

Restricted Distribution

This manual is intended for internal use only and may not be used by other than IBM personnel without IBM's written permission.

This is one of five volumes of the IBM 2091 Processing Unit, Field Engineering Maintenance Diagrams Manual (FEMDM). The organization of the FEMDM, the general content of each volume, and the form numbers of the five volumes are:

Title	Contents Volume 1 - Diagnostic Techniques, ECAD's (Form Y22-6671)	
	DIAGNOSTIC TECHNIQUES	
	Diagrams 1-1 to 1-XX	

Other FE Manuals containing information pertinent to the 2091 are: 2091 Processing Unit, FE Maintenance Manual, Form Y22-6659 2091 Processing Unit, 2395 Processor Storage, FE Installation Manual, Form Y22-6634
Advanced Solid Logic Technology Packaging, Tools, Wiring Change and Repair Procedures, FE Theory-Maintenance Manual, Form Y22-6620
Solid Logic Technology, Packaging, Tools, Wiring Change Procedure, FE Theory of Operation Manual, Form Y22-2800
Solid Logic Technology, Component Circuits, FE Theory of Operation Manual, Form Z22-2798*

Solid Logic Technology, Power Supplies, FE Theory of Operation Manual, Form Y22-2799

[^0]First Edition (September 1967)
Specifications contained herein are subject to change from time to time. Any
such change will be reported in subsequent revisions or FE Supplements.
This manual has been prepared by the IBM System Development Division, Product Publications
Dept. B95, PO Box 390, Poughkeepsie, N. Y. 12602. A form is provided at the back of this publication for reader's comments. If the form has been removed, comments may be sent to the above address.
$\complement_{\text {International Business }}$ Machines Corporation, 1967

I UNIT OPERATIONS

$5-1$	Instruction Fetch
$5-2$	Instruction Fetch Return and Op Register Ingate Controls
$5-3$	Array Word Outgate Fetch Protect Interrupt

5-4 AOC Invalid Address, Valid Trigger Turn Off, and Turn Off Loop Mode
Store into Array Interlock
Pipeline 2 and 3 Control
Decode Cycle (State 0) Basic Interlock Check
Floating Point Issue Sequence
Fix Point Full Word Issue Sequence
Fix Point Halfword and Insert and Store Character Issue Sequence
5-11 Branch on Condition Sequence (5 sheets)
5-12 Branch on Count Sequence (5 sheets)
5-13 Branch on Index Sequence (6 sheets)
5-14 Branch and Link Sequence (2 sheets)
5-15 Execute Sequence (3 sheets)
5-16 Load PSW Sequence
5-17 Set Program Mask and Supervisor Call Sequence
5-18 Set System Mask Sequence
5-19 Insert Storage Key and Set Storage Key Sequences (2 sheets)
5-20 Read, Write Direct Sequence
5-21 Diagnose Sequence
5-22 Insert Character, Store Character, and Test and Set Sequence
5-23 Load Address Sequence
5-24 Shift Sequence
5-25 Convert Sequence
5-26 Timer Update Sequence
5-27 I/O Sequence (2 sheets)
5-28 LM, STM Sequence (3 sheets)
5-29 TR, TRT Sequence (5 sheets)
5-30 NOXCM Sequence (3 sheets)
5-31 PUMO Sequence (3 sheets)
5-32 ED, EDMK Sequence (4 sheets)
5-33 Interrupt Signals (3 sheets)
5-34 Interrupt Sequencing (2 sheets)
5-35 MOP Definitions
FIXED POINT OPERATIONS
5-100 Add and Subtract
5-101 Multiply (2 sheets)
5-102 Divide (3 sheets)
5-103 Compare
5-104 Loads
5-105 AND, OR, and EXCLUSIVE OR

5-106 Store, Store Halfword and Store Character
5-107 Insert
5-108 Convert to Binary
5-109 Convert to Decimal
5-110 Load Multiple (2 sheets)
5-111 Store Multiple
5-112 Shift Instructions (2 sheets)
5-113 NI, OI, and XI Instructions
5-114 TM and CLI Instructions (2 sheets)
5-115 MVI Instructions
5-116 TS Instruction
5-117 SSM Instruction
5-118 RDD Instruction
5-119 WRD Instruction
5-120 NC, OC, XC, MVN and MVZ Instructions (8 sheets)
5-121 CLC Instruction (8 sheets)
5-122 MVC Instruction (6 sheets)
5-123 MVO Instruction (6 sheets)
5-124 Pack and Unpack Instructions (7 sheets)
5-125 ED and EDMK Instructions (6 sheets)
5-126 TR and TRT Instructions (7 sheets)
5-127 VFL Controls
5-128 Block Operation
5-129 Cancelled Operation Processing
5-130 Timer Operation

FLOATING POINT OPERATIONS

5-200 Floating Point Operation
5-201 FLOS Controls
5-202 FLOS OP Decode-Go Generation
5-203 FLOS R1 and R2 Decode
5-204 FLR Precision Match
5-205 FLR Availability
5-206 FLR Outgating
5-207 FLBB Priority and FLB Outgating (2 sheets)
5-208 Unit Selection
5-209 Reservation Station Ingating
5-210 FAU Execution -- Fraction and Exponent
5-211 FAU Sign Control
5-212 FAU and ZET Condition Code Control
5-213 FMDU Unit First Selection
5-214 FMDU Normalize Control
5-215 Multiply Execution (2 sheets)
5-218 FMDU Exponent Execution
5-220 Outgates to CDB (2 sheets)
5-221 Multiply/Divide Error Checking
5-222 FLP M/D Residue Checking (3 sheets)

