206

[SE1] Y —

‘Maintenance Manual

5 Processing Unit

SY27-2270-0

Preface

This manual, Form Y27-2270-0, is a completely revised
edition of the maintenance manual for the 2065 Processing
Unit and obsoletes the previous edition, Form Y27-2039-1.

The following CE memorandum service aids (SA’s) have

been incorporated into this manual:

SA Category SA No.

ROS A1,A2,A3,A4,A6,A7,A8,A9,A11,A13,A14
DIAG - A7,A8,A9,A10,A11,A12,A13,A14,E3
PWR 511,12

GEN 11,12

The information in this manual is presented in six
chapters: Chapter 1 contains reference data; Chapter 2
describes operating procedures, maintenance features, and
diagnostic programs; Chapter 3 contains preventive main-
tenance information; Chapter 4 contains maintenance

First Edition (October, 1969)

Information in this manual is subject to change from time to time. Any
such change will be reported in subsequent revisions or FE Supplements.

procedures and service aids which are to be used in

‘conjunction with the diagnostic techniques diagrams (cate-

gory 1) in the 2065 FEMDM (Form Y27-2038-0); Chapter
5 contains power supply maintenance information; and
Chapter 6 identifies frame locations.
Companion and prerequisite manuals to the 2065 FEMM
are:
2065 Processing Unit, FETOM (Volume 1), Form
Y27-2036-0
2065 Processing Unit, FETOM (Volume 2), Form
Y27-2037-0
2065 Processing Unit, FEMDM, Form Y27-2038-0

It is assumed that the reader has been trained on the
2065 and that he is familiar with ALD interpretation and
the use of oscilloscope and related tools.

Text for this manual has been prepared with the IBM SELECTRIC ® Composer.

A form is provided at the back of this publication for reader’s comments. If the form
has been removed, comments may be addressed to: IBM Systems Development Division,
Product Publications, Dept 520, Neighborhood Road, Bldg. 960-1, Kingston, N.Y., 12401.

©Copyright International Business Machines Corporation, 1969

i (10/69)

Chapter 1.
1.1

1.2

1.2.1
1.2.2

1.2.3
1.2.4
1.3
1.4
1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6
1.6
1.7

Chapter 2.

SECTION 1.
2.1
2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6
2.1.7
2.2
23

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6

SECTION 2.
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13.
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

ReferenceData 1-1
Data Flow and Control 1-1
System Coding 1-1
Hexadecimal/Decimal Conversion 1-1
Eight-Bit Zoned Character Codes (USASCII-8

and EBCDIC) 1-3
Instructions and Instruction Formats 1-5
DataFormats 1-5
Program Status Words (PSW) 1-23
I/O ControlWords 1-23
Logic Diagrams 1-25
ALD Notation 1-25
Additive Card Codes 1-25
ALDIndex 1-26
CLD Notation 1-30
ClDIndex v v v« o .. 1-30
Version Numbers 1-30
Model 65 Circuit Levels 1-30
Sync Signals and Locations 1-31
Console and Maintenance Features 2-1
CONTROLPANELS 2-1
System ControlPanel 2-1
PanelA 0. 2-1
PanelB 2-2
PanelC 2-2
PanelD 2-2
PanelE 2-2
PanelF 2-2
PanelG 2-4
CEPanel 2-4
Configuration Control Panel (Multisystem

FeatureOnly) 2-4
Storage Allocation Switches 2-4
Floating Address Switches 2-4
PREFIX Switches 2-5
CPU Mode Switches 2-5
I/O Allocation Switches 2-5
VALID ADDRESS Indicators 2-5

CONSOLE OPERATING PROCEDURES . . 2-6

Turning On SystemPower 2-6
Turning Off System Power 2-6.
Stopping and Restarting the System 2-6

. Resetting the System 2-6
Resetting CPU Error Check Logic 2-6
Emergency Power Off 2-6
Turning On Control Unit Power 2-6
Turning Off Control Unit Power 2-6
ManualIPL 2-7
Display PSW 2-7
Restart from Initial PSW 2-7
Load Instruction Counter 2-7
Instruction Stepping 2-7

- Display LS General Register 2-7
Load LS General Register 2-7
Display LS Floating-Point Register 2-8
Load LS Floating-Point Register 2-8
Address-Compare Stop Procedure 2-8

Display Doubleword from Main Storage . . 2-8

2.23
2.24
2.25
2.26
2.27
2.28
2.29

SECTION 3.
2.30

2.30.1
2.30.2
2.30.3
2.30.4

2.31

2.31.1

2.31.2
2.31.3
2.32
2.32.1
2.32.2
2.32.3
2.32.3.1
2.32.3.2
3.32.3.3
2.33
2.33.1
2.33.2

2.33.3

2.33.4
2.33.5
2.33.5.1
2.33.5.2
2.33.5.3
2.33.5.4
2.33.6
2.33.7
2.33.8
2.33.9
2.33.10
2.33.11
2.33.12
2.33.13
2.33.13.1
2.33.13.2
2.33.14
2.33.14.1
2.33.14.2
2.33:14.3
2.33.15

Chapter 3.
SECTION 1.

SECTION 2.

Contents

Store Doubleword into Main Storage 2-8
Store Single Byte into Main Storage 2-8
Display CAW 2-8
StoreCAW 2-9
Display CCW 2-9
StoreCCW 2-9
Clear Storage Procedure 2-9
MAINTENANCE FEATURES 2-10
Diagnose Instruction and MCW’s 2-10
Diagnose Instruction MCW for CPU . 2-11
Diagnose Instruction MCW for Channel . . . 2-11
ROSTest MCW 1-12
FLTMCW 2-12
Scan-In Operations 2-12
Conditions for Scan-In Using Diagnose

Instructiono ... 2-13
Reference Data for Scan-In Facilities 2-13
Scan-In Program Examples 2-13
Logout, ROS Tests,and FLT’s 2-15
Logout 2-15
ROSTests« .o.. 2-16
FLT’sS« v v v v v v v v 2-17
Hardcore Tests 2-17
Zero-CycleTests 2-17
One-Cycle Tests 2-18
Diagnostic Programs 2-18
HardCore 2-20
Diagnostic Monitor E(DME) 2-20
Machine Check Analysis 220
Interrupt Test 2-21
CPU Error Detection and Analysis (CEDA) . 2-22
Instruction Isolation 2-22
CLDIsolation 2-22
Program Micro-Trace 2-23
Extended Print and Error Utility 2-23
Model 65§ Logout 2-24
Diagnose Test 2-24
Storage Diagnostic 2-24
Intermittent Storage Error Detection 2-25
Storage Protect Test 2-25
Channel Programs 2-26
System Interrogation Program (SIP) . . 226
System Error Recording and Editing .. 226
Recording Programs 2-26
Editing Programs 2-26
Diagnostic Sections (Emulator Features) . . 2-26
7074 Emulator Diagnostics 2-27
7080 Emulator Diagnostics 2-27
7090 Emulator Diagnostics 2-27
Diagnostic Sections (Multisystem Feature) . 2-27
Preventive Maintenance 3-1
BASICUNIT 3-1
FEATURES 3-1

2065 FEMM (10/69) iii

Chapter 4.

SECTION 1.

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3
4.3.1
4,3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.6.1
4.3.6.2

4.3.6.3
4.3.6.3.1
4.3.6.3.2
4.3.6.3.3
4.3.6.3.4
4.3.6.4
4.3.6.5
4.3.6.6
4.4

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5

4.5

4.6

4.7

4.8

SECTION 2.
4.9

4.9.1

49.2

4.10

4.11

SECTION 3.
4.12
4.13

iv. (10/69)

Maintenance Procedures

..........

SERVICE CHECKS AND REPAIR
PROCEDURES
Main Storage Ripple Tests
Write All 1°s
Read All 1’s
Write/Read All 0’s
Write/Read Alternate Pattern
No Parity Bit Pattern
Local Store Ripple Tests
Write All 1’s
Read All’s
Write/Read A1O>s e e
Write/Read Alternate Pattern '
No Parity Bit Pattern
ROS Tests
ROS Parity Checkmg
ROS All 0’s, All 1’s Word Tests
ROS Word Tests
ROS Hardcore Repair
ROS Hardware Tests
ROS Hardware Repair
Weak Sense Amplifier Output
Distorted or Missing Sense Amplifier

Output
Extra or Missing Bits
Electrical Noise
Troubleshooting Noise Problems
Late ROS Branching
Multiple Drive Line Selection
Extra Bits (Bit 99 only)
ROS Parity Checks in Wait State
Intermittent ROS Failures
FLT’s
FLT Hardcore Repair
FLT Zero-Cycle Tests
FLT Zero-Cycle Repair
FLT One-Cycle Repair
2065 SCOPEX Timings
Diagnostics
Timing Checks
Lamp ‘Tests
Signal to Frame Ground Shorts; Service

Check

.............
........
..............
...............

...........

..........
ooooooooo

oooooooooooooo

............

...............

......
ooooooooooooo
..........

...........
..............

.....

.......
.........
.....
L
.................
..........
..........

.........
..........

.........
...............

.............

..............

oooooooooooooooo

ADJUSTMENTS
ROS Optimization
Adjustment Procedure
Debugging Procedure
Elapsed Time Meter Calibration
1052 Singleshot Adjustment (1052
Attachment Feature Only)

............

...........

..........

......

ooooooo

REMOVALS
Large Card Repair and Replacement
ROS Bit Planes

ooooooooooooooo

.............

Appendix A. Special Circuits

Appendix B. Voltmeter Calibration Chart

Removal

4131 Removal
4.13.2 Cleaning « .+ « « « o«
4.13.3 Installation
SECTION 4. SERVICEAIDS
4.14 Intermittent Processor Checks
4.15 Stop-Loop Failures
4.16 Processor Checks; Determining Failing
ROSCycle
4.17 CPU Troubleshooting Flowcharts
4.18 Repetition of Selected ROS Word
4.19 Stop on ROS Address Compare
4.20 ClearingWaitBit
4.21 Determining Trigger Being Tested by FLT
4.22 Repetitive Console Pushbutton Operation . .
4.23 Visual Display of Log Data Indicators
4.24 I/OScopingLoop-
4.25 Servicing Techniques Using Oscilloscope
4.26 Turning on Check Stop After Hard Core
(601F)Runs
4.27 Hints for Running SIP
'4.28 Analyzing an Unexpected Wait State
Condition
4.29 Analyzing I/O Commands
4.30 Analyzing Imprecise Interrupts
4.31 Single Address BCU Scoping Loop
Chapter 5. Power
S.1 Visual Inspection and Cleamng
5.2 PowerChecks
5.3 Marginal Checking
5.4 Voltage Checks and Adjustments
5.4.1 Regulator Output Voltage Adjustment
5.4.2 Regulator Overvoltage Trip Adjustment
5.4.2.1 ConvertedUnits
54.2.2 . Original Units
54.3 Regulator Undervoltage Trip Adjustment
5.5 - Troubleshooting
5.5.1 Power Supply Protection Circuits
5.5.1.1 Circuit Interlocks
5.5.1.2 Voltage Sensing Circuits
5.5.1.3 Current Sensing Circuits
5.5.1.4 Thermal Sensing Circuits
5.5.2 Converter/Inverter
5.5.3 Regulators
5.5.3.1 SCR Regulator
5.5.3.2 Magnetic-Amplifier Regulator
5.6 Replacement
5.6.1 Converter/Inverter Replacement
5.6.2 Regulator Replacement
Chapter 6. Locations

.............

.......

........................

1-1
1-2

1-3
1-4
1-5
1-6
1-7
21
22
23
4-1
4-2
4-3
4-4
4-5
4-6
47
4-8
49
4-10
411
4-12
4-13

4-14
4-15

4-16
4-17
4-18

11
1-2
1-3
1-4
1-5
1-6
1-7

Powersof 2and 16
Binary and Hexadecimal Conversion Charts
@)Parts),

EBCDIC Code
USASCII-8 Code
Instruction Formats
Main Storage Integral Boundaries
2065 Circuit Levels '
Scan-In Program, Example 1
Scan-In Program, Example 2
Diagnostic Program System Master Tape Format
Test Number Comparison Circuit
ROS Signals
Sense Amplifier Input Resistances
ROS E1 Board
Overall ROS Layout
Sync Points for FLT Zero-Cycle Troubleshooting .
FLT Timing
SCOPEX Timing
ROS Sense Amplifier 1 and 0 Bit Waveforms . . .
Typical Shmoo
Unacceptable Shmoo
Acceptable Shmoo L.
ROS Sense Amplifier, Average/Weak/Strong
Waveshapes
ROS Pressure Spider and Torque Sequence
Processor Checks; Determination of Failing
ROS Cycle
E-Register Parity Check Troubleshooting
MPLR Decode Parity Check Troubleshooting
Serial Adder Full-Sum Check Troubleshooting

..............

.............
.......
.............
.........

.......
................

...............

.............

..............

