M [: Field Engineering

Theory of Operation

2 @ @ 5 Processing Unit, Volume 2

Preface

This manual describes the operation of the 2065 Processing
Unit. It is assumed that the reader has a knowledge of
processors, of ALD interpretation, and of the basic circuits
used in the 2065.

The EC levels of the ALD’s and CLD’s for the basic
2065, upon which this manual and its companion
maintenance diagram manual are based, are:

ALD’s: EC 705369 9/68
CLD’s: EC 705340 3/68
Power: EC 711576 8/68

The manual consists of two volumes, and is divided into
six chapters and three appendices. Volume 1, Form
Y27-2036-0, contains:

Chapter 1, Introduction. Discusses system organization
and data flow; character codes, instruction formats,
and operands; program execution and. control; and the
CPU functional units and the Universal instruction set.

Chapter 2, Functional Units. Analyzes registers, adders,
and counters individually, except for those units that
work together to perform a specific function (for
example, variable-field-length register and its associated
byte counter).

Volume 2, Form Y27-2037-0, contains:

Chapter 3, Principles of Operation. Presents a detailed
analysis of instruction fetching, and instruction
execution by instruction class.

Chapter 4, Features. Discusses the features available for
the 2065 CPU. ,

Chapter 5, Power Distribution and Control. Describes
the power distribution and control within the CPU
(making a distinction between 2065’s and 2060’s that
have been converted to 2065’s) and within the system.

Chapter 6, Console Controls and Maintenance Features.
Discusses the controls on the system control panel and
on the CE panel and their application, and the
maintenance features available.

Second Edition (May 1974)

Appendix A, Special Circuits. Discusses the special
circuits in the 2065.

Appendix B, World Trade Differences. Discusses the
major difference between the World Trade version of
the Model 65 and the domestic version..

Appendix C, Example of FLT Generation. Discusses
FLT generation, using a simple four-block tree as an
example.

Volume 2 also contains the index for the complete manual.

Following most paragraph heads are bullets (key
statements preceded by e) which summarize significant
points about the subject. The bullets serve two functions:
(1) they provide the CE with the key points of the topic,
and (2) they provide quick reference for review and recall
for the CE who is familiar with the machine. Detailed text
follows, providing the non-classroom student with the fill-in
material necessary for self-instruction.

The diagrams supporting the text are divided into two
groups: (1) purely instructional diagrams and (2)
maintenance-oriented diagrams and diagrams that aid recall.
Examples of the first group are high-level block diagrams
and diagrams that show general data flow and timing
considerations. Thése diagrams are generally not affected
by engineering changes, and, if they include AND/OR logic
blocks, the blocks are drawn in positive logic convention
and do not maintain ALD lines or line names. The
instruction diagrams, which are placed in this manual and
called “Figures”, are numbered consecutively within a
chapter. (For example, 1-1 is the first figure in Chapter 1;
3-7 is the seventh figure in Chapter 3.)

The diagrams of the second group are referenced in this
manual (for example, Diagram 5-30, FEMDM) but are
located in the companion FE Maintenance Diagrams
Manual to allow ready reference during maintenance and to
facilitate updating the diagrams to new engineering levels.
These diagrams are grouped by categories similar to the
chapters of this manual.

This edition, SY27-2037-1, is a reprint of SY27-2037-0, incorporating changes

released in the following FE Supplement:
SY27-2259 (dated October 16, 1969)

Changes are periodically made to the information herein; any such changes will be

reported in subsequent revisions or Technical Newsletters.

This: manual has been prepared by the IBM System Products Division, Product
Publications, Dept. B97, PO Box 390, Poughkeepsie, N.Y. 12602. A form for
readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be sent to the above address. Comments become

the property of IBM.

© Copyright International Business Machines Corporation 1969

i (5/74)

The relationship of this manual to the FEMDM is shown
below. (Arrows indicate cross-referencing between chapters
in this manual and categories of diagrams in the FEMDM:
for example, most references in Chapter 3 are made to
Category 5 diagrams.)

2065 FETOM (Vol 1)
Form Y27-2036-0

2065 FEMDM
Form Y27-2038-0

Chapter 1 Category 1
Introduction Diagnostic Techniques
Chapter 2 Category 2

Functional Units Error Conditions

{Not required)

Category 3
Data Flow
2065 FETOM (Vo! 2) Category 4
Form Y27-2087-0 Functional Units
Chapter 3 -
Principles of Op- ~ Category §
eration Operations
Chapter 4 .
Features Category 6
Power Distribution
Chapter 5 and Control
Power Distribution Category 7
and Control Features
‘Chapter 6
Console Controls and) Category 8
Maintenance Features \> Console Controls and
Maintenance Features
Appendices A, B, and C
Index for Volumes 1
and 2 Index
ABC AB register byte counter
ac alternating current
adr address, addressed, addressing
ALD automated logic diagram
amp ampere
ASC address store compare
ATN alternate test number
BCD binary-coded decimal
BCU bus control unit

Companion, related, and prerequisite manuals and
standards are:
2065 Processing Unit
FEMDM, Form Y27-2038-0
FEMM, Form Y27-2270-0
IBM System/360 Principles of Operation, SRL, Form
A22-6821-7. .
2065 Processing Unit, 7070]7074 Compatibility Feature
FETOM, Form Y27-2106-0
FEDM, Form Y27-2107-0
2065 Processing Unit, 7080 Compatibility Feature
FETOM, Form Y27-2090-0
FEDM, Form Y27-2091-0
2065/2067 Processing Unit, 709/7040/7044/7090/7094/
70941 Compatibility Feature
FETOM, Form Y27-2098-0
FEDM, Form Y27-2099-0
2365 Processor Storage
FETOM, Form Y22-6608-0
FEDM, Form Y22-6601-1
FEMM, Form Y22-6600-1
2361 Core Storage
FETOM, Form Y22-28970
FEDM, Form Y22-2895-0
FEMM, Form Y22-2894-0
2860 Selector Channel
FETOM, Form Y27-2220-0
FEMDM, Form Y27-2221-0
FEMM, Form Y22-2893-1
2870 Multiplexer Channel (70,000 Series)
FETOM, Form Y27-2152-0
FEDM, Form Y27-2153-0
FEMM, Y27-2154-0
1052 Adapter and 2150 Console, FETOM, Form Y22-2808
SLT Component Circuits, FEMI, Form Z22-2798 (IBM
Confidential) ‘
SLT Power Supplies, FEMI, Form 223-2799
SLT Packaging, FEMI, Form 223-2800
Control Automation System (CAS) Logic Diagram (CLD),
IBM Corporate Engineering Standard, CES 0-1046-4

Abbreviations
C capacitor
CAW channel address word
CB circuit breaker
CcC condition code
CCwW channel command word
CE customer engineer
charistic characteristic
CLD control automation system logic diagram
CPU central processing unit
CR diode

2065 FETOM (10/69) iii

CROS
Csw
CT

dc

dec div
dec ovflo
DX

DX +1
DX+ 2

end op
EPO -
ERSLT
exp ovflo
exp unflo

F
FEMDM
FEMI
FEMM
FETOM
fix-pt div
fix-pt ovflo
FLT
flt-pt div
FLUT
FPR
fract

GIS
GPR

hex
HSS
Hz

ic
I-Fetch
ILC
1/0
IPL

K
K
kHz

LAL
LAR
LCS
LS
LSWR

MAR
max
MCwW
mHz
MMSC
MPR

ms
multisys

no op
ns

v (10/69)

capacitive read-only storage
channel status word
conditional terminate

direct current

decimal divide

decimal overflow

first byte in a series of destination bytes
second byte in a series of destination bytes
third byte in a series of destination bytes

end operation
emergency power off
expected result
exponent overflow
exponent underflow

fuse

Field Engineering Maintenance Diagrams Manual

Field Engineering Manual of Instruction
Field Engineering Maintenance Manual

Field Engineering Theory of Operation Manual

fixed-point divide

fixed-point overflow

fault locating test
floating-point divide

Fault Locating Utility program
floating-point register

fraction

general initialization sequence
general-purpose register

hexadecimal
high-speed storage
Hertz

instruction counter
instruction fetching
instruction length code
input/output

initial program load

kilo
relay
kilohertz

local storage address latches
local storage address register
large capacity storage

local storage

local storage working register

memory address register
maximum

maintenance control word
megahertz

maintenance mode stop clock
multiplier

millisecond

multisystem

no operation
nanosecond

op code
oper
opr

PAA
PAB
PAL

pf

PK

PP

PQ

priv oper
prot

- PS

PSW

R

ROS
ROSAR
ROSBR
ROSDR
ROSPARA
ROSPARB

SAA
SAB
SAB
SAL
SAR
SBA
SBB
SCOPEX
SCR
SDBI
SDBO
signif
SLT
SMS
SOROS
spec
SRL
STAT
STC
stg

SW BD
sync

T

T(DX)
T(DX+1)
TIC

Y AIAIVIV é <

operation code
operation
operand

parity

parallel adder A-side
parallel adder B-side
parallel adder latch
picofarad

power contactor
partial product
partial quotient
privileged operation
protection

power supply
program status word

resistor

read-only storage

read-only storage address register

read-only storage backup register

read-only storage data register

read-only storage previous address register A
read-only storage previous address register B

serial adder A-side

serial adder B-side

storage address bus

serial adder latch

storage address register
serial adder bus A

serial adder bus B

scoping index
silicon-controlled rectifier
storage data busin
storage data bus out
significance

solid logic technology
standard modular system
scan out read-only storage
specification

Systems Reference Library
status trigger

ST register byte counter
storage

switch board
synchronizing

transformer

table byte specified by DX
table byte specified by DX + 1
transfer in channel

test number

microfarad
microsecond
unconditional terminate

volt
variable-field length

greater than or equal to
greater than or equal to
less than or equal to
less than or equal to
equal to

not equal to

Chapter 3 Principles of Operation
SECTION 1 INSTRUCTION FETCHING
Basic End-Op Cycle

Prefetching of Operands During End Op
Fetching of Instructions by End-Op Micro-Orde:
Requests DuringEndOp e e e e
Requests During Early End Op
Selection of I-Fetch Microprogram
Basic RR I-Fetch
Basic RX I-Fetch

-Basic RS and SI I-Fetch

Basic SS I-Fetch
Address Storage Compare (ASC) Test
I-Fetch Microprogram

I-Fetch Control If at End Op I1C(21,22) = 00
I-Fetch Control If at End Op IC(21,22) =01
I-Fetch Control If at End Op IC(21,22) = 10
I-Fetch Control If at End Op IC(21,22) = 11

Deviations from Basic End Op and I-Fetch
I-Fetch Sequencers
Block I-Fetch Trigger
Timer Exceptional Condition
CPU Store In Progress Exceptional Condition
Machine Check Interruption
Program Interruption
Supervisor Call Interruption
External Interruption
1/0 Interruption
Common Interruption Routine
Stop, Wait, and Repeat Exceptional Conditions
Program Store Compare Exceptional Condition
Invalid Instruction Address Test Exceptional

Condition

Specification Detection
Invalid Address Detection
Fetch Protection Detection
Invalid Instruction Address Microprogram

Q-Register Refill Exceptional Condition
Two-Cycle RR I-Fetch
Forced-Cycle RX I-Fetch
Two-Cycle RS and SI I-Fetch

........
..................

........

..........
L T I Y
...................
...................
.........
.....
........
................
................
............
...............
.....
..................

.............
............
............

........

..............
.............

SECTION 2 FIXED-POINT INSTRUCTIONS

Load
Load, LR (18)
Load, L (58)
Load Halfword, LH (48)
Load and Test, LTR (12)
Load Complement, LCR (13)
Load Positive, LPR (10)
Load Negative, LNR (11)
Load Multiple, LM (98)

Add-Type Instructions
Add, AR (1A)
Add, A (5A)
Add Halfword, AH (4A)
Add Logical, ALR (1E)
Add Logical, AL (SE)
Subtract, SR (1B)

.........

..................

...................

..............

..............

..............

................

..................

...................

..............

...............

................

.................

Contents

Subtract, S (5B)
Subtract Halfword, SH (4B)
Subtract Logical, SLR (1F)
Subtract Logical, SL (5F)
Compare, CR (19)
Compare, C (59)
Compare Halfword, CH (49)
Multiply
Multiply, MR (1C)
Multiply, M (5C)
Multiply Halfword, MH (4C)
Divide
Divide, DR (1D)
General Discussion
Detailed Discussion
Divide, D (5D)
Convert
Convert to Binary, CVB (4F)
Convert to Decimal, CVD (4E)
Store
Store, ST (50)
Store Halfword, STH (40)
Store Multiple, STM (90)
Shift
Shift Left Single, SLA (8B)-
Shift Left Double, SLDA (8F)
Shift Right Single, SRA (8A)
Shift Right Double, SRDA (8E)

.............
.............
............
.......................
..................

...........
.......................

.............
........................

SECTION 3 FLOATING-POINT INSTRUCTIONS
Exponent Overflow and Underflow
Zero Results
Conditions at Start of Execution
Load
Load, LER (38) — RR Short Operands
Load, LE (78) — RX Short Operands
Load, LDR (28) — RR Long Operands
Load, LD (68) — RX Long Operands
Load and Test, LTER (32) — RR Short Operands
Load and Test, LTDR (22) — RR Long Operands
Load Complement, LCER (33) — RR Short Operands . .
Load Complement, LCDR (23) — RR Long Operands
Load Positive, LPER (30) — RR Short Operands
Load Positive, LPDR (20) — RR Long Operands
Load Negative, LNER (31)-— RR Short Operands ..
Load Negative, LNDR (21) — RR Long Operands
Add, Subtract, and Compare
Add Normalized, AER (3A) — RR Short Operands ..
Add Normalized, AE (7A) — RX Short Operands
Add Normalized, ADR (2A) — RR Long Operands
Add Normalized, AD (6A) — RX Long Operands
Add Unnormalized, AUR (3E) — RR Short Operands

...........

.......................

Add Unnormalized, AU (7E) — RX Short Operands . . . 3

Add Unnormalized, AWR (2E) — RR Long Operands . .
Add Unnormalized, AW (6E) — RX Long Operands. . . .
Subtract Normalized, SER (3B) — RR Short
Operands
Subtract Normalized, SE (7B) — RX Short
Operands

....................

....................

2065 FETOM (9/68) v

Subtract Normalized, SDR (2B) — RR Long

Operands e e e e 3-81
Subtract Normalized, SD (6B) — RX Long
Operands ¢ . v v i v v 3-82
Subtract Unnormalized, SUR (3F) — RR Short
Operands ¢ v v v v v e e e e e 3-82
Subtract Unnormalized, SU (7F) — RX Short
Operands v ¢ v v v it 3-83
Subtract Unnormalized, SWR (2F) — RR Long
Operands o v v 3-83
Subtract Unnormalized, SW (6F) — RX Long
Operand v v v .. 3-84
Compare, CER (39) — RR Short Operands 3-84
Compare, CE (79) — RX Short Operands 3-85
Compare, CDR (29) — RR LongOperands 3-85
Compare, CD (69) — RX Long Operands 3-86
Halve 3-86
Halve, HER (34) — RR Short Operands 3-86
Halve, HDR (24) — RR LongOperands 3-87
Multiply 3-87
Data Flow and Algorithm 3-88
. Multiply, MER (3C) — RR Short Operands 391
Multiply, ME (7C) — RX Short Operands 392
Multiply, MDR (2C) — RR Long Operands 3-93
Mutltiply, MD (6C) — RX Long Operands 3-93
Divide o v v i i i e e e e 3-94
Characteristic Computation 3-95
Normalization 3-96
FractionDivision 3-96
Data Flow and Algorithm 3-98
Divide, DER (3D) — RR Short Operands 3-100
Divide, DE (7D) — RX Short Operands 3-101
Divide, DDR (2D) — RR Long Operands 3-102
Divide, DD (6D) — RX Long Operands 3-103
Store L e e e e e e e e e e e e e 3-104
Store, STE (70) — RX Short Operands 3-104
Store, STD (60) — RX Long Operands 3-105
SECTION 4 DECIMAL INSTRUCTIONS 3-106
Instruction Handling 3-106
Word Overlap Condition 3-107
General Initialization Sequence 3-109
Add, Subtract, and Compare 3-109
Add, AP (FA) and Subtract, SP(FB) 3-109
GIS for Add and Subtract 3-110
True Add Sequence 3-110
Complement Add Sequence 3-113
Compare,CP(F9) 3-114
Zeroand Add,ZAP(F8) 3-115
Multiply, MP(FC) v v v v v v v 3-116
_General Description 3-118
Detailed Description 3-124
Divide, DP(FD) ¢ . o v .. 3-125
General Description 3-128
Detailed Description 3-134
Pack, PACK(F2) 3-137
Instruction Execution, Not Word Overlap 3-138
Instruction Execution, Word Overlap 3-139
Unpack, UNPK(F3) 3-139
Instruction Execution, Not Word Overlap 3-140
Instruction Execution, Word Overlap 3-141
Move With Offset, MVO(F1) 3-141
Instruction Execution, Not Word Overlap 3-142
Instruction Execution, Word Overlap 3-142

vi (9/68)

SECTION § LOGICAL INSTRUCTIONS
General Initialization Sequence
Move
Move, MVI (92)
Move, MVC (D2)
Move Numerics, MVN (D1)
Move Zones, MVZ (D3)
Compare
Compare Logical, CLR (15)
Compare Logical, CL (55)
Compare Logical, CLI (95)
Compare Logical, CLC (D5)
AND
AND, NR (14)
AND, N (54)
AND, NI (94)
AND, NC (D4)
OR
OR, OR (16)
OR, O (56)
OR, OI (96)
OR, OC (D6)
Exclusive-OR
Exclusive-OR, XR (17)
Exclusive-OR, X (57)
Exclusive-OR, XI (97)
Exclusive-OR, XC (D7)
Test Under Mask, TM (91)
Insert Character, IC (43)
Store Character, STC (42)
Load Address, LA (41)
Translate, TR (DC)
Translate and Test, TRT (DD)
Edit and Edit and Mark, ED and EDMK (DE and DF)
Introduction to Edit Operation
Introduction to Edit and Mark Operation
General Data Handling
Microprogram Description
First Cycle
Second Cycle
Exit Conditions

........
.............
.............
.......................
........................
...............
...............

Shift
Shift Left Single, SLL (89)
Shift Left Double, SLDL (8D)
Shift Right Single, SRL (88)
Shift Right Double, SRDL (8C)

............

...........

SECTION 6 BRANCHING INSTRUCTIONS
Branch on Condition, BCR (07)
Successful Branch

Unsuccessful Branch
Branch on Condition, BC (47)
Branch and Link, BALR (05)

Unsuccessful Branch

Successful Branch
Branch and Link, BAL (45)
Branch on Count, BCTR (06)

Successful Branch

Unsuccessful Branch
Branch on Count, BCT (46)
Branch on Index High, BXH (86)
Branch on Index Low or Equal, BXLE (87)
Execute, EX (44)

.................

................

.............

.............

................

.................

................

..................

SECTION 7 STATUS SWITCHING INSTRUCTIONS . . . 3-176
Load PSW,IPSW(82) v v v v o v . 3-176
Set Program Mask, SPM (04) 3-177
Set System Mask, SSM(80) 3-177
Supervisor Call, SVC(0A) 3-177
Set Storage Key,SSK (08) 3-178
Insert Storage Key, ISK(09) 3-179
Write Direct, WRD(84) 3-180
Read Direct, RDD(85)« . .. 3-181
Diagnose (83) ¢ o oo oo 3-182
Testand Set, TS(93) « o v v v v v v o 3-183
SECTION 8 INPUT/OUTPUT INSTRUCTIONS 3-184
StartI/0,SIO(9C)o e e e e 3-184
TestI/O, TIOMD) v v v v v v v v v o 3-186
HaltI/O,LHIOQE) v v v v v v v v v v 3-186
Test Channel, TCH(9F) 3-187
Chapter 4 Features ¢ v v « 4 o 4-1
SECTION 1 FEATUREINDEX 4-1
SECTION 2 MULTIPROCESSING FEATURES s 4-2
Multiprocessing System/360 Model 65 4-2
MainStorage 4-2
Storage Allocation 4-2
Floating Addressing 4-2
Direct Address Relocation 4-3
Input/Output 4-4
ProcessingUnits 44
MultisystemMode 44
Model65Mode 4-5
PartitionMode 4-5
Multisystem Signals 4-5
Summary of Multiprocessing System
Advantages00 4-6
Functional Units 4-6
Configuration ControlPanel 4-7
Storage Allocation Control 4-7
Floating AddressControl 417
Direct Address RelocationControl 4-8
Multiprocessing System Mode Control 4-8
1/O AllocationControl 4-8
BCU Modifications 4-8
Storage Address Decoding with Prefixing
Disabled v . v i i 4-8
Storage Address Decoding with Prefixing
Enmabled 4-8
Invalid Storage Address 49
BCU-Storage Operations 4-9
Multisystem Timer 49
Operation 49
SystemHang Timing 4-10
External System Reset Timing 4-10
Multisystem Operations 4-10
Set System Mask Instruction (Muitisystem Mode) . . 4-10
Write Direct Instruction (Not Model 65 Mode) 4-10
Read Direct Instruction (Not Model 65 Mode) 4-11
MalfunctionAlert 4-11
Gated Load e e e e e e e e e e e 4-11
SystemCall 4-11
Logl/OlInterrupt 4-12
External System Reset 4-12
ExtermalStart 4-12
Power Distributionand Control 4-13

Console Controls and Maintenance Features
Configuration Control Panel
Storage Allocation Switches
Floating Address Switches
PREFIX Switches
CPU Mode Switches
1/O Allocation Switches
VALID ADDRESS Indicators
System Control Panel Modifications,
Multisystem Feature
EMERGENCY PULL Switch
POWER ON Pushbutton
Marginal Voltage Control
DISABLE INTERVAL TIMER Switch
DISABLE DIRECT CONTROL Swiich
Storage Switches
Indicators i . . . oo o
System Control Panel Modifications,
Additional Storage Attachment Features
Marginal Voltage Control
POWER CHECK Indicators
STORAGE INDICATE SWITCH and Indicators
Logout and Scan In

.............
............
.............
................

...............
.............

...........

...............
...........
.............
......
.......
.......

................

.......

............

Chapter 5 Power Distribution and Control
AC Power Distribution
60-Hz Units
50-Hz Units
Converter/Inverter
DC Power Distribution
High-Frequency Regulator Modules
Marginal Adjustments
Power-On Sequence
Power-Off Sequence
Normal Power-Off
Emergency Power-Off
Automatic Power-Off
Overcurrent Protection
Overvoltage Protection
Positive Regulators, Converted Units
Negative Regulators, Converted Units
Undervoltage Protection
Thermal Protection .
Indicators
System Power-On Indicator
Power Check Indicators
1052 Printer-Keyboard Power
Audible Alarm
Dual 1052 Power Interface
Direct Control Power
Usage Meters and Key Switch

...................
...................
.................
................
D S S Y
.................
.................
..............
...............
..............
......
.................

Chapter 6 Console Controls and Maintenance Features

SECTION 1 CONSOLE CONTROLS
System Control Panel
Manual Controls
Stop Loop
Power-On Reset
SYSTEM RESET Pushbutton
CHECK RESET Pushbutton
STOP Pushbutton
LOAD Pushbutton (IPL)
DATA Switches
ADDRESS Switches
ADDRESS COMPARE STOP Switch

..........
................
.................
...........
................

........

2065 FETOM

(10/69) vii

STORAGE SELECT Switch
DEFEAT INTERLEAVING Switch e
STORAGE INDICATE Switch
STOP ON STORAGE CHECK Switch
SETICPushbutton
RATESwitch e
PROCESS Position v ..
INSN STEPPosition
SINGLE CYCLE Position
SINGLE CYCLE STORAGE INHIBIT Position .
REPEATINSNSwitch
Repeat Single Instruction
Repeat Multiple Instructions ;.
STORE Pushbutton
DISPLAY Pushbutton
START Pushbutton
ROS TRANSFER Pushbutton
Storage-Ripple Microprogram
Storage-Ripple-Store Function e
Storage-Ripple-Display Function
- REPEAT ROS ADDRESS Switch
PSW RESTART Pushbutton and Wait State
DISABLE DIRECT CONTROL Switch SN
DISABLE INTERVAL TIMER Switch
INTERRUPT Pushbutton
CPUCHECK Switch
PULSEMODE Switch
PROCPosition
TIME Position
COUNT Position
LOG OUT Pushbutton R
TEST MODE, ROS/PROC/FLT Switch
TEST MODE, REPEAT Switch
RESTART FLT I/O Pushbutton
CE Key Switch and Usage Meters
FREQUENCY ALTERATION Switch
Indicators0

CEPanel i v v v

SECTION 2 MAINTENANCE FEATURES

Diagnose Instructionand MCW’s

Diagnose Instruction MCW for CPU e e
Diagnose Instruction MCW for Channel
ROSTest MCW .- oo v v o
4 (P
Logout, ROS Tests,and FLT’s
Introduction
Logout
ROSTeStS . . « v v v v v v v v e e e e v e o
FLT’S . . . o o i v i e e e e e e e e e e e
FLTTapes v v v v v v v v v v
Tape Generation

FLT Hardcore Tests
Zero-CycleTests « v v v o v o
OneCycleTests
FLTFormat« . o v v .
Scan Logic Functional Units
ScanTiming
ScanClock
FLTClock« « v v v v v v o
Scan Counter Latches and Decrementer
InputandQutput
Scan Counter Decrementer
Address Sequencer
Address Sequencer Decoder
Storage Address Generator
Check Counter v o v oo v

viii (10/69)

InputandQutput 6-35
Check Counter Decrementing 6-36
FLTCounter+ v ... 6-36
Imput e e e e e e 6-36
FLT Counter Decrementing 6-37
CycleCounter 6-37
ROS Test Sequencer 6-38
Scan-OutBus 6-38
Logout Controls e e e e e 6-38
ScanOutSandT 6-39
Scan Stop-CPU-Clock Logic 6-39
Control Triggers « v v v v v v v .. 6-39
Scan Mode Controlof ROS 6-40
Scan/Channel Interface 6-40
Operational Analysis 6-40
Logout 6-40
Hardware-Controlled Sequence 6-41
ROS-Controlled Sequence 6-42
ROSTests v v v v v v v v it e e v 6-43
ROSTestTape 6-43
ROSTestSetup 6-44
IPLY e e e e 6-44
Loader 6-45
Hardcore Testsand IPL 2 e e e e . . . 645
Test 1,Record3 6-46
IPL2 6-47
Test 2,Record5 647
Record6 647
Test ,Record7 648
Test ,Record8 648
Test2,Record8 6-48
Test3,Record8 6-48
Summary of Hardcore Tests 6-48
ROSBitTests 6-49
ROSTestState7 6-49
ROS Test State6 6-49
ROSTestState§ 6-49
ROS Test Stated 6-49
ROSTestState3 6-50
ROSTestState2 6-50
ROSTestStatel 6-50
ROS Test State0 6-50
Fault Locating Tests 6-51
FLTTape v v 6-51
FLTFormat 6-52
FLT TestSetup 6-53
IPLT e 6-53
Loader e e e e e e e e e e 6-53
Transmission Checks During FLT ReadIn 6-54
Hardcore Tests v . v v v v v v v . . 6-54
Zero-Cycle and One-Cycle Tests e . . . 6-54
ScanIn 6-55
TestCycles - . 6-56
ScanQOut 6-56
Result Comparison 6-56
Terminateor Continwe 6-56.
TN/ATN Comparison 6-57
Ripple Tests v . v v v v v v v v 6-57
Diagnostic Programs 6-57
Marginal Checking 6-58
AppendiX Ao e e e e e e e e A-1
AppendixB L0 L0000 s e B-1
AppendixC C-1
Index e e X-1

3-8
39
3-10
3-11
3-12
3-13
3-14.

