
Systems Ref ere nee Library

IBM System/360 Operating System

FORTRAN IV (E) Programmer's Guide

Program Number 3605-F0-092

This publication describes how to compile, link
edit, and execute a FORTRAN IV (E) program. The
text also describes the output of compilation and
executi0n and how to make optimal use of the
compiler and a load module.

File No. 5360-25
Form C28-6603-2 OS

Third Edition

This publication is a major revision of, and makes obsolete, Form
C28-6603-1 and Technical Newsletters N28-0211, N28-0233, and N28-0235.
New material explains how FORTRAN IV handles exponent overflow and
underflow in floating-point registers. There are also additions and
deletions among in~ut/output messages. Changes to the text are indicat­
ed by a vertical line to the left of the change; revised illustrations
are denoted by a bullet <•> to the left of the caption.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Comments may be addressed to IBM corporation, Programming Publica­
tions, 1271 Aven11e of the ~..mericas, New York, N, Y, 10020

Cinternational Business Machines corporation 1966

The purpose of the Programmer's Guide is
to enable programmers to compile, link
edit, and execute FORTRAN IV (E) programs
under control of IBM SystPm/360 Operating
System. The FORTRAN IV (E) language is
described in the publication IBM System/360
Basic FORTRAN IV Language, Form C28-6629, a
corequisite to this publication.

The Programmer's Guide is organized to
fulfill its purpose for three groups of
programmers:

1. Programmers who wish to use the cata­
loged procedures as provided by IBM
need read only the "Introduction" and
"Job Control Languaoe" sections to
understand the job control statements,
and the "Job Processing" section to
use cataloged procedures for compil­
ing, link editing, and executing
FORTRAN programs. The "Programming
Considerations" and "System Output"
sections are recommended for program­
mers who want to use the FORTRAN
language more effectively.

2. Programmers who, in addition, are con­
cerned with creating and retrieving
data sets, optimizing the use of I/O
devices, or temporarily modifying IBM­
supplied cataloged procedures should
read the entire Programmer's Guide.

3. Programmers concerned with making
extensive use of the operating system
facilities, such as writing their own
cataloged procedures, modifying the
FORTRAN library, or calculating region
sizes for operating in a multiprogram­
ming environment with a variable num­
ber of tasks, should also read the
entire Programmer's Guide in conjunc­
tion with the following publications,
as they are referred to:

IBM System/360 Operating System: Sys­
tem Programmer's Guide, Form C28-6550

IBM System/360 Operating System: Util­
ities, Form C28-6586

IBM System/360: FORTRAN IV Library
Subprograms, Form C28-6596

IBM System/360 Operatin~g~__;S~y_s~t~e~m~:
Supervisor and Data Management Servi-
ces, Form C28-6646

IBM System/360 Operating System: Job
Control Language, Fonn C28-6539

PREFACE

IBM System/360 Operating System: Stor­
~stimates, Form C28-6551

IBM System/360 Operating System: Link­
~ditor, Form C28-6538

IBM System/360 Operating System: Sys­
tem Generation, Form C28-6554

IEM System/360 Operating System:
Operator's Guide, Form C28-6540

IBM System/360 Operating System: Mes­
sages and Codes, Form C28-6631

IBM System/360 Operating System:
Programmer's Guide to Debugging, Form
C28-6670

This publication contains
that:

appendixes

• Give several examples of executing load
modules.

• Describe the preparation of assembler
language subprograms for use with a
main program written in FORTRAN. To
understand this appendix, these publi­
cations are prerequisite:

IBM System/360_.Q£erating System: Assem­
bler Language, Form C28-6514

IBM System/360 Operating system: Assem­
bler (E) Programmer's Guide, Form
C28-6595 or IBM System/360 Operating
System: Assembler (F) Programmer's
Guide, Form C26-3756

• Describe the diagnostic messages pro­
duced during compilation and load
module execution.

For easier reading, the titles of publi­
cations ref erred to in this publication are
abbreviated. For example, references to
the publication IBM System/360 Operating
system: Linkage Editor are abbreviated to
"Linkage Editor publication."

INTRODUCTION • • • • • • • • • • •
Job and Job Step Relationship •
Data Sets • • • • • • • • • • •

Indexing Data Sets • •
Data Set Labels ••••
Generation Data sets •

FORTRAN Processing •••••••
Processing a FORTRAN Program
Efficient Processing •

9
9
9

• 10
• 10
• 10
• 11
• 11
• 12

Output of Processing • • • • •
Data Set Organization.
Cataloged Procedures •

• • 12
• 12
• 12

JOB CONTROL LANGUAGE • • • • 14

Job Management • • • • 14

Coding Job Control statements. • 14
General Structure of Control

Statements • • • • • • • • • • • • • 14
Name Field • • • •
Operation Field. •
Operand Field. • • • • • • •
Comments Field • • • • • • • • •

Continuing Control Statements •
Notation for Defining Control

Statements • •

Job Statement.
Name Field.

• 15
. 15
• 15
• 15
• 15

• 16

• 17
• 18

Operand Field • • • • • • 18
Job Accounting Information • • 18
Programmer's Name. • • • • • 18
Control Statement Messages • • 18
Conditions for Terminating a Job • 18
Assigning Job Priority CPRTY) ••• 19
Requesting a Message Class

(MSGCLASS). • • • • • • • • • • • 19
Specifying Main Storage
Requirements for a Job (REGION) • 19

EXEC statement • • • 19
Name Field. • • •
Operand Field

• • 21

Positional Parameter •
Keyword Parameters • •
Accounting Information •
Setting Job Step Time Limits

(TIME) • • • • • • • • • • •
Specifying Main Storage
Requirements for a Job Step
(REGION) ••••••••••••

Data Definition (DD) Statement • •
Name Field. • • • • • • • •
Operand Field • • • • • • • •

• 21
• 21
• 22
• 23

• 23

• 24

• 24
• 24
• 26

• • 26 Unit Record Parameters • •
Routing a Data Set to an Output

Stream (SYSOUT) • • • • • • • • • 28
Retrieving Previously Created

Data Sets • • • • • • • • • • • • 28

CONTENTS

Delimiter Statement. • 31

JOB PROCESSING • • • • 32

Using Cataloged Procedures • • 32
Compile. • • • • • • ")'")

• • J~

Compile and Link Edit. • 33
Link Edit and Execute ••
Compile, Link Edit, and Execute.

• 33
• 34

Storage Locations and Bytes.

Compiler Processing. • •
Compiler Name. • •
Compiler _ddnames •
Compiler Device Classes ••
Compiler Options • •
Multiple Compilation Within a

Job Step. • • • • • • • • • •

• • 35

35
• • 35
• • 35

• 36
• • 37

• • 39

Linkage Editor Processing •••••••• 40
Linkage Editor Name. • • • 41
Linkage Editor Input and Output •• 41
Linkage Editor ddnames and

Device Classes. • • • • • 42
Additional Input ••••••••• 43
Linkage Editor Priority. • • 43
Multiple Link Editing Within a
Step. • • • • • • • • • • . • • • 44

Other Linkage Editor Control
Statements. • • • • • • • • . 45

Options for Linkage Editor
Processing. • • . • ••••• 45

Load Module Execution. •
Program Name • • •
Execution ddnames.
Retrieving Data Sets Written
with Varying FORTRAN Sequence

• • 46
• 46

• • 46

Numbers • • ••••••••••• 48
REWIND and BACKSPACE Statements .• 49
Error Message Data Set • • • 49
Execution Device Classes • • • 49

CREATING DATA SETS • • • 50

Data Set Name. . 51

Specifying I/O Devices • • • 52

Specifying Volumes • • • • • 52

Specifying Space on Direct Access
Volumes • • • • • • • • 53

Label Information. • • •• 54

Disposition of a Data Set. • • • 55

Writing a Unit Record Data Set on an
Intermediate Device • • • • • 55

DCB Parameter. • • . • • • • • . • • . • 55
Ref erring to Previously Specified

DCB Information. • • • . • • •
Density and Conversion.
Record Format • • • • •
Record Length, Buffer Length, Block

Length, and Number of Buffers for
Sequential Data Sets • • • • •

FORTRAN Records and Logical
Records for Sequential Data
sets. • • • • • ••••.•

BACKSPACE Operations • • • •
Record Length, Buff er Length, and

Number of Buffers for Direct
Access Data Sets • . • . . •

DCB Ranges and Assumptions •.•••

CATALOGED PROCEDURES •
compile. • • • .
Compile and Link Edit.
Link Edit and Execute .•
Compile, Link Edit, and Execute.

• 55
• 56
• 56

• 56

• 57
• 62

• 62
• 63

• 65
• 65
. 65
. 65
• 67

User and Modified cataloged Procedures • 67

Overriding Cataloged Procedures ••
Overriding Parameters in the

EXEC Statement. . • . • •
Overriding and Adding DD

Statements. • • • •

PROGRAMMING CONSIDERATIONS .

Minimum System Requirements for the
FORTRAN Compiler. • • • . • •

Source Program Considerations.
Initialization ••••••
Coding the Source Program. •
Arithmetic Statements .••
IF Statement • • • • •
DO Loop Considerations
READ/WqITE Statements.
Program Structure. • •
Statement Numbers and Names.
Use of DUMP and PDUMP. • •
Direct Access Programming.
Direct Access Prograrrming
considerations ..••..

How Arguments Are Passed

• 68

• • 69

• 69

. 73

• 73

• 73
. 73
• 73
• 73
• 74
. 74
• 75
• 75
• 76
• 76
• 77

• 79
• 79

DD Statement Considerations. • • 80
Channel Optimization • • • 80
I/O Device Optimization. • • • 80
Direct-Access Space Optimization • 81
Priority Scheduler
Considerations for Cataloged
Procedures. • • • • 82

Library Considerations • . 83

Compiler Restrictions. • 83

Linkage Editor Restrictions. . . . 84

FORTRAN Load Module Restrictions • • 84

SYSTEM OUTPUT ••

Compiler Output.
Source Listing
Storage Map ••
Object Module Card Deck.
Source Module Diagnostics.

85

85
. . 85

85
. . 85
. . 86

Linkage Editor Output ••••
Module Map • • • • • •
Cross-Reference List •

• • • • • • 8 8
. • • 88

. . . . 88

Load Module Output • . • • • • • • • 88
Error Code Diagnostics • • 89
Program Interrupt Messages • • 89
ABEND Dump • • • • • 89
Operator Messages. • 89

APPENDIX A: EXAMPLES OF JOB
PROCESSING.

Example 1.
Example 2.
Example 3.
Example 4.

APPENDIX B: ASSEMBLER LANGUAGE
SUBPROGRAMS

91
• • 91
• • 92
• • 94
• • 95

• 99

Subroutine References ••
Argument List. • •
Save Area. • • • .
Calling Sequence •

• • • • • • 9 9
• • • • • • 9 9
• • • • • • 9 9

• • 99

Coding the Assembler Language
Subprogram ••••••••••••••• 101

coding a Lowest Level Assembler
Language Subprogram ••••••• 101

Sharing Data in COMMON ••••.• 101
Higher Level Assembly Language

Subprogram. • • • ••••• 101
In-Line Argument List ••••••• 102

Getting Arguments From the Argument
List. • • • • • • • • ••••• 103

APPENDIX C: STORAGE MAP FOR LOAD
MODULE EXECUTION. • • .105

APPENDIX D: SYSTEM DIAGNOSTICS. • .106

Compiler Diagnostic Messages • • • .106
Compiler Informative Messages ••• 106
Compiler Error/Warning Messages •• 106

Load Module Execution Diagnostic
Messages •••••••••••••

Operator Messages. • • • •
Program Interrupt Messages •
Execution Error Messages •

INDEX. • • • • • • • • • • • •

.115
• .115

• • • 115
• .116

• .119

Figure 1. Rocket Firing Job. • • • • • 9
Figure 2. Linkage Editor Execution • • 11
Figure 3. Typical FORTRAN Processing • 11
Figure 4. Job Control Statement

Formats • . • • • . • • • • • • •
Figure 5. JOB Statement •••••••
Figure 6. Sample JOB statements.
Figure 7. EXEC Statement •.••••
Figure 8. Sample EXEC Statements • •
F'; gui:e 9. Compiler and Linkage

• 14
. 17
• 18
• 20
• 21

.:::;ditor Options •••••••••
Figure 10. Data Definition (DD)

• • 23

Statement • • • • • • • • • • • • • 25
Figure 11. DD Statement Parameters. • . 27
Figure 12. Examples of Unit Record DD
Statements. • • • • • • • • • • • . 28

Figure 13. Retrieving Previously
Created Data Sets • • • • • • • • • • • 29

Figure 14. Delimiter Statement. • . 31
Figure 15. Invoking the cataloged

Procedure FORTEC. • • • • • •
Figure 16. Compiling a Single Source

. 32

Module. • • • • • • • • • • • • • • • • 32
Figure 17. Compiling Several Source

Modules • . • • • • • • • • •
Figure 18. Invoking the Cataloged
Procedure FORTECL • • • • • •

• 32

• 33
Figure 19. Compiling and Link Editing
Several Source Modules. • . • • • • • • 33

Figure 20. Compiling and Link Editing
a source Module Residing in a
cataloged Data Set. • 33

Figure 21. Invoking the cataloged
Procedure FORTELG • • • . • • • • • • . 34

Figure 22. Link Edit and Execute •••• 34
Figure 23. Link Edit and Execute

(Object Modules in a Cataloged Data
Set). • • • .•.•••. 34

Figure 24. Invoking the Cataloged
Procedure FORTECLG. • • • . • • • • 34

Figure 25. Single Compile, Link Edit,
and Execute • • • • • • • • • . • • • • 34

Figure 26. Batched Compile, Link
Edit, and Execute • • • • •

Figure 27. Blocked Records.
Figure 28. Compiler Options
Figure 29. Multiple compilation
Within a Job Step • • • • . • • •

Figure 30. Linkage Editor Input and
Output. • • • • • • • • •

Figure 31. Linkage Editor Example

• 35
• 36
• 38

• 40

• 42

Using INCLUDE and LIBRARY Statements •• 44
Figure 32. Tape Output for Several

Data Sets Using Same Data Set
Reference Number •••••••••••• 48

Figure 33. Examples of DD Statements
for Creating Data Sets. • • • . • • . • 50

Figure 34. DD Parameters for Creating
Data Sets • • • • • • • • • • • • • • • 51

Figure 35. FORTRAN Record (FORMAT
Control) Fixed-Length Specification • • 57

ILLUSTRATIONS

Figure 36. FORTRAN Record (FORMAT
Control) With Fixed-Length
Specification and FORTRAN Record
Length Less Than BLKSIZE •••••••• 58

Figure 37. FORTRAN Record (FORMAT
Control) Variable-Length
Specification • • • . • • • • • • • • • 58

Figure 38. FORTRAN Record (FORMAT
control) With Variable-Length
Specification and the FORTRAN Record
Length Less Than (LRECL-4) •.••••• 58

Figure 39. FORTRAN Record (FORMAT
Control) With Undefined Specification
and the FORTRAN Record Length Less
Than BLKSIZE. • • • • • • • • • • • • • 59

Figure 40. Fixed-Length Blocked
Records Written Under FORMAT control •• 59

Figure 41. Variable-Length Blocked
Records Written Under FORMAT Control •• 60

Figure 47. Logical Record (No FORMAT
control) for Direct Access. • • • • 63

Figure 48. compile Cataloged
Procedure (FORTEC). • • • • • • • • • • 65

Figure 49. Compile and Link Edit
cataloged Procedure (FORTECL) • • • • • 66

Figure 50. Link Edit and Execute
Cataloged Procedure (FORTELG) • • • • • 67

Figure 51. Compile, Link Edit, and
Execute Cataloged Procedure
(FORTECLG) • • • • • • • • • • • • • • • 6 8

Figure 52. Record chaining. • •••
Figure 53. Writing a Direct Access

78

Data Set for the First Time • • • • . • 80
Figure 54. DD Statement Parameters
for Optimization •••••••••••• 81

Figure 55. Source Module Listing. • 85
Figure 56. Storage Map ••••.•••• 86
Figure 57. Object Module Deck
Structure • • • • • • • • • • •

Figure 58. Format of Diagnostic
Messages ••••••••••

Figure 59. Module Map • • • . • • •
Figure 60. Linkage Editor

• 87

• • 87
88

cross-Reference List. • . • • • • • 89
Figure 61. Input/Output Flow for

Example 1 • • • • • • • • • • • •
Figure 62. Job Control Statements for

Example 1 • • • • • • • • • • • •
Figure 63. I/O Flow for Example 2
Figure 64. Job Control Statements for

Example 2 • • • • • • • • • • • •
Figure 65. I/O Flow for Example 3
Figure 66. Job Control Statements for

Example 3 • • • • • • • • • • •
Figure 67. Block Diagram for

Example 4 • • • • • • • • • •
Figure 68. Job Control Statements for

91

91
• 92

• 93
94

• 94

• 96

Example 4 • • • • • • • • • • • • • 97
Figure 69. FORTRAN Coding for

Example 4 • • • • • • • • • 98

Figure 70. Save Area.
Figure 71. Lowest Level Assembler

Subprogram.
Figure 72. Higher Level Assembler

Subprogram.

TABLES

Table 1. Job control Statements.
Table 2. compiler ddnames. • . •
Table 3. Device Class Names •••
Table 4. Correspondence Between

. . .100

. . .101

. . .102

• 14
• 36
• 37

Compiler ddnames and Device Classes • • 37
Table 5. Conditions for Multiple
Compilation • • . . • • • • • • •

Table 6. Linkage Editor ddnames.
Table 7. Correspondence Between

Linkage Editor ddnames and Device

• 40
. 42

Classes • . • • • • • • • . • • 42
Table 8. Load Module ddnames .•.•• 47

Figure 73. In-Line Argument List. . .103
Figure 74. Assembler Subprogram

Example104
Figure 75. Load Module Execution
Storage Map105

Table 9. Data Set References •.••. 53
Table 10. DEN Values for Model 2400 .• 56
Table 11. Specifications Made by the

FORTRAN Programmer for Record Types
and Blocking ••••.••••••••• 58

Table 12. BLKSIZE Ranges: Device
Considerations. • . . • .••••. 63

Table 13. Load Module DCB Parameter
Default Values. • • . • • • • 6 4

Table 14. Source Module Size
Restrictions •.••........... 83

Table 15. Linkage Registers • . . .100
Table 16. Dimension and Subscript

Format 103

The IBM System/360 Operating System (the
operating system) consists of a control
program and processing programs. The con­
trol program supervises execution of all
processing programs, such as the FORTRAN E
compiler, and all problem ~rograms, such as
a FORTRAN program. Therefore, to execute a
FORTRAN program the programmer must first
co~municate with the operaTing system. The
medium of communication between the pro­
grammer and the operating system is the job
control language.

Job control language statements define
two units of work to the operating system:
the job and the job step. The important
aspect of jobs and job steps is that they
are defined by the prograITIJPer. He defines
a job to the operating system by using a
JOB statement; he defines a job step by
using the EXEC statement. Another impor­
tant statement is the DD (data definition}
statement, which gives the operating system
information about data used in jobs and job
steps. The sequence of control statements
and any data placed in this sequence is
called the input stream. The input stream
can be read by either a card reader or a
tape device.

JOB AND JOB STEP RELATIONSFIP

When a programmer is given a problem, he
analyzes that problem and oef ines a precise
problem-solving procedure1 that is, he
writes a program or a series of programs.
To the operating system, executing a main
program (and any subprograms it calls) is a
job step. A job consists of executing one
or more job steps.

At its simplest, a job consists of one
job step. For example, executing a FORTRAN
main program to invert a matrix is a job
consisting of one job step.

If the problem is complPx, one job may
consist of a series of job steps. For
example, a programmer is given a tape
containing raw data from a rocket firing:
he must transform this raw data into a
series of graphs and reports. Three steps
may be defined:

1. comparing the raw data to projected
data and eliminatina errors which
arise because of intermittent errors
in gauges and transmission facilities.

2. Using the refined data and a set of
parameters as input to a set of equa-

INTRODUC'IION

tions, which develop values for the
production of graphs and reports.

3. Using the values to plot the graphs
and print the reports.

In this example, each step can be a
separate job with one job step in each job.
However, designating several related job
steps as one job is more efficient: pro­
cessing time is decreased because only one
job is defined, and interdependence of job
steps may be stated. (The interdependence
of jobs cannot be stated.} In the rocket
firing example, each step may be defined as
a job step within one job that encompasses
all processing. Figure 1 illustrates the
rocket firing job with three job steps.

DATA SETS

In Figure 1, two collections of input
data <raw data and projected data} and one
collection of output data <refined data)
are used in job step 1. In the operating
system, a collection of data that can be
named by the programmer is called a data
set. A data set is defined to the operat­
ing system by a DD statement.

Projected
Data

Parameters

Job Step l:
Refine Data

Job Step 2:
Develop Values

Job Step 3:
Generate

Graphs and
Re orts

Graphs
and

Figure 1. Rocket Firing Job

Introduction 9

A data set resides on a volume(s), which
is an external storage unit accessible to
an input/output device. (For example, a
volume may be a reel of tape or a disk
pack.)

Several I/O devices grouped together and
given a single name when the system is
generated constitute a device class. (For
example, a device class can consist of all
the tape devices in the installation;
another can consist of the printer, a
direct access device, and a tape device.)

Indexing Data Sets

The name of a data set, information
identifying the volume<s> on which the data
set resides, device type, and the position
of the data set on the volume may be placed
in an index to help the control program
find the data set. This index, which is
part of an index structure called the
catalog, resides on direct access volumes
with the operating system. Any data set
whose name and volume identification are
placed in this index is called a cataloged
data set.

Furthermore, a hierarchy of indexes may
be devised to classify data sets and make
names for data sets unique. For example,
an installation may divide its cataloged
data sets into four groups: SCIENCE,
ENGRNG, ACCNTS, and INVNTRY. In turn, each
of these groups may be subdivided: the
SCIENCE group may be subdivided into MATH,
PHYSICS, CHEM, and BIOLOGY; MATH may con­
tain volume identification for the data
sets ALGEBRA, CALCULUS, and BOOL. To find
the data set BOOL, the programmer specifies
all indexes beginning with the largest
group -- SCIENCE; then the next largest
group, MATH; finally, the data set BOOL.
The complete identification needed to find
the data set BOOL is SCIENCE.MATH.BOOL.

Data set names are of two classes. An
ungualif ied name is a data set name or an
index name not preceded by an index name.
A gualif ied name is a data set name or
index name preceded by index names rep­
resenting index levels; for example, in the
preceding text, the qualified name of the
data set BOOL is SCIENCE.M~TH.BOOL.

Before using a qualified name to name a
data set, the programmer must be sure that
the index levels specified in a qualified
name are placed in the ca~aLog. Index
levels are placed in the catalog by a
utility program. For more information, see
the section "Modifying System control Data"
in the Utilities publication or
"Maintaining the Catalog and the Volume

10

Table of Contents"
Programmer's Guide.

Data Set Labels

in the Systems

Information such as record format, buf­
fer length, density, creation date, expira­
tion date, and an identifier needed to read
the data set are stored in the operating
system data set labels. If a data set is
cataloged and standard labels are specified
when the data set is created, the informa­
tion specified in the DD statement to
subsequently retrieve the data set is sub­
stantially reduced. In addition to the
data set name, the only information needed
to retrieve the data set is the current
status of the data set Cnew, old, etc.)
and the status the data set is to have when
the job step is completed (deleted, kept,
passed, etc.).

Generation Data Sets

Data set identification may also be
based upon the time of generation. In the
operating system, a collection of succes­
sive historically related data sets is a
generation data grouE. Each of the data
sets is a generation data set. A genera­
tion number is attached to the data group
name to refer to a particular generation.
The most recent generation is O; the gener­
ation previous to 0 is -1; the generation
previous to -1 is -2; etc. An index
describing a generation data group rrust
exist in the catalog. The index is created
by a data set utility program.

For example, a data group named WEATHER
might be used for weather reporting and
forecasting. The generations for the gen­
eration data group WEATHER are:

WEATHER(O)
WEATHER(-1)
WEATHER(-2)

When a new generation is created, it is
called generation C+n), where n is an
integer greater than 0. For example, after
a job step has created WEATHER (+1), the
operating system changes its name to
wEATHER(O) at the end of the job. The data
set that was WEATHER(O) at the beginning of
the job becomes WEATHER(-1).

If more than one generation is created
in a job, the first generation created is

generation (+1); the next qeneration creat­
ed is generation (+2); and so on.

FORTRAN PROCESSING

In the operating system environment, a
source program is called a source module; a
compiled source module is an object module
<object program}. The obj~ct module cannot
be executed until it is placed in a format
suitable for loading, and all external
references to subprograms are resolved.
This is done by an IBM supplied program -­
the linkage editor.

The executable output of the linkage
editor is a load module. However, the
input to the linkage editor may be either
object modules or other load modules.
Linkage editor execution can be expanded
further: several object modules and/or load
modules may be combined to form one load
module. The linkage editor inserts the
requested library functions and subroutines
into the load module. For example, if the
compiled object module TFST calls subrou­
tines ALPHA and BETA and the library f unc­
tion SIN, the linkage editor combines the
object module TEST and the previously link
edited load modules ALPFA, BETA, and SIN
into one load module. This process is
illustrated in Figure 2.

A program written in FORTRAN may call
subprograms written in the assembler lan­
guage as long as the assembler subprogram
uses the linkage conventions shown in
Appendix B: nAssembler Language Subpro­
grams." The linkage editor resolves the
references between assembler and FORTRAN
modules.

SIN

linkage
Editor

TEST

Figure 2. Linkage Editor Execution

Processing a FORTRAN Program

After an object module is processed by
the linkage editor, the resulting load
module may be executed. Therefore, to
compile, link edit, and execute a FORTRAN
program, three steps are necessary:

1. Compile the FORTRAN source module and
any FORTRAN subprograms not compiled
previously to produce one or more
object modules.

2. Link edit the resulting object
module(s) and any modules needed to
resolve external references to form a
load module.

3. Execute the load module.

Figure 3 illustrates the problem program
processing; FORTRAN subprograms and assem­
bler subprograms (object modules) are used
to resolve external references.

FORTRAN
library
(Load

Modules)

Job Stepl:
Compile

Main Program
and

Subprograms

Job Step 2:
Linkage

Editor

load
Module

Job Step: 3
Execute

Load Module

Assemble
Subprograms

Object
Modules

Output

Figure 3. Typical FORTRAN Processing

Introduction 11

Efficient Processing

Each compilation, each linkage editor
execution, and each load module execution
may be defined as separate jobs, but com­
bining the separate jobs into one job is
more efficient.

Assume that the source roodule MAIN is to
be compiled and executed. MAIN requires
the services of two subprograms, SUBl and
SUB2, and neither subprogram is compiled.
Since the compiler can perform batched
compilations, all the compilations can be
combined in one job step. Three job steps
are necessary to perform the job:

JOB: Compile, link edit, and execute
JOB STEP 1: Compile MAIN, SUBl, SUB2
JOB STEP 2: Link edit the modules
JOB STEP 3: Execute load module MAIN

Output of Processing

The compiler, linkage editor, and other
components of the operatinq system generate
diagnostic output which can be used to
debug programs. Among these are listings,
module maps, and diagnostic messages.

Data set organization

A data set is a naroed collection of
data. several methods are available for
internally organizing data sets. Three
types of 1ata sets are accessible in
FORTRAN processing: sequential data sets,
partitioned data sets, and direct access
data sets.

A sequential data set is organized in
the same way as a data set that resides on
a tape volume, but a sequential data set
may reside on any type of volume. The
compiler, linkage editor, and load modules
process sequential data sets.

A E§:rtitioned data set (PDS) is composed
of named, independent groups of sequential
data and resides on a direct access volume.
A directory index resides in the PDS and
directs the operating system to any group
of sequential data. Each group of sequen­
tial data is called a member. (A member of
a PDS is not a data set.) Partitioned data
sets areused for storage of any type of
sequentially organized data. In particu­
lar, they are used for storage of source
and load modules (each module is a member).
In fact, a load module can be executed only
if it is a member of a partitioned data

12

set. A PDS of load modules is created by
either the linkage editor or a utility
program. A PDS is accessible to the link­
age editor; however., only individual mem­
bers of a PDS are accessible to the compil­
er. Members of a PDS are not accessible to
a FORTRAN load module.

The FORTRAN library is a cataloged PDS
that contains the library subprograms in
the form of load modules. SYSl.FORTLIB is
the name given to this PDS.

A direct access data set contains
records that are read or written by speci­
fying the position of the record within the
data set. When the position of the record
is indicated in a FIND, READ, or WRITE
statement, the operating system goes
directly to that position in the data set
and either retrieves, reads, or writes the
record. For example, with a sequential
data set, if the lOOth record is read or
written, all records preceding the lOOth
record (records 1 through 99) must be
transmitted before the lOOth record can be
transmitted. With a direct access data set
the lOOth record can be transmitted direct­
ly by indicating in the I/O statement, that
the lOOth record is to be transmitted.
However, in a direct access data set,
records can only be transmitted by direct
access I/O statements; they cannot be
transmitted by sequential I/O statements.
Records in a direct access data set can be
transmitted sequentially by using the asso­
ciated variable in direct access I/O state­
ments.

A direct access data set must reside on
a direct access volume. Direct access data
sets are only processed by FORTRAN load
modules; the compiler and linkage editor
cannot process direct access data sets.

Saying that a data set is sequential,
partitioned, or direct access reflects its
organization. Saying that a data set is
cataloged or that it is a generation data
set reflects a method of retrieving the
data set. Sequential, partitioned, and
direct access data sets can be cataloged;
however, an individual member of a PDS
cannot be cataloged because a member is not
a data set. A generation data set can only
be a sequential or direct access data set;
a generation data set cannot be a PDS or a
member of a PDS.

Cataloged Procedures

To reduce the possibility of error in
the frequent reproduction of job control
statements, cataloged procedures can be
written. A cataloged procedure is a set of
EXEC and DD statements placed in a PDS

accessible to the operating system. (The
JOB statement cannot be cataloged.) A
cataloged procedure consists of a single
procedure step or a series of procedure
steps defined by EXEC statements. A proce­
dure step in a cataloged procedure is
equivalent to a job step in a job. Just as
DD statements are included for a job step,
DD statements are included in procedure
steps.

An EXEC statement in the input stream
can invoke a cataloged procedure. There­
fore, the definition of joh step is extend­
ed: executing a load module or invoking a
cataloged procedure is a job step to the
operating system.

To simplify the steps involved in com­
piling and link editing, four cataloged

procedures for FORTRAN CE) are supplied by
IBM. These four cataloged procedures and
their uses are:

FORT EC

FORTECL

FORT ELG

compile

compile and link edit into the
FORTRAN library (FORTLIB)

link edit and execute

FORTECLG compile, link edit, and execute

Any cataloged procedure may be temporar­
ily modified by EXEC and DD statements in
the input stream; this temporary modif ica­
tion is called overriQing.

Introduction 13

JOB CONTROL LANGUAGE

The FORT~AN programmer uses the job
control statements shown in Table 1 to
compile, link edit, and execute programs.

JOB MANAGEMENT

Job control statements are processed by
a group of operating systP.m routines known
collectively as job management routines.
These routines interpret control state­
ments, control the flow of jobs, and issue
messages to both the onerator and the
programmer. Job managemen+. routines have
two major components: a job scheduler and a
master scheduler.

The specific facilities available
through the job scheduler and the master
scheduler depend on the scheduling level
the installation selects during system gen­
eration. Schedulers are available at two
levels -- the sequential scheduler and the
more powerful priority scheduler.

Sequential schedulers process job steps
one at a time in the order of their
appearance in the input stream. Operating
systems with a primary control program
(PCP) and those that provioe multiprogram­
ming with a fixed number of tasks CMFT) use
sequential schedulers.

Priority schedulers process jobs accord­
ing to their relative priority and avail­
able system resources, and can accept input
data from more than one input stream.
Systems that provide multiprogramming with
a variable number of tasks (MVT) use prior­
ity schedulers.

Table 1. Job Control Statements
r----------T------------------------------1
!Statement I Function I
t----------+------------------------------~
jJOB !Indicates the beginning of al
I jnew job and describes that jobl
t----------+------------------------------~
!EXEC !Indicates a job step and des-I
I lcribes that job step; indi-1
! !cates the cataloged procedure!
I !or load module to be executed I
t----------+------------------------------~
IDD !Describes data sets, and con-I
I ltrols device and volume I
I I assignment I
~----------+------------------------------~
!delimiter !Separates data sets in thej
I/* jinput stream from control!
I !statements; it appears after!
I leach data set in the input!
I jstream I
L----------~------------------------------J

CODING JOB CONTROL STATEMENTS

Like any other computer language, the
job control language has a specific struc­
ture and must conform to a prescribed
format. To make the definition and de­
scription of job control statements more
understandable, a notation to show the
format of the statements has been devised
and will be used throughout this publica­
tion.

GENERAL STRUCTURE OF CONTROL STATEMENTS

Job control statements are identified by
the initial characters // or /* in card
columns 1 and 2, and may contain four
fields -- name, operation, operand, and
comments Csee Figure 4).

r---T---1
I FORMAT I APPLICABLE CONTROL STATEMENTS I
t---+---~
l//Name Operation Operand [Comment] I JOB,EXEC,DD I
I I
j// Operation Operand [Comrrentl EXEC,DD I
I I
I/* [Comment] I delimiter I
L---~---J
Figure 4. Job Control Statement Formats

14

Name Field

The name contains between one and eight
alphameric or national characters, the
first of which must be alphabetic. The
name begins in card column 3 and is fol­
lowed by one or more blanks to separate it
from the operation field. The name is
used:

1. To identify the control statement to
the operating system.

2. To enable other control statements in
the job to refer to information con­
tained in the named statement.

3. To relate DD statements to I/O state­
ments in the load module.

Operation Field

The operation field contains one of the
following operation codes

JOB
EXEC
DD

or, if th~ statement is a delimiter state­
ment, the operation field is blank. The
operation code is preceded and followed by
one or more blanks.

Operand Field

The operand field contains the parame­
ters that provide information to the oper­
a ting system. The parameters are separated
by commas. The operand field is ended by
placing one or more blanks after the last
parameter. There are two types of parame­
ters, positional and keyword. Positional
and keyword parameters are identified in
the definition of control statements.

Positional Parameters: Positional parame­
ters are placed first in the operand field
and must appear in a specified order. If a
positional parameter is omitted and other
positional parameters follow, the omission
must be indicated by a comma. If a posi­
tional parameter is omitted and only key­
word parameters follow, thP omission is not
indicated by a comma. ~-

Keyword Parameters: A keyword parameter
may be placed anywhere in the operand field
after the positional para~eters. A keyword
parameter consists of a keyword, followed
by an equal sign, followed by a single

value or a list of subparameters. If there
is a list of subparameters, the list must
be enclosed in parentheses or apostrophes
and the subparameters in the list must be
separated by commas. Keyword parameters
are not order dependent: they may appear in
any order.

Subparameters: Subparameters are either
positional or keyword. Positional subpa­
rameters appear first in the parameter and
must appear in the specified order. If a
positional subparameter is omitted and
other positional subparameters follow, the
omission must be indicated by a comma. If
a positional subparameter is omitted and
only keyword subparameters follow, the
omission is not indicated by a corrma.
Positional and keyword subparameters are
noted in the definition of control state­
ments.

Comments Field

The comments field must be separated
from the operand field Cor the * in a
delimiter statement) by one or more blanks.
None of the information written in the
comments field is used by the operating
system.

CONTINUING CONTROL STATEMENTS

A control statement can be written in
card columns 1 through 71. If a control
statement exceeds 71 columns, it may be
continued onto the next card. If a state­
ment is continued, it must be interrupted
after the comma that follows the last
parameter (or the last subparameter in the
accounting information or DCB parameter on
the card and a nonblank character must be
placed in column 72. The continuation card
must contain // in columns 1 and 2; columns
3 through 15 must be blank, and the contin­
ued portion of the statement must begin in
column 16.

The comments field is continued by plac­
ing a nonblank character in column 72; //
is placed in columns 1 and 2 of the
continuation card; and the continued por­
tion of the comments field begins in any
column after column 15 (columns 3-15 roust
be blank>-:-- .

There is no limit to
continuation cards used for a
trol statement.

the number of
single con-

Note: Excessive continuation cards should
be avoided whenever possible to reduce
processing time for the control program.

Job Control Language 15

NOTATION FOR DEFINING CON~OL STATEMENTS

The notation used to define control
statements in this publication is described
in the following paragraphs.

1. The following symbols are used
define control statements but
never used in an actual statement.

a. hyphen
b. or
c. underscore
d. braces { }

e. brackets []

f. ellipsis
g. superscript 1

to
are

The special uses of these symbols are
explained in paragraphs 4-10.

2. Upper-case letters and words, numbers,
and the symbols below are written in
an actual control statement exactly as
shown in the state~ent definition.
(Any exceptions to this rule are noted
in the definition of a control state­
ment.)

a. apostrophe
b. asterisk * c. comma
d. equal sign
e. parentheses
f. period
g. slash /

3. Lower-case letters, words, and symbols
appearing in a control statement def i­
ni tion represent variables for which
specific information is substituted in
the actual statement.

Example: If name appears in a
statement definition, a specific value
(e.g., ALPHA) is substituted for the
variable in the actual statement.

4. Hyphens join lower-case letters,
words, and symbols to form a si~1~
variable.

Example: If member-name appears in
a statement definition, a specific
value (e.g., BETA) is substituted for
the variable in the actual statement.

5. Stacked items or items separated from
each other by the "or" symbol rep­
resent alternatives. Only one alter­
native should be selected.

16

Example: The two representations

A
B and AIBIC
c

have the same
that either A or
selected.

meaning
B or

and indicate
c should be

6. An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statement.

Example: The two representations

A
B and Al~IC
c

have the same meaning and indicate
that either A or B or c should be
selected; however, if B is selected,
it need not be written, because it is
the default option.

7. Braces group related items, such as
alternatives.

Example: ALPHA =({AIBlf},D)

indicates that a choice should be wade
among the items enclosed within the
braces. If A is selected, the result
is ALPHA=(A,D). If c is selected, the
result can be either ALPHA=(,D) or
ALPHA=(C,D).

8. Brackets also group related items;
however, everything within the brack­
ets is optional and may be omitted.

Example: ALPHA =CCAIBICJ,D)

indicates that a choice can be made
among the items enclosed within the
brackets or that the items within the
brackets can be omitted. If B is
selected, the result is ALPHA=CB,D).
If no choice is made, the result is
ALPHA= (ID).

9. An ellipsis indicates that the preced­
ing item or group of items can be
repeated more than once in succession.

Example: ALPHA[,BETAj

indicates that ALPHA can appear alone
or can be followed by ,BETA repeated
optionally any number of times in
succession.

10. A superscript refers to a footnote.

11.

Example:

{
NEW}. 1

OLD
MOD

indicates that additional information
concerning the grouped items is con­
tained in footnote nuwber 1.

Blanks are used to improve the read­
ability of control statement defini­
tions. Unless otherwise noted, blanks
have no meaning in a statement def ini­
tion.

JOB STATEMENT

The JOB statement (Figure 5) is the
first statement in the sequence of control
statements that describe a job. The JOB
statement contains the following informa­
tion:

1. The name of the job.

2. Accounting information relative to the
job.

3. Programmer's name.

4. Whether the job control statements are
printed for the programmer.

5.

6.

conditions for terminating the
tion of the job.

A job priority assignment.

execu-

7. Output class for priority scheduler
messages.

8. Specification of main storage require­
ments for a job.

Examples of the JOB statement are shown
in Figure 6.

r---------T---------T---1
I Name I Operation I Operand I
t---------+---------+---~
I Positional Parameters
I
j//jobname JOB [([account-number] [,accounting-information]) 1 2 3]

[,prograrnrner-name]4 s 6

Keyword Parameters

{
MSGLFVEL=O}
MSGLFVEL=l

[COND=CCcode,operator) [,(code,operator)] ••. 7)8)

[PRTY=nn] 9

[MSGCLASS=x)9

[REGION=nnnnnK] 9
t---------i---------i---~
l 1 If the information specified ("account-number" and/or "accounting-information") I
I contains blanks, parentheses, or equal signs, the information must be delimited by I
I apostrophes instead of parentheses. I
l 2 If only "account-number" is specified, the delimiting parentheses may be omitted. I
f 3The maximum number of characters allowed between the delimiting parentheses or I
I apostrophes is 142. I
l 4If "programmer-name" contains commas, parentheses, apostrophes, or blanks, it must be I
I enclosed within apostrophes. I
l 5 When an apostrophe is contained within "programmer-name", the apostrophe must be I
I shown as two consecutive apostrophes. I
l 6 The maximum number of characters allowed for "programmer-name" is

1
20. I

l 7 The maximum number of tests allowed is 8. I
l 8 If only one test is specified, the outer pair of parentheses may be omitted. I
l 9This parameter is used by the priority scheduler only. The sequential scheduler I
I ignores it. I
l---J
Figure 5. JOB Statement

Job Control Language 17

IBM BO Column Key Punch Layout
NAME DEPT. PHONE NO. PROJECT NO.

Figure b. Sample JOB statements

NAME FIELD

The "jobname" must always be specified;
it identifies the job to the operating
system. No two jobs being handled concur­
rently by a priority scheduler should have
the same "jobname".

OPERAND FIELD

Job Accounting Informati6n

The first positional parameter can con­
tain the installation account number and
any parameters passed to the installation
accounting toutine$. Th~se routines are
written by the installatio~ and inserted in
the operating system when it is generated.
The precise format of the job accounting
information is specified by the installa­
tion.

As a system generation option with
sequential schedulers, the account number
can be established as a required parameter.
With priority schedulers, the requirement
can be established with a cataloged proce­
dure for the input reader. (Information
about how to write an accounting routine
may be found in IBM system/360 Operating
System: Systems Pr_Qgramrner's Guide.) Oth­
erwise, the account number is optional.

Programmer's Name

The "programmer name" is the second
positional parameter. If no job accounting
information is coded, its absence must be
indicated by a comma preceding the
programmer's name. If neither job account­
ing information nor programmer;s name is
coded, commas need not be used to indicate
their absence.

18

PROJECt NAME DATE DUE OUT
SHEET-OF_

This parameter is optional unless it is
made mandatory at the installation in the
same way as job accounting information is
made mandatory.

Control Statement Message~

The MSGLEVEL parameter indicates the
type of control statement messages the
programmer wishes to receive from the con­
trol program.

MSGLEVEL=O
indicates that only control statewent
diagnostic messages are written for
the programmer.

MSGLEVEL=l
indicates that all control statements,
as well as control statement diag­
nostic messages, are written for the
programmer.