Fixed-Point Instructions
Floating-Point Instructions
Decimal Instructions
Logical Instructions
I/O Instructions
Branching Instructions
Status Switching Instructions

...........

.............

...............

.........

4-19

420
5-1
5-2

53
5-4

5-6

6-4

6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
B-1

1-8
1-9
2-1
2-2

3-1
5-1

Hlustrations

Parallel Adder Half-Sum Check Trouble -

shooting 4-30
I/OScopingLoop 4-31
CPU Power Checkout 5-2
Marginal Check Potentiometer Adjustment

Limits 5-4
SCR Gate Signals (Converter/Inverter) 57
Converter/Inverter 5-8
SCR Regulator Resistances. 59
Magnetic-Amplifier Regulator Resistances

(4Parts) 5-10
Overall CPU and Main Storage Layout, Models

G65SandH6S 6-1
Overall CPU and Main Storage Layout,

Modell65 6-1
Overall CPU and Main Storage Layout,

ModelIH6S 6-2
Overall CPU and Main Storage Layout,

ModelJ65 6-2
CPU Gate and Board Locations 6-3
Large Board Assignment (Functional) 6-4
ROS Physical Layout 6-5
CPU Power Layout 6-6
Laminar Bus Terminal Board Locations (CPU) . . 6-7
Example of External Cable Routing 6-8
Frame 02 Component Locations 6-9
Large Board Pin Addresses 6-10
Card Contact, Board-Pin Relationship 6-11
Address Card Layout for 1052 Adapter 6-12
Switch Contacts (Wiring Side) 6-13
System Control Panel Voltmeter Calibration

Chart B-1

Tables
Interruptions 1-24
Permanent Main Storage Assignments 1-2§
Logout Format 2-16
Typical Set of Diagnostic Programs for

System/360Model 65 2-19
Preventive Maintenance Schedule 3-1
DC Distribution 5-3

2065 FEMM (10/69) v

Abbreviations

ABC
ac
ACC
adr
ALD
amp
ASC
ATN

BCD
BCU

C
CAS
CAW
CB
cC
ccc
CCW
CE
CEDA
charistic
C/1
CLD
CPU
CR
CROS
CSW
CT

dc

dec div
dec ovflo
DM
DSBL
DX

DX +1
DX +2

end op
EPO
ERSLT
exp ovflo
exp unflo

F
FEMDM
FEMM
FETOM
fix-pt div
fix-pt ovflo
FLT
fit-pt div
FLUT
FPR
fract

GCT
G/F
GIS
GPR

vi (10/69)

AB register byte counter
alternating current

additive card code

address, addressed, addressing
automated logic diagram
ampere

address store compare
alternate test number

binary-coded decimal
bus control unit

capacitor

control automation system
channel address word

circuit breaker

condition code

channel control check

channel command word

customer engineer .
CPU error detection and analysis
characteristic

converter/inverter

control automation system logic diagram
Central Processing Unit

diode

capacitive read-only storage
channel status word

conditional terminate

direct current

decimal divide

decimal overflow

diagnostic monitor

disable

first byte in a series of destination bytes
second byte in a series of destination bytes
third byte in a series of destination bytes

end operation
emergency power off
expected result
exponent overflow
exponent underflow

fuse

Field Engineering Maintenance Diagrams Manual
Field Engineering Maintenance Manual

Field Engineering Theory of Operation Manual
fixed-point divide

fixed-point overflow

fault locating test

floating-point divide

Fault Locating Utility program

floating-point register

fraction

gate control trigger

good/fail

general initialization sequence
general-purpose register

hex
HSS
Hz

IC
I-Fetch
ILC
INTRM
I/O

IPL

K
K
kHz

LAL
LAR
LCS
LS
LSWR

MAR
max
MCW
mHz
MMSC
MP
MPAS
ms
multisys

no op
ns

oc
op code
oper
opr

ov

P

PAA
PAB
PAL

pf -

PK

PN

PP

PQ
PREV ADR A
priv oper
prot

PS

PSW

R

ROS
ROSAR
ROSBR
ROSDR
ROSPARA
ROSPARB
RPQ

hexadecimal
high-speed storage
Hertz

instruction counter
instruction fetching
instruction length code
intermittent
input/output

initial program load

kilo
relay
kilohertz

local storage address latches
local storage address register
large capacity storage

local storage

local storage working register

memory address register

maximum

maintenance control word

megahertz

maintenance mode stop clock

multiprocessor

multiprocessor additional storage (5-8) feature
millisecond

multisystem

no operation
nanosecond

~ overcurrent
“operation code

operation
operand
overvoltage

parity

parallel adder A-side
parallel adder B-side
parallel adder latch
picofarad

power contactor
part number

partial product
partial quotient
previous address in ROSPARA
privileged operation
protection

power supply
program status word

resistor

read-only storage

read-only storage address register

read-only storage backup register

read-only storage data register

read-only storage previous address register A
read-only storage previous address register B
request for price quotation

SAA serial adder A-side

SAB serial adder B-side

SAB storage address bus

SAL serial adder latch

SAP storage address protect
SAR storage address register
SBA serial adder bus A

SBB serial adder bus B

SBBD select bus base drive

SBED select bus emitter drive
SCOPEX scoping index

SCR silicon-controlled rectifier
SDBI storage data bus in

SDBO storage data bus out

signif significance

SILI suppress incorrect length indication
SIP Systems Integration Program
SLT solid logic technology

SMS standard modular system
SOROS scan out read-only storage
spec specification

SRL Systems Reference Library
STAT status trigger

STC ST register byte counter
stg storage

STOR CHK storage check

Safety

Safety cannot be overemphasized. Always be familiar with
and heed all safety precautions. Know the procedures for
artificial respiration. These precautions and procedures are
outlined on IBM Form 229-1264-1.

Before making any hardware changes, resistance mea-
surements, or replacements, be sure all power is off and all
capacitors are fully discharged; do not rely on bleeder
resistors. Never work alone. If in doubt: Don’t!

The following safety points are repeated for emphasis:

DANGER

The internal circuitry of the converter/inverter is not
isolated from the power source; therefore, a lethal
potential to ground is present whenever power is on.

SW BD switch board

sync synchronizing

T transformer

TB terminal board

TDX) table byte specified by DX
T(DX + 1) table byte specified by DX + 1
TIC transfer in channel

TN test number

UDC unit data check

uf microfarad

usec microsecond

UT unconditional terminate
A" volt

VFL variable-field length

2 greater than or equal to
; greater than or equal to
< less than or equal to

é less than or equal to

= equal to

not equal to

& and

Exercise extreme caution. This potential exists on the
SMS cards, heat sinks, and terminals to the regulators.

DANGER

The converter/inverter assembly weighs approximately
150 pounds. To avoid personal injury, three men are
required to remove and replace it. The area must be clear
to permit easy and safe manipulation of the assembly.

DANGER

The input terminals of the regulators are not isolated
from the power source; therefore, a lethal potential to
ground is present whenever power is on. Exercise
extreme caution.

2065 FEMM (10/69) vii

This chapter contains reference information needed for
servicing the System/360 Model 65. Information is in
tabular form where possible. Diagrams are largely reserved
for the FEMDM but are cross-referenced here when
appropriate.

1.1 DATA FLOW AND CONTROL

Data flow diagrams are found in the 2065 Processing Unit
FEMDM, Form Y27-2038. These diagrams fall into the

Chapter 1. Reference Data

Data flow is discussed in Chapter 1, Section 1, of the 2065
Processing Unit FETOM, Form Y27-2036.

1.2 SYSTEM CODING

The codes and formats used for instructions and data
within the Model 65 are described in the subparagraphs that
follow.

following categories:) . .
System data flow _ Diagram 3-1 1.2.1 Hexadecimal/Decimal Conversion -
CPU data flow Diagram 3-2 Powers of 2 and 16 are listed in Figure 1-1. The charts and
Data flow by instruction class Diagrams 3-3 to 3-8 procedures for converting binary, hexadecimal, and decimal
Scan data flow and control Diagram 8-101 numbers and fractions are shown in Figure 1-2.
2| n } 27" 16" | n
1| o]0 1
2|1 1]o05 16
4 2]o0.25 256
g | 3)02 4096
, 65 536
16 | 4 | 0.0625 1048 576
32 | 5 |0.03125 16 777 216
64 | 6 | 0.015625 268 435 456
128 | 7 | 0.0078125 4 294 967 296

256 8 | 0.003 906 25

512 9 1 0.001 953 125
1024 |10 | 0.000 976 562 5
2048 |11 | 0.000 488 281 25
4096 | 12 | 0.000 244 140 625
8192 113 | 0.000122 0703125
16384 |14 | 0.000 061 035 156 25
32768 |15 | 0.000 030517 578 125
65536 |16 | 0.000 015 258 789 062 5
131072 | 17 | 0.000 007 629 394 531 25
262144 |18 | 0.000 003 814 497 265 625
524 288 |19 | 0.000 001 907 348 632 812 5
1048 576 | 20 | 0.000 000 953 674 316 406 25
2097152 |21] 0.000 000476 837 158 203 125
4194304 |22 | 0.000 000 238 418 579 101 562 5
8388 608 |23 | 0.000000 119 209 289 550 781 25
16777 216 |24 | 0.000 000 059 404 644 775 390 625
33 554 432 |25 | 0.000 000 029 802 322 387 695 312 5
67 108 864 |26 | 0.000 000 014 901 161 193 847 656 25
134 217 728 |27 | 0.000 000 007 450 580 596 923 828 125

268 435 456 |28 | 0.000 000 003 725 290 298 461 914 062 5
536870912 |29 | 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 |30 | 0.000 000 000 931 322 574 615 478 515 625
2147 483 648 |31 | 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 |32 | 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 | 33 | 0.000 000 000 116 415 321 826 934 814 453 125
17 179 869 184 | 34 | 0.000 000 000 058 207 660 913 467 407 226 562 5

34 359 738 368 | 35 | 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736

1099 511 627 776

17 592 186 044 416

281 474 976 710 656

4 503 599 627 370 496

72 057 594 037 927 936

J 152 921 504 606 846 976

—~
Decimal Values

VWP WON—~00VONOCOARWN—O

e g e S g gp—
(I | S | | I (I 1}

Figure 1-1. Powers of 2 and 16

2065 FEMM (10/69) 1-1

Hexadecimal and Decimal Integer Conversion Table

HALFWORD HALFWORD
BYTE BYTE BYTE BYTE
0123 4567 0123 4567 0123 4567 0123 4567
Hex Decimal Hex Decimal Hex Decimal Hex | Decimal | Hex | Decimal | Hex | Decimal | Hex |Decimal } Hex | Decimal
0 0 0 0 0 0 0 0 0 0 0 . 0 0 o 9 0
1 268,435,456 1 16,777,216 1 1,048,576 1 65,536 1 4,096 1 256 1 164 1 1
2 536,870,912 2 33,554,432 2 2,097,152 2 131,072 2 8,192 2 512 2 32) 2 2
3 805,306,368 3 50,331,648 3 3,145,728 3 196,608 3 12,288 | 3 768 3 48| 3 3
4 | 1,073,741,824 4 67,108,864 4 4,194,304 4 262,144 4 16,384 | 4 1,024 4 64| 4 4
5 | 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680 5 20,480 | 5 1,280 5 80 5 5
6 | 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216) 24,576 6 1,536 6 9% | 6 6
7 |1,879,048,192 | 7 117,440,512 7 7,340,032 | 7 458,752 | 7 28,672 | 7 1,792 | 7 nz2f 7 7
8 | 2,147,483,648 8 134,217,728 8 8,388,608 8 524,288 8 32,768A 8 2,048 8 128 8 8
9 | 2,415,919,104 9 150,994,944 9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 | 9 9
A | 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 | A 160 A 10
B | 2,952,790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 | 8 N
C | 3,221,225,472 C 201,326,592 C 12,582,912 | ¢ 786,432 C 49,152 c |3,02 | c 192 C 12
D | 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D 3,328 | D 208| D 13
E | 3,758,096,384 E 234,881,024 E 14,680,064 | E 917,504 E 57,344 E 3,584 | E 224 | E 14
F | 4,026,531,840 F 251,658,240 F 15,728,640 | F 983,040 F 61,440 F 3,840 F 2401 F 15
8 7 6 5 4 3 2 1
Hexadecimal and Decimal Fraction Conversion Table |
HALFWORD
BYTE BYTE
0123 4567 0123 4567
Hex | Decimal Hex Decimal Hex Decimal Hex Decimal Equivalent

.0 .0000 .00 | .0000 0000 | .000 |.0000 0000 0000 | .0000 |.0000 0O0CO 0000 0000

.1 .0625 .01 | .0039 0625 | .001 |.0002 4414 0625 | .0001 |.0000 1525 8789 0625

.2 L1250 .02 | .0078 1250 | .002 |.0004 8828 1250 | .0002 |.0000 3051 7578 1250

.3 .1875 .03 | .0117 1875 .003 [.0007 3242 1875 .0003 |.0000 4577 6367 1875

.4 .2500 .04 | .0156 2500 | .004 | .0009 7656 2500 | .0004 [.0000 6103 5156 2500

.5 .3125 .05 | .0195 3125 | .005 | .0012 2070 3125 | .0005 |.0000 7629 3945 3125

.6 .3750 .06 | .0234 3750 | .006 | .0014 6484 3750 | .0006 }.0000 9155 2734 3750

.7 | .4375 .07 | .0273 4375 | .007 | .0017 0898 4375 | .0007 |.0001 081 1523 4375

