File No. 5360-25
Form C28-6603-2 | (09§

IBM Systems Reference Library

IBM System/360 Operating System
FORTRAN IV (E) Programmer's Guide

Program Number 360S-F0-092

This publication describes how to compile, link
edit, and execute a FORTRAN IV (E) program. The
text also describes the output of compilation and
executien and how to make optimal use of the
compiler and a load module.

Third Edition

This publication is a major revision of, and makes obsolete, Form
C28-6603-1 and Technical Newsletters N28-0211, N28-0233, and N28-0235.
New material explains how FORTRAN IV handles exponent overflow and
underflow in floating-point registers. There are also additions and
deletions among input/output messages. Changes to the text are indicat-
ed by a vertical line to the left of the change; revised illustrations
are denoted by a bullet () to the left of the caption.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Comments may be addressed to IBM Corporation, Programming Publica-
tions, 1271 Avenne of the Americas; New York, N. Y. 10020

© International Business Machines Corporation 1966

The purpose of the Programmer's Guide is
to enable programmers to compile, 1link
edit, and execute FORTRAN IV (E) programs
under control of IBM System/360 Operating
System. The FORTRAN IV (E) language is
described in the publication IBM System/360
Basic FORTRAN 1V Language, Form C28-6629, a
corequisite to this publication.

organized to
three groups of

The Programmer's Guide is
fulfill its purpose for
programmers:

1. Programmers who wish to use the cata-
loged procedures as provided by IBM
need read only the "Introduction"™ and
"Job Control Languace®" sections to
understand the job control statements,
and the "Job Processing"™ section to
use cataloged procedures for compil-
ing, link editing, and executing
FORTRAN programs. The "Programming
Considerations™ and "System Output"
sections are recommended for program-
mers who want to wuse the FORTRAN
language more effectively.

2. Programmers who, in addition, are con-
cerned with creating and retrieving
data sets, optimizing the use of I/0
devices, or temporarily modifying IBM-
supplied cataloged procedures should
read the entire Programmer's Guide.

concerned with making
extensive use of the operating system
facilities, such as writing their own
cataloged procedures, modifying the
FORTRAN library, or calculating region
sizes for operating in a multiprogram-
ming environment with a variable num-
ber of tasks, should also read the
entire Programmer's Guide in conjunc-
tion with the following publications,
as they are referred to:

3. Programmers

IBM System/360 Operating System: Sys-
tem Programmer's Guide, Form C28-6550

IBM System/360 Operating System: Util-
ities, Form C28-6586

IBM System/360: FORTRAN IV Library
Subprograms, Form C28-6596

IBM System/360 Operating System:
Supervisor and Data Management Servi-
ces, Form C28-66U46

IBM System/360 Operating System: Job

PREFACE

IBM System/360 Operating System: Stor-

age Estimates, Form C28-6551

IBM System/360 Operating System: Link-
age Editor, Form C28-6538

IBM System/360 Operating System: Sys-—
tem Generation, Form C28-6554
IEM System/360 Operating System:

Operator's Guide, Form C28-6540

IBM System/360 Operating System: Mes-
sages and Codes, Form C28-6631

IBM System/360 Operating System:
Programmer's Guide to Debugging, Form
C28-6670

This
that:

publication contains appendixes

e Give several examples of executing load
modules.

¢ Describe the preparation of assembler
language subprograms for wuse with a
main program written in FORTRAN. To
understand this appendix, these publi-
cations are prerequisite:

IBM System/360 Operating System: Assem—
bler Langquage, Form C28-6514

IBM System/360 Operating System: Assem-

bler (E) Programmer's Guide, Form
C28-6595 or IBM System/360 Operating
System: Assembler (F) Programmer's

Guide, Form C26-3756

¢ Describe the diagnostic messages
duced during compilation and
module execution.

pro-
load

For easier reading, the titles of publi-
cations referred to in this publication are
abbreviated. For example, references to
the publication IBM System/360 Operating
System: Linkage Editor are abbreviated to
"Linkage Editor publication."

Control Language, Form C28-6539

INTRODUCTION ¢ e o o
Job and Job Step Relatlonshlp
Data Sets ¢ ¢ ¢ ¢ o ¢ o o o o

Indexing Data Sets

Data Set Labels.

Generation Data Sets . . .
FORTRAN Processing. . « « =

Processing a FORTRAN Program

Efficient Processing . . .
Output of Processing . . .
Data Set Organization. . .
Cataloged Procedures . . .

JOB CONTROL LANGUAGE « « . « o =«
Job Management . « o ¢ ¢ « « o o

Coding Job Control Statements. .
General Structure of Control
Statements . .«
Name Field . . . « . « . .
Operation Field.
Operand Field.
Comments Field
Continuing Control Statements
Notation for Defining Control
Statements

Job Statement.«
Name Field. . . . « ¢« « « . .
Operand Field .« « « « .+ + o« .

Job Accounting Information
Programmer's Name.
control Statement Messages
Conditions for Terminating

Job

Assigning Job Priority (PRTY). .

Requesting a Message Class
(MSGCLASS) e & o & o « o &
Specifying Main Storage

Requirements for a Job (REGION)

EXEC Statement
Name Field. . « « . +« & « .«
Operand Field« . . .

Positional Parameter . . .
Reyword Parameters
Accounting Information

Setting Job Step Time lelts

(TIME). @ ¢ ¢ ¢ o« o o o« &
Specifying Main Storage

Requirements for a Job Step

(REGION). .= & « o o « o .

Data Definition (DD) Statement .
Name Field. . - « ¢« ¢ &« « o« =
Operand Field

Unit Record Parameters . .

Routing a Data Set to an Output

Stream (sSyYysouT)

Retrieving Previously Created

Data SetS ¢« « ¢ « o« o o &

24
24
24
26
26
28

28

CONTENTS

Delimiter Statement. . . +« « « &« « « .
JOB PROCESSING v« v 2 o o =« o =« o o« o @

Using Cataloged Procedures

Compile. « . « . . e e e e e
Compile and Link Edlt. « e e e o
Link Edit and Execute.
Compile, Link Edit, and Execute.

Storage Locations and Bytes.

Compiler ProcesSSing. « « « « o « + o« o

Compiler Nam€. . « « &« « « « &
Compiler ddnames . . « « « « « .
Compiler Device Classes.
Compiler Options . . « . « . . .
Multiple Compilation Within a
JOb StePe v o 4 ¢ o 2o 4 4 o .

Linkage Editor Processing.

Linkage Editor Name.
Linkage Editor Input and Output.
Linkage Editor ddnames and
Device ClasSSE€S. v « « « « &+ «
Additional Input . « «
Linkage Editor Priority.
Multiple Link Editing Within a
Step. . . . “ e e e e e e e
Other Llnkage Edltor Control
StatementS. « « « . e o e e @
Options for Linkage Edltor
Processing. « « ¢« « ¢« 4« o o .

Load Module ExecutioOn. « « « « o« « « =

Program Name « . « « o « o « « =«
Execution ddnames.
Retrieving Data Sets Written
with Varying FORTRAN Sequence
Numbers .« « « ¢ ¢ o « o o & -
REWIND and BACKSPACE Statements.
Error Message Data Set
Execution Device Classes

CREATING DATA SETS « « o o o o o o o o
Data Set Name. « ¢ o« ¢« o ¢ o o « « « &
Specifying I/0 Devices
Specifying Volumes . . . ¢ ¢« « &« « o &

Specifying Space on Direct Access
Volumes . « o« v o o o o o o o o o o =

Label Information. . . « .« « « « « « &
Disposition of a Data Set.« .

Writing a Unit Record Data Set on an
Intermediate Device

31
32

32

29
D4

33
34

35
35
35
36
37

39

4e
46
ué

48
49
49
49
50
51
52

52

53
54

55

55

DCB Parameter. « « v o o o« « o « & .
Referring to Previously Spe01f1ed
DCB Information. . . «
Density and Conversion. . . . « . «
Record Format . . «
Record Length, Buffer Length Block
Length, and Number of Buffers for
Sequential Data Sets . . . « o
FORTRAN Records and Ioglcal
Records for Sequential Data
Ssets. . . . 0 0 e e d e e e ..
BACKSPACE Operations
Record Length, Buffer Length, and
Number of Buffers for Direct
Access Data Sets
DCB Ranges and Assumptions.

CATALOGED PROCEDURES . . « « « « + « «
Compile. . . « e e e e .
Compile and Llnk Edlt c e e e .
Link Edit and Execute.
Compile, Link Edit, and Execute.

User and Modified Cataloged Procedures

Overriding Cataloged Procedures. . . .
overriding Parameters in the
EXEC Statement. . . . « e e .
overriding and Adding DD
Statements.

PROGRAMMING CONSIDERATIONS

Minimum System Requirements for the
FORTRAN Compiler. « o« ¢« « « o o o o+ &

Source Program Considerations.
Initialization . . .« .« « « . . .
Coding the Source Program. . . .
Arithmetic Statements.
IF Statement . o« « & o« « o« o o
DO Loop Considerations
READ/WRITE Statements.
Program Structure. . . . « e e
Statement Numbers and Names. . .
Use. of DUMP and PDUMP.
Direct Access Programming. . . .
Direct Access Programming

considerations.
How Arguments Are Passed

DD Statement Considerations.
Channel Optimization
I/0 Device Optimization.
Direct-Access Space Optimization
Priority Scheduler
Considerations for Cataloged
ProcedureS. .« .« « « « o = o« +

Library Considerations
Compiler Restrictions. . . .« « « « . .

Linkage Editor Restrictions.

55
55

56

56

57
62

62

65
65
65
67
67
68
69
69

73

80
80
80
81
82
83
83

84

FORTRAN Load Module Restrictions . . .
SYSTEM OUTPUT.: v o « 2 « o « 2 o o o «

Compiler Output. « « « . . .
Source Listing . « « « ¢ « « <« .
Storage Map. . . « o e .
Object Module Card Deck o o e
Source Module Diagnostics. . . .

Linkage Editor Output. <« .
Module Map « « o« o o o o o « = =
Cross-Reference List « .

Load Module Output . . « &« ¢« « « « « .
Error Code Diagnostics« .
Program Interrupt Messages . . .
ABEND DUMD « « o o o o o = o o «
Operator MeSSageS. .« « « « « o« o«

APPENDIX A: EXAMPLES OF JOB

PROCESSING. o o o 2 o o o o o« o« o = =
Example 1. . ¢ ¢ ¢ ¢« ¢ o« o o « &
Example 2. . 4 4 ¢ o « o s o o
Example 3. ¢ ¢ ¢ ¢ ¢« ¢ ¢ « ¢ o =
Example 4.« . ¢« « « ¢ . .

APPENDIX B: ASSEMBLER LANGUAGE
SUBPROGRAMS . . . & ¢ o o o o o o o &

Subroutine References.
Argument List. + + . o .
Save AYCA. + o « « 4 2 o o o o a
Calling Sequence . . « . « « « «

Coding the Assembler Language

Subprogram. . « . <« « +« 4 « « o & o
coding a Lowest Level Assembler
Language Subprogram . « « « « .
Sharing Data in COMMON

Higher Level Assembly Language
Subprogram. « <« .« .« « ¢« + « < .
In-Line Argument List.

Getting Arguments From the Argument
LiSte o 4 ¢« ¢ o ¢ ¢ ¢« ¢« o o « o o «

APPENDIX C: STORAGE MAP FOR LOAD
MODULE EXECUTION. . . 2 & & o « o &« =

APPENDIX D: SYSTEM DIAGNOSTICS. . . .

Compiler Diagnostic Messages

Compiler Informative Messages. .
Compiler Error/Warning Messages.

Load Module Execution Diagnostic

MESSAgESe « o o o o o o o o s 4 o o
Operator Messages. . « « +« o« + .
Program Interrupt Messages . . .
Execution Error Messages

INDEX: o o ¢ o o o o « o o« o o o o o &

- 85
- 85
- 85
- 86
. 88
- 88
. 88

- 88
- 89

- 89
. 89

. 99
- 99

.101

.101
.101

.101
.102

.103

.105
.106

.106
.106
.106

.115
.115
.115
.116

.119

Rocket Firing Job.
Linkage Editor Execution .
Figure 3. Typical FORTRAN Processing
Figure 4. Job Control Statement
FOrmats « ¢ ¢ o o ¢ a o o o o o o o o
Figure 5. JOB Statement. . . « .« . .
Figure 6. Sample JOB Statements. . .
Figure 7. EXEC Statement
Figure 8. Sample EXEC Statements . .
Figure 9. Compiler and Linkage
sditor Options. . . . « . .
Figure 10. Data Deflnltlon (DD)
Statement . ¢« ¢ ¢ ¢ ¢ e ¢ e e o e . .
Figure 11. DD Statement Parameters.
Figure 12. Examples of Unit Record DD
Statements. « <« 4 . ¢ ¢ e 4 e e . e .
Figure 13. Retrieving Previously
Created Data Sets .« . . « « ¢« « « . .
Figure 14. Delimiter Statement. . . .
Figure 15. Invoking the Cataloged
Procedure FORTEC. o« o o o o o o « o «
Figure 16. Compiling a Single Source
Module. v o v 4 ¢« ¢ o ¢ o o o o o o
Figure 17. Compiling Several Source
MOAULIES v & & o« o ¢ 4 o e e e e e o

Figure 1.
Figure 2.

Figure 18. Invoking the Cataloged
Procedure FORTECL
Figure 19. Compiling and Llnk Edltlng

Several Source Modules.
Figure 20. Compiling and Link Edltlng
a Source Module Residing in a
Cataloged Data Set.
Figure 21. Invoking the Cataloged
Procedure FORTELG « e e e .
Figure 22. Link Edit and Execute. . .
Figure 23. Link Edit and Execute
(Object Modules in a Cataloged Data
Set)e v 4 i i i e e e e e e e e e e
Figure 24. Invoking the Cataloged
Procedure FORTECLG.- . .

Figure 25. Single Compile, Llnk Edlt,
and Execute « e e .
Figure 26. Batched Complle, Link
Edit, and Execute . . . + 4 ¢ o « o .
Figure 27. Blocked Records.
Figure 28. Compiler Options
Figure 29. Multiple Compilation

Within a Job Step « . « . . . « e .
Figure 30. Linkage Editor Input and
Output. . . . e e o e s e o s e o
Figure 31. Linkage Editor Example
Using INCLUDE and LIBRARY Statements.
Figure 32. Tape Output for Several
Data Sets Using Same Data Set
Reference Number. . . . « e e . .
Figure 33. Examples of DD Statements
for Creating Data Sets.
Figure 34. DD Parameters for Creating
Data Sets « . ¢ & ¢« ¢ o ¢« 4 ¢ ¢ @ . .
Figure 35. FORTRAN Record (FORMAT
Control) Fixed-Length Specification .

23

25
27

28

29
31

32

32

32

33

33

33

34

34

34

34

34

35

38

40

42

by

438

50

51

57

ILLUSTRATIONS

Figure 36. FORTRAN Record (FORMAT
Control) With Fixed-Length
Specification and FORTRAN Record
Length Less Than BLKSIZE.- .

Figure 37. FORTRAN Record (FORMAT
Control) Variable-Length
Specification . . . « e e e . .« .

Figure 38. FORTRAN Record (FORMAT
Control) With Variable-Length
Specification and the FORTRAN Record
Length Less Than (LRECL-4).

Figure 39. FORTRAN Record (FORMAT
control) With Undefined Specification
and the FORTRAN Record Length Less
Than BLKSIZE. .« « « « « o« « . « = -

Figure 40. Fixed-Length Blocked
Records Written Under FORMAT Control.

Figure 41. Variable-Length Blocked
Records Written Under FORMAT Control.

Figure 47. Logical Record (No FORMAT
Control) for Direct AccesS. . « . . .
Figure 48. Compile Cataloged
Procedure (FORTEC).« .
Figure 49. Compile and Link Edlt
Cataloged Procedure (FORTECL)
Figure 50. Link Edit and Execute
Cataloged Procedure (FORTELG)
Figure 51. Compile, Link Edit, and

Execute Cataloged Procedure
(FORTECLG)e « ¢ « o « o o « « o s o
Figure 52. Record Chaining.+ .
Figure 53. Writing a Direct Access
Data Set for the First Time
Figure 54. DD Statement Parameters
for Optimization. « « . . .

Figure 55. Source Module Listing. . .
Figure 56. Storage Map. . . e e e .
Figure 57. Object Module Deck
Structure <« « ¢ ¢« ¢ e e 4 e o e e o e
Figure 58. Format of Diagnostic
MESSAgeS. « « « o o « « « o « o« o o
Figure 59. Module Map . « « « o« « « &
Figure 60. Linkage Editor

Cross—-Reference List. « « ¢« « o« « o «

Figure 61. Input/Output Flow for
Example 1 . ¢ & ¢ o o o o o o o o o @
Figure 62. Job Control Statements for
Example 1 ¢ o ¢ o o o o o o « o« o o «
Figure 63. I/0 Flow for Example 2 . .
Figure 64. Job Control Statements for
Example 2 . . . « v ¢ ¢ 4 ¢ ¢ 4 o o .
Figure 65. I/O Flow for Example 3 . .
Figure 66. Job Control Statements for

Example 3 ¢ ¢ ¢ 4 4 4 4t ¢ e e e o o
Figure 67. Block Diagram for

Example 4 . . . ¢ ¢ ¢ 4 4 4 4 4 e o o
Figure 68. Job Control Statements
Example 4 ¢ ¢ 4 4 4 4 4 e e .
Figure 69. FORTRAN Coding for
Example 4 . o ¢ ¢ & 4 ¢ 4 4 e + s o s

58

58

58

59
59
60
63
65
66

67

87
88

89
91

921
92

93
94

94
96
97

98

Figure 70. Save Area. . « « « « -«
Figure 71. Lowest Level Assembler
SUbPrOgraMe o« o v o o o « o o « =
Figure 72. Higher Level Assemkler
Subprogram. « .« ¢ « + 4« + e o o =

TABLES

Table 1. Job Control Statements.
Table 2. Compiler ddnames. . . .
Table 3. Device Class Names. . .
Table 4. Correspondence Between

-

Compiler ddnames and Device Classes

Table 5. Conditions for Multiple
Compilation . . . ¢ ¢ & ¢ ¢« « «
Table 6. Linkage Editor ddnames.
Table 7. Correspondence Between
Linkage Editor ddnames and Device
ClaSSes « v« v v o o o « o o « o« =
Table 8. Load Module ddnames . .

.100

.101

.102

. 37

. 40
. 42

Figure 73
Figure 74

.

Example .

Figure 75

In-Line Argument List.

Assembler Subprogram

Load Module Execu

Storage Map . .

Table 9.
Table 10.
Table 11.

Data Set References .
DEN Values for Model 2400 .
Specifications Made by the
FORTRAN Programmer for

el 10X

and Blocking. .
BLKSIZE Ranges:
Considerations.

Table 12.

Table 13.

Load Module DCB Parameter

Default Values.

Table 14.

Source Module Size

Restrictions. .

Table 15.
Table 16.
Format.

Linkage Registers .
Dimension and Subscript

. e

.

Record Types

Device

tion

.

.

.

.103
.104

.105

. 56

. 83
.100

.103

The IBM System/360 Operating System (the
operating system) consists of a control
program and processing programs. The con-
trol program supervises execution of all
processing programs, such as the FORTRAN E
compiler, and all problem programs, such as
a FORTRAN program. Therefore, to execute a
FORTRAN program the programmer must first
communicate with the operating system. The
medium of communication between the pro-
grammer and the operating system is the job
control language.

Job control language statements define
two units of work to the operating system:
the job and the job step. The important
aspect of Jjobs and job steps is that they
are defined by the programmer. He defines
a Jjob to the operating system by using a
JOB statement; he defines a Jjob step by
using the EXEC statement. Another impor-
tant statement is the DD (data definition)
statement, which gives the operating system
information about data used in jobs and job
steps. The sequence of control statements
and any data placed in this sequence is
called the input stream. The input stream
can be read by either a card reader or a
tape device.

JOB AND JOB STEP RELATIONSHIP

When a programmer is given a problem, he
analyzes that problem and defines a precise
problem-solving procedure; that is, he
writes a program or a series of programs.
To the operating system, executing a main
program (and any subprograms it calls) is a
job__step. A job consists of executing one
or more Jjob steps.

At its simplest, a job consists of one
job step. For example, executing a FORTRAN
main program to invert a matrix is a job
consisting of one job step.

If the problem is complex, one Jjob may
consist of a series of job steps. For
example, a programmer is given a tape

containing raw data from a rocket firing:
he must transform this raw data into a
series of graphs and reports. Three steps
may be defined:

1. Comparing the raw data to projected
data and eliminatino errors which
arise because of intermittent errors
in gauges and transmission facilities.

2. Using the refined data and a set of
parameters as input to a set of equa-

INTRODUCTION

tions, which develop wvalues for the
production of graphs and reports.

3. Using the values to plot the graphs
and print the reports.

In this example, each step can be a
separate job with one jok step in each job.
However, designating several related job
steps as one job is more efficient: pro-
cessing time is decreased because only one
job is defined, and interdependence of job
steps may be stated. (The interdependence
of jobs cannot be stated.) In the rocket
firing example, each step may be defined as
a Jjob step within one job that encompasses
all processing. Figure 1 illustrates the
rocket firing job with three job steps.

DATA SETS

In Figure 1, two collections of input
data (raw data and projected data) and one
collection of output data (refined data)

are used in job step 1. In the operating
system, a collection of data that can be
named by the programmer is called a data

set. A data set is defined to the operat-
ing system by a DD statement.

Raw
Data

Job Step 1:
Refine Data

Projected
Data

Refined

Data
3

Job Step 2:
Develop Values

Parameters

Job Step 3:
Generate
Graphs and
Reports

Figure 1. TRocket Firing Job

Introduction 9

A data set resides on a volume(s), which
is an external storage unit accessible to
an input/output device. (For example, a
volume may be a reel of tape or a disk
pack.)

Several I/0 devices grouped together and
given a single name when the system is
generated constitute a device class. (For
example, a device class can consist of all
the tape devices in the installation;
another can consist of the printer, a
direct access device, and 2 tape device.)

Indexing Data Sets

The name of a data set, information
identifying the volume(s) on which the data
set resides, device type, and the position
of the data set on the volume may be placed
in an index to help the control program
find the data set. This index, which is
part of an index structure called the

catalog, resides on direct access volumes
with the operating system. Any data set

whose name and volume identification are
placed 1in this index is called a cataloged
data set.

Furthermore, a hierarchy of indexes may
be devised to classify data sets and make
names for data sets unique. For example,
an installation may divide its cataloged
data sets into four garoups: SCIENCE,
ENGRNG, ACCNTS, and INVNTRY. In turn, each
of these groups may be subdivided: the
SCIENCE group may be subdivided into MATH,

PHYSICS, CHEM, and BIOLOGY; MATH may con-
tain volume identification for the data
sets ALGEBRA, CALCULUS, and BOOL. To find

the data set BOOL, the programmer specifies

all indexes beginning with the largest
group -- SCIENCE; then the next largest
group,- MATH; finally, the data set BOOL.

The complete identification needed to find
the data set BOCL is SCIENCE.MATH.BOOL.

Data set names are of two classes. An
unqualified name is a data set name or an
index name not preceded by an index name.
A gualified name is a data set name or
index name preceded by index names rep-
resenting index levels; for example, in the
preceding text, the qualified name of the
data set BOOL is SCIENCE.MATH.BOOL.

Before using a qualified name to name a
data set, the programmer must be sure that
the index levels specified in a qualified
name are placed in the catalog. Index
levels are placed in the catalog by a
utility program. For more information, see
the section "Modifying System Control Data"
in the Utilities publication or
"Maintaining the Catalog and the Volume

10

Table of Contents" in the
Programmer's Guide.

Systems

Data Set Labels

Information such as record format, buf-
fer length, density, creation date, expira-
tion date, and an identifier needed to read
the data set are stored in the operating
system data set labels. If a data set is
cataloged and standard labels are specified

when the data set is created, the informa-
tion specified in the DD statement to
subsequently retrieve the data set is sub-

stantially reduced. In addition to the
data set name, the only information needed
to retrieve the data set 1is the current
status of the data set (new, old, etc.)
and the status the data set is to have when

the job step is completed (deleted, kept,
passed, etc.).
Generation Data Sets

Data set identification may also be

based upon the time of generation. 1In the
operating system, a collection of succes-
sive historically related data sets 1is a
generation data group. Each of the data
sets is a generation data set. A genera-
tion number 1is attached to the data group
name to refer to a particular generation.
The most recent generation is 0; the gener-

ation previous to 0 is -1; the generation
previous to -1 is -2; etc. An index
describing a generation data group rust

exist in the catalog. The index is created
by a data set utility program.

For example, a data group named WEATHER
might be wused for weather reporting and
forecasting. The generations for the gen-
eration data group WEATHER are:

WEATHER(0)
WEATHER(-1)
WEATHER (-2)

is created, it is
where n is an
For example, after

When a new generation
called generation (+n),
integer greater than 0.

a job step has created WEATHER (+1), the
operating system changes its name to
WEATHER(0) at the end of the job. The data

set that was WEATHER(0) at the beginning of
the job becomes WEATHER(-1).

If more than one generation is created
in a Jjob, the first generation created is

generation (+1); the next generation creat-
ed is generation (+2); and so on.

FORTRAN PROCESSING

In the operating system environment, a
source program is called a source module; a
compiled source module is an object module
(object program). The object module cannot
be executed until it is placed in a format
suitable for 1loading, and all external
references to subprograms are resolved.

This is done by an IBM supplied program =--
the linkage editor.

The executable output of the linkage
editor is a load module. However, the
input to the linkage editor may be either
object modules or other load modules.
Linkage editor execution can be expanded

further: several object modules and/or load
modules may be combined to form one load
module. The 1linkage editor inserts the
requested library functions and subroutines
into the load module. For example, if the
compiled object module TFST calls subrou-
tines ALPHA and BETA and the library func-
tion SIN, the linkage editor combines the
object module TEST and the previously 1link
edited 1load modules ALPFA, BETA, and SIN
into one 1load module. This process is
illustrated in Figure 2.

A program written in FORTRAN may call
subprograms written in the assembler lan-
guage as long as the assembler subprogram
uses the 1linkage conventions shown in
Appendix B: “"Assembler Tanguage Subpro-
grams." The 1linkage editor resolves the
references between assembler and FORTRAN
modules.

ALPHA

SIN
TEST BETA

Linkage
Edifor

TEST

Figure 2. Linkage Editor Execution

Processing a FORTRAN Program

After an object module is processed by
the 1linkage editor, the resulting 1load
module may be executed. Therefore, to
compile, link edit, and execute a FORTRAN
program, three steps are necessary:

1. Compile the FORTRAN source module and

any FORTRAN subprograms not compiled

previously to produce one oOr more
object modules.
2. Link edit the resulting object

module(s) and any modules needed to
resolve external references to form a
load module.

3. Execute the load module.

Figure 3 illustrates the problem program
processing; FORTRAN subprograms and assem-—
bler subprograms (object modules) are used
to resolve external references.

Assembler
Subprogram

~— N

Main Program

Assembler
Subprogram

y
Job Stepl:
Compile
Main Program Assemble
and Subprograms
Subprograms

Object Object
Modules Modules

Job Step 2:
Linkage
Editor

!

Load
Module

!

Job Step: 3
Input Execute
Load Module

A

Output

Output

L

Input

Figure 3. Typical FORTRAN Processing

Introduction 11

Efficient Processing

Each compilation, each 1linkage editor
execution, and each load module execution
may be defined as separate jobs, but com-
bining the separate jobs into one job is
more efficient.

Assume that the source module MAIN is to

be compiled and executed. MAIN requires
the services of two subprograms, SUB1 and
SUB2, and neither subprogram 1is compiled.

Since the compiler can perform batched
compilations, all the compilations can be
combined in one job step. Three job steps
are necessary to perform the job:

JOB: Compile, link edit, and execute
JOB STEP 1: Compile MAIN, SUB1, SUB2
JOB STEP 2: Link edit the modules
JOB STEP 3: Execute load module MAIN

Output of Processing

The compiler, linkage editor, and other
components of the operatino system generate
diagnostic output which can be wused to
debug programs. BAmong these are 1listings,
module maps, and diagnostic messages.

Data Set Organization

A data set 1s a namwed collection of

data. Several methods are available for
internally organizing data sets. Three
types of Jdata sets are accessible in
FORTRAN processing: sequential data sets,

partitioned data and direct access

data sets.

sets,

A seguential data_set is organized in
the same way as a data set that resides on

a tape volume, but a sequential data set
may reside on any type of volume. The
compiler, linkage editor, and load wmodules

process sequential data sets.

A partitioned data set (PDS) is composed
of named, independent groups of sequential
data and resides on a direct access volume.
A directory index resides in the PDS and
directs the operating system to any group
of sequential data. Each group of sequen-
tial data is called a member. (A member of
a PDS is not a data set. Partitioned data
sets are used for storage of any type of
sequentially organized data. In particu-
lar, they are used for storage of source
and load modules (each module is a member).
In fact, a load module can be executed only
if it is a member of a vpartitioned data

12

set. A PDS of load modules is created by
either the 1linkage editor or a utility
program. A PDS is accessible to the link-

age editor; however, only individual mem-
bers of a PDS are accessible to the compil-
er. Members of a PDS are not accessible to
a FORTRAN load module.

The FORTRAN library is a cataloged PDS
that contains the 1library subprograms in
the form of load modules. SYS1.FORTLIB is
the name given to this PDS.

A direct access__data set contains
records that are read or written by speci-
fying the position of the record within the

data set. When the position of the record
is indicated in a FIND, READ, or WRITE
statement, the operating system goes

directly to that position in the data set
and either retrieves, reads, or writes the
record. For example, with a sequential

data set, if the 100th record is read or
written, all records preceding the 100th
record (records 1 through 99) must be

transmitted before the 100th record can be
transmitted. With a direct access data set
the 100th record can be transmitted direct-
ly by indicating in the I/0 statement, that
the 100th record is to be transmitted.
However, in a direct access data set,
records can only be transmitted by direct
access I/0 statements; they cannot be
transmitted by sequential 1/0 statements.
Records in a direct access data set can be
transmitted sequentially by using the asso-
ciated variable in direct access I/0 state-
nments.

A direct access data set must reside on
a direct access volume. Direct access data
sets are only processed by FORTRAN load
modules; the compiler and linkage editor
cannot process direct access data sets.

Saying that a data set is sequential,
partitioned, or direct access reflects its
organization. Saying that a data set is
cataloged or that it is a generation data
set reflects a method of retrieving the
data set. Sequential, partitioned, and
direct access data séts can be cataloged;
however, an individual member of a PDS
cannot be cataloged because a member is not
a data set. A generation data set can only
be a sequential or direct access data set;
a generation data set cannot be a PDS or a
member of a PDS.

Cataloged Procedures

To reduce the possibility of error in
the frequent reproduction of job control
statements, cataloged procedures can be
written. A cataloged procedure is a set of
EXEC and DD statements placed in a PDS

the operating system. (The
JOB statement cannot be cataloged.) A
cataloged procedure consists of a single
procedure step or a series of procedure
steps defined by EXEC statements. A proce-
dure step in a cataloged procedure is
equivalent to a job step in a job. Just as
DD statements are included for a job step,
DD statements are included in procedure
steps.

accessible to

An EXEC statement in the input stream
can invoke a cataloged procedure. There-
fore, the definition of joh step is extend-
ed: executing a load module or invoking a
cataloged procedure 1is a Jjob step to the
operating system.

To simplify the steps involved in com-
piling and 1link editing, four cataloged

procedures for FORTRAN (E) are supplied by
IBM. These four cataloged procedures and
their uses are:

FORTEC compile

FORTECL compile and link edit into the
FORTRAN library (FORTLIB)

FORTELG link edit and execute

FORTECLG compile, link edit, and execute

Any cataloged procedure may be temporar-
ily modified by EXEC and DD statements in
the input stream; this temporary modifica-
tion is called overriding.

Introduction 13

JOB CONTROL LANGUAGE

The FORTRAN programmer uses the job
control statements shown in Table 1 to
compile, link edit, and execute programs.

JOB MANAGEMENT

Job control statements are processed by
group of operating system routines known
collectively as Jjob management routines.
These routines interpret control state-
ments, control the flow of jobs, and issue
messages to both the overator and the
programmer. Job management routines have
two major components: a job scheduler and a
master scheduler.

a

The specific facilities available
through the job scheduler and the master
scheduler depend on the scheduling level
the installation selects during system gen-
eration. Schedulers are available at two
levels -- the sequential scheduler and the
more powerful priority scheduler.

Sequential schedulers process job steps
one at a time in the order of their
appearance in the input stream. Operating
systems with a primary control program
(PCP) and those that provide multiprogram-
ming with a fixed number of tasks (MFT) use
sequential schedulers.

Priority schedulers process jobs accord-
ing to their relative priority and avail-
able system resources, and can accept input
data from more than one input stream.
Systems that provide multiprogramming with
a variable number of tasks (MVT) use prior-
ity schedulers.

| FORMAT

'Job Control Statements

Table 1.

r
| Statement

T
| Function

1

T

| Indicates the beginning of a
|new job and describes that job
|Indicates a job step and des-|
|cribes that job step; indi-|
|cates the cataloged procedure]

1
J]or load module to be executed
]

|
+ i
|Describes data sets, and con-|
| trols device and volume|
| assignment |
¥ -——- -4
| Separates data in the|
| input stream from controlj
|statements; it appears after|
|]each data set in the input|

|stream I
4

t
|JOB

[SRS S |

delimiter sets
/

*

S ——
=]
o

—_——

CODING JOB_ CONTROL STATEMENTS

Like any other computer language, the

control language has a specific struc-
ture and must conform to a prescribed
format. To make the definition and de-
scription of job control statements more
understandable, a notation to show the
format of the statements has been devised
and will be used throughout this publica-
tion.

job

GENERAL STRUCTURE OF CONTROL STATEMENTS

Job control statements are identified by

|//Name Operation Operand

|// Operation Operand [Comment]

j/* [Comment]

the initial characters // or /% in card
columns 1 and 2, and may contain four
fields -- name, operation, operand, and

comments (see Figure 4).
T 1
| APPLICABLE CONTROL STATEMENTS |

4

T TS T TT T T T T {
(comment] | JOB, EXEC,DD |
i |
| EXEC,DD I
I I
| delimiter |
————l —— ——— _— |

L ———————— e

Figure 4. Job Control Statement Formats

14

Name Field

The name contains between one and eight
alphameric or national characters, the
first of which must be alphabetic. The
name begins in card column 3 and is fol-
lowed by one or more blanks to separate it
from the operation field. The name is
used:

1. To identify the control statement to
the operating system.

2. To enable other control statements in
the job to refer to information con-
tained in the named statement.

3. To relate DD statements to I/O state-
ments in the load module.

Operation Field

The operation field contains one of the
following operation codes

JOB
EXEC
DD

or, 1if the statement is a delimiter state-
ment, the operation field is blank. The
operation code is preceded and followed by
one or more blanks.

Operand Field

The operand field contains the parame-
ters that provide information to the oper-
ating system. The parameters are separated
by commas. The operand field is ended by
placing one or more blanks after the last
parameter. There are two types of parame-
ters, positional and keyword. Positional
and keyword parameters are identified in
the definition of control statements.

Positional Parameters: Positional parame-
ters are placed first in the operand field
and must appear in a specified order. 1If a
positional parameter is omitted and other
positional parameters follow, the omission
must be indicated by a comma. If a posi-
tional parameter is omitted and only key-
word parameters follow, the omission is not
indicated by a comma.

Keyword Parameters: A ¥keyword parameter
may be placed anywhere in the operand field
after the positional parameters. A keyword
parameter consists of a keyword, followed
by an equal sign, followed by a single

value or a list of subparameters. If there
is a list of subparameters, the 1list must
be enclosed in parentheses or apostrophes
and the subparameters in the list must be
separated by commas. Keyword parameters
are not order dependent: they may appear in
any order.

Subparameters: Subparameters are either
positional or keyword. Positional subpa-
rameters appear first in the parameter and
must appear in the specified order. 1If a
positional subparameter is omitted and
other positional subparameters follow, the
omission must be indicated by a comma. If
a positional subparameter is omitted and
only keyword subparameters follow, the
omission is not indicated by a comma.
Positional and keyword subparameters are
noted 1in the definition of control state-
ments.

Comments Field

The comments field must be separated
from the operand field (or the * in a
delimiter statement) by one or more blanks.
None of the information written in the
comments field is wused by the operating
system.

CONTINUING CONTROL STATEMENTS

written in
If a control
it may be
If a state-

A control statement can be
card columns 1 through 71.
statement exceeds 71 columns,
continued onto the next card.
ment is continued, it must be interrupted
after the comma that follows the 1last
parameter (or the last subparameter in the
accounting information or DCB parameter on
the card and a nonblank character must be
placed in column 72. The continuation card
must contain // in columns 1 and 2; columns
3 through 15 must be blank, and the contin-
ued portion of the statement must begin in
column 16.

The comments field is continued by plac-
ing a nonblank character in columm 72; //
is placed in columns 1 and 2 of the
continuation card; and the continued por-

tion of the comments field begins in any
column after column 15 (columns 3-15 must
be blank).

There is no 1limit to the number of

continuation cards used for a con-

trol statement.

single

Note: Excessive continuation cards should
be avoided whenever possible to reduce
processing time for the control program.

Job Control Language 15

NOTATION FOR DEFINING CONTROL STATEMENTS

The

notation wused +to define control

statements in this publication is described
in the following paragraphs.

1.

16

The following symbols are used to
define control statements but are
never used in an actual statement.

a. hyphen -
b. or |
c. underscore
d. Dbraces

e. Dbrackets
f. ellipsis .
g. superscript 1

"

}
]

The special uses of these symbols are
explained in paragraphs 4-10.

Upper-case letters and words, numbers,
and the symbols below are written in
an actual control statement exactly as
shown in the statement definition.
(Any exceptions to this rule are noted
in the definition of & control state-
ment.)

a. apostrophe ‘
b. asterisk *
c. comma .
d. equal sign =
e. parentheses)

f. period .
g. slash /

Lower-case letters, words, and symbols
appearing in a control statement defi-
nition represent variables for which
specific information is substituted in
the actual statement.

Example: If name appears 1in a
statement definition, a specific value
(e.g., ALPHA) is substituted for the
variable in the actual statement.

Hyphens join lower-case letters,
words, and symbols to form a single
variable.

Example: If member-name appears in
a statement definition, a specific
value (e.g., BETA) is substituted for
the variable in the actual statement.

Stacked items or items separated from
each other by the "or" symbol rep-
resent alternatives. Only one alter-
native should be selected.

Example: The two representations

A
B and A|B|C
C

have the same meaning and indicate
that either A or B or € should be
selected.

An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statement.

Example: The two representations

A
B and A|B|C

C

have the same meaning and indicate
that either A or B or C should be
selected; however, if B is selected,

it need not be written, because it is

the default option.

Braces group related such as

alternatives.

items,

Example: ALPHA =({A|B|C},D)
indicates that a choice should be mrwade
among the items enclosed within the
braces. If A is selected, the result
is ALPHA=(A,D). 1If C is selected, the
result can be either ALPHA=(,D) or
ALPHA=(C,D).

Brackets also group related items;
however, everything within the brack-
ets is optional and may be omitted.

Example: ALPHA =([A{|B|C],D)

indicates that a <choice can be made
among the items enclosed within the
brackets or that the items within the
brackets can be omitted. If B is
selected, the result is ALPHA=(B,D).

If no choice is made, the result is

ALPHA=(,D).

An ellipsis indicates that the preced-
ing item or group of items can be
repeated more than once in succession.
Example: ALPHA[,BETAJ...

indicates that ALPHA can appear alone
or can be followed by ,BETA repeated
optionally any number of times in
succession.

10. A superscript refers to a footnote. 1. The name of the job.

Example: 'NEw}l
{OLD 2. Accounting information relative to the
MOD job.

indicates that additional information 3. Programmer's name.

concerning the grouped items is con-

tained in footnote number 1. 4. Whether the job control statements are

printed for the programmer.
11. Blanks are used to improve the read-

ability of control statement defini- 5. Conditions for terminating the execu-

tions. Unless otherwise noted, blanks tion of the job.

have no meaning in a statement defini-

tion. 6. A job priority assignment.
JOB STATEMENT 7. Output class for priority scheduler

messages.
The JOB statement (Figure 5) 1is the 8. Specification of main storage require-

first statement in the sequence of control ments for a job.
statements that describe a job. The JOB
statement contains the following informa- Examples of the JOB statement are shown
tion: in Figure 6.
r T . T - - === |
| Name | Operation|Operand |
e — 4 1 - - - 4
| | | Positional Parameters i
I | | |
| /7 jobname | JOB | [(laccount-number] [,accounting-informationl)1 2 3] |
| | | i
| | | {,programmer-namel ¢ S 6 |
| I ! |
| | | Keyword Parameters]
I | | |
| | | JMSGLFVEL=0 !
			MSGLFVEL=1
		[COND=((code,operator) [, (code,operator)l...7) 8]	
	I		
		[PRTY=nn]l?	
		[IMSGCLASS=x]°	
		[REGION=nnnnnkK]®	
I,____ L 4 —_—— e e e e e e e o e e e e o e e ,’

|*If the information specified ("account-number" and/or "accounting-information™)
| contains blanks, parentheses, or equal signs, the information must be delimited by
| apostrophes instead of parentheses.

|2If only "account-number"™ is specified, the delimiting parentheses may be omitted.
}3The maximum number of characters allowed between the delimiting parentheses or
| apostrophes is 142.

| #If "programmer-name" contains commas, parentheses, apostrophes, or blanks, it must be
| enclosed within apostrophes.

| SWhen an apostrophe is contained within "programmer-name", the apostrophe must be
| shown as two consecutive apostrophes.

| *The maximum number of characters allowed for "programmer-name" is 20.

| 7The maximum number of tests allowed is 8.

|®If only one test is specified, the outer pair of parentheses may be omitted.

|°This parameter is used by the priority scheduler only. The sequential scheduler
| ignores it.

L _ S -

Figure 5. JOB Statement

e e i e e s e s e e o o o — ——

Job Control Language 17

80 Column Key Punch Layout

NAME DEPT. BLDG. PHONE NO. PROJECT NO. PROJECT 1.D. PROJECT NAME DATE DUE OUT
Pri SHEET___OF___
T i - — —— |
123 n‘ 5] 6| 7/ 8 9 10 11‘12‘ 13.14{15: 16 17,18:19'20{21 22 23 24 25 26 27}28' 29 30|31 32 3334’ 35|36 37: 38 39'40{41' 42 43 44:45 2647 48 49 51 5253/ 54‘ 55! 56. 5758%59'50 61 52163184'55f66 67:53'69]70 7li72173]74|75i76277l78‘179‘80
T T ‘ ¥ - T H T 7 1 i
(PR i . : \ 1 P P g i
PROGRAM Wog (215,819 346W) s \Jl. SHITH SC = . =
xiamg f | L RN s
‘ — — TR ;
-~ i I . i - ! H .
(| PR * qgajr‘r-z 1COND= (75 LIT) 3PRTY =4 £ =
| i P i Pl i P o 1 i h P B | |
EEEEEE NN EREENE : ‘ i | i

Figure o&. Sample JOB Statements

NAME FIELD
The "jobname" must always be specified;
it identifies the Jjob to the operating

system. No two jobs being handled concur-
rently by a priority scheduler should have
the same "jobname".

