IS IME s

Theory of Operation

2@@5 Processing Unit, Volume 1

Preface

This manual describes the operation of the 2065 Processing -

Unit. It is assumed that the reader has a knowledge of
processors, of ALD interpretation, and of the basic circuits
used in the 2065.

The EC levels of the ALD’s and CLD’s for the basic
2065, upon' which this manual and its. companion
maintenance diagram manual are based, are:
 ALD’s: EC 705369 9/68 '

CLD’s: EC 705340 3/68 -

Power: EC 711576, 8/68

The manual consists of two volumes, and is divided into
six chapters and three appevndices."Volume' 1, Form
Y27-2036-0, contains:

Chapter 1, Introduction. Discusses system orgamzatlon
and data flow; character codes, instruction formats,
and operands; program execution and control; and the
CPU functional units and the Universal instruction set.

Chapter 2, Functional Units. Analyzes registers, adders, -

and counters individually, except for those units that
work together to perform a specific function (for

example, variable-field-length register and 1ts associated -

byte counter).
Volume 2, Form Y27-2037-0, contains: _
Chapter 3, Principles of Operation. Presents a detailed

analysis of instruction fetching, and instruction by

instruction class.
~ Chapter 4, Features. Discusses the features avallable for.
the 2065 CPU.
Chapter 5, Power Distribution and Control. Describes

the power distribution and control within the CPU
(making a distinction between 2065’s and 2060’s that.

have been converted to 2065’s) and w1th1n the system.

Second Edition (November 1973)

Chapter 6, Console Controls and Maintenance Features.
Discusses the controls on the system control panel and
on the 'CE panel and- their application, and the

~ maintenance features available.

Appendix A, Special Circuits. D1scusses the specml

- circuits in the 2065. :

Appendix B, World Trade Differences. Discusses the

- “major difference between the World Trade version of
the Model 65 and the domestic version.

Appendix- C, Example of FLT Generation. Discusses

'FLT generation, using a simple four-block tree as an
example. . ’
Volume 2 also contains the index for the complete manual.

Following most paragraph- heads are. bullets (key

statements preceded by e) which summarize significant
points about the subject. The bullets serve two functions:
(1) they provide the CE with the key points of the topic,
and (2) they provide quick reference for review and recall
for the CE who is familiar with the machine. Detalled text

follows, providing the non-classroom student with the fill-in

material necessary for self-instruction.

The diagrams supporting the text are divided into two
groups: (1) purely instructional diagrams and (2)
maintenance-oriented diagrams and diagrams that aid recall.

§ Examples of the first group are high-level block diagrams

and diagrams that show general data flow and timing
considerations. These diagrams are generally not affected
by engineering changes, and, if they include AND/OR logic
blocks, the blocks are drawn in positive logic convention
and do not maintain ALD lines or line names. The
instruction diagrams, which are placed in this manual and
called “Figures”, are numbered consecutively within a
chapter. (For example, 1-1 is the first figure in Chapter 1;
3-7 is the seventh figure in Chapter 3.)

"This is a reprint of SY27-2306-0 mcorporatmg changes released in- the following -

Technical Newsletter: ‘
SY27-2258 (dated October 16, 1969).

Changes are periodically made to the specifications herein; any such changes will

be reported in subsequent revisions or Technical Newsletters.

Text for this manual has been prepared with the IBM SELECTRIC ®Composer.

This manual has been prepared by the IBM System Products Division, Product
Publications, Dept. B97, PO Box 390, Poughkeepsie, N.Y. 12602. A form for
-readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be sent to the above address. Comments become

the property of IBM.

i (10/69)

The diagrams of the second group are referenced in this
manual (for example, Diagram 5-30, FEMDM). but are
Jlocated in the companion FE Maintenance Diagrams
Manual to allow ready reference during maintenance and to
facilitate updating the diagrams to new engineering levels.
These diagrams are grouped by categories similar to the
chapters of this manual.

The relationship of this manual to the FEMDM is shown
below. (Arrows indicate cross-referencing between chapters
in this manual and categories of diagrams in the FEMDM:
for example, most references in Chapter 2 are made to
Category 4 diagrams.)

2065 FETOM (Vol 1) 2065 FEMDM

Form Y27-2036-0 Form Y27-2038-0
Chapter 1 Category 1
Introduction Diagnostic Techniques
Chapter 2 Category 2
Functional Units Error Conditions

{Not required)

Category 3
Data Flow -
2065 FETOM (Vol 2)
Form Y27-2037-0 Category 4
Functional Units
Chapter 3
Principles of Op- : Category 5
eration -\> Operations
Chapter 4
Features Category 6
Power Distribution
Chapter 5 and Control
Power Distribution
and Control Cétegory 7
Features
Chapter 6
Console Controls and Category 8
Maintenance Features \» Console Controls-and
Maintenance Features
Appendices A, B, and C
Index for Volumes 1
and 2 ° {ndex

Companion, related,
standards are:

2065 Processing Unit

and prerequisite manuals and

" - FEMDM,; Form Y27-2038-0

FEMM, Form Y27-2270-0
IBM - System/360 Principles of Operation, SRL, Form
A22-6821-7.
2065 Processing Unit, 7070/7074 Compatzbzlzty Feature
FETOM, Form Y27-2106-0
FEDM, Form Y27-2107-0
2065 Processing Unit, 7080 Compatibility Feature
FETOM, Form Y27-2090-0
FEDM, Form Y27-2091-0
2065/2067 Processing Unit, 709/7040/7044/7090/7094/
709411 Compatibility Feature
FETOM, Form Y27-2098-0
FEDM, Form Y27-2099-0
2365 Processor Storage
FETOM, Form Y22-6608-0
FEDM, Form Y22-6601-1
FEMM, Form Y22-6600-1
2361 Core Storage
FETOM, Form Y22-2897-0
.FEDM, Form Y22-2895-0
FEMM, Form Y22-2894-0
2860 Selector Channel
FETOM, Form Y27-2220-0
FEMDM, Form Y27-2221-0 -
FEMM, Form Y22-2893-1 7
2870 Multiplexer Channel (70,000 Series)
FETOM, Form Y27-21520 .
- FEDM, Form Y27-2153-0
FEMM, Y27-2154-0
1052 Adapter and 2150 Console, FETOM Form Y22—2808'
SLT Component Circuits, FEMI, Form Z22-2798 (IBM
Confidential)
SLT Power Supplies, FEMI, Form 223-2799
SLT Packaging, FEMI, Form 223-2800
Control Automation System (CAS) Logic Diagram (CLD),
IBM Corporate Engineering Standard, CES 0-1046-4

2065 FETOM (10/69) iii

{THIS VOLUME)

Chapter 1 Introduction 1-1
SECTION 1 SYSTEM DESCRIPTION 11
Basic SYStem .. v . . . e e e e e e e e 1-1
_Features Available 7. P 12
SystemDataFlow 4.13
Main Storage o133
2365 Processor Storage 1-4
2361 Core Storage (Opt1onal) e e e e e 1-4
2065 Central Processing Unit .- 1-5
Control Section e e e 1-5
BusControl Unit 1-5
Instruction Fetching Section 1-5
Instruction Execution Section 16
Input/Output o oo .. L 16
Channel e e 1-7
Modes of Operation 1-7
Types of Channels R 04
Control Units 1-8
SI/ODevices . . L. ..o 0w e e e 1-8
Muitisystem Configurations . . . =18
~ SECTION 2 SYSTEMCODING 1-12
 Hexadecimal Number System 1-12
Eight-Bit Zoned Character Codes 1-12
Instruction Coding 1-13
Instruction Formats 1-13
Operand Addressing 1-14
Effectively Addressed Operands 1-14
Immediate Operands P P O
Operands jn Local Storage : 1-15 .
DataFormats e e e e e e e e 1-15
Fixed-PointData 1-16
Number Representation 1-16
. Formats e e e 1-16 -
Floating-Point Data 1-17
Number Representation 1-17
Formats 1-19
Normalization 1-19
DecimalData 1-20
" Number Representation 1-20
Formats P £ |
LogicalData o .. 1-21
SECTION 3 PROGRAM EXECUTION AND CONTROL . 1-22
Control Program e . 1-22
Program Stateso 1-23
Problem/SUpervisor . . -o . .oe oL 1-23
Operating/Stoppedo 1-24
Running/Wait L0124
Interruptable/Masked 1-24
Program StatusWord 1-2§
Interruptions and Exceptional Conditions 1-26
Interruptions0 1-29
Interruption Masking 1-29 .
System Mask Field 1-32
' Machine-Check Mask Bit 132
Program Mask Field 1-32
Instruction Address Determination 1-32
Machine-Check Interruption 1-33

-.Contents

Program Interruptions 1-33
Supervisor-Call Interruption 1-35
External Interruptions ["L . 135
I/O Interruptions e e e e e e 1-35
Exceptional Conditions 1-36
. ..Timer Exceptional Condition 136
-.CPU Store In Progress Exceptional Condition 1-36
Manual Control Stop Exceptional Condition 1-36
Manual Control Wait Exceptional Condition 1-36
Manual Control Repeat Exceptional Condition 1-36
Program Store Compare Exceptional Condition . . . 1-36
Invalid Instruction Address Test Exceptional
Condition L. 1-36
Q-Register Refill Exceptional Condition ~ 1-36
Control of I/O Operations 136
Instructions; Commands, and Orders 1-37
I/OControlWords - . . .« . . . v ... 1-37
Channel Address Word & e e 1-37
Channel Command Word Lo 1-37
Channel StatusWord 1-38
1/O System Operation 1-38
‘SECTION 4 CPU DESCRIPTION 1-39
Control L. e e e e 1-39
CPU Tlming e e e PO 1-39
Data Transfer -1-39
Read-Only Storage 1-39
Relationship of ROS to Conventional Controls 1-40
ROSWord I B) |
ROS Addressing a.nd Branching- 142
No Branch Specified 1-43
Y-and/or Z-Branches 143
X-Branches e e e e 143
Overriding Branches 1-47
ROSDataFlow 1-47
ROS Control of CPU e .. 148
PSWRegister 1-50
BusControl Unit 1-50
Major Interface Lines 1-51
BCUClocks e e e e 1-53
BCU Operation N , . . 153
CPURequest . . v v v v v v v v e e e o 1-54
- Channel Request 1-54
Operation with Main Storage 1-54
Instruction Fetching . . P, 1-55
Functional Units Used e e e e e e e e 1-55
Q-Register00 .. 1-55
R-Register 1-56
E-Register 1-56
InstructionCounter 1-56
D-Register 1-58
InstructionPath Lo.. . 158
Prefetchingof Operands - . . .". 1-60
Obtaining New Instructions from Main Storage 1-63
CPU Interruption and Exceptional Condition ’
Recovery« i v i e e e e e e 1-64
Instruction Execution 1-64
Functional UnitsUsed 1-64
ABRegister e e e e e e e e 1-64
STRegister 1-65

2065 FETOM (9/68) v

ABand ST Byte Counters 1-65
Mark THEZEIS . . . v v v v v v v e e e 1-65
FRegister v .. 1-66
G-Register oo 1-66
Serial Adder 1-66
Arithmetic Functions 166
Logical Functions 1-68
ParallelAdder 1-68
LocalStorage 1-69
Status Triggers 1-69
Fixed-Point Instructions 1-70
Instruction Formats 170
DataFlow 1-70
Program Interruptions 1-70
Condition Codes « « v « . .« . .. 1-75
Floating-Point Instructions 1-75
Instruction Formats 1-76
DataFlow 1-76
Program Interruptions . - 1-81
ConditionCodes 1-82
Decimal Instructions 1-82
DataHandling 1-82
Instruction Format 1-86
DataFlow 1-86--
Program Interruptions 1-87
ConditionCodes 1-87
Logical Instructions 1-87
Instruction Formats 1-87
DataFlow 1-90
Program Interruptions ~ 191
ConditionCodes 1-91
Branching Instructions 191
Instruction Formats 192
DataFlow o 1-94
Program Interruptions 1-94
Condition Codes « v v v v v v v wa 1-94
Status Switching Instructions 1-94
_Instruction Formats 1-95
DataFlow 195
Program Interruptions 1-97
ConditionCodes 1-97
Input/Output Instructions 1-98
Instruction Format 1-98
DataFlowo oo 1-98
Program Interruption 1-99
ConditionCodes 1-99
Power00 1-99
Chapter 2 FunctionatUnits 2-1
SECTION 1 TIMING AND CLOCK CONTROL 241
Clock Signal Generators 2-1
Model G65, H65, and 165 CPU Clock Signal
Generator o0 e e e e e 2-1
Model IH65 and J65 CPU Clock Signal Generator 2-1
Clock Timing« o o o v v v v v v o 2-2
Clock Control and Signal Distribution 2-3
SECTION 2 READ-ONLY STORAGE 2-6
Capacitive Read-Only Storage Array 2-6
CROS Electrical Theory 2-6
CROSPlanes v v v v v .. 2-6
Drive and Balance Lines (Bit Plates) 2-6
SenseLines o0 2-9
BitCapacitors 0. 2-10

vi (9/68)

-Physical Package -

.................. 2-10
ROS Addressing2-10
Read-Only Storage Address Register 2-12
ROSAR(0-5) v v v v v v v v 2-13
ROSAR(6-9) v v v v v v o 2-13
ROSAR(10)+ v v v v i v v v o 2-13
ROSAR(11) - 2-13
ROSAR(0-10) Decoding o 213
Strobed Drive Lines- 2-14
Select Lines v o o o oo . 2-14
Array Driverso 0oL 2-14
Sense Amplifiers 2-14
ROSAR(11) Function. e e 2-14
ROSDataFlow 2-14
ROS Sense Latches 2-14
ROS Data Register and ROSDR Latches 2-14
ROSDecoders v v v v v v v e e 2-15
ROSTiming oo v v v 2-15
Maintenance Aids L. ... 2-16
ROSAR Latches 2-16
ROS Previous Address Registers 2-16
ROSPARA and ROSPARB Alternator 2-16
ROS Back-Up Register 2-18
ROS Error Checking 2-18
Scan Mode Operations 2-18
SECTION 3 BUSCONTROLUNIT 220 -
‘General Description 2-20
Basic Interface Considerations 2-20
Basic Operating Considerations 2-21
Operation with Processor 2-21
Operation with I/O Channels 2-22
Operation with Main Storage 2-22
Operation with LCS (Optional Feature) 2-24
Basic Control and Timing Considerations 2-24
Basic Operational Sequence 2-26
Detailed Analysis of BCU Functions 2-28
Initial Handling of Requests 2-28
Establishing Priority 2-29
Gating the AddresstoSAB 2-29
Stopping the CPUClock 2-29
Selecting the Storage Unit 2-30
Converting SABParity 2-34
Generating ‘Select’ Signal to Storage 2-34
Generating ‘Select’ Signal if LCS Is Not
inSystem e e e e 2-34
Generating ‘Select’ Signal if LCS Is in
System L L L o e e e e e e e e e 2-37
Detection of Invalid Address 2-38
Recording of Error Indications from Storage 2-38
Resettingof BCULogic 2-38
Detailed Analysis of BCU Operations 240
CPU Storage Requests 240
3- and 4-Cycle Fetch Operations 240
Store Operation e e e e e e . 240
Insert-Key Operation 241
Set-Key Operation 241
Test-and-Set Operation 241
Single-Cycle Operation 241
Channel Storage Requests 242
SECTION 4 DATA AND CONTROL REGISTERS 244
Q-Register e e e e e e 2-44
Inmputo Lo 244
Op-Code Transfer 2-44

B-Field and D-Field Transfer --. 2-44
B-Field Transfer 245
~ D-Field Transfer . . .". 245
R-Register e e e e e e e e e e 2-46
Input e e e e e e e e e e e e e e 2-46
Output T 2-46
Predecoding 2-46
E-Register0 .o e e 246 -
Input, e 2-46
Output e e e 2-46
.Incrementers e ... 246
Instruction Counter e e e e 2-49
Input L L 2-49
Output e e e e e e e e e e e e 249
Incrementing IC(0-20) 2-50
Incrementing IC(21-23) 2-50
D-Register 250
Input e o 2-50 .
Output Y e e 2-50
-Operational Functions P . . 251
- Branch and Execute Operations 2-51
Shift Operations e e 2-52
VFL Operations -2-52
Fixed-Point Operations 252
Floating-Point Operations e e 252
Manual-Control Operations - 2-52
I/OOperations. 2-52
Interruption Operations. L0252
ABRegister L 00000 2-52
Input e e e e e e e e e e e e i 2-52
Output00 2-54
STRegister 2-54
Inputo . 2-54
Output e e e e . 0254
'ABand STByte Counters v o v v o « . . 2-54
AB ByteCounter e e e e e e e e 2-54
STByteCounter« oo 2-57
Mark Triggers v v v v e i e e e 2-58
F-Register 2-58
Input 258
Output+ e 2-58
G-Register0 e . 2-58
PSW Register B T 2-58
MCW Register « @« v v v o v v o s 2-59
SECTION 5 LOCALSTORAGE 2-61
Addressing and DataFlow 2-61
Data Transfer Controls 2-61
-Read LS Operation 2-61
Write LS Operation e e e e e e 2-63
LS Timing e e e e e e e 2-63

SECTION 6 SERIAL AND PARALLEL ADDERS 2-64

Serial Addero 2-64
Inputand Qutput 2-64
Adder Operation 2-64
Controls oL e e e e 2-64

" Functional Description 2-66
Binary Add 0oL 2-67
Decimal Operation e e e e 2-67
Logical Functions 2-68
Parity Correction 2-68
Error Detection e e e e e e 2-72

ParallelAdder e e e e 2-73
Datalnput 2-73

Individual Bit-Position Logic 273
“Half-Adder e e e 2-76
Carmry-Into-Bit Logic 2-76
Full-Sum Logic . . .- Y. 2-76
Latch-Shifter Logic 2-76
Carry Lookahead 2-77
Group-Level Carry Logic 2-77
Section-Level Carry Logic 2-78
Section-Level Carry-Into Logic r. 278
Group-Level Carry-IntoLogic 2-78 -
Bit-Level Carry-Into Logic 2-78
Full-Sum Development 2-78
Arithmetic Function Sequence 2-81
Parity-Predict Logic 2-82
Error Checking 2-84
. Half-Sum Checking 2-84
Full-Sum Checking 2-84
Convert-to-Decimal Operation 2-85
Set ConditionCode 2-85

SECTION 7 STATUS AND CONTROL TRIGGERS . . . 2-86

STATA v i v i et e i e e e e e 2-86 .
STATBt v v e i e i i s i e e 2-86
STATC o o e et 2-87
STATD oot e i b e d e e e e 2-88
STATE o ot i i e e e e 2-88
STATF o o v i i i i v 2-88
STATG o o o i e e s e d e e e 2-88
STATH i i it i e it e it e s 2-89
Control Triggers« o o o o o 2-89
(VOLUME 2)
Chapter 3 Principles of Operation 3-1
SECTION 1 INSTRUCTION FETCHING 31
BasicEnd-Op Cycle e e e e e 3-1
Prefetching of Operands DuringEndOp - 32
Fetching of Instructions by End-Op Micro-Order 3-3
Requests DuringEndOp e e e 3-3
Requests During Eatsly EndOp 3-3
Selection of I-Fetch Microprogram 34
BasicRRI-Fetch e e e e e e 35
BasicRXI-Fetch36
BasicRSand SIIFetch 3-6
BasicSSI-Fetch 3-7
Address Storage Compare (ASC) Test 39
I-Fetch Microprogram 39
I-Fetch Control If at End Op IC(21,22)=00 3-11
I-Fetch Control If at End Op IC(21,22) =01 3-12
I-Fetch Control If at End Op IC(21,22)=10 3-12
I-Fetch Control If at End Op IC(21,22) =11 3-12
Deviations from Basic End Op and I-Fetch 3-12
I-Fetch Sequencers 3-12
Block I-Fetch Trigger 3-13
Timer Exceptional Condition 3-14
CPU Store In Progress Exceptional Condition 3-14
Machine Check Interruption 3-14
Program Interruption 3-15
Supervisor Call Interruption 3-15
External Interruption 3-16
I/OlInterruption 3-16
Common Interruption Routine 3-17

Stop, Wait, and Repeat Exceptional Conditions 3-17
Program Store Compare Exceptional Condition 3-17

2065 FETOM (9/68) vii

Invalid Instruction Address Test Exceptlonal
Condition

Specification Retection
Invalid Address Detection
Fetch Protection Detection
Invalid Instruction Address Microprogram

Q-Register Refill Exceptional Condition
Two-Cycle RR I-Fetch
Forced-Cycle RX I-Fetch
Two-Cycle RS and SI I-Fetch

SECTION 2 FIXED-POINT INSTRUCTIONS
Load
Load, LR (18)
Load, L (58)
Load Halfword, LH (48)
Load and Test, LTR (12)
Load Complement, LCR (13)
Load Positive, LPR (10)
Load Negative, LNR (11)
Load Mulitiple, LM (98)
‘Add-Type Instructions
Add, AR (1A)
Add, A (5A)
Add Halfword, AH (4A)
Add Logical, ALR (1E)-
Add Logical, AL (5E)
Subtract, SR (1B)
Subtract, S (5B) -
Subtract Halfword, SH (4B)
Subtract Logical, SLR-(1F)
Subtract Logical, SL (5F)
Compare, CR (19)
Compare, C (59)
Compare Halfword, CH (49)
Multiply
Mutltiply, MR (1C)
Multiply, M (5C)
Multiply Halfword, MH (4C)
Divide00 0.,
Divide, DR (1D)
General Discussion
Detailed Discussion
Divide, D (5D)
Convert
Convert to Binary, CVB (4F)
Convert to Decimal, CVD (4E)
Store
Store, ST (50)
Store Halfword, STH (40)
Store Multiple, STM (90)
Shift e
Shift Left Single, SLA (8B)
Shift Left Double, SLDA (8F)
Shift Right Single, SRA (8A)
Shift Right Double, SRDA (8E)

B
T
.................
.............

..................

..................

SECTION 3 FLOATING-POINT INSTRUCTIONS
Exponent Overflow and Underflow
ZeroResults
Conditions at Start of Execution
Load
Load, LER (38) — RR Short Operands
Load, LE (78) — RX Short Operands
Load, LDR (28) — RR Long Operands
Load, LD (68) — RX Long Operands

........

viii (9/68)

Load and Test, LTER (32) — RR Short Operands 3-66
Load and Test, LTDR (22) — RR Long Operands 3-66
Load Complement, LCER (33) — RR Short Operands 3-67
Load Complement, LCDR (23) — RR Long Operands 3-67
Load Positive, LPER (30) — RR Short Operands 3-68
-Load Positive, LPDR (20) — RR Long Operands 3-68
Load Negative, LNER (31) — RR Short Operands . ..3-68
Load Negative, LNDR (21) — RR Long Operands 3:69
Add, Subtract,and Compare 3-69
Add Normalized, AER (3A) — RR Short Operands 3-71
Add Normalized, AE-(7A) — RX Short Operands 3-75.
Add Normalized, ADR (2A) — RR Long Operands 3-76
Add Normalized, AD (6A) — RX Long Operands 3-77
Add Unnormalized, AUR (3E) — RR Short Operands . . 3-78
Add Unnormalized, AU (7E) — RX Short Operands . . . 3-78
Add Unnormalized, AWR (2E) — RR Long Operands 3-79
Add Unnormalized, AW (6E) — RX Long Operands 3-79
Subtract Normalized, SER(3B) — RR Short
Operands 3-80
Subtract Normalized, SE (7B) — RX Short
Operands v v s v e o 3-81
-Subtract Normalized, SDR (2B) — RR Long
Operands 0 ¢ v v v v v h e e e 3-81
Subtract Normatized, SD (6B) — RX Long
Operands 3-82
Subtract Unnormalized, SUR (3F) — RR Short =
Operands v v v v v v 3-82
Subtract Unnormalized, SU (7F) — RX Short
COperands . .. L. L L Lo o e e 3-83
Subtract Unnormalized, SWR (2F) - RR Long
Operands. 3-83
Subtract Unnormalized, SW (6F) — RX Long
Operand v . v v v v .. 3-84
Compare, CER (39) — RR Short Operands 3-84
Compare, CE (79) — RX Short Operands * 3-85
Compare, CDR (29) — RR Long Operands 3-85
Compare, CD (69) — RX Long Operands 3-86
“Halve . . (. ... oo oo e 3-86
Halve, HER (34) — RR Short Operands 3-86
Halve, HDR (24) — RR Long Operands 3-87
Multiply e 3-87
Data Flow and Algorithm 3-88
Multiply, MER (3C) — RR Short Operands 391
Multiply, ME (7C) — RX Short Operands 3-92
Multiply, MDR (2C) — RR Long Operands 393
-Mutltiply, MD (6C) ~ RX Long Operands 3-93
Divide e e T e 3-94
Characteristic Computation 3-95
Normalization 3-96
“Fraction Division 3-96
Data Flow and Algorithm 3-98
Divide, DER (3D) — RR Short Operands 3-100
Divide, DE (7D) — RX Short Operands 3-101
Divide, DDR (2D) - RR Long Operands 3-102
Divide, DD (6D) — RX Long Operands 3-103
Store . .. L e e e e e e e 3-104
Store, STE (70) — RX Short Operands 3-104
Store, STD (60) — RX Long Operands .". 3-105
SECTION 4 DECIMAL INSTRUCTIONS 3-106
Instruction Handling 3-106
Word Overlap Condition 3-107
General Initialization Sequence 3-109
Add, Subtract, and Compare 3-109
Add, AP (FA) and Subtract, SP(FB) 3-109
GIS for Add and Subtract 3-110

True Add Sequence 3-110
Complement Add Sequence 3-113
Compare, CP(F9) 3-114
Zeroand Add,ZAP(F8) 3-115
Multiply, MP(FC) 3-116
" General Description 3-118
Detailed Description 3-124
Divide, DP(FD) 3-125
- General Description 3-128
Detailed Description 3-134
Pack, PACK(F2) v 3-137
Instruction Execution, Not Word Overlap 3-138
Instruction Execution, Word Overlap 3-139
Unpack, UNPK(F3) . . . , 3-139
Instruction Execution, Not Word Overlap 3-140
* Instruction Execution, Word Overlap 3-141
Move With Offset, MVO(F1) 3-141
Instruction Execution, Not Word Overlap ‘3-142
Instruction Execution, Word Overlap 3-142
SECTION 5 LOGICAL INSTRUCTIONS 3-144
General Initialization Sequence 3-144
Move i . e e e e e 3-144
Move, MVI(92) 3-144
Move, MVC(D2) v i vh v v v v 3-144
Move Numerics, MVN(D1) 3-145
Move Zones, MVZ(D3) - 3-146
Compare 3-147
-Compare Loglcal CLR(1S5) o v o oo . 3-147
Compare Logical, CL(55) 3-147 -
Compare Logical, CLI(95)- . .. 3-147
Compare Logical, CLC(DS)" i 3148
AND - 3-148
AND,NR(14) o . . o v e e 3-149
AND,N(54) v v i it 3-149
AND,NI(94) o . v i v i i e e e e 3-150
AND,NC(D4). e e e e e e e 3-150
OR . . . e e e e e e e e e e e 3-150
- OR,OR(16) 3-151
TOR,0(56) . v e e e e e e 3-151
OR,0I(96) 3-151
OR,OC(D6) v v v v v i v i v e e e 3-152
Exclusive-OR315
Exclusive-OR, XR (17) P 3-152
Exclusive-OR, X (57) 3-153
Exclusive-OR, XI(97) 3-153
Exclusive-OR,XC(D7) « . v v v v v v« 3-153
Test Under Mask, TM(91) 3-154
Insert Character, IC(43)3154
Store Character, STC(42)« 3-154
Load Address, LA(41) 3-155 -
Translate, TR(DC) 3-155
Translate and Test, TRT(DD) 3-156-
Edit and Edit and Mark, ED and EDMK (DE and DF) . 3158
Introduction to Edit Operation 3-158
Introduction to Edit and Mark Operation 3-160
General Data Handling 3-160
Microprogram Description 3-161
FirstCycle -3-161
SecondCycle 3-161
ExitConditions v . v« v« o .. 3-161
Shift L. L s 3-162
Shift Left Single, SLL(89) 3-162
" Shift Left Double, SLDL(8D) 3-162
Shift Right Single, SRL(88) 3-162

“Set System Mask, SSM (80)

- Write Direct, WRD (84)

- Test Channel, TCH (9F)

~ SECTION 2 MULTIPROCESSING FEATURES

Shift Right Double, SRDL(8C)
SECTION 6 BRANCHING INSTRUCTIONS
Branch on Condition, BCR (07)
Successful Branch
‘Unsuccessful Branch .
Branch on Condition, BC (47)
Branch and Link, BALR (05)
Unsuccessful Branch -
Successful Branch
Branch and Link, BAL (45)
Branch on Count, BCTR (06)
Successful Branch
Unsuccessful Branch
Branch on Count, BCT (46)
Branch on Index High, BXH (86) .
Branch on Index Low or Equal BXLE. (87)
Execute, EX (44)

..............
..............

SECTION 7 STATUS SWITCHING INSTRUCTIONS
Load PSW, LPSW (82)
Set Program Mask, SPM (04)

Supervisor Call, SVC (0A)
Set Storage Key, SSK (08) -
Insert Storage Key, ISK (09) -

Read Direct, RDD (85)
Diagnose (83)
Test and Set, TS (93)

SECTION 8 INPUT/OUTPUT INSTRUCTIONS
Start I/0, SIO (9C)
Test 1/0, TIO (9D)
Halt I/0, HIO (9E)

Chapter 4 Features

SECTION 1 FEATURE INDEX

Multiprocessing System/ 360 Model 65
Main Storage
Storage Allocation
Floating Addressing
Direct Address Relocation
- Input/Output
Processing Units
Multisystem Mode
Model 65 Mode
Partition Mode
Multisystem Signals
Summary of Multiprocessing System
Advantages
Functional Units
Configuration Control Panel
Storage Allocation Control -
Floating Address Control
Direct Address Relocation Control
Multiprocessing System Mode Control
1/O Allocation Control
BCU Modifications
Storage Address Decodmg with Preflxmg
Disabled

.............
..................

.............
..............

................

....................

2065 FETOM (10/69)

ix

Storage Address Decoding with Prefixing
Enabled
Invalid Storage Address
BCU-Storage Operations
Multisystem Timer
Operation
System Hang Timing
External System Reset Timing
Multisystem Operations
Set System Mask Instruction (Multisystem Mode)
Write Direct Instruction (Not Model 65 Mode)
Read Direct Instruction (Not Model 65 Mode)
Malfunction Alert
Gated Load
System Call
Log I/O Interrupt
External System Reset
External Start
Power Distribution and Control
Console Controls and Maintenance Features
Configuration Control Panel
- Storage Allocation Switches
Floating Address Switches
PREFIX Switches
CPU Mode Switches
I/O Aliocation Switches
VALID ADDRESS Indicators
System Control Panel Modifications,
Multisystem Feature
EMERGENCY PULL Switch
POWER ON Pushbutton
Marginal Voltage Control
DISABLE INTERVAL TIMER Switch
DISABLE DIRECT CONTROL Switch
Storage Switches
Indicators)
System Control Panel Modifications,
Additional Storage Attachment Features
Marginal Voltage Control
"POWER CHECK Indicators
STORAGE INDICATE SWITCH and Indlcators
Logout and Scan In

.....................
...................
...............

.................

e s s e 4 e s e e s s ce s e s e s
.....................
.....................
.................
...................
............
..............
............
............
.................
...............

...............
...........
.......

.......

.............

Chapter 5 Power ,Distribution and Control
AC Power Distribution
60-Hz Units
50-Hz Units
Converter/Inverter
DC Power Distribution
High-Frequency Regulator Modules
Marginal Adjustments
Power-On Sequence
Power-Off Sequence
Normal Power-Off
Emergency Power-Off
Automatic Power-Off
Overcurrent Protection
Overvoltage Protection
Positive Regulators, Converted Units
Negative Regulators, Converted Units -
Undervoltage Protection
Thermal Protection
Indicators
System Power-On Indicator
Power Check Indicators
1052 Printer-Keyboard Power

.......
...................

................
.........
................
..................

...............
.....................

.............
..............

.............

x (10/69)

e T T S R S)

- Direct Control Power

Audible Alarm
Dual 1052 Power Interface

.................

Chapter 6 Console Controls and Maintenance Features

SECTION 1 CONSOLE CONTROLS
System Control Panel
Manual Controls
Stop Loop
Power-On Reset
SYSTEM RESET Pushbutton
CHECK RESET Pushbutton
STOP Pushbutton
LOAD Pushbutton (IPL)
DATA Switches
ADDRESS Switches
ADDRESS COMPARE STOP Switch.
STORAGE SELECT Switch
DEFEAT INTERLEAVING Switch
STORAGE INDICATE Switch
STOP ON STORAGE CHECK Switch
SET IC Pushbutton
RATE Switch
PROCESS Position
INSN STEP Position
SINGLE CYCLE Position ,
SINGLE CYCLE STORAGE INHIBIT Position
REPEAT INSN Switch
Repeat Single Instruction
Repeat Multiple Instructions
STORE Pushbutton
DISPLAY Pushbutton
START Pushbutton

..................
...................
.................
..............
.................

........
.......

..................
...............
..............

Stc_n'age-Ripple‘ Microprogram
Storage-Ripple-Store Function
Storage-Ripple-Display Function

REPEAT ROS ADDRESS Switch

~ PSW RESTART Pushbutton and Wait State

DISABLE DIRECT CONTROL Switch

DISABLE INTERVAL TIMER Switch

INTERRUPT Pushbutton

CPU CHECK Switch

PULSE MODE Switch
PROC Position
TIME Position
COUNT Position

LOG OUT Pushbutton

TEST MODE, ROS/PROC/FLT Switch

TEST MODE, REPEAT Switch

RESTART FLT I/O Pushbutton

CE Key Switch and Usage Meters

FREQUENCY ALTERATION Switch

Indicators
CE Panel

...........
.......
.............
...............

..............
.......
...........

SECTION 2 MAINTENANCE FEATURES

Diagnose Instruction and MCW’s
Diagnose Instruction MCW for CPU
Diagnose Instruction MCW for Channel
ROS Test MCW
FLT MCW

Logout, ROS Tests, and FLT’s
Introduction

..................

....................

.............

...................

Logout i ..o 6-25
ROSTeStS . . v v v v v vt o e e e e e e e 6-26-
2 5 6-26
FLTTapes v v v v v v v v v v o v v 6-27
Tape Generation 6-27
‘FLT Hardcore Tests « + v v w0 o « .« 6-28
Zero-CycleTests " . . . v iiu v v vw o a 628"
OneCycleTests . . & v v v eievs v v v @ v 6-28
FLTFormat v .« . o o . . 6-29
Scan Logic Functional Units 6-29
ScanTiming™o oo 6-29
ScanClock © e e e e e e 6-30
FLTClock . . v . . .« v v v v i v v v v v us 6-30
Scan Counter Latches and Decrementer 6-31
Inputand Output« 6-31
‘Scan Counter Decrementer 6-31
Address Sequencer 6-31
Address Sequencer Decoder 6-33
Storage Address Generator 6-34
Check Counter« 6-34
Inputand Output 6-35
Check Counter Decrementing 6-36
FLT Counter v v v v o 6-36
Inputo oo oo 6-36 .
FLT Counter Decrementing 6-37
CycleCounter+ « v v v v v v 0 6-37
ROS Test Sequencer « « v v « ¢« « v « o & 6-38
Scan-OutBus 6-38
LogoutControls - 6-38
ScanOutSandT 6-39
Scan Stop-CPU-Clock Logic 6-39
Control Triggers 6-39
Scan Mode Controlof ROS - 640
Scan/Channel Interface, 640
Operational Analysis 6-40
S Logout L. oL L. Lo e e 6-40
Hardware-Controlled Sequence " -. 6-41
ROS-Controlled Sequence = 6-42
ROSTests v v v v v v v v v v v v v 6-43
ROSTestTape « . . v« o o .. 6-43
ROSTestSetup « ¢« v v v v v oo 6-44
IPL1 e 6-44
Loader« « . v o v v 6-45
Hardcore Tests and IPL 2 e e e e e 6-45
(THIS VOLUME)
Legend e XV
Frontispiece System/360 Model 165 xvi
1-1 Basic System Configuration 1-1
12 System/360'Model 65 Layout 1-2
1-3 Functional Structure of a Simplex
System 1-8
14 Channel-to-Channel Adapter as Multlsystem
Connector 1-9
1-5 Transmission Control Unit as Multisystem
Connector - 19
1-6 2-Channel Switch Feature as Multisystem
Connector 19

Test 1, Record3 " 6-46
IPL2o o o 6-47
Test2,Record 5 647
Record6 6-47
Test1,Record 7 6-48
Test1,Record8 6-48
"Test2,Record8 648
- Test3,Record8 6-48
Summary of Hardcore Tests 6-48
ROSBitTests v v v o v v v v . 649
ROS Test State 7. e e e e 6-49
ROSTestState 6 6-49
ROSTestStateS 6-49
ROS TestState4 6-49
ROSTestState 3 6-50
ROSTestState2 6-50
ROS TestStatel 6-50
ROS Test State0 6-50
* Fault LocatingTests 6-51
FLTTape 6-51
FLTFormat 6-52
FLT TestSetup v .. 6-53
JIPLY . o s e 6-53
Loader 6-53
" Transmission Checks During FLT ReadIn 6-54
Hardcore Tests o 6-54
Zero-Cycle and One-Cycle Tests 6-54
ScanIn e 6-55
TestCycles 6-56
ScanQut 00 6-56
" Result Comparison 6-56
Terminate or Continue 6-56
TN/ATN Comparison « 6-57
Ripple Tests v v v v v v v v 6-57
- Diagnostic Programs 6-57
Marginal Checking 6-58
Appendix A . . 0 L L L L L L s e e e A-1
AppendixB L0000 B-1
AppendixC 000 C-1
Indexo ... XA
lllustrations
17 Device Switching Unit as Multisystem
Connector 1-10
1-8 Shared LCS Feature as Multisystem
Connector 1-10
1-9 Direct Control Feature as Multisystem
Connector 1-10
1-10 ‘Multiprocessing System/360 Model 65 1-11
1-11 * Instruction Formats 1-14
1-12 Main Storage Integral Boundaries 1-15
- 1-13 "Examples of Control Program Functions . . 1-22
1-14 Action Taken When Single Interruption

- Occurs

2065 FETOM: (10/69) xi

1-15

. 1-16

1-17
1-18
1-19
1-20
1-21
1-22

1-23
1-24
1-25
1-26
1-27
1-28

1-29
1-30

131
1-32

133
134
1-35
1-36
1-37
21
2:2
23

24
2-5
2-6
27
2-8
2-9
2-10
2-11
‘2-12
2-13
2-14
2-15
2-16

2-17
2-18
2-19

2-20

221
2:22

2-23
2-24
2-25
2-26
2-27

2-28
2-29
2-30
2-31
2-32

xii (10/69)

Example of Need for Inte}ruption Masking . 1-31

Data Transfer Scheme 1-40
ROS Addressing and Branching 142
ROS Addressing Block Diagram 1-44
ROS DataFlow e . 145
ROSTiming 148
ROS Control of CPU Operations 1-49
Status Information Contained in PSW

Register 1-51
Basic BCU Interface 1-52
BCUClock Logic 1-53
BCU Priority Logic 1-53
Start Storage Sequence Logic 1-54
Storage Selection 1-54
Q-Register Halfword Outgating per

IC21,22) v o v v e 1-56
Instruction Addressing 1-57
Operand Data Byte Selection per -

IC21-23) . v v e e e e e e e 1-58
Basic InstructionPath 1-59
Path Through Q-, R-, and E-Registers of

Op-Code Halfword ~. 1-61
Basic Scheme for Operand Prefetching . . . 1-62
Q-Register Refill Addressing Scheme 1-65
Decimal Format Serial-Adder Data Flow . . 1-67
Parallel Adder Logical Functions 1-68
Parallel Adder Group/Section Breakdown . . 1-69
Trigger and Latch Data Relationship 22
Typical Clock Signals 2-3
Clock Signal Development and - o

Distribution- 2-5
Basic4 X 4 CROS Matrix 2-7
BitPlate 2-8
Sense Lines« 2-9
Sense Line Layout . - 2-10
Bit Capacitors 2-11
CROS Plane Pressure Mounting Assembly . . 2-12
Control Field A Decoder 2-15
Detailed ROS Timing 2-16
ROSPARA and ROSPARB Alternator . . . 2-17
ROS Parity Checking 2-19
Primary BCU Interface Signals 2-21
Basic Organization of HSS Unit 2-23
Basic BCU Scheme for Processing Storage

Requests 2-24
Basic Request Timing 2-25
Basic BCU Operational Sequence 2-27
Typical Timing for CPU Fetch Request to

LCS 2-31

Gating of Storage Address from CPU &
Channels to Address Decodersin BCU . . . 2-32

Selection of Correct Storage Unit 2-33
Basic SAB Decoding Circuits in BCU and HSS

Unit e e e 2-35
SAB Parity Conversion Logic 2-37
BCU Reset for LCS Operation 2-39
Typical CPU Clock Stopping Sequence . . . 2-40
Q-Register DataFlow 245
Q-Register Halfword Transfer per

IC21,22) v v o 2-46
R-Register DataFlow 247
E-Register DataFlow 2-48
Instruction Counter Data Flow 249
D-Register DataFlow 2-51
AB Register DataFlow 2-53

2-33
2-34
2-35
2-36

237

2-38
2-39
240
241
242
243
2-44
2-45
246
247
2-48
2-49
2-50
2-51
2-52
2-53

2-54

2-55
2-56
2-57

2-58

3-1
3-2
3-3
34
3-5

37
3.8
3-10

3-11
3-12

3-13

3-14
3-15
3-16
3-17

3-18

3-20

3-21
3-22

ST Register DataFlow ooo. . 255
PSWinputtoS(16-31) 2-56
F-Register DataFlow 2-58
G-Register DataFlow 2-59
PSW Register DataFlow 2-60
PSW Register(0,6) Logic 2-60
MCW Register DataFlow 2-60
Local Storage DataFlow 2-62
Serial Adder DataFlow 2-65
True-Complement DataEntry 2-66
. Serial Adder (Simplified) . . .-. 2-66

Half-Sum and Full-Sum Logic 2-67
Carry Lookahead, Block Diagram 2-67
Serial Adder Gating Controls 2-69
Serial Adder Parity Predict Logic 2-71
Half-Sum and Full-Sum Error Logic . 2473
Parallel AdderDataFlow 2-74
Parallel Adder Function Breakdown 2-75°
Parallel Adder Input Buses 2-76
Bit Position Block Diagram 2-76
Parallel Adder Carry Lookahead Data

Flow 2-79
Actual and Predicted Carry Origin for

PA(44) oo 2-81
Full-Sum Development Logic 2-82
Parallel Adder Logic Function Sequence 2-83
Convert-to-Decimal Data Flow to Parallel

CAdder ... L Lo L 2-85
Summary of Setting of STATs 2-87
(VOLUME 2)

Typical Microprogram Sequence 3-1
Basic Sequencing for SS Instructions 3-8
ASC Test for SS Instructions 3-10
Detection of Invalid Instruction Address . 320
Detection of Fetch-Protected Instruction

Address 3-22
Fixed-Point Mulitiply, Example No. 1 (RR

Format) 3-40
Fixed-Point Multiply, Example No. 2 (RR '

Format) 341
Fixed-Point Divide, Example No. 1 .. 348
Fixed-Point Divide, Example No. 2 . 348
Convert to Decimal Example 3-52
Restore and Non-Restore Division 3-97
Fraction Divide Example 3-98
Floating-Point Divide Example 3-102
Operand Specifications for Decimal Multiply

Instruction e e e e e e e 3-118
Typical Multiply Add Sequence 3-119
Typical Multiply Subtract Sequence . 3-120
Data Handling During GIS of Decimal

Multiply 3-121
Data Handling During Multiplier Left-Adjust

Sequence 3-122
Data Flow for Right-4 Shift of ST to AB,

Decimal Multiply 3-126
Operand Specifications for Decimal

Divide 3-128
Example of a Typical Divide Sequence . 3129
Data Handling During GIS of Decimal

Divide 3-130

3-23
3-24
3-25

3-26

327

41
42

52

1-1

1-3
14
1-5

-7

1-8

1-10
1-11
1-12
113
1-14
2-1

2-2

ABC
ac
adr
ALD
amp
ASC
ATN

BCD
BCU

Data Handling During Divisor Left-Adjust

Sequence ea 3-131
Data Handling During Dividend Fetch and

Left-Adjust Sequence 3-133
Simplified Data Flow for AND, OR, and

Exclusive-OR Instructions 3-149

Example of Use of Branch and Link

InStruction . . .« « . v he e e e 3-167

Storage Protection Key Assignments 3-179
Direct Address Relocation 4-3
Duplicate Storage Addressing Detection . . 4-7
Primary AC Power Distribution, 60-Hertz

Units v v v v e L. 52
Primary AC Power Distribution, 50-Hertz)

Units« v o v v oo 5-3

{THIS VOLUME)

Permanent Main Storage Assignments . . . 14
Characteristic Notation 1-18
Program States 124
PSW Interruption Mask Bit Designation . . . 1-25
Interruptions 1-28
ROS Word Breakdown 141
Control Field V (Bits 97-99); E, Q Outgates

to Parallel AdderB-Bus 142
Fixed-Point Instructions L. 17
Floating-Point Instructions 1-77
Decimal Instructions 1-83
Logical Instructions 1-88
Branching Instructions 1-93
Status Switching Instructions 1-96
I/O Instructions 198
Decimal Correct for Erroneous Numeric

Characters « v ¢ v o 0 . . 2-68
Control Triggers 2-89

AB register byte counter
alternating current

address, addressed, addressing
automated logic diagram
ampere

address store compare
alternate test number

binary-coded decimal
bus control unit

54
6-1

6-3
64.

6-5
6-6
6-7
6-8
6-9
6-10
C1

32

3-3
34

3-6
37
3-8
39

3-10
3-11
3-12

41
42
5-1

62
Cl

C
CAW
CB
CcC
CCwW
CE
charistic
CLD
CPU
CR

‘Representative DC Distribution 5-5

Overcurrent Protection Loop 5-10
Normal IPL Operaiton 6-7 -
Data Switch Gating ~ e e e e 6-10
Address Switch Gating 6-11
Scan Counter Latches and Decrementer Data '
" Flow e 6-32
" Address Sequencer DataFlow 6-33
Address Sequencer Decoder '6-34
Check Counter DataFlow 6-35
FLT Counter DataFlow 6-36
Cycle Counter DataFlow 6-37
ROS Test Sequencer DataFlow 6-38
Four-Block Tree and FLT Pattern
Generated C1
Tables
(VOLUME 2))
Q-Register Refill Exceptional Conditions . . 3-23
Value of Multiple Determined by Multiple .
Selection Bits (Fixed-Point) 3-39
Divide Multiple Values, Fixed-Point 346
Conversion to Decimal (Excess-6) 3-51
Excess-6 Conversion, B(60—63) 3-53
Operand Bits Transferred, STH Instruction . 3-55
Left Shift Combinations '3-57
Right Shift Combinations 3-61
Examples of Branching on Characteristic
Difference 3-73
Multiplier Bits Selected, Floating-Point
Multiply e ... 3-89
Value of Multiple Determined by Multiple .
Selection Bits (Floating-Point)"3-90
Condition Code Setting Per Hardware
Conditions, Decimal Instructions 3-113
FeatureIndex R S
Floating Address Intervals43
_High-Frequency Regulator Modules 54
Logout Format 625
FLTFormat N VA
SCOPEX Cc-2
Abbreviations
capacitor

channel address word .

circuit breaker

condition code

channel command word

customer engineer

characteristic

control automation system logic diagram
central processing unit

diode

2065 FETOM (10/69) xiii

CROS
CSw
CT .

dc

dec div

dec ovflo

DX

DX +1.
DX +2

end op
EPO
ERSLT
exp ovilo
exp unflo

F

FEMDM
FEMI
FEMM
FETOM
fix-pt div
fix-pt ovflo
FLT

flt-pt div
FLUT
FPR

fract

GIS
GPR

hex
HSS
Hz

IC
I-Fetch
ILC
1/0
IPL

K
K
kHz

LAL
LAR
LCS
LS. .
LSWR -

MAR
max
MCW
mHz
MMSC
MPR

ms
multisys

no op
ns

Xiv (10/69)

capacitive read-oniy storage
channel status word
conditional terminate

direct current

decimal divide

decimal overflow

first byte in a series of destination bytes -
second byte in a series of destination-bytes

_ third byte in a series of destination bytes

end operation-

emergency power off
expected result
exponent overflow

. exponent underflow . -.

fuse

Field Engineering Maintenance Diagrams Manual
Field Engineering Manual of Instruction

Field Engineering Maintenance Manual

Field Engineering Theory of Operatlon Manual

_ fixed-point divide
~ fixed-point overflow .

fault locating test ..
floating-point divide -~ - v
Fault Locating Utility program -

- floating-point reglster

fraction

"general initialization sequence

general-purpose register

hexadecimal
high-speed storage -
Hertz

instruction counter
instruction fetching
instruction length code
input/output

initial program load

kilo

_relay

kilohertz

local storage address latches

"local storage address register
“large capacity storage -

local storage
‘local storage working reg]ster

memory address reglster
maximum

maintenance control word
megahertz

maintenance mode stop clock
multiplier

millisecond

multisystem

no operation
nanosecond

op code

" oper
" opr

P
PAA
PAB
PAL
pf -
PK
PP
PQ
priv oper -
prot .
PS
PSW

R.

ROS
ROSAR
ROSBR

“'ROSDR ~

ROSPARA
ROSPARB

SAA
SAB
SAB
SAL
SAR

- SBA

SBB
SCOPEX
SCR
‘SDBI
SDBO
signif.
SLT
SMS
SOROS
spec
SRL
STAT
STC
stg

SW BD
sync

T .
T(DX)
T(DX+1)
TIC

WIAIAIVIV

operation code
operation
oper_and

parity

parallel adder A-side -
parallel adder B-side
paraliel adder latch
picofarad

power contactor
partial product -
partial-quotient
privileged operation

" protection

power supply
program status word

resistor
read-only storage

read-only storage address register
read-only storage backup register -

read-only storage data register

read-only storage previous address reglster A
- ‘tead-only storage previous address register B

serial adder A-side
serial adder B-side
storage address bus

_serial adder latch

storage address register -
serial adder bus A

serial adder bus B

scoping index
silicon-controlled rectifier
storage data bus in
storage data bus out
significance

solid logic technology
standard modular system
scan out read-only storage
specification

Systems Reference leraxy
status trigger

ST register byte counter
storage

switch board
synchronizing

transformer

table byte specified by DX
table byte specified by DX + 1
transfer in channel

test number

. microfarad

microsecond
unconditional terminate

volt
variable-field length

greater than or equal to
greater than or equal to
less than or equal to .
less than or equal to
equal to

not equal to

Legend

— — ——— — v— — — —— ———— — —— —— —— ——— ———— ——— —— —— — — ——_—" ——

LOGIC DIAGRAMS Transfer into register .
- / Indicates storageable device
9 3 and input side.

mmle— Means register contents are
Nome ——-» A RA| \supplied to indicators.
2‘7\&“ T 3 ALD Group A '-_—S_AND

: | I: Register Size (32 Bits).
0 3 Transfer out of register.

OR —— OR

OE |—— Exclusive-OR

[1T LI 11

SAB
8-Data Bit (Plus Parity) Time Time
ial
Serial Adder ™ }b— DLY f——f Time Delay
Frequency
f—— 0sC |—— Oscillator
2 ' a\ 7 .75
. i Vel
/ '
PAA AR/ f— ©F f— Gate
// 60-Dato Bit (Plus Parity)

/ Parallel Adder
Negator (Inverter)

PAL AP

i

|

AR |——4 Amplifier

Upper half is

set (1) input. (Name)
l ¥ T p—— Means output is supplied to indicator. —
S Type (Trigger, Latch, Flip-Latch) ‘s | Odd § Odd
T
S 84— Number of multiple circuits.
Lower half is - AB123 @—— ALD Reference . ‘ l
reset (0) input. ‘Indicates st ble device | b X
" M | D Dy
| and input side. . H R . Driver I
!
I Nome
Indicator
Comparator
Nome
Roller Switch Indicator
. Parity Check Loéic Multiple Line Transfer . I

H

Parity Generate Logic
. » \oterf mss——— Bus
\ Interface
/0 IF Denotes interface between two units. l
FLOWCHARTS ' | TIMING CHARTS
. . Heavy bar indicates active state. Number(s)
J {Machine | Cycles | at beginning and end of the bar identify the
| | signal(s) (also on the same chart) that
3e40Not 6 b Y activate and deactivate this line. "Not"
Processing Decision I ! l preceding a number means that the
Block Block . deactive signal conditions this line.
l ‘ Branch Path Label l I | I l Waveshape
I I Heavy bar indicates active state .

2065 FETOM (10/69) xv

(89/6) wx

System/360 Model 165

Main Storage

Reading Board

System Control Panel

1052 Printer-
Keyboard
(Optional)

This chapter introduces the 2065 Processing Unit (Central
Processing Unit or CPU) of the System/360 Model 65. It is
divided into four sections:

Section 1, System Description, describes the basic
system in terms of main storage, CPU, and input/
output (I/0), the features available, and the data flow.
Also included is a discussion of multisystem configura-
tions and the resources available to achieve a multi-
system. _

Section 2, System Coding, discusses the. hexadecimal
number system, character codes, instruction formats,

Section 1. System Description

BASIC SYSTEM

A basic System/360 Model 65 is shown in Figure 1-1. This
system consists of a 2065 CPU, one 2365 Processor Storage
Model 1 or up to four Model 2’s, and up to six 2860

Selector Channels and one 2870 Multiplexer channel. (The

number and configuration of I/O control units and devices

is flexible and is therefore not shown.) Five models are

-available:

1. Model G65. Uses one 2365 Processor Storage, Model 1
(131,072 bytes).

2. Model H65. Uses one 2365 Processor Storage, Model 2
(262,144 bytes).

3. Model 165. Uses two 2365 Processor Storage, Model 2’s
(524,288 bytes). ’ ’

4. Model IH65. Uses three 2365 Processor Storage, Model
2’s (786,432 bytes). '

5. Model J65. Uses four 2365 Processor Storage, Model 2’s
(1,048,576 bytes).

As shown in Figure 1-1, the storage address bus (SAB)
and the two storage data buses [‘storage data bus in’ (SDBI)
and ‘storage data bus out’ (SDBO)] are common to the
CPU and I/O channels. The Bus Control Unit (BCU),
located in the CPU, monitors and controls the availability
of these buses and selects the main storage area to be used.
Storage requests (stores and fetches) generated by the CPU
and 1/O channels enter the BCU, which issues a response
signal to the requesting unit having the highest priority. The
response signal places main storage at the disposal of the
unit for one storage cycle. All units must compete for the
next available storage cycle in the same manner. I/O
channel requests are given priority over CPU requests, and
each channel has an assigned priority.

Chapter 1. Introduction

and operands used in the System/360 Model 65.

- Section 3, Program Execution and Control, discusses the
role of the supervisor program, the eight program
states, the make-up of the program status word (PSW),
the purpose and implementation of interruptions and
exceptional conditions, and the initiation and control
of I/O operations.

Section 4, CPU Description, discusses the functional
units of the CPU, Instruction Fetching (I-Fetch) and
instruction execution, the Universal instruction set by
inistruction class, and power considerations.

The 2065 CPU and main storage layout is shown in

‘Figure 1-2. The system control panel is attached to the end

of the CPU frame. One or two optional 1052 Printer-
Keyboards may be placed adjacent to the CPU reading
board to serve as operator consoles.

MAIN STORAGE
Sofe Storoge Core Storage
nit 1 Unit 4
(2365-1)
(2365-2) (2365-2)
4 \
SAB
SDBO SDBI
PR |
BCU
A >
______________________ A
2065
cry CPU
Requests
- /
1/0 1/O CHANNELS
Requests
Channel 1 Channel 6 Channel 0
(2860 Selector) (2860 Selector) (2870 Multiplexer)

‘Figure 1-1. Basic System Configuration

2065 FETOM (10/69) 1-1

FEATURES AVAILABLE

Features available for the 2065 CPU are:
1.

Direct Control. Provides two instructions, Read Direct
and Write Direct, and six external interruption lines
which are independent of I/O channel operations. The
instructions provide timing signals and transfer a byte
of information between two CPU’s or between the CPU
and an-external device.

2361 Attachment. Provides bulk core storage of from
1,048,576 bytes to 8,388,608 bytes through the
attachment of up to four 2361 Core Storage Units.

" Two models are available: Model 1, which has a storage

capacity of 1,048,576 bytes; and Model 2, which has a
capacity of 2,097,152 bytes. This feature provides
two-way interleaving for pairs of 2361 units.

1052 Adapter. Permits attachment of one 1052 Printer-

© Keyboard, Model 7, for system console I/0. Also

includes a program-controlled alarm. Two 1052
Adapter features can be installed, allowing the attach-
ment of a 1052 on each side of the CPU reading board.
Multisystem. Permits two 2065 CPU’s to be joined to
form a Multiprocessing System/360, Model 65. Both

4A.

CPU’s share a configuration control panel and two to
four 2365 Model 13 Processor Storage units (262,144
bytes each). See Additional Storage Attachment
feature also. .

Additional Storage Attachment (Model J only). Four
features, each permitting the attachment of one addi-
tional 2365 Model 13 Processor Storage in a Multi-
processing System/360 Model 65.

Emergency Power-Off Control. Provides, in effect; a
single Emergency Power-Off switch in a “room” or

““area”.

7070/7074 Compatibility (Models H, I, IH, and J
only). Allows the execution of 7070 and 7074 instruc-
tions. :

7080 Compatibility (Models H, I, IH, and J only).
Enables the system to execute 705 and 7080 instruc-
tions.

709/7040/7044/7090/7094/709411 Compatibility
(Models I, IH, and J only). Enables the system to
execute 709, 7040, 7044, 7090, 7094, and 709411
instructions.

== === 1 r——-=7== = | e |
| I I | | |
| Main Storage | Main Storage | Main Storage | | Main Storage |
! I | | I |
| | | | | l
' : |) |
| |
|
D Models | Models G65, | Models 165, | L Models Hest |
i Hest | Hé5, 165, | 1H65, and J65 | | ond J65 1
| and Jé5 | IHé5, and J65 : ’ I | |
i ! i I ! I
| - i | I |
[[, | | i
] | | | | |
| | | | ! |
I | | i I |
| | | | | |
| |) | ! |
L Frame 07 1 Frame 03 Frame 05 | | Frame 09 |
________ e - -L_—___—__I—r-———— ____..__._J.1
| I
CPU Converter/ CPU Power Control =) :
Inverter and Regulators | |
Frame 08_ Frame 04 Frame 02 Frame 06 _: Frame 10 JI
tror Model 1H65, third
2365 Processor Storage,
Py S Model 2, can be either
[-+]
ol % % ": Frame 01 frame 07 or 09.
5|5 k1)]
oo Ojo

System Control Panel

Reading Board

Figure 1-2. System/360 Model 65 Layout »

12 (10/69)

SYSTEM DATA FLOW

The basic data flow in the System/360 Model 65 is shown
in Diagram 3-1, FEMDM. The multiplexed SDBO and SDBI
are the data paths between main storage and the CPU, and
between main storage and the I/O channels. These buses
transfer 64 data bits. (8 bytes or a doubleword) plus 8
parity bits on each main storage cycle. The BCU determines
which unit may access main storage according to a priority
scheme. The multiplexed SAB carries 21 address bits plus 3
parity bits from the highest-priority requesting unit to the
main storage addressing logic.

When storing data, the eight mark triggers determine
which bytes of the data placed on the SDBI are to be stored
into the doubleword addressed by SAB. When fetching
data, a doubleword of data is transferred, via the SDBO, to
the requesting unit from the main storage location ad-
dressed by SAB.

The bus-in and bus-out hnes between the I/O channels
and their attached control units are part of the Standard
I/O Interface, and transfer one byte of data at a time:

‘Each I/O channel has buffer registers which can receive
or transmit a doubleword of data between the I/O channel
and main storage, and which can receive or transmit a byte
of data at a time between the I/O channel and the attached
I/0O control units.

Parity checking throughout the system is at a byte level.

Main Storage

e Byte, eight bits, is format building block and basic
" addressable unit of information.

Halfword is two consecutive bytes.
Word is four consecutive bytes.

Doubleword is eight consecutive bytes.

Byte locations are numbered consecutively, starting with
0.

o Group of bytes is addressed by lowest-humbered (left-
most) byte.

o Data is fetched in doubleword lengths.
o Data is stored on byte basis.

o Store and fetch protection is provided for 2048 byte
blocks.

The byte, which consists of eight bits, is the basic building
block of all formats and the basic addressable unit of
mformation. A ninth bit, the parity bit, is transmitted with
each byte and establishes odd parity for each byte. The
parity bit cannot be affected by the program; its only
purpose is to cause a machine check interruption when a
parity error is detected. References to the size of data fields
and registers therefore exclude the associated parity bits.
All storage capacities are expressed in number of bytes
provided, regardless of the physical word size used.

Bytes may be handled separately or grouped together in
fields. A halfword is a field of two consecutive bytes; a
word, a field of four consecutive bytes; a doub/eword, a
field of eight consecutive bytes. The location of any field of

_bytes in main storage is specified by the address of its

lowest-numbered (leftmost) byte.

Byte locations in main storage are numbered consecu-
tively, starting with 0; each number is considered the
address of the corresponding byte. A group of bytes in
main storage is addressed by the lowest-numbered (left-
most) byte of the group. The CPU can accommodate binary
addresses up to 24 bits long, thus providing addresses for up
to 16,777,216 bytes. Addresses 0 through 4095 can be
generated without a base address or an index. This property
is important when the program status word (PSW) and
general register contents must be preserved and restored
during program switching. Thus this area has special
significance to supervisor programs and contains all perma-
nent storage assignments, such as old PSW’s, new PSW’s,
channel address word, channel status word, and the interval
timer value (Table 1-1).

The available storage is normally contiguously address-

able, starting at address 0. An addréssing program interrup- -

tion occurs when addressing beyond the maximum available
capacity of the installation. Except for a few instructions, .
the interruption occurs only when attempting to use the
data and not before.

Each time a storage unit is accessed by the CPU or 1/O
channels, information is either stored into or fetched from
that storage unit. When a storage request is received via the
BCU, core storage performs a read/write storage cycle. If a
fetch operation is to be performed (‘store’ latch reset), the
addressed doubleword from the core array is gated to the

~ memory. data registers (MDR’s), a pair of 32-bit registers

which serves as a buffer. The output of the MDR’s is gated
to the SDBO and to the write circuits of the core array to
be regenerated into the addressed doubleword location of
main storage. The SDBI is blocked so that data is not
entered into main storage.

If a store operation is to be performed (‘store’ latch set),
the SDBO 'is blocked, and the data on the SDBI is
accompanied by one or more mark signals on the mark bus.
There is a mark line for each of the eight SDBI bytes..
Presence of signals on these lines indicates which bytes are
to be replaced in core storage. Thus data can be stored
selectively by bytes; a single store operation can replace up
to eight bytes in storage at the address designated by the
SAB. Although the SDBO is blocked, the addressed
doubleword from the core array is gated to the MDR’s.
There, those bytes that do not have a corresponding mark
line active (those bytes to be regenerated) are combined
with the bytes on the SDBI that have a corresponding mark
line active (indicating new data). The contents of the
MDR’s are then transferred to the write circuits and placed
into the addressed doubleword location of the core array.

2065 FETOM (9/68) 1-3

Instructions that involve fetching and subsequent storing
of data do not necessarily take storage accesses consecu-
tively; it is possible for a channel to take one or more
intervening accesses. Only the Test and Set instruction

Table 1-1. Permanent Main Storage Assignments

Main Storage
Address
Dec Hex Length Information Stored
0o 0 Doubleword Initial pro_grérh loading
: PSW
8 8 Doubleword Initial program loading
Channel Command
Word 1.(CCW 1)
16 10 Doubleword Initial program loading
CCw 2
24 18 Doubleword External interruption,
- old PSW
32 20 Doubleword Supervisor call inter-
ruption, old PSW
40 28 Doubleword .Program interruption,’
old PSW
48 30 Doubleword Machine check inter-
y ruption, old PSW
56 38 | Doubleword 1/0 interruption, old
:) PSW
64 40 Doubleword Channel Status Word
(Csw)
- 72 - 48 Word Channel Address Word -
(CAW)
76 4c Word Unassigned
80 50 Word Timer
84 54 Word Unassigned
88 58 Doubleword External interruption,
new PSW
96 60 Doubleword Supervisor call inter-
ruption, new PSW
104 68 | Doubleword Program interruption,
new PSW
112 70 Doubleword Machine check inter-
ruption, new PSW
120 78 Doubleword 1/0 interruption, new
PSW
128 80 22 doublewords| Diagnostic log-out
area

1-4 (9/68)

takes a combination fetch and store access without permit-
ting any intervening accesses.

A storage protection capability is provided to protect
the contents of certain areas of main storage from-
destruction (store protection) or misuse (fetch protection).
Locations may be protected against store violations or
against store and fetch violations but never against fetch
violations only. Protection is achieved by dividing main
storage into 2048-byte blocks and assigning a five-bit

protection key to each block. The keys for the blocks are

contained in a separate small core array in the associated
storage unit. The low-order bit of the key in storage
designates whether the block is protected against fetches. If
this bit is a 0, no fetch protection is specified and only
store protection is provided. If this bit is a 1, protection

~applies to both storing and fetching. The key may be

assigned by the Set Storage Key instruction and mspected
by the Insert Storage Key instruction.

When protection applies to a storage reference, the key
in storage is compared with the protection key supplied by
the CPU or channel. Access is permitted only when the four
high-order bits of the key in storage match the supplied
protection key or when the supplied protection key is zero.

2365 Processor Storage

Two models of the 2365 Processor Storage unit (also
referred to as the High-Speed Storage or HSS) are available:
Model 1, which provides 131,072 bytes; and Model 2,
which provides 262,144 bytes. Both models have an
internal cycle time of 750 ns.

Each 2365 Model 2 Processor -Storage is organized into
even- ‘and odd-numbered doubleword storage areas. The

- access path to these areas is through a shared interface

which allows the BCU to interleave even and odd requests;
ie., an odd request can be issued by the BCU halfway
through an even cycle, and vice versa. By interleaving
references to even-numbered and odd-numbered double-
words in main storage, the effective storage cycle ap-
proaches one half the cycle time for the unit. As a
maintenance aid, the interleaved mode can be defeated to
allow operation of a program solely in the odd or even area
of storage.

- 2361 Core Storage (Optional)

The overall storage capacity of the system may be increased
by means of the 2361 Attachment feature. This feature
provides bulk, direct-access core storage through the attach-
ment of up to four 2361 Core Storage Units (also referred
to as Large Capacity Storage or LCS). Two models are
available: Model 1, which has a storage capacity of
1,048,576 bytes; and Model 2, which has a capacity of
2,097,152 bytes. Either one 2361 Model 1 or up to four
2361 Model 2’s may be attached if interleaving is not
utilized; with interleaving, either two 2361 Model 1’s, or
two or four 2361 Model 2’s may be attached.

Eight bytes are accessed per storage cycle. Read access
time is 3 usec; a read/rewrite storage cycle requires 8 usec.
If interleaving is utilized, the LCS units are attached to the
system in pairs, and the addressing assignment is split so
that one unit contains all odd addresses and the other all
even. Thus, these units can be addressed on an interleaved
bias to “achieve a sequential access rate of 4 usec per
doubleword.

2065 Central Processing Unit

The 2065 CPU performs arithmetic, logical, and control
instructions specified by a stored program. It contains
facilities for addressing main storage, processing fixed-
point, floating-point, and decimal arithmetic, operating on
logical data, sequencing instructions in the desired order,
and initiating I/O operations. Also provided are facilities for
character-handling, processing of fixed-length and variable-
field-length (VFL) data, indexing, and indirect addressing.
Functionally the CPU can be divided into four major
sections: control, BCU, instruction fetching, and instruc-
tion execution.

Control Section

The basic CPU clock cycle period is 200 ns. A clock signal
generator provides a S-megaHertz (5-mHz) symmetrical
(100-ns clock and 100-ns not-clock portions) signal. To
provide additional time for CPU logic functions, the
symmetrical clock signal is modified to give a- 5-mHz
unsymmetrical (80-ns clock and 120-ns not-clock portions)
signal. Clock distribution logic distributes and synchronizes
the clock signals to the logic gates, and stops distribution of
clock signals to most of the CPU processing logic upon
detection of a machine check during certain operations.

" A significant feature of the CPU is the read-only storage
(ROS) used to control operations. The' ROS contains a
permanently recorded microprogram holding information
that remains fixed during machine operations. The informa-
tion is in the form of 100-bit words, each word containing a
~ unique, predetérmined bit pattern. When decoded, the bits
control gates to route data in the CPU. Word access time is
approximately 95 ns. The information can be read out as
required, but a physical modification is necessary to change
the stored information. In general, a control word is read
out from ROS at the end of each machine cycle (200 ns)
and controls the CPU during the following machine cycle.
Each ROS word contains the address of the ROS word to
control the CPU during the following cycle. The number of
control words (and machine cycles) required to perform a
particular operation may vary because both the individual
functions and the address of the next ROS word are
modifiable by the (1) operation in progress, (2) data or
control bit configuration, and (3) detection of interruptions
-or exceptional conditions. Used as a control device, ROS

eliminates the need for most complex. instruction decoders
and sequencing networks.

The Program Status Word (PSW), a doubleword, con-
tains the information required for proper program execu-
tion. Primarily, the PSW controls instruction sequencing
and holds the system status in relation to the program being
executed. By storing the PSW, the program can preserve the
status of the CPU for subsequent analysis. By loading a new
PSW or part of a PSW, the state of the CPU may be
changed.

Bus Control Unit

The main storage associated with a system is shared by the
CPU and I/O channel. A main storage address bus (SAB)

- and two main,storage data buses (SDBI and SDBO) are also

common to the CPU and I/O channel. The BCU, located in
the CPU, monitors and controls the availability of these
buses and selects the main storage area to be used. Storage
requests (stores and fetches) generated by the CPU and I/O
enter the BCU, are processed by means of a priority
scheme, and are executed when the requesting unit is
granted priority. When there is a conflict between the CPU

_ and an I/O channel wanting to use main storage, the BCU

gives priority to the channel. Priority between channels is
also preassigned, with channel 1 having highest priority,
followed by channels 2, 0, 3, 4, 5, and 6. When the CPU
cannot access main storage because of a channel, the CPU
clock is stopped until main storage is available to the CPU.

Each unit requiring access to main storage issues a
request to the BCU via a separate (simplex) control line.
The BCU examines the control lines from each unit,
establishes which unit should be granted access to main
storage for the particular cycle, and generates response
signals for that unit. These response signals control the
placing and sampling of data on the common bus. Access to
main storage for a particular unit is granted by the BCU on
a cycle-to-cycle basis, and all units again compete for the
subsequent storage cycle.

The CPU operates on a basic cycle of 200 ns while the
main storage cycle time is 750 ns. To increase processing
speed, the CPU overlaps, whenever possible, storage re-
quests for new data with processing of the existing data
within its buffer registers.

Instruction Fetching Section

An instruction buffer, the Q-register, provides buffering for
eight instruction bytes (four halfwords), thus reducing the
number of storage requests that must be made to fetch
instructions from main storage. Associated with the Q-
register is the R-register. It holds the halfword (two bytes)
containing the op code, received from the Q-register, of the
instruction to be executed next. As a result, the R-register
allows overlapping of instruction fetching with the refilling

2065 FETOM (9/68) 1-5

of the Q-register. The E-register holds the halfword contain-

ing the op code of the instruction being presently executed.’

- The instruction op code is used to address the ROS, which

provides the required microprogram for execution of a

spemflc instruction.
An. interruption capablhty permits the CPU to change

state automatically as a result of conditions arising outside

the system, in I/O units, or in the CPU. An interruption
- switches the CPU from one program to another by changing
the instruction address; the interruption cause and all
essential machine status information are stored for analysis
in a program status word. This information is available to
the system as required. When a different program is
requested, the status information about the current pro-
gram is stored temporarily and is retrieved when that
program is to be continued. This facility allows interrupted
programs to resume at the point of interruption without
the loss of control conditions.

Before an instruction is executed, it is tested for odd

parity. The op-code halfword is tested in the E-register. The
remaining halfwords, if any, are tested by the parallel adder
half-sum checking circuits as the effective address is
calculated.

Instruction Execution Section

The CPU operates on a basic internal cycle time of 200 ns.

- The data flow (Diagram 3-2, FEMDM) utilizes two major
working registers (ST and AB) to give increased speed and
simplified implementation of the instruction set. The 60-bit
parallel adder is the focal point for most data transfers and
facilitates handling the full long fraction in floating-point
operations. An eight-bit serial adder provides simultaneous
execution of. the floating-point exponent as the fraction is

- operated on in the parallel adder, and has the capability of
executing decimal arithmetic and VFL instructions.

The CPU extracts from the doubleword fetched from
main storage -the bytes on which it will operate. Thus,
storage accesses are not required for every byte. As a result,
processing -speed is increased and system performance is

- improved. Data may be stored, however, on a byte basis;
any number and combination of bytes up to 8 (double-
word) can be stored in one storage cycle. Addresses for data
are formulated in the arithmetic section of the CPU and
then placed in the D-register for addressing main storage.
The D-register is also used for addressing I/O devices on I/O
instructions.

The CPU incorporates a local storage of 25 word-length

registers: 16 word-length general-purpose registers for fixed-
point operations; 4 doubleword length (8 word-length)
floating-point registers for floating-point operations; and 1
word-length register, called the working register, for miscel-
laneous operations. Local storage serves two functions: (1)
it is used in generating operand addresses in main storage
and (2) it holds operands and intermediate results of data
operations, thus eliminating the need for special-purpose

1-6 (9/68)

registers, such as accumulators. Local storage employs
nondestructive readout, eliminating the need for regenera-
tion, and operates on a 200-ns cycle with an 80-ns access
time. :

In the CPU, checking is facilitated by providing a parity
bit for each byte of data. Odd parity is maintained. A
parity check is made on data transferred to and from main

‘storage. Most data transfers within the CPU are made via

the parallel adder, in which the parity of each operand byte
is checked against the half-sums. The parity of the sum,
which is not a function of the parity of the operands but is
generated logically within the adder, is checked agamst the
latched sum.

- As programs are executed, they are checked for correct
instructions and data. This monitoring action identifies and
separates program errors and machine errors. Because each
type of error causes a unique interruption, program errors
cannot create machine checks (errors).

~ Input/Output

e I/O section consists of devices, control units, channels.

e I/O operations are initiated by CPU and thereafter are
performed independently of CPU.

Use of the I/O devices by the system is referred to as an I/O
operation. The basic I/O operations are reading, which
transfers data from an I/O device to main storage, and
writing, which records at an I/O device data received from
main storage.

The operation of a spec1flc 1/0 dev1ce is governed by a
control unit (Diagram 3-1, FEMDM) which provides control
unique to its attached devices. The control unit may be a
part of the I/O device or may be shared by a number of

.devices and be a separate logical entity. Besides controlling

the operations of specific I/O devices, the control unit
makes all I/O devices appear identical to the channel.

All 1/O devices are connected, via their control units and
the Standard I/O Interface, to the I/O channels. Each
channel provides the logic necessary for synchronizing I/O
data cycles with those of main storage and exerts pro-
grammed control over operations of the I/O devices
connected to it. Logically, the channel can be considered as
an autonomous entity provided for transferring information
between 1/O control units and main storage under control
of the CPU.

In the System/360 Model 65, the channels interface
directly with the CPU, providing a path for the exchange of
system control information. This connection is used by the
CPU to start and monitor a channel program, and by the
channel to alert the CPU of the progress and termination of
I/O operations. A BCU-controlled connection between the
channel and main storage provides a path for the channel to
fetch and store data, as well as channel command words
that supplement the direct communication between the
channel and the CPU.

Lengthy I/O operations (such as reading and writing) are
‘executed in parallel with the CPU operations. The CPU
need only initiate an I/O sequence by issuing an instruction
to the channel. Thereafter, the channel establishes the
address of the first channel command word for that
sequence, establishes connection with the required I/O
device, and verifies -that the operation designated by the
CPU can be executed. Once the device is started and the

channel is set up to execute its commands, the CPU is
released. Several commands can be chained, creatmg an I/O :

program for the device. -
Main storage cycles are requued during I/O operations to
transfer data to or from main storage. These cycles do not

interfere with CPU operations, except when both the CPU
and the channel concurrently attempt -to access main
" . storage. . .

- Channel , : .
After the operation with the device is initiated, the channel

assembles or disassembles data and synchronizes the trans-

fer of data bytes with main-storage cycles. To transfer data,
the channel maintains and updates an address and a count
that describe the destination or source of data in main
storage. Data is transferred between main storage and the
“channel eight bytes at a tlme and between the channel and
the control unit one byte ata tlme

Modes of Operation. Data can be transmitted between main
storage and an I/O device in two modes: burst mode and

multiplex mode. :
In the burst mode of operation, a dev1ce monopohzes
the channel and stays logically connected to the channel for

transmission of a burst of information. The burst <can
consist of a number of bytes, a block of data, or a sequence

of blocks with associated chained commands. Only one I/O
device can communicate with the channel during the time a
burst is transmitted.

In the multiplex' mode. of operation, the channel
facilities are shared by a number of concurrent I/O
operations. All I/O operations are split into short intervals
of time during which only a segment of information is
transmitted over the interface. The intervals associated with
different operations vary in response to demands from the
I/0 devices. The channel controls are occupied with any
one operation only for the time required to transmit a
segment of information. The segment can consist of a byte

of data, a few bytes of data ora control sequence such as

the initiation of a new operation.

Operation in burst and multiplex modes is distinguished
by the way the channels respond to I/O instructions. A
channel operating in the burst mode appears busy to new
I/O instructions. A channel operating in the multiplex
mode appears available to new I/O instructions.

- Types of Channels. Highlights:

e Model 65 can accommodate two types of channels:
selector channel, which operates in burst mode; multi-
plexer channel, which can operate in either burst or
multiplex mode.

e Model 65 can utilize up to six selector channels
(addresses 1 through 6) and one mu1t1p1exer channel
(address 0).

A" model 65 can be eqmpped with two types of channels:
2860 Selector and 2870 Multiplexer. The channels are
classified according to the modes of operation they: can '
sustain.

The channel facxhtles required for sustaining an I/O
operation are termed a subchannel. The subchannel consists
of the channel ‘storage used for recording the addresses,
count, and any status and control information associated

- with the I/O operation. The mode in which a channel can
operate depends upon whether it has one or multiple

subchannels. _

The 2860 Selector channel has only one subchannel and
operates only in the burst mode. The bursts extend over the
whole block of data, or, when command chaining is
specified, over the whole sequence of blocks. The selector
channel cannot perform any multiplexing and, therefore,
can be involved in only one data transmission operation ata

. time. Once a data transfer is initiated, a logical connection

is established between the selected I/O device and the

“channel. This connection persists for the duration of the
~ operation, and other I/O devices cannot communicate with
* the channel. In the meantime, however, other I/O-devices
-attached to the channel can execute operations that do not

involve communication with the channel. The selector
channel keeps scanning I/O devices for interruption condi-
tions when it is not executing an operation or a chain of
operations. A maximum of six selector channels may be
attached to a 2065; their addresses are 1 through 6. A 2860
Model 1 contains one selector, channel; a 2860 Model 2
contains two; a 2860 Model 3 contains three.

The 2870 Multiplexer channel is intended primarily for
operation with lower-speed devices. It contains multiple

_subchannels and can operate in either multiplex or burst

mode: It can switch between the two modes of operations
at any time, and an operation on any one subchannel can
occur partially in the multiplex and partially in the burst
mode..)

When the multiplexer channel operates in the multiplex
mode, it can concurrently sustain one I/O operation per

" subchannel, provided that the aggregate data rate does not,

exceed the capacity of the channel. Each subchannel
appears to the program as an independent selector channel.
When the multiplexer channel is not servicing an I/O device,

‘it keeps scanning its devices for data and for interruption -

conditions.

2065 FETOM (9/68) 1-7

When the multiplexer channel operates in the burst
mode, the subchannel associated with the burst operation
monopolizes all channel facilities and appears to the
program as a single selector channel for the duration of the
burst. The remaining subchannels .on the multiplexer
channel remain dormant and resume communicating with
1/O devices when the burst is completed. v

One 2870 Multiplexer channel may be attached toa
2065, and its address must be 0.

Control Units

The control unit is the buffer between the I/O device and
the channel. It adapts the characteristics of the device to
the standard form of control provided by the channel. A
- control unit may be housed separately or it may be
physically and logically an integral part of the device. The
control unit accepts control signals from the channel,
controls the timing of data transfer to the channel, and
*provides indications of device status.