.8 .5000 .08 | .0312 5000 | .008 | .0019 5312° 5000 | .0008 |.0001 2207 0312 5000

.9 .5625 .09 | .0351 5625 | .009 | .0021 9726 5625 | .0009 |.0001 3732 9101 5625

A .6250 L0A | .0390 6250 [.00A [.0024 4140 6250 | .000A {.0001 5258 7890 6250

.B . 6875 .0B | .0429 6875 | .00B | .0026 8554 6875. | .000B |.0001 &784 6679 6875

.C .7500 .0C | .0468 7500 | .00C | .0029 2968 7500 | .000C |.0001 8310 5468 7500

.D .8125 .0D | .0507 8125 | .00D | .0031 7382 8125 | .000D |.0001 9836 4257 8125

.E .8750 L0E | .0546 8750 | .00E |.0034 1796 8750 | .O0COE |.0002 1362 3046 8750

.F .9375 .OF |.0585 9375 | .00F |.0036 6210 9375 | .000F |.0002 2888 1835 9375

1 2 3 4

Example of use of fraction table. Convert hex .ABC to decimal value:
Find: .A (highest order) = .6250

.08 (next order) -
.00C (next order)

Add all ordered values:

.0429 6875
.0029 2968 7500
. 6708 9843 7500 (decimal equivalent)

Note: If the problem were to convert hex 1B6.ABC to decimal value, all that
would be necessary has been shown above and in the first example (consider the two
examples combined). The decimal equivalent is: 438.6708 9843 7500.

Figure 1-2. Binary and Hexadecimal Conversion Charts (Part 1 of 2)

1-2 (10/69)

TO CONVERT HEXADECIMAL TO DECIMAL

1. Locate the column of decimal numbers corresponding to
the leftmost digit or letter of the hexadecimal; select
from this column and record the number that corresponds

EXAMPLE

Conversion of
Hexadecimal Value D34

To convert integer numbers greater than the capacity
of table, use the techniques below:

HEXADECIMAL TO DECIMAL

to the position of the hexadecimal digit or letter. 1. D 3328 Successive cumulative multiplication from left to
right, adding units position,
2. Repeat step 1 for the next (second from the left) 2. 3 48 :
position. Example: D34]6 = 338010 D= 13
3. 4 4 x16
3. Repeat step 1 for the units (third from the left) - 208
position. 4. Decimal 3380 3= _+3
211
4. Add the numbers selected from the table to form the x16
decimal number. 3375
4= +4
3380
TO CONVERT DECIMAL TO HEXADECIMAL EXAMPLE
1. (a) Select from the table the highest decimal number Conversion of DECIMAL TO HEXADECIMAL
that is equal to or less than the number to be con- Decimal Value 3380
verted. Divide and collect the remainder in
(b) Record the hexadecimal of the column containing 1. D -3328 reverse order.
the selected number. 52
(c) Subtract the selected decimal from the number to 2. 3 -48 Example: 3380] 0° X16
be converted. T 4 .
‘ 3. 4 —4 16 |3380 ind
2. Using the remainder from step 1 (c), repeat all of step 1 \4 rgmainder
to develop the second position of the hexadecimal {(and 4. Hexadecimal D34

a remainder).

3. Using the remainder from step 2, repeat all of step 1 to
develop the units position of the hexadecimal.

4. Combine terms to form the hexadecimal number.

Figure 1-2. Binary and Hexadecimal Conversion Charts (Part 2 of 2)

1.2.2 Eight-Bit Zoned Character Codes (USASCII-8 &
EBCDIC)

The two standard data codes are the Extended Binary-
Coded-Decimal Interchange Code (EBCDIC) and the USA
Standard Code for Information Interchange extended to
eight bits (USASCII-8). Both EBCDIC and USASCII-8
provide for 256 possible characters. Each character is
composed of eight bits (one byte) and each bit position is
assigned a number. The numbering conventions differ for
each code. The conventions are:

Code Bit Position
EBCDIC 01234567
USASCII-8 87654321

16 M\
3

16 [13—D '3380]0=>D34]6

In addition the seven-bit USASCII code can be
imbedded, or recoded, into USASCII-8 as follows:

USASCII 76754321
USASCII-8 87654321

The EBCDIC codes are shown in Figure 1-3. The
USASCII-8 codes are shown in Figure 1-4.

In Figure 1-3, the 256-position chart outlined by the
heavy black lines, shows the graphic characters and control
character representations for EBCDIC. The bit-position
numbers, bit patterns, hexadecimal representations and
card hole patterns for these and other possible EBCDIC
characters are also shown.

2065 FEMM (10/69) 1-3

> 00 o1 10 11

[a)
NS 00 01 10 1 00 01 10 X 00 01 10 11 00 o1 10 1
2 E
w8
S % 8
5 § %
= T 5
$ E o
= 0 D
@ 4 o
e, et
0000
0001
0010
0011
0100
o101 |5 f
o110 | 6
ort1 | 7
1000 | 8
1001 |9
1010 | Af
to11 8|
1100 | C
1101 | D
110 | €
1N | F

Zone Punches

Card Hole Patterns

() 12-0-9-8-1 ®
@) 12-11-9-8-1 ®
®) 11-0-9-8-1 @
® 12-11-0-9-8-1

No Punches @ 12-0
12 11-0
1 @ o-s-2
12-11-0 @ o

Control Character Representations

ACK
BEL
BS
BYP

Acknowledge
Bell

Backspace

Bypass

Cancel

Cursor Control
Carriage Return
Customer Use 1
Customer Use 2
Customer Use 3
Device Control 1
Device Control 2
Device Control 4
Delete

Data Link Escape
Digit Select

End of Medium
Enquiry

EOT
ESC
ETB
ETX

Figure 1-3. EBCDIC Code

1-4 (10/69)

End of Transmission

Escape

End of Transmission Block
End of Text

Form Feed

Field Separator

Horizontal Tab

Interchange File Separator
Interchange Group Separator
Idle

Interchange Record Separator
Interchange Unit Separator
Lower Case

Line Feed

Negative Acknowledge
New Line

Null

®

0-1

11-0-9-1

12-11

Punch Off

Punch On

Restore

Reader Stop

Shift In

Set Mode

Start of Manual Message
Shift Out

Start of Heading'
Start of Significance
Space

Start of Text
Substitute
Synchronous ldle
Tape Mark

Upper Case

Vertical Tab

Special Graphic Characters

Cent Sign

Period, Decimal Point
Less-than Sign
Left Parenthesis
Plus Sign

Logical OR
Ampersand
Exclamation Point
Dollar Sign
Asterisk

Right Parenthesis
Semicolon
Logical NOT

— XAt~ A O

~e

|

1

/

%.

w vl

e

@

Bit Positions 0,1
Bit Positions 2,3

First Hexadecimal Digit

Zone Punches

Digit Punches

Minus Sign,Hyphen
Slash

Comma

Percent
Underscore
Greater~than Sign
Question Mark
Colon

Number Sign

At Sign

Prime ,Apostrophe
Equal Sign
Quotation Mark

To find the card hole patterns for most characters,
partition the 256-position chart into four blocks as follows:

Block 1: Zone punches at top of chart;

1 digit punches at left

3 Block 2: Zone punches at bottom of chart;
digit punches at left

Block 3: Zone punches at top of chart;

2 digit punches at right

4 Block 4: Zone punches at bottom of chart;

digit punches at right

Fifteen positions in the chart are exceptions to the above
arrangement. These positions are indicated by small
numbers in the upper right corners of their corresponding
boxes, and the card hole patterns for these positions are
given at the bottom of the chart. Bit-position numbers, bit
patterns, and hexadecimal representations for these posi-
tions are found in the usual manner.

chart:

Character Type Bit Pattern | Hex Hole Pattern

Zone Punches | Digit Punches

PF Control Character | 00 00 0100| 04 12-9,-4
% Special Graphic | 01 10 1100] 6C 0j-8 -4
R Upper Case 11 01 1001] D9 11-9
a Lower Case 10 00 0001 81 12-0]-1

Control Character,{ 00 11 0000} 30
function not yet
assigned

12-11-0-9]-8-1

;V_J

Bit Positions
01 23 4567

1.2.3

Tables 1-1 through 1-7 list the 2065 instructions according
to instruction class. Model 65 instruction formats are
shown in Figure 1-5.

Instructions and Instruction Formats

1.2.4 Data Formats

The data may be divided into four classifications:
1. Fixed-point numbers, having a binary radix and a fixed
length:

Halfword Operand

S Integer

01 15

Word Operand

S Integer

0 3

Doubleword Operand

S Integer //

0 63

Following are some examples of the use of the EBCDIC

le—— Byte —»Iq—Byfe—-ul ————— ld—— Byte —

2. Floating-point numbers, represented by a seven-bit
characteristic and a signed hex fraction:

Short Operand

!‘—‘ Even FPR of an even/odd FPR pair —’!

| |

S| Charistic Fraction

01 Y 31
Radix Point

Long Operand

/&———— Even FPR > Odd FPR———|

E 5 |
_ 7

S| Charistic ! Fraction “

01 7Rg 3132 63
Radix Point

3. Decimal numbers, represented by four-bit binary-coded-
decimal (BCD) digits:

Packed:

<+ Packed VFL Data
Up to 16 Byt
(U tes) Rightmost

Leftmost
[¢— Byte —+—Byte——-(————— Byte ——#

Digit I Digit | Digit [| Digit | Sign

Unpacked (Zoned)
- Unpacked VFL Data

(Up to 16 Bytes)

Digit -

Leftmost Rightmost

Zone Digit Zone Digit Sign Digit

4. Logical information, repre'sented by eight-bit zoned
character codes:

VFL Format:
< Up to 256 Bytes >
in Main Storage
Character Character Character
0 8 6 T
Fixed-Length Format
< 8, 32, oré4 Bits >

Fixed~Length Logical Data

The main storage integral boundaries for data and
instructions are shown in Figure 1-6.

2065 FEMM (10/69) 1-5

:‘é)
[a)
—~ B
N €
» o
S]
o
T2 00 01 10 1 } Bit Positions 8,7
S o JaJiwo]njolo o] o] o [0l oo Jo]io] 11 |sitPostonsé,5
o w . o e
~— -~ o v] 23] 4] 56| 7] 8] 9] A} c] p] e | F]}FirstHexadecimal Digit
0000 | 0 | NUL | DLE sp | o @ P NE
0001 | 1 | SOH [DCI QO 1 Al Q a | q
0010 2| sTX {pC2 " 2 B R b r
0011 | 3 | ETX | DC3 # 3 C S c s
0100 | 4 [EOT | DC4 $ 4 D T d t
0101 | 5 | ENQ|NAK % | 5 E U e u
0110 | 6 | ACK | SYN & 6 F v f v
o111 | 7| BeL [ETB ' 7 G | W g | w
1000 |8 | BS |CAN (8 H X h x
1001 [9 | HT | EM) 9 [Y i y
1010 fA| LF | sus * J y2 i z
1011 [B] vr |ESC + ; K [k {
1100 [CT FF | Fs , < L \ [!
1101 |[p]| cr | GS - = M 1 m }
1M10|E|] sO | RS . > N | A n | ~
P I EEEIEE /T 2 o | — o | DEL

NOTE:

Control Character Representations

instead of ! (Exclamation Point).

used instead of A (Circumflex):

If 1BM equipment implementing USASCI1-8 is provided, the graphic | (Logical OR) will be used

- If IBM_equipment implementing USASCII-8 is provided, the graphic —j(Logical NOT) will be

Current activities in committees under the auspices of the United States of America Standards Institute may result

in changes to the characters and/or structure of the eight-bit representation of USASCII devised by the Institute.
Such changes may cause the eight-bit representation of USASCI] implemented in System/360 (USASCII-8) to be
different from a future USA Standard. Since a difference of this nature may eventually lead to a modification of
System/360, it is recommended that users avoid: (1) operation with PSW bit 12 set to 1, and (2) the use of any

sign codes in decimal data other than those preferred for EBCDIC.

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VI
FF
CR
SO
SI

(CC)
(FE)
(1s)

Null .

