
2075 Processing Unit -- Volume 3

Fixed Paint

I Execute

Branch

Floating Paint

Variable Field Length

Field Engineering

Manual of Instruction

223-2874-1

Form 223-2874-1

FES S26-7035

PREFACE

This is one of six Field Engineering manuals for the
2075 Processing Unit. These six manuals contain the
unit theory of operation, reference diagrams to be
used when troubleshooting, and maintenance pro
cedures.

A basic knowledge of the IBM System/360 as con
tained in the IBM System/360 Principles of Opera
tion, Form A22-6821 is considered a prerequisite
for studying the unit theory of operation. The theory
of operatifm is contained in a four volume manual
identified as a Field Engineering Manual of Instruc
tion (FEMI). Volume 1 is a prerequisite for the
detailed information contained in volumes 2, 3, and
4.
and the processing unit and a description of the
functional units (registers, adders, and decoders) of
the processing unit. Volumes 2 and 3 contain de
tailed instruction analysis, and volume 4 contains
detailed information on special features and power
supplies and control.

The four volumes of theory of operation contain
many references to the diagrams packaged in the
associated Field Engineering Diagrams Manual
(FEDM). All diagrams in the FEDM are identified
by a four digit figure number and unless otherwise

MAJOR REVISION (January, 1966)

This edition, Form 223-2874-1 is a major revision of the previous

edition, Form 223-2874-0. The major changes in this edition are

the expansion of the introduction to the "Fixed-Point" section, and

the complete revision of "Fixed-Point Divide." There are minor

changes throughout.

specified, all four digit figure references in the
FEMI indicate that the figure is contained in the
associated FEDM.

The complete titles and form numbers of the six
2075 Field Engineering Manuals are:

2075 Processing Unit--Volume 1, Comprehensive
Introduction, Functional Units, Field Engineer
ing Manual of Instruction, Form 223-2872

2075 Processing Unit--Volume 2, Theory of
Operation: Storage Bus Control; Instruction
Preparation; FLT, Logout, MCW; Interrupt~
Field Engineering Manual of Instruction, Form
223-2873

2075 Processing Unit--Volume 3, Theory of
Operation~ Fixed Point, I Execute, Branch,
Floating Point, Variable Field Length, Field
Engineering Manual of Instruction, Form
223-2874

2075 Processing Unit--Volume 4, Special Features,
Power Supply and Control, Appendix, Field
Engineering Manual of Instruction, Form
223-2875

2075 Processing Unit, Field Engineering Diagrams
Manual, Form 223-2876

2075 Processing Unit, Field Engineering Main
tenance Manual, Form 223-2880

Copies of this and other IBM publications can be obtained through IBM Branch Offices.

Address comments concerning the contents of this publication to:

IBM Systems Development Division, Product Publications, Dept. 520, CPO Box 120, Kingston, N. Y., 12401

@ 1965 by International Business Machines Corporation

1/68

FIXED POINT 7

Introduction 7

Operands 7

Numeric Operands 7

Overflow 7

Condition Code 8

Instruction Format 8

Program Interrupts 8

Theory of Operation 9

Register Operands 9

Put-Away 9

Condition Register Setting 9

Program Interrupts 9

MODAR Trigger 11

Load (L, LR) 12

Load and Test (L TR) 12

Load Positive (LPR) 12

Load Negative (LNR) 12

Load Complement (LCR) 13

Load Address (LA) 13

Add (A, AR) 13

Subtract (S, SR) 14

Condition Code Setting for Fixed-Point Load-Type and

Algebraic Add-Subtract Instructions 14

Condition Code 0, 1, and 2 15

Condition Code 3 (Overflow) 15

Add Logical (AL, ALR) 15

Subtract Logical (SL, SLR) 15

Compare (C, CR) 15

Compare Logical (CL, CLR) 17

Store (ST) 17

Halfword Expansion 17

Load Halfword (LH) 18

Add Halfword (AH) 18

Subtract Halfword (SH) 19

Compare Halfword (CH) 19

Store Halfword (STH) 20

AND (N, NR) 21

OR (O, OR) 21

Exclusive OR (X, XR) 22

Shift Right Single (SRA) 22

Shift Right Double (SRDA) 22

Shift Left Single (SLA) 23

Shift Left Double (SLDA) 23

Logical Shift Right Single (SRL) 23

Logical Shift Right Double (SRDL) 23

Logical Shift Left Single (SLL) 23

Logical Shift Left Double (SLDL) 23

Circuit Description For All Shift Instructions 23

Multiply (M, MR) 26

Multiply Halfword (MH) • 26

Introduction 26 I
Divide (D, DR) 2?J

Introduction 30

I EXECUTE •

Introduction

Theory of Operation

Load PSW (LPSW)

Set Program Mask (SPM)

Store Multiple (STM)

Load Multiple (LM)

Start I/O (SIO)

Test I /0 (TIO)

Test Channel (TCH)

Halt 1/0 (HIO)

Set Storage Key (SSK)

Data Flow

Control

Insert Storage Key (ISK)

Data Flow

Control

Diagnose

BRANCH INSTRUCTIONS

Introduction

Units Other Than the Branch Unit

Branch Unit

Theory of Operation

Branch Unit Operation

Form 223-2874-1

FES S26-7035

CONTENTS

34

34

34

34

35

35

38

40

40

41

41

41

42

42

42

42

43

43

45

45

45

45

47

47

Preparation and Execution of Branch Instructions 47

FLOATING POINT 49

Introduction 49

Number Systems 49

Instruction Formats 49

Data Formats 51

Normalization 51

Program Interrupts 52

Condition Codes 53

Floating-Point Instructions 53

Add-Subtract 54

Compare 55

Divide 56

Halve 56

Load 56

Load Type 56

Multiply 57

Store 58

Theory of Operation 59

Add-Subtract 61

Compare 65

Divide 68

Halve 71

Load 72

Load Type 72A

Multiply 74

Store 77

1/68

Form 223-2874-1

FES S26-7035

VARIABLE FIELD LENG1H

Introduction

Concepts of VFL

Instructio"n Format

Data Format

VFL Instructions

VFL Data Flow

AND-OR-Exclusive OR-Mask (AOE)

Digit Buffer

Digit Counter

S and T Pointers

Y and Z Counters

Direct Data Register

Multiplier Bus

VFL Execution and Control

VFL Execution

VFL Control

Theory of Operation

VFL Instruction Execution

Set-Up Sequence -- Decimal Instructions

Set-Up Sequence -- Logical Instructions

Set-Up Sequence -- TR and TRT

Interrupts -- Set-Up Sequence

Iteration Sequences -- Decimal Instructions

Iteration Sequence -- Logical Instructions

Prefetch Sequence

Store-Fetch Sequence -- Decimal

Store-Fetch for AP, SP •

Store-Fetch for ZAP, CP, MVO

1/68

78

78

78

78

79

82

82

85

85

85

85

86

86

86

86

88

90

96

96

96

98

100

100

100

102

107

110

111

113

Store-Fetch for PACK and UNPK

Store-Fetch Sequence -- Logical

Store-Fetch for ED, EDMK, TR, and TRT .

Decimal Division

Method of Division

Unit Functions •

Execution -- Decimal Divide

Iteration Sequence -- Decimal Divide

Store-Fetch Sequence -- Decimal Divide

Decimal Multiply

Method of Multiplication

Unit Functions •

Set-Up Sequence

Iteration Sequence

Store-Fetch Sequence -- Decimal Multiply

Fixed Sequence VFL Instructions

Store Character (STC)

AND, OR, and Exclusive OR

Compare Logical (CLI)

Move (MVI)

Set System Mask (SSM)

Test Under Mask (TM)

Test and Set (TS)

Convert Instructions

Convert to Decimal (CVD)

Convert to Binary (CVB)

Direct Control (WRD and RDD)

Index.

114

114

115

115

115

116

123

127

128

130

130

131

134

138

142

142

142

143

143

144

145

145

146

I 147

147

147

• 152

155

156

Form 223-2874-1

FES S26-7035

ILLUSTRATIONS

Figure Title ~ Figure Title Page

Fixed Point 34 SS Instruction Execution Example (Decimal

I-E Transfer 10 Add) 88

2 Compare Examples 16 35 End Operation, VFL 91

36 Overlap Example -- 0-7 Overlap 94

Branch 37 Overlap Examples -- 8-15 Overlap 94

3 Branch Instruction Differences • 46 38 ER and SC as Word Counters 94

4 Branch Instructions, Major Conttol and Flow, 39 ER and SC Con1l'ol During Prefetch -- Log

Units and Sequences 46 Instructions (not TR or TRT) 95

5 Branch Unit • 48 40 ER and SC Conttol During Store-Fetch --

Logical Instructions (not TR or TRT). 95

41 Overlap, Byte Address Relationship 98
Floating Point

42 Unpack -- Overlapping Fields 98
6 Hexadecimal, Decimal, and Binary Notation 49

43 Decimal Add or Subtract 103
7 Hexadecimal Addition-Subtraction and

44 Basic Data Flow -- CP 103
Multiplication-Division Charts. 50

45 Basic Data Flow -- MVO 103
8 RR Format 51

46 Basic Data Flow -- PACK 103
9 RX Format 51

47 Basic Data Flow -- UNPACK 104
10 Double Word Format in Main Storage 51

48 Basic Data Flow -- ZAP 104
11 Single Word Format in Main Storage . 51

49 Basic Data Flow -- NC, OC, XC 104
12 Double Word Format in FLP Register . 51

50 Basic Data Flow -- CLC • 104
13 Single Word Format in FLP Register 51

51 Basic Data Flow -- MVC 104
14 Floating-Point Exponent Values 52

52 Basic Data Flow -- MCN, MVZ 104
15 Condition Code Setting 54

53 First Prefetch 109
16 Floating-Point Arithmetic Codes 55

54 First Prefetch - Accept Delayed 109
17 Divisor Multiple Selection -- True Dividend 57

55 Prefetch/Store-Fetch Interaction 109
18 Divisor Multiple Selection -- Complement

112 56 Store-Fetch Chart
Dividend 57

57 Decimal Division -- Restoring 117
19 Quotient Selection Decoding 57

58 Decimal Division -- Non-restoring 117
20 Simple Floating-Point Multiply Problem

59 Decimal Divide -- Combination Restore and
(Fraction) 59

Non-Restore 117
21 FLP Operand Transfer to Working Registers . 61

60 Addressing -- DP Store-Fetch • 119
22 Add/Subtt'act True/Complement Addition 64

61 Divide Iterations Example 120
23 Compare True/Complement Addition 67

62 Decimal Divide Simplified Execution

Sequence 121

Variable Field Length 63 Decimal Divide Decode -- Non-restore . 124

24 SS Instruction Format 79 64 Extra IS 3 Cycle -- Decimal Multiply 133

25 SS Instructions . 80 65 Extra Byte Processing -- Decimal Multiply • 133

26 Operand Length-Word Boundary Relationship 80 66 Multiply Iterations -- Example 140

27 Decimal Byte 81 67 Decimal Multiply, Simplified Execution

28 BCD Coding. 83 Sequence 141

29 Data Format -- Unpacked-Packed 83 68 AOE Mask Function 148

30 General Data Flow -- Model 75 VFL 84 69 Convert Binary to Decimal 150

31 TC + 6 Gate Combinations 85 70 Convert Binary to BCD 151

32 End Operation Conditions -- VFL 86 71 Convert to Binary (Example} 154

33 SS Execution Sequence -- AP /SP 87 72 CVB Data Gating 154

1/68

Form 223-2874-1

FES S26-7035

ABBREVIATIONS

AA

Adj

AD (or AV)

AE

AEOB

AM

AMOB

AMTC

AOB

AOE

AP

ASC

ASCII

AV (or AD)

BALR

BCD

BCR

BCTR

BCU

Bin

BOP

CLC

Comp

CP

CVD

DB

DC

OCR

Dec

DP

ED

EDJ\11K

ELC

EOP
ER

FLOUT

FLP

GPR

GR

GROUT

GSR

Gt

HOD

HS

HwdAdd

Hwd Log

1/68

Addressing Adder

Adjust

Decimal Adder

Exponent Adder

Exponent Adder Output Bus

Main Adder or Fixed Input of Main Adder

Main Adder Output Bus

Main Adder True/Complement or True/

Complement Input of Main Adder

Adder Output Bus

AND - OR - Exclusive OR

(Mnemonic) Add Decimal (SS)

American Standard Interchange Code

American Standard Interchange Code

Decimal Adder

(Mnemonic) Branch and Link (BR)

Binary Coded Decimal

(Mnemonic) Branch on Condition (RR)

(Mnemonic) Branch on Count (RR)

Bus Control Unit

Binary

Buffer Operation Register

(Mnemonic) Compare Logical (SS)

Complement

(Mnemonic) Compare Decimal (SS)

(Mnemonic) Convert to Decimal (RX)

Digit Buffer

Digit Counter

Digit Counter Register

Decimal

(Mnemonic) Divide Decimal (SS)

(Mnemonic) Edit (SS)

(Mnemonic) Edit and Mark (SS)

E (Unit) Last Cycle

E (Unit) Operai:ion Register

Exponent Register

Floating Point (Register) Out

Floating Point

General Purpose Register

General (Purpose) Register

General Register Out

Gate Select Register

Gate

High-Order Digit

Half-Sum

Halfword Add

Halfword Logical

IC Instruction Counter

ICR Instruction Counter Register

IE I Unit Execution

IOP I Unit Operation Register

IS Iteration Sequence

KBR Key Buffer Register

LBG Left Byte Gate

LC Last Cycle

LCDR (Mnemonic) Load Complement -- Long FLP

(RR)

LCER (Mnemonic) Load Complement -- Short FLP

(RR)

LNDR (Mnemonic) Load Negative -- Long FLP (RR)

LNER (Mnemonic) Load Negative -- Short FLP (RR)

LOO Low-Order Digit

LPDR (Mnemonic) Load Positive -- Long FLP (RR)

LPER (Mnemonic) Load Positive -- Short FLP(RR)

LTDR (Mnemonic) Load and Test -- Long FLP (RR)

LTER (Mnemonic) Load and Test -- Short FLP (RR)

Lth Latch

MOR (Mnemonic) Multiply -·Long FLP (RR)

ME (Mnemonic) Multiply -- Short FLP (RX)

MER (Mnemonic) Multiply -· Short FLP (RR)

MODAR Modified Addressable Register

MVC (Mnemonic) Move (SS)

MVN (Mnemonic) Move Numerics (SS)

MVO (Mnemonic) Move With Offset (SS)

MVZ (Mnemonic) Move Zone (SS)

NC (Mnemonic) AND (SS)

oc (Mnemonic) OR (SS)

OPF Operand Fetch

Par Parity

PF Pref etch

PH Parity Adjusted for Removal of HOD

PK (or PACK) (Mnemonic) Pack (SS)

PL Parity Adjusted for Removal of LOO

PSW Program Status Word

RBG Right Byte Gate

ROD (Mnemonic) Read Direct (SI)

RR (Instruction Format) Both Operands from GPR's

RS (Instruction Format) One Operand from a GPR,

the other from storage

RX (Instruction Format) One Operand from a GPR, the

other from an indexed storage location

s S (Pointer or Register)

SAR Storage Address Register

SBI Storage Bus In

SBO Storage Bus Out

SC Shift Counter

Sel Select

Seq Sequence

SF Store-Fetch

SI (Instruction Format) One Operand from

storage, the other is immediate

SLA (Mnemonic) Shift Left Single (RS)

SLDA (Mnemonic) Shift Left Double (RS)

SP (Menmonic) Subtract Decimal (SS)

SRA (Mnemonic) Shift Right Single (RS)

SRDA (Mnemonic) Shift Right Double (RS)

SS (Instruction Format) Both Operands from

SU Set-Up

T T (Pointer or Register)

TIC True/Complement

TD T (Pointer) Decode

storage

Term

TR

TRT

UNPK

VFL

WRD

Xe

y

z
ZAP
ZD

Termination

Form 223-2874-1

FES S26-7035

(Mnemonic) Translate (SS)

(Mnemonic) Translate and Test (SS)

(Mnemonic) Unpack (SS)

Variable Field Length

(Mnemonic) Write Direct (SI)

(Mnemonic) Exclusive OR (SS)

Y (Length Counter)

Z (Length Counter)

{Mnemonic) Zero and Add (SS)

Z {Counter) Decode

1/68

INTRODUCTION

OPERANDS

• Are 16, 32, or 64 bits long.

• High-order bit is sign bit in numeric operands.

• Negative numbers are in 2's complement form.

Most operands are 32 bits long, with the high-order
bit used as the sign of numeric operands (1 is minus-,
O is plus). Some instructions, however, make use of
halfword operands (16 bits), and some, double word
operands (64 bits). The high-order bit in numeric
operands is considered a sign bit, while for logical
operands the high-order bit is just another data bit.

Halfword operands are expanded to a full word
after their delivery from core storage. The expan
sion of the halfword is achieved by propagating (ex
tending to the left) the sign bit, thereby leaving the
value of the operand unaffected. Thereafter, the
expanded halfword is handled as any full word. For
example, after expansion, the add halfword is exe
cuted the same as add.

Double word operands, used in divide and some
shift operations, are contained in an even -odd pair
of general registers. The instructions using double
operands must specify the even general register to
avoid a specification interrupt.

Numeric Operands

Unlike many machines, negative numbers are held in
2 's complement form, with a 1 in the sign (high
order) bit. The 2's complement of a number is ob
tained by inverting all bits and adding a 1 to the low
order bit. For example, the number 616 is repre
sented by

8 4 2 1
0 1 1 0

when positive, and by
8 4 2 1
1 0 1 0

when negative. Note that the hexadecimal value of the
second binary group (1016) is the 16's complement of
the first binary group (616). Theref~re, any binary
number can be broken into four- bit groups and be
represented by hexadecimal digits; the 16 's comple
ment of those hexadecima 1 digits will then be equiv
alent to the 2's complement of the binary number.

Keeping negative numbers in complement form
simplifies processing. When an operation, such as

FIXED POINT

add, yields a negative (complement) result, the re
sult is stored in the general registers without alter
ation. In many machines, where negative numbers
are represented in true form, an additional pass
through the adder must be taken to make a comple -
ment (negative) result true. By leaving the result in
complement form, the System/360 Model 75 saves
the cycle required to make a pass through its adder.

Numbers Range

For any given field size, the complement or negative
numbers are equal in quantity to the positive num
bers. However, a negative zero does not exist, but
a positive zero does; and, the maximum negative
number (one followed by all zeros) is greater in ab
solute value than the maximum positive number
(zero, followed by all ones). This is illustrated in
the following example, where the field is only 4 bits
in length:

8

0

0

0

0-7

Positive

Range

0

0

1 - 8
Negative

Range

OVERFLOW

4 2

0

0

1

0

0

0

0

0

0

1

1

0

0

+ 7
0 +6

1

0

0

0

1

0

+S

I
I
+ 1

+O

- 1

- 2

I
1

- 6

- 7

- 8

• Caused by lost significant bits.

• Sets CC to 3 and causes fixed-point overflow in
terrupt when the fixed-point overflow interrupt
mask is on.

When an operation either produces a result that is
greater than the machine's capacity, or loses bits
that should be t'!aved, a fixed-point overflow occurs.
The result, while invalid, is placed in the general

Fixed Point 1/66 7

registers where results are stored. The condition
code is set to 3, and an interrupt occurs if the fixed
point overflow mask bit is 1.

In the preceding example, the representable
range for positive numbers is 0 to 15, and for nega
tive numbers is 1 to 16. Therefore, any operation
that attempts to produce a result of greater than + 15,
or less than -16, signifies an overflow.

In load complement, which loads the complement
of one general register into another, an overflow
occurs if the operand is the maximum negative num
ber. Using the four numeric bit machine, it can be
seen that if -16 (10000) were complemented (sub
tracted from zero), the result is +16, out of range.
However, the bit arrangement of the result (10000)
is the same as the original operand.

CONDITION CODE

• Set by most fixed-point instructions.

• Can be tested by branch-on-condition instructions.

Most fixed-point instructions set the condition reg
ister (PSW bits 34 and 35) during the last cycle of
their execution. The four states of the condition
register are used, by various instructions, to indi
cate the relation of an operand to zero, of one oper
and to another, or overflow. The condition register
can be used for decision-making by branch-on-con
dition instructions.

For some instructions, for example, add and
add logical, the setting of the condition register is
the only difference in their execution. Different
interpretations are given to the four states of the
condition register for these two instructions.

INSTRUCTION FORMAT

• Fixed-point/fixed-sequence instructions have RR,
RX, and RS formats.

Fixed-point/fixed-sequence instructions use the fol
lowing three formats:

RR Format

lop Code! Rl I R2 I
0 7 8 11 12 15

RX Format

lop Code! Rl I X2 l B2 I D2
0 71 1112 1516 1920

RS Format
lop Code I R 1] R3 I B2 I D2

31

8 1/66 2075 Processing Unit -- Volume 3

In these formats, Rl specifies the address of
the general register that contains the first operand.
The second operand location, if any, is defined
differently for each format.

In the RR format, the R2 field specifies the
address of the general register that contains the
second operand. The same register may be speci
fied for the first and second operand.

In the RX format, the contents of the general
registers that are specified by the X2 and B2 fields
are added to the content of the D2 field to form an
address that designates storage location of the sec -
ond operand.

In the RS format, the content of the general reg
ister that is specified by the B2 field is added to the
content of the D2 field to form an address. This
address designates the storage location of the second
operand in load multiple ?.nd store multiple. In the
shift operations, the address specifies the amount
of shift. The R3 field specifies the address of a
general register in load multiple and store multiple
and is ignored in the shift operations.

A zero in a X2 or B2 field indicates the absence
of the corresponding address component.

An instruction can specify the same general reg
ister for both address modification and operand lo
cation. Address modification is always completed
before operation execution.

The contents of all general registers and storage
locations participating in the addressing or execution
part of an operation remain unchanged, except for the
storing of the final result.

PROGRAM INTERRUPTS

• Program interrupts are caused by programming
errors and will block, terminate, or suppress
the instruction in error.

Program interrupts are caused by various program -
ming errors, some of which are detected during in -
struction preparation time (Tl and T2); others are
detected during instruction execution time. The
errors detected during Tl and T2 are the specifica
tion errors. These prevent the start of any execu
tion unit, causing an interrupt to be taken instead.
Of the errors detected during the execution time of
an instruction, some end the instruction prematurely,
others nullify it. Fixed-point overflow does not in
terfere with execution of the instruction. These er
rors and their effect are described under "Theory
of Operation."

THEORY OF OPERATION

The E unit is started when the preparation of the fixed
point· instruction is completed, the E and IE units are ·
not busy with the previous instruction, and there is
no interrupt condition. This poinHn an instruction is
commonly called "I to E transfer" which is a signal
that combines with "no interrupt" to t-urn on the E
busy or the IE busy trigger (Figure 5276).

At the A pulse coincident with I to E transfer, the
first FXP trigger is turned on and is followed by its
latch. In RR instructions, the first FXP latch is
turned on immediately following the trigger; in RX
instructions the first FXP latch is held up, keeping
the E unit idle, until the J register is loaded with
valid .data (Figure 5404). If invalid data is received,
as when an illegal fetch address is used, the fir.st ,
FXP latch turn-on is blocked and the ELC trigger is
turned on to end the instruction (see "Operand Store-
Fetch Errors"). · ·

The I unit delivers the required register operands
to the E unit, makes all fetch requests and most store
requests. At I to E transfer the required register
operands have, for most fixed-point instructions,
been delivered to the M register through RBL, and
the accept pulse from BCU has been received for
fetched operands (See Figure 1).

Register Operands

Register operands Rl and R2 are gated into RBL
during T2 for RR instructions even though one of
these operands may not be required (see Figure
6400). In RX instructions, the Rl operand is sent to
RBL, and so is Rl + 1 if Rl is even. As in the RR
instructions, the Rl or Rl + 1 operand may not be
required, and if not, is ignored by the E unit. Rl is
delivered to RBL left; R2 and Rl + 1 are delivered to
RBL left; R2 and RI+ 1 are delivered to RBL right.

The gating for GR to RBL transfer occurs during
T2. However, some instructions require their
operand deliveries during one or more execution
cycles. If so, the general register out (GROUT) trig
ger is turned on at I to E transfer to accomplish the
gating and stays on as long as required.

Put-Away

Put-away refers to storing an instruction result in
K0-31 in the general register specified by ERl
(Figure 5401). For instructions requiring a single
put-away, the transfer is made in ELC. For instruc
tions requiring a double put-away (for instance,

do~ble word shift- instructions), the transfers are
made in both the PA and ELC cycles. .

The controlling trigger for the K to GR transfer
is the release cycle trigger (Figure 5402). This
trigger is turned on at the late B pulse preceding the
put-away(s) and is turned off in ELC (with a late B ·
pulse). Therefore, the release cycle trigger strad
dles the clock pulse (early B) that sets the general
registers. Instructions not requiring a put-away
and the err9r conditions that must block it turn on
the block PA trigger (Figure 5402). This trigger, or
its turn-on condition, prevents setting the release
cycle trigger.

Condition Register Setting

The condition register (PSW bits 34 and 35) is set at
the A clock pulse following the ELC cycle for the
instructions that require it. Some instructions, like
Store, do not set the condition register. The output
of circuits comparing results to zero, or one operand
to another, for example, set latches in the E unit
which correspond to PSW positions 34 and 35 (see
Figure 5403). These E unit latches are then used to
set PSW positions 34 and 35 with the gate "E Set CR,"
which is coincident with the ELC latch.

-The condition register settings and their signifi
cance to applicable instructions are shown with the
instruction flow diagrams in the FE Diagrams Man
ual, 2075 Processing Unit, Form 223-2876.

Program Interrupts

E time program interrupts possible with the fixed
point instructions follow.

Operand Store- Fetch Errors

Four types of illegal addressing are connected with
fetching or storing operands:

1. Invalid fetch address
2. Storage address protect (SAP) fetch error
3. Invalid store address
4. Storage address protect (SAP) store error

Invalid Fetch Address: An out-of-range storage
address used to fetch an operand. In this operation,
CPU still receives an advance pulse, but also
receives an error signal to turn on the address
invalid trigger (Figure 5404). The J register
receives, instead of the SBO output, the contents of
the panel keys (with good parity).

The invalid address trigger prevents the E unit
from executing the instruction by forcing ELC and

Fixed Point 1/66 9

I-Unit Sequence
Tl T2 l GBL

Rl-R!}L0-31

GBR R2 - RBL32-63 RR

EGO ~

J E-Unit Sequence firot Fxp Elli)_

I-Unit Sequence Tl T2

l GBL Ill - RQt0-31 I

GBR Rl+l - RBL32-63 r} if RI Even

RX

Fetch Reqvest _/ Fetch Request '-- [Fetch)

Accept (BCU) ~

EGO ~

E-Unit Sequence First Fxp ~)_

I-Unit Sequence
Tl T2

l GBL
RI -+RBL0-31

GBR R 1+ I - RBL32-63 } if RI Even RX

Store Request I] __/ Store Request

EGO
~

E-Unit Sequence
First Fxp E(N)

I-Unit Sequence
Tl T2

l GBL Rl-RBL0-31

GBR
Rl+l-RBL32-63

} if RI Even RX

[sto~e J
Store Request E-Unit Request { __./ Store Request

J EGO ~

E-Unit Sequence
First Fxp EQ:I) _

FIGURE I. 1-E TRANSFER

10 1/66 2075 Processing Unit-- Volume 3

blocking the turn-on of the first FXP latch (the first
FXP trigger is on since I to E transfer). Also, the
ad<;lress invalid trigger causes turn on of: (1) the
block PA trigger to prevent changing the general
registers; (2) the E interrupt trigger to cause a pro
gram interrupt; and (3) the address interrupt trigger
to ·identify the addressing interrupt.

Storage .-\ddress Protect (S.-\P) Fetch Error: Occurs
when the storage protection ke'y (PSW bits 8-11) is ·
not zero, doe·s not match the SPF key, and the read
protect bit in the SPF unit is 1. A SAP ·check signal
is sent to the CPU and, with the advance pulse, turns
on a SAP che'ck trigger (Figure 5404). As with an
invalid fetch address, J is loaded from the panel keys
(with good parity) instead of from the SBO.

As with the invalid address trigger, the SAP check
trigger (identified with the J register) prevents the E
unit from executing and instruction using the illegal
address by forcing ELC and blocking the turn on of
the first FXP latch (the first FXP trigger is on since
I to E transfer). Also, the SAP check trigger causes
turn on of: (1) the block PA trigger to prevent chang
ing the general registers, (2) the E interrupt trigger
to cause a program interrupt; and (3) the SAP inter
rupt trigger to identify the SAP fetch interrupt.

Invalid Store Address: An out-of-range storage
address used in a store operation. The operand
never reaches its destination, but the accept pulse
is sent to the CPU as though a legitimate address
were used, and the instruction is allowed to com
plete as it would normally. Because of the invalid
address, however, the BCU sets one of its triggers
called "invalid store buffer" (Figure 5204) whose
output is sent to the CPU's interrupt detection cir
cuits (Figure 5350). At ELC of the instruction using
the invalid store address, the interrupt detection
circuits recognize the error and start an interrupt
sequence.

Storage Address Protect (SAP) Store Error: Occurs
when an instruction attempts to store a word in an
area of storage whose SPF protection key is not
matched by the protection key in the PSW (when the
PSW key is other than zero). The operand never
reaches its destination, but the accept pulse from
BCU is sent to the CPU as though a legitimate
address were used. Because of the SAP error, how
ever, the BCU sets a trigger within it called "CPU
SAP" (Figure 5204) whose output is sent to the CPU's
interrupt detection circuits (Figure 5350).

Because of its late arrival in CPU, the signal
generated by the CPU SAP trigger might not cause a

store SAP interrupt immediately following the
instruction using the illegal address. The interrupt.
may be taken after the next instruction, or if a large
capacity storage (LCS) is 'involved, the interrupt may
not be taken until many instructions later because of
the LCS's relativeiy slow· response (see Interrupt
Exampies in "Interrupts," FEMI, 2075 Processing
Unit, Volume 2, Form 223-2873).

Fixed-Point Overflow ,

When the load positive, load negative, or algebraic
add or subtract instructions produce a result greater
than 32 bits, or when the algebraic left shift instruc
tions lose significant high-order bits, the instruction
is completed normally and the condition code is set
to 3. If the fixed-point overflow mask bit (PSW 36)
is 1, the E interrupt trigger and fixed-point over
flow trigger are turned on and an interrupt is taken
at the end of the instruction.

Fixed-Point Divide

When the quotient exceeds 32 bits in a divide opera
tion, including division by zero, the fixed-point inter
rupt and E interrupt triggers are turned on and an
interrupt is taken at the end of the instruction. Put
aways are blocked by turning on the block PA trigger
(Figure 5402).

The divide instruction may be cut short depending
on when the error is detected.

MODAR Trigger

The modified addressable register (MODAR) trigger
is associated with the retry-no-retry feature, which
enables a decision to be made as to whether an in
struction that caused a machine check can be retried;
that is, whether that instruction has changed a reg
ister. A register in this case refers to either a
general register, floating-point register, PSW, or
storage location. If the instruction did change a
register, before the machine check, it is not retry
able because it may have changed its own operand.

When a machine check occurs and the instruction
has already changed a register, that instruction, as
indicated by the MODAR trigger being on, is not
retryable. If, when the machine check occurs, the
instruction has nof progressed far enough to change
any register, the MO DAR trigger is not turned on,
indicating that the instruction causing the machine
check is retryable.

The MODAR trigger is one of the 1216 triggers
logged out in a machine check, and therefore, can
be interrogated by an examining program.

Fixed Point 1/66 11

LOAD(L, LR}

• Operand 2 is placed in the operand 1 location.

The load instructions are executed in two cycles, de
fined by the first FXP trigger and the ELC trigger.
At the start of executfon, the second operand is lo
cated as:

Instruction Format

RR
RX-even
RX-odd

Operand 2

M32-63
J0-31
J32-63

Figure Reference: Figure 6300

First FXP

The second operand, from the M register (RR) or J
register (RX), is sent through the adder to the left
half of the K register.

ELC

A put-away is made from the K register to the gen
eral register specified by ERl, and the MODAR trig
ger is set.

LOAD AND TEST (LTR)

• Operand 2 is placed in the operand 1 location.

• CC is set to record the relation of the result to 0.

The load and test instruction is executed in two cycles,
defined by the first FXP trigger and the ELC trigger.

At the start of execution, the R2 operand is located
in M32-63.

Figure Reference: Figure 6300

First FXP

The R2 operand, in the M register, is gated through
the adder to the left half of the K register.

ELC

A put-away is made from the K register to the gen
eral register specified by ERL MODAR is set, and
O, 1, or 2 is gated to the condition register.

The setting of the condition register is determined
by examining the K register 0 bit (sign bit) and the
K0-63 zero latch.

12 1/66 2075 Processing Unit -- Volume 3

LOAD POSITIVE (LPR)

• Operand 2, made positive if it is negative, is
placed in the operand 1 location.

• CC is set to record the relation of the result to
0, or to record overflow.

• When the RZ operand is the maximum negative
value (100---00}, overflow occurs and the num
ber remains unaltered.

The load positive instruction is executed in two cy
cles, defined by the first FXP trigger and the ELC
trigger. At the start of the execution, the R2 oper
and is located in M32-63.

Figure Reference: Figure 6300.

First FXP

The R2 operand, in the M register, is gated through
the adder to the left half of the K register. If the
R2 operand is negative, the AM complement and hot
1 triggers are turned on to complement the operand
as it passes through the adder.

ELC

A put-away is made from the K register to the gen
eral register specified by ERL MODAR is set, and
a 0, 2, or 3 is gated to the condition register.

The setting of the condition register is deter
mined by examing the KO bit (sign bit), the K0-63
zero latch, and the carries from adder positions 0
and 1.

LOAD NEGATIVE (LNR}

• Operand 2, made negative if it is positive, is
placed in the operand 1 location.

• CC is set to record the relation of the result to 0.

• When the number 0 is complemented, the result
is 0.

The load negative instruction is executed in two
cycles, defined by the first FXP trigger and the ELC
trigger. At the start of execution, the R2 operand is
located in M32 -63.

Figure Reference: Figure 6300.

First FXP

The R2 operand, in the M register, is gated through
the adder to the left half of the K register. If the R2
operand is positive, the AM complement and hot 1
triggers are turned on to complement the operand
as it passes through the adder. The result of 2's
complementing a 0 operand is 0.

ELC

A put-away is made from the K register to the gen
eral register specified by ERL MODAR is set, and
a 0 or 1 is gated to the condition register.

The setting of the condition register is deter
mined by examining the KO bit (sign bit) and the
K0-63 zero latch.

LOAD COMPLEMENT (LCR)

• The complement of operand 2 is placed in the
operand 1 location.

• CC is set to record the relation of the result to
0, or to record overflow.

• If the maximum negative value (100---000) is
complemented, overflow is recorded in the con
dition code and an interrupt is taken if the fixed
point overflow mask bit (PSW 36) is one.

The load complement instruction is executed in two
cycles, defined by the first FXP trigger and the ELC
trigger. At the start of the execution, the R2 oper-
and is located in M32-63. ·

Figure Reference: Figure 6300.

First FXP

The R2 operand, in the M register, is gated through
the adder to the left half of the K register. The AM
complement and hot 1 triggers are turned on to
complement the operand as it passes through the
adder. Complementing does not alter a zero oper
and or the maximum negative value (100--00).

ELC

A put-away is_ made from the K register to the gen
eral register specified by EHl. MODAR is set, and
a 0, 1, 2, or 3 is gated to the condition register.

The setting of the condition register is deter
mined by examining the K0-63 zero latch, the KO bit
(sign bit) and the carries from adder positions 0 and 1.

LOAD ADDRESS (LA)

• The 24-bit address formed by X2, B2, and D2 is
placed in the 24 low-order positions of the gen
eral register specified by Rl; bits 0-7 of GR Rl
are made 0.

• No operand fetch is made and the CC is not set.

The load address instruction is executed in three
cycles, defined by first FXP, Hwd Log, and ELC
triggers. At Tl, the address calculation is made
from the X2, B2, and D2 fields, as for any RX in
struction. At TN T2, the calculated address is
placed in SAR and H registers, but no fetch request
is made. Block ICM is turned on at the beginning of
T2 to prevent the ICR from being gated into the in
crementer, which will be used in the second execu
tion cycle. Block Tl is also generated, to prevent
the next TN T2 pulse from altering the H register.
At I to E transfer and an A pulse, the first FXP
trigger is turned on.

Figure Reference: Figure 6301.

First FXP

The turn-off of block TlM is gated to allow Tl in the
next cycle. The H register cannot change until after
its contents (X2 + B2 + D2) have been used. No data
flow occurs in this cycle in order to leave the incre
menter, used as a data path in load address, free for
a high-order advance of the ICR.

Hwd Log

The H register is gated to the incrementer, and the
incrementer with its extender is gated to the K reg
ister. Therefore, positions 0-7 of the K register
receive zeros, while positions 8-31 receive the 24-
bit address.

ELC

A put-away is made from the K register to the gen
eral register specified by ERl, and the MODAR trig
ger is set.

ADD (A, AR)

• Operand 2 is added to operand 1, and the alge
braic sum is placed in the operand 1 location.

• CC is set to record the relation of the result to
0, or to record overflow.

Fixed Point 1/66 13

Overflow is possible and causes the sign of the result
to be opposite that of the two numbers added; the
magnitude of the result is also invalid. The overflow
is recorded in the condition code and, if the fixed
point overflow mask bit (PSW 36) is 1, a program in
terrupt takes place.

The add instructions are executed in two cycles,
defined by the first FXP trigger and the ELC trigger.
At the start of execution, the two operands are loca
ted as:

Instruction Format

RR
RX-even
RX-odd

Operand 1

M0-31
M0-31
M0-31

Figure Reference: Figure 6302.

Operand 2

M32-63
J0-31
J32-63

In computers that keep negative numbers in true
(not complement) form, an examination of the signs
of the two operands must be made to see whether the
result should be their sum or difference. If the re
sult should be their difference, one of the operands
is complemented before being added to the other. In
the System/360, the sign examination is unnecessary
because negative numbers are kept in complement
(2's) form. Adding a negative and a positive number,
therefore, automatically yields their difference
(actually their algebraic sum -- for example, +3 and
-5 equals -2, the 2 being the difference in absolute
values, but -2 being the algebraic sum of the two
numbers); adding two negative or two positive num
bers yields their sum.

First FXP

Operand 1 is gated from the M register to the left
side of the adder; operand 2 is gated from the M reg
ister (RR) or J register (RX) to the right side of the
adder. The result is gated to the left half of the K
register.

ELC

A put-away is made from the K register to the gen
eral register specified by ERl. MO DAR is set, and
a 0, 1, 2, or 3 is gated to the condition register.

The setting of the condition register is deter
mined by examining the K register 0 bit (sign bit),
the K0-63 zero latch, and the carries from adder
positions 0 and 1.

SUBTRACT (S, SR)

• Operand 2 is subtracted from operand 1, and the
algebraic difference is placed in the operand 1
location.

14 1/66 2075 Processing Unit -- Volume 3

• CC is set to record the relation of the result to 0,
or to record overflow.

• Overflow occurs when the magnitude of the differ
ence exceeds 31 bits; if the fixed-point overflow
mask bit (PSW 36) is 1, an interrupt is taken.

Execution of the subtract instructions is similar to
the execution of the add instructions, with one excep
tion. As the operands are gated through the adder,
the AM complement and hot 1 triggers are uncondi
tionally turned on to complement operand 2. The
initial location of operands and the setting of the
condition register are also the same as the add in
structions.

Complementing operand 2 adheres to the basic
rule of algebra of changing the sign of the subtra
hend (number being subtracted) and adding. The re
sult is always the algebraic difference of the two
numbers. This is less complicated than the com
puters that keep negative numbers in true form and
must decide on the basis of operand signs whether to
complement, and later, whether to recomplement to
make a true result.

Figure Reference: Figure 6302.

CONDITION CODE SETTING FOR FIXED-POINT
LOAD-TYPE AND ALGEBRAIC ADD-SUBTRACT
INSTRUCTIONS

• CC is set to record the relation of the result to
O, or to record overflow.

• Sign of result, K zero indication, and high-order
carries from the adder are compared.

The condition code is used by the fixed-point load
type and algebraic add-subtract instructions to com
pare the results of their operations to zero. That
is, to record whether the result operands are equal
to, less than, or greater than, zero. Specifically,
these instructions are:

Load and test
Load positive
Load negative
Load complement
Add
Add halfword
Subtract
Subtract halfword

The condition code is also used to indicate the
presence of overflow for all of the above codes ex
cept load and test and load negative; overflow is not
possible for these two instructions. The condition
code (or condition register -- PSW bits 34 and 35)

settings and their interpretation for the above codes
are:

CC Bits
. 34 and 35 .

0 0
0 1
1 0
1 1

Condition Code 0, 1, and 2

. , Interpretations

Result is zero
Result is less than zero
Result is greater than zero
Overflow

Determining the relation of a result to zero is done
by examining the K register 0 bit (sign J;>it) and the
K register zero latch during ELC. If the K register
zero latch is on, the result is zero and CR bits 34
and 35 are unaffected. If t}le KO bit is off and the K
zero latch is off, the result is greater than zero
(positive), and CR bit 34 is set. If the KO bit is on,
the result is less than zero (negative) and CR bit 35
is set.

The bits generated by these examinations are
first set into the CR 34 and CR 35 latches (KX 621) in
the E unit. At A clock following the ELC cycle, the
bits are transferred to the corresponding PSW bits
34 and 35 with the gate E set CR (KX 625).

Condition Code 3 (Overflow)

Overflow occurs when the result of an operation is
greater than 31 bits (without sign). Overflow is de
tected by comparing the carries out of positions 0 and
1 from the main adder. . If a carry from both posi
tions is present, or absent, the result is within the
representable range. If a carry occurs from one
position and not the other, overflow exists, and a 3
is set into the condition code. If the PSW 36 bit
(fixed-point overflow mask bit) is one, an interrupt
is started as well.

In load positive and load complement, overflow
occurs when the maximum negative value (100---000)
is complemented.

Except for the maximum negative value, overflow
changes the sign of the result to opposite of what it
should be. For examples of operands that cause
overflow and the high-order carries they produce,
see the section entitled "Overflow on Algebraic Add
Subtract Instructions . "

ADD LOGICAL (AL, ALR)

• The logical operand 2 is added to the logical
operand 1 and the sum is placed in the operand
1 location.

• CC is set according to zero/non-zero, and carry/
no-carry produced by the result.·

The high-order bits of both operands are treated as
data and not sign bits; the operands are therefore
classified as logical. The logical add instructions
differ from their add instruction counterparts in the
setting of the condition code and in the absence of
overflow.

The initial operand locations and execution of the
add logical instructions (RR and RX) are identical to
the corresponding add instructions. Only the setting
of the condition code differs. The state of the K0-63
zero latch and the C out of AM 0 trigger-latch deter
mine the setting of the condition code. The logic for
setting CR 34 (2 bit)- is shown on Systems KX 64i;
the logic for setting CR 35 (1 bit) is shown on Sys
tems KX 655.

Figure Reference: Figure 6302.

SUBTRACT LOGICAL (SL, SLR)

• The logical operand 2 is subtracted from the
logical operand 1 and the difference is placed in
the operand 1 location.

• CC is set according to zero/non-zero, and
carry /no-carry produced by the result.

The high-order bits of both operands are treated as
data and not sign bits; the operands are therefore
classified as logical. The logical subtract instruc
tions differ from their subtract instruction counter
parts in the setting of the condition code and in the
absence of overflow.

The initial operand locations and execution of the
subtract logical instructions (RR and RX) are identi
cal to the corresponding subtract instructions, which
complement operand 2 as it passes through the adder.
Only the setting of the condition code differs. The
state of the K0-63 zero latch and the C out of AMO
trigger-latch determine the setting of the condition
code. The logic for setting CR 34 (2 bit) is shown
on Systems KX 641; the logic for setting CR 35 (1 bit)
is shown on Systems KX '655.

Figure Reference: Figure 6302.

COMPARE (C, CR)

• Operand 1 is compared to operand 2 and the CC
is set to record their relation.

• Execution is identical to the subtract instructions
· with the absence of a put-away.

Fixed Point 1/66 15

The compare instructions are executed in two cycles,
defined by the first FXP trigger and the ELC trigger.
At the start of execution, the two operands are loca
ted as follows:

Instruction Format

RR
RX-even
RX-odd

Operand I

M0-31
M0-31
M0-31

Figure Reference: Figure 6303.

First FXP

Operand 2

M32-63
J0-31
J32-63

Operand 1 is gated from the M register to the left
side of the adder; operand 2 is gated from the M
register (RR) or J register (RX) to the right side of
the adder. The AM complement and hot 1 gates are
turned on to complement operand 2 as it passes
through the adder. The output of the adder is sent
to the K register for a zero check; this is part of the
information required to determine the setting of the
condition code.

ELC

A put-away to a general register is prevented by
turning on the block PA trigger. The MODAR trigger
is set, and a 0, 1, or 2 is gated to the condition
register.

The condition register inputs are determined by
the operand signs, the carry from adder output 0
position, and by the state of the K0-63 zero latch.
The sign indications are obtained from the Rl and R2
sign triggers which are set by the operand sign posi
tions during first FXP (see Figure 5400). The inter
pretation given the above indications for setting the
condition register is explained in the following text.

Compare Logic

Comparing the relative values of the two algebraic
operands is accomplished by examining the carry /no
carry out of the adder position 0 (the sign position),
and the zero indication from the K register, where
the adder output is received. The expressions used
in the comparisons, and their significance, are:

Systems KX 641 (Signs Unlike) (CO\iIO) + (Signs Alike)
(C Out 0) (K0-63=0) = Operand 1 High = CC34

Systems KX 661 (Signs Unlike) (C Out 0) + (Signs Alike)
(C Out 0) = Operand 1 Low = CC35

The first half of each expression (Signs Unlike)
(C Out 0) and (Signs Unlike) (C Out 0), deals with the
operand sign position only (see Figure 2). When
signs are unlike, the carry/no-carry from position 0

16 1/66 2075 Processing Unit -- Volume 3

distinguishes between the positive and negative oper
ands. This is possible·because after complementing,
both operands are positive or both are negative. A
carry from position O, therefore, is impossible with
positive signs and indicates that operand 2 {the com
plemented operand) is negative. A carry from posi
tion 0 always occurs with negative signs, and indi
cates that operand 2 was positive before complement.

The second half of each expression (Signs Alike)
(C Out 0) (K0-63=0) and (Signs Alike} (C Out 0), is a
test of the magnitude (see Figure 2). When signs are
alike, the carry/no-carry from position O and the K
zero indication provide enough information to tell
when operand I is higher, lower, or equal to operand
2.

When operands I and 2 are equal, none of the ex -
pressions above is satisfied (see Figure 2). Neither
of the condition code triggers is set, therefore, in
dicating an equal condition.

(SIGNS UNLIKE) (C OUT 0)

(Operand l grea-ter than operand 2)

S B 4 2 1

Cpl OXXXX

Op2 1 XXXX

S B 4 2 I

oxxxx
oxxxx

o/c 0 XX XX

(SIGNS UNLIKE) (C OUT 0)

(Operand l less than operand 2)

s 8 4 2 1

Cpl IXXXX

Op2 OXXXX

S 8 4 2 I

lXXXX

lXXXX

xxxxx

(SIGNS ALIKE) (COUTO) (Ko-63 =0)

(Operand 1 greater than operand 2)

S 8 4 2 I S 8 4 2 I

Op 1 0 0 I l 1 (7) 0 0 I 1 I (7)

Op2 0 0 I 0 0 (4) 11100(4)

carry 0 0 0 l I

(A)

(B)

S 8 4 2 I s 8 4 2 l

Op l I I I 0 0 (4) 1 I I 0 0 (4)

Op 2 l I 0 0 l (7j 0 0 I I I (?j

carry 0 0 0 I I

FIGURE 2. COMPARE EXAMPLES

(SIGNS ALIKE) (C OUT O)

(Operand 1 less than operand 2)

S 8 4 2 I

Cpl 0 0 1 0 0 (4)

Op2 0 0 1 1 I (7)

(A)
~

(B)

s 8 4 2 1

Op 1 1 I 0 0 1 (7)

Op2 11100(4\

S 8 4 2 I

0 0 I 0 0 (4)

~('ii
1 I I 0 I

S 8 4 2 I

I I 0 0 1 (lj

0 0 I 0 0 (4)

o/o I I I 0 I

The following are examples of equal value

operands. They satisfy none of the expressions

for operand l high or low, and therefore set

neither of the condition code triggers.

s 8 4 2 l S 8 4 2 I

Cpl 0 0 I 1 I (7) 0 0 I I 1 (7)

Op 2 0 0 I I 1 (7) llOOl(lj

carry 0 0 0 0 0

(A)

(B)

s 8 4 2 1 s 8 4 2 1

Op 1 I I 0 0 I (7) 1 I 0 0 1 (?j

Op2 I I 0 0 I ('ii 0 0 I I I (7)

carry 0 0 0 0 0

COMPARE LOGICAL (CL, CLR)

• The logical operand 1 is compared to the logical
operand 2 and the CC is set to record their rela
tion.

Execution of the compare logical instructions is
identical to the execution of the corresponding com
pare instructions (C, CR). Only the setting of
the condition register differs. The compare instruc
tions treat the operands as 31-bit signed integers
while the compare logical instructions treat the
operands as 32 -bit unsigned integers. The logic used
to set the condition register for compare logical is
shown in the following expressions:

Systems KX 645 K0-63 Zero Lth
Systems KX 661

C Out AM 0 Tgr Lth = CR 34
C Out AM 0 Tgr Lth = CR 35

Examples:

Opl Opl=
Greater Op 2

0 1 2 3 4 0 1 2 3 4
Operand 1 0 0 0 0 1 0 0 0 0 1
Operand 2 ·O.DP'0-0 : (I ti- !)..,9 l
Operand 2 { 1 1 1 1 1 1 1 1 1 0

___ 1 1
0 0 0 0 1 0 0 0 0 0

I I
carry carry

Op 1
Smaller

0 1 2 3 4
0 0 0 0 1
OO·H-0
1 1 1 0 1
___ 1

1 1 1 1 1

n/c

Figure Reference: Figure 6303.

STORE (ST)

• Operand 1 is stored in the operand 2 location.

The store instruction takes two cycles to execute if
storage is immediately available to CPU, and more
than two cycles if it is not. The I unit makes the
store request at I to E transfer. If the requested
storage is not busy, the accept pulse is received in
the following cycle (first FXP) to turn on ELC. If
the accept pulse is delayed, store (idle) cycles are
taken between first FXP and ELC until the accept
pulse arrives from BCU. At the start of execution,
the Rl operand is located in M0-31.

Figure Reference: Figure 6304.

First FXP

The Rl operand in the M register is gated through
the adder to the K register. The first first FXP
cycle is effective (allows the adder output to enter
the K register) because the first FXP latch is turned
on immediately following the T2 cycle.

To prevent a put-away, the block PA trigger is
turned on at the A pulse that follows this cycle, and
stays on through the ELC cycle.

Store

The store trigger is turned on after the first FXP
trigger to define idle cycles while the E unit waits
for the accept pulse from BCU. The store trigger
remains on for as long as the delay exists, and stays
on through the ELC cycle. If there is no delay, the
store trigger is on during ELC only. The MODAR
trigger is turned on by the store cycle(s).

ELC

The ELC trigger is turned on at A clock following the
receipt of the accept pulse (which can arrive as early
as the first FXP). At EB time of ELC, the K regis -
ter is set into the SBI latches.

The word (left or right) selected for storage input
is determined by the mark register. The mark reg
ister is set for the left four or the right four bytes of
a double word at I to E transfer on the basis of H bit
21 being either a 0 (left four bytes) or a 1 (right four
bytes).

A general register put-away is prevented by the
block PA trigger, which is turned on at A pulse fol
lowing the first FXP cycle. T2 is allowed to be on
during this cycle because the accept pulse removed
the block in the previous cycle (E TF block T2M on
accept -- KX 515).

HALFWORD EXPANSION

• The location of the halfword (16 bits) in the J
register is specified by the H register bits 21
and 22.

• Without altering their value, halfword operands
are expanded to a full word before being used.

• Two cycles are taken for this expansion, defined
by the first FXP and the Hwd Log triggers.

Halfword operands (two bytes, or 16 bits) are speci
fied by the following RX fixed-point instructions:

Load halfword
Add halfword
Subtract halfword
Compare halfword
Store halfword
Multiply halfword

The halfword operands are contained within the
double word read into the J register from storage

Fixed Point 1/6~ 17

(except for store halfword). The location of the half
word within the double word is specified by H regis
ter bits 21 and 22, which contain the storage address.
The halfwords can be located as follows:

H21 0 1

H22 <> 1 0 l

When H21 is 0 and H22. is 1, the halfword is
located in the right half of the left word; when H21
is 1 and H22 is 0, the halfword is located in the left
half of the right word, etc. H bit 23 must be off or
a specification interrupt will occur.

In executing the halfword instructions, the oper
ands are first expanded to a full word by propagating
(extending to the left) the sign bit 16 positions. The
expansion takes two cycles, defined by the first FXP
trigger and Hwd Log trigger, and does not alter the
value of the operand. After these two cycles, the
execution of halfword instructions is identical to their
full word counterparts.

During first FXP, the operand is gated through
the shifter, expanded eight bits, and sent to the K
register. During Hwd Log, the operand is gated
through RBL, expanded the next eight bits, and sent
back to the J register. 'fhe gating during the first
FXP depends on H bits 21 and 22, which locate the
operand in the J register. Figure 6305 shows the
data flow during the first FXP and Hwd Log cycles,
and detailed circuits.

LOAD HALFWORD (LH)

• The halfword operand 2 is expanded to a full word
and placed in the operand I location.

The load halfword instruction is executed in four
cycles, the first two being used to expand the half
word operand to a full word. The second two cycles
transfer the operand to the K register and make the
put-away to the general register specified by Rl.
At the start of execution, the second operand is lo
cated as follows:

Address
(ff 21 and 22) Location

0 0 J0-15
0 1 J16-31
1 0 J32-47
1 1 J48-63

Figure Reference: Figure 6305.

18 1/66 2ois Processing Unit -- Volume 3

First FXP

The left half of the TC side of the adder receives the
output of J0-31 or J32-63, depending on H bit 21.
Then the operand is shifted left 8 or right 8, depend
ing on H bit 22, and the sign bit is propagated 8 po
sitions left. The result, sent to the K register, has
nine sign bits in its high-order followed by 15 integer
bits.

Hwd Log

The partially expanded operand is gated from the K
register to RBL. The RBL is then gated R8 to the
J register with the sign propagated through the high
order byte. At the completion of this cycle, the
fully expanded second operand is in the left half of
the J register.

HwdAdd

The operand in the J register is gated through the
adder to the K register.

ELC

A put-away is made to the general register specified
by ERl and the MODAR trigger is set.

ADD HALFWORD (AH)

• , The halfword operand 2 is added to operand 1 and
the algebraic sum is placed in the operand I lo
cation.

• CC is set to record the relation of the result to 0,
and to record overflow.

• On an overflow, if the fixed-point overflow mask
bit (PSW 36) is one, an interrupt is taken.

The add halfword instruction is executed in four
cycles. The first two cycles are used to expand
operand 2 to a full word. The second two cycles
add the two operands and make the put-away to the
general register specified by Rl. At the start of
execution, the operands are located as follows:

Operand 2 Address
(H 21 and 22)

00
0 1
1 0
1 I

Operand 2

J0-15
J16-31
J32-47
J48-63

Figure Reference: Figure 6305.

Operand 1

M0-31
M0-31
M0-31
M0-31

First FXP

This cycle is identical to the first FXP cycle des -
cribed for the halfword load instruction.

Hwd Log

This cycle is identical to the Hwd Log cycle des
cribed for the halfword load instruction.

Hwd Add

The second operand in the J register is added to the
Rl operand in the M register. The result is sent to
the K register.

ELC

A put-away is made from K register to the general
register specified by ERL MODAR is set, and a 0,
1, 2, or 3 is set into the condition register.

The condition register setting is determined in
the same manner as for the full word add-subtract
instructions; an examination is made of the KO bit
(sign bit), the K0-63 zero latch, and the carries
from adder positions 1 and 0.

SUBTRACT HALFWORD (SH)

• The halfword operand 2 is subtracted from oper
and 1 and the algebraic difference is placed in
the operand 1 location.

• CC is set to record the relation of the result to 0,
and to record overflow.

• On an overflow, if the fixed-point overflow mask
bit (PSW 36) is one, an interrupt is taken.

The subtract halfword instruction is executed in four
cycles. The first two cycles are used to expand the
second operand to a full word. The second two cy
cles subtract operand 2 from operand 1 and place the
difference in the general register specified by Rl.
At the start of execution, the operands are located
as follows:

Operand 2 Address
(H 21 and 22)

0 0
0 1
1 0
1 1

Operand 2

J0-15
J16-31
J32-47
J48-63

Figure Reference: Figure 6305.

Operand 1

M0-31
M0-31
M0-31
M0-31

First FXP

This cycle is identical to the first FXP cycle des -
cribed for the halfword load instruction.

Hwd Log

This cycle is i.·~ic to the Hwd Log cycle des-
cribed f.-pl\ha d load instruction. .

HwdAdd~
Operand 21ifTR~J ~e · er and operand 1 in the M
register a~~d ~h the adder. The AM
complemen~)lo · s are activated to com-

"<1> plement opel£iP~2. he der output (algebraic
difference) i~to register.

ELC ~ :-.\

A put-away is ~~~.).ro~K register to the gen-
eral registers · ~d y · . The MODAR trigger
is set, and a 0,)~..- o ~s ated to the condition
register.

The setting o on~· egister is determined
in the same manner as for word add-subtract
instructions; an e~9'-tion ade of the KO bit
(sign bit), the KO-~zero ~nd the carries from
adder positions O ~ \.,J

U'l ~
COMPARE HALFWO~H) rn
• The relation between the halfwords operand 1 and

operand 2 determines the setting of the CC.

• No put-away is made.

The compare halfword instruction is executed in
four cycles. The first two cycles are used to expand
the second operand halfword to a full word. The
second two cycles combine the two operands in the
adder and set the condition code accordingly. At
the start of execution, the operands are located as
follows:

Operand 2 Address
(H 21 and H22)

0 0
0 1
1 0
1 1

Operand 2

J0-15
Jl6-31
J32-47
J48-63

Operand 1

M0-31
M0-31
M0-31
M0-31

Figure Reference: Figure 6305.

Fixed Point 1/66 19

First FXP

This cycle is identical to the first FXP cycle des -
cribed, for the halfword load instruction.

Hwd Log

This cycle is identical to the Hwd Log cycle des -
cribed for the halfword· load instruction.

HwdAdd

Operand 2 in the J register and operand i in the M
.register are gated through the·adder. The AM com
plement and hot 1 gates are activated to complement
operand 2. The result is sent to the K register for
a zero check.

ELC

A put-away to a general register is prevented by
turning on the block PA trigger. The MODAR trig
ger is set, and a 0, 1, or 2 is gated to the condition
register.

The condition register inputs are determined in
the same way as for the full word compare instruc
tions. That is, an examination is made of the oper
and signs, the carry from the adder output 0 position,
and of the state of the K0-63 zero latch. The sign
indications are obtained from the Rl and R2 sign
triggers (see Figure 5400). The interpretation given
the above indications for setting the condition regis
ter is explained in the description of the full word
compare instructions, under "Compare Logic."

STORE HALFWORD (STH)

• The halfword operand 1 is stored :in the operand
2 location.

• The CC is not set.

H there is no delay in communicating with storage,
the store halfword instruction is executed in two or
three cycles, depending on the halfword storage ad
dress. H the operand is to occupy the left half of a
full word, an additional cycle is necessary to posi
tion it in the K register. Because of this extra cycle,
the store request is made during the first FXP (the
first execution cycle) by the E unit, for this case
(H22=0). For the two cycle execution (H22=1), the
store request is made during T2, same as the full
word store instruction. The reason for the delay
in making the store request in the three-cycle case

20 1/66 2075 Processing Unit -- Volume 3

is that without the delay, storage would be ready to
receive the K register' output before the last execu
tion cycle.

At the beginning of the execution, the Rl operand
is located in M16-31.

Figure Reference: Figure 6306.

First FXP

The Rl operand in the M register is gated through
the adder to the K register. Depending on the half
word address (H21 and H22~, the operand is gated
straight, left 8, right 8, or right 32 as it passes
through the shifter.

At the completion of this cycle, the operand is
either properly positioned (H22=1), or an additional
eight-bit shift is required (H22=0). Jn the latter
case, a store request is made by the E unit (E store
request - KX 351). In the former case -- minimum
two cycle execution - - the I unit made the store re
quest during I to E transfer and the accept pulse can
arrive during this cycle; if it does, the next cycle
will be the ELC-store cycle.

To prevent a put-away, the block PA trigger is
turned on at A pulse of the next <'.YCle and stays on
through the ELC cycle.

Hwd Log

This cycle is taken only for the minimum three
cycle operation (H22=1) for the final positioning of
the halfword operand. The partially positioned
operand in t.he K register is gated through the adder
and shifted left 8 or right 8. depending on H bit 21.
The result is gated back to the K register, ready for
the transfer to the SBI latches.

Store

The store trigger is turned on after the first FXP
trigger or Hwd Log trigger to define idle cycles
while the E unit waits for an accept from BCU. The
store trigger stays on for as long as the delay exists,
and through the ELC cycle. H there is no delay, the
store trigger will be on during ELC only.

The MODAR trigger is set during the store cy
cle(s).

ELC

The ELC trigger is turned on by the A clock follow
ing the accept pulse (which can arrive as early as
first FXP for the two-cycle execution, or as early
as Hwd Log for the three-cycle execution). At EB

time of ELC, the K register is set into the SBI
latches.

The halfword that is selected for entry to storage
depends on the mark register, which is set at I to E
transfer on the basis of H bits 21 and 22.

A general register put-away is prevented by the
block PA trigger, which is turned on at A pulse fol-
lowing the first FXP cycle. .

T2 is allowed to be on during this cycle because
the accept pulse had removed the block in the pre
vious cycle (E TF block T2M on accept -- KX 515).

AND (N, NR)

• Corresponding bits in operand 1 and operand 2
are AND'ed to form a result that is placed in
the operand 1 location.

• CC is set to record whether the result is zero or
not zero.

A bit-for-bit comparison of the two operands is
made to determine the result. When position 3 of
both operands contains a 1 bit, for example, a 1 bit
is placed in result position 3; when only one or
neither of the operands contains a bit in position 3,
the result bit for that position is 0.

The AND instruction is executed in three cycles,
defined by the first FXP trigger, Hwd Log trigger,
and ELC trigger. At the start of execution, the
operands are located as follows:

Instruction Format

RR
RX-even
RX-odd

Operand 1

M0-31
M0-31
M0-31

Figure Reference: Figure 6307.

First FXP

Operand 2

M32-63
J0-31
J32-63

Operand 1 and operand 2 are gated to opposite sides
of the adder and the logical AND function is per
formed at the input to the shifter. Because the
shifter is used as the data path, a shift must be se
lected; the R4 shift is arbitrarily chosen and will be
compensated for in the next cycle.

The result of AND'ing the two operands is gated
to the K register and will occupy positions 4-35.

Hwd Log

This cycle is taken to compensate for the shift (R4)
that was necessary during the first FXP, and to
provide correct parity for the result. Incorrect
parity probably resulted from the AND'ing operation

because the halfsum outputs, which are used to gen
erate parity, do not match the shifter input as they
do when only one operand is sent through the shifter.

The result in the K register is sent to the adder,
shifted left 4, and gated back to the K register to
occupy positions 0-31. The sel log exc OR gate is
active to allow the result through the shifter input
without alteration. Because bad parity is expected,
the check on the result as it is gated out of the K
register, and the half sum parity check are both
blocked (KX 608).

ELC

A put-away is made from the K register to the gen-;
eral register specified by ERl. The MO DAR trigger
is set, and a O or 1 is gated to the condition register.

If the K0-63 zero latch is on, CR 35 is set (KX
661); if the latch is off, CR 35 is not set.

OR (0, OR)

• Corresponding bits in operand 1 and operand 2
are OR'ed to form a result that is placed in the
operand 1 location.

• CC is set to record whether the result is zero
or not zero.

A bit-for-bit comparison of the two operands is
made to determine the result. For example, when
position 3 of either or both operands contains a 1
bit, a 1 bit is placed in result position 3. When
neither operand contains a bit in position 3, the re
sult bit for that position is 0.

The OR instruction is executed in three cycles,
defined by the first FXP trigger, Hwd Log trigger,
and the ELC trigger. At the start of execution, the
operands are located as follows:

Instruction Format

RR
RX-even
RX-odd

Operand 1

M0-31
M0-31
M0-31

Figure Reference: Figure 6307.

First FXP - Hwd Log - ELC

Operand 2

M32-63
J0-31
J32-63

These three cycles are the same as those described
for the AND instruction. In addition to selecting the
sel log AND gate in the first FXP, however, the sel
log exc OR gate is also selected to perform the OR
function at the shifter input. The R4 shift sets the
result in K4-35.

Fixed Point 1/66 21

During Hwd Log, the result in the K register is
looped back through the adder to make a left 4 shift
and generate proper parity. The K register output
check and the adder HS parity checks are suppressed
during this cycle. During ELC, the put-away is
made, the MODAR trigger is set, and a 0 or 1 is
gated to the condition register.

EXCLUSIVE OR (X, XR)

• Corresponding bits in operand 1 and operand 2
are exclusive OR'ed to form a result that is
placed in the operand 1 location.

• CC is set to record whether the result is zero
or not zero.

A bit-for-bit comparison of the two operands is made
to determine the result. For example, when position
3 of either, but not both, operand contains a 1 bit,
a 1 bit is placed in result position 3. When neither
or both operands contain a 1 bit in position 3, the
result bit for that position is 0.

The exclusive OR instruction is executed in three
cycles, defined by the first FXP trigger, the Hwd
Log trigger, and the ELC trigger. At the start of
execution, the operands are located as follows:

Instruction Format Operand 1 Operand 2

RR M0-31 M32:_63
RX-even M0-31 J0-31
RX-odcf M0-31 J32-63

Figure Reference: Figure 6307.

First FXP

Operand 1 and operand 2 are gated to opposite sides
of the adder and the exclusive OR function is per
formed at the input to the shifter with the sel log
exc OR gate. Because the shifter is used as the data
path, a shift must be selected; the R4 shift is arbit
rarily chosen and will be compensated for in the
next cycle.

The result of exclusive OR'ing the two operands
is gated to the K register and will occupy positions
4-35.

Unlike the AND and OR instructions, proper
parity is generated when the two operands are ex
clusive OR'ed. This is because the adder halfsums
are identical, bit for bit, with the shifter input from
the exclusive OR function. The halfsums are used
in shifter operations to generate proper parity.
Since this is a shifter operation, and the halfsums
are the same as the shifter input for the exclusive
OR function, proper parity is generated.

22 1/66 2075 Processing Unit -- Volume 3

Hwd Log

This cycle is taken to compensate for the shift (R4}
that was necessary during the first FXP. The re
sult in the K register is sent to the adder, shifted
left 4, and gated back to the K register to occupy
positions 0-31. The sel log exc OR gate is active
to allow the result through the shifter input without
alteration.

The parity check on the result as it is gated out
of the K register, and the halfsum parity check, are
not blocked as in the AND and OR instructions. The
result from the first FXP should contain proper
parity, as explained above.

ELC

A put-away is made from the K register to the gen
eral register specified by ERL The MODAR trigger
is set, and a 0 or 1 is gated to the condition register.

If the K0-63 zero latch is on, CR 35 is set (KX
661); if the latch is off, CR 35 is not set.

SHIFT RIGHT SINGLE (SRA)

• Rl is shifted right.

• CC is set to record the relation of the result to 0.

The 31 low-order bits in general register Rl are
shifted right the number of times specified by the
six low-order bits of the effective address (B2 + D2).
The vacated positions are filled with the sign bit,
and bits shifted out of the register are lost. The
details of this instruction are covered under "Logi
cal Shift Left Double. "

SHIFT RIGHT DOUBLE (SRDA)

• Rl and Rl + 1 are shifted right as a pair of coup
led registers.

• CC is set to record the relation of the result to 0.

The 63 low-order bits in the double-length operand
contained in general registers Rl and Rl + 1 are
shifted right the number of places specified by the
six low-order bits of the effective address (B2 + D2).
The vacated positions are filled with the sign bit, and
any bits shifted out of the low order are lost.

The Rl field of the instruction specifies an even/
odd pair of general registers and must contain an
even register address. If Rl is odd, the instruction
is not executed, and a specification interrupt is
taken instead.

The details of this instruction are covered under
"Logical Shift Left Double."

SHIFT LEFT SINGLE (SLA)

• Rl is shifted left.

• CC is set to record the relation of the result to
O, and to record overflow.

The 31 low-order bits in general register Rl are
shifted left the number of places specified by the
six low-order bits of the effective address (B2 + D2).
The sign remains unchanged, and any bits shifted
out of position 1 that are unlike the sign bit cause
an overflow.

The details of this instruction are covered under
"Logical Shift Left Double."

SHIFT LEFT DOUBLE (SLDA)

• Rl and Rl +l are shifted left as a pair of coupled
registers.

• CC is set to record the relation of the result to
0, and to record overflow.

The 63 low-order bits in the double-length operand
contained in general registers Rl and Rl + 1 are
shifted left the number of places specified by the six
low-order bits of the effective address (B2 + D2).
The sign remains unchanged, and any bits shifted
out of position 1 of the left half of the double operand
that are unlike the sign cause an overflow.

The Rl field of the instruction specifies an even/
odd pair of general registers and must contain an
even address. If Rl is odd, the instruction is not
executed, and a specification interrupt is taken.

The details of this instruction are covered under
"Logical Shift Left Double."

LOGICAL SHIFT RIGHT SINGLE (SRL)

•· The logical operand in Rl is shifted right.

• The CC is not set.

The 32 bits in general register Rl are shifted right
the number of places specified by the six low-order
bits of the effective address (B2 + D2). Bits shifted
out of the low order are lost, and zeros are supplied
to the vacated high-order positions.

The details of this instruction .are covered under
"Logical Shift Left Double. "

LOGICAL SHIFT RIGHT DOUBLE (SRDL)

• The logical operands in Rl and Rl + 1 are coupled
and shifted right.

The 64 bits in the double-length operand specified by
general registers Rl and Rl + 1 are shifted right the
number of places specified by the six low-order bits
of the effective address (B2 + D2). Bits shifted out
of the low order of the double operand are lost and
zeros are supplied to the vacated high-order posi
tions.

The Rl field of the instruction specifies an even/
odd pair of general registers and must contain an
even address. If Rl is odd, the instruction is not
executed, and a specification interrupt is taken.

The details of this instruction are covered under
"Logical Shift Left Double."

LOGICAL SHIFT LEFT SINGLE (SLL)

• The logical operand in Rl is shifted left.

• The CC is not set.

The 32 bits in general register Rl are shifted left
the number of places specified by the six low-order
digits of the effective address (B2 + D2). High
order bits shifted out are lost and zeros are supplied
to the vacated low-order positions. .

The details of this instruction are covered under
"Logical Shift Left Double."

LOGICAL SHIFT LEFT DOUBLE (SLDL)

• The logical operands in Rl and Rl + 1 are coupled
and shifted left.

• The CC is not set.

The 64 bits in the double-length operand specified
by general registers Rl and Rl + 1 are shifted left
the number of places specified by the six low-order
digits of the effective address (B2 + D2). High-order
bits shifted out are lost, and zeros are supplied to
the vacated low-order positions.

The Rl field of the instruction specifies an even/
odd pair of general registers and must contain an
even address. If Rl is odd, the instruction is not
executed, and a specification interrupt is taken.

Circuit Description for All Shift Instructions

The following text is pertinent to all eight shift in
structions: the single and double shifts·, the logical
and algebraic.

Fixed Point 1/66 23

The number of cycles necessary to execute the
shift instructions is dependent on the number of
shifts to be taken, which can be as few as zero and
as many as 63 shifts. The first execution cycle
shifts the operand(s) from 1 to 8 shifts, leaving the
number of remaining shifts to be taken a multiple
of 8. The remaining shifts, therefore, are taken in
increments of 8 per cycle. Wherr shifting is com -
pleted, a single operand put-away is made for the
single shift instructions, and a double operand put'
away is made for the double shift instructions. The
algebraic shift instructions also set the condition
code.