ABBREVIATIONS			
A	AND	CPU	Central Processing Unit
AC	Address Check	c Quick t	Conditional Quick Trigger
Acc	Access; Accumulator	CR	Control Register
Acpt	Accept	Crip	Cripple
Acptng	Accepting	CSA	Carry Save Adder
Addr	Address	csw	Channel Status Word
Adr	Address	Ctl	Control
Adv	Advance	Ctr	Counter
AE	Address Exception	Ctrl	Control
ALD	Automated Logic Diagram	CV	Converter
Altr	Alteration	cvb	(Mnemonic) Convert to Binary (RX)
Amt	Amount	CVD	(Mnemonic) Convert to Decimal (RF)
AOC	Array Out Counter	CXR	Console Auxiliary Register
AR	Amplifier		
Arg	Argument	D	Displacement
Arg Wd	Argument Doubleword	Dbl	Double
AS	Accept Stack	DC	Data Check; Display Check
ASLT	Advanced Solid Logic Technology	Dcd	Decode
ATI	Auxiliary Tape Input	Dcdr	Decoder
Avail	Available	Des	Designation
		Det	Detection; Detector
${ }^{\text {B }}$	Bit	DG	Display Gate
${ }^{\text {BAB }}$	Byte Address Buffer	Diag	Diagnose
BAC	Buffer Address Counter	DIG	Data Ingate
BAL	(Mnemonic) Branch and Link (RX)	Disp	Displacement
BALR	(Mnemonic) Branch and Link (RR)	Dist	Distributor
BAR	Byte Address Register	Div	Divide
${ }^{\text {BB }}$	Bank Bit	Dly	Delay, Delayed
BC	(Mnemonic) Branch on Condition; Bus Control	Dlyd	Delayed
BCR	(Mnemonic) Branch on Condition (RR)	DM	Diagnostic Monitor
${ }^{\text {BCOT }}$	Branch on Condition Quick Trigger	dog	Data Outgate
BCT	(Mnemonic) Branch on Count (RX)	DPC	Display Parity Check
BCTR	(Mnemonic) Branch on Count (RR)	Dsbl	Disable
BCU	Bus Control Unit	Dt	Data
BCUNCONT	Unconditional Branch Trigger	DW	Doubleword
${ }^{\text {Bd }}$	Board	Dwc	Doubleword Counter
Bdy	Boundary	DWCR	Doubleword Count Register
Bfr	Buffer		
BiA	Branch In Array	EBA	Ending Byte Address
BIAT	Back in Array Trigger	EbAR	Ending Byte Address Register
BOM	Basic Operating Memory	EbCDIC	Extended Binary Coded Decimal Interchange Code
Br	Branch	EC	Engineering Change
BRT	Branch Trigger	ECAD	Error Check Analysis Diagram
BSM	Basic Storage Module	ED	(Mnemonic) Edit (SS)
Bsy	Busy	EDMK	(Mnemonic) Edit and Mark (SS)
BXH	(Mnemonic) Branch on Index High (RS)	Ems	Extended Main Storage (Same as LCS)
BXLE	(Mnemonic) Branch on Index Low or Equal (RS)	Eq	Equals
BXPT	Branch on Index Quick Trigger	Err	Error
B2	Busy	EX	(Mnemonic) Execute (RX)
BZTP	Busy-to-Priority	Excpn	Exception
BZTPSCE	Busy-to-PSCE	Exce	Execute
BZTR	Busy-to-Request	Exp	Exponent
CAB	Channel Address Bus	FAU	Floating Point Add Unit
CAR	Console Address Register;	FE	Field Engineering
CAR	Channel Address Register	FEMDM	Field Engineering Maintenance Diagram Manual
CAW	Channel Address Word	FETOM	Field Engineering Theory of Operation Manual
C BACKL8 ${ }^{\text {T }}$	Condition Back Less than Eight Trigger	FIFO	First-In, First-Out
C BIA T	Conditional Back in Array Trigger	Fir	First
CBR	Console Buffer Register	FIWADFO	First-In-With-Available-Data, First-Out
cc	Command Counter; Condition Code	FIWAMFO	First-In-With-Available-Memory, First-Out
ccc	Common Channel Control	FLA	Floating Point Area
ccw	Channel Command Word	FLB	Floating Point Buffer
CD	Chain Data	FLBB	Floating Point Buffer Bus
CDB	Common Data Bus	Fld	Field
CDBI	Console Data Bus In	FleU	Floating Point Execution Unit
CDBO	Console Data Bus Out	FLIU	Floating Point Instruction Unit
Ch	Channel	FLOS	Floating Point Op Stack
Chan	Channel	FLP	Floating Point
ChFr	Channel Frame	FLR	Floating Point Register
Chk	Check	FLRB	Floating Point Register Bus
Ck	Check	FLU	Floating Point Unit
Chn	Chain	FMDU	Floating Point Multiply/Divide Unit
CIn	Carry In	FP	Fetch Protect
CLC	(Mnemonic) Compare Logical (SS)	FPA	Floating Point Area
Clk	Clock	Frm	Frame
CM	Conditional Mode; Console Mode; Cripple Mode	Frac	Fraction
Cncl	Cancel	FS	False Start
Cndl	Conditional	FSB	Fixed Store Bus
Cnt	Count	Fth	Fetch
co	Conditional Op	Fwd	Forward; Forwarding
Comp	Compare; Comparator	FXA	Fixed Point/VFL Area
Cond	Condition	FXB	Fixed Point Buffer
cout	Carry Out	FXEU	Fixed Point Execution Unit
CPA	Carry Propagate Adder	FXIU	Fixed Point Instruction Unit
CPC	Cyclic Program Counter	FXOS	Fixed Point Op Stack
CPE	Central Processing Element	FXP	Fixed Point

Gen	General; Generate	N	Inverter
GP Acpt	General Purpose Register Accept	NC	Mnemonic AND (SS)
GPR	General Purpose Register	Neg	Negative
Gr	Group	NIAT	New Instruction Address Trigger
Gt	Gate	No.	Number
Gtd	Gated	N Op	No Operation
GWFCDB	Go When Full Common Data Bus	Norm	Normalize
GWFFLbB	Go When Full Floating Buffer Bus	noxCm	(Mnemonic) NC (AND)
			OC (OR)
HIO	(Mnemonic) Halt I/O (SI)		XC (Exclusive OR)
HPMS	High Performance Main Storage		CLC (Compare Logical)
HOD	High Order Digit		MVC (Move)
HS	Half Sum		MVZ (Move Zone)
HSB	High Speed Bus		MVN (Move Numeric)
HW	Halfword	Ns	Nanosecond
		NSI	Next Sequential Instruction
I	Instruction	NUBAT	New Upper Bound Address Trigger
I-Box	Instruction Processor		
IC	(Mnemonic)Insert Character (RX); Instruction Count	OC	(Mnemonic) OR (SS)
IDR	Immediate Data Register	Oflo	Overflow
IF	Instruction Fetch	Og	Outgate
IFT	Instruction Fetch Trigger	Olap	Overlap
Ig	Ingate	Op	Operation
ILC	Instruction Length Code	Opnd	Operand
IMRT	Instruction from Memory Request Trigger	OR	Outring (Line Name Only)
Incr	Increment	Out Pri	Output Priority
Ind	Indication; Indicator	Ord	Order
Inh	Inhibit	Osc	Oscillator
Init	Initialize	Ovrd	Override
In Pri	Input Priority	Ovrlp	Overlap
Insn	Instruction		
Int	Internal	P	Parity; Position; Priority
Intr	Interrupt	PA	Propagate Adder
Inv	Invalid	PACK	(Mnemonic) Pack (SS)
1/O	Input/Output	Par	Parity
IOC	I/O Channel	PAR	Position Address Register
IPL	Initial Program Load	PAW	Position Address Word
IR	Instruction Register	PC	Parity Check
IRCTR	Instruction Register Counter	PDU	Power Distribution Unit
ISK	(Mnemonic) Insert Storage Key (RR)	PG	Parity Generate
ISR	Instruction Sink Register	PH	Polarity Hold
IWC	Indicator Word Counter	PK	Protection Key
		PM	Program Mask; Protect Memory (Same as PS)
K	Thousand	Pos	Position; Positive
		PPE	Peripheral Processor Element
L	Operand Length	PPln	Pipeline
LA	(Mnemonic) Load Address (RX)	Prec	Precision
Last	Last Trigger	Pred	Predict
LB	Lower Bound; Loop Block	Pri	Primary; Priority
LBCTR	Lower Bound Counter	Prob	Problem
$L_{\text {cnt }}$	Length Count	Prog	Program
LCS	Large Capacity Storage (Same as EMS)	Prop	Propagate
Ld	Load	Prot	Protect; Protection
LM	(Mnemonic) Load Multiple (RS)	PS	Protect Storage (Same as PM); Power Supply
10	Low Order	PSCE	Peripheral Storage Control Element
LOD	Low Order Digit	PSW	Program: Status Word
LPSW	(Mnemonic) Load PSW (SI)	Ptrn	Pattern
LSN	Load Multiple (LM), Store Multiple (STM), and NOXCM Instructions		Parity (Mnemonic) PACK (Pack)
Lth	Latch	PUMO	UNPK (Unpack)
			MVO (Move with Offset)
MA	Multi-Access	PV	Protection Violation
MAC	Multi-Access Code	Pwd	Powered
MALS	Multi-Access Link Suppressed		
Man	Manual	Q	Queue
MAR	Memory Address Register (Same as SAR)	Qx	Queue (any number)
MAT	Multi-Access Trigger		
MC	Maintenance Console; Megacycle; Marginal Checking	R	Ready
Mcand	Multiplicand	Rd	Read
MCW	Maintenance Control Word	RDD	(Mnemonic) Read Direct (SI)
M/D	Multiply/Divide	Rdy	Ready
MDR	Memory Data Register (Same as SDR)	Rec	Record
Mem	Memory	Reg	Register
MG	Motor Generator; Multiple Gate	Rel	Release
MOP	Multiple Operation	Req	Request
Mplr	Multiplier	Res	Reset; Residue
Mple	Multiple	Resd	Reserved
Mod	Modifier	Resp	Response
Mply	Muliply	Rgen	Regenerate; Regeneration
MS	Main Storage (Same as MWS)	RI	Read In
MSB	Medium Speed Bus	R/L	Remote/Local
MSC	Monolithic Storage Cell	Ro	Read Out
MSCE	Main Storage Control Element	RR	(Instruction Format) Both Operands from GPR's
MSM	Main Storage Module	RS	Request Stack; (Instruction Format) One Operand from
MTBF	Mean Time Between Failures		a GPR, the Other from Storage
Mul Dec	Multiplier Decoder	Rslt	Result
MVC	(Mnemonic) Move (SS)	Rsrvtn	Reservation
MVN	(Mnemonic) Move Numerics (SS)	Rt	Right
mvo	(Mnemonic) Move with Offset (SS)	Rtn	Return
MVZ	(Mnemonic) Move Zones (SS)	RUA	Register Unavailable for Address Generation
mws	Main Working Storage (Same as MS)	RUM	Register Unavailable for Modification