Start of Heading (CC)
Start of Text (CC)

End of Text (CC)

End of Transmission (CC)
Enquiry (CC)
Acknowledge (CC)

Bell

Backspace (FE)

Horizontal Tabulation (FE)

Line Feed (FE)

Vertical Tabulation (FE)
Form Feed (FE)
Carriage Return (FE)
Shift Out

Shift In

Communication Control
Format Effector
Information Separator

Figure 1-4. USASCII-8 Code

1-6 (10/69)

DLE
DCI
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC

GS
RS
Us
DEL

Data Link Escape (CC)
Device Control 1
Device Control 2
Device Control 3
Device Control 4

Negative Acknowledge (CC)

Synchronous Idle (CC)

End of Transmission Block (CC)

Cancel

End of Medium
Substitute

Escape

File Separator (IS)
Group Separator (IS)
Record Separator (IS)
Unit Separator (IS)
Delete

Special Graphic Characters

SP Space

! Exclamation Point

[Logical OR

" Quotation Marks

Number Sign

$ Dollar Sign

% Percent

& Ampersand

! Apostrophe

(Opening Parenthesis

) Closing Parenthesis

* Asterisk

+ Plus

Comma

- Hyphen (Minus)
Period (Decimal Point)

~

/ Slant
: Colon
; Semicolon

e

~——

J>a m@woviia

Less Than

Equals

Greater Than

Question Mark

Commercial At

Opening Bracket

Reverse Slant

Closing Bracket

Circumflex

Logical NOT

Underline

Grave Accent

Opening Brace

Vertical Line (This graphic is
stylized to distinguish it from
Logical OR)

Closing Brace

Tilde

First Halfword Second Halfword Third Halfword Legend:
| I | R1, R2, and R3: 4-bit address of an LS
| | register containing the first, second,
|
RR Op Code R1 1| R * | | and third operands, respectively.
[° 78 nn '5l | I M1: 4-bit mask used in some branching
| | | instructions.
R1
RX Op Code M1l X2 B2 D2 I X2: 4-bit address of an LS register con-
10 78 1112 l.'o,“ 19 20 g | taining the index value used in generating
| | | the effective second operand address.
RS - Op Code R1 R3*! B2 D2 : 12: 8-bit byte of immediate data (second
° 70 nn 1516 19 20 :nl | operand).
i
| I | | L1 and L2: 4-bit length (up to 16 bytes)
" of first and second decimal VFL operands,
Sl Op Code 12 B1 D1 | respectively.
0 78 15 16 19 20 3 | |
I | | | LL: 8-bit length field (up to 256 bytes) for
: LL \ | : logical VFL operands.
—_— .
SS Op Code L1 L2 B1 D1 B2 D2 B1, B2: 4-bit uddress of a base register.
0 78 Mk sk W ha Bu 4 D1, D2: 12-bit displacement .
* Not used in some instructions
B14D1 or B24+D2 = Effective
storage operand address.
Figure 1-5. Instruction Formats
Doubleword " “Doubleword h
0 1
Word Word Word Word
0 2 3
Halfword Halfword Halfword Halfword Halfword Halfword Halfword Halfword
0 1 2 3 4 5 6 7
Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byt
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Iy5e
Y v Y v v Y Y Y Y Y Y Y Y v
i?::zss 00000 00001 00010 00011 00100 00101 00110 oo 01000 01001 01010 01011 01100 01101 0ino [JRRR

Figure 1-6. Main Storage Integral Boundaries

2065 FEMM (10/69) 1-7

Table 1-1. Fixed-Point Instructions

1-8 (10/69)

Mne- Op Program
Instruction monic | Code | Format Operands Function interruptions Condition Code
Add A BA RX R1 Algebraically add 2nd opr (in stg) to 1st opr (in | Prot (F) 0:Sum=0
D2(X2,B2) | GPR per R1) & place result into 1st opr location. Adr 1:5um<0
D(21) determines which word of doubleword | Spec 2:Sum>0
from stg is 2nd opr: if 1, right word; if O, left | Fix-PtOvflo | 3: Overflow
word.
Add AR 1A RR R1 Algebraically add 2nd opr (in GPR per R2) to 1st Fix-PtOvflo | 0:Sum=0
R2 opr (in GPR per R1) & place result into 1st opr 1:5um<0
location. 2:Sum>0
3 : Overflow
Add Halfword AH a4A RX R1 Algebraically add halfword 2nd opr (in stg) to 1st | Prot (F) 0:Sum=0
D2(X2,82) | opr (in GPR per R1) & place result into 1st opr | Adr 1:Sum<0
location. Spec 2:Sum>0
1. D(21) determines which word of doubleword | Fix-PtOvflo | 3: Overflow
from stg contains halfword 2nd opr: If 1,
~ right word; if O, left word.
2. D(22) determines which half of word is
halfword 2nd opr: If 1, right half; if 0, left
half. :
3. Halfword 2nd opr is expanded to full word
before addition by propagating sign bit
through 16 high-order bits.
Add Logical AL 5E RX R1 Algebraically add 2nd opr (in stg) to 1st opr (in | Prot(F) 0 : Sum = 0 {no carry)
D2(X2,B2) | GPR per R1) & place result into 1st opr location. Adr 1 : Sum #0 (no carry)
1. D(21) determines which word of doubleword | Spec 2 : Sum = 0 {carry)
from stg is 2nd opr: if 1, right word; if 0, left 3: Sum #0 (carry)
word.
2. Sign bit of result is treated as high-order
integer & is tested for carry to determine CC.
Add Logical ALR 1E RR R1 Algebraically add 2nd opr (in GPR per R2) to 1st | None 0 : Sum = 0 {no carry)
B R R2 opr (in GPR per R1) & place result into 1st opr 1 : Sum #0 (no carry)
location. 2 : Sum = 0 (carry)
Sign bit of result is treated as high-order integer 3 : Sum #0 (carry)
& is tested for carry to determine CC.
Compare . (o} 59 RX R1 Algebraically compare 1st opr (in GPR per R1) with | Prot (F) 0:Opr1=0pr2
D2(X2, 82) | 2nd opr {in stg) & set CC according to result. Adr 1:0pr1<Opr2
D(21) determines which word of doubleword | Spec 2: Opr 1>0pr 2
from stg is 2nd opr: if 1, right word; if O, left
word.
Compare CR 19 RR R1 Algebraically compare 1st opr (in GPR per R1) with None 0:0pr1=0pr2
R2 2nd opr (in GPR per R2) & set CC according to 1:0pr 1<Opr2
result. 2:0pr1>0pr2
Compare Halfword CH 49 RX R1 Algebraically compare 1st opr (in GPR per R1) with | Prot (F) 0:0pr1=0pr2
D2(X2,B2) | halfword 2nd opr (in stg) & set CC according to | Adr 1:0pr 1<Opr2
result. Spec 2:0pr1>0pr2
1. D(21) determines which word of doubleword
from stg contains halfword 2nd opr: if 1,
right word; if 0, left word.
2. D(22) determines which half of word is
halfword 2nd opr: if 1, right half; if 0, left
half.
3. Halfword 2nd opr is expanded to full word
before comparison by propagating sign bit
through 16 high-order bits.
Convert to Binary CcvB 4F RX R1 Convert radix of 2nd opr (in stg) from decimal to | Prot (F) Unchanged
D2(X2, B2) | binary & place result into 1st opr location {in GPR Adr
per R1). Spec
1. 2nd opr is doubleword in packed format. Data
2. High-order word is converted first. Fix-Pt Div
3. Max positive integer that can be converted is
+2,147,483,647.
4. Max negative integer that car be converted is
-2,147,483,648.)

Table 1-1. Fixed-Point Instructions (Cont)

Instruction monic | Code | Format

Operands

Function

Program
Interruptions

Zondition Code

Convert to Decimal CvD 4E RX

Divide D 5D RX

Divide DR 1D RR

Load L 58 RX

Load LR 18 RR
Load & Test LTR 12 RR

Load Complement LCR 13 RR

Load Halfword LH 48 RX

R1
D2(X2, B2)

R1
D2(X2, 82)

R1
R2

R1
D2(X2, B2)

R1
R2

R1
R2

R1

R2

R1
D2(X2, 82)

Convert radix of 1st opr {in GPR per R1) from
binary to decimal & place result into 2nd opr
location (in stg).
1. Result is in packed format on doubleword
boundary.
2. Low-order 4 bits of field are sign.
3. If PSW(12) = 1, use USASCI -8 code for sign;
if PSW(12) = 0, use EBCD\IC code.

Divide 1st opr {in_GPR per R1 & R1 + 1) by 2nd
opr (in stg) & place result into 1st opr location
(remainder in GPR per R1; quotient in GPR per R1
+1).

1. R1 must be even adr.

2. D(21) determines which word of doubleword
from stg is divisor: if 1, right word; if O, left
word.

3. Relative value of opr's must result in
quotient expressible in 32-bit signed integer.

4. Sign of quotient is determined algebraically,
except O quotient is positive.

5. Sign of remainder is same.as sign of dividend,
except 0 remainder is positive.

Divide 1st opr (in GPR per R1 & R1 + 1) by 2nd
opr (in GPR per R2).& place result into 1st opr
location (remainder in GPR per R1; quotient in
GPR per R1+ 1).
1. R1 must be even adr.
2. Relative value of opr's must result in
quotient expressible in 32-bit signed integer.
3. Sign of quotient is determined algebraically,
except 0 quotient is positive.
4. Sign™of-remainder is same as sign of dividend,
except 0 remainder is positive.

Load 2nd opr {in stg) into 1st opr location {in GPR
per R1).

1. D(21) determines which word of doubleword
from stg is to be stored: if 1, right word; if O,
left word.

2. 2nd opr is unchanged.

Load 2nd opr (in GPR per R2) into 1st opr location
{in GPR per R1).
2nd opr is unchanged.

Load 2nd opr (in GPR per R2) into 1st opr location
{in GPR per R1) & set CC according to result.
2nd opr is unchanged.

Load 2's complement of 2nd opr {in GPR per R2)
into 1st opr location {in GPR per R1) & set CC
according to result.
Overflow occurs only if max negative number is
2's complemented.

Load halfword 2nd opr {in stg) into 1st opr location
(in GPR per R1).

1. D(21) determines which word of doubleword
from stg contains halfword 2nd opr: if 1,
right word; if 0, left word.

2. D(22) determines which half of word is
halfword 2nd opr: if 1, right half; if O, left
half.

3. Halfword 2nd opr is expanded to full word
before loading by propagating sign bit
through 16 high-order bits.

Prot (S)
Adr
Spec

Prot (F)
Adr

Spec
Fix-Pt Div

Spec
Fix-Pt Div

Prot (F)
Adr
Spec

None

None

Fix-Pt Ovflo

Prot (F)
Adr
Spec

2065 FEMM (10/69)

e —

wii.hanged

Unchanged

Unchanged

Unchanged

Unchanged

: Result=0
: Result <0
2: Result>0

-0

: Result=0
: Result <0
: Result >0
: Overflow

WN=0

Unchanged

Table 1-1. Fixed-Point Instructions (Cont)

Instruction

Mne-
monic

Op
Code

Format

Operands

Function

Program
Interruptions

Condition Code

Load Multiple

L.oad Negative

Load Positive

Multiply

Multiply

Multiply Halifword

Shift Left Double

Shift Left Single

Shift Right Double

1-10 (10/69)

LM

LLNR

LPR

MR

MH

SLDA

SLA

SRDA

98

1

10

5C

1Cc

4C

8F

88

8E

RS

RR

RR

RX

RR

RX

RS

RS

RS

R1
R3
D2(B2)

R1
R2

R1
R2

R1 .
D2(X2, B2)

R1

R2

R1
D2(X2, B2)

R1
D2(82)

R1
D2(B2)

R1
D2(B2)

Load 2nd opr (as many words as required; in stg)
into GPR's, in ascending order, starting with 1st opr
location (per R1) & ending with 3rd opr location
{per R3).
1. 2nd opr is unchanged.
2. I1f R1= R3, only 1 word is loaded.
3. If R3 < R1, GPR adr's-wraparound from 15
to 0.
4. D({21) determines which word of doubleword
from stg is to be loaded into LS: if 1, right
word; if 0, left word.

Load 2nd opr (unchanged if negative, 2's
complemented if positive; in GPR per R2) into 1st
opr location (in GPR per R1).

If 2nd opr = 0, unchanged with plus sign.

Load 2nd opr (unchanged if positive, 2's

complemented if negative; in GPR per R2) into 1st

opr location (in GPR per R1).)
Overflow occurs only if max negative number is
2's complemented.

Multiply 1st opr (in GPR per R1 + 1) & 2nd opr {in
stg) & place 64-bit result into 1st opr location (in
GPR per R1 & R1 +1). .
1. R1 must be even adr.
2. D(21) determines which word of doubleword
from stg is 2nd opr: if 1, right word; if O, left
word.

Multiply 1st opr {in GPR per R1 + 1) by 2nd opr
(in GPR per R2) & place 64-bit result into 1st opr
location (in GPR per R1 & R1+ 1).

R1 must be even adr.

Multiply 1st opr (in GPR per R1) & halfword 2nd
opr (in stg) & place low-order 32 bits of result into
1st opr location.

