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Preface 

This manual describes the operation of the 2065 Processing 
Unit. It is assumed that the reader has a knowledge of 
processors, of ALD interpretation, and of the basic circuits 
used in the 2065. 

The EC levels of the ALD's and CLD's for the basic 
2065, upon which this manual and its companion 
maintenance diagram manual are based, are: 

ALD's: EC 705369 9/68 
CLD's: EC 705340 3/68 
Power: EC 711576 8/68 

The manual consists of two volumes, and is divided into 
six chapters and three appendices. Volume 1, Form 
Y27-2036-0, contains: 

Chapter 1, Introduction. Discusses system organization 
and data flow; character codes, instruction formats, 
and operands; program execution and. control; and the 
CPU functional units and the Universal instruction set. 

Chapter 2, Functional Units. Analyzes registers, adders, 
and counters individually, except for those units that 
work together to perform a specific function (for 
example, variable-field-length register and its associated 
byte counter). 

Volume 2, Form Y27-2037-0, contains: 
Chapter 3, Principles of Operation. Presents a detailed 

analysis of instruction fetching, and instruction 
execution by instruction class. 

Chapter 4, Features. Discusses the features available for 
the 2065 CPU. 

Chapter 5, Power Distribution and Control. Describes 
the power distribution and control . within the CPU 
(making a distinction between 2065's and 2060's that 
have been converted to 2065's) and within the system. 

Chapter 6, Console Controls and Maintenance Features. 
Discusses the controls on the system control panel and 
on the CE panel and their application, and the 
maintenance features available. 

Second Edition (May 1974) 

Appendix A, Special Circuits. Discusses the special 
circuits in the 2065. 

Appendix B, World Trade Differences. Discusses the 
major difference between the World Trade version of 
the Model 65 and the domestic version .. 

Appendix C, Example of FLT Generation. Discusses 
FLT generation, using a simple four-block tree as an 
example. 

Volume 2 also contains the index for the complete manual. 
Following most paragraph heads are bullets (key 

statements preceded by • ) which summarize significant 
points about the subject. The bullets serve two functions: 
( 1) they provide the CE with the key points of the topic, 
and (2) they provide quick reference for review and recall 
for the CE who is familiar with the machine. Detailed text 
follows, providing the non-classroom student with the fill-in 
material necessary for self-instruction. 

The diagrams supporting the text are divided into two 
groups: (1) purely instructional diagrams and (2) 
maintenance-oriented diagrams and diagrams that aid recall. 
Examples of the first group are high-level block diagrams 
and diagrams that show general data fl.ow and timing 
considerations. These diagrams are generally not affected 
by engineering changes, and, if they include AND/OR logic 
blocks, the blocks are drawn in positive logic convention 
and do not maintain ALD lines or line names. The 
instruction diagrams, which are placed in this manual and 
called "Figures", are numbered consecutively within a 
chapter. (For example, 1-1 is the first figure in Chapter 1; 
3-7 is the seventh figure in Chapter 3.) 

The diagrams of the second group are referenced in this 
manual (for example, Diagram 5-30, FEMDM) but are 
located in the companion FE Maintenance Diagrams 
Manual to allow ready reference during maintenance and to 
facilitate updating the diagrams to new engineering levels. 
These diagrams are grouped by categories similar to the 
chapters of this manual. 

This edition, SY27-2037-1, is.a reprint of SY27-2037-0, incorporating changes 
released in the following FE Supplement: 

SY27-2259 (dated October 16, 1969) 

Changes are periodically made to the information herein; any such changes will be 
reported in subsequent revisions or Technical Newsletters. 

This· manual has been prepared by the IBM System Products Division, Product 
Pubiications, Dept. B97, PO Box 390, Poughkeepsie, N.Y. ~2602. A form for 
readers' comments is provided at the !Jack of this publication. If the form has 
been removed, comments may be sent to the above address. Comments become 
the property of IBM. 

©Copyright International Business Machines Corporation 1969 
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The relationship of this manual to the FEMDM is shown 
below. (Arrows indicate cross-referencing between chapters 
in this manual and categorie~ of diagrams in the FEMDM: 
for example, most references in Chapter 3 are made to 
Category 5 diagrams.) 

2065 FE TOM (Vol 1) 
Form Y27-2036-0 

Chapter 1 
Introduction 

Chapter 2 
Functional Units 

2065 FETOM (Vol 2) 
Form Y27-2087-0 

Chapter 3 
Principles of Op­
eration 

Chapter 4 
Features 

Chapter 5 
Power Distribution 
and Control 

Chapter 6 
Console Controls and 
Maintenance Features 

Appendices A, B, and C 

Index for Volumes 1 
and 2 

AB register byte counter 
alternating current 

2065 FEMDM 
Form Y27-2038-0 

Category 1 
Diagnostic Techniques 

Category 2 
Error Conditions 
(Not required) 

Category 3 
Data Flow 

Category 4 
Functional Units 

Category q 
Operations 

Category 6 
Power Distribution 
and Control 

Category 7 
Features 

Category 8 
Console Controls and 
Mainteriance Features 

Index 

ABC 
ac 
adr 
ALD 
amp 
ASC 
ATN 

address, addressed, addressing 
automated logic diagram 
ampere 

BCD 
BCU 

address store compare 
alternate test number 

binary-coded decimal 
bus control unit 

Companion, related, and prerequisite manuals and 
standards are: 
2065 Processing Unit 

FEMDM, Form Y27-2038-0 
FEMM, Form Y27-2270-0 

IBM System/360 Principles of Operation, SRL, Form 
A22-6821-7. 

2065 Processing Unit, 7070/7074 Compatibility Feature 
FETOM, Form Y27-2106-0 
FEDM, Form Y27-2107-0 

2065 Processing Unit, 7080 Compatibility Feature 
FETOM, Form Y27-2090-0 
FEDM, Form Y27-2091-0 

2065/2067 Processing Unit, 709/7040/7044/7090/7094/ 
709411 Compatibility Feature 

FETOM, Form Y27-2098-0 
FEDM, Form Y27-2099-0 

2365 Processor Storage 
FETOM, Form Y22-6608-0 
FEDM, Form Y22-6601-1 
FEMM, Form Y22-6600-l 

2361 Core Storage 
FETOM, Form Y22-2897-0 
FEDM, Form Y22-2895-0 
FEMM, Form Y22-2894-0 

2860 Selector Channel 
FETOM, Form Y27-2220-0 
FEMDM, Form Y27-2221-0 
FEMM, Form Y22-2893-1 

2870 Multiplexer Channel (70,000 Series) 
FETOM, Form Y27-2152-0 
FEDM, Form Y27-2153-0 
FEMM, Y27-2154-0 

1052 Adapter and 2150 Console, FETOM, Form Y22-2808 
SLT Component Circuits, FEMI, Form Z22~2798 (IBM 

Confidential) 
SLT Power Supplies, FEMI, Form 223-2799 
SLT Packaging, FEMI, Form 223-2800 
Control Automation System (CAS) Logic Diagram (CLD}, 

IBM Corporate Engineering Standard, CES 0-1046-4 

c 
CAW 
CB 
cc 
ccw 
CE 
charistic 
CLD 
CPU 
CR 

capacitor 
channel address word 
circuit breaker 
condition code 
channel command word 
customer engineer 
characteristic 

Abbreviations 

control automation system logic diagram 
central processing unit 
diode 
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CROS capacitive read-only storage op code operation code 
csw channel status word op er operation 
CT conditional terminate opr operand 

de direct current p parity 

dee div decimal divide PAA parallel adder A-side 

dee ovflo decimal overflow PAB parallel adder B-side 

DX first byte in a series of destination bytes PAL parallel adder latch 

DX+ 1 second byte in a series of destination bytes pf picofarad 

DX+2 third byte in a series of destination bytes PK ~ower contactor 
pp partial product 

end op end operation PQ partial quotient 

EPO emergency power off priv oper privileged operation 

ERSLT expected result prot protection 

exp ovflo exponent overflow PS power supply 

exp unflo exponent underflow PSW program status word 

R resistor 

F fuse ROS read-only storage 

FEMDM Field Engineering Maintenance Diagrams Manual ROSAR read-only storage address register 

FEMI Field Engineering Manual of Instruction ROSBR read-only storage backup register 

FEMM Field Engineering Maintenance Manual ROSDR read-only storage data register 

FE TOM Field Engineering Theory of Operation Manual ROSPARA read-only storage previous address register A 

fix-pt div fixed-point divide ROSPARB read-only storage previous address register B 

fix-pt ovflo fixed-point overflow 
FLT fault locating test SAA serial adder A-side 

flt-pt div floating-point divide SAB serial adder B-side 

FLUT Fault Locating Utility program SAB storage address bus 

FPR floating-point register SAL serial adder latch 

fract fraction SAR storage address register 
SBA serial adder bus A 
SBB serial adder bus B 

GIS general initialization sequence SCOPEX scoping index 

GPR general-purpose register SCR silicon-controlled rectifier 
SDBI storage data bus in 

hex hexadecimal SDBO storage data bus out 

HSS high-speed storage sign if significance 

Hz Hertz SLT solid logic technology 
SMS standard modular system 
SOROS scan out read-only storage 

IC instruction counter spec specification 

I-Fetch instruction fetching SRL Systems Reference Library 

ILC instruction length code STAT status trigger 
I/O input/output STC ST register byte counter 
IPL initial progran1 load stg storage 

SWBD switch board 
K kilo sync synchronizing 
K relay 
kHz kilohertz T transformer 

T(DX) table byte specified by DX 
LAL local storage address latches T(DX + 1) table byte specified by DX+ 1 
LAR local storage address register TIC transfer in channei 
LCS large capacity storage TN test number 
LS local storage 
LSWR local storage working register uf microfarad 

usec microsecond 
MAR memory address register UT unconditional terminate 
max maximum 
MCW maintenance control word v volt 
mHz megahertz VFL variable•field length 
MMSC maintenance mode stop clock 
MPR multiplier > greater than or equal to 
ms millisecond > greater than or equal to 
multisys multisystem ~ less than or equal to 

< less than or equal to 
no op no operation = equal to 
ns nanosecond ;l not equal to 
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Chapter 3 Principles of Operation 

SECTION 1 INSTRUCTION FETCHING 
Basic End-Op Cycle . . . . . . . . . . 

Prefetching of Operands During End Op 
Fetching of Instructions by End-Op Micro-Order 

Requests During End Op . • . 
Requests During Early End Op 

Selection of I-Fetch Microprogram 
Basic RR I-Fetch 
Basic RX I-Fetch 

·Basic RS and SI I-Fetch 
Basic SS I-Fetch . . . 

Address Storage Compare (ASC) Test 
I-Fetch Microprogram ..... . 

I-Fetch Control If at End Op IC(21,22) = 00 
I-Fetch Control If at End Op IC(21,22) = 01 
I-Fetch Control If at End Op IC(21,22) = 10 
I-Fetch Control If at End Op IC(21,22) = 11 

Deviations from Basic End Op and I-Fetch 
I-Fetch Sequencers 
Block I-Fetch Trigger . . . . . .. 
Timer Exceptional Condition . . . . 
CPU Store In Progress Exceptional Condition 
Machine Check Interruption 
Program Interruption 
Supervisor Call Interruption 
External Interruption 
I/O Interruption . . . . . 
Common Interruption Routine 
Stop, Wait, and Repeat Exceptional Conditions 
Program Store Compare Exceptional Condition 
Invalid Instruction Address Test Exceptional 

Condition ...... . 
Specification Detection 
Invalid Address Detection 
Fetch Protection Detection 
Invalid Instruction Address Microprogram 

Q·Register Refill Exceptional Condition 
Two-Cycle RR I-Fetch ... 
Forced-Cycle RX I-Fetch .. 
Two-Cycle RS and SI I-Fetch 

SECTION 2 FIXED-POINT INSTRUCTIONS 
Load ...•. 

Load, LR (18) 
Load, L (S8) . 
Load Halfword, LH (48) 
Load and Test, LTR (12) 
Load Complement, LCR (13) 
Load Positive, LPR (10) 
Load Negative, LNR (11) 
Load Multiple, LM (9S) 

Add-Type Instructions .. 
Add,AR(lA) 
Add,A(5A) .•.•. 
Add Halfword, AH (4A) 
Add Logical, ALR (lE) 
Add Logical, AL (5E) 
Subtract, SR (lB) . . 

. 3-1 

. 3·1 

. 3-1 

. 3-2 

. 3.3 

. 3.3 

. 3.3 

. 3-4 

. 3.5 

. 3-6 

. 3-6 

. 3.7 

. 3.9 

. 3.9 

. 3-11 

. 3-12 

. 3-12 

. 3-12 

. 3-12 

. 3-12 

. 3-13 

. 3-14 

. 3-14 

. 3-14 

. 3-lS 

. 3-15 

. 3-16 

. 3-16 

. 3-17 
3·17 
3-17 

3-18 
• 3-lS 
. 3-19 
. 3-21 
. 3-21 
. 3-22 
. 3-23 
. 3-24 
. 3-24 

. 3-2S 

. 3-2S 

. 3-is 

. 3·2S 

. 3•26 

. 3-27 

. 3-27 

. 3-2S 

. 3·2S 

. 3·29 

. 3-30 

. 3•31 

. 3-31 

. 3-31 

. 3-32 

. 3.33 

. 3.33 

Contents 

Subtract, S (5B) . 3.34 
Subtract Halfword, SH (4B) . 3.34 
Subtract Logical, SLR (lF) . 3.35 
Subtract Logical, SL (SF) . 3.35 
Compare, CR (19) . 3-36 
Compare, C (S9) . 3-36 
Compare Halfword, CH (49) . 3.37 

Multiply . 3.37 
Multiply, MR (lC) . 3-3S 
Multiply, M (SC) . 3-42 
Multiply Halfword, MH (4C) . 3-42 

Divide . 3-42 
Divide, DR (lD) . . 3-43 

General Discussion . 3-44 
Detailed Discussion . 3-4S 

Divide, D (SD) . 3-47 
Convert . 3-47 

Convert to Binary, CVB (4F) . 3-51 
Convert to Decimal, CVD ( 4 E) . 3-Sl 

Store . 3.53 
Store, ST (SO) . 3·S3 
Store Halfword, SIB (40) . 3.54 
Store Multiple, STM (90) . 3·5S 

Shift . 3·56 
Shift Left Single, SLA (8B) · . 3-S6 
Shift Left Double, SLDA (SF) . 3-58 
Shift Right Single, SRA (SA) . 3-60 
Shift Right Double, SRDA (SE) . 3-61 

SECTION 3 FLOATING-POINT INSTRUCTIONS . 3-63 
Exponent Overflow and Underflow . 3-63 
Zero ResUlts . 3-63 
Conditions at Start of Execution . 3-64 
Load • 3-64 

Load, LER (38) - RR Short Operands . 3-64 
Load, LE (7S) - RX Short Operands • 3-64 
Load, LDR (2S) - RR Long Operands . 3-6S 
Load, LD (6S) - RX Long Operands . 3-6S 
Load and Test, LTER (32) - RR Short Operands . 3-66 
Load and Test, LTDR (22) - RR Long Operands . 3-66 
Load Complement, LCER (33) - RR Short Operands . 3-67 
Load Complement, LCDR (23) - RR Long Operands . 3-67 
Load Positive, LPER (30) - RR Short Operands . 3-6S 
Load Positive, LPDR (20) - RR Long Operands . 3-68 
Load Negative, LNER (31) - RR Short Operands . 3-68 
Load Negative, LNDR (21) - RR Long Operands . . 3-69 

Add, Subtract, and Compare . 3-69 
Add Normalized, AER (3A) - RR Short Operands . 3.71 
Add Normalized, AE (7A) - RX Short Operands . 3.75 
Add Normalized, ADR (2A) - RR Long Operands . 3-76 
Add Normalized, AD (6A) - RX Long Operands . 3.77 
Add Unnormalized, AUR (3E) - RR Short Operands . 3-78 
Add Unnormalized, AU (7E) - RX Short Operands . 3-78 
Add Unnormalized, A WR (2E) - RR Long Operands . 3.79 
Add Unnormalized, AW (6E) - RX Long Operands . 3•79 
Subtract Normalized, SER (3B) - RR Short 

Operands . 3-80 
Subtract Normalized, SE (7B) - RX Short 

Operands .. . 3-81 
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Subtract Normalized, SDR (2B) - RR Long 
Operands ............ . 

Subtract Normalized, SD (6B) - RX Long 
Operands ............ . 

Subtract Unnormalized, SUR (3F) - RR Short 
Operands .............. . 

Subtract Unnormalized, SU (7F) - RX Short 
Operands .............. . 

Subtract Unnormalized, SWR (2F) ~ RR Long 
Operands .............. . 

Subtract Unnormalized, SW (6F) - RX Long 
Operand ............ . 

Compare, CER (39) - RR Short Operands 
Compare, CE (79) - RX Short Operands 
Compare, CDR (29) - RR Long Operands 
Compare, CD (69) - RX Long Operands 

Halve .............. . 
Halve, HER (34) - RR Short Operands 
Halve, HDR (24) - RR Long Operands 

Multiply ...........•.. 
Data Flow and Algorithm . • . . . . 
Multiply, MER (3C) - RR Short Operands 
Multiply, ME (7C) - RX Short Operands 
Multiply, MDR (2C) - RR Long Operands 
Multiply, MD (6C) - RX Long Operands 

Divide .....•.... 
Characteristic Computation 
Normalization 
Fraction Division 
Data Flow and Algorithm . 
Divide, DER (3D) - RR Short Operands 
Divide, DE (7D) - RX Short Operands . 
Divide, DDR (2D) - RR Long Operands 
Divide, DD (6D) - RX Long Operands 

Store . . . . . . . . . . . .... 
Store, STE (70) - RX Short Operands 
Store, STD (60) - RX Long Operands 

SECTION 4 DECIMAL INSTRUCTIONS 
Instruction Handling . . . . 
Word Overlap Condition 
General Initialization Sequence 
Add, Subtract, and Compare 

Add, AP (FA) and Subtract, SP (FB) 
GIS for Add and Subtract 
True Add Sequence 
Complement Add Sequence 

Compare, CP (F9) . . 
Zero and Add, ZAP (F8) 
Multiply, MP (FC) . . 
. General Description 

Detailed Description 
Divide, DP (FD) . . . 

General Description 
Detailed Description 

Pack, PACK (F2) 
Instruction Execution, Not Word Overlap 
Instruction Execution, Word Overlap .. 

Unpack, UNPK (F3) ..••...... 
Instruction Execution, Not Word Overlap 
lnstruction Execution, Word Overlap .. 

Move With Offset, MVO (Fl) . . . . . . 
Instruction Execution, Not Word Overlap 
Instruction Execution, Word Overlap •. 
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3-81 

3-82 

3-82 

• 3-83 

3-83 

3-84 
3-84 
3-85 
3-85 
3-86 
3-86 
3-86 
3-87 
3-87 
3-88 
3-91 
3-92 
3-93 
3-93 
3-94 

. 3-95 
3-96 
3-96 
3-98 
3-100 
3-101 
3-102 
3-103 
3-104 
3-104 
3-105 

3-106 
3-106 
3-107 
3-109 
3-109 
3-109 
3-110 
3-110 
3-113 
3-114 
3-115 
3-116 
3-118 
3-124 
3-125 
3-128 
3-134 
3-137 

. 3-138 
3-139 

.3-139 
3-140 
3-141 

. 3-141 

. 3-142 
• 3-142 

SECTION 5 LOGICAL INSTRUCTIONS 
General Initialization Sequence 
Move ..... . 

Move, MVI (92) . . . . . 
Move, MVC (D2) 
Move Numerics, MVN (Dl) 
Move Zones, MVZ (D3) 

Compare ........ . 
Compare Logical, CLR (15) 
Compare Logical, GL (55) 
Compare Logical, CLI (95) 
Compare Logical, CLC (D5) 

AND . . . . . .· 
AND,NR (14) 
AND,N (54) . 
AND, NI (94) . 
AND,NC(D4) 

OR ..... 
OR, OR (16) 
OR, 0 (56) . 
OR, 01 (96) 
OR, OC (D6) 

Exclusive-OR . 
Exclusive-OR, XR (17) 
Exclusive-OR, X (57) 
Exclusive-OR, XI (97) 
Exclusive-OR, XC (D7) 

Test Under Mask, TM (91) 
Insert Character, IC (43) 
Store Character, STC (42) 
Load Address, LA (41) . 
Translate, TR (DC) 
Translate and Test, TRT (DD) 
Edit and Edit and Mark, ED and EDMK (DE and DF) 

Introduction to Edit Operation 
Introduction to Edit and Mark Operation 
General Data Handling . . 
Microprogram Description 

First Cycle . • 
Second Cycle . 
Exit Conditions 

Shift . . ..... 
Shift Left Single, SLL (89) 
Shift Left Double, SLDL (8D) 
Shift Right Single, SRL (88) 
Shift Right Double, SRDL (SC) 

SECTION 6 BRANCHING INSTRUCTIONS 
Branch on Condition, BCR (07) 

Successful Branch . . . . 
Unsuccessful Branch . . . 

Branch on Condition, BC (47) 
Branch and Link, BALR (05) 

Unsuccessful Branch . . 
Successful Branch . . . . 

Branch and Link, BAL (45) . 
Branch on Count, BCTR (06) 

Successful Branch . . . 
Unsuccessful Branch . . , 

Branch on Count, BCT (46) . 
Branch on Index High, BXH (86) 
Branch on Index Low or Equal, BXLE (87) 
Execute, EX (44) . . . . . • . . ••• 

3-144 
3-144 
3-144 
3-144 
3-144 
3-145 
3-146 
3-147 
3-147 
3-147 
3-147 
3-148 
3-148 
3-149 
3-149 
3-150 
3-150 

. 3-150 
• 3-151 

3-151 
3-151 
3-152 
3-152 
3-152 
3-153 
3-153 
3-153 
3-154 
3-154 
3-154 
3-155 
3-155 
3-156 
3-158 
3-158 
3-160 
3-160 
3-161 
3-161 
3-161 

. 3-161 

. 3-162 

. 3-162 

. 3-162 
• 3-162 
• 3-162 

3-164 
3-164 
3-164 

. 3-165 

. 3-165 

. 3-166 

. 3-166 
3-167 

. 3-168 

. 3-169 
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. 3-170 
3-170 

. 3-170 

. 3-172 

. 3-173 



SECTION 7 STATUS SWITCHING INSTRUCTIONS 
Load PSW, LPSW (82) 
Set Program Mask, SPM (04) 
Set System Mask, SSM (80) 
Supervisor Call, SVC (OA) . 
Set Storage Key, SSK (08) 
Insert Storage Key, ISK (09) 
Write Direct, WRD (84) 
Read Direct, RDD (85) 
Diagnose (83) . . . 
Test and Set, TS (93) • 

SECTION 8 INPUT/OUTPUT INSTRUCTIONS 
Start I/0, SIO (9C) 
Test 1/0, TIO (9D) • • • 
Halt 1/0, HIO (9E) • • • 
Test Channel, TCH (9F) 

Chapter 4 Features 

SECTION 1 FEATURE INDEX 

SECTION 2 MULTIPROCESSING FEATURES 
Multiprocessing System/360 Model 65 

Main Storage . . • • 
Storage Allocation . . . . 
Floating Addressing . . . 
Direct Address Relocation 

Input/Output . • . 
Processing Units • . 

Multisystem Mode 
Model 65 Mode • 
Partition Mode . 
Multisystem Signals .. 
Summary of Multiprocessing System 

Advantages . . . . • 
Functional Units ..... . 

Configuration Control Panel . 
Storage Allocation Control 
Floating Address Control • • • 
Direct Address Relocation Control . 
Multiprocessing System Mode Control 
I/O Allocation Control . . . . . . . 

BCU Modifications . . . . . . . . . 
Storage Address Decoding with PrefiXing 

Disabled ............ . 
Storage Address Decoding with Prefixing 

Enabled ..•... 
· I11valid Storage Address 

BCU-Storage Operations 
Multisystem Timer •. 

Operation •.•..• 
System Hang Timing . • 
External System Reset Timing 

Multisystem Operations . . . . . . . • . . . . 
Set System Mask Instruction (Multisystem Mode) 
Write Direct Instruction (Not Model 65 Mode) 
Read Direct Instruction (Not Model 65 Mode) 
Malfunction Alert 
Gated Load ... 
System Call • . . 
Log I/O Interrupt 
External System.Reset 
External Start . . . . . 