OPERAND FIELD

Job Accounting Information

The first positional parameter can con-
tain the installation account number and
any parameters passed to the installation
accounting routines. These routines are
written by thé installation and inserted in
the operating system when it is generated.
The precise format of the job accounting
information is specified by the installa-
tion.

As a system generation option with
sequential schedulers, the account number
can be established as a required parameter.
With priority schedulers, the requirement
can be established with a cataloged proce-
dure for the input reader. (Information
about how to write an accounting routine
may be found in IBM System/360 Operating
System: Systems Programmer's Guide.) Oth-
erwise, the account number is optional.

Programmer's Name

name" 1is the second
If no job accounting

The "programmer
positional parameter.
information is coded, its absence must be
indicated by a —comma preceding the
programmer's name. If neither job account-
ing information nor programmer‘s name is
coded, commas need not be used to indicate
their absence.

18

This parameter is optional unless it is
made mandatory at the installation in the
same way as job accounting information is
made mandatory.

Control Statement Messages

The MSGLEVEL parameter indicates the
type of control statement messages the
programmer wishes to receive from the con-
trol program.

MSGLEVEL=0
indicates that only control
diagnostic messages are
the programmer.

statement
written for

MSGLEVEL=1
indicates that all control statements,
as well as control statement diag-
nostic messages, are written for the
programmer.

occurs in a control
statement that is continued onto one or
more cards, only one of the continuation
cards is printed with the diagnostics.

Note: If an error

Conditions for Terminating a Job

At the completion of a job step, a code
is issued indicating the outcome of the job
step. Instructions, written by the pro-
grammer, in a FORTRAN program cannot gener-
ate the code. The generated code is tested
against the conditions stated in control
statements. The error codes generated are:

0 - No errors or warnings detected
4 - Possible errors (warnings) detected
8 - Serious errors detected

12

For the compiler, the SYSLIN DD state-

ment is omitted, or the NOLOAD option

is specified. For the linkage editor,

severe errors are detected.
16 - For the compiler, the SYSIN or
SYSPRINT DD statement is omitted, a
permanent I/0 error is encountered,
the source modiule is nonexistent, or
the compiler, linkage editexr, or a
load moduleée terminated abnormally. If
any error message (except a program
interrupt message) is issued during
load module execution, a 16 is issued.

The COND parameter specifies conditions
under which a job is terminated. Up to
eight different tests, each consisting of a
code and an operator, may be specified to
the right of the equal sign. The code may
be any number between 0 and 4095. The
operator indicates the mathematical rela-
tionship between the code placed in the JOB
statement and the codes issued by completed
job steps. If the relationship is true,

the job is terminated:. The six opérators
and their meanings are:
Operator Meaning

GT greater than

GE greater than or equal to
EQ equal to

NE not equal to

LT less than

LE less than or equal to

For - example, if a code 8 is returned by
the compiler and the JOB statement con-
tains:

COND=(7,1T)
the job is terminated.

If more than one condition is indicated
in the COND parameter and any of the

conditions are satisfied, the job is termi-
nated.

Assigning Job Priority (PRTY)

(Used by Priority Schedulers Only)

To assign a priority other than the
default job priority (as established in the
input reader procedure), PRTY=nn must be
coded in the operand field of the JOB
statement. The term "nn" is to be replaced
with a decimal number fror 0 through 14
(the highest priority number is 14).

Whenever possible, avoid using priority
14. This is used by the system to expedite
processing of exceptional jobs. It is also
intended for other special uses by future

"nnnnn" with the number of 1024-byte

Note:

features
ers.

of systems with priority schedul-

If the PRTY parameter 1is omitted, the
default job priority is assumed.

Requesting a Message Class (MSGCLASS)

(Used by Priority Schedulers Only)

With a guantity and diversity of data in
the output stream, an installation may want
to separate different types of output data
into different classes. Each class is
directed to an output writer associated
with a specific output unit. The
MSGCLASS=x parameter allows the messages
issued by the job scheduler to be routed to
an output class other than the normal
message class, A. Replace the letter "x"
with an alphabetic or numeric character.
An output writer, which is assigned +to
process this class, will transfer this data
to a specific device.

Specifying Main Storage Requirements for a
Job (REGION)

(Used by Priority Schedulers Only)

can be specified to indi-
storage to be
Replace the term
areas
to be allocated to the job; €.g.,
REGION=50K. This number can range from one
to five digits and cannot exceed 16,384,

REGION=nnnnnkK ca
cate the amount of main
allocated to the job,

If the REGION parameter is omitted, the
default region size (as established in the
input reader procedure) is assumed.

If different region sizes are to be
specified for each step in the Jjob, the
REGION parameter should be coded in the
EXEC statement associated with each step
instead of in the JOB statement.

EXEC STATEMENT

The EXEC statement (Figure 7) indicates
the beginning of a job step and describes
that Jjob step. The statement contains the
following information:

1. The name of the job step or procedure
step.

Job Control Language 19

2. Name of the cataloged procedure or 5. cConditions for bypassing the execution
load module to be executed. * of this job step.

6. A time limit for the job step or an
3. Compiler and/or linkace editor options entire cataloged procedure.
passed to the job step.
7. Specification of main storage require-

|21If only minutes are given, the parentheses need not be used. If only seconds are

L

ioThis parameter 1is used by priority schedulers only. Sequential schedulers ignore

i"stepname" is required when information from this control statement is referred to
in a later job step.

2If this alternative is selected, it may be repeated in the EXEC statement, once for
each step in the catalcged procedure.

3If the information specified contains blanks, parentheses, or equal signs, it must
be delimited by apostrophes instead of parentheses.

4If only one option is specified and it does not contain any blanks, parentheses, or
equal signs, the delimiting parentheses may be omitted.

5The maximum number of characters allowed between the delimiting apostrophes or
parentheses is 40. The PARM parameter cannot occupy more than one card.

61f Taccounting-information" does not contain commas, blanks, parentheses, or equal
signs, the delimiting parentheses may be omitted.

7The maximum number of characters allowed between the delimiting apostrophes or
parentheses is 1u44.

8The maximum number of repetitions allowed is 7.

9Tf only one test is specified, the outer pair of parentheses may be omitted.

it.

4. Accounting information relative to ments for a job step or an entire
this job step. cataloged procedure.

r T - - - - Al
| Name |Operation|Operand |
F t ¢ 1
i | | Positional Parameter |
| i i]
// [stepnamel?	EXEC	{PROC=cataloged-procedure-name	
		}eataloged-procedure-name	
		{(PGM=program-name	
		JPGM=%*.stepname.ddname	
		[PGM=%*.stepname.procstep.ddname	
		Keyword Parameters	
	b		
		gPARM %]	
			{PARM. procstep2{=(option[,optionl...)3 # S
		F	
)accT
		ZACCT.procsteng=(accounting-information)3 6 ﬂ	
		F	
		3COND %	
] OND.procstep2	=((code,operator[,stepname [.procstepll)	
]	[, (code, operator[stepnamel.procstepll)l...8)4		
		[10,11	
		{TIME }	
]		{TIME.procstep? =(minutes, seconds)	
		~	
		1°:	
		REGION	
		%REGION.procstepzé=nnnnnK	
b -—4 L= 1			
I			
[
i			
I			
[
I			
[

|

!

given, the parentheses must be used and a comma must precede the seconds.

i
!
[

Figure 7. FXEC Statement

IBM 80 Column Key Punch Layout

Tname DEPT. BLDG. IFHONE NO. IPRDJECT NO. I PRFJE{:T LD, 1 IPROJECT NAME DATE DUE OUT
i i H

[SHEH_OF_ —

11314l 15

T T T T T T T T T ; ,] i [ool T i T
1zgﬂs’ﬂmﬂmummummﬂwwmnnauﬁnnnnwunxuwuyuuwnaauuwuudmnau%sWWMWww&ﬁw5“WQQm
+ +— T T T T T

o

4{74 75 74 78|79(80

T

e
R]
x| 1

=2 EG =, K . il

EC PG =r=urAAA,sAccT=Zegi =
1

4 /STRPY EXEC FORTECLG)

Vi | _ PARM.FORT="DEcKsLL =
S __PARM. KED=XREF >

= 79 2

COND. D= LTIs STEPY. FORT) >
COND.|GO= ;

P4, FORTI)]s

/ T T
R — EGTION.GO=66Ks
/ | Accr=ligaiA

Figure 8. Sample EXEC Statements

Example 1 of Figure 8 shows the EXEC
statement used to execute a program. Exam-
ple 2 in Figure 8 shows an EXEC statement
that invokes a cataloged procedure.

NAME FIELD

The "stepname" is the name of the Jjob
step. It is required when information from
this job step is referred to in a later job
step.

OPERAND FIELD

Positional Parameter

The options in the positional parameter
of an EXEC statement specify either the
name of the cataloged procedure or program
to be executed. Each program (load module)
to be executed must be a member of a
library (PDS). The 1library can be the
system library (SYS1.LINKLIB), a private
library, or a temporary library created to
store a program from a previous job step of
the same job.

Specifying a Cataloged Procedure:

{PROC=cataloged—procedure—name}
cataloged-procedure-name
indicate that a cataloged procedure is
invoked. The "cataloged procedure
name" is the unqualified name of the
cataloged procedure. For example,

PROC=FORTEC

indicates that the cataloged procedure
FORTEC is to be executed.

Specifying a Program in a Library:

PGM=program-name
indicates that a program is executed.
The "program name" is an unqualified
member name of a load module in the
system library (SYS1.LINKLIB) or pri-
vate library. For example,

PGM=IEWL

indicates that the load module IEWL is
executed. A load module in a private
PDS (private library) is executed by
joining the private library with the
system library through the use of a
JOBLIB DD statement. See the discus-
sion concerning JOBLIB.

Specifying a Program Described in a Pre-

vious Job Step:

PGM=%* . stepname.ddname

indicates that a program is executed,
but the program is taken from a data
set specified in a DD statement of a
previous job step. The * indicates
the current job; "stepname"™ 1is the
name of a previous step within the
current Jjob; and "ddname" is the name
of a DD statement within that step.
(The "stepname" cannot refer to a job
step in another job.) For example, in
the statements,

Job Control Language 21

//LXIX JOB ,JOHNSMITH,COND=(7,LT)

//STEP4 EXEC PGM=IEWL
//SYSLMOD DD DSNAME=MATH(ARCTAN)

3

//STEP5 EXEC PGM=#%,STFP4.SYSLMOD

statement STEPS indicates that the
name of the program is taken from the
DD statement SYSLMOD in job step
STEP4. Consequently, the load module
ARCTAN in the PDS MATH is executed.

Specifying a Program Described in a Cata-
loged Procedure:

PGM=*. stepname.procstep.ddname

indicates that a program is executed,
but the program is taken from the data
set specified in a DD statement of a
previously executed cataloged proce-
dure. The * indicates the current
job; "stepname" is the name of the job
step that invoked the cataloged proce-
dure; "procstep"™ is the name of a step
within the cataloged procedure;
"ddname" is the name ¢f a DD statement
within that procedure step. (The
"stepname" cannot refer to a job step
in another job.) For example, consid-
er a cataloged procedure FORT,

//COMPIL EXEC PGM=IFJFAAAO
//SYSUT1 DD UNIT=TAPE
//SYSLIN DD DSNAMF=LINKINP

//LKED EXEC PGM=IFWL
//SYSLMOD DD DSNANMF=RESULT (ANS)

Furthermore, assume the following
statements are placed in the input
stream.

//7XLIV JOB ,SMITW,COND=(7,LT)
/751 EXEC PROC=FORT

-

EXEC PGM=*%.S51.LKED.SYSLMOD
UNIT=PRINTER
UNIT=INPUT

/752
//FTO03F001 DD
//FT01F001 DD

The statement $2 in +theé input sStream
indicates that the name of the program is
taken from the DD statement SYSLMOD in the
procedure step LKED in the procedure
invoked by the EXEC statement Sl. Conse-
quently, the 1load module ANS in the PDS
RESULT is executed.

22

Keyword Parameters

The keyword parameters may refer to a
program, to an entire cataloged procedure,
or to a step within a cataloged procedure.

If the parameter refers to a program or
to an entire cataloged procedure (with the
PARM parameter only the first procedure
step is affected), the keyword is written
followed by an equal sign and the list of
subparameters. (In example 2, Figure 38,
the parameter ACCT applies to the entire
procedure.) When parameters are overridden
in a cataloged procedure step, the keyword
is written, a period is placed after the
keyword, and the stepname follows immedi-
ately. (In example 2, FPigure 8, the cata-
loged procedure FORTECLG is invoked. Two
sets of PARM options apply to two different
procedure steps; one applies to the proce-
dure step FORT and the other to the proce-
dure step LKED.) More information about
overriding cataloged procedures is given in
the section "Cataloged Procedures."

Options _for
tor:

the Compiler and Linkage Edi-

The PARM parameter is used to pass

options to the compiler or linkage editor.
(PARM has no meaning to a FORTRAN load
module.)

PARM

passes options to the compiler or
linkage editor, when their execution
is indicated by the PGM parameter in
the EXEC statement. If the execution
of a cataloged procedure is indicated,
the options specified in the first
procedure step are overridden by the
options in the new PARM parameter; any
options specified in other procedure
steps. are deleted.

PARM.procstep
passes options to a compiler or link-
age editor step within the named cata-
loged procedure step. Any PARM param-
eter in the procedure step is deleted,
and the PARM parameter that is passed
to the procedure step is inserted.

A maximum of 40 characters may be writ-
ten between the parentheses or apostrophes
that enclose the 1list of options.

The format for

compiler options and

those linkage editor options most applica-
ble to a FORTRAN program is shown in
Figure 9.

Compiler:

{PARM

{,DECK

r-
|
|
|
|
|
|
|
:
| Linkage Editor:
|
|
|
]

nnnnkK
PARM.procstep}='[SIZE={yyyyyyy}][,LINELNG=zzz][,NAME=xxxxxx] {,NOSOURCE

MAP + LOAD
+ NODECK + NOMAP + NOLOAD

PARM MAP ¢ LET
PARM.procstepf=(|XREF| |{,XCAL} [,NCAL]{,LIST][,OVLY])?*

«SOURCE }

« BCD + SPACE »ADJUST 1
«EBCDIC ¢« PRFRM « NOADJUST

|
|
1

| *The subparameters (options) are keyword subparameters.

L -

b e i s e o — . S — — . e e i e e

Figure 9.

Detailed information concerning compiler
and- 1linkage editor options is given in the
section "Job Processing.”

condition for Bypassing a Job Step:

This COND parameter (unlike the one in

the JOB statement) determines if the job

step defined by the EXFC statement is

bypassed.

COND
states conditions for ©bypassing the
execution of a program or an entire
cataloged procedure. If the EXEC
statement invokes a cataloged proce-
dure, this COND parameter replaces all
COND parameters in each step of the
procedure.

COND.procstep
states conditions for Dbypassing the

execution of a specific cataloged pro-
cedure step "procstep®. The specified
COND parameter replaces all COND pa-
rameters in that procedure step.

The subparameters for the COND parameter
are of the form:

(code,operator [, stepnamel)

The subparameters "code" and "operator"
are the same as the code and operator
described for the COND parameter in the JOB
Statement. The subparameter "stepname"
identifies the previous 3job step that
issued the code. For example, the COND
parameter:

COND.GO=((5,LT,FORT), (5,LT,LKED))
indicates that the step in which the
COND parameter appears is bypassed if
5 is less than the code returned by
either of the steps FORT or LKED.

Compiler and Linkage Editor Options

If a step in a cataloged procedure
issued the code, "stepname" must qualify
the name of the procedure step; that is,

(code,operator [,stepname.procstepl)
If "stepname" or "stepname.procstep" is

not given, "code" is compared to all <¢odes
issued by previous job or procedure steps.

Accounting Information

The ACCT parameter specifies accounting
information for a job step within a job.

ACCT
is used to pass accounting information
to the installation accounting rou-
tines for this job step.

ACCT. procstep
is used to pass accounting information
for a step within a c¢ataloged proce-
dure.

If both the JOB and EXEC statements
contain accounting information, the instal-
lation accounting routines decide how the
specified accounting information 1is used
for the jok step.

Setting Job Step Time Limits (TIME)

(Used by Priority Schedulers Only)

To limit the computing time used by a
single job step or cataloged procedure
step, a maximum time for its completion can
be assigned. Such an assignment is useful
in a multiprogramming environment where

Job Control Language 23

more than one job has access to the comput-
ing system.

The time is coded in minutes and sec-
onds. The number of minutes cannot exceed
1439. The number of seconds cannot exceed
59. If the Jjob step is not completed in
this time, the entire Jjob 1is terminated.
(If the job step execution time is expected
to exceed 1439 minutes (24 hours) TIME=14u40
can be coded to eliminate job step timing.)
If the TIME parameter is omitted, the
default job step time limit (as established
in the cataloged procedure for the input
reader) is assumed.

TIME
assigns a time limit for a job step or
for an entire cataloged procedure.
For a cataloged procedure, this param-

eter overrides all TIME parameters
that may have been specified in the
procedure.

TIME.procstep
assigns a time limit for a single step
of a cataloged procedure. This param-
eter overrides, for the named step,
any TIME parameter which is present.
As many parameters of this form as
there are steps in the cataloged pro-
cedure being executed can be written.

Specifyving Main Storage Recuirements for a
Job Step (REGION)

(Used by Priority Schedulers Only)

The REGION parameter may be specified in
the JOB statement, in which case it over-
rides the REGION parameters specified in
the EXEC statements and applies to all
steps of the job. However, if it is
desired to allot to each job step only as

much storage as it requires, the REGION
parameter should be omitted from the JOB
statement, and the EXEC statements should

REGION parameter specifying the
amount of main storage to be allocated to
the associated job step. If the REGION
parameter is omitted from both JOB and EXEC
statements, the default region size (as
established in the cataloaed procedure for
the input reader) is assumed. The size is
specified in the form "nnnnnk" where
"nnnnn" is the number cf 1024-byte areas to
be allocated to the job step; €.g.,
REGION=50K.

contain a

REGION
specifies a region size for the job
step or for the entire cataloged pro-
cedure. For a cataloged procedure,
this parameter overrides all REGION

24

parameters that may have been speci-
fied in the procedure.

REGION.procstep

specifies a region size for a single
step of a cataloged procedure. This
parameter overrides the REGION param-
eter in the named cataloged procedure
step, if one 1is present. As many
parameters of +this form as there are
steps in the cataloged procedure being
executed can be written.

For a discussion of the region size
required for FORTRAN jobs, see "Specifying
Main Storage Requirements for a Job
(REGION)."

DATA DEFINITION (DD) STATEMENT
The DD statement (Figure 10) describes

data sets. The DD statement can contain
the following information:

1. Name of the DD statement.

2. Name of the data set to be processed.

3. Type and number of I/0O devices for the
data set.

data set

4., Volume(s) on which the

resides.

5. Amount and type of space allocated on
a direct access volume.

6. Label information for the data set.

7. The status of +the data set before
execution of the step and the disposi-
tion of the data set after execution
of the step.

8. Allocation of data sets to facilitate

channel optimization.

NAME FIELD
ddname
is used:
1. To identify data sets defined by

this DD statement to the compiler
or linkage editor.

2. To relate data sets defined by
this DD statement to data set
reference numbers wused by the

programmer in his program.

3. To identify this DD statement to
other control statements in the
input stream.

The "ddname" format is given in "Job cataloged procedures. The step in the

Processing." cataloged procedure is identified by
"procstep.® The “ddname™ identifies
procstep.ddname either:

is used to override DD statements in

—_ —_— — —_— 1

OperatlonIOperand1 |
| -—- —

Positional Parameter

4

=]
o

5ddname 2 *
//<procstep.ddname, DATA
lJOBLIB3 DUMMY

Keyword ParametersS

DDNAME-ddname

4
|

|

|

I

I

|

I

|

|

I =

I

|

| dsname

] dsname (element)

| *, ddname

| |DSNAME= § *.stepname.ddname

| *.stepname.procstep.ddname
| &name

| éname(element) _
|
|
|
I
|
[
|
|
|
|
I

[UNIT=(subparameter-1ist)]
B=(subparameter-iist)]}
[VOLUME= (subparameter-1ist)]

SPACE= (subparameter-1ist)
SPLIT=(subparameter-1ist)
SUBALLOC= (subparameter-1list)

| [LABEL= (subparameter-1ist)}

|

|| DISP=(subparameter-1ist)

|| sysouT=a

| { sysouT=B

| LsYsouT=(x[, program-namel [, form-no.])s 7

e e e e e e e ———————————

I
| (SEP=(subparameter-1list)]
L

1To allow a programmer flexibility in the use of the DD statement all parameters are
optional, however, a DD statement with a blank operand field is invalid.

|2The name field must be blank when concatenating data sets.

| 3The JOBLIB statement precedes any EXEC statements in the job. See the discussion
| concerning JOBLIB under "Name Field" in this section.

| “If either DATA or * is specified, keyword parameters cannot be specified.

|SIf “subparameter-list™ consists of only one subparameter and no leading comma
| (indicating the omission of a positional subparameter) is required, the delimiting
| parentheses may be omitted.

]This form of the parameter is used only with priority schedulers.

|7If program-name and form no. are omitted, the delimiting parentheses can be omitted.
L

|
|
|
I
[
I
]
|
|
I
|
I
|
|
|
I
|
]
|
I
!
|
I
|
|
I
I
|
|
|
|
|
|
|
|
|
|
t
!
I

et e et e e e e o s e e e e e s i — . o e e ot s Mo e s i, S St i . s Bt A e o, S s, s P it S T Sttt i s e sttt S, e

Figure 10. Data Definition (DD) Statement

Job Control Language 25

1. A DD statement in the cataloged
procedure that is to be modified
by the DD statement in the input
stream, oOr

2. A DD statement that 1s to be
added to the DD statements in the
procedure step.

JORLIB
is wused to concatenate data sets with
the operating system library; that is,
the operating system library and the
data sets specified in the JOBLIB DD
statement are temporarily combined to
form one library.

The "PGM=program _name" parameter in
the EXEC statement refers +to a 1load
module in the systemr library. Howev-
er, if this parameter refers to a load
module in a private library, a JOBLIB
statement identifying the PDS in which

the module resides must be specified
for the Jjob. The JOBLIB statement
concatenates the private library with

the system library. The library indi-
cated in the. JOBLIB statement is
searched for a module before the sys-
tem library is searched.

The JOBLIB statement must immediately
follow a JOB statement, and the con-
catenation 1is in effect only for the
duration of the job.

Only one JOBLIB statement may be
for a job.

specified

A JOBLIB statement does pnot have to be
entered for load modules created in
this job, or for permanent members of
the system library.

If the name field is blank, the data set
defined by the DD statement is concatenated
with the data set defined in the preceding
DD statement. In effect, these two data
sets are combined into one data set. Only
sequential and partitioned data sets can be
concatenated. Direct access data sets can-
not be concatenated. (Data sets may also
be concatenated with the data set specified
in the JOBLIB DD statement: several data
sets can be concatenated with the system
library.)}

Note: Data sets with records of different
record formats or data sets that reside on
different types of devices should not be
concatenated.

26

OPERAND FIELD

For purposes of discussion, parameters
for the DD statement are divided into six
classes. Parameters are used to:

e Specify unit record data sets.

* Retrieve a previously created and cata-
loged data set.

e Retrieve a data set created in a pre-
vious Jjob step in the current job and
passed to the current job step.

e Retrieve a data set created but not
cataloged in a previous job.

e Create data sets that are to reside on
magnetic tape or direct access volumes.

e Optimize I/O operations.

The following text describes the DD
statement parameters that apply to process-
ing unit record data sets and retrieving
data sets created in previous job steps, or
data sets created and cataloged in previous
jobs (see Figure 11). The method of
retrieving uncataloged data sets created in
previous jobs is also discussed in this
section. Parameters shown in Figure 10 and
not mentioned in this section are used to
create data sets, retrieve uncataloged data
sets, and optimize I/0O operations in job
steps. These parameters are discussed in
the sections "Creating Data Sets"™ and
"Programming Considerations."

Unit Record Parameters

The UNIT, DCB, and SYSOUT parameters are
used for unit record data sets; the * or
DATA parameters designate that the data set
for this job step follows in the input
stream. Examples of DD statements for unit
record data sets are shown in Figure 12.

Specifying Data in the Input Stream:

*
indicates that a data set immediately
follows this DD statement in the input
stream. This parameter is wused to
specify a source module deck, object
module deck, or data, in the input
stream. If the EXEC statement for the
job step invokes a cataloged proce-
dure, a data set may be placed in the
input stream for each procedure step.
If the EXEC statement in the input
stream specifies execution of a pro-
gram, only one data set may be placed
in the input stream. The DD * state-

ment must be the last DD statement for
the procedure step or program. The
end of the data set must be indicated
by a delimiter statement. The data
cannot contain // in the first two
characters of the record.

—_—d

1
DATA}
dsname
dsname (element)
*_,ddname (
SNAME=< *.stepname.ddname
*.stepname.procstep.ddnames

N
*

éname
&name (element)

UNIT=(namel,{n|P}2])3

— s e it o ot e o S e i S — . —— . T i S . st =

PRTSP=0
PRTSP=1
PRTSP=2
DCB= (PRTSP=3)
{MODE=E}{,STACK=1}}
MODE=C} {,STACK=2
‘subparameter-1ist®
SYSOUT=A
SYSOUT=B
\ sYsouT=(x[,program-namel {, form-no.1)? 8
|
| ,DELETE | ¢
| oLD) |,KEEP
|/ p1sp=()NEW| |, PASS)s

MOD | |,CATLG
SHR) |, UNCATLG

<

OLUME=(subparameter-list)®

- o e e e -

}
| LABEL=(subparameter~-list)e®
|
[

s s o e . e T — e, S — — aath it AR e At e S, T s it it S s e e S, W st e . it e i, .

|1If either
| selected,

| selected.

|2If neither "n" nor "P" is specified, 1}
| is assumed.]
|3If only "name" is specified, the delim-|
| iting parentheses may be omitted. i

of these two parameters is|
it must be the only parameter]

|“The assumption for the second subparam-|
| eter is discussed in "Specifying the|
| Disposition of a Data Set" in this]
| Section.

I
| ®The subparameters are positional. |
|See the section "Creating Data Sets." |
| 7This form of the parameter is used only|
| with priority schedulers. |
|8If program-name and form no. are omit-|
| ted, the delimiting parentheses can be|

| omitted. |
L 4

Figure 11. DD Statement Parameters

DATA
also indicates data in the input
stream. The restrictions and use of
the DATA parameter are the same as the
*, except that // may appear in the
first and second positions in the
record.

UNIT Parameter:

UNIT=(namel, {n|P}1)

specifies an address of an
input/output device, a type of I/0
device, or class of 1I/0 devices and
the number of I/O devices assigned to
a data set. When the system is gener-
ated, the "name™ is assigned by the
operating system or the installation.
(See the section "System Generation
Macro-Instructions" in the publication
System Generation.) The programmer
can use only the assigned names in his
DD statements. For example,

UNIT=19Q, UNIT=2311, UNIT=TAPE
where 190 is a device address,
a device type, and TAPE is a
class.

2311 is
device

{n|P}

specifies the number of devices allo-
cated to the data set. If a number
"n" is specified, the operating system
assigns that number of devices to the
data set. Parallel, "P", is used with
cataloged data sets. The control pro-
gram assigns as many devices as there
are volumes indicated in the index and
the 1label field of the cataloged data
set.

DCB Parameter:

DCB=PRTSP={0|1|2]3}
is used to indicate line spacing for
the printer. The digits 0, ¥, 2, and

3 indicate no space, single space,
double space, and triple space, res-
pectively. The carriage control char-

acter in a FORTRAN record causes spac-
ing before the line is printed. The
PRTSP parameter causes spacing after
the line is printed. A default of 0
only applies to a FORTRAN program.

{MODE=E} {,STACK=1}

DCB= (|MODE=C , STACK=2})
specify options for the card read
punch. The MODE subparameter indi-
cates whether the card is transmitted
in column binary or EBCDIC mode; C

specifies column binary, and E speci-
fies EBCDIC.
The STACK subparameter indicates

stacker selection for the card read

punch.

Job Control Language 27

Sample Coding Form

1-10 | 11-20 | 2t-30 i 31-40

]

41-50 51— 60 T 61-70 [71-80

1[2]3]4]5[6]7]8[2[0]12[3]4[5[6[7[8[9[0/ 1[2[3[4]56]7/8]3]0

[i]273]a]s[6]7[8[9[0[1 [2|314I5\6f7lsI9101 112[3]4]5]6[7[8]9]0] 1]2[3[4]5]6[7[8[elo] T]2[3[4]5[6[7[8[S[0

 Example, 1: Printesy ...

| T BT |

PRI
T

| [I
T T T T
//SYSPRINITJ lDlDI \SYSOU A,DCIB PRTSP\ 12I 1 I] I I] L L [J ‘ I T i JI ' i | ‘ i1 1 { P
T T T T T T
\IlliII)IL\IIL[I\Il;l;L)JJLJlL!LALLLiI{illl\I\ilI\ILIIY\JJJIJ!iLJ_LJ]IlIlI\IIlIl!!
|1 xa / ZI) /1 | . L b b L LJ I ! D '} I i1 1 | J L {1 LA[1 J_I_LI || ! | I I
/\/\SiYISJpjulN\ClH[\DIDI lUNIT lleSCP,IDCB S\TACK 2 1 ‘ § T | l N [| . J S U I T N N Y I g1 | I i L1 1
T T T T T T
11 1 | [) % T [LT ‘ U] N . 4 I] l 1 (] J I T | | 1L 1} 1 S T -] 1 1 1 | T‘ | - I N B -1 ! I | | I
1l |£)dam/e{ 3/(ca/”d I%atdeﬂ E L1l l) 4 S | 1 O N | “ I 1 B T | 4 | l .| ! A [Y
/!QYSTN DDi Sy I IS EETES SR A % [N AR } RIS BRI l AT R 1 ceror by g ! IR R
T S | i e L I N i I | B J L L \ Ll | T T | l | | - J Ll | | |J - | Lol 1] 1 Lt ll 1 I |
Figure 12. Examples of Unit Record DD Statements
Routing a Data Set to _an Output Stream omitted, the Jjob scheduler provides
(SYSOUT) default values as the job is read and
processed.
Through the use of the SYSOUT parameter, If there 1is a special installation

output data sets can be routed to a system
output stream and handled in much the same
way as system messages.

SYSOUT=A
can be used with sequential schedulers
to indicate that the data set is to be
written on the system printer output

device. No parameter other than the
DCB parameter has any meaning when
SYSOUT=A is wused. With systems pro-

viding multiprogramming with a fixed
number of tasks, the processing pro-
gram that writes the data must be in
the lowest priority partition.

SYSOUT=B
can be used with sequential schedulers
to 1indicate the system card punch
unit. The priority scheduler will
route the output to class B.

SYSOUT=(x{,program-namel [,form-no. 1)
is wused with priority schedulers.
When priority schedulers are used, the
data set 1is normally written on an
intermediate direct access device dur-
ing program execution and later routed

through an output stream to a system
output device. The character "x" can
be alphabetic or numeric, specifying

the system output class. Output writ-
ers route data fror the cutput classes
to system devices. The DD
statement for this data set can also
include a unit specification describ-
ing the intermediate direct access
device and an estirate of the space
required. If these parameters are

44w

28

program to handle output operations,
its T"program-name" should be speci-
fied. "Program-name" 1is the member
name of the program, which must reside
in the system library.

If the output data set 1is to be
printed or punched on a specific type
of output form, a four-digit
"form-no." should be specified. This
form number is used to instruct the
operator, in a message issued at the

time the data set is to be printed, of
the form to be used.
Retrieving Previously Created Data Sets
If a data set on a magnetic tape or a

direct access volume is created with stan-
dard labels and cataloged in a previous job
or job step, all information for the data
set such as device, volume, space, etc., is
stored in the catalog and labels. This
information need not be repeated in other
DD statements. To retrieve the data set,
the name (DSNAME) and disposition (DISP) of
the data set must be specified.

If the data set was created in a pre-
vious job step in the current job and its
disposition was specified as PASS, all of
the inforration in the previous DD state-
ment is available to the control program,
and is accessible by referring to the
previous DD statement by name. To retrieve

the data set, a pointer to a data set

Sample Coding Form

11-20 [21-30 I 31-40 | 41-50 I 51— 60 [61-70 71-80
umwﬂaM7smmntm1mwwmmingbmwx1\mumaﬂwaﬂswmnmnmwmwmwmumwmwmwwwmvmwmmmwwwmumwmwmwmpm
JJugﬁgmpJelJﬁlk@trdqwlng.m Catinloged Zhﬂa\Seﬁ APTITN AP RPN TR A VANIT R P B

//FT@IF@@1,

! i IR RS
L4L1L1LJ1!\11»}|\||[;\|11|\|\4(|l\l(l||}1|1||\v||‘||\|||1|l

|4u|4

i)

|
D D JgislNlAlMlE;=lMlAt-|'lH" DI S P (OIL) pASS)I il 1 § I | 1‘ I - I I | ! | 1 ‘ 11§
|

Illtlll\0

tan

llI"C}I

|

T

:
1|||\||||!||1||||\|

|

T

|

/[fjj@F@ﬁlLlDD DSNAME * ﬁTEpu"FTw FO@l)DISP (MOD»KEEP)ILILl,

Tl lllllll]

T
Jllllblll%tlllLlLL)% 1|||llJl]LL¢|||\ll\‘L1|||L4JLJL1111111111|||||IJI|III\1IIIJ

//FT11F0¢1

(i el lLlL il e

DSNAME= -MAT . AB B2 DISP=0LD,UNLT - 18¢,v0Lumé ER=21

\l\l'l\|\|¢|\|‘|1|11|4l|‘|7ll‘IALIJ_LJ_ALJALlllllJl|JlII|llIII[}III|IlII

Figure 13. Retrieving Previously Created Data Sets

created in a previous job step is specified in a generation data group, oOr a

by the DSNAME parameter. The disposition member of a partitioned data set. The

(DISP) of the data set is also specified; name of the generation data group or

if more than one unit is to be allocated, partitioned data set is indicated by

the UNIT parameter must be specified too. "dsname"; if "element" is either 0 or
a signed 1integer, a generation data

If the data set was created with stan- set is indicated. For example,

dard 1labels in a previous job but not

cataloged, information concerning the data DSNAME=FIRING(-2)

set, such as space, record format, etc., is

stored in the 1labels. The volume and indicates the third most recent member

device information is not stored. To of the generation data group FIRING.

retrieve the data set, the name (DSNAME), If "element" is a name, a member of a

if the data set 1is namred, disposition partitioned data set is indicated.

(DIsP), volume (VOLUME), and device (UNIT)

must be specified. Before any generation data set can be
specified in the DSNAME parameter, the

If a data set created without standard name for the generation data group

labels in a previous job is retrieved, the must be inserted in the catalog index.

LABEL and DCB parameters must be specified. The name of the generation data group

The VOLUME, LABEL, and DCB parameters are is inserted by use of a utility pro-

discussed in the section "Creating Data gram described in the section

Sets." "Modifying System Contrcl Data"™ in the

Utilities publication.
Examples of the use of DD statements to

retrieve previously created data sets are Note: Members of a partitioned data
shown in Figure 13. set cannot be read as input tc a
FORTRAN object program or created as
IDENTIFYING A CREATED DATA SET: The DSNAME output from a FORTRAN object program
parameter indicates the name of a data set even though the member name has been
or refers to a data set defined in the specified in the DSNAME parameter of a
current or a previous job step. DD statement.
Specifying a Cataloged Data Set by Name: Referring to a Data Set in the Current Job
Step:

DSNAME=dsname
the fully qualified name of the data DSNAME=*.ddname

set is indicated by "dsname." If the indicates a data set that is defined
data set was previously created and previously in a DD statement in this
cataloged, the control program uses job step. The * indicates the current
the "dsname"™ to search the catalog, job. The name of the data set is
find the data set, and instruct the copied from the DSNAME parameter in
operator to mount the required the DD statement named "ddname."
volumes.
Referring to a Data Set in a Previous Job
Specifving a Generation Data Group or PDS: Step:
DSNAME=dsname (element) DSNAME=%*.stepname.ddname
indicates either a generation data set indicates a data set defined in a DD

Job Control Language 29

statement in a previous job step in
this job. The * indicates the current
job, and "stepname" is the name of a
previous job step. The name of the
data set is copied from the DSNAME
parameter in the DD statement named
"ddname."™ For example, in the control
statements

//LAUNCH JOB

//JOBLIB DD DSNAME=FIRING,DISP=(OLD, PASS)

//S1 EXEC PGM=ROCKET

//FTO5F001 DD DSNAME=RATES (+1) ,DISP=Q0LD

//FT07F001 DD DSNAME=TIME,DISP=(OLD,PASS)
/752 EXEC PGM=DISTANCE
//FT08F001 DD DSNAME=#*.51.FT07F001,DISP=0OLD

//FT01F001 DD *

The DD statement FTO08F001 in job step
52 indicates that the data set name
(TIME) is copied from the DD statement
FTO07F001 in job step S1.

Referring to a Data Set in a Cataloged

Procedure:

DSNAME=#*.stepname.procstep.ddname

indicates a data set defined in a
cataloged procedure invoked by a pre-
vious job step in this job. The *
indicates the current job; "stepname"
is the name of a previous job step;
"procstep" is the name of a step in
the cataloged procedure; and "ddname”
is the name of the DD statement defin-
ing the data set.

Assigning Names to Temporary Data Sets:

DSNAME=éname
assigns a name to a
set. The control program assigns the
data set a unique name which exists
only until the end of the current job.
The data set may be accessed in fol-
lowing job steps Yty é&name. This
option is useful in passing an object
module from a compiler job step to a
linkage editor job step.

temporary data

DSNAME=§&name (element)
assigns a name to a member of a
temporary PDsS. The name is assigned
in the same manner as the
DSNAME=¢§name. This option is useful
in storing object modules that will be

30

link edited in a later job step in the
current job.

SPECIFYING THE DISPOSITION OF A DATA _SET:
The DISP parameter is specified for both
previously created data sets and data sets
being created in this job step.

,DELETE
NEW) |,KEEP
pisp=()oib{ |,Pass)

MOD ¢ CATLG
SHR) |, UNCATLG
residing on

is used for all data sets

magnetic tape or direct acce volumes.
The first subparameter indicates when
the data set is (was) created.
NEW
indicates that the data set is created
in this step.
OLD
indicates that the data set was creat-
ed by a previous job or job step.
MOD

indicates that the data set was creat-
ed in a previous job or job step, and
records are to be added to the data
set. Before the first I/O operation
for the data set occurs, the data set
is positioned following the last
record. If a data set specified as
MOD does not exist, the specification
is assumed to be NEW.

SHR
indicates that the data set resides on
a direct-access volume and is used as
input to a job whose operations do not

prevent simultaneous use of the data
set as input to another job. This
parameter has meaning only in a mul-

tiprogramming environment for existing
data sets. If it is omitted in a
multiprogramming environment, the data
set 1is considered wunusable by any
other concurrently operating job. If
it is coded in other than a multiprog-
ramming environment, the system
assumes that the disposition of the
data set is OLD.

The second subparameter indicates the

disposition of the data set.

DELETE
causes the space occupied by the data
set to be released and made available
at the end of the current job step.
If the data set was cataloged, it is
removed from the catalog.

KEEP

insures that the data set 1is kept

intact until a DELETE option is speci-
fied in a subsequent job or job step.

KEEP is wused +to retain uncataloged
data sets for processing in future
jobs. KEEP does not imply PASS.

PASS
indicates that the data set is
referred to in a later job step. When
a subsequent reference to the data set
is made, its PASS status lapses unless
another PASS is issued. The final
disposition of the data set should be
stated in the last job step that uses
the data set. When a data set 1is in
PASS status, the operating system
attempts to keep the volume(s) for the
data set mounted. If dismounting is
necessary, the control program issues
a message to mount the volume(s) when
needed. PASS is used to pass data
sets among job steps in the same job.

When a data set is concatenated with
the system library through use of the
JOBLIB DD statement, PASS assumes a
different meaning. Without PASS in
the JOBLIB statement, the concatena-
tion is only in effect for the first
job step. If PASS is specified, the
concatenation is in effect for the
entire job.

causes the creation of a catalog entry
that points to the data set. The data
set can then be referred to in subse-
quent jobs or job steps by name (CATLG
implies KEEP).

UNCATLG
causes the data set to be removed from
the catalog at the end of the job
step. UNCATLG does not imply DELETE.

If the second subparameter is not speci-
fied, no action is taken to alter the
status of the data set. If the data set
was created in this Jjob (NEW), it is
deleted at the end of the current job sterp.
If the data set existed before +this Jjob
(MOD or OLD), it exists after the end of
the job.

DELIMITER STATEMENT

The delimiter statement (see Figure 14)
is used to separate data from subsequent
control statements in the input stream, and

is placed after each data set in the input
stream.

r———- - - -
| Name | Operation|Operand |
=1t fmmme —
(7% | | I
L 1 L —_— J
Figure 14. Delimiter Statement

The delimiter statement contains a slash
in column 1, an asterisk in column 2, and a
blank in column 3. The remainder of the
card may contain comments.

Job Control Language 31

JOB_PROCESSING

To execute a FORTRAN program, three
steps are required -- compiling, link edit-
ing, and executing. Using cataloged proce-
dures to make these steps easier is dis-
cussed in this section.

For each of the three steps involved in
processing, ddnames and device names are
specified by the operating system. These
ddnames, options for the compiler and link-
age editor, batched compilation, and speci-
fying additional libraries for the linkage
editor are discussed in this section.

USING CATALOGED PROCEDURES

statements
supplies

Because writing job control
can become time-consuming, IBM
four cataloged procedures to aid in the
compiling, 1link editing, and executing of
FORTRAN E programs. Each procedure
requires a
//procstep.SYSIN DD
statement indicating the location of a
source module or object module +to the
control program. In addition, a DD state-
ment GO.SYSIN can be used to define data in
the input stream for a procedure step that
executes a load module. The Jjob control
statements needed to invoke the procedures,

and deck structures used with the proce-
dures are described in the following text.

Compile

The name of the cataloged procedure for
compilation is FORTEC. It is invoked by
the name FORTEC as the first parameter in
an EXEC statement.

(The cataloged procedure, FORTEC, con-
sists of the control statements shown in
Figure 48 in "Cataloged Procedures.")

With the procedure FORTFC, a DD state-
ment FORT.SYSIN indicating the location of
the source module must be supplied.
Figure 15 shows control statements that can
be used to invoke the procedure.

32

/7 jobname JOB
// EXEC FORTEC
//FORT,.SYSIN DD *

r - —_———

| FORTRAN Source Module
L -

S *

b e o

Figure 15. Invoking the

dure FORTEC

Cataloged Proce-

Single Compile: A sample deck structure to
compile a single source module is shown in
Figure 16.

