2075 Processing Unit — Volume 2

Storage Bus Control
Instruction Preparation
FLT, Logout, MCW

Interrupts

Manual of Instruction

223-2873-1

Form 223-2873-1
FES S26-7034

PREFACE

This is one of six Field Engineering manuals for the
2075 Processing Unit. These six manuals contain
the unit theory of operation, reference diagrams to
be used when troubleshooting, and maintenance pro-
cedures.

A basic knowledge of the IBM System/360 as con-
tained in the IBM System/360 Principles of Opera-
tion, Form A22-6821 is considered a prerequisite
for studying the unit theory of operation. The theory
of operation is contained in a four volume manual
identified as a Field Engineering Manual of Instruc-
tion (FEMI). Volume 1 is a prerequisite for the
detailed information contained in volumes 2, 3, and
4, Volume 1 contains the introduction to the system
and the processing unit and a description of the
functional units (registers, adders, and decoders) of
the processing unit, Volumes 2 and 3 contain
detailed instruction analysis, and volume 4 contains
detailed information on special features and power
supplies and control.

The four volumes of theory of operation contain
many references to the diagrams packaged in the
associated Field Engineering Diagrams Manual
(FEDM). All diagrams in the FEDM are identified
by a four digit figure number and unless otherwise
specified, all four digit figure references in the

MAJOR REVISION (December 1965)

This edition, Form 223-2873-1, obsoletes Form 223-2873-0.
Principal change in this edition: Many figures have been
changed due to engineering changes affecting storage timing.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.

Address comments concerning the contents of this publication to:

FEMI indicate that the figure is contained in the
associated FEDM,
The complete titles and form numbers of the six
2075 Field Engineering Manuals are:
2075 Processing Unit--Volume 1, Comprehensive
Introduction, Functional Units, Field Engineer-
ing Manual of Instruction, Form 223-2872
2075 Processing Unit--Volume 2, Theory of
Operation: Storage Bus Control; Instruction
Preparation; FLT, Logout, MCW; Interrupts,
Field Engineering Manual of Instruction, Form
223-2873
2075 Processing Unit--Volume 3, Theory of
Operation: Fixed Point, I Execute, Branch,
Floating Point, Variable Field Length, Field
Engineering Manual of Instruction, Form
223-2874
2075 Processing Unit--Volume 4, Special Fea-
tures, Power Supply and Control, Appendix,
Field Engineering Manual of Instruction, Form
223-28175
2075 Processing Unit, Field Engineering Dia-
grams Manual, Form 223-2876
2075 Processing Unit, Field Engineering Main-
tenance Manual, Form 223-2880

1 IBM Systems Development Division, Product Publications, Dept. 520, CPO Box 120, Kingston, N.Y. 12401

© 1965 by International Business Machines Corporation

STORAGE BUS CONTROL
Introduction .

Storage Words and Storage Addresses
Storage Address Protection
Data Flow e e
Storage Selection and Control .
Critical Timing Loop.
CPU Fetch, the Basic Operation
CPU Fetch Error Detection
CPU Store Operation .
CPU Store Error Detection
Channel Bus Priority
Channel Fetch .
Channel Store
Return Address Circuits

Theory of Operation .

Address Bit Functions .
Address Switching .
CPU Fetch
Data Flow
Control
CPU Store
Data Flow
Control
Channel Fetch .
Ddta Flow
Control . . .
Channel Store
Data Flow
Control
Panel Key Fetch
Data Flow
Control
Address Compare . . .+ .+ .+ .« o« « . .
Special Operations .+ « « + « « + . .
SetKey « « .« o o . .
Insert Key « .« + . .
Diagnose . . .+ +« .+ + 4 ¢ .« . .
Testand Set + « + « « o « ..
Single Cycle
CPU Fetch e e e e e
CPU Store« .+ .« .
Error Handling . R
Parity Checks . . .
Program Checks

Cancel .
Communicate and CPU Storage Busy
Machine Checks , . . .
Address Parity Check

Store Data Parity Check

Return Synchronization Check .

INSTRUCTION PREPARATION.
Introduction .

Control and Functions of Tl and T2
Instruction Sequencing Controls .
Setting Operation Registers
T1 and T2 Cycle Automatic Functions
Start Execution Units
Keeping Track of Instruction Preparation and
Execution . . e .

Control of Instruction Fetches

50
50
51
57
58
62
62

63
64

Theory of Operation . . .
I Time for All Instructions
Instruction Sequencing Controls
T1 Cycle.
T2 Cycle.
Ito E Transfer .
Instruction Executions.
Instruction Fetching Controls
Physical Description of Data Flow .
A, B, and] Registers.
Checking. .
Gate Select Mechanism .
Addressing of Instructions
ICR Advancing .
Interrupts.
Instruction Fetching .
Instruction Fetching--Special Cases

FAULT LOCATION TESTING, LOGOUT, AND MAIN-

TENANCE CONTROL WORD
Introduction, FLT .
Test Tape Format .
FLT Sequence
Transmission Checks Durmg FLT
Manual Controls for FLT .
Indicators for FLT -
Introduction, Logout . . .
Introduction, Maintenance Control Word
MCW Control
Theory of Operation, FLT
Word Switch Matrix
Bit Switch Matrix .
Word Control Counter.
Bit Control Register
Test Register
Repeat Counter
Scan Clock .
Scan In
Advance
Compare . .
Theory of Operation, MCW .

INTERRUPTS

Introduction . .
Interrupt Classes
Interruptable Status
Interrupt Examples .
Interrupt Priorities. . ,
Interrupt Sequence Initiation
Interrupt Sequencing .
Modified Sequences
Special Conditions

Theory of Operation

CONTENTS

64
64
66
66
73
74
82

83

83

83

84
84
84
85
87
88
97

929
. 99
. 100
. 101
. 103
. 103
. 104
. 105
. 106
. 106
. 108
. 108
. 109
. 109
. 109
. 109
. 109
. 109
. 110
. 110
. 110
. 110

. 112
. 112
. 112
. 113
. 113
. 119
. 122
. 123
. 125
. 126
. 127

CPU SAP; Invalid Store Address, E Program, and

External .

I Program
Input/Output.
Timer Advance.
Recovery Only .
Machine Check.
IPL (Load PSW).

. 127
. 129
. 129
. 130
. 131
. 131°
. 132

Form 223-2873-1
FES S26-7034

LIST OF ILLUSTRATIONS

Figure

Title

STORAGE BUS CONTROL

1

W oo NGO U b WD

NN NN DNDDNNDN R e e e e e
00 NO Ul A WN PP OWOWWNO Uk WD = O

28A
29
30
31
32
33
34
35
36
37

System/360, Model 75
I Unit Fetch.

Storage Words
Model 75 Main Storage . . .
Two-Way Interleaving, Model H75 .

Four-Way Interleaving, Models I75 and J75.

Storage Address Protection .

SPF Protection Word . .
Overlapped Storage Cycles .
Maximum Selection Rate .
Machine Cycles for CPU Access .
CPU Storage Access Time

Parallel Cables and Parallel Log1c
Critical Timing Loop. . .

Data Flow, CPU Fetch

CPU Fetch Timing .

Data Flow, CPU Store

CPU Store Timing

BCU Handling of Channel Requests
Channel Bus Priority .

Channel Fetch Signal Exchange

Data Flow, Channel Fetch .

Data Flow, Channel Store

Return Address .

Return Address Register Gatmg
Address Span Versus Interleaving Mode
HSS Selection, Model H75 .

HSS Selection, Model 175 .
HSS Selection, Model IH75 . . .
HSS Selection, Model J75

SPF Storage Block Addressing, Model H75
SPF Storage Block Addressing, Models I75 and J75

Address Bit Switching .
Address Switching, Model H75
Address Switching, Models 175 and J75

Selection and Post-Selection Cycles: CPU Fetch .

Single-Cycle CPU Fetch.
Single-Cycle CPU Store

INSTRUCTION PREPARATION
Simultaneous Preparation and Execution Saves Time 53

38
39
40

41

42
43

1/68

Execution, Sequencers, and Machine Cycles
Simultaneous Instruction-Fetch, Preparation, and

Execution
Functional Sections of 2075.

Main Flow Paths Through I Unit
Variations in Preparation Cycling .

Page

W W o 0N N

10
13
13
13
17
17
17
18
18
19
20
20
23
24
25
26
27
28
31
31
31
31A

54
54
55
56

Figure

44
45

46
47
48
49
50
51
52
53
54
55
56

57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72

Title

Three Instruction Sequencing Control Signals .

Instruction Sequencing Control Signals Used Two

Ways . e e

Blockingof T1 . . . ,

Blocking of T2 . Coe .
Setting of Operation Reglsters e
Instruction Counter Fetch Controls.

I Time and E Time for an RX-FXP-Add (FullWord) g8

Blocking of T1 .

Instruction Word Formats., .
Blocking of T2. . . . o
RR Floating-Point Operand Gatmg
Operand Fetch Timing . .

’

Instructions Requiring Two Executlon Unlts

Instruction Sequencing for Start I/0 and Interrupt.

Instruction Sequencing for E Executions and

Branch , . . .

I Unit Store Requests . .
I Unit Store Requests--Single Cycle .
Grout Timing . . o .

.

Page

60
60
61
61
68

69
69
70
75
75
76
79

80
81
81
82

Parity Handling in the Incrementer and Gate Adder 86
Example of Normal Timing of IC Advances.
Example of I Unit Timing of an SS Instruction .
Example of Timing of Repeat Instruction

Example of Timing of an IC Fetch .
Example of Timing . . .

Example of IC Fetch--Single Cycle
Chart for IC Fetch Address Generation
Blocking of IC Fetching .

Chart for Program Store Compare .

Example of Timing for an IC Recovery .

FLT, LOGOUT, AND MCW

73 Test Tape Format . .
74 Logout Data Flow,
75 Diagnose Instruction .
INTERRUPTS
76 Fixed Storage Locations
77 Program Status Word .
78 External Interrupt
79 Program Interrupt
80 Machine Check Interrupt.
81 Supervisor Call Interrupt . Coe .
82 I/O Interrupt
83 IPL Interrupt
84 Interrupt Sequence Initiation
85 Basic Interrupt Sequence .

.

.

86
920
90
91
91
92
92
95
97
98

100
107
107

115
115
116 -
116
117
117
118
118
124
124

e DPrerequisite for study of this section is study of
the 2075 Processing Unit, Volume 1, Field
Engineering Manual of Instruction, Form
223-2872.

e This section covers operation of the basic storage
bus control -- one, two, or four 2365 Model 3
Processor Storage Units.

o Operation of the 2075 with the LCS is in the
""Features'' section.

The Model 75 storage bus control (bus control unit)
is the link between main storage and storage users.
Because the operation of the bus control unit (BCU)
is affected extensively by system optional features
such as large capacity storage (LCS) and shared
LCS. only the basic BCU is described in this section.
The basic BCU operates with a main storage of either
one. two. or four 2365 Model 3 Processor Storage
Units. These storage configurations are reflected in
the system model designations:
Model H75 - One 2365 Processor Storage Unit
Model 175 - Two 2365 Processor Storage Units
Model J75 - Four 2365 Processor Storage Units
Operation of the BCU with optional main storage
configurations is described in the 2075 Processing
Unit, Volume 4, Field Engineering Manual of In-
struction, Form 223-2875.

INTRODUCTION

e BCU handles all system storage requests.

e BCU accepts storage requests, then frees the
requester during the storage cycle.

e BCU returns fetched data to the proper register
or to the channel SBO.

o Each 2365 contains two independently operating
high-speed storages (HSS).

® A 2365 stores even addresses in one HSS, odd
addresses in the other HSS. This addressing
scheme is called interleaving.

Whenever the E unit, the I unit, any channel, or the
system control panel requires a storage reference
(a store or fetch to main storage) a storage request
is sent to the BCU. The BCU honors these requests
one at a time according to a fixed priority scheme.

Form 223-2873-1
FES S26-7034

STORAGE BUS CONTROL

For each request, BCU must start (select) the proper
storage unit, route the incoming storage address.
and route the data either to or from the selected stor-
age unit (Figure 1).

A storage request to the BCU is actually an order.
or command, to store or fetch a 72-bit word (64-
data bits plus eight-parity bits) from main storage.
As soon as the BCU begins to execute this order, the
requesting area is free to do other work. For ex-
ample, consider a fetch request from the I unit
(Figure 2), The BCU will attempt to honor this re-
quest every machine cycle. However, it may be
several cycles before the request is actually honored.
For example, all channels have a higher priority
than the I unit. If a channel is ready to start storage,
the I unit request is blocked. Also, storage may be
busy, forcing the I unit to wait.

When there are no conflicts, BCU will select the
storage requested by the I unit and inform the I unit
by sending an accept pulse. The accept signal tells
the I unit that its request is being serviced. The I
unit is now free to drop its signals to the BCU and
proceed with other work. When the storage unit de-
livers the 72-bit word from the requested address,
the BCU routes this word into the J register.

In handling storage requests, it is not necessary
for the BCU to consider the E unit and the I unit as
separate users. The I unit establishes priorities for
E and I so that only one request from the CPU (E and
I) is sent to the BCU at a time.

STORAGE WORDS AND STORAGE ADDRESSES
e Full storage address is 24 bits.

e Model 75 storage words contain eight bytes (double
word).

e Bytes changed on a store operation are controlled
by mark bits.

e Two-way address interleaving is employed
on Models H75 and IH75.

e Four-way address interleaving is employed on
Models I75 and J75.

All System/360 processors use a 24-bit address to
select a byte within main storage. The Model 75

main storage, however, reads out eight bytes on every
storage selection. On fetch operations, all eight bytes
are delivered to the storage bus out (SBO) latch

Storage Bus Control 1/68 5

Form 223-2873-1
FES S26-7034

register in the BCU and simultaneously written back
into the cores. The CPU (or the channel) picks the
proper bytes from among the eight bytes received

if something less than a double word is required. On
store operations, main storage again reads out eight
bytes of data. However, one or more bytes of new
data is substituted for the data read out before the
double word is written back into the cores.

The substitution of bytes on a store operation is
controlled by mark bits. There are eight mark bits,
one for each of the eight bytes in a storage word. A
mark 1 bit tells storage to replace the corresponding
byte with the same byte of the storage bus in (SBI)
latch register. A mark 0 bit tells storage to leave
the corresponding byte unchanged (regenerate). The
eight-byte storage words are on double word bound-
aries. The address of the first (lowest) byte has
three low-order zeros (Figure 3). Because the BCU
and storage handle only double words, the three low-
order address bits are not used by either the BCU or
storage.

| Main storage consists of one, two, three, or four
2365 Processor Storage Units (Figure 4). Each 2365
has two independently operating high-speed storages
(HSS). These HSS units are sometimes called M-4’s,
A system has from two to eight HSS, depending on
the model. The addressing scheme is such that one
HSS within a 2365 contains even addresses and the
other HSS contains odd addresses. Even and odd ad-
dresses are in relation to double word addresses
(Figure 3). A double word address is address bits
0-20. If bit 20 is a 0, the address is even; if bit 20
is a 1, the address is odd. The HSS have a two-
letter designation. The first letter gives the 2365
(A, B, C, or D); the second letter designates even
or odd addresses (E or O).

| In Models H75 and IH75. double word addresses
alternate between the two available HSS; this scheme
is known as two-way interleaving (Figure 5). In
Models I75 and J75, double word addresses progress
through a ring of four HSS; this scheme is known as
four-way interleaving (Figure 6). In Models 175 and
J75, double word addresses progress through a ring
of four HSS; this scheme is known as four-way in-
terleaving (Figure 6).

Storage Address Protection

e Each 2365 has one storage protection unit.

o Storage address protection prevents inadvertent
use of a storage location.

e Storage is protected in blocks of 256 storage
words (2048 bytes).

o The key from the PSW or from the channel must
match a prestored key in the SP unit.

Each of the 2365 processor storages contains a small
storage and logic unit for storage address protection.
This unit called the storage protection feature (SPF)
or SP unit, serves both even and odd HSS within the
2365. The purpose of storage address protection is
to prevent inadvertent use of a storage location.

For protection purposes, storage is divided into
256 storage word (2048 bytes) blocks. These blocks
are pointed to by address bits 12-0, In other words,
address bit 12 changes once for every 2048 consecu-
tive byte addresses. Each SPF unit has one address
location for each block of storage addresses within
the associated HSS (Figure 7). In Models 175 and J75,
two SPF units contain identical protection words be-
cause each storage block is spread among four HSS.

Each SPF address location contains five bits plus
a parity bit (Figure 8). Initially, a series of set key
instructions loads the five bits of each SPF word into
the SPF unit(s). This initial loading establishes a
protection pattern for each corresponding block of
storage addresses.

' Whenever a HSS is selected for a store or a fetch
operation, a protection key (four bits) either from the
PSW or from a channel is sent to the appropriate SP
unit. If the CPU made the storage request, the pro-
tection key comes from PSW bits 8-11; if a channel
made the request, the channel sends the protection
key. This channel protection key was previously sent
to the channel in a channel address word (CAW)
bits 0-3.

The selected SP reads out the address location
corresponding to the block of processor storage ad-
dresses thatincludes the address of this particular re-
quest. A comparison is made between the prestored
key and the key sent to the SPF on this operation if
either:

1. This is a store operation, or

2. This is a fetch operation and the read-protect
bit in the SPF location is a 1 bit.

The comparison is for a bit-by-bit match of the
two keys; also, the keys are considered to match if a
key of all 0s was sent to the SP for this operation. If
the keys match, the requested storage operation pro-
ceeds normally; a mismatch, however, prevents
changing storage on a store operation or inhibits data
delivery on a fetch operation. In case of key mis~
match, a storage address protect (SAP) error is

One to Seven
/O Channels

Main Storage

Chan [&—
Ch <
o (BCU
System
Chan fe— Control I - Unit E - Unit
Panel
CPU
FIGURE 1. SYSTEM/360, MODEL 75
@ | Fetch Request
', Storage Address
@ Unit BCU
@ Retum to J
Meaning of Signals:
@ Fetch the 72-bit word at address ond © place it
in the J register.
Select -
@ | @ Accept Req
Unit Bcu
Storage
Address |
(© | received your order and have started the storage unit that
you requested. You are free to drop your input lines.
Req
@ Storage cycle in progress. BCU Storage
BCU waits for data from storcge . Busy
@ BCU receives data and delivers it BCU { Data SReq
to the J register. s 1 forage
Data

FIGURE 2. T UNIT FETCH

lJRegI

Storage Bus Control

9/65

7

Form 223-2873-1
FES S26-7034

Decimal Address
[Low-Order Address Bits ‘—Doubleword Address (bits O through 20)
181 191 20| 21 | 22§ 23
1 0] 0 1 1 1 39 A
1 0] 0 1 1 0 38
1 0 0 1 0 1 37 Storage Word Address 32
Gl [x s o]+
T o T o T o 71 1 3 e 33|34 |35 |36]|37]|38]|39
1 [} 0 0 1 0 34 000 001 010 011 100 101 110 111
1 0 0 0 0 1 33
1l oflolololo |3 /
(ol vl vl v v 1]31 9
] 0 1 1 1 1.1 0] 30
(o] 1] 0 1 29 Storage Word Address 24
Lg - ?,' (,’ B3 & 25]26[27]23{29’30[3L|
0 1 1 0 1 0 26 000 001 010 011 100 101 110 111
0 1 1 [¢] 1] 1 25
0 1 1 [0 0 24 J
[0 1 0 1 1 1 23 A
(0 1 0 1 1 0 22
L 0 1) 1 0 1 21 Storage Word Address 16
Lo 1 0 1 0 0 20 |2
o T To o T e ~ . l7llBll9 20 21!22'23
0 1 0 0 1 0 18 000 001 010 O%1 100 101 110 111
0 1 0 0 0 1 17
0 1 0 0 0 0 16 J
I I O A B R
I I I L
1 0) 1 1 0 1 13 Storage Woid Address 8
%% g : (]) (‘) ? :f 1 - 9110 l 1M (1211314115
{0 0 1 0 1 0 10 000 001 010 OI1 100 101 110 111
T T R I I A)
o010][00 s J
[0 [0 T 117 3
Voo o110 s
o 0 0 1 0 1 5 Storage Woird Address 0
[0 o1 1o0l0][4,
S N N O s Vj2fs3f4fs]e]s
{0 0 0 0 1 0 2 000,001 010 011 100 101 110 111
JoO o0 [0 [0 [0 T —~—
o) 0 0 0) 0) Address Byte
Bits 21,22,23 Addresses
FIGURE 3, STORAGE WORDS
3
2365 Storage D
Even /-Odd Addresses
Addresses A‘HSS HSS‘k
(DE) (00)
2365 Storage C
Even —~| /—Odd Addresses
Addresses [psS HSS“
(CE) (€O)
MODEL
975 2365 Storage B
Even /Odd Addresses
I Mﬁ)|[7)§L Addresses T8 4SS Hss4
(BE) (80)
MODEL
173 * 2365 Storage A A
Even /Odd ddresses
MODEL Addresses b HSS Hss4¥]
H75 (AB) (AO) NOTE: "Even" and "Odd" refer to
doubleword addresses (address bits
y ‘ 0-20).

O®FIGURE 4. MODEL 75 MAIN STORAGE

8 1/68

Form 223-2873-1
FES S26-7034

N N -
Address Bits (Decm\ol Address Even HSS 2365 B* Odd HSS Even HSS 2365C Odd HSS
19120 |21 2223
1ol |23
1ol r|1]of22
tlolv|of 1|
1Jof1]o]of2 16
: g g : f) :3 256K+32 (DW32K+4) 256K+40 (DW32K +5) 512K +32 (DW64K+4) 512K +40 (DW64K+5)
lololol1h7 256K+ 16 (DW32K+2) 256K+ 24 (DW32K43) 512K+16 (DW64K12) 512K+24 (DW64K+3)
11 olol o]l olis 256K+0_(DW32K 10) 256K+8 (DW32K+1) 512K+0 (DW&4K+0) 512K+8 (DWé4K 1)
of T[T 1]
ol 11| 1] o0f14
of 1|11 of v{3
ol 1]11]10] 0}12 8 Doubleword 1
of 1{of 1} 1{n
ol 1f{o] 1] o]0
I Jolijolof1]o 2365A
ol 11010l 0} 8 Even HSS QOdd HSS
o]l o[1|17
ofof1]1]o]e
ol of1]o0]1]5
olo|1{o]lof 4 0
ofoflo|l1]1}3
oflof{9f1]o]2
B lofoloflo] | *Maodel 1H75 only
ofo{ojojo]o
Doubleword 0 —
Daubleword 2 32 (DW 4) 40 (DW 5)
15 (DW 2) 24 (DW 3)
0 (DW 0) 8 (DW 1)
FIGURE 5. TWO-WAY INTERLEAVING, MODEL H75 AND MODEL IH75
‘ 2365 C 2365 D
Even HSS Odd HSS Even HSS Odd HSS
512K+64 (DW64K+8) 512K+72 (DW64K+9) 512K +80 (DW44K+10) 512K+88 (DW4K+11)
512K+32 (DW64K+4) 512K+40 (DW64K+5) 512K+48 (DW64K+6) 512K+56 (DWAK+7)
MODEL L 512K+0__(DW64K+0) 512K+8_(DW64K+1) 512K+16 (DW64K+2) 512K+24 (DW64 K+3)
375
2365 A 2365 B
Even HSS Odd HSS Even HSS Odd HSS
MODEL
175
64 (DW _8) 72 (DW 9) 80_(DW_10) 88 (DW_11)
32 (DW_4) 40 (DW 5) 48 (DW 6) 56 (DW 7)
0_(DW 0) 8 (DW 1) 16 (DW 2) 24 (DW 3)

®

NOTE : DW = Doubleword

® FIGURE 6. FOUR-WAY INTERLEAVING, MODELS 175 AND J75

®

®

Storage Bus Control

Form 223-2873-1
FES S26-7034

Storage Protection, Model H75 and IH75
2365 A, BorC
SPF AE HSS AO_ HSS
510 51
508 509
_;] NAASAAA LA AAAANANAN Block
Protection Word 1 —— 258 259 !
256 257
254 255
252 1. ._253
0 A A AAASANANAAANAANN Block
0
Protection Word 0 ———d 2 3
0 (Note) 1
Storage Protection, Models 175 and J75 Note : Doubleword Addresses
2365 A 2365 B
SPF AE_HSS AO HSS SPF AE___HSS AO HSS
Protection Woid 1
(ldentical Woids)
508 509 510 511
504 505 Block - 506 507
1 T O e 2% 1 1 I~ ~A A~
260 261 262 263
56 57 58 259
52 53 54 255
48 49 50 251
Block
0 e T e 0 0 N~
4 5 6 7
0 (Note) 1 2 3
Protection Word O (ldentical Words)
@ FIGURE 7, STORAGE ADDRESS PROTECTION
SPF
Protection Words
Read-Protect Bit
Parity Bit
o123 |R}|P
;.._\,__J
Key
Chan
Chan Storage Protect
> E
CPU CPU Compare i
Storage Protect
Error
Key Key
PSW ——A——— — CAW
v lelefw]u] 7 Lol1]2]5] 3
FIGURE 8. SPF PROTECTION WORD

10 1/68

signaled. This error causes a program interrupt if
the storage request was from the CPU or a channel
interrupt if the request was from a channel.

The contents of any SP location can be set into a
general register by an insert key instruction.

DATA FLOW
e Storage address is set into SAR for CPU requests.

e Address bits needed to select a particular HSS
are duplicated in the duplicate SAR.

e CPU store data is set into K.

o SBI latch is set from K on CPU store operations;
SBI latch is set from channel SBI on channel store
operations.

e All channels use a common storage address bus
(channel SAB).

e Fetched data is temporarily stored in the SBO
latch.

e X and Y return address registers route fetched
data (and some error indications) to the proper
destination.

