
il) ~ 5 ~ Field Engineering

Theory of Operation

~@@@ Processing Unit, Volume 1

Preface

This manual describes the operation of the 2065 Processing
Unit. It iS assumed that the reader has a knowledge of
processors, of ALD interpretation, and of the basic circuits
used in the 2065.

The EC levels of the ALD's and CLD's for the basic
2065, · upon· whlch this manual and its.. companion
maintenance diagram manual are based,. are:

ALD's: EC 705369 9/68
CLD's: EC 705340 3/68 .
Power: EC 711576 8/68

The manual· consists of two volumes, and is divided into
six chapters and three appendices .. Volume 1, Form
Y27-2036-0, .contains:

Chapter 1, Introduction. Discusses system organization
and data flow; character codes, instruction formats;
and operands; program execution and control; and the
CPU ftlnctional uhits and the Universal instruction set.

Chapter 2, Functional Units. Analyzes registers, adders,
and counters. individually,_ except for ·those units that
work together to perform a specific function (for
example, variable-field-length register and its associated··.
byte counter).

Volume 2, Form Y27-2037-0, contains: .
Chapter 3, Principles of Operation. Presents a detailed

analysis of instruction fetching, and instruction by
instruction class.

Chapter 4, Features. Discusses the features available for.
the 2065 CPU.

Chapter 5, Power Distribution and Control. Describes
the power distribution and control within the CPU
{making a distinction between 2065's and 2060's that
have been c~nveited to 2065's) and within the system.

Second Edition (November 1973)

Chapter 6, Console Controls and Maintenance Features.
Discusses the controls on the systern control panel and
on the CE panel and their application, and the
maintenance features available.

Appendix A, . Special Circuits. Discusses. the special
circuits in the 2065.

Appendix B, World Trade Differences: Discusses the
. ·major difference between the World Trade version of

the Model 65 and the domestic version.
Appendix C, · Example of FLT G~neration. DiScusses

FLT generation, using a sifilple four-block tree as an
example.

Volume 2 also contains the index for the complete manual.
following most paragraph · heads are. bullets (key

statements preceded by •) which summarize significant
points about the subject. The bullets serve two functions:
{l) they provide the CE with the key points of the topic,
and (2) . they grovide quick reference for review and recall
for the CE who is familiar with the machine. Detailed text
follows, providing the non-classroom student with the fill-in
material necessary for self-instruction. ·

The diagrams· supporting the text are divided into two
groups: (1) purely instructional diagrams and (2)
maintenance-oriented diagrams and diagrams that aid recall.
Examples of the first group are high-level block diagrams
and diagrams that show gener31 data flow and timing
considerations. These diagrams are generally not affected
by engineering changes, and, if they include AND/OR logic
blocks, the blocks are drawn in positive logic convention
and do not maintain ALD lines or line names. The
instruction diagrams, which are placed in this manual and
called "Figures'', are numbered consecutively within a
~hapter. (For example, l-1 is the first figure in Chapter 1;
3-7 is the seventh figure in Chapter 3.)

This is a reprint of SY27-2306-0 incorporating changes released in the following·
Technical Newsletter:

SY27-2258 (dated October 16, 1969).

Changes are periodically made to the specifications herein; any such changes will
be reported in subsequent revisions or Technical Newsletters.

Text for this manual has been prepared with the IBM SELECTRIC ®composer.

This manual has been prepared by the IBM System Products Division, Product
Publications, Dept. B97, PO Box 390; Poughkeepsie, N.Y. 12602. A form for

-readers' comments is provided at the back of this publication. If the form has
been removed, comments may be sent to the above address. Comments become
the property of IBM.

ii (10/69)

The diagrams of the second group are referenced in this
manual (for example, Diagram 5-30, FEMDM) but are

. located in the companion FE Maintenance Diagrams
Manual to allow ready reference during maintenance and to
facilitate updating the diagrams to new engineering levels.
These diagrams are grouped by categories similar to the
chapters of this manual.

The relationship of this manual to the FEMDM is shown
below. (Arrows indicate cross-referencing between chapters
in this manual and categories of diagrams in the FEMDM:
for example, most references in Chapter 2 are made to
Category 4 diagrams.)

2065 FETOM (Vol 1)
Form Y27-2036-0

Chapter 1
Introduction

Chapter 2
Functional Units

2065 FETOM (Vol 2)
Form Y27-2037-0

Chapter 3
Principles of Op­
eration

Chapter 4
Features

Chapter 5
Power Distribution
and Control

Chapter 6
Console Controls and
Maintenance Features

Appendices A, B, and C

Index for Volumes 1
and 2 ·

2065 FEMDM
Form Y27-2038-0

Category 1
DiagnosticTechniques

Category 2
Error Conditions
{Not required)

Category 3
Data Flow

Category 4
Functional Units

Category 5
Operations

Category 6
Power Distribution
and Control

Category 7
Features

Category 8
Console Controls and
Maintenance Features

Index

Companion, related, and prerequisite manuals and
standards are:

2065 Processing Unit
FEMDM; Form Y27-2038-0
FEMM, Form Y27-2270-0

IBM System/360 Principles of Operation, SRL, Form
A22-6821-7.

2065 Processing Unit, 7070/7074 Compatibility Feature
FETOM, Form Y27-2106-0
FEDM, Form Y27-2107-0

2065 Processing Unit, 7080 Compatibility Feature
FETOM, Form Y27-2090-0
FEDM, Form Y27-2091-0

2065/2067 Processing Unit, 709/7040/7044/7090/7094/
7094JI Compatibility Feature

FETOM, Form Y27-2098-0
FEDM, Form Y27-2099-0

2365 Processor Storage
FETOM, Form Y22-6608-0
FEDM, Form Y22-6601-1
FEMM, Form Y22-6600-1

2361 Core Storage
FETOM, Form Y22-2897-0
FEDM, Form Y22"2895-0
FEMM, Form Y22-2894-0

2860 Selector Channel
FETOM, Form Y27-2220-0
FEMDM, Form Y27-2221-0
FEMM, Form Y22-2893-1

2870 Multiplexer Channel (70,000 Series)
FETOM, Form Y27-2152-0 .

. FEDM, Form Y27-2153-0
FEMM, Y27-2154-0

1052 Adapter and 2150 Console, FETOM, Form Y22-2808
SLT Component Circuits, FEMI, Form Z22-2798 (IBM

Confidential)
SLT Power Supplies, FEMI, Form 223-2799
SLT Packaging, FEMI, Form 223-2800
Control Automation System (CAS) Logic Diagram (CLD),

IBM Corporate Engineering Standard, CES 0-1046-4

2065 FETOM (10/69) iii

(THIS VOLUME)
Chapter 1 I ntroductioil

SECTION 1 SYSTEM DESCRIPTION
·Basic System
Features Available·-.
System Data Flow .

Main Sforage .
2365 Processor Storage

. ,., .

2361 Core Storage (Optional)
2065 Central Processing Unit

Control Section
Bus Control Unit
Instruction Fetching Section
Instruction Execution Section

Input/Output
Channei

Modes of Operation
Types ofChannels

Control Units
1/0 Devices ·.

Multisystem Configurations

SECTION 2 SYSTEM CODING
. HexadecimiifNumber System

Eight-Bit Zoned Character Codes
Instruction Coding . ,.

Instruction Formats
Operand Addressing

Effectively Addressed Operands
Immediate Operands . . .
Operands in Local Storage

Data Formats
Fixed-Point Data

Number Representation
Formats ... ·

Floating-Point Data
Number Representation
Formats ..
Normalli:ation

Decimal Data .
· Number Representation

Formats .
Logicill Data

•,;.

SECTION 3 PROGRAM EXECUTION AND CONTROL
Control Program . . .
Program States

Problem/Supervisor
Operating/Stopped
Running/Wait ...
lnterruptable/Masked

Program Status Word .
Interruptions and Exceptionill Conditions

Interruptions
Interruption Masking.

System Mask Field
Machine-Check Mask Bit
Program Mask Field . .

Instruction Address Determination
Machine-Check Interruption

•.

1-1

1-1
1-1
1-2-
.1-3
1~3

1-4
1-4
1-5
l-5
1-5
1-5
1-6
1-6
1-7
1-7
1-7
1-8
1-8
1-8

1-12
1-12
1-12
1-13
1-13
1-14
1-14
1-15
1-15
1-15 ..
1-16
1-16
1.-16
1-17
1-17
1-19
1-19
1-20
1-20
1-21
1-2.l

1-22
1-22
1-23
1-23
1-24
1-24
1-24
1-25
1-26
1-29
1-29
1-32
1-32
1-32
1-32
1-33

Program Interruptions
Supervisor-Call Interruption
External Interruptions
1/0 Interruptions

Exceptional (:::onditions . . .
... . Timer Exceptional "Condition
·.CPU St-0re In Progress Exceptional.Condition

Manuill Control Stop Exceptiopill Condition .
Manual Control Wait Exceptional Condition .
Manual Control Repeat Exceptional Condition
Program Store Compare Exceptional Condition
Invalid Instruction Address Test Exceptionill
Condition ·

Q-Register Refill Exceptional Condition
Control of 1/0 Operations

Instructions; Commands, and Orders .
1/0 Control Words

Channel Address Word ;
Channel Command Word
Channel Stat.us Word

1/0 System Operation

SECTION 4 CPU DESCRIPTION
Coritrol.

CPU Timing
Data Transfer
Read-Only Storage

Relationship of ROS to Conventionill Controls
ROSWord ...•.....
ROS Addressing an~ Branching

No Branch Specified .
Y- and/or Z-Branches
X·Branches
Overriding Branches

ROS Data Flow . .
ROS. Control of CPU

PSW Register . . .
Bus Control Unit

Major Interface Lines
BCU Clocks
BCU Operation

CPU Request
Channel Request
Operation with Main Storage

Instruction Fetching . •
Functionill Units Used

Q-Register
. R-Register
E-Register
Instruction Counter
D-Register

Instruction Path . . .
Pref etching of Operands · .
Obtaining New Instructions from Main Storage
CPU Interruption and Exceptional Condition

Recovery
Instruction Execution

Functionill Units Used .
AB Register ·
ST Register

Contents

1~33
1-35
1-35
1-35
1-36 .
1-36
1-36
1-36
1-36
1-36
1-36

1-36
1-~6

1-36
1-37
1-37
1-37
1-37
1-38
1-38

1-39
1-39
1-39

.. 1-39
1-39
1-40
1-41
1-42
1-43
1-43
1-43
l_-47

1-47
1-48
1-50
1-50
1-51
1-53
1-53
1-54
1-54
1-54
1-55
1-55
1-55
1-56
1-56
1-56
1-58
1-58
1-60
1-63

1-64
1-64
1-64
1-64
1-65

2065 FtTOM (9/68) v

AB and ST Byte .CounteJs
Mark Triggers
F-Register
G-Register .
Serial Adder

Arithmetic Fui1.ctions
logical Functions

Parallel Adder
Local Storage ...
Status Triggers

Fixed-Point Instructions
Instruction Formats .
DataFlow
Program Interruptions
Condition Codes

Floating-Point Instructions
Instruction Formats .
DataFlow
Program Interruptions
Condition Codes

Decimal Instructions .
Data Handling
Instruction Format
DataFlow
Program foterruptions
Condition Codes

Logical Instructions
Instruction Formats
DataFlow
Program Interruptions
Condition Codes

Branching Instructions
Instruction Formats
Data Flow . · ...
Program Interruptions
Condition Codes

Status Switching Instructions
. Instruction Formats .

DataFlow
Program Interruptions
Condition Codes . .

Input/Output Instructions
Instruction.Format
DataFlow
Program Interruption
Condition Codes

Power .

Chapter 2 Functional Units

SECTION 1 TIMING AND CLOCK CONTROL
Clock Signal Generators

Model G65, H65, and 165 CPU Clock Signal
Generator

Model IH65 and J65 CPU Clock Signal Generator
Clock Timing
Clock Control and Signal Distribution .

SECTION 2 READ-ONLY STORAGE
Capacitive Read-Only Storage Array

CROS Electrical Theory
CROS Planes

Drive and Balance Lines (Bit Plates)
Sense Lines .
Bit Capacitors

vi (9/68)

1-65
1-65
1-66
1-66
1-66
1-66
1-68
1-68
1-69
1-69
1-70
1-70
1-70
1-70
1-75
1-75
1-76
1-76

. .1-81
1-82
1-82
1-82
1-86
1-86- -
1-87
1-87
1·87
1-87

.. 1-90
1-91
1-91
1-91
1-92
1-94
1-94
1-94
1-94
1-95
1-95
1-97
1-97

• 1-98
1-98
1-98
1-99
1-99
1-99

2-1

2-1
2-1

2-1
2-1
2-2
2-3

2-6
2-6
2-6
2-6
2-6

. 2-9

. 2-10

Physical Package·
ROS Addressing • . . .

Read-Only Storage Address Register
ROSAR(0-5)
ROSAR(6-9)
ROSAR(lO) ·.
ROSAR(ll)

ROSAR(0-10) Decoding
Strobed Drive Lines·
Select Lines
Array Drivers . . .

Sense Amplifiers
ROSAR(ll) Function.

ROS Data Flow
ROS Sense Latches
ROS Data Register and ROSDR Latches
ROS Decoders ':
ROS Timing
Maintenance Aids

ROSAR Latches
ROS Previous Address Registers
ROSPARA and ROSPARB Alternator
ROS Back-Up Re~ster

ROS Error Checking .
Scan Mode Operations .

SECTION 3 BUS CONTROL UNIT
·General Description

Basic Interface Considerations .
Basic Operating Considerations

Operation with Processor . .
Operation with 1/0 Channels
Operation with Main Storage
Operation with LCS (Optional Feature)

Basic Control and Timing Considerations
Basic Operational Sequence : . .

Detailed Analysis of BCU Functions
Initial Handling of Requests
Establishing Priority
Gating the. Address to SAB
Stopping the CPU Clock.
Selecting the Storage Unit .
Converting SAB Parity .
Generating 'Select' Signal to Storage

Generating 'Select' Signal if LCS Is Not
in System

Generating 'Select' Signal if LCS Is in
System ·

Detection of Invalid Address
Recording of Error Indications from Storage
Resetting of BCU Logic

Detailed Analysis of BCU Operations
CPU Storage Request~

3- and 4-Cycle Fetch Operations
Store Operation ..
Insert-Key Operation
Set-Key Operation .
Test-and-Set Operation
Single-Cycle Operation

Channel Storage Requests

.•

SECTION 4 DATA AND CONTROL REGISTERS
Q-Register

Input .•...
Op-Code Transfer

. 2-10

. 2-10
2-12

. 2-13

. 2-13

. 2-13

. 2-13

. H3
2-14

. 2-14

. 2-14
:·2-14
. 2-14
. 2-14

2-14
2-14
2-15
2-15
2-16
2-16

. 2-16

. 2-16

. 2-18

. 2-18
2-18

2-20
2-20
2-20
2-21
2-21
2-22
2-22
2-24
2-24
2-26
2-28
2-28
2-29
2-29
2-29
2-30

. 2-34

. 2-34

2-34

2-37
. 2-38
. 2-38
. 2-38
. 2-40
. 240
. 2-40
. 2-40
. 2-41
. 2-41
. 2-41
. 2-41
. 2-42

. 2-44

. 2-44

. 2-44

. 2-44

B-Field and D-Field Transfer ,
B-Field Transfer
D-Field Transfer

R-Register
Input
Output
Predecoding

£-Register
Input
Output
Incrementers

Instruction Counter
Input
Output
Incrementing IC(0-20)
Incrementing IC(21-23)

D-Register
Input
Output
Operational Functions

Branch and Execute Operations
Shift Operations
VFL Operations
Fixed-Point Operations .
Floating-Point Operations
Manual-Control Operations
1/0 Operations .
Interruption Operations.

AB Register
Input
Output

ST Register
Input
Output

AB and ST Byte Counters
AB Byte Counter
ST Byte Counter

Mark Triggers
F-Register

Input
Output

G-Register
PSW Register
MCW Register

SECTION 5 LOCAL STORAGE
Addressing and Data Flow
Data Transfer Controls

. Read LS Operation
Write LS Operation
LS Timing

SECTION 6 SERIAL AND PARALLEL ADDERS
Serial Adder

Input and Output
Adder Operation
Controls
Functional Description

Binary Add ...
Decimal Operation
Logical Functions
Parity Correction
Error Detection

Parallel Adder
Data Input ...

2-44
2-45
2-45
2-46
2-46
2-46
2-46
2-46·
2-46
2-46
2-46
2-49
2-49
2-49
2-50
2-50
2-50
2-50
2-50
2-51
2-51
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-54
2-54
2-54
2-54
2-54
2-54
2-57
2-58
2-58
2-58
2-58
2-58
2-58
2-59

2-61
2-61
2-61
2-61
2-63
2-63

2-64
2-64
2-64
2-64
2-64
2-66
2-67
2-67
2-68
2-68
2-72
2-73
2-73

Individual Bit-Position Logic
· Half-Adder

Carry-Into-Bit Logic
Full-Sum Logic . .
Latch-Shifter Logic

Carry Lookahead
Group-Level Carry Logic
Section-Level Carry Logic
Section-Level Carry-Into Logic
Group-Level Carry-Into Logic
Bit-Level Carry-Into Logic

Full-Sum Development . . .
Arithmetic Function Sequence
Parity-Predict Logic
Error Checking
. Half-Sum Checking

Full-Sum Checking
Convert-to-Decimal Operation
Set Condition Code

SECTION 7 STATUS AND CONTROL TRIGGERS
STAT A
STATB
STATC
STATD
STATE
STATF
STATG
STATH

·Control Triggers

(VOLUME 2)

Chapter 3 Principles of Operation

SECTION 1 INSTRUCTION FETCHING
BasicEnd-Op Cycle

Prefetching of Operands During End Op
Fetching of Instructions by End-Op Micro-Order

Requests During End Op . . .
Requests During Early End Op

Selection of I-Fetch Microprogram
Basic RR I-Fetch
Basic RX I-Fetch
Basic RS and SI I-Fetch
Basic SS I-Fetch . . .

Address Storage Compare (ASC) Test
I-Fetch Microprogram

I-Fetch Control If at End Op IC(21,22) = 00
I-Fetch Control If at End Op IC(21,22) = 01
I-Fetch Control If at End Op IC(21,22) = 10
I-Fetch Control If at End Op IC(21,22) = 11

Deviations from Basic End Op and I-Fetch
I-Fetch Sequencers
Block I-Fetch Trigger
Timer Exceptional Condition
CPU Store In Progress Exceptional Condition
Machine Check Interruption
Program Interruption
Supervisor Call Interruption
External Interruption
1/0 Interruption
Common Interruption Routine
Stop, Wait, and Repeat Exceptional Conditions
Program Store Compare Exceptional Condition

2-73
2-76
2-76
2-76
2-76
2-77
2-77
2-78
2-78
2-78
2-78
2-78
2-81
2-82
2-84
2-84
2-84
2-85
2-85

2-86
2-86.
2-86
2-87
2-88
2-88
2-88
2-88
2-89
2-89

3-1

3-1
3-1
3-2
3-3
3-3
3-3
3-4
3-5
3-6
3-6
3-7
3-9
3-9
3-11
3-12
3-12
3-12
3-12
3-12
3-13
3-14
3-14
3-14
3-15
3-15
3-16
3-16
3-17
3-17
3-17

2065 FETOM (9/68) vii

Invalid Instruction Address Test Exceptional
Condition . \ ,•.

Specification ~etection •
Invalid Address Detection
Fetch Protection Detection
Invalid Instruction Address -Microprogram

Q-Register Refill Exceptional Condition
Two-cycle RR I-Fetch ...
Forced-Cycle RX I-Fetch . .
Two-Cycle RS and SI I-Fetch

SECTION 2 FIXED-POINT INSTRUCTIONS
Load

Load, LR (18)
Load, L (S8)
Load Halfword, LH (48)
Load and Test, LTR (12)
Load Complement, LCR (13)
Load Positive, LPR (10)
Load Negative, LNR (11)
Load Multiple, LM (98)

Add-Type Instructions ..
Add, AR (lA)
Add,A(SA)
Add Halfword, AH (4A)
Add Logical, ALR (lE)
Add.Logical, AL (SE)
Subtract, SR (lB) . .
Subtract, S (SB) . . .
Subtract Halfword, SH (4B).
Subtract Logical, SLR (IF)
Subtract Logical, SL (SF)
Compare, CR (19)
Compare, C (S9) ·
Compare Halfword; CH (49)

Multiply
Multiply, MR (lC)
Multiply, M (SC)
Multiply Halfword, MR (4C)

Divide · .
Divide, DR (lD) . . .

General Discussion
Detailed-Discussion

Divide, D (SD)
Convert

Convert to Binary, CVB (4F)
Convert to Decimal, CVD (4E)

Store
Store, ST (SO)
Store Halfword, STH (40)
Store Multiple, STM (90)

Shift
Shift Left Single, SLA (8B)
Shift Left Double, SLDA (8F) ·
Shift Right Single; SRA (BA)
Shift Right Double, SRDA (8E)

SECTION 3 FLOATING-POINT INSTRUCTIONS
Exponent Overflow and Underflow
Zero Results
Conditions at Start of Execution .
Load -... .

Load, LER (38) .:... RR Short OperandS
Load, LE (78) - RX Short Operands .
Load, LDR (28) - RR Long Operands
Load, LD (68) - RX Long Operands

viii (9/68)

.•

. 3-18

. 3-18

. 3-19

. 3~21

. 3-21

. 3-22

. 3-23
3-24

. 3-24

. 3-25

. 3-2S

. 3-2S

. 3-2S

. 3-26

. 3-27

. 3-27
• 3-28
. 3-28
' 3-29
. '3-30
. 3-31
. 3-31
. 3-31
. 3-32
. 3-33
. 3-33
; 3-34
. 3-34
. 3-3S
. 3-35
. 3-36
. 3-36
. 3-37
. 3-37
. 3-38
. 3-42
. 3-42
. 3-42
. 3-43
. 3-44
. 3·4S
. 3-47
• 3-47
. 3-51

--· . 3•Sl
. 3-S3
. 3-53 -
. 3-S4
. 3-5S
. 3-S6
. 3-S6
. 3-S8
. 3-60
. 3-61

. 3-63

. 3-63

. 3-63

. 3-64

. 3-64

. 3-64

. 3-64

. 3-6S

. 3-6S

Load and Test, LTER (32) - RR Short Operands . 3~66
Load and Test, LTDR (22) - RR Long Operands . 3-66 -
Load Complement, LCER (33) - RR Short Operands . 3--67
Load Complement, LCDR (23) - RR Long Operands . 3-67
Load Positive, LPER (30) - RR Short Operands . 3-68
Load Positive, LPDR (20) - RR Long Operands . 3-68
Load Negative, LNER (31) - RR Short Operands . 3-68
Load Negative, LNDR (21) - RR Long Operands . 3~69

Add, Subtract, and Compare 3-69
Add Normalized, AER (3A) - RR Short Operands . 3-71
Add Normalized, AE-(7A) - RX Short Operands • 3-7S
Add Normalized, ADR (2A) - RR Long Opei:arids . 3-76
Add Normalized, AD (6A) - RX Long Operands . 3-77
Add Unnormalized, AUR (3E) - RR Short Operands . 3-78
Add Unnormalized, AU (7E) - RX Short Operands . 3-78
Add Unnormalized, A WR (2E) - RR Long Operands . 3-79
Add Unnormalized, AW (6E) - RX Long Operands . 3-79
Subtract Normalized, SER(3B) - RR Short

Operands . 3-80
Subtract Normalized, SE (7B) - RX Short

Operands . 3-81
Subtract Normalized, SDR (2B) - RR Long

Operands .- ; . 3-81
Subtract Normaiized, SD (6B) ...: RX Lorig

Operands . 3-82
Subtract Unnormalized, SUR (3F) - RR Short

Operands . 3-82
Subtract Unnormalized, SU (7F) - RX Short

Operands .. . 3-83
Subtract Unnormalized, SWR (2F) - RR Long

Operands. . 3-83
Subtract Unnormalized, SW (6F} - RX Long

Operand . 3-84
Compare, CER (39) .--:- RR Short Operands . 3-84
Compare, CE (79) - RX Short Operands . 3~8S
Compare, CDR (29) - RR Long Operands • 3-8S
Compare, CD (69) - RX Long Operands . 3-86

·--Halve . 3-86
Halve, HER (34) - RR Short Operands 3-86
Halve, HDR (24) - RR Long Operands . 3-87

Multiply . 3-87
Data Flow and Algorithm . 3-88
Multiply, MER (3C) - RR Short Operands . 3-91
Milltiply, ME (7C) - RX Short Operands . 3-92
Multiply, MDR (2C) - RR Long Operands . 3-93
Multiply, MD (6C) -RX Long Operands . 3-93

.Divide . 3-94
Characteristic Computation . 3-95
Normalization . 3-96
Fraction Division . 3-96
Data Flow- and Algorithm . 3-98
Divide, DER (3D) - RR Short Operands . 3-100
Divide, DE (7D) - RX Short Operands . 3-101
Divide, DDR (2D) -'- RR Long Operands . 3-102
Divide, DD (6D) - RX Long Operands . 3-103

Store . 3-104
Store, STE (70) - RX Short Operands . 3-104
Store, STD (60) - RX Long Operands . 3-lOS

SECTION 4 DECIMAL INSTRUCTIONS . 3-106
Instruction Handling . 3-106
Word Overlap Condition . 3-107
General Initialization Sequence . 3-109
Add, Subtract, and Compare . 3-109

Add, AP (FA) and Subtract, SP (FB) . 3-109
GIS for Add and Subtract . 3-110

True Add Sequence
Complement Add Sequence

Compare, CP (F9) . .
Zero and Add, ZAP (F8)
Multiply, MP (FC) ..
" General Description

·· Detailed Description
.Divide, DP (FD) . . .

. General Description
Detailed Description

Pack, PACK (F2)

.·

Instruction Execution, Not Word Overlap
Instruction Execution, Word Overlap ..

Unpack, UNPK (F3) . . . ,
Instruction Execution, Not Word Overlap

.' _Instruction Execution, Word Overlap . .
Move With Offset, MVO (Fl)

Instruction Execution, Not Word Overlap
Instruction Execution, Word Overlap .

SECTION 5 LOGICAL INSTRUCTIONS
General Initialization Sequence .
Move

Move, MVI (92)
Move, MVC (D2)
Move Numerics, MVN (Dl)
Move Zones, MVZ (D3)

Compare ... _
·-compare Logical, CLR (15)

Compare Logical, CL (55)
Compare Logical, CLI (95)
Compare Logical, CLC {D.5}- .

AND
AND,NR(14)
AND,N (54) .
AND, NI (94) .
AND, NC (D4) .

OR
OR, OR (16)
OR, 0 (56) .
OR, OI (96)
OR, QC (D6)

Exclusive-OR .
Exclusive-OR, XR (17)
Exclusive-OR, X (57)
Exclusive-OR, XI (97)
Exclusive-OR, XC (D7)

Test Under Mask, TM (91)
Insert Character, IC (43)
Store Character, STC (42)
I,.oad Address, LA (41) .
Translate, TR (DC)
Translate and Test, TRT (DD)
Edit and Edit and Mark, ED and EDMK (DE and DF)

Introduction to Edit Operation
Introduction to Edit and Mark Operation
General Data Handling . .
Microprogram Description

First Cycle . .
Second Cycle .
Exit Conditions

Shift
Shift Left Single, SLL (89)

. Shift Left Double, SLDL (8D)
Shift Right Single, SRL (88)

3-110
3-113
3-114
3-115
3-116
3-118
3-124
3425

. 3-128
3-134

.. 3-137
3-138
3-139
3-139
3-140
3-141
3-141
3-142
3-142

3-144
3-144
3-144
3-144
3-144
3-145
3-146
3-147
3-147
3~147

3-147
3-148
3-148
3-149
3-149
3-150

. 3-150

. 3-150

. 3-151

. 3-151

. 3-151

. 3-152

. 3-152

. 3-152

. 3-153

. 3-153

. 3-153

. 3-154.
.. 3-154

. 3-154

. 3-155

. 3-155

. 3-156

. 3-"158

. 3-158
3-160
3-160
3-161
3-161
3-161
3-16i
3-162
3-162
3-162
3·162

Shift Right Double, SRDL (8C)

SECTION 6 BRANCHING INSTRUCTIONS
Branch on Condition, BCR (07)

Successful Branch
Unsuccessful Branch . . ·:

Branch on Condition, BC (47)
Branch and Link, BALR (05)

Unsuccessful Branch ·. .
Successful Branch

Branch and Link, BAL (45) .
Branch on Count, BCTR (06)

Successful Branch . . .
Unsuccessful Branch· . . .

Branch on Count, BCT (46) .
Branch on Index High, BXH (86)
Branch on Index Low or Equal, BXLE.(87)
Execute, EX (44)

.'

SECTION 7 STATUS SWITCHING INSTRUCTIONS
Load PSW, LPSW (82.)
Set Program Mask, SPM (04)

·Set System Mask, SSM (80)
Supervisor Call, SVC (OA) .
Set Storage Key, SSK (08)
Insert Storage Key, ISK (09) -

· Write OireCt, WRD (84)
Read Direct, RDD (85)
Diagnose (83) . . .
Test and Set, TS (93) .

SECTION 8 INPUT/OUTPUT INSTRUCTIONS
Start 1/0, SIO (9C) .
Test 1/0, TIO (9D) . .
Halt 1/0, HIO (9E) . .
Test Channel, TCH (9F)

Chapter 4 Features

SECTION 1 FEATURE INDEX

SECTION 2 MULTIPROCESSING.FEATURES
Multiprocessing System/360 Model 65

Main Storage
Storage Allocation . . ~ .
Floating Addressing . . .
Direct Address Relocation ·

Input/Output . . .
Processing Units . .

Multisystem Mode
Mo4el 65 Mode .
Partition Mode
Multisystem Signals
Summary of Multiprocessing System

Advantages
Functional Units

Configuration Control Panel
Storage Allocation C-0ntrol .
Floating Address Control .
Direct Address Relocation Control
Multiprocessing System Mode Control ·.
1/0 Allocation Control . . • . . . • •

BCU Modifications . . ••.
Storage Address Decoding with Prefixing

Disabled •

·,

3-162

3-164
3-164
3-164
3-165
3-165
3-166
3-166
3-167
3-168
3-169
3-170
3-170
3-170
3-170
3-172

,· 3-173

3-176
3-176
3-177
3-177
3-177
3-178
3-179
3-180
3-181
3-182
3-183

3-184
3-184
3-186
3-186
3-187

. 4-1

. 4-1

. 4-2

. 4-2

. 4-2

. 4-2

. 4-2

. 4-3

. 4-4

. 4-4

. 4-4
• 4-5
. 4·5
. 4-5

. 4-6
• 4-6
. 4-7
. 4-7
. 4-7
• 4-8
. 4-8
. 4-8
• 4-8

. 4-8

1'2065 FETOM (10/69) ix

Storage Address Decoding with Prefixing
Enabled

Invalid Storage Address
BCU-Storage Operations

Multisystem Timer
Operation ..•...
System Hang Timing . .
External System Reset Timing

Multisystem Operations
Set System !\{ask Instruction (Multisystem Mode)
Wri~e Direct Instruction (Not Model 65 Mode)
Read Direct Instruction (Not Model 65 Mode)
Malfunction Alert ·
Gated Load ...
System Call . . .
Log 1/0 Internipt
External System Reset
External Start

Power Distribution and Control
Console Controls and Maintenance Features

Configuration Control Panel .
· Storage Allocation Switches

Floating Address Switches
PREFIX Switches •..
CPU Mode S"witches . . .
1/0 Allocation Switches
VALID ADDRESS Indicators .

System Control Panel Modifications,
Multisystem Feature

EMERGENCY PULL Switch
POWER ON Pushbutton
Marginal Voltage Control . .
DISABLE INTERVAL TIMER Switch
DISABLE DIRECT CONTROL Switch
Storage Switches . ·
Indicators

System Control Panel Modifications,
Additional Stor~e Attachment Features

Marginal Voltage Control
POWER CHECK lndicators
STORAGE INDICATE SWITCH and Indicators

Logout and Scan In

Chapter 5 Power .Distribution and Control
AC Power Distribution

60-Hz Units
50-Hz Units
Converter/Inverter .

DC Power Distribution
High-Frequency Regillator Modules
Marginal .A,djustments

Power-On Sequence
Power-Off Sequence . .

Normal Power-Off . .
Emergency Power"Off
Automatic Power-Off

Overcurrent Protection
Overvoltage Protection

Positive Regulators, Converted Units
Negative Regulators, Converted Units ·

Undervoltage Protection
Thermal Protection

Indicators
System Power-On IndiCator
Power Check Indicators

1052 Printer-Keyboard Power

x (10/69)

•.

. 4-8

. 4-9

. 4-9

. 4-9

. 4-9
• 4-10
. 4-10
. 4-10
. 4-10
. 4-10
. 4-11

'- 4-11
. 4-11
. 4-11
. 4-12
. 4-12
. 4-12
. 4-13
. 4-13
. 4-13
. 4-13
. 4-13
. 4-13
. 4-13
. 4-14
. 4-14

. 4-14

. 4-14

. 4-14

. 4-14

. 4-14
• 4-14
. 4-14
. 4~14

. 4-15

. 4-15

. 4-15
• 4-15
.4~15

. 5-1

. 5-1

. 5-1

. 5-1

. 5-1

. 5-4
• 5-4
. 5-6
. 5-6

5-8
. 5-8
. 5-8

5.9·
. 5-9
. 5-9
. 5-10
. 5-10
. 5-11
. 5-li
. 5-11
. 5-11
. 5-11
. 5-12

Audible Alarm
Dual 1052 Power Interface

·Direct Control Power
· Usage Meters and Key Switch

Chapter 6 Console Controls lmd Maintenance Features

SECTION 1 CONSOLE CONTROLS
System Control Panel

Manual Controls .
Stop Loop ..
Power-On Reset
SYSTEM RESET Pushbutton
CHECK RESET Pushbutton
STOP Pushbutton . . .
LOAD Pushbutton (IPL)
DATA Switches
ADDRESS Switches . .
ADDRESS COMPARE STOP Switch
STORAGE SELECT Switch
DEFEAT INTERLEAVING Switch
STORAGE INDICATE Switch
STOP ON STORAGE CHECK Switch
SET IC Pushbutton
RATE"Switch

PROCESS Position
INSN STEP Position

.·

SINGLE CYCLE Position . . • . .
SINGLE CYCLE STORAGE INHIBIT Position

REPEAT INSN Switch
Repeat Single Instruction . .
Repeat Multiple Instructions·

STORE Pushbutton .
DISPLAY Pushbutton . . .
START Pushbutton
ROS TRANSFER Pushbutton
St~rage-Ripple Microprogram

Storage-Ripple-Store Function
Storage-Ripple-Display Function

REPEAT ROS ADDRESS Switch .
PSW RESTART Pushbutton and Wait State
DISABLE DIRECT CONTROL Switch
DISABLE INTERVAL TIMER Switch
INTERRUPT Pushbutton
CPU CHECK Switch .
PULSE MODE Switch

PROC Position .
TIME Position
COUNT Position

LOG OUT Pushbutton
TEST MODE, ROS/PROC/FLT Switch
TEST MODE, REPEAT Switch
RESTART FLT 1/0 Pushbutton . . .
CE Key Switch and Usage Meters
FREQUENCY ALTERATION Switch

Indicators
CEPanel

SECTION 2 MAINTENANCE FEATURES
Diagnose Instruction and MCW's

Diagnose Instruction MCW for CPU
Diagnose Instruction MCW for Channel
ROS Test MCW
FLTMCW

Logout, ROS Tests, and FLT's
Introduction

. 5-12

. 5-12

. 5-12

. 5-13

. 6-1

. 6-1

. 6-4

. 6-5

. 6-5

. 6-6

. 6-6
• 6-6
. 6-6
. 6-9
. 6-9
. 6-9
. 6-9
. 6-12
. 6-12
. 6-12
. 6-12
. 6-13
. 6-13.
. 6-13
. 6-13
. 6-13
. 6-13
. 6-14
. 6-14
. 6-14
. 6-15
. 6-15
. 6-16
. 6-16
. 6-16
. 6-16
. 6-16
. 6-16
. 6-17
. 6-17
. 6-17
. 6-17
. 6-17
. 6-18
. 6-18
. 6-18
• 6-18
. 6-18
. 6-19
. 6-19
. 6-19
. 6-19
. 6-19
. 6-21

. 6-22

. 6-22

. 6-23

. 6-23

. 6-24

. 6-24
• 6-24
. 6-24

Logout
ROS Tests
FLT's ..

FLT Tapes
Tape Generation
FLT Hardcore Tests
Zero-Cycle Test.s
One-Cycle T·ests . .
FLT Format . , .

Scan Logfo Functional Units
Scan Timing·

Scan Clock -.... .
FLT Clock . . ; .. .

Scan Counter·Latches and Decrementer
Input and Output

· Scan Counter Decrementer
Address Sequencer
Address Sequencer Decoder
Storage Address Generator
Check Counter

Input and Output . . :
Check Counter Decrementing

.FLT Counter
Iriput
FLT Counter Decrementing

Cycle Counter
ROS Test Sequencer
Scan-Out Bus . . .

Logout Controls
Scan Out S and T

Scan Stop-CPU~Clock Logic
Control Triggers
Scan Mode Control of ROS
Scan/Channel Interface

Operational Analysis
.Logout ·.

Hardware-Controlled Sequence · · .
ROS-Controlled Sequence

ROS Tests ...
ROS Test Tape
ROS Test Setup
IPL 1
Loader
Hardcore Tests and IPL 2

(THIS VOLUME)

Legend
Frontispiece System/360 Model 165 . .
1-1 Basic System Configuration
1-2 System/360-Model 65 Layout
1-3 Functional Structure of a Simplex

System
1-4 Channel-to-Channel Adapter as Multisystem

Connector
1-5 Transmission Control U¢t as Multisystem

Connector
1-6 2-Channel Switch Feature as Multisystem

Connector

6-25
6-26
6-26
6-27
6-27
6-28
6-28
6-28
6-29
6-29
6-29
6-30
6-30
6-31
6-31
6-31
6-31
6-33
6-34
6-34
6-35.
6~36

6-36
6-36
6-37
6~37

6-38. ,-
6-38
6-38
6-39.
6-39
6-39
6-40
6-40
6-40
6-40

6-41
6-42
6-43
6-43
6-44
6-44
6-45

. 6-45

xv
xvi
1-1
1-2

1-8

1-9

1"9

1-9

Test 1, Record 3
IPL 2
Test 2, Record 5
Record 6
Test 1, Record 7
Test l, Record 8

- Test 2; Record 8
Test 3, Record 8
Summary of Hardcore Tests

ROS Bit Tests
ROS Test State 7 -
ROS Test State 6
ROS Test State 5
ROS Test State 4
ROS Test State 3
ROS Test State 2
ROS Test State 1
ROS Test State 0

Fault Locating Tests
FLTTape
FLT Format
FLT Test Setup
IPL 1
Loader
Transmission Checks During FLT Read In
Hardcore Tests •
Zeto-Cycle arid One-Cycle Tests

Scan In
Test Cycles
Scan Out
Result Comparison
Terminate or Continue
TN/ ATN Comparison

Ripple Tests
Diagnostic Programs
Marginal Checking

Appendix A

Appendix B

Appendix C

Index

•.

6-46
6-47
6-47
6-47
6-48
6-48
6-48
6-48
6-48

. 6-49
6-49

. 6-49
' 6-49
. 6-49

6-50
6-50
6-50
6-50
6-51
6-51
6-52
6-53
6-53
6-53
6-54
6-54
6-54
6-55
6-56
6-56
6-56
6-56
6~57

6-57
6-57

-· 6-58

· .. . A-1

. B-1

. C-1

._ . X-1

11 lustrations

1-7 Device Switching Unit as M:ultisystem
Connector . . • .. 1-10

1-8 Shared LCS Feature as Multisystem
Connector 1-10

1-9 Direct Control Feature as Multisystem
Connector 1-10

1-10 Multiprocessing System/360 Model 65 1-11
1-11 Instruction F orrnats 1-14
1-12 Mam Storage Integral Boundaries 1-15
1-13 Examples of Control Program· Functions 1-22
1-14 Action Taken When Single Interruption

·Occurs 1-30

2065 FETOM (10/69) xi

1-15 Example of Need for Interruption Masking 1-31 2-33 ST Register Data Flow 2-55
1-16 Data Transfer Scheme 1-40 2-34 PSW Input to S(16-31) 2-56
1-17 ROS Addressing and Branching 1-42 2-35 F-Register Data Flow 2-58
1-18 ROS Addressing Block Diagram 1-44 2-36 G-Register Data Flow 2-59
1-19 ROS Data Flow 1-45 2-37 PSW Register Data Flow 2-60
1-20 ROS Timing 1-48 2-38 PSW Register(0,6) Logic 2-60
1-21 ROS Control of CPU Operations 1-49 2-39 MCW Register Data Flow 2-60
1-22 Status Information Contained in PSW 2-40 Local Storage Data Flow 2-62

Register 1-51 2-41 Serial Adder Data Flow 2-65
1-23 Basic BCU Interface 1-52 2-42 True-Complement Data Entry 2-66
1-24 BCU Clock Logic 1-53 2-43 Serial Adder (Simplified) 2-66
1-25 BCU Priority Logic 1-53 2-44 Half-Sum and Full-Sum Logic 2-67
1-26 Start Storage Sequence Logic 1-54 2-45 Carry Lookahead, Block Diagram 2-67
1-27 Storage Selection 1-54 2-46 Serial Adder Gating Controls 2-69
1-28 Q-Register Halfword Outgating per 2-47 Serial Adder Parity Predict Logic 2-71

IC(21,22) 1-56 2-48 Half-Sum and Full-Sum Error Logic 2-73
1-29 Instruction Addressing 1-57 2-49 Parallel Adder Data Flow .. 2-74
1-30 Operand Data Byte Selection per 2-50 Parallel Adder Function Breakdown 2-75

1cc21.:.23) 1-58 2-51 Parallel Adder Input Buses 2-76
1-31 Basic Instruction Path 1~59 2-52 Bit Position Block Diagram 2-76
1-32 Path Through Q-, R-, and E-Registers of 2-53 Parallel Adder Carry Lookahead Data

Op-Code Halfword 1-61 Flow 2-79
i-33 Basic Scheme for Operand Prefetching 1-62 2-54 Actual and Predicted Carry Origin for
1-34 Q-Register Refill Addressing Scheme 1-65 PA(44) 2-81
1-35 Decimal Format Serial-Adder Data Flow 1-67 2-55 Full-Sum Development Logic 2-82
1-36 Parallel Adder Logical Functions 1-68 2-56 Parallel Adder Logic Function Sequence 2-83
1-37 Parallel Adder Group/Section Breakdown 1-69 2-57 Convert-to-Decimal Data Flow to Parallel
2-1 Trigger and Latch Dai:a Relationship 2-2 Adder 2-85
2-2 Typical Clock Signals 2-3 2-58 Summary of Setting of STAT's 2-87
2-3 Clock Signal Development and

Distribution 2.5
2-4 Basic 4 X 4 CROS Matrix 2-7 (VOLUME 21
2-5 Bit Plate 2-8
2-6 Sense Lines 2-9
2-7 Sense Line Layout 2-10 3-1 Typical Microprogram Sequence 3-1

2-8 Bit Capacitors 2-11 3-2 Basic Sequencing for SS Instructions 3-8

2-9 CROS Plane Pressure Mounting Assembly 2-12 3-3 ASC Test for SS Instructions 3-10

2-10 Control Field A Decoder 2-15 3-4 Detection of Invalid Instruction Address 3-20

2-11 Detailed ROS Timing 2-16 3-5 Detection of Fetch-Protected Instruction

2-12 ROSPARA and ROSPARB Alternator 2-17 Address 3-22

2-13 ROS Parity Checking 2-19 3-6 Fixed-Point Multiply, Example No. 1 (RR

2-14 Primary BCU Interface Signals 2-21 Format) 3-40

2-15 Basic Organization of HSS Unit 2-23 3-7 Fixed-Point Multiply, Example No. 2 (RR

2-16 Basic BCU Scheme for Processing Storage Format) 3-41

Requests 2-24 3-8 Fixed-Point Divide, Example No. 1 3-48

2-17 Basic Request Timing 2-25 3-9 Fixed-Point Divide, Example No. 2 3-48

2-18 Basic BCU Operational Sequence 2-27 3-10 Convert to Decimal Example 3-52

2-19 Typical Timing for CPU Fetch Request to 3-11 Restore and Non-Restore Division 3-97

LCS 2-31 3-12 Fraction Divide Example 3-98

2-20 Gating of Storage Address from CPU & 3-13 Floating-Point Divide Example 3-102

Channels to Address Decoders in BCU 2-32 3-14 Operand Specifications for Decimal Multiply

2-21 Selection of Correct Storage Unit 2-33 Instruction 3-118

2-22 Basic SAB Decoding Circuits in BCU and HSS 3-15 Typical Multiply Add Sequence 3-119

Unit 2-35 3-16 Typical Multiply Subtract Sequence 3-120
2-23 SAB Parity Conversion Logic .· 2-37 3-17 Data Handling During GIS of Decimal
2-24 BCU Reset for LCS Operation 2-39 Multiply 3-121
2-25 Typical CPU Clock Stopping Sequence 2-40 3-18 Data Handling During Multiplier Left-Adjust
2-26 Q-Register Data Flow 2-45 Sequence 3-122
2-27 Q-Register Halfword Transfer per 3-19 Data Flow for Right-4 Shift of ST to AB,

IC(21,22) 2-46 Decimal Multiply 3-126
2-28 R-Register Data Flow 2-47 3-20 Operand Specifications for Decimal
2-29 £-Register Data Flow 2-48 Divide 3-128
2-30 Instruction Counter Data Flow 2-49 3-21 Example of a Typical Divide Sequence 3-129
2-31 D-Register Data Flow 2-51 3-22 Data Handling During GIS of Decimal

2-32 AB Register Data Flow 2-53 Divide 3-130

xii (10/69)

3-23

3-24

3-25

3-26

3-27
4-1
4-2
5-1

5-2

1-1
1-2
1-3
1-4
1-5
1-6
1-7

1-8
1-9
1-10
1-11
1-12
1-13
1-14
2-1

2-2

ABC
ac
adr
ALD
amp
ASC
ATN

BCD
BCU

Data Handling During Divisor Left-Adjust
Sequence ..

Data Handling During Dividend Fetch and
Left-Adjust Sequence

Simplified Data Flow for AND, OR, and
Exclusive-OR Instructions

Example of Use of Branch and Link
Instruction ..

Storage Protection Key Assignments
Direct Address Relocation
Duplicate Storage Addressing Detection
Primary AC Power Distribution, 60-Hertz

Units
Primary AC Power Distribution, SO-Hertz

Units

·(THIS VOLUME)

Permanent Main Storage Assignments
Characteristic Notation
Program States
PSW Interruption Mask Bit Designation
Interruptions
ROS Word Breakdown
Control Field V (Bits 97-99); E, Q Outgates
to Parallel Adder B-Bus

Fixed-Point Instructions
Floating-Point Instructions
Decimal Instructions
Logical Instructions
Branching Instructions
Status Switching Instructions
1/0 Instructions
Decimal Correct for Erroneous Numeric

Characters
Control Triggers

AB register byte counter
alternating current
address, addressed, addressing
automated logic diagram
ampere
address store compare
alternate test number

binary-coded decimal
bus control unit

3-131

3-133

3-149

3-167
3-179

. 4-3

. 4-7

5-2

5-3

1-4
1-18
1-24
1-25
1-28
1-41

1-42
1-71
1-77
1-83
1-88
1-93
1-96
1-98

2-68
2-89

5-3
5-4
6-1
6-2
6-3
6-4

6-5
6-6
6-7
6-8
6-9
6-10
C-1

3•1
3-2

3-3
3-4
3-5
3-6
3-7
3-8
3-9

3-10

3-11

3-12

4-1
4-2
5-1
6~1

6-2
-C-1

c
CAW
CB
cc
ccw
CE
charistic
CLD
CPU
CR

Representative DC Distribution . 5-5
Overcurrent Protection Loop 5-10
Normal IPL Operaiton 6-7
Data Switch Gating 6-10
Address Switch Gating 6-U
Scan Counter Latches and Decrementer Data

Flow . 6-32
· Address Sequencer Data Flow . 6-33

Address Sequencer Decoder ·6-34
Check Counter Data Flow 6-35
FLT Counter Data Flow 6-36
Cycle Counter Data Flow 6-37
ROS Test Sequencer Data Flow 6-38
Four-Block Tree and FLT Pattern
Generated . C-1

Tables

(VOLUME 2)

Q-Register Refill Exceptional Conditions 3-23
Value of Multiple Determined by Multiple

Selection Bits (Fixed-Point) 3-39
Divide Multiple Values, Fixed-Point 3-46
Conversion to Decimal (Excess-6) 3-51
Excess-6 Conversion, B(60-63) 3-53
Operand Bits Transferre~, STH Instruction 3-55
Left Shift Combinations 3-57
Right Shift Combinations . -· 3-61
Examples of Branching on Characteristic

Difference 3-73
Multiplier Bits Selected, Floating-Point

Multiply 3-89 .. --
Value of Multiple Determined by Multiple

Selection Bits (Floating-Point) ·3.90
Condition Code Setting Per Hardware

Conditions, Decimal Instructions 3-113
Feature Index . 4-1-
Floating Address Intervals . 4-3
High-Frequency Regulator Modules 5-4
Logout Format . 6-25
FLT Format . 6-52
SCOPEX . C-2

Abbreviations

capacitor
channel address word
circuit breaker
condition code
channel command word
customer engineer
characteristic
control automation system logic diagram
central processing unit
diode -

2065 FETOM (10/69) xiii

CROS
csw
CT

de
dee div
dee ovflo
DX
-Dx+l-

c DX+2

end op
EPO
ERSLT
exp ovflo
exp unflo

F
FEMDM
FEMI
FEMM
FE TOM
fix-pt div
fix -pt ovflo
FLT
flt-pt div __
FLUT
FPR
fract

GIS
GPR

hex
HSS
Hz

IC
I-Fetch
ILC
I/O
IPL

K
K
kHz

LAL
LAR
LCS
µl--,.
LSWR

MAR-
max
MCW
mHz
MMSC
MPR
ms
multisys

no op
ns

xiv (10/69)

capacitive read-only storage
channel status word
conditional terminate

direct current
decimal divide
decimal overflow
first byte in a series of destination bytes
second byte in a series of destination-bytes

_ third byte in a series of destination bytes

end operation -
emergency power off
expected result
exponent overflow

. exponent underflow

-fuse
Field Engineering Mainteriance Diagrams Manual
Field Engineering Manual of Instruction
Field Engineering Maintenan<;e Manual
Field Engineering Theory of Operation Manual
fixed-point divide
fixed-point overflow , _
fault locating test __ ·
floating-point divide --
Fault Locating Utility program
floating-point register -­
fraction

general initialization sequence
general-purpose register

hexadecimal
high-speed storage -
Hertz

instruction counter
instruction fetching
instruction length code
input/output
initial program load

kilo
_relay
kilohertz

local storage address latches
· local storage address register
large capacity storage -
local storage
local storage working register

memory address register
maximum
maintenance control word
megahertz
maintenance mode stop clock
multiplier
millisecond
multisystem

no operation
nanosecond

op code
·oper
opr

p
PAA
PAB
PAL

i>f -
PK
pp
PQ
priv oper
prot .
PS
PSW

R
ROS
ROSAR.
ROSBR
ROSDR
ROSPARA
ROSPARB

SAA
SAB
SAB
SAL
SAR
SBA
SBB
SCOPEX
SCR
SDBI
SDBO
signif
SLT
SMS
SOROS
spec
SRL
STAT
STC
stg
SWBD
sync

T
T(DX)
T(DX+ 1)
TIC
TN.

uf
usec
UT

v
vFL

> > = s
< =
7'

operation code
operation
ope111_nd

parity
parallel adder A -side .
parallel adder B-side
parallel adder latch
picofarad
power contactor
partial product --
partial-quotient
privileged operation
protection
power supply
program status word

resistor
read-only storage
read-only storage address register
read-only storage backup register ·
read-only storage data register
read-only storage previous address register A
·read-only storage previous address register B

serial adder A -side
serial adder B-side
~torage address bus
serial a<_lder latch
storage address register -
serial adder bus A
serial adder bus B
scoping index
silicon-controlled rectifier
storage data bus in
storage data bus out
significance
solid logic technology
standard modular system
scan out read-only storage
specification
Systems Reference Library
status trigger
ST register byte counter
storage
switch board
synchronizing

transformer
table byte specified by DX
table byte specified by DX + 1
·transfer in channel
test number

. microfarad
microsecond
unconditional terminate

volt
variable-field length

greater than or equal to
greater than or equal to
less than or equal to
less than or equal to
equal to
not equal to

Legend

. -----.--·--~ r::-:~RAM~--------~. Transfer into r~i~-.-. ---------. - . I
I LC ~ Indicates storogeable device . I I ------,--::------~ and input side.

I Means.reglst• contents are ~ I
Name supplied to indicators• · A .AND

I ALO Group I
Register Size (32 Bits)•.

I , ,_~ .. --. ~o· I
I I
I ~Exclusive-OR I I 7 z. I

Time Time I I SAB 8-Doto Bit (Plus Parity) ~TD · L _ _Q_ _ __, Time Delay

1
SerialAdder. ~ ~

I 0 SAL frequency I
I ~O·"'- I
I Q • ~ I
I ~Gate

1
PAA PAB I 60-Dota Bit (Plus. Parity) I

Parallel Adder L__ ~) I ~~~
I.. PAL ~I I
I • ~....... I
I Upper hall is . ~ I
I set(l)input.] (Name) · • I" dtoindlcatar. Odd Odd I - --~Means output "supp oe

Type (Trigger, Latch, Flip-Latch)

I __ • _,,., -. I
I AB123-ALDReference · ~~Driver I
I :;:,:;::.::. . . ~~.~··-'- ~ ~ I
I ~ ~·- ::V-- 1

1
I - I I <y b"• ·~-a t-- I

I ~ . ., ,.... I---"""'•'•"•'""'"' I
I i!!!i ..., ~ .. - ..,,. ~ I
1. ~ Interface I I --~ Denotes interface between two units.

------~ I __ -------------------- -iTIMiNGCHAm ________ Heavy bar Indicates active stat•: Number{s)

1 f-- I · · d d of the bar odentlly the I FLOWCHARTS I I Machine I Cycles ";t begl(,n)n(o"f' an :~ same chart) that
· I sogna s a so on e • "N t" I Q I I activate and deactivate this line. o I I 3e4eNot 6 I preceding 0 number means that the

Dec:ision I deactlve signal conditions this line• I I :::-· - I I
· I Waveshape I ,,_, .. ,~·--·-· J L __________ ._L ______ . ------

2065 FETOM (10/69) xv

System Control Panel

Reading Board

System/360 Model 165

This chapter introduces the 2065 Processing Unit (Central
Processing Unit or CPU) of the System/360 Model 65. It is
divided into four sectiOns:

Section l, System Description, describes the basic
system in terms of main storage, CPU, and input/
output ()./0), the features available, and the data flow.
Also included is a discussion of multisystem configura­
tions and the resources available to achieve a multi­
system.

Section 2, System Coding, discusses the. hexadecimal
number system, character codes, instruction formats,

Section 1. System Description

BASIC SYSTEM

A basic System/360 Model 65 is shown in Figure 1-1. This
system consists of a 2065 CPU, one 2365 Processor Storage
Model .1 or up to four Model 2's, and up to six 2860
Selector Channels and one 2870 Multiplexer channel. .(The
number· and configuration of 1/0 control units and devices
is flexible and is therefore not shown.) Five models are
available:
1. Model G65. Uses one 2365 Processor Storage, Model 1

(131,072 bytes).
2. Model H65. Uses one 2365 Processor Storage, Model 2

(262,144 bytes).
3. Model 165. Uses two 2365 Processor Storage, Model 2's

(524,288 bytes).
4. Model IH65. Uses three 2365 Processor Storage, Model

2's (786,432 bytes).
5. Model 165. Uses four 2365 Processor Storage, Model 2's

(1,048,576 bytes).

As shown in Figure 1-1, the storage address bus (SAB)
and the two storage data buses ['storage data bus in' (SDBI)
and 'storage data bus out' (SDBO)] are common to the
CPU and 1/0 channels. The Bus Control Unit (BCU),
located in the CPU, monitors and controls the availability
of these buses and selects the main storage area to be used.
Storage requests (stores and fetches) generated by the CPU
and 1/0 channels enter the BCU, which issues a response
signal to the requesting unit having the highest priority. The
response signal places main storage at the disposal of the
unit for one storage cycle. All units must compete for the
next available storage cycle in the same manner. 1/0
channel requests are given priority over CPU requests, and
each channel has an assigned priority.

Chapter 1. Introduction

and operands used in the System/360 Model 65.
Section 3, Program Execution and Control, discusses the

role of the supervisor program, the eight program
states, the make-up of the program status word (PSW),
the purpose and implementation of interruptions and
exceptional conditions, and the initiation and control
of 1/0 operations. . . .

Section 4, CPU Description, discusses the functional
units of the CPU, Instruction Fetching (I-Fetch) and
instruction execution, the Universal instruction set by
irlstruction class, and power considerations.

The 2065 CPU and main storage layout is shown in
Figure 1-2. The system control panel is attached to the end
of the CPU frame. One or two optional 1052 Printer­
Keyboards may be placed adjacent to the CPU reading
board to serve as operator consoles.

MAIN STORAGE

Core Storage

Core Storage Unit 1
(2365-1) Unit 4

(2365-2) (2365-2)

J

SAB
SDBO SDBI n •ru

~
--- -------.------ +

2065
CPU CPU
Requests

..
1/0 1/0 CHANNELS
Requests

Channel 1 Channel 6 Channel 0
(2860 Selector) (2860 Selector) (2870 Multiplexer)

-

:Figure 1-1. Basic System Configuration

2065 FETOM (10/69) 1-1

FEATURES AVAILABLE

Features available for the 2065 CPU are:
1. Direct Control. Provides two instructions, Read Direct

and Write Direct, and six external interruption lines
which are independent of I/O channel operations. The
instructions provide timing signals and transfer a byte
of information between two CPU's or between the CPU
and an· external device.

2. 2361 Attachment. Provides bulk core storage of from
1,048,576 bytes to 8,388,608 bytes through the
attachment of up to four 2361 Core Storage Units.
Two models are available: Model 1, which has a storage
capacity of 1,048,576 bytes; and Model 2, which has a
capacity of 2,097 ,152 bytes. This feature provides
two-way interleaving for pairs of 2361 units.

3. 1052 Adapter. Permits attachment of one 1052 Printer­
Keyboard, Model 7, for system console I/O. Also
includes a program-controlled alarm. Two 1052
Adapter features can be installed, allowing the attach­
ment of a 1052 on each side of the CPU reading board.

4. Multisystem. Permits two 2065 CPU's to be joined to
form a Multiprocessing System/360, Model 65. Both

r--------,
Main Storage

Models
IH65f
and J65

Main Storage

Models G65,
H65, 165,
I H65, and J65

Frame 03

CPU's share a configuration control panel and two to
four 2365 Model 13 Processor Storage units (262,144
bytes each). See Additional Storage Attachment
feature also.

4A. Additional Storage Attachment (Model J only). Four
features, each permitting the attachment of one addi­
tional 2365 Model 13 Processor Storage in a Multi­
processing System/360 Model 65.

5. Emergency Power-Off Control. Provides, in effect, a
single Emergency Power-Off switch in a "room" or
. "area".

6. 7070/7074 Compatibility (Models H, I, IH, and J
only). Allows the execution of 7070 and 707 4 instruc­
tions.

7. 7080 Compatibility (Models H, I, IH, and J only).
Enables the system to execute 705 and 7080 instruc­
tions.

8. 709/7040/7044/7090/7094/7094II Compatibility
(Models I, IH, and J only). Enables the system to
execute 709, 7040, 7044, 7090, 7094, and 7094II
instructions.

r----
Main S

---...,
I

torage I
I
I

Models I 65,
IH65, a nd J65

r-------.-,
I . I
I Main Storage I

I I
I I
I
I
I Models IH65f
I and J65
I
I
I
I
I
I
I
I
I

.l __ ".:'.'m e 05 I Frame 09
----~-r----~-------L,

I I
CPU Converter/ CPU Power Control I I

I I
Inverter and Regulators

Frame 04 Frame 02

..-...-- ..--,-

<("'
I :1S u LJ.J

Frame 01 2 2 .! .! a 0 0 0
<.'.> (!) <.'.><.'.>

1--L-.__

T :r
System Control Panel

Reading Board

Figure 1-2. System/360 Model 65 Layout

1-2 (10/69)

I I
Fram -- e 06 I . Frame 10 I
-----~--------------~

fFar Model IH65, third
2365 Processor Storage,
Model 2, can be either
frame 07 or 09.

SYSTEM DATA FLOW

The basic data flow in the System/360 Model 65 is shown
in Diagram 3-1, FEMDM. The multiplexed SDBO and SDBI
are the data paths between main storage and the CPU, and
between main storage and the 1/0 channels. These buses
transfer 64 data bits (8 bytes or a doubleword) plus 8
parity bits on each main storage cycle. The BCU determines
which unit may access main storage according to a priority
scheme. The multiplexed SAB carries 21 address bits plus 3
parity bits from the highest-priority requesting unit to the
main storage addressing logic.

When storing data, the eight mark triggers determine
which bytes of the data placed on the SDBI are to be stored
into the doubleword addressed by SAB. When fetching
data, a doubleword of data is transferred, via the SDBO, to
the requesting unit from the main storage location ad­
dressed by SAB.

The bus-in and bus-out lines between the 1/0 channels
and their attached control units are part of the Standard
1/0 Interface, and transfer one byte of data at a time;

Each 1/0 channel has buffer registers which can receive
or transmit a doubleword of data between the 1/0 channel
and main storage, and which can receive or transmit a byte
of data at a time between the 1/0 channel and the attached
1/0 control units.

Parity checking throughout the system is at a byte level.

Main Storage

• Byte, eight bits, is format building block and basic
addressable unit of information.

• Halfword is two consecutive bytes.

• Word is four consecutive bytes.

• Doubleword is eight consecutive bytes.

• Byte locations are numbered consecutively, starting with
0.

• Group of bytes is addressed by lowest-numbered (left-
most) byte.

• Data isfetched in doubleword lengths.

• Data is stored on byte basis.

• Store and fetch protection is provided for 2048-byte
blocks.

The byte, which consists of eight bits, is the basic building
block of all formats and the basic addressable unit of
information.· A ninth bit, the parity bit, is transmitted with
each byte and establishes odd parity for each byte. The
parity bit cannot be affected by the program; its only
purpose is to cause a machine check interruption when a
parity error is detected. References to the size of data fields
and registers therefore exclude the associated parity bits.
All storage capacities are expressed in number of bytes
provided, regardless of the physical word size used.

Bytes may be handled separately or grouped together in
fields. A halfword is a field of two consecutive bytes; a
word, a field of four consecutive bytes; a doubleword, a
field of eight consecutive bytes. The location of any field of
bytes in main storage is specified by . the address of its
lowest-numbered (leftmost) byte.

Byte locations in main storage are numbered consecu­
tively, starting with O; each number is considered the
address of the corresponding byte. A group of bytes in
main storage is addressed by the lowest-numbered (left­
most) byte of the group. The CPU tan accommodate binary ·
addresses up to 24 bits long, thus providing addresses for up
to 16,777,216 bytes. Addresses 0 through 4095 can be
generated without a base address or an index. This property
is important when the program status word (PSW) and
general register contents must be preserved and restored
during program switching. Thus this · area has special
significance to supervisor programs and contains all perma­
nent storage assignments, such as old PSW's, new PSW's,
channel address word, channel status word, and the interval
timer value (Table 1-1).

The available storage is normally contiguously address­
able, starting at address 0. An addressing program interrup­
tion occurs when addressing beyond the maximum available
capacity of the installation. Except for a few instructions, .
the interruption occurs only when attempting to use the ·
data and not before.

Each time a storage unit is accessed by the CPU or 1/0
channels, information is either stored into or fetched from
that storage unit. When a storage request is received via the
BCU, core storage _performs a read/write storage cycle. If a
fetch operation is to be performed ('store' iatch reset), the
addressed doubleword from the core array is gated to the
memory data registers (MDR's), a pair of 32-bit registers
which serves as a buffer. The output of the MDR's is gated
to the SDBO and to the write circuits of the core array to
be regenerated into the addressed doubleword location of
main storage. The SDBI is blocked so that data is not
entered into main storage.

If a store operation is to be performed ('store' latch set),
the SDBO is blocked, and the data on the SDBI is
accompanied by one or more mark signals on the mark bus.
There is a mark line for each of the eight SDBI bytes ..
Presence of signals on these lines indicates which bytes are
to be replaced in core storage. Thus data can be stored
selectively by bytes; a single store operation can replace up
to eight bytes in storage at the address designated by the
SAB. Although the SDBO is blocked, the addressed
doubleword from the core array is gated to the MDR's.
There, those bytes that do not have a corresponding mark
line active (those bytes to be regenerated) are combined
with the bytes on the SDBI that have a corresponding mark
line active (indicating new data). The contents of the
MDR's are then transferred to the write circuits and placed
into the addressed doubleword location of the core array.

2065 FETOM (9/68) 1-3

Instructions that involve fetching and subsequent storing
of data do not necessarily take storage accesses consecu­
tively; it is possible for a channel to take one or more
intervening accesses. Only the Test and Set instruction

Table 1-1. Permanent Main Storage Assignments

Main Storage
Address

Dec Hex Length Information Stored

0 0 Doubleword Initial program loading
PSW

8 8 Doubleword Initial program loading
Channel Command
Word 1 (CCW 1)

16 10 Doubleword Initial program loading
CCW2

24 18 Doubleword External interruption;
old PSW

32 20 Doubleword Supervisor call inter-.
ruption, old PSW

40 28 Doubleword Program interruption,
old PSW

48 30 Doubleword Machine check inter-
ruption, old PSW

56 38 Doubleword 1/.0 interruption, old
PSW

64 40 Doubleword Channel Status Word
(CSW)

72 . 48 Word Channel Address Word ·
(CAW)

76 4C Word Unassigned

80 50 Word Timer

84 54 Word Unassigned

88 58 Doubleword External interruption,
newPSW

96 60 Doubleword Supervisor call inter-
ruption, new ·psw

104 68 Doubleword Program interruption,
newPSW ·

112 70 Doubleword Machine check inter-
ruption, new PSW

120 78 Doubleword 1/0 iryterruption, new
PSW

128 80 22 doublewords Diagnostic log-out
area

1-4 (9/68)

takes a combination fetch and store access without permit­
ting any intervening accesses.

A storage protection capability is provided to protect
the contents of certain areas of main storage from
destruction (store protection) or mis~se (fetch protection).
Locations may be protected against sto~e violations or
against store and fetch violations but never against . fetch
violations only. Protection is achieved by. dividing main
sforage into 2048-byte blocks and a$signing a five-bit
protection key to each block. The keys for the blocks are
contained in a separate small core array in the associated
storage unit. The low-order bit of the key in storage
designates whether the block is protected against fetches. If
this bit is a 0, no fetch protection is specified and only
store protection is provided. If this bit is a 1, protection
applies to both storing and fetching. The key may be
assigned by the Set Storage Key instruction andinspected
by the Insert Storage Key instruction.

When protection applies to a storage reference, the key
in storage is compared with the protection key supplied by
the CPU or channel. Access is permitted only when the four
high-order bits of the key in storage match the supplied
protection key or when the supplied protection key is zero.

2365 Processor Storage

Two models of the 2365 Processor Storage unit (also
referred to as the High-Speed Storage or HSS) are available: .
Model l, which provides 131,072 bytes; and Model 2,
which provides 262,144 bytes. Both models have an
internal cycle time of 750 ns.

Each 2365 Model 2 Processor Storage is organized into
even- and odd-numbered doubleword storage -areas. The
access path to these are~s is through a shared interface
which allows the BCU to interleave even and odd requests;
i.e., an odd request can be issued by the BCU halfway
through an even cycle; and vice versa. By interleaving
references to even-numbered and odd-numbered double­
words in main storage, the effective storage cycle ap­
proaches one half the cycle time for the unit. As a
maintenance aid, the interleaved mode can be defeated to
allow operation of a program solely in the odd or even area
of storage.

2361 Core Storage (Optional)

The overall storage capacity of the system may be increased
by means of the 2361 Attachment feature. This feature
provides bulk, direct-access core storage through the attach­
ment of up to four 2361 Core Storage Units (also referred
to as Large Capacity Storage or LCS). Two models are
available: Model 1, which has a storage capacity of
1,048,576 bytes; and Model 2, which has a capacity of
2,097,152 bytes. Either one 2361 Model 1 or up to four
2361 Model 2's may be attached if interleaving is not
utilized;' with interleaving, either two 2361 Model l's, or
two or four 2361 Model 2's may be attached.

Eight bytes are accessed per storage cycle. Read access
time is 3 usec; a read/rewrite storage cycle requires 8 usec.
If interleaving is utilized, the LCS units are attached to the
system in pairs, and the addressing assignment is split. so
that one unit contains all odd addresses and the other all
even. Thus, these units can be addressed on an interleaved
bias to achieve a sequential access rate of 4 usec per
doubleword.

2065 Central Processing Unit

The 2065 CPU performs arithmetic, logical, and control
instructions specified by a stored program. It contains
facilities for addressing main storage, processing fixed­
point, floa!ing-point, and decimal arithmetic, operating on
logical data, sequencing instructions in the desired order,
and initiating 1/0 operations. Also provided are facilities for
character-handling, processing of fixed-length and variable­
field-length (VFL) data, indexing, and indirect addressing.
Functionally the CPU can be divided into four major
sections: control, BCU, instruction fetching, and instruc­
tion execution.

Control Section

The basic CPU clock cycle period is 200 ns. A clock signal
generator provides a 5-megaHertz (5-mHz) symmetrical
(100-ns clock and 100-ns not-clock portions) signal. To
provide additional time for CPU logic functions, the
symmetrical clock signal is modified to give a 5-mHz
unsymmetrical (80-ns clock and 120-ns not-clock portions)
signal. Clock distribution logic distributes and. synchronizes
the clock signals to the logic gates, and stops distribution of
clock signals to most of the CPU processing logic upon
detection of a machine check during certain operations.
· A significant feature of the CPU is the read-only storage
(ROS) used to control operations. The ROS contains a
permanently recorded microprogram holding information
that remains fixed during machine operations. The informa~
tion is in the form of 100-bit words, each word containing a
unique, predetermined bit pattern. When decoded, the bits
control gates to route data in the CPU. Word access time is
approximately 95 ns. The information can be read out as
required, but a physicalmodification is necessary to change
tlie stored information. In general, a control word is read
out from ROS at the end of each machine cycte (200 ns)
and controls the CPU during the following machine cycle.
Each ROS word contains the address of the ROS word to
control the CPU during the following cycle. The number of
control words (and machine cycles) required to perform a
particular operation may vary because both the individual
functions and the address of the next ROS word are
modifiable by the (1) operation in progress, (2) data or
control bit configuration, and (3) detection of interruptions

·or exceptional conditions. Used as a control device, ROS

eliminates the need for most complex instruction decoders
and sequencing networks.

The Program Status Word (PSW), a doubleword, con­
tains the information required for proper program execu­
tion. Primarily, the PSW controls instruction sequencing
and holds the system status in relation to the program being
executed. By storing the PSW, the program can preserve the
status of the CPU for subsequent analysis. By loading a new
PSW or part of a PSW, the state of the CPU may be
changed.

Bus Control Unit

The main storage associated with a system is shared by the
CPU and 1/0 channel. A main storage address bus (SAB)
and two main~storage data buses (SDBI and SDBO) are also
common to the CPU and 1/0 channel. The BCU, located in
the CPU, monitors and controls the availability of these
buses and selects the main storage area to be used. Storage
requests (stores and fetches) generated by the CPU and 1/0
enter the BCU, are processed by means of a priority
scheme, and are executed when the requesting unit is
granted priority. When there is a conflict between the CPU
and an 1/0 channel wanting to use main storage, the BCU
gives priority to the channel. Priority between channels is
also preassigned, with channel 1 having highest priority,
followed by channels 2, 0, 3, 4, 5, and 6. When the CPU
cannot access main storage because of a channel, the CPU
clock is stopped until main storage is available to the CPU.

Each unit requiring access to main storage issues a
request to the BCU via a separate (simplex) control line.
The BCU examines the control lines from each unit,
establishes which unit should be granted access to main
storage for the particular cycle, and generates response
signals for that unit. These response signals control the
placing and sampling of data on the common bus. Access to
main storage for a particular unit is granted by the BCU on
a cycle-to-cycle basis, and all units again compete for the
subsequent storage cycle.

The CPU operates on a basic cycle of 200 ns while the
main storage cycle time is 750 ns. To increase processing
speed, the CPU overlaps, whenever possible, storage re­
quests for new data with processing of the existing data
within its buffer registers.

Instruction Fetching Section

An instruction buffer, the Q-register, provides buffering for
eight instruction bytes (four halfwords), thus reducing the
number of storage requests that must be made to fetch
instructions from main storage. Associated with the Q­
register is the R-register. It holds the halfword (two bytes)
containing the op code, received from the Q-register, of the
instruction to be executed next. As a result, the R-register
allows overlapping of instruction fetching with the refilling

2065 FETOM (9/68) 1-5

of the Q-register. The E-register holds the halfword contain­
ing the. op code of the instruction being presently executed.
The instruction op code is used to address the ROS, which
provides the required microprogram for execution of a.
specific instruction.

An interruption capability permits the CPU to change
state automatically as a result of conditions arising outside
the system, in 1/0 units, or in the CPU. An interruption
switches the CPU from one program to another by changing
the instruction address; the interruption cause and all
essential machine status information are stored for analysis
in a program status word. This information is available to
the system as required. When a different program is
requested, the_ status information about the current pro­
gram is stored temporarily and is retrieved when that
program is to be continued. This facility allows interrupted
programs to resume at the point of interruption without
the loss of control conditions.

Before an instruction is executed, it is tested for odd
parity. The op-code halfword is tested in the E-register. The
remaining halfwords, if any, are tested by the parallel adder
half-sum checking circuits as the effective address is
calculated.

Instruction Execution Section

The CPU operates on a basic internal cycle time of 200 ns.
The data flow (Diagram 3-2, FEMDM) utilizes two major
working registers (ST and Am to give increased speed and
simplified implementation of the instruction set. The 60-bit
parallel adder is the focal point for most data transfers and
facilitates handling the full long fraction in floating-point
operations. An eight-bit serial adder provides simultaneous
execution of. the floating-point exponent as the fraction is

· operated on in the parallel adder, and has the capability of
executing decimal arithmetic and VFL instructions.

The CPU extracts from the doubleword fetched from
main storage ·the bytes on which it will operate. Thus,
storage accesses are not required for every byte. As a result,
processing -speed is increased and system performance is
improved. Data may be stored, however, on a byte basis;
any number and combination of bytes up to 8 (double­
word) can be stored in one storage cycle. Addresses for data
are formulated in the arithmetic section of the CPU and
then placed in the D-register for addressing main storage.
The D-register is also used for addressing 1/0 devices on 1/0
instructions.

The CPU incorporates a local storage of 25 word-length
registers: 16 word-length general-purpose registers for fixed­
point operations; 4 doubleword length (8 word-length)
floating-point registers for floating-point operations; and 1
word-length register, called the working register, for miscel­
laneous operations. Local storage serves two functions: (1)
it is used in generating operand addresses in main storage
and (2) it holds operands and intermediate results of data
operations, thus eliminating the need for special-purpose

1-6 (9/68)

registers, such as accumulators. Local storage employs
nondestructive readout, eliminating the need for regenera­
tion, and· operates on a 200-ns cycle with an 80-ns access
time.

In the CPU, checking is facilitated by providing a parity
bit for each byte of data. Odd parity is maintained. A
parity check is .made on data transferred to and from main
. storage. Most data transfers withfo the CPU ·are made via
the parallel adder, in which the parity of each operand byte
is checked against the half-sums. The parity of the sum,
which is not a function of the parity of the operands but is
generated logically within the adder, is checked against the
latched sum. .

As programs are executed, they are checked for correct
instructions and data. This monitoring action identifies and
separates program errors and machine errors. Because each
type of error causes a unique interruption, program errors
cannot create machine checks (errors).

Input/Output

• I/O section consists of devices, control units, channels.

• 1/0 operations are initiated by CPU and thereafter are
performed independently of CPU.

Use of the I/O devices by the system is referred to as an 1/0
operation. The basic 1/0 operations are reading, which
transfers data from an 1/0 device to main storage, and
writing, which records at an I/O device data received from
main storage.

The operation of a specific 1/0 device is governed by a
control unit (Diagram 3-1, FEMDM) which provides control
unique to its attached devices. The control unit may be a
part of the 1/0 device or may be shared by a number of

. devices and be a separate logical entity. Besides controlling
the operations of specific 1/0 devices, the control unit
makes all 1/0 devices appear identical to the channel.

All 1/0 devices are connected, via their control units and
the Standard 1/0 Interface, to the I/O channels. Each
channel provides the logic necessary for synchronizing I/O
data cycles with those of main storage and exerts pro­
grammed control over operations of the 1/0 devices
connected to it. Logically, the channel can be considered as
an autonomous entity provided for transferring information
between 1/0 control units and main storage under control
of the CPU.

In the System/360 Model 65, the channels interface
directly with the CPU, providing a path for the exchange of
system control information. This connection is used by the
CPU to start and monitor a channel program, and by the
channel to alert the CPU of the progress and termination of
1/0 operations. A BCD-controlled connection between the

. channel and main storage provides a path for the channel to
fetch and store data, as well as channel command words
that supplement the direct communication between the
channel and the CPU.

Lengthy 1/0 operations (such as reading and writing) are
·executed in parallel with the CPU operations. The CPU
need only initiate an 1/0 sequence by issuing an instruction
to the channel. Thereafter, the channel establishes the
address of the first channel command word for that
sequence, establishes connection with the required 1/0
device, and verifies that the operation designated by the
CPU can be executed. Once the device is started and the
channel is set up to execute its commands, the CPU is
released. Several commands can be chained, creating an I/0
program for the device ..

Main storage cycles are~equired during 1/0 operations to
transfer data to or from main storage. These cycles do not
interfere with CPU operations, except when both the CPU
and the channel concurrently attempt -to access main

.·storage.

•Channel

After the operation with the device is initiated, the channel
assembles or disassembles data and synchronizes the trans­
fer. of data bytes with main-storage cycles. To transfer data,
the channel maintains and updates an address and a count
that describe the destination or source of data in main
storage:· Data is transferred between main storage and the

-channel eight bytes at a tune, and between the channel and
the control unit one byte at a time.

Modes of Operation. Data can be transmitted between main
storage and an 1/0 device in two modes: burst mode and
multiplex mode.

In the burst mode of operation, a device monopolizes
the channel and stays logically corinected to the channel for
transniission of a burst· of information. The burst -can . .
consist of a riumber of bytes, a block of data, or a sequence
of blocks with· associated chamed commands. o.:U.y one 1/0
device can communicate ~ith the channel durl.ng the time a
burst is transniitted.

In the multiplex mode of · operatfon, the channel
facilities are shared by a number of concurrent 1/0
operations. All 1/0 operations are split into short intervals
of time during which only a segment of information is
transmitted over the interface. The intervals associated with
different operations vary in response to demands from the
1/0 devices. The channel controls are occupied with any
one operation only for the time required to transmit a
segment of information .. _ The segment can consist of a byte
of data, a few bytes of data, or a control sequence such as
the initiation of a new operatfon.

Operation in burst and multiplex modes is distinguished
by the way the channels respond to 1/0 instructions. A
channel operating in the burst mode appears busy to new
1/0 instructions. A channel operating in the multiplex
mode appears available to new 1/0 instructions.

•· Types of Channels. Highlights:

• Model 65 can- accommodate two- types of channels:
selector channel, which operates in burst mode; multi­
plexer channel, which can operate iri either burst or
multiplex mode.

• Model 65 can utilize up to six selector channels
(addresses 1 through 6) and one multiplexer channel ·
(address 0).

A model 65 can be equipped with two types of channels:
2860 Selector and 2870 Multiplexer. The channels -are _
classified according to the modes of operation they cap
sustain~

The channel facilities required foi: ~ustaining an 1/0
operation are termed a subchannel. The subchannel consists
of the channel ·storage used for recording the addresses, ·
count, and any status and control information associated
with the 1/0 operation. The mode in which a channel can
operate depends upon whether it has one or multiple
subchannels.

The 2860 Selector channel has only one subchannel and
operates only in the burst niode. The bursts extend over the
whole block of data, or, when command chaining is
specified, over the whole sequence of blocks. The selector
channel cannot perform any multiplexing and, therefore,
can be involved in only one data transmission operation at a
time. Once a data transfer is initiated, a logical connection
is established · .. between the selected 1/0 device and the
channeL This connection persists· for the duration of the -
operation, and other 1/0 devices cannot communicate with
the channel. ln the meantime, however, other 1/0 devices
attached to the channei can execute operations that do not
involve communication with the channel. The selector
channel. keeps scanning 1/0 · devices for interruption condi­
tions when it is not· executing an operation or a chain of
operations. A maximum of six selector channels may be
attached to a 2065; their addresses are 1 through 6. A 2860
Model 1 contains one selector. channel; a 2860 Model 2
contains two; a 2860 Model 3 contains three.

The 2870 Multiplexer channel is intended primarily for
operation · with Jower-speed devices. It contains multiple

-· subchannels and can operate in either multiplex or burst
mode; It can switch between the two modes of operations
at any time, and an operation on any one subchann~l can
occur partially in the multiplex and partially in the burst
mode.

When the multiplexer channel operates in the multiplex
mode, it can concurrently sustain one 1/0 operation per
silbchannel, provided that the aggregate data rate does not,
exceed the capacity of the channel. Each subchannel
appears to the program as an independent selector channel.
When the multiplexer channel is not servicing ari 1/0 device,
it keeps scanning its devices for data and for interruption ·
conditions.

2065 FETOM (9/68) 1-7

When the multiplexer channel operates in the burst
mode, the-subchannel associated with the burst operation
monopolizes all channel facilities and appears to the
program as a single selector channel for the duration of the
burst. The remaining subchannels . on the multiplexer
channel remain dormant and resume communicating wtth
1/0 devices when the burst is completed.

One 2870 · Multiplexer channel may be attached to a
2065, and its address must be 0.

Control Units

The control unit is the buffer between the 1/0 device and
the channel. It adapts the characteristics of the device to
the standard form of control provided by ~e channel. A
control unit may ·be housed separately or it may be
physically and logically an integral part of the device. The
control unit accepts control signals from . the channel,
controls the timing of data transfer to the channel, and
provides indications of device status.

Except for the signal used to establiSh priority among
control units, all communication to and from the channel
occurs over a common bus, and any bus signals provided by
the channel are available to all control units. At any instant,
only one control unit is logically connected to the channel.
Selection of a control unit. for communication with the
channel is controlled by a signal that passes serially through
all control units and permits each control unit to respond
sequentially to the · signals provided by the channel. A
control unit remains logically connected to the channel
until it has transferred the information it needs or has, or
until the channel signals it to disconnect.

Up to eight control units (limited by electrical considera­
tions) can be connected to one channel.

1/0 Devices

The 1/0 devices consist of auxiliary storage as well as
equipment used to communicate with the system users. The
auxiliary storage includes direct-access devices such as disks
and drums; as well as sequential-acce~s devices such as
magnetic tape units and punched card equipment. The
equipme_nt used to communicate betwe-en the system and
its users includes a _wide range of devices-: printers, visual
·display units, keyboards, and communication terminals. Up
to 256 directly addressable devices (limited by addressing
facilities) _can be attached to one channel.

Mu ltisystem ·Configurations

• Multisystem consists of two or more interconnecting
systems, each with a CPU.