Execution of the shift instructions is controlled
by the first FXP, PA, and ELC triggers. At the
start of execution, the Rl operand is located as
follows:

Instruction Format

Single
Double

Rl Operand

M0-31
M0-63

Figure References: Figure 630S.
The first execution cycle is defined by the first

FXP trigger and is known as the first cycle shift.
In it, a number of shifts is taken so that the number
of remaining shifts is a multiple of S. The shifts
taken during this first cycle is determined by exam
ining all 6 bits of the effective address (B2 + D2),
which specify the total shift:

Value: ~ 16 ~ Q1 ~ Q1
x x x x x x

If there are one or more bits in the three low
order positions, a shift equal to their combined
value is taken. If there are no bits in any of the
three low-order positions, and there is at least 1
bit in the three high-order positions, a shift of S is
taken. When the entire field is equal to 0, no shifts
are taken.

The first cycle shifting is accomplished with the
M register out-gates (St, Rl, R2, and R3), referred
to as bit shift gates, and with the main adder shift
gates; the M register contains the operand(s). The
shifts from these sources are selected so that the
sum of the two will equal the required shift. For
example:

Required Shift

R5
L5
RS

M Out-Gate

Rl
R3
St

Shifter Gate

R4
LS
RS

The selection of these gates for all first cycle
shifts is shown in a table in Figure 630S.

24 1/66 2075 Processing Unit -- Volume 3

After the first cycle, the remaining shifts, if any,
are taken in shifts of S per cycle. These cycles are
known as shift iteration cycles and, like the first
shift cycle, are defined by the first FXP trigger.

In the algebraic shift instructions, minus signs
are propagated whenever the Rl, R2, or R3 bit shift
gate is used, and whenever the R4 and RS shifter
gate is used. Thus, in the algebraic right shift in
structions, the p:i;oper sign occupies the vacated
high-order positions of the result. In the algebraic
left shift instructions, the sign is protected by
blocking, in the shifter, the entry of bits into posi
tion 0. A shift out of position 1 of a bit unlike the
sign bit turns on the shifter overflow trigger which
results in a fixed-point overflow interrupt if the PSW
bit 36 is 1.

Completion of the total required shifts is signaled
by the shift counter (SC), which is loaded at the start
of execution with the three high-order bits (whose
value is a multiple of 8) of the 6-bit shift field (in
the H register). This value is then decremented,
by sending it through the exponent adder, by an
effective value of S each time that an S-shift is taken.
Thus, the shift counter is decremented every shift
iteration cycle, and possibly during the first cycle
shift. Shifting is completed when the shift counter
is equal to zero.

The signal used to end shifting and start the put
away sequencer, however, is called SC equal + less
two, and is available in the cycle in which the last
shift is being taken. The reason this signal is used
is that the shift counter is decremented by 2, not S,
because of the positions (SC 4, 5, and 6) occupied
by the three bits placed in it. Therefore, the three
bits (in the shift counter) have a value whose multi
ple is 2 even though in the H register the same
three bits have an S multiple value.

After the last shift cycle, one more cycle
is taken in the single operand shift instructions to
make the put-away and set the condition code for the
algebraic type. Two more cycles are taken in the
double operand shift instructions to put-away the
operands, one in each cycle. The algebraic type
also sets the condition code before termination.

First FXP -- First Cycle Shift

As previously explained, S shifts can be taken in this
cycle. The operand(s) in the M register is gated
through the proper out-gate to the adder, and through
the shifter if necessary. The result is gated to both
the K and M registers.

The choice of shift gates to be used is made by
decoders on the basis of their input, which is the 6-
bit shift amount. The shifter gate (R4, L4, RS, or
LS), if any, is chosen by the shift counter decoder,
which has the 6 bits available to it all through the

first cycle. The bit shift gate (St, Rl, R2, or R3)
is chosen by a separate decoder whose input, the
two low-order bits of the six, is available during the
T2 cycle to set the proper out-gate trigger at A time
of this cycle. The shift gates chosen by the two de -
coders during the first cycle for all shift amounts
are shown in a table in Figure 630S.

When the Rl, R2, or R3 M register out-gate is
chosen by the algebraic shift instructions, and the
sign of the operand(s) is minus, 1 bits are forced
through the M register outputs O, 1, and 2, depend
ing on the out gate. If the Rl gate is used, a 1 is
forced out of position O; if the R2 gate is used, a 1
is forced out of positions O and 1; if the R3 gate is
used, a 1 bit is forced out of positions 0, 1, and 2.
This sign propagation is accomplished by the M prop
sign trigger (RM 001) that is turned on at the begin
ning of this cycle by the Rl sign trigger (Figure
5400)

When the R4 or RS shifter gate is chosen by the
algebraic right shift instructions, the sign is propa
gated in the shifter by the prop sign signal (KU 163).
Propagation of the sign bit is similar to propagation
of the 16 bit, which is illustrated in Figure 6305.

When the L4 or LS shifter gate is chosen by the
abgebraic left shift instructions, the sign is pre -
served in the shifter with the save sign signal (KU
163). That is, the M register bit 0 is sent through
to AM output latch 0 regardless of the shift; also, a
shift into position 0 from positions 4 or S is blocked
(AQ 101). In addition to these, the save sign signal
will turn on the shifter overflow trigger if it is found
that a bit unlike the sign bit was shifted out of posi
tion 1 (AQ 311). The instruction is not altered or
shortened as a result of turning on the shifter over
flow trigger.

The shift counter is gated to the exponent adder,
decremented by 2 if a shift of S is made in this cycle,
and returned to the shift counter. A shift of S is
possible if the three low-order bits of the 6-bit shift
field are zero and there is a bit in at least one of the
three high-order bits. If this were the only shift
required, the signal SC equal + less two would be
active in this cycle, and would AND with the
H21 + H22 + H23 signal to raise the shift complete
level (Figure 6308). If the total shift required is
from 0 to 7, the SC equal + less two signal AND' s
with the SC eq zero 1th to raise the shift complete
level.

First FXP -- Shift Iteration

If, after the first cycle shift is completed, additional
shifting is required, a shift iteration cycle(s) is
taken. The Rl operand in the M register is gated to
the main adder, shifted S, and returned to the K and

M registers. Sign propagation for the algebraic
right shifts, and the save sign function for the alge
braic left shifts operate in these cycles as described
in "First FXP - First Cycle Shift."

The shift counter is gated to the exponent adder,
decremented by 2, and returned to the shift counter.
Iteration cycles are continued until the signal SC
equal +less two is generated, indicating a value of
0 after completion of the current cycle. The signal
AND's with first cycle memorized latch (Figure 6308)
to raise the shift complete signal that starts the put
away sequence(s).

Decrementing the shift counter is accomplished
by adding its complement value to 2, and then re -
complementing to obtain a true result. Both com
plement (1 's) operations are accomplished in one
pass through the exponent adder. The shift counter
is gated to the TC side and a 2 (6 bit) is inserted in
the AM side. The following example shows a shift
counter value 10 decremented to S:

SC Positions 4 5 6 7

Values 8 4 2 1 Value

SC Content 1 0 1 0 (10)
Comp (l's) SC at Input 0 1 0 1 (5)

Add Six Bit 0 0 1 0 (2)

Sum 0 1 1 1 (7)

Comp (l's) Sum 1 0 0 0 (8)

The second complement gate complements the
input (sum) to the exponent adder output latches.
The reduced shift counter value is effective in the
next cycle, as the shift counter is released at A
clock.

PA -- First Put-Away

This cycle follows the last shift cycle for the double
operand shift instructions. In this cycle, the first
put-away is made, preparations are completed for
the second put-away, and the MODAR trigger is set.
In addition, for the algebraic instructions, the con
dition code input is gated, and the fixed-point over
flow latch can be set.

The first operand put-away is made from the K
register, which had been receiving the result along
with the M register during the shift cycles, to the
general register specified by ERl. In preparation
for the second put-away, the M register right half
is gated through its left 32 out gate, to the adder and
sent to the K register left half; and the ERl registeT
is incremented to contain the Rl +l value (KX 535).

For the algebraic instructions (SRDA and SLDA),
the results of the tests on whether the double operand
is equal to, less than, or greater than zero, are
gated to the condition register. The KO bit and the
K0-63 zero 1th are tested (KX 635 and KX 655). In

Fixed Point 1/66 25

addition. if the shifter overflow trigger (KS 141) was
set during the shift cycles in the SLDA instruction,
the condition code will be set to 3, and, if the PSW
bit 36 is 1, the fixed-point overflow latch is set to
initiate an interrupt sequence.

ELC -- Second Put-Away

This is the second put-away cycle for the double
operand shift instructions. The Rl +1 operand (sent
to the K register left half in the previous (PA) cycle)
is set into the general register specified by ER!,
which now contains the Rl +l address.

PA and ELC -- Put-Away for Single Operand Instruc
tions

The operand in the K register left half is set into the
general register specified by ERL The MODAR
trigger is set, and, for the algebraic instructions
(SRA and SLA), the setting of the condition register
is determined according to the operand's relation to
zero (KX 635 and KX 655). In addition, if the shifter
overflow trigger (KS 141) was set during the shift
cycles in the SLA instruction, the condition code will
be set to 3, and, if PSW bit 36 is 1, the fixed-point
·overflow latch is set to start an interrupt sequence.

MULTIPLY (M, MR)

• Operand 1 is multiplied by operand 2; the double
word product is placed in Rl and Rl + 1.

• CC is unchanged.

A 32-bit multiplier (second operand) and a 32-bit
multiplicand (first operand) form a 64-bit product
that is placed in the general registers Rl and Rl + 1.
The Rl field of these instructions must therefore
specify an even register, or a specification interrupt
will occur. The multiplicand is taken from the Rl +
1 register. The sign of the product is determined by
the rules of algebra from the multiplier and multipli
cand signs; however, a zero result is always positive. I The Introduction for this instruction is included
in "Multiply Halfword," below. Details are located
in Figure 6309.

MULTIPLY HALFWORD (MH)

• The halfword operand 1 is multiplied by the half
word operand 2; the full word product is placed
in Rl.

• CC is unchanged.

A 16-bit multiplier (second operand) and a 16-bit
multiplicand (first operand) form a 32-bit product

26 1/66 2075 Processing Unit -- Volume 3

that replaces the multiplicand in Rl. The multiplier
is expanded to a full word before multiplication by
propagating its sign bit.

If the multiplicand is greater than 16 bits {if any
of its high-order bits are unlike the sign bit), the
product will be greater than 32 bits. Because only
the low-order 32 bits are stored in Rl, the product
could be invalid; however, no overflow indication is
given for the lost bits.

The sign of the product is determined by the
rules of algebra from the multiplier and multipli
cand signs; however, a zero result is always pos
itive.

Introduction

The following text is pertinent to all three multiply
instructions (MR, M, and MH).

Multiplication is performed by multiplying the
multiplicand by each hexadecimal group in the mul
tiplier. The result of these multiplications, called
partial products, are added together as they are
formed until the last hexadecimal group adds its
partial product to the rest to form the final product.
Two housekeeping cycles precede the multiplications,
known as iterations (repetitions), for the MR and M
instructions. For the MH instructions, four house
keeping cycles precede the iterations, the first two

taken to expand the halfword multiplier (see "Half
word Expansion"), with the second two cycles being
identical to the two housekeeping cycles for the MR
and M instructions. The housekeeping cycles are
followed by eight iterations, one for each multiplier
group; the iterations take one or two cycles, depend
ing on the multiplier group. Following the iterations,
two more cycles are taken for the put-aways.

If either the multiplier or multiplicand is 0, the
condition is detected in the last housekeeping cycle,
and no iteration cycles are taken. Instead, a zero
product is stored in the specified general register(s).

At the start of execution, the operands are lo
cated as follows:

Operand 2 Operand 1
Instruction (Multiplier) (Multiplicand)

(MR)* RR J32-63 (R2) M32-63 (Rl + 1)
(M) RX-even J0-31 M32-63 (Rl + 1)
(M) RX-odd J32-63 M32-63 (Rl + 1)
(MH) RX-H21 and 22

00 J0-15 M0-31 (Rl)
01 Jl6-31 M0-31 (Rl)
10 J32-47 M0-31 (Rl)
11 J48-63 M0-31 (Rl)

After two-cycle
expansion: J0-31

*This is a GROUT class instruction. The multiplicand is
delivered during T2, and the multiplier is delivered during first
FXP. Both operands cannot be delivered in one cycle because
they are both sent over GBR.

The block T2M trigger is turned on and remains
set for most of the execution to protect the J reg
ister, which contains the multiplier, from an oper
and fetch by the I unit. In single cycle, the block
T2M trigger remains on all during the execution.

Figure Reference: Figure 6309.
Multiplication is performed by accumulating

multiples of the multiplicand according to the value
of each hexadecimal digit in the multiplier, beginning
with the low-order digit. The application of this
method using decimal numbers is:

Multiplicand: 462
Multiplier: x285 '

2310 First PP and 5X Multiplicand
3696 BX Multiplicand
39270 Second PP
~ 2X Multiplicand
131670 Final Product

PP: Partial Product

This method is a slight variation of the familiar
method of longhand multiplication. The difference
is that intermediate totals are produced (partial
products) instead of only one total.

The multiplicand multiples used in this example
are referred to as the 5X, SX, and 2X multiples.
However, because these numbers are offset to the
left when added to the partial products, their value
is actually 5, 80, and 200 times the value of the
multiplicand, respectively. Therefore, each mul
tiplier digit to the left of the decimal point is in
creased by the power of 10 beginning with 100, then
101, 102, etc. The same is true of hexadecimal
digits; each multiplier digit to the left of the decimal
point is increased by the power of 16 beginning with
160, then 161, 162, etc. In the CPU, raising the
multiplicand multiples by these powers is achieved
by shifting right the partial products one hexadeci
mal digit (4 bits) as they are added to the multiples.
The following example illustrates the same problem
(462 x 285) using binary numbers divided into hexa
decimal groups:

Multiplicand: 0001 1100 1110
(1) (1) (13)

Multiplier: 0001 0001 1101
0001 0111 0111 0110 First PP and 13X Multiple
0001 1100 1110 lX Multiple

0000 0011 0100 0101 0110 Second PP
0001 1100 1110 IX Multiple
0010 0000 0010 0101 0110 Final Product

Because the partial products are right shifted as
they are added, the value of the 13X and lX multiples
are 13, 16, and 256 times the value of the multipli
cand, in the order in which they are used.

Arriving at a final product, therefore, amounts
to adding together the partial products formed by
the multiplicand and each of the hexadecimal groups
in the multiplier.

If all 16 multiples of the multiplicand are avail
able, one cycle (called an iteration cycle) would be
taken for each of the eight hexadecimal multiplier digits
to add the proper multiples to arrive at the final
product. Because all multiples are not available, at
least not after the first cycle, some compensations
are made.

The multiples that are available throughout the
execution are the even multiples because these are
easily obtained. In the first execution cycle, the
multiplicand is set into the high-order half of the K
and M registers. If the multiplicand is now the 16X
multiple of itself, the 16X, SX, 4X, and 2X multi
ples are obtained from the M register by using the
the St, Rl, R2, and R3 out gates, respectively; and
the 16X and lX multiples are available from the K
register by using the St and R4 gates. In the second
execution cycle, the 12X multiple is derived by
complement-adding the 4X multiple from the M reg
ister, to the 16X multiple from the K register, and
placing the result in the L register. After this cycle,
the L register can now supply the 12X multiple by
using its straight gate, and the 6X multiple by using
its Rl gate. Thus, individually, the K, L, and M
registers can supply the lX, 2X, 4X, 6X, SX, 12X,
and 16X multiples of the multiplicand as shown in the
following illustration.

(12X or 6X Mpl)

L Reg

(16X, BX, 4X, or 2X)

___ (1_6x_o_r_1x_> ~
KReg l LOR

TC

Main Adder

AMOB Lth

63

' (

For the first iteration, these registers can in
dividually or in combination supply any required
multiple. The 5X multiple, for example, is obtained
by combining the lX multiple from the K register
and the 4X multiple from the M register; the lOX
multiple is obtained by using the SX multiple, fol
lowed by the 2X multiple in the next cycle; the 14X
multiple is obtained by using the SX multiple, fol
lowed by the 6X multiple in the next cycle. For the
lOX and 14X multiples, therefore, 2-cycle iterations
take place. After the first iteration, the lX multi
ple is no longer available because the K register is
used to accumulate the partial products. Therefore,

Fixed Point 1/66 27

the next seven iterations are accomplished with only the
even multiples (2X, 4X, 8X, lOX, 12X, 14X, and
16X). Before showing how this is done, it would be
worthwhile to understand why the multiplicand in the
M register can be used as the 16X multiple of itself.
If, as shown in the following example:

Iterations

1st
2nd
3rd
4th
5th
6th
7th
8th

K Register

xxxxxxxxoooooooo
oxxxxxxxxooooooo
ooxxxxxxxxoooooo
oooxxxxxxxxooooo
ooooxxxxxxxxoooo
oooooxxxxxxxxooo
ooooooxxxxxxxxoo
oooooooxxxxxxxxo

The O's and X's represent four-bit positions, or one
hexadecimal digit. If either, but not both operands
are negative, all digits to the left of X's would be F's.

the multiplicand is sent to the K register, via the
adder, using the M St out-gate, it would occupy
positions 0-31 of the K register. If this move rep
resented the first of eight iterations, and if there
after only the K register is gated to the adder, the
additional seven iterations would shift the multipli
cand in the K register an additional 28 bits, until it
occupied positions 28-5 9 (the shifts are accomplished
when the K register is gated R4 to the adder and
returned to itself). The multiplicand is now 16 times
its former value because of its final position in the
K register. Therefore, if.the Rl, R2, or R3 out
gates were used in the first transfer, the final value
would have been 8, 4, or 2 times the multiplicand
just as if the total multiplier value were 8, 4, or 2.

With only even multiples available, odd multi
plier hexadecimal groups, except the first, are de
coded to the next higher value. For example, a 3
decodes as a 4, a 5 decodes as a 6, etc. Therefore,
if a hexadecimal group is odd an overmultiplication
is made. To compensate for this, the preceding
group is undermultiplied.

The decoding of each hexadecimal group, includ
ing the low-order group, examines the low-order bit
of the next higher group to determine if it is odd. If
it is, a 16 is deducted from the value of the group being
decoded in anticipation of the overmultiplication by
the same amount in the next multiplier group. An
undermultiplication of 16 in one group, therefore,
balances an overmultiplication of 1 in the next higher
multiplier group.

28 1/66 2075 Processing Unit -- Volume 3

No compensation is necessary for the low-order
multiplier group, because, as already mentioned,
all multiples of the multiplicand are available for the
first iteration. The following example shows the
value of the hexadecimal groups in a 12-bit multiplier
versus the multiples used to participate in the iter
ation:

Sign------~

Made 0------

Group Val~ +7 +5 +3
0011, Multiplier: ,X 011t, 010,\

Multiples Used: +8 -10 -13

Total Multiplier Value (decimal)

Calculated by
Group Values

7 x 256 = 1792
5 x 16 = 80
3 x 1 = 3

+1875

Calculated by
Multiples Used

+8 x 256 = +2048
-10 x 16 = -160
-13 x 1 = -13

+1875

The bit combination for the low-order hexadeci
mal group in the above example is equal to 3, but
because the next higher group is odd, the multiple
chosen for the first iteration is -13 (3-16 = -13).
The next group is equal to 5 but decodes as a 6; be
cause the next higher group is odd, the multiple
chosen for the second iteration is -10 (6-16 = -10).
The next hexadecimal group is equal to 7 but decodes
as an 8; because this is the last group of a positive
multiplier, the high-order bit is decoded as 0 and
the multiple chosen for the third iteration is 8.

Negative multiples are achieved by raising the
complement and hot 1 gates as the selected multiples
are sent through the TC side of the adder. The
high-order (5th) bit in the group that is being decoded
alone determines the complement gating, as shown
in the table in Figure 6309.

When either or both operands are negative, the
product will be correct and with the proper sign
without altering the multiplier decoding or changing
any of the routing. Two negative or two positive
operands produce a positive product; a positive and
a negative operand produce a negative product. To
understand why no compensation for negative oper
ands is necessary, consider the following 12-bit
negative multiplier, whose absolute decimal value

(-1875) is the same as the multiplier used in the
preceding example (+1875):

SignL-,-, -----
Made 1

Group {true) Value: +7 +5
Group (comp) Value: +8 +10

Multiplier: 1000, 101(>
'----..J

Multiples Used: -8 +10

Total Multiplier Value
(calculated in decimal)

-8 x 256 = -2048
+10 x 16 = +160
+13 x 1 = +13

-1875

+3
+13

1101,

+13

Note that the multipliers in the two examples
1 select the same multiples, but with opposite signs.

This, of course, is what makes the multipliers
equal in absolute value but different in sign. There
fore, the multiplier decoding as shown in the pre
ceding table is valid for both positive (true) and neg
ative (complement) multipliers.

Whether the final product is a positive or a neg
ative number is taken care of by the high-order
significant hexadecimal group in the multiplier. If
the multiplier is positive, this group selects a pos
itive multiple (+13, for example). Therefore, if
the multiplicand is positive, the sign of the final
product will be positive because this last added mul
tiple of the multiplicand has a greater value than the
partial product so far developed. If the multiplicand.
is negative, the final product will also be negative,
again because the final multiple has a greater value
than the partial product it is added to. When the
multiplier is negative, the high-order hexadecimal
group selects a negative multiple (-13, for example).
This complements the selected multiplicand multiple
so that if it was positive, it becomes negative, re
sulting in a negative final product; if it was negative,
it becomes positive, resulting in a positive final
product.

Additional iterations for high-order zeros in the
multiplier extend the sign bit of the product. Only
the K register, which contains the product, is gated
to the adder. Negative signs are extended into adder
inputs O, 1, 2, and 3 because the R4 gate is used.
Negative sign bits are also extended in the M and L
registers in iterations in which they are gated to the
adder via any of their right-gates.

The multiplier is decoded from the J register
bits 27-31 or 59-63, depending on which half of the J

register the multiplier is located. The J register is
right-shifted four hits to supply a new 5-bit group
for decoding before the iterations that use the multi
ples they select. The J register left shifts are
accomplished by transferring the multiplier in J L4
to the RBL (-4 to 59) and i:eturning to the J register
with an R8 shift.

The iteration count is kept by the shift counter,
which is initially set to a value of 8. The shift count
er is reduced by 1 through the exponent adder, for
each iteration taken until it reaches a value of 0.
The first iteration is taken when the SC equals 8, and
the last iteration is taken when the SC equals 1. The
halfword multiply instruction also sets the shift
counter to 8, even though the first 16 bits of the ·
expanded halfword multiplier are equal to 0.

When either operand is zero, iteration cycles are
not taken and the general register(s) receives a zero
as a final product. If the multiplicand is 0, it is
stored in the general registers Rl and Rl + 1 for
the Mand MR instructions, and in general register
Rl for the MH instruction. If the multiplier is 0,
the multiplicand is reset to zero before the put
away(s).

I A detailed description of the multiply cycles is
contained in Figure 6309 with the register flow
charts.

DIVIDE (D, DR)

• The double word operand 1 (dividend) is divided
by the single word operand 2 (di visor). The
result is a one-word quotient and one-word re
mainder.

• CC is unchanged.

The dividend (first operand) is divided by the divisor
(second operand) and replaced by the quotient and
remainder.

Thedividend is a 64-bit signed integer and occu
pies the even/odd pair of registers specified by the
Rl field of the instruction. A specification exception
occurs when Rl is odd. A 32-bit signed remainder
and a 32-bit signed quotient replace the dividend in
the even-numbered and odd-numbered registers,
respectively. The divisor is a 32-bit signed integer.

The sign of the quotient is determined by the
rules of algebra. The remainder has the same sign
as the dividend, except that a zero quotient or a zero
remainder is always positive. All operands and
results are treated as signed integers.

Fixed Point 1/66 29

Introduction

To divide one number (dividend) by another (divisor)
the dividend is repeatedly reduced by subtracting the
divisor. The number of times this can be done is
the solution (quotient), and anything left of the

Restore

Comp divisor

Comp result (discarded)

True partial dvd

Comp divisor

Comp result (disc_arded)

True partial dvd

Comp divisor

True result

True partial dvd

Comp divisor

True result

True partial dvd (remainder)

Comp divisor

Comp result (discarded)

Non -Restore

Comp divisor

Comp result

Comp partial dvd

True divisor

Comp result

Comp partial dvd

True divisor

True result

True Partial dvd

Comp divisor

True result

True partial dvd (remainder)

Comp divisor

Comp result

0 1 1

n/c

n/c

0 t 1

n/c

n/c

0 0 l 1 0

lo a 1 o 1 a 1

1 0 0 1

c

1 0 1 1

c

0 l 0

1 0 0 l

I 1 0

0 1 1

0 0 1

"'ooo
0 0 0

1 0 0 1
.. 0001

0 0 1

1 0 0

n/c 1 1 0 0

0 0 1 1 Q

lo o o 1 o 1

0 0

1 0 1 1

0 1 1

0 1 1 1

1 1 0

0

0 1
c ._ 0100

c

n/c

0 0 0

0 0 1

"0 0 0 1

0 0 1

1 0 0

0 0

reduced dividend (some number greater than zero
but less than the divisor) is called the remainder.

There are two basic methods of binary division.
The two methods, restore and non-restore, are illus
trated below.

1st Iteration

2nd iteration

3rd iteration

4th iteration

5th iteration

_ 1st iteration

2nd iteration

3rd iteration

4th iteration

5th iteration

Comp partial dvd (remainder-divisor)

True divisor

True result (remainder) c

1 1 0 0

0 1 1 1
~Oilli

correction cycle

Problem: 45 + 7 = 6 3 /7

Dividend 0 0 1 0 1

Divisor 0

Quotient 0

Remainder 0 0

0 1 = (2 x 16) +
1 =

0=

1 =

(13 x 1) = 45

(7xl)= 7

(6 x 1) = 6

(3 x 1) = 3

30 1/66 2075 Processing Unit -- Volume 3

In restore division, the result of any reduction of
the dividend by the divisor is retained only if the
result is the true difference (carry). This result,
called the partial dividend, is used in the next reduc
tion (iteration). However, if the result is the comple
ment of the difference (no carry), the result is dis
carded and the old partial dividend· is doubled in
relation to the divisor to participate in the next
reduction. A 1 bit is inserted in the quotient when
the result is true (carry)~ and a zero bit is inserted
when the result is complement (no carry).

In the non-restoring method of division, the result
of an iteration is retained as the new partial dividend
whether it is true or complement. When a partial
dividend is true, the 2 's complement divisor is added
to it; when the partial dividend is complement, the
true divisor is added to it. In each iteration, the
partial dividend is shifted left one bit in relation to
the divisor; also, a 1 bit is inserted in the quotient
when the result is true (carry) and a 0 bit is inserted
in the quotient when the result is complement- (no
carry).

From now on, use of the term dividend will mean
both the initial and partial dividends.

Shifting the dividend left one bit doubles its value
and is equivalent to halving the divisor. Similarly,
shifting the dividend left two bits quadruples it and
is equivalent to reducing the divisor to 1/ 4 of its
value. Note the similarity between the restore and
non-restore methods of division (the first success
ful reduction of the dividend is made by 1/4 of the
divisor):

(Restore) Dividend -1/4 Divisor, is equivalent to
(Non-Restore) Dividend -Divisor+ 1/2 Divisor

+ 1/ 4 Divisor

The Non-Restoring Method of Division, used by the
2075 CPU, is shortened in a way requiring half as
many iterations. Every iteration, therefore, produces
two quotient bits and shifts the dividend left two bit
positions with respect to the divisor. The speed-up
is done by reducing the dividend by multiples of the
divisor (OX, l/2X, 3/4X, lX, 3/2X). The multiples
are selected for each iteration by comparing the
first three bits of a bit-normalized divisor (constant
throughout the iterations) against the three compar
able bits of the dividend (changing with each itera
tion).

One of the qualifications for the participating
divisor multiple is that it reduce the dividend enough
to make its two high-order bits insignificent (O's for
a true result, and 1 's for a complement result).
This allows the dividend to shift left two bits for the
next iteration.

If the dividend contains a significant bit in the
high-order position (lXX for a true dividend, OXX
for a complement dividend) before an iteration, the
reduced dividend is less than 1/4 of its value after
the iteration (OOX true result, ,UX complement
result).

. The Divisor Multiples that insure a reduction of the
dividend to less than 1/4 of its previous value in
each iteration are shown below. The divisor
multiples are subtracted from a true dividend and
added to a complement dividend.

True Comp Divisor
Dividend Dividend 111 .!!Q_ !Q!. .!QQ.

lll 000 3/2 3/2

110 001 3/2

101 010 3/4 3/4

100 011 3/4 3/4

011 100 1/2 1/2 1/2 1/2

010 101 1/2 1/2 1/2 1/2·

001 110 0 0 0 0

000 111 0 0 0 0

Mtltiple Selection Table

These divisor multiples fulfill a second require
ment for a two-bit divide; that is: when they are
used, at least two quotient bits can be predicted.
When the OX, 1/2X, lX, or 3/2X divisor multiples
are used, two quotient bits are predicted; ·when the
3/ 4X divisor multiple is used, three quotient bits
can be predicted. This third quotient bit takes the
place of the first quotient bit predicted by the divisor
multiple used in the next iteration.

In the table below, the quotient bits produced in a
given iteration depend on: the divisor multiple used,
on whether the partial dividend is true or comple
ment, and on whether the iteration result (new divi
dend) is true or complement.
Partial Iteration Multiple Used

Dividend ~ -1. U!. .!L&..

T T 11 10 011 01 00

T c 10 01 010 00

c T 01 10 101 11

c c 00 01 100 10 11

Quotient Prediction Table

Fixed Point 1/66 31

Using the Quotient Prediction and the Multiple Selec
tion Tables: The example below shows how the IBM
2075 CPU handles the same divide problem shown
earlier. Before doing any of the iterations. the
machine complements the divisor and dividend if
they are negative numbers (2 1s complement). The
quotient developed. therefore, is a positive number
and is complemented if the divisor and dividend
signs are unlike. In addition, the divisor is hex
normalized (all high-order hex-zeros removed) and
the same number of hex zeros are removed from the
high-order end of the dividend. (The dividend must
have at least as many high-order zeros as the
divisor, or the instruction is terminated with a
divide cheek.) In comparing the leading divisor and
dividend bits to select the divisor multiples, the
divide decoder effectively bit-normalizes the divisor
by ignoring its high-order zero's (up to 3) and
ignores the same number of bit positions in the
dividend. The divisor multiples, excepting the OX
multiple, derive from the M and L registers with
their straight and right 1 out-gates to the TC side of
the adder.

The first and second termination cycles, which
follow the last iteration cycle, calculate a true
remainder if it did not result from the last iteration
cycle. In addition, the first termination cycle decides

2-Bit Divide as Performed by the 2075 CPU (4-Bit Registers are Used)

the last quotient bit when the last iteration cycle does
not use the 3/4X divisor multiple.

After the second termination cycle, and before the
quotient and remainder are put away, the machine
(1) complements the quotient if the divisor and divi
dend signs are unlike, (2) shifts the remainder right
as much as the divisor and dividend were shifted
left, to position the remainder correctly within the
register. and (3cJ complements the remainder if the
dividend is a negative number.

If the Dividend is Zero: No iterations take place and
a zero quotient and remainder are placed in the R 1
and Rl + 1 general registers.

Throughout the Divide Instruction: The machine
checks for the possibility of a quotient larger than
32 bits. Detecting this condition terminates the
instruction by forcing the PA eycle, followed by
ELC, and causes a fixed-point divide interrupt. One
of the checks made is inspecting the first quotient
(overflow) bit; this bit must be 0, as it is outside a
32 Mt quotient. The second quotient bit is the sign
bit, and must also be zero unless the quotient is the
maximum negative number (100 -- 00) and the divisor
and dividend signs are unlike. The divide checks are
further explained in the Divide Checks circuit dia
gram. Figure 631(}.

All divisor multiples but the OX are supplied by the
quotient sign bit
~ M and L registers. The M register supplies the lX

quotient overflow bit~

0 0 1 1 0

0111 fo~1101 1st reduction cycle in

2075 is iteration

preparation

1/2X comp divisor

Comp result

Comp partial dvd

1 /2X true divisor

True result

True partial dvd (remainder)

1X comp divisor

Comp result

Partial dvd (remainder - 1X divisor)

lX true result

True result (remainder)

Divisor Multieles

True Complement (2's)

0 0 0 0 0 0 0 0 00000000

0 1 1 1 0 0 0 0 10010000

00111000 1 1 0 0 1 0 0 0

1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0

0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0

32 1/66 2075 Processing Unit --"Volume 3

11001000 1st iteration

n/c 11110101

//////
11010100

00111000 2nd iteration

c"000011QO

//////
15 iteration cycles in

2075 CPU

n/c

00110000

0 0 1 0 0 0 0

1000000

I I 11 I I I
1000000

1st termination

lX true divisor is added

if last iteration result

is comp

01110000

c"-00110000

2nd termination

OX divisor is added if

1st termination

result is true

OX:

lX:

l/2X:

3/2X:

3/4X:

~ The first and second termination cycles produce a

true remainder if it did not result in the last iteration cycle.

Also, the first termination cycle produces the final quotient bit

if the last iteration cycle did not use the 3/4X multipk.

multiple with its straight out-gate, and the l/2X
multiple with its right 1 out-gate. The L register
supplies the 3/2X multiple with its straight out-gate,
and the 3/4X multiple with its right 1 out-gate. The
OX multiple is merely a forced parity to the AMTC
side of the adder. ,Selecting these multiples is the
job of the divide decoder, which, during the itera
tions, compares the first three bits of a bit-nor
malized divisor against the comparable three bits of
the partial dividend indicated in the 2-bit divide
example.

Decoding the Divisor and Dividend Bits to select a
new divisor multiple in each iteration is complicated
by late availability of the new partial dividend
(result) in the cycles. This new partial dividend
must be inspected quickly in order to be compared
with the divisor bits, and to-select one of the M or L
register out-gates (or force parity for the OX multi
ple) to the adder by the next A pulse. To overcome
delay, the decoder examines the adder sums 2 - 7 in
each iteration when a possible carry to this group
has not arrived. '(The sums 0 and 1 need not be
examined as these are both O's or 1 's and are dis
carded. All 6 bits of the adder result (2 - 7) must
be presented to the decoder: The sums 2, 3, and 4

may be ignored by the decoder because the hex
normalized divisor can have up to three leading
zeros.)

Using these bits, the decoder compares the three
divisor bits against four possible sets of dividend
bits:

1. No carry into the group (CG 4 - 7) and result
true (carry out 0)

2. No carry into the group (CG 4 - 7) and result
complement (carry out 0)

3. Carry into the group (CG 4 - 7) and result true
(carry out 0)

4. Carry into the group (CG 4 - 7) and result
comp (carry out 0)

Having considered these possibilities, the divide
decoder is ready to select the next divisor multiple
when CG 4 - 7 or CG 4 - 7 and the carry out 0 or
carry out 0 signals become available near the end of
the cycle.

The divide decoder is further explained in "Func
tional Units," 2075 Processing Unit -- Volume 1, FE
Manual of Instruction, Form 223-2872.

The circuit description for the fixed-point divide
instructions is in Figure 6310. It also contains the
flow chart, register and circuit diagrams of the
fixed-point divide instructions.

Fixed Point 1/66 33

f EXECUTE

INTRODUCTION

The instructions covered in this section are executed
by the I-execution unit alone, or jointly with the
E unit. The instruction BCR with R2 equal 0 uses
an IE unit sequencer but is covered in the Branch
section.

The I-execution unit uses a set of six sequencers:
IEI, IE2, IE3, IMl, IM2, and IEL. The functions
performed by these sequencers depend on the
instructions using them. Mainly, these sequencers
are employed to use I-unit mechanisms. For
example:

l. Gate PSW to the incrementer
2. Compute memory addresses
3. Gate out general registers
4. Increment BR!
5. Initiate store and fetch requests.
The names of most signals that control these

and other functions are characterized by the prefix
IE: IE fetch to J, IE gate H to incrementer, IE TF
block ICM, etc.

THEORY OF OPERATION

LOAD PSW (LPSW)

The double word operand specified by Bl + Dl re -
places the current PSW. The operand address must
have its three low-order bits zero to designate a
double word; otherwiHe, a specification interrupt
will ocQur. In addition, since LPSW is a privileged
instruction, the CPU must be in the supervisory
state (current PSW bit 15 is 0) to execute it. If the
CPU is in the P,roblem state (current PSW bit 15 is
1), a privileged operation interrupt will occur instead

On completion of the LPSW instruction, and if the
new PSW bit 14 is 0 (running state), an IC recovery
sequence is initiated to fetch the instructions
specified by the new ICR value (bits 40-63). There
fore, a valid storage address check for the new
ICR value is made during the IC recovery sequence,
and an even byte address check is made during the
subsequent instruction times.

The CPU enters the problem state when the new
PSW bit 15 is 1, and it similarly enters the wait
state if the new PSW bit 14 is 1. Load PSW is the
only instruction available for entering the problem
or wait states.

Condition Code: The code is set according to
bits 34 and 35 of the new PSW.

Program Interrupts: Privileged operation,
addressing, and specification.

34 1/66 2075 Processing Unit -- Volume 3

Details

The load PSW instruction is executed by the I unit
and takes four execution cycles to complete. At
Tl, the address of the PSW is calculated, a fetch
request is made~ and the ID block IC line is
activated to turn on the block ICM latch (System
KA 141) at TN T2. re fetches are blocked to prevent
an unnecessary fetch because an IC recovery will
probably be made at the end of the instruction
execution; they are also blocked to prevent the use
of the incrementer because the incrementer will
be used to check the new PSW parity. T2 is turned
on and the turn on of the block TIM trigger is gated.
Tl is blocked to prevent the preparation of any new
instruction, again because of the probability of an
IC recovery at the end of the load PSW instruction.
With the receipt of accept from BCU, the I go is
generated by the r unit to turn on the first sequencer,
IEL

Figure Reference: Figure 6350.

IEl

The MODAR trigger is turned on, and, when J is
loaded and valid, the J register is transferred to
the PSW register and the channel interrupt priority
circuits are reset.

The new PSW could change the system mask
(PSW bits 1-7) that allows channel and external
interrupt conditions to be recognized. Therefore,
a channel that developed an interrupt condition
and was granted channel priority during the
execution of load PSW under control of the old
system mask, must have that priority cancelled to
allow the new system mask to control the channel
interrupt requests.

In case of an invalid address error, or a SAP fetch
error, the J register receives the output of the panel
keys (with correct parity) instead of the new PSW.
The J register is then termed invalid and effective
execution of the load PSW instruction is blocked.

IE2

The J loaded trigger is turned off, and, if J is
valid, the right half of the PSW register (32-63)
is gated to the incrementer for a parity check, and
the incrementer check trigger is enabled.

IE3

If J is valid, the left half of the PSW register
(0-31) is gated to the incrementer and the incrementer
check trigger is enabled. If the new PSW bit 14 is

O (running state), the IC recovery trigger is gated
on to start a recovery sequence. The IC recovery
trigger turns off the block TIM trigger to prepare
for the time when IOP is loaded with _the first
newly fetched instruction. The IC. recovery trigger
also turns off the block ICM trigger to allow the new
ICR value to pass through the incrementer into
SAR for the instruction fetch.

Any interrupt will take priority over the IC
recovery sequence.

IEL

Gate the turn off of the MODAR trigger. If the new
PSW bit 14 is O, gate the turn on of the wait trigger;
if the new PSW bit 14 is 1, turn on the IC recovery
trigger at the beginning of this cycle.

SET PROGRAM MASK (SPM)

Bits 2 -7 of the general register specified by the Rl
field replace the condition code (34 and 35) and the
program mask bits (36-39) of the current PSW.

Condition Code: The code is set according to
bits 2 and 3 of the general register specified by Rl.

Details

The set program mask instruction is executed by
the I unit and takes three execution cycles to complete.
At T2, Tl is blocked to prevent an address
calculation from interfering with the readout of
GR Rl during the execution of this instruction. The
signal I go, generated by T2, turns on the GROUT and
IEl triggers. GROUT is used to gate out the speci
fied general register(s) during execution cycles.

Figure Reference: Figure 6351

IEl

The GROUT trigger gates out GR Rl (and R2 which
is not used), from which bits 2 -7 are gated into the
PSW bits 34-39. The MODAR trigger is also turned
on in this cycle.

IE2

The GROUT and block TIM triggers are gated off in
this cycle.

IEL

The MODAR trigger is gated off.

STORE MULTIPLE (STM)

From 1 to 16 general registers can be stored in
successive memory locations. The first general
register is specified by the Rl {ield, and the last
general register is specified by the R3 field; RO

follows Rl5. The beginning storage address is
specified by B2 + D2 ~d is incremented during 1

the operation.
Condition Code: Unchanged.
Program Interruptions: Protection, addressing,

and specification.

Details

Store multiple is executed jointly by the IE and E
units. The IE unit handles the store requests and the
delivery of the words in the general registers to the
E unit. The E unit routes the words, one at a time,
to the K register for delivery to storage. ·

The IE unit makes the store requests and sets the
marks register. It also increments BRl (initially
set with the first GR location) to allow the proper
general register to be sent to the E unit. The BRl
register is compared against ffi2 (set with R3, the
last GR location) to initiate an end to the IE unit op
eration.

The IE unit is kept synchronized to the transmis
sion of words to storage by the accept pulse from
BCU. The receipt of an accept pulse allows the IE
unit to operate for two _cycles, after which time an
other accept pulse is necessary to allow the IE unit
to operate for two more cycles.

The E unit controls the routing of the general
registers from the RBL to the left or right half
of the K register. From the K register, the GRs
are sent to storage in pairs (with the possible
exception of the first and last GRs). The E unit
keeps track of the transferred GRs by incrementing
ERl (the first GR) and comparing it against ffi2
(the last GR, in the R3 field), A compare inltiates
an end to the E unit operation.

The E accept trigger (turned on by the accept
pulse) is used to permit the E unit to operate for
two uninterrupted cycles, after which it is again
necessary to have the E accept trigger on.

An invalid address or one that specifies a
protected area causes an interrupt at the end of the ,
store multiple instruction. Execution of the
instruction itself is unaffected, but stores are
prevented when erroneous addresses are used.

As a service aid, the store multiple instruction
can be used to store the content of any one general
register into all locations of storage in a continuous,
non-ending operation._ To do this, the store multiple
instruction must be manually executed (set in the
data keys, then in the AB registers, etc.) with the
enable storage ripple switch on. This switch pre
vents incrementing BRl and ERl; therefore, if the
first and last specified general registers (Rl and
R3) are unlike, the store mUttiple instruction can
not make an equal compar~son in its execution as
long as the enable ripple mode switch is on. In
addition, because continuous execution of the stor'e

I Execute 1/66 35

multiple instruction will soon be calling for locations
outside the available storaget the enable ripple mode
switch also prevents the invalid address signal from
being generated by the BCU. To prevent SAP errors
and to' be able to store in protected locations, the
storage protect key in the PSW must be 00.

The first storage address is calculated in Tl, and
is set into SAR and H registers at TN T2. IC fetches
are blocked to prevent the !CR value- from being gated
into the incrementer, which is used by STM to update
the storage addresses; TI is blocked to prevent
future address calculations to interfere with GR
readouts; and T2 is blocked to protect the store ad
dress in SAR when the Tl hlock is removed.

The GROUT trigger is turned on at I to E trans -
fer (the two execution units are started simultane
ously). GROUT stays on long enough to gate the
GRs selected by BRl into RBL. Gating out Rl +l
is blocked.

Figure Reference: Figure 6352.

IE Unit

The controlling sequencers for the IE-unit
operation are IEl, IE3, and two sequencers used
especially for store multiple and load multiple,
IMl and IM2. The IMl and IM2 sequencers
alternate throughout the operation; IMI is associated
with the GRs that are stored in the left half of the
double storage word, and IM2 is associated with
the GRs in the right half of the double storage
word. The IEl sequencer is used at the beginning
of the operation, and the IE3 sequencer is used at
the end.

IEl/IMl

IEl is always the first sequencer turned on, and
IMl or IM2 are turned on with it, depending on
H bit 21. If H bit 21 is 0 (first GR goes in left
half of double storage word), IMl is turned on;
if H bit 21 is l (first GR goes in right half of
double storage word), IM2 is turned on.

In the IEl/IMl cycle, the marks register
four high-order bits (0 -31) are set. In addition,
if GR! I BR2 (these registers are equal in this
cycle when only one GR is specified), BRl is
incremented. Setting the marks register and
incrementing BRl are IMl functions and have nothing
directly to do with IEl. However, IEl is necessary
to signify the first IE cycle and thus allow the IMl
functions; at all other times, these functions must
wait for an accept pulse from BCU.

-The incrementing of BRl is effective in the next
cycle (A clock). In this cycle, therefore, BR! con
tains the address of the first GR sent to RBL.
While GROUT controls the gating to RBL, the GR
selection is controlled by BR!.

36 1/66 2075 Processing Unit -- Volume 3

IEl/ IM2

This combination of sequencers defines the first
I-execute cycle if H bit 21 is I, as previously
explained. If H bit 21 is 0, this cycle follows
the IEl/IMl cycle. Thus, IEl is on for one or two
cycles, depending on the status of H bit 2l.

In the 1El/IM2 cycle, the MODAR trigger is
set; a store request is made; the marks register
is set for bits 32-63; and if BR! I IR2, BR! is
incremented to the next higher GR address. These
are IM2 functions and IEl is not involved. However,
IEI blocks incrementing the SAR and H registers,
which is another IM2 function. Because the first
store request is made in this cycle, the SAR
register must remain undisturbed until the request
is accepted.

The second GR (or first, if this is the first IE
cycle), is gated to RBL, and will be stored in the right
half of the double storage word. The incremented
BRl value is set in the register at the next A clock.

IMl

The IMl cycle follows the 1El/IM2 cycle or the IM2
cycle.. When only the IMI sequencer is on, it must
wait for the accept pulse from BCU to become
effective. Until then, the IMl sequencer defines
idle cycles. The cycle in which accept (a B-B
pulse) is received becomes a valid IMl cycle. Two
GRs have been delivered to RBL and taken from
there by the E unit since the last accept pulse. The
latched output of IMl gates the turn-on of the store
request trigger to maintain a constant store request.

In a valid IMl cycle, the marks register is set for
0-31 bits, and if BRl I IR2, BRl is incremented to
send the next higher GR to RBL in the next cycle.
Although the GR specified by BRl is sent to RBL
in ail IMl cycles (idle or not), the E unit does not
accept RBL output until after the valid IMl cycle.

IM2

The IM2 cycle follows a valid IMl cycle. Because
the last store request has been accepted (indicated
by the IM2 sequencer being on), another store
request is made; the SAR and H registers are
incremented; and the marks register is set for bits
31-63, the positions that will be occupied by the
GR sent to RBL in this cycle. In addition, if
BRl I IR2, BRl is incremented to send the next
higher GR to RBL in the next cycle(s).

IE3/IM2

A compare equal of BRl (Rl field) and IR2 (R3 field)
during IEl/IMl or IMl starts this cycle. A compare
equal during IEl/IMl or IMI indicates the last GR

has been gated into RBL, that it will occupy the
left half of a double storage word, and that a store
request for it has not been made if the compare
occurred in IEl/IMl. The IE3/IM2 cycle, therefore,
makes the store request and increments the SAR
and H registers; the marks register has been set
(for 0-31) in the previous cycle for the last GR.
This cycle is followed by IE3/IM1.

The GROUT and block Tl triggers are turned
off (a function of BRl = IR2) at the beginning of this
cycle because no other GRs are required for this
operation.

IE3/IM1

A compare equal of BRl (Rl field) and IR2 (R3 field)
during IE1/IM2 starts this cycle. The preceding cycle
(IE3/IM2) also starts this cycle.

In any case, the last GR has been sent to RBL and
is stored in the right half of the double storage word.
Because the IM2 sequencer was on in the preceding
cycle, a store request for the last GR or pair of GRs
has been made and the SAR and H registers have
been incremented. The next E accept pulse sets
the K register, containing the last GR, into the
SBI latches. Therefore, the only function to be
performed by the IE unit is to reset the GROUT
and block TlM triggers (if not done in the previous
cycle); and to reset the blocks to the T2 cycle and to
IC fetches.

The turn-off of block T2M and block ICM triggers
must wait until the accept pulse arrives from BCU in
order to protect the SAR address.

IEL

This cycle follows IE3/IM1 after the BCU accept
pulse arrives. The BCU accept pulse is also used
to turn on ELC in the E unit, making IEL and ELC
coincident. The MODAR trigger is gated off ..

E Unit

The controlling sequencers for the E -unit portion
of the operation are first FXP, store, and two
sequencers used especially for store multiple and
load multiple, EMl and EM2. The EMl and EM2
sequencers operate alternately to handle the
delivery of the GRs taken from RBL into the left
half and right half of the K register respectively,
and to compare the Rl field against the R3 field,
incrementing Rl when the two fields are unequal.
First FXP is the beginning sequencer, and store
follows an ER1-IR2 compare equal condition.

First FXP

This is the first cycle in the E -unit operation, and
is coincident with the first IE cycle. First FXP is
used to provide the RBL-M gate; thus, with
GROUT (turned on at I to E transfer), first FXP
completes the data path that sends the first GR to
RBL and into the M register •

. In the next cycle, the first GR is placed in the
left or right half of the K register, and a se~ond
GR is placed in the M register.

The block PA trigger is gated on in this cycle
to prevent any put-aways that are normally done
during ELC.

EMl

The EMl cycle delivers the GR in the M register,
through the adder, into the left half of the K register;
brings the next GR from RBL into M register; and
increments ERl if ERl (Rl field) is not equal to IR2
(R3 field).

The EMl functions take place provided the K re
gister is either empty (following the first FXP), or
not empty, but will be transferred to SBI (EBR
pulse) in the same cycle. When EMl follows the
first FXP, the first GR is placed in the K register,
and so no delay exists in completing EMl. When
EMl follows EM2, the K register contains two GRs
(or one in the right half if EM2 followed the first
FXP) that must be transferred to SBI before any
thing else can be placed into K register. In the
latter case, the EMl functions are held up until
the E accept trigger is turned on (by the BCU accept
pulse). The cycle in which E accept is on con
stitutes a valid EMl cycle; until then, EMl cycles
are idle.

The idle EMl cycles are those in which the EMl
trigger is on but the EMl latch is not, since all
EMl functions are gated by its latched output. The
valid EMl cycles, therefore, are those in which the
E accept trigger turns on the EMl latch.

EM2

If the EM2 cycle follows the first FXP (H21 is 1),
EM2 places the first GR in the right half of the K
register. If EM2 follows EMl, it places the second
of a pair of GRs in the right half of the K register.

The GR in the M register is routed through the
adder with a R32 shift and placed in the right half
of the K register. Another GR (if there is one) is
taken from RBL and placed in the M register. If
ERl does not equal IR2, the ERl register is incre
mented.

I Execute 1/66 37

With ERl I IR2, the next cycle is EMl. The EMl
cycle repeats, as previously explained, waiting
for the cycle that delivers the K register to the SBI.

Store

Store is an idle cycle, entered when ERl = IR2 (Rl
field matches the R3 field), and is repeated until a
BCU accept pulse allows it to end and the next cycle
to be ELC.

An equal compare occurs in the E unit during
the cycle in which the last GR is put in the K register.
The E unit operation ends when the accept pulse
causes the K register content to be taken into storage.

An independent comparison of the RI and R3 fields
is made by the E unit because the IE unit compare
equal condition occurs one cycle before the last GR
is transferred to the K register in the E unit. The
IE unit increments the RI field (BRl) in the cycle in
which any given GR is transferred through RBL to the
M register; and the E unit increments the Rl field
(ERl) in the cycle in which the same GR is trans -
ferred to the K register.

ELC

The ELC cycle occurs after the last BCU accept
pulse is received. In this cycle, the last GR or
pair of GRs in the K register is transferred to SBI,
the block put-away trigger (turned on by the first
FXP) is reset (next A pulse), and the MODAR
trigger is reset (next A pulse).

LOAD MULTIPLE (LM)

A group of 1 to 16 storage words can be loaded into
successive general registers. The first general
register is specified by the Rl field, and the last
general register is specified by the R3 field; RO fol
lows Rl5. The beginning storage address is specified
by B2 + D2 and in incremented by 1 during the oper
ation.

Condition Code: Unchanged.
Program Interruptions: Addressing, specifica

tion.

Details

Execution of load multiple is accomplished by both
the IE and E units; the IE unit handles the fetch re -
quests and the E unit handles the delivery of the
storage words to the general registers.

The IE unit makes fetch requests and increments
the storage addresses in SAR and H registers; how
ever, the first fetch request and address increment
ing is done by the I unit. The IE unit keeps track of

38 1/66 2075 Processing Unit -- Volume 3

the words fetched from storage by incrementing BRI
(initially set with the first GR location) and compar
ing it with IR2 (set with R3, the last GR location).
When the two registers compare equal, IE unit oper
ation ends.

The accept pulse from BCU keeps the IE unit
properly synchronized to the words coming back
from storage. Except when the BRl and IR2 fields
compare equal, every accept pulse causes the IE
unit to proceed with two useful cycles, in which the
BRl field is incremented twice and the next storage
address is calculated. If there is any delay in re
ceiving the accept pulse, the IE unit is kept idle for
the duration of the delay except for maintaining a
fetch request.

The E unit takes the words fetched into the J
register and passes them through the adder into the
left half of the K register. From the K registers,
the words are placed in the general registers speci
fied by ERl. Initially set with Rl, the first GR lo
cation, ER! is incremented +1 by the E unit until it
matches IR2 (the last GR location). When the final
word has been placed in the last specified general
register, the E unit operation ends, completing the
instruction (the IE unit operation ends sooner, as it
has only to wait for the accept signal for the last
requested storage word).

As in all instructions requiring a fetch, the E
unit uses the J loaded signal to allow· it to process
word(s) fetched to the J register. When J becomes
loaded, the E unit progresses for two cycles in
which the two words fetched are placed in the proper
general registers, and in which ERl is incremented
twice. If the next J loaded signal does not occur
immediately, the E unit is kept idle until the J reg
ister is again loaded.

Detection by the BC U of an invalid (non -existent)
storage address or one that specifies a protected
area (SAP fetch) causes the E unit operation to end
early to prevent loading the general registers with
invalia data. In addition, the proper error triggers
are turned on to cause and identify an interrupt when
the I unit operation ends.

As a service aid, the load multiple instruction
can be used to load all words in storage into any one
general register in a continuous, non-ending opera
tion. To do this, the load multiple instruction must
be manually executed (set in the data keys, then in
the AB registers, etc.) with the enable storage rip
ple switch on. This switch prevents incrementing
ERl and BR!; therefore, if the first and last speci
fied general registers (Rl and R3) are unlike, the
load multiple instruction cannot make an equal com -
parison in its execution as long as the enable ripple
mode switch is on. In addition, because continuous
execution of this instruction would soon be calling
for locations outside the available storage, the enable

ripple mode switch also prevents the invalid address
signal from being generated by the BCU. To prevent
SAP fetch errors and to be able to read out of pro
tected storage locations, the storage protect key in
the PSW must be 00.

During Tl and T2, the first storage address is
calculated (B2 + D2) and the first fetch request made.
When accept is received, Ego and I go are gener
ated, and the first storage address, incremented by
1, is placed in SAR and H registers. Tl is blocked
(block TlM) to prevent the next instruction time
from using a general register in an address calcula
tion until all general registers have been loaded by
this instruction. IC fetches are also blocked (block
ICM) to keep the ICR value out of the incrementer
and to keep the I unit from making competing fetch
requests.

Figure Reference: Figure 6353 and Figure 6352
(the logic expressions).

IE Unit

The controlling sequencers used by the IE unit for
load multiple are IEl, IMl, and IM2. The IEl se
quencer is used for the first one or two execution
cycles, and IMl and IM2 are used alternately as in
store multiple.

When the BCUresponds to the I unit's fetch request
with an accept signal, I go is generated, which turns
on IEl along with IMl or IM2, depending on whether
the first word to be loaded is located in the the left
half or right half of the double storage word.

IEl/IMl

IEl is always the first sequencer turned on, along
with either IMl or IM2, depending on H bit 21. If H
bit 21 is 0 (first word located in left half of double
storage word), IMl is used; if H bit 21 is 1 (first
word located in right half of double storage word),
IM2 is used.

In IE1/IM2, the beginning general register address
in BRl is incremented + 1 if it is not equal to IR2,
the address of the last general register. If the BRl
and IR2 registers are equal, BRl is not incremented,
the block IC trigger is turned off, and the IE unit
operation ends by turning on IE L.

The functions mentioned are handled by IMl alone,
and not by IEl. However, IEl is on to prevent
another IMl function, that of making a fetch request
(by the latched output of IMl.) If no effort were
made to prevent this, and the BR1-ffi2 fields were
equal, an unnecessary fetch can occur (equal fields
in this cycle means that only one word needs to be
loaded and is contained in the storage word already
called for by the I unit.)

Another reason for IEl is to make IMl indepen
dent of the accept pulse for its completion. Normally,

IMl must wait for accept before it can increment BRl
or proceed to the next cycle.

IE1/IM2

This combination of sequencers defines the first exe
cute cycle if H bit 21 is 1, as explained earlier. If
H bit 21 is O, this cycle follows the IEl/IMl cycle.

In IE1/IM2, the I-unit operation can end if the
BRl and IR2 fields are equal. The block ICM trigger
is turned off and the next cycle is IEL. If the BRl
and ffi2 fields are unequal, BRl is incremented +l
and a fetch request is made by the latched output of
IM2.

Here again, the functions mentioned are handled
by IM2 only and not by IEl. However, IEl prevents
the incrementing of SAR and H registers, another of
IM2's functions. Incrementing SAR and H here would
by excessive because these registers were already
incremented by the I unit (T2) for a possible second
fetch request.

IMl

The IMl cycle follows the IE1/IM2 cycle or the IM2
cycle. The latched output of !Ml maintains the fetch
request made originally by the latched output of IM2.
The IMl sequencer stays on until an accept is re
ceived. Until this signal is sent by the BCU, !Ml
does nothing useful other than maintaining the fetch
request. The fetch request (IE fetch to J) must be
maintained by the IE unit as there is no intervening
trigger or latch between it and the BCU to remember
the request.

Once the accept signal arrives, the IEL sequencer
is turned on next if there is a match between the BRl
and IR2 fields. If there is no match, BRl is incre
mented + 1 and the IM2 sequencer is turned on.

IM2

IM2 always follows the IMl cycle if in !Ml there was
no match between BRl and ffi2. The SAR and H reg
isters are incremented +l by IM2. BRl is also in
cremented if it is not yet equal to IR2, and the next
cycle is IMl. If BRl is equal to ffi2, the block ICM
trigger is turned off and IEL is turned on.

Because the SAR and H registers are increment~~
unconditionally in IM2, they will be incremented one
time more than necessary if BRl and ffi2 are equal
in this cycle.

IEL

The IEL cycle follows the cycle in which equal fields
are detected in BRl and IR2 (BRl Eq ffi2 latch on).
Normally, IEL occurs in the IE unit before ELC in
the E unit. This is because the last accept signal

I Execute 1/66 39

occurs before the last J loaded signal. However, in
case an invalid storage address or an address that
is in a protected storage location was used for one of
the fetches, ELC is forced in the E unit and the block
PA trigger is turned on to prevent further put-aways.
Thus, in case one of these errors occurs, the instruc
tion is ended as soon as IEL occurs in the IE unit,
whose operation is unaffected by the errors.

E Unit

The E-unit operation is controlled by first FXP, EMl,
and EM2. First FXP is the first sequencer, turned
on by Ego, and is followed by the EM1-EM2 se
quencers which are turned on alternately.

First FXP

First FXP delivers the first word loaded into J
through the adder to K0-31. If the first word is in
the left half of the double storage word (H bit 21 is
0), J0-31 is gated to the adder; if the first word is in
the right half of the double storage word (H bit 21 is
1), J32-63 is gated to the adder. Ego turns on the
first FXP trigger and J loaded turns on the first FXP
latch.

If the first fetch request was made for an invalid
(non-existent) storage address, the address invalid
trigger is turned on at the same time as the J loaded
trigger. Similarly, if the first fetch request was
made for a protected storage location, the storage
address protect (SAP) trigger is turned on along with
the J loaded trigger. Either of these error triggers
coming on forces the block PA and ELC triggers to
prevent a put-away and end the E-unit operation. In
addition, depending on which of the error triggers is
turnecl on, the SAP interrupt or address interrupt
trigger is turned on to cause and identify an interrupt
when both the E and IE units become not busy.

EMl

This cycle follows EM2, or first FXP if H bit 21 is
1. In EMl, the word in K0-31 is set into the general
register specified by ERl, and the MODAR trigger
is turned on. If ERl equals ffi2, the IM2 latch is
turned on immediately, Tl is unblocked, and the
block PA and ELC triggers are turned on in the next
cycle. If ERl does not equal IR2, the EMl latch
waits for the J loaded trigger (accept trigger in sin
gle cycle) before setting the word from J0-31 to K0-
31 and incrementing ERl +1. The next cycle is EM2.

EM2

EM2 gates the word in J0-31 (put there in first FXP
or EMl) through the adder to K0-31. Also, the
word presently in K0-31 is set in the geQeral register

40 1/66 2075 Processing Unit -- Volume 3

specified hy ERl. The MO DAR trigger is turned
on, and if ER1 ia not equal to IR2, ER! is incre
mented + 1 and the next cycle is EMl. If ERl and
ffi2 are equal, the block TlM trigger is turned off,
and the block PA and ELC triggers are turned on.

ELC

Normally. ELC follows an EMl or EM2 cycle in
which the ERl and IR2 fields are found equal. The
block PA trigger is on at the beginning of this cycle
to prevent the normal ELC put-away; the last word
enters the last specified general register in the
preceding EMl or EM2.

If the invalid address trigger or SAP trigger is
turned on in first FXP or EMl, ELC is forced by
the error condition. An interrupt is taken when the
IE unit completes its end of the operation, which is
unaffected by either the SAP or invalid address error.

START I/O (SIO)

A write, read, read backward, control or sense
operation is initiated at the addressed I/O device
and subchannel. Bits 21-31 of Bl + Dl identify the
channel, subchannel, and 1/0 device. The start
1/0 instruction can be executed only in the supervi
sory state (PSW 15 is 0).

Condition Code:
0 I/O operation initiated and channel pro-

ceeding with its execution
1 CSW stored
2 Channel or subchannel busy
3 Not operational

Program Interruptions: Privileged operation.

Details

The· details regarding the CPU's involvement is the
same for all four I/O instructions. See the Details
section of Halt I/O.

TEST I/O (TIO)

The state of the addressed channel, subchannel, and
device is indicated by setting the condition code in
the PSW and, under certain conditions, by storing
the CSW. Pending interruption conditions may be
cleared. Test I/O can be executed only in the super
visory state (PSW 15 is 0).

Bits 21-31 of Bl + Dl identify the channel, sub
channel, and I/O device.

Condition Code:
O Available
1 CSW stored
2 Channel or subchannel busy
3 Not operational

Program Interruptions: Privileged operation.

Details

The details regarding the CPU's involvement is the
same for all four 1/0 instructions. See the Details
seCtion of Halt 1/0.

TEST CHANNEL (TCH)

The condition code is set to indicate the state of the
addressed channel. The channel is unaffected.
Bits 21-31 of Bl + Dl identify the channel. The
condition code is set to indicate the state of the chan
nel addressed by bits 21-23 of lH + Dl. Test chan
nel can be executed only in the supervisory state
(PSW 15 is 0).

Condition Code:
0 Channel available
1 Interruption pending
2 Channel operating in burst mode
3 Not operational

Program Interruptions: Privileged operation.

Details

The details regarding the CPU's involvement is the
same for all four I/O instructions. · See the Details
section of Halt I/O.

HALT I(O (HIO)

The operation being executed by the addressed sub
channel or channel is terminated. Bits 21-31 of
Bl + Dl identify the I/O device, and channel or sub
channel. Halt 1/0 can be executed only in the super
visory state (PSW 15 is 0).

Condition Code:
0 Channel and subchannel not working
1 CSW stored
2 Burst operation terminated
3 Not operational

Program Interruptions: Privileged operation.

Details

The start 1/0, test 1/0, test channel, and halt 1/0
instructions are executed by the IE unit. The bits
21-31 of Bl + Dl and a line specifying one of the
four instructions are sent to all channels beginning
at TN T2. Later in the execution time, when it is
assured that these lines are settled, a select line is
sent to one of the channels to enable it to accept
these earlier signals. CPU then waits for a response
from the selected channel; when it is received, CPU
sets the condition code, resets the channel interrupt
priority circuits, and ends the instruction.

If the instruction specified channel 7, no channel
selection is made (the seven channels are addressed

0-6). CPU recognizes the invalid address 7 and
generates its own release. The condition code is
set to 3, and the invalid channel specification trigger
is set to cause an interrupt at the end of the instruc
tion.

If the channel address is valid but the channel is
in test mode, or is not connected in the system, or
its meter is disabled, CPU again generates its own
release, sets the condition code to 3, and ends the
instruction.

Bits 16-23 are sent from the H register, with a
parity bit, over the unit address bus to all channels.
The single instruction line sent to all channels comes
from the BOP register. To protect the content of
the two registers until a release is received or gen
erated, Tl is blocked.

Figure Reference: Figure 6354.

SET STORAGE KEY (SSK)

• Function of SPF is to prevent storing into a
location inadvertently.

• SPF holds a key for each 256-word block of
storage.

• Set key instruction allows the programmer to
store a key in the SPF.

This RR-format, a privileged instruction, sets a
storage protection key into SPF storage ..

The SPF storage holds a four-bit key and a read
protect bit (plus a parity-bit) for each block of 256
words (storage words). The 256 storage-word
(2048-byte) blocks are pointed to by address bits
12-0. In other words, address bit 12 changes
once for every ·2048 consecutive byte addresses.
There is one SPF storage in each 2365 Processor
Storage unit. This SPF serves both the even and
the odd high-speed storage (HSS) within the 2365.
The number of SP locations within a 2365 and the
address bits used to address SP storage depend
on the system storage configuration:

Number of Address Bits
Model SP Model SP Locations Sent to SP Comments

H75 Ill 128 6-12 HSS 2-way
Interleaved

175 v 256 5-12 HSS 4-way
Inte-r leaved

J75 v 256 5-12 HSS 4-way
Interleaved

The function of the SPF is to prevent using a
storage location inadvertently. Whenever a storage
operation is called for, the SPF fetches the pre
stored SP word corresponding to the incoming
address. The fetched key is compared with the key

I E.xecute 1/66 41

furnished by the storage user on all store operations
and on fetches if the read-protect bit is a logical 1.
On CPU initiated storage operations, the key is
supplied from the PSW, bits 8-11; for channel
initiated operations, the key is supplied by the
channel, which originally got the key from from a
channel command word (CCW). If there is a bit-by
bit match of the two keys, or if the key supplied
by the storage user is all zeros, the operation is
allowed to proceed. If this condition is not met, the
SPF signals an error to the selected HSS and signals
a storage address protect (SAP) error to the BCU.
On store operations, the selected HSS is cancelled
causing the addressed location to be rewritten
without change (regenerated). On fetch operations,
data output from storage is blocked; the SBO contains
all zeros (with good parity).

Data Flow

• Bits 8-31 of general register R2, are routed
through the AA and set into SAR.

• General register Rl is placed on GBL, where
bits 24-31 are picked-off and passed through
the BCU key gate.

• BCU generates a parity bit and sends five bits
plus parity to the SPF.

The set storage key instruction is the means by which
a configuration of key bits for a block of storage is
set into the SPF. On this instruction, SPF storage
is addressed by the contents of general register R2
and the key and read-protect bit set into SPF are
taken from bits 24-28 of general register Rl.

General register R2, bits 8 -31, is routed through
the AA and set into SAR 0 -23 (Figure 6355). As on
a CPU fetch o,r store, the BCU sends bits 6-19 of
SAR (H75) or 5-18 (175, J75} to storage. SAR bits
6-12 (H75) or 5-12 (175, J75) are routed to the SPF
to address the SP location to be stored.

General register Rl is routed on GBL to the AA
input OR, where bits 24-31 are picked-off and sent
through the key gate in the BCU. The BCU generates
a parity-bit for the key and sends the five bits (plus
parity) through the key OR to the SPF.

Control

• GR R2 is set into SAR and H during I time.

• GROUT is set to gate out GR Rl during E time.

• IEl makes fetch request.

• Accept turns off IEl and turns on IE2.

42 1/66 2075 Processing Unit -- Volume 1

• BCU treats fetch as if it were a store.

• A HSS is selected, but cancelled.

Sequencers used for the set storage key instruction
are shown in Figure 6355. During I time, GR R2
is gated to the AA and the output of the AA is set into
SAR and H. General register out (GROUT) is
turned on to gate GR RI through the AA input OR
to the BCU key gate.

The execution is accomplished by I execute and
the IEl sequencer sends a fetch request to the BCU.
A set key line is also sent to the BCU. IE~ repeats
until the BCU responds with accept. After accept,
the IEZ and IEL sequencers finish the operation.

The set key line alters the operation of the BCU.
The fetch is treated as a store operation insofar as
returning data and handling errors. A return address
register is not set even though return to J is active.
A set key line is sent to storage. This line causes
the selected HSS to cancel its operation and tells
the SPF to store the incoming key. The BCU
generates a parity bit for the incoming key and gates
the five bits plus parity to the SPF. The BCU actually
receives a full byte plus a parity bit from GR Rl.
Parity sent to the SP unit is generated by examining
bits 29-31 (the unused bits in the byte), then chang
ing the byte parity bit if an odd number of 1 bits
are being removed from the byte. This parity
generation scheme prevents correcting bad parity.
If the parity of the byte received from GR Rl is bad,
BCU sends bad parity to the SPF, where a parity
error is generated.

INSERT STORAGE KEY (ISK)

• Instruction fetches an SPF key.

• Fetched key is set into GR Rl, bits 24-28.

This RR format, a privileged instruction, fetches
the addressed SPF key and sets it into GR Rl bits
24-28. The insert storage key instruction is the
means by which a programmer can examine a
previously-stored protection key for a particular
block of storage.

Data Flow

• GR R2, the SPF address, is routed through
the AA and set into SAR.

• SAR is routed through the address OR to storage.

• SPF delivers the fetched key to the BCU key
buffer register (KBR}.

• GR Rl is routed through RBL to M, to AM, and
into K.

• The fetched key is routed from the KBR through
the AOE mask and into K24-31.

• K is put-away in GR Rl.

• Bits 24-28 of GR Rl contain the fetched SP word.
Bits 29-31 of GR Rl contain zeros.

General register R2, bits, 8-31, is routed through the
AA and set into SAR 0 -23 (Figure 6356). As on any
CPU fetch or store, the BCU sends bits 6-19 (1175)
or 5-18 (175 and H75) of SAR to storage. SAR bits
6-12 (H75) or 5-12 (175 and J75) are routed to SPF
to address the key to be fetched.

The SPF delivers the addressed key to the BCU
key buffer register. The key (5 bits plus a parity
bit) is routed from the key buffer to the AOE mask
where three zeros are added to make a full byte.

Meanwhile, general register Rl is routed through
RBL to M and from M through the main adder to K.
The AOE mask byte, which contains the fetched key,
is set into K24-31. This byte replaces the correspond
ing byte from GR Rl. Bits 0-31 of K are then set
back into GR Rl to complete the instruction.

At the end of the instruction, bits 24-28 of GR Rl
contain fetched key. Bits 29-31 of GR Rl contain
zeros, and the remainder of GR Rl is unchanged.

Control

• Insert key executed by E-and IE-unit sequencers.

• IEl makes the fetch request.

• Accept turns off IEl and turns on IE2.

• First FXP routes GR Rl to AM.

• Hwd sets AOB to K and KBR to AOE mask.

• ELC does Rl put-away.

Sequencers used for the insert storage key instruc
tion are shown in Figure 6356. During I time, GR R2
is gated to the AA and the output of AA is set into
SAR and H. General register Rl is gated out to the
RBL and both I- and E- execution units are started.

The IEl sequencer brings up I fetch request and
insert key lines to the BCU. IEl cycles repeat until
BCU resP.onds with accept. On accept, the I- execute
unit goes into the IEL cycle, then takes no further
part in the execution of this instruction.

The first fixed-point (FXP) sequencer gates RBL
to Mand M to AMTC. First FXP cycles repeat until

advance returns from SPF. The SPF advance occurs
about 250 nanoseconds after the BCU generates
select. Once advance arrives, the first FXP sequencer
is turned off and the halfword logical sequencer is
turned on. During the halfword logical cycle, the
main adder output (AOB) is set into K and the BCU
key buffer register is routed to the AOE mask.

Following the halfword logical cycle, the ELC
sequencer turns on to set the AOE latch into K24-31
and to put 0-31 of K back into GR Rl.

The BCU handles the insert storage key instruction
almost identically to the way it handles the set storage
key instruction. The insert storage key line causes
the BCU to treat the fetch as a store operation; no
return address positions are set even though return
to J is up and any errors detected during the operation
are treated as if they occurred during a CPU store.