Power Distribution and Control 
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. 3-177 
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. 3-180 
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. 3-182 
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• 4-10 
. 4-10 
. 4-10 
. 4-11 
. 4-11 
. 4-11 
. 4-11 
. 4-12 
. 4-12 
. 4-12 
. 4-13 

Console Controls and Maintenance Features . 4-13 
Configuration Control Panel • . 4-13 

Storage Allocation Switches . 4-13 
Floating Address Switches ·. . 4-13 
PREFIX Switches . 4-13 
CPU Mode Switches . 4-13 
I/O Allocation Switches . 4-14 
VALID ADDRESS Indicators . 4-14 

System Control Panel Modifications, 
Multisystem Feature . 4-14 

EMERGENCY PULL Switch • 4-14 
POWER ON Pushbutton • 4-14 
Marginal Voltage Control . 4-14 
DISABLE INTERVAL TIMER Switch • 4-14 
DISABLE DIRECT CONTROL Switch . 4-14 
Storage Switches . 4-14 
Indicators ' . 4-14 

System Control Panel Modifications, 
Additional Storage Attachment Features . 4-15 

Marginal Voltage Control . 4-15 
POWER CHECK Indicators . 4-15 
STORAGE INDICATE SWITCH and Indicators . 4-15 

Logout and Scan In . 4-15 

Chapter 5 Power Distribution and Control . 5-1 
AC Power Distribution . 5-1 

60-Hz Units . 5-1 
50-Hz Units . 5-1 
Converter/Inverter . 5-1 

DC Power Distribution . 5-4 
High-Frequency Regulator Modules . 5-4 
Marginal Adjustments . 5-6 

Power-On Sequence . S-6 
Power-Off Sequence . 5-8 

Normal Power-Off 5-8 
Emergency Power-Off . 5-8 
Automatic Power-Off • 5-9 

Overcurrent Protection . 5-9 
Overvoltage Protection • 5-9 

Positive Regulators, Converted Units . 5-10 
Negative Regulators, Converted Units • 5-10 

Undervoltage Protection . 5"11 
Thermal Protection . . 5-11 

Indicators . 5-11 
System Power-On Indicator . 5-11 
Power Check Indicators . 5-11 
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This chapter, which discusses the 2065 CPU instructions, 
is divided into eight sections: 

Section 1, Instruction Fetching. 
Section 2, Fixed-Point Instructions. 
Section 3, Floating-Point Instructions. 
Section 4, Decimal Instructions. 
Section 5, Logical Instructions. 
Section 6, Branching Instructions. 

Section 1. Instruction Fetching 

Basic control for the instruction fetching (I-Fetch) opera­
tion is derived from one of four possible microprograms, 
depending on the format of the instruction bclng fetched. 
Each microprogram performs routines dictated by the 
instruction format (RR, RX, RS and SI, or SS) and is 
therefore common to many instructions. {The same 
microprogram governs the I-Fetch of RS and SI Instruc­
tions.) Subsequently, a branch is made to an appropriate 
microprogram for execution of a specific instruction. 
These individual execution sequences all terminate with a 
branch back to the I-Fetch microprogram to continue the 
sequence. 

A typical microprogram sequence is shown in Figure 
3-1. The correct I-Fetch microprogram to be entered upon 
completion of an instruction is dependent on the format 
of the instruction to be executed next. A test for the 
format of the upcoming instruction is made on the last 

Chapter 3. Principles of Operation 

Section 7, Status Switching Instructions. 
Section 8, 1/0 Instructions. 

Machine operation during instruction fetching and 
execution is controlled by ROS microprograms which are 
represented by CLD's. The discussions in the following 
sections are based upon simplified versions of the CLD's 
and upon upper-level, positive-logic diagrams located in 
the associated FEMDM. 

cycle of the execution phase. The various actions per­
formed during this last cycle (called the end operation or 
end-op cycle) must be thoroughly understood before 
undertaking a detailed analysis of each I-Fetch sequence. 

BASIC END-OP CYCLE 

• End-op cycle completes ex(lcution of instruction and 
initiates fetching of next instruction. 

• End-op cycle is governed by normal end-op or branch 
end-op ROS word. 

• Branch end op is used to speed execution of branch-
type operations. 

The end-op cycle is the last cycle in the execution phase. 
During this cycle, actions dictated by the execution phase 
of the instruction are completed and the fetching of the 

14---1-Fetch-----Execution ---., 
I 

CPU Cycle 

I-Fetch 
Micro-Orders 

: NEOP 
I 

INEXT­l INST*IC 
EXCEP 

i 

I 
I E(02-07) 
\-ROA 
I 
! 

Figure 3-1. Typical Microprogram Sequence 

__., End Op '4---
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~ 
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next instruction begins. The execution phase is completed 
by setting the CC (if specified in the instruction) and by 
detecting interruptions or exceptional conditions that 
may have occurred during the execution phase. (The 
recovery microprograms are discussed after the basic 
end-op and I-Fetch sequences.) 

The instruction fetching begins by: 
1. Decoding the format of the upcoming instruction. 
2. Initiating the operand fetch required by that format. 
3. Establishing the correct I-Fetch sequence which is to 

follow. 
4. Detecting the need for more instructions, and request­

ing new .instructions from main storage when the need 
exists. 

This discussion deals with those end-op actions that 
affect the subsequent I-Fetch sequence. Although instruc­
tion fetching begins during the end-op cycle, the next 
cycle is defined as the first I-Fetch cycle. 

The setting of the CC affects the su:bsequenf I-Fetch 
only when the upcoming instruction is a Branch on 
Condition instruction. Depending on the CC, new instruc­
tions may be requested from D (condition met) or from 
the IC (condition not met). The manner in which the CC 
is set is discussed in the specific execution sequences 
described in this chapter (Sections 2 through 8). 

The actions performed during the end-op cycle are 
governed by two basic ROS end-op words: normal end-op 
and branch end-op. (Although they perform different 
functions during end-op, they perform the same functions 
for the subsequent 1-Feteh sequence.) The normal end-op 
word is in control of the end operation if the address of 
the next instruction is specified by the IC. The next 
instruction is decoded from R. Conversely, the branch 
end-op word is in control if the address of the next 
instruction is specified by D. In this case, the next 
instruction is decoded from the SDBO (the effective R) at 
the start of the end operation. 

The primary function of the branch end-op word is to 
fulfill specific timing requirements imposed upon execu­
tion of some branch instructions (see Section 6 of this 
chapter). Two conditions lead to a branch end-op micro­
order: 
1. Sometimes upon execution of a successful branch, 

end-op takes place before the address of new instruc­
tions (in D) has been transferred to the IC. In such 
cases, the branch end-op word is always in control. To 
establish the correct I-Fetch microprogram for the next 
instruction, the branch end-op word samples D(21,22) 
and the effective-R(O,l) bits; i.e., bits 0 and 1 of the 
op-code halfword to be transferred to R are sampled 
directly from the SDBO. Thus, the I-Fetch micro­
program for the next instruction is established as soon 
as the instructions (specified by the branch) arrive 
from main storage. 

2. Except for the Branch on Condition instructions, the 
CPU assumes that all branches are successful. Accord-
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ingly, upon predecoding a branch instruction, the CPU 
inhibits any IC request to refill Q and, instead, requests 
instructions per the branch address (in D). If, during 
execution, the branch proves to be unsuccessful, the 
instructions accessed by the D-request are not gated 
into Q, and the CPU must resume processing of the 
instructions specified by the IC. At this time it may be 
found .that· the unsuccessful branch was the last 
instruction in Q. Although a request per the IC is 
immediately generated, at least three cycles (main 
storage access time) must elapse before the CPU can 
resume normal processing. Also, because the format of 
the instruction is usually decoded from R(O;l), addi­
tional time would be lost if the first halfword (arriving 
from main storage) had to be gated to R before the 
I-Fetch microprogram for the instruction could be 
established. Under Sl.lch conditions, use of the branch 
end-op word increases the speed in establishing the 
I-Fetch microprogram for the next instruction. The 
instruction address (in the IC) is temporarily trans­
ferred to D. Instead of° sampling R(0,1) the branch 
end-op word samples the effective-R(0,1) to establish 
the correct I-Fetch microprogram immediately upon 
arrival of the instructions from main storage. 

Prefetching of Operands During End Op 

• For RR instructions, one LS register is accessed by RI 
field if not a branch instruction; by R2 field if branch 
instruction. 

• For RX, RS, SI, and SS instructions, one LS register is 
accessed by B·field. 

During the end-op cycle, R contains the op-code halfword 
of the next instruction. The format of the instruction is 
established by sampling R(O,l), and the operand prefetch 
dictated by that format is initiated. The end-op cycle is 
completed with the 'R~E' micro-order, which transfers 
the op-code halfword to E at the start of the I-Fetch 
sequence. 

The scheme for prefetching operands during end-op 
time is shown in Diagram 5-1, FEMDM. During this time, 
an LS register specified in the R or B field of the 
upcoming instruction is addressed and transferred to T. 
The desired LS register is addressed by gating the 
appropriate field of the instruction to LAL. Ingating to 
LAL is initiated by the 'NEOP' micro-order in the normal 
end-op word or by the 'BEOP' micro-order in the branch 
end-op word. 

The format of the upcoming instruction is established 
by decoding R(0,1): 

R(0,1) 

00 

01 

10 

11 

Instruction Format 

RR 

RX 

RS or SI 

SS 



When an RR format is decoded, a further test is 
performed to determine whether the upcoming instruc­
tion is a branch. If the instruction is not a branch, the Rl 
field [R(S-11)] is gated to LAL. For an RR branch, 
however, the R2 field [R(12-15)] is gated to LAL. This 
action is necessary because, for branch instructions, R2 
specifies the LS register containing the branch address. 
Since in this case a storage request for new instructions 
must be made as soon as possible, R2 must be gated to 
LAL first. 

When an RX, RS, SI, or SS format is decoded, a test is 
made to determine which of the four halfword positions 
in Q contains the second halfword of the upcoming 
instruction. The B-field of the selected halfword is then 
always gated to LAL. Selection of the correct halfword in 
Q depends upon the ROS word (branch or normal) in 
control of the end-op. The normal end-op word specifies 
that the address of the upcoming instruction is contained 
in the IC. In this case, IC(21,22) indicates the Q portion 
from which the first halfword of the instruction has been 
transferred to R. Consequently, these bits are decoded to 
select the second halfword of the instruction in Q. The 
branch end-op word is in control when the address of the 
upcoming instructions is in D. Because in this case 
D(21,22) points to the correct Q position, these bits are 
used to select the correct B-field in Q. 

Prefetching of operands from LS is from locations 
0-15 (decimal), unless an RR fonnat, floating-point 
instruction has been predecoded. In this case, the FPR 
addressed by Rl is selected by forcing LAL(O) to 1. The 
contents of the LS register accessed during the end-op 
cycle are always transferred to T. This action is perfonned 
by the '-,)-T' micro-order in the end-op word. Thus, at the 
start of an I-Fetch sequence, T always contains an 
operand (per R-field) or the base portion of an operand 
address (per B-field). 

At the completion of an end-op cycle, the halfword 
containing the op code of the instruction is transferred to 
E (initiated by the 'R-,)-E' micro-order in the end-op 
word). Thus, further operand prefetching (by the 
subsequent I-Fetch sequence) is perfomied with the op 
code in E. 

Fetching of Instructions by End-Op Micro-Order 

A test to establish whether new instructions are required 
is always performed during end op. If the upcoming 
instruction is not a branch and Q needs to be refilled, a 
request for new instructions is generated at end op. If the 
upcoming instruction is a branch, the storage request is 
blocked during end op. 

Under certain conditions, it is possible to request new 
instructions from main storage one or two cycles before 
end-op. This action is initiated by the 'early end-op' 
(EEOP) micro-order, contained in the execution se· 

quences . of some instructions. All execution sequences, 
including those with the 'EEOP' micro-order, terminate 
with the end-op word. 

A Q-register refill exceptional condition usually follows 
an end-op request for new instructions. This exceptional 
condition adds one cycle to the. basic RR, RX and RS, 
and SI I-Fetch routines. 

Requests During End Op 

During the end-op cycle, a test is made to establish 
whether Q needs to be refilled with new instructions. The 
outcome of this test depends upon the format of the 
upcoming instruction, on its position in Q, and on 
whether it is a branch or the subject instruction of an 
Execute instruction. 

As shown in Diagram 5-2, FEMDM, a test of the status 
of Q is initiated by the normal end-op (NEOP) or branch 
end-op (BEOP) micro-order contained in the normal or 
branch end-op word, respectively. Upon the decoding of 
the 'NEOP' micro-order, IC(21,22) is sampled to establish 
which halfword position in Q has been transferred to R. 
The same function is performed by the 'BEOP' 
micro-order when the address of the upcoming instruction 
is contained in D. In this case, D(21,22) is examined to 
establish which halfword in Q is to be processed next. 
Depending on the instruction format decoded from 
R(0,1), and if the upcoming instruction is neither a 
branch nor the subject of an Execute instruction, storage 
requests per the IC may be generated when the first, 
second, or third halfword position in Q is to be processed 
next. 

Q-Position Setting of 
Transferred IC(21,22) I nstruci:ion Type of 

to R or 0(21,22) Format Request 

1st 00 SS 4-cycle 

2nd 01 SS 4-cycle 

RX,RS, 3-cycle 
or SI 

3rd 10 All formats 3-cycle 

4th 11 All formats None 

Q has already been refilled during the instruction being 
completed if bits 21 and 22 = 11; therefore, another 
refilling of Q is not necessary. 

Requests During Early End Op 

Execution sequences of some instructions contain the 
'EEOP' micro-order. The function of this micro-order, 
which is given 1 or 2 cycles before the 'NEOP' 
micro-order, is to examine the instruction status in Q and 
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to initiat.e an early storage request if Q needs refilling. 
Requests initiated by the 'EEOP' micro-order are blocked 
if the next instruction to be executed is (1) a branch 
instruction, (2) an SS instruction, or (3) a subject of an 
Execute .instruction. 

Early requests to refill Q are generated according to 
conditions shown in Diagram 5-3, FEMDM. The normal 
end-op request is blocked when an early request is in 
progress. Note that the 'EEOP' micro-order can only 
initiate a 4-cycle request. The advantage of an early 
request is that the BCU will address main storage 1 or 2 
cycles before end op. When initiated 2 cycles before end · 
op, the refilling of Q does not force the Q-register refill 
exceptional condition if the instruction being fetched is of 
the RR or indexed RX format or is a shift instruction. 

Selection of l·Fetch Microprogram 

• Selection of I-Fetch sequence is controlled by 
'NEXT~INST*IC' micro-order during normal end op or 
by 'NEXT-INST*D' micro-order during branch end op. 

• 'NEXT-INST*IC' micro-order specifies functional ROS 
branch per R(0,1), IC(21,22), B = 0, and X2 = 0. 

• 'NEXT-INST*D' micro-order specifies functional ROS 
branch per effective-R(0,1), D(21,22), B = 0, and X2 = 
0. 

The correct I-Fetch sequence is entered by establishing 
the address of the first ROS word in that sequence. This 
address is then placed into ROSAR so that the desired 
ROS control word may be obtained on the following 
cycle. 

ROSAR(0-5) is furnished directly by the end-op word 
as 001000. These bits designate the address of a general 
I-Fetch operation about to take place. To arrive at the 
specific I-Fetch sequence (RR, RX, RS and SI, or SS), the 
bit configuration of ROSAR(6-11) must be established. 
The manner in which ROSAR(6-11) is established is 

· determined by the ROS word (normal or branch) in 
control of the end op. 

The normal end-op word contains the 'NEXT· 
INST*IC' micro-order specifying a 64-way functional 
branch. This micro-order sets ROSAR( 6-11) according to 
the following conditions: 

ROSAR Bit Condition 

6 Set if R(O) = 1 

·1 Set if R(1) = 1 

8 Set if instruction X2 field= 0, and RX 
format 

9 Set if instruction B field = 0, and not 
RR format 

10 Set if IC(21) = 1 

11 Set if IC(22) = 1 
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The above actions specify the format of the upcoming 
instruction, the type of further operand fetch required, 
and the number of counts .by which IC(21,22) must .be 
increased to select the first halfword of the instruction 
following it in main storage. 

The registers affected· by the 'NEXT -INST*IC' 
micro-order are shown in Diagram 5-5, FEMDM. The 
format of the upcoming instruction is decoded from 
R(O,l). For non-RR instructions, a test is made to 
determine whether the B-field of the instruction is equal 
to zero and, in the case of RX instructions, whether the 
X2 field is also zero. 

The zero test for the B and X2 fields is necessary to 
establish a correct address computation by the subsequent 
I-Fetch routine. To increase the speed of operand 
prefetching, the B-field is always gated to LAL during the 
end-op cycle. A zero address to LAL accesses LS register 
0, the contents of which may not necessarily be zero. 
However, the condition of B-field being zero requires that 
the base portion of the operand address be zero. Thus, the 
subsequent I-Fetch sequence selected must ignore the 
contents of LS register 0 (accessed by a zero B field). 
Similarly, in the case of the X2 field being zero, the 
I-Fetch sequence selected must not address LS per the X2 
field. The manner in which the correct I-Fetch sequence is 
selected is decribed below. 

Four 4-way AND's simultaneously sample the four 
possible B-field locations in Q. Each AND is conditioned 
if its corresponding four-bit input consists of all zeros. As 
explained previously, IC(21,22) selects the first halfword 
of the instruction that has been transferred from Q to R. 
Therefore, these bits are used as gates to select the second 
halfword of the instruction in Q. If, for example, the first 
halfword position of Q has been transferred to R and 
decoding of R(0,1) shows that the instruction is not of 
the RR format, Q(16-19) must be selected to obtain the 
correct B-field. When the first halfword position in Q is 
transferred to R, IC(21,22) is set to 00. This setting 
(coupled with the absence of an 'RR block' signal) selects 
the output of the AND that samples the correct B-field; 
i.e., Q(16-19). When the B-field of the instruction is 
found to be zero, ROSAR(9) is set to 1. This action 
addresses an I-Fetch microprogram that ignores the 
contents of the LS register accessed by the B-field. 

When the upcoming instruction is of an RX format, a 
similar test is performed to establish whether the X2 field 
of the instruction, R(12-15), is equal to zero. Upon 
detecting a zero X2 field, ROSAR(8) is set to 1. This 
action dictates that the subsequent I-Fetch microprogram 
does not address LS per X2; i.e., E(12-15). 

The ROS branch specified by the 'NEXT -INST*IC' 
micro-order is · completed by forcing IC(21,22) into 
ROSAR(l0,11). This action allows the first I-Fetch 
microinstruction to correctly update IC(21,22) and R 
without further testing. 



The 'NEXT-INST*D' micro-order in the branch end-op 
word sets ROSAR(6-ll) according to the following 
conditions: 

ROSAR Bit 

6 

7 

8 

9 

10 

Condition 

Set If effective·R(O) = 1 

Set if effective-A (1 ) = 1 

Set if instruction X2 field .. 0, and RX 
format 

Set if instruction B field = 0, and not 
RR format 

Set if 0(21) • 1 

11 Set if 0(221 = 1 

Note that ROSAR(6,7) is set from the effective-R 
rather than from R, and that ROSAR(l0,11) is set from 
D(21,2i) rather than from IC(21,22). This is done 
because R and IC are either still invalid or are just being 
set by the branch operation in progress. 

BASIC RR I-FETCH 

• RRformat: 

Op Code Rl R2 I 
0 78 1112 15 

• Purpose: 
1. For nonbranch instructions, load 1st operand into 

A, B, and D. Load 2nd operand into Sand T. 
2. For branch instructfons, load 2nd operand into A, 

B, and D. Load 1st operand into Sand T. Request 
new instructions, if needed. 

3. Set STC to 100 and ABC to 000. 

• Conditions at start of I-Fetch: 
1. Instruction is transferred to E. 
2. If instruction is not a branch, 1st operand is in T; 

for a branch, 2nd operand is in T. 

The following paragraphs describe the basic actions 
initiated by the ROS microprogram during I-Fetch of RR 
instructions. It is assumed that no interruptions or 
exceptional conditions were detected in the preceding 
end-op cycle. 

The RR instrue<tions basically require a 1-cycle I-Fetch. 
The actions initiated during this cycle are governed by 1 
of 4 possible ROS control words selected at end-op time. 
Selection of the specific ROS word depends on the 
original position of the RR instruction in Q. This word 
contains the appropriate micro-orders for incrementing 
IC(21,22) and for transferring the first halfword of the 
next instruction to R. Except for these actions, the 
functions performed by the four ROS words are identical. 

Diagram 5-6, FEMDM, is a simplified flowchart of an RR 
I-Fetch; Diagram 5-7 shows the data registers used. 

If no interruption or exceptional condition is detected, 
the -entire RR instruction is transferred to E at the start of 
the I-Fetch cyCle (by the 'R-+E' micro-order at end op). 
The operand prefetching, initiated at end op, is then 
continued. The order in which operands are prefetched 
depends on whether the instruction is a branch: 
1. For nonbranch instructions, the first operand (accessed 

during end op) is transferred from T via the parallel 
adder to A, B, and D. The second operand is then 
addressed by gating E(12-15) to LAL. When the 
second operand is accessed, it is loaded into S and T. 

2. The above order is _reversed for branch instructions; 
i.e., the second operand (accessed during end op) is 
placed into A, B, and D while the fust operand is 
placed into S and T. A storage request per the branch 
address is generated subject to the conditions shown in 
Diagram 5-6. 

The correct execution sequence is entered by establish­
ing the address of the fust ROS word in that sequence. 
This address is determined by sampling the instruction op_ 
code from E(2-7) by means of the 'E(02-0~ROA' 
micro-order. As stated earlier, this description of RR 
I-Fetch applies only when no exceptional conditions or 
interruptions are present. -The ROS word governing the 
I-Fetch cycle iilways contains the 'EXCEP' micro-order, 
which can override the functional branch per the instruc­
tion op code. Therefore, the branch to the fust executfon 
cycle occurs only when there are no interrupiions or 
exceptional conditions~ 

In addition to prefetching the operands, the I-Fetch 
ROS word contains appropriate micro-orders to increment 
IC(21,22) and to transfer the fust halfword of the next 
instruction to R. IC(21,22) is set one count higher 
('X-+IC' micro-order) to point at the next instruction. The 
fust halfword of the next instruction is transferred to R 
by the 'QXX-+R' micro-order. 

Included in the fust RR I-Fetch word is the 'RESET' 
micro-order, which causes the following actions: 
1. During I-Fetch of branch instructions, initiates the 

request for new instructions (see Diagram 54) and 
gates E(8-11 ), .instead of E{l 2-15), to LAL. 

2. Resets all STAT's and Edit-instruction controls. 
3. Sets STC to 100 and ABC to 000. 
4. Forces LAL(O) to 1 for floating-point instructions, 

causing the FPR's to be addressed. 
5. Sets the 'stop' trigger if operating at the instruction­

step rate. 

Note that IC(21,22) is not advanced, the Q-to-R 
transfer is not effected, and unsuccessful branch-on­
condition requests are not generated if the 'execute in 
progress' trigger is set. The set state of this trigger 
indicates that the cui:rent I-Fetch is for a subject 
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instruction of an Execute instruction. Therefore, the 
address of the RR instruction is specified by D and not by 
the IC. 

BASIC RX I-FETCH 

• RXformat: 

Op Code Rl X2 B2 

7 8 11 12 15 16 19 20 

• Purpose: 

02 
31 

1. Compute address of 2nd operand and transfer to D; 
request 2nd operand from main storage, if neces­
sary. 

2. Transfer 1st operand to Sand T. 

• Conditions at start ofl-Fetch: 
1. 1st halfword of instruction is transferred to E; 2nd 

halfword is in Q. 
2. Contents of LS register specified by B2 are trans-

ferred to T. 

The following paragraphs describe the basic actions 
initiated by the ROS microprogram during I-Fetch of an 
RX instruction. It is assumed that no . interruption or 
exceptional conditions were detected in the preceding 
end-op cycle. 

The RX instructions basically require a 1- or 2-cycle 
I-Fetch. The actions initiated during the first I-Fetch cycle 
are governed by 1 of 16 possible ROS control words 
selected . at end-op time. This selection depends on 
whether the B2 and/or X2 fields of the instruction are 
zero, and on the original position of the RX instruction in 
Q. The zero test establishes four separate cases for the 
I-Fetch routine: (1) B2 = 0 and X2 = 0, (2) B2 =I= O and 
X2 = 0, (3) B2 = 0 and X2 =I= 0, (4) B2 =I= 0 and X2 =I= 0. 
The first two cases require a 1-cycle I-Fetch; the last two, 
a 2-cycle I-Fetch. Each of the above four routines 
contains appropriate micro-orders for incrementing 
IC(21,22) and transferring the first halfword of the next 
instruction to R. Consequently, a four-way branch is 
inherent in each routine, depending on the previous 
IC(21,22) setting; i.e., 00, 01, 10, or 11. 

Diagram 5-9, FEMDM, is a simplified flowchart of an 
RX I-Fetch; Diagram 5-10 shows the data registers used. If 
no interruptions or exceptional conditions are detected, 
the op-code halfword of the RX instruction is transferred 
to E at the start of I-Fetch (initiated by the 'R-+E' 
micro-order at end op). The operand prefetch routine is 
then continued with the first halfword of the instruction 
in E and the second halfword in Q. The I-Fetch of 
non-indexed RX instructions (X2 = 0) is described first. 