3-15
3-16
3-17
3-18
3-19
3-20

3-21
3-22

31
32

3-3

35
36
3-7
3-8
39

........................ X
Typical Microprogram Sequence 3-1
Basic Sequencing for SS Instructions 3-8
ASC Test for SS Instructions 3-10
Detection of Invalid Instruction Address 3-20
Detection of Fetch-Protected Instruction

Address 3-22
Fixed-Point Multiply, Example No. 1 (RR

Format) 340
Fixed-Point Multiply, Example No. 2 (RR

Format) 341
Fixed-Point Divide, Example No. 1 .. 348
Fixed-Point Divide, Example No. 2 . . 348
Convert to Decimal Example 3-52
Restore and Non-Restore Division 3-97
Fraction Divide Example 3-98
Floating-Point Divide Example 3-102
Operand Specifications for Decimal Multiply

Instruction 3-118 -
Typical Multiply Add Sequence 3-119
Typical Multiply Subtract Sequence . 3120
Data Handling During GIS of Decimal

Multiply 3-121
Data Handling During Multiplier Left-Adjust

Sequence e e e e e e 3-122
Data Flow for Right-4 Shift of ST to AB,

DecimalMultiply 3-126
Operand Specifications for Decimal

Divide 3-128
Example of a Typical Divide Sequence . 3-129
Data Handling During GIS of Decimal)

Divide 3-130
Q-Register Refill Exceptional Conditions 3-23
Value of Multiple Determined by Multiple

Selection Bits (Fixed-Point) 3-39
Divide Multiple Values, Fixed-Point 346
Conversion to Decimal (Excess-6) 3-51
Excess-6 Coriversion, B(60—63) 3-53
Operand Bits Transferred, STH Instruction 3-55
Left Shift Combinations 3-57
Right Shift Combinations 3-61
Examples of Branching on Characteristic

Difference 3-73

3-23
3-24
3-25
3-26

3-27
4-1
4-2
51

5-2

5-3
54
6-1
6-2

64

6-5
6-6
6-7
6-8
6-9
6-10
C-1

3-10
3-11
3-12

41
42
5-1
6-1
6-2
c1

Illustrations

Data Handling During Divisor Left-Adjust

Sequence 3-131
Data Handling During Dividend Fetch and

Left-Adjust Sequence 3-133
Simplified Data Flow for AND, OR, and

Exclusive-OR Instructions 3-149
Example of Use of Branch and Link

Instruction 3-167

Storage Protection Key Assignments 3-179
Direct Address Relocation
Duplicate Storage Addressing Detection . . 4-7
Primdry AC Power Distribution, 60-Hertz

Units 52
Primary AC Power Distribution, 50-Hertz

Units 5-3
Representative DC Distribution 5-5
Overcurrent Protection Loop 5-10
Normal IPL Operaiton 6-7
Data Switch Gating 6-10
Address Switch Gating 6-11
Scan Counter Latches and Decrementer Data

Flow 6-32
Address Sequencer DataFlow 6-33
Address Sequencer Decoder 6-34
Check Counter DataFlow 6-35
FLT Counter DataFlow 6-36
Cycle Counter DataFlow 6-37
ROS Test Sequencer DataFlow 6-38
Four-Block Tree and FLT Pattern

Generated C-1

Tables

Muitiplier Bits Selected, Floating-Point

Multiply 3-89
Value of Multiple Determined by Multiple

Selection Bits (Floating-Point) 3-90
Condition Code Setting Per Hardware

Conditions, Decimal Instructions 3-113 -
FeatureIndex 4-1
Floating Address Intervals 43
High-Frequency Regulator Modules 54
LogoutFormat 6-25
FLTFormat 6-52
SCOPEX C2

2065 FETOM (9/68) ix

LOGIC DIAGRAMS Transfer into register . |
/ Indicates storageable gevice
0 3! and input side.
- Means register contents are I
Nome Lo A RA supplied to indicators. | e—
O 31 A }——4 AND
LD Gi
0 78 15 ALD Grovp —
| I ’ Register Size (32 Bits)
0 3 Transfer out of register. {
| OR }— OR
5—.—
§ .
OE Exclusive=OR
0 7 0 7 ¢
7
SAB SAA))
8-Data Bit (Plus Parity) Time Time
Serial Adder
- e ——A ™ }—f DLY |—— Time Delay
SAL AS
0 7
Frequency
§——— OSC |——4 Oscillator
]) rt 83,7 6
/
//
PAA PAB f—— GT [Gate
// 60-Data Bit (Plus Parity)
/ Parallel Adder
— Negator (Inverter) !
PAL AP
4 63| 67 l
! AR |—— Amplifier
Upper half is
set (1) input. (Name)
l T T ==—— Means output is supplied to indicator. — l
- L Type (Trigger, Latch, Flip-Latch) f Odd § Odd
’ |
A= 8 L— Number of multiple circuits.
Lower half is AB123 @—— ALD Reference |
reset (0) input. Indi t ble device 5 D) (us— i
I and input side. o ! Ok Driver l
j—
I Name I
l Indicator |
Comparator |
| Nome
Roller Switch Indicator |
Pority Check Logic ' | Multiple Line Transfer |
Parity Generate Logic |
—— Bus
/0 IF Interface |
Denotes interface between two units. |
FLOWCHARTS I TIMING CHARTS ' ' —1
. Heavy bar indicates active state . Number(s)
‘ l |M“h'“°| Cycles | at beginning and end of the bar identify the
| | | signal(s) (also on the same chart) that
304 e Not ’ . m—— activate and deactivate this line. "Not"
Processing Decision | | I preceding o number means that the
Block Block } deactive signal conditions this line.

|
|
L

Branch Path Label

x (10/69)

j L L Waveshape

Heavy bar indicates active state.

I

This chapter, which discusses the 2065 CPU instructions,
is divided into eight sections:

Section 1, Instruction Fetching.
Section 2, Fixed-Point Instructions.
Section 3, Floating-Point Instructions.
Section 4, Decimal Instructions.
Section 5, Logical Instructions. -
Section 6, Branching Instructions.

Section 1. Instruction Fetching

Basic control for the instruction fetching (I-Fetch) opera-
tion is derived from one of four possible microprograms,
depending on the format of the instruction being fetched.
Each microprogram performs routines dictated by the
instruction format (RR, RX, RS and SI, or SS) and is
therefore common to many instructions. (The same
microprogram governs the I-Fetch of RS and SI Instruc-
tions.) Subsequently, a branch is made to an appropriate
microprogram for execution of a specific instruction.
These individual execution sequences all terminate with a
branch back to the I-Fetch microprogram to continue the
sequence.

A typical microprogram sequence is shown in Figure
3-1. The correct I-Fetch microprogram to be entered upon
completion of an instruction is dependent on the format
of the instruction to be executed next. A test for the
format of the upcoming instruction is made on the last

Chapter 3. Principles of Operation

Section 7, Status Switching Instructions.
Section 8, I/O Instructions.

Machine operation during instruction fetching and
execution is controlled by ROS microprograms which are
represented by CLD’s. The discussions in the following
sections are based upon simplified versions of the CLD’s
and upon upper-level, positive-logic diagrams located in
the associated FEMDM.

cycle of the execution phase. The various actions per-
formed during this last cycle (called the end operation or
end-op cycle) must be thoroughly understood before
undertaking a detailed analysis of each I-Fetch sequence.

- BASIC END-OP CYCLE

® End-op cycle completes execution of instruction and
initiates fetching of next instruction.

® End-op cycle is governed by normal end-op or branch
end-op ROS word.

® Branch end op is used to speed execution of branch-
type operations.

The end-op cycle is the last cycle in the execution phase.
During this cycle, actions dictated by the execution phase
of the instruction are completed and the fetching of the

{¢—— |-Fetch ——s-¢————— Execution —————— '
I i
: 1 —= EndOp je—
]
| .
1
cucyele pf LT 11 | Mg LT L1y
1 H 1 1 :
INEOP | | : i ;
{-Fetch i : i ! ! 5
Micro-Orders | \gxT- | EXCEP |E(02-07) | SPEC ! NEXT- | EXCEP |
| INST#IC ! |—>ROA | ; INST*D ';
! | ! ! ! ;

Figure 3-1. Typical Microprogram Sequence

2065 FETOM (9/68) 3-1

next instruction begins. The execution phase is completed
" by setting the CC (if specified in the instruction) and by
detecting interruptions or exceptional conditions that
may have occurred during the execution phase. (The
recovery microprograms are discussed after the basic
end-op and I-Fetch sequences.)
The instruction fetching begins by:
1. Decoding the format of the upcoming instruction.
2. Initiating the operand fetch required by that format.
3. Establishing the correct I-Fetch sequence which is to
follow. '
4. Detecting the need for more instructions, and request-
ing new instructions from main storage when the need
exists. :

This discussion deals with those end-op actions that
affect the subsequent I-Fetch sequence. Although instruc-
tion fetching begins during the end-op cycle, the next
cycle is defined as the first I-Fetch cycle.

The setting of the CC affects the subsequent I-Fetch
only when the upcoming instruction is a Branch on
Condition instruction. Depending on the CC, new instruc-
tions may be requested from D (condition met) or from
the IC (condition not met). The manner in which the CC
is set is discussed in the specific execution sequences
described in this chapter (Sections 2 through 8).

The actions performed during the end-op cycle are
governed by two basic ROS end-op words: normal end-op
and branch end-op. (Although they perform different
functions during end-op, they perform the same functions
for the subsequent I-Fetch sequence.) The normal end-op
word is in control of the end operation if the address of
the next instruction is specified by the IC. The next
instruction is decoded from R. Conversely, the branch
end-op word is in control if the address of the next
instruction is specified by D. In this case, the next
instruction is decoded from the SDBO (the effective R) at
the start of the end operation.

The primary function of the branch end-op word is to
fulfill specific timing requirements imposed upon execu-
tion of some branch instructions (see Section 6 of this
chapter). Two conditions lead to a branch end-op micro-
order: .

1. Sometimes upon execution of a successful branch,
end-op takes place before the address of new instruc-
tions (in D) has been transferred to the IC. In such
cases, the branch end-op word is always in control. To
establish the correct I-Fetch microprogram for the next
instruction, the branch end-op word samples D(21,22)
and the effective-R(0,1) bits; i.e., bits 0 and 1 of the
op-code halfword to be transferred to R are sampled
directly from the SDBO. Thus, the I-Fetch micro-
program for the next instruction is established as soon
as the instructions (specified by the branch) arrive
from main storage.

2. Except for the Branch on Condition instructions, the
CPU assumes that all branches are successful. Accord-

32 (9/68)

ingly, upon predecoding a branch instruction, the CPU
inhibits any IC request to refill Q and, instead, requests
instructions per the branch address (in D). If, during
execution, the branch proves to be unsuccessful, the
instructions accessed by the D-request are not gated
into Q, and the CPU must resume processing of the
instructions specified by the IC. At this time it may be
found that- the unsuccessful branch was the last
instruction in Q. Although a request per the IC is
immediately generated, at least three cycles (main
storage access time) must elapse before the CPU can
resume normal processing. Also, because the format of
the instruction is usually decoded from R(0,1), addi-
tional time would be lost if the first halfword (arriving
from main storage) had to be gated to R before the
I-Fetch microprogram for the instruction could be
established. Under such conditions, use of the branch
end-op word increases the speed in establishing the
I-Fetch microprogram for the next instruction. The
instruction address (in the IC) is temporarily trans-
ferred to D. Instead of sampling R(0,1) the branch
end-op word samples the effective-R(0,1) to establish
the correct I-Fetch microprogram immediately upon
arrival of the instructions from main storage.

Prefetching of Operands During End Op

@ For RR instructions, one LS register is accessed by R1
field if not a branch instruction; by R2 field if branch
instruction.

® For RX, RS, SI, and SS instructions, one LS register is
accessed by B-field.
During the end-op cycle, R contains the op-code halfword
of the next instruction. The format of the instruction is
established by sampling R(0,1), and the operand prefetch
dictated by that format is initiated. The end-op cycle is
completed with the ‘R-~>E’ micro-order, which transfers
the op-code halfword to E at the start of the I-Fetch
sequence. '

The scheme for prefetching operands during end-op
time is shown in Diagram 5-1, FEMDM. During this time,
an LS register specified in the R or B field of the
upcoming instruction is addressed and transferred to T.
The desired LS register is addressed by gating the
appropriate field of the instruction to LAL. Ingating to
LAL is initiated by the ‘NEOP’ micro-order in the normal
end-op word or by the ‘BEOP’ micro-order in the branch
end-op word.

The format of the upcoming instruction is established
by decoding R(0,1): ’

R(0,1) Instruction Format
00 RR .
0 RX
10 RS or SI
1 SS

When an RR format is decoded, a further test is
performed to determine whether the upcoming instruc-
tion is a branch. If the instruction is not a branch, the R1
field [R(8-11)] is gated to LAL. For an RR branch,
however, the R2 field {[R(12—15)] is gated to LAL. This
action is necessary because, for branch instructions, R2
specifies the LS register containing the branch address.
Since in this case a storage request for new instructions
must be made as soon as possible, R2 must be gated to
LAL first. v

When an RX, RS, SI, or SS format is decoded, a test is
made to determine which of the four halfword positions
in Q contains the second halfword of the upcoming
instruction. The B-field of the selected halfword is then
always gated to LAL. Selection of the correct halfword in
Q depends upon the ROS word (branch or normal) in
control of the end-op. The normal end-op word specifies
that the address of the upcoming instruction is contained
in the IC. In this case, IC(21,22) indicates the Q portion
from which the first halfword of the instruction has been
transferred to R. Consequently, these bits are decoded to
select the second halfword of the instruction in Q. The
- branch end-op word is in control when the address of the
upcoming instructions is in D. Because in this case
D(21,22) points to the correct Q position, these bits are
used to select the correct B-field in Q.

Prefetching of operands from LS is from locations
0-15 (decimal), unless an RR format, floating-point
instruction has been predecoded. In this case, the FPR
addressed by R1 is selected by forcing LAL(0) to 1. The
contents of the LS register accessed during the end-op
cycle are always transferred to T. This action is performed
by the “>T” micro-order in the end-op word. Thus, at the
start of an I-Fetch sequence, T always contains an
operand (per R-field) or the base portion of an operand
address (per B-field).

At the completion of an end-op cycle, the halfword
containing the op code of the instruction is transferred to
E (initiated by the ‘R-E’ micro-order in the end-op
word). Thus, further operand prefetching (by the
subsequent I-Fetch sequence) is performed with the op
code in E,

Fetching of Instructions by End-Op Micro-Order

A test to establish whether new instructions are required
is always performed during end op. If the upcoming
instruction is not a branch and Q needs to be refilled, a
request for new instructions is generated at end op. If the
upcoming instruction is a branch, the storage request is
blocked during end op. :

Under certain conditions, it is possible to request new
instructions from main storage one or two cycles before
end-op. This action is initiated by the ‘early end-op’
(EEOP) micro-order, contained in the execution se-

quences of some instructions. All execution sequences,
including those with the ‘EEOP’ micro-order, terminate
with the end-op word.

A Q-register refill exceptional condition usually follows
an end-op request for new instructions. This exceptional
condition adds one cycle to the basic RR, RX and RS,
and SI I-Fetch routines.

Requests During End Op

During the end-op cycle, a test is made to establish
whether Q needs to be refilled with new instructions. The
outcome of this test depends upon the format of the
upcoming instruction, on its position in Q, and on
whether it is a branch or the subject instruction of an
Execute instruction.

As shown in Diagram 5-2, FEMDM, a test of the status
of Q is initiated by the normal end-op (NEOP) or branch
end-op (BEOP) micro-order contained in the normal or
branch end-op word, respectively. Upon the decoding of
the ‘NEOP’ micro-order, IC(21,22) is sampled to establish
which halfword position in Q has been transferred to R.
The same function is performed by the ‘BEOP’
micro-order when the address of the upcoming instruction
is contained in D. In this case, D(21,22) is examined to
establish which halfword in Q is'to be processed next.
Depending on the instruction format decoded from
R(0,1), and if the upcoming instruction is neither a
branch nor the subject of an Execute instruction, storage
requests per the IC may be generated when the first,
second, or third halfword position in Q is to be processed
next.

Q-Position Setting of
Transferred 1C(21,22) Instruction Type of
toR or D(21,22) Format Request
1st 00 SS 4-cycle
2nd 01 SS 4-cycle
RX, RS, 3-cycle
or Si
3rd 10 All formats 3-cycle
4th 11 All formats None

Q has already been refilled during the instruction being
completed if bits 21 and 22 = 11; therefore, another
refilling of Q is not necessary.

Requests During Early End Op

Execution sequences of some instructions contain the
‘EEOP’ micro-order. The function of this micro-order,
which is given 1 or 2 cycles before the ‘NEOP’
micro-order, is to examine the instruction status in Q and

2065 FETOM (9/68) 3-3

to initiate an early storage request if Q needs refilling,
Requests initiated by the ‘EEOP’ micro-order are blocked
if the next instruction to be executed is (1) a branch
instruction, (2) an SS instruction, or (3) a subject of an
Execute instruction,

Early requests to refill Q are generated according to
conditions shown in Diagram 5-3, FEMDM. The normal
end-op request is blocked when an early request is in
progress. Note that the ‘EEOP’ micro-order can only
initiate a 4-cycle request. The advantage of an early
request is that the BCU will address main storage 1 or 2

cycles before end op. When initiated 2 cycles before end

op, the refilling of Q does not force the Q-register refill
exceptional condition if the instruction being fetched is of
the RR or indexed RX format or is a shift instruction.

Selection of I-Fetch Microprogram

® Selection of I-Fetch sequence is controlled by
‘NEXT-INST*IC’ micro-order during normal end op or
by ‘NEXT-INST*D’ micro-order during branch end op.

® ‘NEXT-INST*IC’ micro-order specifies functional ROS
branch per R(0,1), IC(21,22),B=0,and X2=0.

® ‘NEXT-INST*D’ micro-order specifies functional ROS
branch per effective-R(0,1), D(21,22),B =0, and X2 =
0.

The correct I-Fetch sequence is entered by establishing
the address of the first ROS word in that sequence. This
address is then placed into ROSAR so that the desired
ROS control word may be obtained on the following
cycle.

ROSAR(0-5) is furnished directly by the end-op word
as 001000. These bits designate the address of a general
I-Fetch operation about to take place. To arrive at the
specific I-Fetch sequence (RR, RX, RS and SI, or SS), the
bit configuration of ROSAR(6—11) must be established.
The manner in which ROSAR(6—11) is established is

" determined by the ROS word (normal or branch) in
control of the end op.

The normal end-op word contains the ‘NEXT-
INST*IC’ micro-order specifying a 64-way functional
branch. This micro-order sets ROSAR(6—11) according to
the following conditions:

ROSAR Bit Condition
6 Setif R(0) =1
-7 Setif R(1) =1
8 Set if instruction X2 field = 0, and RX
format
9 Set if instruction B field = 0, and not
RR format
10 Setif 1C(21) = 1
1 Set if IC(22) =1

34 (9/68)

The above actions specify the format of the upcoming
instruction, the type of further operand fetch required,
and the number of counts.by which IC(21,22) must be
increased to select the first halfword of the instruction
following it in main storage.

The registers affected by the ‘NEXT-INST*IC’
micro-order are shown in Diagram 5-5, FEMDM. The
format of the upcoming instruction is decoded from
R(0,1). For non-RR instructions, a test is made to
determine whether the B-field of the instruction is equal
to zero and, in the case of RX instructions, whether the
X2 field is also zero.

The zero test for the B and X2 fields is necessary to
establish a correct address computation by the subsequent
I-Fetch routine. To increase the speed of operand
prefetching, the B-field is always gated to LAL during the
end-op cycle. A zero address to LAL accesses LS register
0, the contents of which may not necessarily be zero.
However, the condition of B-field being zero requires that
the base portion of the operand address be zero. Thus, the
subsequent I-Fetch sequence selected must ignore the
contents of LS register 0 (accessed by a zero B field).
Similarly, in the case of the X2 field being zero, the
I-Fetch sequence selected must not address LS per the X2
field. The manner in which the correct I-Fetch sequence is
selected is decribed below.

Four 4-way AND’s simultaneously sample the four
possible B-field locations in Q. Each AND is conditioned
if its corresponding four-bit input consists of all zeros. As
explained previously, IC(21,22) selects the first halfword
of the instruction that has been transferred from Q to R.
Therefore, these bits are used as gates to select the second
halfword of the instruction in Q. If, for example, the first
halfword position of Q has been transferred to R and
decoding of R(0,1) shows that the instruction is not of
the RR format, Q(16—-19) must be selected to obtain the
correct B-field. When the first halfword position in Q is
transferred to R, IC(21,22) is set to 00. This setting
(coupled with the absence of an ‘RR block’ signal) selects
the output of the AND that samples the correct B-field;
ie., Q(16—19). When the B-field of the instruction is
found to be zero, ROSAR(9) is set to 1. This action
addresses an I-Fetch microprogram that ignores the
contents of the LS register accessed by the B-field.

When the upcoming instruction is of an RX format, a
similar test is performed to establish whether the X2 field
of the instruction, R(12—-15), is equal to zero. Upon
detecting a zero X2 field, ROSAR(8) is set to 1. This
action dictates that the subsequent I-Fetch microprogram
does not address LS per X2; i.e., E(12—15).

The ROS branch specified by the ‘NEXT-INST*IC’
micro-order is completed by forcing IC(21,22) into
ROSAR(10,11). This action allows the first I-Fetch
microinstruction to correctly update IC(21,22) and R
without further testing.

The ‘NEXT-INST*D’ micro-order in the branch end-op
word sets ROSAR(6-11) according to the following
conditions:

ROSAR Bit Condition
6 Set if effective-R(0) = 1
7 Set if effective-R(1) = 1
8 Set if instruction X2 field = 0, and RX
format
9 Set if instruction B field = 0, and not
RR format
10 Setif D(21) =1
11 Set if D(22) =1

Note that ROSAR(6,7) is set from the effective-R
rather than from R, and that ROSAR(10,11) is set from
D(21,22) rather than from IC(21,22). This is done
because R and IC are either still invalid or are just being
set by the branch operation in progress.

BASIC RR I-FETCH
® RR format:

Op Code R1 R2
[) 78 nmiz 15

® Purpose:

1. For nonbranch instructions, load 1st operand into
A, B, and D. Load 2nd operand into S and T.

2. For branch instructions, load 2nd operand into A,
B, and D. Load 1st operand into S and T. Request
new instructions, if needed. '

3. Set STC to 100 and ABC to 000.

® Conditions at start of I-Fetch:
1. Instruction is transferred to E.
2. If instruction is not a branch, 1st operand is in T;
for a branch, 2nd operand is in T.

The following paragraphs describe the basic actions
initiated by the ROS microprogram during I-Fetch of RR
instructions. It is assumed that no interruptions or
exceptional conditions were detected in the preceding
end-op cycle.

The RR instructions basically require a 1-cycle I-Fetch.
The actions initiated during this cycle are governed by 1
of 4 possible ROS control words selected at end-op time.
Selection of the specific ROS word depends on the
original position of the RR instruction in Q. This word
contains the appropriate micro-orders for incrementing
IC(21,22) and for transferring the first halfword of the
next instruction to R. Except for these actions, the
functions performed by the four ROS words are identical.

Diagram 5-6, FEMDM, is a simplified flowchart of an RR

I-Fetch; Diagram 5-7 shows the data registers used.

If no interruption or exceptional condition is detected,
the ‘entire RR instruction is transferred to E at the start of
the I-Fetch cycle (by the ‘R—E’ micro-order at end op).
The operand prefetching, initiated at end op, is then
continued. The order in which operands are prefetched
depends on whether the instruction is a branch:

1. For nonbranch instructions, the first operand (accessed
during end op) is transferred from T via the parallel
adder to A, B, and D. The second operand is then
addressed by gating E(12—15) to LAL. When the
second operand is accessed, it is loaded into S and T.

2. The above order is reversed for branch instructions;
ie., the second operand (accessed during end op) is
placed into A, B, and D while the first operand is
placed into S and T. A storage request per the branch
address is generated subject to the conditions shown in
Diagram 5-6.

The correct execution sequence is entered by establish-
ing the address of the first ROS word in that sequence.
This address is determined by sampling the instruction op
code from E(2—7) by means of the ‘E(02—07)>ROA’
micro-order. As stated earlier, this description of RR
I-Fetch applies only when no exceptional conditions or
interruptions are present. The ROS word governing the
I-Fetch cycle always contains the ‘EXCEP’ micro-order,
which can override the functional branch per the instruc-
tion op code. Therefore, the branch to the first execution
cycle occurs only when there are no interruptions or
exceptional conditions.

In addition to prefetching the operands, the I-Fetch
ROS word contains appropriate micro-orders to increment
IC(21,22) and to transfer the first halfword of the next
instruction to R. IC(21,22) is set one count higher
(‘X~IC’ micro-order) to point at the next instruction. The
first halfword of the next instruction is transferred to R
by the ‘QXX-R’ micro-order.

Included in the first RR I-Fetch word is the ‘RESET’
micro-order, which causes the following actions:

1. During I-Fetch of branch instructions, initiates the
request for new instructions (see Diagram 5-4) and
gates E(8—11), instead of E(12—15), to LAL.

. Resets all STAT’s and Edit-instruction controls.

. Sets STC to 100 and ABC to 000.

4. Forces LAI(0) to 1 for floating-point instructions,

causing the FPR’s to be addressed. v
5. Sets the ‘stop’ trigger if operating at the instruction-

step rate.