Except for the signal used to establish pnonty among
control units, all communication to and from the channel
occurs over a common bus, and any bus signals provided by
the channel are available to all control units. At any instant,
" only one control unit is logically connected to the channel.
Selection of a control unit-for communication with the
channel is conirolled by a signal that passes serially through
all control units and permits each control unit to respond
sequentially to the signals provided by the channel. A
control unit remains logically connected to the channel
 until it has transferred the information it needs or has, or
until the channel signals it to disconnect.

Up to eight control units (limited by electrical considera-
tions) can be connected to one channel.

1/0 Devices

The I/O devices consist of auxiliary storage as well as
equipment used to communicate with the system users. The

auxiliary storage includes direct-access devices such as disks

and drums, as well as sequential-access devices such as
magnetic tape units and punched card equipment. The
equipment used to communicate between the system and
its users includes a wide range of devices: printers, visual
display units, keyboards, and communication terminals. Up
to 256 directly addressable devices (limited by addressing
facilities) can be attached to one channel.

Multisystem Configurations
@ Multisystem consists of two or more interconnecting
systems, each with a CPU.

e Multisystem can be achieved by:
1. Channel-to-Channel Adapter
2. Transmission Control Unit
3. Two-Channel Switch Feature

1-8 (9/68)

4. Device Switching Unit
‘5. Shared LCS Feature
6. Direct Control Feature
7. Multisystem Feature

- A multisystem consists of two or more systems, each with a

CPU, that can communicate with each other without
manual intervention. Thus, in addition to their specialized
jobs, the individual systems may pool resources to perform
a common job.

A multisystem configuration consists of two CPU’s with
a complement of storage and I/O equipment. This equip-
ment is shared by the CPU’s, but is considered to. be
logically independent if the CPU’s are interconnected by
well-defined interfaces so.that they can, upon reconfigura-
tion, operate without communicating with each other.
Examples of logically independent system components are
storage units, CPU’s, I/O control units, and I/O devices.

Although logically independent, ‘these system com-
ponents may still be physically dependent because they
share common equipment. Communication between the
CPU’s of a multisystem may be achieved by transmitting
information from one CPU to another through a connecting
link or by giving them access to a shared storage medium.

_Figure 1-3 shows, in simplified form, the major com-

"ponents of a single, or simplex, system. A multisystem

configuration can be achieved by the following: .
1. Channel-to-Channel Adapter. Allows connecting the 1/O
interfaces of two channels (Figure 1-4). The main
purpose of the channel-to-channel adapter is to make
each channel appear as a control unit to the other
channel. Transmission of data between the two channels

| A | S "
| : | }
Storage : : Storage | : Storage 7y -
]
S Lo
______________ .l._____________._.___x_______.e
CPU
I - 3
4
Channel Channel
I R
===
Control Control
Unit Unit
e —— .
——————————————— .
’———J-—--'
i
Device Device |
|
S —|

Figure 1-3. Functional Structure of a Simplex System

Figure 1-4. Channel-to-Channel Adapter as Multisystem Connector

is by byte at a rate established by the two channels.
Because of the standardization of the I/O interface, this
adapter may connect any model of the System/360 to
any other model, and may use any type of channel on a
given model. Any number of channel-to-channel
adapters may be used in a multisystem, but their main
function is in a multisystem emphasizing medium
reconfiguration time or equipment specialization.

. Transmission Control Unit. Permits communication by
private line or common carrier. As indicated in Figure
1-5, communication is established by a specialized device
interface rather than via the channel interface. The rate
of data transmission is determined mainly by the line
capacity. Any two models of System/360, as well as
those of any other system, can be connected. The major
multisystem application of the transmission control unit
is for geographically separated computers.

. Two-Channet Switch Feature. Permits sharing of control

unit. When two or more CPU’s have access to a common -

file, information placed into the common file by one
CPU can be read by another. In contrast to transmission,
sending and receiving are not simultaneous, and a
one-to-one relation between recording and retrieval is
not necessary. The choice of the shared media is
determined by access time, capacity, and cost per bit.
Shared devices are useful for program restarting informa-
tion for job recovery upon reconfiguration. Disks,
drums, and tape units ‘may be pooled for storage of
system programs as well 4s a means of communication
between specialized CPU’s to achieve improved turn-
around time. Because a control unit normally controls
several disk files, drums, or tape units, a switch between

. ————

r 1 r | r 1
| | | : |) | . B I
: Storage : Storage Storage l Storage § : Storage = Storage Storage : Storage |
g | | - 1 |
L__.,-——J L_._.,___J — - - |___.T.'___|
1]] 3
e e N L) ey e — B aadat {
CPU CPU CPU CPU
S —— e e T e R .
]
[- et S sty L=
: Channel-to-- : | |
1 Channel Channel |~ Channel 1 Channel Channel 1 Channel | Channel Channel Channel :
] Adapte]
(. —J aprer e 4 b —— - | J
t——————— . eme———— - a__--_'r'__—_—_-' _____ ___—r__—'e
| - 1
L~ ~————=1 ’_""_‘1' +
Control Control Control Control | Control § Transmission Transmission Control
Unit Unit Unit Unit] Unit : Centrol Unit Control Unit Uit
_____ - - [— -
| 1
e e ! !
Ll . 5 I Common Carrier |
et == _-_} | |
! Lo
Device Device Device Device : r _} r -{
e e o e o e ’ -J : Device : : Device :
’ | | | . i
_—————— — | S -

Figure 1-5. Transmission Control Unit as Multisystem Connector

a channel and a control unit allows efficient sharing of a
control unit by two CPU’s (Figure 1-6).
4. Device Switching Unit. Tape units or other I/O devices
are shared between control units (Figure 1-7), rather
than control units being shared between channels as in
Figure 1-6." This choice permits pooling of tape units
between control units and permits simultaneous opera-
tion of any combination of tape units. This logical

r—] == a
i | | 1
: Storage : Storage Storage : Storage :
| 1
b0 L
i 1
a.____.J_ _____ e L S —— _|__.__..e
CPU CPU
pomm e m] e SEE!
r_—L_—'l r——=——q
|]

: Channel : Channel Channel Channel
L ! _
fomm e s SEEEE
r——t——" - ! ittty
: Control = Control Control Control

1 Unit l Unit Unit Unit

L _____ -+ e e e o — -

e | e

g

r—————n —_—

] |

: Device : Device Device Device

! 1

e = : —d

Figure 1-6. 2-Channel Switch Feature as Multisystem Connector

2065 FETOM (9/68) 1-9

ree=— - = !
[I | I
: Storage = Storage Storage } Storage ~ |
L_._.T___l F__T_-J
e.___.J._.__.____.____ ________ _L_'_.__-_e -
CPU CPU
e oo N SR ===
re—dt=— [(—————"
!] [[

{ Channel : Channel Channel : Channe! =
R | | ISR |
e oo
r=———=—= —

. I Control = Control . Control = Control |
| Unit | Unit * Unit | Unit :
_____ J I
e —em—— - ro==q
F——t—-=n . l_._.....l.___i
| | | |
| Device : Device Device : Device :

|
L - | . .

Figure 1-7. Device Switching Unit as Multisystem Connector

ability increases the thruput of a multisystem, as well as
providing a common file. For example, the sharing of
any pair of tape drives by two control units improves the
sorting time significantly.

5. Shared LCS Feature. LCS can be shared by two CPU’s
(Figure 1-8). When one program is executed by different
CPU's, it is desirable to have the locations of instructions
and data located in identical addresses in every CPU.
This addressing convention is adopted in System/360 for
multisystem operation. This application of shared

r —_-i i '
: 2361 | 2361 2361 [2361 |
Lo ! LCS Lcs . } LCS :
IR L.__.:.___J
pmm b ey
CPU CPU
?'____T _____ -7 "______T-_"_'l’
b r——+t-=q
|] : |
: Channel : Channel Channel | Channel |
[[1 |
b - b —— J
i e T 1
re—t——n ==
: Control : Control Control Control :
“ 1 Unit : Unit Unit Unit |
|
(N J L —— d
s e I SES s
—_——— ——— e
R 1
] Device : Device Device Device |
| I |
b ——. | e ————— J

Figure 1-8. Shared LCS Feature as Multisystem Connector

1-10 (9/68)

storage is mainly used in multisystems requiring a short
" reconfiguration time. .

6. Direct Control Feature. Communications between CPU’s
may be direct (Figure 1-9). Using the Direct Control
feature, control signals and one byte of control informa-

- tion- are transferred without waiting for recognition.
(The F- and G-registers in the 2065 are used by the Read
Direct and Write Direct instructions, respectively.) This
multisystem connection, unlike those previously de-
scribed, does not lend itself to the transfer of large
amounts of data. :

7. Multisystem Feature. Any one or any combination of
the foregoing interconnection methods results in a
multisystem. However, the most sophisticated method
of interconnecting two Model 65’ utilizes the Multi-
system feafure to form the Multiprocessing System/360
Model 65 (Figure 1-10). 2365 Processor Storage Model
13 units are used,.the CPU’s are equipped with the
Multisystem feature (with the Direct Control feature as a
prerequisite), and most of the control units are equipped
with the Two-Channel Switch feature. Any of the other
interconnection methods, (except the Shared LCS fea-
ture) may also be incorporated. The Multiprocessing
System/360 Model 65 and the Multisystem feature are
described in Chapter 4, Section 2.

The interconnection methods described above are not
always used to form a multisystem. A single system can also
effectively make use of:

1. Channel-to-Channel Adapter feature.

2. Transmission control unit.

3. Two-Channel Switch feature.

4. Device-switching unit. .
5. Direct Control feature (connected to an external device).

F————- - - A
i I ! I
: Storage = Storage Storage | Storage :
|
L d (I - J
a.____ll_._______._'_ ek -
CPU X CPU
Fom o= m e e S
[|
: Channe! ' Channel Channel = Channel :
| I —— e 4
e N .
rm——t——- i = A
I Control Control Control I Control |
: Unit Unit Unit I Unit :
b — - b — -
pm e e
r - r.._—J- —_-i
!] !
: Device Device Device: | Device |
| |
S — J

Figure 1-9. Direct Control Feature as Multisystem Connector

. 1 T
| Storage : Storage Storage | Storage |
| @3s-13) i (2365-13) (2365-13) = (2065-13) !
it o a ISP |
R [N S BN 4
b e J
o |]
—_// \;_
prmmmp = e .
—_—— [PONNE R T —
r= S
| Channel Channel - Channel 1 Channel :
| 1
L - T 4
e'—_""'_'r___— -~ TTTTT == T—_-_'?
—— e ——d
: | |
| Control Control Control t Contrel -1
: Unit Unit Unit : Unit :
L _n [—
R e e
r——t—— —_——————
1 : [!
: . Device 1 Device Device II Device :
[} | [} 1
b —— -] | S -

Figure 1-10. Multiprocessing System/360 Model 65

2065 FETOM (9/68) 1-11

Section 2. System Coding

To understand the operation of the CPU, it is necessary to
become familiar with the system coding. Accordingly, this
section discusses: (1) the hexadecimal (hex) number sys-
tem, (2) the 8-bit zoned character codes, (3) the instruction
formats and operand designations, and (4) the various data
formats.

HEXADECIMAL NUMBER SYSTEM

@ System uses 16 symbols: 0—9, A—F.

® Base of system is 16.

o System is shorthand notation for binary numbers.

e Four binary bits are represented by one hex symbol.
e Byte is represented by two hex symbols.

Binary numbers have approximately 3.3 times as many
terms as their decimal counterparts. This increased length
presents a problem when talking or writing about binary
numbers. A long string of 1’s and 0’s cannot be effectively
spoken or read. A shorthand system is necessary, one that
has a simple relationship to the binary system and that is
compatible with the basic eight-bit byte used in the CPU.
The hexadecimal (hex) number system meets these require-
ments.

The hex system has 16 symbols: 0—9, A—F. Counting is
performed as in the decimal and binary systems. When the
last unique symbol (F) is reached, a 1 is placed in the next
position to the left and counting resumes with a O in the
original position, as follows:

0 10 20 AO0
1 1 21 A1l
2 12 22 A2
3 13 23

4 14

5 15

6 16 and so on
7 17

8 18

9 19

A 1A 9A

B 1B 9B

C 1Cc 9C

D 1D 9D

E 1E 9E

F 1F 9F

1-12 (9/68)

One hex symbol can represent four binary bits. Thus the
8-bit binary byte, in turn, can be represented by two hex
symbols. The relationship between the hex, binary, and
decimal systems is as follows:

Hex Binary Decimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010 10
1011 1
1100 12
1101 13
1110 14
111 15

QOO NDODOGODHWN=0O

TMOOWPOAOANDADNWN = O

The important relationship to remember is that four
binary positions are equivalent to one hex position.

Hex numbers are represented in the same manner as
decimal and binary numbers, except that the base is 16.
The terms of the number represent the coefficients of the
ascending powers of 16. For example, consider the hex
number 257 (decimal equivalent equals 599):

257 = (2x 162) + (5 x 161) + (7 x 160)
= (2 x 256) + (5 x 16) + (7 x 1)
=512+80+7

=599,

EIGHT-BIT ZONED CHARACTER CODES

All I/O devices requiring a zoned character code use either
the Extended Binary-Coded-Decimal Interchange Code
(EBCDIC) or the USA Standard Code for Information
Interchange extended to eight bits (USASCII-8). The
EBCDIC and USASCII-8 codes for the hex characters 0—F
are listed below. For charts showing the complete EBCDIC
and USASCII-8 codes with associated graphic characters,
refer to the SRL, /BM System/360 Principles of Operation,
Form A22-6821-6. The codes do not have a symbol defined
for all 256 eight-bit codes. To represent codes that do not

. have a defined symbol, two hex terms (representing four
bits each) may be used instead of the eight-bit code.

Hex Printed EBCDIC USASCII-8
Code " Graphic Code Code

0000 0 1111 0000 0101 0000
0001 1 1111 0001 0101 0001
0010 2 1111 0010 0101 0010
0011 3 1111 0011 0101 0011
0100 4 1111 0100 01010100
0101 5 1111 0101 01010101
0110 6 1111 0110 0101 0110
0111 7 1111 0111 01010111
1000 8 1111 1000 0101 1000
1001 9 1111 1001 0101 1001
1010 A 1100 0001 1010 0001
1011 B 1100 0010 1010 0010
1100 c 1100 0011 1010 0011
1101 D 1100 0100 1010 0100
1110 E 1100 0101 1010 0101
11 F 11000110 1010 0110

INSTRUCTION CODING

The Model 65 uses the Universal instruction set, which
enables the CPU to execute fixed-point, floating-point,
decimal, logical, branching, status switching, and I/O

instructions. Two more status switching instructions, Read .

Direct and Write Direct, may be implemented- by installing
the Direct Control feature.

The Universal instruction set uses five instruction
formats: RR, RX, RS, SI, and SS. Operands are designated
as first, second, or third operands. For addressing purposes,
the operands are grouped into three classes:

1. Effectively addressed operands in main storage.
2. Immediate operands in the instruction format.
3. Operands in local storage (LS).

Instruction Formats

e Five instruction formats are available: RR, RX, RS, SI,
and SS.

e Halfword is basic building block for instruction.
e Instructions are made up of 1, 2, or 3 halfwords.

e First halfword contains 8-bit op code and, depending on
format:
4-bit LS address for operand, or operand address
component. '
4-bit mask.
8-bit immediate operand.
4-bit or 8-bit length fields.

e Second and third halfvlvords contain:
4-bit LS address for operand address component.
12-bit displacement.

Five instruction formats are available, denoted by the
format codes RR, RX, RS, SI, and SS. The format codes
express, in general terms, the operation to be performed.
RR denotes a register-to-register operation; RX, a register-
to-indexed-storage operation; RS, a register-to-storage
operation; SI, a storage and immediate-operand operation;
SS, a storage-to-storage operation. The Universal instruction
set for the Model 65 may be divided into seven classes; the
breakdown by format is as follows:

Instruction Class Format
Fixed-Point RR, RX, RS
Floating-Point RR, RX

Decimal SS

Logical RR, RX, RS, SI, SS
Branching RR, RX, RS

Status Switching RR, Sl

/0 SI

The basic unit of length for instructions is the halfword,
consisting of two bytes. The length of an instruction format
can be 1, 2, or 3 halfwords. It is related to the number of
initial main storage references necessary for the operation.
An instruction making no reference to main storage (RR)
consists of one halfword; an instruction making one
reference (RX, RS, or SI) consists of two halfwords; an
instruction making two references (SS) consists of three
halfwords. All instructions must be located in main storage
on an integral boundary for halfwords. The five formats are
shown in Figure 1-11.

For purposes of describing the execution of instructions,
operands are designated as first, second, or third operands,
referring to the manner in which the operands participate in
the operation. The operand to which a field in an
instruction format pertains is denoted by the number
following the letter designation of the field; for example,
the R1 field is the address of an LS register containing the
first operand; R2, the second operand.

As shown in Figure 1-11, the first halfword of each
format consists of two parts. The first byte contains the
operation code (op code), which identifies the operation to
be performed. Bits Q and 1 specify the format, bits 2 and 3
specify the class of instruction, and bits 4 through 7
identify the instruction within the class. The second byte of
the first halfword is used as either two four-bit fields or a
single eight-bit field. The fields and the information
contained within the fields are as follows:

1. R1, R2, and R3: four-bit address of an LS register
containing the first, second, and third operands, respec-
tively.

2065 FETOM (9/68) 1-13

I First Halfword - I Second Halfword

Third Halfword

RR | OpCode |RLA7| R2t [!
IO 78 ni2 |5l I I
| [[

Rx | opcede [RLgfj| x2 | B2 | D2 |
lo 78 n2 15 16 19 20) 31 I

| | |

|] I |

RS | Op Code R1 R3 §| B2 D2 |

1] 78 . N2 15 16 19 20 3

| 1 i |
sl | opcode | 12 #| Bl | DI |

|0 78 15 I“ 19 20 3ll]

' o ! |

| —_— | |

s | OpCode | L1 | 2] B | D1 B2 | D2 |

0 78 nNi2 - 151 19 20 3132

t Not used in some instructions.

Figure 1-11. Instruction Formats

. M1: four-bit mask used in some branching instructions.

. X2: four-bit address of an LS register containing the
index value used in generating the effective second
operand address. : .

. 12: eight-bit byte of immediate data (second operand).

5. L1 and L2: four-bit length (up to 16 bytes) of first and
second decimal VFL operands, respectively.

. LL: eight-bit length field (up to 256 bytes) for logical
VFL operands.

The second and third halfwords always contain the same
information: a four-bit address of an LS register containing
the base value to be added to the following 12-bit
displacement field.

Operand Addressing

For addressing purposes, operands are grouped into three
classes: (1) effectively addressed operands in main storage,
(2). immediate operands in the instruction format, and (3)
operands in LS.

Effectively Addressed Operands
e Operands are either fixed-length or VFL.

Fixed-length operands are located on integral boundary.
Length of VFL operand is specified by L or LL field.

L and LL fields denote number of bytes to right of
addressed byte.

Effective operand address is sum of 24-bit base address,
12-bit displacement; and 24-bit index value.

Base address and index value are located in LS.

e Displacement is located in instruction format.

114 (9/68)

3536 47

An effectively addressed operand is selected from a main
storage location not related to the location of the instruc-

tion referring to it. It is specified by means of a main

~ storage address. When the operand consists of more than

one byte, the address gives the location of the first byte;
subsequent bytes are located in the next-higher addressed
byte locations. Both the first and second operands of an
instruction can be effectively addressed.

Effectively addressed operands can be of either fixed
length or variable field length. The length of VFL operands,
in terms of the number of bytes to the right of the
addressed byte, is specified by the L or LL field of the
instruction. The LL field can be eight bits long and thus can
specify a maximum operand field length of 256 bytes.

In the instruction format, an effectively addressed
operand is specified by a base address, a displacement, and,
in some cases, an index value. The base address and the
index value are contained in LS general-purpose registers
addressed by the B and X fields, respectively, of the
instruction. The registers contain 32 bits, the low-order 24
of which constitute an unsigned address component (base
address or index value). The high-order eight bits of the
register are ignored. The 24-bit base address is included in
every address computation. The 24-bit index value is
included in the address computation as specified by the RX
instruction format. -

The displacement value is a 12-bit number contained in
the D-field of the instruction. It is included in every address
computation. The displacement provides for relative ad-

dressing up to 4095 bytes beyond the base address.

In computing the effective operand address, the base
address and the index value are treated as 24-bit positive
binary integers having no sign position. The displacement is

similarly treated as a 12-bit positive binary integer. The
three numbers are added. Because every operand address
includes a base address, the sum is always 24 bits long. Any
overflow above the 24 low-order bits of the sum is ignored,
causing a lower address to be generated. If this lower
address is above the maximum available storage, an address-
ing program interruption occurs. If the lower address is
available the CPU accesses that location.

An instruction may contain zeros in the B, X, or D field.
In the case of the B and X fields, a zero does not denote the

Operands in Local Siorage

o LS registers are addressed by four-bit R-field in instruc-
tion format.

" @ LS GPR’s are addressed 0—15.

address of LS general-purpose register 0, but indicates that .

base and index values of zero are to be used in generating
the effective operand address. Similarly, a D field of zero
indicates a displacement of zero.

Fixed-length fields, halfwords, words, and doublewords;
must be located in main storage on an integral boundary for
that length field. A boundary is called “integral” for a field
when its storage address is a multiple of the length of the
field in bytes (Figure 1-12). For example, words (four
bytes) must be located in main storage so that their address
is a multiple of the number 4. A halfword (two bytes) must
have an address that is a multiple of 2, and doublewords
(eight bytes) must have an address that is a multiple of 8.

Main storage addresses are expressed in binary form.
Therefore, integral boundaries for halfwords, words, and
doublewords can be specified only by binary addresses in
which 1, 2, or 3 of the low-order bits, respectively, are zero
(Figure 1-12). Thus, integral boundaries for words are
binary addresses in which the two low-order bit positions
are zero; for example, 00000, 00100, 01000, and 01100.

VFL fields are not limited to integral boundaries, but
may start on any byte location.

Immediate Operands

Immediate operands are contained in SI instructions for
logical operations. They are one byte (bits 8—15) long,
serve as the second operand, and are designated 12.

e LS FPR’s are addressed 0, 2,4, and 6.

e For fixed-point doubleword operands, the register ad-
dress implies use of a pair of adjacent registers.

Fixed-point and floating-point operands may be located in

_ the 16 general-purpose registers (GPR’s) and the 4 floating-

point registers (FPR’s), respectively, of LS. The registers are
addressed by a four-bit field in the instruction, designated
the R-field. The GPR’s are designated by addresses 0—15,
whereas the FPR’s are identified by addresses 0, 2, 4, and 6.
(When an FPR is designated by any other address, a
specification program interruption occurs.) The op code of
the instruction implies whether the GPR’s or the FPR’s are -
to be used.

The GPR’s are 32 bits (one word) in length. Fixed-point
operands normally have an implied length of one word. In
some operations, one register address implies the use of a
pair of adjacent GPR’s, thus providing a doubleword. For
these instructions, the addressed register (say-R1) contains
the high-order operand bits and must have an even address,

-and the implied register (R1 + 1) contains the low-order

operand bits and has the next higher address.

"The FPR’s are 64 bits or a doubleword in length, and
can contain either a short (one word) or a long (double-
word) floating-point operand. A short operand occupies the
high-order bits of an FPR; the low-order bits are ignored.

DATA FORMATS
Data can be numeric, alphabetic, or logical, and fixed or

* variable. in length. Numeric data is distinguished as fixed-

Doubleword Doubleword
0 1
Word Word Word Word
0 1 2 3
Halfword Halfword Hal fword Halfword Halfword Halfword Halfword Halfword
0 1 2 3 4 5 6 7
Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte
0 1 2 3 4 5 6 7 8 9 10 n 12 13 14 15
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ¥
Zi::ry ‘ 00000 I 00001 | 00010 i 00011 ’ 00100 ’ 00101 ‘ 00110 ‘ 00111 ‘ 01000 | 01001 ’ 01010 ‘ 01011 | 01100 ‘ 01101 I 01110 | onn I
ress !
Figure 1-12. Main Storage Integral Boundaries
2065 FETOM (9/68) 1-15

point, floating-point, or decimal. The data may be divided

into four classifications:

1. Fixed-point numbers, having a binary radix and a fixed
length, usually a word or a-halfword.

2. Floating-point numbers, represented by a 7-bit charac-
teristic and a signed hex fraction, occupying either a
word or a doubleword.

3. Decimal numbers, represented by four-bit binary-coded-
decimal (BCD) digits, usually packed two digits to a
byte, and variable in length.

4. Logical information, represented by eight-bit zoned
character codes, and fixed or variable in length.

Fixed-Point Data

Fixed-point instructions are available for loading, adding,
subtracting, comparing, multiplying, and dividing. A pair of
conversion instructions, Convert to Binary and Convert to
Decimal, provides transition between decimal and binary
radix without the use of tables.

The basic fixed-point operand is the 32-bit binary word.
To improve performance and storage utilization, 16-bit
halfword operands may be specified in most operations. In
both lengths, bit position O holds the sign of the number,
with the remaining bit positions designating the magnitude
of the number. To preserve precision, some products and all
dividends are 64 bits long.

Because a 24-bit address can be accommodated in the
32-bit word, fixed-point instructions can be used both for
integer operand arithmetic and for address computation.
This combined usage provides economy and permits the
entire fixed-point instruction set to be used for address
computation. Thus, multiplication, shifting, and logical
manipulation of address components are possible.

Number Representation

e Positive numbers are represented in true binary form
with sign of 0.

o Negative numbers are represented in 2’s complement
notation with sign of 1.

All fixed-point operands are treated as signed integers.
Positive numbers are represented in true binary form with a
sign bit of 0. Negative numbers are represented in 2’s
complement notation with a sign bit of 1. In all cases, the
bits between the sign bit and the leftmost significant bit of
the integer are the same as the sign bit; i.e., all 0’s for
positive numbers, all 1’s for negative numbers. Therefore,
when an operand must be extended with high-order bits,
each nonsignificant bit is made equal to the sign bit.
Negative fixed-point numbers are formed in 2’s comple-
ment notation by complementing the true binary represen-
tation of the number and adding 1. For example, to convert

1-16 (9/68)

the decimal number +26 to 2’s complement form (—26),
proceed as follows:

S 1<% Integer —p 31

Decimal +26 to true binary form: 0 0000000 33 00011010
Complement the binary number: 1 1111111 $§11100101
Add 1: 1
Result is -26 (2's complement form): 1 11111117§11100110

The result is equivalent to subtracting the number
00000000 00011010 from 1 00000000 00000000.

The largest positive number consists of a sign bit of 0
with all 1’s in the integer field, whereas the largest negative
number consists of a sign bit of 1 with all O’s in the integer
field:

S 1es—Integer —p= 31 Decimal Number

Largest positive
number:

0 11111112811111111 =+2,147,483,647

Smallest positive

number: 0 oooooooegoooooooo = 0
Smallest negative
number: 111111113311111111 = 1
Largest negative
number: 1 oooooooggoooooooo = -2,147,483,648
Formats

Fixed-point numbers occur in 16-bit halfword, 32-bit word,
or 64-bit doubleword operands. Bit 0 is the sign bit, and the
remaining bits make up the integer:

Halfword operand
S Integer
01 15

Word operand

S Integer

01 31

Doubleword operand

fi_

01 63

S Integer

In LS, fixed-point operands are a word long. In some
operations, such as multiply, divide, and shift, the operand
may be a doubleword. The doubleword operands are
located in a pair of adjacent 32-bit GPR’s and are addressed
by an even address that refers to the leftmost (lower-

addressed) register of the pair. In this case, the sign-bit
position of the rightmost register may contain an operand
bit instead of a sign bit. The sign-bit position of the
leftmost register must a/ways contain a sign bit.

In main storage, fixed-point data may be a halfword, a

word, or a doubleword. This data must be located on
integral storage boundaries for these units of information.
When a halfword operand is fetched from main storage, it is
extended to a full word. The original signed integer
occupies bits 16 through 31, and is operated on as a full
word. When the operand is extended to a full word, bits O
through 15 assume the state of the original sign bit, now in
bit 16.

Floating-Point Data

e Scientific and engineering calculations require that very
small and very large numbers be represented.

e Scientific notation uses powers of i0 to simplify
calculations with high and low magnitude numbers.

e Floating-point instructions operate upon data that uses
powers of 16 to represent numerical quantities.

o Quantity expressed by floating-point number is product
of signed hex fraction and 16 raised to power designated
by exponent.

When performing calculations for scientific and engineering
work, very small or very large numbers must sometimes be
represented. Consider the problem of a nuclear physicist
who wants to write an equation that contains the value for
the mass of a subatomic particle. If he wrote the number as
a decimal fraction, he would have to put down a decimal
point followed by more than 20 zeros and a few numerals.
At the opposite extreme, an astronomer may be calculating
distances between objects that may be millions of millions
of miles apart.

To overcome the pointless effort of having to write
many zeros when working with such numbers, a mathemati-
cal method using powers of 10 is used. This method is
called scientific notation. For example, in scientific nota-
tion, the mass of an electron can be written as 9.107 x

10728 grams; and the astronomical distance of one light

year can be written as 5.878 x 1012 mies.

Consider the parts of a number represented in scientific
notation. The example of the mass of an electron, for
instance, can be divided into three distinct parts: (1) a
signed mixed number (+9.107) multiplied by, (2) 10 raised
to the power designated by, (3) a signed exponent (—28).
By changing the position of the decimal point and adjusting
the exponent to compensate for the change, the number
can also be written as a fraction times a power of 10

(+.9107 x 10_27), or an integer times a power of 10
(+9107 x 10731,

For scientific and engineering applications where quan-
tities may be of the magnitudes mentioned above, the CPU
has instructions for handling them. These instructions,
called floating-point instructions, manipulate data in a
manner similar to scientific notation. However, because the
CPU is primarily a binary machine in which numbers can be
easily worked upon in hex (four-bit) units, a quantity is
represented as a hex number times a power of 16 rather
than as a decimal number times a power of 10. Except for
this difference in base, floating-point notation is similar to
scientific notation; the same rules of algebra apply to
powers of 16 as to powers of 10.

Number Representation
e Fraction represents number expressed in hex digits.
e Characteristic specifies exponent to which 16 is raised.

o Characteristic is expressed in excess 64 notation; range is
—64 to +63.

6 Radix point is to left of high-order hex digit.
o True zero result yields positive sign.

A floating-point number contains the same components as a
number written in scientific notation. However, due to the
nature of the computer, the format is different and certain
rules are imposed upon the way a floating-point number
may be represented. The number to be multiplied by a
power of 16 is a hex fraction with a fixed length, and the
16 is understood rather than shown. Therefore, as repre-
sented in the CPU, a floating-point number consists of a
sign, which is the sign of the fraction, a signed exponent,
called a characteristic, and a hex. fraction. The quantity
expressed by this number is the product of the fraction and
16 raised to the power designated by the characteristic
(exponent).

The fraction of a floating-point number is expressed in
hex digits. The radix point (representing the base 16) of the
fraction is assumed to be immediately to the left of the
high-order fraction digit. To provide the proper magnitude
for a floating-point number, the fraction is considered to be
multiplied by a power of 16 (fraction x 16" power). The
characteristic (bits 1—7) indicates the power (exponent).
Bit O designates the sign of the fraction; it is a O if the
fraction is a positive number and a 1 if the fraction is
negative. Both positive and negative quantities are in true
form, with the difference indicated by the sign.

The exponent may also be either a positive or negative

number. For example, —A8 x 16_2 is an example of a
floating-point number with a negative fraction and a
negative exponent. Therefore, to represent both positive
and negative exponents, excess 64 notation is used. Excess
64 notation simply means that +64 (+40 hex) is added to
the true exponent and the value obtained is used as the

2065 FETOM (9/68) 1-17

characteristic. Therefore, the characteristic varies around a
base of 64; ie., an exponent of O is represented by a
" characteristic of 64, a positive exponent is represented by a
" characteristic greater than 64, and a negative exponent is
represented by a characteristic less than 64. In the example
just given, for instance, —2 is the exponent. Adding +64 to
—2 yields +62, which is the value of the characteristic in
excess 64 notation. :
Performing the same .calculation in bmary gives the
following results:

Bits 0 1 2 3 4 5 6 7

S 1111110 2's complement of 2 (-2)
S -1 0 0 0 -0 +64 (+40 hex)
S‘,O 1 1 1 1 1 0 =462 (+3E hex)

Carry .

If the exponent were +2 (positive exponent), adding +64
yields +66, the characteristic value placed into bits 1-7. In
binary, the addition is as follows:

Bits 0 1 2 3 4 5 6 7
S 000O0UOT11TO0 +2 exponent
§ 1 0 0 0 00O +64 (40 h_ex)
S 1 0 0 0 0 1 0 =+66(42hex)

Note in these examples that a negative exponent in
excess 64 notation caused bit 1 (high-order bit of the
“characteristic) o be. a 0, and a positive exponent caused bit
1 to be a 1. This rule holds true for the range of positive
and negative exponents, as can be seen in Table 1-2. The
table also shows that because only seven binary bits (1-7)
. are available to represent the characteristic in floating-point

format, the most negative exponent that can be expressed is .

—64 and is represented by an all-zero characteristic. The
most positive exponent is +63, and is represented by all 1’s
~ (7F hex). Midpoint between these two extremes is a O
exponent, which is. represented by a +64 (+40 hex)
characteristic.

Table 1-2. Characteristic Notation

Excess 64 Notation
Binary Decimal Hex Exponent
0000000 0 - 0 -64
0000001 1 1 » -63
0111111 . 63 3F -1
1000000 64 40 0
1000001 65 41 +1
1111110 126 7E 62
1111111 127 - 7F 63

1-18 (9/68)

- Hnloooo ™M

For another example of converting an exponent to an

" excess 64 characteristic, assume the value of tM x 1648

must be stated in excess 64 notation. The characteristic of
the fraction then becomes 48 + 64 = 112 (0110000 +
1000000 = 1110000). The floating-point number thus takes

the following form:

1]

31 Or 63

s 1 788

Radix Point

To illustrate how numbers are represented in floating-
point format, assume that the decimal number 149.25 is to
be converted to a floating-point short operand. This
conversion is accomplished as follows:

1. The number is separated into a decimal integer and a
decimal fraction:

149.25 = 149 plus 0.25

2. The decimal integer is converted to its hex representa-
tion:

149,44 = 9516

3. The decimal fraction is converted to its hex representa-
tion:

0.2544 = 0'416

4. The integral and fractional parts are combined and
expressed as a fraction times a power of 16 (exponent):

= 2
95.416 =(0.954 x 16)16

5. The characteristic is developed from the exponent and-
converted to binary:

Excess 64 + exponent = characteristic
64 + 2= 66 = 1000010

6. The fraction is converted to binary and gfouped hexa
decimally:

954, . = 1001 0101 0100

16

7. The characteristic and the fraction are placed in the
short precision format; the sign position contains the
sign of the fraction:

S Characteristic Fraction

0 1000010 1001 0101 0100 0000 0000 0000

~ Other examples follow:

Number ‘Powers of 16 S Charistic ‘Fraction

1.0 =+1/16 x 161 =0 1000001 0001 0000 ! 0000
0.5 =+8/16 x 16° =0 1000000 1000 0000 2 0000
1/64 = +4/16 x 167! =0 0111111 0100 0000 ¥ 0000
0.0 =+0x 164 =0 0000000 0000 0000 ¥ 0000
-15.0 =-15/16 x 16" =1 1000001 1111 0000 2 0000

2x1078 =+1/16x16%* =0 0000000 0001 0000 22 0000

75

7x10 =(1-16'6)x1663 =0 1111111 111 1M1 A 11

Formats

-0 Data format consists of 1-bit sign, 7-bit characteristic,
and 24- or 56-bit fraction.

e Results are 32 bits (short operand) or 64 bits (long
operand) long.

e Multiply product is always 64 bits.

o Guard digit is retained.

Floating-point data is represented in the CPU in one of two

fixed-length formats, depending upon whether a full-word
short operand or a doubleword long operand is desired.
Both formats may be used in main storage and in the eight
LS FPR’s used exclusively by floating-point instructions.
The data formats for short and long operands are:

Short Operand

!‘— Even FPR of an even/odd FPR pair —_’!

L !

S| Charistic Fraction

01 788 : 3
Radix Point

Long Operand

{#——— Even FPR ———»i¢—————Qdd FPR————
H 1

! . !
H Charistic 5m

01 788 3132 63

Fraction

Radix Point

For both formats, the first bit position is the sign bit and
the subsequent seven bit positions constitute the character-
istic. The following 24 or 56 bits represent the fraction;
short operand fractions are 24 bits or 6 hex digits; long
operand fractions are 56 bits or 14 hex digits.

When short operands are specified, the results are usually
32-bit floating-point words; the odd FPR of the even/odd
pair of FPR’s does not participate in the operation and
remains unchanged. However, in multiply instructions, the
product occupies two FPR’s (64 bits).

When long operands are specified, all operands and
results are 64-bit floating-point doublewords.

Although final results have 6 or 14 hex fraction digits,
intermediate results in addition, subtraction, and compare
operations may extend to 7 or 15 fraction digits. This extra
digit, called the guard digit, occurs when one of the
fractions is shifted right (as part of the characteristic
equalization process that occurs during execution of add-
type floating-point instructions; see Chapter 3, Section 3,
Add, Subtract, and Compare). The guard digit increases the
accuracy of the final result if normalization occurs. In
normalization, the fraction is shifted left until a significant
digit appears in the high-order digit position of the fraction;
thus the guard digit becomes part of the 6 or 14 hex digits

_ of the final result. This saving of the guard digit becomes

especially significant where the high-order 6 or 14 digits of
the intermediate result are all zeros.

Normalization

o Normalized fraction has nonzero, high-order hex digit;
unnormalized fraction has one or more leading hex
ZET0S.

o Characteristic is adjusted on normalization cycles.
e Postnormalization is normalization of final résult.

e Prenormalization is normalization before result compu-
tation.

o Resuits are shifted right if fraction overflow occurs.

A quantity can be represented with the greatest precision
by a floating-point number of a given fraction length when
that number is normalized. A normalized floating-point
number has a nonzero high-order hex fraction digit. If one

- or more high-order fraction digits are zero, the number is

said to be unnormalized. Normalization consists of shifting
the fraction left until the high-order hex digit is nonzero
and reducing the characteristic by the number of hex digits
shifted. A zero fraction cannot be normalized, and its
associatecC. characteristic therefore remains unchanged when
normalization is called for.

An example of an unnormalized floating-point number

in numerical terms is '00000A16 X 162. To convert this

number to its normalized form, the number must be shifted
five hex digits to the left and, because five shifts are
necessary, five is subtracted from the exponent. The result

is 'AOOOOOIG x 1673. In the CPU, the original number

would hav: the following format:

Charistic Fraction
S (Binary, (Hex)
Eh ooociolo o 0 0 0 A
01 7 8 31
2065 FETOM (9/68) 1-19

After normalization, the format would be:

s
@3111104 A 0 0 0 0 0
0 7 8

31

Because normalization applies to hex digits, the three
high-order bits of a normalized number may be zero. For
example, if the high-order digit of a fraction is a hex 1,
normalization will not occur although normalization is
specified and bits 8—10 = 000:

[s] charistic p001poook03£§>
01 7 8 112 1516 19

Floating-point operations are performed with or without
normalization. Addition and subtraction may be specified
either way depending upon the instruction op code. The
multiply, divide, and halve instructions always specify
normalization. The load, compare, and store instructions
specify unnormalized results. Normalization usually occurs
when the intermediate arithmetic result is changed to the
final result. This function is called postnormalization. In
multiplication and division, the operands are normalized
before the arithmetic process. This function is called
prenormalization.

When an operation is performed without normalization,
high-order zeros in the result fraction are not eliminated. In
both normalized and unnormalized operations, the initial
operands need not be in normalized form.

Decimal Data
o Operands and results are located in main storage.
e VFL is 1—16 bytes. '

e Four-bit BCD digits are packed two to a byte for
arithmetic.

o Unpacked (zoned) format is used for transmitting data
~ to I/O devices.

o Pack and Unpack instructions are provided.

Decimal instructions are designed for operations requiring
few computational steps between the source input and the
documented output. Processing of this type is frequently
found in commercial applications. Because of the limited
number of arithmetic operations performed on each item of
data, radix conversion from decimal to binary and back to
decimal is not justified, and the use of registers for
intermediate results yields no advantage over storage-to-
storage processing. Hence, in the Model 65, decimal
instructions are provided and both operands and results are
located in main storage. Decimal instructions include
addition, subtraction, multiplication, division, and compari-
son.

1-20 (9/68)

Decimal arithmetic operates on data in the packed
format, in which two four-bit BCD digits are packed two to
a byte. They appear in fields of variable length (from 1 to .
16 bytes) and are accompanied by a sign in the rightmost
four bits of the low-order byte. The use of packed digits
within a byte and of variable-length fields within storage
results in efficient use of storage and in increased arithmetic
performance. ,

Decimal numbers may also appear in a zoned format for
use with I/O devices operating in that format. The zoned
format is not used in decimal arithmetic operations, but
only for transmitting data to the I/O device. Instructions
are provided for packing and unpacking decimal numbers so
that they may be changed from the zoned (unpacked) to
the packed format and vice versa.

Processing takes place right to left between main storage
locations, except in the divide operation which is processed
left to right. All decimal instructions use the two-address SS

format. Each address specifies the leftmost byte of an

operand. Associated with this address is a length field,
indicating the number of additional bytes that the operand
extends beyond the first byte.

Number Representa tion

Numbers are represented as right-aligned true integers with
a plus or minus sign. Decimal digits 0—9 are represented in
the four-bit BCD form by 0000 through 1001, respectively.
Codes 1010—1111 (10-15) are not valid as digits and are
reserved for sign codes: 1010, 1100, 1110 and 1111
represent a plus; 1011 and 1101 represent a minus.

Digit Code Sign Code
0 0000 + 1010
1 0001 - 1011
2 0010 + 1100
3 0011 - 1101
4 0100 + 1110
5 0101 + 111
6 0110
7 0111
8 1000
9 1001

All valid sign codes are recognized in decimal operations;
however, the appropriate sign codes (and zone codes for the
Unpack instruction) generated during the operation depend
on the character set specified by PSW(12). If PSW(12) =0,
EBCDIC-is selected, and code 1100 is generated for a plus
sign, code 1101 is generated for a minus sign, and code
1111 is generated for a zone. If PSW(12) = 1, USASCII-8 is
selected, and code 1010 is generated for a plus sign, code
1011 is generated for a minus sign, and code 0101 is
generated for a zone. ‘

Formats

Decimal operands reside in main storage only. The operand
field length may range from a minimum of one byte to a
- maximum of 16 bytes. The operands need not occupy the
entire field length but are always right-aligned in the field;
i.e., the sign of the operand is always in the rightmost byte
of the specified field. This rightmost byte contains the
lowest-order operand digit and the operand sign. All
decimal instructions (except Divide) process the operands
from low order to high order, or from right to left between
main storage locations.
Data may be in the packed or unpacked (zoned) format.
In the packed format, two four-bit BCD digits are placed
adjacently in an eight-bit byte, except for the rightmost
* (low-order) byte of the field. In the low-order byte, a
-four-bit sign (sign of the decimal number) is placed to the
right of the decimal digit.

Packed VFL Data
Up to 16 Byt
Leftmost Up to ytes)

Rightmost
«— Byte —+—Byre—-.l—— - Byte ——

Digit I | Digit Sign

In - the unpacked or zoned format, a decimal digit
normally occupies the four low-order bits of a byte, the
numeric. The four high-order bits of a byte are called the
zone. An exception is the rightmost byte in the field, where
the sign of the decimal number occupies the zone position.

Digit Digit Digit

Unpacked VFL Da!'c - >
to 16 Bytes
Leftmost Ue vtes)

le— Byte ——+—Byte——| ————— In— 'Byre B—

Digit - I l Sign Digit

Zone Digit Zone

Logical Data
e Data is fixed-length or VFL. -

e One byte of immediate data is held in some instruction
formats.

The logical instructions provide for moving, comparing, bit
testing, bit connecting, translating, editing, and shifting
operations. Except for the editing instructions, data is not
treated as numbers. Editing converts packed decimal digits
into alphanumeric characters; the digits, signs, and zones
are recognized and generated as for decimal instructions.
Data resides in main storage or in LS, or is contained in
the instruction format. The data may be a single byte, a
word, a doubleword, or variable in length. When two
operands participate in the operation, they have equal
length, except in the editing instructions. The data format
depends on the type of operation performed:
1. In storage-to-storage operations, data has a VFL format,
starting - at any byte address and continuing for a
 maximum of 256 bytes; it is processed left to right.

Up to 256 Bytes »
in Main Storage

Character | Character Character

0 - b4 16

2. In storage-to-register operations, the main storage data
may be either ‘a word or a byte. The word must be
located on a word boundary; that is, the low-order two
bits of its address must be 0’s. Data in GPR’s normally
occupies all 32 bits. Bits are treated uniformly, and no
distinction is made between sign and numeric bits. In a
few operations, only the low-order eight bits of the
register participate, leaving the remaining 24 bits un-

changed., In some shift operations, 64 bits of an
even/odd pair of GPR’s participate.

r 8, 32, orb4 Bits

l Fixed-Length Logical Data

3. In operations which introduce data directly from the SI
format instruction as an immediate operand, data is
restricted to an eight-bit byte. Only one byte may be
introduced per instruction, and only one byte from main
storage takes part in the operation.

2065 FETOM (9/68) 1-21

Section 3. Program Execution and Control

This section discusses the supervisor program, the eight
program states, the program status word, interruptions and

exceptional conditions, and the initiation and control of .

I/O operations.

CONTROL PROGRAM

Because internal processing speeds of data processingr

systems have increased without a corresponding reduction

in the time required by the operator to load programs and

to manually insert data, the setup time has become a more

significant factor in system operation. To reduce this setup

time, during which the system is idle, control programs

were devised to control execution of problem programs.

The simplest control program, which shares main storage

with the problem programs, controls the loading of

problem programs; the problem programs handle their own

I/O operations (Figure 1-13, A). Operation is as follows:

1. An input device is prepared containing the problem
programs and their associated data.

2. The operator loads the control program into main
storage. '

3. The control program loads in the first problem program
and then passes control to the problem program.

4. The problem program reads in its data and performs its
assigned task.

5. When the problem program is finished, it passes control
back to the control program.

6. The control program then loads in the next problem
program and passes control to it.

7. This operation continues until all programs are executed.

Notice three things about the use of a control program

in the preceding example:

1. The system never halts between jobs.

2. The control program remains in main storage as the
problem programs are executed.

3. The control program serves only as a link between jobs;
its only function is to bring in a new problem program as
each job is finished.

The simple control program discussed above has limited
functions. Other functions can be included, such as
initiation and control of I/O operations. Because the
problem program is designed mainly to process data, the
read and write operations necessary to transfer data
between the I/O devices and main storage can be handled
by the control program. Each operation to be handled by
the control program may consist of many instructions.

122 (9/68)

Besides telling the I/O device to-start, for example, the
instructions check for error conditions and I/O device
status.

In this function, control passes back and forth between
the problem and control programs during execution of the
problem program (Figure 1-13, B). The control program
not only reads in the problem programs but also handles

nput
Tope Probl : Probl
No. 1 : roblem < roblem
o i Data Prog B . Data . Prog A
Read In by
Problem
Program Read In by
Control
Program
Problem
Program
Control
Progrom
Read In Manually MAIN STORAGE
by Operator
Input
T S
NZ?eZ o Control
Program
Read Read Read
Prog A Prog B Prog C
Control Prog _p.ﬁ_g¢ f_gl ?_&__6
Problem Prog > ———

"~ Execute Prog A Execute Prog B

A. Simple Control Program - Loads Problem Programs

MAIN STORAGE

> Control [— ————
s Program .
Read _ e ™~ \W\
- Input Data
-~ ~ ~
Problem
Program
Program Tape Output Data
) 1/0O for Prog A Data
Read { 1 Read
Prog A

Prog B
P

¥
by $1 4

Execute Prog A

Control Prog —p-s— —
by

Problem Prog ————»

B. Expanded Control Program. - Loads Problem Programs, and Handles |/O Operations for
Problem Program Dato

Figure 1-13. Examples of Control Program Functions

the I/0O data operation during execution of the problem
program. The problem program transfers control to the
control program whenever an I/O operation is necessary.”

The control program can be given other functions as'”
well. However, the more functions a control program has,

the more main storage space it requires. This problem is
solved by placmg into main storage only those key parts of

the control program that ensure continuous, coordinated. i
operation of the system. This portion is called the . -

supervisor. The remaining parts of the control program-are
placed on a high-speed, direct-access I/O device, such as a
disk storage unit, and are brought into main storage as they
are required to perform a specific function.

In the System/360, the supervisor is the control center -

of the operating system. Its primary function is to peiform
a variety of services for other parts of the system including
problem programs. It coordinates and controls the perform-
ance of these services to yield efficient and coordinated use
of the physical and. programming facilities of the system.
The supervisor prevents programs and routines that are run
on the system from interfering with one another and with
operation of the control program. This_control is accom-
plished, in part, through its use of privileged instructions,

" such as storage protection and I/O instructions, which can
be executed only by the control program.

-A service performed by the supervisor may be specifi-
cally requested by a program, such as a request for storage
space, or it may be a service that is automatically provided
when a contingency occurs, such as attempting to recover
from an error condition. Among the services the supervisor
may provide are:

1. Allocating main storage space required by programs
during their execution.

2. Sharing areas of main storage among routines that need
not be in main storage at the same time.

3. Loading programs into main storage. :

4. Controlling the concurrent execution of programs and
routines.

5. Scheduling and controlling I/0 operations.

6. Providing standard procedures that assist in diagnosing
. exceptional conditions,. such as underflow in floating-

point arithmetic operations..
7. Keeping a running log of machine check and 1/O errors
for CE diagnostic use.

One of the reasons why a control program is used in the
System/360 is to eliminate machine idle time. Realizing
this, the designers of System/360 did not incorporate a halt
instruction. Therefore, a problem program cannot issue a
halt instruction when it is finished but passes control to the
supervisor by means of a Supervisor Call instruction.
Machine idle time is further reduced in another way. A
machine check (such as an even number of bits in a byte) or
a program check (such as locating a halfword operand on an
odd-byte address) does not cause an error stop but causes

an automatic Branch to the supervisor, unless instructed by
~ the programmer to be ignored. These automatic branches to

the supervisor are called interruptions. That is, the current
sequence of problem instructions is interrupted and an
automatic branch (mterruptnon) is taken to a new sequence
of control instructions.

When an interruption occurs, the mterruptlon-handlmg

routine of the supervisor stores the status of the CPU and

fetches information with which to control the CPU while it
handles the interruption. The status of the CPU is con-
tained in a doubleword called the o/d program status word
(PSW). Bits of this old PSW show the cause of the
interruption and the program state of the CPU at the time
of the interruption. There are eight paired states, Problem/
Supervisor, Operating/Stopped, Running/Wait, and Inter-
ruptable/Masked, all of which, except Stopped, are defined
in the PSW. The following paragraphs define the program
states and discuss the ‘PSW before the discussion of
interruptions is continued.

PROGRAM STATES

The eight program states which determine the v_ove’rall CPU

-status differ in the way they affect the CPU functions and

in the way their status is indicated. Refer to Table 1-3 for
pertinent information about the program states.

Problem/Supervisor

In the Problem state, all I/O, protection, and direct control
instructions are invalid as well as the Load PSW, Set System
Mask, and Diagnose instructions. These instructions are
called privileged instructions. A privileged instruction en-

- countered- in the Problem state constitutes a privileged-

opération interruption and interrupts the operation. In the .
Supervisor state, all instructions are valid. _

- The CPU is switched between the Problem and Super-
visor states by changing PSW(15). When PSW(15) isa 1, the
CPU is in the Problem state; when a 0, the CPU is in the

- Supervisor state. This bit can be changed only by intro-

ducing. a new PSW. Thus, the status switching for Problem/
Supervisor state may be performed by an interruption
operation or by a Load PSW instruction containing a new
PSW with the desired value in bit 15. Because the Load
PSW instruction is a privileged instruction, the CPU must be
in the Supervisor state before the switch. The CPU status

“can also be changed between Problem and Supervisor states

by issuing a Supervisor Call instruction or an initial program
load (IPL). The Supervisor Call instruction causes an
interruption which will load new PSW data. This new PSW
data may change the state of the CPU. Similarly, the IPL
introduces a new PSW. The new PSW may introduce the
Problem or Supervisor state, regardless of the preceding
CPU state.

2065 FETOM. (9/68) 1-23

Table 1-3. Program States

State Comments

Problem Load PSW, Set System Mask, and Diagnose
instructions, and all 1/0O, storage protection,
‘and direct control instructions are invalid.
These instructions are termed privileged instruc-

tions.

Supervisor All instructions are valid.

in instruction-step mode, and after 'power is turned on or
following a system reset, exgept during IPL. The CPU is
placed in the Operating state when START on the system

-control panel is depressed and when an IPL is started.

Changing from the Operating state to the Stopped state
occurs at the end of instruction execution and before the
start of the next instruction execution. When the CPU is in
the Wait state, the change from Operating to Stopped
occurs immediately. All interruptions pending and not

CPU processes instructions (if-not in Wait state)
and interruptions (if not masked off).
Entered by:

Operating

1. Depressing START on system control panel.
2. Starting an {PL operation.

Stopped Instructions and interruptions are not proc-
essed; interruptions remain pending. Execution
of program is not affected by stopping CPU.

Entered by:

1. Depressing STOP on system control panel.

2. Detecting equality on an address-compare-
stop operation.

3. Completing one instruction when in instruc-
tion-step mode.)

4, Turning power on or following a system
reset.

Instruction processing proceeds in normal
manner.

Running

No instructions are processed, and main storage
is not addressed. The CPU waits for an 1/0 or
external interruption to occur before executing
further instructions, or for an IPL operation.

Wait

Interruptable Interruptions are accepted.

Masked System and machine-check interruptions re-
main pending, and program interruptions are

ignored.

Operating/Stopped

When the CPU is in the Stopped state, instructions and
interruptions are not executed. When the CPU is in the
Operating state, instructions are executed as long as the
CPU is not also in the Wait state. Interruptions are taken if
they are not masked off. Manual operations, such as load
PSW, can be used onfy when in the Stopped state. A change
in the Stopped/Operating states can occur only by manual
intervention or by machine malfunction. No instruction or
interruption can start or stop the CPU. The CPU is placed
in the Stopped state when STOP on the system control
panel is depressed, detecting equality on an address-
compare-stop operation, completing one instruction when

1-24 (9/68)

masked off are taken while the CPU is still in the Operating
state. The interruptions cause an old PSW to be stored and
a new PSW to be fetched before entering the Stopped state.
Once the CPU is in the Stopped state, interruptions are no
longer taken but remain pending.

Running/Wait

In the Wait state, no instructions are processed and main
storage is not addressed. In the Running state, instruction
fetching and execution proceed in the normal manner. The
CPU status is switched between the Wait and Running
states by PSW(14). When PSW(14) is a 1, the CPU is in the
Wait state; when a 0, in the Running state. This bit can only
be changed by introducing a new PSW. Thus, switching
from the Running to the Wait state may be achieved by the
privileged instruction Load PSW, by an interruption such as
given by a Supervisor Call instruction, or by an IPL.
Switching from the Wait to the Running state may be
achieved by an I/O or external interruption or by an IPL.

- The new PSW may introduce the Wait or Running state

regardless of the preceding CPU state.

Interruptable/Masked

The Masked/Interruptable state of the CPU is determined
by the system mask bits [PSW(0—7)], the machine-check
mask bit [PSW(13)], and the program mask bits
[PSW(36—39)]. If a mask- bit is a 1, the associated
interruption is accepted; if it is a O, system and machine-
check interruptions remain pending and program interrup-
tions are ignored. The PSW bits and interruptions that will
occur if the bit is active are listed in Table 14.

The Masked/Interruptable state of the CPU is switched

by changing the mask bits in the PSW. The program mask
may be changed separately by the Set Program Mask

instruction, and the system mask may be changed separate-
ly by the Set System Mask instruction. The machine-check
mask bit can be changed only by introducing an entirely
new PSW, as in the Problem/Supervisor and Wait/Running
states. Thus, a change in the entire masked status may be
achieved by the privileged instruction Load PSW, by an
interruption such as for the Supervisor Call instruction, or
by an IPL. Regardless of the preceding program state, the
new PSW may introduce a new mask status.

- Table 1-4. PSW Interruption Mask Bit Designation

PSW Bit Interruption
System mask
0 Multiplexgr channel (0}
1 Selector channel 1
2 : Selector channel 2
3 Selector channel 3
4 Selector channel 4 -
5 . Selector channel 5
6 v Selector channel 6
7 Timer, INTERRUPT pushbutton, or

external signals 2—7 -
Machine-check mask
13 Machine check

Program mask

36 ‘ Fixed-point overflow

37 Decimal overflow

38 {1 Exponent underflow (floating-point)

39 Significance (floating-point)
PROGRAM STATUS WORD

o PSW provides program statusb and controls system

operation.
o Active PSW is termed current PSW.

o Interruption causes current PSW to be stored into old

PSW location.

e Load PSW instruction, interruption, PSW restart, and

IPL introduce new PSW into CPU.

e Set Program Mask and Set System Mask instructions

load new PSW mask fields into CPU.

A doubleword, the program status word (PSW), contains
the information required for proper program execution. In
general, the PSW controls instruction sequencing, and holds
and indicates the status of the system in relation to the
program being executed. The PSW has the following

format:

System Mask | Key UIMW P

Interruption Code j

[) 78 112131415 16)
Prog | . ' J

SILC'CC‘ Mask | Instruction Address
3233 343536 39 40 63

Bits 0—7, System Mask. Associated with I/O and
external interruptions as follows:

System Mask Bit Interruption Source

0 ~ Multiplexer channél (0)

1 Selector channel 1

2 Selector channel 2

3 - Selector channel 3

4 Selector channel 4-

5 Selector channel 5

6 Selector channel 6

7 Timer, INTERRUPT pushbuiton, or

external signals 2—7

When a system mask bit is a 1, the associated source
can interrupt the CPU; when a 0, the interruption
remains pending.

Bits 8—11, Key. Contain the CPU storage protection
key. The key is matched with the storage key whenever
data is stored, or whenever data is fetched from a
location that is fetch-protected.

Bit 12, U (USASCIL-8). Affects decimal operations only.
When a 1 and in unpacked format, decimal digits are
represented by USASCII-8. When a 0, EBCDIC is
specified. '

Bit 13, M (Machine-Check Mask). When a 1, a machine
check causes the CPU to log out its status to main
storage and to take a machine-check interruption. If
the machine-check mask is a 0, the machine check
remains pending. As a maintenance aid, the CPU
CHECK switch on the system control panel can modify
the machine-check mask bit functions.

Bit 14, W (Wait State). When a 1, CPU is in the Wait
state; instructions are not executed until an external or
1/0 interruption or an IPL occurs. When a 0, the CPU is
in the Running state.

Bit 15, P (Problem State). When a 1, the CPU is in the
Problem state. When a 0, the CPU is in the Supervisor
state. .

Bits 16—31, Interruption Code. Identify the cause,
purpose, or source of the interruption. (Has no
meaning in a new PSW.)

Bits 32 and 33, ILC (Instruction Length Code). Indicate
the length, in halfwords, of the last processed instruc-
tion. This code is predictable only for most program
and supervisor call interruptions. For I/O and external
interruptions, the interruption is not caused by the last
interpreted instruction, and the code is not predictable
for these instructions. For machine-check interrup-
tions, the setting of the code may be affected by the .

2065 FETOM (9/68) 1-2§

malfunction ‘and, therefore, is unpredictable. A code of
0, used only for program interruptions, indicates that
the instruction address in the PSW is not the location
of the instruction following the instruction that caused
‘the program interruption.
Bits 34 and 35, CC (Condition Code). Contain the
- condition code. that reflects the result of most arith-

‘metic, logical, or I/O instructions. Each of these’

operations can set the code to any one of four states,
and the conditional-branch instructions can specify the
state to be used as the criterion for branching. For
. example, the CC may reflect such conditions as
-nonzero, overflow, and underflow. Once set, the CC
remains unchanged until modified by an instruction
that reflects a different code. The two bits of the CC
provide for four possible binary settings: 00, 01, 10,

and 11. This manual refers to the CC’s as 0, 1, 2,and 3. .

. (The CC has no meaning in a new PSW.)
Bits 36—39, Program Mask. Each bit is associated with a
program interruption as follows: .

Program Mask Bit Program Interruption

36 Fixed-point overflow

37A Decimal overflow

38 Exponent underflow (floating-point)
39 Significance (floating—point)

When a program mask bit is a 1, the associated program
interruption results in an interruption; when 0, the
interruption is lost.

Bits 40—63, Instruction Address. Specify the leftmost

byte address of the next instruction.

The active or controlling PSW is called the current PSW.
The information making up the current PSW is held in
triggers and registers in the CPU and is constantly being
~updated as instructions are executed. (The instruction-
address field of the PSW, for example, is held in the
instruction counter and is updated to give the address of
the next instruction to be executed.) When an interruption

is taken, the PSW is assembled in the ST register and is’

transferred to a fixed location in main storage corre-
sponding to the interruption. (The stored PSW is called the
old PSW.)) In this way, the program can preserve for
subsequent analysis the status of the CPU at the time of
interruption. To complete the interruption, a new PSW is
introduced into the CPU from another unique main storage
location, and the instruction at the specified location is
fetched.

In certain circumstances, the entire PSW is loaded into
the CPU; in others, only part of it. As explained in the
preceding paragraph, when the CPU is interrupted, the
entire current PSW is stored and an entire new PSW is

126 (9/68)

loaded. The state of the CPU may be changed by executing
the Load PSW instruction, which introduces a new PSW.

- New program mask and system mask bits may be specified

by altering the corresponding fields in thé PSW through the
Set Program Mask and Set System Mask instructions,

_ respectively. The Set Program Mask instruction also changes

the condition code.

INTERRUPTIONS AND EXCEPTIONAL CONDITIONS -

o Five classes of 1nterrupt10ns are recognized:
Machine check
Program
Supervisor call
External
I/0

o Eight exceptional conditions are recognized:
Timer -
€PU store in progress
Manual control stop .
Manual control wait
Manual control repeat
Program store compare
Invalid instruction address test
Q-register refill

e Program interruption suppresses, terminates, or allows
completion of instruction being processed.

@ Machine-check interruption terminates instruction being
processed.

e Other interruptions and exceptional conditions allow »
completion of instruction being executed.

In general terms, the purpose of the interrupt area in the

CPU is twofold: (1) to recognize defined interruptions and

exceptional conditions that may arise while the system is in

operation, and (2) to control the action that is subse-
quently initiated. The distinction between interruptions
and exceptional conditions is that interruptions always
allow a new instruction flow to be entered whereas
exceptional conditions do not, unless an associated inter-
ruption condition is also present.

Five classes of interruptions have been defined for the

System/360:

1. Machine Check. Caused by the machine-checking circuits
detecting a machine malfunction. The program auto-
matically enters a diagnostic routine if the machine-
check mask bit is a 1. The malfunction is indicated in
the logout data.

2. Program. Caused by unusual condltlons (such as incor-
rect operands or programming errors) encountered in a
program. The exact error is indicated in the Interrupt
Code triggers.

" 3. Supervisor Call. Caused by the program issuing an

instruction to turn control over to the supervisor
program. The reason for the call is shown in E(8—15).

4. External. "Caused by the ‘interval timer going from

positive to negative, or by depressing the INTERRUPT
~ pushbutton on the system control panel, or, if the Direct
Control feature is 1nsta11ed by an external device
requiring attention. 7
*5. 1/0. Caused by an 1/O device ending an -operation or
otherwise needing attention, or by operator intervention
at an I/O device. Identification of the device and channel
causing the interruption is signalled to the CPU. The
status of the device and channel is stored in a fixed main
“storage location.

Table 1-5 lists for each interruption the interruption.

code, mask bits, ILC and how the instruction execution is
finished.

Unlike interruptions, exceptlonal conditions vary be-
tween models of the System/360. In the Model 65, elght
exceptlonal conditions are recognized:

1. Timer. Caused by positive swing of line frequency.

2. CPU Store In Progress. Caused by a store operation in-
progress while an interruption or other exceptional

condition is to be serviced or a Load PSW instruction is
to be performed.

3.-Manual' Control Stop. Caused by a need to switch the

program from Operating to Stopped state.
4. Manual Control Wait. Caused by the program switching
 from'Running to Wait state.
5. Manual Control Repeat. Caused by the repeat instruc-
tion operation, a maintenance aid using manual controls.
6. Program Store Compare. Caused by possibly altering a

main storage location already prefetched as an instruc-

tion, or by returning to the instruction flow following an
Execute instruction. '
7. Invalid Instruction Address Test. Caused when the next

instruction to be performed is at an invalid, protected,

or incorrectly specified main storage location.
8. Q-Register Refill. Caused by the need to delay proc-
" essing of the next instruction when the Q-reg1ster is
bemg refilled.

» Interruptlons and exceptional conditions are always
. processed after ending the current instruction and before
starting the next instruction. The finishing of the current
instruction is influenced by the cause of the interruption;
the instruction may be completed terminated, or sup-
pressed.

In instruction completion, the results of the operation
are stored and the condition code (CC) is set as for normal
instruction operation, although the result may be altered by
the interruption condition. In instruction termination,

~ execution of the instruction has started and some of the
data in the registers has changed. The results may therefore
be incorrect. The CC may also be incorrect. The instruction
‘may or may not be allowed to continue to completion; the
final results should not be used for further computation. In

instruction suppression, execution of the instruction is
halted by forcing an end-op cycle. Results are not stored,

" and the CC is not changed.

In some cases, the instruction is almost finished before
the interruption condition is detected. For these. cases, the

"CPU blocks any change to the CC and prevents storing of

the unpredictable. final result by changing the store opera-

" tion to a fetch operation.

A program interruption may suppress, terminate, or

- allow completion of the instruction being processed; the

particular effect depends on the instruction being per-
formed and the cause of the condition. A machine-check
interruption terminates the instruction (or any other action

‘being performed) immediately upon detection of the

malfunction. The other interruptions and exceptional con-
ditions detected during instruction execution allow the
instruction to be completed.- '

As an instruction ends and before the next instruction
starts, the CPU interrupt logic examines triggers to deter-
mine whether an interruption or exceptional condition has
arisen. If an interruption operation is to be performed an
exit is made from the current instruction flow and,
following the interruption operation, a new instruction
flow can be entered. If an exceptional condition operation

is to be performed, the current instruction flow is usually

not left but only delayed for the time it takes to perform
the operation.

During execution of an instruction, several interruptive
events may occur. For example, the instruction may give
rise to a program interruption, an.external interruption
signal may be received, a timer exceptional condition may
occur, a machine malfunction may occur, and an I/O
interruption request may be made. Instead of the program:
interruption; a supervisor call interruption might occur;-
these two’ interruptions. cannot occur together, because
they are mutually exclusive. When simultaneous interrup-
tions occur, the competing interruptions are serviced in a
fixed order of priority.

The priority of interruptions and exceptional condltlons

e
w

. Timer exceptional condition.)

. CPU store in progress exceptional condition.

. Machine-check interruption.

. Program interruption.

. Supervisor call interruption.

. External interruption.

. I/O interruption.

. Manual control stop exceptional condition.

. Manual control wait exceptional condition.

. Manual control repeat exceptional condition..
..Program store compare exceptional condition.
. Invalid instruction address test exceptional condition.
. Q-register refill exceptional condition.

00~ N LA WK =

— ot
W = O \0

2065 FETOM (9/68) 1-27

Table 1-5. ‘Interruptions

_ Interruption Code PSW How Instruction
Interruption (Old PSW Bits 16—31) Mask Bit 7 ILC Execution Is-Finished)
Machine Check 00000000 00000000 - 13 u Terminated V ‘
Program
Operation 00000000 00000001 - 1,2,3 Suppressed
Privileged operation 00000000 00000010 — 1,2 Suppressed
Execute 00000000 00000011 - 2 Suppressed
Protection 00000000 00000100 - 0, 2,3 Suppressed or Terminated
Addressing 00000000 00000101 - 0,1,2,3 Suppressed or Terminated
Specification 00000000 00000110 - 1,2,3 Suppressed v
Data 00000000 00000111 - 2,3 Terminated
Fixed-point overfiow . 00000000 00001000 36 1,2 Completed
Fixed-point divide 00000000 00001001 - 1,2 Suppressed or Completed
Decimal overflow 00000000 00001010 37 3 Completed
Decimal divide 00000000 00001011 - 3 Suppressed
Exponent overflow - 00000000 00001100 - 1,2 Terminéted
Exponent underflow 00000000 00001101 38 1,2 Completed
Significance 00000000 00001110 39 1,2 Completed
Floating-point divide 00000000 00001111 - 1,2 Suppressed
Multisystem 00000000 00010010 - 2 Suppressed
Supervisor Call 00000000 rrrrrrrr - i 1 . Completed
External
External signal 7 00000000 - - ppppppp1 7 u Completed
External signal 6 00000000 pppppp1 p 7 u ‘Completed
External signal 5 00000000 ppppp1 pp 7 u Completed
External signal 4 00000000 pppp1 ppp 7 u " Completed
External signal 3 00000000 ppp1 pppp 7 u Completed
Externat signal 2 00000000 pp1 ppPpPP 7 u Completed
INTERRUPT-pushbutton 00000000 p1 ppppppP 7 u Completed
- Timer 00000000 1ppppPPPP 7 u Completed
1/0
Multiplexer channel (0) 00000000 asaaaaaa 0 u Completed
Selector channel 1 00000001 - aaaaaaaa 1 u Completed
Selector»chan_nel 2 00000010 aaaaaaaa: 2 u Completed
" Selector channel 3 A 00000011 . adaaaaaa 3 u Completed
Selector channel 4 ' 00000100 aaaaaaaa - 4 u Completed
Selector channel 5 00000101 aaaaaaaa 5 u Completed
Selector channel 6 00000110 aaaaaaaa 6 u Completed

Notes:
u: Unpredictable; E(0,1)

r: R1 and R2 fields of Supervisor Call instruction

1-28 (10/69)

p: Set if pending before PSW(7) isset to a 1.

a:

1/0O device address

Interruptions

e Each class of interruption has two related PSW’s: old
" and new.

e Old and new PSW’s have fixed, unique main storagg
addresses.

e Current PSW is stored into old address.

e 64 is added to old PSW address to get new PSW address. .

o New PSW becomes current PSW.
© There are 12 unconditional interruptions.

e 20 interruptions have associated PSW mask bits. If mask
bit is 1, take interruption; if 0, ignore interruption.

An interruption replaces the entire current PSW. It is placed
into a fixed location in main storage, and becomes the o/d
PSW (Figure 1-14). This old PSW gives the reason for the
interruption and also provides a return to the interrupted
program. A new PSW is then fetched from a fixed location
in main storage and becomes the current PSW. This new
PSW provides an entry into the correct interruption-
handling routine in the supervisor program:

Old PSW <

Gives reason for interruption;
provides return to problem

|
1
!
|
|
|
l program.
]
!
|
|
|
|
|
|

Current PSW

Controls current
program .

Provides entry into
supervisor program.

!

|

i

|

I

|

|

I

|
New PSW }
|

|

|

|
|

Each of the five classes of interruptions has its own
distinct locations for new and old PSW’s, as follows:

Decimal Address Hex Address

Interruption OIdPSW NewPSW OIdPSW NewPSW
External 24 88 18 58
Supervisor. Call 32 96 20 60
Program 40 104 28 68
Machine Check 48 112 30 70
/0 56 120 38 78

Thus, for example, a machine-check interruption causes
the current PSW to be placed into location 48 and a new
PSW to be brought out from location 112. Note that these
locations ‘are all divisible by 8 because they contain
doublewords, and that the location of any new PSW is 64
higher than its corresponding old PSW location.

The five classes of interruptions tell the supervisor only
the general reason for the interruption. For instance, the
fact that the new PSW was brought out of location 104 tells
the supervisor that the interruption was caused by a
program check. The supervisor still needs to know what
type of program check occurred. This is the function of the
interruption code, which is set into the current PSW
automatically by the CPU logic before the PSW is stored.

By examining the interruption code in bits 16—31 of the

old PSW, the program-check routine in the supervisor
program can tell specifically whether it was a specification,
addressing, or some other type of error. In the case of I/O
interruptions, the interruption code tells the supervisor
which channel and I/O unit caused the I/O interruption. In
the case of a machine-check interruption, the supervisor
must inspect the logout data to learn the specific malfunc-
tion. .

After the interruption has been processed by the
supervisor, the last instruction can be a Load PSW. This
instruction causes the old PSW to once again become the
current PSW, and the CPU is back in the problem program.

The load PSW instruction may also be used to: (1) allow
the supervisor to change the current PSW, and (2) load the
PSW for a new problem program after the program has been
read into main storage by the supervisor.

Interruption Masking

Sometimes it is not desirable to allow an interruption. This
condition becomes apparent when I/O interruptions are
considered (Figure 1-15). Assume an I/O operation is
completed, resulting in an I/O interruption. The current
PSW is stored as the old PSW to give the supervisor the
reason for (or the source of) the interruption. This old PSW
also enables the supervisor to return to the nterrupted
problem program. A new PSW is then brought out of
storage and becomes the current PSW which indicates the
first instruction of the I/O interruption-handling routine. If
at this time a second 1/O interruption, perhaps caused by
operator intervention at an I/O device of another channel,
were allowed, the old PSW stored as a result of the first I/O
interruption would be lost. The supervisor can prevent this
second I/O interruption from being accepted until it has
processed the first I/O interruption by means of mask bits
in the new PSW.

Twenty of the 32 interruptions for the five classes can
be masked off by associated mask bits in the PSW. (The

2065 FETOM (9/68) 1-29

previous instruction.

End of execution of .

})
N/ Yes
Fetch and execute
next instruction.
Machine -Supervisor
Check Program Call Interrupti Extemal 1/0
class

Bit, N\
13 of PSW
al

No

Corresponding

system mask bit
in PSW
al

A
m m lgnore Interruption
indicator on interruption. remains pending.
Perform diagnostic Assemble current
routine to scan (old) PSW.
out status of CPU,
starting at location \ ‘
128.
B Assemble current Assemble current Assemble current Store old PSW into
‘ (old) PSW, (old) PSW. (old) PSW. location 56.
Reset CPU. | Reset supervisor
. | call and program
i ptions, but
* | not external y y
| interruptions. The 1/0 -
Assemble current channels are not reset; Store old PSW into’ Store old PSW into Store old PSW into Store CSW into
{old) PSW. 1 therefore, 1/0O location 40. location 32, location 24. location 64
i ptions are
‘ : not lost,
Store old PSW into.
location 48,
‘ Y 4 A y .
| Ferch new Psw Fetch new PSW Fetch new PSW Fotch new PSW Fetch new PSW
- from location 112. from location 104. from location 96. from location 88. from location 120,
.| 1L
I A Y

Branch to supervisor
program and perform
specified interruption-
handling routine.

No

Branch to supervisor
progrom and execute
external interruption-
handling routine.

Refetch old PSW from

Branch to supervisor
program and execute
1/0 interruption-
handling routine.

. Refletch old PSW from
‘ focation 24 (and make location 56 {(and make
it current PSW) to return it current PSW) to return
Fetch old PSW and to problem progrom. - to problem program.
Possible actions: . -

1. Record error. moke it current PSW,

2. Print console message.
3. Begin new progrom.

1]

Figure 1-14. Action Taken When Single Interruption Occurs

1-30 (9/68)

r !
| |
: Location 56 :
PROBLEM PROGRAM : .
(Assume first | /O interruption) | Old PSW '
Instr occurs at this time. Asa | I
result, the current PSW is '
Instr stored into location 56 as | |
) the old PSW, and a new | '
Instr : PSW is fetched from location
~¢ JW 120. This new PSW becomes g Current PSW ' |
Instr the current PSW, which I
_ addresses the first instruction | |
Instr of the 1/O interruption- | '
L handling routine.) I Location 120 |
Instr
New PSW |
7 |
7/
oo
7/
/
Ve
/
/
/
4
/
7/
/
/
7/
/
/
/
SUPERVISOR , s/
(/0 INTERRUPTION- /
HANDLING ROUTINE) //
Instr <& J
Instr
Instr
-
Instr
Instr [Load (Old) PSW] If a second 1/O interruption
were allowed to occur at

this time, the current PSW
would be stored at location
56, thus destroying the old
PSW from the problem program.

Figure 1-15. Example of Need for Interruption Masking

2065 FETOM (9/68) 1-31

remaining 12 interruptions are ‘unconditional; they are
always taken.) If the corresponding mask bit is a 1, the
interruption is taken; if a 0, the interruption is ignored or
remains pending. External and I/O interruptions may be
masked off by the system mask field of the PSW;
machine-check interruptions may be.masked off by the
machine-check mask bit; 4 of the 15 program interruptions
may be masked off by the program mask field.

System Mask Field. The system inask field consists of eight
bits [PSW(0—7)] which can be used selectively or collec-’
tively to mask all I/O and external interruptions:

System Mask Bit Interruption Source

0 Multiplexer channel (0)

1 Selector channel 1

2 Seléctor channel 2

3 Selector channel 3

4 Selector channel 4-

5 Selector channel 5

6 Selector channel 6

7 Timer, INTERRUPT.-pushbutton, or

external signals 2—7

To prevent an I/O or external interruption before the
first interruption has been processed, the system mask of
the new PSW should contain zeros. When a system mask bit
is a 0, the associated I/O or external interruption remains
pending.

The system mask field may be changed by introducing a
new PSW, or it may be changed separately by the Set
System Mask instruction.

Machine-Check Mask Bit. The machine-check mask bit

[PSW(13)] controls the acceptance of a machine-check
interruption. If this bit is a 0, machine-check interruptions
are ignored and remain pending. If this bit is a 1,
machine-check interruptions are taken, depending on the
position of the CPU CHECK switch on the system control
panel. If this switch is in the PROC (normal) position, the
CPU stops and the status is logged into main storage; a
machine-check interruption then takes place. If the CPU
CHECK switch is in the DSBL (disable) position, the CPU
does not stop upon detection of a machine check and no
logout or interruption takes place. If the switch is in the
STOP position, the CPU stops upon detection of a machine
check, but there is no logout of data and no 1nterrupt10n
takes place.

1-32 (9/68)

The usual mode df operation is to have the CPU
CHECK switch set to the PROC position and PSW(13) set
toal.

The machine check mask bit can be changed only by
introducing a new PSW. '

Program Mask Field. The program mask field consists of -
four bits [PSW(36—39)], each of which is associated with a
program check:

Program Mask Bit Program Interruption

36 g Fixed-point overflow
37 ‘ Decimal overflc;w

38 e Exponent underflow (floating-point)
39 Significance (floating-point)

When a program mask bit is a 1, the associated program
check results in an interruption; when a 0, no interruption -

occurs and the condition does not remain pending.

The program mask field may be changed by intro-
ducing a new PSW, or it may be changed separately by the -

~Set Program Mask instruction.

" Instruction Address Determination

"o PSW holds address of instruction to be executed next.

e Interruption, 1f any, occurs during instruction execu-
tion.

e For program and supervisor call interruptions, instruc-
tion address less ILC gives address of preceding
instruction during which interruption occurred. '

As stated earlier, the instruction address portion of the
current PSW is used by the interruption operation to fetch
an instruction. Once the instruction has been fetched, the
instruction address portion of the PSW is updated to
address the next instruction. Interruptions are serviced only
after an instruction is finished. Therefore, the instruction
address portion of the old PSW does not contain the
address of the last instruction executed, but rather contains
the address of the next instruction that would have been
executed if the interruption had not occurred. For some
interruptions, it is desirable to locate the instruction during
which the interruption occurred. To obtain this location,
the instruction address portion of the old PSW must be

decremented by the supervisor. To do so, the supervisor

must know the length of the last instruction executed. This

length, in halfwords, is given by the instruction lengfh code
(ILC) of the old PSW (bits 32 and 33). The ILC for the five
formats is as follows:

Instruction

B PSW Bits | Op Code Posi- Length
ILC | 32and 33 | tionsOand 1 | (in Halfwords) Format
0 00 - Not available | —

1 01 00 1 RR

2 10 - 01 -2 - | RX

2| 10 10 2 | Rs and'si

3 1 " 3 ss

The ILC is predictable only for program and supervisor-
~‘call interruptions. For I/O and external interruptions, the
interruption is not caused by the preceding instruction, and
the ILC is therefore not predictable for these instructions.
For machine-check interruptions, the ILC setting may be
affected by the malfunction and, therefore, may be
incorrect. Therefore, the instruction causing these interrup-
‘tions, if any, must be located by other means.