//JOBSC JOB 00,JIMJONES, MSGLEVEL=1

7/ /EXECC EXEC PROC=FORTEC

//FORT.SYSIN DD *

e el

- 1
| FORTRAN Source Module |
L J

rs

Figure 16. Compiling a Source

Module

Single

The SYSIN data set containing the source
module is defined as data in the input
stream for the compiler. Note that a
delimiter statement follows the last state-
ment in the source module.

Batched Compile: A sample deck structure
to batch compile is shown in Figure 17.

//JOBBC JOB 00,JOHNDOE,MSGLEVEL=1
//EXECC EXEC PROC=FORTEC
//FORT.SYSIN DD #*

Last FORTRAN Source Module i
e J

oo e =y

/%

Figure 17. Compiling Several

Modules

Source

If several source modules are entered in
the SYSIN data set for one job step, the
compiler recognizes the FORTRAN END state-
ment. If the next card is a delimiter

statement, control returns to the control

program at the end of the compilation. If
the next card is a FORTRAN statement,
control remains with the FORTRAN compiler.

compile and Link Edit

The cataloged procedure to compile a
FORTRAN source module and 1ink edit the
resulting object module is named FORTECL.
It is invoked by the name FORTECL as the
first parameter in an EXEC statement.

(The cataloged procedure FORTECL con-
sists of the job control statements shown
in Figure 49 in "Cataloged Procedures".)

With the procedure FORTECL, a DD state-
ment FORT.SYSIN must be supplied to indi-
cate the location of the source module.
This cataloged procedure writes the result-
ing load module in the FORTRAN library
(SYS1.FORTLIR); however, an overriding DD
statement

/7/LKED.SYSLMOD DD DSNAME=SYS1.FORTLIB{(name)

can be supplied to name the resulting load
module. Figure 18 shows control statements
that can be used to invoke the procedure.

//jobname JOB

// EXEC FORTECL
//FORT.SYSIN DD *
r -
] FORTRAN Source Module
L
J*

//LKED.SYSLMOD DD DSNAME=SYS1.FORTLIB(name)

- = 1

Figure 18. Invoking the

dure FORTECL

Cataloged Proce-

Again the source module is defined as
data in the input stream. Note that the DD
statement LKED.SYSLMOD wust follow the
delimiter statement for the source modules
in the input stream.

Batch Compile and Link Edit: A sample deck
structure to batch compile several source
modules and link edit the resulting object
modules is shown in Figure 19. The result-
ing load module is placed in the FORTRAN
library and assigned the name CHEM.

//JOBCLE JOB 012, 'E .SMITH®'
// EXEC FORTECL
//FORT.SYSIN DD *

| Last FORTRAN Source Module |
| S - - 4
/*

//LKED.SYSLMOD DD DSNAME=SYS1.FORTLIB (CHEM)

Figure 19. Compiling and Link Editing Sev-

eral Source Modules

Single Compile and Link Edit: A sarple
deck structure to compile and link edit a
single source module, placing it in the
FORTRAN library, and assigning the result~-
ing module the name XYZ is shown in
Figure 20. The source module is read from
the cataloged sequential data set SOMOD.

//COMPLED JOB 527, 'JOHN BROWN'

// EXEC FORTECL

//FORT.SYSIN DD DSNAME=SOMOD,DISP=CLD
//LKED.SYSLMOD DD DSNAME=SYS1.FORTLIB(XYZ)

Figure 20. Compiling and Link Editing a
Source Module Residing 1in a

Cataloged Data Set
Because the source modules reside in a

cataloged data set, the delimiter statement
is omitted.

Link Edit and Execute

The cataloged procedure to 1link edit
FORTRAN object modules and execute the
resulting load module is named FORTELG. It
is invoked by the name FORTELG as the first
parameter in an EXEC statement.

(The cataloged procedure, FORTELG, con-
sists of the control statements shown in
Figure 50 in "Cataloged Procedures").

With the procedure FORTELG, a DD state-
ment LKED.SYSIN, which indicates the loca-
tion of the object module, must be sup-
plied.

Three data sets are defined by DD state-
ments in the cataloged procedure for use
during execution of the 1load module. If
the programmer intends to wuse these DD
statements, he can use data set reference

Job Processing 33

numbers
ing way:

one, two, and three in the follow-

1 - the data set defined bty the DD state-
ment GO.SYSIN (used primarily to read
data from the input stream)

2 - card output
3 - printed output

Any of the DD statements for these data
set reference numbers may te overridden, as
shown in "Cataloged Procedures".

Figure 21 shows control statements that
can be used to invoke the FORTELG cataloged
procedure.

//jobname JOB
/7 EXEC FORTELG
//LKED.SYSIN DD *

r——-

|

| FORTRAN Object Module |
L _ J

/%

Figure 21. Invoking the

dure FORTELG

Cataloged Proce-

Link Edit: A sample deck structure to link
edit and execute as one load module several
object modules entered in the input stream
is shown in Figure 22.

//JOBBLG JOB 00,TOMSMITH,MSGLEVEL=1
//EXECLG EXEC PROC=FORTELG
//LKED.SYSIN DD *

r - -1
| First FORTRAN Object Module |
L __ 1
r I 1
i Last FORTRAN Object Module |
Lo —_— J
/*

Figure 22. Link Edit and Fxecute

The object module decks were created by
the DECK compiler option. The 1linkage
editor recognizes the end of one module and

the beginning of another and resolves ref-
erences between them.

A sample deck structure is shown in
Figure 23 for object modules that are
members of the cataloged sequential data
set, OBJMODS, that resides on a tape vol-
ume. In addition a data set in the input

stream is processed ref-

erence number 1.

using data set

34

//JOBBLG JOB 00,EDJONES,MSGLEVEL=1
//EXECLG EXEC FORTELG

//LKED.SYSIN DD DSNAME=0BJMODS,DISP=OLD
//GO.SYSIN DD *

r - - 1
| Data |
L _— J
/%

Figure 23. ©Link Edit and Execute (Object
Modules in a Cataloged Data

Set)

Compile, Link Edit, and Execute

The fourth cataloged procedure,
FORTECLG, passes a source module through
three procedure steps - compile, link edit,
and execute. The cataloged procedure is
invoked by the name FORTECLG as the first
parameter in an EXEC statement.

(The cataloged procedure, FORTECLG con-
sists of the control statements shown in
Figure 51 in "Cataloged Procedures.™)

The SYSIN data set (source module) must
be defined to the compiler. Figure 24
shows statements that can be used to invoke
the procedure FORTECLG.

//7jobname JOB
7/ EXEC PROC=FORTECLG
//FORT.SYSIN DD *

r ————

| FORTRAN Source Module |
L .

/*

———

Figure 24. 1Invoking the

dure FORTECLG

Cataloged Proce-

Single Compile, Link Edit, and Execute:
Figure 25 shows a sample deck structure to
compile, link edit, and execute a single
source module.

//3J0OBSCLG JOB 00, TJONES,MSGLEVEL=1
//EXECC EXEC FORTECLG
//FORT.SYSIN DD *

| Ak - 1

| FORTRAN Source Module |

i - ——————————— i

/*

Figure 25. Single Compile, Link Edit, and
Execute

Batched compile, Link Edit, and _Execute:
Figure 26 shows a sample deck structure to
batch compile, link edit, and execute. The
source modules are placed in the input
stream along with a data set that is read
using data set reference number 1 in the
load module.

//30BBCLG JOB 00,JBOND,MSGLEVEL=1
//EXECCLG EXEC FORTECLG
//FORT.SYSIN DD *

First FORTRAN Source Module

=~ =
—

Last FORTRAN Source Module

L —_— e
I
//GO.SYSIN DD *

-

——

.
| Data i
L

—_—l

D |

/*

Batched Compile, Link Edit, and
Execute

Figure 26.

STORAGE_LOCATIONS AND BYTES

Storage locations in System/360 are
called bytes, words, and double-words. One
word 1is four bytes long; a double-word is
eight bytes long.

When data is transmitted to main storage
by I/0 operations under control of FORMAT
statements, one character indicated by the
FORMAT statement is contained in one byte.

When data is read into main storage, it
is translated into internal format. A real
constant or variable, or an integer con-

stant or variable occupies one word (four
bytes). A double-precision constant or
variable occupies a doukle-word (eight
bytes). For I/0O operations not under

FORMAT control, variables and constants are
read from and written on the volume in the
internal format.

COMPILER PROCESSING

The names for DD statements (ddnames)
relate I/O statements in the compiler to
data sets used by the compiler. These
ddnames must be used for the compiler.

When the system is generated, names for I/0
device classes are also established and
must be used by the programmer.

Compiler Name

The program name for the compiler is
IEJFAAAO0. If the compiler is to be exe-
cuted without using the supplied cataloged
procedures in a job step, the EXEC state-
ment parameter

PGM=IEJFAAAOQ

must be used.

Compiler ddnames

The compiler can use six data sets. To
establish communication between the compil-
er and the programmer, each data set is
assigned a specific ddname. Each data set
has a specific function and device require-

ment. Table 2 1lists the ddnames, func-
tions, and device requirements for the data
sets.

To compile a FORTRAN source module, four
of these data sets are necessary -- SYSIN,
SYSPRINT, SYSUT1, and SYSUT2, along with
the direct-access volume(s) that contains
the operating system. With these four data
sets, only a listing is generated by the
compiler. Two optional data sets are pro-
vided for writing the object module: the
SYSPUNCH ‘data set is intended for punching
the object module and the SYSLIN data set
is intended for writing the object module
on a magnetic tape or a direct access
volume.

For the DD statement SYSIN or SYSPRINT,
an intermediate storage device may be spec-
ified instead of the card reader or print-
er. The intermediate storage device usual-
ly is magnetic tape or a direct access
device.

If an intermediate device is specified
for SYSIN, the compiler assumes that the
source module deck was placed on intermedi-
ate storage by a previous job or job step.
If an intermediate device is specified for
SYSPRINT, the map, listing, and
error/warning messages are written on that
device; a new job or job step can print the
contents of the data set. When the
SYSPRINT data set is written on an inter-
mediate storage device, carriage control
characters are placed in the records.

Job Processing 35

T v .
| ddname | Function | Device Requirements | Record Lengthl |
-------- oo ¥ —mmmmm oo - ——y
| SYSIN |Reading the source module |card reader, direct ac-}| 80 |
| | |cess, or magnetic tape | |
pom=mo— frmommmmm oo " T 4 e
| SYSPRINT|Writing the storage map, listing, |printer, direct access, | 121 |
| |and messages |or magnetic tape | |
1 —_t e e e e e e e e o e e e e e e e e e e e e J e e . e e e e om ——— - _____.1

| SYSPUNCH| Punching the object module deck

|card punch, direct ac-
|cess, or magnetic tape

!

|
__________ —-— 4 S OO |
| SYSLIN |Output data set for the ob]ect mod- |card punch, direct ac- | 80]
| |u1e, used as input to linkage edltorlcess, or magnetic tape | |
¢ oo —m—mmmmmt !
| SYSUT1 |Work data sets used by the compiler |d1rect access or mag- |Determined by thel
| |for compilation |netic tape |compiler during |
———————— | |compilation. Not}
| SYSUT2 | | |specified by the |
| | | |programmer. |
pommmmmm Lo e — e 4
| *The maximum number of records per block for the SYSIN, SYSPRINT, and SYSPUNCH data]
| sets is determined by device type (see Table 12). The maximum number of records per |
| block for the SYSLIN data set is either 1, 5, or 40, depending on which linkage editor|
| is used to read the data set. |
L—— — J
The following features of +the compiler volume. The SYSLIN data set should be

can be used only if the PRFRM compiler
option is specified. For a more detailed
description of the SPACE/PRFRM option, see
"Compiler Options" in this section.

If the PRFRM compiler ortion is speci-
fied in the EXEC statement, the FORTRAN
compiler can read or write blocked records
for SYSIN, SYSPUNCH, SYSPRINT, and SYSLIN.
Blocked records are grouped before they are
written on a volume; the entire group is
then written together, instead of writing
each record individually. (Blocking for
SYSUT1 and SYSUT2 1is determined by the
compiler; the programmer cannot specify
blocking for these data sets.) Figure 27
illustrates blocked records.

block

T\""\.
| record | record | | record | record |
Lo 1 ___ 1_4_ 1 --d
Figure 27. Blocked Records

Blocking saves space on the volume and
increases the efficiency of the compiler
because fewer I1I/0 operations are performed.
The programmer specifies whether records
are blocked by the BLKSIZF subparameter in
the DCB parameter of the DD statement (see
"Creating Data Sets"). Records can be
blocked only if they are read from or
written on a direct access or magnetic tape

36

blocked only if the object module is to be
used as input to either of the linkage
editor programs IEWLF440 or IEWLF880.
Table 2 shows the record length and maximum
number of records per block for each data
set.

If the SPACE compiler option is speci-
fied, other data sets cannot ke concatenat-
ed with the SYSIN data set. If the PRFRM
compiler option is specified, other data
sets can be concatenated with the SYSIN
data set.

If the SPACE compiler option is speci-
fied, the SYSPRINT, SYSPUNCH, and SYSLIN
data sets must be seguential data sets;
only the SYSIN data set can be read as a
member of a PDS. However, if the PRFRM

compiler option is specified, the SYSPRINT,

SYSPUNCH, and SYSLIN data sets can be
written as members of partitioned data
sets.

Compiler Device Classes

Names for input/output device classes
used for compilation are also specified by
the operating system when the system is
generated. The class names, functions, and
types of devices are shown in Table 3.

Table 3. Device Class Names

[T L T - 1
|CLASS NAME |CLASS FUNCTIONS|DEVICE TYPE |
} 4 - 1 d
v T - T 1
SYSSQ	writing,	smagnetic tape
	reading,	edirect access
	backspacing	
	(sequential)	
F t ¢ 1		
SYSDA	writing,	edirect access
	reading,	
	backspacing,	
	updating	
]	records in	
	place (direct)	
[N 1 + 4		
T T . 1		
SYSCP	punching cards	ecard punch
o - T ——		
A	SYSOUT output	eprinter
I | | smagnetic tape|
L 4 i - J

The data sets used by the compiler must
be assigned to the device classes listed in
Table 4.

Table 4. Correspondence Retween Compiler
ddnames and Device Classes

r T - b
jddname |Possible Device Classes |
T i
| SYSIN |SYSSQ, the input stream device|
] | (specified by DD * or DD DATA),|
| jJor a device specified as the|
| |card reader |
F + —
| SYSPRINT|A, SYSSQ |
L 1 4
I T - 1
| SYSPUNCH| SYSCP1,SYSSQ, SYSDA |
L 4

r --T -—
| SYSUT1 |SYSSQ,SYSDA |
L 1

{ T "
|SYSUT2 | SYSSQ, SYSDA I
e v 4
| SYSLIN |SYSSQ,SYSDA,SYSCP |
.]
|1Both the SYSPUNCH and SYSLIN data sets|
| cannot be written on the SYSCP device|
| class in the same job step.]
L d

Compiler Options

Options (Figure 28) may be passed to the
compiler through the PARM parameter in the
EXEC statement. The following information
may be specified:

1. Amount of main storage allocated to
the compiler for this compilation.

2. Maximum length of a FORTRAN record
written under FORMAT control.

3. Name assigned to the program.

4. Whether the source program is coded in
Binary Coded Decimal (BCD) or Extended
Binary Coded Decimal Interchange Code
(EBCDIC).

5. Whether a list of source statements is
printed.
6. Whether an okject module is punched.

7. Whether
printed.

a map of the object module is

8. Whether the compiler writes the object
module on an output data set that
resides on a direct access or tape
volume.

9. Whether any additional main storage is
used either to compile a larger source
module or to increase the speed of
ccmpilation.

10. Whether +the source statements contain
embedded blanks in variable names,
statement numbers, constants and re-
served words, whether meaningful
blanks are not inserted between names
and reserved words, and whether
FORTRAN keywords are used as variable
names in the source program.

There is no specified order for compiler
options.

Figure 28 shows the compiler opticns.
For most options, a default for the option
is underlined. If an alternative 1is not
underlined, the default is indicated in the
explanation of that option. The defaults
indicated in this publication are the
standard defaults for FORTRAN(E). However,
when the operating system is generated, the
installation can change the defaults for
compiler options. For more information
about changing the defaults for compiler
options, see the section "System Generaticn
Macro-Instructions"™ in the System Genera-
tion publication. Before using any of the
default options, the programmer should
determine the defaults for his installa-
tion. For purposes of illustration, this
publication assumes that the defaults cho-
sen by the installation are the standard
defaults.

Job Processing 37

r
{PARM

' nnnnk
PARM.procstep} SIZE={yyyyyyy} [,LINELNG=z2zz] [,NAME=XXXXXX {,EBCDIC

,SPACE| f,ADJUST |'%,2,3
Df |, PRFRMf |,NOADJUST

+ BCD + SOURCE
, NOSOURCE

]
1

I ,DECK } ,MAP , LOAD
| , NODECK{ |, NOMAP{ |, NOLOA
|> -

{2If the information specified contains blanks, parentheses, or equal signs, it must not
| be delimited by parentheses but by apostrophes.

and it does not contain any blanks, parentheses or
the delimiting parentheses or apostrophes may be omitted.

| 3*The maximum number of characters allowed between the delimiting apostrophes or paren-
| theses is 40. The PARM parameter cannot occupy more than one card.

}|2If only one
| equal signs,

option 1is specified

L

|
R U R SIS p—— |

eFigure 28. Compiler Options

SIZE=yyyyyyy or SIZE=nnnnkK: The SIZE
option indicates the amount of main storage
available for the compilation. The pro-
grammer specifies a number YYYYYYYs
(yyyyyyy 2 15360) or nnnnK (K=1024 and

- 15<nnnn<9999). If the option is not speci-
fied or the number specified is less than
15360, the compiler assumes 15360. If the
number specified is greater than the amount
available, processing continues, provided
the amount available is at 1least 15360
bytes when the SPACE option is specified,
or at least 19456 bytes when the PRFRM
option is specified. This figure assumes
no blocking. If the input is Dblocked
(e.g., by an input reader), a figure that
is 160 times the blocking factor in bytes
must be added to the 19,456 byte specifi-
cation in the SIZE option. (See "SPACE or
PRFRM") .

LINELNG=2zzzZ: The LINELNG option indicates
the maximum length of a FORTRAN record
written wunder control of a FORMAT state-
ment. The specified number zzz (0<zzz<256)
represents the maximum length of a FORTRAN
record. During compilation, the length of
all records is calculated using the coded
information in the FORMAT statement. If
the record length exceeds zzz, a warning is
issued by the compiler. If this option is
not specified, zzz is assumed to be 132.
For example, assume that 1#4 positions are
specified in the LINELNG option and the
source statements

WRITE(7,10) POINT,ALPHR,I,J,K,L

10 FORMAT(2F30.8,4I30)

are compiled. A warning is issued because
the record 1length indicated by the FORMAT
statement is 180, and the LINELNG parameter
indicates a maximum length of 144.

NAME=xxxxxx: The NAME option specifies the
name (xxxxxx) assigned to the module by the

38

programmer, where xxxxxx consists of 1 to 6
alphameric characters, the first of which
is alphabetic. If NAME is not specified,
the compiler assumes the name MAIN for a
main program or the name of the subprogram
specified in the SUBROUTINE or FUNCTION
statement for subprograms. If there is a
conflict between the name given to the
subprogram in the first statement of the
source module and the name specified in the
NAME option, the name specified in the
SUBROUTINE or FUNCTION statement takes pre-
cedence. The name appears in the source
listing, storage map, and object module.

BCD or EBCDIC: The BCD option indicates
that the source module is written in Binary
Coded Decimal; EBCDIC indicates Extended
Binary Coded Decimal Interchange Code.

SOURCE or NOSOQURCE: The SOURCE option
specifies that the source listing is writ-
ten on the data set specified by the

SYSPRINT DD statement. The NOSOURCE option
indicates that no source listing is writ-
ten. A description of the source 1listing
is given in the section "System Output.”

DECK__or NODECK: The DECK option specifies
that the compiled source module (i.e., the

object module) is written on the data set
specified by the SYSPUNCH DD statement.
NODECK specifies that no object module is
written. A description of the object
module is given in the section "System
Output.”

MAP _or NOMAP: The MAP option specifies

that a storage map of the object module is
written on the data set specified by the
SYSPRINT DD statement; the option NOMAP
specifies that no map is written. A de-
scription of the map is given in the
section "System Output.”®

LOAD _or NOLOAD: The LOAD option indicates
that the object module is written on the
data set specified by the SYSLIN DD state-
ment. This option must be wused if a

cataloged procedure to compile, link edit,
and execute is used. A description of the

object module is given 1in the section
"System Output".
The NOLOAD option indicates that the

object module is not written on the SYSLIN
data set. When NOLOAD is specified, the
compiler automatically returns a condition
code of 12. This option must not be used
if a cataloged procedure to compile, link
edit, and execute is used. If NOLOAD and
DECK are specified, the SYSPUNCH data set
may be used as input to the linkage editor.

If the LOAD and DECK options are speci-
fied, the object module is written on the
two data sets, indicated by the SYSLIN and
SYSPUNCH DD statements.

SPACE _or PRFRM: When the PRFRM option is
specified, the size of a source module is
limited. (See Table 14.) By specifying
the SPACE option and more than 15360 bytes
in the SIZE option, the limit for the size
of the source module is increased.

The PRFRM option indicates that excess
main storage is allocated for faster compi-
lations rather than larger source modules.
The PRFRM option must be specified if any
of the compiler data sets SYSIN, SYSPRINT,
or SYSPUNCH are allocated to non-unit-
record devices (e.g., priority schedulers).
To block records for the compiler data sets
SYSIN, SYSPRINT, SYSPUNCH, and SYSLIN, or
to write the SYSPRINT, SYSPUNCH, and SYSLIN
data sets as members of partitioned data
sets, the PRFRM option must be specified.
Other data sets can be concatenated with
the SYSIN data set only if the PRFRM option
is specified. (Note: Only data sets that
reside on the same type of device can be
concatenated.)

To ensure that these options improve the
operation of the compiler, at least 19456
bytes should be allocated to the compiler
in the SIZE option. If less than 19456
bytes are specified or if less than 19456
bytes are available and the PRFRM option is

specified, processing continues using the
SPACE option and the amount of storage
available. If blocked input and output is

specified with the PRFRM option, the SIZE
option must specify enough storage to
contain blocked records. Any storage not
used by the PRFRM option is used to compile
a bigger source module and increase the
size of the buffers which decreases the
number of I/O operations and increases the
speed of the compiler.

ADJUST or NOADJUST: The ADJUST option
indicates that the source module contains
embedded blanks, contains no meaningful

blanks, and uses keywords as variable names

in the source statements. With the ADJUST

option, the source statement can contain
embedded blanks. For example, the source
statements

FORMAT (1H , I10)
DELTA T=T /INC
are valid. With +the ADJUST option, the

source statement need not contain meaning-
ful blanks. For example, the source state-
ments

DOUBLEPRECISIONFUNCTIONDPROD (X, Y)
DIMENSIONABC{10)

are valid. With +the ADJUST option, the
source can contain FORTRAN keywords (GO,
DO, IF, READ, FIND, WRITE, etc.) wused as
variable names. For example, the source
statements

IF(IF) 20,30,40
READ=A+B+C

are valid.

If NOADJUST is specified, the source
module must not contain embedded blanks,
must contain meaningful blanks, and mrust
not contain FORTRAN keywords used as vari-
able names. However, with +the NOADJUST
compiler option, source modules are com-
piled faster. For example, the previous
source statements must be written as fol-
lows to make them acceptable to the compil-
er when the NOADJUST option is used.

FORMAT(1H ,I10)

DELTAT=T/INC

DOUBLE PRECISION FUNCTION DPROD(X,Y)
DIMENSION ABC(10)

IF(IFX)20,30,40

READX=A+B+C

Multiple Compilation Within a Job Step

Several compilations may be performed
within one Jjob step, if the conditions
shown in Table 5 are met.

Job Processing 39

Table 5. Conditions for Multiple Compila-
tion
r -7 = T———= - 1
|Option|Input Stream |Source Modules |
| |Device |Reside On]
— oo m oo 1
| |card reader |input stream |
| p—m R 1
| SPACE | |input stream |
| | tape F-- _ -—
] | |card reader]
b S O — !
| |card reader | (input stream]
| PRFRM } -4 Jtare |
| | tape | Jcard reader |
| | | {direct access |
R 1 - 1

The compiler recognizes the FORTRAN END
statement in a source deck, compiles the
program, and determines if another source
program follows the END statement. If
there 1s another source program, another
compilation is initiated (see Figure 29).

//JOBRA JOB , '"RBLACK"'
//STEP1 EXEC FORTEC
//FORT.SYSIN DD *

1 READ (9,10)A,B,C

END
SUBROUTINE CALC
END
J*
Within a

Figure 29. Multiple Compilation

Job Step

Only one EXEC statement may be used to

initiate a job step; therefore, compiler
options can be stated only once for all
compilations in a job step. These options

are then wused for all compilations in the
batched compilation.

A main program compiled first in a
multiple compilation 1is given the name
specified in the NAME opticn. Any subpro-

gram in a multiple compilation is given the
name of the subprogram in the first card of
the source subprogram. For example, in the
multiple compilation,

40

//MULTCOMP JOB , 'FRANK KELLY"'
// EXEC FORTEC, PARM.FORT='NAME=GAMMA'
//FORT.SYSIN DD *

SUBROUTINE ALPHA

END
FUNCTION BETA(X,Y,Z)

END
Sk

the first module is given the name ALPHA
and the second is given the name BETA.

Any main program after the first program
is given the name MAIN. Moreover, if the
NAME option is not specified and the first
module is a main program, the first program
is also given the name MAIN. For example,
in the multiple compilation,

//MULCOM JOB

// EXEC FORTEC

//FORT.SYSIN DD *
READ(1,10)ALP,BETA

END
SUBROUTINE INVERT(A,B)

END
READ(5)P,C,R

END
/¥

both the first and third programs are given
the name MAIN. The second program is
assigned the name INVERT.

When a multiple compilation is
formed, the SYSLIN or SYSPUNCH data set
contains all +the object modules because
only one SYSLIN DD statement may be sup-

per-

plied for compiler output. The object
modules are placed sequentially on the
volume,

T 1
| Object Module 1 | Object Module 2 | ...
R d 1

LINKAGE EDITOR PROCESSING

The linkage editor processes object
modules, resolves any references to subpro-

grams, and constructs a load module. To
communicate with the linkage editor, the
programmer supplies an EXEC statement and
DD statements that define all required data
sets; he may also supply linkage editor

control statements.

Linkage Editor Name

Three linkage editor programs are avail-
able with the operating system. The pro-
gram names for the three linkage editors
and the minimum storage in which they are
designed to operate are:

IEWLE150 15,360 bytes
IEWLE180 18,432 bytes
IEWLEL S0 45,056 bytes

Al1 facilities described for the linkage
editor in this publication are available
with all three linkage editors, except that
blocking the primary input primary output
is available only with the higher-level
linkage editor, IEWLE4LO.

For simpler programming, the linkage
editors have been assigned the alias pro-
gram name IEWL. If the programmer speci-
fies the parameter

PGM=IEWL

in the EXEC statement, the highest 1level

linkage editor provided in the
installation's operating system is exe-
cuted. If he wants to execute a specific

linkage editor, he must specify the specif-
ic program name of that linkage editor.

Linkage Editor Input and Output

There are two types of input to the
linkage editor: primary and secondary.
Primary input consists of a sequential data
set that contains object modules and 1lin-
kage editor control statements. Any exter-
nal references among object modules in the
primary input are resolved by the linkage
editor as the primary input is processed.

Furthermore, the primary input contains
references to the secondary input. These
references are linkage editor control

statements and/or FORTRAN external referen-
ces in the modules.

Secondary input resolves these refer-
ences and is separated into two types:

automatic call library and additional input
specified by the programmer. The automatic
call library should always be the FORTRAN
library (SYS1.FORTLIB), which is the PDS
that contains the FORTRAN 1library subpro-
grams. Through the use of DD statements
that omit the ddname, the automatic call
library can be concatenated with other
partitioned data sets. Three types of

additional input may be specified by the
programmer:
e An object module used as the rwain

program in the load module being con-
structed. This object module, which
can be accompanied by linkage editor

control statements, is either a member
of a PDS or is a sequential data set.
The first record in the primary input
must be a linkage editor INCLUDE con-
trol statement that tells the 1linkage
editor to insert the main program.

e An object module or a load module used
to resolve external references made in
ancther module. The object module,
which can be accompanied by linkage
editor control statements, is a sequen-
tial data set or is a member of a PDS.
The load module, which is a member of a
PDS, cannot be accompanied by 1linkage
editor control statements. An INCLUDE
statement that defines the data set
must be given to include the module.

e A module used to resolve external ref-
erences made in another module. The
load module or object module (which can
be accompanied by linkage editor con-
trol statements) is a member of a PDS.
A linkage editor LIBRARY control state-
ment that defines the data set to the
linkage editor must be given to include
modules from the data set in the 1load
module.

In addition, the secondary input can con-
tain external references and linkage editor

control statements. The automatic call
library and any of the three types of
additional input may be used to resolve

references in the secondary input.

The output of the linkage editor con-
sists of the load module, module map, and
error messages. The load module is always
placed in a PDS. Error messages and the
optional module map are written on an
intermediate storage device or a printer.
In addition, a work data set is required by
the 1linkage editor to do its processing.
Figure 30 shows the I/0 flow in 1linkage
editor processing.

Job Processing 41

Table 6. Linkage Editor ddnames

r T B B ettt 1
| ddname | FUNCTION | DEVICE REQUIREMENTS]
e — 1 — $-—- 1
SYSLIN	Primary input data, normally the output of	edirect access
	the compiler	smagnetic tape
		scard reader
pommmmmmmmmmmm --- - e !		
SYSLIB	automatic call library (e.g., SYS1.FORTLIB)	edirect access
—————————————— e B - -		
SYSUT1	work data set	edirect access
- ¥ T - - i
| SYSPRINT |diagnostic messages | sprinter |
I [|*intermediate storage device]|
e e e o= -~
| SYSLMOD |output data set for the load module |sdirect access |
t + -~ : - e
|user-specifiedladditional libraries and object modules | edirect access |
| | | emagnetic tape |
L 1 - _— — ——t ————l
ment that retrieves any additional librar-
ies is written in INCLUDE and LIBRARY
SYSUT 1 statements and is not fixed by the linkage

editor.

SYsLIB Work SYSLMOD
Automatic Dato Sef Qutput

Call Module In addition, if one of the higher 1level
Library ' Library linkage editors (program name: IEWLF440 or
IEWLF880) is used, the SYSLIN data set can
SYSLIN contain blocked records. The linkage edi-
! tor can then accept a blocked SYSLIN data
Primary Linkoge set that 1is created by the compiler. The
Input Editor record length for the SYSLIN data set is 80
bytes. With the 1linkage editor IEWLF4U0
the maximum number of records per block is
5. With IEWLF880, the maximum number of

Diagnostic

Additional

Libraries Data Set

SYSPRINT

Figure 30. Linkage Editor Input and Output

Linkage Editor ddnames and Device Classes

The programmer communicates data set
information to the linkage editor through
DD statements identified by specific

ddnames (similar to the ddnames used by the
compiler). The ddnames, functions, and
requirements for data sets are shown in

Table 6.

Any data sets specified by SYSLIB or
SYSLMOD must be partitioned data sets.
(The other data sets are partitioned or

sequential.,) The ddname for the DD state-

42

records per block is 40.

The device classes used by the compiler
(see Table 3) must also be used with the
linkage editor. The data sets wused by
linkage editor may be assigned to the
device classes listed in Table 7.

Table 7. Correspondence Between Linkage
Editor ddnames and Device Classes
r———=-= -T- -= 1
| ddname | Possible Device Classes |
L
t R e 9
SYSLIN	SYSSQ, SYSDA,0r the input
	stream device (specified
	by DD* or DD DATA) or a
	device specified as the
	card reader
____________________ 4	
1	
SYSLIB	SYSDa
______________ - ———— _— —_—	
IsYsuT1	SYSDA
4 P 4 e -	
P $-— —————mm i	
i SYSLMOD iSYSDA [
L 4 —_—]	
3 T 1	
SYSPRINT	2, SYSSQ
b S St -= ---1	
user-specified	SYSDA,SYSSQ
L i _— 1

Additional Input

The INCLUDE and LIBRARY statements are
used to specify additional secondary input
to the linkage editor. Modules specified
by neither INCLUDE nor LIPRARY statements
nor contained in the primary input are
retrieved from the automatic call 1library.

INCLUDE Statement:

r T

|Operation|Oprerand

e —

|INCLUDE |ddnamel (member-name

| | [,member-namel...)]

| | [,ddnamel (member-name

| | [,member-namel...)1l...
i

| _

b et e s e s e

The INCLUDE statement is used to include
either members of additional libraries
(PDS) or a sequential data set. The
"ddname™ specifies a DD statement that
defines either a PDS containing object
modules and control statements or just load
modules, or defines a sequential data set
containing object modules and linkage edi-
tor control statements. The "member name"
is the name of a member of a PDS and is not
used when a sequential data set is speci-
fied.

The linkage editor inserts the object
module or load module in the output load
module when the INCLUDE statement is
encountered.

LIBRARY Statement:

- - === 1

|Operation|Operand |

_— e -y
| LIBRARY |ddname {(member-name |
| | [,member-namel}...)]
| | [,ddname (member-name |
| | [,member-namel...)]l... |
Lo i - _—— J

The LIBRARY statement is used to include
members of additional libraries. The
"ddname" must be the name of a DD statement
that specifies a PDS that contains either
object modules and linkage editor control
statements, or Jjust load modules. The
"member name" is an external reference that
is unresolved after primary input process-
ing is complete.

The LIBRARY statement differs from the
INCLUDE statement: external references
specified in the LIBRARY statement are not
resolved until all other processing, except
references reserved for the automatic call

library, is completed by 1linkage editor.
(INCLUDE statements resolve external refer-
ences when the INCLUDE statement is encoun-
tered.)

Example: Two subprograms, SUB1 and SUB2,
and a main program, MAIN, are compiled by
separate Jjob steps. In addition to the
FORTRAN library, a private library, MYLIE,
is used to resolve external references to
the symbols X, Y, and Z. Each of the
object modules is placed in a sequential
data set by the compiler, and passed to the
linkage editor job step.

Figure 31 shows the control statements
for this job. (Note: Cataloged procedures
are not used in this job.) In this job, an
additional library, MYLIB, is specified by
the LIBRARY statement and the ADDLIB DD
statement. SUBl1 and SUB2 are included in
the load module by the INCLUDE statements
and the DD statements DD1 and DD2. The
linkage editor input stream, SYSLIN, is two
concatenated data sets: the first data set
is the sequential data set §&GOFILE which
contains the main program; the second data
set is the two INCLUDE statements and the
LIBRARY statement. After 1linkage editor
execution, the load module is placed in the
PDS PROGLIB and given the name CALC.

Linkage Editor Priority

If modules with the same name appear in
the input to 1linkage editor, the linkage
editor inserts only one of the modules.
The following priority for modules is es-
tablished by the linkage editor:

1. Modules appearing in the SYSLIN data

set or modules identified by INCLUDE
statements.
2. Modules identified by the LIBRARY
statement.
3. Modules appearing in the SYSLIB data
set.
For example, if a module named SIN

appears both in a module identified in a
LIBRARY statement and in the automatic call
library, only the module identified in the
LIBRARY statement is inserted in the output
load module.

If modules with the same name appear in
a single data set, only the module encoun-
tered first is inserted in the output load
module.

Job Processing 43

r
| //JOBX JOB
| 7/STEP1 EXEC

| .
: .
|//SYSLIN DD
| //SYSIN DD *

| Source module for MAIN
[7*

|//STEP2 EXEC

//SYSLIN DD
//SYSIN DD *

Source module for SUB1
*

/
//STEP3 EXEC

|//SYSLIN DD

[7//SYSIN DD *

| Source module for SUB2
|7*

|7/STEP4 EXEC PGM=TEWL

| .
1 .
|

|//SYSLIB DD
|//SYSLMOD DD

| //ADDLIB DD DSNAME=MYLIB,DISP=O0LD

| //DD1 DD DSNAME=+#,STEP2.SYSLIN, DISP=OLD
|//DD2 DD DSNAME=+, STEP3.SYSLIN, DISP=OLD
|//SYSLIN DD DSNAME=#.STEP1.SYSLIN, DISP=OLD
|7/ DD *

INCLUDE DD1

INCLUDE DD2

LIBRARY ADDLIB(X,Y,Z)
/*

T —

PGM=IEJFAAAOQ, PARM="NAME=MAIN, LOAD'
DSNANE=8GOFILE,DISP=(,PASS),UNIT=SYSSQ
PGM=IEJFAAAQ, PARM="NAME=SUB1,LOAD"
DSNANE=&SUBPROG1,DISP=(,PASS),UNIT=SYSSQ
PGM=IEJFAAAQ, PARM="NAME=SUB2,LOAD"

DSNAVME=§SUBPROG2, DISP=(, PASS) , UNIT=SYSSQ

DSNAME=SYS1.FORTLIB,DISP=OLD
DSNAME=PROGLIB(CALC), UNIT=SYSDA

et i o et e — e, — i, it (e — . Ve St i S St S e, =" i —— S — o o s YOO i St WPt b, ot it i v e g}

Figure 31.

Multiple Link Editing Within a Step

Just as the compiler can perform several
compilations within a procedure step or job
step (batched compilation), the 1linkage
editor can produce several 1load modules
within a single procedure step or job step.
Another 1linkage editor control statement,
the NAME statement, is used to delimit the
input for one 1load module from the input
for another load module.

r ———— 1
jOperation|Operand |
________ 1 _— i
-t 1

| NAME | member-name [(R) } |
| I, 1 — -d
The NAME statement is placed after the

last object module or linkage editor con-
trol statement used as input to a 1load
module. Any modules or control statements

b4y

following a NAME statement are assumed to
be part of the next load module being
constructed. A NAME statement can be
placed only in the primary input: any NAME
statements in the secondary input are
ignored.

All of the resulting load modules from a
batched linkage editor execution are placed
in the 1library (PDS) specified in the
SYSLMOD DD statement. The member name for
each of the resulting 1load modules is
specified as "member name" in the NAME
statement. For example, if the primary
input for one of the 1load modules is
followed by a NAME statement containing the
member name XALPHA and the SYSLMOD DD
statement for the linkage éeditor step spec-
ifies the PDS MYLIB, the «resulting 1load
module is assigned the member name XALPHA

and is placed in the PDS MYLIB. The
SYSLMOD DD statement should not contain a
member name. However, if the SYSLMOCD

statement contains a memwber name, that
member name must be identical to the member
name specified in the first NAME statement
appearing in the primary input.

The NAME statement can be used to speci-
fy that a load module currently residing in
a PDS is to be replaced by the load module
constructed from the input immediately
preceding the NAME statement. Replacement
is specified by coding (R) following the
member name in the NAME statement.

When several load modules are created in
a single step (multiple link editing), the
options specified in the EXEC statement for
that step apply to each load module created
in that step.

Example: An object module resides on a
sequential data set PROGX. A load module
is to be constructed from this module,
using the FORTRAN 1library and a private
library MYLIB to resolve external refer-

module. Another object
module resides on a sequential data set
PROGY, and a load module is to be con-
structed from this object module using the
same library to resolve external refer-
ences. Both load modules are to be placed
in the 1library PROGLIB. The first module
is to be assigned the member mname FUNTST;
the second module is assigned the member
name SUBTST.

ences within the

The following text shows the job control
statements and the position of INCLUDE,
LIBRARY, and NAME linkage editor statements
necessary to perform the job.

//J0B2 JOB 108,'J.JONES'

//STEP EXEC PGM=IEWL

//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=OLD
//SYSTMOD DD DSNAME=PROGLIR,DISP=OLD

//DDb1l DD DSNAME=PROGX,DISP=0OLD
//DD2 DD DSNAME=PROGY,DISP=OLD
//ADDLIB DD DSNAME=MYLIB
//SYSLIN DD *

INCLUDE DD1

LIBRARY ADDLIB(X, Z)

NAME FUNTST

INCLUDE DD2

LIBRARY ADDLIB(Y,Z)

NAME SUBTST

The JOB statement JOB2 defines the job,
and the EXEC statement STEP instructs the
operating system to execute the program
IEWL. The DD statement SYSLIB tells the
linkage editor that the FORTRAN library is
the automatic call library. The SYSLMOD DD

editor that
the PDS

statement tells the
both modules are
PROGLIB.

linkage
written in

The first INCLUDE statement and the LD
statement DD1 tell the linkage editor that
the first 1load module 1is to contain the

object module that resides on the sequen-
tial data set PROGX. The first LIBRARY
statement tells 1linkage editor that the

references to X and Z in this module are to
be resolved by the 1library MYLIB. The

first NAME statement tells the 1linkage
editor that the resulting module is
assigned the member name FUNTIST. The con-

trol statements are similar for the 1load

module with the member name SUBTST.

Other Linkage Editor Control Statements

In addition to the LIBRARY, INCLUDE, and
NAME statements, other contrcl statements
are available for wuse with the 1linkage
editor. These statements enable the user
to: specify different names for load
modules (ALIAS), replace modules within a
load module (REPLACE), change program names
(CHANGE), and name entry points (ENTRY).
In addition, two statements (OVERLAY and

INSERT) enable the programmer to overlay
load modules. For a detailed description
of these control statements, see the sec-

tion "Specifying Additional Processing®” in
the Linkage Editor publication.

Options for Linkage Editor Processing

The linkage editor options are specified
in an EXEC statement. The options that are
most applicable to FORTRAN programming are:

PARM MAP + LET
PARM.procstepf=(|XREF | |,XCAL| [, NCAL]

[,LIST][,OVLY])

MAP or XREF: The MAP option instructs
linkage editor to produce a map of the load
module; this map indicates the relative

location and 1length of main programs and
subprograms. If XREF is specified, a map
of the 1load module is produced and a

cross-reference 1list indicating all exter-
nal references in each main program and
subprogram is generated. If neither option
is specified, neither +the map nor the
cross-reference 1listing is generated. De-
scriptions of the map and cross-reference
listing are given in "System Output."

XCAL: The LET
mark the

LET or
linkage editor to

option instructs
load module

Job Processing 45

ready for execution even though error con-
ditions were found. The XCAL option
informs the linkage editor to mark the load
module executable even though valid exclu-
sive branches are made between modules that
overlay each other.

NCAL: The NCAL option informs 1linkage
editor that the libraries specified in the
SYSLIB DD statement or specified in LIBRARY
statements are not used to resolve external
references. (The SYSLIB DD statement need
not be specified.) The subprograms in the
libraries are not inserted in the load
module. However, the load module is marked
executable.