Note: If an error occurs in a control
statement that is continued onto one or
more cards, only one of the continuation
cards is printed with the diagnostics.

Conditions for Terrninati~~22

At the completion of a job step, a code
is issued indicating the outcome of the job
step. Instructions, written by the pro­
grammer, in a FORTRAN program £~ gener­
ate the code. The generated code is tested
against the conditions stated in control
statementsa The error codes generated are:

0 - No errors or warnings detected

4 - Possible errors <warnings) detected

8 - Serious errors detected

12 - For the compiler, the SYSLIN DD state-

ment is omitted, or the NOLOAD option
is specified. For the linkaqe editor,
seve~e errors are detected. -

16 - For the compiler, the SYSIN or
SYSPRINT DD statement is omitted, a
permanent I/O error is encountered,
the source module is nonexistent, or
the compiler, linkage editor, or a
load module terminated abnormally. If
any error message (except a program
interrupt message) is issued during
load module execution, a 16 is issued.

The COND oarameter specifies conditions
under which a~job is terminated. Up to
eight different tests, each consisting of a
code and an operator, may be specified to
the right of the equal sign. The code may
be any number between O and 4095. The
operator indicates the mathematical rela­
tionship between the code placed in the JOB
statement and the codes issued by completed
job steps. If the relationship is true,
the job is terminated. The six operators
and their meanings are:

02erator Meaning
GT greater than
GE greater than or equal to
EQ equal to
NE not equal to
LT less than
LE less than or equal to

For example, if a code 8 is returned by
the compiler and the JOB statement con­
tains:

COND=C7,LT)

the job is terminated.

If more than one condition is indicated
in the COND parameter and any of the
conditions are satisfied, the job is termi­
nated.

Assigning Joo Priority (PRTY)

(Used by Priority Schedulers Only>

To assign a priority other than the
default job priority Cas established in the
input reader procedure), PRTY=nn must be
coded in the operand field of the JOB
statement. The term "nn" is to be replaced
with a decimal number froIT 0 through 14
(the highest priority number is 14).

Whenever possible, avoid using priority
14. This is used by the system to expedite
processing of exceptional jobs. It is also
intended for other-special uses by future

features of systems with priority schedul­
ers ..

If the PRTY parameter is omitted, the
default job priority is assumed.

(Used by Priority Schedulers Only>

With a quantity and diversity of data in
the output stream, an installation may want
to separate different types of output data
into different classes. Each class is
directed to an output writer associated
with a specific output unit. The
MSGCLASS=x parameter allows the messages
issued by the job scheduler to be routed to
an output class other than the normal
message class, A. Replace the letter "x"
with an alphabetic or numeric character.
An output writer, which is assigned to
process this class, will transfer this data
to a specific device.

Spec:ifyi11g. Main Stqrage Requirements for a
Job_ (REGION)

(Used by Priority Schedulers Only>

REGibN=nnnrtnK can be specified to indi­
cate the amount of main storage to be
allocated to the job. Replace the term
"nnnnn" with the number of 1024-byte areas
to be allocated to the job; e.g.,
REGIQN;SOK. This number can range from one
to five digits and cannot exceed 16,384.

If the REGION parameter is omitted, the
default region size Cas established in the
input reader procedure> is assumed.

Note: If different region sizes are to be
specified for each step in the job, the
REGION parameter should be coded in the
EXEC statement associated with each step
instead of in the JOB statement.

EXEC STATEMENT

The EXEC statement (Figure 7) indicates
the beginning of a job step and describes
that job step. The statement contains the
following information:

1. The name of the job step or procedure
step.

Job Control Language 19

2. Name of the cataloged procedure or
load module to be executed.

5. conditions for bypassing the execution
· of this job step.

3. Compiler and/or linka9e editor options
passed to the job step.

6. A time limit for the job step or an
entire cataloged procedure.

4. Accounting information relative to
this job step.

7. Specification of main storage require­
ments for a job step or an entire
cataloged procedure.

r-------------T---------T---1
!Name jOperationjOperand I
~-------------+---------+---~

Positional Parameter

//[stepname] 1 EXEC

~
ROC=cataloged-procedure-name l
ataloged-procedure-name
GM=program-name
GM=*.stepname.ddname
GM=*.stepname.procstep.ddname

Keyword Parameters

[l~=- proc step2 ! = (opt ion [, option] •••) s • s]
[~~~-procstep2!=<accounting-informationl 3 6 ~
[fc~~-procstep21=((code,operator[,stepname[.procsteplll l

[, (code,operator[,stepname[.procstep]])] •.. 8)j

~TIME i
UTIME. procstep2 \ =Cminutes,seconds)

I
I
I
I

: ~REGION i
10

]
I UREGION.procstep 2 \ =nnnnnK

~-------------i---------~---~
1 "stepname" is required when information from this control statement is referred to
in a later job step.

2 If this alternative is selected, it may be repeated in the EXEC statement, once for
each step in the cataloged procedure.

3 If the information specified contains blanks, parentheses, or equal signs, it must
be delimited by apostrophes instead of parentheses.

4 If only one option is specified and it does not contain any blanks, parentheses, or
equal signs, the delimiting parentheses may be omitted.

5 The maximum number of characters allowed between the delimiting apostrophes or
parentheses is 40. The PARM parameter cannot occupy more than one card.

6 If "accounting-information" does not contain commas, blanks, parentheses, or equal
signs, the delimiting parentheses may be omitted.

7 The maximum number of characters allowed between the delimiting apostrophes or
parentheses is 144.

8 The maximum number of repetitions allowed is 7.
9 If only one test is specified, the outer pair of parentheses may be omitted.

10This parameter is used by priority schedulers only.. Sequential schedulers ignore
it.

111If only minutes are given, the parentheses need not be used. If only seconds are
I given, the parentheses must be used and a comma must precede the seconds.
L---
Figure 7. EXEC Statement

20

IBM BO Column Key Punch Layout
NAME DEPT. PHONE NO. PROJECT NO. PROJECT l.D. PROJECT NAME

I I I I I
DATE DUE OUT

Figure 8. Sample EXEC Statements

Example 1 of Figure 8 shows the EXEC
statement used to execute a program. Exam­
ple 2 in Figure 8 shows an EXEC statement
that invokes a cataloged procedure.

NAME FIELD

The "stepname" is the name of the job
step. It is required when information from
this job step is ref erred to in a later job
step.

OPERAND FIELD

Positional Parameter

The options in the positional parameter
of an EXEC statement specify either the
name of the cataloged procedure or program
to be executed. Each program (load module)
to be executed must be a member of a
library (PDS). The library can be the
system library CSYSl.LINKLIB), a private
library, or a temporary library created to
store a program from a previous job step of
the same job.

Specifying a Cataloged Procedure:

{
PROC=cataloged-procedure-name}
cataloged-procedure-name

indicate that a cataloged procedure is
invoked. The "cataloged procedure
name" is the unqualified name of the
cataloged procedure. For example,

SHEET_OF_

PROC=FORTEC

indicates that the cataloged procedure
FORTEC is to be executed.

Specifying a Program in a Library:

PGM=program-name
indicates that a program is executed.
The "program name" is an unqualified
member name of a load module in the
system library (SYSl.LINKLIB) or pri­
vate library. For example,

PGM=IEWL

indicates that the load module IEWL is
executed. A load module in a private
PDS (private library) is executed by
joining the private library with the
system library through the use of a
JOBLIB DD statement. see the discus­
sion concerning JOBLIB.

Specifying a Program Described in a Pre­
vious Job step:

PGM=*.stepname.ddname
indicates that a program is executed,
but the program is taken from a data
set specified in a DD statement of a
previous job step. The * indicates
the current job; "stepname" is the
name of a previous step within the
current job; and "ddname" is the name
of a DD statement within that step.
(The "stepname" cannot refer to a job
step in another job.) For example, in
the statements,

Job control Language 21

//LXIX JOB ,JOHNSMITH,COND=C7,LT)

//STEP4 EXEC PGM=IEWL
//SYSLMOD DD DSNAME=M~TH(ARCTAN)

//STEPS EXEC PGM=*.STFP4.SYSLMOD

statement STEPS indicates that the
name of the program is taken from the
DD statement SYSLMOD in job step
STEP4. Consequently, the load module
ARCTAN in the PDS MATB' is executed.

Specifying a Program Described in a cata­
loged Procedure:

PGM=*.stepname.procstep.ddname
indicates that a program is executed,
but the program is taken from the data
set specified in a no statement of a
previously executed cataloged proce­
dure. The * indicates the current
job; "stepname" is the name of the job
step that invoked the cataloged proce­
dure; "procstep" is the name of a step
within the cataloged procedure;
"ddname" is the name cf a DD statement
within that procedure step. (The
"stepname" cannot refer to a job step
in another job.) For example, consid­
er a cataloged procedure FORT,

//COMPIL
//SYSUT1
//SYSLIN

EXEC PGM=I~JFAAAO
DD UNIT=TAPE
DD DSNAMF=LINKINP

//LKED EXEC PGM=IFWL
//SYSLMOD DD DSNAMF=RESULT(ANS)

Furthermore,
statements are
stream.

assume
placed

the following
in the input

//XLIV
//Sl

JOB ,SMITF,COND=(7,LT)
EXEC PROC=FORT

//S2 EXEC PGM=*.Sl.LKED.SYSLMOD
//FT03F001 DD UNIT~PRINTER

//FT01F001 DD UNIT=INPUT

The statement S2 in the input strearri
indicates that the name of the program i~
taken from the DD statement SYSLMOD in the
procedure step LKED in the procedure
invoked by the EXEC stateroent Sl. Conse­
quently, the load module ANS in the PDS
RESULT is executed.

22

Keyword Parameters

The keyword parameters may ref er to a
program, to an entire cataloged procedure,
or to a step within a cataloged procedure.

If the parameter refers to a program or
to an entire cataloged procedure (with the
PARM parameter only the first procedure
step is affected>, the keyword is written
followed by an equal sign and the list of
subparameters. (In example 2, Figure 8,
the parameter ACCT applies to the entire
procedure.> When parameters are overridden
in a cataloged procedure step, the keyword
is written, a period is placed after the
keyword, and the stepname follows immedi­
ately. (In example 2, Figure 8, the cata­
loged procedure FORTECLG is invoked. Two
sets of PARM options apply to two different
procedure steps; one applies to the proce­
dure step FORT and the other to the proce­
dure step LKED.) More information about
overriding cataloged procedures is given in
the section "Cataloged Procedures."

Options for th~ Compiler and Linkage Edi-
~

The PARM parameter is used to pass
options to the compiler or linkage editor.
(PARM has no meaning to a FORTRAN load
module.>

PARM
passes options to the compiler or
linkage editor, when their execution
is indicated by the PGM parameter in
the EXEC statement. If the execution
of a cataloged procedure is indicated,
the options specified in the first
procedure step are overridden by the
options in the new PARM parameter; any
options specified in other procedure
steps.are deleted.

PARM.procstep
passes options to a compiler or link­
age editor step within the named cata­
loged procedure step. Any PARM param­
eter in the procedure step is deleted,
and the PARM parameter that is passed
to the procedure step is inserted.

A maximum of 40 characters may be writ­
ten between the parentheses or apostrophes
that enclose the list of options.

The format for compiler options and
those linkage editor options most applica­
ble to a FORTRAN program is shown in
Figure 9.

r---1
! compiler:
I
I
I
I
I
I
I
I

{
PARM } {nnnnK }
PARM.procstep ='[SIZE= yyyyyyy](,LINELNG=zzzl [,NAME=xxxxxx] {

,SOURCE }
,NOSOURCE

{'DECK } {'MAP } {'LOAD } {'BCD } {'SPACE} {' ADJUS'I }
,NODECK ,NOMAP ,NOLOAD ,EBCDIC ,PRFRM ,NOADJUST

I Linkage Editor:
I
I
I
I

{~~=- procstep} = C !;~rj G ~~;;:J [, NCALJ l, LIST] [, OVLYJ) 1

11

~---~
I 1 The subparameters (options) are keyword subparameters. I
L---J
Figure 9. Compiler and Linkage Editor Options

Detailed information concerning compiler
and- linkage editor options is given in the
section "Job Processing."

condition for Bypassing a Job Ste£.!_

This COND parameter (unlike the one in
the JOB statement) determines if the job
step defined by the EXFC statement is
bypassed.

COND
states conditions for bypassing the
execution of a program or an entire
cataloged procedure. If the EXEC
statement invokes a cataloged proce­
dure, this COND parameter replaces all
COND parameters in each step of the
procedure.

COND.procstep
states conditions for bypassing the
execution of a specific cataloged pro­
cedure step "procstep". The specified
COND parameter replaces all COND pa­
rameters in that procedure step.

The subparameters for the COND parameter
are of the form:

Ccode,operator[,stepname])

The subparameters "code" and "operator"
are the same as the code and operator
described for the COND parameter in the JOB
statement. The subparameter "stepname"
identifies the previous job step that
issued the code. For example, the COND
parameter:

COND.G0=((5,LT,FORT),C5,LT,LKED))
indicates that the step in which the
COND parameter appears is bypassed if
5 is less than the code returned by
either of the steps FORT or LKED.

If a step in a cataloged procedure
issued the code, "stepname" must qualify
the name of the procedure step; that is,

(code,operator[,stepname.procstep])

If "stepname" or "stepname.proc$tep" is
not given, "code" is compared to all codes
issued by previous job or procedure steps.

Accounting Information

The ACCT parameter specifies accounting
information for a job step within a job.

ACCT
is used to pass accounting information
to the installation accounting rou­
tines for this job step.

ACCT.procstep
is used to pass accounting information
f o: a step within a cataloged proce­
dure.

If both the JOB and EXEC statements
contain accounting information, the instal­
lation accounting routines decide how the
specified accounting information is used
for the job step.

Setting Job Step Iime Liroits (TIME)

(Used by Priority schedulers Only)

To limit the computing time used by a
single job step or cataloged procedure
step, a maximum time for its completion can
be assigned. such an assignment is useful
in a multiprogramming environment where

Job control Language 23

more than one job has access to the comput­
ing system.

The time is coded in minutes and sec­
onds. The number of minutes cannot exceed
1439. The number of seconds cannot exceed
59. If the job step is not completed in
this time, the entire job is terminated.
(If the job step execution time is expected
to exceed 1439 minutes (24 hours) TIME=1440
can be coded to eliminate job step timing.)
If the TIME parameter is omitted, the
default job step time limit (as established
in the cataloged procedure for the input
reader) is assumed.

TIME
assigns a time limit for a job step or
for an entire cataloged procedure.
For a cataloged procedure, this param­
eter overrides all TIME parameters
that may have been specified in the
procedure.

TIME.procstep
assigns a time limit for a single step
of a cataloged procedure. This param­
eter overrides, for the named step,
any TIME parameter which is present.
As many parameters of this form as
there are steps in the cataloged pro­
cedure being executed can be written.

Specifying Main Storage Requirements for a
Job Step (REGION)

Cosed by Priority Schedulers Only)

The REGION parameter may be specified in
the JOB statement, in which case it over­
rides the REGION parameters specified in
the EXEC statements and applies to all
steps of the job. However, if it is
desired to allot to each job step only as
much storage as it requires, the REGION
parameter should be omitted from the JOB
statement, and the EXEC statements should
contain a REGION parameter specifying the
amount of main storage to he allocated to
the associated job step. If the REGION
parameter is omitted from both JOB and EXEC
statements, the default region size (as
established in the cataloqed procedure for
the input reader) is assumed. The size is
specified in the form "nnnnnK" where
"nnnnn" is the number of 1024-byte areas to
be allocated to the job step; e.g.,
REGION=50K.

REGION

24

specifies a region size for the job
step or for the entire cataloged pro­
cedure. For a cataloged procedure,
this parameter overrides all REGION

parameters that may have been speci­
fied in the procedure.

REGION.procstep
specifies a region size for a single
step of a cataloged procedure. This
parameter overrides the REGION param­
eter in the named cataloged procedure
step, if one is present. As many
parameters of this form as there are
steps in the cataloged procedure being
executed can be written.

For a discussion of the region size
required for FORTRAN jobs, see "Specifying
Main Storage Requirements for a Job
(REGION)."

DATA DEFINITION (DD) STATEMENT

The DD statement (Figure 10) describes
data sets. The DD statement can contain
the following information:

1. Name of the DD statement.

2. Name of the data set to be processed.

3. Type and number of I/O devices for the
data set.

4. Volume(s) on which the
resides.

data set

5. Amount and type of space allocated on
a direct access volume.

6. Label information for the data set.

7. The status of the data set before
execution of the step and the disposi­
tion of the data set after execution
of the step.

8. Allocation of data sets to facilitate
channel optimization.

NAME FIELD

ddname
is used:

1. To identify data sets defined by
this DD statement to the compiler
or linkage editor.

2. To relate data sets defined by
this DD statement to data set
reference numbers used by the
programmer in his program.

3. To identify this DD statement to
other control statements in the
input stream.

The "ddname" format is given in "Job
Processing."

procstep.ddname

cataloged procedures. The step in the
cataloged procedure is identified by
~procstep.~ The "ddnarne" identifies
either:

is used to override DD statements in

r----------------------T---------T--1
!Name IOperation!Operand1 I
~----------------------+---------+--~
I I I
I !Positional Parameter
I I
I } ddname }

2
DD I u J 4

l//1procstep.ddname I DATA
I ~JOBLIB 3 I DUMMY
I I
I I

I
I
I
I
I
I
I
I
I
I
I
I
I

!Keyword Parameters 5

I
I DDNAME=ddname
I

dsname
dsnameCelement)
*.ddname

DSNAME= *.stepname.ddname
*.stepname.procstep.ddname
&name
&name(element)

[UNIT=(subparameter-list)]

(DCB=(subparameter-list))

I [VOLUME=(subparameter-list)]

~
PACE= Csubparameter-list) J

SPLIT=Csubparameter-list)
SUBALLOC=Csubpararneter-list)

[LABEL=Csubparameter-list)]

~
DISP=Csubparameter-list) J
SYS OUT= A
SYSOUT=B
SYSOUT=CxC,program-nameJC,form-no.])6 7

I I [SEP=(subparameter-list)]
r----------------------~---------i--~
l 1 To allow a programmer flexibility in the use of the DD statement all parameters are
I optional, however, a DD statement with a blank operand field is invalid.
l 2 The name field must be blank when concatenating data sets.
l 3 The JOBLIB statement precedes any EXEC statements in the job.
I concerning JOBLIB under "Name Field" in this section.

see the

l 4 If either DATA or* is specified, keyword parameters cannot be specified.

discussion

j 5 If "subparameter-list" consists of only one subparameter and no leading comma
I (indicating the omission of a positional subparameter) is required, the delimiting
I parentheses may be omitted.
16This form of the parameter is used only with priority schedulers.
1 7 If program-name and form no. are omitted, the delimiting parentheses can be omitted.
L---
Figure 10. Data Definition (DD) Statement

Job Control Language 25

1. A DD statement in the cataloged
procedure that is to be modified
by the DD statement in the input
stream, or

2. A DD statement that is to be
added to the DD statements in the
procedure step.

JOBLIB
is used to concatenate data sets with
the operating system library; that is,
the operatinq system librarv and the
data -sets specified in the JOBLIB DD
statement are temporarily combined to
form one library.

The "PGM=program ,na~e" parameter in
the EXEC statement refers to a load
module in the syste~ library. Howev­
er, if this parameter refers to a load
module in a private library, a JOBLIB
statement identifying the PDS in which
the module resides roust be specified
for the job. The JOBLIB statement
concatenates the private library with
the system library. The library indi­
cated in the JOBLIB statement is
searched for a module before the sys­
tem library is searched.

The JOBLIB statement must immediately
follow a JOB statement, and the con­
catenation is in effect only for the
duration of the job.

Only one JOBLIB statement roay be specified
for a job.

A JOBLIB statement does not have to be
entered for load moduieS created in
this job, or for permanent members of
the system library.

If the name field is blank, the data set
defined by the DD statement is concatenated
with the data set defined in the preceding
DD statement. In effect, these two data
sets are combined into one data set. only
sequential and partitioned data sets can be
concatenated. Direct access data sets can­
not be concatenated. (Data sets may also
be concatenated with the data set specified
in the JOBLIB DD statement: several data
sets can be concatenated with the system
library.)

Note: Data sets with records of different
record formats or data sets that reside on
different types of devices should not be
concatenated.

26

OPERAND FIELD

For purposes of discussion, parameters
for the DD statement are divided into six
classes. Parameters are used to:

• Specify unit record data sets.

• Retrieve a previously created and cata­
loged data set.

• Retrieve a data set created in a pre­
vious job step in the current job and
passed to the current job step.

• Retrieve a data set created but not
cataloged in a previous job.

• Create data sets that are to reside on
magnetic tape or direct access volumes.

• Optimize I/O operations.

The following text describes the DD
statement parameters that apply to process­
ing unit record data sets and retrieving
data sets created in previous job steps, or
data sets created and cataloged in previous
jobs (see Figure 11). The method of
retrieving uncataloged data sets created in
previous jobs is also discussed in this
section. Parameters shown in Figure 10 and
not mentioned in this section are used to
create data sets, retrieve uncataloged data
sets, and optimize I/O operations in job
steps. These parameters are discussed in
the sections "Creating Data Sets" and
"Programming Considerations."

Unit Record Parameters

The UNIT, DCB, and SYSOUT parameters are
used for unit record data sets; the * or
DATA parameters designate that the data set
for this job step follows in the input
stream. Examples of DD statements for unit
record data sets are shown in Figure 12.

Specifying Data in the Input Stream:

* indicates that a data set immediately
follows this DD statement in the input
stream. This parameter is used to
specify a source module deck, object
module deck, or data, in the input
stream. If the EXEC statement for the
job step invokes a cataloged proce­
dure, a data set may be placed in the
input stream for each procedure step.
If the EXEC statement in the input
stream specifies execution of a pro­
gram, only one data set may be placed
in the input stream. The DD * state-

ment must be the last DD statement for
the procedure step or program. The
end of the data set must be indicated
by a delimiter statement. The data
cannot contain // in the first two
characters of the record.

r---1
I I
I
I
I
I
I
J

I
I

{~ATA}
1

l
dsname ,

*.ddname
dsnameCelement) {.

SNAME= •.stepname.ddname
•.stepname.procstep.ddname(

&name ' &nameCelement) ·

UNIT=(nameC,£nlP}2])3

DCB=(~ ~
PRTSP=O~ (PRTSP=l
PRTSP=2

) {p{~;~~:~} {' STACK=1}} { f MODE=C ,STACK=2)
'subparameter-list6

SYSOUT=A
SYSOUT=B
SYSOUT=CxC,program-nameJC,forrn-no.]) 7

~
DELETEJ 4

OLD KEEP DISP=({NEW~ PASS)5
MOD CATLG
SHR UNCATLG

ILABEL={subparameter-list) 6

I I
I VOLUME= (s ubparameter- list) 6 I
~---~

1 If either of these two parameters isl
selected, it must be the only parameter
selected.

2If neither "n" nor "P" is specified, 1
is assumed.

3If only "name" is specified, the delim­
iting parentheses may be omitted.
~The assumption for the second subpararn­
eter is discussed in "Specifying the
Disposition of a Data Set" in this
Section.

5 The subparameters are positional.
6 See the section "Creating Data Sets."
7 This form of the parameter is used only
with priority schedulers.

l 8 If program-name and for~ no. are omit-
1 ted, the delimiting parentheses can bel
I omitted. I
L---~~-----~-----------------~------------J
Figure 11. DD Statement Parameters

DATA
also indicates data in the input
stream. The restrictions and use of
the DATA parameter are the same as the
*, except that // may appear in the
first and second positions in the
record.

UNIT Parameter:

UNIT=Cname[,{nlP}])
specifies an address of an
input/output device, a type of I/O
device, or class of I/O devices and
the number of I/O devices assigned to
a data set. When the system is gener­
ated, the "name" is assigned by the
operating system or the installation.
(See the section "System Generation
Macro-Instructions" in the publication
System Generation.) The programmer
can use only the assigned names in his
DD statements. For example,

UNIT=190, UNIT=2311, UNIT=TAPE
where 190 is a device address, 2311 is
a device type, and TAPE is a device
class.

{njP}
specifies the number of devices allo­
cated to the data set. If a number
"n" is specified, the operating system
assigns that number of devices to the
data set. Parallel, "P", is used with
cataloged data sets. The control pro­
gram assigns as many devices as there
are volumes indicated in the index and
the label field of the cataloged data
set.

DCB Parameter:

DCB=PRTSP=£Q1112!3}
is used to indicate line spacing for
the printer. The digits o. Y; 2, and
3 indicate no space, single space,
double space, and triple space, res­
pectively. The carriage control char­
acter in a FORTRAN record causes spac­
ing before the line is printed. The
PRTSP parameter causes spacing after
the line is printed. A default of 0
only applies to a FORTRAN program.

{MODE=E} {' STACK=l}
DCB=(MODE=C ,STACK=2)

specify options for the card read
punch. The MODE subparameter indi­
cates whether the card is transmitted
in column binary or EBCDIC mode; c
specifies column binary, and E speci­
fies EBCDIC.

The STACK subparameter indicates
stacker selection for the card read
punch.

Job Control Language 27

Sample Coding Form

I I I I I I I I I : : : : : : : : : : : : : : : : ; : : : : : : : : : : : : : : I
Figure 12. Examples of Unit Record DD Statements

Routing a Data Set to an output Stream
(SYSOUT)

Through the use of the SYSOUT parameter,
output data sets can be routed to a system
output stream and handled in much the same
way as system messages.

SYSOUT=A
can be used with sequential schedulers
to indicate that the data set is to be
written on the system printer output
device. No parameter other than the
DCB parameter has any meaning when
SYSOUT=A is used. With systems pro­
viding multiprogramming with a fixed
number of tasks, the processing pro­
gram that writes the data must be in
the lowest priority partition.

SYSOUT=B
can be used with sequential schedulers
to indicate the system card punch
unit. The priority scheduler will
route the output to class B.

SYSOUT=CxC,program-name] [,form-noeJ)

28

is used with priority schedulers.
When priority schedulers are used, the
data set is normally written on an
intermediate direct access device dur­
ing program execution and later routed
through an output stream to a system
output device. The character "x" can
be alphabetic or numeric, specifying
the system output class. Output writ­
ers route data from the output classes
to system output devices. The DD
statement for this data set can also
include a unit specification describ­
ing the intermediate direct access
device and an esti~ate of the space
required. If these parameters are

omitted, the job scheduler provides
default values as the job is read and
processed.

If there is a special installation
program to handle output operations,
its "program-name" should be speci­
fied. "Program-name" is the member
name of the program, which must reside
in the system library.

If the output data set is to be
printed or punched on a specific type
of output form, a four-digit
"form-no." should be specified. This
form number is used to instruct the
operator, in a message issued at the
time the data set is to be printed, of
the form to be used.

Retrieving Previously Created Data Sets

If a data set on a magnetic tape or a
direct access volume is created with stan­
dard labels and cataloged in a previous job
or job step, all information for the data
set such as device, volume, space, etc., is
stored in the catalog and labels. This
information need not be repeated in other
DD statements. To retrieve the data set,
the name (DSNAME) and disposition (DISP) of
the data set must be specified.

If the data set was created in a pre­
vious job step in the current job and its
disposition was specified as PASS, all of
the inf or~ation in the previous DD state­
ment is available to the control program,
and is accessible by ref erring to the
previous DD statement by name. To retrieve
the data set, a pointer to a data set

Sample Coding Form

I I I I I I I I I I f I I I I I

Figure 13. Retrieving Previously Created Data Sets

created in a previous job step is specified
by the DSNAME parameter. The disposition
(DISP) of the data set is also specified;
if· more than one unit is to be allocated,
the UNIT parameter must be specified too.

If the data set was created with stan­
dard labels in a previous job but not
cataloged, information concerning the data
set, such as space, record format, etc., is
stored in the labels. The volume and
device information is not stored. To
retrieve the data set, the name (DSNAME),
if the data set is na~ed, disposition
(DISP), volume (VOLUME), and device (UNIT)
must be specified.

If a data set created without standard
labels in a previous job is retrieved, the
LABEL and DCB parameters must be specified.
The VOLUME, LABEL, and DCB parameters are
discussed in the section "Creating Data
Sets."

Examples of the use of DD statements to
retrieve previously created data sets are
shown in Figure 13.

IDENTIFYING A CREATED DATA SET: The DSNAME
parameter indicates the name of a data set
or refers to a data set defined in the
current or a previous job step.

Specifying a Cataloged Data Set by Name:

DSNAME=dsname
the fully qualified name of the data
set is indicated by "dsname." If the
data set was previously created and
cataloged, the control program uses
the "dsname" to search the catalog,
find the data set, and instruct the
operator to mount the required
volumes.

Specifying a Generation Data Group or PDS:

DSNAME=dsname(element)
indicates either a generation data set

in a generation data group, or a
member of a partitioned data set. The
name of the generation data group or
partitioned data set is indicated by
"dsname"; if "element" is either 0 or
a signed integer, a generation data
set is indicated. For example,

DSNAME=FIRING(-2}

indicates the third most recent member
of the generation data group FIRING.
If "element" is a name, a member of a
partitioned data set is indicated.

Before any generation data set can be
specified in the DSNAME parameter, the
name for the generation data group
must be inserted in the catalog index.
The name of the generation data group
is inserted by use of a utility pro­
gram described in the section
"Modifying System Control Data" in the
Utilities publication.

Note: Members of a partitioned data
set cannot be read as input to a
FORTRAN object program or created as
output from a FORTRAN object program
even though the member name has been
specified in the DSNAME parameter of a
DD statement.

Referring to a Data Set in the Current Job
Step:

DSNAME=*.ddname
indicates a data set that is defined
previously in a DD statement in this
job step. The * indicates the current
job. The name of the data set is
copied from the DSNAME parameter in
the DD statement named "ddname."

Referring to a Data Set in a Previous Job
Step:

DSNAME=*.stepname.ddname
indicates a data set defined in a DD

Job control Language 29

statement in a previous job step in
this job. The * indicates the current
job, and "stepname" is the name of a
previous job step. The name of the
data set is copied from the DSNAME
parameter in the DD statement named
"ddname." For example, in the control
statements

//LAUNCH JOB

//JOBLIB DD DSNAME=FIRING,DISP=(OLD,PASS)

//Sl EXEC PGM=ROCKET

//FT05F001 DD DSNA~.E=RATES(+1),DISP=OLD

//FT07F001 DD DSNAME=TIME,DISP=(OLD,PASS)

//52 EXEC PGM=DISTANCE

//FT08F001 DD DSNAME=*.S1.FT07F001,DISP=OLD

//FT01F001 DD *

The DD statement FT08F001 in job step
S2 indicates that the data set name
{TIME) is copied from the DD statement
FT07F001 in job step Sl.

Ref erring to a Data Set in a Cataloged
Procedure:

DSNAME=*.stepname.procstep.ddname
indicates a data set defined in a
cataloged procedure invoked by a pre­
vious job step in this job. The *
indicates the current job; "stepname"
is the name of a previous job step;
"procstep" is the name of a step in
the cataloged procedure; and "ddname"
is the name of the DD statement defin­
ing the data set.

DSNAME=&name
assigns a name to a temporary data
set. The control program assigns the
data set a unique naroe which exists
only until the end of the current job.
The data set may be accessed in fol­
lowing job steps by &name. This
option is useful in passing an object
module from a compiler job step to a
linkage editor job step.

DSNAME=&nameCelement)

30

assigns a name to a member of a
temporary PDS. The name is assigned
in the same manner as the
DSNAME=&name. This option is useful
in storing object modules that will be

link edited in a later job step in the
current job.

SPECIFYING THE DISPOSITION OF A DATA SET:
The DISP parameter is specified for both
previously created data sets and data sets
being created in this job step.

[

,DELETEJ NEW ,KEEP DISP=(~OL.D}. ,PASS)
MOD ,CATLG
SHR ,UNCATLG

is used for all data sets residing on
magnetic tape or direct access vol~~es.

The first subparameter indicates when
the data set is Cwas) created.

NEW

OLD

MOD

SHR

indicates that the data set is created
in this step.

indicates that the data set was creat­
ed by a previous job or job step.

indicates that the data set was creat­
ed in a previous job or job step, and
records are to be added to the data
set. Before the first I/O operation
for the data set occurs, the data set
is positioned following the last
record. If a data set specified as
MOD does not exist, the specification
is assumed to be NEW.

indicates that the data set resides on
a direct-access volume and is used as
input to a job whose operations do not
prevent simultaneous use of the data
set as input to another job. This
parameter has meaning only in a ~ul­
tiprogramming environment for existing
data sets. If it is omitted in a
multiprogramming environment, the data
set is considered unusable by any
other concurrently operating job. If
it is coded in other than a multiprog­
ramming environment, the syst~u

assumes that the disposition of the
data set is OLD.

The second subparameter indicates the
disposition of the data set.

DELETE

KEEP

causes the space occupied by the data
set to be released and made available
at the end of the current job step.
If the data set was cataloged, it is
removed from the catalog.

insures that the data set is kept

PASS

CAT LG

intact until a DELETE option is speci­
fied in a subsequent job or job step.
KEEP is used to retain uncataloged
data sets for processing in future
jobs. KEEP does not imply PASS.

indicates that the data set is
ref erred to in a later job step. when
a subsequent reference to the data set
is made, its PASS status lapses unless
another PASS is issued. The final
disposition of the data set shbuld be
stated in the last job step that uses
the data set. When a data set is in
PASS status, the operating system
attempts to keep the volume(s) for the
data set mounted. If dismounting is
necessary, the control program issues
a message to mount the volume(s) when
needed. PASS is used to pass data
sets among job steps in the same job.

When a data set is concatenated with
the system library through use of the
JOELIE DD statement, PASS assumes a
different meaning. Without PASS in
the JOELIE statement, the concatena­
tion is only in effect for the first
job step. If PASS is specified, the
concatenation is in effect for the
entire job.

causes the creation of a catalog entry
that points to the data set. The data
set can then be ref erred to in subse­
quent jobs or job steps by name (CATLG
implies KEEP).

UNCATLG
causes the data set to be removed from
~ne catalog at the end of the job
step. UNCATLG does not imply DELETE.

If the second subparameter is not speci­
fied, no action is taken to alter the
status of the data set. If the data set
was created in this job (NEW), it is
deleted at the end of the current job step.
If the data set existed before this job
(MOD or OLD), it exists after the end of
the job.

DELIMITER STATEMENT

The delimiter statement (see Figure 14)
is used to separate data from subsequent
control statements in the input stream, and
is placed after each data set in the input
stream.

r----T---------T--------------------------1
INamejOperationjOperand I
(----+---------+--------------------------~
I/* I I I
L----~---------i--------------------------J
Figure 14. Delimiter Statement

The delimiter statement contains a slash
in column 1, an asterisk in column 2, and a
blank in column 3. The reroainder of the
card may contain comments.

Job control Language 31

JOB PROCESSING

To execute a FORTRAN program, three
steps are required -- compiling, link edit­
ing, and executing. Using cataloged proce­
dures to make these steps easier is dis­
cussed in this section.

For each of the three steps involved in
processing, ddnames and device names are
specified by the operating system. These
ddnames, options for the compiler and link­
age editor, batched compilation, and speci­
fying additional libraries for the linkage
editor are discussed in this section.

USING CATALOGED PROCEDURES

Because writing job control statements
can become time-consuming, IBM supplies
four cataloged procedures to aid in the
compiling, link editing, and executing of
FORTRAN E programs. Each procedure
requires a

//procstep.SYSIN DD

statement indicating the location of a
source module or object module to the
control program. In addition, a DD state­
ment GO.SYSIN can be used to define data in
the input stream for a procedure step that
executes a load module. The job control
statements needed to invoke the procedures,
and deck structures used with the proce­
dures are described in the following text.

Compile

The name of the cataloged procedure for
compilation is FORTEC. It is invoked by
the name FORTEC as the first parameter in
an EXEC statement.

(The cataloged procedure, FORTEC, con­
sists of the control statements shown in
Figure 48 in "Cataloged Procedures.")

With the procedure FORTFC, a DD state­
ment FORT.SYSIN indicating the location of
the source module must be supplied.
Figure 15 shows control statements that can
be used to invoke the procedure.

32

//jobname JOB
// EXEC FORTEC
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*

Figure 15. Invoking the Cataloged Proce­
dure FORTEC

Single Compile: A sample deck structure to
compile a single source module is shown in
Figure 16.

//JOBSC JOB 00,JIMJONES,MSGLEVEL=l
//EXECC EXEC PROC=FORTEC
//FORT.SYSIN DD *
r---1
I FORTRAN source Module I
L---J
/*

Figure 16. Compiling
Module

a Single Source

The SYSIN data set containing the source
module is defined as data in the input
stream for the compiler. Note that a
delimiter statement follows the last state­
ment in the source module.

Batched Compile: A sample deck structure
to batch compile is shown in Figure 17.

//JOBBC JOB 00,JOHNDOE,MSGLEVEL=l
//EXECC EXEC PROC=FORTEC
//FORT.SYSIN DD *
r---1
I First FORTRAN Source Module I
L---J

r---,
I Last FORTRAN Source Module j
L---J
/*

Figure 17. Compiling
Modules

several Source

If several source modules are entered in
the SYSIN data set for one job step, the
compiler recognizes the FORTRAN END state­
ment. If the next card is a delimiter

statement, control returns to the control
program at the end of the compilation. If
the next card is a FOFTRAN statement,
control remains with the FORTRAN compiler.

Compile and Link Edit

The cataloged procedure to compile a
FORTRAN source module and link edit the
resulting object module is named FORTECL.
It is invoked by the name FORTECL as the
first parameter in an EXEC statement.

(The cataloged procedure FORTECL con­
sists of the job control statements shown
in Figure 49 in "Cataloged Procedures".)

With the orocedure FORTECL, a DD state­
ment FORT.SYSIN must be supplied to indi­
cate the location of the source module.
This cataloged procedure writes the result­
ing load module in the FORTRAN library
(SYSl.FORTLIB); however, an overriding DD
statement

//LKED.SYSLMOD DD DSNA~IB=SYSl.FORTLIB(name)

can be supplied to name the resulting load
module. Figure 18 shows control statements
that can be used to invoke the procedure.

//jobname JOB
// EXEC FORTECL
//FORT.SYSIN DD *
r---1
I FORTRAN Source ~odule I
l ___ J

/*
//LKED.SYSLMOD DD DSNAME=SYSl.FORTLIB(name)

Figure 18. Invoking the Cataloged Proce­
dure FORTECL

Again the source module is defined as
data in the input stream. Note that the DD
statement LKED.SYSLMOD ~ust follow the
delimiter statement for the source modules
in the input stream.

Batch Compile and Link Edit: A sample deck
structure to batch compile several source
modules and link edit the resulting object
modules is shown in Figure 19. The result­
ing load module is placed in the FORTRAN
library and assigned the name CHEM.

//JOBCLE JOB 012,'E .SMITH'
// EXEC FORTECL
//FORT.SYSIN DD *
r---1
I First FORTRAN Source Module I l ___ J

r---1
I Last FORTRAN Source Module I
l ___ J

/*
//LKED.SYSLMOD DD DSNAME=SYSl.FORTLIB(CHEM)

Figure 19. Compiling and Link Editing Sev­
eral Source Modules

Single Compile and Link Edit: A sample
deck structure to compile and link edit a
single source module, placing it in the
FORTRAN library, and assigning the result­
ing module the name XYZ is shown in
Figure 20. The source module is read from
the cataloged sequential data set SOMOD.

//COMPLED JOB 527,'JOHN BROWN'
// EXEC FORTECL
//FORT.SYSIN DD DSNAME=SOMOD,DISP=OLD
//LKED.SYSLMOD DD DSNAME=SYSl.FORTLIB(XYZ)

Figure 20. Compiling and Link Editing a
Source Module Residing in a
Cataloged Data Set

Because the source modules reside in a
cataloged data set, the delimiter statement
is omitted.

Link Edit and Execute

The cataloged procedure to link edit
FORTRAN object modules and execute the
resulting load module is named FORTELG. It
is invoked by the name FORTELG as the first
parameter in an EXEC statement.

(The cataloged procedure, FORTELG, con­
sists of the control statements shown in
Figure 50 in "Cataloged Procedures").

With the procedure FORTELG, a DD state­
ment LKED.SYSIN, which indicates the loca­
tion of the object module, must be sup­
plied.

Three data sets are defined by DD state­
ments in the cataloged procedure for use
during execution of the load module. If
the programmer intends to use these DD
statements, he can use data set reference

Job Processing 33

numbers one, two, and three in the follow­
ing way:

1 - the data set defined by the DD state­
ment GO.SYSIN (used primarily to read
data from the input stream)

2 - card output

3 printed output

Any of the DD statements for these data
set reference numbers may be overridden, as
shown in "Cataloged'Procedures".

Figure 21 shows control statements that
can be used to invoke the FORTELG cataloged
procedure.

//jobname JOB
// EXEC FORTELG
//LKED.SYSIN DD *
r---1
I FORTRAN Object ~odule I
L---J
/*

Figure 21. Invoking the cataloged Proce­
dure FORTELG

Link Edit: A sample deck structure to link
edit and execute as one load module several
object modules entered in the input stream
is shown in Figure 22.

//JOBBLG JOB 00,TOMSMITH,MSGLEVEL=l
//EXECLG EXEC PROC=FORTELG
//LKED.SYSIN DD *
r---1
I First FORTRAN Object Module I
L---J

r---1
I Last FORTRAN Object Module I
l ___ J

/*

Figure 22. Link Edit and Fxecute

The object module decks were created by
the DECK compiler option. The linkage
editor recognizes the end of one module and
the beginning of another and resolves ref­
erences between them.

A sample deck structure is shown in
Figure 23 for object moou1es that are
members of the cataloge~ sequential data
set, OBJMODS, that resides on a tape vol­
ume. In addition a data set in the input
stream is processed using data set ref­
erence number 1.

34

//JOBBLG JOB 00,EDJONES,MSGLEVEL=l
//EXECLG EXEC FORTELG
//LKED.SYSIN DD DSNAME=OBJMODS,DISP=OLD
//GO.SYSIN DD *
r---1
I Data I
l---J
/*

Figure 23. Link Edit
Modules in
Set)

and Execute (Object
a cataloged Data

compile, Link Edi~nd Execute

The fourth cataloged procedure,
FORTECLG, passes a source module through
three procedure steps - compile, link edit,
and execute. The cataloged procedure is
invoked by the name FORTECLG as the first
parameter in an EXEC statement.

{The cataloged procedure, FORTECLG con­
sists of the control statements shown in
Figure 51 in "Cataloged Procedures.")

The SYSIN data set <source module) must
be defined to the compiler. Figure 24
shows statements that can be used to invoke
the procedure FORTECLG.