RX	(Instruction Format) One Operand from a GPR, the Other from an Indexed Storage Location	$\begin{aligned} & \text { SVIR } \\ & \text { SVR1 } \end{aligned}$	Save Instruction Register Save R1 Register
		Sw	Switch; Switch Enabled
So	State Zero	SW	Single Word
SA	Sink Address	Syl	Syllable
SAA	Storage Address Alteration	Sync	Synchronize
SAB	Storage Address Bus	Sys	System
SAP	Storage Address Protection		
SAR	Storage Address Register (Same as MAR); Store Address Register	T TAT	Time Time Address Trigger
SB	Sink Address Bus	Tbl Wd	Table Word
SBI	Storage Bus In	TCH	(Mnemonic) Test Channel (SI)
SBO	Storage Bus Out	T/CT	True/Complement Trigger
SC	Single-Cycle; Storage Channel; Sequence Complete	TD	Time Delay
Sc	Source	Temp	Temporary
SDB	Storage Data Buffer	TERMT	Terminate Trigger
SDE	Storage Distribution Element	TFMT	Temporary Fetch Made Trigger
SDR	Storage Data Register (Same as MAR)	Tgr	Trigger
Sel	Select	TI	Terminate Immediate
SERR	CPE Status Recording Program	TIO	(Mnemonic) Test I/O (SI)
SEVA	Systems Evaluation Program	TM	(Mnemonic) Test under Mask (SI)
S/F	Store/Fetch	Tof	Turn Off
Sh	Shift	Ton	Turn on
Shftr	Shifter	Tot	Total
SI	(Instruction Format) One Operand from Storage, the	TR	(Mnemonic) Translate (SS)
	Other Is Immediate	Trans	Transpose
SIA T	Store Into Array Trigger	Trnsps	Transpose
SIIS	Store into Instruction Stream	TRT	(Mnemonic) Translate and Test (SS)
SIO	(Mnemonic) Start I/O (SI)	TS	(Mnemonic) Test and Set (SI); Timing Stack
SIT	Store Interlock Trigger	T\&S	Test and Set
SK	Storage Key	U1	
Sk	Sink	U1	
S/L	Short/Long Precision	U2	Unit 2
SLA	(Mnemonic) Shift Left Single (RS)	UB	Upper Bound
SLCB	Save Loop Close B Register	UABI	Unit Address Bus In
SLC	Save Loop Close	UABO	Unit Address Bus Out
SLCIR	Save Loop Close Instruction Register	UBCTR	Upper Bound Counter
SLDA	(Mnemonic) Shift Left Double (RS)	UCC	Unit Communications Control
SLCX	Save Loop Close - X Register	Ucndl	Unconditional
SLI	Suppress-Length-Indication	Uncond	Uncondition
SLT	Save Loop Target; Solid Logic Technology	UNPK	(Mnemonic) Unpack (SS)
SM	Storage Module		
SMAL	Suppress Multi-Access Link		
Sng	Single	VFI	Variable
SO	Storage Operand	VFL	Variable Field Length
SP	Storage Protect; Single Pulse	VFLEU	Variable Field Length Execution Unit
SPAD	Select Parity and Display Counter	Viol	Violate; Violation
SPAR	Storage Protect Address Register		
SPC	Storage Protect Check		With Available Memory
SPF	Storage Protect Feature	WC	Word Counter
SPM	(Mnemonic) Set Program Mask (RR); Storage Protect Memory	Wd Bdy	Word Boundary
SP91	Protect Storage for System/360 Model 91		Working Register
Sr	Source	WRD	(Mnemonic) Write Direct (SI)
SRA	(Mnemonic) Shift Right Single (RS)		
SRDA	(Mnemonic) Shift Right Double (RS)	XC	(Mnemonic) Exclusive OR (SS)
SS	Snapshot Register; Storage-to-Storage; Stepping Switch		
S/S	Source/Sink	XOR	Exclusive OR
SSC	Selector Subchannel		
SSK	(Mnemonic) Set Storage Key (RR)	ZET	
SSM	(Mnemonic) Set System Mask (SI)	ZET	Zero Test Unit
ST	(Mnemonic) Store (RX)	1A2	SAR 1 Loaded after SAR 2
Stat	Station	1B2	RS 1 Loaded before RS 2
STC	(Mnemonic) Store Character (RX)	1B3	RS 1 Loaded before RS 3
Stg	Stage; Storage	1B4	RS 1 Loaded before RS 4
Stk	Stack	1 C 2	SAR 1 Address Compares with SAR 2 Address
Sto	Store; Storage	2 A 3	SAR 2 Loaded after SAR 3
STOOP	Storage Operation	2B3	RS 2 Loaded before RS 3
Stor	Store; Storage	2B4	RS 2 Loaded before RS 4
Stp	Stop	2 C 3	SAR 2 Address Compares with SAR 3 Address
STR	Source Tag Register	3A1	SAR 3 Loaded after SAR 1
Sup	Suppress	3B4	RS 3 Loaded before RS 4
SVC	(Mnemonic) Supervisor Call (RR)	3 C 1	SAR 3 Address Compares with SAR 1 Address

1. Data Flow Diagrams

2. Simplified Logic Diagrams

Input wedges mean that the more negative line
level is required to activate the circuitioutput
wedges mean that the more negative iline level
is pesent when the circuit is activate. Lack
of wedges indicate the more positive lievel
Bocks may have more than one output line. All
line tiles ore preceded by + or - to indicate
line
line level.

Note: Additioncl SLD symbology used only
on ECAD's is shown in Volume I.
4. Flowcharts

5. Timing Charts

Heavy bar indicates active state. Numbers at begining ond end of the bar identify the signal (s)
(aliso on the same chart) that activate and de-
activate this line. "Not" preceding a number activate this line. "Not" preceding o number
meanss hat the deactive signal conditions this line.
6. General
0.
©

(1)

Text Reference Point (Reference from FETOM)

On-Page Connector
Indicates connection between two points on the
Isme diagram Arrow leaving symbol points to same diagram. Arrow leaving symbol points to
symbol with the same number.

Off-Page Connector
Indicates connection between two points located Indicates connection between two points locared
on separate pages. Where the connection is be-
tween two tween two pages of multipage diagram, a refer-
ence such os "Sheet 2 is is given instead of a diaence such os ".
gram number.