For supervisor-call interruptions, the ILC is 1, indicating
the halfword length of the Supervisor Call instruction. For
program interruptions, an ILC of 1, 2, or 3 indicates the
length of the instruction in halfwords. The ILC of O is
reserved for a storage protection condition detected after
completion of the instruction that caused the violation; this
condition is called a /ate storage protection check and
results is an indefinite program interruption.

Note that for a program interruption caused by an

incorrect branch address, the address determined from the
instruction address and ILC is the branch address and not
the address of the branch instruction.

Machine-Check Interruption

The machine:check interruption provides a means for
recognizing a machine malfunction. The following malfunc-
tions cause a machine check:

. ROS word parity check.

. Parallel adder full-sum parity check.

. Parallel adder half-sum parity check.

. Serial adder full-sum parity check.

. Serial adder half-sum parity check.

. E-register parity check. .

. Multiply/divide logic error.

. Storage address check to CPU.

. Storage data check to CPU.

. System. hang (Multisystem feature only).

Sxooo\lc\o:.pwu;-

Each malfunction sets a specific trigger which, in turn,
sets the ‘error’ trigger and lights the PROC CHK indicator
on the system control panel and the CHK SUMM indicator
on roller switch 3 (position 1, bit 20).

Acceptance of a machine-check interruption depends
upon the state of the machine-check mask bit, PSW(13),
and upon the position of the CPU CHECK switch on the
system control panel.

If the machine-check mask bit is a 1 and the CPU
CHECK switch is in the PROC position, machine-check
interruptions are taken. The current instruction is termi-
nated, and a diagnostic routine -called /ogout is initiated.
The status of the CPU is logged out into the permanent
main storage area starting at location 128 (decimal) and
extending through location 295, a total of 22 doublewords.
A machine-check interruption then takes place; the old

- PSW is stored at main storage location 48 (decimal) with an

interruption code of 0 and a new PSW is fetched from main
storage location 112.

If the machine-check mask bit is a 0 and the CPU
CHECK switch is in the PROC position, the interruption
remains pending and the CPU attempts to complete the
current instruction and to proceed with the next instruc-
tion.

If the CPU CHECK switch is in the DSBL (disable)
position, the interruption is ignored regardless of the state
of the machine-check mask bit.

If the switch is in the STOP position, the CPU stops
upon detection of the machine check regardless of the state
of the mask bit.

Following an emergency power-off, power-on, or
system-reset operation, incorrect parity may exist in storage
and registers. Unless new information is loaded, a machine-

~ check condition may occur erroneously. Once storage and

registers are cleared, a machine-check interruption can be
caused only by a machine malfunction and not by invalid
data or instructions.

Program’ Interrup tions

varogram 1nterrupt10ns result from lmproper specifications

or unusual conditions arising during the processing of data
or instructions. There are 15 program interruptions, 4 of
which may be masked off by associated bits in the PSW
program mask field; the remaining 11 are unconditionally
taken. If the associated mask bit is a 0, the interruption is
ignored and does not remain pending.

The program interrupfion causes the old PSW to be
stored into main storage location 40 (decimal) and a new
PSW to be fetched from location 104. Interruption code
bits 28—31 identify the cause of the interruption. Bits

16—27, the remamder of the mterruptlon code, are: made

Zeros.
Four Interrupt Code tnggers deterrmne the code to be
set into bits 28—31 of the interruption code. The outputs

- of the four triggers are encoded to give the 15 possible

codes. The specific trigger(s) to be set is determined by a
combination of a micro-order, the op code, and data
conditions. The ‘program interrupt’ latch is set by the

2065 FETOM (9/68) 1-33

Interrupt Code triggers. A brief description of the 15
program interruptions follows:

1.

2.

Operation. An invalid op code is detected. The instruc-
tion is suppressed; the ILC is 1, 2, or 3.

Privileged Operation. A privileged instruction is en-
countered -in the Problem state. The instruction is
suppressed; the ILC is 1 or 2. - :

. Execute. The subject instruction of an Execute instruc-

tion is another Execute instruction. The instruction is
suppressed; the ILC is 2.

. Protection. The storage key of a main storage location

does not match the storage protection key in the PSW.
For a store protection violation, the instruction is
suppressed, except for Store Multiple, Read Direct, and
Test and Set instructions and VFL operations, which
are terminated. The ILC is 0, 2, or 3. For a fetch-
protection violation, the instruction is terminated
except for the Execute instruction which is suppressed;
the protected information is not loaded into an
addressable register or moved to another storage
location. The ILC is O, 2, or 3. In the case of a violation
caused by an I/O operation, data transmission is
terminated in such a way that the protected informa-
tion is not recorded on an output medium. The
violation is indicated in the channel status word stored
as a result of the operation. The ILC is 2 or 3.

. Addressing. An address specifies any part of data, an

instruction, or a control word outside the available
main storage. In most cases, the instruction is termi-
nated. Data in main storage remains unchanged, except
when designated by valid addresses. The instruction is
suppressed for the Convert to Decimal, Diagnose,
and Execute instructions, for certain SI-format
instructions, and for certain store instructions. The
ILC is 0, 1, 2, or 3.

. Specification. A specification program interruption is

caused by any one of six conditions:

a. A data, instruction, or control-word address does
not specify an integral boundary for the unit of
information.

b. The R1 field of an instruction specifies an odd LS
register address instead of an even register address
for a pair of GPR’s that contains a doubleword
operand.

¢. An FPR address other than 0, 2, 4, or 6 is
specified.

d. The multiplier or divisor in decimal arithmetic
operations exceeds 15 digits and sign.

e. The divisor in decimal division is equal to or
greater than the dividend, or the multiplier in
decimal multiplication is equal to or greater than
the multiplicand.

f. The block address specified in Set Storage Key or
Insert Storage Key instructions does not have the
four low-order bits set to zero.

The instruction is suppressed; the ILC is 1, 2, or 3.

1-34 (9/68)

7.

Data. A data interruption is caused by any one of three

conditions; .

a. The sign or digit codes of operands in decimal
arithmetic, editing, or convert-to-binary operations
are incortrect. ,

b. Fields in decimal arithmetic operations overlap
incorrectly.

- ¢. ' The decimal multiplicand has too many high-order

10.

11.

12.

14.

15.

significant digits. (The number of high-order zeros
in the multiplicand must at least equal the multi-
plier field.)

The instruction is terminated; the ILC is 2 or 3.

. Fixed-Point Overflow. A high-order carry occurs or

high-order significant bits are lost in fixed-point add,
subtract, shift, or load operations. The instruction is
completed by ignoring the overflow; the ILC is 1 or 2.
The interruption may be masked off by making the
fixed-point overflow mask bit [PSW(36)] a 0; the
interruption is then ignored.

. Fixed-Point Divide. The quotient exceeds the register

size in a fixed-point divide instruction, or the result of
a Convert to Binary instruction exceeds 31 bits. The
divide instruction is suppressed, and the Convert to
Binary instruction is completed by ignoring the extra
bits. The ILC is 1 or 2.

Decimal Overflow. The destination field is too small to
contain the result field in a decimal arithmetic opera-
tion. The instruction is completed by ignoring the
overflow information; the ILC is 3. The interruption
may be masked off by making the decimal-overflow
mask bit [PSW(37)] a 0; the interruption is then
ignored.

Decimal Divide. The quotient exceeds the specified
data field size in a decimal division. The instruction is
suppressed; the ILC is 3.

Exponent Overflow. The result exponent (character-
istic) of a floating-point addition, subtraction, multipli- -
cation, or division overflows, and the result fraction is
not zero. The operation is completed by making the
characteristic 128 smaller than the true result; the sign
and fraction remain unchanged. The ILC is 1 or 2.

. Exponent Underflow. The result of a floating-point

addition, subtraction, multiplication, or division under-
flows, and the result fraction is not zero. A program
interruption occurs if the exponent-underflow mask bit
[PSW(38)] is a 1. The operation is completed by
replacing the result with a true zero if the mask bit is 0.
If the mask bit is 1, the characteristic is made 128
larger than the true result, and the sign and fraction
remain unchanged. The ILC is 1 or 2.

Significance. The result of a floating-point addition or
subtraction has an all-zero fraction. The instruction is
completed; the ILC is 1 or 2. The interruption may be
masked off by making the significance mask bit
[PSW(39)] a 0; the interruption is then ignored.
Floating-Point Divide. A division is attempted by a

floating-point divisor with a zero fraction. The instruc-
tion is suppressed; the ILC is 1 or 2.

Note: If the Multisystem feature is installed, a fifth
Interrupt Code trigger is added for interruption code bit 27.

A multisystem program interruption code of 18 (decimal)

occurs if the Set System Mask instruction is encountered
when in Multisystem mode. The mstructlon is suppressed;
the ILC is 2.

Superwsor-Ca// Interruption

The supervisor-call interruption is used by the problem
program to pass control to the supervisor program. To do
so, the problem -program executes the Supervisor Call
instruction which, in turn, causes a supervisor-call interrup-
tion. The interruption is unconditionally taken; there is no
associated mask bit in the PSW. The old PSW is stored at

main storage location 32 (decimal), and the new PSW is-

fetched from location 96. The R1 and R2 fields (bit
positions 8—15) of the Supervisor Call instruction become
the low-order half (bits 24—31) of the interruption code of
the old PSW. These bits may be used to convey a message
(for example, the reason for the call) from the calling
program to the supervisor program. Bits 16—23 of the
interruption code are made zero. The ILC is 1, indicating
the one-halfword length of the Supervisor Call instruction.

External Interruptions

The external interruption enables the CPU to respond to
signals from external units, from the INTERRUPT push-
button on the system control panel, and from the interval
timer. An external interruption may occur at any time, and
interruptions from the different sources may occur simul-
taneously. Interruptions are kept pending until accepted by
the CPU. When several interruptions from one or more
sources are pending, only one interruption is taken servicing
all pending external interruptions.

An external interruption can occur only when system
mask bit 7 is a 1 and after the current instruction is
executed. The interruption causes the old PSW to be stored

at main storage location 24 (decimal) and a new PSW to be -

fetched from location 88. The source of the interruption is

identified by bit positions 24—31 of the interruption code;

bits 16—23 are made zero.
A brief discussion of the three external interruptions
follows:

1. External Signals. Available only if the Direct Control
feature is installed. May be masked off by depressing
DISABLE DIRECT CONTROL on the system control
panel or by setting bit 7 of the system mask field to a 0.
Six signal-in lines, representing external signals 2—7, are
connected to the CPU to cause an external interruption.
The specific external signal causing the interruption is
identified by a unique bit position in positions 26—31 of

the interruption code. For example, external signal 7 is
" identified by a 1 in bit position 31, external signal 6 by a
1 in bit position 30, and so on. The Multisystem feature,
if installed, assigns specific meanings to external signals 2
- and 3. (Refer to Chapter 4, Section 2.) '
2. INTERRUPT Pushbutton: If bit 7 of the system mask
field is a 1, depressing INTERRUPT on the system. .
control panel causes an external interruption. Bit posi-
tion 25 of the interruption code is set toa 1.

3. Timer. If bit 7 of the system mask field is a 1 and. the

interval timer value changes from positive to negative, an
external interruption occurs. Bit position 24 of the
‘interruption code is set to a 1. The interruption is
initiated as the timer count proceeds from a positive
number, including zero, to a negative number. The
interval - timer. is updated (decremented) 60 times a
second or 50 times a second, depending on the line
frequency. It is possible that, after an interruption is
initiated, the timer may have been updated several times
before the CPU is actually interrupted, depending on the
instruction being executed and on the state of the mask
bit. The operation of the timer is controlled by the -
DISABLE INTERVAL TIMER switch on the system
control panel

1/0 Interruptions

The I/O interruption enables the CPU to respond to signals
from I/O devices. A request for an I/O interruption may
occur at any time, and more than one request may occur at
the same time. The requests remain pending in the I/O area
of the system until accepted by the CPU. Priority is
established among requests so that only one interruption
request is honored at a time. The order of priority is
channel 0, then channels 1—6. Note that this priority is
different from the priority the BCU estabhshes for servicing

- I/O storage requests.

1/O interruptions generally occur at the end of an I/O
operation. Most 1/O operations are overlapped with process-
ing; an IO interruption, therefore, is an. efficient way of
signalling the supervisor that the I/O operation is finished.
After the I/O interruption-handling routine in the super-
visor is finished, control is passed to the problem program:

Problem Program ﬁ h

Supervisor Load PSW |
Call Ipterru tion {Masks On Channel Load PSW
anm P Started) .
Supervisor Program
Start 1/0 1/0 Interruption

‘ (Masks off all Channels)

An 1/O interruption can occur only if the associated
mask bit in the system mask field of the PSW is a 1. The

1/O Program

2065 FETOM (10/69) 1-35

I/O interruption causes the old PSW to be stored at main
storage location 56 (decimal) and the channel status word
associated with the interruption to be stored at location 64.
The new PSW is fetched from location 120. Bit positions
21-23 and 24-31 of the interruption code identify the
channel and the I/O device, respectively, causing the
interruption. Bit positions 16—20 are made zero.

Exceptional Conditions

Exceptional conditions are processed by the CPU after
finishing the instruction in progress. After processing the
. exceptional condition, the instruction flow might be
continued, stopped, repeated, or left, depending on the
specific exceptional condition. An exceptional condition
operation does not change the current PSW, nor does the
PSW contain mask bits for exceptional conditions.

Timer Exceptional Condition

When the interval timer must be stepped (decremented), a
timer exceptional condition is generated (recognized by a
trigger that is set by a positive swing of the line frequency).
When the instruction in progress is finished, the CPU
generates main storage address 80 (decimal), the location of
the timer value. The timer value is fetched, stepped, and
returned to location 80. If the timer value is stepped from a
positive value to a negative value, a timer external interrup-

tion is processed next. Otherwise, processing continues with

the next instruction. The timer is controlled by the
DISABLE INTERVAL TIMER switch on the system
control panel.

CPU Store in Progress Exceptional Condition

When the next instruction must be delayed to prevent the
subsequent program interruption from being indefinite, a
CPU store in progress exceptional condition is generated.
This condition is recognized if the storing of data into main
storage would overlap the processing of the Load PSW
instruction or the handling of an interruption or manual
control or program store compare exceptional condition. A
two-cycle CPU loop is entered to insure that any “late”
storage protection check will not result in an indefinite
program interruption under these conditions. If a protec-
tion check occurs, a program interruption is processed next.
Otherwise, processing continues with the next instruction.

Manual Control Stop Exceptional Condition

The manual control stop exceptional condition arises when
the program is to be switched from the Running to the
Stopped state. The CPU enters a “stop loop”, during which
no instructions are processed and all interruptions are kept
pending. Only the following pushbuttons are recognized:
STORE, DISPLAY, SET IC, START, ROS TRANSFER,
and PSW RESTART.

1-36 (9/68)

Manual Control Wait Exceptional Condition

The manual control wait exceptional condition arises when
PSW(14) is set to a 1. CPU clock signals are inhibited.
Processing continues when an external or I/O interruption
or an IPL operation is initiated.

Manual Control Repeat Exceptional Condition

The manual control repeat exceptional condition arises
when the repeat instruction operation (a maintenance aid)
is begun and, if the REPEAT INSN (instruction) switch on
the system control panel is in the SINGLE position, before
each subsequent repetition of the specified instruction.

Program Store Compare Exceptional Condition

A program store compare exceptional condition results if
the next instruction to be processed must again be fetched
into the Q-, R- and E-registers. This need occurs after
processing the Execute instruction and after some store
operations. Although the instruction to be executed next is
held in the instruction buffer (Q-register), it is modified in
its main storage location only. Therefore, to have the

“correct version of the instruction in the Q-register, the next

instruction is refetched before it is executed.

Invalid Instruction Address Test Exceptional Condition

The previously discussed exceptional conditions and inter-
ruptions result from unusual conditions occurring during
the execution of an instruction. To identify the instruction,
its address and op code are preserved by inhibiting the
fetching of the next instruction until the microprogram
routine that handles the interruption or exceptional condi-
tion is ended.

In an invalid instruction address test exceptional condi-
tion, however, it is the address of the next instruction that
is invalid, protected, or incorrectly specified. Processing of
the instruction is allowed to start; thus the address of the
previous instruction is replaced with an erroneous address.
The appropriate Interrupt Code trigger(s) is set and a
program interruption is processed next.

Q-Register Refill Exceptional Condition

The Q-register refill exceptional condition arises when
Q-register (instruction buffer) refilling conflicts with the
start of the next instruction. The exceptional condition
delays processing of the next instruction by one (or two)
cycles.

CONTROL OF 1/0 OPERATIONS

The following paragraphs: define an I/O operation; discuss
how I/O operations are controlled by instructions, com-
mands, orders, and control words; and illustrate how the
I/O system works, using the Start I/O instruction as an
example.

Instructions, Commands, and Orders

e CPU executes instructions.

e Channels execute commands.

e Control units and devices execute orders.
®

Five operations are available:
Write

Read

Read backward

Control

Sense

Input/output operations are initiated and controlled by

three types of information: instructions, commands, and .

orders. Instructions are decoded and executed by the CPU
and are part.of the CPU program. Commands are decoded
and executed by the channel, and initiate I/O operations
such as reading and writing. Instructions and commands are
fetched from main storage and are common to all types of
devices. Orders specify functions peculiar to an I/O device,
such as rewinding tape or spacing a line on a printer. Orders
are contained in the control command; they are decoded
and executed by the device.

The action in an I/O device initiated by a command is
termed an //0 operation. Five 1/O operations are available:
write, read, read backward, control, and sense. The channel
initiates the operation by executing the associated com-
mand. o

The write command initiates a write operation at the
device. Data from main storage is fetched in an ascending
order of addresses and transferred to the device.

The read command initiates a read operation at the
device. Data is read from the device in the same sequence as
it was written by a write command. Data is placed into
main storage in an ascending order of addresses.

The read-backward command initiates a read-backward
operation at the device. Data is read from the device in a
sequence opposite to that in writing. Data is placed into
main storage in a descending order of addresses.

The control command contains information, termed
orders, that controls the selected device. Orders are unique
to the particular device in use and specify such functions as
backspacing or rewinding magnetic tape. Orders are fetched
from main storage in an ascending order of addresses and
transferred to the device. v

The sense command initiates a sense operation at the
device. Data transferred during a sense operation providgs
information about unusual conditions detected during the
last operation and the status of the device. Data is placed
into main storage in an ascending order of addresses.

1/0 Control Words

Three I/O control words are used during an I/O operation:
1. Channel Address Word (CAW), which initiates I/O
sequencing.

2. Channel Command Word (CCW), which controls 1/0
operations and sequencing.

3. Channel Status Word (CSW), which indicates channel
status.

Channel Address Word

The CAW specifies the address of the first CCW associated
with the Start I/O instruction. The CAW is assigned
permanent main storage address 72 (decimal). The channel
refers to the CAW only during execution of the Start I/O
instruction. The pertinent information is stored in the
channel, and the CPU program is free to change the
contents of the CAW. The CAW has the following format:

l Key |0 00 0‘ Command Address
) 34 78 3l

Bits 0—3, Key. Specifies the storage protection key for
all commands associated with the Start I/O instruction.

Bits 4—7. Must be all 0’s.

Bits 8—31, Command Address. Designates location of
the first CCW in main storage.

Channel Command Word

The CCW specifies the command to be executed and, for
commands initiating I/O operations, designates the main-
storage area associated with the operation and the action to
be taken whenever data transfers to or from the main
storage are completed. The CCW’s can be located anywhere
in main storage, and more than one can be associated with a
Start I/O instruction. The channel refers to a CCW in main
storage only once, whereupon the pertinent information is

- stored in the channel. The first CCW is fetched during

execution of the Start I/O instruction. Each additional
CCW is obtained when the operation has progressed to the
point where the additional CCW is needed. The CCW has
the following format:

ICommand Codel Data Address)
[78 3

‘Bits 0—7, Command Code. Specifies I/O operation to be
performed.

Bits 8—31, Data Address. Specifies location of an
eight-bit byte in main storage; it is the first location
referred to in the main storage area designated by the
CCw.

Bits 32—36, Flags. Cause certain functions to be
performed that modify the operation.

2065 FETOM (9/68) 1-37

. Bits 37—39. Must be all 0’s for every CCW other than
the CCW that specifies a transfer-in-channel operation.
Bits 40—47. Not used. - .
Bits 48-63, Count. Specifies the number of eight-bit
byte locations in the main storage area designated by
the data-address field in the CCW.

Channel Status Word

The CSW provides the program with the status of an I/0
device or the condition under which an I/O operation has - -

been finished: The CSW is formed, or parts of it-are
replaced, in the process of I/O interruptions and during
execution of the Start 1/O, Test I/O, and Halt 1/O
instructions. The CSW is placed into main storage location
64 (decimal) and is available to the program at this location

until the next 1/O interruption occurs or until another I/O -

instruction causes its contents to be replaced, whichever
occurs first. The CSW has the following format:

I Key Io 00 ol Command Address

0 34 78 o) ki
g — Status | I ‘Count I
132 ' h 47 48) » 63

Bits 0—3, Key. Contains the storage protection key that
was used in the I/O operation initiated by the last Start
I/O instruction,

Bits 4—7. Must be all 0’s.

Bits 8—31, Command Address. Identifies the last CCW
used.

Bits 32—47, Status. Identifies the conditions in the I/O
device and channel that caused the CSW to be stored.

Bits 48—63, Count. Contains the residual count of the
last CCW used. - ‘

1/0 System Operation
e Start I/O instruction is given.

e Channel fetches CAW from main storage location 72
(decunal)

‘o CAW designates main storage address of first CCW.
o CCW specifies command and main storage area.

e Channel selects device. Start' I/O instruction is. termi-
nated at this point.

o Channel controls operation and data transfers.

e Operation is terminated by two conditions: channel end
and device end.

1-38 (9/68)

The CPU program initiates I/O operations by means of the
Start I/O instruction. This instruction identifies the I/O
device and causes the channel to fetch the CAW from main
storage location 72 (decimal). The CAW designates the

- location in main storage from which the channel subse-

quently fetches the first CCW. The CCW specifies the
command to be executed, the main storage area to be used,
and the number of data bytes to be transferred, if any.

The channel attempts to select the device by sending the
address of the device to all attached control units. Upon
recognizing the address, the control unit associated with the
addressed device connects itself logically to the channel.
The channel subsequently sends the command code to the
device, and the device responds by indicating whether it can
execute the command.

At this time, execution of the Start. I/O instruction is
terminated, and the CPU continues with its program. The
results of the attempt to initiate command execution are
indicated in the PSW and, under certain conditions, by
storing a portion of the CSW.

If the operation is initiated by the I/O device and its
execution involves transfer of data, the channel responds to
service requests from the device and assumes control of the
operation. For operations that do not require transfer of

.data, the device signals the end of the operation immediate-

Iy on receipt of the command code, and the channel is
immediately available for a new I/O operation.

An I/O operation may involve transfer of data to or
from one main-storage area, designated by a single CCW, or,
when data chaining is specified, to or from a number of
noncontiguous main-storage areas. In the latter case, a chain
of CCW’s is used in which each CCW designates an area in
main storage for the continuation of the original command
(operation).

Termination of the I/O operation normally is indicated
by two conditions: channel end and device end. The
channel-end condition indicates that the I/O device has
received or provided all information associated with the
operation and no longer needs channel facilities. The
device-end condition .indicates that the device has f1n1shed
the operation.

Facilities are provided for the program to initiate
execution of a chain of commands with a single Start I/O
instruction. When command chaining is specified, the
device-end condition causes the channel to fetch a new
CCW that specifies a new operation at the device.

Conditions that initiate I/O interruptions are asynchro-
nous with the activity in the CPU, and more than one
interruption condition can occur at the same time. A
priority has been established among the conditions so that
only one interruption is processed at a time. The I/O
interruption conditions are preserved in the IO devices and
channel until accepted by the CPU.

This section discusses: (1) the functional units (based on
Diagram 3-2, FEMDM); and (2) instruction fetching and

execution, the Universal instruction set by instruction class, -

and power considerations.

CONTROL

v ,. The 2065 CPU operates with a basic clock cycle period of

200 ns under control of ROS. The following paragraphs

discuss: (1) CPU timing and data transfer;(2) ROS — what

it is, how it controls the CPU, and its data flow; (3) the
additional control provided by the PSW register.

CPU Timing
- @ Basic clock cycle period is 200 ns.

o Symmetrical clock signal consists of 100-ns clock por-b

tion and 100-ns not-clock portion.
e Unsymmetrical clock signal consists of 80-ns clock
portion and 120-ns not-clock portion.
The basic CPU clock cycle period is 200 ns, divided into
clock and not-clock portions. A clock signal generator
provides a S5-megaHertz (5-mHz)
(100-ns/100-ns) clock signal. Two types of clock signal
generators are used: g continuously running crystal-
controlled oscillator in the Model G65, H65, and 165 CPU

or a gated delay-line oscillator in the Model IH65 and J65-

CPU. To provide additional time for CPU logic functions,
the symmetrical clock signal is modified to give a 5-mHz
unsymmetrical (80-ns/120-ns) clock signal. Finer intracycle
control is obtained by dividing each of the two clock signals
into 20 intervals of approximately 10 ns each. These
_intervals, named PO, P1, P2,...P19, are created by
inverters which delay the signal by about 10 ns. Thus the
notations. PO, P1, P2,...P19 refer-to signals which are
inverted and are delayed 10 ns with respect to the previous

signal: -
"I‘NO ns—’(:
s | 100-ns ! .
ymmetrica - Not-Clock
Clock Signal 100-ns Clock
120-ns))
Unsymmetrical 80-ns Not~Clock
Clock Signal Clock
P8 P19

s | TR

o o L T L |
e T

symmetrical

Section 4. CPU Description”

The clock signals-are distributed to logic gates A through

- E. Adjustable time delays within the logic gates synchronize

the clock signals with a reference signal, thereby eliminating
the various amounts of delay introduced by the distribution
cables. The distribution of the clock signals to the CPU
processing logic is stopped upon detection of an error or
during scan, logout, single-cycle, and certain ROS opera-
tions. When the CPU clock signals are stopped, the BCU
must continue to service the I/O channels and the scan logic
must be operable. Therefore. the clock signals to these areas
of the logic are not stopped, except under certain circum-
stances in the Model IH65 and J65 CPU.

Data Transfer

Data is transferred into a register, into an adder, and into
and out of LS by gating signals controlled by ROS (Figure
1-16). Referring to Figure 1-16, note that data from PAL is
always available at the A-register, B-register, and T-register,
but is transferred only into the selected register by means
of the corresponding gating signal from ROS. When gating
data into an adder, timing considerations require the use of
‘gate control’ triggers; these triggers, which are set by the
ROS decode logic, generate the required gating signal.

When transferring data into LS, the gating signal from
ROS is combined with a signal from the LS addressing logic
to develop a ‘write LS’ signal, which gates the data into LS.
When transferring data from the LS, an address signal
selects 1 of 24 LS registers, the contents of which are
transferred to the LS bus. A second gating signal transfers
the data from the LS bus to the S- or T-register.

Read-Only Storage

The CPU is controlled by ROS, a permanently recorded
microprogram, supplemented by conventional control logic.
A read-only storage is a storage device which contains
information (1’s and -0’s) of a nondestructive nature. The
2065 CPU utilizes a capacitive read-only storage, in which
bits are stored in the form of a capacitance between a fixed
drive-plate pattern etched at right angles to a sense-plate
pattern. Sense and drive plates are separated by a Mylart
film (approximately 1 mil thick), and the resulting sand-
wich is held together under pressure. A 1-signal is coupled
from a drive line to one of a pair of sense lines, and a
0O-signal is coupled to the other. Sense line outputs are
detected in a differential amplifier which in turn feeds a
latch. When decoded, the information in ROS controls
gates to route data in the CPU. Access time is approximate-
ly 95 ns.

+Trademark of E. I. duPont de Nemours & Co. (Inc.)

2065 FETOM (9/68) 1-39

Gate TtolS 31

Write LS

LS Address Reg

Local Storage LS
31 -
0 31

LS Address Reg Latch e1

Gate PAL to B —
I GT
Gate LS to S
Gate PAL to A -
. . 6
Gate PAL to T 1 ° - - 3 E—
I GT I .
32 63 0 31 32 63
= - - ' -
H RS T RT A RA| 8 | R8
0 31032 63 o 31§32 63167
32 63
. Gate
Decode T to PAL Control GT
T
Clock
32 63
4 63 4 63,7 67,
V4
/
PAA pag 7
’
-
PAL AP
4 63 67|
32 63

Figure 1-16. Data Transfer Scheme

Relationship of ROS to Conventional Controls

o ROS words replace most conventional sequence triggers
and control lines.

e ROS word is a unique bit configuration and controls
.CPU during machine cycle it is in use.

e In addidion to control data, ROS word holds address of
next ROS word and branch tests, if any.

e For branches, 1 ROS word is associateci with each
possible condition.

To. understand ROS operation, it is helpful to note its
relationship to conventional controls. Conventional con-
trols may be characterized by sequence triggers, and by the
control lines activated by the sequence- triggers as a
function of the operation to be performed and data

conditions. Each cycle that the CPU may take represents a-

state of the CPU as defined by the control circuits. Each
state, in turn, specifies which control lines are to be
activated during that cycle and which state is to follow
next. The defined state will cause the next sequence trigger
to be set in the following cycle. In some cases, the next
state may be contingent upon a branch condition in which
one of two or more sequence triggers must be selected.

1-40 (9/68) -

In ROS-controlled CPU’s, the _sequence triggers are
replaced by micro-instructions or ROS words. Each ROS
word consists of a predetermined bit pattern and represents
a state of the CPU. A micro-instruction is read into the
sense latches from the ROS device as follows:

Address of Next ROS Word

ROS Device
2816 100-Bit Words
. ¥
Sense Latches
100 Bits
Base Address
of Next

Address Modifers ROS Word

Control Décoder ||

v

CPU Control Lines

" Address Decoder

Decoding of the bit pattern activates control lines which
initiate operations or functions in the CPU under timing
control of ROS decode logic. The base address of the next
ROS word to be used is also included in each ROS word.
Data conditions within the CPU may modify the address if

the bit pattern indicates a test for branching (e.g., branch if
overflow occurs). One ROS word is associated with each
possible condition; the base address is modified to address
the ROS word which satisfies the data conditions. Thus
ROS eliminates the need for most of the complex sequenc-
ing networks.

ROS Word

e ROS word is divided into 100 bits, grouped into 21
control fields.

e Number of bits within field determineé number of
unique control signals within field.

e Control signals are termed micro-orders.

The ROS is physically organized into 16 planes, each plane
holding 88 200-bit words. Through addressing, the 200-bit
word is further divided in half to yield 2816 100-bit words,
hereafter referred to as ROS words. Each ROS word
consists of a unique predetermined bit configuration
grouped into 21 control fields (Table 1-6). The number of
bits within a field determines the number of unique control
signals (micro-orders) available within that field. (In a
four-bit field, for example, 16 distinct micro-orders can be
defined, only one of which can be activated at any one
time.) The micro-orders are grouped functionally within the
fields according to two rules:

1. Micro-orders that are functionally similar (such as
micro-orders that control ingating to the AB register) are
grouped in one field for ease of decoding.

2. All micro-orders grouped in a field must be mutually
exclusive because only one micro-order within that field
may be specified at a time.

“Usually, rule 1 results in rule 2.

When decoded, each micro-order activates one or more
control lines that condition gates to perform the function
specified by the micro-order. Each micro-order is assigned a
mnemonic code (up to 12 characters) that defines the
control function performed. As an example, Table 1-7 lists
the micro-orders and associated microcommands pertaining
to control field V of the ROS word, referenced to the bit
configurations of that field, and their function.

Each ROS word is represented by a block on a Control
Automation System (CAS) Logic Diagram (CLD). The CT.D
is to the ROS microprogram what an ALD (Automated
Logic Diagram) is to logic. The blocks are connectea 10
show the logical sequence of ROS words to perform the
specific function. Refer to ALD M7061 for a definition of
the CLD format and content, and of the ROS block
language and information contained within the block.

Control
Bits Field Function Controlled
0-5 - Spare
6-9 A A-, B-, and IC-register fngating
10,11 B LS to S- and T-register ingating
12—-16 C -PSW and S-, T-, D-, G-, and Q-register
ingating)
17-19 Dt F-register ingating, and end-op signals
20 - Parity
21-24 E E- and R-register ingating
25-30 Ft Status triggers and miscellaneous
control lines
31-35 Gt Status triggers, IC, and miscellaneous
control lines
36, 37 - Spare
38-42 H LS
43-46 L Storage requests and setting of mark
triggers
47-56 NA Base address of next ROS word
57-61 K Y -conditional branches
62-68 J 2Z- {and X-} conditional branches
69-73 M Serial adder A bus
74-77 N Serial adder B bus
. 78-80 P Parallel adder latches
81 - Spare
82-84 Q Hot 1's to parallel adder A-side
- 85 - Parity
86 R F- and AB-register outgating to serial
adder A-bus
87-90 T A-, B-, IC-, and F-register outgating to
parallel adder B-bus
91 - Parity
92-95 U S-, T-, and D-register outgating to
parallel adder A-bus
96 - ~ Spare
97-99 \" E- and Q-register outgating to parallel
adder B-bus

Table 1-6. ROS Word Breakdown

1 Control fields D, F, and G serve two functions. In the normal
processing mode, they are decoded to yield standard CPU
micro-orders; in the scan mode, they are identified as field S, and
they yield special scan micro-orders (using common micro-order
codes). The choice of modes is controlled by a ‘scan mode’
trigger.

2065 FETOM (10/69) 1-41

Tablé 1-7. Control Field V (Bits 97—99);
E, Q outgates to Parallel Adder B-Bus

Configti:ation Micro-
Order

97 98 99 | . Mnemonic Function

0 0 0 | 0 - Zero gated with parity

o | o | 4 E3 . | E(12-15) to PB(60—63)

o | 1| o} E2 E(8—11) to PB(60—63). |
o |11 E23 E(8-15) t0 P_é(sé—és)._
1 0 | 0 Q7 - Q(52-63) to PB(52—63) |
1o |1 Q5 - | -Q(36—47) to PB(52—63)
1 1 0 Q3 Q{20-31) to PB(52—63).

1 1 1 Q1 Q(4—15) to PB(52—63)

ROS Addressing and Branching

e Conditional branches are dependent on internal
conditions of previous cycle.

e Word addressed as result of branch test is not available
" until 1 cycle later.

o ROS word is addressed by 12-bit binary address:
0-9 is 10-bit base address.
10 is Y-branch bit.
11 is Z-branch bit..

e X-branch (functional branch) affects more than 1 bit.

o Overriding branch blocks 12-bit address and forces new
‘12-bit address into ROSAR.

As described earlier, the CPU cycle presently being exe-

cuted. is.controlled by the ROS word addressed during the
previous cycle. Referring to Figure 1-17, A, the normal

“sequence of ROS words is achieved by placing the address

of ROS word 2 into ROS word 1, the address of ROS word
3 into. ROS word 2, and so on. The address of the next
ROS word is decoded during clock time of the cycle
controlled by the present ROS word; the next ROS word is
accessed during not-clock time of the cycle.

| | |
L Clock Cycle 1 | Clock Cycle 2 l Clock Cycle 3 Clock Cycle 4
| | | | |
l '4—_ 200 ns _—"| | l
| 80 ns I I [
| Clock 120 ns | |
Not
[| l No Clock l I |
|
I ROS Word 1 i I ROS Word 2 | ROS Word 3 ROS Word 4 !
| l . | ! [
Decode Address: : : Access ROS
of ROS Word 3 Word 3
A. Sequential ROS Word Addressing
| Clock Cycle 6 | Clock Cycle 7 . Clock Cycle 8
| BT — T :
L A
I | _ ROS Word 7

ROS Word 6

Branch tests ——/', . ROS Word 13

performed here

Result is zero

Result is not zero

ROS Word 14

ROS word \/
branched to

available here

B. Conditional Branch ROS Word Addressing

Figure 1-17. ROS Addressing and Branching

1-42 (9/68)

Conditional branches are dependent on the internal .

conditions of the previous cycle. It is important to note
that the ROS word addressed as‘a result of the branch test
is not available until one cycle later. To explain this 1-cycle
delay in addressing, assume that ROS word 6 contains the
micro-orders necessary to subtract the contents of the
T-register from the contents of the B-register, and to place
the result into the T-register (Figure 1-17, B). Assume
further that if the result is zero, a branch will be made to
ROS word 13; if not zero, the next ROS word addressed
will be 14. Contained in ROS word 6.is the address of ROS
word 7, which defines the branch test and contains the
associated branch addresses.

The results of the arithmetic operation performed in
cycle 6 are tested during clock time of cycle 7. It is during
this time that the address of ROS word 13 or 14
(depending on the results of the branch test) is decoded:
the selected ROS word is accessed during not-clock time of
cycle 7. Hence, the ROS word branched to as a result of the
arithmetic operation performed during cycle 6 is not
available until cycle 8.

ROS words are selected by means of a 12-bit binary
address. The address is held in the ROS address register
(ROSAR), whose bit positions are numbered 0 through 11,
high order to low order. Bits O through 10 specify a 200-bit
doubleword in ROS; bit 11 gates the proper 100-bit half to
the ROS sense latches (Figure 1-18).

The 12-bit address is made up of three components:

1. A 10-bit base address, bits.0—9.
2. A conditional branch test, or an unconditional value of 0
or 1 applying to bit 10, designated Y-branch.

3. A conditional branch test, or an unconditional value of 0

or 1 applying to bit 11, designated Z-branch.

Included in the Z-branch field of micro-orders is a subset
of branch micro-orders called X-branch or functional-
branch micro-orders. The X-branch micro-orders affect
more than one bit of the ROS address.

Included in the Y-branch field of micro-orders is a subset
of overriding branch micro-orders. When the conditions
tested by these micro-orders are satisfied, the full 12-bit
address is blocked and a new 12-bit address is forced into
ROSAR. ‘

If branching conditions are to be tested, the address bits
that may be affected by the branch must be set to O’s,
except in the case of an overriding branch. If the branch is
satisfied, 1’s are forced into the ROSAR bit positions
associated with that branch test; if the branch condition is
not satisfied, the bits remain 0’. Thus the address is
modified only if the branch is to be taken.

Addresses can be grouped into four categories: (1) no
branch specified, (2) Y- and/or Z-branches, (3) X-branches,
and (4) overriding branches. The following paragraphs
discuss the addressing for each category. Refer to ALD
M7061 for a definition of ROS addressing and branching
_terms used in the following paragraphs.

No Branch Specified. If no branch tests are to be made,
there is only one possible ROS word that can follow, and
hence only one possible next address. Accordingly, the
10-bit base address (bits 0—9) and absolute values of 1 or O

for bits 10 and 11 are specified. The micro-orders that

unconditionally set an absolute value into bits 10 and 11
are:

1. 0in left of R-line (KO), which sets bit 10 to a2 0.

2. 1in left of R-line (K1), which sets bit 10 toa 1.

3. 0 in right of R-line (JO), which sets bit 11 to a 0.

4. 1 in right of R-line (J1), which sets bit 11 toa 1.

The appropriate Y- and Z-branch micro-orders are

~ selected, and bits 10 and 11 are set correspondingly.

Y- and/or Z-Branches. Conditional branch addresses may be
specified in which bits 10 and/or 11 are affected.

Only a Y-branch can be executed as follows. A 10-bit
base address and an absolute value or X for bit 11 are
specified. A branch test is defined in the Y-branch
micro-order control field. If the branch condition is
satisfied, bit 10 is set to a 1;if not, bit 10 remains a 0. For
example, micro-order ‘WCRY” sets bit 10 to a 1 if a carry is
detected in the serial adder. If there is no carry, bit 10
remains a 0.

- Conversely, only a Z-branch can be executed as follows.
Here, a 10-bit base address and an absolute value for bit 10
are specified. If the branch test defined in the Z-branch
micro-order control field is satisfied, bit 11 is set to a 1;if
not, bit 11 remains a 0.

Certain situations require the use of both Y- and
Z-conditional branches simultaneously. The 10-bit base
address is specified, and bits 10 and 11 may assume one of
the following values:

___Bits
l()_ 1 Branch Results
0 0 Y- and Z-branch conditions both unsatisfied.
0 1 Z-branch condition only satisfied.
1 0 Y-branch condition only satisfied.
1 1 Y- and Z-branch conditions both satisfied.

X-Branches. Where a branch to one of four or more possible
addresses is required (as well as some special 64-way branch
tests), an X-branch is used. The X-branch may affect bits 10
and 11 (four-way branch), bits 9—11 (eight-way branch),
bits 8—11 (16-way branch), or bits 6—11 (64-way branch).
An example of an X-branch is the 64-way branch,
‘E(2—7)>ROA’, made at the end of the I-Fetch sequence
pet the op code to enter the execution phase of the specific
instruction.

" . 2065 FETOM (9/68) 143

Select 200-Bit Doubleword : ROS
. w _ Device .

Upper) Lower
Word . Word
(100 Lines) (100 Lines)

Gate Gate Upper or Lower Word
(. - o)
] g —
Sense Control Field Control Field Control Field
NA K J
Latches j |47 56|57 61I62 x 68|)
43 T 68 ’
i 47 56 57 61 62 ‘ 68
To ROSBR I l
Decode Decode"
Y Z
Over- . Func= .
riding EZ::;- tional ﬁg::’l;-
Branch Branch Branch Branch
t
Base
Address of Next :
ROS Word JEQ 11
. 6 11
0 9
0 10 11
To ROSAR
Latches

Address Decoding

t Inhibit 12-bit
address and force
a new 12-bit
_address into ROSAR,

Figure 1-18. ROS Addressing Block Diagram

1-44 (9/68)

p - CROS

Gate C

Gate D N

Plane 7 Plane 15
Plane 6 Plane 14
Plane 5- Plane 13
Plane 4 Plane 12
Plane 3 Plane 11
Plane 2 Plane 10
Plane 1 Plane 9
Plone 0 Plane 8
1/4 Plane 1/4 Plane
1/4 Plane 1/4 Plane
1/4 Plane 1/4 Plane
1/4 Plane 1/4 Plane
100 100 100
-1
(" Lower Word
< Upper Word
I Gate Upper or Lower Word
Gate =
100
0 99
E A B C] i E F G * |« H L NA K J M N P * Q **| R T b u * v
. 0 5|6 910 1112 16[17 19{20|21 2425 30(31 35[36{3738 46]47 56157 61462 68|69 73|74 77|78 80[81}82 841858687 9019192 959697 99
100 $ 42 43 68 69 73 74 7778 80 82 84 85 86 99
Sense B
Latch
i . 8 87 50 92 % 9%
43 46 47 56 57 61
é 42 69 73 74 77 78 80 82 84
- - -
ROSDR RY ROSDR AR ROSDR AP
é 35 38 42
62 68
Base External
s 3 Address of Conditions
Next
- ROS
ROSDR Latches RY Word
y N
Decoder Decoder
Decoder Decoder Decoder Over- Func— Decoder Decoder Decoder Decoder
riding |Y-Branch tional | Z-Branch
*—— Branch branch
Force New
. Address 0-11
f:egisfeir Ingating Local Storage Main Storage Seriol Porallel Outgate Outgate
ontro Control Requests Adder Bus Adder Bus to Serial to Parallel
Control Control Adder Adder
10]
6
0 1 0 9 43 68,85 86 99
- - =a -
ROSAR Latches RX ROSAR RX ROSBR DR, DS ROSBR AP,RB,
RQ,RT
0 11 0 n +
I To Indicators To Indicators
0 4 5
9 | 1 0] " 910 nt
0 L
- -
ROSPARA RX ROSPARB RX | | Legend:
Dri Select * < Spore
+ Gate e Lfnf "+ . Bit 20 = parity for bits 0-42.
To Indicators To Indicators Decode Decoder Decoder it 85 = parity for bits 43-68.
: Bit 91 - parity for bits 69-99.
Address Decoder FROSAR(11) set selects lower word.
To Selected Drive Line H

‘Figure 1-19. ROS Data Flow

2065 FETOM

(9/68) 1-45

For these multiway branches, one condition sets the
associated address bit to a 1. To illustrate, assume condi-
tions A, B, and C sets bits 9, 10, and 11, respectlvely, toa
1. The poss1ble results are:

Bits
9 10 1 Branch Results
0 0 0 None of the conditions is satisfied.
0 0 1 Condition C is satisfied.
0 1 0 Condition B is satisfied.
0 1 1 Conditions B and C are satisfied.
1 0 0 Condition A is satisfied.
1 0 1 Conditions A and C are satisfied.
i 1 0 | Conditions A and B are satisfied.
1 1 1 Al three conditions are satisfied.

The addressing is similar to that previously discussed. A
10-bit base address is specified, with those bits that may be
affected by the X-branch set to 0. Thus, for the example
given above, bit 9 of the base address is set to 0, the
Y-branch micro-order control field contains micro-order 0
in left of R-line to set bit 10 to 0, and bit 11 is
automatically set to O when the X-branch is specified.
Subsequently, the bit(s) associated with successful condi-
tion(s) is set to 1. The ROS word addressed will be that
ROS word whose address satisfies the branch conditions.
Overriding Branches. There are exceptional machine condi-
tions (such as interruptions) for which the normal ROS
word sequence must be stopped and a new sequence
started. This change is accomplished by an overriding
branch specified in the Y-branch micro-order control field.

The normal sequencing address is made up of (1) the
" 10-bit base address and (2) bit 11 set to 0 automatically
because the overriding branch is a function of the Y-field.
Because the overriding branch is specified in the Y-control
field, no Y-branch can be specified.

If the overriding branch condition is satisfied, the
normal full 12-bit address is blocked and a new address, as
determined by the overriding branch condition, is forced
into ROSAR.

ROS Data Flow

e ROS data flow units are:
100 sense latches, 1 per ROS word bit
ROSAR
ROSAR latches
ROSPARA and ROSPARB
ROSDR
ROSDR latches
ROSBR
Decode logic

e Control fields may be:
Decoded directly from sense latches.
Placed into ROSDR and subsequently decoded.
Placed into ROSDR, sent to ROSDR latches, and then
decoded.

The 100-bit ROS word is divided into 21 control fields.

When read out from ROS, the ROS word is placed into 100

sense latches, one latch for each bit position. The control

fields are handled according to the functions they control.

They may be (Figure 1-19):

1. Decoded directly from the sense latches (control fields
L, K, J, R, T, U, and V) or transferred directly to
ROSAR (control field NA).

2. Placed into the ROS data register (ROSDR) and decoded
(control fields H, M, N, P, and Q).

3. Transferred to ROSDR latches from ROSDR (control
fields A—G).

Assuming ROS words and the cycles they control are
designated 1, 2, and 3, ROS word 1 is set into the sense -
latches during not-clock time of cycle O (Figure 1-20). The
control fields used during clock time of cycle 1 are decoded
directly from the sense latches (case 1 above). These
control fields, which may be considered critical timing
fields, control inputs to the adders, define the base address
and branch tests for the next ROS word, and control the
storage-request and mark triggers.

- Although the sense latches are cleared at not-clock time

of cycle 1, the control fields of ROS word 1 that are

required during that time (case 2 above) are placed into

ROSDR at clock time of cycle 1. These signals control the

~ adders and LS. Note that both portions of the ROSDR

associated with the adders are packaged physically with the
adders they control. The balance of the ROSDR serves
control fields A—H. _

Control fields A—G control register inputs and triggers
that are to be set during clock time of cycle 2 (case 3
above). Although the ROSDR is reset at the end of cycle 1,
the ROSDR latches keep control fields A—G available for
that additional 80 ns (Figure 1-20).

Control fields L, NA,K,J, R, T, U, and V are sent to the
ROS backup register (ROSBR) from the sense latches. The
ROSBR does not play a part in the ROS functions; it
provides an indication of the subject fields during main-
tenance (test) mode. When the CPU stops on an error
during test mode, the ROSBR contents can be used by the
CE to help isolate malfunctions.

The NA control field, in addition to being stored in the
ROSBR, is stored in ROSAR and provides the base address
as -previously explained. During each ROS cycle, the
contents of ROSAR are sent to the ROSAR latches which,
in turn, are alternately gated (by means of an ‘A-gate’
signal) to the ROS previous address A (ROSPARA) and
ROS previous address B (ROSPARB) registers. These
registers serve the same purpose as the ROSBR; i.e., provide
the CE with an indication for maintenance use during test

2065 FETOM (9/68) 147

Clock

Cycle 0
I‘CT)ck

Cycle 1

Cycle 2 Cycle 3 Cycle 4_.1
Clock Clock | Clock

CPU Clock PO | | |Not Clock| |Not Clock{ |Not Clock] [Not Cloc ™ [Not Clock
Word 1 Address in ROSAR _I._I,

Access Word 1 (Drivg) — |

Word 1 in Sense Latches

Word 1 in ROSDR and ROSBR | I

Word 1 in ROSDR Latches v ' \
Word 1 Address in ROSPARA

Word 2 Address in ROSAR S 1

—— |
Access Word 2.(Drive) — ‘
Word 2 in Sgnse Latches
Word 2 in ROSDR and ROSBR ll_
© Word 2 in ROSDR Latches . 1 |
Word 2 Address in ROSPARB t | 1 I
Word 3.Adclress in ROSAR t l I :
Access Word 3 (Drive) f_ ‘
Wofd 3 ‘in.Sense' Latches . .
Word 3 in RbSDR and ROSBR fl l
Word 3 in ROSDR Latches t l | |
Word 3 Address in ROSPARA t | l))
A-—Gul‘e i | : | L - 1) ’ . | |

1 1f an error is detected in cycle 1, these steps are not performed.

Figure 1-20. ROS Timing

mode. When an error causes the CPU to stop in test mode, -

ROSAR, ROSPARA, and ROSPARB provide the addresses
- of the next ROS word, current ROS word, and previous
ROS word (Figure 1-20). ‘
E ROS Control of CPU"

Efficient control of CPU operations is achieved by over-
lapping ROS words. Clock signals (PO—P19) time ROS
/ : -

1-48 (9/63)

sense latches, ROSDR, and ROSDR latches, thus allowing
the processing of parts of more than one ROS word
simultaneously To illustrate, Figure 1-21 shows the ROS
word timing relationship for a hypothetical example.

The address of word 1 is gated into ROSAR from the
ROS sense latches at P5 of word 0. [ROSAR(11) may be
set as late as P7.] Information from word 1 enters the ROS
sense latches at PO + 160 ns (P16). (In normal operation, a

61 (89/6) WOLAA S90T

P2

ROSAR

ROS SENSE Latches

Register Output

Storage Request

SDBO

ROSDR
Adder Control

LAL (LS Address Latches)

Local Storage Read

LAR (LS Address Register)

ROSDR Latches

Register Input

r——— Word 0 - Word 1 Word 2 Word 3 Word 4 Word 5
P2 P4 P& P8 P10PI2P14 P16PI8 PO P2
'PS{P5'P7IP9 mlm‘mslﬂ?lmlm!
it bl lbrtrdy! 80as : .
20 ns 120 ns j l l
Word 1 Adr ‘ Word 2 Adr l Word 3 Adr { Word 4 Adr Word 5 Adr |
| J | | | l I | ! |
Word J Data Word 2 Data Word 3 Data Word 4 Data Word 5 Data
1 1
Gate Decode | Gate Decode i
N —— ——
| Register-Out Condition | Register-Out Condition
Storage Request (3-Cycle)
600-ns HSS Access
SDBO per Word 1
(6-42) (69-84) _l
Word 1 Data Word 2 Data Word 3 Data N Word 4 Data N i, Word 5 Data
—— | o — — —

Figure 1-21. ROS Control of CPU Operations

|
Adder Control (Shift)

l

Sample LAL Word 1

Sample LAL Word 2

Sample LAL Word 3

Sample LAL Word 4
—

- —
I LS Read I I LS Read LS Read l LS Read
o ——
|
] LAR (Write)
‘ Write Cond
—————
Word 1 Data l Word 2 Data Word 3 Data Word 4 Data " Word 5 Data
— —

|
Reg In Sample
————

i

Reg In Sample
T

| |
Reg In Sample
L}

new word enters the ROS sense latches every 200 ns.) In
the example, word 1 controls: (1) register output, (2) main
storage request, (3) adder shift, (4) local storage write, and
(5) register input. A register output micro-order gates
register data into an adder at P2 by means of ‘gate control’
triggers. A three-cycle main storage request is initiated at P4
to fetch information which is used three cycles later. Note
that register output and the main storage request are
decoded directly from the ROS sense latches.
Bits 6—35 and 38—42 enter ROSDR at PO, and bits
" 69—80 and 82—84 enter ROSDR at P2; they are decoded
for adder control and LS operations. In the example,
micro-orders generate an adder shift and a local storage
write operation. The shift is performed immediately, but
the local storage write operation is delayed because a local
storage read operation is automatically set up first. The LS
address is entered into the local storage address latches
(LAL); a read operation is performed, but data is not gated
into a register.
The address then is gated into the local storage address

register (LAR) to perform the write operation. Note that

the write condition, ordered by word 1, starts after word 2
has been transferred to the ROSDR. The figure shows an
LS read operation for every word because this sequence
happens even if it is not ordered. When no order is given to

LS, a readout of LS address 0 is performed but the data is’

not used. Forcing the read operation saves time if it is
needed. ’

ROSDR(6-35) is gated to the ROSDR latches at P7 to
retain word 1 information at the same time word 2 is set
into ROSDR. In the example, word 1 transfers data into a
. register at clock time (P2) of word 2. This action, along
with an LS write operation, illustrates ROS word overlap
because these operations are performed at the same time
the register out condmon is energized from the decoding of
word 2.

Word 2 has only one micro-order, register output, but
gates are conditioned to transfer word 2 data from the ROS
sense latches to the ROSDR and then to the ROSDR
latches. Note that the LS read micro-order is active, though
not ordered. Word 3 operates in a similar manner, but the
only micro-order is a register input which takes place during
word 4. 2

As the ROS words are executed, the main storage
request is processed and data is returned on the Storage
Data Bus Out (SDBO); word 4 contains the micro-order to
gate the data into a register for further processing.

' PSW Register

Program status words (PSW’s) contain detailed information
pertaining to the particular mode in which the CPU is
operating. These status words are composed of a system

1-50 (9/68)

mask, storage key, program state, interruption code, in-
struction length code, condition code, program mask, and
an instruction address that epables the interrupted program °
to resume at the correct location.

Status information concerning the current operating
program is contained in several groups of triggers, from
where it controls all system operations essential to that
particular program mode. These groupings of control
triggers, although not adjacently located in logic, are
collectively referred to as the PSW ‘register. Although a
completely assembled PSW is 64 bits long, only 24
positions of status word data are contained in-the PSW
register. The remaining information (generated by the CPU
at the time of the interruption) is not retained when a
previously stored PSW is reloaded, because its function is
only to identify the cause of the interruption and to return
the CPU to the correct program location. (This information
is gated directly from ST when the old PSW is recalled from
main storage.) Figure 1-22 shows an assembled PSW and
those areas of control information retained in the PSW
register.

BUS CONTROL UNIT

In the 2065, the BCU responds to storage requests from the
CPU and from up to seven I/O channels, all of which may

‘be operating asynchronously with respect to each other.

The flow of information between main storage and all units
serviced by the BCU is effected through a single bus system.
Because the bus system is shared by all units, the BCU must
resolve conflicts between simultaneous storage requests
from these units and ensure that the storage bus system is
available to one unit at a time. Thus, the major function of
the BCU is to provide for efficient time- shanng of the
storage bus system by all units.

Each unit requiring access to storage communicates with
the BCU through individual control lines. These lines are
monitored in the BCU to establish priority between storage
requests and to inform the requesting units of the bus
system availability. 7

When priority is awarded to a requesting unit, the.BCU .
decodes the high-order bits; and bit 20, of the storage
address supplied by that unit. The BCU then sends a ‘select’
signal to the proper storage unit. The selected mam ‘storage

" unit initiates a storage cycle and decodes the low-order bits

(6—19) of the address supplied on the storage address bus

(SAB) to access the required doubleword location. When

the BCU grants storage access to one unit, storage requests
from all other units remain pending until the current data
transfer operation is completed. At that time, the BCU
performs a new priority test on all units (including the unit
just serviced).

Placed into ST at

time of interruption (by
interrupt logic) and

stored with assembled PSW,

A A
'd N\ 75 TN
Assembled PSW Prog - ' Prog
(in ST) iA)':::m Kéy State (Ign;eirruphon ILC | CC | Mask | Instruction Address
0 718 1112 1516 © 31|32 33{34 3536 3940 63
7 8 1112 15 3435 36 39
Instruction
length code
(machine-
generated)
0 | 7 8 [1112 |15 32 | 33343536{39
¢] I | ma
PSW P ! I i1 RW
l |]] 1
' A I

Figure 1-22. Status Information Contained in PSW Register

Major Interface Lines.

A simplified diagram of the BCU interface with the Model
65 system is shown in Figure 1-23. This interface consists
of multiplex data bus lines, and of simplex and multiplex
control lines. By definition, a multiplex line is a line that is
shared by more than two units of the system; for example
the SAB, which connects the BCU and all the I/O channels
to all storage units in the system. A simplex line is a line
that is used exclusively between two units of the system.
For example, individual ‘select’ lines are used to inter-
connect the BCU to each storage unit in the system.

The major interface lines shown in Figure 1-23 are

defined as follows:
1. Address and data buses.

a. Storage Address Bus (SAB). This multiplex bus
connects the CPU and all I/O channels to all main
storage units in the system. The SAB consists of 21
address lines (plus three parity lines) and specifies the
address of a doubleword contained in one of the main
storage units associated with the system. Note. that
the. SAB path is different from the other buses: This
difference is necessary because SAB(0—6, 20) from
the CPU and from the channels must enter the BCU
storage address decoder to select a storage unit.

b. Storage Data Bus Out (SDBO). This multiplex bus
connects the CPU and all I/O channels to all main
storage units in the system. The SDBO consists of 64
data lines (plus eight parity lines) and carries data

requested from main storage by the CPU or the I/O
channels.

. Storage- Data Bus In (SDBI). This multiplex bus

connects the CPU .and all I/O channels to all main
storage units in the system. The SDBI consists of 64
data lines (plus eight parity lines) and carries data to
‘be stored into main storage. This data may be
supplied by the CPU or by the I/O channels.

. Mark Bus. This multiplex bus connects the CPU and

all I/O channels to all main storage units in the
system. The mark bus consists of eight mark lines
(plus one parity line) and designates the bytes on the
SDBI that are to be stored into main storage. (There.
is one mark line for each byte on the SDBI; complete
absence of mark signals occurs only on a fetch
operation.) ' :

. Key-In Bus. This multiplex bus connects the CPU an

‘all /O channels to all main storage units in the
system. The key-in bus consists of five key lines (plus
one parity line) and transfers the storage protection
key from the CPU or the I/O channels to the storage
protection area in the selected main storage unit.

. Key-Out Bus. This multiplex bus connects the CPU to

all main storage units in the system. The key-out bus,
which consists of five key lines plus one parity line, is
-used only during execution of the insert-key opera-
tion by the CPU. This operation transfers the storage
protection key from the selected main storage unit to
the CPU. '

2065 FETOM (9/68) 1-51

CPU -

IC Storage Request

D Sforage Request

Scan Storage Request

BCU Oscillator (Clock)

_, Gate IC to SAB

D Gate D to SAB

)

4

_, Gate Scan to SAB

Ll YYyYy |

Gate Fto Key In

A

_, Gate S to SDBI

_, Stop CPU Clock

BCU

Storage
Address’
Decode

Store M Main Storage

Select S

Busy S

Advance M

A

System may contain u‘p
to four 2365 Model 2

P
> Fr

SAB (2143P) M

Storage Units.

Mark Bus 8+ 1P) M _
>r >
Key-InBus (5+ 1P) M _
Bus Inputs SDBI (64 + 8P) M- - -
l - SDBO (64 +8P) ~ M 1
~_ Bus Outputs ,' ‘ Key-Out Bus (5 + 1P) M
|- P Channel Request S
: ‘ BCU/Channel Response i
I 1/0 Channel
]
System may contain up to |-
6 Selector channels and
! 1 Multiplexer channel.
Notes: :
S = Simplex
- M =Multiplex o
P = Parity bits

Figure 1-23. Basic BCU Interface

On channel operationé, the mark bus, key-in bus, SDBI,
and SDBO are independent of the BCU.

2. Major control signals.

SDBO. (The ‘advance’ signal is received approximate-

* ly 200 ns before the data arrives on the SDBO.)

a. ‘Select’. This simplex signal is issued by ’thé BCU to

. ‘Channel request’. This simplex signal is issued by a

channel to the BCU when the channel needs access to

the selected storage unit. This signal causes the
selected unit to gate in the address from SAB and
initiate a storage cycle. v

. ‘Store’. This multiplex signal is issued on all store
operations performed by the CPU or by the channels
to instruct the storage unit to store the contents of
the SDBI as specified by the mark signals. The
absence of a ‘store’ signal indicates a fetch operation.
. ‘Busy’. This simplex signal is sent from a storage unit
to the BCU to signify that the storage unit is in a
store cycle. . .
. ‘Advance’. This multiplex signal is issued Ry the
storage unit to the BCU and all channels to indicate
that the storage unit is about to gate data onto the

1-52 (9/68)

" main storage. _

f. ‘BCU/channel response’. This simplex signal is issued
by the BCU to the requesting channel when the BCU
has awarded priority to that channel.

Within the CPU, storage requests are generated and sent
to the BCU to develop a CPU request. The.signals that
perform this function are related to the source of the
storage address, as follows: .

1. IC storage request. The storage address is in the
 instruction counter. ' ~
2. D-storage request. The storage address is in the D-
register. :
3. Scan storage request. The storage address is developed in
scan logic.

Representative signals developed by the BCU to control
the buses are:
1. ‘Gate IC to SAB’. Gates the conterts of the instruction
counter to. SAB. '
2. ‘Gate D to SAB’. Gates the contents of the D-register
to SAB.

3. ‘Gate scan to SAB’. Gates.the address developed by the .

scan logic to SAB.
4. ‘Gate F to key-m Gates the contents of the F-register
to the ‘key in’ bus.
5. ‘Gate S to SDBI’. Gates the contents of the ST register
to SDBI. _
6. ‘Stop CPU clock’. Stops the CPU clock when unable to
grant priority to a CPU request.
7. ‘Gate SDBO to AB’. Gates the data on the SDBO into
the AB register.
8. ‘Gate SDBO(0-31) to S(0—3 1)’. Gates SDBO(O 31)
into the S-register.
9. ‘Gate SDBO(32—63) to T(32-63)".
(32—-63) into the T-register.
10. ‘Gate SDBO to Q(0-63)’. Gates SDBO(0~63) into the
. Q-register.

Gates SDBO

BCU Clocks

The timing of latches and triggers within the BCU is
controlled by signals from the 2065 clock signal generator
(Figure 1-24); thus the BCU operation is synchronized with
the CPU. The BCU has two clocks: a free-running clock,
which is active whenever power is applied to the 2065, and
a ‘CPU clock to BCU’ signal. As shown in Figure 1-24, an
error or the ROS microprogram can stop the CPU clock
without interfering with the BCU clocks.

" The free-running clock controls the timing of priority
selection, storage unit selection, and channel signals. Addi-

Clock (Basic Oscillator)

Signal
Generator
100 ns
100 ns
—"200 ns
BCU Oscillator) BCU
Free-Running
- . Clock
. 200 ns
| : 80 ns
. 120 ns
TD* [—I I_l _l I__l

|

Not Stop Clock Trigger (BCU)

CPU Clock to BCU

-1

Error or ROS Stop Clock | A

JIriJer

CPU Clock

* TD converts symmetrical clock signal to unsymmetrical clock signal.

Figure 1-24. BCU Clock Logic

tional controls are unnecessary for servicing channel re-
quests because the BCU transfers control of the buses to
the .channel after the storage unit selection is made. Thus,
channel storage requests are made independently of the
CPU. -
CPU requests, however, require additional gating con-
trols. To control information to and from the buses, the
BCU retains control of the buses and develops gating signals
which are timed by the ‘CPU clock to BCU’ signal. When a
CPU request cannot be processed because the BCU or
storage unit is busy, the CPU clock and the BCU-developed
gating signals are disabled by a ‘stop clock trigger’ signal to
prevent transfer of the wrong information (Figure 1-24).
The BCU restarts the clocks after it awards priority to the

~ CPU.

BCU Operation .
The BCU provides efficient time-sharing of the main storage

by the I/O channels and the CPU. Storage requests are not

honored on a first-come, first-served basis, but rather on a
priority basis. Figure -1-25 shows the BCU priority logic;
channel 1 has highest priority, followed by channels2, 0, 3,

4, 5, 6, and CPU. When a channel or the CPU is granted

Channel 1
Storage
Request

@:iu Not Busy
Channel 2 . —I

Storage
Request

Channel 1
Priorit
A T

N

Channel
Priority. -
1 A1 T
-t BCU

) Bus
Channel 0) _|

’

Storage
Request
Channel 0
- Priority
HH ©
il
‘”:: Channel 3
43 Channel 4
Channel 6] 2= Channel 5
Storage <~
Request
—r— Channel 6
Priority
\[\[L
CPU Storage
Request CPy
Priority
No Channe! ‘< A H
Priority . T

Figure 1-25. BCU Priority Logic

2065 FETOM (9/68) 1-53

priority, the ‘BCU busy’ latch is set so that additional
requests are not honored until the storage cycle is com-
pleted. For example, if after a channel 1 request a second
channel 1 request is made before the ‘BCU busy’ latch is
reset, channel 1 is selected again, even if other requests are
pending. As another example, if a channe! 0 request is made
during a storage cycle and is followed by a channel 2
request before the end of the cycle, channel 2 is awarded
priority. '

CPU Request

A CPU request for storage is generated from one of three
sources: (1) instruction fetch logic to refill the instruction
buffer (Q-register), (2) microprogram to fetch or store data,
and (3) scan logic. In each case, the request is made three or
four cycles before the data is needed to allow time for
storage access. '

 The address of the desired doubleword in storage is
located in the instruction counter or the D-register, or is
generated by the scan logic. BCU develops the gating signals
to supply the address from the specified source to SAB. At

the same time, BCU controls gating for SDBI, SDBO,

‘mark’ bus, and the storage address protection keys. When a
CPU request for storage is sensed at the BCU, the ‘CPU
request’ trigger is set (Figure 1-26). If the CPU is granted
priority during the next priority test, the ‘CPU priority’
trigger is set, and the storage sequence is started imme-
diately.

If the BCU is busy and cannot grant priority to the
CPU, a ‘stop clock trigger’ signal is sent from the BCU to
stop the CPU clock (Figure 1-24). This action stops all CPU
activity until the BCU grants priority to the CPU and the
storage cycle starts. When the BCU and storage are

CPU BCU

D~Register

Start
Storage
Sequence

IC Register
g or

Scan . A

I-Fetch | cry cu
Scan I o8 b— Request —Prlomy
Microprogram] T Priority T

Test
|

CHANNEL

Channel
Priority

|

| Channel
| Request
|

1

|

Channel Request -
T T

|
Gate Address :' BCY Response
to SAB I

Address Valid

| Start Storage Sequence
I No Select in Progress

Figure 1-26. Start Storage Sequence Logic

1-54 (9/68)

available, the CPU clock is restarted and the CPU sends or
receives data over the buses. The clock signal from the CPU
keeps the BCU synchronized with ROS and other CPU
functions.

Channel Request

When a channel has been granted priority, the BCU sends a
‘BCU response’ signal to the channel so that the channel
will put the storage address on SAB (Figure 1-26). After the
address has been gated to SAB, the channel sends an

* ‘address valid’ signal to the BCU. This signal does not

denote a correct address, but -signifies that the available -
address has been gated to SAB. The BCU uses the ‘address
valid’ signal to sample the SAB.

After the storage unit has been selected, the BCU turns
control of the multiplex buses to the channel. Channel
registers provide data, marks, and address protection keys
as needed. When the CPU receives a ‘release’ signal from the
channel, the CPU is free to continue processing except for
conflicts in requesting main storage.

Operation with Main Storage
@ Address is decoded to select storage unit.

o Invalid address results if storage capacity is exceeded or
if power is off at the selected unit.

o Interleaving reduces storage access time.

A portion of SAB is decoded in the BCU to select the
storage unit that contains the addressed doubleword.
SAB(4,5) determines the high speed storage (HSS) unit, and
SAB(6 or 20) specifies the odd or even half for interleaving.
Figure 1-27 shows the data path for the address decoding .
for HSS and the optional large capacity storage (LCS).
Decoding of a ‘select’ line sends a ‘select’ signal on a
simplex line to the desired storage unit where the address
on SAB is decoded to locate the addressed doubleword.

s Select Frame 1 Even
Address S?Iecr Frame 1 Odd
Decode |
__ Simplex
5AB‘4-6i20! Lines to
— HSS Units
[Select Fran;e 4.,Even
Select Frame 4 Odd J
7 Select Ist 1,048, 576-8yte LCS)
Address Select 2nd 1,048, 576-Byte LCS
Decode
(Optional) ™)
- | Simplex
SABO-6) 7 Lines to
- LCS Units
"Select 8th 1,048, 576-8yte LCS J
. J5AB(0-23) l

Figure 1-27. Storage Selection

Within the BCU decoder, a test is made for an invalid
address condition. Jumper cards are set to define the limit

of the storage attached. If the address specifies a value

beyond the storage limit, an ‘invalid address’ signal is

-developed. The ‘invalid address’ signal is also developed if -
power is off at the specified storage unit. The unit.

originating the address is natified, and an 1nterrupt10n may
occur.

The basic storage cycle of the 2365 Processor Storage is
750 ns, but interleaving between odd and even sections
reduces the effective storage time to 400 ns. This reduction
is possible because each area of storage contains its own bus
arrangement, thus enabling independent operation. An
address enters storage and is used during the first half cycle
to set up-the storage access. The second half cycle is used to
bring out and store data. During the second half cycle, a
new address is sent on the SAB to the other half (odd or
even) of storage, thus allowing a storage access in approxi-
mately half the normal storage cycle. A delayed (by 80 ns)
‘select’ signal conditions the BCU reset logic. The delay
holds the BCU busy through the cycle after the storage
request to prevent a second storage request within 400 ns.

INSTRUCTION FETCHING

The processing of an instruction is divided into two phases:
instruction fetching and execution. Instruction fetching, or
I-Fetch, retrieves instructions from main storage and
performs operations common to many instructions. For the
most part, I-Fetch, which is controlled by ROS and
conventional hardware:

1. Determines the address to be placed into the instruction

“counter (IC).

2. Fetches instructions from main storage

3. Determines the instruction format (RR, RX, RS, SI, or
SS).

4. Calculates the effective operand address (adds the
D-field, the contents of the LS register designated by the
B-field, and the index, if required) for those formats that
require that function.

5. Places the operands specified by RX format instructions
into -the applicable registers (AB, ST, and D). For the
other formats, I-Fetch issues a storage request for the
second operand. The second operand is placed into the
registers during the execution phase.

6. Passes control to the specific execution phase by means
of a 64-way branch.

The transition from the execution phase of an instruc-
tion to the I-Fetch sequence of the next instruction is
achieved by an end-op cycle, the last cycle of the execution
phase. The end-op cycle completes the execution phase of
the instruction being processed by:

1. Setting the condition code to reflect the result of the
instruction, if applicable.
2. Detecting exceptional conditions and interruptions.

The end-op cycle initiates the I-Fetch sequence for the
next instruction by:
1. Decoding the format of the next instruction.
2. Initiating operand fetches as required by that format.
3. Performing a 64-way branch to establish the correct
I-Fetch sequence for that format.
4. Fetching more instruction halfwords, if required.

Functional Units Used

Five registers play vital roles in the I-Fetch sequence: Q, R,
E, IC, and D. The following paragraphs discuss - the
functions generally performed by these five registers.

Q-Register

e Buffers four instruction halfwords received from main
‘storage.

e Provides for overlap of I-Fetch and instruction execu-
tion.

- @ Transfer of B- and D-fields from Q reduces instruction

processing time.

The Q-register is a 64-bit (plus eight parity bits) trigger
register that buffers all instructions entering the CPU from
main storage (Diagram 3-2, FEMDM). It is divided primarily

into four halfword (16-bit) areas. This arrangement pro-

vides for the buffering of four instruction halfwords (eight
bytes), thus increasing CPU efficiency and reducing the
amount of main storage time required by the CPU. The
Q-register is loaded directly from the SDBO; information is »
transferred to the LS address register [LAL (Read) and
LAR (Write)], to the R-register, and to the parallel adder.
After being loaded with a doubleword from main

‘ storage, those Q-register halfwords containing instruction

op codes are sequentially transferred to R (for subsequent
execution in E). When the last op-code halfword has been,
transferred from Q, a new doubleword is again loaded into
Q from main storage. This process of continuously refilling
Q with instructions is overlapped with instruction execu-

~'tion whenever possible.

Additional Q-register information selects the instruction
fields to be sent to LAR and to the parallel adder. Such
information consists of four four-bit fields (B-fields) speci-
fying LS registers and four 12-bit fields (D-fields) contain-

- ing the displacement for main storage addresses. Trans-

ferring this information directly from Q instead of via R or

~ E provides a lookahead capability by allowing both LS and

effective addresses to be available before the execution time
of the associated instruction. Transferring of these 4- and
12-bit fields is performed selectively so that the informa-
tion is associated with the correct instruction.

Before an instruction is executed, it is tested for odd
parity. The op-code halfword is tested in the E-register. The
remaining halfwords, if any, are tested by the parallel adder
half-sum checking circuits as the effective address is
calculated.

2065 FETOM (9/68) 1-55

R-Register
e Only op-codé halfwords are transferred from Q to R.

e Selection of op-code halfword is- determined by
1C(21,22).

The R-register is a halfword (16 bits plus two panty bits)

~ trigger register, ‘providing intermediate buffering of op-code
" halfwords between Q and E (Diagram 3-2, FEMDM). This

buffering extends the total instruction buffering capability
to five halfwords (five instructions in the event of all RR
formats), as Q is normally refilled after the last op-code
halfword has been transferred to R. The use of two separate
registers (Q and R) for containing op-code halfwords also
provides double buffering. This scheme allows storage
requests to be generated immediately upon transferring the
last op-code halfword from Q, instead of having to wait
until the instruction in E has been executed, as would be
_required if halfwords from Q were transferred directly to E.

.Because op-code information is all that is required to
initiate execution, only those halfwords in Q containing op
codes are gated to R. Also, because RX, RS, SI, and SS
instructions are composed of either two or three halfwords
(only the first of which contains the op code), it is
necessary to select the proper halfword to be transferred to

R, rather than merely proceeding sequentially through the
four halfwords. Selection of the halfword for transfer to R’

is determined by IC(21,22) as follows. Depending on the
format, instructions may be 1, 2, or 3 halfwords long. The
number of halfwords in an instruction is specified by the
first two bits of the op code as follows:

Op Code Pbsitions Instruction Length
Format Qand 1 in Halfwords .
RR 00 1
RX : 01 2
RS and SI - 10 ' 2
'SS 1M 3

Because the op code of the next instruction to be
executed is always in R, its format (positions 0 and 1) can
be predecoded to determine the number of halfwords that
compose - that instruction and thus indicate which of the
four Q-register halfwords contains the next sequential
instruction op code. This predecoding occurs at end-op
time of each instruction; the result (Q halfword number) is
set into IC(21,22), which in turn selects a subsequent
I-Fetch ROS word that specifies the next op-code Q-half-
word to be transferred to R. The IC(21,22) values
associated with each Q-register halfword are illustrated in
Figure 1-28.

R(8—11) or R(12—15) is sent to LS address register to
prefetch an operand for RR format instructions during end
op of the preceding instruction. This transfer can be done

1-56 (9/68)

Q Halfword 1 Halfword 2 Holfword 3

-
Holfword 4RrQ
63

7

Figure 1-28. Q-Register Halfword Outgating per IC(21,22)

—lOo | = |O

from R rather than from Q because RR instructions are
completely contained in R; eight additional paths from Q
to LAL are, therefore, not needed.

E-Register

- The E-register (Diagram 3-2) is a halfword (16 bits plus two
“parity bits) trigger register that contains the first halfword

(op-code halfword) of the instruction - being executed.

Portions of the op-code halfword in E are transferred to
' LAL, the op-code decoder, the parallel adder, the E-register

incrementer, and, if the Direct Control feature is installed,
an. external device. The contents of the E-register are
parity-checked.

Instruction Counter

e IC is divided
IC(21-23).

o IC(0—20) addresses a doubleword from main storage.

into two sections: IC(0-20) and

e IC(21) specifies left or right word within accessed
doubleword: IC(21) = 1, select right word; IC(21) = 0,
select left word.

o IC(22) selects left or right halfword from selected word:

IC(22) = 1, select right halfword; IC(22) 0, select left
halfword.

o 1C(21,22) specifies Q-register halfword that contains op
code of next instruction to be executed.

e During VFL operations, IC(21-23) specifies addressed
byte within doubleword addressed by IC(0—20).

‘The Instruction Counter (IC), Diagram 3-2, is a 24-bit

trigger 'register,used primarily for accessing the next

. sequential doubleword of - instructions from main storage

(excluding those specified by branch instructions, which are
handled by the D-register). Source operand data is also
addressed by the IC during VFL instructions.

The IC is divided into two logical sections: IC(0—20)
and IC(21-23). These sections function in the following
manner. The main storage area used with the CPU is
addressable on a byte (eight-bit) basis, each address placed
into the IC referring to a particular byte. However, because
the Q-register is of doubleword (64-bit) length, instructions

are accessed from main storage in doubleword (eight-byte)
groups. The address of the first byte of each doubleword is -
all that is required in accessing these doublewords from
main storage, and this address is obtained from positions
IC(0—20), regardless of the complete address. [Any address
represented only by IC(0—20) is a multiple of 8 and lies on
a doubleword integral boundary.]
Following the accessing of each doubleword from main
storage, IC(0—20) is incremented by 8 (via the parallel
adder) to-develop the next sequential doubleword address
in main storage (eight byte addresses ahead of the double-
- word previously accessed). '
. Once the doubleword addressed by IC(0—20) is read
into the CPU, the remaining portion of that complete
address [IC(21—23)] selects either instruction halfwords or
data bytes from the doubleword. When instructions are
addressed by the IC, IC(21,22) only is used to extract the
op-code halfword of the addressed instruction in the
Q-register; IC(21) selects the right or left word within the

doubleword, and IC(22) then selects the right or left
halfword from the specified word. (In both cases, a 1
specifies the right portion and a O the left portion.)
IC(21,22) values -of 00, 01, 10, and 11 correspond
respectively to the four (1—4) Q-register halfword portions.
Figure 1-29 illustrates the Q-register halfword selection for
a specified main storage instruction address of 468 (1D4
hex or 111010100 binary). '

Note: Because instructions are restricted to even-numbered
storage locations, IC(23) must always contain a 0 during
instruction addressing. Detection of a 1 in IC(23) during

“instruction addressing produces an exceptional condition

followed by a program interruption.

At end op of each instruction, the format of the

- instruction just transferred from Q and its location in Q[per

IC(21,22)] are examined to determine the location in Q of
the op-code halfword of the next sequential instruction.

Example Address: 468 (1D4 Hex, or 111010100 Binary)

l
| 1

D

1
4
|

]
IC l04h——~>o:0001:110110100|
1 i | _

0 2021 22 B _
|] I Used in VFL byte
Main storage Select selection only.
doubleword address l:::do;r:ihf NOTE: '
of the doubleword doubleword IC(23) must equal 0
to be loaded : during instruction
into Q. Select left or addressing or
right halfword from ‘specification check
‘ specified word. oceurs,
463 - 464 - 465 466 467 468 469 470 471 472
Byte
0 1 2 3 4 5 6 7
' | Main Storage Doubleword |
| |
| 1
| |
| |
|]
Q ‘ Halfword 3 4 RQ
Halfword 1 Halfword 2 P77 Halfwor Halfword 4 R
0 15) 16 31{32% 47048 63
< S @ R 3

IC(21,22) =00 1C(21,22) =01 1IC(21,22) =10

IC(21,22) = 1

k——(——J
Op-code halfword

specified by

address D4 (hex).

Figure 1-29. Instruction Addressing

2065 FETOM (9/68) 1-57

Both format and Q-register location must be considered to
avoid transferring the remaining non-op-code halfwords of a
multi-halfword instruction (RX, RS, SI, or SS) to R.

When the IC is used for addressing source operands
during VFL operations, doublewords containing the ad-
dressed byte(s) are referenced by IC(0—20) in the same
manner as in instruction addressing. However, the accessed
doubleword is read out to AB instead of to Q. IC(21-23)
then specifies the addressed byte within this doubleword to
be gated to the serial adder. [The initial IC(21—23) value is
set into the AB counter, which is incremented or decre-
mented, as required, to perform right-to-left or left-to-right
processing of the data in AB.] Figure 1-30 illustrates the
byte selection as determined by 1C(21-23).

Doubleword
operand address
specified by
1C(0-20).