//jobname JOB
// EXEC PROC=FORTECLG
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L--~--------------------------------------J
/*

Figure 24. Invoking the cataloged Proce­
dure FORTECLG

Single Compile, Link Edit, and Execute:
Figure 25 shows a sample deck structure to
compile, link edit, and execute a single
source module.

//JOBSCLG JOB 00,TJONES,MSGLEVEL=l
//EXECC EXEC FORTECLG
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*

Figure 25. Single Compile, Link Edit, and
Execute

Batched compile, Link Edit, and Execute:
Fiqure 26 shows a sample deck structure to
batch compile, link edit, and execute. The
source modules are placed in the input
stream along with a data set that is read
using data set reference number 1 in the
load module.

//JOBBCLG JOB 00,JBOND,MSGLEVEL=l
//EXECCLG EXEC FORTECLG
//FORT.SYSIN DD *
r---1
J First FORTRAN Source Module I
L---J

r---1
I Last FORTRAN Source Module I
L---J
/*
//GO.SYSIN DD *
r---1
I Data I
L---J
/*

Figure 26. Batched Compile, Link Edit, and
Execute

STORAGE LOCATIONS AND BYTES

Storage locations in System/360 are
called bytes, words, and double-words. One
word is four bytes long; a double-word is
eight bytes long.

When data is transmitted to main st-orage
by I/O operations under control of FORMAT
statements, one character indicated by the
FORMAT statement is contained in one byte.

When data is read into main storage, it
is translated into internal format. A real
constant or variable, or an integer con­
stant or variable occupies one word (four
bytes). A double-precision constant or
variable occupies a double-word (eight
bytes). For I/O operations not under
FORMAT control, variables and constants are
read from and written on the volume in the
internal format.

COMPILER PROCESSING

The names for DD statements Cddnames)
relate I/O statements in the compiler to
data sets used by the compiler. These
ddnames must be used for the compiler.

When the system is generated, names for I/O
device classes are also established and
must be used by the programmer.

Compiler Name

The program name for the compiler is
IEJFAAAO. If the compiler is to be exe­
cuted without using the supplied cataloged
procedures in a job step, the EXEC state­
ment parameter

PGM=IEJFAAAO

must be used.

Compiler ddnames

The compiler can use six data sets. To
establish communication between the compil­
er and the programmer, each data set is
assigned a specific ddname. Each data set
has a specific function and device require­
ment. Table 2 lists the ddnames, func­
tions, and device requirements for the data
sets.

To compile a FORTRAN source module, four
of these data sets are necessary -- SYSIN,
SYSPRINT, SYSUTl, and SYSUT2, along with
the direct-access volume(s) that contains
the operating system. With these four data
sets, only a listing is generated by the
compiler. Two optional data sets are pro­
vided for writing the object module: the
SYSPUNCH 'data set is intended for punching
the object module and the SYSLIN data set
is intended for writing the object module
on a magnetic tape or a direct access
volume.

For the DD statement SYSIN or SYSPRINT,
an intermediate storage device may be spec­
ified instead of the card reader or print­
er. The intermediate storage device usual­
ly is magnetic tape or a direct access
device.

If an intermediate device is specified
for SYSIN, the compiler assumes that the
source module deck was placed on intermedi­
ate storage by a previous job or job step.
If an intermediate device is specified for
SYSPRINT, the map, listing, and
error/warning messages are written on that
device; a new job or job step can print the
contents of the data set. When the
SYSPRINT data set is written on an inter­
mediate storage device, carriage control
characters are placed in the records.

Job Processing 35

Table 2. Compiler ddnames
r--------T------------------------------------T-----~-----------------T-----------------1

I ddname I Function I Device Requirements I Record Length1 I
r--------+------------------------------------+-----------------------+-----------------~
jSYSIN !Reading the source module jcard reader, direct ac-1 80 I
I I lcess, or magnetic tape I I
r--------+------------------------------------+-----------------------+-----------------~
jSYSPRINTIWriting the storage map, listing, jprinter, direct access,j 121 I
I I and messages I or magnetic tape I I
r--------+------------------------------------+-----------------------+-----------------~
jSYSPUNCHjPunching the object module deck Icard punch, direct ac- I 80 I
I I I cess, or magnetic tape I I
t--------+------------------------------------+-----------------------+-----------------~
ISYSLIN !Output data set for the object mod- Icard punch, direct ac- I 80 I
I jule, used as input to linkage editorlcess, or magnetic tape I I
r--------+------------------------------------+-----------------------+-----------------~
jSYSUTl jWork data sets used by the compiler !direct access or mag- !Determined by thel
I lfor compilation jnetic tape jcompiler during I
r--------~ I I compilation. Not I
I SYSUT2 I I I specified by the I
I I I I programmer. I
r--------L------------------------------------i-----------------------L-----------------~
j 1 The maximum number of records per block for the SYSIN, SYSPRINT, and SYSPUNCH data I
I sets is determined by device type (see Table 12). The maximum number of records per I
I block for the SYSLIN data set is either 1, 5, or 40, depending on which linkage editor!
I is used to read the data set. I
l---J

The following features of the compiler
can be used only if the PRFRM compiler
option is specified. For a more detailed
description of the SPACE/PRFRM option, see
"Compiler Options" in this section.

If the PRFRM compiler option is speci­
fied in the EXEC state~ent, the FORTRAN
compiler can read or write blocked records
for SYSIN, SYSPUNCH, SYSP~INT, and SYSLIN.
Blocked records are grouped before they are
written on a volume; the entire group is
then written together, instead of writing
each record individually. (Blocking for
SYSUTl and SYSUT2 is determined by the
compiler; the programmer cannot specify
blocking for these data sets.) Figure 27
illustrates blocked records.