Multiple Line Transfer

diagram 5-2. instruction fetch return and op register ingate controls

diagram 5-3. array word outgate fetch protect interrupt

DIAGram 5-4. aOC INVALID address, Valid trigger turn off, and turn off loop mode

DIAGRAM 5-6. PIPELINE 2 AND 3 CONTROL

DIAGRAM 5-7. DECODE CYCLE (STATE 0) BASIC INTERLOCK CHECK

diagram 5-8. FLOATING POINT ISSUE SEQUENCE

dLageam 5-10. Fix point halfword and insert ano store character issue sequence

diagram 5-11. branch on condition sequence (sheet i of 5)

diagram 5-11. branch on condition sequence (sheet 2 OF 5)

5-11 (3 of 5).

diagram 5-11. branch on condition sequence (sheet 4 OF 5)

Notes:

1. Reset Og to Adder $=$ GPR Reset and Hot is Reset
(b) Tof $X / R 2 ; B ; D ; O g$ Tgr
(c) Tof WR Og Tgrs
(d) Tof Temp Reg Og Tgr
$=$ (a) Set T/C Tgr to T
2. Hot is Reset = $\begin{aligned} & \text { (a) Set T/C Tgr to T } \\ & \text { (b) Tof }+1 \text { to Adder 31; 29; 28; TAT; and } 25\end{aligned}$
(b) Tof +1 to Adder
(c) Tof SVIR Og Tgr
(d) Tof LB Og Tgr
(d) Tof Li Og Tgr
(e) Tg Igr
$\mathrm{Br} \operatorname{Tgr}$ Reset $=$ (a) Tof $\mathrm{Br} \operatorname{Tgr}$
(b) Tof BIA Tgr
(c) Tof BIA 1 Tg
(d) T of $B<8 \mathrm{Tgr}$
(f) Tof BCUNCON Tgr
(a) Tof Cond Tgr
(b) Tof CBIA Tgr
(b) Tof CBIA Tgr
(c) Tof CB<8 Tgr
(d) Tof C Quick Tgr
(e) Tof TFM Tgr

DIAGRAM 5-11. BRANCH ON CONDITION SEQUENCE (SHEET 5 OF 5)

DIAGRAM 5-12. BRANCH ON COUNT SEQUENCE (SHEET 1 OF 5)

diagram 5-12. BRANCH ON COUNT SEQUENCE (SHEET 2 OF 5)

diagram 5-12. BRANCH ON COUNT SEQUENCE (SHEET 3 OF 5)

diagram 5-12. branch on count sequence (sheet 4 OF 5)

DIAGRAM 5-13. BRANCH ON INDEX SEQUENCE (SHEET 1 OF 6)

dIAGRAM 5-13. BRANCH ON INDEX SEQUENCE (SHEET 3 OF 6)

diagram 5-13. branch on index sequence (sheet 4 OF 6)

diagram 5-13. branch on index sequence (sheet 5 OF 6)

diagram 5-14. branch and link sequence (sheet 1 of 2)

DIAGRAM 5-14. BRANCH AND LINK SEQUENCE (SHEET 2 OF 2)

DIAGRAM 5-15. EXECUTE SEQUENCE (SHEET I OF 3)

diagram 5-15. EXECUTE SEQUENCE (Sheet 2 Of 3)

DIAGRAM 5-15. EXECUTE SEQUENCE (SHEET 3 OF 3)

DIAGRAM 5-16. LOAD PSW SEQUENCE

DIAGRAM 5-17. SET PROGRAM MASK AND SUPERVISOR CALL SEQUENCE

DIAGRAM 5-18. SET SYSTEM MASK SEQUENCE

DIAGRAM 5-19. INSERT STORAGE KEY AND SET STORAGE KEY SEQUENCES (SHEET 2 OF 2)

DIAGRAM 5-20. READ, WRITE DIRECT SEQUENCE

DIAGRAM 5-21. DIAGNOSE SEQUENCE

DIAGRAM 5-22. INSERT CHARACTER, STORE CHARACTER, AND TEST AND SET SEQUENCE

DIAGRAM 5-24. SHIFT SEQUENCE

DIAGRAM 5-25. CONVERT SEQUENCE

DIAGRAM 5-27. I/O SEQUENCE (SHEET 1 OF 2)

DIAGRAM 5-27. I/O SEQUENCE (SHEET 2 OF 2)

DIAGRAM 5-28. LM, STM SEQUENCE (SHEET 3 OF 3)

DIAGRAM 5-29. TR, TRT SEQUENCE (SHEET I OF 5)

DIAGRAM 5-29. TR, TRT SEQUENCE (SHEET 2 OF 5)

DIAGRAM 5-29. TR, TRT SEQUENCE (SHEET 3 OF 5)

DIAGRAM 5-29. TR, TRT SEQUENCE (SHEET 4 OF 5)

diagram 5-29. TR, TRT SEQUENCE (SHEET 5 OF 5)

DIAGRAM 5-30. NOXCM SEQUENCE (SHEET 1 OF 3)

diagram 5-30. NOXCM SEQUENCE (SHeet 3 OF 3)

Objective:
Decode and issue the following instructions: Pack, Unpack, and Move With Ofset

	F2	11	12	B1		D1	B2		D2	
Pack						$3132 \quad 3536$				47
	F3	11	12	B1		D1	B2		D2	
Unpack	$\begin{array}{lllllllllll}0 & 78 & 11 & 12 & 1516 & 19\end{array}$					$3132 \quad 3536$				47
	FI	L1	L2	B1		D1	B2		D2	
MVO	$\begin{array}{lllllll}78 & 1112 & 1516 & 1920\end{array}$					$3132 \quad 3536$				47

DIAGRAM 5-3I. PUMO SEQUENCE (SHEET I OF 3)

DIAGRAM 5-32. ED, EDMK SEQUENCE (SHEET I OF 4)

DIAGRAM 5-32. ED, EDMK SEQUENCE (SHEET 2 OF 4)

DIAGRAM 5-32. ED, EDMK SEQUENCE (SHEET 3 OF 4)

diagram 5-32. ed, edmk sequence (SHeEt 4 OF 4)

DIAGRAM 5-33. INTERRUPT SIGNALS (SHEET I OF 3)

Program B, External, and I/O Interrupt Signaling and Priority

DIAGRAM 5-33. INTERRUPT SIGNALS (SHEET 3 OF 3)

diagram 5-34. interrupt sequencing (sheet i of 2)

DIAGRAM 5-34. INTERRUPT SEQUENCING (SHEET 2 OF 2)