Main Storage
Doubleword

IRANA

te

<

(=)

@ IH%

1C
22

0

~

\\

— |~ |=|=lele|e e

- lo|=lc =]~ lo

0
1
1
0
0
1
1

Figure 1-30. Operand Data Byte Selection per IC(21-23),

Note: During VFL operation, the instr.uct\ion" address
contained in the IC is temporarily stored into the LS
working register (LSWR).

Storage requests are generated to access the next
doubleword whenever IC(21-23) indicates that all the
information in the present doubleword (op-code halfword
in Q-register or data bytes in AB) has been processed.

D-Register

The D-register (Diagram 3-2) is a 24-bit (plus three parity
bits) trigger register that functions as a main storage address
register during manual-control, branching, and certain
arithmetic operations, and as a channel and unit address
register during I/O instructions. When addressing main
storage, D(0—20) references a doubleword; D(21,22) then
extracts the desired instruction halfword and D(23) ex--
tracts the desired byte, depending on the operation.

For RS instructions, the I-Fetch routine adds the base
and displacement values and places the result into D.
Normally, this result is the effective second operand

1-58 (9/68)

address. For shift instructions, however, this total specifies
the number of bit positions to be shifted.

In the Stopped state, D contains the main storage
gddréss of the next instruction to be executed (address of
instruction in R). (This address is generated and placed into
D by the stop-loop microprogram that is in process
whenever the CPU enters the Stopped state.) The stop-loop
routine subtracts 8 or 16 (decimal) from the updated IC
address and places the result into D. In this case, D(0-20)
indicates the doubleword address of the instructions in Q,
and D(21,22) specifies the location of the op-code halfword
within that doubleword.

Instruction Path

o Instructions are fetched into Q from main storage four
halfwords-at a time.

o R contains first halfword of instruction to be executed
next. o

E contains first halfword of instruction being executed.

IC specifies location in main storage from which next

instructions will be fetched and also instruction in Q to

be executed next:

IC(0—20) addresses main storage.

I1C(21,22) indicates which op-code halfword in Q has
been transferred to R and is to be executed next.

IC(23) must be 0 when addressing instructions.

The basic path for instructions entering the CPU is
illustrated in Figure 1-31. The first register in the instruc-
tion path is the four-halfword instruction buffer called the
Q-register. For each access, four instruction halfwords are
fetched from a doubleword location in main storage
(addressed by the IC) and loaded into the Q-register from
the SDBO. Because instructions can vary from one to three
halfwords in length, as many as four complete instructions
(RR format) or as few as 1-1/3 instructions (SS format)
may reside in the Q-register. '
Instructions in the Q-register are sequentially selected
for processing by means of IC(21,22), which indicates the
first halfword (the halfword containing the op code) of the
instruction to be executed next. The op-code halfword thus
selected is transferred to the R-register, where format
predecoding takes place during the end-op cycle. If the -
instruction . is of the single halfword RR-format, the
R-register contains the entire instruction. In the case of a
two- or three-halfword instruction (RX, RS, SI, or SS
format), the R-register contains only the first halfword; the

‘balance (second or second and third halfwords) is not

transferred but remains in the Q-register. For this reason,
each halfword field of the Q-register is equipped with
appropriate transfer paths for processing of the B and D
fields of the instruction.

The format of the upcoming instruction (in R) is
established by examining R(0,1). This predecoding groups

Main Storage

0 SDBO 63

J,_J

BN

.
RR[Op Code

0 78 ni2 15
Rx| OpCode | RI | x2 | 82 | D2 |
0 7 8 1nI12 1516 19 20 3
" Instructions 4 RS' Op Code I R1 I R3 | B2 I D2 l
0 7 8 1ni2 1516 19 20 31
Sll Op Code | 12 | Bl | D1 J
0 7 8 1516 19 20 3
ss[opcCode [1 [12 [1 [§yoi1] B2 m?z-l
L 0 78 2 1516 19 20 3132 3536 47
Q-to-R
Transfer
Control 0 I 63‘
Q I 2nd ! 3rd L gth rQ
l 0 Halfword : Halfword " Halfword | Halfword 63
0 16 19 3235 48 51

B-field gated < l

T T 7T

fo LAL. " 15 .20 31 36 47 52 63
D-field gated g l L 1]
to parallel adder. 0 15 16 31 32 47 48 63
JUR
-
R RR
0 15
0 15
01
Format <
Predecoder 0 15
.
E RE
0 15
07
Operation k I
Decoder

Figure 1-31. Basic Instruction Path

the instructions into four general categories (RR, RX, RS
or SI, and SS) to allow loading of the appropriate data
registers with operands and operand addresses. Thus
operand prefetching is initiated before execution time.

The 16-bit E-register (Figure 1-31) contains the op-code
halfword of the instruction presently being executed. This

halfword remains in the E-register until the execution phase
is completed, at which time it is replaced by the op-code
halfword of the next instruction. During each execution
phase, the instruction op code contained in E(0—7) is
decoded and the specific operations necessary to execute
the instruction are performed.

2065 FETOM (9/68) 1-59

The functions performed during the end-op cycle and
the I-Fetch sequence are implemented while the instruction
halfwords are in the Q-, R-, and E-registers. The path and
the movement of the op-code halfword between the
registers for the five formats are shown in Figure 1-32. To
illustrate, the following paragraphs trace an RR instruction
through the Q-, R-, and E-registers (Figure 1-32, A). Note
that an RR instruction is composed of only the op-code
halfword; therefore, the complete instruction fits in the R-
and E-registers. For the other formats, only the op-code
halfword moves through the R- and E-registers; the other
halfwords are not transferred from the Q-register. For the
example, assume that:

1. All instructions have the RR format.

2. The instruction being executed is No. 4, the next
instruction is No. 5, the following'instruction is No. 6,
and so on. ’

3. Instruction No. 5 is the one under consideration.

During the I-Fetch sequence of No. 4, instruction No. 5
is placed into the R-register. Here, during the end-op cycle
of No. 4, the format of No. 5 is established, operand
prefetching is initiated, No. 5 is transferred to the E-
register, and the I-Fetch sequence for No. 5 is entered.

During the I-Fetch sequence for No. 5, prefetching of
operands for No. 5 is completed, the execution routine for
No. 5 is established, and No. 6 is transferred to the
R-register. The CPU enters the execution phase for No. 5.
During its end-op cycle, the condition code is set (if
applicable) and any exceptional conditions and interrup-
tions are detected. The remaining functions performed
during the end-op cycle of No. 5 are devoted to initiating
the I-Fetch sequence for No. 6.

Prefetching of Operands
e Operand prefetching starts before instruction execution.

e Depending on instruction format, operands are in LS or
main storage:
RR — both operands are in LS.
RX, RS, SI — one operand is in LS, the other is in main
storage. '
SS — both operands are in main storage.

o Address computation for main storage operands always
starts first.

To increase the speed of instruction processing, the
operands and operand addresses specified in the upcoming
instruction are assembled into appropriate registers. For RR
instructions, the operands are obtained directly from the
LS. For instructions specifying operand addresses in main
storage, address calculations. take place, and the D-register
prefetches an operand from main storage.

The major registers employed for operand prefetching
are shown in Figure 1-33. Prefetching of operands begins
when the op-code halfword of the instruction is in R and is
completed after this halfword has been transferred to E.

1-60 (9/68)

R(0,1) establishes the instruction format and, consequent-

ly, the type of operand fetch that must be performed.

For one-halfword instructions (RR format), R contains
the entire instruction. The first operand is fetched by
transferring R(8—11) to LAL. After the first operand is
retrieved from the LS, it is usually placed into A, B, and D.
The second operand is usually fetched after the instruction
is transferred to E by transferring E(12—15) to LAL. When
the second operand is accessed, it is normally placed into S
and T.

For two-halfword instructions (RX, RS, and SI formats),
the first halfword is transferred to R while the second
halfword is processed directly from Q. Address calculation
for the operand in main storage is performed first so that
this operand may be requested as soon as possible. This
calculation is accomplished by transferring the appropriate
B-field from Q to LAL. If the B-field is not zero, the
contents of the LS register specified by the B-field are then
routed to the parallel adder, where they are added to the
D-field (transferred directly from Q). The sum constitutes
the ‘operand address specified by RS and SI instructions.
This address is transferred to D, from which a storage
request for the operand is made.

For indexed RX instructions, that is, when the X2 field
is not zero, an additional step is required to derive the
operand address. Consequently, the partial sum (LS con-
tents per B-field, plus D-field) is temporarily stored into B.
The LS is then addressed by the X2 field of the instruction.
At this time, the instruction op-code halfword is in E, with
E(12—15) containing the X2 field. The contents of the LS
register accessed by the X2 field are then summed with the
contents of B in the parallel adder to obtain the operand
address. This address is transferred to D, and a storage
request for the operand is initiated.

The operand setup for two-halfword instructions is
completed by fetching the first operand from the LS (not
used by SI instructions). This action is performed by
transferring E(8—11) to LAL. The first operand is usually
loaded into A and B. S and T are usually loaded with the
second operand when it arrives on the SDBO during the
execution phase.

For three-halfword instructions (SS format), the first
halfword is transferred to R and the remaining two
halfwords are processed directly from Q. The main storage
addresses for the first and second operands are calculated in
a manner similar to that of two-halfword instructions. The
first-operand address is computed first and loaded into D,
and a storage request to prefetch the operand is initiated.
The second-operand address is then computed while the
contents of the IC are transferred (via the parallel adder) to
the LSWR. When the second-operand address is computed,
the address is loaded into the IC, from which a storage
request for the operand is later made. Upon execution of an
SS instruction, the instruction address is restored to the IC
so that it again selects the next instruction.

I~Fetch of Execution of End Op of I=Fetch of Execution of End Op of I-Fetch of Execution of End Op of [-Fetch of Execution of End Op of |=Fetch of Execution of
4 4 4 5 | s 5 6 6 6 7 7 7 8 8
o | EEEE | GRS | BREE | Grrel | CEEE | BEDE | CRDE | FEhE | D | EErE | FEi | el | Fhelil | Fhb

|
| @

(5]

[e)

(el

[e]

[e]

(]

(]

Initiate 3~cycle
storage request

|

4 instruction

_halfwords from

]

8
|

Note: Numbers indicate halfword sequence
referenced to their location in Q.

to refill Q. main storage
as a result of For 2- and 3-halfword instructions,
storage request. . t bottom of Q group the 4
A. RR-Format (1-Halfword) Instructions :::Ief:vgr dsoin‘t):‘insfrucgfionf or por-
tions of instructions.
Movement is referenced to associated
ROS control word.
* Delay transferring to R until instruction
halfwords arrive from main storage.
|-Fetch of Execution of End Op of [-Fetch of Execution of End Op of I-Fetch of * Execution of End Op of [~Fetch of Execution of End Op of |-Fetch of * | Execution of
4 4 4 5 5 5 7 7 7 9 9 9 1 11
a |[5Ts6]7Ts |5|6]7|8| |5|6|7|8| 5|6|7]8 |5|6|7|8l |5|6|7|8| 910} 11}12 |9|1o|'n|12_| |9|10|11|12| |9|1o|n|12| FoTofnihi2] {19 ofnfi2] | hi3fi415]16 |13|l'4ll5|16l
R | [5] [] (2] [¢] (] [1] () i [3]
e (5] B (9]] 1] 1] [1]
Initiate 3-cycle| 4 instruction Initiate 3~cycle | 4 instruction
storage request | halfwords from storage request | halfwords from
to refill Q. main storage to refill Q. main storage
as a result of as a result of
+ t. \
B. RX-, RS-, and SI-Format (2-Halfword) Instructions storage request storage reques
¥ 5
I-Fetch of Execution of End Op of I-Fetch of Execution of End Op of |-Fetch of Execution of End Op of |-Fetch of* Execution of End Op of 1-Fetch of * Execution of End Op of I-Fetch of Execution of
4 4 4 5 5 5 8 8 8 i1 11 11 14 14 14 17 17
Q|ls5]6]7]s |5|6|7|8| |5|6|7I8l 5]6]7]8 |9|10|n|12| |9|1o|n|12| [9Two]ni2] | [9hwo[11fi2] [[2]10]11]12] II3I14|15|]6| |I3l]4|15|16| ||3|14|15|lél 17]18]19]20 |17|13|19]20| 17118[19]20] |17|1s||9|20| |21|22|23|24|
R B [[[]
e B (]]
Initiate 4-cycle 4 instruction Initiate 3-cycle| 4 instruction Initiate 4-cycle| 4 instruction Initiate 4-cycle 4 instruction
storage request halfwords from storage request § halfwords from storage request | halfwords from storage request halfwords from
to refill Q. ‘main storage to refill Q. main storage to refill Q. main storage to refill Q. main storage
as a result of as a result of

C. SS-Format (3-Halfword) Instructions

as a result of
storage request.

Figure 1-32. Path Through Q-, R-, and E-Registers of Op-Code Halfword

as a result of
storage request.

storage request.

2065 FETOM (9/68) 1-61

storage request,

Main Storage

SDBO 63

L

RR| .
] . ” 0 2 ¢ | opcode | w1 | 2 |
] 78 i1 12 15
L | - -, m
Storage LS| LAL Read) RD ic a
al 4 23 0 23
I 20 2122 0 20 21 22
0 31 | || A ; x| OpCode | RI | X2 [B2 [D2
| I 0 78 1112 1516 19 20 31
|
— e — — — — e — — —
InstrucﬁonsTRs[Op Code I R1 , R3 | B2 , D2
Q-to-R [78 n 2 15 16 19 20 3
Transfer
Control
st| Op Code PRI o1 |
0 78 15 16 19 20 31
LL
"
ss| opcode | L1 | 2| B [{o1] B2 l“ Dzl
L 0 78 ni2 15 16 19 20 N3 3536 47
0 | 31 32 63 31 32 63 0 63
- - - T -) 1 I -
S RS T RT RA| B : RB Q s | Zd | gd L dh pg
0 31132 63 31132 63) 67 0 HQlfwordl Halfword i Halfword IHalfword 63
0 31 32 63 31 32 63 03 16 19 32 35 48 51
B-Fields
415 20 31 36 47 52 63
D-Fields | | 1 |
0 15 16 3132 47 48 63
216 J N il
32 63 0 15
|
4 63 R R
lo 15
PAA 8 111215
R-Fields J_
0 15
0 l 15
4 _-
E RE
0 15
8 11 1215
R or X2 Field

Figure 1-33. Basic Scheme for Operand Prefetching

1-62 (9/68)

Obtaining New Instructions from Main Storage

e Requests for new instructions are made before CPU
exhausts instructions in Q.

e Usually, three- or four-cycle requests aré¢ made from IC.

o Settings of IC(21,22) and R(0,1) determine whether
request is ngeded.

e ICisincremented by 8 after each request.
e For branch instructions, requests are made from D.

o If branch is unsuccessful, instructions accessed by
request are ignored.

e If branch is successful, instructions are used and instruc-
tion address is transferred from D to IC.

Requests to refill Q with new instructions overlap most of
the storage access time with processing of the remaining
instructions in Q. The basic scheme used in requesting new
instructions from main storage is shown in Figure 1-34.
During normal instruction sequencing, I1C(21,22) is
examined to establish the number of halfwords in Q that
remain to be processed. These bits indicate the op-code

halfword of the instruction that has been transferred to R

and is to be executed next. Depending on the format of the
upcoming instruction decoded from R(0,1), a request for
new instructions may be initiated when 2, 3, or all 4
halfwords in Q remain to be processed. The time required
to access new instructions from main storage is then used to
process the remaining instruction(s) in Q. This access time
is specified by-the type of request generated by the CPU.
Depending on its instruction status, the CPU can generate a
three- or a four-cycle request. When a three-cycle request is
issued, three CPU cycles must elapse before instructions
arrive from main storage. Thus, new instructions are gated
into the CPU on the fourth cycle following the request.
Similarly, when a four-cycle request is generated, new
instructions are gated into the CPU on the fifth cycle
following the request. The difference in access times for a
three- and four-cycle request is illustrated in Figure 1-34.
IC(0—20) normally specifies the address of new instruc-
tions to be accessed from main storage. When it is
established that the CPU needs instructions, a request is
made and IC(0-20) is transferred to the SAB. The IC is
then incremented to address the next successive storage
location from which subsequent instructions are to be
fetched. (Because the BCU dictates that the address of each
successive main storage location must be valid in the IC for
at least two cycles, updating of the instruction address is
not initiated until two cycles following the request.)
Depending on the format of the upcoming instruction,
incrementing of the IC is controlled by the CPU hardware
(for all formats except SS) or by the ROS microprogram
(for SS format). In either case, the IC is incremented by
transferring its contents to the parallel adder, where a 1 is

added to IC(20) (equivalent to advancing the IC address by
8). The updated address is then routed back to the IC so
that a new storage request may be initiated nnmedlately
upon detecting the need to refill Q.

A departure from the normal sequencmg described
above occurs when the instruction being fetched is a branch
instruction. To anticipate branch instructions, R (which
always contains the first halfword of an upcoming instruc-

- tion) is connected to a branch predecoder. Execution of a

branch instruction may alter the main storage address from
which new instructions are to be fetched. If the branch
instruction is successful, the address specified by that
branch becomes the new instruction address: If, however,
the branch is not successful, the address specified by that
branch must be ignored. Because it is assumed that branch
instructions are successful (the only exception is the Branch
on Condition instructions), a request for instructions is
initiated as soon as the address specified by the branch is
placed into D. Thus, a request is made and the contents of
D are transferred to the SAB before establishing that the
branch is indeed successful. If it is later found that the
branch .instruction is not successful, the instructions ac-
cessed by that branch are not transferred into.Q and a new
storage rtequest is generated from the IC, if necessary.
Otherwise, upon establishing a successful branch, the
contents of D are transferred to the parzillel adder,
incremented by 8, and transferred to the IC. Normal
sequencing is resumed by the IC until another branch
instruction is encountered.

The Branch on Condition instructions must be treated
differently from other branch instructions. For this reason,
a separate detection circuit is provided to anticipate this
branch. Whether a Branch on Condition instruction is
successful depends on the condition code setting estab-
lished by a previous instruction. Therefore, the outcome of

-this branch instruction is known at the time of the request.

If the branch is unsuccessful, the request from D is
inhibited and, if Q needs refilling, an IC request is generated
instead.

Another instruction that falls in the branch category and
requires unique treatment is the Execute instruction. This
instruction designates a single instruction (subject instruc-
tion) to be inserted into the instruction sequence. Briefly,
the” Execute instruction initiates the following I-Fetch
actions:

1. During I-Fetch of an Execute instruction (RX format),
IC(21,22) is advanced to indicate the first halfword of
the next instruction; that is, the instruction immediately
following the Execute instruction in Q.

2. The address of the subject instruction specified by the
Execute instruction is computed and placed into D. A
storage request from D is then made.

3. When the four instruction halfwords accessed by this
request are gated to Q, the subject instruction is selected
from Q by examining D(21,22).

2065 FETOM' (9/68) 1-63

4. Upon executing the subject instruction, and if the

subject instruction is not a successful branch, a storage -

‘request for the instructions previously contained in Q is

made from the IC. This request is performed by the
program store compare exceptional condition. (If the
subject instruction is a successful branch, the request for
new instructions is made from D ‘and normal processing
is resumed.) . '

5. When the instructions previously contained in Q. are
refetched, IC(21,22) is examined to select the instruc-
tion following the Execute instruction, and normal
processing is resumed.

CPU Interruption and Exceptional Condition Recovery

I-Fetch recognizes the five classes of interruptions: exter-
nal, supervisor call, program, machine check, and I/O. CPU
recovery from these interruptions requires additional proc-
essing time for storing the old PSW into main storage and
fetching a new PSW and new instructions from main storage
into the CPU.

In addition, I-Fetch also recognizes eight exceptional
conditions; these conditions require special handling by the

CPU. The exceptional conditions and the corresponding

actions performed by the CPU are:

Exceptional
Condition CPU Action’

Timer When updating is required, the CPU
fetches the timer value from main
storage, decrements this value (amount
of decrement depends on the line
frequency), and stores it back into
main storage. :

CPU Store in Extra cycles are added to |-Fetch.

Progress

An address is forced into ROSAR that
places the CPU into the stop loop.

Manual Control
Stop

Manual Control An address is forced into ROSAR that
Wait places the CPU into the Wait state.

An address is forced into ROSAR that
places the CPU into the repeat instruc-
tion loop.

Manual Control
Repeat

The CPU obtains the address for the
next instruction and refetches it from
main storage.

Program Store
Compare

Invalid Instruction - A program interruption is forced when

Address Test the CPU tries to use an erroneously
addressed instruction.

Q-Register One extra I-Fetch cycle is added, de-

Refill laying execution of the next instruc-

tion by one CPU cycle.

164 (9/68)

When one or more interruptions or exceptional condi-
tions occur, processing of the next instruction is delayed
until all such conditions are cleared in the order of their
priority.

Processing of interruptions and exceptional conditions is
initiated during the first cycle of I-Fetch. This cycle issues
an ‘EXCEP’ micro-order to establish if any interruptions or
exceptional conditions have resulted from execution of the
preceding instruction. If one or more interruptions or
exceptional conditions did occur, the ‘EXCEP’ micro-order
overrides the basic I-Fetch actions and transfers control to
an appropriate microprogram for clearing the condition
that is assigned the highest priority. After processing this
condition, the remaining interruptions and exceptional
conditions, if any, are handled in the order of their priority.
When all interruptions and exceptional conditions have
been processed, the microprogram resumes the I-Fetch
sequence for the next instruction. The invalid instruction
address test and conditions do not override the basic
I-Fetch actions but instead augment them.

INSTRUCTION EXECUTION

The ‘execution phase of instruction processing manipulates
the data to execute the instruction prepared by I-Fetch.
The following paragraphs introduce the functional units
that are used primarily in the execution phase and discuss
the seven classes of instructions: fixed-point, floating-point,
decimal, logical, branching, status switching, and I/O.

Functional Units Used

The following discussion of functional units is based on
Diagram 3-2, FEMDM. For a detailed discussion, refer to
Chapter 2.

AB Register

The AB register is a 64-bit (plus eight parity bits) trigger
register that functions as a working register and ‘also as a
buffer for doubleword operands received from main stor-
age. - - -
The AB register is logically divided into two 32-bit (plus
four parity bits) registers, A and B. A four-position
extension, B(64—67), provides for retaining low-order
significance during certain arithmetic and shifting opera-
tions. .
Byte gating into and out of A and B facilitates their use
with the serial adder for VFL operations. A three-position

~ counter, the AB byte counter (ABC), controls the outgating

selection of the eight bytes in the AB. AB information is
also processed in the parallel adder. Both A and B outgating
controls are capable of shifting data left two positions en
route to the parallel adder. (Combined shifting capabilities
of ST, AB, and the parallel adder thus enable any amount
of shift in any direction.)

- -
D RD s CA
0 23 0 23
0 20 0 20
p 2 I
4.2 1C(0-20)
| 2122 ——
|
! OR 1 sas .
L e — - [e— * Main Storcge
J 0 SDBO 63] .
D(0-20)
3~ or 4-Cycle
Request per IC
H [}] |] 1 1
Storage Request 3- or 4-Cycle : 1 ! | 2 | 3 i 4 1 5]
Logic Request per D 3-Cycle Request H_ﬂ_ﬁ_ﬁ_ﬂ__: t
o I | | Gate | '
Y A N
| | i | 1toQ |
| | | | | [1
! | ! | ! | |
4-Cycle Request h__'ﬁ_lﬁ_h_lﬂ_h__:
| | | | | |
0 63 1 1 Il 1 1 A | 1
— R Gate
! ! | equest SDBO
Q Il_lsfIf o 2nd . 3rd | 4th RQ Made e
o Halfword Halfword) Halfword i Halfword 44
0 15 16 31 32 47 48 63
0 15
-
R RR
0 15
01
Format
0
All Branch
Instructions
Branch on Branch B_ranch
Condition Instruction Predecoder

Figure 1-34. Q-Register Refill Addressing Scheme

ST Register

The ST register is a 64-bit (plus eight parity bits) trigger
register that functions as an operand buffer between main
storage, LS, and the CPU, and also as a working register for
arithmetic and logical operations.

The ST register is logically divided into two 32-bit (plus
four parity bits) registers, S and T, which serve as working
registers for all operations. They also serve as a final
assembly area for resultant data to be entered into either
LS (T only) or main storage (S and T). Byte gating of ST
inputs and outputs facilitates their use with the serial adder
for VFL operations. A three-position ST byte counter
(STC) and incrementer control the gating of the eight ST
bytes.

ST information can also be processed in the parallel
adder. T-data can be sent to the parallel adder in either true
or complement form, and with a left 1 shift for certain
operations. (Scan operations also utilize ST inputs from the
parallel- adder.) Multiply logic extracts data, in byte lengths,

from S via the multiplier bus, and PSW information is
sampled from ST(0—39) via the PSW bus.

AB and ST Byte Counters

For operations involving the serial adder, it must be
possible to extract bytes from doublewords contained in
AB and ST and to assemble bytes in ST for subsequent
storage. These capabilities are provided by two byte
counters: the ABC for controlling AB byte transfer and the
STC for controlling ST byte input and output.

Mark Triggers

Eight mark triggers are contained within the CPU. During
store-data operations, these triggers indicate to main storage
which bytes of doubleword data placed on the SDBI are to
enter storage. The mark triggers thus serve to store CPU
data into main storage on a byte (eight-bit plus parity)
basis.

*2065 FETOM (9/68) 1-65

An active mark bus line specifies the corresponding byte
for storage entry: mark trigger O specifies byte 0, or
SDBI(0—7);- mark trigger 1 specifies byte 1, or SDBI

'(8—15); and so on, through mark trigger 7, which specifies -

byte 7 or SDBI(56—63). Any mark trigger not set causes its
corresponding byte of original storage data to be regener-
ated into the addressed location. Complete absence of mark
signals on the mark bus occurs'only on a fetch operation.

F-Register)
The F-register is a one-byte (eight-bit plus parity) trigger
register used in certain arithmetic, logical, and data-transfer
operations. Functions such as developing quotients, saving
floating-point characteristics, converting routines, and proc-
essing storage-protection keys are performed in F, and,
during direct-control read operations, F serves as a data
entry buffer for the external device. A

F-register parity circuits generate correct parity for all
information received by the register.

G-Register

The G-register is an eight-bit. trigger register used for

buffering a byte of data between the CPU and an external

device during direct-control write operations. G contains no
parity bit.

Serial Adder

The serial adder processes information from ST, AB, and F
on a byte basis, and is capable of performing binary and
decimal arithmetic in addition to logical AND, OR, and
Exclusive-OR operations. Other miscellaneous functions
performed by the serial adder logic include sign insertion
and correction, digit insertion, invalid character detection,
zone correction (EBCDIC and USASCII-8), zero and
nonzero recognition, and parity adjustment. Parity-predict
logic and carry lookahead logic are employed to improve
operational speeds, with checking performed on both a
half-sum and full-sum basis.

Arithmetic Functions. Highlights:

o Operates on binary or decimal data.

o Processes decimal bytes as two four-bit groups.
o Each four-bit group represents one BCD digit.
)

Employs excess-6 arithmetic when processing decimal
data.

® Decimal arithmetic results are produced in BCD form.
® Multiply/divide results are assembled in serial adder.

Serial adder logic is capable of performing both binary and
decimal arithmetic operations. For binary operations, the
adder functions as an eight-bit (plus parity) binary adder,
processing bytes from ST and either AB or F and
developing eight-bit (plus parity) results. High-order carries

1-66 (9/68)

resulting from arithmetic operations are stored in Status
Trigger (STAT) H for use in processing the next two bytes
of that operation. A '

For decimal operations, each byte of data from ST, AB,
or F is treated as two individual four-bit groups, which are
then processed with excess-6 arithmetic. This feature
provides a programming advantage by enabling the adder to
accept data in binary-coded decimal (BCD) form (packed -
digits) and to produce-results which are also in decimal
format. :

- Excess-6 arithmetic involves adding 6 (under ROS
control) to incoming first operands. This is necessary to
preserve the decimal value in a four-bit binary character.
Each binary character (four bits) has a maximum decimal
value of 15 (1111 binary), which is 6 more than the
maximum valid decimal character of 9 (1001 binary). When
the second operand is added and the total exceeds 15 (1111
binary), the carry is a decimal value carry and leaves a
correct decimal value in the four binary bits. If no carry
occurs after the addition, the character is an erroneous
decimal value (it is too large by 6) and the excess 6 is
subtracted. The decimal values of the binary character
under no-carry conditions are 6—15 (actual value of 0—9
after correction).

The following examples show excess-6 addition. Note
that correction occurs when there is no carry irrespective of
the decimal validity of the sum.

141 3+5 6+9
Operand 1 (SBA) 0001 0011 0110
Excess-6 - 0110 0110 0110
SAA . o111 1001 1100
Operand 2 (SBB) 0001 0101 1001
Sum 1000 1110 <0101
Correction 0110 0110 ;——
Result 0'010' 1000 ‘M<—‘0101

(2) 8) - (15)

In the first case (1 + 1) the sum is a valid decimal
character (8), but the absence of a carry indicates an
erroneous result calling for subtracting the excess 6. The
second case (3 + 5) is similar except that the sum is not a
decimal character. In the third case (6 + 9) there is a carry
into -the decimal tens position and the sum (5) does not
need correction. ‘ '

Figure 1-35 shows the excess-6 data paths through the

~serial adder and illustrates the adder operation by means of

the decimal example: 46 + 28 = 74. Note that +6 constants

Final Bus B(0-7) o _ _ “Final Bus A(0-7)

[1c]

R r T
| Decimal Decimal | : Decimal | Decimal |
I Digit | Digit : } Digit (+6) | Digit (+6) |
I I 4 R SO
0 7 0 7
0 7 0 7
*Note:
G A-Si +6 constants are logically combined with A-side
8 ?'de Side digits by final-bus-A gating logic for true add
operation only. For complement add operation,
A-side bits are inverted and.a 1 is added to A(7),
resulting in 2's complement form of the number on
final-bus-A.
0 314 7
[+— Group 2 —»¢— Group | —
Logically subtract | Logically subtract
6 from group 2 if | 6 from group 1 if
no carry out of no carry out of
group 2 occurs. group 1 occurs.
\
Sum Latches 0-7
0 7
___________ 1
rResulting | Resulting |
| Decimal | Decimal :
Digit Digit
L2t]
Latched Sum Output (0-7)
Decimal Arithmetic Example: 46-+28=74 Decimal Arithmetic Example: 46 - 28 ="18
A-side operand byte (4610) 0100 0110 A-side operand byte (2810) ‘ 0010 1000
. : Complement. . 1101 [URN]
Convert A-side digits to excess-6 +1 to A7) : 1
(Logically add +6 to both) : :
groups at final bus.) ’ otlo .- - . 0110~ 2's\;omplemenf of A-side digit . 1101 1000
A-sidé digits in excess-6 value 1010 A 1100 =y 4 . o
B-side operand (46]0) 0100 0110
B-side operand byte (287g) . . 0010 1000 - v
t— Group 2 —®1¢— Group 1 —*} : v ‘ F—Group 2-»ta— Group 1-9
* A-side adder entry . 1010 1100 A-;Ide adder entry 1101 1000
B-side adder entry 0010 1000 . B-side adder entry 0100 o110
Logical sum 1101 0100 Logical sum 0001 1110
_ Decimal correction (Decimal correction (
(Logically subtract (Logically subtract
6 from group 2.) 0110 6 from group 1) 0110
Decimal result (7410) o1 0100 Decimal result (18;0) 0001 1000

Figure 1-35. Decimal Format Serial-Adder Data Flow

2065 FETOM (9/68) 1-67

are logically added to the A-side digits that are in packed
format before entry into the adder (by final-bus-A-gating
logic), and that subtraction of the +6 constants (decimal-
correct) is performed on each four-bit group in which a
group carry (carry from high-order position of group) does
not occur as a result of the arithmetic operation.

When a ROS micro-order calls for complement add, the
data entering SAA is converted to 2’s-complément form.
This conversion is accomplished by complementing the bit
configuration on the A-side entry and adding a hot carry to
the input of SAL(7). For complement add decimal opera-
tion, +6 constants are not combined with SBA inputs.
When complementing BCD, the excess-6 is effectively
added because the resultant complement is a character
based on 16 rather than 10. To illustrate, the 10%-
complement of 7 is 3, but the 2’s-complement of 7 (0111)
is 9 (1001) or 6 more than the 10’s-complement. The
addition then occurs as in true +6 add, and the absence of a
carry likewise forces decimal correction of the sum. A carry
out of the high-order adder position [serial adder bit carry
(0)] sets STAT H for use in processing the next data byte
of that operation.

Figure 1-35 also shows the serial adder operation for a
complement add example: 46 — 28 = 18. Note that +6
constants are not added to the A-side digits, but decimal
correction is performed in the same manner as for a true
add operation. '

Logical Functions. The serial adder also performs logical
AND, OR, and Exclusive-OR functions. To implement the
logical functions, each bit position of the serial adder is, in
effect, a separate unit. The logical functions are defined as
follows: '

1. AND. If both operand bits are 1’, the resulting bit is a
1; otherwise, the result is a 0. (Carries between bits -are
suppressed.)

2. OR. If either operand bit is a 1, the resulting bit is a 1;
otherwise, the result is a 0. (Carries between bits are
suppressed.)

3. Exclusive-OR. If one and only one of the operand bits is
a 1, the resulting bit is a 1; otherwise, the result is a 0.
(Carries between bits are suppressed.)

If the conditions for the corresponding function is met,
the associated serial adder latch is set.

Parallel Adder

o 60-bit (plus parity) full-binary adder.

e Inputs are from S, T,D,A,B,Q,IC,E,and F.

o Inputs from T and D are 2’s complemented for subtract
and compare operations and address updating.

o Output data can be shifted left 4 or right 4 into the
parallel adder latches; parity is adjusted accordingly.

e Adder employs carry-lookahead and parity-predict logic.
o Adder includes half-sum and full-sum error checking.

1-68 (9/68)

The parallel adder is a 60-bit (plus parity) full-binary
arithmetic unit. In addition to arithmetic functions, the
parallel adder performs certain logical operations (e.g.,
convert routines) and is involved in most intra-CPU data
transfers. Correct parity (odd) is generated with all adder
output data. Immediate left 4 and right 4 shifting capabili-
ties are available at the adder output, with parity adjusted
accordingly. Error-checking facilities within the adder
provide for validity checking of both incoming operands
and full-sum results.

The parallel adder has true-complement gating controls
on adder entries from T and D. For subtract and compare
instructions, operands from T are 2’s complemented and
presented to the A-side of the adder. (The binary bits are
inverted and a hot-carry is added to position 63.) From this.
point, add and subtract operations are the same. Comple-
ment entries from D are used for address compare and
address update operations and for floating-point operations.

The parallel adder has full-binary capabilities (half-adder
and full-sum functions), with immediate left-4/right-4 shift
logic included on its output to facilitate data shifting
without the need of an additional machine cycle. Figure
1-36 illustrates the logical functions of the parallel adder.
Note the four-position adder extension, PAB(64—67); it
serves to retain low-order significance during certain right-
shift operations.

$ BN 63/ 67/
4
4
PAA Vil
PAB Y
Half L
Adder 4 . P (/
Full Bit Transmits Y~ 4'p°S‘f‘°n
Adder Bit Carries Extension Area
Half-Sums

Full~Sum Logic

Latch=Shifter

Logic (Left 4/Right 4)
4 Y] e

Figure 1-36. Parallel Adder Logical Functions

Half-adder functions supply information concerning
incoming operands for use in both checking the validity of
the operands and producing carry information for full-sum
development. Full-sum logic combines half-adder outputs
with carry information to produce the final or full-sum
result. Parity information is also developed by logically
combining half-adder and carry functions and is normally
supplied on a byte basis, although certain adder areas (bits
4—8 and 64—67) require half-byte or four-bit group parity.

Carry-lookahead and parity-predict facilities are em-
ployed within the parallel adder. These features provide for
the immediate development of full-sum results (and parity),
without the need for additional cycles in which to
incorporate carry information and generate parity. The
lookahead and predict circuitry is implemented through
logic in which the 60 bit positions are arranged in four-bit

groups, and these groups divided into four sections. Figure
1-37 illustrates the logical grouping of the 60 bit positions.

All adder results are checked using half-sum and full-sum
error-checking logic. Half-sum checking determines the
validity of incoming operands by comparing the odd/even
bit count with the assigned parity. Full-sum checking
involves comparing the full-sum resultant bit count with the
independently generated full-sum parity; an inconsistency
in either causes a full-sum error.

Local Storage

A high-speed transistor storage area, local storage (LS), is
located within the CPU to reduce the number of main
storage references required by the CPU during each
operation. The LS consists of 25 registers for use in storing
address information, fixed-point, logical, and floating-point
operands, and the IC contents (IC contents stored in LS
working register, LSWR, only). Local storage data is
available to the CPU at 200-ns intervals. In addition to
reducing the main storage reference, this access time
increases operational speeds within the CPU.

The 25 LS registers are grouped as follows: 16 (0—15)

general-purpose registers (GPR’s), 8 (16—23) floating-point
registers (FPR’s), and 1 (24) working register called the
LSWR. Each register contains 32 data (plus 4 parity)
positions, and is directly addressable by the R1, R2, R3,
B1, B2, and X2 fields of the instructions, with the
exception of register 24. Register 24 (LSWR) is not
available to"the operational program. It is reserved for use
‘by ROS microprograms in manipulating information during
execution of certain instructions. (Such applications in-
clude temporary storage for the contents of the IC when
the IC is to be used as an operand address register, and
temporary storage for floating-point second operands while
prenormalizing the first operand.)

The eight FPR’s (16—23) function as four double-length
(64-bit) registers. Each double-length register consists of
two single-length (32-bit) registers coupled as follows: 16
and 17, 18 and 19, 20 and 21, and 22 and 23. Only the
leftmost 32 bit positions are used in short-operand floating-
point instructions, with all 64 positions participating in
long-operand floating-point instructions. For either short or
long operands, only the leftmost (even-numbered) registers
must be addressed.

Data transferred from LS is checked only upon being
processed in the adders or when entered into main storage.

Status Triggers

The CPU contains eight commonly available status triggers
(STAT’s) to record information that may be significant in
the execution of present instruction operations. These eight
triggers are designated as STAT’s A—H, and retain such
information as invalid digit-detection, overflow and carry
conditions, and negatively signed operands. The STAT’s are
reset at each I-Fetch.

63

PAB

PAA

\
\
N\
|
Y
|
3!
3
e 9| 2
3~
4
o 8
N
B)
- ~ o
5)
9 3
a ™
o
s}
T o
<
5]
n
<
<
<Q
«~ ©
K =
3 3 o
~ L
v om
a| S
3| 3
© =
=
8l %
=l S
o| o
o T
o]l ~
N
~
o~
B =4
c <
K S
- [
9 -
w —
o
o~
o
~ =
©
o
o
~N
<
c =
2 =
K ®
© ~
2}
< <

2065 FETOM (9/68)

Figure 1-37. Parallel Adder Group/Section Breakdown

1-69

Certain STAT’s serve multiple functions and are capable
of receiving several types of information for use with
different instructions. The outputs of these multiple-use
triggers are distributed, via line-sense amplifiers, to the CPU
areas requiring this information.

Scan operations test STAT’s; during scan in, the eight
STAT’s are set to the state of T(38) and T(54—60).

All STAT’s are reset by either ‘system reset’ or ‘I-Fetch
reset’ signals, with certain STAT’s containing additional
individual resets.

In general, all STAT s are reset and set during clock time
of the basic machine cycle. However, certain clock signals
that control these triggers are delayed 180 ns. This delayed
operation is necessary to prevent timing problems that
could arise if the detected conditions occurred too late to
set a STAT with normal clock signals. All clock signals that
control the STAT’s are inhibited during scan-in operations
by an ‘FLT inhibit clock’ signal.

Fixed-Point Instructions

The fixed-point instruction set performs binary arithmetic
on operands serving as data, addresses, index quantities, and
counts. Instructions are provided for loading, adding,
subtracting, comparing, multiplying, dividing, shifting,
storing,-and converting from binary to decimal and from
decimal to binary. Table 1-8 lists the fixed-point instruc-
tions.

For a discussion of number representation, data formats,
and operand addressing, refer to Section 2 of this chapter.

Instruction Formats

The fixed-point instruction set uses three -instruction
formats:

RR
Op Code R1 R2

[78 112 15

RX

| opcCode | r1 | x2 | m2 | D2

0 78 1112 1516 19 20 31

RS
Op Code RI | R3 | B2 D2

0 78 ni2 1516 19 20 31

In the RR format, R1 specifies the address of the GPR
containing the first operand and R2 specifies the address of
the GPR containing the second operand. Both the first and
second operands may be specified by the same GPR.

170 (9/68)

In the RX format, R1 specifies the address of the GPR
containing the first operand. The contents of the GPR
specified by the X2 and B2 fields are added to the contents
of the D2 field to form an address designating the main
storage location of the second operand.

In the RS format, R1 specifies the address of the GPR
containing the first operand. The contents of the GPR
specified by the B2 field are added to the contents of the
D2 field to form an address. This address designates the
main storage location of the second operand for Load
Multiple and Store Multiple instructions. In shift
operations, the low-order six bits of the address specify the
number of bit positions to be shifted. The R3 field specifies
the address of GPR for Load Multiple and Store Multiple
instruction and is ignored in the shift operations.

Data Flow

The data flow path for fixed-point operations is shown in

Diagram 3-3, FEMDM. The functional units used to

perform the major functions for fixed-point operations are:

1. ST. Holds the second operand and assembles data before
it is sent to LS or main storage. (T is the only register
that can transfer data to the LS.)

2. AB. Holds the first operand and assembles data during
an operation. ’

3. F. Assembles product and quotient bits during multiply
and divide operations; holds the binary bits to be
converted during convert operations.

4. E. Controls product and quotient derivation; also con-
tains instruction op code and number of shifts when
performing shift instructions.

5. Parallel adder. Manipulates the operands to obtain the
desired result. Is also the central point in the data path
between ST and AB.

6. Serial adder. Calculates product and quotient bytes. Is
also the central point in the data path between F and AB
and between F and ST.

7. STC. Controls selection of data from and placement of
data into ST, primarily during multiply, divide, and
convert operations.

8. D. Addresses second operand located in main storage.

Program Interruptions

Six program - interruptions can occur during execution of

fixed-point instructions. Of the six, only fixed-point over-

flow can be masked off; the others are unconditionally
taken. If the fixed-point overflow mask bit [PSW(36)] isa

0, the fixed-point overflow interruption is ignored;if a 1, it

is taken.

The six interruptions and their causes are:

1. Protection. The storage key of a main storage location.
does not match the storage protection key in the PSW.
The instruction is suppressed for a store violation, unless
it is the Store Multiple instruction, which is terminated.
For a fetch violation, the instruction is terminated.

" Table 1-8. Fixed-Point Instructions

Mne- Op Program
Instruction monic | Code | Format | . Operands Function Interruptions Condition Code
Add . A 5A° RX R1 " Algebraicatly add 2nd opr (in stg) to 1st opr (in" | Prot (F) 0:Sum=0
D2(X2, B2) | GPR per R1) & place resuit into 1st opr location. Adr 1:5um<0
D(21) determines which ward of doubleword | Spec 2 :Sum >0
from stg is 2nd opr: if 1, right word; if O, left | Fix-PtOvflo | 3: Overflow
word. o
Add . AR 1A . RR R1 Algebraically add 2nd opr {in GPR per R2) to 1st Fix-Pt Ovflo 0:Sum=0
] R2 opr (in GPR per R1) & place result into 1st opr 1:5um<0
: location. 2:Sum >0
3 : Overflow
Add Halfword - AH LYY RX R1 : Algebraically add halfword 2nd opr (in stg) to 1st | Prot (F) 0:Sum=0
D2(X2,B2). | opr (in GPR per R1) & place result into 1st opr | Adr 1:5um<0
location.) Spec 2:Sum >0
1. D{21) determines which word of doubleword | Fix-Pt Ovflo | 3 : Overflow
from stg contains halfword 2nd opr: If 1,
right word; if 0, left word.
2. D{22) determines which half of word is
halfword 2nd opr: If 1, right half; if 0, left
haif.
3. Halfword 2nd opr is expanded to full word
before - addition by propagating sign bit
through 16 high-order bits.
Add Logical . |l AL SE RX ‘R1 _ Algebraically add 2nd opr (in stg) to 1st opr (in | Prot (F) 0 : Sum =0 (no carry) |
T . D2(X2, 82) | GPR per R1) & place result into 1st opr location. Adr 1 : Sum #0 {no carry)
1. D(21) determines which word of doubleword | Spec ~ 2 : Sum =0 (carry)
from stg is 2nd opr: if 1, right word; if 0, left 3 : Sum #0 (carry)
word.
2. Sign bit of result is treated as. high-order
integer & is tested for carry to determine CC.
Add Logical ALR 1E RR R1 Algebraically add 2nd opr (in GPR per R2) to 1st | None 0 : Sum = 0 (no carry)
- R2 opr (in GPR per R1) & place result into 1st opr 1 : Sum #0'{no carry)
location.) 2 : Sum = 0 {carry)
Sign bit of result is treated as high-order integer 3 : Sum #0 (carry)
& is tested for carry to determine CC. .
. Compare ' C 59 RX R1 Algebraically compare 1st opr {in GPR per R1) with | Prot (F) 0:Opr 1=0pr2
: D2(X2, 82) | 2nd opr (in stg) & set CC according to result. Adr 1:0pr1<0pr2
D(21) determines which word of doubleword | Spec 2:0pr 1>0pr 2
from stg is 2nd opr: if 1, right word; if 0, left
word.
Compare ! CR 19 RR R1 Algebraically compare 1st opr (in GPR per R1) with | None 0:Opr1=0pr2
g . R2 2nd opr {in GPR per R2) & set CC according to 1:0pr 1<Opr2
| -result. : 2:0pr1>0pr2
Compare Halfword CH 49 RX R1 Algebraically compare 1st opr {in GPR per R1) with | Prot (F) 0:Opr 1= 0pr2
) : D2(X2, 82) { halfword 2nd opr (in stg) & set CC according to | Adr 1:0pr1<0pr2
result, Spec 2:0pr1>0pr2
1. D(21) determines which word of doubleword
from stg contains. halfword 2nd opr: if 1,
right word; if 0, left word.
2. D(22) determines which half of word is
halfword 2nd opr: if 1, right half; if 0, left -
half.
3. Halfword 2nd opr is expanded to full word
before comparison by propagating sign bit
through 16 high-order bits.
Convert to Binary cvB 4F RX R1 Convert radix of 2nd opr (in stg) from decimal to | Prot (F) Unchanged
D2(X2, B2) | binary & place result into 1st opr location (in GPR | Adr
per R1). Spec
1. 2nd opr is doubleword in packed format: Data
2. High-order word is converted first. Fix-Pt Div
3. Max positive integer that can be converted is
+2,147,483,647.
4. Max negative integer that can be converted is
-2,147,483,648.

2065 FETOM (9/68) 1-71

Table 1-8. Fixed-Point Instructions (Cont)

Mne- Op

Instruction monic | Code

Format

Operands

Function

Program

Interruptions

Condition Code

Convert to Decimal CvD 4E RX

Divide [>) 5D RX

Divide DR 10 RR

Load L 58 RX

Load LR 18 RR
Load & Test

LTR 12 RR

Load Complement LCR 13 RR

Load Halfword LH 48 RX

1-72 (9/68)

R1
D2(X2, B2)

R1
D2(X2, B2)

R1
R2

R1
D2(X2, B2)

R1
R2

R1
R2

R1

R2

R1
D2(X2, B2)

Convert radix of 1st opr (in GPR pef R1) from
binary to decimal & place resuit into 2nd opr
location {in stg).
1. Result is in packed format on doubleword
boundary.
2. Low-order 4 bits of field are sign.
3. 1f PSW(12) = 1, use USASCI!-8 code for sign;
if PSW(12) = 0, use EBCDIC code.

Divide 1st opr {in GPR per R1 & R1 + 1) by 2nd
opr {in stg) & place result into 1st opr location
(remainder in GPR per R1; quotient in GPR per R1
+1).

1. R1 must be even adr.

2. D(21) determines which word of doubleword
from stg is divisor: if 1, right word; if 0, left
word.

3. Relative value of opr's must result in
quotient expressible in 32-bit signed integer.

4. Sign of quotient is determined algebraically,
except 0 quotient is positive.

5. Sign of remainder is same as sign of dividend,
except 0 remainder is positive..

Divide 1st opr (in GPR per-R1 & R1 + 1) by 2nd
opr {in GPR per R2) & place result into 1st opr
location (remainder in GPR per R1; quotient in
GPR per R1+ 1).
1. R1 must be even adr.
2. Relative value of opr's must resuit in
quotient expressible in 32-bit signed integer.
3. Sign of quotient is determined algebraically,
except O quotient is positive.
4. Sign of remainder is same as sign of dividend,
pt O remainder is positi

Load 2nd opr (in stg) into 1st opr location {in GPR
per R1).

1. D(21) determines which word of doubleword
from stg is to be stored: if 1, right word; if 0,
left word.

2. 2nd opr is unchanged.

Load 2nd opr (in GPR per R2) into 1st opr location
{in GPR per R1).
2nd opr is unchanged.

Load 2nd opr {in GPR per R2) into 1st opr location
(in GPR per R1) & set CC according to result.
2nd opr is unchanged.

Load 2's complement of 2nd opr (in GPR per R2)
into 1st opr location (in GPR per R1) & set CC
according to result.
Overflow occurs only if max negative number is
2's complemented.

Load halfword 2nd opr {in stg) into 1st opr location
{in GPR per R1).

1. D{21) determines which word of doubleword
from stg contains halfword 2nd opr: if 1,
right word; if 0, left word.

2. D(22) determines which half of word is
halfword 2nd opr: if 1, right half; if 0, left
half.

3. Halfword 2nd opr is expanded to fuil word
before loading by propagating sign bit
through 16 high-order bits.

Prot (S)
Adr
Spec

Prot (F)
Adr

Spec
Fix-Pt Div

Spec
Fix-Pt Div

Prot (F)
Adr
Spec

None

None

FixPt Ovflo

Prot (F)
Adr
Spec

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

:Result=0
: Result <0
: Result >0

N = O

: Result=0
: Result <0
: Result >0
: Overflow

WN =0

Unchanged

Table 1-8. Fixed-Point Instructions (Cont)

Mne- ~Op - Program

Instruction monic | Code | Format Operands Function Interruptions Condition Code
Load Multiple LM 98 RS R1 Load 2nd opr (as many. words as required; in stg) Prot (F) Unchanged
R3 into GPR'’s, in ascending order, starting with 1st opr Adr
D2(B2) location (per R1) & ending with 3rd opr location | Spec
(per R3).

1. 2nd opr is unchanged.
2. If R1=R3, only 1 word is loaded. ;
3. If R3 < R1, GPR adr's wraparound from 15
to 0. .
. 4. D(21) determines which word of doubleword -
from stg is to be loaded into LS: if 1, right
word; if 0, left word.

Load Negative LNR 1 RR R1 Load 2nd opr {unchanged if negative, 2's | None 0:Result=0
R2 complemented if positive; in GPR per R2) into 1st . 1: Result <0
opr location {in GPR per R1).

If 2nd opr = 0, unchanged with plus sign.

Load Positive LPR 10 RR R1 Load 2nd opr (unchanged if positive, 2's | FixPtOvflo | O: Result=0
R2 complemented if negative; in GPR per R2) into 1st 2 : Result >0
opr location (in GPR per R1). ' . | 3: Overflow

Overflow occurs only if max negative number is
2's complemented.

Multiply M 5C RX R1 Multiply 1st opr (in GPR per R1 + 1) & 2nd opr (in | Prot (F) Unchanged
D2(X2,82) | stg) & place 64-bit result into 1st opr location {in | Adr
GPR per R1 & R1 + 1). Spec

1. R1 must be even adr. ;
2. D(21) determines which word of doubleword
from stg is 2nd opr: if 1, right word; if 0, left

word.
Multiply MR 1Cc RR R1 Multiply 1st opr (in-GPR per R1 + 1) by 2nd opr | Spec Unchanged
R2 (in GPR per R2) & place 64-bit result into 1st opr

- . location (in GPR per R1 & R1 + 1).
R1 must be even adr.

Multiply Halfword MH ac RX R1 Multipty 1st opr (in GPR per R1) & halfword 2nd | Prot (F) Unchanged
D2(X2, B2} | opr (in stg) & place low-order 32 bits of result into | Adr :
1st opr location. Spec

1. D(21) determines which word of doubleword
from stg contains halfword 2nd opr: if 1,
right word; if 0, left word.

2. D(22) determines which half of word is
halfword 2nd opr: if 1, right half; if 0, left
half.

3. Halfword 2nd opr is expanded to full word
before multiplication by propagating sign bit
through 16 high-order bits.

Shift Left Double SLDA 8F RS R1 Shift 1st opr {in GPR per R1 & R1 + 1) left number | Spec 0: Resuit=0
D2(B2) of bit positions specified by low-order 6 bits of 2nd | Fix-Pt Ovflo | 1: Result <0
opr adr & place result into 1st opr location. 2 : Result >0
1. R1 must be even adr. 3 : Overflow
2. High-order bits of 1st opr are shifted out &
lost; low-order vacated bits are made 0's.
3. If bit unlike sign bit is shifted out of bit
position 1 of even register, fixed-point
overflow occurs.
Shift Left Single SLA 8B RS R1 Shift 1st opr (in GPR per R1) left number of bit | Fix-Pt Ovflo | O: Resuit=0
D2(B2) positions specified by low-order 6 bits of 2nd opr 1: Resuit <0
adr & place result into 1st opr location. 2 : Result >0
1. High-order bits of 1st opr are shifted out & 3 : Overflow

lost; low-order vacated bits are made 0's.

2. If bit unlike sign bit is shifted out of bit
position 1 of even register, fixed-point
overflow occurs.

2065 FETOM (9/68) 1-73

Table 1-8. Fixed-Point Instructions (Cont)

1-74 (9/68)

Mne- Op Program
Instruction monic | Code | Format Operands Function Interruptions Condition Code
Shift Right Double SRDA 8E RS R1 Shift 1st opr (in GPR per R1 & R1 + 1) right | Spec 0: Result=0
) D2(B2) number of bit positions specified by low-order 6 1: Resuit <0
bits of 2nd opr adr & place result into 1st opr 2: Result >0
location.
1. R1 must be even adr.
2. Low-order bits of 1st opr are shifted out &
lost; high-order vacated bits are made equal
to sign bit.
Shift Right Single SRA 8A RS R1 Shift 1st opr (in GPR per R1) right number of bit | None 0: Result=0
' D2(B2) positions specified by low-order 6 bits of 2nd opr 1: Result <0
adr & place result into 1st opr location. 2 : Result >0
-Low-order bits of 1st opr are shifted out & lost;
high-order vacated bits are made equal to sign
bit. ’
Store : ST 50 RX R1 Store 1st opr {in GPR per R1) into 2nd opr location | Prot (S) Unchanged
D2(X2,B2) | (instg). Adr
1. PAL(61) determines into which word of | Spec
doubleword in stg 1st opr is to be stored: if
1, right word; if 0, left word.
2. 1st opr is unchanged.
Store Halfword STH 40 RX R1 Store halfword 1st opr (in GPR per R1) into 2nd | Prot (S) Unchanged
D2(X2, B2) | opr location (in stg). Adr
1. ABC selects 16 low-order bits of 1st opr for | Spec
storage; high-order bits are ignored.
2. STC [D(21-23)] positions 16 low-order bits
of 1st opr into doubleword 2nd opr location.
3. 1st opr is unchanged. '
Store Multiple ST™M 20 RS R1 Store into 2nd opr location (as many words as | Prot (S) Unchanged
R3 required; in stg) contents of GPR's, in ascending | Adr
D2(82) order, starting with 1st opr location (per R1) & | Spec
ending with 3rd opr location (per R3).
1. GPR adr's wrap around from 15 to 0.
2. D(21) determines into which word of
doubleword in stg contents of 1st GPR are to
be stored: if 1, right word; if 0, left word.
3. If R1 =R3, 1 word is stored.
Subtract s 58 RX R1 Algebraically subtract 2nd opr (in stg) from 1stopr | Prot (F) 0:Dif=0
C o D2(X2,B2) | (in GPR per R1) & place result into 1st opr | Adr 1:0if<0
location. Spec- 2:Dif >0
D(21) determines which word of doubleword | Fix-PtOvflo | 3: Overflow
from stg is 2nd opr: if 1, right word; if O, left
word.)
Subtract SR 1B RR R1 Algebraically subtract 2nd opr (in GPR per R2) Fix-PtOvflo | 0:Dif=0
R2 from 1st opr (in GPR per R1) & place result into 1:D0if<0
N 1st opr location. 2:Dif>0
" 3: Overflow
Subtract Halfword SH 4B RX R1 Algebraically subtract halfword 2nd opr (in stg) | Prot (F) 0:Dif=0
D2(X2,B82) | from 1st opr {in GPR per R1) & place result into | Adr 1:0if<0
1st opr location. Spec 27 Dif >0
1. D(21) determines which word of doubleword | Fix-Pt Ovflo | 3: Overflow
from stg contains halfword 2nd opr: if 1,
right word; if O, left word.
2. D(22) determines which half of word is
halfword 2nd opr: if 1, right half; if 0, left
half.
3. Halfword 2nd opr is expanded to full word
before subtraction by propagating sign bit
through 16 high-order bits.

Table 1-8. Fixed-Point Instructions (Cont)

Mne- Op) Program _
Instruction monic | Code | Format Operands Function Interruptions Condition Code
‘| Subtract Logical : SL 5F RX R1 . Algebraically subtract 2nd opr (in stg) from 1stopr | Prot (F) 1: Dif ¥0 (no carry)
D2(X2,82) | (in GPR per R1) & place result into 1st opr | Adr 2: Dif = 0 (carry)
location. Spec ~ | 3:Dif #0 (carry)
"~ 1. D(21) determines which word of doubleword
from stg is 2nd opr: if 1, right word; if 0, left
word.
2. Sign bit of result is treated as high-order
integer & is tested for carry to determine CC.
Subtract Logical SLR 1F RR R1 Algebraically subtract 2nd opr {in GPR per R2) | None 1 : Dif 70 (no carry)
R2 from 1st opr {(in GPR per R1) & place result into 2 : Dif = 0 (carry)
1st opr location. 3 : Dif #{(carry)
Sign bit of result is treated as high-order integer
& is tested for carry to determine CC.

2. Addressing. An address designates a location outside the
available main storage capacity. The instruction is
terminated except for the Store, Store Halfword, and
Convert to Decimal instructions, which are suppressed.
Operand addresses are tested only when used to address
storage. Addresses used as a shift amount are not tested.
The address restrictions do not apply to the D2 field or
to the contents of the GPR’s addressed by the X2 and
B2 fields.

3. Specification. A data, instruction, or control word
address does not specify an integral boundary for the
unit of information, or the R1 field of an instruction

specifies an odd register address for a pair of GPR’s that -

contain a doubleword operand. The operation is sup-
pressed.

4. Data. A sign or digit code of the decimal operand in the
Convert to Binary instruction is incorrect. The operation
is terminated.

5. Fixed-point overflow. A high-order carry occurs, or
high-order significant bits are lost in load, add, subtract,
or shift operations. The instruction is completed by
ignoring the overflow. The interruption may be masked
off by making the fixed-point overflow mask bit
[PSW(36)] a 0. If the mask bit isa 1, the interruption is
taken. '

6. Fixed-point divide. The quotient of a division, including
division by zero, exceeds the register size, or the result
of the Convert to Binary instruction exceeds 31 bits. If
the interruption occurs during division, the operation is
suppressed. If the interruption occurs during the Convert
to Binary instruction, the conversion is completed but
only the low-order 32 bits of the converted data are
placed into LS.

Condition Codes

The results of fixed-point load, add, subtract, compare, and
shift instructions set the CC in the PSW (Table 1-8). All
other fixed-point instructions leave the CC undisturbed.

For fixed-point arithmetic operations, the CC can be set
to reflect three types of results:

1. For most operationé, codes 0, 1, and 2 indicate the
result is zero, less than zero, or greater than zero,
respectively, and code 3 indicates fixed-point overflow.

2. For compare operations, codes 0, 1, and 2 indicate that
the first operand is equal to, lower than, or higher than
the second operand, respectively.

3. For Add Logical and Subtract Logical instructions,

“codes 0 and 1 indicate a zero and non-zero result,
respectively, in the absence of a logical carry out of the
sign position; codes 2 and 3 indicate a zero and nonzero
result, respectively, with a carry out of the sign position.

Floating-Point Instructions

The floating-point instructions serve to load, add, subtract,
compare, halve, multiply, divide, and store floating-point
numbers. These instructions may occur in the RR format
for register-to-register transfers or in the RX format for
register-to-storage transfers. Eight 32-bit FPR’s in LS are
reserved exclusively for floating-point instructions. They
are logically connected by pairs to form four 64-bit FPR’s.
At the ‘end of the execution of the floating-point add,
subtract, compare, and certain load instructions, a CC is set.

Operands may be either short or long. Short operands
are a word long (32 bits) and long operands are a
doubleword long (64 bits). Long operands provide greater
precision; however, where great precision is not necessary,
short operands reduce instruction execution time and the
amount of storage required. -

Operands and final arithmetic results are always in true
form (as opposed to complement form). A O in the sign
position indicates a positive fraction; a 1, a negative
fraction. If intermediate results are in complement form,
they are changed to true form before the final result is
stored into the first operand location. For the add,
subtract, multiply, and divide instructions, the result signs
are determined algebraically. ‘

2065 FETOM (9/68) 1-75

Table 1-9 lists the floating-point instructions. For a
discussion of number representation, data formats, normal-
ization, and operand addressing, refer to Section 2 of this
chapter.

Instruction Formats
@ Floating-point instructions use RR and RX formats.

e Programmer must specify even FPR of even/odd pair (0,
2,4, or 6).

e Main storage address of second operand must designate
word boundaries (bits 22 and 23 = 00) for short

operands and doubleword boundaries (bits 21, 22, and
23 = 000) for long operands.

Floating-point instructions occur in the RR and RX
formats:

RR
Op Code R1 R2

[} 78 112 15

RX
OpCode | R1 | x2 | B2 | D2~

0 78 1112 15 16 19 20 3

In these formats, R1 is the address of an FPR that
contains the first operand. The second operand location is
defined differently for the two formats.

In the RR format, R2 is the address of an FPR
containing the second operand. The same FPR may be
specified for the first and second operands.

The R1 and R2 fields must specify 0, 2, 4, or 6, or a
specification program interruption occurs. The specification
check is made by testing E(8) and E(11) for zero; for RR
instructions, E(12) and E(15) are tested for zero. If E(11)
or E(15) does not equal zero, an odd address has been
specified. If E(8) or E(12) does not equal zero, the
specified FPR address is greater than 7. Thus, if any of the
tested E bits equals 1, a specification program interruption
is taken.)

In the RX format, the contents of the GPR’s specified
by X2 and B2 are added to the contents of the D2 field to
form an effective address designating the main storage
location of the second operand. A zero in an X2 or B2 field
indicates that no index or base component is to be used.
The main storage address should designate word boundaries
for short operands (bits 22 and 23 = 00) and doubleword
boundaries (bits 21, 22, and 23 = 000) for long operands.
Otherwise, a specification program interruption occurs.

The results replace the first operand except for store
operations, where result replaces the second operand.
Except for the storing of the final result, the contents of all
LS registers and main storage locations participating in
operand addressing or operation- execution remain
unchanged.

1-76 (9/68)

Data Flow

o Eight 32-bit LS registers are reserved for floating-point
instructions.

Micro-orders control low-order fraction fetch.

LS FPR address specified must be even (d, 2,4, 0r6).
Sigh-handling is achieved via serial adder or STAT’s.
Characteristic-handling is performed via serial adder.

Fraction-handling is performed via parallel adder.

Eight 32-bit LS registers (addresses 16—23) are reserved for
floating-point instruction operands and results (Diagram
3-4, FEMDM). An even/odd pair of these registers functions
as a double-length (64-bit) register with an assigned address
of 0, 2,4, or 6. A 0in the R1 or R2 field of a floating-point
instruction specifies LS locations 16 and 17; a 2 specifies
locations 18 and 19; a 4 specifies locations 20 and 21; a6
specifies locations 22 and 23.

In instructions other than floating-point, addressing is
limited to 16 GPR’s because the R1 and R2 fields contain
four bits each. The LS address register (LAL), however,
contains five bits; LAL(0) is used to address the FPR’s.
Because floating-point instructions must specify an LS
address of 0, 2, 4, or 6 in the R1 and R2 (RR only) fields,
and use only the FPR’s for operands, a 1 is forced into
LAL(0) when accessing LS during execution of a floating-
point instruction. (Note that, for RX format instructions,

- the base and index register fields specify GPR’.)- For

example, if address O is specified by the R1 or R2 field, LS
accesses LS register 16 (LAL = 10000). Short operand
instructions fetch only 32 bits (single word) from the
specified FPR. Because ingating and outgating of LS are
limited to 32 bits each, long floating-point operands must
be divided into two 32-bit words stored in an even/odd pair
of FPR’s. Under micro-order control, a 1 is forced into the
low-order bit position of LAL [LAL(4)] to fetch or store
the low-order 32 bits of a long operand from R1 plus 1 or
R2 plus 1. For example, the ‘RF*E3Q1’ micro-order
specifies the FPR addressed by E(12—15) + 1. The R1 +1
and R2 + 1 registers are the odd-numbered addresses of
FPR’s.

At the beginning of the execution phase of floating-
point instructions, a specification test establishes that:)
1. An even register is specified in the R1 and R2 (RR

format only) fields.

2. A register address greater than 6 is not specified in the

R1 and R2 (RR format only) fields.

3. The effective main storage address is on a doubleword
boundary for long operands and on a word boundary for
short operands.

Data flow may be divided into two paths: the fraction
path and the sign and characteristic path. The fractions are
transferred, added, or shifted via the parallel adder. The
operands are located in DT, ST, and AB. For floating-point

Table 1-9. Floating-Point Instructions

fetched from LS.
2. Opr’s remain unchanged.

2065 FETOM (9/68) 1-77

Mne- Op Program -
Instruction monic | Code | Format Operands Function Interruptions - Condition Code
Add Normalized AD 6A RX R1 Algebraically add 2nd opr (in stg) to 1st opr (i | Prot (F) O0:Fract=0
(long) D2(X2,B2) | FPR per R1 & R1 + .1)-& place normalized result | Adr 1: Fract<0
into 1st opr location. Spec 2: Fract >0
1. Low-order fraction of 1st opr must be | Exp Ovflo
fetched from LS. Exp Unflo
2. Set CC per result sign & magnitude. Signif
Add Normalized ADR 2A RR R1 Algebraically add 2nd opr (in FPR per R2 & R2 + | Spec O: Fract=0
(long) R2 1) to 1st opr {in FPR per R1 & R1 + 1) & place | Exp Ovflo 1:Fract<0
normalized result into 1st opr location. Exp Unflo 2: Fract >0
1. Low-order fractions of 1st & 2nd opr’s must | Signif
be fetched from LS.
2. Set CC per result sign & magnitude.
Add Normalized AE 7A RX R1 - Algebraically add 2nd opr (in stg) to 1st opr (in | Prot (F) 0:Fract=0
(short) D2(X2, B82) | FPR per R1) & place normalized result into 1stopr | Adr 1:Fract<0
‘ location. . : Spec 2:Fract>0
1. Low-order half of FPR is ignored & | Exp Ovflo
unchanged. Exp Unflo
2. D(21) determines which half of doubleword | Signif
from stg is 2nd opr; if 1, right half; if 0, left
half. : : b
3. Set CC per result sign & magnitude.
Add Normalized AER 3A RR R1 Algebraically add 2nd opr (in FPR per R2) to 1st | Spec 0:Fract=0
{short) R2 opr {in FPR per R1) & place normalized result into | Exp Ovflo 1: Fract<0
1st opr location. Exp Unflo 2 : Fract >0
1. Low-order halves of FPR’s are ignored & | Signif
unchanged.
2. Set CC per result sign & magnitude.
Add Unnormalized AW 6E RX R1 . Algebraically add 2nd opr (in stg) to 1st opr (in | Prot (F) 0: Fract=0
(long) D2(X2,B2) | FPR per R1 & R1+ 1) & place unnormalized result | Adr 1: Fract<0
into 1st opr location. Spec 2: Fract >0
1. Low-order fraction. of 1st opr must be | Exp Ovflo :
fetched from LS. Signif
2. Set CC per result sign & magnitude.
Add Unnormalized AWR 2E RR R1 Algebraically add 2nd opr (in FPR per R2 & R2 + | Spec 0: Fract=0
(long) R2 1) to 1st opr (in FPR per Rt & R1 + 1) & place | Exp Ovfio 1:Fract<0
unnormalized result into 1st opr location. Signif 2 : Fract >0
1. Low-order fractions of 1st & 2nd opr’s must
be fetched from LS.
2. Set CC per result sign & magnitude.
Add Unnormalized AU 7€ RX R1 Algebraically add 2nd opr (in stg) to 1st opr (in | Prot (F) 0:Fract=0
(short} D2(X2,B2) | FPR per R1) & place unnormalized result into 1st | Adr 1: Fract <0
opr location. Spec 2: Fract >0
1. Low-order half of FPR is ignored & Exp Ovflo
unchanged. Signif
2. D(21) determines which half of doubleword
from stg is 2nd opr: if 1, right half; if O, left
half.
3. Set CC per result sign & magnitude.
Add Unnormalized AUR 3E RR R1 Algebraically add 2nd-opr (in FPR per R2) to 1st | Spec 0:Fract=0
(short) : ‘R2 opr (in FPR per R1) & place unnormalized result | Exp Ovflo 1:Fract<0
into 1st opr location. Signif 2 : Fract >0
1. Low-order halves of FPR’'s are ignored &
unchanged.
2. Set CC per result sign & magnitude.
Compare (long) CcD 69 RX R1 Algebraically compare 1st opr (in FPR per R1 & R1 | Prot (F) 0:0pr1=0pr2
D2(X2, B2) | + 1) with 2nd opr {in stg); CC indicates resuit. " | Adr 1:0pr 1<0pr2
1. Low-order fraction of 1st opr must be | Spec 2:0pr1>0pr2

Table 1-9. Floating-Point Instructions (Cont)

1-78 (9/68)

Mne- Op Program
Instruction monic | Code | Format Operands Function Interruptions Condition Code
Compare (long) CDR 29 RR R1 Algebraically compare 1st opr (in FPR per R1 & R1 | Spec 0:0pr1=0pr2
- R2 + 1) with 2nd opr {in FPR per R2 & R2 + 1); CC 1:0pr1<Opr2
indicaces result. 2:0pr1>0pr2
1. Low-order fractions of 1st & 2nd opr’s must
be fetched from LS.
2. Opr’s remain unchanged.
Compare {short) CE 79 RX R1 Algebraically compare 1st opr {in FPR per R1) with | Prot (F) 0:0pr1=0pr2
D2(X2, B2) | 2nd opr (in stg); CC indicates result. Adr 1:0pr 1<0pr2
1. Low-order half of FPR is ignored. Spec 2:O0pr 1>0pr2
2. D(21) determines which half of doubleword
from stg is 2nd opr: if 1, right half; if O, left
half.
-3 Opr's remain unchanged.
Compare (short) " CER 39 RR R1 Algebraically compare 1st opr {in FPR per R1) with | Spec 0:0pr1=0pr2
R2 2nd opr (in FPR-per R2); CC indicates resuit. 1:0pr 1<0pr2
- 1. Low-order halves of FPR’s are ignored. 2:0pr1>0pr2
2. Opr's remain unchanged.
Divide (long) DD 6D RX R1 Divide 1st opr {in FPR per R1 & R1+ 1) by 2nd | Prot (F) Unchanged
D2(X2,82) | opr (in Istg) & place normalized quotient into 1st | Adr
opr location. Spec
1. Low-order fraction of 1st opr must be | Exp Ovflo
fetched from LS. Exp Unflo
2. Opr's are prenormalized. FitPt Div
3. Remainder is not saved.
Divide (long) DDR 2D RR R1 Divide 1st opr (in FPR per R1 & R1 + 1) by 2nd | Spec | 'Unchanged
R2 opr {in FPR per R2 & R2 + 1) & place normalized | Exp Ovflo
quotient into 1st opr location. . - Exp Unflo
1. Low-order fractions of 1st & 2nd opr’s must FitPt Div
be fetched from LS.
2. Opr's are prenormalized.
3. Remainder is not saved.
Divide (short) DE 70 RX R1 Divide 1st opr {in FPR per R1) by 2nd opr (in'stg) { Prot (F) Unchanged
D2(X2,B2) | & place normalized quotient into 1st opr location. | Adr
1. Low-order half of FPR is ignored & | Spec
unchanged. Exp Ovflo
2. D(21) determines which.half of doubleword | Exp Unflo
from stg is 2nd apr: if 1, right half; if 0, left Fit-Pt Div
half,
3. Opr's are prenormalized.
4. Remainder is not saved.
Divide (short) DER 3D RR R1 Divide 1st opr (in FPR per R1) by 2nd opr (in FPR | Spec Unchanged
R2 per R2) & place normalized quotient into 1st opr | Exp Ovflo
location. . Exp Unflo
1. Low-order halves of FPR’'s are ignored & | Fit-Pt Div
unchanged.
2. Opr's are prenormalized.
3. Remainder is not saved.
Halve (long) HDR 24 RR R1 Divide 2nd opr (in FPR per R2 & R2+ 1) by 2 & | Spec Unchanged
’ R2 place normalized quotient into 1st opr location (in | Exp Unflo
FPR per R1 & R1+1).
Low-order fraction of 2nd opr must be fetched
from LS.
Halve (short) HER 34 RR R1 Divide 2nd opr (in FPR per R2) by 2 & place | Spec Unchanged
R2 normalized quotient into 1st opr location {in FPR Exp Unflo
per R1).
Low-order halves of FPR’s are ignored &
unchanged.
Load (long) LD 68 RX | Rt Load 2nd opr (in stg) into 1st opr location (in FPR | Prot (F) Unchanged
D2(X2,B2) | per Rt & R1+1). Adr
Spec

Table 1-9. Floating-Point Instructions (Cont)

Mne- Op

Instruction monic | Code

Format

" Operands

Function

Program
Interruptions

Condition Code

Load {long) LDR 28 RR

Load {short) LE 78 RX

Load (short) LER 38 RR

Load & Test (long) LTDR 22 RR

Load & Test (short) LTER 32 RR

L.oad Complement LCDR 23 RR

{long)

Load Complement

LCER | 33 RR
(short) -

toad Negative (long) LNDR 21 RR

Load Negative {short) LNER 31 RR

Load Positive (long) - LPDR | -20 RR

Load Positive (short) LPER 30 RR

R1
R2

R1
D2(X2, B2)

R1
R2

R1

R1
R2

R1
R2

R1

R1
R2

R1
R2

R1
R2

R1

Load 2nd opr (in FPR per R2 & R2 + 1) into 1st
opr location (in FPR per R1 & R1 +1).
Low-order fraction of 2nd opr must be fetched
from LS.

Load 2nd opr (in stg) into 1st opr location {in FPR
per R1). ~

1. D(21) determines which half of doubleword

from stg is 2nd opr: if 1, right half; if 0, left

half. :

2. Low-order

unchanged.

half of FPR is ignored &

Load 2nd opr (in FPR per R2) into 1st opr location

(in FPR per R1). B
Low-order halves of FPR’s are ignored &
unchanged.

Load 2nd opr (in FPR per R2 & R2 + 1) into 1st
opr location (in FPR per R1 & R1+ 1),
1. Low-order fraction of 2nd opr must be
fetched from LS.
2. Set CC according to sign & magnitude.

Load 2nd opr {in FPR per R2) into 1st opr location
(in FPR per R1).
1. Low-order halves of FPR’'s are ignored &
unchanged.)
2. Set CC according to sign & magnitude.

Load 2nd opr (in FPR per R2 & R2 + 1) into 1st
opr location {in FPR per R1 & R1 + 1) with sign
complemented.
1. Low-order fraction of 2nd opr must be
fetched from LS.
2. Set CC according to original
magnitude.

sign &

Load 2nd opr (in FPR per R2) into 1st opr location
(in FPR per R1) with sign complemented.
1. Low-order halves of FPR's are ignored &
unchanged.
2. Set CC according to original
magnitude.

sign &

Load 2nd opr (in FPR per R2 & R2 + 1) into 1st
opr location {in FPR per R1 & R1 + 1) with sign
made minus.
1. Low-order fraction of 2nd opr must be
fetched from LS.
2. Set CC according to result sign & magnitude.

Load 2nd opr {in FPR per R2) into 1st opr location
(in FPR per R1) with sign made minus.
1. Low-order halves of FPR’s are ignored &
unchanged.
2. Set CC according to result sign & magnitude.

Load 2nd opr (in FPR per R2 & R2 + 1) into 1st
opr location (in FPR per R1 & R1 + 1) with sign
made plus.
1. Low-order fraction of 2nd opr must be
-fetched from LS.
2. Set CC according to result sign & magnitude.

Load 2nd opr (in FPR per R2) into 1st opr location
(in FPR per R1) with sign made plus.
1. Low-order halves of FPR's are ignored &
unchanged.
2. Set CC according to result sign & magnitude.

Spec

Prot {F)
Adr
Spec

Spec

Spec

Spec

Spec

Spec

Spec

Spec

Spec

Spec

Unchanged

Unchanged

Unchanged

0 : 2nd opr fract =0
1:2nd opr<0
2 :2nd opr >0

0: 2nd opr fract=0
1:2nd opr<0
2:2nd opr >0

0 : 2nd opr fract =0
| 1: Orig sign +
2 : Orig sign -

0 : 2nd opr fract=0
1 : Orig-sign +
2 : Orig sign -

0: 2nd opr fract =0
1:2nd opr <0

0 : 2nd opr fract =0
1:2nd opr<0

0 : 2nd opr fract =0
2:2nd opr >0

0 : 2nd opr fract=0
2: 2nd opr >0

2065 FETOM (9/68) 1-79

Table 1-9. Floating-Point Instructions (Cont)

. Mne- Op : .) Program
Instruction monic | Code | Format Operands Function Interruptions Condition Code
Multiply (long) MD .| 6C _ RX R1 Multiply 1st opr {in FPR per R1 & R1 + 1) & 2nd | Prot (F) Unchanged
D2(X2,B2) | opr (in stg) & place normalized product into 1stopr | Adr
location {in FPR per R1 & R1+ 1), Spec
Opr's are prenormalized. Exp Ovflo
Exp Unflo
Multiply {long) MDR 2c RR R1 Multiply 1st opr (in FPR per Rt & R1 + 1) & 2nd | Spec Unchanged
R2 opr (in FPR per R2 & R2 + 1) & place normalized | Exp Ovflo
product into 1st opr location (in FPR per R1 & R1 Exp Unflo.
+1).
Opr's are prenormalized.
Multiply (short) ME 7C RX R1 Multiply 1st opr {in FPR per R1) & 2nd opr (instg) | Prot (F) Unchanged
D2(X2,B2) | & place normalized product into 1st opr location | Adr
(in FPR per R1 & R1+ 1). Spec

1. D(21) determines which half of doubleword | Exp Ovflo
from stg is 2nd opr: if 1, right half; if O, left | Exp Unflo
half.

2. Opr's are prenormalized.

Multiply {short) MER 3C RR R1 Multiply 1st opr {in FPR per R1) & 2nd opr (in | Spec Unchanged
R2 FPR per R2) & place normalized product into 1st | Exp Ovflo
opr location (in FPR per R1 & R1 + 1). ' Exp Unflo
Opr’s are prenormalized.
Store (long) STD 60 RX R1 Store 1st opr {in FPR per R1 & R1 + 1) into 2nd | Prot (S) Unchanged
D2(X2,B2) { opr location {in stg). Adr
1st opr is unchanged. Spec
Store (short) STE 70 RX R1 Store 1st opr (in FPR per R1) into 2nd opr location | Prot (s) Unchanged
D2(X2,B2) | (instg). Adr

1. PAL(61) determines into which half of | Spec
doubleword in stg 1st opr is to be stored: if
1, right half; if 0, left half.

2. Low-order half of FPR is ignored.

3. 1st opr is unchanged.