block block

~~~-~~ 
I record I record I I record I record I 
L _________ i _________ L_i _________ i _________ J 

Figure 27. Blocked Records 

Blocking saves space on the volume and 
increases the efficiency of the compiler 
because fewer I/O operations are performed. 
The programmer specifies whether records 
are blocked by the BLKSIZF subparameter in 
the DCB parameter of the DD statement (see 
"Creating Data Sets"). Records can be 
blocked only if they are read from or 
written on a direct access or magnetic tape 

36 

volume. The SYSLIN data set should be 
blocked only if the object module is to be 
used as input to either of the linkage 
editor programs IEWLF440 or IEWLF880. 
Table 2 shows the record length and maximum 
number of records per block for each data 
set. 

If the SPACE compiler option is speci­
fied, other data sets cannot be concatenat­
ed with the SYSIN data set. If the PRFRM 
compiler option is specified, other data 
sets can be concatenated with the SYSIN 
data set. 

If the SPACE compiler option is speci­
fied, the SYSPRINT, SYSPUNCH, and SYSLIN 
data sets must be sequential data sets; 
only the SYSIN data set can be read as a 
member of a PDS. However, if the PRFRM 
compiler option is specified, the SYSPRINT, 
SYSPUNCH, and SYSLIN data sets can be 
written as members of partitioned data 
sets. 

compiler Device Classes 

Names for input/output device classes 
used for compilation are also specified by 
the operating system when the system is 
generated. The class names, functions, and 
types of devices are shown in Table 3. 



Table 3. Device Class Names 
r----------T---------------T--------------1 
!CLASS NAMEICLASS FUNCTIONSIDEVICE TYPE I 
r----------+---------------+--------------~ 
ISYSSQ !writing, !•magnetic tapel 
I !reading, !•direct access! 
I I backspacing I I 
I I (sequential) I l 
r----------+---------------+--------------~ 
ISYSDA !writing, !•direct accessj 
I I reading, I l 
I I backspacing, I I 
I I updating I I 
I !records in I I 
I I place C direct) I I 
t----------+---------------+--------------~ 
ISYSCP !punching cards l•card punch I 
r----------+---------------+--------------~ 
IA ISYSOUT output !•printer I 
I I I •magnetic tape I 
L----------~---------------~--------------J 

The data sets used by the compiler must 
be assigned to the device classes listed in 
Table 4. 

Table 4. correspondence Between Compiler 
ddnames and Device Classes 

r-------~--------------------------------1 

lddname jPossible Device Classes I 
t--------+--------------------------------i 
ISYSIN ISYSSQ, the input stream device! 
I I (specified by DD* or DD DATA>,I 
I lor a device specified as thel 
I I card reader I 
r--------+--------------------------------~ 
ISYSPRINTIA,SYSSQ I 
r--------+--------------------------------~ 
ISYSPUNCHISYSCP 1 ,SYSSQ,SYSDA I 
r--------+--------------------------------1 
ISYSUT1 ISYSSQ,SYSDA I 
r--------+--------------------------------1 
ISYSUT2 ISYSSQ,SYSDA I 
r--------+--------------------------------1 
ISYSLIN ISYSSQ,SYSDA,SYSCP1 I 
r-------~--------------------------------1 
I I 
l 1 Both the SYSPUNCH and SYSLIN data setsl 
I cannot be written on the SYSCP device! 
I class in the same job step. I 
L-----------------------------------------J 

Compiler Options 

Options (Figure 28) may be passed to the 
compiler through the PARM parameter in the 
EXEC statement. The following information 
may be specified: 

1. Amount of main storage allocated to 
the compiler for this compilation. 

2. Maximum length of a FORTRAN record 
written under FORMAT control. 

3. Name assigned to the program. 

4. Whether the source program is coded in 
Binary Coded Decimal (BCD) or Extended 
Binary Coded Decimal Interchange Code 
(EBCDIC). 

5. Whether a list of source statements is 
printed. 

6. Whether an object module is punched. 

7. Whether a map of the object module is 
printed. 

8. Whether the compiler writes the object 
module on an output data set that 
resides on a direct access or tape 
volume. 

9. Whether any additional main storage is 
used either to compile a larger source 
module or to increase the speed of 
compilation. 

10. Whether the source statements contain 
embedded blanks in variable names, 
statement numbers, constants and re­
served words, whether meaningful 
blanks are not inserted between names 
and reserved words, and whether 
FORTRAN keywords are used as variable 
names in the source program. 

There is no specified order for compiler 
options. 

Figure 28 shows the compiler opticns. 
For most options, a default for the option 
is underlined. If an alternative is not 
underlined, the default is indicated in the 
explanation of that option. The defaults 
indicated in this publication are the 
standard defaults for FORTRAN(E). However, 
when the operating system is generated, the 
installation can change the defaults for 
compiler options. For more information 
about changing the defaults for compiler 
options, see the section "System Generation 
Macro-Instructions" in the system Genera­
tion publication. Before using any of the 
default options, the programmer should 
determine the defaults for his installa­
tion. For purposes of illustration, this 
publication assumes that the defaults cho­
sen by the installation are the standard 
defaults. 

Job Processing 37 



r---------------------------------------------------------------------------------------1 
I {PARM } ' {nnnnK } {'BCD } {'SOURCE } I 
I PARM.procstep = SIZE= yyyyyyy C,LINELNG=zzz] [,NAME=xxxxxx ,EBCDIC ,NOSOURCE I 
I I 

I 1 {,DECK } {,MAP }{·LOAD }{·SPACE} {·ADJUST }'1,2,3 I 
I I NODECJ< I NOMAP 'NOLOAD • PRFRM • NOADJUS'.£ I 
~---------------------------------------------------------------------------------------~ 
t 1 If the information specified contains blanks, parentheses, or equal signs, it must not! 
I be delimited by parentheses but by apostrophes. I 
j 2 If only one option is specified and it does not contain any blanks, parentheses or I 
I equal signs, the delimiting parentheses or apostrophes may be omitted. I 
l 3 The maximum number of characters allowed between the delimiting apostrophes or paren-1 
I theses is 40. The PARM parameter cannot occupy more than one card. I 
L---------------------------------------------------------------------------------------J 

•Figure 28. Compiler Options 

SIZE=yyyyyyy or SIZE=nnnnK: The SIZE 
option indicates the amount of main storage 
available for the compilation. The pro­
grammer specifies a number yyyyyyy, 
(yyyyyyy ~ 15360) or nnnnK (K=1024 and 
15snnnns9999). If the option is not speci­
fied or the number specified is less than 
15360, the compiler assumes 15360. If the 
number specified is greater than the amount 
available, processing continues, provided 
the amount available is at least 15360 
bytes when the SPACE option is specified, 
or at least 19456 bytes when the PRFRM 
option is specified. This figure assumes 
no blocking. If the input is blocked 
(e.g., by an input reader), a figure that 
is 160 times the blocking factor in bytes 
must be added to the 19,456 byte specifi­
cation in the SIZE option. (See "SPACE or 
PRFRM"). 

LINELNG=zzz: The LINELNG option indicates 
the maximum length of a FORTRAN record 
written under control of a FORMAT state­
ment. The specified number zzz (0<zzz<256} 
represents the maximum length of a FORTRAN 
record. During compilation, the length of 
all records is calculated using the coded 
information in the FORMAT statement. If 
the record length exceeds zzz, a warning is 
issued by the compiler. If this option is 
not specified, zzz is assumed to be 132. 
For example, assume that 144 positions are 
specified in the LINELNG option and the 
source statements 

WRITE{7,10) POINT,ALPHA,I,J,K,L 

10 FORMAT(2F30.8,4I30) 

are compiled. A warning is issued because 
the record length indicated by the FORMAT 
statement is 180, and the LINELNG parameter 
indicates a maximum length of 144. 

NAME=xxxxxx: The NAME option specifies the 
narne--CXxxxxx> assigned to the module by the 

38 

programmer, where xxxxxx consists of 1 to 6 
alphameric characters, the first of which 
is alphabetic. If NAME is not specified, 
the compiler assumes the name MAIN for a 
main program or the name of the subprogram 
specified in the SUBROUTINE or FUNCTION 
statement for subprograms. If there is a 
conflict between the name given to the 
subprogram in the first statement of the 
source module and the name specified in the 
NAME option, the name specified in the 
SUBROUTINE or FUNCTION statement takes pre­
cedence. The name appears in the source 
listing, storage map, and object module. 

BCD or EBCDIC: The BCD option indicates 
that the source module is written in Binary 
Coded Decimal; EBCDIC indicates Extended 
Binary Coded Decimal Interchange code. 

SOURCE or NOSOURCE: The SOURCE option 
specifies that the source listing is writ­
ten on the data set specified by the 
SYSPRINT DD statement. The NOSOURCE option 
indicates that no source listing is writ­
ten. A description of the source listing 
is given in the section "System Output." 

DECK or NODECK: The DECK option specifies 
that the compiled source module (i.e., the 
object module} is written on the data set 
specified by the SYSPUNCH DD statement. 
NODECK specifies that no object module is 
written. A description of the object 
module is given in the section "System 
Output." 

MAP or NOMAP: The MAP option specifies 
that a storage map of the object module is 
written on the data set specified by the 
SYSPRINT DD statement; the option NOMAP 
specifies that no map is written. A de­
scription of the map is given in the 
section "System Output." 

LOAD or NOLOAD: The LOAD option indicates 
that the object module is written on the 
data set specified by the SYSLIN DD state­
ment. This option must be used if a 



cataloged procedure to co~pile, link edit, 
and execute is used. A description of the 
object module is given in the section 
"System Output". 

The NOLOAD option indicates that the 
object module is not written on the SYSLIN 
data set. When NOLOAD is specified, the 
compiler automatically returns a condition 
code of 12. This option must not be used 
if a cataloged procedure to compile, link 
edit, and execute is used. If NOLOAD and 
DECK are specified, the SYSPUNCH data set 
may be used as input to the linkage editor. 

If the LOAD and DECK options are speci­
fied, the object module is written on the 
two data sets, indicated by the SYSLIN and 
SYSPUNCH DD statements. 

SPACE or PRFRM: When the PRFRM option is 
specified, the size of a source module is 
limited. (See Table 14.) By specifying 
the SPACE option and more than 15360 bytes 
in the SIZE option, the limit for the size 
of the source module is increased. 

The PRFRM option indicates that excess 
main storage is allocated for faster compi­
lations rather than larger source modules. 
The PRFRM option must be specified if any 
of the compiler data sets SYSIN, SYSPRINT, 
or SYSPUNCH are allocated to non-unit­
record devices (e.g., priority schedulers). 
To block records for the compiler data sets 
SYSIN, SYSPRINT, SYSPUNCH, and SYSLIN, or 
to write the SYSPRINT, SYSPUNCH, and SYSLIN 
data sets as members of partitioned data 
sets, the PRFRM option must be specified. 
Other data sets can be concatenated with 
the SYSIN data set only if the PRFRM option 
is specified. (~ote: Only data sets that 
reside on the same type of device can be 
concatenated.) 

To ensure that these options improve the 
operation of the compiler, at least 19456 
bytes should be allocated to the compiler 
in the SIZE option. If less than 19456 
bytes are specified or if less than 19456 
bytes are available and the PRFRM option is 
specified, processing continues using the 
SPACE option and the amount of storage 
available. If blocked input and output is 
specified with the PRFRM option, the SIZE 
option must specify enough storage to 
contain blocked records. Any storage not 
used by the PRFRM option is used to compile 
a bigger source module and increase the 
size of the buffers which decreases the 
number of I/O operations and increases the 
speed of the compiler. 

ADJUST or NOADJUST: The ADJUST option 
indicates that the source module contains 
embedded blanks, contains no meaningful 
blanks, and uses keywords as variable names 

in the source statements. With the ADJUST 
option, the source statement can contain 
embedded blanks. For example, the source 
statements 

F 0 R MA T ClH I IlO) 
DELTA T=T /INC 

are valid. With the ADJUST option, the 
source statement need not contain meaning­
ful blanks. For example, the source state­
ments 

DOUBLEPRECISIONFUNCTIONDPROD(X,Y) 
DIMENSIONABC(10) 

are valid. With the ADJUST option, the 
source can contai·n FORTRAN keywords (GO, 
DO, IF, READ, FIND, WRITE, etc.) used as 
variable names. For example, the source 
statements 

IFCIF) 20,30,40 
READ=A+B+C 

are valid. 

If NOADJUST is specified, the source 
module must not contain embedded blanks, 
must contain meaningful blanks, and must 
not contain FORTRAN keywords used as vari­
able names. However, with the NOADJUST 
compiler option, source modules are com­
piled faster. For example, the previous 
source statements must be written as fol­
lows to make them acceptable to the compil­
er when the NOADJUST option is used. 

FORMAT(lH ,I10) 
DELTAT=T/INC 
DOUBLE PRECISION FUNCTION DPROD(X,Y) 
DIMENSION ABCC10) 
IFCIFX) 20, 30, 40 
READX=A+B+C 

Multiple Compilation Within a Job Step 

Several compilations may be performed 
within one job step, if the conditions 
shown in Table 5 are met. 

Job Processing 39 



Table 5. Conditions for Multiple Compila-
tion 

r------T--------------T-------------------1 
IOptionlinput Stream !Source Modules I 
I I Device I Reside On I 
~------+--------------+-------------------~ 
I Icard reader !input stream I 
I r--------------+-------------------~ 
!SPACE I !input stream I 
1 I tape r-------------------~ 
I I Icard reader I 
r------+--------------+-------------------~ 
I I card reader I {input stream ~ I 
IPRFRM r--------------~ tape I 
I I tape I card reader I 
I I I direct access I 
i __ ~ ___ l ______________ l~------------~-----j 

The compiler recognizes the FORTRAN END 
statement in a source deck, compiles the 
program, and determines if another source 
program follows the END statement. If 
there is another source program, another 
compilation is initiated (see Figure 29). 

//JOBRA JOB ,'RBLACK' 
//STEPl EXEC FORTEC 
//FORT.SYSIN DD * 

1 READ (9,10)A,B,C 

END 
SUBROUTINE CALC 

END 
/* 

Figure 29. Multiple Compilation Within a 
Job Step 

Only one EXEC statement may be used to 
initiate a job step; therefore, compiler 
options can be stated only once for all 
compilations in a job step. These options 
are then used for all cowpilations in the 
batched compilation. 

A main program compiled first in a 
multiple compilation is given the name 
specified in the NAME option. Any subpro­
gram in a multiple compilation is given the 
name of the subprogram in the first card of 
the source subprogram. For example, in the 
multiple compilation, 

40 

//MULTCOMP JOB ,'FRANK KELLY' 
// EXEC FORTEC,PARM.FORT='NAME=GAMMA' 
//FORT.SYSIN DD * 

SUBROUTINE ALPHA 

END 
FUNCTION BETA(X,Y,Z) 

END 
/* 

the first module is aiven the name ALPHA 
and the second is given~the name BETA. 

Any main program after the first program 
is given the name MAIN. Moreover, if the 
NAME option is not specified and the first 
module is a main program, the first program 
is also given the name MAIN. For example, 
in the multiple compilation, 

//MULCOM JOB 
// EXEC FORTEC 
//FORT.SYSIN DD * 

/* 

READ(l,10)ALP,BETA 

END 
SUBROUTINE INVERT(A,B) 

END 
READ(5)P,Q,R 

END 

both the first and third programs are given 
the name MAIN. The second program is 
assigned the name INVERT. 

When a multiple compilation is per-
formed, the SYSLIN or SY SP UNCH data set 
contains all the object modules because 
only one SYS LIN DD statement may be sup-
plied for compiler output. The object 
modules are placed sequentially on the 
volume. 

r-----------------T-----------------1 
I Object Module 1 I Object Module 2 I 
l-----------------L-----------------J 

LINKAGE EDITOR PROCESSING 

The linkage editor processes object 
modules, resolves any references to subpro-



grams, and constructs a load module. To 
communicate with the linkage editor, the 
programmer supplies an EXEC statement and 
DD statements that define all required data 
sets; he may also supply linkage editor 
control statements. 

Three linkage editor programs are avail­
able with the operating system. The pro­
gram names for the three linkage editors 
and the minimum storage in which they are 
designed to operate are: 

IEWLE150 
IEWLE180 
IEWLE440 

15,360 bytes 
18,432 bytes 
45,056 bytes 

All facilities described for the linkage 
editor in this publication are available 
with all three linkage editors, except that 
blocking the primary input primary output 
is available only with the higher-level 
linkage editor, IEWLE440. 

For simpler programming, the linkage 
editors have been assigned the alias pro­
gram name IEWL. If the programmer speci­
fies the parameter 

PGM=IEWL 

in the EXEC statement, the highest level 
linkage editor provided in the 
installation's operating system is exe­
cuted. If he wants to execute a specific 
linkage editor, he must specify the specif­
ic program name of that linkage editor. 

Linkage Editor Input and output 

There are two types of input to the 
linkage editor: primary and secondary. 
Primary input consists of a sequential data 
set that contains object modules and lin­
kage editor control statements. Any exter­
nal references among object modules in the 
primary input are resolved by the linkage 
editor as the primary input is processed. 
Furthermore, the primary input contains 
references to the secondary input. These 
references are linkage editor control 
statements and/or FORTRAN external ref eren­
ces in the modules. 

Secondary input resolves these refer­
ences and is separated into two types: 

automatic call library and additional input 
specified by the programmer. The automatic 
call libr~ should always be the FORTRAN 
library (SYSl.FORTLIB), which is the PDS 
that contains the FORTRAN library subpro­
grams. Through the use of DD statements 
that omit the ddname, the automatic call 
library can be concatenated with other 
partitioned data sets. Three types of 
additional input may be specified by the 
programmer: 

• An object module used as the rrain 
program in the load module being con­
structed. This object module, which 
can be accompanied by linkage editor 
control statements, is either a rnewber 
of a PDS or is a sequential data set. 
The first record in the primary input 
must be a linkage editor INCLUDE con­
trol statement that tells the linkage 
editor to insert the main program. 

• An object module or a load module used 
to resolve external references made in 
another module. The object module, 
which can be accompanied by linkage 
editor control statements, is a sequen­
tial data set or is a member of a PDS. 
The load module, which is a member of a 
PDS, cannot be accompanied by linkage 
editor control statements. An INCLUDE 
statement that defines the data set 
must be given to include the module. 

• A module used to resolve external ref­
erences made in another module. The 
load module or object module (which can 
be accompanied by linkage editor con­
trol statements) is a member of a PDS. 
A linkage editor LIBRARY control state­
ment that defines the data set to the 
linkage editor must be given to include 
modules from the data set in the load 
module. 

In addition, the secondary input can con­
tain external references and linkage editor 
control statements. The automatic call 
library and any of the three types of 
additional input may be used to resolve 
references in the secondary input. 

The output of the linkage editor con­
sists of the load module, module map, and 
error messages. The load module is always 
placed in a PDS. Error messages and the 
optional module map are written on an 
intermediate storage device or a printer. 
In addition, a work data set is required by 
the linkage editor to do its processing. 
Figure 30 shows the I/O flow in linkage 
editor processing. 

Job Processing 41 



Table 6. Linkage Editor ddnames 
r--------------T-------------------------------------------T----------------------------1 
I ddname I FUNCTION I DEVICE REQUIREMENTS I 
~--------------+-------------------------------------------+----------------------------~ 
ISYSLIN !Primary input data, normally the output of !•direct access I 
I jthe compiler !•magnetic tape I 
I I I •card reader I 
r--------------+-------------------------------------------+----------------------------~ 
ISYSLIB !automatic call library (e.g., SYS1.FORTLIB)j•direct access I 
~--------------+-------------------------------------------+----------------------------~ 
ISYSUTl jwork data set !•direct access I 
~--------------+-------------------------------------------+----------------------------~ 
ISYSPRINT !diagnostic messages !•printer I 
I I !•intermediate storage devicej 
~--------------+-------------------------------------------+----------------------------~ 
jSYSLMOD !output data set for the load module !•direct access I 
~--------------+-------------------------------------------+----------------------------~ 
1user-specifiedladditional libraries and object modules !•direct access I 
I I I •magnetic tape I 
L--------------.L.------------------------------------------~----------------------------J 

SYSLIN 

SYSLIB 

Automatic 
Call 
Library 

Additional 
Libraries 

SYSUT 1 

Work 
Data Set 

Linkage 
Editor 

SYSLMOD 

Output 
Module 
Library 

Diagnostic 
Data Set 

SYS PRINT 

Figure 30. Linkage Editor Input and Output 

Linkage Editor ddnames and Device Classes 

The programmer communicates data set 
information to the linkage editor through 
DD statements identified by specific 
ddnames (similar to the ddnames used by the 
compiler)$ The ddnames, functions, and 
requirements for data sets are shown in 
Table 6. 

Any data sets specified by SYSLIB or 
SYSLMOD must be partitioned data sets. 
(The other data sets are partitioned or 
sequential.) The ddname for the DD state-

42 

ment that retrieves any additional librar­
ies is written in INCLUDE and LIBRARY 
statements and is not fixed by the linkage 
editor. 

In addition, if one of the higher level 
linkage editors (program name: IEWLF440 or 
IEWLF880) is used, the SYSLIN data set can 
contain blocked records. The linkage edi­
tor can then accept a blocked SYSLIN data 
set that is created by the compiler. The 
record length for the SYSLIN data set is 80 
bytes. With the linkage editor IEWLF440 
the maximum number of records per block is 
5. With IEWLF880, the maximum number of 
records per block is 40. 

The device classes used by the compiler 
(see Table 3) must also be used with the 
linkage editor:-- The data sets used by 
linkage editor may be assigned to the 
device classes listed in Table 7. 

Table 7. correspondence Between Linkage 
Editor ddnames and Device Classes 

r--------------T--------------------------1 
I ddname !Possible Device Classes I 
t--------------+--------------------------~ 
!SYSLIN ISYSSQ,SYSDA,or the input I 
I !stream device (specified I 
I lby DD* or DD DATA) or a I 
I !device specified as the I 
I I card reader I 
t--------------+--------------------------~ 
I SYSLIB I SYSDA I 
t--------------+--------------------------~ 
I SYSUT1 I SYSDA I 
t--------------+--------------------------~ 
j SYSLMOD j SYSDA I 
t--------------+--------------------------~ 
ISYSPRINT IA,SYSSQ I 
t--------------+--------------------------~ 
luser-specifiedjSYSDA,SYSSQ I 
L--------------~--------------------------J 



Additional Input 

The INCLUDE and LIBRARY statements are 
used to specify additional secondary input 
to the linkage editor. ~odules specified 
by neither INCLUDE nor LIFRARY statements 
nor contained in the primary input are 
retrieved from the automatic call library. 

INCLUDE Statement: 
r---------T-------------------------------1 
I Operation I Operand I 
r---------+-------------------------------1 
!INCLUDE lddname[(member-name I 
I I [.member-name] ••• ) ] I 
I I [,ddname[(mem~er-name I 
I I [,member-name] ..• )])... I 
L---------~-------------------------------J 

The INCLUDE statement is used to include 
either members of additional libraries 
(PDS) or a sequential data set. The 
"ddname" specifies a DD statement that 
defines either a PDS containing object 
modules and control statements or just load 
modules, or defines a sequential data set 
containing object modules and linkage edi­
tor control statements. The "member name" 
is the name of a member of a PDS and is not 
used when a sequential data set is speci­
fied. 

The linkage editor inserts the object 
module or load module in the output load 
module when the INCLUDE statement is 
encountered. 

LIBRARY Statement: 
r---------T-------------------------------1 
I Operation I Operand I 
r---------+-------------------------------~ 
!LIBRARY lddname(member-name I 
I I [,member-name J ••• ) I 
I I [,ddname(member-name I 
I I [,member-name] .•• )]... I 
L---------~-------------------------------J 

The LIBRARY statement is used to include 
members of additional libraries. The 
"ddname" must be the name of a DD statement 
that specifies a PDS that contains either 
object modules and linkage editor control 
statements, or just load modules. The 
"member name" is an external reference that 
is unresolved after primary input process­
ing is complete. 

The LIBRARY statement differs from the 
INCLUDE statement: external references 
specified in the L~BRARY statement are not 
resolved until all other processing, except 
references reserved for the automatic call 

library, is completed by linkage editor. 
(INCLUDE statements resolve external refer­
ences when the INCLUDE statement is encoun­
tered.) 

Example: Two subprograms, SUB1 and SUB2, 
and a main program, MAIN, are compiled by 
separate job steps. In addition to the 
FORTRAN library, a private library. MYLIB, 
is used to resolve external references to 
the symbols X, Y, and Z. Each of the 
object modules is placed in a sequential 
data set by the compiler, and passed to the 
linkage editor job step. 

Figure 31 shows the control statements 
for this job. (Note: Cataloged procedures 
are not used in this job.) In this job, an 
additional library, MYLIB, is specified by 
the LIBRARY statement and the ADDLIB DD 
statement. SUB1 and SUB2 are included in 
the load module· by the INCLUDE statements 
and the DD statements DD1 and DD2. The 
linkage editor input stream, SYSLIN, is two 
concatenated data sets: the first data set 
is the sequential data set &GOFILE which 
contains the main program; the second data 
set is the two INCLUDE statements and the 
LIBRARY statement. After linkage editor 
execution, the load module is placed in the 
PDS PROGLIB and given the name CALC. 

Linkage Editor Priority 

If modules with the same name appear in 
the input to linkage editor, the linkage 
editor inserts only one of the modules. 
The following priority for modules is es­
tablished by the linkage editor: 

1. Modules appearing in the SYSLIN data 
set or modules identified by INCLUDE 
statements. 

2. Modules identified by the LIBRARY 
statement. 

3. Modules appearing in the SYSLIB data 
set. 

For example, if a module named SIN 
appears both in a module identified in a 
LIBRARY statement and in the automatic call 
library, only the module identified in the 
LIBRARY statement is inserted in the output 
load module. 

If modules with the same name appear in 
a single data set, only the module encoun­
tered first is inserted in the output load 
module. 

Job Processing 43 



r---------------------------------------------------------------------------------------1 
//JOBX JOB 
//STEPl EXEC PGM=IEJFAAAO,PARM='NAME=MAIN,LOAD' 

//SYSLIN 
//SYSIN 

DD DSNA~E=&GOFILE,DISP=C,PASS),UNIT=SYSSQ 

DD * 
Source module for MAIN 

/* 
//STEP2 EXEC PGM=IEJFAAAO,PARM='NAME=SUBl,LOAD' 

//SYSLIN 
//SYSIN 

DD DSNA~E=&SUBPROG1,DISP=(,PASS),UNIT=SYSSQ 

DD * 
Source module for SUB1 

/* 
//STEP3 EXEC PGM=IEJFAAAO,PARM='NAME=SUB2,LOAD' 

//SYSLIN 
//SYSIN 

DD DSNA1JIE=&SUBPROG2, DISP= C, PASS), UNIT=SYSSQ 

I 
/* 
//STEP4 

DD * 
source module for SUB2 

EXEC PGM=IEWL 

//SYSLIB 
//SYSLMOD 
//ADDLIB 
//DDl 
//DD2 
//SYSLIN 
// 

DD 
DD 
DD 
DD 
DD 
DD 

DSNA~E=SYSl.FORTLIB,DISP=OLD 
DSNAME=PROGLIB(CALC),UNIT=SYSDA 
DSNAME=MYLIB,DISP=OLD 
DSNAME=*.STEP2.SYSLIN,DISP=OLD 
DSNAME=*.STEP3.SYSLIN,DISP=OLD 
DSNAME=*.STEPl.SYSLIN,DISP=OLD 

I/* 

DD 
INCLUDE 
INCLUDE 
LIBRARY 

* DD1 
DD2 
ADDLIB(X,Y,Z) 

l---------------------------------------------------------------------------------------
Figure 31. Linkage Editor Example Using INCLUDE and LIBRARY Statements 

Multiple Link Editing Within a Step 

Just as the compiler can perform several 
compilations within a procedure step or job 
step (batched compilation), the linkage 
editor can produce several load modules 
within a single procedure step or job step. 
Another linkage editor control statement, 
the NAME statement, is used to delimit the 
input for one load module from the input 
for another load module. 

r---------T-------------------------------1 
I Operation I Operand I 
r---------+-------------------------------1 
I NAME I member-name C CR) ] I 
l---------~-------------------------------J 

The NAME statement is placed after the 
last object module or linkage editor con­
trol statement used as input to a load 
module. Any modules or control statements 

44 

following a NAME statement are assumed to 
be part of the next load module being 
constructed. A NAME statement can be 
placed only in the primary input: any NAME 
statements in the secondary input are 
ignored. 

All of the resulting load modules from a 
batched linkage editor execution are placed 
in the library CPDS) specified in the 
SYSLMOD DD statement. The member name for 
each of the resulting load modules is 
specified as "member name" in the NAME 
statement. _For example, if the primary 
input for one of the load modules is 
followed by a NAME statement containing the 
member name XALPHA and the SYSLMOD DD 
statement for the linkage editor step spec­
ifies the PDS MYLIB, the resulting load 
module is assigned the member name XALPHA 
and is placed in the PDS MYLIB. The 
SYSLMOD DD statement should not contain a 
member name. However, if the SYSLMOD 



statement contains a member name, that 
member name must be identical to the member 
name specified in the first NAME statement 
appearing in the primary input. 

The NAME statement can be used to speci­
fy that a load module currently residing in 
a PDS is to be replaced by the load module 
constructed from the input immediately 
preceding the NAME statement. Replacement 
is specified by coding CR} following the 
member name in the NAME statement. 

When several load modules are created in 
a single step (multiple link editing), the 
options specified in the EXEC statement for 
that step apply to each load module created 
in that step. 

Example: An object module resides on a 
sequential data set PROGX. A load module 
is to be constructed from this module, 
using the FORTRAN library and a private 
library MYLIB to resolve external refer­
ences within the module. Another object 
module resides on a sequential data set 
PROGY, and a load module is to be con­
structed from this object module using the 
same library to resolve external refer­
ences. Both load modules are to be placed 
in the library PROGLIB. The first module 
is to be assigned the member name FUNTST; 
the second module is assigned the member 
name SUBTST. 

The following text shows the job control 
statements and the position of INCLUDE, 
LIBRARY, and NAME linkage editor statements 
necessary to perform the job. 

//JOB2 JOB 108,'J.JONES' 
//STEP EXEC PGM=IEWL 
//SYSLIB DD DSNAME=SYSl.FO~TLIB,DISP=OLD 
//SYSLMOD DD DSNAME=PROGLIP,DISP=OLD 

//DDl DD DSNAME=PROGX,DISP=OLD 
//DD2 DD DSNAME=PROGY,DISP=OLD 
//ADDLIB DD DSNAME=MYLIB 
//SYSLIN DD * 

/* 

INCLUDE DDl 
LIBRARY ADDLIB(X,Z) 
NAME FUNTST 
INCLUDE DD2 
LIBRARY ADDLIB(Y,Z) 
NAME SUBTST 

The JOB statement JOB2 defines the job, 
and the EXEC statement STEP instructs the 
operating system to execute the program 
IEWL. The DD statement SYSLIB tells the 
linkage editor that the FORTRAN library is 
the automatic call library. The SYSLMOD DD 

statement tells 
both modules 
PROGLIB. 

the linkage 
are written in 

editor 
the 

that 
PDS 

The first INCLUDE statement and the DD 
statement DDl tell the linkage editor that 
the first load module is to contain the 
object module that resides on the sequen­
tial data set PROGX. The first LIBRARY 
statement tells linkage editor that the 
references to X and Z in this module are to 
be resolved by the library MYLIB. The 
first NAME statement tells the linkage 
editor that the resulting module is 
assigned the member name FUNTST. The con­
trol statements are similar for the load 
module with the member name SUBTST. 

Other Linkage Editor Control Statements 

In addition to the LIBRARY, INCLUDE, and 
NAME statements, other control statements 
are available for use with the linkage 
editor. These statements enable the user 
to: specify different names for load 
modules (ALIAS), replace modules within a 
load module (REPLACE), change program names 
(CHANGE), and name entry points (ENTRY). 
In addition, two statements (OVERLAY and 
INSERT) enable the programmer to overlay 
load modules. For a detailed description 
of these control statements, see the sec~ 
tion "Specifying Additional Processing" in 
the Linkage Editor publication. 

Options for Linkage Editor Processing 

The linkage editor options are specified 
in an EXEC statement. The options that are 
most applicable to FORTRAN programming are: 

{PARM } [MAP J I, LET J 
PARM.procstep =( XREF ~XCAL [,NCAL] 

[,LIST] [,OVLY]) 

MAP or XREF: The MAP option instructs 
linkage editor to produce a map of the load 
module; this map indicates the relative 
location and length of main programs and 
subprograms. If XREF is specified, a map 
of the load module is produced and a 
cross-reference list indicating all exter­
nal references in each main program and 
subprogram is generated. If neither option 
is specified, neither the map nor the 
cross-reference listing is generated. De­
scriptions of the map and cross-reference 
listing are given in "System output." 

LET or XCAL: 
linkage editor 

The LET 
to mark 

option instructs 
the load module 

Job Processing 45 



ready for execution even though error con­
ditions were found. The XCAL option 
informs the linkage editor to mark the load 
module executable even though valid exclu­
sive branches are made between modules that 
overlay each other. 

NCAL: The NCAL option informs linkage 
editor that the libraries specified in the 
SYSLIB DD statement or specified in LIBRARY 
statements are not used to resolve external 
references. (The SYSLIB DD statement need 
not be specified.) The subprograms in the 
libraries are not inserted in the load 
module. However, the load module is marked 
executable. 

When an object module will be link 
edited again prior to its use in execution 
and that module contains either 

1. An input/output statement (READ, 
WRITE, BACKSPACE, REWIND, END FILE), 

2. A STOP/PAUSE statement, 

3. Any service subprogram (SLITE, SLITET, 
OVERFL, DVCHK, EXIT, DUMP, PDUMP), or 

4. Any one of the following library 
programs 

DEXP 
DCOS. 
ALOG 
SQRT 

DLOG 
DSQRT 
ALOG10 
TANH 

DLOG10 
DTANH 
SIN 

DSIN 
EXP 
cos 

sub-

NCAL must be specified. ~n I/O statement, 
a STOP or PAUSE· statement, any service 
subprogram, or any of the above library 
subprograms require FOR~AN load module 
execution routines. These routines are 
inserted by the linkage editor, and must be 
inserted only once in any load module. 
When the final linkage editor processing 
for the module is performed, NCAL should 
not be specified and the load module execu­
tion routines will be inserted. 

LIST: The LIST option indicates that link­
age editor control statements are listed in 
card-image format on the diagnostic output 
data set. 

OVLY: The OVLY option indicates to the 
linkage editor that an overlay structure is 
to be constructed by the linkage editor. 
This option must be used if an OVERLAY 
linkage editor control statement is used. 
If an OVERLAY statement is not used, the 
OVLY option is ignored. For more inf orma­
tion about overlay structures see the 1ink­
age Editor publication. 

Other options can also be specified for 
the linkage editor. For a detailed de­
scription of all linkage editor options, 
see the Linkage Editor publication. 

46 

LOAD MODULE EXECUTION 

The ddnames used in executing load 
modules must adhere to the format specified 
by IBM. When the system is generated, 
device names are assigned by the operating 
system and the installation; the prograwmer 
chooses devices by specifying either the 
installation or operating system names. 

Program Name 

When "PGM=program name" is used to indi­
cate the execution of a load module, the 
module must be in either the system library 
(SYS1.LINKLIB) or a private library. When 
the module is in a private library, a 
JOBLIB DD statement, indicating the name of 
the private library, must be supplied to 
concatenate the private library with the 
system library. For example, assume that 
the load modules CALC and ALGBRA in the PDS 
MATH and the load module MATRIX in the PDS 
MATRICES are executed in the following job: 

//JOBN JOB 00,JOHNSMITH 
//JOBLIB DD DSNAME=MATH,DISP=(OLD,PASS) 
// DD DSNAME=MATRICES,DISP=(OLD,PASS) 
//STEP1 EXEC PGM=CALC 

//STEP2 EXEC PGM=MATRIX 

//STEP3 EXEC PGM=ALGBRA 

The JOBLIB DD statement concatenates the 
private library MATH with the system 
library. The private library MATRICES is 
concatenated with the system library, by 
concatenating the second DD statement with 
the JOBLIB DD statement. 

Execution ddnames 

In the source module, data set reference 
numbers are used to identify data sets. 
Data sets processed by a FORTRAN load 
module must be either sequential or direct 
and must be defined by DD statements. The 
correspondence between a data set reference 
number and a DD statement is made by a 
ddname. 

The ddname format that must be used for 
load module execution is: 



FTxxFyyy 

where: 
xx is the data set reference number. 
yyy is a FORTRAN sequence number. 

Data Set Reference Number (xx): When the 
system is generated, the upper limit 
data set reference numbers is specified 
the installation; it must not exceed 
This upper limit does not correspond to 
number of input/output devices. 

for 
by 

99. 
the 

If an installation specifies 
limit of 99 for its data set 
numbers, the ddnames and data set 
numbers correspond as shown in 
Note that 0 is not a valid 
reference number. 

Table 8. Load Module ddnames 

an upper 
reference 
reference 
Table 8. 
data set 

r-----------------------------T-----------1 
I Data Set Reference Numbers I ddnames I 
~-----------------------------+-----------~ 

1 FTOlFyyy 
2 FT02Fyyy 

13 FT13Fyyy 

99 FT99Fyyy 
-----------------------------~-----------

FORTRAN Sequence Number Cyyy): The FORTRAN 
sequence number refers to sequential data 
sets that are written using the same data 
set reference number. 

For sequential or partitioned data sets, 
the first FORTRAN sequence number is always 
001. This sequence number changes only 
when an END FILE statement is executed and 
the program later executes a READ or WRITE 
statement using the same data set reference 
number. For example, the following state­
ments, executed in the order shown, cause 
the FORTRAN sequence number to change. 

WRITE{10,5)A,B,C 

END FILE 10 

WRITE(10,5)X,Y,Z 

For the first WRITE, a DD statement 
identified by the ddname FTlOFOOl defines 
the data set. For the second WRITE, a DD 
statement identified by the ddname FT10F002 
defines the data set. 

For direct data sets, the FORTRAN 
sequence number is always 001. Attempting 
to execute an END FILE statement for a 
direct data set is ignored. 

A DD statement with the required ddname 
must be supplied every time the WRITE, END 
FILE, READ/WRITE sequence occurs. If the 
FORTRAN statements in the following example 
are executed, DD statements with the 
ddnames indicated by the arrows must be 
supplied for the corresponding WRITE state­
ments. 

Statements 

15 FORMATC3F10.3,I7) 
10 FORMATC3F10.3) 

DO 20 I=l,J 

ddnarnes 

20 WRITEC17,10)A,B,C -----------> FT17F001 
ENDFILE 17 
DO 30 I=l,N 

30 WRITE(17,15)X,Y,Z,K ---------> FT17F002 
END FILE 17 
DO 40 I=l,M,2 

40 WRITE{17,10)A,B,C -----------> FT17F003 
ENDFILE 17 

If the preceding instructions are used 
to write a tape, the output tape has the 
appearance shown in Figure 32. 

Job Processing 47 



r---------------------------------------------------------------------------------------1 
I I 
I tapernark tapemark tapemark I 

! _____ T_:::~:: ___ T _____ l-~----T ___ ::::::: ___ T _______ t~~r i 

I IA,B,CIA,B,CI ••• IA,B,CI fX,Y,Z,KIX,Y,Z,KI IX,Y,Z,KI IA,B,CIA,B,CI ••. IA,B,CI I I l _____ i _____ i _____ i____ ~-----i-----...:..=::-----i ____ ,;;7"-i _____ i _____ i _____ i____ LJ I 
I Written using DD Written using DD Written using DD I 
I statement FT17F001 statement FT17F002 statement FT17F003 I 
I I 
L---------------------------------------------------------------------------------------J 
Figure 32. Tape Output for Several Data Sets Using Same Data Set Reference Number 

Retrieving Data Sets Written with Varying 
FORTRAN Sequence Numbers 

Retrieving the data sets shown in Figure 
32 depends on when the data set was created 
and if it was cataloged when it was creat­
ed. There are four distinct conditions: 

1. 

2. 

The data set is created in the job 
step in which it is retrieved. 

The data set is created in one job 
step and retrieved in another job 
step; both steps in the same job. 

3. The data set was created and cataloged 
in a previous job. 

4. The data set was created in a previous 
job, but was not cataloged. 

To retrieve the data sets shown in 
Figure 32, the data set sequence numbers in 
the LABEL parameter must be supplied in DD 
statements used to write the data sets. 
The LABEL parameter is described in detail 
in the section "Creating Data Sets". 

1
. NL} 

LABEL=( [data-set-sequence-number] \,:sL ) 

The "data set sequence number" indicates 
the position of the data set on a sequen­
tial volume. This sequence number is 
cataloged along with the remainder of the 
information in the DD statement. For the 
first data set on the volume, the data set 
sequence number is 1; for the second, it is 
2; etce 

If one of the data sets shown in Figure 
32 is read in the same job step in which it 
is created, an END FILE statement and then 
a REWIND statement must be issued after the 
last WRITE instruction. The FORTRAN 
sequence number is incremented by the exe­
cution of the END FILE statement if the 

48 

data set is to be read by the same data set 
reference number. DD statement FT17F004 is 
used to read the data set. For example, 
the following DD statements are used to 
write the three data sets shown in Figure 
32 and then read the second data set: 

//FT17F001 DD UNIT=TAPE,LABEL=(,NL), 
//FT17F002 DD UNIT=TAPE,LABEL=(2,NL), 
// VOLUME=REF=*.FT17F001 
//FT17F003 DD UNIT=TAPE,LABEL={3,NL), 
// VOLUME=REF=*.FT17F001 
//FT17F004 DD VOLUME=REF=*.FT17F002, 
// DISP=OLD,LABEL=(2,NL) 

x 

x 

x 

The VOLUME parameter indicates that the 
data set resides on the same volume as the 
data set defined by DD statement FT17F001. 
DD statement FT17F004 refers to the data 
set created by DD statement FT17F002. 

If the data set is read by a different 
data set reference number, for example, 
data set reference number 18, then, the DD 
statement FT17F004 is replaced by the 
statement 

//FT18F001 DD VOLUME=REF=*.FT17F002, x 
// DISP=OLD 

If the data sets shown in Figure 32 are 
cataloged for later reading, the following 
DD statements should be used to write the 
data sets 

//FT17F001 DD DSNAME=N1,LABEL=(1,NL), X 
// DISP=(,CATLG) 
//FT17F002 DD DSNAME=N2,LABEL=C2,NL), X 
// DISP=(,CATLG),VOLUME=REF=*.FT17F001 
//FT17F003 DD DSNAME=N3,LABEL=(3,NL), X 
// DISP=(,CATLG),VOLUME=REF=*.FT17F002 

The only information necessary to retrieve 
the data sets is the DSNAME and the DISP 
parameters. (The data set sequence number 



is stored in the catalog and 
to the control program.) For 
data set reference number 
retrieve the data set Nl, the 
statement is used to retrieve 

is accessible 
example~ if 

10 is used to 
following DD 
the data set. 

//FTlOFOOl DD DSNAME=Nl,DISP=OLD 

If the data set is not cataloged and 
then retrieved in a later job, the VOLUME 
and LABEL information is needed to retrieve 
the data set. When the data set is creat­
ed, the programmer must assign it to a 
specific volume. 

Assume the data sets shown in Figure 32 
were assigned the volume identified by the 
volume serial number Alllll when the data 
sets were created. If the second data set 
written on the volume is retrieved by data 
set reference number 10 in a later job, the 
following DD statement is needed to 
retrieve the data set 

//FTlOFOOl DD VOLUME=SER=Alllll,DISP=OLD, X 
// LABEL=(2,NL),UNIT=SYSSQ 

REWIND and BACKSPACE State~ents 

The REWIND 
force execution 
for sequential 
program. For 
REWIND and 
ignored. 

and BACKSPACE statements 
of positioning operations 

data sets by the control 
direct access data sets, 

BACKSPACE operations are 

A REWIND statement instructs the control 
program to position the volume on the 
device so that the next record read or 
written is the first record transmitted for 
that data set reference number on that 
volume, irrespective of data set sequence 
numbers. 

For unblocked records, a BACKSPACE 
statement instructs the control program to 
position the volume so that the last record 
read or written is transmitted next. For 

blocked records, the result of an execution 
of a BACKSPACE statement is unpredictable. 

Error Message Data Set 

When the system is generated, the 
installation assigns a data set reference 
number so that execution error messages can 
be written on a data set. (The standard 
default for FORTRAN CE) is data set ref­
erence number 6~> For more information 
about assigning this data set reference 
number, see the section "System Generation 
Macro-Instructions" in the System Genera­
tion publication. 

The programmer must define a sequential 
data set, using a DD statement with the 
ddname for that data set reference number. 
This data set should be defined using the 
SYSOUT=A parameter. If the error message 
data set is on tape, the DD statement 
should contain BLKSIZE=133 and RECFM=UA. 
If this data set is not defined and an 
error condition is encountered during the 
execution of the job step, the job step is 
terminated and a condition code of 16 is 
issued. 

Execution Device Classes 

For load module execution, the program­
mer can use the same names assigned to 
device classes used by the compiler (shown 
in Table 3). However, additional names for 
specific devices and device classes can be 
assigned by the installation where the 
system is generated. The programmer can 
choose which device to use for his data 
sets, and specify the name of that device 
or class of devices to which that device 
belongs in the UNIT parameter of the DD 
statement. 

However, a direct access device must be 
used for a data set which is defined Cby 
the DEFINE FILE statement) as a direct 
access data set in the FORTRAN program. 

Job Processing 49 



CREATING DATA SETS 

Dat~ sets are created by specifying 
parameters in the DD statement or by using 
a data set utility program. This section 
discusses the use of the DD statement to 
create data sets. (The Utilities publica­
tion discusses data set utility programs.) 
No consideration is given to optimizing I/O 
operations: this information is given in 
the section "Program Optimization." 

Examples of DD statements used to create 
data sets are shown in Figure 33. 

To create data sets, the DSNAME, UNIT, 
VOLUME, SPACE, LABEL, DISP, SYSOUT, and DCB 
parameters are of special significance (see 
Figure 34). These parameters specify: 

DSNAME - name of the data set 

UNIT - class and number of devices used 
for the data set 

VOLUME - volume 
resides 

on which the data set 

LABEL - label specification 

DISP - the status of the data set at the 
beginning of the step and the 
disposition of the data set after 
the completion of the step 

SYSOUT - ultimate device for printer data 
sets 

DCB - tape density, 
record length 

record format, 

Sample Coding Form 

•Figure 33. Examples of DD Statements for Creating Data Sets 

50 



l ( dsname ) J 
( DSNAME= dsnorne(elernent) 

~ 
\ &name ( I 
{ &name(element) ) 

DUMMY 
DDNAME=ddname 

UNIT=(name Un IP[ l]) 2 

r, SER=(valume-serial-number [,volume-serial-number] .•. )3] 

l l 
dsname 

VOLUME=([PRIVATE] [,RETAIN J [,volume-sequence-number][, volume-count] , REF= * .ddname } )4 
* . stepname. ddname 
* . stepname. procstep. ddname 

SPACE=( j ~~KL l , {primary-quantity[,secondary-quantity] [,directory-quantity])(, RLSE] ['~~G l ~,ROUND ] 6)7 

(average-record-length~ CONTIG J 
{

I NL} r, EXPDT=yyddd] 8 
LABEL=( [data-set-sequence-number] ,.sl ~ RETPD=xxxx ) 

SYSOUT=A 

( ;~;g~~=~X [, program-name ] [, form-no.] ) 1 

9 

{ { NEW } [ : ~~~~TE ] > 

I DISP=( OLD , PASS )7 } 
MOD CATLG 

, SHR :uNcATLG 1 

[

dsname ] 
* .ddname 

DCB=( * .stepname.ddname 
* • stepname. procstep. ddname [ ~ c~] [ llFiuf[A][,BLKSIZE=xxxx] l] 0 E l lO , REC FM= vtAJ, LRECL=xxxx. BLKSIZE=xxxx 11 [ DENj~lJ ,TRTCH= T [,BUFNO=L£~ J ~FICJB[A],LRECL=xxxx,BLKSIZE=xxxx ) l ET ,BLKSIZE=xxxxl 

~If neither "n" nor "P" is specified, l is assumed. 

1 
If only "name" is specified, the delimiting parentheses may be omitted. 

4 if oniy one ;'voiume-serial-number" is specified, the delimiting parentheses may be omitted. 

5 
SER and REF are keyboard subparameters; the remaining subparameters are positional subparameters. 