The insert key line to the selected HSS causes a
cancel and insert to SPF causes fetching of the
addressed key. The SPF advance gates the fetched
key into the key buffer and also signals the E unit
that it can proceed from first FXP cycles to the
halfword logical cycle.

DIAGNOSE

The purpose of the diagnose instruction is to set the
MCW register, the positions of which subsequently
control various CPU and channel functions. These
functions are mainly the forcing of errors so that
the error checking stations in the CPU and the
channels can be tested.

The diagnose instruction fetches a double word
from storage and sets the left half of it into the
MCW register (Figure 6357).

The diagnose instruction is executed by the IE
and D sequencers (Figure 6357). During I time,
the storage address is calculated and set into SAR.
IEl makes the fetch request and maintains the
request until the BCU responds with accept. The
IEl cycles also send a diagnose signal to the BCU
that sets the diagnose position of one of the return
address registers.

After BCU generates accept, no sequencers are
on until the advance pulse from the selected storage
samples the return address register and generates
diagnose select. The diagnose select signal
(delayed approximately 150 nanoseconds) gates
SBO 0-31 into the MCW register, and at the same
time turns on sequencer Dl.

If the cycle-count feature of the MCW control is
not enabled, sequencers Dl, D2, and D3 serve no
useful purpose; D3 generates a proceed signal that
turns on IE3, allowing the instruction execution to
continue.

If the cycle-count is enabled, the CPU is allowed
to run, following the proceed signal, only the number

I Execute 1/66 43

of cycles specified by the count in the MCW count
field. Sequencers Dl, D2, and D3 monitor the MCW
counter so that when the count is reduced to zero,
the controlled clock will be stopped and a log-out
taken. ·

44 1/66 2075 Processing Unit -- Volume 3

INTRODUCTION

• A branch is a· departure from sequential instruc
tion processing.

• The preparation and execution units perform the
same functions for branch instructions as they
do for all other instructions.

• The branch unit controls the fetching of instruc
tions from the branch address and on a success
ful branch starts processing from the branch
address.

The branch instructions have much in common with
all other instructions. They require that storage
addresses be computed, that fetch requests be made,
that registers be delivered to the E unit, and that
arithmetic be done. These are all done by the
preparation unit or the E unit as they are for other
instructions. The branch instructions differ in one
important way; based on a decision made during
their execution, the branch instructions may or may
not require a departure from normal sequential
instruction processing.

On an unsuccessful branch, as for all non-branch
ing instructions, the instruction at the next higher
storage address is the next to be processed and has
normally been prefetched to the instruction buffers
by the IC controls. A successful branch, however, ·
requires that the next instruction processed be from
a different storage address. The purpose of the
branch unit is to make this alternate instruction
available as early as possible without slowing nor
mal processing if the br11nch is unsuccessful.

The branch unit controls the fetch requests for
instructions from the branch address, handles the
returning fetches so that they are not delivered to
the instruction buffers unless the branch is success
ful, and on successful branches, changes the GSR
and the !CR so that normal sequential instruction
processing starts from the branch address.

UNITS OTHER THAN BRANCH UNIT

• The I unit computes the branch address and
starts the executing units.

• The E unit performs arithmetic tests and moves
data.

• The IE unit performs a no operation on BCR if
R2 = O.

BRANCH INSTRUCTIONS

Figure 3 lists all branch instructions and shows the
I and the E unit functions performed for each. I unit
computes the branch address and starts the execut
ing units. E unit does the arithmetic to determine
success and moves data.

In Figure 3 note that for RR branch instructions
with R2 equal to zero, the branch unit is not started;
these instructions contain no branch address and can
not result in a branch. BALR and BCTR with R2
zero are used only to accomplish their specified data
movements. On BCR with R2 equal zero, the IE unit
performs a two cycle no operation, no branch and no
data movement result.

Note that on six of the nine branch instructions,
the E unit and the branch unit both take part in the
execution. The E unit does arithmetic and moves
data and the branch unit controls the fetching of
instructions from the branch address and starts the
processing of either the branch instruction or the
next sequential instruction, depending on the success
of the branch.

Only the execute and the branch-on-condition
instructions cause the branch unit to perform the
execution alone. On BC and BCR, the success of
the branch is determined by testing the CC portion
of the PSW for conditions set up on a previous in
struction. On execute, the branch is always success
ful, however, only one instruction is_ executed at the
branch address.

Figure 4 shows the units that operate on the dif
ferent branch instructions and the sequencers that
control their operation.

Note that branch operation (Br Op), the first
branch unit sequencer, is set at TN T2 one cycle
earlier than the first cycle sequencers for other
execution units.

BRANCH UNIT

• Uses circuits and devices in the same way as
other units of the 2075.

1. Most of the operation is automatic for all
branches.

2. Sequencers are used to control events that
must be ordered in time.

3. Memorized triggers are used to remember
facts that are necessary for the control of
asynchronous events.

4. Trigger-latch pairs are used.
5. The flush path property of the PH is used.

• Uses three sequencers.

Branch Instructions 1/66 45

tnstruction for mot Brarn:h Address
Executing Units
BR E IE

BAlR R~ R2 R2f0 x
BAL RX X2+B2+D2)(x

EX RX X2+82+D2 x

BCR RR R2 R210 tR2=o
No
Op~

BC RX X2+82+D2 x

BCTRC RR R2 R2f0 x

BCT RX X2+82+Di! x x
BXH RS 82+02 x)(

BXLE RS B2+D2 x x

FIGURE 3. BRANCH INSTRUCTION DIFFERENCES

T2

Yes

I Unit
(normal preporation)

BXH
BXLE

BC
BCR
EX

No E
Operation

BCT
BCTR
BAL
BALR

ELC

E Unit (Arithmetic and Data Moves)

Branch Condition

Un~ondR2f0-

Uncond

Unconcl (Tlnst}

CR~M ca-11 !OP}
M =Hit
No Op lf M = 0000

CR~M{S-ll lOP)
M=Hll
No Op if M= 0000

RI= I ifR2fO

RI= I

R l+R3>R3 or (R3+H which ever is odd

Rl+R3l>R3or (R3+1)which ever is odd

IEI

IEL

'------v------'
IE Unit (No Op)

FIGURE 4. BRANCH INSTRUCTIONS, MAJOR CONTROL FLOW, UNITS AND SEQUENCERS

46 1/66 2075 Processing Umt--Volume 3

Dolo Change

Rfl l'SW to RI

RH PSW to RI

SUbject instruction madlliecl BOP RT (24-31t
Olt'ed to IOP (8-1 S) on Tl of subject

none

none

(Content olRl)-1 to RI

(Content of RI)-! to RI

(Rl+R3) to RT

J!!l+R~to RI

Br Op

Seq

Branch Unit

(
Fetches, controls returns,)
ond starts processing of
next instruction

• Makes the branch and branch + 1 fetches con
ditionally.

• Buffers the branch fetch in the J register if it
returns before success is determined.

• Examines and remembers results of tests so that
returning fetches may be delivered to the instruc
tion buffer or cancelled as required.

• On successful branches (except execute), sets
the branch address to GSR and !CR.

Since RR branch instructions with R2 equal to zero
never branch, the branch unit is not started. For
all other branch instructions, the branch unit is
started and must run its course. The branch unit
is started by turning on branch operation at TN T2.
Branch operation is always followed by tests com
plete and branch LC (or execute sequence for the
execute instruction). At the same time that branch
operation is turned on, OPF is turned on and the
branch fetch is made. This fetch must be accepted
before the I to E transfer ~an be made. At I to E
transfer, branch + lE is set and the branch + 1 fetch
is made with two exceptions. On branch on condition
instructions Br + lE is not turned on and the fetch is
not made unless the branch is successful. On Branch
on index instructions Br + lE is turned on at I to E
transfer but the fetch is delayed one cycle. Figure 5
shows in heavy outline those functions that are auto
matic to any operation of the branch unit.

The block third outstanding fetch logic is part of
the branch unit and always operates to delay any
fetch to A or B if two previous fetches to either A or
B have been accepted and not returned. This delay
is necessary because the logic that remembers if
such fetches are to be used or ignored upon return
keeps track of only two such fetches.

Two blocks in light outline are closely related to
the heavy outline or automatic portion of the figure.
Branch Mand branch +lM are turned on by the
accepts for their respective fetches. Since the
branch fetch must always be accepted before I to E
transfer, branch M comes on whenever the branch
unit operates. The branch +1 fetch, however, is
dropped if it has not been accepted by the time that
a branch is determined unsuccessful; therefore,
branch +lM does not always follow branch +lE.

The remainder of the light outlined portion of
Figure 5 is dependent on the success of the branch
and conditions relating to returning fetches.

Branch success is set at tests complete only if
the conditions for branching are met. With tests
complete on, the condition of branch success deter
mines if the branch address is set to GSR and ICR
or not.

Sel A and Sel B are developed to set .the A and B
registers on successful branches. !CAM or ICBM
are turned on to remember that a branch + 1 fetch for
a successful branch has been accepted and not returned.

The branch cancel triggers, Br CAl, Br CA2,
Br CBl, and Br CB2, are set to remember
that branch or branch + 1 fetches for unsuccessful
branches have been accepted and not yet returned.
Their use enables an unsuccessful branch to be
terminated and the next instruction started before
the unneeded fetches are returned.

The upper right hand portion of Figure 5 shows
the data paths used by returning branch fetches.
Since the branch fetch is made at TN T2 and I to E
transfer may be held up by a busy execution unit,
the branch fetch may return before the success of
the branch is determined. Under these conditions,
the returning fetch is buffered in the J register and not
set to A or B until tests complete and then only if the
branch is successful. The branch + 1 fetch request
is made at I to E transfer or later and can never
return before success is determined.

THEORY OF OPERATION

The processing of branch instructions is covered in
two sets of figures. The first, a set of simplified
logic diagrams, shows how the important branch unit
functions are accomplished. The second, a set of
flow charts, shows the cycle by cycle performance
of all branch instructions for both preparation and
execution.

BRANCH UNIT OPERATION

Branch Unit (5525)
Sequencers (5526)
Branch Fetch (5527)
Branch +1 Fetch (5528)
Branch +1 Fetch Address (5529)
Branch Successful (5530)
Set A/B Reg (5531)
TON ICAM (5532)
Branch Address to GSR and ICR (5533)
Cancel Triggers and Block

Third Outstanding Fetch (5534)

PREPARATION AND EXECUTION OF BRANCH
INSTRUCTION

EX, BC, BCR (R2 f. 0); Preparation and
Execution(6375)

BCR, (R2 = O); Preparation and Execution (6376)
BAL, BALR; Preparation and Execution (6377)
BCT, BCTR; Preparation and Execution (6378)
BXH, BXLE; Preparation and Execution (6379)

Branch Instructions 1/66 47

...
"'

"' 0 _,
"'

Br Op Tsts Cpltd --Gl o----o----- -- ---------r u
KB521 KB501 I Figure 5526

Figuro 5526 Figure 5526 J

Set GSR I Xeq Seq

and ICR LO l.----Fl
LJBrSucc -----!---~1:g:1---: LJ

I I
I I

KAl71 : Sel A I
Figure 5530 1 I Set ICR

I llcgic I I HICH

[JOPF --- _ [JB;LM ',,',,,:: i RAl87 ~---fogic I
Figure 5531 Figure 5533

Sel B

/:; I Lcgic I KBl71
Figure 5527

// RA 187
Br+ 1 E Br+ 1 M / Figure 5531

[]---[]'
KB61 I

Figure 5528

Blk Third
Outstanding

~
KB721

Figure 5534

FIGURE 5. BRANCH INSTRUCTION DIFFERENCES

ICAM

[]
K8051

Figure 5532

ICBM

CJ
KB071

Figure 5532

Br CAI Br CA2

[] CJ
KB691 l<;B711

Figure 5534

Br CBI Br CB2

CJ CJ
KB691 KB711

Figure 5534

Tsts C ltd

J Loaded

CD
0

Generally, Sel A/B
sets A/B from SBO

If T sts cpl td and J loaded
are on when Sel A/B is
developed, instructions
from the branch addr~ss
already buffered in J
reg ore set to A/B.

SBO

J Adv

J Reg

A Reg

Automatic Functions (hea11y oytl ine)

Branch Operation (Br Op) -

Tests Complete (Tsts Cpltd) -

Branch Lost Cycle (BrLC) -

Operand Fetch (OPF) -

Bronc h + 1 Execute (Br + 1 E)

Blk Third Outstanding Fetch -

Func;:tions Deeendent on Succe$s

First Sequencer, controls making of Br ond Br+ l
fet~hes <\l'Md marks operation os brc;mch.

SecQnd sequencer, times the !J$e of Br SUCC with
the completion of the test.

Last sequencer, ends operation (!nd times sfj:tting
of branch address to ICR Qn G :s,uc~e:uful brarn;:h.
Exception is ~xecute instruction when e~ecute
seqvem::e ends the opere11tion 1

M(lkes fetc;:h for instruction Qt brcmch address.

Makes fetch for ne~t higher st~rage oddre$S,

Logic keeps third fetc;:h to A or 8 from being rn<:1de
if their c;ire two accepted mnd n~t returrui!d fetches
to either A or B

B Reg

Bronc; h Su cc -

Set GSR and ICR -

Sel A/B -

ICBM·ICAM

Set if conditions for bn;:mching ar~ met, i;:ontroh returning fetches.

Lo$i~ sets branch qddre1s to GSR and ICR on successful branch,

Set branch instructions to A c;ind 8 on successful br<;mch.

Br CA 1/2; Br CB 1/2

Used to remember that a Br + 1 fetch for wtc;enful branch is oµtstonding,

Used to remember outst~:mding fetches for ul'lsuccessful brpnches.

INTRODUCTION

• Allows a wide range of magnitude.

• Uses long and short operands.

• Computer keeps track of the decimal point.

The floating-point arithmeticfeature enables com
putations to be performed using operands with a
wide range of magnitude. The operands used in
floating-point operations are in scientific notation.
Both the number or fraction (mantissa) and its ex
ponent (characteristic) are processed by the com
puter. The decimal point of a factor is initially lo
cated and the computer keeps track of it. Thus,
the operator or programmer is not concerned with
adding zeros to the answer obtained by the computer.

The floating-point arithmetic feature provides
for addition, subtraction, comparing, division,
halving, loading, sign control, multiplying and stor
ing of short or long operands. Short operands gen
erally require less storage space than long operands.
On the other hand, long operands provide greater
accuracy in a calculation.

NUMBER SYSTEMS

For a thorough understanding of the floating-point
feature, you should be familiar with the binary and
hexidecimal number systems. Figure 6 shows the
symbols used in these systems and the decimal
equivalents; Figure 7 shows the add-subtract chart
and the· multiplication-division chart. Arithmetic
in these systems and conversion from one to the
other are explained in an IBM Student Text, Number
Systems, Form C20-1618.

Decimal Hexadecimal Binary Decimal Hexadecimal Binary

0 0 0000 12 c 1100
1 1 0001 13 D 1101
2 2 0010 14 E 1110
3 3 0011 15 F 1111
4 4 0100 16 10 10000
5 5 0101 17 11 10001
6 6 0110 18 12 10010
7 7 0111 19 13 10011
8 8 1000 20 14 10100
9 9 1001 21 15 10101

10 A 1010 22 16 10110
11 B 1011 23 17 10111

FIGURE 6. DECIMAL, HEXADECIMAL, AND BINARY NOTATION

Instruction Formats

• RR and RX formats (Figures 8 and 9).

• Registers addressed must be an even address.

FLOATING-POINT

All floating-point instructions are either register to
register (RR format) or storage to register (RX
format).

The RR format specifies the operation code (bits
0-7), the first operand (bits 8-11) specifies a float
ing-point register, and the second operand (bits
12-15) specifies the second floating-point register
that is taking part in the operation. The same reg
ister may be specified for the first and second
operand.

The RX format specifies the operation code (bits
0-7) and two operands. The first operand (bits 8-11)
specifies a floating-point register, and the second
operand (bits 12-15, 16-19, and 20-31) is made up of:

1. Index (X2): The index is a 24-bit number
contained in a general register. The general regis -
ter is designated by bits 12-15 of the instruction.

2. Base Address (B2): The base address is a
24-bit number contained in a general register. The
general register is designated by bits 16-19 of the
instruction.

3. Di:splacement (D2): The displacement is a
12-bit number contained in bits 20-31 of the instruc
tion.

The second operand is from the storage location
specified by the effective address. The effective
address is obtained by adding the contents of the in
dex register (X2). (specified by bits 12-15 -of the in
struction word) to the contents of the base register
(B2) (specified by bits 16-19 of the instruction word)
and the contents of instruction word bits 20-31. The
general registers are 24-bit positive binary integers,
having no sign po.sition. The displacement (D2) is
treated as a 12-bit positive binary integer. The
three binary integers are added together as 24-bit
binary numbers, overflow is ignored.

The X2 and B2 fields may contain zeros. A zero
indicates the absence of the corresponding address
component; therefore, a base or index tag of zero
indicates that a zero quantity is used to form the
effective address. In an instruction specifying no
base or index register, the effective address is
specified by the D2 field (bits 20-31) of the instruc
tion word.

The storage address of the second operand should
designate word boundaries for short operands and
double word boundaries for long operands; otherwise,
a specification exception is recognized and a pro
gram interruption is caused. ·

The registers addressed by Rl and R2 fields
should be 0, 2, 4, or 6; otherwise, a specification
exception is recognized and a program interruption
is caused.

Floating Point 1/66 49

Addi tion-SubtFOcHon

1 2 3 4 5 6 7 8 9 A B c 0 E F

I 02 03 04 05 Ob 07 08 09 OA OB oc 00 OE OF 10

2 03 04 05 06 07 08 09 OA 08 oc 00 OE OF 10 If

3 04 05 06 07 OB 09 OA 08 oc 0() OE OF 10 tl 12

4 05 06 07 08 09 OA OB oc OD OE OF JO Jl 12 13

5 06 07 08 09 OA OB oc OD OE OF 10 II 12 13 14

6 07 OB 09 OA 08 oc OD OE OF lO 11 12 13 14 15

7 08 09 OA OB oc OD OE OF 10 Tl 12 13 14 15 16

B 09 OA OB oc OD OE OF 10 11 12 13 14 15 16 17

9 OA OB oc OD OE OF 10 11 l2 13 14 15 16 17 18

A OB oc OD OE OF JO II 12 13 14 15 16 17 IB 19

B oc OD OE OF 10 11 12 13 14 15 16 17 18 19 TA

c OD OE OF 10 II 12 13 14 15 16 17 18 19 IA IB

D OE OF 10 11 12 13 14 15 16 17 IB 19 IA 18 lC

E OF 10 11 12 13 14 15 16 17 18 19 lA 18 TC ID

F 10 II 12 13 14 15 Iii 17 18 19 IA lB IC ID IE

Multiplication-Division

I 2 3 4 5 6 7 B 9 A s c D E F

2 04 06 08 OA oc OE 10 12 14 16 18 IA IC IE

3 06 09 oc OF 12 15 18 18 IE 21 24 27 2A 2D

4 OB oc 10 14 IB IC 20 24 2B 2C 30 34 3B 3C

5 OA OF 14 19 IE 23 2B 2D 32 37 JC 41 46 48

6 oc 12 IB IE 24 2A 30 36 3C 42 48 4E 54 5A

7 OE 15 IC 23 2A 31 38 3F 46 4D 54 58 62 69

8 10 18 20 2S 30 3S 40 48 50 5S 60 6S 70 7S

9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87

A 14 IE 28 32 3C 46 50 SA 64 6E 7S S2 SC 96

B 16 21 2C 37 42 4D 5S 63 6E 79 84 SF 9A A5

c IS 24 30 3C 48 54 60 6C 7S 84 90 9C AS 84

D IA 27 34 41 4E 58 6S 75 82 SF 9C A9 86 C3

E IC 2A 3S 46 54 62 70 7E SC 9A AS 86 C6 D2

F IE 2D 3C 48 5A 69 7S S7 96 A5 B4 C3 D2 Fl

FIGURE 7. HEXADECIMAL ADDITION-SUBTRACTION AND MULTIPLICATION-DIVISION CHARTS

50 1/66 2075 Processing Unit--Volume 3

lop Codel Rl I R2]
0 7 8 l l 12 ''

FIGURE B. RR FORMAT

lop Codel Rl I X2 I B2 I D2
0 7 8 11 12 15 16 19 20 Jl

FIGURE 9. RX FORMAT

Data Formats

• Storage unit format.

• Working register format.

The floating-point data occupy a fixed-length double
word format (Figure 10) or a single word format
(Figure 11) in the main storage unit, and the double
word format (Figure 12) or a single word format
(Figure 13) in the floating-point registers. The
floating-point registers are numbered 0, 2, 4, and
6.

The first bit in either the short or long main
storage format is the sign bit (S). The next seven
bit positions are the characteristic (exponent),
which is expressed in excess 64 with a range from

Isl Characteristic I Fraction
0 1 7.

FIGURE 10. DOUBLE WORD FORMAT IN MAIN STORAGE

Is/ Characteristic I Fraction I
0 I 7 I 31

FIGURE 11. SINGLE WORD FORMAT IN MAIN STORAGE

"

Fraction /sl Characteristic I
55.5657 63

FIGURE 12. DOUBLE WORD FORMAT IN MAIN STORAGE

~ -------- ----
~-------,, ~ - - - - - - - - - - - -

Fraction S Characteristic
555657 63

FIGURE 13. SINGLE WORD IN FLP REGISTER

Form 223-2874-1

FES 526-7035

-64 through +63. In the floating-point registers, the
fraction is in bit positions 0-55 (long format) or
0-23 (short format); in both formats, the sign is bit
56 and the characteristic is in bit positions 57 -63.
In either format, a hexadecimal 00 represents the
smallest value (-64), a hexadecimal 40 represents
an exponent of 0, and a hexadecimal 7F represents
the largest value (+63). See Figure 14. The re
maining digits in either the short format (bits 8-31),
or the long format (bits 8-63) of the main storage
format are the number or fraction (mantissa) of the
floating-point data word. Therefore, the fraction
field is considered as either 6 or 14 hexadecimal
digits in length, and the hexadecimal point is lo
cated to the left of the high-order digit of the
fraction.

Normalization

• A normalized number has the greatest precision.

• A normalized number has a nonzero high-order
digit.

• Operations are performed with or without norm
alization.

• A zero characteristic, zero fraction, and plus
sign is a true zero.

A quantity has the greatest precision when a floating
point number is normalized. A normalized floating
point number has a nonzero high-order hexadecimal
fraction digit. If one or more high-order fraction
digits (bits 8-11, 12-15, 16-19, etc.) are zero, the
number is said to be unnormalized. The process of
normalization consists of shifting the fraction to the
left until the high-order hexadecimal digit is nonzero
and reducing the characteristic by the number of
hexadecimal digits shifted. A zero fraction cannot
be normalized, and its associated characteristic
remains unchanged when normalization is called for.
Since normalization applies to hexadecimal digits,
the three high-order bits of a normalized number
may be zeros .

Normalization usually takes place when the inter
mediate arithmetic result is changed to the final
result; this function is called postnormalization.
The operands are normalized prior to the arithmetic
process in multiplication and division; this function
is called prenormalization.

Most operations are performed in one or two
ways; with or without normalization. However,
addition and subtraction are specified either way.
If an operation is performed without normalization,
high-order zeros in the result fractions are not

Floating Point 1I68 51

Form 223-2874-1

$26-7035

Hex a-
decimal Decimal Sino1y

00 -64 0000000
01 -63 0000001
02 -62 0000010

~L __ -61 0000011

04 -60 0000100
05 -59 0000101
06 -58 0000110
07 -57 0000111 ----
08 -56 0001000
09 -55 0001001
OA -54 0001010

f---OB_ -53 0001011
--- - -

oc -52 0001100
OD -51 0001101
OE -50 0001110
OF -49 0001111

1------- --------- -- - -

10 -48 0010000
11 -47 0010001
12 -46 0010010
13 -45 0010011

t--- ------ -- -------
14 -44 0010100
15 -43 0010101
16 -42 0010110
17 -41 0010111

18 -40 0011000
19 -39 0011001
IA -38 0011010
IB -37 0011011

------- ----
IC -36 0011100
ID -35 0011101
IE -34 0011110
IF -33 0011111

- ---- --
20 -32 0100000
21 -31 0100001
22 -30 0100010
23 -29 0100011

-----1 - ---
24 -28 0100100
25 -27 0100101
26 -26 0100110
27 -25 0100111

----j--------
28 -24 0101000
29 -23 0101001
2A -22 0101010

Hell'.a-

decimal Decimal

2B -21
2C -20
2D -19
2E -18

2F -17
30 -16
31 -15
32 -14

33 -13
34 -12
35 -11
36 -10

37 -09
38 -08
39 -07
3A -06

-

3B -05
3C -04
3D -03
3E -02
-
3F -01
40 00
41 101
42 t02

---------- -- -
43 t03
44 t04
45 105
46 t06

1------- -------
47 107
48 108
49 109
4A tlO

1---- -
4B +I I
4(tl2
4D +13
4E +14

1------
4F 115
50 116
51 tl7
52 t 18

t--- __ ,_ -- -- - -
53 +19
54 +20
55 121

_ FIGURE 14. FLOATING-POINT EXPONENT VALUES

Binary

0101011
0101100
0101101
0101110

0101111
0110000
0110001
0110010

0110011
0110100
0110101
0110110

0110111
0111000
0111001
0111010

0111011
0111100
0111101
0111110

- --
0111111
1000000
1000001
1000010

-----~-

1000011
1000100
1000101
1000110

1000111
1001000
1001001
1001010

--
1001011
1001100
1001101
1001110

- --
1001111
1010000
1010001
1010010
-- -----
1010011
1010100
1010101

eliminated. The result may or may not be normal
ized, depending on the original operands.

In normalized and unnormalized operations, the
initial operands need not be in normalized form.
The intermediate fraction results are shifted right
when an overflow occurs; the intermediate fraction
result is truncated to the final result length after the
shifting, if any.

A number with zero characteristic, zero fraction,
and plus sign is called a true zero. As the result of
an arithmetic operation, a true zero may arise be
cause of the particular magnitude of the operands.
A result is forced to be true zero when an expon-

1 ent underflow occurs and the corresponding mask
bit is off, or when a result fraction is zero and no
program interruption due to significance exception
is taken. When the program interruption is taken,
the true zero is not forced, and the characteristic
and sign of the result remain unchanged. When a
divisor has a zero fraction, division is omitted, a
floating-point divide exception exists, and a program_

52 1/68 2075 Processing Unit -- Volume 3

Hex a-
decimal Decimal Binary

56 t22 1010110
57 123 1010111
58 t24 1011000
59 +25 1011001 --
5A t26 1011010
5B +27 1011011
5(128 1011100
5D t 29 1011101

5E t30 1011110
5F t31 1011111
60 t32 1100000
61 133 1100001

62 t34 1100010
63 +35 1100011
64 t36 1100100
65 137 1100101

-- -- -- ---
66 t38 1100110
61 139 1100111
68 t40 1101000
69 t41 1101001

- - -- --- -- ------
6A +42 1101010
6B 143 1101011
6(t44 1101100
6D +45 1!01101

1------- --
6E 146 1101110
6F t47 1101111
70 t48 1110000
71 +49 1110001

!------ --- -----
72 t50 1110010
73 t51 1110011
74 t52 1110100
75

I----+-
t53 1110101

76 +54 1110110
77 t55 1110111
78 t56 1111000
79 +57 1111001

-- ----- --- -- ----
7A +58 1111010
7B t59 1111011
7(+60 1111100
7D +61 1111101 --- - -- --- -- ---------1
7E +62 1111110
7F +63 1111111

interruption occurs. otherwise, zero fractions and
zero characteristics participate as normal numbers
in all arithmetic operations.

The sign of a sum, difference, product, or quo
tient with zero fraction is positive. The sign of a
zero fraction resulting from other operations is
established by the rules of algebra from the operand
signs.

Program Interrupts

• Exceptional instructions, data, or results
cause program interrupts.

When an interrupt occurs, the current program
status word (PSW) is stored. The interrupt code in
the old program status word identifies the cause of
the interrupt. The following exceptions cause a
program interrupt in floating-point arithmetic:

Protection: The storage key of a result location
does not match the protection key in the program

status word of a store instruction. The operation is
suppressed; the condition code, data in the regis
ters, and data in storage remain unchanged.

Addressing: An address designates a location out
side the available storage for the installed system.
The operation is terminated. The result data and
the condition code are predictable, and no registers

Specification: A short operand is not located on a
32-bit boundary, a long operand is not located on a
64-bit boundary, a floating-point register address
other than 0, 2, 4, or 6 is specified. The instruc
tion is suppressed: the condition code, the data in
the register, and the data in storage remain un
changed. The address restrictions do not apply to
the components from which an address is generated
(the content of the D2 field and the contents of the
registers specified by X2 and B2).

Exponent Overflow: When exponent overflow occurs,
the operation is completed and a program interrupt
takes place. The fraction is normalized, and the
sign and fraction of the result are correct. The
result characteristic is 1281 o smaller than the cor
rect characteristic.

Floating-point add and subtract instructions set
the condition code (PSW bits 34 and 35). If the re
sult is zero, a 00 condition code is set. If the re
sult is less than zero, a 01 condition code is set,
and if the result is greater than zero, a 10 condi
tion code is set.

Exponent Underflow: When exponent underflow oc
curs for a floating-point add, subtract, compare,
multiply, or divide instruction, a program inter
rupt occurs if the exponent underflow mask bit is
a one. The operation is completed, and the cor
rect sign and normalized fraction are put away. The
result exponent is 1281 o greater than the correct
exponent. When an exponent underflow occurs and
the exponent mask bit is zero, the operation is
completed by replacing the result with a true zero.

The condition code remains unchanged for halve,
multiply, and divide instructions. For add and sub
tract instructions, the condition code is set to re
flect the value of the result. If the result fraction
is zero, a 00 condition code is set. If the result
fraction is less than zero, a 01 condition code is
set, and if the result is greater than zero, a 10
condition code is set.

Significance: The result fraction of an addition or
subtraction is zero. A program interrupt occurs if

I the significance mask bit is a one. The mask bit
also affects the result of the operation. When the
significance mask bit is a one, the operation is

Form 223-2874-1

FES $26-7035

completed without further change to the character
istic or the result. In either case, the condition
code is set to 0.

Floating-Point Divide: Division by a number with
zero fraction is attempted. The operation is sup
pressed; the condition code, data in the registers,
and data in storage remain unchanged.

Condition Codes

• Sign-control, add, subtract, and compare in
struction results set condition codes.

• Multiplication, division, load, and store in
structions do not change condition codes.

The result of floating-point sign-control, add, sub
tract, and compare operations is used to set the

I condition code. Multiply, halve, divide, load, and
store instructions leave the code unchanged. The
condition code is used for decision-making by
branch-on-condition instructions.

The condition code relfects two types of results
for floating-point arithmetic. For most operations,
the states 0, 1, or 2 indicate that the content of the

result register is zero., l~ zero, or greater
than zero, respec~1 zer result is indicated
whenever the res ra io · ero, including a

I forced zero. State is er t by floating-point
instructions.

For comparis~ states O, 1, or 2 indicate
that the first ope~i ~low or high. Figure
15 gives the con~9n:icocie:"~ing for floating-point
arithmetic. ~:·-·· k .. "'""~

FLOATING-Po:::,;;~~s010Ns
• Floating-p;l;~~str7:cli's have either long or

short operlijf&i;; .;

• Floating-'~7~umb nsists of a signed ex-
~,, '"

ponent ~~9ti;;i ~S· 1
• The ~xp~;~t is ~sed in excess 64 binary

notat10~;" . '" !Ni~~.~
.::· . ·. ~.<r,::r,

• The frr:Jorl:'is sed in hexadecimal.

Floatin~'l!;.;i.ntin ons have either long or short
""· operands. ·~h9rt "sion floating-point operands

and res s"fe~ce ltiply) are 32-bit floating-
point words; poJl 24-55 of the floating-point
register are not used or changed. The final result
in short-precision instructions is six fraction digits;
however, intermediate results in addition, subtrac
tion, and division may be extended to a seventh digit.

Branch Instructions 1 /68 53

Form 223-2874-1

FES S26-703S

Condi ti on Codes
!---------------.-- ----- r- - -

Instructions 0 I
1-------t--------------t-------------- - -

Add (n) RF is 0 RF < 0 RF > 0

Add (u) RF is 0 RF < 0 RF > 0

Compare Ope1ands = lstO is lo 1st 0 is hi

3
--------------!

Never Occurs

>-------~-------+---------j -------- --- ----------- ~----j
load and Test

Load Complement

Load Negative

RF is 0

RF is 0

RF is 0

RF < 0

RF< 0

RF< 0

RF > 0 ----- -----

RF > 0

>-------+--------->--------+--------~~-- ------+---!
Load Positive

Subtract (n)

Subtroc t (u)

RF = Result Fraction

RF is 0

RF is 0

RF is 0

RF< 0

RF< 0

RE "°Result Exponent

oFIGURE 15. CONDITION CODE SETTING

RF> 0

Rf > 0

Rf> O

l st 0 ..::: I st Operand

This digit, called the guard digit, is to increase the
precision of the final result. When long-precision
floating-point is specified, the operand and result is
a 64-bit floating-point word. The intermediate re-

l sult in long precision may be extended to a fifteenth
digit.

Floating-point multiply products always extend
the entire length of the floating-point word (64 bits).
In short precision, no significant digits are lost;
however, in long precision, the low-order digits are
lost due to shifting of the product beyond the capacity
of the floating-point register.

A floating-point number consists of a signed
exponent and a signed fraction. The exponent is ex
pressed in excess -64 binary notation; the fraction
is expressed as a hexadecimal number having a deci
mal point to the left of the high-order digit. To
provide the proper magni.tude for the floating-point
number, the fraction is considered to be multiplied
by a power of 16. The characteristic, bits 1-7 of
the floating-point format, indicates the power of the
exponent.

The characteristic is treated as an excess -64
number with a range from -64 (binary value of
0000000) through +63 (binary value of 1111111). The
range covered by the magnitude (M) of a normalized
floating-point number is:

16-64 SM S 1663

which is approximately

5. 4 x 10-7S SM s 7. 2 x 10 7 5

The floating-point arithmetic instructions and their
mnemonic, format, and operation code are given in
Figure 16. All operations are specified in short and
long precision and are part of the floating-point
feature. Figure 16 indicates when normalization
occurs, when the condition code is set, and the ex
ceptJ:onSl;hat cause a program interrupt.

S4 1/68 207S Processing Unit -- Volume 3

Add-Subtract

Addition of two floating-point numbers consists of a
characteristic comparison and a fraction addition.
The characteristics of the two operands are com
pared, and the fraction with the smaller character
istic is right-shifted; its characteristic is increased
by one for each hexadecimal digit of shift, until the
two characteristics agree. The fractions are then
added algebraically to form an intermediate sum.
If an overflow carry occurs, the intermediate sum
is right-shifted one digit, and the characteristic is
increased by one. If this increase causes a charac
teristic overflow, an exponent-overflow exception
is signaled, and a program interruption occurs.

The short intermediate sum consists of seven I hexadecimal digits and a possible carry. The long
intermediate sum consists of 15 hexadecimal digits
and a possible carry. The low-order digit is a guard
digit retained from the fraction that is shifted right.
Only one guard digit participates in the fraction ad
dition. The guard digit is zero if no shift occurs.

After the addition, the intermediate sum is left
shifted as necessary to form a normalized fraction;
vacated low-order digit positions are filled with
zeros and the characteristic is reduced by the amount
of shift.

If normalization causes the characteristic to
underflow and the underflow mask bit is zero, the
characteristic and fraction are made zero. If
normalization causes the characteristic to under
flow and the corresponding mask bit is a one, the
correct sign and fraction are put away. The expon
ent is 12810 greater than the correct exponent. If
no left shift takes place, the intermediate sum is
truncated to the proper fraction length, depending
on the instruction being executed.

When the intermediate sum is .zero and the
significance mask bit is a .one, a significance ex
ception exists, and a program interruption takes

I

Nome

Add Normalized (Lang)
Add Normalized (Short)
Add Normalized (Long)
Add Normalized (Short)
Add Unnormalized (Long)
Add Unnormalized (Short)
Add Unnormalized (Long)
Add Unnorma II zed (Short)
Subtract Norm (Lang)
Subtract Norm (Short)
Subtroc t Norm (long)
Subtract Norm (Short)
Subtract Un norm (Long)
Subtract Unnorm (Short)
Subtract Un norm (Lang)
Subtract Unnorm (Short)
Compare (Long)
Compare (Short)
Compare (Long)
Compare (Short)
Divide (Long)
Divide (Short)
Divide (Long)
Divide (Short)
Ha Ive (Long)
Ha lvo (Short)
Load (Long)
Load (Short)
Load (Long)
Load (Short)
Load Positive (Long)
Load Pasitive (Short)
Load Negative (Lang)
Load Negative (Short)
Load and T ost (Lang)
Load and Test (Short)
LoodComplement (Lang)
Load Complement (Short)
Multiply (Long)
Multiply (Short)
Multiply (Long)
Multiply (Short)
Stare (Long)
Stare (Short)

Notes:

A
c
E
F
FK

Addressing exception
Condition code Is set
Exponent-overflow exception
Floating-point feature
Floating-point divide exception

Mnemonic

NADR
NAER
NAO
NAE
AWR
AUR
AW
AU
NSDR
NSER
NSD
NSE
SWB
SUB
SW
SU
CDR
CER
CD
CE
NOOR
NDER
NOD
NOE
HOR
HER
LOR
LER
LD
LE
LPDR
LPER
LNDR
LNER
LTDR
LTER
LCDR
LCER
NMDR
NMER
NMD
NME
STD
STE

oFIGURE 16. FLOATING-POINT ARITHMETIC CODES

Type

RR
RR
RX
RX
RR
RR
RX
RX
RR
RR
RX
RX
RR
RR
RX
RX
RR
RR
RX
RX
RR
RR
RX
RX
RR
RR
RR
RR
RX
RX
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RX
RX
RX
RX

LS
N
p
s
u

Exceptions

C,S,U,E,LS
C,S,U,E,LS
C,A,S,U,E,LS
C,A,S,U,E,LS
C,S,E,LS
C,S,E,LS
C,A,S,E,LS
C,A,S,E,LS
C,S,U,E,LS
C,S,U,E,LS
C,A,S,U,E,LS
C,A,S,U,E,LS
C,S,E,LS.
C,S,E,LS
C,A,S,E,LS
C,A,S,E,LS
c,s
c,s
C,A,S
C,A,S
S,U,E,FK
S,U,E,FK
A,S,U ,E,FK
A,S,U,E,FK
s,u
s,u
SS
s
A,S
A,S
c,s
c,s
c,s
C,S
c,s
c,s
c,s
C,S
S,U,E
S,U,E
A,S,U,E
A,S,U,E
P,A,S
P,A,S

Significance exception
Normalized operation
Protection exception
Specification exception
Exponent-underflow exception

Code

2A
3A
6A
7A
2E
3E
6E
7E
28
38
68
78
2F
3F
6F
7F
29
39
69
79
20
30
60
70
24
34
28
38
68
78
20
30
21
31
22
32
23
33
2C
3C
6C
7C
60
70

Form 223-2874-1

FES S26-7035

place. No normalization occurs; the intermediate
sum characteristic remains unchanged. When the
intermediate sum is zero and the significance mask
bit is zero, the program interruption for the signifi
cance exception does not occur; rather, the charac
teristic is made zero, yielding a true zero result.
Exponent underflow does not occur for a zero frac
tion.

traction. The characteristics of the two operands
are compared, and the fraction with the smaller
characteristic is right-shifted; its characteristic is
increased by one for each hexadecimal digit of shift,
until the two characteristics agree. The fractions
are subtracted algebraically; the sign, fraction, and
exponent of each number are taken into consideration.

An exponent inequality is not decisive for magni
tude determination since the fraction may have a
different number of leading zeros. An equality is
established by following the rules for normalized
floating-point subtraction. When the intermediate
sum, including a possible guard digit, is zero, the
operands are equal. Neither operand is changed as

The sign of the result for floating-point add-sub
tract instructions is derived by the rules of algebra.
The sign of a sum with zero result fraction is always
positive.

Compare

Comparison of two floating-point numbers consists
of a characteristic comparison and a fraction sub-

a result of the operation, and exponent overflow,
exponent underflow, or lost significance cannot occur.

Branch Instructions 1/68 55

Form 223-2874-1

FES S26-7035

Divide

The quotient fraction is normalized by prenormaliz
ing the operands. Postnormalizing the intermediate
quotient is never necessary, but a right-shift may be
called for. The intermediate quotient characteristic
is adjusted for the shifts. All dividend fraction digits
participate in forming the quotient, even if the norm
alized dividend fraction is larger than the normalized
divisor fraction. The quotient fraction is truncated
to the desired number of digits. A program inter
ruption for exponent overflow occurs when the final
quotient characteristic exceeds 127, and the opera-

1
tion is terminated. The correct sign and fraction
are put away, and the characteristic is 12810 less
than the correct characteristic.

A program interruption for exponent underflow
occurs if the final-quotient characteristic is less
than zero and the corresponding mask bit is a one.
The sign and fraction are correct, and the charac
teristic is 12810 greater than the correct character
istic. If the corresponding mask bit is a zero, the
result is made true zero and the interruption does
not occur. Underflow is not signaled for the inter
mediate quotient or for the operand characteristics
during prenormalization.

When division with a divisor with zero fraction
is attempted, the operation is suppressed. The
dividend remains unchanged, and a program inter
ruption for floating-point divide occurs. When the
dividend fraction is zero, the quotient fraction is
zero. The quotient sign and characteristic are made
zero, yielding a true zero result without taking the
program interrupt for exponent underflow and ex
ponent overflow. The program interrupt for signifi
cance is never taken for divide instructions.

Division is a non-restoring algorithm which in
corporates a trial division by multiples and produces
two quotient bits for each iteration cycle. A non
restoring approach is used because by following a
trial subtraction which overdraws, with a trial ad
dition, restoration cycles are eliminated.

The divisor is normalized by gating it through the
main adder and shifter, and gating the result to the
K register and the L register. The X3/2 divisor is
generated by adding the contents of the K register to
the contents of the L register shifted right 1 position.
The result (X3/2 divisor) is placed in the L register.

The required divisor multiples are located in the
M register and the L register. The X1 and X3/2
divisors are obtained by a direct readout from the
registers, and the Xl/2 and X3/4 divisors are ob
tained by shifting the registers right 1 position.

56 1/68 2075 Processing Unit -- Volume 3

The quotient is assembled in the J register, and
every second iteration, the J register is shifted left
four bits by gating it to the register bus latch and
back to the J register; thus, space is provided for
the next four quotient bits.

The first step in each iteration cycle is the se
lection of the divisor. If the dividend is true, the
decoding matrix shown in Figure 1 7 is used to select
the multiple to be subtracted from the dividend; if
the dividend is in complement, the matrix shown in
Figure 18 is used. The quotient bits entered into the
J register are shown in Figure 19. Most combina
tions produce two quotient bits; however, if the X3/4
divisor is used, three bits are generated. In this
case, the third bit is retained and entered in place
of the high-order quotient bit developed during the
next iteration cycle.

The divide iteration cycles are continued until
the shift counter content is reduced to one or three.
At this time, the iteration cycles are terminated.
If the last divisor used is the X3/4, the quotient is
complete; however, if the X3/4 divisor is not the
last divisor used, one more quotient bit is developed.
The last quotient bit is generated by reducing the
dividend by the Xl divisor.

The halve instructions divide the second operand by
two by shifting the fraction right one bit. The result

I is placed in the first operand location. Normaliza
tion and test for zero fraction occurs.

Load

The load instructions transfer the second operand
to the first operand location. The second operand
is not changed, and neither exponent overflow, ex
ponent underflow, nor lost significance can occur.

Load Type

The load type instructions transfer the second oper
and to the first operand location. The sign is made
plus for the load positive (LPDR, LPER) instruc
tions, or minus for the load negative (LNDR, LNER)
instructions, or is changed to the opposite value for
the load complement (LCDR, LCER) instructions, or
the condition code is set for the load and test (LTDR,
L TER) instructions.

Divisor Divisor
True Comp I

Dividend 0.111 0.110 0.101 0.100 Dividend 0.111 0.110 0.101 0.100

0.111 1 1 3/2 3/2
o. i 10 1 1 1 3/2

0.000 1 1 3/2 3/2
0.001 1 1 1 3/2

0.101 3/4 3/4 1 1
0.100 3/4 3/4 1 1
0.011 1/2 1/2 1/2 1/2
0.010 1/2 1/2 1/2 1/2

0.010 3/4 3/4 1 1
0.011 3/4 3/4· 1 1
0.100 1/2 1/2 1/2 1/2
0.101 1/2 1/2 1/2 1/2

0.001 0 0 0 0 0.110 0 0 0 0
0.000 0 0 0 0 0.111 0 0 0 0

FIGURE 17. DIVISOR MULTIPLE SELECTION-- FIGURE 18. DIVISOR MULTIPLE SELECTION--
TRUE DIVIDEND COMPLEMENT DIVIDEND

True Comp I
Partiol Dividend

Result of Iteration True Comp I True Comp I

3/2 11 10 01 00
Multiple 1 10 01 10 01

3/4 011 010 101 100
Used 1/2 01 00 11 10

0 00 -- -- 11

FIGURE 19. QUOTIENT SELECTION DECODING

Multiply

Multiply consists of adding a multiple(s) specified by
the decoding of the multiplier to the partial product.
Multiplication is started at the low order end of the
multiplier. The multiplier and partial product are
shifted right four for each iteration.

In floating-point multiply, the digit normalized
multiplicand is defined as the X16 multiple and is
located in the M register. The X2, X4, and XS mul
tiples are obtained by shifting the M register right ·
three, right two, or right one, respectively. The
X6 multiple is obtained by shifting the X12 multiple
(stored'in the L register) right one; the XlO multiple
is obtained by inter~pting the normal iteration se
quence to allow the X2 multiple and then the XS mul
tiple to be added to the partial product. The X14
multiple is obtained by a similar process using the
X6 and then the XS multiple. Therefore, the X2,
X4, X6, XS, XlO, Xl2, X14 and X16 multiples are
obtained from two registers, and the only additional
multiple to be concerned with is the Xl multiple.
The only time the Xl multiple is needed is during
the first iteration cycle if the low-order bit of the
multiplier is a 1 bit.

The multiplier is decoded in groups of five bits.
As an example, the multiplier (105)10 is (69)16· H
this is implemented into a hexadecimal machine no
tation, the following configuration is realized:

(105)10 = (69)15 = 0110 1001
The first group of five bits is:

xxxx 0110 1001
'-r-'

first group

The low-order bit of the first group is always
decoded as a zero; however, if the actual bit is a one,
the Xl multiple is provided by gating the K register
right four to the normal input of the main adder. In
the example, the first group is decoded as:

0 1000
therefore, the XS multiple is gated into the true/
complement input of the main adder.. A partial pro
duct consisting of the XS multiple and the Xl multiple
(gated right three) is obtained at the output of the
main adder and is gated to the K register.

A different operation takes place if the high
order bit of the group is decoded as a one. H (113)10
is equal to (71)15, then the bit configuration is:

(113)10 = (71)15 = 0111 0001
and the first group:

1 0001
is decoded as:

1 0000
In the example, the high- order bit is a one and

the low-order bit is decoded as a zero. The K regis
ter is gated right four into the normal input of the
main adder and the X16 multiple is transferred in
complement (-Xl6) to the true/complement input of
the main adder. A partial product consisting of the
- X16 and the Xl multiple is obtained at the output of
the main adder. The output of the main adder is
gated into'the K register. The subtraction of the X16
multiple in the hexadecimal four-bit group is the
same as subtracting the Xl multiple in the hexadeci
mal five-bit group. The first group of five bits is
decoded and the multiples used are shown in the left
hand columns of Figure 504S, and the decoding of
successive groups of five bits and the multiples used
are shown in the right-hand columns .of Figure 5048.

Floating Point 1/66 57

Two examples will help clarify how the floating
point multiply operation is performed. The first
example is without a bit in the high-order position
of the first group of five bits, and the second ex
ample contains a bit in the high-order position of
the first group of five bits.

Example 1:

x (105)10 ~ (65, 625)10

(271)16 = (10, 059) 16

0010 0111 0001 x 0110 1001 = 0001 0000 0000 0101 1001

0001 OOll 1000 1000 XS multiple
0000 0010 0111 0001 Xl multiple
0001 0101 1111 1001 partial product
1110 1010 Ol10 X6 multiple (R4 shift plus RI shift

of Xl2 mult)
0001 0000 0000 0101 1001 product

Example 2:

(625) 10 x (113) 10 = (70, 625)10

(271)16 x (71) 16 = (113E1) 16

0010 0111 0001 x 0111 0001 = 0001 0001 0011 1110 0001

0000 0010 0111 0001 0000 +Xl6 multiple
1111 1101 1000 1110 1111 -Xl6 multiple (complemented)
0000 0000 0010 0111 0001 Xl multiple

Hot 1
llll llOl 1011 0110 0001 partial product
0001 OOll 1000 1 XS multiple (R4 shift for

next iteration)
(carry) 0001 0001 0011 1110 0001 product

After any iteration cycle, the partial product is
either correct or the Xl multiple less than the cor
rect partial product with respect to ihe multiplier
group for the next iteration. Therefore, in example
1, the first multiplier group is 0 1001 and the partial
product is correct, but in example 2, the first mul
tiplier group is 1 0001 and the partial product is the
Xl multiple less than the partial product. Correc
tion before overmultiplication is possible for all
hexadecimal groups of the multiplier except the low
order group.

Figure 20 is a sample floating-point multiply
problem, and is concerned only with the fraction.
It is assumed that the exponent adder and its opera
tion is fully understood; therefore, it is not men
tioned further. The problem assumes a normalized
multiplicand and consists of a five-digit register for
simplicity.

58 1/66 2075 Processing Unit -- Volume 3

In the problem, the multiplicand is (625Jio or
(27l)is and the multiplier is (404)10 or (194)16· The
product is (252, 500)io or (3DA54)16·

During the first floating-point cycle, the multi
plicand is brought from the M register to the main
adder. From the main adder, it is returned to the
K register and the M register. The exponent (two
low-order digits} is set to zero because the exponent
is not transferred through the main adder. The mul
tiplier is located in the J register by the time the
first floating-point latch is set. For all practical
purposes, the exponent is not shown. The exponent
is set to zero during the first left-four shift to the
register bus latch and the right-eight shift to the J
register. Therefore, at the end of the cycle identi
fied by the first floating-point latch (Figure 20), the
J, K, and M registers contain the data shown.

During_ the time shown in the iteration preparation
cycle (F.igure 17), the Xl2 multiple is generated and
placed in the L register. The contents of the K reg
ister and the complement of the M register shifted
right two are added to obtain the Xl2 multiple which
is placed in the L register. The J, K, and M regis -
ter contents are not changed during this cycle.

The first multiplier group is decoded (-Xl2), and
the Xl2 multiple is gated to the true/complement
input of the main adder, complemented, added to
zeros and returned to the K register. By the end of
this cycle, the J register is shifted right four, the
partial product is contained in the K register, and
the Land M registers are unchanged.

During the second iteration trigger cycle, the
-X6 multiple (L register right one to the true/com
plement input of the main adder) is added to the con
tents of the K register which is shifted right four.
The result is returned to the K register. By the end
of the second iteration cycle, the K register contains
the new partial product, the L and M registers are
unchanged and the next multiplier group is shifted into
the low-order positions of the J register to decode
the next multiple.

The third iteration trigger cycle gates the M
register right three to the true/complement input of
the main adder in true form and the K register is
gated right four to the normal input of the main
adder. The result is returned to the K register.

The next cycles put away the result fraction and
the exponent in the register specified by the Rl field
of the multiply instructfon.

Store

The store instructions place one of the floating-point
registers in core storage. The first operand (Rl)
is stored at the location specified by the second oper
and (X2 + B2 -t D2}. The first operand is not changed.

Form 223-2874-1

FES S26-7035

I 0010 I 0111 I 0001 I 0000 I 0000 IK I 0010 I 0111 I 0001 I 0000 I 0000 IM I HH I ---- I 0001 I 1001 I 0100 iJ
~ ~ ~

fost FLP Cycle - Norm Cycle

[0010 0111 0001 0000 0000] K Reg to AM Straight

~ 1001 1100 0100 0000 J M-Reg R2 c:m:c'i 11 0-.+-0:..:.0::..::11....j....:1:..:.0::.::cll--l-'1""1 ::..::11--1] M-Reg Comp I to A MTC

AM Carry OJ AM Hot 1

OJ ~I -000_1_, _11_0_1 +1-01-oo--+-1-1-100--+1-o-ooo-I L-Reg (X12 M.Jltiple)

Iteration Preparation Cycle

[0001 1101
l 1110! 0010

.J. .J.
0100 1100 0000] Xl2 Multiple
1011 0011 1111] X12 Compl to AMTC

AM Carry [jJ AM Hot 1

[QJ I 1110 I 0010 I 1011 I 0100 I 0000 I -X12 Multiple (K-Reg)
C I terot1on ~ye e

l 1111 1110 0010 1011 0100 l I 0000 I (Shifted K-R R4

[0000
Out) eg

1110 1010 0110 0000 J X6 Multiple
[1111 0001 0101 1001 1111 l X6 Compl to AMTC

AM Carry [j] AM Hot l

DJ I 1110 11111 11000 I 0101 I 0100 I K-Reg Partial Product
Iteration Cvcle

Problem.

(625) 10
(271) 16
0010 0111 0001

x (404) 10 = (252,500) 10
X (194) 16 = (3DA54) 16
x 0001 1001 0100 = 0011 1101 1010

0101 0100

I HH I ---- I 0001 I 1001 I 0100 I J
Reg

'------,.----'

-X12
Multiplier

r 00001 0000 I 0000 1 000111001 l J

~

-X6
Multiplier

Reg

[1111 1110 1111 1000 0101 l I 0100 I 0000 I (Shifted K-Reg R4 I 0000 I 0000 I 0000 I 0000 I 0001 I J Out)
'---v-----' Reg

AM Carry l 0000 0100 1110 0010 0000 l M-Reg R3 (X2 Multiple)

OJ L 0000 0011 1101 1010 0101] K-Reg Partial Product

Iteration Cycle

FIGURE 20. SIMPLE FLOATING-POINT MULTIPLY PROBLEM (FRACTION)

THEORY OF OPERATION

• Instructions are executed during intervals of
time called cycles.

• The first machine cycle is the instruction cycle.

• The gating of operands continue after the I to E
transfer.

• The sign triggers are set during T2 and the first
FLP cycles.

• I time is followed by two or more execution
cycles.

The IBM System/360 Model 75 instructions are
performed during fixed intervals of time called
cycles, and are identified by control triggers being
turned on for one or more cycles. As an example,
either an effective address is calculated during a
fixed interval (cycle) of time identified by the Tl
trigger during instruction time of each floating
point instruction, or data is transferred from reg
ister to register during a given cycle. The number
of cycles necessary to execute a single instruction
is dependent upon the instruction and other condi
tions within the machine. Examples of such condi
tions are: outstanding core storage requests, inter-

X2
Multi lier

rupts, and conditions blocking the turn-on of a con
trol trigger .

Instructions consist of two or more parts, the
operation code (op-code), and the operands specified
by R1 and R2 or R1 and X2 + B2 + D2 fields. The
operation code tells the machine what function it is
to perform: add, subtract, compare, multiply, di
vide, store, etc. The operands are either addresses
of floating-point registers (identified by the R1 and
R2 fields of the RR instruction format and the R1
field of an RX instruction) or storage addresses
(identified by the X2 + B2 + D2 fields of an RX in
struction format).

The central processing unit operates in a pre
scribed sequence: the sequence is determined by
the instruction being performed, and is performed
during a fixed or data dependent (variable) interval
of timed pulses.

The first machine cycle required to execute an
instruction is called an instruction (I) cycle. It is
assumed that the reader is familiar with the sequence
of events taking place during the instruction cycle;
therefore, the instruction cycle sequencing is only
briefly reviewed here. Previous to the beginning of
the instruction cycle:

1. The instruction is transferred from core
storage to the AB register by an instruction request
to core storage.

Floating Point 1/68 59

Form 2<!3-2874-1

FES 526-7035

2. The instruction is transferred from the AB
register to the instruction operation register (IOP
reg) and the B operation register (BOP reg).

During instruction cycle time:
1 . The operation is decoded in the IOP decoder

and the BOP decoder.
2. The effective address (E) is calculated (R2 +

D2 + X2).
3. The effective address is requested from core

storage if the instruction is of the RX format or from
the addressed floating-point register if the instruc
tion is of the RR format.

4. A double word is requested from core stor
age to fill the A or B register if the present instruc
tion emptied the register.

5. The gate select mechanism causes the length
of the instruction (decoded from the first byte of
IOP) to be added to the instruction counter in the
incrementer.

6. This value is stored in the gate select regis
ter; at the I to E transfer this value is returned to the
program status word (PSW) instruction counter, thus,
updating the instruction counter.

7. The contents of the IOP register are trans
ferred to the EOP register. This transfer is accom
plished by one of the conditions shown in Figure
5550, depending on the last instruction type.

Floating-point instructions require operand to
be gated after the I to E transfer. This gating is
accomplished by the FLOUT control trigger (Figure
5057). FLOUT is set with the TN T2 trigger for
any floating-point instruction regardless of the for
mat. The RR format instructions allow two oper
ands to be sequentially transferred from the floating
point registers to the working registers via the RBL.
With TN T2 and ID RR FP, a control trigger, FR 2,
is turned on (Figure 5057). This trigger causes the
floating-point register, addressed by the R2 field,
to be transferred during this and the following
T2 cycles, if they occur. The I to E transfer re
moves the condition for turning on the FR 2 trigger;
therefore, it turns itself off. When t.lie FR 2 trig
ger is off, the first operand, addressed by the BR 1
field is selected for gating to the RBL by FLOUT.

The RX instructions allow one operand to be
transferred from the floating-point register to the
working registers via the RBL; the second operand
(X2 + B2 + D2), which is calculated during the Tl
cycle is requested from core storage and placed into
the J register. FLOUT remains on until the E unit
turns it off when gating is no longer required, nor
mally during the first floating-point cycle. The ex
ception is during prenormalization of the divisor;
the divisor must be prenormalized before the sec
ond operand, the dividend, is accepted.

During the T2 cycle and the first floating-point
cycle, the sign triggers (Figure 5551) are set. The
1,ll _sign trigger contains the sign of the Rl operand

60 1/68 2075 Processing Unit -- Volume 3

and is loaded from bit 56 of the floating-point regis
ter addressed by the Rl field of either an RR or RX
instruction. The R2 sign trigger contains the sign
of the R2 operand and is loaded from bit 56 of the
floating-point register addressed by the R2 field of
a RR instruction, from JO of an RX instruction with
an even address, or from J32 of an RX instruction
with an odd address. If during the T2 cycle, a RR
instruction is decoded, the R2 sign trigger is set;
if a RX instruction is decoded, the R1 sign trigger
is set. Likewise, if during the first floating-point
cycle, a RR instruction is decoded, the Rl sign
trigger is set, or if a RX instruction is decoded,
the R2 sign trigger is set.

Figure 21 indicates the approximate timing of the
I to E transfer, operand gating, and turn on of the
first floating-point trigger and latch. Several pos
sible conditions exist during T2 and to the I to E
transfer.

First, in the RR format, the R2 operand is gated
both to the J register and the M register. In Figure
5079, the gating to the J register is accomplished
by the AND circuit at 6F, logic KU053, for the RR
format instructions. The gating to the M register
(Figure 5067) is accomplished by AND circuit at
6J, logic KU016, for a short floating-point RX
format instruction. The register bus latch transfer
to the J register is a right eight ring shift while the
transfer from the register bus latch to the M regis
ter is a straight transfer. The right eight ring shift
places the exponent located in bits 56-63 of the reg-

1 ister bus latch in bits 0-7 of the J register. Also,
note that the Rl operand is transferred from the
register bus latch to the M register (Figure 5079)
by AND circuit 6C, logic KU003 or AND circuit 6E,
logic KU016, during the first floating-point cycle of
compare, add, or subtract instructions; therefore,
the M register contains the proper operand by the
end of the first floating-point cycle.

Second, if the instruction is of the RX format,
the Rl operand on the register bus latch is trans
ferred to the M register by AND circuit 6J, logic
KU003 or AND circuit 6G, logic KU016; the operand
from core storage is loaded into the J register by
the J advance pulse.

On compare, add, subtract and halve instruc
tions, the transfer into M register bits 56-63 is
blocked. This allows M register bits 56-59 to re
main available to contain a possible guard digit.
The operand 1 exponent is in the FP reg specified
by BRl of the instruction.

I time is followed by two or more cycles occur
ring during execution (E) time; the number of execu
tion cycles required depends on the instruction being
executed. Execution time begins as soon as the pre
vious execution time is complete and the present in
struction allows an I to E transfer to occur. The I
to E transfer turns on the first floating-point.trigger

.,__._r_1 --+----r_2 __ -t ___ ~ ___ + -H-1- __ T~) __ _j

t::- t:- t +- :
Flout • ~ [

I to E Transfer I I I I

L-Clock

A-Clock

ABL Data I [
- - -- -+--- - - -t------- -+---+-- - ----1 ----
Gate FR(R2) To RBL I I I

I I
First Flp Tgr and Lth I L I [
RBL to M-Reg (0-55) !--- T4-3+9 I (Rl) I T4-1+8 I
RBL to J-Reg I ~ T5-6 I

Gate FR(Rl) To RBL

RR
Format

I I (R2) I I I
------1-- ----t------ 1-1- -- ---+----
Gote FR(Rl) To RBL ~ I
First Flp Tgr

J-Advance

J-Loaded

SBO to J-Reg

First F Ip Lth

RBL to M-Reg (0-55) I,..... T4-3+9

I (Rl)

I

oFIGURE 2(FLP OPERAND TRANSFER TO WORKING REGISTERS

if the conditions shown in Figure 5552 are met.

~ :

ADR 2A RR

2A Rl
7 8

AER 3A RR

I 3A I Rl
7 8

AD 6A RX

I 6A I R 1
7 8

AE 7A RX
7A I Rl

7 8

RX
Fonnat

(Long Operand)

I R2 I
11 12 15

(Short Operand)

I R2 I
II 12 15

(Long Operand)

I X2 I B2 I
11 12 15 16 19 20

(Short Operand)

I X2 I Bl I
15 16 19 20

D2

Dl

Form 223-2874-1

FES 526-7035

31

31

When the execution time is started, the execution
cycle is allowed to idle until data are received from
core storage if the instruction is of an RX format.
Part of the first execution cycle (first floating-point
cycle) is performed until the effective operand data
are received from core storage, indicated by the J
loaded trigger (Figure 5552) being turned on. How
ever, if data are requested from a floating-point
register, such as during the RR instruction format,
the execution time is allowed to proceed immediately
after the I to E transfer by allowing the first floating
point latch (Figure 5552) to be set. When the Rl
operand is located in the M register (RR or RX for
mats) and the data specified by the effective address
(E) are located in the J register (RX format), the
first floating-point latch is turned on and the first
execution cycle (first floating-point cycle) is allowed
to complete its operations. These operations are
discussed in detail for each of the floating-point in
structions in the following section of this manual. It
is from this point (the first floating-point latch being
turned on) that the following discussions for the
floating-point instructions will begin.

The add normalized instructions are handled as
follows:

ADD-SUBTRACT

The add normalized instruction formats are:

1. The characteristics of the two operands are
compared.

2. The second operand is added to the first
operand.

3. The result is normalized before it is placed
in fhe first operand location.

4. Characteristic underflow when the corre
sponding mask bit is a zero causes a true zero
condition.

Floating Point 1I68 61

Form 223-2874-1

FES 526-7035

I 5. Characteristic underflow when corresponding
mask bit is a one causes correct sign and normal
ized fraction to be put away. The result character
istic is 12810 greater than the correct characteristic.

6. AER and AE instructions do not alter bits
24-55 of the floating-point register.

7. The sign of the result is derived by the rules
of algebra.

The add unnormalized instructions formats are:

AWR 2E RR (Long Operand)

I 2E I Rl I R2 I
1 e)1 12 15

AUR 3E RR (Short Operand)

3E Rl I R2 I
7 8 II 12 15

AW 6E RX (Long Operand)

6E R 1 I X2 I ' B2 I D2
7 8 11 12 15 16 19 20 31

AU 7E RX (Short Operand)

7E I Rl I X2 I Bl I Dl
7 • 15 16 19 20 31

The add unnormalized instructions are handled as
follows:

1. The characteristics of the two operands are
compared.

2. The second operand is addedtothefirstoperand.
3. The result is placed in the first operand location.
4. ADR and AD instructions do not alter bits 24-

55 fo the floating-point register.
5. The sign of the result is derived by the rules of

algebra.
The subtract normalized instruction formats are:

SOR 2B RR (long Operand)

28 R 1 I R2 I
7 8 11 12 15

SER 3B RR (Short Operand)

38 Rl I R2 I
7 e 11 12 15

SD 68 RX (Long Operand)

I 6S Rl I X2 I B2 I 02
1 e 11 12 15 16 19 20 31

SE 7B RX (Short Operand)

78 R 1 X2 I Bl I Dl
7 • 15 16 19 20 31

62 1/68 2075 Processing Unit -- Volume 3

The subtract normalized instructions are handled
as follows:

1. The characteristics of the two operands are
compared.

2 . The sign of the second operand is inverted
before addition.

3. The second operand is subtracted from the
first operand.

4. The result is normalized before it is placed
in the first operand location.

5. SER and SE instructions do not alter bits
24-55 of the floating-point register.

6. The sign of the result is derived by the rules
of algebra.

The subtract unnormalized instruction formats
are:

SWR 2F RR (Long Operand)

2F Rl I R2 I
7 B 11 12 IS

SUR 3F RR (Short Operand)

I 3F I Rl I X2 I
1 e 11 12 15

SW 6F RX (Long Ope1and)

6F I R l I X2 I 82 I 02
7 B II 11 15 16 19 20 31

SU 7F RX (Sho1t Ope1and)

7F I R 1 I X2 I Bl I Dl
7 8 15 16 19 20 31

The subtract unnormalized instructions are
handled as follows:

1. The characteristics of the two operands are
compared.

2. The sign of the second operand is inverted
before addition.

3. The second operand is subtracted from the
first operand.

4. SUR and SU instructions do not alter bits
24-55 of the floating-point register.

5. The sign of the result is derived by the rules
of algebra.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:

Instruction Format R1 Operand R2 Operand

RR single FLP0-23, S6-63 J0-31

RR double FLP0-63 J0-63

RX single (even address) M0-23, FLPS6-63 J0-31

RX single (odd address) M0-23, FLPS6-63]32-63

RX double MO-SS, FLPS6-63 J0-63

Instruction Sequencing

• Instruction sequencing is controlled by five trig
gers.

• Characteristic comparison is defined by the first
floating-point cycle.

• Preshift is defined by the preshift trigger.

• Fraction addition is identified by the preshift-add
trigger being on and the preshift trigger being off.

• Termination sequence is identified by the put-away
and E last cycle triggers.

• Lost significance is detected during the first
normalization cycle.

• Exponent overflow is caused when the exponent
range is exceeded.

• Sign handling is performed during the adjustment
cycle.

Figure 6400 is the data flow of the add and subtract
instructions, and Figure 6401 is the logic flow of the
add and subtract instructions.

First Floating-Point Cycle

The characteristic comparison is defined by the first
floating-point latch (Figure 5552); it is a one cycle
operation consisting of:

1 . Obtaining the exponent difference.
2. Transferring the R2 or effective address

operand from the J register to the K register with
a left eight shift.

3. Transferring the Rl operand fraction from
the floating-point register to the M register via the R
RBL if the instruction is of the RR format.

The R2 or effective address exponent located in
the J register bits 0-7 (RR formats, RX single even
address, or RX double) or bits 32-39 (RX single odd
address) is gated to the normal input of the exponent I adder by the logic shown in Figure 5061. The Rl
operand exponent' located in the FLP register bits
56-63 is gated by the logic shown in Figure 5057
to the true/complement inµit of the exponent adder.

Form 223-2874-1

FES S26-703S

The result is transferred from the AEOB to the ex
ponent register and shift counter by the logic shown
in Figures 5056 and 5086 respectively.

The R2 (or E) operand is gated from the J regis
ter to the true/complement input of the main adder.
If the instruction is an RX and odd address format,
the J register must be shifted left 32 positions in
order to gate J32-63 into positions 0-31 of the main
adder. This gating is accomplished by the logic
shown in Figure 5061. If the instruction is an RR
format, RX single even address format, or RX
double format, the J register is gated straight
to the main adder input without any shifting. All
instructions shift the output of the main adder left
eight bits (one byte) to eliminate the exponent
(Figure 5087) and then set the AMOB output into
the K register.

If the instruction is of the RR format, the Rl
operand is gated from the floating-point register,
specified by the Rl field of the instruction word, to
the register bus latch. From the register bus latch,
the Rl operand is gated to the M register as des
cribed earlier. The fraction is located in bits 0-23
for single precision RR formats, or in bits 0-55 for
double precision RR formats. If the instruction is
of the RX format, the Rl operand is already placed
in the M register bits 0-23 for single precision RX
format instructions or bits 0-55 for double precision I RX formats; the exponent is in bits 56-63 of the
floating-point register specified by BRl of the
instruction for all formats .

Preshift and Preshift-Add Cycles

• A variable cycle operation.

• Preshift identifies shifting of one operand until
exponents are equal.

• Preshift-add identifies the add cycle.

The preshift and fraction addition cycles are a vari
able cycle operation identified by the preshift latch
and the preshift-add latch (Figure 5553). If the
difference between the two exponents resulted in the
exponent adder halfsums for positions 1-7 all being
equal to ones, the exponents are equal and preshift
ing of an operand is not required; therefore, the
preshift trigger is not set because the line labeled
-AE HS Eq 1 Lth line (Figure 5553) is active, thus,
preventing the preshift trigger from being set.

A carry from the exponent adder high-order posi
tion (if the exponent adder HS is not equal to ones)
indicates that the exponent of the K register (R2 or E
operand) is larger than the exponent of the M register
(Rl operand). No carry from the exponent adder
high-order position indicates that the exponent of the

Floating Point 1/68 63

Form 2~.:S-2874-1

FES 526-7035

M register is larger than the exponent of the K regis
ter. An exponent difference greater than 64 sets the
exponent overflow trigger because the capacity of the
shift counter and exponent register is exceeded. The
exponent overflow trigger signifies an exponent dif
ference greater than 64, but it does not signify an
interrupt condition.

Preshifting depends on an exponent difference and
not on the magnitude of the difference. An exponent
difference sets the preshift trigger (Figure 5553),
which defines the preshift operation within the pre
shift-add sequence. A carry from the high-order
position of the exponent adder gates the contents of
the M register (Rl operand) to the main adder. The
Rl operand is shifted right one or two hexadecimal
digits (right four or right eight shift) depending on
the shift counter value. The result is returned from
the AMOB to the M register. No carry from the
high-order position of the exponent adder gates the
contents of the K register (R2 or E operand) to the
main adder. The R2 or E operand is shifted right
one or two hexadecimal' digits depending on the shift
counter value that is d~coded in the shift counter
decoder (Figure 508 7). The result is returned to the
K register from the AMOB latches. Whether a right
four or right eight shift is taken during the first
preshift cycle depends on the value of the shift
counter bit 7. If the bit is a one, a right four shift
is taken first, thus reducing the shift counter con
tents by one to an even amount. The following shifts,
if any, are a right eight shift.

When either the K or M register is gated to the
main adder and its contents are shifted, the shift
counter is decremented by an amount equal to the
number of hexadecimal digits (1 or 2) that the frac
tion is shifted. The exponent adder output is returned
to the shift counter after each decrementing opera
tion. When the shift counter is gated to the shift de
coder during preshifting, the shift decoder determines
the amount of the decrement and shift. The preshift
ing cycle is repeated until the shift decoder detects
a shift count value equal to or less than two. When
the shift counter value is equal to or less than two,
the preshift cycles are terminated at the end of the
current cycle because the exponents are equal.

The fraction addition cycle takes place if the
characteristic comparison indicates the exponents
are equal, or preshifting is completed indicating
equal exponents.

The Rl operand in the M register is gated into
the true complement input of the main adder and the
R2 or E operand in the K register is gated into the
normal input of the main adder. The result is re
turned to the K and M registers. The form of addi
tion performed (true or complement) depends on the
instruction and the operand signs. Figure 22 shows
the form of addition performed.