1. Tof MOP O_{g} Tgrs - This line turns off the following outgate triggers: DWCR; Byte Buffer; RI to
$\mathrm{RI}-\mathrm{OR} ; \mathrm{L} ; \mathrm{L}$; and $\mathrm{L}-\mathrm{LO3}$.
2. Tof Og Tgrs to Adder - This line turns off the following outgate triggers: all "B" and "X" outgate 3. Gate $B 1$ (B2) to Adder - This line turns on the B outgate trigger which is specified by a decode of
the B-field outgated from the Instruction Register.
3. Gate D1 (D2) to Adder - This line turns on the D-Bfr outgate trigger and ingates to the D-Bfr the D-Field which is outgated from the Instruction Register.
4. $\frac{\text { Gate } B 1 \text { (B2) and D1 (D2) to Adder }}{\text { items } 3 \text { and } 4 \text {. This line combines the functions of the lines described in }}$
5. Lf to Rt Olap - This signal is used in the NOXCM sequence to indicate an overlapping condition between the sink and source operand fields which requires special handling by the VFLEU. This line is conditioned by: $0<$ [Sink Starting Address (to byte level) - Source Starting Address (to
byte level) $]<8 ;$ i.e., $0<[(B 1+D 1)-(B 2+D 2)]<8$. byte level) $]<8$; i.e., $0<[(B 1+D 1)-(B 2+D 2)]<8$.
6. MVO Olap - This signal is used in the PUMO sequence to indicate an overlapping condition between the sink and source operand fields which requires special handling by the VFLEU. This
is conditioned by: $0<D<8$, where $D=[(B 2+D 2+L 2)-(B 1+D 1+L 1)]=$ (Source Starting
Address - Sink Starting Address).
7. Possible Olap in PACK or UNPK - This signal is used in the PUMO sequence to indicate an overlapping condition between the sink and source operand fields which may require special handling
by the VFLEU. (See also item 9.) This line is conditioned by the following logical relationthip: (Decode UNPK) $(-8 \leq D \leq 0)$ or $(0<D<16)$. (D is defined in item 7.) This condition will prom the PUMO sequence to go into a special "hand-in-hand" relationship with the VFLEU.
8. PACK or UNPK Olap - This signal is used in the PUMO sequence to indicate that a particular of this pair of operands is required in the VFLEU. This line is conditioned when: $(-8 \leq \mathrm{D}<8)$ (Sink Db Wd Adr Bit, Bit 28) = (Source DJ Wd Adr Bit, Bit 28); i.e., Sink Double Word Address Source Double Wd Address. (D is defined in item 7.)
9. LO3, B, D, L Carry - This signal is used as operand fetching is begun, to aid in determining ho many doublewords are involved in a particular operand stream. A three-bit sum is determined by
the addition of the low-order three bits of the register specified by B to the low-order three bits the addition of the low-order three bits of the register specified by B to the low-order three bits
of the D field. This sum is then added to the low-order three bits of the L-field; a carry out of the high-order position of this three-bit add is known as an "LO3, B, D, L Carry".
10. Block Og_{g} of Byte Adr from WR to Adder A - When this line is conditioned, it suppresses the outgating of
11. MALS Data Not Needed - This line signals the MSCE that the data for a fetch are not needed.
12. Arg Byte Accp - This signal is generated by the MOP sequence for TR and TRT. Its presence Ndicates to the VFLEU that any argument byte which is presently on the Byte Bus may be taken of lines are negative.
13. Blk End Cancel - This line is conditioned by the MOP logic whenever the Term Tgr is on. It is Used in connection with the op cancelling process. When the line is conditioned, it prevents the VFLEU from completing its cancelling process until the MOP sequence can guarantee that no more ops will be issued to the FXOS.
14. Byte Bus Valid - This signal from the VFLEU indicates to the TR or TRT sequence that a valid argument byte is on the Byte Bus, or to the ED or EDMK sequence that a byte count is on the Byte
15. CLC Complete - This signal is generated by the VFLEU when it finds that the operands in a CLC instruction are equal. The signal is used in the NOXCM sequence as part of the control for the Blk CLC Tgr.
16. CLC Term - This signal is generated by the VFLEU based on the fact that a pair of CLC operand bytes are unequal. If the unequal byte pair is compared during cycle n, this signal is transmitted to the I-Box during cycle ($n+1$). CLC Term is used in the NOXCM sequence to prevent further operand accessing and as part of the control for the Blk CLC Tgr.
17. EDMK Byte Adr Accp - This signal is generated by the MOP sequence for ED and EDMK. It presence indicates that the byte count has been gated into the Byte Buffer.
18. EDMK Complete - This signal is generated by the VFLEU and is transmitted to the I-Box in arallel with the transmission of the last pattern word to an SDB. It causes the ED or EDMK sequence torn on the Term Tgr which will then lead to an exit from the sequence. This communication
relative to the completion of EDMK execution is necessary since the 1 -Box must stand-by until there is no further chance that a byte address may have to be generated and stored in GPRI.
19. End of Olap PACK or UNPK - This signal is generated by the VFLEU in connection with the pecial approach used for particular overlap situations in PACK and UNPK. It is transmitted to the equence to motivate an exit.
20. End of Sr Wd - This signal, generated by the VFLEU, is used only in certain overlapped PACK or UNPK situations. It is transmitted to the I-Box during the cycle following the outgate of the las byte from the source word and is used in the PUMO sequence to initiate the fetch for the next surce word and the setting up of another store for the present sink word.
21. End of Sk Wd - This signal, generated by the VFLEU, is used only in certain overlapped PACK or byte into the sink word, and is used in the PUMO during the cycle following the ingate of the last
22. GPR Accept - This signal is the output of the GPR Accept Trigger which is a part of the GPR ingate priority scheme in the FXA. If the GPR Accept Tgr is turned on at the start of cycle n, data from the -Box are gated into an addressed GPR at the start of cycle $(n+2)$.
23. Ig Adr to GPR - This line is conditioned by the MOP logic whenever the MOP Tgr is on to block he ingate to the addressed GPR of the high -order eight bits from the 1 -Box. This covers the byte GPRI to remain unchanged.
24. Last Arg Byte - This signal accompanies the last argument byte to be sent from the VFLEU to the -Box in the course of a TR or TRT instruction.
25. TRT Complete - This signal is generated by the VFLEU when there is no non-zero function byte in he course of a TRT instruction. It is transmitted to the l-Box during the cycle following the exam-
26. TRT Term - This signal is generated by the VFLEU based on the fact that a non-zero function byte has been found. It is transmitted to the 1 -Box during the cycle following the examination of the non-zero function byte, and in parallel with the transmission to the I-Box of the byte count are and motivates argument bye address generation and storing into GPRI. It then leads to exit from the TR or TRT sequence.
27. VFLEU - This signal is sent to the 1 -Box from the FXA during the FXOS decode cycle for an SS instruction. Its presence will cause the L-Reg Full Tgr to be turned off.
28. VFL Req ED Sr - This signal is sent to the l-Box by the VFLEU whenever, in the course of an ED the , if makes a request for a source word from an FLB. VFL Req ED Sr is recorded by MOP in the Req ED Sr Tgr and motivates the fetch of the next source word.
29. VFL Req Ptrn or Arg Tgr - This signal is generated by the VFLEU in connection with pattern wor requests in ED or EDMK and argument word requests in TR or TRT. The signal is recorded by Req Ptrn or Arg Tgr. The TR or TRT sequence is notified for all argument word requests except the first;
and the Req Ptrn or Arg Tgr initiates the fetch of the next argument word. The ED or EDMK sequenc and the Req Ptrn or Arg Tgr initiates the fetch of the next argument word. The ED or EDMK sequence
receives this signal for all pattern word requests except the first (and in one case the end of the pattern word from the "END" Op); and the Req Ptrn or Arg Tgr initiates the fetch of the next pattern word.
30. Ton SAR Valid Tgr - Associated with each of the three SARs is a valid trigger. A SAR is set "Valid" when a new address is set into the SAR. Once the SAR is valid, its address is compared WACK or UNPK in which an address may be set into multiple op sequences for handling TR and comparisons. In such cases it becomes necessary to modify the general procedure for setting a SAR valid. The logic used to accomplish this modification makes use of the signals: Suppress Ton SAR Valid Tgr, and Ton SAR Valid Tgr per Op Stage SAR Field. The flow chart below shows how these special signals interact with the general procedure for setting a SAR valid.