• Multisystem can be achieved by:
1. Channel-to-Channel Adapter
2. Transmission Control Unit
3. Two-Channel Switch Feature

1-8 (9/68)

4. Device Switching Unit
5. Shared LCS Feature
6. Direct Control Feature
7. Multisystem Feature

A multisystem consists of two or more systems, each with a
CPU, that can communicate with each other without
manual intervention. Thus, in addition to their specialized
jobs, the individual systems may pool resources to perfomi
a common job.

A multisystem configuration consists of two CPU's with
a complement of storage and 1/0 equipment. This equip­
ment is Shared by the CPU's, but is considered to be
logically independent if the CPU's are interconnected by
well-defined interfaces so that they can, upon reconfigura­
tion, operate without communicating with each other.
Exarn,ples of logically independent system components are
storage units, CPU's, 1/0 control units, and 1/0 devices.

Although logically independent, these system com­
ponents may still be physically dependent because they
Share common equipment. Communication between the
CPU's of a multisystem may be achieved by transmitting
information from one CPU to another through a connecting
link or by giving them access to a Shared storage medium.

.· Figure 1-3 Shows, in simplified form, the major com­
ponents of a single; or simplex, system. A multisystem
configuration can be achieved by the following:
l. Channel-to-Channel Adapter. Allows connecting the 1/0

interfaces of two channels (Figure 1-4). The main
purpose of the channel-to-channel adapter is to make
each channel appear as a control unit to the other
channel. Transmission of data between the two channels

r-----, r--~--,
I I I I

Storage I Storage I : Storage :
I I I I
L--T--~ ~--.--~

--------------1------~---~---L-----~

---------------.-----i

Channel

I r--..L..--,
I I
I Channel I
I I L _____ ...J

---------------.-----~ I .--.I...--,
I Control I
I Unit I
L------.J

--------------,----~
I

r-- --,
I I
I I

Device I Device I
I I L _____ ..J

Figure 1-3. Functional Structure of a Simplex System

r-----,
I I I Storage : Storage

I I
~--.--~ '--~--I

I

/-----'-------

CPU

l----.-~-·--..,--
1 r--.1..-..,.,____,

·I I

I Channel I
I I 1... _____ J_.,.....,,__

/-----r------
1 r--... --, _ __....._~

I Control I
I Unit I
I I
L...- -- -_.....,.._

/-----,-------
.. I r--.a....--, .---'---.

I I
I Device I Device
I I
1...-----.J L-----'

Channel-to··
Channel
Adapter

..----...... r-·----1.
I · I

Storage I Storage I
I ·I ...___,. _ _, "'"--r-·-.J

-------L----1

CPU

------r---1
.....-~-..., r--'---,

I I
Channel I Channel I

L _____ J

-------,-----?
I r---'---,

Control I Control I
Unit I Unit I

I I _____ ..
------1----1

..--~-·----, r--"---,
I I
I D • I I e-v1ce I_ __ __, L _____ J

Device

Figure 1-4. Channel-to-Channel Adapter as Multisystem Connector

is by byte. at a rate established by the two chartnels.
Because of the standardization of the 1/0 interface, this
adapter may connect any model of the System/360 to
any other model, and may use any type of channel on a
given model. Any number of channel-to-channel
adapters may, be used in a multisystem, but their main
function is in a multisystem emphasizing medium
reconfiguration time or equipment specialization.

2. Transmission Control Unit. Permits communication by
private line or common carrier. As indicated i:11 Figure
1-5, communication is established by a speci3lized device
interface rather than via the channel interface. The rate
of data transmission is determined mainly by the line
capacity. Any two models of System/360, as well as
those of any other system, can be connected. 'J;'.he major
multisystem application of the transmission control unit
is for geographically separated computers.

3. Two-Channel Switch Feature. Permits sharing of control
unit. When two or more CPU's have access to a common
ftle, information placed into the common file by one
CPU can be read by another. In contrast to transmission,
sending and receiving are not simultaneous, and a
one-to-one relation between recording and retrieval is
not necessary. The choice of the shared media is
determined· by access time, capacity, and cost per bit.
Shared devices are useful for program restarting informa­
tion for job recovery upon reconfiguration. Disks,
drums, and tape units ·may be pooled for storage of
system programs as well as a means of communication
between specialized CPU's to achieve improved turn­
around time. Because a control unit normally controls
several disk files, drums, or tape units, a switch between

j------,
I I
I Storage I
I I
.... ---r--...J

. I 1---- __J ____ ----

r------,
1. I

Storage I Storage I
I I
'----r·--...J

1·
-------..L.-----1

1-----r------- -------~----~
I ·I r--"---, r--.L...--.,

I I I I

I Channel I Channel Channel I Channel I
I I I I
1... _____ _J L---,--J

1-----T-------- --------r---~
I I

r---'---1 r--.L---r
I Control I Transmission Transmission 1· Control I I Unit J Control Unit I'+'"'+"""........, Control Unit I Unit I
L--,--.J '---,----'

I I
I I

I Common Carri er I
I I

r __ _J_,......, r--L--,
I I I I
I Device I I Device I
I I I · I .._ _____ __, L..-----..J

Figure 1"5. Transmission Control Unit as Multisystem Connector

a channel and a control unit allows efficient sharing of a
control unit by two CPU's (Figure 1-6).

4. Device Switching Unit. Tape units or .other 1/0 devices
are shared between control units (Figure 1-7), rather
than control units being shared between channels as in
Figure 1-6. · This choice permits pooling of tape units
between control units and permits simultaneous opera­
tion of any combination of tape units. This logical

r-----,
I I
I Storage I Storage

I I
'---"'T--..J

I

1-----.l.--------

CPU

1-----.--------
1

r--.1..--,
I I I Channel I Channel

I I ______ ..
1---~-r-~-~----+-~---...