Subtract Normalized SD 68 RX R1 Algebraically subtract 2nd opr (in stg) from 1stopr | Prot (F) 0: Fract=0

(long) D2(X2,B82) | (in FPR per R1 & R1+ 1) & place normalized resuit | Adr 1: Fract<0
’ into 1st opr location. Spec 2: Fract >0

1. Low-order fraction of 1st opr must be | Exp Ovflo

fetched from LS. Exp Unflo

2. Set CC per result sign & magnitude. Signif

Subtract Normalized SDR 2B RR R1) Algebraically subtract 2nd opr (in FPR per R2 & | Spec 0: Fract=0
(long) R2 R2 + 1) from 1st opr {in FPR per R1 & R1+ 1) & | Exp Ovflo 1:Fract<0
place normalized result into 1st opr location. Exp Unflo 2: Fract >0

1. Low-order fractions of 1st & 2nd opr's must | Signif
be fetched from LS.
2. Set CC per result sign & magnitude.

Subtract Normalized SE 78 RX R1 Algebraically subtract 2nd opr (in stg) from 1stopr | Prot (F) 0:Fract=0
(short) D2(X2,B2) | (in FPR per R1) & place normalized result into 1st | Adr 1:Fract<0
opr location. Spec 2: Fract >0

1. Low-order half of FPR is ignored & | Exp Ovflo

unchanged. Exp Unflo

2. D(21) determines which half of doubleword | Signif
from stg is 2nd opr: if 1, right half; if 0, left
half.

3. Set CC per result sign & magnitude.

Subtract Normalized SER 3B RR R1 Algebraically subtract 2nd opr (in FPR per R2) Spec 0:Fract=0
(short) . R2 from 1st opr (in FPR per R1) & place normalized | Exp Ovflo 1:Fract<0
result into 1st opr location. Exp Unflo 2: Fract >0
1. Low-order halves of FPR’s are ignored & | Signif
unchanged.

2. Set CC per result sign & magnitude.

1-80 (9/68)

Table 1-9. Floating-Point Instructions (Cont)

. Mne- Op Program
Instruction monic |. Code | Format Operands Function Interruptions Condition Code
Subtract Unnormalized| SW 6F RX R1 Algebraically subtract 2nd opr (in stg) from 1stopr | Prot (F) 0:Fract=0
(long) D2(X2,B2) | (in FPR per R1 & R1 + 1) & place unnormalized | Adr 1:Fract<0
result into 1st opr location. Spec 2: Fract>0
1. Low-order fraction of 1st opr must be | Exp Ovflo
fetched from LS. Signif
2. Set CC per result sign & magnitude. -
Subtract Unnormalized| SWR 2F RR R1 Algebraically subtract 2nd opr (in FPR per R2 & | Spec 0: Fract=0
(long) ‘R2 R2 + 1) from 1st opr (in FPR per R1 & R1+ 1) & | Exp Ovflo 1: Fract<0
place unnormalized result into 1st opr location. Signif 2: Fract >0
1. Low-order fractions of 1st & 2nd opr’s must
be fetched from LS.
2. Set CC per result sign & magnitude.
Subtract Unnormalized| SU 7F RX R1 Algebraically subtract 2nd opr (in stg) from 1st opr | Prot (F) 0:Fract=0
(short) D2(X2,B2) | (in FPR per R1) & place unnormalized result into | Adr 1: Fract <0
1st opr location. Spec 2: Fract >0
1. Low-order half of FPR is ignored & Exp Ovflo
unchanged. Signif
2. D(21) determines which half of doubleword | -
from stg is 2nd opr: if 1, right half; if 0, left
haif.
3. Set CC per result sign & magnitude.
Subtract Unnormalized| SUR 3F RR R1 Algebraically subtract 2nd opr (in FPR per R2) | Spec . 0:Fract=0
(short) R2 from 1st opr (in FPR per R1) & place unnormalized | ExpOvflo | 1: Fract<0
result into 1st opr location. Signif 2: Fract >0
1. Low-order halves of FPR's are ignored &
unchanged.)
- 2. Set CC per result sign & magnitude.

instructions, the parallel adder shifts operands right or left
four bit positions under micro-order control. For floating-
point, the contents of PAL can be gated to T, D, A, and B.

The sign and characteristic path is from ST or ABto F,
via the serial adder. The byte gated to the inputs of the
serial adder depends upon the STC and the ABC values. For
floating-point, the STC is normally set to 4 to specify the

first byte of T, and the ABC is set to O to specify the first

byte of A. The data from F is gated to the serial adder.
From the serial adder, the data is transferred to ST per the

STC. For floating-point operations, the serial adder adds 1

to, or subtracts 1 or 64 from, the characteristic atlthe .

inputs of the serial adder under micro-order control.

In floating-point instructions, the signs are saved .in .

STAT’s under micro-order control. When the ‘SAVE
SIGNS’ micro-order is executed, bit O of the ST byte
selected by the STC is gated in true or complement form,
depending upon the instruction, to STAT C. Because the
STC is set to O or 4 before issuing the ‘SAVE SIGNS’
micro-order, the contents of either S(0) or T(32), which-
ever contains the sign of the operand, is saved in STAT C
via the serial adder. At the same time, the sign of the
operand in AB is sent to STAT F. If the instruction is a
multiply or divide and SAL(0) = 1 (indicating a carry
resulted from the characteristic addition or subtraction),
STAT D is set. :

When the results of the execution of a floating-point
instruction are to be stored, the STAT’s are decoded, under
micro-order control, to determine the sign of the result. If
the sign is minus, the INSERT SIGN’ micro-order forces a
1 to bit 0 of the FPR (on the LS bus in) addressed by R1
and inhibits gating of T(32) to LS. The result sign is minus
under the following conditions:

1. Multiply or divide and signs (STAT’s C and F) are

unlike. v
2. Load complement and STAT C equals 0.

-3. Halve, load, or load and test, and STAT C equals 1.

4. Add, subtract, or compare and sign of the larger operand
is minus. v
5. Load negative: -

Program Interruptions

Seven program interruptions can occur during execution of
floating-point instructions. Of the seven, “exponent under-
flow” and “‘significance” can be masked off; the others are
unconditionally taken. If the associated mask bit [PSW(38)
and PSW(39), respectively] is a 0, the interruption is
ignored; if a 1, it is taken. '
The seven interru/ptions and their causes are:
1. Protection. The storage key does not match the protec-
tion key in the PSW for all RX instructions. When an

2065 FETOM (9/68) 1-81

instruction causes a fetch-protection violation, instruc-
tion execution is terminated, the program execution is
altered by a program interruption, and a protection
program interruption is indicated in the old PSW. When
an instruction causes a store-protection violation, the
opération is suppressed.

2. Addressing. An address designates a location outside the
available storage for the installation. The operation is
terminated. ‘

3. Specification. A short operand is not located on a word
boundary, a long operand is not located on a double-
word boundary, or an FPR address other than 0, 2, 4, or
6 is specified. The instruction is suppressed. The address
restrictions do not apply to the components (contents of
the D2 field and the contents of the LS registers
specified by X2 and B2) from which an address is
generated. '

4. Exponent overflow. The result exponent (characteristic)
of an addition, subtraction, multiplication, or division
overflows, and the result fraction is not zero. The
operation is completed by making the characteristic 128

smaller than the true result; the sign and fraction remain,

unchanged.

5. Exponent underflow. The result of an addition, subtrac-
tion, multiplication, or division underflows, and the
result fraction is not zero. A program interruption
occurs if the exponent-underflow mask [PSW(38)] is a
1. The operation is completed by replacing the result
with a true zero, if the mask is off. If the mask is on, the
characteristic is made 128 larger than the true result and
the sign and fraction remain unchanged.

6. Significance. The result fraction of an addition or
subtraction is zero. A program interruption occurs if the
significance mask [PSW(39)] is a 1. The mask bit also
affects the result of the operation. When the significance
mask bit is a 0, the operation is completed by replacing
the result with a true zero. When the significance mask
bit is 1, the operation is completed without further
change to the characteristic of the result. In either case,
the CC is set to 0.

7. Floating-point divide. Division by a number with a zero
fraction is attempted. The division is suppressed, but the
CC and the data in storage remain unchanged.

Condition Codes

The results of floating-point add, subtract, compare, and
certain load operations set the CC (Table 1-9). Multiplica-
tion, division, and storing leave the CC unchanged.

The CC can be set to reflect two types of results for
floating-point arithmetic. For most operations, CC’s of 0, 1,
and 2 respectively indicate that the result register contains
zero, less than zero, and more than zero. A zero result is

1-82 (9/68)

indicated whenever the result fraction is zero, including a
forced ze'o. A CC of 3 is never set by floating-point
instructions.

For compare instructions, CC’s of 0, 1, and 2 respective-
ly indicate that the first operand is equal to, lower than,
and higher than the second operand.

Decimal Instructions

The decimal instructions provide for addition, subtraction,
comparison, multiplication, division, and format conversion
of variable-field length (VFL) operands. The VFL data,
which may range from 1 to 16 bytes in length, resides in
main storage only. All decimal instructions are therefore in
the SS format to provide for storage-to-storage operations.
In general, most decimal instructions require fetching the
operands from main storage, performing the operations
specified by the instruction op code, and storing the results
in main storage. A list of the decimal instructions is
contained in Table 1-10.

For a discussion of number representation, data formats,
and operand addressing, refer to Section 2 of this chapter.

Data Handling

e Decimal arithmetic is performed by either true add or
complement add sequence, using excess-6 arithmetic.

e True add sequence adds 6 to each digit gated to A-side
of serial adder.

o Complement add sequence gates 2’s complement of each
digit to A-side of serial adder.

o Inputs to B-side of serial adder are unchanged.

e Each digit which did not cause a carry at output of serial

adder is reduced by 6 (decimal corrected).

o If no carry from high-order digit, result is in complement
form and must be recomplemented.

Decimal arithmetic operations are performed in the serial
adder on a byte basis. A true add or a complement add
sequence is used depending upon the instruction and the
operand signs. Because decimal digits are in BCD format,
excess-6 arithmetic is used.

As stated previously, the decimal digits are represented
by a binary code. Each digit consists of a four-bit field, bit
combinations 0000—1001 corresponding to decimal digits
0-9. This system of decimal notation allows relatively
simple binary techniques to be applied when operating with
decimal data, and also facilitates direct reading of decimal
results. However, two problems are encountered. One
problem is that the four-bit field used to represent decimal

Table 1-10. Decimal Instructions

2065 FETOM (9/68) 1-83

Mne- Op Program
Instruction monic | Code | Format Operands Function Interruptions Condition Code
Add Decimal AP FA SsS D1(L1,B1) | Algebraically add 2nd opr (in stg) to 1st opr (in stg) | Prot (S,F) 0:Sum=0
: D2(L2, B2) | & place result into 1st opr location. Adr 11:sum<o0
1. Opr’s & result are in packed format. Data 2:Sum>0
2. Opr fields may overlap if low-order bytes | Dec Ovflo 3 : Overflow
coincide.
3. Right to left, byte by byte.
4, Shorter opr is extended with high-order O's.
5. 1st opr field must be large enough to contain
all 2nd opr significant digits.
Compare Decimal cP F9 SS. D1(L1,B1) | Algebraically compare 1st opr (in stg) with 2nd opr | Prot (F) 0:0pr1=0pr2
D2(L2,82) (in stg) & set CC according to result. Adr 1: Opr 1.<Opr 2
1. Opr's arfe in packed format. Data 2:0pr1>0pr2
2. Shorter opr is extended with high-order 0’s.
3. Opr fields-may overlap if low-order bytes
coincide.
4. Right to left, byte by byte.
6. Result is not stored & opr fields are
unchanged.
Divide Decimal DP FD ‘SS D1(L1,B1) | Divide 1st opr (in stg) by 2nd opr (in stg) & place | Prot (S,F) Unchanged
D2(L2, B2) | result into 1st opr location (quotient is leftmost in | Adr
1st opr location; remainder, rightmost). Spec
1. Opr's are in packed format. Data
2. Dividend must contain at least 1 high-order | Dec Div
0.
3. Max dividend field = 16 bytes (31 digits &
sign); L1 = 15. .
4. Max divisor field = 8 bytes (15 digits & sign);
L2=7.
5. Divisor field must be < dividend field (L2 <
L1
6. Max quotient field = 15 bytes.
7. Quotient field = dividend field minus
remainder (divisor) field (L1 minus L2).
8. Remainder field = divisor field.
. 9. Opr fields may overlap if low-order bytes
coincide. '
10. Sign of quotient is determined algebraically,
except 0 result is positive.
11. Sign of remainder-is same as dividend sign.
Move with Offset MVO F1. sS D1(L1,B1) | Store 2nd opr (in stg) to left of and adjacent to | Prot (S,F) Unchanged
D2(L2,B2) | low-order 4 bits of 1st opr (in stg). Adr
" 1. Opr's are in packed or unpacked format.
2. If 2nd opr is shorter than 1st opr, fill 1st opr
field with high-order 0's.
3. If 2nd opr is longer than 1st opr, ignore
excess 2nd opr high-order digits.
4. Right to left, byte by byte.
Multiply Decimal MP- FC sS D1(L1,B1) | Multiply 1st opr (in stg) by 2nd opr (in stg) & place | Prot (S,F) Unchanged
D2(L2, B2) | result into 1st opr location. Adr
1. Opr's are in packed format. Spec
2. Product must contain at least 1 high-order 0. | Data
3. Max muitiplicand field = 16 bytes (31 digits
& sign); L1 =15,
4. Max multiplier field = 8 bytes (15 digits &
sign); L2=17.
5. Multiplier field must be < multiplicand field
{(L2<L1); max value of L2=7. i
6. Muitiplicand field initially contains
high-order O-field equal in length to
multiplier field.
7. Max product field = 16 bytes (31 digits &
sign).
8. Sign of product is determined algebraically,
except O result is positive.

Table 1-10. Decimal Instructions (Cont)

Mne-
monic

Op

Instruction Code | Format Operands

Function

Program
Interruptions

Condition Code

Pack PACK F2 s8 D1(L1, B1)

D2(L2, B2)

Subtract Decimal SP FB D1(L1, B1)

D2(L2, B2)

Unpack UNPK F3 D1(L1, B1)

D2(L2, B2)

Zero & Add zap | s D1(L1, B1)

D2(L2, B2)

Convert format of 2nd opr (in stg) from zoned to
packed & place result into 1st opr location (in stg).

1. 2nd opr is in zoned format. '

2. No restriction on overlapping fields.

3. Extend 2nd opr with high-order O's, if
necessary.)

4. If 1st opr field is too short to contain all
significant digits of 2nd opr field, ignore
excess 2nd opr high-order digits.

5. Right to left, byte by byte.

Algebraically subtract 2nd opr (in stg) from 1st opr
{in stg) & place result into 1st opr location.
1. Opr's & result are in packed format.
2. Opr fields may overlap if low-order bytes
coincide.
3. 1st opr field must be large enough to contain
all 2nd opr significant digits.
4. Shorter opr is extended with high-order 0's.
5. Right to left, byte by byte.

Convert format of 2nd opr (in stg) from packed to
zoned & place result into 1st opr location (in stg).

1. 2nd opr is in packed format.

2. No restriction on overlapping fields.

3. Extend 2nd opr with high-order 0's, if
necessary.

4. If 1st opr field is too short to contain all
significant digits of 2nd opr field, ignore
excess 2nd opr high-order digits.

6. If PSW(12) = 1, use USASCII-8 code for
zones; if PSW(12) = 0, use EBCDIC.

6. Right to left, byte by byte.

Place 2nd opr (in stg) into 1st opr location (in stg).

1. 2nd opr is in packed format.

2. Opr fields may overlap if low-order byte of
1st opr coincides with or is to the right of
low-order byte of 2nd opr.

3. 1st opr field must be large enough to contain
all 2nd opr significant digits.

Prot (S,F)
Adr.

Prot (S,F)
Adr
Data
Dec Ovflo

Prot (S,F)
Adr

Prot (S,F)
Adr

Data

Dec Ovflo

Unchanged

WN - O

:Dif=0
: Dif<0
: Dif >0
: Overflow

Unchanged

WN =0

: Result=0
: Result <0
: Result >0
: Overflow

digits has 16 possible codes, of which 6 (binary combina-
tions for 10 through 15 inclusive) are invalid as decimal
digits.. Thus means must be provided to correct invalid
results when they oceur in an arithmetic operation. For
example, the addition of decimal digits 0110 (six) and 0101
(five) must yield a decimal result of 0001 0001 (eleven). If,
however, a pure binary addition is carried out, it will yield
an unacceptable result:

0110 (decimal, or binary 6)
0101 (decimal, or binary 5)
1011 (invalid as decimal, but 11 in binary)

The second problem is in the generation of a decimal
carry. When the sum of two decimal digits exceeds 9, a
carry must be sent to the next high-order digit. However, a
pure binary addition does not yield a carry unless the sum
of the digits exceeds 1111 (15), which has the effect of a
hex carry; i.e., carrying the order of 16 rather than 10.

1-84 (9/68)

Both of the above problems are solved by the excess-6
arithmetic scheme and the decimal correction functions of
the serial adder. In the excess-6 scheme, often referred to as
true +6 arithmetic, a 6 is added to each digit as it is gated to -
the A-side of the adder, one byte (two digits) at a time
from the second operand; the digits gated to the adder
B-side, one byte at a time from the first operand, are not
affected:

True Digits B A True Digits + 6
Side ° Side /
\ D D\(D +é / D+6 /
Serial
Adder
p | o

If the sum of the two digits to be added is 10 or greater,
the true +6 scheme automatically eliminates the unwanted
binary configuration and also supplies a decimal carryin
terms of a hex carry. In true +6 arithmetic, the prevxous
add example of digits 5 and 6 is executed as follows:

0101 (Five, True)
0110 (Plus Six)

0110 (Six) 1011 (Excess-6)
"B A /
\(A]o”
| o110
C‘/OOO'I
0001 | 0001 | Correct Result

Addition of a 6 in all cases, however, may create an
erroneous and sometimes invalid result. This occurs if the
sum of the two digits to be added is less than 10. For
example, consider the addition of decimal digits 1 and 2:

0001 (One, True)
0110 (Plus Six)

0010 (Two) 0111 (Excess-6)

\om
0010
7001

In the above case, the result (9) is clearly in excess-6 form;
the digit 6 must be subtracted from the result to obtain the
correct answer.

- A further example illustrates how an excess-6 digit may
generate an invalid result. Consider the addition of decimal
digits 0 and 5:

(Excess=6 Result)

0000 (Zero, True)
0110 (Plus Six)

0101 (Five) 0110 (Excess-6)

(Binary combination 11 is
an invalid decimal digit)

Note that both the erroneous and the invalid results are
characterized by a no-carry to the next high-order digit.
This condition holds true in all cases when incorrect data is
generated, and is utilized by the decimal correction logic of
the adder. When a no-carry condition is detected, this logic

automatically deducts 6 from the result, thus supplying the
correct digit to the adder output.

The decimal correct function of the adder is also used
during complement add operations. The binary codes of the
decimal digits at the adder A-side are gated in 2’s
complement form; excess 6’s are not supplied. The digits at
the B-side of the adder are gated in true form. The result of
a complement add operation may be in true or complement
form,

For clarity, the previous examples have shown opera-
tions that use only one digit. However, the serial adder
normally handles one byte (two digits) at a time. To

- demonstrate the operation of the serial adder during

decimal operations, the following examples deal with a byte
of data.

If the first operand is larger than the second, the result is
in true form. Consider complement addition of decimal

* digit 5 to 6; that is 6 minus 5:

2nd Operand (Five)
1st Operand (Six) 2's Complement
True 1111 101 1<¢————0000 0101

0000 0110 B A

1111 1011
0000 0110
40000 C,OOO]

Correct Result

0000 | 0001

Save

A true result during-a complement add operation is
always characterized by a carry from the last high-order
digit. As in the case of the true add operation, a carry to
the next digit indicates that no decimal correction of that
digit is necessary.

If the first operand is smaller than the second, the result
is in complemient form. Because decimal data is always
stored in true form, the result must be recomplemented.
Consider complement addition of the decimal digit 6 to 5;
that is, 5 minus 6:

1st Operand (Five)

True 2nd Operand (Six)
0000 0]0] 2's Complement

1mn 10101——0000 0110

\‘; 1010
000 0101

T nn
0110 0110

[[o |

Note that the decimal correction feature of the adder
always subtracts 6 from each digit position which does not
produce a carry. In a complement add operation, a no-carry
condition from the last high-order digit also indicates that

No Carry,
Subtract Six

Complement result
(99 is 10's complement of 1.)

2065 FETOM (9/68) 1-85

. the result is in complement form and must be recomple-
mented. This requires a second pass through the adder:

1001 1001 1st Pass Result

01100111

B A/
"4

\01 10\/01 it
0000 - 0000

o0 oM
0110

(Zero) 2's Complement

No Carry,
Subtract 6

0110

2nd pass result (corrected result)

Instruction Format
o Instructions specify two addresses.

o B1 (contents) + D1 + L1 specifies rightmost byte of Ist
operand.

o B2 (contents) + D2 + L2 specifies rightmost byte of 2nd
operand. '

o Results are stored in true form at first operand location.

All decimal instructions use the SS format:

OpCode | L1 | 12 | &1 [§yo1] B2 szJ

o 78 ni2 15 16 19 20 32 353

An SS instruction operates on two operands-in main storage
and stores the result into the same location from which the
first operand was obtained. Therefore, the address of the
first operand is also the destination address; the address of
the second operand is commonly referred to as the source
address. ' :

The contents of the GPR specified by the B1 field are
added to the D1 field to form an address. This address
specifies the leftmost byte of the first operand. The number
of operand bytes to the right of this byte is specified by the
L1 field of the instruction. The L1 field may specify up to
16 bytes. Similarly, the address of the second operand is
specified by the B2, D2, and L2 fields of the instruction. A
zero in the B1 or B2 fields indicates the absence of the
corresponding address component.

Normally, decimal operands are processed from right to

left. Thus the address for the initial operand fetch is:

LS register per B-field + D-field + L-field.
Operands are fetched from main storage one doubleword,
or eight bytes, at a time. Because the L-field may specify up
to 16 bytes, several operand fetches may be required to
completely access the operand. After each fetch, the
operand address is decremented by 8 to access the next
high-order eight bytes of the operand.

‘The results of decimal operations are placed into the
first operand field and must be in true form. The result is
never stored outside the first operand field specified by the

1-86 (9/68)

instruction. If the first operand is longer than the second,
the second operand is extended with high-order zeros up to
the length of the first operand. Such extension does not
modify the second operand in main storage, where it
remains unchanged.

Data Flow
e All decimal instructions use serial adder.
o First operand is placed into ST; second operand into AB.

o STC specifies which ST byte is to be processed. ABC
specifies which AB byte is to be processed.

Destination bytes replace first operand bytes in ST.
D contains first operand and destination address.
IC contains second operand address.

L1 and L2 specify number of first and second operand
bytes, respectively, to be processed.

- The data path used for decimal operations consists pri-

marily of ST, AB, and the serial adder (Diagram 3-5,
FEMDM). ST contains the first operand, and AB the -
second. The input byte to the adder A-side is selected from
AB under control of the ABC. The input to the B-side of
the adder is selected from ST under STC control. The
selected bytes are gated to the adder simultaneously.

The serial adder handles the data at a rate of one byte
per cycle; i.e., for each two input bytes, one output byte is
generated at the SAL. The output byte is gated from SAL
to ST under control of the STC, after which the ABC and
the STC are decremented and a new cycle is started. Thus,
as the operation progresses, the first operand bytes in ST
are replaced by the destination bytes.

The number of first and second operand bytes processed
depends upon length fields L1 and L2, respectively. The L1
count contained in E(8—11) is decremented once for each
byte of first operand that is processed. Similarly, the L2
count in E(12—15) is decremented once for each second
operand byte processed.

D contains the address of the first operand, which is also
the address of the destination. The initial address in D
specifies the doubleword containing the rightmost byte of
the operand. When the STC is decremented to zero,
indicating that all first operand bytes in ST have been
processed, the contents of ST are stored into main storage.
If additional first operand bytes remain in main storage (the
L1 count has not stepped to zero), the D-address is
decremented by 8, and a fetch of the next operand
doubleword is made to ST.

Storage of the destination bytes in ST is controlled by
the mark triggers. The mark triggers permit alteration of
only those bytes in main storage that belong to the field
being processed. There is one mark trigger for each of the
eight bytes in ST. As a byte of processed data is gated to
ST, the corresponding mark trigger is set, thus designating
the byte for main storage.

The IC contains the address of the second operand. (The
. instruction address is held in the LSWR during execution of
SS instructions.) . The initial IC address specifies the
doubleword containing the rightmost byte of the second
operand. When the ABC is decremented to zero, all operand

bytes in AB have been processed. If additional second’

operand bytes remain in ‘main storage (L2 count has not
stepped to zero), the IC address is decremented by 8 and a

fetch is made of the next second operand doubleword to

AB. . .

This pattern of fetching data, processing via the serial
adder, assembling the results in ST, and storing the contents
of ST into main storage is continued until either the first or
the second operand length field (L1 or L2 count, respec-
tively) has counted below zero. The operation at this point
depends upon the individual instruction. If L2 has been
exhausted but not L1, some instructions may require
extension of the - remaining first operand bytes with
high-order zeros. On the other hand, if L1 is exhausted

before L2, the instruction may test the remaining second .

operand bytes for presence of significant digits. This test is
performed to detect a possible overflow condition and is
accomplished by running the excess second operand bytes
through the serial adder and sensing nonzeros. In all cases,
if both L1 and L2 counts are exhausted, the instruction
execution ends after the last destination word is stored into
main storage. ‘

Some decimal operations require use of the parallel
adder to perform a right-4 or left4 shift of the entire
operand. The “spilled” bits generated during the shift are
held in B(64—67). ‘

Program Interruptions

'Six program’ interruptions can occur during execution. of
decimal instructions. Of the six, only decimal overflow can
be masked off; the others are unconditionally taken. If the
decimal overflow mask bit [PSW(37)] is a 0, the decimal
overflow interruption is ignored; if a 1, it is taken.

The six interruptions and their causes are:

1. Protection. The storage key does not match the protec-
tion key in the PSW. The operation is terminated for
either a store or a fetch violation.

2. Addressing. An address designates a location outside the
available storage for the installed system. The operation
is terminated.

3. Specification. A multiplier or a divisor size exceeds 15
digits and sign, or a divisor is equal to or greater than the
dividend, or a multiplier is equal to or greater than the
multiplicand. The instruction is suppressed.

4. Data. A sign or digit code of an operand specified in the
Add, Subtract, Compare, Zero and Add, Multiply, or
Divide instruction is incorrect, a multiplicand has insuffi-
cient high-order zeros, or the operand fields in these
instructions overlap. The operation is terminated before

any original data is changed in main storage, except for
an invalid digit code which is detected after the first
store cycle.

5. Decimal overflow. Execution of the Add, Subtract, or
Zero and Add instruction results in an overflow condi-
tion. The program interruption occurs only when the
decimal-overflow mask [PSW(37)] is a 1. The operation
is completed by placing the truncated low-order result
into the result field and setting the CC to 3. The sign and -
low-order digits contained in the result field are the same
as they would have been for an infinitely long result
field.

6. Decimal divide. The quotient exceeds the specified data
field, including division by zero. Division is suppressed.
Therefore, the dividend and divisor remain unchanged in
storage.

Condition Codes

The results of the Decimal Add, Subtract, Compare, and
Zero and Add instructions set the CC as shown in Table
1-10.

Logical Instructions

The logical instructions provide for logical manipulation of
data: moving, comparing, bit testing, bit connecting,
translating, editing, and shifting. The logical instructions
use all five instruction formats and work with both fixed-
and variable-field length data. Table 1-11 lists the logical
instructions.

For a discussion of the eight-bit zoned character codes,
data formats, and operand addressing, refer to Section 2 of
this chapter.

Instruction Formats

Logical instructions use the following five formats:

RR

Op Code R1T | R2
0 78 ni 15
RX
| opcode | r1 | x2 | 82 | D2
[} 78 1112 15 16 19 20 31
RS

OpCode | R1 | R3 | B2 D2
[} 78 1ni12 15 16 19 20 31
sl

Op Code] 12 | BI | D1
(V] 78 15 16 19 20 31
ss
| opCode | w | ow [{o1] e2 [§fp2]
0 B 78 1516 19 20 3132 3536 47

2065 FETOM (9/68) 1-87

Table 1-11. Logical Instructions

Mne- Op Program
Instruction monic | Code | Format Operands Function Interruptions . Condition Code
AND N 54 RX R1 AND 1st opr (in GPR per R1) with 2id opr (in stg) Prot (F) O : Result=0
D2(X2,B2) | & place result’into 1st opr location. Adr 1: Result ¥0
Left to right, byte by byte. Spec
AND NC D4 SS D1(L, B1) AND 1st opr (in stg) with 2nd opr (in stg) & place | Prot {S,F} 0:Result=0
) D2(B2) result into 1st opr location. Adr 1: Result #0
1. Left to right, byte by byte.
2. Max number of bytes is 256.
AND NI 94 Si D1(B1) AND immediate opr {12 of inst) with 1st opr (in | Prot (S) ‘0 : Result=0
12 stg) & place result into 1st opr location. Adr 1 : Result 70
AND NR 14 RR R1 AND 1st opr {in GPR per R1) with 2nd opr (in None 0:Result=0
R2 GPR per R2) & place result into 1st opr location. 1: Result #0
Left to right, byte by byte.
Compare Logical CL 55 RX R1 Binarily compare 1st opr (in GPR per R1) with 2nd | Prot (F) 0:0pr1=0pr2
D2(X2, B2) | opr (in stg) & set CC according to result. Adr 1:0pr 1<Opr2
1. Left to right, byte by byte. Spec 2:0pr1>0pr2
2. Terminate on inequality or end of fields.
Compare Logical CcLC D5 Ss D1(L, B1) Binarily compare 1st opr (in stg) with 2nd opr .(in Prot (F) 0:0pr1=0pr2
D2(B2) stg) & set CC according to result. Adr 1:0pr 1+<Opr2
1. Left to right, byte by byte. 2:0pr1>0pr2
2. Max number of bytes is 256.
3. Terminate on inequality or end of fields.
~ Compare Logical cLt 95 Si D1(B1) Binarily compare 1st opr {in stg) with immediate | Prot (F) 0:0pr1=0pr2
12 opr (12 of inst) & set CC according to result. Adr 1:0pr 1<0pr2
1. Left to right. 2:0pr 1>0pr2
2. Terminate on inequality or end of fields.
Compare Logical CLR 15 RR R1 Binarily compare 1st opr {in GPR per R1) with 2nd None 0:0pr1=0pr2
R2 opr (in GPR per R2) & set CC according to result. 1:0pr 1<Opr2
1. Left to right, byte by byte. 2:0pr1>0pr2
2. Terminate on inequality or end of fields.
Edit ED DE Sss D1(L, B1) Change format of source (2nd opr; in stg) from | Prot (S,F) 0: Result=0
D2(B2) packed to zoned, edit source under control of | Adr 1: Result <0
pattern (1st opr; in stg), & place result into 1stopr | Data 2 : Result >0
location.
1. Left to right, byte by byte.
2. Max number of bytes is 256.
Edit & Mark EDMK DF SsS D1{L, B1) Change format of source {2nd opr; in stg) from | Prot (S,F) 0: Result=0
D2(B2) packed to zoned, edit source under control of { Adr 1 : Result <0
pattern {1st opr; in stg), place result into 1st opr Data 2 : Result >0
location, & place location of each 1st significant
result digit into GPR1.
1. Left to right, byte by byte.
2. Max number of bytes is 256.
Exclusive OR X 57 RX R1 Exclusive-OR 1st opr {in GPR per R1) with 2nd opr I"rot (F) 0:Result=0
D2(X2,B2) | (instg) & place result into 1st opr location. Adr 1 : Result 70
Left to right, byte by byte. Spec
Exclusive OR XC D7 SS D1(L, Bt) Exclusive-OR 1st opr (in stg) with 2nd opr (in stg) { Prot (S,F) 0: Result=0
D2(B2) & place result into 1st opr location. Adr 1 : Result 70
1. Left to right, byte by byte.
2. Max number of bytes is 256.
Exclusive OR X1 97 Sl D1(B1) Exclusive-OR immediate opr (12 of inst) with 1st [Prot (S) 0: Result=0
12 opr (in stg) & place result into 1st opr location. Adr 1: Result 70
Exclusive OR XR 17 RR R1 Exclusive-OR 1st opr (in GPR per R1) with 2nd opr None 0:Result=0
R2 (in GPR per R2) & place result into 1st opr 1: Result 70
location.
Left to right, byte by byte.
1-88 (9/68)

Table 1-11. Logical Instructions (Cont)

Mne- Op s Program
Instruction monic | Code | Format Operands) Function Interfuptions Condition Code
Insert Character IC 43 RX R1 Insert 2nd opr (byte; in stg) into bits 24—31 of 1st | Prot (F) Unchangéd

D2(X2,82) | opr location (in GPR per R1). Adr
) . Remaining bits in GPR are unchanged.

Load Address LA 4 RX R1 Insert 2nd opr adr into bits 8—31 of GPR specified | None Unchanged
D2(X2,B2) | by R1.

1. Bits 0—7 in GPR are made 0's.
2. 2nd opr is not fetched from stg.

Move MVC | D2 SsS D1(L, B1) Place 2nd opr {in stg) into 1st opr location (in stg). | Prot(S,F) Unchanged
D2(B2) 1. Left to right, byte by byte. Adr
2. Max number of bytes is 256.

3. Move operation can be high or low speed.

Move Mvi 92 K] D1(81) Place immediate opr (12 of inst) into 1st opr | Prot (S) Unchanged
12 location (in stg). .) Adr

Move Numerics MVN D1 SS D1(L, B1) Place numeric portion (low-order 4 bits) of each | Prot (S,F) Unchanged
D2(B2) byte of 2nd opr {in stg) into low-order 4 bits of | Adr

corresponding byte of 1st opr (in stg).
1. Left to right, byte by byte. \
2. Max number of bytes is 256.
3. Zones (high-order 4 bits) in both opr's are
unchanged.
4. No restriction on overlapping fields.

Move Zones Mvz D3 Ss D1(L, B1) Place zone portion (high-order 4 bits) of each byte | Prot (S,F) Unchanged
D2(B2) of 2nd opr (in stg) into high-order 4 bits of | Adr
corresponding byte of 1st opr (in stg).

1. Left to right, byte by byte.

2. Max number of bytes is 256.

3. Numerics (low-order 4 bits) in both opr's are

unchanged.
4. No restriction on overlapping fields.

OR (o} 56 RX R1 OR 1st opr (in GPR per R1) with 2nd opr (in stg) & | Prot (F) 0: Result=0
D2(X2, B2) | place result into 1st opr location. Adr 1 : Result #0.
. Left to right, byte by byte. ’ Spec
OR ocC D6 SS D1(L, B1) OR 1st opr (in stg) with 2nd opr (in stg) & place | Prot (S,F) 0 : Result=0
D2(B2) result into 1st opr location. Adr 1 : Result 0

1.. Left to right, byte by byte.
2. Max number of bytes is 256.

OR [o]} 96 sl D1(81) OR immediate opr (12 of inst) with 1st opr (in stg) | Prot (S) "1 0:Resuit=0
12 & place result into 1st opr location. Adr 1 : Result 70
OR OR 16 RR R1 OR 1st opr (in GPh per R1) with 2nd opr (in GPR None . 0:Result=0
R2 per R2) & place result into 1st opr location. : 1 : Result 0
Left to right, byte by byte.
Shift Left Double SLDOL 8D RS R1 Shift 1st opr (in GPR per R1 & R1 + 1) left number | Spec .. Unchanged
Logical D2(B2) of bit positions specified by low-order 6 bits of 2nd
opr adr.

1. R1 must be even adr. S
2. High-order bits of 1st opr are shifted out &
lost; vacated low-order bits are made 0's.

Shift Left Single StL 89 RS R1 Shift tst opr {in GPR per R1) left number of bit | None Unchanged
Logical D2{B2) positions specified by low-order 6 bits of 2nd opr
adr. '

High-order bits of 1st opr are shifted out & lost;
vacated low-order bits are made 0’s.

Shift Right Double SRDL 8C RS R1 | Shift 1st opr (in GPR per R1 & R1 + 1) right | Spec Unchanged
Logical D2(B2) number of bit positions specified by low-order 6
bits of 2nd opr adr.

1. R1 must be even adr. .
2. Low-order bits of 1st opr are shifted out & -
lost; vacated high-order bits are made 0’s.

2065 FETOM (9/68) 1-89

Table 1-11. Logical Instructions (Cont)

Program

Mne- Op . ’
Instruction monic | Code | Format Operands " Function Interruptions Condition Code
Shift Right Single SRL 88 RS R1 - Shift 1st opr (in GPR per -R1) right number of bit | None -| Unchanged
Logical D2(B2) positions specified by low-ofder 6 bits of 2nd opr .)
) adr.
. Low-order bits of 1st opr are shifted out & lost;
vacated high-order bits are made 0's.
Store Character STC 42 RX R1 Store bits 24—31 of 1st opr (in GPR per R1) into | Prot (S) Unchanged
L D2(X2, B2) | 2nd opr location (in stg). Adr
Test Under Mask ™. . 91" | Sl D1(B1): Set CC according to state of 1st opr bits (in stg) | Prot (F)- 0 : Selected bits
)) 12 selected by mask bits {12 of inst). -Adr all 0's {mask is
: 1. If mask bit = 1, test corresponding 1st opr all 0's)
bit; if mask bit = 0, ignore corresponding 1st 1 : Selected bits
opr bit. mixed 0's & 1's
2. Character in stg is unchanged. 3 : Selected bits
all 1's
Translate TR ‘DC SS D1(L, B1) Add 1st opr byte (argument; in stg) to effective 2nd | Prot (S,F) Unchanged
D2(B2) opr adr, use result as stg adr, & place function byte | Adr .
from resulting stg adr into corresponding 1st opr
byte location.
1. Effective 2nd opr adr = contents of GPR adr
by B2, + D2.
2. LL = number of bytes to be translated.
3. 1st opr bytes are processed left to right.
Translate & Test TRT DD SS Dt(L, B1) Add 1st opr byte (arg in stg) to effective 2nd | Prot (F) 0 :. All bytes tested -
D2(B2) opr adr, use result as stg adr, & test function byte | Adr are all 0's-
from resulting stg adr. If O, translate & test next 1 : Non-0 byte found
argument byte; if non-0, complete operation by before.last byte to
inserting related argument adr into GPR1 & be tested
function byte into GPR2, 2 : Non-0 byte found
1. Effective 2nd opr adr = contents of GPR adr as last byte to be
by B2, + D2. tested
2. LL = number of bytes to be translated.
3. 1st opr bytes are processed left to right.
4. Set CC according to ending condition,

- In the RR, RX; and RS formats, the contents of the
GPR specified by R1 are called the first operand. In the SI
and SS formats, the contents of the GPR specified by Bl
are added to the contents of the D1 field to form an
-address. This address designates the leftmost byte of the

- first operand field. The number of bytes to the right of this

first. byte is specified by the LL field in the SS instruction.
In-the SI format, the operand size is one byte.

‘In the RR format, the R2 field specifies the GPR.

contammg the second operand. The same GPR may be
specified for the first and second operands.

. In the RX format, the contents of the GPR’s specified
by. the X2 and B2 fields are added to the contents of the
D2 field to form the address of the second operand in main
storage.

. In the RS format, used for shift operations, the contents
of the GPR specified by the B2 field are added to the
contents of the D2 field. This sum is not used as an address
but the low-order six bits specify the number of bits of the
shift. The R3 field is ignored in the shift operations.

In the SI format, the second operand is the eight-bit
immediate data field, 12, of the instruction.

In the SS format, the contents of the GPR specified by
B2 are added to the contents of the D2 field to form the

190 (9/68)

address of the second operand. The second operand field
has the same length as the first operand field.

A 0 in the X2, B1, or B2 field indicates the absence of
the corresponding address or shift-amount components. An

" instruction can specify the same GPR both for address

modification and for operand location. Address modifica-
tion is always completed before operation execution.

Data Flow

Data paths used by the logical instructions are identical to
those used by the decimal instructions, with one exception
(Diagram 3-5, FEMDM). For decimal instructions, E(8—15)
is divided into L1 and L2 fields. For logical instructions,
E(8—15) is one field (LL).

The logical instructions operate on data which may
range from 1 to 256 bytes in length. The operands are
obtained either from the main storage or from a GPR.
Sometimes, the operand may be contained in the instruc-
tion itself.

Processing of data in main storage proceeds from the
high-order to the low-order address, or from left to right.
The initial byte selected for processing may be at either an
odd or even main storage address. As a rule, processing of

data in a GPR involves the complete register contents.
Except for the editing instructions, data is not treated as
numbers.

Generally, the operands are treated as eight-bit bytes. In
a few cases, the left or right four bits of a byte are treated
separately or operands are shifted a bit at a time.

Results replace the first operand, except in the Store
Character instruction, where the result replaces the second
operand. A variable-length result is never stored outside the
field specified by the address and length.

The contents of all GPR’s and storage locations partici-
pating in the addressing or execution of an operation
generally remain unchanged. Exceptions are the move
instructions, and the result locations, GPR1 in the Edit and
Mark instruction, and GPR’s 1 and 2 in the Translate and
Test instruction. :

Editing operations provide transformation from packed
decimal digits to alphanumeric characters; i.e., editing
requires a packed decimal field and generates zoned decimal
digits. The digits, signs, and zones are recognized and
generated as for decimal arithmetic; all bit configurations
are considered valid.

The translating operations use a list of arbitrary values.
A list provides a relation between an argument (the
quantity used to reference the list) and the function (the
contents of the location related to the argument). The
purpose of the translation may be to convert data from one
code to another code or to perform a control function. The
list is specified by an initial address, the address designating
the leftmost byte location of the list. The byte from the
operand to be translated is the argument. The address used
to address the list is obtained by adding the argument to
the low-order positions of the initial address. As a conse-
quence, the list contains 256 eight-bit function bytes.
Where it is known that not all eight-bit argument values will
occur, it may be possible to reduce the size of the list.

Use of GPR1 is implied in Edit and Mark and in
Translate and Test instructions. A 24-bit address may be
placed into this register during these operations. The
Translate and Test instruction also implies GPR2. The
low-order eight bits of GPR2 may be replaced by a function
byte during a translate-and-test operation.

Program Interruptions

Four program interruptions can occur during execution of

logical instructions:

1. Protection. The storage key of a result location in main
storage does not match the protection key in the PSW.
The operation is suppressed on a store violation. The

only exceptions are the variable length storage-to-storage -

operations, which are terminated. The operation is
terminated on a fetch violation.

2. Addressing. An address designates a location outside the
available storage for the installed system. In most cases,

the operation is terminated. The exceptions are the
AND, Exclusive-OR, OR, and Move instructions that
have the SI format, and the Store Character instruction.
These instructions are suppressed. Operand addresses are
tested only when used to address storage. Addresses used
as a shift amount are not tested. Similarly, the address
generated by the use of the Load Address instruction is
not tested. The address restrictions do not apply to the
contents of the D1 and D2 fields, or to the contents of
the GPR’s specified by X2, B1, and B2.

3. Specification. A full-word operand in a storage-to-
register operation is not located on a 32-bit boundary, or
an odd register address is specified for a pair of GPR’s
containing a 64-bit operand. The operation is sup-
pressed.

4. Data. A digit code of the second operand in the Edit or
Edit and Mark instruction is invalid. The operation is
terminated.

Condition Codes

The results of most logical operations set the CC in the PSW
(Table 1-11). The Load Address, Insert Character, Store
Character, Translate, and the moving and shift instructions
leave this code unchanged.

The CC can be set to reflect five types of results for
logical operations. For the Compare Logical instructions,
the 0, 1, and 2 states indicate that the first operand is equal
to, less than, or greater than the second operand, respec-
tively.

For the logical AND, OR, and Exclusive-OR instruc-
tions, the states 0 and 1 indicate a zero or nonzero result
field, respectively.

For the Test under Mask instruction, the states 0, 1, and
3 indicate that the selected bits are all-zero, mixed zero an{l
1, or all-1, respectively.

For the Translate and Test instruction, the states O, 1,
and 2 indicate an all-zero function byte, a nonzero function
byte with the operand incompletely tested, or a last
function byte nonzero, respectively.

For editing, the states 0, 1, and 2 indicate a zero,
less-than zero, or greater-than-zero content of the last result
field, respectively.

Branching Instructions

e Branching causes departure from normal instruction-
sequencing.

e Branch address is introduced as next sequential address.

e Branch address is obtained from GPR or specified as 2nd
operand address.

o Branch may be conditional or unconditional.

2065 FETOM (9/68) 1-91

e Conditional branches (may or may not use branch
address): . : :
Branch on condition '
Branch on count
Branch on index

o Unconditional branches (always use branch address):
Branch and link
Execuite

e On branch, normal storage request per IC to fill Qis

blocked; branch logic will make request for IC if the -

branch is unsuccessful and Q needs to be refilled.
o If branch is unsuccessful, Q is refilled if required.
Normally, the CPU is controlled by instructions taken in

sequential order. That is, an instruction is fetched from a -

main storage location specified by the instruction address in
the IC. The address is then increased by the number of
bytes needed to address the next instruction in sequence,
and this updated address replaces the old address in the IC.
The current instruction is executed, and the same steps are
repeated using the updated instruction address to fetch the
next instruction.

A departure from the normal instruction sequence
occurs when branching is performed. A branch address is
introduced as the next instruction address. This branch
address may be obtained from one of the GPR’s or it may
be the second operand address specified by a particular
instruction. Depending upon the format and the instruc-
tion, branching may be either conditional or unconditional.
The conditional branches are branch on condition, branch
on count, and branch on index. The unconditional branches
are branch and link and execute. Conditional branches may
or may not use the branch address. If the branch is
successful (that is, the branch is taken), the branch address
is used and the storage request issued per the IC during
I-Fetch is blocked. If the branch is unsuccessful, the
instruction address in the IC is used to fill Q. Unconditional
branches are always taken and use the branch address.

Whether a conditional branch is successful depends upon
the result of operations concurrent with the branch or
preceding the branch. The first case is represented by the
branch on count and branch on index instructions. The
second case is represented by the branch on condition
instructions, which inspect the CC that reflects the result of
a previous arithmetic, logical, or I/O. operation.

Branching is used to reference a subroutine, to resolve a
two-way choice, or to repeat a portion of a program. To
save time and increase the speed of the operating program,
branching is always considered to be successful unless
proven otherwise. (The branch conditions for branch on
condition instructions is tested during I-Fetch for a
successful or unsuccessful branch, and a D or IC request is
issued dependent upon this test.) Therefore, whenever a
branch instruction is decoded during I-Fetch, the next

192 (9/68)

instruction address is the branch address located in D. If the
branch is found to be unsuccessful (determined during
execution of the branch- instruction), the instruction -
address- from D is ignored, and the correct instruction
address is obtained from the IC. '

There are two methods of performing an end-op cycle in
the branch operations: normal end op and branch end op.
The normal end-op cycle allows decoding of the next
instruction format from R and of the instruction address
from the IC, and is normally used when ending an
operation. Decoding off R is possible because the data
placed into the register has become stable by the time the
end-op cycle begins. The branch end-op cycle, on the other
hand, allows decoding of the next instruction format from
the SDBO and of the instruction address from D. This
end-op cycle is used when the data, which has been placed
into R, is not yet stable and is some halfword other than
the last halfword of Q. Decoding from the SDBO saves the
time it takes for the data to stabilize in R and the
instruction address to stabilize in the IC.

Table 1-12 lists the branching instructions.

Instruction Formats
Branching instructions use the RR, RX, and RS formats:

RR
Op Code [RLAG| R2
0 78 1ni2 15
RX
OpCode [Rlgri| x2 | B2 | D2
[78 1ni12 15 16 19 20 31
RS
OpCode | R1 | R3 | B2 D2

0 78 112 1516 19 20 31

In the formats shown above, bits 8—11 are normally the

- R1 field that specifies the address of a GPR containing the

first operand. In the branch on condition instruction,
however, bits 8—11 are designated as M1 and contain mask
bits used in conjunction with the PSW CC to determine
whether the branch is successful.

In the RR format, the R2 field specifies the address of a
GPR that contains the branch address, except when R2=0,
in which case no branching is to take place.

In the RX format, the contents of the GPR’s specified
by the X2 and B2 fields are added to the D2 field to form
the branch address.

_ Table 1-12. Branching Instructions

Mne- .| Op . ’ : Program
Instruction monic | Code | Format | _Operands Function : Interruptions ‘Condition Code
Branch & Link | BAL a5 RX | R1 - | StorePSW(32-63), link information, into GPR (adr | Prot (F)t Unchanged
: - D2(X2,82) | by R1) & branch to location specified by 2nd opr
adr. :

1. Branch is unconditional.
2. Link information is stored whether or not
branch is successful. .

Branch & Link . BALR | 05 ' RR R1 Store PSW(32—63), tink information, into GPR (adr | Prot (F)t Unchanged .

R2 by R1) & branch to location specified by GPR (adr
by R2).

1. Branch is unsuccessful if R2 = 0; use next
sequential instr adr. : .

2. Link information is stored whether or not
branch is successful. :

Branch on BC 47 RX M1 Branch to location specified by 2nd opr adr if state | Prot'(F)t Unchanged
Condition . . D2(X2,B2) | of CC is as specified by M1. . ’

’ 1. Branch is unconditional if M1 is all 1's.

2. Branch is unsuccessful if M1 is all 0's; use
next sequential instr adr.

Branchon . BCR 07 RR ‘M1 Branch to location specified by GPR (adr by R2) if | Prot (F)t Unchanged
Condition - R2 state of CC is as specified by M1.
: 1. Branch is unconditional if M1 is all 1's and
R270.

2. Branch is unsuccessful if R2 = 0 or if M1 is
all 0's; use next sequential instr adr.

Branch on Count BCT 46 RX R1 Subtract 1 from 1st opr (in GPR per R1); if resuit % | Prot (F)t Unchanged
' D2(X2, B2) | 0, branch to location specified by 2nd opr adr.
1. Place result of subtraction into 1st opr
location.
2. Branch is unsuccessful if result = O; use next
sequential instr adr. :
3. If 1st opr = 1, no branching occurs.

Branch on Count BCTR 06 RR R1 - | Subtract1 from1stopr (in GPR per R1); if result # Prot (F}t Unchanged
R2’ 0,.branch to location specified by GPR (adr by R2). .
1. Place result of subtraction into 1st opr
location.

2. Branch is unsuccessful if resuit =0 or if R2 =
0; use next sequential instr adr.
3. If 1st opr = 1, no branching occurs.

Branch on Index BXH 86 RS R1 Add increment (3rd opr; in GPR per R3) to 1stopr | Prot (F)t Unchanged
High . R3 {in GPR per R1), algebraically compare result
D2(B2) {index) with comparand {in odd-adr GPR specified

by R3 or R3 + 1); if index > comparand, branch to
location specified by 2nd opr adr.
1. Place index into 1st opr location.
2. Branch is unsuccessful if index = or <
- comparand; use next sequential instr adr.

Branch on Index BXLE 87 RS R1 Add increment (3rd opr; in GPR per R3) to st opr | Prot (F)t Unchanged
Low or Equal R3 {in GPR per R1), algebraically compare result
D2(82) (index) with comparand (in odd-adr GPR specified

by R3 or R3 + 1); if index = or < comparand,
branch to location specified by 2nd opr adr.
1. Place index into 1st opr location.
2. Branch is unsuccessful if index > comparand;
use next sequential instr adr.

Execute EX 44 RX R1 Execute subject instr at location specified by 2nd >Execute Set by subject
D2(X2, B2) | opr adr. Subject instr may be modified by 1st opr | Prot (F) instr
(in GPR per R1) if E(8—11) 0. Adr

Modification is achieved by OR'ing bits 8—15 of | Spec
subject instr with bits 24—31 of 1st opr; |f Rt1=
0, no modification takes place. '

+ Fetch protected: bit 4 of storage protect set.

2065 FETOM (9/68) 1-93

In the RS format, which is used in branch on index
operations, the contents of the GPR specified by the B2
field are added to the D2 field to form the branch address.
The R3 field specifies the address in LS of an increment
value (third operand) which is added to the first operand to
determine the index value. R3, if odd, also is the
comparand; if R3 is even, R3 + 1 is the comparand.

.Data Flow

Diagram 3-6, FEMDM, is a diagram of the basic data flow
for the branching instructions. The main functional units
used to determine addresses and instructions in the branch-
ing operations are Q, R, E, D, and the IC. The secondary
functional units, T, AB, parallel adder, STC, and ABC,
determine whether the branch is successful when the
branch being executed is a conditional branch. The purpose
of each functional unit is as follows:

1. Q. Holds the doubleword that contains the instruction
addressed by the branch instruction if the branch is
successful.

2.'R. Contains the instruction to be performed after

" execution of the branch instruction.

3. E. Contains the branch instruction presently being

~ executed.

4. D. Holds the address of the doubleword which, if the
branch is successful, contains.the next instruction to be
executed.

5. IC. Holds the address of the doubleword which, if the

branch is unsuccessful, contains the next instruction to .

be executed.
. T. Buffers the operand being tested and operated on.
. AB. Holds the first operand when added to some other
value to determine whether the branch is successful.
8. Parallel adder. Determines whether conditions have
‘ been met when a conditional branch is being executed.

=

9. STC. Allows transfer of last byte of T during an .

Execute instruction when modifying the subject in-
struction of the Execute instruction.

10. ABC. Selects data being modified in the subject
instruction during an Execute instruction.

Program Interruptions

Four program interruptions can occur during execution of

branching instructions:

1. Execute. The subject instruction of an Execute instruc-
tion is another Execute instruction. The operation is
suppressed.

2. Protection. The branch address of an Execute instruc-
tion is protected. The branch-to address of any branch
instruction may be fetch-protected. In this case, the PSW

key must match the storage key or must be a master key '

of 0. The operation is suppressed.

3. Addressing. The branch address of an Execute instruc-
tion designates an instruction-halfword location outside
the available storage area. The operation is suppressed.

1-94 - (9/68)

4. Specification. The branch address of an Execute instruc-
tion is odd. The operation is suppressed.

Condition Codes

The branching instructions leave the CC unchanged, exéept
for the Execute instruction. If the CC is set during the
Execute instruction, it is set by the subject instruction.

Status Switching Instructions .

e Load PSW, Set Program Mask, Set System Mask, and
Supervisor Call instructions control status of CPU.

o Set Storage Key, Insert Storage Key, and Test and Set
instructions control status of data in main storage.

o Write Direct and Read Direct instructions control status
of external device (also transfer data bytes).

e Diagnose instruction controls status of CPU and chan-
nels. - , ’ :
The status switching instructions can change the status of

" the CPU, the channels, the external device, and the data in

main storage. The status of a unit may also be changed by
manual intervention and by interruptions (described else--
where in this manual). The overall status of the CPU is
determined by the current PSW and associated logic. (For a

- discussion of the PSW and of the eight CPU program states,

refer to Section 3 of this chapter.) Any field in the current
PSW may be changed directly by the Load PSW instruction,
if the CPU is in the Supervisor state. Thus, the Load PSW
instruction may be used to switch from the Supervisor state
to the Problem state, between the Wait and Running states,
and between the Masked and Interruptable states. At any
time, the Set Program Mask instruction may be used to
switch any of the four program mask bits between the
Masked and Interruptable states. When in the Supervisor
state, the Set System Mask instruction may be used to
switch any of the eight system mask bits between the

- Masked and Interruptable states. The Supervisor Call

instruction allows a problem program to switch the CPU

from the Problem state to the Supervisor state; simul-

taneously, a byte of information is passed to the supervisor

program via the interrupt code of the Supervisor Call old
PSw.

Three instructions control the protection status of data
in main storage. The Set Storage Key and Insert Storage
Key instructions are privileged instructions for controlling
the protection status of main storage data in 2048-byte
blocks. The Set Storage Key instruction changes the storage
protection keys in main storage. The Insert Storage Key
instruction fetches the keys from main storage for inspec-
tion by the program. The Test and Set instruction, on the
other hand, may be used in either the Supervisor or
Problem state for protecting data in main storage in blocks
of any length; this application is described in IBM Systems
Reference Library, /BM System/360 Principles of Opera-
tion, Form A22-6821.

The Write Direct and Read Direct instructions, which are
part of the Direct Control feature, may be used to switch
the status of an external device by means of a code in the
12 field. If the external device is another System/360, the
Write Direct and Read Direct instructions can- be used to
externally interrupt the receiving CPU.. For example,

assume CPU 1 and CPU 2 are both operating and have their

Direct Control Features enabled (Diagram 5-607, Sheet 2,

FEMDM). CPU 1 requests data from CPU 2 by executing a-

Read Direct instruction, sending an external interruption
code to CPU 2 on the ‘timing signal bus out’ lines. If CPU 2
is masked on for external interruptions, if no other
interruptions or exceptional conditions of higher priority

are pending, and as soon as the instruction being processed

is finished, CPU 2 is externally interrupted. After CPU 2’s
program decodes the interruption code and determines the
operation to be performed, it executes a Write Direct
instruction, sending its external interruption -code and a
‘direct control write out’ signal to CPU 1 and putting the

~requested data on the ‘direct control bus out’ lines. CPU 1
can now be similarly interrupted and again execute a Read
Direct instruction (but this time with its I2 field clear).
CPU 1 waits until the ‘direct control write out’ signal
(received as a ‘direct control hold in’ signal) is removed and
then transfers the requested data from the ‘direct control
bus in’ lines to main storage.

The Diagnose instruction controls the status of the CPU
and the channels. Unlike the Load PSW, Set Program Mask,
Set System Mask, and Supervisor Call instructions that
switch the CPU’s status by changing the current PSW, the
Diagnose instruction switches the CPU’s status by setting
control triggers (such as ‘defeat interleave’, ‘emulation
mode’, and ‘diagnose FLT’) through the use of a main-
tenance control word. The Diagnose instruction may also
be.used to switch the channels between a normal operating
mode and a test mode.

Table 1-13 lists the status switching instructions.

Instruction Formats)
Status switching instructions have two formats:
RR

Op Code R1 | R2

0 78 ni2 15
51
OpCode | 12 | ® DI
[} 78 15 16 19 20 31

In the RR format, the R1 and R2 fields specify GPR’s
except when used in the Supervisor Call instruction. The
R1 and R2 fields in the Supervisor Call instruction are
replaced by an I-field which contains an eight-bit interrup-
tion code. In the Set Program Mask instruction, the R2
field is ignored.

In the SI format, the 12 field is ignored for the Load

PSW, Set System Mask, and Test and Set instructions. In .~
~ the Write Direct and Read Direct instructions, the 12 field
~contains a timing signal code that is sent to an external

device. In the Diagnose instruction, the 12 field contains a.
code for controlling certain maintenance aids and an-
optional Compatibility feature. The contents of the GPR
specified by the B1 field are added to D1 to form a main-
storage address of an operand to be fetched by the
instruction specified, except for Read Direct. The Read
Direct instruction uses the address derived for storing data
from an external device. .Only one storage address is

-required in status switching operations. A 0 in the B1 field

indicates the absence of the base address component.

Data Flow v
o Each status switching instruction has different data flow.

o ST is used by most mstructlons as buffer before final
data transfer.

The status switching instructions transfer data from one
unit to another; except for the Insert Storage Key
instruction, there is no intermediate processing. Depending
on the instruction, the data is obtained from LS, main .
storage, or the ‘direct control bus in’ lines and is transferred
to either LS, main storage, CPU control triggers, or the
‘direct control bus out’ lines. A generalized data flow is
shown in Diagram 3-7, FEMDM. The following is a list of
the functional units and their purposes.

1. BCU. Primarily used for 3-cycle fetches of storage :
operands per D. During the Load PSW instruction, a
3-cycle fetch per the IC is made for the next
instruction after the new PSW has been loaded into the
CPU. For the Set Storage Key, Insert Storage Key, and
Test and Set instructions, the BCU performs a 4-cycle
set-key operation per D, a 3-cycle insert-key operation
per D, and a 3-cycle test-and-set operation per D,
respectively. During the Read Direct instruction, a
4-cycle store operation per D is made.

2. Q. Holds the doubleword containing the instruction
being executed. It may also hold the next sequential

“doubleword if a Q-refill operation occurred during
I-Fetch. The Load PSW instruction refills Q with the
next instruction regardless of its storage location.

3. R. Contains the instruction to be performed after
execution of the status switching instruction.

4. E. Contains the status switching instruction (or the first
16 bits of the instruction) being executed. E(0—7)
contains the R code for the Write Direct, Read Direct,
and Diagnose instructions, and E(8—15) contains an
immediate operand. For the Supervisor Call instruc-
tion, E(8—15) contains a supervisor call interruption
code. For the Insert Storage Key instruction, E(8—11)
contains the address of the GPR into which the
protection key is to be inserted.

2065 FETOM (9/68) 1-95

Table 1-13. Status Switching Instructions

Mne- Op Program
Instruction monic | Code | Format Operands Function Interruptions Condition Code
Diagnose None 83 Sl D1(81) Load word designated by stg opr adr into MCW, set | Priv Oper Unpredictable
12 or reset certain control triggers, & branch to ROS | Prot (S,F)
adr specified by MCW. Adr
Spec
‘Insert Storage Key ISK 09 RR R1 Insert stg protection key for 2048-byte stg block, | Priv Oper Unchanged
R2 adr by bits 8—20 of 2nd opr (in GPR per R2)}, into | Adr :
bits 24—28 of 1st opr (in GPR per R1). Spec
1. 1st opr: bits 0-23 are uynchanged; bits E
29-31 are cleared.
2, 2nd opr: bits 0—7 & 21—27 are ignored; bits
28—31 must = 0's.
3. Key is fetched twice because of 2-way
interleaving. :

Load PSW LPSW 82 st D1(81) Load doubleword stg opr (designated by stg opr | Priv Oper Set by new PSW
adr) into CPU, thus replacing current PSW, & | Prot (F) bits 34 & 35
branch to new instr sequence. Adr

1. Bits 0—15: system mask, protection key, | Spec
program state.
Bits 16—33: ignored.
Bits 34—39: CC, program mask.
Bits 40—63: instr adr.
2. 1f PSW(14) = 1, enter Wait state.
3. 1f PSW(15) = 1, enter Probiem state.
4. Load PSW instr is only instr available for
entering Problem or Wait state.
Read Direct RDD 85 S D1(B1) Send ‘direct control read out’ signal & timing signal | Oper Unchanged
. 12 code {I2; in instr) to external device for about 0.6 | Priv Oper
usec; store 1 data byte from external device into stg | Prot (S)
(per stg opr adr) when ‘direct control hold in’ signal | Adr
is absent.
Set Program Mask SPM 04 RR R1 Replace CC & program mask (bits 34—39) of | None Set by opr 1
. : current PSW with bits 2—7 of 1st opr (in GPR per bits2 & 3
R1). .
Set Storage Key SSK 08 RR R1 Set stg key (bits 24—28 of 1st opr; in GPR per R1) | Priv Oper Unchanged
R2 for 2048-byte stg block (adr by bits 8—20 of 2nd Adr
opr; in GPR per R2) into stg protection logic in | Spec
main storage.
1. 1st opr: bits 0—23 & 29—31 are ignored.
2. 2nd opr: bits 0—7 & 21—27 are ignored; bits
28-31 must = 0's.
3. Key is set twice because of 2-way
interleaving.

Set System Mask SSm 80 Sl D1{B1) Replace system mask (bits 0—~7) of current PSW | Priv Oper Unchanged

with byte from location designated by stg opr adr. | Prot (F)
Adr
Multisys

Supervisor Call sve 0A RR | Cause supervisor call interruption; replace old | None Unchanged
PSW(24—31) with |-field (bits 8—15) of instr,
providing interruption code. -

1. Clear PSW(16—23).
2. Store old PSW at stg location 32 (decimal).
3. Fetch new PSW from stg location 96
{decimal).
Test & Set TS 93 S| D1(B1) . Test high-order bit (bit 0) of stg opr byte {in stg), | Prot(S,F) 0 : High-order
: set CC according to state of tested bit, & set | Adr bit=0"
addressed byte back into stg as all 1's. 1 : High-order
: bit =1
Write Direct WRD 84 S D1(81) Send ‘direct control write out’ signal & timing signal | Oper Unchanged
12 code (I2; in instr) to external device for about 0.8 | Priv Oper
usec; make 1 data byte from stg (per stg opr adr) | Prot (F}
available to external device until next WRD is | Adr
executed.

196 (9/68)

. D. Contains the main storage address for storage

requests issued during execution of the Set Storage
Key, Insert Storage Key, Read Direct, and Test and Set
instructions. This register also selects the byte to be

used in the Set System Mask and Write Direct

_ instructions, and selects the halfword containing the

10.

11.

12.

13.

14.

instruction to be executed after the Load PSW instruc-
tion.

. IC. Contains the main storage address of the next

instruction during execution of the Load PSW instruc-
tion.

. AB. Buffers operands- for the serial adder and the

parallel adder. During I-Fetch of the Set Program Mask,
Set Storage Key, and Insert Storage Key instructions,
the first operand is placed here. During the Set System
Mask, Diagnose, and Test and Set instructions, double-
words from storage are received here.

. ST. Buffers operands for the serial adder and the

parallel adder. Data is received here from main storage
for the Load PSW instruction and from LS for the Set
Storage Key and Insert Storage Key instructions. Data

is stored from here into main storage during the Read '
‘Direct instruction and from LS during the Insert

Storage Key instruction. The Load PSW, Set Program
Mask, Set System Mask, and Test and Set instructions
cause all or part of the PSW register to be changed per
ST. The Diagnose instruction causes the MCW register,
scan counters, and ROSAR to be changed per ST.

. ABC and STC. Controls selection of data from and

placement of data into AB and ST, respectively. Also,
during the Read Direct and Test and Set instructions,
STC sets a mark trigger. '

Mark. Identifies the byte to be used by main storage
during the Read Direct and Test and Set instructions.
All mark triggers are set during the Set Storage Key
instruction by a ROS micro-order. ‘

F. Buffers the storage key before it is placed into main
storage during the Set Storage Key instruction and
after it is taken from main storage during the Insert
Storage Key instruction. This register also buffers data
received from an external device during the Read
Direct instruction.

G. Buffers a byte of data being sent to an external
device when executing a Write Direct instruction.

PSW register. Contains a portion of the current PSW.
All or part of the PSW register contents is changed
directly by the Load PSW, Set Program Mask, Set
System Mask, and Test and Set instructions. Because
the Supervisor Call, Write Direct, Read Direct, and
Diagnose instructions may cause an interruption after
being executed, they may indirectly change all of the
PSW register contents.

MCW register. Controls CPU or channel diagnostic

functions during and after execution of the Diagnose

instruction. -

15.

16.

17.

Parallel adder. Provides the data transfer path between
AB, ST, D, and the IC. Adds 8 to the IC and D for
address updating. Subtracts 8 from A during the Set

“Storage Key and Insert Storage Key instructions so that

a re-entrant loop may be constructed. Calculates IC - D
+ 7 for the address store compare tests made during
Read Direct, Diagnose, and Test and Set instructions.
Serial adder. Provides the data transfer path from AB
to ST and G; also, during the Read Direct instruction,
assigns odd parity to the data byte transferred from F
to ST. During the Insert Storage Key instruction, the
contents of F are logically OR’ed with the contents of
T via the serial adder. ’

LS. Contains operands required by the Set Program
Mask, Set Storage Key, and Insert Storage Key instruc-
tions. Only the Insert Storage Key mstructxon transfers

~ data into LS.

Program Interruptions

Six program interruptions can occur during execution of
status switching instructions:

1.

Operation. Occurs if the Direct Control feature is not

" installed or not enabled and the instruction being

executed is either Read Direct or Write Direct. The
operation is suppressed.

. Priviliged Operation. Occurs if a Load PSW Set System
Mask, Set Storage Key, Insert Storage Key, Write Direct,
Read Direct, or Diagnose instruction is encountered-
while the CPU is in the Problem state. The operation is
suppressed.

. Protection. Occurs if the storage key of the location
designated by the instruction does not match the
protection key in the current PSW. The instruction is
suppressed on a store violation, except for the Read
Direct and Test and Set instructions, which are termi-
nated. The operation is terminated on a fetch violation.

. Addressing. Occurs if an address designates a location -
outside the available main storage. The operation is
terminated, except for the Diagnose instruction, which is
suppressed.

. Specification. Occurs if (1) the operand address of a
Load PSW or Diagnose instruction does not have 0’s in

-the three low-order bit positions, or (2) the block

address specified by the Set Storage Key or Insert
Storage Key instruction does not have 0’s in the four
low-order bit positions. The operation is suppressed.

. Multisystem (Multisystem feature only). Occurs if Set
System Mask instruction is encountered when in Multi-
system mode. The operation is suppressed.

Condition Codes

Three status switching instructions affect the condition

code:

Load PSW, in which the CC is set by new

PSW(34,35); Set Program Mask, in which the CC is set by

2065 FETOM (9/68) 1-97

bits 2 and 3 of the first operand; and Test and Set, in which
the CC is set to 0 if the high-order bit of the addressed byte
in storage equals O or set to 1 if the high-order bit equals 1.
The remaining instructions leave the CC unchanged, except
for the Diagnose instruction in which the CC is unpre-
dictable.

Input/Output Instructions

The 2065 has four. I/O instructions: Start I/O, Test 1/O,
Halt I/O, and Test Channel (Table 1-14).

Instruction Format

The four I/O instructions use the SI format:

o]
0 78 1516 1920 3

Bits 8—15 are ignored. The base plus the displacement
determines the channel and I/O unit address: bits 16—23 of
the sum are the channel address (of which only bits 21—-23
are valid), and bits 24—31 of the sum are the I/O unit
address.

Data Flow

Although the CPU operation is essentially the same for all
I/O instructions, the Start I/O instruction is used to
illustrate the data flow because the channel operation is
~'more extensive. The Halt /O, Test I/O, and Test Channel
instructions do not fetch a CAW or a CCW, do not transfer

Table 1-14. 1/O Instructions

data, and do not cause an I/O interruption of succeeding
CPU operations.

To illustrate the- channel operation, the IBM 2860

Selector Channel is used. The Start I/O instruction sets the
‘timing gate’ trigger, which gates a ‘channel select’ signal to
select 1 of 7 channels (Diagram 3-8, FEMDM). With the
‘timing gate’ trigger set, the CPU cannot proceed to the
next instruction. The I/O unit address is sent to all channels
via the ‘unit address bus out’ (UABO) line, addressing the
proper control unit and I/O unit as specified in the
instruction. The channel requests the CAW from main
storage address 72 (48, hex), and the first command address
(address of the CCW) is set into the data address register via
the SDBO lines. The channel requests the first CCW from -
the main storage address specified in the CAW (now stored
in the data address register). Parts of the CCW are set into
various channel registers to control the I/O operation.
During the CCW fetch cycle, the first command address is
incremented by eight bytes and is stored into the command
address register to be used to fetch the next CCW, if
chaining is specified in the first CCW.
' Depending upon the availability of the control unit and
I/O unit, the I/O operation may be initiated. In any case,
the appropriate CC is generated and sent to the CPU
together with a ‘release’ signal, thus resetting the ‘timing
gate’ trigger. The CPU performs an end-op cycle and
proceeds to fetch and execute the next instruction.

If the selected control unit and I/O unit are available,
the 1/O operation is initiated and the channel performs the
operation specified by the CCW; the CPU and the channel

Mne- Op Program
Instruction monic | Code | Format Operands Function Interruptions Condition Code
Halt /O HIO " 9E SI D1(B1) Terminate current 1/O operation at selected channel | Priv Oper 0 : Interruption
& 1/0 unit. in channel
1. D{13—15) is channel adr. 1 : CSW stored
2. D{16-23)} is 1/O unit adr. 2 : Halted
3 : Unavailable
Start 1/O SI0 9C SI D1(B1) Select specified 1/0 wunit & initiate channel | Priv Oper 0 : Available
command to that unit. 1 : CSW stored
1. D(13—15) is channel adr. 2 : Working
2. D{16-23) is 1/O unit adr. 3 : Unavailable
3. CAW, which specifies address of 1st CCW, is :
fetched from location 72 (48, hex).
Test Channel TCH 9F sl 51(81) Test stat2 of selected channel & set CC accordingly. | Priv Oper 0 : Available
1. D(13—-15) is channel adr. : 1 : CSW ready
2. D(16—23) is ignored. 2 : Working
3. State of channel is not affected. 3 : Unavailable
Test 1/0 TIO ab Sl D1(B1) Clear interruption condition in addressed channel or | Priv Oper 0 : Available
associated 1/O units, & set CC according to status of 1 : CSW stored
addressed channel & 1/0 units. 2 : Working
1. D(13-15) is channel adr. 3 : Unavailable
2. D(16—23) is 1/0 unit adr.
3. CSW is stored at location 64 (40, hex) if:
a. 1/O unit or control unit contains pending
interruption.
b. 1/0 unit or control unit is executing
previous operation, or -there is pending
channel-end/control unit-end for another
1O unit.
c. 1/0 unit or its control unit detects
machine error.

1-98 (9/68)

~ continue to share main storage under control of the priority
function of the BCU. If an I/O operation was not initiated
or was completed, the channel operation is ended when the
CC is set into the CPU, and the channel is freed to perform
further operations as initiated by the CPU.

For an I/O write operation, a doubleword is fetched
from the main storage location specified by the data
address in the CCW (now in the data address register), and
is stored ‘into the channel A-register. The contents of the
channel A-register are transferred to the channel B-register,
the data address register is updated, and another
doubleword is fetched from main storage and stored into
the channel A-register. The contents of the channel

- B-register are gated to the bus-out register, a byte at a time,
and are transmitted over the bus-out lines to the control
" unit and to the I/O unit as required. When the channel
B-register has transferred the last byte, the contents of the
channel A-register are transferred to the channel B-register,
and another doubleword is fetched from main storage and
stored into the channel A-register.
For an I/O read operation, data is -received over the
bus-in lines, one byte at a time, from the I/O unit via the

- control unit, and is set into the bus-in register. The contents .

of the bus-in register are transferred to the appropriate byte
location in -the channel B-register; ‘when B is full, its
contents are transferred to the channel A-register. The
contents of A are stored into main storage, a doubleword at
a time, according to the address in the data address register.

When the read or write operation is completed or is

terminated because of ‘an error condition, the channel
requests an I/O interruption of the CPU to present to the
CPU the CC and status byte describing the condition of the
channel and I/O unit. If the CPU accepts the interruption
request, the channel stores a CSW into main storage address
64 (40, hex) and is freed for further operations. Until the
CPU accepts the interruption request, the channel remains
unavailable to the CPU.

Program Interruption

The only program interruption that may occur for an I/O
instruction is the privileged-operation interruption. It
occurs if the CPU is in any state other then Supervisor. The
instruction is suppressed before the channel is selected. The
CSW, the CC in the PSW, and the state of the addressed
- channel and of the I/O unit remain -unchanged. The
interruption code in the program old PSW(16-—31) is
00000000 00000010.

Condition Codes

When the CPU is released from an I/O instruction, 1 of 4
CC’s is set into the CC register of the CPU and becomes a
part of the current PSW. This CC is the result of tests by
the CPU, the channel, or the I/O unit, and indicates various
conditions that exist in the channel, the control unit, or the
I/O unit. The CC’s for the four I/O instructions are

summarized in Table 1-14. For a detailed discussion of the
setting of the CC’s, refer to the applicable I/O channel
FETOM.

POWER

The CPU wall contains a 75-amp, 2.5kHz converter/
inverter and the necessary high-frequency regulator mod-
ules to provide the CPU with dc power. The power of just.
the CPU may be turned on and off by the CPU READY/
OFF switch_and the CPU ON pushbutton on the enclosed

. CE panel. Normally, however, CPU power is turned on and

off together with the power of the system. The POWER ON
and POWER OFF pushbuttons on the system control panel
(and the 2150 Console if it is installed) control the power
of the system. 7 A
Depressing the POWER ON pushbutton causes the units
of the system to be turned on one at a time. This
sequencing is done so that the higher turn-on current of all
the units is not required at the same time. The CPU is
turned on first, followed by the channels and, lastly, the
main storage units. The units attached to one channel are
turned on before the power of the next channel is turned

- -on. The main storage units are turned on last, preventing

inadvertent storing by the CPU or channels during their
power-on transition before their control triggers have been

- reset. The system power-on sequence is completed with a

system reset operation. The entire system power-on se-
quence is performed in seconds.

The system power-off- sequence turns off the dc power
in the main storage units first, followed by the rest of the
system. Again, this sequence is followed to prevent inad-
vertent storing during the power transition while all control
triggers may not. be turned off. A-switch on most of the
units in the system (such as CPU READY/OFF or
LOCAL/REMOTE) allows the unit to be bypassed during
power-off and power-on sequences. In an emergency, the
power of the complete system, regardless of the position of
these switches, is turned off by pulling the EMERGENCY
PULL switch on the system control panel.

To protect the CPU from thermal damage, it is forced-
air-cooled by blowers whenever the CPU is turned on; if the
internal temperature gets too high, the CPU is turned off
automatically. The CPU is also automatically turned off in
an orderly, interlocked manner if an overcurrent, over-
voltage, -or undervoltage -condition is detected on the
output of any of the CPU’s regulators. Whenever the CPU’s
power is turned off by any means other than the POWER
OFF pushbutton, two manual actions are needed to turn
the power back on. The intention of this precaution is to -
nrevent inadvertent restoration of power.

fndicators at the top of the CPU’s system control panel
warn of a power fault in the CPU, channels, and 2365
Processor Storage units. Also located there are controls and
a voltmeter for margining the 6V dc supplies in those units
and the 18V dc ROS supply in the CPU.

2065 FETOM (9/68) 199

This chapter discusses the functional units composing the
2065 CPU, and is divided into seven sections:

Section 1, Timing and Clock Control.
Section 2, Read-Only Storage.
Section 3, Bus Control Unit.

Section 4, Data and Control Registers.
Section 5, Local Storage.

Section 1. Timing and Clock Control

The 2065 CPU operates with a basic CPU clock cycle
period of 200 ns; ie., a S-megahertz (5-mHz) clock
frequency. Each cycle is composed of clock and not-clock
portions, used for data transfer and logic functions,
respectively. The 200-ns clock cycle period is divided into
twenty 10-ns intervals for intracycle timing.

CLOCK SIGNAL GENERATORS

Two types of clock signal generators are used in the CPU,
depending on the system model. CPU’s in a Model G635,
H65, or 165 system, with a maximum of two high-speed
storage (HSS) units, use a 10-mHz continuously running
crystal-controlled oscillator and divide-by-two logic to
provide the basic 5-mHz (200-ns) clock signal. CPU’s in a
Model IH65 system with three HSS units, and in a Model
J65 system with four HSS units, use a 5-mHz gated
delay-line oscillator to provide the basic clock signal. The
longer cables to HSS units 3 and 4 cause an additional
10-ns to 15-ns storage response delay, which is accounted
for by inhibiting the clock. The gated delay-line oscillator
is also used if a 2361 Core Storage Unit (Large Capacity
Storage or LCS) is attached or if the Multisystem feature
is installed, regardless of the CPU model. The gated
delay-line oscillator reduces the time required to- restart
the clock after the storage request sequence that required
it to be inhibited. It is not necessary to wait for the next
full oscillator cycle to restart the clock as would be the
case if a continuously running oscillator were used (as
much as the full 200 ns might be required).

Both types of clock signal generators may be operated
with a higher output frequency (5.128 mHz), thereby
shortening the clock cycle period 2.5% (from 200 ns to
195 ns) for test purposes. The higher frequency is
obtained from the clock- signal generators by setting the

Chapter 2. Functional Units

Section 6, Serial and Parallel Adders.
Section 7, Status and Control Triggers.

Each functional unit is described separately, as con-
cerns operation, operational timing, and functional
application. Supporting the descriptions are simplified,
positive-logic upper-level diagrams, flowcharts, and timing
charts.

FREQUENCY ALTERATION switch to the down' posi-
tion and by turning the CE Key switch to the CE position.
Both switches are located on the CPU ‘system control
panel.

. Model G65, H65, and 165 CPU Clock Signal Generator

The Model G65, H65, and 165 CPU’s have a continuously
running crystal-controlled oscillator with two crystals: 10
mHz and 10.256 mHz. The crystal used is determined by
a reed relay. The relay is operated by the FREQUENCY
ALTERATION switch and the CE Key switch (Diagram
4-1, FEMDM). With either switch in the normal operating
position, the relay is not picked and the 10-mHz crystal is
used. With both switches set to the test mode position,
the relay is picked and the 10.256-mHz crystal is used.

The output of the oscillator circuit drives. the fre- -
quency dividing logic, consisting of six inverting AND’s.
The output of the dividing logic provides the basic 5-mHz
(200-ns) or 5.128-mHz (195-ns) clock signal. This oscilla-
tor cannot be inhibited by the logic.

Model IH65 and J65 CPU Clock Signal Generator

The Model IH65 and J65 CPU has two gated delay-line
oscillators operating at 5 mHz and 5.128 mHz. The
oscillator used is determined by the FREQUENCY
ALTERATION switch and by the CE Key- switch (Dia-
gram 4-2, FEMDM). With either switch in the normal
operating position, the 5-mHz oscillator is enabled. With
both switches set to the test mode position, the
5.128-mHz oscillator is enabled. The output of the
oscillators provides the basic 5-mHz (200-ns) or
5.128-mHz (195-ns) clock signal.