When an object module will be 1ink
edited again prior to its use in execution
and that module contains either

1. An input/output statement (READ,
WRITE, BACKSPACE, REWIND, END FILE),

2. A STOP/PAUSE statement,

3. Any service subprogram (SLITE, SLITET,
OVERFL, DVCHK, EXIT, DUMP, PDUMP), or

4. BAny one of the following library sub-
programs
DEXP DLOG DLOG10 DSIN
DCOsS. DSQRT DTANH EXP
ALOG ALOG10 SIN COS
SQRT TANH

NCAL nmust be specified. 2n I/0 statement,

a STOP or PAUSE statement, any service
subprogram, or any of the above library
subprograms require FORTRAN 1locad module
execution routines. These routines are

inserted by the linkage editor, and must be
inserted only once in any load module.
When the final 1linkage editor processing
for the module is performed, NCAL should
not be specified and the lcad module execu-
tion routines will be inserted.

LIST: The LIST option indicates that link-
age editor control statements are listed in
card-image format on the diagnostic output
data set.

OVLY: The OVLY option indicates to the
linkage editor that an overlay structure is
to be constructed by the linkage editor.
This option must be wused if an OVERLAY
linkage editor control statement is used.
If an OVERLAY statement is not wused, the
OVLY option is ignored. For more informa-
tion about overlay structures see the Link-
age Editor publication.

Other options can also be specified for
the linkage editor. For a detailed de-
scription of all 1linkage editor options,
see the Linkage Editor publication.

Le

LOAD MODULE EXECUTION

The ddnames used in executing load
modules must adhere to the format specified
by IBM. When the system 1s generated,
device names are assigned by the operating
system and the installation; the programrmer
chooses devices by specifying either the
installation or operating system names.

Program Name

When "PGM=program name" is used to indi-~
cate the execution of a load module, the
module must be in either the system library
(SYS1.LINKLIB) or a private library. When
the module 1is in a private 1library, a
JOBLIB DD statement, indicating the name of
the private library, must be supplied to
concatenate the private library with the
system library. For example, assume that
the load modules CALC and ALGBRA in the PDS
MATH and the load module MATRIX in the PDS
MATRICES are executed in the following job:

//JOBN JOB 00, JOHNSMITH

//JOBLIB DD DSNAME=MATH,DISP=(OLD,PASS)
// DD DSNAME=MATRICES,DISP=(OLD, PASS)
//STEP1 EXEC PGM=CALC

//STEP2 EXEC PGM=MATRIX

//STEP3 EXEC PGM=ALGERA

The JORLIB DD statement concatenates the
private library MATH with the system
library. The private library MATRICES is
concatenated with the system library, by
concatenating the second DD statement with
the JOBLIB DD statement.

Execution ddnames

In the source module, data set reference
numbers are used to identify data sets.
Data sets processed by a FORTRAN load
module must be either sequential or direct
and must be defined by DD statements, The
correspondence between a data set reference
number and a DD statement 1is made by a
ddname.

The ddname format that must be used for
load module execution is:

FTxxFyyy

where:
xx 1s the data set reference number.
yyy is a FORTRAN seguence number.

Data Set Reference Number (xx): When the
system is generated, the upper limit for
data set reference numbers is specified by
the installation; it must not exceed 99.
This upper limit does not correspond to the
number of input/output devices.

If an installation specifies an upper
limit of 99 for its data set reference
numbers, the ddnames and data set reference

numbers correspond as shown in Table 8.
Note that 0 is not a valid data set
reference number.

Table 8. Load Module ddnames

1] T - 1
| Data Set Reference Numbers | ddnames |
% --- {
| 1 | FTO01Fyyy |
| 2 | FTO02Fyyy |
i . | - {
| . | - [
| . [. |
| : I
i i3 j FTL3Fyyy |
I | . |
| . | . |
| . | - [
| 99 | FT99Fyyy |
L - ——t e

FORTRAN Sequence Number (yyy): The FORTRAN
sequence number refers to sequential data
sets that are written using the same data
set reference number.

For sequential or partitioned data sets,
the first FORTRAN sequence number is always

001. This sequence number changes only
when an END FILE statement is executed and
the program later executes a READ or WRITE

statement using the same data set reference
number. For example, the following state-
ments, executed in the order shown, cause
the FORTRAN sequence number to change.

WRITE(10,5)A,B,C

.

END FILE 10

WRITE(10,5)X,Y,2

For the first WRITE, a DD statement
identified by the ddname FT10F001 defines
the data set. For the second WRITE, a DD
statement identified by the ddname FT10F002
defines the data set.

For direct data sets, the FORTRAN
sequence number is always 001. Attempting
to execute an END FILE statement for a
direct data set is ignored.

A DD statement with the required ddname
must be supplied every time the WRITE, END
FILE, READ/WRITE sequence occurs. If the
FORTRAN statements in the following example
are executed, DD statements with the
ddnames indicated by the arrows must be
supplied for the corresponding WRITE state-
ments.

Statements ddnamwes
15 FORMAT(3F10.3,1I7)
10 FORMAT(3F10.3)

Do 20 I=1,J

20 WRITE(17,10)A,B,C —————————— > FT17F001
ENDFILE 17
DO 30 I=1,N

30 WRITE(17,15)X,Y,Z,K ————————- > FT17F002
END FILE 17
DO 40 I=1,M,2

40 WRITE(17,10)A,B,C —————————— > FT17F003

ENDFILE 17

If the preceding instructions are wused
to write a tape, the output tape has the
appearance shown in Figure 32.

Job Processing 47

— —————

tapemark tapemark

records

T T
|A,B,C| {X,Y,2,K|X,Y,Z2,K| ... |X,Y,2,K|]|A,B,C|A,B,C] ... |A,B,C|| ...
1 1

tapemark
records 1 records
|A,B,C|A,B,C| ...
1 R EN L 4 —_——4

\

|

I

!

|

| T T -7 T
|

|

|

] Written using DD

| statement FT17F001

Written using DD
statement FT17F002

1 71. i O, L de

Written using DD
statement FT17F003

b e e s e i et e it . e o]

Figure 32.

Retrieving Data Sets Written with Varving
FORTRAN Segquence Numbers

Retrieving the data sets shown in Figure
32 depends on when the data set was created
and if it was cataloged when it was creat-
ed. There are four distinct conditions:

1. The data set 1is created in the job
step in which it is retrieved.

2. The data set is created in one job
step and retrieved in another job
step; both steps in the same job.

3. The data set was created and cataloged
in a previous job.

4. The data set was created in a previous
job, but was not cataloged.

To retrieve the data sets shown in
Figure 32, the data set seguence numbers in
the LABEL parameter must be supplied in DD
statements used to write the data sets.
The LABEL parameter is described in detail
in the section "Creating Data Sets".

«NL
LABEL=([data—set-sequence-number]{,§L})

The "data set sequence number" indicates
the position of the data set on a sequen-
tial volume. This sequence number is
cataloged along with the remainder of the
information in the DD statement. For the
first data set on the volume, the data set
sequence number is 1; for the second, it is

2; etc.

If one of the data sets shown in Figure
32 is read in the same job step im which it
is created, an END FILE statement and then
a REWIND statement must be issued after the

last WRITE instruction. The FORTRAN
sequence number 1is incremented by the exe-
cution of the END FILE statement if the

48

Tape Output for Several Data Sets Using Same Data Set Reference Number

data set is to be read by the same data set
reference number. DD statement FT17FO00U is
used to read the data set. For example,
the following DD statements are used to
write +the three data sets shown in Figure
32 and then read the second data set:

//FT17F001 DD UNIT=TAPE,LABEL=(,NL),

//FT17F002 DD UNIT=TAPE,LABEL=(2,NL), X
7/ VOLUME=REF=#*.FT17F001
//FT17F003 DD UNIT=TAPE,LABEL=(3,NL), X
// VOLUME=REF=%.FT17F001
//FT17F004 DD VOLUME=REF=*.FT17F002, X
44 DISP=OLD,LABEL=(2,NL)

The VOLUME parameter indicates that the
data set resides on the same volume as the
data set defined by DD statement FT17F001.
DD statement FT17F004 refers to the data
set created by DD statement FT17F002.

If the data set is read by a different
data set reference number, for example,
data set reference number 18, then, the DD
statement FT17F004 1is replaced by the
statement

//FT18F001 DD VOLUME=REF=%,FT17F002, X
7/ DISP=OLD

If the data sets shown in Figure 32 are
cataloged for later reading, the following
DD statements should be used toc write the
data sets

//FT17F001 DD DSNAME=N1,LABEL=(1,NL), X
/7/ DISP=(,CATLG)

//FT17F002 DD DSNAME=N2,LABEL=(2,NL), X
s/ DISP=(,CATLG) ,VOLUME=REF=%.FT17F001
//FT17F003 DD DSNAME=N3,LABEL=(3,NL), X
4 DIsP=(,CATLG), VOLUME=REF=%,FT17F002

The only information necessary to retrieve
the data sets is the DSNAME and the DISP
parameters. (The data set sequence number

is stored in the catalog and is accessible
to the control program.) For example, 1if
data set reference number 10 is used to
retrieve the data set N1, the following DD
statement is used to retrieve the data set.

//FT10F001 DD DSNAME=N1,DISP=0OLD

If the data set 1is not cataloged and
then retrieved in a later job, the VOLUME
and LABEL information is needed to retrieve
the data set. When the data set is creat-
ed, the programmer must assign it to a
specific volume.

Assume the data sets shown in Figure 32
were assigned the volume identified by the
volume serial number A11111 when the data
sets were created. If the second data set
written on the volume is retrieved by data
set reference number 10 in a later job, the
following DD Statement is needed to
retrieve the data set

//FT10F001 DD VOLUME=SER=A11111,DISP=0LD, X
// LABEL=(2,NL) , UNIT=SYSSQ

REWIND and BACKSPACE Statemrents

The REWIND and BACKSPACE statements
force execution of positioning operations
for sequential data sets by the control
program. For direct access data sets,
REWIND and BACKSPACE operations are
ignored.

A REWIND statement instructs the control
program to position the volume on the
device so that the next record read or
written is the first record transmitted for

that data set reference number on that
volume, irrespective of data set sequence
numbers.

For unblocked records, a BACKSPACE

statement instructs the control program to
position the volume so that the last record
read or written is transmitted next. For

blocked records, the result of an execution
of a BACKSPACE statement is unpredictable.

Error Message Data Set

When the system 1is generated, the
installation assigns a data set reference
number so that execution error messages can
be written on a data set. (The standard
default for FORTRAN (E) is data set ref-
erence number 6.) For more information
about assigning this data set reference
number, see the section "System Generatiocn
Macro-Instructions" in the System Genera-
tion publication.

The programmer must define a sequential
data set, using a DD statement with the
ddname for that data set reference number.

This data set should be defined wusing the
SYSOUT=A parameter. If the error message
data set is on tape, the DD statement

should contain BLKSIZE=133 and RECFM=UA.
If this data set is not defined and an
error condition 1is encountered during the

execution of the job step, the job step is
terminated and a condition code of 16 is
issued.

Execution Device Classes

For load module execution, the program-
mer can use the same names assigned to
device classes used by the compiler (shown
in Table 3). However, additional names for
specific devices and device classes can be
assigned by the installation where the
system 1is generated. The programmer can
choose which device to use for his data
sets, and specify the name of that device
or class of devices to which that device
belongs in the UNIT parameter of the DD
statement.

However, a direct access device must be
used for a data set which is defined (by
the DEFINE FILE statement) as a direct
access data set in the FORTRAN program.

Job Processing 49

CREATING DATA SETS

Data sets are created by specifying DSNAME - name of the data set
parameters in the DD statement or by using

a data set utility program. This section UNIT - class and number of devices used

discusses the use of the DD statement to for the data set
create data sets. (The Utilities publica-

tion discusses data set utility programs.) VOLUME - volume on which the data set

No consideration is given to optimizing I/0 resides
operations; this information is given in
the section "Program Optimization." LABEL - 1label specification
DISP - the status of the data set at the
beginning of +the step and the
Examples of DD statements used to create disposition of the data set after
data sets are shown in Figure 33. the completion of the step
SYSOUT - ultimate device for printer data
To create data sets, the DSNAME, UNIT, sets
VOLUME, SPACE, LABEL, DISP, SYSOUT, and DCB
parameters are of special significance (see DCB - tape density, record format,
Figure 34). These parameters specify: record length

Sample Coding Form

1-10 | I 21-30 [40 i 41-50 i 51—-60] -70
12(3]4(5I6I78[9[0“]2]3(4[5}6!78!910“(2[3|4{5(6[7}8I910(1]2]314J5J_LT]§[9}0] [2]3]a]5]6]7[8]9]ol [2]3]4[5]6]7[8]9 T(ﬂl]2]3]4]5]6]7[8]9]0“12)3]4]_f6}—r8]9[0
xia / L oV Y7 A I AR R ST R I
/A5131F0¢1lna,anAMa =MATRIX>DISP=(NEWICATLG)) LABEL=(SLSEXPDT=67831) 1 ...
Moiiioerny. .. UNIT=DACLASS VOLUME=(P RINAJE)R&TAIM7§ER,AAQZMz,,,[,,,,!,,l,,l,,
La,,l,,lLI.JLlﬁpAp (300.(1882180)53CONTIGAROUNDD D, ., 1\ Bt
o DCB= ,(RIEICkFMaVIBI,’L!REICIL €OM>BLKSIZE=A212 |\ (il
U“l“.,;...,|1..11u.1|\lu|r,\..1L...g.,..|....;4uit,.L.;.l,.I.I..g...xm...

/ ‘ [.
//FT89F@8), ,I,DSNAMElaTEMPppN; = (TAPECLS3)DISP=(NEWsPASS)y 1\ 1 L\,
LALJILIXKIIAJJJMQLDME (SRETAIN»1299SER=(177 98 R A R T
Aﬁ,ll,,,,ilAIIIQQBfﬁpﬁN;ZQREXJM1,1&QK312E 25¢¢X.l;....\..111..,.l‘1,.!L4‘.11.11
AllllllII!IIIIlIJI\!IIA!I!Ill!(llllllll!llll\lll(!ylll|14|_\;|l||1|_LL11|“|IKI[IlII
. ExXamp : ‘A 4

. IAAI[I]I’

/l/llelSIPIRIIINTl IDIDI }le\lelUT[:IA’DClBl (BLIKlSlIlzlEl lil 1 I’lDEN 2|,1.IRITIC!HI=ICI)| | 111]‘1 Y I JE

NI SR

|
|

‘lelll|x|||x4ll|l\lln\1|1114‘|»||||x|||1|\l||||||l|||l|x\|!(|lkl|11|

J1FT31 ¢¢LIQJJQSNAME CHEMaDIS (7KEEP),UNI[4L$¢QILaJ,lf,“I

1 I,]],I,,\pcs (DEN=2TRTCH=ET>RECFM=U>BLKSIZE=100@)> 2 .
/ll|lllll$\;llL4LVOLUMESERIAéad‘LLllllw(!\l\J|4|1IJ_L|\I\11LIY‘\]iJ_LLIll[lJI\[lLI

®Figure 33. Examples of DD Statements for Creating Data Sets

dsname
dsname (element)))
DSNAME= ? &name
&name(element)
DUMMY

DDNAME=ddname

UNIT:(name[,g n|Pf]])2

|-,SER:(volume—seriql-number[, volume-serial—number] .. .)31
dsname
VOLUME=([PRIVATE][, RETAIN][, volume-sequence-number 1[, volume-count] | ,REF= *.ddname ¥4
* . stepname . ddname
* .stepname . procstep . ddname
TRK 3
SPACE=({ CYL , (primary-quantity [, secondary-quantity] [, di rectory-quantity]) [,RLSE] | ,ALX [,ROUND]47
average-record-length CONTIG
DT=yyddd
LABEL=({ data-set-sequence-number] { :;.} [: EE(TPPD;Z)ZXX])8
SYSOUT=A
SYSOUT=B
SYSOUT=(X [, program-name] [, Form-no.])
9
NEW ,DELETE
oD ,KEEP 7
DISP=(MOD ,PASS)
SHR ,CATLG
/UNCATLG
dsname o 10 {F1U [AJ[, BLKSIZE=xxxx]
* .ddname 0 E 1 ,RECFM= VfA] , LREC L=xxxx . BLKS1ZE=xxxx 1
DCB=(| stepname . ddname /DEN=¢1 , TRTCH= 1 sBUFNO=1 5| §F|C {BLAY, LRECL=oxx, BLKSI ZE=xooxx)
* stepname. procstep. ddname 2 ET , BLKSIZE=xxxx |

If neither "n" nor "P" is specified, 1 is assumed.

If only "name" is specified, the delimiting parentheses may be omitted.

if oniy one “volume-serial-number" is specified, the delimiting parentheses may be omitted.

SER and REF are keyboard subparameters; the remaining subparameters are positional subparameters.
The assumption made when this subparameter is omitted is discussed with the SPACE parameter.
ROUND can be specified only if "average-record-length" is specified for the first subparameter.
All subparameters are postional subparameters.

EXPDT and RETPD are keyword subparameters; the remaining subparameters are positional subparameters.
The assumption made when this subparameter is omitted is discussed in "Job Control Language".
BUFNO is the only DCB subparameter that should be specified for direct access data sets.

The first subparameter is positional; all other subparameters are keyword subparameters.

1275 form 1s used only with compiler and linkage editor blocked input and output.

NGO O W N~

10

Figure 34, DD Parameters for Creating Data Sets

DATA SET NAME specified in the DSNAME parameter of a
' DD statement.
The DSNAME parameter specifies the name ,DSNAME=&name
of the data set. Only four forms of the DSNAME=éname(element)
DSNAME parameter are used to create data specify data sets that are temporarily
sets. created for the execution of a single
job or job step.

%DSNAME=dsname § DUMMY
DSNAME=dsname (element) is specified in the DD statement to
specify names for data sets that are inhibit write operations specified for
created for permanent use. the data set. The write statement is
recognized, but no data is transmit-
Note: Members of a partitioned data ted. {When the programmer specifies
set cannot be read as input to a DUMMY in a DD statement used to over-
FORTRAN object program or created as ride a cataloged procedure, all param-
output from a FORTRAN object program eters in the cataloged DD statement
even though the member name has been are overridden.) The FORTRAN program-

Creating Data Sets 51

mer should not specify DUMMY for a VOLUME=([PRIVATE] [, RETAIN]
data set that is to be read; an end of

data set condition results, and the [, volume-sequence-number)
execution of the load module is termi-
nated. [, volume-count]

DDNAME=ddname FTéER=(volume-serial—number
indicates a pseudo data set that will [,volume-serial-numberl}...)
assume the characteristics specified
in a subsequent DD statement "ddname." dsname
The DD statement identified by REF= }*,ddname)
"ddname" then loses its identity; that .stepname.ddname
is, the statement cannot be referred *.stepname.procstep.ddnamq_
to by an *....ddname parameter. The e
statement in which the DDNAME parame-
ter appears may be referenced by sub- identifies the wvolume{(s) assigned to the

sequent *....ddname parameters. If a data set.
subsequent statement identified by

"ddname"™ does not appear, the data set

defined by the DD statement containing PRIVATE

the DDNAME parameter is assumed to be indicates that the assigned volume is
an unused statement. The DDNAME pa- to contain only the data set defined
rameter can be used five times in any by this DD statement. PRIVATE is
job step or procedure step, but no two overridden when the DD statement for a
uses can refer to the same "ddname." data set requests the use of the
The DDNAME parameter 1is wused mainly private volume with the SER or REF
for cataloged procedures (as shown in subparameter.

Figure 50 in the section "Cataloged
Procedures™).
RETAIN
indicates that this volume is to
remain mounted after the job step is
conmpleted. (Unless RETAIN is speci-
fied, the volume is dismounted after
its last use 1in the Jjob step.)
Volumes are retained so that data may
SPECIFYING I/0O DEVICES be transmitted to or from the data
: set, or so that other data sets may
reside on the volume. If the data set

The name of an input/output device or requires more than one volume, only
class of devices and the number of devices the last volume is retained; the other
are specified in the UNIT parameter, volumes are dismounted when the end of

the folume is reached. If each job
step 1issues a RETAIN for the volume,
UNIT=(namel, {n|P}]) the retained status lapses when execu-
tion of the jok 1is completed. the
volume, the retained status lapses
name when execution of the job is complet-
is given to the input/output device ed.
classes when the system is generated.

volume-sequence-number

{n|P} is a one-to-four digit number that
specifies the number of devices allo- specifies the sequence number of a
cated to the data set. selected volume at which processing is

to begin. All volumes whose sequence
numbers precede the specified number
are omitted from processing. Specifi-
cation of the volume-sequence-number
is useful only when the programmer is
reading or writing a multi-volume
cataloged data set.
SPECIFYING VOLUMES

volume-count

The programmer indicates the volumes specifies the number of volumes
used for the data set in the VOLUME parame- required by the data set. Unless the
ter. SER or REF subparameter is used, this

52

subparameter 1is required for every

multi-volume output data set.

SER

specifies which volumes are used for
the data set by specifying the volume
serial number for each specific voli-
ume. (The volume serial number is
assigned and placed on the volume when
the volume is made ready for use by
the installation.) A volume serial
number consists of one to six alpham-
eric characters. If it contains fewer
than six characters, the serial number
is left-adjusted and padded with
blanks. If SER is not specified, and
DISP is not specified as NEW, the data
set 1is assumed to be cataloged and
serial numbers are retrieved from the
catalog. A volume serial number need
not be specified for an output data
set.

REF
indicates that the data set 1is to
occupy the same volume(s) as the data
set identified by "dsname",
"+ _.ddname", "*_ stepname.ddname®, or
"*_,stepname.procstep.ddname.” Table 9
shows the data set references.

When REF is specified and the data set
resides on a tape volume, the data set
is placed on the same volume, immedi-
ately behind the data set referred to
by this subparameter. When this sub-
parameter is used, the UNIT parameter
may be omitted.

If SER or REF is not specified, the
control program will allocate any non-
private volume that is available.

SPECIFYING SPACE ON DIRECT ACCESS VOLUMES

The programmer indicates, in the SPACE
parameter, the space to be allocated on a
volume to a direct access data set.

SPACE=({ CYL
\{average-record-iength

1

TRK l
f

(primary-quantity

[,secondary-quantity]l

[,directory-quantityl)
MXIG

{,RLSE] |,ALX
+CONTIG

[{,ROUND])

Table 9. Data Set References

. T 1
| Option | Refers to |
¢ -t i
| REF=dsname |a data set named |
| | "dsname"” |
¢ ——mmmm—t {
| REF=#*.ddname |a data set indicat-|
| |ed by DD statement |
| | "ddname" in the]
{ |current job step |
b ¢ :
REF=#*.stepname.ddname	a data set indicat-
	ed by DD statement
	"ddname™ in the jobj
]	step "stepname"
t == t -4	

REF=%.stepname. |
i procstep.ddnameja data set indicat-
] |ed by DD statement
| | "ddname" in the

| | procedure step

| | "procstep" invoked
| |in the job step

!

| "stepname”
L

e e P —

specifies space on a direct access volume.
Although SPACE has no meaning for tape
volumes, if a sequential data set is
assigned to a device class that contains
both direct access devices and tape de-
vices, SPACE should be specified. The
SPACE parameter specifies:

1. 7Units of measurement in which space is
allocated.

2. Amount of space allocated.

3. Whether unused space can be released.

4. In what format space is allocated.

5. Whether space is to begin on a cylin-
der boundary.

Creating Data Sets 53

TRK

CYL

average-record-length
specifies the units of measurement in
which storage is assigned. The units
may be tracks (TRK), cylinders (CYL),
or records (average record length
expressed in decimal numbers).

(primary-quantityl,secondary-quantity]l

[,directory-quantityl)
specifies the amount of space allocat-
ed for the data set. The "primary
quantity" indicates the number of
records, tracks, or cylinders allocat-
ed when the job step begins. The
"secondary guantity” indicates how
much space 1is allocated each time
previously allocated space is exhaust-
ed. The operating system can allocate
additional space specified in the sec-
ondary quantity 15 times. The
"directory quantity" is used only when
writing a PDS, and it specifies the
number of 256-byte records to reserve
for the directory of the PDS.

For example, by specifying:
SPACE=(120, (400,100))

space 1s reserved for U400 records; the
average record 1length 1is 120 characters.
Each time space is exhausted, space for 100
additional records is allocated.

By specifying:
SPACE=CYL, (20,2,5))

20 cylinders are allocated to the data set.
When previously allocated space is exhaust-
ed, two additional cylinders are allocated.
In addition, space is reserved for five
records in the directory of a PDS.

Note: When the FORTRAN programmer uses a
direct access data set, he must allocate
space on the direct access volume in two
places: the DEFINE FILE statement in the
source module and a DD statement at load
module execution. He must also make cer-
tain that the DD statement SPACE parameter
contains an adequate SPACE allocation,
based on the value specified in the DEFINE
FILE statement.

RLSE

indicates that all wunused external
storage assigned to a NEW or MOD
output data set is released when the
data set is closed in a job step.

MXIG

ALX

CONTIG
specifies the format of the space
allocated to the data set. MXIG

54

requests the largest single block of
storage that is greater than or equal
to the space requested in the "primary
quantity". ALX requests wup to five
contiguous Lklocks of storage, each
block greater than the "primary quan-
tity." CONTIG requests that the space
indicated in the "primary quantity" ke
contiguous.

If the subparameter is not specified,
or if any option cannot be fulfilled,
the operating system attempts to
assign contiguous space. If there is

not enough contiguous space, up to
five noncontiguous areas are allocat-
ed.

ROUND

indicates that allocation of space for
the specified number of records is to
begin and end on a cylinder boundary.

The SPACE parameter in the DD state-
ment must Dbe used if a data set might be
written on a direct access device. For the
compiler, the programmer should allow 150
characters per source statement in the
"primary quantity" for each data set except

Note:

SYSPRINT. For SYSPRINT, he should allow
approximately 220 characters per source
statement.

LABEL INFORMATION

If the programmer wishes to catalog a
data set so that he can refer to it without
repeating information (record type, record
length, number of buffers, etc.) that was
supplied when the data set was created, he
must specify certain information in the
LABEL parameter. If the parameter is omit-
ted and the data set is passed, the label
information 1is retrieved from data set
labels stored with the data set.

(, NL
LABEL= ([data-set-sequence number]f,g;g

[,EXPDT=yyddd]
¢« RETPD=xxxx])

data-set-sequence-number

is a four-digit number that identifies
the relative location of the data set
with respect to the first data set on
a tape volume. (For example, if there
are three data sets on a magnetic tape
volume, the third data set is iden-
tified by data set sequence number 3.)
If the data set sequence number is not
specified, the operating system
assumes 1. (This option should not be
confused with the voclume sequence num-
ber, which represents a particular
volume for a data set.)

st}

Isz
specifies whether standard labels
exist for a data set. SL. indicates

standard labels which contain informa-
tion such as record format, buffer
length, dates, density, and identifi-
ers for the data set. NL indicates no
labels.

[EXPDT=yydd
RETPD=XXXX

specifies how long the data set shall
exist. The expiration date,
EXPDT=yyddd, indicates the year (yy)

and the day {(ddd) the data set can be
deleted by the DELETE subparameter in
the DISP parameter. The period of
retention, RETPD=xxxx, indicates the
period of time, in days, that the data
set 1is to be retained. If neither is
specified, the retention period is
assumed to be zero.

DISPOSITION OF A DATA SET

The disposition of a data set is speci-
fied by the DISP parameter; see "Data
Definition (DD) Statement." The same
options are wused for both creating data
sets and wusing previously created data

[agal —Xad
[SISR IS

WRITING A UNIT RECORD DATA SET ON_ AN
INTERMEDIATE DEVICE

A printed output data set may be written
on an intermediate device and subsequently
written on the printer (ultimate device).

SYSOUT=A
indicates that the wultimate destina-
tion for printed output data sets is
the printer.

For SYSOUT data sets, if the DEN
specified, only DEN=2 can

Note:
subparameter is
be specified.

DCB_PARAMETER

For the compiler or linkage editor, the
length of a block can be specified. For
lcad module execution, the FORTRAN program-—
mer may sSpecify record formats, record
lengths, and the number of buffers for
sequentially organized data sets that
reside on magnetic tape or direct access
volumes. For direct access organized data

sets, only the number of buffers can be
specified; any other specifications are
ignored. The DCB information is placed in
the labels for these data sets.
dsname
DCB=(| *.ddname
*_,stepname.ddname
*.stepname.procstep.ddname
[,DEN={0|21{2}1[,TRTCH={C|E|T}ET}]

[,BUFNO={1]2}

{F|U} [A] [, BLKSIZE=xxxx] 1
,RECFM= {ViA], LRECL=XXXX, BLKSIZE=XXXX ;)

{F|V}B[A],LRECL=xxxx,BLKSIZE=xxxxJ
s BLKSIZE=XXXX

REFERRING TO PREVIOUSLY SPECIFIED DCB
INFORMATION

The first subparameter

sname
*.ddname

*,stepname.ddname
*.stepname. procstep.ddname

is wused to retrieve DCB parameter

information from previously created
data sets. The DCB information speci-
fied for the data set referred to by

this subparameter is copied by the
control program for use in processing

the data set defined by the DD state-
ment in which this subparameter
appears. Any subparameters in the DCB
parameter that follow this subparame-
ter override any copied DCB subparame-
ters.

dsname

indicates that the DCB subparameters
of a cataloged data set "dsname" are
¢opied and used as the DCB parameters
for this data set. The data set
indicated by "dsname" must be current-
ly mounted and it must reside on a
direct access volume.

*.ddname
indicates that the DCB parameter in a
preceding DD statement "ddname" in the
current job step is copied.

*_.stepname.ddname
indicates that the DCB parameter in a
DD statement "ddname®" that occurs in a
previous job step "stepname" in the
current job is copied.

Creating Data Sets 55

*.stepname.procstep.ddname
indicates that the DCB parameter in
the DD statement "ddname" is copied
from a previous step "procstep" in a
cataloged procedure. The procedure
was 1invoked by the EXEC statement
"stepname®™ in the current job.

DENSITY AND CONVERSION

The second subparameter indicates the
density and conversion for tape volumes.

DENSITY: Density 1s only specified for
data sets residing on magnetic tape
volumes.

DEN={0]1] 2}

Table 10 correlates
numbers 0, 1, and 2.

density with the

Table 10. DEN Values for Model 2400

r T - L]
| | Tape Recording Density (bits/inch) |
| DEN |- T 1
|Value| 7 Track | 9 Track |
. 1 i
| o | 200 | - |
[556 | - |
| 2] 800 | 800]
L i L J
Note: If SYSOUT=A is specified, DEN=2 1is

the only DEN option that may be specified.

CONVERSION: Conversion is used only for
data sets residing on 7-track tape volumes.

TRTCH={C|E|T|ET}
indicates
used:

which conversion type 1is

C - data conversion feature is used
E - even parity is used

T - translation from BCD to EBCDIC or
EBCDIC to BCD is required

ET - even parity is used and transla-

tion from BCD to EBCDIC is
required

RECORD FORMAT

RECFM=VI[B] [A]
RECFM=F(B] [A] [M]
RECFM=U[A]

56

The characters V, F, U, and B represent

V - variable-length records (records whose
length can vary throughout the data

F - fixed-length records (records
length is constant throughout the
set)

whose
data

U - undefined records (records that do not
conform to either the fixed-length or
variable-length format)

B - blocked records

Note: For blocked compiler
editor I/O, RECFM should not ke

and linkage
specified.

The character A indicates the use of the
FORTRAN carriage control characters; the
character M indicates the wuse of mwachine
code control characters.

RECORD LENGTH, BUFFER LENGTH, BLOCK LENGTH,
AND NUMBER OF BUFFERS FOR SEQUENTIAL DATA
SETS

For blocked records used by the compiler
or linkage editor, the length of a block is
specified by the buffer 1length which is
specified by

BLKSIZE=XXXX

The record length (LRECL) is permanently
specified by the compiler or linkage edi-
tor.

For unblocked records used by the com-
piler or 1linkage editor, the values for
BLKSIZE and LRECL are permanently speci-
fied.

For wunblocked fixed-length records or
undefined records used during load module
execution, the record length and the buffer
length are specified by

BLKSIZE=XXXX

For unblocked variable-length records,
the record length is specified by

LRECL=XXXX

Buffer length is specified by

BLKSIZE=XXXX

For blocked variable-length or fixed-
length records used by load modules, the
record length is specified by

LRECL=XXXX
Block length and buffer length are
specified by
BLKSIZE=XXXX
Undefined records cannot be blocked.
Table 11 is a suwummary of the specifi-

cations made by the programmer for record
types and blocking in FORTRAN processing.

The number of buffers required to
or write any data set is specified by

read

BUFNO=x (x=1 or 2)

FORTRAN Records and Logical Records for
Sequential Data Sets

In FORTRAN, records for sequential data
sets are Jdefined by specifications in
FORMAT statements and by READ/WRITE lists.
A record defined by a specification in a
FORMAT statement is a FORTRAN record (see
the section "Input/Output Statements" in
the publication Basic FORTRAN IV Language).
A record defined by a READ/WRITE list is a
logical record. Within each category,
there are three types of records: fixed-
length, variable-length, and undefined. In
addition, fixed-length and variable-length
records can be blocked.

UNBLOCKED RECORDS, FORMAT CONTROL: For
fixed~length and undefined records, the
record 1length and buffer length are
specified in the BLKSIZE subparameter. For

variable-length records, the record length
is specified in the LRECL subparameter; the
buffer length in the BLKSIZE subparameter.
The information coded in a FORMAT statement
indicates the FORTRAN record 1length (in
bytes).

Fixed-Length Records: For unblocked fixed-
length records written under FORMAT
control, the FORTRAN record length must not
exceed BLKSIZE (see Figure 35).

Example: Assume BLKSIZE=4u

10 FORMAT(F10.5,I6,2F12.5,"'SUMS")
WRITE(20,10)AB,NA,AC,AD -

44 Bytes of Data

FORTRAN Record (FORMAT Control)
Fixed-Length Specification

Figure 35.

If the FORTRAN record 1length 1is less
than BLKSIZE, the record is padded with
blanks to fill the remainder of the buffer
(see Figure 36). The entire buffer is
written.

Creating Data Sets 57

Table 11. Specifications Made by the FORTRAN Programmer for Record Types and Blocking

.' 7 A N i ‘|
| | Blocked or | | RECFM | | |
| Step | Unblocked | Record Type |Specification |Record Length |Buffer Length |
| | | I I
e - t S

| Compiler or| Unblocked |Fixed-Length |not specified®|not specified®|not specified?|
| Linkage I + + $-—- 4--]
| Editor | Blocked | Fixed-Length | RECFM=FB=2 |not specified?|BLKSIZE=XXXXx |
e oo $-—- TR St } } —4
| | | Fixed-Length | RECFM=F3 | BLKSIZE=xXxXx3 | |
| | % } - 1 |
| | Unblocked |Variable-Length|RECFM=V | LRECL=XXXX]]
| | b e 1 { |
| Load Moduile| |Undefined | RECFM=U | BLKSIZE=xxxXX |BLKSIZE=XXXXx |
| Execution ¢ + o + 4 I
		Fixed-Length	RECFM=<FB		
	. } ————————4LRECL=XXXX				
	Blocked	Variable-Length	RECFM=VB		
	T ——— f-—-——- e L {				
]	Undefined	Blocked undefined records are not permitted			
L i 1 1 d					
r === ot					
*Permanently specified by the compiler and cannot be altered.					
2For SYSPRINT or other written output, RECFM=FBA under the sequential scheduler, and					
RECFM=FM under the priority scheduler.					
2Not specified for direct access data sets.					
L - e 2 e o e m o - ¥

Example: Assume BLKSIZE=56 CTTTTT T BLKSIZE—— === —————— "
|
5 FORMAT (F10.5,16,F12.5,"TOTAL") | ————- RECL——— ———————~ 1
WRITE (15,5) BC,NB,BD Lo !
L ettt FORTRAN Record — — — — — — — 1
[|
L f
F—————————— BLKSIZE — — — — — — — — — — -
I : BCWISCW Data
- —— — —— —— — WrittenRecord — — — — — — — —— i
|
: | Figure 37. FORTRAN Record (FORMAT Control)
~— — — FORTRAN Record — — — t Variable-Length Specification
| |
33 Bytes of Data 23 Bytes of Blanks

If the FORTRAN record 1length is less
Figure 36. FORTRAN Record (FORMAT Control) than (LRECL-4), the unused portion of the
With Fixed-Length Specification buffer is not written (see Figure 38).
and FORTRAN Record Length Less
Than BLKSIZE

Variable-Length Records: For unblocked | _ _ _ _ _ Written Record — — — — —
variable-length records written under r l
FORMAT control, LRECL is specified as four :
greater than the maximum FORTRAN record |
|
|

length and BLKSIZE as four greater than
LRECL. These extra eight bytes are
required for the 4-byte block control word [T 1T | T T~ T
{(BCW) and +the i4-byte segment control word powsew Data __JTfYTfﬂ___!
(SCW), as shown in Figure 32. The BCW (see

Figure 37) contains the 1length of the Figure 38. FORTRAN Record (FORMAT Control)

block; the SCW (see Figure 38) contains the With Variable-Length Specifi-
length of +the record segment; i.e., the cation and the FORTRAN Record
data length plus four bytes for the SCW. Length Less Than (LRECL-4)

58

Undefined Records: For undefined records
written under FORMAT control, BLKSIZE is
specified as the maximum FORTRAN record
length. If the FORTRAN record length is

less than BLKSIZE, the unused portion of

the buffer is not written (see Figure 39).
T T T T BLKSIZE — — — —— —— —— I
| I
|-— — — — FORTRAN Record — — — — — :
| |
| | {
Data Not Written |
________ J
Figure 39. FORTRAN Record (FORMAT Control)

With Undefined Specification
and the FORTRAN Record Length
Less Than BLKSIZE

BLOCKED RECORDS, FORMAT CONTROL: For all
blocked records, the record length is spec-
ified in the LRECL subparameter; the block
length and buffer 1length in the BLKSIZE
subparameter.

Fixed-Length Records: For Dblocked fixed-
length records written under FORMAT
control, LRECL is specified as maximum
possible FORTRAN record length, and BLKSIZE
must be an integral multiple of LRECL. If
the FORTRAN record length is 1less than
LRECL, the rightmost portion of the record
is padded with blanks (see Figure 40).

Example: Assume BLKSIZE=48 and LRECL=24
10 FORMAT(I8,Fl6.4)

20 FORMAT(I12)

WRITE(13,10)N,B

-

WRITE(13,20)K

|
,L~ ———————— —Written Block — —— — — — — — — —1l
I
e ——— [RECL — —— — — —————= LRECL — — —— —l
[| FORTRAN |
f- — — — FORTRAN Record — ——— - —"p_ oy = |
| | |
12 12 Bytes
24 Data Bytes Data Bytes of
Blanks
Figure 40. Fixed-Length Blocked Records

Written Under FORMAT Control

Variable-Length Records: For blocked
variable-length records written under
FORMAT control, LRECL is specified as four
greater than the maximum FORTRAN record
length, and BLKSIZE must be four plus an
integral multiple of LRECL. The four addi-
tional bytes allocated with BLKSIZE are
required for the block control word that
contains the block length. The four addi-
tional bytes allocated with LRECL are used
for the segment control word that contains
the record-length indicator.

If a WRITE statement is executed and the
amount of space remaining in the present
buffer is less than LRECL, only the filled
portion of this buffer is written (see
Figure 37); the new data goes into the next
buffer. However, if the space remaining in
a buffer is greater than LRECL, the buffer
is not written, but held for the next WRITE
statement (see Figure 41). If another
WRITE statement is not executed before the
job step is terminated, then the filled
portion of the buffer is written.

Creating Data Sets 59

Example: Assume BLKSIZE=28 and LRECL=12
30 FORMAT(I3,F5.2)

40 FORMAT(F#4.1)

50 FORMAT(F7.3)

-

WRITE(12,30)M,2

WRITE(12,40)V

WRITE(12,50)Y
—F———————— BLKSIZE — — — — — — — ———— 1
| |
- Written Block — — ——— — — ‘: |
1 m————WRECL———— 7o = RECL— — — —— :
|
I
| | ———FORTRAN Record — —1 -FORTRAN _ | | |
| | | [| Record |
|1 | |
4 4 Bytes -:
BCW[SCw| 8 Data Bytes scw| Data Not |
Bytes Written |
_____ J

——-FORTRAN Record— -+
|

This space of 13 bytes

BCW[SCW 7 Data Bytes Ready for next WRITE.
(space > LRECL)
Figure 41. Variable-Length Blocked Records

Written Under FORMAT Control

NO FORMAT CONTROL: Only variable-length

records can be written without format con-
trol; i.e., the RECFM subparameter must be
V. (If nothing is specified, A% is
assumed.)

Records written without FORMAT control have
the following properties:

¢ The 1length of the 1logical record is
controlled by the type and number of
variables in the I/0 list of its asso-
ciated READ or WRITE statement.

e A logical record can be physically
recorded on an external medium as one
or more record segments. Not all seg-

ments of a logical record must fit into
the same physical record (block).

¢ Three guantities control the manner in
which records are placed on an external
medium: the block size (as specified by
the BLKSIZE parameter), the segment
length (as specified by the LRECL

60

parameter), and the logical record (as
defined by the length of the I/0 list).
BLKSIZE and LRECL are specified as part
of the DCB parameter of the data defi-
nition (DD) statement. If not speci-
fied, FORTRAN provides default values.

Each block begins with a 4-byte block
control word (BCW); each segment Dbegins
with a U4-byte segment control word (SCW).
The SCWs and BCWs are provided by the
system.

The
42.

format of a BCW is given in Figure

reserved |

2 bytes

Figure 42. Format of a Rlock Control Word

where:

block-length
is a binary count of the total number
of bytes of information in the block.
This includes four bytes for the BCW

plus the sum of the segment lengths
specified in each SCW in the block.
(The permissible range 1is from 8 to
32,767 bytes.)

reserved
is two bytes of =zeros reserved for

system use.

The format of an SCW is given in Figure
43,

| S - T - T ===
] segment-length | code | reserved |
L P - L B J
2 bytes 1 byte 1 byte
Figure 43. TFormat of a Segment Control

Word

where:

segment-length
is a binary count of the number of
bytes in the SCW (four bytes) plus the
number of bytes in the data portion of
the segment following the SCW. (The
permissible range is from 4 to 32,763
bytes.)

code
indicates the position of the segment
with respect to the other segments (if

any) of the record. Bits 0 through 5
are reserved for system use and are
set to 0. Bits 6 and 7 contain the

codes:
code Meaning

00 This segment is not followed or
preceded by another segment of
the record.

01 This segment 1is the first of a
multi-segment record.

10 This segment is the last of a
multi-segment record.

11 This segment 1is neither the
first nor last of a multi-
segment record.

reserved

is a byte of zeros reserved for system

use.

Unblocked Records: For unblocked records

written without FORMAT control, the value
of BLKSIZE is equal to LRECL+4. (The four
additional bytes are for the BCW.)

If the logical record length is less
than or equal to LRECL-4, the 1logical
record comprises one record segment.

Hence, for +the associated READ or WRITE

statement, one record segment, i.e., o©ne
block, 1is transmitted (see Figure 4l4).
Note that the unused portion of the block

is not transmitted.

If the logical record length is greater
than LRECL-4, the logical record comprises
N record segments, where: N=logical record
length/LRECL-4. Hence, for the associated
READ or WRITE statement, N record segments,
i.e., N blocks, are transmitted (see Figure
45).