I . r--.L---, _____,
I Control I Control
I Unit I Unit
I I
L..-----.J

1------.--------
1 , __ __ ,

I I
r Device I Device
I I
L.-----~

r-----,
I I

Storage I Storage I
I I

CPU

'---~--...J
_______ _! ____ ,

--------,----1
I

r--'---1
I I

Channel : Channel I
I I L.------..

~~~r-------,----~ 
I 

r--~--, 

I Control : 
I Unit I 
I I L-------' 

-------r---~ 
I r---L---, 

I I 
Device I Device 1 I . I L _____ J 

Figure 1-6. 2-0iannel Switch Feature as Multisystem Connector 

2065 FETOM (9/68) 1-9 



.-----., 
I I I Storage I Storage 

L--T--.J 
I 1----...l _______ _ 

1------,--------
1 

,---.L.---, 
I I I Channel I 
L ____ ...J 

/-----,--__:_ ______ _ 
I 

r-- ..... --., 
I Control I I Unit l 
L-----...1 

/----,---------~~~ 
I 

r---'----, 
I I 
I Device I Device 
I I 
L-----.J 

r------, 
I I 

Storage I Storage - I 
I I 
L--T--.J 

- ___ ::_ __ J_ ___ -1 

CPU 

-------,----/ 
I r---'--., 

I I 
I Channel I 
I I 
L----...1 

--------:-------/ 
.--~~--. r--.... ---, 

I Control I 
I Unit I 
I I L _____ .J 

~------i---------T-----/ 
I 

r--.L---
1 : 

Device I Device I 
I I L. _____ ...J 

Figure 1-7. Device Switching Unit as Multisystem Connector 

ability increases the thruput of a multisystem, as well as 
providing a common file. For example, the sharing of 
any pair of tape drives by two control units improves the 
sorting time significantly. 

5. Shared LCS Feature. LCS can be shared by two CPU's 
{Figure 1-8). when one program is executed by different 
CPU's, it is desirable to have the locations of instructions 
and data located in identical addresses in every CPU. 
This addressing convention is adopted in System/360 for 
multisystem operation. This application of shared 

,..------, 
I I 
I 2361 I 
I LCS I 
1- I 
L---r--...l 

I 
/------'------------

1------r--------
1 r---..L.---, 

I I 

I Channel I 
I I 
L-----.J 

t-----.--------
1 

~--..&..---, 

I Control l Control 
I Unit I Unit 
I I 
L-----...l 

~----i---------
.. --...1.--...., .---~--. 
I I 

: Device I Device 
I I 
L-----..J 

-------, 
I I 
I 2361 I 

I LCS I 
L---.---...J 

I _______ .J_ ____ i 

-------r-----1 __ ...._____, ·---'---, 
I I 
I Channel I 
I I L _____ J 

-------1------t 
.---'------. ·---'----, -

Control 
Unit 

I Control I 
I Unit I 
L.,. _____ J 

--------:------/ 
.---~--, r--.a..---, 

I I 
Device I Device I 

I I 
'------...l 

Figure 1-8. Shared LCS Feature as Multisystem Connector 

1-10 (9/68) 

storage is mainly used in multisystems reqwring a short 
reconfiguration time. 

6. Direct Control Feature. Communications between CPU's 
may be direct {Figure 1-9). Using the Direct Control 
feature, control signals and one byte of control informa­
tion -are transferred without waiting for recognition. 
(The F- and G-registers ill the 2065 are used by the Read 
Direct and Write Direct instructions, respectively.) This 
multisystem connection, unlike those previously de­
scribed, does not lend itself to the transfer of large 
amounts of data. 

7. Multisystem Feature. Any one or any combination of 
the foregoing interconnection methods results in a 
multisystem. However, the most sophisticated method 
of interconnecting two Model 65's utilizes the Multi­
system feature to form the Multiprocessing System/360 
Model 65 (Figure 1-10). 2365 Processor Storage Model 
13 units are used,_ the CPU's are equipped with the 
Multisystem feature (with the Direct Control feature as a 
prerequisite), and most of the control units are equipped 
with the Two-Channel Switch feature. Any of the other 
interconnection methods, (except the Shared LCS fea­
ture) may also be incorporated. The Multiprocessing 
System/360 Model 65 and the Multisystem feature are· 
described in Chapter 4, Section 2. 

Th_e interconnection methods described above are not 
always used to form a multisystem. A single system can also 
effectively make use of: 
1. Channel-to-Channel Adapter feature. · 
2. Transmission control unit. 
3. Two-Channel Switch feature. 
4. Device-switching unit. 
5. Direct Control feature (connected to an external device). 

r------, 
I I I Storage I Storage 

L __ T __ J 
I 

t-----L--------

1----.-------
1 

r---'---1 
I I 
I Channel I 
I I 
L----..J 

1----1-------­
r- - ..... _ -1 _ ___....._____, 
I Control I Control I Unit I Unit 

L-----...1 

/-----T--------
1 r--•--..... 

I I 
I Device I Device 
I I 
L-----...l 

r------, 
I I 

Storage I Storage I 
I I L---,--...J 

I 
-------..1.------1 

-~-----T-----/ 
I r--'---, 

I I 
I Channel I 
L-----.J 

-------.... ------/ 
I r---L---, 

Control I Control I 
Unit I Unit : 

L _____ ...J 

---------r-----1 
I 

~--·---1 I 
I I 

Device- I Device I 
I I 
L------...l 

Figure 1-9. Direct Control Feature as Multisystem Connector 



r------, 
I Storage I Storage I (2365-13) I (2365-13) 

~------, 

I I 
Storage I Storage I 
(2365-13) I (2365-13) : 

L--.,--,-.J L.-,.....,--.-.J 
I I I l _____ _ '-----'----+---; - - - ___ J I 
I I 
l_ -- -'--- - -f--------'--

_______ _J 

/-----r-------
1 

r-.L.---, 
I I 
I Channel I 
I I 
L-----...1 

/-----.-- ------~>----~· 
I 

~--..l.---, 

I I 
I Control I 
I Unit I 
I I L _____ .J 

1-----;----------1---~ 

,---...1..--...., 
I I 
: Device : Device 
I I l ______ _J 

CPU 

---- ---.-----/ 
I 

r---.L.--1 
I Channel I 
I I L. _____ _J 

~---<--------,-----/ 
I 

r-- ...... --1 
I Control I 
I Unit I 
I I 
L-----,..1 

~---<--------.-----/ 
I ---..i----. 

I I 

Device : Device : 

I I 
L------...J 

Figure 1-10. Multiprocessing System/360 Model 65 

2065 FETOM (9/68) 1-11 



Section 2. System Coding 

To understand the operation of the CPU, it is necessary to 
become familiar with the system coding. Accordingly, this 
section discusses: ( 1) the hexadecimal (hex) number sys­
tem, (2) the 8-bit zoned character codes, (3) the instruction 
formats and operand designations, and ( 4) the various data 
formats. 

HEXADECIMAL NUMBER SYSTEM 

o System uses 16 symbols: 0-9,A-F. 

e Base of system is 16. 

• System is shorthand notation for binary numbers. 

• Four binary bits are represented by one hex symbol. 

e Byte is represented by two hex symbols. 

Binary numbers have approximately 3.3 times as many 
terms as their decimal counterparts. This increased length 
presents a problem when talking or writing about binary 
numbers. A long string of 1 's and O's cannot be effectively 
spoken or read. A shorthand system is necessary, one that 
has a simple relationship to the binary system and that is 
compatible with the basic eight-bit byte used in the CPU. 
The hexadecimal (hex) number system meets these require­
ments. 

The hex system has 16 symbols: 0-9, A-F. Counting is 
performed as in the decimal and binary systems. When the 
last unique symbol (F) is reached, a 1 is placed in the next 
position to the left and counting resumes with a 0 in the 
original position, as follows: 

0 10 20 AO 
11 21 A1 

2 12 22 A2 
3 13 23 i 4 14 

l 5 15 
6 16 and so on 
7 17 
8 18 
9 19 
A 1A 9A 
B 18 98 
c 1C 9C 
D 1D 90 
E 1E 9E 
F 1F 9F 

1-12 (9/68) 

One hex symbol can represent four binary bits. Thus the 
8-bit binary byte, in turn, can be represented by two hex 
symbols. The relationship between the hex, binary, and 
decimal systems is as follows: 

Hex Binary Decimal 

0 0000 0 
0001 

2 0010 2 
3 0011 3 
4 0100 4· 
5 0101 5 
6 0110 6 
7 0111 7 
8 1000 8 
9 1001 9 
A 1010 10 
B 1011 11 
c 1100 12 
D 1101 13 
E 1110 14 
F 1111 15 

The important relationship to remember is that four 
binary positions are equivalent to one hex position. 

Hex numbers are represented in the same manner as 
decimal and binary numbers, except that the base is 16. 
The terms of the number represent the coefficients of the 
ascending powers of 16. For example, consider the hex 
number 257 (decimal equivalent equals 599): 

257 = (2 x 162) + (5 x 161) +"(7 x 16°) 

= (2 x 256) + (5 x 16) + (7 x 1) 

= 512 + 80 + 7 

EIGHT-BIT ZONED CHARACTER CODES 

All I/O devices requiring a zoned character code use either 
the Extended Binary-Coded-Decimal Interchange Code 
(EBCDIC) or the USA Standard Code for Information 
Interchange extended to eight bits (USASCII-8). The 
EBCDIC and USASCII-8 codes for the hex characters 0-F 
are listed below. For charts showing the complete EBCDIC 
and USASCII-8 codes with associated graphic characters, 
refer to the SRL, IBM System/360 Principles of Operation, 
Fo~m A22-6821-6. The codes do not have a symbol defined 
for all 256 eight-bit codes. To represent codes that do not 



have a defined symbol, two hex terms (representing four 
bits each) may be used instead of the eight-bit code. 

Hex Printed EBCDIC USASCll-8 
Code Graphic Code Code 

0000 0 1111 0000 0101 0000 
0001 1111 0001 0101 0001 
0010 2 1111 0010 0101 0010 
0011 3 1111 0011 0101 0011 
0100 4 11110100 0101 0100 
0101 5 1111 0101 0101 0101 
0110 6 1111 0110 0101 0110 
0111 7 1111 0111 01010111 
1000 8 1111 1000 0101 1000 
1001 9 11111001 0101 1001 
1010 A 1100 0001 1010 0001 
1011 B 1100 0010 1010 0010 
1100 c 1100 0011 1010 0011 
1101 D 1100 0100 1010 0100 
1110 E 1100 0101 1010 0101 
1111 F 1100 0110 1010 0110 

INSTRUCTION CODING 

The Model 65 uses the Universal instruction set, which 
enables the CPU to execute fixed-point, floating-point, 
decimal, logical, branching, status switching, and 1/0 
instructions. Two more status switching instructions, Read 
Direct and Write Direct, may be implemented- by installing 
the Direct Control feature. 

The Universal instruction set uses five instruction 
formats: RR, RX, RS, SI, and SS. Operands are designated 
as first, second, or third operands. For addressing purposes, 
the operands are grouped into three classes: 
1. EffectiYely addressed operands in main storage. 
2. Immediate operands in the instruction format. 
3. Operands in local storage (LS). 

Instruction Formats 

• Five instruction formats are available: RR, RX, RS, SI, 
and SS. 

• Halfword is basic building block for instruction. 

• Instructions are made up of 1, 2, or 3 halfwords. 

• First halfword contains 8-bit op code and, depending on 
format: 
4-bit LS address for operand, or operand address 
component. 

4-bit mask. 
8-bit immediate operand. 
4·bit or 8-bit length fields. 

• Second and third halfwords contain: 
4-bit LS address for operand address component. 
12-bit displacement. 

Five instruction formats are available, denoted by the 
format codes RR, RX, RS, SI, and SS. The format codes 
express, in general terms, the operation to be performed. 
RR denotes a register-to-register operation; RX, a register­
to-indexed-storage operation; RS, a register-to-storage 
operation; SI, a storage and immediate-operand operation; 
SS, a storage-to-storage operation. The Universal instruction 
set for the Model 65 may be divided into seven classes; the 
breakdown by format is as follows: 

Instruction Class Format 

Fixed-Point RR, RX, RS 

Floating-Point RR,RX 

Decimal SS 

Logical RR, RX, RS, SI, SS 

Branching RR, RX, RS 

Status Switching RR,SI 

1/0 SI 

The basic unit of length for instructions is the halfword, 
consisting of two bytes. The length of an instruction format 
can be 1, 2, or 3 halfwords. It is related to the number of 
initial main storage references necessary for the operation. 
An instruction making no reference to main storage (RR) 
consists of one halfword; an instruction making one 
reference (RX, RS, or SI) consists of two halfwords; an 
instruction making two references (SS) consists of three 
halfwords. All instructions must be located in main storage 
on an integral boundary for halfwords. The five formats are 
shown in Figure 1-11. 

For purposes of describing the execution of instructions, 
operands are designated as first, second, or third operands, 
referring to the manner in which the operands participate in 
the operation. The operand to which a field in an 
instruction format pertains is denoted by the number 
following the letter designation of the field; for example, 
the Rl field is the address of an LS register containing the 
first operand; R2, the second operand. 

As shown in Figure 1-11, the first halfword of each 
format consists of two parts. The first byte contains the 
operation code (op code), which identifies the operation to 
be performed. Bits Q and 1 specify the format, bits 2 and 3 
specify the class of instruction, and bits 4 through 7 
identify the instruction within the class. The second byte of 
the first halfword is used as either two four-bit fields or a 
single eight-bit field. The fields and the information 
contained within the fields are as follows: 
1. Rl, R2, and R3: four-bit address of an LS register 

containing the first, second, and third operands, respec­
tively. 

2065 FETOM (9/68) 1-13 



First Halfword Second Halfword 

RR OpCoCle I~ R2 ti 
10 .7 8 11 12 15 

I 
I I 

·RX I Op Code I~ X2 I B2 ·I 02 

10 78 11 12 15116 19 20 

I I 

·RS I Op Code I RI I R3 ti B2 I 02 

,o 78 11 ·12 . 15 16 19 20 

I 
I I 

SI Op Code 12 ti Bl· 1 · DI 

lo 78 15 16 19 20 

I 
I LL I 
I 
I ~ 

SS Op Code I LI I L2 I Bl Dl 
0 78 11 12 15 16 19 20 

f Not·use~ in som~ in_structions. 

Figure 1-11. Instruction Formats 

2. Ml: four-bit m~sk used in some branching instructions. 
3. X2: four-bit address of an LS register containing the 

index value used in generating the effective second 
operand address. 

4. 12: eight-bit byte of immediate data (second operand). 
5. LI and L2: four-bit length (up to 16 bytes) offrrst and 

second decimal VFL operands, respectively. 
6. LL: eight-bit length field (up to 256 bytes) for logical 

VFL operands. 

The second and third halfwords· always contain the sarrie 
information: a four-bit address of_ an LS register containing 
the base value to be added to the folloWing 12-bit 
displacement field. 

Operand Addressing 

For addressing purposes, operands are grouped into three 
classes: (1) effectively addressed operands in main storage, 
(2). immediate operands in the instruction format, and (3) 
operands in LS. 

Effectively Addressed Operands 

• Operands are either fixed-length or VFL. 

• Fixed-length operands are located on integral boundary. 

• Length of VFL operand is specified by L or LL field,. 

• L and LL fields denote number of bytes to right of 
addressed byte. 

• Effective operand address is sum of 24-bit base address, 
12-bit displacement; and 24-bit index value. 

• Base address and index yalue are located in LS. 

• Displacement is located in instruction format. 

1-14 (9/68) 

Third Halfword 

311 

311 

I 

I 
311 

I 
I 
I 

I B2 02 

3132 3536 

An effectively addressed operand is selected from a main 
storage location not related to the location of the instruc-

. tion referring to it. It is specified by means of a main 
storage address. When the operand consists of more than 
()ne byte, the address gives the location of the first byte; 
subsequent bytes are located in the next-higher addressed 
byte locations. Both the first and second operands of an 
instruction can be effectively addressed._ 

Effectively addressed operands can be of either fixed 
length or variable field length. The length of VFL operands, 
in terms of the number of bytes to the right of the 
addressed byte, is specified by the L or LL field· of the 
instruction. The LL field can be eight bits long and thus can 
specify a maximum operand field length of 256 bytes. 

In the instruction format, an effectively addressed 
operand is specified by a base address, a displacement, and, 
in some cases, an index value. The base address and the 
index value are contained in LS general-purpose registers 
addressed by the B and X fields, respectively, of the 
instruction. The registers contain 32 bits, the low-order 24 
of which constitute an unsigned address component (base 
address or index value). The high-order eight bits of the 
register are ignored. The 24-bit base ~ddress is included in 
every address computation. The 24-bit index value is 
included in the address computation as specified by the RX 
instruction format. 

The displacement value is a 12-bit number contained in 
the D-field of the instruction. It is included in every address 
computation. The displacement provides for relative ad­
dressing up to 4095 bytes beyond the base address. 

In computing the effective operand address, the base 
address and the index value are treated as 24-bit positive 
binary integers having no sign position. The displacement is 



similarly treated as a 12-bit positive binary integer. The 
three numbers are added. Because every operand address 
includes a base address, the sum is always 24 bits long. Any 
overflow above the 24 low-order bits of the sum is ignored, 
causing a lower address to be generated. If this lower 
address is above the maximum available storage, an address­
ing program interruption occurs. If the lower address is 
·available the CPU accesses that location. 

An instruction may contain zeros in the B, X, orD field. 
In the case of the B and X fields, a zero does not denote the 
address of LS general-purpose register 0, but indicates that 
base and index values of zero are to be used in generating 
the effective operand address. Similarly, a D field of zero 
indicates a displacement of zero. 

Fixed-length fields, halfwords, words, and doublewords; 
must be located in main storage on an integral boundary for 
that length field. A boundary is called "integral" for a field 
when its storage address is a multiple of the length of the 
field in bytes (Figure 1-12). For example, words (four 
bytes) must be located in main storage so that their address 
is a multiple of the number 4. A halfword (two bytes) must 
have an address that is a multiple of 2, and doublewords 
(eight bytes) must have an address that is a multiple of 8. 

Main storage addresses are expressed in binary form. 
Therefore, integral boundaries for halfwords, words, and 
doublewords can be specified only by binary addresses in 
which 1, 2, or 3 of the low-order bits, respectively, are zero 
(~igure 1-12). Thus, integral boundaries for words are 
binary addresses in which the two low-order bit positions 
are zero; for example, 00000, 00100, 01000, and 01100. 

VFL fields are not limited to integral boundaries, but 
may start on any byte location. 

Immediate Operands 

Immediate operands are contained in SI instructions for 
logical operations. They are one byte (bits 8--15) long, 
serve as the second operand, and are designated 12. 

Doubleword 
0 

Word Word 
0 1 

Halfword Halfword Halfword Halfword 
0 1 2 3 

Byte Byte Byte Byte Byte Byte Byte Byte 
0 I 2 3 4 5 6 7 

* , , , • • • 

Operands in Local Storage · 

• LS registers are addressed by four-bit R-field in instruc­
tion format. 

• LS GPR 's are addressed 0-15. 

• LS FPR's are addressed 0, 2, 4, and 6. 

• For fixed-point doubleword operands, the register ad-
dress implies use of a pair of adjacent registers. 

Fixed-point and floating-point operands may be located in 
the 16 general-purpose registers (GPR's) and the 4 floating­
point registers (FPR's), respectively, of LS. The registers are 
addressed by a four-bit field in the instruction, designated 
the R-field. The GPR's are designated by addresses 0-15, 
whereas the FPR's are identjfied by addresses 0, 2, 4, and 6. 
(When an FPR is designated by any other address, a 
specification program interruption occurs.) The op code of 
the instruction implies whether the GPR's or the FPR's are 
to be used. 

The GPR's are 32 bits (one word) in length, Fixed-point 
operands normally have an implied length of one word. In 
some operations, one register address implies the use of a 
pair of adjacent GPR's, thus providing a doubleword. For 
these instructions, the addressed register (say Rl) contains 
the high-order operand bits and must have an even address, 

- and the implied register (Rl + 1) contains the low-order 
operand bits and has the next higher address. 

The FPR's are 64 bits or a doubleword in length, and 
can contain either a short (one word) or a long (double­
word) floating-point operand. A short operand occupies the 
high-order bits of an FPR; the low-order bits are ignored. 

DATA FORMATS 

Data can be numeric, alphabetic, or logical, and fixed or 
variable in length. Numeric data is distinguished as fixed-

Doubleword 
1 

Word Word 
2 3 

Halfword Halfword Halfword Halfword 
4 5 6 7 

Byte Byte Byte Byte Byte Byte Byte Byte 
8 9 10 11 12 13 14 15 

' , , + * • + 
Binary 
Address 

I 00000 I 00001 I 00010 I 00011 I 00100 I 00101 I 00110 I OOlll I 01000 I 01001 I 01010 I 01011 I 01100 I 01101 I 01110 I 01111 I 

Figure 1-12. Main Storage Integral Boundaries 

2065 FETOM (9/68) l-15 



point, floating-point, or decimal. The data may be divided 
into four classifications: 
I. Fixed-point numbers, having a binary radix and a fixed 

length, usually a word or a halfword. 
2. Floating-point numbers, represented by a 7-bit charac­

teristic and a signed hex fraction, occupying either a 
word or a doubleword. 

3. Decimal numbers, represented by four-bit binary-coded­
decimal (BCD) digits, usually packed two digits to a 
byte, and variable in length. 

4. Logical information, represented by eight-bit zoned 
character codes, and fixed or variable in length. 

Fixed-Point Data 

Fixed-point instructions are available for loading, adding, 
subtracting, comparing, multiplying, and dividing. A pair of 
conversion instructions, Convert to Binary and Convert to 
Decimal, provides transition between ·decimal and binary 
radix without the use of tables. 

The basic fixed-point operand is the 32-bit binary word. 
To improve performance and storage utilization, 16-bit 
halfword operands may be specified in most operations. In 
both lengths, bit position 0 holds the sign of the number, 
with the remaining bit positions designating the magnitude 
of the number. To preserve precision, some products and all 
dividends are 64 bits long. 

Because a 24-bit address can be accommodated in the 
32-bit word, fixed-point instructions can be used both for 
integer operand arithmetic and for address computation. 
This combined usage provides economy and permits the 
entire fixed-point instruction set to be used for address 
computation. Thus, multiplication, shifting, and logical 
manipulation of address components are possible. 

Number Representation 

• Positive numbers are represented in true binary form 
with sign of 0. 

• Negative numbers are represented in 2's complement 
notation with sign of I. 

All fixed-point operands are treated as signed integers. 
Positive numbers are represented in true binary form with a 
sign bit of 0. Negative numbers are represented in 2's 
complement notation with a sign bit of l. In all cases, the 
bits between the sign bit and the leftmost significant bit of 
the integer are the same as the sign bit; i.e., all O's for 
positive numbers, all l's for negative numbers. Therefore, 
when an operand must be extended with high-order bits, 
each nonsignificant bit is made equal to the sign bit. 

Negative fixed-point numbers are formed in 2's comple­
ment notation by complementing the true binary represen­
tation of the number and adding I. For example, to convert 

1-16 (9/68) 

the decimal number +26 to 2's complement form (-26), 
proceed as follows: 

S ,1-..- Integer---. 31 

Decimal +26 to true binary form: 0 0000000 )\00011010 

Complement the binary number: 1111111SI11100101 
Add 1: 1 
Result is -26 (2's complement form): 1111111H11100110 

The result is equivalent to subtracting the number 
00000000 00011010 from 10000000000000000. 

The largest positive number consists of a sign bit of 0 
with all 1 's in the integer field, whereas the largest negative 
number consists of a sign bit of 1 with all O's in the integer 
field: 

Largest positive 
number: 

Smallest positive 
number: 

Smallest negative 
number: 

Largest negative 
number: 

Formats 

S 1-cf- Integer ---. 31 Decimal Number 

0 1111111~(11111111 =+2,147,483,647 

0 0000000((00000000 0 

1111111 N11111111 -1 

1 0000000((00000000 -2, 147 ,483,648 

Fixed-point numbers occur in 16-bit halfword, 32-bit word, 
or 64-bit doubleword operands. Bit 0 is the sign bit, and the 
remaining bits make up the integer: 

Halfword operand 

Integer 

0 1 15 

Word operand 

Integer 

0 I 31 

Doubleword operand 

._....lsl ___ lnt_ege_r _--.J( J I 
0 I 63 

In LS, fixed-point operands are a word long. In some 
operations, such as multiply, divide, and shift, the operand 
may be a doubleword. The doubleword operands are 
located in a pair of adjacent 32-bit GPR's and are addressed 
by an even address that refers to the leftmost (lower-



addressed) register of the pair. In this case, the sign-bit 
position of the rightmost register may contain an operand 
bit instead of a sign bit. The sign-bit position of the 
leftmost register must always contain a sign bit. 

In main storage, fixed-point data may be a halfword, a 
word, or a doubleword. This data must be located on 
integral storage boundaries for these units of information. 
When a halfword operand is fetched from main storage, it is 
extended to a full word. The original signed integer 
occupies bits 16 through 31, and is operated on as a full 
word. When the operand is extended to a full word, bits 0 
through 15 assume the state of the original sign bit, now in 
bit 16. 

Floating-Point Data 

• Scientific and engineering calculations require that very 
small and very large numbers be represented. 

• Scientific notation uses powers of 10 to simplify 
calculations with high and low magnitude numbers. 

• Floating-point instructions .operate upon data that uses 
powers of 16 to represent numerical quantities. 

• Quantity expressed by floating-point number is product 
of signed hex fraction and 16 raised to power designated 
by exponent. 

When performing calculations for scientific and engineering 
work, very small or very large numbers must sometimes be 
represented. Consider the problem of a nuclear physicist 
who wants to write an equation that contains the value for 
the mass of a subatomic particle. If he wrote the number as 
a decimal fraction, he would have to put down a decimal 
point followed by more than 20 zeros and a few numerals. 
At the opposite extreme, an astronomer may be calculating 
distances between objects that may be millions of millions 
of miles apa~t. 

To overcome the pointless effort of having to write 
many zeros when working with such numbers, a mathemati· 
cal method using powers of 10 is used. This method is 
called scientific notation. For example, in scientific nota­
tion, the ma,ss of an electron can be written as 9.107 x 

10-28 grams; and the astronomical distance of one light 

year can be written as 5.878 x 1012 miles. 
Consider the parts of a number represented in scientific 

notation. The example of the mass of an electron, for 
instance, can be divided into three distinct parts: (1) a 
signed mixed number ( +9 .107) multiplied by, ( 2) 10 raised 
to the power designated by, (3) a signed exponent ( -28). 
By changing the position of the decimal point and adjusting 
the exponent ·to compensate for the change, the number 
can also be written as a fraction times a power of 10 

(+.9107 x 10-27), or an integer times a power of 10 

(+9107 x 10-31). 

For scientific and engineering applications where quan­
tities may be of the magnitudes mentioned above, the CPU 
has instructions for handling them. These instructions, 
called floating-point instructions, manipulate data in a 
manner similar to scientific notation. However, because the 
CPU is primarily a binary machine in which numbers can be 
easily worked upon in hex (four-bit) units, a quantity is 
represented as a hex number times a power of 16 rather 
than as a decimal number times a power of 10. Except for 
this difference in base, floating-point notation is similar to 
scientific notation; the same rules of algebra apply to 
powers of 16 as to powers of 10. 

Number Representation 

• Fraction represents number expressed in hex digits. 

. • Characteristic specifies exponent to which 16 is raised. 

• Characteristic is expressed in excess 64 notation; range is 
-64to+63. 

~ Radix point is to left of high-order hex digit. 

• True zero result yields positive sign. 

A floating-point number contains the same components as a 
number written in scientific notation. However, due to the 
nature of the computer, the format is different and certain 
rules are imposed upon the way a floating-point number 
may be represented. The number to be multiplied by a 
power of 16 is a hex fraction with a fixed length, and the 
16 is understood rather than shown. Therefore, as repre­
sented in the CPU, a floating-point number consists of a 
sign, which is the sign of the fraction, a signed exponent, 
called a characteristic, and a hex. fraction. The quantity 
expressed by this number is the product of the fraction and 
16 raised to the power designated by the characteristic 
(exponent). 

The fraction of a floating-point number is expressed in 
hex digits. The radix point (representing the base 16) of the 
fraction is assumed to be immediately to the left of the 
high-order fraction digit. To provide the proper magnitude 
for a floating-point number, the fraction is considered to be 
multiplied by a power of 16 (fraction x 16n power). The 
characteristic (bits 1-7) indicates the power (exponent). 
Bit 0 designates the sign of the fraction; it is a 0 if the 
fraction is a positive number and a 1 if the fraction is 
negative. Both positive and negative quantities are in true 
form, with the difference indicated by the sign. 

The exponent may also be either a positive or negative 

number. For example, -.A8 x 16-2 is an example of a 
floating-point number with a negative fraction and a 
negative exponent. Therefore, to represent both positive 
and negative exponents, excess 64 notation is used. Excess 
64 notation simply means that +64 (+40 hex) is added to 
the true exponent and the value obtained is used as the 

2065 FETOM (9/68) 1-17 



characteristic. Therefore, the characteristic varies around a 
base of 64; i.e., an exponent of 0 is represented by a 
characteristic of 64, a positive exponent is represented by a 

· characteristic greater than 64, and a negative exponent is 
represented by a characteristic less than. 64. In the example 
just given, for instance, -2 is the exponent. Adding +64 to 
-2 yields +62, which is the value of the characteristic in 
excess 64 notation. 

Performing the same .calculation in binary gives the 
following results: 

Bits 0 2 3 4 5 6 7 

S 1 1 1 1 0 2's complement of 2 (-2) 
S ·1 0 0 0 0 0 ·O +64 (+40 hex) 
S;-0 1 0 = +62 (+3E hex) 

Carry 

If the exponent were +2 (positive exponent), adding +64 
yields +66, the characteristic value placed into bits l_._ 7. In 
binary, the addition is as follows: 

Bits 0 234567 

S 0 0 0 0 0 1 0 +2 exponent 
S O 0 0 0 0 0 +64 (40 hex) 
s o o o o 1 o = +66 (42 hexl 

Note in these examples ·that a negative exponent in 
excess 64 notation caused bit 1 (high-order bit of the 

·characteristic) to be a 0, and a positive exponent caused bit 
1 to be a 1. This rule holds true for the range of positive 
and negative exponents, as can be seen in Table 1-2. The 
table also shows that because only seven binary bits ( 1-7) 
are available to represent the characteristic in floating-point 
format, the most negative exponent that can be expressed is . 
-64 and is represented by an all-zero characteristic. The 
most positive exponent l.s +63, and is represented by all l's 
(7F hex); Midpoint between these two extremes is a 0 . 
exponent, which is. represented by a +64 (+40 hex) 
characteristic. 

Table 1-2. Characteristic Notation 

Excess 64 Notation 
Binary Decimal Hex Exponent 

0000000 0 ... 0 -64 

0000001 1 1 -63 

+ + + + 0111111 63 3F -1 

1000000 64 40 0 

1000001 65 41 +1 

• i • + 1111"110 126 7E 62 

1111111 127 7F 63 

1-18 (9/68) 

For another example of converting an exponent to an 

excess 64 characteristic, assume the value of ±M x 1648 

must be stated in excess 64 notation. The .characteristic of 
the fraction then becomes 48 + 64 = 112 ( 0 l !0000 + 
1000000 = 1110000). The floating-point number thus takes 
the following form: 

~H~1_1_1o_oo_o_J~~~~·-M~~~__,/~ 
s 1 7 f s 31 or 63 

Radix Point 

To illustrate how numbers are represented in floating­
point format, assume that the decimal number 149.25 is to 
be converted to a floating-point short operand. This 
conversion is accomplished as follows: 
1. The number is separated into a decimal integer and a 

decimal fraction: 

149.25 = 149 plus 0.25 

2. The decimal integer is converted to it~ hex representa­
tion: 

3. The decimal fraction is converted to its hex representa­
tion: 

4. The integral and fractional parts are combined and 
expressed as a fraction times a power of 16 (exponent): 

5. The characteristic is developed from the exponent and 
converted to binary: 

Exc~ss 64 +exponent= characteristic 

64 + 2 = 66 = 1000010 

6. The fraction is converted to binary and grouJ?ed hex:i. 
decimal!}: 

.95416 = 1001 0101 0100 

7. The characteristic and the fraction are placed in the 
short precision format; the sign position contains the 
sign of the fraction: 

s Characteristic Fraction 

0 1000010 1001 0101 0100 0000 0000 0000 



Other examples follow: 

Number Powers of 16 s Charistic Fraction 

1.0 =+1/16x 161 =O 1000001 0001 0000 u 0000 

0.5 = +8/16 x 16° =O 1000000 1000 0000 22 0000 

1/64 = +4/16 x 16"1 =O 0111111 0100 0000 22 0000 

0.0 =+Ox 16"64 =O 0000000 0000 0000 u 0000 

-15.0 =-15/16x161 = 1 1000001 1111 0000 U. 0000 

2 x 10-18 = +1/16 x 16"64 =O 0000000 0001 0000 22 0000 

7x 1075 = (1-16-6) x 1663 =O 1111111 1111 1111221111 

Formats 

• Data format consists of 1-bit sign, 7-bit characteristic, 
and 24- or 56-bit fraction. 

• Results are 32 bits (short operand) or 64 bits (long 
operand) long. 

• Multiply product is always 64 bits. 

• Guard digit is retained. 

Floating-point data is represented in the CPU in one of two 
fixed-length formats, depending upon whether a full-word 
short operand or a doubleword long operand is desired. 
Both formats may be used in main storage and in the eight 
LS FPR's used exclusively by floating-point instructions. 
The data formats for short and long operands are: 

Short Operand 

r"- Even FPR of an even/odd FPR pair 
! 

Isl Cho,i,tio l Fraction 
O I 7 B 31 

Radix Point 

Long Operand 

1<111"'--- Even FPR----....1-----0dd FPR---"'-1 
I I 
I I 
I I 

~s...._c_h_a_r_ist_ic~r-~~~~--~F_ra_c_t_io_n~~~--r.==J 
0 I 7 8 3132 63 

Radix Point 

For both formats, the first bit position is the sign bit and 
the subsequent seven bit positions constitute the character­
istic. The following 24 or 56 bits represent the fraction; 
short operand fractions are 24 bits or 6 hex digits; long 
operand fractions are 56 bits or 14 hex digits. 

When short operands are specified, the results are usually 
32-bit floating-point words; the odd FPR of the even/odd 
pair of FPR's does not participate in the operation and 
remains unchanged. However, in multiply instructions, the 
product occupies two FPR's (64 bits). 

When long operands are specified, all operands and 
results are 64-bit floating-point doublewords. 

Although final results have 6 or 14 hex fraction digits, 
intermediate results in addition, subtraction, and compare 
operations may extend to 7 or 15 fraction digits. This extra 
digit, called the guard digit, occurs when one of the 
fractions is shifted right (as part of the characteristic 
equalization process that occurs during execution of add­
type floating-point instructions; see Chapter 3, Section 3, 
Add, Subtract, and Compare). The guard digit increases the 
accuracy of the final result if normalization occurs. In 
normalization, the fraction is shifted left until a significant 
digit appears in the high-order digit position of the fraction; 
thus the guard digit becomes part of the 6 or 14 hex digits 
of the final result. This saving of the guard digit becomes 
especially significant where the high-order 6 or 14 digits of 
the intermediate result are all zeros. 

Normalization 

• Normalized fraction has nonzero, high-order hex digit; 
unnormalized fraction has one or more leading hex 
zeros. 

• Characteristic is adjusted on normalization cycles. 

• Postnormalization is normalization of final result. 

• Prenormalization is normalization before result compu-
tation. 

• Results are shifted right if fraction overflow occurs. 

A quantity can be represented with the greatest precision 
by a floating-point number of a given fraction length when 
that number is normalized. A normalized floating-point 
number has a nonzero high-order hex fraction digit. If one 
or more high-order fraction digits are zero, the number is 
said to be unnormalized. Normalization consists of shifting 
the fraction left until the high-order hex digit is nonzero 
and re du ~ing the characteristic by the number of hex digits 
shifted. A zero fraction cannot be normalized, and its 
associateC: characteristic therefore remains unchanged when 
normalization is called for. 

An example of an unnormalized floating-point number 

in numerical terms is .OOOOOA16 x 162. To convert this 

number to its normalized form, the number must be shifted 
five hex digits to the left and, because five shifts are 
necessary, five is subtracted from the exponent. The result 

is .A0000016 x 16-3. In the CPU, the original number 

would hava the following format: 

Choristi c 
S (Binary; 

0 I 

0 

7 8 

Froction 
(Hex) 

0 0 0 A 

31 

2065 FETOM (9/68) 1-19 



After normalization, the format would be: 

s 
lol 0 1 1 1 1 0 ll A 0 0 0 0 0 
.o l 7 8 31 

Because normalization applies to hex digits, the three 
high-order bits of a normalized number niay be zero: For 
example, if the high-order digit of a fraction is a hex 1, 
normalization will not occur although normalization is 
specified and bits 8-10 = 000: 

Isl Charistic loo o i loo o oio o o o(. 
0 l 7 8 11 12 1516 19. 

Floating-point operations are performed with or without 
normalization. Addition and subtraction may be specified 
either way depending upon the instruction op code. The 
multiply, divide, and halve instructions always specify 
normalization. The load, compare, and store instructions 
specify unnormalized results. Normalization usually occurs 
when the intermediate arithmetic result is changed to the 
final result. This function is called postnormalization. In 
multiplication and division, the operands are normalized 
before the arithmetic process. This function is called 
prenormalization. 

When an operation is performed without normalization, 
high-order zeros in the result fraction are not eliminated. In 
both normalized and unnormalized operations, the initial 
operands need not be in normalized form. 

Decimal Data 

• Operands and results are located in main storage. 

• VFL is 1-16 bytes. 

• Four-bit BCD digits are packed two to a byte for 
arithmetic. 

• Unpacked (zoned) format is used for transmitting data 
to 1/0 devices. 

• Pack and Unpack instructions are provided. 

Decimal instructions are designed for operations requiring 
few computational steps between the source input and the 
documented output. Processing of this type is frequently 
found in commercial applications. Because of the limited 
number of arithmetic operations performed on each item of 
data, radix conversion from decimal to binary and back to 
decimal is not justified, and the use of registers for 
intermediate results yields no advantage over storage-to­
storage processing. Hence, in the Model 65, decimal 
instructions are provided and both operands and results are 
located in main storage. Decimal instructions include 
addition, subtraction, multiplication, division, and compari­
son. 

1-20 (9/68) 

Decimal arithmetic operates on data in the packed 
format, in which two four-hit BCD digits are packed two to 
a byte. They appear in fields of variable length (from 1 to 
16 bytes) and are accompanied by a sign in the rightmost 
four bits of the low-order byte. The use of packed digits 
within a byte and of variable-length fields within storage 
results in efficient use of storage and in increased arithmetic 
performance. 

Decimal numbers may also appear in a zoned format for 
use with I/O devices operating in that format. The zoned 
format is not used in decimal arithmetic operations, but 
only for transmitting data to the I/O device. Instructions 
are provided for packing and unpacking decimal numbers so 
that they may be changed from the zoned (unpacked) to 
the packed format and vice versa. 

Processing takes place right to left between main storage 
locations, except in the divide operation which is processed 
left to right. All decimal instructions use the two-address SS 
format. Each address specifies the leftmost byte of an 
operand. Assoc~ated with this address is a length field, 
indicating the number of additional bytes that the operand 
extends beyond the first byte. 

Number Representation 

Numbers are represented as right-aligned true integers with 
a plus or minus sign. Decimal digits 0....:9 are represented in 
the four-bit BCD form by 0000 through .1001, respectively. 
Codes 1010-1111 (10-15) are not valid as digits and are 
reserved for sign codes: 1010, 1100, 1110 and 1111 . 
represent a plus; 1011 and 1101 represent a minus. 

Digit Code Sign Code 

0 0000 + 1010 
1 0001 1011 
2 0010 + 1100 
3 0011 1101 
4 0100 + 1110 
5 0101 + 1111 
6 0110 
7 0111 
8 1000 
9 1001 

All valid sign codes are recognized in decimal operations; 
however, the appropriate sign codes (and zone codes for the 
Unpack instruction) generated during the operation depend 
on the character set specified by PSW(12). If PSW(12) = 0, 
EBCDIC is selected, and code 1100 is generated for a plus 
sign, code 1101 is generated for a minus sign, and code 
1111 is generated for a zone. If PSW( 12) = 1, USASCII -8 is 
selected, and code 1010 is generated for a plus sign, -code 
1011 is generated for a minus sign, and code 0101 is 
generated for a zone. 



Formats 

Decimal operands reside in main storage only. The operand 
field length may range from a minimum of one byte to a 

· maximum of 16 bytes. The operands need not occupy the 
entire field length but are always right-aligned in the field; 
i.e., the sign of the operand is always in the rightmost byte 
of the specified field. This rightmost byte contains the 
lowest-order operand digit and· the operand sign. All 
decimal instructions (except Divide) process the operands 
from low order to high order, or from right to left between 
main storage locations. 

Data may be in the packed or unpacked (zoned) format. 
In the packed format, two four-bit BCD digits are placed 
adjacently in an eight-bit byte, except for the rightmost 
(low-order) byte of the field. In the low-order byte, a 
four-bit sign (sign of the decimal number) is placed to the 
right of the decimal digit. · 

~--~----Packed VFL Data---------
(Up to 16 Bytes) -

J Rightmost 
Byte------., - - - - -j.- Byte 

r---.---,r----.----,~ 

'-----'-D-i-g-it__.__D~ig-it_1._D_i_g·_,t__. - - - -, Digit I Sign I 
Leftmost 

Byte 

In the unpacked or zoned format, a decimal digit 
normally occupies the four low-order bits of a byte, the 
numeric. The four high-order bits of a byte are called the 
zone. An exception is the rightmost byte in the field, where 
the sign of the decimal number occupies the zone position. 

Unpacked V FL Data 
. (Up to 16 Bytes) 

Leftmost Rightmost 

Byte +• Byte ----I- ~ - - -~ Byte 

I Zone Digit I Zone I Digit r ~ ~ ~ I Sign I Digit 

Logical Data 

• Data is fixed-length or VFL. 

• One byte of immediate data is held in some instruction 
formats. 

The logical instructions provide for moving, comparing, bit 
testing, bit connecting, translating, editing, and shifting 
operations. Except for the editing instructions, data is not 
treated as numbers. Editing converts packed decimal digits 
into alphanumeric characters; the digits, signs, and zones 
are recogniZed and generated as for decimal instructions. 

Data resides in main storage or in LS, or is contained in 
the instruction format. The data may be a single byte, a 
word, a doubleword, or variable in length. When two 
operands participate in the operation, they have equal 
length, except in the editing instructions. The data format 
depends on the type of operation performed: 
l. In storage-to-storage operations, data has a VFL format, 

starting at any byte address and continuing for a 
maximum of 256 bytes; it is processed left to right. 

r~·· _·_ -----Up to 256 Bytes -~-----1 .. ~1 
in Main Storage 

..-------..----~ - - - - - ~---___.; 

Character Character Character 

8 
16 ____ _ 

2. ·In storage-to-register operations, the main storage data 
may be either a word or a byte. The word must be 
located on a word boundary; that is, the low-order two 
bits of its address must be O's. Data in GPR's normally 
occupies all 32 bits. Bits are _treated uniformly, and no 
_distinction is made between sign and numeric bits. In a 
few .operations, only the low-order eight bits of the 
register participate, leaving the remaining 24 bits un­
changed, Jn some shift operations, 64 bits of an 
even/odd pair ofGPR's participate. 

~-------- 8, 32, or64 Bits ______ __..., 

Fixed-Length Logical Data 

3. In operations which introduce data directly from the SI 
format instruction as an immediate operand, data is 
restricted to an eight-bit byte. Only one. byte may be 
introduced per instruction, and only one byte from main 
storage ta~es part in the operation. 

2065 FETOM (9/68) 1-21 



Section 3. Program Execution and Control 

This section discusses the supervisor program, the eight 
program states, the program status word, interruptions and 
exceptional conditions, and the initiation and control of .. 
1/0 operations. 

CONTROL PROGRAM 
Because internal processing speeds of data processing 
systems have increased without a corresponding reduction 
in the time required by the operator to load programs and 
to manually insert data, the setup time has become a more 
significant factor in system operation. To reduce this setup 
time, during which the system is idle, control programs 
were devised to control execution of problem programs. 
The simplest control program, which shares main storage 
with the problem programs, controls the loading of 
problem programs; the problem programs handle their own 
1/0 operations (Figure 1-13, A). Operation is as follows: 
1. An input device is prepared containing the problem 

programs and their associated data. 
2. The operator loads the control program into main 

storage. 
3. The control program loads in the first problem program 

and then passes control to the problem program. 
4. The problem program reads in its data and performs its 

assigned task. 
5. When the problem program is finished, it passes control 

back to the control program. 
6. The control program then loads in the next problem 

program and passes control to it. 
7. This operation continues until all programs are executed. 

Notice three things about the use of a control program 
in the preceding example: 
1. The system never halts between jobs. 
2. The control program remains in main storage as 'the 

problem programs are executed. 
3. The control program serves only as a link between jobs; 

its only function is to bring in a new problem program as 
each job is finished. 

The simple control program discussed above has limited 
functions. Other functions can be included, such as 
initiation and control of 1/0 operations. Because the 
problem program is designed mainly to process data, the 
read and write operations necessary to transfer data 
between the 1/0 devices and main storage can be handled 
by the control program. Each operation to be handled by 
the control program may consist of many instructions. 

1-22 (9/68) 

Besides telling the 1/0 device to· start, for example, the 
instructions check for error conditions and 1/0 device 
status. 

In this function, control passes back and forth between 
the problem and control programs during execution of the 
problem program (Figure 1-13, B). The control program 
not only reads in the· problem programs but also handles 

Read ln Manually 
by' Operator 

Control 
Program 

Read 
Prag A 

Problem 
Prog B 

Dato 

Reod In by 
Problem 
Program 

Problem 
Program 

Control 
Program 

MAIN STORAGE 

Read 
Prog B 

Read In by 
Control 
Program 

Read 
Prag C 

Control Prag ......... 

t t t t 
Problem Prag ___ _.,Execute Prag A 

Execute Prag B 

A. Simple Control Progr.am - l.oads Problem Programs 

Read ..,,..,,,.,.,..,,,,.. 

MAIN STORAGE 

Control 
Program 

.......... / 1--------t 

Program Tape 

Read 

Control Prag _.,. I Prag A t 
Problem Prag 

Problem 
Program 

Output Data 

f 1/0 for Prag A Doto 1 1 Read 
T Prag B 

t•_ru-u~ 
Execute Prog A 

B. Expanded Control Program. - Loads Problem Programs, and Handles 1/0 Operations for 
Problem Program Doto 

Figure 1-13. Examples of Control Program Functions 



the I/O data operation during execution of the problem an automatic branch to the supervisor, unless instructed by 
program. The problem program transfers control to the the programmer to be ignored. These automatic branches to 
control program whenever an I/O operation is necessary.· · the supervisor are called interruptions. That is, the current 

The control. program can be ~ven other fonctions as . sequence of problem instructions is interrupted and an 
well. However, the more functions a control program has, automatic branch (interruption) is taken to a new sequence 
the more main storage space it requires. This problem is . of control instructions. · 
solved by placing into main storage only "those key parts of When an interruption occurs, the interruption~handling 
the control program that ensure continuous, coordinated. .routine of the supervisor stores the status of the CPU arid 
operation of the system. This portion is called the.· fetches information with which to control the CPU while it 
supervfsor. The remaining parts of the control program· are handles the interruption. The status of the CPU is con-
placed on a high-speed, direct-access I/O device, such_ as a tained in a doubleword called the old program status word 
disk storage unit, and are brought .into main storage as they (PSW). Bits of this old PSW show the cause of the 
are required to perform a specific function. interruption and the program state of the CPU at the time 

In the System/360, the supervisor is the control center . of the interruption. There are eight paired states, Problem/ 
of the opera,ting system. Its primary function is to perform Supervisor, Operating/Stopped, Running/Wait, and Inter-
a variety of services for other parts of the system including ruptable/Masked, all of which, except Stopped, are defined 
problem programs. It coordinates and controls the perform- in the PSW. The following paragraphs define the program 
ance of these services to yield efficient and coordillated use states and discuss the PSW before the discussion of 
of the physical and programming facilities of the system. interruptions is continued. 
The supervisor prevents programs and routines that are run 
on the system from interfering with one another and with 
operation of the control program. This .. control is accom­
plished, in part, through its use of privileged instructions, 

· · such as storage protection and I/O instructions, which can 
be executed only by the control program. 

. A service performed by the supervisor may be specifi­
cally requested by a program, such as a request for storage 
space, or it may be a service that is automatically provided 
when a contingency occurs, such as attempting to recover 
from an error condition. Among the services the supervisor 
may provide are:. 
1. Allocating main storage space required by programs 

during their execution. 
2. Sharing areas of main storage amo~g routines that' need 

not be in main storage at the same time. · 
3. Loading programs into main storage. · 
4. Controlling the concurrent execution of programs and 

routines. 
5. Scheduling and controlling I/O operations. 
6. Providing standard procedures that assist in diagnosing 
-- exceptional conditions, . such as underflow in floating-

point arithmetic operations. __ 
7. Keepillg a running log of machine check and I/O errors 

for CE diagnostic use. 

One of the reasons why a control program is use<;l in the 
System/360 is to eliminate machine idle time. RealiZing 
this, the designers of System/360 did not incorporate a halt 
instruction, Therefore, a problem program cannot issue a 
halt instruction when it is finished but passes control to the 
supervisor by means of a Supervisor Call instruction. 
Machine idle time is further reduced in another way. A 
machine check (such as an even number of bits in a byte) or 
a program check (such as locating a halfword operand on an 
odd-byte address) does not cause an error stop but causes 

PROGRAM STATES 

The eight program states which determine the .overall CPU 
· . status differ in the way they affect the CPU functions and 
in the way their status is indicated. Refer to Table 1-3 for 
pertinent information about the program states. 

Problem/Supervisor 

In the Problem state, all I/O, protection, and direct control 
instructions are invalid as well as the Load PSW, Set System 
Mask, and Diagnose instructions. These instructions are 
called privileged instructions. A privileged instruction en­
countered· in. the Problem state constitutes a privileged­
operation interruption and interrupts the. operation. In the .. 
Supervisor state, all instructions are valid. 

· The CPU is switched between the Problem· and Super-
visor states by changing PSW(15). When PSW(15) is a 1, the 
CPU. is in the Problem state; when a 0, the CPU is in the 
Supervisor state. This bit can be changed only by intro­
ducing. a new PSW. Thus, the status switching for Problem/ 
Supervisor state . may be performed by an interruption 
operation or by a Load PSW instruction containing a new 
PSW with the desired value in bit 15. Because the Load 
PSW instruction is a privileged instruction, the CPU must be 
in the Supervisor state before the switch. The CPU status 

·can also be changed between Problem and Supervisor states 
by issuing a Supervisor Call instruction or an initial program 
load (IPL). The Supervisor Call instruction causes an 
interruption which will load new PSW data. This new PSW 
data may change the state of the CPU. Similarly, the IPL 
introduces a new PSW. The new PSW may introduce the 
Problem or Supervisor state, regardless of the preceding 
CPU state. 

2065 FETOM (9/68) 1-23 



Table 1-3. Program States 

State Comments 

Problem Load PSW, Set System Mask, and Diagnose 
instructions, and all 1/0, storag~ protection, 
and direct control instructions are invalid. 
These instructions are termed privileged instruc-
tions. 

Supervisor All instructions are valid. 

Operating CPU processes instructions (if. not in Wait state) 
and interruptions (if not masked off). 
Entered by: 

1. Depressing START on system control panel. 
2. Starting an IPL operation. 

Stopped Instructions and interruptions are not proc-
essed; interruptions remain pending. Execution 
of program is not affected by stopping CPU. 
Entered by: 

1. Depressing STOP on system control panel.. 
2. Detecting equality on an address-compare-

stop operation. 
3. Completing one instruction when in instruc-

tion-step mode. 
4. Turning power on or following a system 

reset. 

Running Instruction processing proceeds in normal 
manner. 

Wait No instructions are processed, and main storage 
is not addressed. The CPU waits for an 1/0 or 
external interruption to occur before executing 
further instructions, or for an IPL operation. 

I nterruptable Interruptions.are accepted. 

Masked System and machine-check interruptions re· 
main pending, and program interruptions are 
ignored. 

Operating/Stopped 

When the CPU is in the Stopped state, instructions and 
interruptions are not executed. When the CPU is in the 
Operating state, instructions are executed as long as the 
CPU is not also in the Wait state. Interruptions are taken if 
they are not masked off. Manual operations, such as load 
PSW, can be used only when in the Stopped state. A change 
in the Stopped/Operating states can occur only by manual 
intervention or by machine malfunction. No instruction or 
interruption can start or stop the CPU. The CPU is placed 
in the Stopped state when STOP on the system control 
panel is depressed, detecting equality on an address­
compare-stop operation, completing one instruction when 

1-24 (9/68) 

in instruction-step mode, and after power is turned on or 
following a system reset, exg'ept during IPL. The CPU is 
placed in the Operating state when START on the system 
control panel is depressed anq when an IPL is started. 

Changing from the Operating state to the Stopped state 
occurs at the end of instruction execution and before the 
start of the next instruction execution. When the CPU is in 
the Wait state, the change from Operatin_g to Stopped 
occurs immediately. All interruptions pending and not 
masked off are taken while the CPU is still in the Operating 
state. The interruptions cause an old PSW to be stored and 
a new PSW to be fetched before entering the Stopped state. 
Once the CPU is in the Stopped state, interruptions are no 
longer taken but remain pending. 

Running/Wait 

In the Wait state, no instructions are processed and main 
storage is not addressed. In the Running state, instruction 
fetching and execution proceed in the normal manner. The 
CPU status is switched between the Wait and Running 
states by PSW(l4). When PSW(14) is a l, the CPU is in the 
Wait state; when a 0, in the Running state. This bit can only 
be changed by introducing a new PSW. Thus, switching 
from the Running to the Wait state may be achieved by the 
privileged instruction Load PSW, by an interruption such as 
given by a Supervisor Call instruction, or by an IPL. 
Switching from the Wait to the Running state may be 
achieved by an I/O or external interruption or by an IPL. 
The new PSW may introduce the Wait or Running state 
regardless of the preceding CPU state. 

I nterruptable/Masked 

The Masked/Interruptable state of the CPU is determined 
by the system mask bits (PSW(0-1)], the machine-check 
mask bit (PSW(13)], and the program mask bits 
(PSW(36-39)]. If a mask- bit is a 1, the associated 
interruption is accepted; if it is a 0, system and machine­
check interruptions remain pending and program interrup­
tions are ·ignored. The PSW bits and interruptions that will 
occur if the bit is active are listed in Table 14. 

The Masked/Interruptable state of the CPU is switched 
by changing the mask bits in the PSW. The program mask 
may be changed separately by the Set Program Mask 
instruction, and the system mask may be changed separate­
ly by the Set System Mask instruction. The machine-check 
mask bit can be changed only by introducing an entirely 
new PSW, as in the :Problem/Supervisor and Wait/Running 
states. Thus, a change in the entire masked status may be 
achieved by the privileged instruction Load PSW, by an 
interruption· such as for the Supervisor Call instruction, or 
by an IPL. Regardless of the preceding program state, the 
new PSW may introduce a new mask status. 



Table 1-4. PSWinterrupticm Mask Bit Designation 

PSW Bit Interruption 

System mask 

0 Multiplex(\r channel (0) 

1 Selector channel 1 

2 Selecior channe.I 2 

3 Selector channel 3 

4 Selector channel 4 · 

5 Selector channel 5 

6 .Selector channel 6 

7 Tim!'lr, INTERRUPT pushbutton, or 
external signals 2-7 

Machine-check mask 

13 Machine check 

Program mask 

36 Fixed-point overflow 

37 Decimal overflow 

38 Exponent underflow (floating-point) 

39 Significance (floating-point) 

PROGRAM STATUS WORD 

• PSW provides program status and controls system 
operation. 

• Active PSW is termed current PSW. 

• Interruption causes current PSW to be stored into old 
PSW location. 

• . Load PSW instruction, interruption, PSW restart, and 
IPL introduce new PSW into CPU. 

• Set Program Mask and Set System Mask instructions 
load new PSW mask fields into CPU. 

A doubleword, the program status word (PSW), contains 
the information required for proper program execution. In 
general, the PSW controls instruction sequencing, and holds 
and indicates the status of the system in relation to the 
program being executed. The PSW has the following 
format: 

I System Mask I Key lul+H Interruption Code \ 
7 8 II 12 13 1415 16 ·-31 

Instruction Address 

63 

Bits 0-7, System Mask. Associated with I/O and 
external interruptions as follows: 

System Mask Bit Interruption Source 

0 Multiplexer channel (0) 

Selector channel 1 

2 Selector channel 2 

3 · Selector channel 3 

4 Selector channel 4· 

5 Selector channel 5 

6 Selector channel 6 

7 Timer, INTERRUPT pushbutton, or_ 
external signals 2-7 

When a system mask bit is a 1, the associated source 
can interrupt the CPU; when a 0, the interruption 
remains pending. 

Bits 8-11, Key. Contain the CPU storage protection 
key. The key is matched with the storage key whenever 
data is · stored, or whenever data is fetched from a 
location that is fetch-protected. 

Bit 12, U (USASCII-8). Affects decimal operations only. 
When a 1 and in unpacked format, decimal digits are 
represented by USASCII-8. When a 0, EBCDIC is 
specified. 

Bit 13, M (Machine-Check Mask). When a 1, a machine 
check causes the CPU to log out its status to main 
storag~ and to take a machine-check interruption. If 
the machine-check mask is a 0, the machine check 
remains pending. As a maintenance aid, the CPU 
CHECK switch on the system control panel can modify 
the machine-check mask bit functions. 

Bit 14, W (Wait State). When a 1, CPU is in the Wait 
state; instructions are not executed until an external or 
I/O_interruption or an IPL occurs. When a 0, the CPU is 
in the Running state. 

Bit 15, P (Problem State). When a 1, the CPU is in the 
Problem state. When a 0, the CPU is in the Supervisor 
state. 

Bits 16-31, Interruption Code. Identify the cause, 
purpose, or source of the interruption. (Has no 
meaning in a new PSW.) 

Bits 32 and 33, ILC (Instruction Length Code). Indicate 
the length, in halfwords, of the last processed instruc­
tion. This code is predictable only for most program 
and supervisor call interruptions. For I/O and external 
interruptions, the interruption is not caused by the last 
interpreted instruction, and the code is not predictable 
for these instructions. For machine-check interrup­
tions, the setting of the code may be. affected by the. 

2065 FETOM (9/68) 1-25 



malfunction and, therefore, is unpredictable. A code of 
0, used only for program interruptions, indicates that 
the instruction address in the PSW is not the location 
of the instruction following the instruction that caused 

_the_ program interruption. 
Bits 34 and 35, CC (Condition Code). Contain the 

condition code that reflects the result of most_ anth­
metic; logical~ or I/O instructions. Each of these· 

· operations can set the code to any one of four states, 
and the conditional-branch instructions can specify the 
state to be used as the criterion for branching. For 
example, the cc may reflect such con4itions as 
nonzero, overflow, and underflow. Once set, the CC 
remains unchanged until modified by an instruction 
that reflects a different code. The two bits of the CC 
provide for four possible binary settings: 00, 01, 10, 
and 11. This manual refers to the CC's as 0, 1, 2, and 3. 
{The CC has no meaning in a new PSW.) 

Bits 36-39, Program Mask. Each bit is associated with a 
program interruption as follows: 

Program Mask Bit Program Interruption 

36 Fixed-point overflow 

37 Decimal overflow 

38 Exponent underflow (floating-point) 

39 Significance (floating-point) 

When a program mask bit is a 1, the associated program 
interruption results in an interruption; when 0, the 
interruption islost. _ 

Bits 40-63, Instruction Address. Specify the leftmost 
byte address of the next-instruction. 

The active or controlling PSW is called the current PSW. 
The information making up the current PSW is held in 
triggers and registers in the CPU and is constantly being 

· · updated as instructions are executed. {The instruction­
address field of the PSW, for example, is held in the 
instruction counter and is updated to give the address of 
the next instruction to be executed.) When an interruption 
is taken, the PSW is assembled in the ST register and is 
transferred to a fixed location in main storage corre­
sponding to the interruption. {The stored PSW is called the 
old PSW .) In this way, the program can preserve for 
subsequent analysis the status of the CPU at the time of 
interruption. To complete the interruption, a new PSW is 
introduced into the CPU from another unique main storage 
location, and the instruction at the specified location is 
fetched. 

In certain circumstances, the entire PSW is loaded into 
the CPU; in others, only part of it. As explained in the 
preceding paragraph, when the CPU is interrupted, the 
entire current PSW is stored and an entire new PSW is 

1-26 (9/68) 

loaded. The state of the CPU may be changed by executing 
the Load PSW instruction, which introduces a new PSW. 

--New program- mask and system mask bits may be specified 
by altering the corresponding fields in the PSW through the 
Set Program Mask and Set System Mask instructions, 

_ respectively. The Set Program Mask instruction also changes 
the_ condition code. 

INTERRUPTIONS AND EXCEPTIONAL CONDITIONS 

e -Five classes of interruptions are recognized: 
Machine check 
Program· 
Supervisor call 
External 
I/O 

• Eight exceptional conditions are recognized: 
Timer 
CPU store in progress 
Manual control stop _ 
Manual control wait 
Manual.control repeat 
Program store compare 
Invalid instruction address test 
Q-register refill 

•' Program interruption suppresses, terminates, or allows 
completion of instruction being processed. 

• Machine-check interruption terminates instruction being 
processed. 

• Other_ interruptions and exceptional conditions allow 
completion of instruction being executed. · 

. . 

In -general terms,' _the purpose of the interrupt area in the 
CPU is twofold: {l) to recognize ·defined interruptions and 
exceptional conditions that may arise while the system is in 
operation, and (2) to control the action that :ls subse­
quently initiated. The distinction between interruptions 
and exceptional conditions is that interruptions always 
allow. a new instruction flow to be entered whereas 
exceptional conditions do not, unless an associated inter­
ruption condition is also present. -

Five classes of interruptions have been defined for the 
System/360: 
1. Machine Check. Caused by the machine-checking circuits 

detecting a machine malfunction. The program auto­
matically enters a diagnostic routine if the machine-. 
check mask bit is a. 1. The malfunction is indicated in 
the logout data. 

2. Program. Caused by unusual conditions (such as incor­
rect operands or programming errors) encountered in a 
program. The exact error is indicated in the Interrupt 
Code triggers. 

-- 3. Supervisor Call. Caused by the prograni issuing an 
instruction to turn control over to the supervisor 
program. The reason for the call is shown in E{8-15). 



4. External. Caused by the ·interval timer going from 
positive to negative, or by depressing the INTERRUPT 
pushbutton on the system control panel, or, if the Direct 
Control feature is installed, by an external device 
requiring attention. 

· 5. 1/0. Caused by an 1/0 device ending an.operation or 
otherwise needing attention, or by operator intervention 
at an 1/0 device. Identification of the device and channel 
causing the interruption is signalled to the CPU. The 
status of the device and channel i.s stored in a fixed main 

·storage location. 

Table 1-5 lists for each interruption the interruption 
code, mask bits, ILC, and how the instruction execution is 
finished. . 

Unlike interruptions, exceptional conditions vary be­
tween models of the System/360. In the Model 65, eight 
exceptional conditions are recognized: 
1. Timer. Caused by positive swing of line frequency. 
2. CPU Store In Progress. Caused by a store operation in 

progress while an interruption or other exceptional 
condition is to be serviced or a Load PSW instruction is 
to be performed. 

3. Manual Control Stop. Caused by a need to switch the 
program from Operating to Stopped state. 

4. Manual Control Wait. Caused by the program switching 
from Running to Wait state. 

5. Manual Control Repeat. Caused by the repeat instruc­
tion operation, a maintenance aid using manual controls. 

6. Program Store Compare. Caused by possibly altering a 
main storage location already prefetched as an ihstruc- . 
tion, or by returning to the instruction flow following an 
Execute instruction. · 

7. Invalid Instruction Address Test. Caused when the next 
instruction to be performed is at an invalid, protected, 
or incorrectly specified main storage location. 

8. Q-Register .Refill. Caused by the need to delay proc­
essing of the next instruction when the Q-register is 
being refilled. 

Interruptions and exceptional conditions are always · 
processed after ending the current instruction and before 
starting the next· instruction. The finishing of the current 
instruction is influenced by the cause of the interruption; 
the instruction may be completed, terminated, or sup­
pressed. 

In instruction completion, the results of the operation 
are stored and the condition code (CC) is set as for normal 
instruction operation, although the result may be altered by 
the interruption ·condition. In instruction termination, 
execution of the instruction has started and some of the 
data in the registers has changed. The results may therefore 
be incorrect. The CC may also be incorrect. The instruction 

·may or may not be allowed to continue to completion; the 
final results should not be used for further computation. In 

instruction suppression, execution of the instruction is 
halted by forcing an end~op cycle. Results are not stored, 
and the CC is not changed. 

In some cases, the instruction is almost finished before 
the interruption condition is detected. For these cases, the 
CPU blocks any change to the CC and prevents storirig of 
the unpredictable. final result by changing the store opera­
tion to a fetch operation. 

A· program interruption may suppress, terminate, or 
allow completion of the instruction being processed; the 
particular effect depends on the instruction being per­
formed and the cause of the condition. A machine-check 
interruption terminates the instruction (or any other action 
being performed) immediately upon detection of the 
malfunction. The other interruptions and exceptional con­
ditions detected during instruction execution allow the 
instruction to be completed.· 

As an instruction ends and before the next instruction 
starts, the CPU interrupt logic examines triggers to deter­
mine whether an interruption or exceptional condition has 
arisen. If an interruption operation is to be performed, an 
exit is made from the current instruction flow and, 
following the interruption operation, a new instruction 
flow can be entered. If an exceptional condition operation 
is to be performed, the current instruction flow is usually 
not left but only delayed for the time it takes to perform 
the operation. 

During execution of an instruction, several interruptive 
events may occur. For example, the instruction may give 
rise to a program interruption, an external interruption 
signal may be received, a timer exceptional condition may 
occur, a. machine malfunction may . occur, and an I/O 
interruption request may be made. Instead of the program · 
interruption; a supervisor call interruption might occur; 
these two. interruptions cannot occur together' because 
they are mutually exclusive. When simultaneous interrup­
tions occur, the competing interruptions are serviced in a 
fixed order of priority. 

The priority of interruptions and exceptional conditions 
is: 

1. Timer exceptional condition. 
2. CPU store in progress exceptional condition. 
3. Machine-check interruption. 
4. Program interruption. 
5. Supervisor call interruption. 
6. External interruption. 
7. I/O interruption. 
8. Manual control stop exceptional condition. 
9. Manual control wait exceptional condition. 

10. Manual control repeat exceptional condition .. 
11 .. Program store compare exceptional· condition. 
12. Invalid instruction address test exceptional condition. 
13. Q-register refill exceptional condition. . 

2065 FETOM (9/68) 1-27 



Table 1-5. Interruptions 

Interruption Code 
Interruption (Old PSW Bits 16:-31} 

Machine Check o.)0000000 00000000· 

Program 

Operation 00000000 00000001 

Privileged operation 00000000 00000010 

Execute 00000000 00000011 

Protection 00000000 00000100 

Addressing 00000000 00000101 

Specification 00000000 00000110 

Data 00000000 00000111 

Fixed-point overflow 00000000 00001000 

Fixed-point divide 00000000 00001001 

Decimal overflow 00000000 00001010 

Decimal divide 00000000 00001011 

Exponent overflow - 00000000 00001100 

Exponent underflow 00000000 00001101 

Significance 00000000 00001110 

Floating-point divide 00000000 00001111 

Multisystem 00000000 00010010 

Supervisor Call 00000000 rrrrrrrr 
""'. 

External .. 

External signal 7 00000000 -ppppppp1 

External signal 6 00000000 pppppp1 p 

External signal 5 00000000 ppppp1 pp 

External signal 4 00000000 pppp1 PPP 

External signal 3 00000000 ppp1 PPPP 

External signal 2 00000000 pp1 ppppp 

INTERRUPT· pushbutton 00000000 p1 pppppp 

Timer 00000000 1ppppppp 

1/0 

Multiplexer channel (0) 00000000 aaaaaaaa 

Selector channel 1 00000001 aaaaaaaa 

Selector channel 2 00000010 aaaaaaaa· 

Selector channel 3 000000'.11 aaaaaaaa 

Selector channel 4 000001-00 aaaaaaaa 

Selector channel 5 00000101 aaaaaaaa 

Selector channel 6 00000110 aaaaaaaa 

Notes: 
u: Unpredictable; E(0,1} 
r: R 1 and R2 fields of Supervisor Call instruction 

1-28 (10/69) 

PSW How Instruction 
Mask Bit ILC Execution ts Finished· 

13 u Terminated 

- 1, 2, 3 Suppressed 

- 1, 2 Suppressed 

- 2 Suppressed 

- 0, 2,3 Suppressed or Terminated 

- 0, 1, 2,3 Suppressed or Terminated 

- 1, 2, 3 Suppress_ed 

~ 2,3 Terminated 

36 1, 2 Completed 

- 1, 2 Suppressed or Completed 

37 3 Completed 

- 3 Suppressed 

- 1, 2 Terminated 

38 1, 2 Completed 

39 1, 2 Completed 

- 1, 2 Suppressed 

- 2 Suppressed 

- 1 . Completed 
- -

7 u Completed 

7 u Completed 

7 u Completed 

7 u Completed 

7 u Completed 

7 u Completed 

7 u Completed 

7 u Completed 

0 u Completed 

1 u Comp·leted 

2 u Completed 

3 u Completed 

4 u Completed 

5 u Completed 

6 u Completed 

p: Set if pending before PSW(7) is set to a 1. 
a: 1/0 device address 

-



Interruptions 

• Each class of interruption has two related PSW's: old 
and new. 

• Old and new PSW's have fixed, unique main storag~ 

addresses. 

• Current PSW is stored into old address. 

• 64 is added to old PSW address to get new PSW address. 

• New PSW becomes current PSW. 

• There are 12 unconditional interruptions. 

• 20 interruptions have associated PSW mask bits. If mask 
bit is 1, take interruption; if 0, ignore interruption. 

An interruption replaces the entire current PSW. It is placed 
into a fixed location in main storage, and becomes the old 
PSW (Figure 1-14). This old PSW gives the reason for the 
interruption and also provides a return to the interrupted 
program. A new PSW is then fetched from a fixed location 
in main storage and becomes the current PSW. This new 
PSW provides an entry into the correct interruption­
handling routine in the supervisor program: 

r-- -MAIN"sro°RAG°E - -- -1 
I · I 
I Old PSW 
I 
I 
I 
I 
I 
I 
I 

I 

Gives reason for interruption; 
provides return to problem 
program. 

New PSW 

Provides entry into I I supervisor program. 

I I 
L--------- - __ _J 

Current PSW 

Coritrols current 
program. 

Each of the five classes of interruptions has its own 
distinct locations for new and old PSW's, as follows: 

Decimal Address Hex Address 
Interruption Old PSW NewPSW Old PSW NewPSW 

External 24 88 18 58 

Supervisor Call 32 96 20 60 

Program 40 104 28 68 

Machine Check 48 112 30 70 

1/0 56 120 38 78 

Thus, for example, a machine-check interruption causes 
the current PSW to be placed into location 48 and a new 
PSW to be brought out from location 112. Note that these 
locations are all divisible by 8 because they contain 
doublewords, and that the location of any new PSW is 64 
higher than its corresponding old PSW location. 

The five classes of interruptions tell the supervisor only 
the general reason for the interruption. For instance, the 
fact that the new PSW was brought out of location 104 tells 
the supervisor that the interruptio!l was caused by a 
program check. The supervisor still needs to know what 
type of program check occurred. This is the function of the 
interruption code, which is set into the current PSW 
automatically by the CPU logic before the PSW is stored. 

- By examining the interruption code in bit$ 16-31 of the 
old PSW, the program-check routine in the supervisor 
program can tell specifically whether it was a specification, 
addressing, or some other type of error. In the case of 1/0 
interruptions, the interruption code tells the supervisor 
which channel and 1/0 unit caused the 1/0 interruption. In 
the case of a machine-check interruption, the supervisor 
must inspect the logout data to learn the specific malfunc· 
ti on. 

After the interruption ·has been processed by the 
supervisor, the last instruction can be a Load PSW. This 
instruction causes the old PSW to once again become the 
current PSW, and the· CPU is back in the problem program. 

The load PSW instruction may also be used to: (1) allow 
the supervisor to change the current PSW, and (2) load the 
PSW for a new problem program after the program has been 
read into main storage by the supervisor. 

Interruption Masking 

Sometimes it is not desirable to allow an interruption. This 
condition becomes apparent when 1/0 interruptions are 
considered (Figure 1-15). Assume an I/O operation is 
completed, resulting in an 1/0 interruption. The current 
PSW is stored as the old PSW to give the supervisor the 
reason for (or the source of) the interruption. This old PSW 
3Iso enables the supervisor to return to the mterrupted 
problem program. A new PSW is then brought out of 
storage and becomes the current PSW which indicates the 
first instruction of the 1/0 interruption-handling routine. If 
at this time a second 1/0 interruption, perhaps caused by 
operator intervention at an 1/0 device of another channel, 
were allowed, the old PSW stored as a result of the first 1/0 
interruption would be lost. The supervisor can prevent this 
second I/O interruption from being accepted until it has 
processed the ftrst I/O interruption by means of mask bits 
in the new PSW. 

Twenty of the 32 interruptions for the five classes can 
be masked off by associated mask bits in the PSW. (The 

2065 FETOM (9/68) 1·29 



Porl'crmdl-tlc 
routine to scan 
out status or ·cPU, 
starting ·at location 
128. 

·-tCPU. 

Auemble current 
(old) PSW. 

Stare old PSW into. 
locatlon -48. 

Fetch new PSW 
from locotion 112. 

Fetch and execute 
next Instruction. 

Progrcrn 

·­Interruption. 

I Rnot suporvl'"' 
I ·coll and program 
I interruptions, but 
I not external 
I Interruptions. Th<l 1/0 
I channels ore not reMt; 
I th<lrelore, 1/0 
I Interruptions are 

not lost. 

Assemble current 
(old) PSW. 

Store old PSW Into· 
locatlon «». 

Fetch new PSW 
from location 104. 

Branch to.supervllGI" 
program and porl'crm 
specified Interruption­
handling routine. 

No 

No 

Encl of execution of 
previous Instruction. 

.Supervloor 
Call 

Auemble cU1T•nt 
(old) PSW. 

Fetch new PSW 
from locotlon 96. 

Pot1lblo octlOflll 
1. RecordolfOr. 

F9tch old PSW and 
makeltCUl'NlllPSW •. 

2. Print console~. 
3. Begln_pr_. 

Figure l-14; Action Taken When Single Interruption Occurs 

1-30 (9/68) 

Assemble current 
(old) PSW. 

Store old PSW into 
location 2.t. 

· Fetch new PSW 
f'rom location 88. 

Branch to 1Up9rvlsor 
program Gad execute 
external interruptron­
handllng ""'tlno. 

Refetch old PSW from 
location 24 (ond make 
It ·current PSW) to return 
to problem-. 

Interruption 
remains pending. 

Yes· 

Assemble current 
(old) PSW. 

Store old PSW into 
location 56. 

Store CSW into. 
loc:oti~64. 

Fetch neW PSW 
from location 120. 

Branch to supervisor 
program· and execute 
1/0 interruption­
handling routine. 

Refletch old PSW from 
locatlon 56 (and make 
it current PSW') to return 
to problem progra.;,. 



PROBLEM PROGRAM 

Instr 

·Instr 

Instr 

Instr 

Instr 

nstr 

SUPERVISOR 
(1/0 INTERRUPTION-
HANDLING ROUTINE) 

--Instr -
Instr 

Instr 
...... 

lnili 

\ Instr [Load (Old) PSW) 

Assume first 1/0 interruption 
occurs at this time. As a 
resu It, the current PSW is 
stored into location 56 as 
the old PSW, and a new 
PSW is fetched from location 
120. This new PSW becomes 
the current PSW, which 
addresses the first instruction 
of the 1/0 interruption­
handling routine. 

/ 
/ 

/ 
/ 

/ , r)f' 

If a second 1/0 
were a 11 owed to 

interruption 
occur at 

this time, the c urrent PSW 
wou Id be stored 
56, thus destroy 
PSW from the pr 

at location 
ing the old 
oblem program. 

Figure 1-15. Example of Need for Interruption Masking 

/ 
/ 

/ 

r- - - - ------, 
I MAIN STORAGE 

I Location 56 

Old PSW Iii 
------ I 

Current PSW I : 

/ 
/ 

/ 
/ 

U. : Location 120 

I I 
. New PSW 

/ 
/ 

/ 
/ 

/ 

I /"-~~~~~~ 

I/ 
~---------_J 

/ 

2065 FETOM (9/68) 1-31 



remauung 12 interruptions_ are unconditfonal; they are 
always taken.) If the corresponding mask bit is a 1, the 
interruption is taken; if a 0, the interruption is ignored or 
remains pending. External and 1/0 interruptions may be 
masked off by the system mask field of the PSW; 
machine-check interruptions niay be .. masked off by the 
machine-check mask bit; 4 of the 1 S program interruptions 
may be masked off by the program mask field. 

System Mask Field. The system inask field consists ofeight 
bits [PSW(0-7)] which can be used selectively or collec­
tively to mask all I/O and external interruptions: 

System Mask Bit 

a 

2 

3 

4 

5 

6 

7 

Interruption Source 

Multiplexer channel (0) 

Sel.ector channel 1 

Selector channel 2 

Selector channel 3 

Selector chanr:iel 4 

Selector channel 5 

Selector channel 6 

Timer, INTERRUPT pushbutton, or 
external signals 2-7 

To prevent an I/O or external interruption before· the 
first interruption has been processed, the system mask of 
the new PSW should contain zeros. When a system mask bit 
is a 0, the associated I/O or external interruption remains 
pending. 

The system mask field may be changed by introducing a 
new PSW, or it may be changed separately by the Set 
System Mask instruction. 

Machine-Check Mask Bit. The machine-check mask bit 
[PSW(13)] controls the acceptance of a machine-check 
interruption. If this bit is a 0, machine-check interruptions 
are ignored and remain pending. If this bit is a 1, 
machine-check interruptions are taken, depending on the 
position of the CPU CHECK switch on the system control 
panel. If this switch is in the PROC (normal) position, the 
CPU stops and the status is logged into main storage; a 
machine-check interruption then takes place. If the CPU 
CHECK switch is in the DSBL (disable) position, the CPU 
does not stop upon detection of a machine check and no 
logout or interruption takes place. If the switch is in the 
STOP position, the CPU stops upon detection of a machine 
check, but there is no logout of data and no interruption 
takes place. 

1-32 (9/68) 

The usual mode of operation is to have the CPU 
CHECK switch set to the. PROC position and PSW(13).set 
to a 1. 

The machine check mask bit can be changed only by 
introducing a new PSW. -

Program Mask Field. The program mask field consists of 
four bits· [PSW(36-39)] , each of which is associated with a 
program check: 

Program Mask Bit Program Interruption 

36 Fixed-point overflow 

37 Decimal overflow 

38 Exponent underflow (floating-point) 

39 Significance (floating-point) 

When a program mask bit is a· 1; the associated program 
check results in an interruption; when a 0, no interruption . 
occurs and the condition does not remain pending. 

· The program mask field may be changed by intro-
ducing a new PSW, or it may be changed separately by the 

· Set Program Mask instruction. 

Instruction Address Determination 

• PSW holds address of instruction to be executed next. 

• Interruption, if any, occurs during instruction execu­
tion. 

• For program and supervisor call interruptions, instruc­
tion address less ILC gives address of preceding 
instruction during which interruption occurred. 

As stated earlier, the instruction address portion of the · 
current. PSW is used by the interruption operation to fetch 
an instruction. Once the instruction has been fetched, the 
instruction address portion of the PSW is updat~d to 
address the next instruction. Interruptions are serviced only 
after an instruction is finished. Therefore, the instruction 
address portion of the old PSW does not contain the 
address of the last instruction executed, but rather contains 
the address of the next instruction that would have been 
executed if the interruption had not occurred. For some 
interruptions, it is desirable to locate the instruction during 
which the interruption occurred. To obtain this location, 
the instruction address portion of the old PSW must be 
decremented by the supervisor. To do so, the supervisor 
must know the length of the last instruction executed. This 



length, in halfwords, is given by the instruction length code 
(ILC) of the old PSW (bits 32 and 33). The ILC for the five 
formats is as follows: 

PSW Bits Op Code Posi-
1 LC 32 and 33 tions 0 and 1 

0 00 

01 00 

2 10. 01 

2 10 10 

3 11 11 

Instruction 
Length 

(in Halfwords) 

Not available 

1 

·2 

2 

3 

Format 

RR 

RX 

RSand·SI 

SS 

The ILC is predictable only for program and supervisor­
call interruptions. For I/O and external interruptions, the 
interruption is not caused by the preceding instruction, and 
the ILC is therefore not predictable for these instructions. 
For machine-check interruptions, the ILC setting may be 
affected by the malfunction and, therefore, may be 
incorrect. Therefore, the instruction causing these interrup­
tions, if any, must be located by other means. 

For supervisor-call interruptions, the ILC is· 1, indicating 
the halfword length of the Supervisor Call instruction. For 

.. . program interruptions, an ILC of 1, 2, or 3 indicates the 
length of the instruction in halfwords. The ILC of 0 is 
reserved for a storage protection condition detected after 
completion of the instruction that caused the violation; this 
condition is called a · tate storage protection check and 
results is an indefinite program interruption. · 

Note that for a program interruption caused by an . 
incorrect branch address, the address determined from the 
instruction address and ILC is the branch address and not 
the address of the branch instruction. 

Machine-Check Interruption 

The machlne~check interruption provides a means for 
recogni,zing a. machine malfunction. The following malfunc­
tions cause a machine check: 

1. ROS word parity check. 
2. Parallel adder full-sum parity check. 
3. Parallel adder half-sum parity check. 
4. Serial adder full-sum parity check. 
.5. Serial adder half-sum parity check. 
6. E~register parity check. 
7. Multiply/divide logic error. 
8. Storage address check to CPU. 
9. Storage data check to CPU. 

_ 10. System.hang (Multisystem feature only). 

Each malfunction sets· a: specific trigger which, in turn, 
sets the ;error' trigger and lights the PROC CHK indicator 
on the system control panel and the (:HK SUMM indicator 
on roller switch 3 (position 1, bit 20). 

Acceptance of a machine-check interruption depend~ 
upon the. state of the machine-check mask bit, PSW(13), 
and upon the position of the CPU CHECK switch on the 
system control panel. 

If the machine-check mask bit is a 1 . and the CPU 
CHECK switch is in the PROC position, machine-check 
interruptions are t.aken. Tlie current instruction is termi­
nated, and a diagnostic routine called logout is initiated. 
The status of the CPU is logged out into the permanent 
main storage area starting at .location 128 (decimal) and 
extending through location 295, a total of 22 doublewords. 
A machine-check interruption then takes place; the old 
PSW is stored at main storage location 48 (decimal) with an 
interruption code of 0 and a new PSW is fetched from main 
storage location 112. . 

If the machine-check mask bit is a 0 and the CPU 
CHECK switch is in the PROC position, the interruption 
remains pending and the CPU attempts to complete the 
current instruction and to proceed with the next instruc­
tion. 

If the CPU CHECK switch is in the DSBL (disable) 
position, the interruption is ignored regardless of .the state 
of the machine-check mask bit. 

If the switch is in the STOP position, the CPU stops 
upon detection of the machine check regardless of the state 
of the mask bit . 

Following an emergency power-off, power-on, or 
system-reset operation, incorrect parity may exist in storage 
and registers. Unless new information is loaded, a machine­
check condition . may occur erroneouSly. Once storage and 
registers are cleared, a machine-check interruption can be 
caused only by a machine malfunction and not by invalid 
data or instructions. 

Program Interruptions 

Program -interruptions result from improper specifications 
·or unusual conditions arising during the processing of data 
or instructions. There are 15 program interruptions, 4 of 
which may be masked off by associated bits in the PSW 
program mask field; the remaining 11 are unconditionally 
taken. If the associated mask bit is a- 0, the interruption is 
ignored and does not remain pending. 

The program interruption causes the old PSW to be 
stored into main storage location 40 (decimal) and a new 
PSW to be fetched from location 104. Interruption code 
bits 28-31 identify the cause of the interruption; Bits 
16-27, the re,mainder of the interruption code, are made 
zeros. 

Four Interrupt Code triggers determine the code to be 
set into bits 28-31 of the interruption code. The outputs 
of the four triggers are encoded to give the 15 possible 
codes. The specific trigger(s) to be set is determined by a 
combination of a micro-order, the op code, and data 
conditions. The 'program interrupt' latch is set by the 

2065 FETOM (9/68) 1-33 



Interrupt Code triggers. A brief description of the 15 
program interruptions follows: 

1. Operation. An invalid op code is detected. The instruc­
tion is suppressed; the ILC is 1, 2, or 3. 

2. Privileged Operation. A privileged instruction is en­
countered ·in the Problem. state. The instruction is 
suppressed; the ILC is 1 or 2. 

3. Execute. The subject instruction of an Execute instruc­
tion is another Execute instruction. The instruction is 
suppressed; the ILC is 2. 

4. Protection. The storage key of a main storage location 
does not match the storage protection key in the PSW. 
For a store protection violation, the instruction is 
suppressed, except for Store Multiple, Read Direct, and 
Test and Set instructions and VFL operations, which 
are terminated. The ILC is 0, 2, or 3. For a fetch­
protection violation, the instruction is terminated 
except for the Execute instruction which is suppressed; 
the protected information is not loaded into an 
addressable register or moved to another storage 
location. The ILC is 0, 2, or 3. In the case of a violation 
caused by an I/O operation, data transmission is. 
terminated in such a way that the protected informa­
tion is not recorded on an ·output medium. The 
violation is indicated in the channel status word stored 
as a result of the operation. The ILC is 2 or 3. 

5. Addressing. An address specifies any part of data, an 
instruction, or a control word outside the available 
main storage. In most cases, the instruction is termi­
nated. Data in main storage remains unchanged, except 
when designated by valid addresses. The instruction is 
suppressed for the Convert to Decimal, Diagnose, 
and Execute instructions, for certain SI-format 
instructions, and for certain store instructions. The 
ILC is 0, 1, 2, or 3. 

6. Specification. A specification program interruption is 
caused by any one of six conditions: 
a. A data, instruction, or control-word address does 

not specify an integral 'boundary for the unit of 
information. 

b. The Rl field of an instruction specifies an odd LS 
register address instead of an even register address 
for a pair of GPR's that contains a doubleword 
operand. 

c. An FPR address other than 0, 2, 4, or 6 is 
specified. 

d. The multiplier or divisor in decimal arithmetic 
operations exceeds 15 digits and sign. 

e. The divisor in decimal division is equal to or 
greater than the dividend, or the multiplier in 
decimal multiplication is equal to or greater than 
the multiplicand. 

f. The block address specified in Set Storage Key or 
Insert Storage Key instructions does not have the 
four low-order bits set to zero. 

The instruction is suppressed; the ILC is 1, 2, or 3. 

1-34 (9/68) 

7. Data. A data interruption is caused by any one of three 
conditions: 
a. The sign or digit codes of operands in decimal 

arithmetic, editing, or converHo-binary operations 
are incorrect. 

b. Fields in decimal arithmetic operations overlap 
incorrectly. 

c .. ·The decimal multiplicand has too many high-order 
significant digits. (The number of high-order zeros 
in the multiplicand must at least equal the multi­
plier field.) 

The instruction is terminated; the ILC is 2 or 3. 
8. Fixed-Point Overflow. A high-order. carry occurs or 

high-order significant bits are lost in fixed-point add, 
subtract, shift, or load operations. The instruction is 
completed by ignoring the overflow; the ILC is 1 or 2. 
The interruption may be masked off by making the 
fixed-point overflow mask bit [PSW(36)] a O; the 
interruption is then ignored. 

9. Fixed-Point Divide. The quotient exceeds the register 
size in a fixed-point divide instruction, or the result of 
a Convert to Binary instruction exceeds 31. bits. The 
divide instruction is suppressed, and the Convert to 
Binary instrtlction is completed by ignoring the extra 
bits. The ILC is 1 or 2. 

10. Decimal Overflow. The destination field is too small to 
contairi the result field in a decimal arithmetic opera­
tion. The instruction is completed by ignoring the 
overflow information; the ILC is 3. The interruption 
may be masked off by making the decimal-overflow 
mask bit [PSW(37)] a O; the interruption .is then 
ignored. 

11. Decimal Divide. The quotient exceeds the specified 
data field size in a ·decimal division. The instruction is 
suppressed; the ILC is 3. 

12. Exponent Overflow. The result exponent {character­
istic) of a floating-point addition, subtraction, multipli­
cation, or division overflows, and the result fraction is 
not zero. The operation is completed by making the 
characteristic 128 smaller than the true result; the sign 
and fraction remain unchanged. The ILC is 1 or 2. 

13. Exponent Underflow. The result of a floating-point 
addition, subtraction, multiplication, or division under­
flows, and the result fraction is not zero. A program 
interruption occurs if the exponent-underflow mask bit 
[PSW(38)) is a 1. The operation is completed by 
replacing the result with a true zero if.the mask bit is O. 
If the mask bit is 1, the characteristic is made 128 
larger than the true result, and· the sign and fraction 
remain unchanged. The ILC is 1 or 2. 

14. Significance. The result of a floating-point addition or 
subtraction has an all-zero fraction. The instruction is 
completed; the ILC is 1 or 2. The interruption may be 
masked off by making the significance mask bit 
[PSW(39)] a O; the interruption is then ignored. 

15. Floating-Point Divide. A division is attempted by a 



floating-point divisor with a zero fraction. The instruc­
tion is suppressed; the ILC is 1 or 2. 

Note: If the Multisystem feature is installed, a· fifth 
Interrupt Code trigger is added for interruption code bit 27. 
A multisystem program interruption code of 18 (decimal) 
occurs if the Set System Mask instruction is encountered_ 
when in Multisystem mode. The instruction is suppressed; 
the ILC is 2. 

Supervisor-Call Interruption 

The supervisor-call interruption is used by the problem 
program to pass control to the supervisor program. To do 
so, the problem program executes the Supervisor Call 
instruction which, in turn, causes a supervisor-call interrup­
tion. The interruption is unconditionally taken; there is no 
associated mask bit in the PSW. The old PSW is stored at 
main storage location 32 (decimal), and the new PSW is· 
fetched from location 96. The Rl and R2 fields (bit 
positions 8-15) of the Supervisor Call instruction become 
the low-order half (bits 24-31) of the interruption code of 
the old PSW. These bits may be used to convey a message 
(for example, the reason for the call) from the calling 
program to the supervisor program.· Bits 16-23 of the 
interruption code are made zero. The ILC is 1, indicating 
the one-halfword length of the Supervisor Call instruction. 

External Interruptions 

The external interruption enables the CPU to respond to 
signals from external units, from the INTERRUPT push­
button on the system control panel, and from the interval 
timer. An external interruption may occur at any time, and 
interruptions from the different sources may occur simul­
taneously. Interruptions are kept pending until accepted by 
the CPU. When several interruptions from one or more 
sources are pending, only one interruption is taken servicing 
all pending external interruptions. 

An external interruption can occur only when system 
mask bit 7 is a 1 and after the current instruction is 
executed. The interruption causes the old PSW to be stored 
at main storage location 24 (decimal) and a new PSW to be 
fetched from location 88. The source of the interruption is 
identified by bit positions 24-31 of the interruption code; 
bits 16-23 are made zero. 

A brief discussion of the three external· interruptions 
follows: 
1. External Signals. Available only if the Direct Control 

feature is installed. May be masked off by depressing 
DISABLE DIRECT CONTROL on the system control 
panel or by setting bit 7 of the system mask field to a O. 
Six signal-in lines, representing external signals 2-7, are 
connected to the CPU to cause an external interruption. 
The specific external signal causing the interruption is 
identified by a unique bit position in positions 26-31 of 

the interruption code. For example, external signal 7 is 
· identified by a 1 in bit position 31, external signal 6 by a 

1 in bit position 30, and so on. The Multisystem feature, 
if installed, assigns specific meanings to external signals 2 
and 3. (Refer to Chapter 4, Section 2.) 

2. INTERRUPT Pushbutton~ If bit 7 of the system mask 
field is a 1, depressing INTERRUPT on the system 
control panel causes an external. interruption. Bit posi­
tion 25 of the interruption code is set to a 1. 

3. Timer. If bit 7 of the system mask field is a 1 and the 
interval timer value changes from positive to negative, an 
external interruption occurs. Bit . posit.ion 24 of the 
interruption code is set to a 1. The interruption is 
initiated as the timer count proceeds from a positive 
number, including zero, to a negative number. The 
interval timer. is updated (decremented) 60 times a 
second or 50 times a second, depending on the line 
frequency. It is possible that, after an interruption is 
initiated, the timer may have been updated several times 
before the CPU is actually interrupted, depending on the 
instruction being executed and on the state of the mask 
bit. The operation of the timer is controlled by the 
DISABLE INTERVAL TIMER switch on the system 
control panel. 

1/0 Interruptions 

The I/O interruption enables the CPU to respond to signals 
from I/O devices. A request for an I/O interruption may 
occur at any time, and more than one request may occur at 
the same time. The requests remain pending in the 1/0 area 
of the system until accepted by the CPU. Priority is 
established among requests so that only one interruption 
request is honored at a time. The order of priority is 
channel 0, then channels 1-6. Note that this priority is 
different from the priority the·BCU establishes for servicing 
1/0 storage requests .. - · · . · 

1/0 interruptions generally . occur at the end of an 1/0 
operation. Most 1/0 operations are overlapped with process­
ing; an 1/0 interruption, therefore, is an efficient way of 
signalling the supervisor that the I/O operation is finished. 
After the 1/0 interruption-handling routine in the super­
visor is finished, control is passed to the problem program: 

Problem Program~ f r 
Supervisor Load PSW 

Cal I Interruption (Masks\~~e;)hannel Loarsw 

Soe•~;oo, """"• ~ r 
Start 1/0 1/0 Interruption 

1/0 Program 

l (Masks off r Channels) 

An I/O interruption can occur only if the associated 
mask bit in the system mask field of the PSW is a 1. The 

2065 FETOM (10/69) 1-35 



1/0 interruption causes the old PSW to be stored at main 
storage location 56 (decimal) and the channel status word 
associated with the interruption to be stored at location 64. 
The new PSW is fetched from location 120. Bit positions 
21-23 and 24-31 of the interruption code identify the 
channel and the 1/0 device, respectively, causing the 
interruption. Bit positions 16-20 are made zero. 

Exceptional Conditions 

Exceptional conditions are ·processed by the CPU after 
finishing the instruction in progres~. After processing the 

.. exceptional condition, the instruction flow might be 
continued, stopped, repeated, or left, depending on the 
specific exceptional condition. An exceptional condition 
operation does not change the current PSW, nor does the 
PSW contain mask bits for exceptional conditions. 

Timer Exceptional Condition 

When the interval timer must be stepped (decremented), a 
timer exceptional condition is generated (recognized by a 
trigger that is set by a positive swing of the line frequency). 
When the instruction in progress is finished, the CPU 
generates main storage address 80 (decimal), the location of 
the timer value. The timer value is fetched, stepped, and 
returned to location 80. If the timer value is stepped from a 
positive value to a negative value, a timer external interrup­
tion is processed next. Otherwise, processing continues with . 
the next instruction. The timer is controlled by the 
DISABLE INTERV A,L TIMER switch on the system 
control panel. 

CPU Store in Progress Exceptional Condition 

When the next instruction ~ust be delayed to prevent the 
subsequent program interruption from being indefinite, a 
CPU store in progress exceptional condition is generated. 
This condition is recognized if the storing of data into main 
storage would overlap the processing of the Load PSW 
instruction or the handling of i.in interruption or manual 
control or program store compare exceptional condition. A 
two-cycle CPU loop is entered to insure that any "late" 
storage protection check will not result in an indefinite 
program interruption under these conditions. If a protec­
tion check occurs, a program interruption is processed next. 
Otherwise, processing continues with the next instruction. 

Manual Control.Stop Exceptional Condition 

The manual control stop exceptional condition arises when 
the program is to be switched from the Running to the 
Stopped state. The CPU enters a "stop loop", during which 
no instructions are processed and all interruptions are kept 
pending. Only the following pushbuttons are recognized: 
STORE, DISPLAY, SET IC, START, ROS TRANSFER, 
and PSW RESTART. 

1-36 (9/68) 

Manual Control Wait Exceptional Condition 

The manual control wait exceptional condition arises when 
PSW( 14) is set to a 1. CPU clock signals are inhibited. 
Processing continues when an external or 1/0 interruption 
or an IPL operation is initiated. 

Manual Control Repeat Exceptional Condition 

The manual control repeat exceptional condition arises 
when the repeat instruction operation (a maintenance aid) 
is begun and, if the REPEAT INSN (instruction) switch on 
the system control panel is in the SINGLE position, before 
each subsequent repetition of the specified instruction. 

Program Store Compare Exceptional Condition 

A program store compare exceptional condition r~sults if 
the next instruction to be processed must again be fetched 
into the Q-, R- and E-registers. This need occurs after 
processing the Execute instruction and after some store 
operations. Although the instruction to be executed next is 
held in the instruction buffer (Q-register), it is modified in 
its main storage location only. Therefore, to have the 

· correct version of the instruction in the Q-register, the next 
instruction is refetched before it is executed. 

Invalid Instruction Address Test Exceptional Condition 

The previously discussed exceptional conditions and inter­
ruptions result from unusual conditions occurring during 
the execution of an instruction. To identify the instruction, 
its address and op code are preserved by inhibiting the 
fetching of the next instruction until the microprogram 
routine that handles the interruption or exceptional condi­
tion is ended. 

In an invalid instruction address test exceptional condi­
tion, however, it is the address of the next instruction that 
is invalid, protected, or incorrectly specified. Processing of 
the instruction is allowed to start; thus the address of the 
previous instruction is replaced with an erroneous address. 
The appropriate Interrupt Code trigger(s) is set and a 
program interruption is processed next. 

Q-Register Refill Exceptional Condition 

The Q-register refill exceptional condition arises when 
Q-register (instruction buffer) refilling conflicts with the 
start of the next instruction. The exceptional condition 
delays processing of the next instruction by one (or two) 
cycles. 

CONTROL OF 1/0 OPERATIONS 

The following paragraphs: define an 1/0 operation; discuss 
how I/O operations are controlled by instructions, com­
mands, orders, and control words; and illustrate how the 
I/O system works, using the Start I/O instruction as an 
example. 



Instructions, Commands, and Orders 

• CPU executes instructions. 

• Channels execute commands. 

• Control units and d_evices execute orders. 

• Five operations are available: 
Write 
Read 
Read backward 
Control 
Sense 

Input/output operations are initiated and controlled by 
three types of information: instructions, commands, and _ 
orders. Instructions are decoded and executed by the CPU 
and are parLof the CPU program. Commands are decoded 
and executed by the channel, and initiate I/O operations 
such as reading and writing. Instructions and commands are 
fetched from main storage and are common to all types of 
devices. Orders specify functions peculiar to an I/O device, 
such as rewinding tape or spacing a line on a printer. Orders 
are contained in the control command; they are decoded 
and executed by the device. 

The action in an I/O clevice initiated by a command is 
termed an 1/0 operation. Five I/O operations are available: 
write, read, read backward, control, and sense. The channel 
initiates the operation by executing the associated com­
mand. 

The write command initiates a write operation at the 
device. Data from main storage is fetched in an ascending 
order of addresses and transferred to the deVice. 

The read command initiates a read operation at the 
device. Data is read from the device in the same sequence as 
it was written by a write command. Data is placed into 
main storage in an ascending order of addresses. 

The read-backward command initiates a read-backward 
operation at the deVice. Data is read from the device in a 
sequence opposite to that in writing. Data is placed into 
main storage in a descending order of addresses. 

The control command contains information, termed 
orders, that controls the selected device. Orders are unique 
to the particular device in use and specify such functions as 
backspacing or rewinding magnetic tape. Orders are fetched 
from inain storage in an ascending order of addresses and 
transferred to the deVice. · 

The sense command initiates a sense operation at the 
device. Data transferred during a sense operation provid.es 
information about unusual conditions detected during the 
last operation and the status of the device. Data is placed 
into main storage in an ascending order of addresses. 

1/0 Control Words 

Three I/O control words are used during an I/O operation: 
1. Channel Address Word (CAW), which initiates I/O 

sequencing. 

2. Channel Comma_nd Word (CCW), which controls 1/0 
operations and sequencing. 

3. Channel Status Word (CSW), which indicates channel 
status. 

Channel Address Word 

The CAW specifies the address of the first CCW associated 
with the Start I/O instruction. The CAW is assigned 
permanent main storage address 72 (decimal). The channel 
refers to the CAW only during execution of the Start 1/0 
instruction. The pertinent informlttion is stored in the 
channel, and the CPU program is free to change the 
contents of the CAW. The CAW has the following format: 

I Key Io o o ol Command Address 

0 3 4 7 8 31 

Bits 0-3, Key. Specifies the storage protection key for 
all commands associated with the Start I/O instruction. 

Bits 4-7. Must be all O's. 
Bits g_:_31, Command Address. Designates location of 

the first CCW in main storage. 

Channel Comma_nd Word 

The CCW specifies the command to be executed and, for 
commands initiating I/O operations, designates the main­
storage area associated with the operation and the action to 
be taken whenever data transfers to or from the main 
storage are completed. The CCW's can be located anywhere 
in main storage, and more than one can be associated with a 
Start I/O instruction. The channel refers to a CCW in main 
storage only once, whereupon the pertinent information is 
stored in the channel. The first CCW is fetched during 
execution of the Start I/O instruction. Each additional 
CCW is obtained when the operation has progressed to the 
point where the additional CCW is needed. The CCW has 
the following format: 

I Command Code I Data Address 

0 7 8 31 

\ Flags loo o~ Count 

32 36 37 39 40 47 4a 63 

-Bits 0-7, Command Code. Specifies I/O operation to be 
performed. 

Bits 8-31, Data Address. Specifies location of an 
eight-bit byte in main storage; it is the first location 
referred to in the main storage area designated by the 
ccw. 

Bits 32-36, Flags. Cause certain functions to be 
performed that modify the operation. 

2065 FETOM (9/68) 1-37 



. Bits 37-39. Must be all O's for every CCW other than 
the CCW that specifies a transfer-in-channel operation. 

Bits 40-47. Not used. 
Bits 48"'-63, Count. Specifies the· number of eight~bit 

byte locations in the main storage area designated by 
the data-address field in the CCW. 

Channel Statqs Word 

The CSW provide~ the program with the status Of an 1/0 
device or the condition under which an 1/0 operation has 
been fmished, The CSW is formed, or parts of it · are 
replaced, in the· process or· I/O interruptions and during 
execution of the Start 1/0, Test I/O, and Halt I/O 
instructions. The CSW is placed into main storage location 
64 (decimal) arid is available to the program at this location 
until the ~ext I/O interruption occurs or until another I/O 
instruction causes its contents to be replaced, whichever 
occurs first. The CSW has the following format: 

I Key loo o ol Command Address ) 

' 132 

3·4 7 8. 31 

Status ·Count 

47 48 63 

Bits 0-3, Key. Contains the stOrage protection key that 
was used in the 1/0 operation initiated by the last Start 
1/0 instruction. 

Bits 4-7. Must be all O's. 
Bits 8-31, Command Address. Identifies the last CCW 

used. 
Bits 32-47, Status. Identifies the conditions in the I/O 

device and channel that caused the CSW to be stored. 
·Bits 48::-63, Count. Contains the residual count of the 

last CCW used. · 

1/0 System Operation. 

• Start I/O instruction is given. 

• Channel fetches CAW from main storage location 72 
(decimal). 

• CAW designates main storage address of first CCW. 

• CCW specifies command and main storage area. 

• Channel selects device. Start I/O instruction is. termi­
nated at this point. 

• Channel controls operation and data transfers~ 

• Operation is temiinated by. two conditions: channel end 
and device erid. 

1-38 (9/68) 

The·CPU program initiates 1/0 operations by means of the 
Start 1/0 instruction. This instruction identifies the I/O 
device and causes the channel to fetch the CAW from main 
storage location 72 (decimal). The CAW designates the 

. location in main storage from which the channel subse­
quently . fetches the first CCW. The CCW specifies the 
command ·to be executed, the main storage area to be used, 
and the number of data bytes to be transferred, if any. 

The channel attempts to select the device by sending the 
address of the device to all attached control units. Upon 
recogn:iZing the address, the control unit associated with the 
addres.sed device connects itself logically to the channel. 
The channel subsequently sends the command code to. the 
device, and the device responds by indicating whether it can 
execute the command. . 

At this time, execution of the Start. I/O instruction is 
terminated, and the CPU continues with its program. The 
results of the attempt to initiate command execution are 
indicated in the PSW and, under certain conditions, by 
storing a portion of the CSW. 

1f the operation is initiated by the 1/0 device and its 
.execution involves transfer of data, the channel responds to 
service requests from the device and assumes control of the 
operation. For operations that do not require transfer of 
.data, the device signals the end of the operation immediate· 
ly on receipt of the command code, and the channel is 
immediately available for a new I/O operation. 

An I/O operation may involve transfer of data to or 
from one main-storage area, designated by a single CCW, or, 
when data chaining is specified, to or from a number of 
noncontiguous main-storage areas. In the latter case, a chain 
of CCW's is used in which each CCW designates an area in 
main storage for the continuation of the original command 
(operation). 

Termination of the I/O operation normally is indicated 
by two conditions: channel end and device end. The 
channel-end condition indicates that the I/O device has 
received or provided all information associated with the 
operation and no longer needs channel facilities. The 
device-end condition . indicates that the device has finished 
the operation. 

Facilities are provided for the program to initiate 
execution of a chain of commands with a single Start I/O 
instruction. When command chaining is specified, the 
device-end condition causes the channel to fetch a new 
CCW that specifies a new operation at the device. 

Conditions that initiate 1/0 interruptions are· asynchro­
nous with the activity in the CPU, and more than one 
interruption condition can occur· at the same time. A 
priority has been established among the conditions so that 
oiily one interruption is processed at a time. The I/O 
interruption conditions are preserved in the I/O devices and 
channel until accepted by the CPU. 



This section discusses: (1) the functional units (based on 
Diagram 3-2, FEMDM); and (2) instruction fetching and 
execution, the Universal instruction set by instruction class, 
and power considerations. 

CONTROL 

The 2065 CPU operates with a basic clock cycle period of 
200 ns under control of ROS. The following paragraphs 
discuss: (1) CPU timing and data transfer; (2) ROS - what 
it is, how it controls the CPU, and its data flow; (3) the 
additional control provided by the PSW register. 

CPU Timing 

• Basic clock cycle period is 200 ns. 

• Symmetrical clock signal consists of 100-ns clock por­
tion and 100-ns not-clock portion. 

• Unsymmetrical clock signal consists of 80-ns clock 
portion and 120-ns not-clock portion. 

The basic CPU clock cycle period is 200 ns, diyided into 
clock and not-clock portions .. A clock signal generator 
provides a 5-megaHertz ( 5-mHz) symmetrical 
(100-ns/100-ns) clock signal. Two types of clock signal 
generators are used: ~ continuously running crystal­
controlled oscillator in the Model G65, H65, and 165 CPU 
or a gated delay-line oscillator in the Model IH65 and 165 
CPU. To provide additional time for CPU logic functions, 
the symmetrical clock signal is modified to give a 5-mHz 
unsymmetrical (80-ns/120-ns) clock signal. Finer intracycle 
control is obtained by dividing each of the two clock signals 
into 20 intervals of approximately 10 ns each. These 
intervals, named PO, Pl, P2, ... P19, are created by 
inverters which delay the signal by about 10 ns. Thus the 
notations PO, Pl, P2, ... P19 refer to signals which are 
inverted and are delayed 10 ns with respect to the previous 
signal: 

r-200ns~ 
Symmetrical _JIOO-ns Clock! Not-Clockflj ---.. 
Clock Signal ..._ __ __, 

Unsymmetrical _j SO-ns 
Clock Signal Clock 

PO PS 

120-ns 
Not-Clock "j 

Pl9 

10-ns Intervals: 11 I 1111111 I 11111111111111111111111111111111 

po_j I 
Pl• .. ___ , 

Section 4. CPU Description · 

The clock signals are distributed to logic gates A through 
E.Adjustable time delays within the logic gates synchronize 
the cfock signals with a reference signal, thereby eliminating 
the various amounts of delay introduced by the distribution 
cables. The distribution of the c1ock signals to the CPU 
processing logic is stopped upon detection of an error or 
during scan, logout, single-cycle, and certain ROS opera­
tions. When the CPU clock signals are stopped, the BCU 
must continue to service the 1/0 channels and.the scan logic 
must be operable. Therefore, the clock signals to these areas 
of the logic are not stopped, except under certain circum­
stances in the Model IH65and165 CPU. 

Data Transfer 

Data is transferred into a register, into an adder, and into 
and out of LS by gating signals controlled by ROS (Figure 
1-16). Referring to Figure 1-16, note that data from PAL is 
always available at the A-register, B-register, and T-register, 
but is transferred only into the selected register by means 
of the corresponding gating signal from ROS. When gating 
data into an adder, timing considerations require the use of 
'gate control' triggers; these triggers, which are set by the 
ROS decode logic, generate the required gating signal. 

When transferring data into LS, the gating signal from 
ROS is combined with a signal from the LS addressing logic 
to develop a 'write LS' signal, which gates the data into LS. 
When transferring data from the LS, an address signal 
selects 1 of 24 LS registers, the contents of which are 
transferred to the LS bus. A second gating signal transfers 
the data from the LS bus to the S- or T-register. 

Read-Only Storage 

The CPU is controlled by ROS, a permanently recorded 
microprogram, supplemented by conventional control logic. 
A read-oruy storage. is a storage device which contains 
information (1 's and O's) of a nondestructive nature: The 
2065 CPU utilizes a capacitive read-only storage, in which 
bits are stored in the form of a capacitance between a fixed 
drive-plate pattern etched at right angles to a sense-plate 
pattern. Sense and drive plates are separated by a Mylart 
film (approximately 1 mil thick), and the resulting sand­
wich is held together under pressure. A I-signal is coupled 
from a drive line to one of a pair of sense lines, and a 
0-signal is coupled to the other. Sense line outputs are 
detected in a differential amplifier which in turn feeds a 
latch. When decoded, the information in ROS controls 
gates to route data in the CPU. Access timeis approximate-
1¥ 95 ns. 

tTrademark of E. I. duPont de Nemours & Co. (Inc.) 

2065 FETOM (9/68) 1-39 



Gate T to LS 

LS Address Reg A 
31 

Local Storage LS 

LS Address Re Latch 

Gate LS ta S 

32 

DecOde T to PAL 

Clock 

32 63 

Figure 1-16. Data Transfer Scheme 

PAA 

PAL 
4. 

Relationship of ROS to ConventionatControls 

63 

31 

63 

63 

63 

32 63 

• ROS words replace most conventional sequence triggers 
and control lines. 

• ROS word is a unique bit configuration and controls 
. CPU during machine cycle it is in use. 

• In addidion to control data, ROS word holds address of 
next ROS word and branch tests, if any. 

• For branches, 1 ROS word is associated with each 
possible condition. 

To understand ROS operation, it is helpful. to note its 
relationship to conventional controls. Conventional con­
trols may be characterized by sequence triggers, and by the 
control lines activated by the sequence· triggers as a 
function of the operation to be performed and data 
conditions. Each cycle that the CPU may take represents a· 
state of the CPU as defined by the control circuits. Each 
state, in tum, specifies which control lines are to be 
activated during that cycle and which state is to follow 
next. The defined state will cause the next sequence trigger 
to be set in the following cycle. In some cases, the next 
state may be contingent upon a branch condition in which 
one of two or more sequence triggers must be selected. 

1-40 (9/68) 

Gate PAL to B 

Gote PAb. to A· 

67 

., 
RA B 
31 32 

!,I 6;;71 
63l . 

In ROS-controlled CPU's, the sequence triggers are 
replaced by micro-instructions or ROS words. Each ROS 
word consists of a predetermined bit pattern and represents 
a state of the CPU. A micro-instruction is read into the 
sense latches from the ROS device as follows: 

Address of Next ROS Word ROS Device 
2816 100-Bit Words 

/' 

Address Modi fers 

Sense Lotches 
100 Bits 

Base Address 
of Next 
ROS Word 

Address Decoder 

CPU Control. L.ines 

Decoding of the bit pattern activates. control lines which 
initiate operations or functions in the CPU under timing 
control of ROS decode logic. The base address of the next 
ROS word to be used is also included ip each ROS word. 
Data conditions within the CPU may modify the address if 



the bit pattern indicates a test for branching (e.g., branch if 
overflow occurs). One ROS word is associated with each 
possible condition; the base address is modified to address 
the ROS word which satisfies the data conditions. Thus 
ROS eliminates the need for most of the complex sequenc­
ing networks. 

ROS Word 

• ROS word is divided into 100 bits, grouped into 21 
control fields. 

• Number of bits within field determines number of 
unique control signals within field. 

• Control signals are termed micro-orders. 

The ROS is physically organized into 16 planes, each plane 
holding 88 200-bit words. Through addressing, the 200-bit 
word is further divided in half to yield 2816 100-bit words, 
hereafter referred to as ROS words. Each ROS word 
consists of a unique predetermined bit configuration 
grouped into 21 control fields (Table 1-6). The number of 
bits within a field determines the number of unique control 
signals (micro-orders) available within that field. (In a 
four-bit field, for example, 16 distinct micro-orders can be 
defined, only one of which can be activated at any one 
time.) The micro-orders are grouped functionally within the 
fields according to two rules: 

1. Micro-orders that are functionally similar (such as 
micro-orders that control ingating to the AB register) are 
grouped in one field for ease of decoding. 

2. All micro-orders grouped in a field must be mutually 
exclusive because only one micro-order within that field 
may be specified at a time. 

·Usually, rule 1 results in rule 2. 
When decoded, each micro-order activates one or more 

control lines that condition gates to perform the function 
specified by the micro-order. Each micro-order is assigned a 
mnemonic code (up to 12 characters) that defines the 
control function performed. As an example, Table 1-7 lists 
the micro-orders and associated microcommands pertaining 
to control field V of the ROS word, referenced to the bit 
configurations of that field, _and their function. 

Each ROS word is represented by a block on a Control 
Automation System (CAS) Logic Diagram (CLO). The CLO 
is to the ROS microprogram what an ALD (Automated 
Logic Diagram) is to lo_gic. The blocks are connectea t0 

show the logical sequence of ROS words to perform the 
specific function. Refer to ALO M7061 for a definition of 
the CLO format and content, and of the ROS block 
language and information contained within the block. 

Table 1-6. ROS Word Breakdown 

Control 
Bits Field Function Controlled 

0-5 - Spare 

6-9 A A·, B·, and IC-register ingating 

10, 11 B LS to S- and T-register ihgating 

12-16 c PSW and S-, T-, D·, G-, and a-register 
ingating 

17-19 Dt F-register ingatirig, and end-op signals 

20 - Parity 

21-24 E E- and A-register ingating 

25-30 Ft Status triggers and miscellaneous 
control lines 

31-35 Gt Status triggers, IC, and miscellaneous 
control lines 

36,37 - Spare 

38-42 H LS 

43-46 L Storage requests and setting of mark 
triggers 

47-56 NA Base address of next ROS word 

57-61 K Y-conditional branches 

62-68 J Z- (and X-) conditional branches 

69-73 M Serial adder A bus 

74-77 N Serial adder B bus 

78-80 p Parallel adder latches 

81 - Spare 

82-84 Q Hot 1 's to parallel adder A-side 

85 - Parity 

86 R F- and AB-register outgating to serial 
adder A-bus 

87-90 T A-, B-, IC-, and F-register outgating to 
parallel adder B-bus 

91 - Parity 

92-95 u S-, T-, and D-register outgating to 
parallel adder A-bus 

96 - Spare 

97-99 v E- and a-register outgating to parallel 
adder B-bus 

t Control fields D, F, and G serve two functions. In the normal 
processing mode, they are decoded to yield standard CPU 
micro-orders; in the scan mode, they are identified as field S, and 
they yield special scan micro-orders (using common micro-order 
codes). Tht'l choice of modes is controlled by a 'scan mode' 
trigger. 

2065 FETOM (10/69) 1-41 



Table 1-7. Control Field V (Bits 97-99); 
E, Q outgates to Parallel Adder B-Bus 

Bit Micro-
Configuration Order 

97 98 99 Mnemonic Function 

0 0 0 0 Zero gated wit.h parity 

0 0 1 E3 · E(12-15) to P8(60-63) 

0 1 0 E2 E(B-11) to P8(60-63) 

-· 

0 1 1 E23 E(B-J5l to PBl56-63l 

1 0 0 Q7 0(52-63) to PEi(52-63) 

1. 0- 1 05 · 0(36-47) to P8(52-63) 

1 1 0 03 0(20-31) to P8(52-63). 

1 1 1 01 0(4-15) to P8(52.;....63) 

I I I 
J Clock Cycle 1 I Clock Cycle 2 I 

I J• 200 ns ----i•~I 
I '4-80ns -j I 
I · Clock . . -I I I-- 120 ns I .· 1~1 i ~.c·~, i 
I I 
I ROS Word 1 ROS Word 2 I 

I" 
Decode Address/ 
of ROS Word 3 

· Access ROS 
Word 3 

ROS Addressing and Branching 

• Conditional branches are dependent on internal 
conditions of previous cycle; 

• Word addressed as result of branch test is not available 
until 1 cycle later. 

• ROS word is addressed by 12-bit biriary address: · 
0-9 is 10-bit base address. 
10 is Y-branch bit. 
11 is Z-branch bit .. 

• X-branch (functional branch) affects more than 1 bit. 

• Overriding branch blocks 12-bit address and forces new 
12-bit address into ROSAR. 

As described earlier, the CPU cycle presently being exe­
cuted is,controlled by the ROS word addressed during the 
previous cycle. Referring to Figure 1-17, A, the normal 
sequence of ROS words is achieved by placing the address 
of ROS word 2 into ROS word 1, the address of ROS word 
3 into ROS word 2, and so on. The address. of the next 
ROS · word is decoded during clock time of the cycle 
controlled by the present ROS word; the next ROS word is 
accessed during not-clock time of the cycle. 

Clock Cycle 3 Clock Cycle 4 

ROS Word 3 ROS Word 4 

A, Sequential ROS Word Addressing 

Figure 1-17. ROS Addressing and Branching 

1-42 (9/68) 

Clock Cycle 6 

B-T-T 

Clock Cycle 7 - Clock Cycle 8 

I 
I 

ROS Word 6 ROS Word 7 I 
I 

Branch tests J Result is zero i----------
ROS Word 13 I · 

performed here 
Result is not zero i----------1 

ROS Word 14 
ROS word - I .,,, 
branched to ~ 
available here 

B, Conditional Branch ROS Word Addressing 



Conditional branches are dependent on the internal -
conditions of the previous cycle. It is important to note · 
that the ROS word addressed as-a result of the branch test 
is not available until one cycle later. To explain this 1-cycle 
delay in addressing, assume tha:t ROS word 6 contains the 
micro-orders necessary to subtract the contents of the 
T-register from the contents of the B-register, and to place 
the result into the T-register (Figure 1-17, B). Assume 
further that if the result is zero, a branch will be made to 
ROS word 13; if not zero, the next ROS word addressed 
will be 14. Contained in ROS word 6 is the address of ROS 
word 7; which defines the branch test and contains the 
associated branch addresses. 

The results of the arithmetic operation performed in 
cycle 6 are tested during clock time of cycle 7, It is during 
this time that the address of ROS word 13 or 14 
(depending on the results of the branch test) is decoded: 
the selected ROS word is accessed during not-clock time of 
cycle 7. Hence, the ROS word branched to as a result of the 
arithmetic operation performed during cycle 6 is not 
available until cycle 8. 

ROS words are selected by means of a 12-bit binary 
address. The address is held in the ROS address register 
(ROSAR), whose bit positions are numbered 0 through 11, 
high order to low order. Bits 0 through 10 specify a 200-bit 
doubleword in ROS; bit 11 gates the proper 100-bit half to 
the ROS sense latches (Figure 1-18). 

The 12-bit address is made up of three components: 
1. A 10-bit base address, bits 0-9. 
2. A conditional branch test, or an unconditional value of 0 

or 1 applying to bit 10, designated Y-branch. 
3. A conditional branch test, or an unconditional value of 0 _ 

or 1 applying to bit 11, designated Z-branch. 

Included in the Z-branch field of micro-orders is a subset 
of branch micro-orders called X-branch or functional­
branch micro-orders. The X-branch micro-orders affect 
more than one bit of the ROS address. 

Included in the Y-branch field of micro-orders is a subset 
of overriding branch micro-orders. When the conditions 
tested by these micro-orders are satisfied, the full 12-bit 
address is blocked and a new 12-bit address is forced into 
RO SAR. 

If branching conditi(ms are to be tested, the address bits 
that may be affected by the branch must be set to O's, 
except in the case of an overriding branch. If the branch is 
satisfied, l's are forced into the ROSAR bit positions 
associated with that branch test; if the branch condition is 
not satisfied, the bits remain O's. Thus the address is 
modified only if the branch is to be taken. 

Addresses can be grouped into four categories: (1) no 
branch specified, (2) Y- and/or Z-branches, (3) X-branches·, 
and ( 4) overriding branches. The following paragraphs 
discuss the addressing for each category. Refer to ALD 
M706 l for a definition of ROS addressing and branching 

. terms used in the following paragraphs. 

No Branch Specified. If no branch tests are to be made, 
there is only one possible ROS word that can· follow, and 
hence only one possible next address. Accordingly, the 
10-bit base address (oits 0-9) and absolute values of 1 or 0 

. for bits 10 and 11 are specified. The micro-orders that 
unconditionally set an absolute value into bits 10 and 11 
are: 
1. 0 in left of R-line (KO), which sets bit 10 to a 0. 
2. 1 in left ofR-line (Kl), which sets bit 10 to a 1. 
3. 0 in right of R-line (JO), which sets bit 11 to a O. 
4. 1 in right of R-line (Jl), which sets bit 11 to a 1. 

The appropriate Y- and Z-branch micro-orders are 
· selected, and bits 10 and 11 are set correspondingly. 

Y- and/or Z-Branches. Conditional branch addresses may be 
specified in which bits 10 and/or 11 are affected. 

Only a Y-branch can be executed as follows. A 10-bit 
base address and an absolute value or X for bit 11 are 
specified. A branch test is defined in the Y-branch 
micro-order control field. If the branch condition is 
satisfied, bit l 0 is set to a 1; if not, bit l 0 remains a 0. For 
example, micro-order 'WCRY' sets bit 10 to a 1 if a carry is 
detected in the serial adder. If there is no carry, bit 10 
remains a 0. 

Conversely, only a Z-branch can be executed as follows. 
Here, a 10-bit base address and an absolute value for bit 10 
are specified. ·If the .branch test defined in the Z-branch 
micro-order control field is satisfied, bit 11 is set to a 1 ; if 
not, bit 11 remains a 0. 

Certain situations require the use of both Y · and 
Z-conditional branches simultaneously. The I 0-bit base 
address is specified, and bits I 0 and 11 may assume one of 
the following values: 

Bits 
10 11 Branch Results 

0 0 Y- and Z·branch conditions both unsatisfied. 

0 Z-branch_ condition only satisfied. 

0 Y-branch condition only satisfied. 

Y- and Z·bi"anch conditions both satisfied. 

X-Branches. Where a branch to one of four or more possible 
addresses is required (as well as some special 64-way branch 
tests), an X-branch is used. The X-branch may affect bits 10 
and 11 (four-way branch), bits 9-11 (eight-way branch), 
bits 8-11 (16-way branch), or bits 6-11 (64-way branch). 
An example of an X-branch is the 64-way branch, 
'E(2-7)-+ROA', made at the end of the I-Fetch sequence 
pet the op code to enter the execution phase of the specific 
in:struction. 

. 2065 FETOM (9/68) 1-43 



Select 200-Bit Doubleword .. ROS . Device . 

Upper Lower 
Word Word 
(100 Lines) (lOO Lines) 

y ,. 
Gate ~ 

Gate Upper or Lower Word .... 

Sense L Control Field Control Field Control Field 

~ Latches NA K J 
47 56 57 61 62 68 

43 68 

I 

' 
47 56 57 61 62 68 

To ROSBR 
Decode Decode· 

Over-
y 

Fune- z 
riding Condi-

tional Condi-
tional tional Branch 
Branch 

Branch 
Branch 

,,t 
Base 
Address of Next 

Jig~ ROS Word 

0 

I, I 

ROSAR 

0 

• 0 

To ROSAR 
Latches 

Figure 1-18. ROS Addressing _Block Diagram 

1-44 (9/68) 

l 6 
9 

I 

Address Decoding 

11 

~I 
11 

10 t 

·,. f lnh1b1t 12-bit 
address and force . 
a new 12-bit 
.address info ROSAR. 



Gate 
Gate Upper or Lower Word 

100 
99 

A c D G H 
/ 

NA K M N u v 

5 6 9 10 11 12 16 17 24 25 30 31 42 43 46 47 56 57 61 62 68 69 73 74 77 78 80 81 90 91 92 99 

Sense 
latches 
{EF) ~-------------------~-------------------~A~:::~3:::::~4~6-~4~7~~~~~~~~~~~~~~~~~~~5_6-~5_7~~~~~~~~-6~1-------6-·I:1::1::1:·:~8~7--~9~0 ~9~2---

99 

11 

ROS PARA ~1 
+ To Indicators 

. Figure 1-19. ROS Data Flow 

ROSDR Latches 

Decoder 

Register Ingoting 
Control 

ROSAR Latches 

ROSDR 

To Selected Drive Line 

35 

35 

RY 

11 

~1 
11 

ROSPARB 

To I ndi cot ors 

~1 
38 42 

T 
I 

Decoder 

local Storage 
Control 

11 

~1 

Decoder 

Main Storage 
Requests 

0 

0 

4 

Base 
Address of 
Next 
ROS 
Word 

Force New 
. Addr.ess 0-11 

ROSAR 

5 9 10 

Drive 
line 

Address Decoder 

Decoder 

62 

External 
Conditions 

Decoder 

Over- Func-
riding Y-Branch tional Z-Branc:h 

68 

Branch L...::b:.::ra;::nco::h__._ __ _, 

43 

~1 
11 

ROS BR 

+ To Indicators 

11 t 

ROS DR 

Decoder 

Serial 
Adder Bus 
Control 

-AR 

68,85 

ROSDR 

Decoder 

Parallel 
Adder Bus 
Control 

Legend: 

' ~ Spore 

-AP 

86 

'··" ,_Bit 20 =parity for bits 0-42. 
Bit 85 "'parity for bits 43-68. 
Bit 91 parity for bits 69-99. 

Decoder 

Outgate 
to Serial 
Adder 

ROSBR 

To Indicators 

Decoder 

Outgote 
to Parallel 
Adder 

99 

AP,':,I 
RQ,RT 

t ROSAR(l 1) set select;. lower word. 

2065 FETOM (9/68) 1-45 



For these multiway branches, one condition sets the 
associated address bit to a 1. To illustrate, assume condi­
tions A, B, and C sets bits 9, 10, and 11, respectively, to a 
1. The possible results are: 

Bits 
9 10 11 Branch Results 

0 0 0 None of the conditions is satisfied. 

0 0 Condition C is satisfied. 

0 0 Condition B is satisfied. 

0 Conditions Band Care satisfied. 

0 0 Condition A is satisfied. 

0 Conditions A and Care satisfied. 

1 0 Conditions A and B are satisfied. 

1 All three conditions are satisfied. 

The addressing is similar to that previously discussed. A 
10-bit base address is specified, with those bits that may be 
affected by the X-branch set to 0. Thus, for the example 
given above, bit 9 of the base address is set to 0, the 
Y-branch micro-order control field contains micro-order 0 
in left of R-line to set bit 10 to 0, and bit 11 is 
automatically set to 0 when the X-branch is specified. 
Subsequently, the bit(s) associated with successful condi­
tion(s) is set to 1. The ROS word addressed will be that 