64 1/68 2075 Processing Unit -- Volume 3

I nstruction R1 Sign R2Sign Operation Performed

Add + + True
Add + . Complement
Add + Complement
Add + True
Subtract + + Complement
Subtract + . True
Subtract + True
Subtract . Complement

FIGURE 22. ADD/SUBTRACT TRUE/COMPLEMENT ADDITION

The exponent of the fraction sum is the larger
of the operand exponents. The Rl exponent is con-

1 tained in the floating-point register; however, the
R2 exponent has been lost. If the R2 exponent is
the larger, it is equal to the Rl exponent plus the
exponent difference obtained during the exponent
comparison cycle.

During the fraction addition cycle, the exponent
I from the floating-point register specified by BRl

is gated to the exponent adder. If the R2 exponent
is the larger, the exponent register that contains the
exponent difference is gated to the normal input of .
the exponent adder. The exponent adder result is
equal to the larger exponent and is returned to the
shift counter and exponent registers. If the shift

I counter register is equal to or greater than 15, or
if the exponent overflow trigger is on, it is detected
by the SFT/DCR (Figure 5087) during the first pre
shift cycle, and the preshift trigger and exponent
overflow trigger is turned off after one cycle.
Exponent differences greater than 64 cannot be re
tained in the shift counter or exponent register
because of the register length; therefore, a trigger
must be set to indicate such conditions. The ex
ponent overflow trigger is used to indicate this
condition.

The register containing the fraction where the
exponent is the larger is not preshifted. It is gated
to the main adder, added algebraically to zero, and
returned to the K and M registers. The fraction
addition cycle completes the preshift-add sequence.
The intermediate sum is contained in the K and M
registers, and the exponent and sign of the inter
mediate sum is contained in the shift counter and
the exponent registers.

PA and ELC Cycles

The PA trigger and ELC trigger define the termina
tion sequence, Figures 5554 and 5555 respectively.
It is a variable cycle operation and includes fraction
recomplementation, normalization, exception hand
ling, and result put-away.

A high-order carry from the main adder during
a true add cycle indicates a fraction overflow. The
intermediate sum, contained in the M register, is
gated to the main adder, shifted right four bits, a
one is forced into position 3, and the result is re
turned to the K register and the M register. The
exponent register is gated to the exponent adder, in
cremented by one, and returned to the exponent reg
ister. The ELC trigger is set, and the resulting
fraction and exponent is set into the floating-point
register specified by Rl of the instruction format,
and the instruction is terminated.

If a fraction overflow carry is not detected and
the instruction is an add or subtract normalized in
struction, an unnormalized sum is assumed and a
normalization cycle is taken. The M register is
gated to the main adder, complemented if the inter
mediate sum is in complemented form, and shifted
by an amount depending on the number of high-order
zeros. The result is returned to the K and M regis
ters. The exponent register is gated to the exponent
adder, decremented by an amount equal to the num
ber of hexadecimal digits that the fraction is being
shifted and returned to the exponent register. The
decrement and shift amounts are determined by the
SFT/DCR decoder (Figure 5087); normalization con
tinues until the fraction is normalized or an excep
tion condition is detected.

Add and subtract unnormalized instructions have
a normalization cycle. The shift and decrement
amounts are zero and the intermediate sum and ex
ponent are not altered. The intermediate sum is
examined for lost significance if the sum is not
normalized. At the end of this cycle, either the
significance adjustment or the put-away cycle fol
lows.

Lost significance is detected during the first
normalization cycle by the K register zero detector
after recomplementing the intermediate sum, if it is

I required. Except for unnormalized add and subtract
instructions, the entire K register is examined for
lost significance. In short precision unnormalized
add and subtract instructions, only the six high-order I hexadecimal digits are examined, and in long pre
cision unnormalized instructions, onlythe14high
order hexadecimal digits are examined because of
the possibility of the significance digit (the guard
digit) that is not part of the result fraction contain
ing data.

If lost significance is detected, normalization is
terminated and a significance adjustment cycle is
taken. If the significance mask bit is a one, the ex
ponent of the intermediate sum is the exponent of the
result. The shift counter containing this exponent
is gated to the exponent adder and returned to the
exponent register. If the significance mask bit is

Form 223-2874-1

FES 526-7035

a zero, the shift counter register is not gated to the
exponent adder. The zero output of the exponent
adder is returned to the exponent register.

The ELC trigger (Figure 5555) is set at this
time or if the intermediate sum is normalized. The
result exponent and fraction is set into the floating
point register specified by Rl of the instruction
word. The instruction is terminated after one cycle
of normalization if:

1. The intermediate sum is normalized, or
2. in the case of an unnormalized instruction

with an unnormalized intermediate sum if lost sig
nificance is not detected.

Exponent Overflow and Underflow: Exponent over
flow is caused when the intermediate exponent is
incremented beyond +64. The sequence is not al
tered by this occurrence, but the exponent overflow
trigger is set.

Exponent underflow may occur during any nor
malization cycle. The exponent underflow trigger

I is set, and, ifthecorrespondingmaskbitis a zero,
normalization continues for one more cycle followed
by an exponent underflow adjustment cycle. The
ELC trigger is set, and the result exponent and
fraction is set to zero and placed into the floating
point register specified by Rl of the instruction
word, and the instruction is terminated. When the
exponent underflow trigger is set and the corre
sponding mask bit is a one, normalization continues
until the fraction is normalized. The ELC trigger
is set, the result fraction and exponent are placed
in the floating-point register specified by Rl of the
instruction, and the instruction is terminated. The
result exponent is 1281 o greater than the correct
exponent.

Sign Handling: Sign handling is performed during
the adjustment cycle; the sign of the intermediate
sum is determined by the sign of the R2 operand and
the instruction performed. For add, the sign of the
intermediate sum is set equal to the sign of the R2
operand. For subtract, the intermediate sum sign
is set inverse to the sign of the R2 operand. If the
intermediate sum is in true form, its sign is cor
rect; if the intermediate sum is complement, the
sign is inverted during the recomplement cycle. If I lost significance or exponent underflow with the
corresponding mask bit set to zero occurs, the sign
of the result fraction is set to zero.

COMPARE

The compare instructions are:

Floating Point 1/68 65

Form 223-2874-1

FES S26-703S

CDR 29 RR (Long Opeoond)

I 29 I RI I R2)
1 a II 12 "

CER 39 RR (Short Operand)

I 39 I RI I X2 I
7. II 12 "

CD 69 RX (long Opeoond)

I 69 I RI I X2 I 1\2 l 02
1 a 1112 u ., 19 20 31

CE 79 RX (Short Opeoand)

I 79 I RI I X2 I Bl I DI

7 8 u 16 19 20 31

The compare instructions are handled as follows:
1. The characteristi~ of the two operands is

compared, .
2. The sign of the second operand is inverted

before addition.
3. The second operand is subtracted from the

first operand.
4. The condition code indicates the result.
5. Short precision instructions do not che9k bits

24-55 of the FLP register.
6. Neither operand is changed as a result of the

compare.
7. The comparison takes into consideration the

sign, fraction, and exponent .of each operand.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:

Instruction Format R1 Ope:and R2 Operand

RR ringle FLP0-23, 56-63 J0-31
RR double FLP0-63 J0-63
RX single (even address) M0-23, FLP56-63 J0-31
RX single (odd address) M0-23, FLP56-63]32-63

RX double M0-55, FLP56-63 J0-63

Instruction Sequencing

• Instruction sequencing is controlled by five
triggers.

• Characteristic comparison is defined by the
first FLP trigger.

• Preshifting is defined by the preshift trigger.

66 1/68 2075 Processing Unit -- Volume 3

• Fraction addition is defined by the preshift-add
trigger.

• Termination sequence is identified by the PA
and ELC triggers.

Figure 6402 is the data flow for the compare in
structions, and Figure 6403 is the logic flow for
the compare instructions.

First Floating-Point Cycle

The characteristic comparison is defined by the first
floating-point latch (Figure 5552); it is a one cycle
operation consisting of:

1. Obtaining the exponent difference.
2. Transferring the R2 or effective address

operand from the J-register to the K register with
a left eight shift.

3. Transferring the R1 operand from the floating
point register to the M register via the register bus
latch if the instruction is of the RR format.

The R2 or effective address exponent located in
J register bits 0-7, (RR formats, RX single even
address, or RX double) or bits 32-39 (RX single
odd address) is gated to the normal input of the ex
ponent adder by the logic shown in Figure 5061 . The

I R1 operand exponent, located in the floating-point
register bits 56-63 is gated by the logic shown in
Figure 5057, is gated to the true/complement input
of the exponent adder. The result is transferred
from the AEOB to the exponent register and shift
computer by the logic shown in Figures 5056 and
5086 respectively.

The R2 or E operand is gated from the J regis
ter to the true/complement input of the main adder.
If the instruction is an RX odd address format, the
J register must be shifted left 32 positions in order
to gate J32-63 into positions 0-31 of the main ad
der. This gating is accomplished by the logic shown
in Figure 5061 . If the instruction is an RR format,
RX single even address format, or RX double for
mat instruction, the J register is gated straight to
the main adder inµit without any shifting. All in
structions shift the output of the main adder left
eight bits (one byte) to eliminate the exponent,
(Figure 5087) and then set the AMOB output into the
K register.

If the instruction is of the RR format, the R1 op
erand is gated from the floating-point register,
specified by the R1 field of the instruction word, to
the register bus latch. From the register bus latch,
the Rl operand is gated into the M register as des
cribed previously. The fraction is located in bits
0-23 for single precision RR formats, or in bits
0-55 for double precision RR formats. If this in
struction is of the RX format, the R1 operand_ is

already placed in M register bits 0-23 for single
precision RX format instructions or bits 0-55 for
double precision RX formats; the exponent is in

'

bits 56-63 of the floating-point register specified
by Rl of the instruction for all formats.

Preshift and Preshift-Add Cycles

• Variable cycle operations.

• Preshift identifies shifting of one operand until
exponents are equal.

• Preshift-add identifies the add cycle.

The preshift and fraction addition cycles are
variable cycle operations that are identified by the
preshift latch and the preshift-add latch (Figure
5553). If the difference between the two exponents
resulted in the exponent adder halfsums for positions
1-7 all being equal to ones, the exponents are equal
and preshifting of an operand is not required; there
fore, the preshift trigger is not set because the
line labeled - AE HS Eq 1 Lth line (Figure 5553) is
active, thus, preventing the preshift trigger from
being set.

A carry from the exponent adder high-order
position indicates that the exponent of the K register
(R2 or E operand) is larger than the exponent of the
M register (Rl operand) . No carry from the exponent
adder high-order position indicates that the exponent
of the M register is larger than the exponent of the
K register. An exponent difference greater than 64
sets the exponent overflow trigger because the
capacity of the shift counter and exponent register
is exceeded. The exponent overflow trigger signi
fies an exponent difference greater than 64, but it
does not signify an interrupt condition.

Preshifting depends on an exponent difference and
not on the magnitude of the difference. An exponent
difference sets the preshift latch (Figure 5553), which
defines the preshift operation within the preshift-add
sequence. A carry from the high-order position of
the exponent adder gates the contents of the M register
(Rl operand) to the main adder. The Rl operand is
shifted right one or two hexadecimal digits (right
four or right eight shift) depending on the shift
counter value. The result is returned from the
AMOB to the M register. No carry from the high
order position of the exponent adder gates the
contents of the K register (R2 or E operand) to the
main adder. The R2 or E operand is shifted right
one or two hexadecimal digits depending on the
shift counter value that is decoded in the shift
counter decoder (Figure 5087). The result is
returned to the K register from the AMOB latches.
Whether a right four or right eight shift is taken

Form 223~2874-1

FES 526-7035

during the first preshift cycle depends on the value
of the shift counter bit 7. If the bit is a one, a
right four shift is taken first, thus reducing the
shift counter contents by one to an even amount.
The following shifts, if any, are a right eight shift.

When either the K or M register is gated to the
main adder and its contents are shifted, the shift
counter is decremented by an amount equal to the
number of hexadecimal digits (1 or 2) that the
fraction is shifted. The exponent adder output is
returned to the shift counter after each decrementing
operation. When the shift counter is gated to the shift
decoder during preshifting, the shift decoder deter
mines the amount of the decrement and shift. The
preshifting cycle is repeated until the shift decoder
detects a shift count value equal to or less than two.
When the shift counter value is equal to or less than
two, the preshift cycles are terminated at the end of
the current cycle because the exponents are equal.

The fraction addition cycle!lace if either
the characteristic co~n die es the expon-
ents are equal, or pr~s~tifg i pleted indi-
cating equal exponent~

The Rl operand inJlll!!iM r · is gated into
the true complement""'1\pf the main adder and the
R2 or E operand in ~ . ./e~r is gated into the
normal input of the ~dder;.Jlie result is re
turned to the K and tere'gl.s~s~e form of addi
tion performed (tru~~, nt) depends on
the instruction operand si ' . F re 23 indicates
the form of additionRrform .

The exponent o~~a~1m is the larger
of the operand ex!, cm~. Th~-'1.- exponent is con-

1 tained in the floa · '.:-pbint register; however, the
R2 exponent has , ~: ,~stm;,._,

During the fr~OQ;,. adftft1W cycle, the exponent
I from the floatin~»t ~ is gated to the ex

ponent adder. If the R22e~·nt is the larger, the
exponent regis1-b,,.qont~the exponent differ
ence, is gated Cfft_he nqj[J input of the exponent
adder. The ex!JH.ert~ a~sult is equal to the
larger exponeifE ~~- i retu ed to the shift counter
and exponent Jegi~rs . e shift counter register

I is equal to or~ater~ 5, or if the exponent
overflow tri~ o~~ detected by the shift
decoder (Figure 508 ~g the first preshift
cycle, and the preslfft~rf;ger and exponent over
flow trigger are turned off after one cycle. Exponent
difference greater than 64 cannot be retained in the

R1 Sign R2Sign Operation Performed

+ + Complement
+ - True
- + True
- - Complement

FIGURE 23. TRUE/COMPLEMENT ADDITION

Floating Point 1/68 67

Form 223-2874-1

FES S26-7035

shift counter or exponent register because of the
register length; therefore, a trigger must be set
to indicate such conditions. The exponent overflow
trigger is used to indicate this condition.

The register containing the larger exponent is
not preshifted. It is gated to the main adder,
agded algebraically to zero, and returned to the K
and M registers. The fr.action addition cycle com
pletes the preshift-add sequence. The intermedi
ate sum is contained in the K and M registers, and
the exponent and sign of the intermediate sum is
contained in the shift counter and the exponent reg
isters.

PA and ELC Cycles

The termination sequence consists of result test
ing and is identified by the PA and ELC triggers
being on. The result is tested, the condition code
is set and the instruction is terminated. The con
dition code indicates the test result for the com-

1 pare instructions. If the operands including the
guard digit are equal, a condition code of 0 is set
into the condition code register of the program
status word; if the first operand is low, a condi
tion code of 1 is set into the condition code register,
and if the first operand is high, a condition code of
2 is set into the condition code register.

DIVIDE

The divide instructions are:

DDR 2D RR (Long Operand)

I 2D I R 1 I R2 I
7 8 II 12 15

DER 3D RR (Short Operand)

I 3D I Rl I X2 I
7 8 11 12 15

DD 6DRX (Long Operand)

I 6D I Rl I X2 I B2 I D2

7 8 II 12 15 16 19 20 31

DE 7DRX (Short Operand)

I 7D I Rl I X2 I Bl I Dl

7 8 15 16 19 20 31

The divide instructions are handled as follows:
1. The first operand is divided by the second

operand.
2. The quotient replaces the first operand.

68 1/68 2075 Processing Unit -- Volume 3

3. The remainder is not retained.
4. DER and DE instructions do not alter bits

24-55 of the floating-point register.
5. Division consists of a characteristic sub

traction and fraction division.
6. The difference between the exponents plus

64 is used as the quotient exponent.
7. The sign of the quotient is determined by

the rules of algebra.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:

Inst?uction Format R1 Operand R2 O;eerand

RR single FLP register J0-31

RR double FLP register J0-63

RX single (even) FLP register J0-31

RX single {odd) FLP register J32-63

RX double FLP register J0-63

Instruction Sequencing

• Instruction sequencing is controlled by 13 con
trol triggers.

• The first floating-point latch identifies the pre
fetch cycle.

• The norm trigger identifies the divisor normali
zation cycles.

• The D2 trigger identifies the X3/2 divisor gen
eration cycle.

• The D3 trigger identifies the dividend normali
zation cycles.

• The DL4 trigger identifies the cycle during
which the dividend is made less than the divisor.

• Iteration preparation trigger identifies the first
divide iteration cycle.

• The iteration trigger identifies the following
divide iteration cycles.

• The first term trigger identifies the last quo
tient bit generation cycle.

• The quotient transfer I complement trigger iden
tifies the quotient transfer cycle.

• The put-away and E last cycle triggers identify
the quotient and exponent put-away cycle,_

• The zero result trigger identifies a zero J
register.

• The test trigger identifies a zero K register.

Figure· 6404 is the data flow of the divide instructions,
and Figure 6405 is the logic flow of the divide in
structions.

First Floating-Point Cycle

The first floating-point latch identifies the first
execution cycle for the divide instructions. During
this cycle, the divisor that is located in the J
register is gated through the main adder with a
left eight shift to the K, L, and M registers.
Figure 508 7 shows the logic for the left eight shift
controls. The divisor exponent (J0-7 RR single,
RX even, RR double, RX double, or J32-39 RX
odd) is gated from the J register through the
exponent adder to the exponent register and the
shift counter .

Owing to the nature of the operand fetch from
the floating-point registers, the Rl sign trigger
is set from the floating-point register bit 56 for
the RR or RX instructions, and the R2 sign trigger
is set from bit 0 of the J register for RR single,
RR double, RX single even, and RX double, or
from bit 32 of the J register for an RX single odd
address instruction. Figure 5551 shows this logic
gating to the Rl and R2 sign latches.

Norm Cycle

The norm trigger identifies the cycle(s) during
which the divisor is normalized if necessary; the
norm trigger (Figure 5556) is set following the
first FLP cycle. The M register is gated to the
main adder and the result is returned to the K
register, L register, and the M register if M0-11
are zero. The gating of the M register to the main
adder is shown in Figure 5067. The shift amount
(left four or left eight) is decoded in the shift de
coder (Figure 5087) and the shift amount (1 or 2)
is subtracted from the contents of the shift counter

Form 223-2874-1

FES S26-7035

Floating Point 1/68 68A

by gating the shift counter (Figure 5086) to the
true/ complement input of the exponent adder. The
exponent adder output is returned to the exponent
regis~er and the shift counter. The K register is
zero detected to determine if the divisor is zerci.
If the devisor is ze.ro, the block put away trigger,
E interrupt trigger, and test trigger are set
after the first normalization cycle. When M0-11
are not zero, the output from the main adder is
returned to the K register and the L register; the
dividend is gated from the floating-point register
through the RBL to the J register and the M
register by the logic shown in Figure 5079. The
entire contents of the register bus latch is gated to
the J register. If the divide instruction is a long
operand instruction, the entire contents of the reg
ister bus latch is also gated to the M register; how
ever, if the divide instruction is a short operand
instruction, only bits 0-23 and 56-63 of the register
bus latch are gated to the M register.

D2 Cycle

When bits 0-11 or the M register are other than zero,
the D2 trigger is set to identify the multiple gener
ation cycle (Figure 5557). During this cycle, the
X3/2 multiple is generated by gating the K register
to the normal input of the main adder and the L
register right one to the true/ complement input of
the main adder. The result is placed in the L
register. The normalized divisor exponent isgated
from the exponent register to the normal input
of the exponent adder, and the dividend exponent
is gated from bits 56-63 of the M register to the
true/ complement input of the exponent adder. The
difference· is placed in the exponent register. At
this time, the J register is zero detected and if the
contents of the J register are zero, the zero
result trigger is set during the next cycle and the K
register and the exponent registers are set to zero.

During this cycle, positions 0-7 of the K
register are gated via the left byte gate to the digit
buffer and digit counter register. The output of
the digit buffer and digit counter are used to decode
the number of high-order zeros contained in the
divisor after it is digit normalized but not bit
normalized.

D3 Cycle

If the dividend (J register) is not zero, the D3
trigger is set (Figure 5558) and the dividend is
normalized during this and following D3 cycles.
The divisor (K register) is gated to the register
bus latch and the dividend (M register) is gated to
the true/complement input of the main adder. The
output of the main adder is returned to the M register

until M0-3 are not zeros. Each time the M register
U; gated to the main adder, the exponent register is
gated to the exponent adder, decremented by one
for each digit that the dividend is normalized and
the result is returned to the exponent register.
When M0-3 are other than zero, the M register is
again gated to the main adder; however, this time
the AMOB is returned to the K register and the
contents of the register bus latch (divisor) are gated
to the M register.

During the last D3 cycle, the divisor multiple i:s
decoded, the shift counter is set to 12 for single word
iteration count or to 28 for double word iteration
count, and the AEOB is returned to the exponent
register. At the end of the last D3 cycle, the K
register contains the dividend, the M register
contains the divisor, the L register contains the
X3/2 divisor, the exponent register contains the
exponent difference, and the shift counter contains
the iteration count.

If the dividend is decoded as being larger than
the divisor during the D3 cycle(s), the DL4 trigger
is set during the next cycle: however, if the
dividend is not decoded as being larger than the
divisor by the divide decoder during the D3 cycle(s),
the iteration preparation trigger is set during the
next cycle.

DL4 Cycle

If the dividend is decoded as being equal to or
larger than the divisor during the D3 cyde, the
DL4 trigger (Figure 5559) is set and the dividend
is made smaller than the divisor. During the
DL4 cycle, the dividend (K register) is gated to the
normal input of the main adder, shifted right four,
and the AMOB is returned to the K register. The
exponent register (quotient exponent) is gated to the
true/ complement input of the exponent adder and a one
is added to the quotient exponent. The result
(exponent +1) is returned to the exponent register.

When the DL4 cycle is taken, it signifies that
the dividend is larger than the divisor and the
first divisor multiple must be decoded again. The
new divisor multiple is determined by decoding the
six high-order bits of the divisor that are contain
ed in the digit buffer and digit counter, and the
contents of bits 0 and 1 of the K register prior to
the right shift. After the shift cycle, bits 0 and 1
are located in bits 4 and 5 of the K registe·r as a
result of the right four shift. At the end of the
DL4 cycle the iteration preparation trigger is set
and the first divide iteration occurs.

Iteration Preparation Cycle

The first divide iteration cycle is identified by the
iteration preparation trigger (Figure 5560) being

Floating Point 1/66 69

turned on either after the D3 trigger if the
divisor is larger than the dividend or after the
DL4 trigger if the dividend was larger than the
divisor. The K register is gated to the normal
input of the main adder and the divisor multiple
is gated to the true/ complement input. The two
inputs to the main adder are either added or
subtracted, and the result is returned to the K
register. At the same time, the quotient bits are
inserted into J59 and J60 by the quotient insert
logic (Figure 5061), while zeros are being read into
the J-register from the RBL. At the same time the
divisor multiple is gated to the true/ complement
input of the main adder, the shift counter is gated
to the exponent adder true/ complement input and
one is subtracted from the value of the shift counter.
The result (SC-1) is returned to the shift counter,
the next divisor multiple is decoded from the contents
of the digit buffer and digit counter and the output of
bits 2-7 of the main adder. If a shift overflow or a
quotient overflow occurs, a divide check will not
result as is the case in fixed-point divide. However,
if a quotient overflow occurs during the first iteration,
two less iterations are taken and the first term trig
ger is set when the shift counter equals three rather
than when it equals one.

Iteration Cycle

The following divide iteration cycles (2-10, 2-12,
2-26, or 2-28) are identified by the iteration trigger,
(Figure 5561) being set. The K register is gated
left two to the normal input of the main adder and
either the M register or the L register is gated
straight or right one to the true/ complement input
of the main adder. If the result of the previous iter
ation cycle is in complement form, the divisor mul
tiple is gated to the true input of the true/ complement
input of the main adder. If the previous iteration
cycle is in true form, the divisor multiple is gated
to the complement input of the true/ complement
input of the main adder. The result is returned to
the K register, and bits 2-7 of the adder sum are
used to determine the next divisor multiple when the
carry is received from the remaining halfsum bits.
The quotient bits for the second iteration (SC shift
counter is odd) are gated into J61 and J62 (Figure
5061).

The contents of the J register (quotient) are
gated left four to the RBL each iteration cycle, but
they are gated back into the J register only when the
shift counter is even. Therefore, during iteration
number one (identified by the iteration preparation
trigger), the contents are not gated even though the
shift counter is even, but the zero content of the
register bus latch is gated into the J register and
bits 59 and 60 are set with the first two quotient bits.

70 1/66 2075 Processing Unit -- Volume 3

On the second iteration cycle (identified by the
iteration trigger being on) the shift counter is odd;
therefore, the quotient bits are inserted into J61 and
J62. The J register is read out left four to the RBL,
but the RBL is not gated back to the J register;
therefore, the J register contents are not lost or
changed (except J61 and J62) because the J register
is not released (reset); when the shift counter is odd.

The shift counter is decremented by one during
each iteration cycle by gating it to the exponent adder
and subtracting one from it. The result is returned
to the shift counter. After the second iteration
cycle, the shift counter is even and the K register
and divisor multiple are added or subtracted in the
normal manner. The J register is gated left four
to the register bus latch and the register bus latch
is returned to the J register while the quotient bits for
the third iteration cycle are gated into J5 9 and J60.
The shift counter is decremented by one and this
process continues until the shift counter equals
either one or three. When the shift counter equals
either one or three, the iteration cycles are termi
nated. Whether the iteration sequence is terminated
when the shift counter equals one or three depends on a
quotient overflow being detected during the first iteration
cycle. If a quotient overflow is· detected, the iteration
sequence is terminated when the shift counter equals
three.

First Term Cycle

The first term cycle is identifit:id by the first term
trigger (Figure 5562) and is used to generate the
last quotient bit. The K register is gated left two
to the normal input of the main adder and the se
lected multiple is gated to the true/ complement
input of the main adder. The result is returned to
the K register and the quotient insert logic (Figu_re
5061) inserts the last quotient bit into bit 63 of the
J register.

Quotient Transfer/Complement Cycle

The quotient transfer cycle is identified by the
quotient transfer/complement trigger (Figure 5563)
being set. The quotient fraction (J register) is gated
through the main adder with a left eight shift to the
K register. The exponent register containing the
quotient exponent is gated to the exponent adder; if
the quotient overflow trigger is on, one is added to
the quotient exponent. The exponent adder bit zero
(fraction sign bit) is set plus or minus according to
the rules of algebra. The result is returned to the
exponent register.

Zero Result Cycle

If during the time the D2 trigger is set, the dividend
(J register) is detected as all zeros, the zero result

trigger (Figure 5564) is set during the next cycle
instead of the 03 trigger. The K register and the
exponent register are set to zero by gating the
AMOB and the AEOB to them, respectively. The E
last cycle is the next cycle following the zero re
sult cycle.

Test Cycle

The test cycle is identified by the test trigger (Fig
ure 5565) being turned on if the exponent under
flow trigger is on and the underflow mask bit is a
zero. The test trigger is turned on after the put
away cycle or if the K register (divisor) is detected
as all zeros during the time the norm trigger is on.
The K register and the exponent registers are set
to zero by gating the AMOB and the AEOB to them,
respectively. The E last cycle is the next cycle
following the test cycle.

PA and ELC Cycles

The put-away cycle is identified by the PA trigger
(Figure 5554) and the E last cycle trigger (Figure
5555) being set. If an exponent underflow did not

I occur or if the underflow mask bit is a one, the
E LC trigger is set with the put-away trigger during
this cycle. During this cycle, the quotient fraction
located in the K register and the quotient exponent
located in the exponent register are transferred to
the floating-point register specified by the ER1
register. If the exponent underflow trigger is on

I and the underflow mask bit is a zero, the test trig
ger is set during the next cycle, but the E last cycle
trigger is not set.

HALVE

The halve instructions are:

HDR 24 RR (Long Operand)

I 24 I Rl I R2 I
1 8 11 IJ 15

HER 34 RR (Short Ope1ond)

I I Rl I X2 I
7 8 II 12 15

The halve instructions are handled as follows:
1. The second operand _is divided by shifting

the fraction right one bit.
I 2 . The normalized quotient is placed in the first

operand location.
3. The HER instruction does not alter bits 24-55

of the floating-point register.

Form 223-2874-1

FES S26-703S

I 4. Normalization and test for zero fraction occur.
Lost significance interrupt does not occur. Lost
significances cause a true zero result.

Initial Operand Location

At the beginning of the exeuction cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:

I Instruction Format

RR single

Rl Operand R2 Operand

RR double

Instruction Sequencing

None

None

M0-23, J0-7

MO-SS, J0-7

I • Instruction sequencing is controlled by three
triggers.

• Halve cycle is identified by first floating-point
trigger.

• Termination cycle is identified by the E last
cycle trigger .

Figure 6406 is the data flow of the halve instruc
tions, and Figure 6407 is the logic flow of the halve
instructions .

First Floating-Point Cycle

The halve cycle is a one-cycle operation identified
by the first floating-point trigger (Figure 5552) being

I set. The operation consists of gating the M regis
ter (Figure 5067) right one to the main adder true/
complement input, setting the output of the main

I adder into the K register and M register, gating
the R2 exponent from the J register (bits 0-7) to
the normal input of the exponent adder, and gating
the exponent adder output into the exponent regis
ter.

PA and ELC Cycles

The PA and ELC triggers define the termination se
quence (Figures 5554 and 5555), a variable cycle op
eration that includes normalization, exception hand
ling and result put-away.

An unnormalized sum is assumed and a normali
zation cycle is taken. The M register is gated to the
main adder and shifted by an amount depending on
the number of high-order zeros. The result is re
turned to the K register and M register. The expon
ent register is gated to the exponent adder, decre
mented by an amount equal to the number of hex
digits that the fraction is being shifted and returned

Floating Point 1I68 71

Form 223-2874-1

FES 526-7035

to the exponent register. If the sum is already nor
malized, the shift and decrement amounts are zero,
and the intermediate sum and exponent are not
altered. The decrement and shift amounts are de
termined by the SFT/DCR decoder (Figure 5087);
normalization continues until the fraction is normal
ized or an exception condition is detected.

Lost significance is detected during the first
normalization cycle by the K register zero detector.
The entire K register is examined for lost signifi
cance. If lost significance is detected, normaliza
tion is terminated and a significance adjustment
cycle is taken. The shift counter register is not gated
to the exponent adder, and the zero output of the ex
ponent adder is returned to the exponent register.
Lost significance does not cause a program inter
rupt regardless of the setting of the significance
mask bit.

The ELC trigger (Figure 5555) is set at this time
or if the intermediate sum is normalized. The result
fraction and exponent are set into the floating-point
register specified by Rl of the instruction word.

Exponent Underflow

Exponent underflow may occur during any normali
zation cycle. The exponent underflow trigger is set
and if the exponent underflow mask bit is a zero,
normalization continues for one more cycle and an
exponent underflow adjustment cycle is taken. The
ELC trigger is set, the result fraction and exponent
are set to zero and placed in the floating-point reg
ister specified by Rl of the instruction word, and
the instruction is terminated. When the exponent
underflow trigger is set and the underflow mask bit
is a one, normalization continues until the fraction
is normalized. The ELC trigger is set, the result
fraction and exponent are placed in the floating-point
register specified by Rl of the instruction word, and
the instruction is terminated.

Sign Handling

Sign handling is performed during the adjustment
cycle; the sign of the intermediate sum is deter
mined by the sign of the R2 operand. If lost signi
ficance or an exponent underflow occur, with the
underflow mask bit set to a zero, the sign of the
result fraction is set to zero.

LOAD

The load instructions are:

72 1/68 2075 Processing Unit -- Volume 3

LDR 28 RR (Long Operand)

I 28 I Rl I R2 I
7 8 11 12 15

LER 38 RR (Short Operand)

I 38 I Rl I R2 I
7 8 II 12 15

LD 68 RX (Long Operand)

I 68 I Rl I X2 I B2 I D2
7 8 11 12 15 16 19 20 31

LE 78 RX (Short Operand)

I 78 I Rl I X2 I Bl I Dl

7 8 15 16 19 20 31

The load instructions are handled as follows:
1 . The second operand is placed in the first

operand location.
2. The second operand is not changed.
3. The LE and LER instructions do not alter

bits 24-55 of the floating-point register.
4. Exponent overflow, underflow, or lost sig

nificance cannot occur.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:

Instruction Format Rl 0£erand R2 Operand

RR single None J0-31
RR double None J0-63

RX single (even address) None J0-31

RX single (odd address) None J32-63

RX double None J0-63

Instruction Sequencing

• Instruction sequencing is controlled by two
triggers.

• The transfer of the second operand is identified
by the first floating-point trigger.

• Termination of the load instruction is identified
by the E last cycle trigger.

Figure 6408 is the data flow of the load instruction,
and Figure 6409 is the logic flow of the load instruc
tion.

First Floating-Point Cycle

The second operand transfer is a one-cycle opera
tion identified by the first floating-point trigger
(Figure 5552) being set. During this cycle, the sec
ond operand (RX or X2 + B2 + D2) fraction is trans
ferred from the J register (J0-31 RR single, RX
single even address, J32-63 RX single odd address,
or J0-63 RR double and RX double) to the true/
complement inµit of the main adder (Figure 5061).
The o~tput of the main adder is shifted left 8 posi
tions (Figure 5087) and the result is placed in the
K register.

During the transfer of the J register to the main
adder, the exponent (J0-7 RR single, RR double,
RX single even address, and RX double, or J32-39
RX single odd address) is transferred to the normal
inµit of the exponent adder (Figure 5061). The
output of the exponent adder is placed in the ex
ponent register (Figure 5056).

ELC Cycle

The one cycle put-away sequence is identified by the
E last cycle trigger (Figure 5555) being set at the
end of the second operand transfer cycle. The
fraction is transferred from the K register to the
floating-point register identified by R1 of the floating
point load instruction. The exponent is transferred
from the exponent register to bits 56-63 of the
floating-point register. When the fraction and ex
ponent are located in the floating-point register, the
instruction is terminated.

LOAD TYPE

The load positive type instructions are:

LPDR 20 RR (Long Operand)

I 20 I Rl I R2 I
7 8 11 12 15

LPER 30 RR (Short Operand)

1 30 I Rl I X2 I
7 8 11 12 15

The load positive type instructions are handled
as follows:

1. The second operand is placed in the first
operand location.

2 . The sign of the second operand is made plus.
3. The characteristic and fraction are not

changed.
4. The LPER instruction does not alter bits

24-55 of the floating-point register.

Form 223-2874-1

FES 526-7035

Floating Point 1/68 72A

The load negative type instructions are:

LNDR 21 RR (Long Operand)

I 21' I Rl I R2 I
0 71 1112 15

LN ER 31 RR (Short 0 perand)

31 I Rl I R2 I
71 1112 15

The load negative type instructions are handled
as follows:

1. The second operand is placed in the first
operand location.

2. The sign of the second operand is made minus.
3. The characteristic and fraction are not

changed.
4. The LNER instruction does not alter bits 24-

55 of the floating-point register.

The load and test type instructions are:

L TDR 22 RR (Long Operand)

I 22 I Rl I R2 I
0 71 1112 15

L TER 32 RR (Short 0 perand)

l 32 I Rl I R2 I
78 1112 15

The load and test type instructions are handled
as follows:

1. The second operand is placed in the first op
erand location.

2. Its sign and magnitude determine the condition
code.

3. The second operand is not changed.
4. The LTER instruction does not alter bits 24-

55 of the floating-point register.
5. The LTER instruction does not test bits 24-

55 of the floating-point register.
6. When the first and second operand are the

same register, the operation is equivalent to a test
without data movement.

The load complement type instructions are:

LCDR 23 RR (Long Operand)

I 23 I Rl I R2 I
0 71 1112 15

LCER 33 RR (Shart Operand)

33 I Rl I R2 I
71 1112 15

The load complement type instruction are handled
as follows:

1. The second operand is placed in the first
operand location.

2. The sign is changed to the opposite value.
3. The characteristic and fraction are not

altered.
4. The LCER instruction does not alter bits 24-

55 of the floating-point register.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 507 9:

Instruction Format

RR single
RR double

Instruction Sequencing

Rl Operand

None
None

R2 Operand

J0-31
J0-63

• Instruction sequencing is controlled by two
triggers.

• The second operand transfer is identified by the
first floating-point trigger.

• The termination cycle is identified by the E last
cycle trigger.

Figure 6410 is the data flow of the load type instruc
tions, and Figure 6411 is the logic flow of the load
type instructions.

J<:irst Floating-Point Cycle

The second operand transfer is a one-cycle operation
identified by the first FLP trigger (Figure 5552) be
ing set. The one-cycle operation consists of gating
the second operand from the J register (J0-31 RR
single, RX single even address, or J32-63 RX
single odd address, or J0-63 RR double, RX double)
to the true/ complement input of the main adder
(Figure 5061). The output of the main adder is
shifted left 8 positions (Figure 5087) and the result
is placed in the K register.

During the transfer of the J register to the main
adder, the exponent (J0-7 RR single, RR double,
RX single even address, or RX double, or J32-39
RX single odd address) is gated to the normal input
of the exponent adder (Figure 5061). If the instruc
tion is an LPDR, LPER, LNDR, LNER, LCDR, or
LCER instruction, the sign is set to the desired

Floating Point 1/66 73

value during this cycle. The output of the exponent
adder is placed in the exponent register. The load
and test instructions (LTDR and LTER) do not alter
the sign of the second operand on its transfer.

ELC Cycle

The load type instruction termination is a one-cycle
put-away cycle identified by the E last cycle trigger
(Figure 5555) being turned on at the completion of
the transfer cycle that is identified by the first float
ing-point trigger. The result fraction is gated from
the K register to the floating-point register specified
by Rl of the load type instruction, and the exponent
is gated from the exponent register to bits 56-63 of
the floating-point register. If the instruction is the
load and test type (LTDR or LTER), the sign and
magnitude of the second operand determine the con
dition code setting of bits 34 and 35 of the program
status word. After the exponent and fraction are set
into the floating-point register and the condition code
is determined (LTDR and LTER instructions), the
load type instruction is terminated.

MULTIPLY

The multiply instructions are:

MDR 2C RR Lon Operand)
2C Rl R2

7 8 11 12 15

MER 3C RR (Short Operand)

I 3C I R 1 I R2 I
0 7 8 1112 u

MD 6C RX (Long Operand)

I 6C I R 1 I X2 I 82 I D2
0 78 1112 1.516 1920 31

ME 7C RX (Short Operand)

I 7C I R 1 I X2 I B 1 I Dl
0 78 1516 1920 31

The multiply instructions are handled as follows:
1. The multiplicand (M register) is normalized

by gating it to the true/ complement input of the main
adder and shifting the output 0, 1, or 2 hexadecimal
digits.

2. Bits 56-63 of the M register are gated to the
true/complement input of the exponent adder; the
result (minus shift amount) is placed in the exponent
register.

3. The multiplier is transferred from the RBL
to the J register with a right eight ring shift.

4. The K register and the M register are gated
to the main adder to generate the X12 multiple.

5. The J register exponent and exponent register
are added to obtain the product exponent.

74 1/66 2075 Processing Unit -- Volume 3

6. Bits 59-63 of the J register are decoded to
determine the multiple(s) used for each iteration
cycle.

7. The multiplier and partial product are shifted
four bits for each iteration.

8. The shift counter determines the number of
iterations taken.

9. The normalized product and exponent replaces
the first operand.

10. The ME and MER instructions do not alter
bits 24-55 of the first operand.

11. A final product exponent overflow causes a
program interrupt.

12. An overflow exception does not occur for an
intermediate product exponent when the final expo
nent is brought within range by normalization.

13. An all zero product fraction sets the product
sign and characteristic to zero; a program interrupt
does not occur.

14. The program interrupt for lost significance
is not taken for multiply instructions.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 507 9:

Instruction Format

RR single (MER)
RR double (MOR)
RX single (ME) even address
RX single (ME) odd address
RX double (MD)

* denotes multiplicand

Instruction Sequencing

Rl Operand

FLP register
FLP register
M0-23, 56-63 *
M32-63 *
M0-63 *

R2 Operand

M0-23, 56-63 *
M0-63 *
J0-63
J0-63
J0-63

e Instruction sequencing is controlled by eight
triggers.

e Prenormalization is identified by the first float
ing-point trigger and the norm trigger.

e The X12 multiple generation is identified by the
iteration preparation trigger.

• The multiple decode cycles are identified by the
iteration preparation trigger and the iteration
trigger.

e A second cycle during an iteration cycle is
identified by the add trigger.

• A zero result is identified by the test trigger.

• The product and exponent of the multiply oper
ation is gated to the floating-point register,
which is identified by the put away trigger.

• The termination cycle is identified by E last
cycle trigger.

Figure 6412 is the data flow of the multiply instruc
tions, and Figure 6413 is the logic flow of the mul
tiply instructions.

First Floating-Point Cycle

The first multiplicand pre-normalization cycle is
identified by the first FLP trigger (Figure 5552)
being set. The multiplicand (M register) (Figure
5067), is transferred through the main adder left
shifted 0, 4, or 8 depending on the number of high
order zeros detected by the shift decoder (Figure
5087) and the result is placed in the Kand M regis
ters. At the same time that the M register is trans
ferred to the main adder, bits 56-63 of the M regis
ter are gated to the exponent adder and 0, 1, or 2 is
subtracted from the exponent depending on the amount
of shift (0, left four, or left eight) that is decoded to
eliminate high-order (leading) zero digits in the mul
tiplicand. The result from the exponent adder is
placed in the exponent register. During this cycle,
the multiplier is transferred from the register bus
latch to the J register (RR formats) with a right eight
ring shift to locate the exponent in J0-7 by the logic
shown for the right eight ring shift on Figure 5061.

Norm Cycle

The following multiplicand pre-normalization cycle(s)
is identified by the norm trigger (Figure 5556) being
set. The multiplicand (M register) is transferred
to the main adder and the exponent register is trans
ferred to the exponent adder; an appropriate shift
and exponent decrement cycle is taken. The norm
cycle(s) continues until bits ~-3 of the M register are
hexnormalized.

The K register is used to zero detect the multi
plicand. If the K register is not zero, pre-normal
ization cycle(s) is taken until the multiplicand is nor
malized; however, if the multiplicand fraction is zero,
the test cycle trigger is turned on for the following
cycle (third cycle). The test cycle zeros the expo
nent register and turns on the E last cycle trigger,
which allows a true zero to be gated to the floating
point register.

Iteration Preparation Cycle

After the multiplicand is pre-normalized, the iter
ation preparation cycle that is identified by the iter
ation preparation trigger (Figure 5560) is set.

During this cycle, the X12 multiple is generated,
the exponents -64 are added together, the low-order
multiplier group is decoded, the multiplier (J regis
ter) is gated to the register bus latch and back to the
J register to accomplish a right four shift, the mul
tiplier fraction (J register) is zero detected for a
multiplier of zero, and the shift counter is set for
use as an iteration counter.

The Xl2 multiple is generated by gating the
contents of the K register (X16 multiple) to the
normal input of the main adder and the contents of
the M register (X4 multiple) right two to the com
plement input of the true/complement input of the
main adder. The X4 multiple is subtracted from the
X16 multiple, and the main adder output is gated to
the L register; therefore, at the end of this cycle
the L register ·contains the X12 multiple. The X6
multiple is obtained from the X12 multiple by gating
the L register right one when needed.

The exponent sum -64 is obtained by transferring
the exponent register to the true/ complement input
of the exponent adder and the multiplier exponent
(J register 0-7 MER, MDR, and ME even address or
J32-39 ME odd address) to the normal input of the
exponent adder. Since the operand exponents are
excess 64 numbers, the AEOB position 1 is comple
mented to produce the exponent sum less 64. The
exponent sum is gated into the exponent register.

The low-order multiplier group is gated to the
multiplier decoder (Figure 5048), which selects a
multiple gating trigger. The multiplier group is
located in J register bits 27-31 for the ME (even
address) and MER instructions, and in bits 59-63
for the ME (odd address), MD, and MDR instructions.
The low-order multiplier group is decoded as though
the low-order bit of the group is a zero. If the low
order bit is a one, K register bits 0-59 are gated
right four (XI multiple) to the main adder during the
next cycle with the decoded multiple.

To shift the multiplier right four with respect to
the multiplier decoding circuits, the J register (Fig
ure 5061) is gated left four to the register bus latch.
The register bus latch is gated right eight to the J
register to bring the next multiplier group into place.
During this transfer to the register bus latch, the
J register exponent is set to zero for proper multi
plier decoding during the last iteration cycle.

The shift counter is set to a value of 6 if the
instruction is a single precision or to 14 if the in
struction is a double precision instruction. For
each multiply iteration cycle, the shift counter is
decremented by one.

During the first iteration preparation cycle, J
register positions 8-31 [MER, ME (even address)
instructions] or positions 8-63 [MD, MDR, or ME
(odd address) instructions J are zero detected. If
the multiplier is zero, a zero product results and
the test cycle trigger is set. The K register and

Floating Point 1/66 75

the exponent registers are set to zero, the E last
cycle trigger is turned on, and the zero result is
gated into the first operand location. If the multi
plier is not zero, the iteration preparation trigger
is set again with the iteration trigger to identify the
cycle in which the first multiply iteration occurs.

Iteration Cycle

The multiply iterations are identified by the iteration
preparation trigger (Figure 5560) and the iteration
trigger (Figure 5561) being on. The iteration trigger
being on indicates a cycle in which a decoded multi
ple is added to or subtracted from the partial prod
uct. The iteration cycle is identical to the fixed
point multiply iteration; the decoded multiple gates
either the M register or the L register to the true/
complement input of the main adder and the K reg
ister bits 0-5 9 (partial product) are gated right four

to the normal input of the main adder when the iter
ation trigger is on. Whether the input to the true/
complement input of the main adder is complemented
or not depends on the high-order bit of the multiplier
group; if it is a zero, a true add cycle is taken or if
the high-order bit is a one a complement add cycle
is taken and the main adder hot 1 trigger is set.

At the beginning of the first iteration, the K reg
ister contains the X16 multiple, thus the K register
(positions 0-63) is gated right four to the main adder
during the first iteration cycle if the low-order bit of
the group is decoded as a 1. The new partial product,
located in the main adder out latches, is gated into the
K register. If the multiple is a two cycle iteration,
the iteration preparation trigger is turned off, the
next multiple is not decoded until the X2 or X6 mul
tiple is added or subtracted from the partial product,
and the add trigger is turned on to identify the cycle
in which the XS multiple is added to or subtracted
from the partial product.

Add Cycle

The second add cycle or any two-cycle iteration is
identified by the add trigger (Figure 5566) being
turned on. During the add cycle, the M register
positions 0-63 are gated right one (XS multiple) to
the true/ complement input of the main adder and the
K register positions 0-63 are gated straight. (partial
product plus or minus the X2 or X6 multiple) to the
other input of the main adder. The new partial
product is gated from the main adder out latches to
the K register. If the multiplicand is a complement
number, 1 bits must be inserted at the high-order
positions of the main adder true/ complement input,
which are vacated because of the multiple generation.
If the multiplier is a complement number, the last

76 1/66 2075 Processing Unit -- Volume 3

multiplier group must be decoded as though the high
order bit of the group is a 1 bit.

During each iteration cycle, the shift counter is
gated to the true/ complement input of the exponent
adder and one is subtracted from it. The result is
returned to the shift counter. When the last iteration
cycle is taken, the put away trigger is set to identify
the put-away cycle.

PA Cycle

During an iteration preparation cycle in which the
remaining multiplier digits are decoded as zeros,
the iteration trigger and either the iteration prep
aration trigger or the add trigger is on. At the end
of the cycle the partial product is gated to the K
register and the M register. The product may have
one leading zero digit because the multiplicand is
digit normalized but not bit normalized.

The shift counter may not be equal to zero when
the remaining multiplier groups are zero. If the
shift counter is not zero, it contains the number of
leading zero digits in the multiplier fraction because
it was originally set to a value equal to the total
number of multiplier digits.

The PA cycle is used to store the product and
exponent in the specified floating-point register.
This cycle is identified by the put away trigger
(Figure 5554) being set. Bits 0-55 of the K register
are transferred to bits 0-55 of the floating-point
register specified by Rl or the instruction and the
exponent register bits 0-7 are transferred to bits
56-63 of the floating-point register.

The product is not valid if the shift counter is
not zero or if the product fraction is not normalized.
If the fraction is not normalized, the M register
(Figure 5067) is gated left four to the true/ comple
ment input of the main adder. The result is returned
to the K register and the M register. Also, if the
result is not normalized or the shift counter is not
equal to zero, the shift counter is gated to the true/
complement input of the exponent adder, the expo
nent register is gated to the normal input of the
exponent adder, and the contents of the shift counter
is subtracted from the contents of the exponent reg
ister. The AEOB position 1 is complemented be
cause exponents and shift counter values are excess
64 numbers in floating-point multiply instructions.
The result is placed in the exponent register. If the
product is not normalized, the exponent adder hot 1
trigger is not set, thereby reducing the product
exponent by the shift counter value plus one. At
the next A pulse the shift counter is set to zero.
The put away trigger is set along with the E last
cycle trigger for the next cycle.

Form 223-2874-1

FES 526-7035

ELC Cycle

The E last cycle trigger (Figure 5555) is set if the
result is not normalized or the shift counter is not
equal to zero during the first attempt at gating the
fraction and exponent to the floating-point register
addressed by R1 of the instruction. The E last
cycle trigger is not turned on with the put-awaytrig-

1 ger if exponent underflow occurs and the underflow
mask bit is a zero. The test cycle trigger is set
to indicate that the K register exponent register is
being set and the zero product is put away. If ex
ponent underflow occurs and the underflow mask
bit is a one, the test cycle trigger is not set. The
correct sign and fraction are put away. The result
characteristic is 12810 greater than the correct
characteristic.

STORE

The store instructions are:

STD 60 RX (Long Operond)

I 60 I Rl I X2 I B2 I 02
7 8 11 12 15 16 19 20 31

STE 70 RX (Short Operand)

I 70 I Rl I X2 I Bl I Dl
7 8 15 16 19 20 31

The store instructions are handled as follows:
1. The first operand is stored at the second

operand location.
2. The first operand is not changed.
3. The STE instruction does not use bits 24-55

of the first operand.
4. The BCU is aware of the storage request by

the beginning of E time.

Initial Operand Location

At the beginning of the execution cycle, the operand
is located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:

Instruction Format

RX single (even address)

RX single (odd address)

RX double

Instruction Sequencing

R1 Operand

J0-31

J0-31

J0-63

• Instruction sequencing is controlled by three
triggers.

• The store preparation cycle is identified by the
first F LP trigger.

• The store and wait cycle(s) are identified by the
store trigger.

• The termination cycle is identified by the E last
cycle trigger.

Figure 6414 is the data flow of the store instruc
tions and Figure 6415 is the logic flow of the store
instructions.

First Floating-Point Cycle

The store preparation cycle is identified by the first
floating-point trigger (Figure 5552) being on. The
operand (floating-point register addressed by Rl of
the instruction) is located in the J register. During
this cycle, the operand is gated from the J register
by the logic on Figure 5061. If the store address is
odd, the operand must be placed in the low-order
half of the K register. In order to accomplish this,
the output of the main adder is gated right 32 posi
tions (Figure 5087) and set into the K register.

If the store address is even, the operand is
placed in the high-order half (bits 0-31) of the K
register. This is accomplished by gating the first
operand from the J register to the main adder, and
taking the output of the main adder and gating it into
the K register.

Store Cycle

The instruction termination cycle is a variable
cycle operation identified by the store trigger (Fig
ure 5567) being turned on. When the execution unit
is started, a storage request cycle is also requested
at the I to E transfer, and this variable cycle oper
ation depends on the accept signal from the bus
control unit. If, at the end of the store-preparation
cycle, the accept signal is not received from the
bus control unit, a wait cycle is taken. Wait cycles
are taken until the accept signal is received from
the bus control unit. During the wait cycle(s),
gating is not performed and the operand is not
modified.

ELC Cycle

The E last cycle trigger (Figure 5555) is turned on
when the accept signal is received from the bus
control unit. The accept signal gates the K register
to the storage bus in, and the E last cycle trigger
terminates the store instruction.

Floating Point 1/68 77

VARIABLE FIELD LENGTH

INTRODUCTION

CONCEPTS OF VFL

• VFL instructions process one data byte at a
time.

• VFL operands may vary in length and need not
conform to word boundaries.

• VFL operands and results are contained in
storage.

The variable field length (VFL) feature of the Sys
tem/360 Model 7 5 enables the execution of instruc
tions in which the operands in storage may vary in
length and be located in any byte addressable stor
age position. The operands need not conform to
word boundaries; they may be contained within one
or several storage words.

The E unit of the CPU contains circuits and units
that provide byte gates , data paths , and controls
that enable the execution of VFL instructions.
Through the VFL circuits, the operands of each
VFL instruction are processed one data byte at a
time, serially.

VFL instructions are those that conform to the
SS instruction format, and certain other fixed se
quence VFL instructions in the RX and SI format.

SS instruction processing is storage to storage,
with both operands and the result contained in stor
age. SS instructions are classified as either deci
mal or logical. Decimal instructions are those that
perform decimal arithmetic, such as add, subtract,
multiply and divide. SS logical instructions are
those that perform logical functions with alphabetic
or numeric data, such as edit, translate, and move.
The move instruction, for example, moves an alpha
meric data field from one storage location to another
without changing the data.

The fixed sequence VFL instructions are essen
tially FXP instructions that process one data byte
through the VFL circuits.

Because the operands and result of SS instruc
tions are contained in storage, the execution se
quencing of SS instructions differs from those of all
other instructions. The I unit does not prefetch op
erands for the SS instructions, nor does it continue
instruction preparation during the SS execution.
When an SS instruction is encountered in the instruc
tion stream, the I unit prefetches all elements of
the instruction words from storage then transfers
execution functions to the E unit. Thereafter, the
operands are fetched from storage to the K and L
registers. Selected data bytes are gated, one at a

78 1/68 2075 Processing Unit -- Volume 3

time, from Kand L registers to the VFL circuits
(Figure 2040). The result bytes are returned to the
K register. When all bytes of the operands are
processed, the result in the K register is placed
in storage and the instruction is terminated. The
termination of the SS instruction releases the I
unit to continue instruction preparation.

Instruction Format

• SS instructions occupy three halfwords in stor
age.

• Defines decimal or logical instruction.

• Defines length of both operands and their
storage addresses.

The SS instruction format occupies three storage
halfwords, 48 data-bits plus parity, and conforms
to the format shown in Figure 24. Each SS instruc
tion contains an operation code and sufficient data
to define each operand in storage.

Operation Code

Bit positions 0-7 of the instruction contain the
operation code in eight-bit binary form. The eight
bit operation code is commonly recorded as two
hexadecimal digits. Figure 25 shows the operation
code bit structure and hexadecimal representation
for each of the SS instructions.

Storage Addressing

When an SS instruction is started and at various
times during the execution, the storage location of
each operand is referenced. The Bl, Dl, and L1
fields of the instruction define the storage location
and length of operand 1. B2, D2, and L2, likewise,
define operand 2.

The four-bit Bl or B2 instruction field specifies,
in binary coding, one of 15 general registers in
which the base address is contained.

The 12-bit Dl or D2 instruction field contains, in
binary coding, the number of bytes the operand is
displaced from the base address. When a storage
reference to an operand is made, the storage address
must first be computed. When a storage reference
to operand 1 is made, the storage address is com
puted by adding the contents of the general register
specified by the Bl instruction field to the displace
ment factor in the Dl field, Bl + Dl. The storage
address of operand 2 is similarly computed using
the B2 and D2 instruction fields. If the Bl or B2

Decimal

lopCodel Ll I L2 I Bl I 01 I B2 I 02 I
0 71 1112 1516 1920 3132 3~ 36 "
logical

IOpCodel L I Bl I 01 I B2 I 02 I
0 71 1112 1516 1920 3132 J5 36 "

FIGURE 24. SS INSTRUCTION FORMAT

instruction field contains zero, then that address
factor is considered to be zero and the Dl or D2
instruction field becomes the actual storage address;
in this case, the contents of general register 0 is
ignored.

The four-bit Ll or L2 operand length field de
fines, in binary digits, the number of data bytes
operand 1 and operand 2 contains. For the majority
of VFL decimal instructions, the maximum length
of each operand is 16 bytes, or 32 decimal digits.
However, for SS logical.instructions, the Ll and L2
fields are combined as one to provide a maximum
operand length of 256 bytes, or 32 storage words.

Either decimal operand may start at any byte
location in storage, and extend into as many as three
storage words. The sum of the base address and
displacement factor, Bl+ Dl, or B2 + D2, defines
the low-order storage address of the operand. When
the length factor is added to the sum of the base
address and displacement, Bl + Dl + Ll or B2 + D2
+ L2, the high-order storage byte address of the
operand is defined. Because each storage word
contains 8 bytes, and each operand may be as many
as 16 bytes long, the operand may be contained in
one, two, or three storage words. The starting byte
address, Bl + Dl or B2 + D2, and operand length,
Ll or L2, determine the number of storage words
that contain the operand. Figure 26 shows some of
the starting byte to operand length relationships.
An operand that is 8 bytes long can be contained in
one storage word if the sum of Bl + Dl or B2 + D2
address byte zero of the storage word (Section A of
Figure 26). An operand that is two bytes long can
be contained in two storage words if the sum of Bl +
Dl or B2 + D2 addresses byte 7 of the storage word
(Section B of Figure 26). The majority of the dec
imal instructions limit the operands to a maximum
length of 16 bytes, the equivalent of two storage
words. However, an operand longer than 9 bytes
can occupy three storage words, depending on the
starting byte address of the operand (Section C,
Figure 26).

VFL instructions are executed by stepping
through the operand fields and processing one byte
at a time. Decimal instructions, except divide,
start execution with the storage byte that contains
the low-order, least significant decimal digit
(highest storage address), and steps toward the
high-order end of each operand until all bytes are
processed. Logical instructions start execution
with the storage byte that contains the high-order,
most significant, digit and steps toward the low
order end of the operands as each byte is processed.

Because the decimal and logical SS instructions
step through operands in opposite directions, a
different sequence of reference to storage words is
used. For example, if either operand of a decimal
instruction extends across a storage word boundary,
then the first storage word used is the one located
at the higher storage address. The opposite is
true for the SS logical instructions.

Data Format

Decimal data contained in storage is in the binary
coded decimal (BCD) format. A binary-coded
decimal digit is represented by four storage data
bits. Four data bits can represent any binary sum
within the range of 0 to 15. A decimal digit can be
any number within the range of 0-9. Therefore, the
four-bit configuration that represents a binary sum
within the range of 0-9 also represents decimal digits
0-9. The four-bit configurations with binary sums
greater than 9 are used to represent the sign of a
BCD digit, or the zone coding of alphabetic or spec
ial characters, Figure 27 and 28.

Decimal data is contained in storage in either of
two formats, zoned-data in the unpacked format, or
decimal numbers in the packed format.

Unpacked Format: In the unpacked format, each
decimal number is zoned. One zoned decimal digit
occupies each byte of the decimal field in storage.
In each byte, bits 0-3 contain the zone code and bits
4-7 contain the decimal number (Figure 29).

Variable Field Length 1/66

SS I Op Code I L1 I L2 I Bl I DJ I B2 I D2 I
0 7 8 11 12 15 16 19 20 31 32 35 36 47

Op Code Name Op Code Ni>me

~ex Binary Hex Binary

DO 1101 0000 FO 1111 0000
Dl

1

0001 MVN Move Nvmeric Fl

l
0001 MVO Mt:Jve w Off$et

D2 0010 MVC Move F2 0010 PACK Pt:Jck
D3 0011 MVZ Mt:Jve Zone F3 0011 UNPK Unpack
D4 0100 NC AND F4 0100
D5 0101 CLC C<;lmpare Lt:Jglcol F5

0
0101

D6 0 0110 oc OR F6 E 0110
D7 u 0111 XC Exclvslve OR F7 ·c; 0111
DB

·g,
1000 FS

.,
1000 ZAP Zero and Add

--' 0
D9 1001 F9

l
1001 CP Compare

DA

l
1010 FA 1010 AP Add

DB 1011 FB 1011 SP Subtract
DC 1100 TR Translate FC 1100 MP Mvltiply
DD 1101 TRT T rl'.ins I ote/T es I FD 1101 DP Divide
DE 1110 ED Edit FE 1110
DF 1101 1111 EDMK Eda 1'.ind Mark FF 1111 1111

FIGURE 25. SS INSTRUCTIONS

Storage
Word 3248 I Storage I Storage I

Word 3256 Word 3264
Storage
Word 3272

S:I i I ; I i I \ I i I i I i I : I ~ I ; I Q ? I i I i I ~ I i I i I i I i I i I ! I i I i 12
Bi+ Di Bi+ Di + L1
~~+~ ~
= 3256 B2+ D2 + L2

L 1 or L2 = 7 (8 bytes) =3263

L1 or L2 = 1 (2 bytes)

or
B2 + D2

=3263

or
B2 + D2 + L2

=3264

Storage I Storage I Storage I Storage
Word 3248 Word 3256 Word 3264 Word 3272

S::I i I i I i I i I : I i I i I : I i I i 9 I i I i I i I ~ I ; I i I i I i I 0~ i I ~ I ~ I ::2'.
B1+D1 B1+D1+L1

L1orL2=9(10bytes)

or
B2 + D2

=3263

FIGURE 26. OPERAND LENGTH --WORD BOUNDARY RELATIONSHIP

80 1/66 207:J Processing t.:mt-- Volume 3

or
B2 + D2 + L2

= 3272

Bit Patte
Zoned

ASCII {

EBCDIC {

72 Bit

Data Byte
Bit Position

Parity Bit

rn of Byte Containing
Decimal Digits

4-bit BCD Signs

Binary
Sum 10

11 .,
12 Preferred

13 Preferred

14

15

FIGURE 27. DECIMAL BYTE

---- Storcig_e 7

~ Storage Word I/ Byte Address _,. 0 112_~6[7

~ ...,..
Data Bits Data Bits
High-Order Low-Order
Decimal Decimal
Digit
(HOD)

Digit
(LOO)

0 l l l l 0 0 0 0

l l l 1 l 0 0 0 l

2 l 1 l 1 0 0 1 0

3 l l l 1 0 0 1 l

4 l l 1 1 0 1 0 0

5 1 l 1 l 0 1 0 1

6 1 1 1 l 0 l 1 0

7 1 1 l l 0 l l l

B l l 1 l 1 0 0 0

9 1 1 1 1 1 0 0 1 ...,

+ x x x x 1 0 1 0

- xx x x 1 0 1 1

+ x x x x 1 1 0 0

- x x x x 1 1 0 1

+ x x x x l 1 1 0

+ x x x x 1 1 1 1

Variable Field Length 1/66 81

Packed Format: In the packed format, each storage
byte of the decimal field can contain two decimal
digits.

All instructions that perform decimal arithmetic
require that the data be in the packed format and the .
sign of the operand in the byte that contains the low
order decimal digit (the byte at the high-order
storage address). See Figure 29.

Data may be changed from one format to another
by use of the pack or unpack instruction.

VFL Instructions

• SS instructions process multiple bytes

• Fixed sequence instructions process single data
bytes.

VFL instructions processed on System/360 Model 75
consist of all SS format instructions (Figure 25) aq.d
certain fixed sequence instructions that process a
single data byte through VFL data paths.

Figures 9450 through 9457 are reference charts
that show rules, conditions and examples of all SS
instructions except the translate and edit instructions.

The fixed sequence VFL instructions are:

RX Format
STC Store character
IC Insert character

SI Format
WRD Write direct
RDD Read direct
TM Test under mask
MVI Move
TS Test and set
NI AND
CLI Compare logical
or OR
XI Exclusive OR

The programming rules and objectives of the
fixed sequence VFL instructions and the translate
and edit instructions are contained in the publication
IBM System/360 Principles of Operation, Form
A22-6810 or see the Theory of Operation section of
this manual.

VFL Data Flow

• Operands are fetched from storage to the K and
L registers.

• Bytes from Kand Lare gated through VFL cir
cuits to the K register.

• Contents of the K register are returned to storage.

82 1/66 2075 Processing Unit -- Volume 3

Variable field length (VFL) data handling is designed
as a subsystem within the main execution unit. The
K and L registers are used as temporary storage for
64-bit words, plus eight parity bits. Operands are
brought from main storage through the J register to
the Kor L registers, Figure 30. The K register is
used for operand 1 (Op 1) and the L register for
operand 2 (Op 2). The result of an operation is
placed in the K register and at the proper times, the
bytes of the K register that were changed are put
back in the main storage.

The following text briefly describes the functions
and controls of the various VFL functional units
shown in Figure 2040. A complete description of
the VFL functional units is contained in 2075 Proc
essing Unit, Vol. 1 FEMI, Form 223-2872.

Right Byte Gate (RBG)

All 72 bits from the K and L registers are brought
into the right byte gate (RBG). Two gating triggers,
gate K with S or gate L with S, determine whether
the K or L register is gated by the S pointer. The
value in the S pointer determines which byte, 0-7,
of the K or L register is gated through the RBG.
The forcing of parity to the right side is OR'ed at
the output of the RBG.

Right Digit Gate: The digit gate is between the RBG
and true/complement/plus six (T/C +6) gate. This
gate determines whether the two four-bit groups,
0-3 and 4-7, are straight gated or cross gated to
the T/C +6 gate. The gate digit straight line is
the inversion of the gate digits across line and,
therefore, the output of the RBG is passed through
the digit gate at all times. The gate digit across is
used for pack, unpack, move offset, edit, edit and
mark, and convert binary. The machine preferred
zone and plus sign can be forced at the digit gate.

Left Byte Gate (LBG)

The 72 bits from the K register and 8 bits plus
parity from DB/DC are brought into th<:' left byte
gate (LBG). Two gating triggers determine whether
the K register is gated with the T pointer or DB/DC
is gated through the LBG. The value in the T pointer
determines which byte of the K register is gated
through the LBG.