The 'X-+IC' micro-order issued by the first I-Fetch 
word sets IC(21,22) two counts higher. The first halfword 
of the next instruction is transferred to R by the 
'QXX-+R' micro-order if it is now in Q; that is, if 
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IC(21,22) did not equal 10 at the start ofl-Fetch. If the 
instruction is not indexed, the address of the second 
operand is obtained by adding D2 to the base address. The 
contents of the LS register per B2 are placed into Tat the 
start of I-Fetch. If B 2 was found to be zero during end op, 
the contents of T are ignored, and the appropriate D2 
field in Q is .selected and routed to D via the parallel 
adder. However, if B2 =I= 0, the contents of T and the 02 
field are gated simultaneously to the parallel ~dder, and 
the resultant sum is transferred to D. A 3-cycle storage 
request for the second operand is made from D if the 
following conditions do not exist: 
1. A Q-register refill exceptional condition is in progress. 
2. The instruction is Store Halfword, Store Character, or 

Load Address. 
3. The instruction is an unsuccessful Branch on Condi­

tion. (A request for new instructions is issued from the 
IC, if necessary.) 
The first operand is obtained from LS per Rl and 

transferred to Sand T. At the completion of the I-Fetch 
cycle, a branch is made to a specific execution sequence as 
determined by the 'E(02-07)-+ROA' micro-order. 

In the case of indexed RX instructions (X2 =I= 0), two 
cycles are required to complete the I-Fetch routine 
(Diagram 5-11, FEMDM). During the first cycle; D2 is 
added to the contents of T (if B2 =I= O) and the result is 
temporarily stored into B. The LS register specified by X2 
is theri accessed, and its contents are placed into T. The 
contents of T and B are added during the second cycle, 
and the sum (second operand address) is transferred to D. 
The conditional storage request is now made. After the 
first operand is obtained from LS and placed into S and T, 
a branch per the instruction op-code is made to enter the 
correct execution sequence. 

The 'RESET' micro-order: 
1. Resets all STAT's and Edit instruction controls. 
2. Resets STC and ABC to 000. 
3. Initiates any necessary storage requests for branch 

instructions and for subject instructions of the Execute 
instruction. 

4. Forces LAL(O) to 1 for floating-point instructions, 
causing the FPR's to be addressed. 

5. Sets the 'stop' trigger if operating at the instruction­
step rate. 

If the instruction being fetched is the subject of an 
Execute instruction ('execute in progress' trigger is set), 
the incrementing of IC, the Q-to-R transfer, and the 
unsuccessful Branch on Condition requests to refill Q are 
inhibited. 

BASIC RS AND SI I-FETCH 

• RS format: 

Op Code I R 1 I R3 I B2 
7 8 11 12 15 16 19 20 

02 
31 



• SI format: 

Op Code 12 Bl Dl 
0 78 15 16 19 20 31 

• Purpose: 
1. Add contents of LS register specified by B-field to 

D-field; place result into D. 
2. Request operand from main storage, if necessary. 
3. For RS instructions, load 1st operand into Sand T. 

(Contents of S and T are ignored for SI instruc­
tions.) 

• Conditions at start ofl-Fetch: 
1. 1st halfword of instruction is transferred to E; 2nd 

halfword is in Q. 
2. Contents of LS register specified by B-field are 

transferred to T. 

The following paragraphs describe the basic actions 
initiated by the ROS microprogram during I-Fetch of RS 
and SI instructions. It is assumed that no interruptions or 
exceptional conditions were detected in the preceding 
end-op cycle. 

The RS and SI instructions basically require a 1-cycle 
I-Fetch. The actions initiated during this cycle are 
governed by 1 of 8 possible ROS control words selected at 
end-op time. This selection depends on whether the 
B-field of· the instruction is zero, and on the original 
position of the instruction in Q. The zero test establishes 
two distinct I-Fetch routines: (1) B = 0 and (2) B =I= 0. A 
four-way branch is inherent in each routine~ depending on 
the previous IC(21,22) setting; i.e., 00, 01, 10, or 11. 

Diagram 5-13, FEMDM, is a simplified flowchart of RS 
and SI I-Fetch. If no interruptions or exceptional condi­
tions are detected, the halfword containing the op-code of 
the RS or SI instruction is transferred to E at the start of 
I-Fetch (initiated by the 'R~E' micro-order at end op). 
The operand prefetch routine is then continued with the 
first halfword of the instruction in E and the second 
halfword in Q. 

The LS register specified by the B-field (Bl or B2) is 
accessed during end op, and its contents are placed into T 
at the start of I-Fetch. If the B-field was found to be zero 
during end op, the I-Fetch routine ignores the contents of 
T, selects the appropriate D-field (DI or D2) in Q and 
routes it to D via the parallel adder. If the B-field is not 
zero, the contents of T and the D-field are gated 
simultaneously to the parallel adder and the sum is then 
transferred to D. A 3-cycle storage request for the second 
operand is then made from D if the following conditions 
do not exist: 
1. A request to refill Q was generated during the previous 

execution segment; i.e., IC(21,22) = 01 or 10. For this 
case, the ROS micro-.order is not contained in the 
I-Fetch word. 

2. The E-register contains a shift, Store Multiple, Move 
(MVI), Test and Set, or 1/0 instruction. For this case, 
the 'D sync' latch is prevented from being set. 

3. The E-register contains a· branch-on-index (BXH, 
BXLE) instruction. For this case, the 'RESET' micro­
order resets the '3-cycle request' trigger, causing a 
4-cycle storage request to be made from D regardless of 
IC(21,22). 

Upon loading D with the second operand address, the 
I-Fetch routine proceeds to set IC(21,22) two counts 
higher, to transfer the first halfword of the next instruc­
tion to R if it is in Q, and to establish the first ROS 
control word for the execution phase. Fetching of the 
first operand per E(S-11) · is meaningful only for RS 
instructions. For SI instructions, E(S-11) contains a 
portion of the immediate operand. Since a common ROS 
control word governs the I-Fetch of both formats, 
E(S-11) i8 always gated to LAL; the contents of the lS 
register thus accessed are placed into S and T. However, 
the subsequent execution sequences for SI instructions 
ignore the contents of S and T. 

In addition to causing a 4-cycle storage request during 
the I-Fetch ofa branch-on-index instruction, the 'RESET' 
micro-order: 
1. Resets all STAT's and Edit-instruction controls. 
2. Resets STC and ABC to 000. 
3. Sets the 'stop' trigger if operating at the instruction­

step rate. 

If the instruction being fetched is the subject of an 
Execute instruction ('execute in progress' trigger is set), 
the incrementing of IC and the Q-to-R transfer is 
inhibited. 

BASIC SS I-FETCH 

• SS format: 

op code I L1 I L2 I Bl I ~S 01 I B2 I H~ 
0 7 8 11 12 15 16 19 20 31 32 35 36 •7 

• Purpose: 
1. Transfer op-code halfword of next instruction to R; 

update IC and place into LSWR. 
2. Transfer computed address of 1st operand (destina­

tion) per instruction class to D; request destination 
operand from main storage (gated into CPU at start 
of 2nd execution cycle). 
a. Lowest destination address for logical instruc­

tions = base address (per B 1) + D 1. 
b. Highest destination address for decimal instruc­

tions =base address (per Bl)+ Dl + Ll. 
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3. Transfer computed address of 2nd operand (source) 
to IC and T. Lowest source address = base address 
(per B2) + D2. 

4. Perform ASC test (and invalid instruction address 
test if complete instruction is in Q). 

• Conditions at start ofl-Fetch: 
1. 1st halfword of instruction is transferring to E, 2nd 

halfword is in Q, 3rd halfword is in Q if IC(21,22) ::/= 
10 (otherwise 3rd halfword is gated to Q during 4th 
cycle of I-Fetch). 

2. Base address (per Bl) is in T. 
3. Q refill is not in progress ifIC(21,22) = 11. 

The I-Fetch of SS instructions differs considerably from 
the I-Fetch routines described thus far (RR, RX, RS, and 
SI). Differences arise from three characteristics of the SS 
format: (1) the SS format is three halfwords long, (2) an 
SS instruction always stores the results into main storage, 
and (3) two main storage addresses are specified. 

IC(21,22) = 00 

l 
Q 

Op-Code 
R Halfword 

IC{21, 22) = 01 

l 

Op-Code 
Halfword 

End-Op 
Cycle 

I-Fetch 

As previously stated, requests to refill Q are generated 
before the CPU runs out of instructions. In describing the 
I-Fetch microprograms used for RR, RX, RS, and SI 
formats, it was assumed that the instruction to be 
executed was contained in Q. Because of the manner in 
which storage requests for instructions are generated, the 
assumption is valid for all 1- and 2-halfword instructions. 
For SS instructions, however, the I-Fetch routine may 
sometimes begin while the last halfword of the instruction 
is still in main storage. Figure 3-2 shows all possible 
locations that the SS instruction may assume in Q and the 
manner in which storage requests are generated for more 
instructions. Storage requests for SS instructions are 
generated (at end-op time) when IC(21,22) is set to 00, 
01, or 10. IfIC(21,22) = 00 or 01, the entire instruction is 
in Q at the start of I-Fetch. However, if IC(21,22) = 10, 
the last halfword of the instruction will arrive from main 
storage on the fourth cycle of I-Fetch. Consequently, 
processing of the third halfword of the instruction cannot 

IC (21, 22) = 10 

l 

Op-Code 
Halfword 

IC(21,22) = 11 

Gated from Main 
Storage during 
I-Fetch 

~ssj : ·I 

Op-Code 
Halfword 

General Initialization 
and Execution 

End-Op 
Cycle 

IC(21, 22) = 00 Generate 
storage 
request 

Set IC{21, 22) to 11, transfer 
last halfword from Q to R, 

IC(2l,22) = 01 

IC(21, 22) = 10 

IC(21,22) = 11 

Generate 
storage 
request 

Generate 
storage 
request 

Figure 3-2. Basic Sequencing for SS Instruction 
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and gate new instructions to Q. 

Set IC(21, 22) to 00, gate 
new instructions to Q, and 
then transfer 1st halfword 
from Q to R. 

Set IC(21, 22) to 01, gate 
new instructions to Q, and 
then transfer 2nd halfword 
from Q to R. 

Set IC(21, 22) to 10, and 
transfer 3rd halfword 
from Q to R. 

Generate 
storage 
request if SS 
instruction 
is next. 

Generate 
storage 
request if RR 
instruction 
is not next. 

Generate 
storage 
request 
always. 



start until Q is refilled. Finally, if IC{21,22) = 11, at end 
op, Q has been refilled as a result of a previous end-op 
cycle and Q(0-31) contains the balance of the upcoming 
SS instruction. 

An SS instruction operates on two operands obtained 
from main storage and stores the result into the same 
location from which the first operand was obtained. 
Therefore, the address· of the first operand is also the 
destination address; the address of the second operand is 
commonly referred to as the source address. The first and 
second operand addresses are calculated in a manner 
similar to that of two-halfword instructions. The address 
of the first operand is computed first and loaded into D, 
and a storage request for the operand is made. The partial 
address of the second operand is then computed while the 
contents of the IC are transferred to the LSWR. The 
partial second operand address is loaded into the IC. After 
completing the I-Fetch routine, a General Initialization 
Sequence, GIS, is performed, after which control is 
transferred to the execution phase. (During GIS, the 
calculation of the second operand address is completed, 
and a storage request issued, if necessary.) Upon execu­
tion of the instruction, results are stored into main storage 
per the address in D (first operand or destination address). 

Addr.ess Store Compare (ASC) Test 

• Main storage address where data is to be stored is 
compared with address of current instructions. 

• Comparison is made whenever data is stored into main 
storage. 

• If data is stored at instruction address, 'PSC' trigger is 
set to indicate that instructions in Q must be ref etched. 

• For SS instructions, ASC test is performed during 
I-Fetch. Lower and upper limits of destination address 
are compared with instruction address. 

An ASC test must be made each time the CPU stores data 
into main storage. This test compares the destination 
address of the data with the current instruction address. If 
it is found that both addresses are the same, the 'program 
store compare' (PSC) trigger is set, indicating a need to 
refetch instructions; i.e., the instructions currently in Q 
must agaiil. be obtained from main storage because the 
next instruction to be executed may have been modified 
by the data just stored.t For all but SS instructions, the 
ASC test is made during the execution phase whenever a 
store operation is performed. Because, in the case of SS 
instructions, a store operation is always implied, an ASC 
test has been incorporated in the SS I-Fetch micro­
program. 

tThe refetch routine is initiated if the result of a comparison of 
the destination and IC addresses falls within a 16-byte safety 
margin: Destination address (in D) = IC address± 16 bytes. Thus, 
instructions in Q may not necessarily be modified by the store 
operation. 

For SS instructions, the ASC test must determine that 
instructions (currently in . Q) were not obtained from a 
region defined by the upper and lower limits of the 
destination address for data. This test is made in two 
steps, as illustrated in Figure 3-3. The first step determines 
whether the lower limit of the destination address is above 
the instruction address in the IC. When the lower limit is 
above, the upper limit must also be above the IC, and the 
'PSC' trigger is not set. This condition indicates that 
current instructions (in Q) cannot be affected by the 
subsequent store operations. However, if the lower limit 
of the destination address is found to be below the IC, the 
'PSC' trigger is set and a further test must be made to 
establish that data will not be stored in the instruction 
path. The last step compares the upper limit of the 
destination address with the IC. If the IC is found to 'be 
above the upper limit, the 'PSC' trigger is reset. In such 
cases the subsequent store operations will not extend to 
the IC location. On the other hand, if the IC points below 
the upper limit, the 'PSC' trigger remains set; indicating 
that the subsequent store operations may affect the next 
instruction. Consequently, after execution of the instruc­
tion that caused the PSC condition, an exceptional 
condition microprogram is initiated to refetch the instruc­
tions in Q. The details of the refetch microprogram are 
described under "Program Store Compare Exceptional 
Condition". 

I-Fetch Microprogram 

• If request for new instructions has been generated at 
end op, I-Fetch routine requires 7 cycles; if not, 
I-Fetch requires 6 cycles. 

• Setting of IC(21,22) at end op determines manner in 
which I-Fetch is performed. 

The following paragraphs describe the basic actions 
initiated by the ROS microprogram during I-Fetch of SS 
instructions. It is assumed that no interruptions or 
exceptional conditions were detected in the preceding 
end-op cycle. 

The first halfword of the SS instruction is transferred 
from R to E at the start ofl-Fetch. The operand prefetch 
(initiated at end op) is then continued with the first 
halfword in E, the second halfword in Q, and the third 
halfword in Q [or in main storage if IC(21,22) = 10], as 
shown in Diagram 5-14, FEMDM. 

The SS instructions require a 7- or 6-cycle I-Fetch. The 
actions initiated during the first I-Fetch cycle are gov­
erned by 1 of 8 possible ROS control words selected at 
end-op time. This selection depends on whether the B 1 
field of the instruction is zero and on the setting of 
IC(21,22). The setting of IC(21,22) establishes four 
distinct cases for the SS I-Fetch microprogram: 
1. When IC{21,22) = 00, a 4-cycle storage request to refill 

Q is generated at end op. Because Q( 48-63) contains 
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Successive 
locations i.n 
main storage 

Lower limit 
of destination 
address for 
data 

l~o_-_7_._l_a-_1_s~l1_6_-3_1~l ___ ~...,..,1 ,__ ___ ~ 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

Yes (Above) 

IC points to this 
region and 'PSC' trigger 
is not set. 

1st Step 

Upper limit 
of destination 
address for 
data 

No (Below) 

No (Above) 

IC points to this 
region and 'PSC' trigger 
is set. 

Last Step 

n-(n+7) 

IC points to 
this region and 

IC points to 
this region and 
'PSC' trigger 
is reset. 

'PSC' trigger ,_~--------f 
remains set. 

Figure 3-3. ASC Test for SS Instructions 

the op-code halfword of the next instruction, the 
I-Fetch routine must transfer this halfword to R before 
the next doubleword arrives from main storage. Also, 
the I-Fetch routine must gate the new instructions to Q 
at the correct time. 

2. When IC(21,22) = 01, a 4-cycle request to refill Q is 
generated. Because Q contains no new instructions, the 
I-Fetch routine must wait until Q is refilled and then 
transfer the first halfword of the next instruction from 
Q to R. New instructions must be transferred to Q at 
the correct time. 
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3. When IC(21,22) = 10, a 3-cycle request to refill Q is 
generated. Because the third halfword of the SS 
instruction is in main storage, processing of this 
halfword is delayed until Q is refilled. New instructions 
must be transferred to Q at the correct time, after 
which the next instruction may be gated to R. 

4. When IC(21,22) = 11, a storage request is not 
generated because Q has been refilled as a result of the 
previous end op. Thus the I-Fetch routine is not 
concerned with transferring new instructions to Q. 



During the first I-Fetch cycle of all SS I-Fetch routines, 
the lower limit of the destination address is calculated and 
placed into D, and IC(21,22) is advanced to indicate the 
first halfword of the next instruction. At the start of 
I-Fetch, T contains the base portion of the destination 
address (LS contents per Bl). If Bl =I= 0, the contents ofT 
are added to the appropriate D 1 field and the sum is 
transferred to D. If, however, Bl = 0, the contents of T 
are ignored and only the D 1 field is routed via the parallel 
adder to D. After the fust I-Fetch cycle, D contains the 
lower limit of the destination address. 

The I-Fetch sequence after the fust cycle differs for 
each setting of IC(21,22). The following paragraphs 
describe the I-Fetch control for each setting. 

/-Fetch Control If at End Op IC(21,22) = 00 

• STAT Dis set to indicate B2 = 0. 

• Branch per instruction is made to establish starting 
destination address. 

• If 'execute in progress' trigger is reset, IC(20) is 
advanced by J; if trigger is set, IC is not incremented. 

• Instruction address is stored into LSWR. 

• I-Fetch requires 7 cycles. 

If at end op IC(21,22) = 00, Q contains the remaining two 
halfwords of the SS instruction and Q( 48-63) contains 
the halfword of a new instruction. Q( 48-63) is trans­
ferred to R by the second ROS word in the I-Fetch 
sequence. This word also accesses the LS register specified 
by B2 and initiates the ASC test. The LS register is 
accessed by gating the B2 field [Q(32-35)] to LAR and 
transferring the LS contents to S. (STAT D records the 
condition when B2 = 0 and is interrogated when the 
source address is computed.) The ASC test is initiated by 
subtracting the lower limit of the destination address 
(contained in D) from the IC. If the difference is equal to 
or greater than zero, the 'PSC' trigger is set to indicate 
that the destination address may overlap the instruction 
path. · 

A branch is made per the instruction op code to the 
third I-Fetch cycle. This branch establishes the manner in 
which the upper limit of the destination address must be 
obtained: 
1. For decimal instructions, the Ll field [E(8-11)] is 

transferred to the parallel adder, where it is added to 
the contents ofD. 

2. For logical instructions, the LL field [E(8-15)] is 
added to the contents ofD. 

Also, depending on the instruction, either the upper or 
the lower limit of the destination address becomes the 
starting point from which operands are to be processed. 
For all de<,:imal instructions, operand processing starts 
from the upper limit of the destination address and 

proceeds toward the lower limit. Conversely, for all logical 
instructions, operand processing starts from the lower 
limit and proceeds toward the upper limit. Thus, when a 
decimal instruction is decoded, the upper limit of the 
destination address is transferred to D and becomes the 
starting address from which the first operand will be 
requested. In the case of logical. instructions, the original 
contents of D (lower limit of destination address) are not 
changed. Because the upper limit of the destination 
address is required to complete the ASC test, this address 
is temporarily stored into T. 

The fourth ROS word in the I-Fetch sequence initiates 
calculation of the source address and gating of new 
instructions to Q, and requests the first operand from 
main storage (per the destination address in D). At the 
start of the fourth cycle, ST AT D is tested to establish 
whether the B2 field of the instruction is zero. If B2 is not 
zero (STAT D not set), the contents of S (where LS 
contents per B2 have been placed) and the appropriate D2 
field in Q are simultaneously gated to the parallel adder, 
and the sum is temporarily stored into B. IfB2 = 0 (STAT 
D set), however, the contents of S are ignored and only 
the D2 field is placed into B. With the completion of the 
above actions, all halfwords in Q have been processed and 
Q is refilled with new instructions. The fourth ROS word 
also initiates a 4-cycle request per D for the destination 
operand. A ROS micro-order in the first GIS word gates 
the destination operand into the CPU. 

The fifth ROS word in the I-Fetch sequence completes 
the ASC test .. The upper limit of the destination address 
(contained in T) is subtracted from the IC contents.If the 
difference is greater than zero, the 'PSC' trigger is reset. 
This condition indicates that the instruction address is 
above the.highest main storage location into which data is 
to be stored. However, if the difference (IC minus T) is 
less than zero, the 'PSC' trigger remains set. The set state 
of the 'PSC' trigger initiates the program store compare 
exceptional condition after execution of the current SS 
instruction, 

The sixth ROS word in the I-Fetch sequence usually 
increments the IC by 8 and then stores the updated 
address into the LSWR. Following each storage request 
from the IC, the contents of the IC must be updated by 8 
to obtain the address of the next doubleword location 
from which subsequent instructions will be requested. An 
exception to this rule occurs if the SS instruction 
currently being processed is the subject of an Execute 
instruction. Because, upon execution of the subject 
instruction, the 'instructions previously contained in Q 
must be refetched from the main storage address specified 
in the IC, the contents of the IC are not updated. Thus, 
before storing the IC into the LSWR, a test must be made 
to determine whether an Execute instruction is in 
progress. This test is accomplished by examining the 
status of the 'execute in progress' trigger. 

2065 FETOM (9/68) 3-11 



6. Mam storage requests. Requests for new instructions 
because of a predecoded branch instruction are inhib­
ited by blocking the decoding of the 'RESET' micro­
order. Storage requests for operands are inhibited by 
blocking the decoding of the 'MS-REQ*D-3' micro­
order. 

7. Initiation of the invalid instruction addiess test. 

The 'block I-Fetch' trigger is not set by detection of 
the invalid instruction address test or Q-register refill 
exceptional conditions. In the first case, because address­
ing is at fault, the next address must be computed and 
retained for subsequent evaluation. In the second case, the 
trigger is not set because this action would inhibit the 
purpose of the Q-register refill exceptional condition. 

The 'block I-Fetch' trigger is reset by the '~STAT D' 
micro-order issued by the first word in the recovery 
microprogram. 

Timer Exceptional Condition 

• Initiated by 'time clock step' trigger. 

• Decrements timer in location 50 (hex) per power-line 
frequency. 

• Sets 'time clock at limit' trigger if timer value is less 
than zero, thus causing external interruption. 

The timer value is stored in · permanent maiil. storage 
location 80, decimal (50, hex). It is stepped at a rate 
determined by the input power frequency. If the input 
power frequency is 60 Hz, the timer is stepped each 16.67 
ms; if 50 Hz, the timer is stepped each 20 ms. ·The timer 
exceptional condition detection scheme is shown in 
Diagram 5-17, FEMDM. 

Each time the input power swings to a positive peak, 
the 300-ns singleshott generates a signal to set the 'sample 
pulse' trigger if the DISABLE INTERVAL TIMER switch 
is not activated. The output of this trigger sets the 'time 
clock step' trigger, provided that the CPU is not in the 
end-op cycle. Once set, the 'time clock step' trigger 
initiates the timer update sequence. 

The need to inhibit setting of the 'time clock step' 
trigger at end op is twofold: (1) the timer exceptional 
condition is asynchronous with respect to program execu­
tion, and (2) it has the highest priority. Because.priority is 
established at end op, sampling the timer exceptional 
conditions at this time could result in a priority conflict 
with a pending interruption or exceptional condition. 
Thus, use of two triggers ensures that timer priority is 
present before entry into end op; i.e., ff the need to 
update the timer arises at end op, this event is recorded by 

tThe singleshot output is sent to the 1/0 channel to provide an 
automatic restart; it is also used by the pulse-mode controls (see 
Chapter 6, Section 1). Also, if the Multisystem feature is installed, 
it is used for timing external re&ets and for detecting system 
inactivity. 
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the 'sample pulse'. trigger, and the timer update sequence 
is initiated on the next end-op cycle. 

Once the 'time clock step' trigger is set, it inhibits the 
priority circuits of all other interruptions and exceptional 
conditions. When end op occurs, the trigger output is 
gated to alter the subsequent I-Fetch by inhibiting the 
loading of E from R. D is set to 50 (hex) to obtain the 
timer value from inain storage and, if an Execute 
instruction is not in progress, the 'block I-Fetch' trigger is 
set. The 'EXCEP' micro-order in the first I-Fetch cycle 
detects timer priority and forces address 014 (hex) into 
RO SAR. 