ROS word whose address satisfies the branch conditions. 

Overriding Branches. There are exceptional machine condi­
tions (such as interruptions) for which the normal ROS 
word sequence must be stopped and a new sequence 
started. This change is accomplished by an overriding 
branch specified in the Y-branch micro-order control field. 

The normal sequencing address is made up of ( 1) the 
10-.bit base address and (2) bit 11 set to 0 automatically 
because the overriding branch is a function of the Y-field. 
Because the overriding branch is specified in the Y-control 
field, no Y-branch can be specified. 

If the overriding branch condition is satisfied, the 
normal full 12-bit address is blocked and a new address, as 
determined by the overriding branch condition, is forced 
into ROSAR. 

ROS Data Flow 

• ROS data flow units are: 
100 sense latches, 1 per ROS word bit 
RO SAR 
ROSAR latches 
ROSPARA and ROSPARB 
ROSDR 
ROSDR latches 
ROSBR 
Decode logic 

• Control fields may be: 
Decoded directly from sense latches. 
Placed into ROSDR and subsequently decoded. 
Placed into ROSDR, sent to ROSDR latches, and then 

decoded. 

The 100-bit ROS word is divided into 21 control fields. 
When read out from ROS, the ROS word is placed into 100 
sense latches, one latch for each bit position. The control 
fields are handled according to the functions they control. 
They may be (Figure 1-19}: 
1. Decoded directly from the sense latches (control fields 

L, K, J, R, T, U, and V) or transferred directly to 
ROSAR (control field NA). 

2. Placed into the ROS data register (ROSDR} and decoded 
(control fields H, M, N, P, and Q). · 

3. Transferred to ROSDR latches from ROSDR (control 
fields A-G). 
Assuming ROS words and the cycles they control are 

desigrwted l, 2, and 3, ROS word 1 is set into the sense 
latches during not-clock time of cycle 0 (Figure 1-20}. The 
control fields used during clock time of cycle 1 are decoded 
directly from the sense latches (case 1 a~ove ). These 
control fields, which may be considered critical timing 
fields, control inputs to the adders, define the base address 
and branch tests for the next ROS word, and control the 
storage-request and mark triggers. 

Although the sense latches are cleared at not-clock time 
of cycle 1, the control fields of ROS word 1 that are 
required during that time (case 2 above) are placed into 
ROSDR at clock time of cycle 1. These signals control the 
adders and LS. Note that both portions of the ROSDR 
associated with the adders are packaged physically with the 
adders they control. The. balance of the ROSDR serves 
control fields A-H. 

Control fields A-G control register inputs and triggers 
that are to be set during clock time of cycle 2 (case 3 
above). Although the ROSDR is reset at the end of cycle 1, 
the ROSDR latches keep control fields A-G available for 
that additional 80 ns (Figure 1-20). 

Control fields L, NA, K, J, R, T, U, and V are sent to the 
ROS backup register (ROSBR) from the sense latches. The 
ROSBR does not play a part in the ROS functions; it 
provides an indication of the subject fields during main­
tenance (test) mode. When the CPU stops on an error 
during test mode, the ROSBR contents can be used by the 
CE to help isolate malfunctions. 

The NA control field, in addition to being stored in the 
ROSBR, is stored in ROSAR and provides the base address 
as previously explained. During each ROS cycle, the 
contents of ROSAR are sent to the ROSAR latches which, 
in turn, are alternately gated (by means of an 'A-gate' 
signal} to the ROS previous address A (ROSPARA) and 
ROS previous address B (ROSPARB) registers. These 
registers serve the same purpose as the ROSBR; i.e., provide 
the CE with an indication for maintenance use during test 

2065 FETOM (9/68) 147 



CPU Clock PO 

Word 1 Address in ROSAR 

Access Word 1 (Drive) -
Word 1 in Sense Latches 

Word 1 in ROSDR and ROSBR 

Word 1 in ROSDR Latches 

Word 1 Address in. ROSPARA 

Word 2 Addr.ess in ROSAR 

Access Word 2 (Drive) ·-
Word 2 in Sense Latches 

Word 2 in ROSDR and. ROSBR 

Word 2 in ROSDR Latches 

Word 2 Address in ROSPARB 

Word 3 Address in ROSAR 

Access Word 3 (Drive) 

Word 3 in Sense. Latches 

Word 3 in ROSDR and ROSBR 

Word 3 in ROSDR Latches 

Word 3 Address in ROSPARA 

A-Gate t 

t If an error is detected in ~ycl e 1, these steps are not performed. 

Figi{re 1-20. ROS Timing 

mode. When an error causes the CPU to stop in test mode, 
ROSAR, ROSPARA, and ROSPARB provide the addresses 
of the next ROS word, current ROS word, and previous 
ROS word (Figure 1-20). 

· ROS Control of CPU 

Efficient control of CPU operations is achieved by over­
lapping ROS words. Clock. signals (PO-P19) time ROS 

I . 

1-48 (9/68) 

I 

t I 

t I 
I 
t.__ 

t 
I I t 

ti I 

t I I 
t I I I 

sense latches, ROSDR, and ROSDR latches, thus allowing 
the processing of parts of more than one ROS word 
simultaneously To illustrate, Figure 1-21 shows the ROS 
word timing relationship for a hypothetical example. 

The address of word 1 is gated into ROSAR (rom the 
ROS sense latches at PS of word 0. [ROSAR(l 1) may be 
set as late as P7.] Information from word 1 enters the ROS 
sense latches at PO+ 160 ns (P16). (In normal operation, a 



P2 

P2 P4 P6 P8 Pl0Pl2P14 Pl6Pl8PO P2 

I ?I ?171~9 1~ 1 IP11 3lp11 5171~ 91 Pll I 
120ns ~---~ 

80 ns 

Word 1 Ward 2 

T 
Word 3 

T 
Wo'd 4 IWo'd 5 

120 ns 

----Word 0 ----'-+ro-----

RO SAR 
Word 1 Adr l Word 2 Adr ! Word 3 Adr I word 4Adr lword 5 Adr 

ROS SENSE Latches Word 1 Dato Word 2 Doto Word 3 Data 
1wo,d 4 Data I Word 5 Doto 

Register Output 

Storage Request 

SOSO 

ROSDR 

Adder Control 

LAL (LS Add,ess Latches) 

local Storage Read 

LAR (LS Addres::. Register) 

RO SOR Latches 

Register Input 

Figure 1-21. ROS Control of CPU Operations 

I 
Gate Decode - I 

Got~ 

Register-Out Condition 

code 

I 

Storage Request (3-Cycle) 

(6-42) (69c84) 

~ ( Wo'd l Doto 

Adde' Cont,ol (Sh;ft) 

Sample LAL Word 1 

LS Recd I 

Word l Doto 

I 
Register-Out Condition 

Word 2 Doto 

Sample LAL Word 2 

LS Recd I 
I 

LAR (Wdte) 

Write Cond 

Word 2 Doto 

I I 
Reg In Sample 

600-ns HSS Access 

I SDBO pe' Wo'd l 

I 
Word 3 Dato Word 4 Doto I Word 5 Data 

I 
Sample LAL Word 3 

I LS Read I 

Word 3 Data 

I 
Reg In Sample 

Sample LAL Word 4 -
LS Read I 

Word ·4 Doto Word 5 Data -I 
Reg In Sample 



new word enters the ROS sense latches every 200 ns.) In 
the example, word 1 controls: (1) register output, (2) main 
storage request, (3) adder shift,.(4) local storage write, and 
(5) register input. A register output micro-order gates 
register data, into an adder at Pi by means of 'gate control' 
triggers. A three-cycle main storage request is initiated at P4 
to feteh information which is used three cycles later. Note 
that register output and the main storage request are 
decoded directly from the ROS sense latches. 

Bits 6-35 and 38-42 eriter ROSDR at PO, and bits 
69-80 and 82-84 enter ROSDR at P2; they are decoded 
for adder control and LS operations. In the example, 
micro-orders generate an adder shift and a local storage 
write operation.· The shift is performed immediately, but 
the local storage write operation is delayed because a local 
storage read operation is automatically set up first. The LS 
address is entered into the local storage address latches 
(LAL); a read operation is performed, but data is not gated 
into a register. 

The address then is gated into the local storage address 
reghtter (LAR) to perform the write operation. Note that 
the write condition, ordered by word 1, starts after word 2 
has been transferred to the ROSDR. The figure shows an 
LS read operation for every word because this sequence 
happens even if it is not ordered. When no order is given to 
LS, a readout of LS address 0 is performed but the data is· 
not used. Forcing the read operation saves time if it is 
needed. 

ROSDR(6-35) is gated to the ROSDR latches at P7 ,to 
retain word 1 information at the same time word 2 is set 
into ROSDR. In the example, word 1 transfers data into a 
register at clock time (P2) of word 2. This action, along 
with an LS write operation, illustrates ROS word overlap 
because these operations are performed at the same time 
the register out condition is energized from the decoding of 
word 2. 

Word 2 has only one micro-order, register output, but 
gates are conditioned to transfer word 2 data from the ROS 
sense latches to the ROSDR and then to the ROSDR 
latches. Note that the LS read micro-order is active, though 
not ordered. Word 3 operates in a similar manner, but the 
only micro-order is a register input which takes place during 
word4. 

As the ROS words are executed, the main storage 
request is processed and data is returned on the Storage 
Data Bus Out (SDBO); word 4 contains the micro-order to 
gate the data into a register for further processing. 

PSW Register 

Program status words (PSW's) contain detailed information 
pertaining to the particular mode in which the CPU is 
operating. These status words are composed of a system 

1-50 (9/68) 

mask, storage key, program state, interruption code, in­
struction length code, condition code, program mask, and 
an instruction address that egables the interrupted program 
to resume at the correct location. 

Status information concerning the current operating 
program is contained in several groups of triggers, from 
where it controls all system operations essential to that 
particular program mode. These groupings of control 
triggers, although not adjacently located in logic, are 
collectively referred to as the PSW ·register. Although a 
completely assembled PSW is 64 bits long, only 24 
positions of status word data are contained in the PSW 
register. The remaining information (generated by the CPU 
at the time of the interruption) is not retained when a 
previously stored PSW is reloaded, because its function is 
only to identify the cause of the interruption and to return 
the CPU to the correct program location. (This information 
is gated directly from ST when the old PSW is recalled from 
main storage.) Figure 1-22 shows an assembled PSW and 
those areas of control information retained in the PSW 
register. 

BUS CONTROL UNIT 

In the 2065, the BCU responds to storage requests from the 
CPU and from up to seven I/O channels, all of which may 
be operating asynchronously with respect to each other. 
'I'he flow of information between main storage and an units 
serviced by the BCU is effected through a single bus system. 
Because the bus system is shared by all units, the BCU must 
resolve conflicts between simultaneous storage requests 
from these units and ensure that the storage bus system is 
available to one unit at a time. Thus, the major function of 
the BCU is to provide for efficient time-sharing of the 
storage bus system by all units. 

Each unit requiring access to storage communicates with 
the BCU through individual control lines. These lines are 
monitored in the BCU to establish priority between storage 
requests and to inform the requesting units of the bus 
system availability. 

When priority is awarded to a requesting unit, the.BCU 
decodes the high-order bits; and bit 20, of the storage 
address supplied by that unit. The BCU then sends a 'select' 
signal to the proper storage unit. The selected mai:n storage 
unit initiates a storage cycle and decodes the low-order bits 
(6-19) of the address supplied on the storage address bus 

· (SAB) to access the required doubleword ·location. When 
the BCU grants storage access to one unit, storage requests 
from all other units .remain pending until the current data 
transfer operation is completed. At that time, the BCU 
performs a new priority test on all units (including the unit 
just serviced). 



Placed into ST at 
time of interruption (by 
interrupt logic) and 
stored with assembled PSW. 

Assembled PSW r------r--i----T----,-----+---r-~----,.-----------. 
(in ST) System Prog Interruption Prog 

k Key State iLC CC Mask · Instruction Address 
OMas 78 1112 1516 Code 313233343536 3940 63 

0 

Figure 1-22. Status Information Contained in PSW Register 

Major Interface Lines 

Instruction 
length code 
(machine-
generated) 

A simplified diagram of the BCU interface with the Model 
65 system is shown in Figiire 1-23. This interface consists 
of multiplex data bus lines, and of simplex and multiplex 
control lines. By definition, a multiplex line is a line that is 
shared by more than two units of the system; for example 
the SAB, which connects the BCU and all the 1/0 channels 
to all storage units in the system. A simplex line is a line 
that is used exclusively between two units of the system. 
Foi example, individual 'select' lines are used to inter­
connect the BCU to each storage unit in the system. 

The major interface lines shown in Figµre 1-23 are 
defined as follows: 
1. Address and data buses. · 

a. Storage Address Bus (SAB). This multiplex bus 
connects the CPU and all 1/0 channels to all main 
storage units in the system. The SAB consists of 21 
address lines (plus three parity lines) and specifies the 
address of a doubleword contained in one of the main 
storage units associated with the system. Not~ that 
the SAB path is different from the other. buses'. This 
difference is necessary because SAB(0-6, 20) from 
the CPU and from the channels.must enter the BCU 
storage address decoder to select a storage unit. 

b. Storage Data Bus Out (SDBO). This multiplex bus 
connects the CPU and all 1/0 channels to all main 
storage units in the system. The SDBO consists of 64 
data lines (plus eight parity lines) and carries data 

requested from main storage by the CPU or the 1/0 
channels. 

c. Storage· Data Bus In (SDBI). This multiplex bus 
connects the CPU and all 1/0 channels to all main 
storage units in the system. The SDBI consists of 64 
data lines (plus eight parity lines) and carries data to 
be stored into main storage. This data may be 
supplied by the CPU or by the 1/0 channels. 

d. Mark Bus. This multiplex bus connects the CPU and 
all 1/0 channels to all main storage units in the 
system. The mark bus consists of eight mark lines 
(plus one parity line) and designates the bytes on the 
SDBl that are to be stored into main storage. (There 
.is one mark line for each byte on the SDBI; complete 
absence of mark signals occurs only on a fetch 
operation.) 

e. Key-In Bus. This multiplex bus connects the CPU and 
' all 1/0 channels to all main storage units in the 
system. The key-in bus consists of five key lines (plus 
one parity line) and transfers the storage protection 
key from the CPU or the 1/0 channels to the storage 
protection area in the selected main storage unit. 

f. Key-Out Bus. This multiplex bus connects the CPU to 
all main storage units in the system. The key-out bus, 
which consists of five key lines plus one parity line, is 
used only during execution of the insert-key opera­
tion by the CPU. This operation transfers the storage 
protection key from the selected main storage unit to 
the CPU. 

2065 FETOM . (9/68) 1-51 



CPU 

IC Storage Request 1 .. , BCU 

D Storase Reguest •' Store M 
Scan Storage Request 

I ' ..... ..... Main Storage ... .. 
BCU Oscillator (Clock) I 

Select s ... _ .. 
I 
I ...... Busy s 

.. Gate IC to SAB I ~ 

.- Gate D to SAB I .... ..._ Advance M ...- ~ ...-

... Gate Scan to SAB I 
... Gate F ta Key In I Storage 

I Address· System may contain up 
.. Gate S to SDBI Decode _l SAB (21+3P) M to four 2365 Model 2 

Processor Storage Units .• ... Stop CPU Clock 

l 
Mark Bus (S + IP) M 

Key-In Bus (5 + I P) M 
~ 

Bus Inputs 
... 1 SDBI (64 + SP) M .... 

I SDBO (64 + SP) M I 
Bus Outputs I 

Key-Out Bus (5 + IP) M I -. ... 
I 
I Channel Request s ...... 
I 
I BCU/Channel Response 

l 

Notes: 
S =Simplex 
M =Multiplex 
P =Parity bits 

Figure 1-23. Biisic BCU Interface 

Ori. channel operations, the mark bus, key-in bus, SDBI, 
and SDBO are independent of the BCU. 

2. Major control signals. 
a. 'Select'. This simplex signal is issued bythe BCU to 

the selected storage unit. This signal causes the 
selected unit to gate in the liddress from SAB and 
initiate a storage cycle. 

b. 'Store'. This multiplex signal is issued on all store 
operations performed by the CPU· or by the channels 
to instruct the storage unit to store the contents of 
the SDBI as specified by the mark signals. The 
absence of a 'store' signal indicates a fetch operation. 

c. 'Busy'. This simplex signal is sent from a storage unit 
to the BCU to signify that the storage unit is iit a 
store cycle. 

d. 'Advance'. This multiplex signal is issued hy the 
storage unit to the BCU and all channels to indicate 
that the storage unit is about to gate data onto the 

1-52 (9/68) 

..... 1/0 Channel 

........ 
System may contain up to · 
6 Selector channels and 
I Multiplexer channel • 

...... . 

. 

SDBO. (The 'advance' signal is received approximate­
ly 200 ns before the data arrives on the SDBO.) 

e. 'Channel request'~ This simplex signal is issued by a 
channel to the BCU when the channel needs access to 
main storage. 

f. 'BCD/channel response'. This simplex signal is issued 
by the BCU to the requesting channel when the BCU 
has awarded priority to that channel. 

Within the CPU, storage requests are generated and sent 
to the BCU to develop a CPU request. The .signals that 
perform this function are related to the source of the 
storage address, as follows: 
1. IC storage request. The storage address is in the 

instruction counter. 
2. D-storage request. The storage address is in the D­

register. 
3. Scan storage request. The storage address is developed in 

scan logic. 



Representative signals developed by the BCU to control 
the buses are: 

1. 'Gate IC to SAB'. Gates the contents of th~ instruction 
counter to SAB. 

2. 'Gate D to SAB'. Gates the contents of the D-register 
toSAB. 

3. 'Gate scan to SAB'. Gates the address developed by the·· 
scan logic to SAB. 

4. 'Gate F to key-in'. Gates the contents of the F-register 
to the 'key in' bus. 

5. 'Gate S to SDBI'. Gates the contents of the ST register 
to SDBI. 

6. 'Stop CPU clock'. Stops the CPU clock when unable to 
grant priority to a CPU request. 

7. 'Gate SDBO to AB'. Gates the data on the SDBO into 
the AB register. 

8. 'Gate SDB0(0-31) to S(0-31)'. Gates SDB0(0-31) 
into the S-register. 

9 .. 'Gate SDB0(32-63) to T(32-63)'. Gates SDBO 
(32-63) into the T-register. 

10. 'Gate SDBO to Q(0.:....63)'. Gates SDB0(0-63) into the 
. Q-register. 

BCU Clocks 

The . timitlg of latches and triggers within the BCU is 
controlled by signals from the 2065 clock signal generator 
(Figure 1-24); thus the BCU operation is synchronized with 
the CPU. The BCU has two clocks: a free-running clock~ 
which is active whenever power is applied to the 2065, and 
a 'CPU clock to BCU' signal. As shown in Figure 1-24, an 
error or the ROS microprogram can stop the CPU clock 
without interfering with the BCU clocks . 
. .. The free-running clock' controls the . timing of priority 

selection, storage unit selection, and channel signals.· Addi-

Clock 
Signal 
Generator 

(Basic Oscillator) 

HflOOns 
100 ns 

1200} 
rLJl.SL.f"l._ 

BCU Oscillator BCU 
+-------~'-----I Free-Running 

Clock 

ff 0 ns 

120 ns 

TL.rl...SLJ"1. 
CPU Clock to BCU 

Not Stop Clock Trigger (BCU) 
A 

IL.JL.Jl.__J1_ 
CPU Clock 

Error or ROS Sto Clock 

*TD conve~ts symmetrical clock signal to unsymmetrlcal clock signal. 

Figure 1-24. BCU Clock Logic 

tional controls are unnecessary for servicing channel re­
quests because the BCU transfers control of· the buses to 
the .channel after the storage unit selection is made. Thus, 
channel storage requests are made independently of the 
GPU. 

CPU requests, however, require additional gating c~m­
trols. To control information to and from the buses, the 
BCU retains control of the buses and· develOps gating signals 
which are timed by the 'CPU clock to BCU' signal. When a 
CPU request cannot be processed because the BCU or 
storage unit. is busy, the CPU clock and the BCU-developed 
gating signals are disabled by a 'stop clock trigger' signal to 
prevent transfer of the wrong information (Figure 1-24). 
The BCU restarts the clocks after it awards priority to the 
CPU. 

BCU. Operation 

The BCU provides efficient time-sharing of the main storage 
by the I/O channels and the CPU. Storage requests are not 
honored on a first"come, first-served basis, but rather on a 
priority basis. Figure ·1-25 shows the BCU priority logic; 
channel 1 has highest priority, followed by channels'2, 0, 3, 
4, 5, 6, and CPU. When a channel or the CPU is granted 

Channel 1 
Storage 
Request 

l BCU Not Busy 

Chonnel 2 
Storage 
Request 

Channel 0 
Storage 
Request 

CPU Storage 
Re uest · 

No Channel 
Priority 

A 

Channel 3 
Channel 4 
Channel 5 

Channel 6 
Priorit 
. T 

Figure 1-25. BCU Priority Logic 

2065 FETOM (9/68) 1-53 



priority, the 'BCU busy' latch is set so that additional 
requests are not honored until the storage cycle is com­
pleted. For example, if after a channel 1 request a second 
. channel 1 request is made before the 'BCU busy' latch is 
reset, channel 1 is selected again, even if other requests are 
pending. As another example, if a channel 0 request is made 
during a storage cycle and is followed by a channel 2 
request before the end of the cycle., channel 2 is awarded 
priority. 

CPU Request 

A CPU request for storage is generated from one of three 
sources: (1) instruction fetch logic to refill the instruction 
buffer (Q-regist~r), (2) microprogram to fetch or store data, 
and (3) scan logic. ln each case, the request is made three or 
four cycles before the data is needed to allow time for 
storage access. 

· The address of the desired doubleword in storage is 
located in the instruction counter or the D-register, or is 
generated by the scan logic. BCU develops the gating signals 
to supply the address from the specified source to SAB. At 
the same time, BCU controls gating for SDBI, SDBO, 
'mark' bus, and the storage address protection keys. When a 
CPU request for storage is sensed at the BCU, the 'CPU 
request' trigger is set (Figure 1-26). If the CPU is granted 
priority during the next priority test, the 'CPU priority' 
trigger is set, and the storage sequence is started imme­
diately. 

If the BCU is busy and cannot grant priority to the 
CPU, a 'stop clock trigger' signal is sent from the BCU to 
stop the CPU clock (Figure 1-24). This action stops all CPU 
activity until the BCU grants priority to the CPU and the 
storage cycle starts. When the BCU and storage are 

C::PU 

D-Register 

-"'IC'-R-"'eg'-'-ist""er_-+-t OR 
Scan 

I-Fetch 

=Sc=an~--"T""'1 OR 
Microprogram 

I 
_____ _j 

CHANNE.L 1 
I 

Channel Re uest I 

CPU 
Request 

Channel 
Request 

BCU 

Priority 
Test 

CPU 
Priority 

Channel 
Priority 

Gate Address _._BC_U_R_esp~o_nse ________ ~ 

to SAB r 
Address Valid I 

Start Storage Sequence I I No Select in Progress A 

Figure 1-26. Start Storage Sequence Logic 

1-54 (9/68) 

available, the CPU clock is restarted and the CPU sends or 
receives data over the buses. The clock signal from the CPU 
keeps the BCU synchronized with ROS and other CPU 
functions . 

Channel Request 

When a channel has been granted priority, the BCU sends a 
'BCU response' signal to the channel so that the channel 
will put the storage address on SAB (Figure 1-26). After the 
address has been gated to SAB, the channel sends an 
'address valid' signal to the BCU. This signal does not 
denote a com~ct address, but ·signifies that the available -
address has been gated to SAB. The BCU uses the 'address 
valid' signal to sample the SAB. 

After the storage unit has been sele~ted, the BCU turns 
control of the multiplex buses to the channel. -Channel 
registers provide data, marks, and address protection keys 
as needed. When the CPU receives a 'release' signal from the 
channel, the CPU is free to continue processing except for 
conflicts in requesting main storage. 

Operation with Main Storage 

• Address is decoded to select storage unit. 

• Invalid address results if storage capacity is exceeded or 
if power is off at the selected unit. 

• Interleaving reduces storage access time. 

A portion of SAB is decoded in the BCU to select the 
storage unit that contains the addressed doubleword. 
SAB( 4,5) determines the high speed storage (HSS) unit, and 
SAB( 6 or 20) specifies the odd or even half for interleaving. 
Figure 1-27 Shows the data path for the address decoding. 
for HSS and the optional large capacity storage (LCS). 
Decoding of a 'select' line sends a 'select' signal on a 
simplex line to the desired storage unit where the address 
on SAB is decoded to locate the addressed doubleword. 

SAlli-6 2QL 

SAB(0-6) 

SAB(0-23) 

HSS 
Address 
Decode 

LCS 
Address 

I­
t­
I­
t-

Decode 
(Optionol)l--

1-­
t-­

t-
1--

Select Frome 1 Even 

Select Frame 1 Odd 

... 
Select Frame 4 _Even 

Select Frame 4 Odd 

'- Simplex 
r lines to 

HSS Units 

Select 1st 1,048,576-Byte LCS 'I 

Select 2nd 1,048, 576-Byte LCS 

'Select 8th 1,048,576-!!l!e LCS 

Simplex 
~ Lines to 

LCS Units 

.) 

Figure 1-27. Storage Selection 



Within the BCU decoder, a test is made for an invalid 
address condition. Jumper cards are set to define the, limit 
of the_'.storage attached. If the address specifies a value . 
beyond the storage limit, an 'invalid· address' signal is 
·developed. The 'invalid address' signal is also developed if 
power is off at the specified storage unit. The ·unit 
originating the address is notified, and an interruption may 
occur. 

The basic storage cycle of the 2365 Processor Storage is 
750 ns, but interleaving between odd and even sections 
reduces the effective storage time to 400 ns. This reduction 
is possible because each area of storage contains its own bus 
arrang~i,nent, thus enabling independent operation. An 
address enters storage and is used during the first half cycle 
to set up-the storage access. The second half cycle is used to 
bring out and store data. During the second half cycle, a 
new address is sent on the SAB to the other half( odd or 
even) of storage, thus allowing a storage access in approxi· 
mately half the normal storage cycle. A delayed (by 80 ns) 
'select' signal conditions the BCU reset logic. The delay 
holds the BCU busy through the cycle after the storage 
request to prevent a second storage request within 400 ns. 

INSTRUCTION FETCHING 

The processing of an instruction is divided into two phases: 
instruction fetching and execution. Instruction fetching, or 
I-Fetch, retrieves instructions from main storage and 
performs operations common to many instructions. For the 
most part, I-Fetch, which is controlled by ROS and 
conventional hardware: 
1. Determines the address to be placed into the instruction 

counter (IC). 
2. Fetches instructions froin main storage. 
3. Determines the instruction format (RR, RX, RS, SI, or 

s~. . 
4; Calculates the effective operand address (adds the 

D-field, the contents of the LS register designated by the 
B-field, and the index, if required) for those formats that 
require that function. 

5. Plae€'.s the operands specified by RX format instructions 
into the applicable registers (AB, ST, and D). For the 
other formats, I-Fetch issues a storage request for the 
sed~nd operand. The second operand is placed into the 
registers during the execution phase. 

6. Passes control to the specific execution phase by means 
of a 64-way branch. 

The transitien from the execution phase of an instruc­
tion to the I-Fetch sequence of the next instruction is 
achieved by an end-op cycle, the last cycle of the execution 
phase. The end-op cycle completes the execution phase of 
the insi.nlction being proc~ssed by: · 
1. Setting the condition code to reflect the result of the 

instruction, if applicable. 
2. Detecting exceptional conditions and interruptions. 

The end-op cycle initiates the I-Fetch sequence for the 
next instruction by: 
1. Decoding the format of the next instruction. 
2. Initiating operand fetches as required by that format. 
3. Performing a 64-way branch to establish the correct 

I-Fetch sequence for that format. 
4. F.etching more instruction halfwords, if required. 

Functional Units Used 

Five registers play vital roles in the I-Fetch sequence: Q, R, 
E, IC, and D. The following paragraphs discuss· the 
functions generally performed by these five registers. 

Q-Register 

• Buffers four instruction halfwords received from main 
storage. 

• Provides for overlap of I-Fetch and instruction execu­
tion. 

• Transfer of B- and D-fields from Q reduces instruction 
processing time. 

The Q-register is a 64-bit (plus eight parity bits) trigger 
register that buffers all instructions entering the CPU from 
main storage (Piagram 3-2, FEMDM). It is divided primarily 
into four halfword (16-bit) areas. This arrangement pro· 

. vides for the buffering of four instruction halfwords (eight 
bytes), thus increasing CPU efficiency and reducing the 
amount of main storage time required by the CPU. The 
Q-register is loaded directly from the SDBO; information is . 
transferred to the LS address register [LAL (Read) and 
LAR (Write)], to the R-register, and to the parallel adder. 

After being loaded with a doubleword from main 
storage, those Q-register halfwords containing instruction 
op codes are sequentially transferred to R (for subsequent 
execution in E). When the last op-code halfword has been0 

transferred from Q, a new doubleword is again loaded into 
Q from main storage. This process of continuouSly refilling 
Q with instructions is overlapped with instruction execu­
'tion whenever possible. 

Additional Q-register information selects the instruction 
fields to be sent to LAR and to the parallel adder. Such 
information consists of four four-bit fields (B-fields) speci­
fying LS registers and four 12-bit fields {D-fields) contain· 
ing the displacement for main storage addresses. Trans­
ferring this information directly from Q instead of via R or 
E provides a lookahead capability by allowing both LS and 
effective addresses to be available before the execution time 
of the associated instruction. Transferring of these 4- and 
12-bit fields is performed selectively so that the informa­
tion is associated with the correct instruction. 

Before an instruction is executed, it is tested for odd 
parity. The op-code halfword is tested in the E-register. The 
remaining halfwords, if any, are tested by the parallel adder 
half-sum checking circuits as · the effective address is 
calculated. 

2065 FETOM (9/68) 1-55 



R-Register 

• Only op-code halfwords are transferred from Q to R. 

• Selection of op-code halfword is · determined by 
IC(21,22). 

The R.-register is a halfword (16 bits plus two parity bits) 
trigger register, providing intermediate buffering of op-code 
halfwords between Q and E (Diagram 3-2, FEMDM). This 
buffering extends the total instruction buffering capability 
to five halfwords (five instructions in the event of all RR 
formats), as Q is normally refilled after the last op-code 
halfword has been transferred to R. The use of two separate 
registers (Q and R) for containing op-code halfwords also 
provides double buffering. This scheme allows storage 
requests to be generated immediately upon transferring the 
last op-code halfword from Q, instead ofhaving to wait 
until the instruction in E has been executed, as would be 
required if halfwords from Q were transferred directly to E. 

Because op-code information is all that is required tQ 
initiate execution, only those halfwords in Q containing op 
codes are gated to R. Also, because RX, RS, SI, and SS 
instructions are composed of. either. two or three halfwords 
(only the first of which contains the op code), it is 
necessary to select the proper halfword to be transferred to 
R, rather than merely proceeding sequentially through the 
four halfwords. Selection of the· halfword for transfer to R. 
is determined by IC{21,22) as follows. Depending on the 
format, instructions may be 1, 2, or 3 halfwords long. The 
number of halfwords in an instruction is specified by the 
first two bits of the op code as follows: 

Format 

RR 

RX 

RS and SI 

SS 

Op Code Positions 
0 and 1 

00 

01 

10 

11 

Instruction Length 
in Halfwords 

2 

2 

3 

Because the op code of the next instruction to be 
executed is always in R, its format (positions 0 and 1) can 
be predecoded to determine the number of halfwords that 
compose. that instruction and thus indicate which of the 
four Q-register halfwords contains the next sequential 
instruction op code. This predecoding occurs at end-op 
time of each instruction; the result (Q halfword number) is 
set into IC(21,22), which in turn selects a subsequent 
I-Fetch ROS word that specifies the next op-code Q-half­
word to be transferred to R. The IC(21,22) values 
associated with each Q-register halfword are illustrated in 
Figure 1-28. 

R(8-11) or R{l2-15) is sent to LS address register to 
prefetch an operand for RR format instructions during end 
op of the preceding instruction. This transfer can be done 

1-56 (9/68) 

IC 

21 22 

Figure 1-28. Q-Register Halfword Outgating per IC(21,22) 

from R rather than from Q because RR instructions are 
completely contained· in R; eight additional paths from Q 
to LAL are, therefore, not needed. 

"£-Register 

The E~register (Diagram 3-2) is a halfword (16 bits plus two 
parity bits) trigger register that contains the first halfword 
(op-code halfword) of the instruction being e.xecuted. 
Portions of the op-code halfword in E are transferred to 

· LAL, the op-code decoder, the parallel adder, the E-register 
incrementer, and, if the Direct Control feature is installed, 

· an external device. The contents of the E-register are 
parity-checked. 

Instruction Counter 

• IC is divided into two sections: IC{0-20) and 
IC(21-23). 

• IC{0-20) addresses a doubleword from main storage. 

• IC(21) specifies left or right word within accessed 
doubleword: IC{21) = 1, select right word; IC(21) = 0, 
select left word. 

• IC(22) selects left or right halfword from selected word: 
IC(22) = 1, select right halfword; IC(22) = 0, select left 
halfword. 

• IC(21,22) specifies Q-register halfword that contains op 
code of next instruction to be executed. 

• During VFL operations, IC(21-23) specifies addressed 
byte within doubleword addressed by IC(0-20). 

The Instruction Counter (IC), Diagram 3-2, is a 24-bit 
trigger register _ used primarily for accessing the next 
sequential doubleword of instructions from main storage 
(excluding those specified by branch instructions, which are 
handled by the D-register). Source operand data is also 
addressed by the IC during VFL instructions. 

The IC is divided into two logical sections: IC{0-20) 
and IC(21-23). These sections function in the following 
manner. The main storage area used with the CPU is 
addressable on a byte (eight-bit) basis, each address placed 
into the IC referring to a particular byte. However, because 
the Q-register is of doubleword (64-bit) length, instructions 



are accessed from main storage in doubleword (eight-byte) 
groups. The address of the first byte of each doubleword is 
all that is required in accessing these doublewords. from 
main storage, and this address is obtained from positions 
IC(0-20), regardless of the complete address. [Any address 
represented only by IC(0-20) is a multiple of 8 and lies on 
a doubleword integral boundary.] 

Following the accessing of each doubleword from main 
storage, IC(0-20) is incremented by 8 (via the parallel 
adder) tq· develop the next sequential doubleword address 
in main storage (eight byte addresses ahead of the double­
word previously accessed). 
1 Once the doubleword addressed by IC(0-20) is read 

into the CPU, the remaining portion of that complete 
address [IC(21-23)] selects either instruction halfwords or 
data bytes from the doubleword. When instructions are 
addressed by the IC, IC(21,22) only is used to extract the 
op-code halfword of the addressed instruction in the 
Q-register; IC(21) selects the right or left word within the 

doubleword, and IC(22) then selects the right or left 
halfword from the specified word. (In both cases, a 1 
specifies the right portion and a 0 the left portion.) 
IC(21,22) values of 00, 01, 10, and 11 correspond 
respectively to the four (1-4) Q-register halfword portions. 
Figure 1-29 illustrates the Q-register halfword selection for 
a specified main storage instruction address of 468 (104 
hex or 1110.10100 binary). · 

Note: Because instructions are restricted to even-numbered 
storage locations, IC(23) must always contain a 0 during 
instruction addressing, Detection of a 1 in IC(23) during 

· instruction addressing produces an exceptional condition 
followed by a program interruption. 

At end op of each instruction, the format of the 
instruction just transferred from Q and its location in Q [per 
IC(21,22)] are examined to determine the location in Q of 
the op-code halfword of the next sequential instruction. 

Example Address: 468 (1D4 Hex, or 111010100 Binary) 

IC . I· .. 
I 
I 
I D 

+I 0 
4 

0 20 21 22 23 

...-..--------.----------1 J T Used in VFL byte 

Select '----selection only. 
Main storage left or right 
doubleword address word from NOTE: 
of the doubleword doubleword. · IC(23) must equal 0 
to be loaded during instruction 
into Q. Select left or addressing or 

right halfword from specificgtion check 
specified word. occurs. 

463 464 465 466 467 468 469 470 471 472 

• 11---B~te .....__l ........_____.____.___._______.___._ __ 7 I a 2 I 3 4 I 5 I 6 

Main Storage Doubleword 

IC(21,22) = 00 IC(21,22) = 01 IC(21,22) = 10 IC(21,22) = 11 

Figure 1-29. Instruction Addressing 

Op-code ha I fword 
specified by 
address I 04 (hex). 

2065 FETOM (9/68) 1-57 



Both format and Q-register location must be considered to 
avoid transferring the remaining non-op-code halfwords of a 
multi-halfword instruction (RX, RS, SI, or SS) to R. 

When the -IC is used for addressing source operands 
during VFL operations, doublewords containing the ad­
dres_sed byte(s) are referenced by IC(0-20) in the same 
manner as in instruction addressing. However, the accessed 
doubleword is read out to AB instead of to Q. IC(21-23) 
then specifies the addressed byte within this doubleword to 
be gated to the serial adder. [The initial IC(21-23) value is 
set into the AB counter, which is incremented or decre­
mented, as required, to perform right-to-left or left-to-right 
processing of the data in AB.] Figure 1-30 illustrates the 
byte selection as determined by IC(21-23). 

Main Storage 
Ooubleword 

Figure 1-30. Operand Data Byte Selection per IC(21-23). 

Note: During VFL operation, the instruction· address 
contained iri the IC is temporarily· stored into the LS 
working register (LSWR). 

Storage requests are generated to access the next 
doubleword whenever IC(21-23) indicates that all the 
information in the present doubleword (op-code halfword 
in Q-register or data bytes in AB) has been processed. 

D-Register 

The D-register (Diagram 3-2) is a 24-bit (plus three parity 
bits) trigger register that functions as a main storage address 
register during manual-control, branching, and certain 
arithmetic operations, and as a channel and unit address 
register during I/O instructions. When addressing main 
storage, D(0-20) references a doubleword; D(21,22) then 
extracts the desired instruction haifword and 0(23) ex­
tracts the desired byte, depending on the operation. 

For RS instructions, the I-Fetch routine adds the base 
and displacement values and places the result into D. 
Normally, this result is the effective second operand 

1-58 (9/68) 

address. For shift instructions, however, this total specifies 
the number of bit positions to be shifted. 

In the Stopped state, D contains the main storage 
address of the next instruction to be executed (address of 
instruction in R). (This address is generated and placed into 
D by the stop-loop microprogram that . is in process 
whenever the CPU enters the Stopped state.) The stop-loop 
routine subtracts 8 or 16 (decimal) from the updated IC 
address and places the result into D. In this case, D(0-20) 
indicates the doubleword address of the instructions in Q, 
and D(21,22) specifies the location of the op-code halfword 
within that doubleword. 

Instruction Path 

• Instructions are fetched into Q from main storage four 
halfwords at a time. 

• R contains first halfword of instruction to be executed 
next. 

• E contains first halfword of instruction being executed. 

• IC specifies location in main storage from which next 
instructions will be fetched and also instruction in Q to 
be executed next: 
IC(0-20) addresses main storage. 
IC(21,22) indicates which op-code halfword in Q has 

been transferred to R and is to be executed next. 
IC(23) must be 0 when addressing instructions. 

The basic path for instructions entering the CPU is 
illustrated in Figure 1-31. The first register in theinstruc-. 
tion path is the four-halfword instruction buffer called the 
Q-register. For each access, four instruction halfwords are 
fetched from a doubleword location in main storage 
(addressed by the IC) and loaded into the Q-register from 
the SDBO. Because instructions can vary from one to three 
halfwords in length, as many as four complete instructions 
(RR format) or as few as 1-1/3 instructions (SS format) 
may reside in the Q-register. 

Instructions in the Q-tegister are sequentially selected 
for. processing by means of IC(21,22), which indicates the 
first halfword (the halfword containing the op code) of the 
instruction to be executed next. The op-code halfword thus 
selected is transferred to the R-register, where format 
predecoding takes place during the end-op cycle. If the 
instruction is of the single halfword RR-format, the 
R-register contains the entire instruction. In the case of a 
two- or three-halfword instruction (RX, RS, SI, or SS 
format), the R-register contains only the first halfword; the 
balance (second or second and third halfwords) is not 
transferred but remains in the Q-register. For this reason, 
each halfword field of the Q-register is equipped with 
appropriate transfer paths for processing of the B and D 
fields of the instruction. 

The format of the upcoming instruction (in R) is 
established by examining R(O,l). This predecoding groups 



Io 
IC 

0 20 

Q-to-R 
Tronsfer 
Control 

~I 

SAB 

lo 
D ~I 

0 20 
2122 

0 

RRI Op Code 

RXI Op Code 

Instructions RSI Op Code 

Sf I Op Code 

ss! Op Code 

O· 

Q 1st I 2nd 

Main Storage 

63 

I Rl I R2 I 
1 a 11 12 15 

Rl I X2 I 82 02 
7 ·a 11 12 1516 1920 31 

I Rl I R3 I 02 I 02 
1 a 11 12 1516 19 20 31 

I 12 I Bl I Dl 

7 8 1516 19 20 31 

I L1 I L2 I Bl I~~ ~1 I 82 I JG 
78 11 12 1516 19 20 3132 3536 ~7 

63 

I 3rd 

0 Halfword : Halfword : Halfword 
: 4th Ra 
I Halfword 63 

B-field gated 
to LAL. 

D-field gated 

0 3 

T 
4 

1619 

T 
15 

3235 4851 

T T 
20 31 36 =-...,...-4-.7 52 63 

ta parallel adder. 
0 ;;..---~15 16 31 32 47 48 63 --1-- ------

0 ! 15 

~ 
Format ~ ~ 
Predecoder i...----------~ 

Figure 1-31. Basic Instruction Path 

Operation 
Decoder 

the instructions into four general categories (RR, RX, RS 
or SI, and SS) to allow loading of the appropriate data 
registers with operands and operand addresses. Thus 
operand prefetching is initiated before execution time. 

The 16-bit E-register (Figure 1-31) contains the op-code 
halfword of the instruction presently being executed. This 

~ 
0 7 

halfword remains in the E-register until the execution phase 
is completed, at which time it is replaced by the op-code 
halfword of the next instruction. During each execution 
phase, the instruction op code contained in E(0-7) is 
decoded and the specific operations necessary to execute 
the instruction are performed. 

2065 FETOM (9/68) 1-59 



The functions performed during the end-op cycle and 
the I-Fetch sequence are implemented while the instruction 
halfwords are in the Q~, R-, and E.-registers. The path and 
the movement of the op-code halfword between the 
registers for the five formats are shown in Figure 1-32. To 
illustrate, the following paragraphs trace an RR instruction 
through the Q-, R-, and E-registers (Figure 1-32, A). Note 
that an RR. instruction is composed of only the op-code 
halfword; therefore, the complete instruction fits ill the R­
and E-registers. For the other formats, only the op-code 
halfword moves through the R- and E-registers; the other 
halfwords are not transferred from the Q-register. For the 
example, assume that: 
1. All instructions have the RR format. 
2. The instruction being executed is No. 4, the next 

instruction is No. 5, tlJ.e following instruction is No. 6, 
and so on. 

3. Instruction No. 5 is the one under consideration. 

During the I-Fetch sequence of No. 4, instruction No. 5 
is placed into the R-register. Here, during the end-op cycle 
of No.- 4, the format of No. 5 is established, operand 
prefetching is initiated, No. 5 is transferred to the E­
register, and the I-Fetch sequence for No. 5 is entered. . 

During the I-Fetch sequence for No. 5, prefetching of 
operands for No. 5 is completed, the execution routine for 
No. 5 is established, and No. 6 is transferred to the 
R-register. The CPU enters the execution phase for No. 5. 
During its end-op cycle, the condition code is set (if 
applicable) and. any exceptional conditions and interrup­
tions are detected. The remaining functions performed 
during the end-op cycle of No. 5 are devoted to initiating 
the I-Fetch sequence for No. 6. 

Prefetching of Operands 

• Operand prefetching starts before instruction execution. 

• Depending on instruction format, operands are in LS or 
main storage: 
RR - both operands are in LS. 
RX, RS, SI - one operand is in LS, the other is in main 

storage. 
SS - both operands are in main storage. 

• Address computation for main storage operands always 
starts first. 

To increase the speed of instruction processing, the 
operands and operand addresses specified in the upcoming 
instruction are assembled into appropriate registers. For RR 
instructions, the operands are obtained directly from the 
LS. For instructions specifying operand addresses in main 
storage, address calculations. take place, and the D-register 
prefetches an operand from main storage. 

The major registers employed for operand pre fetching 
are shown in Figure 1-33. Prefetching of operands begins 
when the op"code halfword of the-instruction is in Rand is 
completed after this halfword has been transferred to E. 

1-60 (9/68) 

R(O,l) establishes the instruction format and, consequent­
ly, .the type of operand fetch that must be performed.. . 

For one-halfword instructions (RR format), R contains 
the entire instruction .. The first operand is fetched by 
transferring R(8-11) to LAL. After the first operand is 
retrieved from the LS, it is usually placed into A, B, and D. 
The second operand is usually fetched after the instruction 
is transferred to E by transferring E(l 2-15) to LAL. When 
the second operand is accessed, it is normally placed into S 
andT. 

For two-halfword instructions (RX, RS, and SI formats), 
the first halfword is transferred to R while the second 
halfword is processed directly from Q. Address calculation 
for the operand in main storage is performed first so _that 
this operand may be requested as soon as possibl.e_. This 
calculation is accomplished by transferring the appropriate 
B-field from Q to LAL. If the B-field is not zero, the 
contents of the LS register specified by the B-field are then 
routed to the parallel adder, where they are added to the 
D-field (transferred directly from Q). The sum constitutes 
the ·operand address specified by RS and SI instructions. 
This address is transferred to D, from which a storage 
request for the operand is made. 

For indexed RX instructions, that is, when the X2 field 
is not zero, an additional step is required to derive the 
operand address. Consequently, the partial sum (LS con­
tents per B-field, plus D-field) is temporarily stored into B. 
The LS is then addressed by the X2 field of the instruction. 
At this time, the instruction op-code halfword is in E, with 
E(12-15) containing the X2 field. The contents of the LS 
register accessed by the X2 field are then summed with the · 
contents of B in the parallel adder to obtain the operand 
address. This address is transferred to D, and a storage 
request for the operand is initiated. 

The operand setup for two-halfword instructions is 
completed by fetching the first operand from the LS (not 
used by SI instructions). This action is performed by 
transferring E(8-11) to LAL. The first operand is usually 
loaded into A and B. S and T are usually loaded with the 
second operand when it arrives on the SDBO during the 
execution phase. 

For three-halfword instructions (SS format), the first 
halfword is transferred to R and the remaining two 
halfwords are processed directly from Q. The main storage 
addresses for the first and second operands are calculated in 
a manner similar to that of two-halfword instructions. The 
first-operand .address is computed first and loaded into D, 
and a storage request to prefetch the operand is initiated. 
The second-operand address is then computed while the 
contents of the IC are transferred (via the parallel adder) to 
the LSWR. When the second-operand address is computed, 
the address is loaded into the IC, from which a storage 
request for the operand is later made. Upon execution of an 
SS instruction, the instruction addres.s is restored to the IC 
so that it again selects the next instruction. 



I-Fetch of Execution of End Op of I-Fetch of Execution of End Op of I-Fetch of Execution of End Op of I-Fetch of Execution of End Op of I-Fetch of Exec.ution of 

4 4 4 5 5 5 6 6 6 7 7 7 8 8 

Q I 5 I 6 I 7 I 8 I 1516171 a I I 5 I 6 I 7 I 8 I 151 6 I 7 I 8 I I 5 I 6 I 7 I 8 I 151 6 171 a I 1516171 a I 1516171 a I I 5 I 6 I 7 Is I 1516171 8 I 191101111121 191101111121 191101111121 [91101111121 

! I I ~ ! 
III R m m m7 [I] 0 m7 0 0 07 m [!]7 0 

0 0 m m [TI [I] 0 m m IT! IT! m E 0 III 
Initiate 3-cycle 4 instruction Note: Numbers indicate halfword sequence 
storage request halfwords from referenced to their location in Q. 
to refill Q. main storage 

as a result of For 2- and 3-halfword instructions, 
storcge request. lines at bottom of Q group the 4 

A. RR-Format (1-Halfword) Instructions halfwords into instructions or por-
tions of instructions. 

Movement is referenced to associated 
ROS cantrol word. 

* Delay transferring to R until instruction 
halfwords arrive from main storage. 

I-Fetch of Execution of End Op of I-fetch of Execution of End Op of I-Fetch of* Execution of End Op of I-Fetch of Execution of End Op of I-Fetch of* Execution of 
4 4 4 5 5 5 7 7 7 9 9 9 11 11 

Q F ! 5 ! 617 ! 0 I I 5 I 617 ! a! 

~ 
I 5 I 61710 ! I 5 l 61710 ! 

~ 
I 9 !10l11!1~J 191101111121 19 110 111 112 1 191101111121 191101111121 

~ 
11311'41151161 

/ 
R 0 m m7 [I] m 07 ,[I] 0 I [ill [ill I @) @] 

0 0 m m 0 0 0 0 0 0 @l [ill [ill E m 
Initiate 3-cycle 4 instruction Initiate 3-cycle 4 instruction 
storage request ha I fwords from storage request halfwords from 
to refill Q. main storage to refill Q. main storage 

as a result of as a result of 

B. RX-, RS-. and SI-Format (2-Halfword) Instructions 
storage request storcge request. 

"'i'li' 

I-Fetch of Execution of End Op of I-fetch of Execution of End Op of I-Fetch of Execution of End Op of I-Fetch of* Execution of End Op of I-Fetch of* Execution of End Op of I-fetch of Exe cu ti on of 

4 4 4 5 5 5 8 8 8 11 11 11 14 14 14 17 17 
Q 

~ 1516171.!J 15 1 6 17 1!.l ~ 
191101111121i191101111121 

~ 
191101111121 191101111121 l!;,1141151161 ~1141151161 u~J14I15l 16I l!,ti10I19I~ 1171101191~ 1171181191~ 1211221231241 

J ~ R m m m7 m m [!]7 [ill [ill I [ill ffil7 [ill ~7 ~ 

E ill [I] 0 m [] m m fil [ill [ill [ill fill [ill fill [ill @I UZI 
Initiate 4-cycle 4 instruction Initiate 3-cycle 4 instruction Initiate 4-cycle 4 instruction Initiate 4-cycle 4 instruction 
storage request ha I fwords from storage request ha I fwords from storcge request ha I fwords from storage request hal fwards from 
to refill Q. ·main storage to refill Q, main storage to refill Q. main storage to refill Q. main storcge 

as a result of as a result of as a result of as a result of 

c. SS-Format (3-Halfword) Instructions 
storage request, storage request. storage request. storage request. 

Figure 1-32. Path Through Q-, R-, and E-Registers of Op-Code Halfword 

2065 FETOM (9/68) 1-61 



4 

Local -Storage LS LAL (Read) 

0 31 
0 4 

0 31 

0 31 32 63 

lo 
s ~132 T ~31 

0 31 32 63 

32 63 

4 63 

PAA 

Figure 1-33. Basic Scheme for Operand Prefetching 

1-62 (9/68) 

0 

lo 
A 

0 

4 

PAL 

32 

40 

32 

31 32 

~132 B 

31 32 

63 

63 
/ 

/ 
/ 

PAB / 

63 

63 

/ 
/ 

/ 

I 0 

I 

0 23 I 0 23 

I 
lo ~I lo ~I D I IC 

I 0 20 21 22 0 20 21 22 
I L I -r-

I -- I 
I I 
I L----------

Q-to-R 
Transfer 
Control 

63 0 

63! ~I 0 

63 0 

B-Fields 

D-Fields 

0 

R-Fields 

R or X2 Field 

Instructions 

I Q 1st 
Halfword I 

3 

4 15 

RR I 

RXI 

RS I 

SI j 

Main Storage 

SDBO 

.Op Code Rl I R2 I 
78 II 12 15 

Op Code Rl I X2 I 
7 8 II 12 15 16 

Op Code I Rl I R3 I 
78 11 12 15 16 

Op Code 12 I 
7 8 15 16 

LL ,____...___,_ 

63 

B2 D2 

19 20 31 

B2 I D2 
19 20 31 

Bl I DI 

19 20 31 

ss._I _op_c_od_e ~I _L_1 _.l ___ L2_i~s1~m DI I 02 I~[§] 
7 8 11 12 15 16 19 20 31 32 35 36 47 

T 63 

3rd 4th -2nd RQ 
Halfword Halfword Halfword 63 

16 19 32 35 48 51 

20 31 63 

15 16 31 32 47 48 63 

I I 0 15 

EID 5 

8 11 1215 

0 15 

0 15 

~ 
lL_iiJ 

8 11 1215 



Obtaining New Instructions from Main Storage 

• Requests for new instructions are made before CPU 
exhausts instructions in Q. 

• Usually, three- or four-cycle requests are made from IC. 

• Settings of IC(21,22) and R(O,l) determine whether 
request is needed. 

• IC is incremented by 8 after each request. 

• For branch instructions, requests are made from D. 

• If branch is · unsuccessful, instructions accessed by 
request are ignored. 

• If branch is successful, instructions are used and instruc-
tion address is transferred from D to IC. 

Requests to refill Q with new instructions overlap most of 
the storage access time with processing of the remaining 
instructions in Q. The basic scheme used in requesting new 
instructions from main storage is shown in Figure 1-34. 

During normal instruction sequencing, IC(2l ,22) is 
examined to establish the number of halfwords in Q that 
remain to be processed. These bits indicate the op-code 
halfword of the instruction that has been transferred to R 
and is to be executed next. Depending on the format of the 
upcoming instruction decoded from R(O,l), a request for 
new instructions may be initiated when 2, 3, or all 4 
halfwords in Q remain to be processed. The time required 
to access new instructions from main storage is then used to 
process the remaining instruction(s) in Q. This access time 
is specified by the type of request generated by the CPU. 
Depending on its instruction status, the CPU can generate a 
three- or a four-cycle request. When a three-cycle :request is 
issued, three CPU cycles must elapse before instructions 
arrive from main storage. Thus, new instructions are gated 
into the CPU on the fourth cycle following the request. 
Similarly, when a four-cycle request is generated, new 
instructions are gated into the CPU on the fifth cycle 
following the request. The difference in access times for a 
three- and four-cycle request is illustrated in Figure 1-34. 

IC(O-20) normally specifies the address of new instruc­
tions to be accessed from main storage. When it is 
established that the CPU needs instructions, a request is 
made and IC(0-20) is transferred to the SAB. The IC is 
then incremented to address the next successive storage 
location from which subsequent instructions are to be 
fetched. (Because the BCU dictates that the address of each 
successive main storage location must be valid in the IC for 
at least two cycles, updating of the instruction address is 
not initiated until two cycles following the request.) 
Depending on the format of the upcoming instruction, 
incrementing of the IC is controlled by the CPU hardware 
(for all formats except SS) or by the ROS microprogram 
(for SS format). In either case, the IC is incremented by 
transferring its contents to the parallel adder, where a 1 is 

added to IC(20) (equivalent to advancing the IC address by 
8). The updated address is then routed back to the IC so 
that a new storage request may be initiated immediately 
upon detecting the need to refill Q. 

A departure from the normal sequencing described 
above occurs when the instruction being fetched is a branch 
instruction. To anticipate branch instnictions, R (which 
always contains the first halfword of an upcoming instruc-

. tion) is connected to a branch predecoder. Execution of a 
branch instruction may alter the main stonige address from 
which new instructions are to be fetched. If the branch 
instruction is successful, the address specified by that 
branch becomes the new instruction address; If, however, 
the branch is not successful, the address specified by that 
branch must be ignored. Because it is assumed that branch 
instructions are successful (the only exception is the Branch 
on Condition instructions), a request for instructions is 
initiated as soon as the address specified by the branch is 
placed into D. Thus, a request is made and the contents of 
D are transferred. to the SAB before establishing that the 
branch is indeed successful. If it is later found that the 
branch .instruction is not successful, the instructions ac­
cessed by that branch are not transferred into Q and a new 
storage request is generated from the IC, if necessary. 
Otherwise, upon establishing a successful branch, the 
contents of D are transferred to the paranel adder, 
incremented by 8, and transferred to the IC. Normal 
sequencing is resumed by the IC until another branch 
instruction is encountered. 

The Branch on Condition instructions must be treated 
differently from other branch instructions. For this reason, 
a separate detection circuit is provided to anticipate this 
branch. Whether a Branch on Condition instruction is . . . 
successful depends on the condition code setting estab-
lished by a previous instruction. Therefore, the outcome of 

. this branch instruction is known at the time of the request. 
If the branch is unsuccessful, the request from D is 
inhibited and, if Q needs refilling, an IC request is generated 
instead. · 

Another instruction that falls in the branch category and 
requires unique treatment is the Execute instruction. This 
it;tstruction designates a single instruction (subject instruc­
tion) to be inserted into the instruction sequence. Briefly, 
the· Execut~ instruction initiates the following I-Fetch 
actions: 
1. During I-Fetch of an Execute instruction (RX format), 

IC(21,22) is advanced to indicate the first halfword of 
the next instruction; that is, the instruction immediately 
following the Execute instruction in Q. 

2. The address of the subject instruction specified by the 
Execute instruction is computed and placed into D. A 
storage request from D is then made. 

3. When the four instruction halfwords accessed by this 
request are gated to Q, the subject instruction is selected 
from Q by examining D(21,22). 

2065 FETOM (9/68) 1-63 



4. Upon executing the subject instruction, and if the 
subject instruction is not a successful branch,. a storage 

· request for the instructions previously contained in Q is 
made from the IC. This request is performed by the 
program store compare exceptional condition. (If the 
subject instruction is a successful branch, the request for 
new instructions is made from D ·and normal processing 
is resumed.) 

5. When the instructions previously contained in Q. are 
refetched, IC(21,22) is examined to select the instruc­
tion following the Execute instruction, and normal 
processing is resumed. 

CPU Interruption and Exceptional Condition Recovery 

I-Fetch recognizes the five classes of interruptions: exter­
nal, supervisor call, program, machine check, and I/O. CPU 
recovery from these interruptions requires additional proc­
essing time for storing the old PSW into main storage and 
fetching a new PSW and new instructions from main storage 
into the CPU. 

In addition, I-Fetch also recognizes eight exceptional 
conditions; these conditions require special handling by the 
CPU. The exceptional conditions and the corresponding 
actions performed by the CPU are: 

Exceptional 
Condition 

Timer 

CPU Store in 
Progress 

Manual Control 
Stop 

Manual Control 
Wait 

Manual Control 
Repeat 

Program Store 
Compare 

Invalid Instruction 
Address Test 

Q-Register 
Refill 

1-64 ·. (9/68) 

CPU Action· 

When updating is required, the CPU 
fetches the timer value from main 
storage, decrements this value (amount 
of decrement depends on the line 
frequency), and stores it back into 
main storage. 

Extra cycles are added to I-Fetch. 

An address is forced into ROSAR that 
places the CPU into the stop loop. 

An address is forced into ROSAR that 
places the CPU into the Wait state. 

An address is forced into ROSAR that 
places the CPU into the repeat instruc­
tion loop. 

The CPU obtains the address for the 
next instruction and refetches it from 
main storage. 

A program interruption is forced when 
the CPU tries to use an erroneously 
addressed instruction. 

One extra I-Fetch cycle is added, de­
laying execution of the next instruc­
tion by one CPU cycle. 

When one or more interruptions or exceptional condi­
tions occur, processing of the next instruction is delayed 
until all such conditions are cleared in the order of their 
priority. 

Processing of interruptions and exceptional conditions is 
initiated during the first cycle of I-Fetch. This cycle issues 
an 'EXCEP' micro-order to establish if any interruptions or 
exceptional conditions have resulted from execution of the 
preceding instruction. If one or more interruptions or 
exceptional conditions did occur, the 'EXCEP' micro-order 
overrides the basic I-Fetch actions and transfers control to 
an appropriate microprogram for clearing the condition 
that is assigned the highest priority. After processing this 
condition, the remaining interruptions and exceptional 
conditions, if any, are handled in the order of their priority. 
When all interruptions and exceptional conditions have 
been processed, the microprogram resumes the I-Fetch 
sequence for the next instruction. The invalid instruction 
address test and conditions do not override the basic 
I-Fetch actions but instead augment them. 

INSTRUCTION EXECUTION 

The ·execution phase of instruction processing manipulates 
the data to execute the instruction prepared by I-Fetch. 
The following paragraphs introduce the functional units 
that are used primarily in the execution phase and discuss 
the seven classes of instructions: fixed-point, floating-point, 
decimal, logical, branching, status switching, and I/O. 

Functional Units Used 

The following discussion of functional units is based on 
Diagram 3-2, FEMDM. For a detailed discussion, refer to 
Chapter 2. 

AB Register 

The AB register is a 64-bit (plus eight parity bits) trigger 
register that functions as a working register and ·aiso as a 
buffer for doubleword operands received from ·main stor­
age. 

The AB register is logically divided into two 32-bit (plus 
four parity bits) registers, A and B. A four"position 
extension, B(64-67), provides for retaining low-order 
sigfiificance during certain arithmetic and shifting opera­
tions.· 

Byte gating into and out of A and B facilitate~ their use 
with the serial adder for VFL operations. A three-position 
counter, the AB byte counter (ABC), controls the outgating 
selection of the eight bytes in the AB. AB information is 
also processed in the parallel adder. Both A and B outgating 
controls are capable of shifting data left two positions en 
route to the parallel adder. (Combined shifting capabilities 
of ST, AB, and the parallel adder thus enable any amount 
of shift in any direction.) 



lo 
D ~I lo IC ~I 

20 0 20 

21 22 
--T 

2122 

I 

L-------

3- or 4-Cycle 
Request per IC 

Storage Request 3- or 4-Cycle 
Logic · Request per 0 

0 

GT IC(0-20) 

D(0-20) 

3-Cycle Request 

4-Cycle Request 

SAS 
Mclin Storcge 

SDBO 

I 1 I 2 I 3 I 4 I 
I I I I I I 

~ 
I 1 I I 1 Gate I 
1 l I I : SDBO I 
I I I I I toQ I 
I I I I I I 
I 11 I I I ' 
I I I I I I 

1 

63 

5 I 
I 
I 
I 

I 
I 
I 
I 

I 
I 

Q 1st I 2nd I 3rd 4th RQ 

0 Halfword : Halfword : Halfword Halfword 63 

Request 
Made 

Gate 
SDBO 
to Q. 

..;._-.._1_s 16 31 32 47 48 63 

lo ) 

D R 
5 

Format 

All Branch 
Instructions ----

Branch on 
Condition Instruction 

Branch 
Predecoder 

Figure 1-34. Q-Register Refill Addressing Scheme 

ST Register 

0 1 

0 7 

The ST register is a 64-bit (plus eight parity bits) trigger 
register that functions as an operand buffer between main 
storage, LS, and the CPU, ·and also as· a working register for 
arithmetic and logical operations. 

The ST register is logically divided into two 32-bit (plus 
four parity· bits) registers, Sand T, which serve as working 
registers for all operations. They also serve as a final 
assembly area for resultant data to be entered int0 either 
LS (T only) or main storage (S and T). Byte gating of ST 
inputs and outputs facilitates their use with the serial adder 
for VFL operations. A three-position ST byte counter 
(STC) and incrementer control the gating of the eight ST 
bytes. 

ST information can also be processed in the parallel 
adder. T-data can be sent to the parallel adder in either true 
or complement form, and with a left 1 shift for certain 
operations. (Scan operations also utilize ST inputs from the 
para_llel adder.) Multiply logic extracts data, in byte lengths, 

from S via the multiplier bus, and PSW information is 
sampled from ST(0-39) via the PSW bus. 

AB and ST Byte Counters 

For operations involving the serial adder, it must be 
possible to extract bytes from doublewords contained in 
AB and. ST and to assemble bytes in ST for subsequent 
storage. These capabilities are provided by two byte 
counters: the ABC for controlling AB byte transfer and the 
STC for controlling ST byte input and output. 

Mark Triggers 

Eight mark triggers are contained within the CPU. During 
store-data operations, these triggers indicate to main storage 
which bytes of doubleword data placed on the SDBI are to 
enter storage. The mark triggers thus serve to store CPU 
data into main storage on a byte (eight-bit plus parity) 
basis. 

·2065 FETOM . (9/68) 1-65 



An active mark bus line specifies the corresponding byte 
for storage entry: mark trigger 0 specifies byte 0, or 
SDBI(0-7); mark trigger 1 specifies byte 1, or SDBI 
"{8-15); and so on, through mark trigger 7, which specifies· 
byte 7 or SDBl(56-63). Any mark trigger not set causes its 
corresponding byte of original storage data to be regener­
ated into the addressed location. Complete absence of mark 
signals on the mark bus occurs only on a fetch operation. 

F-Register 

The F-register is a one-byte (eight-bit plus parity) trigger 
register used in certain arithmetic, logical, and data-transfer 
operations. Functions such as developing quotients, saving 
floating-point characteristics, converting routines, and proc­
essing storage-protection keys are performed in F, and, 
during direct-control read operations, F serves as a data 
entry buffer for the external device. 

F-register parity circuits generate correct parity for all 
information received by the register. 

G-Register 

The G-register is an eight-bit. trigger register used for 
buffering a byte of data between the CPU and an external 
device during direct~control write operations. G contains no 
parity .bit. 

Serial Adder 

The serial adder processes information from ST, AB, and F 
on a byte basis, and is capable of performing binary and 
decimal arithmetic in addition to logical AND, OR, and 
Exclusive-OR operations. Other miscellaneous functions 
performed by the serial adder logic include sign il)settion 
and correction, digit insertion, invalid character detection, 
zone correction (EBCDIC and USASCII-8), zero and 
nonzero recognition, and parity adjustment. Parity-predict 
logic and carry lookahead logic are employed to improve 
operational speeds, with checking performed on both a 
half-sum and full-sum basis. 

Arithmetic Functions. Highlights: 

• Operates on binary or decimal data. 

• Processes decimal bytes as two four-bit groups. 

• Each four-bit group represents one BCD digit. 

• Employs excess-6 arithmetic when processing decimal 
data. 

• Decimal arithmetic results are produced in BCD form. 

• Multiply/divide results are assembled in serial adder. 

Serial adder logic is capable of performing both binary and 
decimal arithmetic operations. For binary operations, the 
adder functions as an eight-bit (plus parity) binary adder, 
processing bytes from ST and either AB or F and 
developing eight-bit (plus parity) results. High-order carries 

1-66 (9/68) 

resulting from arithmetic operations are stored in Status 
Trigger (STAT) H for use in processing the next two bytes 
of that.operation. . 

For decimal operations, each byte of data from ST, AB, 
or F is treated as two individual four-bit groups, which are 
1:hen processed with excess-6 arithmetic. This feature 
provides a programming advantage by enabling the adder to 
accept data in binary-coded decimal (BCD) form (packed 
digits) and to produce· results which are also in decimal 
format. 

Excess-6 arithmetic involves adding 6 (under ROS 
control) to incoming first operands. This is necessary to 
preserve the decimal value in a four-bit binary character. 
Each binary character (four bits) has a maximum decimal 
value of 15 (11 ll binary), which is 6 rriore than the 
maximum valid decimal character of 9 (1001 binary). When 
the second operand is added and the total exceeds 15 (1111 
binary), the carry is a decimal value carry and leaves a 
correct decimal value in the (our binary bits. If no carry 
occurs after the addition, the character is an erroneous 
decimal value (it is too large by 6) and the excess 6 is 
subtracted. The decimal values of the binary character 
under no-carry conditions are 6-15 (actual value of 0-9 
after correction). 

The following examples show excess-6 addition. Note 
that correction occurs when there is no carry irrespective of 
the decimal validity of the sum. 

1 + 1 3 + 5 6 + 9 

Operand 1 (SBA) 0001 0011 0110 

Excess-6 0110 0110 0110 

SAA 0111 1001 1100 

Operand 2 (SBB) 0001 0101 1001 

Sum 1000 1110 +1)101 

Correction 0110 0110 

Result 0010 1000 +o101 

(2) (8) ,' (15) 

In the first case (1 + 1) the sum is a valid decimal 
character (8), but the absence of a carry indicates an 
erroneous result calling for subtracting the excess 6. The 
second case (3 + 5) is similar except that the sum is not a 
decimal character. In .the third case (6 + 9) there is a carry 
into the decimal tens position and the sum (5) does not 
need correction. 

Figure 1-35 shows the excess-6 data paths through the 
serial adder and illustrates the adder operation by means of 
the decimal example: 46 + 28 = 74. Note that +6 constants 



Final Bus B(0-7) 

0 

r----1----~ I I I 
I Decimal I Decimal I 

L~~·--r~~-J, 
7 

B-Side 

~-_rfu1: ___ , 
I I I Decimal I Decimal I 

, L~'.'.'.~y.'.'.:~J 

0 3 4 7 
Group2--M--Group 1 

Logically subtract 
6 from group 2 if 
no carry out of 
group 2 occurs. 

Logically subtract 
6 from group I if 
no carry out af 
group I occurs. 

Sum Latches 0-7 

0 

r-----1----, 
7 

7 

·Final Bus A(0-7) 

*Note: 
+6 constants are logically cambined with A-side 
digits by final-bus-A gating logic for true add 
operation only. For complement add aperatian, 
A-side bits are inverted and a 1 is added to A(?), 
res~lting in 2's complement form of the number on 
final-bus-A. 

I Resulting I Resulting I 
I Decimal I Decimal 11 
I Digit I Digit J 

L-----t •. -.. -.-.. -........................................... L.at•c•he•d•S•u•m•O .. ut•p•ut.~.o.-n .. 41~ 
Decim·al Arithmetic Example: 46-+ 28 = 74 

A-side operand byte (4610) 0100 0110 

Convert A-side digits to excess-6 
(Logically add +6 to both 
groups at final bus.) 0110 0110 

A-side digits in excess-6 value 1010 1100 

B-side operand byte (2810) 0010 1000 

~Group 2 ----f4-- Group I -.j 

A-side adder entry 
B-side adder entry 

Logical sum 
Decimal correction 

(Logically subtract 
6 from group 2.) 

Decimal result (7410) 

1010 
0010 

1101 

0110 

Olli 

Figure 1-35. Decimal Format Serial-Adder Data Flow 

1100 
1000 

0100 

Decimal Arithmetic Example: 46 - 28 =·JB 

A-side· operand byte {281 ol 
Complement 
+I to A(?) 

2's,compl.ement of A-side digit 

.. 
B-side ~perand (4610) 

A-side adder entry 
. B-side adder entry 

Lagical sum 
Decimal correction 

(Logically subtract 
6 from group I) 

Decimal result (18 10) 

0010 1000 
1101 Olli 

I 

1101 1000 

0100 0110 

14-- Group 2,..._ Group 1 ~ 

1101 
0100 

0001 

1000 
0110 

1110 

0110 

1000 

2065 FETOM (9/68) 1-67 



are logically added to the. A-side digits that are in packed 
format before. eritry into the adder {by final-bus-A-gating 
logic), and that subtraction of the +6 constants {decimal­
correct) is performed on each four-bit group in which a 
group carry (carry from high-order position of group) does 
not occur as a result of the arithmetic operation. 

When a ROS micro-order calls for complement add, the 
data entering SAA is converted to 2's-complement form. 
This conversion is accomplished by complementing the bit 
configuration on the A-side entry and adding a hot carry to 
the input of SAL(7). For complement add decimal opera­
tion, +6 constants are not combined with SBA inputs. 
When complementing BCD, the excess~6 is effectively 
added because the resultant complement is a character 
based on 16 rather than 10. To illustrate, the lO's­
complement of 7 is 3, but the 2's-complement of 7 (0111) 
is 9 {1001) or 6 more than the lO's-complement. The 
addition then occurs as in true +6 add, and the absence of~ 
carry likewise forces decimal correction of the sum. A carry 
out of the high-order adder position [serial adder bit carry 
{O)] sets STAT H for use in processing the next data byte 
of that operation. 

Figure 1-35 also shows the serial adder operation for a 
complement add example: 46 - 28 = 18. Note that +6 
constants are not added to the A-side digits, but decimal 
correction is performed in the same manner as for a true 
add operation. 

Logical Functions. The serial adder also performs logical 
AND, OR, and Exclusive-OR functions. To implement the 
logical functions, each bit position of the serial adder is, in 
effect, a separate unit. The logical functions are defined as 
follows: 
1. AND. If both operand bits are l's, the reslilting bit is a 

1; otherwise, the result is a 0. (Carries between bits are 
suppressed.) 

2. OR. If either operand bit is a 1, the resiilting bit is a 1; 
otherwise, the result is a 0. (Carries between bits are 
suppressed.) 

3. Exclusive-OR. If one and only one of the operand bits is 
a 1, the resulting bit is a 1; otherwise, the result is a 0. 
(Carries between bits are suppressed.) 

If the conditions for the corresponding function is met, 
the associated serial adder latch is set. 

Parallel Adder 
·' 

• 60-bit {plus parity) full-binary adder. 

• Inputs are from S, T, D, A, B, Q, IC, E, and F. 

• Inputs from T and D are 2's complemented for subtract 
and compare operations and address updating. 

• Output data can be shifted left 4 or right 4 into the 
parallel adder latches; parity is adjusted accordingly. 

• Adder employs carry-lookahead and parity-predict logic. 

• Adder includes half-sum and full-sum error checking. 

1-68 (9/68) 

The parallel adder is a 60-bit {plus parity)· full-binary 
arithmetic unit. In addition to arithmetic functions, the 
parallel adder performs certain logical operations (e.g., 
convert routines) and is involved in rriost intra-CPU data 
transfers. Correct parity (odd) is generated with all adder 
output data .. Immediate left 4 and right 4 shifting capabili­
ties are available at the adder output, with parity adjusted 
accordingly. Error-checking facilities within the adder 
provide for ·validity checking of both incoming operands 
artdfull-sum results. 

The parallel adder has true-complement gating controls 
on adder entries from T and D. For subtract and compare 
instructions, operands from T are 2's complemented and 
presented to the A-side of the adder. {The binary bits are 
inverted and a hot-carry is added to position 63.) From this 
point, add and subtract operations are the same. Comple­
ment entries from D are used for address compare and 
address update operations and for floating-point operations. 

The parallel adder has full-binary capabilities {half-adder 
and full-sum functions), with immediate left-4/right~4 shift 
logic included on its output to facilitate data shifting 
without the need of an additional machine cycle. Figure 
1-36 illustrates the logical functions of the parallel adder. 
Note the four-position adder extension, PAB{64-67); it 
serves to retain low-order significance during certain right­
.shift operations. 

4 63 

PAA PAB 

Hall // 

63 677 
// 

/ 
// 

Adder 4 63 / l .(,__ 4-Position Full Bit Transmits r 
Adlder - - - - - - ~~I~~~:: 

11

I Extension Area 

Full-Sum .Logic 

Latch-Shifter 
Logic (Leli 4/Right 4) 63 I 

----------~4~~~~~~-2..i 

Figure 1-36. Parallel Adder Logical Functions 

Half-adder functions supply information concerning 
incoming operands for use in both checking the validity of 
the operands and producing carry information for full-sum 
development. Full-sum logic combines half-adder outputs 
with carry information to produce the final or full-sum 
result. Parity information is also developed by logically 
combining half-adder and carry functions and is normally 
supplied on a byte basis, although certain adder areas {bits 
4-8 and 64-67) require half-byte or four-bit group parity. 

Carry-lookahead and parity-predict facilities are em­
ployed within the parallel adder. These features provide for 
the immediate development of full-sum results (and parity), 
without the need for additional cycles in which to 
incorporate carry information and generate parity. The 
lookahead and predict circuitry is implemented through 
logic in which the 60 bit positions are arranged in four-bit 



groups, and these groups divided into four sections. Figure 
1-37 illustrates the logical grouping of the 60 bit positions. 

All adder results are checked using half-sum and full-sum 
error-checking logic. Half-sum checking determines. the 
validity of incoming operands by comparing the odd/even 
bit count with the assigned parity. Full-sum checking 
involves comparing the full-sum resultant bit count with the 
independently generated full-sum parity; an inconsistency 
in either causes a full-sum error. 

Local Storage 

A high-speed transistor storage area, local storage (LS), is 
located within the CPU to reduce the number of main 
storage references required by the CPU during each 
operation. The LS consists of 25 registers for use in storing 
address information, fixed-point, logical, and floating-point 
operands, and the IC contents (IC contents stored in LS 
working register, LSWR, only). Local storage data is 
available to the CPU at 200-ns intervals. In addition to 
reducing the main storage reference, this access time 
increases operational speeds within the CPU. 

The 25 LS registers are grouped as follows: 16 (0-15) 
general-purpose registers (GPR's), 8 (16-23) floating-point 
registers (f PR's), and 1 (24) working register called the 
LSWR. Each register contai_ns 32 data (plus 4 parity) 
positions, and is directly addressable by the Rl, R2, R3, 
Bl, B2, and X2 fields of the instructions, with the 
exception of register 24. Register 24 (LSWR) is not 
available to -the operational program. It is reserved for use 
by ROS microprograms in manipulating information during 
execution of certain instructions. (Such applications in­
clude temporary storage for the contents of the IC when 
the IC is to be used as an operand address register, and 
temporary storage for floating-point second operands while 
prenormalizing the first operand.) 

The eight FPR's (16-23) function as four double-length 
(64-bit) r~gisters. Each double-length register consists of 
two single-length (32-bit) registers coupled as follows: 16 
and 17, 18 and 19, 20 and 21, and 22 and 23. Only the 
leftmost 32 bit positions are used in short-operand floating· 
point instructions, with all 64 positions participating in 
long-operand floating-point instructions. For either short or 
long operands, only the leftmost (even-numbered) registers 
must be addressed. 

Data transferred from LS is checked only upon being 
processed in the adders or when entered into main storage. 

Status Triggers 

The CPU contains eight commonly available status triggers 
(STAT's) to record information that may be significant in 
the execution of present instruction operations. These eight 
triggers are designated as STAT's A-H, and retain such 
information as invalid digit-detection, overflow and carry 
conditions, and negatively signed operands. The STAT's are 
reset at each I-Fetch. 

I' 
I~ 
"'' 

.., 

~ 

' ' ' ' \ 
' ' \ 

' ' ' ' \ 
' ' 

"' go 

<i 
go 

\ 

' ' ' ' '\:.. _______ .;;i 

"'1 
:i I 

g- ~ ~ 
o-

t5 0 

"' "' "' 
c "' -~ "' t :g 

Ji 
N 

"' ;;; .., 
~ .., 
.., 
" !;J 

"' \i' 
g; u 

" ·c, 

"' .s "' 
"' 

~ "' "' N 

"' ;;; .l1 

~ 
.s 

" N 

~ 
" N 

"' N 

::: 
0 
N 

~ 
~ 

~ 

~ 
~ 

~ 

::: 
;! 

"' " 
~ 

" " 

2065 FETOM (9/68} 1-69 



Certain STAT's serve multiple functions and are capable 
of receiving several types of information for use with 
different instructions. The outputs of these multiple-use 
triggers are distributed, via line-sense amplifiers, to the CPU 
areas requiring this information. 

Scan operations test STAT's; during scan in, the eight 
STAT's are set to the state ofT(38) and T(54-60). 

All STAT's are reset by either 'system reset' or 'I-Fetch 
reset' signals, with certain STAT's containing additional 
individual resets. 

In general, all ST AT 's are reset and set during clock time 
of the basic machine cycle. However, certain clock signals 
that control these triggers are delayed 180 ns. This delayed 
operation is necessary to prevent timing problems that 
could arise if the detected conditions occurred too late to 
set a ST AT with normal clock signals. All clock signals that 
control the STAT's are inhibited during scan-in operations 
by an 'FLT inhibit clock' signal. 

Fixed-Point Instructions 

The fixed-point instruction set performs binary arithmetic 
on operands serving as data, addresses, index quantities, and 
counts. Instructions are provided for loading, adding, 
subtracting, comparing, multiplying, dividing, shifting, 
storing, -and converting from binary to decimal and from 
decimal to binary. Table 1-8 lists the fixed-point instruc­
tions. 

For a discussion of number representation, data formats, 
and operand addressing, refer to Section 2 of this chapter. 

Instruction Formats 

The fixed-point instruction set uses three instruction 
formats: 

RR 

Op Code Rl R2 I 
0 7 8 11 12 15 

RX 

Op Code RI I X2 I B2 02 
7 8 11 12 15· 16 19 20 31 

RS 

Op Code RI R3 62 02 
0 7 8 11 12 15 16 19 20 31 

In the RR format, RI specifies the address of the GPR 
containing the first operand and R2 specifies the address of 
the GPR containing the second operand. Both the first and 
second operands may be specified by the same GPR. 

1-70 (9/68) 

In the RX format, RI specifies the address of the GPR 
containing the first operand. The contents of the GPR 
specified by the X2 and B2 fields are added to the contents 
of the D2 field to form an address designating the main 
storage location of the second operand. 

In the RS format, RI specifies the address of the GPR 
containing the first operand. The contents of the GPR 
specified by the B2 field are added to the contents of the 
D2 field to form an address. This address designates the 
main storage location of the second operand for Load 
Multiple and Store Multiple instructions. In shift 
operations, the low-order six bits of the address specify the 
number of bit positions to be shifted. The R3 field specifies 
the address of GPR for Load Multiple and Store Multiple 
instruction and is ignored in the shift operations. 

Data Flow 

The data flow path for fixed-point operations is shown in 
Diagram 3-3, FEMDM. The functional units used to 
perform the major functions for fixed-point operations are: 
1. ST. Holds the second operand and assembles data before 

it is sent to LS or main storage. (T is the only register 
that can transfer data to the LS.) 

2. AB. Holds the first operand and assembles data during 
an operation. 

3. F. Assembles product and quotient bits during multiply 
and divide operations; holds the binary bits to be 
converted during convert operations. 

4. E. Controls product and quotient derivation; als9 ·con­
tains instruction op code and number of shifts when 
performing shift instructions. 

5. Parallel adder. Manipulates the operands to obtain the 
desired result. Is al8o the central point in the data path 
between ST and AB. 

6. Serial adder. Calculates product and quotient bytes. Is 
also the central point in the data path between F and AB 
and between F and ST. 

7. STC. Controls selection of data from and placement of 
data into ST, primarily during multiply, divide, and 
convert operations. 

8. D. Addresses second operand located in main storage. 

Program Interruptions 

Six program interruptions can occur during execution of 
fixed-point instructions. Of the six, only fixed-point over­
flow can be masked off; the others are unconditionally 
taken. If the fixed-point overflow ma~ bit [PSW(36)] is a 
0, the fixed-point overflow interruption is ignored; if a I, it 
is taken. 

The six interruptions and their causes are: 
I. Protection. The storage key of a main storage location 

does not match the storage protection key in the PSW. 
The instruction is suppressed for a store violation, unless 
it is the Store Multiple instruction, which is terminat~d. 
For a fetch violation, the instruction is terminated. 



Table 1-8. Fixed-Point Instructions 

Mne- Op Program 
Instruction monic Code Format Operandi Function Interruptions Condition Code 

Add A 5A RX R1 Algebraically add 2nd opr (in stg) to 1st opr (in Prot lfl 0 :Sum=O 
02(X2,82) GPR per R 1) & place result into 1st opr location. Adr 1: Sum<o 

0(21) determines which word of doubleword Spec 2 :Sum>o 
from stg is 2nd opr: if 1, right word; if 0, left Fix.Pt Ovflo 3: Overflow 
word. 

Add AR 1A . RR R1 Algebraically add 2nd opr (in GPR per R2l to 1st Fix .Pt Ovflo 0: Sum =O 
R2 opr (in GPR per R1) & place result into 1st opr ·1 :Sum<o 

location. 2 :Sum>o 
3: Overflow 

Add Halfword·. AH 4A RX R1 Algebraically add halfword 2nd opr (in stg) to 1st Prot (Fl 0: Sum=O 
02(X2,B2l opr (in GPR per R1) & place result into 1st opr Adr 1: Sum<o 

location. Spec 2 :Sum>o 
1. 0(21) determines which ward of doubleword Fix.Pt Ovflo 3: Overflow 

from stg contains halfword 2nd opr: If 1, 
right word; if 0, left word. 

2. 0(22) determines which half of word is 
halfword 2nd opr: If 1, right half; if 0, left 
half. 

3. Halfword 2nd opr is expanded to full word 
before. addition by propagating sign bit 
through 16 high-order bits .. 

Add Logical AL 5E RX R1 Algebraically add 2nd opr (in stg) to 1st opr (in Prot (Fl 0 : Sum = 0 (no carry) 
02(X2, 82) GPR per R 1) & place result into 1st opr location. Adr 1 : Sum *O (no carry) 

1. 0(21 I determines which word of doubleword Spec 2 : Sum.= 0 (carry) 
from stg is 2nd opr: if 1, right word; if 0, left 3 : Sum *o (carry) 
word. 

2. Sign bit of result is treated as high-order 
integer & is tested for carry to determine CC. 

Add Logical ALR 1E RR R1 Algebraically add 2nd opr (in GPR per R2l to 1st None 0 : Sum = 0 (no carry) 
R2 opr (in GPR per R 1) & place result into 1st opr 1 : Sum *o· (no carry) 

location. 2 : Sum = 0 (carry) 
Sign bit of result is treated as high-order integer 3 : Sum *O (carry) 
& is tested for carry to determine CC. 

Compare c 59 RX R1 Algebraically compare 1st opr (in GPR per R1 l with Prot (Fl 0: Opr 1 = Qp(2 
021x2. 021 2nd opr (in stgl & set CC according to result. Adr 1 : Opr 1 <Opr 2 

0(211 determines which word of doubleword Spec 2: Opr 1 >opr2 
from stg is 2nd opr: if 1, right word; if 0, left 
word. 

Compare CR 19 RR R1 Algebraically compare 1st opr (in GPR per R1l with None 0 : Opr 1 = Opr 2 
R2 2nd opr (in GPR per. R21 & set CC according to 1: Opr 1 <opr2 

result. 2: Opr 1>opr2 

Compare Halfword CH 49 RX R1 Algebraically compare 1st opr (in GPR per R 11 with Prot (Fl 0 : Opr 1 = Opr 2 
02(X2,82) halfword 2nd opr (in stgl & set CC according to Adr 1 : Opr 1 < Opr 2 

result, Spec 2: Oprl >Opr 2 
1. 0(21) determines which word of doubleword 

from stg contains halfword 2nd opr: if 1, 
right word; if 0, left word.· 

2. 0(221 determines which half of word is 
halfword 2nd opr: if 1, right half; if 0, left 
half. 

3. Halfword 2nd opr is expanded to. full word 
before comparison by propagating sign bit 
through 16 high-order bits. 

Convert to Binary eve 4F RX R1 Convert radix of 2nd opr (in stg) from decimal to Prot (Fl Unchanged 
D2(X2, 821 binary & place result into 1st opr location (in GPR Adr 

per R11. Spec 
1. 2nd opr is doubleword in packed format Data 
2. High-order word is converted first. Fix.Pt Div 
3. Max positive integer that can be converted is 

+2, 147,483.647. 
4. Max negative integer that can be converted is 

·2, 147,483,648. 

2065 FETOM, (9/68) 1-71 



Table 1-8. Fixed-Point Instructions (Cont) 

I nltnlctlon 

Convert to Decimal 

Divide 

Divide 

Load 

Load 

Load & Test 

Load Complemant 

Load Halfword 

1-72 (9/68) 

Mne­
monic 

CVD 

D 

DR 

L 

LR 

LTR 

LCR 

LH 

Op 
Code 

4E 

5D 

1D 

58 

18 

12 

13 

48 

Format 

RX 

RX 

RR 

RX 

RR 

RR 

RR 

RX 

Operands 

R1 
D2(X2, 821 

R1 
D2IX2, 821 

R1 
R2 

R1 
D2(X2,821 

R1 
R2 

R1 
R2 

R1 
R2 

R1 
D2fX2,B21 

Function 

Convert radix of 1st opr fin GPR Pllf R 11 from 
binary to decimal & place result into 2nd opr 
location On stgl. -

1. Result is in P.&Cked format on doubleword 
boundary. 

2. Low-order 4 bits of field are sign. 
3. If PSW(12l = 1, usa USASCil-8 code for sign; 

if PSW(121=0, usa EBCDIC code. 

Divide 1st opr fin GPR per R 1 & R 1 + 11 by 2nd 
opr fin stgl & piece result into 1st opr ·location 
(remainder in GPR per R1; quotient in GPR per R1 
+ 1). 

1. R1 must be even adr. 
2. D(211 determines which word of doubleword 

from stg Is divisor: If 1, right word; if 0, left 
word. 

3. Relative value of opr's must result in 
quotient expressible in 32-bit signed integer. 

4. Sign of quotient is determined algebraically, 
except 0 quotient is positive. 

5. Sign of remainder ls same as sign of dividend, 
except 0 remainder is positive. 

Program 
Interruptions 

Prot ISi 
Adr 
Spec 

Prot (Fl 
Adr 
Spec 
Fix.Pt Div 

Divide 1st opr (In GPR per-R1 & R1 + 1) by 2nd Spec 
opr fin GPR per R21 & place result into 1st opr Fix.Pt Div 
location (remainder in GPR per R 1; quotient in 
GPR per R1+1). 

1. R1 must be even adr. 
2. Relative value of opr's must result in 

quotient expressible in 32-bit signed integer. 
3. Sign of quotient is determined algebraically, 

except 0 quotient is positiva. 
4. Sign of remainder is sama as sign of dividend, 

except 0 remainder is positive. 

Load 2nd opr fin stgl into 1 It opr location fin GPR 
per R11. 

1. Df21 I determinas which word of doubleword 
from stg is to be stored: if 1, right word; if 0, 
left word. 

2. 2nd opr is unchanged. 

Load 2nd opr fin GPR per R21 into 1st opr location 
fin GPR per R11. 

2nd opr is unchanged. 

Load 2nd opr fin GPR per R21 irito 1st opr location 
fin GPR per R 11 & set CC according to result. 

2nd opr Is unchanged. 

Load 2's complement of 2nd opr fin GPR per R2l 
into 1st opr location fin GPR per R11 & set CC 
according to result. 

Overflow occurs only if max negative number is 
2's cornplemanted. 

Load halfword 2nd opr fin stgl into 1st opr location 
fin GPR per RO. 

1. Df21 I determines which word of doubleword 
from stg contains halfword 2nd opr: if 1, 
right word; if 0, left word. 

2. D(221 determines which half of word is 
halfword 2nd opr: if 1, right half; if 0, left 
half. 

3. Halfword 2nd opr is expanded to full word 
before loading by propagating sign bit 
through 16 high-order bits. 

Prot (Fl 
Adr 
Spec 

None 

None 

Fix.Pt Ovflo 

Prot (Fl 
Adr 
Spec 

Condition Code 

Unchanged 

Unchanged 

Unchanged 

Unchanged 

Unchanged 

0: Result= 0 
1 : Result<o 
2: Result>o 

0: Result= 0 
1 : Result<o 
2: Result>o 
3_ : Overflow 

Uncha_nged 



Table 1-8. Fixed-Point Instructions (Cont) 

Instruction 

Load Multiple 

Load Negative 

Load Positive 

Multiply 

Multiply 

Multiply Halfword 

Shift Left Double 

Shift Left Single 

Mne· Op 
manic ·code For~~ Operands 

LM 9S RS R1 

LNR 11 

LPR 10 

M 5C 

MR 1C 

MH 4C 

SLOA SF 

SLA SB 

RR 

RR 

RX 

RR 

RX 

RS 

RS 

R3 
D2(B2) 

R1 
R2 

R1 
R2 

R1 
02(X2, 82) 

R1 
R2 

R1 
02(X2, 82) 

R1 
02(82) 

R1 
02(82) 

Program 
Function Interruptions Condition Code 

load 2nd opr (as many. words as required; in stgl Prot (F) Unchanged 
into GP R's, in ascending order. starting with 1st opr Adr 
location (per R 1 I & ending with 3rd opr location Spec 
(per R3). 

1. 2nd opr is unchanged. 
2. If R1 = R3, only 1 word is loaded. 
3. If R3 < R 1, GPA adr's wraparound from 15 

to O • 
. 4. 0(21) determines which word of doubleword 

from stg is to be loaded into LS: if 1, right 
word; if 0, left word. 

Load 2nd opr (unchanged if negative, 2's None 0: Result= 0 
1 : Result<o complemented if positive; in GPR per R2) into 1st 

opr location {in GPR per R 1). 
If 2nd opr c 0, unchanged with plus sign. 

Load 2nd opr (unchanged if positive, 2's Fix.Pt Ovflo 0: Result= 0 
2: Result>o 
3: Overflow 

complemented if negative; in GPR per R2) into 1st 
opr lociltion (in GPR per R 1 ). 

Overflow occurs only if max negative number is 
2's complemented. 

Multiply 1st opr (in GPR per R1+1) & 2nd opr (in 
stg) & place 64-bit result into 1st opr location (in 
GPR per R1 & R1+1). 

1. R1 must be even adr. 
2. · 0(21) determines which word of doubleword 

from stg is 2nd opr: if 1, right word; if 0, left 
word. 

Multiply 1st opr (in GPR per R1 + 1) by 2nd opr 
(in GPR per R2) & place 64-bit result into 1st opr 
location (in GPA per R1 & R1+1). 

R 1 must be even adr. 

Multiply 1st opr (in GPR per R1) & halfword 2nd 
opr (in stgl & place low-order 32 bits of result into 
1st opr location. 

1. 0(21 I determines which word of doubleword 
from stg contains halfword 2nd opr: if 1, 
right word; if 0, left word. 

2. 0(22) determines which half of word is 
halfword 2nd opr: H 1, right half; if 0, left 
half. 

3. Halfword 2nd opr is expanded to full word 
before multiplication by propagating sign bit 
through 16 high-order bits. 

Shift 1st opr (in GPA per R 1 & R 1 + 1) left number 
of bit positions specified by low-order 6 bits of 2nd 
opr adr & place result into 1st opr location. 

1. R 1 must be even adr. 
2. High-order bits of 1st opr are shifted out & 

lost; low-order vacated bits are made O's. 
3. If bit unlike 'sign bit is shifted out of bit 

position 1 of even register, fixed-point 
overflow occurs. 

Shift 1st opr (in GPR per R1) left number of bit 
positions specified by low-order 6 bits of 2nd opr 
adr & place result into 1st opr location. 

1. High-order bits of 1st opr are shifted out & 
lost; low-order vacated bits are made O's. 

2. If bit unlike sign bit is shifted out of bit 
position 1 of even register. fixed-point 
overflow occurs. 

Prot (F) 
Adr 
Spec 

Spec 

Prot (Fl 
Adr 
Spec 

Spec 
Fix -Pt Ovflo 

Unchanged 

Unchanged 

Unchanged 

0: Result= O 
1 : Result <o 
2: Result >o 
3: Overflow 

Fix.Pt Ovflo 0 : Result = 0 
1 : Result <o 
2: Result >o 
3: Overflow 

2065 FETOM (9/68) 1-73 



Table 1-8. Fixed-Point Instructions (~ont) 

I nstructlon 

Shift Right Double 

Shift Right Single 

Store 

Store Halfword 

Store Multiple · 

Subtract 

Subtrect 

Subtrect Halfword 

1-74 (9/68) 

Mne­
monic 

SADA 

SRA 

ST 

STH 

STM 

s 

SR 

SH 

Op 
Code 

SE. 

SA 

50 

40 

90 

58 

18 

48 

Format 

RS 

RS 

RX 

RX 

RS 

RX 

RR 

RX 

Operands 

R1 
D2(82) 

R1 
D2(82) 

R1 
D2(X2, 82) 

R1 
D2IX2,B2) 

R.1 
R3 
D2(82) 

R1 
D2(X2, 82) 

R1 
R2 

R1 
D2(X2,B21 

Function 

Shift 1st opr (in GPA per R1 & R1 + 1) right 
number of bit positions specified by low-order ·5 
bits of 2nd opr edr & place result into 1st opr 
locetion. 

1. R 1 must be ev_en edr. 
2. Low-order bits of 1st opr are shifted out & 

lost; high-order vacated bits are made equlll 
to sign bit. 

Shift 1st opr (In GPR per R1) right number of bit 
positions specified by low-order 6 bits of 2nd opr 
adr & place result into 1st opr location. 

· Low-order bits of 1st opr are shifted out & lost; 
high-order vacated bits are made equal to sign 
bit. 

Store 1st opr (in GPR per Rtlinto 2nd opr location 
(in stg). 

1. PAL(61) determines into which word of 
doubleword in stg 1st opr is to be stored: if 
1, right word; if 0, left word. 

2. 1st opr is unchanged. 

Store halfword 1st opr (in GPR per R 1) into 2nd 
opr location (in stg). 

1. ABC selects 16 low-order bits of 1st opr for 
storage; high·order bits are ignored. 

2. STC [D(21-23U positions 16 low-order bits 
of 1st opr into doubleword 2nd opr location. 

3. 1st opr is unchanged. 

Store into 2rid opr location (as many words as 
required; in stg) contents of GPR's, in ascending 
order, starting with 1st opr location (per R11 & 
ending with 3rd opr location (per R31. 

1. GPR adr's wrap around from 15 to 0. 
2. D(21) · determines into which word of 

doubleword in stg contents of 1st GPR are to 
be stored: if 1, right word; if 0, left word. 

3. If R1 = R3, 1 word is stored. 

Algebraically subtract 2nd opr (in stgl from 1st opr 
(in GPR per R 1) & place result into 1st opr 
location. 

D(21) determines which word of doubleword 
from stg is 2nd opr: if 1; right word; if 0, left 
word. · 

Algebraically subtract 2nd opr (in GPA per R21 
from 1st .opr Un GPR per R11 & place result into 
1st opr location. 

Algebraically subtract halfword 2nd opr (in stg) 
from 1st opr (in GPA per R 1) & place result into 
1st opr location. 

1. D(211 determines which word of doubleword 
from stg contains halfword 2nd opr: if 1, 
right word; if 0, left word. 

2. D(22) determines which half of word is 
halfword 2nd opr: if 1, right half; if 0, left 
half. 

3. Halfword 2nd opr is expanded to full word 
before subtraction by propagating sign bit 
through 16 high-order bits. 

Program 
Interruptions 

Spec 

None 

Prot (SI 
Adr 
Spec 

Prot ISi 
Adr 
Spec 

Prot (SI 
Adr 
Spec 

Prot lFI 
Adr 
Spec· 
Fix·Pt Ovflo 

F ix·Pt Ovflo 

Prot (Fl 
Adr 
Spec 
Fix-Pt Ovflo 

Condition Code 

0: Result= 0 
1: Result<o 
2: Result>O 

0: Result= 0 
1: Result<o 
2: Result>o 

Unchanged 

Unchanged 

Unchanged 

0: Dif = 0 
1: Dif<O 
2: Dif>O 
3: Overflow 

0: Dif = 0 
1: Dlf<O 
2: Dif>O 
3: Overflow 

0: Dif=O 
1: Dif<O 
2·: Dit>O 
3: Overflow 



Table 1-8. Fixed-Point Instructions (Cont) 

Mne- Op Program 
Instruction monic Cocie Format Operands Function I ntarruptlons coridition Code 

Subtract Logical SL 5F RX R1 Algebraically subtract 2nd opr lin stg) from 1st opr Prat IFI 1 Dif ¢ti Ina carry) 
D2IX2,B21 (in GPR per R ti & place result into 1st opr Adr 2 01f = o lcarrv> 

location. Spac 3 Dif ¢0 lcarryl 
·· 1. Dl21l·determinaswhichwordofdoubleword 

from stg is 2nd opr: if 1, right word; if 0, laft 
word. 

2. Sign bit of result Is treilted as high-order 
integer & is tasted for carry to determine CC. 

Subtract Logical SLR 1F RR R1 Algebraically subtract 2nd opr lin GPR SIS R21 Nona 1: Dif¢0 Ina carry) 
R2 from 1st opr lin GPR per R 11 & place result Into 2 : Dif = 0 !carry) 

1st opr location. 3 : Dif ¢ lcarryl 
Sign bit of result Is treeted as high-order integer 
& is tested for carry to determine CC. 

2. Addressing. An address designates a location outside the 
available main storage capaCity. The instruction is 
terminated except for the Store, Store Halfword, and 
Convert to Decimal instructions, which are suppressed. 
Operand addresses are tested only when used to address 
storage. Addresses used as a shift amount are not tested. 
The address restrictions do not apply to the D2 field or 
to the contents of the GPR 's addressed by the X2 and 
B2 fields. 

3. Specification. A data, instruction, or control word 
address does not specify an integral boundary for the 
unit of information, or the Rl field of an instruction 
specifies an odd register address for a pair ofGPR's that 
contain a doubleword operand. The operation is sup­
pressed. 

4. Data. A sign or digit code of the decimal operand in the 
Convert to Binary instruction is incorrect. The operation 
is terminated. 

5. Fixed-point overflow. A high-order carry occurs, or 
high-order significant bits are lost in load, add, subtract, 
or shift oper.ations. The instruction is completed by 
ignoring the overflow. The interruption may be masked 
off by making the fixed-point overflow mask bit 
[PSW(36)] a 0. If the mask bit isa 1, the interruption is 
taken. 

6. Fixed-point divide. The quotient of a division, including 
division by zero, exceeds the register size, or the result 
of the Convert to Binary instruction exceeds 31 bits. If 
the interruption occurs during division, the operation is 
suppressed. If the interruption occurs during the Convert 
to Binary instruction, the conversion .is completed but 
only the low-order 32 bits of the converted data are 
placed into LS. 

Condition Codes 

The results of fixed-point load, add, subtract, compare, and 
shift instructions set the CC in the PSW (Table 1-8). All 
other fixed-point instructions leave the CC undisturbed. 

For fixed-point arithmetic operations, the CC can be set 
to reflect three types of results: 
1. For most operations, codes 0, 1, and 2 indicate the 

result is zero, less than zero, or greater than zero, 
respectively, and code· 3 indicates fixed-point overflow. 

2. For compare.operations, codes 0, 1, and 2 indicate that 
the first operand is equal to, lower than, or higher than 
the second operand, respectively. 

3. For Add Logical and Subtract Logical instructions, 
codes 0 and 1 indicate a zero and non-zero result, 
respectively, in the absence of a logical carry out of the 
sign position; codes 2 and 3 indicate a zero and nonzero 
result, respectively, with a carry out of the sign position. 

Floating-Point Instructions 

The floating-point instructions serve to load, add, subtract, 
compare, halve, multiply, divide, and store floating-point 
numbers. These instructions may occur in the RR format 
for register-to-register transfers or in the RX format for· 
register-to-storage transfers. Eight 32-bit FPR's in LS are 
reserved exclusively for floating-point instructions. They 
are logic~y connected by pairs to form four 64-bit FPR's. 
At the ·end of the execution of the floating-point add, 
subtract, compare, and certain load instructions, a CC is set. 

Operands may be either short or long. Short operands 
are a word long (32 bits) and long operands are a 
doubleword long (64 bits). Long operands provide greater 
precision; however, where great precision is not necessary, 
short operands reduce instruction execution time and the 
amount of storage required. 

Operands and final arithmetic results are always in true 
form (as opposed to complement form). A 0 in the sign 
position indicates a positive fraction; a 1, a negative 
fraction. If intermediate results are in complement form, 
they are changed to true form before the final result is 
stored into the first operand location. For the add, 
subtract, multiply, and divide instructions, the result signs 
are determined algebraically. 

2065 FETOM (9/68) 1-75 



Table 1-9 lists the floating-point instructions. For a 
discussion of number representation, data formats, normal­
ization, and operand addressing, refer to Section 2 of this 
chapter. 

Instruction Formats 

• Floating-point instructions use RR and RX formats. 

• Programmer must specify even FPR of even/odd pair (0, 
2, 4, or 6). 

• Main storage address of second operand must designate 
word boundaries (bits 22 and 23 "' 00) for short 
operands and doubleword boundaries (bits 21, 22, and 
23"' 000) for long operands. 

Floating-point instructions occur in the RR and RX 
formats: 

RR 

I Op Code Rl R2 I 
0 78 11 12 15 

RX 

Op Code Rl I X2 B2 D2 ' 
7 8 11 12 15 16 19 20 31 

In these formats, Rl is the address of an FPR that 
contains the first operand. The second operand location is 
defined differently for the two formats. · 

In the RR format, R2 is the address of an FPR 
containing the second operand. The same FPR may be 
specified for the first and second operands. 

The RI and R2 fields must specify 0, 2, 4, or 6, or a 
specification program interruption occurs. The specification 
check is made by testing E(8) and E(ll) for zero; for RR 
instructions, E(12) and E(IS) are tested for zero. If E(ll) 
or E(lS) does not equal zero, an odd address has been 
specified. If E(8) or E(12) does not equal zero, the 
specified FPR address is greater than 7. Thus, if any of the 
tested E bits equals 1, a specification program interruption 
is taken. 

In the RX format, the contents of the GPR's specified 
by X2 and B2 are added to the contents of the D2 field to 
form an effective address designating the main storage 
location of the second operand. A zero in an X2 or B2 field 
indicates that no index or base component is to be used. 
The main storage address should designate word boundaries 
for short operands (bits 22 and 23 "' 00) and doubleword 
boundaries (bits 21, 22, and 23 "' 000) for long operands. 
Otherwise, a specification program interruption occurs. 

The results replace the first operand except for store 
operations, where result replaces the second operand. 
Except for the storing _of the final result, the contents of all 
LS registers and main storage locations participating in 
operand addressing or operation execution remain 
unchanged. 

1-76 (9/68) 

Data Flow 

• Eight 32-bit LS registers are reserved for floating-point 
instructions. 

• Micro-orders control low-order fraction fetch. 

• LS FPR address specified must be even (0, 2, 4, or 6). 

• Sign-handling is achieved via serial adder or STAT's. 

• Characteristic-handling is performed via serial adder. 

• Fraction-handling is performed via parallel adder. 

Eight 32-bit LS registers (addresses 16-23) are reserved for 
floating-point instruction operands and results (Diagram 
3-4, FEMDM). An even/odd pair of these registers functions 
as a double-length (64-bit) register with an assigned address 
of 0, 2, 4, or 6. A 0 in the Rl or R2 field of a floating-point 
instruction specifies LS locations 16 and 17; a 2 specifies 
locations 18 and 19; a 4 specifies locations 20 and 21; a 6 
specifies locations 22 and 23. 

In instructions other than floating-point, addressing is 
limited to 16 GPR.'s because the Rl and R2 fields contain 
four bits each. The LS address register (LAL), however, 
contains five bits; LAL(O) is used to address the FPR's. 
Because floating-point instructions must specify an LS 
address of 0, 2, 4, or 6 in the Rl and R2 (RR only) fields, 
and use only the FPR's for operands, a 1 is forced into 
LAL(O) when accessing LS durillg execution of a floating­
point instruction. (Note that, for RX format instructions, 
the base and index register fields specify GPR's.) For 
example, if address 0 is specified by the Rl or R2 field, LS 
accesses LS register 16 (LAL = 10000). Short operand 
instructions fetch only 32 bits (single word) from the 
specified FPR. Because ingating and outgating of LS are 
limited to 32 bits each, long floating~point operands must 
be divided into two 32-bit words stored in an even/odd pair 
of FPR's. Under micro-order control, a 1 is forced into the 
low-order bit position of LAL [LAL(4)] to fetch or store 
the low-order 32 bits of a long operand from Rl plus 1 or 
R2 plus 1. For example, the 'RF*E3fll' micro-order 
specifies the FPR addressed by E(l 2-15) + 1. The Rl + 1 
and R2 + 1 registers are the odd-numbered addresses of 
FPR's. 

At the beginning of the execution phase of floating­
point instructions, a specification test establishes that: 
1. An even register is specified in the Rl and R2 (RR 

format only) fields. 
2. A register address greater than 6 is not specified in the 

Rl and R2 (RR format only) fields. 
3. The effective main storage address is on a doubleword 

boundary for long operands and on a word boundary for 
short operands. 

Data flow may be divided into two paths: the fraction 
path and the sign and characteristic path. The fractions are 
transferred, added, or shifted via the parallel adder. The 
operands are located in DT, ST, and AB. For floating-point 



Table 1-9. Floating-Point Instructions 

Mne· Op Program 

Instruction manic Code Format Operands Function Interruptions ·Condition Code 

Add Normalized AD 6A RX R1 Algebraically add 2nd opr (in stg) to 1st opr (iii Prot (F) O: Freet= O 

(long) D2(X2, 821 FPR per R1 & R1 + .1)-& place normalized result Adr 1: Fract<o 
into 1st opr location. Spec 2: Fract>o 

1. Low-order fraction of 1st opr must be Exp Ovflo 
fetched from LS. Exp Unflo 

2. Set CC per result sign & magnitude. Sign if 

Add Normalized ADR 2A RR R1 Algebraically add 2nd opr (in FPR per R2 & R2 + Spec 0: Freet= 0 
(long) R2 1) to 1st opr (in FPR per R1 & R1 + 1) & place Exp Ovflo 1: Fract<o 

normalized result into 1st opr location. Exp Unflo 2: Fract>o 
1 . Low-order fractions of 1st & 2nd opr's must Sign if 

be fetched from LS. 
2. Set CC per result sign & magnitude. 

Add Normalized AE 7A RX R1 Algebraically add 2nd opr (in stg) to 1st opr (in Prot (F) 0: Freet= 0 
(short) D2(X2, 82) FPR per R1) & place normalized result into 1st opr Adr 1 : Freet <o 

location. Spec 2: Freet >o 
1. Low-order half of FPR iS ignored & Exp Ovflo 

unchanged. Exp Unflo 
2. D(21) determines which half of doubleword Sign if 

from stg is 2nd opr; if 1, right half; if 0, left 
'--

half. 
3. Set CC per result sign & magnitude. 

Add Normalized AER 3A RR R1 Algebraically add 2nd opr (in FPR per R2) to 1st Spec 0: Freet= 0 
(short) R2 opr (in FPR per R1) & place normalized result into Exp Ovflo 1 : Fract<o 

1st opr location. Exp Unflo 2: Fract>o 
1·. Low-order halves of FPR's are ignored & Sign if 

unchanged. 
2. Set CC per result sign & magnitude. 

Add Unnormalized AW 6E RX R1 Algebraically add 2nd opr (in stg) to 1st opr (in Prot (F) 0: Fract= 0 
(long) D2(X2, 82) FPR per R 1 & A 1 + 1) & place unnormalized result Adr 1 :Fract<o 

into 1st opr location. Spec 2: Freet >o 
1. Low-order fraction . of 1st opr must be ExpOvflo 

fetched from LS. Sign if 
2. Set CC per result sign & magnitude. 

Add Unnormalized AWA 2E AA R1 Algebraically add 2nd opr (in FPA per A2 & R2 + Spec 0: Freet= 0 
(long) R2 1) to 1st opr (in FPR per A1 & A1+1) & place Exp Ovflo 1 : Fract<o 

unnormalized result into 1st opr location. Sign if 2: Fract>o 
1 . Low-order fractions of 1st & 2nd opr's must 

be fetched from LS. 
2. Set CC per result sign & magnitude. 

Add Unnormalized AU 7E RX A1 Algebraically add 2nd opr (in stg) to 1st opr (in Prot (F) 0: Freet= 0 
(short) D2(X2, 82) FPR per A1) & place unnormalized result into 1st Adr 1:Fract<o 

opr location. Spec 2: Freet >o 
1. Low-order half of FPA is ignored & Exp Ovflo 

unchanged. Sign if 
2. D(21) determines which half of doubleword 

from stg is 2nd opr: if 1, right half; if 0, left 
half. 

3. Set CC per result sign & magnitude. 

Add Unnormalized AUR 3E RR A1 Algebraically add 2nd· opr (in FPR per A2) to 1st Spec 0: Freet= 0 
(short) R2 opr (in FPA per A 1) & place unnormalized result Exp Ovflo 1 :Fract<o 

into 1st opr location. Sign if 2: Fract>o 
1. Low-order halves of FPA's are ignored & 

unchanged. 
2. Set CC per result sign & magnitude. 

Compare (long) CD 69 AX R1 Algebraically compare 1st opr (in FPA per R 1 & R 1 Prot (F) 0 : Opr 1 = Opr 2 
D2(X2, 82) + 1) with 2nd opr (in stg); CC indicates result. Adr 1 : Opr 1 < Opr 2 

1. Low-order fraction of 1st opr must be Spec 2 : Opr 1 > Opr 2 
fetched from LS. 

2. Opr's remain unchanged. 

2065 FETOM (9/68) 1-77 



Table 1-9. Floating-Point Instructions (Cont) 

Instruction 

Compare (long) 

Compare (short) 

Compare (short) 

Divide Uong) 

Divide (long) 

Divide !short) 

Divide !short) 

Halve (long) 

Halve !short) 

Load (long) 

1-78 (9/68) 

Mne- Op 
monic Code Format Operands 

COR 29 RR R1 

CE 79 

CER 39 

DD 60 

DOR 20 

OE 70 

DER 30 

HOR 24 

HER 34 

LO 68 

RX 

RR 

RX 

RR 

RX 

RR 

RR 

RR 

RX 

R2 

R1 
D2(X2, 82) 

R1 
R2 

R1 
02(X2,B2) 

R1 
R2 

R1 
02(X2,B2) 

R1 
R2 

R1 
R2 

R1 
R2 

R1 
D2(X2,B2) 

Function 

Algebt;iically compare 1st opr (in FPR per R1 & R1 
+ .. 1) with 2nd opr (in FPR per R2 & R2 + 11; CC 
indica.es result. 

1. Low-order fractions of 1st & 2nd opr's must 
be fetched from LS. 

2. Opr's remain unchanged. 

Algebraically compare 1st opr (in FPR per R11 with 
2nd opr (in stg); CC Indicates result. 

1 . Low-order half of FP R is ignored. 
2. 0(21 I determines which half of doubleword 

from stg is 2nd opr: if 1, right half; if 0, laft 
half. 

3; Opr's remain unchanged. 

Algebraically compare 1st opr (in FPR per R11 with 
2nd opr lin FPR per R21; CC indicates result. 

1. Low-order halves of ·FPR's are ignored. 
2. Opr's remain unchanged. 

Divide 1st opr Un FPR per R1 & R1 + 1) by 2nd 
opr (In stgl & place normalized quotient into 1st 
opr location. 

1. Low-order fraction of 1st opr must be 
fetched from LS. 

2. Opr's are prenormallzed. 
3. Remainder is not saved. 

Oivide 1st <;>pr (in FPR per R1 & R1 + 11 by 2nd 
opr (in FPR per R2 & R2 + 11 & place normalized 
quotient into 1 St opr location. 

1. Low-order fractions of 1st & 2nd opr's must 
be fetched from LS. 

2. Opr's are prenormalized. 
3. Remainder is not saved. 

Divide 1st opr (in FPR per R 11 by 2nd opr (in ·stQI 
& place normalized quotient into 1st opr location. 

1. Low-order half of FP R is ignored & 
unchanged. 

2. 01211 determines which.half of doubleword 
from stg is 2nd opr: if 1, right half; if 0, left 
half. 

3. Opr's are prenormalized. 
4. Remainder is not saved. 

Divide 1st opr (in FPR per R11by2nd opr (in FPR 
per R21 & place normalized quotient into 1st opr 
location. 

1. Low-order halves of FPR's are ignored & 
unchanged. 

2. Opr's ara prenormalized. 
3. Remainder is not saved. 

Divide 2nd opr (in FPR per R2 & R2 + 1 I by 2 & 
place normalized quotient into 1st opr location (in 
FPR per R1 & R1 + 11. 

Low-order fraction of 2nd opr must be fetched 
·from LS. 

Divide 2nd opr (in FPR per R21 by 2 & place 
normalized quotient into 1st opr location lin FPR 
per R11. 

Low-order halves of FPR's are ignored & 
unchanged. 

Load 2nd opr (in stgl Into 1st opr location (in FPR 
per R1 & R1+11. 

Program 
Interruptions Condition Code 

Spec O:Opr1=0pr2 

Prot (Fl 
Adr 
Spec 

Spec 

Prot IFI 
Adr 
Spec 
ExpOvflo 
ExpUnflo 
Flt-Pt Div 

Spec 
ExpOvflo 
ExpUnflo 
Flt.Pt Div 

.Prot (Fl 
Adr 
Spec 
ExpOvflo 
Exp Unflo 
Flt.Pt Div 

Spec 
Exp Ovflo 
Exp Unflo 
Flt.Pt Div 

Spec 
Exp Unflo 

Spec 
Exp Unflo 

Prot (Fl 
Adr 
Spec 

1 :Opr1<0pr2 
2: Opr 1>Opr2 

O:Opr1=0pr2 
1: Opr 1 <Opr2 
2 : Opr 1 >opr 2 

0 : Opr 1 = Opr 2 
1: Opr 1 <opr2 
2: Opr 1 >Opr2 

Unchanged 

Unchanged 

Unchanged 

Uncha11ged 

Unchanged 

Unchanged 

Unchanged 



Table 1-9. Floating-Point Instructions (Ccint) 

Mne- Op Program 

Instruction monic Code Format Operands Function Interruptions Condition Code 

Load Oong) LDR 28 RR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st Spec Unchanged 

R2 opr location (in FPR per R1 & R1+1). 
Low-order fraction of 2nd opr must be fetched 
from LS. 

Load (shortl LE 78 RX R1 Load 2nd opr (in stg) into 1st opr location (in FPR Prot (F) Unchanged 

D2(X2, B2) perR1). - Adr 
1. 0(21) determines which half of doubleword Spec 

from stg is 2nd opr: if 1, right half; if 0, left 
half. 

2. Low-order half of FPR is ignored & 
unchanged. 

Load (short) LER 38 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location Spec Unchanged 

R2 (in FPR per R1). 
Low-order halves of FPR's are ignored & 
unchanged. 

Load & Test (long) LTDR 22 RR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st Spec O : 2nd opr fract = 0 

R2 opr location (in FPR per R1 & R1+1). 1: 2ndopr<o 
1. Low-order fraction of 2nd opr must be 2:2ndopr>o 

fetched from LS. 
2. Set CC according to sign & magnitude. 

Load & Test (short) LTER 32 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location Spec O : 2nd opr fract = 0 
Fi2 (in FPR per R1). 1 : 2nd opr<o 

1. Low-order halves of FPR's are ignored & 2: 2nd opr>o 
unchanged. 

2. Set CC according to sign & magnitude. 

Load Complement LCDR 23 RR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st Spec O : 2nd opr tract = 0 
(long) R2 opr location (in FPR per R1 & R1 + 1) with sign 1 : Orig sign + 

complemented. 2 : Orig sign • 
1. Low-order fraction of 2nd opr must be 

fetched from LS. 
2. Set cc according to original sign & 

magnitude. 

Load Complement LCER 33 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location Spec 0 : 2nd opr tract = 0 
(short) R2 (in FPR per R1) with sign complemented. 1 : Orig.sign+ 

1. Low-order halves of FPR's are ignored & 2 : Orig sign • 
unchanged. 

2. Set cc according to original sign & 
magnitude, 

Load Negative (long) LNDR 21 RR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st Spec 0 : 2nd opr tract = 0 
R2 opr location (in FPR per R1 & R1 + 1) with sign 1: 2nd opr<o 

made minus. 
1 • Low-order fraction of 2nd opr must be 

fetched from LS. 
2. Set CC according to result sign & magnitude. 

Load Negative (short) LNER 31 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location Spec 0 : 2nd opr tract = 0 
R2 (in FPR per R 1) with sign made minus. 1 :2ndopr<o 

1. Low-order halves of FPR's are ignored & 
unchanged. 

2. Set CC according to result sign & magnitude. 

Load Positive (long) LPDR . 20 RR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st Spec O : 2nd opr fract = O 
R2 opr location (in FPR per R1 & R1 + 1) with sign 2: 2nd opr >o 

made plus. 
1. Low-order fraction of 2nd opr must be 

.·fetched from LS. 
2. Set CC according to result sign & magnitude. 

Load Positive (short) LPER 30 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location Spec 0 : 2nd opr tract = 0 
R2 (in FPR per R 1) with sign made plus. 2: 2nd opr>o 

1. Low-order halves of FPR's are ignored & 
unchanged. 

2. Set CC according to result sign & magnitude. 

2065 FETOM (9/68) 1-79 



Table 1-9. Floating-Point Instructions (Cont) 

Instruction 

Multiply (longl 

Multiply Uong) 

Multiply (short) 

Multiply (short) 

Store (long) 

Stora (short) 

Subtract Normalized 
(long) 

Subtract Normalized 
!long) 

Subtract Normalized 
(short) 

Subtract Normalized 
(short I 

1-80 (9/68) 

Mne- Op 
monic Code Format 

MO 6C RX 

MOR :!<: RR 

ME 7C RX 

MER 3C RR 

STD 60 RX 

STE 70 RX 

SD 68 RX 

SOR 28 RR 

SE 78 RX 

SER 38 RR 

Operands 

R1 
D2(X2,82l 

R1 
R2 

R1 
D2(X2,82l 

R1 
R2 

R1 
D2(X2,82) 

R1 
D2(X2,82l 

R1 
D2(X2,82) 

R1 
R2 

R1 
D2(X2,82) 

R1 
R2 

Function 

Multiply 1st opr (in FPR per R1 & R1 + 1) & 2nd 
opr (in stg) & place normalized product Into 1st opr 
location (in FPR per R1 & R1 + 1). 

Opr's ara prenormalized. 

Multiply 1st opr Un FPR per R1 & R1 + 11 & 2nd 
opr (in FPR per R2 & R2 + 1) & place normalized 
product Into 1st opr location (in FPR per R 1 & R 1 
+ 1). 

Opr's are prenormalized. 

Multiply 1st opr Un FPR per R11 & 2nd opr (in stg) 
&· place normalized product into 1st opr location 
(In FPR per R1 & R1 + 1). 

1. 0(21) determines which half of doubleword 
from Sig is 2nd opr: if 1, right half; if 0, left 
half. 

2. Opr's are prenormalized. 

Multiply 1st opr (in FPR per R1) & 2nd opr (in 
FPR per R2) & place normalized product into 1st 
opr location Un FPR per R1 & R1+1). 

Opr's are prenormalized. 

Store 1st opr Un FPR per R1 & R1 + 1) Into 2nd 
opr location (in stg). 

1st opr is unchanged. 

Store 1st opr (in FPR per R11into2nd opr location 
(instg). 

1. PAL(611 determines into which half of 
doubleword in Sig 1st opr is to be stored: if 
1, right half; if 0, left half. 

2. ~rder half of FPR is ignored. 
3. 1st opr is unchanged. 

Algebraia!llY subtract 2nd opr (in stg) from 1st opr 
(in FPR per R1 & R1 + 11 & place normalized result 
into 1st opr location. 

1. Low-order fraction of 1st opr must be 
fetched from LS. 

2. Set CC per rasult sign & magnitude. 

Algebraically subtract 2nd opr (in FPR per R2 & 
R2 + 11 from 1st opr Un FPR per R1 & R1+1) & 
place normalized result into 1st opr location. 

1. Low-order fractions of 1st & 2nd opr's must 
be fetched from LS. 

2. Set CC per result sign & magnitude. 

Algebraically subtract 2nd opr (in stg) from 1st opr 
(in FPR per R 11 & place normalized result into 1st 
opr location. 

1. Low-order half of FPR is ignored & 
unchanged. 

2. 0(21) determines which half of doubleword 
from stg is 2nd opr: if 1, right half; if 0, left 
half. 

3. Set CC per result sign & magnitude. 

Algebraically subtract 2nd opr Un FPR per R21 
from 1st opr (in FPR per R11 & place normalized 
result into 1st opr location. 

1. Low-order halves of FPR's are ignored & 
unchanged. 

2. Set CC per result sign & magnitude. 

Program 
I nterruptlons 

Prot (Fl 
Adr 
Spec 
ExpOvflo 
Exp Unflo 

Spec 
Exp Ovflo 
Exp Unflo 

Prot (Fl 
Adr 
Spec 
ExpOvflo 
ExpUnflo 

Spec 
ExpOvflo 
ExpUnflo 

Prot ISi 
Adr 
Spec 

Prot ISi 
Adr 
Spec 

Prot (Fl 
Adr 
Spec 
ExpOvflo 
ExpUnflo 
Sign if 

Spec 
Exp Ovflo 
Exp Unflo 
Sign if 

Prot (Fl 
Adr 
Spec 
Exp Ovflo 
Exp Unflo 
Sign if 

Spec 
ExpOvflo 
Exp Unflo 
Sign if 

Condition i:ode 

Unchanged 

Unchanged 

Unchanged 

Unchanged 

Unchanged 

Unchanged 

0: Fract= 0 
1 : Fract<o 
2: Fract>o 

0: Fract=O 
1: Frect<o 
2: Fract>o 

O: Freet= O 
1 : Fract<o 
2: Frect>o 

0: Freet= 0 
1: Frect<o 
2: Fract>O 



Table 1-9. Floating-Point Instructions (Cont) 

Mne- Op Program 
Instruction monic . Code Format Operands Function I ntarruptions Condition Code 

Subtract Unnormalized SW 6F RX R1 Algebraically subtract 2nd opr (in stg) from 1st opr Prot (Fl 0 Fract= 0 
(long) D2(X2,B2) (in FPR per R 1 & R 1 + 11 & place unnormalized Adr 1 Fract<O 

result into 1st opr location. Spec 2 Fract>O 
1. Low-order fraction of 1st opr must be ExpOvflo 

fetched from LS. Sign if 
2. Set CC per result sign & magnitude. 

Subtract _Unnormalized SWR 2F RR R1 Algebraically subtract 2nd opr (in FPR par R2 & Spec O·: Fract = 0 
(long) 'R2 R2 + 11 from 1st opr (in FPR par R1 & R1+11 & ExpOvflo 1 : Fract<o 

place unnormalized result Into 1st opr location. Sign if 2: Fract>o 
1. Low-order fractions of 1st & 2nd opr's must 

be fetched from LS. 
2. Set CC par result sign & magnitude. 

Subtract Unnormalized SU 7F RX R1 Algebraically subtract 2nd opr (in stg) from 1st opr Prot (Fl 0: Fract= 0 
(short) D2(X2,B21 (in FPR par R 11 & place unnormalized result into Adr 1 : Fract<o 

1st opr location. Spec 2: Fract>O 
1. Low-order half of FPR is ignored & ExpOvflo 

unchanged. Sign if 
2. 0(211 determines which half of doubleword 

from stg is 2nd opr: if 1, right half; if 0, left 
half. 

3. Set CC per result sign & magnitude. 

Subtract Unnormalized SUR 3F RR R1 Algebraically subtract 2nd opr (in FPR per R2l Spec. 0: Fract=O 
(short I R2 from 1st opr (in FPR par R11 & place unnormalized ExpOvflo 1 : Fract<o 

result into 1st opr location. Sign if 2: Fract>o 
1. Low-order halves of FPR's ara ignored & 

unchanged. 
2. Set CC per result sign & magnitude. 

instructions, the parallel adder shifts operands right or left 
four bit positions under micro-order control. For floating­
ppint, the contents of PAL can be gated to T, D, A, and B. 

The sign and characteristic path is from ST or AB to F, 
via the serial adder. The byte gated to the inputs of the 
serial adder depends upon the STC and the ABC values. For 
floating-point, the STC is normally set to 4 to ~pecify the 
first byte of T, and the ABC is set to 0 to specify the first 
byte of A. The data from F is gated to the serial adder. 
From the serial adder, the data is transferred to ST per the 
STC. For floating-point operations, the serial adder adds 1 
to; or subtracts 1 or 64 from, the characteristic at the . 
inputs of the serial adder under micro-order control. 

When the results of the execution of a floating-point 
instruction are to be stored, the STAT's are decoded, under 
micro-order control, to determine the sign of the result. If 
the sign is minus, the 'INSERT SIGN' micro-order forces a 
1 to bit 0 of the FPR (on the LS bus in) addressed by Rl 
and inhibits gating of T(32) to LS. The result sign is minus 
under the following conditions: 

In floating-point instructions, the signs are saved in 
STAT's under micro-order control. When the 'SAVE 
SIGNS' mici:o-order. is executed, bit 0 of the ST byte 
selected by the STC is gated in true or complement form, 
depending upon the instruction, to STAT C. Because the 
STC is set to 0 or 4 before issuing the 'SAVE SIGNS' 
micro-order, the contents of either S(O) or T(32), which­
ever contains the sign of the operand, is saved in STAT C 
via the serial adder. At the same time, the sign of the 
operand in, AB is sent to STAT F. If the instruction is a 
multiply or divide and SAL(O) = 1 (indicating a carry. 
resulted from the characteristic addition or subtraction), 
STAT Dis set. 

1. Multiply or divjde and signs (STAT's C and F) are 
unlike. 

2. Load complement and STAT C equals 0. 
· 3. Halve, load, orload and test, and STAT C equals 1. 
4. Add, subtract, or compare and sign of the larger operand 

is minus. 
5. Load negative. 

Program Interruptions 

Seven program interruptions can occur during execution of 
floating-point instructions. Of the seven, "exponent under­
flow" and "significance" can be masked off; the others are 
unconditionally· taken. If the associated mask bit [PSW( 38) 
and PSW(39), respectively] is a 0, the interruption is 
ignored; if a l, it is taken. 

The seven intem/ptions and their causes are: 
1. Protection. The storage key does not match the protec­

tion key in the PSW for all RX instructions. When an 

2065 FETOM (9/68). 1-81 



instruction causes a fetch-protection violation, instruc­
tion execution is terminated, the program ex~cution is 
altered by a program interruption, and a protection 
program _interruption is indicated in the old PSW. When 
an instruction causes a store-protection violation, the 
operation is suppressed. 

2. Addressing. An address designates a location outside the 
available storage for the installation. The operation is 
terminated. 

3. Specification. A short operand is not located on a word 
boundary, a long operand is not located on a double­
word boundary, or an FPR address other than 0, 2, 4, or 
6 is specified. The instruction is suppressed. The address 
restrictions do not apply to the components (contents of 
the D2 field and the contents of the LS registers 
specified by X2 and B2) from which an address is 
generated. · 

4. Exponent overflow. The result exponent (characteristic) 
of an addition, subtraction, multiplication, or division 
overflows, and the result fraction is not zero. The 
operation is completed by making the characteristic 128 
smaller than the true result; the sign and fraction remain 
unchanged. 

5. Exponent underflow. The result of an addition, subtrac­
tion, multiplication, or division underflows, and the 
result fraction is not zero. A program interruption 
occurs if the exponent-underflow mask [PSW(38)] is a 
1. The operation is completed by replacing the result 
with a true zero, if the mask is off. If the mask is on, the 
characteristic is made 128 larger than the true result and 
the sign and fraction remain unchanged. 

6. Significance. The result fraction of an addition or 
subtraction is zero. A program interruption occurs if the 
significance mask [PSW(39)] is a 1. The mask bit also 
affects the result of the operation. When the significance 
mask bit is a 0, the operation is completed by replacing 
the result with a true zero. When the significance mask 
bit is 1, the operation is completed without further 
change to the characteristic of the result. In either case, 
the CC is set to 0. 

7. Floating-point divide. Division by a number· with a zero 
fraction is attempted. The division is suppressed, but the 
CC and the data in storage remain unchanged. 

Condition Codes 

The results of floating-point add, subtract, compare, and 
certain load operations set the CC (Table 1-9). Multiplica­
tion, division, and storing l~ave the CC unchanged. 

The CC can be set to reflect two types of results for 
floating-point arithmetic. For most operations, CC's of 0, · 1, 
and 2 respectively indicate that the result register contains 
zero, less thari zero, and more than zero. A zero result is 

1-82 (9/68) 

indicated whenever the result fraction is zero, including a 
forced ze ·o. A CC of 3 ~ never set by floating-point 
instructions. 

For compare instructions, CC's of 0, 1, and 2 respective­
ly indicate that the first operand is equal to, lower than, 
and higher than the second operand. 

Decimal Instructions 

The decimal instructions provide for addition, subtraction, 
comparison, multiplication, division, and format conversion 
of variable-field length (VFL) operands. The VFL data, 
which may range from 1 to 16 bytes in length, resides in 
main storage only. All decimal instructions are therefore in 
the SS format to provide for storage-to-storage operations. 
In general, most decimal instructions require fetching the 
operands from main storage, ·performing the operations 
specified by the instruction op code, and storing the results 
in main storage. A list of the decimal instructions is 
contained in Table l-10. 

For a discussion of number representation, data fonnats, 
and operand addressing, refer to Section 2 of this chapter. 

Data Handling 

• Decimal arithmetic is performed by either true add or 
complement add sequence, using excess-6 arithmetic. 

• True add sequence adds 6 to each digit gated to A-side 
of serial adder. 

• Complement add sequence gates 2's complement of each 
digit to A-side of serial adder. 

• Inputs to B-side of serial adder are unchanged. 

• Each digit which did not cause a carry at output of serial 
adder is reduced by 6 (decimal corrected). 

• If no carry from high-order digit, result is in complement 
form and must be recomplemented. 

Decimal arithmetic operations are perfonned in the serial 
adder on a byte basis. A true add or a complement add · 
sequence is used depending upon the instruction and the 
operand signs. Because decimal digits are in BCD format, 
excess-6 arithmetic is used. 

As stated previously, the decimal digits are represented 
by a binary code. Each digit consists of a four-bit field, bit 
combinations 0000-1001 corresponding to decimal digits 
0-9. This system of decimal notation allows relatively 
simple binary techniques to be applied when operating with 
decimal data, and also facilitates direct reading of decimal 
results. However, two problems are encountered. One 
problem is that the four-bit field used to represent decimal 



Table 1-10. Decimal Instructions 

Instruction 

Add Decimal 

Compare Decimal 

Divide Decimal 

Move with Offset 

Multiply Decimal 

Mne· 
monic 

AP 

CP 

DP 

MVO 

Op 
Code 

FA 

F9 

FD 

Ft 

FC 

Format 

SS 

SS. 

SS 

SS 

SS 

Operands 

D1(L 1, 81) 
D2(L2,82) 

D1IL1, 81) 
D2(L2,82l 

D11L 1, 81) 
D2(L2, 82) 

D11L1, 811 
D2(L2,82) 

D1IL1, 81) 
D2(L2,82) 

Function 

Algebraically add. 2nd opr (in stg) to 1st opr (in stgl 
& place result into 1st opr location. 

1. Opr's & result are in packed format. 
2. Opr fields may overlap if low-order bytes 

coincide. 
3. Right to left, byte by byte. 
4. Shorter opr is extended with high-order O's. 
5. 1st .opr field must be large enough to contain 

all 2nd opr significant digits. 

Pregrani 
Interruptions 

Prot (S,FI 
Adr 
Data 
DecOvflo 

Algebraically compare 1st opr (in stg) with 2nd opr Prot (Fl 
(in stg) & set CC according to result Adr 

1 . Opr's are in packed format. Data 
2. Shorter opr is extended with high-order O's. 
3. Opr fields- may overlap If low-order bytes 

coincide. 
4. Right to left, byte by byte. 
5. Result is not stored & opr fields are 

unchanged. 

Divide 1st opr (in stg) by 2nd opr (in stg) & place 
result into 1St opr location (quotient is leftmost in 
1st opr location; remainder, rightmo5t). 

1 . Opr's are in pt!!:ked format. 
2. Div id end must contain at least 1 high-order 

o. 
3. Max dividend field = 16 bytes (31 digits & 

sign); L 1 = 15. 
4. Max divisor field = 8 bVtes (15 digits & sign); 

L2=7. 
5. Divisor field must bi!< dividend field (L2 < 

L11. 
6. Max quotient field = 15 bytes. 
7. Quotient field • dividend field minus 

remainder (divisor) field IL 1 minus L2). 
8. Remainder field = divisor field. 

·. 9. Opr fields may overlap if low-order bytes 
coincide. 

10. Sign of quotient is determined algebraically, 
except 0 result is positive. 

11. Sign of remainder· is same as dividend sign. 

Store 2nd opr (in stg) to left of and adjacent to 
low-order 4 bits of 1st opr (in stg). 

1.· Opr's are in packed or unpacked format. 
2. If 2nd opr ls.shorter than 1stopr,fill 1stcipr 

field with high-order O's. 
3~ If 2nd opr is longer than 1st opr, ignore· 

· excess 2nd opr high-order digits. 
4. Right to left, byte by byte. 

Multiply 1st opr (in stg) by 2nd opr (in stg) & place 
result into· 1st opr location. 

1. Opr's are in pecked format. 
2. Product must contain at least 1 high-order 0. 
3. Max ·multiplicand field = 16 bytes (31 digits 

& sign); L1=15. 
4. Max multiplier field = 8 bytes (15 digits & 

sign); L2 = 7. 
5. Multiplier field must be <multiplicand field 

IL2<L11; max value of L2 = 7. 
6. Multiplicand field initially contains 

high-order O·field equal in length to 
multiplier field. 

7. Max product field = 16 bytes· (31 digits & 
sign). 

8. Sign of product is determined algebraically, 
ex.capt 0 result is positive. 

Prot (S,FI 
Adr 
Spec 
Data 
DecDiil 

Prot (S,F) 
Adr 

Prot (S,F) 
Adr' 
Spec 
Data 

Condition Code 

0 :Sum=O 
1 :Sum<o 
2 :Sum>o 
3. : Overflow 

0 : Opr 1 • Opr 2 
1: Opr t<Opr 2 
2 : Opr 1 >opr 2 

Unchanged 

Unchanged 

Unchanged 

2065 FETOM (9/68) 1-83 



Table 1-10. Decimal Instructions (Cont) 

Mne- Op Program 

Instruction monlc Code Format Operands Function Interruptions Co.ndition Code 

Pack PACK F2 SS D1(Lt, 811 Convert format of 2nd opr (in stol from zoned to Prot IS.Fl Unchanged 
D2ll2, 821 packed & place result into 1st opr locatio~ (in stgl. Adr. 

1. 2nd opr·is in zoned format. 
2. No restriction on overlapping fields. 
3. Extend 2nd opr with high,order O's, if 

necesserv. 
4. If 1st opr field is too short to contain all 

significant digits of 2nd opr field, ignore 
excess 2nd opr high-order digits. 

5. Right to left, bvte bv bvte. 

Subtract Decimal SP FB SS DHL1,B11 Algebraicallv subtract 2nd opr (in stol from 1st opr Prot IS.Fl 0: Dif = 0 
D2IL2, 821 (in stg) & place result into 1st opr location. Adr 1: Dif<O 

1. Opr's & result are in packed format. Data 2: Dif>O 
2 .. Opr fields mav overlap if low-order bvte5 DecOvflo 3: Overflow 

coincide. 
3. 1st opr field must be large enough to contain 

all 2nd opr significant digits. 
4. Shorter opr is extended with high-order O's. 
5. Right to left, bvte bv bvte. 

Unpack UNPK F3 SS DHL1, B11 Convert format of 2nd opr Un stgl from packed to Prot (S,FI Unchanged 
D2(L2, 821. zoned & place result into 1st opr location (in stgl. Adr 

1. 2nd opr is in packed format. 
2. No restriction on overlapping fields. 
3. Extend 2nd opr with high-order O's, if 

necessarv. 
4. If 1st opr field is too short to contain fill 

significant digits of 2nd opr field, ignore 
excass 2nd opr high-order digits. 

5. If PSWl121 = 1, use USASCll-8 code for 
zones; if PSW(121 = 0, use EBCDIC. 

6. Right to left, bvte bv bvte. 

·'·· 
Zero &Add ZAP FB SS OHL 1, 811 Place 2nd opr (in stgl into 1st opr location (in stgl. . Prot IS,FI 0: Result= 0 

D2IL2, B21 1. 2nd opr is in packed format. Adr 1: Result<o 
2. Opr fields mav ·overlap if low-order bvte of Oata 2: Result>o 

1st opr coincides with or is ~ the right of Dec Ovflo 3: Overflow 
low-order bvte of 2nd opr. 

3. 1st opr field must be large enough to contain 
all 2nd opr significant digits. 

digits has 16 possible codes, of which 6 (binary combina­
tions for 10 through 15 indusive) are invalid as decimal 