Decimal Adder

The VFL decimal adder is an eight-bit binary adder
with modifications to the parity predict and output
sums for decimal operations. Because VFL additions

Extended Binary-Coded-Decimal Interchange Code (EBCDIC}
BYTE

Bit Positions ----•01 LI ,----00----~ ~----01----~ ~----10----~

~23
4567 00

0000 NULL

0001

0010

0011

0100 PF

0101 HT

0110 LC

0111 DEL

1000

1001

1010

1011

1100

1101

1110

1111

01 10

RES BYP

NL LF

BS EOB

IDL PRE

FIGURE 28. BCD CODING

Zoned Decimal Number

11

PN

RS

UC

EOT

00 01 10 11
c & -blank

I

" '
? ! :

$
'

- * % @

() rv-. '

+ ; - =

* (/ + I -

0 34 70 3 4 70 3 4 70 34 7

I Zone I Digit I Zone[~- ~J Digit I Zone I Digit I Sign I Digit I

Packed Decimal Number

0 34 70 3 4 70 34 70 34 7

I Digit I Digit I Digit[~ ~-J Digit I Digit I Digit I Digit I Sign I
FIGURE 29. DATA FORMAT- UNPACKED--PACKED

00 01 10 11

a i
b k s

c I t

d m u

e n v

f_ a w

9 p x

h q y

i r z

r-----11----~

00 01 10 11

> < =!= 0

A J 1

B K s 2

c L T 3

D M u 4

E N v 5

F 0 w 6

G p x 7

H Q y B

I R z 9

Variable Field Length 1/66 83

K and l Regs loaded
from Storage via J Reg

~~~~~~~ '~~~~~~~ 

Result to 
Storage 

Operand 1 Operand 2 

(I Byte) (1 Byte) 

VFL-Decimal 
Circuits 

(Figure 2040) 

(1 Byte) 

FIGURE 30. GENERAL DATA FLOW--MODEL 75 VFL 

move through a field serially, adding 8 bits at a 
time, a carry out of the VFL adder is set into the 
carry trigger, which is gated back as a carry-in on 
successive byte additions. The VFL adder has full 
carry look-ahead on the digit level. The binary sums 
from the adder go into the decimal correction logic. 
This correction logic is latched and can be gated 
decimal and binary. Using excess-6 addition, the 
binary sum of two digits is the correct decimal sum, 
if there is a carry out of that digit position. If there 
is no digit carry, the binary sum is six higher than 
the correct decimal sum. The decimal correction 
latches are gated as: 

1. Gate binary sum if not decimal add or digit 
carry. 

2. Gate binary sum minus 6 if decimal add and 
not digit carry. 

Note that the decimal correction is gated for both 
decimal add and subtract but the gate decimal true 
at the input to the adder is activated only for true 
decimal add. 

.t v -r o 1..:raie: The excess-6 method is used for dec
imal addition. This allows the VFL decimal adder 
to be a binary adder with adjustment on the input and 
output for decimal additions. Data are gated into the 
right side of the decimal adder in one of three ways: 

1. Binary True BT 
2. Decimal True (TC + Six) DT 
3. Complement Compl 
Only one complement gate is required since the 

9's complement of a decimal number, plus 6, equals 
the 1 's complement of the binary number. Therefore, 
the complement gate (1 's complement) is good for 
both binary and decimal additions. 

84 1/66 2075 Processing Unit -- Volume 3 

Decimal Digit 9's Comp! +6 

0000 1001 1111 
0001 1000 1110 
0010 Olll 1101 
0011 OllO llOO 
ETC 

The input gates to the decimal adder are split 
for the high-order digit (bits 0-3, HOD) and the low
order digit (bits 4-7, LOD). Bit 7 has a separate 
complement control so that the machine preferred 
plus sign can be changed to the machine preferred 

·minus sign. 

Right Side Parity Adjust: The byte parity must be 
adjusted whenever a partial byte is gated through the 
adder or bits are altered as they are gated to the 
adder. When gating digits decimal true, decimal 
digits 4 and 5 are the only ones that change parity. 

Two gating combinations of decimal true that 
require parity adjustment are: 

1. (HOD DT). (LOD BT) 
2. (HOD DT). (LOD DT) 
All other parity adjustments are made because 

either HOD or LOD is not gated to the adder. Fig
ure 31 shows the possible gate combinations on the 
adjusted parity. 

Left Side Adder Input: The LBG is connected straight 
to the left side input of the decimal adder. This 
gate is split between bits 3 and 4 for high- and low
order digits. The parity adjust gate has the follow
ing combinations: 

1. P straight 
2. PH -- adjusted for HOD removed 
3. PL -- adjusted for LOD removed 



Forced Bits Digit Gates True-Complement-Plus Six Adjusted Parity 

Sign ST (HOD DT) · (LOD BT) · (Invert Sign) (HOD=4/5) ¥ PL 
Sign ST (HOD DT) · (LOD BT) ·(Invert Sign) (HOD=4/5) ¥ PL 

ST (HOD on . (LOD DT) (HOD=4/5) ¥ (LOD=4/5) ¥ Pin 

Sign ST (HOD Compl) · (LOD BT) · (Invert Sign) PL 

Sign ST (HOD Compl) · (LOD BT) · (Invert Sign) PL 

ST (HOD Compl) · (LOD Compl) Pin 

ST+ CR (HOD BT) • (LOD BT) Pin 

Zone ST (HOD Bn . (LOD Bn PH 

Zone ST (HOD BT) Pin (Forced Parity) 

ST (HOD BT) PL 

ST (LOD Bn PH 

ST Input on left side, no input on right side Pin (Forced Parity) 

CR (HOD BT) PH 

ST == Straight 

CR== Cross 

PH == Parity adiusted for removal of HOD 

Pl == Parity adiusted for removal of LOD · 

FIGURE 31. T/C + 6 GATE COMBINATIONS 

Parity is forced to the left side of the adder to 
the parity adjust gate. 

AND-OR-Exclusive OR-Mask 

The AOE is used for logical connectives and the 
latch data path for storage protect key and direct 
data input sense lines. With one exception, the 
parity gated out with the AOE result byte comes 
from the parity generator on the output of AOE. 
The one exception is storage protect keys,parity, 
which is gated back to the K register with the output 
of the AOE when executing an insert storage key 
instruction. Similar to an adder, the AOE has two 
inputs. One side has inputs from the LBG and Y-Z . 
counters. The other side has inputs from RBG and 
direct data input sense lines. (The storage protect 
keys are combined with the direct data lines prior 
to their entry to AOE.) The output of AOE goes to 
the K register and to DB/DC. This connection to 
DB/DC is twisted so that high- and low-order digits 
are interchanged. 

Digit Buffer (DB) 

The digit buffer is a four-position register with 
positions numbered 0-3. Position 0 is the high
order position. The digit buffer holds the zone por
tion of the fill character for the edits instl'llction and 
high-order digit of quotient bytes for decimal divide. 
The digit buffer is used in conjunction with the digit 
counter to hold, for comparison to the dividend, the 
high-order 8-bits of the normalized divisor when 
executing fixed- and floating-point divides. 

Input to the digit buffer are lined as follows: 

Digit Buffer 

LBG 
AOE 

Digit Counter 

0 1 
4 5 
8 4 

2 

2 

6 
2 

3. 

3 
7 
1 

Output of the digit buffer are considered along 
with the digit counter described in the following text. 

Digit Counter (DC) 

The digit counter is a four-position counter used as 
a counter in decimal multiply and divide, and as a 
temporary storage register in edit, edit and mark, 
pack, unpack and move with offset instructions. 
Inputs to the digit counter are: 

Digit Counter 8 4 2 

VFL 4 5 6 7 
LBG 4 5 6 7 
AOE 0 1 2 3 
Multiplier Bus 0 1 2 3 
Force 9 to DC 1 x x 

The DC is a trigger register connected to a 
latched incrementer that feeds back into the reg_ister. 
The incrementer can be either increased by one or 
decreased by one. 

The parity bit associated DB/DC is set from 
input parity when one is available. (Multiplier bus 
does not have a parity bit.) The DB/DC parity bit 
can also be sent from a parity adjuster when counting 
DC up or down. The input is used only with decimal 
divide when the correct parity is available at the 
beginning of a count. 

The outputs of DB and DC are taken together as 
a byte to either LBG or the byte distribution (TD in) 
to the K register. 

· S and T Pointers 

The S and T Pointers are three-position counters 
that are used as byte address pointers in the SS and 
SI format instructions. The one input to each pointer 
is the H register bits 21-23. For SS instructions, 

Variable Field Length 1/66 85 



the starting byte address for operand 1 (Op 1) and 
operand two (Op 2) is placed in T and S respectively. 
Each pointer is stepped up or down one as each byte 
is processed depending on the direction of movement 
through the operand field. 

Each pointer has a three-position trigger regis
ter with a latch output, implemented with an incre
menter-decrementer. The incrementer-decre
menter modifies the output of the latch to give the 
next higher or lower register value, depending on 
whether the pointers are being stepped up or down. 

Three decoders decode the output of the pointers 
and provide eight address lines to control the byte 
gating. These decoders are: 

1. S out decoder -- connects to the S register 
and points to a byte of the L or K register for the 
RBG. 

2. T out decode -- connects to the T register 
and points to a byte of the K register for the LBG. 

3. T in decode -- connects to the T latch and 
controls the release of the K register byte when gat
ing the result byte to the K register. 

The pointers are also decoded for O or 7 to de
termine when main storage word boundary is reached. 

Y and Z Counters 

The Y and Z counters are each four bits in length. 
They are used as two four-bit counters for SS dec
imal instructions, and as one eight-bit counter for 
SS logical instructions. In SI and direct data instruc
tions, Y and Z are used as an eight-bit register to 
hold operation code bits 8-15. Operated individually, 
Y or Z can be counted up or down by ones. Operated 
as an eight-bit counter, they can be counted up or 
down by one or by eight. Counting by eight is used 
for the move instruction in transmit mode. 

Each counter is a four-bit register feeding 
through an incrementer-decrementer to a four-bit 
latch. The latch is connected back to the register 
input. 

When used as counters, in the execution SS 
instructions, Y and Z determine when the operation 
is complete. Figure 32 shows the starting and end
ing conditions for all SS instructions. 

The Y and Z counters have output,; to control 
decoders, AOE and direct data gate. The connection 
to AOE is for the immediate instructions (SI). 

The direct data gate places the contents of Y 
and Z (operation code bits 8-15) on eight lines for 
three machine cycles in executing a read direct or 
write direct instruction. 

The Y and Z counters are set from IOP (8-15) at 
B time of the last cycle of every instruction. This 
allows the I unit to overlap Tl and T2 with the SI and 
byte type RS and RX instructions. This set of Y and 
Z is similar to the set of EOP. 

86 1/66 2075 Processing Unit -- Volume 3 

Start 
Count Count Count ~ 

Instructions y z y z Y and Z End Op 

AP, CP, SP, ZAP LI L2 Dn Dn YandZ=O 

MP LI L2 Dn Dn y = 0 

DP L2 L2 Up Dn y =LI 

MVO, PK, UNPK LI L2 Dn Dn y = 0 

MVN, MVC, MVZ, 
L Dn YZ = 0 

CLC, NC, OC, XC 

TR, ED, EDMK 0 Up 

TRT 0 Up YZ = L or Nonzero 
Character 

FIGURE 32. END OPERATION CONDITIONS--Vfl 

Direct Data Register 

The direct data register is an eight-bit register (no 
parity) that is set with a byte from main storage on 
a write direct instruction. The contents of the DD 
register remain fixed until another write direct is 
executed. 

Multiplier Bus 

The multiplier bus is a four-position gate used to 
transfer the low-order 4-bits (J60-63), without 
parity, from the J register into the DC during fue 
execution of the decimal multiply instruction. 

VFL EXECUTION AND CONTROL 

• Execution of SS instructions is divided into five 
sequences: 
1. Set-up sequence. 
2. Iteration sequence. 
3. Store-fetch sequence. 
4. Prefetch sequence. 
5. Address put-away (TRT and EDMK only). 

• Set-up sequence fetches first word of both oper
ands from storage and sets VFL control. 

• Prefetch sequence fetches next operand 2 word if 
needed. 

• Iteration sequence gates data through VFL units 
one byte at the time. 

• Store fetch sequence. Stores completed results 
and fetches next operand 1 word. 



2 Fetch First Word Operand 1 

3 

"-
::::> 

4 Fetch First Word Operand 2 I-
u.J 
V) 

5 

6 

Prefetch Started for 
Error 

7 Second Word Operand 2 

8 

9 

Error 

Check 
Signs 

Process Sign Bytes 

T=O·Error S=O·T/O 

T=O PF l Reload L 

PF 2 Request 

PF 3 Wait (Ace) 

T=O· Error 

T=O 
PF 4 Wait (Ad0 

S=O·TIO 
Y·Z=lllO 

SF l 

SF 2 

SF 3 

SF 4 

Start Recomplement SF 5 End Op 

SF 6 

S=O 

Operand l not 
Completely 
Processed 
ends Io 

FIGURE 33. SS EXECUTION SEQUENCE - AP/SP 

Variable Field Length 1/66 87 



VFL Execution 

The execution of all SS instructions starts with a 
set-up sequence. For repetitive byte operations, 
iteration sequences are used. Operand 1 fetching 
and storing is done by store-fetch sequences. Oper
and 2 fetching is done by prefetch sequences. For 
those instructions in which the result or address is 
put-away in a GR, the put-away is done by sequencer 
A, B, C, and D. 

Figures 33 and 34 show an example of a decimal 
add sequence and how the sequences described in 
this section are used. 

Set-Up Sequence 

The set-up sequence prepares counters and registers 
to start the iteration sequences. This consists of: 

1. Address calculation (low-order of 3 bits set 
into T and S) and set initial fetch request, for each 
operand. 

2. Address comparison for overlapping fields. 
3. Initial setting of Y and Z operand length 

counters. 
4. Transfer operand words when they arrive 

from main storage, from J register to Kand L 
registers. 

5. Set initial values into ER and SC for logical 
instructions. 

6. Set VFL gating triggers. 
7. Start iteration sequence. 
The address comparison for overlapping fields is 

made because byte operations must be executed in 

Clock Cycles 

R R R 
Set-Up l 2 3 4 s, 6 7 8 9 

I ~ I 
-; 
R 

Pre fetch I I I 3 4 l 2 3 4 

I I I I 
Iterations I I I 3 l 2 21 2 2 

R 
Store-Fetch I l 2 

Storage 
Bank l 

Bank 2 

T Pointer 

S Pointer 

Y Counter 

Z Cou- '" 

11 
I 

1: 
I Fetch I Fetch 

Fetch 

4 4 4 4 

l 

10 ! - - - - - -
8 - - l - I - - -

Bl+Dl+Ll = ---xxlOO 

B2+D2+L2 = ---xxOOl 

4 4 4 4 3 

l l l l 0 

- 10 10' 9 I 8 

- I 8 i 8 i 7 6 

Ll = 1010 

L2 = 1000 

I 
I 

Ii 

3 2 l 

0 7 6 

8 i 7J 6 
6 :s-14 

The letter "R" indicates when the BCU request is set. 

\ 
\ 

Fetch 

0 0 0 

5 5 5 

5 5 5 

3 3 3 

FIGURE 34. SS INSTRUCTION EXECUTION EXAMPLE--DECIMAL ADD 

88 1 /66 2075 Processing Unit -- Volume 3 

\ 

3 

0 0 

5 5 

5 5 

3 3 

If the difference between the starting address of 
the two operands is 0-7, there is a possibility that 
bytes of both operands will be taken from the same 
st~rage word during execution. When operand 1 and 
operand 2 are in the same storage word, the RBG is 
switched to gate from the K register instead of the 
L register, and thus, both the LBG and RBG take 
bytes from the K register (see "Overlap Control"). 

If the difference between the starting address of 
the two operands is 8-15, then the operand 2 word 
which would be fetched by a prefetch is presently in 
the K register. Therefore, the contents of the K 
register are transferred to M register during each 
store-fetch sequence, then M is transferred to L in 
the next prefetch. 
such a way that results appear to have been generated 
by operating one byte at a time from main storage. 
When the operands do not overlap into the same 
storage word, there is no difference between oper
ating a byte at a time or eight bytes at a time from 
main storage. 

In decimal operations, the comparison is made 
to determine if operand 1 resides in lower order 
storage than operand 2. In logical operations, the 
comparison is made to determine if operand 1 resides 
in a higher order storage location than operand 2. 

Iteration Sequence 

The VFL iteration sequence executes the arithmetic 
or logical functions specified by the instruction. In 
general, one data byte of each operand is processed 
each iteration cycle, controlled by one of three 

.!...J 

2 2 2 2 2 2 

R R 
4 5 6 l 2 3 4 5 

il Store 
I 

Fetch IL Store 

0 0 0 7 6 5 4 3 3 2 2 

5 5 5 4 3 2 l 0 0 7 7 

5 5 5 4 3 2 l 0 0 15 15 

3 3 3 2 l 0 15 15 15 15 15 -



iteration sequencers, IS 1, IS 2, or IS 3. The precise 
function of each sequencer depends on the instruction 
in process. For example, during the execution of 
the decimal add (AP) instruction (Figure 34), IS 3 
cycle checks the sign digit of the two operands 'and 
sets controls for the correct algebraic addition; IS 1 
provides the proper gates to the decimal adder to 
add the low-order decimal digit (HOD of the byte) of 
each operand; thereafter, IS 2 cycles repeat to add 
one byte of each operand each cycle until all bytes 
are added. 

If a word boundary of either operand is encoun
tered during iteration cycles, the iteration sequence 
is suspended until a prefetch sequence or store-fetch 
sequence provides the next word; iterations then 
resume. 

Each cycle that an Op 2 byte is processed, the Z 
counter and S pointer are stepped. When S steps 
down to zero for a decimal instruction or up to seven 
for logical instructions, an Op 2 word boundary is 
encountered and a prefetch sequence started to fetch 
the next operand 2 word. When Z steps down beyond 
zero to 15 (1111) all Op 2 bytes are processed and 
byte gating for Op 2 is terminated. 

Each iteration cycle that an Op 1 byte is proc-"',,. 
essed Y counter and T pointer are stepped. When T 
steps down to zero for decimal instructions or up to 
seven for logical instructions, an Op 1 word boundary 
is present, iteration cycles are suspended and a 
store-fetch sequence occurs. The store-fetch se
quence stores the completed result word and fetches 
the next Op 1 word to be processed. Iteration cycles 
resume at the conclusion of the store-fetch. 

Prefetch Sequence 

When Op 2 is in more than one storage word a pre
fetch sequence is used to fetch the second and sub
sequent Op 2 words before they are actually needed. 
The fetch for the first word of Op 2 is made during 
the early cycles of the set-up sequence. If Op 2 is 
in more than one storage word. the first prefetch is 
started during set-up (SU 7 cycle in Figures 33 and 
34). Thereafter, a prefetch sequence is initiated 
each time an Op 2 word boundary is encountered 
during iteration cycles. 

Four sequencers are used to execute a prefetch, 
PF 1 through PF 4. The prefetch cycles occur in 
sequence and, except PF 1 cycles, overlap other 
execution cycles. PF 2 is the cycle in which the 
fetch request for the next Op 2 word is initiated; 
PF 3 is the wait cycle for the accept from BCU. It 
may span one or several CPU cycles depending on 
storage priorities. The prefe~h sequence then 
waits in PF 4 cycles until the Op 2 word arrives from 
storage into the J register; the Op 2 word is then 
transferred from the J to the M register and the 
prefetch sequence terminates. 

When an Op 2 word boundary is encountered 
during iteration cycles, the prefetch sequence starts 
with PF 1 cycle. PF 1 cycle transfers the previously 
prefetched Op 2 word from the M register to the L 
register. PF 2 cycles follow PF 1 if another Op 2 
word must be fetched from storage; otherwise, PF 1 
cycle transfers the last Op 2 word from the M register 
to the L re[,ister and terminates the prefetch 
sequence. Iteration cycles are suspended during PF 1 
cycles; iterations are resumed after PF 1 and are 
concurrent with PF 2 through PF 4. 

Store-Fetch Sequence 

The store-fetch sequence is used to fetch the next 
Op 1 word to be processed from storage and to store 
the completed result from the K register. The store
fetch sequence is also used as the terminating se
quence for all SS instructions except the TRT in
struction. 

The store-fetch sequence consists of six sequence 
cycles, SF 1 through SF 6 (Figures 33 and 34). In 
general, SF 1 and SF 2 control the fetch for the next 
Op 1 word and SF 3 through SF 5 control the request 
to store the result word contained in the K register. 
SF 6 is the cycle that waits for the new Op 1 word to 
arrive from storage if a fetch is started in SF 1. 

Each time an Op 1 word boundary is encountered 
during execution a store-fetch. sequence is initiated. 
The T pointer is used to control the gating of Op 1 
data bytes; it is stepped up or down one as each data 
byte is processed. The crossing of an Op 1 word 
boundary is, therefore, indicated by the T pointer. 
When execution moves right to left through an oper
and field, the T pointer equals O at a word boundary. 
When execution·moves left to right through an oper
and field, the T pointer equals 7 at a word boundary. 
When the execution moves to an Op 1 word boundary, 
iteration cycles are suspended; a fetch is made to 
get the next Op 1 word from storage; the completed 
result word is stored, and iteration cycles are re
sumed when the new Op 1 word arrives from storage. 
In this case, the store-fetch sequence starts at SF 1 
and sequences through SF 6. 

When all data bytes of both operands are proc
essed, or an interupt is signaled, a store-fetch se
quence is initiated to terminate the instruction. The 
data bytes are counted as they are processed during 
iteration cycles. When the number of bytes specified 
by the length field of the instruction have been proc
essed, the instruction is terminated. The Y and Z 
counters are used to count the data bytes and signal 
the end of the instruction. For some VFL instruc
tions, the Y and Z counters are set to the operand 
length in the IOP register, then stepped down during 
iteration cycles until Y and Z equals zero. other 
instructions reset Y and Z to zero to start, then step 

Variable Field Length 1/66 89 



them up during iteration cycles until Y and Z equals 
the length contained in the IOP register. Figure 32 
shows how the Y and Z counters are used and the end 
operation conditions of each VFL instruction. 

Address Put-Away 

Two instructions, translate and test and edit and 
mark, put information in general registers as part 
of their re$ults. 

Translate and test inserts the argument address 
(Op 1 address) into the low-order 24 bits of GR 1 
and the translated byte (nonzero byte from the trans
lation table, Op 2) in the low-order eight bits of 
GR 2. These results are inserted in GR 1 and 2 
only if a nonzero byte is found. 

Edit and mark inserts the byte address of the 
first significant result digit in the low-order 24 bits 
of GR 1. 

Sequencers A, B, C, D, IS 1 and IS 3 are used 
for the TRT address put-away and sequencers A, 
B, C, D, and IS 1 are used for the EDMK address 
put-away. 

Interrupts 

VFL operation can have the following interrupts: 
1. Invalid address 
2. Data 
3·. Specification 
4. Decimal overflow 
5. Decimal divide check 

Invalid Address: The invalid address interrupt can 
occur on any fetch and all SS instructions have at 
least one fetch. The address invalid trigger is reset 
at the beginning of each SS execution and then, once 
set, remains on even though valid words may return 
to the J register after the trigger is set. For all 
SS instructions, except multiply and divide, the 
address invalid is sampled at SU 9, and SF 6. For 
SS multiply and divide, when the address invalid 
trigger is on, the sequence is switched to SF 3 and 
terminates the instruction. The E interrupt trigger 
blocks the set of VFL request triggers during the 
SF sequence and causes the VFL end sequence trig
ger to be set. 

Data Interrupt: Data are checked on each iteration 
cycle and the interrupt triggers are set when a sign 
or digit is detected in the wrong place. During the 
next store-fetch sequence, if the E interrupt trigger 
is on, the VFL end sequence is set and the setting of 
both VFL request triggers is blocked. 

Specification Interrupt: The specification interrupt 
can occur on decimal multiply or divide. Ll and L2 
are checked during SU 2 cycle. If L2 is equal to or 

90 1/66 2075 Processing Unit -- Volume 3 

greater than Ll, or L2 is greater than 7, the store
fetch is set and the ending sequence follows. 

Decimal Overflow: Decimal overflow can occur on 
AP, SP and ZAP. The occurrence of the overflow 
interrupts does not alter the execution of the instruc
tions. 

Decimal Divide Check: Divide check is sampled 
during sequence A of divide test sequence. A divide 
check switches the sequence to SF 3, which starts 
the end sequence and terminates the instruction. 

VFL Control 

VFL Tl-8 Trigger: VFL Tl-8 are a group of multi
purpose control triggers. All of these triggers are 
set at A time and VFL T2, VFL T3, and VFL T5, 
have latched outputs. The function of each trigger 
is controlled by the instruction being executed. 
(See Figure 9466) 

VFL store and Fetch Request Triggers: These are 
two intermediate request triggers used for E unit 
storage request. They have two outputs: one to the 
BCU, and one to the I Unit. In the I Unit, the store 
request trigger initiates an address compare and the 
fetch request to return the word to the J register. 
The BCU request triggers are set at the beginning 
of the cycle following that in which the E unit request 
triggers are set. The VFL request triggers are 
set at LB time and are reset with the A time and 
accept. The set for these triggers is latched to 
generate the gating line gate AA to SAR and H. 

Store-Fetch and VFL Sequence Triggers: VFL se
quence triggers 1-12 are dual-function triggers, 
control led by the VFL SF trigger. When the set-up 
sequence of an SS instruction starts, the SF trigger 
is off, and the VFL sequence triggers (1-9 or 1-12) 
control and gate set-up sequence functions. When 
the set-up sequence terminates, the SF trigger is 
set and thereafter, the VFL sequence triggers (2-7) 
control and gate functions for the store-fetch sequence. 

Y-Z Counters: The Y and Z counters are the oper
and length counters for the SS instructions. The 
length counters start with the specified operand 
lengths and counts down to zero for all instructions 
except DP, ED, EDMK, TR and TRT. 

Counting the Y and Z counters down maintains 
the count of the remaining operand bytes to be proc
essed. The value in the length counter can be used 
to determine if another operand word should be 
fetched once a prefetch has started. The first cycle 
of the prefetch sequence transfers the previously 



fetched word from the M register to the L register. 
If another word is needed (length counter shows 
more than eight bytes remain) the prefetch sequence 
continues to get the next word from storage. 

For ED, EDMK, TR, and TRT there is no actual 
prefetch. The prefetch sequence is used to fetch 
operand 2 words but does not overlap iterations. 
For EDMK and TRT, the address of a byte in oper
and 1 is put in GR 1. The most convenient method 
in generating this address is to start with Y-Z at 
zero and count them up as operand 1 bytes are proc
essed, then add Y-Z to Bl + Dl when the byte ad
dress is required. The end of the operation is in
dicated by Y-Z equal IOP 8-15. 

In decimal divide, the number of quotient bytes 
to be generated is Ll-L2. Therefore, L2 is set into 
Y and counted up until Y equals IOP (8-11). 

When counting down, the counters are stepped 
with the set conditions for the iteration sequencers. 
Because the specified operand lengths are the num
ber of bytes minus one, the counter value of all ones 
indicates the end of operation instead of a zero value 
(Y or Z counter is stepped down beyond 0 to 15). 
Furthermore, the counter latch is decoded instead 
of the register because the decoder is used to set 
and to reset triggers at A time. This means that 
the counter value of 1110 for decimal or 1111-1110 
for logical operations indicates all bytes have been 
processed. 

End Sequence Trigger: The VFL end sequence 
trigger is set by all SS instructions. With one ex
ception, the VFL end sequence trigger is set two 
cycles before the end of the operation (Figure 35). 
The one exception is the translate and test instruc
tion, which ends in an address put-away sequence. 
The set of the VFL end sequence trigger is also the 
VFL through signal to the I unit. The ELC is set 
for the last cycle on every SS instruction. This is 
done to take advantage of the built-in end operation 
control functions of the ELC trigger. Figure 35 
shows the two end operation sequences. 

VFL Zero Detect: The VFL data flow has two zero 
detects, one on the output of the digit gates (RBG 
ZD) and the other on the result bus back to K regis
ter (result ZD). 

CPU Clock Cycles 

SF 3 

SF 4 

SF 5 

VFL Thru 

VFL End Seq 

ELC 

Normal SS End Sequence 

I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I . 

--..I!--- Wait h ere for accept if 
store request was made 

Seq D 

IS 1 

IS 3 

VFL Thru 

VFL End Seq 

ELC 

TRT Address Put-Away End 

-

FIGURE 35. END OPERATION, VFL 

The RBG ZD is connected to two latches; the 
low-order digit is latched for edit and both digits 
are ANDed and latched as a byte not zero latch. 
This is used in TRT and overflow detection. 

The result ZD sets a trigger with a latch output. 
The zero detect logic haR a control line to force 
zero in the low-order digit (sign position) for arith
metic operations. The trigger is actually set if a 
nonzero byte is detected and is in the off state at the 
end of any operation with a zero result. The result 
ZD is used by decimal arithmetic and logical com
pare operations. 

Variable Field Length 1/66 91 



Overlap Control 

• Compare operand locations in storage. 

• Set· 0-7 or 8-15 overlap controls if operands 
overlap. 

• Controls register to register d:ita transfer during 
pref etch. 

• Sets byte gate controls for iterations. 

The two operands of an SS instruction may be located 
at any addressable storage location. Both may be 
contained within the same 72-bit storage word or 
separated by any number of storage addresses within 
the capacity of the system. The operands are per
mitted to overlap the same storage addresses uncon
ditionally for some instructions and conditionally for 
others. For example, the move-with-offset instruc
tion permits the operands to overlap in any manner, 
while those instructions that perform decimal arith
metic, such as add or subtract, permit the operands 
to overlap the same storage addresses only if the 
low-order bytes of each operand coincide. 

When the starting bytes of the two operands are 
separated by a few byte addresses in storage, the 
gating of data bytes from each operand during 
iteration cycles may move into and out of common 
storage words as word boundaries are encountered. 
For example, consider a decimal instruction with 
Op 2 starting in an adjacent higher storage word than 
Op 1. During initial iteration cycles, Op 2 bytes are 
gated from the L register and operand 1 from the K 
register. If Op· 2 crosses a word boundary before 
Op 1, both operands move into the same storage 
word in the K register; then both Op 1 and Op 2 bytes 
are gated from K register. Thereafter, if an Op 1 
word boundary is encountered, iteration cycles are 
suspended while the data in the K register is trans -
ferred to the L register and the new Op 1 word is 
fetched from storage to the K register. When iter
ation cycles resume, Op 1 data bytes are gated from 
the K register while the remaining Op 2 bytes are 
gated from the L register. 

92 1/66 2075 Processing Unit -- Volume 3 

Two overlap conditions are considered; if the start
ing bytes of both operands are separated by less than 
eight bytes in storage, 0-7 overlap exists, if the separa
tion is more than 8 bytes but less than 16 bytes 8-15 over
lap exists. A 0-7 overlap or 8-15 overlap control trigger 
is used for each of the overlap conditions. 

One of the functions of the VFL set-up sequence 
is to determine the overlap status of the two operands 
and establish the most efficient byte gating control. 
During the early cycles of the set-up sequence, fetch 
requests are made to get the first word of each oper
and -- the storage word that contains the starting 
byte. The storage address of Op 1 is computed and 
the fetch made, then the storage address of Op 2 is 
computed and the fetch for the Op 2 word is made. 
Later, in the set-up sequence, the two storage ad
dresses are compared to determine the number of 
bytes that separate them. 

Through the main adder, the Op 1 storage address 
is subtracted from the Op 2 storage address and the 
result set into K register positions 0-31. K register 
positions 0-28 are zero detected and if equal to zero 
the starting bytes of the two operands are separated 
by less than eight bytes (one word) in storage. In 
this case, both operands may start in the same 
storage word or adjacent words. When K0-28 equals 
zero, the 0-7 overlap trigger is set; when K0-28 is 
not equal to zero and K0-27 equals zero, the 8-15 
overlap trigger is set. 

The K0-27 or K0-28 zero detection and the set 
of the appropriate overlap control trigger occurs 
during SU 8 cycle of the set-up sequence for all VF L 
instructions except for translates, edits, and mul
tiply or divide. The set of the overlap control trig
gers are mutually exclusive; the set of 0-7 overlap 
resets 8-15 overlap and visa-versa. 

Because the translate and edit instructions may 
not step through both operands serially or process 
data bytes of both operands at the same rate, the 
set and reset of the overlap control triggers occurs 
at various times throughout instruction execution. 
See instruction involved. 

Overlap control is not used during the execution 
of decimal multiply or divide instructions. For the 
decimal divide instruction, all storage words of 



both operands are fetched from storage and aligned 
in working registers before iterations start. There
fore, no prefetches occur during iterations and the 
store-fetch sequences only store. For decimal 
multiply, all storage words of Op 2 are fetched and 
aligned in the L register, and the first word of Op 1 
is fetched and aligned in the J register during the 
set-up sequence. Therefore, no prefetches occur 
and the store-fetch sequence fetches the next multi
plicand word and stores the completed product word. 

0-7 Overlap: The set status of the 0-7 overlap 
trigger indicates that the starting addresses of the 
two operands are within eight bytes of each other. 
However, it does not indicate whether the operands 
start in the same or adjacent storage words. 
Earlier during the set-up sequence, the starting 
byte addresses of Op 1 and Op 2 are set into the T 
and S pointers respectively. T and Sare compared 
to determine if the operands start in the same or 
adjacent storage words when a 0-7 overlap condition 
exists (Figure 36). 

8-15 Overlap: The set status of the 8-15 overlap 
trigger signals that the two operands are separated 
by more than eight bytes but less than 15. There
fore, the two operands may start in adjacent storage 
words or be separated by one word as shown in 
Figure 37. 

ER and SC Used as Word Counters 

The exponent register (ER) and the shift count reg
ister (SC) are used to control storage addressing · 
for those VFL logical instructions where the operand 
1 and operand 2 data bytes are processed at the same 
rate. The prefetching of operand 2 data and the 
store-fetching of operand 1 data occur alternately. 
The ER maintains a word count of the result words 
processed; it is advanced one each time a result 
word is stored. The ER contains the correct incre
ment to be added to the operand 1 starting address 
of Bl + Dl for the store address. The SC maintains 
the correct address increment to develop the next 
fetch address of either Op 1 or Op 2. The two 

tables of Figure 38 show the contents of the ER and 
SC for each prefetch and store-fetch operation. 

In section A of Figure 38, an Op 2 word boundary 
is crossed before the first store-fetch of Op 1 is 
required. During the set-up sequence, prior to the 
execution of the instruction, VFL T5 control trigger 
is turned on if Op 2 will cross a word boundary be
fore Op 1, in which case, the SC is set to two. In 
addition, during the set-up sequence, the first Op 2 
word (B2 + D2 + 0) is placed in the L register and a 
fetch (first prefetch) is begun to place the second 
Op 2 word (B2 + · D2 + 1) in the M register. The first 
pref etch that occurs after set-up addresses Op 2 data at 
B2 + D2 + 2. When a prefetch sequence starts, the 
SC is gated to the AA (line 2, Figure 39) to compute 
the fetch address, then the ER + 1 is placed in the 
SC (lines 11, 13, 14, and 15, Figure 39). The SC 
now contains the correct increment to fetch the next 
Op 1 word. At the beginning of the store-fetch 
sequence (Figure 40), the SC contains the correct 
increment to develop the fetch address and ER con
tains the store address increment. 

After the fetch request has been initiated, the 
store address increment is transferred from ER to 
SC (lines 11, 13 and 15, SF 1 cycle in Figure 40). 
The store increment is used during SF 2 and SF 3 
cycles (line 1 in Figure 40). During SF 3, ER is 
incremented by one to create the new store address 
increment. During SF 5 and SF 6, the SC is incre
mented two more than the ER and, therefore, con
tains the correct increment for the next fetch of 
Op 2 data. 

Section B of Figure 38 shows the Op 1 field reach
ing a word boundary before the Op 2 field. The SC 
is set to one during the set-up sequence (VFL T5 
off), the correct increment for the first Op 1 fetch 
address. In SF 5 cycle of Figure 40, the SC is in
C'.remented to one more than the amount in the ER. 
This is the correct increment to address the third 
Op 2 word. During the next prefetch, Figure 39, ER 
plus one is placed in the SC during PF 2 to provide 
the address increment for the fetch of the next Op 1 
word (used during the next SF). However, the incre
ment amount in the SC remains the same as for the 
preceding fetch of Op 2. 

Variable Field Length 1/66 



Operand 1 and Operand 2 start in adjacent storage words 

Storage 
Words I 5704 I 5712 I • 

~171+ i21314151617loll 1213'415H710111'. 

l l , 
Bl+Dl+Ll 

(5710) 
B2+D2+L2 

(5715) 

1. Initially, T > 5 and therefore, iterations start with 11gate l with 5 11 on. 

2. When T = 3 and 5 = 0, a prefetch is initiated and "gate K with 5" is set.* 

3. When T = 0 and S = 5, a store-fetch is initiated, K is transferred to l 
and "gate l with S" is set. 

Operand 1 and Operand 2 start in the same storage word 

Storage 
Words I 6304 I 6312 I 

;11lol1I213141516171 + 12131415H7Joi11; 

t t 
Bl+Dl+LI B2+D2+L2 

(6307) (631 l) 

1. Initially, T~ Sand therefore iterations start with "gate K with $ 11 on. 

2, When T = 0 and S = 4, a store-fetch is initiated, K is transferred to l 
and "gate l with S" is set. 

3. When T = 4 and S = 0, a prefetch is initiated and "gate K with 5" is set. 

* "Gate L with S" and "gate K with S" are mutually exclusive. The set of one resets the other. 

FIGURE 36. OVERLAP EXAMPLE - 0-7 OVERLAP 

0 
(Store) ER 

(Fetch) SC 

Operend 2 ahead of Operand 1 
Starting values: T=2, 5=5 

0 ,0 1 l 
I I 

'1 
I 

2 3 12, I I ' I 
I I ' I I > 

• FIGURE 38. ER AND SC WORD COUNTERS 

2 i 3 3 4 
I 

I I 
4 /3, ~ 14, 6 

' ' ' I I ' I I ' ' > 
> < 

One word between starting points of Operand 1 and Operand 2 

Storage 
Words 3464 3472 3480 

; 1314151617 lol l I 2131415 H 71 o i 1 12131415 16171 o 1 { 

f t 
Bl+Dl+Ll B2+D2+L2 

3471 3482 

1. Initially, 3464 is in K, 3480 is in l, and 3472 is being prefetched to M. ("Gate l with S" is 
on and stays on}. 

2. When T = 5 and S = 0, a prefetch is initiated and M is transferred to l. * 

3. When T = 0 and S = 3, a store-fetch is initiated and K is transferred to M. 

Operand l and Operand 2 start in ad 1acent words 

Storage 
Words 3464 3472 3480 

~131415161710 I 1 I 2 I 3 I 4 15161710 I 1 I 2131415161710 i: 
t t 

Bl+Dl+L l B2+D2+L2 
3473 3484 

1. Initially, 3472 is in K, 3480 is in l, and 3472 is 1n l, and 3472 is being prefetched to M. 

2. When T = 0 and S = 3, a store-fetch is initiated and K is transferred to M. The modified 
3472. in K, goes into Mon top of the prefetched 3472. 

3, When T = 5 and S = 0, a prefetch is initiated and M is transferred to l. 

*With either of the overlap triggers on, prefetch is c;>nly one cycle, PFl. 

FIGURE 37. OVERLAP EXAMPLES - 8-15 nvERLAP 

© 
(Store) ER 

(Fetch) SC 

Operand 1 ahead of Operand 2 

Starting values: T=5, 5=2 

0 l I 2 
I I 
I 

'2 1 l 2 3 
' I I ' ' 

I 
I ' I I > I ,.,. 

2 3 
I 

'3 4 I, 
' 

I 
I I > 

' 
I 

3 4 
I 

14 5 
' ' 

I 

' I 

4 
I 

'5 
I ' 
I .... 

Operand2) Jol1l213'-$H71 (j) I ·@ '.,@ ',@) 
-~~-'---'-.L-,-L.l--l--L...l.-.1-~~~~~..__~~~~.....J'--~~~~--'~~~~~-'-~--11 

s2+b2 

Strips labeled Operand 1 and Operand 2 represent groups of storage words in different storage locations. 



Sequencer PF 1 PF 2 PF 3 PF 4 PF 4 PF 4 PF 4 

A Clock ...... ...... ...... -- ...._ ...... -- '--

VFL Address Advance 

Got e SC to AA 

3 VFL Fetch Request 

4 Got e AA to SAR & H 

5 Mt oAMTC 

6 J to AMTC 
For ED+ EDMK 

7 Rele ase L (0-63) 

8 AO B to M (0-63) and Re I 

9 J Lo oded Tgr 

"Gt K with S "Tgr 
For MVN,MVC,MVZ,NC,CLC,OC,XC if 0-7 Ovlp 

I I I 
10 Set 

11 Set "ER to AETC" Tgr Far MVN,MVC,MVZ,NC,CLC,OC,XC 
T 

12 Set "SC to AETC" Tgr For ED+ EDMK 
I I 

13 Fore e One to AE (7) For MVN,MVZ,NC,CLC,OC,XC,ED,EDMK 

14 Fore e Parity to AE For MVC 

15 AEO B to SC and Rel 

1 
FIGURE 39. ER AND SC CONTROL DURING PREFETCH - LOGICAL INSTRUCTIONS (NOT TR OR JRT) 

Sequencer IS 2 SF 1 SF 2 SF 3 SF 4 SF 5 SF 6 

A Clack -1------+-------+------+------+-----+-----1-------+----

Gate SC to AA 

2 VFL Fetch Req T gr 

3 VFL Store Req T gr 

..L. ER+l (Fetch) ..L ~(Store) 
L--+-----<_l_"'~ 

I 
-1--------+------+----+--+--~_L~ NaReqf~CLC-~~------1~----1-----

4 GateAAtoSARandH---+-------+-_LL----+-~--'-----'1~/-+----_L'-----+-~-'------+------1-----t--
/ 

5 J t o AMTC j_ 
6 Kt oAM _j_ 0-7 + 8-15 Ovlp 

7 AO B to L (0-63) 

8 AO B to M (0-63) 

9 AO B to K (0-63) 

~/ - - - --- ',,__-1----_i,_1 __ --+---r' - - _I_ --- --,,,.._+-_L.____0-7 Ovlp ~--'------1'-----
I { Develop Store I .1.../ I Increment SC I +---\ Address L for Next Fetch .L. 8-15 Ovlp~ j Loaded Lth --'-------s.. I '-----------~ .L_ "\._ 

10 SC to AETC 

11 ER to AETC 

12 For ce 1 to AE (7) 

13 For ce Parity to AE 

14 AE OB to ER 

15 AE OB to SC 

..l \ I I \ \ T 
-+-~~-----'"\-+-~~~+~~j~~---t-1 ~+---~~~\-r-~..L~ER+!I ~ __i.1_ L -/ 

--+-----"""~..L __ ER -+--7~:.l.~---+------f.__ ___ ,-1:1f--L-L-- ER+ 2 ~ ER + 3 •'- / 

'°'-- _j..--- '-.. '- _ - l--- _ ---- 1--~~~'....~vlp 
* TS is set during set-up if S > T, which indicates operand 2 is crossing word boundaries ahead of operand 1. 

FIGURE 40. ER AND SC CONTROL DURING STORE-FETCH - LOGICAL INSTRUCTIONS (NOT TR OR TRT) 

Variable Field Length 1/66 95 



THEORY OF OPERATION 

VFL INSTRUCTION EXECUTION 

• SS instructions start with set-up sequence 
fetch operands from storage. 

• Iteration sequence follows set-up -- data bytes 
gated through VFL units. 

• Prefetch sequence overlaps iterations -- fetches 
Op 2 storage words. 

• Store-fetch sequence stores result word and 
terminates SS instructions. 

This section provides a detailed description of the 
execution of VFL instructions; these include all 
instructions in the SS instruction format and certain 
other fixed sequence VFL instructions in the RX and 
SI format. In addition, convert and direct control 
instructions are included. 

Where the functions of several instructions are 
similar, they are treated as a group. For example, 
decimal add, subtract, compare, and zero and add 
are similar in function and execution, and therefore, 
share common flow charts where applicable. 

Because of the complexity of the decimal divide 
and decimal multiply instructions, they are explained 
separately. 

Set-Up Sequence -- Decimal Instructions 

• Fetch storage word that contains first byte to be 
processed for each operand. 

• Compare storage address of each operand to 
determine if storage words overlap. 

• Set starting byte address into S and T pointers. 

• Start first prefetch if required. 

• Set fetched words into Kand L registers. 

• Set VFL control and gating triggers. 

The set-up sequence for decimal instructions per
tains to the AP, SP, CP, ZAP, MVO, PK, and 
UNPK instructions. Prior to cycle by cycle functions, 
certain operand and storage address relationships 
are examined. 

If Op 2 is contained in more than one storage 
word, a storage fetch request for the second word is 
made during set-up. This request is called the 
first prefetch. The length (L2) of the operand alone 

96 1/66 2075 Processing Unit -- Volume 3 

does not indicate how many storage words Op 2 may 
span. As an example, Op 2 could have only two bytes 
(L2=1) but start at byte address zero and be contained 
in two storage words. However, L2 could be seven 
with a starting byte address of seven and Op 2 con
tained in one storage word. Therefore, L2 is 
compared with S (starting byte address) to determine 
if the first prefetch should be initiated. If L2 is 
greater than S, Op 2 is in more than one storage 
word and the first prefetch is initiated during set-up. 
During iterations, a second prefetch is started when 
the first Op 2 word boundary is crossed (S=O). At 
this time, the length counter (Z) indicates the number 
of bytes that remain to be processed. If Z (L2) is 
greater than 7, the prefetch is continued, otherwise 
it is terminated after PF 1 cycle. 

With the exception of pack and unpack, all deci
mal instructions that require detection or processing 
of overlapping fields move through both operands at 
the same rate. This means that the relative position 
of the two operands at the start of execution remains 
unchanged throughout the execution. 

On unpack, the starting addresses are checked 
for an absolute difference of 0 to 7. If the difference 
is O to 7, the two low-order word address bits are 
updated in the exponent register and shift counter 
each time a word boundary is crossed. When these 
two partial addresses become equal, the crossing 
of the word boundary moves both operands into the 
same storage word and one register (K) is used for 
both operands. 

When the difference of the starting addresses is 
0-7, that is, when B2+D2+L2 minus Bl+Dl+Ll is less 
than 8, a comparison of the byte address indicates 

· whether the two operands start in the same storage 
word. The starting byte addresses are in the S and 
T pointers, Op 2 in S and Op 1 in T. If S is less 
than T, the two operands start in adjacent storage 
words, the first Op 1 word is the second Op 2 word 
required. See Figure 41. 

When operating in single cycle mode, the first 
set-up fetch request is made during SU 1 cycle 
(see Figure 6450). This allows the word that was 
returned to the J register to be transferred to the 
M register during SU 2 cycle. The rest of the set
up sequence is unchanged with exception of the start 
of prefetch. The start of prefetch is delayed to SU 9 
cycle so that the word fetched does not return to the 
J register and destroy the first word of OP 2 which 
returned to the J register during SU 5 cycle. 

Set-Up Functions 

The following text describes the functions of SU 
cycles for decimal instructions, except for decimal 
multiply and decimal divide. The set-up sequence 
for multiply and divide are presented separately. 



SU 1: Y is gated to AA with (SU Ll or SU T2) to 
calculate Bl+ Dl+ LL The extended gate is due to 
the path length from VFL controls to the AA. 

SU·2: The VFL fetch request trigger is set with the 
B clock. The output of this trigger goes to the 
I unit to indicate·J as the return address and to the 
BCU to set their fetch request. The set of both 
VFL request triggers (fetch request and store 
request) is latched to generate the gate of the AA 
to SAR and H. 

SU 3: Z is gated to the AA with (SU L3 or SU T4) to 
calculate B2+D2+L2. The VFL address advance line 
is up during cycle three so that B2 and D2 will be 
in IOP and gated to the AA during cycle four. The 
low-order three bits of H are gated to the T latch 
and T is released with SU L3. This puts the 
starting byte address of operand 1 in the T pointer. 
H(0-23) is gated to the incrementer. The latched 
output of the incrementer and incrementer exten
sion is gated to K (0-31). Because nothing is gated 
into the incrementer extension, its output is zero 
with correct parity. The AOB (32-63) is gated 
to K (32-63) at the same time to put zeros with 
correct parity in the low-order half of K. 

The sequence is held up here until an accept is 
received from the BCU. If an immediate accept is 
received, SU 3 takes only one cycle. This prevents 
a second request being made in SU 5 without an accept 
from the first request. 

SU 4: The AA is gated to SAR and H. Operand 1 
address is gated from K to L. 

H (19, 20) are gated to AE (1, 2) and AEOB to ER 
for pack and unpack (Figure 6477). If the overlap 
triggers are not set, these bits are not used. 

SU 5: The VFL fetch request trigger is set. The 
second operand byte address is gated from H (21-23) 
to the S latch and S is released. The entire second 
operand address is gated from H to incrementer to 
K, as in cycle three. 

SU 6: The VFL address advance line is up during 
SU 6 in preparation for the addition of B2+ D2+ 
(1 or 0) in SU 7. A one is forced to AA (28) if Z 
(1, 2, 4) is greater than S (1, 2, 4) and Z (8) is on. 
The sequence waits in SU 6 for an accept from the 
BCU. 

This fetch request is actually initiating the first 
prefetch. The following table shows the number of 
storage words involved for the various length and 
starting byte address relationships. 

Number of Words z (8) z (1, 2, 4)> s (1, 2, 4) 

1 0 No 
2 0 Yes 
2 1 No 
3 1 Yes 

The starting address comparison is started in 
SU 6 by subtracting L from K and putting the result 
in K. This is the desired result for all instructions 
except unpack. In unpack, if this result is negative 
(no AM C Out 1), L is complemented through the main 
adder and put in K at the end of SU 7. This checks 
the magnitude of the difference since operand l can 
start to the right of operand 2 and move to the left 
during the execution (see Figure 42). 

H (19, 20) are gated to AE (1, 2) and AEOB to SC 
in anticipation of overlapping fields. 

The GT L with S trigger is set here for all 
instructions. The gate L with S trigger is reset as 
gate K with S trigger is set. 

SU 7: If Z (1, 2, 4) > S (1, 2, 4) or Z (8) = l, the 
VFL fetch request trigger is set and prefetch trigger 
3 is set with SU L7. PF 3 is the accept wait cycle 
of the prefetch sequence and is followed by PF 4, 
which transfers J to M. L is gated to AM T/C and 
the complement trigger is set. For unpack, if there 
was a carry out of AM(l) at the end of SU 6, AOB 
is gated to K with SU L7. The AM carry out 1 trigger 
is blocked from changing with SU L7. 

SU 8: The address comparison is completed in this 
cycle by setting 0-7 overlap or 8-15 overlap trigger 
if the conditions are met. The K zero detect 
generates two lines, K 0-27 equal zero and K 0-28 
equal zero. Set 0-7 overlap trigger if K 0-28 equal 
zero. Set 8-15 overlap trigger if K 0-27 equal zero 
and not K 0-28 equal zero. 

The GT TD out trigger is set during SU LB for 
the instructions that use data from operand 1. 

For pack and unpack, the ER and SC are gated to 
AE during SU 8 and SU 9. The AE complement 
trigger is also set for two cycles. This is done to 
check the ER/SC for equal. The gates are up for 
two cycles because the AE HS equal zero line has 
a long path to set the gate K with S trigger at SU L9. 

Operand l is gated from J to K when J loaded 
is on and not single cycle mode. For single cycle, 
operand 1 was put in M during SU 2 and is gated from 
M to K during this cycle. 

SU 9: Operand 2 is gated from J to L when J loaded 
trigger is on. SU L9 is enabled with the J loaded 
trigger on. 

Variable Field Length 1/66 97 



Storage Words 

010 011 100 101 110 111 000 001 010 Oil 100 101 110 

r r 
Bl+DJ+Li B2+D2+L2 

(B2+D2+L2) - (Bit D l+L I)= 6 < 8 

T=S S=3 

S < T :=:::::> Operands Start in Different Word 

Storage Words 

110 101 110 111 000 001 010 011 JOO IOI 110 l Tl 000 001 

Bl+Dl+Ll B2+D2+L2 

(B2+D2+L2) - (B l+D i+L l) = 6 < 8 

T=O 5=6 

S ~ T ~ Operands Start in Same Word 

FIGURE 41. OVERLAP, BYTE ADDRESS RELATIONSHIP 

Storage 
before 

Bl+Dl+Ll = XXXll 000 

B2+D2+L2 = XXXlO 110 

Operand 1 

I 
I 

01 xxx 1 • 
I 

100 101 110 Ill 

Operand 2 

10 xxx 

L1 = 10 

L2 = 4 

I 
I 
111 XXX 
I 

Un~ck ~-'-~~..__._~~.........,_._~L-.-~.-L~~~__..__. 

Storage 
after 
Unpack 

This is an example of overlapping fields showing how the Op 2 
word is modified during execution but prior to its use. Byte 2 
(10 010) of Op 2 is changed from 98 to Z7 as a result of unpacking 
byte 3 (10 011). 

FIGURE 42. UNPACK - OVERLAPPING FIELDS 

98 1/66 2075 Processing Unit -- Volume 3 

The overlap triggers and AE HS are sampled for 
a set to GT K with S trigger at SU L9. 

For single cycle mode, the prefetch storage 
request is delayed from SU 7 to SU 9. Delayed with 
the fetch request is the set of PF T3. 

SU L9 sets the first iteration sequencer. 

Set-Up Sequence -- Logical Instructions 

• Fetch storage word that contains first byte to be 
processed for each operand. 

• Compare storage addresses of each operand to 
determine if operands overlap in same storage 
words. 

• Set starting byte address of each operand into 
S and T pointers. 

• Start first prefetch if required. 

• Set fetched words into Kand L registers. 

• Set VFL control and gating triggers. 

• Set up the ER and SC to be used as a word count. 

All of the VFL logical instructions process from low
order storage to high-order storage. IOP bits 8-15 
specify an eight-bit length which applies to both 
operands. 

Because many similarities exist between the 
set-up sequences for decimal instructions and for 
logical instructions, only the differences are . 
explained below. Details are presented in set-up 
functions. 

A word count is maintained in the ER, which is 
reset to zero during the set-up sequence. The ER 
is advanced by one each time a result word is 
stored. The increment gated to the AA for address 
generation comes from the SC. The amount in the 
SC is the increment needed for the next fetch, that 
is, if Op 2 is crossing word boundaries ahead of 
Op 1, the SC = ER+ 2 for prefetch; if Op 1 is 
crossing word boundaries ahead of Op 2, the SC = 

ER+ 1 for prefetch (see Figure 38). At the com
pletion of prefetch, the SC= ER+ 1 for the next Op 1 
fetch. 

A status trigger (VFL T5) is set during set-up if 
Sis greater than T. T5 On indicates that Op 2 will 
cross word boundaries ahead of Op 1. 

The first prefetch is initiated if Z {l, 2, 4) is 
greater than the complement of S {l, 2, 4) or Y 
(l, 2, 4, 8) not equal to zero or Z (8) is on. The 
Z -S comparison is made with complement S because 
the operands are processed from left to right (low
order to high-order storage). 



The results of an edit or edit-and-mark instruction 
with overlapping fields are specified to be unpredict
able. Therefore, these two instructions are always 
handled as though their operands do not overlap. 
Address comparisons are not made during edit and 
edit-and-mark set-up sequence. 

Set-Up Functions 

The following text explains the functions of set-up 
cycles, SU 1 through SU 9 for the VFL logical 
instructions. 

SU 1: No increment is gated to AA since the desired 
starting address is Bl + Dl. 

SU 2: The VFL fetch request trigger is set with the 
B clock. The output of this trigger goes to the 
I unit to indicate J as the return address and to the 
BCU to set their fetch request. The set of both VFL 
request triggers (fetch request and store request) is 
latched to generate the gate of the AA to SAR and H. 

The AEOB is gated to the ER as a means of 
resetting ER to zero with correct parity. 

SU 3: No increment is gated to AA since the desired 
second operand starting address is B2 + D2. The 
VFL address advance line is up during cycle three 
so that B2 and D2 will be in IOP during cycle four. 
The low-order three bits of H are gated to the T 
latch and T is released with SU L3. This puts the 
starting byte address of operand one in the T pointer. 
H (0-23) is gated to the incrementer. The latched 
output of the incrementer and incrementer extender 
is gated to K0-31. Because nothing is gated into the 
incrementer extender, its output is zero with correct 
parity. The AOB (32-63) is gated to the K register 
(32-63) at the same time to put zeros-with correct 
parity into the low-order half of K. 

The sequence is held up here until an accept is 
received from BCU. If an immediate accept is 
received from the BCU, SU 3 takes only one cycle. 
This prevents a second request from being made in 
SU 5 without an accept from the first request. 

~ The AA is gated to SAR and H registers. Op 1 
address is gated from K to L register. 

One is forced to AE (7) and AEOB is gated to the 
SC. This sets the SC to 1 to provide the first address 
increment required for later fetches. 

For edit and edit-and-mark instructions Y and Z 
counters are reset to zero; during this cycle, Y and 
Z are stepped up in these instructions. 

SU 5: The VFL fetch request trigger is set and the 
second operand byte address is gated from H (21-23) 
to the S latch and S is released. The entire second 

operand address is gated from H register to the 
incrementer to K register. 

SU 6: The VFL address advance line is up during 
SU 6 in preparation for the addition of B2 + D2+ 1 
in SU 7; a one is forced to AA (28). 

The sequence waits in SU 6 cycle for an accept 
from BCU. 

The 'starting address comparison is started in 
SU 6 by subtracting L from K and gating the result 
back to Kand L. This provides the magnitude of 
the difference of the starting addresses of the two 
operands. 

The gate L with S trigger is set during this cycle 
in preparation to gate Op 2 bytes from the L register. 
If the operands overlap storage words and the gate K 
with S trigger is set later, then gate L with S trigger 
is reset. 

SU 7: The add during SU 6 generated the result 
(B2 + D2) minus (Bl + Dl); the desired difference to 
be checked for logical instructions is (Bl + Dl) minus 
(B2 + D2) or the complement of (B2 + D2) minus 
(Bl+ Dl). Therefore, during SU 7 cycle for logical 
instructions, the contents of the L register are gated 
to AMTC and complemented through the main adder. 
AOB is then gated to the K register. 

The first prefetch is started during SU 7 if Op 2 
is in more than one storage word and not in single 
cycle mode. If Z (1, 2, 4) is greater than the 
complement of S (1, 2, 4) or if Z (8) is on or if Y 
(1, 2, 4, 8) is not equal to zero, the VFL fetch 
request and PF 3 triggers are set. If in single cycle 
mode, the first prefetch is started during SU 9 cycle. 

SU 8: The address comparison is completed in this 
cycle and the overlap triggers are set. If K0-28 
equals zero, the 8-15 overlap trigger is set. 

The gate T decode out trigger is set during 
SU LS for those instructions that use data from Op 1. 

If VFL T5 trigger is on, indicating the first word 
boundary to be crossed is in Op 2, 1 is added to the 
SC. This puts 2 in the SC, the increment needed for 
the next prefetch (see Figure 38). 

The Op 1 word is gated from J to K when the J 
loaded trigger is on and not single cycle mode. For 
single cycle mode, Op 1 was put in M register during 
SU 2 cycle and is g_ated from M to K register during 
this cycle. 

SU 9: SU 9 is the last cycle of the set-up sequence 
for the VFL logical instructions. The first word of 
Op 2 is gated from J to L register when the J loaded 
trigger is on. SU L7 is enabled with the J loaded 
trigger on. 

Except for ED, EDMK, TR, and TRT instructions, 
if the 0-7 overlap trigger is on and S is less than or 

Variable Field Length 1/66 



equal to T, the g11te K.with S trigger is set. 
For ED and EDMK instructions, the first byte 

of Op 1 is put in DB/DC, where it is held throughout 
execution. This byte is the fill character. The 
length 'counters and pointers are not stepped because 
this character is examined as all other pattern char
acters are. 

The gate L with S trigger is set with SU L9 for 
ED and EDMK. This set is delayed because there 
is no gate for the RBG to AOE and the AOE is used 
during SU 9 for ED and EDMK. 

The VFL T2 trigger is set with SU L9 for MVC 
if T = 0 and S = 0 and YZ is greater than 7 and not 
overlap. When the VFL T2 trigger is on, it causes 
64-bit words to move instead of 8-bit bytes. This 
type of move is called transmit mode. Transmit 
mode is -entered on any MVC when both operands 
start on word boundaries and there is at least one 
64-bit word to be moved. The byte mode is initiated 
to move any partial words on the end of Op 2. 

For VFL logical instructions, SU L9 sets 
iteration sequencer 2 (IS 2) except for MVC in trans
mit mode and PF started during SU 7. 

Set-Up Sequence -- TR and TRT 

The translate instructions differ from other SS 
instructions in that the byte addresses move 
irregularly through a translation table in storage. 
Operand l is still processed sequentially starting 
with the low-order storage byte (Bl + DI). For this 
reason, source bytes are fetched one at a time from 
storage. Each operand 2 address that is formed is 
compared to the word address of the operand l word 
currently in the K register. If the table byte is in 
K, the gate K with S trigger is set and K is used for 
the source byte. 

When the operand l address is formed, it is 
transferred to K. From K, bits (24-28) are gated 
to AOE and the AOE is gated back to K (24-31), thus 
setting K (29-31) to zero. K is transferred to M and 
subtracted from each operand 2 address. If any 
difference is within 0-7, the 0-7 overlap trigger is 
set and this causes the gate K with S trigger to be 
set. When operand 1 word boundaries are crossed, 
the Y-Z latch is added to Bl+ Dl to generate the 
fetch address. Using this method of generation gives 
an address with the low-order three bits zero. 

Set-Up Functions (See Figure 6482) 

. SU l: The VFL fetch request trigger is set with 
SU Tl for single cycle operation. This early set 
is not required for translate but is used for simplic
ity since all other SS instructions advance the 
request for single cycle. 

100 1/66 _2075 Processing Unit -- Volume 3 

SU 2: Set VFL fetch request trigger and gate AA to 
SAR and H. 

SU 3: Gate H (21-23) to the T pointer and H (0-23) 
to K. 

SU 4: The low-order three bits of the address in K 
are set to zero by gating K (24-28) to AOE and AOE 
(0-7) back to K (24-31). 

The Y and Z counters are reset to zero. For the 
translate instructions, Y and Z start at zero and are 
counted up until equal to IOP (8-15). 

SU 5: The adjusted address in K is transferred to 
M. From there, it will be compared to each operand 
2 address for possible overlap. 

SU 6 and SU 7: SU 6 and SU 7 perform no function 
for the TR and TRT instructions. 

SU 8: The first word to be translated is transferred 
from J to K. The gate TD out trigget is set with 
SU LS. This allows the byte from K, specified by 
T to pass through the LBG. 

SU 9: The first iteration sequencer, PF Tl, is set 
by SU L9. 

Interrupts -- Set-Up Sequence 

The only interrupt that can be initiated during set-up 
is address invalid. The address invalid trigger 
is normally set to the value of the address invalid 
line with each J advance. For SS instructions, the 
trigger can be set but not reset with J advance. 
With this arrangement, invalid address indications 
are accumulated arid then the trigger is sampled at 
the end of set-up. The address invalid trigger is 
reset with SU 1. 

The address invalid trigger in sampled at SU 9. 
If it is on, the sequence is switched to SEQ-T4 (SF 3) 
and the store-fetch trigger is set. These two, to
gether, make SF 3 which is the start of the end 
sequence. 

Iteration Sequences -- Decimal Instructions 

• Iteration IS 1, IS 2, and IS 3 cycles perform VFL 
byte gating. 

• IS cycles are used to execute SS decimal and 
logical instructions . 

This section describes· the iterations for all SS dee -
imal instructions except multiply and divide. Multiply 
and divide are described separately. All iterations 



start with the following initial conditions: 
1. Word Bl + Dl + Ll in K 
2. Word B2 + D2 + L2 in L 
3. IOP (S-11) in Y 
4·. IOP (12-15) in Z 
5. Starting byte address for Op 1 in T 
6. Starting byte address for Op 2 in S 
7. Either gate L with S or gate K with S trigger 

on, depending on the state of the 0-7 overlap trigger 
S. Gate TD out trigger on for MVO, CP, AP, SP 
The first iteration sequencer is set with SU 9 

latch. The iteration cycles continue until a word 
boundary is encountered or the execution is complete. 

Add -- Subtract 

The only difference between AP and SP is the setting 
of the true/complement trigger, VFL T3. Figure 43 
shows the general data path for AP and SP. 

The first cycle (IS 3) is for examining the signs 
and setting the sign trigger. Since the pointers are 
not stepped during IS 1, the sign decoding does not 
need to be latched to set VFL T3 at IS 1 A-clock. 

When doing a true add, the right side parity ad
just correct is for the excess six gating into AV. 
The line called "GT HOD Decimal True to Parity 
Adjust" gates "HOD Equal 4/5" to the "exclusive OR" 
with "Invert Sign". The two phrases of the "exclu
sive OR" gate PL and not PL as the adjusted parity. 
This adjusts for three possible changes to the sign 
byte: 

1. The incoming sign is degated and the machine 
preferred plus sign is forced at the RBG digit gates. 

2. If the high-order digit is gated decimal true, . 
a decimal digit 4 or 5 changes the parity. 

3. If the LBG (Op 1) sign is negative, the low
order bit of the forced sign is inverted to make the 
result sign minus. 

The operation is not complete until every byte in 
both operands has been examined. When operand 1 
is exhausted, VFL T2 is set, gate TD out trigger is 
reset and parity is forced to the left side AV input. 
When operand 2 is exhausted, VFL Tl is set, gate 
K/L with S triggers are reset and parity is forced 
to the RBG. When both operands are exhausted, SF 
1 is set instead of IS 2. During this store-fetch 
sequence, the last result word is stored and one of 
the following happens: 

1. The operation is terminated if the result is 
correct as stored (Figure 6455). 

2. The sign of the result is set plus for a nega
tive zero result and the operation is terminated (Fig
ure 6457). 

3. The first word of operand 1 is fetched to 
start recomplementation if the result is in comple
ment form. 

Figure 6456 shows the recomplementing sequence. 
The S and T pointers contain the same byte address. 
The S pointer controls gating of K bytes to the true/ 
complement input of AV. The T pointer controls 
putting the bytes back in K. 

For a true add, the VFL adder carry trigger is 
not released after Op 1 is exhausted. A carry from 
the high-order byte of Op 1 is held in the carry trig
ger until both operands are exhausted, at which time 
VFL T6 is set. (VFL T6 is set with AV carry and 
true add and Tl and T2 and SF l latch). For both 
true and complement adds, the RBG is zero detected 
after the Op 1 is exhausted. 

If a nonzero digit is detected, Op 2 has a greater 
length than Op 1. Therefore, VFL T6 trigger is set 
to signal an overflow condition. One exception exists, 
however, in which Op 2 may exceed the length of Op 1 
without causing an overflow error. After the end of 
Op 1 (T2 On), the first Op 2 byte processed may con
tain digits 01 without causing an overflow error if the 
operation is complement add and a borrow occurs. 
VFL TS trigger is set at the beginning of the first 
iteration cycle following the set of T2. The conditions 
T2 On and TS Off define the first cycle after the end 
of Op 1 and block RBG bit 7 from entering RBG zero 
decode, thereby forcing RBG to equal zero if all other 
bits are zero. If a nonzero digit is detected, VFL T6 
is set. The decimal overflow interrupt is set with 
(AP+ SP+ ZAP) and (VFL T6) and (PSW bit 37) and 
(VFL end sequence trigger on). 

The condition register is set during the last store
fetch sequence with SF 4 latch. 

Compare (CP) 

Figure 44 shows the general data path for decimal 
compare. If the two operands have like signs, oper
and 2 is subtracted from operand 1 to determine 
which is the larger. If the two operands have unlike 
signs, operand 2 is added to operand 1 and the sum 
is zero detected. If the sum is nonzero, the positive 
operand is the larger. If the sum is zero, the two 
operands are both zero and, therefore, equal. 

The execution is not complete until all bytes in 
both operands have been examined. 

The VFL T3 trigger is used as a true/comple
ment trigger for CP, AP, and SP. Therefore, VFL 
T3 controls the true/complement and parity adjust 
gates. VFL T3 is off for true add and on for com
plement add. When doing a true add, the right side 
parity must be adjusted for the excess -six gating 
into AV. When doing a complement add, the right 
side parity is adjusted for the sign removal only. 

The condition register is set during the last 
store -fetch sequence with SF 4 latch. 

Variable Field Length 1/66 101 



Move With Offset (MVO) 

Move with offset is a combination move and shift left 
1 digit as the name implies. Figure 45 shows how 
this shifting is accomplished. The DB-DC is used 
as a buffer to hold the HOD of each byte until the 
next cycle when it is gated into AV as the LOD. The 
Ll length determines the end of the operation. If 
Op 2 is exhausted before Op l, the gate K/L with S 
triggers are reset and parity is forced to the RBG. 
All other gates are unchanged. This fills out the 
remainder of the destination with high-order zeros. 
See Figure 6453. 

Pack (PK) 

Figure 46 shows the general data path and the se
quencers used for pack. The DB-DC is used as an 
intermediate result buffer. DB/DC must be used 
because K is used as temporary storage and the re
sult byte cannot be put in storage until it is complete. 

One Op 1 byte is put in K at the end of IS 1 and 
every IS 3. This means that the store-fetch sequence 
is entered from IS 1 or IS 3 and always returns to 
IS 2. An Op 2 byte is used for each cycle, IS 1, IS 
2, and IS 3. The prefetch sequence can be entered 
from any of the three sequencers. Therefore, the 
VFL T2 trigger is set with (S = 0) and (IS 2 latch) to 
remember which IS sequencer should be turned on 
after the prefetch. See Figure 6479. 

The Op l length determines the end of the opera
tion. If Op 2 is exhausted before Op 1, the gate K/L 
with S triggers are reset and parity is forced to the 
RBG. This fills the remaining Op 1 bytes with high
order zeros. 

Unpack ( UNPK) 

Figure 47 shows the general data path and the se
quencers used for unpack. The first cycle is the 
same for pack and unpack. For unpack, one Op 2 
byte generates two Op 1 bytes. The Op 2 bytes must 
be fetched from K or L only once because the first 
Op 1 byte generated for a given Op 2 byte may be 
stored on top of the generating Op 2 byte (Figure 42). 
As an example, assume the two operands were lo
cated in the same storage word. Op 2 byte 3 could be 
generating unpacked Op 1 bytes 3 and 4. For this rea
son, the Op 2 bytes are put in DB/DC during IS 2 and 
DB/DC is used during IS 3. Here, as in pack, DB/DC 
is only needed for overlapping fields. Since it gives 
the correct result for nonoverlapping fields also, 

t only one method of execution is used. (See Figure 
6480) 

The prefetch sequence is entered from IS 1 or IS 
3. The store-fetch sequence can be entered from 
IS 2 or IS 3. Therefore, the VFL T2 trigger is set 
with (T = 0) and (IS 2 latch) to remember which se-

102 1/66 2075 Processing Unit -- Volume 3 

quence should be set after the store-fetch is com
pleted. 

PSW (12) determines which zone code is used for 
the unpacked result. PSW (12) equal to zero gives 
the BCD zone of 1111. PSW (12) equal to one gives 
the ASCII zone of 0101. The BCD zone is forced at 
the digit gates and PSW (12) controls the gating of AV 
bits O and 2 back to K. Removing bits 0 and 2 from 
the BCD zone gives the ASC zone but does not change 
the parity. 

Zero and Add (ZAP) 

Figure 48 shows the general data path and the se
quencers used for zero and add. The first Op 2 word 
is set into L with SU 9 latch and, therefore, IS 3 is 
used to examine the Op 2 sign. The polarity of the 

I sign must be known so that the machine preferred 
sign can be forced. (See Figure 6454) 

When Op 2 is exhausted Op 1 is filled out with 
high-order zeros. When Op 1 is exhausted first,the 
remaining bytes of Op 2 are zero detected for over
flow. VFL. T6 trigger is set if an overflow condition 
occurs. VFL Tl and T2 triggers are set when Z and 
Y are counted down to 1110. These are used to gen
erate gates for exhausted Op 2 and Op 1 conditions. 

The condition register is set during the last 
store-fetch sequence with SF 4 latch. 

Iteration Sequence -- Logical Instructions 

This section describes all logical SS instructions 
except the edits and translates. One iteration se -
quencer, IS 2, is used for all these instructions with 
the exception of move transmit mode. Move trans -
mit mode used the store-fetch and prefetch sequences 
only. The iterations start with the following initial 
conditions: 

1. Word Bl + Dl in K 
2. Word B2 + D2 in L 
3. IOP (8-15) in Y and Z 
4. Starting byte address for Op 1 in T 
5. Starting byte address for Op 2 in S 
6. Either gate L with S or gate K with S triggers 

on depending on the state of the 0-7 overlap trigger 
7. Gate TD out trigger is on for all instructions 

except MVC 
The first iteration sequencer is set with SU 9 

latch. The iterations continue until a word boundary 
is encountered or the execution is complete. The 
condition register (CR) is set for CLC, NC, OC, 
XC, TRT and EDMK during the last store-fetch se
quence with SF 4 latch. 

AND, OR and Exclusive OR (NC, OC and XC) 

The SS logical connectives use the AOE. The output 
of the AOE is normally the OR of the two inputs. If 



LBG 
,...->---., 

IS-1 

RBG 
,...->---., 

Sign 
Invert sign if 
LGB sign 
minus 

LBG 
,...->---., 

\ 

IS-2 

"~' 
' K2 

RBG 
,...->---., 

I 
Right inputs to AV are complement if True Subtract and Decimal True 
if True Add. 

I JS-3 I JS-1 I J5-2 15-2 15-2 

Compare LBG '"i.nd RBG signs 

FIGURE 43. DECIMAL ADD OR SUBTRACT 

LBG 
r-"-.. 

IS-1 

AV 

I 
ZD 

RBG 
,.--A-, 

I 

LBG 
r-"-.. 

\ 
FIGURE 44. BASIC DATA FLOW - CP 

15-2 

v 
AV 

I 
ZD 

RBG 
,.--A-, 

I 

15-1 IS-2 

Sequence 

IS-1 

LBG 
,...->---., 

15-2 

FIGURE 45. BASIC DATA FLOW - MVO 

IS-1 

p 

RBG 
,.--A-, 

Kl 

RBG 
,...->---., 

IS-2 

IS-2 

15-2 

RBG 
,.--A-, 

Kl 

.,... __ ...... rr 
I I Ip I DB l~i I 

IS-1 IS-2 IS-3 15-2 IS-3 

FIGURE 46. BASIC DATA FLOW - PACK 

15-2 

15-2 15-2 

IS-2 IS-3 

RBG 
,...->---., 

IS-3 

K2 

RBG 
,-A-, 



IS-I IS-2 

RBG RBG 

R 
r-"--.. 

Kl K2 

1 IS-l I IS-2 I IS-3 I IS-2 , is-3 I IS-2 I IS-3 I 

FIGURE 47. BASIC DATA FLOW - UNPACK 

IS-1 

11 
sign 

,J .. Invert Sign if RBG lt Sign(-) 

AV 

Kl 

IS-3 IS-1 IS-2 IS-2 IS-2 

Examine RBG sign 

FIGURE 48. BASIC DATA FLOW - ZAP 

LBG RBG 

11 

IS-2 

n 
-, 

K2 

~Sample Parity Check 

~ 
K 

Sequence ,_:.::IS-'-2::..+.:.:IS:...-;:..2 +'IS:...-.::.2+1=-S-.::.2+--! 

FIGURE 49. BASIC DATA FLOW, NC, OC, XC 