The job of the BCU is to:

1. Grant priority to one storage request at a
time.

2. Select the proper storage unit by examining
the address bhits.

3. Route address, protection key, store data,
and mark bits to the selected storage unit.

4. Route fetched data returning from storage to
the requester.

5. Handle error conditions detected by BCU,
storage, and SPF.

The data flow to accomplish these jobs is explained
in the following text. Refer to Figure 2005.

For CPU requests, the storage address is set into
the storage address register (SAR) from either the
incrementer or the addressing adder. The address
for any CPU request is always in the SAR when the
request is made or is being set into the SAR simul-
taneously with the request. This address remains in
the SAR until BCU honors the request. When BCU
honors a CPU request, SAR is gated through the ad-
dress ORto storage. Note that some bits of SAR are

duplicated in the duplicate (dup) SAR. These are bits
needed by BCU to select a particular storage unit
(HSS). The select bits are duplicated to make them
available to BCU controls as soon as possible.

For a CPU request, the protection key field of the
PSW is gated through the key gate and the key OR to
storage. On a set key instruction, five bits of general
register R1 are substituted for the PSW storage pro-
tection key field.

If the CPU requests a store operation, the data to
be stored is in the K register at the time of the re-
quest (or will be set into K one cycle following the
request), and will remain there until BCU honors the
request and sets the data into the storage bus in (SBI)
latch register. The SBI latch is fed directly to all
storage units. A store operation also requires eight
mark bits to be sent to storage along with the address
bits. For a CPU store operation, the mark register
has the proper mark bits at the time the request is
made. The BCU gates the mark register through the
mark OR to storage, then resets the mark register.

All channels and the system control panel use a
single set of lines to deliver store data to the SBI
latch register. This set of 64 lines (plus eight parity
lines) is the channel storage bus in (channel SBI). In
the same way, all channels and the system console
deliver addresses on one set of lines (CAB or channel
SAB), storage protection keys on the channel key bus,
and mark bits on the channel mark bus. When BCU
selects a storage for a channel, the CAB is gated
through the address OR to storage, and the channel
protection key is gated through the key OR to storage.
On channel store operations, the SBI latch is set from
the channel SBI and the channel mark bits are gated
through the mark OR to storage.

BCU temporarily stores all fetched data in a 64-bit
(plus eight-parity bit) register (the storage bus out
(SBO) latch register). This register has outputs to the
A, B, and J registers in the CPU and also feeds the
channel SBO. It is the job of the BCU to see that a
fetched storage word is delivered to the register
specified by the user when the request was made. The
BCU does this by sending an advance pulse to one of
the receiving areas. For example, if the data is
destined for the A register, BCU sends an advance
signal which gates the setting of the A register from
the SBO latch register. The proper advance pulse is
generated by the two return address registers, X and
Y. These registers are used alternately because of
overlapped storage operations.

Storage Bus Control 12-65 11

Form 223-2873-1
FES S26-7034

STORAGE SELECTION AND CONTROL

e The BCU maximum storage selection rate is one
selection every two machine cycles.

e Any two HSS cycles can be overlapped.
e BCU keeps track of busy HSS.

e Channel bus priority circuits grant priority to
one channel at a time,

e Channel requests have priority over CPU re-
quests.

e CPU has a three machine-cycle access time to
data in main storage.

e Maximum channel rate for main storage data is
about 1 microsecond per double word.

The BCU can select storage units (HSS) at the rate
of one selection every two machine cycles. This
means that any two storage units can be simultan-
eously busy (overlapped, Figure 9). BCU maintains
a busy trigger for each storage unit: two for Model
|H75, four for Model 175, six for Model IH75, and
eight for Model J75. By examining certain address
bits, the BCU determines which unit is being re-
quested; if the BCU is not busy and the requested
storage unit is not busy, the selection is made.
With each selection, the BCU is considered busy
for two machine cycles (Figure 10). Alternate selec-
tions can be made to one HSS without interference
from a busy trigger. Two consecutive requests for
the same HSS, however, require a delay of four ma-
chine cycles between the first and second selections.
Therefore, to achieve the maximum storage selection
rate of one selection every two machine cycles, con-
secutive requests must not be for the same HSS and the
BCU must always have a storage request waiting to
be serviced. Actual storage requests will not always
fulfill these requirements. However, interleaved
addressing means that more requests are for a non-
busy storage than would be the case if consecutive
addresses were in the same storage array: Instruc-
tions are generally fetched from sequential addresses;
a channel works into and out of sequential addresses;
and arithmetic operations often store or fetch into
sequential addresses.
Requests are honored according to a fixed priority

scheme. This scheme has two levels of priority. On
the first level, the channel bus priority circuits grant

12 1/68

priority to one channel (or the system control panel)
at a time. The channel bus priority circuits are nec-
essary to prevent interference on the channel buses
(CAB, channel SBI, and channel SBO). Because the
seven channels and the system control panel operate
independently of each other and of the CPU, any
number of these eight storage users may simultan-
eously request storage. When there are simultan-
eous requests, the BCU must allocate the use of the
channel buses to one user at a time. The BCU allo-
cates the use of the channel buses in a fixed priority
scheme; chanr&T0 has the highest priority, channel 1
next-fo-highest, and so forth. For example, channel
6 cannot access sforage if amy other channel is making
a request. The system control panel, or maintenance
channel, has the lowest priority and can access stor-
age only when nene-of the ch#nnels are making a re-
quest,))

Once a chanmél gains bus priority, it puts the stor-
age address on e channel SBI (CAB). The entire
process of recognizing a channel request, granting
priority to the reguesting channel, and receiving the
storage address oft CAB requires about 1 micro-
second. During this time, the BCU will honor CPU
requests even though channels have priority over the
CPU. A channel is not considered to have a valid re-
quest until its stérage address arrives in BCU and a
line, address valid,:is generated.

The second level of priorit§ is to grant any chan-
nel that has generated address valid (and is requesting
a nonbusy HSS) priority ever the CPU.

The CPU is said.to have a #hree-cycle access to
storage (Figure #1). Assuming no interference from
channels and a reguest for a a$nbusy HSS, a fetched
storage word wilk he set ififo A, B, or J three cycles
after the BCU recmgtfizes the gequest.

A channel access requirds g minimum of about
1-1/2 microseconds from the time that BCU recog-
nizes the request until the fetched word is in the chan-
nel registers., Most of this time is consumed in sig-
nal travel time to and from the channel. About 300

_ nanoseconds is required for a signal to travel to or

from a channel. Although a single channel fetch re-
quires about 1-1/2 microseconds, channels can access
storage at a 1-microsecond rate. This 1-microsecond
rate is possible because BCU overlaps the prepara-
tion for a new channel operation with the storage
cycle and data return of the previous channel opera-
tion. As soon as a HSS is selected for a channel, the
BCU tells the channel to remove its storage address
from the CAB, and (assuming another channel request
is pending) at the same time, tells the new channel

to put its storage address on the CAB.

Start End Start End Start

Cor Storage Unit 1 / Busy \/ Busy \/ Busy \

End Start End Start End Start

{ {
Core Storage Unit 2 v Busy v Busy \/

FIGURE 9. OVERLAPPED STORAGE CYCLES

‘”‘Mcchine Cycles ——$~

1 2 3 4 5 <] 7 8
BCU Cycles Sel Post-Sel Sel Post-Sel Sel Post~Sel Sel ToizSel

Maximum Selection
Rate. Consecutive

requests are for —_BCU Busy | —*
different HSS .

HSS one Busy m——gm————|———— _———-

HSS two Busy i = — —

Select may be for HSS one or
any other non-busy HSS

‘/— Machine Cycles K

1 2 3 4 5 6 7 8

Selection rate BCU Cycles Sel Post-Sel Sel Post-Sel
for consecutive

requests for the BCU Busy
same HSS
Selected HSS Busy

FIGURE 10. MAXIMUM SELECTION RATE

CPU Request

Spans "A" / | N

Clock :
NG ® ®
Select Post-Select
Cycle Cycle
BCU Recognizes Fetched Storage
CPU Fetch Word Set into
Request A, B, orJ

FIGURE 11. MACHINE CYCLES FOR CPU ACCESS

Storage Bus Control 9-65 13

CRITICAL TIMING LOOP

e CPU is sometimes forced to wait for data from
storage.

e Waiting periods are minimized by using buffer
registers: A, B, and J.

® CDPU access time consists of two parts: com-
munication time and storage time.

o A primary job of the BCU is to minimize com-
munication time.

In executing a program, the CPU is sometimes
forced to wait for data from storage before continu-
ing. In the Model 75, these periods of waiting are
minimized by using instruction buffer registers
(A-B), an operand buffer register (J), and by re-
questing storage fetches as soon as possible. There
are times, however, when the CPU must await the
return of data from storage. For example, a success-
ful branch instruction cannot be terminated until a
new instruction double word is in A or B. Also, on
many sequences of instructions such as two consecu-
tive E cycle RX instructions, the CPU must wait for
operand deliveries from storage. Because of these
times when the CPU is forced to wait for fetched
data, the performance of the CPU depends to a large
extent on the CPU storage access time.

Two time elements make up the CPU storage ac-
cess time (Figure 12): access time of the storage
unit and speed of CPU communication with the unit.

Fetched data is available at the storage frame
about 450 nanoseconds after the start of the storage
cycle. The time required to get a storage unit started
and the time required to move fetched data from a
storage into a CPU register is the communication or
BCU time, Stringent time requirements are imposed
on the BCU to minimize this communication time
enough to achieve the three machine-cycle CPU access
time (Figure 11). The storage selection circuits, for
example, are designed for maximum speed rather
than for the minimum number of modules required to
accomplish the logical objectives. Where minimum
delay is essential, the BCU uses parallel cabling and
parallel logic (Figure 13).

The philosophy used to achieve minimum CPU
storage access time is to consider that a CPU-
storage-CPU loop exists, starting from A-B and
ending at A-B (Figure 14). This critical timing loop
is used on branches. The timings throughout this
loop are tuned for maximum speed. The release of
SAR, for example, is adjusted to coincide (approxi-
mately) with the time when the output of the AA begins
to rise. Therefore, as the AA output rises, itpasses

14 12-65

through a released SAR and is on its way to storage
long before SAR is locked. This philosophy in timing
the release of SAR is used throughout the loop to
allow the address to flow to storage and the data to
flow from storage without being blocked by a locked
register. All CPU operations do not use all of this
critical timing loop. By using this path as a criterion,
or ''worst case,' however, the timing of other storage
paths is noncritical.

CPU FETCH, THE BASIC OPERATION
e CPU fetch is initiated by the I or E unit.

e BCU delivers fetched storage word to the A, B, or
J register.

e BCU sends 14 address bits from SAR to a HSS.

e BCU sends accept to the CPU when select is sent
to HSS.

o Selected HSS sends advance to BCU just prior to
data delivery.

The basic BCU operation is a CPU fetch. All other
operations performed by the BCU are variations of
the CPU fetch operation. A CPU fetch is a storage
fetch requested by either the I or the E unit. The BCU
starts storage to get the 64-bit plus eight-parity bit
word requested, then delivers this to the A, B, or J
register.

The CPU requests a fetch operation by sending I
fetch request or E fetch request to the BCU (Figure
15). Along with the request, the CPU sets the de-
sired address into the SAR and the duplicate SAR, and
specifies that the data be returned to the A, B, or J
register.

The BCU examines duplicate SAR bits to determine
which HSS is being requested. If the requested HSS
is not busy, the BCU generates a select pulse for this
HSS. If the CPU specifies that the data is to be re-
turned to A-B, the BCU uses duplicate SAR bit 20 to
choose the proper register. Bit 20, when on, means
that an odd address is being requested, and the
fetched data is to be returned to the B register. When
off, bit 20 means an even address; even instruction
words go to the A register.

On CPU fetch operations, BCU gates the SAR
through the address OR to all storages. Each 2365
has two memory address registers (MAR): one for
the even HSS and one for the odd HSS. The 14-bit
plus two-parity bit address gatedfrom the address OR
is set into the MAR of the HSS that receives the
select pulse.

Part of the 14-bit storage address is sent to the
storage protect (SP) unit associated with the selected
HSS to address the SP location that corresponds to
the requested HSS address. The protection key from
the PSW is routed to the selected SP unit.

When the select is sent to storage, the BCU sends
accept back to the CPU. This signal tells the CPU
that its request has been honored and it can now drop
its request and change SAR. It can make a new re-
quest if one is pending.

About two cycles after select, the selected HSS
sends an advance signal to the BCU (Figure 16). Half
a cycle after advance, the selected HSS has the
fetched 72-bit word gated from its memory data
register (MDR) to the SBO latch register. Shortly
thereafter, BCU releases the SBO latch. After re-
leasing the SBO latch, BCU sends an A, B, or J
advance signal to the CPU. The CPU uses the advance
signal as a gate to set the receiving register with the
next A clock. (A and B are actually released with a
late B running (LBR) clock of the previous cycle.)

CPU Fetch Error Detection

e Storage address parity is checked by BCU and
by storage.

e If BCU detects an error, BCU cancels the selected
HSS.

e When a HSS is cancelled, the selected address is
regenerated and BCU does a panel key fetch.

e BCU checks for an invalid storage address.

e Storage checks the parity of the fetched word;
however, BCU ignores a data check from storage
on CPU fetches.

o The SP unit checks for a storage address protec-
tion violation.

On every storage operation, the BCU checks the
storage address for good parity. The check is made
off the address OR and is on the full 24-bit address.
If the address has bad parity, a cancel signal is sent
to storage. The cancel condition causes storage to
regenerate the selected address without delivering
the data brought out. Storage suppresses any errors
that it detects if cancel is on.

The cancel condition causes BCU to do a panel key
fetch operation. This operation consists of setting
the system control panel data keys into the SBO latch
register so that the receiving register gets a good
parity word. The receiving register gets meaningless
data but an erroneous data parity check is prevented.

If the receiving register were not set(left all zeros
including parities), the CPU would generate a parity
error when it checks the parity of the data it receives.
Any address parity error detected on a CPU initiated
storage cycle is a machine check, and it initiates a
CPU logout followed by a machine check interrupt.

The BCU also checks for an invalid storage ad-
dress on every storage access. An invalid address
is an address outside (higher than) the available stor-
age locations on a particular system. If an invalid
address is detected, the BCU again cancels storage
and does a panel key fetch operation. An invalid ad-
dress error detected on a CPU initiated storage
cycle is a program error and it causes a program
interrupt.

On fetch operations, the selected storage checks
the parity of the 14-bit address that it receives and
checks the parity of the 64-data bits read out of the
addressed location. If an address error is detected,
the fetched word is not delivered: storage delivers a
data word of all 0s with good parity (all parity bits
are ls). Storage also sends a storage address error
line to the BCU. For a CPU initiated operation, the
storage address error line brings up the machine
check condition (logout followed by a machine check
interrupt).

If storage detects a parity error on the fetched
data word, a storage data error line is sent to the
BCU. TFor CPU fetch operations, however, the data
error line from storage is ignored; the CPU some-
times fetches data that will not be used. Anyfetched
data actually used by the CPU is parity-checked prior
to use.

A storage address protect (SAP) error is another
programming error that can be generated on a CPU
fetch operation. This error is generated by the
selected SP unit only if the read-protect bit in the
addressed SP location is a 1 and there is a mismatch
between the SP key (match bits) and the key bits from
the PSW.

The SP unit parity-checks the address bits that it
receives and parity-checks any protection key data
that it uses. If the SP unit finds a parity error, it
generates a storage address error which is handled
exactly the same as an address error detected by the
selected HSS.

CPU STORE OPERATION

e BCU routes SAR, mark register, and PSW key to
storage.

e BCU sends select and store to storage.
e BCU sets K into SBI latch register and sends SBI

latch register to storage.

Storage Bus Control 12-65 15

The CPU requests a store operation by sending I
store request or E store request to the BCU (Figure
17)., Along with the request, CPU sets the desired
address into SAR and duplicate SAR just as on a CPU
fetch operation. On a store operation, however, the
CPU must set the mark register along with the re-
quest or sometime prior to the request. The mark
register is used only on CPU storage operations and
is reset by the BCU after its contents have been sent
to the selected storage. The CPU, therefore, is free
to load the mark register anytime prior to a store
operation.

The BCU generates a select to the requested HSS
exactly as on a CPU fetch operation. The select is
generated when neither the BCU nor the requested
HSS is busy. The address (14 bits plus two parity bits)
is gated from SAR through the address OR to storage
and the CPU storage protect key (PSW 8-11) is gated
through the key OR just as on a CPU fetch operation.
The eight-mark bits (plus a parity bit) are gated
from the mark register through the mark OR to the
" storage. Along with select, the BCU sends store to
the selected 2365.

Just as on a CPU fetch operation, BCU sends
accept back to the CPU to tell the CPU that its re-
quest has been honored and that it can now drop its
request and change SAR. It can make a new request
if one is pending.

When CPU initiates a store request, the data to
be stored are either in the K register or will be set
into K on the next cycle. On the post-selection cycle,
the BCU sets the SBI latch register from K (Figure
18). All 72 bits are set into the SBI latch and sent
to storage regardless of the number of bytes to be
stored. The selected storage unit uses the mark bits
to gate the corresponding bytes into its MDR. Those
bytes of the MDR not set from the SBI are set by
sense amplifiers at the end of the read portion of the
storage read/write cycle. Then, the modified 72-bit
word in the MDR is written back into the selected
address on the write cycle.

CPU Store Error Detection

e The BCU makes the same checks as on a CPU
fetch: address parity and invalid address.

o Storage checks address parity and data parity.

o The SP unit checks for mismatch of protection
keys.

Just as on a CPU fetch operation, the BCU checks

the parity of the storage address and checks for an
invalid address. If either of these conditions are

16 12-65

found, a cancel signal is sent to the selected HSS to
cause the selected address to be regenerated without
change. A bad parity address causes a machine
check interrupt; an invalid address causes a program
interrupt.

The selected storage checks the parity of the 14-
bit address that it receives and checks the parity of
the mark bits. If an error is found, storage regener-
ates the selected address and signals an address
error to the BCU. Just as on a CPU fetch operation,
a storage address error causes a machine check
interrupt.

Storage also checks the parity ‘of the data in the
MDR at the time when the MDR contains the new 72-
bit word to be written back into the array. Bad parity
does not alter the store operation, but a storage data
error line is sent to the BCU where a machine check
condition is generated. A machine check occurs if
any of the eight bytes have bad parity. The bad parity
byte may have come from K or it may have been
read out of the selected double word location in the
array.

The SP unit checks for a match of the protection
keys on all store operations. If there is a mismatch,
a SAP error is signaled to cause a program interrupt.

Just as on a CPU fetch operation, the SP unit
checks the parity of the address bits that it receives
and the parity of the protection key information that it
uses. If bad parity is found, the storage address
check line is raised; action taken for an SP parity
error is identical to the action taken for a HSS address
error.

CHANNEL BUS PRIORITY

e Channel storage requests occur at random; two or
more requests may occur simultaneously.

e Channel operations are done in two steps: priority
and storage selection.

e DPriority circuits operate independently of storage
selection circuits.

e BCU grants priority to a channel by sending BCU
response to the priority channel.

e When granted priority, a channel puts the storage
address on the CAB.

Channel operations consist of two parts: channel bus
priority and channel storage selection.

The BCU handles these two parts of channel oper-
ations independent of each other (Figure 19). The
channel bus priority circuits examine channel requests,

HSS cycle

Total CPU Storage Access Time

g .

0

Communication Time

CPU knows that storage fetch

is required.

Generate address and storage o

select pulse. Deliver to storage.

Select arrives at storage. Storage cycle _ _ |

starts .

Storage access time at storage unit (approx 450 ns)— — — — —J

Storage has fetched data at storage unit

FIGURE 12,

|
—

CPU STORAGE ACCESS TIME

—

I—
I

Y

Lo

FIGURE 13.

PARALLEL CABLES AND PARALLEL LOGIC

Parallel Cables to Storage Frames 2365 A
Frame 06
2365 B
Address OR, mark OR, Cf:ble / Frame 07
key OR, SBI latch, Drivers
SBO latch and BCU- and
storage control lines Receivers \] 2365 C
Frame 08
NOTE: J75 Configuration
2365 D
Frame 09
Sequential Logic X
Y
A
A A z
B D
One block Two blocks Three blocks
of delay of delay of delay
Parallel Logic
A
X
A
B
One block of delay
A Y
C
A A
D

o

[
|
I
|
|
L

N

°

—_

|
|
L _ ___ Storage cycle

times-out .

__ __Fetched data available
in CPU register.

__Fetched data transferred from
storage unit to CPU register.

Storage

l SBO Latch

FIGURE 14.

General Regs

NS

SAR

Storage Bus Control

CRITICAL TIMING LOOP

9-65

17

Incrementer 0-23 + 3P

(%)

P
Addr Adder 8-31 | + 3P Uﬂ;"\
3 3P *
DUP SAR MB SAR MB
0-6,19,20 0 (+3P) 23
PSW 8-11 Add OR MB Address OR Bits 6~19
PSW 8-1, ress (H75) or 5-18 (175,175)
Storage SAB's (1-14+PA,PB) /14 0 (+3P) 23 / ’
o { s W =T
Key OR Storage A SBO
M Storage B SBO
0 4+P) 4 Storage C SBO 6.,‘,1
0 3 " 8P
B 6
e]] 3 !
64
64 8P ‘
2365 - 2365 - 2365 FJ 2365 8+P
Storage A Storage B Storage C Storage D
A A A A A I W SBO Latch RA
0 (+ 8P) 63
< 9 I&' 2 &l al & g V| L 8 g o 8
A Reg
R T D R I I Y R A I =y
8| 5| § & 8| 8| g ¢ 8| 8| §l 8 88| 88 BReg
3l 3|} 3 3|]2 3l &) Y= A3] =R e
YY Yy Y Y o,
| Fetch Req L1 | A Advance -
—Tefch 7eq ~ -
| Fetch Regq L2. BCU C | B Advance -
E Fetch Re ontrols J Advance -~
-
Return A -B Accept -
>
Return J >l

FIGURE 15.

DATA FLOW, CPU FETCH

Machine Cycles

Selection Cycle

Post-Selection Cycle

®

Accept to CPU

-

BCU sees
CPU Request
|

[
|
|
|
|
(]
.
|
I

FIGURE 16. CPU FETCH TIMING

18 9-65

Advance from M4

3 Cycle Access

Data_from ‘M4

!

|
|
Set SBO latch |
|
i

1

Set A,B, or J
from SBO latch

[—

>
!
AB, or J Advance

Toajuo) sng 98eI03lg

69-6

61

Key Bus B (1-4 +P)

o

Storage B SAB (1-14+PA, PB) > SP Addr @ bits +P) J>
Storage B Mark Bus (00-07 through 56-63 +P) B Store !
@ 6 1'> Select B Odd N\ SPF B
Storage B Store ’A Storage B Select B Even SAP Check B
. Select B Odd N Advance B Odd
\ Key OR +p Select B Even ’\ Advance B Even
4
PSW (8-11) m Key Bus A (1 -4+P)
Storage A SAB
(1-14 + PA, PB) SP Addr (8 bits + P) N
‘ l Storage A Mark Bus v
- -63+P
8P (00-07 through 56 ')\ A Store
+ -
Select A Odd SPF A
Mark OR
: - - e Storage A Store Storage A celect A Even SAP Check A
Clo(= (INMN|wiA~IMIWL
o Address OR 23| IR IEIRIRIEIS Select A Odd Advance A Odd
Nje e [mjeNjof« Select A Even Advance A Even
NOTE: Model 175 N
fs‘; SBI (0-63 +8P)
Mark Register
Qo= INIwiIs|I~|O
SRRERIZIES
QIG|S 28RS
VFL Mark 00-07 through 56-63 °
Set Mark 00-15 through 48-63 @
MB|
M_B |07 SBI Latch 63|
0 SAR 23
K Reg (0- 63 +8P)
24 24 —
+3P +3P Dup SAR MB
0-6,19,20
Incr (0-23 + 3P)
Addr Adder (8-31 + 3P)
K Reg b4
+8P

1 Store Request

Y

LI

E Store Request

FIGURE 17, DATA FLOW, CPU STORE

BCU Controls

Accept

Machine Cycles

i

Selection Cycle

@

Post-Selection Cycle

@

®

@

BCU sees
CPU request

l

Select, Address,
Marks, Key and
Store to Storage

Accept to CPU

l Advance from HSS

Set SBI
latch
from K

v

FIGURE 18. CPU STORE TIMING

Channel and >

System Console

Storage Requests —

Channel-Bus

Priority Address Valid

Circuits

CPU Requests -

Channel Bus Priority Reset

Storage
Selection
Circuits

\

FIGURE 19. BCU HANDLING OF CHANNEL REQUESTS

20 9-65

l

Selected HSS
goes not busy

Storage
Selects

grant priority to one channel at a time, and obtain
the storage address from the requesting channel.
When the channel bus priority circuits obtain a chan-
nel address, an address valid line is sent to the
selection circuits. The address valid signal blocks
CPU requests when the HSS requested by the channel
is available.

The channel bus priority circuits operate independ-
ently of the selection circuits until address valid is
generated. At this point, the channel bus priority
circuits are locked-up until the selection circuits
select the storage requested by the waiting channel.
When the selection circuits generate this storage
select, a channel bus priority reset line is generated
to free the channel bus priority circuits. Once free,
the channel bus priority circuits continuously search
for a channel storage request until one is found.

The channels bring up storage request any time
they require a storage access. (Channel includes the
system console or maintenance channel.) Unlike
CPU requests, channel requests are completely
asynchronous with each other and with BCU and CPU
cycles; therefore, two or more channel requests
may occur simultaneously (Figure 20). Whenever
the channel buses are not in use (as indicated by the
buffer trigger being off), the BCU checks for channel
requests once per machine cycle. The checking is
done from channel 0 through channel 6 and then the
maintenance channel in that order. The first request
that is found (highest priority) is honored, and any
other requests are ignored.