The address forced into ROSAR by the timer excep­
tional condition is used to enter a timer update micro­
program. A flowchart of the hardware operations just 
explained and of the timer update microprogram is shown 
in Diagram 5-17, FEMDM. The microprogram resets the 
'block I-Fetch' trigger and issues a 3-cycle storage request 
per D to fetch the timer value. While the fetch is in 
progress, any protection checks from storage are ignored. 
After the fetch, the 32-bit timer value is loaded into A 
and then decremented by 5 or 6, depending on 60- or 
50-Hz power input frequency, respectively.t The updated 
timer value is placed into S and T, and then stored per the 
D-address (location 50, hex). Before storing, however, the 
timer value is sampled to see if it has~en decremented to 
less than 0. If this condition exists, the 'time clock at 
limit' latch is set to request an external interruption on 
the following end op. 

CPU Store In Progress Exceptional Condition 

Regarding the protection violation, a unique situation 
occurs if at end op a store operation is also in progress. In 
this case, detection of an interruption or exceptional 
condition could cause a failure to detect a "late" storage 
protect violation if it occurs. To pr~vent this situation, a 
special circuit is provided to test for a store-in-progress 
condition at end op (Diagram 5-18, FEMDM). If an 
exceptional condition to I-Fetch or a Load PSW instruc­
tion has been detected while a store operation is in 
progress, this circuit forces a microprogram that provides 
a 2-cycle delay to allow recording of a possible protection 
check and establishing the correct priority for the 
subsequent program interruption. 

Machine Check Interruption 

• Follows log-out microprogram. 

• Clears interruption code, resets STAT H, enters com­
mon interruption routine. 

tThe variation of decrement value is determined by a pluggable 
card. This card (type 3388) is inserted into position 01BC2F2, 
AP811, when 60-Hz input power is used. 



A machine check interruption is initiated only by a 
log-out operation. The machine check interruption detec­
tion scheme is shown in Diagram 5-19, FEMDM. 

When the log-out operation (initiated by the Diagnose 
instruction, or a machine check error coupled with the 
machine check mask-bit being on) is about to be 
concluded, the '1..,.MCH-CK-TRP' micro-order causes the 
'machine check interrupt' trigger to be set. Once set, the 
trigger blocks any new machine checks from initiating 
another log-out operation. This trigger also establishes 
machine check priority, and the operation then waits for 
the logout to finish, signified by an end op, before 
continuing. At end-op time, the set state of the 'machine 
check interrupt' trigger forces D to 30 (hex) and, if an 
Execute instruction is not being concluded, sets the 'block 
I-Fetch' trigger, inhibiting most of the I-Fetch actions. 

The 'EXCEP' micro-order in the first I-Fetch cycle 
detects machine check priority and forces address OOC 
(hex) into ROSAR. The ROSAR address causes a branch 
to an interruption microprogram that stores the old PSW 
per the D-address. Subsequently, the microprogram loads 
the new PSW per the address in D + 40 (hex). The 
operation then proceeds as directed by the new PSW. 

A flowchart of the hardware operations just explained 
and of the beginning of the machine check microprogram 
is shown in Diagram 5-19. The microprogram starts by 
gating the interruption code to S(l 6-31) to begin 
forming the old PSW in ST. This is done by setting 
S(16-31) to all O's, because the machine check interrup­
tion code, PSW(16-31), is always 0. The 'block I-Fetch' 
trigger and STAT H are reset. (STAT His reset to modify 
the subsequent common interruption routine for specific 
machine check actions.) At this point, the machine check 
interruption microprogram enters the common interrup­
tion routine. 

Program Interruption 

• Initiated by 'program interrupt' latch. 

• Value in interrupt code triggers is transferred to 
S(16-31) by 'priority l' latch. 

• Sets STAT H, enters common interruption routine. 

A program interruption results from improper conditions 
arising during the processing of data or instructions. 
Generally, these improper conditions can be described as 
errors in programming. When any of these conditions are 
detected, they cause a value to be placed into the four 
Interrupt Code triggers. The value inserted reflects the 
condition responsible for the interruption. The conditions 
that cause a program interruption and tlleir corresponding 
Interrupt Code trigger settings are shown in FEMDM 
Diagrams 5-20, 5-21, and 5-22. 

Once any Interrupt Code trigger has been set, the 
'program interrupt' latch shown in Diagram 5-22 is set. 

(The 'INTRP X-branch' micro-order samples this latch to 
modify the execution sequence of instructions and the 
I-Fetch of SS format instructions. Once this latch is set, 
further program violations are lost with the exception of a 
"late" protection check.) This latch establishes priority 
for the program interruption by blocking the priority 
circuits of lower-priority interruptions and exceptional 
conditions. 

At end op, the output of the 'program interrupt' latch 
is gated to force D to 28 (hex), to set the 'priority 1' 
latch, and, if an Execute instruction is not in progress, to 
set the 'block I-Fetch' trigger. The 'EXCEP' micro-order 
in the first I-Fetch cycle detects program interruption 
priority and forces address OOA (hex) into ROSAR. This 
ROSAR address causes a branch to an interruption 
microprogram to store the old PSW per D. The 'priority 1 ' 
latch causes the values in the Interrupt Code triggers 
(program-interruption code) to be gated to S as part of 
the old PSW. Subsequently, the microprogram loads the 
new PSW per the address in D + 40 (hex). CPU operation 
then proceeds as dictated by the new PSW. 

Diagram 5-22 is a flowchart of the hardware operations 
just described and of the beginning of the program 
interruption microprogram. The microprogram starts by 
gating the interruption code from PSW(l 6-31) to 
8(16-31). The 'block I-Fetch' trigger and STAT D are 
reset, and STAT H is set. (STAT H modifies the 
subsequent common interruption routine for specific 
program interruption actions.) At this point, the program 
interruption microprogram enters the common interrup­
tion routine. 

Supervisor Call Interruption 

• Initiated by 'supervisor call' trigger, which is set by 
preceding Supervisor Call instruction. 

• E{8-15), which contains interruption code, is trans-
ferred to S(24-31). 

e Sets STAT H, enters common interruption routine. 

The supervisor call interruption results from execution of 
the Supervisor Call instruction. I ts basic purpose is to 
initiate a branch to the. supervisor program. When the 
priority of the interruption is established, an address is 
forced into ROSAR and into D. The address in ROSAR 
causes the operation to branch to a microprogram which 
stores the old PSW in the address forced into D and 
fetches a new PSW from the address in D + 40 (hex). This 
new PSW places the ~PU into the Supervisor state. 

Diagram 5-23, FEMDM, shows how the 'J--i> INTREQ­
TGR' micro-order tests for a Supervisor Call instruction 
and sets the 'supervisor call' trigger. This triggeris reset if 
the 'interrupt code 4' trigger· is set. Because all program 
interruptions would have been handled before executing 
the Supervisor Call instruction, the 'interrupt code 4' 

2065 FETOM (9/68) 3-15 



trigger can be set now only by a "late" protection check. 
Therefore, performance of the supervisor call interruption 
is suppressed and a program interruption occurs in its 
place. If the 'interrupt code 4' trigger is not set, then the 
'supervisor call' trigger is not reset. 

The 'supervisor call' trigger gates E(8-15) to S(24-31) 
to begin assembling the old PSW. (The 'supervisor call' 
trigger also sets the 'priority l' latch; because the 
supervisor call and program interruptions cannot be 
pending at the same time, no conflict results from both 
setting an interruption priority code of 01.) 

Diagram 5-23 is a flowchart of the hardware operations 
just described and of the beginning of the supervisor call 
interruption microprogram. The micr~program starts by 
gating the interruption code from PSW(16-31) to 
S(16-31). The 'block I-Fetch' trigger and STAT D are 
reset, and STAT H is set. At this point, the supervisor call 
interruption microprogram enters the common interrup­
tion microprogram routine. 

External Interruption 

• Remains pending if external mask bit, PSW(7), is not 
set. 

• Initiated by setting of 'time clock at limit' latch, 
depression of INTERRUPT pushbutton, or recognition 
of 'external signal in' bus. 

• 'Time clock at limit', 'console signal', and 'external 
signal-2' through '-7' triggers are transferred to 
S(24-31). 

• Sets STAT H, enters common interruption routine. 

An external interruption is caused by one of the following 
if the external bit of the PSW system mask is a 1: 
1. The set state of the 'time clock at limit' latch (refer to 

''Timer Exceptional Condition"). 
2. The depression of the INTERRUPT pushbutton on the 

system control panel. 
3. The recognition of any signal on the 'external signal in' 

bus of the Direct Control feature. The external 
interruption circuits and a flowchart of the initiation 
of the external interruption microprogram are shown 
in Diagram 5-24, FEMDM. 

Once priority for the external interruption is estab­
lished during end op, Dis forced to 28 (hex), the 'priority 
2' trigger is set, and, if an Execute instruction is not in 
progress, the 'block I-Fetch' trigger is set. The 'EXCEP' 
micro-order in the first I-Fetch cycle detects external 
interruption priority and forces address 006 (hex) into 
ROSAR. The ROSAR address causes a branch to an 
interruption microprogram to store the old PSW per D. 
The 'priority 2' trigger causes the contents of the eight 
signal triggers (the interruption code) to be gated to 
8(24-31) as part of the old PSW. Subsequently, the 

3-16 (9/68) 

microprogram loads the· new PSW per the address in D + 
40 (hex). CPU operation then proceeds as dictated by the 
newPSW. 

The external interruption microprogram starts by 
gating status of the 'time clock at limit', 'console signal' 
and External Signal triggers to S(24-31). S(16-23) is 
reset to zero, and correct (odd) parity is assigned to 
8(16-31). The 'block I-Fetch' trigger and STAT D are 
reset, and STAT H is set. (STAT H is set so that the 
common interruption routine skips micro-orders per­
taining to the machine check interruption.) At this point 
the microprogram enters the common interruption rou­
tine. 

1/0 Interruption 

• Remains pending if associated channel mask bit, in 
PSW(O-7), is not set. 

• Channel 0 has highest interruption priority, followed in 
order by channels 1-6. 

• 3-bit channel address and 8-bit unit address are 
transferred to S(21-31). 

• Sets STAT H, enters common interruption routine. 

An 1/0 interruption results from the reception of a 
simplexed 'interruption request' signal from a channel if 
the system mask bit for that channel is a 1. All 1/0 
channels in the system compete for the interruption 
priority./The multiplexer channel (channel O) is assigned 
the highest priority followed in order by selector channels 
1through6 (maximum). The 1/0 interruption circuits and 
a flowchart of the initiation of the 1/0 interruption 
microprogram are shown in Diagram 5-25, FEMDM. The 
'channel X interrupt request' triggers are set at the start of 
every non-end-op cycle. At the start of end op, the 
highest-priority trigger that is set resets all the others. 

Once priority for an 1/0 interruption is established 
during end op, D is forced to 38 (hex), the 'priority l' and 
'priority 2' triggers are set, and, if an Execute instruction 
is not in progress, the 'block I-Fetch' trigger is set. The 
'EXCEP' micro-order in the first I-Fetch cycle detects 1/0 
interruption priority and forces address 006 (hex) into 
ROSAR. This ROSAR address causes a branch to an 
interruption microprogram to store the old PSW per D. 
The 'priority l' and 'priority 2' triggers (which have 
already caused all but the highest-priority interrupt 
request trigger to be reset) causes the interruption code 
(the 3-bit channel address and the 8-bit unit address) to be 
gated to S(21-31) as part of the old PSW. Subsequently, 
the microprogram loads the new PSW per the address in D 
+ 40 (hex). CPU operation then proceeds as dictated by 
the newPSW. 

The 1/0 interruption microprogram starts by setting 
the 'timing gate' trigger, thus gating a response back to the 



highest-priority channel to reset the interruption request 
controls. While waiting for the channel to return a 
'release' signal, the 'block I-Fetch' trigger is reset and the 
interruption code is gated to 8(16-31). When the 
microprogram finds the 'release CPU' latch set, signifying 
that the 'release' signal from channel has been received, 
the 'timing gate' trigger is reset. STAT His set so that the 
common interruption routine, which follows next, Skips 
micro-orders pertaining to the machine check interrup­
tion. 

Common Interruption Routine 

• Program status is assembled in ST and is then stored 
into old PSW location per interruption cause. 

• System is reset if STAT H is reset (machine check 
interruption). 

• Applicable new PSW is fetched per D. 

• Processing resumes after new instructions have been 
fetched and placed into Q. 

The common interruption routine (Diagram 5-26, 
FEMDM) stores the old PSW into main storage and loads a 
new PSW into the CPU. This routine is entered by all five 
interruption microprograms. 

The IC is reduced by 8 or 16 to reflect the doubleword 
address of the instruction that caused the interruption. 
This address is placed into T( 40-63) as part of the old 
PSW. Next, the. contents of the PSW register are gated to 
S(0-15) and T(34-39). E(0,1) is gated to T(32,33) unless 
the 'instruction length not available' trigger is set, indi­
cating a program interruption is in progress because of a 
"late" protection check. For that case only, the instruc­
tion-length code is set to 0. This action completes the old 
PSW transfer to ST. The routine inhibits storage protec­
tion, sets Marks 0-7, and initiates a 4-cycle storage 
request to store the old PSW per the D address. An 
interruption reset clears the CPU of the condition which 
initiated the access to the interruption microprogram. The 
'invalid branch' trigger, the 'invalid instruction address' 
trigger, and ST AT G are reset. 

At this point, the common.interruption routine checks 
ST AT H to see what class of interruption initiated the 
operation. IfSTAT H is reset, the operation is due to a 
machine check interruption, and the CPU is placed in the 
scan mode. Three no-op cycles are taken to allow the CPU 
and main storage to become quiescent. Then a 'system 
reset' signal clears all cont.rol triggers. The 'scan mode' 
trigger is reset, and the routine prepares to load the new 
PSW. 

STAT H is set if the initiating interruption is other 
than a machine check. In this case, the CPU is not placed 
in the scan mode and the system is not reset. 

To generate the address for the new PSW, 10 (hex) is 
placed into B, setting B(59) to 1. Next, the value in Bis 

Shifted left twice and gated to PAB as an effective value of 
40 (hex). Simultaneously, the old PSW address is gated 
from D to PAA. The sum, the address of the new PSW, is 
gated from PAL to D. Storage protection is then 
inhibited, and a 3-cycle fetch per D is initiated. 

JThe interruption microprogram has now finished the 
common interruption routine and enters the Load PSW 
microprogram (Diagram 5-601, FEMDM). When received 
from main storage, the new PSW is loaded into ST. 
Because the new PSW will require fetching of instructions 
from a new storage location, the 'I-Fetch invalid address' 
trigger is set to enable recording of any invalid address 
that may result on the subsequent fetch. Portions of the 
new PSW are loaded into the PSW register and into the IC 
and D. A 3-cycle storage request per the IC is initiated, 
and the IC is incremented by 8. At this point, the program 
shifts to a common branch microprogram. The instruction 
address in D is incremented by 8 and transferred to the IC 
in anticipation of a branch instruction. When the first 
doubleword arrives from main storage it is loaded into Q; 
and the op-code halfword of the first instruction is 
transferred to R. 0(21,22) is sampled to see if Q needs 
refilling; if so, a second request per the IC is initiated. If Q 
does not need refilling, the program generates an end op. 

Stop, Wait, and Repeat Exceptional Conditions 

The stop exceptional condition is caused by (l)depressing 
STOP, (2) detecting an address-compare condition when 
ADDRESS COMPARE STOP is in the stop position, and 
(3) operating at the instruction-step rate. (If the Multi­
system feature is installed, an external-start operation also 
causes a stop exceptional condition.) The wait exceptional 
condition is caused by the wait mask bit, PSW(14), being 
set to a 1. The repeat exceptional condition is caused by 
activating the REPEAT INSN switch. The scheme for 
detecting a stop, wait, or repeat instruction exceptional 
condition is shown in Diagram 5-27, FEMDM. 

When any one of these exceptional conditions has 
priority during end op and an Execute instruction is not 
in progress, the 'block I-Fetch' trigger is set. During the 
next cycle, the first I-Fetch cycle, the 'EXCEP' micro­
order forces an address into ROSAR: 026, 02A, and 028 
(hex) for the stop, wait, and repeat exceptional condition, 
respectively. This address causes ·a functional branch to a 
loop microprogram. Because each of these exceptional 
conditions may be caused by manual intervention, their 
microprograms are discussed in Chapter 6, Section 1. 

Program Store Compare Exceptional Condition 

• Instruction refetch is performed when 'PSC' trigger ·is 
set by ASC test or Execute instruction. 

• Refetch routine decrements instruction address by 8 or 
16 and issues request to refill Q. 
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An instruction refetch routine is performed if the instruc­
tions _previously obtained by the CPU must be refetched 
from main storage. The . need to. refetch instructions 
occurs when: 
1. The CPU store$ data at the main storage address that 

corresponds to the address currently specified by the 
IC. In this case, the instructions presently contained in 
Q may have been modified by the store operation and, 
therefore, must be refetched. 

2. The CPU completes the subject instruction of an 
Execute instruction and must resume processing the 
instructions previously contained in Q. 

An instruction refetch is initiated by the 'PSC' trigger 
which is set for either of the above cases. In the first case, 
the 'PSC' trigger is set as described under "Address Store 
Compare (ASC) Test." In the second case, the 'PSC' 
trigger is set by the Execute instruction. The scheme for 
detecting a program store compare exceptional condition 
and the instruction refetch microprogram flowchart are 
shown in Diagram 5-28, FEMDM. 

A Iieed to refetch instructions is treated as an 
exceptional condition by the CPU. When this condition is 
detected, the 'block I-Fetch' trigger changes the normal 
I-Fetch routine, and a branch to an instruction refetch 
microprogram is performed by the first I-Fetch word. 

The first ROS word in the ref etch microprogram resets 
the 'block I-Fetch' trigger so that normal I-Fetch can be 
resumed after Q is refilled. This word also establishes 
whether the address currently specified in the IC is one or 
two doublewords ahead of the current instruction. The 
address in the IC is always at least one doubleword ahead 
of the address for the instructions in Q. If Q was not 
refilled before the refetch routine, the IC is one double­
word (8 bytes) ahead of the current instruction; ifQ was 
just refilled, IC is two doublewords or 16 bytes ahead. 

IC(21,22) indicates whether Q was refilled before the 
refetch routine. If IC(21,22) is not set to 11, a request to 
refill Q (if generated) was blocked by the exceptional 
condition in progress (i.e., the need for instruction 
refetch) and the IC is 8 bytes ahead of the current 
instruction. If, however, IC(21,22) = 11, the need for an 
instruction refetch occurred after Q was refilled; IC(20) 
has been incremented, and the IC is 16 bytes ahead. 
Accordingly, the second ROS word in the refetch micro­
program subtracts 8 or 16 from the IC and issues a 3-cycle 
request per the decremented address. This word also resets 
the 'PSC' and. 'execute in progress' triggers and then 
causes the ·Load PSW microprogram to be entered (as 
shown in Diagram 5-601, FEMDM). Entry corresponds to 
a point after the new PSW has been loaded but before the 
successful branch routine. IC is incremented by 8, the 
next instruction is transferred to R, and Q is refilled, if 
necessary, before completing the program store compare 
exceptional condition microprogram with an end op. 
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Invalid Instruction Address Test Exceptional Condition 

• Determines interrupt code triggers to be set if program 
check was detected while addressing instruction. 

When addressing instructions in main storage, three 
requirements must be met: 
1. Because instructions are specified on a 2-byte basis, the 

least significant bit of the instruction address must 
always be a zero. Failure to meet this requirement 
results in a specification program interruption. 

2. The instruction address cannot exceed the storage 
capacity used with a given installation. (The sizes of 
main storage available for the 2065 CPU are listed in 
Chapter 1, Section 1.) In addition, the storage unit 
containing the instruction must be available to the 
CPU. An attempt by the CPU to execute an instruction 
from an unavailable or non-existent location results in 
an addressing program interruption. 

3. The instruction address cannot specify an area in mairi. 
storage that is fetch-protected. An attempt by the CPU 
to execute instructions from.a fetch-protected location 
results in a protection program interruption. 

If any of these three requirements is not met, the CPU 
hardware forces a new address into ROSAR. The micro­
program accessed by this address sets the appropriate 
program interruption code (specification, addressing, or 
protection) into the CPU. This microprogram is then 
followed by the . program interruption microprogram 
previously described. The following paragraphs describe 
the methods used to detect each violation and to set the 
appropriate interrupt code triggers. 

Specification Detection 

All storage requests for instructions do ®t result in Q 
being refilled. For example, end-op requests are ignored if 
the 'block I-Fetch' trigger is set. Also, branch requests 
made during I-Fetch are ignored if the conditions for a 
successful branch are not found met during the following 
execution (non-branch on condition instructions oiily). 
For this reason, the least significant address bit of the 
instruction, IC(23)[or D(23) if preceded by the 'BEOP' 
micro-order], is detected at the start of I-Fetch. However, 
because the specification iriterrilption code is not yet set, 
the program interruption microprogram cannot be imme­
diately entered. ·Instead, the invalid instruction address 
test exceptional condition microprogram is entered after 
processing all iriterruptions and higher-priority excep­
tional conditions. If, however, duririg this forced micro­
program, an inviµid or fetch-protected address is 
requested, the specification interruption code is not set 
because, in either case, the address is outside of 
"fetchable" storage. 



Invalid Address Detection 

• 'I-Fetch request' trigger prevents setting of addressing 
interruption code while refilling Q. 

• 'I-Fetch invalid address' trigger indicates IC request is 
invalid. 

• 'Branch invalid address' trigger indicates branch address 
of successful branch instruction is invalid. 

Following a request to refill Q, the IC is incremented by 8 
to obtain the instruction address for the next request. The 
scheme of incrementing the IC ahead of time allows 
greater speed in requesting instructions from main storage. 
However, with the IC one doubleword ahead of the 
instructions in Q, a unique case occurs if the instructions 
in Q are obtained from the last available location in main 
storage. In this case, the incremented IC specifies an 
invalid address; i.e., an address that is in excess of the 
main storage capacity. Because the Q-register refill routine 
is initiated before the CPU runs out of instructions, a 
request per the IC refills Q with instructions from an 
invalid address.t Even though Q contains invalid instruc­
tions, an addressing program interruption must not occur 
until the CPU attempts to process these instructions. This 
condition arises because the last valid instruction being 
processed by the CPU may result in a successful branch to 
a valid storage location. 

A similar situation may occur following an unsuccess­
ful branch instruction that specifies a branch to the last 
available main storage location. Excluding the Branch on 
Condition instructions, the CPU assumes that the branch 
instruction is successful and, accordingly, issues a request 
·per D. Following the request, D is updated by 8 and 
specifies an invalid address. In this case, an addressing 
program interruption ·must not occur because, upon 
establishing that the branch is unsuccessful, the CPU 
resumes normal addressing per the IC. For branch 
instructions, an addressing interruption must occur only 
when the address specified by a successful branch is above 
the available main storage capacity. This situation may 
also exist after any load-PSW operation or after the 
program store compare exceptional condition. 

An invalid-address test is performed each time the CPU 
issues a request to refill Q. Because a request for invalid . 
instructions will not necessarily cause an interruption, 
setting of the interrupt code triggers must be blocked 

tThe instruction address is Considered invalid by the BCU upon 
detection of a carry from the most significant bit position in the 
IC. This bit position is defined by the size of the main storage in 
the particular installation. 

while Q is being refilled.t The scheme used for detecting a 
"true" invalid instruction address error is shown in Figure 
3-4. 

The 'I-Fetch request' trigger prevents the invalid­
address condition from causing an interruption while Q is 
being refilled. This trigger is set when a need to refill Q is 
detected; depending on the current instruction status in 
the CPU, the trigger is set as follows: 
1. For non-branch 1- and 2-halfword instructions, the 

trigger is set by the I-Fetch sequencers. 
2. For branch instructions, the trigger is set by the 

'1-+INST-MSREQ' micro-order given at the start of the 
branch execution. Note that if an unsuccessful Branch 
on Condition instruction occurs and IC(21,22) = 00, 
the 'I-Fetch request' trigger is not set because Q will 
not be refilled. 

3. For SS instructions, the trigger is set if IC(21), or 
D(21) for the 'BEOP' micro-order, is equal to 0 during 
end op. This condition indicates that the complete SS 
instruction is already in Q and succeeding instructions 
are being requested. 

The output of the 'I-Fetch request' trigger prevents the 
interrupt code triggers from being set by the 'invalid 
address' signal from the BCU. In addition, the output of 
the 'I-Fetch request' trigger serves as one of the condition­
ing inputs for the 'I-Fetch invalid address' and 'branch 
invalid address' triggers. One of these triggers is set 
whenever the BCU indicates that the address of the 
storage request exceeds the main storage capacity. The 
'invalid address' signal sets the 'I-Fetch invalid address' 
trigger if the invalid address is due to the CPU fetching 
ahead. Conversely, this signal sets the 'branch invalid 
address' trigger when the invalid address is the result of a 
successful branch instruction. 