104 1/66 2075 Processing Umt -- Volume 3 

IS-3 

RBG 
,--"---, 

11 
z~ ll 

:......_ 
L3 

~Force Carry In 

-,-
K3 K 

Sequence 
IS-2 IS-2 IS-2 IS-2 

FIGURE 50. BASIC DATA FLOW - CLC 

IS-2 

LBG RBG 

f 1 
::-i::-

' ' 
;-: 

') 
ZK 

/ 
/ 

( 
NL 

K 

MVN 

IS-2 

n 
-r 

K 

FIGURE 51. BASIC DATA FLOW - MVC 

IS-2 

LBG RBG -I I~ 
K 

MVZ 

FIGURE 52. BASIC DATA FLOW - MVN, MVZ 



either the AND or the Exclusive OR function is de
sired, a gating line must be activated. Figures 49 
and 6464 show the data path and timing for NC, OC, 
and XC. 

Parity is generated for the output of the AOE. 
The incoming parities are checked by gating the two 
bytes into the AV and checking the half sums. 

Compare Logical (CLC) 

The SS logical compare moves from left to right 
through the operands, making a byte by byte com
parison. The operation continues until an unequal 
comparison is found (AV sum nonzero) or the oper
ands are exhausted. Figures 50 and 6460 show the 
data path and timing for CLC. 

Move (MVC) 

Move (MVC) moves data from one location to another. 
Normally, execution is one byte at a time. However, 
if the two operands are not overlapped, start'on word 
boundaries and are more than one word in length, 
the move is done one 64-bit word at a time. This is 
called move transmit mode. If the operands do not 
end on word boundaries, the transmit mode reverts 
back to the normal byte mode. 

The first Op 1 word is fetched during set-up be
cause it may be needed for execution of overlapping 
fields. After set-up, the Op 1 word is stored but 
not fetched. When the two operands start within 
eight bytes of each other, but in different storage 
words, the Op 2 bytes in the second word that do not 
actually overlap Op 1 must be fetched. This is done 
by fetching the first Op 1 word. Once Op 2 moves . 
into the overlap area, no more storage words are 
required because the next Op 2 word is being gener
ated in K. 

Bytes are moved from L to K, or K to K depend
ing on overlap conditions. Both HOD and LOD are 
gated binary on the AV right side and parity is forced 
to AV left. The AV output is put in K. 

If both operands start on 64-bit word boundaries, 
at least two words apart in storage and there are 
more than eight bytes to be moved, the move trans
mit mode is entered. Move transmit mode moves 
64-bit words. In the transmit mode, the first Op 2 
word fetched is transferred to Kand stored just as 
soon as an accept is received from the second Op 2 
fetch. When each store is completed, another pre
fetch is started (Figure 9467). The first cycle gates 
M, the prefetched word, to AM T/C. The AOB is 
gated to L, and K. This is the next word to be stored. 
If another Op 2 word is to be fetched, the prefetch 
sequence continues after PF 1. If the word in K is 
the last full word to be moved, the store-fetch se
quence follows PF 1. If a partial word remains, the 
move reverts back to the byte mode and the IS 2 
sequence follows PF 1. The VFL T2 trigger is 

turned on with SU 9 latch if the conditions are met 
for transmit mode. 

The Y- Z length counters are decremented by 8 
with each SF 3 latch when in the transmit mode (T2 
on). If an even number of words are to be moved, 
the low-order three bits of the length would be ones 
(Z = Xlll). Therefore, the Y-Z counters are equal 
to 1111-1111 when one word remains to be stored. 
This value in Y -Z causes SF 3 to follow PF 1 and the 
last full word is stored. If there are two odd bytes 
to be moved, in addition to the full words, the three 
low-order bits of the length (Z) would be 001. With 
this value in Y -Z, IS 2 follows PF 1. The partial 
word is moved one byte at a time (Figure 51) in order 
to set the mark register correctly. The sequence is 
switched from IS 2 to SF 3 when the YZ latch equals 
1111-1110. This is the end of operation condition 
for the byte move. 

Move Numerics and Move Zones (MVN and MVZ) 

These two moves take a part of each Op 2 byte, 
either zone or numeric, and put it in a byte, leaving 
the remainder of the Op 1 byte unchanged. Figure 
52 shows the data path and timing for the MVN and 
MVZ. For MVN, the LOD is gated to AV right and 
the HOD is gated to AV left. For MVZ, the HOD is 
gated to AV right and the LOD is gated to AV left. 
Both operands are fetched. The source is gated from 
L or K, depending on the overlap conditions. 

Edit and Edit-and-Mark (ED and EDMK). 

The initial conditions for the edits after set-up are: 
1. Word Bl+ Dl in K 
2. Word B2 + D2 in L 
3. Y and Z reset to zero 
4. Starting byte address for Op 1 in T 
5. Starting byte address for Op 2 in S 
6. Gate L with S trigger on 
7. Gate TD out trigger on 
8. SC set to one 
9. The first byte of Op 1 in DB/DC. This is the 

fill character. 

The two sequencers used for edit iterations are 
IS 2 and IS 3. The IS 2 sequencer conditions the gates 
to unpack and validity check the HOD and sign detect 
the LOD of an Op 2 byte. The IS 3 sequencer condi
tions the gate to unpack the LOD of an Op 2 byte. 
One pattern byte is examined every cycle. Once a 
sequencer is turned on, it stays on until the condi
tions are met to unpack a digit. (These conditions 
being met are referred to as examine digit.) 

Sequencer IS 2 (Figure 6471) is set with SU 9 
latch. When the HOD is unpacked, IS 2 goes off and 
IS 3 is turned on. When the LOD is unpacked, IS 3 
goes off and IS 2 is turned on. The S pointer is 

Variable Field Length 1/66 105 



stepped when going from IS 3 to IS 2. The iteration 
sequencers are on for an unpredictable number of 
cycles. The pattern bytes and S trigger (VFL T5) 
determine when a digit is unpacked. If during IS 2 
cycle, the conditions are met to unpack a digit and 
the LOD is a sign (1010 - llll), the S pointer is 
stepped and IS 2 repeats. Stepping S and not turning 
IS 3 on skips over the sign so it is not unpacked into 
the result. When a sign is detected, if it is positive 
(1010, 1110, or 1111), the S trigger is reset. 

On each cycle that a source digit is not examined, 
either the fill character is gated from the DB/DC to 
Kor K is left unchanged. 

The zone that is forced, either 1111 for BCD 
mode or 0101 for ASCII mode, in unpacking digits 
depends on the PSW bit 12. The PSW bit 12 off (0) 
indicates BCD mode and the bit on (1) indicates 
ASCII mode. The BCD zone is forced at the digit 
gates,. on the AV right side input. If the PSW bit 12 
is on, bits 0 and 2 of the AV output latch are <legated 
and do not go to K. This changes the BCD zone to 
an ASCII zone but does not change the parity since 
an even number of bits are removed. 

The VFL status triggers are used for edits, as 
follows: 
VFL Tl: Remembers that the S pointer should be 
stepped when returning to the iterations from a 
store-fetch or mark sequence. 

Set either IS 3 latch and examine digit latch or 
IS 2 latch and examine digit and edit sign latch. 

Reset (set blocks reset) IS 2 latch. 
VFL T2: Remembers which sequencer should be 
turned on when returning to the iterations from a 
store-fetch or mark sequence. On indicates IS 3, 
off indicates IS 2. 

Set either IS 2 latch and examine digit and not 
edit sign latch or IS 3 latch and not examine digit. 

Reset (set blocks reset) either IS 2 latch or IS 3 
latch. 

VFL Tl and VFL T2 combinations and sequences 
are: 

IS 2 ---+ SF + MARK - IS 2 Step S Tl T2 
IS 2 --+ SF--+ IS 2 Tl T2 
IS' 3 - SF+ MARK- IS 2 Step S Tl TI 
iS 3--+ SF-+ IS 3 Tl T2 

VFL T3: Remembers the zero field condition for a 
source RBG number. It is used to set the condition 
code. 

VFL T3 is set by the SU 9 latch or the edit field 
Separation latch. 

It is reset by the examine digit latch and not 
zero digit latch. 
VFL T4: Remembers that a prefetch is required 
after a store-fetch. S pointer equal seven is not 
sufficient information to start a prefetch. Examine 
digit and edit sign latch indicate whether the last 
digit has been used. At the end of store-fetch this 
information is gone. 

106 1/66 2075 Processing Unit -- Volume 5 

VFL T4 is set by the IS 3 latch and S = 7 and 
examine digit or edit sign latch. 

It is reset by the PF 1 latch. 

VFL T5: Used as the S trigger. 
It is set by the digit select latch and not edit 

zero digit latch or significant start latch. 

VFL T7: Holds address invalid indication for 
source field until a digit is used from the invalid 
word. VFL T7 and examine digit set the interrupt 
triggers. 

VFL T7 is set by the address invalid latch and 
PF 4 latch. 

It is reset by the ELC latch. 
The following latches are used for edits to hold 

the control condition over a time: 

Edit Digit Sel. L TH 
Turned on by "LBG Equal Digit Select" LBG = 00100000 

Edit Sign Start L TH 
Turned on by "LBG Equal Sig. Start" LBG = 00100001 

Edit Field Sep. L TH 
Turned on by "LBG Equal Field Sep." LBG = 00100010. 

Examine Digit L TH 
Turned on by LBG equal to a Digit Select or Significance 

Start character. 
Other Character L TH 

Title refers to the off output. Turned on by LBG equal to 
Digit Select or Significance Start or Field Separator 
character. 

Edit Zero Digit L TH 
Turned on by Examine Digit and RBG LOD Equal Zero and 

(IS 2 or IS 3 trigger). 
Edit Sign or RBG Not Zero L TH 

Turned on by (RBG LOD Sign and Examine Digit and IS 2 
trigger and ED + EDMK) or (AP + SP + ZAP + TRT 
and RBG Not Zero). 

Edit Positive Sign L TH 
Turned on by ED + EDMK and IS 2 trigger and RBG Sign Plus. 

The HOD of each source byte is validy checked 
when it is examined. If it is invalid, the data check 
interrupt triggers are set if T7 is on. T7 on in
dicates that the word came from an invalid address 
and the invalid address interrupt is given priority. 

Figure 6472 shows the mark sequence. The byte 
address is calculated by adding Bl + Dl + (Y-Z). 
The current pattern word is transferred to J while 
the address is inserted in GRl, then brought back to 
K during Seq D. The address is put in K (8-31) and 
then the high-order eight bits of GR!, which is 
brought out to the M register, are gated into K (0-7). 
K (0-31) is then put away in GRl. IS 1 returns the 
execution to: 

1. IS 2 if not T2 and not set (SF 1 or SF 3) 
2. IS 3 if T2 and not set (SF 1 or SF 3) 
3. SF 1 if Y Z i' IOP (8-15) and T = 7 
4. SF 3 if Y Z =!OP (8-15) 

Translate and Translate-and-Test (TR and TRT) 

The initial conditions for TR and TRT are: 
1. Word Bl + Dl in K 



2. Address Bl + Dl in M (low-order three bits 
zeroed) 

3. Y and Z reset to zero 
4. Starting byte address for Op 1 in T 
5. Gate TD out trigger on 
The TR and TRT are very much the same. Their 

differences are: 
1. TR does not examine the translated bytes be

fore storing them. TRT translates Op 1 bytes for 
examination and does not store any bytes. 

2. TR is complete when all Op 1 bytes have been 
translated. TRT is complete when a nonzero byte is 
found or all bytes have been translated. 

For translate, the address of the word in K (Op l) 
is compared with each table address. If the difference 
is 0-7, the word being fetched is in K. In this case, 
the table byte is taken from K instead of the word 
returning from storage. Each time another Op 1 
word is fetched, the low-order three bits of the ad
dress are set to zero and the address is put in M. 
Each table address is transferred from H to K and M 
is subtracted from K. The difference is put in K and 
K is detected for a value of 0-7. If K f. 0-7, gate L 
with S trigger is set. If K"" 0-7, gate K with S trig
ger is set. While the address comparison is being 
made, the current Op 1 word is held in J. 

Overlapping the table word return with the ad
dress calculation for the next fetch requires two Op 1 
byte addresses. One is the byte address where the 
translated byte is to be stored (temporarily in K). 
The other byte address is that of the next byte to be 
translated. A hold is used on the T pointer latch to 
prevent it from changing after the T pointer register 
has been advanced. This holds the store byte address 
in the T latch to control in-gating of K. The T regis
ter is advanced to control the gating out of K. This 
gates the next Op 1 byte through the LBG to the AA for 
the address calculation. Figure 5038 shows a diagram 
of the T pointer and an example timing chart of T 
being counted. 

Figure 6483 shows the arrangement of the se
quencers to TR and TRT. Note that the end of the 
sequence, PF 1 and PF 2, is also the beginning of 
the sequence that follows. 

VFL TS trigger is used to prevent Y -Z from being 
stepped until after the first byte is translated. Y Z 
counter is stepped up until it equals IOP (8-15). 
Therefore, Y Z is stepped for each byte processed 
after the first byte. This corresponds to the defini
tion of the operand length (i.e. the number of bytes 
to the right of the first byte). 

After set-up and store-fetch sequences, VFL Tl 
trigger is off. It is set at PF 4 latch. VFL Tl trig
ger gates operations on data returned from storage. 
In the first sequence after set-up or store fetch, 
there are no words returning from storage (RBG). 

For TRT, if a nonzero function byte is found, 
the mark sequence is started. The mark sequence 
starts with sequencer A. Figure 6484 shows the 
mark sequence for TRT. For TRT, the mark se
quence ends the operation. The current byte count 
in Y Z is added to Bl + Dl to arrive at the byte ad
dress of the Op 1 byte which translated to a nonzero 
byte. This address is put in the low-order 24 bits 
of GR 1. This is accomplished by first putting the 
address in Kand then gating the high-order eight 
bits of GR 1 to K. K0-31 are then Qut in GR 1. 
Then the contents of GR 2 are put in Kand the non
zero table byte is inserted in K24-31. K0-31 is then 
put in GR 2. 

Because a general register is being set during 
the last cycle, the VFL thru signal is delayed to IS 1 
latch, just one cycle before the end. The VFL thru 
signal is then set to VFL end sequence trigger. 

Prefetch Sequence 

• Fetches Op 2 words from storage. 

• Overlapped with iteration sequence. 

The function of the prefetch sequence is to fetch Op 2 
words from storage. While one Op 2 word is being 
processed, the next word is being fetched from stor
age and put in the M register. When an Op 2 word 
boundary is encountered, the prefetch sequence is 
initiated. The first cycle (PF 1) transfers M to L. 
After the first cycle, the iterations are started again. 
If another Op 2 word is required from storage, the 
remainder of the prefetch sequence (PF 2, 3, 4) is 
allowed to follow the first cycle. 

For decimal instructions, the prefetch is initiated 
whenever the S pointer equals zero. For logical in
structions, the prefetch is initiated whenever the S 
pointer equals seven. If the T pointer indicates an 
Op 1 word boundary has been reached at the same 
time as the Op 2 word boundary, the store-fetch se
quence has priority over the prefetch. 

The VFL address advance line is brought up with 
PF 1. The gate select register is set at B of PF 1 
and the following A clock sets the right two-thirds of 
the SS instruction into IOP (16-31); this places the 
B2 and D2 address fields into IOP for use by the AA. 
The addressing adder sum at the end of PF 2 will be 
B2 + D2 + X where Xis the VFL address increment. 

First Prefetch: The first prefetch is started during 
set-up. Set-up sequencers control the address gen
eration and set the VFL fetch request trigger. The 
second Op 2 word returns after set-up is completed 
and the iterations started. Therefore, PF 3 is set 
with SU 7 latch and reset with accept from the BCU. 
PF 4 is set with PF 3 latch and accept. 

Variable Field Length 1/66 107 



Since the first byte in an operand could be located 
anywhere within a storage word, there may be only 
one Op 2 byte to be processed before a second word 
is required. This means that the first prefetch, 
started during SU 7, would not be completed when 
the second prefetch is started. In this case, the PF 1 
trigger is turned on but the latch is not enabled until 
the J loaded trigger is turned on. When PF 1 is 
turned on at the same time as PF 4, the M to AM 
T/C gating trigger is not set. With PF 4 on, J is 
being gated to AM T/C at this time and therefore J 
instead of M is gated to L with PF 1 latch. 

Figure 53. shows three examples of the first 
source word boundary being encountered within one, 
two and three bytes of the start of execution. These 
examples assume that an immediate accept is re
ceived for the first prefetch request. Figure 54 
shows an example where operand 2 has one byte in 
the first word and the accept to the first prefetch 
request is delayed two cycles. 

Interaction with Store-Fetch 

If both operands come to a word boundary at the same 
time (Figure 55, part A), the store-fetch sequence 
takes priority over the prefetch and is executed first. 
This is done for two reasons: 

1. If the prefetch was allowed to go first, it 
would delay the store-fetch until an accept was re
ceived and possibly delay it even more waiting for 
the storage cycle to complete. With the prefetch 
following the store-fetch, most of it is overlapped 
with the iterations. 

2. If the end-of-operation conditions exist, the 
prefetch sequence is not needed, and the store-fetch 
sequence ends the executions. 

If an Op 1 word boundary is encountered or the 
end-of-operation conditions occur while a prefetch 
is in process, the start of the store-fetch is delayed 
until an accept is received for the prefetch request 
(PF 3 latch and accept). 

Figure 55, part B shows the operands crossing 
word boundaries at the same time and Op 2 crossing 
a word boundary one cycle ahead of Op 1. In the 
latter of the two examples, two store-fetch sequences 
are shown for the two possible cases of storage inter
ference. The first example shows the prefetch and 
store-fetch fetching from the same storage bank. 
The second example shows the prefetch fetching from 
the same storage bank that the store-fetch is storing 
in. 

Note that with multiple storage units, the two 
requests made during a store-fetch sequence are 
always made to different storage units and therefore 
do not interfere with each other. 

108 1/66 2075 Processing Unit -- Volume 3 

Decimal Instructions 

The prefetch sequence is initiated if S = 0 and SF 1 
or SF 3 is not being set. 

The first Op 2 word, B2 + D2 + L2, is fetched 
during set-up. If a second word is required, the 
first prefetch is initiated during set-up and this 
fetches B2 + D2 + O or B2 + D2 + 8 bytes depending 
on whether the operand is in two or three storage 
words. When the first word boundary is crossed, 
if the Z counter is greater than 7, PF 2 is allowed 
to follow PF 1 and B2 + D2 + 0 is fetched. The field 
length limitation of 16 bytes limits the operand to a 
maximum of three storage words. If the operand is 
in two words, the pref etch initiated at the first word 
boundary consists of only one cycle, PF 1 to trans
fer M to L. 

The S pointer is stepped even after the Z counter 
latch is equal to 1110 and the operand no longer 
enters into the result. It would be possible for a one 
cycle prefetch sequence to occur even though it is 
not needed. This is allowed because it should not 
happen very often; it only wastes one cycle out of 
many, and it is easier to prevent PF 2 from being 
turned on than it is to prevent PF 1 from being 
turned on. 

Overlapping Fields: For AP, SP, ZAP and MVO, 
if the 0-7 overlap trigger is on, each prefetch moves 
Op 2 into the same storage word that Op 1 is in. 
For this reason, the gate K with S trigger is set at 
PF 1 latch and PF 2 is not enabled. If the 8-15 
overlap trigger is on, M is transferred to L as 
usual. The word to be fetched is in K register and 
will be transferred to M on each store-fetch se
quence, therefore no prefetch is initiated. 

Pack and unpack must be handled differently for 
overlapping fields. In both instructions, the oper
ands are used at different rates so that the initial 
address relationships do not hold throughout the 
execution. The overlap triggers are set according 
to the address comparisons: 

Pack 
0 $ (B2 + D2 + L2) - (Bl + Dl + Ll) < 8 sets 0-7 trigger 
8:::; (B2 + D2 + L2) - (Bl + Dl + Ll) < 16 sets 8-15 trigger 

Unpack 
-8 < (B2 + D2 + L2) - (Bl + Dl + Ll) < 8 sets 0-7 trigger 

8 :::; (B2 + D2 + L2) - (Bl + Dl + Ll) < 16 sets 8-15 trigger 

When either of these two triggers are on, the 
two low-order word address bits (H 19 and 20) are 
put in the ER and SC for Op 1 and Op 2, respectively. 
Each time a word boundary is crossed, the corres
ponding register is decreased by one and then the 
two register ER and SC, are compared for equal. 



SU-7 Set-Up Sequence 

Second Source Word Re quested "Req" 

1st Prefetch Started 

J-AM T/C 

M-AMT/C 

AOB-L 

• Fl GURE 53. FIRST PREFETCH 

Set-Up Sequence ~ 
SU-7 

VFL Fetch Req Tgr 

Accept 

J Loaded Tgr 

J to AM T/C Tgr 

AOB to Mand REL 

Rel L 

I 

(_ 

SU-8 

+ 

v 

f 

• FIGURE 54. FIRST PREFETCH - ACCEPT DELAYED 

SU 8 -

PF-3 

SU-9 

PF-3 

__[_ 

0 0 2 ~on Ol'd b Qp_ 1 cross w oun aries at t e same time 

T Pointer= 1 0 

S Poin!r = 1 0 

lteratio n Seq 

etch Store-F 1 2 

Pref etc h 

0 0 p crosses word ou ary 1 cycea ea o Op b nd h d I 

T Point er= 2 1 0 

S Point er= 1 0 7 

lteratio n Seq 

Pref etc h t 1 + 2 

Storage Cycle 
I 

Store-F etch, fetch from sa~ bank 
I 

Store-F etch, store in some bank 

r 
• FIGURE 55. PREFETCH/STORE-FETCH INTERACTION 

J 
SU 9 -

7, 
IS-2 

""" IS-2 

"'ii; 

lS-2 

I 

I 
IS-2 

I "' 

T 

3 4 5 6 

1 

'-31 4 

~--1 

T, -t Fi- - - t---
1 2 ' ~ F l s 1 2 3 

I I 

PF-4 

I PF LTH 4 ' I 1 
I PF-1 ' ( 

PF LTH 1 \ 

"ii IS-2 ""'i 

f 
PF-1 

1- PF LTH 1 ' 
J 

IS-2 IS-2 
I 
( PF-1 ' 

t PF LTH 1 ' T 1 

PF-4 

( PF-4 Lth ' i PF-1 

( PF-1 Lth ' l 
I 

! 

I" 
. I I 

7 6 5 4 3 2 1 0 

7 6 5 4 3 2 1 0 

2 3 4 

I 
7 6 5 

7 6 5 4 3 
6 5 4 

6 5 4 3 2 

--
3 s 4 5 6 

4 5 6 

I 

Variable Field Length 1/66 109 



If they are equal, the word boundary crossed moved 
the two operands into the same storage word. The 
address bits are in positions 1 and 2 of the ER and 
SC, and are decreased by adding 11 (the 2's comple
ment of 01) to them. The SC is then subtracted from 
the ER in the AE. If all of the half sums of the ex
ponent adder are equal to one, the two inputs are 
equal. Therefore, if AE HS= l's, set gate K with S 
trigger, and if AE HS -1- l's, set gate L with S trigger. 

The prefetch cannot be overlapped with the itera
tions when either of the overlap triggers is on. This 
is because the word being fetched might be in K reg
ister. The pref etch would fetch the word before the 
modified word (the result) had been stored. This 
would give an incorrect result. Therefore, Op 2 
fetches are made after the Op 2 word boundary is 
encountered. The AOB is gated to L as well as M 
with PF 4 latch when one of the overlap triggers is on. 

Logical Instructions 

The two translate instructions do not use the normal 
prefetch sequence because Op 2 bytes are fetched 
one at a time from a table and do not follow in se
quence. 

The edit instructions do not overlap prefetch with 
iterations. The stepping of Y Z does not have a 
direct relationship to Op 2 bytes used and therefore, 
it is impossible to determine if another Op 2 word 
is needed until a word boundary is encountered. At 
an Op 2 word boundary, if Y Z -1- IOP (8-15), a pre
fetch is started. If Y Z = IOP (8-15), the store-fetch 
sequence is started and, because it has priority, 
suppresses the prefetch sequence. It is still possible 
that an Op 2 word could be fetched that is not used; 
therefore, the address invalid latch and PF 4 latch 
set VFL T7. The first digit that is examined with 
VFL T7 on sets the invalid address interrupt. 

Because edits use the two operands at different 
rates, two separate word counts must be maintained. 
The shift counter (SC) is used to hold a word count 
for operand 2. Each pref etch sequence adds one to 
the SC after it is used for the current fetch (the set
up sequence sets the SC to one initially). The SC 
bits 2-7 are gated to the AA positions 23-28 to gen
erate the address B2 + D2 + (SC x 8 bytes). The 
prefetch not being overlapped with the iterations 
means that: 

1. The fetched word is put in the L register. 
2. The iterations start after PF 4 instead of 

PF 1. 
The other logical instructions overlap the pre

fetch with the iterations if there is no overlap, and 
do not fetch if either overlap trigger is on. For the 
nonoverlap condition, ER + 1 is put in the SC during 
PF 2 in preparation for the next store-fetch se
quence. The word count of processed words is kept 

110 1/66 2075 Processing Unit -- Volume 3 

in the ER. The ER is incremented each time a result 
word is stored. Therefore, each store-fetch stores 
at Bl + Dl + ER, and fetches from Bl + Dl + (ER+ 1). 
The store-fetch sequence leaves either ER+ 1 or ER 
+ 2 in the SC, depending on whether Op 1 is crossing 
word boundaries ahead of or behind Op 2. When enter-

. ing either a prefetch or store-fetch, the SC contains 
the address increment to be used for the fetch. 
When iterations move through both operands at the 
same rate, the two operands cross word boundaries 
alternately. 

For MVC, the store-fetch sequence starts at SF 
3 and does not fetch. Therefore, the ER is trans
ferred to the SC without incrementing it. 

If the 0-7 overlap trigger is on, crossing an Op 2 
word boundary moves Op 2 into the same storage 
word that Op 1 is in. Therefore, the gate K with S 
trigger is set to gate bytes of both operands from the 
K register. 

Store-Fetch Sequence -- Decimal 

• Fetches next Op 1 word from storage. 

• Stores completed result word at Op 1 location in 
storage. 

• Terminates instruction on last store. 

The primary function of the store-fetch sequence is 
to store a completed result word and fetch the next 
Op 1 word to be processed. Six sequencers, SF 1 
through SF 6, control the functions of each store
fetch sequence. 

In general, whenever an Op 1 word boundary is 
encountered during iteration sequence, iterations 
are suspended and the store-fetch sequence is en
tered to store the completed result word and fetch 
the next Op 1 word to be processed. In this case, 
SF 1 cycle is the first of the store-fetch sequence; 
SF 1 and SF 2 cycles initiate the fetch request and 
then proceed through SF 3, SF 4, and SF 5, during 
which the store request is initiated. The store-fetch 
sequence then waits in SF 6 cycle for the next Op 1 
word to arrive from storage into the J register. 
When the next Op 1 word arrives in J, the store
fetch sequence ends and iterations resume. 

The store-fetch sequence may store only, fetch 
only, make two stores, or make no store or fetch. 
A store only sequence starts with SF 3. A fetch
store sequence and a fetch only sequence start with 
SF 1. 

In all of these sequences, if the end execution 
conditions exist, VFL end sequence trigger is set 
with SF 3 latch and SF 5 is the last cycle. The SF 5 
sequencer is the last cycle for all instructions with 
one exception, TRT. For TRT, if a nonzero func
tion byte is found, the execution is completed with a 



put-away sequence of A-B-C-D-IS1-IS3. 
Figure 56 shows the various conditions that cause 

a store-fetch sequence and ihe sequencers used. 

Store-Fetch for AP, SP (Figure 6455, 6456 and 6457) 

There are two conditions that cause a store-fetch to 
be initiated: 

1. T = 0, a word boundary is being crossed. 
2. Y latch= 1110 and Z latch= 1110, both oper

ands have been processed. 
Both of these conditions start the store-fetch se

quence at SF 1. The sequence has three different 
functions: 

1. Crossing a word boundary or last store. 
2. Change sign. 
3. Start recomplement pass. 

Crossing a Word Boundary or Last Store 

This sequence is used for add/subtract first pass 
and the recomplement pass. When crossing a word 
boundary, a result word is stored and the next Op 1 
word is fetched. When Y and Z equal 1110, the re
sult has the correct sign and is in true form, the 
last result word is stored. The following is a des
cription of the function of each cycle in this sequence: 

SF 1: Gate eight to AA if two Op 1 words remain to 
be processed (Y :> 7). Set the VFL fetch request 
trigger if another Op 1 word is required (Y I- 1110). 
This fetches (Bl + Dl + 8 bytes) if two words remain 
and (Bl + Dl + 0) if one word remains. If both oper
ands have been processed (Y and Z = 1110) and the 
last word of Op 1 has not been stored (T5 on), the 
VFL store request trigger is set. This stores word 
(Bl + Dl + 0). The overlap triggers are reset with 
SF 2 latch, when Y-Z = 1110-1110, in preparation 
for recomplementing. 

SF 2: Gate 16 to AA if two Op 1 words remain to be 
processed (Y > 7). Two words remaining mean the 
word just completed was the first one processed. 
Gate eight to AA if one Op 1 word remains to be 
processed (Y < 7). The sequence waits in SF 2 for 
an accept to come back from the BCU if a request 
was set during SF 1. 

SF 3: Tl is set when Z = 1110 and T2 is set when 
Y = 1110. If L2:::. Ll, the last store is made during 
SF 1 of the store-fetch sequence when Y and Z = 
111 O. When Tl and T2 are both on the store request is 
blocked at SF 3. If L2 > Ll, the last store could be 
made during SF 3. This occurs when Y counts down 
to 1110 and an Op 1 word boundary is crossed before 
Z counts down to 1110. In this case, T5 blocks any 
further store request. If L2 > Ll, and Z counts 

down to 1110 before an Op 1 word boundary is 
crossed, the last store request is made at -SF 1. 

The VFL end sequence trigger is set with SF 3 
latch if Tl and T2 are on and the result is in true 
form or if the E interrupt trigger is on. 

SF 4: The sequence waits in SF 4 for an accept 
from BC U if a request trigger was set during SF 3. 
if Y = 1110, SF 4 latch sets T5 to remember the last 
store has been made. 

If the 0-7 overlap trigger is on, the gate L with 
S trigger is set. When the 0-7 overlap trigger is on 
it indicates that Op 2 and Op 1 were operating out of 
the same storage word. Op 1 crossing a word bound
ary moves that operand out of the storage word that 
Op 2 is currently in. During SF 5, the word in K is 
put in L where it continues to be used as a source 
word. The condition register is set with SF 4 if the 
VFL end sequence trigger is on. 

SF 5: The state of the two overlap triggers indicates 
the difference between the starting addresses. If the 
O -7 Overlap trigger is on, the two operands move in 
and out of common storage words. Each time an Op 
2 word boundary is crossed, Op 2 is moving into the 
same storage word that Op 1 is currently operating 
out of. Each time an Op 1 word boundary is crossed, 
it is moving out of the word Op 2 is currently oper
ating out of. If the 8-15 overlap trigger is on, the 
next word required by Op 2 is being generated as a 
result in K. Instead of prefetching, K is transferred 
to M as it is being stored. 

If ELC was set with SF 4 latch, this is the last 
cycle. 

SF 6: J is gated to K during SF 6. For one case, 
when the last result word is being stored and proc
essing of Op 2 is not complete, no word has been 
fetched to J. However, J should be valid and it is 
gated to K. 

If the address invalid trigger is on, SF 6 latch 
sets SF 3 instead of IS 2 and the operation is ended. 

Change Sign 

For the instructions AP and SP, if the result is zero 
it must have a positive sign. If the result is zero, 
it is in true form and does not require complement
ing. Therefore, theire is never a need to change the 
result sign and prepare to recomplement during the 
same sequence. 

If the result ZD trigger is off when Y and Z=lllO 
it indicates a zero result. The byte address of the 
sign byte (Bl + Dl + Ll) is calculated. A byte with 
positive sign and zero digit is generated in the AV 
and placed in K at the address calculated, setting the 
mark corresponding to that byte. This byte is stored 

Variable Field Length 1/66 111 



s 
SF 

E 
SF 

Q 
Op Code Group Conditions l 2 3 A 4 5 6 

MVO (T = 0) + (Y = 1110) s x x x 

PACK, UNPK [(T=O) + (Y=l 110)] · (0-7+8-15 Overlap) s x x x 
[(T=O) +(Y=lllO)) · (Not0-7+8-15 Overlap) F x s x x x 

ZAP (T=O) · (Y / 1110) s x x x 
(Y=l 110) · (Correct Result Sign) s x x x x 
(Y=ll l 0) • (Resu It is Neg Zero) s x s x x 

CP (T=O) · (Y / 1110) F x x x x x 
(Y=l 110) Set CR with SF-4 l TH x x x x x 

AP,SP (T=O) • (Y-Z / 1110-1110) F x s x x x 
(Y-Z = 1110-1110) · (Result True) · (Result Sign Correct) s x x x x 
(Y-Z = 1110-1110) · (Result is Neg Zero) s x x s x x 
(Y-Z = 1110-1110) · (Result Compl) s x F x x x 

MVC (T=7) + (Y-Z = 1111-1110) s x x x 

MVN,MVZ,NC, (T =7) · (Y=Z / 1111-1110) F x s x x x 
DC,XC (Y-Z = 1111-1110) s x x 

CLC (T=7) • (Y-Z / 1111-1110) F x x x x x 
(Y-Z = 1111-1110) Set CR with SF-4 L TH 

TR (T=7) · (Y-Z / IOP 8-15) F x s x x x 
(Y-Z = IOP 8-15) s x x 

TRT (T=7) · (Y-Z /!OP 8-15) · (Function Byte= 0) F x x x x x 
(Y-Z = IOP 8-15) • {Function Byte = 0) x x x 

ED,EDMK (T=7) · (Y-Z / IOP 8-15) F x s x x x 
(Y-Z =!OP 8-15) s x x 

X Indicates sequencer is used. 
F Indicates sequencer is used and VFL Fetch Req is set. 
S Indicates sequencer is used and VFL Store Req is set. 

The Y's and Z's used refer to the latched outputs. 

FIGURE 56. STORE-FETCH CHART 

112 1/66 2075 Processing Unit --Volume 3 



and the operation ends with SF 5. 
The following is a description, by cycle, of the 

change or invert sign sequence (see Figure 6457): 

SF i: With Y and Z=lllO, there is no increment 
gated to AA. If a store is required, it is the (Bl + 
Dl + 0) word. If T5 is off, the VFL store request 
trigger is set. 

In preparation for generating the starting byte 
address (Bl+ Dl + Ll), !OP (8-11) is gated to Y. 

SF 2: The sequence waits here for an accept from 
the BCU if a request trigger was set during SF 1. 

The gate of Y to AA (28-31) is started in SF 2 
and continues through SF 3. 

SF 3: The second request is normally set during 
this cycle; however, the BCU mark register must be 
set at the same time or before the BCU store request 
is set. To set the mark register, the address must 
be calculated, put in H, transferred to the T latch 
and then the mark register set. For this reason, the 
request is delayed one cycle. To maintain the nor
mal ending sequence, the VFL Seq A is inserted be
tween SF 3 and SF 4. 

SEQ-A: The sign byte address is gated from H 21-
23 to the T latch, which controls the K byte release 
and the setting of the mark register. The positive 
zero byte is generated and put in K. The VFL store 
request trigger is set but the normal function of gat
ing AA to SAR and H is blocked. The address was 
set in SAR and H during the previous cycle. 

The Seq A latch sets VFL end sequence trigger· 
and generates a VFL through to the I-unit. 

SF 4: Wait in SF 4 for the accept. The condition 
register is set with SF 4. 

SF 5: Because the VFL end sequence trigger is set 
during SF 4 cycle, VFL end sequence latch gates the 
set of ELC trigger at the beginning of SF 5 cycle. 
Therefore, ELC and SF 5 terminate the instruction. 

Start Recomplement Pass 

Decimal data must always be in true form at the 
start and end of an operation. Therefore, if the result 
of an AP or SP is in complement form after the first 
pass, another pass must be made through operand 1 to 
recomplement it. Preparation for the recomplement 
pass is made during what would otherwise be the last 
store sequence. 

A description by cycle of this sequence follows 
(see Figure 6456): 

SF 1, SF 2: Same as change sign. The overlap trig
gers are reset with SF 1 latch so that none of the 
overlap functions are executed during the recomple -
menting pass. 

SF 3: The VFL fetch request trigger is set to fetch 
(Bl + Dl + Ll) . This could be the word that was 
stored during SF 1 of this sequence, but to keep the 
controls as simple and straightforward as possible, 
the fetch request is always made. 

SF 4: Wait in SF 4 for an accept for the fetch re
quest made in SF 3. The starting byte address is 
gated from H to T latch to T register. To get 
T latch into T register unchanged, the count S and 
T down line must be degated with SF 4 latch. 

T4 is set to remember that the following se
quences are for recomplementing. 

SF 5: The gate K with S trigger is set to gate K 
bytes through the RBG to the T/C + 6 gate. 

T2 is reset since Y contains Ll,and is no longer 
equal to 1110. 

The IS 3 trigger is set with SF 5 latch to start 
the add/subtract sequence in the normal way. 

SF 6: The SF 6 latch is enabled with the J loaded 
trigger. This means that the sequence waits here 
for the word requested at SF 4 to return. IS 3 latch 
is also enabled with J loaded trigger for_ AP or SP 
and T4. 

Store-Fetch for ZAP, CP, MVO 

This group of instructions has store-fetch functions 
similar to those of AP and SP but without all the 
variations. 

Zero and Add--ZAP 

The zero and add store -fetch sequence only stores. 
Therefore, if Y-Z f. 1110-1110 and T = 0, SF 3 is 
set and the sequence runs SF 3 through SF 6 (see 
Figure 6455). If Y-Z = 1110-1110, SF 1 is set and 
the sequence runs SF 1 through SF 5 (see Figure 
6457). This last sequence stores a positive sign if 
the result was a negative zero. The details of these 
two sequences are described in AP-SP crossing word 
boundary or last store, and change sign. 

Compare--CP 

The decimal compare instruction does not store a 
result and therefore, the store-fetch is a fetch only 
sequence. The sequence starts at SF 1 and runs to 

Variable Field Length 1/66 113 



SF 5 or SF 6, depending on whether the operation is 
complete or not. 

The following iis a description, by cycle, of the 
CP store-fetch (see Figure 6455): 

SF 1: Gate eight to AA if Y >7. Set the VFL fetch 
request trigger if Y -1- 1110. The reset of the over
lap triggers is for AP and SP in preparation for re
c omplementing 

SF 2: Wait here for accept to fetch request if it was 
made. 

SF 3: The VFL end sequence trigger is set if Y-Z = 

1110-1110. 

SF 4: Set T5 if Y = 1110. This blocks store-fetch 
from starting again until Y-Z = 1110-1110. 

SF 5: Gate K to L for 0-7 overlap and K to M for 
8-15 overlap (see AP, SP "Crossing a Word Bound
ary or Last Store" for more details). 

SF 6: Gate J to K when J is loaded. 

Move -with-Offset--MVO 

Because move-with-offset (Figure 6455) is a move 
type instruction, it does not fetch Op 1. For storing 
only, the store -fetch routine is started at SF 3 and 
runs to SF 5 or SF 6. The SF 6 sequencer is used to 
separate SF 5, the last cycle sequencer, and the it
erations. The SF 6 is normally used to gate J to K 
but no fetch is made for MVO. 

T5 need not be set since VFL end sequence is set 
when Y = 1110. 

Store-Fetch for PACK, UNPK 

The PACK and UNPK instructions do not move 
through both operands at the same rate. This means 
that the starting address relationships do not remain 
static throughout the execution. Therefore, over
lapping fields must be handled differently from other 
instructions. 

Nonoverlapping Fields: If it is determined during 
set-up that the starting addresses are not close 
enough together to have overlapping fields, PACK 
and UNPK are treated like MVO. The store-fetch 
sequence is entered at SF 3 and the complete result 
word is stored. The VFL end sequence trigger is 
set when Y = 1110. 

114 1/66 2075 Processing Unit -- Volume 3 

Overlapping Fields: The overlap triggers are set 
during set-up as follows: 

0-7 if 0 :!:. (B2 + D2 + L2) - (Bl + Dl + Ll) < 8 for Pack 
or -8 < (B2 + D2 + L2) - (Bl + Dl + Ll) < 8 for Unpk 

8-15 if 8 :5 (B2 + D2 + L2) - (Bl + Dl + Ll) < 16 for Pack and Unpk 

With these initial conditions and the field length 
limitations, it is possible to monitor the two low
order word-address-bits (H19 and H20) to determine 
when the operands are in the same storage word. 
These two bits are put in the ER and SC, positions 
1 and 2, during set-up. Each time a word boundary 
is crossed, the corresponding address (ER for Op 1 
and SC for Op 2) is decreased by one and then the 
two registers are compared. If the two registers 
are equal, the operands will be working on the same 
storage word. 

Other details are similar to the AP, SP store
fetch sequence (see Figure 6455). 

Store-Fetch Sequence--Logical 

The main difference between the logical and decimal 
SS instructions store-fetch sequences is the address 
generation. A word cowt is maintained in the ER of 
the words processed. This word count can be used 
to generate the increments added to the base address 
for storing and fetching. This word count is ad
vanced each time a result word is stored. The fetch 
preceding the store uses ER+ 1 for the address in
crement. If the Op 2 field is crossing word bounda
ries ahead of Op 1, the prefetch address increment 
is ER+ 2. If Op 1 is crossing word brundaries 
ahead of Op 2, the prefetch address increment is 
ER + 1. Since both operands move through storage 
at the same rate, a comparison of their starting byte 
addresses indicates which operand is leading through
out the entire execution. T5 is set during set-up of 
S >T, indicating operand 2 will cross word bounda
ries ahead of operand 1. At the end of either a store
fetch, or a prefetch, the SC contains the increment 
f9r the next fetch. Instructions MVN, MVC, MVZ, 
NC, CLC, OC and XC are included in this group. 

MVC does not fetch Op 1. Therefore, the store
fetch sequence is started at SF 3 and the prefetch 
leaves the contents of the ER in the SC for the next 
address increment. 

Following is a description of the wique operation 
of this store-fetch (Figure 6465): 

SF 1: Transfer the ER to SC in preparation for 
storing result. 



SF 3: Add one to ER for storage word count advance. 

SF 5: Add one to ER and put sum in SC. This is 
prefetch address increment if Op 1 is leading Op 2. 

SF 6: If T5 and neither overlap trigger is on, add 
one to the SC (ER+ 2) and put sum in SC. This is 
prefetch address increment if Op 2 is leading Op 1. 
If either one of the overlap triggers is on, the pre
fetch is not overlapped with the iterations. When an 
Op 2 word boundary is crossed, the iterations are 
suspended while the next Op 2 word is fetched. For 
this case, the address increment is ER+ 1. 

Store-Fetch for ED, EDMK, TR, and TRT 

For EDMK and TRT, it is necessary to calculate and 
put-away in GR 1 the full 24-bit operand 1 address. 
The easiest way of calculating this address is to 
count Y- Z up (starting with Y -Z = 0) instead of down 
and add Y-Z to Bl+ ~1, when the current byte ad
dress is needed. Y -Z register and Y-Z latch can 
then be used for addressing increments when storing 
and fetching operand 1 words at word boundaries. 

ED and EDMK 

For ED and EDMK (Figure 6473), the two operands 
move through their storage fields at different rates. 
The stepping of Y -Z corresponds to the processing 
of operand 1 bytes. The Y -Z counter has no direct 

relationship to operand 2. Therefore, a word count 
is maintained in the SC for operand 2. 

TR and TRT 

For TR and TRT (Figure 6485), the Op 2 storage 
references move at random through a translation 
table that can vary in size. The actual size of the 
table is not specified in the operation code. There -
fore, it is impossible to make an initial address com
parison to "· rmine if there is possible overlapping 
of the fields. For this reason, the word address 
(three low-order bits equal zero) of the word in K is 
placed in M. Each table address calculated is com -
pared to M and the difference is checked. If the 
difference between the table address and address of 
the current word in K is 0-7, the table byte required 
is in K. The gate K with S trigger is set and the 
word returned from storage is not used. 

The address calculated during store -fetch for the 
fetch is the address to be put in M. This address 
must be transferred to M before the store address is 
put in H. Therefore, the word in K is transferred to 
M and the address in H is transferred to K. Then K 
and M are swapped to put the address in M and the 
ref!ult word being stored back in K. 

DECIMAL DIVISION 

Method of Division 

To show the method of decimal division in the Sys -
tem/360 Model 75, consider first the normal long
hand method as shown below: 

176 R = 12 
23 ) 4060 

-23 
176 
161 

150 
138 

12 

To generate the quotient, the divisor is subtracted 
from the high-order end of the dividend as many times 
as possible. The number of times it can be sub
tracted is the value of the first quotient digit. The 
.divisor is then shifted right one digit. The second 
quotient digit is developed by subtracting from this 
position. This process continues until the divisor 
has been shifted to the low-order end of the dividend 
and the last quotient digit is generated. This process 
is shown more clearly below: 

176 R = 12 
23 ) 4060 

1 ~ 
1760 

1 ~ 
1530 

2 .:M._ 
1300 

3 -23 
1070 

4 .:M._ 
840 

5 -23 
610 

6 -23 
380 

7 -23 
150 

1 -23 
127 

2 .2L 
104 

3 -23 
81 

4 -23 
58 

5 -23 
35 

6 -23 
Quotient -- - -1-7-5-- - -- - - ----fa-'Ren1afu.Cier-

For each quotient digit generated above, the 
divisor is subtracted until the remainder is less than 
the divisor. Because it is difficult for the computer 

Variable Field Length 1/66 115 



to determine when the dividend is less than the divi
sor, the divisor is subtracted until the dividend goes 
negative. When the dividend goes negative, the divi
sor has .been subtracted one time too many; there -
fore, the divisor must be added back to restore the 
dividend to a true value. The divisor is then 
shifted right one digit and the next quotient digit 
generated in the same manner. This process con -
tinues until the dividend is reduced to a value less 
than the divisor; this then, is the remainder. 

Restoring Division (Figure 57) 

Subtraction of decimal numbers in System/360 
Model 75 is accomplished by the 9's complement 
method. In decimal division, the divisor is comple
mented and added to the dividend the required num
ber of times to cause the dividend to go negative. 
A counter counts the number of times the divisor is 
subtracted from the dividend without causing the 
dividend to go negative. When the dividend goes 
negative the counter contains the value of the quo
tient digit for that decimal position. The dividend 
is then restored to true value by adding the divisor 
back. The digit value in the quotient counter is 
stored and the counter reset to zero. 

The divisor is then shifted right one digit and 
subtraction repeated until the dividend again goes 
negative, and a new quotient digit generated. The 
dividend is again restored to a true value, the quo
tient digit stored and the process repeated until the 
value of the dividend becomes less than that of the 
divisor. Division is then complete. 

Restoring division restores the dividend to a 
true value each time it goes negative. 

Non-Restoring Division (Figure 58) 

In non-restoring division, instead of adding the 
divisor back to restore the dividend when it goes 
negative, the divisor is shifted right one digit. The 
next quotient digit is then generated by adding the 
divisor to the dividend the number of times required 
to cause the dividend to go positive. 

Non-restoring division generates quotient digits 
two ways: 

1. When the dividend is positive, the quotient 
digit counter is set to zero and stepped up one each 
time the divisor is subtracted until the dividend goes 
negative. 

2. When the dividend is negative, the quotient 
digit counter is set to 9 and counted down one each 
time the divisor is added until the dividend goes 
positive. 

116 1/66 2075 Processing Unit -- Volume 3 

Combined Restore and Non-Restore (Figure 59) 

The speed of the decimal divide process can be 
optimized by combining features of the restore and 
the non-restore methods. A review of the restore 
and non-restore method indicates that a quotient 
digit less than 5 can be generated faster by sub
tracting whereas, a quotient digit greater than 5 can 
be generated faster by adding. 

In the System/360 Model 75, both the restoring 
and the non-restoring methods are used. The high
order digits of the divisor and dividend are decoded 
to predict approximately what the next quotient will 
be. This quotient prediction allows the selection of 
the method that will be the fastest for each particular 
quotient digit. 

In general, the decimal division process is as 
follows: A divide check is made. The divisor is 
left-aligned with the left-most-but-one dividend digit. 
A trial subtraction (divide test) is made and if the 
result does not go negative the quotient and remainder 
will not fit into the Op 1 field. In this case, the 
divide check trigger is set and the division process 
is terminated. 

If the result of the trial subtraction (divide test) 
is negative the operation continues. The divisor is 
then shifted right one digit and subtracted from or 
added to the dividend. Whether a quotient digit is 
generated by addition or subtraction is determined 
by the positive or negative state of the dividend and 
the predicted quotient. The quotient digit is gener
ated in the digit counter (DC). When the first digit 
is completed, it is temporarily stored in the digit 
buffer (DB). The divisor is then shifted right 4 and 
the next quotient digit is generated. Now that a full 
byte of quotient has been generated it is put away in 
the upper end of the dividend-quotient field. This 
process continues until the divisor is right-aligned 
with the low-order byte of the dividend. The last 
quotient digit is then generated and put away. The 
division is then terminated. 

Unit Functions 

Execution of the decimal divide instruction utilizes 
the following registers and counters as temporary 
data storage and to provide controls during the 
various sequences involved. 

Registers 

The J, K, L, and M registers are used as temporary 
storage for the divisor and dividend words during 
the execution of the decimal divide instructions. 



Restoring 

023/04060 
977 
01760 
977 

99460 9 
023 Restore 
01760 

977 

1530 7 
977 

13oO 
977 

l07o 
4 977 

0840 2 
977 

0610 
977 

0380 4 977 
Oi50 

977 

9920 
023 Restore 

0150 
977 

127 
977 Ouotient 7 6 

----;Q4 
977 

on I 04060 
977 

01760 
977 
99460 

~ 
99690 

023 

99920 

~ 
00150 

977 

127 
__'!!l_ 

104 
977 

081 
977 

058 
977 

035 
__'!!l_ 

012 
977 

989 Remainder In .Complement Form -
Must Be Recomplemented 

012 Remainder 

Ouo-tient 

FIGURE 59. 

023 {04060 
:!!l__ 
01760 

:!!l__ 
99460 

023 Non Restore 

9 99690 

~ 
99920 

023 

00150 
977 Restore 

9920 
023 

9943 
023 

9966 
023 

9989 
023 

1 7 6 0012 Remainder 

DECIMAL DIVIDE--COMBINATION 
RESTORE AND NON-RESTORE 

4 
---oSi 
__'!!l_ FIGURE 58. DECIMAL DIVISION--NON-RESTORING 

Ouotient 1 7 6 

058 
977 

----o3s 
977 

----cii2 
977 

---m-
023 Restore 

012 Remainder 

FIGURE 57. DEGMAL DIVISION-- RESTORING 

J Register: The J register receives each word of the 
divisor and dividend when they are brough from stor
age during the set-up sequence. During divide iter
ations, the J register serves no function other than 
to retain the low-order dividend word when the 
dividend is in three storage words. 

Kand M Registers: The K register holds the portion 
of the quotient-remainder field that is presently being 
worked on. The M register holds the portion of the 
dividend that is on the other side of the word boundary 
if a word boundary is crossed by the present align
ment of the divisor. 

Because the quotient-remainder field can have a 
maximum length of 16 bytes, it can cross two word 
boundaries. The length of the divisor determines 
how much of this field is used in determining any 
one quotient digit. Because the maximum divisor 
length is 8 bytes, only one word boundary can be 
crossed by the portion of the dividend field being 
worked on. 

At the beginning of the divide iteration, the 
high-order two words of the dividend field are in K 
and M. The first word that will be worked on is in K. 

L Register: The L register holds the entire right
aligned divisor. Right-alignment is done during 
set-up. As each quotient digit is completed, the 
divisor is shifted right or left one decimal digit 
during sequence D cycles to provide the correct 
dividend-divisor alignment to generate the next quo
tient digit. 

Counter Functions 

Y Counter: Y is initially set to L2. Every time a 
byte of the dividend has been exhausted (a quotient 
byte generated) Y is stepped up by 1. When Y = Ll 
the last quotient digit is complete and the operation 
can be terminated. 

In addition, Y counter provides the address 
incrementsr when a new T pointer value is needed 
after each quotient byte is complete. 

Z Counter: Z is set with L2 at the beginning of each 
pass (Seq A) through the divisor. It is stepped down 
by 1 every time a byte of the divisor in L is used. 
When Z latch = lllO, the addition has been com
pleted with the exception of the extra byte during 
odd cycles. 

Variable Field Length 1/66 117 



S Pointer: Sis reset (Seq A) at the beginning of each 
pass through the di visor. It is used to select the 
divisor bytes as they are subtracted from the divi
dend. S is stepped down by 1 as each divisor byte 
is processed. 

T Pointer: T is set with Bl + Dl + Y at the begin
ning of each pass (Seq A) through the divisor. Tis 
counted down by 1 as each byte of the dividend is 
processed. 

Y is stepped up by 1 as each quotient byte is 
generated. Therefore, Bl + Dl + Y provides the T 
starting point that shifts right while proceeding 
through the division. 

T also selects the K byte in which to set the 
quotient. At the end of a pass through the divisor 
when a quotient byte has been completed, it is only 
necessary to step T down once more (Seq A) to set 
the quotient byte into K. 

Digit Counter: DC is used to generate the quotient 
digit. It is set to zero and counted up when the 
divisor is being subtracted from the dividend. It 
is set to 9 and counted down when the divisor is being 
added. It is stepped after every pass through the 
divisor until the dividend changes sign. When this 
happens, the quotient digit is complete. 

Digit Buffer: DB is used to hold one quotient digit 
while another is being generated in DC. Thus, a 
full byte of quotient can be stored after every other 
digit is generated. 

Shift Counter: The shift counter (SC) is used to gate 
odd-even cycles. During set-up, the SC is set to 
zero. Thereafter, when each quotient digit is com
plete, the SC is stepped up 1. When the SC contains 
an odd number, the pass through the divisor is an 
odd pass; when the SC is even, the pass through the 
divisor is even. 

Odd-even passes are used to maintain correct 
divisor and dividend alignment. After each quotient 
digit is complete, the divisor is shifted right 4 bits 
(one decimal digit) in relation to the dividend. To 
effectively shift the divisor right 4, the first time 
it is only necessary to shift the contents of L regis
ter right 4. For the next right 4 shift, the starting 
point of the dividend is shifted right one byte (8 bits) 
and the divisor (L register) left 4 bits. 

To keep track of this shifting, the SC is incre
mented after every quotient digit is generated. The 
odd cycles are defined as those during which the 
divisor is in its left-most position in L. During even 
cycles, the divisor is right aligned in L. 

An odd cycle quotient digit is put away in DB. 
When an even cycle quotient digit has been generated 
in DC, DB and DC are put away in K. 

118 1/66 2075 Processing Unit -- Volume 3 

Control Triggers 

Tl -- First Word Store Trigger: Tl trigger is set 
during the SF 3 cycle of the first SF sequence. Tl 
is used in combination with the T4 to generate stor
age addresses for subsequent SF sequences (Figure 
60). When set, Tl stays on until ELC. 

T2 -- Restore Trigger: The T2 trigger is set to 
restore the dividend after each quotient digit is com
plete if the non-restore trigger is off. T2 is set 
during the sequence A cycle in which the quotient 
digit is complete, except the sequence A cycle of 
divide test or the end of a restore pass. When T2 
is on a restore pass is forced; the divisor is added 
or subtracted from the dividend, depending on the 
status of TIC control T3 trigger. If the preceding 
pass through the divisor was a subtract pass and the 
quotient digit is complete, the dividend is negative 
when Seq A is entered. T2 trigger is set, if the 
non-restore trigger is off, and a restore pass adds 
the divisor back to the dividend to restore it to a 
positive value. The same occurs if the previous 
pass through the divisor was an add pass. When 
Seq A is entered and the quotient digit is complete, 
T2 trigger is set, if the non-restore trigger is off, 
and a restore pass subtracts the divisor from the 
dividend to cause it to go negative. T2 trigger is 
reset during the Seq A cycle that follows the restore 
pass. 

T3 -- True/ Complement Trigger: During decimal 
divide iterations, the T3 trigger controls whether 
the divisor is added to or subtracted from the divi
dend. If T3 is on it causes the divisor byte to be 
complemented at the TC +6 input gate to the decimal 
adder. 

T3 is set during PF4 cycle of the decimal divide 
set-up sequence, and remains on during the divide 
test pass. Thereafter, T3 is set and reset during 
Seq A cycle when quotient digit is complete. 

T4 -- Swap Trigger: The T4 trigger controls the 
swapping of K and M registers after each pass when 
a dividend word boundary is crossed. 

T4 trigger is set during IS 1 or IS 2 cycles of the 
divide test pass if a dividend word boundary is 
crossed. T4 is also set during Seq A of a restore 
pass that precedes the crossing of a dividend word 
boundary. 

T4 is reset during SF5 if the portion of the 
dividend being processed moves into one word. 

T5 -- Block-Swap Trigger: When generating the 
last quotient digit of a word, the swap trigger, T4, 
is still on. However, no word boundaries are 
actually crossed during these passes through the 



Line 
No. 

2 

3 

4 

5 

6 

7 

8 

Divide Request Address 

B1 + Dl + L1 

B2 + D2 + L2 

B2 + D2 

B1 + Dl 

B1 +DJ 

B1 +DJ+ 1 

n 0 T4 

Tl 0 T4 

T4 

T4 

Quot Rmdr 

TI 0 T4 

Fetch Req Cycle Conditions 

SU 2 

SU 4 

SU 7 S < Z (Sets T4) 

SU 9 T4 • (Tl + T2) 

SU 11 T4 • (Tl + T2) 

PF 2 Tl and T2 

Dividend Field - Word Addresses 

Word B1+D1+L1 

2 Words B1 + Di 

3 Words B1 + DJ 

B1 +Di+ L1 

B1+DJ+1 

Divisor Field - Word Addresses 

Word B2 + D2 + L2 

2 Words B2 + D2 

0 - - B1 +DJ+ 0 

1 - - B1 +Di+ 1 

y - - B1 +D1 + y 

Storage Words 
2 3 

T4 

Quot Rmdr 

TI 0 T4 T4 

Quot Rmdr 

TI 0 T4 I T4 

Quot Rmdr 

TT 0 T4 I Tl 0 T4 T4 
Ouot1 Rmdr 

TlOT4 l Tl 0 T4 T4 
Quot Rmdr 

TJOT4 I Tl OT4 T4 
Quot Rmdr 

FIGURE 60. ADDRESSING--DP STORE-FETCH 

Word Returns From Storage 

Cycle To Register 

SU 7 Kand M 

SU 9 L 

SU 11 L 

PF 2 M 

PF 2 M 

PF 3 K 

Variable Field Length 1/66 119 



Dividend - Quotient Field 

~I• Rem -+i 'Quotient 
ary ~WcxdSound 

l 2ij 11] au 29 2s] oo] 31] 9s] line 
No. 

3 

4 

7 

9 

JO 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

---
---
---

... 

... 

... 

... 

---
-·-
---
--

{ 

Passes 

Through 

Divisor 

Final Store-End Op 

Divide Test 

Restore 

Restore 

Restore 

Restore 

Store Quotient Wor 

~--

~--

+--
Restore 

FIGURE 61. DIVIDE INTIRATIONS EXAMPLE 

120 1/66 2075 Processmg Unit -- Volume 3 

Quotient 
Digits 

t 

} 2 

} 1 

} 1 

} 
} 8(1) 

} 1 

} 
} 9(0) 

} 2 

~ Sequencers - Following Set-Up 

tS-1 IS-2 IS-2 Seq-A Seq-B Seq-C Seq-0 

IS-1 IS-2 IS-2 IS-3 Seq-A 

IS-1 IS-2 tS-2 IS-3 Seq-A 

IS-1 IS-2 IS-2 IS-3 Seq-A 

IS-1 IS-2 IS-2 Seq-A Seq-0 

IS-1 IS-2 IS-2 Seq-A 

IS-I IS-2 IS-2 Seq-A 

IS-1 tS-2 IS-2 Seq-A Seq-B Seq-C Seq-0 

IS-1 SF-12 tS-2 tS-2 IS-3 Seq-A 

IS-1 SF-12 IS-2 IS-2 !S-3 Seq-A 

IS-1 SF-12 IS-2 tS-2 Seq-A Seq-0 

IS-1 SF-12 rs-2 IS-2 Seq-A 

IS-1 SF-12 IS-2 IS-2 Seq-A Seq-B Seq-C Seq-0 

IS-1 IS-2 SF-12 IS-2 rs-3 Seq-A 

rs-1 IS-2 SF-12 IS-2 IS-3 Seq-A Seq-0 

IS-1 IS-2 SF-12 IS-2 Seq-A 

IS-1 rs-2 SF-12 IS-2 Seq-A 

IS-1 rS-2 SF-12 IS-2 Seq-A Seq-B Seq-C Seq-0 

IS-1 IS-2 IS-2 SF-12 IS-3 Seq-A 

IS-1 IS-2 IS-2 SF-12 IS-3 Seq-A 

IS-1 IS-2 IS-2 SF-12 IS-3 Seq-A Seq-0 

IS-1 IS-2 rs-2 Seq-A Seq-B Seq-C Seq-0 

SF-3 SF-4 SF-5 I SP-6 

IS-1 IS-2 IS-2 IS-3 Seq-A 

IS-1 IS-2 IS-2 IS-3 Seq-A 

IS-1 IS-2 IS-2 IS-3 Seq-A 

IS-1 IS-2 IS-2 Seq-A Seq-B Seq-0 

I 
SF-3 SF-4 

I 

r. E Last Cycle 
SF-5 I 



This address is used in 
U9if0p2isinl wd 

( (J;t wo<d of Op 2) ) 

Fetch Bl + 01 if Op 
1s in 1 word and Op 1 is 
· n more than l word 

Y = L2 after rt ol ign
ment of Op 21scomplete 

( (Op 2 tn Even Position)) 

SU l 
Compute address 
of lstword of Op l 
(Bl + Dl +LI) 

SU 2 
Check Op 2 length. 
Start fetch for 1st 

~ _ wor~of_0£_1 ___ _ 
Eleor SC to zero 

SU 3 
Set T pointer to 
Bl -1- 01 ~ lJ 

- -C-;-m~te--;ddre7s"" - -
of 1st word of Op 2 
(B2 + D2 + L2) 

SU 4 
Start fetch for 1st 
word of Op 2 
Set Tl and/or T2 

- T1+12ifoP1is ~ - -
2 storage words 
Tl T2 if Op l is in 
3 storage words 

SU 5 
Set S pointer to byte ad
dress of B2 + D2 + L2 

SU 6 
VF l address advance 

_ ~t j_A~ni__H _ill !.!' ll_ _ 
Reset Y to zero 

SU 7 
Wait for J loaded 

_ L.....:E·~~t~o~P_!L 
Set SAR H, fetch req, 
and T4 if Op 2 is in 2 
words (Z > S) 

SU 8 
Set T2 -- sign 
control 1n SU 10 

SetT6""°"J op i- - -

!!.£In 1s minus 
- - Gatezto AA - -

SU 9 
__ J7_h (l_lo_!!d~)_ __ _ 

Reset T pointer 
- Strut fetCh n;q IT - - -

Tl + T2 and T4 
- SetH k:"sl+ D1 +L2 -

SU 10 
Set sign trigger if 
O..E.. 2 sign is minus 

- -ResefT3- - - - - -
- -T~7duringfi~ - -

SU TO cycle 

SU 11 
Start fetch for 2nd word 
of Op 2 (B2 + D2) ;f Op 2 
is in 2 words 

SU 12 
_S~ T_e.oi~r .!£.BJ_+Q,!_ +_!.2_ 
__ ...Qokll_to_l __ _ 

K_.L with Rt 4 shift 

PF l 
Compute Bl + Dl + 1 address 

- M::::;..K(Bl+Dl+Li)--
PF 2 

Wait for J loaded 
__ J.!r!.9~ei ___ _ 

Start fetch for Bl + 01 + I 
_iLO_e_l_j_si.!!_3_.!"~s __ 

J+-M (Bl +Dl) if Op 1 is 
in more than l word 

PF 3 
Wait for J loaded 
if required 

-J+l((Bl+ 5T +])- -
K_..J (Bl + Dl + Ll) ;f 
Op 1 is in 3 storage 
words 

-s-:; f7 -:-dM°d~h~k-
cantrol 

PF 4 
Reset S to zero 

-S~pK ~ 'J""r~ y _:- -
puts 1st dividend byte ta 
be processed in K 

1 

T3 Cony or T3 · Cony signals quotient digit complete. 
Does not occur if quotient digit is complete. 

Rt align 
Op 2 in K, 
even if in 
two stg 
words 

• FIGURE 62. DECIMAL DMDE (DP) SIMPLIFIED EXECUTION SEQUENCE--2075 

1 
IS (1) 2 (3) 

(T7 On) Subtract the divisor 
(L reg) from the dividend Divide 
(aligned with the leftmost Check 
but one dividend digit). If Pass 
the result is in true form, 
signal a divide check; if 
in complement form, con-
tinue execution 

z" 1110 
SF12 l . 

Swap K and M reg1ste:,r-

l 
Seq A 

Swap Kand M back 1f prev1-

~u~r_s~p..e;d~u~g lte_:_a~~ 
Restore Z to L2 

Seq A house keeps 
after each poss 
throuqh divisor 

- - - Set St;?-- -
- S;t rto byte~dd-;;ss--;-f -

Bl +Dl +Y ** 

No 
Step DC 
up/down 

Ye< 

Restore Pass -
Set T2 

Divide 
Check Poss 

(T7) 

No 

Quo 
Digit 

Comp* 

y = Ll 

No 

Restore 
Required 

No 

O/E 

0 

>-N_o.__l_Dv_d_C_k_l _ _. SF 3 

Ye< 

Block 
Swap 

DC~DB 

No Y = Ll 

Ye< 

l 
Seq Band C 

Compvte new starting byte 
address for the T point~r 
(Bl+Dl+Y) 

=sE?_v-~~n~ ~I°== 
Gate DB-DC to K (Does 
not occur on divide check 
pass.) 

l 1-
I 

Seq D 
Set new starting byte address 
into T pointer {Bl +DI + Y) 

- - fffectfveTy Shift the- -

Seq D 
house keeps 
after each 
quotient 
d191t is 
complete 

1s (1) 2 (3) 
The Iteration sequencers 
subtract {add) the divisor 
from {to} the dividend 

If(} 
SF 12 

Swap Kand 
M•eghte"t-

divisor right I digit 
---s;;tDCtOOor9--
- -- Stepsc ~1-- -

Y f Ll jY" Ll 
L____..ro SF 

Variable Field Length 1/66 121 



divisor. T5 is set to block the swap of Kand M 
registers between even passes. 

T5 is set during the IS 3 cycles in which T IN = 

7. When T IN = 7 during IS 3, the last quotient byte 
of a dividend word is being developed. IS 3 cycles 
occur on odd passes through the divisor to accom
modate a high-order carry-out from the decimal 
adder; therefore, T5 is not allowed to block K and 
M register swaps that occur during odd passes. 
During subsequent even passes through the divisor, 
the low-order digit of the quotient byte is generated. 
Each even pass through the divisor steps to the end 
of the dividend word (byte 0), but not across the 
word boundary. Therefore, in this case, the K and 
M swaps that normally occur during Seq A of even 
passes are undesirable and and blocked by T5. 

Lines 19-22 of Figure 61 show the conditions in 
which the T5 trigger is used. Lines 19-21 represent 
odd passes through the divisor. At the start of each 
pass, the low-order dividend word is in the K regis
ter and the high-order word is in the M register. 

When the end of the divisor is reached, during 
odd IS 2 cycles, SF 12 cycle is entered and K and M 
registers are swapped. IS 3 cycle then occurs and 
gates the carry-out, if any, from the decimal adder 
into byte 7 of the high-order dividend word, now in 
K register. Sequence A cycle then swaps K and M 
back; this places the high-order dividend word in 
M and the low-order word in K, ready for the next 
pass. Odd passes repeat (lines 20 and 21) until the 
dividend changes sign; the quotient digit is then 
complete. During the last odd Seq A cycle (line 21), 

K and M are swapped, and because the quotient digit 
is complete, Seq D cycle follows. During Seq D the 
quotient digit in the DC, generated during the odd 
passes, is set into the DB to become the high-order 
digit of the quotient byte. 

T5 trigger is set during the first odd IS 3 cycle in 
which T IN = 7 (line 19) and remains on until the 
completed quotient word is stored. T5 blocks K and 
M swaps only during even passes through the divisor. 

During even passes in which the last quotient digit 
of a quotient word is generated, the dividend word 
boundary is approached but not crossed. Therefore, 
the swap of K and M registers is undesirable and is 
blocked by T5 trigger, even though the T4 trigger is 
still on. This condition is shown on line 22 of Figure 
61. 

T6 -- Dividend Sign Trigger: The T6 trigger is used 
to generate the correct quotient and remainder signs. 

The T6 trigger is set during SU 8 cycle of set-up 
sequence if the dividend sign is minus. When set, 
T6 trigger remains on throughout the execution of 
the decimal divide instruction, and is reset with ELC. 

During Seq B cycle, after the last quotient digit 
is generated, the quotient sign is inserted in the 

122 1/66 2075 Processing Unit -- Volume 3 

low-order quotient byte. During this cycle, the 
status of the T6 trigger is compared with the status 
of the minus sign trigger (divisior sign) and the 
correct quotient sign inserted. 

The status of the dividend sign trigger also de
termines the sign of the remainder. During the IS 1 
cycle that processes the low-order bytes of the div
idend, the remainder sign is generated and inserted. 
If the dividend sign is minus, the trigger is on and 
causes a minus sign to be generated for the remainder. 

T7 -- Divide Test Trigger: The T7 trigger provides 
gating control during the divide test pass through 
the divisor. 

T7 is set during PF 3 cycle of the set-up se
quence; then during the IS 1 and IS 2 cycles when 
the divisor is subtracted from the dividend, T7 being 
on blocks setting the AV sum into K. 

After all bytes of the divisor have been subtracted 
from the dividend, the dividend should change sign 
and indicate quotient digit complete (T3 on and no 
carry-out of AV). Seq A follows the divide test pass 
through the divisor. When T7 is on during Seq A 
and quotient digit is complete, the divide iterations 
continue. If, however, the dividend did not change 
sign, and quotient digit is not complete, T7 being on 
during Seq A causes a divide interrupt. 

T7 trigger is reset during the following Seq C 
cycle. 

T8 -- Terminate Trigger: As each quotient byte is 
completed and set into the K register, the mark 
register for that byte is set. After the last quotient 
digit is generated and the division completed, the 
remainder must also be stored; therefore, the mark 
register positions that correspond to remainder 
bytes must also be set. To set the marks for the 
remainder, a restore pass is forced, even if it is 
not needed. If a restore pass is forced when not 
needed, the results are not set into the K register. 

When the remainder is in two words (T4 on) 
two restore passes are necessary. The first restore 
pass sets the marks for the high-order remainder 
word. The SF sequence then stores the high-order 
remainder word. The second restore pass then sets 
the marks for the low-order remainder word and the 
word is stored. 

T8 trigger is set during the store of the high
order word if the T4 trigger is on. During the re
store of the low-order word, T8 being on when the 
word boundary is reached, causes the word to be 
stored and the operation terminated. 

Non-Restore Trigger: The non-restore trigger 
controls the restoring of the dividend during the 
decimal divide iteration sequence. Prediction of 



the approximate value of a quotient digit enables a 
choice of the faster method, either restore or non
restore, to develop it. 

Assume that the first quotient digit is generated 
by subtracting the divisor from the dividend until 
the remainder is negative. If the next quotient digit 
is in the range of 0 to 4, the dividend should be re
stored to positive, the divisor shifted right, and the 
next quotient digit generated by subtracting the div
isor from the dividend. If, however, the next 
quotient digit is in the range of 5 to 9, the divisor 
should be shifted and the quotient digit developed by 
adding the divisor to the complement dividend until 
the dividend becomes positive. 

When the dividend goes positive, the next quo
tient digit is predicted and the same decisions made. 
If the predicted quotient is in the range of 0 to 4, 
the dividend remains in true form, the divisor is 
shifted and the quotient digit generated by subtract
ing the divisor from the dividend. If the predicted 
quotient digit is 5 to 9, the dividend should be 
complemented, the divisor shifted and the quotient 
digit generated by adding the divisor to the dividend. 

System/360 Model 75 predicts the next quotient 
digit by comparing the high-order divisor digit with 
the dividend digit that aligns with it. The divisor 
is added to or subtracted from the dividend one byte 
at a time and moves from right to left through the 
divisor. 

For each divisor byte processed, the high-order 
nonzero digit is compared to the corresponding digit 
of the dividend. If the high-order divisor digit is 
zero, the low-order digit is compared to the corres
ponding dividend digit. If both digits of the divisor byte 
are zero, no comparison is made. The non-restore 
trigger is set or reset each cycle, depending on the 
value of the digits compared. When both digits of the 
divisor bytes are zero, the status of the non-restore 
trigger remains unchanged. 

When the quotient digit is complete, the dividend 
has changed signs. The status of the non-restore 
trigger then determines whether the dividend should 
be restored. If the non-restore trigger is on, the 
dividend should not be restored; if it is off, the 
dividend should be restored. 

Figure 63 shows conditions for the set and reset 
of the non-restore trigger. 

Execution -- Decimal Divide 

Execution of the decimal divide instruction involves 
three sequences; set-up, iteration, and store-fetch. 

The set-up sequence fetches both operands, the 
dividend (Op 1) and the divisor (Op 2), from storage 
and aligns them in working registers. During the 
set-up sequence, the divisor and dividend signs are 
checked and controls are set to provide correct 
signs for the quotient and remainder. 

Divide iteration follow the set-up sequence. 
During the divide iteration sequence, the quotient 
and remainder digits are generated. 

The store-fetch sequence follows the iteration 
sequence to store the completed quotient-remainder 
in the Op 1 location of storage. The decimal divide 
instruction is always terminated by a SF sequence; 
however, store-fetch sequences are also interleaved 
with iterations if the quotient-remainder is in more 
than one storage word. When a quotient-remainder 
word is completed, a store-fetch sequence stores 
the word. 

Set-Up Sequence 

The VFL set-up sequence for decimal divide fetches 
the dividend and divisor words from storage to the K, 
M, and L registers. The dividend is fetched to the 
J, K, and M registers. If the dividend is in more 
than one storage word, the low-order dividend words 
are in the J and M registers and the high-order word 
is set into K, ready to start divide test. The divisor 
is fetched to the L register. If the divisor is in more 
than one storage word, both words are fetched and 

the divisor is right aligned in the L register. Be
cause the divisor is allowed to contain a maximum 
of eight bytes, the L register contains the complete 
divisor at the end of set-up. 

In addition to fetching both operands from storage, 
the set-up sequence makes a specification check, 
checks the signs of dividend and divisor, and sets 
controls used during the iteration sequence. 

The set 12 sequence uses VFL sequencers SU 1. 
through SlT 2 and PF 1 through PF 4 (Figure 6466). 

Prior to the I/E transfer and during ELC of the 
previous instruction, Ll and L2 are set into Y and 
Z counters from IOP; Ll is set into Y and L2 into 
z. 

SU 1 Cycle: SU 1 cycle follows the I/E transfer. 
During SU 1 cycle, Y (Ll) is gated to the AA prep
aratory to computing the storage address Bl + Dl + 
Ll of the low-order dividend (Op 1) word. Although 
the storage address is normally computed during 
the following SU 2 cycle, Y is gated to the AA during 
SU 1 cycle to overcome line delay. 

If CPU is in single cycle mode during SU 1 cycle, 
the storage address Bl + Dl + Ll is computed and 
the VFL fetch request trigger is set to fetch the 
first dividend word from storage. 

SU 2 Cycle: SU 2 cycle computes the storage ad
dress Bl + Dl + Ll of the low-order dividend word 
and initiates the fetch request to get the word from 
storage. 

Variable Field Length 1/66 123 



IS 1+2 

No Compare To LOO Of 
Dividend Byte 

Dividend Is Complement 
True Add Divisor 

8 or 9 0-7 

Off 

(2 - 9 True) 
(0 or 1 True) ~---'--__J'----. 

Non Restore Trigger 
Remains Unchanged 

FIGURE 63. DECIMAL DIVIDE DECODE--NON-RESTORE 

Set Non Restore 
Trigger 

Block Restore 

Reset Non Restore 
Trigger 

Restore 
Dividend 

Dividend and divisor lengths are checked during 
SU 2. If the divisor length is greater than the allow
able eight bytes, L2 > 7, or if the divisor is equal 
to or greater than the dividend length, L2 ::= Ll, 
a specification interrupt occurs; the divide instruc
tion is terminated by suppressing the remainder of 
the set-up sequence and going to the store-fetch 
sequence. 

If CPU is in single-cycle mode during SU 2 cycle, 