BCU honors a channel request by sending that
channel a BCU response signal., This signal tells the
channel that it gained channel bus priority and should
respond by putting the address of the desired storage
location on the channel storage address bus (CAB).
Along with the storage address, the channel sends
an address valid signal to the BCU. After a delay
to allow the storage address to travel from the chan-
nel to the BCU, the BCU gates the address valid
signal from the channel to the storage selection cir-
cuits. The selection circuits also receive CAB bits
4, 19, and 20 to determine which HSS is being re-
quested.

CHANNEL FETCH

o A series of signals is exchanged between the BCU
and a channel that makes a storage access.

o The first signal is a simplex request line from
the channel to the BCU.

e Second and third signals are simplex BCU response
and BCU data request from the BCU to the chan-
nel.

e On channel fetch operations, the channel responds
to the BCU with a multiplex storage address, a
protection key, and an address valid signal.

e BCU sends the channel a multiplex channel accept
signal when a storage selection is made for the
channel.

e BCU sends the channel a multiplex channel advance
signal just prior to data.

e BCU sends fetched data to the channel on a multi-
plex channel SBO.

A channel operation is controlled by a series of signals
exchanged between the BCU and the channel being
serviced. Some of these control signals use simplex
lines; a simplex line is unique to or from a particular
channel, Other signals use multiplex lines; a multi-
plex line goes to or comes from all channels. Chan-
nels share the use of multiplex lines; for example, all
channels use a single set of address and data lines

as previously explained.

The channel operation signal exchange begins with
a channel that sends storage request to the BCU
(Figures 21 and 22)., Each channel has a storage re-
quest line (simplex) because any number of channels
may simultaneously need an access to storage. When
BCU grants priority to a channel, it responds to that
particular channel with BCU response, The BCU re-
sponse lines are also simplex because the BCU must
tell one specific channel to put its address on the
channel SAB (CAB). Because of signal travel time,
the channel sends an address valid signal to tell the
BCU controls when the address has arrived in the
BCU. The channel also sends the storage protection
key to the BCU on the channel key bus.

The BCU follows BCU reponse with another simplex
line, BCU data request. The primary purpose of BCU
data request is to tell the channel to put the incoming
data on the channel storage bus in (SBI) if this is to be
a store operation, At request time, however, BCU
does not know if a channel is requesting a store or a
fetch; therefore, the BCU data request signal is
always sent, but the channel will not put data on the
channel SBI for fetch operations. The channel does
use BCU data request to drop its storage request to
the BCU.

When BCU starts storage for the channel that has
its address on the CAB, the BCU drops BCU response
and sends channel accept. The channel accept signal
is a multiplex line but channels condition this line with
BCU data request and not BCU response. This condi-
tioning ensures that only one channel will recognize
channel accept when it is sent out. Channel accept
tells the channel that its request has been honored

Storage Bus Control 12-65 21

and that the data it required will be on the channel
storage bus out (channel SBO) following the next chan-
nel advance pulse, The fall of BCU response tells the
channel to take its storage address off the channel
SAB.

When the selected storage sends advance, the BCU
routes this signal to the channel. The channel de-
lays channel advance to gate the requested data from
the channel SBO into its registers.

CHANNEL STORE

e For a channel store operation, the initial sequence
through BCU data request is identical to a channel
fetch operation.

e The channel sends multiplex store line and multi-
plex mark bits along with storage address.

e The channel sends a double word of store data on
the multiplex channel SBI in response to BCU
data request.

e Just as on a channel fetch operation, BCU sends
multiplex channel accept and channel advance
signals to the channel; however, no data is
delivered on the channel SBO.

A channel starts a channel store operation with a
request exactly the same as it starts a channel fetch
operation (Figure 23). The BCU grants priority and
sends BCU response and BCU data request without
knowing whether the channel desires to fetch or
store.

The channel, upon receiving BCU response, puts
the storage address on the channel SAB just as it
does for a channel fetch operation. Along with the
storage address and the storage protection key, how-
ever, the channel raises the store line to the BCU.
Also, the channel puts the eight-mark bits (plus a
parity bit) on the channel mark bus.

When the channel receives BCU data request, it
not only turns off its request, but also puts the 72-bit
store data word on the channel SBI.

After BCU response and BCU data request, the
BCU waits for address valid just as on a channel
fetch operation., With address valid, the BCU gen-
erates a select when BCU and the requested storage
are free. Because the channel store line is up, the
BCU also sends store to storage and gates the chan-
nel marks to storage along with the channel address
bits (Figure 23).

On the post-selection cycle, the BCU sets the SBI
latch register from the channel SBI. All 72 bits are
sent to storage; the selected storage takes only the

22 12-65

bytes which have corresponding mark bits, just as on
a CPU store operation.

The channel accept and channel advance signals
are sent back to the channel, just as on a channel
fetch operation. On a store operation, however, no
data is returned to the channel; and, therefore, the
channel does not use the channel advance signal to
gate the channel SBO.

RETURN ADDRESS CIRCUITS

e Return address registers remember the requested
destination of fetched data from select until
advance.

e Two return address registers are necessary be-
cause of overlapped storage cycles.

e Each register has six positions (no parity): A, B,
J, channel, diagnose, and invalid.

e A, B, and J positions route fetched data to the
corresponding CPU registers.

e Channel position is set for both channel fetch and
channel store operations.

e Diagnose routes fetched data to the MCW register
for diagnose instructions.

e Invalid routes invalid address error indication on
CPU fetches and channel operations.

o X/Y binary trigger gates inputs to one return
address register at a time.

e W/Z binary trigger gates outputs from one return
address register at a time: W gates out X; Z gates
out Y.

e X/Y trigger is switched by delayed select: W/Z
trigger is switched by delayed advance.

The BCU must remember where to return fetched
data. The requesting unit tells the BCU where to re-
turn the data when a fetch request is made. Several
machine cycles later, the BCU uses this information
to route the returning data.

Remembering where to return fetched data would
be a simple task if the BCU always waited for the
end of a storage cycle before initiating a new cycle.
However, the BCU overlaps the operation of any two
HSS units within main storage. To overlap storages,
the BCU must remember two return addresses and
associate these addresses with the correct storage
cycle.

1013U0) sng oSeI10jg

$9-6

4

From Selection

OR

Circuits FL Buffer Tgr
(Means chan buses are in use)
Chan Selects Stor
Pwr On IOR A
Clk |
Off
_o::\ Chan 0 Stor Req > ©
» —
: On Off
off | Response -« I >
On
_:V\I\F o1 Stor Req >é§
off | On I Off
| Response - >
On
ﬁ.\l Chan 2 Stor Req — > —
| On Off
(sz 1 Response . I >
On Chan 3 Stor Req -
| On ¢ Off
Off | Response @ <l
On
‘\I Chan 4 Stor Req > —
| On Off
Off | Response
4>
On
® 1\ Chan Stor Req > %
| On Off
Off | Response - I >
On
p—) Chan 6 Stor Req > —
| On Off
| Response < I#
Sys Stor Req
Cons > —
On Off

Off

A

Response

tOn

Y

Channel Buses

Wait for address
to arrive on CAB

- L ®
Address Valid
A —
To Selecti

Address Valid C?rc:itic fon
Moltiplex " CAB Bits 4,19,20

line from

channels

@ Any chan can make a request at any

time. In so doing, the corresponding
@ request switch in the BCU is turned on.
CAB To @ Assume that the buffer tgr is off. This
> Addr allows a clock pulse to examine the
OR status of channel switches.

@ The highest priority channel with request
on, receives a response to give that
channel control of the channel buses.

@ The response signal turns on the buffer
trigger so that all channel requests are
ignored until this channel is serviced.

Chan SBI To
> SBI @ The channel receiving response sends
Latch Reg the storage address on the CAB.

FIGURE 20, CHANNEL BUS PRIORITY

After a delay to allow the oddress to
arrive, BCU uses CAB bits to determine
which HSS is being requested. When
requested HSS is available, BCU blocks
CPU selects and makes channel select.

®© © 6 © © 0

0)O,

FIGURE 21,

24

Chan X Storage
Request

BCU Response to
Chan X

Address Valid from
Chan

BCU Data Request
to Chan X

Chan Accept from
BCU

Chan Advance from
BCU

®

®

Chan X request
for an access
to main storage.

| IO NN NN I A SR

BCU has granted priority
to Chan X. Chan X

responds by putting — — -
storage address on

BCU tells Chan X to drop

its storage request.

9-65

the chan SAB and by
generating "Address Valid,”

Next "chan

4

| R RN N

I

(5) Multiplex line tells Chan X that storage
NS N
selection has been made.
advance" is for this chan.

Multiplex line informs Chan that fetched data
will be on the Chan SBO in about 200 ns.
Chan uses delayed advance to sample Chan
SBO into chan registers.

NOTE:

Signal Travel-Time from BCU
to Chan and Retumn.

CHANNEL FETCH SIGNAL EXCHANGE

[oJ3u0) sng a8eaoig

S9-6

Sg

Multiplex
Lines
From <
Channels

Key Bus B

Storage B SAB (1-14 + PA,PB)

Chan Key
(" BUS (0-3+P)

Select B Odd

Select B Even

2365
Storage B

Key Bus A

Storage B SBO (0-63 + 8P)

Advance B Odd

Advance B Even

14
2P 14 Storage A SAB (1-14+PA, PB)
+2p
5 [N"Ag
MB
Address OR]
lO 3 Select A Odd
0 20
Select A Even
21
+3P
4,19,20

CAB (0-20 + 3P)

Simplex
Lines
From
Channels

L Address Valid

2365
Storage A

Storage A SBO

(0-63

+8P)

Advance A Odd

Advance A Even

0 SBO Latch

RA
63

Channel Accept

>

Multiplex
Lines

~ Channel 0 Request

Channel 1 Request

Channel 2 Request

Channel 3 Request

3 Channel 4 Request

Channel 5 Request

Channel 6 Request

Maintenance Request

NOTE: Model 75 shown

FIGURE

22. DATA FLOW,CHANNEL FETCH

BCU Controls

]

Channel Advance

- To

—> Channels

BCU

Response Channel 0

BCU

Data Request Channel 0

BCU

Response Channel 1

BCU

Data Request Channel 1

BCU

Response Channel 2

BCU

Data Request Channel 2

BCU

Response Channel 3

BCU

Data Request Channel 3

Simplex
Lines

BCU

Response Channel 4

rTo

BCU

Data Request Channel 4

Channels

BCU

Response Channel 5

BCU

Data Request Channel 5

BCU

Response Channel 6

BCU

Data Request Channel 6

BCU

Response Maint Channel

BCU

Data Request Maint Channel

92

$9-6

Key Bus B

SBI B (0-63 + 8P)

Storage B SAB (1-14 + PA,PB)

Storage B Mark Bus (00-07 through 56-63 + P)

Advance B Odd

Advance B Even

Advance A Odd

Advance A Even

64

{T

+8P

Address Valid

| LI

Storage B Store N\ 2365
»>
Select B Odd N\ Storage B
8 >
(Chan Key + P Select B Even S\
T
Bus Key Bus A
(0-3+P)
Storage A SAB l\
—/]
14 14 | l l Storage A Mark Bus
< +2P +2P [——/s\
< 3 18 + P
= Mark OR I—\'/ Storage A Store \ 2365
o MB -
% Address OR SIB|F|IRIB 8|5 |& Select A Odd Storage A
= 0 £l I P g R PN P DA P P
2 b N i il Bl Il Al Select A Even N\
- Channel Marks »
S | _00-07 through 56-63 8
+ P SBI A
£ | _CaB (0-2043P) (0-63+8P) l [
3 MB
E; "l [0 SBI Latch 63]
Channel Store
I Channel SBI (0-63+8P)

L

Channel 0 Request

Channel 1 Request

Channel 2 Request

Channel 3 Request

Channel 4 Request

Channel 5 Request

Channel 6 Request

Maintenance Request

sjouupyy wouy saulq xa|duwig

FIGURE 23.

BCU Controls

Channel Accept

Channel Advance

BCU Resp Channel 0 -
|scuU Data Req Channel 0 1

-
BCU Response Channel 1
BCU Data Req Channel 1
BCU Response Channel 2
BCU Data Req Channel 2
BCU Response Channel 3
BCU Data Req Channel 3

BCU Response Channel 4 >

|BCU Data Req Channel 4>
BCU Response Channel 5

>
BCU Data Req Channel 5
BCU Response Channel 6 i

-
BCU Data Req Channel 6

BCU Resp Maintenance Ch,
BCU Data Req Maint Ch

>)

Yy

\

DATA FLOW, CHANNEL STORE

3 | Multiplex
Ll A
Lines to

%) Channels

Simplex
Lines to
Channels

103u0) sng a8ea0lg

59-6

LS

Return to AB

Address Bit 20

Return to J

Advance A Odd

Return to Channel

Diagnose

Invalid Address

FIGURE 24,

A Return to A Advance A Even
Advance B Odd
N
X Advance B Even
—> A
> B
A Return to B
> J
@ »] Chan
»1 Diag
X > v W
Y
| Y > A z |
| |
> B I
| !
| 1 !
|] Chan :
| o
@ ' Diag B
XN wW/z
Delayed Cyclic Inhibit Iv Binary
Binary > Tar

RETURN ADDRESS

® ® © & 0

OR

One or more positions of a return address register are set af
select time of a CPU fetch or a channel operation.

The X/Y binary tgr is switched before the next storage
request is honored,

At advance time, the W/Z binary tgr gates-out the return
address register set at select time.

After the contents of a return address register have been used,
the W/Z binary tgr is switched in preparation for the next
advance.

The X/Y and W/Z tgrs are switched during every storage
cycle (stores as well as fetches).

Delayed Advance

A Advance

A

A B Advance

A | Advance
Channel Advance

A

A Diagnose Select

Invalid Address
A P
0

Whenever CPU makes a fetch request (I fetch
request or E fetch request), one of two control sig-
nals is sent to the BCU to tell BCU where to return
the fetch data. The two control signals are: return to.
J and return to A-B.

The BCU must remember the control signal
associated with each request so that it can return
fetched data to the correct destination. Because the
BCU overlaps the operation of storage units, two
registers are required to store return addresses.

A fetch to A-odd storage, for example, may be
initiated two machine cycles after a fetch to A-even
storage. In this case, data from A even have not
returned at the time the select to A odd is generated.
Therefore, the return address for both fetches must
be remembered. Note that because of the time rela-
tion of machine cycles to storage cycles, fetched
data from the first fetch are back before the BCU can
make a third consecutive fetch; therefore, two re-
turn address registers are sufficient (Figure 24).

Each of the two return address registers has six
positions:

1. A

2. B

3. d

4. Channel

5. Diagnose

6. Invalid

The return to A-B signal from the CPU is divided
into return to A and return to B signals, using ad-
dress bit 20. Data fetched from even addresses (not
bit 20) go to the A register. Data fetched from odd
addresses (bit 20) go to the B register.

A fourth position is set for channel operations.
Unlike CPU, a return signal is sent tc the channel on
both store and fetch operations; therefore, a return
signal from the channel is unnecessary. The channel
select signal that is generated within the BCU sets the
channel position of the return address registers.

Another position in the return address registers
is for the diagnose instruction. This instruction sets
the maintenance control word (MCW) register with
the contents of a specified storage location. The
diagnose instruction is unique because CPU makes
the request but the fetched word is set into the MCW
from the channel SBO. The diagnose position in a
return address register sends a diagnose select sig-
nal to control circuits which perform this special
gating.

The last position in the return address register is
for an invalid address error. An invalid address is
an address which is not within the main storage of

28 9-65

this particular system. It is necessary to route the
invalid address indication through the return address
registers because the action taken for the invalid
address depends on what the system was doing when
it generated the erroneous address. For example,
if instructions are located in the highest storage
word with a branch back to a lower address, the I
unit would generate an invalid address in attempting
to fill an empty instruction buffer. In this case, the
invalid address is not an error. The BCU must send
the invalid address indication along with the A advance
or B advance signal so that the CPU knows that this
invalid address was generated for an IC fetch and,
therefore, may not be an error condition.

Gating into and out of the return address registers
is controlled by two binary triggers (Figure 24). The
X/Y trigger gates the input,and the W/Z trigger gates
the output. The W condition of the W/Z trigger always
gates out the X return address register. The X/Y
trigger gates inputs to one register at select time and
then switches to be ready for the next select (Figure
25). The W/Z trigger gates the output of one register
at advance time, then switches to be ready for the
next advance.

Time X/ w/Z

Select 1 -4 X | X Reg Set—\
Y \

S -4 Y | Y Reg Set
elect 2 L eg e—\

Advance 1 — 4 — — — — — \ —L o W |~ X Reg Gated Out =
V2
\
Advance 2 —t —|— — — ——— —L—D Z t— Y Reg Gated Out—pm
W

NOTE: X/Y and W/Y have no fixed relation to odd/even storages .

FIGURE 25. RETURN ADDRESS REGISTER GATING

The advance signal gates fetched data into the
proper register(s). Outputs from SBO latch go to the
A register, the B register, the J register, and the

channel SBO; but the data is set only into that register

(or those registers) that receive an advance pulse.
An example of two registers that receive an advance
pulse, and therefore, the same data, is a manual load
A-B. This operation causes BCU to fetch the 64-bit
word (plus eight-parity bits) stored in the system
control panel data keys (panel keys) and deliver this
word to both the A and B registers.

THEORY OF OPERATION

e The major operations performed by the BCU are:
CPU fetch, CPU store, channel fetch, and chan-
nel store.

e In addition to these, the BCU does special opera-
tions to fetch or store a storage protect key, load
the maintenance control word register (MCW),
handle system console manual operations, and
handle errors detected by the BCU and main stor-
age.

The major operations performed by the BCU are:

1, CPU fetch: BCU fetches the addressed double
word from main storage and delivers the fetched data
to the A, B, or J register.

2. CPU store: BCU delivers the double word in
the K register and the contents of the mark register
to main storage. Storage substitutes the K register
data bytes indicated by the mark bits for correspond-
ing bytes in the addressed location.

3. Channel fetch: BCU fetches the addressed
double word and delivers the fetched data to the
channel on the channel SBO.

4. Channel store: BCU delivers the double word
on the channel SBI and the channel mark bits to main
storage.

In addition to these four major operations, the
BCU handles the storage access portion of the set and
insert key instructions, the diagnose instruction, the
test and set instruction, and system console manual
operations. BCU also handles errors detected within
the BCU and within main storage. Figure 9100 sum-
marizes the operations performed by the BCU.

ADDRESS BIT FUNCTIONS
e Each HSS holds 16K double words.

e Address range within a HSS depends on the mode
of interleaving.

® Fourteen address bits are used to address double
words within a HSS: Models H75 and IH75 use
bits 6-19; Models 175 and J75 use bits 5-18.

| 575 and Model 1HT5 (32K).

Form 223-2873-1
FES S26-7034

e SPF uses a portion of the HSS address bits.

Each HSS holds 16,384 (16K) double words or 131,072
(128K) bytes. The address range of a HSS, however,
is 32K for two-way interleaving or 64K for four-way
interleaving. In other words, the span of addresses
from the lowest to the highest within a HSS depends
on the mode of interleaving (Figure 26).

Fourteen bits are required to address the 16K
double words within a HSS. Any group of 14 bits has
16K combinations; the particular address bits used,
however, depend on the span of addresses within
that HSS:

Address Number Double Word
Bits of Bits Address Span
7-20 14 16K

6-20 15 32K

5-20 16 64K

4-20 17 128K

In the Model H75, address bits 6-19 coastitute a
HSS address; bit 20 is used to select one of the two
HSS (Figure 27). In the Model IH75, address bits
6-19 constitute a HSS address; bit 20 is used to
select odd or even HSS. Bits 4 and 5 are used to
select A, B or C Memory Group (Figure 28A), For
Models 175 and J75, address bits 5-18 constitute a
HSS address; bits 19 and 20 select one of four HSS
(Figure 28). In the Model J75, address bit 4 selects
the lower or upper group of HSS (Figure 29).

A portion of the 14-bit address sent to a HSS is
relayed to an SPF unit., Address bit 12 is the low-
order SPF address bit; this bit changes once every
2048 consecutive byte addresses (256 double word
addresses). In Models H75 and IH75, the single
SPF unit stores 128 storage protection words (Fig-
ure 30). These 128 words, each protecting a block
of 256 (double word) addresses, span the 32K stor-
age words within the single 2365. Address bits
6-12 are used to address the 128 protection words
in Models H75 and IH75.

In Models 175 and J75, each SPF unit stores 256
storage protection words because the span of ad-
dresses within each 2365 is twice (64K) that of Model
Address bits 5-12 are
required to address the 256 storage protection words
(Figure 31).

In addition to locations within main storage, the
BCU can fetch the system control panel data keys
(panel keys). The panel keys are fetched for certain
manual operations, for certain errors, and when the
programmer specifies the panel key address. The
panel key address is specified by a 1 bit in address

Storage Bus Control 1/68 29

\

Form 223-2873-1
FES $26-7034

position 0 if the enable panel key address switch on
the control panel is on.

Figures 9101, 9102, and 9103 summarize the ad-
dress bit functions for Models H75, 175, IH75, and
J75.

Address Switching

® Address bits can be switched to allow a diagnostic
program to run with a failing HSS.

® Switching can be done manually or by setting bit
14 or bit 15 in the MCW.

® On Model H75 and Model IH75, address bit 6 is
interchanged with address bit 20 or address bit
6 is inverted, then interchanged with bit 20,

® On Models I75 and J75, address bits 5 and 19 are
used for bit switching instead of bits 6 and 20.

® On Model H75 and Model IH75, address switching
defeats interleaving: on Models I75 and J75, ad-
dress switching replaces four-way interleaving
with two-way interleaving,

The Model 75 has a scheme for switching certain
address bits as a diagnostic aid. The purpose of this
scheme is to allow a diagnostic program to run when
g, HSS is failing, The program can then analyze the
pattern of failing addresses to further localize the
failing circuits within the defective HSS. The bits
that are interchanged and the resulting effect on the
physical location of addresses, depends on the system
storage configuration; note, however, that the pur-
pose of address switching is to arrange the addresses
so that a sizeable program can be loaded in such a
way as to avoid a failing HSS.

Address switching can be done manually from the
system control panel or by changing bit 14 or bit 15
in the MCW with a diagnose instruction. The control
panel switch has three positions:

1. Up - interchange storage address bits

2. Center - normal

3. Down - interchange and invert storage address

bits

MCW bit 14 duplicates the up position of the
switch; MCW bit 15 duplicates the down position of
the switch. A priority scheme exists so that MCW
bits have priority over the switch setting. The two
MCW bits are interlocked so that if both are on,
neither is effective (Figure 32).

For Models H75 and IH75, the interchange stor-
age address bits condition interchanges bits 6 and 20.

30 1/68

Reversing these bits, defeats the interleaved address
scheme so that consecutive addresses are in one HSS
(Figure 33). Withnormal addressing, consecutive ad-
dresses are in alternate HSS. Whenbits 6 and 20 are
interchanged, the first16K of consecutive addresses
are in the HSS that normally contains only even addresses.
Note that consecutive addresses within a HSS jump
by 8K as bit 20 is used in place of bit 6. When, after
16K addresses, bit 6 goes to a 1, the HSS which
normally contained odd addresses is selected because
bit 6 is being used by the BCU in place of bit 20. The
first 16K addresses are in the original even HSS;
the second 16K addresses are in the original odd HSS.
When bit 20 is exchanged with the inverted condi-
tion of bit 6 (interchange and invert storage address

| vits, Model H75 and Model IHT5), the effect is to

place the first 16K addresses in the original odd
HSS and the second 16K addresses in the original

|even HSS. In the Model H75 and Model IH75, a

diagnostic program of 16K, or less, can be loaded
into either of the two HSS to analyze the remaining
HSS.

For Models I75 and J75, the interchange storage
address bits condition interchanges bit 5 and 19.
Reversing these bits, changes the addressing scheme
from four-way interleaving to two-way interleaving
(Figure 34). Every third consecutive address jumps
by 8K compared to the normal addressing scheme;
however, consecutive addresses stay within a pair
of HSS (one 2365) until the 32K available locations are
exhausted. With bits 5 and 19 interchanged, 2365 A
contains the first 32K addresses, 2365 B contains
the second 32K of addresses. In Model J75, 2365 C
contains the third 32K of addresses and 2365 D con-
tains the fourth 32K of addresses.

When bit 19 is interchanged with the inverted con-
dition of bit 5 (interchange and invert storage address
bits), the effect is to place the first 32K addresses
in 2365 B and the second 32K addresses in 2365 A.

In Model J75, 2365 D contains the third 32K addresses
and 2365 C contains the fourth 32K addresses.

CPU FETCH
e Ior E unit can initiate a CPU fetch.

e BCU selects storage to get requested storage
word.

e When the fetched word returns from storage,
BCU routes the word into the A, B, or J register.

A CPU fetch is a storage fetch requested by either
the I unit or the E unit. The BCU starts storage to
get the 64-bit plus eight-parity bit word requested,
and then delivers this word to the A, B, or J register.

Form 223-2873-1
FES S26-7034

2365C
CE co
Even HSS Odd HSS
2365B
BE BO
Even HSS Odd HSS
2365A
AE AO
g Even HSS Odd HSS I
1 CO
10 CE,CO ,r' L0 CE
| 1 BO
BCU Select Storage N 01 BE, BO l" 0 BE

|
1
: T o0 At A0 DY
tl
|
|

[Select 1 of 16,000 storage words within a HSS I

[0 [1]2]3]4 5|6|7Js 19]]4]15[16117L8|19J20121I22J23I

LEGEND:

9IIO|H]IZ

} Used for additional optional storages
$1 Byte address, not used by BCU or storage

OFIGURE 28A. HSS SELECTION, MODEL. IH75

Storage Bus Contrcl 1/68 30A

Sequential Addressing Two-Way Four-Way
(No Interleaving) Interleaving Interleaving
HSS HCSSS H®55 HSS HSS HSS HSS

48K +2

48K +1

48K + 0
g
8 HSS
]
< 32K+ 2
2 32K + 1 32K +2 32K+3
H 32K+0 37K %0 3K
35 64K
] HSS HSS HSS
T
z 48K T6K +2
E 16K +1
g T6K 0
B

32K
I 5
16K 2
1 2 3 4 5 6 7
0 0 1 0 1 2 3
FIGURE 26. ADDRESS SPAN VERSUS INTERLEAVING MODE
2365 A
AE L AO
Even HSS Odd HSS
14 Bits Select Odd ! BCU Select Storage
Select Even 0
|
i *k
| * I Select 1 of 16,000 storage words within a HSS 1 ‘ l

[o]v]2l s]4]s]e]7]e]o]ro[n]ra]na]nalns[i6 17 18|19 f20 21 [22 2s]

* Used for additional optional storages.
** Byte address. Not used by BCU or storage.