Example 1: Assume BLKSIZE=28 and LRECL=24

WRITE(18)Q,R

where:
Q0 and R are real *8 variables.

|
| I — LRECL - ————— — — — —
L |
|| - Logical Record —— — — — 3 :
BCW SCW Data Segment Not Written
4 bytes 4 byfes 16 bytes 4 bytes

Figure 44, Variable-length Unblocked Re-
cords, No FORMAT cControl, One
Record Segment

Example 2: Assume BLKSIZE=28 and LRECL=24

WRITE(18)Q,R,S,V,X

where:

Q, R, and V are real *8 variables.
S and X are real *4 variables.

[———— — BLKSIZE —— —— ——— ———]
i r————————- LRECL —— ——————— —{
l IL —————— Beginning of Logical Record = ————— —:
BCW Scw Data Segment 1
4 bytes 4 bytes 20 bytes
— — = — —End of Logical Record ————7
|
BCW SCW Data Segment 2 Not Written
4 bytes 4 bytes 12 bytes 8 bytes
Figure 45. Variable-length Unblocked Re-

cords, No FORMAT Control, Two
Record Segments

Blocked Records: For blocked records
written without FORMAT control, each block,
except the last, is composed of at least M
record segments, where:

M = BLKSIZE-4/LRECL

If the logical record length is 1less
than or equal to LRECL-4, the logical
record comprises one record segment.
Hence, for the associated M READ or WRITE
statement, one block, i.e., M record seg-
ments, is transmitted.

If the logical record length is greater
than LRECL-4, the logical record comprises
N record segments, where: N=logical record

Creating Data Sets 61

length/LRECL-4. Hence, for the associated
READ or WRITE statement , N record segments
(i.e., as many blocks of M segments each as
are needed to make up N segments) are
transmitted. The wunused portion of the
last block is held for the next READ or
WRITE (see Figure 46).

Example: Assume BLKSIZE=28 and LRECL=12

WRITE(18)A

WRITE(18)B

-

WRITE(18)E

where: A is a real *8 variable.
B and E are real *4 variables.

i BLKSIZE - ————— ————— |
| |
| = WECL ———————— LRECL ——————-{
' | | |
| = — Logical Record — ’—:—— Logical Record— — :
BCW SCW Record 1 SCW Record 2 Not Written
4 bytes 4 bytes 8 bytes 4 bytes 4 bytes 4 bytes

— — Logical Record ——

BCW SCW Record 3 Space Ready for Next Write
4 bytes 4 bytes 4 bytes 16 bytes
Figure 46. Variable-length, Blocked Re-

cords, No FORMAT Ccontrol

BACKSPACE Operations

Unblocked Records, FORMAT Control: For all
unblocked records written under FORMAT con-
trol, the volume is positioned so that the
last record read or written is transmitted
next.

Unblocked Records, No FORMAT Control: For
all unblocked records written without FOR-
MAT control, the volume is positioned so
that the last logical record read or writ-
ten is transmitted next.

Blocked Records: The programmer is warned
against backspacing blocked records; the
results obtained are unpredictable.

62

RECORD LENGTH, BUFFER LENGTH, AND NUMBER OF
BUFFERS FOR DIRECT ACCESS DATA SETS

A direct access data set can contain
only fixed-length unblocked records. Any
attempts to read or write any other record
format by specification in the DCB parame-
ter are ignored. The record length and
buffer length for a data set are specified
by the programmer as the record size in the
DEFINE FILE statement, and cannot be
changed by specifying the BLKSIZE or LRECL
subparameters in the DCB parameter. For
example, the statement:

DEFINE FILE 8(1000,152,E,INDIC)
sets the record 1length and buffer length

permanently at 152 bytes. The direct
access data set defined by this DEFINE FILE

statement contains 1000 fixed-length
unblocked records. Each record 1is 152
bytes long, and is written under FORMAT
control.

The only DCB parameter that can ke
supplied for direct access data sets is the
number of buffers:
BUFNO=x (x=1 or x=2)
where:

X is the number of buffers
read or write the data set.

used to

For records written with FORMAT control,
the record format 1is the same as for
fixed-length unblocked records written with
FORMAT control for sequential data sets.
For records written without FORMAT control,
the records must be fixed length and
unblocked. These records do not contain a
block control word or a segment control

word. For records written without FORMAT
control, the input/output list may exceed
the 1logical record 1length (i.e., block
size). 1In this case a new logical record

is started on output, and the next logical
record is processed on input. If it is
shorter than the record length, the remain-
ing portion of the record is padded with
zeros (see Figure 47).

Example: A DEFINE FILE statement has spec-
ified the record length for a direct access
data set as 20. This statement is then
executed
WRITE(9'IX)DP1,DP2,R1,R2
where:
DP1 and DP2 are double precision vari-
ables.

R1 and R2 are real variables.
IX 1is an integer variakle that con-
tains the record position.

r—— - Record Length — — — — — — -
| 1
:— ————— Record Segment] — — — — — — -—:
| |
A
20 Data Bytes
Record Segment 1+ Record Segment 5 = 1 Logical Record
—r——-——- Record Segmentyg — — — — — — o]
| 1
| |
4 Data Bytes 16 Bytes of Zeros
Figure 47. Logical Record (No FORMAT
Control) for Direct Access
BACKSPACE, END FILE, and REWIND opera-
tions are ignored for direct access data
sets.

DCB RANGES AND ASSUMPTIONS

For compilation, the LRECL value for the
following data sets is fixed and cannot be
altered by the programmer:

Data Set LRECL Value
SYSPRINT 121
SYSIN 80
SYSPUNCH 80
SYSLIN 80
If the PRFRM option is specified, the

SYSPRINT, SYSIN, and SYSPUNCH compiler data
sets can contain blocked records. If the
higher 1level linkage editor (program name:
IEWLE440) is used, the SYSLIN data set can
contain blocked records.

The BLKSIZE value must be an integral
multiple of the corresponding LRECL value
shown above. The maximum BLKSIZE value is
limited only by the type of input/output
device (see Table 12), except that for
SYSLIN the maximum BLKSIZE value 1is 400
with linkage editor IEWLE440,

For load module execution, specifi-
cations depend on record type. For F tyge
records, the BLKSIZE value must be an
integral multiple of the LRECL value; for V
type records, BLKSIZE must be specified as
4 + n x LRECL (where n 1is the number of
records in the block); for U type records,
no blocking is permitted. Note, too, that
the BLKSIZE and LRECL range is limited only
by the type of device used to directly
write the data set (see Table 12). Load
module DCB parameter default wvalues are
shown in Table 13.

Table 12. BLKSIZE Ranges: Device Considerations
s T - - - - - 1
| Device Type | BLKSIZE Ranges |
b~ -4-- - T - |
|] F and U Record Type | V Record Type |
| bmm o --- ———--- =
| Card Reader] 1<x<80 | 9<x<80 |
b P PNPry R ¥ 1
| Card Punch | 1<x<81 | 9<x<89 |
Tt S e SR oo m e --- -~
| Printer: | | |
] 120 spaces | 1<x<121 | 9<x<129 |
| 132 Spaces I 1<x<133 | 9<x<141 |
| 144 Spaces | 1<x<145] 9<x<153 |
pmmm i - -t - —
| Magnetic Tape | 18<x<32,000 |
b —m——meet - - -
| Direct Access: | without Track Overflowt | With Track Overflow? |
I b-- —m oo $-—- :
[2301 | 1<x<20,483 | 1<x<32,763 |
2302] 1<x<4984	1<x<32,763	
2303	1<x<4892] 1<x<32,763	
2311	1<x<3625	1<x<32,763
2314	1<x<7294	1<x<32,763
- L S i — i
| 1If RECFM=V, the minimum block size is 9. |
e e e e e e e e e e e e]
Creating Data Sets 63

|1If the records have no FORMAT control, the default RECFM is V

and the default LRECL

| is 4 less than BLKSIZE, where the default BLKSIZE is as specified in this table.
|12The first character in each record is assumed to be a carriage control character.

eTable 13. Load Module DCB Parameter Default Values

r - T~ 77— T T - === =
| | | Sequential Data Sets? | Direct Access Data Sets |
| Data Set Ref- | S T 4 T i
| erence Number | ddname | RECFM |Default LRECL |Default RECFM| Default LRECL |
| | | | or BLKSIZE | | or BLKSIZE f
L _ J 1 - 1 + d
r T T T T 1
| 1 | FTO1F001 | F [80 | F | |
fommmm oo i -1 —+ = |
| 2 | FT02F001 | F | 80 | F | |
e -4 + ——4- +-———————— {The value spec- |
I] 3 | FTO3F001 | UAaz2 | 133 | FA2 |ified as the |
p———-- + - + -—4 -4 {maximum size of |
i 4 | FTOUF001 | U { 800 ! F la record in the |
| . ! . | . | . | . |DEFINE FILE I
| . | . | . | . | . | statement. |
! . | . | . I . I . I I
| 99 | FT99F001 | U [800 | F i |
l, _______ . 1 L L - 1 4
1

|

|

|

4

| I,

This section contains figures showing
the Jjob control statements used in the
FORTRAN IV (E) cataloged procedures and a
brief description of each procedure. This
section also describes how to override
statements and parameters in any cataloged
procedure. (The use of cataloged proce-
dures is discussed in "Job Processing."™)
The SPACE parameter shown in these cata-
loged procedures is written for use with
IBM 2311 disk storage drive.

Compile

The cataloged procedure for
(FORTEC) is shown in Figure 48.

compilation

The EXEC statement that invokes the
FORTRAN E compiler is named FORT; the EXEC
statement indicates that the operating sys-
tem is to execute the program IEJFAAAQ [the
name for the FORTRAN (E) compilerl]. Com-

piler options are not explicitly supplied
with the procedure: default options are
assumed. The programmer can override these

default options by using an EXEC statement
which includes the options he desires.

Compile and Link Edit

The cataloged procedure (FORTECL) to
compile a source module and link edit the
resulting object module into the FORTRAN
library (FORTLIB) is shown in Figure #49.

CATALOGED PROCEDURES

The EXEC statement named FORT instructs
the control program to execute the FORTRAN
(E) compiler. Again,; no options
are specified; default options are assumed.

compiler

The EXEC statement named LKED instructs
the control program to execute the program
IEWL (the alias for the highest level
linkage editor in the installation's oper-
ating system). This statement also speci-
fies the XREF, LIST, LET, and NCAL linkage
editor options. The NCAL option instructs
the 1linkage editor not to resolve any
external references in the FORTRAN library.
This means that the resulting load module
must be processed by the 1linkage editor
again before the module can be executed
unless NCAL is overridden.

Link Edit and Execute

The cataloged procedure to 1link edit
FORTRAN object modules and execute the
resulting load modules (FORTELG) is
in Figure 50.

HALOA 8

The EXEC statement that executes the
linkage editor is named LKED and specifies
that the operating system is to execute the
program IEWL, the alias for the highest
level linkage editor. This statement also
specifies the XREF, LIST, and LET options
for the linkage editor. The programmer can
override these options by wusing an EXEC
statement in the input stream.

IBM FORTRAN Coding Farm [Whved
PROGRAM B PUNCHING GRAPHIC PAGE OF
PROGRAMMER I;“ INSTRUCTIONS PUNCH CARD ELECTRC NUMBER®

T | FORTRAN STATEMENT eI ATION
\23A5:7B9IUHVZI]HIS!AW]B\?N?I222!2‘526272829!13!3233313536373839‘0“A?AJMAS160748A9505|525354555657585750“626364566&76859707!727‘.\7‘7576777579!0

IFORT| EXEC PEM=1EJ GLON=42K BN ‘
\// SYSPRINT D o Y =BLKS| ZE=|121 '

SYSPUNCH DD UT=B>DCR=BLKSIZE=8¢
17/SYSMT1 DD UNIT= ‘ = |)
T2 DD UNIT=SY P= = p)
Wisy DD UNIT= = SYSIPUNCH 2 DSNAME = ¢ LIOADSE| = MEA$)9 X
SPACE=(8@2(2 3¢,)

Figure 48.

Compile Cataloged Procedure (FORTEC)

Cataloged Procedures 65

The EXEC statement named GO executes the
load module produced by the linkage editor
procedure step. The PGM parameter speci-
fies that the operating system is to exe-
cute the data set defined by the DD state-
ment SYSLMOD in the procedure step LKED.

In a multiprogramming environment with a
priority scheduler, main storage require-
ments for the execute step are determined
by a number of factors. These include the
size of the object program produced by the
compiler, the requirements of the data
access method used, the blocking factor,
the number and record sizes of data sets
used, the number and sizes of library
subprograms invocked, and the sizes of other
execution time routines required by the
program. If the default REGION is not
large enough for program execution,
REGION.GO must be used to specify a REGION
parameter on the program's EXEC statement.

A listing of the execution time routines
required for various input/output, inter-
ruption, and error procedures is contained
in the publication IBM System/360 FORTRAN
IV Library Subprograms. It also lists the
sizes of both the execution time routines
and the mathematical subprograms.

The following is an exarple of using a
REGION.GO specification to indicate the
main storage requirements for the execute
step of a FORTRAN program.

//EXAMPLE1 JOB ACCOUNT1, ‘*JOHN SMITH',
MSGLEVEL=1

// EXEC FORTECLG, PARM.FORT=DECK,
REGION.GO=60K

//FORT.SYSIN DD #

FORTRAN SOURCE SYMBOLIC DECKS

Ve
//LKED.SYSIN DD *

PREVIOUSLY COMPILED OR ASSEMBLED
OBJECT DECKS

/*
//GO.SYSIN DD *

INPUT DATA

Xz

IBM FORTRAN Coding Form [

PROGRAM

PROGRAMMER ‘ DaTE

GRAPHIC PAGE oF

INSTRUCTIONS [CARD ELECTRO NUMBER-

STATEMENT

IUMBER g FORTRAN STATEMENT
9
[

IDENTIFICATION
QUENCE

Z3 45

3,

~]

FORT EXEC PGM=II EJFAAAB>REGI ON=HZK || |

7 9 v!onn B WS TRT B XL DB Y BB NI R L % TR DN DB LS 6w @S] SZSJSASS“VSaS?éOél‘bZ&MAS“H”G??D7|77737l757é777s7vw

|

T

clc

T=A>0ClB=BLKS/I ZE=

-

5Ys NT,MD‘ Y'SO

Z1

IRREEEA|
BEEREI AN

[
| |
H T

19Ys CH DD S SO

(ﬁ

IBWS DD UN
D

Elc
=
[210

33,

SPACE= (981 (38:28)) e — | .

T=BsDCB=BLKSIEE=
éa?ﬁégﬂsvspuMcu
S

,\h.\\.m

D UNI

1 'p¢u~|T=s
7SYSLIN DD UNIT=S
* T sPA

QI’SEP=SYSPUNC
(8gs(i+ 266) 5

O <[

S
S
s - t
EE LSE)|

DSMAgggdtqmqssfgo|§nadnoosbﬁss), X

gﬂ

LﬂﬁTa

1
8
)
QrSEP=SYSUT1 > SPACE=(984>(3))
L4 S al ‘QL
R
B

/ypns EXEC PGM=I1E LsPARﬂ*CXREF’LﬁT
BB T EG1 ON=96K i

ALY COND=(HHLT,FORT)> | X

121

EEERIENE 0
JTSYSPRINT] Do“wsourswaoca=5;4§:zs
7SYSLIN DD DSNAME=SLOADSET 501 SP=(

|otn

/DD DDNAME=SYS|i N L

LD>DELETE)) OCB=BLKS |[ZE =8,

1 SYSILMOD DD DSINAME=[SYS4.. FORTL)I B2Dl SP=OLD

| ? T

SIS
(7L

L
[SYSUT1 Do UNiT=SY
LA oiLE NI T =

S U A L S O ;I SRR ERE Nt

—

DA>SEP=S5YSLMOD) SPACE (1025 (3 72807

il I A

Figure 49. cCompile and Link Edit Cataloged Procedure (FORTECL)

66

IBM FORTRAN Cading Form et
PROGRAMMER !DA\‘E INSTRUCTIONS PUNCH CARD ELECTRO NUMBER™
STATENONT § FORTRAN STATEMENT IDENTIFICATION
JILKED EXEC P6M=1EML)yPARM=(XREF>LET)s L1 ST) »REG) ON=96K
1 LNT_DD_SYSOQUT=AsDCP=BLKSI ZE=121 P
|18 Dp | AME=SYS1.F _1IBaD1SP=SH
ND YSIN ‘
/1 SYS|ILMOD PD DS > =(NEWI P, T= SYSDA»
A ; 4 ‘
//SYSUT1 DP UNIT=SY = (SYSLMOD>SYSLI B) »SPACE = (16245 (36:28))
0 EXEC | =% . SYSLMOD s COND= (HaL T 2lLKED) i
Fad1 =SYS|
1] DD_SYSOUT=RE
EMLQD_%!SDUTsA
Figure 50. Link Edit and Fxecute Cataloged Procedure (FORTELG)

Compile, Link Edit, and Execute

The cataloged procedure (FORTECLG) to
compile, link edit, and execute FORTRAN
source modules is shown in Figure 51.

The cataloged procedure FORTECLG con-
sists of the statements in the FORTEC and
FORTELG procedures, with one exception: the
DD statement SYSLIN (in the compiler proce-
dure step FORT) defines the output of the
compiler, and the statement SYSLIN (in the
linkage editor procedure step LKED) iden-
tifies this data set as the primary input
to the linkage editor. The programmer does
not have to define the linkage editor input
as he did with the procedure FORTELG, but
he must define the data set SYSIN for the
compiler so that the source module can be
read. He may also define a data set which
becomes part of the primary input by using
a DD statement LKED.SYSIN which is concate-
nated with object module. This data set is
concatenated with the data set containing
the output of the compiler.

USER_AND MODIFIED CATALOGED PROCEDURES

can write his own cata-
them +to the
installation. He can

The programmer
loged procedures and tailor
facilities in his

also permanently modify the IBM-supplied
cataloged procedures. For information
about adding and permanently modifying cat-
aloged procedures, see the section
"Cataloged Procedures" in the publication

i
' .
System Programmer's Guide.

LOGL

If during system generation, the G or H
level library option was specified in the
FORTLIB macro-instruction, the FORTRAN (E)
cataloged procedures must be permanently
modified to correspond to the FORTRAN (G)
or (H) cataloged procedures. The FORTLIB
macro-instruction is described in the pub-
lication IIM System/360 Operating System,
System Generation. Further modifications
to cataloged procedure may be necessary as
described in the Job Control Language pub-
lication.

If the E level library option was speci-
fied, but the value of the OBJERR parameter
of the FORTLIB macro-instruction was omit-
ted or specified as something other than
03, the following DD card must be added to
the FORTRAN E cataloged procedure either to
modify them permanently or to override them
at execution time.

Cataloged Procedures 67

IBM FORTRAN Codiog Form et
PROGRAMMER i} I._wg INSTRUCTIONS unCh CARD ELECTRO NOWBER
e 3 FORTRAN STATEMENT et
//FORT| EXEC PGM=|EJFAAAGSREGI ON=H2K [; ‘
//SYSPRINT DD Sysou =A>DCB=BLKSIZE=121 ‘ ;
/1 SYSPUNCH DD SYSOUT=BsDCB=BLKSIZE=8Z8
7ISYSUT1 DP UNIT=SYSSQ>SEP=SYSPUNCH)> SPACIE= (981> (38328))
/1SYSUT2 DD UNIT=SYS|SQs SEP=SYSUT1>SPACE=|(9845(38>28))
//SYSLIIN Dp UNIT=SYSSQ>SEP=SYSPUNCH>DSNAME=€LIOADSET018P=(MOD2PASS)> X
/7 —_SPACE=(88>/(266>20@)» RLSE |
/7 LKED| EXE|C PGM=1EWL)>PARM=(XREFLET] LI ST) » COND=(H>LT>FORT)>REG!ON=96K
/1 SYSPRINT| DD SYSOUT=AsDCB=BLKSIZE=[121 || ‘ | i
/rsysiLlie DIp. DSNAME=SYS1.FORTLIByDISP=SHR ‘
J18YSLIN DP DSNAME=¢LOADSET Dt SP=(OLLDsDELETE)|sDCB=BLKSI[ZE=
/1 DD DPDNAME=SYSIN]
IISY§LMOQ DD DSINAME=EGOSET(MAIN) s DI1[5P=(NEWs PASS)>» UNIT=SYSDAS| | X
- | PACE= (184> (50228, 1JbRLSED | [[[| |
/7SYSUTA DD _UNIT=SYSDAs SEP=(SY|SLMOD. vsL[ﬁD,SPAQE-Ztﬂﬁ»(s@;a@TT
/760 EXEC PGM=».LKED|. SYSLMQOD> COND=([(Hs LT FORT]) s (41|LTs LKED)) B
IIFT@1F#61 DD DDNAME=SYSIN ‘)
/IFTO2F @01 DD SYSOUT=B '
/IFTO3Fa@1 DD SYSOUT=A
!
- i '
i — ‘
Figure 51. Compile, Link Fdit, and Execute Cataloged Procedure (FORTECLG)

//GO.FTxxF001 DD SYSOUT=A
where:

xx (2 digits) is the unit specified.
(See Figures 50 and 51.)

OVERRIDING CATALOGED PROCEDURES

Cataloged procedures
EXEC and DD statements. A feature of the
operating system is its ability to read
control statements and modify a cataloged
procedure for the current execution of the
procedure. Overriding 1is only temporary;

are composed of

68

that is, the parameters added or modified
are in effect only for that execution.

If +the same cataloged procedure is exe-

cuted by two different job steps in the
same job, the overriding parameters or

statements supplied for the first execution
are not carried over for the second execu-
tion of the procedure. For example, con-
sider these job control statements:

//J0B1 JOB MSGLEVEL=1
//STEP1 EXEC FORTEC,PARM.FORT='SIZE=22K'

//STEP2 EXEC FORTEC

When the procedure is executed in the first
step STEP1, the compiler is allccated 22K
bytes. However, when the procedure FORTEC
is executed in the second step, the SIZE
option reverts to the default option (15K)
because the overriding parameter only
affects the current execution of the cata-
loged procedure.

The following text discusses the tech-

niques used to override cataloged proce-
dures.

Overriding Parameters in the EXEC Statement

TwWO forms of keyword parameters
("keyword" and "keyword.procstep") in the
EXEC statement are discussed in "Job Con-
trol Language." The form "keyword.
procstep" is used to add or override param-
eters in an EXEC statement in a cataloged
procedure.

The FORTRAN programmer can, for example,
add (or override) compiler or linkage edi-

tor options, specify accounting informa-
tion, or he can state different conditions
for bypassing a job step for an execution

of a cataloged procedure.

Note: When the PARM parameter is overrid-
den, all options stated in the EXEC state-
ment in the procedure step are deleted, and
the overriding PARM parameter is substitut-
eqd.

Example 1: Assume the cataloged procedure
FORTEC is used to compile a program, and
the programmer wants to specify the name of
his program and the MAP compiler option.

The following statement can be used to
invoke the procedure and to supply the
option.
//STEP1 EXEC FORTEC, X
7/ PARM.FORT="MAP, NAME=MYPROG'

The PARM options apply to the procedure
step FORT.
Example 2: Assume the cataloged procedure

FORTECL is used to compile and 1link edit a
program. The programmer wants to specify
the ADJUST option for the compiler because
his source module contains embedded blanks

and FORTRAN keywords wused as variable
names. Furthermore, he wants to remove the
NCATL linkage editor option because he does
not want to make another pass through the
linkage editor prior to using the 1load
module in execution. The following EXEC
statement can be used to add the ADJUST
option to the compiler procedure step
(FORT), and remove the NCAL option from the

linkage editor procedure step (LKED).

//CL EXEC FORTECL,PARM,FORT=ADJUST, X
/7 PARM.LKED=(XREF,LIST,LET)

Example 3: Assume the cataloged procedure
FORTELG is used to link edit and execute a
module. Furthermore, the MAP linkage edi-
tor option overrides XREF, LET, and LIST in
the linkage editor step and the COND param-
eter is changed for bypassing the execution
of the load module. The following EXEC
statement adds and overrides parameters in
the procedure.

//D0 EXEC FORTELG,PARM.LKED=MAP, X
// COND.GO=(3,LT,DO.LKED)

The PARM parameter applies to the 1link-
age editor procedure step LKED, and the
COND parameter applies to the execution
procedure step GO.

Example 4: Assume a source module is
compiled, link edited, and executed wusing
the cataloged procedure FORTECLG. Further-
more, the compiler option SIZE and the
linkage editor option MAP are specified,
and account number 506 is wused for the

execution procedure step. The following

EXEC statement adds and overrides parame-
ters in the procedure.
//STEP1 EXEC FORTECLG, X
7/ PARM.FORT="SIZE=22000", X
/7 PARM.LKED=MAP, X
7/ ACCT.GO=506
Overriding and Adding DD Statemwents

A DD statement with the name
"procstep.ddname" is used to override pa-
rameters in DD statements in cataloged

procedures or to add DD statements to
cataloged procedures. The "procstep" iden-
tifies the step in the cataloged procedure.
If "ddname®™ is the name of a DD statement

1. present in the step, the parameters in
the DD statement in the input stream
override parameters in the DD state-
ment in the procedure step.

2. not present in the step, the new DD
statement is added to the step.

Cataloged Procedures 69

In any case, the modification is only
effective for the current execution of the
cataloged procedure.

When overriding, the original DD state-
ment in the cataloged procedure is copied,
and the parameters specified in it are
replaced by the corresponding parameters in
the new DD statement. Only parameters that
must be changed are specified in the over-
riding DD statement.

wants to delete a
keyword parameter 1in a DD statement, he
supplies an overriding DD statement that
contains that keyword, followed by an equal
sign, followed by a comma.

If the programmer

keyword=,

For example, if the SYSOUT parameter is to
be deleted from the SYSPRINT data set and
the data set is to be written on the device
PRINT in the cataloged procedure FORTEC,
the following DD statement is used:

//FORT.SYSPRINT DD SYSOUT=,UNIT=PRINT

If more than one DD statement is modi-
fied, the overriding DD statements must be
in the same order that the DD statements
appear in the cataloged procedure. Any DD
statements that are added to the procedure
must follow overriding DD statements.

When the procedures FORTEC, FORTECL, and
FORTECLG are used, a DD statement
FORT.SYSIN must be added to define the
SYSIN data set to the compile step in the

procedures (see Figures 15, 18, and 24).
When the procedure FORTFLG is used, a DD
statement LKED.SYSIN must be added to

define the SYSLIN data set (see Figure 21).

When the procedures
and FORTECLG are wused, an overriding DD
statement can be used to write the 1load
module constructed in the linkage editor
step in a particular PDS chosen by the
programmer and assign that member of the
PDS a particular name.

FORTELG, FORTECL,

If the programmer is using the procedure
FORTECL and he does not supply an overrid-
ing DD statement assigning the resulting
load meodule to a private PDS, he must
supply an overriding DD statement

//LKED.SYSLMOD DD DSNAME SYS1.FORTLIB(name)
to name the load module before he places it

in the FORTRAN library (SYS1.FORTLIRB).
This procedure can be a powerful tool for

70

adding modules to the FORTRAN 1library and
replacing 1load modules in the FORTRAN
library.

In execution procedure steps, the pro-
grammer can catalog data sets, assign names
to data sets, supply DCB information for

data sets, add data sets, or specify par-
ticular volumes for data sets by using
overriding DD statements.

Example 1: The cataloged procedure

FORTECLG is used to compile, link edit, and
execute a FORTRAN program. Since the oper-
ating system for this installation contains
the highest level linkage editor, blocking
can be specified for the SYSLIN data set.
In addition, the SYSPRINT data set for the
compiler is blocked. The PRFRM and SIZE
compiler options are specified in the PARM
parameter, along with the BLKSIZE LRECL
subparameter in the DCB parameter for these
data sets.

During 1load module execution, the pro-
grammer wants the data set identified by
ddname FTO3F001 to be written on the device
class TAPE, instead of treating this data
set as a SYSOUT data set and writing it on
device class A. To do this the SYSOUT
keyword parameter must be deleted from the
SYSPRINT DD statement in the procedure step
FORT, and a UNIT parameter must be sup-
plied. The data sets identified by ddnames
FTO4UF001 and FT08F001 are named, cataloged,
and assigned specific volumes. The follow-
ing DD statements are used to add this
information and 1indicate the location of
the source module.

//7J0OB1 JOB MSGLEVEL=1

//STEP1 EXEC FORTECILG, X
// PARM. FORT="'PRFRM, SIZE=22K"

//FORT .SYSPRINT DD DCB=BLKSIZE=968
//FORT.SYSLIN DD DCB=BLKSIZE=800
//FORT.SYSIN DD *

e 1
] FORTRAN Source Module |

L ——
/¥

//LKED.SYSLIN DD DCB=BLKSIZE=800
//GO.FT03F001 DD SYSOUT=,,UNIT=TAPE

//GO.FTO4F001 DD DSNAME=MATRIX, X
7/ DISP=(NEW,CATLG) , UNIT=TAPE, X
// VOLUME=SER=987K

//GO.FTO08F001 DD DSNAME=INVERT, X
7/ DISP=(NEW,CATLG), UNIT=TAPE, X

7/ VOLUME=SER=1020

Example 2: Assume that DCB information is
added to the DD statement identified by
ddname FT03F001, and that a sequential data
set that contains blocked records and

resides on a direct access volume is creat-
ed and cataloged, using data set reference
number Z. The foiiowing statements over-
ride statements FT02F001 and FTO3F001 in
the procedure and indicate the location of
the object module.

//30B2 JOB

//STEP1 EXEC FORTELG

//LKED.SYSIN DD *

r————== 1
i FORTRAN Object Module |
L —
/%

//GO.FT02F001 DD DSNAME=FIRING, X
// UNIT=SYSDA,DISP=(NEW,CATLG), X
// SPACE=(100, (2000,200),,,ROUND), X
/77 VOLUME= (PRIVATE, SER=207H), X
/7 DCB=(RECFM=VB, BLKSIZE=2416, X
7/ LRECL=804)

//GO.FT03F001 DD DCB=(RECFM=F, X

/7 BLKSIZE=50)

Example 3: Assume the cataloged procedure
FORTECL 1is used to compile and link edit a

module, DER, which is added to the FORTRAN
library. The following job control state-
ments can be used to add the module to the
FORTRAN library.

//ADDMDL JOB 427, 'R.WHITE'
//CL EXEC FORTECL,PARM.FORT="NAME=DER'
//FORT.SYSIN DD *

- - -
| FORTRAN Source Module |
L
Ve

//LKED.SYSLMOD DD DSNAME=SYS1l.FORTLIB(DER)

After the procedure has been executed, DER
can be used to resolve external references

made in FORTRAN source modules to the name
DER.
Example 4: Assume the cataloged procedure

FORTECL 1is wused to replace the library
function SQRT in the FORTRAN library. The
following 3job control statements can be
used to replace the SQRT function in the
FORTRAN library.

//REPLAC JOB , *JIM JONES'
// EXEC FORT FORTECL, PARM=*NAME=SQRT,MAP'
//FORT.SYSIN DD *

- 1
| FORTRAN Source Module |

—_——

Ve
//LKED.SYSLMOD DD DSNAME=SYS1.FORTLIB{SQRT)

After the execution of the cataloged proce-
dure, +the new module SQRT is wused to
resolve any external references made to the
name SQRT. The IBM-supplied 1library sub-
program is no longer used.

Example 5: Assume the cataloged procedure
FORTEC is used to compile a source module
STARS. The resulting object module STARS

is to be written in the PDS SCIENCE. The
SYSPRINT data set 1s written on the PDS
PRINT and assigned the member name STARS.

The following job control statements can be
used to write this output in the parti-
tioned data sets.

//J0B2 JOB ,JIM
//STEP EXEC FORTEC

//FORT.SYSPRINT DD DSNAME=PRINT (STARS) X
// DISP=CLD
//FORT.SYSLIN DD DSNAME=SCIENC(STARS) X

// DISP=O0OLD

Example 6: Assume the link edit and exe-
cute cataloged procedure (FORTELG) is used.
The 1load module constructed in the linkage
editor step 1is placed in the cataloged
partitioned data set MATH and is assigned
the member name DERIV. The parameters not
overridden in the SYSLMOD DD

in the SYSLMOD DD statement are
copied and used to write the SYSLMOD data
set.

//JOB3 JOB

//STEP1 EXEC FORTELG

//LKED.SYSLMOD DD DSNAME=MATH(DERIV), X
// DISP=(MOD, PASS)

//LKED.SYSIN DD *

- - 1

FORTRAN Object Module

/¥

Example 7: Assume the compile, link edit,
and execute cataloged procedure (FORTECLG)
is used with three data sets in the input
stream:

1. A FORTRAN main program MAIN with a

series of subprograms, SUB1l through
SUBN.

2. A 1linkage editor control statement
that specifies an additional library,
MYLIB. MYLIB 1is used to resolve
external references for the symbols

ALPHA, BETA, and GAMMA.
3. A data set used by the load module and

identified by data set reference num-
ber 1 in the source module.

Cataloged Procedures 71

//JOBCLG JOB 00,'J.DAVID',MSGLEVEL=1
//EXECCLGX EXEC FORTECLG
//FORT.SYSIN DD *

r——-——- - -1
| FORTRAN Source Module MAIN |
I8

prmmm o m oo eeee -—-—{
| FORTRAN Source Module SUB1L |
e - 1
| . |
| . I
| . |
p--- - oo 1
] FORTRAN Source Module SUBN |
| ——— 4
/*

//LKED.ADDLIB DD DSNAME=MYLIB,DISP=0OLD
LIBRARY ADDLIB(ALPHA,BETA, GAMMA)

/%

//GO.SYSIN DD *

| Input to Load Module |

e —— e ————————————— J

72

The DD statement FORT.SYSIN indicates to
the compiler that the source modules are in
the input stream. The DD statement
LKED.ADDLIB defines the additional library
MYLIB to the linkage editor. The DD state-
ment LKED.SYSIN defines a data set that is
concatenated with the primary input to the
linkage editor. The linkage editor contrcl
statements and the okject modules appear as
one data set to the linkage editor. The DD
statement GO.SYSIN defines data in the
input stream for the load module.

This section discusses minimum system
requirements for the compiler, program
optimization, updating the FORTRAN library,
creation of the programmer’®s private
library, and limitations of the compiler.

MINIMUM SYSTEM REQUIREMENTS FOR THE FORTRAN
COMPILER

IBM System/360 Operating System operates
in a device independent environment. In
particular, the FORTRAN compiler may oper-

ate with any combination of devices (shown
in Table 3); however, there are certain
requirements.

e The FORTRAN E compiler requires at

least a System/360, Model 30 with 32K
bytes of storage, and the standard
instruction set with the floating-point
option. At least 15360 bytes should be
allocated in the SIZE compiler option.
If 1less than 15360 bytes is specified,
the compiler assumes the design point
value 15360.

e All programs require a device, such as,
the 1052 keyboard printer, for direct
operator communication.

¢ At least one direct access device must
be used for residence of the operating
system.

o If the data sets identified by the DD
statements SYSUT1, SYSUT2, and SYLIN
are to reside on direct access volumes,
another direct access device should be
made available to the compiler for more
efficient compilation.

* When a DD statement specifies that a
data set resides on a tape volume,
there must be one tape device available
in the installation for that data set.

| SOURCE PROGRAM CONSIDERATIONS

Facilities are available in the FORTRAN
language that enable a programmer to opti-
mize compilation and execution speed and to
reduce the size of the object module.

PROGRAMMING CONSIDERATIONS

Initialization

The programmer should initialize all
variables that are not initialized by
arithmetic statements in his program.

Operating System/360 may place a load
module anywhere in available main storage;
the value of a variable cannot be guaran-
teed until the programmer has given that
variable a value by an assignment state-
ment. For example, in the subprogram

SUBROUTINE ALPHA(X,Y,Z)
A=B+2.0

the result A may contain any value, because
B was not initialized. If the programmer
expects B to be zero, he should initialize
B as shown in the following statements:

SUBROUTINE ALPHA(X,Y, Z)
B=0.0
A=B+2.0

Coding the Source Program

The ADJUST compiler option permits the
programmer to insert embedded blanks, elim-
inate meaningful blanks, and use FORTRAN
keywords as variable names in his program.
However, if NOADJUST is specified 1instead
of ADJUST, the compiler will execute fast-
er. In order to decrease the time required
for compilation, the programmer should not
include embedded blanks, include meaningful

blanks, and not wuse FORTRAN keywords as
variable or array names in his source
program, and then specify NOADJUST instead
of ADJUST.

Arithmetic Statements

The use of multiplication instead of the
exponential operation is recommended when
the exponent is a small integer. For
example, the statement

VOL=(4.*R*R*R) /3.

Programming Considerations 73

is more efficient than the statement

VOL=(U4.*R¥*3)/3.

because the exponential operation requires
a library subprogram. When multiplication
is used, storage is conserved and both

compiler and linkage editor processing time
are decreased.

To calculate the square root, the square
root library subprogram should be used
instead of the exponential function. For
example, the statement

HYPOT=SURT (A*A+B*R)

is more accurate than the statement
HYPOT=(A*A+B*B) **(0.5

because +the SQRT function is more accurate
than the exponential function.

The mixed mode arithmetic expression is
provided to reduce errors because of unin-
tentional use of different modes in arith-
metic statements. However, when mixed mode
arithmetic statements are used, extra
instructions are generated. For example,
in the statement

A=A+1

an in-line subprogram is generated to per-
form the operation indicated. Both main
storage and execution time would be saved
by using the statement

A=A+1.0

F Statement

An arithmetic IF statement lists three
statement numbers. One of the listed num-
bers should immediately fcllow the IF
statement to eliminate unnecessary branch-
ing in the load module. For example, the
coding represented by the statements

IF (aA-B)20,30,30
30 A=0.0

74

is more efficient than coding represented
by the statements

IF(aA-B) 20,30,30

10 X=2.+Y
30 A=0.0
20 B=0.0

DO Loop Considerations

Values for expressions that remain con-
stant within a DO loop should be calculated
before entry into the loop, instead of
calculating the expression each time
through the 1loop. For example, in the
statements

DO 10 1I=1,100
X(I)=2.0*% (G+ALPHA) +Y(I)
10 CONTINUE

the expression 2.0*(G+ALPHA) must be calcu-

lated each time the DO loop is executed.
For greater efficiency, the following
statements should be substituted
BETA=2.0*(G+ALPHA)
DO 10 I=1,100
X(I)=BETA+Y(I)
10 CONTINUE
The execution time is decreased, because

the expression 2.0*(G+ALPHA) is calculated
only once.

Any subscripts that remain constant
within the range of a DO loop should not be
used in the DO loop. For example, in the
statements

DO 10 I=1,50
X(ID)=Y(I)+2(J)

10 CONTINUE

a subscript calculation for 2(J) is per-
formed each time the DO locop is executed,
even though Z(J) remains constant for each
execution of the loop.

By substituting the statements

B=Z(J)
DO 10 1I=1,50
X(I)=Y(I)+B

10 CONTINUE

only one subscript calculation is made for
Z(J) and execution time is decreased.

Intricate subscript calculation within
the range of a DO should be avoided. For
example, in the statements

DO 10 1=1,10
5 X(3*I+4)=Y(3*I+4)+B

10 CONTINUE

two intricate subscript calculations are
made each time statement S5 is executed.
The DO loop should be rewritten as shown in
the statements

DO 10 I=7,34,3
5 X(I)=Y(I)+B

10 CONTINUE
to reduce the subscript calculation to

simpler terms and allow faster execution of
the DO loop.

READ/WRITE Statements

To read or write an array, an implied DO
in a READ/WRITE statement should be used
instead of a DO 1loop. For example, 5
FORTRAN records, each containing two
values, are written by the statements

10 FORMAT (F20.5,I10)
DO 15 I=1,5
15 WRITE(5,10)A(I),J(D)

In the statements

10 FORMAT (5(F20.5,I10))

WRITE(5,10)(Aa(1),J(1),I=1,5)
only one FORTRAN record containing 10
values is written. The use of an implied
DO saves load module execution time and
space on the volume.

Extra subscript calculation within the
range of an implied DO should be avoided.

This is the same consideration shown in
regard to the DO loop. For example, if the
statements

2 FORMAT('0',10F12,6)

READ{1,2) (A(I),I=4,31,3)

are substituted for the statements

2 FORMAT (*0',10F12.6)
READ(1,2)A(3*%I+1),I=1,10)

the intricacy of the subscript calculation

is reduced and the 1load module execution
time is reduced.

Program Structure

Better efficiency in load module execu-
tion is achieved when storage for a main
program or each subprogram (excluding
COMMON) is less than 12K bytes. A program
that exceeds 12K bytes may ke segmented
into a group of subprograms and one main
program.

If a large number of variables are to be
passed among calling and called programs,
some of the variables should be placed in
the COMMON area. For example, in the main
program and subroutine EXAMPL

DIMENSION E(20),I(15)
READ (10)A,B,C
CALL EXAMPL(A,B,C,D,E,F,I)

END

SUBROUTINE EXAMPL (X,Y,Z,P,Q,R,J)
DIMENSION Q(20),J(15)

RETURN
END

storage are wasted by allocating
variables in both the wmwain
program and subprogram, and by the subse-
quent instructions required to transfer
variables from one program to another.

time and
storage for

The two programs should be written using
a COMMON area, as follows:

Programming Considerations 75

COMMON A,B,C,D,E(20),F,I(15)
READ(10)A,B,C
CALL EXAMPL

END

SUBROUTINE EXAMPL
COMMON X,Y,%,P,0(20),R,J(15)

RETURN
END

Storage is allocated £for variables in
COMMON only once and fewer instructions are

needed to cross-reference the variables
between programs.
Statement Numbers and Names

For its internal wuse, the compiler

places statement numbers and names used for
variables, arrays, and subprograms in two

tables. Each table is divided into several
strings and is searched many times during
compilation. If the number of entries in
each string is approximately equal, the

average time required to find a name or a
statement number is reduced.

STATEMENT NOUMBERS: Statement numbers are
assigned to five strings in the statement
number table; assignment is made according
to the last digit in the statement number.
Statement numbers ending in 0 or 1 are
placed in the first string; those ending in
2 or 3 are placed in the second; those
ending in U4 or 5 are placed in the third;
etc. Statement numbers should be evenly
distributed in the strings to decrease
compilation time.

For example, using 100 statement numbers
that end only in 0 or 5 is inefficient,
because two long strings of 50 entries each
are created in the statement number table.
If these 100 statement numbers were dis-
tributed equally in strings, that is, 10
statement numbers ending in 0; 10 ending in
1, etc., five strings of 20 entries each
would be created. The time used to compile
the source program 1is decreased because
excessive time is not spent in searching
long strings.

NAMES: Names used in the program are
assigned to six strings; assignment is made
according to the length of the name. Names
that are one character lonc are placed in
the first string; names two characters long
are placed in the second string; and so on.
For faster compiling, the names should be

76

distributed equally among the six strings.
For example, if there are 26 names of one
character each in a program, one 1long
string is created. For better efficiency,
the names should be distributed equally to
make six strings, each containing 4 or 5
names.