6 
The assumption made when this subparameter is omitted is discussed with the SPACE parameter. 

y'ROUND can be specified only if "average-record-length" is specified for the first subparameter. 

8
All subparameters are postional subparameters. 

9 
EXPDT and RETPD are keyword subparameters; the remaining subparameters are positional subparameters. 

O The assumption made when this subparameter is omitted is discussed in "Job Control Language". 
1 BUFNO is the only DCB subparameter that should be specified for direct access data sets. 
1; The first subparameter is positional; all other subparameters are keyword subparameters. 
1 This form is used only with compiler and linkage editor blocked input and output. 

Figure 34. DD Parameters for Creating Data Sets 

DATA SET NAME 

The DSNAME parameter specifies the name 
of the data set. Only four forms of the 
DSNAME parameter are used to create data 
sets. 

~DSNAME=dsname t 
tnsNAME=dsname(elementH 

specify names for data sets that are 
created for permanent use. 

Note: Members of a partitioned data 
set cannot be read as input to a 
FORTRAN object program or created as 
output from a FORTRAN object program 
even though the member name has been 

specified in the DSNAME parameter of a 
DD statement. 

jDSNAME=&name l 
1DsNAME=&nameCelementH 

DUMMY 

specify data sets that are temporarily 
created for the execution of a single 
job or job step. 

is specified in the DD statement to 
inhibit write operations specified for 
the data set. The write statement is 
recognized, but no data is transmit­
ted. (When the programmer specifies 
DUMMY in a DD statement used to over­
ride a cataloged procedure, all param­
eters in the cataloged DD statement 
are overridden.) The FORTRAN program-

Creating Data Sets 51 



mer should not specify DUMMY for a 
data set that is to be read; an end of 
data set condition results. and the 
execution of the load module is termi­
nated. 

DDNAME~ddname 
indicates a pseudo data set that will 
assume the characteristics specified 
in a subsequent DD statement "ddname." 
The DD statement identified by 
"ddname" then loses its identity; that 
is, the statement cannot be referred 
to by an • •••• ddname parameter. The 
statement in which the DDNAME parame­
ter appears may be referenced by sub­
sequent * •••• ddname parameters. If a 
subsequent statement identified by 
"ddname" does not appear, the data set 
defined by the DD statement containing 
the DDNAME parameter is assumed to be 
an unused statement. The DDNAME pa­
rameter can be used five times in any 
job step or procedure step, but no two 
uses can refer to the same "ddname." 
The DDNAME parameter is used mainly 
for cataloged procedures (as shown in 
Figure 50 in the section "Cataloged 
Procedures"). 

SPECIFYING I/O DEVICES 

The name of an input/output device or 
class of devices and the number of devices 
are specified in the UNIT parameter, 

UNIT=Cname[,{nlP}]) 

name 

{n!P} 

is given to the input/output device 
classes when the system is generated. 

specifies the number of devices allo­
cated to the data set. 

SPECIFYING VOLUMES 

The programmer indicates the volumes 
used for the data set in the VOLUME parame­
ter. 

52 

VOLUME=([PRIVATE] [,RETAIN] 

[,volume-sequence-number] 

[,volume-count] 

,SER=Cvolume-serial-number 
[,volume-serial-number] ••. ) 

f.
sname } 

,REF= *.ddname 
.stepname.ddname 

*.stepname.procstep.ddname 

identifies the volurne(s) assigned to the 
data set. 

PRIVATE 
indicates that the assigned volume is 
to contain only the data set defined 
by this DD statement. PRIVATE is 
overridden when the DD statement for a 
data set requests the use of the 
private volume with the SER or REF 
subparameter. 

RETAIN 
indicates that this volume is to 
remain mounted after the job step is 
completed. (Unless RETAIN is speci­
fied, the volume is dismounted after 
its last use in the job step.) 
Volumes are retained so that data may 
be transmitted to or from the data 
set, or so that other data sets may 
reside on the volume. If the data set 
requires more than one volume, only 
the last volume is retained; the other 
volumes are dismounted when the end of 
the f olume is reached. If each job 
step issues a RETAIN for the volume, 
the retained status lapses when execu­
tion of the job is completed. the 
volume, the retained status lapses 
when execution of the job is complet­
ed. 

volume-sequence-number 
is a one-to-four digit number that 
specifies the sequence number of a 
selected volume at which processing is 
to begin. All volumes whose sequence 
numbers precede the specified number 
are omitted from processing. Specifi­
cation of the volume-sequence-number 
is useful only when the programmer is 
reading or writing a multi-volume 
cataloged data set. 

volume-count 
specifies the number of volumes 
required by the data set. Unless the 
SER or REF subparameter is used, this 



SER 

REF 

subparameter is required for every 
multi-volume output data set. 

specifies which volumes are used for 
the data set by specifying the volume 
serial number for each specific vol­
ume. (The volume serial number is 
assigned and placed on the volume when 
the volume is made ready for use by 
the installation.) A volume serial 
number consists of one to six alpham­
er ic characters. If it contains fewer 
than six characters, the serial number 
is left-adjusted and padded with 
blanks. If SER is not specified, and 
DISP is not specified as NEW, the data 
set is assumed to be cataloged and 
serial numbers are retrieved from the 
catalog. A volume serial number need 
not be specified for an output data 
set. 

indicates that the data set is to 
occupy the same voluroe(s) as the data 
set identified by "dsname", 
"* • ddname n I II* e Stepname • ddname" I Or 
"*.stepname.procstep.ddname.~ Table 9 
shows the data set references. 

When REF is specified and the data set 
resides on a tape volume, the data set 
is placed on the same volume, immedi­
ately behind the data set referred to 
by this subparameter. When this sub­
parameter is used, the UNIT parameter 
may be omitted. 

If SER or REF is not specified, the 
control program will allocate any non­
pr i va te volume that is available. 

SPECIFYING SPACE ON DIRECT ACCESS VOLUMES 

The programmer indicates, in the SPACE 
parameter, the space to be allocated on a 
volume to a direct access data set. 

(TRK ) 
SPACE=<) CYL . _ . .. ., _ ~ .._ (, 

\average-recora-Leng~n; 

(primary-quantity 

[,secondary-quantity] 

[,directory-quantity]) 

[
MXIG J [ ,RLSE] , ALX [,ROUND]) 

,CONTIG 

Table 9. Data Set References 
r---------------------T-------------------1 
I Option I Refers to I 
~---------------------+-------------------~ 
IREF=dsname la data set named I 
I I "dsname" I 
~---------------------+-------------------~ 
IREF=*.ddname la data set indicat-1 
I led by DD statement I 
I I "ddname" in the I 
I !current job step I 
~---------------------+-------------------~ 
IREF=*.stepname.ddnamela data set indicat-1 
I led by DD statement I 
I l"ddname" in the jobl 
I I step "stepname" I 
~---------------------+-------------------~ 
IREF=*.stepname. I I 
i procstep.ddnameja data set indicat-1 
I led by DD statement I 
I I "ddname" in the I 
I !procedure step I 
I l"procstep" invoked I 
I I in the job step I 
I I "stepname" I 
l---------------------~-------------------J 

specifies space on a direct access volume. 
Although SPACE has no meaning for tape 
volumes, if a sequential data set is 
assigned to a device class that contains 
both direct access devices and tape de­
vices, SPACE should be specified. The 
SPACE parameter specifies: 

1. Units of measurement in which space is 
allocated. 

2. Amount of space allocated. 

3. Whether unused space can be released. 

4. In what format space is allocated. 

5. Whether space is to begin on a cylin­
der boundary. 

Creating Data Sets 53 



ITRK ! CYL 
average-record-length 

specifies the units of measurement in 
which storage is assigned. The units 
may be tracks (TRK), cylinders (CYL), 
or records (average record length 
expressed in decimal numbers). 

(primary-quantityC,secondary-quantity] 
[,directory-quantity]) 

specifies the amount of space allocat­
ed for the data set. The "primary 
quantity" indicates the number of 
records, tracks, or cylinders allocat­
ed when the job step begins. The 
"secondary quantity" indicates how 
much space is allocated each time 
previously allocated space is exhaust­
ed. The operating system can allocate 
additional space specified in the sec­
ondary quantity 15 times. The 
"directory quantity" is used only when 
writing a PDS, and it specifies the 
number of 256-byte records to reserve 
for the directory of the PDS. 

For example, by specifying: 

SPACE=(120,C400,100)) 

space is reserved for 400 records; the 
average record length is 120 characters. 
Each time space is exhausted, space for 100 
additional records is allocated. 

By specifying: 

SPACE=CYL,(20,2,5)) 

20 cylinders are allocated to the data set. 
When previously allocated space is exhaust­
ed, two additional cylinders are allocated. 
In addition, space is reserved for five 
records in the directory of a PDS. 

Note: When the FORTRAN programmer uses a 
direct access data set, he must allocate 
space on the direct access volume in two 
places: the DEFINE FILE statement in the 
source module and a DD statement at load 
module execution. He must also make cer­
tain that the DD statement SPACE parameter 
contains an adequate SPACE allocation, 
based on the value specified in the DEFINE 
FILE statement. 

RLSE 
indicates that all unused external 
storage assigned to a NEW or MOD 
output data set is released when the 
data set is closed in a job step. 

LJ

-MXIG j-
ALX 
CONTIG 

specifies 
allocated 

54 

the 
to 

format of the 
the data set. 

space 
MXIG 

ROUND 

requests the largest single block of 
storage that is greater than or equal 
to the space requested in the "primary 
quantity". ALX requests up to five 
contiguous clocks of storage, each 
block greater than the "primary quan­
tity." CONTIG requests that the space 
indicated in the "primary quantity" be 
contiguous. 

If the subparameter is not specified, 
or if any option cannot be fulfilled, 
the operating system attempts to 
assign contiguous space. If there is 
not enough contiguous space, up to 
five noncontiguous areas are allocat­
ed. 

indicates that allocation of space for 
the specified number of records is to 
begin and end on a cylinder boundary. 

Note: The SPACE parameter in the DD state­
ment must be used if a data set might be 
written on a direct access device. For the 
compiler, the programmer should allow 150 
characters per source statement in the 
"primary quantity" for each data set except 
SYSPRINT. For SYSPRINT, he should allow 
approximately 220 characters per source 
statement. 

LABEL INFORMATION 

If the programmer wishes to catalog a 
data set so that he can refer to it without 
repeating information (record type, record 
length, number of buffers, etc.) that was 
supplied when the data set was created, he 
must specify certain information in the 
LABEL parameter. If the parameter is omit­
ted and the data set is passed, the label 
information is retrieved from data set 
labels stored with the data set. 

~'NL t 
LABEL=([data-set-sequence number] 1,SL~ 

[
, EXPDT=yyddd] 
,RETPD=xxxx ) 

data-set-sequence-number 
is a four-digit number that identifies 
the relative location of the data set 
with respect to the first data set on 
a tape volume. (For example, if there 
are three data sets on a magnetic tape 
volume, the third data set is iden­
tified by data set sequence number 3.) 
If the data set sequence number is not 
specified, the operating system 
assumes 1. (This option should not be 
confused with the volume sequence num­
ber, which represents a particular 
volume for a data set.) 



specifies whether standard labels 
exist for a data set. SL indicates 
standard labels which contain inf orma­
tion such as record format, buff er 
length, dates, density, and identifi­
ers for the data set. NL indicates no 
labels. 

[
EXPDT=yyddcl] 
RETPD=xxxx J 

specifies how long the data set shall 
exist. The expiration date, 
EXPDT=yyddd, indicates the year Cyy> 
and the day (ddd) the data set can be 
deleted by the DELETE subparameter in 
the DISP parameter. The period of 
retention, RETPD=xxxx. indicates the 
period of time, in days, that the data 
set is to be retained. If neither is 
specified, the retention period is 
assumed to be zero. 

DISPOSITION OF A DATA SET 

The disposition of a data set is speci­
f ied by the DISP parameter; see 
Definition (DD) Statement." The 
options are used for both creating 
sets and using previously created 

WRITING A UNIT RECORD DATA SET ON AN 
INTERMEDIATE DEVICE 

"Data 
same 
data 
data 

A printed output data set may be written 
on an intermediate device and subsequently 
written on the printer (ultimate device). 

SYS OUT= A 
indicates that the ultimate destina­
tion for printed output data sets is 
the printer. 

Note: For SYSOUT data sets, if the DEN 
subparameter is specified, only DEN=2 can 
be specified. 

DCB PARAMETER 

For the compiler or linkage editor, the 
length of a block can be specified. For 
load module execution, the FORTRAN program­
mer may specify record formats, record 
lengths, and the number of buffers for 
sequentially organized data sets that 
reside on magnetic tape or direct access 
volumes. For direct access organized data 

sets, only the number of buffers can be 
specified; any other specifications are 
ignored. The DCB information is placed in 
the labels for these data sets. 

[

dsname J 
DCB=( *.ddname 

*.stepname.ddname 
*.stepname.procstep.ddname 

[,DEN={Olll2}][,TRTCH={CIEITIET}] 

[, BUFNO= {1 ll} 

[ l{FIU}[A] C,BLKSIZE=xxxx] fl 
RECFM= V [Aj, LRECL=xxxx, BLKSIZE=xxxx ~) 

{FIV}B[A],LRECL=xxxx,BLKSIZE=xxxx) 
BLKSIZE=xxxx 

REFERRING TO PREVIOUSLY SPECIFIED DCB 
INFORMATION 

The first subparameter 

G
sname J .ddname 
.stepname.ddname 
.stepname.procstep.ddname 

is used to retrieve DCB parameter 
information from previously created 
data sets. The DCB information speci­
fied for the data set referred to by 
this subparameter is copied by the 
control program for use in processing 
the data set defined by the DD state­
ment in which this subparameter 
appears. Any subparameters in the DCB 
parameter that follow this subparame­
ter override any copied DCB subparame­
ters. 

dsname 
indicates that the DCB subparameters 
of a cataloged data set "dsname" are 
copied and used as the DCB parameters 
for this data set. The data set 
indicated by "dsname" must be current­
ly mounted and it must reside on a 
direct access volume. 

*.ddname 
indicates that the DCB parameter in a 
preceding DD statement "ddname" in the 
current job step is copied. 

*.stepname.ddname 
indicates that the DCB parameter in a 
DD statement "ddname" that occurs in a 
previous job step "stepname" in the 
current job is copied. 

Creating Data sets 55 



*.stepname.procstep.ddname 
indicates that the DCB parameter in 
the DD statement "ddname" is copied 
from a previous step "procstep" in a 
cataloged procedure. The procedure 
was invoked by the EXEC statement 
"stepname" in the current job. 

DENSITY AND CONVERSION 

The second subparameter indicates the 
density and conversion for tape volumes. 

DENSITY: Density is 
data sets residing 
volumes. 

DEN={Ol112} 

only specified 
on magnetic 

for 
tape 

Table 10 correlates density with the 
numbers O, 1, and 2. 

Table 10. DEN Values for Model 2400 
r-----T-----------------------------------1 
I !Tape Recording Density (bits/inch) I 
I DEN t------------------T----------------~ 
IValuel 7 Track I 9 Track I 
t-----+------------------+----------------~ 
I o I 200 I I 
I 1 I 556 I I 
I 2 I 800 I 800 I 
L-----i------------------i----------------J 

Note: If SYSOUT=A is specified, DEN=2 is 
the only DEN option that may be specified. 

CONVERSION: Conversion is used only for 
data sets residing on 7-track tape volumes. 

TRTCH={CIEITIET} 
indicates which conversion type is 
used: 

c - data conversion feature is used 

E - even parity is used 

T - translation from BCD to EBCDIC or 
EBCDIC to BCD is required 

ET - even parity is used and transla­
tion from BCD to EBCDIC is 
required 

RECORD FORMAT 

U
ECFM=V [B] [A] ~ 

RECFM=F[B][A] [M] 
RECFM=U[A] 

56 

The characters V, F, u, and B represent 

V - variable-length records (records whose 
length can vary throughout the data 

F - fixed-length records (records 
length is constant throughout the 
set} 

whose 
data 

U - undefined records (records that do not 
conform to either the fixed-length or 
variable-length format) 

B - blocked records 

Note: For blocked compiler and linkage 
editor I/O, RECFM should not be specified. 

The character A indicates the use of the 
FORTRAN carriage control characters; the 
character M indicates the use of machine 
code control characters. 

RECORD LENGTH, BUFFER LENGTH, BLOCK LENGTH, 
AND NUMBER OF BUFFERS FOR SEQUENTIAL DATA 
SETS 

For blocked records used by the compiler 
or linkage editor, the length of a block is 
specified by the buffer length which is 
specified by 

BLKSIZE=xxxx 

The record length (LRECL) is permanently 
specified by the compiler or linkage edi­
tor. 

For unblocked records used by the com­
piler or linkage editor, the values for 
BLKSIZE and LRECL are permanently speci­
fied. 

For unblocked fixed-length records or 
undefined records used during load module 
execution, the record length and the buff er 
length are specified by 

BLKSIZE=xxxx 



For unblocked variable-length records, 
the record length is specified by 

LRECL=xxxx 

Buff er length is specified by 

BLKSIZE=xxxx 

For blocked variable-length or fixed­
length records used by load modules, the 
record length is specified by 

LRECL=xxxx 

Block length 
specified by 

BLKSIZE=xxxx 

and buff er length are 

Undefined records cannot be blocked. 

Table 11 is a summary of L.ne specif i­
cations made by the programmer for record 
types and blocking in FORTRAN processing. 

The number of buffers required to read 
or write any data set is specified by 

BUFNO=x Cx=l or 2) 

FORTRAN Records and Logical Records for 
Sequential Data Sets 

In FORTRAN, records for sequential data 
sets are defined by specifications in 
FORMAT statements and by READ/WRITE lists. 
A record defined by a specification in a 
FORMAT statement is a FORTRAN record (see 
the section "Input/Output Statements" in 
the publication Basic FORTRAN IV Language). 
A record defined by a READ/WRITE list is a 
logical record. Within each category, 
there are three types 0£ records: fixed­
length, variable-length, and undefined. In 
addition, fixed-length and variable-length 
records can be blocked. 

UNBLOCKED RECORDS, FORMAT CONTROL: For 
fixed-length and undefined records, the 
record length and buff er length are 
specified in the BLKSIZE subparameter. For 
variable-length records, the record length 
is specified in the LRECL subparameter; the 
buffer length in the BLKSIZE subparameter. 
The information coded in a FORMAT statement 
indicates the FORTRAN record length (in 
bytes). 

Fixed-Length Records: For unblocked fixed­
length records written under FORMAT 
control, the FORTRAN record length must not 
exceed BLKSIZE <see Figure 35). 

Example: Assume BLKSIZE=44 

10 FORMAT(F10.5,I6,2F12.5,'SUMS') 
WRITE(20,10)AB,NA,AC,AD · 

1- - - - - - - - --- BLKSIZE - - - - - - - - - ---1 

I 
~---------
/ 

I 

I 
FORTRAN Record - - - - - - - - --1 

I 
I 

44 Bytes of Data I 
Figure 35. FORTRAN Record (FORMAT Control) 

Fixed-Length Specification 

If the FORTRAN record length is less 
than BLKSIZE, the record is padded with 
blanks to fill the remainder of the buff er 
(see Figure 36). The entire buffer is 
written. 

creating Data sets 57 



Table 11. Specifications Made by the FORTRAN Programmer for Record Types and Blocking 
r------------T-------------T---------------T--------------T--------------T--------------1 
I I I I I I I 
I I Blocked or I I RECFM I l I 
I step l Unblocked I Record Type !Specification !Record Length JBuffer Length I 
I I I I I I I 
r------------+-------------+---------------+--------------+--------------+--------------~ 
I compiler orl Unblocked !Fixed-Length lnot specified1 lnot specified1 1not specified1 1 
I Linkage r-------------+---------------+--------------+--------------+--------------~ 
I Editor I Blocked !Fixed-Length IRECFM=FB2 !not specified1 IBLKSIZE=xxxx I 
t------------+-------------+---------------+--------------+--------------+--------------~ 

I !Fixed-Length IRECFM=F 3 IBLKSIZE=xxxx 3 I I 
I r---------------+--------------+--------------~ I 
I Unblocked IVariable-LengthlRECFM=V ILRECL=xxxx I I 
I r---------------t--------------t--------------~ I 

Load Moduiel !Undefined IRECFM=U IBLKSIZE=xxxx IBLKSIZE=xxxx I 
Execution r-------------+---------------+--------------+--------------~ I 

I I Fixed-Length I RECFM=FB I I I 
I r---------------+--------------~LRECL=xxxx I I 
I Blocked IVariable-LengthlRECFM=VB I I I 
I r---------------+--------------L--------------L--------------~ 
I !Undefined !Blocked undefined records are not permitted I 

r------------L-----------~L---------------L--------------------------------------------~ 
I 1 Permanently specified by the compiler and cannot be altered. I 
I 2 For SYSPRINT or other written output, RECFM=FBA under the sequential scheduler, and I 
I RECFM=FM under the priority scheduler. I 
I 3Not specified for direct access data sets. I 
L---------------------------------------------------------------------------------------J 

Example: Assume BLKSIZE=56 

5 FORMAT (F10.5,I6,F12.5,'TOTAL') 
WRITE (15,5) BC,NB,BD 

r - - - - - - - - - - BLKSIZE - - - - - - - - - - --, 
I I 
I I 
I - -. - - - - - - Written Record - - - - - - - - -1 
I I 

I I 1- - - FORTRAN Record - - - , 

I I 
I I 

I 33 Bytes of Data I 23 Bytes of Blanks 

I 
I 
I 

Figure 36. FORTRAN Record (FORMAT Control) 
With Fixed-Length Specification 
and FORTRAN Record Length Less 
Than BLKSIZE 

Variable-Length Records: For unblocked 
variable-length records written under 
FORMAT control, LRECL is specified as four 
greater than the maximum FORTRAN record 
length and BLKSIZE as four greater than 
LRECL. These extra eight bytes are 
required for the 4-byte block control word 
(BCW) and the 4-byte segment control word 
(SCW), as shown in Figure 32. The BCW (see 
Figure 37) contains the length of the 
block; the sew (see Figure 38) contains the 
length of the record segment; i.e., the 
data length plus four bytes for the sew. 

58 

I - - - - - - - - - - BLKSIZE - - - - - - - - - - -1 

I I 
I I 
I ,------- -- --LRECL--- --------i 
I I : 
I I r - - - - - - -FORTRAN Record - - - - - - -1 
I I I I 
I I I I 

IBcwlscwl Data I 

Figure 37. FORTRAN Record (FORMAT Control) 
Variable-Length Specification 

If the FORTRAN record length is less 
than (LRECL-4), the unused portion of the 
buffer is not written Csee Figure 38). 

I - - - - - - - - - - BLKSIZE - - - - - - - - - - - i 

I I 

1 _ - - - - Written Record - - - - - l I 

I I I 
~----------~KL-~--------~ 

I I I I 

l : ,--- FORTRAN Record - - -j : 
I I I I I 

!BCV1scwl Data I ~~0~~==] 
Figure 38. FORTRAN Record (FORMAT Control) 

With Variable-Length Specif i­
cation and the FORTRAN Record 
Length Less Than (LRECL-4) 



Undefined Records: For 
written under FORMAT 

undefined records 
control, BLKSIZE is 

specified as the maximum FORTRAN record 
length. If the FORTRAN record length is 
less than BLKSIZE, the unused portion of 
the buffer is not written (see Figure 39). 

j--- ------- BLKS!ZE - -

I 
f-----
1 

I 

FORTRAN Record - - - - ---, 
I 
I 

Data 

-------, 
I 
I 
I 
I _______ , 
I 

Not Written I _______ J 

Figure 39. FORTRAN Record (FORMAT Control) 
With Undefined Specification 
and the FORTRAN Record Length 
Less Than BLKSIZE 

BLOCKED RECORDS, FORMAT CONTROL: For all 
blocked records, the record length is spec­
ified in the LRECL subpararneter; the block 
length and buff er length in the BLKSIZE 
subparameter. 

Fixed-Length Records: For blocked fixed­
length records written under FORMAT 
control, LRECL is specified as maximum 
possible FORTRAN record length, and BLKSIZE 
must be an integral multiple of LRECL. If 
the FORTRAN record length is less than 
LRECL, the rightmost portion of the record 
is padded with blanks (see Figure 40). 

Example: Assume BLKSIZE=48 and LRECL=24 

10 FORMAT(I8,F16.4) 

20 FORMAT (I12) 

WRITE(13,10)N,B 

WRITE(13,20)K 

--- - ----- -- BLKSIZE --- - - -- ---1 
I I 
L - - - - - - - - -Written Block - -- - - - - - --t 

i . I 
f- - - - - -LRECL - - - - ----, - -- --LRECL - - -- -I 
I I FORTRAN I 
r - - - FORTRAN Record - - - - -{- - Record - l I 

I I I I 

1 12 
Data Bytes 

l 
24 Data Bytes 

12 Bytes 
of 

Blanks 

Figure 40. Fixed-Length Blocked Records 
Written Under FORMAT Control 

Variable-Length Records: For blocked 
variable-length records written under 
FORMAT control, LRECL is specified as four 
greater than the maximum FORTRAN record 
length, and BLKSIZE must be four plus an 
.;T"\.f-OrrY::il Tn,,,.._.;T"'\10 ".r= Tn"C",....T ni\....- .C- .. ·- _.:J.:J.!' 
... .a. ... '-'-~~ ......... .A.LlU..&..'-•.t::-'..L.'-" V.J.. ..L.l.L'\.J..:J'-...U• J..J.Jt'. l..UUL a.uu.L-

tional bytes allocated with BLKSIZE are 
required for the block control word that 
contains the block length. The four addi­
tional bytes allocated with LRECL are used 
for the segment control word that contains 
the record-length indicator. 

If a WRITE statement is executed and the 
amount of space remaining in the present 
buff er is less than LRECL, only the filled 
portion of this buffer is written (see 
Figure 37); the new data goes into the next 
buffer. However, if the space remaining in 
a buff er is greater than LRECL, the buff er 
is not written, but held for the next WRITE 
statement (see Figure 41). If another 
WRITE statement is not executed before the 
job step is terminated, then the filled 
portion of the buffer is written. 

Creating Data Sets 59 



Example: Assume BLKSIZE=28 and LRECL=12 

30 FORMAT(I3,F5.2) 
40 FORMAT(F4.1) 
50 FORMAT(F7.3) 

WRITE(12,30)M.,Z 

WRITE(12,40)V 

WRITEC12,50)Y 

1 --- - ------- BLKSIZE - - - - - - - ----1 

I I 
f----- - - - Written Block - - --- --, I 
I i I 
I r - - - - LREeL - - - - 1 - - - - - LR Eel - - - - -I 
I I I I 
I I 1 - -FORTRAN Record - -~ , _FORTRAN -1 I 
I I 1 I 1 Record 1 I 
I I 1 I I I I 

4 
----, 
4 Bytes I 

BCW sew 8 Data Bytes sew Data Not I 
Bytes Written ( _____ J 

1--FORTRAN Record- -1 

I I 
I I 

This space of 13 bytes 
!Bew sew 7 Data Bytes Ready for next WRITE. 

(space> LR Eel) 

Figure 41. Variable-Length Blocked Records 
Written Under FORMAT control 

NO FORMAT CONTROL: Only variable-length 
records can be written without format con­
trol; i.e., the RECFM subparameter must be 
V. (If nothing is specified, V is 
assumed.) 

Records written without FORMAT control have 
the following properties: 

60 

• The length of the logical record is 
controlled by the type and number of 
variables in the I/O list of its asso­
ciated READ or WRITE statement. 

• A logical record can be physically 
recorded on an external medium as one 
or more record segments. Not all seg­
ments of a logical record must fit into 
the same physical record (block). 

• Three quantities control the manner in 
which records are placed on an external 
medium: the block size (as specified by 
the BLKSIZE parameter), the segment 
length Cas specified by the LRECL 

parameter), and the logical record (as 
defined by the length of the I/O list). 
BLKSIZE and LRECL are specified as part 
of the DCB parameter of the data def i­
nition (DD) statement. If not speci­
fied, FORTRAN provides default values. 

Each block begins with a 4-byte block 
control word (BCW); each segment begins 
with a 4-byte segment control word <sew>. 
The sews and BCWs are provided by the 
system. 

The format of a BCW is given in Figure 
42. 

r-------------------T---------------------1 
I block-length I reserved I 
l ___________________ 4 _____________________ J 

2 bytes 2 bytes 

Figure 42. Format of a Block Control Word 

where: 

block-length 
is a binary count of the total nurober 
of bytes of information in the block. 
This includes four bytes for the BCW 
plus the sum of the segment lengths 
specified in each sew in the block. 
(The permissible range is from 8 to 
32,767 bytes.) 

reserved 
is two bytes of zeros reserved for 
system use. 

The format of an sew is given in Figure 
43. 

r-------------------T----------T----------1 
I segment-length I code I reserved I 
l ___________________ 4 __________ 4 __________ J 

2 bytes 1 byte 1 byte 

Figure 43. Format of a Segment Control 
Word 

where: 

segment-length 

code 

is a binary count of the number of 
bytes in the sew (four bytes) plus the 
number of bytes in the data portion of 
the segment following the sew. (The 
permissible range is from 4 to 32,763 
bytes.} 

indicates the position of the segment 
with respect to the other segments (if 



any) of the record. Bits 0 through 5 
are reserved for system use and are 
set to O. Bits 6 and 7 contain the 
codes: 

00 

01 

Meaning 

This segment is not followed or 
preceded by another segment of 
the record. 

This segment is the first of a 
multi-segment record. 

10 This segment is the last of a 

11 

reserved 

multi-segment record. 

This segment is 
first nor last 
segment record. 

neither the 
of a multi-

is a byte of zeros reserved for system 
use. 

Unblocked Records: For unblocked records 
written without FORMAT control, the value 
of BLKSIZE is equal to LRECL+4. (The four 
additional bytes are for the BCW.) 

If the logical record length is less 
than or equal to LRECL-4, the logical 
record comprises one record segment. 
Hence, for the associated READ or WRITE 
statement, one record segment, i.e., one 
block, is transmitted (see Figure 44). 
Note that the unused portion of the block 
is not transmitted. 

If the logical record length is greater 
than LRECL-4, the logical record comprises 
N record segments, where: N=logical record 
length/LRECL-4. Hence, for the associated 
READ or WRITE statement, N record segments, 
i.e., N blocks, are transmitted Csee Figure 
45). 

Example 1: Assume BLKSIZE=28 and LRECL=24 

WRITE(18)Q,R 

where: 
Q and R are real *8 variables. 

I - - - - - - - - - - BLKSIZE - - - - - - - - - -1 
! I 
I ,--------- LRECL -- ------ -1 
I I I 
I r- - - - --Logical Record-- - - -1 I 
I I I I 

I BC# I SC# I Data Segment I Nat Wdtten I 
4 bytes 4 bytes 16 bytes 4 bytes 

Figure 44. Variable-length Unblocked Re­
cords, No FORMAT Control, One 
Record Segment 

Example 2: Assume BLKSIZE=28 and LRECL=24 

WRITE(18)Q,R,S,V,X 

where: 
Q, R, and V are real *8 variables. 
S and X are real *4 variables. 

,---------- BLKSIZE ----------1 
I I 
I 1--------- LRECL ---------~ 
I I I 
I 
I 

~- - - - - -Beginning of logical Record - - - - - --l 
I I 

BON I SON I Data Segment 1 I 
4 bytes 4 bytes 20 bytes 

BON 

,- ---End of Logical Record- - - --, 

I SC# I Data Segnent 2 I Nat Wc;tten 

4 bytes 4 bytes 12 bytes 8 bytes 

Figure 45. Variable-length 
cords, No FORMAT 
Record Segn:ents 

Unblocked 
Control, 

Re­
Two 

Blocked Records: For blocked records 
written without FORMAT control, each block, 
except the last, is composed of at least M 
record segments, where: 

M = BLKSIZE-4/LRECL 

If the logical record length is less 
than or equal to LRECL-4, the logical 
record comprises one record segment. 
Hence, for the associated M READ or WRITE 
statement, one block, i.e., M record seg­
ments, is transmitted. 

If the logical record length is greater 
than LRECL-4, the logical record comprises 
N record segments, where: N=logical record 

Creating Data Sets 61 



length/LRECL-4. Hence, for the associated 
READ or WRITE statement , N record segments 
(i.e., as many blocks of M segments each as 
are needed to make up N segments) are 
transmitted. The unused portion of the 
last block is held for the next READ or 
WRITE (see Figure 46). 

Example: Assume BLKSIZE=28 and LRECL=12 

WRITE(18)A 

WRITE(18)B 

WRITE(18)E 

where: A is a real *8 variable. 
B and E are real *4 variables. 

r----------- BLKSIZE -----------1 

I I 
I r-- LRECL --i----- LRECL -------1 
I : I I 
I I- - Logical Record --1-- Logical Record---, I 
I I l I I 

I BCN I SCN I Reoo'd 1 I SCN I Reoo<d 2 I Not w,;,,., I 
4 bytes 4 bytes 8 bytes 

r - Logical Record - -, 
j I 

BON SON Record 3 

4 bytes 4 bytes 4 bytes 

4 bytes 4 bytes 4 bytes 

Space Ready for Next Write 

16 bytes 

Figure 46. Variable-length, Blocked 
cords, No FORMAT control 

BACKSPACE Operations 

Re-

Unblocked Recor~ORMAT Control: For all 
unblocked records written under FORMAT con­
trol, the volume is positioned so that the 
last record read or written is transmitted 
next. 

Unblocked Records, No FORMAT Control: For 
all unblocked records written without FOR­
MAT control, the volume is positioned so 
that the last logical record read or writ­
ten is transmitted next. 

Blocked Records: The programmer is warned 
against backspacing blocked records; the 
results obtained are unpredictable. 

62 

RECORD LENGTH, BUFFER LENGTH, AND NUMBER OF 
BUFFERS FOR DIRECT ACCESS DATA SETS 

A direct access data set can contain 
only fixed-length unblocked records. Any 
attempts to read or write any other record 
format by specification in the DCB parame­
ter are ignored. The record length and 
buff er length for a data set are specified 
by the programmer as the record size in the 
DEFINE FILE statement, and cannot be 
changed by specifying the BLKSIZE or LRECL 
subparameters in the DCB parameter. For 
example, the statement: 

DEFINE FILE 8(1000,152,E,INDIC) 

sets the record length and buff er length 
permanently at 152 bytes. The direct 
access data set defined by this DEFINE FILE 
statement contains 1000 fixed-length 
unblocked records. Each record is 152 
bytes long, and is written under FORMAT 
control. 

The only DCB parameter that can be 
supplied for direct access data sets is the 
number of buffers: 

BUFNO=x (x=l or x=2) 

where: 
x is the number of buffers used to 
read or write the data set. 

For records written with FORMAT control, 
the record format is the same as for 
fixed-length unblocked records written with 
FORMAT control for sequential data sets. 
For records written without FORMAT control, 
the records must be fixed length and 
unblocked. These records do not contain a 
block control word or a segment control 
word. For records written without FORMAT 
control, the input/output list may exceed 
the logical record length (i.e., block 
size). In this case a new logical record 
is started on output, and the next logical 
record is processed on input. If it is 
shorter than the record length, the remain­
ing portion of the record is padded with 
zeros (see Figure 47). 

Example: A DEFINE FILE statement has spec­
ified the record length for a direct access 
data set as 20. This statement is then 
executed 

WRITE(9'IX)DP1,DP2,Rl,R2 

where: 
DPl and DP2 are double precision vari­
ables. 
Rl and R2 are real variables. 
IX is an integer variable that con­
tains the record position. 



r - - - - - Record Length - - - - - - --, 

I I 

L - - - - -Record Segment 1 - - - - - - _! I I 

i i . 20 Data Bytes . 

Record Segment 1 + Record Segment 2 = 1 Logical Record 

r - - - - -Record Segment 2 - - - - - ---, 

I I 
I I 

I • Dato Byt" 16 Byt" of Zero• I 

Figure 47. Logical Record (No FORMAT 
Control} for Direct Access 

BACKSPACE, END FILE, and REWIND opera­
tions are ignored for direct access data 
sets. 

DCB RANGES AND ASSUMPTIONS 

For compilation, the LRECL value for the 
following data sets is fixed and cannot be 
altered by the prograwmer: 

Data Set 
SYSPRINT 
SYS IN 
SYS PUNCH 
SYS LIN 

LRECL Value 
121 

80 
80 
80 

If the PRFRM option is specified, the 
SYSPRINT, SYSIN, and SYSPUNCH compiler data 
sets can contain blocked records. If the 
higher level linkage editor (program name: 
IEWLE440} is used, the SYSLIN data set can 
contain blocked records. 

The BLKSIZE value must be an integral 
multiple of the corresponding LRECL value 
shown above. The maximum BLKSIZE value is 
limited only by the type of input/output 
device (see Table 12}, except that for 
SYSLIN the maximum BLKSIZE value is 400 
with linkage editor IEWLE440. 

For load module execution, specif i­
cations depend on record type. For F type 
records, the BLKSIZE value must be an 
integral multiple of the LRECL value; for V 
type records, BLKSIZE must be specified as 
4 + n x LRECL (where n is the number of 
records in the block}; for u type records, 
no blocking is permitted. Note, too, that 
the BLKSIZE and LRECL range is limited only 
by the type of device used to directly 
write the data set (see Table 12). Load 
module DCB parameter default values are 
shown in Table 13. 

Table 12. BLKSIZE Ranges: Device Considerations 
r------------------T--------------------------------------------------------------------1 
I Device Type I BLKSIZE Ranges I 
r------------------f--------------------------------T--------------------------~--------~ 
I I F and U Record Type I V Record Type I 
I t--------------------------------+-----------------------------------~ 
I Card Reader I 1SxS80 I 9SxS80 I 
t------------------+--------------------------------+-----------------------------------~ 
I Card Punch I 1SxS81 I 9SxS89 I 
r------------------+--------------------------------+-----------------------------------~ 
I Printer: I I I 
I 120 Spaces I 1SxS121 I 9SxS129 I 
I 132 Spaces I 1SxS133 I 9SxS141 I 
I 144 Spaces I lsxs145 I 9Sxs153 I 
r------------------f--------------------------------L-----------------------------------~ 
I Magnetic Tape I 18sxs32, 000 I 
t------------------f--------------------------------T-----------------------------------~ 
I Direct Access: I Without Track overflow1 I With Track Overflow1 I 
I r--------------------------------+-----------------------------------~ 
I 2301 I 1Sx::520,483 I 1::5xS32, 763 I 
I 2302 I lsx::54984 I lsxs32, 763 I 
I 2303 I 1sxs4892 I lsxs32, 763 I 
I 2311 I 1sxs3625 I lsxs32, 763 I 
I 2314 I lsxs7294 I lsxs32,763 I 
t------------------~------------------------~------L-----------------------------------~ 
I 1 If RECFM=V, the minimum block size is 9. I 
L---------------------------------------------------------------------------------------J 

Creating Data Sets 63 



•Table 13. Load Module DCB Parameter Default Values 
r---------------T----------T-----------------------------T------------------------------1 
I I I Sequential Data Sets1 I Direct Access Data sets I 
I Data set Ref- I t-------------T---------------+-------------T----------------~ 
I erence Number I ddname I RECFM !Default LRECL !Default RECFMI Default LRECL I 

I I I I or BLKSIZE I I or BLKSI ZE I 
t---------------+----------+-------------+---------------+-------------+----------------~ 
I 1 I FT01F001 I F I 80 I F I 
~---------------+----------+-------------+---------------+-------------~ 
I 2 I FT 02F001 I F I 8 0 I F I 
t---------------+----------+-------------+---------------+-------------~The value spec-

1 I 3 I FT03F001 I UA2 I 133 I FA 2 lified as the 
t---------------+----------+-------------+---------------+-------------~maximum size of 

4 I FT04F001 U I 800 I F I a record in the 
I I I I DEFINE FILE 
I I I I statement. 
I I I I 

I 99 I FT99F001 I u I 800 I F I 
~---------------L----------L-------------L---------------L-------------L----------------~ 
11 If the records have no FORMAT control, the default RECFM is V and the default LRECL I 
I is 4 less than BLKSIZE, where the default BLKSIZE is as specified in this table. I 

l1 2 The first character in each record is assumed to be a carriage control character. I 
l _______________________________________________________________________________________ J 

64 



This section contains figures showing 
the job control statements used in the 
FORTRAN IV {E) cataloqed procedures and a 
brief description of-each procedure. This 
section also describes how to override 
statements and parameters in any cataloged 
procedu:e. (The use of cataloged proce­
dures is discussed in "Job Processing.") 
The SPACE parameter shown in these cata­
loged procedures is written for use with 
IBM 2311 disk storage drive. 

Compile 

The cataloged procedure for compilation 
{FORTEC) is shown in Figure 48. 

The EXEC statement that invokes the 
FORTRAN E compiler is named FORT; the EXEC 
statement indicates that the operating sys­
tem is to execute the program IEJFAAAO (the 
name for the FORTRAN (E) compiler]. Com­
piler options are not explicitly supplied 
with the procedure: default options are 
assumed. The programmer can override these 
default options by using an EXEC statement 
which includes the options he desires. 

Compile and Link Edit 

The cataloged procedure CFORTECL) to 
compile a source module and link edit the 
resulting object module into the FORTRAN 
library CFORTLIB) is shown in Figure 49. 

CATALOGED PROCEDURES 

The EXEC statement named FORT instructs 
the control program to execute the FORTRAN 
(E) compiler. Again, no coropiler options 
are specified; default options are assumed. 

The EXEC statement named LKED instructs 
the control program to execute the program 
IEWL (the alias for the highest level 
linkage editor in the installation's ope:­
ating system). This statement also speci­
fies the XREF, LIST, LET, and NCAL linkage 
editor options. The NCAL option instructs 
the linkage editor not to resolve any 
external references in the FORTRAN library. 
This means that the resulting load module 
must be processed by the linkage editor 
again before the module can be executed 
unless NCAL is overridden. 

Link Edit and Execute 

The cataloged procedure to link 
FORTRAN object modules and execute 
resulting load modules (FORTELG) is 
in Figure 50. 

edit 
the 

shown 

The EXEC statement that executes the 
linkage editor is named LKED and specifies 
that the operating system is to execute the 
program IEWL, the alias for the highest 
level linkage editor. This statement also 
specifies the XREF, LIST, and LET options 
for the linkage editor. The programmer can 
override these options by using an EXEC 
statement in the input stream. 

IBJ.1'. FORTRAN Coding Form 

~-----------------~-------'~~~~~~~~NS 

STATEMENT 
NUMBER FORTRAN STATEMENT 

Figure 48. Compile cataloged Procedure CFORTEC) 

IDENTIFICATION 
SEQUENCE 

cataloged Procedures 65 



The EXEC statement named GO executes the 
load module produced by the linkage editor 
procedure step. The PGM parameter speci­
fies that the operating system is to exe­
cute the data set defined by the DD state­
ment SYSLMOD in the procedure step LKED. 

In a multiprogramming environment with a 
priority scheduler, main storage require­
ments for the e~ecute step are determined 
by a number of factors. These include the 
size of the object program produced by the 
compiler, the requirements of the data 
access method used, the blocking factor, 
tne number and record sizes of data sets 
used, the number and sizes of library 
subprograms invoked, and the sizes of other 
execution time routines required by the 
program. If the default REGION is not 
large enough for proqram execution, 
REGION.GO must be used to specify a REGION 
parameter on the program's EXEC statement. 

A listing of the execution time routines 
required for various input/output, inter­
ruption, and error procedures is contained 
in the publication IBM~tem/360 FORTRAN 
IV Library Subprograms. It also lists the 
sizes of both the execution time routines 
and the mathematical subprograms. 

The following is an exaITple of using a 
REGION.GO specification to indicate the 
main storage requirements for the execute 
step of a FORTRAN program. 

//EXAMPLEl JOB ACCOUNTl,'JOHN SMITH', 
MSGLEVEL=l 

// EXEC FORTECLG,PARM.FORT=DECK, 
REGION.G0=60K 

//FORT.SYSIN DD * 

FORTRAN SOURCE SYMBOLIC DECKS 

/* 
//LKED.SYSIN DD * 

/* 

PREVIOUSLY COMPILED OR ASSEMBLED 
OBJECT DECKS 

//GO.SYSIN DD * 

INPUT DATA 

/* 

IBM FORTRAN Coding Form 

1-----------------~------ ~~~~~N5 

Figure 49. compile and Link Edit cataloged Procedure CFORTECL> 

66 

x 

x 



IBM FORTRAN Coding Form 

>---------------------,-----------j ;~~T~~~~~NS 

Figure 50. Link Edit and Fxecute Cataloged Procedure (FORTELG) 

compile, Link Edit, and Execute 

The cataloged procedure (FORTECLG) to 
compile, link edit, and execute FORTRAN 
source modules is shown in Figure 51a 

The cataloged procedure FORTECLG con­
sists of the statements in the FORTEC and 
FORTELG procedures, with one exception: the 
DD statement SYSLIN Cin the compiler proce­
dure step FORT) defines the output of the 
compiler, and the statement SYSLIN Cin the 
linkage editor procedure step LKED) iden­
tifies this data set as the primary input 
to the linkage editor. The programmer does 
not have to define the linkage editor input 
as he did with the procedure FORTELG, but 
he must define the data set SYSIN for the 
compiler so that the source module can be 
read. He may also define a data set which 
becomes part of the primary input by using 
a DD statement LKED.SYSIN which is concate­
nated with object module. This data set is 
concatenated with the data set containing 
the output of the compiler. 

USER AND MODIFIED CATALOGED PROCEDURES 

The programmer can write his own cata­
loged procedures and tailor them to the 
facilities in his installation. He can 

also permanently modify the IBM-supplied 
cataloged procedures. For information 
about adding and permanently modifying cat­
aloged procedures, see the section 
"Cataloged Procedures" in the publication 
System Programmer's Guide. 

If during system generation, the G or H 
level library option was specified in the 
FORTLIB macro-instruction, the FORTRAN (E) 
cataloged procedures must be permanently 
modified to correspond to the FORTRAN (G) 
or (H) cataloged procedures. The FORTLIB 
macro-instruction is described in the pub­
lication IfM System/360 Operating System, 
System Generation. Further modifications 
to cataloged procedure may be necessary as 
described in the Job Control Language pub­
lication. 

If the E level library option was speci­
fied. but the value of the OBJERR parameter 
of the FORTLIB macro-instruction was omit­
ted or specified as something other than 
03, the following DD card must be added to 
the FORTRAN E cataloged procedure either to 
modify them permanently or to override them 
at execution time. 

Cataloged Procedures 67 



IBM FORTRAN Coding Form 

1-"-0G•_""-------------~--------1 PUNCHING T GRAPHIC l l I l I J l JPAGE OF 

PROGRAMMER l DATE INSTRUCTIONS l PUNCH l J I l I I I 1CARD ELECTRO NUMBER"' 

sr~~~~~T 8 FORTRAN STATEMENT !0~~~1~~;.'t~ON 
1 ·2 3 4 s 6 7 a 9 10 11 12 13 14 1s 16 11 10 19 20 21 n 23 24 2s 26 21 2a 29 30 31 32 33 34 JS 36 37 Js 39 40 41 42 43 .u 45 46 47 48 49 so s1 s2 sJ 54 ss 56 ~?---1!_59 60 61 62 63 64 65 66 67 68 69 10 11 n 73 74 75 76 n :-a 79 8'J 

!LtF!OR]I EXE~ PG 1M/s I EJFAAA(4, R!EG I ONdl~ ! _ i 'L 
i 

x 

• 

// 6Y_§ LI 8 0 0. p,SiNAME=.S~S 1 •--,.F+-~-R~T._L--+1 ["--'~D_f=-,5+--P_=.;..c..S_H___,R'------'---o.-i-----'.,-~-+----+-~,l-----1--------l--------< 
//SYSLI N 00 DSiN~Mf•(LOA-OSET,Df SPc(OjLO,DELET:EJ 'DCB'•8LK61 ZE=S~ 
/I' D.D DONAME=SY~I N I 

• i )( 

---~ 

11 F:Tf/J3!F£1 PD StSOU11=A 

' 

: _;_I 

Figure 51. Compile, Link Edit, and Execute Cataloged Procedure CFORTECLG) 

//GO.FTxxFOOl DD SYSOUT=A 

where: 
xx C2 digits) is the unit specified. 
(See Figures 50 and 51.) 

OVERRIDING CATALOGED PROCEDURES 

Cataloged procedures are composed of 
EXEC and DD statements. A feature of the 
operating system is its ability to read 
control statements and modify a cataloged 
procedure for the current execution of the 
procedure. overriding is only temporary; 

68 

that is, the parameters added or modified 
are in effect only for that execution. 

If the same cataloged procedure is exe­
cuted by two different job steps in the 
same job, the overriding parameters or 
statements supplied for the first execution 
are not carried over for the second execu­
tion of the procedure. For example, con­
sider these job control statements: 



//JOBl JOB MSGLEVEL=l 
//STEPl EXEC FORTEC,PARM.FORT='SIZE=22K' 

//STEP2 EXEC FORTEC 

When the procedure is executed in the first 
step STEPl, the compiler is allocated 22K 
bytes. However, when the procedure FORTEC 
is executed in the second step, the SIZE 
option reverts to the default option C15K) 
because the overriding parameter only 
affects the current execution of the cata­
loged procedure. 

The following text discusses the tech­
niques used to override cataloged proce­
dures. 

overriding Parameters in tbe EXEC Statement 

Two forms of keyword parameters 
("keyword" and "keyword.procstep") in the 
EXEC statement are discussed in "Job Con­
trol Language." The form "keyword. 
procstep" is used to add or override param­
eters in an EXEC statement in a cataloged 
nrn~P'111rP _ 
J:'"- - - ---- - .. 

The FORTRAN programmer can, for example, 
add <or override) compiler or linkage edi­
tor options, specify accounting informa­
tion, or he can state different conditions 
for bypassing a job step for an execution 
of a cataloged procedure. 

Note: When the PARM parameter is overrid­
den, all options stated in the EXEC state­
ment in the procedure step are deleted, and 
the overriding PARM parameter is substitut­
ed. 

Example 1: Assume the cataloged procedure 
FORTEC is used to compile a program, and 
the programmer wants to specify the name of 
his program and the MAP compiler option. 
The following statement can be used to 
invoke the procedure and to supply the 
option. 

//STEPl EXEC FORTEC, x 
// PARM.FORT='MAP,NAME=MYPROG' 

The PARM options apply to the procedure 
step FORT. 

Example 2: Assume the cataloged procedure 
FORTECL is used to compile and link edit a 
program. The programmer wants to specify 
the ADJUST option for the compiler because 
his source module contains embedded blanks 

and FORTRAN keywords used as variable 
names. Furthermore, he wants to remove the 
NC~i linkage editor option because he does 