FIGURE 27, HSS SELECTION, MODEL H75

2365 B
BE BO
Even HSS i Odd HSS
2365 A
AE < AO
Even HSS Odd HSS
Sel BO
11
Sel BE 10 | BCU Select Storage
Sel AO 01 |
Sel AE_ 00 :

‘* I Select 1 of 16,000 storage words within a HSS “:* J
ljil [2|3l4l5—[6|77I8'9I]011]I]2|]3F4|15|]6117I18|1‘;{20|21J}2IZ3J

* Used for additional optional storages.
** Byte address. Not used by BCU or storages.

FIGURE 28. HSS SELECTION, MODEL 175

Storage Bus Control

9-65

31

DE R DO
> EvenHss [T Odd HSS
2365 C
CE _ co
> Even HSS - > Odd HSS
2365 B
BE < ; BO
Even HSS - o Odd HSS
2365 A
AE _ _ AO
Even HSS ~ g Odd HSS
DE 1]
BE 0
01 _ |
?:2 (1) | BE,DE 19 BCU Sel
elect
A 0 E— BO,DO ”\ Storage
o }] AE,CE_00 |
AO,CO 01
AO O Ve

|
I

| *

w Select 1 of 16,000 storage words within a HSS

]

[o|1 |2|3|4|5|6]7[8|9|10[n[12|13|i4|15|16|17|18|19|20|21|22|23|

* Used for additional optional storages.

*% Byte address. Not used by BCU or storage.

HSS SELECTION, MODEL J75

Form 223-2873-1
FES S26-7034

SI3| 2581315321318 8213318181312 |7
QS| || S| =] || S| ||~
HHEHERERE
®© [« ||~
Byte Address Bits of1|2{3|4(5]6|7[8]9]|10{11]|12|13]14]|15[16]17|18(19]20}21(22|23
| N
Model IH75 Select | Byte Address
Group A, BorC' .uge : Within Storage Word
I
[

le—— X Address ——ete—— Y Address ——=

HSS Address Bits

IDEDENE

8 [9i0]11]12[13]14

I
|
I
I
1
7

2365 SPF_Address Bits 1]2]3]4]5]¢]
T

These seven bits address 128
storage protect locations

@ FIGWRE 30. SPF STORAGE BLOCK ADDRESSING, MODEL H75 AND MODEL IH75

Even/Odd
HSS Selection

_________________ - This bit changes

every 2048 bytes
or every 256
storage words

~Nlvo| o o~ | ™| o o t|N]|O|ofF || —
SRR R RN B E RN M
ENCEEEEEEERER
o <l | =
Byte Address Bits O|1|2f3|4]5]|6]|7]|8]|9]10[1112]13[14[15/16}17]18 202122} 23
T
| N ———
: Byte Address
Moi;"eth75-sele<;r":g;1 H within storage word
or high group of
on oreve te—— X Address ——‘Q:— Y Address —» X
HSS selection
(one of four)
HSS Address Bits 9 [io[11]12[13] 14

L
1[2]3]4f5[e]7]8
[
I
|
|
|

2365 SPF Address Bits

1
1[2]3]4]s5]e]7]8
. [.

S S —
These eight bits address 256
storage protect locations

FIGURE 31. SPF STORAGE BLOCK ADDRESSING, MODELS 175 AND J75
MCW Bits Switch |
14 15 Setting Result
0 0 Center Normal addressing
1 1 Any
0 0 Up Interchange storage
1 0 Any address bits
0 0 Down Interchange and invert
0 1 Any storage address bits
FIGURE 32. ADDRESS BIT SWITCHING

This bit changes every

_____________ - 2048 bytes, or every

256 storage words

Storage Bus Control 1/68 33

i2%

89/1

1 AE, BE* or CE* AO, BO* or CO*
16K + 2 16K +3
Normal 16K + 0 16K +1

Addressing

® @

8K (one HSS)

3
1

2
0
T2 \< 20

Doubleword Addresses

Address Bits

1 AE, BE* or CE* AO, BO* or CO*
Interchange Storage 3 16K +3
Addr Bits __ 2 1 _ [k
(Interchange 6 20
and 20) @ @
2 16K + 2
0 16K+ 0
6 6
[] AE, BE* or CE* AOQO, BO* or CO*
Interchange and
invert Storage 16K +3
Addr Bifs (invert 201 16K*1 | _ !
bit 6 and inter- 20
change with 20) ® Q)
16K +2 2
16K+ 0 0
6)
* Address Switching, Model IH75.
Addresses are 32K higher within C and are 64K higher within D than shown.

® FIGURE 33. ADDRESS SWITCHING, MODEL H75

AE or CE*
32K +4
Normal ~5 _|_32K+0
Addressing 5
4
Address Bits 0
T ®
AE or CE*
6
Interchange Storage 19 2
Addr Bits (Inter- ;_9—_
change 5 and 19) ®
2
0
5 -20
AE or CE*
Interchange and K+ 6
invert Storage 19
Addr Bits g - 2E22
; 1K
(invert 5 and
interchange @
with 19)
32K +4
32K +0
5-20

AO or CO* BE or DE * BO or DO *
©® @ ®
32K+5 3K+ 6 2K +7
2K+ | 32K +2 32K + 3
Doubleword
@ Addresses @ @
5 :7 \\: s 7
1 2 3
9. 20 19 - 20 19 - 20
AO or CO * BE or DE * BO or DO *
®@ @
7 32K+ 6 32K + 7
3 | 32K + 2 32K + 3
©) ® ®
5 32K + 4 32K +5
1 32K + 0 32K + 1
5-20 520 520
AO or CO * BE or DE * BO or DO *
® ®
32K +7 6 7
32K+3 | 2 3
32K +5 4 5
32K + 1 0 1
5 .20 5-20 5 .20

FIGURE 34. ADDRESS SWITCHING, MODELS 175 AND J75

* Addresses within C and D HSS are 64K higher than the addresses shown.

#€0.-92S Sdd
1-€482-€22 WO

Data Flow
® BCU gets I fetch request or E fetch request.

® Address is in SAR (or is being set into SAP) a.
the time of request.

e BCU generates select to the proper storage unit.

o Selected HSS sends advance to forewarn BCU of
returning data.

e BCU sets returning storage word into SBO latch.
e BCU sends A, B, or J advance to the CPU.

The CPU requests a fetch operation by sending I
fetch request or E fetch request to the BCU (Figure
6100). Along with the request, the CPU sets the
desired address into SAR and into duplicate SAR.
SAR and the storage protection key from the PSW
are gated through the address OR and the key OR
unless a channel storage select is to be made on
this machine cycle.

The requested CPU selection is made if there is
no pending channel select blocking the CPU selects,
the BCU is not busy (cyclic inhibit off), and the
requested HSS is not busy. The BCU decodes ad-
dress bits set into duplicate SAR to generate a
select to the proper HSS. Note that all HSS receive
the storage address and the protection key; only the
HSS that receives select, however, sets the storage
address into its MAR and uses the protection key.

When select is sent to storage, the busy trigger
for the selected HSS is set to block further selections
of this HSS until it ends its cycle. The A, B, or J
position in the return address register that is
pointed to by the X/Y binary trigger is set. The
position set is determined by a return to line from
the CPU and, in the case of A-B, address bit 20.

Shortly after select, an accept signal is sent
back to the CPU. This signal tells the CPU that its
request has been honored and that it can now drop
its request and change SAR. It can make a new
request if one is pending.

About two cycles after select, the selected HSS
sends an advance signal to the BCU. Half-a-cycle
after advance, the selected HSS has the fetched 72-
bit word gated from its memory data register (MDR)
to the SBO latch register. Shortly thereafter, the
BCU releases the SBO latch to temporarily store
the fetched word. After setting the SBO latch, the
BCU sends an A, B, or J advance signal to the CPU.
The CPU uses the advance as a gate to set the receiv-
ing register with the next A clock.

Control
e CPU interlocks all I and E storage request lines.

e BCU is busy with each selection for two machine
cycles.

e A CPU request is blocked if BCU is busy, a
channel selection is to be made on this cycle, a
CDA signal is present from a channel, or if the
requested HSS is busy.

e When BCU sends a select to HSS, accept is sent
back to the CPU.

e BCU sets a return address register and switches
the X/Y binary trigger.

® Advance from the selected HSS samples the
return address register.

® Advance also gates the setting of the SBO latch.

The CPU interlocks all fetch and store request lines
so that only one request can be made at a time. One
of the two CPU return to lines always accompanies a
CPU fetch request and the SAR and duplicate SAR either
contain the desired storage address or these registers
will be set at approximately the same time that the
request signal is brought up.

The BCU checks for a CPU request each L time.
The request is blocked, however, if the BCU is busy
with another storage request (cyclic inhibit is on),
if a channel is ready to select a nonbusy HSS, or if
the HSS requested by the CPU is busy. If a CPU
request is blocked, it is completely ignored until the
next L time, when another attempt will be made.
Meanwhile, the CPU is free to drop its request or
substitute another request. For example, the I unit
may substitute an operand fetch request for an unac-
cepted IC fetch request because the operand fetch has
a higher priority. An unaccepted request is a request
for which BCU has not generated an accept pulse.

From the time that BCU recognizes a CPU
request, BCU is busy making the storage selection
for two machine cycles (Figure 35). The approximate
timing of the major control signals is shown in Figure
35. The generation of each control signal is shown
in Figure 5200 and is described in the following text.

All CPU storage request lines are ORed, then
combined with an L clock. not accept, and not
single cycle to produce a fast request signal. This
signal is routed to one set of HSS set select latch
ANDs. In addition to bringing up fast request,
the CPU fetch request lines are routed to set the
CPU request latch if it is not being blocked by accept.

Storage Bus Control 12-65 35

The output of the CPU request latch is routed to a
second set of set select latch ANDs. The first set
of set select latch ANDs ensures that a select latch
is set as early as possible when a selection is made
(minimum circuit delay). The second set of set
select latch ANDs ensures a set pulse of sufficient
duration to complete the latch-back path through the
select latches.

A CPU set select signal, timed by an A clock, is
a second condition necessary for setting a select
latch. This signal is blocked if BCU is busy (cyclic
inhibit on), a channel select is to be made on this
cycle, or if a chain data address (CDA) signal is
present from one of the channels. A channel brings
up the CDA signal under certain conditions which re-
quire a rapid storage access. By blocking all CPU
selects while CDA is on, the channel will probably be
serviced more rapidly because neither the BCU nor
the requested HSS will be busy when the channel
request arrives.

The final condition that can block the setting of a
select latch is a busy trigger that is on for the
requested HSS. Duplicate SAR bits are decoded in the
set select latch ANDs to pick a single HSS select
latch with any one combination of bits in the duplicate
SAR. If the busy trigger for this requested HSS is
on, the setting of the select latch is blocked. If the
busy trigger is off, the requested HSS select latchis
set and the busy trigger for the selected HSS is turned
on.

When any select latch is set, the positive select
out latch is turned on to indicate that a storage se-
lection was made.

The positive select out signal and an EB clock
turn on the accept and pulse accept triggers. These
two triggers are set in parallel, and under normal
conditions, are also simultaneously reset. The pulse
accept trigger is reset by a running clock, and the
accept trigger is reset by a controlled clock. The
two triggers are necessary for single-cycle opera-
tion to maintain the accept signal to the CPU for one
controlled clock cycle even though the storage cycle
has been completed. The accept and pulse accept
triggers distinguish CPU from channel storage se-
lects; they are not set when a channel selection is
made.

The positive select out signal and a B clock set
the cyclic inhibit latch to inhibit all storage selections
on the following machine cycle.

The positive select out signal also controls the
setting of a position in a return address register
(Figure 5080). The A, B, or J position is set into
the return address register that is pointed to by the
X/Y binary trigger with a B clock during the se-
lection cycle.

36 12-65

The positive select out signal is delayed to switch
the X/Y binary trigger after a register position has
been set.

After two machine cycles, the BCU is finished
with the selection and can service any other request
that is pending. Handling of the returning data is
completely independent of the selection circuits.

The only information that pertains to the selection
just completed that is retained by the BCU is the bit
set into a return address register. This information
will be used when data returns from the selected HSS.
The timing of events for returning fetched data and
completing the fetch operation depends entirely on
the selected HSS. The BCU simply waits for advance
from storage and the number of machine cycles
between select and advance is of no consequence to
the BCU.

The storage advance pulse tells the BCU that a
storage cycle is nearing completion. The BCU uses
advance to sample the return address register that
is pointed to by the W/Z trigger. For a CPU fetch
operation, the sampling yields the appropriate ad-
vance signal to the CPU (A, B, or J). The A, B, or
J advance signal, however, is delayed to bracket the
A clock which sets the J register or the LBR clock
which sets the A or B register.

The BCU also uses advance to gate the setting of
the SBO latch: storage times advance to precede
fetch data by about 100 nanoseconds.

The final two steps of a CPU fetch operation are:

1. Switching the X/Y trigger, and

2. Resetting the selected HSS busy trigger.

The BCU delays the storage advance to switch the
W/Z trigger after advance has sampled the return
address register,

The busy trigger is reset by a reset busy signal
from the selected HSS nearly one machine cycle be-
fore the storage times-out. This timing allows the
BCU to reselect this HSS at the same time that it is
ending its previous cycle.

Detailed timings of consecutive CPU fetches to AO
HSS are shown in Figure 8100.

CPU STORE
e CPU store is initiated by the I unit or the E unit.

e BCU selects storage anddelivers the double word in
K to storage.

e Only K bytes masked by mark bits are stored.
Other bytes are regenerated.

e Protection key in PSW much match key in SPF
storage.

A CPU store is a store-to-main storage requested
by the I unit or the E unit. The BCU starts storage
and sends the 64-bit plus eight-parity bit word in the
K register to storage. Only those bytes of the K
register that have a corresponding bit in the mark
register are stored; bytes represented by a zero-
mark bit are regenerated by storage.

The BCU sends the CPU storage protection key
(PSW bits 8-11) to the SPF where this key is com-
pared to the key for this address previously stored
in SPF. If the keys match, the store operation pro-
ceeds. If the keys do not match, the SPF cancels
the store operation (all bytes are regenerated) and sig-
nals a storage address protect (SAP) error.

Data Flow

e BCU routes SAR, mark register, and PSW key to
storage.

e BCU sends select and store to storage.

e BCU sets K into SBI latch register and sends SBI
latch register to storage.

The CPU requests a store operation by sending I store
request or E store request to the BCU (Figure 6101).
Along with the request, the CPU sets the desired
address into SAR and the duplicate SAR and sets the
mark register. The mark register is set in one of
two ways:

1. Single bits set by VFL circuits.

2. Twin bits corresponding to halfword boundaries
for storing halfwords, words, and double words.

The BCU generates a select pulse to start the
correct HSS. The address (14 bits plus two-parity
bits) is gated from SAR through the address OR to
all HSS. The eight-mark bits (plus a parity bit)
are gated from the mark register through the mark
OR to the storage. The CPU storage protect key
(PSW 8-11) is gated through the key OR and a parity
bit is added. Along with select, the BCU sends store
to all 2365 storage frames.

Just as on a CPU fetch operation, BCU sends ac-
cept back to the CPU about the time select is sent to
storage. The accept signal tells the CPU that its
request has been honored and that it can now drop its
request and change SAR. It can make a new request
if one is pending.

On the post-selection cycle, the SBI latch register
is set from K, All 72-bits are set into the SBI latch
and sent to storage regardless of the number of bytes
to be stored. The selected HSS uses the mark bits to
gate the corresponding bytes into its MDR. Those
bytes of the MDR not set from SBI are set by the
sense amplifiers at the end of the read portion of the

storage read/write cycle. Then, the modified 72-bit
word in the MDR is written back into the selected
address on the write cycle.

After the post-selection cycle, the BCU is finished
with the CPU store operation, except for the house-
keeping jobs of turning off the storage busy trigger
set by select and changing the W/Z trigger to keep it
in step with the X/Y trigger. Just as on a CPU fetch
operation, these jobs are done near the end of the
storage cycle after the selected HSS sends advance.

Control

o CPU request latch and blocking conditions operate
the same as for a CPU fetch.

o BCU sends select and store to storage along with
SAR, marks, and key.

o No return address register bits are set.

e X/Y, W/Z, and HSS busy triggers operate the
same as on a CPU fetch.

The CPU interlocks all fetch and store request lines
so that only one request can be made at a time. The
CPU may have loaded SAR, duplicate SAR, and the
mark register priorto raising store request; or it may
set these registers at approximately the same time
that store request is brought up. In either event,
BCU will have this input data at the L clock when the
CPU request latch is set (Figure 5200).

The same blocking conditions described for a CPU
fetch operation may block a CPU store operation. These
blocks are:

1. A channel ready to select a nonbusy HSS on this

cycle or a CDA line from a channel.

2. Cyclic inhibit on (BCU is busy).

3. Requested HSS is busy.

If the request is blocked, it is completely ignored
until the next L time, when another attempt will be
made if the request is still present. Meanwhile, the
CPU is free to drop its request or substitute another
request.

If the store request is not blocked, BCU decodes
duplicate SAR bits and sends a select pulse to the
requested HSS. The BCU gates the address from
SAR, the mark bits from the mark register, and the
SPF key from the PSW to the storage. The BCU also
sends store to all 2365 storage frames. Also, during
the selection cycle, BCU sends accept back to the
CPU, turns on cyclic inhibit, and sets the appropriate
HSS busy trigger.

A return address register is reset and no positions
in the register are turned back on even if the specified
store address is invalid (Figure 5080). A separate

Storage Bus Control 12-65 37

error trigger is set for invalid CPU store address;
details of all invalid address conditions are described
under "Program Checks."

At the beginning of the post-selection cycle, the
X/Y binary trigger is changed, even though no return
address register bits are set for a CPU store opera-
tion. The SBI latch register is also released (reset
and set) in the post-selection cycle. The CPU can
(and often does) wait until A time of the post-selection
cycle to set the K register; however, K can be set at
any time prior to the post-selection cycle. The out-
put of the SBI latch is ungated to storage; the selected
HSS sets its MDR from the SBI about one-third of the
way through its cycle.

The selected HSS sends advance back to the BCU,
even though no data returns on a store operation
(Figure 5080). Advance is delayed to switch the W/Z
trigger to keep it in synchronization with the X/Y
trigger.

The selected HSS sends reset busy to the BCU to
reset the busy trigger turned on by selectintime to
allow a new select shortly after the end of the stor-
age cycle (Figure 5200). A HSS receiving consecutive
selects is idle about 30 nanoseconds (difference be-
tween four machine cycles and a 750-nanosecond
storage cycle).

Detailed timings of consecutive CPU store opera-
tions to alternate storage addresses are shown in
Figure 8101,

CHANNEL FETCH

¢ Channel bus priority circuits allocate the use of
the channel buses to one channel at a time.

e BCU gives channel storage requests priority over
CPU storage requests.

e Unlike CPU requests, a channel request remains
pending if the requested HSS is busy.

The channel bus priority circuits grant priority to one
channel (or the system control panel) at a time. The
channel bus priority circuits are necessary to pre-
vent interference on the channel buses (CAB, channel
SBI, and channel SBO). Because the-seven channels
and the system control panel operate independently

of each other and of the CPU, any number of these
eight storage users may simultaneously request stor-
age. When there are simultaneous requests, the BCU
must allocate the use of the channel buses to one user
at a time. The BCU allocates the use of the channel
buses in a fixed priority scheme: channel 0 has the
highest priority, channel 1 next-to-highest, and so
forth. For example, channel 6 cannot access storage
if any other channel is making a request. The sys-
tem control panel, or maintenance channel, has the
lowest priority and can access storage only when
none of the channels are making a request.

38 12-65

Once a channel gains channel bus priority, it
puts the storage address on the channel SAB (CAB),
The entire process of recognizing a channel request,
granting priority to the requesting channel, and
receiving the storage address on CAB requires about
1 microsecond. During this time, the BCU will
honor CPU requests even though channels have
priority over the CPU.

A channel is not considered to have a valid re-
quest until its storage address arrives in BCU and
a line, address valid, is generated. At this point,

a channel select signal is generated at the first B
time when the BCU and the HSSrequested by the CAB
bits are not busy. Any channel select blocks all
CPU selects. By bringing up channel select at B
time, a CPU request that would have been honored
on the next cycle is blocked and the channel selection
is made instead.

The turn-off of the HSS busy triggers is timed to
allow a channel select signal to be generated at the
B time of the cycle that precedes the machine cycle
in which a new select can be sent to a HSS ending a
previous cycle.

Data Flow

e Channel requests are asynchronous with each other
and with the CPU and the BCU.

e BCU gives priority to a channel by sending that
channel a BCU response.

e A channel puts its storage address on the channel
SAB (CAB) when it gets priority.

o When BCU has a valid address and the BCU and
the requested HSS are not busy, CPU requests are
blocked and storage is selected for the channel.

e Advance from storage is sent directly to the chan-
nel,

e With advance, the BCU sets fetched data into the
SBO latch.

e The channel uses advance to sample a fetched word
from channel SBO into the channel registers.

The channels bring up storage request anytime they
require a storage access. (Channel includes the sys-
tem control panel which is considered the maintenance
channel.) Unlike CPU requests, channel requests are
completely random with respect to each other and

with respect to the BCU and CPU cycles (Figure 6102).

Whenever the channel buses are not in use (as indi-
cated by the buffer trigger being off), the BCU checks
for channel requests once per machine cycle. The
checking is done from channel 0 through channel 6
and then the maintenance channel in that order. The
first request that is found (highest priority) is
honored, and any other requests are ignored.

BCU honors a channel request by sending that
channel a BCU response signal. This signal tells
the channel that it gained channel bus priority and
should respond by putting the address of the desired
storage location on the channel SAB (CAB) and the
protection key on the channel key bus. The CAB
positions, 0-20 plus three parity bits, feed into
corresponding positions of the BCU address OR.

About 300 nanoseconds travel time is required
for BCU response to gooutto a channel. Another 300
nanoseconds is required for the storage address to
come back to the BCU. Because of this signal travel
time, the channel sends an address valid sig-
nal to tell the BCU controls when the address has
arrived in the BCU. Meanwhile, the BCU follows
the BCU response signal with a BCU data request
signal. The primary purpose of BCU data request
is to tell the channel to put the incoming data on the
channel storage bus in (SBI) if this is to be a store
operation. At request time, however, BCU does not
know if a channel is requesting a store or a fetch;
therefore, the data request signal is always sent,
but the channel will not put data on the channel SBI
for fetch operations. The channel does use BCU
data request to drop its storage request to the BCU.

Once the BCU receives address valid, it examines
CAB bits to start the proper HSS in the same way
duplicate SAR bits are examined to select a storage
unit for CPU requests. Channel selects are decoded
at B time of a machine cycle to block an L time CPU
request (if present). Successful decoding of a chan-
nel select depends on the BCU and the requested
HSS being not busy.

When the BCU decodes a channel select (B time),
the address OR (and the key OR) is switched to gate
14 bits (plus two-parity bits) from the CAB to stor-
age. After sending select to storage, the BCU sends
accept to the channel. Accept tells the channel that
its request has been honored and that the data it re-
quested will be on the channel storage bus out (chan-
nel SBO) following the next channel advance pulse.
Just prior to select, the BCU resets the channel
bus priority circuits and turns off BCU response.
The fall of BCU response tells the channel to take
its storage address off the channel SAB.

When the selected HSS sends advance, the BCU
routes this signal to the channel. The channel de-
lays advance to gate the requested data from the
channel SBO into its registers.

Control

e BCU samples for channel requests once per ma-
chine cycle until a request is found.

e A channel request turns on the buffer trigger
which prevents further checking for requests un-
til this channel is serviced.

e BCU sends BCU response and BCU data request
to the requesting channel.

e The channel sends address valid when address on
CAB is good.

e The channel waits if BCU or requested storage is
busy.

o The channel bus priority circuits are released
(reset) just prior to select.

e The maximum channel selection rate is one select
per five machine cycles (about 1 microsecond).

A channel fetch operation begins when the BCU rec-~
ognizes a channel request signal (Figure 5200). Note
that the buffer trigger must be off in order for BCU
to examine the channel request latches. The buffer
trigger means that some channel has its address on
the CAB (channel SAB). If more than one channel
request latch is on, the BCU recognizes only the one
which has the highest priority.

When the BCU recognizes a channel request, it
immediately turns on the buffer trigger to prevent
further checking of the request latches until this re-
quest is fulfilled. The buffer trigger output is com-
bined with the request latches in the priority ANDs
to send BCU response to the channel. The BCU re-
sponse signal tells the channel to gate its storage
address onto the CAB. BCU response remains on
until the buffer trigger is turned off; the buffer trig-
ger is turned off just prior to the generation of stor-
age select for the channel. Because 600 nanoseconds
travel time is required to remove the storage address
from CAB, ample time is allowed for the HSS to set
its address register (MAR) from CAB (through the
address OR).

After a fixed time delay following BCU response,
the BCU sends data request to the requesting chan-
nel. For a fetch operation, the channel uses data
request only to turn off its storage request.