Note that IC(21,22) is not advanced, the Q-to-R
transfer is not effected, and unsuccessful branch-on-
condition requests are not generated if the ‘execute in
progress’ trigger is set. The set state of this trigger
indicates that the current I-Fetch is for a subject

w N

2065 FETOM (9/68) 3-5

instruction of an Execute instruction. Theiefore, the
address of the RR instruction is specified by D and not by
the IC.

BASIC RX I-FETCH

e RX format:

| opCode | r1 | x2 | B2 | D2 |
0 78 ni2 15 16 19 20 31
® Purpose:

1. Compute address of 2nd operand and transfer to D;
request 2nd operand from main storage, if neces-
sary.

2. Transfer 1st operand to S and T.

@ Conditions at start of I-Fetch:

1. 1st halfword of instruction is transferred to E; 2nd
halfword is in Q.

2. Contents of LS register specified by B2 are trans-
ferred to T,

The following paragraphs describe the basic actions
initiated by the ROS microprogram during I-Fetch of an
RX instruction. It is assumed that no interruption or
exceptional conditions were detected in the preceding
end-op cycle. v

The RX instructions basically require a 1- or 2-cycle
I-Fetch. The actions initiated during the first I-Fetch cycle
are governed by 1 of 16 possible ROS control words
selected .at end-op time. This selection depends on
whether the B2 and/or X2 fields of the instruction are
zero, and on the original position of the RX instruction in
Q. The zero test establishes four separate cases for the
I-Fetch routine: (1) B2 =0 and X2 =0, (2) B2 # 0 and
X2=0,(3) B2=0and X2 # 0, (4) B2 # 0 and X2#0.
The first two cases require a 1-cycle I-Fetch; the last two,
a 2-cycle I-Fetch. Each of the above four routines
contains _appropriate micro-orders for incrementing
1C(21,22) and transferring the first halfword of the next
instruction to R. Consequently, a four-way branch is
inherent in each routine, depending on the previous
IC(21,22) setting; i.e., 00, 01, 10, or 11.

Diagram 5-9, FEMDM, is a simplified flowchart of an
RX I-Fetch; Diagram 5-10 shows the data registers used. If
no interruptions or exceptional conditions are detected,
the op-code halfword of the RX instruction is transferred
to E at the start of I-Fetch (initiated by the ‘R~FE’
micro-order at end op). The operand prefetch routine is
then continued with the first halfword of the instruction
in E and the second halfword in Q. The I-Fetch of
non-indexed RX instructions (X2 = 0) is described first.

The ‘X—IC’ micro-order issued by the first I-Fetch
word sets IC(21,22) two counts higher. The first halfword
of the next instruction is transferred to R by the
‘QXX~>R’ micro-order if it is now in Q; that is, if

36 (9/68)

IC(21,22) did not equal 10 at the start of I-Fetch. If the
instruction is not indexed, the address of the second
operand is obtained by adding D2 to the base address. The
contents of the LS register per B2 are placed into T at the
start of I-Fetch. If B2 was found to be zero during end op,
the contents of T are ignored, and the appropriate D2
field in Q is .selected and routed to D via the parallel
adder. However, if B2 # 0, the contents of T and the D2
field are gated simultaneously to the parallel adder, and
the resultant sum is transferred to D. A 3-cycle storage
request for the second operand is made from D if the
following conditions do not exist:

1. A Q-register refill exceptional condition is in progress.

2. The instruction is Store Halfword, Store Character, or
Load Address.

3. The instruction is an unsuccessful Branch on Condi-
tion. (A request for new instructions is issued from the
IC, if necessary.)

The first operand is obtained from LS per R1 and
transferred to S and T. At the completion of the I-Fetch
cycle, a branch is made to a specific execution sequence as
determined by the ‘E(02—07)>ROA’ micro-order.

In the case of indexed RX instructions (X2 # 0), two
cycles are required to complete the I-Fetch routine
{Diagram 5-11, FEMDM). During the first cycle, D2 is
added to the contents of T (if B2 # 0) and the result is
temporarily stored into B. The LS register specified by X2
is then accessed, and its contents are placed into T. The
contents of T and B are added during the second cycle,
and the sum (second operand address) is transferred to D.
The conditional storage request is now made. After the
first operand is obtained from LS and placed into S and T,
a branch per the instruction op-code is made to enter the
correct execution sequence.

The ‘RESET’ micro-order:

1. Resets all STAT’s and Edit instruction controls.

2. Resets STC and ABC to 000.

3. Initiates any necessary storage requests for branch
instructions and for subject instructions of the Execute
instruction. :

4. Forces LAI(0) to 1 for floating-point instructions,
causing the FPR’s to be addressed.

5. Sets the ‘stop’ trigger if operating at the instruction-
step rate.

If the instruction being fetched is the subject of an
Execute instruction (‘execute in progress’ trigger is set),
the incrementing of IC, the Q-to-R transfer, and the
unsuccessful Branch on Condition requests to refill Q are
inhibited.

BASIC RS AND SI I-FETCH
® RS format:

Op Code R1 R3 B2 D2
0 78 niz 1516 1920 3

o SI format:

Op Code 2 | s | D1
0 78 15 16 19 20 3

e Purpose: v
1. Add contents of LS register specified by B-field to
D-field; place result into D.

2. Request operand from main storage, if necessary.

3. For RS instructions, load 1st operand into S and T.
(Contents of S and T are ignored for SI instruc-
tions.)

© Conditions at start of I-Fetch:

1. 1st halfword of instruction is transferred to E; 2nd
halfword is in Q.

2. Contents of LS register specified by B-field are
transferred to T.

The following paragraphs describe the basic actions
initiated by the ROS microprogram during I-Fetch of RS
and SI instructions. It is assumed that no interruptions or
exceptional conditions were detected in the preceding
end-op cycle.

The RS and SI instructions basically require a 1-cycle
I-Fetch. The actions initiated during this cycle are
governed by 1 of 8 possible ROS control words selected at
end-op time. This selection depends on whether the
B-field of the instruction is zero, and on the original
-position of the instruction in Q. The zero test establishes
two distinct I-Fetch routines: (1) B=0 and (2)B#0. A
four-way branch is inherent in each routine, depending on
the previous IC(21,22) setting; i.e., 00, 01, 10, or 11.

Diagram 5-13, FEMDM, is a simplified flowchart of RS
and SI I-Fetch. If no interruptions or exceptional condi-
tions are detected, the halfword containing the op-code of

the RS or SI instruction is transferred to E at the start of

I-Fetch (initiated by the ‘R—>E’ micro-order at end op).
The operand prefetch routine is then continued with the
first halfword of the instruction in E and the second
halfword in Q.

The LS register specified by the B-field (B1 or B2) is
accessed during end op, and its contents are placed into T
at the start of I-Fetch. If the B-field was found to be zero
during end op, the I-Fetch routine ignores the contents of
T, selects the appropriate D-field (D1 or D2) in Q and
routes it to D via the parallel adder. If the B-field is not
zero, the contents of T and the D-field are gated
simultaneously to the parallel adder and the sum is then
transferred to D. A 3-cycle storage request for the second
operand is then made from D if the following conditions
do not exist:

1. A request to refill Q was generated during the previous

execution segment; i.e., IC(21,22) = 01 or 10. For this

. case, the ROS micro-order is not contained in the
I-Fetch word.

2. The E-register contains a shift, Store Multiple, Move
(MVI), Test and Set, or I/O instruction. For this case,
the ‘D sync’ latch is prevented from being set.

3. The E-register contains a branch-on-index (BXH,
BXLE) instruction. For this case, the ‘RESET’ micro-
order resets the ‘3-cycle request’ trigger, causing a
4-cycle storage request to be made from D regardless of
1C(21,22).

Upon loading D with the second operand address, the
I-Fetch routine proceeds to set IC(21,22) two counts
higher, to transfer the first halfword of the next instruc-
tion to R if it is in Q, and to establish the first ROS
control word for the execution phase. Fetching of the
first operand per E(8-—-11) is meaningful only for RS
instructions. For SI instructions, E(8—11) contains a
portion of the immediate operand. Since a common ROS
control word governs the I-Fetch of both formats,
E(8—11) is always gated to LAL; the contents of the LS
register thus accessed are placed into S and T. However,
the subsequent execution sequences for SI instructions
ignore the contents of S and T.

In addition to causing a 4-cycle storage request during
the I-Fetch of a branch-on-index instruction, the ‘RESET’

- micro-order:

1. Resets all STAT’s and Edit-instruction controls.

2. Resets STC and ABC to 000.

3. Sets the ‘stop’ trigger if operating at the instruction-
step rate.

If the instruction being fetched is the subject of an
Execute instruction (‘execute in progress’ trigger is set),
the incrementing of IC and the Q-to-R transfer is
inhibited.

BASIC SS I-FETCH

® SS format:
Lt
"
| opcCode | u1 | 12| m [§§01] 82 [{fD2]
0 78 12 15 16 19 20 3132 3536 47
® Purpose:

1. Transfer op-code halfword of next instruction to R;
update IC and place into LSWR.

2. Transfer computed address of 1st operand (destina-
tion) per instruction class to D; request destination
operand from main storage (gated into CPU at start
of 2nd execution cycle).

a. Lowest destination address for logical instruc-
tions = base address (per B1) + D1.

b. Highest destination address for decimal instruc-
tions = base address (per B1) + D1 + L1.

2065 FETOM (9/68) 3-7

3. Transfer computed address of 2nd operand (source)
to IC and T. Lowest source address = base address
(per B2) + D2.

4. Perform ASC test (and invalid instruction address
test if complete instruction is in Q).

® Conditions at start of I-Fetch:
1. 1st halfword of instritction is transferring to E, 2nd
halfword is in Q, 3rd halfword is in Q if IC(21,22) #
10 (otherwise 3rd halfword is gated to Q during 4th
cycle of I-Fetch).
2. Base address (per B1) isin T.
3. Q refill is not in progress if IC(21,22) = 11.

The I-Fetch of SS instructions differs considerably from
the I-Fetch routines described thus far (RR, RX, RS, and
SI). Differences arise from three characteristics of the SS
format: (1) the SS format is three halfwords long, (2) an
SS instruction always stores the results into main storage,
and (3) two main storage addresses are specified.

1C(21,22) = 00 Ic(21,22) =01

9

As previously stated, requests to refill Q are generated
before the CPU runs out of instructions. In describing the
I-Fetch microprograms used for RR, RX, RS, and SI
formats, it was assumed that the instruction to be
executed was contained in Q. Because of the manner in
which storage requests for instructions are generated, the
assumption is valid for all 1- and 2-halfword instructions.
For SS instructions, however, the I-Fetch routine may
sometimes begin while the last halfword of the instruction
is still in main storage. Figure 3-2 shows all possible
locations that the SS instruction may assume in Q and the
manner in which storage requests are generated for more
instructions. Storage requests for SS instructions are
generated (at end-op time) when IC(21,22) is set to 00,
01, or 10. If IC(21,22) = 00 or 01, the entire instruction is
in Q at the start of I-Fetch. However, if IC(21,22) = 10,
the last halfword of the instruction will arrive from main
storage on the fourth cycle of I-Fetch. Consequently,
processing of the third halfword of the instruction cannot

1C(21,22) =10 1C(21,22) =11

1 ! | 1=
Q =S5 ———p le—SS ——— le—SS —-- f+—§§———————]
1]]] 1_ R—I L__1 I
/ y Y Gated from Main ;
Storage during
Op-Code Op-Code Op-Code |-Fetch Op-Code
Rl Halfword Halfword Halfword Halfword
General Initialization
|-Fetch and Execution ’
it ¢
End-Op I End-Op
Cycle | Cycle
1C(21,22) =00 Generate Set 1C(21,22) to 11, transfer |
storage last halfword from Q to R,
request and gate new instructions to Q. I
1C(21,22) =01 Generate Set 1C(21,22) to 00, gate | Generate
storage new instructions to Q, and | storage
request then transfer 1st halfword request if SS
from Q to R. I instruction
is next.
1IC(21,22) =10 Generate Set 1C(21,22) to 01, gate | Generate
storage new instructions to Q, and storage
request then transfer 2nd halfword I request if RR
from Q to R. instruction
l is not next.
IC(21,22) =11 Set 1C(21,22) to 10, and ! Generafe
transfer 3rd halfword ' storage
from Q to R. I request
always.

Figure 3-2. Basic Sequencing for SS Instruction

3-8 (9/68)

start until Q is refilled. Finally, if IC(21,22) = 11, atend
op, Q has been refilled as a result of a previous end-op

cycle and Q(0-31) contains the balance of the upcoming

SS instruction.

An SS instruction operates on two operands obtained
from main storage and stores the result into the same
location from which the first operand was obtained.
Therefore, the address: of the first operand is also the
destination address; the address of the second operand is
commonly referred to as the source address. The first and
second operand addresses are calculated in a manner
similar to that of two-halfword instructions. The address
of the first operand is computed first and loaded into D,
and a storage request for the operand is made. The partial
address of the second operand is then computed while the
contents of the IC are transferred to the LSWR. The
partial second operand address is loaded into the IC. After
‘completing the I-Fetch routine, a General Initialization
Sequence, GIS, is performed, after which control is
transferred to the execution phase. (During GIS, the
calculation of the second operand address is completed,
and a storage request issued, if necessary.) Upon execu-
tion of the instruction, results are stored into main storage
per the address in D (first operand or destination address).

Address Store Compare {ASC) Test

® Main storage address where data is to be stored is
compared with address of current instructions.

® Comparison is made whenever data is stored into main
storage. ’

® If data is stored at instruction address, ‘PSC’ trigger is -

set to indicate that instructions in Q must be refetched.

® For SS instructions, ASC test is performed during
I-Fetch. Lower and upper limits of destination address
are compared with instruction address.

An ASC test must be made each time the CPU stores data
into main storage. This test compares the destination
address of the data with the current instruction address. If
it is found that both addresses are the same, the ‘program
store compare’ (PSC) trigger is set, indicating a need to
refetch instructions; i.e., the instructions currently in Q
must again be obtained from main storage because the
next instruction to be executed may have been modified
by the data just stored.t For all but SS instructions, the
ASC test is made during the execution phase whenever a
store operation is performed. Because, in the case of SS
instructions, a store operation is always implied, an ASC
test has been incorporated in the SS I-Fetch micro-
program.

+The refetch routine is initiated if the result of a comparison of
the destination and IC addresses falls within a 16-byte safety
margin: Destination address (in D) = IC address * 16 bytes. Thus,
instructions in Q may not necessarily be modified by the store
operation.

For SS instructions, the ASC test must determine that
instructions (currently in Q) were not obtained from a
region defined by the upper and lower limits of the
destination address for data. This test is made in two
steps, as illustrated in Figure 3-3. The first step determines
whether the lower limit of the destination address is above
the instruction address in the IC. When the lower limit is
above, the upper limit must also be above the IC, and the
‘PSC’ trigger is not set. This condition indicates that
current instructions (in Q) cannot be affected by the
subsequent store operations. However, if the lower limit
of the destination address is found to be below the IC, the
‘PSC’ trigger is set and a further test must be made to
establish that data will not be stored in the instruction
path. The last step compares the upper limit of the
destination address with the IC. If the IC is found to be
above the upper limit, the ‘PSC’ trigger is reset. In such
cases the subsequent store operations will not extend to
the IC location. On the other hand, if the IC points below
the upper limit, the ‘PSC’ trigger remains set, indicating
that the subsequent store operations may affect the next
instruction. Consequently, after execution of the instruc-
tion that caused the PSC condition, an exceptional
condition microprogram is initiated to refetch the instruc-
tions in Q. The details of the refetch microprogram are
described under “Program Store Compare Exceptional
Condition™.

I-Fetch Microprogram

e If request for new instructions has been generated at
end op, I-Fetch routine requires 7 cycles; if not,
- I-Fetch requires 6 cycles.

® Setting of 1C(21,22) at end op determines manner in
which I-Fetch is performed.

The following paragraphs describe the basic actions
initiated by the ROS microprogram during I-Fetch of SS
instructions. It is assumed that no interruptions or
exceptional conditions were detected in the preceding
end-op cycle.

The first halfword of the SS instruction is transferred
from R to E at the start of I-Fetch. The operand prefetch
(initiated at end op) is then continued with the first
halfword in E, the second halfword in Q, and the third
halfword in Q [or in main storage if IC(21,22) = 10], as
shown in Diagram 5-14, FEMDM.

The SS instructions require a 7- or 6-cycle I-Fetch. The
actions initiated during the first I-Fetch cycle are gov-
erned by 1 of 8 possible ROS control words selected at
end-op time. This selection depends on whether the Bl
field of the instruction is zero and on the setting of
IC(21,22). The setting of IC(21,22) establishes four
distinct cases for the SS I-Fetch microprogram:

1. When IC(21,22) = 00, a 4-cycle storage request to refill

Q is generated at end op. Because Q(48—63) contains

2065 FETOM (9/68) 39

Lower limit
of destination
address for

Upper limit
of destination
address for

Figure 3-3. ASC Test for SS Instructions

the op-code halfword of the next instruction, the
I-Fetch routine must transfer this halfword to R before
the next doubleword arrives from main storage. Also,
the I-Fetch routine must gate the new instructions to Q
at the correct time.

. When 1C(21,22) = 01, a 4-cycle request to refill Q is
generated. Because Q contains no new instructions, the
I-Fetch routine must wait until Q is refilled and then
transfer the first halfword of the next instruction from
Q to R. New instructions must be transferred to Q at
the correct time.

3-10 (9/68)

. When IC(21,22) = 11,

data data
Successive '
locations in I l i
main storage 0-7 |8-1516-31) n—>0+7)
|)
1
|
| i
}
I
| i
| |
| |
| |
! Yes (Above) fimit of | No (Below) :
| destination address i
1 above (2) l |
! Ic |
| |
| |
1 |
H 1st Step : |
! i]
! I
| I
| |
1 |
! |
! Y ! Y
IC points to this i IC points to this
region and 'PSC' trigger }— +——— region and 'PSC’ trigger be
is not set. | is set.
i
|
|
I
|
|
|
Upper :
limit of
No (Above) destination address Yes (Below) :
! below (<)
| IC
|
i Lost §
ast Ste
i P i
! I
\4 Y
IE points to J IC points to
this region an this region and
"e 'PSC' I'rigger(L 4() 1pSC ?rigger ?_—"
remains set. 'I is reset.

3. When IC(21,22) = 10, a 3-cycle request to refill Q is

generated. Because the third halfword of the SS
instruction is in main storage, processing of this
halfword is delayed until Q is refilled. New instructions
must be transferred to Q at the correct time, after
which the next instruction may be gated to R.

a storage request is not
generated because Q has been refilled as a result of the
previous end op. Thus the I-Fetch routine is not
concerned with transferring new instructions to Q.

During the first I-Fetch cycle of all SS I-Fetch routines,
the lower limit of the destination address is calculated and
placed into D, and IC(21,22) is advanced to indicate the
first halfword of the next instruction. At the start of
I-Fetch, T contains the base portion of the destination
address (LS contents per B1). If B1 # 0, the contents of T
are added to the appropriate D1 field and the sum is
transferred to D. If, however, Bl = 0, the contents of T
are ignored and only the D1 field is routed via the parallel
adder to D. After the first I-Fetch cycle, D contains the
lower limit of the destination address. '

The I-Fetch sequence after the first cycle differs for
each setting of IC(21,22). The following paragraphs
describe the I-Fetch control for each setting.

I-Fetch Control If at End Op I1C(2 _7,22) =00
® STAT D is set to indicate B2=0.

® Branch per instruction is made to establish starting
destination address.

® If ‘execute in progress’ tﬁgger is reset, 1C(20) is
advanced by 1; if trigger is set, IC is not incremented.

® Instruction address is stored into LSWR.
® [-Fetch requires 7 cycles.

If at end op IC(21,22) = 00, Q contains the remaining two
halfwords of the SS instruction and Q(48—-63) contains
the halfword of a new instruction. Q(48—63) is trans-
ferred to R by the second ROS word in the I-Fetch
sequence. This word also accesses the LS register specified
by B2 and initiates the ASC test. The LS register is
accessed by gating the B2 field [Q(32—35)] to LAR and
transferring the LS contents to S. (STAT D records the
condition when B2 = O and is interrogated when the
source address is computed.) The ASC test is initiated by
subtracting the lower limit of the destination address

{contained in D) from the IC. If the difference is equal to

or greater than zero, the ‘PSC’ trigger is set to indicate

that the destination address may overlap the instruction
path.

A branch is made per the instruction op code to the
third I-Fetch cycle. This branch establishes the manner in
which the upper limit of the destination address must be
obtained:

1. For decimal instructions, the L1 field [E(8—11)] is
transferred to the parallel adder, where it is added to
the contents of D.

2. For logical instructions, the LL field [E(8—15)] is
added to the contents of D.

Also, depending on the instruction, either the upper or
the lower limit of the destination address becomes the
starting point from which operands are to be processed.
For all decimal instructions, operand processing starts
from the upper limit of the destination address and

proceeds toward the lower limit. Conversely, for all logical
instructions, operand processing starts from the lower
limit and proceeds toward the upper limit. Thus, when a
decimal instruction is decoded, the upper limit of the
destination address is transferred to D and becomes the
starting address from which the first operand will be
requested. In the case of logical instructions, the original
contents of D (lower limit of destination address) are not
changed. Because the upper limit of the destination
address is required to complete the ASC test, this address
is temporarily stored into T. .

The fourth ROS word in the I-Fetch sequence initiates
calculation of the source address and gating of new
instructions to Q, and requests the first operand from
main storage (per the destination address in D). At the
start of the fourth cycle, STAT D is tested to establish
whether the B2 field of the instruction is zero. If B2 is not
zero. (STAT D not set), the contents of S (where LS
contents per B2 have been placed) and the appropriate D2
field in Q are simultaneously gated to the parallel adder,
and the sum is temporarily stored into B. If B2 = 0 (STAT
D set), however, the contents of S are ignored and only
the D2 field is placed into B. With the completion of the
above actions, all halfwords in Q have been processed and
Q is refilled with new instructions. The fourth ROS word
also initiates a 4-cycle request per D for the destination
operand. A ROS micro-order in the first GIS word gates
the destination operand into the CPU.

The fifth ROS word in the I-Fetch sequence completes
the ASC test. The upper limit of the destination address
(contained in T) is subtracted from the IC contents. If the
difference is greater than zero, the ‘PSC’ trigger is reset.
This condition indicates that the instruction address is
above the highest main storage location into which data is
to be stored. However, if the difference (IC minus T) is
less than zero, the ‘PSC’ trigger remains set. The set state
of the PSC’ trigger initiates the program store compare
exceptional condition after execution of the current SS
instruction.

The sixth ROS word in the I-Fetch sequence usually
increments the IC by 8 and then stores the updated
address into the LSWR. Following each storage request
from the IC, the contents of the IC must be updated by 8
to obtain the address of the next doubleword location
from which subsequent instructions will be requested. An
exception to this rule occurs if the SS instruction
currently being processed is the subject of an Execute
instruction. Because, upon execution of the subject
instruction, the instructions previously contained in Q
must be refetched from the main storage address specified
in the IC, the contents of the IC are not updated. Thus,
before storing the IC into the LSWR, a test must be made
to determine whether an Execute instruction is in
progress. This test is accomplished by examining the
status of the ‘execute in progress’ trigger.

2065 FETOM (9/68) 3-11

6. Main storage requests. Requests for new instructions
because of a predecoded branch instruction are inhib-
ited by blocking the decoding of the ‘RESET’ micro-
order. Storage requests for operands are inhibited by
blocking the decodmg of the ‘MS-REQ*D-3’ micro-
order.

7. Initiation of the invalid instruction address test.

The ‘block I-Fetch’ trigger is not set by detection of
the invalid instruction address test or Q-register refill
exceptional conditions. In the first case, because address-
ing is at fault, the next address must be computed and
retained for subsequent evaluation. In the second case, the
trigger is not set because this action would inhibit the
purpose of the Q-register refill exceptional condition.

The “block I-Fetch’ trigger is reset by the ‘0>STAT D’
micro-order issued by the first word in the recovery
microprogram.

Timer Exceptional Condition
® Initiated by ‘time clock step’ trigger.

¢ Decrements tlmer in location 50 (hex) per power-line
frequency.

@ Sets ‘time clock at limit’ trigger if timer value is less
than zero, thus causing external interruption.

The timer value is stored in permanent main storage
location 80, decimal (50, hex). It is stepped. at a rate
determined by the input power frequency. If the input
power frequency is 60 Hz, the timer is stepped each 16.67
ms; if 50 Hz, the timer is stepped each 20 ms. The timer
exceptional condition detection scheme is shown in
Diagram 5-17, FEMDM.

Each time the input power swings to a positive peak,
the 300-ns singleshott generates a signal to set the ‘sample
pulse’ trigger if the DISABLE INTERVAL TIMER switch
is not activated. The output of this trigger sets the ‘time
clock step’ trigger, provided that the CPU is not in the
end-op cycle. Once set, the ‘time clock step’ trigger
initiates the timer update sequence.

The need to- inhibit setting of the ‘time clock step’
trigger at end op is twofold: (1) the timer exceptional
condition is asynchronous with respect to program execu-
tion, and (2) it has the highest priority. Because. priority is
established at end op, sampling the timer exceptional
conditions at this time could result in a priority conflict
with a pending interruption or exceptional condition.
Thus, use of two triggers ensures that timer priority is
present before entry into end op; ie., if the need to
update the timer arises at end op, this event is recorded by

+The singleshot output is sent to the I/O channel to provide an
automatic restart; it is also used by the pulse-mode controls (see
Chapter 6, Section 1), Also, if the Multisystem feature is installed,
it is used for timing external resets and for detecting system
inactivity.

3-14 (9/68)

the ‘sample pulse’ trigger, and the timer update sequence
is initiated on the next end-op cycle.

Once the ‘time clock step’ trigger is set, it inhibits the
priority circuits of all other interruptions and exceptional
conditions. When end op occurs, the trigger output is
gated to alter the subsequent I-Fetch by inhibiting the
loading of E from R. D is set to 50 (hex) to obtain the
timer value from main storage and, if an Execute
instruction is not in progress, the ‘block I-Fetch’ trigger is
set. The ‘EXCEP’ micro-order in the first I-Fetch cycle
detects timer priority and forces address 014 (hex) into
ROSAR.