not want to make another pass through the 
linkage editor prior to using the load 
module in execution. The following EXEC 
statement can be used to add the ADJUST 
option to the compiler procedure ster 
(FORT), and remove the NCAL option from the 
linkage editor procedure step (LKED). 

//CL EXEC FORTECL,PARM.FORT=ADJUST, x 
// PARM.LKED=(XREF,LIST,LET) 

Example 3: Assume the cataloged procedure 
FORTELG is used to link edit and execute a 
module. Furthermore, the MAP linkage edi­
tor option overrides XREF, LET, and LIST in 
the linkage editor step and the COND param­
eter is changed for bypassing the execution 
of the load module. The following EXEC 
statement adds and overrides parameters in 
the procedure. 

//DO EXEC FORTELG,PARM.LKED=MAP, x 
// COND .GO= (3·, LT,DO.LKED) 

The PARM parameter applies to the link­
age editor procedure step LKED, and the 
COND parameter applies to the execution 
procedure step GO. 

Example 4: Assume a source module is 
compiled, link edited, and executed using 
the cataloged procedure F'ORTECLG. Further­
more, the compiler option SIZE and the 
linkage editor option MAP are specified, 
and account number 506 is used for the 
execution procedure step. The following 
EXEC statement adds and overrides parame­
ters in the procedure. 

//STEPl EXEC FORTECLG, 
// PARM.FORT='SIZE=22000', 
// PARM.LKED=MAP, 
// ACCT.G0=506 

Overriding and Adding DD Staterrents 

x 
x 
x 

A DD statement with the name 
"procstep.ddname" is used to override pa­
rameters in DD statements in cataloged 
procedures or to add DD statements to 
cataloged procedures. The "procstep" iden­
tifies the step in the cataloged procedure. 
If "ddname" is the name of a DD statement 

1. present in the step, the parameters in 
the DD statement in the input stream 
override parameters in the DD state­
ment in the procedure step. 

2. not present in the step, the new DD 
statement is added to the step. 

Cataloged Procedures 69 



In any case, the modification is only 
effective for the current execution of the 
cataloged procedure. 

When overriding, the original DD state­
ment in the cataloged procedure is copied, 
and the parameters specified in it are 
replaced by the corresponding parameters in 
the new DD statement. Only parameters that 
must be changed are specified in the over­
riding DD statement. 

If the programmer wants to delete a 
keyword parameter in a DD statement, he 
supplies an overriding DD statement that 
contains that keyword, followed by an equal 
sign, followed by a comma. 

keyword=, 

For example, if the SYSOUT parameter is to 
be deleted from the SYSPRINT data set and 
the data set is to be written on the device 
PRINT in the cataloged procedure FORTEC, 
the following DD statement is used: 

//FORT.SYSPRINT DD SYSOUT=,UNIT=PRINT 

If more than one DD statement is modi­
fied, the overriding DD statements must be 
in the same order that the DD statements 
appear in the cataloged procedure. Any DD 
statements that are added to the procedure 
must follow overriding DD statements. 

When the procedures FORTEC, FORTECL, and 
FORTECLG are used, a DD statement 
FORT.SYSIN must be added to define the 
SYSIN data set to the co~pile step in the 
procedures (see Figures 15, 18, and 24). 
When the procedure FORTFLG is used, a DD 
statement LKED.SYSIN must be added to 
define the SYSLIN data set (see Figure 21). 

When the procedures FORTELG, FORTECL, 
and FORTECLG are used, an overriding DD 
statement can be used to write the load 
module constructed in the linkage editor 
step in a particular PDS chosen by the 
programmer and assign that member of the 
PDS a particular name. 

If the programmer is using the 
FORTECL and he does not supply an 
ing DD statement assigning the 
load module to a private PDS, 
supply an overriding DD statement 

procedure 
overrid­

resul ting 
he must 

//LKED.SYSLMOD DD DSNAME SYS1.FORTLIB(name) 

to name the load module before he places it 
in the FORTRAN library (SYS1.FORTLIB). 
This procedure can be a powerful tool for 

70 

adding modules to the FORTRAN 
replacing load modules in 
library. 

library and 
the FORTRAN 

In execution procedure steps, the pro­
grammer can catalog data sets, assign names 
to data sets, supply DCB information for 
data sets, add data sets, or specify par­
ticular volumes for data sets by using 
overriding DD statements. 

Example 1: The cataloged procedure 
FORTECLG is used to compile, link edit, and 
execute a FORTRAN program. Since the oper­
ating system for this installation contains 
the highest level linkage editor, blocking 
can be specified for the SYSLIN data set. 
In addition, the SYSPRINT data set for the 
compiler is blocked. The PRFRM and SIZE 
compiler options are specified in the PARM 
parameter, along with the BLKSIZE LRECL 
subparameter in the DCB parameter for these 
data sets. 

During load module execution, the pro­
grammer wants the data set identified by 
ddname FT03F001 to be written on the device 
class TAPE, instead of treating this data 
set as a SYSOUT data set and writing it on 
device class A. To do this the SYSOUT 
keyword parameter must be deleted from the 
SYSPRINT DD statement in the procedure step 
FORT, and a UNIT parameter must be sup­
plied. The data sets identified by ddnames 
FT04F001 and FT08F001 are named, cataloged, 
and assigned specific volumes. The follow­
ing DD statements are used to add this 
information and indicate the location of 
the source module. 

//JOBl JOB MSGLEVEL=l 
//STEPl EXEC FORTECLG, 
// PARM.FORT='PRFRM,SIZE=22K' 
//FORT.SYSPRINT DD DCB=BLKSIZE=968 
//FORT.SYSLIN DD DCB=BLKSIZE=800 
//FORT.SYSIN DD * 

x 

r-----------------------------------------1 
I FORTRAN Source Module I 
l-----------------------------------------J 
/* 
//LKED.SYSLIN DD DCB=BLKSIZE=800 
//GO.FT03F001 DD SYSOUT=,,UNIT=TAPE 
//GO.FT04F001 DD DSNAME=MATRIX, X 
// DISP=CNEW,CATLG),UNIT=TAPE, X 
// VOLUME=SER=987K 
//GO.FT08F001 DD DSNAME=INVERT, X 
// DISP=(NEW,CATLG),UNIT=TAPE, X 
// VOLUME=SER=1020 

Example 2: Assume that DCB information is 
added to the DD statement identified by 
ddname FT03F001, and that a sequential data 
set that contains blocked records and 



resides on a direct access volume is creat­
ed and cataloged, using data set reference 
number 2. The following statements over­
ride statements FT02F001 and FT03F001 in 
the procedure and indicate the location of 
the object module. 

//JOB2 JOB 
//STEPl EXEC FORTELG 
//LKED.SYSIN DD * 
r-----------------------------------------1 
I FORTRAN Object Module I 
L-----------------------------------------J 
/* 
//GO.FT02F001 DD DSNAME=FIRING, X 
// UNIT=SYSDA,DISP=(NEW,CATLG), X 
// SPACE=(l00,(2000,200),,,ROUND), X 
// VOLUME=(PRIVATE,SER=207H), X 
// DCB=(RECFM=VB,BLKSIZE=2416, X 
// LRECL=804) 
//GO.FT03F001 DD DCB=(RECFM=F, X 
/) BLKSIZE=50) 

Example 3: Assume the cataloged procedure 
FORTECL is used to compile and link edit a 
module, DER, which is added to the FORTRAN 
library. The following job control state­
ments can be used to add the module to the 
FORTRAN library. 

//ADDMDL JOB 427,'R.WHITE' 
//CL EXEC FORTECL,PARM.FORT='NAME=DER' 
//FORT.SYSIN DD * 
r-----------------------------------------1 
I FORTRAN source Module I 
L-----------------------------------------J 
/* 
//LKED.SYSLMOD DD DSNAME=SYSl.FORTLIB(DER) 

After the procedure has been executed, DER 
can be used to resolve external references 
made in FORTRAN source modules to the name 
DER. 

Example 4: Assume the cataloged procedure 
FORTECL is used to replace the library 
function SQRT in the FORTRAN library. The 
following job control statements can be 
used to replace the SQRT function in the 
FORTRAN library. 

//REPLAC JOB ,'JIM JONES' 
// EXEC FORT FORTECL,PARM='NAME=SQRT,MAP' 
//FORT.SYSIN DD * 
r-----------------------------------------1 
I FORTRAN Source Module I 
L-----------------------------------------J 
/* 
//LKED.SYSLMOD DD DSNAME=SYSl.FORTLIB(SQRT) 

After the execution of the cataloged proce­
dure, the new module SQRT is used to 
resolve any external references made to the 
name SQRT. The IBM-supplied library sub­
program is no longer used. 

Example 5: Assume the cataloged procedure 
FORTEC is used to compile a source moauie 
STARS. The resulting object module STARS 
is to be written in the PDS SCIENCE. The 
SYSPRINT data set is written on the PDS 
PRINT and assigned the member name STARS. 
The following job control statements can be 
used to write this output in the parti­
tioned data sets. 

//JOB2 JOB ,JIM 
//STEP EXEC FORTEC 
//FORT.SYSPRINT DD DSNAME=PRINT(STARS) X 
// DISP=OLD 
//FORT.SYSLIN DD DSNAME=SCIENC(STARS) X 
// DISP=OLD 

Example 6: Assume the link edit and exe­
cute cataloged procedure (FORTELG) is used. 
The load module constructed in the linkage 
editor step is placed in the cataloged 
partitioned data set MATH and is assigned 
the member name DERIV. The parameters not 
overridden in the SYSLMOD DD statement ctre 
copied and used to write the SYSLMOD data 
set. 

//JOB3 JOB 
//STEPl EXEC FORTELG 
//LKED.SYSLMOD DD DSNAME=MATH(DERIV), 
// DISP=(MOD,PASS) 

x 

//LKED.SYSIN DD * 
r-----------------------------------------1 
I FORTRAN Object Module I 
L-----------------------------------------J 
/* 

Example 7: Assume the compile, link edit, 
and execute cataloged procedure CFORTECLG) 
is used with three data sets in the input 
stream: 

1. A FORTRAN main program 
series of subprograms, 
SUBN. 

MAIN with a 
SUBl through 

2. A linkage editor control statement 
that specifies an additional library, 
MYLIB. MYLIB is used to resolve 
external references for the symbols 
ALPHA, BETA, and GAMMA. 

3. A data set used by the load module and 
identified by data set reference num­
ber 1 in the source module. 

Cataloged Procedures 71 



//JOBCLG JOB 00,'J.DAVID',MSGLEVEL=l 
//EXECCLGX EXEC FORTECLG 
//FORT.SYSIN DD * 
r-----------------------------------------1 
I FORTRAN Source Module MAIN I 
~-----------------------------------------~ 
I FORTRAN Source Module SUB1 I 
~-----------------------------------------~ 
I I 
I I 
I I 
t-----------------------------------------~ 
I FORTRAN Source Module SUEN I 
L-----------------------------------------J 
/* 
//LKED.ADDLIB DD DSNAME=MYLIB,DISP=OLD 
//LKED.SYSIN DD * 

LIBRARY ADDLIB(ALPHA,BETA,GAMMA) 
/* 
//GO.SYSIN DD * 
r-----------------------------------------1 
I Input to Load Module I 
L-----------------------------------------J 
/* 

72 

The DD statement FORT.SYSIN indicates to 
the compiler that the source modules are in 
the input stream. The DD statement 
LKED.ADDLIB defines the additional library 
MYLIB to the linkage editor. The DD state­
ment LKED.SYSIN defines a data set that is 
concatenated with the primary input to the 
linkage editor. The linkage editor control 
statements and the object modules appear as 
one data set to the linkage editor. The DD 
statement GO.SYSIN defines data in the 
input stream for the load module. 



This section discusses minimum system 
requirements for the compiler, program 
optimization, updating the FORTRAN library, 
creation of the programmer's private 
library, and limitations of the compiler. 

MINIMUM SYSTEM REQUIREMENTS FOR THE FORTRAN 
COMPILER 

IBM System/360 Operating system operates 
in a device independent environment. In 
particular, the FORTRAN compiler may oper­
ate with any combination of devices (shown 
in Table 3); however, there are certain 
requirements. 

• The FORTRAN E compiler requires at 
least a System/360, Model 30 with 32K 
bytes of storage, and the standard 
instruction set with the floating-point 
option. At least 15360 bytes should be 
allocated in the SIZE compiler option. 
If less than 15360 bytes is specified, 
the compiler assumes the design point 
value 15360. 

• All programs require a device, such as, 
the 1052 keyboard printer, for direct 
operator communication. 

• At least one direct access device must 
be used for residence of the operating 
system. 

• If the data sets identified by the DD 
statements SYSUTl, SYSUT2, and SYLIN 
are to reside on direct access volumes, 
another direct access device should be 
made available to the compiler for more 
efficient compilation. 

• When a DD statement specifies that a 
data set resides on a tape volume, 
there must be one tape device available 
in the installation for that data set. 

I SOURCE PROGRAM CONSIDERATIONS 

Facilities are available in the FORTRAN 
language that enable a programmer to opti­
mize compilation and execution speed and to 
reduce the size of the object module. 

PROGRAMMING CONSIDERATIONS 

Initialization 

The programmer should initialize all 
variables that are not initialized by 
arithmetic statements in his program. 
Operating System/360 may place a load 
module anywhere in available main storage; 
the value of a variable cannot be guaran­
teed until the programmer has given that 
variable a value by an assignment state­
ment. For example, in the subprogram 

SUBROUTINE ALPHA(X,Y,Z) 
A=B+2.0 

the result A may contain any value, because 
B was not initialized. If the programmer 
expects B to be zero, he should initialize 
B as shown in the following statements: 

SUBROUTINE ALPHA(X,Y,Z) 
B=O.O 
A=B+2.0 

Coding the Source Program 

The ADJUST compiler option permits the 
programmer to insert embedded blanks, elim­
inate meaningful blanks, and use FORTRAN 
keywords as variable names in his program. 
However, if NOADJUST is specified instead 
of ADJUST, the compiler will execute fast­
er. In order to decrease the time required 
for compilation, the programmer should not 
include embedded blanks, include meaningful 
blanks, and not use FORTRAN keywords as 
variable or array names in his source 
program, and then specify NOADJUST instead 
of ADJUST. 

Arithmetic Statements 

The use of multiplication instead of the 
exponential operation is recommended when 
the exponent is a small integer. For 
example, the statement 

VOL=(4.*R*R*R)/3. 

Programming Considerations 73 



is more efficient than the statement 

VOL=(4.*R**3)/3. 

because the exponential operation requires 
a library subprogram. When multiplication 
is used, storage is conserved and both 
compiler and linkage editor processing time 
are decreased. 

To calculate the square root, the square 
root library subprogram should be used 
instead of the exponential function~ For 
example, the statement 

HYPOT=SQRT(A*A+B*B) 

is more accurate than the statement 

HYPOT=(A*A+B*B)**0.5 

because the SQRT function is more accurate 
than the exponential function. 

The mixed mode arithmetic expression is 
provided to reduce errors because of unin­
tentional use of different modes in arith­
metic statements. However, when mixed mode 
arithmetic statements are used, extra 
instructions are generated. For example, 
in the statement 

A=A+l 

an in-line subprogram is generated to per­
form the operation indicated. Both main 
storage and execution time would be saved 
by using the statement 

A=A+l.O 

IF Statement 

An arithmetic IF statement lists three 
statement numbers. One of the listed num­
bers should immediately follow the IF 
statement to eliminate unnecessary branch­
ing in the load module. For example, the 
coding represented by the statements 

IF (A-B)20,30,30 
30 A=O.O 

20 B=O.O 

74 

is more efficient than coding represented 
by the statements 

IF(A-B) 20,30,30 
10 X=2.+Y 

30 A=O.O 

20 B=O.O 

DO Loop Considerations 

Values for expressions that remain con­
stant within a DO loop should be calculated 
before entry into the loop, instead of 
calculating the expression each time 
through the loop. For example, in the 
statements 

DO 10 I=l,100 
X(I)=2.0*(G+ALPHA)+Y(I) 

10 CONTINUE 

the expression 2.0*CG+ALPHA) must be calcu­
lated each time the DO loop is executed. 
For greater efficiency, the following 
statements should be substituted 

BETA=2.0*(G+ALPHA) 
DO 10 I=l,100 

.XCI)=BETA+Y(I) 
10 CONTINUE 

The execution time is decreased, because 
the expression 2.0*(G+ALPHA) is calculated 
only once. 

Any subscripts that remain constant 
within the range of a DO loop should not be 
used in the DO loop. For example, in the 
statements 

DO 10 I=l,50 
X(I)=Y(I)+Z(J) 

10 CONTINUE 

a subscript calculation for Z(J) is per­
formed each time the DO loop is executed, 
even though ZCJ) remains constant for each 
execution of the loop. 



By substituting the statements 

B=Z(J) 
DO 10 I=l,50 
X (I ) =Y (I ) + B 

10 CONTINUE 

only one subscript calculation is made for 
Z(J) and execution time is decreased. 

Intricate subscript calculation within 
the range of a DO should be avoided. For 
example, in the statements 

5 
DO 10 I=l,10 
XC3*I+4)=Y(3*I+4)+B 

10 CONTINUE 

two intricate subscript calculations are 
made each time statement 5 is executed. 
The DO loop should be rewritten as shown in 
the statements 

DO 10 I=7,34,3 
5 X (I) =Y (I) +B 

10 CONTINUE 

to reduce the subscript calculation to 
simpler terms and allow faster execution of 
the DO loop. 

READ/WRITE Statements 

To read or write an array, an implied DO 
in a READ/WRITE statement should be used 
instead of a DO loop. For example, 5 
FORTRAN records, each containing two 
values, are written by the statements 

10 FORMAT (F20.5,I10) 
DO 15 I=l,5 

15 WRITEC5,10}A(I),J(I) 

In the statements 

10 FORMAT CSCF20.5,I10)) 
WRITEC5,10) CACI) ,J(I) ,I=l,5) 

only one FORTRAN record containing 10 
values is written. The use of an implied 
DO saves load module execution time and 
space on the volume. 

Extra subscript calculation within the 
range of an implied DO should be avoided. 

This is the same consideration shown in 
regard to the DO loop. For example, if the 
statements 

2 FORMAT('0',10F12,6) 

READ(1,2)(A(I),I~4,31,3) 

are substituted for the stateroents 

2 FORMAT('0',10F12.6) 
READ(l,2)A(3*I+l),I=l,10) 

the intricacy of the subscript calculation 
is reduced and the load module execution 
time is reduced. 

Program Structure 

Better efficiency in load module execu­
tion is achieved when storage for a main 
program or each subprogram (excluding 
COMMON) is less than 12K bytes. A program 
that exceeds 12K bytes may be segmented 
into a group of subprograms and one main 
program. 

If a large number of variables are to be 
passed among calling and called programs, 
some of the variables should be placed in 
the COMMON area. For example, in the main 
program and subroutine EXAMPL 

DIMENSION EC20),I(15) 
READ(lO)A,B,C 
CALL EXAMPL(A,B,C,D,E,F,I) 

END 

SUBROUTINE EXAMPL (X,Y,Z,P,Q,R,J) 
DIMENSION Q(20),J(15) 

RETURN 
END 

time and storage are wasted by allocating 
storage for variables in both the main 
program and subprogram, and by the subse­
quent instructions required to transfer 
variables from one program to another. 

The two programs should be written using 
a COMMON area, as follows: 

Programming Considerations 75 



COMMON A,B,C,D,E(20),F,I(15) 
READ(10)A,B,C 
CALL EXAMPL 

END 

SUBROUTINE EXAMPL 
COMMON X,Y,Z,P.Q(20),R,J(15) 

RETURN 
END 

Storage is allocated for variables in 
COMMON only once and fewer instructions are 
needed to cross-reference the variables 
between programs. 

Statement Numbers and Names 

For its internal use, the compiler 
places statement numbers and names used for 
variables, arrays, and subprograms in two 
tables. Each table is divided into several 
strings and is searched many times during 
compilation. If the number of entries in 
each string is approximately equal, the 
average time required to find a name or a 
statement number is reduced. 

STATEMENT NUMBERS: Statement numbers are 
assigned to five strings in the statement 
number table; assignment is made according 
to the last digit in the statement number. 
Statement numbers ending in 0 or 1 are 
placed in the first string; those ending in 
2 or 3 are placed in the second; those 
ending in 4 or 5 are placed in the third; 
etc. Statement numbers should be evenly 
distributed in the strings to decrease 
compilation time. 

For example, using 100 statement numbers 
that end only in 0 or 5 is inefficient, 
because two long strings of 50 entries each 
are created in the statement number table. 
If these 100 statement numbers were dis­
tributed equally in strings, that is, 10 
statement numbers ending in O; 10 ending in 
1, etc., five strings of 20 entries each 
would be created. The time used to compile 
the source program is decreased because 
excessive time is not spent in searching 
long strings. 

NAMES: Names used in the program are 
assigned to six strings; assignment is made 
according to the length of the name. Names 
that are one character long are placed in 
the first string; names two characters long 
are placed in the second string; and so on. 
For faster compiling, the names should be 

76 

distributed equally among the six strings. 
For example, if there are 26 names of one 
character each in a program, one long 
string is created. For better efficiency, 
the names should be distributed equally to 
make six strings, each containing 4 or 5 
names. 

Use of DUMP and PDUMP 

Three facts are pertinent when the sub­
routines DUMP and PDUMP are used: 

1. Under the operating system, a program 
can be loaded into different areas of 
main storage for different executions. 

2. The compiler assigns locations to 
variables and arrays in COMMON in the 
same order that the programmer speci­
fied in a COMMON statement. 

3. The compiler assigns locations in the 
object module to variables and arrays 
that are not in COMMON by name length 
and the order in which they are 
encountered. 

The following text shows several exam­
ples of how to write statements that use 
DUMP and PDUMP. 

If a series of variables and arrays that 
reside in COMMON are to be dumped, only the 
first and last variables to be dumped 
should be listed as arguments for the 
subroutine. For example, if COMMON is 
defined as: 

COMMON A,B,C(20),I(10),D 

the following statement can be used to dump 
the variable B and the arrays c and I in 
hexadecimal format and terminate execution 
after the dump. 

CALL DUMP (B,I(10),0) 

If the variables and arrays are not in 
COMMON, a set of arguments should be listed 
for each name that is to be dumped. For 
example, if COMMON is defined as: 

COMMON A,B,C(20),IC10),D 

and the array x is defined as: 

DIMENSION X(25) 

and a variable Y is defined in the module. 
The following statement should be used to 
dump B, c, I, Y, and X in real format 
without terminating execution. 

CALL PDUMP(B,I(10),5,X(1),X(25),5,Y,Y,5) 



If the statement 

CALL PDUMPCB,!(10),5,X(l),Y,5) 

is used, the COMMON area is dumped correct­
ly, but all main storage between X(l) and Y 
is dumped. 

If an array and a variable are passed as 
arguments to a subprogram, the arguments in 
the call to DUMP or PDUMP in the subprogram 
should specify the parameters used in the 
definition of the subprogram. For example, 
if the subprogram SUB! is defined as: 

SUBROUTINE SUBI(X,Y) 
DIMENSION XC10) 

and the call to SUB! within the source 
module is: 

DIMENSION A(10) 

CALL SUBICA, B) 

then the following statement in the subpro­
gram should be used to dump the variables 
in hexade~imal format without terminating 
execution: 

CALL PDUMP (X(l),X{lO),O,Y,Y,0) 

Direct Access Programming 

Using direct access I/O rather than 
sequential I/O can decrease load module 
execution time: the direct access state­
ments in the FORTRAN IV (E) language enable 
the programmer to retrieve a record from 
any place on the volume without reading all 
the records preceding that record in the 
data set. Direct data sets should be 
pre-formatted. If the NEW subparameter of 
the DD statement is specified for the data 
set, the FORTRAN load module will format 
the data set before the program begins 
processing. 

Note: Direct access I/O statements and 
sequential I/O statements may not be used 
to process, via the same unit number, the 
same direct data set within the same FOR­
TRAN load module. However, sequential I/O 
statements may process a direct data set in 
one load module, while direct access I/O 
statements process it in another. 

Not all applications are suited to 
direct access I/O, but an application that 
uses a large table that must be held in 
external storage can use direct access I/O 
effectively. An even better example of a 
direct access application is one that uses 

a data set that is updated frequently. 
Records in the data set that are updated 
frequently are called master records. 
Records in other data sets used to update 
the master records are called detail 
records. 

Each of the master records should con­
tain a unique identification that distin­
guishes this record from any other master 
record. Detail records used to update the 
masters should contain an identification 
field that identifies a detail record with 
a master record. For example, astronomers 
might have assigned unique numbers to some 
stars, and they wish to collect data for 
each star on a data set. The unique number 
for each star can be used as identification 
for each master record. Any detail record 
used to update a master record for a star 
would have to contain the same number as 
the star. 

A FORTRAN program indicates which record 
to FIND, READ or WRITE by its record 
position within the data set. The ideal 
situation would be to use the unique record 
identification as the record position. 
However, in most cases this is impractical. 
The solution to this problem is a randomiz­
ing technique. A randomizing technique is 
a function which operates on the identif i­
cation field and converts it to a record 
position. For example, if six-digit num­
bers are assigned to each star, the random­
izing technique may truncate the last two 
digits of the number assigned to the star 
and use the remaining four digits as a 
record position. For example, star number 
383320 would be assigned position 3833. 
Another example of a randomizing technique 
would be a mathematical operation performed 
on the identification number, such as 
squaring the identification number and 
truncating the first four digits and the 
last four digits of the result. Then the 
record for star number 383320 is assigned 
record position 3422. There is no general 
randomizing technique for all sets of iden­
tification numbers. The programmer must 
devise his own technique for a given set of 
identification numbers. 

Two problems arise when randomizing 
techniques are used. The first problem is 
that there may be a lot of space wasted on 
the volume. The solution in this instance 
must be developed within the randomizing 
technique itself. For example, if the last 
two digits on the identification numbers 
for stars are truncated and no star numbers 
begin with zero, the first thousand record 
positions are blank. Then a step should be 
added to the randomizing technique to sub­
tract 999 from the result of the trunca­
tion. 

Programming Considerations 77 



Identifier Chain 
r--------T------------T-----------------------------------------------------------------1 
I I Record I I 
I 383320 !Position forl Data I 
I I 383396 I I 

!~~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~: 
I I Record I I 
I 383396 !Position forl Data I 
I I 383352 I I 
L--------L-----i------L-----------------------------------------------------------------J 

l 
r-=--==--y------=====-T-===========~===-=-----------------------------------------------1 

I I End I I 
I 383352 I of I Data I 
I I Chain I I 
L--------L------------L-----------------------------------------------------------------J 
Figure 52. Record Chaining 

The second problem is that more than one 
identification may randomize to the same 
record location. For example, if the last 
two digits are truncated, the stars iden­
tified by numbers 383320, 383396, and 
383352 randomize to the same record loca­
tion - 3833. Records that randomize to the 
same record location are called synonyms. 
This problem can be solved by developing a 
different randomizing technique. However, 
in some situations this is difficult, and 
the problem must be solved by chaining. 

Chaining is arranging records in a 
string by reserving an integer variable in 
each record to point to another record. 
This integer variable will contain either 
an indicator showing that there are no more 
records in this chain or the record loca­
tion of the next record in the chain. 
Records chained together are not adjacent 
to each other. Figure 52 shows the records 
for star numbers 383320, 383396, and 
383352. 

When records are chained, the first 
record encountered for a record position is 
written in the record position that result­
ed from randomizing the identification num­
ber. Any records that then randomize to 
that same record location must be written 
in record positions to which no other 
record identifications randomize. The 
space for these synonyms can be allocated 
either at the end or the beginning of the 
data set. However, this space must be 
allocated when the data set is first writ­
ten. For example, if the randomizing tech­
nique assigns master records to record 
locations between 1 and 9999, the program­
mer may wish to reserve record locations 
10000 to 12000 for master records that 
become synonyms. 

78 

The programmer must keep a record loca­
tion counter to keep track of the space 
assigned for synonyms. When a synonyro is 
inserted in this space, the record location 
counter must be incremented. The program­
mer should set up a dummy record in his 
data set to maintain this record location 
counter. When the direct access data set 
is created, the record location counter 
should be set at the lower limit of the 
record positions available for synonyms 
(i.e., record location 10000 in the example 
used above) .. 

Also an 
indicate to 
chain has 
position is 
to indicate 

indicator should be reserved to 
the program that the end of a 
been reached. Since no record 
designated as O, 0 can be used 
the end of a chain. 

Before a FORTRAN program writes a direct 
access data set for the first time, the 
data set must be created by writing 
"skeleton records" in the space that is to 
be allocated for the direct access data 
set. These skeleton records should be 
written by an installation-written program. 
After the skeleton records are written~ the 
direct access data set must be classified 
as OLD in the DISP parameter of the DD 
statement. However, if the skeleton 
records are not written before direct 
access records are written by the FORTRAN 
program for the first time, a FORTRAN load 
module automatically creates the data set 
and writes the skeleton records. The pro­
grammer indicates that skeleton records 
have not been written by specifying NEW in 
the DISP parameter. A FORTRAN load module 
writes skeleton records according to the 
format described in "WRITE Create a 
Direct Organization Data set Format F 
Records" in "Section 3, Basic Sequential 
Access Method (BSAM)" in the Control Pro­
gram Services publication. 



Figure 53 shows a block diagram of the 
logic that can be used to write a direct 
access data set for the first time. The 
block diagram does not show any attempt to 
write skeleton records. 

Example 4 in Appendix A shows a program 
and job control statements used to update a 
direct access data set. 

Direct Access Programminq Considerations 

In a job that creates a data set which 
will reside on a direct-access device, the 
DCB subparameter of the DD statement must 
specify DSORG = DA in order that the label 
that is created will indicate that this is 
a direct-access data set (see "Creating a 
Direct Data Set" in the publication IBM 
System/360 Operating system: Supervisor and 
Data Management Services, Form C28-6646). 

Space must be allocated in the SPACE 
parameter of the DD statement for a data 
set written on a direct access volume. For 
direct access data sets, the space allocat­
ed in the SPACE parameter should be consis­
tent with the record length and number of 
records specified in the DEFINE FILE state­
ment in the FORTRAN program. For example, 
in the DEFINE FILE statement 

DEFINE FILE 8(1000,40,E,I) 

the number of records is specified as 1000 
and the record length is specified as 40. 
When this program is executed the DD state­
ment for this data set should contain the 
SPACE parameter 

SPACE (40,(1000)) 

indicating that space is allocated for 1000 
records, and 40 bytes for each record. 

The DEFINE FILE statement for a data set 

lmust be in a source module in the root 
segment (i.e., it cannot be overlaid), but 
does not have to be in the same source 
module in which I/O operations occur. For 
example, the DEFINE FILE statement can be 
given in a main program with a subprogram 
performing the I/O operations on the data 
set. However, if an associated variable 
defined in the main prograro is to be used 
by a subprogram, it must be passed to the 

I 
subprogram in COMMON. Since an associated 
variable is updated by input/output opera­
tions, the subprogram cannot get to the 
updated value to make use of it in its 

loperations unless the 
is in COMMON. 

associated variable 

The FIND statement permits record 
retrieval to occur concurrently with compu­
tation or I/O operations performed on dif­
ferent data sets. By using the FIND state­
ment, load module execution time can be 
decreased. For example, the statements 

10 A=SQRT(X) 

52 E=ALPHA+BETA*SIN(Y) 
64 WRITE(9)A,B,C,D.E 
76 READ(8'101)X,Y 

are inefficient because computations are 
performed between statements 10 and 52 and 
an I/O operation is performed on another 
data set while record number 101 could be 
retrieved. If the following statements are 
substituted, the execution of this module 
becomes more efficient because record num­
ber 101 is retrieved during computation and 
I/O operations on other data sets: 

5 FINDC8'101) 
10 A=SQRT(X) 

52 E=ALPHA+BETA*SINCY) 
64 WRITE(9)A,B,C,D,E 
76 READ(8'101)X,Y 

How Arguments Are Passed 

Although the programmer cannot alter the 
method for passing arguments to a subpro­
gram, knowing how arguments are passed may 
be valuable when he debugs his program. A 
main program passes arguments to a subpro­
gram in two ways. 

The first method is called "call by 
value." When this method is used, the main 
program moves the value currently residing 
in the argument in the main program into 
the location assigned to the argument in 
the subprogram. When the subprogram 
returns to the main program, the value of 
the argument in the subprogram is moved to 
the location of the argument in the main 
program. In FORTRAN CE), only variables 
are passed using "call by value." 

Programming Considerations 79 



DEFINE FILE 

Allowing enough 
Space for Synonyms 

Set Record 
Location Counter = 

Lower Limit of 
Space for Synonyms 

andomize 
Identification 

Number to 
Record Location 

Set Record Position Build 
in Read Statement Master 
= Chain Variable Record 

No 

Set Chain 
Variable in Master 

Record = Record 
Location Counter 

Set Record Position 
in Write Statement 

=Record 
Location Counter 

Increment 
Record Location 

Counter by l 

Figure 53. Writing a Direct Access Data 
set for the First Time 

80 

The second method is called "call by 
name." When this method is used, the main 
program moves an address into the location 
assigned to the argument in the subprogram. 
In FORTRAN (E), arrays and subprograms, 
used as arguments, are passed using "call 
by name." The main program moves the 
address of the first element in the array 
into the subprogram or moves the address of 
the entry point of the subprogram, used as 
an argument, into the subprogram. 

tD STATEMENT CONSIDERATIONS 

Several DD statement parameters and sub­
parameters are provided for I/O optimiza­
tion (see Figure 54). Other DD staterr.ent 
parameters are discussed in "Job Control 
Language" and "Creating Data Sets." 

Channel Optimization 

The SEP parameter indicates that I/O 
operations for specified data sets are to 
use separate channels (channel separation), 
if possible. The I/O operations for the 
data set, defined by the DD statement, in 
which 

SEP=(ddnameC,ddname] ... ) 
appears, are assigned to a channel 
different from those assigned to the 
I/O operations for data sets defined 
by the DD statements "ddnarr.e". 
Assigning data sets whose I/O opera­
tions occur at the same time to dif­
ferent channels decreases the time 
required for I/O operations. 

I/O Device Optimization 

UNIT subparameters can be specified for 
device optimization. 

VOLUME MOUNTING AND DEVICE SEPARATION: 

UNIT= (name [; ~] [I DEFER] 

C,SEP=(ddnameC,ddname] ... )]) 

DEFER 

can be specified for volume mounting 
and device separation. The "name" and 
number of units are discussed in the 
section "Data Definition Statement." 

indicates that the volurre(s) for the 
data set need not be mounted until 
needed. The control program notifies 
the operator when to wount the volume. 



r---------------------------------------------------------------------------------------1 
I 
ISEP=(ddname[,ddname] •.• 1) 2 

l {<name[, nlP 3] [,DEFER] [,SEP=Cddname[,ddname] ••• 1 ) 2 ] 4 5 )6} 
!UNIT= AFF=ddname 

l/sPACE=(ABSTR, Cquantity,beginning-address[,directory-quantity])) 
I{ r , 

l s PLI T= C n l {;~;~rage-record- length}, C primary-quantity [, s econdary-quan tit y l l J l 
! SUBALLOC=C{~~~ }, Cprimary-quantity[,secondary-quantity] 
I average-record-length 

l [,directory-quantity]),{~~~~~:me.ddname }> 
I stepname.procstep.ddname I 
I I 
~---------------------------------------------------------------------------------------~ 
11The maximum number of repetitions allowed is 7. I 
12If only one "ddname" is specified, the delimiting parentheses may be omitted. I 
13If neither "n" nor "P" is specified, 1 is assumed. I 
14This subparameter is applicable only for direct-access devices. I 
1sThis subparameter is the only keyword subparameter shown in this figure. All thel 
I remaining subparameters shown in the UNIT, SPACE, SPLIT, and SUBALLOC parameters arel 
I positional subparameters. I 
16If only "name" is specified, the delimiting parentheses may be omitted. I 
L---------------------------------------------------------------------------------------J 
Figure 54. DD Statement Parameters for Optimization 

SEP=(ddname[,ddnameJ ••• > 
is used when a data set is not to be 
assigned to the same access arms on 
direct access devices as the data sets 
identified by the list of ddnames. 
This subparameter is used to decrease 
access time for data sets. This par­
ameter er is meaningful only for data 
sets residing on direct access 
volumes. The SEP subparameter in the 
UNIT parameter provides for device 
separation, while the SEP parameter 
provides for channel spearation. 

DEVICE AFFINITY: The use of the same 
device by data sets is specified by 

UNIT=AFF=ddname 
the data set defined by the DD state­
ment in which the AFF subparameter 
appears uses the same device as the 
data set defined by the DD statement 
"ddname" in the current job step. 

Direct-Access Space Optimization 

The SPACE parameter discussed in 
"Creating Data Sets" 1s used to allocate 
space on a volume. Another form of the 
SPACE parameter may also be used to specify 
space beginning at a designated track 

address on a direct access volume. The 
SPLIT or SUBALLOC parameters may be speci­
fied instead of SPACE to split the use of 
cylinders among data sets on a direct 
access volume or to use space specified for 
another data set which that data set did 
not use. 

SPACE BEGINNING AT A SPECIFIED ADDRESS: 

SPACE=CABSTR,quantity,beginning-address 
[,directory-quantity]) 

specifies space beginning at a partic­
ular address on a direct access vol­
ume. The "quantity" is the number of 
tracks allocated to the data set. The 
"beginning address" is the track 
address on a direct access volume 
where the space begins. If the data 
set is a partitioned data set, the 
"directory quantity" specifies the 
number of records allocated to the 
directory. 

SPLITTING THE USE OF CYLINDERS AMONG DATA 
SETS: If several sequential data sets in a 
step use the same direct access volume, 
processing time can be saved by splitting 
the use of cylinders among the data sets. 
Splitting cylinders eliminates seek opera­
tions on separate cylinders for different 
data sets. Seek operations are measured in 
milliseconds~ while the data transfer is 

Progranuning Considerations 81 



measured in microseconds. Direct access 
and partitioned data sets cannot be created 
using the SPLIT parameter. 

[{
,CYL } 

SPLIT=Cn ,average-record-length 

, <primary-quantity 

L, secondary-quantity]>] l 

is substituted for the SPACE parameter 
when the use of cylinders is split. 
If CYL is specified, "n" indicates the 
number of tracks per cylinder to be 
used for this data set. If P.average 
record length" is specified, "n" indi­
cates the percentage of tracks per 
cylinder used for this data set. The 
remaining subparameters are the same 
as those specified for SPACE in 
"Creating Data Sets." 

More than one DD statement in a step 
will use the SPLIT parameter. However, 
only the first DD statement specifies all 
the subparameters; the remaining DD state­
ments need only specify "n". For example: 

//STEP4 EXEC PGM=TESTFI 
//FT08F001 DD SPLIT=(45,800, (100,25)) 

//FT17F001 DD SPLIT=(35) 

//FT23F001 DD SPLIT=(20) 

ACCESSING UNUSED SPACE: Data sets in the 
current step or previous steps may not have 
used all the space allocated to them by a 
DD statement. The SUBALLOC parameter may 
be substituted for the SPACE parameter to 
permit a new data set to use this unused 
space. 

{
TRK } 

SUBALLOC=( CYL , 

82 

average-record-length 

(primary-quantity, 

[,secondary-quantity] 

[,directory-quantity]), 

{

ddname ) 
stepname.ddname \) 
,stepname~ procstep. ddname; 

The data set from which unused space 
is taken is defined in the DD state­
ment "ddname", which appears in the 
step "stepname." (The step must be in 
the current job.) The other subparam-

eters specified in the SUBALLOC param­
eter are the same as the subparameters 
described for SPACE in "Creating Data 
Sets." 

Priority Scheduler Considerations for 
Cataloged Procedures 

If, during system generation, the 
installation selects a priority scheduler 
and an operating system that provides mul­
tiprogramming with a variable number of 
tasks CMVT), the following information must 
be taken into consideration when writing 
FORTRAN programs. 

1. The PRFRM option must be in effect for 
the compile step, either by default or 
by explicit request in the compiler 
job step PARM field. Siwilarly, the 
SIZE allccation must be at least 
19,456 bytes. This figure assumes no 
blocking. If the input is blocked 
(e.g., by an input reader), a figure 
that is 160 times the blocking factor 
must be added to the 19,456 byte 
specification in the SIZE option. For 
a compile step, REGION must be at 
least 16K greater than the compiler 
SIZE specified in the PARM field (or 
default SIZE). 

2. If the default or cataloged REGION 
parameter is not sufficient for a 
particular compile, link edit, or exe­
cute job step, an adequate REGION must 
be specified on the appropriate JOB or 
EXEC card. For a link edit step, the 
specification for REGION depends on 
which linkage editor is used (see 
"Linkage Editor Restrictions"). 

Linkage Editor 
IEWLE150 
IEWLE180 
IEWLE440 

REGION 
24K 
26K 
54K 

3. DCB BLKSIZE parameters must be speci­
fied on the DD cards for SYSLIN, 
SYSPUNCH, and SYSPRINT. For SYSPRINT, 
this block size is 121; for SYSPUNCH 
it is 80. The blocking factor deter~ 
mines the specification for SYSLIN, 
but it must be specified as a multiple 
of 80. If this figure is added to the 
SIZE specification, it must also be 
added to that for REGION. 

4. Compiler data sets handled by output 
writers cannot be blocked (e.g., SYS­
PRINT and SYSPUNCH). 



LIBRARY CONSIDERATIONS 

The FORTRAN library is a group of sub­
programs residing in the partitioned data 
set SYSl.FORTLIB. For a detailed descrip­
tion of the FORTRAN library, see the 
FORTRAN IV (E), Library Subprograms publi­
cation. A programmer can change the sub­
programs in the library; he can add, 
delete, or substitute library subprograms; 
or he can create his own library. These 
topics are discussed in detail in the 
section "Moving and Copying Data" in the 
Utilities publicatione 

COMPILER RESTRICTIONS 

Table 14 shows the average number of 
source statements that can be compiled by 
the FORTRAN compiler with regard to the 
SPACE and PRFRM option and the size (in 
bytes) of the Dictionary and the overflow 
Table used by the compiler. The Dictionary 
and the overflow Table are used by the 
compiler to contain information concerning 
variables, arrays, subscripts, functions, 
data set reference numbers, statement num­
bers, etc. 

The dictionary and over£low table sizP­
in bytes, s, required to compile a number 
of source statements, X, is approximately 

S=10X+500 

Table 14. Source Module Size Restrictions 

The following is a list of compiler 
restrictions: 

• The maximum number of variables that 
may be equated in EQUIVALENCE state­
ments is approximately 100. For compi­
lations in which the largest unused 
portion of the Dictionary and the Over~ 
flow Table exceeds 800 bytes, the maxi­
mum becomes the number of bytes in this 
segment divided by 8. For example, if 
the compiler allocates 5500 bytes to 
the Dictionary and Overflow Table, and 
3100 are used, then the maximum becomes 
2400/8=300. 

• The maximum number of names for vari­
ables and arrays that may appear in an 
I/O list is approximately 250. 

• The maximum number 
subprogram call or 
tion is 48. 

of arguments in a 
subprogram defini-

• The maximum level of nesting for DO 
loops is 25. 

• The maximum number of statement numbers 
in a computed GO TO statement is 
approximately 250. 

• The maximum number of records allowed 
in a direct access data set is 

• The maximum size of an array is 131,071 
bytes. 

r------------T--------------------T---------------T-------------------------------------1 
I !Average Number of !Dictionary and !Intermediate Text Capacity Cin bytes> I 
!SIZE Option !Source Statements !Overflow Table ~-----------T-------------------------i 
I I That Can Be Compiled I Size Cin bytes) I SPACE I PRFRM I 
~-----T------t---------T----------t-------T-------t-----------t-----------T-------------i 
ISPACEIPRFRM1 1 SPACE I PRFRM I SPACE I PRFRM !Buffer Size!Buffer Sizel In Storage2 I 
~-----+------+---------+----------+-------+-------+-----------+-----------+-------------~ 
I 15K I 19K I 110 I 110 I 2216 I 2216 I 104 I 96 I o I 
I 44K I 48K I 2500 I 1980 I 25512 I 20328 I 1704 I 1696 I 5184 I 

I 86K I 90K I 6500 I 6500 I 65536 I 65536 I 1704 I 1696 I 8104 I 
1200K I 204K I 6500 I 6500 I 65536 I 65536 I 1704 I 1696 I 119720 I 
~-----i------i---------i----------i-------i-------i-----------i-----------i-------------~ 
l 1 If blocked input and output are used, the value of the expression [2*CBLKSIZE)] mustl 
I be added for each data set that contains blocked records to the number shown under thel 
I PRFRM option. I 
l 2 The figures under "In Storage" indicate how many additional bytes are available forl 
I retaining the intermediate text in main storage before the text has to be written onl 
I external storage. If the storage required for intermediate text does not exceed thisl 
I figure, no I/O operations are performed for the intermediate text. I 
L---------------------------------------------------------------------------------------J 

• The maximum total program and data size 
(including COMMON) is 196,608 bytes. 

• The total number of statement numbers 
referred to (excluding FORMAT statement 

numbers), DO statements, and statement 
functions cannot exceed 1000. 

• The number of arguments in a statement 
function cannot exceed 15. 

Progranuning Considerations 83 



LINKAGE EDITOR RESTRICTIONS 

The maximum number of load modules and 
object modules that can be processed by 
each linkage editor varies according to the 
number of bytes of main storage reserved 
for linkage editor operations. This maxi-

1 
mum is shown below for each of the three 
linkage editors. 

r--------------T--------------T-----------1 

llLinkage EditorlBytes Reserved! I 
I Name !for Operation I Maximum I 
~--------------+--------------+-----------i 
I I 15K I 119 I 
I IEWLE150 ~--------------+-----------i 
I I 18K I 229 I 
~--------------+--------------+-----------i 
I I 18K I 75 I 
I IEWLE180 ~--------------+-----------~ 
I I 20K I 140 I 
~--------------+--------------+-----------i 
I I 44K I 349 I 
I IEWLE440 ·--------------+-----------i 
I I 88K I 12so I 
L--------------~--------------~-----------J 

Object modules processed by the linkage 
editor cannot exceed 512K bytes, because 
this is the maximum that can be processed 
by program FETCH. 

84 

FORTRAN LOAD MODULE RESTRICTIONS 

The following is a list of FORTRAN load 
module restrictions: 

• A FORTRAN load module cannot read past 
the end of a data set. 

• For the EXP and DEXP library functions, 
the argument cannot exceed 174.673. 

• For the SIN and COS library functions~ 
the absoLute value of the argument 
cannot exceed 
21s.7fc21ae1r=.82354966406249996D+06). 

• For the DSIN and DCOS library func­
tions, the absolute value of the argu­
ment cannot exceed 
2soe77"C2 5 o•1"f=.35371188737802239D+16). 

• The minimum record length for records 
written on a magnetic tape volume is 
18. The minimum record length for 
records read from a magnetic tape vol­
ume is 12. 

• A data set reference number cannot 
exceed the maximum data set reference 
number specified by the installation 
when the system is generated. 



The compiler, linkage editor, and load 
modules produce aids which may be used to 
document and debug programs. This section 
describes the listings, maps, card decks, 
and error messages produced by these compo­
nents of the operating system . 

COMPILER OUTPUT 

The compiler can generate a listing of 
source statements, a storage map showing 
the location of variables and constants in 
the object module, and an object module 
card deck. Source module diagnostic mes­
sages are also produced during compilation. 

Source ListiQg 

If the SOURCE option is specified or 
assumed, the source listing is written by 