Use of DUMP and PDUMP

Three facts are pertinent when the sub-

routines DUMP and PDUMP are used:

1. Under the operating system, a program
can be loaded into different areas of
main storage for different executions.

2. The compiler assigns 1locations to
variables and arrays in COMMON in the
same order that the programmer speci-
fied in a COMMON statement.

3. The compiler assigns locations in the
object module to variables and arrays

that are not in COMMON by name length
and the order in which they are
encountered.

The following text shows several exam-
ples of how to write statements that use
DUMP and PDUMP.

If a series of variables and arrays that
reside in COMMON are to be dumped, only the

first and 1last wvariables to be dumped
should be 1listed as arguments for the
subroutine. For example, if COMMON is

defined as:

COMMON A,B,C(20),1(10),D

the following statement can be used to dump
the variable B and the arrays C and I in
hexadecimal format and terminate execution
after the dump.

CALL DUMP (B,I(10),0)

If the variakles and arrays are not in
COMMON, a set of arguments should be listed
for each name that is to be dumped. For
example, if COMMON is defined as:

COMMON A,B,C(20),I(10),D

and the array X is defined as:

DIMENSION X(25)

and a variable Y is defined in the module.
The following statement should be used to
dump B, C, I, Y, and X in real format
without terminating execution.

CALL PDUMP(B,I(10),5,X(1),X(25),5,Y,Y,5)

If the statement
CALL PDUMP(B,I(10),5,X(1),Y,5)

is used, the COMMON area is dumped correct-
ly, but all main storage between X(1) and Y
is dumped.

If an array and a variable are passed as
arguments to a subprogram, the arguments in
the call to DUMP or PDUMP in the subprogram
should specify the parameters used in the
definition of the subprogram. For example,
if the subprogram SUBI is defined as:

SUBROUTINE SUBI(X,Y)
DIMENSION X(10)
within the source

and the «call to

module is:

SUBI

DIMENSION A(10)

CALL SUBI(A,B)

then the following statement in the subpro-
gram should be used to dump the variables
in hexadercimal format without terminating
execution:

CALL PDUMP (X(1),X(10),0,Y,Y,0)

Direct Access Programming

Using direct access I/0 rather than
sequential I/0O can decrease load module
execution time: the direct access state-

ments in the FORTRAN IV (E) language enable
the programmer to retrieve a record from
any place on the volume without reading all
the records preceding that record in the
data set, Direct data sets should be
pre-formatted. If the NEW subparameter of
the DD statement is specified for the data
set, the FORTRAN load module will format
the data set before the program begins
processing.

Note: Direct access I/0 statements and
sequential I/0 statements may not be used
to process, via the same unit number, the
same direct data set within the same FOR-
TRAN load module. However, sequential I/O
statements may process a direct data set in
one load module, while direct access 170
statements process it in another.

Not all applications are suited to
direct access I/0, but an application that
uses a large table that must be held in
external storage can use direct access 1I/0
effectively. An even better example of a
direct access application is one that uses

a data set that is updated frequently.
Records in the data set that are wupdated
frequently are called master records.

Records in other data sets used to update
the master records are called detail
records.

Each of the master records should con-
tain a unique identification that distin-
guishes this record from any other master
record. Detail records used to update the
masters should contain an identification
field that identifies a detail record with
2 master record. For example, astronomers
might have assigned unique nurbers to socome
stars, and they wish to collect data for
each star on a data set. The unique number
for each star can be used as identification
for each master record. Any detail record
used to update a master record for a star
would have to contain the same number as
the star.

A FORTRAN program indicates which record
to FIND, READ or WRITE by its record
position within the data set. The ideal
situation would be to use the unique record
identification as the record position.
However, in most cases this is impractical.
The solution to this problem is a randomiz-
ing technique. A randomizing technique is
a function which operates on the identifi-
cation field and converts it to a recorxd
position. For example, if six-digit num-
bers are assigned to each star, the random-
izing technique may truncate the 1last two
digits of the number assigned to the star
and use the remaining four digits as a
record position. For example, star number
383320 would be assigned position 3833.

Another example of a randomizing technique
would be a mathematical operation performed
on the identification number, such as
squaring the identification number and
truncating the first four digits and the
last four digits of the result. Then the
record for star number 383320 is assigned

record position 3422. There is no general
randomizing technique for all sets of iden-
tification numbers. The programmer must
devise his own technique for a given set of
identification numbers.

Two problems arise when randomizing
techniques are used. The first problem is
that there may be a lot of space wasted on
the volume. The solution in this instance’
must be developed within the randomizing
technique itself. For example, if the last
two digits on the identification numbers
for stars are truncated and no star numbers
begin with zero, the first thousand record
positions are blank. Then a step should be
added to the randomizing technique to sub-
tract 999 from the result of the trunca-
tion.

Programming Considerations 77

Identifier Chain

T
| Record

r
|

| 383320 |Position for
I | 383396

L

fm e e mem

Data |

T
Record |
383396 |Position for|
| 383352]

i

i

- — —— ey

[w)

1]

t

[JJ]
R |

= ——) ey
i
i

i
383352 | of
!

o
]
ot
V1]
b e e e e

Figure 52. Record Chaining

The second problem is that more than one
identification may randomize to the same
record location. For example, if the last
two digits are truncated, the stars iden-
tified by numbers 383320, 383396, and
383352 randomize to the same record loca-
tion - 3833. Records that randomize to the
same record location are called synonyms.
This problem can be solved by developing a
different randomizing technique. However,
in some situations this is difficult, and
the problem must be solved by chaining.

Chaining is arranging records 1in a
string by reserving an integer variable in
each record to point to another record.
This integer variable will contain either
an indicator showing that there are no more
records in this chain or the record loca-
tion of the next record in the chain.
Records chained together are not adjacent
to each other. Figure 52 shows the records

for star numbers 383320, 383396, and
383352.
When records are chained, the first

record encountered for a record position is
written in the record position that result-
ed from randomizing the identification num-
ber. Any records that then randomize to
that same record location must be written
in record positions to which no other
record identifications randomize. The
space for these synonyms can be allocated
either at the end or the beginning of the
data set. However, this space must be
allocated when the data set is first writ-
ten. For example, if the randomizing tech-
nique assigns master records to record
locations between 1 and 9999, the program-
mer may wish to reserve record locations
10000 to 12000 for master records that
become syncnyms.

78

The programmer must keep a record loca-
tion counter to keep track of the space
assigned for synonyms. When a synonym is
inserted in this space, the record location
counter must be incremented. The program-
mer should set up a dummy record in his
data set to maintain this record 1location
counter. When the direct access data set
is created, the record 1location counter
should be set at the lower limit of the
record positions available for synonyms
(i.e., record location 10000 in the example
used above).

Also an indicator should ke reserved to
indicate to the program that the end of a
chain has been reached. Since no record
position is designated as 0, 0 can be used
to indicate the end of a chain.

Before a FORTRAN program writes a direct
access data set for the first time, the
data set must be created by writing
"skeleton records" in the space that is +to
be allocated for the direct access data
set. These skeleton records should be
written by an installation-written program.
After the skeleton records are written, the
direct access data set must be classified
as OLD in the DISP parameter of the DD

statement. However, if the skeleton
records are not written before direct
access records are written by the FORTRAN

program for the first time, a FORTRAN load
module automatically creates the data set
and writes the skeleton records. The pro-
grammer indicates that skeleton records
have not been written by specifying NEW in
the DISP parameter. A FORTRAN load module
writes skeleton records according to the
format described in "WRITE -- Create a
Direct Organization Data Set - Format F
Records™ in "Section 3, Basic Sequential
Access Method (BSAM)" in the Control Pro-
gram Services publication.

Figure 53 shows a block diagram of the
logic that can be used to write a direct
access data set for the first time. The
block diagram does not show any attempt to
write skeleton records.

Example 4 in Appendix A shows a program
and job control statements used to update a
direct access data set.

Direct Access Programming Considerations

In a job that creates a data set which
will reside on a direct-access device, the
DCB subparameter of the DD statement must
specify DSORG = DA in order that the label
that is created will indicate that this is
a direct-access data set (see "Creating a
Direct Data Set"™ in the publication IBM
System/360 Operating System: Supervisor and
Data Management Services, Form C28-6646).

Space must be allocated in the SPACE
parameter of the DD statement for a data
set written on a direct access volume. For
direct access data sets, the space allocat-
ed in the SPACE parameter should be consis-
tent with the record length and number of
records specified in the DEFINE FILE state-
ment in the FORTRAN program. For example,
in the DEFINE FILE statement

DEFINE FILE 8(1000,40,E,I)

the number of records is specified as 1000
and the record length is specified as 40.
When this program is executed the DD state-
ment for this data set should contain the
SPACE parameter

SPACE (40, (1000))

indicating that space is allocated for 1000
records, and 40 bytes for each record.

The DEFINE FILE statement for a data set
must be in a source wmodule in the root
segment (i.e., it cannot be overlaid), but
does not have to be in the same source
module in which I/O operations occur. For
example, the DEFINE FILE statement c¢an be
given in a main program with a subprogram
performing the I/0 operations on the data
set. However, if an associated variable
defined in the main program is to be used
by a subprogram, it must be passed to the
subprogram in COMMON. Since an associated
variable 1is updated by input/output opera-
tions, the subprogram cannot get to the
updated value to make wuse of it in its

operations unless the associated variable

is in COMMOCN.

The FIND statement permits record
retrieval to occur concurrently with compu-
tation or I/O operations performed on dif-
ferent data sets. By using the FIND state-
ment, load module execution time <can be
decreased. For example, the statements

10 A=SQRT(X)

-

52 E=ALPHA+BETA*SIN(Y)
64 WRITE(9)A,B,C,D,E
76 READ(8'101)X,Y

are 1inefficient ©because computations are
performed between statements 10 and 52 and
an I/0 operation is performed on another
data set while record number 101 could be
retrieved. 1If the following statements are
substituted, the execution of this module
becomes more efficient because record num-
ber 101 is retrieved during computation and
I/0 operations on other data sets:

5 FIND(8'101)
10 A=SQRT(X)

52 E=ALPHA+BETA*SIN(Y)
64 WRITE(9)A,B,C,D,E
76 READ(8'101)X,Y

How Arguments Are Passed

Although the programmer cannot alter the
method for passing arguments to a subpro-
gram, knowing how arguments are passed may
be wvaluable when he debugs his program. A

main program passes arguments to a subpro-
gram in two ways.
The first method is called ™"call by

value." When this method is used, the main
program moves the value currently residing
in +the argument in the main program into
the location assigned to the argument in
the subprogram. When the subprogram
returns to the main program, the value of
the argument in the subprogram is moved to
the 1location of the argument in the main
program. In FORTRAN (E), only variables
are passed using "call by value."

Programming Considerations 79

DEFINE FILE

Allowing enough
Space for Synonyms

1

Set Record
Location Counter =
Lower Limit of
Space for Synonyms

Read
Detail
Record

Write Record
Containing
Record
Location
Counter

Randomize
Identification
Number to
Record Location

Set Record Position Build
in Read Statement Master
= Chain Variable Record

Set Chain
Variable in Master
Record = Record
Location Counter

Write
Master
Record

Set Record Position
in Write Statement
= Record
Location Counter

Increment
Record Location
Counter by 1

Figure 53. Writing a Direct Access Data

Set for the First Time

80

The second method is called "call by
name." When this method is used, the main
program moves an address into the 1location

assigned to the argument in the subprogram.
In FORTRAN (E), arrays and subprograms,

used as arguments, are passed using "call
by name." The main program moves the
address of the first element in the array

into the subprogram or moves the address of
the entry point of the subprogram, used as
an argument, into the subprogram.

LD STATEMENT CONSIDERATIONS

Several DD statement parameters and sub-
parameters are provided for I/0 optimiza-
tion (see Figure 54). Other DD statement
parameters are discussed in "Job Control
Language" and "Creating Data Sets."

Channel Optimization

The SEP parameter indicates that I/O
operations for specified data sets are to
use separate channels (channel separation),
if possible. The 1I/0 operations for the
data set, defined by the DD statement, in
which

SEP=(ddnamel,ddnamel...)
appears, are assigned to
different from those assigned to

a channel
the

I/0 operations for data sets defined
by the DD statements "ddname".
Assigning data sets whose I/0 opera-

tions occur at the same time to dif-
ferent channels decreases the time
required for I/0 operations.

I/0 Device Optimization

UNIT subparameters can be specified for
device optimization.

VOLUME_MOUNTING_ AND DEVICE SEPARATION:

¢!
UNIT=(name[,P][,DEFER]

[,SEP=(ddnamel, ddnamel...) 1)

can be specified for volume mounting
and device separation. The "name" and
number of units are discussed in the
section "Data Definition Statement."

DEFER
indicates that the volume(s) for the
data set need not be mounted until
needed. The control program notifies
the operator when to mount the volume.

SEP=(ddnamel,ddnamel...1) 2

UNIT= {AFF=ddname

—— — s . s —

=

r

(namel, n|P 31(,DEFER][,SEP=(ddnamel,ddnamel...1) 214 5)6}
SPACE= (ABSTR, (quantity,beginning-address(,directory-quantityl))

CYL
SPLIT=(nl{:average-record-length},(primary—quantity[,secondary-quantity])])

|

I

|

:

| average-record-length

| ddnanme

| [,directory-quantity]),{stepname.ddname })

| stepname.procstep.ddname

I

II= _____

{1The maximum number of repetitions allowed

is 7.

|2If only one "ddname" is specified, the delimiting parentheses may be omitted.
|2If neither "n" nor "P" is specified, 1 is assumed.
| “This subparameter is applicable only for direct-access devices.

| 5SThis subparameter 1is the

| positional subparameters.

|6If only "name" is specified, the delimiting parentheses may be omitted.

|
]
|
|
I
|
|
|
|
|
TRK)
SUBALLOC=({CYL },(primary-quantity[,secondary—quantity] i
|
|
|
|
|
i
I
I
|
|

only keyword subparameter shown in this figure.
| remaining subparameters shown in the UNIT, SPACE, SPLIT, and SUBALLOC parameters

All the]|
are|

I
4

Figure 5&4.

SEP=(ddname(,ddnamel...)

is used when a data set is not to be
assigned to the same access arms on
direct access devices as the data sets
identified by the 1list of ddnames.
This subparameter is used to decrease
access time for data sets. This par-
ameter er is meaningful only for data
sets residing on direct access
volumes. The SEP sukparameter in the
UNIT parameter provides for device
separation, while the SEP parameter
provides for channel spearation.

DEVICE AFFINITY: The use of the
device by data sets is specified by

same

UNIT=AFF=ddname

the data set defined by the DD state-
ment in which the AFF subparameter
appears uses the same device as the

data set defined by the DD statement
"ddname"™ in the current job step.

Direct-Access Space Optimization

The SPACE parameter discussed in
"Creating Data Sets" 1is used to allocate
space on a volume. Another form of the
SPACE parameter may also be used to specify

space beginning at a designated track

DD Statement Parameters for Optimization

address on a direct access volume. The
SPLIT or SUBALLOC parameters may be speci-
fied instead of SPACE to split the use of
cylinders among data sets on a direct
access volume or to use space specified for
another data set which that data set did
not use.

SPACE BEGINNING AT A SPECIFIED ADDRESS:

SPACE= (ABSTR, quantity, beginning-address
[,directory-quantityl)

specifies space beginning at a partic-
ular address on a direct access vol-

ume. The "quantity" is the number of
tracks allocated to the data set. The
"beginning address” is the track
address on a direct access volume
where the space begins. If the data
set is a partitioned data set, the
"directory quantity" specifies the

number of records allocated to the

directory.

SPLITTING THE USE OF CYLINDERS AMONG DATA
SETS: If several sequential data sets in a
step use the same direct access volume,
processing time can be saved Ly splitting
the wuse of cylinders among the data sets.
Splitting cylinders eliminates seek opera-
tions on separate cylinders for different
data sets. Seek operations are measured in
milliseconds, while the data transfer is

Programming Considerations 81

measured in mieroseconds. Direct access
and partitioned data sets cannot be created
using the SPLIT parameter.

,CYL }
SPLIT=(n |}saverage-record-length

¢ (primary-quantity

[,secondary-quantity])])

is substituted for the SPACE parameter
when the use of c¢ylinders 1s split.
If CYL is specified, "n" indicates the
number of tracks per cylinder to be
used for this data set. If “T"average
record length" is specified, "n" indi-
cates the percentage of tracks per
cylinder used for this data set. The
remaining subparameters are the same
as those specified for SPACE in
"Creating Data Sets."

More than one DD statement in a step
will wuse the SPLIT parameter. However,
only the first DD statement specifies all
the subparameters; the remaining DD state-
ments need only specify "n". For example:

//STEPL4 EXEC PGM=TESTFI
//FT08F001 DD SPLIT=(45,800, (100,25))

//FT17F001 DD SPLIT=(35)

//FT23F001 DD SPLIT=(20)

ACCESSING UNUSED SPACE: Data sets in the
current step or previous steps may not have
used all the space allocated to them by a
DD statement. The SUBALLOC parameter may
be substituted for the SPACE parameter to

permit a new data set to wuse this unused
space.
TRK
SUBALLOC= ({CYL ’
average-record-length
(primary-quantity,
[,secondary-quantity]
[,directory-quantityl),
ddname
stepname.ddname)
{stepname.procstep.ddname)
The data set from which unused space
is taken is defined in the DD state-
ment "ddname", which appears in the

step "stepname." (The step must be in
the current job.) The other subparam-

82

eters specified in the SUBALLOC param-
eter are the same as the subparameters
described for SPACE in "Creating Data
Sets."

Priority Scheduler Considerations for

Cataloged Procedures

If, during system generation, the
instaliation selects a priority scheduler
and an operating system that provides mul-
tiprogramming with a variable number cof
tasks (MVT), the following information must
be taken into consideration when writing
FORTRAN programs.

1. The PRFRM option must be in effect for
the compile step, either by default or
by explicit request in the compiler
job step PARM field. Similarly, the
SIZE allccation must be at least
19,456 Dbytes. This figure assumes no
blocking. If the input is blocked
(e.g., Dby an input reader), a figure
that is 160 times the blocking factor
must be added to the 19,456 byte
specification in the SIZE option. For
a compile step, REGION must be at
least 16K greater than the compiler
SIZE specified in the PARM field (or
default SIZE).

2. If the default or
parameter is not sufficient for a
particular compile, link edit, or exe-
cute job step, an adequate REGION must
be specified on the appropriate JOB or
EXEC card. For a link edit step, the
specification for REGION depends on

cataloged REGION

which 1linkage editor is wused (see
"Linkage Editor Restrictions™).
Linkage Editor REGICN
IEWLE150 24K
IEWLE180 26K
I IEWLE4 L0 54K
3. DCB BLKSIZE parameters must be speci-
fied on the DD cards for SYSLIN,

SYSPUNCH, and SYSPRINT. For SYSPRINT,
this block size is 121; for SYSPUNCH
it 1is 80. The blocking factor deter-
mines the specification for SYSLIN,
but it must be specified as a multiple
of 80. If this figure is added to the
SIZE specification, it must also be
added to that for REGION.

4. Compiler data sets handled by output
writers cannot be blocked (e.g., SYS-
PRINT and SYSPUNCH).

LIBRARY CONSIDERATIONS The following is a 1list of compiler

The FORTRAN library is a group of sub-

programs residing in the partitioned data ¢ The maximum number of variables that
set SYS1.FORTLIB. For a detailed descrip- may be equated in EQUIVALENCE state-
tion of the FORTRAN library, see the ments is approximately 100. For compi-
FORTRAN IV (E), Library Subprograms publi- lations in which the 1largest unused
cation. A programmer can change the sub- portion of the Dictionary and the Over-
programs in +the 1library; he can add, flow Table exceeds 800 bytes, the maxi-
delete, or substitute library subprograms; mum becomes the number of bytes in this
or he can create his own library. These segment divided by 8. For example, if
topics are discussed in detail in the the compiler allocates 5500 bytes to
section "Moving and Copying Data"™ in the the Dictionary and Overflow Table, and
Utilities publication. 3100 are used, then the maximum becomes

240078=300.

¢ The maximum number of names for vari-

COMPILER RESTRICTIONS ables and arrays that may appear in an
I70 list is approximately 250.

Table 14 shows the average number of ¢ The maximum number of arguments in a
source statements that can be compiled by subprogram call or subprogram defini-
the FORTRAN compiler with regard to the tion is 48.

SPACE and PRFRM option and the size (in

bytes) of the Dictionary and the Overflow ¢ The maximum level of nesting for DO
Table used by the compiler. The Dictionary loops is 25.

and the Overflow Table are used by the

compiler to contain information concerning e The maximum number of statement numbers
variables, arrays, subscripts, functions, in a computed GO TO statement is
data set reference numbers, statement num- approximately 250.

bers, etc.
s The maximum number of records allowed
The dictionary and overflow table size in a direct access data set is
in bytes, S, required to compile a number 224 (224=16,7717,216).
of source statements, X, is approximately
¢ The maximum size of an array is 131,071
S=10X+500 bytes.

Table 14. Source Module Size Restrictions

r T T H 1

Average Number of	Dictionary and	Intermediate Text Capacity (in bytes)		
SIZE Option	[Source Statements	overflow Table } T		
	That Can Be Compiled	Size (in bytes)	SPACE	PRFRM
“““ T~ + T + T ‘TL + T {				
SPACE	PRFRM1	SPACE	©PRFRM	SPACE
P--——-t { t $ 1 + $ $- 1				
15K	19K	170	170	2216
44K	48K	2500	1980	25512
86K	90K	6500	6500	65536
200K	204K	6500	6500	65536
I, _____ L L L L L L. L L _{				
*If blocked input and output are used, the value of the expression [2%(BLKSIZE)] must]			
be added for each data set that contains blocked records to the number shown under thej				
PRFRM option.				
2The figures under "In Storage" indicate how many additional bytes are available for				
retaining the intermediate text in main storage before the text has to be written on]				
external storage. If the storage required for intermediate text does not exceed this				
figure, no I/0 operations are performed for the intermediate text.				
L ¥
¢ The maximum total program and data size numbers), DO statements, and statement

(including COMMON) is 196,608 bytes. functions cannot exceed 1000.
¢ The total number of statement numbers ¢ The number of arguments in a statement
referred to (excluding FORMAT statement function cannot exceed 15.

Programming Considerations 83

LINKAGE EDITOR RESTRICTIONS

The maximum number of load modules and
object modules that can be processed by
each linkage editor varies according to the
number of bytes of main storage reserved
for 1linkage editor operations. This maxi-
mum is shown below for each of the three
linkage editors.

L)]] 1
| Linkage Editor |Bytes Reserved| |
| Name |for Operation | Maximum |
k- + —+ {

| 15K | 119 i
{ IEWLE150 F } 4
| | 18K | 229 |
L 1 1 4
T T A}
i | 18K | 75]
| IEWLE180 b } !
| I 20K | 180 I
i i 1 4
t T 1
| | 44K | 349 |
| IEWLEULU4O s + i
| | 88K | 1250 I
| L L J

Object modules processed by the linkage
editor cannot exceed 512K bytes, because
this 1s the maximum that can be processed
by program FETCH.

84

FORTRAN LOAD MODULE RESTRICTIONS

The following is a list of FORTRAN 1load

module restrictions:

e A FORTRAN load module cannot read past

the end of a data set.

For the EXP and DEXP library functions,
the argument cannot exceed 174.673.

For the SIN and COS library functions,
the absolute value of +the argument
cannot exceed

218¢ M (228e¢Tr=,82354966406249996D+06) .

For the DSIN and DCOS library func-
tions, the absolute value of the argu-

ment cannot exceed
250eTT (250eT7=.35371188737802239D+16).

The minimum record length for records
written on a wagnetic tape volume is
i8. The minimum record 1length for
records read from a magnetic tape vol-
ume is 12.

A data set reference number cannot
exceed the maximum data set reference
number specified by the installation
when the system is generated.

The compiler, 1linkage editor, and load
modules produce aids which may be used to
document and debug programs. This section
describes the listings, maps, card decks,
and error messages produced by these compo-
nents of the operating system .

COMPILER OUTPUT

The compiler can generate a listing of
source statements, a storage map showing
the location of variables and constants in
the object module, and an object module
card deck. Source module diagnostic mes-
sages are also produced during compilation.

Source Listing

If the SOURCE option is specified or
assumed, the source listing is written by
the output device specified in the SYSPRINT
DD statement. A sequential internal state-
ment number:

S.nnnn (1<nnnn<9999)

is assigned to each source statement.
(Comments and continuation cards are not
assigned an internal statement number.)
The internal statement numker is then used
in the diagnostic messages to indicate
erroneous statements in the source program.
An example of a source program listing is
shown in Figure 55. This printout is the
source listing of Sample Program 1 shown in

SYSTEM OUTPUT

Storage Map

If the MAP option is specified, a stor-
age map of the obkject module is written on
the data set specified by the SYSPRINT DD
card. The storage map gives a listing of:

1. The relative addresses and names of
all wvariables, including subprogram
names and in-line subprogram names.

2. The relative addresses and names of
all external references, including all
subprograms, except in-line subpro-
grams.

3. All wuser-specified 1literal constants

and their relative addresses.

4. All compiler-generated constants and
their relative addresses.

5. A branch list consisting of all state-
ment numbers referred to and their
relative addresses.

An example of a map printout is shown in

Figure 56. This printout 1is the source
module map of Sample Program 1 shown in
"Appendix D" of the publication Basic

FORTRAN IV Language.

Object Module Card Deck

The compiler produces an object module.
This module is composed of four types of
card images -- TXT, RLD, ESD, and END. If

"Appendix D" of the publication Basic the DECK option is specified, the object
FORTRAN IV Language. module 1is written on the device specified;
c PRIME NUMBER PROBLEM
$.0001 100 WRITE (6,8)
5.0002 8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000/
119X, 1H1 /19X, 1H2/ 19Xy 1H3])

5.0003 101 1=5

S$.0004 3 A=I

$.0005 102 A=SQRT(A)

$.0006 103 J=A

5.0007 104 DO 1 K=3,4,2

$.0008 105 L=1/K

$.0009 106 IE(L¥K=1114244

5.0016 L CONTINUE

5.0011 107 WRITE (6,5)1

$.0012 5 FORMAT (120)

$.0013 2 [=1+2

$.0014 108 IF(1000-1)7,4,3

$.0015 4 WRITE (6,9)

S.6016 9 FORMAT (14H PROGRAM ERROR)

5.0017 7 WRITE (6,6)

$.0018 6 FORMAT (31H THIS IS THE END OF THE PROGRAM)

$.0019 103 STQP

5.0020 END
Figure 55. Source Module Listing

System Output 85

STORAGE MAP VARTABLES (TAGSO C=COMMON, E=EQUIVALENCE)
NAME TAG REL ADR NAME TAG REL ADR NAME TAG REL ADR NAME TAG REL ADR
I 000154 A 000158 00015C K 000160
L 000164
EXTERNAL REFERENCES
NAME REL ADR NAME REL ADR NAME REL ADR NAME REL ADR
SQRT 000168
CONSTANTS
NAME REL ADR NAME REL ADR NAME REL ADR NAME REL ADR
0€000005 000184 00000002 000188 000003E8 00018C
IMPLIED EXTERNAL REFERENCES
NAME REL ADR NAME REL ADR NAME REL ADR NAME REL ADR
1BCOM# 000220
STATEMENT NUMBER REL ADR STATEMENT NUMBER REL ADR STATEMENT NUMBER REL ADR STATEMENT NUMBER REL ADR
00100 000256 00100 000256 00008 0901a0 00101 00025C
00003 000274 00102 000294 00103 000246 00104 0002C%
00105 0002¢C 00106 0002D¢C 00001 0002F4 00127 000308
00005 0001DC 00002 000324 00108 000330 00604 000344
00009 0001E0 00007 000358 00006 0001F 4 00109 000360
Figure 56. Storage Map
in the SYSPUNCH DD statement; if LOAD is external references, the storage at the
specified, the module 1is written on the address indicated in the RLD card imrage

device specified in the SYSLIN DD state-
ment. A functional description of these
card 1images is given 1in the following
paragraphs.

OBJECT MODULE CARD IMAGES: Every card
image in the object module contains a
12-2-9 punch in column 1 and an identifier
in columns 2 through 4. The identifier
consists of the characters ESD, RLD, TXT or
END. The first four characters of the name
of the program are placed in columns 73
through 76 with the sequence number of the
card in columns 77-80.

ESD__Card: Three types of ESD card images
are generated:

ESD, type 0 - contains the name of the pro-
gram and indicates the begin-
ning of the object module.

ESD, type 2 - contains the names of subpro-

grams referred to by CALL
statements, EXTERNAL state-
ments, and function refer-
ences in the source program.
ESD, type 5 - contains information about
the COMMON area.
The number 0, 2, or 5 is placed in card
column 25.
RLD Card 1Image: An RLD card image is

generated for external references indicated
in the ESD, type 2 card images. To com-
plete external references, the addresses in
the RLD card image are matched with exter-
nal symbols in the ESD card images by the
linkage editor. When it has resolved

86

contains the address assigned to the sub-
program indicated in the ESD, type 2 card
image. RLD card images are also generated
for a branch list produced for statement
numbers, DO loops, and Statement Functions.

TXT _card Image: The TXT card image con-
tains the constants used by the programmer
in his source module, any constants gener-
ated by the compiler, coded information for
FORMAT statements, and the machine instruc-
tions generated by the compiler from the
source module.

END Card Image: Cne END card image is
generated for each compiled source module.
This card indicates the end of the object
module to the linkage editor, and contains
the entry point (where control is given to
begin execution of the module after it is
link edited).

OBJECT MODULE DECK STRUCTURE: Figure 57
indicates the FORTRAN object module deck
structure. If the object module is written
on a device other than the card punch, the
structure of the module is the same.

Source Module Diagnostics

Two types of diagnostic messages are
generated by the compiler - informative and
error/warning messages.

Source Module Informative Messages: Source
module messages tell the programmer or
operator about the status of the compiler.
A message is generated when the compilation

Indicating

Module Constants

ESD, Type 2, and
RLD for External
References in
CALL, EXTERNAL,
and Statements
Using Subprograms

ESD, Type 5,

Existence of the
COMMON Area

END Card, giving
the entry point
for the module

RLD Cards for
the Branch List

TXT Cards for
the Branch List

il

TXT Caids
for Object
Module Instructions

TXT Cards
for Compiler
Generated Constants

ESD, Type 2 and
RLD for Compiler

Generated External
References

TXT Cards for
Coded FORMAT
Statements

TXT Cards
for Source

the

ESD, Type O
Giving the Name
of the Object
Module

Figure 57.

Object Module Deck Structure

has Dbegun, when the compiler options are
processed, and at the end of compilation.
For a description of these messages, see

"Appendix D." S

Source Module Error/Warning Messages: All
error/warning messages produced are written
in a group following the source module
listing and storage map. Figure 58 shows
the format of each message as it is written
on the data set specified by the SYSPRINT
DD statement.

When error conditions cannot be ascribed
to a single source statement, the error
message contains an internal statement num-
ber S5.0000. For example, in the FORTRAN
statements

DOUBLE PRECISION DP
COMMON R, DP

the error message

TEJ146I $.0000 INCONSISTENT EQUATE

is issued, because a double-precision vari-
able is not placed on the proper boundary.
The error could be attributed to either
FORTRAN statement, so the internal state-
ment number S.0000 is assigned to the error
message.

There are two types of error/warning
messages: serious error messages and warn-
ing messages beginning with the word
"WARNING". Serious error messages transmit
a condition code of 8, 12, or 16. Warning
messages transmit a condition code of 4.

r - 1
| MESSAGE NUMBER STATEMENT NUMBER DESCRIPTION |
| IEJnnnI S.XXXX message |
b= T --- —mmmmmmmmmef
| nnn is the message number |
] XXXX is the internal statement number |
| message is the actual message printed |
| I - —_— - —_ J
Figure 58. Format of Diagnostic Messages

System Output 87

For a description of error/warning
sages, see "Appendix D."

mes-

LINKAGE EDITOR OUTPUT

The 1linkage editor produces a map of a
load module if the MAP option is specified,
or a cross-reference list and a map if the
XREF option 1is specified. The 1linkage
editor also produces diagnostic messages,
which are discussed in the "Appendix D" of
the publication Linkage Editor.

Module Map

The module map is written on the data
set specified in the SYSPRINT DD statement
for the linkage editor. To the 1linkage
editor, each program (main or subprogram)
and the COMMON area are control sections.

Each control section name is written
along with origin and length of the control

section. For a program, the name is list-
ed; for COMMON, the name $BLANKCOM is
listed. The origin and length of a control

section 1is written in hexadecimal numbers.
A segment number is also listed for overlay
structures (see the publication Linkage
Editor).

The names and locations of each control
section and entry points and their loca-
tions are also written; any functions
called from the data set specified by the

SYSLIB DD statement are listed and marked

by asterisks.

The total length and entry point of the
load module are also listed.

Figure 59 shows a load module map for
Sample Program 1 shown in Appendix D of the
publication Basic FORTRAN IV Language.

Cross—-Reference List

If the option XREF 1is
cross-reference list is written with the
module map. This cross-reference list
gives the location from which an external
reference is made, the symbol externally
referenced 1in this control section, the
control section in which the symbol
appears, and the segment number of the
control section in which the symbol
appears. Unless the 1linkage editor is
building an overlay structure, the cross-
reference list appears after the module map
for all control sections.

specified, a

Figure 60 shows the cross-reference list
and module map for Sample Program 1 shown
in "Appendix D" of the publication Basic
FORTRAN IV Language.

LOAD MODULE OUTPUT

The programmer
sets for load module

defines the output data
execution in READ,

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH NAME LOCATION

MAIN 00 37A

IHCSSGRT* 380 AC
SQRT 380

THCFCOME* 430 1484
IBCCM# 430

IHCFIoSH* 1888 [o-1¢}
FI0cSH 1888

IHCUATBL* 2508 638

ENTRY ADDRESS 00

TOTAL LENGTH 28B40

MODULE MAP

NAME

LOQCATION NAME LOCATION NAME LOCATION

1oCs# 460

Figure 59. Module Map

88

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH NAME LOCATION
MAIN [o]o] 37A
IHCSSQRT* 380 AC
SQRT 380
IHCFCOME* 430 1484
IBCOM# 430
IHCFIDSH* 1888 €50
FIOCS# 1888
IHCUATBL * 2508 638
LOCATION REFERS TO SYMBOL IN CONTROL SECTION
168 SQRT IHCSSQRT
220 IBCOM$ THCFCOME
404 [BCOM# IHCFCOME
A5C FIOCS# IHCFEIGSH
CFC FIOCS# THCFIOSH
130C IHCUATBL ITHCUATBL
LSES8 [BCOM# IHCFCOME
ENTRY ADDRESS 00
TOTAL LENGTH 2840

CROSS REFERENCE TABLE

NAME LOCATION NAME LOCATION NAME LOCATION

FDIOCS# A60

Figure 60. Linkage Editor Cross-Reference List

WRITE, and FORMAT statements. At execution written when an exception occurs. Operator
time, FORTRAN load module diagnostics are intervention is not required for any of
generated in three forms - error code these exceptions (interrupts), and execu-
diagnostics, program interrupt messages, tion is not terminated. The program inter-
and operator messages. An error code rupt messages are written on a data set

indicates an input/output error or a misuse
of a FORTRAN library function. A program
interrupt message (which is a special form
of an error code diagnostic) indicates a
condition which System/360 cannot correct.
An operator message 1is generated when a
STOP or PAUSE is executed.

Error Code Diagnostics

When an error condition arises during
execution of & FORTRAN load module, a
message of the form
IHCxxxI [message text]
is printed. The error code is the number
specified by the digits xxx. With some
error code diagnostics, a "message text" is
printed. The error code diagnostics are
described in Appendix D.

The error code diagnostics are written

on a data set specified by the programmer.
(See "Job Processing.™)

Program Interrupt Messages

Program interrupt messages
0ld program status word

containing

the (PSW) are

specified by the programmer (see "Job Proc-
essing.") For a detailed description of
| these messages, see Appendix D.

ABEND_Dump

If a program interrupt occurs that caus-
es abnormal termination of a 1load module,
an indicative dump is given (i.e., only the
contents of significant registers, indica-
tors, etc., are dumped). However, if a
programmer adds the statement:

//GO.SYSABEND DD SYSOUT=A

to the execute step of a catalcged proce-
dure, all main storage and registers are
dumped. For information about interpreting
the indicative and abnormal terminaticn
dumps, see Part V of the Messages, Comrle-
tion Codes_and Storage Dumps publication.

Operator Messages

A message is transmitted to the operator

when a STOP or PAUSE is encountered during
load module execution. Operator messages
are written on the device specified for

operator communication. For a description
of these messages, see Appendix D.

System Output 89

The following examples show several
methods to process load modules. Example 1
consists of a single job step that uses
blocked variable-length records as output
in a matrix inversion application. Example
2 shows the rocket firing example used in
the "Introduction" to show job and job step
relationships. Example 3 uses a generation
data group to report and forecast the
weather. Example 4 shows a program to
update a direct access data set that con-
tains star master records.

Example 1

Problem Statement:
A previously created and cataloged data set
SCIENCE.MATH.MATRICES contains 80 matrices.

SCIENCE. , SCIENCE.; \
MATH. MATINY MATH.
MATRICES INVMATRS
Printed
Output

Figure 61. Input/Output Flow for Example 1

APPENDIX A: EXAMPLES OF JOB_PROCESSING

Each matrix is
variables.
from 2x2 to

an array containing real
The size of the matrices varies
15x15; the average size 1is

10x10. The matrices are inverted by a load
module MATINV in the PDS MATPROGS. Each
inverted matrix is written as a single
record on the data set
SCIENCE.MATH.INVMATRS. The first variable
in each record denotes the size of the

matrix. Each inverted matrix is printed.
The I/0 flow for the example is shown in

Figure 61. The job control statements used

to define this job are shown in Figure 62.

The JOB statement identifies
the programmer as JOHN SMITH and supplies
the account number 537. The MSGLEVEL pa-
rameter indicates that both control state-
ments and control statement diagnostic mes-
sages are printed on the console typewrit-
er.

The JOBLIB DD statement indicates that
the cataloged PDS MATPROGS is concatenated
with the system library.

The EXEC statement indicates that the
load module MATINV is executed.

DD statement FT08F001 identifies the
input data set, SCIENCE.MATH.MATRICES. (In

the 1load module, data set reference number
8 is used to read the input data set.)
Because this data set has been previously
created and cataloged (DISP=0OLD), no other
information has to be supplied.

Sample Coding Form
1-10 [11-20 1 21-30 [31-40 T 41-50 | 51—60 [61-70 | 71-80

I121314[516[7I8Iel0[112(3[415]6[718]s[0[1 [2[31415[6]7[89]0]1 [2]314{516[7I8[9[0] 1 [213]al56[7[8[9]o[1123 [4[5]e[7I8[9[0l 1 [2[3[4[5[el7e[9lol 1 [2[3[4[5lel7]8[810]
//INVERT JOB 537+JOHNSMITHIMSGLEVEL=Y = | i e
/1JOBLIB DD, DSNAME=MATPROGS SDLSP=O0LD, | 1\ .\ 1\ttt et bt i teies
[/INVERT EXEC PGM=MATINV | . . ., o0oooopoiiite it bbb
/I FT@8F@01, DD DSNAME=SCIENCE .MATH.MATRICESsDISP=0LD | | il
/./.F.T.IIQ.F.QWJIBDL.SLY.S.QUJLIiAU.|.LLJJIHIL11...I_um.uill.k.|11.1;...,1...,;..IJ|.,
//FT@H4FOB1 DD DSNAME=SCIENCE .MATH-INVMATRSS. . | . i it
It i, o) DISPS(NEWSCATLG) sUNIT=DACLASS VOLUME-SER=108M, , , |, ., 12, |, .,
I ; ... SPACE= (@8, (8@19)RLSEICONTIGIROUND)9SEP=FT@8FBOLY 3 1., .,
/oy, DCB=(RECFM=VB, LRECL-908/BLKSIZE-2728) 1\ |\ 0\ ileyoioisoler,
ceea by b e by e by b e b b e b o b b e b b e b Lo g day
Figure 62. Job Control Statements for Example 1

Appendix A: Examples of Job Processing 91

DD statement FT10F001 identifies the
printed output. (In the load module, data
set reference number 10 is used for printed
output.) The data set is written on the
device class specified in the SYSOUT param-
eter. The records are then written on a
device determined by the operator when the
job is executed.

DD statement FTOUF001 defines the output
data set. (In the load module, data set
reference number 4 1s +used to write the
data set containing the inverted matrices.)
Since the data set is created and cataloged
in this job step, device, vwvolu space,
record format, and length information are
supplied.

The DSNAME parameter indicates that the
data set 1is named SCIENCE.MATH.INVMATRS.
The DISP parameter indicates that the data
set 1s created (NEW) and cataloged (CATLG)
in this Jjob step. The SPACE parameter
indicates that space 1is reserved for 80
records, 408 characters long (80 matrices
of average size). When space is exhausted,
space for 9 more records is allocated. The
space 1is contiguous (CONTIG); any unused
space is released (RLSE), and allocation
begins and ends on cylinder boundaries
(ROUND) .

The DCB parameter indicates Dblocked
variable-length records (RECFM), because
the size of matrices varies. The FORTRAN
record length is 904, the maximum size of a
FORTRAN record. The maximum size of a
FORTRAN record in this data set is the
maximum number of elements 1in a matrix
multiplied by the number of bytes allocated
for an element (900) plus 4 for the vari-
able that indicates the size of the matrix.
LRECL is specified as 908 (the FORTRAN
record 1length plus 4 for the segment con-
trol word used by the operating system for
a variable-length record). BLKSIZE is
specified as 2728 (an integral multiple of
LRECL plus 4 for the block control word
used for blocked variable-length records).

The parameter SEP indicates that I/0
operations for the data set SCIENCE.
MATH.INVMATRS should use a different chan-
nel from I/0 operations for the data set
SCIENCE.MATH.MATRICES.

Example 2

Problem Statement: A previously created
data set RAWDATA contains raw data from a
test firing. A load module PROGRD refines

data by comparing the data set RAWDATA
against a forecasted result, PROJDATA. The
output of PROGRD 1is a data set EREFDATA,
which contains the refined data.

The refined data is wused to develop
values from which graphs and reports can be
generated. The load module ANALYZ contains
a series of egquations and uses a previously
created and cataloged data set PARAMS which
contains the parameters for these equa-
tions. ANALYZ creates a data set &VALUES,
which contains intermediate values.

These values are used as input to the
load module REPORT, which prints graphs and
reports of the data gathered from the test
firing. Figure 63 shows the I/0 flow for
this example. It is the same as Figure 1
in the "Introduction" except that the data
sets and programs have been assigned the
names indicated in the preceding text.
Figure 64 shows the job control statements
used to process this job.

The 1load modules REFDAT, ANALYZ, and
REPORT are contained in the PDS FIRING.

Explanation: The JOB statement indicates
the programmer's name, JOHN SMITH, and that
control statements and control statement
errors are printed on the console typewrit-
er (MSGLEVEL=1).