digits. Thus means must be provided to correct invalid 
:results when they occur in an arithmetic operation. For 
example, the addition of decimal digits 0110 (six) and 0101 
(five) must yield a decimal result ofOOOl 0001 (eleven). If, 
however, a pure binary addition is carried out, it will yield 
an unacceptable result: 

Both of the above problems are solved by the excess-6 
arithmetic scheme and the decimal correction functions of 
the serilj]. adder. In the excess-6 scheme, often referred to as 
true +6 arithmetic, a 6 is added to each digit as it is gated to 
the A-side of the adder, one byte (two digits) at a time 
from the second operand; the digits gated to the adder 
B-side, one byte at a time from the first operand, are not 
·affected: 

0110 (decimal, or binary 6) 
.Q!Q!_ (decimal, or binary 5) 
1011 (invalid as decimal, but 11 in binary) 

The second problem is in the generation of a decimal 
carry. When the sum of two decimal digits exceeds 9, a 
carry must be sent to the next high-order digit. However, a 
pure binary addition does not yield a carry unless the sum 
of the digits exceeds 1111 ( 15), which has the effect of a 
hex carry; i.e., carrying the order of 16 rather than 10. 

1-84 (9/68) 

True Digits .B A True Digits+ 6 



If the sum of the two digits to be added is 10 or greater, 
the true +6 scheme automatically eliminates the unwanted 
binary configuration and also supplies a decimal carry in 
terms of a hex carry. In true +6 arithmetic, the previous 
add example of digits 5 and 6 is executed as follows: 

0110 (Six) 

0101 (Five, True) 
0110 (Plus Six) 
1011 (Excess-6) 

Addition of a 6 in all cases, however, may create an 
erroneous and sometimes invalid result. This occurs if the 
sum of the two digits to be added is less than 10. For 
example, consider the addition of decimal digits 1 and 2: 

0010 (Two} 

0001 (One, True) 
0110 (Plus Six) 

0111 (Excess-6) 

1001 (Excess-6 Result) 

In the above case, the result (9) is clearly in excess-6 form; 
the digit 6 must be subtracted from the result to obtain the 
correct answer. 

· A further example illustrates how an excess-6 digit may 
generate an invalid result. Consider the addition of decimal 
digits 0 and 5: 

0101 (Five)' 
A 

0000 (Zero, True) 
0110 (Plus Six) · 
0110 (Excess-6) 

(Binary combination 11 is 
.__ __ _.___ __ _, an invalid decimal digit) 

Note that both the erroneous and the invalid results are 
characterized by a no-carry to the next high-order digit. 
This condition holds true in all cases when incorrect data is 

I 

generated, and is utilized by the decimal correction logic of 
the adder. When a no-carry condition is detected, this logic 

automatically deducts 6 from the result, thus supplying tlie 
correct digit to the adder output. 

The decimal correct function of the adder is also used 
during complement add operations. The binary codes of the 
decimal digits at the adder A-side are gated in 2's 
complement form; excess 6's are not supplied. The digits at 
the B-side of the adder are gated in true form. The result of 
a complement add operation may be in true or complement 
form. 

For clarity, the previous examples have shown opera­
tions that use only one digit. However, the serial adder 
normally handles one byte (two digits) at a time. To 
demonstrate the operation of the serial adder during 
decimal operations, the following examples deal with a byte 
of data. 

If the first operand is larger than the second, the result is 
in true form. Consider complement addition of decimal 
digit 5 to 6; that is 6 minus 5: 

1st Operand (Six) 
True 

0000 0110 B 

2nd Operand (Five) 
2's Complement 

11111011..i 0000 0101 

A true result during ·a complement add operation is 
always characterized by a carry from the last high-order 
digit. As in the case of the true add operation, a carry to 
the next digit indicates that no decimal correction of that 
digit is necessary. 

If the first operand is smaller than the second, the result 
is in complement form. Because decimal data is always 
stored in true form, the result must be recomplemented. 
Consider complement addition of the decimal digit 6 to 5; 
that is, 5 minus 6: 

1st Operand (Five) 
True 

0000 0101 

No Carry, 
Subtract Six 

2nd Operand (Six) 
2's Complement 

1111 1010-0000 0110 
A . 

1001 1001 

Note that the decimal correction feature of the adder 
always subtracts 6 from each digit positi9n which does not 
produce a carry. In a complement add operation, a no-carry 
condition from the last high-order digit also indicates that 

2065 FETOM (9/68) 1-85 



the result 'is in complement form and must be recomple­
mented. This requires a second pass through the adder: 

1001 1001 1st Pass Result 

+ 
(Zero) 0110 -0111 2 's Complement 

0000 0001 2nd pass result (corrected result) 

Instruction Format 

• Instructions specify two addresses. 

• Bl (contents) + Dl + L1 specifies rightmost byte of 1st 
operand. 

• B2 (contents)+ D2 + L2 specifies rightmost byte of 2nd 
operand. 

• Results are stored in true form atfirst operand location~ 

All decimal instructions use the SS format: 

Op Code I Ll I L2 I Bl I~~ 01 I B2 I J[§J 
0 7 8 11 12 15 16 19 20 31 32 35 36 •7 

An SS instruction operates on two operands in main stOiage 
and stores the result into the same location. from which the 
first operand was obtained. Therefore, the address· of the 
first operand is also the destination address; the address of 
the second operand is commonly referred to as the source 
address. 

The contents of the GPR. specified by the B 1 field are 
added to the D 1 field ·to form an address. This address 
specifies the leftmost byte of the first operand. The number 
of operand bytes to the right of this byte is specified by the 
L1 field of the instruction. The L1 field may specify up to 
16 bytes. Similarly, the address of the second operand is 
specified by the B2, D2, and L2 fields of the instruction. A 
zero in the Bl or B2 fields indicates the .absence of the 
c_orresponding address component .. 

Normally, decimal operands are processed from right to 
left. Thus the address for the initial operand fetch is: 

LS register per B·field + D-field + L-field. 
Operands are fetched from main storage one doubleword, 
or eight bytes, at a time. Because the L-field may specify up 
to 16 bytes, several operand fetches may be required to 
completely access the operand. After each fetch, the 
operand address is decremented by 8 to access the next 
high-order eight bytes of the operand. 

·The results of decimal operations are placed into the 
frrst operand field and must be in true form. The result is 
never stored outside the first operand field specified by the 

1-86 {9/68) 

instructiori. If the first operand is longer than the second, 
the second operand is extended with high-oi:der zeros up to 
the length of the first operand. Such extension does not 
modify the second operand in main storage, where it 
remains unchanged. 

Data Flow 

• All decimal instructions use serial adder. 

• First operand is placed into ST; second operand into AB. 

• STC specifies which ST byte is· to be processed. ABC 
. specifies which AB byte is to be processed. 

• Destination bytes replace first operand bytes in ST. 

• D contains frrst operand and destination address. 

• IC contains second operand address. 

• L1 and L2 specify number of first and second operand 
bytes, respectively, to be processed. 

The data path used for decimal operations consists pri­
marily of ST, AB, and the serial adder (Diagram 3-5, 
FEMDM). ST contains the first operand, and AB the 
second. The input byte to the adder A-side is selected from 
AB under control of the ABC. The input to the B-side of 
the adder is selected from ST under STC control. The 
selected bytes are gated to the adder simultaneously. 

The serial adder handles the data at a rate of one byte 
per cycle; i.e., for each two input bytes, one output byte is 
generated at the SAL. The output byte is gated from SAL 
to ST under control of the STC, after which the ABC and 
the STC are decremented and a new cycle is started. Thus, 
as the operation progresses, the first operand bytes in ST 
are replaced by the destination bytes. 

The number of frrst and second operand bytes processed 
depends upon length fields L1 and L2, respectively. The Ll 
count contained in E(8-11) is decremented once for each 
byte of first operand that is processed. Similarly, the L2 
count in E(12-15) is decremented once for each second 
operand byte processed. 

D contains the address of the frrst operand, which is also 
the address of the destination. The initial address in D 
specifies the doubleword containing the rightmost byte of 
the operand. When the STC is decremented to zero, 
indicating that all first operand bytes in ST have been 
processed, the contents of ST are stored irito main storage. 
If additional first operand bytes remain in main storage (the 
L1 count has not stepped to zero), the D-address is 
decremented by 8, and a fetch of the next operand 
doubleword is made to ST. 

Storage of the destination bytes in ST is controlled by 
the mark triggers. The mark triggers permit alteration of 
only those bytes in main storage that belong to the field 
being processed. There is one mark trigger for each of the 
eight bytes in ST. As a byte of processed data is gated to 
ST, the corresponding mark trigger is set, thus designating 
the byte for main storage. 



The IC contains the address of the second operand. (The 
instruction address is held in the LSWR during execution of 
SS instructions.) _The initil!l IC address specifies the 
doubleword containing the rightmost byte of the second 
operand. When the ABC is decr~mented to zero, all operand 
bytes in AB have been processed. If additional second 
operand byte·s remain in main storage (L2 count has not 
stepped to zero), the IC address is decremented by 8 and a 
fetch .is made of the next second operand doubleword to 
AB. -

This pattern of fetching data, processing via the serial 
adder, assembling the results in ST, and storing the contents 
of ST into main storage is continued until either the first or 
the second operand length field (Ll or L2 count, respec­
tively) has counted _!Jelow zero. The op~r~ion at this point 
depends upon the individual instruction. If L2 has been 
exhausted but not L1, some instructions may require 
extension of the - remaining first operand bytes with 
high-order zeros. On the other hand, if L1 is exhausted 
before L2, the instruction may test the remaining second 
operand bytes for presence of significant digits. This test is 
performed to detect a possible overflow condition and is 
accomplished by running the excess second operand bytes 
through the serial adder and Bensing nonzeros. In all cases, 
if both L1 and L2 counts are exhausted, the instruction 
execution ends after the last destination word is stored into 
main storage. 

Some decimal operations require use of the parallel 
adder to perform a right-4 or left-4 shift of the entire 
operand. The "spilled" bits generated during the shift are 
held in B(64-67). 

Program Interruptions 

Six program· interruptions can occur during execution of 
decimal instructions. Of the six, only decimal overflow can 
be masked off; the others are unconditionally taken. If the 
decimal overflow mask bit [PSW(37)] is a 0, the decimal 
overflow interruption is ignored; if a 1, it is taken. 

The six interruptions and their causes are: 
1. Protection. The storage key does not match the protec­

tion key in the PSW. The operation is terminated for 
either a store or a fetch violation. 

2. Addressing. An address designates a location outside the 
available storage for the installed system. The operation 
is terminated. 

3. Specification. A multiplier or a divisor size exceeds 15 
digits and sign, or a divisor is equal to or greater than the 
dividend, or a multiplier is equal to or greater than the 
multiplicand. The instruction is suppressed. 

4. Data. A sign or digit code of an operand specified in the 
Add, Subtract, Compare, Zero ahd Add, Multiply, or 
Divide instruction is incorrect, a multiplicand has insuffi· 
cient high-order zeros, or the operand fields in these 
instructions overlap. The operation is terminated before 

any original data is changed in main storage, except for 
an invalid digit code which is detected after the fitst 
store cycle. 

5. Deqimal overflow. Execution of the Add, Subtract, or 
Zero and Add instruction results in an overflow condi­
tion. The program interruption· occurs only when the 
decimal-overflow mask [PSW(37)] is a 1. The operation 
is completed by placing the truncated low-order result 
into the result field and setting the CC to 3. The sign and 
low-order digits contained in the result field are the same 
as they would have beeti for an infinitely long result 
field. - -

6. Decimal divide. The quotient exceeds the specified data 
field, including division by zero. Division is suppressed. 
Therefore, the dividend and divisor remain unchanged in 
storage. 

Condition Codes 

The results of the Decimal Add, Subtract, Compare, and 
Zero and Add instructions set the CC as shown in Table 
1-10. 

Logical Instructions 

The logical instructions provide for logical manipulation of 
data: moving, comparing, bit testing, bit connecting, 
translating, editing, and shifting. The logical instructions 
use all five instruction formats and work with both fixed· 
and variable-field length data. Table 1-11 lists the logical 
instructions. 

For a discussion of the eight-bit zoned character codes, 
data formats, and operand addressing, refer to Section 2 of 
this chapter. 

Instruction Formats 

Logical instructions use the following five formats: 

RR 

Op Code R 1 I R2 I 
0 7 S 11 12 IS 

RX 

I Op Code RI I X2 I 82 D2 
0 7 S 11 12 IS 16 19 20 31 

RS 

I Op Code I RI I R3 I 82 I D2 
0 7 8 11 12 IS 16 19 20 31 

SI 

l Op Code 12 Bl DI 
0 7 8 IS 16 - 19 20 31 

SS 

I Op Code LL I 81 I~~ DI I 82 l~G 
0 7 8 IS 16 19 20 31 32 35 36 47 

2065 FETOM (9/68) 1-87 



Table 1-11. Logical Instructions 

Mne- Op Program 

Instruction manic Code Format Operands Function Interruptions Condit ion Code 
--' 

AND N 54 RX R1 AND 1st opr On GPA per R1) with 2nd opr (.in stg) Prot IF) -0: Result=O 

D2IX2, 82) & place resu It into 1st opr location. Adr 1 : Result *o 
Left to right, byte by byte. Spec 

ANO NC D4 SS D1(L, 81) AND 1st opr (in stg) with 2nd opr (in stg) & place Prot (S,F) 0: Result= 0 
D2(82) result into 1st opr location. Adr 1 : Result *o 

1. Left to right, byte by byte. 
2. Max number of bytes is 256. 

AND NI g4 SI D1(81) AND immediate opr (12 of inst) with 1st opr (in Prot (S) 0: Result= 0 

12 stg) & place result into 1st opr lo.cation. Adr 1 : Result *O 
AND NR 14 RR R1 AND 1st opr (in GPR per R1) with 2nd opr (in None 0 : Resu.lt = 0 

R2 GPR per R2) '&place result into 1st opr location. 1 : Result*O 
Left to right, byte by byte. 

Compare Logical CL 55 RX R1 8inarily compare 1st opr (in GPR per R 11 with 2nd Prot (F) 0 : Opr 1 = Opr 2 
D2(X2, 82) opr (in stg) & set CC according to result. Adr 1: Opr 1 <opr2 

1. Left to right, byte by byte. Spec 2: Opr 1 >opr2 
2. Terminate on inequality or end of fields. 

Compare Logical CLC D5 SS D1(L, 81) 8inarily compare 1st opr (in stg) with 2nd opr (in Prot (Fl 0 : Opr 1 = Opr 2 
D2(82) stg) & set CC according to result. Adr 1 : Opr 1-<opr 2 

1. Left to right, byte by byte. 2 : Opr 1 >opr 2 
2. Max number of bytes is 256. 
3. Terminate on inequality or end of fields. 

Compare Logical CLI 95 SI D1(81l 8inarily compare 1st opr (in stg) with immediate Prot (F) O:Opr1=0pr2 

12 opr (12 of inst) & set CC according to result. Adr 1 : Opr 1<opr2 
1. Left to right. 2: Opr 1 >Opr2 
2. Terminate on inequality or end of fields. 

Compere Logical CLR 15 RR R1 8inarily compare 1st opr (in GPR per R1) with 2nd None 0 : Opr 1 = Opr 2 

R2 opr (in GPR per R2) & set CC according to result. 1: Opr 1 <opr2 
1. Left to right, byte by byte. 2: Opr 1 >opr2 
2. Terminate on inequality or end of fields. 

Edit ED DE SS D1(L, 81) Change format of source (2nd opr; in stg) from Prot (S,F) 0: Result= 0 
D2(82) packed to zoned, edit source under control of Adr 1 : Result <o 

pattern (lst opr; in stg), & placa result into 1st opr Data 2: Result >o 
location. 

1. Left to right, byte by byte. 
2. Max number of bytes is 256. 

Edit & Mark EDMK DF SS D1(L, 81) Change format of source (2nd opr; in stg) from Prot (S,F) 0: Result= 0 
D2(82) packed to zoned, edit source under control of Adr 1 : Result<o 

pettern (1st opr; in stg), place result into 1st opr Data 2: Resuit>o 
location, & place location of each 1st significant 
result digit into GPR1. 

1 . Left to right, byte by byte. 
2. Max number of bytes is 256. 

Exclusive OR x 57 RX R1 Exclusive-OR 1st opr (in GPR per R1) with 2nd opr Prot (F) 0: Result= 0 
D2(X2, 82) (in stgl & place result into 1st opr location. Adr 1 : Result*O 

Left to right, byte by byte. Spec 

Exclusive OR XC D7 SS D1(L, 81) Exclusive-OR 1st opr (in stg) with 2nd opr (in stg) Prot (S,F) O: Result= O 
D2(82) & place result into 1st opr location. Adr 1 : Result*O 

1. Left to right, byte by byte. 
2. Max number of bytes is 256. 

Exclusive OR XI 97 SI D1(81) Exclusive-OR immediate opr (12 of inst) with 1st Prot ISi 0: Result= 0 
12 opr (in stgl & place result into 1st opr location. Adr 1 : Result *o 

Exclusive OR XR 17 RR R1 Exclusive-OR 1st opr (in GPR per R1) with 2nd opr None O: Result= O 
R2 (in GPR per R2l & place result into 1st opr 1 : Result *O 

location. 
Left to right, byte by byte. 

1-88 (9/68) 



Table 1-11. Logical Instructions (C~nt) 

Mne- Op Program 
Instruction monic Code Format Operands Function Interruptions Condition Code 

Insert Character IC 43 RX R1 Insert 2nd opr (byte; in stg) into bits 24-31 of 1st Prot (F·) Unchanged 
D2(X2, 82) opr location (In GPA per R1). Adr 

Remaining bits in GPA are unchanged. 

Loed Address LA 41 RX R1 Insert 2nd opr adr into bits B-31 of GPA specified None Unchanged 
02(X2, 82) by R1. 

1. Bits 0-7 in GPA are made O's. 
2. 2nd opr is not fetched from stg. 

Move MVC D2 SS D1(L, B11 Place 2nd opr (in stg) into 1st opr location (in stg). ProtlS:,F) Unchanged 
D2(B2) 1. Left to right, byte by byte .. Adr 

2. Max number of bytes is 256. 
3. Move operation can be high or low speed. 

Move MVI 92 SI D1(B1) Place immediate opr (12 of inst) into 1st opr Prot (SI Unchanged· 
12 location (in stg). Adr 

Move Numerics MVN D1 SS D1IL, 811 Place numeric portion (low-order 4 bits) of each Prot (S,F) Unchanged 
D2(B2) byte of 2nd opr (in stg) into low-order 4 bits of Adr 

corresponding byte of 1st opr (in stg). 
1. Left to right, byte by byte. 
2. Max number of bytes is 256. 
3. Zones (high-order 4 bits) in both opr's are 

unchanged. 
4. No restriction on overlapping fields. 

Move Zones MVZ D3 SS D1(L, 81) Place zone portion (high-order 4 bits) of each byte Prot (S,F) Unchanged 
D2(82) of 2nd opr (in stg) into high-order 4 bits of Adr 

corresponding byte of 1st opr (in stg). 
1. Left to right, byte by byte. 
2. Max number of bytes is 256. 
3. Numerics (low-order 4 bits) in both opr's are 

unchanged. .. 
4. No restriction on overlapping fields. 

OR 0 56 RX R1 OR 1st opr (in GPA per R1) with 2nd opr (in stg) & Prot (Fl 0' Result= 0 
D2(X2,B2) place result into 1st opr location. Adr 1 : Result i=o. 

Left to right, byte by byte. .Spec 

OR OC D6 SS D1(L, 81) OR 1st opr (in stg) with 2nd opr (in stg) & place . Prot (S,F) 0: Result= 0 
D2(82) result into 1st opr location. Adr 1 : Result i=o 

1. · left to right, byte by byte. 
2. Max number of bytes is 256. 

OR 01 96 SI D1(B11 OR immediate opr 112 of inst) with 1st opr (in stg) Prot (SI 0: Result=O 
12 & place result into 1st opr location. Adr 1 : Resulti=O 

OR OR 16 RR R1 OR 1st opr (in GPA per R1 I with 2nd opr (in GPA None 0: Result= 0 
R2 per R2) & place result into 1st opr location. 1 : Resulti:O 

Left to right, byte by byte. 

Shift Left Double SLDL SD RS R1 Shift 1st opr (in GPA per R 1 & R 1 + 11 left number Spec Unchanged 
Logical D2(82) of bit positions specified by low-order 6 bits of 2nd 

opr adr. 
1. R1 must be even adr. 
2. High-order bits of 1st opr are shifted out & 

lost; vacated low-order bits are made O's. 

Shift Left Single SLL 89 RS R1 Shift 1st opr (in GPA per R1) left number of bit None Unchanged 
Logical D2(82) positions specified by low-order 6 bits of 2nd opr 

adr. 
High-order bits of 1st opr are shifted out & lost; 
vacated low-order bits are made O's. 

Shift Right Double SRDL SC RS R1 S"ift 1st opr (in GPA per R1 & R1 + 11 right Spec Unchanged 
Logical D2(B2) number of bit positions specified by low-order 6 

bits of 2nd opr adr. 
1. R1 must be even adr. 
2. Low-order bits of 1st opr are shifted out & 

lost; vacated high-order bits are made O's. 

2065 FETOM (9/68) 1-89 



Table 1-11. Logical Instructions (Cont) 

Mne- Op - Program 
Instruction monic Code Format Operands Function Interruptions Condition Code 

Shift Right Single SRL 88 RS R1 · Shift 1st opr (in GPR per RU right number of bit 'Nona -.. Unchanged 
Logical 0;21821 positions specified by low-order 6 bits of 2nd ·opr 

adr. 
.. 

Low-order bits of 1st opr are shifted out & lost; 
vacated. high-order bits are made O's. 

Store Character STC 42 Fix R1 Store bits 24-31 of 1st opr (in GPR per R11 into Prot IS) Unchanged 
D2IX2,82l 2nd opr location (in stgl. Adr 

Test Under Mask TM. 91' SI DH811 Set CC according to stete of 1st opr bits On stgl Prot IFI · 0 : Selected bits 
12 selected by mask bits 112 of inst). .Adr all O's (mask is 

1. if mask bit= 1, test corresponding 1st opr all O'sl 
bit;· if mask bit = 0, ignore corresponding 1st 1 : Selected bits 
opr bit. mixed O's & 1 's 

2. Character in stg is unchanged. 3 : Selected bits 
all 1's 

Translate TR DC SS OHL, 811 Add 1st opr byte (argument; in stg) to effective 2nd Prot IS.Fl Unchanged 
02182) opr adr, use result as stg adr, & place function byte Adr 

from resulting stg adr into corresponding 1st opr 
byte location. 

1. Effective 2nd opr adr = contents of GPR adr 
by82,+ 02. 

2. LL = number of bytes to be translated. 
3. 1st opr bytes are processed left to right. 

Translete & Test TRT DD SS OHL, 811 Add 1st 0pr byte (argument; in sqj) to effective 2nd Prot IF) 0 :.All bytes tested 
02182) opr adr, use result as stg adr, & test function byte Adr are all O's-

from resulting stg adr. If 0, translate & test next 1 : Non-0 byte found 
argument byte; if non-0, complete operation by before. last byte to 
·inserting related argument adr into GPR1 & be tested 
function byte into GPR2. 2 : Non-0 byte found 

1. Effective 2nd opr adr • contents of GPR adr as last byte to be 

•' by82,+ 02. tested 
2. LL = number of bytes to be translated. 
3. 1st opr bytes are processed left to right. 
4. Set CC according to ending condition. 

•.In the RR, RX, and RS formats, the contents of the 
GPR specified by Rl are called the first operand. In the SI 
!Uld SS formats, the contents Of the GPR specified by Bl 
are added to the contents of the D 1 field to form an 
address. This address designates the leftmost byte of the 
first operand field. The number of bytes to the right of this 
first. byte is specified by the LL field iii the SS instruction. 
In the SI format, the. operand size is one byte . 

address of the second. operand. The second operand field 
has the same length as the first operarid field. 

. . · In the RR format, the R2 field· specifies the GPR 
containing the second operand. The same. GPR · may be 
specified for the first and second operands. . . 

.In the RX format, the contents of the GPR's specified 
by. the X2 and B2 fields are added to the contents of the 
D2 field to form the address of the second operand in main 
storage. 

In the RS format, used for shift operations, the contents 
of . the GPR specified by the B2 field are added to the 
contents of the D2 field. This sum is not used as an address 
btit the low-order six bits specify the number of bits of the 
sliift. The R3 field is ignored in the shift operations. 

In the SI format, the second operand is the eight-bit 
immediate data field, I2, of the instruction. 

In the SS format, the contents of the GPR specified by 
B~ are added to the contents of the D2 field to form the 

1-90 (9/68) 

A 0 in the ·Xi, B 1, or B 2 field indicates the absence of 
the corresponding address or shift-amount components. An 
instruction can specify the same GPR both for address 
modificatfon and for operand location. Address modifica­
tion is always completed before operation execution. 

Data Flow 

Data paths used by the logical instructions are identical to 
those used by the decimal instructions, with one exception 
(Diagram 3-5, FEMDM). For decimal instructions, E(8-15) 
is divided into. L1 arid L2 fields. For logical instructions, 
E(8-15) is one field (LL). 

The logical instructions operate on data which may 
range from 1 to 256 bytes in length. The operands are 
obtained either from the mairi storage or from a GPR. 
Sometimes, the operand may be contained in the instruc­
tion itself. 

Processing of data in main storage proceeds from the 
high-order to the low-order address, or froin left to right. 
The initial byte selected for processing may be at either an 
odd or even main storage address. As a rule, processing of 



data in a GPR involves the complete register contents. 
Except for the editing instructions, data is not treated as 
numbers. 

Generally, the operands are treated as eight-bit bytes. In 
a few cases, the left or right four bits of a byte are treated 
separately or operands are shifted a bit at a time. 

Results replace the first operand, except in the Store 
Character instruction, where the result replaces the second 
operand. A variable-length result is never stored outside the 
field specified by the address and length. 

The contents of all GPR's and storage locations partici­
pating in the addressing or e~ecution of an operation 
generally remain unchanged. Exceptions are the move 
instructions, and the result locations, GPRl in the Edit and 
Mark instruction, and GPR's 1 and 2 in the Translate and 
Test instruction. 

Editing operations provide transformation from packed 
decimal digits to alphanumeric characters; i.e., editing 
requires a packed decimal field and generates zoned decimal 
digits. The digits, signs, and zones are recognized and 
generated as for decimal arithmetic; all bit configurations 
are considered valid. 

The translating operations use a list of arbitrary values. 
A list provides a relation between an argument (the 
quantity used to reference the list) and the function (the 
contents of the location related to the argument). The 
purpose of the translation may be to convert data from one 
code to another code or to perform a control function. The 
list is specified by an initial address, the address designating 
the leftmost byte location of the list. The byte from the 
operand to be translated is the argument. The address used 
to address the list is obtained by adding the argument to 
the low-order positions of the initial address. As a conse­
quence, the list contains 256 eight-bit function bytes. 
Where it is known that not all eight-bit argument values will 
occur, it may be possible to reduce the size of the list. 

Use of GPRl is implied in Edit and Mark and in 
Translate and Test instructions. A 24-bit address may be 
placed into this register during these operations. The 
Translate and Test instruction also implies GPR2. The 
low-order eight bits of GPR2 may be replaced by a function 
byte during a translate-and-test operation. 

Program Interruptions 

Four program interruptions can occur during execution of 
logical instructions: 
1. Protection. The storage key of a result location in main 

storage does not match the protection key in the PSW. 
The operation is suppressed on a store violation. The 
only exceptions are the variable length storage-to-storage 
operations, which are terminated. The · operation is 
terminated on a fetch violation. 

2. Addressing. An address designates a location outside the 
available storage for the installed system. In most cases, 

the operation is terminated. The exceptions are the 
AND, Exclusive-OR, OR, and Move instructions that 
have the SI format, and the Store Character instruction. 
These instructions are suppressed. Operand addresses are 
tested only when used to address storage. Addresses used 
as a shift amount are not tested. Similarly, the address 
generated by the use of the Load Address instruction is 
not tested. The address restrictions do not apply to the 
contents of the D 1 and D2 fields, or to the contents of 
the GPR's specified by X2, Bl, and B2. 

3. Specification. A full-word operand in a storage-to­
register operation is not located on a 3 2-bit boundary, or 
an odd register address is specified for a pair of GPR's 
containing a 64-bit operand. The operation is sup­
pressed. 

4. Data. A digit code of the second operand in the Edit or 
Edit and Mark instruction is invalid. The operation is 
terminated. 

Condition Codes 

The results of most logical operations set the CC in the PSW 
(Table 1-11). The Load Address, Insert Character, Store 
Character, Translate, and the moving and shift instructions 
leave this code unchanged. 

The CC can be set to reflect five types of results for 
logical operations. For the Compare Logical instructions, 
the 0, 1, and 2 states indicate that the first operand is equal 

. to, less than, or greater than the second operand, respec­
tively. 

For the logical AND, OR, and Exclusive-OR instruc­
tions, the states 0 and 1 indicate a zero or nonzero result 
field, respectively. 

For the Test under Mask instruction, the states 0, 1, and 
3 indicate that the selected bits are all-zero, mixed zero and 

'-
1, or all-1, respectively. 

For the Translate and Test instruction, the states 0, 1, 
and 2 indicate an all-zero function byte, a nonzero function 
byte with the operand incompletely tested, or a last 
function byte nonzero, respectively. 

For editing, the states 0, 1, and 2 indicate a zero, 
lesscthan zero, or greater-than-zero content of the last result 
field, respectively. 

Branching Instructions 

• Branching causes departure from normal instruction 
sequencing. 

• Branch address is introduced as next sequential address. 

• Branch address is obtained from GPR or specified as 2nd 
operand address. 

• Branch may be conditional or unconditional. 

2065 FETOM (9/68) 1-91 



• Conditional branches (may or may not use branch 
address):. 
Branch on condition 
Branch on count 
Branch on index 

• Unconditional branches (always use branch address): 
Branch and link 
Execute 

• On branch, normal storage request per IC to fill Q is 
blocked; branch logic will make request for IC if the 
branch is unsuccessful and Q needs to be refilled. 

• If branch is unsuccessful, Q is refilled if required. 

No~y, the CPU is controlled by instructions taken in 
sequential order. That is, an instruction is fetched from a 
main storage location specified by the instruction address in 
the IC. The address is then increased by the number of 
bytes needed to address the next instruction in sequence, 
and this updated address replaces the old address in the IC. 
The current instruction is executed, and the same steps are 
repeated using the updated instruction address to fetch the 
next instruction. 

A departure from the normal instruction sequence 
occurs when branching is performed. A branch address is 
introduced as the next instruction address. This branch 
address may be obtained from one of the GPR's or it may 
be the second operand address specified by a particular 
instruction. Depending upon the format and the instruc­
tion, branching may be either conditional or unconditional. 
The conditional branches are branch on condition, branch 
on count, and branch on index. The unconditional branches 
are branch and link and execute. Conditional branches may 
or may not use the branch address. If the branch is 
successful (that is, the branch is taken), the branch address 
is used and the storage request issued per the IC during 
I-Fetch is blocked. If the branch is unsuccessful, the 
instructiot1. address in the IC is used to fill Q. Unconditional 
branches are always taken and use the branch address. 

Whether a conditional branch is successful depends upon 
the result of operations concurrent with the branch or 
preceding the branch. The first case is represented by the 
branch on count and branch on index instructions. The 
second case is represented by the branch on condition 
instructions, which inspect the CC that reflects the result of 
a previous arithmetic, logical, or I/O.operation. 

Branching is used to reference a subroutine, to resolve a 
two-way choice, or to repeat a portion of a program. To 
save time and increase the speed of the operating program, 
branching is always considered to be successful unless 
proven otherwise. (The branch conditions for branch on 
condition instructions is tested du.ring I-Fetch for a 
successful or unsuccessful branch, and a D or IC request is 
issued dependent upon this test.) Therefore, whenever a 
branch instruction is decoded during I-Fetch, the next 

1-92 (9/68) 

in5truction address is the branch address located in D. If the 
branch is found to be unsuccessful (determined during 
execution of the branch· instruction), the instruction 
address· from D is ignored, and the correct instruction 
address is obtained from the IC. · 

There are two methods of performing an end-op cycle in 
the branch operations: normal end op and branch end op. 
The normal end-op cycle allows decoding of the · next 
instruction format from R and of the instruction address 
from the IC, and is normally used when ending an 
operation. Decoding off R is possible because the data 
placed into the register has become stable by the time the 
end-op cycle begins. The branch end-op cycle, on the other 
hand, allows decoding of the next instruction format from 
the SDBO and of the instruction address from D. This 
end-op cycle is used when the data, which has been placed 
into R, ·is not yet stable and is some halfword other than 
the last halfword of Q. Decoding from the SDBO saves the 
time it takes for the ·data to stabilize in R and the 
instruction address to stabilize in the IC. 

Table 1-12 lists the branching instructions. 

Instruction Formats 

Branching instructions use the RR, RX, and RS formats: 

RR 

Op Code · 1%J R2 I 
0 78 II 12 15 

RX 

Op Code (%1 X2 I 82 I 02 
0 7 8 II 12 15 16 19 20 31 

RS 

Op Code RI R3 I 82 I 02 
o 7 8 II 12 15 16 19 20 31 

In the formats shown above, bits 8-11 are normally the 
Rl · field that specifies the address of a GPR containing the 
frrst operand. In the branch on condition instruction, 
however, bits 8-11 are designated as M 1 and contain mask 
bits used in conjunction with the PSW CC to determine 
whether the branch is successful. 

In the RR format, the R2 field specifies the address of a 
GPR that contains the branch address, except when R2 = 0, 
in which case no branching is to take place. 

In the RX format, the contents of the GPR's specified 
by the X2 and B2 fields are added to the D2 field to form 
the branch address. 



Table 1-12. Branching Instru'ctions 

Mne· Op 
Instruction monic Code Format _Operands 

·Branch & Link 

Branch & Link 

Branch on 
Condition 

Branch on 
Condition 

Branch on Count 

Branch on count 

Branch on Index 
High 

Branch on Index 
Low or Equal 

Execute 

BAL 45 

BALR 05 

BC 47 

BCR 07 

BCT 46 

BCTR 06 

BXH B6 

BXLE 87 

EX 44 

RX 

RR 

RX 

RR 

RX ' 

RR 

RS 

RS 

RX 

Rt 
021x2,821 

Rt 
R2 

Mt 
02(X2,B2) 

M1 
R2 

R1 
02(X2, B2) 

R1 
R2. 

R1 
R3 
02(B2) 

R1 
R3 
02(B21 

Rt 
02IX2,B2) 

t Fetch protected: bit 4 of storage protect set. 

F_unction 

Store:PSWi32-63), link information, into GPR. ladr 
by R 1 I & branch to location specified by 2nd opr 
adr. 

1. Branch is unconditional. 
2. Link information is stored _whether or not 

branch is successfu I •. 

Store PSWl32-63), link Information, into GPR ladr 
by Rt) & branch to location specified by GPR ladr 
by R21. 

1; Branch is unsuccessful if R2 = O; use next 
sequential instr iidr. · 

2. Link information is stored whether or not 
branch is successful. 

Branch to location specified by 2nd opr edr if .state 
of CC is as specified by M 1. . 

1. Branch is unconditional if M 1 is ail 1 's. 
2. Branch is unsuccessful if M1 is all O's; use 

riextsequential instr adr. 

Program 
I nterruptlons ·Condition Code 

Prat (Flt Unchanged 

Prat IFlt Unchanged 

Prot.IF)t Unchanged 

Branch to location specified by GPR ledr by R21 if Prat (Flt Unchanged 
state of CC is as specified by M 1. 

1. Branch is unconditional if M1 is all 1 'sand 
R2*0. 

;z. Branch is unsuccessful if R2 = O or if M1 is 
all O's; use next sequential instr adr. 

S.ubtract 1from1st opr lin GPR per R11; if result* 
0, branch to location specified by 2nd opr edr. 

1. Place result of subtraction into 1st opr 
location. 

2. Branch Is unsuccessful if result = O; use next 
sequential instr adr . 

. 3. If 1st opr = 1. no branching occurs. 

Subtract 1 from 1st opr (in GPR per R1); if result* 
0,. branch to location specified by GP.R ledrby R2i. 

1. Place result of subtraction into tst· opr 
location. 

2. Branch is unsuccessful if result= 0 or if R2 = 
O; use next sequential instr edr. 

3. If 1st opr = 1, no branching occurs. 

,Add increment (3rd opr; in GPA per R3) to 1st opr 
lin GPR per A11, algebraically compare result 
(index) with comparand (in odd-adr GPA specified 
by A3 or R3 + 11; if index >comparand, branch to 

. location specified by 2nd opr adr. 
1. Place index into 1st opr location. 
2. Branch is unsuccessful if index = or < 

comparand; use next sequential instr adr. 

Add increment (3rd opr; in GPR per A3) to 1st ojjr 
(in GPR per R1), algebraically compare result 
(index) with comparand (in odd-adr GPA specified 
by R3 or A3 + 11; if index = or < comparand, 
branch to location Specified by 2nd opr adr. 

1 .. Place index into 1st opr location. 
2. Branch is unsuccessful if index >comparand; 

use·next sequential instr adr. 

Execute subject instr at location specified by 2nd 
opr adr. Subject instr may be modified by 1st opr 
(in GPR per A11 if E(S-11) *O. 

Modification is achieved by OA'ing bits 8-15 of 
subject instr with bits 24-31of1st opr; if A1 • 
0, no modification takes place. ,-

Prot (Flt 

Prat IFlt 

Prat (Flt 

Prot (Flt 

Execute 
Prot IFI 
Adr 
Spec 

Unchanged 

Unchanged 

Unchanged 

Unchanged 

Set by subject 
instr 

2065 FETOM (9/68) 1-93 



In the RS format, which is used in branch on ihdex 
operations, the contents of the GPR specified by the B2 
field are added to the D2 field to form the branch address. 
The R3 field specifies the address in LS of an increment 
value (third operand) which is added to the first operand to 
determine the index value. R3, if odd, also is the 
comparand; if R3 is even, R3 + 1 is the comparand. 

Data Flow 

Diagram 3-6, FEMDM, is a diagram of the basic data flow 
for the branching instructions. The main functional units 
used to determine addresses and instructions in the branch­
ing operations are Q, R, E, D, and the IC. The secondary 
functional units, T, AB, parallel adder, STC, and ABC, 
determine whether the branch is successful when the 
branch being executed is a conditional branch. The purpose 
of each functional unit is as follows: 

1. Q. Holds the doubleword that contains the instruction 
addressed by the branch instruction if the branch is 
successful. 

2. · R. Contains the instruction to be performed after 
execution of the branch instruction. 

. 3. E. Contains the branch instruction presently being 
executed. 

4. D. Holds the address of the doubleword which, if the 
branch is successful, contains the next instruction to be 
executed. 

.S. IC. Holds the address of the doubleword which, if the 
branch is unsuccessful, contains the next instruction to . 
be executed. 

6. T. Buffers the operand being tested and operated on. 
7. AB. Holds the first operand when added to some other 

value to determine whether the branch is successful. 
8. Parallel adder. Determines whether conditions have 

been met when a conditional branch is being executed. 
9. STC. Allows transfer of last byte of T during an 

Execute instruction when modifying the subject in­
struction of the Execute instruction. 

10. ABC. Selects data being modified in the subject 
instruction during an Execute instruction. 

Program Interruptions 

Four program interruptions can occur during execution of 
branching instructions: 
1. Execute. The subject instruction of an Execute instruc­

tion is another Execute instruction. The operation is 
suppressed. 

2. Protection. The branch address of an Execute instruc­
tion is protected. The branch-to address of any branch 
instruction may be fetch-protected. In this case, the PSW 
key must match the storage key or must be a master key 
of 0. The operation is suppressed. . 

3. Addressing. The Branch. address of an Execute instruc­
tion designates an instruction-halfword location outside 
the available storage area. The operation is suppressed. 

1-94 (9/68) 

4. Specification. The branch address of an Execute instruc-
tion is odd. The operation is suppressed. · 

Condition Codes 

The branching. instructions leave the CC unchanged, except 
for the Execute instruction. If the CC is set during the 
Execute instruction, it is set by the subject instruction. 

Status Switching Instructions 

• Load PSW, Set Program Mask, Set System Mask, and 
Supervisor Call instructions control status of CPU. 

• Set Storage. Key, Insert Storage Key, and Test and Set 
instructions control status of data in main storage. 

• Write Direct and Read Direct instructions control status 
of external device (also transfer data bytes). 

• Diagnose instruction controls status of CPU and chan­
nels. · 

The status switching instructions can change the status of 
· the CPU, the channels, the external device_, and the data in 

main storage. The status of a unit may also be changed by 
manual intervention and by interruptions (described else- . 
where in this manual). The overall status of the CPU is 
determined by the current PSW and associated logic. (For a 
discussion of the PSW and of the eight CPU program states, 
refer to Section 3 of ~is chapter.) Any field in the current 
PSW may be changed directly by the Load PSW instruction, 
if the CPU is in the Supervisor state. Thus, the Load PSW 
instruction may be used .to switch from the Supervisor state 
to the Problem state, between the Wait and Running states, 
and between the Masked and Interruptable states. At any 
time, the Set Program Mask instruction may be used to 
switch any of the four program mask bits between the 
Masked and Interruptable states. When in the Supervisor 
state, the Set System Mask instruction may be used to 
switch any of the eight system mask bits between the 
Masked and Interruptable states. The Supervisor Call 
instruction allows a problem program to switch the CPU 
from the Problem state to the Supervisor state; simul­
taneously, a byte of information is passed to the supervisor 
program via the interrupt code of the Supervisor Call old · 
PSW. 

Three instructions control the protection status of data 
in main storage. The Set Storage Key and Insert Storage 
Key instructions are privileged instructions for controlling 
the protection status of main storage data in 2048-byte 
blocks. The Set Storage Key instruction changes the storage 
protection keys in main storage. The Insert Storage Key 
instruction fetches the keys from main storage for inspec­
tion by the program. The Test and Set instruction, on the 
other hand, may be. used in either .the· Supervisor or 
Problem state for protecting data in main storage in blocks 
of any length; this application is described ~ IBM Systems 
Reference Library, IBM System/360 Principles of Opera­
tion, Form A22-6821. 



The Write Direct and Read Direct instructions, which are 
part of the Direct Control feature, may be used to switch 
the status of an external device by means of a code in the 
12 field. If the external device is another System/360, the 
Write Direct and Read Direct instructions can be used to 
externally interrupt the receiving CPU .. For example, -
assume CPU 1 and CPU 2 are bo_th operating and have their 
Direct Control Features enabled (Diagram 5-607, Sheet 2, 
FEMDM). CPU 1 requests data from CPU 2 by executing a· 
Read Direct instruction, sending an external interruption 
code to CPU 2 on the 'timing signal bus out' lines. If CPU 2 
is masked on for external interruptions, if no other 
interruptions or exceptional conditions of higher priority 
are pending, and as soon as the instruction being processed 
is finished, CPU 2 is externally interrupted. After CPU 2's 
program decodes the interruption code and determines the 
operation to be performed, it executes a Write Direct 
instruction, sending its external interruption code and a 
'direct control write out' signal to CPU 1 and putting the 
requested data on the 'direct control bus out' lines. CPU 1 
can now be similarly interrupted and ~gain execute a Read_ 
Direct instruction (but this time with its 12 field clear). 
CPU 1 waits until the 'direct control write out' signal 
(received as a 'direct control hold in' signal) is removed and 
then transfers the requested data_ from the 'direct control 

-bus in' lines to main storage. 
The Diagnose instruction controls the status of the CPU 

and the channels. Unlike the Load PSW, Set Program Mask, 
Set System Mask, and Supervisor Call instructions that 
switch the CPU's status by changing the current PSW, the 
Diagnose instruction switches the CPU's status by -setting 
control triggers (such as 'defeat interleave', 'emulation 
mode', and 'diagnose FLT') through the use of a main· 
tenance control word. The Diagnose instruction may also 
be used to switch the channels between a normal operating 
mode and a test mode. 

Table 1-13 lists the status switching instructions. 

Instruction Formats 

Status switching instructions have two formats: 

RR 

Op Code Rl I R2 I 
0 78 11 12 15 

SI 

I Op Code 12 Bl 01 

78 15 16 19 20 31 

In the RR format, the Rl and R2 fields specify GPR's 
except when used in the Supervisor Call instruction. The 
Rl and R2 fields in the Supervisor Call instruction are 
replaced by an I-field which contains an eight-bit interrup· 
tion code. In the Set Program Mask instruction, the R2 
field is ignored. 

In the SI format, the- 12 field is ignored for the Load 
PSW, Set System Mask, and Test and Set instructions. In 
the Write Direct and Read Direct instructions, the 12 field 
contains a timing signal code that is sent to an external 
device. In the Diagnose instruction, the 12 field contains a 
code for controlling certain maintenance aids and an 
optional Compatibility feature. The contents of the GPR 
specified by the Bl field are added to Dl to form a main 
.storage_ address of an operand to be fetched by the 
instruction specified, except for Read Direct. The Read 
Direct instruction uses the address derived for storing data 
from an external device. Only one storage address is 
required in status switching operations. A 0 in the Bl field 
indicates the absence of the base address component. 

Data Flow 

• ·Each status switching instruction has different data flow. 

• ST is used by most instructions as buffer before final 
data transfer. 

The status switching instructions transfer data from one 
unit _to another; except for the Insert Storage Key 
instruction, there is no intermediate processing. Depending 
on the instruction, the data is obtained from LS, main 
storage, or the 'direct controlbus in' lines and is transferred 
to either LS, main storage, CPU control triggers, or the 
'direct control bus out' lines. A generalized data flow is 
shown in Diagram 3-7, FEMDM. The following is a list of 
the functional units and their purposes. 

1. BCU. Primarily used for 3-cycle fetches of storage 
operands per D. During the Load PSW instruction, a 
3-cycle fetch per the IC is made for the next 
instruction after the new PSW has been loaded into the 
_CPU. For the Set Storage Key, Insert Storage Key, and 
Test and Set instructions, the BCU performs a 4-cycle 
set-key operation per D, a 3-cycle insert-key operation 
per D, and a 3-cycle test-and-set -operation per D, 
respectively. During the. Read Direct instruction, a 
4-cycle store operation per D is made. 

2. Q. Holds the doubleword containing the instruction 
being executed. It may also hold the next sequential 

-doupleword if a Q-refill operation occurred during 
I-Fetch. The Load PSW instruction refills Q with the 
next instruction regardless of its storage location. 

3. R. Contains the instruction to be performed after 
execution of the status switching instruction. 

4. E. Contains the status switching instruction (or the first 
16 bits of the instruction) being executed. E(O-7) 
contains the R code for the Write Direct, Read Direct, 
and Diagnose instructions, and E(8- l 5) contains an 
immediate operand. For the Supervisor Call instruc­
tion, E(8- l 5) contains a supervisor call interruption 
code. For the Insert Storage Key instruction, E(8-11) 
contains the address of the GPR into which the 
protection key is to be inserted. 

2065 FETOM (9/68) 1-95 



Table 1-13. Status Switching Instructions 

I nstructlon 

Diagnose 

·Insert Storage Key 

LoaclPSW 

Read Direct 

Set Program Mask 

Set Storage Key 

Set System Mask 

Supervisor Call 

Test & Set 

Write Direct 

1-96 (9/68) 

Mne­
monic 

None 

ISK 

LPSW 

ROD 

SPM 

SSK 

SSM 

SVC 

TS 

WRD 

Op 
Code Format 

83 SI 

09 RR 

82 SI 

85 SI 

04 RR 

08 RR 

80 SI 

OA RR 

93 SI 

84 SI 

Operands 

01(B11 
12 

R1 
R2 

D1(B1) 

DHB11 
12 

R1 

R1 
R2 

D1{B11 

01{81) 

D1{B1) 
12 

Function 

Load word designated by stg opr adr into MCW, set 
or reset certain control triggers, & branch to ROS 
adr specified by MCW. 

Insert stg protection key for 2048-byte stg block, 
adr by bits 8-20 of 2nd opr (in GPR per R21, into 
bits 24-28 of 1st opr (in GPR per R1). 

1. 1st opr: bits 0-23 are unchanged; bits 
29-31 are cleared. 

2. 2nd opr: bits 0-7 & 21-27 are ignored; bits 
28-31 must ~ O's. 

3. Kev is fetched twice because of 2-way 
interleaving. 

Load doubleword stg opr (designated by stg opr 
adr) into CPU, thus replacing current PSW, & 
branch to new instr sequence. 

1. Bits 0-15: system mask, protection key, 
program state. 

Bits 16-33: Ignored. 
Bits 34-39: CC, program mask. 
Bits 40-63: instr adr. 

2. If PSW(14) = 1, enter Wait state. 
3. If PSW(15) = 1, enter Problem state. 
4. Load PSW instr is only instr available for 

entering Problem or Walt state. 

Send 'direct control read out' signal & timing signal 
code 02; in instr) to external device for about 0.6 
usec; store 1 data byte from external device into stg 
(per stg opr adr) when 'direct control hold in" signal 
is absent. 

Replace CC & program mask (bits 34-39) of 
current PSW with bits 2-7 of 1st opr (in GPR per 
R1). 

Set stg key (bits 24-28 of 1st opr; in GPR per R1) 
for 2048-byte stg block (adr by bits 8-20 of 2nd 
opr; i.n GPR per R21 into stg protection logic in 
main storage. 

1. 1st opr: bits 0-23 & 29-31 are ignored. 
2. 2nd opr: bits 0-7 & 21-27 are ignored; bits 

28-31 must = O's. 
3. Key is set twice because of 2-way 

interleaving. 

Replace system mask (bits 0-71 of current PSW 
with byte from location designated by stg opr adr. 

Program 
Interruptions Condition Code 

Priv Oper Unpredictable 
Prat (S,FI 
Adr 
Spec 

Priv Oper Unchanged 
Adr 
Spec 

Priv Oper 
Prat (Fl 
Adr 
Spec 

Oper 
PrivOper 
Prat ISi 
Adr 

None 

Priv Oper 
Adr 
Spec 

Priv Oper 
Prat (Fl 
Adr 
Multisys 

Sat by new PSW 
bits34 & 35 

Unchanged 

Set byopr 1 
bits2&3 

Unchanged 

Unchanged 

Cause supervisor call interruption; replace old None Unchanged 
PSWl24-311 with l·field (bits 8-15) of instr, 
providing interruption code. 

1. ClearPSW(16-23). 
2. Store old PSW at stg location 32 (decimal). 
3. Fetch new PSW from stg location 96 

(decimal). 

Test high-order bit (bit 01 of stg opr byte (in stg), 
set CC according to state of tested bit, & set 
addressed byte back into stg as all 1 's. 

Send 'direct control write out' signal & timing signal 
code 112; in instrl to external device for about 0.8 
usec; make 1 data byte from stg (per stg opr adr) 
available to external device until next WRD is 
executed. 

Prat ($,Fl 
Adr 

Oper 
Priv Oper 
Prat (Fl 
Adr 

0 : High-order 
bit= o· 

1 : High-order 
bit= 1 

Unchanged 



5~ D. Contains the main storage address for storage. 
requests issued during execution of the Set Storage 
Key, Insert Storage Key, Read Direct, and Test and Set 
instructions. This register also selects the byte to be 
used in the . Set System Mask and Write Direct 
instructions, and selects the halfword containing the 
instruction to be executed after the Load PSW instmc· 
tion. 

6. IC. Contains the main storage address of the next 
instruction during execution of the Load PSW instruc· 
ti on. 

7. AB. Buffers operands for the serial adder and the 
parallel adder. During I-Fetch of the Set Program Mask, 
Set Storage Key, and Insert Storage Key instructions, 
the first operand is placed here. During the Set System 
Mask, Diagnose, and Test and Set instructions, double­
words from storage are received here. 

8. ST. Buffers operands for the serial adder and the 
parallel adder. Data is received here from main storage 
for the Load PSW instruction and from LS for the Set 
Storage Key and Insert Storage Key instructions. Data 
is stored from here into main storage during the Read 

'Direct instruction and from LS during the Insert 
Storage Key instruction. The Load PSW, Set Program 
Mask, Set System Mask, and Test and Set instructions 
cause all or part of the PSW register to be changed per 
ST. The Diagnose instruction causes the MCW register, 
scan counters, and ROSAR to be changed per ST. 

9. ABC and STC. Controls selection of data from and 
placement of data into AB and ST, respectively. Also, 
during the Read Direct and Test and Set instructions, 
STC sets a mark trigger. 

10. Mark. Identifies the byte to be used by main storage 
during the Read Direct and Test and Set instructions. 
All mark triggers are set during the Set Storage Key 
instruction by a ROS micro-order. 

. 11. F. Buffers the storage key before it is placed into main 
storage during the Set Storage Key instruction and 
after it is taken from main storage during the Insert 
Storage Key instruction. This regi~ter also buffers data 
received from an external device during the Read 
Direct instruction. 

12. G. Buffers a byte of data being sent to an external 
device when executing a Write Direct instruction.:___ 

13. PSW register. Contains a portion of the current PSW. 
All or part of the PSW register contents is changed 
directly by the Load PSW, Set Program Mask, Set 
System Mask, and Test and Set instructions. Because 
the Supervisor Call, Write Direct, Read Direct, and 
Diagnose instructions may cause an interruption after 
being executed, they may indirectly chailge all of the 
PSW register contents. 

14. MCW register. Controls CPU or channel diagnostic 
functions during and after execution of the Diagnose · 
instruction. 

15. Parallel adder. Provides the data transfer path between 
AB, ST, D, and the JC. Adds 8 to the IC and D for 
address updating. Subtracts 8 from A during the Set 
Storage Key and Insert Storage Key inst:nlctions so that 
a re-entrant loop may be constructed. Calculates IC • D 
+ T for the address store compare tests made during 
Read Direct, Diagnose, and Test and Set instructions. 

16. Serial adder. Provides the data transfer path from AB 
· to ST and G; also, during the Read Direct instruction, 

assigns odd. parity to the data byte transferred from F 
to ST. During the Insert Storage Key instruction, the 
contents of F are logically OR'ed with the contents of 
T via the serial adder. 

17. LS. Contains operands required by the Set Program 
Mask, Set Storage Key, and Insert Storage Key instruc· 
tions. Only the Insert Storage Key instruction transfers 
data into LS. 

·Program Interruptions 

Six program interruptions can occur during execution of 
status ·switching instructions: 
1. Operation. Occurs if the Direct Control feature is not 

· installed or not enabled and the instruction being 
executed is either Read Direct or Write Direct. The 
operation is suppressed. 

2. Priviliged Operation. Occurs if a Load PSW, Set System 
Mask, Set Storage Key, Insert Storage Key, Write.Direct, 
Read Direct,. or Diagnose instruction is encountered · 
while the CPU is in the Problem state. The operation is 
suppressed. 

3. Protection. Occurs if the storage key of the location 
designated by · the instruction does not match the 
protection key in the current PSW. The instruction is 
suppressed on a store violation, except for the Read 
Direct arid Test and Set instructions, which are termi­
nated. The operation is terminated on a fetch violation . 

4. Addressing. Occurs if an address designates a location 
outside the available main storage. The operation is 
terminated, except for the Diagnose instruction, which is 
suppressed. 

5. Specification. Occurs if (1) the operand address of a 
Load PSW or Diagnose instruction does not have O's in 

. the three low-order bit positions, or (2) the block 
address specified by the Set Storage Key or Insert 
Storage Key instruction does not have O's in the four 
low-order bit positions. The operation is suppressed. 

6. Multisystem (Multisystem feature only). Occurs if Set 
System Mask instruction is encountered when in Multi~ 
system mode. The operation is suppressed. 

Condition Codes 

Three status switching instructions affect the condition 
code: Load PSW, in which the CC is set by new 
PSW(34,35); Set Program Mask, in which the CC is set by 

2065 FETOM (9/68) -1-97 



bits 2 and 3 of the first operand; and Test and Set, in which 
the CC is set to 0 if the high-order bit of the addressed byte 
in storage equals 0 or set to 1 ifthe high-order bit equals 1. 
The remaining instructions leave the CC unchanged, except 
for the Diagnose instruction in which the CC is unpre­
dictable. 

data, and di::r not cause an I/O. interruption of succeeding 
CPU operations. 

To illustrate the channel operation, the IBM 2860 
Selector Channel is used. The Start I/O instruction sets the 
'timing gate' trigger, which gates a 'channel select' signalto 
select 1 of 7 channels (Diagram 3-8, FEMDM). With the 
'timing gate' trigger set, the CPU cannot proceed to the 
next instruction. The I/O unit address is sent to all channels 
via the 'unit address bus out' (UABO) line, addressing the 
proper control unit and I/O un1t as specified in the 
instruction. The channel requests the CAW from main 
storage address 72 ( 48, hex), and the first command address 
(address of the CCW) is set into the data address register via 
the SDBO lines. The channel requests the first CCW from 
the main storage address specified in the CAW (now stored 
in the data address register). Parts of the CCW are set into 
various channel registers to control the I/O operation. 
During the CCW fetch cycle, the first command address is 
incremented by eight bytes and is stored into the command 
address register to be used to fetch the next CCW, if 
chaining is specified in the first CCW. 

Input/Output Instructions 

The 2065 has four I/O instructions: Start I/O, Test I/O, 
Halt I/O, and Test Channel (Table 1-14). 

Instruction Format 

The four I/O instructions use the SI format: 

OpCode -·Bl Dl 
7 8 15 16 19 20 31 

Bits 8-15 are ignored. The base plus the displacement 
determines the channel and I/O unit address: bits 16-23 of 
the sum are the channel address (of which only bits 21-23 
are valid), and bits 24_:31 of the sum are the I/O unit 
address. 

Data Flow 

Although the CPU operation is essentially the same for all 
I/O instructions, the Start I/O instruction is used to 
illustrate the data flow because the channel operation i_s 

· Depending upon the availability of the control unit and 
I/O unit, the I/O operation may be initiated. In any case, 
the appropriate CC is generated and sent to the CPU 
together with a 'release' signal, thus resetting the 'timing 
gate' trigger. The CPU performs an end-op cycle and 
proceeds to fetch and execute the next instruction. 

more extensive. The Halt J/O, Test I/O, and Test Channel 
instructions do not fetch a CAW or a CCW, do not transfer 

If the selected control unit and I/O unit are available, 
the I/O operation is initiated and the channel performs the 
operation specified by the CCW; the CPU and the channel 

Table 1-14. I/O Instructions 

Mn&- Op Program 

Instruction manic Code Format Operands Function Interruptions Condition Code 

Halt 1/0 HIO 9E SI 01(81) Terminate current 1/0 operation at selected channel Priv Qper 0 : Interruption 
& 1/0 unit. in channel 

1. 0(13-15) is channel adr. 1 : CSW stored 
2. 0(16-23) is 1/0 unit adr. 2: Halted 

3 : Unavailable 

Start 1/0 SIO 9C SI 01(81) Select spec!fied 1/0 unit & initiate channel Priv Oper 0: Available 
command to that unit. 1 : CSW stored 

1. 0(13-15) is channeladr. 2: Working 
2. 0(16-23) is 1/0 unit adr. 3 : Unavailable 
3. CAW, which specifies address of 1st CCW, is 

fetched from location 72 (48, hex). 

Test Channel TCH 9F SI D1(81) Test stat•• of selected channel & set CC accordingly. Priv Oper 0: Available 
1. 0(13-15) is channel adr. 1 : CSW ready 
2. 0(16-23) is ignored. 2: Working 
3. State of channel is not affected. 3 : Unavailable 

Test 1/0 TIO 90 SI 01(81) Clear interruption condition in addressed channel or Priv Oper 0: Available 
associated 1/0 units, & set CC according to status of 1 : CSW stored 
addressed channel & 1/0 units. 2: Working 

1. 0113-15) is channel adr. 3 : Unavailable 
2. 0(16-23) is 1/0 unit adr. 
3. CSW is stored at location 64 (40, hex) if: 

a. 1/0 unit or control unit contains pending 
interruption. 

b. 1/0 unit or control unit is executing 
previous operation, or there is pending 
channel-end/control unit-end for another 
1/0 unit. 

c. 1/0 unit or its control unit detects 
machine error. 

1~98 (9/68) 



continue to share main storage under control of the priority 
function of the BCU, If an 1/0 operation was not initiated 
or was completed, the channel operation is ended when the 
CC is set into the CPU, and the channel is freed to perform 
further operations as initiated by the CPU. 

For an 1/0 write operation, a doubleword is fetched 
from the main storage location specified by the data 
address in the CCW (now in the data address register), and 
is stored into the channel A-register. The contents of the 
channel A-register are transferred to the channel B-register, 
the data address register is updated, and another 
doubleword is fetched from main storage and stored into 
the channel A-register. The contents of the channel · 
B-register are gated to the bus-out register, a byte at a time, 
and are transmitted over the bus-out lines to the control 
unit and to the 1/0 unit as required. When the channel 
B-register has transferred the last byte, the contents of the 
channel A-register are transferred to the channelB-register, 
and another doubleword is fetched from maill storage and 
stored into the channel A-register. 

For an 1/0 read operation, data is received over the 
bus-in lines, one byte at a time, from the 1/0 unit via the 
control unit, and is set into the bus-in register. The contents 
of the bus•in register are transferred to the appropriate byte 
location in the channel· B-register; ·when B is full, its 
contents are transferred to the channel A-registeL The 
contents of A are stored into main storage, a doubleword at 
a time, according to the address in the data address register. 

When the read or write operation is completed or is 
terminated because of an error condition, the channel 
requests an 1/0 interruption of the CPU to present to the 
CPU the CC and status byte describing the condition of the 
channel and 1/0 unit. If the CPU accepts the interruption 
request, the channel stores a CSW into main storage address 
64 ( 40, hex) and is freed for further operations. Until the 
CPU accepts the interruption request, the channel remains 
unavailable to the CPU. 

Program Interruption 

The only program interruption that may occur for an 1/0 
instruction is the privileged-operation interruption. It 
occurs if the CPU is in any state other then Supervisor. The 
instruction is suppressed before the channel is selected. The 
CSW the CC in the PSW, and the state of the addressed 
chan~el and of the 1/0 unit remain unchanged. The · 
interruption code in the program old PSW(16-31) is 
00000000 00000010. 

Condition Codes 

When the CPU is released from an 1/0 instruction, 1 of 4 
CC's is set into the CC register of the CPU and becomes a 
part of the current PSW. This CC is the result of tests by 
the CPU, the channel, or the 1/0 unit, and indicates various 
conditions that exist in the channel, the control unit, or the 
1/0 unit. The CC's for the four .1/0 instructions are 

summarized in Table 1-14. For a detailed discussion of the 
setting of the CC's, refer to the applicable 1/0 channel 
FETOM. 

POWER 

The CPU wall contains a 75-amp, 2.5-kHz converter/ 
inverter and the necessary high-frequency regulator mod­
ules to provide the CPU with de power. The power of just 
the CPU may be turned on and off by the CPU READY/ 
OFF switch and the CPU ON pushbutton on the enclosed 
CE panel. Normally, however, CPU poweris turned on and 
off together with the power of the system. The POWER ON 
and POWER OFF pushbuttons on the system control panel 
(and the 2150 Console if it is installed) control the power 
of the system. . . . 

Depressing the POWER ON pushbutton causes the units 
of the system to be turned oh one at a time. This 
sequencing is done so that the higher turn-on current of all 
the units is not required at the same time. The CPU is 
turned on first, followed by the channels and, lastly, the 
main storage units. The units attached to one channel are 
turned on before the power of the next channel is turned 
on. The main storage units· are turned on last, preventing· 
inadvertent storing by the CPU or channels during their 
power-on transition before their control triggers have been 
reset. The system power-on sequence is completed with a 
system ·reset operation. The entire system power-on se­
quence is performed in seconds. 

The system power-off sequence turns off the de power 
in the main storage units first, followed by the rest of the 
system. Again,· this sequence is followed to prevent inad­
vertent storing during the power transition while all control 
triggers may not be turned off. A-switch on most of the 
units in the system_ (such as CPU READY/OFF or 
WCAL/REMOTE) allows the unit to be bypassed during 
power-off and power-on sequences. In an emergency, the 
power of the complete system, regarqless of the position of 
these switches, is turned off by pulling the EMERGENCY 
PULL switch on the system control panel. 

To protect the CPU from thermal damage, it is forced­
air-cooled by blowers whenever the CPU is turned on; if the 
internal temperature gets too high, the CPU is turned off 
automatically. The CPU is also automatically turned off in 
an orderly, interlocked manner if an overcurrent, over­
voltage, or undervoltage condition is detected on the 
output of any of the CPU's regulators. Whenever the CPU's 
power is turned off by any means other than the POWER 
OFF pushbutton, two manual actions are needed to turn 
the power back on. The intention of this precaution is to 
nrevent inadvertent restoration of power. 
• Indicators at the top of the CPU's system control panel 
warn of a power fault in the CPU, channels, and 2365 
Processor Storage units. Also located there are controls and 
a voltmeter for margining the 6V de supplies in those units 
and the 18V de ROS supply in the CPU. 

2065 FETOM (9/68) 1-99 



This chapter discusses the functional units composing the 
2065 CPU, and is divided into seven section"S: 

Section 1, Timing and Clock Control. 
Section 2, Read-Only Storage. 
Section 3, Bus Control Unit. 
Section 4, Data and Control Registers. 
Section 5, Local Storage. 

Section 1. Timing and Clock Control 

The 2065 CPU operates with a basic CPU clock cycle 
period of 200 ns; i.e., a 5-megahertz (5-mHz) clock 
frequency. Each cycle is composed of clock and not-clock 
portions, used for data transfer and logic functions, 
respectively. The 200-ns clock cycle period is divided into 
twenty 10-ns intervals for intracycle timing. 

CLOCK SIGNAL GENERATORS 

T_wo types of clock signal generators are used in the CPU, 
depending on the system model. CPU's in a Model G65, 
H65, or 165 system, with a maximum of two high-speed 
storage (HSS) units, use a 10-mHz continuously running 
crystal-controlled oscillator and divide-by-two logic to 
provide the basic 5-mHz (200-ns) clock signal. CPU's in a 
Model IH65 system with three HSS units, and in a Model 
J65 system with four HSS units, use a 5-mHz gated 
delay-line oscillator to provide the basic clock signal. The 
longer cables to HSS units 3 and 4 cause an additional 
10-ns to 15-ns storage response delay, which is accounted 
for by inhibiting the clock. The gated delay-line oscillator 
is also used if a 2361 Core Storage Unit (Large Capacity 
Storage or LCS) is attached or if the Multisystem feature 
is installed, regardless of the CPU model. The gated 
delay-line oscillator reduces the . time required to· restart 
the clock after the storage request sequence that required 
it to be inhibited. It is not necessary to wait for the next 
full oscillator cycle to restart the clock as would be the 
case if a continuously running oscillator were used (as 
much as the full 200 ns might be required). 

Both types of clock signal generators may be operated 
with a higher output frequency (5.128 mHz), thereby 
shortening the clock cycle period 2.5% (from 200 ns to 
195 ns) for test purposes. The higher frequency is 
obtained from the clock signal generators by setting the 

Chapter 2. Functional Units 

Section 6, Serial and Parallel Adders. 
Section 7, Status and Control Triggers. 

Each functional unit is described separately, as con­
cerns operation, operational timing, and fi.mctional 
application. Supporting the descriptions are simplified, 
positive-logic upper-level diagrams, flowcharts, and timing 
charts. 

FREQUENCY ALTERATION switch to the down· posi~ 
tion and by turning the CE Key switch to the CE position. 
Both switches are located on the CPU system control 
panel. 

Model G65, H65, and 165 CPU Clock Signal Generator 

The Model G65, H65, and 165 CPU's have a continuously 
running crystal-controlled oscillator with two crystals: 10 
mHz and 10.256 mHz. The crystal used is determined by 
a reed relay. The relay is operated by the FREQUENCY 
ALTERATION switch and the CE Key switch (Diagram 
4-1, FEMDM). With either switch in the normal operating 
position, the relay is not picked and the 10-mHz crystal is 
used. With both switches set to the test mode position, 
the relay is picked and the 10.256-mHz crystal is used. 

The output of the oscillator circuit drives. the fre­
quency dividing logic, consisting of six inverting AND's. 
The output of the dividing logic provides the basic 5-mHz 
(200-ns) or 5.128-mHz (195-ns) clock signal. This oscilla­
tor cannot be inhibited by the logic. 

Model IH65 and J65 CPU Clock Signal Generator 

The Model IH65 and J65 CPU has two gated delay-line 
oscillators operating at 5 mHz and 5.128 mHz. The 
oscillator used is determined by the FREQUENCY 
ALTERATION switch and by the CE Key· switch (Dia­
gram 4-2, FEMDM). With either switch in the normal 
operating position, the 5-mHz oscillator is enabled. With 
both switches set to the test mode position, the 
5.128-mHz oscillator is enabled. The output of the 
oscillators provides the basic 5-mHz (200-ns) or 
5.128-mHz (195-ns) clock signal. 

The gated delay-line oscillator can be inhibited by the 
BCU during a .storage request sequence to either HSS unit 
3 or 4 (Diagram 4-2). The oscillator is inhibited at the 

'2065 FETOM · (9/68) 2~1 



time the BCU would normally expect the data from the 
accessed HSS unit (600 ns after the 'select' signal was sent 
to the unit) and is automatically restarted at the time the 
data arrives from the unit by a· fixed (pre-adjusted) time 
delay. The oscillator provides stable clock signals immedi­
ately; the negative-going signal into the oscillator not orily 
starts the oscillator but becomes part of the first output 
cycle. 

A continuously running crystal-controlled oscillator 
(identical to the clock signal generator in the Model G65, 
H65', or 165 CPU; see Diagram 4-1) provides a 5-mHz 
reference frequency for adjusting the 5-mHz delay-line 
oscillator frequency. A comparator circuit .(Dfagram 4-2) 
mixes the two signals and provides an output that is the 
absolute difference frequency between the two signals. 
When the two signals are within 1 kHz of each other; the 
output ·Of the coinparator circuit is a null or is a difference 
frequency of less than 1 kHz, indicating that the 
delay-line oscillator frequency is within 0.02% of the 
crystal-controlled oscillator frequency. 

CLOCK TIMING 

• Triggers are set and reset at clock time. 

• Latches are set and reset at not-clock time. 

• Logic operations normally occur at not-clock time; 
subsequent data transfers occur at following clock · 
time. 

• Symmetrical and unsymmetrical clock signals are used, 
depending on logic function. 

• Twenty 10-ns delay intervals provide for intracycle 
timing. 

· 80 ns 
Clock 120 ns 

Throughout the CPU, trigger and latch logic is used for all 
data-handling arid control functions. · Although imple­
mented with the same logic components (AND's, OR's, 
and inverters), triggers (by definition) are set or reset at 
clock time, whereas latches (by definition) are set or reset 
at not-clock time. In general, the data registers consist of 
triggers, and all intermediate logic units (such as adders, 
increrilenter/decrementers, and decoders) consist of 
latches. Control logic consists of both triggers and latches. 
The. CPU design provides for all intra-CPU data manipula­
tion to be done by register-to~latch-to-register (trigger-to­
latch-to-trigger) sequences, in lieu of direct register-to­
register ( trigger-to~trigger) transfer. Continuous 
availability of stable data results from the overlapping of 
the trigger and latch set/reset states (Figure 2-1). Note 
that the data (e.g., "A" in the figure) is stable in either a 
trigger or a latch at any one time during the indicated two 
clock cycles, but that the trigger and latch are available 
for new data ("B") in the next clock cycle. 

Each logic component within the CPU introduces some 
degree of· signal delay which must be considered in the 
CPU operation. All logic blocks with inversion introduce 
between 3 ns and 20 ns of delay, with 10 ns as the 
average. (Some special circuits will introduce either 30 ns 
or 700 ns.} All logic blocks without inversion introduce 
less than 3 ns of delay. lri addition, approxiillately 10-ns 
to 12-ns delay is created by every 6 feet of signal 
transmission line, 

Because of these delays, the clock signal is converted 
from a 5-mHz symmetrical signal to a 5-mHz unsymmetri­
cal signal, with an 80-ns clock time and a 120-ns not-clock 
time. This unsymmetrical signal provides the needed extra 
time for logic operations during not~clock time and still 
leaves sufficient time for trigger input at clock time. 

I 

New Data (A) New Data (B) New Data (C) 
I 
I 
I 
I + + + 

,__~--"""'I 
Trigger · Set or Reset Stab\ e (A) ------- ..... _________ _ Set or Reset · Stable (B) 

_______ ...., _______ ..,.._ 

l + 
To 

l 
Transfer (A) 

• 
late~ 

! 
To 

! 
Trigger 

Figure 2-1. Trigger and Latch Data Relationship 

2-2 (9/68) 

Stable (A) 

• Transfer (A) 

• 
Set or Reset -----

• Transfer (B) 

+ 

-~t.!!!!~--

• Transfer (B) 

+ 
I 
I 
I 
I 

____ st .. abillile11(A,.> ___ ...,... -~!.2.'..!~--~ 



Many logic blocks are used in the parallel adder at 
clock time, thus causing excess delay. To overcome this 
delay, the UJlsymmetrical clock signal is extended to a 
symmetrical clock signal with a 100-ns clock time and a 
100-ns not-clock time; this conversion is made within the 
parallel adder. Some of the ·parity checking and sign 
propagating circuits are timed by the unsymmetrical clock 
signals. Primary concern in clock timing is to provide 
stable information at sampling time. 

Oscillators A through E (Diagram 4-3, FEMDM) set up 
controls to stop, start, or control the clock. These signals 
are used in advance of clock time so that the controls are 
stable when they are needed. 

With most of the CPU logic blocks introducing 10 ns of 
delay, the 200-ns clock cycle period is divided into twenty 
10-ns delay intervals to provide timing within a clock 
cycle (Figure 2-2). These delay intervals are called "B" 
time or "P" time and are relative to the start of the clock 
cycle. "B" time refers to symmetrical clock signals; "P" 
time, unsymmetrical clock signals. The delayed clock 
signals are created by series inverters (each inverter 
introducing one 10-ns delay interval) or by time delays 
(e.g., BO, Bl, B2, .. , .. , andPO-l,PO,Pl,P2, .... ). 

CLOCK CONTROL AND SIGNAL DISTRIBUTION 

• Manual, BCU, and ROS operations, and errors, affect 
clock signal availability. 

• One symmetrical and one unsymmetrical clock signal 
are distributed throughout logic gates. 

• Time delays unskew and synchronize clock signals 
within and between sections of logic. 

i-------200n•-----..1 

· The availability of the clock sign.als to the CPU processing 
logic is controlled by the clock-stopping logic (Diagram 
4-3). Usually, the clock signals to the BCU are not 
stopped because the BCU must continue to service the 1/0 
channels even if th~ CPU is not operating. In the Model 
IH65 or J65 CPU, however, the BCU has the ability to 
inhibit the clock signal generator to account for the 
cabling delays to HSS units 3 and 4 (Diagram 4-2). During 
maintenance operations (such as scan, log-out, and single­
cycle operations), the clock signals may be stopped or 
permitted to run intermittently. 

The 'pass pulse' trigger (Diagram 4-3) provides clock 
signal distribution control during both normal (continual) 
and single-cycle operations. A start, load, or reset opera­
tion sets. the 'pass pulse' trigger and permits the clock 
signals to be passed on to the logic. When in the 
single-cycle mode, the 'block' trigger (set by the same 
operations) resets the 'pass pulse' trigger and blocks the 
clock signals before the next clock cycle, unless the BCU 
holds the clock on. 

The 'stop clock' trigger (Diagram 4-3) provides BCU 
control of the clock signal distribution. If the BCU cannot 
process a CPU storage request immediately or if a request 
to a large-capacity storage (LCS) unit has been made, the 
BCU sets the 'stop clock' trigger and blocks the clock 
signals. The. 'BCU cleanup' signal· for the HSS, the 
'advance' signal for the LCS, or a start, load, or reset 
operation resets the 'stop clock' trigger. 

During certain operations, the ROS microprogram may 
stop the CPU clock signal distribution for one or two 
cycles ('STOPl' or 'STOP2' micro-orders). The 'stop clock 
ROS' trigger provides this control from the bit configura­
tion of ROS word bits 45 and 46 (Diagram 4-3). 

~ntrocycle Timing Intervals I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Symmetrical 
Clock $ignols 

lkisvinmetrical 
• Clock Slg~ls 

Notei 

+80 

-81 

+82 

+80·2(818) 

+PO 

·Pl 

+P2 

0 1 2 3 4 5 10 15 0 5 10 15 0 5 10 

I I I I I I 
I : I I : I Ht-lOOn• + lOOn•-+-l 
111 I I ... 1 _____ _ 

: I i I I 

Itj~ri===:---r:~!:r===F~=I:r=~ 
I I I ~l_..I ____ _ 

I I I I ._-+------J 
I I I I I 
I I I I Ii+-so"' ---1.i.•o--tll---'-120 ··----'......i• i 

I I 
I I I I· 

I I I 
I I I I 

I· I I I 

I lr---------;_ ____ ....:....-4..._J,..._,:. ======~==========~:;:::::::::::::1 41 
+P0-2(PISJ-f"o i"'l--.,_ _ _i ____ __jo-i---'""'L. __ L_...:.::___:_~~r-+-----, __ _l_ 

Heavv porlion of timlrig signals indicates 
the active portion for the signal function. 

Figure 2-2. Typical Clock Signals 

2065 FETOM (9/68) 2-3 



The distribution of clock signals to portions of the 
ROS logic is stopped while the CPU is in the Wait state 
(Diagram 4-3). The Wait state is entered if PSW(I4) = 1 at 
end op. Entering the stop loop or an interruption removes 
the wait state block of the ROS signals. The 'time clock 
step' trigger also removes the wait state block, allows the 
exceptional branch to step the time clock (Diagram 8-20, 
F:EMDM), and then allows the CPU to re-enter the wait 
state, if there has been no change in PSW(14). 

Clock signal distribution to the CPU processing logic is 
stopped when the 'error' trigger is set and the CPU 
CHECK switch is not in the DSBL ( diSable) position. 
Error detection occurs•-cluring clock time, and. the clock 
signals cease with the next not-clock time: 

+PO 

/ 

Clock Degated 

"x 
)( 

Error Detected 

2-4 (9/68) 

,------, 
I 

Necessary information for error analysis is thus held in 
latches and triggers to be examined directly or to be 
stored by a logout operation. Note that the DLY (delay) 
units allow the clock to finish the cycle started by the last 
clock signal. The clock may· be ·restarted by the CPU 
CHECK switch~ internal circuits, or by resetting the 'error' 
trigger (Diagram 4-3). · 

The clock signal development and distribution concept 
is shown in Figure 2-3; note that if is not representative of 
any logic gate. Figure 2-3 (A) shows how the master 
'clock' signal is distributed to the gates. Figure 2-3 · (B) 
shows distribution within a· typical gate, with a separate · 
delay logic for every two SLT boards. The adjustable time · 
delay shown in Figure 2-3 (C) allows for unskewing of the 
clock signals; i.e., aligning all 'PO' signals. The 'special sync 
for PO BO' signal is used to adjust all time delays so that 
all 'PO' signals occur simultaneously; see ALD M8001 for 
the timing procedure. 



A 

DL Y """'--- DLY 

DLY"""'-ti--4 DLY 

A. Clock Distribution 

A 

-Clock 

-Clock 

4 

B. ·Typical 5 X 4 Gate 

_ ...... 

........... .......... 
............ 

SLT Gate• 

DL Y 1--11--1 DL Y 

............ 

SLT Boord, 

_ ..... 

c 

........... ..... 

D 

I 
I 

..... .J 

..... 
.......... .......... 

/ 

,,,"'-

/ 
/ 

/ 
// -P0-1 

/ 
" / 

I 
I 

) 

+PO 

. ..--r------------ ----, 
// I I 

,,,,....- I I 
/ .. I Clock Control I 

I Signal Logic I-•--.. 
I Generator KCO I J I 
I I 

-- I I ----.J__...__ ------- - --- _.J 

-Pl 

-Clock 

Note: Total delay includes 10 ns per 6 feet of wire plus. adjustable time delay. 

+P2 

• ALO KC021 for Model• G65, H65, and 165. 
ALO KCIOl for Models IH65, and J65. 

TD is adjusted to synchronize each PO with 1special sync for PO 80 1 

signal shown on ALO ZAOOl. Each PO must coincide with every 
other. PO in any SLT gate. 

Number of inverters varies from gate to gate, depending on need for 
particular signal • 

-P3 

r------ ------( 
I 
I 

To DLY on Ad'ocent Board 

-Clock 

I 
I I L ____________ .....1 

-P0-1 +PO -Pl +P2 -P3 

C. Unskewing Delay,Logic 

Figure 2-3. Clock Signal Development and Distribution 

2065 FETOM (9/68) 2-5 



Section 2. Read-Only Storage 

The read-only storage (ROS) is a device containing a · 
permanently recorded microprogram used to control CPU 
operations. The microprogram is in the form of 100-bit 
micro-instructions (ROS words), each of which has a· 
unique predetermined bit pattern. The ROS Words can be 
read out as required, but a physical modificatio_n is 
necessary to change the stored information. When· de­
coded, the bits of the ROS word condition gates whose 
outputs perform the necessary functions to execute an 
operation. Thus, ROS eliminates the ·need for most 
complex instruction decoders and. sequencing networks, 
and introduces a flexibility to machine design not 
previously available in control hardware. This flexibility 
allows changes t~ be made to control circuits for special 
features by replacing printed circuit sheets in ROS. 

CAPACITIVE READ-ONLY STORAGE ARRAY 

The capacitive read-only storage (CROS) array consists of 
2816 100-bit ROS words which are addressed by a 12-bit 
ROS address register (ROSAR). The array consists of 16 
planes, each of which is divided into 4 quarter planes. 
Each quarter plane .has one array driver energizing 1 of 22 
select lines. Each select line causes two ROS words. to be 
read out. To address a particular drive line from ROSAR, 
bits 0-3 select a plane, bits 4 and 10 select a quarter 
plane, and bits 5-9 energize one select line. Bit 11 of 
ROSAR selects one of the two ROS words (upper or 
lower) read out each cycle. 

CROS Electrical Theory 

The CROS operates on the presence or absence of a 
capacitor between a drive line and a sense line. Only one . 
driver at a time may be energized. In the example shown 
in Figure 2-4, when driver I is energized an impulse is 
couple~ through the capacitor Cl to differential sense 
amplifier D, producing the "D" bit. The same drive results 
in inputs to differential sense amplifiers A, B, and C, but 
the polarity is reversed and no bits are generated. To 
equalize the capacitive load (impedance) to all sense 
amplifiers, a balance line is provided with each driver and 
is allowed to "float". 

Note: Because the balance line function was found to be 
unnecessary, later machines do not use the balance line, 
although it is still printed on the ROS planes. 

2-6 (9/68} 

' Some unwanted capacitive coupling exists in this type 
of matrix. In Figure. 24; when- driver I is energized, Cl 
couples the voltage ·shift to sense line D, C2 couples tlie 
voltage shift to drive line 2, and C3 couples the voltage 
shift to sense line B. This unwanted signal is very low 
because it· passes through three elements. in cascade. The · 

. . threshold of the sense amplifier is designe_d so that the low 
signal is rejected while the desired. mgnal is amplified .. · 

CROS Planes · 

· The 2816 Words of ROS are stored in 16 planes. Each . 
plane contains the capacitors, drive lines, balance lines, 
and sense lines for 176 100-bit ROS words. The drive and 
balance lines are independent, whereas the sense lines feed 
common sense amplifiers. Planes 0-7 are. on gate C, .and 
planes 8-15 are on gate D: 

Drive and Balance Lines (Bit Plates) 

The drive and balance lines are photo-etched from a sheet 
of copper that is bonded to epoxy glass (Figure 2-5). The 

· . resulting epoxy sheet with copper drive and balance lines . 
is called a bit plate. A separate bit plate controls the bit 
configuration for each CROS plane. 

Tabs at the top and bottom of the bit plate are used 
for electrical connections to the drive and balance lines. 
The top tabs connect the drive and balance lines to 
terminating resistors. The bottom tabs connect the drive 
lines to the drive circuits. 

Four holes in the bit plate align the bit plate to the 
sense plane. The two outer holes snap over locating studs 
in the sense plane, and the inner two holes provide 
clearance for the center studs. 



,, 

Drive/ 
Line 

·~ ' 

rt -, * 
I • I 
I I 
L'---1 

Bit 

Driver 
l 

Figure 2-4. Basic 4 X 4 CROS Matrix 

Driver 
2 

r. -1• 
I . I 

L _i 

Driver 
3 

Driver 
4 

~ 

Sense 
Amp I 
A 

Sense 
Amp I 
B 

Sense 
Amp I 
c 

Sense 
Amp I 
D 

A-Bit 

B'-Bit 

C-Bit 

D-Bit 

.--.:.Balance Line 

*Resistor and connector 
removed on later machines. 

2065 FETOM (9/68) 2-7 



Driver Lines Tabs 

Figure 2-5. Bit Plate 

2-8 (9/68) 



Sense Lines 

• 200 pairs of sense lines are in each CROS plane. 

• Pair of sense lines carries signal for one ROS-word bit 
position. 

• 200 pairs ·of sense Jines read out two 100-bit RO_S 
words simultaneously. _ 

The sense lines are photo-etched into copper.covered 
epoxy-glass plates_ (Figure 2-6). The sense-line plates are 
permanently mounted to the .array gates. Electrical 
connections from the - sense lines to the terminating 
resistors and sense _ amplifiers - are made with low­
temperature solder. 

There are 200 paits of sense lines in each CROS plane. 
Two sense lines are required to read out one bit position 
of the ROS word. One drive line simultaneously reads out 

Figure 2-6. Sense Lines 

two 100-bit ROS words, which use 200 pairs of sense 
lines. 

Figure 2-7 shows the layout of the sense lines in the 
ROS planes. The top pair of sense lines is bit O of the 
upper 'Yord. The next lower pair of sense lines is bit 0 of 
the lower word. This order continues tO' the b~ttom pair 
of sense lines, which is bit 99 of the lower word. The 
upper and lower words are read out simultaneously. Each 
sense line is terminated through a resistor to ground. Note 
the distribution of sense lines through the planes to the 
differential sense amplifiers. The sense lines through the 
planes on both sides of a gate are tied together for each 
bit. The pair of sense lines from each gate is then OR'ed in 
the sense amplifier -for each bit. Because only_ one plane 
has an active drive line for a given ROS address, the sense 
amplifier receives only one.input signal. 

~ 
u 
0 

iii 

g 
·~ 

Cl) 
I-

2065 FETOM (9/68) 2-9 



Plane 15 Pl ones 13 and 11 Plane 9 

r-vv, -rr 
rw•A -it 

r--- -·..,...----.._ Plane 14 Planes 12
1
and 10 "'- Plane 8 

I Sense Amp Ii fier 

r-vV'" -(,L j_ 

EEt-~ 
Gate D Bit 0 Uppe.r Word I 

I! T 

~ Plane 7 Planes 5 and 3 
..._ Plane 1 

I 

1--vV'"-
I 

Ir I 
ORIARl /-vV'A. -rr I 

t ..._ Plane 6 Planes 4 and 2 ..,;.., Plane 0 I 
IL 83--rvv· If 

Gate C BitO UpperWordJ 
->!'IV'-_ ~t 

I 
---,/Vv IL 

H I 

-Wv :J l. Bit 0 Lower Word L---------

~ L-w.,.._ _j 

-i r 
L-- . " it 

Bit 1 Upper-Word 

-WV --n-
Bit 1 Lower Word 

L--wv --n 
~~ ;.::;. ~ - L -W'1'- (( 

vii'- JL .. If 

...IL -v (( 

-WV'- ...I --rr 

** 
Figure 2-7. Sense Line Layout 

Bit Capacitors 

The bit capacitors are formed by sandwiching a sheet of 
Mylart between the bit plate and the sense lines (Figure 
2-8). Pressure plates hold thes~ pieces fmDly together. The 
Mylar is the dielectric, and the drive, balance, and sense 
lines become the plates of the capacitors. 

Tabs on the drive and balance lines increase the size of 
the capacitors to form the bit configuration. The effective 
capacitive coupling of a drive line to a sense amplifier is 
equal to C 1 minus C2. The size of this effective capacitor 
is approximately 0.5 pf. 

The bit configuration Within a CROS plane is con­
trolled by the bit plate. Therefore, the ROS word can be 
changed by replacing the bit plate that contains the word. 

Physical Package 

A CROS plane consists of a sandwich composed of the 
.· sense line board, a dielectric sheet, and a bit plate. These 

fTrademark of E. l. duPont de Nemours & Co. {Inc.) 

2-10 (9/68) 

Bit 99 Upper Word 

Bit 99 Lower Word 

pieces are held firmly together by pressure plates (Ffonre 
~~. - - ~-

-A pressure plate, with a neoprene pad, fits over each 
group of capacitors in the plane. The plates are loosely 
connected to a pressure frame that is bolted to the gate. 
Adjusting screws in the frame squeeze the pressure plate 
against the bit plate. Because the sense lines are on a 
rigidly mounted board, the pressure plate holds the 
bit-capacitor sandwich frrmly together. 

Electrical connections to the bit plate are also made 
through pressure connections. 

~OS ADDRESSING 

ROS word addresses are assembled in the 12-bit read-only 
storage address register (ROSAR). Each ROS word con­
tains the basic address of the next ROS word. The basic 
address may be modified by machine operation or by 
error conditions. 



Sense 
Amp I 

Sense Line 

Drive line/ 

+6V 

Driver 

{
Epoxy Glass~ . . 

Bit Plate . . · · 
Drive and Balance 

- L' ::;v:zz;zzzzzzzzzzzzzzzzzzzt mes 

Dielectric ---:----:::-~c=====================i 

*Resistors and connections 
removed on later machines. 

Figure 2-8. Bit Capacitors 

Driver 

Exploded 
Cross-Section 

I 

2065 FETOM (9/68) 2-11 



Loose Screws (to hold 
plate in position) 

Dielectric Center Stud Sense Line Plate 

Neoprene Pa 

ressure Plate Loose Screws (to hold plates Cap Nut Pressure Screws 
in osition 

Figure 2-9. CROS Plane Pressure Mounting Assembly 

Read-Only Storage Address Register 

• RO SAR( 0-11) supplies 12-bit address that selects next 
ROS word. 

• Overriding branch and manual ROS operations force 
new address to ROSAR. 

The ROSAR, a 12-position (labeled 0-11) latch register, 
supplies the address to select the next ROS word. The 
configuration of the ROSAR contents (address) is 
controlled by the NA, K, and J control fields of the 

2-12 (9/68) 

present ROS word. A new address is available in ROSAR 
50 ns after each P2 clock time. Although each ROS word 
contains the address of the . next word to be accessed, 
address modifications can result by satisfying data­
dependent branch conditions. These data conditions are 
stable at ROSAR(0-10) by P2 + 30 ns and at 
ROSAR(l 1) by P2 + 50 ns. The gate at ROSAR is a P4 
clock pulse. To prevent late branching, the output of all 
ROSAR bits must be stable by P2 + 60 ns; at approxi­
mately PO minus 30 ns, the ROS sense latches are 
sampled. This sequence is repeated every machine cycle. 



The ROSAR bit positions can be arbitrarily divided 
into four groups according to their inputs. These groups 
are (I) ROSAR(0-5), which normally receive.s only the 
six high-order bits of the base address; (2) ROSAR( 6-9), 
which can receive the four iow-order bits of the base 
address and/or the output of the X-branch decoder; (3) 
ROSAR(lO), which can receive data from either the 
X-branch decoder or the Y-branch decorder; and (4) 
ROSAR(I 1), which can receive· data from either the 
X-branch decoder or the Z-branch decoder. [Note the 
overlap between the base address and X-branches on 
ROSAR(6-9).] An overriding branch, however, affects all 
positions of the RO SAR. 

The following micro-orders can cause ·an overriding 
branch: 'T-+RAR,' 'EXCEP', and 'SPEC'. If control field 
K contains the 'T-+RAR' micro-order, the base address is 
inhibitea and T(40-51} is transferred to ROSAR(0-11). 
This branch is unconditional. An 'EXCEP' micro-order 
inhibits the base address if an interruption is pending. The 
source . of the interruption provides the branch address. 
When an 'SPEC' micro-order is specified, a specification 
program interruption forces the branch address into the 
ROSAR. In addition, a local store write operation is 
blocked. 

Certain FLT operations force a new address into 
ROSAR (Diagram 4-101, FEMDM). 

Two manual operations cause the contents of the 
ADDRESS switches to be forced into ROSAR: depressing 
the ROS TRANSFER pushbutton or activating the 
REPEAT ROS ADDRESS switch. The operation of these 
controls is described in Section 1 of Chapter 6. 

ROSAR(0-5) 

ROSAR(0-5) (Diagram 4-101, FEMDM) can be set from 
one of three sources: ROS sense latch bits 48-52, 
T(40-45), or ADDRESS switches 0-5. Normally, posi­
tions 0-5 receive the five high-order bits of the base 
address from the NA control field of the current ROS 
word contained in the ROS sense latches. If, however, 
control field K contains an overriding branch and the 
branch condition is met, or if an FLT operation is in 
progress and certain conditions are present, or if certain 
manual operations are being performed, the.base address 
is inhibited from entering the ROSAR and ROSAR(0-5) 
is set from the ST bus or the ADDRESS switches. 

ROSAR(6-9) 

ROSAR(6-9) (Diagram 4-102, FEMDM), in addition to 
receiving the low-order bits of the base address and the 
overriding branch _address, can be set individually by 
X-branches (functional branches) specified by control 
field J (bits 62-68) of the ROS word. The control field J 
micro-orders that specify X-branches are listed as J96 to 
1124 on ALD M7021, which also shows the ROSAR bits 
that are set under specific conditions for each X-branch 

micro-order. When an X-branch is executed, the high-. 
order positions [ROSAR(0-5)] remain unchanged; i.e., 
still contain the high-ordel' bits of the base address. The 
base address bit· positions corresponding to the bits 
affected by the X-branch must be set to zero when an 
X-branch micro-order is given. For example, if RO SAR( 6) 
can be set to a 1 by a certain micro-order, ROS sense latch 
bit 53 must be 0 in the ROS word that contains the 
branch. 

ROSAR(10) 

ROSAR(lO) (Diagram 4-103, FEMDM) can be set by an 
X-branch, an overriding branch, and/or a Y-branch. The 

. base address, however, has no affect on this bit. Also, 
because an overriding branch and a Y-branch are both 
decoded from bits in control field K (bits 57-61) of the 
ROS word, only one of the two branches can be executed 
at a time; they cannot be executed together. That is, if 
control field K specifies an overriding branch, a Y-branch 
cannot be specified, and vice versa. 

. However, a Y-branch and an X-branch can be executed 
together because they are functions of micro-orders in 
separate control fields (K and J). The result of 
ROSAR(lO) is as follows: if neither the X-branch condi­
tion nor the Y-branch condition is met, ROSAR(lO) 
remains a O; if either or both of these conditions are met, 
ROSAR(lO) is set to a I. The Y-branch micro-orders that 
affect RO SAR( 10) are listed in the K field on ALD 
M7031 in the same manner as that ofX-branches. 

ROSAR(11) 

ROSAR(II) (Diagram 4-104, FEMDM) can be set by an 
X-branch, an overriding branch, or a Z-branch. The base 
address, just as for ROSAR(IO), has no effect on 
ROSAR(ll). Because an X-branch and a Z-branch are 
both decoded from bits in control field J (bits 62-68), 
only one of the two branches can be executed at one 
time. ALD M7021 lists the Z-branch micro-orders. 

However, a Y-branch and a Z-branch can be executed 
together. The effects on ROSAR(l0,11) are as follows: if 
neither condition is met, both ROSAR bits remain a O; if 
either condition is met, the associated ROSAR bit is set to 
1 ; if both conditions are met, both bits are set to l's. 

If control field K contains an overriding branch and 
control field J contains a Z-branch and the overriding­
branch condition is met, the result of the Z-branch is 
inhibited and RO SAR( 11) is set as specified by the 
overriding branch. 

ROSAR(0-10) Decoding 

ROSAR decode logic decodes the address in ROSAR(0-
10) to select 1 of 1408 array drive lines. ROSAR(0-4,10) 
is decoded into 1 of 64 drive lines; ROSAR(5-9) is 
decoded into 1 of 22 select lines; and ROSAR(O) selects 

2065 FETOM (9/68) 2-13 



gate C or D. One select line and one drive line then select 
1 of the 1408 array drive lines. See Diagram 4-105, 

· FEMDM, for decode flow. ROSAR(ll) is decoded to 
select one of the two ROS words read out each cycle. (If 
bit 11 = 1, the lower word is selected; if bit 11 = 0, the 
upper word is selec_ted.} 

Strobed Drive Lines 

An ROSAR address selects 1 of 64 strobed drive lines by 
decoding ROSAR(0-4,10}, as shown in A of Diagram 
4-105, FEMDM. The decoded address is a gate-drive signal 
to the array drivers. Each strobed drive line controls the 
array drivers for one CROS quarter plane. 

Decoding is accomplished in two levels. In the first 
level, bits 3, 4, and 10 are decoded to activate 1 of 8 lines, 

· and bits 0, 1, and 2 activate 1 of 8 lines. The outputs of 
the two first-level decoders are then combined with a 

-gate-drive sigilai to activate 1 of 64 drive lines. 

Select Lines 

One of 44 select lines is activated by decoding 
ROSAR(0,5-9} (B of Diagram 4-105). Twenty-two of 
these select lines are connected to gate C, and 22 to gate 
D. ROSAR(O} is decoded to select the gat_es, and 
ROSAR(5-9} is decoded to activate a select line within a 
gate. Although ROSAR(5-9) can be decoded 32 different 
ways, only the first 22. combinations are considered valid 
addresses; the other 10 combinations are not tested. If an, 
illegal bit combination is entered into these bit positions, 
no select line is activated. Illegal addresses· are addresses in 
which ROSAR(5 ,6) = 11. 

Decoding is accomplished in two levels. Iri the first 
level, bits 7, 8, and 9 are- decoded to activate 1 of 7 .lines, 
and bits 0, 5, and 6 are combined with a 'gate word select' 
signal (clock P2 delayed} to activate 1 of 6 lines. (Note 
.that when bits 5 and 6 = 11, no signals are developed from 
the first-level decoder.) The outputs of the two first-level 
decoders are then combined in the second-level decoder to 
activate one of the 44 select lines. 

Array Drivers 
There are 1408 array drivers iri ROS, 704 on gate C, 

.·planes 0-7, and 704 on gate D, planes 8-15. Diagram 
4~105, C, -shows how the drive-line signals are developed 
and distributed. Each array driver is an AND that AND's 1 
of 64 drive lines with 1 of 22 select lines (details are 
shown iil Diagram 4~106, FEMDM}. The AND's are single­
transistors: the drive lines condition the emitters while the 
select lines control the bases. Voltage is supplied to the 
collectors through the array drive-line.terminating resis­
tors. 

2-14 (9/68) 

Sense Amplifiers 

The sense amplifiers increase the voltage difference 
between paired 1 and 0 sense lines. The first stage of the 
sense amplifiers (D of Diagram 4-1 O~, FEMDM) consists · 
of two differential amplifiers, one for gate C sense lines 
and .one for gate D sense lines. Because only one array 
driver .is active for a machine cycle, the sense lines of only 
one gate carry a signal during. a machine cycle. -The 
first-stage differential amplifier . increases the voltage 
difference between paired sense lines and sends this signal 
to the second-stage amplifier. The second-stage further 
amplifies th_e signal and transmits it to the ·ROS sense 
latches. 

ROSAR(11) Function 

:Each - cycle, · 200 bits are sent to the sense latches. 
ROSAR(ll} divides this .illformation into two 1-00-bit 
words. If ROSAR(ll} = 1, the lower word is selected; if 

-- RO SAR( 11) = O; the upper word is selected. 

ROS DATA FLOW 

ROS word data is transferred from the sense amplifiers to 
the sense latches. A portion of the word is immediately 
decoded, wli.ile other portions step through registers and 

. latches to provide a delay so that the data is available at 
the desired time. The ROS word data flow is shown in F 
of Diagram 4-105. 

ROS Sense Latches 

The 100 ROS sense latches hold the ROS word for 
decoding and for setting ROSDR at PO of the next 

· machine cycle. The sense latches are set by strobing either 
· the upper or lower word sense amplifier outputs ruid are 

reset approximately 120 ns after PO of the machine cycle 
(E of Diagram 4-105). 

ROS Data Register and ROSDR Latches 

The ROS data register (ROSDR) holds fields A through H, 
and M, N, P, and Q of the ROS word for use in the next 
machine cycle. Fields H, and M, N, P, and Qare decoded 
directly from the ROSDR to control LS and the adders, 
respectively. Fields A-G, however, are further delayed by 
holding them in the ROSDR-latches. These fields are used 
for i:egister ingating. · 

The ROSDR latches allow a ROS word to control 
certain gates during the register set time of the- ne:itt cycle. 
For example, one ROS word may contain- the micro­
instruction: add the contents of T and A, and store the 
answer into A. The ROS word adds the contents of the 



registers on one machine cycle and stores the sum from_ 
the parallel-adder-out bus at register set time of the next 
cycle. · 

Diagram 4-107, FEMDM, is a simplified diagram of 
ROSDR. In this diagram, each main division of ROSDR is 
represented by a single bit position. At clock P0-1 of each 
machine cycle, ROSDR i~ reset. At not-clock P0-1, the 
contents of the ROSDR (bits 6-36) are sent to the 
ROSDR latches. At clock PO, the contents of the sense 
latches are tranSferred to the ROSDR. The output of the 
ROSDR latches (containing the previous ROS. word) and 
the output of ROSDR (38-42, 69-77, and 78-84) are 
then decoded to perform the selected micro-orders. 

ROS Decoders 

The ROS decoders use the bits from the ROS word to 
develop control lines. One micro-instruction may activate 
a number of control lines .. Timing consideration governs 
the source· of the ··lines; · Le., sense l;ttches, ROSDR, 
ROSDR latches. 

Field A (bits 6-9 of the ROS word) in Figure 2-10 is 
an example of a decoding network to develop control 
lines from ROS bits. Line A ['gate M1M2 to PAL(64, 
65)'] is decoded from· ROSDR because .. it updates 
PAl.(64,65) before PAL is gated to AB. The 'B38M' 
micro-order (A7), shown on ALD M7001, uses line A to 
update PAL(64,65) during not-clock tinie. Then, lines B, 
F, and G are developed from ROSDR latches 6-9 to gate 
PAl.(24-67) to AB(24-67) during the next clock time .. 
Note that the 'B38M' micro-order results when bit 6 = 0 
and bits 7, 8, and 9 = 111. 

This ·example demonstrates the register-to-latch-to­
register timing which controls the source of the decoded 
control lines. The other micro-order control fields are 
decoded in a similar manner to provide the control lines at 
the proper time. 

ROS Timing 

ROS timirig is controlled by the master clock signals. At 
PO + 160 ns, the ROS word is strobed (gated) into the 
sense latches, which· are reset at PO + 120 ns. Data from 
the sense latches is stable and available at P0-5 ns when it 
conditions ROSDR(6-42) for setting at clock PO and 
ROSDR( 69-84) for setting at clock P2 .. Gate controls 
from the sense latches (register data transfer) are activated 
at clock P2, and remain up for 190 ns. ROSDR latches are 
set at P7 ('not clock PO~ l' signal) and· initiate register 
inputs during the following 200 ns. Figure 2-11 shows the 

•timing relationships of the registers and latches. These 
timings are theoretical and do not show the delays caused 
by the signals passing through inverters. 

Note: Initially, ROSDR is set to all l's; a 0 in a sense latch 
position resets the corresponding R,OSDR position. 

/ 

7 ........., r--
Not9 

A 

'Rv021 
Gate PAL(32 

Not6 t--1 OR 
to 8(32-63) 

-63) 

........L. 8 8 A 
L Not6 1--

9 A ....._.__ 

RYorr 
DR021 

L 9 6 ........-,..--
L 7 

8 A 
To ROSDR Gate PAL(B-2 3) 

.....__ Latch Inputs 
Not6 .......... OR 

to A(B-23) c 
RY021 

7 
Not 8 A 

Not Inhibit Ingoting 
.. 
~ 

I-Fetch 2 Latch ............... 
Not Exc!f_ Coiid to I· Fetch 

A 
Not I-Fetch· I Latch Gate PAL(.W 

Not 7 1-- OR 
_ to IC 

-63) 

D 

8 
Not 9 

A 
ROS DR 

.6 

Lot:hes l - ~ 

'"T~ 
Not.§! 

Not 7 Gate PAL(32-
8 ~ A 

to A(0-31) 

":" t-18 
7 9 

DR02l 

r-t- N 
Not 7 

Not6 ........-,..--
7 

63) 

A 
Gate PAL(24-31) 

. ..___ ·a 7 1-- toA(24-31) 
RY021 OR 

+t1-B-4 
8 

Not 9 A 

~ 
.___ 

9 Not 6 ,..,........... 
RY~21 l 7 

---t"""~ 
Not9 8 

A 

7 1--
Nots·· Gate PAL(64-67) 

Rviiil 9 A 
OR 

to 8(64-67) 
G 

7 1--
Not8 

9 A 

~ 

Not 7 ~ Decode PAL 
..J!. ~ A 

to IC 

Not 9 
H 

DR021 

Figure 2-10. Control Field A Decoder 

2065 FETOM (9/68) 2-15 



Maintenance Aids 

When an error occurs, data leaves ROS registers and 
latches before. the clock is stopped. To retain this 
information, which identifies the instruction which re­
sulted in the error, secondary registers (which have no 
other purpose) are provided: ROSAR latches, ROS 
previous address registers A and B, and ROS backup 
register. 

ROSAR Latches 

The ROSAR latches are l.oaded from ROSAR at Pl 1 tilne 
(not-clock P3 time) of each ROS cycle. At P4 time, the 
latch output is gated to the ROS previous address registers 
A and B (ROSPARA and ROSPARB) by an alternator. At 
the next PIO time (not-clock P2 time), the ROSAR 
latches are reset. 

ROS PreviousAddress Registers 

The contents of the ROSAR latches are alternately gated 
to ROSPARA and ROSPARB, which alternately contain 
the address of the current and previous ROS words. These · 
registers, which are loaded at P4 time of the ROS cycle, 
comprise polarity-hold circuits and retain their· values 
until gated into again. Thus, if ROSPARA is loaded on 
one cycle and ROSPARB on the next cycle, the contents 
of ROSPARA are maintained until the third cycle, at 
which time .. a new address is loaded. The contents of 
ROSP A.RA and RO SP ARB are indicated on the roller 
switch indicators: roller 1, position 4, bits 12-23 and bits 
24-3S, respectively (Diagram 8-2, FEMDM). 

ROSPARA and ROSPARB Alternator 

The ROSPARA and ROSPARB alternator (Figure 2-12) 
causes the contents of the ROSAR latches to be sent 
alternately to the ROSPARA and ROSPAR.13 indicators. 
Referring to Figure 2-12, assume that the latch is reset, 
the CPU is at clock PO time, the A-gate is conditioned, 
and the B-gate is deconditioned. 

At the following P3 time, AND 1 becomes condi­
tioned, which in turn conditions AND 3. The output of 
AND i: is also sent ·to AND 2, but AND 2 cannot be 
conditioned because the A-gate is set. The output of AND 
3 gates the contents of the· ROSAR latches to the 
ROSPARB indicator circuits. 

Because the B-gate is deconditioned at P6 time, the 
latch is set. On the rise of the -PS signal, the latch being 
set causes the B-gate to be conditioned and the A-gate to 
be deconditioned. With the A-gate deconditioned, AND 2 
is activated at P3 titne (via AND 1) of the following cycle. 
This action gates the coil.tents of the ROSAR latches to 
the ROSPARA indicator circuits. 

When the -PS signal drops, the latch is reset. The gates 
remain in this condition (A deconditioned, B conditioned) 
until the rise of the -PS signal. At that time, the A-gate is 
conditioned by the reset latch, and the B-gate is decondi-

. tioned by the A-gate. 
During the next two cycles and each cycle thereafter, 

the operation described above is repeated until the CPU 
clock is stopped. At that time, the contents of the 
ROSAR latches are gated to the ROSPAR indicators 
associated with the deconditioned gate. To indicate which 
ROS address is in which set of indicators, the latch output 

11111111111111111111111111111111111111111111111111111111111,11 
PO PS PIO PIS PO PS PIO PIS PO PS PIO PIS PO 

ROS Sense Latches Word 0 Word I Word 2 rword 3 

J Word 0 LJ u I L ROS DR( 6-42) Word I Word 2 

Register Outgating 

ROSDR( 69-84) LJ Word 0 LI Word I LI Word 2 

ROS DR Latches ( 6-36) LJ Word 0 LI Word. I LI Word 2 

Register Ingoting 

RO SAR LI Word I Address u Word 2 Address LI Word 3 Address 

Figure 2-11. Detailed ROS Timing 

2-16 (9/68) 



Not B-Gate 

P6 

Not P5 

Not System Reset 

'-------o--iN ROS PARA is last 

Not Block 
RO SAR Reset 

_P3~------i Al 
Pl 

ALD: RX201 

I I I I 
PO 

Pl 

P3 

P5 

P6 

Latch 

B-Gate. 

A-Gate 

AND 1 

AND 2 

AND 3 

I I I I I I I 
P5 PlO P15 

RO SPARA 

Figure 2-12. ROSPARA and ROSPARB Alternator 

I I 
PO 

A-Gate 

Scan Out Word 16R or 
Roller 3 Position 4 

ROSAR(O) L 

"Au 

Scan Out Word 1 or 
Roller I Position 4 

Gate ROSAR 
Latches (1-11) 

ROSAR(O) L PH 

Scan Out Word lBR or 
Roi ler 1 Position 4 

Gate ROS;\R 
Latches (1-11) 

I I I I I I 
P5 PlO 

ROSPARB 

OR 

I I I 
P15 PO 

2065 FETOM 

Indicate Roller 3 
Position 4, Bit 34 

Indicate Roller 1 
Position 4, Bit 12 

Indicate Rall er 1 
Posi~ion 4, Bit 12 

PS 

(9/68) 2-17 



(inverted) is sent to the ROSPARA indicator (roller 3, 
position 4, bit 34). When the latch is reset, the indicator is 
on, indicating that ROSPARA contains the address of the 
current ROS word and that ROSPARB contains the 
address of the previous ROS word; if off, the contents of 
ROSPARA and ROSPARB are reversed. 

ROS'Back-Up Register 

The ROS back-up register (ROSBR) holds fields L, NA, K, 
and J {which are indicated on roller 3, position 4, bits 
7-32), and fields R, T, U, and V (which are indicated on 
roller 4, -position 4, bits 17-30). These indicators com­
bined with the ROSDR indicators provide the CE with a 
picture of ROS word contents when the CPU stops during 
maintenance (test) mode. 

ROS Error Checking 

Before each ROS word is decoded, it is checked for 
correct parity. Parity is checked in three groups from the 
ROSDR and the ROSBR: 

Spare Fields 
A-H 

~ p ( Fields L, NA, 
+t&, K, and J 

) Fields M, N, 
P P, Q, R, T, P 

U, and V 

0 5 6 42 20 43 68 85 69 99 91 '-----v-----' ..___ __ ....,..... __ ___, ~ 

Group 1 Group 2 Group 3 

Each group contains its own parity bit and must have 
an odd number of bits to result in correct parity. {There is 
also a parity bit for the entire ROS word, bit 0. At the 
present time, however, this bit is not checked.) Figure 
2-13 illustrates ROS parity checking for the three groups: 
A of the figure shows how parity is checked from the 
ROSDR for group 1; B of the figure shows how parity is 
checked from the ROSBR for group 2; C of the figure 
shows how parity is ch~cked from the ROSDR and 
ROSBR for group 3. 

The clock reset is blocked in that part of the ROSDR 
or ROSBR containing the failing ROS word. The part or 
parts not in error are reset, and the next ROS word is 
gated to its respective register part(s). For example, if bits 
43-68 of a ROS word contain an error, the bits are 
retained for observation. The other two groups not in 
error {bits 0-42 and 69-99) will change. The groups that 
change belong to the .data word accessed by the failing 
word when the data register is examined. Thus, when a 
ROS. parity error occurs in one part, the ROS bit 
indicators on the system control panel comprise bits from 
two different ROS words. 

2-18 (9/68) 

A ROS parity error also prevents stepping ROSAR, 
ROSPARA, and ROSPARB, thus enabling the operator to 
estaglish the address of the current ROS word, the address 
of the previous ROS word, and the address of the next 
ROS word. The address of the previous ROS word should 
be particularly helpful when parity errors are caused by 
late ROS branches. 

Assume that ROS bit 40 fails. A parity error in bits 
6-42 is indicated, and the ROS previous address register 
indicated the failing word. Reference to the ROS bit plane 
description shows the expected bit content of the failing 
word. The incorrect bit {bit 40) can be determined 
directly by comparing the bit plane description with the 
indicators. 

To summarize, if a machine check is not disabled and a 
ROS parity error occurs, the parity group in error is not 
reset at CPU clock time of the next cycle. The CPU clock 
set-reset signal is blocked to the group that contains the 
parity error {Diagram 4-107, FEMDM). The new ROS 
word, however, is gated to the two groups not in error. 
The bit in error can be determined by displaying the ROS 
micro-instruction, noting which group of bits is in error, 
deciding which ROS address is in error, and referring to 
the listing of ROS micro-instructions. If a ROS parity 
error occurs and the machine check mask bit [PSW{l3)] 
is set, a logout occurs. 

Scan Mode Operations 

Scan mode operations affect three fields of ROSDR: field 
D {bits 17-20), field F {bits 25-30), and field G {bits 
31-3 5). -These fields serve dual functions. In the normal 
mode; they are decoded from the ROSDR latches as 
standard CPU control lines. In scan mode, they are 
decoded as special scan control lines and are referred to as 
field S. 

The scan mode is controlled by the 'scan mode' trigger. 
When the 'scan mode' trigger is reset, the standard decode 
path is used. When the 'scan mode' trigger is set, however, 
the standard control lines are blocked and scan control 
lines (using common CPU control line codes) are acti­
vated. 

The 'scan mode' trigger can only be set in normal CPU 
mode and reset only in scan mode. The scan control logic 
generates an 'inhibit register ingating' signal which is sent 
to the ROSDR fields to block register inputs and to allow 
scan control use of the ROS in sequencing through its test 
operations: 

Scan also affects ROS microbranching. {See "Scan· 
Mode Control of ROS" in Section 2 of Chapter 6.) 



ROSDR(l4\ ROSDR(6) 

ROSDR(l 51 
ODD I------, 

ROSDR\16) ROSDR(l3) 
ROSDR(21 i 

ROSDR\22) ODD 

ROSDR(23) 
ROSDR(l8) 

ROSDRl241 ROSDR(19i ROS Erroc 16-42) Block ROSAR 

ROSDR\381 
ROSDR(31 I ODD 

ROSDRt321 

ROSDR\251 A 
ROS Parity Error 16-421 

Clock PO Forced 

ROSDR\30\ ROSDR\331 Not Clock P2 Forced 

ROSDRl341 

ROSDR<35\ ODD 

ROSDR\39) ROSDR1171 
ROSDR\401 
ROSDR(41 I ODD 

ROSDRt421 ROSDR120f 

A. ROSDR\6-421 

ROSBRl431 

ROSBR\441 

ROSBR(45\ ODD 

ROSBRl461 

ROSBR(c:4.:...71:___........J-I 
Clock Pl 

ODD 
Not -Error Reset Extended 

R05(43-68l Parity Error A 

ROSBRi541 

ROSBRl551 

ROSBR16l 1 • 
ODDI---~ 

ROSBR(85) 

Not Clock P2 
ROSBR\62) 

ROSBR(68) 

B. ROSBR\43-68,851 

ROSD.R(69) 

ODD 

ROSDR(731 ROSDR\74) 

ROSDR(75) 

ROSDRl76l 

ROSDR(781 ROSDR1771 

ROSDR(79) 
ODD 

ROSDRl80\ ROSDR(82) 

ROSDR!83) 
ROSDR(86) ROSDR(84) 

----'-----!ODD 

ROS Parity Check (69-99! · 

l ODD 

ROSBR(90) ROSBR(92) 

ROSBR(93) 

ROSBR\94) ODDI------' 

ROSBR(97) ROSBR(95) 

ROSBR(98) ODD 
ROSBR(99) ROSBR(91) 

C. ROSDR(69-84) AND ROSBR(86-99) 

Figure 2-13. ROS Parity Checking 

2065 FETOM (9/68) 2-19 



Section 3. Bus Control Unit 

The Bus ·Control Unit (BCU) governs the flow of all 
information to and from main storage. This unit regulates 
the flow of addresses, data; key information, and other 
control signals associated with main storage. In the Model · 
65 system, the BCU responds to the CPU and to as many 
as seven 1/0 channels, all of which are operating asynchro­
nously in respect to each other. 

Note: If the Multisystem feature is installed, storage 
address decoding, 'select' signal generation, and BCU 
resetting is affected. Refer to Chapter 4, Section 2, for 
details. 

GENERAL DESCRIPTION 

The System/360 Model 65 uses a common, or multiplex, 
bus arrangement to transfer all information to and from 

. main storage: 

Simplex Control 
Lines 
{Storage Selects 

and Bus Availability 
Status) 

BCU 

--!-
CPU Requests 

Processor 

2365 Main Storage Units 

Multiplex Bus System 

Simplex Control Lines. 
( 1/0 Requests and Bus 
Avai !ability Status} 

1/0 
Channels 
0-6 

Each unit requiring access to storage is equipped with a 
set of receivers and drivers which tap into the multiplex 
bus. The major function of the BCU is to provide for 
efficient time-sharing of the multiplex bus by all units. To 
accomplish this task, each main storage unit and each unit 
requiring access to main storage communicates with the 
BCU through individual, or simplex, control lines. These 
lines are monitored by the BCU to establish priority 
between the requesting units and to inform the units of 
the bus availability status. 

Basic Interface Considerations 

Figure 2-14 is a simplified diagram of the BCU interface 
with the system. The functions of the major buses and 

2-20 (9/68) 

control lines are explained below. 
1. Multiplex Buses 

a. Storage Address Bus (SAB). This bus, 21 address 
lines and 3 parity lines, specifies the address of a 
doubleword in main storage. 

b. Storage Data Bus Out (SDBO). This bus, 64 data 
lines and 8 parity lines, carries data sent by the main ·. 
storage unit. 

c. Storage Data Bus In (SDBI). This bus, 64 data lines 
and 8 parity lines, carries data sent by the CPU or 
the channel to main storage. 

d. Mark Bus. This bus, 8 control lines and I parity line, 
designates which data bytes on the SDBI are to be 
stored into main storage; there is a mark line 
corresponding to each byte on the SDBI. Complete 
absence of mark signals on the mark bus occurs only 
on a fetch operation. 

e. Key-In Bus. This bus, 5 key lines and I parity line, 
is used during storage operations and the set-key 
operation. These operations transfer the storage 
protection key from the CPU or channel to the 
storage protect area in the selected ·main storage 
unit. 

f. Key-Out Bus. This bus, 5 key lines and 1 parity line, 
is used only during the insert-key operation. This 
operation transfers the storage protection key from 
main storage to the CPU. 

2. Control Lines 
a. Select. Upon selecting the required storage unit, the 

BCU issues a 'select' signal to that unit. This signal 
causes the selected unit to perform a storage cycle. 

b. Busy. Throughout the duration of the storage cycle, 
the storage unit generates a 'busy' signal to the 
BCU. 

c. CPU Request. Upon requiring access to main 
storage, the CPU issues a request signal to the BCU. 

d. Channel Request. Upon requiring access to main 
storage, the channel issues a request signal to the . 
BCU. 

e. BCU-Channel Response. This signal is generated by 
the BCU to the requesting channel in response to 
the channel-request signal. This signal indicates that 
priority has been granted to the channel and that a 
storage address is now required. 

f. Advance. Indicates to the CPU or channel that the 
storage unit is about to place data on the SDBO. 

g. Store. This multiplex line indicates to the storage 
unit that a store operation is in progress. 



Processor 
. 

I Select 

I - Busy --
Key from CPU __J Key In (5 + l P) 

.;::i- ~ 

Key Out (5 + l P) 
Key to CPU 

_J Mark Bus (8 + l P) 
Marks Fn;im CPU 

__J SDBI (64 +BP) 
Dato From CPU 

~-
BCU SDBO (64 +SP) 

Data tn CPU ~ ..... 
Address from CPU _J SAB (21+3P) _. 

. -
I (See Note) 

~--------· 
I . ~ 

... Advance ....._ -
Request From CPU __J Store 

I 
Chan Request -

I t----
BCU-Chan 
Response 

1/0 Channels (0-6) 

I+-

~ 

Address From 1/0 .. 
Data to 1/0 .... -
Data from 1/0 _.. .. 
Marks from 1/0 ....... . 
Key from i/O --.. 

Figure 2-14. Primary BCU Interface Signals 

Special multiptex lines for operation with the 2361 
Core Storage Unit (Large Capacity Storage or LCS), not 
shown on Figure 2-14, include: 
l. LCS Pre-Advance. Warns the BCU that the LCS is 

preparing to send data on the SDBO. This signal 
prevents the start of another request which might 
interfere with the incoming data. 

2. LCS Advance. Precedes the data from the LCS so that 
a register will be ready to receive the data. 

3. Set LCS Priority. Notifies the requesting channel that 
it should look for an 'LCS advance' signal and ignore 
the 'advance' signal from the 2365 Core Storage Unit 
(High-Speed Storage or HSS). 
A simplex line, 'LCS operation', from each channel sets 

the 'channel X waiting' trigger to allow other channels to 
operate with the HSS while the LCS is busy. 

Storage 

... 

__..: . 

-"" ..... 

" 

...... . 

Note: 
1/0 generated 
storage addresses 
are routed to 

BCU for decoding 
and parity 
generation. 

.-

Basic Operating Considerations 

The following paragraphs briefly examine the major 
operational characteristics of the processor, channels, 
main storage units, and large-capacity storage (LCS) units 
from a BCU viewpoint. 

Operation with Processor 

• Requests are issued by (1) I-Fetch, (2) microprogram, 
(3) Scan. 

• CPU clock is stopped if request is not serviced within 3 
cycles. 

2065 FETOM (9/68) 2-21 



The BCU resides in, and is a logical but independent part 
of, the CPU. To enable efficient handling of CPU storage 
requests, the BCU and CPU clocks are synchronized. The 
BCU is designed to accept storage requests from the CPU 
every 0.4 usec (every other CPU clock cycle). However, 
the speed with which these requests are serviced depends 
on the storage availability and on the amount of channel 
interference. 

The CPU can issue five types of requests to the BCU: 
fetch data, store data, insert kev. set key, and test and set. 
Furthermo~e, the fetch data and store data requests can 
be issued by various functional areas of the CPU and are 
categorized accordingly. For example, the fetch data 
-requests can be issued by the I-Fetch control hardware, by 
the microprogram, and by Scan controls. 

Whenever pqssible, requests from the processor are 
handled by the BCU in a manner to provide for maximum 
CPU operation; i.e., processing of data in th.e CPU is 
overlapped with handling of the request by the BCU. 
However, the degree of overlap is limited, and the BCU 
must stop the CPU clock· when a channel request has 
taken priority, when the storage unit requested by the 
CPU is busy, and when the data requested by the CPU 
cannot be retrieved within the required number of cycles. 

A need to fetch new data is detected in the processor 
three or four cycles before this data is required. Accord­
ingly, the CPU issues a 3- or 4-cycle fetch request 
indicating to the BCU that data will be required after 
three or four cycles have elapsed from the time of the 
request (i.e., the transfer of data into the CPU must take 
place on the fourth or fifth cycle following the request). 
It is the responsibility of the BCU to ensure that the 
requested data is present at the SDBO at the specified 
time. To do this, the BCU allows the CPU clock to cycle 
three times regardless of whether storage can be accessed 
within this specified period. If data is not available at the 
SDBO at the end of the third cycle, the BCU stops the 
CPU clock. CPU processing is thus halted until its storage 
request is completed, at which time the BCU restarts the 
CPU clock (see ALD M8251). 

Requests to store data are initiated in the CPU by the 
microprogram or by the Scan controls; these requests are 
always accompanied by the 'mark' signals, which desig­
nate the bytes to be stored. Store requests are not 
categorized into the 3- and 4-cycle types because no 
critical transfer into the CPU is involved; once the storage 
unit is selected, the CPU no longer depends upon storage 
unit operations. 

The insert-key, set-key, and test-and-set requests are 
issued by the CPU microprogram. Basically, the insert-key 
request is a fetch operation to obtain the protection key 
from main storage. The set-key request is a store 
operation which transfers the five-bit (plus parity) storage 
protection key from the CPU into a specified storage 
protect area of main storage. The test-and-set request is 

2-22 (9/68) 

essentially a combined fetch/store operation effected in a 
single storage cycle. 

Operation wrth I /0 Channels 

• Requests are issued by up to seven channels. 

• Requests are handled in the following order of 
priority: channels 1, 2. 0, 3, 4,5, 6; then CPU. 

Up to seven channels (six selector plus one multiplexer) 
are available on the Model 65. All channels may operate at 
the same time. The channel sustains a maximum data rate 
when it is servicing a high-speed drum: 1.25 million bytes 
per second. Because data is transferred between the 
channels and main storage on an eight-byte basis, the 
channel makes a storage request every 6.4 usec. at this 
speed. When servicing the 340-kHz and 90-kHz magnetic 
tape devices, the channel requires access to storage at 23-
and 89-usec intervals, respectively. 

The channel can issue two types of requests:· fetch data 
or store data. Requests from channels are processed by 
the BCU on a priority basis. Where there is a conflict 
between two 1/0 channels or between an 1/0 channel and 
the CPU, the BCU gives priority to the highest-ranking 
channel. Priority is preassigned in the following manner: 
Channel 1 has the highest priority, followed by channels 
2, 0, 3, 4, 5, and then 6 (channel_ 0 is the multiplexer 
channel); when no channel requests remain, a CPU request 
is honored. Priority is therefore not established on a 
first-in/first-out basis; instead, as each request is serviced, 
a priority test is performed again on all channels, 
including the channel just serviced. 

Operation with Main Storage 

• BCU allows interleaving of odd and even requests. 

• Storage keys protect storage contc::nts. 

• Insert key operation fetches key to CPU. 

• Set key operation replaces key in main storage. 

The 2365 main storage units, also referred to as the 
high-speed storage (HSS), operate on a basic cycle of 750 
ns. Each HSS is divided into an even- an4 an odd-address 
storage area equipped with its own SAB, SDBO, SDBI, 
and 'mark' bus. The access path to these areas is through a 
common interface (Figure 2-15). This arrangement (inter­
nal to the HSS) allows the BCU to interleave even and odd 
storage requests; i.e., an odd request can be issued by the 
BCU halfway through an even storage cycle, and vice 
versa. By interleaving references to even- and odd-address 
areas, the effective storage cycle approaches one-half the 
cycle time of the unit. (If desired, the interleaved mode of 
operation can be defeated to allow operation of a program 
solely in the odd or even area of storage.) 

Each time a storage unit is accessed by the CPU or 1/0 
channels, information is either stored into or fetched from 



Mark 

Odd Area 

Odd 
Array 

SAS Mark 

Even Area 

Even 
Array 

SAS 

Common Interface 
r,:------1 Storage Protection 

Unit 

SDBO SAS SDSI Mark Key-In 

*Memory Data Register 

Storage Cycles --..i.---------- ----------..+.1---------- 2 --------~·I 
Odd cycle completed. 

Odd Fetch Requests 

Odd address 
on SAB 

SAB transferred to 
odd area. Data 
placed on S DSO. 

Odd address can be 
placed on SAB. 

Even address can be 
placed on SAB. 

SAB transferred to 
even area. Data 
placed on S DBO. Even Fetch Requests __________ __. 

r,. .... · ______ In effect, two requests ------•""'I 
per cycle time. 

Figure 2-15. Basic Organization of HSS Unit 

that unit. A store operation is performed when the data 
on the SDBI is accompanied by one or more 'mark' signals 
on the 'mark' bus. There is a 'mark' line for each of the 
eight bytes that can be placed on the SDBI. The presence 
of signals on these lines indicates which SDBI bytes are to 
be stored. Thus, data can be stored selectively by bytes, 
or, if all marks are active, the entire SDBI contents are 
stored at the doubleword address specified by the SAB. 
When the CPU or 1/0 channel requests a storage cycle and 
no signals are present on the 'mark' bus, a fetch operation 
is initiated. In a fetch operation, the doubleword ad­
dressed by the SAB is placed on the SDBO and is made 
-available to the requesting unit. 

A storage protection capability is provided to protect 
the contents of main storage from unauthorized use or 
destruction. Both fetch and store operations are subject to 
this protection. Protection is implemented by subdividing 
each storage unit into 2048-byte blocks and assigning a 
one-byte protection key pattern to each block .. The 
assigned key patterns for the addresses for all 2048-byte 
blocks within a storage unit are recorded in the storage 
protection mechanism qf that unit. During a storage 
request, the storage protection mechanism compares the 
key pattern for the addressed block with the key pattern 
supplied by the requesting CPU or channel. (Keys are 

gated frbm the requesting unit over the 'key in' bus atthe 
beginning of each storage cycle.) A mismatch in keys 
results in a protection violation; the storage request is not 
honored, and a 'protect violation' signal is sent to the 

. requesting unit. 
The protection key for any 2048-byte block of storage 

can be fetched from the protection key mechanism and 
brought into the CPU for inspection. This operation is 
performed through execution of the Insert Storage Key 
(ISK) instruction, which issues a fetch request directly 
into the protection key area of the storage unit. Con­
versely, the protection key for any 2048-byte block of 
storage can be changed through execution of the Set 
Storage Key (SSK) instruction by the CPU. This instruc­
tion provides a new key pattern and issues a store request 
into the protection area. 

The ISK and SSK instructions can be executed only in 
the Supervisor state and are not available to the problem 
programmer. A programmed protection of storage can be 
achieved by means of the Test and Set (TS) instruction. 
When the TS instruction is executed by the CPU, a 
doubleword is fetched from main storage, and the CPU 
inspects one byte in that doubleword. The main storage 
sets the byte inspected by the CPU to all l's, while the 
remaining bytes in the doubleword are not changed. Thus 

2065 FETOM (9/68) 2-23 



programmed storage protection is achieved in the sense 
that the CPU can later inspect the first byte of a particular 
storage block to establish whether this block has been 
previously processed. 

A test-and-set storage request combines aspects of both· 
fetch and store operations; therefore, it requires special 
handling by the BCU and the storage unit. From the BCU 
viewpoint, the TS instruction is the only one that 
generates a. 'mark' signal during a fetch request. The BCU 
sends the 'mark' signal and the 'test and set' signal to the 
storage unit. During the storage write cycle, all bytes 
(excluding the byte specified by the 'mark' signal) are · 
regenerated into the core array; all 1 's are generated into 
the byte location specified by the 'mark' signal. 

Operation with LCS (Optional Feature) 

The LCS is an optional feature that extends the storage 
capacity of the system. One 2361 Model 1 (1, 048, 576 
bytes), or up to four 2361 Model 2's (2, 097, 152 bytes 
each) may be installed withouf interleaving. By installing 
units in. pairs, two 2361 Model 1 's or two or four 2361 
Model 2's, the addressing can be split so that one unit of a 
pair contains ·all even addresses and the other unit 
qmtains all odd addresses. When these units are addressed 
by the BCU. on an interleaved. basis, the normal 236.1 
internal cycle time of 8 usec is reduced to an effective 
cycle time of 4 usec. 

CPU 

Basic Control and Timing Considerations 

• Requests are recorded by sync trigger/latches. 

• Priority test is performed when BCU is not busy. 

• Once priority is granted, BCU decodes storage address. 

• 'Select' signal is sent to storage if unit is not busy. . 

The basic scheme for processing storage requests by the 
BCU is shown in Figure 2-16. Requests from the CPU and 
1/0 channels are entered into the BCU request sensing 
logic and are recorded by the corresponding sync trigger/ 
latch circuits of the .BCU. If the BCU is not busy 
processing a previous request, it examines the status of the 
sync latches to perform a priority test. When priority is 
granted to a particular unit, the priority trigger for that 
unit is set, and the storage address from the unit is made 
available to the BCU for decoding. At the completion of 
the decoding, the BCU initiates a storage cycle by gating 
the storage address to the SAB and sending a 'select' signal 
to the even or odd storage area of the selected storage 
unit. Upon receipt of the 'select' signal, the storage unit 
proceeds to read out or write in the data at the addressed 
location. 

On a fetch data request, the storage unit gates ·one 
doubleword of data onto the SDBO for sampling by the 
requesting CPU or channel. On a store data request, the 
storage uni.t replaces the contents of the addressed 
location with the data sent over the SDBI from the CPU 

Busy Odd 
Select 

Busy Even Pulse ,--- - -'- - -·-1 

: stora e Address GT ~--~I -----------.... ----~l--,~nr---------
1 

Logic Select Odd 

Select Even 

I Storage Request 

L ___ _ I 
__ _J 

1/0 CHANNEL r---- --·--, 
( Stora e Address I 
I 

·1 Storoge Request I 
L ______ _J 

Gate Address from· CPU 

CPU Sync 

} ToSAB: 
Storage 
Decode 
Logic 

Gate Address from Channel 

Priority 
Test 
Logic 

Channel Priority 

BCU Cleanup 

Trigger/Latche~ CPU Priority 

BCU Cleanup 

Inhibit Priority Test 

BCU Busy 

OR T 

BCU Cleanup 

"------------J---i-L--r-...~-__:j--~-~.-7T-,._...-jN Not CPU 
Priori.ty_ 

cpu 
Sequencers 

Figure 2-16. Basic BCU Scheme for Processing Storage Requests 

. 2c24 (9/68) 

BCU Cleanup 

3-Cycle Time-Out 
A 

Stop/Start 
CPU Clock 
Logic 



or channel. Only those bytes designated by the 'mark' 
signals are placed into main storage; in the absence of 
'marks', bytes already in storage remain unaltered. 

During the time when the storage unit is actually 
performing a fetch or store cycle, it is not available for 
reselection. To prevent the BCU from doing so, a busy 
indication is presented to the BCU from either the even or 
odd storage area, depending on whether the storage unit is 
performing an even or odd request. 

The access time to main storage is 600 ns; i.e., data 
becomes available from or is stored into main storage 600 
ns after the request is issued. The basic timings for the 
fetch ·and store operations are shown in Figure 2·17. 

To provide the necessary control signals at the correct 
time, the BCU makes extensive use of trigger/latch 
circuits. All BCU triggers are set at clock time of the 
machine timing signal and are reset at the following clock 
time. Conversely, the latch circuits are set at not·clock 
time of the timing signal and are reset at the following 
not·clock time. Thus, BCU timing sequences are imple­
mented (essentially) by sequential shifting of status 
information through latch-to-trigger·to-latch circuits. A 
typical arrangement is shown in the adjacent column . 

. Note that the state of a particular trigger or latch at any 

Figure 2-17. Basic Request Timing 

particular time is indicative of the progress made since the 
issue of the request: 

Channel l Channel l 
Channel 1 Request Sync Priority 

Not-Clock 1 A Clock 2 A 

Not-Clock 2 Clock 3 
~~~~~--IL___J 