DIAGRAM 5-35. MOP DEFINITIONS

DIAGRAM 5-102. DIVIDE (SHEET 1 OF 3)

[^1]

DIAGRAM 5-102. DIVIDE (SHEET 3 OF 3)

Notes:

1. R1 Field Data (RR and RX Formats)
2. R2 Field Data (RR Format Only).
3. FXB Field Data (RX Format Only).
4. Results set the CC but are not gated back to a GPR.

First operand is high

1. Compare operations gate data from the GPR's or Storage (FXB) to the carry propagate adder
2. The value of R2 is subtracted from the value of R1 and the results set the condition code.

Operands are not changed by the compare operations.
4. Logical compares treat the data as 32 bit values without signs.
5. During halfword compare, 16 bits of data from the FXB are gated to the adder. The high order bits of the word are changed to agree with the halfword sign.
6. Normal execution time for ops 15 and 19 is 1 machine cycle.
7. Ops 49, 55 and 59 require an undetermined number of machine cycles because input data must come from storage via an FXB.

DIAGRAM 5-103. COMPARE

DIAGRAM 5-104. LOADS

DIAGRAM 5-105. AND, OR, AND EXCLUSIVE OR

[^2]

DIAGRAM 5-107. INSERT

1. Insert operations move a byte of information from storage into bits 24-31 of GPR RI
2. ISK obtains the information from storage protect memory (a 5 bit storage
3. IC fetches a byte from a storage address.
4. Data path for the information is from storage through the FXB, VFL logic unit, digit shifter (straight through), and the result bus into GPR R1.
5. Insert ops require an undetermined number of machine cycles because data must come from storage

cve otot Flow

DIAGRAM 5-108. CONVERT TO BINARY

DIAGRAM 5-110. LOAD MULTIPLE (SHEET 1 OF 2)

DIAGRAM 5-110. LOAD MULTPLE (SHEET 2 OF 2)

1. A block
storage bus.
2. The R1 field specifies the first GPR of the block to be stored.
3. A pseudo-op will be issued, by the l-unit, for each doubleword of the data block.
4. Singleword stores can occur during the first and last pseudo-ops. The L (left) and
R (right) bits indicate which half of the doubleword is to be stored.
5. During a singleword store two GPR's are gated out to MSCE but only one is
. No
6. Normal execution time is 1 machine cycle for each pseudo-op

1 Unit Has
Notified MSCE
Whis Which Half of thel Be Stored

7. The sifit omount generoters gates to contot the shitien

. Doule shift operations ore conpletetd in three mochine

Condion ecteremais uncenged for leaical shift operation
Condition code is set os follows for rorithmetic shitt operations

Objectives:
AND, OR, Exclusive $O R$
NI, OI, XI

NI, OI, or XI Condition Codes:
0 -Result is 0
0 -Result is 0
1 -Result is not 0 2-(Not applicable)
3-(Not applicable)

1. Specified FXB byte is ANDed (94), ORed (96)
or Exclusive ORed (97) with immediate data field
or Exclusive ORed
2. FXB data and immediate data are gated to VFL

Logic Unit over opposite busses (Sk or Sr).
3. Results are outgated to specified SDB.

Data Flow

Flow Chart

DIAGRAM 5-113. NI, OI, AND XI INSTRUCTIONS

Objectives:

Test Under Mask
TM
$\left.{ }_{10}\right|_{1}\right|_{2}\right|_{3}\right|_{4}\right|_{5}\right|_{6}\right|_{7}\right|_{8}\right|_{9}\right|_{10}\right|_{11}\right|_{12}\right|_{13}\right|_{14}\right|_{15}\right|_{16}\right|_{17}\right|_{18}\right|_{19}\right|_{20} \mid$

1. State of bits in FXB byte selected by mask in
immediare data field is used to set condition code.
2. Mask bit of 1 indicates corresponding FXB bit \quad TM Condition Code:
is to be tested; mask bit of 0 indicates corresponding $\quad 1-$ Selected bits and mask are all
$\begin{array}{ll}\text { bit is to be ignored. } & 1-\text { Selected bits are } \\ & 2-\text { (Not applicable) }\end{array}$
$\begin{array}{ll}\text { bit is to be ignored. } & 2-\text { (Not applicable) } \\ \text { 3. FXB data and immediate data are gated to VFL } & 3-\text { Selected bits are all } 1\end{array}$
Logic Unit over opposite busses (Sk or Sr).

Com

1. Specified FXB byte is compared with immediate CLI Condition Code:
data field in VFL Logic Unit. 0 - Operands are eq
$\begin{array}{ll}\text { 2. FXB data and immediate data are gated to VFL } & 1-\text { FXB data is low } \\ \text { Logic Unit over opposite busses (Sk or Sr). } & 2-\text { FXB data }\end{array}$
Logic Unit over opposite busses ($5 k$ or Sr). 2 - FXB data is high
2. Results of operation are indicated in $3-$ (Not applicable)
condition code.
M Data Flow

CLI Data Flow

Objectives:
Move
MVI

1. IDR data are moved to a specified SDB
2. IDR data are gated onto specere bus Positions MVI Condition Code:

48 through 55 and 56 through 63 .
Code remains unchanged

Data Flow

FXOS
Immediate
Data Reg

Flow Chart

DIAGRAM 5-115. MVI INSTRUCTION:

1. VFLEU only performs part of instruction. MSCE performs other part.
MSCE outgates a word from storage and (1) sends it to VFLEU and

SCE outgates a word from storage and (1) sends it to VFLEU, and
2. Specified byte is gated from FXB to VFL Logic Unit where bit 0 of byte is tested for a 0 or 1 condition. Condition code is set accordingly

TS Condition Code:
$0-$ Bit 0 of specified byte is zero
1 - Bit 1 of specified byte is one
2- (Not applicable)
3 - (Not applicable)

Data Flow

Flow Chart

DIAGRAM 5-116. TS INSTRUCTION

Objective:
 Set System Mask SSM

1. Byte in specified FXB replaces system
mask bits in current PSW.
2. FXB byte is sent to 1 -Box via byte bus.
. FX complete signal is sent to 1 -Box
causing current PSW to ingate new mask byte.

Data Flow

Flow Chart

DIAGRAM 5-117. SSM INSTRUCTION

1. IDR data are made available as signal-out
timing signals; direct-in data are placed in IDR iming signals; direct-in data are placed in ID for subsequent transfer to specified SDB.
2. IDR data are gated to single shots and
direct-in data are set into IDR via result bus
after single shots are activated.
3. Direct-in data are transferred from IDR
to specified SDB.

Data Flow

DIAGRAM 5-118. RDD INSTRUCTION

DIAGRAM 5-120. NC, OC, XC, MVN, AND MVZ INSTRUCTIONS (SHEET 1 OF 8)

MVN and MVZ Data Flow

DIAGRAM 5-120. NC, OC, XC, MVN, AND MVZ INSTRUCTIONS (SHEET 2 OF 8)

Decode and Start

DIAGRAM 5-120. NC, OC, XC, MVN, AND MVZ INSTRUCTIONS (SHEET 3 OF 8)

DIAGRAM 5-120. NC, OC, XC, MVN, AND MVZ INSTRUCTIONS (SHEET 4 OF 8)

DIAGRAM 5-120. NC, OC, XC, MVN, AND MVZ INSTRUCTIONS (SHEET 5 OF 8)

DIAGRAM 5-120. NC, OC, XC, MVN, AND MVZ INSTRUCTIONS (SHEET 6 OF 8)

DIAGRAM 5-120. NC, OC, XC, MVN, AND MVZ INSTRUCTIONS (SHEET 7 OF 8)

DIAGRAM 5-120. NC, OC, XC, MVN, AND MVZ INSTRUCTIONS (SHEET 8 OF 8)

Simplified Flow Chart

DIAGRAM 5-121. CLC INSTRUCTION (SHEET 1 OF 8)

