain the coefficients a 0 , a 1 , ••. , am, it is necessary to
solve the normal equations:

where:

(1)
(2)

Cm+l)

W0 a 0 + W1 a 1 +
W1 a 0 + W2a1 +

Wrna + Wrn+1a1

Wo n

n

W1 =L: X· l.

i=l

n

W2 = L: xr2

i=l

i=l

+

+ Wmam = Z0

+ Wm+1am = Z1

... + W2mam Zm

n

z =L: y.
1

i=l

n

Z1 =L: Yi Xi

i=l

n

Z2 =L: Yixi2

i=l

n

Zm =L: YiXim

i=l

After the W's and Z's have been computed, the normal equations are
solved by the method of elimination which is illustrated by the
following solution of the normal equations for a second degree polynomi­
al Cm= 2).

(2)

(3)

80

The forward solution is as follows:

1. Divide equation (1) by W0

2. Multiply the equation resulting from step 1 by W:t. and subtract from
equation (2)

3. Multiply the equation resulting from step 1 by W2 and subtract from
equation (3)

The resulting equations are:

(4) ao + b:t.2a:t. + b.i.3a2 = b:t.'+

(5) b22a:t. + b23a2 = b21+

(6) b32a:t. + b33a2 = b31+

where:

b:1..2 W1 /W 0 , b.1.3 = W2/Wo, b:t.Lt = Zo/Wo

b22 W2-b:t. 2W1 b23 W3-b:t. 3W:t. b2Lt = Z:t.-b:t.'+Wj_

b32 W3-b:t.2W2 b33 W"'-b:t.3W2 b34 = Z2-b:t.'+ W2

Steps 1 and 2 are repeated using equations (5) and (6), with b 22 and b 32
instead of W0 and W1 • The resulting equations are:

where:

The backward solution is as follows:

(9) from equation (8)

(10) from equation (7)

(11.) from equation (4)

Figure 2 is a sample FORTRAN program for carrying out the
calculations for the case: n = 100, rn 5 10. W0 , Wj_, W2 , ••. , W2m are
stored in W(l), W(2), W(3), ••• , W(2M+1), respectively. Z0 , Z:t., Z2 ,
.•• , Zm are stored in Z(l), ZC2>, ZC3), ••• , ZCM+l), respectively.

Appendix D: Sample Programs 81

Figure 2. Sample Program 2 (Part 1 of 3)

Figure 2. Sample Program 2 (Part 2 of 3)

82

Figure 2. Sample Program 2 (Part 3 of 3)

Appendix D: Sample Programs 83

The elements of the W array, except W(l), are set equal to zero.
W(l) is set equal to N.. For each value of I, Xi and Yi are selected.
The powers of Xi are computed and accumulated in the correct w counters.
The powers of Xi are multiplied by Yi and the products are accumulated
in the correct Z counters. In order to save machine time when the
object program is being run, the previously computed power of Xi is used
when computing the next power of xi. Note the use of variables as index
parameters. By the time control has passed to statement 17, the coun­
ters have been set as follows:

W(l) = N

N

W(2) = 2: XI

I=l

N

W(3) =2: Xr2

I=l

N

W(2M+1) =2:xr2M

I=l

N

Z(l) = 2: YI

I=l

N

Z(2) = 2: YrXr

I=l

N

Z(3) = 2: Yrx12

I=l

N

Z (M+l> = 2:Y1 x1 M

I=l

By the time control has passed to statement 23, the values of W0 , Wj_,,
••• , W2 m+ 1 have been placed in the storage locations corresponding to
columns 1 through M+l, row 1 through M+l, of the B array;, and the values
of Z0 " Z1 , .••• , Zm have been stored in the locations corresponding to
the column M+2 of the B array. For example, in the illustrative
problem (M = 2), column~ 1 through 4, rows 1 through 3, of the B array
would be set to the following computed values:

W1 Zo

This matrix represents equations (1), (2), and (3), the normal equa­
tions for M = 2.

84

The forward solution, which results in equations (4), (7) ,, and (8) in
the illustrative problem,, is carried out by statements 23 through 31.
By the time control has passed to statement 33., the coefficients of the
AI terms in the M+1 equations, which would be obtained in manual calcu­
lations, have replaced the contents of the locations corresponding to
columns 1 through M+1, rows 1 through M+1., of the B array,, and the con­
stants on the right-hand side of the equations have replaced the con­
tents of the locations corresponding to column M+2,, rows 1 through M+1 1,

of the B array. For the illustrative problem, columns 1 through ,_-r, rows
1 through 3, of the B array would be set to th~ following computed
values:

1

0 1

0 0 C34

This matrix represents equations (4), (7), and (8).