1. D(21) determines which word of doubleword
from stg contains halfword 2nd opr: if 1,
right word; if 0, left word.

2. D(22) determines which half of word is
halfword 2nd opr: if 1, right half; if 0, left
half.

3. Halfword 2nd opr is expanded to full word
before multiplication by propagating sign bit
through 16 high-order bits.

Shift 1st opr (in GPR per R1 & R1 + 1) left number
of bit positions specified by low-order 6 bits of 2nd
opr adr & place result into 1st opr location.
1. R1 must be even adr.
2. High-order bits of 1st opr are shifted out &
lost; low-order vacated bits are made 0's.
3. If bit unlike sign bit is shifted out of bit
position 1 of even register, fixed-point
overflow occurs.

Shift 1st opr (in GPR per R1) left number of bit
positions specified by low-order 6 bits of 2nd opr
adr & place result into 1st opr location.
1. High-order bits of 1st opr are shifted out &
lost; low-order vacated bits are made 0's.
2. If bit unlike sign bit is shifted out of bit
position 1 of even register, fixed-point
overflow occurs. '

Shift 1st opr (in GPR pe!}1 & R1 + 1) right
number of bit positions specified by low-order 6
bits of 2nd opr adr & place result into 1st opr
location.
1. R1 must be even adr.
2. Low-order bits of 1st opr are shifted out &
lost; high-order vacated bits are made equal
to sign bit.

Prot (F)
Adr
Spec

None

Fix-Pt Ovflo

Prot (F)
Adr
Spec

Spec

Prot (F)

Adr
Spec

Spec
Fix-Pt Ovflo

Fix-Pt Ovflo

Spec

Unchanged

0: Result=0
: Result <0

-t

: Result=0
: Result >0
: Overflow

WN O

Unchanged

Unchanged

Unchanged

: Result=0
: Result <0
: Result>0
: Overflow

WN =0

: Result=0
: Result <0
: Result>0
: Overflow

WN =0

0: Result=0
: Resuit <0
2: Result >0

-t

Table 1-1. Fixed-Point Instructions (Cont)

Mne- Op Program
Instruction monic| Code| Format Operands Function Interruptions Condition Code
Shift Right Single SRA 8A RS R1 Shift 1st opr {in GPR per R1) right number of bit | None 0: Result=0
D2(82) positions specified by low-order 6 bits of 2nd opr 1: Result <0
adr & place result into 1st opr location. 2: Result >0
Low-order bits of 1st opr are shifted out & lost;
high-order vacated bits are made equal to sign
bit.
Store ST 50 RX R1 Store 1st opr {in GPR per R1) into 2nd opr location | Prot (S} Unchanged
D2(X2,B2) | (in stg). Adr
1. PAL(61) determines into which word of | Spec
doubleword in stg 1st opr is to be stored: if
1, right word; if 0, left word.
2. 1st opr is unchanged.
Store Halfword STH 40 RX R1 Store halfword 1st opr (in GPR per R1) into 2nd | Prot (S) Unchanged
D2(X2,B2) | opr location (in stg). Adr
) 1. ABC selects 16 low-order bits of 1st opr for | Spec
storage; high-order bits are ignored. .
2. STC [D(21—23)] positions 16 low-order bits
of 1st opr into doubleword 2nd opr location.
3. 1st opr is unchanged.
Store Multiple STM 90 RS R1 Store into 2nd opr location (as many words as | Prot(S) Unchanged
R3 required; in stg) contents of GPR’s, in ascending | Adr
D2(B2) order, starting with 1st opr location (per R1) & | Spec
ending with 3rd opr location (per R3).
1. GPR adr’s wrap around from 15 to 0.
2. D(21) determines into which word of
doubleword in stg contents of 1st GPR are to
be stored: if 1, right word; if O, left word.
3. If R1=R3, 1 word is stored.
Subtract S 5B RX R1 | Algebraically subtract 2nd opr (in stg} from 1st opr | Pprot (F) 0:Dif=0
D2(x2,82) | lin GPR per R1) & place result into 1st opr | ‘Adr : 1:Dif<0
location. Spec 2:Dif >0
D(21) determines which word of doubleword | Fix-PtOvflo | 3: Overflow
from stg is 2nd opr: if 1, right word; if O, left
word.)
Subtract . SR 1B RR R1 Algebraically subtract 2nd opr (in GPR per R2) Fix-Pt Ovflo | 0: Dif=0
R2 from 1st opr {in GPR per R1) & place result into 1:Dif<0
1st opr location. ' 2:Dif>0
3 : Overflow
Subtract Halfword SH 48 RX R1 Algebraically subtract halfword 2nd opr (in stg) | Prot (F) 0:Dif=0
D2(X2,B2) | from 1st opr {in GPR per R1) & place result into | Adr 1: Dif<0
1st opr location. Spec 2:Dif >0
1. D(21) determines which word of doubleword Fix-Pt Ovflo | 3: Overflow
from stg contains halfword 2nd opr: if 1,
right word; if O, left word.
2. D(22) determines which half of word is
halfword 2nd opr: if 1, right half; if 0, left
half.
3. Halfword 2nd opr is expanded to full word
before subtraction by propagating sign bit
through 16 high-order bits.
Subtract Logical SL 5F RX R1 Algebraically subtract 2nd opr (in stg) from 1st opr | Prot (F) 1 : Dif 70 (no carry)
D2(X2,B2) | lin GPR per R1) & place result into 1st opr | Adr 2: Dif = 0 (carry)
location. Spec 3 : Dif 70 (carry)
1. D(21) determines which word of doubleword
from stg is 2nd opr: if 1, right word; if O, left
word.
2. Sign bit of result is treated as high-order
integer & is tested for carry to determine CC.
Subtract Logical SLR 1F RR R1 Algebraically subtract 2nd opr (in GPR per R2) | None 1: Dif 0 (no carry)
R2 from 1st opr {in GPR per R1) & place result into 2 : Dif = 0 (carry)
1st opr location. 3: Dif #(carry)
Sign bit of result is treated as high-order integer
& is tested for carry to determine CC.

2065 FEMM (10/69)

1-11

Table 1-2. Floating-Point Instructions

Mne- Op Program
Instruction monic | Code | Format Operands Function Interruptions Condition Code
Add Normalized AD 6A RX R1 Algebraically add 2nd opr (in stg) to 1st opr {in | Prot (F) 0O:Fract=0
(long} D2(X2,B2) | FPR per R1 & R1 + 1) & place normalized result | Adr 1: Fract<o0
into 1st opr location. Spec 2:Fract>0
1. Low-order fraction of 1st opr must be Exp Ovflo
fetched from LS. Exp Unflo
2. Set CC per result sign & magnitude. Signif
Add Normalized ADR 2A RR R1 Algebraically add 2nd opr (in FPR per R2 & R2 + | Spec O:Fract=0
{long) R2 1) to st opr (in FPR per R1 & R1 + 1) & place | Exp Ovflo 1:Fract<O0
normalized result into 1st opr location. Exp Unflo 2: Fract>0
1. Low-order fractions of 1st & 2nd opr’s must Signif
be fetched from LS.
2. Set CC per result sign & magnitude.
Add Normalized AE 7A RX R1 Algebraically add 2nd opr (in stg) to 1st opr (in | Prot (F) 0: Fract=0
{short) D2(X2,B82) { FPR per R1) & place normalized result into 1st opr | Adr 1: Fract<0
location. Spec 2: Fract>0
1. Low-order half of FPR is ignored & | Exp Ovflo
unchanged. Exp Unflo
2. D(21) determines which half of doubleword | Signif
from stg is 2nd opr; if 1, right half; if O, left
half.
3. Set CC per result sign & magnitude.
Add Normalized AER 3A RR R1 Algebraically add 2nd opr (in FPR per R2) to 1st | Spec 0: Fract=0
(short) R2 opr (in FPR per R1) & place normalized resuit into | Exp Ovflo 1: Fract<O0
1st opr location. Exp Unflo 2: Fract>0
. 1. Low-order halves of FPR’s are ignored & | Signif
unchanged.
2. Set CC per result sign & magnitude.
Add Unnormalized AW 6E RX R1 Algebraically add 2nd opr (in stg) to 1st opr {in | Prot (F) 0:Fract=0
{long) D2(X2,B2) | FPR per R1 & R1 + 1) & place unnormalized result | Adr 1: Fract<O0
into 1st opr location. Spec 2:Fract>0
1. Low-order fraction of 1st opr must be Exp Ovflo
fetched from LS. Signif
2. Set CC per result sign & magnitude.
Add Unnormalized AWR 2E RR R1 Algebraically add 2nd opr (in FPR per R2 & R2 + | Spec 0:Fract=0
{long) R2 1) to 1st opr (in FPR per R1 & R1 + 1) & place | Exp Ovflo 1: Fract<o0
unnormalized result into 1st opr location. Signif 2: Fract>0
1. Low-order fractions of 1st & 2nd opr’s must
be fetched from LS.
2. Set CC per result sign & magnitude.
Add Unnormalized AU 7E RX R1 Algebraically add 2nd opr (in stg) to 1st opr (in | Prot (F) 0:Fract=0
(short) D2(X2, B2) | FPR per R1) & place unnormalized result into 1st | Adr 1: Fract<0
opr location. Spec 2: Fract>0
1. Low-order half of FPR is ignored & Exp Ovflo
unchanged. Signif
2. D(21) determines which half of doubleword
from stg is 2nd opr: if 1, right half; if O, left
half.
3. Set CC per result sign & magnitude.
Add Unnormalized AUR 3E RR R1 Algebraically add 2nd opr (in FPR per R2) to st Spec O: Fract=0
(short) R2 opr {in FPR per R1) & place unnormalized result Exp Ovflo 1:Fract<0
into 1st opr location. Signif 2: Fract>0
1. Low-order halves of FPR’'s are ignored &
unchanged.
2. Set CC per result sign & magnitude.
Compare (long) CcD 69 RX R1 Algebraically compare 1st opr (in FPR per R1 & R1 | Prot (F) 0:Opr1=0pr2
D2(X2,B82) | + 1) with 2nd opr (in stg); CC indicates result. Adr 1:0pr 1<Opr 2
1. Low-order fraction of 1st opr must be Spec 2:0pr 1>0pr2
fetched from LS.)
2. Opr’s remain unchanged.
Compare {long) CDR 29 RR R1 Algebraically compare 1st opr (in FPR per R1 & R1 | Spec 0:0pr1=0pr2
R2 + 1) with 2nd opr (in FPR per R2 & R2 + 1); CC 1:0pr 1<O0pr?2
indicates result. 2:0pr1>0pr2

1-12 (10/69)

1. Low-order fractions of 1st & 2nd opr’s must
be fetched from LS.
2. Opr’s remain unchanged.

Table 1-2. Floating-Point Instructions (Cont)

from stg is 2nd opr: if 1, right half; if 0, left
half.

2. Low-order half of FPR is
unchanged.

ignored &

2065 FEMM (10/69) 1-13

Mne- Op Program
Instruction monic | Code | Format Operands Function Interruptions Condition Code
Compare {short) CE 79 RX R1 Algebraically compare 1st opr (in FPR per R1) with Prot (F) 0:0Opr1=0pr2
D2(X2,B2) | 2nd opr (in stg); CC indicates result. Adr 1:0pr1<O0pr2
1. Low-order half of FPR is ignored. Spec 2: Opr 1>0Opr 2
AN 2. D(21) determines which half of doubleword
from stg is 2nd opr: if 1, right half; if O, left
half.
3. Opr's remain unchanged.
Compare (short) CER 39 RR R1 Algebraically compare 1st opr (in FPR per R1) with Spec 0:0pr1=0pr2
R2 2nd opr {in FPR per R2}; CC indicates result. 1:0pr1<O0pr?2
1. Low-order halves of FPR's are ignored. 2:0pr1>0pr2
2. Opr’s remain unchanged.
Divide {long) DD 6D RX R1 Divide 1st opr {in FPR per R1 & R1 + 1) by 2nd | Prot (F) Unchanged
D2(X2,B2) [opr (in stg) & place normalized quotient into 1st | Adr
opr location. ' Spec
1. Low-order fraction of 1st opr must be Exp Ovflo
fetched from LS. Exp Unflo
2. Opr's are prenormalized. Fit-Pt Div
3. Remainder is not saved.
Divide (long) DDR 2D RR R1 Divide 1st opr {in FPR per R1 & R1 + 1) by 2nd | Spec Unchanged
R2 opr (in FPR per R2 & R2 + 1) & place normalized Exp Ovflo
quotient into 1st opr location. Exp Unflo
1. Low-order fractions of 1st & 2nd opr’'s must Fit-Pt Div
be fetched from LS.
2. Opr's are prenormalized.
3. Remainder is not saved.
Divide (short) DE 70 RX R1 Divide 1st opr {in FPR per R1) by 2nd opr {in stg) Prot (F) Unchanged
D2(X2,B2) { & place normalized quotient into 1st opr location. Adr
1. Low-order half of FPR s ignored & Spec
unchanged. Exp Ovflo
2. D(21) determines which half of doubleword Exp Unflo
_from stg is 2nd opr: if 1, right half; if O, left | Fit-Pt Div
half.
3. Opr's are prenormalized.
4. Remainder is not saved.
Divide (short) DER 3D RR R1 Divide 1st opr (in FPR per R1) by 2nd opr (in FPR | Spec Unchanged
R2 per R2) & place normalized quotient into 1st opr | Exp Ovflo
location. Exp Unflo
1. Low-order halves of FPR's are ignored & Fit-Pt Div
unchanged.
2. Opr's are prenormalized.
3. Remainder is not saved.
Halve (long) HDR 24 |R R1 Divide 2nd opr (in FPR per R2& R2 + 1) by 2 & | Spec Unchanged
R2 place normalized quotient into 1st opr location (in Exp Unflo
FPR per R1 & R1 + 1).
Low-order fraction of 2nd opr must be fetched
from LS.
Halve (short) HER 34 RR R1 Divide 2nd opr (in FPR per R2) by 2 & place | Spec Unchanged
R2 normalized quotient into 1st opr location (in FPR Exp Unflo
per R1).
Low-order halves of FPR’s are ignored &
unchanged.
Load (long) LD 68 RX R1 Load 2nd opr (in stg) into 1st opr location {in FPR Prot (F) Unchanged
D2(X2, B2) per R1& Rt + 1). ’ Adr
Spec
Load {long) LDR 28 KRR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st Spec Unchanged
R2 opr location (in FPR per R1 & R1 + 1)..
Low-order fraction of 2nd opr must be fetched
from LS.
Load (short) LE 78 RX R1 Load 2nd opr (in stg) into 1st opr location {in FPR Prot (F) Unchanged
D2(X2,B2) | per R1). Adr :
1. D(21) determines which half of doubleword Spec