The address forced into ROSAR by the timer excep-
tional condition is used to enter a timer update micro-
program. A flowchart of the hardware operations just
explained and of the timer update microprogram is shown
in Diagram 5-17, FEMDM. The microprogram resets the
‘block I-Fetch’ trigger and issues a 3-cycle storage request
per D to fetch the timer value. While the fetch is in
progress, any protection checks from storage are ignored.
After the fetch, the 32-bit timer value is loaded into A
and then decremented by 5 or 6, depending on 60- or
50-Hz power input frequency, respectively.t The updated
timer value is placed into S and T, and then stored per the
D-address (location 50, hex). Before storing, however, the
timer value is sampled to see if it has been decremented to
less than 0. If this condition exists, the ‘time clock at
limit* latch is set to request an external interruption on
the following end op.

CPU Store In Progress Exceptional Condition

Regarding the protection violation, a unique situation
occurs if at end op a store operation is also in progress. In
this case, detection of an interruption or exceptional
condition could cause a failure to detect a “late” storage
protect violation if it occurs. To prevent this situation, a
special circuit is provided to test for a store-in-progress
condition at end op (Diagram 5-18, FEMDM). If an
exceptional condition to I-Fetch or a Load PSW instruc-
tion has been detected while a store operation is in
progress, this circuit forces a microprogram that provides
a 2-cycle delay to allow recording of a possible protection
check and establishing the correct priority for the
subsequent program interruption.

Machine Check Interruption
@ Follows log-out microprogram.

© C(Clears interruption code, resets STAT H, enters com-
mon interruption routine.

+The variation of decrement value is determined by a pluggable
card. This card (type 3388) is inserted into position 01BC2F2,
AP811, when 60-Hz input ‘power is used.

A machine check interruption is initiated only by a
log-out operation. The machine check interruption detec-
tion scheme is shown in Diagram 5-19, FEMDM.

When the log-out operation (initiated by the Diagnose
instruction, or a machine check error coupled with the
machine check mask-bit being on) is about to be
concluded, the ‘1-MCH-CK-TRP’ micro-order causes the
‘machine check interrupt’ trigger to be set. Once set, the
trigger blocks any new machine checks from initiating
another log-out. operation. This trigger also establishes
machine check priority, and the operation then waits for
the logout to finish, signified by an end op, before
continuing. At end-op time, the set state of the ‘machine
check interrupt’ trigger forces D to 30 (hex) and, if an
Execute instruction is not being concluded, sets the ‘block
I-Fetch’ trigger, inhibiting most of the I-Fetch actions.

The ‘EXCEP’ micro-order in the first I-Fetch. cycle
detects machine check priority and forces address 00C
(hex) into ROSAR. The ROSAR address causes a branch
to an interruption microprogram that stores the old PSW
per the D-address. Subsequently, the microprogram loads
the new PSW per the address in D + 40 (hex). The
operation then proceeds as directed by the new PSW.

A flowchart of the hardware operations just explained
and of the beginning of the machine check microprogram
is shown in Diagram 5-19. The microprogram starts by
gating the interruption code to S(16—31) to begin
forming the old PSW in ST. This is done by setting
S(16—31) to all 0%, because the machine check interrup-
tion code, PSW(16—31), is always 0. The ‘block I-Fetch’
trigger and STAT H are reset. (STAT H is reset to modify
the subsequent common interruption routine for specific
machine check actions.) At this point, the machine check
interruption microprogram enters the common interrup-
tion routine. ’

Program Interruption
© Initiated by ‘program interrupt’ latch.

® Value in interrupt code triggers is transferred to
S(16—31) by ‘priority 1 latch.

o Sets STAT H, enters common interruption routine.

A program interruption results from improper conditions
arising during the processing of data or instructions.
Generally, these improper conditions can be described as
errors in programming. When any of these conditions are
detected, they cause a value to be placed into the four
Interrupt Code triggers. The value inserted reflects the
condition responsible for the interruption. The conditions
that cause a program interruption and their corresponding
Interrupt Code trigger settings are shown in FEMDM
Diagrams 5-20, 5-21, and 5-22.

Once any Interrupt Code trigger has been set, the
‘program interrupt’ latch shown in Diagram 5-22 is set.

(The ‘INTRP X-branch’ micro-order samples this latch to
modify the execution sequence of instructions and the
I-Fetch of SS format instructions. Once this latch is set,
further program violations are lost with the exception of a
“late” protection check.) This latch establishes priority
for the program interruption by blocking the priority
circuits of lower-priority interruptions and exceptional
conditions.

At end op, the output of the ‘program interrupt’ latch
is gated to force D to 28 (hex), to set the “priority 1’
latch, and, if an Execute instruction is not in progress, to
set the ‘block I-Fetch’ trigger. The ‘EXCEP’ micro-order
in the first I-Fetch cycle detects program interruption
priority and forces address 00A (hex) into ROSAR. This
ROSAR address causes a branch to an interruption
microprogram to store the old PSW per D. The ‘priority 1’
latch causes the values in the Interrupt Code triggers
(program-interruption code) to be gated to S as part of
the old PSW. Subsequently, the microprogram loads the
new PSW per the address in D + 40 (hex). CPU operation
then proceeds as dictated by the new PSW.

Diagram 5-22 is a flowchart of the hardware operations
just described and of the beginning of the program
interruption microprogram. The microprogram starts by -
gating the interruption code from PSW(16-31) to
S(16~-31). The ‘block I-Fetch’ trigger and STAT D are
reset, and STAT H is set. (STAT H modifies the
subsequent common interruption routine for specific
program interruption actions.) At this point, the program
interruption microprogram enters the common interrup-
tion routine.

Supervisor Call Interruption

® Initiated by ‘supervisor call’ trigger, which is set by
preceding Supervisor Call instruction.

® E(8-15), which contains interruption code, is trans-
ferred to S(24—31).

@ Sets STAT H, enters common interruption routine.

The supervisor call interruption results from execution of
the Supervisor Call instruction. Its basic purpose is to
initiate a branch to the supervisor program. When the
priority of the interruption is established, an address is
forced into ROSAR and into D. The address in ROSAR
causes the operation to branch to a microprogram which
stores the old PSW in the address forced into D -and
fetches a new PSW from the address in D + 40 (hex). This
new PSW places the CPU into the Supervisor state.
Diagram 5-23, FEMDM, shows how the ‘1= INTREQ-
TGR’ micro-order tests for a Supervisor Call instruction
and sets the ‘supervisor call’ trigger. This trigger is reset if
the ‘interrupt code 4’ trigger is set. Because all program
interruptions would have been handled before executing
the Supervisor Call instruction, the “interrupt code 4’

2065 FETOM (9/68) 3-15

trigger can be set now only by a “late” protection check.
Therefore, performance of the supervisor call interruption
is suppressed and a program interruption occurs in its
place. If the ‘interrupt code 4’ trigger is not set, then the
‘supervisor call’ trigger is not reset. '

The ‘supervisor call’ trigger gates E(8—15) to S(24—31)
to begin assembling the old PSW. (The ‘supervisor call’
trigger also sets the ‘priority 1’ latch; because the
supervisor call and program interruptions cannot be
pending at the same time, no conflict results from both
setting an interruption priority code of 01.)

Diagram 5-23 is a flowchart of the hardware operations
just described and of the beginning of the supervisor call
interruption microprogram. The microprogram starts by
gating the interruption code from PSW(16-31) to
S(16—31). The ‘block I-Fetch’ trigger and STAT D are
reset, and STAT H is set. At this point, the supervisor call
interruption microprogram enters the common interrup-
tion microprogram routine.

External Interruption

® Remains pending if external mask bit, PSW(7), is not
set.

e Initiated by setting of ‘time clock at limit’ latch,
depression of INTERRUPT pushbutton, or recognition
of ‘external signal in’ bus.

® ‘Time clock at limit’, ‘console signal’, and ‘external
signal-2’ through ‘7’ triggers are transferred to
S(24-31).

® Sets STAT H, enters common interruption routine.

An external interruption is caused by one of the following

if the external bit of the PSW system mask isa 1:

1. The set state of the ‘time clock at limit’ latch (refer to
“Timer Exceptional Condition™).

2. The depression of the INTERRUPT pushbutton on the
system control panel.

3. The recognition of any signal on the ‘external signal in’
bus of the Direct Control feature. The external
interruption circuits and a flowchart of the initiation
of the external interruption microprogram are shown
in Diagram 5-24, FEMDM.

Once priority for the external interruption is estab-
lished during end op, D is forced to 28 (hex), the ‘priority
2’ trigger is set, and, if an Execute instruction is not in
progress, the ‘block I-Fetch’ trigger is set. The ‘EXCEP’
micro-order in the first I-Fetch cycle detects external
interruption priority and forces address 006 (hex) into
ROSAR. The ROSAR address causes a branch to an
interruption microprogram to store the old PSW per D.
The ‘priority 2’ trigger causes the contents of the eight
signal triggers (the interruption code) to be gated to
S(24—31) as part of the old PSW. Subsequently, the

3-16 - (9/68)

microprogram loads the-new PSW per the address in D +
40 (hex). CPU operation then proceeds as dictated by the
new PSW.

The external interruption microprogram starts by
gating status of the ‘time clock at limit’, ‘console signal’
and External Signal triggérs to S(24—31). S(16—23) is
reset to zero, and correct (odd) parity is assigned to
S(16—31). The ‘block I-Fetch’ trigger and STAT D are
reset, and STAT H is set. (STAT H is set so that the
common interruption routine skips micro-orders per-
taining to the machine check interruption.) At this point
the microprogram enters the common interruption rou-
tine.

1/0 Interruption

® Remains pending if associated channel mask bit, in
PSW(0-7), is not set.

® Channel O has highest interruptioh priority, followed in
order by channels 1-6.

® 3.bit channel address and 8-bit unit address are
transferred to S(21-31).

® Sets STAT H, enters common interruption routine.

An I/O interruption results from the reception of a
simplexed ‘interruption request’ signal from a channel if
the system mask bit for that channel is a 1. All I/O
channels in the system compete for the interruption
priority. The multiplexer channel (channel 0) is assigned
the highest priority followed in order by selector channels
1 through 6 (maximum). The I/O interruption circuits and
a flowchart of the initiation of the I/O interruption
microprogram are shown in Diagram 5-25, FEMDM. The
‘channel X interrupt request’ triggers are set at the start of
every non-end-op cycle. At the start of end op, the
highest-priority trigger that is set resets all the others.

Once priority for an I/O interruption is established
during end op, D is forced to 38 (hex), the ‘priority 1’ and
‘priority 2’ triggers are set, and, if an Execute instruction
is not in progress, the ‘block I-Fetch’ trigger is set. The
‘EXCEP’ micro-order in the first I-Fetch cycle detects I/O
interruption priority and forces address 006 (hex) into
ROSAR. This ROSAR address causes a branch to an
interruption microprogram to store the old PSW per D.
The ‘priority 1’ and ‘priority 2’ triggers (which have
already caused all but the highest-priority interrupt
request trigger to be reset) causes the interruption code
(the 3-bit channel address and the 8-bit unit address) to be
gated to S(21—31) as part of the old PSW. Subsequently,
the microprogram loads the new PSW per the address in D
+ 40 (hex). CPU operation then proceeds as dictated by
the new PSW.

The I/O interruption microprogram starts by setting
the ‘timing gate’ trigger, thus gating a response back to the

highest-priority channel to reset the interruption request
controls. While waiting for the channel to return a
‘release’ signal, the ‘block I-Fetch’ trigger is reset and the
interruption code is gated to S(16—31). When the
microprogram finds the ‘release CPU’ latch set, signifying
that the ‘release’ signal from channel has been received,
the ‘timing gate’ trigger is reset. STAT H is set so that the
common interruption routine, which follows next, skips

micro-orders pertaining to the machine check interrup-

tion.

Common Interruption Routine

® Program status is assembled in ST and is then stored
into old PSW location per interruption cause.

o System is reset if STAT H is reset (machine check
interruption).

® Applicable new PSW is fetched per D.

® Processing resumes after new instructions have been
fetched and placed into Q.

The common interruption routine (Diagram 5-26,
FEMDM) stores the old PSW into main storage and loads a
new PSW into the CPU. This routine is entered by all five
interruption microprograms. ‘ :

The IC is reduced by 8 or 16 to reflect the doubleword
address of the instruction that caused the interruption.
This address is placed into T(40—63) as part of the old
PSW. Next, the contents of the PSW register are gated to
S(0-15) and T(34—39). E(0,1) is gated to T(32,33) unless
the ‘instruction length not available’ trigger is set, indi-
cating a program interruption is in progress because of a
“late” protection check. For that case only, the instruc-
tion-length code is set to 0. This action completes the old
PSW transfer to ST. The routine inhibits storage protec-
tion, sets Marks 0—7, and initiates a 4-cycle storage
request to store the old PSW per the D address. An
interruption reset clears the CPU of the condition which
initiated the access to the interruption microprogram. The
‘invalid branch’ trigger, the ‘invalid instruction address’
trigger, and STAT G are reset.

At this point, the common interruption routine checks
STAT H to see what class of interruption initiated the
operation. If STAT H is reset, the operation is due to a

machine check interruption, and the CPU is placed in the

scan mode. Three no-op cycles are taken to allow the CPU
and main storage to become quiescent. Then a ‘system
reset’ signal clears all control triggers. The ‘scan mode’
trigger is reset, and the routine prepares to load the new
PSW. '

STAT H is set if the initiating interruption is other
than a machine check. In this case, the CPU is not placed
in the scan mode and the system is not reset. .

To generate the address for the new PSW, 10 (hex) is
placed into B, setting B(59) to 1. Next, the value in B is

shifted left twice and gated to PAB as an effective value of
40 (hex). Simultaneously, the old PSW address is gated
from D to PAA. The sum, the address of the new PSW, is
gated from PAL to D. Storage protection is then
inhibited, and a 3-cycle fetch per D is initiated.

/The interruption microprogram has now finished the
common interruption routine and enters the Load PSW
microprogram (Diagram 5-601, FEMDM). When received
from main storage, the new PSW is loaded into ST.
Because the new PSW will require fetching of instructions
from a new storage location, the ‘I-Fetch invalid address’
trigger is set to enable recording of any invalid address
that may result on the subsequent fetch. Portions of the
new PSW are loaded into the PSW register and into the IC
and D. A 3-cycle storage request per the IC is initiated,
and the IC is incremented by 8. At this point, the program
shifts to a common branch microprogram. The instruction
address in D is incremented by 8 and transferred to the IC
in anticipation of a branch instruction. When the first
doubleword arrives from main storage it is loaded into Q,
and the op-code halfword of the first instruction is
transferred to R. D(21,22) is sampled to see if Q needs
refilling; if so, a second request per the IC is initiated. If Q
does not need refilling, the program generates an end op.

Stop, Wait, and Repeat Exceptional Conditions

The stop exceptional condition is caused by (1)depressing
STOP, (2) detecting an address-compare condition when
ADDRESS COMPARE STOP is in the stop position, and
(3) operating at the instruction-step rate. (If the Multi-
system feature is installed, an external-start operation also
causes a stop exceptional condition.) The wait exceptional
condition is caused by the wait mask bit, PSW(14), being
set to a 1. The repeat exceptional condition is caused by
activating the REPEAT INSN switch. The scheme for
detecting a stop, wait, or repeat instruction exceptional
condition is shown in Diagram 5-27, FEMDM.

When any one of these exceptional conditions has
priority during end op and an Execute instruction is not
in progress, the ‘block I-Fetch’ trigger is set. During the
next cycle, the first I-Fetch cycle, the ‘EXCEP’ micro-
order forces an address into ROSAR: 026, 02A, and 028
(hex) for the stop, wait, and repeat exceptional condition,
respectively. This address causes a functional branch to a
loop microprogram. Because each of these exceptional
conditions may be caused by manual intervention, their
microprograms are discussed in Chapter 6, Section 1.

Program Store Compare Exceptional Condition

@ Instruction refetch is performed when ‘PSC’ trigger is
set by ASC test or Execute instruction.

® Refetch routine decrements instruction address by 8 or
16 and issues request to refill Q.

2065 FETOM (9/68) 3-17

An instruction refetch routine is performed if the instruc-

tions previously obtained by the CPU must be refetched

from main storage. The need to. refetch instructions
occurs when:

1. The CPU stores data at the main storage address that
corresponds to the address currently specified by the
IC. In this case, the instructions presently contained in
Q may have been modified by the store operatlon and,
therefore, must be refetched.

2. The CPU completes the subject instruction of an
Execute instruction and must resume processing the
instructions previously contained in Q.

An instruction refetch is initiated by the ‘PSC’ trigger
which is set for either of the above cases. In the first case,
the ‘PSC” trigger is set as described under “Address Store
Compare (ASC) Test.” In the second case, the ‘PSC’
trigger is set by the Execute instruction. The scheme for
detecting a program store compare exceptional condition
and the instruction refetch microprogram flowchart are
shown in Diagram 5-28, FEMDM.

A need to refetch instructions is treated as an
exceptional condition by the CPU. When this condition is
detected, the ‘block I-Fetch’ trigger changes the normal
I-Fetch routine, and a branch to an instruction refetch
microprogram is performed by the first I-Fetch word.

The first ROS word in the refetch microprogram resets
the ‘block I-Fetch’ trigger so that normal I-Fetch can be
resumed after Q is refilled. This word also establishes
whether the address currently specified in the IC is one or
two doublewords ahead of the current instruction. The
address in the IC is always at least one doubleword ahead
of the address for the instructions in Q. If Q was not
refilled before the refetch routine, the IC is one double-
word (8 bytes) ahead of the current instruction; if Q was
just refilled, IC is two doublewords or 16 bytes ahead.

IC(21,22) indicates whether Q was refilled before the
refetch routine. If IC(21,22) is not set to 11, a request to
refill Q (if generated) was blocked by the exceptional
condition in progress (i.e., the need for instruction
refetch) and the IC is 8 bytes ahead of the current
instruction. If, however, 1C(21,22) = 11, the need for an
instruction refetch occurred after Q was refilled; IC(20)
has been incremented, and the IC is 16 bytes ahead.
Accordingly, the second ROS word in the refetch micro-
program subtracts-8 or 16 from the IC and issues a 3-cycle
request per the decremented address. This word also resets
the ‘PSC’ and. ‘execute in progress’ triggers and then
causes the Load PSW microprogram to be entered (as
shown in Diagram 5-601, FEMDM). Entry corresponds to
a point after the new PSW has been loaded but before the
successful branch routine. IC is incremented by 8, the
next instruction is transferred to R, and Q is refilled, if
necessary, before completing the program store compare
exceptional condition microprogram with an end op.

318 (9/68)

Invalid Instruction Address Test Exceptional Condition

© Determines interrupt code triggers'to be set if program
check was detected while addressing instruction.

When addressing instructions in main storage, three

requirements must be met:

1. Because instructions are specified on a 2-byte basis, the
least significant bit of the instruction address must
always be a zero. Failure to meet this requirement
results in a specification program interruption.

2. The instruction address cannot exceed the storage
capacity used with a given installation. (The sizes of
main storage available for the 2065 CPU are listed in
Chapter 1, Section 1.) In addition, the storage unit
containing the instruction must be available to the
CPU. An attempt by the CPU to execute an instruction
from an unavailable or non-existent location results in
an addressing program interruption.

3. The instruction address cannot specify an area in main
storage that is fetch-protected. An attempt by the CPU
to execute instructions from a fetch-protected location
results in a protection program interruption.

If any of these three requirements is not met, the CPU
hardware forces a new address into ROSAR. The micro-
program accessed by this address sets the appropriate
program interruption code (specification, addressing, or
protection) into the CPU. This microprogram is then
followed by the program interruption microprogram
previously described. The following paragraphs describe
the methods used to detect each violation and to set the
appropriate interrupt code triggers.

Specification Detection

All storage requests for instructions do not result in Q
being refilled. For example, end-op requests are ignored if
the ‘block I-Fetch’ trigger is set. Also, branch requests
made during I-Fetch are ignored if the conditions for a
successful branch are not found met during the following
execution (non-branch on condition instructions only).
For this reason, the least significant address bit of the
instruction, IC(23)[or D(23) if preceded by the ‘BEOP’
micro-order] , is detected at the start of I-Fetch. However,
because the specification interruption code is not yet set,
the program interruption microprogram cannot be imme-
diately entered. Instead, the invalid instruction address
test exceptional condition microprogram is entered after
processing all interruptions and higher-priority excep-
tional conditions. If, however, during this forced micro-
program, an invalid or fetch-protected address is
requested, the specification interruption code is not set
because, in either case, the address is outside of
“fetchable” storage.

Invalid Address Detection

® ‘I-Fetch request’ trigger prevents setting of addressing
interruption code while refilling Q.

® ‘I-Fetch invalid address’ trigger indicates IC request is
invalid.

© ‘Branch invalid address’ trigger indicates branch address
of successful branch instruction is invalid.

Following a request to refill Q, the IC is incremented by 8
to obtain the instruction address for the next request. The
scheme of incrementing the IC ahead of time allows
greater speed in requesting instructions from main storage.
However, with the IC one doubleword ahead of the
instructions in Q, a unique case occurs if the instructions
in Q are obtained from the last available location in main
storage. In this case, the incremented IC specifies an
invalid address; i.e., an address that is in excess of the
main storage capacity. Because the Q-register refill routine
is initiated before the CPU runs out of instructions, a
request per the IC refills Q with instructions from an
invalid address.f Even though Q contains invalid instruc-
tions, an addressing program interruption must not occur
until the CPU attempts to process these instructions. This
condition arises because the last valid instruction being
processed by the CPU may result in a successful branch to
a valid storage location.

A similar situation may occur following an unsuccess-
ful branch instruction that specifies a branch to the last
available main storage location. Excluding the Branch on
Condition instructions, the CPU assumes that the branch
instruction is successful and, accordingly, issues a request
‘per D. Following the request, D is updated by 8 and
specifies an invalid address. In this case, an addressing
program interruption -must not occur because, upon
establishing that the branch is unsuccessful, the CPU
resumes normal addressing per the IC. For branch
instructions, an addressing interruption must occur only
when the address specified by a successful branch is above
the available main storage capacity. This situation may
also exist after any load-PSW operation or after the
program store compare exceptional condition.

An invalid-address test is performed each time the CPU

issues a request to refill Q. Because a request for invalid .

instructions will not necessarily cause an interruption,
setting of the interrupt code triggers must be blocked

+The instruction address is considered invalid by the BCU upon
detection of a carry from the most significant bit position in the
IC. This bit position is defined by the size of the main storage in
the particular installation,

while Q is being refilled.t The scheme used for detecting a
“true” invalid instruction address error is shown in Figure
3-4.

The ‘-Fetch request’ trigger prevents the invalid-
address condition from causing an interruption while Q is
being refilled. This trigger is set when a need to refill Q is
detected; depending on the current instruction status in
the CPU, the trigger is set as follows:

1. For non-branch 1- and 2-halfword instructions, the
trigger is set by the I-Fetch sequencers.

2. For branch instructions, the trigger is set by the
‘1-INST-MSREQ’ micro-order given at the start of the
branch execution. Note that if an unsuccessful Branch
on Condition instruction occurs and 1C(21,22) = 00,
the ‘I-Fetch request’ trigger is not set because Q will
not be refilled.

3. For SS instructions, the trigger is set if IC(21), or
D(21) for the ‘BEOP’ micro-order, is equal to O during
end op. This condition indicates that the complete SS
instruction is already in Q and succeeding instructions
are being requested.

The output of the ‘I-Fetch request’ trigger prevents the
interrupt code triggers from being set by the ‘invalid
address’ signal from the BCU. In addition, the output of
the ‘I-Fetch request’ trigger serves as one of the condition-
ing inputs for the ‘I-Fetch invalid address’ and ‘branch
invalid address’ triggers. One of these triggers is set
whenever ‘the BCU indicates that the address of the
storage request exceeds the main storage capacity. The
‘invalid address’ signal sets the ‘I-Fetch invalid address’
trigger if the invalid address is due to the CPU fetching
ahead. Conversely, this signal sets the ‘branch invalid
address’ trigger when the invalid address is the result of a
successful branch instruction.

The ‘gate I-Fetch invalid address’ trigger dictates
whether the ‘I-Fetch invalid address’ or ‘branch invalid
address’ trigger is to be set. When set, this trigger
conditions the ‘I-Fetch invalid address’ trigger; when reset,
the ‘branch invalid address’ trigger. Depending on the
current instruction status in the CPU, the ‘gate I-Fetch
invalid address’ trigger is set as follows:

1. For non-branch 1- and 2-halfword instructions, the
trigger is set by the I-Fetch sequencers.

2. For SS instructions, the trigger is set by the ‘IF-
INV-TGR’ micro-order given at the start of the SS
I-Fetch routine; i.e., the presence of the ‘IF-
INV-TGR’ micro-order and the absence of the

tAn exception to this rule occurs if the last one or two halfwords
of an SS instruction are requested from an invalid address while
the first halfword is contained in a valid storage location. In this
case, the entire SS instruction is considered to have an -invalid
address and, because the CPU has attempted to process the
instruction, the -interrupt code triggers are set as soon as the
request is generated,

2065 FETOM (9/68) 3-19

Delayed

Block
|-Fetch
Block 1-Fetch Tgr
T OR IFSR Inhibits setting of invalid
(Not) NEOP or BEOP A address interruption code.
Clocked 0 —# STAD] '
KD721 |
. A
Invalid Addr from BCU
¥ includes 10ms delay to allow ‘gate |-Fetch invalid
I-Fetch address' signal to reset 'I-Fetch invalid address'
(Q-Refill Necessary) Request trigger before testing for set conditions.
T
Late BCU Cleanup
KD701
Unsuccessful Branch
IF-INV —>TGR A
(Not) 1-» [NST-MSREQ A |OR I-Fe:ch
Invalid
I-Fetch Sequencer 1 —
2 A Gate I-Fetch Address
Invalid T
- NEOP or BEOP
A A
Address IC(21,22) = 00
T] — f—
Clock KD711 T OR
Slock | — 1C(21,22) =M A
KD711 Predecode (Not) RR Format :“V‘J“d .
: nstruction
J Address
T
OR
Branch h -
Invalid KD711
Address
A T
0-»BR-INV-ADR
)] KD701
Figure 3-4. Detection of Invalid Instruction Address
‘1-INST-MRSEQ’ micro-order when the complete SS When the ‘gate I-Fetch invalid address’ trigger is set,
instruction is in Q. the ‘invalid address’ signal is allowed to set the ‘I-Fetch

3. For unsuccessful branch instructions (except Branch invalid address’ trigger, indicating that Q has been refilled
on Condition), the trigger is set by the presence of the with instructions from an invalid address. However,
‘IF-INV->TGR’ micro-order and the absence of the because R may still contain a valid RR instruction, further
‘1->INST-MSREQ’ micro-order; for an unsuccessful testing is required to establish that a true interruption
Branch on Condition instruction, the trigger is set by condition exists. The setting of IC(21,22) during end op
the simultaneous. presence of the ‘1-INST-MSREQ’ indicates whether a valid or an invalid instruction is
and ‘IF-INV-TGR’ micro-orders at the start of execu- contained in R. If IC(21,22) = 11 and an RR instruction is
tion. (The various branching conditions that may arise predecoded, R contains a valid instruction. When
are described in Section 6 of this Chapter.) IC(21,22) = 11 but the instruction is not of the RR

3-20 (9/68)

format, the balance of the instruction has been obtained
from an invalid location and the ‘invalid instruction
address’ trigger is set. If 1C(21,22) = 00, the ‘invalid
instruction address’ trigger is set regardless of the instruc-
tion format; this condition indicates that R contains the
first halfword of an invalid instruction.