DIAGRAM 5-121. CLC INSTRUCTION (SHEET 2 OF 8)

Cancel

DIAGRAM 5-121. CLC INSTRUCTION (SHEET 3 OF 8)

Data Available

DIAGRAM 5-121. CLC INSTRUCTION (SHEET 4 OF 8)

DIAGRAM 5-121. CLC INSTRUCTION (SHEET 5 OF 8)

Sink Request

DIAGRAM 5-121. CLC INSTRUCTION (SHEET 6 OF 8)

DIAGRAM 5-121. CLC INSTRUCTION (SHEET 7 OF 8)

DIAGRAM 5-121. CLC INSTRUCTION (SHEET 8 OF 8)

DIAGRAM 5-122. MVC INSTRUCTION (SHEET 2 OF 6)

Data Available

DIAGRAM 5-122. MVC INSTRUCTION (SHEET 3 OF 6)

Parallel Processing

DIAGRAM 5-122. MVC INSTRUCTION (SHEET 4 OF 6)

DIAGRAM 5-122. MVC INSTRUCTION (SHEET 5 OF 6)

DIAGRAM 5-122. MVC INSTRUCTION (SHEET 6 OF 6)

DIAGRAM 5-123. MVO INSTRUCTION (SHEET I OF 6)

5-123 (1 of 6)

DIAGRAM 5-123. MVO INSTRUCTION (SHEET 2 OF 6)

DIAGRAM 5-123. MVO INSTRUCTION (SHEET 3 OF 6)

DIAGRAM 5-123. MVO INSTRUCTION (SHEET 4 OF 6)

DIAGRAM 5-123. MVO INSTRUCTION (SHEET 5 OF 6)

DIAGRAM 5-123. MVO INSTRUCTION (SHEET 6 OF 6)

DIAGRAM 5-124. PACK AND UNPK INSTRUCTIONS (SHEET I OF 7)

[^3]

DIAGRAM 5-124. PACK AND UNPK INSTRUCTIONS (SHEET 3 OF 7)

DIAGRAM 5-124. PACK AND UNPK INSTRUCTIONS (SHEET 4 OF 7)

DIAGRAM 5-124. PACK AND UNPK INSTRUCTIONS (SHEET 5 OF 7)

DIAGRAM 5-124. PACK AND UNPK INSTRUCTIONS (SHEET 6 OF 7)

DIAGRAM 5-124. PACK AND UNPK INSTRUCTIONS (SHEET 7 OF 7)

DIAGRAM 5-125. ED AND EDMK INSTRUCTIONS (SHEET I OF 6)

[^4]

DIAGRAM 5-125. ED AND EDMK INSTRUCTIONS (SHEET 4 OF 6)

DIAGRAM 5-125. ED AND EDMK INSTRUCTIONS (SHEET 5 OF 6)

DIAGRAM 5-125. ED AND EDMK INSTRUCTIONS (SHEET 6 OF 6)

DIAGRAM 5-126. TR AND TRT INSTRUCTIONS (SHEET I OF 7)

diagram 5-126. TR AND TRT INSTRUCTIONS (SHeEt 3 OF 7)

diAgram 5-126. TR AND TRT INSTRUCTIONS (SHEET 5 OF 7)

DIAGRAM 5-126. TR AND TRT INSTRUCTIONS (SHEET 6 OF 7)

DIAGRAM 5-126. TR AND TRT INSTRUCTION (SHEET 7 OF 7)

Objectives:

1. $F A / F B$ Request sequence is executed whenever a sink word request is generated.

FC/FD Request sequence is executed whenever a source request or TWC/TWD (TRT instruction only) request is generoted.

DIAGRAM 5-128. BLOCK OPERATION

diagram 5-129. CANCELLED OPERATION PROCESSING

* Special RR Format

Objectives:

1. Timer operation fetches a timer count word from storage location 80, decrements the count by a specified amount and stores the count word back in the same location.
. Timer operations are issued to the fixed area at a rate of 60 per second (line frequency).
2. When the decremented count becomes negative (has passed through zero) a timer interrupt occurs to signal the
program that a particular period of time has passed.

Notes
Notes:

1. Decrement Value

DIAGRAM 5-200. FLOATING POINT OPERATIONS

diagram 5-202. flos op decode - go generation

DIAGRAM 5-203. FLOS RI AND R2 DECODE

DIAGRAM 5-204. FLR PRECISION MATCH

DIAGRAM 5-205. FLR AVAILABILITY

diagram 5-207. flbb priority and flb outgating (Sheet 1 OF 2)

DIAGRAM 5-207. FLBB PRIORITY AND FLB OUtGATING (SheEt 2 OF 2)

DIAGRAM 5-208. UNIT SELECTION

DIAGRAM 5-209. .RESERVATION STATION INGATING

DIAGRAM 5-210. FAU EXECUTION - FRACTION AND EXPONENT

DIAGRAM 5-211. FAU SIGN CONTROL

DIAGRAM 5-213. FMDU UNIT FIRST SELECTION

diAGram 5-214. FMDU NORMALIZE CONTROL

DIAGRAM 5-215. MULTIPLY EXECUTION (SHEET 1 OF 2)
5-215 (1 of 2)

8. Multiply Sequercing and Outgate Controls

Diagram 5-215. MULTPLY EXECUTION (SHEET 2 Of 2)

diagram 5-220. outgates to Cdb (sheet 1 of 2)

DIAGRAM 5-221. MULTIPLY/DIVIDE ERROR CHECKING

DIAGRAM 5-222. FLP M/D RESIDUE CHECKING (SHEET 3 OF 3)

Add (FLA) 5-210
Add Halfword Operation (FXA) 5-100
Add Logical Operation (FXA) 5-100
Add Operation (FXA) 5-100
AND Operation
FXP 5-105
VFL 5-120
SI 5-113
AOC Invalid Address (I Unit) 5-4
Array Protect Tag Turn Off 5-2
Array Word Outgate 5:3
Availability, FLR 5-205
Basic Interlock Check (I Unit) 5-7
Block Operation (FXA) 5-128
Branch and Link Sequence 5-14
Branch On Condition Sequence 5-11
Branch On Count Sequence 5-12
Branch On Index Sequence 5-13
Cancelled Operation Processing (FXA) 5-129
CDB, Outgates to 5-220
CDB Request 4-220
Checking, Residue (FLP M/D) 5-222
Compare (FLA) 5-210
Compare Halfword Operation (FXA) 5-103
Compare Logical Operations
EXP 5-103
VFL 5-121
SI 5-114
Compare Operations (FXA) 5-103
Condition Code, FAU and ZET 5-212
Condition Mode Controls (I Unit) 5-6
Controls (VFL) 5-127
Convert to Binary Operation (FXA) 5-108
Convert to Decimal Operation (FXA) 5-109
Convert Sequence (I Unit) 5-25

Decode Branch on Condition 5-11
Branch on Count 5-12
Branch on Index 5-13
Cycle State 0 (I Unit) 5-7
FLOS-Op 5-202
R1 and R2 (FLOS) 5-203
Diagnose Sequence (I Unit) 5-21
Divide Operations (FXA) • 5-102

Edit and Mark
Operation (VFL) 5-125
Sequence (I Unit) 5-32
Edit
Operation (VFL) 5-125
Sequence (I Unit) 5-32
Error Checks
FLA Multiply/Divide 5-221
FMDU Fraction 5-221
FMDU Exponent 5-221
Execute Sequence (I Unit) 5-15
Exclusive OR Operation
FXP 5-105
VFL 5-120
SI 5-113
Execution, FAU 5-210
Execution, Multiply (FLA) 5-215
Exponent Error Checks (FMDU) 5-22
Exponent Execution (FMDU) 5-218