The 'gate I-Fetch invalid address' trigger dictates 
whether the 'I-Fetch invalid address' or 'branch invalid 
address' trigger is to be set. When set, this trigger 
conditions the 'I-Fetch invalid address' trigger; when reset, 
the 'branch invalid address' trigger. Depending on the 
current instruction status in the CPU, the 'gate I-Fetch 
invalid address' trigger is set as follows: 
1. For non-branch 1- and 2-halfword instructions, the 

trigger is set by the I-Fetch sequencers. 
2. For SS instructions, the trigger is set by the 'IF­

INV-+TGR' micro-order given at the start of the SS 
I-Fetch routine; i.e., the presence of the 'IF­
INV-+TGR' micro-order and the absence of the 

t An exception to this rule occurs if the last one or two halfwords 
of an SS instruction are requested from an invalid address while 
the first halfword is contained in a valid storage location. In this 
case, the entire SS instruction is considered to have an -invalid 
address and; · because the CPU has attempted to process the 
instruction, the . interrupt code triggers lire set as soon as the 
request is generated. 
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Figure 3-4. Detection of Invalid Instruction Address 

'1-+INST-MRSEQ' micro-order when the complete SS 
instruction is in Q. 

3. For unsuccessful branch instructions (except Branch 
on Condition), the trigger is set by the presence of the 
'IF-INV-+TGR' micro-order and the absence of the 
'l-+INST-MSREQ' micro-order; for an unsuccessful 
Branch on .Condition instruction, the trigger is set by 
the simultaneous. presence of the '1-+INST-MSREQ' 
and 'IF-INV-+TGR' micro-orders at the start of execu­
tion. (The various branchirig conditions that may arise 
are described in Section 6 of this Chapter.) 
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When the 'gate I-Fetch invalid address' trigger is set, 
the 'invalid address' signal is allowed to set the 'I-Fetch 
invalid address' trigger, indicating that Q has been refilled 
with instructions from an invalid address. However, 
because R may still contain a valid RR instruction, further 
testing is required to establish that a true interruption 
condition exists. The setting of IC(21,22) during end op 
indicates whether a valid or an invalid instruction is 
contained in R. IfIC(21,22) = 11 and an RR instruction is 
predecoded, R contains a valid instruction. When 
IC(21,22) = 11 but the instruction is not of the RR 



format, the balance of the instruction has been obtained 
from an invalid location and the 'invalid instruction 
address' trigger is set. If IC(21,22) = 00, the 'invalid 
instruction address' trigger is set regardless of the instruc­
tion format; this condition indicates that R contains the 
first halfword of an invalid instruction. 

When the 'gate I-Fetch invalid address' trigger is not 
set, the 'invalid a~dress' signal sets the 'branch invalid 
address' trigger. Because, in this case, the invalid address is 
the result of a successful branch instruction, the 'invalid 
instruction address' trigger is set without further testing 
being necessary. 

Fetch Protection Detection 

• 'Delayed I-Fetch storage request' trigger prevents set­
ting of protection interruption code while Q is being 
refilled. 

• 'Delayed !~Fetch protect gate' trigger is set if request is 
due to normal sequencing. 

• 'Protected branch address' trigger is set ·if branch is 
made to protected location. 

The CPU cannot execute instructions from a fetch­
protected area in main storage. Because the IC is always 
one doubleword ahead of the instructions in Q, a unique 
situation occurs if the instructions in Q are obtained from 
a main storage location adjacent to a protected area. In 
this case, the incremented IC specifies a protected address 
and, because the Q-register refill routine is initiated before 
the CPU runs out of instructions, the request per the IC 
refills Q with instructions from a protected address. A 
protection interruption, however, does not occur until the 
CPU attempts to execute the protected instructions. This 
condition arises because the last valid instruction being 
processed by the CPU may result in a successful branch to 
a valid storage location. · 

A protection test is performed ea,ch time the CPU 
issues a request to refill Q. Because a request for protected 
instructions will not necessarily cause an interruption, the 
setting of the 'protection check (to CPU)' and 'instruction 
length not available' triggers is blocked while Q is being 
refilled. The scheme for detecting a "true" protection 
violation, shown in simplified fomi in Figure 3-5, is 
closely related to the invalid addressing detection scheme 
previously described. The major difference between the 
invalid-addressing and fetch-protection schemes is in 
timing: the 'invalid address' signal arrives at the CPU 1 
cycle after the request, while the 'protection check' signal 
arrives 2 cycles after the request. For this reason a 
separate circuit is used for detecting a protection viola­
tion. 

The 'delayed I-Fetch storage request' trigger prevents 
the 'protection check' signal from causing an interruption 
while Q is being refilled. This trigger is set one cycle after 

the 'I-Fetch request' trigger is set by a request to refill Q. 
The output of the 'delayed I-Fetch storage request' trigger 
serves as one of the conditioning inputs for the 'delayed 
I-Fetch protect gate' trigger. This trigger is set if the 
current storage request is due to a nonbranch or unsuc­
cessful branch request and is set by the same conditions 
that set the 'gate I-Fetch invalid address' trigger. When the 
'delayed I-Fetch storage request' trigger and the 'delayed 
I-Fetch protect gate' trigger are both set, the 'protection 
check' signal sets the 'I-Fetch invalid address' trigger. The 
action at this point is identical to ·that described for 
detection of invalid addressing; i.e., a test is made to 
establish if the CPU has attempted to execute instructions 
from a protected area, and the 'invalid instruction address' 
trigger is set if a protect violation has occurred. 

If the request to refill Q is a result of a branch 
instruction (as indicated by the reset state of the 'gate 
I-Fetch invalid address' trigger), the 'delayed I-Fetch 
protect gate' trigger is not set. In this case, the 'protection 
check' Signal sets the 'protected branch address' trigger, 
which in tum sets the 'invalid instruction address' trigger. 

Invalid Instruction Address Microprogram 

• Issues second request for instruction. 

• Interrupt code triggers are set per highest-priority error 
detected: (1) addressing = 101, (2) protection= 100, 
(3) specification= 110. 

The detection of a specification, addressing, or protection 
exception and the associated microprogram are shown in 
Diagram 5-29, FEMDM. Because all three exceptions 
access the same microprogram, the microprogram must 
re-establish the nature of the exception to set the proper 
interruption code. To establish which exception is cur­
rently in effect, the microprogram issues a second request 
for instructions. This time, however, the setting of the 
interrupt code triggers is not blocked; i.e., the appropriate 
interruption code is set immediately upon detection of a 
specification, addressing, or protection exception. 

Before generating a second request, the IC must be 
decremented to the address that caused the exception. 
The status of IC(21,22) indicates whether the current IC 
count is one or two doublewords ahead of the required 
address: if IC(21,22) is not set to 00, the IC is one 
doubleword ahead; if IC(21,22) = 00, the IC is two 
doublewords ahead. (The other recovery microprograms 
test IC(21,22) for a setting of 11; because the invalid 
instruction address test exceptional condition does not set 
the 'block I-Fetch' trigger, IC(21,22) is updated and 
tested for a setting of 00.) 

Accordingly, the microprogram subtracts 8 or 16, 
decimal, from the IC, and loads the decremented address 
into D. The STC is then set to zero and a 3-cycle request 
is issued per D. After the request, the STC is incremented 
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Figure 3-5. Detection of Fetch-Protected Instruction Address 

once during each subsequent cycle to provide the required 
wait interval between the request and what would be the 
cycle for transferring the instructions to Q. The appro­
priate interrupt code trigger(s) is then set upon receipt of 
a specification, addressing, or protection exception. 
Because the low-order bits of the addressing interruption 
code equal 101, there is no need to block the protection 
interruption code ( 100) from also being set if it is 
received. However, if either.of these conditions is set, the 
setting of the specification interruption code, 110, is 
blocked. The specification interruption code need only be 
set if IC(23) = 1; because the invalid instruction address 
test exceptional condition does not set the 'block I-Fetch' 
trigger, IC(23) = 1 if D(23) equalled 1 during the 
preceding branch end op. 

The invalid instructi~n address test exceptional condi­
tion microprogram terminates with a normal end op. If no 
higher-priority exceptional condition or interruption is 
detected, the program interruption microprogram is en­
tered next. 
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0-Register Refill Exceptional Condition 

• One extra I-Fetch cycle is performed to allow refilling 
of Q without conflicting with execution sequence of 
next instruction. 

• I-Fetch sequencers are always activated. 

Following each storage request for instructions, the IC is 
incremented by 8 to obtain the address from which 
instructions will be fetched by the next request. This 
updating is accomplished by gating the contents of the IC 
to the parallel adder, adding a 1 to IC(20), and gating the 
incremented address back to the IC. The need to update 
the IC usually adds another cycle to the I-Fetch of RR, 
RX, RS, and SI instructions. There are two reasons for 
this exfra cycle: 
1. The BCU requires that each main storage address be 

retained for at least two cycles. Therefore, main 
storage requests during the first I-Fetch cycle would 
interfere with end-op requests. 



2. Because the parallel adder is used to increment the IC, 
and the first cycle in the execution phase may also 
require the use of the parallel adder, the execution 
phase must be delayed until the IC is incremented. 

The case when I-Fetch requires a second cycle (third if 
an indexed RX instruction) is treated as an exceptional 
condition in the CPU. The 'EXCEP' micro-order in the 
frrst ROS word of the I-Fetch microprogram overrid~s the 
functional branch micro-order per the instruction op code 
[E(02-0~ROA] and forces a, new address into 
ROSAR. This forced address is determined by the format 
of the upcoming instruction and the status of the I-Fetch 
sequencers (Diagram 5-30, FEMDM). Operation of the 
I-Fetch sequencers is initiated at end op when the need to 
refill Q exists and the next instruction to be executed is 
not in the SS format. If the request was generated two 
cycles before end op, sequencer 2 is latched at the start of 
I-Fetch; otherwise, sequencer 1 is being set. 

At the start of I-Fetch, The 'EXCEP' micro-order 
samples sequencer 1 to see if it is being set. If it is, a new 
address is always forced into ROSAR, causing one extra 
I-Fetch word to be added to the basic I-Fetch. 

Table 3-1. Q-Register Refill Exceptional Conditions 

If sequencer 2 is found latched, the parallel adder is 
available for use on the next cycle because IC(20) has 
already been incremented. I-Fetch of RR and shift 
instructions does not require the fetching of an operand 
from main storage; also, storage operands for indexed RX 
instructions are not requested until the second basic 
I-Fetch cycle. For these reasons, sequencer 2 forces a new 
ROSAR address only if an RR, indexed RX, or shift 
instruction is not being fetched. 

The forced ROSAR addresses as a result of the 
Q-register refill exceptional condition are shown in Table 
3-1. The SS format is included for completeness. How­
ever, because the I-Fetch sequencers are not activated, a 
Q-register refill exceptional condition is never detected 
during the SS I-Fetch microprogram. Instead, the func­
tions of the sequencers are initiated by micro-orders in 
that microprogram. 

Two-Cycle RR /-Fetch 

The actions of the frrst I-Fetch cycle are unchanged 
except for the overriding of the 'E(02-07)-+ROA' micro­
order by the 'EXCEP' micro-order (Diagram 5-6). During 

Request Issued During Preceding: Forced 
ROSAR 

IC(21,22) EEOP NEOP,BEOP,orEEOP Address 
Instruction Being Fetched at End Op (2 Cycles Early) (1 Cycle Early) (Hex) 

RR 00, 01, or 11 Never Never None 

10 Yes Never None 

10 No Yes 030 

RX, RS, or SI 00 or 11 Never Never None 

Indexed RX, or shift RSt 01 or 10 Yes Never None 

Indexed RX 01or10 No Yes· 03A 

Non-indexed RX 01or10 Yes Never 022 

Non-indexed RX 01 or 10 No Yes 032 

Shift RSt 01 or 10 No Yes 020 

Non-shift RS, or SI 01 or 10 Yes Never 024 

Non·shift RS, or SI 01 or 10 No Yes 034 

SS 11 Never Never None 

00, 01, or 10 Never Yes None 

t All shift instructions are of the RS format with an op code of 1000 lXXX. 
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the second RR I-Fetch cycle, sequencer 2 is set and 
sequencer 1 is reset. This status increases the IC by 8 and 
returns the new instruction address to the IC at the start 
of the next cycle, thus completing the updating of IC(20). 
During the next cycle (first execution cycle), sequencers 3 
and 1 are both set by the 'RASCR' micro-order in the 
forced word. This condition indicates that new instruc­
tions are to be gated to Q at the start of the second 
execution cycle. The major registers and timing applicable 
to this sequence are shown in Diagram 5-8, FEMDM. 

Forced-Cycle RX I-Fetch 

If the request to refill Q was not issued 2 cycles before 
end op, the actions of the second RX I-Fetch cycle 
include the same actions as the second RR I-Fetch cycle~ 
Otherwise, IC(20) has already been incremented al).d 
sequencers 1 and 3 are automatically set during the 
second cycle. If the RX instruction is indexed, then a 
second forced word is now performed; this word contains 
the same micro-orders as the second word of the basic RX 
I-Fetch. Otherwise, the first forced word completes the 
I-Fetch routine after issuing any request inhibited during 
the frrst I-Fetch cycle. This action is performed by the 
'MS-REQ*D-3' micro-order. Dis also transferred to PAL 
if the request for new instructions was issued 2 cycles 
before end op. Because in this case sequencer 2 is reset 
during the first execution cycle, a 'SPEC' micro-order in 
the frrst execution . word tests the storage address from 
PAL, not D. The new instructions are gated intq Q [and 
the next op-code word to R from Q(0-15) ifIC(21,22) = 
10 at end op] at the start of the frrst execution cycle 
(second execution cycle if the request was not made two 
cycles early and the RX instruction is not indexed). The 
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major registers and timing applicable to the non-indexed 
case are shown .in Diagram 5-12, FEMDM. 

Two-Cycle RS and SI /-Fetch 

The major registers and timing applicable to the 2-cycle 
RS and SI I-Fetch are the same as that for the 2-cycle, 
non-indexed RX I-Fetch (Diagram 5-12)'. If the request to 
refill Q was not issued two cycles before end op, the 
actions of the second I-Fetch cycle include the same 
actions as the second RR I-Fetch cycle. Otherwise, IC(20) 
has already been incremented and sequencers 1 and 3 are 
automatically set during this forced cycle. This action 
results in the refill of Q at the start of the next cycle ( frrst 
execution cycle). Whichever cycle Q is refilled, Q(0-15) is 
also transferred to R ifIC(21,22) was set to 10 during the 
preceding end op. This transferring of the op-code 
halfword is otherwise performed by an appropriate 
micro-order in the first I-Fetch word. If an MVl, STM, TS, 
I/O, or shift instruction is being fetched, no further. 
I-Fetch actions are necessary. However,- fetching of other 
RS or SI instructions causes the storage request omitted 
by the frrst I-Fetch cycle to be issued now. This request is 
performed by the 'MS-REQ*D-3' micro-order. Also, D is 
transferred to PAL if the Q-register refill request was 
issued two ·cycles before end op. Because in this case 
sequencer 2 is reset during the frrst execution cycle, any 
'SPEC' micro-order tests the storage address from PAL, 
notD. 

It was previously stated that the last I-Fetch word 
always includes the 'E(02-07)-+ROA' micro-order. How­
ever, there is one exception to this statement: the forced 
I-Fetch cycle for shift instructions includes the 
'E(04-07)-+ROA' micro-order, which, in turn, forces the 
frrst execution cycle to branch to the second cycle per D 
rather than per PAL. 



This section discusses the 35 instructions of the fIXed, 
point instruction set. These instructions use the RR, RX, 
and RS formats. Positive fJXed-point numbers are ex­
pressed in true binary form, whereas negative numben. are 
expressed in complement binary form (2's complement 
form). One operand is always in 1 of the 16 GPR's; the 
other operand may be in either a GPR or in main storage. 
For a discussion of number representation, data formats, 
operand addressing, instruction formats, data flow, pro­
gram interruptions, and condition codes, see Chapter 1. 

LOAD 

The fIXed-point load instructions. provide a means of 
loading operands into the LS GPR's. The load operation 
may be register-to-register (RR format) or storage-to­
register (RX and RS formats). In any case, the instruction 
loads the second operand into the first operand location, 
and the second operand location remains unchanged. In 
addition, certain load instructions can test the second 
operand before loading it and can load the second 
operand in complement, positive, or negative form. 

Load, LR (18) 

• Load 2nd operand (in GPR per R2) into 1st operand 
location(in GPR per R1). 

• RRformat: 

18 RI R2 

78 11 12 15 

Fetch 2nd operand from GPR per R2. 

Load 2nd operand into GPR per RI. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D (not used). 
2nd operand is in S and T. 

The Load, LR, instruction loads the second operand from 
the GPR per R2 into the GPR per Rl. At the start of 

Section 2. Fixed-Point Instructions 

execution, the word-length second operand is in Sand T. 
Because both operands are in GPR's, no specification test 
is performed. The second operand is loaded into the GPR 
specified by R1, and an end-op cycle is taken. 

Load, L (58) 

• Load 2nd operand (in storage) into 1st operand 
location (in GPR per R1). 

• RXformat: 

58 RI 

0 78 11 12 

X2 B2 02 

15 16 19 20 31 

Fetch doubleword (containing word­
length 2nd operand from main storage. 

Select word-length 2nd operand 
from doubleword per 0(21 ). 

Load 2nd operand into GPR per RI. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T (not used). 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword is to be 
stored: if a 1, right word; if a 0, left word. 

The Load, L, instruction loads the second operand from 
main storage into the GPR per Rl. Instruction execution 
starts with a specification test. If a program specification 
interruption occurs, an end op is forced and the instruction 

·is suppressed. If no specification check exists, D(21) is 
tested to determine which word of the doubleword fetched 
from main storage will be gated from the SDBO to T. If 
0(21) = 1, the right word is gated; if D(21) = 0, the left 
word is gated. The contents of T are then loaded into the 
GPR specified by R1, and an end-op cycle is taken. 
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Load Halfword, LH (48) 

• Load halfword 2nd operand (in storage) into 1st 
operand location (in GPR per Rl ). 

• RXformat: 

48 RI 

0 78 

X2 B2 02 

II 12 15 16 19 20 31 

Fetch doubleword {containing halfword 
2nd operand) from moin storage. 

Select ha I fword 2nd operand from 
doubleword per 0(21,22). 

Expand halfword 2nd operand to 32-bit 
word by propagating sign bit to left. 

Load expanded 2nd operand 
into GPR per RI. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T (not used). 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 
perD. 

• Halfword operand is expanded to word by propagating 
sign of halfword into 16 high-order bits of word-length 
register. 

• D(21) determines whicn word of doubleword contains 
halfword 2nd operand: if a l, right word; if a 0, left 
word. . 

• D(22) determines which half of word contains halfword 
2nd operand: if a 1, right half; if a 0, left half. 

The Load Halfword, LH, instruction loads the halfword 
second operand (located in main storage) into the GPR 
specified by Rl. The halfword obtained from main storage 
consists of 16 bits. Before loading the operand into LS, it is 
expanded to a 32-bit word by propagating the sign bit of 
the halfword through the 16 high-order bits of a word­
length register. 
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Diagram 5-102, FEMDM, is a flowchart of the Load 
Halfword instruction. At the start of execution, the first 16 
bits of the instruction are in E, the second operand address 
is in D, and the first operand is in S and T. (The first 
operand plays no part in the instruction; it is subsequently 
destroyed when data is loaded into T .) During I-Fetch, a 
storage reques.t was made to obtain the doubleword 
containing the halfword second operand. 

The instruction first tests for a specification check 
condition. If a program specification interruption occurs, 
an end op is forced and the instruction is suppressed. If no 
specification check exists, the execution continues and may 
be divided into three general steps: 
1. Set up A to propagate the sign: 

a. Load l's into PAL(32-59), shift left four positions, 
and gate the result to A. ("A" now contains FFFF 
FFOO.) The 1 's are generated (AID AP811) as a 
result of ROS word 0108 (CLD QBOll) containing 
100 in bit positions 82, 83, and 84 (CLD QZOl l). 

b. Gate the contents of A to PAB, shift left four 
positions, and gate the result to A. ("A" now 
contains FFFF FOOO.) 

c. Gate the contents of A to P AB, shift left four 
positions, and gate the result to A. ("A" now 
contains FFFF 0000.) · 

2. Examine D(21) and D(22) to determine which halfword 
of the doubleword operand brought out from main 
storage is to be used as the halfword operand. The 
specified halfword may be in any one of four possible 
positions of the doubleword specified by D(21) and . 
D(22): 

0(21,22)-00 01 10 11 

I 0(22) = 0 0(22) = l 0(22) = 0 0(22) = 1 I 
0 1516 31 32 .. , .... 63 

0(21) = 0 0(21) = 1 

a. If D(21) = 0, gate SDB0(0-31) to T; if D(21) = 1, 
gate SDB0(32-63) to T. 

b. If D(22) = 0, gate T(32-47) to PAA(48-63), and 
gate a I to PAA(47) if T(32) = 0. If D(22) = 1, gate 
T(48-63) to PAA(48-63), and gate a I toPAA(47) 
ifT(48) = O. 

c. Gate the contents of A to PAB(32-63). 
3. Load the selected word: 

a. Gate PAL(32'--63) to T. 
b. Gate the contents of T to the GPR specified by the 

RI field in E(8-l l). 
c. Take an end-op cycle. 



Load and Test, L TR (12) 

• Load 2nd operand (in GPR per R2) into 1st operand 
location (in GPR per Rl) and set CC according to result. 

• RR format: 

12 R 1 R2 

7 8 II ·12 IS 

Fetch 2nd operand from GPR per R2. 

Test 2nd operand sign, and 
2nd operand for 0 's. 

Load 2nd operand into GPR 
per R 1, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
lst operand is in A, B, and D (not used). 
2nd operand is in S and T. 

• Set STAT A if PAL is all O's. 

• Test T(32) for plus or minus sign. 

• STAT A and T(32) determine CC. 

o CC setting: 
Result in PAL is zero: CC = 0. 
Result in PAL is less than zero: CC= 1. 
Result in PAL is greater than zero: CC= 2. 

The Load and Test, LTR, instruction tests the second 
operand, from the GPR per R2, for all zeros and loads it 
into the GPR per Rl. (If Rl and R2 specify the same 
GPR, the operation is equivalent to a test of the data 
without movement of the data.) 

Diagram 5-103, FEMDM, is a flowchart of the instruc­
tion. The contents of T (second operand) are gated to 
PAA(32-63), and STAT A is set if PAL equals zero. The 
contents of T are then gated to the GPR specified by RI, 
and the CC is set as follows. If STAT A is set, the CC is set 
to 0. If STAT A is not set, the sign bit [T(32)] determines 
the CC: if the sign is minus [T(32) = 1], the CC is set to 
1 ; if the sign is plus, the CC is set to 2. An end op 
completes instruction execution. 

load Complement, LCR (13) 

• Load 2's complement of 2nd operand (in GPR per R2) 
into 1st operand location (in GPR per RI) and set CC 
according to result. 

o RR format: 

13 Rl R2 

7 B 11 12 15 

Fetch 2nd operand from GPR per R2. 

Obtain 2's complement 
of 2nd operand. 

Load result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
lst operand is in A, B, and D (not used). 
2nd operand is in S and T. 

• Set ST AT B if overflow occurred. 

G Set STAT A if PAL is all O's. 

e Test T(32) for plus or minus sign. 

o STAT's A and B, and T(32) determine CC. 

o CC setting: 
Result in PAL is zero: CC= 0. 
Result in PAL is less than zero: CC= 1. 
Result in PAL is greater than zero: CC= 2. 
Overflow: CC= 3. 

The Load Complement, LCR, instruction loads the 2's 
complement of the second operand from the GPR per R2 
into the GPR per RI. 

See Diagram 5-104, FEMDM, a flowchart of the 
instruction. The contents ofT (second operand) are gated 
in 2's complement form to PAA(32-63). STAT A is set if 
PAL equals zero, and STAT B is set if a fixed-point 
overflow occurs. (Overflow occurs if the maximum 
negative number is 2's complemented.) The contents of 
PAL are transferred (via T) to the GPR specified by R 1, 
and the CC is set as follows. 

If STAT B is set, the CC is set to 3. If STAT A is set, 
the CC is set to ·o. If neither STAT is set, the sign bit 
[T(32)] determines the CC: if the sign is minus [T(32) = 
1] , the CC is set to 1 ; if the sign is plus, the CC is set to 2. 
An end op completes instruction execution. 

2065 FETOM (9/68) 3-27 



Load Positive, LPR (10) 

e Load 2nd operand (unchanged if positive, 2's comple­
mented if negative; in GPR per R2) into 1st operand 
location (in GPR per R1). 

e RRformat: 

10 

0 

Rl R2 

7 8 11 12 15 

Fetch 2nd operand from GPR per R2 '. 

Obtain positive value 
of 2nd operand . 

Load into GPR per 
Rl, and set CC. 

o Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D (not used). 
2nd operand is in S and T. 

e Set STAT A if PAL is all O's. 

• T(32) determines whether operand loaded is positive. 

e If T(32) = 1, 2's complement operand. 

• Set STAT B if overflow occurs. 

• STAT's A and Band T(32) determine CC. 