Table 1-2. Floating-Point Instructions (Cont)

Mne- Op Program
Instruction monic { Code | Format Operands Function Interruptions Condition Code
Load (short) LER 38 RR R1 Load 2nd opr {in FPR per R2) into 1st opr location | Spec Unchanged
R2 (in FPR per R1).
. Low-order halves of FPR’s are ignored &
unchanged.
Load & Test {long) LTDR 22 RR R1 Load 2nd opr {in FPR per R2 & R2 + 1) into 1st | Spec 0: 2nd opr fract =0
R2 opr location (in FPR per R1 & R1 + 1). 1:2nd opr<0
1. Low-order fraction of 2nd opr must be 2:2ndopr>0
fetched from LS. :
2. Set CC according to sign & magnitude.
Load & Test {short) LTER 32 RR R1 Load 2nd opr {in FPR per R2) into 1st opr focation | Spec 0: 2nd opr fract =0
: R2 (in FPR per R1). 1:2nd opr<0
1. Low-order halves of FPR’s are ignored & 2:2nd opr>0
unchanged.
2. Set CC according to sign & magnitude.
Load Complement LCDR 23 RR R1 Load 2nd opr {in FPR per R2 & R2 + 1) into 1st | Spec 0: 2nd opr fract =0
(long) R2 opr location {in FPR per R1 & R1 + 1) with sign 1 : Orig sign +
complemented. 2 : Orig sign -
1. Low-order fraction of 2nd opr must be
fetched from LS.
2. Set CC according to original sign &
magnitude.
Load Complement LCER 33 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location | Spec 0: 2nd opr fract =0
(short) R2 (in FPR per R1) with sign complemented. 1 : Orig sign +
1. Low-order halves of FPR's are ignored & 2 : Orig sign -
unchanged.
2. Set CC according to original sign &
magnitude.
Load Negative (long) LNDR 21 RR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st | Spec : 0:2nd oprfract=0
R2 opr location (in FPR per R1 & R1 + 1) with sign 1:2nd opr<0
made minus.
1. Low-order fraction of 2nd opr must be
fetched from LS.
2. Set CC according to result sign & magnitude.
Load Negative (short) LNER 31 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location | Spec 0: 2nd opr fract =0
R2 {in FPR per R 1) with sign made minus. 1:2nd opr<o0
1. Low-order halves of FPR’s are ignored &
unchanged.
2. Set CC according to result sign & magnitude.
Load Positive (long) LPDR 20 RR R1 Load 2nd opr {in FPR per R2 & R2 + 1) into 1st | Spec 0: 2nd opr fract = 0
R2 opr location {in FPR per R1 & R1 + 1) with sign 2:2ndopr>0
made plus. i
1. Low-order fraction of 2nd opr must be
fetched from LS.
2. Set CC according to result sign & magnitude.
Load Positive (short) LPER 30 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location | Spec 0: 2nd opr fract =0
R2 (in FPR per R1) with sign made plus. 2:2ndopr>0
1. Low-order halves of FPR’s are ignored &
unchanged.
2. Set CC according to result sign & magnitude.
Multiply (long) MD 6C RX R1 Multiply 1st opr (in FPR per R1 & R1 + 1) & 2nd | Prot (F) Unchanged
D2(X2,B2) | opr (in stg) & place normalized product into 1stopr | Adr
location (in FPR per R1 & R1 + 1). Spec
Opr'’s are prenormalized. Exp Ovflo
Exp Unflo
Multiply (long) MDR 2C RR R1 Multiply 1st opr {in FPR per R1 & R1+ 1) & 2nd | Spec Unchanged
R2 opr (in FPR per R2 & R2 + 1) & place normalized | Exp Ovflo
product into 1st opr location (in FPR per R1 & R1 Exp Unflo
+1).
Opr's are prenormalized.

1-14 (10/69)

Table 1-2. Floating-Point Instructions (Cont)

1. Low-order fractions of 1st & 2nd opr's must
be fetched from LS.
2. Set CC per result sign & magnitude.

2065 FEMM (10/69)

Mne- | Op Program
Instruction monic | Code | Format Operands Function Interruptions Condition Code
Multiply (short) ME 7C RX R1 Multiply 1st opr (in FPR per R1) & 2nd opr (in stg) Prot (F) Unchanged
D2(X2,B2) | & place normalized product into 1st opr location Adr
(in FPR per R1 & R1 + 1). Spec
1. D(21) determines which half of doubleword Exp Ovflo
from stg is 2nd opr: if 1, right half; if O, left Exp Unflo
half.
'2. Opr's are prenormalized.
Multiply (short) MER 3C AR R1 Multiply 1st opr (in FPR per R1) & 2nd opr (in | Spec Unchanged
R2 FPR per R2} & place normalized product into 1st Exp Ovflo
opr location {in FPR per R1 & R1 + 1). Exp Unflo
Opr’s are prenormalized.
Store {long) STD 60 RX R1 Store 1st opr {in FPR per R1 & R1 + 1) into 2nd | Prot (S) Unchanged
D2(X2,B2) | opr location (in stg). Adr
1st opr is unchanged. Spec
Store (short) STE 70 RX R1 Store 1st opr {in FPR per R1) into 2nd opr location | Prot (S) Unchanged
D2(X2,B2) | (instg). Adr
1. PAL(61) determines into which half of | Spec
doubleword in stg 1st opr is to be stored: if
1, right half; if 0, left half.
2. Low-order half of FPR is ignored.
3. 1st opr is unchanged.
Subtract Normalized sD 68 RX R1 Algebraically subtract 2nd opr {in stg) from 1stopr | Prot (F) 0: Fract=0
(long) D2(X2,B2) | (in FPR per R1 & R1 + 1) & place normalized result | Adr 1:Fract<o0
into 1st opr location. Spec 2: Fract>0
1. Low-order fraction of 1st opr must be Exp Ovflo -
fetched from LS. Exp Unflo
2. Set CC per result sign & magnitude. Signif
Subtract Normalized SDR 28 RR R1 Algebraically subtract 2nd opr (in FPR per R2 & | Spec 0: Fract=0
(long) R2 R2 + 1) from 1st opr (in FPR per R1 & R1+ 1) & | Exp Ovflo 1: Fract<0
place normalized result into 1st opr location. Exp Unflo 2: Fract>0
1. Low-order fractions of 1st & 2nd opr's must | Signif
be fetched from LS.
2. Set CC per result sign & magnitude.
Subtract Normalized SE 78 RX R1 Algebraically subtract 2nd opr (in stg) from 1stopr | Prot (F) 0: Fract=0
(short) D2(X2,B2) | (in FPR per R1) & place normalized resuit into 1st | Adr 1: Fract<0
opr location. Spec 2: Fract>0
1. Low-order half of FPR is ignored & Exp Ovflo
unchanged.) Exp Unflo
2. D(21) determines which half of doubleword | Signif
from stg is 2nd opr: if 1, right half; if O, left
half.
3. Set CC per result sign & magnitude.
Subtract Normalized SER 38 RR R1 Algebraically subtract 2nd opr (in FPR per R2) | Spec 0: Fract=0
(short) R2 from 1st opr (in FPR per R1) & place normalized | Exp Ovflo 1: Fract<0
result into 1st opr location. Exp Unflo 2: Fract>0
1. Low-order halves of FPR’s are ignored & | Signif
unchanged.
2. Set CC per result sign & magnitude.
Subtract Unnormalized | SW 6F RX R1 Algebraically subtract 2nd opr (in stg) from 1st opr | Prot (F) 0: Fract=0
(long) D2(X2,B82) | (in FPR per R1 & R1 + 1) & place unnormalized | Adr 1:Fract<0
result into 1st opr location. Spec 2: Fract>0
1. Low-order fraction of 1st opr must be Exp Ovfio
fetched from LS. Signif
2. Set CC per result sign & magnitude.
Subtract Unnormalized | SWR 2F RR R1 Algebraically subtract 2nd opr (in FPR per R2 & | Spec 0: Fract=0
(long) R2 R2 + 1) from 1st opr (in FPR per R1 & R1+ 1) & | Exp Ovflo 1: Fract<0
place unnormalized result into 1st opr location. Signif 2: Fract >0

1-15

Table 1-2. Floating-Point Instructions (Cont)

Mne- Op Program)
Instruction monic { Code | Format Operands Function Interruptions Condition Code
Subtract Unnormalized | SU 7F RX R1 Algebraically subtract 2nd opr (in stg) from 1st opr | Prot (F) 0: Fract=0
(short) D2(X2,B2) | (in FPR per R1) & place unnormalized result into | Adr 1: Fract<0
1st opr location. Spec 2: Fract>0
. 1. Low-order half of FPR is ignored & | Exp Ovflo
unchanged.) Signif
2. D{(21) determines which half of doubleword
from stg is 2nd opr: if 1, right half; if O, left
half. :
3. Set CC per result sign & magnitude.
Subtract Unnormalized | SUR 3F RR R1 Algebraically subtract 2nd opr (in FPR per R2) Spec 0: Fract=0
(short) R2 from 1st opr (in FPR per R1) & place unnormalized | Exp Ovflo 1: Fract<0
result into 1st opr location. Signif 2: Fract>0
1. Low-order halves of FPR'’s are ignored &
unchanged.
2. Set CC per result sign & magnitude.
Table 1-3. Decimal Instructions
Mne- Op Program
Instruction monic Code | Format Operands Function Interruptions Condition Code
Add Decimal AP FA SS D1(L1,B1) } Algebraically add 2nd opr (in stg) to 1st opr (in stg) Prot (S,F) 0:Sum=0
D2(L2, B2) | & place result into 1st opr location. Adr 1:5um<0
1. Opr's & result are in packed format. Data 2:Sum>0
2. Opr fields may overlap if low-order bytes | Dec Ovflo 3 : Overflow
coincide. '
3. Right to left, byte by byte.
4. Shorter opr is extended with high-order O's.
5. 1st opr field must be large enough to contain
all 2nd opr significant digits.
Compare Decimal ‘CP F9- SS D1(L1,81) | Algebraically compare 1st opr (in stg) with 2nd opr { Prot (F) 0:0pr1=0pr2
: D2(L2,B2) (in stg) & set CC according to result. Adr 1:0pr 1<O0pr2
1. Opr's are in packed format. Data 2:0pr1>0pr2
2. Shorter opr is extended with high-order 0's.
3. Opr fields may overlap if low-order bytes
coincide.
4. Right to left, byte by byte.
5. Result is not stored & opr fields are
unchanged.
Divide Decimal DP FD SS D1{L1,B1) | Divide 1st opr (in stg) by 2nd opr (in stg) & place | Prot (S,F) Unchanged
'D2(L2,B2) | resultinto 1st opr location {quotient is leftmost in Adr
1st opr location; remainder, rightmost). Spec
1. Opr's are in packed format. Data
2. Dividend must contain at least 1 high-order | Dec Div
0.
3. Max dividend field = 16 bytes (31 digits &
sign); L1 = 15.
4. Max divisor field = 8 bytes (15 digits & sign);
L2=7.
5. Divisor field must be < dividend field (L2 <
L1).
6. Max quotient field = 15 bytes.
7. Quotient field = dividend field minus
remainder (divisor) field (L1 minus L2).
8. Remainder field = divisor field.
9. Opr fields may overlap if low-order bytes
coincide.
10. Sign of quotient is determined algebraically,
except O result is positive.
11. Sign of remainder is same as dividend sign.
Move with Offset MVO F1 ss D1(L1,B1) | Store 2nd opr (in stg) to left of and adjacent to | Prot (S,F) Unchanged
D2(L2,B2) | low-order 4 bits of 1st opr (in stg). Adr

1-16 (10/69)

1. Opr's are in packed or unpacked format.

2. If 2nd opr is shorter than 1st opr, fill 1st opr
“field with high-order O's.

3. If 2nd opr is longer than 1st opr, ignore
excess 2nd opr high-order digits.

4. Right to left, byte by byte.

Table 1-3. Decimal Instructions (Cont)

all 2nd opr significant digits.