The BCU waits about 600 nanoseconds from BCU
response to allow the storage address to arrive on
the CAB. After this time delay, delay full comes on
and the address valid line from the channel is tested.
The address valid signal is timed to arrive at BCU
slightly later than the slowest CAB bit; therefore,
address valid tells BCU that all CAB bits are true
(in their final state).

Storage Bus Control 12-65 39

Once the address valid 2 trigger (Figure 5200) is
on, the channel select ANDs are allowed to decode a
channel select if the BCU is not busy (inhibit off). One
of the channel select ANDs is activated when the HSS
that is pointed to by the CAB selection bits is not
busy. Unlike a CPU request, a channel request waits
and remains pending if the BCU or the requested HSS
is busy. As soon as neither is busy, channel select
HSS is generated to block CPU requests. Another
function of channel select HSS is to set the gating
latch which switches the address OR and the key OR
to gate the CAB and the channel keys to storage.

When select is sent to storage for a channel, the
appropriate busy trigger, the positive select trigger,
and the cyclic inhibit latch are turned on in the same
way that these conditions are set for CPU storage
selections.

At the LBR preceding select, the buffer triggeris
reset to allow the channel bus priority circuits to ex-
amine for a new channel request. Resetting the buffer
trigger also turns off BCU response to tell the chan~
nel to remove the storage address from CAB.

At the same time that the buffer trigger is reset,
accept is sent to the channel. This signal tells the
channel to use the next channel advance to gate the
channel SBO into the channel. For 2365 storage units,
accept is unnecessary; the fall of BCU response
could have the same meaning. However, accept is
necessary when LCS units are used on the system.

In this case, it is sometimes necessary for BCU to
drop BCU response to a channel without having hon-
ored its request. Therefore, the fall of BCU response,
alone, cannot tell a channel that the next data on the
channel SBO is the data that is requested. The oper-
ation of the BCU with LCS units attached to the sys-
tem is in the '""Features' section.

The action taken by BCU at select time appears,
at first, to be too rapid. The channel priority cir-
cuits are released to look for a new channel request
and, at the same time, BCU response is dropped.
However, consider the travel time of signals to and
from the channels. The requested address remains
on CAB for about 600 nanoseconds after BCU response
is dropped by the BCU. This gives plenty of time
for the selected storage to set its MAR with the CAB
address. In the same way, if the channel bus priority
circuits immediately recognize a new request, it
will require 600 nanoseconds for this new channel to
fulfill the address valid condition within the BCU. Al-
though the BCU can initiate a new BCU response al-
most immediately after dropping a prior BCU re-
sponse, the signal travel time to and from the chan-
nels slows the over-all channel storage access rate
to about 1 microsecond; that is, the maximum rate
at which channels (one channel or a combination of
channels) can access storage is one selection per
five machine cycles (about 1 microsecond).

40 12-65

Like CPU operations, the terminating sequence of
a channel operation is completely independent of the
initiating sequence (Figure 5080). When the selected
storage sends advance, this signal is routed to the
channel by a return address register. The BCU also
uses advance to gate the SBO latch and to switch the
W/Z trigger. The channel delays the channel advance
signal to gate the data from the channel SBO into the
channel registers. The operation is completed when
the selected HSS sends reset busy to the BCU to re-
set the busy trigger that is turned on at select time
(Figure 5204).

Detfiled § mings of consecutive channel fetches to

\CH . STORE
&
o(starts storage and stores the channel SBI

word.m{g

,ore i$ a storage store operationrequested
he ghan els or the system console. The

BCU thQ desired storage address from the CAB,
starts*8forage for the channel, and delivers the store
data (72 bits) on the ¢hannel SBI to the selected stor-
also routes the eight-mark bits plus
the four-bit (plus a parity bit) stor-
k@ frorh the channel to storage.

age protig!

Data Floﬁ)=

R;equest@lorltyw&ﬁﬁBCU response are the same
as on a channel fetg’ﬁt@yratlon.

a on channel SBI when

e The channﬁ&&» st@re ' ‘
BCU sends Ty

£
e BCU sets thé(i

SBI.

A channelstarts a channel store operation with a re-
quest exactly the same as it starts a channel fetch
operation (Figure 6103). The BCU grants priority
and sends BCU response and data request without
knowing whether the channel desires to fetch or store.

The channel, upon receiving BCU response, puts
the storage address on CAB just as it does for a chan-
nel fetch. Along with the 21-bit plus three-parity bit
storage address and the four-bit (plus a parity bit)
protection key, the channel raises the store line to
the BCU. Also, the channel puts the eight-mark bits
(plus a parity bit) on the channel mark bus.

When the channel receives data request, it not
only turns off its request, but also puts the 72-bit
store data word on the channel SBI.

After BCU response and BCU data request, the
BCU waits for address valid just as on a channel
fetch operation. With address valid, the BCU gen-
erates a select when BCU and the requested storage

are free. Because the channel store line is up, the
BCU also sends store to storage and gates the chan-
nel marks and the SPF key to storage along with the
channel address bits.

On the post-selection cycle, the BCU sets the SBI
latch register from the channel SBI. All 72 bits are
sent to storage; the selected storage takes only the
bytes which have corresponding mark bits just as on
a CPU store operation.

After the post-selection cycle, the BCU is finished
with the store operation except for the housekeeping
jobs of turning off the storage busy trigger set by
select and changing the W/Z trigger to keep it in
synchronization with the X/Y trigger. These jobs
are done near the end of a storage cycle after the
selected storage sends advance.

Control

o Along with address from CAB, the BCU sends
channel marks, channel key, and store to the
selected storage.

o On post-selection cycle, BCU sets SBI latch
register from channel SBI.

o Unlike a CPU store, a return address register is
set for a channel store.

e Channel advance is sent to the channel even though
no data is delivered.

The BCU control of a channel store operation is
similar to that for a channel fetch operation (Figure
5200). The BCU recognizes a channel request through
the channel bus priority circuits and responds with
BCU response and BCU data request. When the chan-
nel receives BCU response, it puts the storage ad-
dress on the CAB, puts the mark bits on the channel
mark bus, puts the protection key on the key bus, and
brings up the store line. When the channel receives
BCU data request, it drops its request to the BCU
and puts the 72-bit word to be stored on the channel
SBI.

The BCU waits for address valid, then sets the
address valid 1 trigger followed by the address valid
2 trigger. A further delay is necessary if either the
BCU or the requested storage is busy. When both are
free, the BCU uses CAB bits to generate a channel
select which blocks CPU selects and sets the gating
latch. The gating latch gates the channel address,
marks, and key to all storages; only the selected HSS
takes these inputs.

Just prior to select time, the channel bus priority
circuits are released by resetting the request latches
and the buffer trigger. Resetting the buffer trigger
also turns off BCU response and, after about a 200-
nanosecond delay, BCU data request is turned off.

During the selection cycle, BCU sends accept to
the channel. The BCU also turns on cyclic inhibit
and the appropriate storage busy trigger as it does
during every selection cycle. The channel position
of one of the return address registers is set and the
X/Y binary trigger is switched.

During the post-selection cycle, the BCU re-
leases the SBI latch register to set t,h;,,s oo ft
from the channel SBI.

After the post-selection cycle, tlre
with the channel store operation untj]
storage sends advance (Figure 5080
arrives, the BCU samples the retu
ister that is pointed to by the W/Z t
sampling yields a channel advance s
sent to the channel. The channel us §
housekeeping functions associated with an e
storage cycle. After sending channel advan'é'é'

turn off the busy trigger whichwas
Detailed timings of a channel s
shown in Figure 8103.

PANEL KEY FETCH

of a storage location.

e A panel key fetch is made:

Q
1. When the panel keys art?dres@
2.

On some errors

The BCU can fetch the system co % Qa keys
ocatlon

(panel keys) instead of a storage es so
when a storage user specifies the addres ol tBe panel
keys instead of a storage location, and when an error
condition prevents the return of data from the
requested address. The panel keys are returned on
error operations to put good parity in the receiving
register. If the receiving register is loaded with all
0s, an erroneous machine check is generated be-
cause the receiving register hds bad parity.

The panel key address is a 1 bitin address position
0. In addition to this address bit, the enable panel
key address line must be active for the BCU to rec-
ognize address bit 0 as the panel key address. This line
is brought up by the enable panel key address switch
on the CE panel and for manual operations that use
the panel key data.

Storage Bus Control 12-65 41

Data Flow

e DPanel keys are gated through the word switch ma-
trix to the SBO latch register.

e SBO latch goes to normal destination.

When the BCU determines that a panel key fetch is

to be made, it sends a panel key fetch signal to the
maintenance channel (Figure 5201). This signal is
delayed to gate the system control panel data keys in-
to the SBO latch register. The delay is set to deliver
the panel key data to the SBO latch at the time when
data would have arrived from storage on a normal
fetch. The SBO latch is released as a result of ad-
vance from a selected, but cancelled storage.

Good parity (8 bits) is always generated for the
64 data keys and the full 72-bit word is set into the
SBO latch. The BCU sends an advance signal to the
receiving register as if a storage fetch had been
made.

In the case where BCU makes a panel key fetch
because of an error, the receiving register gets a
good parity word, and thus, an erroneous parity
error is avoided. For example, an invalid address
causes the BCU to make a panel key fetch. An in-
valid address is a programming error; if a parity
error is allowed to occur, it would cause a machine
check and would erroneously indicate a machine mal-
function.

Control
e A HSS is selected, then cancelled.
® A cancelled HSS controls BCU,

Any of eight conditions cause the BCU to make a panel
key fetch:

1. Enable panel key address switch on and any
fetch request that has a 1 bit in address bit 0.

2. Load FLT control word.

3. Manual load AB.

4. Manual store to GP or FP register.

5. Manual set IC,

6. Manual set PSW,

7. Invalid address.

8. Address check detected in BCU.

In six of these operations, the panel key data is
needed; the two error conditions cause a panel key
fetch only as a means of getting a good parity word
into the receiving register.

A storage is always started, then cancelled, for a
panel key fetch (Figure 5201), BCU starts storage
and sets a return address register in the normal way.
In the case of an invalid address or an address parity

42 12-65

check, select has already been sent to storage before
the error condition is recognized.

At B time of the select cycle, BCU sends cancel
to storage. The cancel signal causes storage to re-
generate the selected address without delivering data
tothe SBOlatch. Any errors detected by storage are
ignored.

Even though the selected storage is cancelled, it
still sends advance to the BCU. The BCU uses ad-
vances for all of the normal functions, including the
gating of the SBO latch. The panel key fetch signal
is delayed to time the delivery of the panel key data
to the SBO latch as if it were data from the cancelled
storage.

ADDRESS COMPARE

e An address compare circuit compares bit positions
0-20 of the address OR with 0-20 control panel
address keys.

@ The compare signal is used for scope synchroniza-
tion and for stop on address compare.

The BCU contains an address compare circuit that
checks every address sent to storage against the ad-
dress setting in the system control panel address
keys (Figure 5202). Bit positions 0 through 20 of the
address OR are compared with the corresponding ad-
dress keys.

The address compare circuit generates a scope
synchronization (sync) signal for troubleshooting and
stops the CPU when a particular address in storage
is accessed. Two switches on the system control
panel determine the results of an address compare.
A three-position switch selects the CPU, the chan-
nel, or both. In the up (CPU) position, a scope sync
signal is generated only when an address compare
occurs on a CPU generated address. In the down
(channel) position, a scope sync signal is generated
only if the address compare is the result of a chan-
nel-generated address. In the center (unlabeled)
position, any address compare generates a scope
sync signal. The scope sync signal can be used to
halt the CPU under control of an address compare
stop switch. If a halt is generated, the CPU finishes
the instruction in progress, then goes to the stopped
state.

The output of the address compare circuit causes
an address compare trigger to turn on for one ma-
chine cycle, beginning at B time of a BCU select
cycle and ending at B time of the post-selection
cycle (Figure 5202). The output of the address compare
trigger is controlled by the address compare select
switch on the system control panel. When this switch
is in the center position, the address compare trigger

output is routed unconditionally to the address com-
pare sync points. A sync point is located on each
CPU gate and in each channel. When the select switch
is set to the CPU position, the compare trigger out-
put is not gated to the sync points unless the BCU
gating latch is off (gate CPU). When the select switch
is set to the channel position, the compare trigger
output is gated to the sync points only if the gating
latch is on (gate channel). The address compare sync
pulse generates a CPU halt if the compare stopswitch
is in the stop position.

SPECIAL OPERATIONS

o Normal fetch and store operations are varied
slightly for certain special operations.

e Set key, insert key, diagnose, and test and set
instructions require a variationfrom thenormal
BCU operations.

e Single-cycle mode and some manual operations
vary the operation of the BCU.

The normal fetch and store operations of the BCU
are varied slightly to handle the storage access por-
tion of the set and insert key instructions, the diag-
nose instruction, the test and set instruction, and
some system control panel manual operations. The
set key instruction is a store operation to one or two
SP units. The insert key instruction is a fetch from
an SP unit. The diagnose instruction is a CPU fetch
with data delivery to the maintenance control word
(MCW) register via the channél SBO. The test and
set instruction is a combination CPU fetch and store
operation. Several manual operations require the
BCU to do a panel key fetch. Examples are: set PSW,
load A-B, and store GP or FP registers. Placing
the CPU in single-cycle mode also varies the oper-
ation of the BCU.

Set Key

e The set key instruction stores a five-bit key into
SPF storage.

e The BCU handles errors on a set key operation as
if it were a CPU store operation.

o A HSS is selected, but it is cancelled by the set
key control line.

¢ On Models 175 and J75, the BCU performs two
set key operations for each set key instruction.

The set storage key instruction is the means by
which a configuration of key bits for a block of

storage is set into the storage of the storage protec-
tion feature (SPF). The SPF storage holds a five-bit
key (plus a parity bit) for each block of 256 main
storage words (double words). On the set key instruc-
tion, SPF storage is addressed by the contents of
general register R2 and the key set into SPF istaken
from bits 24-28 of general register R1.

On a set key instruction, the BCU receives three
control lines from the CPU: CPU fetch request, re-
turn to J, and set key. The set key line alters the
operation of the BCU. Errors are handled as if they
had occurred on a store operation and no data is re-
turned. A return address register is not set even
though return to J is active. A set key line is sent to
storage. This line causes the selected HSS to cancel
its operation and tells the SPF to store the incoming
key. The BCU generates a parity bit for the incoming
key and gates the six bits to the SPF.

For a Model H75, the BCU selection and post-
selection cycles on a set key are the same as on a
CPU store operation, except that the SBI latch is
not set. (The H configuration has a single SP unit.)

For the Models 175 and J75, four HSS are inter-
leaved. Two of these HSS are in one 2365 and the
othertwoare ina second 2365, Each 2365has one SP
unit; therefore, two SP units must hold identical
keys for a particular block of addresses. This means
that on a set key operation, the new key must be set
into two SP units. The BCU performs a set key oper-
ation to one 2365, then does a second set key to the
other 2365 of the interleaved pair (pair of 2365's
containing the four interleaved HSS).

The BCU has two triggers to control set key in-
structions that must set a key into two SP units
(Figure 5205). When positive select turns on for the
first set key operation, key trigger 1 is set to inhibit
the accept signal to the CPU. As soon as positive
select goes off, key trigger 2 is turned on. Key
trigger 2 reverses address bit 19 to set the key into
the other SP unit of the interleaved pair.

The BCU can make one or more channel storage
accesses between the first and second set key opera-
tions. The CPU, however, cannot access storage be-
cause it is still waiting for an accept response to its
set key request.

When positive select turns on for the second set
key operation, key trigger 1 is turned off to allow the
accept signal to be generated. The accept reset
trigger turns off key trigger 2, restoring address
bit 19 to normal.

Insert Key

e The insert key instruction fetches a five-bit key
from SPF storage.

Storage Bus Control 12-65 43

e The BCU handles errors on an insert key operation
as if it were a CPU store operation.

o A HSS is selected, but it is cancelled by the in-
sert key control line.

e Unlike a set key operation, the BCU fetches a key
from a single SP unit on all models.

The insert storage key instruction is the means by
which a programmer can examine a previously stored
protection key for a particular block of storage. The
instruction fetches the SPF key addressed by GR R2
and sets it into GR R1 bits 24-28,

General register R2, bits 8-31, is routed through
the AA and is set into SAR 0-23. As on any CPU
fetch or store operation, the BCU sends 14 bits of
SAR to storage and either seven bits (H75) or eight
bits (175, J75) are routed to the SP unit to address
the key to be fetched. The SP unit delivers the ad-
dressed key to the BCU key buffer register. The
key (five bits plus a parity bit) is routed from the
key buffer to the AOE mask where three 0s are
added to make a full byte.

While the BCU is fetching the key, the CPUroutes
GR R1 through RBL to M and from M through the
main adder to K. The AOE mask byte, which contains
the fetched key, is set into K 24-31. This byte re-
places the corresponding byte from GR R1. Bits
0-31 of K are then set back into GR R1 to complete
the instruction.

At the end of an insert key instruction, bits 24-28
of GR R1 contain the fetched key. Bits 29-31 of GR
R1 contain 0s, and the remainder of GR R1 is un-
changed.

The BCU handles the insert storage key instruc-
tion almost identical to the way it handles the set
storage key instruction for a Model H75. Unlike the
set key instruction, the insert key is not affected by
four-way interleaving. On an insert key instruction,
the key is fetched from whichever SP unit is ad-
dressed by R2. On Models I75 and J75, the other
SP unit containing identical information is not in-
volved in the operation.

On an insert key instruction, the BCU receives
I fetch request, return to J, and insert storage key
control lines from the CPU. The insert storage key
line causes the BCU to treat the fetch as a store
operation; no return address positions are set even
though return to J is active and any errors detected
during the operation are handled as if they occurred
during a CPU store operation.

The insert key line to the selected HSS causes a
cancel and causes the SP unit to fetch the addressed
key. The BCU uses an SPF advance signal from the
SP unit to gate the fetched key into the key buffer

44 12-65

register and to signal the E unit that it can proceed
from the first fixed-point (FXP) cycles to a halfword
logical cycle.

The advance and reset busy lines from the selected
(and cancelled) HSS are used by the BCU as if the
operation were a CPU store.

Diagnose

e The diagnose instruction loads the MCW register
from a specified storage location.

e Diagnose is a CPU fetch with data return via the
channel SBO to the MCW.

The diagnose instruction is handled uniquely by the
BCU hecause it consists of a CPU fetch, but the
fetched data is returned via the channel SBO to the
MCW register. The CPU sets the calculated storage
address into SAR and sends the I fetch request and
diagnose signals to the BCU. The BCU starts stor-
age and relays the storage address from SAR through
the address OR to storage. At select time, the BCU
sets the diagnose position in a return address regis-
ter.

When the fetched 72-bit word returns from stor-
age, the BCU sets it into the SBO latch register.
From the SBO latch, the storage word goes out on the
channel SBO. The BCU uses the advance pulse from
the selected HSS to generate a diagnose select sig-
nal. The signal is generated by sampling the return
address register set at select time. The diagnose
select signal gates 0-31 of the channel SBO into the
MCW register.

Test and Set

e Storage performs a unique operation for the test
and set instruction; it does a combination fetch
and store.

e The BCU performs a normal CPU fetch operation,
except for a unique mark register reset.

The storage unit performs a unique operation for the
test and set instruction. The addressed location is
fetched and sent unaltered to the SBO latch register
the same as on a fetch operation. Unlike a normal
fetch, however, the storage uses a mark bit supplied
by the CPU to designate a single byte to be changed
in storage. The storage unit sets the designated byte
to all 1s then regenerates the 72-bit word; thus, the
storage unit performs a combination store and fetch.
To cause a test and set, the BCU performs a

normal CPU fetch but sends a test and set line to the
selected storage unit. No special gating is required

for the mark bit. The CPU sets a bit into the mark
register; the mark register is gated to storage on
any CPU operation. A unique mark-register reset,
however, is required for the test and set instruction.
The mark register is reset after any CPU store oper-
ation and after a test and set operation.

The storage protection unit is active on a test and
set instruction. A SAP check causes the original
word to be regenerated in storage and, instead of the
fetched word, the storage unit delivers all 0s with
good parity bits to the SBO latch register. This pro-
tects the CPU from taking a machine check caused
by a SAP error,

SINGLE CYCLE
e Single cycle applies to CPU operations only.

e On single cycle, running clock pulses are continu-
ous; controlled clock pulses are released one set
per depression of the start key.

e Storage units are not affected by single cycle.

The single cycle mode is applicable only to CPU
operations. The BCU handles channel requests with
running clock pulses available whenever power is on,
except during a system reset.

Single cycle mode does not affect the storage units.
A storage cycle, once started, runs to completion in
a fixed amount of time. A fetch request honored
during single cycle causes a complete storage cycle
with one depression of the start key. The fetched
data is set into the receiving register (A, B, or J)
by a running clock pulse. Similarly, a CPU store
operation is completely executed with one set of
control clock pulses. For correct operation, how-
ever, certain circuits within the BCU must operate
differently during single cycle than during normal
operation.

CPU Fetch
® CPU request latch is set with a control clock pulse.

e When a request is honored, the request latch is
turned off and blocked during the following con-
trolled clock cycle.

e There are two CPU accept triggers: pulse accept
is reset by the running clock and normal accept
is reset by the controlled clock.

The CPU request latch in the BCU is set with control
clock pulses. For a single cycle CPU fetch, the
request latch is set with the same conditions as those

used for normal operation (a CPU fetch request and
a control L clock). For single cycle, however, the
request latch must be turned off before the next de-
pression of start. To prevent honoring the same
request twice, the request latch must be blocked so
that it will not be set on the next depression of start.

To properly control the request latch, the CPU
accept trigger is duplicated (Figure 36). These two
accept triggers are set in parallel, but one is reset
by a control clock while the other is reset by a run-
ning clock. The CPU accept signal is taken from the
normal accept, so that accept to the CPU remains on
until the next set of control clock pulses. This simu-
lates normal operation to sequence CPU requests to
the BCU. The pulse accept trigger causes the CPU
request latch to be reset on the running clock cycle
following a CPU select.

The CPU request and accept conditions are the
only area of BCU changed for single cycle mode. All
other areas are controlled by running clock pulses.

CPU Store

e To ensure that K is set, the BCU delays one con-
trolled clock cycle before honoring a single cycle
CPU store.

To perform a single cycle CPU store, the BCU must
delay one cycle before honoring the request. Note
that on a CPU store, the CPU often brings up store
request one cycle before loading the K register. If
BCU honors the request on the first ¢ycle following
the request, the K register is actually set with the A
clock of the post-selection cycle. On single cycle,
this A clock will not occur until the next time start
is depressed.

Two latches are used to delay a single cycle store
request for one cycle (Figure 37). This one-cycle
delay ensures that the K register contains the data
to be stored when BCU selects storage.

The accept and pulse accept triggers operate the
same on a single cycle store as they do on a single
cycle fetch.

ERROR HANDLING

e BCU handles two kinds of errors: parity checks
and program checks.

e Most parity checks cause a machine check.

Two kinds of errors are handled by the BCU: parity
check errors and programming check errors. The
action taken for one of these errors depends not only
on the type of error, but also on the user (channel or
CPU) and whether the error occurred on a fetch or a
store operation (Figure 9104).

Storage Bus Control 12-65 45

Machine Cycles

Selection Cycle

®

Post-Selection-Cycle

@

‘ Select fo Stor
BCU sees
CPU Request

Accept to CPU

BCU Can Begin
Another Selection

:

Set Cyclic

Inhibit

Busy

Tor Set Ret

Addr
Reg

'

FIGURE 35. SELECTION

Fetch Request
A

}

Change X/Y Bin Tgr

' L

AND POST-SELECTION CYCLES: CPU FETCH

CPU Request To BCU
» Selection
'___ L Clk (Control) PH Circuits
Positive CPU Accept
Sel Out Accent To CPU
FL
Pulse Accept
EB (Control) Reset
CPU Pulse Accept _EBR A
Liulse Accept Reset — NOTE:
FL R PH In single cycle mode, depressing
— start causes one set of control
clock pulses beginning with an
L clock.
Depress Depress
T Start K Start
g 4t O) ©
unning) —— 't
Control Clk J i
CPU Request Latch })
Select to Stor <(
CPU Accept Tgr J)
Pulse Accept Tgr \\
Set SBO Latch //
—
Set A, B, or J AB1J «\
\——- CPU Selection Cycle
FIGURE 36. SINGLE-CYCLE CPU FETCH
S/C Store S/C Store
__‘i"ulks“::fe____w . Buffer | Buffer 2
! g M(donfro) L R A L A CPU Request
—S/CMode | pH | To Selection

From Figure 36 Accept

Circuits

L Clk (Control)

Pulse Accept Reset

b

From Figure 36

FIGURE 37. SINGLE-CYCLE CPU STCRE

46 9-65

Parity check errors indicate a hardware malfunc-
tion and result in a logout followed by a machine check
interrupt if they occur on a CPU operation. Parity
errors that occur on channel operations are sent to
the channel, where a channel interrupt will be initiated.
Programming errors are caused by asking the ma-
chine for anillegal or an impossible operation. Pro-
gramming errors result in a program interrupt.

Parity Checks

® BCU checks parity of all addresses off of the ad-
dress OR.

o Each HSS parity-checks addresses and marks.
e SPF parity-checks addresses and keys.

e Each HSS parity-checks all data bytes in MDR on
both fetch and store operations.

Address and Mark Parity

The BCU parity-checks all addresses that pass through
the address OR (Figure 5203). This 24-bit address
check is the only parity checking done withinthe BCU.
When a bad parity address is detected, the BCU can-
cels the selected HSS so that the selected address

will be regenerated without change and will not be
delivered on the SBO. The HSS suppresses any errors
found to prevent other error indications caused by

the faulty address.