the low-order dividend word has arrived from stor
age and is in the J register. The dividend word is 
transferred from the J register through the main 
adder to the K and M registers. Because the fetch 
request for the low-order dividend word is made 
during SU 1 cycle, single-cycle mode suppresses 
the fetch normally made during SU 2. 

SU 3 Cycle: SU 3 is the accept wait cycle for the 
fetch request mode during SU 2. The ON status of 
the VFL fetch request trigger sets the BCU fetch 
request trigger at the beginning of SU 3 cycle. If 

124 1/66 2075 Processing Unit -- Volume 3 

Dividend Is True -
Complement Add Divisor 

2-9 Oor 1 

the selected storage is not busy, an accept signal 
is returned to the E unit and enables the set-up 
sequence to continue. If the selected storage is 
busy, then the accept signal is delayed until storage 
priority is established; in which case, the set-up 

sequence remains in SU 3 cycle until accept arrives. 
The storage address (Bl + Dl + Ll) computed 

during SU 2 cycle is set into SAR and H registers at 
the beginning of SU 3 cycle. During SU 3, the byte 
address of the low-order digit of the dividend, con
tained in H register positions 21-23, is set into the 
T pointer. The T pointer is used later, during set
up, when the dividend sign is checked. 

VFL address advance signal is sent to the I unit 
during SU 3 cycle preparatory to computing the 
storage address of the low-order divisor word. 
VFL address advance signals the I unit to gate B2 and 
D2 to IOP during the next cycle. 

The Z counter provides the L2 factor to compute 
storage address B2 + D2 + L2 during SU 4 cycle. 
To overcome line delay and assure L2 is available 



during SU 4, the gating of Z to the AA is started 
during SU 3 cycle. 

SU 4 Cycle: SU 4 cycle (decimal divide) computes 
the storage address of the low-order divisor 'word 
(B2 + D2 + L2) and starts the VFL fetch request to 
get the divisor from storage. Because VFL address 
advance is gated to the I unit during SU 3 cycle, the 
I unit gates the B2 and D2 to IOP and thus, the AA 
during SU 4. Z is gated to the AA to provide L2. 
In the AA, B2 + D2 + L2 storage address is com
puted; the address is then gated to SAR and H 
registers. 

At the same time the storage address is com
puted and the fetch request is made for the divisor 
word, the dividend length and the number of storage 
words that contain the dividend are checked. VFL 
triggers Tl and T2 are used during divide set-up 
to indicate the number of storage words that contain 
the dividend. 

The dividend may be contained in 1, 2, or 3 
storage words depending on its length and low-order 
byte address. For example, a dividend 4 bytes long 
(Y = 3) is contained as one storage word if the low
order byte address is 3 or greater (T > Y); where
as, the dividend is contained in two storage words 
if the low-order byte address is less than 3 (T < Y). 
A dividend greater than 9 bytes long (Y > 8) is con
tained in two or three storage words depending on 
the low-order byte address. Y counter and T 
pointer are compared to determine the dividend 
length and storage word relationship. Y positions 
1, 2, and 4 are compared to T positions 1, 2, and 4. 
If T is less than Y, VFL Tl trigger is set to indicate 
that the dividend crosses a word boundary. Y 
greater than 8 indicates the dividend is 9 bytes or 
greater in length and therefore is contained in at 
least two storage words. VFL trigger T2 is set 
when Y is greater than 8. When VFL Tl or T2 trig
ger is on, the dividend is contained in two storage 
words. When VFL Tl and T2 are on, the dividend 
is contained in three storage words. VFL Tl and T2 
control the fetch requests made later during set-up, 
for remaining dividend words. 

SU 5 Cycle: SU 5 cycle (divide) is the accept wait 
cycle for divisor fetch request made during SU 4 
cycle. 

The B2 + D2 + L2 divisor storage address com
puted during SU 4 cycle is set into SAR and H reg
isters at the beginning of SU 5. The low-order byte 
address of the divisor, H 21-23, is set into the S 
pointer. The S pointer is used later in SU 10, to 
control divisor alignment. 

If storage priorities delay an accept to the fetch 
request made during SU 4, the set-up sequence 
remains in SU 5 until the accept arrives. 

If CPU is in single-cycle mode, the divisor 
arrives from storage and is set into the J register 
before SU 5 starts. Therefore, during single-cycle 
mode, the divisor is transferred from the J register 
through the main adder to the L register. 

SU 6 Cycle: SU 6 cycle sets VFL gating controls 
and sends VFL address advance to the I unit prep
aratory to computing the storage address and start
ing a fetch to get the second divisor word, if nec
essary. The gate L with S and the T decode out 
triggers are set to enable divisor and dividend sign 
control later. 

Y and Z counters are reset. Y counter is reset 
because it counts from 0 up during SU 10. Z counter 
is reset because Y and Z share a common reset; Z 
is restored in SU 7. 

SU 7 Cycle: When the low-order dividend word 
arrives from storage, it is set into the J register 
and the J loaded latch is set. During SU 7 cycle, 
the dividend word is transferred from the J register 
through the main adder to the K and M registers. 
SU 7 latch is enabled with J loaded; therefore, if the 
dividend word has not arrived, the set-up sequence 
remains in SU 7 until J is loaded. 

In addition, during SU 7, L2 (IOP 12-15) is set into 
Z counter. S is compared with Z to determine if the 
divisor is in more than one storage word. If S < Z, 
the divisor is in two storage words, and the VFL 
fetch request trigger is set to get the second high
order divisor word from storage. When the divisor 

is in two words, VFL T4 trigger is set to remember 
that the divisor is in two words. Because the VFL 
address advance signal is sent to I unit during SU 6 
cycle, storage address B2 + D2 + 0 is computed during 
SU 7 cycle and set into SAR and H registers. 

VFL T3 trigger is set during SU 7 cycle to 
enable sign control of divisor during the first SU 10 
cycle. 

SU 8 Cycle: SU 8 cycle checks the low-order digit 
of the dividend for a sign. The low-order dividend 
word is contained in the K register. The K byte 
selected by the T pointer is gated through the LBG. 
The low-order digit from the LBG is the dividend 
sign and high-order digit of the byte is the low
order dividend digit. LBG is gated to the AOE for 
parity checking, and the low-order digit is sign de
coded. If the LBG sign is minus, VFL T6 trigger is 
set. T6 controls the quotient and remainder signs 
generated during the divide iterations. 

Z (L2) is gated to the AA by SU 8 latch prepara
tory to computing storage address Bl + Dl + L2 dur
ing SU 9 cycle. Because of line delay this gate is 
brought up early. 

Variable Field Lengt'1 1/66 125 



SU 9 Cycle: When the low-order divisor word 
arrives from storage, it is set into the J register 
and the J loaded latch is set. If the J loaded latch 
is not set when SU 9 cycle starts, the set-up se
quence waits in SU 9 until J is loaded. The low
order divisor word is then transferred from the J 
register through the main adder to the L register. 
If CPU is in single-cycle mode, the low-order div
isor word is transferred to the L register during 
SU 5 cycle; therefore, the transfer during SU 9 is 
blocked. 

Z (L2) is gated to the AA and storage address 
Bl + Dl + L2 is computed. AA output is gated to 
SAR and H registers. However, the Bl + Dl address 
in SAR is protected by blocking the set of SAR. 
Bl + Dl + L2 storage address is used later during 
divide test and iteration passes to align divisor and 
dividend. 

If the divisor is in one storage word (T4 off) and 
the dividend is in more than one word (Tl or T2 on) 
a fetch request is made during SU 9 to get the high
order dividend word (Bl + Dl). If the divisor is in 
two storage words, this indicates that the fetch for 
the second divisor word is made during SU 7 and 
that the word has not arrived from storage by SU 9 
time; therefore, the fetch for the high-order dividend 
word is delayed until SU 11 cycle (see Figure 6467). 

The T pointer is reset to zero during SU 9 and 
gated to step down one. This sets the T pointer to 
7 during the first SU 10 cycle. 

SU 10 Cycle: The divisor sign is checked and the 
divisor right aligned during SU 10 cycles. SU 10 
cycles repeat, aligning one divisor byte each cycle 
until all divisor bytes are processed. 

The low-order divisor word is set into the L 
register at the beginning of the first SU 10 cycle. 
The L register byte selected by the S pointer is then 
gated through the RBG, through the decimal adder 
(AV) and into the K register byte selected by the T 
pointer. The S pointer is set to the low-order byte 
address of the divisor during SU 5. The T pointer 
is stepped down from 0 to 7 at the beginning of the 
first SU 10 cycle. Therefore, the low-order divisor 
byte is transferred from its location in the L reg
ister, indicated by the S pointer, into byte 7 of the 
K register. S and T pointers are stepped down each 
SU 10 cycle and the next higher order divisor byte 
transferred from the L register to the K register. 
SU 10 repeats until all divisor bytes are in the K 
register. 

The divisor length code (L2) is set into the Z 
counter during SU 7. During each SU 10 cycle Z is 
stepped down. When Z steps to 1110, all divisor 
bytes have been aligned in the K register and the 
set-up sequence continues to SU 12. 

126 1/66 2075 Processing Unit -- Volume 3 

During the first SU 10 cycle VFL T3 trigger is 
on. If T3 is on, the low-order digit from the RBG 
is checked for a sign. If the sign is minus, the 
minus sign trigger is set. The minus sign trigger 
is used during divide iterations to generate the 
correct quotient sign. 

If the divisor is in two storage words, the S 
pointer steps to zero before the Z counter reaches 
1110. In this case, the second divisor word must 
be set into the L register before SU 10 cycles can 
continue. When S = 0, SU 10 cycles are suspended 
and SU 11 entered. The fetch for the second divisor 
word is started during SU 7 cycle. The second 
divisor word returns from storage to the J register 
and sets the J loaded latch. If J is not loaded when 
entering, SU 11 cycles repeat until J is loaded. 
The divisor word is then transferred through the 
main adder to the L register. SU 10 is set again and 
the alignment continued until Z steps down to 1110. 

At the same time Z counter steps down, Y 
counter steps up. This occurs because the Y counter 
controls dividend-divisor alignment during iterations 
and must contain the divisor length code (L2) when 
the iterations start, and because no direct path 
exists in CPU to gate L2 to Y. Therefore, Y is 
reset to zero during SU 6 and stepped up during 
SU 10. When Z = 0, Y = L2. 

SU 11 Cycle: SU 11 cycle occurs only if the divisor 
is in two storage words. SU 11 transfers the second 
divisor word from J register to L register and re
starts SU 10 cycles to complete divisor alignment. 

When both divisor and dividend are each in more 
than one storage word, the fetch for the second 
dividend word (Bl + Dl), normally made in SU 9, 
is delayed until SU 11. 

During SU 11 the storage address Bl + Dl is 
computed and the VFL fetch request set. The out
put of the AA is gated to SAR and H; however, to 
retain the Bl + Dl + L2 address in H, the setting of 
H register is blocked. 

SU 12 Cycle: SU 12 cycle follows SU 10 after all 
bytes of the divisor are right aligned in the K reg
ister. SU 12 cycle transfers the divisor from K to 
L register through the main adder. The main adder 
is gated to shift the divisor right 4 bit positions. 
The right 4 shift causes the divisor sign digit to be 
removed and the divisor right aligned when set into 
L register. 

L2 is gated from IOP 12-15 into Z counter. H 
register positions 21-23 are. set into the T pointer. 
This is the byte address of B1 + Dl + L2, and en
ables the T pointer to gate the correct dividend bytes 
from K register during divide test. 



PF 1 Cycle: PF 1 cycle transfers the low-order 
dividend word from M to K register. One is gated 
to AA 28 preparatory to computing Bl + Dl + 1 ad
dress used during PF 2 to fetch the next dividend 
word, if necessary. 

PF 2 Cycle: PF 2 cycle resets the SC to zero. The 
SC is used during divide iterations to define the odd
even passes through the divisor. 

If Tl and T2 triggers are off, no other functions 
are performed during PF 2. 

If either Tl or T2 trigger is on, the dividend is 
in more than one storage word. The fetch for the 
high-order dividend word is started during SU 9 or 
SU 11. When this dividend word arrives from stor
age to the J register, the J loaded latch is set. If 
J is not loaded, PF 2 repeats until J is loaded. 
The high-order dividend word is then transferred 
from J register through the main adder to M reg
ister. 

If both Tl and T2 triggers are on, the dividend 
is in three storage words. A 1 is forced to AA 28 
and storage address Bl + Dl + 1 is computed and 
gated to SAR and H. To retain Bl+Dl+L2inH, the 
setting of H is blocked, VFL fetch request is set 
and the fetch started to get the last dividend word. 

PF 3 Cycle: The functions of PF 3 cycle are con
trolled by VFL Tl and T2 triggers. If either or 
both Tl and T2 are off, PF 3 cycle performs only 
the function of resetting the S pointer and setting 
VFL T7 trigger. The S pointer is reset to zero and 
later stepped down to 7 so that the low-order divisor 
byte is gated from the L register during divide test. 
VFL T7 is set to define the first pass through the 
divisor as the divide test pass. The set-up sequence 
then advances to PF 4 cycle. 

If Tl and T2 triggers are both on at the begin
ning of PF 3 cycle, the dividend is in three words. 
The fetch for the third dividend word is requested 
during the preceding PF 2 cycle. PF 3 waits until 
the J loaded latch is set, a signal that this dividend 
word has arrived in the J register. At the beginning 
of PF 3, the two other dividend words are contained 
in the K and M register; the low-order word (Bl + 
Dl + Ll) is in K register, and the high-order word 
(Bl + Dl + 0) is in M register. Because divide iter
ations process the high-order dividend words first, 
and because the K and M registers contain those 
words currently in process during iterations, align
ment of the dividend in K and Mis started during PF 3. 

When J is loaded, it contains dividend word Bl + 
Dl + 1. K and J registers are swapped by gating K 
through the main adder to J and J through RBL to K. 
Thus, the low-order dividend word (Bl + Dl + Ll) is 
in J and the two high-order words (Bl + Dl and Bl + 
Dl + 1) are in M and K registers at the beginning of 
PF 4 cycle. 

PF 4 Cycle: PF 4 is the last cycle of the divide set-up 
sequence. Final positioning of the dividend words 
occurs during PF 4 cycle. If the dividend is in one 
word, this word is in the K register when PF 4 
cycle starts and therefore requires no relocation. 
If the dividend is in two or three storage words 
(either Tl or T2 on, or both Tl and T2 on), the first 
two words to be processed are in the M and K reg
isters; the high-order word in Mand the low-order 
word in K. 

The divide test pass that follows set-up sub
tracts the divisor from an equivalent number of 
high-order dividend bytes. The byte address (Bl + 
Dl + L2) contained in the T pointer selects the divi
dend byte that aligns with the low-order divisor 
byte. A test is made during PF 4 cycle to deter
mine which of the two registers, K or M, contains 
the dividend byte used to start the divide test. The 
divisor length (in Y counter) is compared with the 
byte address of the selected dividend byte (in T 
pointer). If Y S. T, the selected dividend byte is in 
the high-order word contained in the M register. 
Because M is not a byte addressable register, the 
contents of M register is transferred to K register. 
At the same time, to retain the low-order dividend 
word, the contents of K register is transferred to 
M; M register is gated through the main adder to K, 
and K is gated through RBL to M. In this manner K 
and Mare swapped. 

When Y is greater than T, the selected dividend 
byte is in the lower order dividend word in K reg
ister. In this case, the dividend words are correctly 
positioned in K and M registers and no K and M 
swap occurs. 

PF 4 is the last cycle of the decimal divide set
up sequence and set IS 1 sequencer to start the divide 
test pass. 

Iteration Sequence -- Decimal Divide 

Decimal divide iterations subtract the divisor from 
the dividend the number of times necessary to reduce 
the dividend to zero or to a value less than that of 
the divisor. The number of times the divisor is 
subtracted from the dividend is the quotient. When 
the dividend becomes less than the divisor, the 
divide instruction is terminated. 

Starting at the high-order end of the dividend, the 
divisor is subtracted the number of times required to 
cause that portion of the dividend to go negative. The 
number of times the divisor is subtracted without 
causing the dividend to go negative represents the 
first quotient digit. The divisor is then shifted 
right one digit and the process repeated to generate 
the next quotient digit. As each quotient digit is 
generated, the divisor is shifted and the dividend 
reduced. This is repeated until the dividend becomes 

Variable Field Length 1/66 127 



zero or less than the divisor; the divide process is 
then terminated. 

In System/360 Model 75 the divisor is subtracted 
from the dividend one byte at a time. The divisor 
is first' aligned with the high-order end of the 
dividend, then, starting with the low-order divisor 
byte, each divisor byte is subtracted, one at a time, 
from the corresponding dividend byte until the high
order end of the divisor is reached. If the dividend 
remains positive, the divisor is again subtracted 
from the dividend, and again starting with the low
order byte of the divisor and stepping through the 
divisor and dividend until the high-order divisor 
byte is subtracted. 

A quotient counter counts the number of times 
the divisor is subtracted from the dividend without 
causing the div.idend to change sign. When the 
dividend changes sign, the quotient digit is complete 
and the value in the quotient counter is stored in the 
high-order digit position of the dividend field. The 
divisor is then shifted right one digit and the same 
process repeated to develop the next quotient digit. 
When the divisor has been shifted right until the 
low-order divisor byte aligns with the low-order 
dividend byte, the lastquotientdigit is being generated. 
When the low-order divisor and dividend bytes align 
and the dividend changes sign, the last quotient digit 
is complete. The quotient digit and the remainder 
are stored and replace the dividend. The decimal 
divide instruction is then terminated. 

During decimal divide set-up sequence, the 
dividend and divisor are brought from storage into 
the J, K, M, and L registers. The dividend is in 
the K and M registers and the divisor is right-aligned 
in the L register. During the divide iterations, the 
divisor bytes are gated from the L register through 
the RBG to the TC + 6 input of the decimal adder (AV) . 
The dividend bytes are gated from the K register 
through the LBG to the left side input of the decimal 
adder (AV). The divisor byte is subtracted from the 
dividend byte by complement adding (decimal 9' s 
complement) in the AV. The output byte of the AV 
is then gated back to the K register. In this manner, 
each divisor byte is subtracted from the corresponding 
dividend byte during each pass through the divisor. 

The digit counter (DC) is the quotient counter in 
which each quotient digit is generated. The DC is 
stepped each time a pass is made through the divisor. 

Iteration sequencers IS l, IS 2, and IS 3 are used 
during the execution of the decimal divide instruction 
to perform the decimal arithmetic, and VFL sequencers 
A, B, C, D, and SF 12 are used to set controls and 
align the divisor and dividend between passes through 
the divisor (Figure 6467). 

IS 1 Cycle: IS 1 is the first sequencer in every pass 
through the divisor when subtracting (adding) from 

128 1/66 2075 J>rocessing Unit -- Volume 3 

the dividend. IS l controls the gates to AD for sign 
control and hot l for subtraction. 

IS 2 Cycle: IS 2 is the sequencer after IS 1 during 
which L bytes are subtracted (added) from K bytes. 
It loops on itself until coming to a word boundary or 
the end of the divisor field. 

IS 3 Cycle: IS 3 is used to process an extra byte 
during an odd cycle pass through the divisor. The 
extra byte is necessary because the next high-order 
digit of the dividend may not be zero. The extra 
cycle is not necessary during even cycles because 
the high-order divisor digit is the low-order digit 
of a byte. 

~: SF 12 is used to swap K and M when a boundary 
is crossed during a pass through the divisor. 

Seq A: Seq A is the first sequence following a sub
traction (addition) of the divisor. It resets S, gates 
L2 to Z and gates H (Bl + Dl + Y) to T. If the 
portion of the dividend presently spanned by the 
divisor is in two words, K and M are normally 
swapped at this time. DC is stepped during Seq A 
if the quotient digit is not complete. 

If the quotient digit is not complete, another 
subtraction (addition) must be made, IS l is set. If 
the quotient digit is complete, the next even cycle 
sequence is Seq B; next odd cycle sequence is Seq D. 

Seq B, Seq C: When the even cycle digit is complete 
the new Y value must be added to Bl + Dl. Seq B and 
Seq C gate Y to AA and release H. 

Seq D: Seq D shifts L right 4 following odd cycles and 
left 4 following even cycles. The shift counter is 
incremented during Seq D. Seq D also gates H to T 
to get the new T starting point if Y was stepped and 
added to Bl + Dl. 

Figure 61 shows an example of divide iterations. 

Store-Fetch Sequence -- Decimal Divide 

The store-fetch sequence for the decimal divide 
instruction stores the completed quotient-remainder 
words as each is completed. Because all operand 
fetches are made during the divide set-up sequence, 
the store-fetch sequence only stores. 

After the high-order quotient-remainder word 
is complete, and after each succeeding lower-order 
word is complete, the store-fetch sequence is 
entered and the completed word is stored at the Op 1 
location in storage, with but one exception, the 
store -fetch sequence starts with SF 3 and sequences 
through SF 5 or SF 6 (Figure 6468). If the last 
quotient-remainder word is complete, or the E-



interrupt trigger is set, SF 5 terminates the instruc
tion. If the decimal divide instruction is not complete, 
the SF sequence proceeds through SF 6 and back to 
IS 1 to continue. 

SF 2 starts the instruction terminating sequence 
when a decimal divide specification violation is 
detected during SU 2 cycle of the set-up sequence. 
This occurs because the VFL sequence triggers and 
latches are used for both set-up sequences and for 
SF sequences. The VFL SF trigger defines which 
sequence is executed. When the VFL SF trigger is 
off, the VFL sequence triggers and latches perform 
set-up functions. When the VFL SF trigger is on, 
the VFL sequence triggers and latches perform 
store-fetch functions. Therefore, if a specification 
interrupt occurs during SU 2 cycle, the setting of 
VFL SF trigger is gated. The SF trigger is set at 
the beginning of the next cycle, SU 3. Because the 
SF trigger is set, VFL gating is changed from set-up 
to SF and SU 3 cycle is changed to SF 2. The SF 
sequence then progresses to SF 5 and terminates. 

Storage Addressing 

When the SF sequence is entered to store a com -
pleted quotient-remainder word, the storage 
address for that word is computed. (See Figure 61) 
VFL triggers Tl and T4 are used to determine which 
of the three possible storage addresses is computed. 

VFL T4 trigger is the K and M swap trigger 
that is set when a dividend word boundary is crossed 
during iterations. If VFL T4 is on during SF 
sequences, it indicates that at least one quotient
remainder word remains to be processed and the 
storage address of the high-order word is computed. 

VFL Tl trigger is used to remember that a SF 
sequence has occurred. It is set during the first 
SF sequence and, with T4, controls address 
generation for subsequent SFs. 

VFL Tl and T4 triggers control gates to the AA 
duringthe SF3(cyclel)whenthe storage address is 
computed. If T4 is off, Y counter is gated to AA to 
compute storage address Bl+ Dl + Y. When T4 is 
on, the status of Tl determines the storage address 
computed. When Tl and T4 are on, a l is forced to 
input position 28 of the AA to compute storage 
address Bl+ Dl + 1. Figure 60 shows the relation
ship of Tl and T4, and the quotient-remainder word 
to be stored. 

Line 2 in Figure 60 indicates that the quotient 
remainder is in one storage word. T4 trigger is 
off; therefore, the quotient-remainder is stored at 
storage address Bl+ Dl + Y. In this case, the first 
SF sequence also terminates the instruction. 

Lines 3, 4, and 5 indicate a quotient-remainder 
in two storage words. Two passes through the SF 

sequence are required, one to store each quotient
remainder word. The first SF sequence stores the 
high-order quotient-remainder word at storage 
address Bl+ Dl, then iteration sequencing is started 
again to process the low-order quotient-remainder 
word. When the low-order word is complete, the 
second SF sequence is started and the low-order 
word stored at address Bl+ Dl + Y. T4 trigger is 
on during the first SF sequence because a word 
boundary is crossed during the iterations when the 
first quotient-remainder word is processed. During 
the iterations that follow the store of the high-order 
word, if the divisor is less than 8 bytes long ( Z < 7), 
the portion of the dividend in process is contained 
within one word. No word boundaries are crossed; 
therefore, T4 is reset. Tl trigger is on when the 
second SF starts; however, T4 being off overrides 
the status of Tl and gates Y to the AA. The second 
quotient-remainder word is stored at address Bl + 
Dl + Y and the instruction is terminated. 

Lines 6, 7, and 8 of Figure 60 indicate conditions 
wherein the dividend and, therefore, the quotient
remainder is contained in three storage words. 
Because a word boundary is crossed when the high
order quotient-remainder word is developed, T4 
trigger is on when the first SF sequence starts. T4 
trigger on and Tl off causes storage address Bl + Dl 
to be computed during SF 3 cycle. The first SF 
sequence sets Tl trigger, which remains on until 
the instruction is terminated. The second SF sequence 
stores word Bl + Dl + 1. When Tl and T4 triggers 
are on, a 1 is forced to input position 28 of the AA 
and storage address Bl + Dl + l is computed. T4 
trigger is off when the last SF sequence starts; 
therefore, the storage address (Bl + Dl + Y) of the 
low-order quotient-remainder word is computed. 

St6re-Fetch Cycles 

When the last quotient digit of the quotient-remainder 
word is complete, a SF sequence is started to store 
the completed word in the Op 1 location in storage. 
See Figure 6468. 

SF 3 Cycle: SF 3 is the first cycle of the SF sequence. 
During SF 3 cycle, the storage address is computed 
and the VFL store request trigger is set. 

Tl trigger is set to remember that the first SF 
sequence has occurred. The status of Tl and T4 
triggers controls address generation during sub
sequent SF sequences. 

A set to VFL TS trigger is gated during this cycle 
if the last quotient digit has been developed (Y = Ll) 
and a word boundary separates the quotient and 
remainder. The set status of TS then forces a 
dummy restore pass to set the marks for the 

Variable Field Length 1/66 129 



remainder bytes in the next lower-order quotient
remainder word. 

If the E interrupt trigger is on when entering 
SF 3, the setting of the VFL store request trigger 
is blocked and the VFL end sequence trigger is set 
to terminate the instruction. 

SF 4 Cycle: SF 4 is the accept wait cycle of the SF 
sequence. The VFL store request trigger, set 
during SF 3, causes the BCU store request trigger 
to be set at the beginning of SF 4. If either the 
selected storage is not busy or a higher priority 
does not exist, an accept signal is received at the 
E unit and the SF sequence proceeds to SF 5. 
Otherwise, the SF sequence waits in SF 4 until the 
accept arrives. 

If the E interrupt trigger is on, a store request 
is not made. In this case, SF 4 cycle does not wait 
for accept. 

VFL end sequence trigger on during SF 4 gates 
the setting of ELC trigger. 

SF 5 Cycle: SF 5 terminates the instruction if ELC 
trigger is set at the beginning of SF 5. Otherwise, 
SF 5 starts preparations to return to iteration 
sequence and continue processing. 

Y counter is gated to AA to compute storage 
address B +- D + Y; this address is used later 
to ~et the T pointer during iterations. 

Gates are established to transfer the low-order 
dividend word from M to K. The word in K at the 
beginning of SF 5 is the quotient-remainder word 
being stored during this SF sequence; therefore, the 
next lower-order dividend word is the next to be 
processed. 

If the divisor contains less than 8 bytes, no word 
boundaries will be crossed during subsequent iteration 
cycles prior to the next SF sequence; therefore, VFL 
T4 trigger is reset during SF 5. 

The block-swap (T5) trigger is reset during SF 5 
to enable normal K and M swaps during following 
iteration cycles. 

SF 6 Cycle: SF 6 is the last cycle of the SF sequence 
before return to iterations. Relocation of remaining 
dividend words before iterations start again are gated 
during SF 6 cycle. The objective is to place, in the K 
register, the word that contains the next dividend byte 
to be processed. A maximumoftwo words can remain 
to be processed. 

When the dividend is in two storage words, one 
word remains to be processed. This word is gated 
from the M register into the K register during the 
preceding SF 5 cycle and set into K at the beginning 
of SF 6 cycle. Therefore, the last dividend word is 
correctly located and additional word transfers 
during SF 6 are unnecessary. J is gated to M but 

130 1/66 2075 Processing Unit -- Volume 3 

has no significance when the dividend is in tw<> words. 
When the dividend is in three storage words, and 

this is the first SF sequence, two dividend words 
remain to be processed. The word that contains the 
next storage byte to be processed is determined by 
the divisor length. When the divisor is less than 
8 bytes (L2 < 7), the higher-order dividend word 
contains the next byte to be processed. In this case, 
the higher-order word is gated from M to Kand the 
low-order word in J is gated to M. The two remaining 
dividend words are then properly positioned when 
iterations start again. If the di visor length is 8 bytes 
(L2 = 7), the low-order dividend word contains the 
next byte to be processed. In this case, the low-order 
dividend word is gated from J register to K register 
and the high-order word remains in M register. 

When the dividend is in three storage words, 
gates during the second SF sequence are the same 
as if the dividend were in two storage words. 

Iterations start again at the end of SF 6 cycle. 

DECIMAL MULTIPLY 

• Multiplication done similar to longhand method. 

• Multiplier and multiplicand fetched from storage 
and aligned in L, M, and K registers during set
up sequence. 

• Iteration sequence develops product by over-and
over addition of multiplier. 

• store-fetch sequence stores product words as 
they are completed. 

Method of Multiplication 

Decimal multiply is done in the System/360 Model 
75 basically the same as the normal longhand 
method. An example of this longhand process is: 

4976 multiplier 
~ multiplicand 
14928 partial product 

....!!.~ partial product 
114448 product 

Note that the use of the multiplier and multipli
cand is opposite to the way they are normally thought 
of. This provides consistency in terminology with 
that of other models of the System/360. 

The entire multiplier is multiplied by each digit 
of the multiplicand and the results added to each 
partial product right aligned with the corresponding 
multiplicand digit. 

The computer does each multiplication by adding 
the multiplier to itself a nuinber of times equal to 
the multiplicand digit. 



When the multiplicand digit is 6 or greater, the 
operation can be speeded up by multiplying the mul
tiplier by 10 and subtracting the multiplier a number 
of times equal to 10 minus the multiplicand digit. 
The method is shown below. 

Let A be the multiplier and B be the multiplicand 
digit. As a numerical example, consider A = 246 
and B = 7: 

AxB = AxlO-Ax(lO-B) 
= 246xl0-2x(l0-7) 
= 2460-246x(3) 
= 2460-738 
= 1722 

longhand check 

246 

-21. 
1722 

Multiplying the multiplier by 10 is accomplished 
by adding 1 to the next high-order multiplicand digit. 

The increase in speed by using this method is 
shown by the fact that it was necessary to subtract 
the multiplier three times, whereas, it would have 
taken seven additions. 

In general, the multiply process in System/360 
Model 75 is as follows: 

The low-order multiplicand digit is set into a 
counter and is decoded. If it is 0 (10 following a 
subtraction), the multiplier is shifted left 1 digit and 
the next multiplicand digit is set into the counter. 
If it is not 0 (10), it is decoded for D::::;;: 5 or D > 5. 
This determines whether the multiplier will be added 
to or subtracted from the partial product. 

The multiplier is then added (subtracted) to the 
partial product field a byte at a time. At the end of 
each addition of the multiplier, the counter is decre
mented (incremented) by 1 and decoded. The addi
tion of the multiplier continues until the counter goes 
to 0 (10). Then the next multiplicand digit is set into 
the counter and the multiplier is shifted left 1 digit, 
etc. This continues until all multiplicand digits are 
exhausted. 

Unit Functions 

Registers 

J Register: The J register contains the multiplicand 
field. J register bits 60-63 are set into the DC where 
the additions are counted. As each multiplicand digit 
is set into the DC, the content of J register is 
shifted right four bits to position the next multipli
cand digit to be set into the DC after the present one 
is completed. 

During the set-up sequence, the low-order multi
plicand word is fetched from storage and right
aligned in the J register. The sign digit of the multi
plicand is used to set a sign control trigger and then 
shifted out of the J register. During Seq D cycle, 
between set-up and the first iteration sequence, the 
first (low-order) multiplicand digit is set into the DC, 
then that digit is shifted out of the J register. 

K and M Registers: The K register contains the 
portion of the partial product presently being accum
ulated. The M register contains the portion of the 
partial product on the other side of the word bound
ary, if a word boundary is crossed by the partial 
product. 

The multiplicand-product field in storage may be 
as long as 16 bytes, therefore, up to two word bound
aries may be crossed by this field. The portion of 
the product field worked on at any one time is limited 
by the length of the multiplier (a maximum of eight 
bytes). Therefore, two registers are sufficient to 
hold the portion of the partial product being worked 
on. 

When a partial product word boundary is crossed 
while making an addition, the contents of the K and M 
registers are swapped. When the portion of the prod
uct in one storage word is completed, that word is 
stored. 

L Register: The L register holds the entire multi
plier field during execution of the decimal multiply 
instruction. The multiplier is right-aligned in the L 
register during set-up; thereafter, the multiplier is 
shifted right or left one digit as necessary during 
execution cycles. 

VFL Counter and Pointer Functions -- Decimal 
Multiply 

Y Counter: The Y counter is initially set with the 
length of the multiplicand-product field (Ll) from 
IOP 8-11. When a byte of the multiplicand has been 
processed, the Y counter is stepped down by 1. 
Y > L2 indicates the multiplicand field contains sig
nificant data bytes still to be processed. When 
Y = L2, the product is complete; the remaining high
order bytes of the multiplicand are then checked for 
nonzero digits. When the Y counter steps to 0, all 
bytes of the multiplicand-product field have been 
processed and the multiply instruction is ready for 
termination. 

Variable Field Length 1/66 131 



'? Counter: The z counter counts the multiplier bytes 
as they are processed. The Z counter is set with the 
length of the multiplier field (L2) at the beginning of 
each pass through the multiplier, then stepped down 
one as each multiplier byte· is processed. When 
Z = 0, a~l bytes of the multiplier have been added to 
the partial product. 

S Pointer: The S pointer is used to select the multi
plier byte that is added to the partial product from 
the L register. The S pointer is reset to 0, then 
stepped down 1 to 7 at the beginning of each pass 
through the multiplier; then, as each multiplier byte 
is processed, the S pointer steps down 1 before 
sele<::ting the next multiplier byte. 

T Pointer: The T pointer selects the partial-product 
byte of the K register to be added to the multiplier 
byte to form a new partial-product byte. The T 
pointer also selects the K register byte in which the 
new partial-product byte is placed. 

The initial setting of the T pointer is determined 
by the storage address computed and used to fetch the 
first multiplicand word (Bl + Dl + Ll); this is the 
low-order partial-producf byte address of the K 
register. The T pointer then steps down one during 
each cycle in which multiplier and partial-product 
bytes are added. Several passes through the multi
plier may be required to process each multiplicand 
byte; therefore, after each pass, the T pointer is 
restored to the previous starting point unless a new 
multiplicand byte is to be processed. When a new 
multiplicand byte is selected for processing, a new 
starting point is established for the T pointer. In 
this manner, the correct byte alignment of multiplier 
to partial product is maintained throughout the execu
tion of the instruction. 

The starting byte address used for the T pointer is 
retained in H register positions 21-23. When the T 
pointer is restored to the starting point, H register 
positions 21-23 are gated to it. The Y counter is 
initially set with Ll and stepped down by 1 as each 
multiplicand byte is processed: each new starting 
point for the T pointer is determined by Bl + Dl + Y. 

When the T pointer is set to 0 from Bl + Dl + Y, 
the last byte of a multiplicand word is being proc
essed; when this multiplicand byte is completed, a 
new multiplicand word must be fetched and the com
pleted product word stored. 

Digit Counter: The DC is used to control the number 
of times the multiplier is added to or subtracted from 
the partial product during processing each multipli
cand digit. The decoded outputs of the DC determine 
the add or subtract status and the completion of each 
multiplicand digit. 

132 1/66 2075 Processing Unit -- Volume 3 

The multiplicand digit to be processed is set into 
the DC. Outputs of the DC are then decoded to deter
mine if the digit is a value greater than 5. If D ,,;; 5, 
the multiplier is added to the partial-product and the 
DC is decremented by 1 at the end of each pass; if 
D > 5, the multiplier is subtracted from the partial
product and the DC is incremented by 1 at the end of 
each pass. When the DC steps to 0 or 10, the proc
essing of the multiplicand digit is complete. 

Odd and Even Cycle Definition: The basic address
able unit of data in the IBM System/360 Model 75 is 
the byte; in decimal multiply the basic unit of data is 
the digit. Because the multiplicand is processed one 
digit at a time, the effective shift of the multiplier 
relative to the partial product must be one digit at a 
time. 

To shift the multiplier one digit to the left, the 
starting point of the T pointer is shifted left (reduced) 
by one byte and the multiplier in the L register is 
shifted right one digit. To process the next multipli
cand digit, the multiplier in the L register is shifted 
left one digit without changing the starting point of the 
T pointer. 

The shift counter is used to gate the odd or even 
cycle functions during execution of the decimal 
multiply instruction. The shift counter is set to 
0 during the set-up sequence, and then incremented 
by 1 after each multiplicand digit is processed. 
Odd cycles are cycles in which the multiplier is 
shifted left 4; the value in the shift counter is odd. 
Even cycles are those in which the multiplier is 
shifted right 4; the value in the shift counter is 
even. 

Control Trigger Functions 

T2 Dummy Cycle Trigger: Multiplicand digits have 
numeric values of 0 through 9. When a 9 digit is 
processed following a subtract pass, the DC is 
incremented by 1 to 10. If the 10 digit is processed 
during an even cycle it is necessary only to shift 
the multiplier left one digit and proceed to the next 
multiplicand digit; if the 10 digit is processed dur
ing and odd cycle, IS 3 cycle must be entered to 
gate 99 into the K register byte to the left of the 
highest-order partial-product byte developed so far. 
To enter IS 3 cycle and at the same time step the T 
pointer to the correct byte location, a dummy pass 
is made through the multiplier without adding; VFL 
T2 trigger is set to block the addition during this 
dummy pass. 

T3 True/Complement Trigger: The T3 trigger is 
used during execution of the decimal multiply 
instruction to control the true/ complement inputs 



_.__..__ _ _,__ _ _.!---'----'---'-----''----'-- - Partial Product Field 
I 
I .......... I I 

jooi oxj xx! xx xx 
I A:> I I 

I ox! xxj xx xx - ' ' jooj xx! xx! xx xo 
I I I 
I I I 
I I I 

rlndicates possible carries out of high-order position. 

FIGURE 64. EXTRA IS 3 CYCLE - DECIMAL MULTIPLY 

l st Pass 

Other Passes 

All Passes 

} Even Cycles 

} Odd Cycles 

Example of a multiply add addition cycle following a subtraction. Example of a multiply add subtraction cycle following a subtraction. 

r 
Odd 9S L - multiplier SS L - multiplier 

01 81 J - multiplicand 08 91 J - multiplicand 

Odd -< { 00 00 K 
Odd 00 SS L 

00 00 K -00- 5s K 
_o_g_ 9S L 

'- 00 9s K Shift L OS 

Shift L 09 

{ 
00 SS K 

Even 99 il. L - complement 

{ 
00 9S K -99- 9S SS K 

99 91 L - complement 
Even -99- 9f 9S K Shift L so 

91 L - complement 

{ 99 82 9S K 99 9S SS K 
Odd 99 so L - complement 

Shift L 90 -99- 45 SS K 

{ 
99 82 9S K Shift L OS 
00 90 L 

Even{l-g~-
' 

Odd -00- n 9S K 99 4S SS K 

~~ 90 L OS L 
..Ql_ 62 9S K 04 4S SS K 

___ Extra Byte 

* If the multiplicand was two bytes (3 digits), the last digit (8) would have been forced to be processed by addition. This leaves the 
product in true form. 

FIGURE 6S. EXTRA BYTE PROCESSING - DECIMAL MULTIPLY 

Variable Field Length 1/66 133 



to the decimal adder. If the multiplicand digit is 
5 or less, the multiplier is added to the partial
product; T3 trigger is reset and the decimal adder 
performs true additions. If the multiplicand digit 
is 6 or greater, the multiplier is subtracted from 
the partial-product; T3 trigger is set and the 
decimal adder performs complement additions 
(subtracts). 

T4 Swap Trigger: The T4 trigger is set to record 
that the contents of the K and M registers have been 
swapped. If a partial-product word boundary is 
encountered during a pass through the multiplier, 
the contents of the K and M registers are swapped 
(SF 12) and VFL T4 trigger is set to recall it. 
When the pass through the multiplier is complete, 
the set status of T4 trigger causes the contents of 
the K and M registers to be swapped back to the 
original state before the next pass through the 
multiplier begins. T4 trigger is then reset. 

T5 Extra Cycle Trigger: The VFL T5 trigger is 
set to cause an extra IS 3 cycle at the end of the 
first pass of every even multiply pass in which the 
partial product is nonzero. This extra IS 3 cycle 
(Figures 64 and 65) sets 00 or 99 into the next 
higher-order partial-product byte. 

After a multiplicand digit is processed by sub
tracting the multiplier from the partial-product, 
the partial product is in complement form; the 
high-order zeros should be 9's unless the partial 
product is zero. IS 3 cycles that occur at the end 
of every odd pass through the multiplier gate high
order carries into the next byte and complement 
the high-order zeros to 9's on subtract passes. 
Because the multiplier is shifted right during even 
passes, the last IS 2 cycle of each even pass propa
gates any high-order carries into the next digit 
position of the high-order partial-product byte, or 
complements this digit to 9 on subtract passes. 
This single high-order complement 9 is insufficient, 
however, to accommodate any high-order carries 
that may occur during subsequent odd passes. 
Therefore, VFL T5 trigger provides an extra IS 3 
cycle to terminate the first pass of every even 
multiplicand digit if the partial-product is nonzero. 

T6 Multiplicand Sign Trigger: The VFL T6 trigger 
is set during set-up if the multiplicand sign is 
minus. During the first IS 1 cycle, the status of T6 
and of the minus sign trigger (multiplier sign) 
determines the sign of the product. 

134 1/66 2075 Processing Unit -- Volume 3 

T7 First Digit Trigger: The VFL T7 trigger is 
used to provide product sign control gates during 
the first IS 1 cycle. T7 trigger is set during the 
set-up sequence, then reset after the first multipli
cand digit is processed. 

T8 Termination Trigger: The VFL T8 trigger is 
used as the termination trigger for decimal multiply; 
it provides gates to zero check the high-order 
multiplicand digits. 

To insure that the multiplicand field in storage is 
large enough to receive the product, the multiplicand 
must contain a number of high-order zeros equal 
to the number of multiplier digits. Therefore, after 
all significant multiplicand digits are processed 
(Y = L2) the remaining high-order multiplicand 
digits must be zero checked. 

When Y = L2, the T8 trigger is set. T8 trigger 
On causes sequence D cycles to repeat until Y Lth 
= 1110. During each sequence D cycle, a multipli
cand digit is set into the DC and zero checked. If 
a nonzero digit is detected, a data interrupt occurs. 

Set-Up Sequence (Figures 67 and 6474) 

• Fetch first multiplicand word from storage and 
align in J register. 

• Fetch all multiplier bytes from storage and 
align in the L register. 

• Check length of both operands for specification 
error. 

• Clear K and M registers to all zeros. 

• Set VFL control triggers. 

• Start Iteration Sequence. 

The set-up sequence for Decimal Multiply fetches 
the multiplier and the low-order multiplicand word 
from storage. The multiplier may start at any byte 
location within a word and may cross a word 
boundary. During the set-up sequence, the entire 
multiplier is fetched from storage and right
aligned in the L register. All multiplier digits 
are validity checked as they are aligned. 

The multiplicand digits from the low-order digit 
position of the J register are used during the multiply 
iterations. Therefore, the storage word containing 
the low-order multiplicand digit is fetched and right
aligned in the J register during the set-up sequence. 
Subsequent multiplicand words are correctly aligned 
when they arrive from storage into the J register. 



The K and M registers are cleared to all zeros 
during the set-up sequence because the product is 
accumulated in these two registers during the itera
tion sequences. 

During the set-up sequence the lengths of both 
operands are checked; if incorrect, the instruction 
is terminated with a specification interrupt. 

The VFL sequencers used to execute the multiply 
set-up sequence are: SU 1 through SU 12, and PF 1 
through PF 4. 

SU 1 Cycle: Operand lengths Ll and L2 are set into 
the Y and Z counters from IOP register positions 
8 - 15; this function is gated by ELC of the previous 
instruction. 

The Ll factor is in the Y counter and is used to 
compute the multiplicand (Op 1) storage address. 
Then, the Ll factor is gated to the AA by SU Ll. 
The computed storage address is not used until the 
following cycle. However, to overcome line delay, 
Y is gated to the AA early. 

If in single cycle mode, the VFL fetch request is 
set to get the first multiplicand word from storage. 

SU 2 Cycle: During SU 2 cycle the fetch request 
for the first multiplicand (Op 1) word is made. 
Setting the VFL fetch request trigger causes the 
Bl+ Dl + Ll computed storage address to be set 
into the SAR and H registers. 

The AEOB is gated to the SC and the SC is re
leased; this sets the SC to zero. The SC is stepped 
and used later to control the odd and even passes 
during the iteration sequence. 

In addition, SU 2 cycle checks operand length 
specifications. If a specification error exists, the 
instruction is terminated with a specification inter
rupt. 

Z counter (L2) is compared to 7 and to Y counter 
(Ll). If L2 > 7 or L2 ~ Ll, a specification error 
exists; setting the fetch request is blocked and the SF 
trigger is set. When the SF trigger sets, the function 
of the VFL sequence triggers is changed from set-
up gating to store-fetch gating. Thus, the next 
machine cycle that would have been SU 3 becomes 
SF 2. SF 2 then starts the store-fetch sequence to 
terminate the instruction and signal the specification 
interrupt. 

If no error condition exists, SU 3 cycle follows 
SU 2. 

In single cycle mode, the fetch request for the 
first multiplicand word is made during SU 1 cycle. 
SU 2 cycle is then used to transfer the first multipli
cand word from the J register to the K and M regis
ters through the AM. 

SU 3 Cycle: During SU 3 cycle the starting byte 
address of the multiplicand is set into the T pointer 
from H register positions 21-23. 

Also, during SU 3 cycle, gates are established to 
the I unit before computing the storage address of 
the first multiplier (Op 2) word. VFL address 
advance is gated to transfer the third halfword of 
the instruction (B2 and D2) from the A/B registers 
into the IOP register for the following cycle. To 
overcome line delay and insure that L2 arrives at 
the input to the AA early enough in the next cycle, 
the z counter is gated to the AA during SU 3. 

SU 3 is the accept-wait cycle for the fetch request 
made during SU 2 cycle. If the selected storage is 
not busy, the BCU provides an immediate accept 
signal and SU 3 is only one cycle. If the selected 
storage unit is busy, the BCU delays the accept 
signal until storage becomes available; during this 
time, SU 3 cycles repeat until the accept signal . 
arrives. 

SU 4 Cycle: During SU 4 cycle, the VFL fetch request 
trigger is set to fetch the first multiplier word (Op 2) 
from storage. Setting the fetch request trigger 
gates the computed storage address of the first 
multiplier word, B2 + D2 + L2, from the AA to the 
SAR and H registers; SAR and H registers are set 
at the beginning of the next cycle. 

Checks are made during SU 4 cycle to determine 
the number of bytes the first multiplicand word 
must be shifted to right align in the J register. Be
cause multiplicand alignment occurs near the end 
of the set-up sequence, VFL control triggers Tl 
and T2 are used to record the number of bytes the 
multiplicand must be shifted. The starting byte 
address of the multiplicand, in the T pointer, is 
examined during SU 4 cycle. If T is less than 4, 
VFL Tl trigger is set to gate a right 32 shift 
(4 bytes) during SU 12 cycle. If the T pointer 
equals 3 or 7, VFL T2 trigger is set to indicate 
that the multiplicand is correctly aligned when 
the first PF 1 cycle starts. 

SU 5 Cycle: This is the accept-wait cycle for the 
fetch request made during the previous SU 4 cycle. 
If storage priorities prevent an immediate accept, 
then SU 5 cycles repeat until an accept signal 
arrives from the BCU. 

After the accept signal arrives, the multiplier 
starting byte address is gated from the H register 
positions 21 - 23 to the S pointer and the S pointer 
is released. Y counter (Ll) is gated to the AA 
before re-computing the starting byte address of 
the multiplicand. 

If, in single cycle mode, the first multiplier 
word has arrived from storage and is in the J 

Variable Field Length 1/66 135 



register; this word is gated from the J register 
through the main adder (AM) to the L register and 
set into the L register at the beginning of the next 
CPU clock cycle. 

SU 6 Cycle: During SU 6 cycle the gating of Y 
counter to the AA is continued and the starting byte 
address of the multiplicand, Bl+ Dl + LI, is com
puted in the AA. The output of the AA is gated to 
and set into SAR and H registers. This provides 
the correct byte address for the T pointer when 
the multiplicand is right-aligned during PF 1 cycles, 
and when iteration cycles start. 

VFL address advance signal is gated to the I 
unit during SU 6 cycle before computing the storage 
address of the second multiplier word if it is needed. 

Control triggers Gate L with S and T Decode Out 
are gated to set during SU 6 cycle. These two 
triggers are set at the beginning of the next cycle; 
they provide data gates to check the signs of the 
multiplier and multiplicand. 

SU 7 Cycle: SU 7 is the cycle that transfers the first 
multiplicand word from the J register to K and M 
registers, and starts the fetch request for the second 
multiplier word, if the multiplier is in more than one 
storage word. 

The functions of the SU 7 cycle, however, depend 
upon the set status of the J loaded trigger. If the 
first multiplicand word has not arrived from storage 
and the J loaded trigger is not set by SU 7 time, SU 
7 cycles repeat until the J loaded trigger is set. 
The amount of delay involved, if any, depends upon 
the type of storage unit selected when the fetch 
request is made. If a high-speed storage is selected, 
no delay occurs because the multiplicand word 
arrives from storage and the J loaded trigger is set 
at the beginning of SU 6 cycle. If an LCS is selected, 
the set-up sequence remains in SU 7 for several 
cycles waiting for the J loaded trigger to set. 

SU 7 gates the multiplicand word from the J 
register through the main adder (AM). When SU L7 
is enabled by J loaded, the main adder out bus 
(AMOB) is gated to K and M registers and they are 
set at the beginning of the next cycle. If the machine 
is in single-cycle mode, the multiplicand word is 
transferred to K and M registers in SU 2 cycle 
ipstead of SU 7. 

If the multiplier is contained in two storage words, 
the fetch request for the second word is made during 
SU 7 cycle. To determine that the multiplier is in 
two storage words, the starting byte address in the 
S pointer is compared to the multiplier length in the 
Z counter. If S is less than Z, the multiplier is in 
two storage words; the VFL fetch request trigger is 

136 1/66 2075 Processing Unit -- Volume 3 

set to fetch the second word of the multiplier, and 
control trigger T4 is set to record that the multi
plier is in two words. 

The gate to set the VFL fetch request trigger also 
gates the output of the AA to the SAR and H registers. 
Because VFL address advance was gated to the I 
unit during SU 6 cycle, storage address B2 + D2 is 
computed and gated to SAR and H during this cycle. 
The set of the H register is blocked, however, to 
retain the starting byte address of the multiplicand, 
Bl+ DI+ Ll. 

SU 7 cycle also gates the set of VFL control 
trigger T3 to provide multiplier sign control during 
SU 10 cycle. 

SU 8 Cycle: The multiplicand sign is checked during 
SU 8 cycle. Because the T decode out trigger is set 
at the beginning of SU 7 cycle, the T pointer selects 
the low-order multiplicand byte in the K register and 
gates it through the LBG. The gating of LBG to the 
AOE is active during SU 8 cycle to enable sign decod
ing of the low-order LBG digit, the multiplicand sign 
digit. 

If the multiplicand sign is minus, VFL control 
trigger T6 is set. The status of T6 is used later to 
compare with the multiplier sign and determine the 
correct product sign. 

SU 9 Cycle: The SU 9 cycle transfers the first 
multiplier word from the J register to the L register, 
resets the T pointer to zero, and gates the Z counter 
to step down 1. 

The functions of SU 9 cycle are enabled by the set 
status of the J loaded trigger, as in SU 7 cycle. When 
the J loaded trigger is on during SU 9 cycle, the first 
word of the multiplier is gated from the J register 
through the main adder to the L register. If in single 
cycle mode, this occurs in SU 5 cycle. 

If an invalid address or SAP error has occurred 
during previous fetches, the set-up sequence is 
terminated at this point. When SU L9 is enabled, 
the set status of either the invalid address or SAP 
error trigger gates the set of the SF trigger, the E 
interrupt trigger, and VFL sequence trigger 4; this 
combination causes a terminating store-fetch 
sequence to start at SF 3 cycle. 

SU 10 Cycle: SU 10 cycles right-align the multiplier 
in the K register. One multiplier byte is transferred 
from the L register through the decimal adder to 
the K register each SU 10 cycle. SU 10 cycles 
repeat until all multiplier bytes are aligned in the K 
register. 

The S and T pointers are used to select and right
align the multiplier bytes while the Z counter counts 



the number of bytes processed, and signals the end 
of alignment. When SU 10 cycles start, the S 
pointer contains the byte address of the low-order 
multiplier byte in the L register; the T pointer 
contains a value of 7; it is reset to zero during SU 9, 
then stepped down 1 to 7 at the beginning of the first 
SU 10 cycle. The Z counter is set to the multiplier 
length, L2, at the beginning of the set-up sequence 
and steps down one as each multiplier byte is 
aligned. The T pointer and the Z counter are each 
stepped down 1 at the beginning of every SU 10 
cycle. Except for the first SU 10 cycle, the S 
pointer is stepped down at the same time. 

During each SU 10 cycle, the multiplier byte 
selected by the S pointer is gated from the L register 
through the RBG into the AV. The AV output is then 
gated into the K register byte selected by the T 
pointer. Detection circuits at the output of the RBG 
provide sign decoding and validity checking of each 
multiplier digit as each multiplier byte is aligned. 
Byte parity is checked in the AV. If an invalid 
decimal digit or incorrect byte parity is detected, 
the data check latch is set. This causes the E 
interrupt trigger to set and the instruction to 
terminate after PF 4 cycle. 

The first SU 10 cycle gates the low-order multi
plier byte into byte position 7 of the K register; this 
is the byte that contains the multiplier sign. VFL 
control trigger T3 is on during the first SU 10 cycle 
to enable sign decoding and detection of the low-order 
multiplier digit. If the multiplier sign is minus, the 
VFL minus sign trigger is set; T3 trigger is then 
reset at the end of the cycle. 

The end of multiplier alignment is signalled when 
the Z counter steps down to 1110. Because the 
maximum allowable multiplier length is 8 bytes, all 
data bytes of the multiplier are right-aligned in the K 
register when the Z counter equals 1110, and the set
up sequence proceeds to SU 12 cycle. 

If the multiplier is contained in two storage words, 
the S pointer steps down to zero before the Z counter 
equals 1110. During the cycle that S steps to zero, 
the last multiplier byte in the L register is trans
ferred to the K register. The storage word that 
contains the remaining multiplier bytes must then 
be set into the L register to complete the alignment. 
When the S pointer equals zero before the Z counter 
steps to 1110, SU 10 cycles are suspended during 
an SU 11 cycle, to transfer the next multiplier word 
into the L register. SU 10 cycles then resume and 
complete the multiplier alignment. 

When the multiplier is in two storage words, 
VFL T4 trigger is set during SU 7 cycle as the fetch 
request is made for the second multiplier word. T4 
trigger on during the SU 10 cycle in which the s 

pointer steps to zero gates the set of the gate J to 
AMTC trigger. The gate J to AMTC trigger is set 
to transfer the next multiplier word from the J 
register to the L register. 

SU 11 Cycle: The SU 11 cycle transfers the next 
multiplier word from the J register through the 
main adder to the L register. The on status of the 
gate J to AMTC trigger gates the contents of the J 
register to the TC input of the main adder. Out
gating the AMOB and release of the L register is 
conditioned by the on status of the,J loaded trigger. 
Therefore, if an LCS is addressed, SU 11 waits 
several machine cycles until the J loaded trigger 
is set; otherwise, SU 11 is one cycle. 

SU 12 Cycle: The SU 12 cycle transfers the multi
plier from the K register through the RBL to the J 
register. At the same time, the low-order multi
plicand word is transferred from the M register 
through the main adder and shifter to the K register. 
If VFL Tl trigger is on, the low-order multiplicand 
byte is in the 0 - 31 end of the M register. There
fore, the multiplicand word must be shifted right at 
least 32 bits (4 bytes) to right-align in the K register. 
The on status of VFL Tl trigger during SU 12 causes 
a right 32 shift to occur as the multiplicand is trans
ferred from the M to the K register. 

SU 12 cycle establishes gates to restore the T 
pointer to the starting byte address of the multipli
cand; H register positions 21 - 23 ar·e gated to the 
T latch and the T register released. In addition, 
gates are established to count the T pointer up and 
control byte alignment during PF 1 cycles. 

PF 1 Cycle: PF 1 cycles are used to right-align the 
multiplicand in the K register if byte alignment is 
required. 

If VFL T2 trigger is on, the multiplicand is al
ready right-aligned in the K register when the first 
PF 1 cycle starts; PF 1 is then the only one cycle in 
which no function is performed. VFL T2 trigger is 
set during the SU 4 cycle if the low-order multipli
cand digit is in byte 3 or 7 (T pointer equals 3 or 7) 
of the storage word. When the low-order multipli
cand digit is in byte 7 of the storage word, the multi
plicand is right-aligned. When the low-order digit 
is in byte 3 of the storage word, the right 32 shift 
during SU 12 right-aligns the multiplicand by trans
ferring the data in byte 3 of the M register into byte 
7 of the K register. Therefore, no further alignment 
is needed during PF 1. 

When PF 1 is entered with VFL T2 trigger off, 
the multiplicand must be shifted right one or more 
bytes to right-align in the K register. Each PF 1 
cycle shifts the multiplicand right 1 byte (8 bits) in 

Variable Field Length 1/66 137 



the K register. The shift is accomplished by gating 
the contents of the K register through the main adder 
and shifter with a right 8 shift gated, then back to the 
K register. 

The T pointer controls the number of bytes the 
multiplicand is shifted and, therefore, the number of 
PF 1 cycles that occur. The T pointer is set to the 
starting byte address of the multiplicand, then 
stepped up one at the beginning of each PF 1 cycle. 
When the T pointer steps to 3 or to 7, the last PF 1 
cycle is in progress and the set of PF 2 is gated. 

PF 2 Cycle: The PF 2 cycle starts the final house
keeping functions of the set-up sequence by trans
ferring the two right aligned operands, the low-order 
word of the multiplicand and the entire multiplier to 
their respective working registers. The multiplicand 
is transferred from the K register through the RBL 
to the J register. At the same time, the multiplier 
is transferred from the J register through the main 
adder to the L register. 

PF 3 Cycle: During PF 3 cycle the sign digit is re
moved from the multiplicand and the multiplicand is 
shifted right one digit (4 bits) in the J register. This 
places the low-order multiplicand digit in positions 
60 - 63 of the J register. The multiplicand is shifted 
by gating the contents of the J register to the RBL, 
and then back to the J register. Because this data 
path contains no right 4 shift gate, an effective right 
4 shift is caused by shifting the output of the J regis
ter left 4 as it enters the RBL, then shifting the out
put of the RBL right 8 as it is gated back to the J 
register. 

In addition, the PF 3 cycle prepares VFL controls 
to enter iteration cycles by resetting the S pointer 
and VFL Tl and T2 triggers. The VFL T7 trigger is 
set to provide product sign control gates during the 
first pass through the multiplier. 

PF 4 Cycle: The PF 4 cycle is the last cycle of the 
decimal multiply set-up sequence. During the PF 4 
cycle, the gate multiplier bus to DC line is active to 
transfer the low-order multiplicand digit into the DC. 
K and M registers are cleared to all zeros by gating 
AMOB to them. Because no inputs to the AM are 
active, the AMOB contains all zeros with correct 
parity. 

During PF 4, the set of the SF and sequence D 
triggers are gated. When the SF trigger sets, the 
functions of the VFL sequence triggers change from 
set-up to store-fetch functions. VFL sequence D 
trigger is set to enter multiply iterations. 

If the E interrupt trigger is on during PF 4 cycle, 
SF 3 is entered instead of sequence D. The E inter-

138 1/66 2075 Processing Unit -- Volume 3 

rupt trigger on at this time indicates that the multi
plicand sign is invalid or that the multiplier contains 
an invalid sign or digit. SF 3 starts a SF sequence 
to terminate the instruction and signal the interrupt 
condition. 

Iteration Sequence 

• Iteration Sequences performs the arithmetic of 
decimal multiply. 

• VFL Sequencers IS 1, 2, 3, Seq A, B, C, D, and 
SF 12 are used. 

The decimal-multiply iteration sequence multiplies 
the multiplier (Op 2) by the multiplicand (Op 1) to 
accumulate the product. The product is accumulated 
by adding or subtracting the multiplier over and 
over. The number of times the multiplier is added 
to or subtracted from the partial product depends on 
the value of each multiplicand digit. 

When the iteration sequence starts, the multiplier 
is right-aligned in the L register, the low-order 
multiplicand word is right-aligned in the J register, 
the partial product field in the K and M registers is 
cleared to all zeros, and the low-order multiplicand 
digit is in the DC. 

The iteration sequence then adds the multiplier to 
the partial product the number of times indicated by 
the digit in the DC. Each time the multiplier is 
added, iteration cycles start with the low-order 
multiplier byte and step through the multiplier and 
partial product fields adding one byte of each until 
the high-order multiplier byte is added; this' consti
tutes one pass through the multiplier. 

When a pass through the multiplier is complete, 
the DC is stepped up or down 1 and another pass is 
started. This process repeats until the DC steps 
down to O or up to 10. The next higher order multi
plicand digit is then set into the DC, the multiplier 
is shifted left one digit, and the number of passes 
required to step 'the DC to 0 or 10 again are made 
through the multiplier. This process repeats until 
all multiplicand digits are processed. 

After each pass through the multiplier the S 
pointer is restored to the value it contained at the 
beginning of the pass. Between passes the S pointer 
is reset to zero then stepped down one to 7; this 
causes each pass to start with the low-order multi
plier byte. During each add cycle the T pointer gates 
the partial product byte added to the multiplier byte 
and selects the K register byte into which the new 
partial product byte is inserted. Therefore, after 
each pass through the multiplier, the T pointer is 



restored to the value it contained at the beginning 
of the pass, except when the next pass starts with a 
new multiplicand byte. In this case, the Y counter 
is stepped down one and a new starting byte ad
dress for the T pointer is computed by gating Y 
to the AA and computing storage address Bl + Dl + Y. 
This address is then set into the H register. 

The low-order multiplier digit must always align 
with the multiplicand digit in process throughout the 
execution sequence. Multiplicand digits are used 
one at a time from the J register, starting with the 
low-order digit and progressing through the multipli
cand to the high order digit. Therefore, as each 
multiplicand digit is used, the multiplier must be 
shifted left one digit to align with the next multipli
cand digit. 

The multiplier is right-aligned in the L register 
during the set-up sequence; this alignment places 
the multiplier sign digit in the low-order digit posi
tion of the L register. Thus, in byte 7 of the L 
register, the low-order multiplier digit occupies the 
high-order digit of the byte and the multiplier sign 
occupies the low-order digit of the byte. With this 
alignment the low-order multiplier digit aligns with 
the low-order multiplicand-product digit; this is the 
high-order digit of the low-order multiplicand
product byte. The low-order multiplicand digit is 
processed and the first partial-product accumulated 
with this initial alignment. 

Before the next multiplicand digit can be processed, 
the multiplier must be shifted left one digit. To do 
this, the multiplier is shifted right one digit (4 bits) 
in the L register (sign digit is shifted out), and the 
starting address of the T pointer is shifted left 
(reduced) one byte (8 bits). This places the low,-
order multiplier digit in alignment with the low-
order digit of a partial-product byte (the correct 
alignment to process the low-order digit of a multi
plicand byte). The multiplicand digit is then proc
essed by making the required number of passes 
through the multiplier to step the DC to zero or 10. 
The high-order digit of the multiplicand byte is then 
set into the DC and processed. To align the low-
order multiplier digit with the high-order digit of 
a multiplicand byte, the multiplier is shifted left 
one digit in the L register without changing the 
starting address of the T pointer. 

As successive multiplicand digits are processed, 
the multiplier in the L register is alternately 
shifted right and left one digit. Data gates and 
sequence controls used to process the low-order digit 
of a multiplicand byte differ from those used to 
process the high-order digit of the byte. Therefore, 
odd cycles and even cycles are used to control the 
multiplier shifts and data gates to process each digit 

of a multiplicand byte. Odd cycles are cycles in 
which the multiplier is shifted left one digit in the L 
register and the high-order digit of a multiplicand 
byte is processed. Even cycles are cycles that 
occur when the multiplier is in the rightmost posi
tions of the L register and the low-order digit of a 
multiplicand byte is being processed. 

Odd and even cycle gating is controlled by the SC. 
The SC is reset to zero during the set-up sequence, 
then stepped up one as each multiplicand digit is 
readied for processing. Thus, odd or even cycle 
functions are gated by the odd or even numeric value 
contained in the SC. 

VFL sequencers IS 1, IS 2, and IS 3 are used to 
perform the decimal arithmetic of the multiply 
instruction, while VFL sequencers A, B, C, D, and 
SF 12 are used to perform housekeeping functions 
such as counter updating, multiplier and multiplicand 
shifting, and so on. See Figures 66, 67, and 6475. 

IS 1: IS 1 is the first sequencer in every pass 
through the multiplier when adding to the partial 
product. IS 1 controls the gates to AD for sign con
trol and hot 1 for substraction. 

IS 2: IS 2 is the sequencer after IS 1 during which K 
and L bytes are added. It loops on itself until a 
word boundary is crossed or the multiplier field is 
exhausted. 

IS 3: IS 3 is the sequencer used at the end of a pass 
to propagate a carry of the partial product into the 
next byte. The first pass during even cycles and 
every odd pass through the multiplier is terminated 
by an IS 3 cycle. Although the IS 3 cycle is not 
needed to propagate a carry at the end of an even 
pass, it is needed to complement the next higher
order partial product byte when subtracting (Figures 
64 and 65). 

IS 3 is not needed during even cycles because the 
multiplier is shifted right 1 digit. This leaves a 
high-order digit to collect the carries .. 

SF 12: SF 12 }s used to swap Kand M when a word 
boundary is crossed during a pass through the 
multiplier. 

Seq A: Seq A is the first sequence following an 
addition of the multiplier. It resets S, gates L2 to 
Zand gates H (Bl + Dl + Y) to T. If a word 
boundary was crossed during the addition, K and M 
will be swapped back at this time. DC is stepped 

down (up when subtracting) during Seq A and is de
coded to determine if the digit multiply is complete. 
If it is, the next multiplicand digit is set to DC. If 

Variable Field Length 1/66 139 



Multiplicand - Product Field 

Multiplicand 

.....-_. Word Bounda ry 

[ oo I oo I oo I 21 11Js1J29J2sj 

Line 
No. Multi plicand 

s Passe 
throu gh 

2 Mult iplier 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 
---
---

t---

-
---
---
--
---

---
---
---

---

---
Word_j Store Product 

17 Multiplicand High Order Zero Check 

18 Final Store - End Op 

L 1 = 7 --- Extra Cycle 
L2=2 

FIGURE 66. MULTIPLY ITERATJONS--EXAMPLE 

140 1/66 2075 Processing Unit--Volume 3 

D1 "git + }2 
9(1) 

} 8(2) 

} 1+1 

Sequencers - Following Set-up 

Seq-D 
1--'--i 

JS-1 JS-2 JS-2 JS-3 Seq-A 

JS-1 JS-2 IS-2 IS-3 Seq-A Seq-B Seq-C Seq-D 

JS-1 JS-2 IS-2 IS-3 Seq-A Seq-D 

1s-1 JS-2 IS-2 SF-12 IS-3 Seq-A 

JS-1 IS-2 JS-2 SF-12 IS-3 Seq-A 

JS-1 IS-2 IS-2 SF-12 JS-3 Seq-A Seq-B Seq-C Seq-D 

IS-! IS-2 SF-12 IS-2 IS-3 Seq-A Seq-D 

IS-1 IS-2 SF-12 IS-2 IS-3 Seq-A 

IS-1 IS-2 SF-12 IS-2 IS-3 Seq-A Seq-B Seq-C Seq-D 

IS-1 SF-12 IS-2 I IS-2 I JS-3 Seq-A I 

IS-! SF-12 IS-2 IS-2 Seq-A Seq-D 

IS-1 SF-12 IS-2 JS-2 IS-3 Seq-A 

SF-1 SF-2 SF-3 SF-4 SF-5 SF-6 Seq-B Seq-C Seq-D 

JS-I IS-2 IS-2 IS-3 Seq-A Seq-D 

IS-I IS-2 IS-2 IS-3 Seq-A 

IS-! IS-2 IS-2 IS-3 Seq-A Seq-B Seq-C Seq-0 

Seq-D Seq-D Seq-D Seq-D Seq-D Seq-D 

SF-3 I SF-4 I SF-5 

E Last Cycle ~ 



SU 1 
Compute storage address 

of 1st word of Op 1 
(Bl + 01 + Ll) 

SU 2 
Check Op 1 and Op 2 
lengths -- start temunahon 
sequence if specification 
violation exists 

- StOrt TetCh to QetfirSt - - -
word of Op 1 

- ResetSCto-zefo -- ----

SU 3 
Compute address of 
first word of Op 2 

- SetT p~infe;to"7t~i;gbyte -
of Op 1 (Bl +Dl +Ll) 

SU 4 
Start fetch for first word 
of0p2(B2+D2+L2) 