Mne- Op Program
Instruction monic | Code | Format Operands Function Interruptions Condition Code
Multiply Decimal MP FC SS D1(L1,B1) | Multiply 1st opr (in stg) by 2nd opr (in stg) & place | Prot (S,F) Unchanged
D2(L2, B2} result into 1st opr location. Adr
1. Opr’s are in packed format. Spec
2. Product must contain at least 1 high-order O. Data
3. Max muitiplicand field = 16 bytes (31 digits
& sign}; L1 =15.
4. Max multiplier field = 8 bytes (15 digits &
sign); L2=7.
5. Multiplier field must be < multiplicand field
(L2<'L1); max value of L2 = 7.
6. Multiplicand field initially contains
high-order O-field equal in length to
multiplier field.
7. Max product field = 16 bytes (31 digits &
sign).
8. Sign of product is determined algebraically,
except O result is positive.
Pack PACK F2 SS D1(L1,B1) | Convert format of 2nd opr (in stg) from zoned to Prot (S,F) Unchanged
D2(L2,B2) | packed & place result into 1st opr location {in stg). | Adr
1. 2nd opr is in zoned format.
2. No restriction on overiapping fields.
3. Extend 2nd opr with high-order O0's, if
necessary.
4. If 1st opr field is too short to contain all
significant digits of 2nd opr field, ignore
excess 2nd opr high-order digits.
5. Right to left, byte by byte.
Subtract Decimal SP FB SS D1{L1,B1) | Algebraically subtract 2nd opr (in stg) from 1st opr Prot (S,F) 0:Dif=0
‘D2(L2,B2) {in stg) & piace result into 1st opr location. Adr 1:Dif<0
1. Opr's & result are in packed format. Data 2:Dif >0
2. Opr fields may overlap if low-order bytes Dec Ovflo 3 : Overflow
coincide.
3. 1st opr field must be large enough to contain
all 2nd opr significant digits.
4. Shorter opr is extended with high-order O's.
5. Right to left, byte by byte.
Unpack UNPK F3 SS D1(L1,B1) Convert format of 2nd opr {in stg) from packed to | Prot (S,F) Unchanged
D2(L2,B2) | zoned & place result into 1st opr location (in stg). Adr
1. 2nd opr is in packed format.
2. No restriction on overlapping fields.
3. Extend 2nd opr with high-order O's, if
necessary. .
4. If 1st opr field is too short to contain all
significant digits of 2nd. opr field, ignore
excess 2nd opr high-order digits.
5. If PSW(12) = 1, use USASCII-8 code for
_ zones; if PSW(12) = 0, use EBCDIC.
6. Right to left, byte by byte.
Zero & Add ZAP F8 SS D1(L1,B1) | Place 2nd opr (in stg) into 1st opr location (in stg). Prot (S,F) 0: Result=0
D2{L2, B2} 1. 2nd opr is in packed format. ' Adr 1: Result<0
2. Opr fields may overlap if low-order byte of Data 2: Result >0
1st opr coincides with or is to the right of Dec Ovfio 3: Overflow
low-order byte of 2nd opr.
3. 1st opr field must be large enough to contain

2065 FEMM (10/69)

1-17

‘Table 1-4. Logical Instructions

1-18 (10/69)

Remaining bits in GPR are unchanged.

Mne- Op Program
Instruction monic | Code | Format Operands Function Interruptions Condition Code
AND N 54 RX R1 AND 1st opr (in GPR per R1) with 2nd opr (in stg) | Prot (F) 0: Result=0
D2(X2,82) | & place result into 1st opr location. Adr 1: Result #0
Left to right, byte by byte. Spec
AND NC D4 SS D1(L, B1) AND 1st opr (in stg) with 2nd opr (in §tg) & place | Prot(S,F) O: Result=0
D2(B2) result into 1st opr location. Adr 1: Result#0
1. Left to right, byte by byte.
2. Max number of bytes is 256.
AND NI 94 Si D1(B1) AND immediate opr {12 of inst) with 1st opr {in | Prot (S) 0: Result=0
12 stg) & place result into 1st opr location. Adr 1: Result #0
AND NR 14 RR R1 AND 1st opr {in GPR per R1) with 2nd opr (in None 0: Result=0
R2 GPR per R2) & place result into 1st opr location. 1: Result #0
Left to right, byte by byte.
Compare Logical CL 55 RX R1 Binarily compare 1st opr (in GPR per R1) with 2nd | Prot (F) 0:Opr1=0pr2
‘ D2(X2,82) | opr {in stg) & set CC according to result. Adr 1:0pr1<0pr2
1. Left to right, byte by byte. Spec 2: Opr 1>0pr 2
2. Terminate on inequality or end of fields.
Compare Logical cLe D5 SS D1(L, B1) Binarily compare 1st opr (in stg) with 2nd opr (in | Prot (F) 0:Opr1=0pr2
D2(B2) stg) & set CC according to result. Adr 1: 0pr 1<0pr2
1. Left to right, byte by byte. 2:0pr1>0pr2
2. Max number of bytes is 266. '
3. Terminate on inequality or end of fields.
Compare Logical cL! 95 ‘Sl D1(B1) Binarily compare 1st opr (in stg) with immediate | Prot (F) 0:0pr1=0pr2
) 12 opr (12 of inst) & set CC according to result. Adr 1:0pr 1<Opr2
1. Left to right. 2:0pr1>0pr2
2. Terminate on inequality or end of fields.
Compare Logical CLR 15 RR Rt Binarily compare 1st opr (in GPR per R1) with 2nd | None 0:0pr1=0pr2
R2 opr (in GPR per R2) & set CC according to result. 1: Opr 1<Opr 2
1. Left to right, byte by byte. 2:0pr1>0pr2
2. Terminate on inequality or end of fields.
Edit ED DE SS D1(L,B81) Change format of source (2nd opr; in stg) from | Prot(S,F) 0: Result=0
D2(B2) packed to zoned, edit source under control of | Adr 1: Resuit <0
pattern (1st opr; in stg), & place resultinto 1st opr | Data 2: Result >0
location.
1. Left to right, byte by byte.
2. Max number of bytes is 256.
Edit & Mark EDMK DF SS D1(L, B1) Change format of source (2hd opr; in stg) from | Prot(S,F) 0: Result=0
' D2(B2) packed to zoned, edit source under control of | Adr 1: Result<0
pattern {1st opr; in stg), place result into 1st opr | Data 2: Result >0
location, & place location of each 1st significant
result digit into GPR1.
1. Left to right, byte by byte.
2. Max number of bytes is 256.
Exclusive OR X 57 RX R1 Exclusive-OR 1st opr (in GPR per R1) with 2nd opr | Prot (F) 0: Result=0
D2(X2,B2) | {in stg) & place result into 1st opr location. Adr 1: Result 70
Left to right, byte by byte. Spec
Exclusive OR XC D7 SS D1(L, B1) Exclusive-OR 1st opr (in stg) with 2nd opr (in stg) Prot (S,F) 0: Result=0
D2(82) & place result into 1st opr location. Adr 1: Result ¥0
1. Left to right, byte by byte.
2. Max number of bytes is 256.
Exclusive OR XI 97 Sl D1(B1) Exclusive-OR immediate opr (12 of inst) with 1st [Prot (S) 0: Result=0
12 opr (in stg) & place result into 1st opr location. Adr 1 : Result #0
Exclusive OR XR 17 RR R1 Exclusive-OR 1st opr {in GPR per R1) with 2nd opr | None 0: Result=0
R2 (in GPR per R2) & place result into 1st opr 1: Result #0
location.
Left to right, byte by byte.
Insert Character Ic 43 RX R1 Insert 2nd opr {byte; in stg) into bits 24—31 of 1st | Prot (F) Unchanged
D2(X2,82) | opr location (in GPR per R1). Adr

Table 1-4. Logical Instructions (Cont)

Mne- Op Program .
Instruction monic:| Code | Format Operands Function Interruptions Condition Code
LLoad Address LA 41 RX R1 Insert 2nd opr adr into bits 8--31 of GPR specified None Unchanged
D2(X2,B2) | by R1.
1. Bits 0—7 in GPR are made O’s.
2. 2nd opr is not fetched from stg.
Move MvC D2 SS D1(L, B1) Place 2nd opr (in stg) into 1st opr location {instg). | Prot (S,F) Unchanged
D2(B2) 1. Left to right, byte by byte. Adr
2. Max nunber of bytes is 256.
3. Move operation can be high or low speed.
Move MVI 92 si D1(B1) Place immediate opr {I2 of inst) into 1st opr | Prot(S) Unchanged
12 location (in stg). Adr
Move Numerics MVN D1 SS D1(L, B1) Place numeric portion (low-order 4 bits) of each | Prot (S,F) Unchanged
D2(B2) byte of 2nd opr (in stg) into low-order 4 bits of | Adr
corresponding byte of 1st opr (in stg).
1. Left to right, byte by byte.
2. Max number of bytes is 256.
3. Zones (high-order 4 bits) in both opr's are
unchanged.
4. No restriction on overlapping fields.
Move Zones mMvz D3 SS D1(L, B1) Place zone portion (high-order 4 bits) of each byte | Prot (S,F) Unchanged
D2(B2) of 2nd opr (in stg) into high-order 4 bits of | Adr
corresponding byte of 1st opr (in stg).
1. Left to right, byte by byte.
2. Max number of bytes is 256.
3. Numerics (low-order 4 bits) in both opr's are
unchanged.
4. No restriction on overlapping fields.
OR (¢] 56 RX R1 OR 1st opr (in GPR per R1) with 2nd opr (in stg) & | Prot (F) 0: Result=0
D2(X2,B2) | place result into 1st opr location. ' Adr 1: Result #0
Left to right, byte by byt?.ﬂ Spec
OR ocC D6 SS D1{L, B1) OR 1st opr (in stg) with 2nd opr (in stg) & place | Prot (S,F) 0: Result=0
: D2(B2) result into 1st opr location. Adr . 1: Result #0
1. Left to right, byte by byte.
2. Max number of bytes is 256.
OR (o] 96 S D1(B1) OR immediate opr (12 of inst) with 1st opr (in stg) Prot (S) 0: Result=0
12 & place result into 1st opr location. Adr 1: Result 0
OR OR 16 RR R1 OR 1st opr {in GPR per R1) with 2nd opr {in GPR None 0: Result=0
R2 per R2) & place result into 1st opr location. 1: Result #0
-Left to right, byte by byte.
Shift Left Double SLDL 8D RS R1 Shift 1st opr (in GPR per R1 & R1 + 1) left number | Spec Unchanged
Logical D2(B2) of bit positions specified by low-order 6 bits of 2nd
opr adr. '
1. R1 must be even adr.
2. High-order bits of 1st opr are shifted out &
lost; vacated low-order bits are made O's.
Shift Left Single SLL 89 RS R1 Shift 1st opr (in GPR per R1) left number of bit | None Unchanged
Logical D2(B2) positions specified by low-order 6 bits of 2nd opr
: adr.
High-order bits of 1st opr are shifted out & lost;
vacated low-order bits are made O's.
Shift Right Double SRDL 8C RS R1 Shift 1st opr (in GPR per R1 & R1 + 1) right | Spec Unchanged
Logical D2(B2) number of bit positions specified by low-order 6
bits of 2nd opr adr.
1. R1 must be even adr.
2. Low-order bits of 1st opr are shifted out &
lost; vacated high-order bits are made 0's.
Shift Right Single SRL 88 RS R1 Shift 1st opr {in GPR per R1) right number of bit None Unchanged
Logical D2(B2) positions specified by low-order 6 bits of 2nd opr

adr.
Low-order bits of 1st opr are shifted out & lost;
vacated high-order bits are made 0's.