Each HSS parity-checks the 14-bit addresses that
it receives. On store operations, the HSS also checks
the parity of mark bits. The SPF parity-checks the
address bits that it receives and parity-checks all
keys that it uses: the parity of the two keys used
for bit match, the parity of the incoming key on aset
key instruction, and the parity of the outgoing key
on an insert key instruction. A parity error detected
at MAR, the mark register, or within the SPF sends
storage address check to the BCU if the BCU has not
sent cancel. A storage address check causes the se-
lected address to be regenerated without change and
prevents data delivery on the SBO.

The BCU address check and storage address check
lines are ORed within the BCU to produce a single
address checkline, This line sets either the CPU ad-
dress check latch or the channel address check latch, de-
pending on the channel bit of the return address
register associated with this operation. If the CPU
address check latch is turned on, a machine check
interrupt is initiated. If the channel address check
latch is turned on, a channel address check signal
is sent to the channel.

Storage Data Check

Each HSS checks all data bytes in its MDR on both
store and fetch operations. A data byte parity error
brings up the storage data error line to the BCU if
cancel is not on. A storage data check does not alter
the storage operation (fetch or store). The storage
data error line is sent directly to the channel where
it is recognized by channel advance on a channel
operation. For CPU operations, the storage data
error line is combined with the return address
register outputs to set the X or Y CPU data check
latch on a CPU store. Bad parity on a CPU fetch is
not an error; the CPU may not use the portion of the
storage word that has bad parity. The CPU checks
the parity of fetched data that is uses.

Program Checks

e Two program checks are handled by the BCU:
invalid address and storage address protect (SAP).

e BCU detects invalid addresses.
e SPF generates SAP.

Programming checks handled by the BCU are:

1. Invalid address (address not within main stor-
age of this system),

2. Storage address protect (SAP) error (mismatch
of storage protect keys).

Invalid Address

On every operation, the BCU checks for an invalid
address (Figure 5204). An invalid address is an ad-
dress which is beyond the range of storage addresses
available on a particular system. Whenever an in-
valid address is detected, BCU cancels the selected
HSS.

An invalid address usually causes an interrupt;
however, the type of interrupt and the time at which
it is taken depend on the operation being performed
when the invalid address occurs. For channel opera-
tions and CPU fetches, the BCU stores the invalid
condition in a return address register and sends itto
the channel, A-B, or J along with the corresponding
advance. A channel that receives invalid will initiate
a channel interrupt. For fetches, the CPU does not
initiate an interrupt until it determines whether the
data from the invalid address is required.

For a CPU store operation, the invalid address
condition is set into the CPU invalid store buffer
trigger. This trigger initiates a program interrupt.

Storage Bus Control ~ 12-65 47

~operation, data to-the SBO-is-suppressed-and any

Storage Address Protect (SAP)

The SPF generates a SAP error on any store opera-
tion if the storage protect keys do not match (unless
the in key is all 0s). On fetch operations, the SPF
generates a SAP error if the keys do not match and
the read-protect bit is on.

On store operations, the SAP error cancels the
selected HSS and sends SAP to the BCU (Figure 5204).
On fetch operations, the SAP error suppresses

data delivery on the SBO and sends SAP to the BCU.

For any channel operation, the BCU sets the chan-
nel SAP trigger if SAP is received from the SPF.
The channel SAP error is recognized by channel
(with channel advance) and causes a channel interrupt.

For CPU store operations, the BCU sets the CPU
SAP trigger if SAP is received from the SPF. The
CPU SAP trigger feeds the interrupt circuits to cause
a program interrupt.

For CPU fetch operations, the BCU must handle
SAP from SPF similar to the way an invalid address
is handled on a CPU fetch operation. A program
interrupt is not desirable until CPU determines that
the fetched data is to be used. The BCU has an X
and a Y SAP fetch buffer trigger; one of these trig-
gers is set when SPF generates a SAP error on a
CPU fetch. The output of these triggers is ORed to
feed the A SAP, the B SAP, and the J SAP circuits;
these circuits determine whether the data from the
error fetch is actually required in the operation being
performed. If this data is necessary, either the A
SAP, the B SAP, or the J SAP trigger is turned on
to cause a program interrupt.

Cancel

® Cancel causes storage to regenerate the selected
address.

o No data is delivered to the SBO.

A cancel signal causes a selected HSS to regenerate
the selected address without change. On a cancelled

errors detected by the HSS are suppressed.

The cancel latch within a HSS is set in one of three
ways:

1. Cancel from the BCU.

2. SAP signal from the SPF.

3. Set or insert key line from the BCU,

The BCU cancel signal is brought up on a BCU-
detected address check, on an invalid address, and
for a panel key fetch (Figure 5201).

£

48 12-65

Communicate and CPU Storage Busy

® The CPU communicate line controls two error
latches in each HSS and one error latch in each
SPF.

o The purpose of these error latches is to light an
an indicator if the specified error occurs on a
CPU operation.

e HSS indicators are address (eight lights) and data
(eight lights).

e SPF indicator is SPF (four lights).

e The CPU storage busy line prevents entry into an
interrupt sequence while BCU is handling a CPU
request,

Two error latches in each HSS and one error latch

in each SPF are controlled by a CPU communicate
line from the BCU. The purpose of these latches isto
light an error indicator if an error occurs onan opera-
tion requested by the CPU (Figure 5203). These
indicators isolate a bad address or bad data as having
come from either the CPU or a channel. The HSS
indicators controlled by CPU communicate are ad-
dress and data. The SPF indicator controlled by
CPU communicate is SPF,

The CPU interrupt controls require BCU to gen-
erate a CPU storage busy line. This signal prevents
entrance into the interrupt sequence while the BCU
is busy with a CPU request.

The BCU generates the CPU communicate line
from the CPU pulse accept condition (Figure 5206).
The CPU storage busy signal is held up for two cycles
by ORing the pulse accept and CPU communicate con-
ditions to control an EBR PH,

MACHINE CHECKS

e The BCU generates a machine check signal for
any of three error conditions:

— — 1, Address parity check detected by the BCU

or storage on a CPU operation.

2. Storage data parity check detected by stor-
age on a CPU store operation.

3. X/Y and W/Z return address triggers are
out-of-synchronization (any operation).

The three error conditions are ORed to produce stop
clock which turns off the control clock and initiates
a logout followed by a machine check interrupt
(Figure 5203).

Address Parity Check

® An address parity check is detected by BCU or
storage.

® BCU sets channel address check or CPU address
check.

The address OR parity check within the BCU and the
storage address check are described under "Parity
Errors." These two error conditions are ORed with-
in the BCU, then set into either the channel address
check or the CPU address check error latch. The
CPU address check latch is one input to the stop
clock OR.

Store Data Parity Check

o The HSS units check MDR parity on every operation.

o BCU ignores data check from HSS on CPU fetch
operations.

o Data check is sent to the channel on channel opera-
tions.

e Data check causes a machine check on a CPU store
operation.

The 2365 storage units check parity on the MDR on
every operation as described under '"Parity Errors."
Unless cancel is on, the storage sends storage data
check whenever it detects an error (Figure 5203).
The BCU ignores a storage data check on CPU fetch

operations, but sets either the data check X CPU or
data check Y CPU latch if the error occurs on a CPU
store operation. Both of these latches feed the stop
clock OR.

Return Synchronization Check

e X/Y and W/Z binary triggers must stay in syn-
chronization.

e Synchronization is checked only when no HSS
are busy.

e W and not X, or Z and not Y, causes machine
check.

The X/Y binary trigger gates return addresses into
one of the two return address registers; the W/Z
binary trigger gates the output of one of the two re-
turn address registers. The X condition of X/Y and
the W condition of W/Z point to the X return address
régister; the Y condition of X/Y and the Z condition
of W/Z point to the Y return address register. This
relationship, or synchronization, must be maintained
in order to return fetched data to the correct register.
When no HSS are busy, the synchronization of
X/Y with W/Z can be checked; either X and Wor Y
and Z should be on. The checking circuit tests for
W and not X, or Z and not Y (Figure 5203). Either
of these conditions signals a return address syn-
chronization error. This error condition brings up
the stop clock OR to signal a machine check error.

Storage Bus Control 12-65 49

INSTRUCTION PREPARATION

INTRODUCTION

e Simultaneous execution and preparation of instruc-
tions gains processing speed.

e Execution is program dependent.
e Preparation is automatic.

e Executions start with operation code registers
loaded and operands delivered.

e Executions are guided by sequencers.
e Executions are done one at a time.

e Main objective of preparation is to make every
machine cycle and execution cycle.

e Preparations are guided by sequencers T1 and T2.
e Instruction fetching is not T1 and T2 controlled.

e TI1 and T2 cycles, instruction fetching, and exe-
cutions are all done simultaneously.

The 2075 prepares instructions for execution in one
unit and executes them in another unit, and thus
greatly speeds up the running of any program. The
use of different units enables simultaneous prepara-
tion and execution. While instruction one is being
executed, instruction two is being prepared, see
Figure 38.

The instruction preparation unit (I unit) performs
all functions that are not directly dependent on the
particular instruction being processed. For instance,
preparation includes instruction fetching, no matter
what the instruction, it must be fetched from storage.
The execution unit (E unit) performs the specific
operation called for by the instruction being executed.
For instance, on a divide instruction the E-unit-
divides, on an add instruction it adds.

The functions performed by the E unit are de-
termined by the stored program. The I unit, how-
ever, without control from the stored program
performs automatically all of those functions which
are necessary to the running of any program. This
distinction between automatic (or built-in) control of
preparation as opposed to program (or external) con-
trol of execution is of primary importance for an
understanding of 2075 operation. The preparation
functions performed by the I unit under built-in

50 12-65

control serve as a foundation for all operations per-
formed by the 2075. A preparation failure can affect
all executions.

Before being more specific about what the I unit
does, we must look more closely at E unit operation.
Some characteristics of a typical execution are shown
on Figure 39.

Before an execution starts, the operation code of
the instruction to be executed is in an E unit opera-
tion register (EOP). For most instructions, operands
are delivered to RBL or the J register before the
execution starts. During the execution, the operands
are taken from RBL or J, the required operations
are performed, and the results are delivered to
specified locations via the K register.

On each machine cycle of an execution, the data
flow and the operation performed are guided by a
trigger called a sequencer. A series of sequencers
is used for each execution. Many sets of sequencers
are available. The sequencers to be used for any
execution are determined by the instruction to be
executed.

An execution may be a simple move from one gen-
eral register to another requiring two E cycles, or it
may be as complex as a VFL divide in which both
operands come from storage and the result is returned
to storage. This latter execution may require hundreds
of E cycles. In all cases some selected sequencer
defines the first cycle and another sequencer defines
the last cycle of each execution. Executions are done
one at a time; that is, the first cycle sequencer (EI)
for an execution may not come on until the last cycle
sequencer (ELC) for the preceding execution has been
turned off.

For any program the shortest running time is
achieved when every machine cycle is an execution
cycle. The I unit's job is to perform all preparation
functions in a way that enables continuous executions.
This ideal performance is shown at the bottom of
Figure 39.

The distinction between preparation and execution
functions and a first breakdown of the preparation
functions performed by the I unit are shown on Fig-
ure 40.

Most preparation functions are sequencer con-
trolled as are executions. Unlike executions, one set
of two sequencers is used for the preparation of all
instructions. Before the preparation sequence can be-
gin, instructions must be brought from storage to the
processor. The I unit contains instruction buffers and
a set of mechanisms aimed at keeping instructions
always available in the buffers. The mechanisms that
control instruction fetches monitor many conditions.

Instruction fetches are not made when they will inter-
fere with executions or other preparation functions.
Generally, however, new instructions are fetched
before all buffered instructions are used. With the
instructions available in the buffers, the sequencer
controlled preparations are started. Under ideal
conditions, sequencer controlled preparations are
completed in two machine cycles. The preparation
sequencers T1 and T2 guide the delivery of operands
to the execution unit, the setting of the operation
register inthe E unit (EOP), and the sending of a
start signal to the E unit. The '"keep track" functions
such as updating the instruction counter and con-
trolling the gates from the instruction buffers to the
operation register are also guided by T1 and T2. The
start signal is sent to the E unit as the T2 functions
are completed.

Most execution sequences are longer than two ma-
chine cycles but some require only two cycles. As-
suming two cycle executions and otherwise ideal
conditions, instruction fetches, sequencer controlled
preparations, and executions will proceed simultan-
eously and without interfering with each other as
shown at the bottom of Figure 40.

The 2075 processor as described consists of the
instruction preparation unit and execution unit. A
further breakdown by functional section is shown on
Figure 41.

Three different sections perform executions. The
execution unit (E unit) performs on executions re-
quiring arithmetic or logical manipulation of data.
The instruction execution unit (IE unit) performs on
executions that are closely associated with I unit
functions or mechanisms. The branchunit (Br unit)
performs on executions that may result in a branch
to a new instruction address. Each of these units
executes certain instructions independently of the
other execution units. Each receives its own start
signal from the I unit and uses its own sequencers to
control its operation as has been described for the E
unit,

The use of three independent execution units does
not enable more than one instruction to be executed
at any one time. The only simultaneous operation of
execution units occurs on some instructions which
require the use of two units for their execution. On
these instructions, the E unit operates simultaneously
with either the Br unit or the IE unit. For example,
on branch on index high (BXH) the E unit does arith-
metic to determine the success of the branch, and
the Br unit fetches instructions from the branch
address.

The bus control unit (BCU) is another functional
section of the 2075 processor. BCU contains the data
flow paths and the controls for storage operation with
the channels as well as with the processor. A main

function of the BCU is to service near simultaneous
storage requests from the different channels and the
CPU in the order of their assigned priorities.

CONTROL AND FUNCTIONS OF T1 AND T2

e Dependencies between data paths and between
functions require variations in cycling.

e Required variations are achieved by three IS
control signals: TN T1, TN T2, and Ito E
transfer.

e Interference between executions and T1 cycles or
T2 cycles is prevented by block T1-M and block
T2-M.

o Interference between one execution and the next
is prevented by busy triggers and last cycle se-
quencers.

e Operation registers are set by IS control.

o TI1 cycles compute effective addresses and initiate
fetches for storage operands.

e T2 cycles deliver operands from the registers.

e Ito E transfer times the start of all executions.

e ICR contains the storage address of the instruction
that is being prepared.

Note that the 2075 uses specific units to perform
various jobs and thereby gains speed. Similarly, the
I unit gains speed by keeping the various jobs that it
must do as independent as possible. Figure 42 shows
some of the main flow paths through the I unit.
Mechanisms which are a part of units other than I are
shown by dotted lines and their unit is given at the
upper right corner.

Instruction addresses must be delivered to the
storage address register (SAR) before instructions
can be fetched. When a program is initially loaded,
the program status word (PSW) comes from storage
on the storage bus out (SBO). The PSW is gated from
SBO to the J register and then to the PSW register in
the I unit. When instructions are to be fetched, the
portion of the PSW that contains the instruction ad-
dress (ICR) is gated to the incrementer (Incr). The
incrementer can deliver the address unchanged to
SAR, or it can add appropriate increments when in-
structions in advance of the ICR value are to be
fetched. The incrementer is the only arithmetic unit
needed to generate instruction fetch addresses from
the ICR value.

Instruction Preparation 12-65 51

Instructions must be delivered to five operation
registers. Instructions come from storage on SBO
and are gated by BCU into either the A or B instruc-
tion buffer registers. A gate select mechanism gates
the proper halfwords for the next instruction to be
prepared to an I unit operation register (IOP). The
setting of IOP and of the other operation registers
fed by IOP is done under control of preparation
sequencers T1 and T2. The exact cycle on which
each operation register is set depends on many things
which will be discussed later. The general rule is
that each is set as early as possible without inter-
fering with its use by the preceding instruction.

Addresses for operands from storage are gener-
ated on the T1 preparation cycle. An address may
require the addition of three quantities: the base and
the index which are in the general purpose registers
(GPR), and the displacement (D) field of the instruc-
tion. On T1, IOP contains the instruction to be pre-
pared. IOP decoding gates the required address
components to the addressing adder (AA) and sets the
output of the AA to SAR. The base register is gated
to the general bus left (GBL) and the index register
is gated to the general bus right (GBR). GBL and
GBR go through the AA ORs and into the AA without
further gating. The AA receives inputs and gener-
ates a sum on every T1 cycle. On instructions which
do not require an address, the sum is not set to SAR.

Operands from GPR are delivered to the register
bus latch (RBL) in the E unit on T2 preparation
cycles. On every T2 cycle, two registers are se-
lected for gating to GBR and GBL by decoding the R1
and R2 fields of IOP. Except when IOP decoding
indicates a floating-point instruction, GBL and GBR
are gated to RBL after going through the AA ORs.

On floating-point instructions a selected floating-point
register (FPR) is gated to RBL. RBL, therefore,
receives information from either a GPR or a FPR on
every T2 cycle. If the gated registers are not re-
quired for the execution of the instruction, the con-
tents of RBL are ignored.

The units and mechanisms described as independ-
ent are not completely independent. Instruction

fetching and operand fetching have been describedas

various functions performed by specific mechanisms.
Figure 42 shows storage addresses for instructions
and for operands independently generated, but both
being delivered to the SAR. The BCU (and storage)
can process only one storage address on any one
machine cycle; therefore, nothing would be gained
if two storage addresses were delivered from the
2075. On any machine cycle the conditions of the
instruction buffers can call for an instruction fetch.
On any T1 cycle, depending on the instruction and
sequencers T1 and T2, an operand fetch may be

52 12-65

initiated. The need for the operand fetch is deter-
mined during the T1 cycle. Both addresses are gen-
erated; if the operand fetch is required, the operand
address is delivered to the SAR and the instruction
address is blocked. Only if the operand fetch proves
unnecessary is the instruction fetch made. Under
normal conditions, operand fetches have priority
over instruction fetches. Whenever an instruction
fetch will interfere in any way with the preparation or
execution of an instruction already available in the
buffers, instruction fetching is blocked.

Instruction fetches must sometimes be blocked;
the preparation cycles T1 and T2 must also some-
times be blocked and for the same reason, depend-
encies exist between the units and mechanisms
described as independent. Note on Figure 42 that on
T2 cycles, operands from the registers are delivered
to RBL. On certain instructions, the E unit makes
additional use of RBL as a data path during execution
cycles. For these instructions, T2 cycles are blocked
until RBL is no longer required by the E unit. Fig-
ure 42 also shows that on T1 cycles, GPR is gated
out as components of the operand addresses. On
certain instructions, the E unit requires that GPR be
gated out during execution cycles. For these instruc-
tions, T1 cycles are blocked until GPR out gating is
no longer required by the E unit.

The situations described in the preceding text re-
quire that T1 or T2 cycles should not start until the
execution unit has finished using some shared mech-
anism. Sometimes even though the T1 or T2 se-
quencer is on, its functions cannot be completed inone
cycle; the cycle must be repeated. T1 is allowed to come
oneventhough the instructionto be prepared has not yet
been delivered to the instruction buffers. T1 must
be repeated until the instruction has been loaded to
IOP. T2 also must be repeated sometimes. If the
instruction being prepared requires an operand fetch,
the fetch is initiated during T1 and maintained during
T2. Should BCU be busy and not accept the request
immediately, T2 must be repeated until the request
is accepted. When all preparation functions have
been completed, the start of the execution may be
further delayed because the previous execution is
still in progress. Some possible variations in cycling
that result from these delays are shown on Figure43.

Note that either T1 or T2 cycles may be repeated
and that on some machine cycles neither T1 nor T2
is on. However, time is lost only when E1 does not
occur on the machine cycle following ELC.

The variations in preparation sequencing do not
affect execution sequencing. When the start signal is
sent for the execution of any particular instruction,
the appropriate first cycle sequencer is turned on and
execution proceeds completely under control of the
executing unit.

Instruction

Number —— ® @ @ @ @

r Js__\' A \I—_‘—L N N——\r A Rl

|Preg Exec :Preg IExec {Preg Exec 'LPrep JIEXEC }Preg lExec | Same unit prepares

and executes

O 060 ®6 6o 6 6

\Prep_, Prep | Prep | Prep Prep \Prep Prep | Prep Prep | Different units:
AN NI NN YN one for preparation and
h N I N N N\ N \ N one for execution

N Exec\}Exec\\:Exec\\=Exec\=Exec\{Exec\\}Exec\ %Exec\’Exec\ J

FIGURE 38. SIMULTANEOUS PREPARATION AND EXECUTION SAVES TIME

From Addressable Registers From Storage via BCU

!

RBL J J Register

Start Signal

E Unit

| K Register I

To storage or
addressable registers

Op Code £ Op

SEQUENCERS GUIDE EXECUTIONS

Machine Cycle = - 1 + — b ! + 1 4 } 1 I | ! u

Start Signal -

Sequencers : El I E2 I E3 IELC |

IDEAL OPERATION = EVERY MACHINE CYCLE AN EXECUTION CYCLE

Machine Cyele |
Start Signal - _— —_— P
Sequencers ILE] ILELC I El " E2) ; EN | ELC ¢ El 1 E2 { E3 { ELC : El : E2 |,ELC4}

FIGURE 39. EXECUTIONS, SEQUENCERS, AND MACHINE CYCLES

Instruction Preparation 12-65

53

Execution is Program

| Preparation is Automatic > Controlled —
Instruction
Available T 12
Fetch Déliver Operands] ¥
instructions "
from storage Set Operation Registers ——] RBL | | J Register
o buffers Start Execution Unit
K Track of R EOp Execution
eep Track o P.reparahons Sequence
and Executions Start E
K Register
Machine Cycles
. ! i | 1 | ! | 1 | | { | 1 Il |] H] N
L T ¥ 1 T T T T 1 T T T T 1 1 1 T T T 1
'Iniﬁal Instruction~Fetch | Instruction-Fetch fo Refill Buffers
F 1 F 1
, Instructions Available 3
F LS
I 12 0 T (T g 72 71 T2 4 T1 72 4 71 72 ¥1 12 , T1 4
I T T T t T 1 T T T
Start Start Start Start Start Start Start
 E1 _ELC , E1 ELC , El ELC , El | ELC , El | ELC | El ELC ;, EI 4
f T i i T T L 1 1 1 R I 1
FIGURE 40. SIMULTANEOUS INSTRUCTION-FETCH, PREPARATION, AND EXECUTION
IE unit Br unit
One or two of
these units used
to perform all
executions
I unit
Keep executions going
BCU
Data flow path and
control center for all
storage operations
FIGURE 41. FUNCTIONAL SECTIONS OF 2075

54 9-65

uorjeardoad uoTIONI}SUT

G9-3T

4

INSTRUCTION

ADDRESS

BCU

| il

L SBO _}
_____ ==

X E

JER N I -5

J Register |

PSW l ICR

X IC Controis

Incr

X
-l U
' SAR 1
L d

Instruction addresses are always
generated without preparation or
execution sequencer control and
are delivered to SAR when needed.

FIGURE 42. MAIN FLOW PATHS THROUGH 1 UNIT

INSTRUCTION
BCU
reT T T -
| SBO 1
R |
X X
1 |
| A Register B Register

)
ﬁ)
10P

s

X
| and IE

0 E and IE
r-LlEs

I EOP ! | ER |
L1

| LCOP |

Instructions are moved from the buffers
to the operation registers under control
of preparation sequencers T1 and T2,

QPERAND REGISTER
ADDRESS OPERAND
E E
| KRegister —X [KRegister
egister Register
Lo 250 N) LT e ?E
0 31 0 31
X X
1 |
16 GPR 16 GPR
[| I I
GBL X X GBR GBL X X GBR
AA OR AA OR AA OR AA OR
| |
T 7| X x
I0OP D
—_——
X
| From FPR
-V Vv
X
Addressing Adder
X BCU
— L2t 1
| SAR |
L Jd E
1
RBL |
L .

On T1 preparation cycles operand
addresses are always generated and
are gated to SAR when needed.

On T2 preparation cycles operands
from addressable registers are always
gated to RBL. They are used by E unit
only when needed.

Start Signal Held Up

: Tl T2 T1 T2 T2 T2, T1 T2 T1

Do not.send start ‘unhl p——t——+ f } N —— —
preceding execution N N N
is finished. S \

Start S Start N\ Stort

el ~ oL \

~ .
™~

~ \
 El | E2 , E3 ,BLC., El ,ELCNy El
N I T T T T 1

~

Turn=On for T2 Held Up

DonotturnonT2ifit 71 , 12 T1 | T1 | T1 12 T1 4 12 | Tl |
uses data path needed by ' i i~ T T T T < ¥ ¥ A
execution in progress. N - \
Start ™ Start N _Start
. ‘,\ > \\
(Bl E2 , ES RC El ELCN, EY |
f T 1 T T T T Tt
Turn=On for T1 Held Up
Do not turn on T1 if 11 12 | T | T2 ke T1 }
it uses data path needed -~ S~ N
. H ~ B
by execution in progress. Start ~— Start N
. N ~ N
. ™~ - AN
- “
¥ El + E2 3 E3 I £4 3 ES N ;\ELC 1 El] \\
f f f 1 T f T T
Executions Held Up (Time Lost)
Do not start execution L T T2 T, T T T T2 T T2,
until preparation is ! I]\\ T ' ' ' N L
complete. ~ N
Start \\ Start N Start
N _— NSl
R N\ N
| El 1ELC\: El 'ELC\:'EI)

FIGURE 43. VARIATIONS IN PREPARATION CYCLING

Instruction Sequencing Controls

e Three control signals give all cycling variations:
TN T1, TN T2, and I to E transfer.

e Each signal occurs once for each instruction.

There are two major control jobs in the I unit. The
instruction counter (IC) controls fetch instructions
to the buffers. The instruction sequencing (IS) con-
trols turn T1 and T2 on and off and start the execu-
tion units. Both sets of controls operate to perform
their assigned tasks as early as possible without
slowing down the executions. Since the progress of
preparations and executions determines the rate at
which instructions are used and thus the need for
instruction fetches, the sequencing controls are
described first.

Three major control signals are basic to the IS
controls., All of the required variations in prepara-
tion sequencing and starting execution units are ob-
tained by controlling turn-on T1 (TN T1), turn-on T2
(TN T2), and I to E transfer. The functions of the
first two signals are self-explanatory; I to E transfer
signals the start of every execution.