The gated delay-line oscillator can be inhibited by the
BCU during a storage request sequence to either HSS unit
3 or 4 (Diagram 4-2). The. oscillator is inhibited at the

2065 FETOM - (9/68) 2-1

time the BCU would normally expect the data from the
accessed HSS unit (600 ns after the ‘select’ signal was sent

to the unit) and is automatically restarted at the time the

data arrives from the unit by a fixed (pre-adjusted) time
delay. The oscillator provides stable clock signals immedi-

. ately; the negative-going signal into the oscillator not only
* starts the oscillator but becomes part of the first output
_cycle. ' ' :
A continuously running- crystal-controlled oscillator
(identical to the clock signal generator in the Model G65,
H65, or 165 CPU; see Diagram 4-1) provides a S-mHz
reference frequency for adjusting the 5-mHz delay-line

oscillator frequency. A comparator circuit (Diagram 4-2) .

mixes the two signals and provides an output that is the
.absolute difference frequency between the two signals.
When the two signals are within 1 kHz of each other; the
output of the comparator circuit is a null or is a difference
frequency of ‘less than 1 kHz, indicating that the

delay-line oscillator frequency is -within 0.02% of the

crystal-controlled oscillator frequency.

CLOCK TIMING
° Triggefs are set and reset at clock time.
o Latches are set and reset at not-clock time.

e Logic operations normally occur at not-clock time;

. subsequent data transfers occur at following clock -

time.

e Symmetrical and unsymmetrical clock signals are used,
depending on logic function.

o Twenty 10-ns delay intervals provide for intracycle

" . Throughout the CPU, trigger and latch logic is used for all

data-handling and control functions. Although imple-
mented with the same logic components (AND’s, OR’s,
and inverters), triggers (by definition) are set or reset at
clock time, whereas latches (by definition) are set or reset
at not-clock time. In general, the data registers consist of
triggers, and all intermediate logic units (such as adders,
incrementer/decrementers, and decoders) consist of
latches. Control logic consists of both triggers and latches.
The CPU design provides for all intra-CPU data manipula-
tion to be done by register-to-latch-to-register (trigger-to-
latch-to-trigger) sequences, in lieu of direct register-to-
register (trigger-to-trigger) transfer. Continuous
availability of stable data results from the overlapping of
the trigger and latch set/reset states (Figure 2-1). Note
that the data (e.g., “A” in the figure) is stable in either a
trigger or a latch at any one time during the indicated two
clock cycles, but that the trigger and latch are available
for new data (“B”) in the next clock cycle.

Each logic component within the CPU introduces some
degree of signal delay which must be considered in the
CPU operation. All logic blocks with inversion introduce
between 3 ns and 20 ns of delay, with 10 ns as the

- .average. (Some special circuits will introduce either 30 ns

or 700 ns.) All logic blocks without inversion introduce
less than 3 ns of delay. In addition, approximately 10-ns
to 12-ns delay is created by every 6 feet of signal

transmission line.

Because of these delays, the clock signal is converted
from a 5-mHz symmetrical signal to a 5-mHz unsymmetri-
cal signal, with an'80-ns clock time and a 120-ns not-clock
time. This unsymmetrical signal provides the needed extra
time for logic operations during not-clock time and still

timing. leaves sufficient time for trigger input at clock time.
) - 80 ns . . .
Clock b 1 120 ns [e f 1
| | | | | [
| | | | | |
} New Data (A) } I New Data (B) || | New Data (C) i
|
| | | | | |
——t—— —_—— —_—
Trigger Set or Reset ! Stable (A)] Set or Reset | - Stoble (B) ! Set or Reset | "
| | |] —
! | l | |
To i Transfer (A) | : Transfer (B) | I
| | ' | | | |
. | - ‘ - v | l : r A Al |
Latch i __SetorReset - Stable (A) | Set or Reset | Stable (B)
| | !
| ! | | |
To I | Transfer (A) [: Transfer (B)
|
| | —
Trigger | | | __ SetorReset | Stable (A) 1 - Set or Reset -

Figure 2-1. Trigger and Latch Data Relationship

22 (9/68)

Many logic blocks are used in the parallel adder at
clock time, thus causing excess delay. To overcome this
delay, the upsymmetrical clock signal is extended to a
symmetrical clock signal with a 100-ns clock time and a
100-ns not-clock time; this conversion is made within the
parallel adder. Some of the -parity checking and sign
propagating circuits are timed by the unsymmetrical clock
signals. Primary concern in clock timing is to provide
stable information at sampling time.

Oscillators A through E (Diagram 4-3, FEMDM) set up
controls to stop, start, or control the clock. These signals
are used in advance of clock time so that the controls are
stable when they are needed.

With most of the CPU logic blocks introducing 10 ns of
delay, the 200-ns clock cycle period is divided into twenty
10-ns delay intervals to provide timing within a clock
cycle (Figure 2-2). These delay intervals are called “B”
time or “P” time and are relative to the start of the clock
cycle. “B” time refers to symmetrical clock signals; “P”
time, unsymmetrical clock signals. The delayed clock
signals are created by series inverters (each inverter
introducing one 10-ns delay interval) or by time delays

" (e.g.,B0,B1,B2,....,and P0-1,P0,P1,P2,....).

CLOCK CONTROL AND SIGNAL DISTRIBUTION

e Manual, BCU, and ROS operations, and errors, affect
clock signal availability.

e One symmetrical and one unsymmetrical clock signal
are distributed throughout logic gates.

o Time delays unskew and synchronize clock signals
within and between sections of logic.

.

The availability of the clock signals to the CPU processing
logic is controlled by the clock-stopping logic (Diagram
4-3). Usually, the clock signals to the BCU are not
stopped because the BCU must continue to service the I/O
channels even if the CPU is not operating. In the Model
IH65 or J65 CPU, however, the BCU has the ability to
inhibit the clock signal generator to account for the
cabling delays to HSS units 3 and 4 (Diagram 4-2). During
maintenance operations (such as scan, log-out, and single-
cycle operations), the clock signals may be stopped or
permitted to run intermittently. o '

The ‘pass pulse’ trigger (Diagram 4-3) provides clock
signal distribution control during both normal (continual)
and single-cycle operations. A start, load, or reset opera-
tion sets-the ‘pass pulse’ trigger and permits the clock
signals to be passed on to the logic. When in the
single-cycle mode, the ‘block’ trigger (set by the same
operations) resets the ‘pass pulse’ trigger and blocks the
clock signals before the next clock cycle, unless the BCU
holds the clock on. -

The ‘stop clock’ trigger (Diagram 4-3) provides BCU
control of the clock signal distribution. If the BCU cannot
process a CPU storage request immediately or if a request
to a large-capacity storage (LCS) unit has been made, the
BCU sets the ‘stop clock’ trigger and blocks the clock
signals. The ‘BCU cleanup’ signal for the HSS, the
‘advance’ signal for the LCS, or a start, load, or reset
operation resets. the ‘stop clock’ trigger.

During certain operations, the ROS microprogram may
stop the CPU clock signal distribution for one or two
cycles (‘STOP1’ or ‘STOP2’ micro-orders). The ‘stop clock
ROS’ trigger provides this control from the bit configura-
tion of ROS word bits 45 and 46 (Diagram 4-3).

{nteacycle Timing Intervals

FEEELT T T T TTITTTT]

[
]
|
|
|
|
|
|

I
0
|
I
|
|
I
|
|
I

- H——:—‘I l
+80 ﬁ

Symmetrical ’| : . : :

Clock Signols -81 | ; ' | . ; . !

82 I | |
+80-2(B18) 11 |ﬁ—*--l | m

- 1 | | | | | |

- b { : | | |

H_I— 80ns —-l-—-‘-—'lzo n,-——.l ! i

| | | I [
1 i | |
: 1] I | | !
. +P0O _[——— | | [re———————— |
Unsymmetricol ! : { | | | | ; i
* Clock Signals § -p1 L) ! : : |
w2 | —t | ! [— ————— : _‘_
t il H
e | o . | | |
+PO-2 (P1g) mm— — | _ pee—— | ﬁl {
L

Note:
Heavy portion of timing signals indicates
the active portion for the signal function .

Figure 2-2. Typical Clock Signals

2065 FETOM ~ (9/68) 2-3

The “distribution of clock signals to portions of the
ROS logic is stopped while the CPU is in the Wait state
(Diagram 4-3). The Wait state is entered if PSW(14) = 1 at
end op. Entering the stop loop or an interruption removes
the wait state block of the ROS signals. The ‘time clock
step’ trigger also removes the wait state block, allows the
exceptional branch to step the time clock (Diagram 8-20,
FEMDM), and then allows the CPU to re-enter the wait
state, if there has been no change in PSW(14).

Clock signal distribution to the CPU processing logic is
stopped when the ‘error’ trigger is set and. the CPU
CHECK switch is not in the DSBL (disable) position.
Error detection occurs-during clock time, and the clock
signals cease with the next not-clock time:

.Clock Degated

i B N
/X

Error Detected

24 (9/68)

Necessary information for error analysis is thus held in

~ latches and triggers to be examined directly or to be

stored by a logout operation. Note that the DLY (delay)
units allow the clock to finish the cycle started by the last
clock signal. The clock may be restarted by the CPU
CHECK switch, internal circuits, or by resetting the ‘error’
trigger (Diagram 4-3), '

The clock signal development and distribution concept
is shown in Figure 2-3; note that it is not representative of
any logic gate. Figure 2-3 (A) shows how the master-
‘clock’ signal is distributed to the gates. Figure 2-3 (B)
shows distribution within a typical gate, with a separate -
delay logic for every two SLT boards. The adjustable time -
delay shown in Figure 2-3 (C) allows for unskewing of the
clock signals; i.e., aligning all ‘PO’ signals. The ‘special sync -

for PO BO’ signal is used to adjust all time delays so that

all ‘PO’ signals occur simultaneously; see ALD M8001 for
the timing procedure. '

SLT Gates

A B C D E
DLY DLY DLY /,1————' ——————— -—————
. i |
27 ;
. //" I C'I°Ck Control |
I 29"°I " Logic ’
osc = e KCO11 |
|
\5\‘_‘41- _________]
DLY -{ DLY DLY DLY
=Clock
A. Clock Distribution
SLT Boards - Note: Total delay includes 10 ns per 6 feet of wire plus adjustable time delay.
A B C D E * ALD KC021 for Models G65, H65, and 165.

ALD KCI101 for Models 1H65, and J65.
** TD is adjusted to synchronize each PO with 'special sync for PO BO*
1 ——> > —> > —> signal shown on ALD ZA0O01. Each PO must coincide with every
other PO in any SLT gate.

$ Number of inverters varies from gate to gate, depending on need for

' particular signal .
Clock pLY DLY DLY DLY DLY
) S R ey s e Y i
3 — r—-’- —» — —>
Slock DLY pLY DLY DLY DLY
4

O T oo .

B. ‘Typical 5X 4 Gate

Amp E— T+ |-

C. Unskewing Delay Logic

Figure 2-3. Clock Signal Development and Distribution

2065 FETOM (9/68) 2-§

Section 2. Read-Only Storage

The read-only storage (ROS) is a device containing a
permanently recorded microprogram used to control CPU

operations. The microprogram is in the form of 100-bit

micro-instructions (ROS words), -each of which has a-

unique predetermined bit pattern. The ROS words can be
read out as required, but a physical modification is
necessary to change the stored information. When de-
coded, the bits of the ROS word condition gates whose
outputs perform the necessary functions to execute an
operation. Thus, ROS eliminates the need for most
complex instruction decoders and, sequencing networks,
and introduces a flexibility to machine design not
previously available in control hardware. This flexibility
allows changes to be made to control circuits for special
features by replacing printed circuit sheets in ROS.

CAPACITIVE READ-ONLY STORAGE ARRAY

The capacitive read-only storage (CROS) array consists of

2816 100-bit ROS words which are addressed by a 12-bit
ROS address register (ROSAR). The array consists of 16
planes, each of which is divided into 4 quarter planes.
Each quarter plane has one array driver energizing 1 of 22
select lines. Each select line causes two ROS words to be
read out. To address a particular drive line from ROSAR,
bits 0—3 select a plane, bits 4 and 10 select a quarter
plane, and bits 5—9 energize one select line. Bit 11 of
ROSAR selects one of the two ROS words (upper or
lower) read out each cycle.

CROS Electrical Theory
The CROS operates on the presence or absence of a

capacitor between a drive line and a sense line. Only one
driver at a time may be energized. In the example shown

in Figure 2-4, when driver 1 is energized an impulse is
coupled through the capacitor C! to differential sense
amplifier D, producing the “D” bit. The same drive results
in inputs to differential sense amplifiers A, B, and C, but
the polarity is reversed and no bits are generated. To
equalize the capacitive load (impedance) to all sense
amplifiers, a balance line is provided with each driver and
is allowed to “float™.

Note: Because the balance line function was found to be

unnecessary, later machines do not use the balance hne,
although it is still printed on the ROS planes.

2-6 (9/68)

- Some unwanted capacitive coupling exists in this type
of matrix. In Figure. 244, when driver 1 is energized, C1
couples the voltage shift to sense line D, C2 couples the
voltage shift to drive line 2, and C3 couples the voltage-

- shift to sense line B. This unwanted signal is very low

because it passes through three elements in cascade. The y

. threshold of the sense amplifier is designed so that the low

signal is rejected while the desired signal is amplified. -

~ CROS Planes -
- The 2816 words of ROS are stored in 16 planes. Eachv

plane contains the capacitors, drive lines, balance lines,
and sense lines for 176 100-bit ROS words. The drive and
balance lines are independent, whereas the sense lines feed
common sense amplifiers. Planes 0—7 are, on gate C, and
planes 8—15 are on gate D:

T v 1 s][5 1@ 71
Gate C 1

I J S B

Drive and Balance Lines (Bit Plates)

The drive and balance lines are photo-etched from a sheet
of copper that is bonded to epoxy glass (Figure 2-5). The

 resulting epoxy sheet with copper drive and balance lines

is called a bit plate. A separate bit plate controls the bit
configuration for each CROS plane.

Tabs at the top and bottom of the bit plate are used
for electrical connections to the drive and balance lines.
The top tabs connect the drive and balance lines to
terminating resistors. The bottom tabs connect the drive
lines to the drive circuits. .

Four holes in the bit plate align the bit plate to the
sense plane. The two outer holes snap over locating studs
in the sense plane, and the inner two holes provide
clearance for the center studs.

- XTI b
/\\/gn ; | P Bt | B /\ Bit /\ A '
M e 4
W b
T 1 N .‘/o 1 ' ‘/ Z:“f-_>B.B,t
/\\/gn Bit /\\/ /\Bif Bit /\ a -
~ <X Faral
’—"III /\ /\C3 /\ /\
/\\ﬁ /\\{ : Bit /\\/ Bit /\ /émpl —»- C-Bit
/\\/ ‘/\\/ /\\/ /\\/ Sens}riines
B 1 \/ 1 ‘ ‘/ \4] ! \/ puliogl] I,
Bit V\ Bit /\ /‘ Bit | \Bl/t /\ Lo
/\{ /\CQ | ; /\ /\ -‘\Qalance Line
Orive © LL ! ° & *Resistor and connector

-
|

-

*

I'igure 2-4. Basic 4 X 4 CROS Matrix

removed on later machines.

2065 FETOM (9/68) 2-7

Drive Line

Driver Lines Tabs

Bit Plate

Figure 2-S.

2-8 (9/68)

Sense Lines
e 200 pairs of sense lines are in each CROS plane.

o Pair of sense lines carries signal for one ROS-word bit
position.

® 200 pairs-of sense lines read out two 100-bit ROS
- words simultaneously. - '

‘The sense lines are photo-etched into copper-covered
epoxy-glass plates. (Figure 2-6). The sense-line plates are
permanently ‘mounted to the array gates. Electrical

connections from the sense lines to the terminating

resistors and sense amplifiers are made with low-
temperature solder. ‘

There are 200 pairs of sense lines in each CROS plane.
Two sense lines are required to read out one bit position

of the ROS word. One drive line simultaneously reads out

two 100-bit ROS words, which use 200 pairs of sense
lines. _

Figure 2-7 shows the layout of the sense lines in the
ROS planes. The top pair of sense lines is bit O of the
upper word. The next lower pair of sense lines is bit 0 of
the lower word. This order continues to the bottom pair
of sense lines, which is bit 99 of the lower word. The
upper and lower words are read out simultaneously. Each
sense line is terminated through a resistor to ground. Note
the distribution of sense lines through the planes to the
differential sense amplifiers. The sense lines through the
planes on both sides of a gate are tied together for each
bit. The pair of sense lines from each gate is then OR’ed in
the sense amplifier for each bit. Because only one plane
has an active drive line for a given ROS address, the sense
amplifier receives only one input signal.

Terminating Resistors

Terminal Blocks

Figure 2-6. Sense Lines

2065 FETOM (9/68) 29

Plane 15 Planes 13 and 11

" Plane 9
Y . —?
Hawwn -
N) - ' r Sense Amplifier
] Plane 4 Jpjgnes 12.and 100 Plane 8 |
» —¢ ' OE|AR
. T Gate D Bit 0 Upper Word I j
A - 1(’ I
v . I
] Plane 7 Planes 5and 3 = Plane 1 I
= 14— I |
OR| AR
A 1 | .
_ I
O Plane 6 Planes 4 and 2 < Plane 0 |
WV t L P
" Gate C Bit 0 Upper Word | [
— W = : I -
VWW 1} | .
| 1 Bit O Lower Word e _——
v —(-
VWA 1}
Bit 1 Upper.Word
vw- 1} -
VWA 1}
' Bit 1 Lower Word
i _)
W 1
Bit 99 Upper Word
Bit 99 Lower Word
WV &

Figure 2-7. Sense Line Layout

Bit Capacitors

The bit capacitors are formed by sandwiching a sheet of
Mylarf between the bit plate and the sense lines (Figure
2-8). Pressure plates hold these pieces firmly together. The
Mylar is the dielectric, and the drive, balance, and sense
lines become the plates of the capacitors.

Tabs on the drive and balance lines increase the size of
the capacitors to form the bit configuration. The effective
capacitive coupling of a drive line to a sense amplifier is
equal to C1 minus C2. The size of this effective capacitor
is approximately 0.5 pf.

The bit configuration within a CROS plane is con-
trolled by the bit plate. Therefore, the ROS word can be
changed by replacing the bit plate that contains the word.

Physical Package

A CROS plane consists of a sandwich composed of the
- sense line board, a dielectric sheet, and a bit plate. These

fTrademark of E. 1. duPont de Nemours & Co. (Inc.)

2-10 (9/68)

pieces are held firmly together by pressure plates (Figure
2-9). ' ,

'A pressure plate, with a neoprene pad, fits over each
group of capacitors in the plane. The plates are loosely
connected to a pressure frame that is bolted to the gate.
Adjusting screws in the frame squeeze the pressure plate
against the bit plate. Because the sense lines are on a
rigidly mounted board, the pressure plate holds the
bit-capacitor sandwich firmly together.

Electrical connections to the bit plate are also made

~ through pressure connections.

'ROS ADDRESSING

ROS word addresses are assembled in the 12-bit read-only
storage address register (ROSAR). Each ROS word con-
tains the basic address of the next ROS word. The basic
address may be modified by machine operation or by
error conditions.

Typical 1

Typical 0

Sense
Amp

Sense Line

/

Balance Line

Drive Line

. Driver Driver ‘
Epoxy Glass - E ol
Bit Plate : X.I 1)
Drive and Balance
. U 37 2
ines .
i) Exploded
ic————¥] P
Dielectric g Cross-Section
Sense Lines .
- \4/ . 71 7A . D7A
. Epoxy Glass ———____|
* Ground Plane ——— " = - ~ J

*Resistors and connections
removed on later machines.

Figure 2-8. Bit Capacitors

2065 FETOM (9/68) 2-11.

fhs

Dielectric

Sense Line Plate

—Mounting Screw

Pressure Plate

Pressure Frame

Center Stud and Cap Nut

Pressure Screws

.Loose Screws (to hold
plate in position)

-
[
1
]]
el

3

{
T5——Bit Plate

A W WL W W O A W W W W W W W O e |

<\ \Neoprene Pa

=, WA VA VA VLAWY AV VAW VAVAY Lmman AN
{, '
t

NN\

>

%fn.@n:ﬂ

Loose Screws (to hold plates Cap Nut
in position)

Pressure Plate

——ANW\Y

Pressure Screws

Figure 2-9. CROS Plane Pressure Mounting Assembly

Read-Only Storage Address Register

® ROSAR(0-11) supplies 12-bit address that selects next
ROS word.

¢ Overriding branch and manual ROS operations force
new address to ROSAR.

The ROSAR, a 12-position (labeled 0—11) latch register,
supplies the address to select the next ROS word. The
configuration of the ROSAR contents (address) is
controlled by the NA, K, and J control fields of the

2-12 (9/68)

present ROS word. A new address is available in ROSAR
50 ns after each P2 clock time. Although each ROS word
contains the address of the next word to be accessed,
address modifications can result by satisfying - data-
dependent branch conditions. These data conditions are
stable at ROSAR(0-10) by P2 + 30 ns and at
ROSAR(11) by P2 + 50 ns. The gate at ROSAR is a P4
clock pulse. To prevent late branching, the output of all
ROSAR bits must be stable by P2 + 60 ns; at approxi-
mately PO minus 30 ns, the ROS sense latches are
sampled. This sequence is repeated every machine cycle.

The ROSAR bit positions can be arbitrarily divided
into four groups according to their inputs. These groups
are (1) ROSAR(0-5), which normally receives only the
six high-order bits of the base address; (2) ROSAR(6—9),
which can receive the four low-order bits of the base
address and/or the output of the X-branch decoder; (3)
‘ROSAR(10), which can receive data from either the
X-branch decoder or the Y-branch decorder; and (4)
ROSAR(11), which can receive -data from either the
X-branch decoder or the Z-branch decoder. [Note the
overlap between the base address and X-branches on
ROSAR(6—9).] An overriding branch, however, affects all
positions of the ROSAR.

The following micro-orders can cause an overriding
branch: ‘T->RAR,” ‘EXCEP’, and ‘SPEC’. If control field
K contains the ‘T-RAR’ micro-order, the base address is
inhibited and T(40—51) is transferred to ROSAR(0—11).
This branch is unconditional. An- ‘EXCEP’ micro-order
inhibits the base address if an interruption is pending. The
source of the interruption provides the branch address.
When an ‘SPEC’ micro-order is specified, a specification
program interruption forces the branch address into the
ROSAR. In addition, a local store write operation is
blocked.

Certain FLT operations force a new address mto'

ROSAR (Diagram 4-101, FEMDM).

Two manual operations cause the contents of the
ADDRESS switches to be forced into ROSAR: depressing
the ROS TRANSFER pushbutton or activating the
REPEAT ROS ADDRESS switch. The operation of these
controls is described in Section 1 of Chapter 6.

ROSAR(0-5)

ROSAR(0-5) (Diagram 4-101, FEMDM) can be set from
one of three sources: ROS sense latch bits 48—52,
T(40—45), or ADDRESS switches 0—5. Normally, posi-
tions 0—5 receive the five high-order bits of the base
address from the NA control field of the current ROS
word contained in the ROS sense latches. If, however,
control field K contains an overriding branch and the
branch condition is met, or if an FLT operation is in
progress ‘and certain conditions are present, or if certain
manual operations are being performed, the base address
is inhibited from entering the ROSAR and ROSAR(0-5)
is set from the ST bus or the ADDRESS switches.

ROSAR(6—9}

ROSAR(6—9) (Diagram 4-102, FEMDM), in addition to
receiving the low-order bits of the base address and the
~overriding branch address, can be set individually by

X-branches (functional branches) specified by control
field J (bits 62—68) of the ROS word. The control field J
micro-orders that specify X-branches are listed as J96 to
J124 on ALD M7021, which also shows the ROSAR bits
that are set under specific conditions for each X-branch

micro-order. When an X-branch is executed, the high-
order positions [ROSAR(0—5)] remain unchanged; i.e.,
still contain the high-order bits of the base address. The
base address bit’ positions corresponding to the bits
affected by the X-branch must be set to zero when an
X-branch micro-order is given. For example, if ROSAR(6)
can be set to a 1 by a certain micro-order, ROS sense latch
bit 53 must be 0 in the ROS word that contains the
branch.

ROSAR(10)

ROSAR(10) (Diagram 4-103, FEMDM) can be set by an
X-branch, an overriding branch, and/or a Y-branch. The
base address, however, has no affect on this bit. Also,
because an overriding branch and a Y-branch are both
decoded from bits in control field K (bits 57—61) of the
ROS word, only one of the two branches can be executed
at a time; they cannot be executed together. That is, if
control field K specifies an overriding branch, a Y-branch
cannot be specified, and vice versa.

. However, a Y-branch and an X-branch can be executed
together because they are functions of micro-orders in
separate control fields (K and J). The result of
ROSAR(10) is as follows: if neither the X-branch condi-
tion nor the Y-branch condition is met, ROSAR(10)
remains a 0; if either or both of these conditions are met,
ROSAR(10) is set to a 1. The Y-branch micro-orders that
affect ROSAR(10) are listed in the K field on ALD
M7031 in the same manner as that of X-branches.

ROSAR(11)

ROSAR(11) (Diagram 4-104, FEMDM) can be set by an
X-branch, an overriding branch, or a Z-branch. The base
address, just as for ROSAR(10), has no effect on
ROSAR(11). Because an X-branch and a Z-branch are
both decoded from bits in control field J (bits 62—68),
only one of the two branches can be executed at one
time. ALD M7021 lists the Z-branch micro-orders.

However, a Y-branch and a Z-branch can be executed
together. The effects on ROSAR(10,11) are as follows: if
neither condition is met, both ROSAR bits remain a 0; if
either condition is met, the associated ROSAR bit is set to
1; if both conditions are met, both bits are set to 1’s.

If control field K contains an overriding branch and
control field J contains a Z-branch and the overriding-
branch condition is met, the result of the Z-branch is
inhibited and ROSAR(11) is set as specified by the
overriding branch.

ROSAR(0-10) Decoding

ROSAR decode logic decodes the address in ROSAR(0—
10) to select 1 of 1408 array drive lines. ROSAR(0—4,10)
is decoded into 1 of 64 drive lines; ROSAR(5-9) is
decoded into 1 of 22 select lines; and ROSAR(0) selects

2065 FETOM (9/68) 2-13

gate C or D. One select line and one drive line then select

1 of the 1408 array drive lines. See Diagram 4-105,
-FEMDM, for decode flow. ROSAR(11) is decoded to
select one of the two ROS words read out each cycle. (If
-bit 11 = 1, the lower word is selected; if bit 11 = 0, the
‘upper word is selected.)

Strobed Drive Lines

An ROSAR address selects 1 of 64 strobed drive lines by
decoding ROSAR(0—4,10), as shown in A of Diagram
4-105, FEMDM. The decoded address is a gate-drive signal
to the array drivers. Each strobed drive line controls the
array drivers for one CROS quarter plane.
Decoding is accomplished in two levels. In the first
level, bits 3, 4, and 10 are decoded to activate 1 of 8 lines,
" and bits 0, 1, and 2.activate 1 of 8 lines. The outputs of
the two first-level decoders are then combined with a
" gate-drive signal to activate 1 of 64 drive hnes

- Select Lines

One of 44 seclect lines is activated by decoding
ROSAR(0,5-9) (B of Diagram 4-105). Twenty-two of
these select lines are connected to gate C, and 22 to gate
D. ROSAR(0) is decoded to select the gates, and
ROSAR(5-9) is decoded to activate a select line within a
gate. Although ROSAR(5-9) can be decoded 32 different
ways, only the first 22.combinations are considered valid

addresses; the other 10 combinations are not tested. If an |

illegal bit combination is entered into these bit positions,
no select line is activated. Illegal addresses are addresses in
which ROSAR(5,6) =11.

Decoding is accomplished in two levels. In the first
level, bits 7, 8, and 9 are-decoded to activate 1 of 7 lines,
and bits 0, 5, and 6 are combined with a ‘gate word select’

signal (clock P2 delayed) to activate 1 of 6 lines. (Note

that when bits 5 and 6 = 11, no signals are developed from
the first-level decoder.) The outputs of the two first-level
decoders are then combined in the second-level decoder to
activate one of the 44 select lines.

Array Drivers

- There are 1408 array drivers in ROS, 704 on gate C,
© .-planes 0—7, and 704 on gate D, planes 8—15. Diagram
4-105, C, shows how the drive-line signals are developed
and distributed. Each array driver is an AND that AND’s 1
of 64 drive lines with 1 of 22 select lines (details are
shown in Diagram 4-106, FEMDM). The AND’s are single
transistors: the drive lines condition the emitters while the
select lines control the bases. Voltage is supplied to the
collectors through the array drive- hne-termmatmg resis-
tors.

2-14 (9/68)

Sense Amplifiers

The sense amplifiers increase the voltage difference
between paired 1 and O sense lines. The first stage of the
sense amplifiers (D of Diagram 4-105, FEMDM) consists -
of two differential amplifiers, one for gate C sense lines
and one for gate D sense lines. Because only one array
driver is active for a machine cycle, the sense lines of only

‘one gate carry a signal during a machine cycle. ‘The

first-stage differential amplifier increases the woltage
difference between paired sense lines and sends this signal
to the second-stage amplifier. The second-stage further
amplifies the signal and transmits it to the ROS sense
latches.

ROSAR(11) Function

Each- cycle, 200 bits are sent to the sense latches.
ROSAR(11) divides this information into two 100-bit
words. If ROSAR(11) = 1, the lower word is selected; if

~ROSAR(11) = 0; the upper word is selected.

ROS DATA FLOW

' ROS word data is transferred from the sense amplifiers to

the sense latches. A portion. of the word is immediately
decoded, while other portions step through registers and

' latches to provide a delay so that the data is available at

the desired time. The ROS word data flow is shown in F
of Diagram 4-105.

ROS Sense Latches

The 100 ROS sense latches hold the ROS word for
decoding and for setting ROSDR at PO of the next

- machine -cycle. The sense latches are set by strobing either
" the upper or lower word sense amplifier outputs and are
* reset approximately 120 ns after PO of the machine cycle

(E of Diagram 4-105).

ROS Data Register and ROSDR Latches

‘The ROS data register (ROSDR) holds fields A through H,

and M, N, P, and Q of the ROS word for use in the next
machine cycle. Fields H, and M, N, P, and Q are decoded
directly from the ROSDR to control LS and the adders,
respectively. Fields A—G, however, are further delayed by
holding them in the ROSDR latches. These fields are used
for register ingating. '

The ROSDR latches allow a ROS word to control

certain gates during the register set time of the next cycle.

For example, one ROS word may contain- the micro-
instruction: add the contents of T and A, and store the
answer into A. The ROS word adds the contents of the

registers on one machine cycle and stores the sum from

the parallel-adder-out bus at register set time of the next
cycle.

Diagram 4-107, FEMDM, is a simplified dlagram of
ROSDR. In this diagram, each main division of ROSDR is
represented by a single bit position. At clock PO-1 of each
machine cycle, ROSDR is reset. At not-clock PO-1, the
contents of the ROSDR (bits 6—36) are sent to the
ROSDR latches. At clock PO, the contents of the sense
latches are transferred to the ROSDR. The output of the
ROSDR latches (containing the previous ROS word) and

the output of ROSDR (38—42, 6977, and 78—84) are

then decoded to perform the selected micro-orders.

ROS Decoders

The ROS decoders use the bits from the ROS word- to
develop control lines. One micro-instruction may activate
a number of control lines. Timing consideration governs
the source of "the “lines; ie., sense latches, ROSDR,
ROSDR latches.

Field A (bits 6—9 of the ROS word) in Figure 2-10 is

an example of a decoding network to develop control

lines from ROS bits. Line A [‘gate MIM2 to PAL(64,
65)’] is decoded from ROSDR because -it updates
PAL(64,65) before PAL is gated to AB. The ‘B38M’
micro-order (A7), shown on ALD M7001, uses line A to
- update PAI(64,65) during not-clock time. Then, lines B,
F, and G are developed from ROSDR latches 6—9 to gate
PAL(24—67) to AB(24—67) during the next clock time..

Note that the ‘B38M’ micro-order results when bit 6 = 0 '

and bits 7, 8, and 9=111.

This -example demonstrates the register-to-latch-to-
register timing which controls the source of the decoded
control lines. The other micro-order control fields are

decoded in a similar manner to provide the control lines at

the proper time.

ROS Timing

‘ROS timing is controlled by the-master clock signals. At
PO + 160 ns, the ROS word is strobed (gated) into the
sense latches, which are reset at PO + 120 ns. Data from
the sense latches is stable and available at PO-5 ns when it
conditions ROSDR(6—42) for setting at clock PO and
ROSDR(69—84) for setting at clock P2. Gate controls
from the sense latches (register data transfer) are activated
at clock P2, and remain up for 190 ns. ROSDR latches are
set at P7 (‘not clock PO-1’ signal) and- initiate register
inputs during the following 200 ns. Figure 2-11 shows the
«timing relationships of the registers and latches. These
timings are theoretical and do not show the delays caused
by the signals passing through inverters.

Note: Initially, ROSDR is set to all 1’s;a 0 in a sense latch
position resets the corresponding ROSDR position.
' . -

DRO21

Gate M1, M2

to PAL(64, 65)

7
Not ¢ A
Gate PAL(32-63)
RY021) Not 6 m— to B(32-63)
OR
8. 8 8 A
L Not 6 —
9 A
DRO21
RYO021
9 9)
L 7
> 8 A
To ROSDR Gate PAL(8-23)
to A(8-23
Latch Inputs Nor 6 L | o »(3)
RY021
7
- Not 8 A
* Not Inhibit Ingating
DRO21
|-Fetch 2 Latch
Not Excep Cond to |-Fetch A !
Not |-Fetch-1 Latch . Gate PAL(40-63)
_toIC
. Not 7 — Or
8 A
ROSDR Not 9
Latches DRO21
)
i
Not7 Gate PAL(32-63)
8 A to A(0-31)
9
RYO021 SRoaT
7
T D_M Not 6
7
A
- Gate PAL(24-31)
7 - to A(24-31)
RY021 Py OR
8 [CT] Nots Not 9 A
: 1
DRO21
RY021 Not &
7
2 D Not 9) P A
L
7 —
Not 8 Gate PAL(64-67)
9 A ‘to B(64-67)
RYO021 OR
7 | —
Not 8
9 A
DRO21
Not 7 Decode PAL
8 A to IC
Not ¢
DRO21
Figure 2-10. Control Field A Decoder
2065 FETOM (9/68) 2-15

A

D

Maintenance Aids

When an error occurs, data leaves ROS registers and
latches before the clock is stopped. To retain this
information, which identifies the instruction which re-

sulted in the error, secondary -registers (which have no

other purpose) are provided: ROSAR latches, ROS
previous address registers A and B, and ROS backup
register. ’

ROSAR Latches

The ROSAR latches are loaded from ROSAR at P11 time
(not-clock P3 time) of each ROS cycle. At P4 time, the
latch output is gated to the ROS previous address registers
A and B (ROSPARA and ROSPARB) by an alternator. At
the next P10 time (not-clock P2 time), the ROSAR
latches are reset. -

ROS Previous Address Registers

The contents of the ROSAR latches are alternately gated
to ROSPARA and ROSPARB, which alternately contain

the address of the current and previous ROS words. These

registers, which are loaded at P4 time of the ROS cycle,
comprise polarity-hold circuits and retain their values
until gated into again. Thus, if ROSPARA is loaded on
one cycle and ROSPARB on the next cycle, the contents
of ROSPARA are maintained until the third cycle, at
which time a new address is loaded. The contents of
ROSPARA and ROSPARB are indicated on the roller
switch indicators: roller 1, position 4, bits 12-23 and bits
24-35, respectively (Diagram 8-2, FEMDM).

ROSPARA and ROSPARB Alternator

The ROSPARA and ROSPARB alternator (Figure 2-12)
causes the contents of the ROSAR latches to be sent
alternately to the ROSPARA and ROSPARB indicators.
Referring to Figure 2-12, assume that the latch is reset,
the CPU is at clock PO time, the A-gate is conditioned, .
and the B-gate is deconditioned.

At the following P3 time, AND 1 becomes condi-
tioned, which in turn conditions AND 3. The output of

- AND 1" is also sent to AND 2, but AND 2 cannot be

conditioned because the A-gate is set. The output of AND
3 gates the contents of the ROSAR latches to the
ROSPARB .indicator circuits.

Because the B-gate is deconditioned at P6 time, the
latch is set. On the rise of the -PS signal, the latch being
set causes the B-gate to be conditioned and the A-gate to
be deconditioned. With the A-gate deconditioned, AND 2

- js activated at P3 time (via AND 1) of the following cycle.

This action gates the contents of the ROSAR latches to
the ROSPARA indicator circuits.

When the -P5 signal drops, the latch is reset. The gates
remain in this condition (A deconditioned, B conditioned)
until the rise of the -PS signal. At that time, the A-gate is
conditioned by the reset latch, and the B-gate is decondi-
tioned by the A-gate.

During the next two cycles and each cycle thereafter,
the operation described above is repeated until the CPU
clock is stopped. At that time, the contents of the
ROSAR latches are gated to the ROSPAR indicators
associated with the deconditioned gate. To indicate which
ROS address is in which set of indicators, the latch output

[||||I|l]|||||ll||||||l||II|||||||||||]H|||||||||I|I|IIII|

P10 P15 PO

ROS Sense Latches Word 0 | — Word 1 | I— Word 2 L TWord3
ROSDR(6-42) J Word0 U Word 1 - ju] " Word 2 . L
Register Oufgating. I A u U L
ROSDR(69-84) U Word 0 U Word 1 u Word 2

ROSDR Latches (6-36) 1 “Werd U >W9rd-1. - U Word2

Register Ingating J — J — L L
ROSAR U Word 1 Address U Word 2 Address L] Word 3 Address

Figure 2-11. Detailed ROS Timing

2-16 (9/68)

Not B-Gate

Figure 2-12. ROSPARA and ROSPARB Alternator

J ROSPARB |

P6 A Not p5 _S-Cate
Not P5 OR _A=Gate
Not System Reset N s
— Not P5 e oR
A
|"N_| ROSPARA is Last
L Scan Out Word 16R or A
: Roller 3 Position 4
— Indicate Roller 3
" or Position 4, Bit 34
ROSAR() L .
PH —
- NG
Not Bloc L l
ROSAR Reset .
A2 A
P3
Al —
Pl Scan Out Word 1 or Indicate Roller 1
Roller 1 Position 4 — OR Position 4, Bit 12
Gate ROSAR —
ALD: RX201 Latches (1-11) : S_ﬁ':
ROSAR(0) L | ”';
A3 A
Scan Out Word 18R or I Indicate Roller 1
Roller 1 Position 4 — OR Position 4, Bit 12
. =
Gate ROSAR —
. Latches (1-11) —
|T|||lll»l|T|||||rr]jlllT|||||||lllllllr['llll—l
PO P5 P10 P15 PO P5 P10 P15 PO P5
P1 1 i T [L
P3 1 | j | L
P5 | [| i |
P6 ' | I
Latch |
B-Gate.] [
A-Gate | 1 .
AND 1 . | | l |
AND 2 " ROSPARA I
AND 3

2065 FETOM (9/68) 2-17

(inverted) is sent to the ROSPARA indicator (roller 3,
position 4, bit 34). When the latch is reset, the indicator is
on, indicating that ROSPARA contains the address of the
current ROS word and that ROSPARB contains the
address of the previous ROS word; if off, the contents of
ROSPARA and ROSPARB are reversed.

ROS Back-Up Register

“The ROS back-up register (ROSBR) holds fields L, NA, K,
and J (which are indicated on roller 3, position 4, bits
7-32), and fields R, T, U, and V (which are indicated on
roller 4, position 4, bits 17—30). These indicators com-
bined with the ROSDR indicators provide the CE with a
picture of ROS word contents when the CPU stops during
maintenance (test) mode.

ROS Error Checking

Before each ROS word is decoded, it is checked for
correct parity. Parity is checked in three groups from the
ROSDR and the ROSBR: :

. . i Fields M, N,
Fields Fields L, NA,
Spare AH P w9, K, and J PR(P, Q,R, T, |P
U, and V
0 56 42 20 43 68 85 &9 99 91
J\) <)
Y Y
Group 1 Group 2 Group 3

Each group contains its own parity bit and must have
an odd number of bits to result in correct parity. (There is
also a parity bit for the entire ROS word, bit 0. At the
present time, however, this bit is not checked.) Figure
2-13 illustrates ROS parity checking for the three groups:
A of the figure shows how parity is checked from the
ROSDR for group 1; B of the figure shows how parity is
checked from the ROSBR for group 2; C of the figure
shows how parity is checked from the ROSDR and
ROSBR for group 3.

The clock reset is blocked in that part of the ROSDR
or ROSBR containing the failing ROS word. The part or
parts not in error are reset, and the next ROS word is
gated to its respective register part(s). For example, if bits
43—-68 of a ROS word contain an error, the bits are
retained for observation. The other two groups not in
error (bits 0—42 and 69—99) will change. The groups that
change belong to the data word accessed by the failing
word when the data register is examined. Thus, when a
ROS parity error occurs in one part, the ROS bit
indicators on the system control panel comprlse bits from
two different ROS words.

2-18 (9/68)

A ROS parity error also prevents stepping ROSAR,
ROSPARA, and ROSPARB, thus enabling the operator to
establish the address of the current ROS word, the address
of the previous ROS word, and the address of the next
ROS word. The address of the previous ROS word should
be particularly helpful when parity errors are caused by
late ROS branches.

- Assume that ROS bit 40 fails. A parity error in bits
6—42 is indicated, and the ROS previous address register
indicated the failing word. Reference to the ROS bit plane
description shows the expected bit content of the failing
word. The incorrect bit (bit 40) can be determined
directly by comparing the bit plane description with the

~ indicators.

To summarize, if a machine check is not disabled and a
ROS parity error occurs, the parity group in error is not
reset at CPU clock time of the next cycle. The CPU clock
set-reset signal is blocked to the group that contains the
parity “error (Diagram 4-107, FEMDM). The new ROS
word, however, is gated to the two groups not in error.
The bit in error can be determined by displaying the ROS
micro-instruction, noting which group of bits is in error,
deciding which ROS address is in error, and referring to
the listing of ROS micro-instructions. If a ROS parity
error occurs and the machine check mask bit [PSW(13)]
is set, a logout occurs.

Scan Mode Operations

Scan mode operations affect three fields of ROSDR: field
D (bits 17—20), field F (bits 25—30), and field G (bits
31-35). These fields serve dual functions. In the normal
mode, they are decoded from the ROSDR latches as
standard CPU control lines. In scan mode, they are
decoded as special scan control lines and are referred to as
field S. '

The scan mode is controlled by the ‘scan mode’ trigger.
When the ‘scan mode’ trigger is reset, the standard decode
path is used. When the ‘scan mode’ trigger is set, however,
the standard control lines are blocked and scan control
lines (using common CPU control line codes) are acti-
vated. '

The ‘scan mode’ trigger can only be set in normal CPU
mode and reset only in scan mode. The scan control logic
generates an ‘inhibit register ingating’ signal which is sent
to the ROSDR fields to block register inputs and to allow
scan control use of the ROS in sequencing through its test
operations. '

- Scan also affects ROS mlcrobranchmg (See “Scan’
Mode Control of ROS” in Section 2 of Chapter 6.)

ROSDR(6}

ROS Error (6-42) Block ROSAR

ROS Parity Error (6-42)

Clock PO Forced

ROS(43-68) Parity Error

:OR

1. |N| ROS Parity Check (69-99) -

ROSDR(14)
ROSDR(15)
{ 1 ooD
ROSDR(16) ROSDR(13)
ROSDR(21)
ROSDR(22) ODD p—
ROSORZ3) ROSDR(18)
ROSDR(24) ROSDR(I9) 000 >_J oDD
ROSORGE) ROSDR(31)
ROSDR(32) —
ROSDR(25)
l P ' Clock P2 Forced OR
ROSDR(30) ROSDR(33) Not Clock P2 Forced
ROSOR(34)
: ROSDR(35) oDD
ROSDR(39) ROSDRI7)
ROSDR(40)
ROSDR(41) oDpD
ROSDR(42) ROSDRI20)
A. ROSDR(6-42)
ROSBR(43)
ROSBR(44)
ROSBR(45) oDD
ROSBR(46)
ROSBR(47) Clock Pl
l OR
A
obb Not Error Reset Extended
ROSBR(54) : l‘—
ROSBR(55) i _ OR
] N
5 oDD _.___
ROSBR(611 - oo . OR
ROSBR(85) - A
Not Clock P2
ROSBR(62) < Clock P0_|
- l OR
obD
ROSBR(68)
8. ROSBR(43-68,85)
ROSDR(69)
l oDD
ROSDR(73) ROSDR(74) I
- ROSDR(75)
ROSDR(76) oDD
ROSDR(Z8) ROSDR(77) J———
ROSDR(79) obD obD
ROSDR(80) ROSDR(82) Not Clock Pl A
ROSDR(83) ——
. oDD
ROSBR(86) ROSDR(84)
l Clock PO
oDD A
ROSBR(90) ROSBR(92)
ROSBR(93)
ROSBR(94) oo |
ROSBR(97) ROSBR(95)
ROSBR(98) obD
ROSBR(99) ROSBR(91)

C. ROSDR(69-84) AND ROSBR(86-99)

Figure 2-13. ROS Parity Checking

2065 FETOM (9/68) 2-19

Section 3. Bus Control Unit

The Bus:Control Unit (BCU) governs the flow of all
information to and from main storage. This unit regulates
the flow of addresses, data, key information, and other

control signals associated with main storage. In the Model -

65 system, the BCU responds to the CPU and to as many
as seven I/O channels, all of which are operating asynchro-
nously in respect to each other.

Note: If the Multisystem feature is installed, storage
address decoding, ‘select’ signal generation, and BCU
resetting is affected. Refer to Chapter 4, Section 2, for
details.

GENERAL DESCRIPTION

The System/360 Model 65 uses a common, or multiplex,
bus arrangement to transfer all information to and from
_ main storage: :

4

2365 Main Storage Units

Simplex Control
Lines . \
(Storage Selects
and Bus Availability
Status)
Multiplex Bus System
BCU
Simplex Control Lines /0
[— — i (1/0 Requests and Bus Channels
CPU Requests Availability Status) 0-6
Processor

Each unit requiring access to storage is equipped with a
set of receivers and drivers which tap into the multiplex
bus. The major function of the BCU is to provide for
efficient time-sharing of the multiplex bus by all units. To
accomplish this task, each main storage unit and each unit
requiring access to main storage communicates with the
BCU through individual, or simplex, control lines. These
lines are monitored by the BCU to establish priority
between the requesting units and to inform the units of
the bus availability status.

Basic Interface Considerations

Figure 2-14 is a simplified diagram of the BCU interface
with the system. The functions of the major buses and

220 (9/68)

control lines are explained below.
1. Multiplex Buses

a.

Storage Address Bus (SAB). This bus, 21 address
lines and 3 parity lines, specifies the address of a
doubleword in main storage.

. Storage Data Bus Out (SDBO). This bus, 64 data

lines and 8 parity lines, carries data sent by the main *
storage unit. ’

. Storage Data Bus In (SDBI). This bus, 64 data lines

and 8 parity lines, carries data sent by the CPU or
the channel to main storage.

. Mark Bus. This bus, 8 control lines and 1 parity line, "

designates which data bytes on the SDBI are to be
stored into main storage; there is a mark line
corresponding to each byte on the SDBI. Complete
absence of mark signals on the mark bus occurs only
on a fetch operation.

Key-In Bus. This bus, 5 key lines and 1 parity line,
is used during storage operations and the set-key
operation. These operations transfer the storage
protection key from the CPU or channel to the
storage protect area in the selected ‘main storage
unit.

Key-Out Bus. This bus, S key lines and 1 parity line,
is used only during the insert-key operation. This
operation transfers the storage protection key from
main storage to the CPU.

2. Control Lines

a.

Select. Upon selecting the required storage unit, the
BCU issues a ‘select’ signal to that unit. This signal
causes the selected unit to perform a storage cycle.

. Busy. Throughout the duration of the storage cycle,

the storage unit generates a ‘busy’ signal to the
BCU.

. CPU Request. Upon requiring access to main

storage, the CPU issues a request signal to the BCU.

. Channel Request. Upon requiring access to main

storage, the channel issues a request signal to the
BCU.

. BCU-Channel Response. This signal is generated by

the BCU to the requesting channel in response to -
the channel-request signal. This signal indicates that
priority has been granted to the channel and that a
storage address is now required.

Advance. Indicates to the CPU or channel that the
storage unit is about to place data on the SDBO.

. Store. This multiplex line indicates to the storage

unit that a store operation is in progress.

Processor

Storage

L}
| Select

) h Busy
bKey from CPU ’ —.I

Key In (5 +1P)
) ﬁ‘:’m Key Out (5 +1P)
Key to CPU ﬂ

Mark Bus (8 +1P)
Marks from CPU —-»‘ -

SDB! (64 + 8P)

Data from CPU —J

, . | BCU - SDBO (64 + 8P)
Data to CPU . g

jl
1

SAB (21 + 3P)

‘A‘ddress from CPU —-’l _

I (See Note)

ha = e o -

Advance

<

>

Chan Request

l Store
Request from CPU

BCU-Chan

Response

1/0O Channels (0-6)

Address from 170 —»

Data to 1/0 "

L 4

Note:

1/O generated
storage addresses
are routed to
BCU for decoding
and parity
generation.

Data from I/O ——P
Marks from |/O ——m

fe
>

Key from /0

Tigure 2-14. Primary BCU Interface Signals

Special multiplex lines for operation with the 2361
Core Storage Unit (Large Capacity Storage or LCS), not
shown on Figure 2-14, include:

1. LCS Pre-Advance. Warns the BCU that the LCS is
preparing to send data on the SDBO. This signal
prevents the start of another request which might
interfere with the incoming data.

2. LCS Advance. Precedes the data from the LCS so that
a register will be ready to receive the data.

3. Set LCS Priority. Notifies the requesting channel that
it should look for an ‘LCS ddvance’ signal and ignore
the ‘advance’ signal from the 2365 Core Storage Unit
(High-Speed Storage or HSS).

A simplex line, ‘LCS operation’, from each channel sets
the ‘channel X waiting’ trigger to allow other channels to
operate with the HSS while the LCS is busy.

Basic Operating Considerations

The following paragraphs briefly examine the major
operational characteristics of the processor, channels,
main storage units, and large-capacity storage (LCS) units
from a BCU viewpoint.

Operation with Processor

e Requests are issued by (1) I-Fetch, (2) microprogram,
(3) Scan.

o CPU clock is stopped if request is not serviced within 3
cycles.

2065 FETOM (9/68) 2-21

The BCU resides in, and is a logical but independent part
of, the CPU. To enabie efficient handling of CPU storage
requests, the BCU and CPU clocks are synchronized. The
BCU is designed to accept storage requests from the CPU
every 0.4 usec (every other CPU clock cycle). However,
the speed with which these requests are serviced depends
on the storage availability and on the amount of channel
interference. _

The CPU can issue five types of requests to the BCU:
fetch data, store data, insert kev. set key, and test and set.
Furthermore, the tetch data and store data requests can
be issued by various functional areas of the CPU and are
categorized accordingly. For example, the fetch data
tequests can be issued by the I-Fetch control hardware, by
the microprogram, and by Scan controls.

‘Whenever possible, requests from the processor are
handled by the BCU in a manner to provide for maximum
CPU operation; i.e., processing of data in the CPU is
overlapped with handling of the request by the BCU.
However, the degree of overlap is limited, and the BCU
must stop the CPU clock when a channel request has
taken priority, when the storage unit requested by the
CPU is busy, and when the data requested by the CPU
cannot be retrieved within the required number of cycles.

A need to fetch new data is detected in the processor
three or four cycles before this data is required. Accord-
ingly, the CPU issues a 3- or 4-cycle fetch request
indicating to the BCU that data will be required after
three or four cycles have elapsed from the time of the
request (i.e., the transfer of data into the CPU must take
place on the fourth or fifth cycle following the request).
It is the responsibility of the BCU to ensure that the
requested data is present at the SDBO at the specified
time. To do this, the BCU allows the CPU clock to cycle
three times regardless of whether storage can be accessed
within this specified period. If data is not available at the
SDBO at the end of the third cycle, the BCU stops the
CPU clock. CPU processing is thus halted until its storage

request is completed, at which time the BCU restarts the

CPU clock (see ALD M8251). -
Requests to store data are initiated in the CPU by the

microprogram or by the Scan controls; these requests are
always accompanied by the ‘mark’ signals, which desig-
nate the bytes to be stored. Store requests are not
categorized into the 3- and 4-cycle types because no
critical transfer into the CPU is involved; once the storage
unit is selected, the CPU no longer depends upon storage
unit operations.

The insert-key, set-key, and test-and-set requests are
issued by the CPU microprogram. Basically, the insert-key
request is a fetch operation to obtain the protection key
from main storage. The set-key request is a store
operation which transfers the five-bit (plus parity) storage
protection key from the CPU into a specified storage
protect area of main storage. The test-and-set request is

222 (9/68)

- essentially a combined fetch/store operation effected in a

single storage cycle.

Operation with 1/0 Channels ‘
e Requests are issued by up to seven channels.

e Requests are handled in the following order of
priority: channels 1, 2,0, 3,4, 5, 6; then CPU.

Up to seven channels (six selector plus one multiplexer)
are available on the Model 65. All channels may operate at
the same time. The channel sustains a maximum data rate
when it is servicing a high-speed drum: 1.25 million bytes
per second. Because data is transferred between the
channels and main storage on an eight-byte basis, the
channel makes a storage request every 6.4 usec at this
speed. When servicing the 340-kHz and 90-kHz magnetic
tape devices, the channel requires access to storage at 23-
and 89-usec intervals, respectively.

The channel can issue two types of requests: fetch data
or store data. Requests from channels are processed by
the BCU on a priority basis. Where there is a conflict
between two I/O channels or between an I/O channel and
the CPU, the BCU gives priority to the highest-ranking
channel. Priority is preassigned in the following manner:
Channel 1 has the highést priority, followed by channels -
2, 0, 3,4, 5, and then 6 (channel 0 is the multiplexer
channel); when no channel requests remain, a CPU request
is honored. Priority is therefore not established on a
first-in/first-out basis; instead, as each request is serviced,
a priority test is performed again on all channels,
including the channel just serviced.

Operation with Main Storage

e BCU allows interleaving of odd and even requests.

e Storage keys protect storage contents.

e Insert key operation fetches key to CPU.
® Set key operation replaces key in main storage.

The 2365 main storage units, also referred to as the
high-speed storage (HSS), operate on a basic cycle of 750
ns. Each HSS is divided into an even- and an odd-address
storage area equipped with its own SAB, SDBO, SDBI,
and ‘mark’ bus. The access path to these areas is through a
common interface (Figure 2-15). This arrangement (inter-
nal to the HSS) allows the BCU to interleave even and odd
storage requests; i.e., an odd request can be issued by the
BCU halfway through an even storage cycle, and vice
versa. By interleaving references to even- and odd-address
areas, the effective storage cycle approaches one-half the
cycle time of the unit. (If desired, the interleaved mode of
operation can be defeated to allow operation of a program
solely in the odd or even area of storage.)

Each time a storage unit is accessed by the CPU or I/O
channels, information is either stored into or fetched from

Odd Area

Odd -
Array <

Even Area

Even . o
Array ¢ .

Mark l rsrm | I SDBOl | SAB]

|SBDOI

I Mark I SDBI

Common Interface

’ .r_Sforuge Protection
{ Unit

] SAB J

Key-In

SDBI]

I Mark |

| SDBO I

*Memory Data Register

Storage Cycles 1

Odd address
on SAB

odd area.

SAB transferred-to
Data Odd address can be

placed on SDBO.

Odd cycle completed.

placed on SAB. "

Odd Fetch Requests

0l
Even cycle completed

! SAB transferred to))

Even Fetch Requests

Figure 2-15. Basic Organization of HSS Unit

that unit. A store operation is performed when the data
on the SDBI is accompanied by one or more ‘mark’ signals
on the ‘mark’ bus. There is a ‘mark’ line for each of the
eight bytes that can be placed on the SDBI. The presence
of signals on these lines indicates which SDBI bytes are to
be stored. Thus, data can be stored selectively by bytes,
or, if all marks are active, the entire SDBI contents are
stored at the doubleword address specified by the SAB.
When the CPU or I/O channel requests a storage cycle and
no signals are present on the ‘mark’ bus, a fetch operation
is initiated. In a fetch operation, the doubleword ad-
dressed by the SAB is placed on the SDBO and is made
available to the requesting unit.

A storage protection capability is provided to protect
the contents of main storage from unauthorized use or
destruction. Both fetch and store operations are subject to
this protection. Protection is implemented by subdividing
each storage unit into 2048-byte blocks and assigning a
one-byte protection key pattern to each block. The
assigned key patterns for the addresses for all 2048-byte
blocks within a storage unit are recorded in the storage
protection mechanism- of that unit. During a storage
request, the storage protection mechanism compares the
key pattern for the addressed block with the key pattern
supplied by the requesting CPU or channel. (Keys are

Even address can be
placed on SAB.

.

LSS
even area. Data
placed on SDBO.

In effect, two requests

. _—
per cycle time.

gated from the requesting unit over the ‘key in’ bus at the
beginning of each storage cycle.) A mismatch in keys

- results in a protection violation; the storage request is not

honored, and a ‘protect violation® signal is sent. to the
requesting unit.

The protection key for any 2048-byte block of storage
can be fetched from the protection key mechanism and
brought into the CPU for inspection. This operation is
performed through execution of the Insert Storage Key
(ISK) instruction, which issues a fetch request directly
into the protection key area of the storage unit. Con-
versely, the protection key for any 2048-byte block of
storage can be changed through execution of the Set
Storage Key (SSK) instruction by the CPU. This instruc-
tion provides a new key pattern and issues a store request
into the protection area.

The ISK and SSK instructions can be executed only in
the Supervisor state and are not available to the problem .
programmer. A programmed protection of storage can be
achieved by means of the Test and Set (TS) instruction.
When the TS instruction is executed by the CPU, a
doubleword is fetched from main storage, and the CPU
inspects one byte in that doubleword. The main storage
sets the byte inspected by the CPU to all 1%, while the
remaining bytes in the doubleword are not changed. Thus

2065 FETOM (9/68) 2-23

programmed storage protection is achieved in the sense
that the CPU can later inspect the first byte of a particular
storage block to establish whether this block has been
previously processed.

A test-and-set storage request combines aspects of both'
fetch and store operations; therefore, it requires special
handling by the BCU and the storage unit. From the BCU
viewpoint, the TS instruction is the only one that
generates a. ‘mark’ signal during a fetch request. The BCU
sends the ‘mark’ signal and the ‘test and set’ signal to the
storage unit. During the storage write cycle, all bytes

.(excluding the byte specified by the ‘mark’ signal) are

regenerated into the core array; all 1’s are generated into
the byte location specified by the ‘mark’ signal.

Operation with LCS (Optional Feature)

The LCS is an optional feature that extends the storage
capacity of the system. One 2361 Model 1 (1, 048, 576
bytes), or up to four 2361 Model 2’s (2, 097, 152 bytes

each) may be installed without interleaving. By installing

units in pairs, two 2361 Model 1’s or two or four 2361
Model 2’s, the addressing can be split so that one unit of a
pair contains -all even addresses and the other unit
contains all odd addresses. When these units are addressed
by the BCU on an interleaved. basis, the normal 2361

- internal cycle time of 8 usec is reduced to an effective
cycle time of 4 usec.

Basic Control and Timing Considerations

. @ Requests are recorded by sync trigger/latches.

e Priority test is performed when BCU is not busy.

~ @ Once priority is granted, BCU decodes storage address.

o ‘Select’ signzi] is sent to storage if unit is not busy. .

The basic scheme for processing storage requests by the
BCU is shown in Figure 2-16. Requests from the CPU and
I/O channels are entered into the BCU request sensing
logic and are recorded by the corresponding sync trigger/
latch circuits of the .BCU. If the BCU is not busy
processing a previous request, it examines the status of the
sync latches to perform a priority test. When priority is
granted to a particular unit, the priority trigger for that
unit is set, and the storage address from the unit is made
available to the BCU for decoding. At the completion of
the decoding, the BCU initiates a storage cycle by gating
the storage address to the SAB and sending a “select’ signal
to the even or odd storage area of the selected storage
unit. Upon -receipt of the ‘select’ signal, the storage unit
proceeds to read out or write in the data at the addressed
location.

On a fetch data request, the storage unit gates one
doubleword of data onto the SDBO for sampling by the
requesting CPU or channel. On a store data request, the
storage unit replaces the contents of the addressed
location with the data sent over the SDBI from the CPU

Busy Odd
cPU . Select Busy E
———— e — — 1 ‘ Polse - usy Even
| anoruge Address - Logic L P Select Odd
| GT I X - L P Select Even
| I 1 g
1/0 CHANNEL |
I Storage Request ' I__{_? ——————— To SAB Storage OR BCU Cleanup
Storage Address - | Decode
s o SIS [y P R—— g ™) |
| © 1O (e e
I anoroge Request ' aﬂgﬁm—»‘
Gate Address from Channel
Gate Address from CPU
Inhibit Priority Test
Channel
Sync Latches A Channel Priority BCU Busy
—f L ’ T |OR T
Priority| pey Cleany
Test 2o Leanp | BCU Cleanup
Logic
CPU Sync
Trigger/Latches ‘ CPU Priority
L T N Not CPU
Priority.
BCU Cleanup
Stop/Start
A CPU Clock
CPU 3-Cycle Time-Out kg Logic
Sequencers

Figure 2-16. Basic BCU Scheme for Processing Storage Requests

224 (9/68)

- or channel. Only those bytes designated by the ‘mark’
signals are placed into main storage; in the absence of
‘marks’, bytes already in storage remain unaltered.

During the time when the storage unit is actually

performing a fetch or store cycle, it is not available for
reselection. To prevent the BCU from doing so, a busy
indication is presented to the BCU from either the even or
odd storage area, depending on whether the storage unit is
performing an even or odd request.

The access time to main storage is 600 ns; i.e., data

becomes available from or is stored into main storage 600
ns after the request is issued. The basic timings for the
fetch and store operations are shown in Figure 2-17.

To provide the necessary control signals at the correct
time, the BCU makes extensive use of trigger/latch
circuits. Al BCU triggers are set at clock time of the
machine timing signal and are reset at the following clock
time. Conversely, the latch circuits are set at not-clock
time of the timing signal and are reset at the following
not-clock time. Thus, BCU timing sequences are imple-
mented (essentially) by sequential shifting of status
information through latch-to-trigger-to-latch circuits. A
typical arrangement is shown in the adjacent column.

Note that the state of a particular trigger or latch at any

A

Clock Pulses

|
_ |
| ! !
|
|

Fetch or Store Request
Priority Test

Priority Tgr Set

particular time is indicative of the progress made since the
issue of the request:

Channel 1 Channel 1
Channel 1 Request Syne) Priority
Not-Clock 1 | A L | Clock?2 I A T
Not-Clock 2 Clock 3
MC301 MC301
BCU Response Channel 1~
From Other . o . to Channel Data Request
Channel Not-Clock 2 | A L Clock 3 j A T
Priority N
Triggers V oy : § .
BCU Cleanip Late BCU Cleanup
MC331
(Common)
Clock Not

BCU Clock Timing Signal —_.,_I&"k'_‘_f—l_h_
| Olole 1o

|
|
—ﬂ_ I
|

Channel 1.Sync Latch '
BCU Response to Channel I
Latch (Common)

Channel 1 Data Request
Trigger

I I

|

|

|

, l

Channel 1 Priority Trigger |
|

I

I

|

|
|
|
|

 r— r—l‘l——|_|—-| p—

|
Address Available | !
| I
h I
I
Select Issued —

Data on SDBO (Fetch)

Data on SDBI (Store)

|
|
|
|
|
|
Address Decoded |
|
|
|
I
|
|
|
SDBI Stored |

5 — — — — —— —

Figure 2-17. Basic Request Timing

600 ns

I |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| I

[
|
|
|
|
|
|
|
|
|
|
|
|
!
|

! |

2065 FETOM (9/68) 2-25

As mentioned previously, the CPU can generate either
a 3- or 4-cycle fetch request to specify the exact time at
which the SDBO is to be gated into the processor. If the-

CPU is granted priority, and if a successful storage

selection has been made, the SDBO becomes “valid” after
3 cycles have elapsed from the time of request. To meet
-the requirements of a 4-cycle request, the SDBO is held
-valid for two successive machine cycles. This provision
ensures that data will also be present at the SDBO during
the 4-cycle sample pulse:

@@@@

Clock PulsesJ | I "1 II 1 ‘ |I | 'H_
|
3-or 4-Cycle | 1 :] I
Request - —] | i | H
! | i I
|
SDBO Valid : : | *-»
|
| ! I [. | ‘
3-Cycle Ingate | | | U — |
I | | l |
4-Cycle Ingate | | | | S—
| 1) 1

LCS operation is similar to HSS operation, except for
the time involved. After the LCS unit is selected, it takes
3 usec for data to return from the selected storage; for
about 2 usec of that time the BCU is free to process
channel requests. In the case of a CPU fetch request, the
CPU clock is stopped until the ‘LCS advance’ signal
restarts it to process the incoming data. In the case of
channel requests, the channel waits for the ‘LCS advance’
signal, but does not hold up other operations.

Basic Operational Sequence

e CPU sequencers count CPU cycles followmg CPU
request.

e Sending of ‘select’ signal to storage signifies successful
completion of request.

o ‘Invalid address’ signal is generated if ‘select’ signal is
not sent to storage. '

The basic BCU operational sequence in handling storage
requests from either the CPU or the I/O channels is shown
in Figure 2-18. The handling of CPU requests is described
first. . ,

The CPU storage requests are issued by one of three
functional areas within the processor: I-Fetch logic, ROS
microprogram, or - scan. controls. Once the request is

issued, a group of CPU sequencers is activated in the BCU.

These sequencers count the CPU cycles that elapse after
the. request is issued. If the request cannot be completed
within a specific time defined by the processor (3 or 4
cycles, depending on the type of request), the sequencers
stop the CPU clock to prevent processing in the CPU from
advancing beyond the specified cycle. The CPU clock
remains stopped until the BCU is able to complete the
request. :

226 (9/68)

- valid® signal,

When the BCU is not busy’ processing a previous
request, a priority test is performed on all the requests
(CPU and channel) recorded by the BCU sync latches.

'After priority is granted to a specific request, the BCU is

immediately placed into the busy status to inhibit further
priority testing until the accepted request is completed.
(During BCU.-busy status, requests are still received by the
BCU and are stored into the latches for consideration on
the next priority test.)

If the BCU is not busy, and if no channel requests are
pending at the time, the CPU request is granted priority.
This action allows the storage address supplied by the
CPU to be gated to the SAB. The BCU then decodes the
SAB address and generates a ‘select’ signal to send to the
specified storage unit. Whether or not the signal is actually
sent depends on the SAB specifying a unit that is within.
the addressing range of the physical storage and has its
power turned on.

If the address supplied by the CPU is outside the
physical address range of the installation or specifies a
storage unit whose power is down, the ‘select’ signal is not
sent to the storage unit. In this case an ‘invalid address’

signal is sent to the CPU, and the request is cancelled.
In a case where the unit address is correctly defined

and its power turned on, the attempt to issue a ‘select’
signal will be made. However, the sending of the ‘select’
signal to the unit may be delayed if the unit is busy
servicing a previous request. A busy storage unit causes
another selection attempt to be made by the BCU on the
following cycle. Continuous selection attempts are thus -
made until a ‘select’ signal is sent to storage.

The sending of a ‘select’ signal to a storage unit
signifies to the BCU that a successful selection has taken
place. A BCU cleanup operation is then initiated to reset
the BCU control circuits and to allow a priority test to be
made on pending requests.

Storage requests from the seven I/O channels are
handled by the BCU in a sequential order of priority: the
highest priority is assigned to channel 1, .then to channel
2, then to channel O (the multiplexer channel), and then
sequentially to channels 3, 4, 5, and 6. When the BCU
grants priority to a requesting channel, a BCU response
signal is sent to that channel. The channel then gates the
storage address to the SAB and responds to the BCU with
an ‘address valid’ signal. Upon receipt of the ‘address
the BCU decodes the SAB address and
attempts to issue a ‘select’ signal to the specified storage
unit. Basically, from this point on, the channel request is
handled in the same manner as a CPU request. When the
channel is performing a store operation, the ‘mark’ bus,
SDBI, and ‘store’ signal are gated directly from the
channel to the addressed storage unit. If an invalid address
is decoded by the BCU during processing of a channel
request, an invalid address indication is sent to the
channel and to the I/O interrupt logic of the CPU.

" Requests from CPU
(per IC, D, or Scan)

Réquests from
Channels 0-6

made available
at the correct
time.

. cycle
progression,

o'
Sequencers
Start CPU
sequencers to 's;oz CP}J clock Set appro-
control machine it data is not priate sync

trigger/latch,

Establish
priority and
set appropriate
priority trig-
ger.

Pldce BCU
into busy
status.

CPU
priority

Gate 'mark’
signals to
‘mark’ bus.

Gare storage
address from
CPU to SAB.

No (Channel)

Generate 'in-
valid address’
signal to request-
ing unit and
cancel request.

[Upon receipt

Send response | of this signal,
signal to | channel gates
selected address to SAB and
channel. I signals address

I valid to BCU.

'Address
valid' signal
from channel

Decode stor-
age address
from SAB.

Invalid
address

Addressed
storage unit
power
down

Addressed
storage unit

busy

Issue 'select’
signal to
storage unit.
[ResetsBCU
Start BCU I controls and
allows new
clean-up | iority test
operation, I priority fes
on pending
I requests.

Store
operation

Place data

on SDBI and
generate 'store’
signal.

If set key
operation, place
key on

‘key-in' bus.

e

Figure 2-18. Basic BCU Operational Sequence

2065 FETOM

Gate in data
from SDBO to
requesting unit.

(9/68) 2-27

DETAILED ANALYSIS OF BCU FUNCTIONS

For purposes of discussion, the BCU is divided into a
number of functionally distinct logic areas. The subse-
quent paragraphs describe the functions performed by
each area and explain how these functions fit into the
‘overall operational sequence of the BCU (Diagram 4-201,
FEMDM).

Initial Handling of Requests '

e CPU requests during clock time are recorded by sync
triggers.

e CPU requests during not-clock time are recorded by
sync latches.

@ I/O requests are always recorded by sync latches.

All requests for main storage originate in either the CPU
or the I/O channel. The BCU logic used for sensing and
recording these requests is shown in Diagram 4-202,
FEMDM.

Storage requests from the processor can be issued to
the BCU either at clock or not-clock time of the machine
cycle. To synchronize the clock and not-clock requests,
the BCU employs a trigger/latch sync arrangement.
Requests received at clock time are first entered into the
BCU sync triggers; they are then propagated (at not-clock
- time) into the sync latches. Requests received at not-clock
time are entered directly into the sync latches. Thus, at
the completion of one machine cycle, all requests are
reduced to a common time-reference frame. -

From the BCU “viewpoint”, the storage requests issued
by the CPU can be placed into one of three general
categories:

1. Requests Generated by Microprogram. These requests
are decoded at clock time and, depending on the
address source (IC or D), are entered into the corre-
sponding BCU sync triggers. Furthermore, all fetch
requests must be specified as being either 3 or 4 cycles
in duration. This is to inform the BCU of the specific
time at which the requested data must be gated into
the processor. The presence or absence of the ‘3-cycle
request’ signal from the CPU indicates whether a 3- or
4-cycle fetch has been initiated; i.e., the ‘3-cycle sync’
trigger (in the BCU) is set on all 3-cycle fetch requests
and reset on all 4-cycle fetch requests. Upon the setting
of the appropriate sync trigger in the BCU, the request
is propagated (at not-clock time) into the corre-
sponding sync latch.

2. Requests Generated by I-Fetch Hardware These re-
quests are decoded at not-clock time and, therefore,
are entered directly into the corresponding IC or D
latch and the ‘3-cycle sync’ latch.

2-28 (9/68)

3. Reqrests Generated by Scan Hardware. These requests, -

generated during logout and ROS: test operations, are
" decoded at clock time of the machine cycle. Accord-

ingly, the requests are first entered into the scan-sync:
trigger and are then propagated into the scan-sync latch
at not-clock. time. Fetch requests initiated by scan
operations are always specified as 4-cycle requests, ie.,
the 3-cycle trigger is not set.

At clock time of the machine cycle following the
requests, the signals from the sync latches are further
propagated into the appropriate request triggers and into
the ‘CPU request’ trigger. The output of the ‘CPU request’
trigger feeds the priority test logic, which enters the CPU
request into priority contention with the channels; it also
feeds the CPU sequencer and clock control logic, which
stops the CPU clock if the-request cannot be handled
within the specified time. If the priority test establishes
that the CPU request can be handled immediately, the
outputs of the IC, D, or scan sync latches and request
triggers are used to gate the storage address from the
appropriate CPU source (IC, D, or scan address generator)
into the BCU. :

In conjunction with a request per D, the processor may
issue an ‘insert key’, ‘set key’, or ‘test and set’ signal to
the BCU. These signals are recorded into the appropriate
BCU triggers and are later used to modify the handling of
the storage request. Basically, this modification is as
follows:

1. The ‘insert key’ trigger causes an ‘insert key’ signal to
be sent to storage during the handling of the request.

2. The ‘set key’ trigger issues a ‘set key’ signal to storage
and gates the key bus to storage.

3. The ‘test and set’ trigger causes a ‘test and set’ signal to
be sent to storage during the handling of the request.

The store-data requests from the CPU are detected by
the BCU whenever any mark triggers are set in the
processor at the time of the request; a ‘store’ trigger is
then set in the BCU. The output of the ‘store’ trigger
activates a ‘store’ signal to the selected storage unit and
also sets the ‘BCU data gate’ latch, which gates ST to the
SDBI. In addition, the ‘mark’ signals are transmitted to
the selected storage unit via the ‘mark’ bus. The ‘mark’
signals specify to the storage unit which bytes on the
SDBI are to be entered into the addressed doubleword
location.

Storage requests from the I/O channels are made to the
BCU by means of channel-request signals. These request
signals are detected at not-clock time and are entered into
the corresponding BCU sync latches. The sync-latch
outputs are in turn applied to the priority test logic to
establish whether the particular channel can be granted
priority at that time. .

* The BCU does not distinguish between fetch or store
requests from the I/O channels: both types of requests are
handled by a common BCU response sequence. When a
store-data operation is performed by the channel, the
‘mark’ bus, SDBI, and ‘store’ signal are transmitted
directly from the channel to the storage unit selected by
the BCU. .

A channel request to a busy LCS unit energizes a
channel lockout circuit. This circuit allows selection of
lower priority units while waiting for the completion of
the LCS operation. The ‘LCS busy’ signal forces a priority
test to reset the channel priority trigger. The ‘channel X
waiting’ trigger is set, and the channel sync latch is
deconditioned by the channel lockout (Diagram 4-202).
The channel request remains pending until the ‘LCS
precomplete’ signal resets the ‘channel X waiting’ trigger,
at which time the channel sync latch is set and the
channel request is processed.

Establishing Priority
e Priority test sets appropriate priority trigger.

e Once priority is established, BCU is placed in busy
status.

A priority test is performed whenever the BCU finishes

processing a storage request; it is repeated on each
subsequent cycle until the BCU accepts a request and
attempts to process it. The BCU is then placed in a busy
status, inhibiting further priority tests until that request is
completed. When the request is completed, the BCU is
again placed in a not-busy state (by a BCU clean-up
operation), and a priority test is forced at the beginning of
the next machine cycle. The next request is then accepted
from the sync latches, or, if no requests are present in the
sync latches, a priority test takes place on each following
machine cycle until a request is received.

Priority for a waiting storage request is established by
transferring the particular request from its sync latch to
its associated priority trigger. Setting a priority trigger
causes the proper storage address (IC, D, or scan in the
. case of a CPU request; an I/O channel in the case of a
channel request) to be gated to the SAB. On CPU storage
requests, processing continues under control of the CPU
sequencers, while the BCU selects the addressed storage
unit. On channel requests, setting a priority trigger sets a
response latch, which in turn initiates the controlling
request/response sequence between the BCU and the 1/O
channel.

The priority triggers for the CPU and I/O channels
(Diagram 4-203, FEMDM) are implemented so that there
is a definite sequence in which they can be set on
successive priority-test operations: the setting of a priority

trigger is inhibited if a higher-order priority trigger is
about to be set. Thus, only one priority trigger can be set
at a given time, with channel 1 having highest priority and

‘the CPU rating lowest priority. Note also that when a

priority test is made all requests received up to the point
of the test are considered, including requests for the unit
just serviced. For example, if two requests are present at
the time a priority test is made, the request having highest
priority is serviced, and a priority test is again initiated. If,
however, another request for the unit just serviced has
been received during the interim, that unit is again
serviced, and the lower-priority request is kept waiting.

Gating the Address to SAB
® Address gating is initiated by set priority trigger.

When priority is established for either the CPU or the I/O
channel, the set state of the corresponding priority trigger
initiates gating of the storage address into the BCU. The
address gating logic is illustrated in Diagram 4-204,
FEMDM.

When the ‘CPU priority’ trigger is set, gating of the
storage address is under control of the IC, D, or scan sync
latches. If the storage address is in the process of being
transferred into IC or D at the time the CPU has been
granted priority, the PAL gate trigger permits a direct
transfer of the address from PAL to SAB.

When an I/O channel has been granted priority, the
corresponding priority trigger is set for that channel. A
‘BCU response’ signal is then sent to the channel to
initiate the gating of the storage address to the SAB. An
‘address valid’ signal is then returned to the BCU from
that channel to indicate that the address is on the SAB
and to start the storage sequence. A channel-data-request
trigger for that channel is set on the next cycle, signalling
the requesting channel to place data to be stored on the
SDBI.

Stopping the CPU Clock

o CPU sequencers control distribution of clock timing
within CPU during handling of CPU requests.

o CPU sequencers are started at clock time of cycle
following request.

e Sequence in which sequencers are stepped varies with

request being processed:

1. 4-cycle fetch: ‘CPU 2’ trigger, ‘CPU 2’ latch, ‘CPU
3’ trigger, ‘CPU 3’ latch, ‘CPU 4’ trigger, ‘CPU 4’
latch, ‘CPU 5’ trigger, ‘CPU 5’ latch.

2. 3-cycle fetch: ‘CPU 2’ trigger, ‘CPU 2’ latch, ‘CPU
3’ trigger, ‘CPU 4’ latch, ‘CPU 5’ trigger, ‘CPU 5’
latch..

2065 FETOM (9/68) 2-29

3. Store or set key: ‘CPU 2’ trigger, ‘CPU 2’ latch,
‘CPU 3’ trigger. ‘
4. Insert key: ‘CPU 5’ trigger, ‘CPU 5’ latch.

o Conditions that stop CPU clock:

1. ‘CPU 2’ latch is set, and either CPU has not received
priority or storage is busy.

2. ‘CPU 4’ latch is set and CPU did not receive
‘advance’ signal from storage. (This function is
disabled if LCS feature is not installed.)

3. Insert-key operation.

A group of CPU sequencers (four trigger/latch combina-
tions) is used in the BCU to control CPU cycle progression
after each CPU storage request. These sequencers control
the ‘stop CPU clock’ trigger in the BCU. The ‘stop CPU
clock’ trigger has direct control of the CPU clock: setting

this trigger stops the CPU (on the following cycle);

resetting this trigger starts the CPU (on the following
cycle). Diagram 4-205, FEMDM, shows the CPU sequen-
cers and the control logic for the ‘stop CPU clock’ trigger.
The sequencers are started on the CPU cycle following a
storage request and are advanced by the subsequent CPU
clock signals: the ‘CPU 2’ trigger and latch are set during
the first CPU cycle following the request; the ‘CPU 3’
trigger and latch are set during the second CPU cycle
following the request; and so on.

The ‘stop CPU clock’ trigger is so implemented that if
its reset logic is active its set logic is prevented from
setting the trigger. Because of this method of implementa-
tion (as seen in Diagram 4-205), if the ‘CPU 2’ latch is set

(first cycle following a storage request), the ‘stop CPU
clock’ trigger will be set on the next cycle (second cycle
following the request), and the CPU clock will be
inhibited from performing the third processing cycle. This
clock stopping sequence occurs during both fetch and
store operations, retaining the storage address in the IC,
D, or scan controls until the BCU and the storage unit
become available. When the BCU and storage unit become
available, and when the CPU is awarded priority, the ‘stop
CPU clock’ trigger is reset by the BCU ‘cleanup’ signal.
Once the CPU clock is started, both CPU processing and
further sequencer stepping is continued. (If LCS units are
attached to the Model 65, the CPU clock is stopped again
at latch-4 time provided the advance signal from storage is
not received.)