From Other
Ch~nnel
Priority
Triggers

BCU Clock Timing Signal

Channel I. Syn<: Latch

Channel 1 Priority Trigger

BCU Response to Channel
latch (Common l

Channel 1 Data Request
Trigger

MC301 MC301

BCU Cleanup

BCU Response
to Channel

Channel 1
Dato Request

late BCU Cleanup

MC331
(Common)

0
I

01©
I·
I
I
I
I
I

r----i

2065 FETOM (9/68) 2-25

As mentioned previously, the CPU can generate either
a 3- or 4-cycle fetch request to specify the exact time at
which the SDBO is to be gated into the processor. If the .
CPU is granted priority, and if a successful storage
selection has been made, the SDBO becomes "valid" after
3 cycles have elapsed from the time of request. To meet
the requirements of a 4-cycle request, the SDBO is held
valid for two successive machine cycles. This provision
ensures that data will also be present at the SDBO during
the 4-cycle sample pulse:

8 0 0 0
Clock Pulse

I I 3-or 4-Cycle I I Request - ---i
I I
I I

SDBO Valid I I I
I I. I

3-Cycle Ingole I ..- I
I I I

4-Cycle Ingole I I i.....
I I I

LCS operation is similar to HSS operation, except for
the time involved. After the LCS unit is selected, it takes
3 usec for data to return from the selected storage; for
~bout 2 usec of that time the BCU is free to process
channel requests. In the case of a CPU fetch request, the
CPU clock is stopped until the 'LCS advance' signal
restarts it to process the incoming data. In the case of
channel requests, the channel waits for the 'LCS advance'
signal, but does not hold up other operations.

Basic Operational Sequence

• CPU sequencers count CPU cycles . following CPU
request.

• Sending of 'select' signal to storage signifies successful
completion of request.

• 'Invalid address' signal is generated if 'select' signal is
not sent to storage.

The basic BCU operational sequence in handling stor~ge
requests from either the CPU or the 1/0 channels is shown
in Figure 2-18. The handling of CPU requests is described
first.

The CPU storage requests are issued by one of three
functional areas within the processor: I-Fetch logic, ROS
microprogram, or · scan. controls. Once the request is
issued, a group of CPU sequencers is activated in the BCU. ·
These sequencers count the CPU cycles that elapse after
the request is issued. If the request cannot be completed
within a specific time defined by the processor (3 or 4
cycles, depending on the type of request), the sequencers
stop the CPU clock to prevent processing in the CPU from
advancing beyond the specified cycle. The CPU clock
remains stopped until the BCU is able to complete the
request.

2~26 (9/68)

When the BCU is not busy processing a previous
request, a priority test is performed on all the requests
(CPU and channel) recorded by the BCU sync latches.
·After priority is granted to a specific request, the BCU is
immediately placed into the busy status to inhibit further
priority testing until the accepted request is completed.
(During BCD-busy status, requests are still received by the
BCU and are stored into the latches for consideration on
the next priority test.)

If the BCU is not busy, and if no channel requests are
pending at the time, the CPU request is granted priority.
This action allows the storage address supplied by the
CPU to be gated to the SAB. The BCU then decodes the
SAB address and generates a 'select' signal to send to the
specified storage unit. Whether or not the signal is actually
sent depends on the SAB specifying a unit that is within.
the addressing range of the physical storage and has its
power turned on.
· If the address supplied by the CPU is outside the

physical address range of the installation or specifies a
storage unit whose power is down, the 'select' signal is not
sent to the storage unit. In this case an 'invalid address'
signal is sent to the CPU, and the request is cancelled.

In a case where the unit address is correctly defined
and its power turned on, the attempt to issue a 'select'
signal will be made. However, the sending of the 'select'
signal to the unit may be delayed if the· unit is busy
servicing a previous request. A busy storage unit causes
another selection attempt to be made by the BCU on the
following cycle. Continuous selection attempts are thus
made until a 'select' signal is sent to storage.

The sending of a 'select' signal to a storage unit
signifies to the BCU that a successful selection has taken
place. A BCU cleanup operation is then initiated to reset
the BCU control circuits and to allow a priority test to be
made on pending requests.

Storage requests from the seven 1/0 channels are
handled by the BCU in a sequential order of priority: the
highest priority is assigned to channel 1, . then to channel
2, then to channel 0 (the multiplexer channel), and then
sequentially to channels 3, 4, 5, and 6. When the BCU
grants priority to a requesting channel, a BCU response
signal is sent to that channel. The channel then gates the
storage address to the SAB and responds to the BCU with
an 'address valid' signal. Upon receipt of the 'address

· valid' signal, the BCU decodes the SAB address and
attempts to issue a 'select' signal to the specified storage
unit. Basically, from this point on, the channel request is
handled in the same manner as a CPU request. When the
channel is performing a store operation, the 'mark' bus,.

. SDBI, and 'store' signal are gated directly from the
channel to the addressed storage unit. If an invalid address
is decoded by the BCU during processing of a channel

· request, an invalid· address indication is sent to the
channel and to the I/O interrupt logic of the CPU.

Requests from CPU
(per IC, 0, or Scan)

Start CPU
sequencers to
control machine
cycle
progression,

No

Sequencers
stop CPU clock
if data is not
mode avoi lob le
at the correct
time.

No

Establish
priority and
set appropriate
priority trig­
ger.

Place BCU
into busy
status.

Gate 'mark'
signals to
'mark' bus.

Gale storage
oddres.s from
CPU to SAB.

Requests from
Channels 0-6

Set appro­
priate sync
trigger/latch.

No (Channel)

Send response
signal to
selected
channel.

Yes

Decode stor­
age address.
from SAB.

Figure 2-18. Basic BCU Operational Sequence

Upon receipt
I of this signal,
I channel gates

I address to SAB and
signa Is address
valid to BCU.

Generate 'in­
valid address'
sign~/ to request­
ing unit and
cancel request.

Place data
on SDBI and
generate 1store'
s_ignol.

Yes

Yes

Yes

Issue 1select'
signal to
storage unit .

Start BCU
clean-up
operation,

If set key
operation, place
key on
'key-in' bus.

No

Resets BCU
controls and
allows new
priority test
on pending
requests.

Gate in data
from SDBO to
requesting unit.

2065 FETOM (9/68) 2-27

DETAILED ANALYSIS OF BCU FUNCTIONS

For purposes of discussion, the BCU is divided into a
number of functionally distinct logic areas. The subse­
quent paragraphs describe the functions performed by
each area and explain how these functions fit into the
overall operational sequence of the BCU (Diagram 4-201,
FEMDM).

Initial Handling of Requests

• CPU requests during clock time are recorded by sync
triggers.

• CPU requests during not-clock time are recorded by
sync latches.

• 1/0 requests are always recorded by sync latches.

All requests for main storage originate in either the CPU
or the 1/0 channel. The BCU logic used for sensing and
recording these requests is shown in Diagram 4-202,
FEMDM.

Storage requests from the processor can be issued to
the BCU either at clock or not-clock time of the machine
cycle. To synchronize the clock and not-clock requests,
the BCU employs a trigger/latch sync arrangement.
Requests received at clock time are first entered into the
BCU sync triggers; they are then propagated (at not-clock
time) into the sync latches. Requests received at not-clock
time are entered directly into the sync latches. Thus, at
the completion of one machine cycle, all requests are
reduced to a common time-reference frame.

From the BCU ''viewpoint", the storage requests issued
by the CPU can be placed into one of three general
categories:
I. Requests Generated by Microprogram. These requests

are decoded at clock time and, depending on the
address source (IC or D), are entered into the corre­
sponding BCU sync triggers. Furthermore, all fetch
requests must be specified as being either 3 or 4 cycles
in duration. This is to inform the BCU of the specific
time at which the requested data must be gated into
the processor. The presence or absence of the '3-cycle
request' signal from the CPU indicates whether a 3- or
4-cycle fetch has been initiated; i.e., the. '3-cycle sync'
trigger (in the BCU) is set on all 3-cycle fetch requests
and reset on all 4-cycle fetch requests. Upon the setting
of the appropriate sync trigger in the BCU, the request
is propagated (at not-clock time) into the corre­
sponding sync latch.

2. Requests Generated by I-Fetch Hardware. These re­
quests are decoded at not-clock time and, therefore,
are entered directly into the corresponding IC or D
latch and the '3-cycle sync' latch.

2-28 (9/68)

3. ReqP.ests Generated by Scan Hardware. These requests,
generated during logout and ROS test operations, are
decoded at clock time of the machine cycle. Accord­
ingly, the requests are first entered into the scan-sync
trigger and are .then propagated into the scan-sync latch
at not-clock time. Fetch requests initiated by scan
operations are always specified as 4-cycle requests; i.e.,
the 3-cycle trigger is not set.

At clock time of the machine cycle following the
requests, the signals from the sync latches are further
propagated into the appropriate request triggers and into
the 'CPU request' trigger. The output of the 'CPU request'
trigger feeds the priority test logic, which enters the CPU
request into priority contention with the channels; it also
feeds the CPU sequencer and clock control logic, which
stops the CPU clock if the .. request cannot be handled
within the specified time. If the priority test establishes
that the CPU request can be handled iinmediately, the
outputs of the IC, D, or scan sync latches and request
triggers are used to gate the storage address from the
appropriate CPU source (IC, D, or scan address generator)
into the BCU.

In conjunction with a request per D, the processor may
issue an 'insert key', 'set key', or 'test and set' signal to
the BCU. These signals are recorded into the appropriate
BCU triggers and are later used to modify the handling of
the storage request. Basically, this modification is as
follows:
1. The 'insert key' trigger causes an 'insert key' signal to

be sent to storage during the handling of the request.
2. The 'set key' trigger issues a 'set key' signal to storage

and gates the key bus to storage.
3. The 'test and set' trigger causes a 'test and set' signal to

be sent to storage during the handling of the request.

The store-data requests from the CPU are detected by
the BCU whenever any mark triggers are set in the
processor at the time of the request; a 'store' trigger is
then set in the BCU. The output of the 'store' trigger
activates a 'store' signal to the selected storage unit and
also sets the 'BCU data gate' latch, which gates ST to the
SDBI. In addition, the 'mark' signals are transmitted to
the selected storage unit via the 'mark' bus. The 'mark'
signals specify to the storage unit which bytes on the
SDBI are to be entered into the addressed doubleword
location.