The backward solution, which results in equations (9) 1, (10), and (11)
in the illustrative problem, is carried out by statements 33 through 40.
By the time control has passed to statement 41, which prints the values
of ,the A(I) terms, the M+l values of the A(I) terms have been stored in
the M+l locations for the A array. For the illustrative problem, the A
array would contain the following computed values for a 2 , ai, and a 0 ,

respectively:

Location Contents

A(3)

AC2)

A{1)

The resulting values of the A(I) terms are then printed according to
the FORMAT specification in statement 2.

Appendix D: Sample Programs 85

APPENDIX E: FORTRAN IV FEATURES NOT IN BASIC FORTRAN IV

The following statements and features in FORTRAN IV are not in Basic
FORTRAN IV:

ASSIGN
BLOCK DATA
Labeled COMMON
COMPLEX
DATA
Debug facility
More than three dimensions in arrays
Object-time dimensions
Object-time FORMAT specifications
Assigned GO TO
Logical IF
LOGICAL
PRINT b 1, list
PUNCH b,list
READ b-;list
END and ERR parameters in a READ
Generalized type statement (DOUBLE PRECISION is provided as an
explicit type)

IMPLICIT
Call by name
Literal as argument of CALL
ENTRY
RETURN i Ci not a blank)
Statement number as CALL argument
NAMELIST
PAUSE with literal
G, Z,, and L format codes
Nesting of group format specifications
Complex, logical, literal, and hexadecimal constants
Generalized subscript form

The following in-line subprograms in FORTRAN IV are not in Basic
FORTRAN IV. Asterisks indicate subprograms which are out-of-line in
Basic FORTRAN IV and in-line in FORTRAN IV.

RE.AL DCONJG INT*
AI MAG CONJG AINT*
DCMPLX HFIX I DINT*
CMPLX

The following out-of-line subprograms in FORTRAN IV are not in Basic
FORTRAN IV:

\

ARSIN ALGAMA DSINH
ARCOS DGAMMA . DCOSH
DARSIN DLGAMA TAN
DAR COS CLOG COT AN
ERF CD LOG DTAN
ERFC CSIN DCOTAN
DERF ccos CSQRT
DERFC CDS IN CDSQRT
CEXP CDC OS ATAN2
CD EXP SINH DATAN2
GAMMA COSH CA.BS

86 CDABS

APPENDIX F: IBM BASIC FORTRAN IV EXTENSIONS TO USAS BASIC FORTRAN

IBM Basic FORTRAN IV is compatible with and encompasses USAS Basic
FORTRAN.. The following list gives the IBM extensions to the USAS Basic
FORTRAN.

Array dimension specification in COMMON statement

Carriage control

Direct access <except Basic Programming support System FORTRAN IV)

Double-precision constants

Explicit specification statements

Explicit type-specification in FUNCTION statement

EXTERNAL

A, D, P, and T format codes and literals enclosed in single quotation
marks

Mixed-mode expressions

Return of values via the argument list in a FUNCTION subprogram

Three-dimensional arrays (instead of two)

Appendix F: IBM Basic FORTRAN IV Extensions to USAS Basic FORTRAN 87

·.:

(Where more than one page reference is given, the major reference is first.}

+ (addition) 16-19
- (subtraction) 16-19
* (multiplication) 16-19
** (exponentiation) 16-19
/ division 16-19

in FORMAT statement 35,36-37

A format code 41-42,35
ABS 75
absolute value 75
addition (+) 16-19
AINT 77
alignment

COMM:>N 59
EQUIVALENCE 61

ALOG 77
ALOG10 77
alphabetic characters 73
alphameric characters 10
AMAXO 77
AMAXl 77
AMINO 77
AMINl 77
AMOD 77
apostrophe, literal data 42-43
arctangent 77
argument, subprogram 70-71,67-69
arithmetic assignment statement 20-21
arithmetic expression 16-19
arithmetic IF statement 23-24,27
arithmetic statement, definition 6
array 13-15

declaring
DIMENSION statement 55
explicit specification 56

maKimum size 74
assignment statement, arithmetic 20-21
associated variable 47
asterisks, in input/output 37,40
ATAN 77

BACKSPACE statement 45
blanks

FORMAT statements 35,43
in statements 7

boundary alignment
COMMON statement 59
EQUIVALENCE statement 61

CALL statement 69,68
carriage control character 36,43
characters 73
character data, FORMAT statement 35,41-42
coding form 7
coding statements 7
comma, FORMAT statement 35,36-37

comments 1
common block

·DEFINE FILE variables 48
EQUIVALENCE restrictions 60

COMMON statement 57-59
compile 5
computation, order of 17-18
computed GO TO statement 23
constants 8-10

double-precision 9-10
integer 8
real 9-10

continuation card 7
CONTINUE statement 28
control character, carriage 36,43
control statement

definition 6
examples 22-29

conversion, arithmetic 20-21
cos 77
cosine 77

D format code 38-40,35
DABS 75
data

allocation EQUIVALENCE 60
by use Of FORMAT 35

data set reference number 30
(see also ~rogramner's guides in Preface}

DATAN 77
DBLE 75
DCOS 77
DEFINE FILE statement 47-49,45-46
DEXP 77
DFLO!'.\.r 75
difference, positive 75
DIM 75
DIMENSION statement 55,13
dimensions