When the ‘gate I-Fetch invalid address’ trigger is not
set, the ‘invalid address’ signal sets the ‘branch invalid
address’ trigger. Because, in this case, the invalid address is
the result of a successful branch instruction, the ‘invalid
instruction address’ trigger is set without further testing
being necessary.

Fetch Protection Detection

® ‘Delayed I-Fetch storage request’ trigger prevents set-
ting of protection interruption code while Q is being
refilled.

® ‘Delayed I-Fetch protect gate’ trigger is set if request is
due to normal sequencing.

® ‘Protected branch address’ trigger is set if branch is
made to protected location.

The CPU cannot execute instructions from a fetch-
protected area in main storage. Because the IC is always
one doubleword ahead of the instructions in Q, a unique
situation occurs if the instructions in Q are obtained from
a main storage location adjacent to a protected area. In
this case, the incremented IC specifies a protected address
and, because the Q-register refill routine is initiated before
the CPU runs out of instructions, the request per the IC
refills Q with instructions from a protected address. A
protection interruption, however, does not occur until the
CPU attempts to execute the protected instructions. This
condition arises because the last valid instruction being
processed by the CPU may result in a successful branch to
a valid storage location. '

A protection test is performed each time the CPU
issues a request to refill Q. Because a request for protected
instructions will not necessarily cause an interruption, the
setting of the ‘protection check (to CPU)’ and ‘instruction
length not available’ triggers is blocked while Q is being
refilled. The scheme for detecting a “true” protection
violation, shown in simplified form in Figure 3-5, is
closely related to the invalid addressing detection scheme
previously described. The major difference between the
invalid-addressing and fetch-protection schemes is in
timing: the ‘invalid address’ signal arrives at the CPU 1
cycle after the request, while the ‘protection check’ signal
arrives 2 cycles after the request. For this reason a
separate circuit is used for detecting a protection viola-
tion.

The ‘delayed I-Fetch storage request’ trigger prevents
the ‘protection check’ signal from causing an interruption
while Q is being refilled. This trigger is set one cycle after

the ‘I-Fetch request’ trigger is set by a request to refill Q.
The output of the ‘delayed I-Fetch storage request’ trigger
serves as one of the conditioning inputs for the ‘delayed
I-Fetch protect gate’ trigger. This trigger is set if the
current storage request is due to a nonbranch or unsuc-
cessful branch request and is set by the same conditions
that set the ‘gate I-Fetch invalid address’ trigger. When the
‘delayed I-Fetch storage request’ trigger and the ‘delayed
I-Fetch protect gate’ trigger are both set, the ‘protection
check’ signal sets the ‘I-Fetch invalid address’ trigger. The
action at this point is identical to that described for
detection of invalid addressing; i.e., a test is made to
establish if the CPU has attempted to execute instructions
from a protected area, and the ‘invalid instruction address’
trigger is set if a protect violation has occurred.

If the request to refill Q is a result of a branch
instruction (as indicated by the reset state of the ‘gate
I-Fetch invalid address’ trigger), the ‘delayed I-Fetch
protect gate” trigger is not set. In this case, the ‘protection
check’ signal sets the ‘protected branch address’ trigger,
which in turn sets the ‘invalid instruction address’ trigger.

Invalid Instruction Address Microprogram

® Issues second request for instruction.

- @ Interrupt code triggers are set per highest-priority error

detected: (1) addressing = 101, (2) protection = 100,
(3) specification = 110.

The detection of a specification, addressing, or protection
exception and the associated microprogram are shown in
Diagram 5-29, FEMDM. Because all three exceptions
access the same microprogram, the microprogram must
re-establish the nature of the exception to set the proper
interruption code. To establish which exception is cur-
rently in effect, the microprogram issues a second request
for instructions. This time, however, the setting of the
interrupt code triggers is not blocked; i.e., the appropriate
interruption code is set immediately upon detection of a
specification, addressing, or protection exception.

Before generating a second request, the IC must be
decremented to the address that caused the exception.
The status of IC(21,22) indicates whether the current IC
count is one or two doublewords ahead of the required
address: if IC(21,22) is not set to 00, the IC is one
doubleword ahead; if IC(21,22) = 00, the IC is two
doublewords ahead. (The other recovery microprograms
test 1C(21,22) for a setting of 11; because the invalid
instruction address test exceptional condition does not set
the ‘block I-Fetch’ trigger, I1C(21,22) is updated and
tested for a setting of 00.)

Accordingly, the microprogram subtracts 8 or 16,
decimal, from the IC, and loads the decremented address
into D. The STC is then set to zero and a 3-cycle request
is issued per D. After the request, the STC is incremented

2065 FETOM (9/68) 3-21

Delayed

Block
|-Fetch .
Block I-Fetch Tgr = e .
T oR Block Protect Irpts Inhibits setting of protection
(Not) NEOP or BEOP A [interruption code
Clocked 0 —=STAD]
KD721
A
Protect Check from BCU
[-Fetch Sequencers 1 @ (Not) 3 —
|—=INST-MSREQ
P i OR
redecode $S Format i Ic@1,22) = 00
A Delayed IF
NEOP + BEOP Storage A
Request
L —
Late BCU Cleanup A T Predecode (Not) RR Format |—
CPU 5 Latch I-Fetch Request Tgr IC(21,22) = 11 OR
A NEOP or BEOP A
P2] KD721
Delayed IF |-Fetch _— Invalid
(Unsuccessfu! Branch) Protect Invalid . Instruction
A Gate Address Address
IF-INV ~+TGR - T T _— T
' — A A
(Not) 1—>INST~MSREQ A for - -
|-Fetch Sequencer 1 B — — — OR
A KD721 KD711 KD711
KD711 Gate IF Invalid Addr Tgr
Protected
Branch
Address
1 T
— A
0—>BR-INV-ADR N
l KD721

Figure 3-5. Detection of Fetch-Protected Instruction Address

once during each subsequent cycle to provide the required
wait interval between the request and what would be the
cycle for transferring the instructions to Q. The appro-
priate interrupt code trigger(s) is then set upon receipt of
a specification, addressing, or protection exception.
Because the low-order bits of the addressing interruption
code equal 101, there is no need to block the protection
interruption code (100) from alsc being set if it is
received. However, if either of these conditions is set, the
setting of the specification interruption code, 110, is
blocked. The specification interruption code need only be
set if IC(23) = 1; becaunse the invalid instruction address
test exceptional condition does not set the ‘block I-Fetch’
trigger, IC(23) = 1 if D(23) equalled 1 during the
preceding branch end op.

The invalid instruction address test exceptional condi-
tion microprogram terminates with a normal end op. If no
higher-priority exceptional condition or interruption is
detected, the program interruption microprogram is en-
tered next.

3-22 (9/68)

Q-Register Refili Exceptional Condition

€ One extra I-Fetch cycle is performed to allow refilling
of Q without conflicting with execution sequence of

next instruction.

@ I-Fetch sequencers are always activated.

Following each storage request for instructions, the IC is
incremented by 8 to obtain the address from which
instructions will be fetched by the next request. This
updating is accomplished by gating the contents of the IC
to the parallel adder, adding a 1 to IC(20), and gating the
incremented address back to the IC. The need to update
the IC usually adds another cycle to the I-Fetch of RR,

RX, RS, and SI instructions. There are two reasons for

this extra cycle: :

1. The BCU requires that each main storage address be
retained for at least two cycles. Therefore, main
storage requests during the first I-Fetch cycle would
interfere with end-op requests.

2. Because the parallel adder is used to increment the IC,
and the first cycle in the execution phase may also
require the use of the parallel adder, the execution
phase must be delayed until the IC is incremented.

The case when I-Fetch requires a second cycle (third if
an indexed RX instruction) is treated as an exceptional
condition in the CPU. The ‘EXCEP’ micro-order in the
first ROS word of the I-Fetch microprogram overrides the
functional branch micro-order per the instruction op code
[E(02—07)>ROA] and forces a. new address into
ROSAR. This forced address is determined by the format
of the upcoming instruction and the status of the I-Fetch
sequencers (Diagram 5-30, FEMDM). Operation of the
I-Fetch sequencers is initiated at end op when the need to
refill Q exists and the next instruction to be executed is
not in the SS format. If the request was generated two
cycles before end op, sequencer 2 is latched at the start of
I-Fetch; otherwise, sequencer 1 is being set.

At the start of I-Fetch, The *EXCEP’ micro-order
samples sequencer 1 to see if it is being set. If it is, a new
address is always forced into ROSAR, causing one extra
I-Fetch word to be added to the basic I-Fetch.

. Table 3-1. Q-Register Refill Exceptional Conditions

If sequencer 2 is found latched, the parallel adder is
available for use on the next cycle because IC(20) has
already been incremented. I-Fetch of RR and shift
instructions does not require the fetching of an operand
from main storage; also, storage operands for indexed RX
instructions are not requested until the second basic
I-Fetch cycle. For these reasons, sequencer 2 forces a new
ROSAR address only if an RR, indexed RX, or shift
instruction is not being fetched.

The forced ROSAR addresses as a result of the
Q-register refill exceptional condition are shown in Table
3-1. The SS format is included for completeness. How-
ever, because the I-Fetch sequencers are not activated, a
Q-register refill exceptional condition is never detected
during the SS I-Fetch microprogram. Instead, the func-
tions of the sequencers are initiated by micro-orders in
that microprogram.

Two-Cycle RR I-Fetch

The actions of the first I-Fetch cycle are unchanged
except for the overriding of the ‘E(02—07)->ROA’ micro-
order by the ‘EXCEP’ micro-order (Diagram 5-6). During

Request Issued During Preceding: Forced
g ROSAR
1C(21,22) EEOP NEOP, BEOP, or EEOP Address
instruction Being Fetched at End Op (2 Cycles Early) (1 Cycle Early) (Hex)
RR 00, 01, or 11 Never Never None
10 Yes Never None
10 No Yes 030
RX, RS, or Si 00or 11 Never Never None
Indexed RX, or shift RS} O1or10 Yes Never None
Indexed RX Olor10 No Yes - 03A
Non-indexed RX 01o0r10 Yes Never 022
Non-indexed RX 01or10 No Yes 032
Shift RS O1or10 No Yes 020
Non-shift RS, or Si O1or 10 Yes Never 024
Non-shift RS, or Si 01or10 No Yes 034
SS 11 Never Never None
00, 01, or 10 Never Yes None

tAll shift instructions are of the RS format with an op code of 1000 1XXX.

2065 FETOM (5/68) 3-23

the second RR I-Fetch cycle, sequencer 2 is set and
sequencer 1 is reset. This status increases the IC by 8 and
returns the new instruction address to the IC at the start

of the next cycle, thus completing the updating of 1C(20).

During the next cycle (first execution cycle), sequencers 3
and 1 are both set by the ‘RASCR’ micro-order in the
forced word. This condition indicates that new instruc-
tions are to be gated to Q at the start of the second
execution cycle. The major registers and timing applicable
to this sequence are shown in Diagram 5-8, FEMDM.

Forced-Cycle RX |-Fetch

If the request to refill Q was not issued 2 cycles before
end op, the actions of the second RX I-Fetch cycle
. include the same actions as the second RR I-Fetch cycle.
Otherwise, IC(20) has aiready been incremented and
sequencers 1 and 3 are automatically set during the
second cycle. If the RX instruction is indexed, then a
second forced word is now performed; this word contains
the same micro-orders as the second word of the basic RX
I-Fetch. Otherwise, the first forced word completes the
I-Fetch routine after issuing any request inhibited during
the first I-Fetch cycle. This action is performed by the
‘MS-REQ*D-3’ micro-order. D is also transferred to PAL
if the request for new instructions was issued 2 cycles
before end op. Because in this case sequencer 2 is reset
during the first execution cycle, a ‘SPEC’ micro-order in
the first execution word tests the storage address from
PAL, not D. The new instructions are gated into Q [and
the next op-code word to R from Q(0—15)if IC(21,22) =
10 at end op] at the start of the first execution cycle
(second execution cycle if the request was not made two
cycles early and the RX instruction is not indexed). The

3-24 (9/68)

major registers and timing applicable to the non-indexed
case are shown in Diagram 5-12, FEMDM.

Two-Cycle RS and S! |-Fetch

The major registers and timing applicable to the 2-cycle
RS and SI I-Fetch are the same as that for the 2-cycle,
non-indexed RX I-Fetch (Diagram 5-12). If the request to
refill Q was not issued two cycles before end op, the
actions of the second I-Fetch cycle include the same
actions as the second RR I-Fetch cycle. Otherwise, IC(20)
has already been incremented and sequencers 1 and 3 are
automatically set during this forced cycle. This action
results in the refill of Q at the start of the next cycle (first
execution cycle). Whichever cycle Q is refilled, Q(0—15) is
also transferred to R if IC(21,22) was set to 10 during the
preceding end op. This transferring of the op-code
halfword is otherwise performed by an appropriate
micro-order in the first I-Fetch word. If an MV}, STM, TS,
I/0, or shift instruction is being fetched, no further
I-Fetch actions are necessary. However, fetching of other
RS or SI instructions causes the storage request omitted
by the first I-Fetch cycle to be issued now. This request is

- performed by the ‘MS-REQ*D-3’ micro-order. Also, D is

transferred to PAL if the Q-register refill request was
issued two cycles before end op. Because in this case
sequencer 2 is reset during the first execution cycle, any
‘SPEC”™ micro-order tests the storage address from PAL,
not D.

It was previously stated that the last I-Fetch word
always includes the “E(02—-07)~>ROA’ micro-order. How-
ever, there is one exception to this statement: the forced
I-Fetch cycle for shift instructions includes the
‘E(04-—-07)~ROA’ micro-order, which, in turn, forces the
first execution cycle to branch to the second cycle per D
rather than per PAL.

This section discusses the 35 instructions of the fixed-
point instruction set. These instructions use the RR, RX,

and RS formats. Positive fixed-point numbers are ex-

pressed in true binary form, whereas negative numbers are
expressed in complement binary form (2’s complement
form). One operand is always in 1 of the 16 GPR’s; the
other operand may be in either a GPR or in main storage.
For a discussion of number representation, data formats,
operand addressing, instruction formats, data flow, pro-
gram interruptions, and condition codes, see Chapter 1.

LOAD

The fixed-point load instructions provide a means of
loading operands into the LS GPR’s. The load operation
may be register-to-register (RR format) or storage-to-
register (RX and RS formats). In any case, the instruction
loads the second operand into the first operand location,
and the second operand location remains unchanged. In
addition, certain load instructions can test the second
operand before loading it and can load the second
operand in complement, positive, or negative form.

Load, LR (18)

e Load 2nd operand (in GPR per R2) into 1st operand
location (in GPR per R1).

¢ RR format:

18 l RI l
0 78 ni2

R2 |
15

A
Fetch 2nd operand from GPR per R2.

v

Load 2nd operand into GPR per R1.

o Conditions at start of execution:
Instruction is in E. :
1st operand is in A, B, and D (not used).
2nd operand isin S and T.

The Load, LR, instruction loads the second operand from
the GPR per R2 into the GPR per R1. At the start of

Section 2. Fixed-Point Instructions

execution, the word-length second operand is in S and T.
Because: both operands are in GPR’s, no specification test
is performed. The second operand is loaded into the GPR
specified by R1, and an end-op cycle is taken.

Load, L (58)

e Load 2nd operand (in storage) into 1st operand
location (in GPR per R1).

e RX format:

| m | x2 | m [D2
78 1n12 15 16 19 20 3t

o

| S—— —_—

y

Fetch doubleword (containing word-
length 2nd operand from main storage.

Y

Select word-length 2nd operand
from doubleword per D(21).

Y

Load 2nd operand into GPR per R1.

e Conditions at start of execution:
First 16 bits of instruction are in E.
1st operand is in S and T (not used).
2nd operand address is in D.
Main storage request for 2nd operand has been issued
per D.

@ D(21) determines which word of doubleword is to be
stored: if a 1, right word; if a 0, left word.

The Load, L, instruction loads the second operand from
main storage into the GPR per R1. Instruction execution
starts with a specification test. If a program specification
interruption occurs, an end op is forced and the instruction

“is suppressed. If no specification check exists, D(21) is

tested to determine which word of the doubleword fetched
from main storage will be gated from the SDBO to T. If
D(21) = 1, the right word is gated; if D(21) = 0, the left
word is gated. The contents of T are then loaded into the
GPR specified by R1, and an end-op cycle is taken.

2065 FETOM (9/68) 3-25

Load Halfword, LH (48)

e Load halfword 2nd operand (in storage) into 1st
operand location (in GPR per R1).

o RX format:

IRI|X2|BZL D2 J

19 20 kil

|

0 78 112 1516

L J

Y

Fetch doubleword (containing halfword
2nd operand) from main storage.

[

Select halfword 2nd operand from
doubleword per D(21,22).

A

Expand halfword 2nd operand to 32-bit
word by propagating sign bit to left.

A

Load expanded 2nd operand
into GPR per R1.

e Conditions at start of execution:
First 16 bits of instruction are in E.
Ist operand is in S and T (not used).
2nd operand address is in D.
Main storage request for 2nd operand has been issued
per D.

e Halfword operand is expanded to word by propagating
sign of halfword into 16 high-order bits of word-length
register.

o D(21) determines whicn word of doubleword contains
halfword 2nd operand: if a 1, right word; if a 0, left
word.

e D(22) determines which half of word contains halfword
2nd operand: if a 1, right half; if a O, left half.

The Load Halfword, LH, instruction loads the halfword
second operand (located in main storage) into the GPR
specified by R1. The halfword obtained from main storage
consists of 16 bits. Before loading the operand into LS, it is
expanded to a 32-bit word by propagating the sign bit of
the halfword through the 16 high-order bits of a word-
length register.

3-26 (9/68)

Diagram 5-102, FEMDM, is a flowchart of the Load
Halfword instruction. At the start of execution, the first 16
bits of the instruction are in E, the second operand address
is in D, and the first operand is in S and T. (The first
operand plays no part in the instruction; it is subsequently
destroyed when data is loaded into T.) During I-Fetch, a
storage request was made to obtain the doubleword
containing the halfword second operand.

The instruction first tests for a specification check
condition. If a program specification interruption occurs,
an end op is forced and the instruction is suppressed. If no
specification check exists, the execution continues and may
be divided into three general steps:

1. Set up A to propagate the sign:

a. Load 1I’s into PAL(32-59), shift left four positions,
and gate the result to A. (“A” now contains FFFF
FF00.) The 1’s are generated (ALD AP811) as a
result of ROS word 0108 (CLD QBO11) containing
100 in bit positions 82, 83, and 84 (CLD QZO011).

b. Gate the contents of A to PAB, shift left four
positions, and gate the result to A. (“A” now
contains FFFF F000.)

c. Gate the contents of A to PAB, shift left four
positions, and gate the result to A. (“A” now
contains FFFF 0000.)

2. Examine D(21) and D(22) to determine which halfword
of the doubleword operand brought out from main
storage is to be used as the halfword operand. The
specified halfword may be in any one of four possible
positions of the doubleword specified by D(21) and
D(22):

D(21,22)—00 10 1
| D(22) = u D(22) = 1 [D(22) = 0 J D(22) = 1
1516 3132 47 48 63
e)
D(Z]) 0 D(21) =1

a. If D(21) = 0, gate SDBO(0-31) to T;if D(21) = 1,
gate SDBO(32—-63) to T.

b. If D(22) = 0, gate T(32—47) to PAA(48—63), and
gate a 1 to PAA(47) if T(32) = 0. If D(22) = 1, gate
T(48—63) to PAA(48—63), and gate a 1 to PAA(47)
if T(48) = 0.

c. Gate the contents of A to PAB(32—63).

3. Load the selected word:

a. Gate PAL(32-63)to T.

b. Gate the contents of T to the GPR specified by the
R1 field in E(8—11).

c. Take an end-op cycle.

Load and Test, LTR (12)

e Load 2nd operand (in GPR per R2) into 1st operand
location (in GPR per R1) and set CC according to result.

o RR format:

2 | ri | R |

0 78 12 ¢ 15

Fetch 2nd operand from GPR per R2.

!

Test 2nd operand sign, and
2nd operand for 0's.

\

Load 2nd operand into GPR
per R1, and set CC.

e Conditions at start of execution:
Instruction is in E.
Ist operand is in A, B, and D (not used).
2nd operand is in S and T.

e Set STAT A if PAL is all O’s.
o Test T(32) for plus or minus sign.

e STAT A and T(32) determine CC.

o CC setting:
Result in PAL is zero: CC = 0.
Result in PAL is less than zero: CC = 1.
Result in PAL is greater than zero: CC = 2.

The Load and Test, LTR, instruction tests the second
operand, from the GPR per R2, for all zeros and loads it
into the GPR per R1. (If R1 and R2 specify the same
GPR, the operation is equivalent to a test of the data
without movement of the data.)

Diagram 5-103, FEMDM, is a flowchart of the instruc-
tion. The contents of T (second operand) are gated to
PAA(32—63), and STAT A is set if PAL equals zero. The
contents of T are then gated to the GPR specified by R1,
and the CC is set as follows. If STAT A is set, the CC is set
to 0. If STAT A is not set, the sign bit [T(32)] determines
the CC: if the sign is minus [T{(32) = 1], the CC is set to
1; if the sign is plus, the CC is set to 2. An end op
completes instruction execution.

Load Complement, LCR (13)

e Load 2’s complement of 2nd operand (in GPR per R2)
into 1st operand location (in GPR per R1) and set CC
according to result.

@ RR format:

13 | R1 | sz
15

0 78 ni2
A

Fetch 2nd operand from GPR per R2.

y

Obtain 2's complement
of 2nd operand.

Load result into GPR per
R1, and set CC.

e Conditions at start of execution:
Instruction is in E.
1st operand is in A, B, and D (not used).
2nd operand isin S and T. '

Set STAT B if overflow occurred.

Set STAT A if PAL is all 0’s.

Test T(32) for plus or minus sign.

STAT’s A and B, and T(32) determine CC.

CC setting:

Result in PAL is zero: CC=0.

Result in PAL is less than zero: CC = 1.
Result in PAL is greater than zero: CC = 2.
Overflow: CC = 3.

The Load Complement, LCR, instruction loads the 2’s
complement of the second operand from the GPR per R2
into the GPR per R1.

See Diagram 5-104, FEMDM, a flowchart of the
instruction. The contents of T (second operand) are gated
in 2’s complement form to PAA(32-63). STAT A is set if
PAL equals zero, and STAT B is set if a fixed-point
overflow occurs. (Overflow occurs if the maximum
negative number is 2’s complemented.) The contents of
PAL are transferred (via T) to the GPR specified by R1,
and the CC is set as follows.

If STAT B is set, the CC is set to 3. If STAT A is set,
the CC is set to 0. If neither STAT is set, the sign bit
[T(32)] determines the CC: if the sign is minus [T(32) =
1], the CC is set to 1;if the sign is plus, the CC is set to 2.
An end op completes instruction execution.

2065 FETOM (9/68) 3-27

Load Positive, LPR (10)

o Load 2nd operand (unchanged if positive, 2’s comple-
mented if negative; in GPR per R2) into 1st operand
location (in GPR per R1).

¢ RR format:

| o Rl | R |
[} 78 n 1z& 15

Fetch 2nd operand from GPR per R2.

Y

Obtain positive value
of 2nd operand.

Y

Load into GPR per
R1, and set CC.

o Conditions at start of execution:
Instruction is in E.
1st operand is in A, B, and D (not used).
2nd operand isin S and T.

Set STAT A if PAL is all 0%s.

T(32) determines whether operand loaded is positive.
If T(32) = 1, 2’s complement operand.

Set STAT B if overflow occurs.

STAT’s A and B and T(32) determine CC.

CC setting:

Result in PAL is zero: CC=0.

Result in PAL is greater than zero: CC = 2.
Overflow: CC=3.

The Load Positive, LPR, instruction loads the absolute
value of the contents of the GPR specified by R2 into the
GPR specified by R1. The instruction also tests for an
all-zero result and for an overflow condition. (Overflow
occurs orily when the maximum negative number is 2’s
complemented.) The results of the tests are indicated by
the CC.

Diagram 5-105, FEMDM, is a flowchart of the Load
Positive instruction. At the start of execution, the instruc-
tion is in E, the first opérand is in A, B, and D, and the
second operand is in S and T. The first cycle of the
instruction places the contents of T into PAL(32—63) and
tests PAL for all 0’s. If PAL equals zero, STAT A is set. The
data in T is then loaded into the GPR per E(8—11) (R1).

Because the purpose of the instruction is to load only
positive numbers, a test for negative numbers is made by
examining T(32). If T(32) = 1, the data loaded in LS was a
negative number. In this case, the contents of T must be
converted to a positive number (true form) and reloaded

3-28 (9/68)

into the GPR per E(8-11), thl}s destroying the negative
number in that location.

While in PAL, the 2’s complement form of the data is
tested to see whether overflow occurred when the number
was converted. If overflow occurred, STAT B is set.

If T(32) = 0, the data loaded in LS was positive and need
not be changed.

STAT’s A and B, and T(32) determine the CC as follows.
If STAT B is set, the CC is set to 3. If STAT A is set, the
CC is set to 0. If neither STAT is set, the sign bit [T(32)]
determines the CC; however, the sign can only be plus
[T(32) = 0] and the CC is set to 2. An end-op cycle
completes instruction execution.

Load Negative, LNR (11)

© Load 2nd operand (unchanged if negative, 2’s comple-
mented if positive; in GPR per R2) into 1st operand
location (in GPR per R1).

o RR format:

" R1 [R2
0 78 V3 15

4
Fetch 2nd operand from GPR per R2.

y

Obtain negative value
of 2nd operand.

Load into GPR per
R1, and set CC.

o Conditions at start of execution:
Instruction is in E.
1st operand is in A, B, and D (not used).
2nd operand isin S and T.

Set STAT A if PAL is all O’s.

T(32) determines whether operand loaded is negative.
IfT(32)=0,2’s complemen_t operand.

STAT A and T(32) determine CC.

CC setting:

Result in PAL is zero: CC = 0.
Result in PAL is less than zero: CC = 1.