- SetT1~nd;o;T2h-i;e;;: - -
Tl and T2 control Op 1 
alignment during SU 12 and 
PF 1 

SU 5 
Set S pointer to starting 

- _by_!'.'~~.:_<~·~:::~-
Compute Bl + Dl + L1 

SU 6 
Set H register to Bl + 01 + Ll ----------Compute storage address of 
2nd Op 2 word (B2 + D2) 

SU 7 
Start fetch for 2nd word 

ofOp2ffZ>S -----------
Gate 1st word of Op 1 

-sd T3~'f;9~~~i~lor - -
sign control in SU 10 

SU 8 
Set T6 trigger if 
Op 1 sign is minus 

SU 9 
Set T pointer to 7 

- - -G~eTs't .;o;d° of- - -
Op 2 into l register 

SU 10 
Set sign trigger if Op 2 

sign is minus 

Gate Op 2 byte from l 
to K register 

SU 11 
Gate 2nd Op 2 word 
from J register to L 
registerafter J loaded 

SU 12 
Transfer right aligned 
Op2fromKtoJreg 

- -Tr;nsferlst"Wofd~Opl
from M to K register. 
Shift right 32 if Tl is on 

- - SetT-polnier"io Oj)1- - -
starting~e (81 +01 +Ll) 

PF 1 
Right align 1st word of 
Op 1 in K register 

Pf 2 
Transfer multiplier from 
J register to L register 

Transfer 1st word of multi
plicand from K to J register 

PF 3 
Shift J one digit right -
remove multiplicand sign 

- - s";t ft kisS'e;.-_ _:-pr~ides -
sign control during first IS 

PF 4 
Gate J 60-63 to DC -- sets 
low-order multiplicand 
d191t into DC 

- CleOrKOnd-M-reQistE!rsto-
all zeros 

- ifesd Sp~nte'r 'to ;e~ = --
S is stepped down to 7 at 
the beginning of the 1st IS 

T 

Right align the 
multiplier (Op 2) in 
the K register even if 
it is in two words 

• FIGURE 67. DECIMAL MULTIPLY (MP) SIMPLIFIED EXECUTION SEOUENCE--2075 

Seq D 
Shift J register right l digit -
this places the next multiplicand 
digit in the low-order position 
of J 
'St;'p Sc-up1-:.:-c;;.t~I$ odd/e;-e~ 
9'~e_g~t~g- _______ _ 
Set T pointer to starting byte of 
multiplicand Bl + Dl + Y (Ll} 

--1 l r n 
IS (1) 2 (3) 

Add (Subtract) the multiplier 
(L reg) to the partial product in 

_t~ ~!is~r ~ne _by~~ a~~-
Step S, T, and Z down one 
as each byte is processed 

z = 1110 
T=O 

I 11100, 
L_JZflllO 

SF 12 
Swap Kand M registers--
the M register is used as t---J 
on extension of the K reg 

Seq A 
Restore S to the starting byte 
of the multiplier. S is reset 
to zero here, then stepped down 
to 7 at the beginning of the 
first IS 

-Re'StOTe T to the-;tciti";;'"g byte - -
of the partial product --
81 + 01 + y 

-R;st-;;-re Z -Zou-;:;ter h;' the - - - -
multiplier lene,!b L2 

-sle"e-DC ;;-p,Tciown - - - - - -
-swap K OmdMfe9isten bOCI( IT-

they were swapped during the 
IS cycles 

DCjO(lO) T DC= 0 (10) 

Seq A housekeeps 
after each pass through 
the multiplier. 

.--------------..__,C Odd/Even 

Y_i_L2 

0 

No T=O Yes 
To SF 1 -, 

\ 
I 

r-------From SF 6 ,._ - - - - -/ 

Seq Band C 

- i~-~~i1~=~~~-\,! - - ---
- -Got? AA to-H;-therlHto -,.-::_- --

this prov.ides a new starting point 
for the T pointer to effectively 
shift the multiplier left when a 
multiplicand byte boundary is 
crossed 

1 
Seq D 

Gate J 60-63 to DC -- places 
next multiplicand digit into 
the DC 

Shift Jrishttdi9tt-:-rb:it~ - -
next higher-order multiplicand 

_digi.!_f~p~e!!~ll- _____ _ 
Effectively shift multiplier left 

_ 1 <!!.it_ - - - - - - - - - -
Step9.fc up 1 -- controls odd/even 
cycle gating 

Y = L2 

l 
Seq D 

Zero detect the remaining 
bytes of the multiplicand 

Step Y counter down 1 

F11°1Yf1110 

L___ To SF 3 
(End Op) 

Seq D housekeeps after 
the DC steps to 0/10. 

The Iteration 
sequencers make 
one pass through 
the multiplier to 
add it to the 
partial product. 
They repeat (loop) 
until the Z counter 
steps down to 
1110 

Variable Field Length 1/66 141 



not, another addition (subtraction) must be made so 
IS 1 is set. If the digit multiply is complete, the 
next even cycle sequence is Seq D. The next odd 
cycle sequence is Seq B. 

Seq B, Seq C: When the odd cycle digit multiply is 
complete, the new Y value must be added to Bl + Dl. 
Seq Band Seq C gate Y to AA and release H. 

Seq D: Seq D shifts L right 4 following odd cycles, 
and left 4 following even cycles. The shift counter 
is incremented during Seq D. Seq D gates H to T to 
get the new T starting point if Y was stepped and 
added to Bl + Dl. J is shifted right 4 to position the 
next multiplicand digit. 

Store-Fetch Sequence -- Decimal Multiply 

The store-fetch sequence for decimal multiply (Fig
ure 6476) has two functions. First a fetch is re
quested for the next multiplicand word; then the com
pleted portion of the product is stored from K reg
ister. 

During a store-fetch, the Y counter tells how 
much of the multiplicand remains to be processed. 
Y is, therefore, used to compute the address of the 
words to be stored and fetched. If Y > 7, Bl + Dl + 
1 is fetched and Bl + Dl + 2 is stored. If Y.::;: 7, 
Bl + Dl is fetched and Bl + Dl + 1 is stored. 

FIXED SEQUENCE VFL INSTRUCTIONS 

• Use VFL data paths. 

• Controlled by FXP sequencers. 

Fixed sequence VFL instructions are those RX and 
SI instructions that, in general, handle one byte of 
data controlled by the FXP sequencers. 

The following text and flow charts explain how 
these instructions are executed in System/360 
Model 75. 

Insert Character (IC) 

The insert character instruction (Figure 6468) re
moves a data byte from the storage location specified 
by X2 + B2 + D2 and places it into the low-order byte 
of the general register specified by Rl. The data 
byte may contain any bit configuration and may be 
located at any byte addressable location in storage. 
The data contained in the general register specified 
by Rl remains unchanged, except the inserted data 
byte. 

Execution of the insert character instruction 
fetches the storage word to the L register and trans -
fers the contents of the general register to the K 
register, positions 0-31. The selected byte of the 

142 1/66 2075 Processing Unit -- Volume 3 

L register is then gated through the decimal adder 
into byte 3, positions 24-31, of the K register. The 
contents of K register, positions 0-31, are then 
returned to the general register to complete the 
instruction. 

E unit functions of the IC instruction start with 
the I/E transfer. Three E unit sequencers are used; 
first FXP, halfword logical (Hwd Log) and halfword 
add (Hwd Add). ELC is the put-away cycle and 
terminates the instruction. 

Prior to the I/E transfer, the I unit computes 
the X2 + B2 + D2 storage address, sets it into SAR 
and H, and starts the fetch to get the storage word 
that contains the Op 2 data byte. In addition, the 
contents of the general register specified by Rl 
are gated through the RBL to M register positions 
0-31. 

The I/E transfer occurs as soon as the accept 
to the fetch request is received and starts execution 
in first FXP sequence. The contents of the general 
register gated through RBL is set into M register, 
positions 0-31, at the beginning of first FXP. First 
FXP cycles repeat until the Op 2 word arrives from 
storage and the J loaded latch is set. The byte 
address contained in H register, positions 21-23, 
indicate the Op 2 byte to be used. This byte address 
is set into the S pointer during first FXP sequence 
to control byte gating later. Because first FXP spans 
more than one cycle, and because the I unit may set 
a different address into the H register after the first 
E unit cycle, VFL T5 trigger is set for the first E 
cycle and T5 latch gates H 21-23 to the Sand T 
pointers. VFL T5 insures that the byte address in 
H is not lost. 

During first FXP, after J is loaded, data gates 
are established to transfer the operand 2 word from 
J register to L register through the main adder. 

Hwd Log cycle follows first FXP. The operand 2 
word is set into the L register at the beginning of 
Hwd Log cycle. During Hwd Log data gates are 
established to transfer the contents of M register 
(general register data) to K register through the 
main adder. 

Hwd Add follows Hwd Log. Data from the M 
register is set into K at the beginning of Hwd Add. 
During Hwd Add the Op 2 data byte in the L register 
is selected and gated to the K register to be inserted 
with the other general register data. All bytes of 
the L register are inputs to the RBG. The contents 
of the S pointer control the RBG and gates the correct 
byte in the L register to the decimal adder. The 
decimal adder is gated binary true and provides a 
data path for the Op 2 byte. Decimal adder latches 
are gated to K. Byte gating into K register is nor
mally controlled by the T pointer and T IN decode 
circuits, however, insert character instruction al-



ways inserts byte 3. Therefore, the contents of the 
T pointer is ignored and T IN decode is forced to 3 
to insert the Op 2 bytes into K24-31. 

ELC follows Hwd Add to restore the data to the 
general register (Rl) and terminate the instruction. 
The Op 2 byte is set into K register at the beginning 
of ELC. Then, the contents of K0-31 are transferred 
to the general register specified by Rl, and the 
instruction terminated. 

Store Character (STC) 

The store character (STC) instruction (Figure 6487) 
transfers the low-order, least significant, byte in 
the general register specified by Rl, to storage at 
the X2 + B2 + D2 address. 

The K register is the only E unit register that 
gates data to the SBI enroute to storage. Therefore, 
the Op 1 byte is transferred from the general register 
to the K register, then to storage. Because the E 
unit contains no direct data path from a general 
register to K, intermediate data paths are used to 
transfer the Op 1 byte into K as shown in Figure 6487. 

The E time functions of the store character instruc
tion start with the first FXP cycle that follows the I/E 
transfer. Prior to the I/E transfer, however, the 
contents of the general register (Rl) is gated through 
the RBL to M register, positions 0-31. In addition, 
the computed storage address, X2 + B2 + D2, is 
gated to the H register. The storage address and 
Op 1 data is set into the H and M registers at the 
beginning of the first FXP cycle. 

During the first FXP cycle, the contents of the M 
register are gated through the main adder to the K 
register. Thus, the low-order byte, positions 24-31, 
of the general register is transferred to byte 3, 
positions 24-31, in the K register. At the same time, 
the three low-order storage address bits (the byte 
address) are transferred from H register, positions 
21-23, to the S and T latches. S and T latches are 
then gated to the S and T registers. 

The byte in the K register must be stored; there
fore, VFL store request is set during first FXP and 
the contents of the T latch are gated to set the mark 
register. 

Hwd Log cycle follows first FXP. At the begin
ning of the Hwd Log cycle, the data on AMOB is set 
into the K register; the S, T, and mark registers 
are set. 

The Op 1 byte is in byte 3 location of K register. 
This may not be the byte location specified by the 
X2 + B2 + D2 address. Therefore, the Hwd Log 
cycle is used to correctly position the Op 1 byte in 
K. K register byte 3 is gated through the LBG and 
the decimal adder and back to the K register byte 
indicated by the T pointer. 

Store sequence follows the Hwd Log cycle. If 
storage is busy and the store request initiated during 
the first FXP cycle must wait, the store sequence 
waits for the accept. Thereafter, ELC terminates 
the instruction. 

AND, OR, and Exclusive OR 

The three fixed sequence VFL logical connective 
instructions, AND-NI, OR-01, and Exclusive OR
XI, are presented as a group because all use the 
same E unit controls and data paths except gating 
control to the AOE. See Figure 6488. 

AND (NI) 

When two operands are combined by the AND-NI 
instruction, they are matched bit for bit in the AOE. 
If corresponding bits are 1, the result bit is 1. If 
either bit is 0, the result bit is 0. For example, 
if the logical AND of the 12 byte and the Bl + Dl 
storage byte is performed, assume: 

12 byte 
Storage byte (before) 
Storage byte (after) 

OR (OI) 

0101 1011 
0111 0110 
1101 0010 

When two operands are combined by the OR instruc
tion, they are matched bit by bit in the AOE. If 
either of the corresponding bits is 1, the result bit 
is 1. If both bits are 0, the result bit is 0. For 
example, if the logical OR of the 12 byte and the 
Bl+ Dl storage byte is performed, assume: 

I2 byte 
Storage byte (before) 
Storage byte (after) 

Exclusive OR (XI) 

0101 1011 
0111 0110 
0111 1111 

When two operands are combined by the Exclusive 
OR instruction, they are matched bit for bit through 
the AOE. If the corresponding bits match, either 
both 0 or both 1 bits, the result bit is O; if they 
differ, the result bit is 1. For example, if the 
exclusive OR of the 12 instruction byte and the Bl + 
Dl storage byte is performed, assume: 

I2 byte 
Storage byte (before) 
Storage byte (after) 

0101 1011 
0111 0110 
0010 1101 

The execution of the AND, OR, or Exclusive OR 
instruction starts with the I/E transfer. Prior to 
the I/E transfer, the I unit computed the Bl + Dl 
storage address and started the fetch to get the Op 1 

Variable Field Length 1/66 143 



word from storage. Immediate data in the 12 in
struction field, !OP 8-15 is gated into the YZ 
counters. After the accept is received from the 
fetch request, the l/E transfer occurs. 

First FXP is the E unit sequencer used to start 
the execution of the logical connective instructions. 
During first FXP the byte address is transferred 
from H register positions 21-23, to Sand T latches 
and the Op 1 word is gated from the J register 
through the main adder to the L register as soon as 
it is received from storage. First FXP may span 
several cycles waiting for J loaded latch to be set. 
To insure that the byte address is set into the S and 
T pointers during the first E cycle, VFL T5 trigger 
is also set with l/E transfer. VFL T5 latch then 
gates H 21-23 to Sand T latches. 

Because the result byte from the AOE replaces 
the Op 1 byte in storage and must be stored, the 
VFL store request trigger is set during first FXP 
cycle after J loaded latch is set. The contents of 
the T latch is also gated to set the mark register 
when the store request is accepted. 

Hwd Log cycle follows first FXP during which 
the two operands are gated through the AOE and the 
logical connective function is performed. 

Op 1 byte is gated from the L register through 
the RBG to one AOE input. Op 2 byte is gated from 
the YZ counters to the other AOE input. 

All 64 data bits of the L register are inputs to 
the RBG. The eight data bits of the byte selected by 
the S pointer become the output of the right digit gate 
and input to the right side of the AOE. The YZ 
counters contain the Op 2 byte; Y counter contains the 
high-order, most significant, 4 bits (HOD), and are 
inputs to positions 0-3 of left side of AOE. Z counter 
contains the low-order, least significant, 4 bits 
'(LOD), and are inputs to positions 4-7 of left side of 
AOE. 

The function of the AOE depends on the control 
gating. Two control gates, gate AND or gate ex
clusive OR, determine which of the three functions 
the AOE performs, AND, exclusive OR, or OR. 
If neither the gate AND nor the gate exclusive OR is 
active, the AOE performs the OR function. The 
AOE function gates are controlled by the instruction 
being executed. 

The AOE latches are set to the result byte of the 
AOE. During latch time of the Hwd Log cycle the 
result byte is gated to the K register and to zero 
decode. The AOE result enters the K register byte 
selected by the contents of the T latch and T in 
decode circuits. 

Store sequence follows Hwd Log cycle to store 
the result byte in K. The store request is initiated 
during first FXP sequence, and store becomes the 
wait sequence for the accept. When accept arrives, 
the store sequence ends and ELC starts. 

144 1/66 2075 Processing Unit -- Volume 3 

ELC interrogates the on or off condition of the 
zero decode trigger and sets the condition register 
as shown in Figure 6488. ELC terminates the in
struction: 

Compare Logical (CLI) 

The compare logical (CLl) instruction (Figure 6489) 
compares the immediate data byte, 12 field of the 
instruction, with the storage byte at the Bl + Dl 

storage address. The condition register is set to 
indicate the result of the comparison. 

Prior to the l/E transfer, the I unit has computed 
the Bl + Dl storage address and initiated the fetch 
to get the Op 1 storage word. In addition, the im
mediate data, 12 field in IOP 8-15, is transferred to 
the YZ counters. The l/E transfer occurs as soon 
as an accept to the fetch request is received. 

The l/E transfer releases the I unit to proceed 
to the next instruction while the execution of the CLl 
instruction is controlled by the E unit. 

First FXP sequencer starts the execution of the 
CLI instruction. During the first FXP sequence, the 
byte address (H 21-23) is transferred to the S 
pointer, the data in YZ counters are transferred to 
the K register, and the Op 1 word is transferred to 
the L register. 

Several machine cycles may occur before the 
word being fetched from storage is set into the J 
register. Therefore, first FXP cycles repeat until 
the J loaded latch is set. 

J loaded latch enables the set of the first FXP 
latch and the continuation of the execution sequence. 

. The byte address is normally gated from H register 
positions 21-23 to the Sand T pointers by the first 
FXP latch. However, because first FXP sequence 
may span several cycles, and the I unit has pro
ceeded to the next instruction, the address in the H 
register may be lost after the first E cycle. To 
insure that the byte address is set into the S and T 
pointer during the first E cycle, VFL T5 trigger is 
set for this first cycle and T5 latch gates the byte 
address from H register positions 21-23 to S and T 
pointer. 

As soon as the Op 1 word arrives from storage 
into the J register it is transferred through the 
main adder to the L register. At the same time, 
the 12 data in the YZ counters are gated through the 
AOE to be set into byte 3 of the K register. 

Hwd Log sequence follows first FXP during 
which the two operands are compared. The compar
ison is accomplished by subtracting Op 1 from Op 2 
in the decimal adder. 

Both operands are set into the K and L registers 
at the beginning of the Hwd Log cycle. The byte 
address is set from the S latch into the S register 



at the same time. Both operands are then gated to 
the decimal adder, Op 1 through the RBG and 
Op 2 through the LBG. All bytes of the L register 
are gated into the RBG and the byte selected by the 
S pointer is the one gated to the decimal adder: 

The Op 2 byte is gated from the K register to 
the decimal adder· through the LBG. All bytes of 
the K register are inputs to the LBG. Normally the 
numeric value in the T pointer and T out decoding 
determine the K byte that is gated from the LBG to 
the decimal adder. However, because the immed
iate data was set into byte 3 of K during first FXP 
sequence, T decode out is forced to 3 during the 
Hwd Log cycle to gate K byte 3 through the LBG to 
the decimal adder. 

Op 2 enters the left side of the decimal adder in 
true form. Op 1 enters the right side of the decimal 
adder through the TC +6 gate with complement gating. 
Op 1 is complemented to 2's complement and added 
to Op 2. The sum of the complement addition appears 
at the output of the decimal adder and represents the 
amount the operands differ. 

The latched output of the decimal adder i.s gated 
to the bus to K register to be zero checked, however, 
K is not released and, therefore, the sum does not 
enter K. 

ELC follows the Hwd Log cycle during which the 
condition register is set to indicate the result of the 
comparison as shown in Figure 6489. ELC termi
nates the instruction. 

Move (MY.I) 

The MVI instruction (Figure 6490) moves the im
mediate operand (byte from the instruction stream) 
to the storage location specified by Bl + Dl. 

Prior to the first E cycle, the immediate operand 
is transferred from IOP 8-15 to the YZ counter and 
the store address is set into the SAR and H registers. 

First FXP sequencer is set with the l/E transfer. 
During the first FXP cycle, the byte address is 
transferred from H register positions 21-23 to the 
T pointer to select the proper byte in the K register 
and set the correct mark bit. Because the MVI 
instruction is a store operation, the VFL store re
quest trigger is set during the first FXP cycle. 

Hwd Log sequence follows the first FXP cycle. 
The mark bit indicated by the T pointer is set at the 
beginning of the Hwd Log cycle. During the Hwd Log 
cycle, the immediate operand is gated from the YZ 
counter through the AOE to the K register byte se
lected by the T pointer. The YZ data is gated to the 
AOE during the early part of the Hwd cycle and 
appears at the AOE latch output almost immediately. 
From the AOE latch, the immediate operand is gated 
into the K register byte selected by the T pointer. 

Near the end of the Hwd Log cycle, the AOE latches 
are locked to retain the data set into them, and re
main locked until the data are set into the K register 
at the beginning of the next cycle. 

The store sequence follows the Hwd Log cycle. 
If storage is busy, store cycles repeat until accept 
arrives. If storage is not busy when the VFL stor
age request is made, then the accept will arrive 
during the Hwd Log cycle and the first store cycle 
is also the ELC. ELC terminates the instruction. 

Set System Mask (SSM) 

The SSM instruction (Figure 6491) removes a data 
byte from storage and places it in positions 0-7 of 
the PSW. 

The SSM instruction conforms to the SI instruc
tion format, however, the 12 field is ignored. The 
data byte used for the system mask is located in 
storage at the Bl + Dl storage address. 

The E unit and the I unit are both involved in the 
execution of the SSM instruction. E unit sequencers 
select and gate the desired byte from the storage 
word to the I unit. IE sequencers then control the 
gating and setting of the mask byte into the PSW 
register. 

E unit functions of the SSM instruction start with 
the I/E transfer. Prior to the I/E transfer, the I 
unit computes the Bl+ Dl storage address, sets the 
address into SAR and H, and starts the fetch request 
to get the storage word that contains the ·mask byte. 
I/E transfer occurs after the fetch request has been 
accepted, and starts first FXP sequence. 

The E unit remains in first FXP sequence, re
peating cycles, until the Bl + Dl storage word is 
set into the J register and the J loaded latch is set. 
Because first FXP may repeat several cycles, VFL 
T~ trigger is set for the first E cycle to insure that 
the byte address is transferred from H register to 
the S and T pointers. 

During first FXP, after J is loaded, the contents 
of the J register is gated through the main adder to 
the K register. AMOB is gated to K with first FXP 
latch and K is set when the following cycle starts. 
Decimal go signal is sent to the I unit to start the I 
execute sequence IE 1. 

The last E unit cycle, ELC, and the IE 1 cycle 
follow first FXP and occur at the same time. ELC 
controls the E unit function of gating the mask byte 
from the K register through the LBG to the I unit 
where the IE 1 cycle gates it into the PSW. During 
ELQ, all bytes of the K register are inputs to the 
LBG. The TD out trigger and the contents of the T 
register (the byte address) control the selection of 
the byte gated out of the LBG. The mask byte is 
routed to the I unit where the IE 1 cycle gates it into 

Variable Field Length 1/66 145 



the PSW register positions 0-7. IE 2 cycle follows 
IE 1. The mask byte is set into the PSW register 
at the beginning of the IE 2 cycle to complete the 
execution of the SSM instruction. IE 1 cycle follows 
IE 2. See I unit section for details of IE sequencing. 

Test Under Mask (TM) 

The TM instruction (Figure 6492) uses the immediate 
data byte, 12, as an eight-bit mask to select and test 
the state of the corresponding bits of the Op 1 (Bl + 
Dl) data byte in storage. The 1 or 0 state of the 
selected bits is used to set the condition register. 

A mask bit in the 1 state indicates the corre
sponding bit of the storage byte is selected. When 
the mask bit is O, the corresponding storage bit is 
ignored; when all selected storage bits are O, or 
when all mask bits are 0, both condition register 
bits, 34 and 35, are set to 0. When the selected 
bits of the storage byte are all l's condition regis
ter bits 34 and 35 are set to l's. When selected bits 
are mixed, l's and O's, the condition register is 
set to 01. 

At the programmer's option, the mask byte may 
contain any configuration of bits ranging from all O's 
to all l's, depending on the program objectives. 
The following examples show some possible objec
tives, mask and storage byte relationship and the 
condition code setting. 

Example 1. 
Objective: Test bits 2, 3 and 7 of a storage byte 

for l's. The mask byte contains l's in positions 2, 
3 and 7, and O's in all other positions. 

Bit positions 
Mask byte 
Storage byte 

0 1 2 3 4 5 6 7 
0 0 1 1 0 0 0 1 

1 1 1 0 1 0 1 

In this example, the storage byte contains a 
mixture of l's and O's; however, the selected posi
tions 2, 3 and 7, contain all l's. When selected 
bits are all l's, the condition register is set to 11. 
'The bit positions of the storage byte that correspond 
to 0 mask bits are ignored and have no effect on the 
condition code. 

Example 2. 
Objective: Test bits 2, 3, 4 and 6 of a storage 

byte for l's. 

Bit poaitions 
Mask byte 
Storage byte 

0 1 ,2 
0 0 1 
1 1 1 

3 4 5 6 7 
1 l 0 1 0 
1 0 1 0 l 

146 1 /66 2075 Processing Unit -- Volume 3 

In this example, the same storage byte as Ex
ample 1 is used. The mask byte is changed to test 
bits 2, 3, 4 and 6. Bits 2 and 3 of the storage byte 
are l's, while bits 4 and 6 are O's. The selected 
bits are a mixture of l's and 0' s; therefore, the 
condition register is set to 01. 

If the mask bits are all 0 's or the selected bits 
are all O's, the condition register is set to 00. 

Execution of the TM instruction AND's the bits 
of the mask byte with the corresponding bits of the 
storage byte in the AOE. Two output lines of the 
AOE, mask all l's and mask all O's, control the 
setting of the condition code. Figure 68 is a sim
plified positive logic diagram that shows the AND 
functions of the mask and storage bytes, and the 
two AOE output lines. When the mask and storage 
byte are AND'ed, either both, or neither, the mask 
all l's or mask all O's line is active, depending on 
the bit configuration of the two bytes: 

Selected bits all zero 
Mask bits all zero 

Active AOE Output 

Mask all ones Mask all zeros 

x 
x 
x 

Selected bits all ones X 
Selected bits mixed 

Execution of the test under mask instruction 
fetches the operand 1 word (Bl + Dl) from storage, 
AND's the selected byte with the 12 instruction field 
(mask byte) and sets the condition register. E unit 
execution starts with the l/E transfer. Prior to the 
l/E transfer, however, the I unit computes the Bl + 
Dl storage address and starts the fetch request to 
get the Op 1 word from storage. In addition, ·the 12 
instruction field (mask byte) is set into the Y and Z 
counter. The l/E transfer occurs after the accept 
to the fetch request is received from the BCU. 

First FXP sequence follows the l/E transfer and 
repeats cycles until the Op 1 word arrives from 
storage and is set into the J register. To insure 
that the byte address is transferred from the H reg
ister to the S and T pointers during the first E cycle, 
VFL T5 trigger is set and T5 latch gates H 21-23 to 
Sand T. 

During the first FXP cycle after J is loaded, the 
storage word in J register is gated through the main 
adder and to the L register. Data is set into the L 
register at the beginning of the next cycle. 

Hwd Log sequence follows first FXP. During 
Hwd Log cycle the mask bits are used to test the 
bits of the Op 1 byte. All bytes of the Op 1 word in 
the L register are inputs to the RBG. Gate L with 
S trigger and the byte address in the S pointer se-



lect and gate the Op 1 byte through the RBG to the 
AOE where it is tested. At the same time, the 
mask byte in the YZ co.unters is gated to the other 
AOE input. The AND function to the AOE is gated 
to enable the mask bits to select and test bits of the 
Op 1 byte. The two AOE output lines, mask all l's 
and mask all O's indicate the 1 or 0 state of the bits 
selected by the mask byte. VFL T7 and TS triggers 
are used to remember the status of the AOE output 
and to set the condition code during the next cycle. 
VFL T7 and TS are used because the YZ counters 
are normally set to a new value during E LC. The 
chart in Figure 6492 indicates the set conditions for 
VFL T7 and TS triggers and the condition code that 
results. 

ELC sets condition register positions 34 and 35 
and terminates the instruction. 

Test and Set (TS) 

This SI format instruction (Figure 6493) tests a single 
byte in main storage for a high-order bit and then sets 
the entire byte tested to all l's. The byte tested, then 
set to l's, is specified in the first operand address. 
The result of the test for a high-order 1 bit is recorded 
in the condition code. If the high-order bit in the 
selected byte is a 0, the condition code is set to 00. 
If the high-order bit is a 1, the condition code is set 
to 01. 

The storage unit does a unique operation for the 
test and set instruction. The addressed storage word 
is fetched and set unaltered into the SBO latch register 
exactly as during a fetch operation. Unlike a normal 
fetch, however, the storage uses a mark-bit supplied 
by the CPU to designate a single byte to be changed 
in storage. The storage unit sets the designated byte 
to all l's then regenerates the 72-bit word. Thus, 
the storage unit does a combination store and fetch. 

To cause a test and set, the BCU does a normal 
CPU fetch but sends a test and set signal to the 
selected storage unit. No special gating is required 
for the mark-bit. The CPU sets a bit into the mark 
register; the mark register is gated to storage on any 
CPU operation. A unique mark register reset, how
ever, is required for the test and set instruction. The 
mark register is reset after any CPU store operation 
and after the test and set instruction. 

The test and set instruction is executed by setting 
a bit into the mark register by decoding bits 21-23 of 
the address set into the H register. SAR is set in 
parallel with H from the addressing adder and fetch 
request and test and set signals are sent to the BCU, 
and the return of J line brought up. 

When J is loaded, its contents are gated through 
AMTC to the L register. The first fixed-point trigger 
is turned on and stays on until J is loaded. The S and 

T registers are set from H 21-23 during the first FXP 
cycle by VFL T5 trigger. 

The high-order bit test is performed in the byte 
of L register selected by the S pointer. ELC controls 
the setting of the condition code and terminates the 
instruction. 

The storage address protection unit is active on a 
test and set instruction. A SAP check causes the 
original word to be regenerated in storage and, 
instead of the fetched word, the storage unit delivers 
all zeros with good parity-bits to the SBO latch 
register. This protects the CPU from taking a 
machine check caused by a SAP error. 

CONVERT INSTRUCTIONS 

• Convert decimal data to binary. 

• Convert binary data to decimal. 

Input data to the System/360 may be in either of two 
formats, binary or binary-coded-decimal. Of all 
Systems/360 instructions, certain ones, such as fixed
point and floating-point, require that data be in binary 
format; other instructions, such as VFL decimal, 
require data in BCD format. 

Because data may enter the system in either 
format, correct execution of an instruction may re
quire that the data to be processed be converted to 
the correct format. 

Two instructions, convert to binary and convert to 
decimal, provide the facility to convert data from one 
format to another. 

The following text and flow charts explains how 
the System/360 Model 75 executes the convert to binary 
and convert to decimal instructions. 

Convert to Decimal (CVD) 

The CVD instruction converts the 32-bit binary word 
in the general register specified by Rl instruction 
field into BCD digits, and places them in storage at 
the X2 + B2 + D2 address. A storage word can contain 
15 decimal digits plus a sign digit. The maximum 
decimal value that can be represented by 15 digits is 
far greater than the maximum value repres-ented by 
31 binary bits plus a sign bit, therefore an overflow 
cannot occur during conversions. 

BCD digits are represented by 4 binary bits. The 
difference between BCD data and pure binary data is 
that a 4-bit BCD digit is allowed to contain only 10 
different values, 0-9, whereas 4 bits used for pure 
binary data may contain 16 different values, 0-15. 
The values within the range of 0-9, 0000-1001, are 

Variable Field Length 1/66 147 



Operand Bit 7 

Mask Bit 7 

Operand Bit 6 

Mask Bit 6 

Operand Bit 5 

Mask Bit 5 

Bit 7 = l 
Operand Bit 4 Bit 6 =I 

Bit 5 = 1 
Mosk Bit 4 Bit 4 = 1 

Bit 3 = 1 
AOE All l's 

Bit 2 = 1 
H =l 

Bit 0 = l 

0 rand Bit 3 

Mask Bit 3 
Bit 7= 0 
Bit 6 = 0 
Bit 5 = 0 
Bit 4 = 0 AOE All O's 
Bit 3 = 0 A 
Bit 2 = 0 
Bit l = 0 
Bit O = 0 

Operand Bit 2 

Mask Bit 2 

0 erand Bit 1 

Mask Bit l 

0 erand Bit 0 

Mask Bit 0 

FIGURE 68. AOE MASK FUNCTION 

148 1/66 2075 Processmg Umt -- Volume 3 



the same in either binary or BCD coding. However, 
values greater than 9 are expressed differently in 
binary and BCD coding. For example, the numeric 
value of 12 is 1100 in binary and 0001 0010 in BCD. 

Nmneric values expressed in binary form represent 
the sum of the binary digits, or bits. The value of 
12, for example, is the sum of the binary 8 and 4 bits. 

Concept 

When converting numbers from binary to BCD, the 
number is converted from the base 2 system to the 
base 10 system. Any number of any number system 
can be expressed as: 

N =An qn + An-1n-1+An-2qn-2 ---------

N = The number of any number system 
An, An-l+An-2, etc., =non negative digits of the number 
q = The base number of the system 
n = The power (position) of the digit within the number 

For example, the decimal number 985 can be expressed as: 

985 = 9xlo2 + 8x101 + 5xloo 
or in binary as: 

985 = 1x29+1x28+1x27+1x26+ox25+1x24+1x23+ox22+ox21+1x20 
factored to: 

985 = ((((((((( lx2+ 1)2+ 1)2+1)2+0)2+ 1)2+ 1)2+0)2+0)2+1) 

The conversion of binary numbers to decimal 
numbers can be accomplished by the execution of the 
above equation, Figure 69. 

The same equation is used when System/360 
Model 75 executes the CVD instruction. Convert 
cycles convert the binary number to 4-bit BCD digits. 
One binary digit, or bit, is converted during each 
convert cycle, starting with the highest-order binary 
digit. Thereafter, the next lower-order binary digit 
is converted, and the cycles repeated until all binary 
digits are added to 2 times the partial result, which 
in the beginning is zero, and a new partial result 
developed. The 2x multiple of the partial result is 
produced by shifting left 1. Figure 70 shows a sim
plified version of how binary number 985 is converted 
to 985 in BCD. Ten cycles are shown, during which 
the partial result is expanded by multiplication and 
addition of each binary digit. When the last binary 
digit is added, the result is complete, in BCD digits. 

A BCD digit occupies 4 bit positions of storage 
and may represent any decimal number from 0-9. 
The same 4 bit positions may also represent any 
binary number from 0-15. Numbers 0-9 are the 
same, whether in binary or BCD form; however, 
binary numbers greater than 9 (1001) become invalid 
BCD digits. For example, one more than 9 (1001) 
in BCD becomes 0001 0000, whereas in binary, one 
more than 9 (1001) becomes 1010, an invalid decimal 
digit. During the convert sequence, if a partial re
sult digit is greater than 4, an invalid BCD digit is 

created when the shift left 1 occurs to produce a 2x 
multiple of the partial result. If, for example, the 
partial result is a 5 (0101) before the shift, then it 
becomes 1010 (binary 10) after the shift. Decimal 
correction circuits provide +6 correction to all BCD 
digit positions that contain a sum of 5 or greater 
before the X2 shift. The +6 correction forces a 
carry into the next higher-order BCD position. 
Figure 70 shows the +6 correction being used. At 
the end of cycle 3, the units order 4-bit position of 
the partial result contains a 7 (0111). When the 7 
(0111) is shifted left 1, the binary sum becomes 14 
(1110), and when the next binary digit is added, the 
binary sum becomes 15 (1111), however, +6 is also 
added. The +6 forces a carry into the adjacent 4-bit 
BCD position and provides the correct BCD digits 
for the sum of 15 (0001 0101). Decimal correction 
is provided for each of the decimal digits converted 
during the CVD instructions. 

Execution 

Execution of the CVD instruction starts during I unit 
sequencing when the contents of the general register 
specified by the Rl instruction field are gated through 
the RBL to M register. Also, 1 is gated to the input 
of SC position 2 to set 32 into the SC. 

E unit execution of the CVD instruction, Figure 
6494, starts with the first FXP sequencer._ During 
first FXP cycle Op 1 is routed through the main 
adder to the K, Land M registers. If Op 1 is a neg
ative number, it is in complement form when trans
ferred to M from the RBL, and the Rl sign trigger 
is set. If the Rl sign trigger is on during first FXP, 
the AM complement and hot 1 triggers are on and 
Op 1 is complemented and changed to true form. 

Qp 1 may be any value from 0 to +2, 147, 483, 
647, or -2, 147, 483, 648, the maximum value that 
can be represented by 31 binary bits; the magnitude 
of Op 1 is checked during first FXP by zero detection 
of the 4 high-order bit positions of M. If M 0-3 
equals zero, normalize cycles follow first FXP. If 
M 0-3 does not equal zero, convert cycles are started. 

Normalize Cycles: When M 0-3 equals zero, nor
malize cycles follow first FXP. At the beginning of 
the first normalize cycle, Op 1 is set into the K, L 
and M registers. K register positions 0-63 are zero 
detected, and if zero, indicating Op 1 has zero value, 
conversion is not necessary. IS 1 cycle is entered 
and the sign digit placed in the low-order position 
of K register. 

When K0-63 is not equal to zero, normalize 
cycles repeat until Op 1 is digit normalized. During 
each normalize cycle, M 0-3 and M 0-11 are zero 

Variable Field Length 1/66 149 



x2 
-2 

+l -----3 
x2 

-6 

+l 
-7 

x2 
14 

+l 
15 

x2 
30 

+0 
30 

x2 
60 

+l 
6J 

x2 
122 

+l rn 
x2 

246 
+0 
~ 
--4.. 
492 

+O 
492 

x2 
984 

+l 
985 

FIGURE 69. CONVERT BINARY TO DECIMAL 

150 1/66 2075 Processing Unit -- Volume 3 

detected. M 0-63 is gated through the main adder, 
the shifter, and to AMOB, then to K, L and M reg
isters. M 0-3 and M 0-11 zero detection controls 
the gates to the shifter. M 0-3=0 causes a L4 shift 
and M 0-11=0 causes a LS shift. M 0-11 zero detec
tion is a look-ahead feature; when M 0-11=0, the 
normalize cycle repeats. When M 0-11 is not equal 
to zero, the last normalize cycle is in progress and 
and last 4 or 8 zeros are being deleted from Op 1. 

Initially the shift counter is set to the value of 
32 to count the Op 1 bytes processed. During each 
normalize cycle, the SC is stepped down either 4 or 
8 depending on the number of zeros shifted out of the 
Op 1 field. 

During each normalize cycle, AMOB is gated to 
K, L and M registers. The last normalize cycle 
gates Op 1, left digit aligned, into the registers and 
sets the convert trigger. 

Convert Cycles: Convert cycles start as soon as the 
convert trigger is set. During each convert cycle, 
an Op 1 binary bit is converted to BCD form, and the 
SC stepped down 1. When the SC = 0, all bits of 
Op 1 have been converted and the BCD number is in 
the K register. 

At the beginning of the first convert cycle, the L 
register contains Op 1, left digit aligned in positions 
0-32. The partial result is developed in L register 
positions 32-63. During each convert cycle, L 0-63 
is gated Ll (x2) to AMTC, L 32-63 is gated through 
decimal correction to AM inputs 32-63; if SC is less 
than 24, then L28-31 is also gated through decimal 
correction to AM 28-31. The binary bit is gated 
from LO to AM 63, where it is added to 2x the partial 
result and develops a new partial result. The new 
partial result is gated from AMOB to Kand L reg
isters 0-63. The shift counter steps down 1 at the 
beginning of each convert cycle, and when SC=O, the 
last binary digit is being added to 2x the partial 
product; SC=O terminates the convert sequence and 
starts the IS 1 cycle to place the sign digit in K reg
ister. 

Decimal correction circuits examine the binary 
sum of the bits in each 4-bit digit position of L 32 to 
63 if SC > 24 or L 28-63 if SC< 24. Each 4-bit 
digit position of L register that contains a bit sum of 
5 or greater causes +6 to be gated from decimal 
correction to AM inputs for that position. AM inputs 
from decimal correction are 0 for all 4-bit digit 
positions with a bit sum less than 5. 

Each convert cycle shifts the contents of the K 
and L register 1-bit position to the left. Thus, a 
new Op 1 bit is gated from LO to AMTC 63 and added 
to the X2 partial result each convert cycle. 

Convert cycles repeat until the SC steps down to 
0. SC=O is detected during the last convert cycle 



CYCLE 
1 

CYCLE 
2 

CYCLE 
3 

First Partial Result 

Add Next Digit 

Decimal Correction (+6) 

Partial Result 

Partial Result X2 (Ll) 

Add Next Digit 

Decimal Correction (+6) 

Partial Result 

Partial Result X2 (Ll) 

Add Next Digit 

Decimal Correct;ons (+6) 

Partial Result 

Partial Result X2(L1) 

CYCLE Add Next Digit 
4 

Decimal Correction (+6) 

Partial Result 

Partial Result X2 (Ll) 
CYCLE 

S Add Next Digit 

CYCLE 
6 

Decimal Correction (+6) 

Partial Result 

Partial Result X2 (Ll) 

Add Next Digit 

Decimal Correction (+6) 

Partial Result 

Partial Resu It X2 (L 1) 

CYCLE Add Next Digit 
7 

CYCLE 
8 

CYCLE 
9 

CYCLE 
10 

Decimal Correction (+6) 

Partial Result 

Partial Result X2 (Ll) 

Add Next Digit 

Decimal Correction (+6) 

Partial Result 

Partial Result X2 (L 1) 

Add Next Digit 

Decimal Correction (+6) 

Partial Result 

Partial Result X2 (Ll) 

Add Next Digit 

Decimal Correction (+6) 

Completed Result 

985 in BCD ; 1001 1000 0101 
9 8 5 

FIGURE 70. CONVERT BINARY TO BCD 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 

Variable Field Length 1/66 151 



and causes the convert trigger to be reset and the 
IS 1 trigger to be set. The last convert cycle gates 
the completed result into K, Land M registers, with 
a left sl;J.ift 4 to make room for the decimal sign. 

IS 1 Cycle: IS 1 cycle places the correct sign digit 
into the low-order digit position of K reg~ter. Be
cause K register is byte addressable and not digit 
addressable, VFL circuits are used to insert the 
sign digit. The low-order byte {byte 7) of K is gated 
through the LBG, and the HOD gated to the left 0-3 
input of the decimal adder. A plus sign is forced to 
the right LOD input {4-7) of TC +6 side of the decimal 
adder. If the Rl sign trigger is on, the sign digit is 
inverted and a minus sign gated through the decimal 
adder. The sign digit forced to the right LOD input 
and the HOD from the LBG are gated through the 
decimal adder and back to byte 7 of the K register. 

The T pointer is used during IS 1 cycle to select 
the K byte. Initially, the T pointer is set to 0, then, 
just prior to IS 1, T is gated to step down 1. At the 
beginning of IS 1, T is then stepped from 0 to 7. 
J Register gates byte 7 through the LBG and the latch 
T controls the release of byte 7 into K from the AV 
latches. 

The setting of the VFL store request and the 
store request and the store triggers is gated during 
IS 1 cycle, to store the completed result at the Op 2 
address. 

Store Cycle: The store cycle follows IS 1 and is the 
accept wait cycle for the store request made during 
IS 1. When accept arrives, ELC occurs and the 
operation ends. 

Convert to Binary (CVB) 

The CVB instruction converts the BCD data in the 
Op 2 storage word to binary data and places it in the 
general register specified by Rl. 

The 64 bit Op 2 (X2 + B2 + D2) storage word 
must conform to the packed decimal' format, and may 
contain as many as 15 decimal digits plus the sign 
digit. The 15 decimal digits are converted 'to a 31-
bit binary word plus the sign bit and. stored in a gen
eral register. Decimal data is always true; how
ever, the sign digit may be plus or minus. Decimal 
data is converted to plus binary data; then, if the 
decimal sign is minus, the binary data is changed to 
the 2' s complement before it is set into the general 
register. 

The maximum signed decimal number that can be 
contained in a 64-bit storage word is 1015-1, however, 
the maximum number that can be converted and still 
be contained in a 32 bit register is +2, 147, 4S3, 647 
or -2,147,4S3,64S. When the decimal number is 

152 1/66 2075 Processing Unit -- Volume 3 

outside this range, the ~ow-order 32 binary bits are 
placed in the general register and a fixed-point di
vide interrupt occurs. 

The convert to binary instruction converts one 
decimal digit at a time, starting with the high-order 
digit and converts, a digit at a time, to the low
order digit. Figure 71 shows an example of convert 
to binary. The partial result, which at the begin
ning is zero, is multiplied by 10 and the first digit 
added to it. The lOX multiple of the partial result 
is the sum of X2 and XS multiple. X2 and XS multi
ples are created by shifting the partial result left 1 
position (Ll) for the X2, and left 3 positions (L3) for 
the XS. The partial result, after the first decimal . 
digit is added, is multiplied by 10 and the next digit 
added. This procedure is continued until the BCD 
number is exhausted, at which time the result bits 
represent, in binary sum, all the decimal digits. 

Decimal digits are converted to binary in the 
main adder. The decimal digit is gated to the AM 
from the high-order digit position (0-3) of the K 
regiater and added to the partial result gated to the 
AM from the L register {Figure 72). To effectively 
multiply the partial result by 10, positions O to 63 
of L register are gated with a Ll (X2) shift to AMTC 
positions 0-62, and L register positions 2S-63 are 
gated L3 (XS) to AM positions 25-60. AM positions 
61, 62 and 63 and AMTC 63 are used to enter the 
decimal digit from the K register. Because BCD 
digits are represented by 4-bit positions and only 
the 3 low-order positions of the AM are available, 
modified gating is used to enter the 4-blt BCD digit. 
Main adder positions AM 61, AM 62, and AMTC 63 
are used to enter the BCD digit if its value is 7 (0111) 
or less. Figure 72 shows the rel~tionship of the 
BCD bits from the K register to AM inputs. K regis
ter position 03 (BCD 1 bit) is gated to AMTC 63; 
K register positions 01 and 02 (BCD bits 4 and 2) en
ter AM 61 and 62. K register position 0 (BCD S bit) 
causes a carry in to position 63. If the BCD digit 
from K register is S (1000), 11 s are forced to AM 61, 
62 and 63 and a forced carry into AM 63 causes a 
carry into the binary S position (60) of the AM. When 
the BCD digit is 9 (1001), S (1000) is entered as 
above and the 1 (0001), from K03, enters AMTC 63. 

During each convert cycle, the BCD digit in the 
high-order position (0-3) of K register is added to 
lOX the partial result from the L register, Figure 
72. The new partial result is returned to the L 
register. At the same time, the next BCD digit is 
gated from the K register through the RBG, and 
decimal adder into the high order of K, ready for the 
next convert cycle. The K byte gated through the 
RBG is controlled by the setting of the S pointer. 
Initially, the S pointer is set to 0 and stepped up 1 on 
alternate convert cycles. 



During the convert cycle that the first BCD digit 
is converted, the S pointer is O. K byte O is, there -
fore, gated through the RBG. The digits are crossed 
causing the LOD of K byte 0 to gate through the HOD 
position of the decimal adder and into the high-arder 
position (0 -3) of the K register. 

The next cycle converts the LOD of K byte 0, and 
because the S pointer is stepped up 1 at the beginning 
of this cycle, byte 1 from K register is gated through 
the RBG. The digits are straight gated through the 
digit gate to the decimal adder; the HOD of K byte 1 
is gated through the decimal adder into K register 
positions 0-3, ready for the next cycle. 

The CVB instruction proceeds in the above man
ner until all digits in the K register have been con
verted. 

The S pointer counts and controls the gating of 
each Op 2 byte from the K register as the high- and 
low-order digits of the byte are converted. In addi
tion, the shift counter is used to count the digits con
verted. Initially, the shift counter is set to 16 and 
counted down 1 each convert cycle. When the S 
pointer equals 7 and the shift counter equals 1, the 
last Op 2 digit is being converted. The CVB instruc
tion then transfers the 32 -bit word to the general 
register specified by Rl and the instruction is ter
minated. 

Execution controls and data flow for the CVB in
struction are shown in Figure 6495. The inset at the 
bottom of Figure 6495 shows the relationship of the 
counter values an..:. digits converted during each con
vert cycle. 

CVB Execution 

E unit execution of the CVB instruction starts with 
the first FXP sequence, set with the I/E transfer. 
Prior to the I/E transfer, the I unit computes the 
Op 2 (X2 + B2 + D2) address and starts the fetch to 
get the Op 2 word from storage. In addition, the 
shift counter is set to 16 by forcing 1 into SC position 
3. BCU accept causes the I/E transfer to occur and 
set the first FXP sequencer. 

The E unit waits in the first FXP sequence until 
the Op 2 word arrives from storage and is set into the 
J register. When the J loaded latch is set, the Op 2 
word is gated through the main adder to the K regis -
ter. The S pointer is reset to zero, and the convert 
and IS 1 triggers are set to control the CVB instruc
tion. The convert trigger remains on throughout all 
the convert cycles; the· convert trigger controls the 
gating of the partial result from the L register and 
the digit from the high·-order position (0-3) of K reg
ister to the main adder, and the partial result to L 
register. IS 1 trigger is on during the first cycle 
the convert trigger is on to set IS 2. IS 2 and IS 3 

sequencers are used thereafter to control VFL cir
cuits and gates to position each succeeding Op 2 digit 
into the high-order of K register. 

Convert/IS 2 cycle and convert/IS 3 cycles alter
nate and repeat until all decimal digits in the K reg
ister are converted. The HOD of each K byte is con
verted during IS 2 cycles and the LOD of each K byte 
is converted during IS 3 .cycles. 

Convert/IS 2: When the first IS 2 cycle starts, data 
gates to the main adder from the L register and 
from positions 0-3 of the K register are established 
and remain active during each succeeding cycle un
til all Op 2 digits are converted. Data gates from 
the L register provide the XlO partial result to 
which the BCD digit from K 0-3 is added. During 
IS 2 cycles, the HOD of the K byte is converted; at 
the same time, the same K byte is gated through the 
RBG, the digits are crossed, and the LOD gated 
through the HOD positions of the decimal adder. 

ter positions 0-7~ Din position 0-3 
The decimal adder outp~u· . en gated into K regis-

and the HOD in 4.;2_,tbf.s ·~ the LOD of the byte 
in position to be.!tjrt~ing the next cycle. 

Convert/IS 3: a3 ~ollows IS 2. During 
IS 3 cycles, th LO of the K bytes is converted and 
the HOD of then · ~transferred to posi
tions 0-3 of t~h- i . . 

The S poi ~ saup 1 at the beginning of 
each IS 3 cycle. e ext byte is then gated 
through the RBG, stra ated to the decimal adder 
and placed ~,-7; ~ces the HOD of the new 
K byte into p ~ __ .«> to becfmverted during the next 
cycle. ~j 

The con q~returns to IS 2 cycle un-
less the S p st e to 7 at the beginning of 
IS 3. S = ~dicates that only one digit 
remains to be conv r d the last K byte, byte 7, is 
gated through the S? adder and the byte is set 
in K 0-7.~.· 0 0-3 is the next digit to be 
converte · _. ev , -7 is the sign digit of Op 2, 
and is no~~ r~uring IS 3, when the sign 
digit is ~} t~mal adder, the E unit sign 
trigger p.if ~imal sign is minus. 

Last Convert cffjs:J;! When S = 7, two convert cycles 
follow IS 3. The firs't converts the last decimal 
digit to binary; the second transfers and aligns the 
completed result into the K register ready to be set 
into the general register during the PA cycle. 

The SC is stepped down 1 at the beginning of each 
convert cycle. The S pointer steps to 7 at the same 
time the SC steps to 2. Therefore, the SC steps to 
1 at the beginning of the cycle following IS 3; this is 
the cycle during which the last decimal digit is con-

Variable Field Length 1/66 153 



Dec imol Number x8 = Shift Left 3-
1001 1000 0101 = 985 x2 = Shift left I 

x8 0 0 0 0 0 0 
10 X Portiof Result (Zero) 

x2 0 0 0 0 0 0 0 0 0 

Add First High-Order Digit (9) 0 0 

Partier Result 0 0 0 0 0 0 0 0 0 

10 X Partial Result x8 0 0 0 0 0 0 

x2 0 0 0 0 0 0 

Add Next High-Order Digit (8) 0 0 0 

Partial Result 0 0 0 0 0 0 0 0 

x8 0 0 0 0 
10 X Portia/ Result 

x2 0 0 0 0 0 0 0 

Add Lost Digit (5) 0 0 

Result 0 0 0 0 

FIGURE 71. CONVERT TO Bl NARY (EXAMPLE) 

7 

0 L Reg 63 K Reg 63 

28 63 

RBG 

0 7 
l3(X8) L1(X2) 

62 63 

25 60 61 68 0 
AMTC 63 

AM 

0 AMOB 63 

56 57 58 59 60 61 62 63 Cl 

AM L59 L60 L61 L62 L63 

AMT-C L57 L58 L59 L60 L61 L62 L63 ~ 
AOB 

I· K Register 
0 

FIGURE 72. CVB DATA GATING 

154 1/66 2075 Processing Umt -- Volume 3 



verted. The completed result is on the AMOB dur
ing the latter part of this cycle. SC = 1 causes 
AMOB to be gated into M register, the data gates 
from K and L registers to AM inputs to be terminated 
at the end of this cycle. 

The last cycle that the convert trigger is on sets 
the completed result into the M register and steps 
the SC to 0. During this cycle, the 32-bit completed 
result is in M register positions 32-63. To prepare 
the converted result for put-away, it must be trans
ferred to K register positions 0-31. The transfer is 
made through the main adder with M 32-63 gated L 
32 to AMTC 0-31. AMOB 0-63 is then gated to K 0-
63. If the sign trigger is on during this cycle, 
AMTC is gated complement and the completed result 
enters K register in 2's complement. 

PA and ELC: PA 1 cycle follows the convert cycle 
during which the SC stepped to 0. During the PA 1 
cycle, the completed result of the CVB sequence is 
transferred from K 0-31 to the general register 
specified by Rl. PA and ELC are concurrent; ELC 
terminates the instructions. 

Interrupts 

Interrupts that can occur when executing the CVB in
struction are: 

Address: Occurs if the X2 + B2 + D2 computed stor
age is invalid. This interrupt occurs prior to the 
I/E transfer and causes the first E cycle to be ELC 
to terminate the instruction. 

Specification: This interrupt occurs when the com -
puted storage address does not comform to double 
word boundaries in storage. This interrupt occurs 
prior to the I/E transfer. ELC is forced during the 
first E cycle and the instruction is terminated. 

Data: A data interrupt occurs during the execution 
of the CVB instruction whenever an invalid decimal 
or sign digit is encountered. During IS 2 and IS 3 
cycles, each byte gated through the RBG and decimal 
adder is checked for parity and each digit is checked 
to be sure it is a valid decimal digit. During the l~st 
IS 3 cycle, when S = 7 , the LOD from the. RBG must 
be a sign digit. 

A data interrupt causes the instruction to be ter
minated by forcing ELC. 

FXP Divide Exception: This interrupt occurs when
ever the result exceeds 31 bits. During convert cy
cles, when the decimal digit is added to lOX the par
tial result, if a carry-out of position 32 of the AM 
occurs, a fixed-point divide exception interrupt is 
signaled. 

DffiECT CONTROL (WRD AND RDD) (FIGURE 6496) 

The store-fetch sequencers are used for these two 
instructions. The store-fetch trigger is set with the 
Ego condition, which also sets VFL Seq T2. The 
sequence is SF 1-5 for both instructions. 

The timing for the pulsed signals is generated by 
OR'ing together three sequencers and their latches. 
The three sequencers used are A, Band C. To pre
serve the correct timing when in single-cycle mode, 
the B and C sequencers are set with the A running 
clock. This means once the A sequencer is set, the 
other two follow with the normal timing relationship. 

The Y Z counters are set during the last cycle of 
every instruction, regardless of format, and during 
every cycle between ELC and the first cycle of the 
next instruction. Therefore, at the beginning of 
either RDD, or WRD, Y Z contains IOP (8-15). Y Z 
are gated to the direct signal out bus with the timing 
signal described above. This timing signal also gen
erates Read Out and Write Out. 

Write Direct (WRD) 

Write direct (Figure 6497) fetches a word from stor
age, puts it in Kand gates the addressed byte to the 
direct control register. The direct control register 
is set with a running A clock and its release is gated 
with VFL Seq LA. This maintains the correct re
lationship between the register setting and rise of the 
signal out. 

Read Direct (RDD) 

Read direct (Figure 6498) gates direct in data lines 
to the input of the AOE. The AOE generates parity, 
and the AOE output is put in the addressed byte of K. 
The parity check on K is blocked until the byte read 
in has been through AOE a second time to generate 
parity. This prevents a data change at the input to 
the AOE, just before the latch is locked, from caus
ing a machine check (K register parity error). If the 
data changed just before the latch locked, the parity 
generator might not have time to adjust before the 
fall of the A clock that sets K. As the byte goes 
from K, to the AOE, to K, the VFL store request 
trigger is set. 

The hold in line being down when SF 1 latch or 
SF 2 trigger are 1, allows VFL T2 to be set. The 
VFL T2 latch sets SF 3 and resets SF 2. VFL T2 is 
used as a buffer to prevent timing malfunctions on 
the hold in line from causing sequencing faults. VFL 
T2 latch blocks the release of K so that the byte set 
in K when VFL T2 was set is the byte stored. 

Variable Field Length 1/66 155 



INDEX 

FIXED POINT, I EXECUTE, AND BRANCH 

Add (A,. AR) 13 

Add halfword (AH) 18 

Add logical (AL, ALR) 15 

AND (N, NR) 21 

Block third outstanding fetch 47 

Branch+ 1 E 47 

Branch address 

detail figure reference 47 

general 45 

Branch address to GSR and ICR 47 

Branch and link, BAL 

detail figure reference 47 

general 45 

Branch and link register, BALR 

detail figure reference 47 

general 45 

Branch cancel triggers 47 

Branch condition 45 

Branch instructions 

branch unit 45 

detail figures referenced 4 7 
E and IE units 45 

general 45 

Branch instructions, data moves 45 

Branch last cycle trigger 4 7 

Branch on condition, BC 

detail figure reference 47 

general 45 

Branch on condition register, BCR 

detail figure reference 47 

general 45 

Branch on count, BCT 45 

detail figure reference 47 

general 45 

Branch on count register, BCTR 45 

detail figure reference 47 

general 45 

Branch on index high, BXH 

detail figure reference 47 

general 45 

Branch on index low or equal, BXLE 

detail figure reference 47 

general 45 

Branch operation trigger 47 

Branch successful trigger 47 

Compare (C, CR) 15 

Compare halfword (CH) 19 

Compare logic 16 

Compare logical (CL, CLR) 17 

Condition code 

general 8 

setting, general 9 

setting for load -- type and algebraic add-sub inst 14 

156 1/66 

Diagnose 43 

Divide {D, DR) 29 

Divide, introduction 30 

decoding for multiple selection 33 

divisor/dividend normalizing 32 

divisor multiples, origin 32, 33 

first and second termination cycles 32 
multiple selection table 31 

non-rester division 31 

quotient prediction table 31 

restore division 31 

zero dividend 32 

2-bit divide example 32 

E unit 9 

Errors (see interrupts) 

Exclusive OR (X, XR) 22 

Execute, EX 

detail figure reference 47 

general 45 

Execute sequence trigger 47 

Fixed point divide interrupt 11 

Fixed point overflow interrupt 11 

Fixed point overflow on algebraic add-subtract instructions 14 

Halfword expansion 17 

Halt 1/0 (HIO) 41 

IE unit on branch instructions 45 

Insert storage key (ISK) 42 

Instruction format 8 

Invalid fetch address interrupt 9 

Invalid store address interrupt 11 

I to E transfer 9 

Interrupts 

fixed point divide 11 

fixed point overflow 11 

invalid fetch address 9 

invalid store address 9 
SAP fetch 11 

SAP store 11 

I unit on branch instructions 45 

Load (L, LR) 12 

Load address (IA) 13 
Load and test (LTR) 12 

Load complement (LCR) 13 
Load halfword (LH) 18 

Load multiple (LM) 38 

Load multiple (LM), E unit 40 

Load multiple (LM), IE unit 39 
Load positive (LPR) 12 

Load PW (LPW) 34 

Load negative (LNR) 12 

Logical shift left double _(SLDL) 23 

Logical shift left single (SLL} 23 
Logical shift right double (SRDL) 23 

Logical shift right single (SRL) 23 



Major control flow, branch instructions 46 

MODA R trigger 11 

Multiply (M, MR) 26 

Multiply, introduction 26 

iteration count 29 
multiple generation 27 

multiple selection 28, 29 

negative operands · 28, 29 

zero operands 29 

16X multiple 28 

Multiply halfword (MH) 26 

No operation 4S 

Numbers, range 7 

Operand delivery 9 

Operands 

general 7 

numeric 7 

OPF trigger, on branch 47 

OR (0, OR) 21 

Overflow, condition code setting for algebraic 

add-subtract instructions 14 

Overflow, general 7 

Overflow, interrupts 11 

Put-away, general 9 

SAP fetch interrupt 11 

SAP store interrupt 11 

Select A/B 47 

Set program mask (SPM) 3S 

Set storage key (SSK) 41 

Sequencers, branch 4S 

Set GSR, on branch 47 

Set ICR HO, on branch 47 

Set ICR LO, on branch 47 

Shift instructions, circuit description 23 

first cycle shift 24 
general 23, 24 

put-aways 2S, 26 

shift iterations 2S 

Shift counter decrementing, example 2S 

Shift left double (SIDA) 23 

Shift left single (SI.A) 23 

Shift right double (SRDA) 22 

Shift right single (SRA) 22 

Start I/O (SIO) 40 

Store (ST) 17 
Store halfword (STH) 20 

Store multiple (STM) 3S 

Store multiple (STM), E unit 37 

Store multiple (STM), IE unit 36 

Subtract (S, SR) 14 

Subtract halfword (SH) 19 

Subtract logical (SL, SLR) 1S 

Test I/O (TIO) 40 
Test channel (TCH) 41 

Tests complete trigger 47 

FLOATING POINT 

Add, introduction S4 

Addressing 49 

Add - subtract true/complement addition 64 

Compare 6S 

Compare, introduction S4 

Compare, true/complement addition 67 

Condition codes S2 

Condition code setting S3 

Data formats S 1 

Divide 68 

Divide, introduction S6 

DL4 cycle 69 

Double word format in FLP register S 1 

Double word format in main storage Sl 

D2 cycle 69 

D3 cycle 69 

ELC cycle 64, 67, 71, 72, 74, 77 
Exponent overflow 6S 

Exponent underflow 6S 

First floating-point cycle 63, 66, 68, 71, 72, 73, 7S, 77 
First term cycle 70 
Floating-point arithmetic codes SS 

Floating-point divide, program interrupt S2 

Floating-point exponent values S3 

Floating-point instructions S2 

Halve 71 

Halve, introduction S6 
Hexadecimal addition-subtraction and 

multiplication-division charts SO 

Initial operand location 62, 6S, 68, 71, 72, 73, 74, 77 

Instruction formats 49 

Instruction sequencing 62, 66, 68, 71, 72, 73, 74, 77 

Introduction, floating-point 49 

Iteration preparation cycle 69, 7S 

Iteration cycle 70, 76 

Load 72 

Load, introduction S6 

Load type instructions 72 

Load type instructions, introduction S6 

Multiply 74 

Multiply, introduction S7 

Normalization S 1 

Norm cycle 68, 7S 

Numbering systems 49 

PA cycle 64, 67, 71, 76 

Preshift and preshift-add cycle 63, 66 

Program interrupts S2 

Protection program interrupt S2 

Index 1/66 1S7 



Quotient transfer/complement cycle 70 

Sign handling 65 

Significance program interrupt 52 

Single word format in FLP register 51 

Single word format in main storage 51 

Specification program interrupt 52 
Store cycle 77 

Store, introduction 58 

Store 77 

Subtract 61 

Subtract, introduction 54 

Test cycle 71 

Theory of operation 59 

Zero result cycle 70 

VARIABLE F1ELD LENGTH (VFL) 

Add decimal (AP) 96 

set-up sequence 96 

prefetch sequence 107 

iteration sequence 101 

store-fetch sequence 111 

change sign, store-fetch sequence 111 

start recomplement pass, store-fetch sequence 113 

Adder, decimal 82 

TC+ 6 gate 84 

right side parity adjust 84 

left side input 84 

AND (NI) instruction 143 

AND-OR-exclusive OR mask (AOE) 85 

AND, OR, exclusive OR, iteration sequence 102, 143 

Address put-away 90 

Buffer, digit (DB) 85 

Bus, multiplier 86 

Byte gate, left (LBG) 82 

Byte gate, right (RBG) 82 

Change sign, add or subtract store fetch 111 

Compare, decimal (CP) 96 
set-up sequence 96 

prefetch sequence 107 

iteration sequence 101 

store-fetch sequence 113 

Compare logical (CU) instruction 144 

Compare logical (CLC), iteration sequence 105 
Concepts of VFL 78 

Condition code 141 

Control 90 

Control, execution and 86 

Control triggers 90 

functions, decimal divide 118 

functions, decimal multiply 132 

Control, VFL overlap 92 

Convert to binary (CVB) instruction 152 

Convert to decimal (CVD) instruction 147 

Counter, digit (DC) 85 

Counter function, decimal divide 117 

Counter functions, decimal multiply 131 

Counters, Y and Z 86, 90 

158 1 /66 

Data format 79 

Data flow 82 

Decimal adder 82 

TC+ 6 gate 84 

right side parity adjust 84 

left side input 84 

Decimal instructions, set-up sequence 96 

Decimal multiply (MP) 130 

set-up sequence 134 

iteration sequence 138 
store-fetch sequence 142 

unit functions 131 

control triggers, functions of 132 

counters, functions of 131 

registers, functions of 131 

Digit buff er (DB) 85 

Digit counter (DC) 85 

Digit gate, right 82 

Direct control instructions 155 

Direct data register 86 

Division, decimal, method of 115 

non-restoring 116 

restoring 116 

Divide, decimal (DP), execution 123 

set-up sequence 123 

iteration sequence 127 

store-fetch sequence 128 

storage addressing 129 

unit functions 116 

control triggers, functions of 118 

counters, functions of 117 

registers, functions of 116 

Edit and edit and mark (ED), (EDMK) 81 

set-up sequence 98 

prefetch sequence 110 

iteration sequence 105 

store-fetch sequence 115 

End sequence trigger 91 

ER and SC as word counters 93 

Exclusive OR, OR, AND, iteration sequence 102, 143 

Exclusive OR (XI) instruction 143 

Execution and control, VFL 86 

Execution, decimal divide 123 

Execution, VFL 88 

Fetch request triggers, store and 90 

Fixed sequence VFL instructions 78, 82, 142 

Gate, TC+ 6 (see decimal adder) 

High order digit (HOD) 84 

Insert character (IC) instruction 142 

Instruction format 78 

Instruction execution 96 

Instructions 

AND {NI) 143 

compare logical {CU) 144 

convert to vinary (CVB) 152 

convert to decimal (CVD) 147 

exclusive OR (XI) 143 

insert character (IC) 142 



move (MVI) 145 

OR (01) 143 

read direct (ROD) 150 

set system mask (SSM) 145 

store character (STC) 143 

test and set (TS) 147 

test under mask (TM) 146 

write direct (WRO) 155 

Instructions, SS 78, 81 

Instructions, VFL 82 

Instructions, VFL fixed sequence 

Interrupts, CVB 150 

Interrupts 90 

invalid address 90 

data interrupt 90 

specification interrupt 90 
decimal overflow 90 

decimal divide check 90 

Interrupts, VFL set-up sequence 

Introduction, VFL 78 

Iteration sequence 88 

78, 82, 142 

100 

Iteration sequence -- decimal instructions 100 

add-subtract 101 

compare (CP) 101 

divide (DP) 127 

move with offset (MVO) 102 

multiply (MP) 138 

pack (PK) 102 

unpack (UNPK) 102 

zero and add (ZAP) 

Iteration sequence -- VFL logical instructions 102 

AND, OR, exclusive OR, (NC), (OC), (XC) 102 
compare logical (CLC) 105 

edit and edit and mark (ED), (EDMK) 105 
move (MVC) 105 

move numeric (MVN) 105 

move zone (MVZ) 105 

Left byte gate (I.BG) 82 

Low order digit (LOO) 84, 89, 105 

Mask, AND-OR-exclusive OR (AOE) 85 

Method of multiplication, decimal 130 
Move (MVC) 81 

set-up sequence 98 

prefetch sequence 110 

iteration sequence 105 

store-fetch sequence 114 

Move (MVI) instruction 145 

Move numeric (MVN) 81 

set-up sequence 98 

prefetch sequence 110 

iteration sequence 105 

store-fetch sequence 114 

Move with offset (MVO) 81 

set-up sequence 96 

prefetch sequence 107 

iteration sequence 102 

store-fetch sequence 114 

Move zone (MVZ) 81 

set-up sequence 98 

prefetch sequence 110 

iteration sequence 

store-fetch sequence 
105 

114 

Multiplier bus 86 

Multiply, decimal (MP), method of 130 

set-up sequence 134 

iteration sequence 138 

store-fetch sequence 142 

unit functions 131 

control triggers, functions of 132 

counters, functions of 131 

registers, functions of 131 

Non-restoring, decimal divide 

Operation, theory of, VFL 96 

OR (OI) instruction 143 

OR, exclusive OR,. and AND 

set-up sequence 98 

prefetch sequence 96 

iteration sequence 

store-fetch sequence 

Overlap control 92 

Overlap, 0-7 93 

Overlap, 8-15 93 

Pack (PK) 81 

102 

114 

set-up sequence 110 

prefetch sequence 107 

iteration sequence 102 

store-fetch sequence 114 

116 

81 

Parity adjust, right side (see decimal adder) 

Prefetch sequence 89, 107 

interaction with store-fetch 108 

decimal instructions 108 

overlapping fields, decimal instructions 108 

logical instructions 110 

Pointers, S and T 85 

Read Direct (ROD) instruction 155 

Recomplement pass, start, add or subtract store-fetch 113 

Register, direct data 86 

Register functions 

decimal divide 116 

decimal multiply 131 

Restoring division, decimal 

Right byte gate (RBG) 82 

Right digit gate 82 

S and T pointers 85 

116 

SC, used as word counters, ER and, VFL 93 

Set system mask (SSM) instruction 145 

Set-up sequence, VFL 88 

decimal instructions 96 

decimal divide (DP} 123 

decimal multiply (MP) 134 

logical instructions 98 

logical translate and translate and test 100 

SS instructions 78, 81 

Storage addressing 7 8 

Storage addressing, decimal divide 129 

Store and fetch request triggers, VFL 90 

Store character (STC) instruction 143 

Store-fetch and VFL sequence triggers 90 
Store-fetch sequence 89 

add or subtract (AP), (SP) 111 

compare (CP) 113 

divide (DP) 128 

Index 1/66 159 



:move with offset (MVO) 114 
multiply (MP) 142 
pack (PK) 114 
unpack (UNPK) 114 

VFL decimal 110 
VFL logical 114 
zero and add (ZAP) 113 

Subtract, decimal (SP) 96 
set-up sequence 96 

prefetch sequence 107 
iteration sequence 100 
store-fetch sequence 111 
change sign, store-fetch sequence 111 

start recomplement pass, store-fetch sequence 113 

Test and set (TS) instruction 147 
Test under mask (TM) instruction 146 
Theory of operation, VFL 96 -

Translate or translate and test (TR), (TRT) 

set-up sequence 100 
prefetch sequence 110 

iteration sequence 106 
store-fetch sequence 115 

Transmit mode 105 
Trigger, 0-7 overlap 93 

160 1/66 

81 

Trigger, 8-15 overlap 93 
Trigger, end sequence 91 
Triggers, T1-T8, VFL control 90 
Trigger function, control, decimal divide 118 
Triggers, VFl store and fetch request 90 

Unpack (UNPK) 81 
set-up sequence 96 
prefetch sequence 107 
iteration sequence 
store-fetch sequence 

Unpacked format 79 

102 
114 

Word counters, ER and SC used as, VFL 93 
Write direct (WRD) instruction 155 

Y-Z counters 96, 90, 117 

Zero and add (ZAP} 
iteration sequence 
store-fetch sequence 

Zero detect 

VFL 91 
RBG 91 
result 91 

102 

113 



I 
1111 
ZI -· .JI 
Cl I 
zl 
o• 
.JI 
<I 
~: u 

t 
I 
I 
I 
I 
I 
I 
! 

f'OLD 

FROM 

COMMENT SHEET 

2075 PROCESSING UNIT-VOLUME 3 

THEORY OF OPERATION 

FIELD ENGINEERING MANUAL OF INSTRUCTION FORM 2.2.3-2.874-1 

NAME ------------------------- OFFICE/DEPT N0 0 -------

CITY/STATE ----------------------DATE ____________ _ 

To make this manual more useful to you, we want your comments: what 
additional information should be included in the manual; what description 

or figure could be clarified; what subject requires more explanation; what 

presentation is particularly helpful to you; and so forth. 

How do you rate this manual: Excellent ___ Good ___ Fair_ Poor __ 

Suggestion from IBM Employees giving specific solutions intended for award 

considerations should be submitted through the IBM Suggestion Plan. 

NO POSTAGE NECESSARY IF MAILED IN U.S.A. 

FOLD ON TWO LINES, STAPLE, AND MAIL 

f'OLD 



STAPLE STAPLE 

'OLD FOLD 

-- - - -- -- - ---- - --------------.---------------

)LO 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A, 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 

P.O. BOX 390 

POUGHKEEPSIE, N. Y. 12602 

ATTN: FE MANUALS, DEPARTMENT 895 

STAPL.E -- ---- --"-----·-. -·-------

FIRST CLASS 
PERMIT NO, 81 

POUGHKEEPSIE, N.Y, 

FOLD 

STAPLE 

i 
I 
I 

' I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
l 
I 
I 
I 
I 
I 
I 
I 
I 

Ill 
z 
.J 

0 z 
9 
( 

1-
:::i 
u 



FE Supplement System/Unit 

Re: Form No. 

This Supplement No. 

Date 

Previous Supplement Nos. 

This supplement revises and updates Volume ~e fi.el~ngineering Manual of 
Instruction on the IBM 2075 Processing Unit, '«W 2~4-1. This supplement 
incorporates the floating point changes releas"""'er Engineering change 705848E. 

Contents page , 

2075 

223-2874-1 

826-7035 

January 1968 

None 

Incorporate this supplement by replacing Titl~, ~e page, 
Illustrations page, pages 51 through 56, 59 t~ 6~72, 77, 
pages 68A and 72A. 

and 78, and adding 

Changes to text are indicated by a vertical bar to the 1~ii; of the affected material. 
Revised diagrams are identified by a bullet (•) to the left of the figure caption. (In 
addition, changes that are not readily apparent are indicated by a vertical bar to the 
left of the changed area. 

File this cover letter at the back of the publication. It will then serve as a record 
of the changes received and incorporated. 

International Business Machines Corp., Product Publications Dept., Neighborhood Road, Kingston, N.Y. 12401 

PRINTED IN U. S A 826-7035 (223-2874-1) Page 1 of 1 



- - - - - - CUT HERE - - - - -

223-2874-1 

Tirn~ 
© 

International Business Machines Corporation 
Field Engineering Division 
112 East Post Road, White Plains, N. Y. 10601 

I 
I 

- - _J 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	068A
	069
	070
	071
	072
	072A
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	replyA
	replyB
	u-01
	xBack