2065 FEMM (10/69)

1-19

Table 1-4. Logical Instructions (Cont)

Mne- Op Program
Instruction monic { Code | Format Operands Function Interruptions Condition Code
Store Character STC 42 RX R1 Store bits 24—31 of 1st opr (in GPR per R1) into | Prot (S) Unchanged
D2(X2,B2) | 2nd opr location (in stg). Adr
Test Under Mask ™ 91 Sl D1(B1) Set CC according to state of 1st opr bits (in stg) | Prot (F) 0 : Selected bits
12 selected by mask bits (12 of inst). Adr all 0’s (mask is
1. If mask bit = 1, test corresponding 1st opr all 0's)
bit; if mask bit = 0, ignore corresponding 1st 1 : Selected bits
opr bit. mixed O's & 1's
2. Character in stg is unchanged. 3 : Selected bits
all 1's
Translate TR DC SS D1(L, B1) Add 1st opr byte (argument; in stg) to effective 2nd | Prot (S,F) Unchanged
D2(B2) opr adr, use result as stg adr, & place function byte | Adr
from resulting stg adr into corresponding 1st opr
byte location.
1. Effective 2nd opr adr = contents of GPR adr |
by B2, + D2.
2. LL = number of bytes to be transiated.
3. 1st opr bytes are processed left to right.
Translate & Test TRT DD SS D1{L, B1) Add 1st opr byte (argument; in stg) to effective 2nd | Prot (F) 0 : All bytes tested
D2(B2) opr adr, use result as stg adr, & test function byte | Adr are all 0's)
from resulting stg adr. If O, translate & test next 1 : Non-0 byte found
argument byte; if non-0, complete operation by before last byte to
inserting related argument adr into GPR1 & be tested
function byte into GPR2. 2 : Non-0 byte found
1. Effective 2nd opr adr = contents of GPR adr as last byte to be
by B2, + D2. tested
2. LL = number of bytes to be translated.
3. 1st opr bytes are processed left to right.
4. Set CC according to ending condition.
Table 1-5. 1/O Instructions
Mne- Op . Program
Instruction monic| Code| Format Operands Function Interruptions Condition Code
Halt 1/0 HIO 9E Si D1(B1) Terminate current |/O operation at selected channel | Priv Oper 0 : Interruption
& {/0 unit. in channel
1. D(13—15) is channel adr. “1: CSW stored
2. D{16—23) is 1/O unit adr. 2 : Halted
' 3 : Unavailable
Start |/O SIO 9C Sl D1(B1) Select specified 1/O unit & initiate channel | Priv Oper 0 : Available
command to that unit. 1 : CSW stored
1. D{13-15) is channel adr. 2 : Working
2. D(16—23) is 1/O unit adr. 3 : Unavailable
3. CAW, which specifies address of 1st CCW, is
fetched from location 72 (48, hex).
Test Channel TCH oF Sl D1(B1) Test state of selected channel & set CC accordingly. | Priv Oper 0 : Available
1. D(13—15) is channel adr. 1 : CSW ready
2. D(16—23) is ignored. 2 : Working
3. State of channel is not affected. 3 : Unavailable
Test |/O TIO 9D Si D1(B1) Clear interruption condition in addressed channel or | Priv Oper 0 : Available
associated 1/0 units, & set CC according to status of i1 : CSW stored
addressed channel & 1/0O units. 2 : Working
1. D(13—15) is channel adr. 3 : Unavailable

2. D(16—23) is 1/0O unit adr.
3. CSW is stored at location 64 (40, hex) if:

a. 1/O unit or control unit contains pending
interruption.

b. 1/0O unit or control unit is executing
previous operation, or there is pending
channel-end/control unit-end for another
1/0 unit.

c. t/O unit or
machine error.

its control unit detects

1-20 (10/69)

Table 1-6. Branching Instructions

Mne- Op Program
Instruction monic { Code | Format Operands Function Interruptions Condition Code
Branch & Link BAL 45 RX R1 Store PSW(32—63), link information, into GPR (adr | Prot (F)t Unchanged
D2(X2,B2) | by R1) & branch to location specified by 2nd opr
adr.

1. Branch is unconditional.
2. Link information is stored whether or not
branch is successful.

Branch & Link BALR | 05 RR R1 Store PSW(32—63), link information, into GPR (adr | Prot (F)t Unchanged
R2 by R1) & branch to location specified by GPR (adr
by R2).

1. Branch is unsuccessful if R2 = 0; use next
sequential instr adr.

2. Link information is stored whether or not
branch is successful.

Branch on BC 47 RX M1 Branch to location specified by 2nd opr adr if state Prot (F)t Unchanged
Condition D2(X2,B2) | of CC is as specified by M1.

1. Branch is unconditional if M1 is all 1’s.

2. Branch is unsuccessful if M1 is all O’s; use
next sequential instr adr.

Branch on BCR 07 RR M1 Branch to location specified by GPR (adr by R2) if | Prot (F)t Unchanged
Condition R2 state of CC is as specified by M1.
1. Branch is unconditional if M1 is all 1’s and
R2%#0.

2. Branch is unsuccessful if R2 = 0 or if M1 is
all O’s; use next sequential instr adr.

Branch on Count BCT 46 RX R1 : Subtract 1 from 1st opr {in GPR per R1); if result % | Prot (F)t Unchanged

D2(X2,B2) | 0, branch to location specified by 2nd opr adr.

1. Place result of subtraction into 1st opr
location.

2. Branch is unsuccessful if result = 0; use next
sequential instr adr.

3. If 1st opr = 1, no branching occurs.

Branch on Count © BCTR 06 RR R1 Subtract 1 from 1st opr {in GPR per R1); if result # | Prot (F}t Unchanged
R2 0, branch to location specified by GPR (adr by R2).
1. Place result - of subtraction into 1st opr
location.

2. Branch is unsuccessful if result =0 orif R2=
0; use next sequential instr adr.
3. If 1st opr = 1, no branching occurs.

Branch on Index BXH 86 RS R1 Add increment (3rd opr; in GPR per R3) to 1stopr | Prot (F)t Unchanged
High R3 (in GPR per R1), algebraically compare result
D2(82) (index) with comparand (in odd-adr GPR specified

by R3 or R3 + 1); if index > comparand, branch to
location specified by 2nd opr adr.
1. Place index into 1st opr location.
2. Branch is unsuccessful if index = or <
comparand; use next sequential instr adr.

Branch on Index BXLE 87 RS R1 Add increment (3rd opr; in GPR per R3) to 1st opr Prot (F)t Unchanged
Low or Equal R3 {in GPR per R1), algebraically compare result
D2(B2) {index) with comparand (in odd-adr GPR specified

by R3 or R3 + 1); if index = or < comparand,
branch to location specified by 2nd opr adr.
1. Place index into tst opr location.
2. Branch is unsuccessful if index > comparand;
use next sequential instr adr.

Execute EX 44 RX R1 Execute subject instr at location specified by 2nd Execute Set by subject
D2(X2,B2) | opr adr. Subject instr may be modified by 1st opr | Prot (F) instr
(in GPR per R1) if E(8—11) #0. Adr

Modification is achieved by OR‘ing bits 8—15 of | Spec
subject instr with bits 24—31 of 1st opr; if R1 =
0, no modification takes place.

1t Fetch protected: bit 4 of storage protect set.

2065 FEMM (10/69) 1-21

Table 1-7. Status Switching Instructions

executed. (In multisystem mode, issue multisystem

~ signals to other CPU.)

Mne- Op Program
Instruction monic| Code{ Format Operands Function Interruptions Condition Code
Diagnose None 83 Sl D1(B1) Load word designated by stg opr adr into MCW, set | Priv Oper Unpredictable
a2 or reset certain control triggers, & branch to ROS | Prot (S,F)
adr specified by MCW. ' Adr
Spec
Insert Storage Key ISK 09 RR R1 insert stg protection key for 2048-byte stg block, | Priv Oper Unchanged
R2 adr by bits 8—20 of 2nd opr (in GPR per R2), into | Adr
bits 24—28 of 1st opr (in GPR, per R1).’ Spec
1. 1st opr: bits 0—23 are unchanged; bits
2931 are cleared. :
2. 2nd opr: bits 0—7 & 21—27 are ignored; bits
28-31 must = 0's.
3. Key is fetched twice because of 2-way
interleaving.

Load PSW LPSW 82 Si D1(B1) Load doubleword stg opr (designated by stg opr | Priv Oper Set by new PSW
adr) into CPU, thus replacing current PSW, & | Prot (F) bits 34 & 35
branch to new instr sequence. Adr

1. Bits 0—15: system mask, protection key, | Spec
' program state.
Bits 16—33: ignored.
Bits 34—39: CC, program mask.
Bits 40—63: instr adr.
2. 1f PSW(14) = 1, enter Wait state.
3. If PSW(15) = 1, enter Problem state.
4. Load PSW instr is only instr available for
entering Problem or Wait state.
Read Direct RDD 85 Sl D1(B1) Send ‘direct control read out’ signal & timing signal | Oper Unchanged
12 code (12; in instr) to external device for about 0.6 | Priv Oper
usec; store 1 data byte from external device into stg | Prot (S)
(per stg opr adr) when ‘direct control hold in’ signal Adr
is absent.

Set Program Mask SPM 04 RR R1 Replace CC & program mask (bits 34—39) of | None Set by opr 1
current PSW with bits 2—7 of 1st opr {in GPR per bits2& 3
R1).

Set Storage Key SSK 08 RR R1 Set stgkey (bits 24—28 of 1stopr;in GPR per R1) for | PrivOper Unchanged

R2 2048-byte stg block (adr by bits 8—20 of 2nd opr;in | Adr
GPR per R2) into stg protection logic in main storage. Spec
1. 1stopr: bits 0—23 & 29—31 are ignored.
2. 2nd opr: bits 0—7 & 2127 are ignored; bits
28—-31 must=0's.
3. Key is set twice because of 2-way interleaving.

Set System Mask SSM 80 S D1(B1) Replace system mask (bits 0—7) of current PSW | Priv Oper Unchanged

with byte from location designated by stg opr adr. | Prot (F)
Adr
Multisys

Supervisor Call SvC 0A RR | Cause supervisor call interruption; replace old None Unchanged
PSW(24—31) with I-field (bits 8—15) of instr,
providing interruption code.

1. Clear PSW(16—23).

2. Store old PSW at stg location 32 (decimal).

3. Fetch new PSW from stg location 96
{decimal).

Test & Set TS 93 Sl D1(B1) Test high-order bit (bit 0) of stg opr byte (in stg), | Prot (S,F) 0 : High-order
set CC according to state of tested bit, & set | Adr bit=0
addressed byte back into stg as all 1's. 1 : High-order

bit =1

Write Direct WRD 84 S| D1(81) Send ‘direct control write out’ signal & timing signal | Oper Unchanged

12 code (12; in instr) to external device for about 0.8 | Priv Oper
usec; make 1 data byte from stg (per stg opr adr) | Prot (F)
available to external device until next WRD is | Adr

1-22 (10/69)

1.3 PROGRAM STATUS WORDS (PSW) 1. Bits 0—7, Command Code. The command codes are as
The PSW has the following format: follows (X 1nc¥1?ates. that the bit position is ignored; M
denotes a modifier bit):

Names Flags Code
System Mask | Key |ylmiwlp Interruption Code B Write CD CC SLi PCI MMMM MMO1
0 78 1112131415 16 3l Read CD CC SLi SKIPPCI MMMM MM10
Read Backward CD CC SLISKIPPCI MMMM 1 100
Control CD CC SLlI PCI MMMM MM11
-SILC CcC I;\;‘ng Instruction Address Sense CD CCSLISKIPPCI MMMM 0 100
= Transfer in Channel x x x x -1000
3233 343536 39 40 63
: CcD = Chain data SKIP = Skip
0-7 System mask 14 Wait state (W) CC = Chain command PCI = Program-
0 Multiplexer channel mask 15 Problem state (P) SLi = Suppress length controlled
1 Selector channel 1 mask 16-31 interruption code indication interruption
2 Selector channel 2 mask 32-33 Instruction Length code
3 Selector channel 3 mask (1LC) . . .
4 Selector channel 4 mask 34-35 Condition code (CC) 2. Bits 8—31, Data Address. Specify the location of a byte
5 Selector channel 5 mask 36-39. Program mask in main storage.
6 Selector channel 6 mask 36 Fixed-point overflow mask : _ .
7 External mask 37 Decimal overflow mask 3. ?;ts g%h 3?6,(-,1'-“1&%'8.
8-11 Protection key 38 Exponent underflow mask ain data tlag
12 USASCII-8 mode (A) 39 Significance mask 33 Chain command flag
13 Machine check mask (M) 40-63 Instruction address 34 Suppress length indication flag
: 35 Skip flag
) . _ 36 Program-controlled interruption flag
*A one-bit equals on, and permits an interruption 4. Bits 37—39, Zeros.
. 5. Bits 40—47, Ignored.
_ 6. Bits 48—63, Count. Specify the number of bytes in the
The interruption code is defined in Table 1-8. This table operation.
shows how interrupted instructions are finished. The The channel status word (CSW) has the following
permanent main storage assignments for the PSW’s are format:
listed in Table 1-9.
Key 10000 Command Address S
' ' 0 34 78 3
1.4 1/0 CONTROL WORDS - o
g Status Count
The channel address word (CAW) has the following format: 3 %7 48 %

0-3 Protection key
4-7 Zero

: 8-31 Command address
Key 10000 - Command Address 32.47 Status
0 34 7 8 31 32 Attention
33 Status<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>