The Load Negative, LNR, instruction loads the negative
value of the contents of the GPR specified by R2 into the
GPR specified by R1. The LNR instruction also tests the
operand for all zeros and indicates the result in the CC.
See Diagram 5-106, FEMDM, a flowchart of the
instruction. At the start of execution, the instruction is in
E, the first operand is in A, B, and D, and the second
operand is in S and T. The first cycle of the instruction

places the contents of T into PAA(32—63) and tests PAL
for all 0’s. If PAL contains all 0’s, STAT A is set. The data
in T, regardless of whether the result equals zero, is loaded
into the GPR per E(8—11) (R1).

Because the purpose of the LNR instruction is to load
only negative numbers, a test for positive numbers is made
by examining T(32). If T(32) =0, the data loaded into'LS
was a positive number. In this case, the contents of T
must be converted to a negative number (2’s complement
form) and reloaded into the GPR per E(8—11), thus
destroying the positive number in that location. If T(32) =
1, the data loaded into LS was a negative number and
need not be changed.

STAT A and T(32) determine the CC as follows. If
STAT A is set, the CC is set to 0. If STAT A is not set, the
sign bit [T(32)] determines the CC; however, the sign can
only be minus [T(32) = 1] and the CC is set to 1. An
end-op cycle completes instruction execution.

Load Multiple, LM (98)

o Load 2nd operand (as many words as required; in
storage) into GPR’s, in ascending order, starting with
1st operand location (per R1) and ending with 3rd
operand location (per R3).

® RS format:

IT’?S 7|

RU[R | B2 | D2 |

8 "2 1516 1920 3

o J

!

Fetch 1st doubleword from main storage.

Y

Obtain st word from doubleword per
D(21) and transfer it to T,

A

Y Y

Fetch next doubleword from
main storage, if needed.

Load 1st word into
GPR per R1.

Y

Obtain 2nd word from doubleword
and transfer it to T.

/

— !

Load 2nd word into Fetch next doubleword from
GPR per R1 + 1. main storage, if needed.

L

Y

Obtain last word from doubleword
and transfer it to T.

Y

Load last word into
GPR per R3.

e Conditions at start of execution:
First 16 bits of instruction are in E.
1st operand is in S and T (not used).
Starting operand address is in D.
Main storage request for 2nd operand has been issued
per D.

e R1 and R3 are compared to determine whether one or
more words are to be loaded.

e If R1=R3, only one word is to be loaded.

e If R3 is less than R1, addresses wraparound from GPR
15 to GPR 0.

o D(21) determines which word of doubleword is to be
loaded into LS: if a 1, right word; if a O, left word.

e 8 is added to D when more than one word is to be
loaded.

e RI1 is incremented by 1 each time a new word is to be
loaded.

The Load Multiple, LM, instruction loads 32-bit words
from main storage into LS. The GPR’s are loaded in the
ascending order of their addresses, starting with the GPR
addressed by R1 and continuing up to and including the
GPR addressed by R3. All combinations of GPR addresses
specified by R1 and R3 are valid. When R3 is less than R1,
the addresses wrap around from GPR 15 to GPR 0.

Diagram 5-107, FEMDM is a flowchart of the Load
Multiple instruction. At the start of execution, the first 16
bits of the instruction are in E, the first operand is in S and
T, and the starting operand address is in D. During I-Fetch,
a storage request was made to fetch the operand addressed
by D.

The instruction first tests for a specification check
condition. If there is a specification check, a program
specification interruption occurs and the operation is
suppressed. Assuming there is no specification check, R1
[E(8—11)] and R3 [E(12—15)] are compared to determine
whether one or more words are to be loaded. If R1 equals
R3, only one word is to be loaded; if unequal, more than
one word is to be loaded.

Assume one word is to be loaded (R1 = R3). D(21) is
tested to determine which word of the doubleword from
main storage is to be loaded. If D(21) is a 0, the left word is
selected; if a 1, the right word is selected. The selected
word is loaded into the GPR specified by R1, and an
end-op cycle is taken, completing the instruction.

If more than one word is to be loaded (R1 and R3 are
unequal), the main storage address in D is incremented by 8
to address the next doubleword in main storage, if it should
be needed. D(21) is tested to determine which word of the
doubleword from SDBO will be loaded first. R3 is
decremented by 1, and R1 and R3 are again compared. As a
result of these two tests, four possible conditions may exist,
resulting in four different branches as follows:

1. If D(21) = 0 and R1 =R3, two words are to be loaded
starting with the left word of the doubleword on the

2065 FETOM -~ (9/68) 3-29

SDBO. In this case, no further main storage request is
necessary. SDBO(0—31) is gated to T, SDBO(0—63) is
gated to AB, and the contents of T are loaded into the
GPR specified by R1. E(8—11) (R1) is incremented by
1 to address the next sequential GPR, and the contents
of B are transferred (via T) to the GPR specified by
E(8—11) (R1+1).

2. If D(21) = 0 and R1 does not equal R3, more than two
words are to be loaded starting with the left word. A
main storage request per D is initiated to fetch the next
doubleword from main storage. The microprogram
enters the basic loop, which loads a doubleword, one
word at a time, in consecutive GPR’s and initiates
another main storage request. An exit from the basic
loop is made when one or two words remain to be
loaded. -

3. If D(21) = 1 and R1 =R3, two words are to be loaded
starting with the right word. A main storage request
per D is initiated because the second word to be loaded
is contained in the next doubleword in main storage.
SDBO(32—63) is transferred (via T) to the GPR
specified by E(8—11) (R1). E(8-11) is incremented by
1, and, when the next doubleword is available,
SDBO(0-31) is transferred (via T) to the GPR speci-
fied by E(8—11) (R1 + 1).

4. If D(21) = 1 and R1 does not equal R3, more than two
words are to be loaded starting with the right word. A

- main storage request per D is initiated to fetch the next
doubleword from main storage, and SDBO(32—63) is
transferred (via T) to the GPR specified by E(8—11)
(R1). E(8-11) is incremented by 1 to address the next
sequential GPR, and D is incremented by 4 to address
the next sequential doubleword in main storage. R1
and R3 are again compared; if equal, only two more
words are to be loaded. When the requested double-
word is available, it is loaded, one word at a time, into
the two sequential GPR’s specified. If R1 does not
equal R3, the microprogram enters the basic loop.

Note that the last time D was incremented, it was
incremented by 4 rather than by 8. At the start of this
sequence, D(21) equalled 1, which is equivalent to a
value of 4 in D. Adding 4 to D increases the value to 8,
which will address the next sequential doubleword in
main storage. D(21) has also been changed to a O,
which allows the microprogram to remain in the basic
loop as long as is required. Note that a branch on
D(21) is performed in the basic loop.

The 4 that is added to D is developed in F. At the
start of the instruction, F was set to -64 (1100 0000).
F(0) is then set to 0, establishing a value of 0100 0000
in F. F(0—3) and F(4—7) are transposed, giving a value
of 0000 0100 (4) in F. When F(4—7) isadded toD,D
is incremented by 4.

When the last word. has been loaded into the GPR
specified by R3, an end-op cycle is taken, completing
the instruction.

3-30 (9/68)

ADD-TYPE INSTRUCTIONS

e Fixed-point add-type instructions use RR and RX
formats.

e 2nd operand is algebraically added to 1st operand.

e For subtract and compare instructions, 2nd operand is
in 2°s complement form.

o Except for compare instructions, result is stored into
1st operand location.

e CC is determined by op code and hardware conditions.

The fixed-point add-type instructions use the RR format

with word-length operands, the RX format with word-

length operands, and the RX format with a halfword
second operand.

At the start of execution of RR format fixed-point
instructions, the first operand is in B (also in A and D)
and the second operand is in T (also in S).

At the start of execution of RX format fixed-point
instructions, the first operand is in S and T, and a main
storage request for the second operand has been issued per
D. Because the second operand is fetched from main
storage, a specification test is performed (Diagram 5-108,
Sheet 1, FEMDM), and a program specification interrup-
tion is taken if the second operand address does not
specify integral boundaries. If a program specification
interruption is taken, the instruction is suppressed. If no
specification check occurs, the first operand is transferred
from T to B, and the specified word of the doubleword
requested from main storage is selected per D(21) and is
gated to T. The first operand is now in B and the second
operand is in T, which is the same condition which would
exist after an RR I-Fetch.

If the RX format instruction specifies a halfword
second operand, two additional functions must be per-
formed. The desired halfword [selected per D(22)] of the
word in T [selected per D(21)] must be loaded into the
low-order halfword of T, and the sign bit must be
propagated left to fill the high-order halfword of T.

The fixed-point add-type instructions may be divided
into three functional groups: add, subtract, and compare.
All add-type instructions set a CC, and all except compare
instructions store the result into the first operand loca-
tion.

The CPU performs fixed-point add-type instructions as
follows (Diagram 5-108, Sheet 2):

1. The second operand is algebraically added to the first
operand and the result is stored (except for compare
instructions) into the first operand location. For
subtract and compare instructions, the second operand
(sign bit and integer) is 2’s complemented, which, in
effect, inverts the sign.

2. Because of the sign notation used, and because positive
numbers exist in true binary form and negative
numbers exist in 2’s complement form, the operand
signs are treated as high-order extensions of the
integers.

3. Except for Add Logical and Subtract Logical instruc-
tions, the sign bit of the result [T(32)] is used as one
factor in determining the CC; carry conditions from
the high-order digit and from the sign bit are tested for
a fixed-point overflow condition (recorded in STAT
B).

4. For all fixed-point add-type instructions, a zero result
is indicated by setting STAT A.

5. For Add Logical and Subtract Logical instructions, the
sign bit of the result is treated as a high-order extension
of the integer, and is tested for a carry condition to
determine the CC. The result of Add Logical or
Subtract Logical instructions is the same as for the
corresponding add or subtract instruction, except that
the result is not tested for a fixed-point overflow
condition and the significance of the CC is different.
(See Table in Sheet 2 of Diagram 5-108.)

Add, AR {1A)

e Algebraically add 2nd operand (in GPR, per R2) to 1st
operand (in GPR, per R1) and place result into Ist
operand location.

e RR format:

1A | R1 | R2]
0 78 1ni2 15

Y A
Fetch 2nd operand
from GPR per R2.

Fetch 1st operand
from GPR per R1.

\ \
Add 1st and 2nd operands.

\

Store result into GPR
per R1, and set CC.

@ Conditions at start of execution:
Instruction is in E.
1st operand isin A, B, and D.
2nd operand isin S and T.

o CC setting: -
Result is zero (STAT A is set): CC=0.
Result is less than zero [T(32) = 1, and STAT’s A and
B are reset]: CC = 1.
Result is greater than zero [T(32) = 0, and STAT’s A
and B are reset}: CC ='2.
Ovetflow (STAT B is set): CC = 3.

The Add, AR, instruction algebraically adds the second
operand (from the GPR per R2) to the first operand
(from the GPR per R1) and stores the result into the first

operand location. For the instruction execution, refer to
“Add-Type Instructions” and Diagram 5-108.

Add, A (5A)

o Algebraically add 2nd operand (in storage) to 1st
operand (in GPR, per R1) and place result into 1st
operand location.

e RX format:
I IEREIER D2]
ma2 1516 19 20 31

[78

AN

Y v

Fetch 1st operand
from GPR per R1.

Fetch doubleword (containing
word-length 2nd operand)
from main storage.

v

Select word-length 2nd operand
from doubleword per D(21).

: Y

[Add st and 2nd operands. |

Y

Store result into GPR per
R1, and set CC.

o Conditions at start of execution:
First 16 bits of instruction are in E.
1st operand isin S and T.
2nd operand address is in D.
Main storage request for 2nd operand has been issued
per D.

® D(21) determines which word of doubleword contains
2nd operand: if a 1, right word; if a 0, left word.

e CC setting:
Result is zero (STAT A is set): CC=0.
Result is less than zero [T(32) = 1, and STAT’s A and
B are reset]: CC=1.
Result is greater than zero [T(32) = 0, and STAT’s A
and B are reset] : CC=2.
Overflow (STAT B is set): CC =3.

The Add, A, instruction algebraically adds the second
operand (from storage) to the first operand (from the
GPR per R1) and stores the result into the first operand
location. D(21) determines which word of the double-
word fetched from main storage contains the word-length
second operand: if D(21) = 1, the right word; if D(21) =
0, the left word.,For the instruction execution, refer to
“Add-Type Instructions” and Diagram 5-108.

Add Haifword, AH (4A)

@ Algebraically add halfword 2nd operand (in storage) to
1st operand (in GPR per R1) and place result into 1st
operand lccation.

2065 FETOM (9/68) 3-31

e RX format:

[« [rm]x|mw | D2 i
o 78 mna2 1516 19 20 kil
«)

Fetch 1st operand
from GPR per R1.

Fetch doubleword (containing
halfword 2nd operand)
from main storage.

Y

Select halfword 2nd operand from
doubleword per D(21,22),

and expand it to 32-bit word by
propagating sign bit to left.

y

Add halfword 2nd operand
to 1st operand.

Y

Store result into GPR per
R1, and set CC.

o Conditions at start of execution:
First 16 bits of instruction are in E.
Ist operand isin S and T.
2nd operand address is in D.
Main storage request for 2nd operand has been issued
per D.

e D(21) determines which word of doubleword contains
halfword 2nd operand: if a 1, right word; if a 0, left
word.

e D(22) determines which half of word contains half-
word 2nd operand: if a 1, right half; if a 0, left half.

o CC setting: .
Result is zero (STAT A is set): CC =0.
Result is less than zero [T(32) = 1, and STAT’s A and
B are reset]: CC=1. ,
Result is greater than zero [T(32) = 0 and STAT’s A
and B are reset]: CC=2.
Overflow (STAT B is set): CC=3.

The Add Halfword, AH, instruction algebraically adds the
halfword second operand (from storage) to the first
operand (from the GPR per R1) and stores the result into
the first operand location. D(21) determines which word of
the doubleword fetched from main storage contains the
halfword second operand, and D(22) determines which
halfword of that word contains the second operand, as
follows: D(21) = 0, left word; D(21) = 1, right word; D(22)
= (, left halfword; D(22) = 1, right halfword. When the
halfword second operand is selected, it is expanded to a
word by propagating the sign bit through the 16 high-order
bit positions of T.

3-32 (9/68)

For the instruction execution, refer to “Add-Type
Instructions” and Diagram 5-108.

Add Logical, ALR (1E)

o Algebraically add 2nd operand (in GPR per R2) to 1st
operand (in GPR per R1) and place result into 1st .
ope;and location.

¢ RR format:

e | | R
(1] 78 ni 15

Y

Fetch 1st operand Fetch 2nd operand
from GPR per R1. from GPR per R2.

Y Y

Add 1st and 2nd operands.

Y

Store result into GPR per
R1, and set CC.

e Conditions at start of execution:
Instruction is in E.
1st operand is in A, B, and D.
2nd operand is in S and T.

e CC setting:

Result is zero and no carry from PAL(32) [STAT A is
set and A(31)=0]: CC=0.

Result is not zero and no carry from PAL(32) [STAT A
is reset and A(31)=0]: CC=1.

Result is zero and carry from PAL(32) [STAT A is set
and AB1)=1}:CC=2. .

Result is not zero and carry from PAL(32) [STAT A is
reset and A(31)=1]: CC=3.

The Add Logical, ALR, instruction algebraically adds the
second operand (from the GPR per R2) to the first operand
(from the GPR per R1) and stores the result into the first
operand location. The sign bit of the sum is treated as a
high-order extension of the integer, and is tested for a carry
condition [A(31) = 1] to determine the CC. The sum is the
same as for the AR instruction; the only difference in
execution is that the sum is not tested for a fixed-point
overflow condition, and that the significance of the CC’s is
different.

For the instruction execution, refer to “Add-Type
Instructions” and Diagram 5-108.

Add Logical, AL (5E)

e Algebraically add 2nd operand (in storage) to Ist
operand (in GPR per R1) and place result into Ist
operand location.

o RX format:

I

|R1|X2|82| D2 |

78 na2 1516 19 20 kil
\ I -/

Fetch 1st operand
from GPR per R1.

o

Fetch doubleword (containing
word-length 2nd operand)
from main storage.

Y

Select word-length 2nd operand
from doubleword per D(21).

Y

Add 1st and 2nd operands. J

/

Store result into GPR per
R1, and set CC.

e Conditions at start of execution:
First 16 bits of instruction are in E.
1st operand isin S and T.
2nd operand address is in D.
Main storage request for 2nd operand has been issued
per D.

e D(21) determines which word of doubleword contains
2nd operand: if a 1, right word; if a 0, left word.

o CC setting:

Result is zero and no carry from PAL(32) [STAT A is
set and A(31)=0]: CC=0.

Result is not zero and no carry from PAL(32) [STAT A
is reset and A(31)=0]: CC=1.

Result is zero and carry from PAL(32) [STAT A is set
and A(31)=1]: CC=2.

Result is not zero and carry from PAL(32) [STAT A is
reset and A(31)=1]: CC=3.

The Add Logical, AL, instruction algebraically adds the
second operand (from storage) to the first operand (from
the GPR per R1) and stores the result into the first operand

location. D(21) determines which word of the doubleword

fetched from main storage contains the word-length second
operand: if D(21) = 1, the right word; if D(21) = 0, the left
word.

The sign bit of the sum is treated as a high-order
extension of the integer, and is tested for a carry
condition [A(31) = 1] to determine the CC. The sum is
the same as for the A instruction; the only difference in
execution is that the sum is not tested for a fixed-point
overflow condition, and that the significance of the CC’s
is different.

For the instruction execution, refer to “Add-Type
Instructions” and Diagram 5-108.

Subtract, SR (1B)

e Algebraically subtract 2nd operand (in GPR, per R2)
from 1st operand (in GPR per R1) and place result
into 1st operand location.

o RR format:

niz 15

A Y

Fetch 1st operand Fetch 2nd operand
from GPR per R1. from GPR per R2.

Y Y

Add 2's complement of 2nd
operand to 1st operand.

A

Store result into GPR per
R1, and set CC.

e Conditions at start of execution:
Instruction is in E.
1st operand is in A, B, and D.
2nd operand isin S and T.

o CC setting:
Result is zero (STAT A is set): CC = 0.
Result is less than zero [T(32) = 1 and STAT’s A and
B are reset] : CC = 1.
Result is greater than zero [T(32) = 0 and STAT’s A
and B are reset] : CC = 2.
Overflow (STAT B is set): CC = 3.

The Subtract, SR, instruction adds the 2’s complement
of the second operand (from the GPR per R2) to the
first operand (from the GPR per R1) and stores the
result into the first operand location. The only differ-
ence between the SR and AR instructions is that the
second operand is 2’s complemented.

For the instruction execution, refer to “Add-Type
Instructions” and Diagram 5-108.

2065 FETOM (9/68)° 3-33

Sl.ibtract, S (5B)

¢ Algebraically subtract 2nd operand (in storage) from
" 1st operand (in GPR per R1) and place result into 1st
operand location.

e RX format:
[s | n | x2| s | D2 |
) 78 | iz 1516 1920 3
— I)
Fetch 1st operand Fetch doubleword (containing
from GPR per R1. word-length 2nd operand)

from main storage.

Y

Select word-length 2nd operand
from doubleword per D(21).

r Y
Add 2's complement of 2nd
operand to Ist operand.

Store result into GPR per

R1, and set CC,

e Conditions at start of execution:
First 16 bits of instruction are in E.
1st operand isin S and T.
2nd operand address is in D.
Main storage request for 2nd operand has been issued
per D.

e D(21) determines which word of doubleword contains
2nd operand: if a 1, right word; if a 0, left word.

o CC setting:
Result is zero (STAT A is set): CC=0.
Result is less than zero [T(32) = 1 and STAT’s A and B
are reset] : CC=1.
Result is greater than zero [T(32) = 0 and STAT’s A
~ and B are reset] : CC=2.
Overflow (STAT B is set): CC = 3.

The Subtraét S, instruction adds the 2’s complement of
.th¢ second operand (from storage) to the first operand

(from the GPR per Rl) and stores the result into the first -
. operand Jocation. The only difference between the S and B
»A mstructlons is that the second operand is 2% comple- .

mented.
For ‘the mstruptmn execution, refer to “Add-Type
Instructions™ and Diagram 5-108.

3-34 (9/68)

Subtract Halfword, SH (4B)

e Algebraically subtract halfword 2nd operand (in
storage) from 1st operand (in GPR per R1) and place
result into 1st operand location.

o RX format:
[=] SRR D2 |
[) Wiz 1516 1920 3
N)
: Y
Fetch st operand Fetch doubleword (contammg
from GPR per R1. halfword 2nd operand)

from main storage.

v

Select halfword 2nd operand from
doubleword per D(21,22), and
expand it to 32-bit word by
propagating sign bit to left.

Y

Add 2's complement of halfword
2nd operand to Ist operand.

y

Store result into GPR per
R1, and set CC.

@ Conditions at start of execution:
First 16 bits of instruction are in E.
st operand isin Sand T.
2nd operand address is in D.
Main storage request for 2nd operand has been issued
per D.

o> D(21) determines which word of doubleword contains
halfword 2nd operand if a 1, right word; if a 0, left
word.

o D(22) determines which half of word contains half-
word 2nd operand: if a 1, right half; if a 0, left half.

e CC setting:
Result is zero (STAT A is set): CC = 0.
Result is less than zero [T(32) = 1 and STAT’s A and
B are reset]: CC = 1.
Result is greater than zero [T(32) = 0 and STAT’s A
and B are reset]: CC = 2,
Overflow (STAT B is set): CC = 3.

The Subtract Halfword, SH, instruction adds the 2’s
complement of the halfword second operand (from
storage) to the first operand (from the GPR per R1) and

~ stores the result into the first operand location. The
only difference between the SH and AH instructions is
 that the second operand is 2’s complemented. '

For the instruction execution, refer to “Add-Type
Instructions” and Diagram 5-108.

Subtract Logical, SLR (1F)

e Algebraically subtract 2nd operand (in GPR per R2)
from 1st operand (in GPR per R1) and place result into
1st operand location.

¢ RR format:

| & R

0 78 12 15

Y

Fetch 1st operand Fetch 2nd operand
from GPR per R1. from GPR per R2.

Y w

Add 2's complement of 2nd
operand to st operand.

A

Store result into GPR per
R1, and set CC,

e Conditions at start of execution:
Instruction is in E.
Ist operand is in A, B, and D.
2nd operand isin S and T.

o CC setting:
Result is not zero and no carry from PAL(32) [STAT A
is reset and A(31)=0]: CC=1.
Result is zero and carry from PAL(32) [STAT A is set
. and A(31)=1}:CC=2.
Result is not zero and carry from PAL(32) [STAT A is
reset and A(31)=1]: CC=3.

The Subtract Logical, SLR, instruction adds the 2’s
complement of the second operand (from the GPR per R2)
to the first operand (from the GPR per R1) and stores the
result into the first operand location. The sign bit of the
result is treated as a high-order extension of the integer, and
is tested for a carry condition [A(31) = 1] to determine the
CC. The result is the same as for the ALR instruction; the
difference in execution is that the second operand is 2’s
complemented, the result is not tested for a fixed-point
overflow condition, and the significance of the CC’s is
different.

For the instruction execution, refer to “Add-Type
Instructions” and Diagram 5-108.

Subtract Logical, SL (5F)

o Algebraically subtract 2nd operand (in storage) from 1st
operand (in GPR per R1) and place result into 1st
operand location.

e RX format:

E | /i | x2 | 2 | D2 —|

78 1n12 15 16 19 20 3
— I J

Fetch doubleword (containing
word-length 2nd operand)
from main storage.

Y

Select word-length 2nd operand
from doubleword per D(21).

r Y

Add 2's complement of 2nd
operand to 1st operand.

Y

Store result into GPR per
R1, and set CC.

=3

Fetch 1st operand
from GPR per R1.

e Conditions at start of execution:
First 16 bits of instruction are in E.
1st operand isin S and T.
2nd operand address is in D.
Main storage request for 2nd operand has been issued
per D.

e D(21) determines which word of doubleword contains
2nd operand: if a 1, right word; if a 0, left word.

o CC setting:
Result is not zero and no carry from PAL(32) [STAT
A isteset and A(31)=0]: CC=1.
Result is zero and carry from PAIL(32) [STAT A is set
and A(31)=1]: CC=2.
Result is not zero and carry from PAI(32) [STAT A is
reset and A(31) =1]: CC=3.

The Subtract Logical, SL, instruction algebraically adds
the 2’s complement of the second operand (from storage)
to the first operand (from the GPR per R1) and stores the
result into the first operand location. The sign bit of the
result is treated as a high-order extension of the integer,
and is tested for a carry condition [A(31) = 1] to
determine the CC. The result is the same as for the AL
instruction; the difference in execution is that the second
operand is 2’s complemented, the result is not tested for a
fixed-point overflow condition, and the significance of the
CC’s is different.

For the instruction execution, refer to “Add-Type
Instructions” and Diagram 5-108.

2065 FETOM (9/68) 3-35

Compare, CR (19)

o Algebraically compare 1st operand (in GPR, per R1)
with 2nd operand (in GPR, per R2) and set CC
according to result.

o RR format:

A

Fetch 2nd operand
from GPR per R2.

Fetch 1st operand
from GPR per R1.

Compare 1st operand
with 2nd operand.

A

Set CC per result.

e Conditions at start of execution:
Instruction is in E.
1st operand isin A, B, and D.
2nd oéerand isin Sand T.

e CC setting:
Operands are equal (STAT A is set): CC = 0.
1st operand is less than 2nd operand [STAT B is set or
T(32)=1]: CC=1.
1st operand is greater than 2nd operand [STAT B is set
and T(32) =1, or STAT B is reset and T(32) = 0] : CC
=2.

The Compare, CR, instruction algebraically compares the
first operand (from the GPR per R1) with the second
operand (from the GPR per R2) and sets the CC according
to the result. The compare operation is accomplished by
adding the 2’s complement of the second operand to the
first operand and setting the CC according to the result.
The result is not stored. For the instruction execution,
refer to “Add-Type Instructions’ and Diagram 5-108.

Compare, C (59)

o Algebraically compare 1st operand (in GPR per R1)
- with 2nd operand (in storage) and set CC according to
result.

3-36 (9/68)

o RX format:

| s9 | m | x2 | s | D2 |

[} 78 12 15 16 19 20]l
\ I J

Fetch 1st operand
from GPR per R1.

Fetch doubleword (containing
word-length 2nd operand)
from main storage.