• CC setting: 
Result in PAL is zero: CC= 0. 
Result in PAL is greater than zero: CC= 2. 
Overflow: CC= 3. 

The Load P-ositive, LPR, instruction loads the absolute 
value of the contents of the GPR specified by R2 into the 
GPR specified by Rl. The instruction also tests for an 
all-zero result and for an overflow condition. (Overflow 
occurs ortly when the maximum negative numbei: is 2's 
complemented.) The results of the tests are indicated by 
the CC. 

Diagram 5-105, FEMDM, is a flowchart of the Load 
Positive instruction. At the start of execution, the instruc­
tion is in E, the first operand is in A, B, and D, and the 
second operand is in S and T. The first cycle of the 
instruction places the contents of T into PAL(32-63) and 
tests PAL for all O's. If PAL equals zero, STAT A is set. The 
data in T is then loaded into the GPR per E(8-11) (R1 ). 

Because the purpose of the instruction is to load only 
positive numbers, a test for negative numbers is made by 
examining T(32). If T(32) = 1, the data loaded in LS was a 
negative number. In this case, the contents of T must be 
converted to a positive number (true form) and reloaded 
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into the GPR per E(8-11), th~s destroying the negative 
number in that location. 

While in PAL, the 2's complement form of the data is 
tested to see whether overflow occurred when the number 
was converted. If overflow occurred, STAT Bis set. 

If T(32) = 0, the data loaded in LS was positive and need 
not be changed. 

ST AT's A and B, and T(32) determine the CC as follows. 
If STAT Bis set, the CC is set to 3. If STAT A is set, the 
CC is set to 0. If neither STAT is set, the sign bit [T(32)] 
determines the cc; however' the sign can only be plus 
[T(32) = O] and the CC is set to 2. An end-op cycle 
completes instruction execution. 

Load Negative, LNR (11) 

e Load 2nd operand (unchanged if negative, 2's comple­
mented if positive; in GPR per R2) into 1st operand 
location (in GPR per R1). 

• RR format: 

11 Rl R2 

78 1112 15 

Fetch 2nd operand from GPR per R2. 

Obtain negative value 
of 2nd operand. 

Load into GPR per 
R 1, and set CC. 

11 Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D (not used). 
2nd operand is in S and T. 

e Set STAT A if PAL is all O's. 

• T(32) determines whether operand loaded is negative. 

• lfT(32) = 0, 2's complement operand. 

• STAT A and T(32) determine CC. 

• CC setting: 
Result in PAL is zero: CC = 0. 
Result in PAL is less than zero: CC= 1. 

The Load Negative, LNR, instruction loads the negative 
value of the contents of the GPR specified by R2 into the 
GPR specified by Rl. The LNR instruction also tests the 
operand for all zeros and indicates the result in the CC. 

See Diagram 5-106, FEMDM, a flowchart of the 
instruction. At the start of execution, the instruction is in 
E, the first operand is in A, B, and D, and the second 
operand is in S and T. The first cycle of the instruction 



places the contents of T into PAA(32-63) and tests PAL 
for all O's. If PAL contains all O's, STAT A is set. The data 
in T, regardless of whether the result equals zero, is loaded 
into the GPR per E(S-11) (Rl). 

Because the purpose of the LNR instruction is to load 
only negative numbers, a test for positive numbers is made 
by examining T(32). IfT(32) = 0, the data loaded into·LS 
was a positive number. In this case, the contents of T 
must be converted to a negative number (2's complement 
form) and reloaded into the GPR per E(S-11), thus 
destroying the positive number in that location. IfT(32) = 
l, the data loaded into LS was a negative number and 
need not be changed. 

STAT A and T(32) determine the CC as follows. If 
STAT A is set, the CC is set to 0. If STAT A is not set, the 
sign bit [T(32)] determines the CC; however, the sign can 
only be minus [T(32) = 1] and the CC is set to 1. An 
end-op cycle completes instruction execution. 

load Multiple, LM (98) 

• Load 2nd operand (as many words as required; in 
storage) into GPR's, in ascending order, starting with 
1st operand location (per Rl) and ending with 3rd 
operand location (per R3). 

• RS format: 

98 RI R3 82 I 02 
7 8 II 12 15 16 19 20 31 

Load 1st word into 
GPR per RI. 

Load 2nd word into 
GPR per RI + I. 

L9ad last ward into 
GPR per R3. 

Fetch 1st doubleword from main storage. 

Obtain 1st word from doubleword per 
0(21) and transfer it to T. 

Fetch next doubleword from 
main storage, if needed. 

Obtain 2nd word from doublewqrd 
and transfer it to T. 

Fetch next doubleword from 
main storage, if needed. 

Obtain last word from doubleword 
and transfer it to T. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T (not used). 
Starting operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• Rl and R3 are compared to determine whether one or 
more words are to be loaded. 

• If Rl = R3, only one word is to be loaded. 

• If R3 is less than Rl, addresses wraparound from GPR 
15 toGPRO. 

• D(21) determines which word of doubleword is to be 
loaded into LS: if a 1, right word; if a 0, left word. 

• 8 is added to D when more than one word is to. be 
loaded. 

• Rl is incremented by 1 each time a new word is to be 
loaded. 

The Load Multiple, LM, instruction loads 32-bit words 
from main storage into LS .. The GPR's are loaded in the 
ascending order of their addresses, starting with the GPR 
addressed by Rl and continuirig up to and including the 
GPR addressed by R3. All combinations of GPR addresses 
specified by Rl and R3 are valid. WhenR3 is less than Rl, 
the addresses wrap around from GPR 15 to GPR 0. 

Diagram 5-107, FEMDM is a flowchart of the Load 
Multiple instruction. At the start of. execution, the first 16 
bits of the instruction are in E, the first operand is in S and 
T, and the starting operand address is in D. During I-Fetch, 
a storage request was made to fetch the operand addressed 
byD. 

The. instruction first tests for a specification check 
condition. If there is a specification check, a program 
specification interruption occurs and the operation is 
suppressed. Assuming there is no specification check, Rl 
[E(S-11)] and R3 [E(12-15)] are compared to determine 
whether one or more words are to be loaded. IfRl equals 
R3, only one word is to be loaded; if unequal, more than 
one word is to be loaded. 

Assume one word· is to be loaded (Rl = R3). D(21) is 
tested to determine which word of the doubleword from 
main storage is to be loaded. IfD(21) is a 0, the left word is 
selected; if a 1, the right word is selected. The selected 
word is loaded irito the GPR specified by Rl, and an 
end-op cycle is taken, completing the instruction. 

If more than one word is to be loaded (Rl and R3 are 
unequal), the mafu storage address in Dis incremented by 8 
to address the next doubleword in main storage, if it should 
be needed. D(21) is tested to determine which word of the 
doubleword from SDBO will be loaded first. R3 is 
decremented by 1, and Rl and R3 are again compared. As a 
result of these two tests, four possible conditions may exist, 
resulting in four different branches as follows: 
1. If D(21) = 0 and Rl = R3, two words are to be loaded 

starting with the left word of the doubleword on the 
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SDBO. In this case, no further main storage request is 
necessary. SDB0(0-31) is gated to T, SDB0(0-63) is 
gated to AB, and the contents of T are loaded into the 
GPR specified by R 1. E( 8-11) (R 1) is incremented by 
1 to address the next sequential GPR, and the contents 
of B are transferred (via T) to the GPR specified by 
E(8-11) (Rl + 1). 

2. If D(21) = 0 and Rl does not equal R3, more than two 
words are to be loaded starting with the left word. A 
main storage request per D is initiated to fetch the next 
doubleword from main storage. The microprogram 
enters the basic loop, which loads a doubleword, one 
word at a time, in consecutive GPR's and initiates 
another main storage request. An exit from the basic 
loop is made when one or two words remain to be 
loaded. 

3. If D(21) = 1 and RI = R3, two words are to be loaded 
starting with the right word. A main storage request 
per D is initiated because the second word to be loaded 
is contained in the next doubleword in main storage. 
SDB0(32-63) is transferred (via T) to the GPR 
specified by E(8-ll}(Rl). E(8-ll) is incremented by 
l, and, when the next doubleword is available, 
SDB0(0-31) is transferred (via T) to the GPR speci· 
fied by E(8-ll) (Rl + 1). 

4. If D(21) = 1 and Rl does not equal R3, more than two 
words are to be loaded starting with the right word. A 

. main storage request per D is initiated to fetch the next 
doubleword from main storage, and SDB0(32-63) is 
transferred (via T) to the GPR specified by E(8-ll) 
(Rl). E(8-ll) is incremented by 1 to address the next 
sequential GPR, and D is incremented by 4 to address 
the next sequential doubleword in main storage. RI 
and R3 are again compared; if equal, only two more 
words are to be loaded. When the requested double­
word is available, it is loaded, one word at a time, into 
the two sequential GPR's specified. If Rl does not 
equal R3, the microprogram enters the basic loop. 

Note that the last time D was incremented, it was 
incremented by 4 rather than by 8. At the start of this 
sequence, D(21) equalled 1, which is equivalent to a 
value of 4 in D. Adding 4 to D increases the value to 8; 
which will address the next sequential doubleword in 
main storage. D(21) has also been changed to a 0, 
which allows the microprogram to remain in the basic 
loop as long as is required. Note that a branch . on 
D(21) is performed in the basic loop. 

The 4 that is added to Dis developed in F. At the 
start of the instruction, F was set to -64 (1100 0000). 
F(O) is then set to 0, establishing a value of 0100 0000 
in F. F(0-3) and F( 4-7) are transposed, giving a value 
of 0000 0100 (4) in F. When F(4-7) is added to D, D 
is incremented by 4. 

When the last word has been loaded into the GPR 
specified by R3, an end-op cycle is taken, completing 
the instruction. 
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ADD-TYPE INSTRUCTIONS 

• Fixed-point add-type instructions use RR and RX 
formats. 

• 2nd operand is algebraically added to 1st operand. 
• For subtract and compare instructions, 2nd operand is 

in 2's complement form. 
• Except for compare instructions, result is stored into 

1st operand location. 

• CC is determined by op code and hardware conditions. 

The fixed-point add-type instructions use the RR format 
with word-length operands, the RX format with word­
length operands, and the RX format with a halfword 
second operand. 

At the start of execution of RR format fixed-point 
instructions, the first operand is in B (also in A and D) 
and the second operand is in T (also in S). 

At the start of execution of RX format fixed-point 
instructions, the first operand is in S and T, and a main 
storage request for the second operand has been issued per 
D. Because the second operand is fetched from main 
storage, a specification test is performed (Diagram 5-108, 
Sheet 1, FEMDM), and a program specification interrup­
tion is taken if the second operand address does not 
specify integral boundaries. If a program specification 
interruption is taken, the instruction is suppressed. If no 
specification check occurs, the first operand is transferred 
from T to B, and the specified word of the doubleword 
requested from main storage is selected per D(21) and is 
gated to T. The first operand is now in B and the second 
operand is in T, which is the same condition which would 
exist after an RR I-Fetch. 

If the RX format instruction specifies a halfword 
second operand, two additional functions must be per­
formed. The desired halfword [selected per D(22)] of the 
word in T [selected per D(21)] must be loaded into the 
low-order halfword of T, and the sign bit must be 
propagated left to fill the high-order halfword of T. 

The fixed-point add-type instructions may be divided 
into three functional groups: add, subtract, and compare. 
All add-type instructions set a CC, and all except compare 
instructions store the result into the first operand loca­
tion. 

The CPU performs fixed-point add-type instructions as 
follows (Diagram 5-108, Sheet 2): 
1. The second operand is algebraically added to the first 

operand and the result is stored (except for compare 
instructions) into the first operand location. For 
subtract and compare instructions, the second operand 
(sign bit and integer) is 2's complemented, which, in 
effect, inverts the sign. 

2. Because of the sign notation used, and because positive 
numbers exist in true binary form and negative 
numbers exist in 2's complement form, the operand 
signs are treated as high-order extensions of the 
integers. 



3. Except for Add Logical and Subtract Logical instruc­
tions, the sign bit of the result [T(32)] is used as one 
factor in determining the CC; carry conditions from 
the high-order digit and from the sign bit are tested for 
a fixed-point overflow condition (recorded in STAT 
B). 

4. For all fixed-point add-type instructions, a zero result 
is indicated by setting STAT A. 

5. For Add Logical and Subtract Logical instructions, the 
sign bit of the result is treated as a high-order extension 
of the integer, and is tested for a carry condition to 
determine the CC. The result of Add Logical or 
Subtract Logical instructions is the same as for the 
corresponding add or subtract instruction, except that 
the result is not tested for a fixed-point overflow 
condition and the significance of the CC is different. 
(See Table in Sheet 2 of Diagram 5-108.) 

Add, AR (1A) 

• Algebraically add 2nd operand (in GPR, per R2) to 1st 
operand (in GPR, per Rl) and place result into 1st 
operand location. 

• RRformat: 

lA Rl R2 

7 8 11 12 15 

Fetch l st operand 
from GPR per R l. 

Fetch 2nd operand 
from GPR per R2. 

Add l st and 2nd operands. 

Store result into GPR 
per Rl, and set CC. 

• Conditiom at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is in Sand T. 

• CC setting: 
Result is zero (STAT A is set): CC= 0. 
Result is less than zero [T(32) = 1, and STAT's A and 

Bare reset]: CC= 1. 
Result is greater than zero [T(32) = 0, and STAT's A 

and B are reset] : CC =' 2. 
Overflow (STAT.Bis set): CC= 3. 

The Add, AR, instruction algebraically adds the second 
operand (from the GPR per R2) to the first operand 
(from the GPR per Rl) and stores the result into the first 

operand location. For the instruction execution, refer to 
"Add-Type Instructions" and Diagram 5-108. 

Add, A (SA) 

• Algebraically add 2nd operand (in storage) to 1st 
operand (in GPR, per Rl) and place result into 1st 
operand location. 

• RXformat: 

5A Rl X2 82 D2 

11 12 15 16 19 20 31 

Fetch 1st operand 
from GPR per Rl. 

Fetch doubleword (containing 
word-length 2nd operand) 
from main storage. 

Select word-length 2nd operand 
from daubleword per D(2 l). 

Add l st and 2nd operands. 

Store result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
2nd operand: if a 1, right word; if a 0, left word. 

• CC setting: 
Result is zero (STAT A is set): CC= 0. 
Result is less than zero [T(32) = 1, and STAT's A and 

B are reset]: CC= 1. 
Result is greater than zero [T(32) = 0, and STAT's A 

and B are reset] : CC = 2. 
Overflow (STAT Bis set): CC= 3. 

The Add, A, instruction algebraically adds the second 
operand (from storage) to the first operand (from the 
GPR per Rl) and stores the result into the first operand 
location. D(21) determines which word of the double­
word fetched from main storage contains the word-length 
second operand: if D(21) = 1, the righ~ word; if D(21) = 
0, the left word.; For the instruction execution, refer to 
"Add-Type Instructions" and Diagram 5-108. 

Add Halfword, AH (4A) 

• Algebraically add halfword 2nd operand (in storage) to 
1st operand (in GPR per RI) and place result into 1st 
operand location. 
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• RXfonnat: 

4A RI X2 82 02 

1112 15 16 19 20 31 

Fetch lst operand 
fram GPR per RI. 

Fetch doubleword (containing 
ha I fword 2nd operand) 
from main storage. 

Select halfword 2nd operand from 
doubleword per 0(21, 22), 
and· expand it to 32-bit word by 
propagating sign bit to left. 

Add ha I fword 2nd operand 
to lst operand. 

Store result into GPR per 
RI, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
halfword 2nd operand: if a 1, right word; if a 0, left 
word. 

• D(22) determines which half of word contains half­
word 2nd operand: if a l, right half; if a 0, left half. 

• CC setting: 
Result is zero (STAT A is set): CC= 0. 
Result is less than zero (T(32) = 1, and STAT'sA and 

Bare reset]: CC= 1. 
Result is greater than zero [T(32) = 0 and STAT's A 

and Bare reset]: CC= 2. 
Overflow (STAT Bis set): CC= 3. 

The Add Halfword, AH, instruction algebraically adds the 
halfword second operand (from storage) to the first 
operand (from the GPR per Rl) and stores the result into 
the first operand location. D(21) determines which word of 
the doubleword fetched from main storage contains the 
halfword second operand, and D(22) determines which 
halfword of that word contains the second operand, as 
follows: D(21) = 0, left word; D(21) = 1, right word; D(22) 
= 0, left halfword; D(22) = 1, right halfword. When the 
halfword second operand is selected, it is expanded to a 
word by propagating the sign bit through the 16 high-order 
bit positions of T. 

3-32 (9/68) 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

Add Logical, ALR (1E) 

• Algebraically add 2nd op,erand (in GPR per R2) to 1st 
operand (in GPR per R1) and place result into 1st 
operand location. 

• RRfonnat: 

1 E 

0 

Rl R2 
7 8 11 12 15 

Fetch I st operand 
from GPR per R 1 . 

Fetch 2nd operand 
from GPR per R2. 

Add I st and 2nd operands. 

Store result into GPR per 
RI, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is in S and T. 

• CC settirig: 
Result is zero and no carry from PAL(32) [STAT A is 
set and A(31) = O]: CC= 0. 

Result is not zero.and no carry from PAI..(32) (STAT A 
is reset and A(31) = O]: CC= 1. 

Result is zero and carry from PAL(32) [STAT A is set 
and A(31) = 1]: CC= 2. 

Result is not zero and carry from PAL(32) [STAT A is 
reset and A(31) = 1]: CC= 3. 

The Add Logical, ALR, instruction algebraically adds the 
second operand (from the GPR per R2) to the first operand 
(from the GPR per R1) and stores the result into the first 
operand location. The sign bit of the sum is treated as a 
high-order extension of the integer, and is tested for a carry 
condition [A(31) = 1] to determine the CC. The sum is the 
same as for the AR instruction; the only difference in 
execution is that the sum is not tested for a fixed-point 
overflow condition, and that the significance of the CC's is 
different. 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 



Add Logical, AL (5E} 

• Algebraic'ally add 2nd operand (in storage) to 1st 
operand (in GPR per RI) and place result into 1st 
operand location. 

• RXformat: 

5E Rl X2 82 02 
II 12 15 16 19 20 31 

Fetch 1st operand 
from GPR per Rl. 

Fetch doubleword (containing 
word-length 2nd operand) 
from main storage. 

Select word-length 2nd operand 
from doubleword per 0(21). 

Add 1 st and 2nd operands. 

Store result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
2nd operand: if a 1, right word; if a 0, left word. 

• CC setting: 
Result is zero and no carry from PAL(32) [STAT A is 

set and A(31) = O]: CC= 0. 
Result is not zero and no carry from PAL(32) [STAT A 

is reset and A(31) = O]: CC= 1. 
Result is zero and carry from PAL(32) [STAT A is set 

and A(31) =I]: CC= 2. 
Result is not zero and carry from PAL(32) [STAT A is 

reset and A(31) = 1]: CC= 3. 

The Add Logical, AL, instruction algebraically adds the 
second operand (from storage) to the first operand (from 
the GPR per RI) and stores the result into the first operand 
location. D(21) determines which word of the doubleword · 
fetched from main storage contains the word~length second 
operand: if D(21) = 1, the right word; if D(21) = 0, the left 
word. 

The sign bit of the sum is treated as a high-order 
extension of the integer, and is tested for a carry 
condition [A(31) = 1] to determine the CC. The sum is 
the same as for the A instruction; the only difference in 
execution is that the sum is not tested for a fixed-point 
overflow condition, and that the significance of the CC's 
is different. 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

Subtract, SR (18} 

• Algebraically subtract 2nd operand (in GPR, per R2) 
from 1st operand (in GPR per RI) and place result 
into 1st operand location. 

• RR format: 

0 

IB RI R2 

7 8 11 12 15 

Fetch I st operand 
from GPR per RI. 

Fetch 2nd operand 
from GPR per R2. 

Add 2's complement of 2nd 
operand to 1st operand. 

Store result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is in S and T. 

• CC setting: 
Result is zero (STAT A is set): CC= O. 
Result is less than zero [T(32) = 1 and STAT's A and 
B are reset]: CC = 1. 

Result is greater than zero [T(32) = 0 and STAT's A 
and B are reset] : CC = 2. 

Overflow (STAT B is set): CC = 3. 

The Subtract, SR,· instruction adds the 2's complement 
of the second operand (from the GPR per R2) to the 
first operand (from the GPR per RI) and stores the 
result into the first operand location. The only differ­
ence between the SR and AR instructions is that the 
second operand is 2's complemented. 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 
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Subtract, S (58) 

• Algebraically subtract 2nd operand (in storage) from 
1st operand (in GPR per Rl) and place result into 1st 
operand location. 

• RXformat: 

58 RI X2 82 02 
11 12 15 16 19 20 31 

Fetch I st operand 
fram GPR per RI. 

Fetch doubleword (containing 
word-length 2nd operand) 
from main storage. 

Select word-length 2nd operand 
from doubleword per 0(21). 

Add 2's complement of 2nd 
operand to 1st operand. 

Store result into GPR per 
RI, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D{21) determines which word of doubleword contains 
2nd operand: if a 1, right word; if a 0, left word. 

• CC setting: 
Result is zero {STAT A is set): CC= 0. 
Result is less than zero [T{32) = I and STAT's A and B 

are reset] : CC = 1. 
Result is greater than zero [T{32) = 0 and STAT's A 
. and Bare reset]: CC= 2. 
Overflow (STAT B is set): CC = 3. 

. The Subtract, S, iti.struction adds the 2's complement of 
'the secqnd operand {from storage) to the first operanci 
(from'the GPR per RI).and stores the result into the frrst · 

. operandJocation: The oriJy difference between the S0 and. 
A:)nstructions is that the second operand is 2's comple- · · 
ln.ented.' . · . 

For ·the instru.ctioh execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

3.34 (9/68) 

Subtract Halfword, SH (48) 

• Algebraically subtract halfword 2nd operand (in 
storage) from 1st operand (in GPR per RI) and place 
result into 1st operand location. 

• RXformat: 

48 RI X2 82 02 
11 12 15 16 19 20 31 

Fetch 1st operand 
from GPR per RI . 

Fetch doubleword (containing 
halfword 2nd operand) 
from main storage. 

Select halfword 2nd operand from 
doubleword per 0(21,22), and 
expand it to 32-bit word by 
propagating sign bit to left. 

Add 2's complement of halfword 
2nd operand to I st operand. 

Store resu It into G PR per 
RI, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
I st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
halfword 2nd operand: if a 1, right word; if a 0, left 
word. 

• D(22) determines which half of word contains half­
word 2nd operand: if a 1, right half; if a 0, left half. 

• CC setting: 
Result is zero (STAT A is set): CC = 0. 
Result is less than zero [T(32) = 1 and STAT's A and 

B are reset]: CC = 1. 
Result is greater than zero [T{32) = 0 and STAT's A 
and B are reset]: CC= 2. 

Overflow (STAT B is set): CC = 3. 

The Subtract Halfword, SH, instruction adds the 2's 
complement of the halfword second operand (from 
storage) to the first operand (from the GPR per RI) and 
stores the re~ult into . the first operand location. The 
only difference between the SH and AH instructions is 
that the second operand is 2's complemented. 

· For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 



Subtract Logical, SLR (1F) 

• Algebraically subtract 2nd operand (in GPR per R2) 
from 1st operand (in GPR per Rl) and place result into 
1st operand location. 

• RRformat: 

lF Rl R2 

7 8 11 12 

Fetch 1st operand 
from GPR per Rl. 

15 

Fetch 2nd operand 
from GPR per R2. 

Add 2's complement of 2nd 
operand to 1st operand. 

Store result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is in S and T. 

• CC setting: 
Result is not zero and no carry from PAL(32) [STAT A 
is reset and A(31) = O]: CC= 1. 

Result is zero and carry from PAL(32) [STAT A is set 
. andA{31)=1]:CC=2. 

Result is not zero and carry from PAL(32) [STAT A is 
reset and A(31) = 1]: CC= 3. 

The Subtract Logical, SLR, instruction adds the 2's 
complement of the second operand (from the GPR per R2) 
to the first operand (from the GPR per Rl) and stores the 
result into the first operand location. The sign bit of the 
result is treated as a high-order extension of the integer, and 
is tested for a carry condition [A(31) = 1] to determine the 
CC. The result is the same as for the ALR instruction; the 
difference in execution is that the second operand is 2's 
complemented, the result is not tested for a fixed-point 
overflow condition, and the significance of tlie CC's is 
different. 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

Subtract Logical, SL (5F) 

• Algebraically subtract 2nd operand (in storage) from 1st 
operand (in GPR per Rl) and place result into 1st 
operand location. 

• RXformat: 

SF RI X2 82 02 

11 12 15 16 19 20 31 

Fetch I st operand 
from GPR per RI. 

Fetch doubleword (containing 
word-length 2nd operand) 
from main storage. 

Select word-leng\h 2nd operand 
from doubleword per 0(21). 