Storage requests from the I/O channels are made to the
BCU by means of channel-request signals. These request
signals are detected at not-clock time and are entered into
the corresponding BCU sync latches. The sync-latch
outputs are in turn applied to the priority test logic to
establish whether the particular channel can be granted
priority at that time.

The BCU does not distinguish between fetch or store
requests from the I/O channels: both types of requests are
handled by a common BCU response sequence. When a
store-data operation is performed by the channel, the
'mark' bus, SDBI, and 'store' signal are transmitted
directly from the channel to the storage unit selected by
the BCU.

A channel request to a busy LCS unit energizes a
channel lockout circuit. This circuit allows selection of
lower priority units while waiting for the completion of
the LCS operation. The 'LCS busy' signal forces a priority
test to reset the channel priority trigger. The 'channel X
waiting' trigger is set, and the channel sync latch is
deconditioned by the channel lockout (Diagram 4-202).
The channel request remains pending until the 'LCS
precomplete' signal resets the 'channel X waiting' trigger,
at which time the channel sync latch is set and the
channel request is processed.

Establishing Priority

• Priority test sets appropriate priority trigger.

• Once priority is established, BCU is placed in busy
status.

A priority test is performed whenever the BCU finishes ·
processing a storage request; it is repeated on each
subsequent cycle until the BCU accepts a request and
attempts to process it. The BCU is then placed in a busy
status, inhibiting further priority tests until that request is
completed. When the request is completed, the BCU is
again placed in a not-busy state (by a BCU clean-up
operation), and a priority test is forced at the beginning of
the next machine cycle. The next request is then accepted
from the sync latches, or, if no requests are present in the
sync latches, a priority test takes place on each following
machine cycle until a request is received.

Priority for a waiting storage request is established by
transferring the particular request from its sync latch to
its associated priority trigger. Setting a priority trigger
causes the proper storage address (IC, D, or scan in the
case of a CPU request; an I/O channel in the case of a
channel request) to be gated to the SAB. On CPU storage
requests, processing continues under control of the CPU
sequencers, while the BCU selects the addressed storage
unit. On channel requests, setting a priority trigger sets a
response latch, which in turn initiates the controlling
request/response sequence between the BCU and the I/O
channel.

The priority triggers for the CPU and I/O channels
(Diagram 4-203, FEMDM) are implemented so that there
is a definite sequence in which they can be set on
successive priority-test operations: the setting of a priority

trigger is inhibited if a higher-order priority trigger is
about to be set. Thus, only one priority trigger can be set
at a given time, with channel 1 having highest priority and
the CPU rating lowest priority. Note also that when a
priority test is made all requests received up to the point
of the test are considered, including requests for the unit
just serviced. For example, if two requests are present at
the time a priority test is made, the requesthaving highest
priority is serviced, and a priority test is again initiated. If,
however; another request for the unit just serviced has
been received during the interim, that unit is again
serviced, and the lower-priority request is kept waiting.

Gating the Address to SAB

• Address gating is initiated by set priority trigger.

When priority is established for either the CPU or the I/O
channel, the set state of the corresponding priority trigger
initiates gating of the storage address into the BCU. The
address gating logic is illustrated in Diagram 4-204,
FEMDM.

When the 'CPU priority' trigger is set, gating of the
storage address is under control of the IC, D, or scan sync
latches. If the storage address is in the process of being
transferred into IC or D at the time the CPU has been
granted priority, the PAL gate trigger permits a direct
transfer of the. address from PAL to SAB.

When an I/O channel has been granted priority, the
corresponding priority trigger is set for that channel. A
'BCU response' signal is then sent to the channel to
initiate the gating of the storage address to the SAB. An
'address valid' signal is then returned to the BCU from
that channel to indicate that the address is on the SAB
and to start the storage sequence. A channel-data-request
trigger for that channel is set on the next cycle, signalling
the requesting channel to place data to be stored on the
SDBI.

Stopping the CPU Clock

• CPU sequencers control distribution of clock timing
within CPU during handling of CPU requests.

• CPU sequencers are started at clock time of cycle
following request.

• Sequence in which sequencers are stepped varies with
request being processed:
1. 4-cycle fetch: 'CPU 2' trigger, 'CPU 2' latch, 'CPU

3' trigger, 'CPU 3' latch, 'CPU 4' trigger, 'CPU 4'
latch, 'CPU 5' trigger, 'CPU 5' latch.

2, 3-cycle fetch: 'CPU 2' trigger, 'CPU 2' latch; 'CPU
3' trigger, 'CPU 4' latch, 'CPU 5' trigger, 'CPU 5'
latch.

2065 FETOM (9/68) 2-29

3. Store or set key: 'CPU 2' trigger, 'CPU 2' latch,
'CPU 3' trigger.

4. Insert key: 'CPU 5' trigger, 'CPU 5' latch.

• Conditions that stop CPU clock:
1. 'CPU 2' latch is set, and either CPU has not received

priority or storage is busy.
2. 'CPU 4' latch is set and CPU did not receive

'advance' signal from storage. (This function is
disabled if LCS feature is not installed.)

3. Insert-key operation.

A group of CPU sequencers (four trigger/latch combina­
tions) is used in the BCU to control CPU cycle progression
after each CPU storage request. These sequencers control
the 'stop CPU cfock' trigger in the BCU. The 'stop CPU
clock' trigger has direct control of the CPU clock: setting
this trigger stops the CPU (on the following cycle);
resetting this trigger starts the CPU (on the following
cycle). Diagram 4-205, FEMDM, shows the CPU sequen­
cers and the control logic for the 'stop CPU clock' trigger.
The sequencers are started on the CPU cycle following a
storage request and are advanced by the subsequent CPU
clock signals: the 'CPU 2' trigger and latch are set during
the first CPU cycle following the request; the 'CPU 3'
trigger and latch are set during the second CPU cycle
following the request; and so on.

The 'stop CPU clock' trigger is so implemented that if
its reset logic is active its set logic is prevented from
setting the trigger. Because of this method of implementa­
tion (as seen in Diagram 4-205), ifthe 'CPU 2' latch is set

(first cycle following a storage request), the 'stop CPU
clock' trigger will be set on the next cycle (second cycle
following the request), and the CPU clock will be
inhibited from performing the third processing cycle. This
clock stopping sequence occurs during both fetch and
store operations, retaining the storage address in the IC,
D, or scan controls until the BCU and the storage unit
become available. When the BCU and storage unit become
available, and when the CPU is awarded priority, the 'stop
CPU clock' trigger is reset by the BCU 'cleanup' signal.
Once the CPU clock is started, both CPU processing and
further sequencer stepping is continued. (If LCS units are
attached to the Model 65, the CPU clock is stopped again
at latch-4 time provided the advance signal from storage is
not received.)

The 'CPU 5' trigger and 'CPU 5' latch are held in the
set condition when the 'LCS request' signal sets the 'stop
CPU clock' trigger. The CPU is inhibited for about 3 usec
until the 'LCS advance' signal resets the 'stop CPU clock'
trigger (Figure 2-19). The 'LCS pre-advance' signal pre­
pares to restart the CPU. First, the 'advance waiting'
trigger is set to prevent honoring another request by
diverting 'issue a select' signals to the 'storage l' trigger.

2-30 (9/68)

The 'storage l' latch retains the 'select' signal until the
'LCS advance' signal resets the 'advance waiting' trigger;
thus allowing the 'select' signal to set the 'storage 2'
trigger. The 'LCS advance' signal also resets the 'stop CPU
clock' trigger if the 'CPU 5' latch is set. The clock is
restarted, data. arrives on the SDBO, and requests are
honored in the normal manner again.

For store data operations, the CPU sequencers are
started in the normal manner. However, the output of the
'store' latch modifies the subsequent sequencer stepping
as follows: 'CPU 2' trigger and 'CPU 2' latch are set on the
first cycle following the request; 'CPU 3' trigger is set on
the second cycle following the request. Further sequencer
advance is inhibited during store· operations because
ingating is not required.

Selecting the Storage Unit

• Storage address rriust correspond to physical storage
unit.

• Storage capacity is defined by pluggable jumper cards
in CPU.

The capacity of main storage (also referred to as the
high-speed storage, or HSS) varies with the model:

Model Capacity Description

G65 131,072 bytes 1 storage unit without inter-
leaving capability

H65 262, 144 bytes 1 storage unit with interleaving
capability

165 524,288 bytes 2 storage units with interleaving
capability

IH65 786,432 bytes 3 storage units with interleaving
capability

J65 1,048,576 bytes 4 storage units with interleaving
capability

If the system is equipped with more than one storage
unit (Models 165, IH65, or J65), the starting address for
each unit varies in increments of 262,144 bytes; i.e.,
addresses 0-262,143 are assigned to unit 1,
262,144-524,287 to unit 2, and so on. Thus, when a
storage address is supplied to the BCU, the BCU must
select the physical storage unit referred to by this address.
Furthermore, if interleaving is desired, the BCU must
establish whether the address pertains to the odd or the
even area of the selected unit. Once the physical storage
unit and the odd or even area within it have been
established, the BCU issues an 'odd-' or 'even-select'. signal
to that unit. This signal commands the storage unit to
sample the address on the SAB.

Two identical address decoder circuits are provided in
the BCU: one circuit decodes the addresses supplied by
the CPU, and the other circuit decodes the addresses

--3fJsec--:1

"'1·----l fJSeC----i.1 ...

BCU Clock.

Sync Trigger

BCU Busy Trigger

Storage 2 Trigger

St~rage 2 Latch

Storage 3 Trigger

Select

LCS Select Tried

I I
I I

~ I

: I I

,1 "'--'--·1 I I
I I

~
I I

: I
I __ ..., __

I
I
I
I
I

I
I I ---1 I
I I

'""" I
BCU Free to
Serv"ce Channels

LCS (BCU) Cleanup
I .. 1 .. ,.;.--+---'----\'1 --~ --... ·I
~

CPU 2 Trigger

CPU 3 Trigger

CPU 4 Trigger

CPU 5 Trigger

CPU 5 Latch

CPU Stop Clock

LCS P1'e-Advorice

LCS Advance Waiting

LCS Advance

I I . I

~:
I I
I I ,.....

I
I

~

I
I

- "f
I .,
I
I
I
I
I

Figure 2-19. Typical Timing for CPU Fetch Request to LCS

I
I

. I

.I
I
I

supplied by the 1/0 channels. The need for two decoders
(Figure 2-20) is due to a time lag ·between the CPU- and
channel-supplied addresses. Note that a CPU-supplied
address bypasses the driver/receivers of the multiplex bus
and is applied directly to the address decoder; a channel­
supplied address must pass through the chann.el drivers
and through the BCU receivers before being applied to the
address decoder. The time lag introduced by the driver/
receivers in the multiplex bus is approximately 55 ns.

The optional LCS unit(s) can increase the storage
capacity by from 1,048,576 bytes to 8,388,608 bytes.

I

.I

When one or more LCS units are used, it is the function of
the BCU to establish whether the particular storage
address refers to the HSS or the LCS and to select the
correct unit within each type. To perform this function,
separate HSS and LCS decoding logic is used in the BCU.
Figure 2-21 .shows the basic scheme used for selection of
the correct storage unit.

At the time the system is set up, pluggable jumper
cards are set and inserted into the CPU to define the
capacity of the HSS and the LCS and to customize the
address decoding logic to the available storage.

2065 FETOM (9/68) 2-31

r:I 1,~::------1
0-6 I

SAB

1
1 ~ 11 ·SAB(0-23) Multiplex Bus Storage.Address....... I--~·--~-,;_ ____ ..;. __________________________ _,
I L- l • L _____ _J

SAB SAB

~
Receivers

"'~'"} D R p lus pority:
~

__..
toroge ~

ddress
rom CPU '---- '----

SAB(0-6,20)

StortinQ
Address

~
and
Even/Odd .
Decoders
(Channel}

~
Defeat
Interleave

'-+

Starting
Addres.s
ond

~ Even/Odd
Decoders
fCPU)

Select Timing Signal

To Parity Conversion
Logic

From Frame 1-0dd Not Busy

Storage

Decode Frame 1-0dd
~

OR
Decode Frame 1-Even Odd

Decode frame 2-0dd

Decode Frame 2-Even

Decode Frame 3-0dd

~ecode Frame 3-Even

Decode Frame 4-0dd

D~code Frame 4-Even

OR
Decode Freme 1-0dd Even

Decode Frame 1-Even
~ ---Decode Frame 2-0dd

Decode Frame 2-Even

Decode Frame 3-0dd

Decode Frame 3-Even

Decode Frame 4-0dd

Decode Frame 4-Even

From Frame 1-Even Not Busv
Storage

·.,

~

A
Select.Frame 1-0dd

....-----
A

Select Frame 1-Even

To
Storoge

To
Storage

To
Storage

Figure 2-20. Gating of Storage Address From CPU and Channels to Address Decoders in BCU

Each HSS unit of 262,144 bytes is divided into two
131,072-byte areas: even and odd. In normal processing
operations, HSS accesses are interleaved between the two
storage areas, permitting a higher data transfer rate than is
possible without interleaving. Selection of the even or odd
storage area within the HSS unit is- determined by the
setting of the DEFEAT INTERLEA YING switch on the
system control panel and SAB(6) or SAB(20).

LCS units may also be interleaved to reduce access
time. When interleaving is used, the first LCS unit is

2-32 (9/68)

accessed (about 3 usec) and the system is released
although the LCS unit must be unavailable an additional 5
usec while it is completing its cycle. However, a different
LCS unit may be addressed immediately after the 'LCS
advance' signal. Because the access time is less than half
the cycle time of the LCS unit, the effective access rate is
reduced to 4 usec in interleaved mode.

The address decode logic used for decoding CPU- and
channel-supplied addresses is shown in Diagram 4-206,
FEMDM. When the DEFEAT INTERLEAVING switch is

I. SAB ~I
0-3

T '--------------1 ... ~ ~pecifies addresses from 1,048,576 up to 8,388,608 bvtes
(used for decoding of LCS units).

4 20

I ---------.... •Specifies doubleword address within each LCS unit.

4,5

T '-------------11•~ Specifies addresses from 262, 144 up to 1,048,575 bytes
(used for decoding ,of HSS units).

6 20

~-------! ~ Specifies doubleword address within each HSS unit.

6

T._ _________ Specifies half-point capacity of an H~S unit

20
(used as crossover indication during
non-interleave mode).

T._ ____ ~ Specifies odd/even address.

Select
required
HSS.

No

Address on SAB

Invalid
address.

Figure 2-21. Selection of Correct Storage Unit

Yes

Yes

set to the normal or PROC position, SAB(20) determines
the even or odd storage area: if SAB(20) = 0, then even; if
SAB(20) = 1, then odd. When the switch is set to the NO
REV position l ~feat interleaving and no reversal of the
even and odd storage areas), SAB(6) determin,es the even
or odd storage area: if SAB(6) = 0, then even; if SAB(6) =
1, then odd. However, the function of SAB(6) is reversed
if the switch is set to the REV position (defeat inter­
leaving with reversal of storage addresses). In this case,
SAB(6) = 0 specifies an odd storage area; SAB(6) = 1, an

No

Select
required
LCS.

even storage area.
The LCS addresses are decoded in 1,048,576-byte

groups, the first of which is contiguous with the last HSS
address. If the available HSS capacity is exceeded, the
'select' signals to HSS units are blocked, and the LCS byte
group is determined by SAB(0-3) and an above/below
detector. The above/below detector is conditioned by
pluggable· jumper cards defining the HSS byte liinit and,
depending on the HSS byte limit, by SAB(4) or SAB(4,5).

The following examples show this operation. Assume a

2065 FETOM (9/68) 2-33

524,288-byte HSS capacity and a 2,097 ,l 52~byte. LCS
capacity. Assume, also, an address of 1,179,648 is on the
SAD [SAD(3) and SAB(6) = 1]. The HSS 'select' signals
are blocked be<;:ause the HSS has been exceeded and the
'below' signal is generated. The 'below' signal results from
the 524,288-byte HSS limit signal being active (pluggable
jumper card) and SAD(4) = O. The LCS byte group gating
finds SAD(0-3) = 0001 and the 'below' signal present; the
only LCS byte group requiring these conditions is the
first. Therefore, the address 1,179,648 is in the first
1,048,576 LCS byte group. (The address boundaries for
this first group are 524,288 and 1,572,863.)

Converting SAB Parity

• Generate parity bit P(A) for SAD(6-12).

• Generate parity bit P(D) for SAD(13-19).

The SAD-parity-conversion logic subtracts bits 0-5 and
bits 20-23 from SAB(0-23). On the basis of this
subtraction, two new parity bits are generated: P(A) for
SAB(6-12), and P(D) for SAB(13-19). In generating
these new parity bits, the parity~conversion logic must
take into account the setting of the DEFEAT INTER.­
LEA YING switch on the system control panel. If this
switch is not in the PROC position, it will cause the
storage unit to reverse SAD(6) and SAD(20). Accordingly,
the same bit reversal must be performed· by the parity­
-conversion logic in generating P(A) and P(D) parity bits.

The basic decoding performed in the BCU and in the
storage unit to select a specific core location is Shown in
Figure 2-22. Note that in the storage unit, only SAB(fror
20) and SAB(7-19) are gated into the odd or even
memory address register (MAR); i.e., the address of any
doubleword location in the odd or even area of the
storage unit is specified by 14 address bits.

During operation in the interleave mode, SAB(6-19)
remains constant for two storage cycles, and two consecu~
tive storage accesses are made per the same address: once
from the even and once from the odd area of the storage
unit. The selection of the odd/even area is made in the
DCU by decoding SAB(20); this bit changes once for each
storage access.

During operation in the defeat-interleave mode,
SAB(6) and SAD(20) are reversed: the BCU now decodes
SAB(6) to select the odd/even storage area; and the
storage unit gates SAD(20) as the highest-order bit in the
address of a core location.

From a system standpoint, SAB(6) designates the
one-half capacity of a storage unit; or, the total capacity
of an odd- or even-area in the storage unit. Accordingly,
the BCU continues to issue 'select' signals to the same
even, or the same odd, storage area until all core locations
in that area are accessed; i.e., SAD(6) changes from 1 to 0,
or vice versa.

2-34 (9/68)

From a system standpoint, SAB(20) designates the
doubleword boundary and is updated for each storage
request. Because the storage unit substitutes SAD(20) for
SAB(6), the highest-order address bit (within the selected
odd/even area) is changed on each storage cycle. This
changing leads to interleaved accesses which are restricted
solely to the odd or to even area of the storage unit; i.e.,
storage accesses alternate between the upper and lower
halves of the area.

The SAD-parity-conversion. logic -is Shown in Figure
2-23 and in Diagram 4-207, FEMDM. This logic utilizes
Exclusive-OR circuits to generate, subtract, and add SAD
parity bits until the required P(A) and P(B) results are
obtained. Note that the output of an Exclusive-OR always
excludes those bits which are applied simultaneously on
bo~h circuits inputs. Thus, depending on the input bits, an
Exclusive-OR can be used as an adder or as a subtractor.
When the parity bit of SAB(0-3) is combined with SAB
P(0...:..3,6 or 20,7) at an Exclusive-OR, the result is SAB
P(6 or 20,7) and SAB P(0-3) has been canceled or
subtracted. SAD P(6 or 20,7) is then combined with SAB
P(8-12) to produce the parity of SAB(6 or 20,7-12) by
addition of parity. In this manner, the parity of SAD(0-
23) is converted to parity ofSAD(6 or 20,7-19) and then
sent to the storage unit.

Generating 'Select' Signal to Storage

When priority is granted to either the CPU or the channel,
the BCU attempts to· issue a 'select' signal to storage
(Diagram 4-208, FEMDM). The manner in which the
'select' sign~ is generated depends on whether the LCS
feature is installed in the system.

Generating 'Select' Signal if LCS Is Not in System

• 'Select' signal is initiated by 'CPU priority' signal for
CPU requests.

• 'Select' signal is initiated by 'address valid' signal for
channel requests.

The 'select' signal logic is activated by the 'CPU priority'
signal or, in the case of channel requests, by the 'address
valid' signal. If no previous selection. attempt has been
made ('storage 2' latch not set), detection of the 'CPU·
priority' or 'address valid' signal results in the setting of
the 'storage 2' trigger. The 'storage 2' trigger sets the
'storage 2' latch to gate a 135-ns 'select' timing signal to
the final gating logic for HSS units 1 through 4. This
135-ns timing signal is sent to storage if the unit power is
on, if a valid unit address is decoded, and if the odd/even
area of the unit is not busy servicing a previous request.

The absence of storage power or the failure to decode a
valid storage address results in an invalid address condi­
tion. (Refer to "Detection of Invalid Address.") However,
if the 'select' signal is not sent due to a busy storage

,--. ----·-------------------------------,
I ', SAB(20) I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A OR

DI or DI and Reverse

i--­
A

~-------------+-~SA~~~6~) ___ _. __ -1NL-~-A-...-O-R-,

DI
OR

DI and Reverse

l
*Defeat Interleave (DI) mode
can be entered manually
or through program ,

6 if Not Reverse
or

DI or
t--- Not 6 if Reverse

DI and Reverse

Storage Areas

A

-
A

+&-L_~-A-.,--0-R---,
q if Not Reverse

1

1

lo! r:::--1-.......-.c ~ 6'0iai SAB(0-23) ~ .Y1_
DR ~ l'-""-----....i~~

I SAB(0-23) end Parity from CPU' ____ '"'"4 '---

DI or DI and Revers~ Parity
Conversion
logic

or
t-----J Not 6 if Reverse

P(6 or 20,7-12)

OR

Odd

OR
Even

1--i

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I l

I
I [Efil--Rev=:::~;2:__..,. P(13-19) I

t---- !---·----------------------+-·---------+-·--------+-·------u ~----------------it--·--,------,
I SAB(0-23) r:D::R•-.;... , __

I and Parity l
~CHANNELS _____ :_j

er
s M - Multiplex s s s s

S - Simplex

0 23

Io
SAB

231

6 7 19 20

t---- !---- r-·--------------------·-+-·------+-------- t--·-----n
A OR I

i-------------·-+---
1 MAIN I STORAGE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~20

A

SAB(7-l9) P(A) and P(B)

I
I
I
I
I

..-------+--------------+------!, ~~ +J
Gate Even

t
.------.,..-x--...or....---x-~----......

I
I
I
I
l
I
I
I
I
I
I
I

P(A) and P(B) P(A) and P(B)

'

MAR L
._ ______ 14_,I -

PC IMlAR L
..... _____ 14_.I -

PC

Select Odd Select Even

16,384 t--------1
16,384 ~-----

L __________________________________ · __ _J

Figure 2-22. Basic SAB Decoding Circuits in BCU and HSS Unit

SAB P(o-n

PG
SAB 4,5,6 or 20* SAB P(4,5 ,6 or 20)

•Replace SAB(6) with SAB(20) if in
Defeat Interleave mode and (6) f (20)

PG
SAB 0-3

SAB P(0-3,6 or 20,7)

. Subtract

SAB P 0-3

SAB P(6 or 20,7)

Subtract

SAB P(B-15) SAB P(B-15)

Storage
address SAB P(6 or 20,7-12)

P(A) from CPlJ . Add
or l/O

SAB P(B-12) channel
Subtract

PG
SAB 13 14 15 SAB P(13-15)

To
SAB P 13-20 storage

SAB P 16-23) Add

SAB P(16-20
Subtract

SAB(21-23)
PG

SAB P(21-23)

SAB(20)

Figure 2-23. SAB Parity Conversion Logic

condition, the 'HSS select sent' trigger is not set. The reset
state of this trigger and the set state of the 'storage 2'
latch initiates another selection attempt. Successive
attempts are thus made until the storage unit becomes not
busy and a 'select' signal is sent to that unit. The sending
of the 'select' signal to storage initiates a BCU cleanup
operation which restarts the CPU clock and resets the
BCU control circuits for handlirlg of the next request.

Generating 'Select' Signal if LCS Is in System

• 'Storage 2' trigger is set only when storage not busy.

Detection of the 'CPU priority' or of the 'address valid'
signal by the select logic results in setting of either

r---, Rev Parity
LMCW r---__ _J

SAB P(13-19
P(B)

Subtract

Note:
A detailed version of this figure
is shown in Diagram 4-207, FEMDM.

'storage l' or 'storage 2' trigger, depending on the
availability status of the storage data bus. The bus
availability status is specified by the state of the 'advance
waiting' trigger: if this trigger is reset (no storage
advance), the bus is available; if set, unavailable.

If the storage bus is available, the 'storage 2' trigger is
set; however, if the storage bus is not available, the
'storage 1' trigger is set. Note that once the 'storage 1'
trigger is set, it forms a loop with the 'storage 1 ' latch to
continue trying to set the 'storage 2' trigger. When the
'advance' signal is received from the storage using the data
bus, the 'advance waiting' trigger is reset, allowing the
'storage 2' trigger to be set.

2065 FETOM (9/68) 2-37

The set .state of the 'storage 2' trigger results in sending
the 'select' signal to the HSS or to the Les: The
conditions for LCS selection are similar to those described
for HSS. However, one major difference should be noted:
the 'storage 3' trigger maintains the 'storage 2' latch set
for two successive cycles to compensate for a I -cycle
delay in starting the invalid address test. This delay is due
to the need of sampling the state of the 'advance waiting'
trigger during LCS selection.

Detection of Invalid Address

• Address is outside physical storage capacity.

• Power is down on storage unit.

An invalid address condition is detected in the BCU if
power is off in the addressed storage unit or if the address
supplied by the requesting unit. exceeds the physical
storage capacity of the system. There are two invalid
address detection circuits: one to detect an invalid address
from the CPU, and another to detect an invalid address
from the channel. The 'invalid address' signal has a dual
function: to detect an invalid address and to select an
address decoder. For a channel request, an 'invalid
address' signal disables the CPU decoder; for a CPU
request, a similar signal disables the channel decoder. The
invalid address logic is shown in Diagram 4-209, FEMDM.

The BCU detects an invalid address by examining the
states of the 'test for invalid address' trigger and the
'select tried' latch: if both are set, the address is valid; if
the 'test for invalid address' trigger is set but the 'select
tried' latch is reset, the address is invalid. The subsequent
paragraphs analyze the conditions that lead to detection
of an invalid address and describe the BCU operation that
follows.

The 'test for invalid address' trigger is set when a
'select' signal is issued to the final decode-gating logic of
the BCU. The output of this trigger then monitors
whether tl:w 'select' signal is successfully passed by the
gating logic. If the address of a storage unit has been
defined correctly, and if its power is turned on, the
'select' signal is passed through the gating logic to set the
'select tried' latch.

The set state of the 'select tried' latch signifies that a
successful storage selection has been made; i.e., a 'select'
signal will be issued to storage even though the sending of
the signal may be delayed if the unit is busy servicing a
previous request. Thus, this condition indicates that a
valid storage address has been decoded.

If the 'select' signal fails to pass through the final
decode-gating logic, the 'select tried' latch is not set. This
condition indicates to the BCU that a successful storage
selection is not possible due to an incorrect address on the
bus or a power failure in the storage unit.

Upon detection of an invalid address, the BCU alerts
the requesting CPU or channel of the error condition and

2-38 (9/68)

then proceeds to force a 'select' signal to storage.
(Detection of an invalid address during I-Fetch does not
necessarily result in a program interruption.)

The forced storage selection is made to generate a
'BCU cleanup' signal, which will allow the CPU to
continue (CPU clock was stopped) or the channel to
continue. The BCU forces a request to any storage unit
that has power, in the as.cending order: starting with unit
l and, if unit 1 power is off, proceeding to units 2, 3, and
4. The storage unit accessed by a forced 'select' signal,
however, is not allowed fo complete its cycle because the
BCU also issues a 'cancel' signal to that unit. The 'cancel'
signal prevents storage data transfer to the SDBO; thus O's
are transferred to the selected register in the channel or
the CPU.

Recording of Error Indications from Storage

• Storage errors are address check, data check, protec-
tion check.

If a storage request causes an error within the selected
storage unit, an error indication is sent from that unit to
the BCU. The storage-error-recording logic in the .BCU is
shown in Diagram 4-210, FEMDM. Note that the PROC
CHK indicator is activated only if a CPU request is
responsible for the storage error; the STOR CHK indicator
is activated if either a processor or channel request has
caused the error. (If a storage error is received when the
CPU CHECK· switch is set to the PROC position and the
machine check mask bit (bit 13) is a 1, it causes a logout
operation.)

The storage-error indicators (Stor Adr Chk and Stor
Data Chk) are activated as a result of one of the following
error conditions:
1. Storage Address Check. A parity error has been

detected on either SAB or the 'mark' bus. (On store or
set-key operations, the original data is regenerated into
the addressed storage location to prevent loss of data.)

2. Storage Data Check. A parity error has been detected
on the SDBI, the SDBO, or the storage-key bus.

In addition to the address-check and data-check error
conditions, the storage unit also generates a protection
check if the key supplied by the request either is not zero
or does not match the protection key assigned to the
storage area being addressed. (Upon detection of this
condition, the storage unit cancels the request to prevent
loss of data.) A protection-check indication from storage
is routed via the BCU and applied directly to the CPU
1-F etch-and-interrupt logic.

Resetting of BCU Logic

• Sending of 'select' signal to storage initiates the
following reset signals: 'channel. accept', 'BCU clean­
up', 'late BCU cleanup', 'late BCU cleanup for CPU
request'.

The BCU-reset logic is shown in Diagram 4-211, FEMDM.
After the BCU sends a 'select' signal to storage, this logic
generates the following reset signals: 'channel accept',
'BCU cleanup', 'late BCU cleanup', and 'late BCU cleanup
for CPU request'.

The reset signals are initiated as a result of the 'pseudo
accept' signal; i.e., a signal which simulates an "accept"
condition from storage. The start of the 'pseudo accept'

· signal. is controlled . by routing the 'select timing signal'
signal through a number of inverters in the BCU which
provide a total delay of approximately 80 ns. The delayed
'select timing signai' signal is then AND'ed with the 'select
sent' signal to ~et the 'accept' latch. The output of the
'accept'· latch initiates the 'channel accept' and 'B(:U
cleanup' signals. -

The reason for delaying the 'BCU cleanup' signal
(approximately· 80 ns after the 'select timing signal' signal)
is to prevent a new priority test from taking place on the
same cycle in which the 'select' signal is issued to storage.
(This condition could result . in two successive 'select'
signals being issued less than 400 ns apart; i.e., an early
'BCU cleanup' signal would reset the 'BCU busy' trigger
before the 'BCU busy' latch had time to latch on; the
resulting priority test could initiate another 'select' signal
on the following BCU cycle.) .

The time duration for which the 'accept' latch stays set
must be such as to "extend" the 'BCU cleanup' signal past

TI BCU
D-Sync

~ L. . T

Clock late BCU Cleanup

MC061 MC321

CPU
Priority

'-'T°"""

B2 time of the following clock cycle. This condition is
necessary to provide the following functions:
1. Inhibit setting of the 'stop CPU clock' trigger, if the set

state of the 'CPU 2' latch coincides with the issue of
the 'select' signal. (The 'stop CPU clock' trigger is so
implemented that if its reset logic is ~ctive, its set logic
is prevented from setting the trigger; see Diagram
4-205, FEMDM.).

2. Inhibit setting of the 'test for invalid address' trigger;
i.e., when a successful 'select' signal is generated, the
'BCU cleanup' signal blocks the invalid address test
(Diagram 4-209, FEMDM).
The 'late BCU cleanup' and 'late BCU cleanup for CPU

request' signals are generated approximately 130 ns after
the 'accept' latch is set. These signals clear all BCU

. functional circuits associated with the previous request to
allow servicing of a new request on the following cycle:
the 'late BCU cleanup' signal resets all channel-priority
and data-request triggers; the 'late BCU cleanup for CPU

. request' signal resets the 'CPU priority' trigger and
removes the CPU address from the multiplex bus.

Resetting of BCU logic on an LCS operation is delayed
one cycle (200 ns) because the 'accept' signal from the
storage (LCS) is used instead of the 'pseudo accept' signal.
This delay allows time to test the busy condition of the
LCS unit. Figure 2-24 shows the logic to develop the 'LCS
cleanup' signal.

LCS CPU

~
·L

Late BCU Cleanup for CPU Request LCS Advance

MCl66 MC891

LCS Select LCS
D Req Try Accept

~.....--'- r-r-T Accep• (LCS)] A L

Late BCU CJeon~.e._for CPU Request LCS Cleonup LCS Cleonup

MC061 MC841 MCa3i LCS LCS

Select Ace~ Cleanup
LCS Cleanup

Sent A T L

lCS Not Busy ·A T

Clock Clock

LCS Cleanup - MC846 .MC846 -MC841

Figure 2-24. BCU Reset for LCS Operation

2065 FETOM (9/68) 2-39

DETAILED ANALYSIS OF BCU OPERATIONS

The subsequent paragraphs describe the operational
sequences performed in the BCU during processing of
storage requests for the CPU or channel.

CPU Storage Requests

The functional sequence for CPU storage requests is
illustrated in Diagram 4-201, FEMDM.

CPU storage requests are issued to the BCU from
I-Fetch, ROS, and Scan logic, and both the storage
request and the resulting data transfer are overlapped with
processing. Although all CPU requests are handled by the
BCD as basic fetch or store requests, the following
variations exist: 3- and 4-cycle fetch, store, insert-key,
set-key, test-and-set, and single-cycle operation. Processing
of the request is interrupted when either the storage unit
or the BCU is busy, or when the requested storage data is
not available in the specified time.

3- and 4-Cycle Fetch Operations

· • Ingating of requested storage data is specified at 3 or 4
cycles following storage request.

Because the BCU operates at the same machine cycle
speed as the CPU, and because the access time to storage
requires 3 cycles, the CPU is allowed to continue

processing for 3 cycles following the request. The BCU
must keep track of the CPU C)!:Cle progression so that the
SDBO ingating is executed at the correct time. If data is
not present at the SDBO at the end of 3 cycles, or if the
SDBO is to· be ingated following the 4th cycle, the CPU
clock is st9pped. The requested data may not be present
on the SDBO for one of the following reasons:
1. A BCU-busy condition, wherein priority cannot be

established immediately because of channel inter­
ference.

2. A· storage-busy condition, wherein the addressed
storage unit is still servicing a previous request.

3. Storage access time limitations, wherein a request has
been made to an LCS unit (optional feature).

Figure 2~25 illustrates a typical clock control timing
sequence for a 4-cycle fetch (With the BCU initially busy
for 2 cycles). For detailed· timing charts of 3- and 4-cycle
fetch operations, refer to ALD's M8221, M8241, and
M8251.

Store Operation

Store-data requests are always made per D. Da:ta from ST
is gated to the SDBI for transfer to the storage unit. Mark
trigger settings are transferred to the storage unit (via the·
'mark' bus) to specify which of the eight bytes of .data are
to be stored. Processing of the store request is interrupted

1 Request cycle
in CPU

BCU found to be initially 1 F busy fO< 2 cycles (<400-ns).

14•------600-ns access-----•, j--lngating 1·
1

cycle in CPU

BCU Clock

CPU Clock

4-cyclo CPU Request
ta BCU

CPU request logic sot up
in BCU

Storage addreu aval lable
in CPU

CPU Priority

'Select' signal generated to
storage unit

'Stop CPU clock' trigger

Storage data on SDBO

lngato data from SDBO
to CPU

Advance

Storage address resets here
if CPU clock is not stopped.
(Address must be retained for
use in selecting a storage untt
when CPU gains priority.).

Notes:

CPU stops ·here (to retain
storage address) until
BCU becomes not-busy,

1. 4-cycle f<1tch to 750-ns storage unit (600-ns access) with
BCU initially busy for 2 cycles (<400-ns).

2. CPU clock is shown stopped at tho end ol the 2nd cycle
following the request cycle in CPU.

Reason for stopping: to retain storage address for use
in selecting a storage unit when BCU is found to be
busy (store or Fetch operations).

Figure 2-25. Typical CPU Clock Stopping Sequence

2-40 (9/68)

-- --

if the BCU or the storage unit is busy. For detailed timing
of the store operation, refer to ALD M8211. Note that
the 'store' signal prepares the storage unit for storing data.

Insert-Key Operation .

. • 'D-storage request' and 'insert key' signals are sent
from ROS to BCU.

• Basic fetch operation is performed by BCU.

• Five-bit (plus parity) storage protection key is trans-
ferred from storage to CPU via 'key out' bus.

Insert-key operations are essentially fetch requests per D,
in which a five-bit (plus parity) storage protection key is
obtained from the specified storage protection area of
main storage and inserted into F(0-4) of the CPU. These
operations enable the CPU to examine the key patterns
used by the storage protection mechanism.

An insert-key request sets the 'insert key' trigger in the
BCU to modify the normal stepping of the CPU se­
quencers: the 'CPU 5' trigger is set on the first cycle
following the insert-key request, and further sequencer
stepping is not performed. The 'stop CPU clock' trigger is
also set on the first cycle following the insert-key request.
Thus, the CPU clock is stopped on the second cycle after
the request.

When the BCU awards priority to the CPU, the
contents of D are gate<} to the SAB. A 'select' signal is
then generated and sent to the addressed storage unit
together with an 'insert key' signal. In the storage unit,
the two signals ('select' and 'insert key') initiate an
insert-key operation. The seven high-order bits of the SAB
are decoded to determine the protection key location, and
the key pattern (five bits plus parity) is fetched from that
location. The storage unit then generates an 'advance key'
signal, which prepares the BCU for ingating of the 'key
out' bus into the F-register of the CPU. A detailed timing
chart for the insert-key operation is shown on ALD
M8211.

Set-Key Operation

• 'D-storage request' and 'set key' signals are generated
from ROS to BCU.

• Basic store operation is performed by BCU.

• Five-bit (plus parity) storage key is transferred from
CPU to storage via 'key in' bus.

Set-key operations are essentially store requests per D in
which a five-bit (plus parity) storage protection key is
obtained from F(0-4) in the CPU and stored into the
specified storage protection area of main storage. These
operations enable the CPU to ·set new key patterns into
the storage protection mechanism.

A set-key request sets the 'set key' trigger in the BCU.

In addition, all CPU mark triggers are set during the
set-key operation. Receipt of the D-storage request by the
BCU then sets the 'store' trigger and starts the CPU
sequencers in the normal manner. When the CPU is
awarded priority, the contents of Dare gated to the SAB,

· and the 'select' and 'set key' signals are sent tb the
addressed storage unit. (The sending of the 'store' signal
to the storage unit is inhibited during the set-key
operation.)

The 'select' and 'set key' signals initiate a set-key
operation in the storage unit. The seven high-order bits of
the SAB are decoded to determine the protection key
location, and the 'key in' bus is gated into that location.
For a detailed timing chart of the set-key operation, see
ALD M8211.

Test-and-Set Operation

Although a test-and-set request combines aspects of both
fetch and store operations, the basic handling of the
request by the BCU is similar to a 3-cycle fetch per D. The
major difference is that the BCU sends one mark and a
'test and set' signal to the storage unit specified by the
D-address. The basic test-and-set timing sequence is as
shown on ALD M8221.

Single-Cycle Operation

• START pushbutton provides for manual stepping
through CPU cycles.

• RATE switch in SINGLE CYCLE STORAGE INHIBIT
provides for manual stepping through all cycles within
request sequence. (Storage unit is not selected; data
transfer is inhibited.)

• RA TE switch in SINGLE CYCLE enables CPU to run
automatically from time 'select' signal is sent to storage
until data transfer operation is completed.

When CPU operations are being tested in the single-cycle
mode, the CPU clock is stepped manually; one CPU clock
cycle results for each depression of START. The BCU
clock, however, is not affected by the single-cycle mode
and runs automatically, thus allowing the BCU to con­
tinue servicing storage requests from the CPU or from the
I/O channels.

The single-cycle operation can be performed by the
CPU with or without access to storage: if the RATE
switch is placed in SINGLE CYCLE, the CPU must access
storage whenever it steps through a cycle specifying a
storage request; if the RA TE switch is in SINGLE CYCLE
STORAGE INHIBIT, all storage requests are ignored by
the BCU.

When servicing storage requests from the CPU in the
single-cycle mode, the BCU must ensure that the gating of
data to or from the CPU is synchronized with the storage

2065 FETOM (9/68) 2-41

unit operation. To accomplish this function, special -
single-cyde logic in the BCU controls· the CPU clock and
runs it automatically whenever synchronized ingating is
required. Refer to Diagram 4-212, FEMDM, a functional
flowchart of BCU operations during servicing of CPU
requests in the single-cycle mode.

To enable. manual stepping through as many CPU
cycles as possible, the BCU delays sending the 'select'
signal to storage until the time when the CPU sequencers
stop the CPU clock. (This delay is implemented by
blocking CPU priority, when in the single-cycle mode,
until the CPU clock is stopped.) The stop-clock condition
indicates to the BCU that the data transfer between CPU -
and storage must be executed on the next depression of
START.

At this point, the nature of the request is of primary
consideration. If a fetch-data request is in· progress, the
BCU must override the single-cycle controls and run the
CPU clock automatically until the CPU executes the ROS
word with the 'ingate SDBO' micro-order. If a store-data
request is in progress, the BCU need not control the CPU
clock because the CPU data is placed on the SDBI when
CPU priority is established and a 'select' signal is sent to
storage; i.e., as soon as the START pushbutton is
depressed. Thus, on store-type requests, the operator can
single-cycle through every ROS word of the CPU micro­
program; on fetch-type requests, the operation auto­
matically skips over one or two ROS words, depending on
whether a 3- or 4-cycle request is specified. (Note that the
tiine slice between two consecutive depressions of ST ART
does not enter into consideration; this time slice is much
greater than the 600-ns time interval required to access
storage.)

When START is depressed and a 'select' signal is sent
to storage, the resulting 'BCU cleanup' signal restarts the
CPU clock. The state of the CPU sequencers, after the
first CPU clock signal is generated, indicates the type of
request in progress and whether additional stepping of the
CPU clock is required; this stepping is performed auto­
matically under control of the 'CPU clock go'_ trigger.
Note that the 'CPU clock go' trigger is always reset on the
first clock signal after the 'CPU 5' latch is set.

If a store-data request is in progress, the 'CPU 5' latch
is set before the CPU clock is restarted. Thus, as soon as
the CPU clock is restarted, the 'CPU clock go' trigger is
reset to indicate that no additional CPU clock cycles are
required to complete the request.

If a 3-cycle fetch-data request is in progress, the 'CPU
4' latch is set before the CPU clock is restarted. When the
CPU clock is restarted, the first clock signal sets the 'CPU
S' trigger/latch sequencers, and accesses the ROS word
with the 'ingate SDBO' micro-order. Note, however, that
the ingating of the SDBO into the CPU takes place on the
following cycle. Thus, the CPU clock must be automati­
cally stepped an additional cycle to perform the ingating.

2-42 (9/68)

This function is performed by the 'CPU clock go' trigger,
which is reset· by the same clock signal that gates in the
data into the CPU.

If a 4-cycle fetch-data request is in progress, the 'CPU
3' latch is set before the CPU clock is restarted. In this
case, the 'CPU clock go' trigger is not reset until two
cycles after clock-restart. Thus, the CPU clock is auto­
matically stepped through two additional cycles to
perform the required ingating.

As mentioned previously, sending the 'select' signal to
storage is delayed when servicing requests in the single­
cycle mode. This delay is accomplished as shown in the
following illustration:

CPU

Sto CPU Clock Tgr Set Clock Go

A

Single-Cycle Mode

IC. D. or Scan-Sync Latch 0,

8-Clock

Request
Finishing

T

MC291

A

-MC161

CPU
Priority

MC166

Block CPU
Priority

Note that the 'block CPU priority' signal is inactive
when the CPU is not in the single-cycle mode. In this case,
the 'CPU priority' trigger is set on the cycle following the
setting of the appropriate IC, D, or scan-sync latch.

When _servicing requests in the single-cycle mode, -CPU
priority is initially blocked by the reset state of the 'CPU
clock go' trigger. When the BCU is ready to issue a 'select'
signal, however, the 'CPU clock go' trigger is set and
remains set until the request is completed. During- the_
final stage of request servicing, the 'CPU priority' trigger is
reset by the 'BCU cleanup' signal. The 'request finishing'
trigger prevents immediate setting of the 'CPU priority'
trigger if another sequential CPU request (in single-cycle
mode) has been entered into the sync latch. After the
current request has been serviced, the 'CPU clock go' and
'request finishing' triggers are both reset. The 'CPU clock
go' trigger then blocks CPU priority until the pending
request stops the CPU clock.

Channel Storage Requests

• Each channel storage request transfers 64 data (plus 8
parity) bits between channel and storage (via SDBI/
SDBO).

• Data transfer is performed by asynchronous request/
response sequence.

1/0 channel data-transfer operations are· initiated as a
result of the CPU program selecting an 1/0 device and
foading 1/0 control words into the associated channel.
When data transfer is required, a series of requests is made
by the channel to the BCU. After each request is accepted
by the BCU, the proper storage unit is selected, and data
is transferred either from storage to the channel (via the
SDBO) or from the channel to storage (via the SDBI) on a
64-data-bit (plus 8 parity bits) basis. Thus, the function of
the BCU is to accept channel requests, establish channel
priority, decode the storage address supplied by the
channel, select the proper storage unit, and execute the
data transfer.

When priority is established for a particular channel, a

'BCU response' signal causes that channel to gate the
storage address to the SAB. The storage address is then
decoded by the BCU, and, if the addressed storage unit is
available, a 'select' signal is generated and sent to the
storage unit. If a store-data operation is required by the
requesting channel, a 'store' signal is generated by that
channel and is combined with the 'select' signal in the
addressed storage unit to produce a store operation.

When the 'select' signal is sent from the BCU to the
addressed storage unit, a 'channel accept' signal is sent to
the requesting channel, verifying that the storage unit has
been successfully selected. If a 'channel accept' signal does
not follow the 'data request' signal, the requesting channel
assumes that the selection attempt was unsuccessful.
Detailed timing charts for channel requests are shown on
ALD M8281.

2065 FETOM (9/68) 2-43

Section 4. Data and Control Registers

This. s~ction describes the registers employed for CPU data
flow and control functions. For the overall register data
flow, see Diagram 3-2, FEMDM.

Q-REGISTER

The Q-register is a doubleword (64 data bits plus 8 parity
bits) buffer for instructions entering the CPU from main
storage on the SDBO (Figure 2-26). Data is transferred to
the local storage address latches (LAL), the parallel adder,
or the R-register.

Input

Instructions are transferred from the SDBO into Q by .
means of a gate signal decoded from the ROSDR latches.
'rhe transfer of data is initiated by either the I-Fetch
hardware or by the ROSDR latches at not,clock time; the
transfer controls remain active for one cycle (200 ns). The
instructions are transferred into Q at clock time.

Op-Code Transfer

• Onlv halfwords containinl!: oo codes are transferred to
R.

• Selection of halfword containing oo code is determined_
by IC(21,22).

Only those halfwords in Q containing op codes are
transferred to R. Because RX, RS, and SI instructions are
composed of two· halfwords and SS instructions are
composed of three halfwords (only the first of which·
contains the op code), it is necessary to select the proper
halfword to be transferred to R. Note that because RR
in_structions are composed. of only one halfword, the next
halfword to be transferred to R after an RR instruction is
completed is the next sequential halfword in Q.

. Selection of the halfword for transfer to R is deter­
mined by IC(2l,22), and transfer is performed either
directly through hardware or as a result of an I-Fetch
micro~order. Recall that during an I-Fetch operation the
op code of the next instruction to be executed is
transferred from R to E, with R then being refilled with
the next sequential op code. Because the op code of the
next instruction to be executed is always in R, its format
(positions 0 and 1). can be' predecoded to determine the·
number of halfwords that compose that instruction and
thus indicate which of the· four Q-register halfwords

2-44 (9/68)

. contains the next sequential instruction op code. This
predecoding occurs at end-op time of each instruction; the
result (Q halfword number) is set into IC(21,22), which in
turn selects a subsequent I-Fetch ROS word that specifies
the next op-code halfword to be transferred to R.

Note: IC(21,22) is not used in addressing main storage,
but only specifies which of the four Q-register halfwords
is to be transferred to R by the following I-Fetch .
sequence. The IC(21,22) values associated with each
Q-register halfword are illu_strated in Figure 2-27.

An exception to the normal I-Fetch ROS word method
of transferring the Q-resister halfwords to R is as follows.
Assume a condition whereby a four-byte (RX, RS, or SI
format) instruction occupies the right half ofQ, IC(21,22)
= 10, and a storage request is generated to main storage.
When the I-Fetch sequence loads the op code of this
four-byte insttuction into R, the predecode logic deter­
mines that the next doubleword being accessed from main
storage contains, in its leftmost byte, the op code of the
next sequential instruction. [IC(21,22) is also stepped to
00 during this particular I-Fetch.] When, during the
following I-Fetch sequence, the contents of Rare trans­
ferred to E for execution, R is not refilled from Q in the
normal manner because the particular I-Fetch ROS word
selected to control this operation does not contain a
micro-order specifying refilling of R. When that double- .
word being brought from main storage enters Q, however,
Q(0-15) (the op-code halfword) is allowed to proceed
directly on into R. Thus, R again contains the op code of
the next instruction to be executed, . even though the
instruction was not present during the I-Fetch sequence.
This function is accomplished solely through the use of
hardware that constantly tests for the presence of two
signals: 'I-Fetch latch 1 and 3 set' and 'IC(21,22) = 00'.

B-F ield and D-F ield Transfer

The instruction B-field, which specifies LS registers, and
the D-field, which is the main storage address displace­
ment, is transferred from Q to LAL and the parallel adder,
respectively. To save time, this information is transferred
directly from Q instead of from R or E, thus allowing LS
and the address to be available before the execution time
of the associated instruction. Transferring these fields
must be performed selectively so that the information is
associated with the correct instruction.

SDBO

1--~-
I .

_ __., __ 4 I I. 4
I

• I •
LAL (Read) LS 1 LAR (Write)LS
0 4 l 0 4

0

L_ _____]

Local
Storage

LS
31

0

J, Q

0 3

4

0

0 15

·~

L__iiJ

63

~1
I I I
I . I I
I I I
I I I

16 19 32 35 48 51

...
15 20 31 36 47 52 63

15 16 31 32 47 48 63

52 63

63 6~
/.

PAA

PAL
4

Figure 2-26. Q-Register Data Flow

8-Field Transfer

PAB. //

/

/
/

/

/
/

The four-bit Q-fields (B-field address data) are normally ..
transferred to LAL at end-op time, under hardware
control, per IC(21,22), or, for certain branch instructions,
per D(21,22). (See Diagram ~301, FEMDM.)

For SS instructions, however, two B-field values must
be transferred to LAL. The first B-field is transferred to
LAL at end-op time, per IC(21,22); under hardware

control and- in the normal manner. [D(21,22) is used for.
branch instructions.] The B-field of the second 'operand is
then transferred to LAL (from the sel~cted portion of Q)
during I-Fetch of the SS instruction by a. micro-order
contained within one of the I-Fetch ROS words.

All transfer of data from Q to LAL. takes place at
not-clock time; the data is transferred into LS at clock
time.

Note: Because an RR instruction can be contained within
R and E, only halfword transfers from Q to R are required
for RR instructions. All addresses for LAL can therefore
be transferred directly from R or E. '

D-F ield Transfer

Selection of the Q-register D-field for transfer to the
parallel adder (for use in address computation) is deter­
mined by the particular ROS word selected for use. The
D-field transfer occurs at clock time.

2065 FETOM (9/68) 2-45

IC

21 22

Figure 2-27. Q-Register Halfword Transfer Per IC(21, 22)

A-REGISTER

-RQ

63

The R-register is a halfword (16 data bits plus 2 parity
bits) register that provides intermediate buffering between
Q and E for the halfword that contains the op code
(Figure 2-28). This intermediate buffering speeds the refill
of Q by allowing a storage request when the last op code
has been transferred from Q but has not yet been
executed.

Input

The R-register is loaded with one of the four halfwords in
Q at I-Fetch time under ROS control. The contents of
PAL{56-63) are also transferred to R (at I-Fetch time of
the subject instruction of an Execute instruction).

Output

Whenever the instruction in R is predecoded. as an RR
non-branch instruction, R(S-11) is transferred to LAL at
end-op time (Diagram 4-302, FEMDM). {The RR format
indicates that R contains the entire instruction.)

Whenever the instruction in R is predecoded as an RR
branch instruction, R(l 2-15) is transferred to LAL at
end-op time. The contents of R are transferred to E at
I-Fetch time under ROS control.

Predecoding

The R-register predecode logic samples R(0,1) at end-op
time to determine the format of the next instruction.
Time is saved because prefetching of operands per the

I .

format prepares data for use after the instruction is
transferred to E. In addition, R{O,l) and IC(21,22)
determine the need for storage requests to refill Q.

R(0-4) is tested for shift instructions. Because shifting
does not require a storage request, time is saved if a shift
instruction is decoded when a Q-refill request is generated
2 cycles before end op. The Q-register refill exceptional
condition is eliminated because there is no interference
between the shift instruction and the Q-refill storage
request.

2-46 (9/68)

R(O-7) is sampled for branch instructions so that
prefetching of the new instruction address can start
immediately, thus saving time. R(12-15) is sampled for a
zero condition which prevents the branch in the RR
format.

On a branch end op, the instruction halfword is still in
the process of being requested from storage. To save time
in prefetching operands, the instruction format is pre­
decoded from the SDBO rather than waiting until the
instruction becomes stable in R.

E-REGISTER

The E-register is a halfword (16 data bits plus 2 parity
bits) register which contains the op-code halfword of the
instruction being executed (Figure 2-29).

Input

An op-code halfword (including two parity bits) is
transferred from R to E during a normal I-fetch sequence
under ROS control. On shift operations, D(18-21) is

. transferred to E(12-15) via the E-register incrementer.
The data path from PAL(56-63) to E{S-15) is used in
some SS format instructions to control the specified
number of bytes.

Output

Op-code signals to control processing are decoded directly
from E(O-7) without the use of gating logic.

LS is addressed by transferring E(8-ll) or E(12-15)
to LAL(l-4). E(8,ll,12,15) is examined for an LS
address specification error. When manual operations are
performed using LS, E{ll,12-15) is transferred to
LAL(0,1-4) so that all registers may be addressed.
Transferring E{8-11) to PAB(56-59), E(12-15) to
PAB(60-63), and E(8-15) to PAB{56-63) provides for
multiply and divide operand aligning, byte count control
for SS format operation, and subsequent transfer to other
registers. E(8-ll), E(12-15), or E(8-15) may be sent to
the E-register incrementer for alteration under ROS
control.

E{8-15) is sent to an external device to provide
external-control information during direct control opera­
tions. The data is transferred when the 'timing gate'
trigger is set. E(8-15) is also sent to the PSW interruption
code [S(24-31)] on a supervisor call interruption only,
and to control triggers such as 'disable interleaving' and
'diagnose FLT'.

I ncrem enters

Two four-position incrementer registers are available, with
ROS controls, for either treating E{8-11) and E(12-15)
separately or treating E(8-15) as an entity. Positions
E(8-ll) and E{12-15) can be either incremented or

1--"""'."1

4 I
I - I

LAL (Read) LS I
0 4 I

'- - __ J

0

Local
Storage

I
4

-LAR {Write) LS

0 4

LS
31

Predecode
Shift and
Branch

RR

Shift

Branch

~' 0 15~16~~~-3_1_32~--.~-4-7~48.._-.-~-6-3

0 15

[:]
8 11 1215

TT
15

0 7

0 1

0 15

Format

Predecode
Logic

4 63 4

PAA

PAL
4

Figure 2-28. R-Register Data Flow

decremented by 1, but E(8-15) can only be decremented
by 1 (for example, used for reducing length fields in
logical VFL operations).

The E-register incrementers consist of latch circuits
with logic decoder inputs (Diagram 4-303, FEMDM). The
four-position incrementers are not capable of counting,
but rather decode the binary information at their input,
generate a binary value of I greater (or I less), and then

RR

63/
/

/
/

/
PAB /

/
/

/
/

/ -I AP
63 1 67

56 63

set that value into the latches. Processing E(8-15) as an
entity is accomplished by logically connecting the two
four-position incrementers.

ROS controls also load constants into the E-register
incrementers during execution of certain instructions
(e.g., fixed-point multiply or divide) in order to select
serial adder positions when developing products or quo­
tients.

2065 FETOM (9/68) 2-47

18 21

Op-Code
Decoder

DN

0 4 ,--11 4

0

I
I LAR (Write) Ls
I o 4
I

~----'

PAA

Local
Storage

63

LS
31

Figure 2-29. E-Register Data Flow

0

0

lo E .

o·

56 63

During shift instructions, D(18-21) is gated into the
E(12-15) increm~nter; decrementing functions reduce
the specified shift amount as each shift operation is
completed, and thus control the shift instruction.

When E(8-15) is modified in the E-register incre~

menter, E(8-15) parity may change. Diagram 4-304,
FEMDM, shows the parity prediction logic to yield

- 2-48 (9/68)

15.

a 15

15

~1
.' 8 15

Direct Dato Timing

8 11 12 15

T.__T_.__T..._. ----To specification ·checking logic
8 11 12 15

8

11

15 ..

correct parity for E. If, for example, E(15) = 0 and the
'Add 1 to E(12-15)' signal is active, the 'change parity of
E(12-15)' signal is developed. Assuming E(8-15) is odd,
the 'INCR(8-15) bits even' latch is set which, in turn, sets
the 'E(8-15) parity' trigger. Thus, parity is altered at the
same time E is modified.

'

INSTRUCTION COUNTER

The instruction counter (IC) is a 24-bit (plus three parity
bits) register used primarily in addressing doublewords of
instructions from main storage (Figure 2-30).

Input

PAL(40-63) is transferred to IC(0-23) when incre­
menting the IC, or when entering a branch instruction as
spec.ified by D. Because IC(21,22) selects halfwords in Q,

0

SAR

Main
Storage

0 2

Storage Address Bus

Hot l (+8)

4 63 4

PAB

20

-1

40

/
/

ROS controls the setting of IC(21,22) independently of
the parallel adder.

Output

IC(0-23) is transferred to PAB(40-63) to be incre­
mented by 8 so that the next sequential instruction
address in main storage will be available in the IC. When
called for, IC(0-20) is transferred to the storage address
bus (SAB) to address the next instruction doubleword
from main storage .. IC(23) is transferred to the specifica-

/
/

/
/

/
/

/

63

6:V 67

/'

ROS')R (
G

35)
Late es

31

31 35

ROS
Decode

21 22

0 23

-IC I CA
0 20 12123

0

0.

21 23

23

20

21 22

23

L::~mooHoo
interruption
logic

To ROSAR
i--~- br9nching

logic

-l 4 PAL 1 AP
63 67

,__ __ To Q-refill
logic

40 63

Figure 2-30. Instruction Counter Data Flow

~-- To O·to-LAL
gotin.g logic'

2065 FETOM (9/68) 2-49

tion logic to test for a 0-bit on instruction· addressing; a
1-bit indicates a specification error.

In some instances, the address is for VFL data.
Accordingly, IC(21-23) is transferred to ABC(0-2) on
VFL opetations to specify the desired data byte in AB.

- IC(21,22), through ROS branching, specifies the Q-half­
word to be transferred to R; IC(23) determines the byte
within that halfword. -

Incrementing IC(o:...20)

• After each _storage request is generated, IC(0-20) is
incremented by 8 to develop address of next sequential
doubleword in niain storage.

Incrementing (updating) IC(0-20) by 8_ to develop the
address of the next sequential doubleword in main storage
is accomplished using the parallel adder. [IC(0-23) is
gated to PAB, and a hot-1 bit is forced into PAA(60).]

At any given time, however, IC(0-20) may be either
one or two doubleword addresses ahead of the· double­
word in which the instruction being executed is located.
These conditions occur as follows. When the instruction
being exeruted is contained in a doubleword still present
in Q, IC(0-20) has been updated and is one doubleword
(8 byte addresses) ahead of the doubleword in Q.
However, when the op-code halfword just transferred to R
happens to occupy the last halfword portion of Q
[IC(0-20) already being one doubleword address ahead],_
a storage request is generated to access the next double­
word and the IC is again updated by 8. [IC(0-20) is now
two doubleword addresses ahead of the doubleword in
which the instruction being executed is located.]

Incrementing IC(21-23)

• After each op-code halfword is transferred from Q to
R, IC(21,22) is set to the value corresponding to the Q
portion occupied by that halfword.

IC(21,22) val1,1es of 00, 01, 10, and 11 correspond
respectively to the four (1-4) Q-register halfword por­
tions. On the same cycle in which the op-code halfword is
transferred from Q, IC(21,22) is set to the value corre­
sponding to that halfword portion. [IC(il-23) trigger
circuitry is not capable of accumulating, but only of
receiving, input values.] Thus, these triggers are not
stepped or incremented but, rather, set to values indi­
cating the four Q-register halfword areas. IC(21,22) is
controlled by ROS words, and, in the case of instruction
sequencing, by the same ROS words that gate the
Q-register op-code halfword to R.

In the event of a non-RR instruction, IC(21,22) must
be changed by 2 or 3 to skip over the non-op-code
halfwords remaining in the instruction. This skipping is

_ accomplished as follows. Two factors involved in the
64-way ROS branch (NEXT-INST*IC) occurring at end-

2-50 (9/68)

op time of each instruction are: (1) the format of the
instruction op code previously transferred tO R, indicating
the number of halfwords composing that instruction; and
(2) the contents· of IC(2l,22), indicating the Q-register
area occupied by that -instruction. These factors enable
the end-op branch to access the proper I-Fetch ROS word
for gating out the next sequential op-code halfword and ·
also setting IC(21,22) to the value corresponding to that
particular halfword area.

IC(23), set only during VFL operations in which an
odd-numbered operand address is set into the IC, is not
otherwise subject to change. -

Note: IC(21-23) of the VFL operand addresses is placed
into the AB counter, which then assumes the function of
sequencing through the data-field bytes.

When IC(21 ~22) is set to new values, the parity·· of
IC(16-23) may change. Parity adjust logic (Diagram
4-305, FEMDM) conditions the IC P(16-23) bit when the
'set IC{21,22)' micro-order is executed. IC(21,22) is set
before the 'adjust parity' trigger is set, but circuit delays
hold the parity adjust condition until the trigger is set. In -
effect, the parity adjust logic subtracts the parity of the
old value of IC(21,22) and then adds the parity of the
new value of IC(21,22), thus resulting in an updated IC
P(16-23).

D-REGISTER

The D-register is a 24-bit (plus three parity bits) register
which functions as a main storage address register for
certain operations and as an I/O channel and unit address
register for I/O instructions (Figure 2-31). -

Input

Inputs to D are under ROS control. Address information
(main storage or I/O) may come from either the parallel
adder _or the ADDRESS switches. Address information
placed into D(17-20) is generated by the interruption
logic. -

Output

D(0-20) is transferred to the main storage address register
(SAR) to provide storage addressing. On channel opera­
tions, D(8-1S) is transferred to the channel address
decoder -to seiect a channel, and D(16-23) is transferred
to the channel to provide the I/O unit address. 0(18-21)
is sent to the E-register, via the E-register incrementer.
D(21-23) is sent to the ST byte counter, ROSAR
branching logic, and specification checking logic.
D(21,22) determines which halfword of Q to use to
provide LS address information. The transfer ofD(0-23)

ADDRESS Switches

0

0

lo D

0

8

0

I 23
.PSW address

~--from interruption !.iliii logic
23

~I
20

15 16 23 --,--

18 21

T
21 23

23

21 22 E-Register
lncrementer

To SAR

1/0 Unit Addres_s Bus

Selecf-Channel 0
Select Channel 1

Channel t To Q-to-LAL
gating logic

To 0-refill logic t--------To ROSAR branching' logic

}
To 1/0

O/Left I/or
True-Complement

O t---2~----To specification checking logic

True-Complement

Figure 2-31. D-Register Data Flow

I STC ~1

/
PAB //

/
/

/

~/

to PAA(8-31) or PAA(40-63) provides the path to alter
or update the D-register.

Operational Functions

Operations in which D participates are: (1) branch and
execute, (2) shift, (3) VFL, (4) fixed-point, (5) floating­
point, (6) manual-control, (7) 1/0, and (8) interruption.

Branch and Execute Operations

For branch and execute instructions, the specified
successful branch address (all branches are assumed· to be
successful until otherwise determined) is placed into D by
the normal I-Fetch sequence. A storage request is then

0 23

I 0 IC.

issued to main storage (per D), and D(0-20) is gated onto
SAB. D(21,22) specifies the particular op-code halfword
within the doubleword in the same manner as IC(21,22)
does for normal operation. If during execution of a
branch instruction the branch is found to be successful
(branch condition satisfied), the requested doubleword
from main storage is gated into Q and the branch address
in D is sent to the parallel adder and updated by 8. The
result is placed into the IC (replacing the IC address), and
the program proceeds in the normal manner.

If, however, the branch instruction is found to be
unsuccessful, the doubleword requested from main
storage (per D) is not gated into Q and the branch address

2065 FETOM (9/68) 2-51

. in D does not replace the IC address. The program then
proceeds with the next sequential instruction.

Shift Operations

For RS instructions, I-Fetch adds the base and displace­
ment values and places the result into D. Normally, this
result is the second operand address. For shift instruc­
tions, however, this total specifies the number of bit

· positions to be shifted, and is used as follows. The number
of shifts specified by D(22,23), a maximum of 3, are
executed immediately upon being computed in the
parallel adder and without the use of D. The number of
shifts remaining is now specified by D(18-21), which
indicates the number of shift operations necessary to
complete the shift instruction, provided four shifts are
accomplished by each shift operation.

Because left 4 and right 4 shifts are possible in the
parallel adder, the binary number in D(18-21) is trans­
ferred to E(l2-15), where the E-incrementer then con­
trols the remaining number of left 4 or right 4 shift
,operations required to complete the instruction.

VF L Operations

For VFL operations, destination operand addresses are
placed into D by the I-Fetch sequence. (Source operand
addresses are placed into the IC.) Storage requests for
destination operands are made per D(0-20), and the
accessed doubleword is loaded into ST. D(21-23) is set

·into the ST byte counter to control ST byte transfer. The
address in D is updated by 8 following each storage
request, and, when the ST byte counter value reaches 7,
another storage request is made per D to refill ST with
destination operand data.

Fixed-Point Operations

·For fixed-point operations, operand addresses are placed
into. D. by the 1-F etch sequence. Operand storage requests
are made per D(0-20), with D(21) determining which
32-bit word of the accessed doubleword is to be gated
into ST. For halfword operation, D(22) determines which
half of the 32-bit word specified by D(21) is to be gated
into ST.

'' Floating-Point Operations

For floating·point operations using long operands, D and
T provide for the handling of a 56-bit fraction. The ·
high-order 24 bits of long fractions are contained in D.

Manual-Control Operations
In manual-control operations (manual mode), addresses

·entered into the ADDRESS switches are transferred to D.
A storage request is then made per D to reference main
storage for operations such as storing and displaying;

2~52 (9/68)

The address is entered into D as follows. Manual
operation microprogram routines (for example, store or
display) cause the parallel adder to genera.te all l's, and
then transfer them to D. Those ADDRESS switches not
depressed (not set to 1) cause their associated D-register
positions to be reset to O; the resulting bit configuration
in D is the address.

I /0 Operations

The channel and unit address for an I/O instruction is
placed into D(8-23) via the normal I-Fetch sequence,
D(8-15) specifying the 1/0 channel and D(16-23)
specifying an 1/0 device attached to that channel. .

During the execution phase, D(8-15) is decoded in the
CPU to determine the 1/0 channel. [Up to seven channels
are currently available per system; D(8-l 2) must there­
fore always contain zeros, with the binary 1/0 channel
address located in D(13:-15).] Outputs from this channel
decoder function to select one of seven possible 1/0
channels. 0(16-23) is commonly routed to all available
channels as a unit-address bus, and is decoded by the
selected channel to select a particular 1/0 unit attached to
that channel.

Interruption Operations

At end op of each instruction, ROSY-branch (overriding
branch) tests are made to check for the presence of any
interruptions. Each interruption forces a unique bit
configuration into D(17-20), which is generated by the
interruption-decode and forced-address logic. (Thi~ logic
also forces a11 address into ROSAR to access the first ROS
word of the associated . interruption-handling routine.)
These four positions constitute. the low-order bits of
· doubleword · addresses in main storage that contain the
new PSW for the various interruptions.

AB REGISTER

The AB register is a doubleword (64 data bits plus 8
parity bits) register that serves as a working register and as
a buffer for doubleword operands received from main
storage (Figure 2-32). Note that the AB register is

· logically divided into two 32-bit (plus four parity bits)
. registers, A and B, and.· has a four-bit extension,
· B(64-67), to retain low-order significance during certain
·shift and arithmetic operations.

Input

All AB positions are reset at clock Pl time of the cycle in
which they are selected to receive 'information; data
transfer then takes place at P2 time. ·

Main storage information (doubleword length) is trans­
ferred into AB under ROS control by transferring

Moin Storage

0 63

SDBO

4

lo
A

'ABC ~1
0 7

0 2

4

4

7

63

PAA

4

2B 31 64 67

31

24 31

Figure 2-32. AB Register Data Flow

SDB0(0-31) and SDB0(32-63), plus parity, to A and B,
respectively.

Parallel adder information (plus assigned parity) is also
transferred to A and B under ROS control. lngating of

24 31

31

63

31

31 32 63 64 67

~132 B

63:64 ~
16 . 23 32 39 48 55 66 67

56 63

28 32

"'[__Set STAT B
31 32 67

31 32 63 64 67

31

B(64-67) from PAL(64-67) or PAL(28-31) provides for
maintaining high- and low-order significance during shift
operations. Transferring PAL(24-31) to A(24-31) facili­
tates processing of fixed-point divide instructions.

2065 FETOM (9/68) 2-53

Output

All AB transfer is under ROS control and fa accomplished
primarily through the use of gate-control triggers. All
gate-control triggers are reset at Pl time of each machine
cycle; the specific triggers selected for use are set at P2
time of the cycle in which they are to function. (One level
of logic delay is incurred in transition; as a result, the
respective transfer controls are activated at P3 time of
that same cycle.) Selection of the gate-control triggers for
use during any given cycle is determined either directly,
through ROS decoding, or indirectly, through the AB
byte counter. Parity information is transferred on a byte
basis.

On multiply operations, the partial product, B(66,67),
is placed directly into the serial adder latches (SAL) per
E(l4,15). Divide operations transfer A(4) or A(28) to one
position of SAL per a ROS micro-order and E(14,15).

ST REGISTER

The ST register is a doubleword (64 data bits plus 8 parity
bits) register that serves as a buffer between main storage,
LS, and the CPU and also serves as a working register for
arithmetic and logical operations (Figure 2-33). Note that
the ST register is logically qivided into two 32-bit (plus
four parity bits) registers.

Input

• Inputs are from main storage, LS, parallel adder, serial
adder, PSW register, interrupt logic, and DATA
switches.

When new data is transferred into ST, oµly the bit
positions involved are reset. Resetting occurs at Pl time.
and data transfer at P2 time. Reset signals are. generated
by the gating signals so that doublewords may be
assembled (Diagram 4-306, FEMDM).

Main storage information is placed into ST by trans"
ferring SDB0(0-6.3) to . ST(0-63), SDB0(0-31) to
S(0-31) or T(32-63), or SDB0(32-63) to T(3F63). LS
information (32 data bits plus 4 parity bits) is transferred
to either S or T. All ST storage activity is controlled by
ROS.

PAL(32-63) or PAL(40-63), plus parity, is trans­
ferred to T, and SAL(O-7), plus parity, is transferred to
the ST byte per the ST byte counter and incrementer.
ROS controls the transfer from the adders to the ST
register.·

PSW information is transferred from the PSW register
to S(O-i 5) and T(32-39) under ROS control. The
interruption code from the interrupt logic enters
S(16-31) and is stored into the old PSW. Figure 2-34
shows S(16-31) input logic.

For manual control operations, information from the

2-54 (9/68)

DATA switches is placed into ST for subsequent entry
into main storage (or LS) in the following manner. All
positions of ST are set to l's by means of the parallel
adder and LS ROS micro-orders. All DATA switches not
set to l's cause their respective ST positions to be reset to
0. Thus, ST reflects the information contained in the
DATA switches.

Output

•. Outputs are to main storage, LS, PSW register, serial
adder, parallel adder, multiply/divide logic, and MCW.

All ST transfer is under ROS control. Transfers to the
adders are performed by gate-control triggers. These
triggers are reset at Pl clock time of every machine cycle;

. the specific triggers selected for use are set at P2 clock
time of the cycle in which they are to function. (One level
of logic· delay is incurred in transition, and, as a result,
each trigger activates its outgating circuitry at P3 clock
time of that same cycle.)

Selection of gate-control triggers for use on any given
cycle is controlled either directly by ROS or indirectly by
the ST byte counter during ROS-controlled VFL opera­
tions. ST transfer to main storage takes place when a
storage request is initiated with the 'store' trigger set; 64
data (plus eight parity) bits are then transferred to the
SDBI. (Only T-register information can be gated to the·
LS.)

PSW information from S(O-J 5) and T(34-39) is
transferred to the PSW register under control of ROS
micro-orders.

The contents of ST, plus parity, can be transferred to
PAA. In addition, T-to-PAA data transfer logic is capable
of both true or complement and left 1 shift, and either
T(32~47) or T(48-63) can be gated to PAA(48-63).

Byte transfer from ST (for product and quotient
insertion during multiply and divide operations) is con­
trolled by E(l3-15). (The selected product/quotient
bytes are transferred to the MPR bus.)

ABANDSTBYTECOUNTERS

For operations involving the serial adder, it must be
possible to extract bytes from doublewords contained in
AB and ST and to assemble bytes into ST for subsequent
storage. These capabilities are provided by two byte
counters: the ABC for controlling AB byte transfer, and
the STC for controlling ST byte ingating and outgating.

AB Byte Counter

• Inputs are from PAL(61-63), T(57-59), E(l3-15),
and IC(2i-23).

• ABC logic increments, decrements, or retains absolute
values.

15 34 39

Machine Generated \

~.
0 20

MON I KU
0 •;>! 20

Figure 2-33. ST Register Data Flow

MPR Bus
1 byte is
selected per
E(l2, 13). DP

32

4

PAL I
I

63

32 39 40 63

/

/
/

/

AP
67

63
/

/
/

PSW
16, 17,._ __

18, 19,
20

Channe I 4 I ntrpt
PSW(21)

Channe I 6 I ntrpt -:-:----=-:.:::.:.!::.:._ ___ ~OR
Channel 5 lnl!:e_I

Channe I 2 I ntrpt

Channe I 3 I ntrpt OR ___;_.;;;..::.:__;:...:.:.::.:..t::...._~l-!----1 I-- A t---__.
-+-+---IOR

L--

KN211

PSW(23)

Channe I 1 I nlrpt L.___J OR

1/0 lntrpl Priority 1-- A -'--~.:....:..:..:..:..:.2-~~__J
OR

KN211

_u_A~l:.;..n~~'-)-----l----1~
A

~E~~)'--::---:-'."'.---1----11--
Supervisor Call Tgr A OR,__ _ __..

Time Clock 1---:=.o......=..:.::.=_~~--l~~J
l_xterna I I nlrpt A

KN241

UA In (1) PSW(25)
-----'-'-----1--__:.f

A

E(9) 1---:-~~~~--l~~J
S~ervisor Call Tgr A OR 1-----I

~C~o~n~so~le~Sig_r~1 ~na~l ___ J--_ _j__Jl---
External lntrpt A

KN241

UA In (2) PSW(26)
~__:._.:.._ __ _J__j_LJ

A

_E~(l~O) _____ ___j___j_JI--
'-- A OR 1-----I

_E~x~te~rn~a:.::l~S~ig~n~a~l2=-... __ _J_ _ __JI--

'---A
._1

KN261 L..

Figure 2-34. PSW Input to 8(16-31)

2-56 (9/68)

_u-:-A~l;,;..n ~(3'-) _______ _J PSW(27)

.!/O lnt!E! Priori!Z_ A

E(l 1) ~..;__ ______ _j_Jl--

· -:S:-u ,_p e_r;v ic:.s o;.;_r...:C::a:.::l l:_T:.;;9!'...' --~--1-1 A OR 1---­

External Signal 3 -=---~.::.:...::.._ __ ...J__j_Jl--
_E_x _I e~r n~a~l~ln~tl]>l~r:.:;t ____ ..._..j__J__J A

KN261

UA In (4) PSW(28l
--~----1---l-L..1

A

_E~(1~2) ______ .J..-j_..._LJI--
.......+---A

External Signal 4 __;~;::_::.._ __ .+-.+--I-JI-- ORt-----11

-+--1---1 A
~P:-ro~g~l:-n...:tr:...pt_8:.._ ____ _j__j_...l._ll--

-P_ro~g...:l...:n...:tr~pt~P~r~i o~ri~ty~-t-.J--1-..!-_j A

~

~U~A~ln~(~5)~----l-+-!-L.J~
E(13) ~A
-'--'-----+--1-i~_Jl--

L__L__ A
Externaf Signal 5 r--t-~=:.:....:::~~--+-+-l-_J_.JI-- OR 1---....11

+-+--1--1 A
Prog I ntrpt 4 ~'----'----..+-..j.......jL..l-_Jl--

t-+-+--1--1 A
L.......i--

KN281

_u_A_ln_(:..;6)~--__:H-+-!.-f PSW_QO)

E(14) ~A
-'--'----..+-..j.......jL....1-~l--

~A
_E_x_le~r~na~l~S~ig~n~a~l~6--+-+--J---l--ll--ORI----~

t-+--1--1 A
Prog I ntrpt 2 _;::._:..c.:.._::__~-J.-l-...!--l-Jl--

+-+--1--1--1 A
L..-.l--

KN301

_u_A_I n_,('""'7) ____ -i--l--l--J....J~(31)

E(15) y A
~-'-------1--4---l--__Jl--

L.___J A
_E_x_te_rn_a_l_S~ig:...n~al:._7:___-1-_j. __ _J~ ORI----~

A

Prog lntrpt 1 '------1 _;::,_..!.,__ __ -J. __ _Jl--
._ ___ __J A

KN301

To 5(16-31)
(Figure 2-33)

The ABC (Diagram 4-307, FEMDM) consists of three
triggers and three incrementer latches. These components
are designated TO, T 1, T2, and LO, L1, L2, in each group,
and represent decimal values of 4, 2, and 1, respectively.
Thus the ABC is capable of selecting any AB byte from 0
to 7. Both the trigger and latch groups are capable of
receiving information (000-111 binary); modification
(incrementing/decrementing) is performed through the
use of incrementer-decoding · 1ogic on the input of the
incrementer latches.

ROS controls the transfer of information into the ABC
from PAL(61-63), E(13-15), and IC(21-23); data from
T(57-59) is controlled by scan logic.

In operation, binary values of 000-111 (specifying AB
bytes 0-7) are transferred into the ABC triggers at clock
time under ROS control [ROSDR(25-30)]. The incre­
menter-decoding logic samples the ABC triggers and,
under ROS control, sets that value, incremented by 1,
decremented by 1, or absolute, into the incrementer
latches at not-clock time. The incrementer latches are·
then sampled, and the outputs are decoded into eight lines
(0-7) to select one of the eight AB bytes for transfer on
the following machine cycle. In addition to controlling
register transfer, ABC trigger outputs are utilized by scan
operations and certain ROS-branch-decode functions.

Note: E(13-15) or IC(21-23) can also be entered
directly into the incrementer latches, at not-clock time,
under ROS control.

The ABC triggers are reset with a negative Pl clock
pulse at clock time of each machine cycle and set with
incoming data at P2 clock time. The incrementer latches
are reset with a negative P2 not-clock pulse at not-clock
time of each machine cycle, with data transfer occurring
at P3 not-clock time.

The contents of the ABC triggers are transferred to the
incrementer latches, and the same value is returned to the
ABC triggers (regenerated), during each machine cycle in
which no other ABC transfer controls are specified by
ROS (provided that an 'I-Fetch reset' signal does not
occur).

ROS control signals ('000 to ABC' and 'I-Fetch reset')
reset the ABC and ABC incrementer to 0 by allowing both
the triggers and the latches to reset on the following
machine cycle.

ST Byte Counter

• Inputs are from PAL(61-63), T(54-56), E(13-15),
and D(21-23).

• STC logic increments, decrements, or retains absolute
value.

. The STC (Diagram 4-308, FEMDM) consists of three
triggers, three bipolar (polarity-hold) latches, and three
incrementer latches. The triggers are designated as TO, Tl,
and 'C2 and the latches as LO, L1, and L2, representing
decimal values of 4, 2, and 1, respectively. Thus the STC
is capable of selecting any ST byte from 0 to 7. The STC
triggers (with associated polarity-hold latches) and the
STC incrementer latches are capable only of receiving
information (000-111 binary); modification (incre­
menting/decrementing) is accomplished through the use
of incrementer-decoding logic on the input of the incre­
menter latches. The polarity-hold latches retain each STC
setting for one additional cycle, providing for a resultant
data byte to be gated into ST at the same time the next
sequential ST byte is being gated for processing.

ROS controls the transfer of information into the STC
from E(13-15), D(21-23), and PAL(61-63). Entry of
T(54-56) to the STC is controlled by scan logic.

In operation, binary values of 000-111 (specifying ST
bytes 0-7) are transferred into the STC triggers at clock
time, with the associated polarity-hold latches assuming
the same value at not-clock time of that same cycle. The
incrementer-decoding logic samples the contents of the
STC triggers and sets that value (incremented, decre­
mented, or absolute) into the incrementer latches. The
incrementer latches are then sampled, and the outputs are
decoded into eight lines (0-7) to select the ST bytes for
transfer during a subsequent machine cycle.

Note: E(13-15), D(21-23), or a defined constant can
also be entered into the incrementer latches under ROS
control.

The polarity-hold latches are set (or reset) at not-clock
time to the value of the STC triggers. This value
(specifying an ST byte) is retained in the polarity-hold
latches until not-clock time of the following cycle. Thus,
at clock time of the following cycle, with the STC triggers
having been set to a new value and the incrementer latches
possibly containing a modification of this new value, the
previous STC-trigger setting is still present in the polarity­
hold latches. This retained value now allows information
from the serial adder to be placed into the ST byte that
was previously transferred out, at the same time that the
incrementer latch output is transferring the next se­
quential ST byte to the serial adder for processing.

All incrementer latch decode lines are sent to the
mark-trigger logic (specifying byte areas for main storage
entry), and decode lines 0, 3, and 7 are sent to the branch
logic controlling the ROSAR setting. An 'STC greater
than 3' signal is also transferred to the branch logic
controlling ROSAR whenever incrementer latch 0 (binary
value of 4) is set.

2065 FETOM (9/68) 2-57

Gating of the contents of the STC triggers into the
incrementer latches and regeneration of that latch value to
the triggers are performed each machine cycle in which no
other STC ingating controls are specified by ROS (pro­
vided that an 'I-Fetch reset' signal does not occur).

The '000 to STC' and 'I-Fetch reset' signals reset all
src triggers and latches on the following machine cycle.
The 'l to STC bit O' and 'I-Fetch reset' (for RR
instructions) signals cause the incrementer to assume a
decimal value of 4; the 'O~ 1 to STC' signal sets incre­
menter latches 1 and 2, thus setting the incrementer to a
decimal value of 3.

MARK TRIGGERS

Eight mark triggers, contained in the CPU, indicate which
bytes of the doubleword on SDBI are to be entered into
main storage on a store operation.

Mark trigger logic (Diagram 4-309, FEMDM) is ROS
controlled; operation is as follows. ROS control field L

· (ROS sense latch positions 43-46) is decoded to activate
one ·or more of four mark trigger signal lines. These lines
set the mark triggers as required: (1) individually, per the
STC, (2) in groups of four (0-3 or 4-7), and (3)
unconditionally, by setting both the 0-3 and 4-7 groups.
ROS micro-orders to set mark triggers also set the 'store'
latch to generate a 'store' signal which is sent. to the
selected storage unit.