Y

Select word-length 2nd operand
from doubleword per D(21).

r Y

| Compare 1st operand with 2nd operand. |

/
I Set CC per result. J

o Conditions at start of execution:
First 16 bits of instruction are in E.
1st operand isin S and T.
2nd operand address is in D.
Main storage request for 2nd operand has been issued
per D.

o D(21) determines which word of doubleword contains
2nd operand: if a 1, right word; if a 0, left word.

o CC setting:
Operands are equal (STAT A is set): CC=0.
1st operand is less than 2nd operand [STAT B is set or
T(32)=1]: CC=1.
1st operand is greater than 2nd operand [STAT B is set
and T(32) = 1, or STAT B is reset and T(32) = 0] : CC
=2.

The Compare, C, instruction algebraically compares the
first operand (from the GPR per R1) with the second
operand (from storage) and sets the CC according to the
result.

Because the word-length second - operand is in main
storage, D(21) determines which word of the doubleword
fetched from main storage contains the second operand: if
a 1, right word; if a 0, left word. The compare operation is
accomplished by adding the 2’s complement of the second
operand to the first operand and setting the CC according
to the result. The result is not stored. For the instruction
execution, refer to “Add-Type Instructions” and Diagram
5-108.

Compare Halfword, CH (49)

e Algebraically compare 1st operand (in GPR per R1)
with halfword 2nd operand (in storage) and set CC
according to result.

¢ RX format:

| » IEREIER D2 [
0 78 niz 15 16 19 20 31

— J

Y v

Fetch 1st operand Fetch doubleword (containing
from GPR per R1. halfword 2nd operand)
from main storage.

Y

Select halfword 2nd operand from
doubleword per D(21,22), and
expand it to 32-bit word by
propagating sign bit to left.

Compare st operand with
halfword 2nd operand.

r Set CC per result.

e Conditions at start of execution:
First 16 bits of instruction are in E.
Ist operand isin S and T.
2nd operand address is in D.
Main storage request for 2nd operand has been issued
per D.

e D(21) determines which word of doubleword contains
halfword 2nd operand: if a 1, right word; if a 0, left
word.

@ D(22) determines which half of word contains half-
word 2nd operand: if a 1, right half; if a 0, left half.

o CC setting:
Operands are equal (STAT A is set): CC=0.
1st operand is less than 2nd operand [STAT B is set or
T(32)=1]:CC=1.
1st operand is greater than 2nd operand [STAT B is set
and T(32) =1, or STAT B is reset and T(32) =0]: CC
=2.

The Compare Halfword, CH, instruction algebraically
compares the first operand (from the GPR per R1) with
the halfword second operand (from storage) and sets the
CC according to the result.

Because the halfword second operand is in main
storage, D(21) determines which word of the doubleword
fetched from main storage contains the halfword second
operand: if a 1, right V’/Ol’d; if a 0, left word. I(22)
determines which half of that word contains the second
operand: if a 1, right half; if a 0, left half. The halfword

second operand is expanded to word-length by propa-
gating the sign bit through the high-order 16-bit positions
of T. The compare operation is accomplished by adding
the 2°s complement of the halfword second operand to
the first operand and setting the CC according to the
result. For the instruction execution, refer to “Add-Type
Instructions” and Diagram 5-108.

MULTIPLY

There are three fixed-point multiply instructions:

1. Multiply, MR, RR format — which uses a 32-bit
multiplier and multiplicand, and produces a 64-bit
product. '

2. Multiply, M, RX format — which uses a 32-bit
multiplier and multiplicand, and produces a 64-bit
product. v

3. Multiply Halfword, MH, RX format — which uses a
16-bit multiplier and a 16-bit multiplicand, and pro-
duces a 32-bit product.

Note: In the Multiply, M, and Multiply Halfword, MH,
instructions, the roles of the first and second operands are
reversed from the roles defined in the System/360
Principles of Operation, SRL, Form A22-6821-6. That is,
the second operand is the multiplicand and the first
operand is the multiplier. (Interchanging the operand roles
does not affect the product.) The result, however, still
replaces the first operand.

Each of the three fixed-point multiply instructions has
a unique initialization routine. The initialization routines
(Diagram 5-109, Sheet 1, FEMDM) perform.a specifica-

~ tion test, set E(12—15) to 15, set the STC to 3, and

establish the operands in S and T as follows:

1. Multiply, MR, RR format — Transfers the multiplier
(second operand from GPR per R2) to S and the
multiplicand (first operand from GPR per R1 + 1) to
T. :

2. Multiply, M, RX format — Transfers the multiplicand
(first operand from GPR per R1 + 1) to S and the
multiplier (second operand from main storage) to T.

3. Multiply Halfword, MH, RX format — Transfers the
multiplicand (first operand from GPR per R1) to S
and the multiplier (halfword second operand from
main storage, expanded to word length by prop-
agating the sign bit through the 16 high-order bit
positions) to T.

A common multiply microprogram is then entered.
Multiples of T are selected per bit-pairs from S and are
added to a partial product in B to form a new partial
product. Low-order partial product bit-pairs are accumu-
lated in F and SAL. When SAL has accumulated a

2065 FETOM (9/68) 3-37

partial product byte, it is stored into S, replacing the
byte of S already used. Sixteen multiply cycles are
taken until a word (four bytes) of product is accumu-
lated in S. PAL now contains the high-order word of the
product and S contains the low-order word of the
product. The product is stored in an even/odd pair of
GPR’s specified by R1 and R1 + 1, and an end-op cycle
is taken to terminate the operation. (For the Multiply
Halfword instruction, only the low-order 32 bits of the
product are stored into the GPR per R1.)

Multiply, MR (1C)

e Multiply 1st operand (in GPR per R1 + 1) by 2nd
operand (in GPR per R2) and place 64-bit product into
1st operand location (in GPR per R1 and R1 + 1).

& RR format:

[e [r| e |

0 78 12 15

: Y

Fetch 1st operand (multiplicand) Fetch 2nd operand (multiplier)
from GPR per R1 + 1 and place from GPR per R2 and place
into T. into S.

Y !

Multiply T by S.

'

Store 64-bit product into
GPR per R1 and RT + 1.

o Conditions at start of execution:
Instruction is in E.
Contents of even-address GPR specified by R1 are in
A, B, and D (not used).
Multiplicand (1st operand) is in odd-address GPR
specified by R1 + 1.
2nd operand {multiplier) is in S and T.

e Multiple selection bits (M1,M2) are selected from
multiplier (in S) per E(12—15).

e Multiples of multiplicand (in T) are sclected by M1,M2
bits and ‘TX’ trigger.

® Multiples of multiplicand are added to partial product
in B.

e Partial product bits from B(66,67) are accumulated in
SAL and F per E(14,15).

@ SAL contains byte of partial product when filled.

@ SAL is transferred to correct byte in S per STC.

@ When last (4th) byte is transferred to S, multiplier in S
is replaced by low-order half of produci; high-order
bits are in PAL.

3-38 (9/68)

The Multiply, MR, instruction multiplies the contents of
T (multiplicand) by the contents of S (multiplier).
Because both the multiplier and the multiplicand are
32-bit signed integers, the product is a 64-bit signed
integer and must be stored into an evenfodd pair of
GPR’s.

A flowchart of the operation is shown in Diagram
5-109, FEMDM. To correctly specify the even/odd GPR
pair, the R1 field of the instruction must refer to an
even-address GPR or a program specification interruption
occurs. After R1 is tested to see whether it is even, 15 and
3 are placed into E(12-15) and the STC, respectively.
The value in E(12-15) selects the correct multiple
selection bits (M1,M2) from the multiplier in S, and the
value in the STC correctly positions the partial product
byte in S. Each value is sequentially reduced during the
operation. The value in T is now destroyed, and the
multiplicand is transferred from the GPR per R1 +1 to T.
At this point, S contains the multiplier and T contains the
multiplicand.

Execution of the MR instruction occurs in three
iterative steps.

1. Selection of multiplicand multiples.

2. Addition of multiplicand multiples to partial product
to form a new partial product.

3. Extraction of partial product bits to form a product.

Multiple selection bits (M1,M2) are selected from S per
E(12-15), which is initially set to 15 (decimal) and is
decremented by 1 each time multiple selection bits are
selected. E(12,13) determines which byte of S is gated to
the multiplier (MPR) bus, and E(14,15) determines which
bit-pair of the selected byte is used to set M1,M2:

Byte per E(12, 13) to Multiplier Bus

Byte 0 Byte 1 Byte 2 Byte 3
S-Register
(Contains 32-
bit multiplier) |0 718 1516 23|24 31
of1]2]3
Bit-pairs per
E(14,15)

Bits M1,M2, which have the same bit configuration as
the bit-pair selected from S by E(12—15), are used with
the “TX’ trigger to select a multiple of the muitiplicand
which will be added to a partial product to develop a new
partial product. The multiple selected for all combinations
of M1,M2 bits and the state of the ‘TX’ trigger is listed in
Table 3-2.

Four bit configurations of M1,M2 are possible, repre-
senting decimal values of 0, 1, 2, and 3. Five multiplicand
multiples can be selected: 0x T, 1 x T,-1xT,2x T and
-2 x T. Multiplicand multiples are developed and applied
as follows:

1. 0x T: Zero’s are added to the partial product.

2. 1xT: The multiplicand (in T) is added to the partial
product.
3. -1x T: The multiplicand is added in 2’s complement
form to the partial product.
4. 2xT: The multiplicand is gated to PAA, shifted left
' one bit position (in effect, doubles its value),
and addeéd to the partial product.
5. -2x T: The multiplicand, shifted left one bit position,
is added in 2’s complement form to the partial
product.

No provision has been made to develop a multiple of the
multiplicand of 3 x T. Therefore, when M1,M2 has a
decimal value of 3, a multiple of -1 x T is selected and the
‘TX’ trigger is set and remains set into the next multiply
cycle. Note in Table 3-2 that when the ‘TX’ trigger is set
during the selection of a multiple, it has the effect of
increasing the value of the multiple by 1 for the
corresponding value of M1,M2. Because the partial product
is shifted right two positions before each multiple is added,
the value of the multiple is increased by a factor of 4. The
effect of the ‘TX’ trigger’s being set is to increase the value
of the multiple (defined by M1,M2) by 4. Thus the
multiplicand is, in effect, multiplied by -1 and +4 (plus the
multiple which would have been selected if the ‘TX’ trigger
were not set).

When the partial product is shifted right two positions
(right 4 and left 2) after each addition of the selected
multiple of the multiplicand, the low-order bit-pair of the

Table 3-2. Value of Multiple Determined by Multiple
Selection Bits (Fixed-Point)

Multiple Selection
Bits
X' T-Register Times | Set‘TX’
M1 | M2 Trigger Value Indicated | Trigger
0 0 0 OxT No
0 1 0 1xT No
1 0 .0 2xT No
1 0 0 2xT Not
1 1 0 -1 xT (2'sCom- Yes
plement)
0 0 1 1xT No
0 1 1 2xT No
1 0 1 -1 x T (2'sCom- Yes
plement)
1 1 1 oOxT Yes

1 Used on last muitiple selection if multiplicand is negative.

~ partial product is gated to SAL per E(14,15) and is added

to the contents of F. When a byte of the partial product is
accumulated in F, the byte is transferred to S per the STC
(via SAL), replacing the byte of multiplier which has been
used.

When the low-order partial product bit-pair is gated to
SAL, E(12—15) has been decremented twice and the
low-order bit pair is stored into F(6,7) per the value of 01
in E(14,15) (C of Sheet 3, Diagram 5-109, FEMDM).

" As previously mentioned, the partial product bits are
transferred via SAL to F. This register accumulates a partial
product byte (eight bits). When the last two partial product
bits, required to complete a byte, are selected [E(14,15) =
10], the contents of F are transferred to SAL, where the
two partial product bits are positioned correctly. This byte
is then transferred to S and positioned according to the
value of the STC. At this point, the STC is equal to 011,
thus placing the partial product byte into S(24—31). The
STC and E(12-15) are then reduced by 1, and selection of
partial product bits is continued. The microprogram
remains in the multiple selection loop until E(12,13) = 00
when tested. At this time, E(12—15) contains 0001 and is
decremented to 0000; and the microprogram enters the
multiply termination routine.

During the multiply termination routine, five events take

© place:

1. A multiple is selected for the high-order bit-pair in S.

2. Because there is a 2-cycle lag between the selection of a
multiple and the storage of the corresponding partial
product bit-pair into F, E(12—~15) wraps around to 1110
to control the storage of the last two bit-pairs of the
partial product in F (via SAL). A

3. The high-order partial product byte is transferred from F
to S per the STC. (The last bit-pair, however, does not
go to F, because the last byte is gated directly from SAL
to S.) :

4. The high-order word of the partial product is transferred
from PAL to T, and from T to the GPR specified by R1.

5. The low-order word of the partial product in S is
transferred to T, and from T to the GPR specified by R1
+1.

This sequence places the complete product into the
even/odd GPR pair in LS. An end-op cycle is then taken,
and the operation is finished.

The product sign follows the rules of algebra (except
that the sign of a zero product is plus); however, the sign
bits are manipulated as though they were high-order
extensions of the integer throughout the multiply opera-
tion. Two multiply examples follow; the first, in Figure
3-6, uses two positive operands, and the second, in Figure
3.7, uses the same operands with minus signs. Note that
the product is the same in both cases with no special
handling of the sign bits required.

2065 FETOM (9/68) 3-39

Hex Binary Decimal
Multiplicand (in T) ~ 00TA 0000 0000 0001 1010 +26
Multiplier (in S) 00A3 0000 0000 1010 0011 x +163
Product (to S via F) 108E 0001 0000 1000 1110 +4238

1. M1, M2 bits are derived from S per E(12-15).

2. See Table 3-2 for multiple selection.

l] [2t P’
M1, M2 TL): Multiple E(12-15) Remarks Contents in PAL ﬁmc;??:;::e?gyr:s":o S
0 nn Initial partial product 0000 0000 0000 0000
1 0 -1 xT 1 + T (2's complement) 1111 1111 11100110
1 1110 New partial product 1111 1111 1110 0110
1 1110 Right 2 positions 1111 1117 1111 1001 00— %
00 1 1xT 1110 +T (true) 0000 0000 0001 1010 10
0 1101 New partial product 0000 0000 0001 0011
0 1101 Right 2 positions 0000 0000 0000 0100 n— ¥
10 0 2xT 1101 + 2T (trve, left 1) 0000 0000 0011 0100 1110
0 1100 New partial product 0000 0000 0011 1000
0 1100 Right 2 positions 0000 0000 0000 1110 (00 B—
10 0 2xT 1100 + 2T (true, left 1) 0000 0000 0011 0100 00 1110
0 1011 New partial product 0000 0000 0100 0010
0 1011 Right 2 positions 0000 0000 0001 0000 07y
00 0 O0xT 101 Add 0's 0000 0000 0000 0000 1000 1110
0 1010 New partial product 0000 0000 0001 0000 [S—
0 1010 Right 2 positions 0000 0000 0000 0100 00— %
00 0 O0xT 1010 Add 0's 0000 0000 0000 0000 00
0 1001 New partial product 0000 0000 0000 0100
0 1001 Right 2 positions 0000 0000 0000 0001 00— v
00 0 O0xT 1001 Add 0's 0000 0000 0000 0000 0000
0 1000 New partial product 0000 0000 0000 0001
0 1000 Right 2 positions 0000 0000 0000 0000 01
00 0 O0xT 1000 Add 0's 0000 0000 0000 0000 01 0000
0 om New partial product 0000 0000 0000 0000
0 0111 Right 2 positions 0000 0000 0000 0000 00
00 0 O0xT 0111 Add 0's 0000 0000 0000. 0000 0001 0000
—
? S+—— 000T 0000 1000 1110
S N e e
1 0 8 E
and so on

Notes:

1. T =T-register.

2. For RX format instruction.
reverse myltiplier and
multiplicand.

Figure 3-6. Fixed-Point Multiply, Example No. 1 (RR Format)

3-40 (§/68)

Hex Binary Decimal
Multiplicand (in T) FFE6 1111 1111 1110 0110 26
Multiplier (in S) FF5D 111111110101 1101 x -163
Product (to S via F) 0001 0000 1000 1110 +4238

108E

1. M1, M2 bits are derived from S per E(12-15).

2. See Table 3-2 for multiple selection.

'TX! . . Accumulate Bit-Pairs
M1, M2 Tor Multiple E(12-15) Remarks Contents in PAL in F; Transfer Bytes fo S
0 1 Initial partial product 0000 0000 0000 0000
01 0 1xT 1 +T (true) 1111 1111 1110 0110
0 1110 New partial product 1111 1111 1110 0110
0 1110 Right 2 positions 1111 1111 1111 1001 [—
11 0 -1xT 1110 + T (2's complement) 0000 0000 0001 1010 10
1 1101 New partial product 0000 0000 0001 0011
1 1101 Right 2 positions 0000 0000 0000 0100 n———%
01 1 2xT 1101 + 2T (true, left 1) 1111 1111 1100 1100 1110
0 1100 :New partial product 1111 1111 1101 0000
0 1100 Right 2 positions 1111 1111 1111 0100 00
01 0 IxT 1100 + T (true) 1111 1111 1110 0110 001110
0 1011 New partial product TITT 1117 1107 10T0.
0 1011 Right 2 positions T 111 1111 0110 10
11 0 “1xT 1011 +T (2's complement) 0000 0000 0001 1010 1000 1110
1 1010 New partial product 0000 0000 0001 0000
1 1010 Right 2 positions 0000 0000 0000 0100 [
11 i 0xT 1010 Add 0's 0000 0000 0000 0000 00
1 1001 New partial product 0000 0000 0000 0100
1 1001 Right 2 positions 0000 0000 0000 0001 00
[1 O0xT 1001 Add 0's 0000 0000 0000 0000 0000
1 1000 New partial product 0000 0000 0000 0001
1 1000 Right 2 positions 0000 0000 0000 0000 [)
11 1 OxT 1000 Add 0's 0000 0000 0000 0000 01 0000
1 o1 New partial product 0000 0000 0000 0000
1 o1n Right 2 positions 0000 0000 0000 0000 00
11 1 O0xT 0111 Add 0's 0000 0000 0000 0000 0001 0000
? S <«———0001 0000 1000 1110
e s e e
and so on 1 0 8 E
Notes:
1. T =T-register.
2. For RX format instructions,

Figure 3-7. Fixed-Point Multiply, Example No. 2 (RR Format)

reverse multiplier and
multiplicand.

2065 FETOM (9/68)

Multiply, M (5C)

o Multiply 1st operand (in GPR per R1 + 1) and 2nd
. operand (in storage) and place 64-bit result into 1st
" operand location (in GPR per R1 and R1 + 1).

e See Note under “MuItiply.”
e RX format:

| sc | rm| x2| s | D2 |

[78 na2 1516 19 20 3
\ J

Fetch doubleword (containing
word-length 2nd operand)
from main storage.

Y

Select word-length 2nd operand from
doubleword per D(21) and place into T

, Y
L Multiply T by S. J
Y

" Store 64-bit product into
GPR per Rl and R1+ 1,

Fetch 1st operand from
GPR per R1 + T and
place into S,

o Conditions at start of execution:

First 16 bits of instruction are in E.

Contents of even-address GPR per R1 are in S and T
(not used). .

1st operand is in odd-address GPR per R1 + 1.

2nd operand address is in D.

Main storage request for 2nd operand has been issued
per D. '

e D(21) determines which word of doubleword contains
. 2nd operand: if a 1, right word; if a 0, left word.

The Multiply, M, instruction multiplies the contents of T
(second operand from storage) and the contents of S (first
operand, from GPR per R1 + 1), and stores the 64-bit
product into the GPR’s per R1 and R1 + 1. Once the
operands have been obtained, the operation is identical to
that of the Multiply, MR, instruction, except that the
roles of the multiplier and multiplicand are reversed. (See
Note under “Multiply” and Diagram 5-109.)

Muitiply Halfword, MH (4C)

° Multif)ly 1st operand (in GPR per R1) and halfword
2nd operand (in storage) and place low-order 32 bits of
result into 1st operand location.

3-42 (9/68)

o See Note under “Multiply”.

o RX format:

|°74c IERERER oz |

78 naz 1516 1920 3

\ J

A

Fetch 1st operand from GPR
per R1 and place into S.

Fetch doubléword (containing
halfword 2nd operand)
from main storage.

Y

Select halfword 2nd operand
from doubleword per
D(21,22) and place into T.

y | y
' Multiply T by'S. } —|
R

Store low-order 32 bits of
product into GPR per R1.

e Conditions at start of execution:
First 16 bits of instruction are in E.
1st operand isin S and T.
2nd operand address is in D.

Main storage request for 2nd operand has been issued .
per D.

e D(21) determines which word of doubleword contains
halfword 2nd operand: if a 1, right word; if a 0, left
word.

e D(22) determines which half of word contains half-
word 2nd operand: if a 1, right half; if a 0, left half.

The Muitiply Halfword, MH, instruction multiplies the
contents of T (expanded halfword second operand from
main storage) and the contents of S (first operand from
GPR per R1) and stores the 32 low-order bits of the

. product into the first operand location. D(21,22) deter-

mines the location of the second operand within the
doubleword obtained from main storage. The second
operand is then expanded to a word-length operand by
propagating the sign bit through the high-order 16 bit
positions of T.

From this point, the operation is identical to that of
the Multiply, MR, instruction, except that the roles of the

.multiplier and multiplicand are reversed. (See Note under

“Multiply.”) For a flowchart of the operation, see
Diagram 5-109.

DIVIDE

Fixed point division is performed by repetitive reduction .’
of the dividend by multiples of the divisor to obtain a

remainder whose value is less than that-of the divisor, and
to accumulate partial quotient (PQ) bits derived from the
partial remainders to form a quotient. The basic non-
restoring method is used, with the dividend in true form.
Nonrestoring division means that if a negative remainder is
obtained during the reduction cycles (an overdraw has
been made), the remainder is not corrected, but instead
the next divisor multiples are made positive until the
remainder becomes positive again. (In most valid divide
operations, the first reduction cycle is an intentional
overdraw.)

There are two fixed-point divide instructions: Divide,
DR, RR format, and Divide, D, RX format. Each has a
unique initialization routine. The initialization routines:
provide a specification test; place the low-order half of the
dividend into S and the high-order half of the dividend
into B, in true form regardless of the sign; place the
divisor into T; store the signs for later use; and set
E(12—15) and the STC to 0. v

A common divide microprogram is then entered. Two
bits of the low-order dividend -are appended to the
high-order dividend. A multiple of the divisor is selected
to reduce the dividend to a partial remainder. The
inverted sign of the partial remainder is stored into F as a
partial quotient (PQ) bit. Thirty-two such reduction
cycles are taken, accumulating PQ bits in F until a byte of
quotient is obtained. The quotient byte is stored into S,
replacing the byte of the low-order dividend which has
been used. When four quotient bytes have been stored
into S, S contains the quotient and B contains the
remainder.

The microprogram now enters one of four termination

routines, determined by the sign of the divisor and the
form (true or 2’s complement) of the quotient. The
termination routines establish the proper sign and form of
the remainder and quotient, according to the convention
of fixed-point arithmetic and the rules of algebra. The
remainder and quotient are then stored in an even/odd
pair of GPR’s specified by R1 and R1 + 1, and an end-op
cycle is taken to terminate the operation.

Divide, DR (1D)

e Divide 1st operand (in GPR per R1 and R1 + 1) by 2nd
~ operand (in GPR per R2) and place result into 1st
operand location (remainder in GPR per R1; quotient
in GPR per R1 + 1).

® RR format: (See adjoining column.)
e Conditions at start of execution:
Instruction is in E.
High-order half of dividend (1st operand) is in A, B,
and D.
Low-order half of d1v1dend isin GPR per R1 + 1.
Divisor (2nd operand) isin S and T.

[o L R

0 na2 I 15)
‘ v

Fetch high~order word of dividend Fetch divisor (2nd operand) from
from GPR per.R1 and place into B. GPR per R2 and place into T,

Fetch low-order word of dividend
_from GPR per R1 +1 ond place

into S.
Y ,

I Divide B and S by T.

Y

Store remainder into GPR per R1
and quotient into GPR per R1 + 1.

The Divide, DR, instruction divides the contents of B
(high-order bits of dividend) and S (low-order bits of
dividend) by the contents of T (divisor).

The dividend is a 64-bit signed integer occupying an .
even/odd pair of GPR’s addressed by R1 and R1 + 1,
respectively. To correctly specify the evenfodd pair of
GPR’s, R1 must refer to an even-numbered GPR or a
program specification interruption occurs. A 32-bit signed
remainder and a 32-bit signed quotient replace the
dividend in the even-numbered and odd-numbered GPR,
respectively, of LS. The divisor is also a 32-bit integer.

Two bits of the low-order half of the dividend are first
placed into the high-order half of the dividend. A multiple
of the divisor is then selected and subtracted from the
high-order half of the dividend to form a partial re-
mainder. The resultant value determines the partial
quotient (PQ) bit which is placed into F to accumulate
the bits until -a PQ byte is available. This PQ byte is
transferred to S, which contains the low-order half of the
dividend, and replaces those bits that have already been
used in the operation. This action continues until a
complete quotient and remainder are available, at which
time they are stored into LS and an end-op cycle is taken.

The sign of the quotient is determined algebraically;
four possible combinations of signs can occur:

1. + dividend, + divisor, + quotient, + remainder.
2. - dividend, - divisor, + quotient, - rernainder.
3. + dividend, - divisor, - quotient, + remainder.
4. - dividend, + divisor, - quotient, - remainder.

Note that if the dividend and divisor signs are alike the
quotient is positive; if unlike the quotient is negative.
Note also that the sign of the remainder is the same as the
sign of the dividend, except for a zero result, which is
always positive.

When the relative magnitude of the dividend and
divisor is such that the quotient cannot be expressed by a
32-bit signed integer, a program fixed-point divide inter-
ruption occurs. When this happens, the instruction is
suppressed, leaving the dividend unchanged in local
storage.

2065 FETOM (9/68) 343

General Discussion

e Multiple selection bits are determined by E(12—15)
and S bits.

e Multiples of divisor are determined by ‘DVDL1’ or
‘DVDLO’ micro-order, carry from PAL(28), and T(32).

e PQ bits are transferred and accumulated in F per
E(14,15), and ‘DVDL1’ or ‘DVDLO’ micro-order.

e F contains byte of partial quotient when filled.

e Contents of F are transferred to correct byte in S per
STC.