The ‘CPU S trigger and ‘CPU 5’ latch are held in the
set condition when the ‘LCS request’ signal sets the ‘stop
CPU clock’ trigger. The CPU is inhibited for about 3 usec
until the ‘LCS advance’ signal resets the ‘stop CPU clock’
trigger (Figure 2-19). The ‘LCS pre-advance’ signal pre-
pares to restart the CPU. First, the ‘advance waiting’
trigger is set to prevent honoring another request by
diverting ‘issue a select’ signals to the ‘storage 1’ trigger.

2-30 (9/68)

The ‘storage 1’ latch retains the ‘select’ signal until the
‘LCS advance’ signal resets the ‘advance waiting’ trigger,
thus allowing the ‘select’ signal to set the ‘storage 2’
trigger. The ‘LCS advance’ signal also resets the ‘stop CPU
clock® trigger if the ‘CPU 5° latch is set. The clock is
restarted, data arrives on the SDBO, and requests are
honored in the normal manner again.

For store data operations, the CPU sequencers are
started in the normal manner. However, the output of the
‘store’ latch modifies the subsequent sequencer stepping
as follows: ‘CPU 2’ trigger and ‘CPU 2’ latch are set on the
first cycle following the request; ‘CPU 3’ trigger is set on
the second cycle following the request. Further sequencer
advance is inhibited during store operations because
ingating is not required.

Selecting the Storage Unit

e Storage address must correspond to physical storage
unit.

o Storage capacity is defined by pluggable jumper cards
in CPU.

The capacity of main storage (also referred to as the
high-speed storage, or HSS) varies with the model:

Model Capacity Description
G65 131,072 bytes 1 storage unit without inter-
. leaving capability
H65 262,144 bytes 1 storage unit with interleaving
" capability
165 524,288 bytes 2 storage units with interleaving
capability
IH65 786,432 bytes 3 storage units with interleaving
capability
J65 1,048,576 bytes 4 storage units with interleaving
capability

If the system is equipped with more than one storage
unit (Models 165, IH65, or J65), the starting address for
each unit varies in increments of 262,144 bytes; i.e.,
addresses 0-262,143 are assigned to wunit 1,
262,144—524,287 to unit 2, and so on. Thus, when a
storage address is supplied to the BCU, the BCU must
select the physical storage unit referred to by this address.
Furthermore, if interleaving is desired, the BCU must
establish whether the address pertains to the odd or the
even area of the selected unit. Once the physical storage
unit and the odd or even area within it have been
established, the BCU issues an ‘odd-’ or ‘even-select’ signal
to that unit. This signal commands the storage unit to
sample the address on the SAB.

Two identical address decoder circuits are provided in
the BCU: one circuit decodes the addresses supplied by
the CPU, and the other circuit decodes the addresses

3 psec

BCU Free to
Service Channels

'|=—
BCU Clock - == !
E . : | I ' : |
Sync Trigger —l | | | i
| |
: 1 | | | :
BCU Busy Trigger | 'ﬁ' I |
Lo o
[I
Storage 2 Trigger I | | l
| | | |
. . 1
Storage 2 Laich : I | | |
! I E—
| : ! | !
Storage 3 Trigger \ 1 | :
| | [|
|
Select | | ! | 1
| - |
[! : '
LGS Select Tried L L
‘ : | | ' | }‘I |
T
LCS (BCU) Cleanup ! : |
1 I ! I
|
CPU 2 Trigger | : | :
[N
CPU 3 Trigger | ! : |
|
' ; I |
CPU 4 Trigger | | |
" h I
|

CPU 5 Trigger

CPU 5 Latch

cPy Srop Clock

LCS Pie-Advance = -

LCS Advance Waiting

LCS Advance

Figure 2-19. Typical Timing for CPU Fetch Request to LCS

supplied by the I/O channels. The need for two decoders
(Figure 2-20) is due to a time lag between the CPU- and
channel-supplied addresses. Note that a CPU-supplied
address bypasses the driver/receivers of the multiplex bus
and is applied directly to the address decoder; a channel-
supplied “address must pass through the channel drivers
and through the BCU receivers before being applied to the
address decoder. The time lag introduced by the driver/
receivers in the multiplex bus is approximately 55 ns.
The optional LCS unit(s) can increase the storage
capacity by from 1,048,576 bytes to 8,388,608 bytes.

When one or more LCS units are used, it is the function of
the BCU to establish whether the particular storage
address refers to the HSS or the LCS and to select the
correct unit within each type. To perform this function,
separate HSS and LCS decoding logic is used in the BCU.
Figure 2-21 shows the basic scheme used for selection of
the correct storage unit.

At the time the system is set up, pluggable jumper
cards are set and inserted into the CPU to define the
capacity of the HSS and the LCS and to customize the
address decoding logic to the availablé storage.

2065 FETOM (9/68) 2-31

1,0 CHANNELS I

—

Storage

0-6
SAB
Drivers
D SAB(0-23) Multiplex Bus
Storage Address ! . - > ——
b
To
SAB SAB
Drivers Receivers
SAB(0~23
plus(paril;- D R
. . o o, — &, To Parity Conversion
storage L L

address

from CPU J ‘ ‘

SAB(0-6,20)

Starting
Address

and
Even,/Odd -
Decoders
{Channel)

From

Storage

Decode Frame 1-Odd

Logic

Frame 1-Odd Not Busy

Decode Frame 1-Even

OR

QOdd

Defeat
Interleave

Decode Frame 2-Odd
Decode Frame 2-Even
Decode Frame 3-Odd
Decode Frame 3-Even
Decode Frame 4-Odd

Decode Frome 4-Even

Decode Frame 1-Odd

OR
Even

Starting
Address
and

Even, Odd
Decoders
(CPU)

Decode Frome 1-Even

Select Frame i-Odd D

To
Storage

Select Timing Signal

Decode Frame 2-Odd
Decode Frame 2-Even
Decode Frame 3-Odd
Decode Frame 3-Even
Decode Frame 4-Odd

Decode Frame 4-Even

From

Select Frame 1-Even D

To
Storage

Frame 1-Even Not Busv
Storage D

Figure 2-20. Gating of Storage Address From CPU and Channels to Addréss Decoders in BCU

Each HSS unit of 262,144 bytes is divided into two
131,072-byte areas: even and odd. In normal processing
operations, HSS accesses are interleaved between the two
storage areas, permitting a higher data transfer rate than is
possible without interleaving. Selection of the even or odd
storage area within the HSS unit is-determined by the
setting of the DEFEAT INTERLEAVING switch on the
system control panel and SAB(6) or SAB(20).

LCS units may also be interleaved to reduce access
time. When interleaving is used, the first LCS unit is

2-32 (9/68)

accessed (about 3 usec) and the system is released
although the LCS unit must be unavailable an additional 5
usec while it is completing its cycle. However, a different
LCS unit may be addressed immediately after the ‘LCS
advance’ signal. Because the access time is less than half
the cycle time of the LCS unit, the effective access rate is
reduced to 4 usec in interleaved mode. ‘

The address decode logic used for decoding CPU- and
channel-supplied addresses is shown in Diagram 4-206,
FEMDM. When the DEFEAT INTERLEAVING switch is

SAB

0 23
0-3 .
l S_pecifies addresses from 1,048,576 up to 8,388,608 bytes
(used for decoding of LCS units).
4 20
[P Specifies doubleword address within each LCS unit.
4,5
P Specifies addresses from 262, 144 up to 1,048,575 bytes
(used for decoding of HSS units).
6 20 :
- Specifies doubleword address within each HSS unit.
6
—[P Specifies half-point capacity of an HSS unit
(used as crossover indication during
20 non~interleave mode).

-I-_—. Specifies odd/even address.

Address on SAB

Maximum
HSS

exceeded

Yes

Select
required LCs Yes
HSS. feature

installed

Invalid
address,

Figure 2-21. Selection of Correct Storage Unit

set to the normal or PROC position, SAB(20) determines
the even or odd storage area: if SAB(20) = 0, then even; if
SAB(20) = 1, then odd. When the switch is set to the NO
REV position (defeat interleaving and no reversal of the
even and odd storage areas), SAB(6) determines the even
or odd storage area: if SAB(6) = 0, then even; if SAB(6) =
1, then odd. However, the function of SAB(6) is reversed
~if the switch is set to the REV position (defeat inter-
leaving with reversal of storage addresses). In this case,
SAB(6) = 0 specifies an odd storage area; SAB(6) = 1, an

Maximum
LCS

exceeded

Select
required
LCS.

even storage area.

The LCS addresses are decoded in 1,048,576-byte
groups, the first of which is contiguous with the last HSS
address. If the available HSS capacity is exceeded, the
‘select’ signals to HSS units are blocked, and the LCS byte
group is determined by SAB(0—3) and an above/below

~ detector. The above/below detector is conditioned by

pluggable jumper cards defining the HSS byte limit and,
depending on the HSS byte limit, by SAB(4) or SAB(4,5).
- The following examples show this operation. Assume a

2065 FETOM (9/68) 2-33

" 524,288-byte HSS capacity and a 2,097,152-byte. LCS

* capacity. Assume, also, an address of 1,179,648 is on the
SAB [SAB(3) and SAB(6) = 1]. The HSS ‘select’ signals
are blocked because the HSS has been exceeded and the
‘below’ signal is generated. The ‘below’ signal results from.
the 524,288-byte HSS limit signal being active (pluggable
jumper card) and SAB(4) = 0. The LCS byte group gating
finds SAB(0—3) = 0001 and the ‘below’ signal present; the
only LCS byte group requiring these conditions is the
first. Therefore, the address 1,179,648 is in the first
1,048,576 LCS byte group. (The address boundaries for
this first group are 524,288 and 1,572,863.)

Converting SAB Parity
e Generate parity bit P(A) for SAB(6—12).
o Generate parity bit P(B) for SAB(13—19).

The SAB-parity-conversion logic subtracts bits 0—5 and

bits 20—23 from SAB(0—23). On the basis of this
subtraction, two new parity bits are generated: P(A) for
SAB(6—12), and P(B) for SAB(13—19). In generating
these new parity bits, the parity-conversion logic must
take into account the setting of the DEFEAT INTER-
LEAVING switch on the system control panel. If this
switch is not in the PROC position, it will cause the
storage unit to reverse SAB(6) and SAB(20). Accordingly,
the same bit reversal must be performed by the parity-
conversion logic in generating P(A) and P(B) parity bits.

The basic decoding performed in the BCU and in the

storage unit to select a specific core location is shown in
Figure 2-22. Note that in the storage unit, only SAB(6 or
"20) and SAB(7-19) are gated into the odd or even
‘memory address register (MAR); i.e., the address of any
doubleword location in the odd or even area of the
storage unit is specified by 14 address bits.

During operation in the interleave mode, SAB(6—19)
remains constant for two storage cycles, and two consecu-
tive storage accesses are made per the same address: once
from the even and once from the odd area of the storage
unit. The selection of the odd/even area is made in the
BCU by decoding SAB(20); this bit changes once for each
storage access. .

During operation in the defeat-interleave mode,
SAB(6) and SAB(20) are reversed: the BCU now decodes
SAB(6) to select the odd/even storage area; and the
storage unit gates SAB(20) as the highest-order bit in the

. address of a core location.

From a system standpoint, SAB(6) designates the
one-half capacity of a storage unit; or, the total capacity
of an odd- or even-area in the storage unit. Accordingly,
the BCU continues to issue ‘select’ signals to the same
even, or the same odd, storage area until all core locations
in that area are accessed; i.e., SAB(6) changes from 1 to 0,
or vice versa.

2-34 (9/68)

From a system standpomt SAB(20) designates the
doubleword boundary and is updated for each storage
request. Because the storage unit substitutes SAB(20) for
SAB(6), the highest-order address bit (within the selected
odd/even area) is changed on each storage cycle. This
changing leads to interleaved accesses which are restricted

_ solely to the 0dd or to even area of the _storage unit; i.e.,

storage accesses alternate between the upper and lower

‘halves of the area.

The SAB-parity-conversion. logic *is shown in Figure
2-23 and in Diagram 4-207, FEMDM. This logic utilizes
Exclusive-OR circuits to generate, subtract, and add SAB
parity bits until the required P(A) and P(B) results are
obtained. Note that the output of an Exclusive-OR always
excludes those bits which are applied simultaneously on
both circuits inputs. Thus, depending on the input bits, an
Exclusive-OR can be used as an adder or as a subtractor.
When the parity bit of SAB(0-3) is combined with SAB
P(0-3,6 or 20,7) at an Exclusive-OR, the result is SAB
P(6 or 20,7) and SAB P(0—3) has been canceled or
subtracted. SAB P(6 or 20,7) is then combined with SAB
P(8-12) to produce the parity of SAB(6 or 20,7—12) by
addition of parity. In this manner, the parity of SAB(0—
23) is converted to parity of SAB(6 or 20,7—19) and then
sent to the storage unit. ’

Generating ‘Select’ Signal to Storage

When priority is granted to either the CPU or the channel,
the BCU attempts to issue a ‘select’ signal to storage
(Diagram 4-208, FEMDM). The manner in which the
‘select’ signal is generated depends on whether the LCS
feature is installed in the system.

Generating “Select’ Signal if LCS Is Not in System

e ‘Select’ signal is initiated by ‘CPU priority’ signal for
CPU requests.

o ‘Select’ signal is initiated by ‘address vahd’ signal for
channel requests.

The ‘select’ signal logic is activated by the ‘CPU priority’
signal or, in the case of channel requests, by the ‘address
valid’ signal. If no previous selection attempt has been
made (‘storage 2’ latch not set), detection of the ‘CPU-
priority’ or ‘address valid’ signal results in the setting of
the ‘storage 2’ trigger. The ‘storage 2’ trigger sets the
‘storage 2’ latch to gate a 135-ns ‘select’ timing signal to
the final gating logic for HSS units 1 through 4. This
135-ns timing signal is sent to storage if the unit power is
on, if a valid unit address is decoded, and if the odd/even
area of the unit is not busy servicing a previous request.
The absence of storage power or the failure to decode a
valid storage address results in an invalid address condi-
tion. (Refer to “Detection of Invalid Address.””) However,
if the ‘select’ signal is not sent due to a busy storage

WOLIA $90T

se-z (89/6)

SAB(20)

DI or DI and Reverse

QOdd

SAB(6)

Even

D!

DI and Reverse

OR

Dl or
DI and Reverse
Storage Areas

6 if Not Reverse
or
Not 6 if Reverse

*Defeat Interleave (DI) mode

can be entered manually
or through program .

Even|

Odd

OR

Even

6 if Not Reverse
or
Not 6 if Reverse

OR

Odd

Figure 2-22. Basic SAB Decoding Circuits in BCU and HSS Unit

20)(6 R 20)(6
SAB(0-23) P(6 or 20,7-12)
DR v >
SAB(0~23) and
Parity from CPU
Dl or DI and Reverse Parity .
Conversion
Logic
| Reverse Parity o) Pa3-19)
5
| BCU
DR
S‘6‘3(0'23)—
I and Parity !
| 1/0 CHANNELS
M Cs M - Multiplex S) CS> CS>
S - Simplex
0 23
SAB
0 23
: 5 7 19 20
]
MAIN
STORAGE
| A OR
l 6 or 20
I SAB(7-19) o P(A) and P(B)
l “Gate Odd A
II Gate Even y
- 4 ; o
(e) o o
‘_’ P(A) and P(B) P(A) and P(B)
[— 1
MAR MAR
—— PC PC
| 14 1 14
I 0 0
1 1
2 2
Odd Core Area Even Core Area
I ————
|
l Select Odd Select Even
I 16,384 16,384

-]

[sAB PO-7)
SAB P(0-3,6 or 20,7)
' Subtract)
PG
SAB(4,5,6 or 20*) SAB P(4,5,6 or 20)
SAB P(6 or 20,7)
*Replace SAB(6) with SAB(20) if in Subtract
Defeat Interleave mode and (6) # (20)
PG
SAB(0-3 ‘ SAB P(0-3)
SAB P(8-15) SAB P(8-15)
Storage - .
address SAB P(6 or 20,7-12) P(A) h
from CPU < Add - i
orl/O - '
channel SAB P(8-12)
Subtract
PG
SAB(13,14,15) SAB P(13-15)
To
. - storage
SAB P(16~23)
Subtract ~—=—=] Rev Parity
PG [Mew ——
SAB(21-23) ‘ SAB P(21-23) —_—
- P(B]
Subtract ® J
SAB(20)

Iigure 2-23. SAB Parity Conversion Logic

condition, the ‘HSS select sent’ trigger is not set. The reset
state of this trigger and the set state of the ‘storage 2’
latch initiates another selection attempt. Successive
attempts are thus made until the storage unit becomes not
busy and a ‘select” signal is sent to that unit. The sending
of the ‘select’ signal to storage initiates a BCU cleanup
operation which restarts the CPU clock and resets the
BCU control circuits for handling of the next request.

Generating ‘Select’ Signal if LCS Is in System
e ‘Storage 2’ trigger is set only when storage not busy.

Detection of the ‘CPU priority’ or of the ‘address valid’
signal by the select logic results in setting of either

Note:
A detailed version of this figure
is shown in Diagram 4-207, FEMDM.

‘storage 1’ or ‘storage 2’ trigger, depending on the
availability status of the storage data bus. The bus
availability status is specified by the state of the ‘advance
waiting® trigger: if this trigger is reset (no storage
advance), the bus is available; if set, unavailable.

If the storage bus is available, the ‘storage 2’ trigger is
set; however, if the storage bus is not available, the
‘storage 1° trigger is set. Note that once the ‘storage 1’
trigger is set, it forms a loop with the ‘storage 1’ latch to
continue trying to set the ‘storage 2’ trigger. When the
‘advance’ signal is received from the storage using the data
bus, the ‘advance waiting’ trigger is reset, allowing the
‘storage 2’ trigger to be set.

2065 FETOM (9/68) 2-37

The set state of the ‘storage 2’ trigger results in sending
the ‘select’ signal to the HSS or to the LCS. The
conditions for LCS selection are similar to those described
for HSS. However, one major difference should be noted:
the ‘storage 3 trigger maintains the ‘storage 2’ latch set
for two successive cycles to compensate for a 1-cycle
delay in starting the invalid address test. This delay is due
to the need of sampling the state of the ‘advance Waltmg
trigger during LCS selec’uon

Detection of Invalid Address
o Address is outside physical storage capacity.
e Power is down on storage unit.

An invalid address condition is detected in the BCU if
power is off in the addressed storage unit or if the address
supplied by the requesting unit exceeds the physical
storage capacity of the system. There are two invalid
address detection circuits: one to detect an invalid address
from the CPU, and another to detect an invalid address
from the channel. The ‘invalid address’ signal has a dual
function: to detect an invalid address and to select an
address decoder. For a channel request, an ‘invalid
address’ signal disables the CPU decoder; for a CPU
request, a similar signal disables the channel decoder. The
invalid address logic is shown in Diagram 4-209, FEMDM.

The BCU detects an invalid address by examining the
states of the ‘test for invalid address’ trigger and the
‘select tried’ latch: if both are set, the address is valid; if
the ‘test for invalid address’ trigger is set but the ‘select
tried’ latch is reset, the address is invalid. The subsequent
paragraphs analyze the conditions that lead to detection
of an invalid address and describe the BCU operation that
follows.

The ‘test for invalid address’ trigger is set when a
‘select’ signal is issued to the final decode-gating logic of
the BCU. The output of this trigger then monitors
whether the ‘select’ signal is successfully passed by the
gating logic. If the address of a storage unit has been
defined correctly, and if its power is turned on, the
‘select” signal is passed through the gating logic to set the
‘select tried’ latch.

The set state of the ‘select tried’ latch signifies that a
successful storage selection has been made; i.e., a ‘select’
signal will be issued to storage even though the sending of
the signal may be delayed if the unit is busy servicing a
previous request. Thus, this condition indicates that a
valid storage address has been decoded.

If the ‘select’ signal fails to pass through the final
decode-gating logic, the ‘select tried’ latch is not set. This
condition indicates to the BCU that a successful storage
selection is not possible due to an incorrect address on the
bus or a power failure in the storage unit.

Upon detection of an invalid address, the BCU alerts

"the requesting CPU or channel of the error condition and

12-38 (9/68)

then proceeds to force a ‘select’ signal to storage.
(Detection of an invalid address during I-Fetch does not
necessarily result in a program interruption.)

The forced storage selection is made to generate a
‘BCU cleanup’ signal, which will allow the CPU to
continue (CPU clock was stopped) or the channel to
continue. The BCU forces a request to any storage unit
that has power, in the ascending order: starting with unit
1 and, if unit 1 power is off, proceeding to units 2, 3, and
4. The storage unit accessed by a forced ‘select’ signal,
however, is not allowed to complete its cycle because the
BCU also issues a ‘cancel’ signal to that unit. The ‘cancel’
signal prevents storage data transfer to the SDBO; thus 0’s
are transferred to the selected register in the channel or
the CPU.

Recording of Error Indications from Storage

~ @ Storage errors are address check, data check, protec-

tion check.

If a storage request causes an error within the selected
storage unit, an error indication is sent from that unit to
the BCU. The storage-error-recording logic in the BCU is
shown in Diagram 4-210, FEMDM. Note that the PROC
CHK indicator is activated only if a CPU request is
responsible for the storage error; the STOR CHK indicator

is activated if either a processor or channel request has

caused the error. (If a storage error is received when the

CPU CHECK switch is set to the PROC position and the

machine check mask bit (bit 13) is a 1, it causes a logout

operation.)

The storage-error indicators (Stor Adr Chk and Stor
Data Chk) are activated as a result of one of the following
error conditions:

1. Storage Address Check. A parity error has been
detected on either SAB or the ‘mark’ bus. (On store or
set-key operations, the original data is regenerated into
the addressed storage location to prevent loss of data.)

2. Storage Data Check. A parity error has been detected
on the SDBI, the SDBO, or the storage-key bus.

In addition to the address-check and data-check error
conditions, the storage unit also generates a protection
check if the key supplied by the request either is not zero
or does not match the protection key assigned to the
storage area being addressed. (Upon detection of this
condition, the storage unit cancels the request to prevent
loss of data.) A protection-check indication from storage
is routed via the BCU and applied directly to the CPU
I-Fetch-and-interrupt logic.

- Resetting of BCU Logic

o Sending of ‘select’ signal to storage initiates the
following reset signals: ‘channel accept’, ‘BCU clean-
up’, ‘late BCU cleanup’, ‘late BCU cleanup for CPU
request’.

The BCU-reset logic is shown in Diagram 4-211, FEMDM.
After the BCU sends a ‘select’ signal to storage, this logic
generates the following reset signals: ‘channel accept’,
‘BCU cleanup’; ‘late BCU cleanup’, and ‘late BCU cleanup
for CPU request’.

The reset signals are initiated as a result of the ‘pseudo
accept’ signal; i.e., a signal which simulates an “accept”

condition from storage. The start of the ‘pseudo accept’”

~ signal is controlled by routing the ‘select timing signal’
signal through a number -of inverters in the BCU which
~provide a total delay of approximately 80 ns. The delayed
‘select timing signal’ signal is then AND’ed with the select
sent’ signal to set the ‘accept’ latch. The output of the
‘accept’ latch initiates the ‘channel accept’ and ‘BCU
cleanup’ signals. -

The reason. for delaying the ‘BCU cleanup’ signal
(approximately 80 ns after the ‘select timing signal’ signal)
is to prevent a new priority test from taking place on the
same cycle in which the ‘select’ signal is issued to storage.
(This condition could result in two successive ‘select’
signals being issued less than 400 ns apart; i.e., an early

- ‘BCU cleanup’ signal would reset the ‘BCU busy’ trigger
before the ‘BCU busy’ latch had time to latch on; the
resulting priority test could initiate another ‘select’ signal
on the following BCU cycle.)

The time duration for which the ‘accept’ latch stays set
- must be such as to “extend” the ‘BCU cleanup’ signal past

B2 time of the following clock cycle. This condition is

necessary to provide the following functions:

1. Inhibit setting of the ‘stop CPU clock’ trigger, if the set
state of the ‘CPU 2’ latch coincides with the issue of
the ‘select’ signal. (The ‘stop CPU clock’ trigger is so
implemented that if its reset logic is active, its set logic
is prevented from setting the trigger; see Diagram
4-205, FEMDM.)

* 2. Inhibit setting of the ‘test for invalid address’ trigger;

i.e., when a successful ‘select’ signal is generated, the
‘BCU cleanup’ signal blocks the invalid address test

~ (Diagram 4-209, FEMDM).
The ‘late BCU cleanup’ and “late BCU cleanup for CPU
request’ signals are generated approximately 130 ns after
the ‘accept’ latch is set. These signals clear all BCU

“functional circuits associated with the previous request to
“allow servicing of a new request on the following cycle:

the ‘late BCU cleanup’ signal resets all channel-priority
and data-request triggers; the ‘late BCU cleanup for CPU

‘request’ signal resets the ‘CPU priority’ trigger and

removes the CPU address from the multiplex bus.

Resetting of BCU logic on an LCS operation is delayed
one cycle (200 ns) because the ‘accept’ signal from the
storage (LCS) is used instead of the ‘pseudo accept’ signal.
This delay allows time to test the busy condition of the
LCS unit. Figure 2-24 shows the loglc to develop the ‘LCS
cleanup’ signal.

L

8CuU

D-Sync A Busy
L 11
Clock Late BCU Cleanup
MCO061 MC321
CPU LCS CPU
Priority Fetch
] T -L
Late BCU Cleanup for CPU Request LCS Advance
' MC166 MCB91
LCS Select LCS
D Req Try Accept
T T Accept (LCS) l A L
Late BCU Cleanup for CPU Request|) LCS Cleanup LCS Cleanup
. MCO61 . - MC841 MC831 LCS LCS
Select Accept Cleanup LCS Cleanup
Sent A T L
LCS Not Busy | AL T . .
: . Clock Clock
LCS Clecnup MC846 MC846

MC841

Figure 2-24. BCU Reset for LCS Operation

2065 FETOM (9/68) 2-39

DETAILED ANALYSIS OF BCU OPERATIONS

The subsequent paragraphs -describe the operational
- sequences performed in the BCU during processing of
storage requests for the CPU or channel.

CPU Storage Requests

The functional sequence for CPU storage requests is
illustrated in Diagram 4-201, FEMDM.

CPU storage requests are issued to the BCU from
I-Fetch, ROS, and Scan logic, and both the storage
request and the resulting data transfer are overlapped with
processing. Although all CPU requests are handled by the
BCU as basic fetch or store. requests, the following
variations exist: 3- and 4-cycle fetch, store, insert-key,
set-key, test-and-set, and single-cycle operation. Processing
of the request is interrupted when either the storage unit
or the BCU is busy, or when the requested storage data is
not available in the specified time.

3- and 4-Cycle Fetch Operations

-@ Ingating of requested storage data is specified at 3 or 4
cycles following storage request.

Because the BCU operates at the same machine cycle
speed as the CPU, and because the access time to storage
requires 3 cycles, the CPU is allowed to continue

BCU found to be initially
busy for 2 cycles (400-ns).

processing for 3 cycles following the request. The BCU

must keep track of the CPU cycle progression so that the

SDBO ingating is executed at the correct time. If data is

not present at the SDBO at the end of 3 cycles, or if the

SDBO is to be ingated following the 4th cycle, the CPU

clock is stopped. The requested data may not be present

on the SDBO for one of the following reasons:

1. A BCU-busy condition, wherein priority cannot be
established immediately because of channel inter-

. ference. 7

2. A storage-busy condition, wherein the addressed
storage unit is still servicing a previous request.

3. Storage access time limitations, wherein a request has
been made to an LCS unit (optional feature).

Figure 2-25 illustrates a typical clock control timing
sequence for a 4-cycle fetch (with the BCU initially busy
for 2 cycles). For detailed timing charts of 3- and 4-cycle
fetch operations, refer to ALD’s M8221, M8241, and
M8251.

Store Operation

Store-data requests are always made per D. Data from ST
is gated to the SDBI for transfer to the storage unit. Mark

- trigger settings are transferred to the storage unit (via the-

‘mark’ bus) to specify which of the eight bytes of data are -
to be stored. Processing of the store request is interrupted

Request cycle
“| in CPU [+

600-ns access Ingating o
cycle in CPU

BCU Clock [

CPU Clock) [1 2 ¢

¥

4 ,'CPU"1

CPU request logic set up

" | CPU stops here (to retain

storage address) until

to 8CU . BCU becomes not-busy.
_

in BCU |

in CPU Storage address resets here
if CPU clock is not stopped.

Storage address available /
|

CPU Priority

(Address must be retained for]
use in selecting a storage unit

'Select' signal generated to when CPU gains priority.).
storage unit

'Stop CPU clock’ trigger

Storage data on SDBO

Ingate data from SDBO
to CPU

Advance

Notes:

1. 4-cycle fetch to 750-ns storage unit (600-ns access) with

BCU initially busy for 2 cycles (400-ns).

2. CPU clock is shown stopped at the end of the 2nd cycle

following the request cycle in CPU,

Reason for stopping: to retain storage address for use
in selecting a storage unit when BCU is found to be

busy (store or fetch operations).

Figure 2-25. Typical CPU Clock Stopping Sequence

240 (9/68)

if the BCU or the storage unit is busy. For detailed timing
of the store operation, refer to ALD M8211. Note that
the ‘store’ signal prepares the storage unit for storing data.

Insert-Key Operation .

@ ‘D-storage tequest’ and ‘insert key’ signals are sent
from ROS to BCU.

e Basic fetch operation is performed by BCU.

e Five-bit (plus parity) storage protection key is trans-
ferred from storage to CPU via ‘key out’ bus.

Insert-key operations are essentially fetch requests per D,
in which a five-bit (plus parity) storage protection key is
obtained from the specified storage protection area of
main storage and inserted into F(0—4) of the CPU. These
operations enable the CPU to examine the key patterns
used by the storage protection mechanism.

An insert-key request sets the ‘insert key’ trigger in the
BCU to modify the normal stepping of the CPU se-
quencers: the ‘CPU 5’ trigger is set on the first cycle
following the insert-key request, and further sequencer
stepping is not performed. The ‘stop CPU clock’ trigger is
also set on the first cycle following the insert-key request.
Thus, the CPU clock is stopped on the second cycle after
the request.

When the BCU awards priority to the CPU, the
contents of D are gated to the SAB. A ‘select’ signal is
then generated and sent to the addressed storage unit
together with an ‘insert key’ signal. In the storage unit,
the two signals (‘select’ and ‘insert key’) initiate an
insert-key operation. The seven high-order bits of the SAB
are decoded to determine the protection key location, and
the key pattern (five bits plus parity) is fetched from that
location. The storage unit then generates an ‘advance key’
signal, which prepares the BCU for ingating of the ‘key
out’ bus into the F-register of the CPU. A detailed timing
chart for the insert-key operation is shown on ALD
M8211.

Set-Key Operation

e ‘D-storage request’ and ‘set key’ signals are generated
from ROS to BCU.

e Basic store operation is performed by BCU.

o Five-bit (plus parity) storage. key is transferred from
CPU to storage via ‘key in’ bus.

Set-key operations are essentially store requests per D in
which a five-bit (plus parity) storage protection key is
obtained from F(0—4) in the CPU and stored into the
specified storage protection area of main storage. These
operations enable the CPU to set new key patterns into
the storage protection mechanism.

A set-key request sets the ‘set key’ trigger in the BCU.

In addition, all CPU mark -triggers are set during the
set-key operation. Receipt of the D-storage request by the
BCU then sets the ‘store’ trigger and starts the CPU
sequencers in the normal manner. When the CPU is
awarded priority, the contents of D aré gated to the SAB,
and the ‘select” and ‘set key’ signals are sent to the
addressed storage unit. (The sending of the ‘store’ signal
to the storage unit is inhibited during the set-key
operation.) :

The ‘select” and ‘set key’ signals initiate a set-key
operation in the storage unit. The seven high-order bits of
the SAB are decoded to determine the protection key
location, and the ‘key in’ bus is gated into that location.
For a detailed timing chart of the set-key operation, see
ALD M8211.

Test-and-Set Operation

Although a test-and-set request combines aspects of both
fetch and store operations, the basic handling of the
request by the BCU is similar to a 3-cycle fetch per D. The
major difference is that the BCU sends one mark and a
‘test and set’ signal to the storage unit specified by the
D-address. The basic test-and-set timing sequence is as
shown on ALD M8221.

Single-Cycle Operation

e START pushbutton provides for manual stepping
through CPU cycles.

e RATE switch in SINGLE CYCLE STORAGE INHIBIT
provides for manual stepping through all cycles within
request sequence. (Storage unit is not selected; data
transfer is inhibited.)

e RATE switch in SINGLE CYCLE enables CPU to run
automatically from time ‘select’ signal is sent to storage
until data transfer operation is completed.

When CPU operations are being tested in the single-cycle
mode, the CPU clock is stepped manually; one CPU clock
cycle results for each depression of START. The BCU
clock, however, is not affected by the single-cycle mode
and runs automatically, thus allowing the BCU to con-
tinue servicing storage requests from the CPU or from the
I/O channels.

The single-cycle operation can be performed by the
CPU with or without access to storage: if the RATE
switch is placed in SINGLE CYCLE, the CPU must access
storage whenever it steps through a cycle specifying a
storage request; if the RATE switch is in SINGLE CYCLE
STORAGE INHIBIT, all storage requests are ignored by
the BCU.

When servicing storage requests from the CPU in the
single-cycle mode, the BCU must ensure that the gating of
data to or from the CPU is synchronized with the storage

2065 FETOM (9/68) 241

unit operation. To accomplish this function, special

single-cycle logic in the BCU controls the CPU clock and
runs it automatically whenever synchronized ingating is
required. Refer to Diagram 4-212, FEMDM, a functional
flowchart of BCU operations during serv1c1ng of CPU
requests in the single-cycle mode.

To enable manual stepping through as many CPU
cycles as possible, the BCU delays sending - the ‘select’
signal to storage until the time when the CPU sequencers
stop the CPU clock. (This delay is implemented by
blocking CPU priority, when in the single-cycle mode,
until the CPU clock is stopped.) The stop-clock condition
indicates to the BCU that the data transfer between CPU
and storage must be executed on the next depression of
START.

At this point, the nature of the request is of primary
consideration. If a fetch-data request is in progress, the
BCU must override the single-cycle controls and run the
CPU clock automatically until the CPU executes the ROS
word with the ‘ingate SDBO’ micro-order. If a store-data
request is in progress, the BCU need not control the CPU
clock because the CPU data is placed on the SDBI when
CPU priority is established and a ‘select’ signal is sent to
storage; i.e., as soon as the START pushbutton is
depressed. Thus, on store-type requests, the operator can
single-cycle through every ROS word of the CPU micro-
program; on fetch-type requests, the operation auto-
matically skips over one or two ROS words, depending on
whether a 3- or 4-cycle request is specified. (Note that the
time slice between two consecutive depressions of START
does not enter into consideration; this time slice is much
_ greater than the 600-ns time mterval required to access
storage.)

When START is depressed and a ‘select’ signal is sent

to storage, the resulting ‘BCU cleanup’ signal réstarts the
CPU clock. The state of the CPU sequencers, after the
first CPU clock signal is generated, indicates the type of
request in progress and whether additional stepping of the
CPU clock is required; this stepping is performed auto-
matically under control of the ‘CPU clock go’ trigger.
Note that the ‘CPU clock go’ trigger is always reset on the
first clock signal after the ‘CPU 5’ latch is set.

If a store-data request is in progress, the ‘CPU §’ latch
is set before the CPU clock is restarted. Thus, as soon as
the CPU clock is restarted, the ‘CPU clock o’ trigger is
reset to indicate that no additional CPU clock cycles are
required to complete the request.

If a 3-cycle fetch-data request is in progress, the ‘CPU
4’ latch is set before the CPU clock is restarted. When the
- CPU clock is restarted, the first clock signal sets the ‘CPU
5’ trigger/latch -sequencers, and accesses the ROS word
with the ‘ingate SDBO’ micro-order. Note, however, that
the ingating of the SDBO into the CPU takes place on the
following cycle. Thus, the CPU clock must be automati-
cally stepped an additional cycle to perform the ingating.

242 (9/68)

" This function is performed by the ‘CPU clock go’ trigger,

which is reset by the same clock signal that gates in the
data into the CPU.

If a 4-cycle fetch-data request is in progress, the ‘CPU
3’ latch is set before the CPU clock is restarted. In this
case, the ‘CPU clock go’ trigger is not reset until two
cycles after clock-restart. Thus, the CPU clock is auto-
matically stepped through two additional cycles to
perform the required ingating. -

As mentioned previously, sending the ‘select’ signal to
storage is delayed when servicing requests in the single-
cycle mode. This delay is accomplished as shown in the
following illustration: : :

CPU Request
Stop CPU Clock Tgr Set Clock Go Finishing Block CPU
A T T Priority
OR
- MC161
MC291 MC291
A
Single-Cycle Mode
N
(e V]
IC, D, or Scan-Sync Latch On) Priority
B-Clock A 7
MC166

Note that the ‘block CPU priority’ signal is inactive
when the CPU is not in the single-cycle mode. In this case,
the ‘CPU priority” trigger is set on the cycle following the
setting of the appropriate IC, D, or scan-sync latch.

When servicing requests in the single-cycle mode, CPU
priority is initially blocked by the reset state of the ‘CPU
clock go’ trigger. When the BCU is ready to issue a ‘select’
signal, however, the ‘CPU clock go’ trigger is set and
remains set until the request is completed. During the
final stage of request servicing, the “CPU priority” trigger is
reset by the ‘BCU cleanup’ signal. The ‘request finishing’

. trigger prevents immediate setting of the ‘CPU priority’

trigger if another sequential CPU request (in single-cycle
mode) has been entered into the sync latch. After the
current request has been serviced, the ‘CPU clock go’ and
‘request finishing’ triggers are both reset. The ‘CPU clock
go’ trigger then blocks CPU priority until the pending
request stops the CPU clock.

Channel Storage Requests

e FEach channel storage request transfers 64 data (plus 8
parity) bits between channel and storage (via SDBI/
SDBO).

e Data transfer is performed by asynchronous request/
response sequence. :

I/0 channel data-transfer operations are initiated as a

result of the CPU program selecting an I/O device and

loading I/O control words into the associated channel.

When data transfer is required, a series of requests is made

by the channel to the BCU. After each request is accepted

by the BCU, the proper storage unit is selected, and data

is transferred either from storage to the channel (via the
SDBO) or from the channel to storage (via the SDBI) on a
64-data-bit (plus 8 parity bits) basis. Thus, the function of
~ the BCU is to accept channel requests, establish channel

_priority, decode the storage address supplied by the
channel, select the proper storage unit, and execute the
data transfer. » _

When priority is established for a particular channel, a

‘BCU response’ signal causes that channel to gate the
storage address to the SAB. The storage address is then
decoded by the BCU, and, if the addressed storage unit is
available, a ‘select’ signal is generated and sent to the
storage unit. If a store-data operation is required by the
requesting channel, a ‘store’ signal is generated by that
channel and is combined with the ‘select’ signal in the
addressed storage unit to produce a store operation.

When the ‘select’ signal is sent from the BCU to the
addressed storage unit, a ‘channel accept’ signal is sent to
the requesting channel, verifying that the storage unit has
been successfully selected. If a ‘channel accept’ signal does
not follow the ‘data request’ signal, the requesting channel
assumes that the selection attempt was unsuccessful.
Detailed timing charts for channel requests are shown on
ALD M8281.

2065 FETOM (9/68) 2-43

Section 4. Data and Control Registers

This sgction describes the registers employed for CPU data
flow .and control functions. For the overall register data
flow, see Diagram 3-2, FEMDM.

O-REGISTER

The Q-register is a doubleword (64 data bits plus 8 parityl

bits) buffer for instructions entering the CPU from main
storage on the SDBO (Figure 2-26). Data is transferred to

the local storage address latches (LAL), the parallel adder,

or the R-register. :

input

Instructions are transferred from the SDBO into Q by

means of a gate signal decoded from the ROSDR latches.
~ The transfer of data is initiated by either the I-Fetch
hardware or by the ROSDR latches at not-clock time; the
transfer controls remain active for one cycle (200 ns). The
instructions are transferred into Q at clock time.

Op-Code Transfer

e Onlv halfwords containing op codes are tranéferred to
R.

o Selection of halfword containing op code is determined.
by IC(21,22).

Only those halfwords in Q containing op codes are
transferred to R. Because RX, RS, and SI instructions are
composed of two' halfwords and SS instructions are

composed of three halfwords (only the first of which-

contains the op code), it is necessary to select the proper
halfword to be transferred to R. Note that because RR
instructions are composed of only one halfword, the next
halfword to be transferred to R after an RR instruction is
completed is the next sequential halfword in Q.

- Selection of the halfword for transfer to R is deter-

mined by IC(21,22), and transfer is performed either

directly through hardware or as a result of an I-Fetch
micro-order. Recall that during an I-Fetch operation the
op code of the next instruction to be executed is
transferred from R to E, with R then being refilled with
the next sequential op code. Because the op code of the
next instruction to be executed is always in R, its format

(positions 0 and l)vcan be predecoded to determine the

number of halfwords that compose that instruction and
thus indicate which of the four Q-register halfwords

244 (9/68)

_contains the next sequential instruction op code. This

predecoding occurs at end-op time of each instruction; the
result (Q halfword number) is set into IC(21,22), which in
turn selects a subsequent I-Fetch ROS word that specifies
the next op-code halfword to be transferred to R.

Note: 1C(21,22) is not used in addressing main storage,
but only specifies which of the four Q-register halfwords
is to be transferred to R by the following I-Fetch -
sequence. The IC(21,22) values associated with each

- Q-register halfword are illustrated in Figure 2-27.

An exception to the normal I-Fetch ROS word method
of transferring the Q-resister halfwords to R is as follows.
Assume a condition whereby a four-byte (RX, RS, or SI
format) instruction occupies the right half of Q, IC(21,22)
= 10, and a storage request is generated to main storage. .
When the I-Fetch sequence loads the op code of this
four-byte instruction into R, the predecode logic deter-
mines that the next doubleword being accessed from main
storage contains, in its leftmost byte, the op code of the
next sequential instruction. [IC(21,22) is also stepped to
00 during this particular I-Fetch.] When, during the
following I-Fetch sequence, the contents of R are trans-
ferred to E for execution, R is not refilled from Q in the
normal manner because the particular I-Fetch ROS word
selected to control this operation does not contain a
micro-order specifying refilling of R. When that double- -
word being brought from main storage enters Q, however,

Q(0—15) (the op-code halfword) is allowed to proceed

directly on into R. Thus, R again contains the op code of
the next instruction to be executed, even though the
instruction was not present during the I-Fetch sequence.
This function is accomplished solely through the use of
hardware that constantly tests for the presence of two
signals: ‘I-Fetch latch 1 and 3 set’ and IC(21,22) = 00°.

B-Field and D-Field Transfer
The instruction B-field, which specifies LS registers, and

- the D-field, which is the main storage address displace-

ment, is transferred from Q to LAL and the parallel adder,
respectively. To save time, this information is transferred
directly from Q instead of from R or E, thus allowing LS
and the address to be available before the execution time
of the associated instruction. Transferring these fields
must be performed selectively so that the information is
associated with the correct instruction.

SDBO

0 &3
] .
Q | b RQ
0 . ! i 63
0 3 16 19 32 35 48 51
4 15 20 31 36 47 52 63
0o 15 16 3132 47 48 63
————
| | i 1 |
1 4 : 1| 4 '
n | pe——
- | -
LAL (Read) LS| | |LAR (Write)LS
0 4] 1 o 4
HI ' '
. 15
Local | p—
Stof -
rage Ls R RR
0 31 15
52
7
4 63 4 63/. 67
/
/
PAA PAB. . 7
| /7
/7
V4
/
/
. -
» PAL - AP
4 63| 67

Figure 2-26. Q-Register Data Flow

B-Field Transfer

The four-bit Q-fields (B-field address data) are normally
transferred to LAL at end-op time, under hardware
control, per 1C(21,22), or, for certain branch instructions,
per D(21,22). (See Diagram 4-301, FEMDM.)

For SS instructions, however, two B-field values must
be transferred to LAL. The first B-field is transferred to
LAL at end-op time, per IC(21,22), under hardware

control and in the normal manner. [D(21,22) is used for.

branch instructions.] The B-field of the second operand is
then transferred to LAL (from the selected portion of Q)
during I-Fetch of the SS instruction by a micro-order
contained within one of the I-Fetch ROS words.

All transfer of data from Q to LAL takes place at
not-clock time; the data is transferred into LS at clock
time.

Note: Because an RR instruction can be contained within

R and E, only halfword transfers from Q to R are required

- for RR instructions. All addresses for LAL can therefore
be transferred directly from R or E. \

‘ D-Field Transfer

Selection of the Q-register D-field for transfer to the
parallel adder (for use in address computation) is deter-
mined by the particular ROS word selected for use. The
D-field transfer occurs at clock time.

2065 FETOM (9/68) 245

. -
Q-Halfword 1] Halfword 2 Halfword 3 | Halfword 4 RQ
0 15[16 31/32 47 |48 63

Figure 2-27. Q-Register Halfword Transfer Per IC(21, 22)

R-REGISTER

The R-register is a halfword (16 data bits plus 2 parity
bits) register that provides intermediate buffering between
Q and E for the halfword that contains the op code
(Figure 2-28). This intermediate buffering speeds the refill
of Q by allowing a storage request when the last op code
has been transferred from Q but has not yet been
executed.

Input

The R-register is loaded with one of the four halfwords in
Q at I-Fetch time under ROS control. The contents of
PAL(56—63) are also transferred to R (at I-Fetch time of
the subject instruction of an Execute instruction).

Output

Whenever the instruction in R is predecoded as an RR
non-branch instruction, R(8—11) is transferred to LAL at
end-op time (Diagram 4-302, FEMDM). (The RR format
indicates that R contains the entire instruction.)

Whenever the instruction in R is predecoded as an RR
branch instruction, R(12—15) is transferred to LAL at
end-op time. The contents of R are transferred to E at
I-Fetch time under ROS control.

Predecoding

The R-register predecode logic samples R(0,1) at end-op
time to determine the format of the next instruction.
Time is saved because prefetching of operands per the
format prepares data for use after the instruction is
transferred to E. In addition, R(0,1) and IC(21,22)
determine the need for storage requests to refill Q.

R(0—4) is tested for shift instructions. Because shifting
does not require a storage request, time is saved if a shift
instruction is decoded when a Q-refill request is generated
2 cycles before end op. The Q-register refill exceptional.
condition is eliminated because there is no interference
between the shift instruction and the Q-refill storage
request.

2-46 (9/68)

R(0-7) is sampled for branch instructions so that
prefetching of the new instruction address can start
immediately, thus saving time. R(12—15) is sampled for a
zero condition which prevents the branch in the RR
format. '

On a branch end op, the instruction halfword is still in
the process of being requested from storage. To save time
in prefetching operands, the instruction format is pre-
decoded from the SDBO rather than waiting until the

instruction becomes stable in R.

E-REGISTER

The E-register is a halfword (16 data bits plus 2 parity
bits) register which contains the op-code halfword of the
instruction being executed (Figure 2-29).

Input

An op-code halfword (including two parity bits) is
transferred from R to E during a normal I-fetch sequence
under ROS control. On shift operations, D(18—21) is
transferred to E(12—15) via the E-register incrementer.
The data path from PAIL(56—63) to E(8—15) is used in
some SS format instructions to control the specified
number of bytes.

Output

Op-code signals to control processing are decoded directly
from E(0—7) without the use of gating logic.

LS is addressed by transferring E(8—11) or E(12—15)
to LAL(1-4). E(8,11,12,15) is examined for an LS
address specification error. When manual operations are
performed using LS, E(11,12-15) is transferred to
LAL(0,1—4) so that all registers may be addressed.
Transferring E(8-11) to PAB(56-59), E(12-15) to
PAB(60-63), and E(8—15) to PAB(56—63) provides for
multiply and divide operand aligning, byte count control
for SS format operation, and subsequent transfer to other
registers. E(8—11), E(12—15), or E(8—15) may be sent to
the E-register incrementer for alteration under ROS
control.

E(8-15) is sent to an external device to provide
external-control information during direct control opera-
tions. The data is transferred when the ‘timing gate’
trigger is set. E(8—15) is also sent to the PSW interruption
code [S(24—31)] on a supervisor call interruption only,
and to control triggers such as ‘disable interleaving’ and
‘diagnose FLT".

Incrementers

Two four-position incrementer registers are available, with
ROS controls, for either treating E(8—11) and E(12—15)
separately or treating E{(8—15) as an entity. Positions
E(8—11) and E(12—15) can be either incremented or

[=)
S

0 1516 3132 47 48 63

1 4

14 I

Shift

Predecode

-
LAL (Read) LS

4 Branch

0 4 Branch

|

|

| : s

| |LAR (Write) LS Shift and
|

J RR

Local

Storage
LS

0 31

Logic

Format
Predecode

PAA

PAL

63, 67

Figure 2-28. R-Register Data Flow

decremented by 1, but E(8—15) can only be decremented
by 1 (for example, used for reducing length fields in
logical VFL operations).

The E-register incrementers consist of latch circuits
with logic decoder inputs (Diagram 4-303, FEMDM). The
four-position incrementers are not capable of counting,
but rather decode the binary information at their input,
generate a binary value of 1 greater (or 1 less), and then

56 63

set that value into the latches. Processing E(8—15) as an
entity is accomplished by logically connecting the two
four-position incrementers.

ROS controls also load constants into the E-register
incrementers during execution of certain instructions
(e.g., fixed-point multiply or divide) in order to select
serial adder positions when developing products or quo-
tients.

2065 FETOM (9/68) 247

- -
D RD R RR
0 23 0 15|
18 21 0 15
8 15
8 |1112[15
0 15
] -
E RE
10) 15
0’ 78 .15 .
| Direct Data Timing _. X
[- [———————————-T0 external device
- ’ To PSW interruption code
Op-~Code -8 1112 15 [5(24-31)] and control triggers
Decoder To ification checking |
specification checkin ic
DN 8 1112 15 P g log
11
» 15
- 12 115
8 I 1112 I 15
1 4 77177 4 _
| ‘ E-Register
- I - Incrementer
LAL (Read) LS | LAR (Write) LS
0 4 : 0 4] 8 1112 15
N
Local ’
Storqge LS
0 3 56 | 63
4 63 4
PAA ’ - - PAB
4 PAL 63
56 43

Figure 2-29. E-Register Data Flowv

During shift instructions, D(18—21) is gated into the
E(12-15) incrementer; decrementing functions reduce
the specified shift amount as each shift operation is
completed, and thus control the shift instruction.

When E(8-15) is modified in the E-register incre-
menter, E(8—15) parity may change. Diagram 4-304,
FEMDM, shows the parity prediction logic to yield

- 2-48 (9/68)

correct parity for E. If, for example, E(15) = 0 and the
‘Add 1 to E(12—15)’ signal is active, the ‘change parity of
E(12-15)’ signal is developed. Assuming E(8—15) is odd,
the INCR(8-15) bits even’ latch is set which, in turn, sets
the ‘E(8-15) parity’ trigger. Thus, panty is altered at the
same time E is modified.

INSTRUCTION COUNTER

The instruction counter (IC) is a 24-bit (plus three parity
bits) register used primarily in addressing doublewords of
instructions from main storage (Figure 2-30).

Input

PAL(40—63) ‘is transferred to IC(0—23) when incre-
menting the IC, or when entering a branch instruction as

specified by D. Because IC(21,22) selects halfwords in Q,

0 20

ROS controls the setting of IC(21,22) independently of
the parallel adder.

Outpuf ’ .

IC(0—23) is transferred to PAB(40—63) to be incre-
mented by 8 so. that the next sequential instruction
address in main storage will be available in the IC. When
called for, IC(0—20) is transferred to the storage address
bus (SAB) to address the next instruction doubleword
from main storage. IC(23) is transferred to the specifica-

Figure 2-30. Instruction Counter Data Flow

SAR .
ROS'R G
Latc es]
31 35
31 35
Main
Storage
ROS
Decode
21} 22
0 23
I -
IC : CA
0 2042123
21 23
o | 2 0 ’ 23
= |
ABC CW 0. 20
Storage Address Bus I . 2122
') BE
Hot 1 (+8)] .
To
specification
60 interruption
. logic
4 63 4
To ROSAR
. P
PAA . AB branching
logic
—~ To Q-refill
4 PAL 3 logic
40 63
—-—’— To Q-to-LAL
gating logic*

2065 FETOM (9/68) 249

tion logic to test for a 0-bit on instruction addressing; a
1-bit indicates a specification error.

In some instances, the address is for VFL data.
Accordingly, IC(21-23) is transferred to ABC(0—2) on
VFL operations to specify the desired data byte in AB.
IC(21,22), through ROS branching, specifies the Q-half-
word to be transferred to R; IC(23) determines the byte
within that halfword. '

Incrementing 1C(0—20)

e After each storage request is generated, IC(0—20) is
incremented by 8 to develop address of next sequential
doubleword in main storage.

Incrementing (updating) IC(0—20) by 8 to develop the v

address of the next sequential doubleword in main storage
is accomplished using the parallel adder. [IC(0—23) is
gated to PAB, and a hot-1 bit is forced into PAA(60).]

At any given time, however, IC(0—20) may be either
one or two doubleword addresses ahead of the double-
word in which the instruction being executed is located.
These conditions occur as follows. When the instruction
being executed is contained in a doubleword still present
in Q, IC(0—20) has been updated and is one doubleword
(8 byte addresses) ahead of the doubleword in Q.
However, when the op-code halfword just transferred to R
happens to occupy the last halfword portion of Q

[IC(0—20) already being one doubleword address ahead] ,

a storage request is generated to access the next double-
word and the IC is again updated by 8. [IC(0—-20) is now
two doubleword addresses ahead of the doubleword in
which the instruction being executed is located.]

Incrementing 1C{21—23)

e After each op-code halfword is transferred from Q to
R, IC(21,22) is set to the value corresponding to the Q
portion occupied by that halfword. '

1C(21,22) valuyes of 00, 01, 10, and 11 correspond
respectively to the four (1—4) Q-register halfword por-
tions. On the same cycle in which the op-code halfword is
transferred from Q, 1C(21,22) is set to the value corre-
sponding to that halfword portion. [IC(21-23) trigger
circuitry is not capable of accumulating, but only of
receiving, input values.] Thus, these triggers are not
stepped or incremented but, rather, set to values indi-
cating the four Q-register halfword areas. IC(21,22) is
controlled by ROS words, and, in the case of instruction
sequencing, by the same ROS words that gate the
Q-register op-code halfword to R.

In the event of a non-RR instruction, IC(21,22) must
be changed by 2 or 3 to skip over the non-op-code
halfwords remaining in the instruction. This skipping is

_accomplished as follows. Two factors involved in the
64-way ROS branch (NEXT-INST*IC) occurring at end-

2-50 (9/68)

op time of each instruction are: (1) the format of the
instruction op code previously transferred to R, indicating
the number of halfwords Composing that instruction; and
(2) the contents of IC(21,22), indicating the Q-register
area occupied by that instruction. These factors enable
the ‘end-op branch to access the proper I-Fetch ROS word
for gating out the next sequential op-code halfword and
also setting IC(21,22) to the value corresponding to that
particular halfword area.

IC(23), set only during VFL operations in which an
odd-numbered operand address is set into the IC, is not.
otherwise subject to change.

Note: 1C(21-23) of the VFL operand addresses is placed
into the AB counter, which then assumes the function of
sequencing through the data-field bytes.

When 1C(21,22) is set to new values, the parity of
IC(16—23) may change. Parity adjust logic (Diagram
4-305, FEMDM) conditions the IC P(16—23) bit when the
‘set 1C(21,22)’ micro-order is executed. IC(21,22) is set
before the ‘adjust parity’ trigger is set, but circuit delays
hold the parity adjust condition until the trigger is set. In -
effect, the parity adjust logic subtracts the parity of the
old value of IC(21,22) and then adds the parity of the
new value of IC(21,22), thus resulting in an updated IC
P(16-23).

D-REGISTER

The D-register is a 24-bit (plus three parity bits) register
which functions as a main storage address register for
certain operations and as an I/O channel and unit address
register for I/O instructions (Figure 2-31).

Input

Inputs to D are under ROS control. Address information
(main storage or I/O) may come from either the parallel
adder or the ADDRESS switches.” Address information
placed into D(17—-20) is generated by the interruption
logic.

Output

D(0—20) is transferred to the main storage address register
(SAR) to provide storage addressing. On channel opera-
tions, D(8—15) is transferred to the channel address
decoder "to select a channel, and D(16—23) is transferred
to the channel to provide the I/O unit address. D(18—21)
is sent to the E-register, via the E-register incrementer.
D(21-23) is sent to the ST byte counter, ROSAR
branching logic, and specification checking logic.
D(21,22) determines which halfword of Q to use to
provide LS address information. The transfer of D(0—23)

ADDRESS Switches

0 .ll 23
PSW address

from interruption
]_E7 20 logic
0 l 2

To SAR

1/0 Unit Address Bus

To Q-to-LAL
gating logic

To Q-refill logic

21

E-Register
Incrementer

. 1/0

Channe
Address
Decoder

Select Channel 1

Select Channel 0

To I/O
Channel

Select Channel 6

To ROSAR branching'logic

To specification checking logic)

0/Left 1/or L2
True-Complement
. -
True-Complement STC Csy
783 4063
4 63 7 0 23
-
PAA I CA
0 23
PAL I AP |
0 v 63} 67
8 31 40 63

Figure 2-31. D-Register Data Flow

to PAA(8—31) or PAA(40—63) provides the path to alter
or update the D-register.

Operational Functions

Operations in which D participates are: (1) branch and
execute, (2) shift, (3) VFL, (4) fixed-point, (5) floating-
point, (6) manual-control, (7) I/O, and (8) interruption.

Branch and Execute Operations

For branch and execute instructions, the - specified
successful branch address (all branches are assumed to be
successful until otherwise determined) is placed into D by
the normal I-Fetch sequence. A storage request is then

issued to main storage (per D), and D(0—20) is gated onto
SAB. D(21,22) specifies the particular op-code halfword
within the doubleword in the same manner as IC(21,22)
does for normal operation. If during execution of a
branch instruction the branch is found to be successful
(branch condition satisfied), the requested doubleword
from main storage is gated into Q and the branch address
in D is sent to the parallel adder and updated by 8. The
result is placed into the IC (replacing the IC address), and
the program proceeds in the normal manner.

If, however, the branch instruction is found to be
unsuccessful, the doubleword requested from main
storage (per D) is not gated into Q and the branch address

2065 FETOM (9/68) 2-51

-in D does not replace the IC address. The program then

proceeds with the next sequential instruction.

Shift Operations

For RS instructions, I-Fetch adds the base and displace-
ment values and places the result into D. Normally, this
“result is the second operand address. For shift instruc-
tions, however, this total specifies the number of bit
“positions to be shifted, and is used as follows. The number
of shifts specified by D(22,23), a maximum of 3, are

“executed immediately upon being computed in the

parallel adder and without the use of D. The nuniber of
shifts remaining is now specified by D(18—21), which
indicates -the number of shift operations necessary to
complete the shift instruction, provided four shifts are
accomplished by each shift operation. _

Because left 4 and right 4 shifts are possible in the

parallel adder, the binary number in D(18—21) is trans--

ferred to E(12—15), where the E-incrementer then con-
trols the remaining number of left 4 or right 4 shift

operations required to complete the instruction.

“VF L Operatlons ’

- For VFL operations, destmatlon operand addresses are

placed into D by the I-Fetch sequence. (Source operand
addresses are placed into the IC.) Storage requests for
destination operands are made per D(0—20), and the

accessed doubleword is loaded into ST. D(21—23) is set

-into the ST byte counter to control ST byte transfer. The
address in D is updated by 8 following each storage

-request, and, when the ST byte counter value reaches 7,
another ‘storage request is made per D to refill ST w1th
destination operand data.

Fixed-Point Operations v
"For fixed-point operations, operand addresses are placed

* into D.by the I-Fetch sequence. Operand storage requests

are made per D(0—20), with D(21) determining- which -

32-bit word of the accessed doubleword is to be gated
into ST. For halfword operation, D(22) determines which

half of the 32-bit word specified by D(21) is to be gated '

into ST.

*! - Floating-Point Operatlons .

: For floating-point operations using long operands, D and " .
T provide for the handling of a 56-bit fraction. The -

high-ordér 24 bits of long fractions are contained in D.

Manual-Control Operations

In manual-control operations (manual mode), addresses
.- entered into the ADDRESS switches are transferred to D.

A storage request is then made per D to reference main
storage for operations such as storing and displaying.

252 (9/68)

The address is entered into D as follows. Manual
operation microprogram routines (for example, store or
display) cause the parallel adder to generate all 1’s, and
then transfer them to D. Those ADDRESS switches not
depressed (not set to 1) cause their associated D-register
positions to be reset to 0; the resulting bit configuration
in D is the address.

1/0 Operations

The channel and unit address for an I/O instruction is
placed into D(8—23) via the normal I-Fetch sequence,
D(8-15) specifying the I/O channel and D(16—23)
specifying an I/O device attached to-that channel.

During the execution phase, D(8—15) is decoded in the
CPU to determine the I/O channel. [Up to seven channels
are currently available per system; D(8—12) must there-

- fore always contain zeros, with the binary I/O channel
address located in D(13—15).] Outputs from this channel

decoder function to select one of seven possible I/O
channels. D(16-23) is commonly routed to all available
channels as a unit-address bus, and is decoded by the
selected channel to select a particular I/O unit attached to

- that channel.

Interruption Operations

- At end op of each instruction, ROS Y-branch (overriding
‘branch) tests are made to check for the presence of any

interruptions. Each interruption forces a unique bit
configuration into D(17—20), which is generated by the
interruption-decode and forced-address logic. (This logic
also forces an address into ROSAR to access the first ROS
word of the associated interruption-handling routine.)

‘These four positions -constitute. the low-order bits of
doubleword addresses in-main storage that contam ‘the

new PSW for the various interruptions.

AB REGISTER

- The AB register is a doubleword (64 -data bits plus 8

parity bits) register that serves asa working register and as
a buffer for doubleword operands received from main
storage (Figure 2-32). Note that the AB register is

“logically divided into two 32-bit (plus four parity bits)
. registers, A and B, and has a four-bit extension,
" B(64-67), to retain low-order significance dunng certain

‘shift and arithmetic operatlons

Input

All AB positions are reset at clock P1 time of the cycle in
which they are selected to receive mforma’uon, data
transfer then takes place at P2 time.

Main storage information (doubleword length) is trans-
ferred into AB under ROS control by transferring

Main Storage 24| 31
0 63 8 31
SDBO
0 [63
4| = .
0 31 32 63 64 | 67
- 1]
A RA 8 | Rﬂ
0 3132 83164 6
— o 7 16 .23 2 48 55 66 67
ABC oW 0 g 15 24 31 40 47 5 63
To STATF —J
0 2 :
I_ isr Select 4 ’ z 2
. yte Select | ___
RB T T T ~— Set STAT B
4 31 32 : 67
) 0 7 . }
q 7 "o 3 32 6364 67
SAB E [
8 31
Select Select E
r 1 Latch 0 SAL 2 Latches [
/L2 oAz)
4 31 32 67
8 N2 [e
28 | 31 64| 67
3 &3 4 63,7 67,
/
PAA PAB //
/
/7
/7
Z
l -
PAL | AP
4 631 67
28 31 64 67
4 31 32 63
8 31
24 31

Figure 2-32. AB Register Data Flow

SDBO(0—31) and SDBO(32—63), plus parity, to A and B,

respectively.

Parallel adder information (plus assigned parity) is also
transferred to A and B under ROS control. Ingating of

B(64—67) from PAL(64—67) or PAL(28-31) provides for
maintaining high- and low-order significance during shift
operations. Transferring PAL(24—31) to A(24—31) facili-
tates processing of fixed-point divide instructions.

2065 FETOM - (9/68) 2-53

Output

All AB transfer is under ROS control and i3 accomplished
primarily through the use of gate-control triggers. All
gate-control triggers are reset at P1 time of each machine
cycle; the specific triggers selected for use are set at P2
time of the cycle in which they are to function. (One level
of logic delay is incurred in transition; as a result, the
respective transfer controls are activated at P3 time of
that same cycle.) Selection of the gate-control triggers for
use during any given cycle is determined either directly,

~ through ROS decoding, or indirectly, through the AB
byte counter. Parity information is transferred on a byte
basis.

On multiply operations, the partial product, B(66,67),
is placed directly into the serial adder latches (SAL) per
E(14,15). Divide operations transfer A(4) or A(28) to one
position of SAL per a ROS micro-order and E(14,15).

ST REGISTER
The ST register is a doubleword (64 data bits plus 8 parity

bits) register that serves as a buffer between main storage,

LS, and the CPU and also serves as a working register for
arithmetic and logical operations (Figure 2-33). Note that
the ST register is logically divided into two 32-bit (plus
four parity bits) registers.

Input

¢ Inputs are from main storage, LS, parallel adder, serial -

adder, PSW register,
switches.

‘When new data is transferred into ST, only the bit

interrupt logic, and DATA

positions involved are reset. Resetting occurs at P1 time’

and data transfer at P2 time. Reset signals are generated
© by the gating signals so that doublewords may be
assembled (Diagram 4-306, FEMDM).

Main storage information is placed into ST by trans-
ferring SDBO(0-63) to ST(0—63), SDBO(0-31) to
S(0-31) or T(32-63), or SDBO(32—63) to T(32-63). LS
information (32 data bits plus 4 parity bits) is transferred
to either S or T. All ST storage activity is controlled by
ROS.

PAL(32—63) or PAL(40—63), plus parity, is trans-
ferred to T, and SAL(0-7), plus parity, is transferred to
the ST byte per the ST byte counter and incrementer.
ROS controls the transfer from the adders to the ST
register. -

PSW information is transferred from the PSW register
to S(0—15) and T(32—39) under ROS control. The
interruption code from the interrupt logic enters
S(16—31) and is stored into the old PSW. Figure 2-34-
shows S(16—31) input logic.

For manual control operations, mformatlon from the

2-54 (9/68)

DATA switches is placed into ST for subsequent entry
into main storage (or LS) in the following manner. All
positions of ST are set to 1’s by means of the parallel
adder and LS ROS micro-orders. All DATA switches not
set to 1’s cause their respective ST positions to be reset to
0. Thus, ST reflects the information contained in the
DATA switches.

Output

o Outputs are to main storage, LS, PSW register, serial
adder, parallel adder, multiply/divide logic, and MCW.

All ST transfer is under ROS control. Transfers to the
adders are performed by gate-control triggers. These
triggers are reset at P1 clock time of every machine cycle;

~the specific triggers selected for use are set at P2 clock

time of the cycle in which they are to function. (One level
of logic delay is incurred in transition, and, as a result,
each trigger activates its outgating circuitry at P3 clock
time of that same cycle.)

Selection of gate-control triggers for use on any given
cycle is controlled either directly by ROS or indirectly by
the ST byte counter during ROS-controlled VFL opera-
tions. ST transfer to main storage takes place when a
storage request is initiated with the ‘store’ trigger set; 64
data (plus eight parity) bits are then transferred to the
SDBI. (Only T-register information can be gated to the -
LS)

PSW information from S(0—15) and T(34-39) is
transferred to the PSW register under control of ROS
micro-orders.

The contents of ST, plus parity, can be transferred to
PAA. In addition, T-to-PAA data transfer logic is capable
of both true or complement and left 1 shift, and either
T(32-47) or T(48—63) can be gated to PAA(48—63).

Byte transfer from ST (for product and quotient
insertion during multiply and divide operations) is con-
trolled by E(13-15). (The selected product/quotlent
bytes are transferred to the MPR bus.)

AB AND ST BYTE COUNTERS

For operations involving the serial adder, it must be
possible to extract bytes from doublewords contained in
AB and ST and to assemble bytes into ST for subsequent
storage. These capabilities are provided by two byte
counters: the ABC for controlling AB byte transfer, and
the STC for controlling ST byte ingating and outgating.

- AB Byte Counter

e Inputs are from PAL(61-63), T(57-59), E(13—-15),
and I1C(21-23).

e ABC logic increments, decrements, or retains absolute
values.

$s-z (89/6) WOLHA $90T

DATA Switches

T

[=]

o

STC

0 63 0 I
32 |39 40 | 63 Main Storage
o [7 16| 23 32 | 39 48] 55 0 . 31 32
8 |15 24| a1 40 | 47 56 | 63 SDBO |]
0 | 31 32 | &3 0 [.3
PSW interruption code
from interruption logic .
(Figure 2-34) 16 31 Local Storage Ls
0 31
0 15 32| 39 0 31
I .
0 | 3 32 | 63
s Rs| T RT
0 31]32 63
0 32 63
Set § '
STAT C 0 63
o 7 16 23 32 39 48 55
8 15 24 31 40 47 56 63 L
0 31 32 63 : L. ‘ et
32 0/Left 1/
l = t
Set STAT G True=Complemen: 7
0o 7 16 23 32 47 48 &3
8 15 24 31 | |
32 39 52 I
MPR Bus
4 1 byte is
8 15 34 39 selected per
1 E(12,13).
' Machine Generated
32 I 33 32 63
o | 78 [15 34|39 [7 |20 48 | &3
— — 7 &3 7
PSW RW MCW | KU
0 15032 3 0 7A 20 PAA PAB
0 1532 39)
13
PAL :
4 63y
32 3940 63

Figure 2-33. ST Register Data Flow

PSW(27)

PSW
16, 17,
L e,
= 20
Channel 4 Intrpt PSW21)
Ch | 6 Intrpt
annel 6 Intrp! oR
Channel 5 Intrpt A
‘ —
OR
KN211
PSW(22)
]
Channel 2 Intrpt OR
Channel 3 Intrpt
A
OR
KN211
PSW(23)
Channel 1 Intrpt OR A
1/O Intrpt Priority — .
OR
KN211
PSW(24
UA In (0) @4
A
E(8)]
Supervisor Call Tgr A |OR
Time Clock —
External Intrpt A
KN241
2
UA In (1) N
A
E(9) !
Supervisor Call Tgr A |OR
Console Signal |
External Intrpt
KN241
UAIn @ PSW(26)
A
E(10) 1
L | A|OR
External Signal 2 1
A
KN261

Figure 2-34. PSW Input to S(16-31)

2-56 (9/68)

UA In (3)
1/O Intrpt Priority A
E(11) —
Supervisor Call Tgr A |OR
"External Signal 3 —
External Intrpt A
KN261
UA In (4) PSW(28)
A
-
E(12) ——
A
External Signal 4 — OR
A
Prog Intrpt 8 -
Prog Intrpt Priority A
KN281
UAIn (5) PSW(29)
- A
E(13) —
A
External Signal 5 — OR
A
Prog Intrpt 4 —
A
KN281
UA In (6) PSW(30
L | A
E(14) _-—
A
External Signal 6 1 OR
A
Prog Intrpt 2 —
A
KN301
VA In ©) PSW(31)
L | A
E(15) —
A
External Signal 7 = OR
A
Prog Intrpt 1 —
A
KN301

To 5(16-31)
(Figure 2-33)

The ABC (Diagram 4-307, FEMDM) consists of three
triggers and three incrementer latches. These components
are designated TO, T1, T2, and LO, L1, L2, in each group,
and represent decimal values of 4, 2, and 1, respectively.
Thus the ABC is capable of selecting any AB byte from 0
to 7. Both the trigger and latch groups are capable of
receiving information (000—111 binary); modification
(incrementing/decrementing) is performed through the
use of incrementer-decoding logic on the input of the
incrementer latches.

ROS controls the transfer of information into the ABC
from PAL(61-63), E(13—15), and IC(21-23); data from
T(57—-59) is controlled by scan logic.

In operation, binary values of 000—111 (specifying AB

bytes 0—7) are transferred into the ABC triggers at clock -

time under ROS control [ROSDR(25-30)]. The incre-
menter-decoding logic samples the ABC triggers and,
under ROS control, sets that value, incremented by 1,
decremented by 1, or absolute, into the incrementer

latches at not-clock time. The incrementer latches are

then sampled, and the outputs are decoded into eight lines
(0—7) to select one of the eight AB bytes for transfer on
the following machine cycle. In addition to controlling
register transfer, ABC trigger outputs are utilized by scan
operations and certain ROS-branch-decode functions.

Note: E(13—15) or IC(21-23) can also be entered
directly into the incrementer latches, at not-clock time,
under ROS control.

The ABC triggers are reset with a negative P1 clock
- pulse at clock time of each machine cycle and set with
incoming data at P2 clock time. The incrementer latches
are reset with a negative P2 not-clock pulse at not-clock
time of each machine cycle, with data transfer occurring
at P3 not-clock time.

The contents of the ABC triggers are transferred to the
incrementer latches, and the same value is returned to the
ABC triggers (regenerated), during each machine cycle in
which no other ABC transfer controls are specified by
ROS (provided that an ‘I-Fetch reset’ signal does not
occur).

ROS control signals (‘000 to ABC’ and ‘I-Fetch reset’)
reset the ABC and ABC incrementer to O by allowing both
the triggers and the latches to reset on the following
machine cycle.

ST Byte Counter
e Inputs are from PAL(61-63), T(54—56), E(13—15),
and D(21-23).

e STC logic increments, decrements, or retains absolute
value.

~The STC (Diagram 4-308, FEMDM) consists of three

triggers, three bipolar (polarity-hold) latches, and three
incrementer latches. The triggers are designated as TO, T1,
and T2 and the latches as LO, L1, and L2, representing
decimal values of 4, 2, and 1, respectively. Thus the STC
is capable of selecting any ST byte from 0 to 7. The STC
triggers (with associated polarity-hold latches) and the
STC incrementer latches are capable only of receiving
information (000—111 binary); modification (incre-
menting/decrementing) is accomplished through the use
of incrementer-decoding logic on the input of the incre-
menter latches. The polarity-hold latches retain each STC
setting for one additional cycle, providing for a resultant
data byte to be gated into ST at the same time the next
sequential ST byte is being gated for processing. N

ROS controls the transfer of information into the STC
from E(13-15), D(21-23), and PAL(61-63). Entry of
T(54-56) to the STC is controlled by scan logic.

In operation, binary values of 000—111 (specifying ST
bytes 0—7) are transferred into the STC triggers at clock
time, with the associated polarity-hold latches assuming
the same value at not-clock time of that same cycle. The
incrementer-decoding logic samples the contents of the
STC triggers and sets that value (incremented, decre-
mented, or absolute) into the incrementer latches. The
incrementer latches are then sampled, and the outputs are
decoded into eight lines (0—7) to select the ST bytes for
transfer during a subsequent machine cycle.

Note: E(13—15), D(21-23), or a defined constant can
also be entered into the incrementer latches under ROS
control.

The polarity-hold latches are set (or reset) at not-clock-
time to the value of the STC triggers. This value
(specifying an ST byte) is retained in the polarity-hold
latches until not-clock time of the following cycle. Thus,
at clock time of the following cycle, with the STC triggers
having been set to a new value and the incrementer latches
possibly containing a modification of this new value, the
previous STC-trigger setting is still present in the polarity-
hold latches. This retained value now allows information
from the serial adder to be placed into the ST byte that
was previously transferred out, at the same time that the
incrementer latch output is transferring the next se-
quential ST byte to the serial adder for processing.

All incrementer latch decode lines are sent to the
mark-trigger logic (specifying byte areas for main storage
entry), and decode lines 0, 3, and 7 are sent to the branch
logic controlling the ROSAR setting. An ‘STC greater
than 3’ signal is also transferred to the branch logic
controlling ROSAR whenever incrementer latch 0 (binary
value of 4) is set.

2065 FETOM (9/68) 2-57

Gating of the contents of the STC triggers into the
incrementer latches and regeneration of that latch value to
the triggers are performed each machine cycle in which no
other STC ingating controls are specified by ROS (pro-
vided that an ‘I-Fetch reset’ signal does not occur).

The ‘000 to STC’ and ‘I-Fetch reset’ signals reset all
STC triggers and latches on the following machine cycle.
The ‘1 to STC bit 0° and ‘I-Fetch reset’ (for RR
instructions) signals cause the incrementer to assume a
decimal value of 4; the ‘011 to STC’ signal sets incre-
menter latches 1 and 2, thus setting the incrementer to a
decimal value of 3.

MARK TRIGGERS

Eight mark triggers, contained in the CPU, indicate which
bytes of the doubleword on SDBI are to be entered into
main storage on a store operation.
Mark trigger logic (Diagram 4-309, FEMDM) is ROS
controlled; operation is as follows. ROS control field L
- (ROS sense latch positions 43—46) is decoded to activate
one or more of four mark trigger signal lines. These lines
set the mark triggers as required: (1) individually, per the
STC, (2) in groups of four (0-3 or 4-7), and (3)
unconditionally, by setting both the 0—3 and 47 groups.
ROS micro-orders to set mark triggers also set the ‘store’
latch to generate a ‘store’ signal which is sent to the
selected storage unit.

F-REGISTER

The F-register is a one-byte (plus parity) trigger register
that is used in certain arithmetic, logical and data-transfer
operations (Figure 2-35). ‘

Input

Inputs to F are under ROS control. All positions involved
in an operation are reset at P1 clock time of the same
cycle in which they are to receive information, with the
ingating occurring at P2 clock time. Data and external
control information is received during direct-control read
operations, and serial adder outputs are received during
VFL operations. F(0—3), F(0—4), and F(4—7) are utilized
by Set Key and Insert Key instructions, logical instruc-
tions, and decimal multiply and divide instructions.

Output

All outputs are under ROS control. F(0—7) is transferred
to the serial adder by means of a gate-control trigger at
clock time, and F(4—7) is transferred to the parallel adder
under control of the parallel adder input logic. F(0-3) is
- transferred to the storage protect area during set-key
operations. F(4—7) is also used in ROS branching.

2-58 (9/68)

G-REGISTER

The G-register is a one-byte register that buffers one byte
of data between the CPU and an external device (Figure
2-36). SAL(0-7) is the only input, and the external
device is the only transfer path.

PSW REGISTER

-o Inputs are from ST and interruption-control logic.

e Outputs are sent to ST and CPU control circuitry.

Although the PSW is 64 bits in length, the PSW register
contains only 24 bits (Figure 2-37). The remaining
information (generated by the CPU at the time of an
interruption) is used to identify the cause of the interrup-
tion and to allow the CPU to return to the correct
program address.

I Y
Storage " Main
Protect Storage
Key
0__1__4 :
ol ¢
0 4 I E
Direct Control
Bus In 0 | 7
-
F RF
.0 7
.0 4
I 4 7
To ROS branchi j I
circuits 7

4

Figure 2-35. F-Kegister Data Flow

PSW register trigger logic is shown in Figure 2-38. The
‘eate S(0—7) to PSW(0—7)’ signal resets the triggers and,
through the logic delay, provides the gating signal to allow
the ST register information to enter the PSW register.
Thus the information remains in the PSW register until it
is replaced by a new PSW.

All PSW register input and transfer is initiated by ROS
micro-orders. When an interruption occurs, a series of
micro-orders in the accessed ROS word transfer the
contents of the PSW register into ST for subsequent entry
into main storage. 7

The format of the instruction in E (interrupted
instruction) is decoded, thus providing the instruction-
length code to be entered into the PSW register before
transferring the contents of the PSW register to ST.
Micro-orders also transfer the old PSW address (generated
by the interruption control logic) for that particular
interruption to D(17-20) to develop the old PSW address
for that interruption. Either 8 or 16 (depending on the
current instruction address) is subtracted from the IC and
inserted into the instruction-address field of the assembled
PSW. .

Micro-orders executed by the Load PSW, Set System
Mask, or Set Program Mask instructions control the
transfer of PSW information from the SDBO to ST and
the transfer of PSW data from ST to the PSW register and
the IC. The old PSW address (contents of D + 64, decimal)
is generated in the parallel adder, also under ROS control.

The PSW register does not contain data transfer logic;
PSW information is constantly available throughout the
CPU for use as required. '

MCW REGISTER

The MCW register is a nine-bit trigger register that
provides program control of scan operations (Figure
2-39). During execution of the Diagnose instruction,
FLT’s, or ROS tests, MCW(0-7,20) is gated from
T(32-39,52) to the MCW register. The bits of the MCW
are retained in the MCW register and decoded by the MCW
decoder to perform the functions as specified in Chapter
6.