RAWDATA

PROJDATA PROGRD

; REFDATA

PARAMS ANALYZ

REPORT

!

Graphs
and
Reports

Figure 63. 1I/0 Flow for Example 2

Sample Coding Form
1-10 I 11-20 ! 21-30 31-40 I 41-50 51-60 } 61-70 ‘ 71-80
|Q3MB%W®BDHR§A5{78BOH2BME]TBBWMQQMQWW%BMM23M6&78901ﬁ3m5ﬁﬂ@@0123466ﬂ@m@n2ﬂ45ﬂﬂ&m0
/./lTESTFIREI‘JOBpJOHNSMITHpMSGLJEVELiHH_H”"HM‘H[_H“H_H,l””]‘”
//JOBlLI 11 IDID il INLAME FIRING,DISP[(’IPIA\SS)l | I - l I | 1 i b4l | IS - | R | l I l I l) I
//5TEIP1EXECPGMPR0|GRD » I N Y N ST
//FTl ¢F¢¢1 LDJDL D‘ 1 IAMEJ RAWqA\TJAl’!D IISJPI OLIDI J ! J N ' }) 1 b I) ‘ B - 1) N] | 111 ! L - l o1
// FT11F¢¢1| DﬁlNAMEl ROJ DATA,IDIIJSIPI OLD J i1 L LSO ‘ i 140 1 I N N T | | L1l ‘ | - l -
//IFIT112FI¢¢11| 1) DSNAME[gREFDAT DIiSJpl (NEW’JPLAISIS) sLULNJIJTl T‘A‘PIECJLISI" 1 Lo 4 1 L N | l 17 | JLL 1)
/I/I 11 | 1t 11 { L1 11V0LUM!E (’RETAINI’SER ‘2107)},l - ‘i L {11 \ L1l L% I 1) D l - 1 I { | .
/I/I 11 | Il 11 ; L1 11 CB (DEN 2,>R\EICLF1M lFi’lBLLKASI iZIEI:huI¢l¢1)J PR | J | | D i T | | | I | ‘ .
//STEP2 EXECL LPJGlMl IACNIAILYIZI 1 | I | I | ‘) ' { B B N | IJ 1 4] l L1l l I o l - Ll) -l J Lt
/I/IFT17F¢¢1| i IDIS AME' L*J LSLTEP\il ‘F l1\2IFl@¢1 ,DISP OLD L1 | S | I — l Lot 11 1 I N 1 A T | ! I
// FTi 8F¢¢1| LDLDLJDSIMIA|MIEl LP,LALRLAMS\’IDLI Slpi JOILiDl Y - N | |] | | | | - Il 1 I r I I J BN W | I 1ot 1l
/‘/|F|T|2(25F(25(b1 DD IDSNAME| 8VALU‘E1$17PIIS‘PI =(NEW> | ASS) 7|UNIT-TAPECLS'; N T
//I I ' | I I I L4l |DCIBI l(D\EINI 12 \RIEICIFMI lFl,BLlKLSIIZEl IZQLH)I,VOL UME SEIRI \2I1'¢\8 [I | l Lt I L
//STEPI3I IEXLEICI IPIG LJRJELPOQITI L] Lo)4 ‘ | IS N Y 1 I li N N T | J) I § | ‘ | ‘ I - [F I T |]‘ I | l] I
I |F'-I—|%8FI¢¢1J IDIDI jDSLNAMEl * STELPIZI 1F 21¢Fp1¢11’IDII IPL IOILD 1.1 ' § I - ‘ | I ‘ L O ‘ Ll] |]) I |
/l/lFl.rlinggil 11 | 1 N\IITI \PRINTE 11 U 1 !) | I ‘ | T ‘ T I - ‘ 11 1| | | O S ‘ Lyl 1 | | I Lol b | I) '}
coa b e b e b b N B N I RS US RS [
Figure 64. Job Control Statements for Example 2
The JOBLIB DD statement indicates that DD statement FT17F001 identifies the
the PDS FIRING is concatenated with the data set which contains refined data. The
system library. DSNAME parameter indicates that the data
set was created using DD statement FT12F001
The EXEC statement STEP1 defines the in Jjob step STEP1l. The DISP parameter
first Jjob step in the job, and indicates indicates that the data set is deleted
that the load module PROGRD is executed. after execution of this job step. The DD
statement FT18F001 identifies the

The DD statements FT10F001 and FT11F001
identify the data sets containing raw data

(RAWDATA) and the forecasted result
(PROJDATA), respectively.
DD statement FT12F001 defines a tempo-

rary data set, &SREFDATA, created for input
to the second step. (In the 1load module,
data set reference number 12 is used to
write &REFDATA.) The DISP parameter indi-
cates that a data set is created (NEW) and
is passed (PASS). The data set is written
using the device class TAPFCLS. The VOLUME
parameter indicates that the volume iden-
tified by serial number 2107 is used for
this data set. The DCB parameter indicates
that the volume is written wusing high
density (DEN). The records are fixed-
length (RECFM). The logical record length
is 400; therefore, the buffer length
(BLKSIZE) is specified as u400.

The EXEC statement STFP2 defines the
second Jjob step in the job and indicates
that the load module ANALYZ is executed.

Appendix A:

previously created and cataloged data set

PARAMS.

DD statement FT20F001 defines the tempo-
rary data set &VALUES containing the inter-
mediate values. The DISP parameter indi-
cates that the data set is created in this
step and that it is passed. The data set
is written on volume 2108 using one of the
devices assigned to the class TAPECLS. The
DCB parameter indicates high density (DEN),
fixed-length records (RECFM). Each record
is 204 characters long (BLKSIZE).

The EXEC statement STEP3 defines the
third job step and indicates that the load
module REPORT is executed.

DD statement FTO08F001 identifies the
data set containing intermediate values.
The DSNAME parameter indicates that this
data set 1is defined by the DD statement
FT20F001 in job step STEP2.

Examples of Job Processing 93

DD statement FT10F001 indicates that the
data set reference number 10 1is wused to Weather FILECR Weather
print the reports and graphs for job step Data Conditions
three.
Example 3

FORCST

Problem Statement: A generation data
group, WEATHER, is updated and then several
of the data sets within the group are used WEATHER(-2) WEATHER(-1)
to produce a forecast. \ f

The load module FILECR in the PDS WTHRPR

reads a card data set and creates

generation data set. The new generation
contains current data about weather condi-

a new Weather

Forecast

tions. FILECR also generates a weather

report.

Figure 65. 1I/0 Flow for Example 3

The load module FORCST in the PDS WTHRPR Explanation: The JOB statement defines the
then uses the new generation along with job WEATHRP to the operating system, and
three other generations of the group to indicates that only control statement error
forecast the weather. The weather forecast messages are printed on the console type-

is written on the printer. Figure 65
the input/output flow for the

shows writer. The JOBLIB DD statement indicates
job. that the PDS WTHRPR is concatenated with

Figure 66 shows the job control statements. the system library.

Sample Coding Form
-10 | I [31-40 \ 41-50 1 51— I 61-70 I 71-80

EHMBMWWBMImbmmmwmbbhmuﬂﬂmﬂmﬁmMﬂuﬂﬂaﬂmmmMHMMﬂmnmmmuayﬂﬂaﬂmmmHmﬂﬂﬂﬂjﬂﬂqnﬂmqmﬂﬂs90
/1/WE.A1TLHLRP.[‘JkO.BJMsle.LlEVElL‘lul....l“.vll|.|I<.A.JH..\....l‘...l,...IJ_LHIHHI....
/1JOBLIB DD DSNAME=WTHRPRIDISP=(OLDIPASS). o\ttt il
//pREAIExﬁml‘IP@M,FILEQRl,,,,\,,l,l,,,,}l,l,,,,,,;,,l||\,l‘;,,l,i,,ll;,,,,l,lu
/1 FT@8F@@1, DD DﬁNAMElWEATHER(+&)3UNJI!(HYPERﬂxzuﬁFER)7;li,liLL,,,,l.‘;\,.ll,.,
/1 VOLUME= (7REIALNzQER|¢¢12)zQLSP,QME 1CATLG)a|: 2
//l,ljlkllillllﬁABELLjpﬁysRETPD =0@30) 9sDCB= (REQEM3H1§LK512E,$6¢) o
/,/,F,T9131F¢1¢1,,DH\,NIIT PRINTERaDCBlpRTS,P 1.,|....1.......I.4...(].\.L....[].,..J.,H
/IFTPLFOQL DD % WEATHER DATA FOLLOWS ., |, .\, (. | .i0ii'ioiifiiits..,
J.Lm..1M/ela.ﬁhlemaam..l\....|....|H.1|...,|.H.!.,.‘|.l..;HHL“Hg....¢LH.
/¥.L.‘...Jll.llx..l.\.‘..\.INDICATES.ENDIOF DATA
//prECAST‘ﬁxec[PGM foppsﬁl“,lllll,,,il,ll,“llh‘;‘llj“,(‘],,,JilL,l}ll,,_,},
//FT2¢F¢¢1|‘DD DSNAME_WQA(HERK+1),p15p‘ogul L
/lFT21FQ¢1,\ ‘lDSNAME =WEATHER(@) s SEP= FT2¢Fﬂ¢ﬂpP}§PIOLq‘,,,;,l,,ilL,‘; N
/IFT22F @01, ,DwmgMMMm(nmwgmguMHL‘H_HJHH,“H@_J“_
“Ltlzéi_ﬁi;‘DD_Lpf"'Mt “WEATHER(-2)0DISP=OLD | | i\ fiiiliiielss
//FTO3F@@4, , DD pNIT,PRINTER\IlI“K!‘Illg_A‘ILI, R
PR T A O S U U S S S U A SRV HN S SO N S (IO ST HN U 0TS S S NS U N S H S SY VS S G S MAUY

Figure 66. Job Control Statements for Example 3

\0
E:

The EXEC statement defines the first
step CREATE to the operating system and
indicates the execution of the load module
FILECR in the PDS WTHRPR.

DD statement FT08F001 defines +the new
member of the generation data group. A
member of the class of devices HYPERT is

used for the data set, and mounting of the
volume is deferred (DEFER). The DISP pa-
rameter indicates a new data set (NEW) and
that it is cataloged (CATLG). The label
parameter indicates standard labels are
written and the retention period is 30
days. The DCB parameter indicates fixed-
length records (RECFM), each 400 characters
long (BLKSIZE).

DD statement FTO03F001 defines printed
output. The DCB field indicates that the
report is double-spaced. The SEP parameter
indicates channel separation from the data
set defined by DD statement FTO8F001. DD
statement FT01F001 indicates that the card
data set is in the input stream.

The second Jjob step is defined by the
EXEC statement FORECAST, which indicates
that the 1load module FORCST 1is to be
executed. The DD statements for data set
reference numbers 20 through 23 retrieve
members of the generation data group
WEATHER. DD statement FTO3F001 indicates
printed output for the weather forecast.

Example 4

A data set has been created that con-
tains master records for an index of stars.
Each star is identified by a unique six-
digit star identification number. Each
star is assigned a record position in the
data set by truncating the last two digits
in the star identification number. Because
synonyms arise, records are chained.

The following conventions must Dbe
observed in processing this data set:

1. The star master record that contains
the record location counter pointing
to space reserved for chained records
is assigned to record location 1.

2. A zero in the chain variable indicates
that the end of a chain has been
reached.

3. The first variable in each star master
record is the star identification
field; the second variable in each
star master is the chain variable.

4. Each record contains six other vari-
ables that contain information about
that star.

Problem Statement: Figure 67 shows a block
diagram illustrating +the 1logic for this
problem.

A card data set read from the input

stream 1is used to update the star master
data set. Each record (detail record) in
this data set contains:

1. The star identification field of the
star master record that the detail
record is used to update.

that are to be used to
master.

2. Six variables
update the star

When a star detail zrecord is read, its
identification field is randomized, and the
appropriate star master record is read. If
the correct star master record is found,
the record is to be updated. If a star
master 1is not found, then a star master
record is to be created for that star.

The last record in the star detail data
set contains a star identification number
999999 which indicates that processing the
star detail data set is completed.

Explanation: Figure 67 is similar to the
diagram shown in Figqure 53, except Figure
67 includes blocks that describe updating
variables in master records already present
in the data set. (Figure 53 includes
blocks describing certain operations that
must be performed when a direct access data
set is first written.) Also, Figure 67 is
adapted to Example 4, whereas Figure 53 is
more general. Figure 69 shows the FORTRAN
coding for this program.

The star master record that contains the
record counter is read, placing the record
location counter in LOCREC. Whenever a
detail record is read, the identification
variable is checked to determine if the end
of the detail data set has been reached.
The star detail records contain the vari-
ables A, B, C, D, E, and F.

The identification number in the detail
record is randomized; the result is placed
in the variable NOREC, which is used to
read a master record. The master record
contains the star identification number
(IDSTRM), a chain record location (ICHAIN),
and six variables (T, U, V, W, ¥, and 2)
which are to be updated by the variables in
the star detail records. IDSTRM and IDSTRD
are compared to see if the correct star
master is found. If it is not, then the
variables containing the chain record num-

bers are followed until the correct star
master is found or a new star master is
created.
Appendix A: Examples of Job Processing 95

Write Star
Master
Record

1

\ Stop)

Set Record Position
in Read Statement
= Chain Variable

Figure 67.

96

Read Star
Master
Record
No. 1

Read Star
Detail
Record

Ident
in Star Detail
=999999

Rendomize Star
Number to a
Record Location

1

Read Star
Master
Record

Ident
in Star Detail =
Ident in Star
Master

Chain
Variable in
Master =

Set Chain
Variable = Record
Location Counter

Write
Master
Record

Set Record Position
in Write Statement
= Record
Location Counter

Increment
Record Location
Counter by 1

¥

Build Star

Write Star
Master
Record

Update
Variable in
Star Master

Master Record

Block Diagram for Example U

Job_ Control Statements: The program shown
in Figure 69 is compiled and 1link edited,
placing the load module in the PDS STARPGMS
and assigning the 1load module the name
UPDATE. The data set that contains the
star master records was cataloged and
assigned the nawme STARMSTR when it was
created. Figure 68 shows the Jjob control
Sstatements needed to execute the module
UPDATE.

Sample Coding Form

I 11-20 [21-30 \ 31-40 [41-50 I 51—60 [61-70 i 71-80

!2]3\4|5\6!7\8!9\OJ 112]3]4[56]7[819]0’ I|2<3]4'5|6!7l8|9 o[1]2] ﬂ—risl?lﬁlgloﬂ]2131415}617]8I9T0\ | |2|3|4j5]e|7is]9[0J { |2]314ISI6[7|8]9I0\ | I213[4!5!6]7\8]_(0
//STARDAUP_JOB 323" J-ASTRONOMER'sMSGLEVEL=L | .\ . . .\ .. .\ .. .\ .
//JOBLIB DD DSNAME STARPGMSaDISP =0LD
// EXEC PGMUPDATE llILj\ii\ IJM,;H@H,TM,_ ,
//FT¢7F¢¢1 DD DSNAMEl ISITARMSTRfDISP-OLDI,HH_HI_” L
//mem DD* | | STAR DETAILS FOLLOW
HIlIHStarDetazl Data Set”1....1..l.|..‘.|....;..‘ L
/*..1|....,‘,411 ENDOF STAR DETAILsMTLJIJ““;WI,‘ R

.;.JI;.x.I\.l\P.H\L.JHM.J\IHHIH..I,‘..\.,

!

b

Figure 68. Job Control Statements for Example U4

Appendix A: Examples of Job Processing

97

STATEWENT g FORTRAN STATEMENT Rlireli
| DEFINE FILE 7(12000»1303[EsNEXT) ‘ S
C READ| RECIORD CIONTAINING RECORD LOCATION COUNTER
READ|(7'151@1)IDSTRM9LOCREC
C READ| STAR: DATA AND| CHECK FOR| LAST| STAR DATA RECORD
26 READ|(171@2)IDS[TRDsA[sBsCsDSESF
IF(IDSTRD-999999) 28999992 .
C RANDIOMIZE IDENTIFIICATION FIELD IN. STAR DATA AND READ |STAR MASTER
29 NORE|C=IDS[TRD/ 10¢@ - ‘
27 READI(7'NOREC1/03) IDISTRMsICHAINATUI Y9 Xo[Y9 Z
C IS THIS |CORREICT STIAR MASTER
IF(IPSTRD-IDSTRM) 219225211
C IS THERE| A CHAIN VARIABLE
21 TFCIICHAIND 24924923
C NO-BEGIN CONSTRUCTING NEW MASTER |AND CHAIN
C UPDATE CHAIN VARIABLE IN LAST STAR MASTER RECORD| AND WRITE| LAST| RECORD
24 ICHAIN=LOCREC .
WRITE(7'NOREC1®1)IDSTRMsICHAIN
C SET| RECORD NUMBER TO BEGIN CIONSTRUCTION OF NEW STAR MASTER|- UPDATE
C RECORD LIOCATION COUNTER|s BUIILD NEW STAR MASTER RECORD
NOREIC=LOCREC
LOCREC=LOCREC+]1
C GO [TI0 WRIITE STAR MASTER| RECQRD
.. 1160 Ti0 25 i ‘ i
C IF RECORD IS [FOUNDy UPDATE AND WRITE S[TAR MASTER
22 Z=A/B
25 WRITIE(7'NOREC103)IDSTRMsICHAINSTU2V WYy 2
C 60 [TO READ NEXT STAR DATA REICORD
GO TO 26
C IF CHAIN VARIIABLE TN REICORD READ [THE NEXT SITAR MASTER IN THE CHAIN
23 NOREIC=ICHAIN
GO To 27
C IF END OF STAR DATA-WRITE STIAR MAISTER |ICONTAING RECORD| LOCATION |COUNTER
99 IDSTRM=0
RITE(7'19161)IDSTRM>LOCREC
STOP| 229919
101 FORMAT(I6[>I4) ;
162 | [FORMAT(I6lv6F1@.3)
103 FORMAT(T6)sI4y6F20@.3) ‘
END
Figure 69. FORTRAN Coding for Example U4

98

A FORTRAN programmer can use assembler
language subprograms with his FORTRAN main

program. This section describes the link-
age conventions that must be wused by the
assembler language subprogram to communi-

cate with the FORTRAN main program. To
understand this appendix, the reader must
be familiar with the publications Assembler

Language and Assembler (E) Programmer's
Guide or Assembler (F) Programmer's Guide.

SUBROUTINE REFERENCES

The FORTRAN programmer can refer to a
subprogram in two ways: by a CALL statement
or a function reference within an arithme-
tic expression. For example, the state-
ments

CALL MYSUB(X,Y,2)
I=J+K+MYFUNC (L, M, N)

refer to a subroutine subprogram MYSUB and
a function subprogram MYFUNC, respectively.

For subprogram reference, the
generates:

compiler

1. BAn argument list in which the address-
es of the arguments are placed to make
the arguments accessible to the sub-
program.

2. A save area in which the subprogram
can save information related to the
calling program.

3. A calling sequence to pass control to
the subprogram.

Argument List

The argument list contains addresses of
variables, arrays, and subprogram names
used as arguments. Since the arguments are
located in the main program, these address-
es are locations within the main program.
Each entry in the argument 1list is four
bytes 1long and is aligned on a full-word

Appendix B:

APPENDIX B: ASSEMBLER LANGUAGE SUBPROGRAMS

The last three bytes of each
entry contain the 24-bit address of an
argument. The first byte of each entry
contains zeros, unless it is the last entry
in the argument 1list. If it is the last
entry, the first (leftmost) bit in the
entry contains a 1.

boundary.

The address o¢f +the argument 1list is
placed in general register 1 by the calling
program.

Save Area

The calling program contains a save area
in which the subprogram places information,
such as the entry point for this program,
an address to which the subprogram returns,
general register contents, and addresses of
save areas used by programs other than the
subprogram. The amount of storage reserved
by the calling program is. 18 words.
Figure 70 shows the layout of the save area
and the contents of each word. The address
of the save area is placed in general
register 13.

FORTRAN main programs do not save
floating-point registers. If these reg-
isters must be saved, the assembler 1lan-

guage subprogram is responsible for saving
and restoring these registers.

Calling Sequence

A calling sequence is
transmit control to the
address of the save area in the calling
program is placed in general register 13.
The address of the parameter list is placed
in general register 1, and the entry
address for the subprogram 1is placed in
general register 15. An instruction is

generated to
sukprogram. The

then generated to branch to the address in
the general register 15 and to save the
return address in general register 14.

Table 15 shows a use of

general registers.

summary of the

Assembler Language Subprograms 99

[T e s St et ot e i i T e o ot . e S s e e e e e e e e e . e e . e e = . et s)

AREA-- >r - - N

(word 1) {This word is used by a FORTRAN-compiled routine to |
| store its epilogue address and may not be used by the |
|assembler language subprograms for any purpose. |

AREA+U >t _—— 4

(word 2) |If this program which calls the assembler language subprogram is itself aj
| subprogram, this location contains the address of the save area of the]
lcalling program. Otherwise this location is not used.

AREA+8 > _— -

(word 3) |The address of the save area of the subprogram called by this program.

1
|
|
I
|
|
|
|
|
|
|
|
|
|

| |
| |

AREA+12——=->}——=— —_ - -_— —— - —_ |

(word U4) |The contents of register 14; that is, the address to which the subprogram| |
|returns. If a subprogram returns to this program, the first byte of this| |
|location 1is set to ones, indicating that the called subprogram has| |
|

|

|

|

|

|

|

|

[

|

|

[

|

|

|

[

[

[

1

T R S —

|returned control.

AREA+16——->} T -

(word 5) |The contents of register 15; that is, the address to which entry to the
|subprogram is made.

AREA+20-=—>f—m—om—e——— —_—— -

(word 6) |The contents of register 0.

O S _
. | .
. | .
. | .

AREA+68——=>}p—————mme _— - -

(word 18) |The contents of register 12.

b e e s s i e b st et s s e o

Figure 70. Save Area

T

able 15. Linkage Registers

r T - T - h
|Register |Register Name| Function i
| Number | | i
b frmmmmmmoeeee t O 1
| 0 | Result |Used for function subprograms only. The result is returned in |
] | Register |general or floating-point register 0. (For subroutine subpro-j
|] |grams, the result(s) 1is returned by the subprogram in a|
| | |variable(s) passed to the subprogram by the programmer in his|
] | | CALL statement.) |
pomm oo R oo m e ——
| 1 |Argument List|Address of the argument list passed to the called subprogram. |
] | Register | |
pomomm - - e --- - — |
| 13 | save Area |Address of the area reserved by the calling program in which |
i | Register |the contents of registers are stored by the called program. |
prmmm -t R s :
| 1 | Return |Address of the location in the calling program to which control}
] | Register |is returned after execution of the called program. |
b —— ————————————————— e
] 15 T Entry Point |Address of the entry point in the subprogram. 1
| | Register | |
| I G ———1i ———————————— _— ———————— J
100

CODING THE ASSEMBLER LANGUAGE SUBPROGRAM

Two types of assembler language subpro-
grams are possible: the first type (lowest
level) assembler subprogram does not call
another subprogram; the second type (higher
level) subprogram does call another subpro-
gram.

Coding a Lowest Level Assembler Language
Subprogram

For the lowest level assembler language

subprogram, the linkage instructions must
include:
1. An instruction that mnames an entry
point for the subprogram.
2. An instruction(s) to save any reg-

isters wused by the subprogram in the
save area reserved by the calling
program. (The contents of 1linkage
registers 0 and 1 need not be saved.)

3. An instruction(s) to restore the
"saved"™ registers before returning
control to the calling program.

4. An instruction that sets the first
byte in the fourth word of the save
area to ones, indicating that control
is returned to the calling program.

5. An instruction that returns control to

the calling program.

Figure 71 shows the linkage conventions

does not call another subprogram. In addi-
tion to these conventions, the assembler
program must provide a method to transfer
arguments from the calling program and
return the arguments to the calling pro-
gram.

Sharing Data in COMMON

With FORTRAN (E), general register 4
contains the address of the COMMON area.
If the size of the COMMON area exceeds 4095
bytes, additional registers (e.g., register
5, 6, and 7) are assigned consecutively.

Higher Level Assembly Lanquage Subprogram

A higher level assembler subprogram must
include the same linkage instructions as
the 1lowest 1level subprogram, but because
the higher level subprogram calls another
subprogram, it must simulate a FORTRAN
subprogram reference statement and include:

1. A save area and additional instruc-
tions to insert entries into its save
area.

2. A calling sequence and a parameter
list for the subprogram that the high-
er level subprogram calls.

3. An assembler instruction that indi-
cates an external reference +to the
subprogram called by the higher 1level

for an assembler language subprogram that subprogram calls.

= T T - == - - - T === -
| Name |Oper. |Operand Comments

1 ———— 1 ——— —_— -

i i T
|deckname |START {0

|

|

|
—t

	BC	15, m+1+4 (15) BRANCH AROUND CONSTANTS IN CALLING SEQUENCE
	DC	X*m* m MUST BE AN ODD INTEGER TO INSURE THAT THE PROGRAM
	DC	CLm'name‘ STARTS ON A HALF~WORD BOUNDARY. THE NAME CAN BE PADDED
*		WITH BLANKS.
	STM	14,R,12(13) THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE
*		STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY
*		NUMBER FROM 0 THROUGH 12.
	BALR	B,0 ESTABLISH BASE REGISTER (2<12) [
	USING	*,B
	user	written source statements
	1.	
		-
		.
	LM 12,R,28(13) RESTORE REGISTERS	
	MVI]12(13) ,X*FF' INDICATE CONTROL RETURNED TO CALLING PROGRAM	
	BCR 115,14 RETURN TO CALLING PROGRAM	
L 4 1 _ - 4
Figure 71. Lowest Level Assembler Subprogram

Appendix B:

Assembler Language Subprograms 101

4. Additional instructions in the return In-Line Argument List
routine to retrieve entries in the
save area.
The assembler programmer can establish
Figure 72 shows the linkage conventions an in-line argument 1list instead of an
for an assembler subprogram that calls out-of-line list. In this case, he deletes
another assembler subprogram. the argument list shown in Figure 71 and
substitutes the calling sequence shown in
Figure 73 for that shown in Figure 71.
| bttt I T - e 1
| Name |Oper. |Operand Comments |
PO oo i
| deckname |START |0 |
| |EXTRN |Iname, NAME OF THE SUBPROGRAM CALLED BY THIS SUBPROGRAM |
] | BC 115, m+1+4(15) |
| {DC |X*m* | |
| |DC |CLm* name, |
| * | | SAVE ROUTINE |
| | STM]14,R,12(13) THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE |
| | | STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY|
| i | NUMBER FROM 2 THROUGH 12. |
| |BALR |B,0 ESTABLISH BASE REGISTER |
] |USING |*,B |
| |LR 10,13 LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE | |
|+ | | CALLING PROGRAM, INTO ANY GENERAL REGISTER, Q, EXCEPT O, |
| * | | 1, 13, and 15. |
| |LA |13,AREA LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO |
| * I I REGISTER 13. I
| |ST |13,8(0,0) STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO THE |
| * | | CALLING PROGRAM'S SAVE AREA |
| |ST 19,4(0,13) STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE |
| * | | AREA OF THE CALLING PROGRAM) INTO WORD 2 OF THIS PRO-]
| * | | GRAM'S SAVE AREA |
| | BC j15, prob, '
| AREA |DS |18F RESERVES 18 WORDS FOR THE SAVE AREA |
| * | |END OF SAVE ROUTINE |
|prob, |user |written program statements |
l | - | |
[| - | |
| - | |
| * I {CALLING SEQUENCE |
| |LA |11,ARGLIST LOAD ADDRESS OF ARGUMENT LIST |
| L {15, ADCON |
] |BALR |14,15 i
| |more |user written program statements- |
| . |
| | - | |
| |- | |
| * | |RETURN ROUTINE |
| jL }13, AREA+4 LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA RACK INTO |
| * ! ! REGISTER 13 |
| | LM 12,R,28(13) |
] L 114,12(13) LOADS THE RETURN ADDRESS INTO REGISTER 14. I
| |MVI |12(13) ,X"FF* i
| | BCR |15,14 RETURN TO CALLING PROGRAM |
| * | |END OF RETURN ROUTINE |
| ADCON |DC |A(namey) |
i * i | ARGUMENT LIST]
|ARGLIST |DC {AL4 (arg,y) ADDRESS OF FIRST ARGUMENT |
| | - | |
| L |
] |DC |X*80°" INDICATE LAST ARGUMENT IN ARGUMENT LIST]
i {DC |AL3 (axgp? ADDRESS OF LAST ARGUMENT]
| . L 4 ——— e ————————— e e ——— 4
Figure 72. Higher Level Assembler Subprogram

102

(T T - 1
| Name |Oper. |Operand |
pommmmm - ¥ + -
| ADCON |DC |A{probl)]
	-	
[-		
	-	
	LA	14, RETURN
	L. {15, ADCON [
i jcNOP 2,4 i		
	BALR 1,15	
	DC	AL4 (axrg,)
I	- I	
I	-	I
I	-	
	DC	X*80"

|DC |AL3 (axrgn) |
| RETURN | BC |0,X"isn" |
| I —_——4 L —_ 4
Figure 73. In-Line Argument List

GETTING ARGUMENTS FROM THE ARGUMENT LIST

The argument list contains addresses for
the arguments passed to a subprogram. The
order of these addresses is the same as the
order specified for the arguments in the
calling statement in the main program. The
address for the argument list is placed in
register 1. For example, when the state-
ment

CALL MYSUB(A,B,C)

is compiled, the following argument list is

generated.

r- T K

| 00000000 address for 2

[N 1 o e s e e e e e il 2 i e il e e .l

r T

|00000000] address for B |

________ ———— - 4
bl

110000000| address for C |

L ~4L P ——-d

For purposes of discussion, A is a double-

precision variable, B is a subprogram name,
and C is an array.

The address of a variable in the calling
program is placed in the argument list.
The following instructions in an assembler
language subprogram can be used to move the
double-precision variable A to location VAR
in the subprogram.

L Q,0(1)
Mvc VAR(8),0(Q)

where:
Q is any general register.

For a subprogram reference, an address
of a storage 1location is placed in the
argument list. The address at this storage

Appendix B:

location is the
subprogram.

be wused to
subprogram to

entry point to the
The following instructions can
enter subprogram B from the
which B 1is passed as an

argument.
L Q. u(1)
L 15,0(Q)
BALR 14,15
where:

0 is any general register.

For an array, the address of the first
variable in the array is placed in the
argument list. An array [for example, a
three-dimensional array C€(3,2,2)]1 appears
in this format in main storage.

c(,1,1) c(2,1,1) <C(3,1,1) C(1,2,1)-—
r _— 4
t-c(2,2,1) c(3,2,1) c(1,1,2) cC(2,1,2)-—
— - -
L-c(3,1,2) c(1,2,2) c(2,2,2) cC(3,2,2)

Table 16 shows the general subscript format
for arrays of 1, 2, and 3 dimensions.

|A(D1,D2,D3) |A(S1,S2,S3)
P, 4

|[D1, D2, and D3 are integer constants used|
|in the DIMENSION statement. S1, S2, and|
|S3 are subscripts used with subscripted|
lvariables. |
L

——— ———

Table 16. Dimension and Subscript Format
r—— T - =
|Array A |Subscript Format |
¢ -4 oo .
|A(D1) JA(S1) i
jA{Di,D2) jal{si,s2) i
|
4
]

The address of the first variable in the
array 1is placed in the argument list. To
retrieve any other variables in the array,
the displacement of the variable, that is,
the distance of a variabkle from the first
variable in the array, must ke calculated.
The formulas for computing the displacement
(DISPLC) of a variable for one, two, and
three dimensional arrays are

DISPLC =(S1-1)*L
DISPLC =(S1-1)*L+(S2-1)*D1*L
DISPLC =(S1-1)*L+(S2-1)*D1*L+(S3-1) *D2*D1*L

where:
L 1is the
the array.

length of each variable in

For example, the real variable C(2,1,2)
in the main program is to be moved to a
location ARVAR in the subprogram. Using
the formula for displacement of variables
in a three-dimensional array, the displace-
ment is calculated to be 28 and placed in

Assembler Language Subprograms 103

the general register DISP. The following
instructions can be used to move the vari-
able :

L 0,8(1)

LE s.,0(Q,DISP)
STE S, ARVAR
where:

Q, R, and S are general registers.

Example: An assembler language subprogram
is to be named ADDARR, and a real variable,
an array, and an integer variable are to be
passed as arguments to the subprogram. The
statement

CALL ADDARR (X,Y,J)
is used to call the subprogram. Figure 74

shows the 1linkage wused in the assembler
subprogram.

L B I - - ===
| Name |Oper. |Operand
b G S - --- -
| ADDARR |START |0
| B |EQU |8
| BC 115,12(15)
|DC |xX'7
|DC |CL7*ADDARR"
ADDARR | STM 114,12,12(13)
|BALR |B,0
|USING |*,B
|L 12,8(1) MOVE THIRD ARGUMENT TO THE LOCATION CALLED INDEX IN
|MVC | INDEX(4),0(2)
|L 13,0(1) MOVE FIRST ARGUMENT TO THE LOCATION CALLED VAR IN THE
|VAR(U4) ,0(3) ASSEMBLER LANGUAGE SUBPROGRAM
|L [4,4(1) LOAD THE ADDRESS OF THE ARRAY TO GENERAL REGISTER 4.
L 14,48

|User Written Statements
| .
i .
|

|
|
|
|
|
|
|
|
|
| |MVC
|
I
!
I
I
[
|
I
I
|

| LM |14,12,28(13)
[MVI ~ |12(13),X'FF"
|BCR |15,14
|Ds | OF

| INDEX |DS | 1F

| VAR | DS |1F

L L ER

Figure 74. Assembler Subprogram Example

104

1
|
‘l
I
I
I
|
|
|
|
I
THE ASSEMBLER LANGUAGE SUBPROGRAM. |
|
|
|
|
I
I
|
I
I
I
|
I
I
I
J

sets are extended upward in main storage as
buffers are needed.

-— - 4
1
External References for Library Subprgrms|

APPENDIX C: STORAGE MAP FOR LOAD MODULE EXECUTION
Figure 75 shows a storage map for load r —— - —_—
module execution. The superscripts shown |Resident and Transient Control Program |
in the figure indicate one of the notes p———————————— - -— -4
listed in this appendix. {First FORTRAN Object Module |
¢ - - -
{COMMON Areatl |
______ ¥
4
| Second FORTRAN Okject Module |
Note 1: The COMMON area is inserted into e 4
the load module after the first object |Third FORTRAN Object Module |
module that refers to it. For example, if -———]
the first object module does not refer to] . |
COMMON and the second object module does, | . |
the COMMON area follows the second object | . |
module. t-————————— —_——————————————— 4
|Last FORTRAN Object Module |

L
¢ P — -4
|Explicitly Referenced Library Subprograms |
' -—- i
Note 2: Buffers for direct access data |Imp11c1tly Referenced Library Subprograms|

b—

|

I

L)

|

Note 3: The order in which IOBs are placed
in main storage 1s dependent on the
sequence of I/0 operations. The IOBs can
be 1located anywhere in upper main storage.

Note 4: The routines for direct access I1I/0
are loaded into main storage when a direct
access data set is defined by a DEFINE FILE
statement. The routines for sequential 1I/0
are loaded into main storage when a sequen-
tial data set is first used.

Note 5: A DCB is allocated for every data
set reference number used by the 1load
module.

Appendix C:

Buffers for Direct Access Data Sets? |

|Transient Work Area Required of Every]
|Load Module for Use by the Control Pro-|

| Input/Output Blocks

(IORs) Containing]
|Information Concerning the Interface]
|Between FORTRAN Execution Time I/O Rou-|

|tines and the Control Program3

L -

I
b i
|Buffers for Sequential Data Sets |
4

|Control Program Routines for Performing|
|Direct Access I/0 and Control Program|

JRoutines for Sequential I/O% |
J

-T = 1

|Data Control Blocks (DCBs) Containing]
| Information Concerning the Use of Eachj
|Data SetS]

- -1

]Task Input/Output Table (TIOT) Containing}
]Information such as jobname, stepname, |
|and ddname for each data set used by the|
|step
I

(TN S,

v

|Register Save Area for the Control Pro-
| gram

L - ———

Figure 75. Load Module Execution Storage

Map

Storage Map for Load Module Execution 105

APPENDIX D: SYSTEM DIAGNOSTICS

This appendix contains a detailed de-

scription of the diagnostic messages pro-
duced during compilation and load module
execution.

COMPILER DIAGNOSTIC MESSAGES

Two types of compiler diagnostic mes-
sages are generated - informative and
error/warning.

Compiler Informative Messages

Four informative messages are generated
by the compiler to inform the programmer or
operator of the status of the compilation.
The message and any compiler action taken
is shown.

IBM 0S/360 BASIC
DATE: yy.ddd

LEVEL: rmthyr
FORTRAN IV (E) COMPILATION

Explanation: This message is gen-
erated at the beginning of every

compilation. The level number (r)
and date (mthyr) of the compiler
is given by "rmthyr". The number
of the day (ddd) in the year (yy)
that the compilation takes place
is given by "yy.ddd".

IEJOO1I COMPILER OPTIONS IN EFFECT:
[SOURCE, 1 [BCD,] [MAP,]1[DECK,]
{SPACE,}
[LOAD, 1 [ADJUST, 1 | PRFRM,
[NAME=xxxxXXX, 1SIZE=yYYYYYY,

LINELNG=zzz

Explanation: This message occurs
for every compiler job step. All
bracketed options appear, if they
are specified or assumed by
default.

SIZE OF COMMON xxxxx PROGRAM yyyyy

Explanation: This message is gen-
erated Dbefore the end of every
compilation. The number of bytes

needed +to contain the COMMON area
is the decimal number xxXxxxX. The
number of bytes needed to contain
the program (instructions generat-
ed by the compiler, constants, and

106

variables not assigned to COMMON,

etc.) is the decimal nurber
YYYyYY-

END OF COMPILATION
Explanation: This message indi-

cates that a compilation is suc-

cessfully completed.

Compiler Action: If this message
is not generated by the compiler,
the compilation was terminated

abnormally and a condition code of
16 was generated because of inter-
nal errors.

Compiler Error/Warning Messages

The following text contains a descrip-
tion of error/warning messages produced by
the compiler. The message is shown with an
explanation, and any compiler action or
user action that is required. Unless oth-
erwise specified, messages preceded by
"WARNING" generate a condition code of 4;
other messages generate a condition code of
8.

IEJOO2I ONE OR MORE INVALID COMPILER
OPTIONS IN *PARM' FIELD
OPTION(S) IGNORED

An invalid compiler
PARM

Explanation:
option is specified in the
field of the EXEC statement.

Compiler Action: The compilation
proceeds using only the specified
valid compiler options and

defaulted options.

IEJOO03I 'NAME' OPTION TOO LONG - TRUNCATED
Explanation: The name specified
for the compiler option
NAME=xxxxxx 1is 1longer than six
characters.

Compiler Action: The characters
beyond the sixth position are
truncated and the compiler pro-

ceeds as if the truncated name had
been specified.

IEJOO4T

IEJOO6T

IEJOO7I

MISSING OR ERRONEOUS DD STATEMENT

SSYSUTI
FOR) SYSUT2

SYSLIN
SYSPUNCH

| XXXXXXXX /

SYSIN (

Explanation: A DD statement is
not supplied or the ddname is
mispunched for the DD statement
indicated in the message. If
another program passes control to
the compiler, then a DD statement

XXXXXXXX passed as a parameter is

missing.

Compiler Action: A condition code
of 16 is generated for the omis-
sion of SYSIN. The compilation is
terminated. The compilation pro-
ceeds if any other ddnames are
omitted. If SYSLIN is omitted, a
condition code of 12 is generated

and the compiler assumes NOLOAD,
even though the programmer may
have specified LOAD. For the

omission of SYSPUNCH, the compiler
assumes NODECK, even though DECK
may have been specified.

NO INPUT FOUND

Explanation: A source module is
nonexistent; that is a DD * state-
ment defining the location of the
source module for the compiler is
immediately followed by a delim-
iter statement.

Compiler Action: A condition code
of 16 is generated, and control is
returned to the control program.

INSUFFICIENT
OPTION IN EFFECT

STORAGE. SPACE

Explanation: The PRFRM option is
specified; however, there is not
enough main storage available for
the PRFRM option.

Compiler Action: The SPACE com-
piler option is assumed, and the
compiler begins the compilation
again.

INSUFFICIENT STORAGE FOR COMPILA-
TION

Explanation: Blocked compiler I/O
is specified with the PRFRM
option; however, there 1is not

IEJ008I

IEJO10I

IEJO11I

Appendix D:

enough main storage available for

the PRFRM option.

Compiler Action: The compilation
is terminated, and a condition
code of 16 is issued.

INVALID BLKSIZE SPECIFICATION

Explanation: The BLKSIZE subpa-
rameter specified in a DD state-
ment is not an integral multiple
of the specified LRECL value for
that data set.

Compiler Action: The compilation
is terminated, and a condition
code of 16 is issued.

I/0 ERROR, COMPILATION TERMINATED,
XXX e o v XXX

Explanation: An irrecoverable
input/output error was encountered
during compilation, which makes
continuation impossible.

XXX...XxX is the character string
formatted by the SYNADAF macro
instruction. For an interpreta-
tion of this information, see IBM
System/360 Operating System:
Supervisor and Data Managemrent
Macro-Instructions, Form C28-6647.

Compiler Action: Compilation is
terminated, and a condition code
16 is generated.

I/0 ERROR, *DECK"' CANCELED,
XXXa o o« XXX

Explanation: An irrecoverable

error was encountered during an
output operation on the data set
defined by SYSPUNCH. XXX...XXX is
the character string formatted by
the SYNADAF macro instruction.
For an interpretation of this
information, see IBM System/3690
Operating System: Supervisor and
Data Management Macro-
Instructions, Form C28-6647.

Compiler Action: The DECK option
is changed to NODECK, and
compilation continues. In the
case of multiple compilations,
only the last (partial) deck punch
need be discarded.

FORTRAN E Messages 107

IEJ0291I

IEJO30I

IEJO311

IEJ032I

IEJO33I

IEJO34T

IEJO35I

ARRAY MUST BE DIMENSIONED ON ITS

FIRST AND ONLY ITS FIRST OCCUR-
RENCE
Explanation: The dimension of an

array must be given in either a
DIMENSION, COMMON, or Explicit
Specification statement prior to
its use in any other statement and
can never be redefined.

ILLEGAL USE OF FUNCTION NAME

Explanation:
not appear in
COMMON statement.

A function name may
an EQUIVALENCE or

EQUIVALENCE TABLE FULL

Explanation: There are too

equated variables.

many

User Response:
strictions."

See "Compiler Re-

INTEGER TOO BIG

Explanation: Integer 1s 1larger
than maximum size allowable
(i.e., larger than 231-1 or
2,147,u483,647), or the number of
records specified in a DEFINE
FILE statement exceeds 224
(16,777,116).

WARNING -- FIRST CARD IS CONTINUA-
TION

Explanation: First non-comment
statement was a continuation line
(i.e., a nonzero character, other

than a blank, was encountered in

column 6.)

Compiler Action: The statement is
processed as 1if it were the ini-
tial line of a statement.