Execution of the DR instruction occurs in three iterative

steps:

1. Transfer of bits from low-order half of dividend to
high-order half of dividend.

2. Selection of divisor multiple.

3. Determination of quotient bits.

Selection of the two bits from the low-order half of the
dividend is shown in B of Sheet 4, Diagram 5-110,
FEMDM. Multiple selection bits (M1,M2) are selected
from S per E(12—15), which is initially set to 0 and is
incremented by 1 after the selection of each pair of
multiple selection bits. E(12,13) determines which byte of
S is selected, and E(14,15) determines which bit-pair of
the selected byte will be used to set M1, M2:

Byte per E(12,13)

Byte O ‘ Byte 1 Byte 2 Byte 3
S-Register
(Contains 32-bit
low-order 0 718 15[16 23|24 31
dividend) o I) I 2 I 3
Bit-pairs per
E(14,15)

M1,M2 has the same bit configuration as the bit-pair
selected from S by E(12-15), and is inserted into
B(64,65) [via PAL(64,65)] where it extends the high-
order portion of the dividend in B.

Selection of the divisor multiple is shown in A of Sheet
4, Diagram 5-110. The factors which determine the divisor
multiple are:

1. The carry condition from PAL(28) from the previous

add cycle.
2. The state of T(32), which is the divisor sign bit.
3. The ‘DVDLO’ or ‘DVDL1’ micro-order.

Four divisor multiples are developed and applied as
follows:
1. TLO (+1 x T): The divisor in T is added to the
partial remainder in AB.
2. TCLO (-1 x T): The 2’s complement of the divisor in
T is added to the partial remainder in
AB.

3-44 (9/68)

3. TL1 (+2 x T): The divisor in T is shifted left one bit
position (in effect, doubled in value)
and is added to the dividend or
partial remainder in AB.

4. TCL1 (-2 x T): The 2’s complement of the divisor in
T is shifted left one bit position and
is added to the dividend or partial

remainder in AB.
The first divisor multiple is arbitrarily set to +2 x T

if the divisor is negative (STAT G set) or to -2 x T if

the divisor is positive (STAT G reset). This selection is

done for two reasons:

1. The carry condition from PAL(28), which is normally
a factor in selecting a divisor multiple, is meaningless
at this time, because no previous reduction cycle has
taken place.

2. If the relative magnitude of the dividend and divisor
allows, the first reduction must be an overdraw.
(Except for one special case, if the first reduction
cycle does not result in an overdraw, the quotient
and remainder will be invalid.)

Determination of the PQ bit is shown in C of Sheet
4, Diagram 5-110. The result of adding the selected
divisor multiple to the dividend or partial remainder is
stored into AB as a new partial remainder. The PQ bit is
decoded as the inverse of A(28), and is gated to F (via
SAL) per E(14,15) and the ‘DVDLO’ or ‘DVDL1’ micro-
order in effect at that time. When a PQ byte has been
accumulated inF, it is gated to S per the STC, where it
replaces the byte of S which has already been used.
When four PQ bytes have been stored into S, the
complete quotient is in S and the remainder is in B.

At this point, STAT G is tested. (Recall that STAT G
was set to the sign of the divisor.) If set, the divisor is
negative and is in 2’s complement form. Because the
first reduction cycle is an attempt to overdraw the
dividend, the negative divisor is shifted left 1 bit posi-
tion (in effect, doubled in value) to PAA(31-62). If
STAT G is reset, the divisor is positive and must be 2’s
complemented and shifted left one bit position to
reduce the dividend. During the addition, the sign of the
divisor is propagated into PAL(24—31), and the result
(remainder) is gated to AB(24—67). A(28) is then tested
to determine the PQ bit. A remainder in true form
[A(28) = 0] causes a 1-bit to be selected for the PQ bit;
a 2’s complement remainder [A(28) = 1] causes a 0-bit
to be selected for the PQ bit.

Two micro-orders, ‘DVDL0Q’ and ‘DVDL1’, are alter-
nately used in the divide algorithm. Each micro-order
has two functions: (1) to determine the location of the
PQ bit in SAL (and F) from the bit-pair selected by
F(14,15), and (2) to determine the shifting of the
divisor multiple to PAA. [The carry condition from
PAL(28) and the state of T(32) détermine whether the
multiple will be in true or 2’s complement form.] The

‘DVDLO’ micro-order causes the selected PQ bit to be
placed into the odd SAL bit position of the bit-pair
selected by E(14,15), thus locating the PQ bit in the PQ
byte being accumulated in F. This micro-order also
determines that the divisor multiple will be gated to
PAA(32-63) (no shift). The ‘DVDLI’ micro-order

causes the selected PQ bit to be placed into the even

SAL bit position, and also determines that the divisor
multiple will be gated to PAA(31-62) (shifted left 1 bit
position).

Detailed Discussion
e Select M1,M2 bits from S per E(12—15).

e Insert M1 M2 bit-pair as low-order extension of high-

order dividend in B.

e Select divisor multiple per: carry condition from
PAL(28), divisor sign [T(32)], and DVDLO’ or
‘DVDL1’ micro-order.

e Reduce dividend (or remainder) in AB by divisor
multiple selected.

o Determine PQ bits per A(28).

o Accumulate PQ bits in F to form PQ byte.

e Accumulate PQ bytes in S to form quotient.
e Determine validity of quotient and remainder.

A flowchart of the DR instruction is shown in Diagram
5-110. At the start of execution, the instruction is in E,
the high-order half of the dividend is in A, B, and D, and
the second operand (divisor) is in S and T. (As previously
mentioned, the dividend occupies an even-odd pair of
GPR’s.) To correctly specify the even-odd pair of GPR’s,
the R1 field of the instruction must refer to an even-
numbered GPR, or a program specification interruption
occurs.

The states of B(32) and T(32) are first tested. B, at this
time, contains the high-order half of the dividend, and T
contains the divisor. If B(32) = 1, STAT B is set; if T(32)
= 1, STAT G is set. These STAT’s are used in later
operations to determine the correct sign of the quotient
and remainder, and to obtain a dividend in true form in B
and S.

Recall that the dividend must be in true form. Because
the dividend is a 64-bit operand and the maximum
operable word length is 32 bits, the high-order half and
the low-order half of the dividend must be treated
separately when determining the true value of the
dividend. To obtain a true value of a negative dividend,
the dividend must be 2’s complemented. Because the
complementation process is always accomplished on a 2’s
complement basis during fixed-point operations, and
because the high-order and low-order halves of the
dividend are treated separately, the value of the high-order
bits may be incorrect when in the true form. To prevent

an incorrect high-order dividend from being operated on,
the value of the low-order dividend bits is tested by
checking for a carry out of the high-order bit location
when 2’s complemented. If a carry occurs, the high-order
dividend bits are in the correct form. If a carry does not
occur, the high-order bits are incorrect and a minus 1
must be added to the bits to obtain the desired dividend
value. The following two examples illustrate this method
(using only a 16-bit double word): .

Example 1: Correct Value Obtained.

1111011000000000
0000100111111111 Long-hand method of
1 obtaining 2's complement
0000101000000000
11110110 00000000
00001001 1111111 Machine method of
1 1 obtaining 2's com-
00001010 00000000 plement
Carry

Example 2: Incorrect Value Obtained and How It Is
Corrected.

1111011010000000
0000100101111111 Long-hand method of
) 1 obtaining 2's complement
-» —» 0000100110000000

11110110 10000000 Machine method of
00001001 01111111 obtaining 2's com-
1 1"\ plement but found
== 00001010 .« 10000000 to be incorrect
No
Carry
00001010
ARRRREE! Machine method of
&= 00001001 10000000 correction

Sheet 2 of Diagram 5-110 illustrates the method used by
the CPU to obtain a positive dividend value in B and S.

With the correct values of the dividend in B and S and
the divisor in T, E(12—15) is set to 0000 to allow
selection of the first byte of the low-order half of the
dividend. The first partial remainder is obtained by
transferring the contents of B (high-order half of divi-
dend) to PAB(32-63) and placing the divide multiple
selection bits, M1,M2, into PAIL(64,65). The divide
multiple selection bits are determined by decoding
E(12-15) and the S bits, as previously described.

After selection of the M1M2 bits, E(12—15) is
incremented by 1, setting up conditions for selection of

2065 FETOM (9/68) 345

the next M1,M2 bits. The resultant value of the addition
of M1 M2 to the high-order half of the dividend. is
transferred to AB(24—67), from where it is shifted left 2
into the parallel adder, introducing the M1M2 bits into
the partial remainder. .

Recall that STAT G was set to the sign value of the
divisor. At this point, STAT G is tested (Sheet 3 of
Diagram 5-110.) If set, the divisor is negative and is in 2’s
complement form, and is transferred to the parallel adder,
shifting left 1 to PAA(31-62). If STAT G is reset, the
divisor is positive and must be 2’s complemented before
being -transferred to the parallel adder so that it can
reduce the dividend. During the addition, the sign of the
divisor is propagated into PAL(24—31) and is checked
after the addition to determine the PQ-bit setting.

At this point in the operation, the ‘DVDLO’ micro-
order is in effect and causes the first PQ bit to be gated to
the odd SAL bit position of the high-order bit-pair of SAL
[E(14,15) = 01] (C of Sheet 4, Diagram 5-110). The first
PQ bit is extraneous, because it reflects the condition of
A(28) before the first reduction cycle, and it is replaced
by a valid bit 2 cycles later. The result of the first
reduction is placed into AB. ’ _

A ‘DVDLY’ micro-order is issued next. This micro-
order causes selection of a PQ bit per A(28). (AB
presently contains the result of the first reduction.) If the
result of the first reduction is negative [A(28)=1],a0is
the selected PQ bit; if positive [A(28) = 0], a 1 is the
selected PQ bit. Because the ‘DVDL1’ micro-order is now
in effect, the PQ bit is gated to the even SAL bit position
of the high-order bit-pair of SAL [E(14,15) = 01], and
SAL is gated to F. The contents of AB are transferred to
PAB, and the divisor multiple [selected by the carry
~ condition of PAIL(28), the state of T(32), and the
‘DVDLO’ micro-order] is gated to PAA. The result of the

addition, together with a new pair of multiple selection

bits, is gated to AB as a new partial remainder. The next
divisor multiple is selected per the carry condition of
PAL(28), the status of T(32) (which remains the same for
the entire divide operation), and the ‘DVDL1’ micro-

Table 3-3. Divide Multiple Values, Fixed-Point

order. Refer to Table 3-3 for the value of the divisor
multiple for all conditions.

Selection of the PQ bits and divisor multiples occurs as
just described until a complete byte of the PQ is available:
(1) the ‘DVDLO’ micro-order is issued, and the PQ bit
obtained from the last addition is stored into the odd
register location determined by E(14,15), (2) the next
divisor multiple is selected, placed in the adder, and added
to the partial remainder, and (3) a ‘DVDL1’ micro-order is
issued. The ‘DVDLI’ micro-order accomplishes the same
operation as the ‘DVDLO’ micro-order, except that it
places the PQ bit into the even GPR location per E(14,15)
and shifts the selected multiple left 1. (Refer to Sheet 3,
Diagram 5-110.)

When a byte of the PQ is obtained, it is transferred to S

~ per the STC, replacing those bits of the low-order half of

the dividend that have already been used. Operations
continue in the same manner; i.e., PQ bits are selected to
form a PQ byte, this byte is transferred to S, and the used
dividend bits are replaced until a complete quotient is
developed. ‘

Thirty-two reduction cycles are provided by the
fixed-point divide microprogram. To obtain a valid quo-
tient and remainder, tht_: absolute value of the dividend
and divisor must be so related that in 32 reduction cycles
the dividend can be reduced to a remainder whose value is
less than that of the divisor. If the highest-order signifi-
cant bit of the dividend is less than 31 bit positions to the
left of the highest-order significant bit of the divisor, the
quotient is in true form and a valid result is obtained. If
the highest-order significant bit of the dividend is more
than 30 bit positions to the left of the highest-order
significant bit of the divisor, the quotient is in 2’
complement form and an invalid result is obtained unless
the quotient is the maximum negative number
(10000......000). Valid results are stored, but invalid
results cause a program fixed-point divide interruption
and the original operands remain unchanged in storage.

When E(14,15) = 11 and the STC = 11 (when tested),
E(12-15) is incremented to 0000, the next-to-last PQ bit

Carry from PAL(28) T(32) Divide Multiple Micro-Order
Yes "~ No 1 0 ‘DVDLO’ ‘DVDLY
X X 2's complement of T. 2's complement of T shifted left 1.
X . X | T. T shifted left 1.
| X X 2's complement of T, ' 2'scomplement of T shifted left 1.
X X T. T shifted left 1.

346 (9/68)

is stored into F(6), and the last reduction cycle is taken
(Sheet 3, Diagram 5-110). The last PQ bit is taken from
the remainder in AB [A(28)] and is gated to SAL(7) [per
E(14,15) = 00 and the ‘DVDLO’ micro-order]. This action
completes the last byte in SAL, which is gated to S per the
STC.

A branch on divisor sign (STAT G) and quotient form
(true or 2’s complement, STAT C,) causes the
microprogram to enter 1 of 4 termination routines. The
purpose of the termination routines is to test for valid
results, to establish the quotient and remainder in the
proper form according to the proper sign, to store the
corrected remainder and quotient, and to end the
operation.

Sheet 6 of Diagram 5-110 is a flowchart of the
fixed-point divide termination routine if the quotient is in
true form. In this case, the quotient and remainder are
valid, and it is only necessary to store the results in the
proper form. (Positive results must be stored in true form
and negative results must be stored in 2’s complement
form, according to the convention of fixed-point arithmetic
and the rules of algebra.) Because the dividend was stored
in B and S in true form regardless of sign, the results may or
may not be in the correct form. It is therefore necessary to
branch on the original signs of the operands and on the
form of the results to achieve the proper form for the
results. If the remainder is in 2’s complement form, it is the
result of an overdraw, and must be corrected by adding the
divisor in true form before storing or complementing the
remainder according to the sign of the dividend.

Sheet 5 of Diagram 5-110 is a flowchart of the
fixed-point divide termination routine if the quotient is in
2’s complement form. If the quotient is in 2’s complement
form and it is the maximum negative number
(10000...... 000), the results are valid and the
termination routine must accomplish the same tasks as for
the true form termination. If the quotient is not the
maximum negative number, a program fixed-point divide
interruption is taken and the original operands remain
unchanged in storage.

When the quotient and remainder are valid and have been
converted to the proper form according to their algebraic
sign, the remainder is stored into the GPR per E(8—11) and
the quotient is stored into the GPR per E(8—11) + 1,
replacing the high-order and low-order halves of the
dividend respectively, and leaving the divisor unchanged in
storage. An end-op cycle is taken, finishing the operation.

Two examples of the fixed-point divide operation are
presented in Figures 3-8 and 3-9. These examples are the
inverse of the two fixed-point multiply examples (Figures
3-6 and 3-7). :

Divide, D (5D)

@ Divide 1st operand (in GPR per R1 and R1 + 1) by 2nd
operand (in storage) and place result into 1st operand
location (remainder in GPR per R1; quotient in GPR per
R1+1).

o RX format:

| s | mi| x2 | B2 | D2 |

0 78 naie 1516 19 20 31

\ J

,, —

Fetch high-order word of dividend
from GPR per R1 and place into B. length divisor (2nd operund)]
Fetch low-order word of dividend from main storage.
from GPR per R1 * 1 and place - *

Fetch doubleword [containg word-

into S.

Select word~-length divisor
from doubleword per D(21)
and place into T.

‘ ¥

Divide Band S by T. J

v

Store remainder into GPR per R1
and quotient into GPR per R1 + 1.

e Conditions at start of execution:
First 16 bits of instruction are in E.
High-order half of dividend (1st operand) isin S and T.
Low-order half of dividend, is in GPR per R1 + 1.
2nd operand address is in D.
Main storage request for 2nd operand has been issued
per D.

® D(21) determines which word of doubleword contains
divisor: if a 1, right word; if a 0, left word.

The Divide, D, instruction divides the contents of B
(high-order bits of dividend) and S (low-order bits of
dividend) by the contents of T (divisor). D(21) determines
which word of the doubleword fetched from main storage
contains the divisor: if a 1, right word; if a 0, left word.
Once the divisor is obtained from main storage, the
operation is identical to the operation of the DR
instruction (Diagram 5-110).

CONVERT

There are two fixed-point convert instructions, both in
the RX format: Convert to Binary and Convert to
Decimal. These instructions convert the radix of an
operand from decimal to binary and binary to decimal,

2065 FETOM (9/68) 347

the second operand is tested to see whether the proper
integral boundary has been specified. If the address is
located on an incorrect (non-doubleword) integral
boundary, a program specification interruption occurs.
The CVB operation is suppressed, and the data in LS and
in main storage remains unchanged. If no program specifi-
cation interruption occurs, the operation continues.

Recall that, at the start of execution, a storage request
for the second operand had been issued. At this time, the
data (doubleword operand) is present at the SDBO and is
gated into ST, destroying the first operand. The STC,
which selects the correct byte to be converted from ST, is
set to 000, thus selecting S(0—7). A

The contents of T (low-order half of the doubleword
operand) are transferred to the LSWR. (This data is
converted at a later time.) Because the converted data is
to be stored into T and D, they are now cleared. The first
byte (bits 0—7) of S is transferred to the serial adder B
bus. Bits 0—3 are transferred to SAL(0—3) and SAL(4—7)
and on to F. F now contains the first decimal digit to be
converted. :

As the decimal data from S is passed through the serial
adder to F, it is tested for invalid digits. If the digits are
invalid, STAT E is set and later, when tested, causes a
program data interruption, which terminates the operation.
If the digits are valid, the first decimal digit is transferred
from F(4—7) to PAB(60—63). The contents of D and T are
then transferred and shifted left 1 to PAA(7—30) and
PAA(31-62), respectively, and added to the decimal digit.
At this time, D and T contain zero.

The result of the addition, which is the decimal digit, is
transferred from PAL(8—63) to DT and from PAL(32—63)
to B(32--63). The contents of DT are then transferred to
PAA(8—63). The contents of B are now shifted left 2,
placed into PAB(4—65), and added to PAA. This action, in
effect, multiplies the original decimal digit by 5. The result
- of the addition is then transferred from PAL(8—63) to DT.
A byte from S is transferred to the serial adder B bus per
the STC. At this time, the byte transferred to the serial
adder is the first byte in S (STC = 000). This action allows
the second decimal digit to be placed into the serial adder.
From the serial adder, the data is sent to F. The STC is
increased by 1 so that the next byte from S can be
transferred when selected.

The second decimal digit, F(4—7), is transferred to
PAB(60—63). The contents of DT are then transferred to
PAA(7-62). This transfer shifts the converted data left 1,
in effect multiplying the original decimal digit by 10 (x5
and x2). PAA and PAB are added, and the result in
PAI(8-63) is transferred to DT. The contents of
PAL(32-63) are transferred to B(32—63).

The next byte in S (bits 8—15) is now transferred to F
via SAL. STAT D is then tested. If STAT D is set, it
indicates the low-order word of the doubleword operand is
being converted; if reset, the high-order word is being

' 3.50 (9/68)

converted. At this time, STAT D is reset. The STC is now
tested to see which byte of S is being worked on; the value
presently in the STC is 001. Because STAT D is reset and
the STC does not equal 011, operations continue in the
same manner as previously described; i.e., a decimal digit is
brought in and added to the sum of the converted digits,
and the result is multiplied by 10. This procedure continues
until all digits have been converted.

While the last two decimal digits of the high-order word
are being processed, STAT D is set to indicate the low-order
word. When the last decimal digit of the high-order word
has been transferred to F, the STC is set to 000; the
low-order word is transferred from the LSWR (where it was
stored at the beginning of the operation) to S and is
converted in the same manner as the high-order word.

When the low-order byte of the low-order word is
transferred from SAL to F, the sign is tested for validity,
setting STAT E if invalid. The state of STAT E is then
tested. If STAT E is set, a data-check condition exists and
an end-op cycle is taken, leaving the contents of LS
unaltered. If STAT E is not set, the sign of the number is
determined by [F(4—7)], and the last decimal digit is
converted. If F(4—7) is a plus sign, the converted data is
transferred from T to the GPR per E(8—11). If F(4—7) isa
minus sign, the converted data is first 2’s complemented
and then transferred from T to the GPR per E(8-11).
STAT G is then set if T(32) = 1. PAL(32—63) is tested for
all zero’s (T = 0), and a branch is made on the result of this
test.

The contents of D (overflow bits) are then transferred to
PAL(40—63), and PAL(32—63) is again tested for all zero’s
(D = 0). Note that D is not 2’s complemented when T is 2’s
complemented for a negative sign, and should always equal
zero unless an overflow occurred.

If T(32—63) = 0 and D(0—23) = 0, the result is zero and
a normal end-op cycle is taken. In all cases, if D(0—23) does
not equal 0, an overflow has occurred, a fixed-point divide
check condition exists and an end-op cycle is taken. If
D(0-23) = 0 and T(32—63) does not equal 0, a further test
is made to determine if the maximum positive or negative
number has been exceeded. If the decimal sign [F(4—7)]
was positive and T(32) = 1 (STAT G set), the maximum
positive number has been exceeded. If the decimal sign
[F(4—7)] was negative and T(32) = 0 (STAT G reset), the
maximum negative number has been exceeded. (For a
negative sign, the contents of T have previously been
changed to 2’s complement form.) In both of the above
cases, a fixed-point divide check condition exists and an
end-op cycle is taken. If the maximum number has not
been exceeded, an end-op cycle is taken, completing the
operation.

Note that even if an overflow condition is detected or if
the maximum positive or negative number has been
exceeded, the low-order 32 bits of the converted integer are
stored into the GPR per E(8—11) and the only indication is

the fixed-point divide check condition. If any decimal digit
or-the sign is invalid, a data check condition exists and the
operation is terminated without storing any data.

Convert to Decimal, CVD (4E)

o Convert radix of 1st operand (in GPR per R1) from
binary to decimal and place result into 2nd operand
location (in storage).

o RX format:

|« | rn| x2| 82 | D2 |

[78 ill 12 1516 1920 N

Fetch binary integer from GPR per R1.

Y

Convert binary data to decimal
digits (in BCD form).

Y

Store converted data (doubleword)
into main storage per 2nd operand
address.

e Conditions at start of execution:
First 16 bits of instruction are in E.
1st operand isin S and T.
2nd operand address is in D.

e Operand to be converted is 32-bit signed binary integer.
e Converted data is in packed decimal format.

e Positive sign is encoded as 1100 or 1010.

o Minus sign is encoded as 1101 or 1011.

The Convert to Decimal (CVD) instruction converts the
radix of the first operand (from GPR per R1) from binary
to decimal, storing the result into the second operand
location (in main storage). The number to be converted is
a 32-bit signed binary integer; the 31 binary bits yield 15
decimal digits in the packed format. The sign bit may be
encoded in two forms for both positive and negative
numbers. A positive sign may be 1100 or 1010; a minus
sign may be 1101 or 1011. The choice between the two
sign representations is determined by PSW(12).

A binary number is converted to decimal by parallel
decimal correct function, which operates from AB to the
parallel adder. The binary number being converted is
extracted one bit at a time from the most significant bit
to the least significant bit (left to right) and is added to a
previous partially converted decimal number. The
resultant number is first multiplied by 2, by shifting left
1, and then decimal-corrected. The parallel decimal-
correct function extracts 6 or O from the partially

converted number and adds the 6 or O to twice the
partially converted number so that the resulting decimal
number does not exceed the maximum decimal number of
9. This function is performed for each half-byte of
AB(28-63) for every add cycle. Table 34 lists the AB
bits and parallel adder bits used in the decimal-correct
function. The process of conversion is repeated until all
bits of the binary number have been examined. At the
completion of the conversion, the converted number is
shifted left 4, and the correct sign is placed into the
low-order bit positions. The example shown in Figure
3-10 illustrates the method of converting from binary to
decimal.

Table 3-4. Conversion to Decimal (Excess-6)

AB Bits Set Set PAB Bus Bits (+6)
A(28) PAB(29,30)
A(29,30) PAB(29,30)
A(29) and A(31) PAB(29,30)
B(32) PAB(33,34)
B(33,34) PAB(33,34)
B(33) and B(35) PAB(33,34)
B(36) PAB(37,38)
B(37,38) PAB(37,38)
B(37) and B(39) PAB(37,38)
B(40) ' PAB(41,42)
B(41,42) PABI(41,42)
B(41) and B(43) PAB(41,42)
B(44) PAB(45,46)
B(45,46) PAB(45,46)
B(45) and B(47) PAB(45,46)
B(48) PAB({49,50)
B(49,50) PAB(49,50)
B(49) and B(51) PAB(49,50)
B(52) PAB(53,54)
B(53,54) PAB(53,54)
B(53) and B(55) PAB(53,54)
B(56) PAB(57,58)
B(57,58) PAB(57,58)
B(57) and B(59) PAB(57,58)
B(60) PAB(61,62)
B(61,62) PAB(61,62)
B(61) and B(63) PAB(61,62)

Diagram 5-112, FEMDM, is a flowchart of the CVD
instruction. At the start of execution, the first 16 bits of
the instruction are in E, the first operand is in S and T, and
the second operand address is in D. The first portion of the
operation is devoted to testing for specification-check and
address-store~compare conditions. If a specification check is
present, a program specification interruption occurs and the
operation is suppressed. If an address-store-compare
condition occurs, the ‘PSC’ trigger is set and the operation
continues. The value of S(0) (sign of original binary
number) is set into STAT C. At the end of the operation,
STAT C is examined to determine the sign of the converted
number.

2065 FETOM (9/68) 3-51

Convert +146 Binary (92 Hex) to +146 BCD

1. SAL = 1001 0010 (shift left 1 after each addition).
2. Gate 6 or 0 to each half-byte of PAB per AB

bits (see Table 3-4).

AB
Remarks
52 53 54 55 | 56 57 58 59 60 61 62 63
0 0 0 O 0 0 0 O 0 0 0 O Gate 0 to each half-byte of PAB.
1 Hot carry to PAA(63) [SAL(0) = 1].
0 0 0 o© 0 0 0 0 0 0 0 1 Sum to AB and DT.
0 0 0 O 0 0 0 O 0 0 1 0 Gate DT left 1 to PAA,
0 0 00 0 0 0 O 0 0 0 o0 Gate 0 to each half-byte of PAB.
0 0 0 o0 0 0 0 o0 0 0 1 0 Sum to AB and DT.
0 0 0 O 0 0 0 O 0 1 0 O Gate DT left 1 to PAA,
0 0 0 © 0 0 0 o0 0 0 0 0O Gate 0 to each half-byte of PAB.
0 0 0 0 0 0 0 0 0 1 0 0 Sum to AB and DT,
0O 0 0 O 0O 0 0 O 1. 0 0 O Cate DT left 1 to PAA,
0 0 0 O 0 0 0 O 0 0 0 O Gate 0 to each half-byte of PAB.
, 1 Hot carry to PAA(63) [SAL(Q) = 1].
0 0 0 © 0 0 0 O 1.0 0 1 Sum to AB and DT.
0 0 0 O 0 0 0 1 0 0o 1 O Gate DT <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>