Figure 44 shows, in simplified form, the develop-
ment of each of these signals; Figures 5250, 5251,
and 5252 show the detailed logic for each signal. The
relationship of each signal to clock cycles and to the
sequencer it controls is also shown.

By developing these signals at the proper time any
required variation in preparation sequencing may be
achieved; however, the signals are used for much
more than simply setting their respective sequencers.
For the preparation of a single instruction, any num-
ber of T1 or T2 cycles may occur; each of the three
control signals, however, occurs only once. By using
the control signals. as well as the sequencers. se-
lected operations may be performed on the first or
the last of a series of cycles controlled by the same
sequencer. TN T1 is present at the beginning of the
first T1 cycle only. TN T2 spans the last T1 and the
first T2 cycle. I to E transfer marks the last T2
cycle. Figure 45 shows selective control by means
of these signals.

Block T1-M and Block T2-M

e Block T1-M and block T2-M time TN T1 and
TN T2.

e Block T1-M and block T2-M set at I to E transfer
if T1 or T2 cycles will interfere with execution.

e Reset during execution when interference will no
longer occur.

In the development of TN T1 and TN T2 one of the
major considerations is the interference problem;
that is, T1 or T2 must not be turned onif it uses any
mechanism that is required by an execution in pro-
gress. This problem is solved by the use of two
blocking triggers: block Tl-memorized and block T2-
memorized. If one of the triggers is on, it prevents
the turn-on signal for the preparation sequencer to
which it relates. The triggers are set at Ito E
transfer under control of a decode line from an I unit
operation register, BOP. The line BOP decode block
T1 (BD Blk T1) comes up during T2 for any instruc-
tion the execution of which requires that T1 cycles
for the next instruction be prevented. When the
reason for the block no longer exists; that is, when
T1 cycles will no longer interfere with execution, the
unit executing the instruction sends a signal that turns
off the trigger and allows TN T1 to be developed.
Blocking of T2 is done in the same way.

Figures 46 and 47 show the timings of these blocks.
Note that for T1 the actual block anticipates the turn-
on of the trigger. This is necessary because the
normal case is to turn on T1 at I to E transfer the
same time that the blocking trigger is set. Also note
that in both cases the actual block is dropped when
the turn-off signal is received and does not wait for
the turn off of the blocking trigger. Figures 5253
and 5254 show the complete logic for turning block
T1-M and block T2-M on and off.

Busy Triggers and Last Cycle Sequencers

e Ito E transfer is held up if:
1. T2 is not finished (OPF and not accept).
2., Last execution is not finished (unit busy
trigger and not same unit last cycle trigger).

Ito E transfer is developed when T2 functions have
been completed and the previous execution is complete
or in its last cycle. With T2 on, the only delay in its
completion occurs when the I unit is making an oper-
and fetch and must wait for an accept from the BCU.
The operand fetch (OPF) trigger is set when the I
unit is to make a fetch and it is turned off when the
request is accepted. Therefore, either OPF off or
OPF on and accept indicate the completion of T2.
Busy triggers and last cycle triggers that indicate
the condition of each of the execution units must be
monitored. As each execution is started, the E busy
trigger is set if the E unit is used; the IE busy trig-
ger is set if either the branch or the IE unit is to be
used. This double use of the IE busy trigger is possi-
ble because the branch and the IE units are never
used on the same instruction. An execution unit com-
pletes its part of an execution when its last cycle
sequencer is on. The last cycle sequencer turns off

Instruction Preparation 9-65 57

the busy trigger for the unit. The line last cycle
memorized is brought up only when all execution
units are not busy or are in their last cycle; and if
T2 is complete, it allows I to E transfer (Figure
5252).

Setting Operation Registers

o Decoding from operation registers along with
sequencers controls operation on each cycle.

e Preparation unit controls the setting of all opera-
tion registers.

e Each operation register is set as early as possible
without interfering with use on the previous in-
struction.

Just as the setting of the T1 and T2 blocking triggers
depends on decoding from an operation register so
most other preparation and execution functions are
directed by decode lines as well as sequencers.
Operation decoding is performed from five registers.
IOP and BOP are used to direct preparation. BOP

is also used by the branch unit and the IE unit to
direct executions. EOP and LCOP are used on E unit
executions. ER1 is used by both IE and E to direct
put-aways to general purpose or floating-point regis-
ters. All operation registers are set by the I unit
using the execution unit busy triggers and last cycle
information from each unit as part of the control
circuits.

Figure 48 shows the operation register sets that
occur as a string of instructions involving both E and
IE executions is processed. The cycles during which
each register mustbe correctly loaded are also shown.

IOP: Must contain the instruction being prepared for
at least one T1 cycle before T2 is turned on, and for
all T2 cycles. Normally IOP is set from the instruc-
tion buffers at TN T1 for each instruction and is not
changed until TN T1 for the next instruction. Three
conditions, however, require variations of this
procedure. The logic for setting IOP under all condi-
tions is shown on Figure 5256,

On occasion T1 is turned on before the instruction
to be prepared is present in the instruction buffer.
To take care of this situation, IOP is set at the start
of each T1 cycle and TN T2 is not allowed until IOP
has been correctly loaded for at least one T1 cycle.
The line which allows T2 to be turned on is IOP
loaded, which is generated by the IC controls. This
line will be described in detail later. IOP loaded will
be up during any cycle only if the instruction to be
processed has been present in the instruction buffers
a sufficient time to have been loaded into IOP at the

58 12-65

beginning of the cycle. Since IOP loaded is needed
for TN T2, IOP will contain the correct instruction
for at least one T1 cycle.

The second variation tc the normal setting of 10T
occurs during T1 of the subject instruction of an
execute instruction. At this time IOP must be set
with bits ORed from two sources, the instruction
buffers and a general register. IOP loaded indicates
that the instruction buffers have been set to IOP and
the execution sequence latch indicates that the infocr-
mation from the general register has been set to
IOP. By setting IOP on every T1 cycle until both of
these conditions are present, the required setting is
assured.

The third variation to the setting of IOP occurs
during the execution of SS instructions. An SS instruc-
tion consists of three halfwords. IOP holds only two
halfwords. The third halfword is not required during
instruction preparation but must be available in IOP
for address calculation during execution. This is
accomplished by setting IOP on every execution cycle
of SS instructions and by allowing the E unit to con-
trol the gates from the instruction buffers to IOP
during execution of these instructions.

BOP: Must contain each instruction for at least one
T2 cycle before the I to E transfer, for all T1 cycles
of the next instruction, and for all execution cycles of
branch or IE executes until the branch or IE last cycle
triggers are set. Normally BOP is set from IOP at
TN T2 and not changed until the next TN T2. Two
conditions require variation of this procedure. The
logic for setting BOP under all conditions is shown
on Figure 5257.

On some IE executes, T2 is turned on before the
IE unit has reached its last cycle. For these instruc-
tions BOP is set on the same T2 cycle that the IE last
cycle trigger is set. This set does not interfere with
the use of BOP by IE since last cycle decoding is not
required by the IE unit. The set meets the require-
ment that BOP be good for at least one T2 cycle be-
fore I to E transfer because I to E transfer cannot
come up until the last cycle of any execution.

The second variation of the normal set of BOP
occurs on the IE instruction store multiple., On this
instruction the last four positions of BOP are incre-
mented by the IE unit during execution to keep track
of the registers that are stored. On these instruc-
tions BOP is not needed during T1 cycles of the fol-
lowing instructions.

EOP: Must contain the operation code of any instruc-
tion to be executed by the E unit from one cycle befers
the first E cycle until EOP decoding is no longer »e--
quired (normally the turn-on of ELC). EOP is se?

T1 Will Not Interfere

12 is Off | ™NTI TN T1)Yes
T2 Complete This Cycle OR (Figure 5250)
Tl sequencer
T onby TN TI
, off by TN T2
T2 Will Not Interfere A
T1is On TN T2 No Yes
T1 Complete This Cycle >
Not Instruction-Fetch Priority (Figure 5251)
1 T2 sequencer
2 onby TN T2
off by | to E
transfer
Execution Finished or in Last Cycle
A | to E
T2 is On transfer No, Yes
T2 Complete This Cycle (Figure 5252)
Clock Cycles L L | | 1 1 I | |
. T | T2 , | T1 . T . T2 N T2 L T | T2
L El | E2 | E3 | E4 ELC El | E2
N TI TN T TNTI
TN 12 TN 72 TN T2
| to E Transfer | to E Transfer
FIGURE 44. THREE INSTRUCTION SEQUENCING CONTROL SIGNALS
Instruction Preparation 9-65 59

The Two Uses of IS Control Signals:
TN
T1 @ Turn T1 and T2 on and off.
@ Alter T1 and T2 cycles so that different events occur on
| repeated cycles.
Tl ™
Cycle 11
Event First T1
A Only
]
Event Every
No Yes B T
™ \
2 /]
Event Last T1
C Only
T2 ™
Cycle
y T2
Event First T2
D Only
|
Event Every
o\
Transfer / |
Event Last T2
F Only
FIGURE 45. INSTRUCTION SEQUENCING CONTROL SIGNALS USED TWO WAYS

[a1

~
~

.

T T2 | Tl
f 7 T
- 2 e
/// BD Blk T1 (BOP Decoding)
| Block T1-M 3y N
| 1 1
/.l | toE Transfer \
rrr
_I_IL// Actual Block T1 Condition 1
L v I ~ —
| to E Transfer Block T1-M
and BD Blk T1 and No TF
/ E TF Blk T1-M \
+
IE TF Blk TT-M
+
VFL Ending
FIGURE 46. BLOCKING OF T1

)
({
Ti T2 T1 T2
-+ s LEE — b e - -2 4
—————————————————————— Qb e e
%7 BD Blk T2 (BOP Decoding) R 3
| Block T2-M 31 |
I T(1
1 | to E Transfer _
)

_/

* TF Blk T2-M -<

FIGURE 47. BLOCKING OF T2

A

1(
Actual Block T2 Condition
(Block T2-M and no TF)

/ * TF Blk T2-M \
E TF Blk T2-M
+
s Branch LC -+ Succ Branch M
+

Conditions Occur for 1 Cyc
VFL Ending *+ No Store Req
+

Tests Complete . Unsucc Branch

4
Accept (BCU) + E TOF Blk T2-M on Accept
+

Conditions Occur and Wait
g for the Accept

Accept (BCU) * VFL Ending
+

Accept (BCU) - IE TOF Blk T2 on Accept

LT, T2 M, T2 T2 T, T2, T2 T, T T T2 2
r T 1 T T T T T 1 T I T T 1 |
E Busy | " IE Busy | ,, E Busy E Busy
"ElC TiEL T TEC!

¢ ¢ ; ‘ Cycles Used

Last T1 and all T2

Last T2 and all T1 of

next instruction

Cycle before E1 through

cycle before ELC

Cycle before ELC

! through ELC

All execution cycles

0P} @ t ® ® } @
B S
EOP t 0} t ® t ® ? L v ﬁ@
f @ j @ ! f ® f@*
LCOP I | (
o v ® ! ® ‘o
Rt | | ' '
o Op Code Data Path A/B Reg—» [OP _I: ZZ: :: :;OP

FIGURE 48. SETTING OF OPERATION REGISTERS

Instruction Preparation 9-65

61

from IOP to fulfill these conditions under all circum-
stances by the use of four set timings as shown on
Figure 5258.

The set timed by E not busy ensures a correct set
when the preceding instruction was not an E execute
or when the preceding instruction was an E execute
but ELC occurred before T1 came on. The set timed
by the ELC latch ensures a correct set when ELC
and T1 coincide. These two sets require the T1latch
line so that EOP will not be set at the end of a last
T2 cycle when IOP will be changing. The set timed
by set ELC gives a proper set when the preceding
instruction was an E execute for which ELC coincides
with the last T2 cycle of the instruction about to be
executed. The fourth set timed by set put-away (set
PA) trigger is used on certain operations where set
ELC is data dependent and may come up too late inthe
cycle to be used to set EOP because of circuit path
length. On these instructions set PA always comes
on a cycle before set ELC or it coincides with set
ELC.

LCOP: Must contain the operation code of any in-
struction to be executed by the E unit from one cycle
before ELC through ELC. These conditions are ful-
filled by setting LCOP from EOP using two different
sets as shown on Figure 5259,

The first set takes care of all situations where the
first E cycle of the execution is not directly preceded
by an ELC. The second set takes care of the situation
when E1 follows ELC.

ER1: Is set from BOP at every I to E transfer. It,
therefore, contains the R1 field of any instruction
during all execution cycles. ER1, however, is incre-
mented on the load and store multiple instructions
under IE unit control. This is done to direct put-
away to general registers and to determine when the
last register has been loaded or stored. The logic for
setting ER1 is shown on Figure 5260.

T1 and T2 Cycle Automatic Functions

e T1 cycles compute operand storage addresses and
when required initiate fetches.

e T2 cycles deliver operands from the registers to
the E unit.

o Loose decoding allows T1 and T2 functions to be
performed when they are not needed.

With the three major IS control signals directing T1

and T2 cycles and the start of executions, and with
all operation registers set so that they contain the

62 12-65

required instruction, the I unit's job of delivering
operands is accomplished automatically for every
instruction.

On Every T1 Cycle: Decoding from IOP directs the

selected data to the addressing adder. The adder
generates a sum and makes it available at SAR and
the H register at the end of each T1 cycle. Only on
the last T1 cycle, as signaled by TN T2, is the adder
output set in H. Only if IOP decode indicates the
quantity generated is to be used as a storage address
is it set in SAR. This allows SAR to be set with an
instruction fetch address on all cycles not requiring
its use for an operand address. The logic that ac-
complishes this T1 operation is shown on Figure 5261,
On the last T1 cycle decoding from IOP initiates
a fetch request to BCU, if required. At A clock of
the next cycle (first T2), the operand fetch (OPF)
trigger is set. OPF maintains the request to BCU
until it is accepted. At the same time, and only if
the adder output is to be used, decoding from IOP
causes the adder error checking circuits to be
sampled. The logic for making the fetch and causing
the AA error to be sampled is shown on Figure 5262.

On Every T2 Cycle: Selected addressable registers
(GPR or FPR) are gated to the RBL in the E unit as
shown on Figure 5264. Note that for all operation
codes, except floating-point, two GPRs are gated to
RBL. On floating-point operations, a selected FPR
is gated to RBL on every T2 cycle and on every E
cycle (after Ito E transfer) until the E unit turns off
FLOUT.

Loose Decoding: A principle that is used throughout
the 2075 is illustrated by the gatings that occur on

T1 and T2 cycles. Loose decoding occurs during T1
cycles of all SS instructions. On SS instructions all
operand storage addresses are calculated during exe-
cution cycles. On T1 cycles, however, the register
designated by the B1 field of the instruction and the

D field of IOP are gated to the AA. The sum gener-
ated is set in H at TN T2. The contents of H are not
used. The decoding that brings this about is useful
on other instructions and does no harm on SS instruc-
tions. Stopping the unnecessary transfers on SS
instructions would require additional logic and serve
no useful purpose.

Start Execution Units

e Ito E transfer times the start of all executions.,

o Igo (same timing as I to E transfer) sets the first
IE unit sequencers.

¢ E go and enable first E cycle (same timing as I
to E transfer) set the first E unit sequencers.

e First branch unit sequencer is set at TN T2 at
least one cycle before start of branch executions.

With the setting of the operation register and the
delivery of operands taken care of, the required exe-
cution unit or units may be started. Figure 5265
shows how this is accomplished for all instructions.

Execution is started by setting a selected se-
quencer which defines the first cycle of the instruc-
tion to be executed. The sequencer is selected by de-
coding from the operation registers, and the set is
timed by I to E transfer. The Ito E transfer line is
not used, however, in setting the IE or E unit se-
quencers. The proper timing is achieved for the IE first
cycle sequencer by setting the sequencer with I go which
is timed by the same conditions that time I to E
transfer. The proper timing is achieved for the E
first cycle sequencer by using E go and enable first
E cycle to time the set. All conditions for Ito E
transfer are contained in these two lines. Enable
first E cycle originates in the E unit and contains
conditions required for I to E transfer that are some-
times not available until late in the cycle. By ANDing
them with E go in the E unit, and using the output of
the AND to set the sequencer, the long circuit path
to the I unit and back to the E unit is avoided.

The first sequencer for the branch executions is
set at TN T2 at least one cycle before the other first
cycle execution sequencers. The reason is that the
first branch unit sequencer is used to control opera-
tion during T2 as well as during the branch execution.
This operation is described in detail under branch
instructions in 2075 Processing Unit, Volume 3, Field
Engineering Manual of Instruction. Form 223-2874,

Keeping Track of Instruction Preparation and
Execution

e During T1 and T2. ICR holds the address of the
instruction being prepared.

e I to E transfer changes ICR to the address of the
next instruction to be prepared.

e LOaddress is updated in the GSA during T1.
e LOaddress is set in GSR at TN T2.

o GSR gates the next instruction to IOP during T2
cycles.

e LOaddress is set to ICR at I to E transfer.

e If GSA carry, HOaddress is updated in the incre-
menter on the cycle after Ito E transfer.

e On program interrupts the address of the instruc-
tion following the one causing the interrupt is al-
ways set to ICR to be stored with the old PSW.

During T1 and T2 cycles the instruction counter
register (ICR) contains the storage address of the
instruction being prepared. At the end of prepara-
tion (I to E transfer), the ICR is changed to contain
the address of the next instruction to be prepared.
The mechanisms used to do this are the gate select
adder (GSA), the gate select register (GSR), and the
incrementer (Incr) as shown on Figure 5266.

GSA: During normal processing the GSA always
receives two inputs: the low-order positions of the

ICR (20-22) and the instruction length of the instruc-
tion being prepared which is decoded from IOP. At

TN T2 the output of the GSA is set in the GSR. The com-
plete logic for all sets of the GSR is shown on Figure 5267.

GSR: In addition to storing the updated value of the
ICR, between the time that it is generated in the GSA
(TN T2) and the time that it must be set in the ICR

(I to E transfer), the GSR is used to gate the proper
instruction from the instruction buffers to IOP. The
ungated output of the GSR controls the gates from

the instruction buffers to IOP. Normally each in-
struction is, therefore, available at the input to IOP
for at least one cycle before it is set in IOP.

Incrementer: As shown on Figure 5266, the incre-
menter is used in updating the ICR only when the GSA
gives a carry out as it delivers the low-order bits to
the GSR. The new high-order value for the ICR is
generated in the incrementer on the cycle following

I to E transfer and is set to the ICR at the beginning
of the next cycle. The use of the incrementer does
not interfere with its use in the generation of instruc-
tion fetch addresses. The incrementer can generate
the proper value for a high-order advance and for an
instruction fetch both on the same cycle. Some in-
struction executions use the incrementer as a data
path during execution. On these instructions, the
incrementer may not be used until at least one cycle
after I to E transfer.

On Program Interrupts: The value of the ICR is stored
with the PSW. The updating of the ICR is controlled
by interrupt circuits so that the value stored is always
the address of the instruction following the instruction
on which the interrupt occurred. This necessitates

Instruction Preparation 12-65 63

that the updating of ICR be blocked when an E time
interrupt occurs simultaneously with an I to E trans-
fer. I time interrupts are serviced at I to E transfer
and in this case the normal updating of ICR must be
allowed to take place.

CONTROL OF INSTRUCTION FETCHES

e Instructions in advance of the one being processed
are normally available in A-B registers.

e IOP loaded signals the availability of the next
instruction.

e An empty instruction buffer register (A-B) is
recognized at TN T2.

e Conflict between instruction fetching and T1, T2,
or execution cycles of an instruction blocks in-
struction fetching at TN T2 of the conflicting
instruction.

e The address for the next necessary fetch to A-B
is automatically generated and set in SAR if the
instruction fetches are not blocked.

® An instruction fetch is made if either A or B is
empty and instruction fetches are not blocked.

e Instruction fetching is given priority over instruc-
tion processing only if both A and B are in danger
of being emptied.

e Detecting the need for a recovery causes both A
and B to be filled, starting at the address in the
ICR.

The instruction counter fetch controls (IC controls)
are introduced by eight figures. Figure 49 shows how
the IC controls fit into the 2075, states the main ob-
jectives of the IC controls, and references Figures
5268, 5269, 5270, 5271, 5273, and 5274 that show
how the major objectives of the IC controls are
accomplished.

THEORY OF OPERATION

Included in this chapter are flow diagrams that cover
instruction preparation for every instruction and
detailed discussions of the instruction sequencing
controls and instruction fetching controls.

64 12-65

I TIME FOR ALL INSTRUCTIONS

e Every execution starts at I to E transfer.

e For any particular instruction, the conditions
affecting execution are always the same at I to
E transfer.

e Variations in the preparation sequencing have no
effect upon the conditions existing at I to E trans-
fer.

For each instruction a flow diagram in the 2075
Processing Unit, Field Engineering Maintenance
Diagram Manual, Form 223-2876 shows all things

done during preparation specifically in support of
execution. The following list of all instructions refer-
ences the preparation flow chart for each:

Name Mnemonic Figure
Add AR 6153
Add A 6152
Add Decimal AP 6154
Add Halfword AH 6152
Add Logical ALR 6153
Add Logical AL 6152
Add Normalized (Long) ADR 6150
Add Normalized (Long) AD 6151
Add Normalized (Short) AER 6150
Add Normalized (Short) AE 6151
Add Unnormalized (Long) AWR 6150
Add Unnormalized (Long) AW 6151
Add Unnormalized (Short) AUR 6150
Add Unnormalized (Short) AU 6151
AND NR 6153
AND N 6152
AND NI 6158
AND NC 6154
Branch and Link BALR 6377
Branch and Link BAL 6377
Branch on Condition BCR 6375
Branch on Condition BC 6375
Branch on Count BCTR 6378
Branch on Count BCT 6378
Branch on Index High BXH 6379
Branch on Index Low or Equal BXLE 6379
Compare CR 6153
Compare C 6152
Compare Decimal CP 6154
Compare Halfword CH 6152
Compare Logical CLR 6153
Compare Logical CL 6152
Compare Logical CLI 6162
Compare Logical CLC 6154

Name

Compare (Long)
Compare (Long)
Compare (Short)
Compare (Short)
Convert to Binary
Convert to Decimal

Diagnose
Divide

Divide

Divide Decimal
Divide (Long)
Divide (Long)
Divide (Short)
Divide (Short)

Edit

Edit and Mark
Exclusive OR
Exclusive OR
Exclusive OR
Exclusive OR
Execute

Halt 1/0
Halve (Long)
Halve (Short)

Insert Character
Insert Storage Key

Load

Load

Load Address
Load and Test

Load and Test (Long)
Load and Test (Short)

Load Complement

Load Complement (Long)
Load Complement (Short)

Load Halfword
Load (Long)
Load (Long)
Load Multiple
Load Negative

Load Negative (Long)
Load Negative (Short)

Load Positive
Load Positive (Long)

Load Positive (Short)

Load PSW
Load (Short)
Load (Short)

Move

Move

Move Numerics
Move with Offset
Move Zones
Multiply

Mnemonic Figure Name
CDR 6150 Multiply
CD 6151 Multiply Decimal
CER 6150 Multiply Halfword
CE 6151 Multiply (Long)
CVB 6152 Multiply (Long)
CVD 6156 Multiply (Short)
Multiply (Short)
--- 6174
DR 6161 OR
D 6159 OR
DP 6154 OR
DDR 6150 OR
DD 6151
DER 6150 Pack
DE 6151 Read Direct
Set Program Mask
ED 6154 Set Storage Key
EDMK 6154 Set System Mask
XR 6153 Shift Left Double
X 6152 Shift Left Double Logical
XI 6158 Shift Left Single
XC 6154 Shift Left Single Logical
EX 6375 Shift Right Double
Shift Right Double Logical
HIO 6156 Shift Right Single
HDR 6150 Shift Right Single Logical
HER 6150 Start I/O
Store
(& 6152 Store Character
ISK 6154 Store Halfword
Store (Long)
LR 6153 Store Multiple
L 6152 Store (Short)
LA 6167 Subtract
LTR 6153 Subtract
LTDR 6150 Subtract Decimal
LTER 6150 Subtract Halfword
LCR 6153 Subtract Logical
LCDR 6150 Subtract Logical
LCER 6150 Subtract Normalized (Long)
LH 6152 Subtract Normalized (Long)
LDR 6150 Subtract Normalized (Short)
LD 6151 Subtract Normalized (Short)
LM 6169 Subtract Unnormalized (Long)
LNR 6153 Subtract Unnormalized (Long)
LNDR 6150 Subtract Unnormalized (Short)
LNER 6150 Subtract Unnormalized (Short)
LPR 6153 Supervisor Call
LPDR 6150
LPER 6150 Test and Set
LPSW 6168 Test Channel
LER 6150 Test I/O
LE 6151 Test Under Mask
Translate
MVI 6170 Translate and Test
MvVC 6154
MVN 6154 Unpack
MVO 6154
MVZ 6154 Write Direct
MR 6161

Zero and Add

Mnemonic Figure
M 6159
MP 6154
MH 6159
MDR 6150
MD 6151
MER 6150
ME 6151
OR 6153
(¢] 6152
o1 6158
ocC 6154
PACK 6154
RDD 6172
SPM 6166
SSK 6165
SSM 6175
SLDA 6155
SLDL 6155
SLA 6155
SLL 6155
SRDA 6155
SRDL 6155
SRA 6155
SRL 6155
SIO 6156
ST 6157
STC 6157
STH 6157
STD 6160
STM 6171
STE 6160
SR 6153
S 6152
SP 6154
SH 6152
SLR 6153
SL 6153
SDR 6150
SD 6151
SER 6150
SE 6151
SWR 6150
Sw 6151
SUR 6150
SuU 6151
svC 6163
TS 6493
TCH 6156
TIO 6156
™ 6162
TR 6154
TRT 6154
UNPK 6154
WRD 6173
ZAP 6154
Instruction Preparation 9-65

65

INSTRUCTION SEQUENCING CONTROLS
T1 Cycle

The basic function of the T1 cycle is to gate to the ad-
dressing adder those fields required to form an ef-

fective address. See Figures 5261 and 50.