Add 2 's complement af 2nd 
operand to I st operand. 

Store result into GPR per 
RI, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
2nd operand: if a 1, right word; if a 0, left word. 

• CC setting: 
Result is not zero and no carry from PAI.(32) [STAT 
A is reset and A(31) = O]: CC= 1. 

Result is zero and carry from PAI.(32) [STAT A is set 
and A(31) = 1]: CC= 2. 

Result is not zero and carry from PAI.(32) [STAT A is 
reset and A(31) = 1]: CC= 3. 

The Subtract· Logical, SL, instruction algebraically adds 
the 2's complement of the second operand (from storage) 
to the first operand (from the GPR per Rl) and stores the 
result into the first operand location. The sign bit of the 
result is treated as a high-order extension of the integer, 
and is tested for a carry condition [A(31) = 1] to 
determine the CC. The result is the same as for the AL 
instruction; the difference in execution is that the second 
operand is 2's complemented, the result is not tested for a 
fJX.ed-point overflow condition, and the significance of the 
CC's is different. 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 
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Compare, CR (19) 

• Algebraically compare 1st operand (in GPR, per R1) 
with 2nd operand (in GPR, per R2) and set CC 
according to result. 

• RR format: 

19 

0 

Rl R2 

7 8 11 12 15 

Fetch l st operand 
from GPR per Rl. 

Fetch 2nd operond 
from GPR per R2. 

Compare l st operand 
with 2nd operand. 

Set CC per resu It. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is· in Sand T. 

• CC setting: 
Operands are equal (STAT A is set): CC= 0. 
1st operand is less than 2nd operand [STAT Bis set or 
T(32) = 1]: CC= 1. 

1st operand is greater than 2nd operand [STAT Bis set 
and T(32) = 1, or STAT Bis reset and T(32) = O]: CC 
=2. 

The Compare, CR, instruction algebraically compares the 
first operand (from the GPR per R1) with the second 
operand (from the GPRper R2) and sets the CC according 
to the result. The compare operation is accomplished by 
adding the 2's complement of the second operand to the 
first operand and setting the CC according to the result. 
The result is not stored. For th~ instruction execution, 
refer to "Add-Type Instructions" and Diagram 5-108. 

Compare, C (59) 

o Algebraically compare 1st operand (in GPR per R1) 
with 2nd operand (in storage) and set CC according to 
result. 

3-36 (9/68) 

• RXformat: 

59 Rl X2 B2 D2 
11 12 15 16 19 20 31 

Fetch 1st offerand 
from GPR per Rl. 

Fetch doubleword (containing 
word-length 2nd operand) 
from main storage. 

Select word-length 2nd operand 
from doubleword per 0(21). 

Compare 1st operand with 2nd operand. 

Set CC per resu It. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
2nd operand: if a 1, right word; if a 0, left word. 

• CC setting: 
Operands are equal (STAT A is set): CC= 0. 
1st operand is less than 2nd operand [STAT Bis set or 
T(32) = 1]: CC= 1. 

1st operand is greater than 2nd operand [STAT Bis set 
and T(32) = 1, or STAT Bis reset and T(32) = O]: CC 
= 2. 

The Compare, C, instruction algebraically compares the 
first operand (from the GPR per R1) with the second 
operand (from storage) and sets the CC according to the 
result. 

Because the word-length second operand is in main 
storage, D(21) determines which word of the doubleword 
fetched from main storage contains the second operand: if 
a 1, right word; if a 0, left word. The compare operation is 
accomplished by adding the 2's complement of the second 
operand to the first operand and setting the CC according 
to the result. The result is not stored. For the instruction 
execution, refer to "Add-Type Instructions" and Diagram 
5-108. 



Compare Halfword, CH (49) 

• Algebraically compare 1st operand (in GPR per R1) 
with halfword 2nd operand (in storage) and set cc 
according to result. 

• RXformat: 

49 RI X2 82 02 

II 12 15 16 19 20 31 

Fetch lst operand 
from GPR per RI. 

Fetch doubleword (containing 
ha I fword 2nd operand) 
from main storage. 

Select halfword 2nd operand from 
daubleward per 0(21,22), and 
expand it to 32-bit word by 
propagating sign bit to left. 

Compare l st operand with 
halfword 2nd operand. 

Set CC per result. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
halfword 2nd operand: if a 1, right word; if a 0, left 
word. 

• D(22) determines which half of word contains half­
word 2nd operand: if a 1, right half; if a 0, left half. 

• CC setting: 
Operands are equal (STAT A is set): CC= 0. 
1st operand is less than 2nd operand [STAT Bis set or 
T(32) = 1]: CC= 1. 

1st operand is greater than 2nd operand [STAT Bis set 
and T(32) = 1, or STAT Bis reset and T(32) = O]: CC 
= 2. 

The Compare Halfword, CH, instruction algebraically 
compares the first operand (from the GPR per R1) with 
the halfword second operand (from storage) and sets the 
CC according to the result. 

Because the halfword second operand is in main 
storage, D(21) determines which word of the doubleword 
fetched from main storage contains the halfword second 
operand: if a 1, right ~ord; if a 0, left word. D(22) 
determines which half of that word contains the second 
operand: if a 1, right half; if a 0, left half. The halfword 

second operand is expanded to word-length by propa­
gating the sign bit through the high-order 16-bit positions 
of T. The compare operation is accomplished by adding 
the 2's complement of the halfword second operand to 
the first operand and setting the CC according to the 
result. For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

MULTIPLY 

There are three fixed-point multiply instructions: 
1. Multiply, MR, RR format - which uses a 32-bit 

multiplier and multiplicand, and produces a 64-bit 
product. 

2. Multiply, M, RX format - which uses a 32-bit 
multiplier and multiplicand, and produces a 64-bit 
product. 

3. Multiply Halfword, MH, RX format - which uses a· 
16-bit multiplier and a 16-bit multiplicand, and pro­
duces a 32-bit product. 

Note: In the Multiply, M, and Multiply Halfword, MH, 
instructions, the roles of the first and second operands are 
reversed from the roles defined in the System/360 
Principles of Operation, SRL, Form A22-6821-6. That is, 
the second operand is the multiplicand and the first 
operand is the multiplier. (Interchanging the operand roles 
does not affect the product.) The result, however, still 
replaces the first operand. 

Each of the three fixed-point multiply instructions has 
a unique initialization routine. The initialization routines 
(Diagram 5-109, Sheet 1, FEMDM) perform.a specifica­
tion test, set E(12-15) to 15, set the STC to 3, and 
establish the operands in S and T as follows: 
1. Multiply, MR, RR format - Transfers the multiplier 

(second operand from GPR per R2) to S and the 
multiplicand (first operand from GPR per R1 + 1) to 
T. 

2. Multiply, M, RX format - Transfers the multiplicand 
(first operand from GPR per R1 + 1) to S and the 
multiplier (second operand from main storage) to T. 

3. Multiply Halfword, MH, RX format - Transfers the 
multiplicand (first operand from GPR per R1) to S 
and the multiplier (halfword second operand from 
main storage, expanded to word length by prop­
agating the sign bit through the 16 high-order bit 
positions) to T. 

A common multiply microprogram is then entered. 
Multiples of T are selected per bit-pairs from S and are 
added to a partial product in B to form a new partial 
product. Low-order partial product bit-pairs are accumu­
lated in F and SAL. When SAL has accumulated a 
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partial product byte, it is stored into S, replacing the 
byte of S already used. Sixteen multiply cycles are 
taken until a word (four bytes) of product is accumu­
lated in S. PAL now contains the high-order word of the 
product and S contains the low-order word of the 
product. The product is stored in an even/odd pair of 
GPR's specified by RI and RI + I, and an end-op cycle 
is taken to terminate the operation. (For the Multiply 
Halfword instruction, only the low-order 32 bits of the 
product are stored into the GPR per RI.) 

Multiply, MR (1C) 

• Multiply 1st operand (in GPR per RI + I) by 2nd 
operand (in GPR per R2) and place 64-bit product into 
1st operand location (in GPR per RI and Rl + 1). 

• RR format: 

lC Rl R2 
7 8 11 12 15 

Fetch ls! operand (multiplicand) 
from GPR per Rl + land place 
into T. 

Fetch 2nd operand (multiplier) 
from GPR per R2 and place 
into S. 

Multiply T by S. 

Store 64-bit product into 
GPR per Rl and Rl + 1. 

• Conditions at start of execution: 
Instruction is in E. 
Contents of even-address GPR specified by Rl are in 

A, B, and D (not used). 
Multiplicand (1st operand) is in odd-address GPR 

specified by Rl + 1. 
2nd operand (multiplier) is in Sand T. 

e Multiple selection bits (Ml ,M2) are selected from 
multiplier (in S) per E(l 2-15). 

e Multiples of multiplicand (in T) are selected by Ml,M2 
bits and 'TX' trigger. 

e Multiples of multiplicand are added to partial product 
in B. 

e Partial product bits from B(66,67) are accumulated in 
SAL and F per E(l4,15). 

• SAL contains byte of partial product when filled. 

~ SAL is transferred to correct byte in S per STC. 

e When last (4th) byte is transferred to S, multiplier in S 
is replaced by low-order half of produci:; high-order 
bits are in PAL. 

3-38 {9/68) 

The Multiply, MR, instruction multiplies the contents of 
T (multiplicand) by the contents of S (multiplier). 
Because both the multiplier and the multiplicand are 
32-bit signed integers, the product is a 64-bit signed 
integer and must be stored into an even/odd pair of 
GPR's. 

A flowchart of the operation is shown in Diagram 
5-109, F:EMDM. To correctly specify the even/odd GPR 
pair, the Rl field of the instruction must refer to an 
even-address GPR or a program specification interruption 
occurs. After Rl is tested to see whether it is even, 15 and 
3 are placed into E(12-1S) and the STC, respectively. 
The value in E(12-15) selects the correct multiple 
selection bits (Ml,M2) from the multiplier in S, and the 
value in the STC correctly positions the partial product 
byte in S. Each value is sequentially reduced during the 
operation. The value in T is now destroyed, and the 
multiplicand is transferred from the GPR per Rl + 1 to T. 
At this point, S contains the multiplier and T contains the 
multiplicand. 

Execution of the MR instruction occurs in three 
iterative steps. 
1. Selection of multiplicand multiples. 
2. Addition of multiplicand· multiples to partial product 

to form a new partial product. 
3. Extraction of partial product bits to form a product. 

Multiple selection bits (Ml,M2) are selected from S per 
E(12-1S), which is initially set to 15 (decimal) and is 
decremented by 1 each time multiple selection bits are 
selected. E(l2,13) determines which byte of Sis gated to 
tne multiplier (MPR) bus, and E(14,15) determines which 
bit-pair of the selected byte is used to set Ml ,M2: 

Byte per E(12, 13) to Multiplier Bus 

Byte 0 Byte 1 Byte 2 Byte 3 

S-Register I I I I I (Contains 32-

bit multiplier) ._0 ___ 7_._B ___ l_~._16 ____ 23-+2-;~l-l-rl -
2

.,...I 3-t
3
1 

Bit-pairs per 
E(14, 15) 

Bits Ml ,M2, which have the same bit configuration as 
the bit-pair selected from S by F{l2-15), are used with 
the 'TX' trigger to select a multiple of the multiplicand 
which will be added to a partial product to develop a new 
partial product. The multiple selected for all combinations 
of Ml ,M2 bits and the state of the 'TX' trigger is listed in 
Table 3-2. 

Four bit configurations of Ml,M2 are possible, repre­
senting decimal values of 0, 1, 2, and 3. Five multiplicand 
multiples can be selected: 0 x T, 1 x T, -1xT,2 x T and 
-2 x T. Multiplicand multiplfls are developed and applied 
as follows: 
1. 0 x T: Zero's are addP.d to the partial product. 



2. 1 x T: The multiplicand (in T) is added to the partial 
product. 

3. -1 x T: The multiplicand is added in 2's complement 
form to the partial product. 

4. 2 x T: The multiplicand is gated to PAA, shifted left 
one bit position (in effect, doubles its value), 
and added to the partial product. 

5. -2 x T: The multiplicand, shifted left one bit position, 
is added in 2's complement form to the partial 
product. 

No provision has been made to develop a multiple of the 
multiplicand of 3 x T. Therefore, when Ml ,M2 has a 
decimal value of 3, a multiple of -1 x Tis selected and the 
'TX' trigger is set and remains set into the next multiply 
cycle. Note in Table 3-2 that when the 'TX' trigger is set 
during the selection of a multiple, it has the effect of 
increasing the value of the multiple by 1 for the 
corresponding value of Ml ,M2. Because the partial product 
is shifted right two positions before each multiple is added, 
the value of the multiple is increased by a factor of 4. The 
effect of the 'TX' trigger's being set is to increase the value 
of the multiple (defined by Ml,M2) by 4. Thus the 
multiplicand is, in effect, multiplied by -1 and +4 (plus the 
multiple which would have been selected if the 'TX' trigger 
were not set). 

When the partial product is shifted right two positions 
(right 4 and left 2) after each addition of the selected 
multiple of the multiplicand, the low-order bit-pair of the 

Table 3-2. Value of Multiple Determined by Multiple 
Selection Bits (Fixed-Point) 

Multiple Selection 
Bits 

'TX' T -Register Times 
M1 M2 Trigger Value Indicated 

0 0 0 OxT 

0 1 0 1xT 

1 0 0 2xT 

1 0 0 -2 x T 

1 1 0 -1 x T (2's Com-
plement) 

0 0 1 1xT 

0 1 1 2xT 

1 0 1 -1 x T (2's Com-
plem_ent) 

1 1 1 OxT 

Set'TX' 
Trigger 

No 

No 

No 

Not 

Yes 

No 

No 

Yes 

Yes 

t Used on last multiple selection if multiplicand is negative. 

partial product is gated to SAL per E(14,15) and is added 
to the contents of F. When a byte of the partial product is 
accumulated in F, the byte is transferred to S per the STC 
(via SAL), replacing the byte of multiplier which has been 
used. 

When the low-order partial product bit-pair is gated to 
SAL, E(12-15) has been decremented twice and the 
low-order bit pair is stored into F(6,7) per the value ofOl 
in E(14,15) (C of Sheet 3, Diagram 5-109, FEMDM). 

As previously mentioned, the partial product bits are 
transferred via SAL to F. This register accumulates a partial 
product byte (eight bits). When the last two partial product 
bits, required to complete a byte, are selected [E(l4,15) = 
10] , the contents of F are transferred to SAL, where the 
two partial product bits are positioned correctly. This byte 
is then transferred to S and positioned according to the 
value of the STC. At this point, the STC is equal to 011, 
thus placing the partial product byte into S(24-31). The 
STC and E(l 2-15) are then reduced by 1, and selection of 
partial product bits is continued. The microprogram 
remains in the multiple selection loop until E(12,13) = 00 
when tested. At this time, E(l2-15) contains 0001 and is 
decremented to 0000; and the microprogram enters the 
multiply termination routine. 

During the multiply termination routine, five events take 
place: 
1. A multiple is selected for the high-order bit-pair in S. 
2. Because there is a 2-cycle lag between the selection of a. 

multiple and the storage of the corresponding partial 
product bit-pair into F, E(12-1S) wraps around to 1110 
to control the storage of the last two bit-pairs of the 
partial product in F (via SAL). 

3. The high-order partial product byte is transferred from F 
to S per the STC. (The last bit-pair, however, does not 
go to F, because the last byte is gated directly from SAL 
to S.) 

4. The high-order word of the partial product is transferred 
from PAL to T, and from T to the GPR specified by RI. 

5. The low-order word of the partial product in S is 
transferred to T, and from T to the GPR specified by RI 
+ 1. 

This sequence places the complete product into the 
even/odd GPR pair in LS. An end-op cycle is then taken, 
and the operation is finished. 

The product sign follows the rules of algebra (except 
that the sign of a zero product is plus); however, the sign 
bits are manipulated as though they were high-order 
extensions of the integer throughout the multiply opera­
tion. Two multiply examples follow; the first, in Figure 
3-6, uses two positive operands, and the second, in Figure 
3-7, uses the same operands with minus signs. Note that 
the product is the same in both cases with no special 
handling of the sign bits required. 
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~. 

I 'TX' 
Ml, M2 Tgr Multiple 

0 
l 1 0 -1 x T 

1 
1 

00 l l x T 
0 
0 

1 0 0 2xT 
0 
0 

1 0 0 2xT 
0 
0 

00 0 OxT 
0 
0 

00 0 OxT 
0 
0 

00 0 0 x T 
0 
0 

00 0 OxT 
0 
0 

00 0 OxT 

Decimal 

Multiplicand (in T) 
Multiplier (in S) 
Product (to S via F) 

OOlA 
OOA3 
108E 

0000 0000 0001 1010 
0000 0000 1010 0011 
0001 0000 1000 1110 

+26 
x +163 

+4238 

1. Ml, M2 bits are derived from S per E(l2-15). 

2. See Table 3-2 for multiple selection. 

E(l2-15) Remarks Contents in PAL 

1111 Initial partial produc't 0000 0000 0000 0000 
1111 + T (2 's complement) 1111 1111 1110 0110 
1110 New partial product 1111 111111100110 
1110 Right 2 positions 1111 1111 1111 1001 

I 

1110 + T (true) 0000 0000 0001 1010 
1101 New partial product 0000 0000 000 l 0011 
1101 Right 2 positions 0000 0000 0000 0100 
1101 + 2T (true, left 1) 0000 0000 0011 0100 
1100 New partial product 0000 0000 0011 1000 
1100 Right 2 positions 0000 0000 0000 1110 
1100 + 2T (true, left l) 0000 0000 0011 0100 
1011 New partia I product 0000 0000 0100 0010 
1011 Right 2 .positions 0000 0000 0001 0000 
1011 Add O's 0000 0000 0000 0000 
1010 New partial product 0000 0000 000 l 0000 
1010 Right 2 positions 0000 0000 0000 0100 
1010 Add O's 0000 0000 0000 0000 
1001 New partial product 0000 0000 0000 0100 
1001 Right 2 positions 0000 0000 0000 000 I 
1001 Add O's 0000 0000 0000 0000 
1000 New partial product 0000 0000 0000 0001 
1000 Right 2 positions 0000 0000 0000 0000 
1000 Add O's 0000 0000 0000 0000 
0111 New partial product 0000 0000 0000 0000 
0111 Right 2 positions 0000 0000 0000 0000 
0111 Add O's 0000 0000 0000 0000 

Accumulate Bit-Pairs 
in F; Trans fer B}'tes to S 

lQ l 
10 

JJ .t 
1110 

oo---, 
00 1110 

10---"]_ 
1000 1110 

00 + 
00 

00 l_ 
0000 

01----i_ 
01 0000 

oo--. 
J 0001 0000 

I 

s-000100001000 1110 

and so on 

Figure 3-6. Fixed-Point Multiply, Example No. 1 (RR Format) 
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Notes: 
1 . T = T-register. 
2. For RX format instruction. 

reverse multiplier and 
multiplicand. 

0 8 E 



Ml, M2 'TX' 
Tgr 

0 
0 1 0 

0 
0 

11 0 
1 
1 

0 1 1 
0 
0 

0 1 0 
0 
0 

11 0 
1 
1 

11 1 
1 
1 

11 1 
1 
1 

11 1 
1 
1 

1 1 1 

Multiplicand (in T) 
Multiplier (in S) 
Product (to S via F) 

Hex 

FFE6 
FF5D 
JOBE 

1111111111100110 
1111 1111 0101 1101 
0001 0000 1000 1110 

Decimal 

-26 
x -163 

+4238 

1. Ml, M2 bits are derived from S per E(l2-15). 

2. See Table 3-2 for multiple selection. 

Multiple E{l2-15) Remarks Contents in PAL Accumulate Bit-Pairs 
in F; Transfer Bytes to S 

1111 Initial partial product 
1 x T 1111 + T (true) 

1110 New partial product 
1110 Right 2 positions 

-1 x T 1110 + T (2's complement) 
1101 New partial product 
1101 Right 2 positions 

2xT 1101 + 2T (true, left 1) 
1100 ,New partial product 
1100 Right 2 positions 

1 x T 1100 + T (true) 
1011 New partial product 
1011 Right 2 positions 

-1 x T 1011 + T (2's complement) 
1010 New partial product 
1010 Right 2 positions 

OxT 1010 Add O's 
1001 New partial product 
1001 Right 2 positions 

OxT 1001 Add O's 
1000 New partial product 
1000 Right 2 positions 

OxT 1000 Add O's 
0111 New partial product 
0111 Right 2 positions 

OxT 0111 Add O's 

and so on 

0000 0000 0000 0000 
1111 1111 1110 0110 
1111 1111 1110 0110 
1111111111111001 lQ :t 
0000 0000 0001 1010 10 
0000 0000 0001 0011 
0000 0000 0000 0100 u l 
1111 1111 1100 1100 1110 
111111111101 0000 
1111 1111 1111 0100 oo----i_ 
1111 1111 1110 0110 00 1110 
111111111nr11010. 
111111111111 0110 !Q---i_ 
0000 0000 0001 1010 1000 1110 
0000 0000 0001 0000 L 
0000 0000 0000 0 JOO 00 l. 
0000 0000 0000 0000 00 
0000 0000 0000 0100 
0000 0000 0000 0001 00 j_ -
0000 0000 0000 0000 0000 
0000 0000 0000 0001 
0000 0000 0000 0000 01 l 
0000 0000 0000 0000 

-
01 0000 

0000 0000 0000 0000 
0000 0000 0000 0000 00~ 
0000 0000 0000 0000 0001 0000 

I 

s-000100001000 1110 
"----" '----' L-_l-----.1 

Notes: 
1 . T = T-register. 
2. For RX format instructions, 

reverse multi plier and 
multiplicand. 

0 8 E 

Figure 3-7. Fixed-Point Multiply, Example No. 2 (RR Format) 
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Multiply, M (5C) 

• Multiply 1st operand (in GPR per Rl + 1) and 2nd 
operand (in storage) and place 64-bit result into 1st 
operand location (in GPR per Rl and Rl + I). 

• See Note under "Multiply." 

• RXformat: 

SC RI X2 82 02 

11 12 15 16 19 20 31 

Fetch I st oper~nd from 
GPR per RI + 1 and 
place into S, 

Fetch doubleword (containing 
word-length 2nd operand) 
from main storage . 

Select word-length 2nd operand from 
doubleword per 0(21) and place into T 

Multiply T by S. 

Store 64-bit product into 
GPR per RI and RI+ I. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
Contents of even-address GPR per Rl are in Sand T 
(not used). 

1st operand is in odd-address GPR per Rl + 1. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
2nd operand: if a 1, right word; if a 0, left word. 

The Multiply, M, instruction multiplies the contents of T 
(second operand from storage) and the contents of S (first 
operand, from GPR per Rl + 1), and stores the 64-bit 
product into the GPR's per Rl and Rl + 1. Once the 
operands have been obtained, the operation is identical to 
that of the Multiply, MR, instruction, except that the 
roles of the multiplier and multiplicand are reversed. (See 
Note under "Multiply" and Diagram 5-109.) 

Multiply Halfword, MH (4C) 

• Multiply 1st operand (in GPR per RI) and halfword 
2nd operand (in storage) and place low-order 32 bits of 
result into 1st operand location. 
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• See Note under "Multiply". 

• RXformat: 

4C Rl X2 82 

7 8 11 12 IS 16 19 20 

fetch 1st operand from GPR 
per RT and place into S, 

Multiply T by S. 

D2 

31 

Fetch doubleword (containing 
halfword 2nd operand) 
r.rom r:nain storage. 

Select halfword 2nd operand 
from doubleword per 
0(21,22) and place into T. 

Store low-order 32 bits of 
product into GPR per Rl, 

• Conditions at start of execution: 
Frrst 16 bits of instruction are in E. 
1st operand is in Sand T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
halfword 2nd operand: if a l, right word; if a 0, left 
word. 

• D(22) determines which half of word contains half-
word 2nd operand: if a 1, right half; if a 0, left half. 

The Multiply Halfword, MH, instruction multiplies the 
contents of T (expanded halfword second operand from 
main storage) and the contents of S (first operand from 
GPR per RI) and stores the 32 low-order bits of the 
product into the first operand location. D(21,22) deter· 
mines the location of the second operand within the 
doubleword obtained from main storage. The second 
operand is then expanded to a word-length operand by 
propagating the sign bit through the high-order 16 bit 
positions of T. 

From this point, the operation is identical to that of 
the Multiply, MR, instruction, except that the roles of the 

. multiplier and multiplicand are reversed. (See Note under 
"Multiply.") For a flowchart of the operation, see 
Diagram 5-109. 

DIVIDE 

Fixed point division is performed by repetitive reduction 
of the dividend by multiples of the divisor to obtain a 



remainder whose value is less than that of the divisor, and 
to accumulate partial quotient (PQ) bits derived from the 
partial remainders to form a quotient. The basic non­
restoring method is used, with the dividend in true form. 
Nonrestoring division means that if a negative remainder is 
obtained during the reduction cycles (an overdraw has 
been made), the remainder is not corrected, but instead 
the next divisor multiples are made positive until the 
remainder becomes positive again. (In most valid divide 
operations, the first reduction cycle is an intentional 
overdraw.) 