F-REGISTER

The F-register is a one-byte (plus parity) trigger register
that is used in certain arithmetic, logical and data-transfer
operations (Figure 2-35).

Input
Inputs to F are under ROS control. All positions involved
in an operation are reset at Pl clock time of the same
cycle in which they are to receive information, with the
ingating occurring at P2 clock time. Data and external
control information is received during direct-control read
operations, and serial adder outputs are received during
VFL operations. F(0-3), F(0-4), and F(4-7) are utilized.
by Set Key and Insert Key instructions, logical instruc­
tions, and decimal multiply and divide instructions.

Output

All outputs are under ROS control. F(O-7) is transferred
to the serial adder by means of a gate-control trigger at
clock time, and F(4-7) is transferred to the parallel adder
under control of the parallel adder input logic. F(0-3) is
transferred to the storage protect area during set-key
operations. F(4-7) is also used in ROS branching.

2-58 (9/68)

G-REGISTER

The G-register is a one-byte register that buffers one byte
of data between the CPU and an external device (Figure
2-36). SAL(O-7) is the only input, and the external
device is the only transfer path.

PSW REGISTER

· • Inputs are from ST and interruption-control logic.

• Outputs are sent to ST and CPU control circuitry.

Although the PSW is 64 bits in length, the PSW register
contains only 24 bits (Figure 2-37). The remaining
information (generated by the CPU at the time of an
interruption) is used to identify the cause of the interrup­
tion and to allow the CPU to return to the correct
program address.

4

Slorago Main
Protect Storage
Key

g 4

D
0 4

4 7
To ROS branching ___ T_.
circuits O 7

·o

.------'14 7

I 7

63

PAA

Figure 2-35. F·Kegister Data Flow

PSW register trigger logic is shown in Figure 2-38. The
'gate S(O-7) to PSW{O-7)' signal resets the triggers and,
through the logic delay, provides the gating signal to allow
the ST register information to enter the PSW register.
Thus the information remains in the PSW register until it
is replaced by a new PSW.

All PSW register input and transfer is initiated by ROS
micro-orders. When an interruption occurs, a series of
micro-orders in the accessed ROS word transfer the
contents of the PSW register into ST for subsequent entry
into main storage.

The format of the instruction in E {interrupted
instruction) is decoded, thus providing the instruction­
length code to be entered into the PSW register before
transferring the contents of the PSW register to ST.
Micro-orders also transfer the old PSW address (generated
by the interruption control logic) for that particular
interruption to D(17-20) to develop the old PSW address
for that interruption. Either 8 or 16 (depending on the
current instruction address) is subtracted from the IC and
inserted into the instruction-address field of the assembled
PSW.

Micro-orders executed by the Load PSW, Set System
Mask, or Set Program Mask instructions control the
transfer of PSW information from the SDBO to ST and
the transfer of PSW data from ST to the PSW register and
the IC. The old PSW address (contents of D + 64, decimal)
is generated in the parallel adder, also under ROS control.

The PSW register does not contain data transfer logic;
PSW information is constantly available throughout the
CPU for use as required.

MCW REGISTER

The MCW register is a nine-bit trigger register that
provides program control of scan operations (Figure
2-39). During execution of the Diagnose instruction,
FLT's, or ROS tests, MCW{O-7 ,20) is gated from·
T{32-39,52) to the MCW register. The bits of the MCW
are retained in the MCW register and decoded by the MCW
decoder to perform the functions as specified in Chapter
6.

Note: Four MCW's use the same MCW register: {l) FLT,
(2) ROS test, {3) Diagnose for CPU, and (4) Diagnose for
channels. See Chapter 6, Section 2, for the format of each
MCW.

7 0 7

SAB SAA

0 7

~
~
0 7

SAL AS
7
7

L__ ____ D_ir_ec_t_C_on_tr_ol_B_us_-O_u_t -----Joo,.. To external

device

Figure 2-36. G-Register Data Flow

2065 FETOM (9/68) 2-59

5080 (Load PSW)

.Address of Interrupted Instruction
(machine-generated)

Interruption Code (machine-generated)

0 63

0
SDBI

Length of interrupted Instruction -0--r---7 -8-....,,.--1-.5 34 ·35 36 39 _,40-... ____ ,... ______ 63,..

(in halfwords) through decode of E(O, 1) r----------T~ T- Instruction addreH (lo IC).
(machine generated) -1 . _
--~--------+-+---o--+--1-e--+--1-5-32~33 ~1tlii ·
Notes:

1. Micro-orders within interruption
ROS word transfer program status
inforrriation from PSW register
.to ST.

2. Micro-orders activated by load
PSW instruction transfer program
status infonnation from ST to
PSW register.

0

0

AMWPI Key State ILC cc Prag- PSW
Mask Register

32 33 34 39

15

7 8 11 12 15 34 35 36 39
3. PSW register ALO's:

System Mask
Key

- RWOl l - RW061
- RW081 - RW101

--..... --- -,--_-~'---------~-------------T_o_p~ro....::.gr_o_m_-e_x_c_ep~t-io_n_l_o~gi_c. L To brcnch-on-condition IOgic.

AMWP State
ILC
cc
Program Mask

- RW121 - RW151
- RW321
-RW351
- RW361 -381

Figure 2-37. PSW Register Data Flow

S(O)

Gate S(0-7) to PSW(0-7)f

5(6)

f ROS Micro-Order

• One level of logic delay
to provide the set signal
after the trigger is reset.

Figure 2-38. PSW Register(0,6) Logic

2-60 (9/68)

Mplx
Chan
Mask

T

RW011

RW061

To program-state triggers

To storage-protect logic

Ta channel decoder

132 T ~1
32 39 52

,l MPLX Channel Mask

To S(O) 0
To Ind Lamp

lo)~I MCW

0 7
Selector
Channel 6 Mask

To S(6)

To Ind Lamp

Maintenance control signals
to CPU, Scan, BCU, and channel.

Figure 2-39. MCW Register Data Flow

-This section describes the operation of the: 25-register
_ local storage (LS).

ADDRESSING AND DATA FLOW

• 5-position address registers [LAL (Read) and LAR ·
(Write)] address LS.

• Input to LS is from T only; output is sent to.Sand/or
'f under ROS control.

Two five-position LS address registers [LAL (Read) and
LAR (Write)] select the 25 individual LS registers(Fig.
2-40). ·The LS address is received from Q, R, or E under
ROS control (or directly from ROS control words when
addressing the LSWR). The particular register (Q, R, or E)
and field within that register to be set into LAL is
determined by decoding ROSDR(38-42}. The four-bit LS

-addresses are gated into the four low-order positiOns of
LAL from Q, R, or E fields. These four-bit addresses are
capable -of directly addressing registers 0-15 (general­
purpose registers). For floating-point operations (requiring -

-the use of registers 16-23), a 1-bit is forced into the
high-order position of LAL upon decoding of the floating­
point op code. This action increments the four-bit address
from Q, R, or E by 16, thus forcing the use of
floating-point registers 16-23.

Note: Floating-point instructions are. restricted tO the use _
of even LS addresses 0, 2, 4, and 6. Automatic increment­
ing of these values by 16 then generates LS addresses of
16, 18, 20, and 22.

Long-operand floating-point op codes also force a 1-bit
into the low-order position of LAL, in addition to the
high-order 1-bit forced by all floating-point op codes. This
additional bit further increments the 16, 18, 20, and 22
floating-point addresses by 1, thus generating the second
(Rl + 1) register address required for long-operand
(64-bit) instructions. -

For operations requiring use of the LSWR (register 24),
the ROS words controlling these operations force 1-bits

-into the two high-order positions of LAL [LAL(0,1)].
This action generates a binary address of 24, and is the

-only means of selecting the LSWR.
Selection of the Q, R, or E field to be entered into

LAL is determined by decoding ROSDR(38-42) of the
controlling ROS word or by selecting 'NEOP' or 'BEOP'
micro-orders, depending on the next programmed instruc­
tion. Regardless of the address source or of whether a-read

Section 5. Local Storage

-LS or write LS operation is indicated, the contents of the
addressed register are always read out onto the LS data
bus. If a read -LS operation is indicated, decoding of
ROSDR(l0,11) of the controlling ROS word gates the
contents of the LS data bus into S, T, or both Sand T.
When a write LS operation is jndicated, the contents of
the addressed LS registers- are gated out onto the LS data
bus in the same manner, but the output resulting from
decoding ROSDR(l0,11) remains inactive and does not
condition the ST ingating controls. A 'write into LS'
signal, resulting from the ROSDR(38-42) decoder, then
gates the ST ~us (T-data) into the addfessed LS register.

DATA TRANSFER CONTROLS

The following paragraphs describe the LS logic involved in-­
read LS - and write LS operations. Diagram 4-401,
FEMDM, illustrates the read/write logic of LS register 0
and also the common control circuit timings for each
200-ns LS cycle. (Registers 1-24 are identical with
register 0.)

Local storage addressing and all LS register-operating
logic are implemented in 10-ns circuitry; the polarity-hold
latches and associated input logic are implemented in
30-ns circuitry.

-Read LS Operation

• ROSDR(38-42) sets LAL from specified Q, R, or E
field.

• LAL gates contents of selected LS register to LS data
bus.

• ROSDR(l0,11) gates LS data bus into ST.

Read LS operations are initiated at :not-clock .time when
LAL (Read) is set with Q, R, or -E information, as
determined by ROSDR(38-42). The LSWR address and

_ the floating-point register address bits are also entered
into LAL at this time, depending on ROSDR(38-42).
The contents of LAL (Read) are decoded, and the
decoder outputs gate the contents of the selected register
polarity-hold latches to the LS data bus. ROSDR(l0,11}
then activates the required ST input logic, and at clock
time of the following cycle the LS data bus information is
set into the ST triggers. Polarity-hold circuits provide
nondestructive readout, eliminating the need for regenera­
tion. (Refer to the timing chart in Diagram 4-401, for
relative control timings.)

2065 FETOM (9/68) 2-61

EJDJ
10 11 38 42

Decode

DR

Decode

LAR
Input

DR

Write into LS

0 3

I
• I

I

r:--'!1
~

8 11 12 15

16 19 32 35 48 51

Selectionw.:__,:_ __ ~--~--~-~------------------:----_.

LAL (Recd) LS

0 4

0 4

LAR (Write)~
0 4
0 4

Decode LS
·---~Input

Controls

Decode LS .. _11111!...,.,_ ______ ~0utput
Controls

Gote LS to S, T, or Sand T (Recd operation only)

Figure 2-40. Local Storage Data Flow

2-62 (9/68)

63

~I
32 63

ST Bus

Note: LAL (Read) is sampled every cycle, even if no
command is given. Data from LS is thus placed on the LS
data bus every cycle, but is not always gated into a
register. The contents of LAL (Read) are transferred to
LAR (Write) every cycle, but no addressing is performed
unless a write LS micro-order is decoded in ROS.

Although LS data is available to the CPU approxi­
mately 100 ns after the setting of LAR, consecutive LS
data readout is limited to 200 ns. LS cycles are therefore
defined as being 200 ns long.

Write LS Operation

• ROSDR(38-42) sets LAL (Read) to specified Q, R, or
E field.

• LAL (Read) contents are transferred to LAR (Write).

· • LAR (Write) decoder selects specified LS register.

• ROSDR(38-42) gates ST bus data into selected LS
register.

On write-LS operations, LAL (Read) latches are set at
not-clock time with the specified Q, R, or E information.
At the beginning of the following cycle, LAL (Read) is
transferred into LAR (Write) in the same manner as for a
read operation. The selected LS register is also gated to
the LS data bus as in read operations; up to this point,
read and write operations are identical. (On write LS
operations, however, LS data bus information is not gated
into the ST register.)

At the beginning of the following cycle, LAL (Read) is
transferred into LAR (Write). Further decoding of
ROSDR(38-42) generates a 'write into LS' signal that
sets the 'write LS' trigger at PO time. This trigger provides
the signal to gate the ST bus (T-data) into the selected LS

register at not-clock time of the following cycle. (Refer to
the timing chart in Diagram 4-401 for relative write
control timings.) Negative levels on the ST bus represent 1
bits and set the. respective polarity-hold latches; positive
levels represent O's and reset the respective polarity-hold
latches.

For an 'insert sign' micro-order when the result sign is
minus, T(32) is forced to a 1. To preserve proper parity
for this operation, the parity bit for T(32-39) is inverted
before it is transferred to LS.

There are situations when writing into LS must be
inhibited. When such a situation occurs, the 'SPEC' (K31)
micro-order causes a set signal to the 'inhibit LS write'
trigger so that the LS positions remain unchanged.

Note that a minimum of40:ns ·coincidence must exist·
between stable ST bus data (1 'soi O's) and an active 'gate·
T to LS' polarity-hold-latch control signal to give correct
data entry. When the 'gate T to LS' signal is deactivated,
polarity-hold latches of the selected register remain in
their present state until new data is entered on a
subsequent write LS operation.

Note, too, that LS data is not parity-checked until it
enters an adder at a later time.

LS Timing

Separate address registers for reading and writing coordi­
nate the LS timing to other CPU functions. The 'gate LS
reg n' signal is generated by LAL (latch timing) to make
the LS data available at clock time for entry into a
register. LAR, at not-clock time, allows the data entered
into T early in the cycle to be entered into LS late in the
cycle. Refer to Diagram 4-401, which illustrates the entry
of new data into T (reflected by the shift in the ST bus
data line) and the subsequent storage of that data into LS.

2065 .FETOM (9/68) 2-63

Section 6. Serial and Parallel Adders

This section describes the operation and application of the
serial and parallel adders.

SERIAL ADDER

The serial adder (8 data bits plus 1 parity bit) processes
data in binary or decimal format, performs logical AND,
OR. and Exclusive-OR functions. and assembles
multiolvfdivide results,

Data flow for the serial adder is illustrated in Figure
2-41. Note that data entered into the A-side of the adder
(via final .bus-A) comes from either AB or F under ROS
control. ·

Data entering the serial adder is in true or complement
form. For a true add operation, the data is entered
'directly; for a complement add operation, the input data
to the serial adder A-side (SAA) is inverted (Fig. 2-42).
Note that the input data may be in true or complement
form. The two's complement value is achieved by forcing
a hot-1 to the input logic for serial adder latch (SAL)
position 7.

Input and Output

Inputs to the serial adder A-side (SAA) are the contents of
F or a selected byte from AB (per the ABC); the input to
the serial adder B-side (SAB) is a selected byte from ST
(per the STC). A bus arrangement transfers data from the
registers to the serial adder as follows:

ROS Controls

SBB . SBA

During transfer from the serial adder bus A (SBA) to the
SAA or from the serial adder bus B (SBB) to the SAB,
ROS controls can alter the data being transferred. The
SAA input can be altered by the following functions:
decimal excess-6, complement add, shift, crossgating
(interchanging of incoming bits 0-3 with bits 4-'7), and
zone and sign insertion. The SAB input may be altered by
the following functions: sign insertion, special digit
insertion, and special gating for changing destination (for
example, placing bits 0-3 into bit positions 0-3 and
4-7).

2-64 (9/68)

After the sum has been developed and placed into
SAL, gating signals from ROS allow the information to' be
transferred to F, to G, or to a selected byte in ST.

Adder Operation

A simplified summary of serial adder operation is shown
in Figure 2-43. SAA and SAB are combined in the serial
adder to produce a bit-carry, a bit-transmit, or a half-sum.
A bit-carry is developed when both input bits are present,
a bit-transmit when either input is present, and a half-sum
when only one of the input bits is present (Figure 2-44).
Carry-in and half-sum conditions combine to produce a
full sum. The table in Figure 2-44 shows the conditions
which produce a full-sum bit. For example, if SAA is a
1-bit and SAB is a 0-bit there will be no bit-carry, but a
bit-transmit and a half-sum will be produced. If no 'carry
in' signal is present, the full-sum is a 1.

The 'carry)n' signal is developed by the carry
lookahead logic. A test is made for a carry from the next
lower position or for a carry developed from bit-transmits
and a lower-order carry (Figure 2-45). The carry look­
ahead logic saves time by providing an immediate carry
rather than using another cycle to ripple a low-order carry
through the adder.

Accurate results are achieved by parity checking and
parity correction circuits. Tests for error conditions are
made at half-sum and full"sum levels as well as on decimal
input data.

Controls

• Selected data enters on SBA and SBB.

• Data is first modified on transfer from SBA to SAA
and from SBB to SAB.

• Final modification occurs as data enters SAL.

There· are three control are~s: input bus, final bus, and
SAL (Figure 2-46).

ROS sense latch 86, field R, selects F or AB as a data
source for SBA. If the latch is set, F is selected; if it is
reset, AB is selected. Gate control triggers provide the
gating signals to transfer data to the buses. For SBA, ifF
is not selected, an AB gate control trigger is selected by
the value in the ABC (Diagra~ 4-501, FEMDM). Similar­
ly, the STC selects an ST gate control trigger. One byte of
data is selected by each gate control trigger, and two gate
control triggers are selected (one for SAA and one for
SAB) each machine cycle whether or not the data will be
used.

56 63

~I
0 7 16 23 32 39 48 55

7

T:::T24 31T40 47T56 63
~ =r: =c=c Final-Bus-8

I
7

SAB

ROS

Figure 2-41. Serial Adder Data Flow

0 7

~
~
0 7

Final-Bus-A

4

ROS(86)

28

Select
1 Latch

Select '---------------------! 2 Latches----~

0 7

D
__ lT___ Direct Control

11 Bus Out

l!-:.=-_ -=:=-~-=--=:;>

True Add

SBA(O)

Complement Add

SBA(l)

SBA(7)

SAA(O)
OR

SAA(l)
OR

SAA(?.)
ORi----~~~~~

ROS fields M (bits 69-73) and N (bits 74-77) govern
the second area of data control; that is, the transfer of
data from the input buses to the A- and B-sides of the
adder. ROSDR(69-73) provides signals to control trans­
fer from SBA to SAA. When no control is present,
SAA(0-7) is, in effect, 0. Micro-orders allow true­
complement transfer, crossgating, excess-6 adding for
decimal operations, forcing of certain bits, and sign
insertion (Diagram 4-501). ROSDR(74-77) provides
similar, though less extensive, control for transfer from .
SBB to SAB. A list of the micro-orders generated by
control fields M and N is contained in ALD M7031.

The third control area, SAL input, is also governed by
ROS fields M and N. Controls include logical functions,
decimal correction, product/quotient operations,· and a
hot-carry to SAL(3) or SAL(7) for complement add
operations.

Functional Discription

Figure 2-42. True-Complement Data Entry

Because the serial adder is used in many operations and is
so versatile, a general discussion is not sufficient. Accord­
ingly, the following paragraphs discuss the adder functions
individually.

Final Bus B(0-7)

0 I

A-Side Parity Adjust

B-Side Parity Adjust

Figure 2-43. Serial Adder (Simplified)

2-66 (9/68)

Final Bus A(0-7)

7 0 7

7 0

SAB
Logic

SAA
Logic

Sum Latch Input Logic

Full-Sum
Latches_

Group 2 --.+<...--

0 7 3 4
..._~------''----~---~

0 7

}
Half-Sums
Bit Transmits

}

Bit Carries

· Full Sums
Group Corri es

Latched Sum Output (0-7)

Serial Adder Parity

Half-Sum Error

Full-Sum Error

T
Half
Adder

.1 Full t lAdder

I . .

SAA

SAB

SAA

SAB

Bit Carry

Bit Transmit

Half-Sum

Carry In

Ful I-Sum

0

0

0

0

0

0

0

1

0

0

1

1

0

l

0 1

1 1

0 1

1 1

1 0

0 0

1 0

Bit Carry

Bit Transmit

Half-Sum

Carry In

0 1 0 1

0 0 1 l

0 0 0 1 I-

0 1 1 1

0 1 1 0

1 1 1 1·

1 0 0 1

Figure 2-44. Half-Sum and Full-Sum Logic

Corry Out of Group 1

Corry/T ronsmit (3)

Corry/Transmit (2)

Corry/Transmit (1)

Corry Into Bit 3

Corry 1------Co_rr_y_ln_to_Bi_t _2
Logic

Carry .__ ____ co_rr..:..y_ln_to_Bi_t _1

Logic

Corry 1------Co_rr_y_ln_to_Bi_t o_
Logic

Figure 2-45. Carry Lookahead~ Block Diagram

Binary Add /

For binary add, data on SBA is entered in true or
complement form and is combined with SBB data which
may be O's, forced bits, or data from ST. Combination
takes place in the half-sum and full-sum logic with carry
signals from the carry lookahead logic (Diagram 4-502,
FEMDM).

Full-Sum SAL
OR~~=_.-.;.._;;.-,

L
A

Decimal Operation

• Excess-6 is provided in input logic to SAA.

• Decimal correction is made in set~SAL logic.

• Validity tests are made on input digits and signs.

The excess-6 operation for decimal instructions is imple­
mented by logical circuits rather than by using extra adder
cycles. The decimal character entering on SBA is increased
by 6 as it is transferred to SAA (Diagram 4-503,
FEMDM). Note that no time is lost in this operation; the
circuits select the SAA positions which are 6 (0110)
greater than the value on SBA.

The two operands are combined in the half-sum logic.
If no group carry results, decimal correction is initiated by
a ROS micro-order (Diagram 4-504, FEMDM). Decimal
correction removes the excess-6 factor by using logical
circuits to set SAL to a value 6 less than the full-sum
value. Table 2-1 shows the decimal-corrected values for all
possible erroneous characters. Again, because the circuits
have been preconditioned, no cycles are lost and the
decimal operation proceeds at full speed.

2065 FETOM (9/68) 2-67

Table 2-1. Decimal Correction for Erroneous
Numeric Characters

Group 1 Result Group 1 Result
Decimal-Corrected

Binary Position (Binary Position)
Decimal 4 5 6 7 4 5 6

15* 1 1 1 1 1 0 0

14* 1 1 1 0 1 0 0

13** 1 1 0 1 0 1 1

12** 1 1 0 0 0 1 1

11*** 1 0 1 1 '() 1 0

10*** 1 0 1 0 0 1 0

9**** 1 0 0 1 0 0 1

8**** 1 0 0 0 0 0 1

7* 0 1 1 1 0 0 0

6* 0 1 1 0 0 0 0
\

5

*
Valid digits, no correction required

0

* 1-bits in positions 5 and 6: reset positions 5 and 6.
** A 0 in position 6: set position 6 and reset position 4.

7

1

0

1

0

1

0

1

0

1

0

*** A 1-bit in position 6 and a 0 in position 5: set position 5
and reset position 4.

**** O's in positions 5 and 6; set position 6.

The following is an example of decimal correction for
SAL(0-3} using Diagram 4-504:

Uncorrected binary result to SAL(0-31 = 1011.
SAL(3): No correction is made. It is set to 1 per binary

addition.
SAL(2): Requires carry plus lialf-sum, or no carry plus no

half-sum (effective 0 result). Conditions are not met
and SAL(2) is not set.

SAL(1): Requires effective 0 and full-sum (2). Conditions are
met and SAL(1) is set.

SAL(O): Requires effective 1 plus full-sum (1 and 2).
Conditions are not met and SAL(O) is not set'.

Corrected re~ult in SAL(0-31=0101.

Incoming data is examined for validity on decimal
instructions. If either character on SBA or SBB exceeds a
value of 9 (binary 1001}, an 'invalid digit' signal is
generated and STAT Eis set (Diagram 4-505, FEMDM}.
At the same time, l's are forced into SAL to yield correct
parity for the number transferred to S.

The invalid digit logic is also used to test the sign
character entering the serial adder. An 'invalid sign' signal
is developed if the sign character does not have a value of
10-15 (binary 1010-1111}.

2-68 (9/68)

For multiply operations, the product is sent from
B(66,67} to selected pairs of SAL bits to accumulate a
byte of data. On non-decimal divide operations bits are
sent from A(4) and A(28} to selected SAL positions to
accumulate a byte of data.

Logical Functions

.Logical functions (AND, OR, and Exclusive-OR} are
performed . in the serial adder. These functions produce
full-sum latch settings (carry information from adjacent
positions is disregarded} as follows (Diagram 4-506,
FEMDM):
1. AND. The combination of an active AND control

signal and a bit-carry from the half-adder of that
position.

2. OR. The combination of an active OR control signal
with a bit-carry or a half-sum (in effect, a bit on either
or both inputs) from the half-adder of that position.

3. Exclusive-OR. The combination of an active OER
control signal with a half-sum (in effect, either input

, bit but not both} from the half-adder of that position.

Results are transferred to selected bytes in ST.

Parity Correction

• Parity bit is set if number of bits in SAL(0-3) and
SAL(4-7) are both odd or both even.

• Additional logic predicts parity for decimal operations.

• Parity is reversed on multiply and divide operations if
only one bit is sent to SAL.

• Logical operations develop parity through unique logic.

Correct (odd} parity for the serial adder outputs is
generated in the parity predict log~c (Diagram 4-507,
FEMDM). There are two basic areas of parity generation:
(1) arithmetic and (2) logical (AND, OR, and Exclusive­
OR}. The arithmetic parity generation is further divided
into binary and decimal. See Figure 2-47, a block diagram
of parity predict logic.

Binary parity predict logic includes factors Kl and K2,
half-sum (0), and an odd or even number of transmit bits
(1-3 and 5-7). Kl and K2 are established by carry and
transmit bits (Diagram 4-507). The signal resulting from
these factors reflects the odd or even number of bits in
SAL(0-3} and in SAL(4-7). If both are odd or both are
even, the serial adder parity latch is set. If only one is odd,
the parity latch is not set.

The shaded area in Diagram 4-507 indicates the
additional control (K3} used for decimal operations. A
decimal correction must be set up (decimal operation and
no group carry) to allow energizing of the K3 signal. An
examination of carry and half-sum (1, 2, 5, 6) allows the
prediction of parity after the excess-6 factor is subtracted
from SAL.

ROS Sense Latches

r 6 ROSDR

-::r:-:r:: _L ~-i.

lo 5 ~13/ m
TI.I.T_ITT-r-

* ROS control field R (bit 86)
determines whether AB or
F data is presented to
final-bus-A gating logic,

Figure 2-46. Serial Adder Gating Controls

L GT

'-

ROS

Control 1 Control
Field Field

42 M N

69 73 74 77

1 -

~-J.___1~ Adder Unit

Decoder
Final Bus B
and

Controls

Serial Adder Final Bus
Controls Controls

AR

Invalid
Digit and
Zero
Detection

Logic AR

Serial In Bus B(0-7}

78

GT
Final
Bus B
Gating
Logic

:l
l

Decoder
Final Bus A
and
Serial Adder
Controls

AR

Adder Unit
Controls

Final Bus
Controls

Final Bus B(0-7)

Parity

Parity Adjust _]
AR

Serial Adder Latched Sum (0-7)

_{

L

0

0 7

D
0 7

Invalid
Digit and
Zero
Detection
Logic

AR

.. ,.

GT

Final
Bus A
Gating
Logic

Fina I Bus A(0-7)

Parity

Parity Adjust

AR

] 7 0 I

SAL AS

0 7

I

If a 1, use F-Reg; If a 0, use AB Reg

7

]
GT

""RO-'-'-S---1

Serial In Bus A(0-7)

Serial
Adder
Parity
Predict
Logic

AS

Serial Adder Parity

ROS(86)__

2065 FETOM (9/68) 2-69

SAB Parity

Final Bus B SAB Parity Adjust
Got i ng Lpg ic

SAS(0-7)

SAL

0

SAA(0-7)

AS

7

Final Bus A
Gating Lpgic

Half-Sums
Bit Transmits
Bit Carries
Carry Into Group 2
Carry Out of Group 2

Half-Sums
Bit Transmits

SAA Parity

SAA Parity Adjust

Decimal
Correct

Exclusive-OR result (odd)
of final bus A and B parity and parity adjust

Bit Transmits (0-7)

Logic Functions (AND/Exclusive-OR)

Parity Kl (0-3) SAL(0-3)

Predict K2 (0-3)
Even Parity

Correction
Logic

Factors K3 (0-3)
Kl,K2,K3

Parity
Input
Logic

Even
Parity (0-3)

(Decimal
Correct Only)

._ ___ rl Bit Carries

Figure 2-47. Serial Adder Parity Predict Logic

Carry Out of Group 1
Hd.t Carry Into Bit 7

M-D Invert

Decimal
Correct

Parity
Predict
Correction
Factors
Kl,K2,K3

*Kl, K2, and K3 are defined factors of serial
adder half-sum, bit-transmit, bit-carry,
graup-carry, and carry-into-graup functions.
(K3 factor is activated during decimal-correct
operations only.)

Even
SAL(0-4) Parity (4-7)

1------ Even Parity I------'-'---'----~
Kl (4-7)

K2 (4-7) Logic

K3 (4-7)
(Decimal
Correct only)

Reset (P2 Not-Clock)

Logical
Fun~tioris

Arithmetic
fUnctions

SAL(0-7)
Parity
Logic

, Serial Adder
Parity

Serio I
Adder Pari tx

Sum Latch (0-7)
Output Data

Multiply-divide operations present a different problem
in that data is presented directly to SAL and is not
processed through normal parity predict logic. A test is
performed on the two partial product bits or the one
quotient bit (Diagram 4-508, FEMDM). A 1-bit change
causes an 'invert predicted parity' signal which energizes
K2 (4-7). Because no carries are generated, K2 would not
normally be energized; thus, the K2 signal inverts the
predicted parity.

Logical operations disable arithmetic parity prediction
and energize a different parity predict circuit. Three
conditions are tested to set the SAL parity latch; (1) input
parity, (2) parity adjust, and (3) odd-even transmit bits
(Diagram 4-507). The development of each is as· follows:

· I. Parity. Normally presents the original parity (1 or O) of
the byte being entered on the input bus (one byte for
SBA and one byte for SBB).

2. Parity-adjust. In effect, inverts the incoming parity
regardless of the actual 1 or 0 parity. Parity-adjust is
energized when a micro-order alters incoming data [for
example, if SBA(O) enters as a 1 and a ROS micro­
order forces SBA(O) to a 0, parity-adjust is energized].

3. Odd-even transmit bits. Exclusive-OR circuits analyze
the developed transmit bits of all positions and
produce signals denoting an odd or even number of
transmit bits.

Parity generation for an OR function is based on the
OR command and the OE transmit bits. Because only
effective transmits are used to set SAL(O-7), parity
generation needs only an even number of transmit bits to
set the parity latch. The following is an example of parity
generation for an OR function: ·

Bit 0 2 3 4 5 6 7 p

SBA 1 0 0 0 0 1 0 0
SBB 0 0 0 0 0 0
Transmit 0 0 0 0 Even
SAL 0 0 0 0

4 (even) transmit bits; Parity is set.

The Exclusive-OR function requires the parity and
parity-adjust Exclusive-OR logic to generate correct
parity. (Because the transmit bits do not reflect parity for
Exclusive-OR, they are not used.) Regardless of the
number of 1 bits, if the parity of the two input data bytes
is different, the resultant will be an odd number of bits
and the parity bit will not be set. An exception is caused
by micro-order inst:rtion of data over the byte data. This
condition is corrected by means of the parity adjust
circuits, as shown by the following example:

ROS ForceO\
B~ 0 2 3 4 5 6 7 P
SBA 1 1 0 0 1
SBB 1 0 0 1 0 1 0 0 0
SAL -,~-1~~~0~~0~-o~~~o~~

2-72 (9/68)

SBA(P)

Par Adj A

SBB(P) Parity is set.

Par Adj B

When the ANb function is used, all three signals (SBA
and SBB parity, SBA and SBB parity adjust, and odd-even
transmit bits) are analyzed to generate parity. The serial
adder parity latch is set when the result of the parity and
parity-adjust signals matches the odd-even transmit bits
signal, indicating an even number of bits have been
generated; a parity bit is thus needed, An example of
parity generation for a logical AND operation follows:

ROS Force 0
Bit \~ 1 2 3 4 5 6 7 p

SBA 0 1 0 1 1 0 1
SBB 1 1 0 0
Transmit 0 1 Odd
SAL 0 0 0 0 0 0

SBA(P)

Par Adj A 0

Even 0 A

SBB(P)

Par Adj B

Parity is set.

Note: There are four special cases when the SBB input
parity bit is set: (1) no-operation, when SBA is all O's, (2)
when -64 (1100 0000 binary) is forced, (3) when subtract
1 (1111 1111 binary) is forced, and (4) on partial product
entry when SBB is zero. In addition, the SBB parity bit is
held off on add 1 (0000 0001 binary) because it is
incorrect parity.

When an invalid digit is detected on a decimal
operation and all 1 's are forced to SAL(O-7), the parity
predict logic is bypassed, and the SAL parity latch is set
to give proper parity for the byte sent to ST.

Error Detection

Serial adder data is parity-checked on both a half-sum and
a full-sum basis. Error indications are retained in the
half-sum error or full-sum error latches (Figure 248).

Half-sum error logic tests the incoming data fo·r
· accuracy. The signals tested are (1) half-sum(0-7), and

(2) input parity and parity-adjust for both A- and B-sides
of the adder. When an input parity is in error (even
parity), the combined signals produce an odd result and
the 'half-sum error' trigger is set.

Full-sum error logic tests the accuracy of the final
answer by combining the SAL outputs and the resulting
state of the parity latch. An even result sets the 'full-sum
error' trigger.

SAB

0

AS

7
Exclusive-OR result of parity and
parity-adjust from final-bus A and
B gating logic.

Half-sums plus parity and ~~:r-Sum Half-Sum Error

l-~-.!:p~ar~1ty~~~dj~us~tl~ln=••~od=d~·~~---r:-T--:'-,..~~~(ha~lf~-s~um~p~or~i~~o~dd!!,_)
Oetect A

Serial
Adder

Gate All 1 's to Serial Adder

Latched Sums

Generated parity from parity­
predict logic (pari~ latch).

OR

Logic

Error-Reset Gate

Full-su,;,s plus
N generated parity even.

Full-Sum
. Error

A

Reset

Full-Sum Error
(even ari~ detected)

Sum Latch (0·7)
Out ut Data

Not Scan and Invert Pari (CHECK RESET Pushbutton)

Figure 2-48. Half-Sum and Full-Sum Error Logic

The error triggers remain set until reset by the 'error
reset gate' signal. To -avoid meaningless error indications
and subsequent logout operations, the set error trigger
signals are blocked when:
1. The 'inhibit serial adder parity ·check' micro-order is

active.
2. An invalid digit is detected during a decimal operation

(all serial adder latches, including the parity latch, are
set).

3. The 'logout' trigger is set.

PARALLEL ADDER

The parallel adder, 60 data bits plus parity, performs
arithmetic and logical functions and is involved in most ·
intra-CPU data transfers. Data flow for the parallel adder
is shown in Figure 2-49.

The parallel adder bit positions are divided _into
sections and groups to im:P.lement carry lookahead and
parity predict functions (Figure 2-50). Additional func- _
tions illustrated in the figure are half-sum, full-sum, and
latch-shifter logic.

Data Input

Data is transferred to the parallel adder from various
registers by means of input buses _controlled by ROS
micro-orders (Figure 2-51). More than one bus may enter
the same side of the parallel adder, but only one bus is
active at a given time.

ROS fields T and U control inputs to bus B and bus A,
respectively. Gate control. triggers for adding B and T are

shown in Diagram 4-509, FEMDM. ROS sense latches are
decoded at P2 time to select a gate control trigger; the
trigger remaiils set until the following Pl time to make the
data available as long as the parallel adder needs it. Note
in Diagram 4-509 that only 3 of the 4 bits of the ROS
fields are used; the state of the fourth bit does not affect
the gate control triggers shown but does affect other gate
control triggers.

Individual Bit-Position Logic

• Full-binary capabilities (half-adder and full-sum logic)
are provided.

• Shift logic (latch-shifter) is included at the output.

The logic functions associated with each adder position
aie shown in block form in Figure 2-52. These functions
(half-adder, carry-irito-bit, full-suni, and latch-shifter) con"
stitute the full-binary logic of each bit position; operation
is as follows. -The status of corresponding A- and B-side
operand bits is enteredjrito the half-adder, where they are
combined to produce bit-transmits, bit-carries, and half.
sums. The bit-transmit/bit-carry is sent to carry lookahead
logic to produce predicted carry information, and the
half-sum is sent to the full-sum logic. The carry-into-bit
logic combines the immediately available bit-transmit/bit­
carry from adjacent lower-order adder positions (repre­
senting an actual carry) with the somewhat later returning
predicted carry. This predicted carry output (carry-into­
bit) is also sent to the full-sum logic, where it is combined
with the half-sum from the half-adder logic to generate a
final full SUf!l (1 or O) for that adder position. This full

2065 FETOM (9/68) 2-73

.------~~---t~ To storage address bus

0

Hot l's

~

0/Ll/True­
Complement

7 31

32

0

0

32

-1 RS T
31 32 .. ·

31 32

0/Ll/True­
Complement

32

True-
Com lement

40 63

.8

8

4

40

Figure 2-49. Parallel Adder Data Flow

2-74 (9/68)

23

~I
23

63

63

TII_
63

47

. c$},,
32

32

8 31

56 63

~I
4 15 20 31 36 47 52 o------'-----'---_..._____._. 63

4 7 15

8 15

D
8 15

8 111215

4 31

31

24 31

52 63

0

Io
A -1 RA B

31 32

1 '

4

$ 67

- _31 __ 3_2 _______ ,_. 6-7_

~--~' 31

63
0 _ _3_1 _3_2 _6_3 r

40

0 23

lo IC ~I
0 23

Full
Adder

Half
Adder

A-Side
Data

Sections

Groups

PAA

4

15 14 13 12

4

Figure 2-50. Parallel Adder Function Breakdown

ll

63

10 7

Bif Transmits
and·.

Bit Carries

Half-Sums

Full-Sum Logic

Latch-Shifter Logic

6 4

63

B-Side
Doto

Bit Transmits and Bit Carries

I
. I

63 ..??J

I ~rrylnto~c::- - -- - -- -.--.- -, -. - ~
I

I

I
I

Group Transmits
and Group Carries

Section Transmits
Section and Section Carri es
Carry
logic Gr.oup

Logic

Corry Into Gfoup{s)

L Corry Lookahead · __J
- -- ---- --- ------------

Shift Instructions

S-Reg ·
"...:..

Tr~e/.
Gate

Shift Contra I
T-Reg Camp Triggers Parallel

Adder
.. ·- A-Side

. ROS Micn~-orders PA
Bus A

D-Reg True/ Gate

Coriip Shift Control
Triggers

Figure 2•51. . Parallel Adder Input Buses

A Op } eron Bit Transmit

Half-
Corry

Bit Corry Lookahead
Adder

B Operand logic Hall-Sum

[~J Error

Bit Transmits Checking
Full-

Bit Carries Carry-
. Sum

into-Bit I------' Logic

Predicted Corry Logic

L -·

4-Bit Positions Before
Latch- PAL Output

4-BH "Positions After Shifter

Shift lnstructiohs LOgic

Figure 2•52. Bit Position Block Diagram

sum, or possibly the full sum from four positions to either
the left or the right (depending on the p~rticular shift
control) is gated into the adder latch. Latched sum data is .
retained until the following cycle for sampling into the
selected register(s). The following paragraphs discuss the
logic involved in each function.

Half-Adder

The logic involved in bit-transmit, bit-carry, and half-sum
functions are: ·
1. Bit-transmit. At least one and possibly two I bits are

contained in the two · corresponding· A- and B-side
opeiarid positions. .

Note: For certain operations; the parallel adder is set
to all l's by a micro-order which forces all 1 's into the
A-side of the half-adder (Diagram 4-510, FEMDM).

2. Bit-carry; Two 1 bits are contained in the correspond-
ing A- and B-side operand positions. ·

3. Half-sum. A single 1 bit, but not two, is contained in
the corresponding A- and B-side operand positions.

Carry-into-Bit Logic

• Detects "carry-into" conditions affecting each particu­
lar bit position.

2-76 (9/68)

. A-Reg
Gate

T
Control Shift Parallel Triggers B-Reg

Adder
8-Side

PA ROS ·Micro-orders
Bus 8

~ IC

Gate E-R<:l!_

Control Q-Reg
Triggers F-Reg

The carry~into-bit logic of each adder position detects
whether a carry-into condition prevails; resulting fro~
either an actual carry or a predicted carry. Carry~into-bit
circuitry logically OR's the actual carry (prevailing carry
conditions from immediately adjacent lower-order posi­
tions) with predicted carry (carry-into-group indications
from lookahead logic, signifying that effective carry
conditions exist in the more extreme lower-order areas).

The actual carry into any particular adder position is
·determined by logically testing all remaining lower-order
bit positions within that same group or, if the particular
adder position happens to be the low-order group posi~
tion, testing all four bit positions of the next lower-order
group. (Predicted carries are discussed in "Carry Look-
ahead".) · ·

Note:. Either an actual carry (from adjacent positions) or a
predicted carry {from carry lookahead) is allowed to
affect a particular position, but not both. Where both
carries occur, conditions producing the ·actual carry also
function to inhibit the predicted carry from entering the
affected bit position(s). This inhibit logic is illustrated in
Diagram 4-510, FEMDM, as follows: Carry conditions
from positions 48-51 generate both a predicted carry to
position 47 (carry-into-group. 5), via car~y lookahead

. logic, and an actual carry in the form of bit-transmit/bit­
carry signals. Because group 4 positions (48-51}represent
the actual· carry source, the group-4-carry condition is
then inverted to inhibit predicted carry entries into
position 47.

Full-Sum Logic

The full-sum logic for any particular adder position
combines (by means of an Exclusive-OR) the carry-into­
bit output with the half-sum output of the half-adder,
developing a 1 or 0 full-sum for that adder position.

Latch-Shifter Logic

Latch-shifter logic facilitates the left 4/right 4 shifting of
the full sum during the same cycle in which it is

developed. (Logical and data-transfer operations also
utilize this logic.) For any particular adder position,
zero-shift, left-4 shift, and right-4 shift controls respective­
ly gate the full sum into the latch associated ·with that
position, into the latch associ(J.ted with the position four
places to the left, and into the latch associated with the
position four places to the right. (Scan-out operations also
utilize the latch-shifter logic but only for its data path
facilities.) All latches retain the latched sum until the
following cycle, and extended-clock signals delay resetting
the latches long enough for the error-checking logic to
function.

Note: An adder-hold ('--+HOLD') micro-order, used
during certain operations, blocks the extended-clock reset
signal and causes the latches to retain their data for one
additional cycle.

Carry Lookahead

• Predicts carry before full-sum development.

• Reduces time required to provide full sum.

• Lookahead logic divides 60-position adder into 1 S
four-bit groups, and these groups into four sections.

• Lookahead information is developed in form of bit­
position carry, group carry, and section carry, and then
fed back into individual positions as predicted carries.

The carry lookahead function provides the adder with the
capability of entering full sums directly into the adder
latches. Lookahead functions effectively predict the carry
resulting from combining two operands, and use this
predicted carry to convert half-sums to full sums before
the entry of· information• into the adder latches. This
sequence eliminates the additional time required by ripple
operations, which would be necessary in converting
half-sums to full sums if half-sums were entered directly
into the latches.

For design reasons, the 60~position adder is divided
into 1 S four-position groups, and these groups are
subdivided into four sections. This group/section arrange­
ment reduces the logic decoding required in implementing
the carry lookahead functions. Group/section arrange­
ment and carry lookahead data flow are shown in Figure
2-53.

Lookahead logic is designed so that, for any particular
position, the effective carry conditions in all lower-order
positions (except for an adjacent few) are logically
predicted for that position. Carry conditions which would
later be produced in these same adjacent few positions as
a result of propagated lower-order carries are predeter­
mined by the lookahead functions and logically entered

into that position as a predicted carry. Using this method,
each bit position then requires only that logic necessary to
detect prevailing carries (£tctual carry) iri the adjacent
positions, and to .logically OR the actual and predicted
carries when developing the full sum. Predicted carries are
presented to the input logic of individual positions as
'carry into group' signals. Figure 2-?4 illustrates the adder
areas supplying source information for actual and pre­
dicted carry signals to adder position 44. Note that,
although lower-order carry conditions exist in both
examples, they are represented by an actual carry in
example 1 and by a predicted carry (carry-into-group~S) in
example 2. (Recall also, from the previous discussions,
that where both actual and predicted carries are generated
to a particular position, only the actual carry is entered;
the predicted carry entry is blocked.)

In the lookahead logic, predicted carry information is
developed by testing each adder group for bit-position
carry conditions, combining the&e conditions to form
group-carry conditions, and then similarly combining the
group-carry indications to produce section-carry condi­
tions. All lower-order carry conditions affecting any
individual adder ·position (with the exception of the
positions immediately adjacent to that position) are then
collectively represented to the lookahead logic as section­
level carry information. Section-carry information from
each section is then (after being combined with
lower-order section-carry indications) sent to higher-order
sections, where it is combined with the group-carry
conditions within these sections, to produce 'carry into
group' signals. As previously described, these 'carry into
group' (predicted-carry) signals are then logically OR'ed
with actual carries within the carry-into-bit logic of each
individual ·adder position, and combined with half-sum
information to generate a full sum. (Recall also that,
where both actual and predicted carries are generated to a
particular position, only the actual carry is entered and
the predicted carry entry is blocked.)

The following paragraphs give detailed descriptions of
group-level and section-level carry-predict functions.

Group-Leve/ Carry Logic

• Bit-position carry conditions are combined·in four-bit
groups to generate group-carry conditions.

• Group-carry logic outputs define effective status of all
bit positions composing a group.

• Group-carry outputs are sent to section-carry logic.

The ·group-level carry information generated for any
particular group is determined by logically combining the
bit-transmit/bit-carry outputs of all four positions within
that group. Group-transmit/group-carry signals are then

2065 FETOM (9/68) 2-77

generated and sent to the section-level carry logic of the
section in which the particular group is located. Group­
level carry logic outputs indicate the following:
1. Group transmit. Signifies that all bit positions within

that group have received at least one bit of operand
data, i.e., bit-transmit conditions exist throughout the
group.

2. Group carry. Signifies that bit-transmit/bit-carry con­
ditions within that group are such that an effective
carry condition exists from the high-order position of
that group.

Group-level carry logic is illustrated in Diagram 4-511,
FEMDM. Note in the diagram that group-transmit/group­
carry outputs are determined solely by bit-transmit/bit­
carry conditions, which represent incoming data only
(without the use of any propagated carry information).

When group-carry conditions are sent to their asso­
ciated section-level carry logic, they may also (at the same
time) generate 'carry into group' signals to adjacent
higher-order groups within that same section. This
sequence results in the immediate propagation of group­
carry information (within that same section). Carry-into­
group circuits that are not activated at this particular time
may be activated somewhat later by incoming section­
carry signals from lower-order sections.

Because group-carry conditions are used in developing
section-carry conditions, a time differential exists between
the two logic fonctions. The timing relationships between
bit-carry, group-carry, sectio~-carry, and carry-into-group
are discussed in "Arithmetic Function Sequence".

Section-Level Carry Logic

• Group-level carry conditions are combined to develop
section-level carry conditions.

• Section-carry outputs define effective carry conditions
of all bit positions within a particular section.

• Section-carry outputs are sent to higher-order sections
as predicted carry information.

Section-level carry information is determined by logically
combining the group-transmit/group-carry outputs of all
groups within a section. Like group-carry generation,
section-carry outputs are also determined solely by
group-carry conditions (without the use of any carry
propagation). Section-level carry logic outputs signify the
following:
1. Section-transmit. Indicates that all bit positions of all

groups within that section have received at least one bit
of operand data (i.e., group-transmit conditions exist
throughout the section).

2. Section-carry. Signifies that group-transmit/group-carry
conditions within that section indicate that an effective
carry condition exists in the high-order bit position of
that section.

2-78 (9/68)

The section,l~vel carry logic (Diagram 4-511) develops
a 'section 1 , transmit' signal from group transmits and a
'section 1 carry' signal from combinations of group­
transmits and carries.

Section-Level Carry-Into Logic

A section-carry generates a carry into the next higher
order section. The section-level-carry-into logic (Diagram
4-511) develops carry-into-section signals, starting with a
'carry into section l' signal produced by a hot-carry.
Carry into sections 2, 3, and 4 are developed by
section-transmit and section-carry logic.

Group-Level Carry-Into Logic

Carry-into-section signals produce a carry-into-group sig­
nal for at least the low-order group of the section.
Development of additional carry-into-group signals is
dependent on group carry /transmit conditions (Diagram
4-511). Note that carry-into-group signals may be devel­
oped independently from the carry-into-section signals.

Bit-Level Carry-Into Logic

C:;irry lookahead conditions the bit-level carry-into logic
of the low-order group position if no group carry is
present from the next lower-order group. Other bits in the
group are conditioned if intervening low-order transmit
bits are present (Diagram 4-511). For example, if a bit 49
carry and a bit 48 transmit have been developed, the
result is a group 4 carry that generates a section 1 carry.
The section 1 carry and a section 2 transmit produce a
'carry into section 3' signal. A 'carry into group 9' signal
results from the 'carry into section 3' signal. When
bit-transmits 30 and 31 are present, a carry into bits 29
and 30 takes place to develop full sums.

Diagram 4-511 shows the timing relationships for carry
lookahead. Note that although a direct carry occurs
before a carry lookahead, this time difference does not
affect the final sum development which takes place after
all carry circuits have settled down.

Full-Sum Development

• Half-sums are combined with carry information (actual
and predicted) to develop full sum.

The manner in which carry lookahead and half-sum
functions are logically combined to produce a full-sum
result is illustrated in Figure 2-55. Note that all group­
level and section-level functions are arranged on a section
(four-section) basis, whereas carry-into-bit and full-sum
functions appear in each adder position.

The complete carry lookahead system is shown in
Diagram 4-511; a summary of carry-predict operation is as
follows. When operand data is presented to the A- and
B-sides of the adder, the half-adders of all positions are

4

~~~7 
Hot Corr.y into PA(63) (Carry into Section 1) ,,...,,.../ 

,,.., 
PAA PAB .,,,.,""' ,,.., .,,. ,,.., .,,. 

(" ,....-,---

Section 4 Section 3 Section 2 Section 1 I :==JA Carry into Section 2 
OR 

14 J 111 10 l l 48
4 I 3 1 I I 

---, 

15 l~· 12 9 8 7 
615 

2 l I 
4 15 16 31 32 47 63 I 

! .Se~tion ~ Carry 

IT...,.... J L__I_I_I L..I._I_Y TI..IJ Bit Carries and Group Group Carries .. Bit Transmits Carry Section 1 

T 
logic Group Transmits Carry 
(Groups Logic 
1,2,3,4) -~~eJ:ion 1 Trans~it 

I 
I 
I L..+I Carry 
I ......... into Carry into Groups 1,2,3,4 

I Group 

I Logic 

I 
I 
I Section 2 Corry .....-

Bit Carries and Group Gro~ Carries 
~ -~~t Transmits Carry Section 2 

I 
Logic Group Transmits Carry 
(Groups A Carry into Section 3 

I Logic OR 5,6,7,B) Section 2 Transmit 

I 
........., 

I L.+ 
A 

Corry t----....__ 
I 

~ 
Into ~~ry into Groups 5,6,~,8 

I Group 
Logic 

I 
I 
I 

.---J 

I 
Section 3 Carry ........., 

Bit Carries and Group Group Carries 
~ Bit Transmit~ Corry Section 3 

Logic Group Transmits Corry '---t---1 A 
I (Groups Logic 

9, 10, 11, 12) Section 3 Transmit 

I t--1 OR 
Corry into Section 4 

I '---I 

I L.+ Carry ~ A 

I into Carry into Group5 9, 10, 11, 12 ......... 
Group '----I H 

I Logic A 

I 
I 
I L l Bit Carries and Group Carry 

Bit Transmits Corry Group Ccrries into Corry into Groups 13, 14, 15 

J 
Logic Group 
(Groups Group Tra~smits Logic 
13, 14, 15) 

(Predicted Carries into Groups 13, 14, 15) 

(Predicted Corries into Groups 9, 10, 11, 12) 
(Predicted Carries into Groups 5,6,7,8) 

L1 n n n (Predicted Carries into Groups l, 2,3,4) 

+ J I 
I 

ll Half- Jl Corry 

J l Half-

J l Carry J l Hall- J [ 
Carry 

J [ 
Half- Jl Carry 

J 
I 

Sum 
into 

Sum Into into Sum into I Bit Bit Sum Bit Bit ' I 
1 j_ I I J J I J I 

Full-Sum Logic I Full-Sum logic I Full-Sum logic 1 Full-Sum Logic I 
I 

Lotch-Shifter I 
AP I 

4 63 .£.1 

Figure 2-53. Parallel Adder Carry Lookahead Data Flow 

2065 FETOM (9/68) 2-79 



(Na Predicted Corry} r--------------, 
I I 

I I 
I .--~~--~~~-

I 
I 

I 

/ 
I 

I 
I 

Carry 
Loakahead 
Logic 

Actual 
Carry 

into '""' 
Pasition 44 " '-

I 
I 

!,--~~~~~~~~~~~~~~~"--~~~~~~~~~~~~~~--.. 

Graup 5 I 

J ..._44__.__r__._c__.__:7__, 

I 
T I 

I 
48 l 

Group 4 Graup 3 

T T T T 

52 55 

Group 2 Graup I 

T T T T T T T T 

56 59 60 63 

Example No. 1 - No Predicted Carry 

(Predicted Carry) 

Predicted 
Carry 
inta 
Positian 44 

Group 5 

J .__44__.__T___..__T__.__:_7_, 

i 
T I 

I 
48 I 

Graup 4 

I ! 
I T I T T I I 
I I 
I l 51. 

Group 3 

I : 
T I T I T 

I I 
52 I I 

: 
I 
I 

Carry 
Laakahead 
Logic 

T T 

l 55 56 

. Group 2 

T I T 
I 
I 

Group 1 · 

T T T c T 

59 60 63 

T "' Bit-Transmit Conditian 

C "' Bit-Carry Condition 

Example No, 2 - Predicted Carry 

Figure 2-54. Actual and Predicted Carry Origin for PA(44) 

sampled for bit-transmit/bit-carry information. (Half-sums 
are also generated from the half-adders and presented to 
the full-sum logic of each position at this time.) All 
bit-transmit/bit-carry information is sent to the associated 
group-carry logic, and all group-carry outputs are entered 
into their respective section-carry logic. Section-carry 
outputs now represent the carry status that logically 
prevails in the high-order position of each section (with­
out any effects of carry propagation). All section-level 
carry outputs are then combined with lower-order section­
carry information to determine whether a 'carry into 
section' (predicted-carry) signal is generated for the 
higher-order section(s). 'Carry into section' signals sent tci 
higher•order sections combine with group-carry conditions 
within those sections to produce the carry-into-group 
conditions that represent predicted carries for the individ­
ual bit positions. The carry-into-bit logic of each in-

dividual position then logically OR's 'carry into group' 
(predicted-carry) signals with actual carry indications, and 
this output combines with the half-sum to produce the 
full-sum result. 

Note that throughout the lookahead sequence no 
ripple operations are required. Definite cycle times, 
however, are associated with each predict function (bit­
carry, group-carry, section-carry, carry-into-section, and 
carry-into-group); these times are discussed in the follow­
ing paragraph. 

Arithmetic Function Sequence 

• Eight logical delay levels are required for arithmetic 
functions. 

• Extended clock signals are used within adder. 

• Full-sum results are latched (retained) for 1 cycle. 

2065 FETOM (9/68) 2-81 



(Bit Transmits) 

Graup 
Transmits 

Section 
Trans111it 

Half-Sum 

Carry 
ink> 
Section 

Carry 
ink> 
Graup 

Carry 
ink> 
Bit 

r- ..., 
I Carry I 

• ~ e··1 I '""' I 

L {Inverted) I 
- ..,........J 

Full 
Sum 

Figure 2-55. Full-Sum Development Logic 

{Bit Carries) 

Graup 
Carries 

Section 
Cany 

This logic is contained 
in each individual 
adder position; 

The timing sequence in which all adder logic operates to 
develop and check full-sum information is shown in 
Figure 2-56. Three delay levels (P4_..:.P7) occur between 
the time at which data is placed on the adder input bus 
(by the associated gate-control triggers) and the time at 
which the same data enters the half-adders. (Two of these 
delay levels result from bus-gating delays; the third, from 
the signal cables.) Eight levels of signal delay, then, are 
required within the adder for the full-sum development 
process. As noted on the timing chart in Figure 2-56, the 

2-82 (9/68) 

logic functions that require the eight delay times occur in 
the following sequence: 
1. Bit-carry /transmit. 
2. Group-carry/transmit; carry-into-bit (direct). 
3. Section-carry/transmit._ 
4. Carry~into-section. 
5. Carry-into-group. 

· 6. ·Carry-into-bit (predictec;l). 
7. Carry-into-bit (inverted). 
8. Full-sum. 

Note: A carry-into-bit can originate early from a direct 
carry or late from the predicted carry logic. 

Extended clock signals are used within the parallel 
adder to control all latches. The clock portion of the 
normal CPU clock signal is extended two delay levels 
(approximately 20 ns), producing a -symmetrical clock 
signal of 100-ns clock and not-clock times. These ex­
tended clock signals result in delaying both the setting and 
resetting of the adder latches. Delaying the setting of the 
full-sum latches provides additional time for carry-predict 
functions, and delaying the resetting of the latches retains 
latched sum information long enough for sampling by the 
error-checking logic. . 

Full-sum information contained in the adder latches is 
normally -retained orie cycle; For -certain operations, -
however, an adder-hold ('-~HOLD') micro-order inhibits 
the clock signal that resets the adder latches, thus 
retaining latched sum information for one additional 
cycle. 

Parity-Predict Logic 

• Odd parity is supplied with each byte (or half-byte) of 
adder output data. 

e Parity generation is simultaneous with full-sum 
development. 

• Parity-predict logic utilizes inputs from half-adders and 
carry lookahead logic. 

• Parity generation is corrected accordingly for left-
4/right-4 data shifting. 

Odd parity is generated for each byte (or half-byte in the 
case of positions 4-7 and 64-67). Predict logic is 
employed, allowing parity information to be generated · 
simultaneously with the development of full-sum data. 
(This scheme eliininates the time involved in analyzing the 
full-sum bit count to determine parity.) Parity is initially 
predicted for each four-bit group of adder output data. 
For the eight-bit byte outputs, fue parity information 
predicted for the two adjacent four-bit groups that 
constitute a particular byte is combined (Exclusive­
OR'ed) to determine the full-sum parity of that byte. 
Because the adder is also capable of shifting full-sum data 



A- and B~Sicle 
Operand Pority 

~ -r-
A-Side Bus 

Controls 

A-Side Data 

Pority Adjust . 
(Shift Operatii>ns) 

Holl-Sum 
Parity 
Check 

Holl-Sum 
Error 

CPU Clock 

To ROS 
Brandh Logic 

Register Dato Gated to Adder Data Bus 

A-and 8-Stde Data Entered into Adder 

"full-Sum Data Set Into l.Qtch-Shifter 

Latch-ShiFter Data Stable for Samplin~ 

j 

Half-sum1 

Full Sum 
Logic 

Adder Outpvt 
Data 

T 

PO 
Clock 

P4 

I 
I 

AB, Q, IC 1 ar 
Dato 

B-Side Data 

B-Side Bus 
Controls 

Bit Transmits 

Cartr into Bit 

R4/L4 Shilt Controls 

PS 

Corry 
Predict 

FulH;.1m 
Parity 
Check 

Full-Sum 
Err..-

Not-Clock 

Bit Carries 

Carry into Group 

. R4/L4 Shilt Cont.Ols 

PO 

P3 

:~1·r...•P7"'-------'----------------~P4 
Half-Sum Input 

Bit Carry/Transmit 

Group Corry/Transmit 

Section Carry/Transmit 

Corry into Section. 

Corry into Group 

·Predicted} 
____ ............ Direct Corry into Bit 

Inverted 

Fuil Sum 

_________ _.t== ____ -_-_-_Ad_d_•~r _Loa..:...ic_-;:_-_-_-_-_-_ --__ ..,_~ ~/ 

~~~~~~~~~~~~~~~.,..-~-'-~~~t".17.17/,0'//,001.,Y~ 
P2

Adder Output Data Gated into Selected Register----------------------------'

Figure 2-56. Parallel Adder Logic Function Sequence

Output Data
Parity

2065 FETOM (9/68) 2-83

left 4 and right 4 (before entry into the adder latches),
generation of correct byte parity for left-4/right-4 opera­
tions then becomes a matter of selecting which two
adjacent four-bit group parity outputs to combine when
determining the parity of a particular output byte,

Parity is logically predicted through functions of the
incoming operand data; operation is as follows. At the
same time half-adder outputs are sent to the lookahead
logic (to predict carry information), they are also sent to
four-bit group parity-predict logic. A typical four,bit
group parity-predict function is shown in Diagram 4-512,
A, FEMDM. (Group 4 is used as an example; all groups are
similar.) For each four-bit group, bit-transmit, bit-carry,
and half-sum outputs from half adders and carry-into­
group outputs from the lookahead logic are combined to
logically predict whether the resultant full-sum bit count
for that particular group will be odd or even. Note in the
diagram that duplicate decoder logic is present in each
four-bit group parity-predict circuit. This duplicate logic
simultaneously produces the opposite polarity (out-of­
phase) signals required for use in the eight-bit parity
latch-shifter logic without the signal delay introduced if
an additional inversion component were used.

Typical parity latch-shifter logic used in combining two
adjacent four-bit group parities to determine eight-bit
byte parity is shown in Diagram 4-512, B. {Adder output
byte 48-55 is used as an example; all byte parity logic is
similar.) Note in the diagram that the two four-bit group
parity outputs to be combined (Exclusive-OR'ed) when
determining byte parity are selected according to the type
of shift operation in process; i.e., left 4, right 4, or no
shift (straight transfer). The generated parity for each
adder byte (or half-byte in the case of positions 4-7 and
64-67) is set into the corresponding parity latches for
transfer with the data and sent to the full-sum error­
checking logic. Because parity information is used in
full-sum error checking and both parity and full-sum
information are formed independently, an inconsistency
in either will cause a full-sum error.

Error Checking

Parallel adder logic employs both hruf-sum and full-sum
checking facilities. Half-sum checking verifies incoming
data (in regard to assigned parity only); this test also
results in verifying half-adder operations because half-sum
outputs are used in half-sum checking logic. Full~sum
checking logic compares the full-sum bit count (odd/even)
with the generated parity information on a byte (or
half-byte) basis. Because full-sum and parity information
are formed independently, an inconsistency in either
results in a full-sum error.

Half-Sum Checkin_g

• Compares half-sums with incoming operand parity.

2-84 (9/68)

Half-sum checking logic combines_ the parity information
. assigned to incoming A- and B-side operand data with the
half-sum generated when the same two operands are
combined in the half-adders. This combining of parity and
half-sums is perform_ed on a byte (or half-byte) basis, with
detected · errors stopping the CPU clock and lighting
indicators signifying the byte (or half-byte) in error.

Half-sum checking logic, illustrated in Diagram 4-513,
FEMDM, operates as follows. A stage of precheck logic
for each byte (or half-byte) combines half-sums with the
corresponding A- and B-side parity information in odd­
detect (Exclusive-OR) circuits. (The precheck logic shown
in Diagram 4-513 monitors adder positions 48-55.) This
logic functions so that, if the number of half-sums, plus
the A- and B-side parity bits, results in an odd bit count,
the half-sum precheck trigger for that associated adder
area is set. Precheck outputs from all adder areas are then
combined with left-shift logic at the input to the 'half-sum
error' trigger. This left-shift logic determines whether an
actual half-sum error exists or whether shifting the register
data left 1 or left 2 positions (while en route to the adder)
has forced a half-sum error.

Note: Left-shifting -the adder input data left 1 or left 2
positions invalidates the assigned parity information, thus
forcing half-sum errors. The number of half-sum errors
created, however, should result in an even number; i.e.,
the half-sum errors forced into positions 4-31 should
equal the number of half-sum errors forced into positions
32-63. Odd-detect logic, therefore, allows only an odd
number of half-sum precheck indications to set the
'half-sum error' trigger during a left 1/left 2 shift
operation ..

If a valid half-sum error exists, the 'half-sum error'
trigger is set, thus setting the 'final error' latch. Setting the
'final error' latch prevents the 'half-sum error' trigger from
automatically resetting, which in turn prevents resetting
the precheck logic for the area in which the half-sum error
occurred. Inhibiting these resets causes the CPU program
to stop on the following cycle (provided the CPU CHECK
switch is in the STOP position), with the HALF SUM
error indicator for the area incurring the error displayed
on the roller switch indicators.

The half-sum error indications are reset by the 'error
reset gate' signal {SYSTEM RESET or CHECK RESET
pushbutton).

Full-Sum Checking

• Compares latched sum information with generated
parity. otoJ 4 l!>'/1c L},4-St.S

Full-sum checking logic combines latched sum informa­
tion with generated parity information on a byte (or
half-byte) basis. (Full-sum checking for adder positions

48-55 is shown in Diagram 4-514, FEMDM;) Because the
CPU operates with odd parity, combining full-sum bits
with generated parity should always result in an odd bit
count. Detecting an even latched-sum-plus-parity bit
count sets the 'full-sum error' trigger (or that particular
adder byte area, which in turn sets the 'final error' latch.
The error signal that sets the 'full-sum error' trigger stops
the CPU program on the following cycle (pro~ided the
CPU CHECK switch is in the STOP position) and lights a
FULL-SUM error indicator on the roller switch indicators,
signifying the area incurring the foll-sum ei:ror.

For practical reasons, combining full sums with parity.
is logically accomplished by first Exclusive-OR'ing the
·generated parity with a single latched sum position
(Diagram 4-514), and then combining that result with the
remaining latched sums of that ·particular byte. An odd
result (signifying an even overall bit count) then sets the
associated 'full-sum error' trigger. _

Full-sum error conditions are reset by the 'error reset
gate' signal (SYSTEM RESET or CHECK RESET push­
button).

Convert-to-Decimal Operation

Special circuits, used only in the convert-to-decimal
operation, provide excess-6 decimal correction when
required. Excess-6 is forced on the P AB bus when a test of
a four-bit group indicates a decimal value higher than 9.
For this operation, parallel adder bit positions 28_:_63 are
logically divided into four hit groups, each group repre­
senting a decimal digit in the packed format. Diagram
4-515, FEMDM, shows the development of excess-6
signals for PAB(28-31) and PAB(60-63). Note that these
signals are activated only when ROS has developed the
excess-6 gate and when the AB bits indicate the need for
decimal correction.

For this operation, data is brought into the parallel
adder one bit at a time by transferring one byte of data to

the serial adder and sampling SAL(O). If SAL(O) = 1, the
'conv dee' trigger is set and a hot-carry sets PAI..(63) (Fig.
2-57). The contents of the serial adder ~e then shifted
left 1 position so that the next bit can be sent to the
parallel adder (which is also shifted left one position).
[For details, see Chapter 3, Section 2, "Convert to
Decimal, CVD (4E)".] Because data is processed through
normal parallel adder entry logic, parity generation takes
place in a normal manner. -

Gate Excess 6 f ConV Dec
Hot Carry SAL(O)

t-------11.:..A:.J Complement
Control

to PA(63)
OR 1-----

AP734

AP737
ASOOl

. f ROS Micro-order

Figure 2-57. Convert-to-Decimal Data Flow to Parallel Adder

Set Condition Code

After an operation, PAL is analyzed to set the PSW
condition code (CC). CC's are set in many ways with
many variables for different instructions; Diagram 4-516,
FEMDM, shows a typical example. Various sections of
PAL are examined for a zero condition; combinations of
PAL equal zero and micro-orders set STAT A, which is
sampled by the instruction and the result sign to set the
cc.

In the example, if PAI.(32-63) is not equal to zero
and the result is negative, a CC of 1 is set on a fixed~point
operation. (This setting indicates a number less than zero.)
Note that an overflow condition on a fixed-point instruc­
tion sets both CC bits, regardless of the condition of PAL.

For a floating-point operation PAI..(7-67) is examined
for zero. A not-zero condition and a plus result set a CC
of2.

2065 FETOM (9/68) 2-85

Section 7. Status and Control Triggers

This section discusses the eight Status Triggers (STAT's
A-H) and miscellaneous control° triggers. A summary of
the conditions that set STAT's A-H is shown in Figure
2-58, and a typical example of STAT logic (showing
STAT B) is illustrated in Diagram 4-601, FEMDM.

STAT A

• STAT A indicates:
Zero condition for parallel adder.
Non-zero condition for serial adder.
Digit condition on edit operations.

ST AT A primarily indicates zero-detect conditions.
Except during scan-in, when it is set directly to the value
of T(54), STAT A is normally set at P2 clock time by one
of the following conditions:
1. 'Set STAA if SAL(0-7) not equal to zero' signal, with

SAL(O-7) not containing all zeros.
2. 'Edit set STAA' signal (edit operations).
3. 'Serial adder (0-3 or 4-7) not zero' signal, from the

'serial adder not zero' (SNZ) latch (indicating that the
serial adder latched outputs do not contain all zeros).

Note: The 'SNZ' latch is set at not-clock time by the .
'decimal correct 0-3 set STAT'sAE', or 'serial carry-7
ST A T's AE decimal correct 4-7' signal.

4. 'Set STAA if PAL(7-63) equals zero' signal, with
PAL(7-63) latched outputs containing all zeros.

5. 'Set STAA if PAI.(32-63) equals zero' signal, with
PAI.(32-63) latched outputs containing all zeros.

6. 'Set STAA if PAL equals zero and insert sign' signal,
with E(6) = 1.

The output of STAT A is entered directly into a
polarity-hold latch, which unconditionally assumes the
same binary state as STAT A at Pl not-clock time. (This
latch retains its assumed state until not-clock time of the
cycle in which STAT A is reset.)

STAT A is reset at Pl clock time if one of the
following conditions is active:
1. 'STAT trigger reset' signal (conditioned by either a

'system reset' or an 'I-Fetch reset' signal).
2. 'Reset ST AA' signal, which is conditioned when any

one of the following is active:
a. 'Edit reset STAA' signal.
b. 'Set STAA if PAL(0-63) equals zero' signal.
c. 'Set STAA if PAL(32-63) equals zero' and signal.

2-86 (9/68)

d. 'Set STAA if PAL(32-63) equals zero and insert
sign' signal, with E(6) = 1.

e. 'Reset STAA if PAL(32-:63) not equal zero' signal,
with STAA polarity-hold latch set.

Note: If PAL(32-63) contains all zeros and the
STAA polarity-hold latch is set, the 'reset STAA if
PAL(32-63) not equal zero' signal is inhibited from
resetting ST AT A.

f. 'Set STAA if SAL(0-7) not equal zero' signal.

STATB

• STAT B indicates:
Zero-condition for serial adder.
Overflow condition for decimal, fixed pdint, left-shift

operations.
Condition of PAL(31).
Condition of B(32).

STAT B primarily indicates overflow conditions. Except
during scan-in, when it is set directly to the value of
T(55), STAT Bis normally set atP2 clock time by one of

· the following conditions:
1. 'Set ST AB if SAL(O-7) equals zero' signal, with

SAL(O-7) containing all zeros.
2. 'Set ST AB on decimal overflow' signal, with the

'decimal overflow' latch set.

Note: The 'decimal overflow' latch is set at not-clock
time of a decimal-compare cycle in which:

a. The 'serial adder in bus A(7)' contains a 1 bit,
and either STAT A, STAT D, or STAT His reset.

b. The 'serial adder in bus A(0-6)' is not equal to
0.

c. STAT His set, with STAT C and STAT F either
both set or reset.

3. 'Set STAB if PAL(31) equals l' signal, with PAL(31) =
1.

4. 'Gate fixed-point overflow to STAB' signal, with a
fixed-point overflow condition prevailing.

5. 'Set STAB on left shift overflow' signal, with a
left-shift overflow condition detected.

6. 'B(32) to STAB and T(32) to STAG' signal, with B(32)
= 1. [STAT Bis set at P2 + 140 ns under this condition
to allow B(32) to become stable before it is sampled.]

PAL = 0 O:mdltl.on

~D~l~l•=Ca~nd~iti~on~ro~•=~~"~~~~~~~~~~---1 OR
SAL Not 0 Condition

·KS021

SAL 0 Condition

Decimal or Fixed-Point O'flow

PAL 31 =I
8(32) = 1

Sign Correction KS031

Neg Sign SBA

Save Si ns

SBB(O) = 1

Set Signs

Pos Sign SBA(4-7)

VFL eration

S(O) = 1

FLT-PT Mult

SAL(O) = I

Set STAD
OR

Q to LAL = 0000

Set Signs KS051

VFL

Invalid Si n
A

Invalid Digit (Dec)

OR

Not FLTPT

Invalid Si n SSA(4 ... 7) KS061

Sign Correction

Decimal VFL

Neg Sign SBB(4-7)

Save Signs

Neg Sign SBB OR

Save Signs

Floating Point

STAT C

STAC to STAF

Set STAG

I OR I T(32)

Set STAH
KS081

SADDL Ca Out·of Grou 2 OR

Save SA Carry ASI05

Dec Correct (0-3)
OR

Figure 2-58. Summary of Setting of STA T's

Set STAT A

SefSTAT 8

Set STAT C

Set STAT D

Set STATE

Set STATF

Set STAT G

Set STAT H

The outputs of STAT B are sent directly to a
polarity-hold latch. This latch unconditionally assumes
the state of STAT B at not-clock time of the cycle in
which STAT B is set, and retains this information until
not-clock time of the cycle in which,STAT Bis reset. The
output from the STAT B polarity-hold latch inhibits the
resetting of STAT B whenever STAT B is set during the
same cycle in which either a fixed-point overflow or a
left-shift overflow is detected. (Either of these overflow
conditions causes a program interruption requiring that
ST AT B remain set for interrogation.)

STAT Bis normally reset at Pl clock time if one of the
following conditions is active: .
1. 'ST AT reset' signal (conditioned by either a 'system

reset' or an 'I-Fetch reset' signal).
2. 'Reset ST AB' signal, which is conditioned if one of the

following signals is active:
a. 'Set STAB if PAL(31) equals l '.
b. 'Gate fixed-point overflow to STAB'.
c. 'Set STAB on left shift overflow'.
d. 'B(32) to STAB and T(32) to STAG' (resets STAT

Bat Pl + 140 ns).

STATC

• STAT C holds:
'Serial adder in bus A' sign on sign-correction VFL

operations.
'Serial adder in bus B' sign on save-signs VFL opera­

tions.
Sign for set-signs on VFL and non-VFL operations.

STAT C primarily indicates the sign of a source operand.
Except during scan-in, when it is set to the value of T(56),
STAT C is set at P2 + 140 ns clock time by one of the
following conditions:
1. 'Sign correct SA(4-7)' signal, with a negative sign

detected on 'serialadder in bl!S_A'.
2. 'Save signs' signal, with 'serial adder in bus B' position

0 containing a 1-bit during subtract or compare
operations and a 0-bit during all others.

3. 'Set signs' signal during VFL instructions in which
'serial adder in bus A' positions 4-7 contain a positive
sign during subtract or compare operations and a
negative sign during all others.

4. 'Set signs' signal during any non-VFL operation in
which S(O) = 1.

STAT C is normally reset at Pl clock time by the
'STAT trigger reset' signal (activated by either a 'system
reset' or an 'I-Fetch reset' signal). STAT C is also reset at
Pl + 140 ns whenever the 'set signs' signal is activated for
operations other than VFL operations.

2065 FETOM (9/68) 2-87

STATD

• Used by microprogram to retain ROS branch infor­
mation.

• Indicates sign for save-signs operation on floating-point
multiply and divide.

• Indicates Q-to-LAL equals 0000.

STAT D stores a characteristic carry from SAL(O) during
floating-point multiply and· divide operations and indi­
cates that the B 1 or B2 field of an instruction equals zero.
For operations other than floating-point multiply and
divide and scan-in operations, STAT D is available for
arbitrary microprogram use and can be unconditionally
set or reset by the 'set STAT D' and 'reset STAT D'
signals, respectively. (Such operations include storing of
the dividend sign on fixed-point operations.) Except
during scan-in operations, when it is set directly to the
value of T(57), STAT Dis normally set at P2 + 140 ns by
one of the following conditions:
1. 'Set STAT D' signal.
2. 'Save signs' signal during floating-point multiply and

divide operations in which SAL(O) = 1. (STAT Dis set
at P2 clock time under this condition.)

3. 'Gate Q to LAL 0000' signal.

Note: This signal is activated whenever the Bl or B2
field of an instruction is being gated from Q to LAL
and is found to equal 0. Although STAT D is always
set on this condition, its significance is of value only
during an SS-format instruction when a B2 = 0000 .
indication must be retained for more than one cycle.
(Used in setting ROSAR when selecting I-Fetch ROS
words for SS-format instructions.)

STAT D is normally reset at Pl clock time by the
'STAT trigger reset' signal, which is activated by either a
'system reset' or an 'I-Fetch reset' signal. 'Reset ST AD'
and 'gate I-Fetch invalid address' signals reset STAT D at
PO+ 140 ns. The 'reset STAD on decim~l overflow' signal
resets ST AT D at P2 clock time.

STATE

• Indicates invalid digits and signs.

STAT E primarily indicates the detection of invalid data
during decimal operations. Except during scan-in, when it
is set to the value of T(58), STAT E is normally set at
clock P2 + 140 ns by one of the following conditions:
I. 'Set signs' signal during VFL operations in which an

invali.d sign is detected on either the 'serial adder in
bus-A' or '-B'.

2. 'Save signs' signal for operations other than floating­
point operations in which an invalid sign is detected on
the 'serial adder in bus B(4-7)'.

2-88 (9/68)

3. 'Sign correct SA(4-7)' signal with the detection ofan
invalid sigri on the 'seriai adder in bus A(4-7) '.

4. Detection of an invalid digit on either side of the 'serial
adder in bus'.

5. Detection of an invalid digit on the 'serial adder in bus
A(0-3)', with the 'digit examine' latch set (edit
operations).

STAT Eis reset at Pl clock time by the 'STAT trigger
reset' signal (activated by either a 'system reset' or an
'I-Fetch reset' signal).

STAT F

• STAT F holds:
'Serial adder in bus B' sign on set-signs decimal
operations.

'Serial adder in bus B' sign on save-signs operations.
Condition of STAT C.

STAT F primarily indicates the sign of VFL destination
operands. Except during scan-in, when it is set to the
value of T(59), STAT F is normally set at P2 + 140 ns by
one of the following conditions:
1. 'Set signs' signal during a VFL decimal operation, with

a negative sign detected on 'serial adder in bus B(4-7)'.
2. 'Save signs' signal during operations other than

floating-point operations, with a negative sign detected
on 'serial adder in bus B '.

3. 'Save signs' signal during a floating-point operation,
with A(O) =I.

4. 'STAC to STAF' signal, with STAT C set. (Sets STAT
F at P2 clock time.)

STAT F is normally reset at Pl clock time by the
'STAT trigger reset' signal (activated by a 'system reset' or
an 'I-Fetch reset' signal). The 'STAC to STAF' signal also
resets STAT F at PO clock time in preparation for setting
STAT F again at P2.

STATG

• Used by microprogram to retain ROS branching
information.

• Indicates state ofT(32).

ST AT G is available for arbitrary microprogram use and
for indicating the state of T(32). Except during scan-in,
when it is set to the value of T(60), STAT G is normally
set at P2 + 140 ns by one of the following conditions:
1. 'B(32) to STAB and T(32) to STAG' signal, with T(32)

=I.
2. 'Set STAG' signal.

STAT G is normally reset at PO + 140 ns by the 'reset
STAG' or 'B(32) to STAB and T(32) to STAG' signal. A
'system reset' signal and an 'I-Fetch reset' signal also reset
STATG.

STATH

• Used for serial adder carry-control functions and ROS
branching information.

STAT H indicates a serial-adder carry. Except during
scan-in, when it is set to the value ofT(38), STAT His set
by one of the following conditions:
1. 'Set ST AH' signal and clock time P2 + 140 ns.
2. The output of a latch set at not-clock time by either a

'decimal correct 0-3 and set STAT's AE' or a 'save
serial adder carry' signal in conjunction with a serial
adder carry from group 2. The set condition is timed at
P2 clock time.

Table 2-2. Control Triggers

ALD

STAT H is reset at Pl clock time whenever the latch
referred to in item 2 is set. A 'system reset' signal and an
'I-Fetch reset' signal also reset STAT Hat Pl clock time.
It is also reset at P2 + 140 ns by the microprogram,

CONTROL TRIGGERS

A number of control triggers perform functions similar to
STAT's. Table 2-2 lists the most significant triggers,
summarizes their functions, and provides ALD and
FETOM references.

FETOM Roller Switch
Trigger Function Reference Reference Indicator

Right Digit Selects digit from AB byte KZ321 Volume 2, Chapter 3, RTDIG
on. edit operations. Section 5, "General Roller 4

Data Handling" Position 4
Bit 32

s Indicates source character, KZ321 Volume 2, Chapter 3, s
rather than fill character, Section 5, "lntroduc- Roller 4
on edit character transfers. tion to Edit Operation" Position 4

Bit 33

Leave Controls 'serial adder bus KZ201 -- LEAVE
B' on edit operations. Roller 4

Position 4
Bit 34

Step ABC Increments ABC on edit KZ501 -- STEP ABC
operations, if 'right digit' Roller 4
trigger is set. Position 4

Bit 35

Block I-Fetch Prevents most I-Fetch KD501 Volume 2, Chapter 3, BLOCK
functions when interrup- Section 1, "Block Roller 4
tion or exceptional con- I-Fetch Trigger" Position 5
dition is to be processed. Bit8

Branch Invalid Indicates branch address KD701 Volume 2, Chapter 3, BR INVLDADR
Address of successful branch is Section 1, "Invalid Roller 4

invalid. Address Detection" Position 5
Bit 16

I-Fetch Invalid Indicates Q has been KD711 Volume 2, Chapter 3, INVLDADR
Address refilled from invalid Section 1, "Invalid Roller 4

address. Address Detection" Position 5
Bit 17

Instruct ion Resets I LC in old PSW and KM851 Volume 2, Chapter 3, IL NOT AVAIL
Length Not resets all interrupt code Section 1, "Fetch Roller 4
Available triggers except 'interrupt Protection Detection" Position 5

code 4' trigger. Set by Bit 18
"late" storage protection
check.

2065 FETOM (9/68) 2-89

.Table 2-2. Control Triggers (Cont)

ALO FE TOM Roller Switch
Trigger Function Reference Reference Indicator

Time Clock Indicates timer has been KM221 Volume 2, Chapter 3, TC AT LIMIT
at Limit decremented past zero and Section 1, "Timer Roller 4

requests external interrup- Exceptional Condition" Position 5
tion Bit 19

Timing Gate Controls duration of 1/0 KX311 ·Volume 2, Chapter 3, TIME GATE TGR
control or direct-control Section 7, "Write Roller 4
signals. Set and reset by Direct, WRD (84)" Position 5
microprogram. and "Read Direct, Bit 35

ROD (85)"

No Retryt Indicates to diagnostic KS321 - NO RETRY
programmer instruction Roller 4
retry may give unpre- Position 1
dictable results. Set by Bit 18
(1) 'store per D' signal,
(2) 'PAL to IC' signal and
not SS format, and (3)
'write local star' signal
and LSWR not selected.

IC in LSWRt Indicates IC is saved in KS321 - IC IN LSWR
LSWR. Occurs only on Roller 4
SS format operations. Position 1

Bit 19

t 'No retry' and 'IC in LSWR' triggers perform no control function but fodicate machine conditions only.

2-90 (9/68)

	001
	002
	003
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	1-77
	1-78
	1-79
	1-80
	1-81
	1-82
	1-83
	1-84
	1-85
	1-86
	1-87
	1-88
	1-89
	1-90
	1-91
	1-92
	1-93
	1-94
	1-95
	1-96
	1-97
	1-98
	1-99
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-81
	2-82
	2-83
	2-84
	2-85
	2-86
	2-87
	2-88
	2-89
	2-90