TN T1

If an instruction belongs to the class of instruction
for which T1 of the next instruction may cause inter-
ference with execution of the first instruction, T1 of
the next instruction is always blocked. At the I to E
transfer of the first instruction, the trigger block
T1-M is set if the instruction belongs to the above
This blocks T1 of the next instruction until
the unit executing the first instruction generates a
signal that cancels the block. Similarly, if aninstruc-
tion belongs to the class of instruction for which T2
of the next instruction may cause interference with
execution of the first instruction, the T2 of the next
instruction is blocked. A trigger block T2-M is
operated in a method analogous to block T1-M. See
Figures 51 and 52.

The T1 cycle is always taken as the first cycle of
It is also performed if no effective
In some instructions, it pro-
cures only a single field to be used as an address.

All fields are obtained from the general register (s)
and/or the IOP register.

The turn-on for T1 called TN T1 is composed of
The usual case is to turn it on with
the I to E transfer of the previous instruction.
the I to E transfer occurs, BOP decoding examines
the class of instruction and determines if blocking of
T1 of the next instruction is required. If BOPdecodes,
blocking of T1 is required (BD block T1) then the I
to E transfer is not allowed to turn on T1, but instead
turns on the block T1-M trigger.
tains the blocking during successive cycles. When the
E time has progressed to the point of no longer re-
quiring this block, it will generate a signal to turn-off
the block T1-M trigger. This signal is also used to
generate the TN T1 condition.

T1 may also be turned on by BLK Ti-ML. This is
the turn-on which allows the system to start up after
it has been manually halted.

class.

an instruction,
address is required.

many logic lines.

66

12-65

This trigger main-

Instructions That Generate Blocking of the Next T1

Cycle:

Instructions

All SS Instructions--
SPM, SSK, MR, DR, D,
BXH, BXLE, and STM

All I/O Instructions

LPSW

DIAG

svC

Condition

Require gating out of general registers
during the E time of the instruction.
The execution unit is required to turn
off the block trigger when this gating
is no longer required.

The channel and unit addresses are sent
to the I/O devices from the H register.
Blocking of T2 would prevent H from
being changed; however, the release
line from the channel (used to end the
instruction) could extend into the next
instruction and, if it were another I/O
instruction, cause permature termina-
tion. This may occur because the re-
lease line is multiplexed and uses slow
circuits. Thus, T1 is blocked to allow
the extra start up cycle.

The effective address must be saved in
the H register until the E unit can
transfer it to a general register. Al-
though blocking of T2 could accomplish
this, packaging requirements caused
T1 to be used. No additional delays
resulted.

In the LM instruction many general
registers are loaded. The compare
block is not capable of detecting a
compare from more than two registers.

In LPSW the ICR is changed. Thus, new
instructions will need fetching to the
buffers before processing can continue,

Until the MCW is loaded and the error
status lines have settled down, any
further instruction execution must be
blocked.

This instruction requires blocking of T1
to prevent the TN T1 from changing
IOP. IOP is required during the setting
of the interrupt code into the PSW.

The program halt trigger can also prevent TN T1.

This trigger, located in the maintenance console, is

used for the maintenance functions: manual halt,
single operation, etc. An output of the program halt
trigger is latched on the sequence control board and
deconditions TN T1.

Set IOP (Figures 5256 and 52)

The IOP register contains two instruction halfwords.
The first halfword contains an operation code and,
for multiple halfword instructions (all but RR), the
second halfword is used for addressing. Handling of
the third halfword, required by SS instructions, is
described in the "Instruction Fetching' section. By
means of the gate select mechanism any two succes-
sive halfwords of the eight halfwords contained in the
instruction buffers (A-B registers) are selected and
sent to the IOP register. The proper selection is
normally made during the previous T2 cycle. The
gate select mechanism causes the length of the in-
struction as decoded from the first two bits of IOP
to be added to the ICR and this value to be stored in
the gate select register with TN T2. The output of
the gate select register selects the gate for IOP,
With the I to E transfer, the gate select register is
sent back to the ICR thus updating the ICR.

The T1 function can be accomplished in one ma-
chine cycle. However, if the conditions to generate
TN T2 do not exist the T1 cycle continues to repeat
itself until TN T2 occurs. IOP is set to the gated
contents of A-B at the beginning of every T1 cycle.
The logic line TN T1 sets IOP for the first T1 cycle.
If T1 repeats itself, the set IOP occurs at the be-
ginning of each machine cycle until TN T2 occurs.
There is one exception to the later set condition.
During the execute instruction, the setting of IOP
has taken place. This special block is represented
by the expression:

IOP LOADEDL. XEQ SEQL

A special set SSOPL « VFL ADR is also pro-
vided for setting IOP on SS instructions; therefore,
the total expression for setting IOP is:

TON T1 + T1L . TON T2 - Not (I0P LOADED Ith -
XEQ SEQ Ith)+ SsopLl - vFL ADRL

I time (that is, T1) may start even though the se-
lected instruction has not yet returned to the instruc-

tion buffer. This could occur, for example, after
sucecessful branches or recoveries. Since T1 cannot

be turned off (see "TN T2'") until the selected instruc-
tion has returned to IOP, there will be at least one

T1 cycle during which IOP has contained the correct
instruction.

The selected instruction will arrive at IOP during
the same cycle that it returns to A-B since set IOP has
occurred for each T1 cycle. Note that if the selected
instruction is contained entirely within one register,
waiting is required only until this register is loaded.
The timing of A-B in relation to IOP and the problems
encountered in single cycle are discussed in the
"Instruction Fetching Controls' section.

Effective Addressing (Figure 5261)

The T1 cycle conditions input gating to the addressing
adder for up to three fields. The fields determined
by the instruction are selected by IOP. The contents
of general register R2 (X2) are gated to the addressing
adder via GBR, and the contents of B2 are gated via
GBL. D2 is gated directly to the addressing adder
from IOP. The general register buses have a width
of 32 bits plus parity. However, only 24 bits par-
ticipate in the add. The D field has a width of 12 bits.
When general register 0 is specified as one of the
fields, that adder input receives all zero data with a
correct parity for that field. The instructions in the
RR format are exceptions in that they make no
distinctions for GR 0.

The effective address formed has a width of 24 bits.
With the TN T2 it is always gated into the H register,
and may also be sent to SAR. When the effective ad-
dress is sent to SAR, the error checking of the AA is
sampled. All of the preceding conditions are decoded
by IOP. The RS shift instructions, which use the
effective address only as a shift amount, are unique
in that they sample the AA error but they do not send
the result to SAR.

T1 Cycle Additional Functions

The T1 control trigger has outputs used in other areas
of the machine, for example, it is used during the
maintenance feature single operation to turn-on the
block T1-M trigger and it is also used by the E unit
for setting EOP.

The T1 cycle during which TN T2 occurs can be
considered the good T1 cycle. For the TN T2 tooccur
every condition for the T1, functions must be avail-
able. In addition, every blocking condition that pre-
vents the second part of I time must have been re-
moved.

Instruction Preparation 12-65 67

r Instruction
Available

Preparation is Automatic

Execution is Program

Fetch
instructions
from storage
to buffers

For Any Instruction

IC fetches preceed preparation.

Preparation preceeds execution.

IC Fetch Controls

1. Signal the preparation unit when a complete
instruction is available. (Figure 5270)

2. Recognize either buffer empty (last instruction
used) at TN T2. (Figure 5268)

3. Always generate instruction fetch address and
set it to SAR unless blocked. (Figure 5269)

4. Preblock IC fetches before start of preparation
of a branch. (Figure 5271)

Block IC fetches at TN T2 if IC fetch and prepara-
tion or execution use same mechanisms. (Figure 5271)

5. Make IC fetch request if either instruction buffer is
empty and IC fetches are not blocked. (Figure 5268)

6. Give priority to IC fetches when both instruction
buffers are in danger of being emptied. (Figure 5273)

7. Fetch to fill both A and B from the address held in
the ICR when the need for a recovery is indicated .
(Figure 5274)

T

T2

Deliver Operands

Controlled — 5

!

l J Register

Set Operation Registers RBL I
Start Execution Unit
E Op
Keep Track of Preparations Execution
and Executions Start E Sequence
N K Register
A
N
2
a Empty Instructions
Recognition | Make IC Fetch_[5] Available I0P Loaded
»T—Make Fetch
i 2 Figure 5270
Figure 5268 g Fetch
Block Fetch) Request for A/B_
[4]preblock for Figure 5268
Branch; Block | | plock Address Generation 3
for Conflict 1= Address IC Fetch
Figure 5271 Generdtion | Address to SAR
s ilIC Fetch
7] Priority Figure 5269
Recovery Figure 5273 Prevent TN T2
Figure 5274 Fetch from ICR Address to A/B N

FIGURE 49. INSTRUCTION COUNTER FETCH CONTROLS
A Clock []] 1 I | I——-I I——-I
T T2 Tl
[Time [— ”_ _____
Displacement + GR(R1)Sent
Base t+ Index Amt= to M Via RBL

Effective Address

L JL 4
Set Set Set
0P BOP I0P
—/ NT X Tt E
Transfer

—/

Fetch Request to BCU

Set Effective Address into SAR

OPF
/ Accept from \ / Advance for J \
BCU from BCU
BCU Storage Cycles E ' } q— _J_Izcﬁe.d-—"'
E Time — — — . _ (First EXP_ Fist FXP_ First FXP EIC (Put Awey) |
AN J
set o —J L_sertcoe] L Jpord E‘: Aﬁ‘j‘ierf 3L set EOP

RBL to M—] L M

FIGURE 50. | TIME AND E TIME FOR AN RX-FXP-ADD (FULL WORD)

68 12-65

L .J_—l_ Adder Oufpuf—-)KL
I K, to GR(R1)

T 12 |

BD Blk Tl (BOP Decoding)

-~

L Block T1-M

)

e 1
L Actual Block T1 Condition \
— J
A
| to E Transfer Block T1-M
and and
BD Blk T1 No TF

/ E TF Blk TI-M '\
1

IE TF Blk T1-M
t
FIGURE 51. BLOCKING OF T VFL Ending
0 78 iz 15
T T
R"[Op Code } oo
0 16 1920 31
T T T T .
RX! Op Code : Rl : X2 ! B2 } D2 I
0 31
1 T T T
RS| Op Code : R1 l R3 : B2 } D2]
0 31
T I I
SI'| Op Code : Imm : B : DI
0 32 35 36 47
I T T T T T
S| OpCode 1 LI | L2 | B : D1 : B2 1 D2
1 1

FIGURE 52, INSTRUCTION WORD FORMATS

Instruction Preparation

9/65

69

Form 223-2873-1
FES S26-7034

TN T2

The following are the conditions necessary to gener-
ate the logic level TN T2.

IOP Ioaded: The IC controls generate this condition
if the selected gate (from A-B to IOP) is pointing to
a loaded instruction in the A-B register(s). See
Figure 5270.

NO COMPARE BLOCK + E BUSY: Buffer operation
register (BOP) decodes those E unit instructions
that will perform put-aways to the general registers.
A compare occurs when the put-away is to any of the
general registers used by T1 of the next instruction.
T1 must subsequently wait until the new value has
been put-away. This waiting is accomplished by
blocking TN T2. The block exists until the E busy
trigger is turned off. See Figure 5255,

No Instruction Fetch Priority: When the processing
has emptied one instruction buffer and is approaching
the point of emptying the second buffer (without having
allowed the first to be reloaded), the IC controls may

generate a block TN T2 until an IC fetch is made.
This gives the IC controls access to SAR. (See
"Instruction Fetching Controls' section and Figure
5273.)

BLOCK T2-M + TOF BLK T2-M: This condition is
available if the previous instruction processing has
not set the BLOCK T2-M trigger or the execution
unit is turning it off.

Block T2-M (Figures 53 and 5254)

The need for blocking of T2 is determined in the
same manner that T1 blocking is determined. BOP
decoding generates BD block T2. This decode line
and the I to E transfer turns on the block T2-M trig-
ger. Since the TN T2 cannot occur with the I to E
transfer, no additional logic is needed to anticipate
the block T2 as was required for blocking T1.

Some instructions will generate both BD block
T1 and BD block T2 lines. In these cases both block
triggers are set. When the processing no longer
requires the blocking of T1, the execution unit turns

__J—T_] | A I I A l q I A l l A l (1
Tl T2 T T2
: ——————— =1 S ————mm e 4T 4
/f// 7 ‘1‘: \/ T —s
'/ BD Blk T2 (BOP Decoding) _/____.s
L Block T2-M (¢ |
r)T 1
rr7
W4 | to E Transfer \
g
)T
—/ Actual Block T2 Condition \—
(Block T2-M and No TF)
/ * TF Blk T2-M \
E TF Bk T2-M
+
Branch LC - Succ Branch M
Conditions Occur for one Cycle +
VFL Ending-No Store Req
+
“TF Blk T2-M= Tsts Cpli « Unsucc Branch

Conditions Occur and Wait for
the Accept

1@ FIGLRE 53.

BLOCKING OF 12

70 1-68

Accept (BCU) - E TF Blk T2-M On Accept
+

Accept (BCU) + VFL Ending
+

Accept (BCU) + IE TF Blk T2-M On Accept

it off, Processing continues and the overlap is
started on the next instruction; however, T2 is
blocked until the execution unit turns off block T2-M.

Instructions That Generate BD Block T2:

Instruction Condition

ISK, ST, STH, STC,
CVD, STD, STE, RD,
STM, MVI, NI, OI, XI,
and all SS instructions

Operand fetches are generated by the
execution unit, or operands are to be
For these
operand fetches the SAR is required to

stored in external storage.

provide the storage address(es). SAR
must not be changed by TN T2 of the
overlapped instruction.

LH, CH, AH, and SH The E unit requires the RBL as part of
the data path to expand the fields to

32 bits.
is blocked to prevent the gating of

operands into the RBL.

T2 of overlapped instructions

CDR, ADR, SDR, AWR,
SWR, SER, AER, SER,
AUR, SUR, CD, AD, SD,
AW, SW, CE, AE, SE,
AU, SU

The E unit requires the contents of
the BOP REG for selection of the FP
REG to supply operand 1 exponent on
fractions add cycle.

MR, DR, MDR, DDR,
MER, DER, and MD

The E unit requires the J register as part
of the data path during E time. Over-
lap of the next instructions could re-
sult in a getch of an operand to J if T2
were not blocked.

For branch instructions the block T2-M
trigger is turned on by BRANCH OPL.

I to E XFER. This blocks the second
part of I time on overlapped instructions

BCR, BC, BCTR, BCT,
BXH, BXLE, BALR, BAL,
and EX

until the branch success is determined.
Blocking T2 protects the H register which
contains the branch-to-address.

Logic is provided to remove the block T2 con-
dition at the earliest possible time. Each turn-off
for the block trigger also enters TN T2 as a con-
ditioning level. The only exception occurs during
the execute instruction. In this instruction the block
T2-M trigger is turned off one cycle before T2 is
allowed to turn on. In this case the latched output
of block T2-M maintains the block for this cycle.

When blocking is employed to protect SAR, the
execution unit conditions the turn-off of block T2-M
with the control line TF block T2-M on accept at
the appropriate time during instruction execution.
This control line and accept (from BCU) turns off
block T2-M. See Figure 53.

If the blocking was protecting the J register, the
control line E TF block T2 is generated by the E
unit to turn off block T2-M. This line is always
generated during the last cycle of relevant instruc-
tions; and if the system is not in single-cycle mode,

Form 223-2873-1
FES S26-7034

the line is also generated a number of cycles before

J is free. T2 can be allowed to turn on earlier be-

cause any operand fetches it may initiate would not

return to J for at least four cycles. The turn-off may

be anticipated for up to three cycles beforedJ is free.
If RBLusage required blocking, the E unit generates

TF block T2-M when this usage is no longer required.

Compare Block (Figure 5255)

A compare block condition with the E busy trigger
on causes a deconditioning level to TN T2, If the
previous instruction is doing a put-away into a gen-
eral register which is being used to compute an ef-
fective address during T1 of the next instruction,
then T1 of the next instruction must be held up until
the operands have been put-away. This condition is

detected by comparing both IX2 and IB2 to BR1. IX2
and IB2 contain the address of the general registers
which could be used to form the T1 cycle effective
address, and BR1 contains the address of the put-
away general register for the previous instruction.
BOP remains unchanged from the previous instruc-
tion until TN T2 of the next instruction and therefore
provides the operation code of the previous instruc-
tion during T1 of the next instruction. On the basis
of BOP, it is determined whether or not the previous
instruction requires a put-away to the general reg-
isters. It is also determined if there is a pair of
put-aways to an even/odd pair of general registers.
If BOP indicates a single put-away (BD compare
request) then BR1 is compared to IX2 and IB2 accord-
ing to their usage in the effective address. IX2 (or
IB2) is not used in the effective address if it refer-
ences GR 0. If BOP indicates a double put-away to
an even/odd register (BD double register compare),
then the same compares are made as for a single
put-away; but the low-order bit is ignored in the com-
pare. If either compare is satisfied and if E busy is
on, then compare block prevents T2 from turning on.
All put-aways to the general register are com-
pleted before the end of the last cycle of an instruc-
tion. The usage of E busy in compare block ensures
that if a compare situation occurs, at least one cor-
rect effective addressing cycle is taken after the
execution of the previous instruction is completed.
In the discussion of T2 no line comparable to
compare block is required in the gating of internal
operands to the Eunit. Noblockis necessary because
all put-aways are completed by B time of ELC., In
the remaining half-cycle, any general register may
be gated to the E unit before the Ito E transfer.

TN T2 Functions Controlled by IOP

The TN T2 indicates a good T1 cycle. In addition to
providing the set condition for the T2 cycle, it per-
forms many functions. IOP decoding steers the

Instruction Preparation 1/68 71

TN T2 condition. The following lines are described
with respect to their functions at TN T2.

ID AA to SAR: With TN T2 the effective address
formed by the AA is gated from the AA latches into
SAR.

ID Sample AA Error: Tests the error checking
lines of the AA during TN T2. If an error occurs,
it causes a machine check condition.

ID Fetch Class:. Indicates that operand fetching is

required. With TN T2 it initiates the request to BCU; gi{

See '"'Operand Fetching.' \

condition., It prevents IC fetches from interfering
with instruction processing. It also forms the TN
for block IC-M, a control trigger used to maintain
the IC blocking condition.

ID Floating Point: Used in the controls that gate
out the floating-point registers. It sets the FLOUT
trigger with TN T2.

ID RR: Used during TN T2 to set the FR2 trigger.
FR2 determines the order in which floating-point
operands are gated to the E unit. Seethe '""T2 Cycle."

ID SS: ID SS conditions the sequencing controls to
process the SS format instructions by turning on the
SSOP control trigger with TN T2.

ID Branch Operation: Sets the branch operation con-
trol trigger with TN T2. Branch operationisa status
trigger used during branches. ID branchoperationis
also used to override any blocking of TN T2 generated
by the IC controls.

TN T2 Additional Functions

In addition to those functions decoded by IOP, TN T2
also conditions the following functions.

Setting the Gate Select Register: During T1 the in-
struction in IOP is examined to determine its length
(in halfwords). This length is added to the ICR low
order. With TN T2 the adder output is gated into
the GSR. Gate selection now changes and a new gate
for A-B to IOP is selected. The next instruction is
thus gated to the IOP input.

Setting of IOP: Since TN T2 indicates a good T1 cycle,
the TN T2 logic line deconditions the setting of IOP
from the T1 triggers latched output.

72 12-65

Setting of BOP: The setting of BOP usually occurs
with TN T2. For a detailed description, see the
""Buffer Operation Register" section and Figure 5257.

Instruction Buffer Empty Condition: When the last

Saaslly TRT
L @gﬁ“{ﬂe PSW with TN T2.

instruction located in one of the A-B registers has
been selected and set into IOP, TN T2 indicates the
empty condition to the IC fetch controls and turns off
the appropriate loaded trigger. See Figure 5268.

IOP Error: TN T2 is used to sample for a parity

s bits 8-15 of IOP. If an error exists, the
MOP error is turned on.

n is invalid, then I program interrupt is set
The ID code for the type of interrupt is

The output of the addressing adder is set
N T2,

into H at
i

%’uﬁer Operation Register (BOP) (Figure 5257)

” peratlon registeris a 12-bit operation reg-
”s?’er get ffom IOP 0-11. By taking advantage of the way
m§ agﬁ’% time are overlapped, three areas are

able tds are usage of BOP, BOP is used by T2

E transfer of the next instruction can-
trimil the end of the previous instruction,

1. BOP is not updated until one cycle after IOP
is correctly set.

2. BOP is updated at least one cycle before the I
to E transfer.

3. BOP is available to the branch and IE units
for the cycle before the I to E transfer and for every
execution unit cycle except the last cycle.

4. No performance penalty is taken because of
the shared usage of BOP.

The specific logic implementation to control the
setting of BOP is:

BOP is set at TN T2 if the IE busy trigger is off,
indicating that neither the IE unit nor the branch unit
are operating. BOP is set at TN T2 if either IE unit
last cycle (IEL) trigger or branch unit last cycle
(BRLC) trigger is on, indicating that the relevant
unit is completing execution. These set conditions

are not sufficient to ensure that BOP is set at least
one cycle before an I to E transfer if the previous
instruction is an I execution or an unsuccessful
branch. In the case of IE unit execution, TN-IEL
(TN T2 + T2Ly 5 ysed to obtain a further set con-
dition for BOP. Thus, BOP is set one cycle early
even if IEL causes an I to E transfer on the next
cycle.

For unsuccessful branches, T2 can be turned on
with the turn-on of BRLC but not before. Therefore,
TN T2 is ANDed with the unsuccessful branch turn-
on of BRLC to obtain another set for BOP. Thus,
for unsuccessful branches BOP is set one cycle early
even if BRLC causes an I to E transfer on the next
cycle. For successful branches, T2 is never turned
on until BRLC is turned off. Therefore, no special
set is required for successful branches.

The logic statement is:

Set BOP = TON T2 (BRLCY + IELL + IE BSYL +
TON IEL + Unsuccessful Branch Turn-On of
BRLC) + T2l - TON IEL

BOP decoding is used during the T2 cycle to
specify which internal registers are to be gated to
the RBL as operands, the execution unit(s) required
to perform the E time of the instruction, and at
what point overlap of the next instruction is to be
blocked, if necessary. BOP decode lines also define
many functions of the store instructions. A list of
the BOP decode lines is shown on Figure 9068.
When BOP is still maintained during T1 of the next
instruction it allows usage in generating the block of
TN T2 called compare block.

T2 Cycle

The TN-T2 logic level indicates thatthe T1 cycle has
been properly performed and thus initiates the T2
cycle. The T2 cycle has as one of its functions the
gating of internal operands. It is this function that
required placement of T2 near the general registers.
T2, as well as T1, are located on the G-C2 board.

Internal Operand Gating (Figure 5264 and 50)

Internal operands are gated to RBL, a 64-bit latch
located in the E unit. RBL is latched during every
Lclock and unlatched during every not Lclock. Oper-
ands from the general registers are sent via GBL
or GBR. If the instruction is in the floating-point
class, operands are gated from the floating-point
registers.

General register operands are gated to RBL by
T2 if IOP2 =0 (that is, not FP). Operands are gated
simultaneously to RBL by T2 on general bus left (GBL)

and general bus right (GBR). General register BR1
is gated to GBL and either general register IR2 or
general register BR1 + 1 is gated to GBR. BR1 + 1
is gated to GBR for shift and RX instructions and
MR. For all other instructions, IR2 is gated to GBR.
The execution unit ignores those operands gated by
T2 which are not needed to complete the instruction.
Certain instructions require that gating be con-
tinued after the I to E tran, T m Hitional oper-
ands be sent. This gating is RcgonTmisdfed by the
control triggers GROUT o R
description of GROUT, smG
FLOUT is set with TN T2 :
floating-point class rega
the gate from the floating-pO¥ft

Floating-point register galing¥s gErigrmed on the
full 64-data bits of the r S, s, each ad-
dressed register fills the RBL. @structions in
the RR format, this full gating me hat the two
operands must be sent gk nt-&ﬁ;ﬁ' With TN T2
and ID RR, a control tgi EQr FR2 is¥conditioned.
The FR2 trigger causeﬁ; ing-point register
ond operand).

%ﬁge r=field (the sec-
¥¥orFR2Pis maintained
during subsequent T2

S (1f; s ccur) by T2 and
the BOP decode line BD RR. itK t§e I to E transfer,

the turn-on FR2 condition is réﬁw With no turn-
on, the FR2 will turn OlferWhd&-ER?2 is off the first

operand. addressed b R , is selected
for gating to the RBL To LOUT stays on
after the I to E transfer, ?? t it provides a

A quired. Normally,

turn-off when gating ag no longe

the turn-off is gener%m e first E unit cycle.
The exceptions are t¥€ dividgd ctions, Divide
instructions require prenorrgal ion of the divisor
to be completed before the second operand, the
dividend, can be accepted. For the divide instruc-
tions, block T2-M is set and this prevents the over-
lap of another instruction from setting the FR2 trig-
ger prematurely. See Figures 5264 and 54.

Incrementer Gating

The effective address formed by T1 is, during
branches, the address of the branch-to instruction,
Since two instruction buffers are provided within the
CPU, two effective addresses are required in order
to fill both buffers. H and SAR are set to the effec-
tive address by TN T2 which also initiates the first
fetch. The second address is formed by adding a
control amount (1 in position 20) to the contents of
the H register. The T2 branch operation gates the

H register and the control amount to the incrementer.
With the I to E transfer, the output of the incrementer
is sent to SAR. Branch controls initiate th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>