Note: Four MCW’s use the same MCW register: (1) FLT,
(2) ROS test, (3) Diagnose for CPU, and (4) Diagnose for
channels. See Chapter 6, Section 2, for the format of each

MCW.
0 7 0 7
SAB SAA

]

SAL AS

0 7

0 7
0 7
]
G RG
0 7
0 7

Direct Control Bus-Out

» TO external
» .
device

Figure 2-36. G-Register Data Flow

2065 FETOM (9/68) 2-59

SDBO (Load PSW)

"Address of [nterrupted Instruction 0 63
(machine-generated)
Interruption Code (machine-generated)
0 15 16 3132]3334 39 40 &3
g
N RS T RT
0 31132 63
0 43
| SDBI
0 78 15 . 34 35 36 39 40 63
Length of interrupted instruction | son add: I
(in halfwords) through decode of E(0, 1) pstruction address (to IC)
(machine generated) i |
o 0 78 1532 {3334 {3536 | 39
Notes: o —— —
1. Micro-orders within interruption AMWP ; ng- PSW
ROS word transfer program status Fysum Mask | Key fgiore § ILC | CC | mask Register
iinformation from PSW register 1
to ST. 32 3334 39
2. Micro-orders activated by Load |
PSW instruction transfer program 0 15
status information from ST to I
PSW register.
: [78 1112 15 34 3536 39
3. PSW register ALD's: I To program-exception logic
System Mask - RWOITT - RWO061 To branch-on-condition logic
Key - RW08t - RW101
AMWP State - RW121 - RWIS51
ic - RW321 To program-state triggers
CcC - RW351 -
Program Mask - RWas1 - 381 To storage=protect logic
To channe! decoder
Figure 2-37. PSW Register Data Flow
-
T RT
32) 63
Mplx 32 39 52
$(0) Chan
: - Mask MPLX Chaonnel Mask)
T . .
Dly* }—) To 5(0) 0 7 |20
To Ind Lamp .
Gate S(0-7) to PsW(0-7)t —
RWO11
W. Selector
5(6) Chan 6 Selector
Mask Channel 6 Mask
Dly* T To 5(6)
I— To Ind Lamp SACWd
ecoder
) RWORT <L

1 ROS Micro-Order

* One level of logic delay
to provide the set signal
after the trigger is reset.

Figure 2-38. PSW Register(0,6) Logic

260 (9/68)

Maintenance control signals
to CPU, Scan, BCU, and channel.

Figure 2-39. MCW Register Data Flow

This section describes the operation of the 25-register
local storage (LS).

ADDRESSING AND DATA FLOW

e S-position address registers [LAL (Read) and LAR

(Write)] address LS.

e Input to LS is from T only; output is sent to S and/or
T under ROS control.

Two five-position LS address registers [LAL (Read) and

LAR (Write)] select the 25 individual LS registers (Fig.
2-40). The LS address is received from Q, R, or E under
ROS control (or directly from ROS control words when
addressing the LSWR). The particular register (Q, R, or E)
and field within that register to be set into LAL is
determined by decoding ROSDR(38—42). The four-bit LS
“addresses are gated into the four low-order positions of
LAL from Q, R, or E fields. These four-bit addresses are
capable .of directly addressing registers 0—15 (general-

purpose registers). For floating-point operations (requiring.

-the use of registers 16—23), a 1-bit is forced into the
high-order position of LAL upon decoding of the floating-
point op code. This action increments the four-bit address
from Q, R, or E by 16, thus forcing the use of
floating-point registers 16—23.

Note: Floating-point instructions are. restricted to the use

of even LS addresses 0, 2, 4, and 6. Automatic increment-
ing of these values by 16 then generates LS addresses of
16, 18, 20, and 22.

Long-operand floating-point op codes also force a 1-bit
into the low-order position of LAL, in addition to the
high-order 1-bit forced by all floating-point op codes. This
additional bit further increments the 16, 18, 20, and 22
floating-point addresses by 1, thus generating the second
(R1 + 1) register address required for long-operand
(64-bit) instructions. :

For operations requiring use of the LSWR (register 24),
~ the ROS words controlling these operations force 1-bits

-into ‘the two high-order positions of LAL [LAL(0,1)].
- This. action generates a binary address of 24, and is the
~only means of selecting the LSWR.

Selection of the Q, R, or E field to be entered into
LAL is determined by decoding ROSDR(38-42) of the
controiling ROS word or by selecting ‘NEOP’ or ‘BEOP’
micro-orders, depending on the next programmed instruc-
tion. Regardless of the address source or of whether a-read

Section 5. Local Storage .

-LS or write LS operation is indicated, the contents of the

addressed register are always read out onto the LS data .
bus. If a read LS operation is indicated, decoding of
ROSDR(10,11) of the controlling ROS word gates the
contents of the LS data bus into S, T, or both S and T.

. When a write LS operation is indicated, the contents of

the addressed LS registers are gated out onto the LS data
bus in the same manner, but the output resulting from
decoding ROSDR(10,11) remains inactive and does not
condition the ST ingating controls. A ‘write into LS’
signal, resulting from the ROSDR(38—42) decoder, then
gates the ST ‘bus (T-data) into the addressed LS register.

DATA TRANSFER CONTROLS

The following paragraphs describe the LS logic involved in~-
read LS and write LS operations. Diagram 4-401,
FEMDM, illustrates the read/write logic of LS register O
and also the common control circuit timings for each
200-ns LS ‘cycle. (Registers 1—24 are identical with
register 0.)

Local storage addressing and all LS register-operating -
logic are implemented in 10-ns circuitry; the polarity-hold
latches and associated input logic are implemented in
30-ns circuitry.

»Réad LS Operation

e ROSDR(38-42) sets LAL from specified Q, R, or E_
field. - o .

o LAL gates contents of selected LS register to LS data
bus.

e ROSDR(10,11) gates LS data bus into ST.
Read LS operations are initiated at not-clock time when

LAL (Read) is set with Q, R, or E information, as
determined by ROSDR(38—-42). The LSWR address and

. the floating-point register address bits are also entered

into LAL at this time, depending on ROSDR(38—42).
The contents of LAL (Read) are decoded, and the
decoder outputs gate the contents of the selected register
polarity-hold latches to the LS data bus. ROSDR(10,11)
then activates the required ST input logic, and at clock
time of the following cycle the LS data bus information is
set into the ST triggers. Polarity-hold circuits provide
nondestructive readout, eliminating the need for regenera-
tion. (Refer to the timing chart in Diagram 4401, for
relative control timings.)

2065 FETOM (9/68) 2-61

I [-
Q| | RQ
0 \ 1 63
0 3 16 19 3235 48 51
- i
ROSDR PP RY ROm
6 4 o 5]
10 11 38 42 8 11 1215
Decode Decode £ R?
DR DR 0 15
8 11 1215
Write info LS
R [
=l Input [t
* .| Selection &
LAL (Read) LS
0 31
0 4 Reg 0)
0 4 =
Decode LS 2
Input r 16 General Purpose
Controls 24 Registers
Reg 0 LS| LOCAL STORAGE
Decode LS 1] 8 Floating-Point
bmrocezmci- > O(:‘:pu:a 20) Registers LS
Controls 2% 1 Working Register |5
J
-0 31
Gate LSto S, T, or S and T (Read operation only) Ls
1 Data Bus
ST
Input
Selection gy
| ——
0 | 31 32 63
- -
RS T RT
0 31|32 63
32 63
ST Bus

Figure 2-40. Local Storage Data Flow

262 (9/68)

Note: LAL (Read) is sampled every cycle, even if no
command is given. Data from LS is thus placed on the LS
data bus every cycle, but is not always gated into a
register. The contents of LAL (Read) are transferred to
LAR (Write) every cycle, but no addressing is performed
unless a write LS micro-order is decoded in ROS.

Although LS data is available to the CPU approxi-
mately 100 ns after the setting of LAR, consecutive LS
data readout is limited to 200 ns. LS cycles are therefore
defined as being 200 ns long.

Write LS Operation

e ROSDR(38—42) sets LAL (Read) to specified Q, R, or

E field.
e LAL (Read) contents are transferred to LAR (Write).
-@ LAR (Write) decoder selects specified LS register.

o ROSDR(38-42) gates ST bus data into selected LS
register.

On write-LS operations, LAL (Read) latches are set at
not-clock time with the specified Q, R, or E information.
At the beginning of the following cycle, LAL (Read) is
transferred into LAR (Write) in the same manner as for a
read operation. The selected LS register is also gated to
the LS data bus as in read operations; up to this point,
read and write operations are identical. (On write LS
operations, however, LS data bus information is not gated
into the ST register.)

At the beginning of the following cycle, LAL (Read) is
transferred into LAR (Write). Further decoding of
ROSDR(38—42) generates a ‘write into LS’ signal that
sets the ‘write LS’ trigger at PO time. This trigger provides
‘the signal to gate the ST bus (T-data) into the selected LS

register at not-clock time of the following cycle. (Refer to
the timing chart in Diagram 4401 for relative write
control timings.) Negative levels on the ST bus represent 1
bits and set the respective polarity-hold latches; positive
levels represent 0’s and reset the respective polarity-hold
latches. '

For an ‘insert sign’ micro-order when the result sign is
minus, T(32) is forced to a 1. To preserve proper parity
for this operation, the parity bit for T(32—39) is inverted
before it is transferred to LS. '

There are situations when writing into LS must be
inhibited. When such a situation occurs, the ‘SPEC’ (K31)
micro-order causes a set signal to the ‘inhibit LS write’
trigger so that the LS positions remain unchanged.

Note that a minimuin of 40:ns ‘coincidence must exist"
between stable ST bus data (1°s of 0’s) and an active ‘gate*
T to LS’ polarity-hold-latch control signal to give correct
data entry. When the ‘gate T to LS’ signal is deactivated,
polarity-hold latches of the selected register remain in
their present state until new data is entered on a
subsequent write LS operation.

Note, too, that LS data is not parity-checked until it
enters an adder at a later time.

LS Timing

Separate address registers for reading and writing coordi-
nate the LS timing to other CPU functions. The ‘gate LS
reg n’ signal is generated by LAL (latch timing) to make
the LS data available at clock time for entry into a
register. LAR, at not-clock time, allows the data entered
into T early in the cycle to be entered into LS late in the
cycle. Refer to Diagram 4-401, which illustrates the entry
of new data into T (reflected by the shift in the ST bus
data line) and the subsequent storage of that data into LS.

2065 FETOM (9/68) 263

Section 6. Serial and Parallel Adders

This section describes the operation and application of the
serial and parallel adders.

SERIAL ADDER

The serial adder (8 data bits plus 1 parity bit) processes
data in binary or decimal format, performs logical AND,
OR, and ExclusiveOR functions, and assembles
multiply/divide results, ‘

Data flow for the serial adder is illustrated in Figure
2-41. Note that data entered into the A-side of the adder
(via final bus-A) comes from either AB or F under ROS
control. :

Data entering the serial adder is in true or complement
form. For a true add operation, the data is entered
directly; for a complement add operation, the input data
to the serial adder A-side (SAA) is inverted (Fig. 2-42).
Note that the input data may be in true or complement
form. The two’s complement value is achieved by forcing
a hot-1 to the input logic for serial adder latch (SAL)
position 7.

Input and Output '

Inputs to the serial adder A-side (SAA) are the contents of
F or a selected byte from AB (per the ABC); the input to
the serial adder B-side (SAB) is a selected byte from ST

(per the STC). A bus arrangement transfers data’f’rom the

registers to the serial adder as follows:

ROS Controls)

. Y Y .
ST (o -
omede] SBB . mmpel SAB . SAA |gu SBA AB

LT

During transfer from the serial adder bus A (SBA) to the
SAA or from the serial adder bus B (SBB) to the SAB,
ROS controls can alter the data being transferred. The
SAA input can be altered by the following functions:
decimal excess-6, complement add, shift, crossgating
(interchanging of incoming bits 0—3 with bits 4-7), and
zone and sign insertion. The SAB input may be altered by
the following functions: sign insertion, special digit
insertion, and special gating for changing destination (for
example, placing bits 0—3 into bit positions 0—3 and
4-7).

2-64 (9/68)

~ After the sum has been developed and placed into
SAL, gating signals from ROS allow the information to be
transferred to F, to G, or to a selected byte in ST.

Adder Operation

A simplified summary of serial adder operation is shown
in Figure 2-43. SAA and SAB are combined in the serial
adder to produce a bit-carry, a bit-transmit, or a half-sum.
A bit-carry is developed when both input bits are present,
a bit-transmit when either input is present, and a half-sum
when only one of the input bits is present (Figure 2-44).
Carry-in and half-sum conditions combine to produce a
full sum. The table in Figure 2-44 shows the conditions
which produce a full-sum bit. For example, if SAA is a
1-bit and SAB is a 0-bit there will be no bit-carry, but a
bit-transmit and a half-sum will be produced. If no ‘carry
in’ signal is present, the full-sumisa 1.

The ‘carry in’ signal is developed by the carry
lookahead logic. A test is made for a carry from the next
lower position or for a carry developed from bit-transmits
and a lower-order carry (Figure 2-45). The carry look-
ahead logic saves time by providing an immediate carry
rather than using another cycle to ripple a low-order carry
through the adder.

Accurate results are achieved by parity checking and
parity correction circuits. Tests for error conditions are
made at half-sum and full-sum levels as well as on decimal
input data.

- Controls

o Selected data enters on SBA and SBB.

e Data is first modified on transfer from SBA to SAA
and from SBB to SAB.

o Final modification occurs as data enters SAL.

There are three control areas: input bus, final bus, and
SAL (Figure 2-46).

ROS sense latch 86, field R, selects F or AB as a data
source for SBA. If the latch is set, F is selected; if it is
reset, AB is selected. Gate control triggers provide the
gating signals to transfer data to the buses. For SBA, if F
is not selected, an AB gate control trigger is selected by
the value in the ABC (Diagram 4-501, FEMDM). Similar-
ly, the STC selects an ST gate control trigger. One byte of
data is selected by each gate control trigger, and two gate
control triggers are selected (one for SAA and one for
SAB) each machine cycle whether or not the data will b
used. :

S9-z (89/6) WOLHIL S90T

o 8 7
-
F RF
0 7|
0 7
‘ 8 IIS 24|31 40 ‘47 56 Iaa
o017 16 | 23 32 | 39 48 | 55
- -] -
3 RS| T RT A Ra| B RB
0 3132 63 0 31|32 63167
o 7 1623 32 39 48 55 0o 7 1623 32 39 48 55 % &7
ra 15 24 31 40 47 5663 8 15 2431 40 47 5663
I] Final-Bus-8 Final-Bus-A .
4 28
0 7 7 T T
GT
ROS(86)
~ Select
1 Latch
Select
L 2 Latches
et GT
ROS
— ROS o7
ROS
0 7
-
G RG
0 7

Figure 2-41. Serial Adder Data Flow

Bus Out

True Add

SBA(0)

N

Complement Add

SBA(1)

SAA(0)

OR

SBA(7)

))
¢
)
i(

OR

SAA(T)

OR

SAA(7)

Figure 2-42. True-Complement Data Entry

Final Bus B(0-7)

A-Side Parity Adjust

ROS fields M (bits 69—73) and N (bits 74—77) govern
the second area of data control; that is, the transfer of
data from the input buses to the A- and B-sides of the
adder. ROSDR(69—73) provides signals to control trans-
fer from SBA to SAA. When no control is present,
SAA(0-7) is, in effect, 0. Micro-orders allow true-
complement transfer, crossgating, excess-6 adding for
decimal operations, forcing of certain bits, and sign
insertion (Diagram 4-501). ROSDR(74—77) provides
similar, though. less extensive, control for transfer from -
SBB to SAB. A list of the micro-orders generated by
control fields M and N is contained in ALD M7031.

The third control area, SAL input, is also governed by
ROS fields M and N. Controls include logical functions,
decimal correction, product/quotient operations, and a
hot-carry to SAL(3) or SAL(7). for complement add

_ operations.

Functional Discription

Because the serial adder is used in many operations and is
so versatile, a general discussion is not sufficient. Accord-
ingly, the following paragraphs discuss the adder functions
individually.

Final Bus A(0-7)

SAB
Logic

SAA . :
Logic Half
Adder

Full

B-Side Parity Adjust

Figure 2-43. Serial Adder (Simplified)

2-66 (9/68)

I YVYY

[[#—Group 2 —

0

Half-Sums : ‘ -Adder

Sum Latch Input Logic

Full-Sum
Latches.

3|4

Bit Transmits
— Bit Carries

Full Sums Sum

14— Group 1 — [Group Carries i . Logic

7

Error
Detection
Logic

Parity
Correction
Logic

0

7

Latched Sum Output (0-7)

Serial Adder Parity

Half-Sum Error

Yvy

Full-Sum Error

SAA

Bit Carry
SAB A
T Bit Transmit
OR
Half-Sum
A
|
A Full=Sum SAL
Carry In — OrR)
A
—H
SAA ojt1{foj1|oltriof
SAB o|o|1|1|OolO{1]1
Bit Carry ojofof1]o0jojof1}
Bit Transmit [O [T] 1 |1 [Of1 (|11
Half-Sum oft1j1jofof1{1]o
Carry In ojofo O |1 }T1]1
Full=Sum oJ1f1(ofj1|0j0]1

Figure 2-44. Half-Sum and Full-Sum Logic

Carry Out of Group 1 Carry Into Bit 3

Carry Carry Into 8it 2
Logi
Carry/Transmit (3) ogie
Emamey
Carry Carry Into Bit 1
Logic
Carry/'l'ransmit (2)
—
Carry Carry Into Bit 0
Logic

Carry/Transmit (1)

Figure 2-45. Carry Lookahead; Block Diagram

Binary Add /

For binary add, data on SBA is entered in true or
complement form and is combined with SBB data which
may be 0’s, forced bits, or data from ST. Combination
takes place in the half-sum and full-sum logic with carry
signals from the carry lookahead logic (Diagram 4-502,
FEMDM).

Decimal Operation

o Excess-6 is provided in input logic to SAA.

o Decimal correction is made in set-SAL logic.

o Validity tests are made on input digits and signs.

The excess-6 operation for decimal instructions is imple-
mented by logical circuits rather than by using extra adder
cycles. The decimal character entering on SBA is increased
by 6 as it is transferred to SAA (Diagram 4-503,
FEMDM). Note that no time is lost in this operation; the
circuits select the SAA positions which are 6 (0110)
greater than the value on SBA.

The two operands are combined in the half-sum logic.
If no group carry results, decimal correction is initiated by
a ROS micro-order (Diagram 4-504, FEMDM). Decimal
correction removes the excess-6 factor by using logical
circuits to set SAL to a value 6 less than the full-sum
value. Table 2-1 shows the decimal-corrected values for all
possible erroneous characters. Again, because the circuits
have been preconditioned, no cycles are lost and the
decimal operation proceeds at full speed.

2065 FETOM (9/68) 2-67

Table 2-1. Decimal Correction for Erroneous
Numeric Characters

Gro'up 1 Result Group 1 Result
Decimal-Corrected
Binary Position (Binary Position)
Decimal 4 5 6 7 4 5 6 7
15+ 111 1.0 0 1
14* 1 1 1 0 1 0 0 O
13** 11 0 1 o 1 1 1
12%* 1 1 0 0 o 1 1 0
L Rt 1 0 1 1 0 1 0 1
10*** 1 0 1 0 0o 1 0 O
[R 1 0 0 1 o 0 1 1
[r**¥ 1 0 0 o0 . 0O 0 1 O
7* 0o 1 1 1 0O 0 0 1
6*\ 0o 1 1 0 0O 0 0 o
5
$ Valid digits, no correction required
0

* 1-bits in positions 5 and 6: reset positions 5 and 6.
** A in position 6: set position 6 and reset position 4.
*#% A 1-bit in position 6 and a 0 in position 5: set position 5
and reset position 4.
##%% (s in positions 5 and 6; set position 6.

The following is an example of decimal correction for
SAL(0~3) using Diagram 4-504:

Uncorrected binary result to SAL{0—3) = 1011.

SAL(3): No correction is made. It is set to 1 per binary
addition.

SAL(2): Requires carry plus half-sum, or no carry plus no
half-sum (effective O result). Conditions are not met
and SAL(2) is not set.

SAL(1): Requires effective 0 and full-sum (2). Conditions are
met and SAL(1) is set.

SAL(0): Requires effective 1 plus full-sum (1 and 2).
Conditions are not met and SAL(0) is not set.

Corrected result in SAL(0—3) = 0101.

Incoming data is examined for validity on decimal
instructions. If either character on SBA or SBB exceeds a
value of 9 (binary 1001), an ‘invalid digit’ signal is
generated and STAT E is set (Diagram 4-505, FEMDM).
At the same time, 1’s are forced into SAL to yield correct
parity for the number transferred to S. _

The invalid digit logic is also used to test the sign
character entering the serial adder. An ‘invalid sign’ signal
is developed if the sign character does not have a value of
10—15 (binary 1010—1111).

2-68 (9/68)

For multiply operations, the product is sent from
B(66,67) to selected pairs of SAL bits to accumulate a
byte of data. On non-decimal divide operations bits are
sent from A(4) and A(28) to selected SAL positions to
accumulate a byte of data.

Logical Functions

Logical functions (AND, OR, and Exclusive-OR) are

performed in the serial adder. These functions produce

full-sum latch settings (carry information from adjacent

positions is disregarded) as follows (Diagram 4-506,

FEMDM):

1. AND. The combination of an active AND control
signal and a bit-carry from the half-adder of that
position.

2. OR. The combination of an active OR control signal
with a bit-carry or a half-sum (in effect, a bit on either
or both inputs) from the half-adder of that position.

3. Exclusive-OR. The combination of an active OER
control signal with a half-sum (in effect, either input
-bit but not both) from the half-adder of that position.

Results are transferred to selected bytes in ST.

Parity Correction

e Parity bit is set if number of bits in SAL(0—3) and
SAL(4—7) are both odd or both even.

e Additional logic predicts parity for decimal operations.

e Parity is reversed on multiply and divide operations if
only one bit is sent to SAL.

o Logical operations develop parity through unique logic.

Correct (odd) parity for the serial adder outputs is
generated in the parity predict logic (Diagram 4-507,
FEMDM). There are two basic areas of parity generation:
(1) arithmetic and (2) logical (AND, OR, and Exclusive-
OR). The arithmetic parity generation is further divided
into binary and decimal. See Figure 2-47, a block diagram
of parity predict logic.

Binary parity predict logic includes factors K1 and K2,
half-sum (0), and an odd or even number of transmit bits
(1-3 and 5-7). K1 and K2 are established by carry and
transmit bits (Diagram 4-507). The signal resulting from
these factors reflects the odd or even number of bits in
SAL(0—3) and in SAL(4--7). If both are odd or both are
even, the serial adder parity latch is set. If only one is odd,
the parity latch is not set.

The shaded area in Diagram 4-507 indicates the
additional control (K3) used for decimal operations. A
decimal correction must be set up (decimal operation and
no group carry) to allow energizing of the K3 signal. An
examination of carry and half-sum (1, 2, 5, 6) allows the
prediction of parity after the excess-6 factor is subtracted
from SAL.

ROS Sense Latches

* ROS control field R (bit 86)
determines whether AB or
F data is presented to
final-bus-A gating logic.

Figure 2-46. Serial Adder Gating Controls

0 99 -
) F RF
* 0 7
Control Control - 0 7
ROSDR Field Field
[42 M N 78 84
69 73 74 77 :
- | =
J ABC A RA{ B | RB
0 31132 | 67
Adder Unit] Adder Unit
Decoder Controls Decoder Controls w
Final Bus B =) Final Bus A }
and . and X
Serial Adder | Final Bus Serial Adder Final Bus
Controls Controls Controls Controls
AR AR
GT
: Gt
I l Ifa 1, use F-Reg; If a 0, use AB Reg ROS(Sé)
- - X
5 RS T RT sTC Invalid
0 31]32 63 Digit and Serial In Bus A(0-7)
—]-— —,— —]— — — Detection
—I— —]— T T r— Logic
AR
lavalid
\ GT Digit and
a—- Zero .
Detection GT Final Bus A(0-7)
Logic .
Final .
AR L | T Final Bus B(0-7) Bus A Parity
Final Gat.mg Parity Adjust
Serial In Bus B(0-7) Bus B Parity Logic AR >
Gating
Logic Parity Adjust
AR]
0 I 7 0 | 7
Y Serial
> eria
3AB SAA Adder
Parity Serial Adder Parity
> Predict
0 - > Logic
-
SAL As AS
0)) 7
Serial Adder Latched Sum (0-7) I
GT
GT ROS
ROS

2065 FETOM (9/68) 2-69

1L (89/6) WOLAA S90T

SAB Parity SAA Parity
Final Bus B | SAB Parity Adjust gm{l Buz A | SAA Parity Adjust
t . ating Logic
Gating Logic SAB(0-7)
SAA(0-7) 1 :
ODD Exclusive-OR result (odd)
0 OE of final bus A and B parity and parity adjust
. Bit Transmits (0-7) > r:;:;y Logicalv
L . Logic Functions
Half-Sums Logic Functions (AND/Exclusive-OR) 9
Bit Transmits
Bit Carries A=
Carry Into Group 2 Even
C Ovut of Group 2 I > - N
i o e Parity * K1 (0-3) ES\ZE(?’;)H Parity (0-3) Arithmetic
Predict K2 (0-3) Logic b4) [Functions
Correction (Decimal
Decimal Factors K3 (0-3) Correct Only) SAL(0-7)
Correct | K1,K2,K3 Parity
Logic
Half-Sums
Bit Transmits N
Bit Carries ¢ ¥
Carry Out of Group 1 I Even
Hot Carry Into Bit 7 * _ o
4 . Parity | K1(4-7) " SALO-) Pty (4=
M-D Invert | Predict K2 (4-7) Loaic
==—=——1 Correction (Decimal
Decimal Factors K3 (4-7) Correct only)
Correct K1,K2,K3

Reset (P2 Not-Clock)

, Serial Adder
Parity
L Serial
Adder Parity
EEE—

Sum Latch(0-7)
Qutput Data

*K1, K2, and K3 are defiﬁed factors of serial

adder half-sum, bit-transmit, bit-carry,

group-carry, and carry-into-group functions.
(K3 factor is activated during decimal-correct
operations only.)

Figure 2-47. Serial Adder Parity Predict Logic

Multiply-divide operations present a different problem
in that data is presented directly to SAL and is not
processed through normal parity predict logic. A test is
performed on the two partial product bits or the one
quotient bit (Diagram 4-508, FEMDM). A 1-bit change
causes an ‘invert predicted parity’ signal which energizes
K2 (4-7). Because no carries are generated, K2 would not
normally be energized; thus, the K2 signal inverts the
predicted parity. , . -

Logical operations disable arithmetic parity prediction
and energize a different parity predict circuit. Three
conditions are tested to set the SAL parity latch; (1) input
parity, (2) parity adjust, and (3) odd-even transmit bits
(Diagram 4-507). The development of each is as follows:

" 1. Parity. Normally presents the original parity (1 or 0) of
the byte being entered on the input bus (one byte for

SBA and one byte for SBB).

2. Parity-adjust. In effect, inverts the incoming parity
regardless of the actual 1 or O parity. Parity-adjust is
energized when a micro-order alters incoming data [for
example, if SBA(0) enters as a 1 and a ROS micro-
order forces SBA(0) to a 0, parity-adjust is energized] .

3. Odd-even transmit bits. Exclusive-OR circuits analyze
the developed transmit bits of all positions and
produce signals denoting an odd or even number of
transmit bits.

Parity generation for an OR function is based on the
OR command and the OE transmit bits. Because only
effective transmits are used to set SAL(0—7), parity
generation needs only an even number of transmit bits to
set the parity latch. The following is an example of parity
generation for an OR function:

Bit 0 1 2 3 4 5 6 7 P
SBA 1 0 1 0 0 0 1 0 O
SBB 0O 0 1+ 1 0 0 1 0 O
Transmit 1 0 1 1 0 0 1 0 Even
SAL 1 0 1 1t 0 0 1 0 1

4 (even) transmit bits; Parity is set.

The Exclusive-OR function requires the parity and
parity-adjust Exclusive-OR logic to generate correct
parity. (Because the transmit bits do not reflect parity for
Exclusive-OR, they are not used.) Regardless of the
number of 1 bits, if the parity of the two input data bytes
is different, the resultant will be an odd number of bits
and the parity bit will not be set. An exception is caused
by micro-order insertion of data over the byte data. This
condition is corrected by means of the parity adjust
circuits, as shown by the following example:

ROS Force 0
Bit 0o 1 2 3 4 5 6 7 P
SBA 1 1 1 1 0 1 1 0 1
SBB 1 0 0 1 0 1 O O O
SAL 1 1 1 o 0 O 1 o0 1

2-72 (9/68)

1

.. SBA(P) —
0 o f— y 0)
Por Adj A —— | OF
SBB(P) 0) Parity is set.
OF
Par Adj B

When the AND function is used, all three signals (SBA
and SBB parity, SBA and SBB parity adjust, and odd-even
transmit bits) are analyzed to generate parity. The serial
adder parity latch is set when the result of the parity and
parity-adjust signals matches the odd-even transmit bits
signal, indicating an even number of bits have been
generated; a parity bit is thus needed. An example of
parity generation for a logical AND operation follows:

ROS Force 0 ‘ .
Bit 0 1 2 3 4 56 6 7 P
SBA o 0 1t 0 1t 1t 0 1 1
SBB 11 1 1 1 0 1 0 1
Transmit o1 1 1 1 1 1 1 Odd
SAL 0 01 o1 0 0O 0 1
SBA(P) .
OF .
" 0 1 L 0
Par Adj A —— OF N
Lﬁven 0 A .
SBB(P) 1 o ! LU s Ll e
| o1 fA
Par Adj B R —
Parity is set.

Note: There are four special cases when the SBB input

parity bit is set: (1) no-operation, when SBA is all 0’s, (2)
when -64 (1100 0000 binary) is forced, (3) when subtract
1 (1111 1111 binary) is forced, and (4) on partial product
entry when SBB is zero. In addition, the SBB parity bit is
held off on add 1 (0000 0001 binary) because it is
incorrect parity.

When an invalid digit is detected on a decimal
operation and all 1’s are forced to SAL{0~—7), the parity
predict logic is bypassed, and the SAL parity latch is set
to give proper parity for the byte sent to ST.

Error Detection

Serial adder data is parity-checked on both a half-sum and
a full-sum basis. Error indications are retained in the
half-sum error or full-sum error latches (Figure 2-48).

Half-sum error logic tests the incoming data for
accuracy. The signals tested are (1) half-sum(0-7), and
(2) input parity and parity-adjust for both A- and B-sides
of the adder. When an input parity is in error (even
parity), the combined signals produce an odd result and
the ‘half-sum error’ trigger is set.

Full-sum error logic tests the accuracy of the final
answer by combining the SAL outputs and the resulting
state of the parity latch. An even result sets the ‘full-sum
error’ trigger.

Half-Sum

Half-sums plus parity and
Error

parity-adjust lines odd.

Holf-Sum Error
(half-sum parity odd)

SAB SAA
0 7
l Half-Sums
OE
SAL AS Exclusive-OR result of parity and Odd
0 7 parity-adjust from final-bus A and Detect
B gating logic. . Logic
Lotched Sums
Serial OF
Adder Generated parity from parity- Odd
Parity predict logic (parity latch). De'.ecr
L i Logic

—

Reset

Full-Sum

Full-sums plus
_Error

. Full-Sum Error
generated parity even.

(even parity detected)

A T

Reset

Sum Latch (0-7)
Ouhnjr Data

Inhibit Serial Adder Parity Check

Log Ovut Trigger) R | N =

Gate All 1's to Serial Adder —l-—- .
A Error-Reset Gate

Not Scan and Invert Parity

(CHECK RESET Pushbutton)

Figure 2-48. Half-Sum and Full-Sum Error Logic

The error triggers remain set until reset by the ‘error
reset gate’ signal. To avoid meaningless error indications
and subsequent logout operations, the set error trigger
signals are blocked when:

1. The ‘inhibit serial adder parity check’ micro-order is
active.

2. An invalid digit is detected during a decimal operatlon
(all serial adder latches, including the parity latch, are
set). .

3. The ‘logout’ trigger is set.

PARALLEL ADDER ‘
The parallel adder, 60 data bits plus parity, performs

arithmetic and logical functions and is involved in most -

intra-CPU data transfers. Data flow for the parallel adder
is shown in Figure 2-49.

The parallel adder bit positions are divided into
. sections and groups to implement carry lookahead and

parity predict functions (Figure 2-50). Additional func-

tions illustrated in the figure- are half-sum, full-sum, and
latch-shifter logic.

Data Input

Data is transferred to the parallel adder from various
registers by means of input buses controlled by ROS
micro-orders (Figure 2-51). More than one bus may enter
the same side of the parallel adder, but only one bus is
active at a given time.

ROS fields T and U control inputs to bus B and bus A,
respectively. Gate control triggers for adding B and T are

shown in Diagram 4-509, FEMDM. ROS sense latches are

decoded at P2 time to select a gate control trigger; the
trigger remains set until the following P1 time to make the
data available as long as the parallel adder needs it. Note
in Diagram 4-509 that only 3 of the 4 bits of the ROS
fields are used; the state of the fourth bit does not affect
the gate control triggers shown but does affect other gate
control triggers.

lndwudual B|t-Pos|t|on Loglc

o Full-binary capabilities (half-adder and full-sum logic)
are provided.

o Shift logic (latch-shifter) is included at the output.

The logic functions associated with each adder position
are shown in block form in Figure 2-52. These functions
(half-adder, carry-into-bit, full-sum, and latch-shifter) con-
stitute the full-binary logic of each bit position; operation
is as follows. The status of corresponding A- and B-side
operand bits is entered into the half-adder, where they are
combined to produce bit-transmits, bit-carries, and half-
sums. The bit-transmit/bit-carry is sent to carry lookahead
logic to produce predicted carry information, and the
half-sum is sent to the full-sum logic. The carry-into-bit
logic combines the immediately available bit-transmit/bit-
carry from adjacent lower-order adder positions (repre-
senting an actual carry) with the somewhat later returning
predicted carry. This predicted carry output (carry-into-
bit) is also sent to the full-sum logic, where it is combined
with the half-sum from the half-adder logic to generate a
final full sum (1 or 0) for that adder position. This full

2065 FETOM (9/68) 2-73

= To storage address bus

Q RQ
0 | 23 ° : 63'
4 15 20 31 3 47 52 63
- -
b "> PR | [|]
0 23 0
’ ° 2 L 8 |15
-
R RR
40 63 0 15
32 | 63 815
- - - -
s (X RT € RE
0 31| 32 83 0 15
0) 31 32 63)
0/L1/True-
Complement
) 47
| 4 31
8 31
231
52 | 63
56 E—‘“ ; 0 31 32 63 MI67
R
> A Rl B RE
606
_]_3.‘ 1o 31|32 63V 67
4 31 32 67
True-
Complement ‘—I
' v
0/L1/True- T4 31 32 67 8 3]
Complement —-——J——
7 13 4 83 0 31 32 » 63 64 67
32 63 ' l I -1
48] 63
2831 e4l67 1
Hot 1's .
416 . 32 63 31 40 l 63
—
4 63 4 63,7 6
//
PAA PAB S 0 [23
. Hot 1's K ,/ . PA(64,65) Ic Cq
el 4 F Divide 0 L
- Control 0 23
PAL AP Bits I
4 . 63 |64 67 - - B
8 31 40 63
]
2831 64 67
32 63
8 3)
2 31
4 3]
63 ’

Figure 2-49. Parallel Adder Data Flow

2-74 (9/68)

SL/T (89/6) WOILAL 90T

A-Side) B-Side
Data . . < - Data

N &3 4 8~ 7
. -~ -~
PAA - SN PAB / P
. —
g
=
Sections 4 3 2 1 | e — - - -

: | | Carry Into Section o : I

Groups 15|14 |13 [12[1tf10} 91817 16|5]413)2]1 1 t) ot

It — ! | : . |

Ha 4 63 - Group Transmit Section T i !

i } p Transmits . ection Transmits Carry-
Adder)] Bit Transmits and Bit Carries gg:’r‘;" and Group Carries (S:::;on and Section Carries | into- . I
» - . . Group |-

| Logic Logic Logic 1

“ g 1 : . :

Full . . |

Bit Transmits
Adder ond. . l l
N Bit Carries : . :

: Carry Into Group(s) I

] - '
L} - | B
Half=Sum | ! C e

' . |- Logic
Yy o . A\ 4 | Carry Lookahead
) l ' o Carry- into] '
Bit Logic i
Half-Sums
Shift Instructions
r -
YYVYY
X . Pority
Full-Sum Logic Predict
.) L . . Logic
Latch-Shifter Logic) i |
a4 &3] e7]

Figulje 2-50. Parallel Adder Function Breakdown -

S-Reg -) j
" / o Gate
res . Shift | Control
T-Reg > Comp) Triggers Parallel
) : Adder
- A-Side
.ROS Micro-orders PA
] - T Bus A
Y
D-Reg True / i Gate L
~ Corip Shift Control "
- Triggers
Figure 2:51. . Parallel Adder Input Buses
A Operand Bit Transmit
\ Carry
Half- Bit Corry Lookahead
Adder
B Operond Logic _ Half-Sum -)
I_ Error
Bit Transmits . Foll- Checking
Bit Carries Carry- : fum)
N g info-Bit ogic
Predicted Carry Logic
4-Bit Positions Before ’ o
Latch- | PAL Output

- 4-Bit Positions After. Shifter

Logic

Shift Instructions

Figure 2:52. Bit Position Block Diagram

sum, or possibly the full sum from four positions to either
the left or the right (depending on the particular shift
control) is gated into the adder latch. Latched sum data is
retained until the following cycle for sampling into the
selected register(s). The following paragraphs discuss the
logic involved in each function.

Half-Adder

The logic involved in blt-transnut b1t-carry, and half-sum
functions are:

1. Bit-transmit. At least one and pos.wb/y two 1 bits are .

contained in the two corresponding A- and B-31de
operand posmons ’

Note: For certain operations, the parallel adder is set -

to all 1’s by a micro-order which forces all 1’s into the
A-side of the half-adder (Diagram 4-510, FEMDM).

2. Bit-carry: Two 1 bits are contained in the correspond-
ing A- and B-side operand positions.

3. Half-sum. A single 1 bit, but not two, is contained in
the corresponding A- and B-side operand positions.

Carry-into-Bit Logic

e Detects “carry-into” conditions affecting each particu-
lar bit position.

2-76 (9/68)

A-Reg
Gate !)
<= Control . -
Parallel Triggers Shift B-Reg
Adder
B-Side
PA) . ROS Micro-orders
Bus B I
A IC
Gate | g EReg
Control |~ Q-Reg
Triggers i F-Reg

The carry-into-bit logic of each adder position detects
whether a carry-into condition prevails, resulting from

‘either an actual carry or a predicted carry. Carry-into-bit

circuitry logically OR’s the actual carry (prevailing carry
conditions from immediately adjacent lower-order posi-
tions) with predicted carry (carry-into-group indications
from lookahead logic, signifying that effective carry
conditions exist in the more extreme lower-order areas).

The actual carry into any particular adder position is

‘determined by logically testing all remaining lower-order

bit positions within that same group or, if the particular
adder position happens to be the low-order group posi-
tion, testing all four bit positions of the next lower-order -

“group. (Predlcted carries are discussed in “Carry Look-

ahead™.)

'Note: Either an actual carry (from adjacent positions) or a

predicted carry (from carry lookahead) is allowed to

- affect a particular- position, but not both. Where both

carries occur, conditions producing the actual carry also
function to inhibit the predicted carry from entering the
affected bit position(s). This inhibit logic is illustrated in

" Diagram 4-510, FEMDM, as follows: Carry conditions

from positions 48—51 generate both a predicted carry to
position 47 (carry-into-group. 5), via carry lookahead

-logic, and an actual carry in the form of bit-transmit/bit-

carry signals. Because group 4 positions (48—51) represent

the actual carry source, the group-4-carry- condition is

then inverted to inhibit predicted carry entries into
position 47.

Full-Sum Logic

The full-surﬁ logic for any particular adder position
combines (by means of an Exclusive-OR) the carry-into-
bit output with the half-sum output of the half-adder,

" developing a 1 or 0 full-sum for that adder position.

Latch-Shifter Logic

Latch-shifter logic facilitates the left 4/right 4 shifting of
the full sum during the same cycle in which it is

developed. (Logical and data-transfer operations also
utilize this logic.) For any particular adder position,
zero-shift, left-4 shift, and right-4 shift controls respective-
ly gate the full sum into the latch associated with that
position, into the latch associated with the position four
places to the left, and into the latch associated with the
position four places to the right. (Scan-out operations also
utilize the latch-shifter logic but only for its data path
facilities.) All latches retain. the latched sum until the
following cycle, and extended-clock signals delay resetting
the latches long enough for the error-checking logic to
function.

Note: An adder-hold (‘—HOLD’) micro-order, used
during certain operations, blocks the extended-clock reset
signal and causes the latches to retain their data for one
additional cycle.

Carry Lookahead

o Predicts carry before full-sum development.
o Reduces time required to provide full sum.

e Lookahead logic divides 60-position adder into 15
four-bit groups, and these groups into four sections.

e Lookahead information is developed in form of bit-
position carry, group carry, and section carry, and then
fed back into individual positions as predicted carries.

The carry lookahead function provides the adder with the
capability of entering full sums directly into the adder
latches. Lookahead functions effectively predict the carry
resulting from combining two operands, and use this
predicted carry to convert half-sums to full sums before
the entry of information:into the adder latches. This
sequence eliminates the additional time required by ripple
operations, which would be necessary in converting
half-sums to full sums if half-sums were entered directly
into the latches.

For design reasons, the 60-position adder is divided
into 15 four-position groups, and these groups are
subdivided into four sections. This group/section arrange-
ment reduces the logic decoding required in implementing
the carry lookahead functions. Group/section arrange-
ment and carry lookahead data flow are shown in Figure
2-53.

Lookahead logic is designed so that, for any particular
position, the effective carry conditions in all lower-order
positions (except for an adjacent few) are logically
predicted for that position. Carry conditions which would

later be produced in these same adjacent few positions as

a result of propagated lower-order carries are predeter-
mined by the lookahead functions and logically entered

into that position as a predicted carry. Using this method,
each bit position then requires only that logic necessary to
detect prevailing carries (actual carry) in the adjacent
positions, and to logically OR the actual and predicted
carries when developing the full sum. Predicted carries are
presented to the input logic of individual positions as
‘carry into group’ signals. Figure 2-54 illustrates the adder
areas supplying source information for actual and pre-
dicted carry signals to adder position 44. Note that,
although lower-order carry conditions exist in both
examples, they are represented by an actual carry in
example 1 and by a predicted carry (carry-into-group-5) in
example 2. (Recall also, from the previous discussions,
that where both actual and predicted carries are generated
to a particular position, only the actual carry is entered;
the predicted carry entry is blocked.)

In the lookahead logic, predicted carry information is
developed by testing each adder group for bit-position
carry condijtions, combining these conditions to form
group-carry conditions, and then similarly combining the
group-carry indications to produce section-carry condi-
tions. All lower-order carry conditions affecting any
individual adder ‘position (with the exception of the
positions immediately adjacent to that position) are then
collectively represented to the lookahead logic as section-
level carry information. Section-carry information from
each section is then (after being combined with
lower-order section-carry indications) sent to higher-order
sections, where it is combined with the group-carry
conditions within these sections, to produce ‘carry into
group’ signals. As previously described, these ‘carry into
group’ (predicted-carry) signals are then logically OR’ed
with actual carries within the carry-intoe-bit logic of each
individual -adder position, and combined with half-sum
information to generate a full sum. (Recall also that,
where both actual and predicted carries are generated to a
particular position, only the actual carry is entered and
the predicted carry entry is blocked.)

The following paragraphs give detailed descriptions of
group-level and section-level carry-predict functions.

Group-Level Carry Logic

e Bit-position carry conditions are combined in four-bit
groups to generate group-carry conditions.

e Group-carry logic outputs define effective status of all
bit positions composing a group.
e Group-carry outputs are sent to section-carry logic.

The group-level carry information generated for any
particular group is determined by logically combining the
bit-transmit/bit-carry outputs of all four positions within
that group. Group-transmit/group-carry signals are then

2065 FETOM (9/68) 2-77

generated and sent to the section-level carry logic of the

section in which the particular group is located. Group-

level carry logic outputs indicate the following:

1. Group transmit. Signifies that all bit positions within
that group have received at least one bit of operand
data, i.e., bit-transmit conditions exist throughout the
group. '

2. Group carry. Signifies that bit-transmit/bit-carry con-
ditions within that group are such that an effective
carry condition exists from the high-order position of
that group. '

Group-level carry logic is illustrated in Diagram 4-511,
FEMDM. Note in the diagram that group-transmit/group-
carry outputs are determined solely by bit-transmit/bit-
carry conditions, which represent incoming data only
(without the use of any propagated carry information).

When group-carry conditions are sent to their asso-
ciated section-level carry logic, they may also (at the same
time) generate ‘carry into group’ signals to adjacent
higher-order groups within that same section. This
sequence results in the immediate propagation of group-
carry information (within that same section). Carry-into-
group circuits that are not activated at this particular time
may be activated somewhat later by incoming section-
carry signals from lower-order sections.

Because group-carry conditions are used in developing
section-carry conditions, a time differential exists between
the two logic functions. The timing relationships between
bit-carry, group-carry, section-carry, and carry-into-group
are discussed in “Arithmetic Function Sequence”.

Section-Level Carry Logic

® Group-level carry conditions are combined to develop
section-level carry conditions.

e Section-carry outputs define effective carry conditions
of all bit positions within a particular section.

e Section-carry outputs are sent to higher-order sections
as predicted carry information.

Section-level carry information is determined by logically
combining the group-transmit/group-carry outputs of all
groups within a section. Like group-carry generation,
section-carry outputs are also determined solely by
group-carry conditions (without the use of any carry
propagation). Section-level carry logic outputs signify the
following:

1. Section-transmit. Indicates that all bit positions of all
groups within that section have received at least one bit
of operand data (i.., group-transmit conditions exist
throughout the section).

2. Section-carry. Signifies that group-transmit/group-carry
conditions within that section indicate that an effective
carry condition exists in the high-order bit position of
that section.

2-78 (9/68)

The section-level carry logic (Diagram 4-511) develops
a ‘section 1.transmit’ signal from group transmits and a
‘section 1 carry’ signal from combinations of group-
transmits and carries.

Section-Level Carry-Into Logic

A section-carry generates a carry into the next higher
order section. The section-level-carry-into logic (Diagram
4-511) develops carry-into-section signals, starting with a
‘carry into section 1’ signal produced by a hot-carry.
Carry into sections 2, 3, and 4 are developed by
section-transmit and section-carry logic.

Group-Level Carry-Into Logic

Carry-into-section signals produce a carry-into-group sig-
nal for at least the low-order group of the section.
Development of additional carry-into-group signals is
dependent on group carry/transmit conditions (Diagram
4-511). Note that carry-into-group signals may be devel-
oped independently from the carry-into-section signals.

Bit-Level Carry-Into Logic

Carry lookahead conditions the bit-level carry-into logic
of the low-order group position if no group carry is
present from the next lower-order group. Other bits in the
group are conditioned if intervening low-order transmit
bits are present (Diagram 4-511). For example, if a bit 49
carry and a bit 48 transmit have been developed, the
result is a group 4 carry that generates a section 1 carry.
The section 1 carry and a section 2 transmit produce a
‘carry into section 3’ signal. A ‘carry into group 9’ signal
results from the ‘carry into section 3’ signal. When
bit-transmits 30 and 31 are present, a carry into bits 29
and 30 takes place to develop full sums.

Diagram 4-511 shows the timing relationships for carry
lookahead. Note that although a direct carry occurs
before a carry lookahead, this time difference does not
affect the final sum development which takes place after
all carry circuits have settled down.

Full-Sum Development

e Half-sums are combined with carry information (actual
and predicted) to develop full sum.

The manner in which carry lookahead and half-sum
functions are logically combined to produce a full-sum
result is illustrated in Figure 2-55. Note that all group-
level and section-level functions are arranged on a section
(four-section) basis, whereas carry-into-bit and full-sum
functions appear in each adder position.

The complete carry lookahead system is shown in
Diagram 4-511; a2 summary of carry-predict operation is as
follows. When operand data is presented to the A- and

- B-sides of the adder, the half-adders of all positions are

4 63 4 63 /—7 Hot Carry into PA(63) (Carry into Section 1)
/
/
PAA PAB -7
~
~
-
~
(~
Section 4 Section 3 Section 2 Section 1 | l A Carry into Section 2
| {__Jor
s w2 nfwofeje |7 e |5 |43 |21 | | J
4 15]16 332 4748 &l |
| Section 1 Carry
I I | I Bit 'Carries and Group Group Carries .
8it Transmits C""_')’ Section 1
(ng'c Group Transmits f:g":y
roups ic
: 1,2,3,4) _Section 1 Transmit
|
| Carry
| into Carry into Groups 1,2,3,4
] Group
1 Logic
|
|
| Section 2 Carry
Bit Carries and Group Group Carries .]
Bit Transmits C“"fY Section 2
S — 1 Logic _ Group Transmits Carry .
(Groups jumiam Logic A Carry into Section 3
I 5,6,7,8) Section 2 Transmit OR
! A
Carry
| into Carry into Groups 5,6,7,8
| - Group ==
| Logic
|
: Section 3 Carry -
Bit Carries and Group Group Carries
Bit Transmits Can:y Section 3
O l(.églc Group Transmits furl:y A
roups ogic
l 9,10,11,12 tion 3 Transmit
| 12) 2ection - Carry into Section 4
| OR
| Carry A
| into Carry into Groups 9,10,11,12
Group .
| Logic A
|
I
! l—-’
Bit Carries and Group . Carry
Bit Transmits_ f"’"")’ Group Carries) into Carry into Groups 13, 14,15
R ogic Grou
P
(Groups Group Transmits Logic
13,14, 15) _
(Predicted Corries into Groups 13, 14, 15)
(Predicted Carries into Groups 9,10,11,12)
(Predicted Carries into Groups 5,6,7,8)
(Predicted Carries into Groups 1,2,3,4)
1 |
' ' ' I |
A A l { |
Car Carr; Carr; Carr;
Half- Carry _ Y . y _ y |
S:m into l;:: into ?0" into ?:: into |
Bit Bit um Bit Bit |
y b v | !
Full-Sum Logic I Full-Sum Logic I Full-Sum Logic | Fuli~Sum Logic :
. |
Latch-Shifter AP |
4 8)_ 61

Figure 2-53. Parallel Adder Carry Lookahead Data Flow

2065 FETOM (9/68) 2-79

(No Predicted Carry) -

/2 1
/ |
// !
// Carry
-/ Lookahead
/ Logic
/
Actual /
Carry //
into ;) A
-Position 44 /

Group 5 / Group4 - Group 3 Group 2 Group 1
T T T] T 1 | T 1 | [T I | |
P Pop 1o [I |
L TICHT T|T|T|T TyT T T Tllrlrlr
b . [T | " I

47 48 | 510 | 52 55 || s6 I 9 I I
“ | | !] ! !]] | | 1 L’ o, 1 P &
Example No. 1 = No Predicted Carsy
(Predicted Carry)
&,
Q8 Carry
S8 Lookahead
© Logic
Predicted
Carry
into p A
Position 44 :

Group 5 Group 4 Group 3 Group 2 Group 1 -+~
| : ; l] } 1 | |] | |] } |
REREE IR B IR S S r}rlr}r riricl

| | | |
T |] o [1 |
1 [
“ @ 48 | L 52 | 155)] 561 | EAES ! I 63

T = Bit-Transmit Condition

C = Bit-Carry Condition
Figure 2-54. Actual and Predicted Carry Origin for PA(44)

sampled for bit-transmit/bit-carry information. (Half-sums
are also generated from the half-adders and presented to
the full-sum logic of each position at this time.) All
bit-transmit/bit-carry information is sent to the associated
group-carry logic, and all group-carry outputs are entered
into their respective section-carry logic. Section-carry
outputs now represent the carry status that logically
prevails in the high-order position of each section (with-
out any effects of carry propagation). All section-level
carry outputs are then combined with lower-order section-
carry information to determine whether a ‘carry into
section’ (predicted-carry) signal is generated for the
higher-order section(s). ‘Carry into section’ signals sent to
higher-order sections combine with group-carry conditions
within those sections to produce the carry-into-group
conditions that represent predicted carries for the individ-
ual bit positions. The carry-into-bit logic of each in-

Example No, 2 = Predicted Carry

dividual position then logically OR’s ‘carry into group’
(predicted-carry) signals with actual carry indications, and
this output combines with the half-sum to produce the
full-sum result.

Note that throughout the lookahead sequence no
ripple operations are required. Definite cycle times,
however, are associated with each predict function (bit-
carry, group-carry, section-carry, carry-into-section, and
carry-into-group); these times are discussed in the follow-
ing paragraph.

Arithmetic Function Sequence

o Eight logical delay levels are required for arithmetic
functions.

e Extended clock signals are used within adder.

o Full-sum results are latched (retained) for 1 cycle.

2065 FETOM (9/68) 2-81

(Bit Transmits) (Bit Carries) - - -

P

Yy Yy

Group S Group
Transmits | - . Carries

4l

Section Section .
Transmit Carry

1 v

Carry
into
Section

d

Carry
into
Group

00 3O AW N e

P

Carry
into
Bit

_L

Carry
into Bit

This logic is contained
> in each individual
adder position

‘ (Inverted)
Half-Sum - I -
Full
Sum

Figure 2-55. Full-Sum Development Logic

The timing sequence in which all adder logic operates to
develop and check full-sum information is shown in
Figure 2-56. Three delay levels (P4—P7) occur between
the time at which data is placed on the adder input bus
(by the associated gate-control triggers) and the time at
which the same data enters the half-adders. (Two of these
delay levels result from bus-gating delays; the third, from
the signal cables.) Eight levels of signal delay, then, are
required within the adder for the fullsum development
process. As noted on the timing chart in Figure 2-56, the

2-82. (9/68)

logic functions that require the eight delay times occur in
the following sequence: '

. Bit-carry/transmit.

. Group-carry/transmit; carry-into-bit (direct).

. Section-carry/transmit.
. Carry-into-section.

. Carry-into-group.
.-Carry-into-bit (predicted).
. Carry-into-bit (inverted).
. Full-sum.

Note: A carry-into-bit can originate early from a direct
carry or late from the predicted carry logic.

Extended clock signals are used within the parallel
adder to control all latches. The clock portion of the
normal CPU clock signal is extended two delay levels
(approximately 20 ns), producing a symmetrical clock
signal of 100-ns clock and not-clock times. These ex-
tended clock signals result in delaying both the setting and
resetting of the adder latches. Delaying the setting of the
full-sum latches provides additional time for carry-predict
functions, and delaying the resetting of the latches retains
latched sum information long enough for sampling by the -
error-checking logic.

_Full-sum information contained in the adder latches is
normally retained one cycle, For certain operations, -
however, an adder-hold (‘—HOLD’) micro-order inhibits
the clock signal that resets the adder latches, thus
retaining latched sum information for one additional
cycle. :

" Parity-Predict Logic

e 0dd parity is supplied with each byte (or half-byte) of
_adder output data.

o Parity generation is simultaneous with full-sum '
development.

o Parity-predict logic utilizes inputs from half-adders and
carry lookahead logic.

o Parity generation is corrected accordingly -for left-
4/right-4 data shifting.

0dd parity is generated for each byte (or half-byte in the
case of positions 4—7 and 64—67). Predict logic is
employed, allowing parity information to be generated’
simultaneously with the development of full-sum data.
(This scheme eliminates the time involved in analyzing the
full-sum bit count to determine parity.) Parity is initially
predicted for each four-bit group of adder output data.
For the eight-bit byte outputs, the parity information
predicted for the two adjacent four-bit groups that
constitute a particular byte is combined (Exclusive-
OR’ed) to determine the full-sum parity of that byte.
Because the adder is also capable of shifting full-sum data

STorD - A8, Q, IC, or
Data | Data
A-Side Bus B-Side Bus
Controls Controls
T A-Side Data B-Side Data [
" Half-Adders
l Bit Transmits . Bit Carries
Carry
Hatf=sums Predict
T Carry into Bit S _— Carry into Group .
Full Sum‘ Parity
Logic Predict
y
4-Bit
Group
Parity
R4/L4 Shift Controls _R4/L4 Shift Controls
A- and B-Side) + y
erand Porit
& - Y Latch-Shifter 8-Bit Parity
(R4/14) Latch-Shifter
Parity Adjust
(Shift Operations) v
3 Y Y v
Half-Sum Zero- Full-Sum
Parity Detect Parity
Check Logic Check
Half-Sum "~ ToROS Full-Sum
Error . Branch Logic Error J
LY L
Adder Output Output Dota
Data Parity
PO . P8 PO
CPUY Clock Jd " Clock L Not-Clock T
. P4 P3
Register Data Gated to Adder Data Bus _—" |
]
{_ Deloy _ P P4
A-and B-Side Data Entered into Adder L—

Half-Sum input

Bit Carry/Transmit

‘Full-Sum Data Set into Latch-Shifter

Latch~Shifter Data Stable for Sampling

. | ljg
[, | N
-

~ Group Carry/Transmit
emenee———], Section Carry/Transmit
ﬁ, Carry into Section
——— Corry into Group

‘Predicted
e SR Ot | Cory nto B

Inverted

d Full Sum

|
z

Adder Output Data Gated into Sel

Figure 2-56. Parallel Adder Logic Function Sequence

d Register

2065 FETOM (9/68)

2-83

left 4 and right 4 (before entry into the adder latches),
generation of correct byte parity for left-4/right-4 opera-
tions then becomes a matter of selecting which two
adjacent four-bit group parity outputs to combine when
determining the parity of a particular output byte:

Parity is logically predicted through functions of the
incoming operand data; operation is as follows. At the
same time half-adder outputs are sent to the lookahead
logic (to predict carry information), they are also sent to
four-bit group parity-predict logic. A typical four-bit
group parity-predict function is shown in Diagram 4-512,
A, FEMDM. (Group 4 is used as an example; all groups are
similar.) For each four-bit group, bit-transmit, bit-carry,
and half-sum outputs from half adders and carry-into-
group outputs from the lookahead logic are combined to
logically predict whether the resultant full-sum bit count
for that particular group will be odd or even. Note in the
diagram that duplicate decoder logic is present in each
four-bit group parity-predict circuit. This duplicate logic
simultaneously produces the opposite polarity (out-of-
phase) signals required for use in the eight-bit parity
latch-shifter logic without the signal delay introduced if
an additional inversion component were used.

Typical parity latch-shifter logic used in combining two
adjacent four-bit group parities to determine eight-bit
byte parity is shown in Diagram 4-512, B. (Adder output
byte 48—55 is used as an example; all byte parity logic is
similar.) Note in the diagram that the two four-bit group
parity outputs to be combined (Exclusive-OR’ed) when
determining byte parity are selected according to the type
of shift operation in process; i.e., left 4, right 4, or no
shift (straight transfer). The generated parity for each
adder byte (or half-byte in the case of positions 4—7 and
64—67) is set into the corresponding parity latches for
transfer with the data and sent to the full-sum error-
checking logic. Because parity information is used in
full-sum error checking and both parity and full-sum
information are formed independently, an inconsistency
in either will cause a full-sum error.

Error Checking

Parallel adder logic employs both half-sum and full-sum
checking facilities. Half-sum checking verifies incoming
data (in regard to assigned parity only); this test also
results in verifying half-adder operations because half-sum
outputs are used in half-sum checking logic. Full-sum
checking logic compares the full-sum bit count (odd/even)
with the generated parity information on a byte (or
half-byte) basis. Because full-sum and parity information
are formed independently, an inconsistency in either
results in a full-sum error.

Half-Sum Checking

o Compares half-sums with incoming operand parity.

2-84 (9/68)

Half-sum checking logic combines the parity information

_assigned to incoming A- and B-side operand data with the

half-sum generated when the same two operands are
combined in the half-adders. This combining of parity and
half-sums is performed on a byte (or half-byte) basis, with
detected errors stopping the CPU clock and lighting
indicators signifying the byte (or half-byte) in error.
Half-sum checking logic, illustrated in Diagram 4-513,
FEMDM, operates as follows. A stage of precheck logic

for each byte (or half-byte) combines half-sums with the

corresponding A- and B-side parity information in odd-
detect (Exclusive-OR) circuits. (The precheck logic shown
in Diagram 4-513 monitors adder positions 48—55.) This
logic functions so that, if the number of half-sums, plus
the A- and B-side parity bits, results in an odd bit count,
the half-sum precheck trigger for that associated adder
area is set. Precheck outputs from all adder areas are then
combined with left-shift logic at the input to the ‘half-sum
error’ trigger. This left-shift logic determines whether an
actual half-sum error exists or whether shifting the register
data left 1 or left 2 positions (while en route to the adder)
has forced a half-sum error.

Note: Left-shifting the adder input data left 1 or left 2
positions invalidates the assigned parity information, thus
forcing half-sum errors. The number of half-sum errors
created, however, should result in an even number; i.e.,
the half-sum errors forced into positions 4—31 should
equal the number of half-sum errors forced into positions
32—63. Odd-detect logic, therefore, allows only an odd
number of half-sum precheck indications to set the
‘half-sum error’ trigger during a left 1/left 2 shift
operation.

If a valid half-sum error exists, the ‘half-sum error’
trigger is set, thus setting the ‘final error’ latch. Setting the
‘final error’ latch prevents the ‘half-sum error’ trigger from
automatically resetting, which in turn prevents resetting
the precheck logic for the area in which the half-sum error
occurred. Inhibiting these resets causes the CPU program
to 'stop on the following cycle (provided the CPU CHECK
switch is in the STOP position), with the HALF SUM
error indicator for the area incurring the error displayed
on the roller switch indicators.

The half-sum error indications are reset by the ‘error
reset gate’ signal (SYSTEM RESET or CHECK RESET
pushbutton).

Full-Sum Checking

o Compares latched sum information with generated

parity. on) & DYTE BAS1S

Full-sum checking logic combines latched sum informa-
tion with generated parity information on a byte (or
half-byte) basis. (Full-sum checking for adder positions

48—55 is shown in Diagram 4-514, FEMDM.) Because the
CPU operates with odd parity, combining full-sum bits
with generated parity should always result in an odd bit
count. Detecting an even latched-sum-plus-parity bit
count sets the ‘full-sum error’ trigger for that particular
adder byte area, which in turn sets the ‘final error’ latch.
The error signal that sets the ‘full-sum error’ trigger stops
the CPU program on the following cycle (provided the
CPU CHECK switch is in the STOP position) and lights a
FULL-SUM error indicator on the roller switch indicators,
signifying the area incurring the full-sum etror.

For practical reasons, combining full sums with parity
is logically accomplished by -first Exclusive-OR’ing the
" generated parity with a single latched sum position
"~ (Diagram 4-514), and then combining that result with the
remaining latched sums of that particular byte. An odd
result (signifying an even overall bit count) then sets the
associated ‘full-sum error’ trigger.)

Full-sum error conditions are reset by the ‘error reset
gate’ signal (SYSTEM RESET or CHECK RESET push-
button).

Convert-to-Decimal Operation

Special circuits, used only in the convert-to-decimal
operation, provide excess-6 decimal correction when
required. Excess-6 is forced on the PAB bus when a test of
a four-bit group indicates a decimal value higher than 9.
For this operation, parallel adder bit positions 28—63 are

logically divided into four bit groups, each group repre-

senting a decimal digit in the packed format. Diagram
4-515, FEMDM, shows the development of excess-6
signals for PAB(28—31) and PAB(60—63). Note that these
signals are activated only when ROS has developed the
excess-6 gate and when the AB bits indicate the need for
decimal correction.

For this operation, data is brought into the parallel
adder one bit at a time by transferring one byte of data to

the serial adder and sampling SAL(0). If SAL(0) = 1, the
‘conv dec’ trigger is set and a hot-carry sets PAL(63) (Fig.
2-57). The contents of the serial adder are then shifted
left 1 position so that the next bit can be sent to the
parallel adder (which is also shifted left one position).
[For details, see Chapter 3, Section 2, “Convert to
Decimal, CVD (4E)”.] Because data is processed through
normal parallel adder entry logic, parity generation takes
place in a normal manner. ’

Gate Excess 6' Conv Dec

Hot Carry
to PA(63)

SAL(0)
L

A T Complement

Control OR

AP734

AP737

AS001
tROS Micro-order

Figure 2-57. Convert-to-Decimal Data Flow to Parallel Adder

Set Condition Code

After an operation, PAL is analyzed to set the PSW
condition code (CC). CC’s are set in many ways with
many variables for different instructions; Diagram 4-516,
FEMDM, shows a typical example. Various sections of
PAL are examined for a zero condition; combinations of
PAL equal zero and micro-orders set STAT A, which is
sampled by the instruction and the result sign to set the
CC. :
In the example, if PAL(32—63) is not equal to zero
and the result is negative, a CC of 1 is set on a fixed-point
operation. (This setting indicates a number less than zero.)
Note that an overflow condition on a fixed-point instruc-
tion sets both CC bits, regardless of the condition of PAL.

For a floating-point operation PAL(7—67) is examined
for zero. A not-zero condition and a plus result set a CC
of 2.

2065 FETOM (9/68) 2-85

Section 7. Status and Control Triggers.

This section discusses the eight Status Triggers (STAT’s
A—H) and miscellaneous control triggers. A summary of
the conditions that set STAT’s A—H is shown in Figure
2-58, and a typical example of STAT logic (showing
STAT B) is illustrated in Diagram 4-601, FEMDM,)

STAT A

o STAT A indicates:
Zero condition for parallel adder.
Non-zero condition for serial adder.
Digit condition on edit operations.

STAT A oprimarily indicates zero-detect conditions.

Except during scan-in, when it is set directly to the value

of T(54), STAT A is normally set at P2 clock time by one

of the following conditions:

1. ‘Set STAA if SAL(0—7) not equal to zero’ signal, with
SAL(0—7) not containing all zeros.

2. ‘Edit set STAA’ signal (edit operations).

3. ‘Serial adder (0—3 or 4-—7) not zero’ signal, from the
‘serial adder not zero’ (SNZ) latch (indicating that the
serial adder latched outputs do not contain all zeros).

Note: The ‘SNZ’ latch is set at not-clock time by the -
‘decimal correct 0—3 set STAT’s AE’, or ‘serial carry-7

STAT’s AE decimal correct 4—7’ signal.

4. ‘Set STAA if PAL(7—-63) equals zero’ signal, with
PAL(7-63) latched outputs containing all zeros.

5. ‘Set STAA if PAL(32—63) equals zero’ signal, with

. PAL(32-63) latched outputs containing all zeros.

6. ‘Set STAA if PAL equals zero and insert sign’ signal,
with E(6) = 1.

The output of STAT A is entered directly into a
polarity-hold latch, which unconditionally assumes the
same binary state as STAT A at P1 not-clock time. (This
latch retains its assumed state until not-clock time of the
cycle in which STAT A is reset.)

STAT A is reset at P1 clock time if one of the
following conditions is active:

1. ‘STAT trigger reset’ signal (conditioned by either a

‘system reset’ or an ‘I-Fetch reset’ signal).

2. ‘Reset STAA’ signal, which is conditioned when any

one of the following is active:

a. ‘Edit reset STAA’ signal.

b. ‘Set STAA if PAL(0—63) equals zero’ signal.

c. ‘Set STAA if PAL(32—63) equals zero’ and signal.

2-86 (9/68)

d. ‘Set STAA if PAL(32—63) equals zero and insert
. sign’ signal, with E(6) = 1. _

e. ‘Reset STAA if PAL(32—63) not equal zero’ signal, -

with STAA polarity-hold latch set.

Note: If PAL(32—63) contains all zeros and the
STAA polarity-hold latch is set, the ‘reset STAA if
PAL(32-63) not equal zero’ signal is inhibited from
resetting STAT A.

f. ‘Set STAA if SAL(0—7) not equal zero’ signal.

STAT B

e STAT B indicates:
Zero-condition for serial adder.
Overflow condition for decimal, fixed point, left-shift

opetations.
Condition of PAL(31).
Condition of B(32).

STAT B primarily indicates overflow conditions. Except
during scan-in, when it is set directly to the value of
T(55), STAT B is normally set at P2 clock time by one of

" the following conditions:

1. ‘Set STAB if SAL(0—7) equals zero’ signal, with
SAL(0—7) containing all zeros.
2. ‘Set STAB on decimal overflow’ signal, with the
- ‘decimal overflow’ latch set. '

Note: The ‘decimal overflow’ latch is set at not-clock

- time of a decimal-compare cycle in which: ’
a. The ‘serial adder in bus A(7)’ contains a 1 bit,
and either STAT A, STAT D, or STAT H is reset.
b. The ‘serial adder in bus A(0—6)’ is not equal to

0.
¢. STAT H is set, with STAT C and STAT F either |
both set or reset.

3. ‘Set STAB if PAL(31) equals 1’ signal, with PAL(31) =
1.

4. ‘Gate fixed-point overflow to STAB’ signal, with a
fixed-point overflow condition prevailing.

5. ‘Set STAB on left shift overflow’ signal, with a
left-shift overflow condition detected.

6. ‘B(32) to STAB and T(32) to STAG’ signal, with B(32)
= 1. [STAT B is set at P2 + 140 ns under this condition
to allow B(32) to become stable before it is sampled.]

PAL = 0 Condition
Digit Condition for Edit . R

Set STAT A

SAL Not 0 Condition : .
.] KS021
SAL 0 Condition

Decimal or Fixed-Point O'flow
Loft Shift O'flow

Set STAT B

PAL(31) =1
B(32) =1

Sign Correction KS031

Neg Sign SBA

Save Signs S

$B8(0) = | . A R

Set Signs —
Pos Sign SBA(4-7) KS041

VFL Operation A A

Set Signs

$(0) =1

Save Signs

FLT-PT Mult

SAL(0) = 1 - AT |

Set STAD Set STAT D

| serstaTc

OR
Q to LAL = 0000

Set Signs Ks051

VFL
Invalid Sign i A | |
Invalid Digit (Dec)

Save Signs OoR

A | KS061

Not FLTPT
lnvalid Sign SBA(4-7)

Sign Correction

Set Signs

Decimal VFL
Neg Sign SBB(4-7) A I

ee—

Save Signs
Neg Sign 588 A R Set STATF

| Ks071

Save Signs

Floating Point
STATC

STAC to STAF

Set STAG

Set STAT G

T(32)

Set STAH Ksoe1

Set STATH
SADDL Carry Out-of Group 2

Save SA Camy A As105

E_v—

Figure 2-58. Summary of Setting of STAT’s

Dec Correct (0-3)

Set STAT E

The outputs of STAT B are sent directly to a
polarity-hold latch. This latch unconditionally assumes
the state of STAT B at not-clock time of the cycle in
which STAT B is set, and retains this information until
not-clock time of the cycle in which STAT B is reset. The
output from the STAT B polarity-hold latch inhibits the
resetting of STAT B whenever STAT B is set during the
same cycle in which either a fixed-point overflow or a
left-shift overflow is detected. (Either of these overflow
conditions causes a program interruption requiring that
STAT B remain set for interrogation.)

STAT B is normally reset at P1 clock time if one of the
following conditions is active:

1. ‘STAT reset’ signal (conditioned by either a ‘system
reset’ or an ‘I-Fetch reset’ signal).

2. ‘Reset STAB?’ signal, which is conditioned if one of the
following signals is active:

a. ‘Set STAB if PAL(31) equals 1°.

b. ‘Gate fixed-point overflow to STAB’.

c. ‘Set STAB on left shift overflow’.

d. ‘B(32) to STAB and T(32) to STAG’ (resets STAT

B at P1 + 140 ns).

STATC

e STAT C holds:
‘Serial adder in bus A’ sign on sign-correction VFL
operations.
‘Serial adder in bus B’ sign on save-signs VFL opera-
tions.
Sign for set-signs on VFL and non-VFL operations.

STAT C primarily indicates the sign of a source operand.
Except during scan-in, when it is set to the value of T(56),
STAT C is set at P2 + 140 ns clock time by one of the
following conditions:

1. ‘Sign correct SA(4—7)’ signal, with a negative sign

2. ‘Save signs’ signal, with ‘serial adder in bus B’ position
0 containing a 1-bit during subtract or compare
operations and a 0-bit during all others.

3. ‘Set signs’ signal during VFL instructions in which
‘serial adder in bus A’ positions 4—7 contain a positive
sign during subtract or compare operations and a
negative sign during all others.

4. ‘Set signs’ signal during any non-VFL operation in
which S(0) = 1.

STAT C is normally reset at P1 clock time by the
‘STAT trigger reset’ signal (activated by either a ‘system
reset’ or an ‘I-Fetch reset’ signal). STAT C is also reset at
P1 + 140 ns whenever the ‘set signs’ signal is activated for
operations other than VFL operations.

2065 FETOM (9/68) 2-87

STATD

‘e Used by microprogram to retain ROS branch infor-
mation.

e Indicates sign for save-signs operation on floating-point
multiply and divide.

o Indicates Q-to-LAL equals 0000.

STAT D stores a characteristic carry from SAL(0) during
floating-point multiply and divide operations and indi-
cates that the B1 or B2 field of an instruction equals zero.
For operations other than floating-point multiply and
divide and scan-in operations, STAT D is available for
arbitrary microprogram use and can be unconditionally
set or reset by the ‘set STAT D’ and ‘reset STAT D’
signals, respectively. (Such operations include storing of
the dividend sign on fixed-point operations.) Except
during scan-in operations, when it is set directly to the
value of T(57), STAT D is normally set at P2 + 140 ns by
one of the following conditions:

1. ‘Set STAT D’ signal.

2. ‘Save signs’ signal during floating-point multiply and
divide operations in which SAL{0) = 1. (STAT D is set
at P2 clock time under this condition.)

3. ‘Gate Q to LAL 0000’ signal.

Note: This signal is activated whenever the B1 or B2
field of an instruction is being gated from Q to LAL
and is found to equal 0. Although STAT D is always
set on this condition, its significance is of value only

during an SS-format instruction when a B2 = 0000

indication must be retained for more than one cycle.
(Used in setting ROSAR when selecting I-Fetch ROS
words for SS-format instructions.)

* STAT D is normally reset at P1 clock time by the
‘STAT trigger reset’ signal, which is activated by either a
‘system reset’ or an ‘I-Fetch reset’ signal. ‘Reset STAD’
and ‘gate I-Fetch invalid address’ signals reset STAT D at
PO + 140 ns. The ‘reset STAD on decimal overflow’ signal
resets STAT D at P2 clock time.

STATE
@ Indicates invalid digits and signs.

STAT E primarily indicates the detection of invalid data

during decimal operations. Except during scan-in, when it

is set to the value of T(58), STAT E is normally set at
clock P2 + 140 ns by one of the following conditions:

1. ‘Set signs’ signal during VFL operations in which an
invalid sign is detected on either the ‘serial adder in
bus-A’ or “-B’.

2. ‘Save signs’ signal for operations other than floating-
point operations in which an invalid sign is detected on
the ‘serial adder in bus B(4—7)".

2-88 (9/68)

3. ‘Sign correct SA(4—7)’ signal with the detection of an
invalid sign on the ‘serial adder in bus A(4—7)".

4. Detection of an invalid digit on either side of the ‘serial
adder in bus’.

S. Detection of an invalid digit on the ‘serial adder in bus

- A(0-3), with the ‘digit examine’ latch set (edit

operations).

STAT E is reset at P1 clock time by the ‘STAT trigger
reset’ signal (activated by either a ‘system reset’ or an
‘I-Fetch reset’ signal).

STATF

e STAT F holds:
‘Serial adder in bus B’ sign on set-signs decimal
operations.
‘Serial adder in bus B’ sign on save-signs operations.
Condition of STAT C.

STAT F primarily indicates the sign of VFL destination

operands. Except during scan-in, when it is set to the

value of T(59), STAT F is normally set at P2 + 140 ns by

one of the following conditions: '

1. “Set signs’ signal during a VFL decimal operation, with
a negative sign detected on ‘serial adder in bus B(4—7)’.

2. ‘Save signs’ signal during operations other than
floating-point operations, with a negative sign detected
on ‘serial adder in bus B’.

3. ‘Save signs’ signal during a floating-point operation,
with A(0) = 1.

4. ‘STAC to STAF’ signal, with STAT C set. (Sets STAT
F at P2 clock time.)

STAT F is normally reset at P1 clock time by the
‘STAT trigger reset’ signal (activated by a ‘system reset’ or
an ‘I-Fetch reset’ signal). The ‘STAC to STAF” signal also
resets STAT F at PO clock time in preparation for setting
STAT F again at P2.

STAT G

e Used by microprogram to retain ROS branching
information.

o Indicates state of T(32).

STAT G is available for arbitrary microprogram use and

for indicating the state of T(32). Except during scan-in,

when it is set to the value of T(60), STAT G is normally

set at P2 + 140 ns by one of the following conditions:

1. ‘B(32) to STAB and T(32) to STAG’ signal, with T(32)
=1.

2. ‘Set STAG’ signal.

STAT G is normally reset at PO + 140 ns by the ‘reset
STAG’ or ‘B(32) to STAB and T(32) to STAG’ signal. A
‘system reset’ signal and an ‘I-Fetch reset’ signal also reset
STAT G.

STATH

e Used for serial adder cafry-control functions and ROS
branching information.

STAT H indicates a serial-adder carry. Except during
scan-in, when it is set to the value of T(38), STAT H is set
by one of the following conditions:

1. ‘Set STAH’ signal and clock time P2 + 140 ns.

2. The output of a latch set at not-clock time by either a
‘decimal correct 0—3 and set STAT’s AE’ or a ‘save
serial adder carry’ signal in conjunction with a serial
adder carry from group 2. The set condition is timed at
P2 clock time.

Table 2-2. Control Triggers

STAT H is reset at P1 clock time whenever the latch
referred to in item 2 is set. A ‘system reset’ signal and an
‘I-Fetch reset’ signal also reset STAT H at P1 clock time.
It is also reset at P2 + 140 ns by the microprogram.

CONTROL TRIGGERS

A number of control triggers perform functions similar to
STAT’s. Table 2-2 lists the most significant triggers,
summarizes their functions, and provides ALD and
FETOM references.

ALD FETOM Roller Switch
Trigger Function Reference Reference Indicator
Right Digit Selects digit from AB byte KZ321 Volume 2, Chapter 3, RT DIG
on.edit operations. Section 5, ““General Roller 4
Data Handling”’ Position 4
Bit 32
S Indicates source character, KZ321 Volume 2, Chapter 3, S
rather than fill character, Section 5, “Introduc- Roller 4
on edit character transfers. tion to Edit Operation” Position 4
Bit 33
Leave Controls ‘serial adder bus Kz201 — LEAVE
B’ on edit operations. Roller 4
Position 4
Bit 34
Step ABC Increments ABC on edit KZ501 — STEP ABC
: operations, if ‘right digit’ Roller 4
trigger is set, Position 4
Bit 35
Block I-Fetch Prevents most I-Fetch KD501 Volume 2, Chapter 3, BLOCK
functions when interrup- Section 1, ““Block Roller 4
tion or exceptional con- I-Fetch Trigger" Position 5
dition is to be processed. Bit 8
Branch Invalid Indicates branch address KD701 Volume 2, Chapter 3, BR INVLD ADR
Address of successful branch is Section 1, ““Invalid Roller 4
invalid. Address Detection’” Position 5
Bit 16
I-Fetch invalid Indicates Q has been KD711 Volume 2, Chapter 3, INVLD ADR
Address refilled from invalid Section 1, “’Invalid Roller 4
address. Address Detection” Position 5
Bit 17
Instruction Resets ILC in old PSW and KM851 Volume 2, Chapter 3, IL NOT AVAIL
Length Not resets all interrupt code Section 1, “Fetch Roller 4
Available triggers except ‘interrupt Protection Detection’’ Position 5
code 4’ trigger. Set by Bit 18
““late” storage protection’
check.

2065 FETOM (9/68) 2-89

Table 2-2. Control Triggers (Cont)

) ALD . FETOM Roller Switch
Trigger Function Reference Reference Indicator
Time Clock Indicates timer has been KM221 Volume 2, Chapter 3, TC AT LIMIT .
at Limit decremented past zero and Section 1, “Timer Roller 4
requests external interrup- Exceptional Condition’’ Position 5
tion Bit 19
Timing Gate Controls duration of 1/O KX311 ‘Volume 2, Chapter 3, TIME GATE TGR
control or direct-control Section 7, “Write Roller 4
signals. Set and reset by Direct, WRD (84)" Position 5
microprogram, and ‘Read Direct, Bit 35
RDD (85)"
No Retry} Indicates to diagnostic KSs321 —_— NO RETRY
programmer instruction Roller 4
retry may give unpre- Position 1
dictable results. Set by Bit 18
(1) ‘store per D’ signal,
(2) ‘PAL to IC" signal and
not SS format, and (3)
‘write local stor’ signal
and LSWR not selected.
IC in LSWRT Indicates IC is saved in KS321 _— IC IN LSWR
LSWR. Occurs only on Roller 4
SS format operations. Position 1
' Bit 19

1 ‘No retry’ and ‘IC in LSWR’ triggers perform no control function but indicate machine conditions only.

2-90 (9/68)

	001
	002
	003
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	1-77
	1-78
	1-79
	1-80
	1-81
	1-82
	1-83
	1-84
	1-85
	1-86
	1-87
	1-88
	1-89
	1-90
	1-91
	1-92
	1-93
	1-94
	1-95
	1-96
	1-97
	1-98
	1-99
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-81
	2-82
	2-83
	2-84
	2-85
	2-86
	2-87
	2-88
	2-89
	2-90