SUBPROGRAM CARD NOT FIRST

Explanation: A FUNCTION or
SUBROUTINE statement appears after

the first statement in a program.
For example, the first card in a
subprogram (other than a comments
card) is not a FUNCTION or

SUBROUTINE statement.

ARGUMENT MISSING IN FUNCTION DEFI-
NITION

IEJO361I

IEJO37I

IEJO381

IEJO0391

IEJO41I

IEJO421

IEJO43I

Function definition

Explanation:
Statement Function or

(either in

FUNCTION header statement) must
have at least one argument.
ILLEGAL CHARACTER

Explanation: Character is not

recognizable.

Compiler Action: The character is

taken to be a delimiter, which
should be either
b-%.,+/=1()

or Column 73, where b is a blank.
INVALID STATEMENT OR STATEMENT
NUMBER

Explanation: For example, an

sign is missing in a State-
ment Function Definition or an
arithmetic statement. F: left
parenthesis is missing in an IF
statement or an illegal delimiter
precedes the statement.

equal

SEQUENCE ERROR

All specification
statements (DIMENSION, EQUIVAL-
ENCE, REAL, INTEGER, DOUBLE PRECI-
SION, COMMON) must precede all
Statement Function Definition
statements. All Statement Func-
tion Definition statements must
precede all executable statements.

Explanation:

MORE THAN 6 CHARACTERS IN NAME

MULTI-DEFINED OR ILLEGAL NAME

A name is defined

Explanation:

more than once or an illegal name
is used as a variable. For exam-
ple, a real variable is redefined

as an integer variable.

MULTI-DEFINED STATEMENT NUMBER

Explanation: This statement num-
ber has bkeen used previously.
Every statement number should be
unique, and associated with only
one statement in a program.

ILLEGAL USE OF RESERVED WORDS

When NOADJUST is
reserved word npmust

Explanation:
specified, a

IEJO4LI

IEJO45I

IEJO46I

IEJO47I

IEJO4LST

IEJO49T

IEJOS50I

IEJO51T

IEJ052T

not be used as a variable, array,
or subprogram name.

TOO MANY DECIMAL POINTS
Explanation: Only one decimal
point can appear in a real or

double-precision number.

DECIMAL POINT AFTER E
Explanation: A decimal point has

been found in the exponent part of
a real or double-precision number.

TOO MANY E'S

Explanation: A second E has been
found in a number (e.g., 2,7E2E2).

ILLEGAL NUMBER OR NAME

Explanation: Illegal use of a
number. For example, 1in the
statement, DIMENSION 5 (1,2), the
number 5 1is not a proper array
name.

MORE THAN 3 DIMENSIONS

Explanation: Maximum number of
dimensions permitted in an array

is three.
DIMENSION ERROR

Illegal delimiter or
exceeds 131,071
DIMENSION, or
statement.

Explanation:
size of an array

bytes in a COMMON,
Explicit Specification

CANNOT EQUATE

Explanation: At least two vari-
ables or subscripted variables
should appear in the parentheses
of an EQUIVALENCE statement.

WARNING -- COMMA MISSING

Explanation: A required comma was
not encountered.

Compiler Action: The statement is
compiled as through a comma were
there.

WRONG DIMENSION

Number of subscripts
used does not

Explanation:
in the wvariable

IEJO53I

IEJOS4T

IEJO551I

IEJO56I

IEJO571I

IEJO58I

IEJO060I

IEJO61I

Appendix D:

correspond to the number of sub-
scripts in the array as defined in

a COMMON, DIMENSION, or Explicit
Specification statement.

SUBSCRIPT ERROR

Explanation: The subscript
expression contains more than
three subscripts, an illegal deli-
miter, or an illegal variable.
INVALID ARGUMENT IN ASF
Explanation: An illegal sywbol

appears as an argument in the
Statement Function argument list.
For example, SF(A,B,*,C) or
SF(A,B,C) where € is an array.

INVALID ARGUMENT IN HEADER CARD

Explanation: An illegal variable
or a multidefined variable appears
in the function definition argu-
ment list.

ILLEGAL STATEMENT NUMBER FIELD

Explanation: Statement number
list in a computed GC TO or in an
arithmetic IF statement is inval-
id.

DATA SET REFERENCE NUMBER MISSING

There is no data set
reference number specified, for
example, WRITE(,10), or the data
set reference number is multiply
defined.

Explanation:

LEFT PARENTHESIS MISSING AFTER R/W

Explanation: The left parenthesis

in a READ or WRITE statement is
missing. For example, in the
statement: WRITE3,10), the left
parenthesis before the 3 is miss-
ing.

ERROR IN VARIABLE

Explanation: Symbol in an
EQUIVALENCE statement is not a
variable, for example, EQUIVALENCE

(10,B), or is a dummy variable.

WARNING -- STATEMENT CANNOT BE

REACHED

FORTRAN E Messages 109

IEJ063I

IEJO6LT

IEJO065I

IEJO66I

IEJO67I

IEJ0681

IEJ0691

IEJO70I

110

Explanation: Statement following
a GO TO, IF, RETURN, or STOP has
no statement number.

EQUIVALENCE SUBSCRIPT ERROR

Explanation: There is an illegal
delimiter or a wissing subscript
in an EQUIVALENCE subscript.

TOO MANY
NUMBERS

SYMBOLS AND STATEMENT

Explanation: The Dictionary and
overflow Table have overflowed, or
the total number of statement num-
bers referred to (excluding FORMAT

statement numbers), DO statements,

and statement functions exceeds
1000.
User Response: Subdividing the

program or reducing the number of

symbols and statement numbers is
necessary.
INVALID STATEMENT NUMBER OR

PAUSE/STOP NUMBER

Explanation: Either there is an
alphabetic or illegal character in
the number, or there are more than
five digits in the number.

BACKWARD DO LOOP

Explanation: The statement speci-
fied in the range of the DO state-
ment may not precede the DO state-
ment.

INVALID DATA SET CONTROL CHARACTER
Explanation: The FORMAT control
specification in the DEFINE FILE
statement is not L, E, or U.

ERROR IN EXPONENT

Explanation: An exponent is miss-
ing or is too large in a real or
double-precision number.

TOO MANY ARGUMENTS IN ASF

than 15 argu-
defi-

Explanation: More
ments in Statement Function

nition is not permitted.

INVALID FUNCTION NAME

IEJO711

IEJ0721

IEJO731

IEJO74I

IEJO751

IEJO761

IEJO771

IEJO0781I

subprogram
SUBROUTINE

Explanation: Invalid
name in a FUNCTION or
header statement.

ILLEGAL SUBROUTINE NAME

Explanation: Illegal delimiter or
illegal subroutine name in a CALL
statement.

ASF OUT OF SEQUENCE

Explanation: Statement Function
statement is out of sequence or an
array is not dimensioned prior to
its first use.

TRANSFER TO NON-EXECUTABLE STATE-
MENT

The statement number
referred to by a GO TO, computed
GO TO, or an arithmetic IF state-
ment 1is a FORMAT or specification
statement.

Explanation:

VARIABLE ALREADY IN COMMON

Explanation: A variable appears
in COMMON more than once or an
inconsistent equate was made
(e.g., the statement COMMON

(a,B,C,A) is illegal).

UNFINISHED STATEMENT

Explanation: A FORMAT statement
is not finished.

PARENTHESIS ERROR

Explanation: A parenthesis is not
closed or is missing. The paren-

theses are not nested properly.

Compiler Action: The compiler
cannot assume their position.

ILLEGAL DELIMITER OR MISSING NAME

Explanation: An improper delimi-

ter or illegal special character
was encountered.

ILLEGAL END DO

Explanation: The last statement

in the range of a DO loop cannot
be a nonexecutable statement,
Arithmetic 1IF, GO TO, PAUSE,

IEJO79I

IEJO80I

IEJ081I

IEJ082T

IEJO083T

IEJO84T

IEJO85I

IEJ086I

RETURN, or another DO state-

ment.

STOP,

TYPE MUST BE INTEGER SCALAR

Explanation: The DO variable, com-
puted GO TO variable, or the asso-
ciated variable in a DEFINE FILE
statement must be a non-
subscripted integer variable.

COMMA MISSING

Explanation: A required comma was
not encountered.

Compiler Action: The compiler
cannot assume its position.

ILLEGAL FORMAT SPECIFICATION

decimal
fol-

Explanation: Illegal
point or a number is missing

lowing decimal point.
INVALID NUMBER

Explanation: There is an error in

an integer, real, or doubl e~
precision number.
ERROR IN INTEGER
Explanation: Number zZero not

allowed in most FORMAT specifi-
cations, a DIMENSION statement, or
in a subscript.

MORE THAN 4 WARNINGS IN STATEMENT

Explanation: More than four warn-
ings have been generated for a
statement.

Compiler Action: The compilation
of the statement is terminated.

THIS MESSAGE IS A COMPILER ERROR

Explanation: Compilers working
text contains meaningless code.

Compiler Action:
tinues.

Compilation con-

ILLEGAL BLANK

Explanation: When NOADJUST is

specified, an illegal embedded
blank is found in the FORMAT
statement.

IEJO87I1

IEJO88I

IEJO89I

IEJOS0I

IEJO91I

IEJ0921

IEJO93I

IEJO94T

Appendix D:

NUMBER MISSING

Explanation: A number is missing
in E, F, T, A, I, D, or X conver-
sion code or an illegal delimiter
precedes the number.

NESTED PARENTHESIS

Explanation: Not more than one
level of nested parenthesis is
permitted in a FORMAT statement.
ILLEGAL DATA SET REFERENCE NUMERER

Explanation: Data set reference
number must be an integer variable

or a constant within the range 1
to 99.

APOSTROPHE NOT CLOSED

Explanation: An apostrophe was

not found terminating the 1literal

data in a FORMAT statement.

ILLEGAL SIGN

Explanation: A P Format code or a
blank are +the only legal delim-
iters following a plus or minus
sign in a FORMAT statement, unless
the sign appears in literal data.

ILLEGAL COMMA

Explanation: An erroneous comma
appears in a FORMAT statement.

NOT IN INTEGER MODE

Explanation: The associated vari-
able indicating the relative posi-
tion of a record in a direct
access FIND, READ, or WRITE state-
ment is not an integer variable.

WARNING -- TOO MANY DECIMAL PLACES

The number of deci-
mal places must be less than the
size of the entire number in a
FORMAT statement. The size of the
entire number is equal to the
number of decimal places.

Explanation:

FORTRAN E Messages 111

IEJ0951I

IEJ0961

IEJO97I

IEJ0981I

IEJ099I

IEJ100I

112

STATEMENT NUMBER REFERENCE NOT
FORMAT STATEMENT

Explanation: The statement number
referred to in a READ/WRITE state-
ment is mnot that of a FORMAT
statement.

JLLEGAL VARIABLE IN I/0 LIST

Explanation: The use of subpro-
gram names Oor constants are not
allowed in an I/O list.

TOO MANY ELEMENTS IN LIST
Explanation: The 1list in the
READ, WRITE, or Computed GO TO

statement contains too many ele-
ments. There are approximately
250 variables permitted in a sin-
gle list. The use of implied DO's
in READ/WRITE statement decreases
the number of variables permitted.

User Response: The statement
should be divided into several
statements.

NO CHARACTER BETWEEN APOSTROPHES

Explanation: An open apostrophe
is immediately followed by a close

apostrophe in the FORMAT state-
ment. At least one character
should appear within the apos-
trophes.

TOO MANY CHARACTERS BETWEEN APOS-
TROPHES

Explanation: The number of char-
acters appearing within apostrophe
in the FORMAT statement is too
large for the compiler to handle.
That is, not more than 255 charac-
ters should appear between apos-
trophes in a FORMAT statement.

ILLEGAL DO VARIABLE OR CONSTANT

Explanation: DO parameter must be
a nonsubscripted integer variable,
or integer constant.

IEJ1231I

IEJ124T

IEJ1251

IEJ1261I

IEJ1271

IEJ1281I

IEJ1291

IEJ130I

IEJ131T

FUNCTION NAME NOT ASSIGNED A VALUE

Explanation: The function name is
not defined in its function sub-
program (i.e., it does not appear
on the left side of an equal sign,
as a list item in a READ statement
or as an argument in a CALL
statement).

NOT IN INTEGER MODE

Explanation: The associated vari-
able indicating the relative posi-
tion of a record in a direct
access FIND, READ, or WRITE state-
ment is not an integer variable.

DO VARIABLE REDEFINED

Explanation: The same variable is
used as the DO variable more than
once in nested DO loops.

FUNCTION ARGUMENT MISSING

Explanation: An argument in a
function reference is missing.

THIS MESSAGE IS A COMPILER ERROR
Explanation: Compiler's inter-
mediate text contains meaningless

code.

Compiler Action:
terminated.

Compilation is

INVALID CALL OR IF STATEMENT

MULTI-DEFINED NAME OR KEYWORD

A name is redefined,
is used as a vari-

Explanation:
or a keyword

able.

ILLEGAL ARGUMENT

An illegal argument
call to a

Explanation:
is specified for a
function ox subroutine.

WRONG MODE
Explanation: The mode of the
argument does not agree with the

mode of the in-line function.

IEJ132I

IEJ133I

IEJ1351

IEJ136X

IEJ1371

IEJ1391

IEJ140I

IEJ141T

IEJ142T

IEJ143T

INCORRECT NESTING OF DO

Explanation: The last statement in
the range of the DO loop nested
within other DO loops exceeds the
range of one or more of those DO
loops.

ILLEGAL EQUAL SIGN

Explanation: TwO equal signs

appear in the same statement.

SUBSCRIPT OR ARRAY NOT ALLOWED

Explanation: A subscript or array
is not allowed in Statement Func-
tion definition.

UNDEFINED STATEMENT NUMBER

The statement number

Explanation:
does not exist in the

referred to
program.

NAME MISSING OR ILLEGAL DELIMITER

Illegal delimiter
found. For example, X=A+*B. A
variable or constant is missing
between the two operators or one
of the operators is superfluous.

Explanation:

WRONG NUMBER OF ARGUMENTS IN CALL

Explanation: The number of argu-
ments in Statement Function ref-
erence oOr in an in-line function
reference does not agree with the
function definition.

TOO MANY PARAMETERS

The maximum number
allowed in a subpro-
definition is 48.

Explanation:
of arguments

gram call or

ILLEGAL SUBPROGRAM NAME

Explanation: Name of a function
or subroutine call is not defined
as a function or subroutine sub-
program name.

MORE THAN 25 LEVELS OF DO NESTING

Explanation: Not more than 25 DO
loops may be nested.

INVALID RESULT FIFLD

TEJ144T

TEJ145T

IEJ1461

IEJ1471

IEJ1481

IEJ1491

IEJ1501

IEJ1581

IEJ1591

Appendix D:

Explanation: The result field of
an arithmetic statement is inval-
id.

ILLEGAL NUMBER OF STATEMENT NUM-
BERS

Explanation: An arithmetic IF
statement must contain exactiy
three statement numbers.

PROGRAM TOO BIG

Explanation: The object module

has exceeded the
range.

kasic register

INCONSISTENT EQUATE

Explanation: For example, EQUIVA-
LENCE (A(1),B),(a(2),C),(B,C) or a
double-precision variable in COM-
MON is not on the proper boundary.

TWO VARIABLES IN COMMON ARE EQUAT-
ED

Explanation: Two or more vari-
ables equivalenced are in COMMON.

COMMON EXTENDED UPWARD

Explanation: An EQUIVALENCE
statement cannot cause COMMON to
be extended before the beginning

of the COMMON area.

DUMMY ARRAY OR VARIABLE IN COMMON

A dummy variable or
COMMON.

array is not permitted in

EQUATED NAME NOT A VARIABLE

Explanation: The equated name

must be a variable.

WARNING--POSSIBLE MISSING DEFINE
FILE STATEMENT

Explanation: There is no DEFINE
FILE statement for a data set

specified in a
or WRITE

reference number
direct access FIND, READ,
statement.

WARNING--LAST EXECUTABLE STATEMENT
NOT RETURN, STOP, IF OR GO TO

FORTRAN E Messages 113

IEJ1601

IEJ161I

IEJ1621

IEJ1631I

IEJ1641

IEJ165T

IEJ1661

114

Explanation: The last executable
statement of a program should be a
RETURN, STOP, IF, or an uncondi-
tional GO TO statement.

Compiler action: The compiler
generates a RETURN before the END
statement.

WARNING--STATEMENT CONTAINS SUPER-
FLUOUS INFORMATION

Explanation: The statement has
been compiled but something super-
fluous exists at the end, e.g.,
REWIND I XYZ

XYZ is superfluous

WARNING--SUGGEST SUBDIVIDING PRO-
GRAM

Explanation: Program causes use
of spill base register producing
inefficient object code

User Response: Subdivide program
into a main program and a series
of subprograms.

WARNING--BLANK CARD

Explanation: The card contains
only a statement number.

Compiler Action: The card is
ignored.

WARNING--TOO MANY DIGITS IN NUMBER

WARNING--STATEMENT NUMBER MISSING

Explanation: Format statement
must have a statement number.

Compiler Action: The statement is

ignored.

WARNING~-UNREFERENCED FORMAT
STATEMENT
Explanation: A TFORMAT statement

is not referred to by any other
Statement.
Compiler Action: The FORMAT

statement is not processed.

WARNING~-REDUNDANT COMMA

Explanation: There is a redundant
comma in the statement.

IEJ1671

IEJ168I

IEJ1691

IEJ1701

IEJ1711

IEJ1721

IEJ1731

IEJ174I

Compiler Action: The redundant

comma is ignored.

WARNING--LINE TOO LONG

Explanation: Record length indi-
cated in the FORMAT statement
exceeds length stated or assumed
for the compiler option LINELNG.

WARNING--END CARD MISSING

Explanation: The end of the
source program is reached and an
END card is not there.
Compiler Action: Processing con-
tinues as if it were there.

WARNING--RIGHT PARENTHESIS MISSING

Explanation: The right parenthe-
sis in the statement is missing.
Compiler Action: Processing con-
tinues as if it were there.

WARNING~-ZERO OR NO COUNT IN X
CONVERSION

Explanation: The number preceding
the X format code is 0 or blank.

Compiler Action: Processing con-
tinues, ignoring the X format
code.

WARNING--PARAMETERS MISSING

Explanation: There are no param-
eters following a left parenthesis
or a comma.

WARNING--UNREFERENCED ASF ARGUMENT

Explanation: Argument of state-
ment function not referred to in
the arithmetic expression of the
statement function.

WARNING--EXCESSIVE RIGHT PARENTHE-
SIS

Compiler Action: The additional
right parentheses in the statement
are ignored and processing contin-
ues.

WARNING--ARRAY
USED AS SCALAR

Explanation: The name of the
array is not followed by a sub-
script enclosed in parentheses.

WARNING--STATEMENT NUMBER ON DEC-
LARATIVE STATEMENT

IEJ175T

Explanation: The statement number
associated with the declarative
statement is superfluous.

LOAD MODULE EXECUTION DIAGNOSTIC MESSAGES

The 1load module produces three types of
diagnostic messages:

® Operator messages.

e Execution error messages.
e Program interrupt messages.

Operator Messages

Operator messages for STOP and PAUSE are
generated by FORTRAN load modules.

The message for a PAUSE is of the form
yy IHCO001A PAUSE XXXXX
where:
yy is the identification number and

XXXXX is the number specified in the
PAUSE source statement.

Explanation: A PAUSE 1is executed: The
programmer should give instructions that

indicate the action to be taken by the
operator when the PAUSE is encountered.

User Response: To resume execution, the
operator presses the REQUEST key. When the
PROCEED light comes on, the operator types

REPLY yy,"2"

where:
yy 1is the identification number and Z

is any letter or number. To resume

program execution the operator must

press the alternate coding key and a

numeric 5.

of

The message for a STOP statement is

the form
IHC002I STOP xXXXXX

where:
XXxXXX 1is the number specified in the

STOP source statement.

User Response: None

Program Interrupt Messages

Program interrupt messages containing
the o0l1ld program status word (PSW) are
written when an exception occurs. The

format is:

IHC210I PROGRAM INTERRUPT (P) - OLD PSW IS

9
XXXXXXX)Cl XXXXXXXX
D
F
The 1letter P 1in the message indicates
that the interruption was precise. This
will always be the case for non-

specification interrupt messages in FORTRAN
except when using machines with special
hardware on which imprecise interruptions
may occur.

The four characters in the PSW (i.e., 9,
c, D, or F) represent the code number (in
hexadecimal) associated with the type of
interruption. The following text describes
these interruptions.

Fixed-Point-Divide Exception: The fixed-
point-divide exception, assigned code
number 9, is recognized when division of a
fixed-point number by zero is attempted. A
fixed-point divide exception would occur
during execution of the following state-
ments:

J=0
I=7
K=I/J

Exponent-Overflow Exception: The exponent-
overflow exception, assigned code number C,
is recognized when the result of a
floating-point addition, subtraction,
multiplication, or division is greater than
or equal to 1663 (approximately 7.2 x
1075). For example, an exponent-overflow
would occur during execution of the state-
ment

A = 1.0E+75 + 7.2E+75

When the interrupt occurs, the result
register contains a floating-point nurber
whose fraction and sign is correct. Howev-
er, the number is not usable for further
computation since its characteristic field
no longer reflects the true exponent. The
content of the result register as it exist-
ed when the interrupt occurred is printed
following the program interrupt message
with the format:

Appendix D: FORTRAN E Messages 115

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where:
hhhhhhhhhhhhhhhh is the floating-point

number in hexadecimal
notation.

Exponent overflow causes "exponent
wraparound®™ -- i.e., the characteristic
field represents an exponent that is 128
smaller than the correct one. Treating

bits 1 to 7 (the exponent characteristic
field) of the floating-point number as a
binary integer, the true exponent (TE) may
be computed, as follows:

TE=(Bits 1 to 7)+128-64

Before program execution continues, the
FORTRAN library sets the result register to
the largest possible floating-point number
that can be represented in short precision
(1663*(1-16-°)) or in long precision
(1663*(1-16-14)), but the sign of the
result 1is not changed. The condition code
is not altered.

Exponent-Underflow Exception: The exponent-

underflow exception, assigned code number
D, 1is recognized when the result of a
floating-point addition, subtraction,
multiplication, or division is less than
16-65 (approximately 5.4x10-79). An
exponent-underflow exception would occur

during execution of the statement:
A = 1.0E-50 * 1.0E-50

Although exponent underflows can be
masked, FORTRAN jobs are executed without
the mask so that the library will handle
such interrupts.

When the interrupt occurs, the result
register contains a floating-point number
whose fraction is normalized and whose sign
is correct. However, the number is not
usable for further computation since its
characteristic field no longer reflects the
true exponent. The content of the result
register as it existed when the interrupt
occurred is printed following the program
interrupt message with the format:

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where:
hhhhhhhhhhhhhhhh is the floating-point
number in hexadecimal
notations.

Exponent underf low causes "exponent
wraparound" - i.e., the characteristic
field represents an exponent that is 128
larger than the correct one. Treating bits
1 to 7 (the exponent characteristic field)
of the floating-point number as a binary

116

integer, the true (TE)

computed as follows:

exponent may be

TE=(Bits 1 to 7)-128-64

Before program execution continues, the
FORTRAN library sets the result register to
a true =zero of correct precision. If the
interrupt resulted from a floating-point
addition or subtraction operation, the con-
dition code 1is set to zero to reflect the
setting of the result register.

Note: The System/360 Operating System FOR-
TRAN programmer who wishes to take advan-
tage of the "exponent wraparound" feature
and handle the interrupt in his own program
must call an assembly language subroutine
to issue a SPIE macro instruction which
will override the FORTRAN interruption rou-
tine.

Floating-Point-Divide Exception: The
floating-point-divide exception, assigned
code number F, is recognized when division
of a floating-point number by zero is
attempted. A floating-point divide
exception would occur during execution of
the following statements:

Execution Error Messages

In the following text, the error codes
are given with an explanation describing
the type of error. Preceding the explana-
tion, an akbreviated name is given indicat-
ing the origin of the error. Unless other-
wise specified, a condition code of 16 is
generated and the job step is terminated.

The abbreviated name for the
the error is:

origin of

IBC - IHCFCOME, IHCFIOSE, and IHCDIOSE
routines (perform input/output conver-
sions for FORTRAN load module execution
and act as an interface between FORTRAN
I/0 statements and the control program).

LIB - SYS1.FORTLIB.
of the messages, the module name is
given followed by the entry point
name(s) enclosed in parentheses,

In the explanation

IBERR - IHCIBERR Routine (detects error

conditions that arise because a load
module is executed that has FORTRAN
language errors indicated in diagnostic

messages given when the source module

was compiled).

IHC211T

IHC212I

IHC213I

IHC214T

IHC215T

IHC216I

IHC2171

| THC2181T

IHC219T

IHC220T

Explanation: IBC -- An invalid
character has been detected in a
FORMAT statement.

Explanation: IBC —-- An attempt has
been made to read or write, under
FORMAT control, a record that
exceeds the BLKSIZE value.

Explanation: IBC -- The input list
in an input/output statement with-
out a FORMAT specification is lar-
ger than the logical record.

Explanation: FIOCS -- For records
in sequential data sets written

without FORMAT control, for which
the RECFM subparameter must be V
(variable), either U (undefined)
or F (fixed) was specified.

Explanation: IBC -- An invalid
character exists for the decimal

input corresponding to an I, E, F,
or D format code.

Explanation: LIB -- An invalid
sense light number was detected in
the argument list in a call to the
SLITE or SLITET subroutine.

Explanation: IBC -- An end of data
set was sensed during a READ oper-
ation; that is, a program attempt-
ed to read beyond the data.

I/0 ERROR XXXa.a.XXX

Explanation: IBC -- A permanent
input/output error has been
encountered, or an attempt has
been made to read or write with
magnetic tape a record that is
less than 18 bytes long.

XXX...XXX 1S the character string
formatted by the SYNADAF macro
instruction. For an interpreta-
tion of this information, see IBM
Systen/360 Operating System Super-
visor and Data Management Macro-
Instructions, Form C28-66U47.

Explanation: FIOCS -- A data set
is referred to in the load module,
but no DD statement is supplied
for it, or a DD statement has an
erroneous ddname.

Explanation: FIOCS -- A data set
reference number exceeds the limit
specified for data set reference
numbers when this operating system
was generated.

IHC230I

IHC231:t

IHC232I

IHC233I

THC2341

IHC2351

THC2361

IHC2371I

IHC241T

IHC242T

SOURCE ERROR AT ISN

EXECUTION FAILED

XXXX =

Explanation: IBERR -- During load
module execution, a source state-
ment error is encountered. The
internal statement number for the
source statement is Xxxx.

Explanation: DIOCS -- Direct ac-
cess inputs/output statements are

used for a sequential data set, or
input/output statements for a
sequential data set are used for a
direct access data set.

Explanation: DIOCS -- Relative po-
sition of a record is not a posi-
tive integer, or the relative
position exceeds the number of
records in the data set.

Explanation: DIOCS -- The record
Iength specified in the DEFINE
FILE statement exceeds the physi-
cal limitation of the volume
assigned to the data set in the DD

statement.

-- The data set
execution error
a direct access

Explanation: DIOCS
assigned to print
messages cannot be

data set.

Explanation: DIOCS -- A data set
reference number assigned to a
direct access data set has been
used for a sequential data set.
Explanation: DIOCS -- A READ is
executed for a direct access data
set that has not been created.
Explanation: DIOCS -- Length of

record read did not correspond to
length of record specified in the
DEFINE FILE statement.

Explanation: LIB -- For an ex-
ponentiation operation (I**J) in
the subprogram IHCFIXPI(FIXPI#)
where I and J represent integer
variables or integer constants,
I=0 and J<0 is an error.

Explanation: LIB -- For an ex-

ponentiation operation (R¥*J) in
the subprogram IHCFRXPI(FRXPI#),
where R represents a real variable
or constant, and J represents an

integer variable or constant, R=0
and J<0 is an error.
Appendix D: FORTRAN E Messages 117

IHC2431

THC24uT

IHC245T

IHC2511

IHC2521

IHC2531I

[
=Y
0

Explanation: LIB -- For an ex-—
ponentiation operation (D**J) in
the subprogram IHCFDXPI(FDXPI#),

where D represents a double preci-

sion variable and J represents an
integer variable or constant, D=0
and J<0 is an error.

Explanation: LIB -- For an ex-
ponentiation operation (R**S) in
the subprogram IHCFRXPR(FRXPR¥#),

where R and S are real variables
or real constants, R=0 and S<0 is
and error.

Explanation: LIB -- For an ex-
ponentiation operation (D**P) in
the subprogram IHCFDXPD(FDXPD#),

where D and P are double precision
variables or double precision con-
stants, D=0 and P<0 is an error.

Explanation: LIB -- In the subpro-
gram IHCSSQRT(SQRT), an argument
less than 0 is an error.

Explanation: LIB -- In the subproe-
gram IHCSEXP(EXP), an argument
greater than 174.673 is an error.

Explanation: LIB -- In the subpro-

gram IHCSLOG(ALOG and ALOG10), an
argument less than or equal to
zero 1is an error. Because this

subprogram is called by an
nential subprogram this

expo-
message

THC2541

IHC2611

IHC2621

IHC263I

THC264T

also indicates that an attempt has
been made to raise a negative base
to a real power.

Explanation: LIB -- In the subpro-
gram IHCSSCN(SIN and COS), the
absolute value of an argumrent
greater than or equal to 218ew is
an error.

(2187 =,82354966406249996D+06)

Explanation: LIB -- In the subpro-
gram THCLSQRT(DSQRT), an argument
less than 0 is an error.

Explanation: LIB -- In the subpro-
gram IHCLEXP(DEXP), an argument
greater than 174.673 is an error.

Explanation: LIB -- In the subpro-
gram IHCLLOG(DLOG and DLOG10), an
arqgument less than or equal to
zero is an error. Because the
subprogram is called by an expo-
nential subprogram, this message
also indicates that an attempt has
been made to raise a negative
double precision base to a power.

Explanation: LIB -- In the subpro-
gram IHCLSCN(DSIN and DCOS), the
absolute value of an argument
greater than or equal to 25%er is
an error.

(25%ex =_35371188737802239D+16)

n, device class 28,55
ABEND dump 89
ABSTR subparameter 81
Accessing unused space
Account number 18
Accounting information
in the EXEC statement 23
in the JOB statement 18
ACCT parameter 23
ACCT.procstep parameter 23
Additional input to the linkage
editor 43
ADJUST compiler option
AFF subparameter 81
Affinity for devices 81
ALIAS linkage editor control statement
ALX subparameter 54
Argument list 79,99,102-104
Assembler language subprograms
addresses of arguments 102-104
argument list 99
calling sequence 99
COMMON area, use of
linkage conventions
register use 100
save area 99
subroutine references 99
Assigning names to temporary data
sets 30,51
Asterisk parameter (*) 26
Automatic call library 41,42,43
Average record length subparameter
54,81,82

82

39,73

45

101
100,101

B, device class 28
BACKSPACE statement
Batched compilation
BCD compiler option 38

BLKSIZE subparameter 55,56
Blocked records 36,41-42,59,61
BUFNO subparameter 55,57,62
Bypassing a job step 23

Byte 35

49,62
39-40

Card input and output 26,27
Carriage control characters
Catalog 10
Cataloged data sets
Cataloged procedure
IBM supplied 12-13
invocation of 21
overriding 13,22-23,24,68-72
steps 13
user-written 67
Cataloged procedure name parameter
CATLG subparameter 31
CHANGE linkage editor control statement
Channel separation 81
Column binary mode 27
Comments in job control statements
COMMON area 75,101
Compile and link editor cataloged procedure

27,56

10

21

45

15

INDEX

(FORTECL) 65
Compile cataloged procedure (FORTEC) 65
Compile, 1link edit, and execute cataloge

procedure (FORTECLG) €5
Compiler

ddnames 35-36

device classes 36

error/warning messages 87,106-115

informative messages 86,106

multiple or batched compilation

name 35

object module deck structure

options 37-39

restrictions

source listing

storage map 85
Concatenating data

with other data

with the system
COND parameter

in the EXEC statement

in the JOB statement
COND. procstep parameter
Condition code

in the EXEC statement

in the JOB statement

meaning of 18
Constants 35
CONTIG subparameter 54
continuing control statements 15
Control fields in variable-length

records 59,60,61
Control statement messages 18
Cconversion for tape data sets
Creating data sets 50-6U4
Cross—-reference list, linkage editor
CYL subparameter 54,81,82
Cylinders, direct-access device

39-4
86-87

8t
85

sets
sets 25
library 26
23
18

23

23
18

56
88
54,81

DATA parameter 27
Data in input stream 27
Data set: reference number
Data sets 9
cataloged 10
generation 10
indexing 10
labels 10
name
qualified 10
unqualified 10
organization
direct access
partitioned 12
sequential 12
residence 10
DCB parameter 27,55
DCB ranges and assumptions
DD statement

17

12

63,64

asterisk parameter 26
DATA parameter 27
DCB parameter 27,55,56

ddname 24,52

Index

d

0

119

DDNAME parameter 52
definition of 24,50,80
DISP parameter 30,55
DSNAME parameter 30,51
DUMMY parameter 51
LABEL parameter 48,54-55
SEP parameter 80
SPACE parameter 53-54,79,81
SPLIT parameter 81
SUBALLOC parameter 82
SYSOUT parameter 28,49,55
UNIT parameter 28,52,81
VOLUME parameter 52-53
ddname 24,52
DDNAME parameter 52
Deck compiler option 38,85
Deck structure, object module 86
DEFER subparameter 80
DEFINE FILE statement 62,79
DELETE subparameter 30
Delimiter statement 31
DEN subparameter 56
Density, tape 56
Device class 10
Diagnostic messages 86
Dictionary for the compiler 84
Direct access data sets
buffer length 62
number of buffers 62
record length 62
Direct access programming 77-79
associated variable 79
DEFINE FILE statement 79
randomizing techniques 77
record chaining 78
skeleton records 78
synonyms 78
Directory
index 12
quantity 54,81
DISP parameter 30,55
Disposition of a data set 30,55
DO loops 74-75
Double precision 35
Double-word 35
DSNAME parameter 30,51
DUMMY parameter 51
DUMP subroutine 76-77

EBCDIC compiler option 38

EBCDIC mode 27

END card for object modules 85

END FILE statement u47,48,62

ENTRY linkage editor control statement
EQUIVALENCE statement 83

Error message data set 49
Error/warning messages

generated by the compiler 87,106-115

generated by the linkage editor 88

generated for load modules 89,115-118

ESD card 85

Exceptions
exponent-overflow 89,115
exponent-underflow 89,115
fixed-point-divide 89,115
floating-point-divide 89,116

EXEC statement
ACCT parameter 23
ACCT.procstep parameter 23

120

ACCT.procstep parameter 23
COND parameter 23
COND.procstep parameter 23
definition of 19
name 21
PARM parameter 22,37,69
PARM.procstep parameter 22,69
PGM parameter 21
PROC parameter 21
Execution, load module
DCB assumptions 64
ddnames 46-148
device classes 49
error message data set 49
errors (see error-warning messages)
program name U6
restrictions 83
storage map 86
EXPDT subparameter 55
Expiration date for data sets 55
Exponent-overflow 89,115
Exponent-underflow 89,115
Exponentiation 73-74
External references 11,41-45,86

Fields in job control statements

name field 15

operand field 15

operation field 15
Fixed-length records 56,57,58,59
Fixed-point-divide 89,118
Floating-point-divide 89,118
FORTEC

description of 65

use of 13,32,65
FORTECL

description of 65

use of 13,33,65
FORTECLG

description of 67

use of 13,34,65
FORTELG

description of 65

use of 13,33-34,65
FORTRAN library 12,41,43,83
FORTRAN records

direct-access data sets 62

sequential data sets 56,57
FORTRAN sequence number U47-49
FTxxFyyy 47

Generation data group 10,29
Generation data set 10,29
Generation number 10,29

IEJFRAAO0 35

JEWL 41
IEWLE150 41
IEWLE180 41
IEWLE4L4O 41

INCLUDE Linkage Editor Control Statement

42,43

Index

directory 12

for cataloged data sets 10
Index name 10
Informative messages 86,106
Initialization in programs 73
Input

to the compiler 32,37

to the linkage editor 41-42
Input stream 9,26
INSERT linkage editor control statement 45
Integer constants and variables 35
Intermediate storage device 35,55
Internal statement number 87
Interrupt messages 89,118
I1/0 devices

address 27,52,80,81

name 27,52,80,81

number of 27,52,80,81

Job 9

Job control statements
comments 15
continuing 15
notation for defining 16-17

JOB statement
account number parameter 18
accounting information parameter 18
COND parameter 19
definition of 17
MSGLEVEL parameter 18
name 18
programmer's name parameter 18

Job step 9

JOBLIB DD statement

Jobname 18

14-15

26,31,47

KEEP subparameter 30
Keyword parameters and subparameters 15
Keyword.procstep 22,69

LABEL parameter 48,54-55
Labels, data set 10,28,48,54-55

Length
buffer 56,62
of FORTRAN records 57,62
of logical records 57,62

LET linkage editor option 45
Library
automatic call 41,42,43
FORTRAN 12,41,u43,83
private 21
system 21
LIBRARY linkage editor control
statement 43
LINELNG compile option 38
Link edit and execute cataloged
procedure (FORTELG) 65
Linkage conventions 100,101
Linkage editor
additional input 43
automatic call library 41,42,43
control statements 43-44
cross-reference 1list 45,88
ddnames used with 42
definition of 11
device classes 42
diagnostic messages 88

module map 45,88
name 41
options 43-44

primary input 41
priority 43
restrictions 84
secondary input 41
LIST linkage editor option 46

LOAD compiler option 38
Load module
cross-reference list 88
definition of 11
execution of (see execution, load
module)
map 88
restrictions 84
Locations, storage 35
Logical records
fixed-length 56-63
format of 56-63
variable-length 56-63
LRECL subparameter 56

MAP
compiler option 38
linkage editor option 45
Member of a PDs 12
Messages
compiler error/warning
compiler informative
control statement 18
linkage editor 88
load module 89,115-118
operator 89,115
program interrupt 89,118
source module diagnostic 86,87
Minimum system requirements 73
MOD subparameter 30
MODE subparameter 27
Module map
load module 88
object module 73
MSGCLASS parameter 19
MSGLEVEL parameter 18
Multiple compilation 39-40
Multiple link editing 44-45
Multiprogramming with a variable number
of tasks (MVT)
cataloged procedures 66,82
job control language 14
job management 14
programming considerations 82
MVT (see Multiprogramming with a variable
number of tasks)
MXTIG subparameter 54

87,106-115
86,106

NAME
compiler option 38,40
linkage editor control statement 44
Name subparameter 28,52,81
NCAL linkage editor option 46
NEW subparamter 30
NL subparameter 48,55
NOADJUST compiler option
NODECK compiler option 38
NOLOAD compiler option 38
NOMAP compiler option 38
NOSOURCE compiler option 38
Notation for defining control statements
16-17
Number of I/0 devices subparameter
28,52,81

39,73

Object module
card deck 85-86
definition of 11
map 85

Index 121

OLD subparameter 30
Optimization
ADJUST option 73
direct~access programming
DUMP subroutine 76-77
implied DO in I/O statements 75
initialization 73
I/0 operations 75,77-79
NOADJUST option 73
of arithmetic expressions
of DO loops 74-75
of exponentiation 73-74
passing arguments 79

77-79

73-74

PDUMP subroutine 76-77

program structure 75-76

subscripts 74-75
Options

compiler 37-39

linkage editor 43-4u

Organization of data sets 12
Output
of a load module
of the compiler 35-36,85-88
of the linkage editor 41,88
OVERLAY linkage editor CONTROL
statement 45
Overlaying load modules 46
Overriding cataloged procedures
13,22-23,24,68-72
OVLY linkage editor option Uué

88-89

Parameters
keyword 15
positional 15
PARM parameter 22,37,69
PARM. procstep parameter
Partitioned data set 12
PASS subparameter 31
Passed data sets 31
Passing arguments
call by name 79
call by value 79
PAUSE statement 89,115
PDS (see partioned data set)
PDUMP subroutine 76-77
PGM parameter 21
Positional parameters and subparameters 15
PRFRM compiler option 36,39,63
Primary input 41
Primary quantity subparameter
Printer spacing 27
Priority schedulers 14
PRIVATE subparameter 52
Private volume 52
PROC parameter 21
Procedure step 13
Procedure, cataloged 12-13
Procstep 21,22
Procstep.ddname 25
Procstep.SYSIN 32
Programmer's name parameter 18
PRTSP subparameter 27
PRTY parameter 19

22,69

53,81

Qualified name 10
Randomizing techniques 77

Real constants and variables 35
RECFM subparameter 56

122

Record chaining 78

REF subparameter 53

REGION parameter 19,24

Register use 100

REPLACE linkage editor control
statement 45

RETAIN subparameter 52

Retention period for data sets 55

RETPD subparameter 55

Retrieving data sets 28-29,48-49

REWIND statement 49,62

RLD cards 85

RLSE subparameter 54

ROUND subparameter 54

Save area 99

Secondary input 41

Secondary quantity subparameter

Segment numbers 88

SEP parameter 81

SEP subparameter 81

Sequential data set 12

SER subparameter 52

Serial number, volume 53

SHR subparameter 30

SIZE compiler option

Skeleton records 78

SL subparameter 48,55

SOURCE compiler option

Source listing 85

Source module 11

SPACE compiler option 36,39

Space on direct-access volumes

SPACE parameter 53-54,81

Specifying execution of a program
described in a cataloged procedure 22
described in a previous job step 21
in a library 21

SPLIT parameter 81

STACK subparameter 27

Stacker selection 27

Standard labels 10,28,48,54

Step
job 9
procedure 13

Stepname 18

STOP statement

Storage map 86

SUBALLOC subparameter 82

Subparameters 15

Subprograms, assembler language 99

SYSCP device class 37

SYSDA device class 37

SYSIN ddname 32,36,37

SYSLIB ddname 42

SYSLIN ddname 36,37,42

SYSLMOD ddname 42

53,81

38,73

38,85

53-54,81

89,115

SYSOUT parameter 28,49,55
SYSPRINT ddname 36,37
SYSPUNCH ddname 36,37

SYSSQ device class 37
SYSUT1 ddname 36,37
SYSUT2 ddname 36,37
SYS1.FORTLIB 12,41,83,116

Tape density 56

Temporary names for data sets
Terminating a job 18

TRK subparameter 54,82

30,52

TRTCH subparameter 56
TXT card 85

Unblocked records
direct-access data set 62-63
sequential data set 56-62
UNCATLG subparameter 31
Undefined logical record 59
UNIT parameter 27,52,80
Unit record data sets 26-27,55
Unqualified name 10

Variable-length logical record 58,59
Variables 35

Volume
Volume
Volume
VOLUME
Volume
Volume

10

count subparameter 52
mounting, deferred 80
parameter 52-53

sequence number subparameter
serial number 53

Warning messages (see error/warning
messages)

Word

35

XCAL linkage editor option 45
XREF linkage editor option 145,88

Index

52

123

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International]

*y"S°n UT pe3urid

Z-€099-820