the output device specified in the SYSPRINT 
DD statement. A sequential internal state­
ment number: 

S.nnnn (l~nnnn~9999) 

is assigned to each source statement. 
(Comments and continuation cards are not 
assigned an internal statement number.) 
The internal statement number is then used 
in the diagnostic messages to indicate 
erroneous statements in the source program. 
An example of a source program listing is 
shown in Figure 55. This printout is the 
source listing of Sample Program 1 shown in 
"Appendix D" of the publication ~~sic 
FORTRAN IV Language. 

C PRIME NUMBER PROBLEM 
100 WRITE (6,81 

SYSTEM OUTPUT 

Storage Map 

If the MAP option is specified, a stor­
age map of the object module is written on 
the data set specified by the SYSPRINT DD 
card. The storage map gives a listing of: 

1. The relative addresses and names of 
all variables, including subprogram 
names and in-line subprogram names. 

2. The relative addresses and names of 
all external references, including all 
subprograms, except in-line subpro­
grams. 

3. All user-specified literal constants 
and their relative addresses. 

4. All compiler-generated constants and 
their relative addresses. 

5. A branch list consisting of all state­
ment numbers ref erred to and their 
relative addresses. 

An example of a map printout is shown in 
Figure 56. This printout is the source 
module map of Sample Program 1 shown in 
"Appendix D" of the publication Basic 
FORTRAN IV Languag_§. 

Object Module card Deck 

The compiler produces an object module. 
This module is composed of four types of 
card images -- TXT, RLD, ESD, and END. If 
the DECK option is specified, the object 
module is written on the device specified1 

s.0001 
s.0002 8 FORMAT (52H FOLLOWING IS A LIST OF PR!ME NUMBERS FROM l TO lOOOf 

ll9X,lrll/19X,lH2/l9X,lH31 
S.0003 
S.0004 
S.0005 
S.0006 
s. 000 7 
s.oooa 
S.0009 
s.0010 
s.0011 
s.0012 
S.0013 
S.0014 
s.0015 
S.0016 
S.0017 
S.0018 
S.0019 
s.0020 

101 I =5 
3 A=I 

102 A=SQRT<AI 
l 03 J=A 
104 DO l K=3,J,2 
105 L=I/K 
106 IF(L*K-!ll,2,4 

l CONTINUE 
107 WR I TE ( 6 , 5 I I 

5 FORMAT 1120) 
2 [=I +2 

108 lFll000-1)7,4,3 
4 WRITE (6,91 
9 FORMAT (14H PROGRAM ERRORI 
7 WRITE (6,6) 
6 FJRMAT (31H THIS !S T~E END OF THE PROGRAM! 

109 STOP 
END 

Figure 55. Source Module Listing 

System output 85 



STORAGE MAP VARIABLES If AGSO C=C0'1MON, E=EOUIVALENCEI 

NAME TAG REL AOR NAME TAG REL ADR NAME TAG REL ADR NAME· TAS REL ADR 

I 000154 A 000158 000 l 5C 0001&0 
L 000164 

ExT ERNAL REFERENCES 

NAME REL ADR NAME REL ADR NA"lE REL A~R NAME REL ADp 

SQRT 000168 

CONSTA'HS 

NAME REL ADR NAME REL ADR NAME ~EL ADR Nllf>'E REL llDR 

00000005 000184 00000002 000188 000003E8 00018C 

IMPLIED EXTERNAL REFERENCES 

NAME REL ADR NAME REL ADR 

lBCOMi 000220 

STATEMENT NUMBER REL ADR STATEMEf>lT NUMBER REL AOR 

00100 000256 00100 000256 
00003 000274 00102 000294 
0010 5 0002CC 00106 0002DC 
00005 OOOlOC 00002 000324 
00009 OOOlEO 00007 000358 

Figure 56. Storage Map 

in the SYSPUNCH DD statement; if LOAD is 
specified, the module is written on the 
device specified in the SYSLIN DD state­
ment. A functional description of these 
card images is given in the following 
paragraphs. 

OBJECT MODULE CARD IMAGES: Every card 
image in the object module contains a 
12-2-9 punch in column 1 and an identifier 
in columns 2 through 4. The identifier 
consists of the characters ESD, RLD, TXT or 
END. The first four characters of the name 
of the program are placed in columns 73 
through 76 with the sequence number of the 
card in columns 77-80. 

ESD Card: Three types of ESD card images 
are generated: 

ESD, type O - contains the name of the pro­
gram and indicates the begin­
ning of the object module. 

ESD, type 2 - contains the names of subpro­
grams ref erred to by CALL 
statements, EXTERNAL state­
ments, and function refer­
ences in the source program. 

ESD, type 5 - contains information about 
the COMMON area. 

The number 0, 2, or 5 is placed in card 
column 25. 

RLD Card Imaoe: An RLD card image is 
generated for external references indicated 
in the ESD, type 2 card iITages. To com­
plete external references, the addresses in 
the RLD card image are matched with exter­
nal symbols in the ESD card images by the 
linkage editor. When it has resolved 

86 

lllAME REL AO~ NAME RFL ADR 

STATEMENT NUMBER R.EL ADR STATEMENT l\IUMBFR REL ADP 

00008 oao1ao 00101 0002t>C 
00103 0002A6 00104 0002C4 
0000 l 0002F4 001Cl7 000308 
00108 000330 00004 000344 
00006 0001F4 00109 OOCHC 

external references, the storage at the 
address indicated in the RLD card iITage 
contains the address assigned to the sub­
program indicated in the ESD, type 2 card 
image. RLD card images are also generated 
for a branch list produced for statement 
numbers, DO loops, and Statement Functions. 

TXT card Image: The TXT card image con­
tains the constants used by the programmer 
in his source module, any constants gener­
ated by the compiler, coded information for 
FORMAT statements, and the machine instruc­
tions generated by the compiler from the 
source module. 

END Card Image: One END card image is 
generated for each compiled source module. 
This card indicates the end of the object 
module to the linkage editor, and contains 
the entry point (where control is given to 
begin execution of the module after it is 
link edited}. 

OBJECT MODULE DECK STRUCTURE: Figure 57 
indicates the FORTRAN object module deck 
structure. If the object module is written 
on a device other than the card punch, the 
structure of the module is the same. 

Source Module Diagnostics 

Two types of diagnostic messages are 
generated by the compiler - informative and 
error/warning messages. 

source Module Informative Messages: Source 
module messages tell the programmer or 
operator about the status of the compiler. 
A message is generated when the compilation 



END Cord, giving 
the entry point 
r ,1 I I ror rne moou1e 

RLD Cords for 
the Branch List 

TXT Ca,·ds 

for Object 
Module Instructions 

TXT Cords 
for Compiler 

Generated Constants 

ESD, Type 2 and 
RLD for Compiler 

Generated External 
References 

TXT Cords for 
Coded FORMAT 

Statements 

TXT Cords 
for Source 

Module Constants 

ESD, Type 2, and 
RLD for External 

References in 
CALL, EXTERNAL, 

and Statements 
Using Subprograms 

ESD, Type 5, 
Indicating the 

Existence of the 
COMMON Area 

ESD, Type 0 
Giving the Nome 

of the Object 
Module 

Figure 57. Object Module Deck Structure 

has begun, when the compiler options are 
processed, and at the end of compilation. 
For a description of these messages, see 
"Appendix D." 

Source Module Error/Warning Messages: All 
error/warning messages produced are written 
in a group following the source module 
listing and storage map. Figure 58 shows 
the format of each message as it is written 
on the data set specified by the SYSPRINT 
DD statement. 

When error conditions cannot be ascribed 
to a single source statement, the error 
message contains an internal statement num­
ber S.0000. For example, in the FORTRAN 
statements 

DOUBLE PRECISION DP 
COMMON R,DP 

the error message 

IEJ146I S.0000 INCONSISTENT EQUATE 

is issued, because 
able is not placed 
The error could 
FORTRAN statement, 
ment number S.0000 
message. 

a double-precision vari­
on the proper boundary. 
be attributed to either 
so the internal state­
is assigned to the error 

There are two types of error/warning 
messages: serious error messages and warn­
ing messages beginning with the word 
"WARNING". Serious error messages transmit 
a condition code of 8, 12, or 16. Warning 
messages transmit a condition code of 4. 

r---------------------------------------------------------------------------------------1 
I MESSAGE NUMBER STATEMENT NUMBER DESCRIPTION I 
I IEJnnnI s. xxxx message I 
~---------------------------------------------------------------------------------------~ 
I nnn is the ~essage number I 
I xxxx is the internal statement number I 
I message is the actual message printed I 
L---------------------------------------------------------------------------------------J 
Figure 58. Format of Diagnostic Messages 

System Output 87 



For a description of error/warning mes­
sages, see "Appendix D." 

LINKAGE EDITOR OUTPUT 

The linkage editor produces a map of a 
load module if the MAP option is specified, 
or a cross-reference list and a map if the 
XREF option is specified. The linkage 
editor also produces diagnostic messages, 
which are discussed in the "Appendix D" of 
the publication Linkage Editor. 

Module Map 

The module map is written on the data 
set specified in the SYSPRINT DD statement 
for the linkage editor. To the linkage 
editor, each program (main or subprogram) 
and the COMMON area are control sections. 

Each control section name is written 
along with origin and length of the control 
section. For a program, the name is list­
ed; for COMMON, the name $BLANKCOM is 
listed. The origin and length of a control 
section is written in hexadecimal numbers. 
A segment number is also listed for overlay 
structures (see the publication Linkage 
Editor). 

The names and locations of each control 
section and entry points and their loca­
tions are also written; any functions 
called from the data set specified by the 

SYSLIB DD statement are listed and marked 
by asterisks. 

The total length and entry point of the 
load module are also listed. 

Figure 59 shows a load module map for 
Sample Program 1 shown in Appendix D of the 
publication Basic FORTRAN IV Language. 

Cross-Reference List 

If the option A~~r ~~ specified, a 
cross-reference list is written with the 
module map. This cross-reference list 
gives the location from which an external 
reference is made, the symbol externally 
referenced in this control section, the 
control section in which the symbol 
appears, and the segment number of the 
control section in which the symbol 
appears. Unless the linkage editor is 
building an overlay structure, the cross­
reference list appears after the module map 
for all control sections. 

Figure 60 shows the cross-reference list 
and module map for Sample Program 1 shown 
in "Appendix D" of the publication Basic 
FORTRAN IV Language. 

LOAD MODULE OUTPUT 

The programmer defines the output data 
sets for load module execution in READ, 

---- MODULE MAP ----

CONTROL SECT ION ENTRY 

NAME ORIGIN LENGTH NAME LOCATION t.IAME LOCATION NAME LOCATION 

MAIN 00 37A 
IHCSSQRT* 380 AC 

SQRT 380 
IHCFCOME* 430 1484 

I BCOM# 430 FDIOCS# 

IHCF IOSH* 186 8 C50 
FI DC S# t 88 8 

IHCUA TBL* 250 8 638 

ENTRY ADDRESS 00 
TOTAL LENGTH 2840 

Figure 59. Module Map 

88 



CROSS REFERE~CE TABLE ----

CONTROL SECTION ENTRY 

NAME OR!GiN LENGTH NAME LOCATION 

MAIN 00 HA 
IHCSSQRT* 380 AC 

SQRT 380 
IHCFCOME* 430 1484 

lBCOM# 430 
IHCFIOSH* 18B8 C50 

F IOCS# 18B8 
lHCUATBL* 2508 638 

LOCATION REFERS TO SYMBOL [N CONTROL SECTlON 

168 
220 
404 
A5C 
CFC 

19DC 
19E 8 

ENTRY ADDRESS 
TOTAL LENGTH 

SQRT 
lBCOH# 
lBCOl'l# 
F lOCS# 
F roes* 
I HC UATB L 
lBCOM# 
00 

2B40 

IHCSSQRT 
IHCFCOME 
IHCFCOME 
iHCF IOSH 
IHCF IOSH 
IHCUATBL 
IHCFCOME 

NAME LJCA fIO"l NAME LOCil HON NA"'IE LOCATIO~ 

FD roe S# A60 

Figure 60. Linkage Editor Cross-Reference List 

WRITE, and FORMAT statements. At execution 
time, FORTRAN load module diagnostics are 
generated in three forms error code 
diagnostics, program interrupt messages, 
and operator messages. An error code 
indicates an input/output error or a misuse 
of a FORTRAN library function. A program 
interrupt message <which is a special form 
of an error code diagnostic) indicates a 
condition which System/360 cannot correct. 
An operator message is generated when a 
STOP or PAUSE is executed. 

Error Code Diagnostics 

When an error condition arises during 
execution of a FORTRAN load module, a 
message of the form 

IHCxxxI [message text] 

is printed. The error code is the number 
specified by the digits xxx. With some 
error code diagnostics, a "message text" is 
printed. The error code diagnostics are 
described in Appendix D. 

The error code diagnostics are written 
on a data set specified by the programmer. 
(See "Job Processing.") 

Program Interrupt Messages 

Program interrupt messages 
the old program status word 

containing 
(PSW) are 

written when an exception occurs. Operator 
intervention is not required for any of 
these exceptions (interrupts), and execu­
tion is not terminated. The program inter­
rupt messages are written on a data set 
specified by the programmer (see "Job Proc­
essing.") For a detailed description of 

lthese messages, see Appendix D. 

ABEND Dump 

If a program interrupt occurs that caus­
es abnormal termination of a load module, 
an indicative dump is given Ci.eo, only the 
contents of significant registers, indica­
tors, etc., are dumped). However, if a 
programmer adds the statement: 

//GO.SYSABEND DD SYSOU~=A 

to the execute step of a cataloged proce­
dure, all main storage and registers are 
dumped. For information about interpreting 
the indicative and abnormal termination 
dumps, see Part V of the Messages, ComEle­
tion Codes and Storage Dumps publication. 

Operator Messages 

A message is transmitted to the operator 
when a STOP or PAUSE is encountered during 
load module execution. Operator messages 
are written on the device specified for 
operator communication. For a description 
of these messages, see Appendix D. 

System Output 89 





The following examples show several 
methods to process load modules. Example 1 
consists of a single job step that uses 
blocked variable-length records as output 
in a matrix inversion application. Example 
2 shows the rocket firing example used in 
the "Introduction" to show job and job step 
relationships. Example 3 uses a generation 
data group to report and forecast the 
weather. Example 4 shows a program to 
update a direct access data set that con­
tains star master records. 

Example 1 

Problem Statement: 
A previously created and cataloged data set 
SCIENCE.MATH.MATRICES contains 80 matrices. 

• J ATllr.. I\ I 
IV\J-\1 11"4 V 

INVMATRS 

Figure 61. Input/Output Flow for Example 1 

APPENDIX A: EXAMPLES OF JOB PROCESSING 

Each matrix is an array containing real 
variables. The size of the matrices varies 
from 2x2 to 15x15; the average size is 
10x10. The matrices are inverted by a load 
module MATINV in the PDS MA~PROGS. Each 
inverted matrix is written as a single 
record on the data set 
SCIENCE.MATH.INVMATRS. The first variable 
in each record denotes the size of the 
matrix. Each inverted matrix is printed. 

The I/O flow for the example is shown in 
Figure 61. The job control statements used 
to define this job are shown in Figure 62. 

Explanation: The JOB statement identifies 
the programmer as JOHN SMITH and supplies 
the account number 537. The MSGLEVEL pa­
rameter indicates that both control state­
ments and control statement diagnostic mes­
sages are printed on the console typewrit­
er. 

The JOBLIB DD statement indicates that 
the cataloged PDS MATPROGS is concatenated 
with the system library. 

The EXEC statement indicates that the 
load module MATINV is executed. 

DD statement FT08F001 identifies the 
input data set, SCIENCE.MATH.MATRICES. (In 
the load module, data set reference nuwber 
8 is used to read the input data set.) 
Because this data set has been previously 
created and cataloged CDISP=OLD), no other 
information has to be supplied. 

Sample Coding Form 

Figure 62. Job Control Statements for Example 1 

Appendix A: Examples of Job Processing 91 



DD statement FT10F001 identifies the 
printed output. (In the load module, data 
set reference number 10 is used for printed 
output.) The data set is written on the 
device class specified in the SYSOUT param­
eter. The records are then written on a 
device determined by the operator when the 
job is executed. 

DD statement FT04F001 defines the output 
data set. (In the load module, data set 
reference number 4 is used to write the 
data set containing the inverted matrices.) 
Since the data set ~s created and cataloged 
in this job step, device, volume, space, 
record format, and length information are 
supplied. 

The DSNAME parameter indicates that the 
data set is named SCIENCE.MATH.INVMATRS. 
The DISP parameter indicates that the data 
set is created (NEW) and cataloged (CATLG) 
in this job step. The SPACE parameter 
indicates that space is reserved for 80 
records, 408 characters long (80 matrices 
of average size). When space is exhausted, 
space for 9 more records is allocated. The 
space is contiguous (CONTIG); any unused 
space is released (RLSE), and allocation 
begins and ends on cylinder boundaries 
(ROUND). 

The DCB parameter indicates blocked 
variable-length records (RECFM), because 
the size of matrices varies. The FORTRAN 
record length is 904, the maximum size of a 
FORTRAN record. The maximum size of a 
FORTRAN record in this data set is the 
maximum number of elements in a matrix 
multiplied by the number of bytes allocated 
for an element (900) plus 4 for the vari­
able that indicates the size of the matrix. 
LRECL is specified as 908 (the FORTRAN 
record length plus 4 for the segment con­
trol word used by the operating system for 
a variable-length record). BLKSIZE is 
specified as 2728 Can integral multiple of 
LRECL plus 4 for the block control word 
used for blocked variable-length records). 

The parameter SEP indicates that I/O 
operations for the data set SCIENCE. 
MATH.INVMATRS should use a different chan­
nel from I/O operations for the data set 
SCIENCE.MATH.MATRICES. 

Example 2 

Problem Statement: A previously created 
data set RAWDATA contains raw data from a 
test firing. A load module PROGRD refines 

92 

data by comparing the data set RAWDATA 
against a forecasted result, PROJDATA. The 
output of PROGRD is a data set &REFDATA, 
which contains the refined data. 

The refined data is used to develop 
values from which graphs and reports can be 
generated. The load module ANALYZ contains 
a series of equations and uses a previously 
created and cataloged data set PARAMS which 
contains the parameters for these equa­
tions. ANALYZ creates a data set &VALUES, 
which contains intermediate values. 

These values are used as input to the 
load module REPORT, which prints graphs and 
reports of the data gathered from the test 
firing. Figure 63 shows the I/O flow for 
this example. It is the same as Figure 1 
in the "Introduction" except that the data 
sets and programs have been assigned the 
names indicated in the preceding text. 
Figure 64 shows the job control statements 
used to process this job. 

The load modules REFDAT, ANALYZ, and 
REPORT are contained in the PDS FIRING. 

Explanation: The JOB statement indicates 
the programmer's name, JOHN SMITH, and that 
control statements and control statewent 
errors are printed on the console typewrit­
er (MSGLEVEL=l). 

PROJDATA 

PA RAMS 

PROGRD 

ANALYZ 

REPORT 

Graphs 
and 

Figure 63. I/O Flow for Example 2 



Samp!e Coding Form 

Figure 64. Job Control Statements for Example 2 

The JOBLIB DD statement indicates that 
the PDS FIRING is concatenated with the 
system library. 

The EXEC statement STFPl defines the 
first job step in the job, and indicates 
that the load module PROGRD is executed. 

The DD statements FT10F001 and FT11F001 
identify the data sets containing raw data 
(RAWDATA) and the forecasted result 
(PROJDATA), respectively. 

DD statement FT12F001 defines a tempo­
rary data set, &REFDATA, created for input 
to the second step. (In the load module, 
data set reference number 12 is used to 
write &REFDATA.) The DISP parameter indi­
cates that a data set is created (NEW) and 
is passed (PASS). The data set is written 
using the device class TAPFCLS. The VOLUME 
parameter indicates that the volume iden­
tified by serial number 2107 is used for 
this data set. The DCB parameter indicates 
that the volume is written using high 
density (DEN). The records are fixed­
length CRECFM). The logical record length 
is 400; therefore, the buffer length 
CBLKSIZE) is specified as 400. 

The EXEC statement STFP2 defines the 
second job step in the job and indicates 
that the load module ANALYZ is executed. 

DD statement FT17F001 identifies the 
data set which contains refined data. The 
DSNAME parameter indicates that the data 
set was created using DD statement FT12F001 
in job step STEPl. The DISP parameter 
indicates that the data set is deleted 
after execution of this job step. The DD 
statement FT18F001 identifies the 
previously created and cataloged data set 
PARAMS. 

DD statement FT20F001 defines the tewpo­
rary data set &VALUES containing the inter­
mediate values. The DISP parameter indi­
cates that the data set is created in this 
step and that it is passed. The data set 
is written on volume 2108 using one of the 
devices assigned to the class TAPECLS. The 
DCB parameter indicates high density (DEN), 
fixed-length records (RECFM). Each record 
is 204 characters long (BLKSIZE). 

The EXEC statement STEP3 defines the 
third job step and indicates that the load 
module REPORT is executed. 

DD statement FT08F001 identifies the 
data set containing intermediate values. 
The DSNAME parameter indicates that this 
data set is defined by the DD statement 
FT20F001 in job step STEP2. 

Appendix A: Examples of Job Processing 93 



DD statement FT10F001 indicates that the 
data set reference number 10 is used to 
print the reports and graphs for job step 
three. 

Example 3 

Problem Statement: A generation data 
group, WEATHER, is updated and then several 
of the data sets within the group are used 
to produce a forecast. 

The load module FILECR in the PDS WTHRPR 
reads a card data set and creates a new 
generation data set. The new generation 
contains current data about weather condi­
tions. FILECR also generates a weather 
report. 

The load module FORCST in the PDS WTHRPR 
then uses the new generation along with 
three other generations of the group to 
forecast the weather. The weather forecast 
is written on the printer. Figure 65 shows 
the input/output flow for the job. 
Figure 66 shows the job control statements. 

F ILECR 

FORCST 

Weather 
Forecast 

Figure 65. I/O Flow for Example 3 

Explanation: The JOB statement defines the 
job WEATHRP to the operating system, and 
indicates that only control statement error 
messages are printed on the console type­
writer. The JOBLIB DD statement indicates 
that the PDS WTHRPR is concatenated with 
the system library. 

Sample Coding Form 

Figure 66. Job Control Statements for Example 3 

94 



The EXEC statement defines the first 
steo CREATE to the ooeratina svstem and 
indicates the execution of the load module 
FILECR in the PDS WTHRPR. 

DD statement FT08F001 defines the new 
member of the generation data group. A 
member of the class of devices HYPERT is 
used for the data set, and mounting of the 
volume is deferred (DEFER). The DISP pa­
rameter indicates a new data set (NEW) and 
that it is cataloged CCATLG). The label 
parameter indicates standard labels are 
written and the retention period is 30 
days. The DCB parameter indicates fixed­
length records (RECFM), each 400 characters 
long {BLKSIZE). 

DD statement FT03F001 defines printed 
output. The DCB field indicates that the 
report is double-spaced. The SEP parameter 
indicates channel separation from the data 
set defined by DD statement FT08F001. DD 
statement FT01F001 indicates that the card 
data set is in the input stream. 

The second job step is defined by the 
EXEC statement FORECAST, which indicates 
that the load module FORCST is to be 
executed. The DD statements for data set 
reference numbers 20 through 23 retrieve 
members of the generation data group 
WEATHER. DD statement FT03F001 indicates 
printed output for the weather forecast. 

Example 4 

A data set has been created that con­
tains master records for an index of stars. 
Each star is identified by a unique six­
digi t star identification number. Each 
star is assigned a record position in the 
data set by truncating the last two digits 
in the star identification number. Because 
synonyms arise, records are chained. 

The following conventions must be 
observed in processing this data set: 

1. The star master record that contains 
the record location counter pointing 
to space reserved for chained records 
is assigned to record location 1. 

2. A zero in the chain variable indicates 
that the end of a chain has been 
reached. 

3. The first variable in each star master 
record is the star identification 
field; the second variable in each 
star master is the chain variable. 

4. Each record contains six other vari­
ables that contain information about 
that star. 

Problem Statement: Figure 67 shows a block 
diagram illustrating the logic for this 
problem. 

A card data set read from the input 
stream is used to update the star master 
data set. Each record (detail record) in 
this data set contains: 

1. The star identification field of the 
star master record that the detail 
record is used to update. 

2. Six variables that are to be used to 
update the star master. 

When a star detail record is read, its 
identification field is randomized, and the 
appropriate star master record is read. If 
the correct star master record is found, 
the record is to be updated. If a star 
master is not found, then a star master 
record is to be created for that star. 

The last record in the star detail data 
set contains a star identification number 
999999 which indicates that processing the 
star detail data set is completed. 

Explanation: Figure 67 is similar to the 
diagram shown in Figure 53, except Figure 
67 includes blocks that describe updating 
variables in master records already present 
in the data set. (Figure 53 includes 
blocks describing certain operations that 
must be performed when a direct access data 
set is first written.> Also, Figure 67 is 
adapted to Example 4, whereas Figure 53 is 
more general. Figure 69 shows the FORTRAN 
coding for this program. 

The star master record that contains the 
record counter is read, placing the record 
location counter in LOCREC. Whenever a 
detail record is read, the identification 
variable is checked to determine if the end 
of the detail data set has been reached. 
The star detail records contain the vari­
ables A, B, c, D, E, and F. 

The identification number in the detail 
record is randomized; the result is placed 
in the variable NOREC, which is used to 
read a master record. The master record 
contains the star identification number 
CIDSTRM), a chain record location (ICHAIN), 
and six variables CT, u, v, W, Y, and Z) 
which are to be updated by the variables in 
the star detail records. IDSTRM and IDSTRD 
are compared to see if the correct star 
master is found. If it is not, then the 
variables containing the chain record num­
bers are followed until the correct star 
master is found or a new star master is 
created. 

Appendix A: Examples of Job Processing 95 



\ Stop 1 
"'------/ 

Set Record Position 
in Read Statement 
= Chain Variable 

Figure 67. 

96 

Randomize Star 
Number to a 

Record Location 

Set Chain 
Variable = Record 
Location Counter 

Set Record Position 
in Write Statement 

=Record 
Location Counter 

Increment 
Record Location 

Counter by l 

Build Star 
Master Record 

Update 
Variable in 
Star Master 

Block Diagram for Example 4 

Job Control Statements: The program shown 
in Figure 69 is compiled and link edited, 
placing the load module in the PDS STARPGMS 
and assigning the load module the name 
UPDATE. The data set that contains the 
star master records was cataloged and 
assigned the name STARMSTR when it was 
created. Figure 68 shows the job control 
statements needed to execute the module 
UPDATE. 



Sample Coding Form 

Figure 68. Job Control Statements for Example 4 

Appendix A: Examples of Job Processing 97 



.STATEMENT Z IDENTIFICATION 
NUMBER 8 FORTRAN STATEMENT SEQUENCE 

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18.19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 so 51 52 53 54 55 56 57 58 59 60 61626364""65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 BO 

DEFINE FILE 7(12000,130,E,NEXT) T l ! 

C :RIEAD RECORD CON!TAI NIN6 RECORD LOCATIO;N COUNTER 1 

. RE AD ( 7 ' 1' 10<1 ) I DST RM ' L 0 CR EC ·-+----1----1------~--+------
C READ STAR~ DATA AND CHECK FOR LAST STAR DATA 1rE-C-ORD __ _ 

IF(I~STRD-999999}20,99~99 
C RANDOMI~E IDENTIFICATION FIELD IN STAR DATA AND READ STAR MASTER 
20 NO:RiEC=IDSffRD/100 

C IS THIS CORRECT STAR MASTER 
I~(IDSTRD-IDSTRM)21,22,21 

C IS THERE A CHAIN VARIABLE 
21 IF (1 CHA IN ) 2 4' 2 4· 9123 __ _ -----+----+-------+--!----1----------J 
C NiO· BEGIN CONS[tRUCTI NG t.JEW MASTER AND CH A IN 

24 ICHAIN=L]CREC 
C UPDATE CHAIN [VARIABLE IN LAST STAR MASjfER RECORD AND iRITE LAST ,RECORD 

WRITE(7'NOREc,101)IDSTRj,rcHAIN 
c SET RECORD NUMBER iro BEGIN cg_NSTRUCTION OF NEW S[AR MASTER· UPDATE 
C REC RD LOCATION COUNTER· BUILD NE~ STAR MASIIER RECORD 

N.OREC=LOCREC 
LOCREC=LOCREC+i 

C GO TO WRITE STAR MASTER RECORD 
60 TO 25 

C r:F RECORD IS FOUND' UPDATE AND WRITE STAR _MASTER 
22 l:=A/B 

25 
C GO 

WR·IT EI7' NOR EC, 103) I DST RM, I CHAIN., r, U., V '~' y, i 
0 READ NE~T S'TAR DATA RECORD 
GO TO 26 

C IF CHAIN VARIABLE IN RECORD READ rrHE NEXT STAR ]!1ASTER IN THE CHAIN 
23 NOREC=ICHAIN 

GO TO 27 
C IF END OF STAR DATA"lWRITE STAR MASTER CONTAING RECORD LOCATION COUNTER 
99 IDSTRM=0 

STOP 99999 
101 
102 FORMAT( I6"l6F 10. 3) 

i ' 'FORMAT ( I 6 ' I 4 ) l _l l i 

103 FORMAT( I6,I4.16F2~. 3) l I l 
END 

1 2 3 4 5 6 7 B 9 10 11 12 \3 14 15 16 17 18 19 20 21 21 23 2.- 25 26 27 28 29 JO 31 32 33 34 35 36 37 38 39 l.O 41 42 4:; -4"'1 45 46 47 46 49 50 s1523J 54 55 56 57 58 59 6C 61 62 63 64 65 66 67 68 69~ 71 72 73 ;-4 :'5 ~6 ;-; :"E 79 80 

Figure 69. FORTRAN Coding for Example 4 

98 



A FORTRAN programmer can use assembler 
language subprograms with his FORTRAN main 
program. This section describes the link­
age - conventions that must be used by the 
assembler language subprogram to communi­
cate with the FORTRAN main program. To 
understand this appendix, the reader must 
be familiar with the publications Assembler 
Language and Assembler (E) Programmer's 
Guide or Assembler (F) Programmer's Guide. 

SUBROUTINE REFERENCES 

The FORTRAN programmer can ref er to a 
subprogram in two ways: by a CALL statement 
or a function reference within an arithme­
tic expression. For example, the state­
ments 

CALL MYSUB(X,Y,Z) 
I=J+K+MYFUNCCL,M,N) 

ref er to a subroutine subprogram MYSUB and 
a function subprogram MYFUNC, respectively. 

For subprogram reference, the compiler 
generates: 

1. An argument list in which the address­
es of the arguments are placed to make 
the arguments accessible to the sub­
program. 

2. A save area in which 
can save information 
calling program. 

the subprogram 
related to the 

3. A calling sequence to pass control to 
the subprogram. 

Argument List 

The argument list contains addresses of 
variables, arrays, and subprogram names 
used as arguments. Since the arguments are 
located in the main program, these address­
es are locations within the main program. 
Each entry in the argument list is four 
bytes long and is aligned on a full-word 

APPENDIX B: ASSEMBLER LANGUAGE SUBPROGRAMS 

boundary. The last three bytes of each 
entry contain the 24-bit address of an 
argument~ The fir~r byte of each entry 
contains zeros, unless it is the last entry 
in the argument list. If it is the last 
entry, the first (leftmost) bit in the 
entry contains a 1. 

The address of the argument list is 
placed in general register 1 by the calling 
program. 

Save Area 

The calling program contains a save area 
in which the subprogram places information, 
such as the entry point for this program, 
an address to which the subprogram returns, 
general register contents, and addresses of 
save areas used by programs other than the 
subprogram. The amount of storage reserved 
by the calling program is 18 words. 
Figure 70 shows the layout of the save area 
and the contents of each word. The address 
of the save area is placed in general 
register 13. 

FORTRAN main programs do not save 
floating-point registers. If these reg­
isters must be saved, the assembler lan­
guage subprogram is responsible for saving 
and restoring these registers. 

Calling Sequence 

A calling sequence is generated to 
transmit control to the subprogram. The 
address of the save area in the calling 
program is placed in general register 13. 
The address of the parameter list is placed 
in general register 1, and the entry 
address for the subprogram is placed in 
general register 15. An instruction is 
then generated to branch to the address in 
the general register 15 and to save the 
return address in general register 14. 
Table 15 shows a summary of the use of 
general registers. 

Appendix B: Assembler Language subprograms 99 



r---------------------------------------------------------------------------------------1 
I I 
I I 
I I 
IAREA------>r-------------------------------------------------------------------------1 I 
I <word 1) jThis word is used by a FORTRAN-compiled routine to I I 
I 1store its epilogue address and nay not be used by the I I 
I 1assernbler language subprograms for any purpose. I 
IAREA+4---->~-------------------------------------------------------------------------~ 

(word 2) !If this program which calls the assembler language subprogram is itself aj 
jsubprogram, this location contains the address of the save area of thel 
!calling program. Otherwise this location is not used. I 

AREA+8---->~-------------------------------------------------------------------------~ 
<word 3) !The address of the save area of the subprogram called by this program. I 

l I 
I ! 

AREA+12--->t-------------------------------------------------------------------------~ 
(word 4) !The contents of register 14; that is, the address to which the subprogram! 

!returns. If a subprogram returns to this program, the first byte of this! 
!location is set to ones, indicating that the called subprogram hasj 
!returned control. I 

IAREA+16--->~-------------------------------------------------------------------------~ 
I (word 5) !The contents of register 15; that is, the address to which entry to thel 
I )subprogram is made. I 
IAREA+20--->~-------------------------------------------------------------------------~ 
I (word 6) !The contents of register 0. I 
I I I 
I ·-------------------------------------------------------------------------~ 
I I I 
I I I 
I I I 
IAREA+68--->~-------------------------------------------------------------------------~ 
I (word 18) !The contents of register 12. I 
I I I 
I t-------------------------------------------------------------------------J 
I 
I 
I 
L---------------------------------------------------------------------------------------
F igure 70. Save Area 

Table 15. Linkage Registers 
r---------T-------------T---------------------------------------------------------------1 
!Register !Register Name! Function I 
jNumber I I I 
~---------+-------------+---------------------------------------------------------------~ 
I O I Result !Used for function subprograms only. The result is returned in I 
I I Register !general or floating-point register O. (For subroutine subpro-1 
I I jgrams, the result(s) is returned by the subprogram in al 
I I lvariable(s) passed to the subprogram by the programmer in hisj 
I I jCALL statement.) I 
~---------+-------------+---------------------------------------------------------------~ 
I 1 !Argument ListjAddress of the argument list passed to the called subprogram. I 
I I Register I I 
~---------+-------------+---------------------------------------------------------------~ 
I 13 I save Area !Address of the area reserved by the calling program in which I 
I I Register !the contents of registers are stored by the called program. I 
r---------+------~------+---------------------------------------------------------------~ 
I 14 I Return !Address of the location in the calling program to which control! 
I I Register jis returned after execution of the called program. I 
·---------+-------------+---------------------------------------------------------------~ 
I 15 I Entry Point !Address of the entry point in the subprogram. I 
I I Register I I 
l---~-----~-~-----------~---------------------------------------------------------------J 

100 



CODING THE ASSEMBLER LANGUAGE SUBPROGRAM 

Two types of assembler language subpro­
grams are possible: the first type (lowest 
level) assembler subprogram does not call 
another subprogram; the second type (higher 
level) subprogram does call another subpro­
gram. 

Coding a Lowest Level Assembler Language 
Subprogram 

For the lowest level assembler language 
subprogram, the linkage instructions must 
include: 

1. An instruction that names an entry 
point for the subprogram. 

2. An instruction(s) to save any reg­
isters used by the subprogram in the 
save area reserved by the calling 
program. (The contents of linkage 
registers O and 1 need not be saved.) 

3. An instruction(s) to restore the 
"saved" registers before returning 
control to the calling program. 

4. An instruction that sets the first 
byte in the fourth word of the save 
area to ones, indicating that control 
is returned to the calling program. 

5. An instruction that returns control to 
the calling program. 

Figure 71 shows the linkage conventions 
for an assembler language subprogram that 

does not call another subprogram. In addi­
tion to these conventions, the assembler 
program must provide a method to transfer 
arguments from the calling program and 
return the arguments to the calling pro­
gram. 

Sharing Data in COMMON 

With FORTRAN (E), general register 4 
contains the address of the COMMON area. 
If the size of the COMMON area exceeds 4095 
bytes, additional registers (e.g., register 
5, 6, and 7) are assigned consecutively. 

Higher Level Assembly Language subprogram 

A higher level assembler subprogram must 
include the same linkage instructions as 
the lowest level subprogram, but because 
the higher level subprogram calls another 
subprogram, it must simulate a FORTRAN 
subprogram reference statement and include: 

1. A save area and additional instruc­
tions to insert entries into its save 
area. 

2. A calling sequence and a parameter 
list for the subprogram that the high­
er level subprogram calls. 

3. An assembler instruction that indi­
cates an external reference to the 
subprogram called by the higher level 
subprogram calls. 

r---------T------T----------------------------------------------------------------------1 
!Name IOper. !Operand Comments I 
t---------+------+----------------------------------------------------------------------~ 
deckname START 0 I 

* 
* 
* 

BC 
DC 
DC 

STM 

BALR 
USING 
user 

15,m+1+4(15) 
X'm' 
CLm'name' 

14,R,12(13) 

B,O 
*,B 

BRANCH AROUND CONSTANTS IN CALLING SEQUENCE 
m MUST BE AN ODD INTEGER TO INSURE THAT THE PROGRAM 
STARTS ON A HALF-WORD BOUNDARY. THE NAME CAN BE PADDED 
WITH BLANKS. 

I 
I 
I 
I 

THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R 
STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R 
NUMBER FROM 0 THROUGH 12. 

ARE I 
IS ANY 

ESTABLISH BASE REGISTER (2~12) 

written source statements 

LM 2,R,28(13) RESTORE REGISTERS 
MVI 12(13),X'FF' INDICATE CONTROL RETURNED TO CALLING PROGRAM 

I BCR 15,14 RETURN TO CALLING PROGRAM 
L---------i------~----------------------------------------------------------------------
Fi gur e 71. Lowest Level Assembler Subprogram 

Appendix B: Assembler Language Subprograms 101 



4. Additional instructions in the return 
routine to retrieve entries in the 
save area. 

In-Line Argument List 

Figure 72 shows the linkage 
for an assembler subprogram 
another assembler subprogram. 

conventions 
that calls 

The assembler programmer can establish 
an in-line argument list instead of an 
out-of-line list. In this case, he deletes 
the argument list shown in Figure 71 and 
substitutes the calling sequence shown in 
Figure 73 for that shown in Figure 71. 

r---------T------T----------------------------------------------------------------------1 
!Name IOper. !Operand Comments I 
r---------+------+----------------------------------------------------------------------1 
jdeckname START 0 

I 

* 

* 
* 
* 

* 
* 
* 
AREA 

* 
prob1 

I 
I* 
I 
I 
I 
I 
I 
I 
I 
I* 
I 
I* 
I 
I 
I 
I 
I* 
IADCON 
i* 
IARGLIST 
I 
I 
I 

EXT RN 
BC 
DC 
DC 

STM 

BALR 
USING 
LR 

LA 

ST 

ST 

BC 
DS 

user 

LA 
L 
BALR 
more 

L 

LM 
L 
MVI 
BCR 

DC 

DC 

name 2 
15,m+1+4 (15) 
X'm' 
CLm'name 1 
SAVE ROUTINE 
14,R,12(13) 

B,0 
*,B 
Q,13 

13,AREA 

13,8(0,Q) 

Q,4C0,13) 

15,prob1 

NAME OF THE SUBPROGRAM CALLED BY THIS SUBPROGRAM 

THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE 
STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY 
NUMBER FROM 2 THROUGH 12. 
ESTABLISH BASE REGISTER 

LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE 
CALLING PROGRAM, INTO ANY GENERAL REGISTER, Q, EXCEPT O, 
1, 13, and 15. 
LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO 
REGISTER 13. 
STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO THE 
CALLING PROGRAM'S SAVE AREA 
STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE 
AREA OF THE CALLING PROGRAM) INTO WORD 2 OF THIS PRO­
GRAM'S SAVE AREA 

18F RESERVES 18 WORDS FOR THE SAVE AREA 
END OF SAVE ROUTINE 
written program statements 

CALLING SEQUENCE 
1,ARGLIST LOAD ADDRESS OF ARGUMENT LIST 
15,ADCON 
14,15 
user written program statements 

RETURN ROUTINE 
13,AREA+4 LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA EACK INTO 

REGISTER 13 
2,R,28(13) 
14,12(13) 
12(13),X'FF' 
15,14 
END OF RETURN 
A(name 2 ) 

ARGUMENT LIST 
AL4(arg1 ) 

LOADS THE RETURN ADDRESS INTO REGISTER 14. 

RETURN TO CALLING PROGRAM 
ROUTINE 

ADDRESS OF FIRST ARGUMENT 

I DC IX'80' INDICATE LAST ARGUMENT IN ARGUMENT LIST 
I DC I AL3 (argn) ADDRESS OF LAST ARGUMENT I 
l---------i ______ i ______________________________________________________________________ J 

Figure 72. Higher Level Assembler subprogram 

102 



r---------T------T------------------------1 
!Name IOper. !Operand I 
t---------+------+------------------------1 
ADCON DC A(probl) I 

LA 14,RETURN 
L 15,ADCON 
CNOP 2,4 
BALR 1,15 
DC AL4Carg 1 ) 

DC X' 80. I 
DC AL3{argn) I 

I RETURN BC O,X'isn' I 
l---------~------i ________________________ J 

Figure 73. In-Line Argument List 

GETTING ARGUMENTS FROM THE ARGUMENT LIST 

The argument list contains addresses for 
the arguments passed to a subprogram. The 
order of these addresses is the same as the 
order specified for the arguments in the 
calling statement in the main program. The 
address for the argument list is placed in 
register 1. For example, when the state­
ment 

CALL MYSUB{A,B,C) 

is compiled, the following argument list is 
generated. 

r--------T--------------------------------1 
1000000001 address for A I 
r--------+--------------------------------i 
1000000001 address for B I 
r--------+--------------------------------i 
110000000 I address for c I 
l ________ i ________________________________ J 

For purposes of discussion, A is a double­
precision variable, B is a subprogram name, 
and c is an array. 

The address of a variable in the calling 
program is placed in the argument list. 
The following instructions in an assembler 
language subprogram can be used to move the 
double-precision variable A to location VAR 
in the subprogram. 

L 
MVC 

where: 

Q,0(1) 
VAR(8),0(Q) 

Q is any general register. 

For a subprogram reference, an address 
of a storage location is placed in the 
argument list. The address at this storage 

location is 
subprogram. 
be used to 
subprogram to 
argument. 

the entry point to the 
The following instructions can 

enter subprogram H rrom the 
which B is passed as an 

L Q,4(1) 
L 15,0(Q) 
BALR 14,15 

where: 
Q is any general register. 

For an array, the address of the first 
variable in the array is placed in the 
argument list. An array [for example, a 
three-dimensional array C(3,2,2)] appears 
in this format in main storage. 

C{l,1,1) C(2,1,1) C(3,1,1) C(l,2,1)--1 
r-----------------------------------------J 
L-C(2,2,1) C(3,2,1) C(l,1,2) C(2,1,2)--1 
r-----------------------------------------J 
L-CC3,1,2) C(1*2,2) C(2,2,2) C(3,2,2) 

Table 16 shows the general subscript format 
for arrays of 1, 2, and 3 dimensions. 

Table 16. Dimension and Subscript Format 
r-----------T-----------------------------1 
!Array A !Subscript Format I 
r-----------+-----------------------------i 
IA(Dl) IACSU I 
jA(D1,D2) jA{S1,S2) i 
IACD1,D2,D3) IACS1,S2,S3) I 
r-----------~-----------------------------~ 
IDl, D2, and D3 are integer constants used! 
lin the DIMENSION statement. Sl, S2, andl 
IS3 are subscripts used with subscripted! 
I variables. I l _________________________________________ J 

The address of the first variable in the 
array is placed in the argument list. To 
retrieve any other variables in the array, 
the displacement of the variable, that is, 
the distance of a variable from the first 
variable in the array, must be calculated. 
The formulas for computing the displacewent 
CDISPLC) of a variable for one, two, and 
three dimensional arrays are 

DISPLC =(Sl-l)*L 
DISPLC =(Sl-l)*L+(S2-l)*Dl*L 
DISPLC =CS1-l)*L+{S2-l)*Dl*L+(S3-l)*D2*Dl*L 

where: 
L is the length of each variable in 
the array. 

For example, the real variable CC2,1,2) 
in the main program is to be moved to a 
location ARVAR in the subprogram. Using 
the formula for displacement of variables 
in a three-dimensional array, the displace­
ment is calculated to be 28 and placed in 

Appendix B: Assembler Language Subprograms 103 



the general register DISP. The following 
instructions can be used to move the vari­
able 

L 
LE 
STE 

where: 

Q,8(1) 
S,O(Q,DISP) 
S,ARVAR 

Q, R, and s are general registers. 

Example: An assembler language subprogram 
is to be named ADDARR, and a real variable, 
an array, and an integer variable are to be 
passed as arguments to the subprogram. The 
statement 

CALL ADDARR (X,Y,J) 

is used to call the subprogram. Figure 74 
shows the linkage used in the assembler 
subprogram. 

r---------T------T----------------------------------------------------------------------1 
!Name jOper. !Operand I 
t---------+------+----------------------------------------------------------------------~ 
IADDARR !START 10 
IB IEQU 18 
I IBC 115,12(15) 
I IDC IX' 7' 
I DC CL7'ADDARR' 
ADDARR STM 14,12,12(13) 

BALR B,0 
USING *,B 
L 2,8(1) 
MVC INDEX(4),0(2) 
L 3,0(1) 
MVC VAR(4),0(3) 
L 4,4(1) 
L 4,4(4) 

MOVE THIRD ARGUMENT TO THE LOCATION CALLED INDEX IN 
THE ASSEMBLER LANGUAGE SUBPROGRAM. 
MOVE FIRST ARGUMENT TO THE LOCATION CALLED VAR IN THE 
ASSEMBLER LANGUAGE SUBPROGRAM 
LOAD THE ADDRESS OF THE ARRAY TO GENERAL REGISTER 4. 

User Written Statements 

LM 14,12,28(13) 
MVI 12(13),X'FF' 
BCR 15,14 
DS OF 

INDEX DS lF 
IVAR DS lF 
L---------L------L----------------------------------------------------------------------
Figure 74. Assembler Subprogram Example 

104 



APPENDIX C: STORAGE MAP FOR LOAD MODULE EXECUTION 

Figure 75 shows a storage map for load 
module execution. The superscripts shown 
in the figure indicate one of the notes 
listed in this appendix. 

Note 1: The COMMON area is inserted into 
the load module after the first object 
module that refers to it. For example, if 
the first object module does not refer to 
COMMON and the second object module does, 
the COMMON area follows the second object 
module. 

Note 2: Buffers for direct access data 
sets are extended upward in main storage as 
buffers are needed. 

Note 3: The order in which IOBs are placed 
in main storage is dependent on the 
sequence of I/O operations. The IOBs can 
be located anywhere in upper main storage. 

Note ~= The routines for direct access I/O 
are loaded into main storage when a direct 
access data set is defined by a DEFINE FILE 
statement. The routines for sequential I/O 
are loaded into main storage when a sequen­
tial data set is first used. 

Note 5: A DCB is allocated for every data 
set reference number used by the load 
module. 

r-----------------------------------------1 
!Resident and Transient Control Program I 
r-----------------------------------------~ 
!First FORTRAN Object Module I 
·-----------------------------------------~ 
I COMMON Area 1 I 
r-----------------------------------------~ 
!Second FORTRAN Object Module I 
t-----------------------------------------~ 
!Third FORTRAN Object Module I 
·-----------------------------------------~ 
I I 
I I 
I I 
·-----------------------------------------~ 
JLast FORTRAN Object Module I 
r-----------------------------------------~ 
!Explicitly Referenced Library Subprograms I 
r-----------------------------------------~ 
!Implicitly Referenced Library Subprograms! 
·-----------------------------------------~ 
!External References for Library Subprgrmsl 
·-----------------------------------------~ 
!Buffers for Direct Access Data Sets 2 I 
r-----------------------------------------~ 

: l l l 1- - - - - - - - - - - - - - - - -! 
!Transient Work Area Required of Every! 
jLoad Module for Use by the Control Pro-I 
I gram I 
1- - - - - - - - - - - - - - - - - - - - -1 

I t f l 
·-----------------------------------------~ 
!Input/Output Blocks (IOBs) Containing! 
!Information Concerning the Interfacej 
!Between FORTRAN Execution Time I/O Rou-j 
!tines and the Control Program 3 I 
r-----------------------------------------~ 
!Buffers for Sequential Data Sets I 
r-----------------------------------------~ 
jControl Program Routines for Performing! 
!Direct Access I/O and Control Prograrrl 
!Routines for sequential I/Oq I 
·-----------------------------------------~ 
!Data Control Blocks (DCBs) Containing! 
!Information Concerning the Use of Eachl 
!Data set5 I 
·-----------------------------------------~ 
JTask Input/Output Table CTIOT) containing! 
!Information such as jobname, stepname,I 
land ddname for each data set used by thel 
I step I 