FAU
Condition Code Control 5-212
Execution 5-210
Sign ${ }^{\circ}$ Control 5-211
Fetch Protect Interrupt (I Unit) 5-3
Fixed Point Decode Sequence (I Unit) 5-9
Fixed Point Full Word Issue Sequence (I Unit) 5-9
Fixed Point Halfword Issue Sequence (I Unit) 5-10
FLBB Priority 5-207
FLB Outgating 5-207
Floating Point
Add 5-210
Compare 5-210
Halve 5-210
Load and Test 5-212

Load Compliment 5-210
Load Negative 5-210
Load Positive 5-210
Multiply 5-215
Store 5-209
Subtract 5-210
Issue Sequence (I Unit) 5-8
FLOS
Controls 5-201
Go Generation 5-202
Op Decode 5-202
R1 and R2 Decode 5-203
FLP M/D Residue Checking 5-222
FLR
Availability 5-205
Outgating 5-206
Precision Match 5-204
FMDU
Exponent Execution 5-218
Normalize Control 5-214
Unit First Selection 5-213
Fraction Error Checks (FMDU) 5-221
Full Word Issue Sequence, Fixed Point (I Unit) 5-9
Generate Go (FLA) 5-202
Havle (FLA) 5-210
Ingating, FLA Reservation Stations 5-209
Insert Character
Issue Sequence (I Unit) 5-10
Operation (FXA) 5-107
Sequence (I Unit) 5-22
Insert Storage Key
Operation (FXA) 5-107
Sequence (I Unit) 5-19
Instruction Fetch (I Unit) 5-1
Instruction Fetch Return (I Unit) 5-2
Interrupt Sequencing (I Unit) 5-34
Interrupt Signals (I Unit) 5-33
I/O Sequence (I Unit) 5-27
Issue Sequence
Fixed Point Full Word (I Unit) 5-9
Fixed Point Halfword (I Unit) 5-10
Insert Character (I Unit) 5-10
Store Character (I Unit) $\quad 5-10$

Load
Positive 5-210
Negative 5-210
Complement 5-210
Load Address Sequence (I Unit) 5-23
Load and Test (FLA) 5-212
Load and Test Operation (FXA) 5-104
Load Complement Operation (FXA) 5-104
Load Halfword Operation (FXA) 5-104
Load Multiple Operation (FXA) 5-110 (sheets 1 and 2)
Load Multiple Sequence (I Unit) 5-28
Load Negative Operation (FXA) 5-104
Load Operations (FXA) 5-104
Load Positive Operation (FXA) 5-104
Load PSW Sequence (I Unit) 5-16
MOP Definitions (I Unit) 5-35
Move Character Operation (VFL) 5-122
Move Numerics Operation (VFL) 5-120
Move Operation (SI) 5-115
Move With Offset Operation (VFL) 5-123
Move Zones Operation (VFL) 5-120
Multiply/Divide Error Checking (FLA) 5-221
Multiply Execution (FLA) 5-215
Multiply (FLA) 5-215
Multiply Halfword Operation (FXA) 5-101
Mutliply Operations (FXA) 5-101
Multiply Sequencing (FLA) 4-215
Normalize Control (FMDU) 5-214
NOXCM Sequence (I Unit) 5-30
Op Register Ingate Controls (I Unit) 5-2
OR Operation
FXP 5-105

VFL 5-120
SI 5-113
Outgates to CDB (FLA) 5-220
Outgating, FLB 5-207
Outgating, FLR 5-206

Pack Operation (VFL) 5-124
Pipeline Ready (I Unit) 5-6
Pipeline 2 and 3 Control 5-6
Precision Match, FLR 5-204
Priority, FLB's 5-207
PUMO Sequence (I Unit) 5-31
Read Direct
Operation (FXA) 5-118
Sequence (I Unit) 5-20
Reservation Station Ingating (FLA) 5-209
Residue Checking, FLP M/D 5-22
R1 and R2 Decode (FLOS) 5-203

Select, FLA Unit 5-208
Set Program Mask Sequence (I Unit) 5-17
Set Storage Key Sequence (I Unit) 5-19
Set System Mask
Operation (FXA) 5-117
Sequence (I Unit) 5-18
Shift
Operations (FXA) 5-112
Sequence (I Unit) 5-24
Sign Control, FAU 5-211
State 0 Decode Cycle (I Unit) 5-7
Step AOC (I Unit) 5-2
Store Character
Operation (FXA) 5-106
Issue Sequence (I Unit) 5-10
Sequence (I Unit) 5-22

Store (FLA) 5-209
Store Halfword Operation (FXA) 5-106
Store Into Array Interlock (I Unit) 5-5
Store Multiple
Operation (FXA) 5-111
Sequence (I Unit) 5-28
Store Operation (FXA) 5-106
Subtract (FLA) 5-210
Subtract Halfword Operation (FXA) 5-100
Subtract Logical Operation (FXA) 5-100
Subtract Operation (FXA) 5-100
Supervisor Call Sequence (I Unit) 5-17

Test and Set
Operation (FXA) 5-116
Sequence (I Unit) 5-22
Test Under Mask Operation (FXA) 5-114
Timer Operation (FXA) 5-130
Timer Update Sequence (I Unit) 5-26
Translate and Test
Operation (FXA) 5-126
Sequence (I Unit) 5-29
Translate
Operation (FXA) 5-126
Sequence (I Unit) 5-29
Unit First Selection (FMDU) 5-213
Unit Selection (FLA) 5-208
Unpack Operation (VFL) 5-214
Valid Trigger Turn Off (I Array) 5-4
VFL Controls 5-127
Write Direct
Operation (FXA) 5-119
Sequence (I Unit) 5-20
Zet Condition Code Control (FLA) 5-212

COMMENT SHEET

PROCESSING UNIT - VOLUME 4 - I, FXP, FLP OPERATIONS
field engineering maintenance diagrams, form y22-6674-0

FROM

name
city/state office/dept no. \qquad
CITY/STATE——DATE \qquad
To make this manual more useful to you, we want your comments: what additional information should be included in the manual; what description or figure could be clarified; what subject requires more explanation; what presentation is particularly helpful to you; and so forth.

COMMENT SHEET

PROCESSING UNIT - VOLUME 4 - I, FXP, FLP OPERATIONS field engineering maintenance diagrams, form y22-6674-0

FROM

name city/stat

To make this manual more useful to you, we want your comments: wha additional information should be included in the manual; what description or figure could be clarified; what subject requires more explanation; what presentation is particularly helpful to you; and so forth.

How do you rate this manual: Excellent ___ Good__ Fair___ Poor__
award considerations should be submitted through the IBM Suggestion Plan.

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
fold on two lines (located on reverse side), staple and mail

How do you rate this manual: Excellent ___ Good __ Fair__ Poor __
for award considerations should be submitted through the IBM Suggestion Plan. old on two lines (located on reverse side), staple and mail

TBMT
International Business Machines Corporation Fierd Engineering Division
112 East Post Road, White Plains, N. Y. 10601

[18M
International Business Machines Corporation 112 East Post Road, White Plains, N. Y. 1060

Y22.6674.0

[^0]: * Available to authorized IBM employees only.

[^1]: DIAGRAM 5-102. DIVIDE (SHEET 2 OF 3).

[^2]: DIAGRAM 5-106. Store, store halfword and store character

[^3]: DIAGRAM 5-124. PACK AND UNPK INSTRUCTIONS (SHEET 2 OF 7)

[^4]: DIAGRAM 5-125. ED AND EDMK INSTRUCTIONS (SHEET 2 OF 6)