COMMON statement 57
eKplicit specification

direct access statements
examples 53-54
eKplanation 47-52

divide check exception 78
division (/) 16-19
DL03 77
DLOG10 77
DMAXl 77
DMINl 77
DMOD 77
DO statement 24-27
DOUBLE PRECISION 56

constant 9-10

58
45-54

FORM!'.\.T statement 35,38-40
DSIGN 75
DSIN 77
DSQRr 77
DTANH 77
DVCHK 78

Index 89

dummy argument
statement function definition 65
subprograms 70-71,66,69

dummy statement 28
DUMP 78

E format code 38-40,35
E in DEFINE FILE 47
element, array 13
END FILE statement 44
END statement 29

FUNCTION subprogram 67-68
program unit 7

equation 20
EQUIVALENCE statement 60-62

with COMMON statement 60-61
storage arrangements 61-62

executable statement, definition 7
EXIT 78
EXP 77
explicit specification statement 12-13,56
exponentiation <**> 16-19
exponentiation, subprogram 77
expression 16-19,6
EXTERNAL statement 71-72,70

F format code 38-40,35
FIND statement 52,45-46
fix 20,75
float 20, 75
FORMAT statement 35-44,E

input/output
REA.D 32-33,49-50
WRITE 33-34,51

order in program 1
formatted records 35-44

READ 33
WRITE 34

FORrRAN IV features 86-87
FUNCTION subprogram

arguments in 70-71
definition 66-68,64

GO TO statement 22-23
computed 23
restriction of 27
unconditional 22

group format specification

H format code 42-43,35
hyperbolic tangent 77

I format code 37,35
IA.BS 75
!DIM 75
!DINT 77
IF statement 23-24
IFIX 75

90

35,44

implementation, differences in systems 74
in-line subprograms 75-77
input/output statement 30-54,6

direct access 45-54
sequential 32-45

INT 77
integer

data
constants 8
FORM~T statements 35,37

explicit specification of 56
!SIGN 75

key ~ords 74,6

L in DEFINE FILE 47
length, of variable 12
listing, source program

comments 1
literal data

in FORMAT statement 35,42-43
restriction 73

logarithm 77
looping 24-27

mathematical function subprograms 75-77
in-line 75
out-of-line 77

MAXO 77
MAXl 77
max:imum 77
MINO 77
MINl 77
minimum 77
MOD 77
modular arithmetic 77
multiplication <*> 16-19

name
sub,program 63
variable 10-11

number, statement
numeric characters
numeric format code

1
73

38-40,35

operating system 5,74
operator, arithmetic 16
out-of-line subprograms 75,78
OVERFL 78

P scale factor 40,35,38
parentheses, arithmetic expression 18
PAUSE statement 29,27
PDUM.P 78
positioning record 35,43
predefined specification 12,56

printer, carriage control 36
program, samples of 79-85
program unit 7,10

READ statement
iirect access 49-50,45-46
sequential 32-33

real
data

constants 9'-10
FORMAT statements 35,38-40

ex:plicit specification 56
record size, maximum 74
RETURN statement

FUNCTION subprogram 67-68
restriction 27
SUBROUTINE subprogram 70

REWIND statement 45

scale factor, P 40,35,38
sense light 78
sequential input/output 32-45
service subprograms 78,75-76
SIGN 75
sign, transfer 75
SIN 77
sine 77
size

array 13-14
reduction by EQUIVALENCE 60

slash (/) 35,36-37
(see also division)

SLITE 78
SLITET 78
SNGL 75
source program 6,7
special characters 73
specification

ex:plicit 12
predefined 12

specification statement 55-62
definition 6-7
EXTERNAL 71-72

SQRT 77
square root 77
statement

control 22-29
types 6-7

statement number 7

statement function jef inition 63
jefinition 6,64-65
order in program 7

STOP statement 29,27
storage dump 78
subprograms 63-72

FONCTION 63,75-77
service 75,78
SOBROUrINE 63

subprogram statement
definition 6
order in program 1

SUBROUTINE subprogram
arguments in 70-71
definition 68-69

subscript 14-15
subscript quantity 13
subscripted variable 13,60
subtraction (-) 16-19
symbolic names 10

T format code 43,35
tangent, hyperbolic 77
TA.NH 77
truncation 77
type 12-14

result of arithmetic
subprogram 63

18-19

U in DEFINE FILE 47
unconditional GO TO statement
unformatted records

REA.D 33
WRITE 34

USA.S FORTR~N 87

variable 11-12,6
names 11
subscripted 13

WRITE statement
direct access 51,45-46
sequential 33-34

x format code 43,35

22

Index 91

GC28-6629-2

International Business Machinas Corporation
Data Processing Division
1133 Westchester Avenue, Whit11 Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