·-----------------------------------------~ 
!Register save Area for the control Pro-I 
I gram I 
L---------------~-------------------------J 
Figure 75. Load Module Execution Storage 

Map 

Appendix C: Storage Map for Load Module Execution 105 



APPENDIX D: SYSTEM DIAGNOSTICS 

This appendix contains a detailed de­
scription of the diagnostic messages pro­
duced during compilation and load module 
execution. 

COMPILER DIAGNOSTIC MESSAGES 

Two types of compiler diagnostic mes-
sages are generated informative and 
error/warning. 

compiler Informative Messages 

Four informative messages are generated 
by the compiler to inform the programmer or 
operator of the status of the compilation. 
The message and any compiler action taken 
is shown. 

LEVEL: rmthyr IBM OS/360 BASIC 
DATE: yy.ddd FORTRAN IV {E) COMPILATION 

Explanation: This message is gen­
erated at the beginning of every 
comoilation. The level number (r) 
and~date (mthyr) of the compiler 
is given by "rmthyr". The number 
of the day (ddd) in the year Cyy) 
that the compilation takes place 
is given by "yy.ddd". 

IEJ001I COMPILER OPTIONS IN EFFECT: 
[SOURCE,] [BCD,] [MAP,] [DECK,] 

{
SPACE,} 

[LOAD,] [ADJUST,] PRFRM, 
[NAME=xxxxxx,]SIZE=yyyyyyy, 
LINELNG=zzz 

Explanation: This message occurs 
for every compiler job step. All 
bracketed options appear, if they 
are specified or assumed by 
default. 

SIZE OF COMMON xxxxx PROGRAM yyyyy 

106 

Explanation: This message is gen­
erated before the end of every 
compilation. The number of bytes 
needed to contain the COMMON area 
is the decimal number xxxxx. The 
number of bytes needed to contain 
the program (instructions generat­
ed by the compiler, constants, and 

variables not assigned to 
etc.> is the decimal 
yyyyy. 

COMMON, 
nu:rrber 

END OF COMPILATION 

Explanation: This :rressage indi­
cates that a compilation is suc­
cessfully completed. 

Compiler Action: If this message 
is not generated by the compiler, 
the compilation was terminated 
abnormally and a condition code of 
16 was generated because of inter­
nal errors. 

Compiler Error/Warning_Messages 

The following text contains a descrip­
tion of error/warning messages produced by 
the compiler. The message is shown with an 
explanation, and any compiler action or 
user action that is required. Unless oth­
erwise specified, messages preceded by 
"WARNING" generate a condition code of 4; 
other messages generate a condition code of 
8. 

IEJ002I ONE OR MORE INVALID COMPILER 
OPTIONS IN 'PARM' FIELD 
OPTION(S) IGNORED 

IEJ003I 

Explanation: An invalid compiler 
option is specified in the PARM 
field of the EXEC statement. 

Compiler Action: The compilation 
proceeds using only the specified 
valid compiler options and 
defaulted options. 

'NAME' OPTION TOO LONG - TRUNCATED 

Explanation: 
for the 
NAME=xxxxxx 
characters. 

The name 
compiler 

is longer 

specified 
option 

than six 

compiler Action: The characters 
beyond the sixth position are 
truncated and the compiler pro­
ceeds as if the truncated name had 
been specified. 



IEJ004I MISSING OR ERRONEOUS DD STATEMENT 

IEJOOSI 

\

,, SYSIN { 
SYSUT1 

FOR , SYSUT2 
) SYSLIN ~ 
r SYSPUNCH 
_xxxxxxxx, 

Explanation: A DD statement is 
not supplied or the ddname is 
mispunched for the DD statement 
indicated in the message. If 
another program passes control to 
the compiler, then a DD statement 
xxxxxxxx passed as a parameter is 
missing. 

Compiler Action: A condition code 
of 16 is generated for the omis­
sion of SYSIN. The compilation is 
terminated. The compilation pro­
ceeds if any other ddnames are 
omitted. If SYSLIN is omitted, a 
condition code of 12 is generated 
and the compiler assumes NOLOAD, 
even though the programmer may 
have specified LOAD. For the 
omission of SYSPUNCH, the compiler 
assumes NODECK, even though DECK 
may have been specified. 

NO INPUT l"OUND 

Explanation: A source module is 
nonexistent; that is a DD * state­
ment defining the location of the 
source module for the compiler is 
immediately followed by a delim­
iter statement. 

Compiler Action: A condition code 
of 16 is generated, and control is 
returned to the control program. 

IEJ006I INSUFFICIENT STORAGE. SPACE 
OPTION IN EFFECT 

Explanation: The PRFRM option is 
specified; however, there is not 
enough main storage available for 
the PRFRM option. 

Compiler Action: The SPACE com­
piler option is assumed, and the 
compiler begins the compilation 
again. 

IEJ007I INSUFFICIENT STORAGE FOR COMPILA­
TION 

Explanation: Blocked compiler I/O 
is specified with the PRFRM 
option; however, there is not 

IEJ008I 

IEJ010I 

enough main storage available for 
the PRFRM option. 

Compiler Action: The compilation 
is terminated, and a condition 
code of 16 is issued. 

INVALID BLKSIZE SPECIFICATION 

Explanation: The BLKSIZE subpa­
rameter specified in a DD state­
ment is not an integral multiple 
of the specified LRECL value for 
that data set. 

Compiler Action: The compilation 
is terminated, and a condition 
code of 16 is issued. 

I/O ERROR, COMPILATION TERMINATED, 
xxx ••• xxx 

Explanation: An irrecoverable 
input/output error was encountered 
during compilation, which makes 
continuation impossible. 
xxx ••• xxx is the character string 
formatted by the SYNADAF macro 
instruction. For an interpreta­
tion of this information, see IBM 
System/360 Operating System: 
Supervisor and Data Managerrent 
Macro-Instructions, Form C28-6647. 

Compiler Action: 
terminated, and a 
16 is generated. 

Compilation is 
condition code 

IEJ011I I/O ERROR, 'DECK' CANCELED, 
xxx •.• xxx 

Explanation: An irrecoverable 
error was encountered during an 
output operation on the data set 
defined by SYSPUNCH. xxx .•• xxx is 
the character string formatted by 
the SYNADAF macro instruction. 
For an interpretation of this 
information, see IBM system/360 
Operating System: Supervisor and 
Data Management Macro­
Instructions, Form C28-6647. 

Compiler Action: The DECK option 
is changed to NODECK, and 
compilation continues. In the 
case of multiple compilations, 
only the last (partial) deck punch 
need be discarded. 

Appendix D: FORTRAN E Messages 107 



IEJ029I ARRAY MUST BE DIMENSIONED ON ITS 
FIRST AND ONLY ITS FIRST OCCUR­
RENCE 

Explanation: The dimension of an 
array must be given in either a 
DIMENSION, COMMON, or Explicit 
Specification statement prior to 
its use in any other statement and 
can never be redefined. 

IEJ030I ILLEGAL USE OF Fffi~CTION NAME 

Explanation: A function name may 
not appear in an EQUIVALENCE or 
COMMON statement. 

IEJ031I EQUIVALENCE TABLE FULL 

Explanation: There are too many 
equated variables. 

User Response: See "Compiler Re­
strictions." 

IEJ032I INTEGER TOO BIG 

Explanation: Integer is larger 
than maximum size allowable 
(i.e., larger than 231-1 or 
2,147,483,647), or the number of 
records specified in a DEFINE 
FILE statement exceeds 22 4 

(16, 777, 116). 

IEJ033I WARNING -- FIRST CARD IS CONTINUA­
TION 

Explanation: First non-comment 
statement was a continuation line 
(i.e., a nonzero character, other 
than a blank, was encountered in 
column 6.) 

compiler Action: The statement is 
processed as if it were the ini­
tial line of a statement. 

IEJ034I SUBPROGRAM CARD NOT FIRST 

IEJ035I 

108 

Explanation: A FUNCTION or 
SUBROUTINE statement appears after 
the first statement in a program. 
For example, the first card in a 
subprogram Cother than a comments 
card) is not a FUNCTION or 
SUBROUTINE statement. 

ARGUMENT MISSING IN FUNCTION DEFI­
NITION 

Explanation: Function definition 
(either in Statement Function or 
FUNCTION header statement) must 
have at least one argument. 

IEJ036I ILLEGAL CHARACTER 

Explanation: Character is 
recognizable. 

not 

compiler Action: The character is 
taken to be a delimiter, which 
should be either 
b-*. ,+/=( 
or Column 73, where b is a blank. 

IEJ037I INVALID STATEMENT OR 
NUMBER 

STATEMENT 

IEJ038I 

Explanation: For example, an 
equal sign is missing in a State­
ment Function Definition or an 
arithmetic statement. A left 
parenthesis is missing in an IF 
statement or an illegal delimiter 
precedes the statement. 

SEQUENCE ERROR 

Explanation: All specification 
statements (DIMENSION, EQUIVAL­
ENCE, REAL, INI'EGER, DOUBLE PRECI­
SION, COMMON) must precede all 
Statement Function Definition 
statements. All Statement Func­
tion Definition statements must 
precede all executable statements. 

IEJ039I MORE THAN 6 CHARACTERS IN NAME 

IEJ041I MULTI-DEFINED OR ILLEGAL NAME 

Explanation: A name is defined 
more than once or an illegal name 
is used as a variable. For exam­
ple, a real variable is redefined 
as an integer variable~ 

IEJ042I MULTI-DEFINED STATEMENT NUMBER 

IEJ043I 

Explanation: This statement num­
ber has been used previously. 
Every statement number should be 
unique, and associated with only 
one statement in a program. 

ILLEGAL USE OF RESERVED WORDS 

Explanation: 
specified, a 

When NOADJUST 
reserved word 

is 
roust 



not be used as a variable, array, 
or subprogram name. 

IEJ044I TOO MANY DECIMAL POINTS 

IEJ045I 

Explanation: Only one 
point can appear in a 
double-precision number. 

DECIMAL POINT AFTER E 

decimal 
real or 

Explanation: A decimal point has 
been found in the exponent part of 
a real or double-precision number. 

IEJ046I TOO MANY E'S 

Explanation: A second E has been 
found in a number (e.g., 2,7E2E2). 

IEJ047I ILLEGAL NUMBER OR NAME 

Explanation: Illegal use of a 
number. For example, in the 
statement, DIMENSION 5 (1,2), the 
number 5 is not a proper array 
name. 

IEJ048I MORE THAN 3 DIMENSIONS 

Explanation: Maximum number of 
dimensions permitted in an array 
is three. 

IEJ053I 

correspond to the number of sub­
scripts in the array as defined in 
a COMMON, DIMENSION, or Explicit 
Specification statement. 

SUBSCRIPT ERROR 

Explanation: The subscript 
expression contains more than 
three subscripts, an illegal deli­
miter, or an illegal variable. 

IEJ054I INVALID ARGUMENT IN ASF 

Explanation: An illegal sywbol 
appears as an argument in the 
Statement Function argument list. 
For example, SFCA,B,*,C) or 
SFCA,B,C) where c is an array. 

IEJ055I INVALID ARGUMENT IN HEADER CARD 

Explanation: An illegal variable 
or a multidefined variable appears 
in the function definition argu­
ment list. 

IEJ056I ILLEGAL STATE~ENT NUMBER FIELD 

Explanation: Statement number 
list in a computed GO TO or in an 
arithmetic IF statement is inval­
id. 

IEJ049I DIMENSION ERROR IEJ057I DATA SET REFERENCE NUMBER MISSING 

Explanation: Illegal delimiter or 
size of an array exceeds 13i,011 
bytes in a COMMON, DIMENSION, or 
Explicit Specification statement. 

IEJOSOI CANNOT EQUATE 

Explanation: At least two vari­
ables or subscripted variables 
should appear in the parentheses 
of an EQUIVALENCE statement. 

IEJ051I WARNING -- COMMA ~ISSING 

Explanation: A required comma was 
not encountered. 

Compiler Action: The statement is 
compiled as through a comma were 
there. 

IEJ052I WRONG DIMENSION 

Explanation: Number of subscripts 
in the variable used does not 

Explanation: There is no data set 
reference number specified, for 
example, WRITEC,10), or the data 
set reference number is multiply 
defined. 

IEJ058I LEFT PARENTHESIS MISSING AFTER R/W 

IEJ060I 

Explanation: The left parenthesis 
in a READ or WRITE statement is 
missing. For example, in the 
statement: WRITE3,10), the left 
parenthesis before the 3 is miss­
ing. 

ERROR IN VARIABLE 

Explanation: Symbol in an 
EQUIVALENCE statement is not a 
variable, for example, EQUIVALENCE 
(10,B), or is a dummy variable. 

IEJ061I WARNING 
REACHED 

STATEMENT CANNOT BE 

Appendix D: FORTRAN E Messages 109 



Explanation: Statement following 
a GO TO, IF, RETURN, or STOP has 
no statement number. 

IEJ063I EQUIVALENCE SUBSCRIPT ERROR 

Explanation: There is an illegal 
delimiter or a missing subscript 
in an EQUIVALENCE subscript. 

IEJ064I TOO MANY SYMBOLS AND STATEMENT 
NUMBERS 

Explanation: The Dictionary and 
overflow Table have overflowed, or 
the total number of statement num­
bers referred to (excluding FORMAT 
statement numbers), DO statements, 
and statement functions exceeds 
1000. 

User Response: Subdividing the 
program or reducing the number of 
symbols and statement numbers is 
necessary. 

IEJ065I INVALID STATEMENT 
PAUSE/STOP NUMBER 

NUMBER OR 

Explanation: Either there is an 
alphabetic or illegal character in 
the number, or there are more than 
five digits in the number. 

IEJ066I BACKWARD DO LOOP 

Explanation: The statement speci­
fied in the range of the DO state­
ment may not precede the DO state­
ment. 

IEJ067I INVALID DA'l'A SET CONTROL CHARACTER 

Explanation: The FORMAT control 
specification in the DEFINE FILE 
statement is not L, E, or u. 

IEJ068I ERROR IN EXPONENT 

Explanation: An exponent is miss­
ing or is too large in a real or 
double-precision number. 

IEJ069I TOO MANY ARGUMENTS IN ASF 

Explanation: More than 15 argu­
ments in Statement Function def i­
nition is not perroitted~ 

IEJ070I INVALID FUNCTION NAME 

110 

Explanation: Invalid 
name in a FUNCTION or 
header statement. 

IEJ071I ILLEGAL SUBROUTINE NAME 

subprogram 
SUBROU'IINE 

Explanation: Illegal delimiter or 
illegal subroutine name in a CALL 
statement. 

IEJ072I ASF OUT OF SEQUENCE 

Explanation: Statement Function 
statement is out of sequence or an 
array is not dimensioned prior to 
its first use. 

IEJ073I TRANSFER TO NON-EXECUTABLE STATE­
MENT 

Explanation: The statement number 
ref erred to by a GO TO, computed 
GO TO, or an arithmetic IF state­
ment is a FORMAT or specification 
statement. 

IEJ074I VARIABLE ALREADY IN COMMON 

Explanation: A variable appears 
in COMMON more than once or an 
inconsistent equate was made 
<e.g., the statement COMMON 
(A,B,C,A) is illegal). 

IEJ075I UNFINISHED STATEMENT 

Explanation: A FORMAT statement 
is not finished. 

IEJ076I PARENTHESIS ERROR 

Explanation: A parenthesis is not 
closed or is missing. The paren­
theses are not nested properly. 

Compiler Action: The compiler 
cannot assume their position. 

IEJ077I ILLEGAL DELIMITER OR MISSING NAME 

Explanation: An improper delimi­
ter or illegal special character 
was encountered. 

IEJ078I ILLEGAL END DO 

Explanation: The last statement 
in the range of a DO loop cannot 
be a nonexecutable statement, 
Arithmetic IF, GO TO, PAUSE, 



RETURN, STOP, or another DO state­
ment~ 

IEJ079I TYPE MUST BE INTEGER SCALAR 

Explanation: The DO variable, com­
puted GO TO variable, or the asso­
ciated variable in a DEFINE FILE 
statement must be a non­
subscripted integer variable. 

IEJ080I COMMA MISSING 

Explanation: A required comma was 
not encountered. 

Compiler Action: The compiler 
cannot assume its position. 

IEJ081I ILLEGAL FORMAT SPECIFICATION 

Explanation: Illegal decimal 
point or a number is missing fol­
lowing decimal point. 

IEJ082I INVALID NUMBER 

Explanation: There is an error in 
an integer: real: or double­
precision number. 

IEJ083I ERROR IN INTEGER 

Explanation: Number zero not 
allowed in most FORMAT specif i­
cations, a DIMENSION statement, or 
in a subscript. 

IEJ084I MORE THAN 4 WARNINGS IN STATEMENT 

Explanation: More than four warn­
ings have been generated for a 
statement. 

Compiler Action: The compilation 
of the statement is terminated. 

IEJ085I THIS MESSAGE IS A COMPILER ERROR 

Explanation: Compilers working 
text contains meaningless code. 

Compiler Action: compilation con­
tinues. 

IEJ086I ILLEGAL BLANK 

Explanation: 
specified, 
blank is 
statement. 

When NOADJUST is 
an illegal embedded 

found in the FORMAT 

IEJ087I NUMBER MISSING 

Explanation: A number is missing 
in E, F, T, A, I, D, or X conver­
sion code or an illegal delimiter 
precedes the number. 

IEJ088I NESTED PARENTHESIS 

IEJ089I 

Explanation: Not more than one 
level of nested parenthesis is 
permitted in a FORMAT statement. 

ILLEGAL DATA SET REFERENCE NUMBER 

Explanation: Data set reference 
number must be an integer variable 
or a constant within the range 1 
to 99. 

IEJ090I APOSTROPHE NOT CLOSED 

Explanation: An apostrophe was 
not found terminating the literal 
data in a FORMAT statement. 

IEJ091I ILLEGAL SIGN 

Explanation: A P Format code or a 
h1ank are rhe only legal delim­
iters following a plus or minus 
sign in a FORMAT statement, unless 
the sign appears in literal data. 

IEJ092I ILLEGAL COMMA 

Explanation: An erroneous comma 
appears in a FORMAT statement. 

IEJ093I NOT IN INTEGER MODE 

IEJ094I 

Explanation: The associated vari­
able indicating the relative posi­
tion of a record in a direct 
access FIND, READ, or WRITE state­
ment is not an integer variable. 

WARNING -- TOO MANY DECIMAL PLACES 

Explanation: The number of deci­
mal places must be less than the 
size of the entire number in a 
FORMAT statement. The size of the 
entire number is equal to the 
number of decimal places. 

Appendix D: FORTRAN E Messages 111 



IEJ095I STATEMENT NUMBER REFERENCE NOT 
FORMAT STATEMENT 

Explanation: The statement number 
ref erred to in a READ/WRITE state­
ment is not that of a FORMAT 
statement. 

IEJ096I ILLEGAL VARIABLE IN I/O LIST 

Explanation: The use of subpro­
gram names or constants are not 
allowed in an I/O list. 

IEJ097I TOO MANY ELEMENTS IN LIST 

Explanation: The list in the 
READ, WRITE, or Computed GO TO 
statement contains too many ele­
ments. There are approximately 
250 variables permitted in a sin­
gle list. The use of implied DO's 
in READ/WRITE statement decreases 
the number of variables permitted. 

user 
should 

Response: 
be divided 

statements. 

The statement 
into several 

IEJ098I NO CHARACTER BETWEEN APOSTROPHES 

Explanation: An open apostrophe 
is immediately followed by a close 
apostrophe in the FORMAT state­
ment. At least one character 
should appear within the apos­
trophes. 

IEJ099I TOO MANY CHARACTERS BETWEEN APOS­
TROPHES 

Exolanation: The number of char­
acters appearing ~ithin apostrophe 
in the FORMAT statement is too 
large for the compiler to handle. 
That is, not more than 255 charac­
ters should appear between apos­
trophes in a FORMAT statement. 

IEJ100I ILLEGAL DO VARIABLE OR CONSTANT 

112 

Explanation: DO parameter must be 
a nonsubscripted integer variable, 
or integer constant. 

IEJ123I FUNCTION NAME NOT ASSIGNED A VALUE 

Explanation: The function name is 
not defined in its function sub­
program (i.e., it does not appear 
on the left side of an equal sign, 
as a list item in a READ statement 
or as an argument in a CALL 
statement). 

IEJ124I NOT IN INTEGER MODE 

Explanation: The ~ssociated vari­
able indicating the relative posi­
tion of a record in a direct 
access FIND, READ, or WRITE state­
ment is not an integer variable. 

IEJ125I DO VARIABLE' REDEFINED 

Explanation: The same variable is 
used as the DO variable more than 
once in nested DO loops. 

IEJ126I FUNCTION ARGUMENT MISSING 

IEJ127I 

IEJ128I 

~xplanation: An argument in a 
function reference is missing. 

THIS MESSAGE IS A COMPILER ERROR 

Explanation: Compiler's inter­
mediate text contains meaningless 
code. 

Compiler Action: 
terminated. 

Compilation 

INVALID CALL OR IF STATEMENT 

is 

IEJ129I MULTI-DEFINED NAME OR KEYWORD 

Explanation: A name is redefined, 
or a keyword is used as a vari­
able. 

IEJ130I ILLEGAL ARGUMENT 

Explanation: An illegal argument 
is specified for a call to a 
function or subroutine. 

IEJ131I WRONG MODE 

Explanation: The mode of the 
argument does not agree with the 
mode of the in-line function. 



IEJ132I INCORRECT NESTING OF DO 

Explanation: The last statement in 
the range of the DO loop nested 
within other DO loops exceeds the 
range of one or more of those DO 
loops. 

IEJ133I ILLEGAL EQUAL SIGN 

Explanation: Two equal signs 
appear in the same statement. 

IEJ135I SUBSCRIPT OR ARRAY NOT ALLOWED 

Explanation: The result field of 
an arithmetic statement is inval­
id. 

IEJ144I ILLEGAL NUMBER OF S~ATEMENT NUM­
BERS 

Explanation: An arithmetic IF 
statement must contain exactly 
three statement numbers. 

IEJ145I PROGRAM TOO BIG 

Explanation: The 
has exceeded the 

object module 
basic register 

Explanation: A subscript or array range. 
is not allowed in Statement Func-
tion definition. 

IRJ136I UNDEFINED STATEMENT NUMBER 

Explanation: The statement number 
ref erred to does not exist in the 
program. 

IEJ137I NAME MISSING OR ILLEGAL DELIMITER 

Explanation: Illegal delimiter 
found. For example, X=A+*B. A 
variable or constant is missing 
between the two operators or one 
of the operators is superfluous. 

IEJ139I WRONG NUMBER OF ARGUMENTS IN CALL 

Explanation: The number of argu­
ments in Statement Function ref­
erence or in an in-line function 
reference does not agree with the 
function definition. 

IEJ140I TOO MANY PARAMETERS 

Explanation: The maximum number 
of arguments allowed in a subpro­
gram call or definition is 48. 

IEJ141I ILLEGAL SUBPROGRAM NAME 

Explanation: Name of a function 
or subroutine call is not defined 
as a function or subroutine sub­
program name. 

IEJ142I MORE THAN 25 LEVELS OF DO NESTING 

Explanation: Not more than 25 DO 
loops may be nested. 

IEJ143I INVALID RESULT FIELD 

IEJ146I INCONSISTENT EQUATE 

Explanation: For e,xample, EQUIVA­
LENCE (A(i) ,B), (A(2) ,C), (B,C) or a 
double-precision variable in COM­
MON is not on the proper boundary. 

IEJ147I TWO VARIABLES IN COMMON ARE EQUAT­
ED 

IEJ148I 

Explanation: Two or more vari­
ables equivalenced are in COMMON. 

COMMON EXTENDED UPWARD 

Explanation: An EQUIVALENCE 
statement cannot cause COMMON to 
be extended before the beginning 
of the COMMON area. 

IEJ149I DUMMY ARRAY OR VARIABLE IN COMMON 

Explanation: A dummy variable or 
array is not permitted in COMMON. 

IEJ150I EQUATED NAME NOT A VARIABLE 

Explanation: The equated 
must be a variable. 

name 

IEJ158I WARNING--POSSIBLE MISSING DEFINE 
FILE STATEMENT 

Explanation: There is no DEFINE 
FILE statement for a data set 
reference number specified in a 
direct access FIND, READ, or WRITE 
statement. 

IEJ159I WARNING--LAST EXECUTABLE STATEMENT 
NOT RETURN, STOP, IF OR GO TO 

Appendix D: FORTRAN E Messages 113 



Explanation: The last executable 
statement of a program should be a 
RETURN, STOP, IF, or an uncondi­
tional GO TO statement. 

c __ o_m_p_1_·1~e_r~_a_c_t_1_·o~n_: The compiler 
generates a RETURN before the END 
statement. 

IEJ160I WARNING--STATEMENT CONTAINS SUPER­
FLUOUS INFORMATION 

Explanation: The statement has 
been compiled but something super­
fluous exists at the end, e.g., 
REWIND I XYZ 
XYZ is superfluous 

IEJ161I WARNING--SUGGEST SUBDIVIDING PRO­
GRAM 

Explanation: Program 
of spill base register 
inefficient object code 

causes use 
producing 

User Response: subdivide program 
into a main program and a series 
of subprograms. 

IEJ162I WARNING--BLANK CAFD 

Explanation: The card 
only a statement number. 

Compiler Action: The 
ignored. 

contains 

card is 

IEJ163I WARNING--TOO MANY DIGITS IN NUMBER 

IEJ164I WARNING--STATEMENT NUMBER MISSING 

Explanation: Format statement 
must have a statement number. 

compiler Action: The statement is 
ignored. 

IEJ165I WARNING--UNREFERENCED 
STATEMENT 

FORMAT 

Explanation: A 
is not ref erred 
statement. 

FORMAT statement 
to by any other 

Compiler Action: The FORMAT 
statement is not processed. 

IEJ166I WARNING--REDUNDANT COMMA 

114 

Explanation: There is a redundant 
comma in the statement. 

Compiler Action: 
comma is ignored. 

The redundant 

IEJ167I WARNING--LINE TOO LONG 

Explanation: Record length indi­
cated in the FORMAT statement 
exceeds length stated or assumed 
for the compiler option LINELNG. 

IEJ168I WARNING--END CARD MISSING 

Explanation: The end of the 
source program is reached and an 
END card is not there. 

Compiler Action: Processing con­
tinues as if it were there. 

IEJ169I WARNING--RIGHT PARENTHESIS MISSING 

Explanation: The right parenthe­
sis in the statement is missing. 

Compiler Action: Processing con­
tinues as if it were there. 

IEJ170I WARNING--ZERO OR NO COUNT IN X 
CONVERSION 

Explanation: The number preceding 
the X format code is 0 or blank. 

compiler Action: 
tinues, ignoring 
code. 

Processing con­
the X format 

IEJ171I WARNING--PARAMETERS MISSING 

Explanation: There are no param­
eters following a left parenthesis 
or a comma. 

IEJ172I WARNING--UNREFERENCED ASF ARGUMENT 

IEJ173I 

Explanation: Argument of state­
ment function not ref erred to in 
the arithmetic expression of the 
statement function. 

WARNING--EXCESSIVE RIGHT PARENTHE­
SIS 

Compiler Action: The additional 
right parentheses in the statement 
are ignored and processing contin­
ues. 

IEJ174I WARNING--ARRAY 
USED AS SCALAR 



Explanation: The name of the 
array is not followed by a sub­
script enclosed in parentheses. 

IEJ175I WARNING--STATEMENT NUMBER ON DEC­
LARATIVE STATEMENT 

Explanation: The statement number 
associated with the declarative 
statement is superfluous. 

LOAD MODULE EXECUTION DIAGNOSTIC MESSAGES 

The load module produces three types of 
diagnostic messages: 

• Operator messages. 
• Execution error messages. 
• Program interrupt messages. 

Operator Messages 

Operator messages for STOP and PAUSE are 
generated by FORTRAN load modules. 

The message for a PAUSE is of the form 

yy IHC001A PAUSE xxxxx 

where: 
yy is the identification number and 
xxxxx is the number specified in the 

PAUSE source statement. 

Explanation: A PAUSE is executed. The 
programmer should give instructions that 
indicate the action to be taken by the 
operator when the PAUSE is encountered. 

User Response: To resume execution, the 
operator presses the REQUEST key. When the 
PROCEED light comes on, the operator types 

REPLY yy,'Z' 

where: 
yy is the identification number and Z 

is any letter or nmnber. To resume 
program execution the operator must 
press the alternate coding key and a 
numeric 5. 

The message for a STOP statement is of 
the form 

IHC002I STOP xxxxx 

where: 
xxxxx is the number specified in the 

STOP source statement. 

User Response: None 

Program Interrupt Messages 

Program interrupt messages containing 
the old program status word (PSW) are 
written when an exception occurs. The 
format is: 

IHC210I PROGRAM INTERRUPT (p) - OLD PSW IS 

xxxxxxx{~}xxxxxxxx 

The letter P in the message indicates 
that the interruption was precise. This 
will always be the case for non­
specif ication interrupt messages in FORTRAN 
except when using machines with special 
hardware on which imprecise interruptions 
may occur. 

The four characters in the PSW Ci.e., 9, 
c, D, or F) represent the code number (in 
hexadecimal) associated with the type of 
interruption. The following text describes 
these interruptions. 

Fixed-Point-Divide Exception: The fixed­
point-divide exception, assigned code 
number 9, is recognized when division of a 
fixed-point number by zero is attempted. A 
fixed-point divide exception would occur 
during execution of the following state­
ments: 

J=O 
I=7 
K=I/J 

Exponent-Overflow Exception: ~he exponent­
overflow exception, assigned code number c, 
is recognized when the result of a 
floating-point addition, subtraction, 
multiplication, or division is greater than 
or equal to 166 3 (approximately 7.2 x 
1075 ). For example, an exponent-overflow 
would occur during execution of the state­
ment 

A= 1.0E+75 + 7.2E+75 

When the interrupt occurs, the result 
register contains a floating-point nurr-ber 
whose fraction and sign is correct. Howev­
er, the number is not usable for further 
computation since its characteristic field 
no longer reflects the true exponent. The 
content of the result register as it exist­
ed when the interrupt occurred is printed 
following the program interrupt message 
with the format: 

Appendix D: FORTRAN E Messages 115 



REGISTER CONTAINED hhhhhhhhhhhhhhhh 

where: 
hhhhhhhhhhhhhhhh is the floating-point 

number in hexadecimal 
notation. 

Exponent overflow causes "exponent 
wraparound" i.e., the characteristic 
field represents an exponent that is 128 
smaller than the correct one. Treating 
bits 1 to 7 (the exponent characteristic 
field) of the floating-point number as a 
binary integer, the true exponent (TE) may 
be computed, as follows: 

TE=(Bits 1 to 7)+128-64 

Before program execution continues, the 
FORTRAN library sets the result register to 
the largest possible floating-point number 
that can be represented in short precision 
(1663*(1-16-6)) or in long precision 
C1663*(1-16-14)), but the sign of the 
result is not changed. The condition code 
is not altered. 

Exponent-Underflow Exception: The exponent­
underflow exception, assigned code number 
D, is recognized when the result of a 
floating-point addition, subtraction, 
multiplication, or division is less than 
16-65 (approximately 5.4x10-79 ). An 
exponent-underflow exception would occur 
during execution of the statement: 

A= 1.0E-50 * 1.0E-50 

Although exponent underflows can be 
masked, FORTRAN jobs are executed without 
the mask so that the library will handle 
such interrupts. 

When the interrupt occurs, the result 
register contains a floating-point number 
whose fraction is normalized and whose sign 
is correct. However, the number is not 
usable for further computation since its 
characteristic field no longer reflects the 
true exponent. The content of the result 
register as it existed when the interrupt 
occurred is printed following the program 
interrupt message with the format: 

REGISTER CONTAINED hhhhhhhhhhhhhhhh 

where: 
hhhhhhhhhhhhhhhh is the floating-point 

number in hexadecimal 
notations. 

Exponent underflow causes "exponent 
wraparound" i.e., the characteristic 
field represents an exponent that is 128 
larger than the correct one. Treating bits 
1 to 7 (the exponent characteristic field) 
of the floating-point number as a binary 

116 

integer, the true exponent (TE) may be 
computed as follows: 

TE=CBits 1 to 7)-128-64 

Before program execution continues, the 
FORTRAN library sets the result register to 
a true zero of correct precision. If the 
interrupt resulted from a floating-point 
addition or subtraction operation, the con­
dition code is set to zero to reflect the 
setting of the result register. 

Note: The System/360 Operating System FOR­
TRAN programmer who wishes to take advan­
tage of the "exponent wraparound" feature 
and handle the interrupt in his own program 
must call an assembly language subroutine 
to issue a SPIE macro instruction which 
will override the FORTRAN interruption rou­
tine. 

Floating-Point-Divide Exception: The 
floating-point-divide exception, assigned 
code number F, is recognized when division 
of a floating-point number by zero is 
attempted. A floating-point divide 
exception would occur during execution of 
the following statements: 

B=O.O 
A=l.O 
C=A/B 

Execution Error Messages 

In the following text, the error codes 
are given with an explanation describing 
the type of error. Preceding the explana­
tion, an abbreviated name is given indicat­
ing the origin of the error. Unless other­
wise specified, a condition code of 16 is 
generated and the job step is terminated. 

The abbreviated name for the origin of 
the error is: 

IBC - IHCFCOME, IHCFIOSE, and IHCDIOSE 
routines (perform input/output conver­
sions for FORTRAN load module execution 
and act as an interface between FORTRAN 
I/O statements and the control program). 

LIB - SYSl.FORTLIB. In the explanation 
of the messages, the module name is 
given followed by the entry point 
name(s) enclosed in parentheses. 

IBERR - IHCIBERR Routine (detects error 
conditions that arise because a load 
module is executed that has FORTRAN 
language errors indicated in diagnostic 
messages given when the source module 
was compiled). 



IHC211I Explanation: IBC -- An invalid 
character has been detected in a 
FORMAT statement. 

IHC212I Explanation: IBC -- An attempt has 
been made to read or write, under 
FORMAT control, a record that 
exceeds the BLKSIZE value. 

IHC213I 

IHC214I 

IHC215I 

IHC216I 

IHC217I 

I IHC218I 

IHC219I 

IHC220I 

Explanation: IBC -- The input list 
in an input/output statement with­
out a FORMAT specification is lar­
ger than the logical record. 

Explanation: FIOCS -- For records 
in sequential data sets written 
without FORMAT control, for which 
the RECFM subparameter must be V 
(variable>, either u (undefined) 
or F (fixed) was specified. 

Explanation: IBC -- An invalid 
character exists for the decimal 
input corresponding to an I, E, F, 
or D format code. 

Explanation: LIB An invalid 
sense light number was detected in 
the argument list in a call to the 
SLITE or SLITET subroutine. 

Explanation: IBC -- An end of data 
set was sensed during a READ oper­
ation; that is, a program attempt­
ed to read beyond the data. 

I/O ERROR xxx ••• xxx 

Explanation: IBC A permanent 
input/output error has been 
encountered, or an attempt has 
been made to read or write with 
magnetic tape a record that is 
less than 18 bytes long. 
xxx ••• xxx is the character string 
formatted by the SYNADAF macro 
instruction. For an interpreta­
tion of this information, see IBM 
System/360 Operating System Super= 
visor and Data Management Macro­
Instructi ons, Form C28-6647. 

Explanation: FIOCS -- A data set 
is ref erred to in the load module, 
but no DD statement is supplied 
for it, or a DD statement has an 
erroneous ddname. 

Explanation: FIOCS -- A data set 
reference number exceeds the limit 
specified for data set reference 
numbers when this operating system 
was generated. 

IHC230I SOURCE ERROR AT 
EXECUTION FAILED 

ISN xxxx 

IHC231I 

IHC232I 

IHC233I 

IHC234I 

IHC235I 

IHC236I 

IHC237I 

IHC241I 

IHC242I 

Explanation: IBERR -- During load 
module execution, a source state­
ment error is encountered. The 
internal statement number for the 
source statement is xxxx. 

Explanation: DIOCS -- Direct ac­
cess input/output statements are 
used for a sequential data set, or 
input/output statements for a 
sequential data set are used for a 
direct access data set. 

Explanation: DIOCS -- Relative po­
sition of a record is not a posi­
tive integer, or the relative 
position exceeds the number of 
records in the data set. 

Explanation: DIOCS The 
length specified in the 
FILE statement exceeds the 
cal limitation of the 
assigned to the data set in 
statement. 

record 
DEFINE 
physi­
volume 
the DD 

Explanation: DIOCS -- The data set 
assigned to print execution error 
messages cannot be a direct access 
data set. 

Explanation: DIOCS -- A data set 
reference number assigned to a 
direct access data set has been 
used for a sequential data set. 

Explanation: DIOCS -- A READ is 
executed for a direct access data 
set that has not been created. 

Explanation: DIOCS Length of 
record read did not correspond to 
length of record specified in the 
DEFINE FILE statement. 

Explanation: LIB -- For an ex­
ponentiation operation (I**J) in 
the subprogram IHCFIXPI(FIXPI#) 
where I and J represent integer 
variables or inteqer constants, 
I=O and JsO is an error. 

Explanation: LIB -- For an ex­
ponentiation operation AR**J) in 
the subprogram IHCFRXPI(FRXPI#), 
where R represents a real variable 
or constant, and J represents an 
integer variable or constant, R=O 
and JsO is an error. 

Appendix D: FORTRAN E Messages 117 



IHC243I Explanation: LIB -- For an ex­
ponentiation operation (D**J) in 
the subprogram IHCFDXPI(FDXPI#), 
where D represents a double preci­
sion variable and J represents an 
integer variable or constant, D=O 
and J~O is an error. 

IHC244I Explanation: LIB -- For an ex­
ponentiation operation (R**S) in 
the subprogram IHCFRXPR(FRXPR#), 
where R and S are real variables 
or real constants, R=O and s~o is 
and error. 

IHC245I Explanation: LIB -- For an ex­
ponentiation operation (D**P) in 
the subprogram IHCFDXPD(FDXPD#), 
where D and P are double precision 
variables or double precision con­
stants, D=O and P~O is an error. 

IHC251I Explanation: LIB -- In the subpro­
gram IHCSSQRT(SQRT), an argument 
less than 0 is an error. 

IHC252I Explanation: LIB -- In the subpro­
gram IHCSEXP(EXP), an argument 
greater than 174.673 is an error. 

IHC253I Explanation: LIB -- In the subpro­
gram IHCSLOG(ALOG and ALOG10), an 
argument less than or equal to 
zero is an error. Because this 
subprogram is called by an expo­
nential subprogram this message 

118 

also indicates that an attempt has 
been made to raise a negative base 
to a real power. 

IHC254I Explanation: LIB -- In the subpro­
gram IHCSSCN(SIN and COS), the 
absolute value of an argument 
greater than or equal to 218 •~ is 
an error. 
c21a.~ =.82354966406249996D+06) 

IHC261I Explanation: LIB -- In the subpro­
gram IHCLSQRT(DSQRT), an argument 
less than 0 is an error. 

IHC262I Explanation: LIB -- In the subpro­
gram IHCLEXP(DEXP), an argument 
greater than 174.673 is an error. 

IHC263I Explanation: LIB -- In the subpro­
gram IHCLLOG(DLOG and DLOG10), an 
argument less than or equal to 
zero is an error. Because the 
subprogram is called by an expo­
nential subprogram, this message 
also indicates that an attempt has 
been made to raise a negative 
double precision base to a power. 

IHC264I Explanation: LIB -- In the subpro­
gram IHCLSCN(DSIN and DCOS), the 
absolute value of an argument 
greater than or equal to 2soer is 
an error. 
(250er =.353711887378022390+16) 



A, device class .28, 55 
ABEND dump 89 
ABSTR subparameter 81 
Accessing unused space 82 
Account number 18 
Accounting information 

in the EXEC statement 23 
in the JOB statement 18 

ACCT parameter 23 
ACCT.procstep parameter 23 
Additional input to the linkage 
editor 43 

ADJUST compiler option 39,73 
AFF subparameter 81 
Affinity for devices 81 
ALIAS linkage editor control statement 45 
ALX subparameter 54 
Argument list 79,99,102-104 
Assembler language subprograms 

addresses of arguments 102-104 
argument list 99 
calling sequence 99 
COMMON area, use of 101 
linkage conventions 100,101 
register use 100 
save area 99 
subroutine references 99 

Assigning names to temporary data 
sets 30,51 

Asterisk parameter (*) 26 
Automatic call library 41,42,43 
Average record length subparameter 

54,81,82 

B, device class 28 
BACKSPACE statement 49,62 
Batched compilation 39-40 
BCD compiler option 38 
BLKSIZE subparameter 55,56 
Blocked records 36,41-42,59,61 
BUFNO subparameter 55,57,62 
Bypassing a' job step 23 
Byte 35 

Card input and output 26,27 
Carriage control characters 27,56 
Catalog 10 
Cataloged data sets 10 
Cataloged procedure 

IBM supplied 12-13 
invocation of 21 
overriding 13,22-23,24,68-72 
steps 13 
user-written 67 

Cataloged procedure name parameter 21 
CATLG subparameter 31 
CHANGE linkage editor control statement 45 
Channel separation 81 
Column binary mode 27 
Comments in job control statements 15 
COMMON area 75,101 
Compile and link editor cataloged procedure 

CFORTECL) 65 
Compile cataloged procedure CFORTEC) 65 
Compile, link edit, and execute cataloged 

procedure (FORTECLG) CS 
Compiler 

ddnames 35-36 
device classes 36 
error/warning messages 87,106-115 
informative messages 86,106 
multiple or batched compilation 39-40 
name 35 
object module deck structure 86-87 
options 37-39 
restrictions 84 
source listing 85 
storage map 85 

Concatenating data sets 
with other data sets 25 
with the system library 26 

COND parameter 
in the EXEC statement 23 
in the JOB statement 18 

COND.procstep parameter 
Condition code 

23 

in the EXEC statement 23 
in the JOB statement 18 
meaning of 18 

constants 35 
CONTIG subparameter 54 
Continuing control statements 15 
Control fields in variable-length 

records 59,60,61 
Control statement messages 18 
Conversion for tape data sets 56 
Creating data sets 50-64 
Cross-reference list, linkage editor 
CYL subparameter 54,81,82 
Cylinders, direct-access device 54,81 

DATA parameter 27 
Data in input stream 27 
Data set· reference number 47 
Data sets 9 

cataloged 10 
generation 10 
indexing 10 
labels 10 
name 

qualified 10 
unqualified 10 

organization 
direct access 12 
partitioned 12 
sequential 12 

residence 10 
DCB parameter 27,55 
DCB ranges and assumptions 63,64 
DD statement 

asterisk parameter 26 
DATA parameter 27 
DCB parameter 27,55,56 
ddname 24,52 

88 

Index 119 



DDNAME parameter 52 
definition of 24,50,80 
DISP parameter 30,55 
DSNAME parameter 30,51 
DUMMY parameter 51 
LABEL parameter 48,54-55 
SEP parameter 80 
SPACE parameter 53-54,79,81 
SPLIT parameter 81 
SUBALLOC parameter 82 
SYSOUT parameter 28,49w55 
UNIT parameter 28,52,81 
VOLUME parameter 52-53 

ddname 24,52 
DDNAME parameter 52 
Deck compiler option 38,85 
Deck structure, object module 86 
DEFER subparameter 80 
DEFINE FILE statement 62,79 
DELETE subparameter 30 
Delimiter statement 31 
DEN subparameter 56 
Density, tape 56 
Device class 10 
Diagnostic messages 86 
Dictionary for the compiler 84 
Direct access data sets 

buff er length 62 
number of buffers 62 
record length 62 

Direct access programming 77-79 
associated variable 79 
DEFINE FILE statement 79 
randomizing techniques 77 
record chaining 78 
skeleton records 78 
synonyms 78 

Directory 
index 12 
quantity 54,81 

DISP parameter 30,55 
Disposition of a data set 30,55 
DO loops 74-75 
Double precision 35 
Double-word 35 
DSNAME parameter 
DUMMY parameter 
DUMP subroutine 

30,51 
51 
76-77 

EBCDIC compiler option 38 
EBCDIC mode 27 
END card for object modules 85 
END FILE statement 47,48,62 
ENTRY linkage editor control statement 45 
EQUIVALENCE statement 83 
Error message data set 49 
Error/warning messages 

generated by the compiler 87,106-115 
generated by the linkage editor 88 
generated for load modules 89,115-118 

ESD card 85 
Exceptions 

exponent-overflow 89,115 
exponent-underflow 89,115 
fixed-point-divide 89,115 
floating-point-divide 89,116 

EXEC statement 

120 

ACCT parameter 23 
ACCT.procstep paraweter 23 

ACCT.procstep parameter 23 
COND parameter 23 
COND.procstep parameter 23 
definition of 19 
name 21 
PARM parameter 22,37,69 
PARM.procstep parameter 22,69 
PGM parameter 21 
PROC parameter 21 

Execution, load module 
DCB assumptions 64 
ddnames 46-48 
device classes 49 
error message data set 49 
errors <see error-warning messages) 
program name 46 
restrictions 83 
storage map 86 

EXPDT subparameter 55 
Expiration date for data sets 55 
Exponent-overflow 89,115 
Exponent-underflow 89,115 
Exponentiation 73-74 
External references 11,41-45,86 

Fields in job control statements 
name field 15 
operand field 15 
operation field 15 

Fixed-length records 56,57,58,59 
Fixed-point-divide 89,118 
Floating-point-divide 89,118 
FORTEC 

description of 65 
use of 13,32,65 

FORTECL 
description of 65 
use of 13,33,65 

FORTECLG 
description of 67 
use of 13,34,65 

FORTE LG 
description of 65 
use of 13,33-34,65 

FORTRAN library 12,41,43,83 
FORTRJ..N records 

direct-access data sets 62 
sequential data sets 56,57 

FORTRAN sequence number 47-49 
FTxxFyyy 47 

Generation data group 10,29 
Generation data set 10,29 
Generation number 10,29 

IEJFAAAO 35 
IEWL 41 

IEWLE150 41 
IEWLE180 41 
IEWLE440 41 

INCLUDE Linkage Editor Control StateMent 
42,43 

Index 
directory 12 
for cataloged data sets 10 

Index name 10 
Informative messages 86,106 
Initialization in programs 73 
Input 

to the compiler 32,37 



to the linkage editor 41-42 
Input stream 9,26 
INSERT linkage editor control statement 45 
Integer constants and variables 35 
Intermediate storage device 35,55 
Internal statement number 87 
Interrupt messages 89,118 
I/O devices 

address 27,52,80,81 
name 27,52~80,81 
number of 27,52,80,81 

Job 9 
Job control statements 14-15 

comments 15 
continuing 15 
notation for defining 16-17 

JOB statement 
account number parameter 18 
accounting information parameter 18 
COND parameter 19 
definition of 17 
MSGLEVEL parameter 18 
name 18 
programmer's name parameter 18 

Job step 9 
JOBLIB DD statement 26,31,47 
Jobname 18 

KEEP subparameter 30 
Keyword parameters and subparameters 15 
Keyword.procstep 22,69 

LABEL parameter 48,54-55 
Labels, data set 10,28,48,54-55 
Length 

buffer 56,62 
of FORTRAN records 57,62 
of logical records 57,62 

LET linkage editor option 45 
Library 

automatic call 41,42,43 
FORTRAN 12,41,43,83 
private 21 
system 21 

LIBRARY linkage editor control 
statement 43 

LINELNG compile option 38 
Link edit and execute cataloged 

procedure (FORTELG) 65 
Linkage conventions 100,101 
Linkage editor 

additional input 43 
automatic call library 41,42,43 
control statements 43-44 
cross-reference list 45,88 
ddnames used with 42 
definition of 11 
device classes 42 
diagnostic messages 88 
module map 45,88 
name 41 
options 43-44 
primary input 41 
priority 43 
restrictions 84 
secondary input 41 

LIST linkage editor option 46 

LOAD compiler option 38 
Load module 

cross-reference list 88 
definition of 11 
execution of (see execution, load 

module) 
map 88 
restrictions 84 

Locations, storage 35 
Logical records 

fixed-length 56-63 
format of 56-63 
variable-length 56-63 

LRECL subparameter 56 

MAP 
compiler option 38 
linkage editor option 45 

Member of a PDS 12 
Messages 

compiler error/warning 87,106-115 
compiler informative 86,106 
control statement 18 
linkage editor 88 
load module 89,115-118 
operator 89,115 
program interrupt 89,118 
source module diagnostic 86,87 

Minimum system requirements 73 
MOD subparameter 30 
MODE subparameter 27 
Module map 

88 load module 
object module 

MSGCLASS parameter 
73 

19 
18 

39-40 
MSGLEVEL parameter 
Multiple compilation 
Multiple link editing 44-45 
Multiprogramming with a variable number 

of tasks (MVT) 
cataloged procedures 66,82 
job control language 14 
job management 14 
programming considerations 82 

MVT (see Multiprogramming with a variable 
number of tasks) 

MXIG subparameter 54 

NAME 
compiler option 38,40 
linkage editor control statement 44 

Name subparameter 28,52,81 
NCAL linkage editor option 46 
NEW subparamter 30 
NL subparameter 48,55 
NOADJUST compiler option 39,73 
NODECK compiler option 38 
NOLOAD compiler option 38 
NOMAP compiler option 38 
NOSOURCE compiler option 38 
Notation for defining control statements 

16-17 
Number of I/O devices subparameter 

28,52,81 

Object module 
card deck 85-86 
definition of 11 
map 85 

Index 121 



OLD subparameter 30 
Optimization 

ADJUST option 73 
direct-access programming 77-79 
DUMP subroutine 76-77 
implied DO in I/O statements 75 
initialization 73 
I/O operations 75,77-79 
NOADJUST option 73 
of arithmetic expressions 73-74 
of DO loops 74-75 
of exponentiation 73-74 
passing arguments 79 
PDUMP subroutine 76-77 
program structure 75-76 
subscripts 74-75 

Options 
compiler 37-39 
linkage editor 43-44 

Organization of data sets 12 
Output 

of a load module 88-89 
of the compiler 35-36,85-88 
of the linkage editor 41,88 

OVERLAY linkage editor CONTPOL 
statement 45 

Overlaying load modules 46 
Overriding cataloged procedures 
13,22-23,24,68-72 

OVLY linkage editor option 46 

Parameters 
keyword 15 
positional 15 

PARM parameter 22,37,69 
PARM.procstep parameter 22,69 
Partitioned data set 12 
PASS subparameter 31 
Passed data sets 31 
Passing arguments 

call by name 79 
call by value 79 

PAUSE statement 89,115 
PDS (see partioned data set) 
PDUMP subroutine 76-77 
PGM parameter 21 
Positional parameters and subparameters 15 
PRFRM compiler option 36,39,63 
Primary input 41 
Primary quantity subparameter 53,81 
Printer spacing 27 
Priority schedulers 14 
PRIVATE subparameter 52 
Private volume 52 
PROC parameter 21 
Procedure step 13 
Procedure, cataloged 12-13 
Procstep 21,22 
Procstep.ddname 25 
Procstep.SYSIN 32 
Programmer's name parameter 18 
PRTSP subparameter 27 
PRTY parameter 19 

Qualified name 10 

Randomizing techniques 77 
Real constants and variables 35 
RECFM subparameter 56 

122 

Record chaining 78 
REF subparameter 53 
REGION parameter 19,24 
Register use 100 
REPLACE linkage editor control 

statement 45 
RETAIN subparameter 52 
Retention period for data sets 55 
RETPD subparameter 55 
Retrieving data sets 28-29,48-49 
REWIND statement 49,62 
RLD cards 85 
RLSE subparameter 54 
ROUND subparameter 54 

Save area 99 
Secondary input 41 
Secondary quantity subparameter 53,81 
Segment numbers 88 
SEP parameter 81 
SEP subparameter 81 
Sequential data set 12 
SER subparameter 52 
Serial number, volume 53 
SHR subparameter 30 
SIZE compiler option 38,73 
Skeleton records 78 
SL subparameter 48,55 
SOURCE compiler option 38,85 
Source listing 85 
Source module 11 
SPACE compiler option 36,39 
Space on direct-access volumes 53-54,81 
SPACE parameter 53-54,81 
Specifying execution of a program 

described in a cataloged procedure 22 
described in a previous job step 21 
in a library 21 

SPLIT parameter 81 
STACK subparameter 27 
Stacker selection 27 
Standard labels 10,28,48,54 
Step 

job 9 
procedure 13 

St2pname 18 
STOP statement 89,115 
Storage map 86 
SUBALLOC subparameter 82 
Subparameters 15 
Subprograms, assembler language 99 
SYSCP device class 37 
SYSDA device class 37 
SYSIN ddname 32,36,37 
SYSLIB ddname 42 
SYSLIN ddname 36,37,42 
SYSLMOD ddname 42 
SYSOUT parameter 28,49,55 
SYSPRINT ddname 36,37 
SYSPUNCH ddname 36~37 
SYSSQ device class 37 
SYSUTl ddname 36,37 
SYSUT2 ddname 36,37 
SYS1.FORTLIB 12,41,83,116 

Tape density 56 
Temporary names for data sets 30,52 
Terminating a job 18 
TRK subparameter 54,82 



TRTCH subparameter 56 
TXT card 85 

Unblocked records 
direct-access data set 62-63 
sequential data set 56-62 

UNCATLG subparameter 31 
Undefined logical record 59 
UNIT parameter 27,52,80 
Unit record udLd sets 26-27,55 
Unqualified name 10 

Variable-length logical record 58,59 
Variables 35 

Volume 10 
Volume count subparameter 52 
Volume mounting, deferred 80 
VOLUME parameter 52-53 
Volume sequence number subparameter 52 
Volume serial number 53 

Warning messages (see error/warning 
messages) 

Word 35 

XCAL linkage editor option 45 
XREF linkage editor option 45,88 

Index 123 



International Business Machines Corporation 
Data Processing Division 
112 East Past Raad, White Plains, N.Y.10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Piaza, New Yark, New Yark 10017 
[International] 

. 
~ . 
(') 
N 
00 
I 

0\ 
0\ 
0 
w 
I 

N 