There are two fixed-point divide instructions: Divide, 
DR, RR format, and Divide, D, RX format. Each has a 
unique initialization routine. The initialization routines: 
provide a specification test; place the low-order half of the 
dividend into S and the high-order half of the dividend 
into B, in true form regardless of the sign; place the 
divisor into Ti store the signs for later use; and set 
E(12-15) and the STC to 0. 

A coinmon divide microprogram is then entered. Two 
bits of the low-order dividend · are appended to the 
high-order dividend. A multiple of the divisor is selected 
to re.duce the dividend to a partial remainder. The 
inverted sign of the partial remainder is stored into F as a 
partial quotient (PQ) bit. Thirty-two such reduction 
cycles are taken, accumulating PQ bits in F until a byte of 
quotient is obtained. The quotient byte is stored into S, 
replacing the byte of the low-order dividend which has 
been used. When four quotient bytes have been stored 
into S, S contains the quotient and B contains the 
remainder. 

The microprogram now enters one of four termination 
routines, determined by the sign of the divisor and the 
form (true or 2's complement) of the quotient. The 
termination routines establish the proper sign and form of 
the remainder and quotient, according to the convention 
of fixed-point arithmetic and the rules of algebra. The 
remainder and quotient are then stored in an even/odd 
pair of GPR's specified by Rl and Rl + 1, and an end-op 
cycle is taken to terminate the operation. 

Divide, DR (10) 

• Divide 1st operand (in GPR per Rl and Rl + 1) by 2nd 
operand (in GPR per R2) and place result into 1st 
operand location (remainder in GPR per Rl; quotient 
in GPR per Rl + 1). 

• RR format: (See adjoining column.) 

• Conditions at start of execution: 
Instruction is in E. 
High-order half of dividend (lst operand) is in A, B, 

andD. 
Low-order half of dividend is in GPR per Rl + 1. 
Divisor (2nd operahd) is in Sand T. · 

lD Rl R2 

7 8 II 12 15 

Fetch high-order word of dividend 
from GPR per Rl and place into B. 
Fetch low-order word of dividend 
from GPR per Rl + 1 and piece 

·into S. 

Fetch divisor (2nd operand) from 
GPR per R2 and place into T. 

Divide B and S by T. 

Store remainder into GPR per Rl 
and quotient into ·GPR per Rl + 1. 

The Divide, DR, instruction divides the contents of B 
(high-order bits of dividend) and S (low-order bits of 
dividend) by the contents.ofT (divisor). 

The dividend is a 64-bit signed integer occupying an . 
even/odd pair of GPR's addressed by Rl and Rl + 1, 
respectively. To correctly specify the even/odd pair of 
GPR's, Rl must refer to an even-numbered GPR or a 
program specification interruption occurs. A 32-bit signed 
remainder and a 32-bit signed quotient replace the 
dividend in the even-numbered and odd-numbered GPR, 
respectively, of LS. The divisor is also a 32-bit integer~ 

Two bits of the low-order half of the dividend are first 
placed into the high-order half of the dividend. A multiple 
of the divisor is then selected and subtracted from the 
high-order half of the dividend to form a partial re­
mainder. The resultant value determines the partial 
quotient (PQ) bit which is placed into F to accumulate 
the bits until a PQ byte is available. This PQ byte is 
transferred to S, which contains the low-order half of the 
dividend, and replaces those bits that have already been 
used in the operation. This action continues until a 
complete quotient and remainder are available, at which 
time they are stored into LS and an end-op cycle is taken. 

The sign of the quotient is determined algebraically; 
four possible combinations of signs can occur: 
1. +dividend,+ divisor,+ quotient,+ remainder. 
2. - dividend, - divisor,+ quotient, - remainder. 
3. +dividend, - divisor, - quotient;+ remainder. 
4. - dividend,+ divisor, - quotient, - remainder. 

Note that if the dividend and divisor signs are alike the 
quotient is positive; if unlike the quotient is negative. 
Note also that the sign of the remainder is the same as the 
sign of the dividend, except for a zero result, which is 
always positive. 

When the relative magnitude of the dividend and 
divisor is such that the quotient cannot be expressed by a 
32-bit signed integer, a program fixed-point divide inter­
ruption occurs. When this happens, the instruction is 
suppressed, leaving the dividend unchanged in local 
storage. 
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General Discussion 

• Multiple selection bits are determined by E(12-15) 
and S bits. 

• Multiples of divisor are determined by 'DVDLl' or 
'DVDLO' micro-order, carry from PAI.(28), and T(32). 

• PQ bits are transferred and accumulated in F per 
E(l4,15), and 'DVDLl' or 'DVDLO' micro-order. 

• F contains byte of partial quotient when filled. 

• Contents of F are transferred to correct byte in S per 
STC. 

Execution of the DR instruction occurs in three iterative 
steps: 
1. Transfer of bits from low-order half of dividend to 

high-order half of dividend. 
2. Selection of divisor multiple. 
3. Determination of quotient bits .. 

Selection of the two bits from the low-order half of the 
dividend is shown in B of Sheet 4, Diagram 5-110, 
FEMDM. Multiple selection bits (Ml,M2) are selected 
from S per E(12-15), which is initially set to 0 and is 
incremented by 1 after the selection of each pair of 
multiple selection bits. E(l2,13) determines which byte of 
S is selected, and E(14,15) detemiines which bit-pair of 
the selected byte will be used to set Ml, M2: 

Byte per E(l2, 13) 

Byte 0 Byte 1 Byte 2 Byte 3 

S-Register I I I I I (Contains 32~bit 

~~~::~ ~0~~~7~8~~~15~1_6_·~~2~~-~~,-1~,2~,:~~ 

Bit-pairs per 
E(l4, 15) 

Ml ,M2 has the same bit configuration as the bit-pair 
selected from S by E(12-15), and is inserted into 
B(64,65) [via PAI.(64,65)] where it extends the high.­
order portion of the dividend in B. 

Selection of the divisor multiple is shown in A of Sheet 
4, Diagram 5-110. The factors which determine the divisor 
multiple are: 
1. The carry condition from PAI.(28) from the previous 

add cycle. 
2. The state ofT(32), which is the divisor sign bit. 
3. The 'DVOLO' or 'DVDLl' micro-order. 

Four divisor multiples are developed and applied as 
follows: 
1. TLO (+1 x T): The divisor in T is added to the 

partial remainder in AB. 
2. TCLO (-1 x T): The 2's complement of the divisor in 

T is added to the partial remainder in 
AB. 
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3; TLl (+2 x T): The divisor in Tis shifted left one bit 
position (in effect, doubled in value) 
and is added to the dividend or 
partial remainder in AB. 

4. TCLl (-2 x T): The 2's coµiplement of the divisor in 
T is shifted left one bit position and 
is added to the dividend or partial 
remainder in AB. 

The first divisor multiple is arbitrarily set to +2 x T 
if the divisor is negative (STAT G set) or to -2 x T if 
the divisor is positive (STAT G reset). This selection is 
done for two reasons: 
1. The carry condition from PAI.(28), which is normally 

a factor in selecting a divisor multiple, is meaningless 
at this time, because no previous reduction cycle has 
taken place. 

2. If the relative magnitude of the dividend and divisor 
allows, the first reduction must be an overdraw. 
(Except for one special case, if the first reduction 
cycle does not result in an overdraw, the quotient 
and remainder will be invalid.) 

Determination of the PQ bit is shown in C of Sheet 
4, Diagram 5-110. The result of adding the selected 
divisor multiple to the dividend or partial remainder is 
stored into AB as a new partial remainder. The PQ bit is 
decoded as the inverse of A(28), and is gated to· F (via 
SAL) per E(l4,15) and the 'DVDLO' or 'DVDLl' micro­
order in effect at that time. \Vhen a PQ byte has been 
accumulated in F, it is gated to S per the STC, where it 
replaces the byte of S which has already been used. 
When four PQ bytes have been stored into S, the 
complete quotient is in S and the remainder is in B. 

At this point, STAT G is tested. (Recall that STAT G 
was set to the sign of the divisor.) If set, the divisor is 
negative and is in 2's complement form. Because the 
first reduction cycle is an attempt to overdraw the 
dividend, the negative divisor is shifted left 1 bit posi­
tion (in effect, doubled in value) to P AA(31-62). If 
STAT G is reset, the divisor is positive and must be 2's 
complemented and shifted left one bit position to 
reduce the dividend. During the addition, the sign of the 
divisor is propagated into PAL(24-31), and the result 
(remainder) is gated to AB(24-67). A(28) is then tested 
to determine the PQ bit. A remainder in true form 
[A(28) = O] causes a I-bit to be selected for the PQ bit; 
a 2's complement remainder [A(28) = I] causes a 0-bit 
to be selected for the PQ bit. 

Two micro-orders, 'DVDLO' and 'DVDLI', are alter­
nately used in the divide algorithm. Each micro-order 
has two functions: (1) to determine the location of the 
PQ bit in SAL (and F) from the bit-pair selected by 
E(I4,15), and (2) to determine the shifting of the 
divisor multiple to PAA. [The carry condition from 
PAL(28) and the state of T(32) determine whether the 
multiple will be in true or 2's complement form.] The 



'DVDLO' micro-order causes the selected PQ bit to be 
placed into the odd SAL bit position of the bit-pair 
selected by E(l4,15), thus locating the PQ bit in the PQ 
byte being accumulated in F. This micro-order also 
determines that the divisor multiple will be gated to 
PAA(32-63) (no shift). The 'DVDLl' micro-order 
causes the selected PQ bit to be placed into the even 
SAL bit position, and also determines that the divisor 
multiple will be gated to PAA(3 l-62) (shifted left 1 bit 
position). 

Detailed Discussion 

• Select Ml,M2 bits from S per E(12-15). 

• Insert Ml,M2 bit-pair as low-order extension of high­
order dividend in B. 

• Select divisor multiple per: carry condition from 
PAL(28), divisor sign [T(32)], and 'DVDLO' or 
'DVDLl' micro-order. 

• Reduce dividend (or remainder) in AB' by divisor 
multiple selected. 

• Determine PQ bits per A(28). 

• Accumulate PQ bits in F to form PQ byte. 

• Accumulate PQ bytes in S to form quotient. 

• Determine validity of quotient and remainder. 

A flowchart of the DR instruction is shown in Diagram 
5-110. At the ·start of execution, the instruction is in E, 
the high-order half of the dividend is in A, B, and D, and 
the second operand (divisor) is in Sand T. (As previously 
mentioned, the dividend occupies an even-odd pair of 
GPR's.) To correctly specify the even-odd pair of GPR's, 
the Rl field of the instruction must refer to an even­
numbered GPR, or a program specification interruption 
occurs. 

The states of B(32) and T(32) are first tested. B, at this 
time, contains the high-order half of the dividend, and T 
contains the divisor. If B(32) = 1, STAT Bis set; ifT(32) 
= 1, STAT G is set. These STAT's are used in later 
operations to determine the correct sign of the quotient 
and remainder, and to obtain a dividend in true form in B 
andS. 

Recall that the dividend must be in true form. Because 
the dividend is a 64-bit operand and the maximum 
operable word length is 32 bits, the high-order half and 
the low-order half of the dividend must be treated 
separately when determining the true value of the 
dividend. To obtain a true value of a negative dividend, 
the dividend must be 2's complemented. Because the 
complementation process is always accomplished on a 2's 
complement basis during fixed-point operations, and 
because the high-order and low-order halves of the 
dividend are treated separately, the value of the high-order 
bits may be incorrect when in the true form. To prevent 

an incorrect high-order dividend from being operated on, 
the value of the low-order dividend bits is tested by 
checking for a carry out of the high-order bit location 
when 2's complemented. If a carry occurs, the high-order 
dividend bits are in the correct form. If a carry does not 
occur, the high-order bits are incorrect and a minus 1 
must be added to the bits to obtain the desired dividend 
value. The following two examples illustrate this method 
(using only a 16-bit double word): . 

Example 1: Correct Value Obtained. 

1111011000000000 
0000100111111111 

1 
Long-hand method of 
obtaining 2's complement 

[

0000101000000000 

11110110 00000000 ! 
0000100~ 1111111~ 

00001010 ~00000000 

Machine method of 
obtaining 2's com­
plement 

Carry 

Example 2: Incorrect Value Obtained and How It Is 
Corrected. 

1111011010000000 ! 
0000100101111111 

. 1 

0000100110000000 

11110110 
00001001 

1 

Long-hand method of 
obtaining 2's complement 

1 
00001010 

J.10 

10000000 ! 
01111111 

.- 10000000 
No 
Carry 

Machine method of 
obtaining 2's com­
plement but found 
to be incorrect 

11111111 
00001001 

} 
Machine method of 

..,..1 o~oo""o'="o=o-=-o correction 

Sheet 2 of Diagram 5-110 illustrates the method used by 
the CPU to obtain a positive dividend value in B and S. 

With the correct values of the dividend in B and S and 
the divisor in T, E( 12-15) is set to 0000 to allow 
selection of the first byte of the low-order half of the 
dividend. The first partial remainder is obtained by 
transferring the contents of B (high-order half of divi­
dend) to PAB(32-63) and placing the divide multiple 
selection bits, Ml,M2, into PAI.(64,65). The divide 
multiple selection bits are determined by decoding 
E(12-15) and the S bits, as previously described. 

After selection of the Ml,M2 bits, E(12-15) is 
incremented by 1, setting up conditions for selection of 
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the next Ml,M2 bits. The resultant value of the addition 
of Ml,M2 to the high-order half of the dividend is 
transferred to AB(24-67), from where it is shifted left 2 
into the parallel adder, introducing the Ml,M2.bits into 
the partial remainder. 

Recall that ST AT G was set to the sign value of the 
divisor. At this point, STAT G is tested (Sheet 3 of 
Diagram 5-110.) If set, the divisor is negative and is in 2's 
complement form, and is transferred to the parallel adder, 
shifting left 1 to PAA(31-62). If STAT G is reset, the 
divisor is positive and must be 2's complemented before 
being ·transferred to the parallel adder so that it can 
reduce the dividend. During the addition, the sign of the 
divisor is propagated into PAI.(24-31) and is checked 
after the addition to determine the PQ-bit setting. 

At this point in the operation, the 'DVDLO' micro­
order is in effect and causes the first PQ bit to be gated to 
the odd SAL bit position of the high-order bit-pair of SAL 
[E(l4,15) = 01) (C of Sheet 4, Diagram 5-110). The first 
PQ bit is extraneous, because it reflects the condition of 
A(28) before ·the first reduction cycle, and it is replaced 
by a valid bit 2 cycles later. The result of the first 
reduction is placed into AB. 

A 'DVDLl' micro-order is issued next. This micro· 
order causes selection of a PQ bit per A(28). (AB 
presently contains the result of the first reduction.) If the 
result of the first reduction is negative [A(28) = 1), a 0 is 
the. selected PQ bit; if positive [A(28) = 0), a 1 is the 
selected PQ bit. Because the 'DVDLl' micro-order is now 
in effect, the PQ bit is gated to the even SAL bit position 
of the high-order bit-pair of SAL [E(l4,15) = 01), and 
SAL is gated to F. The contents of AB are transferred to 
PAB, and the divisor multiple [selected by the carry 
condition of PAI.(28), the state of T(32), and the 
'DVDLO' micro-order] is gated to PAA. The result of the 
addition, together with a new pair of multiple selection · 
bits, is gated to AB as a new partial remainder. The next 
divisor multiple is selected per the carry condition . of 
PAI.(28), the status ofT(32) (which remains the same for 
the entire divide operation), and the 'DVDLl' micro· 

Table 3-3. Divide Multiple Values, Fixed-Point 

Carry from PAL(28l T(32) 

Yes No 1 0 

x x 

x x 

x x 

x x 
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order. Refer to Table 3-3 for the value of the divisor 
multiple for all conditions. 

Selection of the PQ bits and divisor multiples occurs as 
just described until a complete byte of the PQ is available: 
(1) the 'DVDLO' micro-order is issued, and the PQ bit 
obtained from the last addition is stored into the odd 
register location determined by E(l4,15), (2) the next 
divisor multiple is selected, placed in the adder, and added 
to the partial remainder, and (3) a 'DVDLl' micro-order is 
.issued. The 'DVDLl' micro-order accomplishes the same 
operation as the 'DVDLO' micro-order, except that it 
places the PQ bit into the even GPR location per E(14,15) 
and shifts the selected multiple left 1. (Refer to Sheet 3, 
Diagram 5-110.) 

When a byte of the PQ is obtained, it is transferred to S 
per the STC, replacing those bits of the low-order half of 
the dividend that have already been used. Operations 
continue in the same manner; i.e., PQ bits are selected to 
form a PQ byte, this byte is transferred to S, and the used 
dividend bits are replaced until a complete quotient is 
developed. 

Thirty-two reduction cycles are provided by the 
fixed-point divide microprogram. To obtain a valid quo­
tient and remainder, the absolute value of the dividend 
and divisor must be so related that in 32 reduction cycles 
the dividend can be reduced to a remainder whose value is 
less than that of the divisor. If the highest-order signifi· 
cant bit of the dividend is less than 31 bit positions to the 
left of the highest-order significant bit of the divisor, the 
quotient is in true form and a valid result is obtained. If 
the highest-order significant bit of the dividend is more 
than 30 bit positions to the left of the ·highest-order 
significant bit of the divisor, the quotient is in 2's 
complement form and an invalid result is obtained unless 

. the quotient is the maximum negative number 
(10000 ...... 000). Valid results are stored, but invalid 
results cause a program fixed-point divide interruption 
and the original operands remain unchanged in storage. 

When E(l4,15) = 11 and the STC = 11 (when tested), 
E(l2-15) is incremented to 0000, the next-to-last PQ bit 

Divide Multiple Micro·Order 

~DVD LO' 'DVD.Lt' 

2's complement of T. 2's complement of T shifted left 1. 

T. T shifted left 1. 

2's complement of T. · 2's complement of T shifted left 1. 

T. T shifted left 1. 



is stored into F(6), and the last reduction cycle is taken 
(Sheet 3, Diagram 5-110). The last PQ bit is taken from 
the remainder in AB [A(28)] and is gated to SAL(7) [per 

E(l4,15) = 00 and the 'DVDLO' micro-order]. This action 
completes the last byte in SAL, which is gated to S per the 
STC. 

A branch on divisor sign (STAT G) and quotient form 
(true or 2's complement, STAT C,) causes the 
microprogram to enter 1 of 4 termination routines. The 
purpose of the termination routines is to test . for valid 
results, to establish the quotient and remainder in the 
proper form according to the proper sign, to store the 
corrected remainder and quotient, and to end the 
operation. 

Sheet 6 of Diagram 5-110 is a flowchart of the 
fixed-point divide termination routine if the quotient is in 
true form. In this case, the quotient and remainder are 
valid, and it is only necessary to store the results in the 
proper form. (Positive results must be stored in true form 
and negative results must be stored in 2's complement 
form, according to the convention of fixed-point arithmetic 
and the rules of algebra.) Because the dividend was stored 
in B and S in true form regardless of sign, the results may or 
may not be in the correct form. It is therefore necessary to 
branch on the original signs of the operands and on the 
form. of the results to achieve the proper form for the 
results. If the remainder is in 2's complement form, it is the 
result of an overdraw, and must be corrected by adding the 
divisor in true form before storing or complementing the 
remainder according to the sign of the dividend. 

Shee.t 5 of Diagram 5-110 is a flowchart of the 
fixed-point divide termination· routine if the· quotient is in 
2's complement form. If the quotient is in 2's complement 
form and it is the maximum negative nuniber 
(10000 ...... 000), the results are valid and the 
termination routine must accomplish the same tasks as for 
the true form termination. If the quotient is not the 
maximum negative number, a program fixed-point divide 
interruption is taken and the original operands remain 
unchanged in storage. 

When the quotient and remainder are valid and have been 
converted to the proper form according to their algebraic 
sign, the remainder is stored into the GPR per E(8-1 l) and 
the quotient is stored into the GPR per E(8-ll) + 1, 
replacing the high-order and low-order halves of the 
dividend respectively, and leaving the divisor unchanged in 
storage. An end-op cycle is taken, finishing the operation. 

Two examples of the fixed-point divide operation are 
presented in Figures 3-8 and 3-9. These examples are the 
inverse of the two fixed-point multiply examples (Figures 
3-6 and 3-7). 

Divide, D (50) 

• Divide 1st operand (in GPR per Rl and Rl + 1) by 2nd 
operand (in storage). and place result into 1st operand 
location (remainder in GPR per Rl; quotient in GPR per 
Rl + 1). 

• RXformat: 

50 Rl X2 B2 
78 1112 1516 1920 

Fetch high-order word of dividend 
from GPR per Rl and .place into B. 
Fetch low-order word of dividend 
from GPR per Rl + 1 and place 
into S. 

02 

31 

Fetch doubleword [containg word­
length divisor (2nd operand)) 
from main storage . 

Select word-length divisor 
from doubleword per 0(21) 
and place into T. 

Divide B and S by T. 

Store remainder into GPR per R 1 
and quotient into GPR per Rl + I. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
High-order half of dividend (1st operand) is in S and T. 
Low-order half of dividend, is in GPR per Rl + 1. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
divisor: if a 1, right word; if a 0, left word. 

The Divide, D, instruction divides the contents of B 
(high-order bits of dividend) and S (low-order bits of 
dividend) by the contents ofT (divisor). D(21) determines 
which word of the doubleword fetched from main storage 
contains the divisor: if a 1, right word; if a 0, left word. 
Once the divisor is obtained from main storage, the 
operation is identical to the operation of the DR 
instruction (Diagram 5-110). 

CONVERT 

There are two fixed-point convert instructions, both in 
the RX format:' Convert to Binary and Convert to 
Decimal. These instructions convert the radix of an 
operand from dec.imal to binary and binary to decimal, 
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the second operand is tested to see whether the proper 
integral boundary has been specified. If the address is 
located on an incorrect (non-doubleword) integral 
boundary, a program specification interruption occurs. 
The CVB operation is suppressed, and the data in LS and 
in main storage remains unchanged. If no program specifi· 
cation interruption occurs, the operation continues. 

Recall that, at the start of execution, a storage request 
for the second operand had been issued. At this time, the 
data ( doubleword operand) is present at the SDBO and is 
gated into ST, destroying the first operand. The STC, 
which selects the correct byte to be converted from ST, is 
set to 000, thus selecting S(0-7). 

The contents of T (low-order half of the doubleword 
operand) are transferred to the LSWR. (This data is 
converted at a later time.) Because the converted data is 
to be stored into T and D, they are now cleared. The first 
byte (bits 0-7) of S is transferred to the serial adder B 
bus. Bits 0-3 are transferred to SAL(0-3) and SAL(4-7) 
and on to F. F now contains the first decimal digit to be 
converted. 

As the decimal data from Sis passed through the serial 
adder to F, it is tested for invalid digits. If the digits are 
invalid, STAT E is set and later, when tested, causes a 
program data interruption, which terminates the operation. 
If the digits are valid, the first decimal digit is transferred 
from F(4-7) to PAB(60-63). The contents of D and Tare 
then transferred and shifted left 1 to PAA(T-30) and 
PAA(31-62), respectively, and added to the decimal digit. 
At this time, D and T contain zero. 

The result of the addition, which is the decimal digit, is 
transferred from PAL(8-63) to DT and from PAL(32-63) 
to B(32-63). The contents of DT are then transferred to 
PAA(8-63). The contents of B are now shifted left 2, 
placed into P AB( 4-65), and added to PAA. This action, in 
effect, multiplies the original decimal digit by 5. The result 
of the addition is then transferred from PAL(8-63) to DT. 
A byte from S is transferred to the serial adder B bus per 
the STC. At this time, the byte transferred to the serial 
adder is the first byte in S (STC = 000). This action allows 
the second decimal digit to be placed into the serial adder. 
From the serial adder, the data is sent to F. The STC is 
increased by 1 so that the next byte from S can be 
transferred when selected. 

The second decimal digit, F( 4-7), is transferred to 
PAB{60-63). The contents of DT are then transferred to 
l>AA(7-62). This transfer shifts the converted data left 1, 
in effect multiplying the original decimal. digit by 10 (x5 
and x2). PAA and P AB are added, and the result in 
PAL(8-63) is transferred to DT. The contents of 
PAL(32-63) are transferred to B{32-63). 

The next byte in S (bits 8-15) is now transferred to F 
via SAL. STAT D is then tested. If STAT D is set, it 
indicates the low-order word of the doubleword operand is 
being converted; if reset, the high-order word . is being 
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converted. At this time, STAT Dis reset. The STC is now 
tested to see which byte of Sis being worked on; the value 
presently in the STC is 001. Because STAT Dis reset and 
the STC does not equal 011, operations continue in the 
same manner as previously described; i.e., a decimal digit is 
brought in and added to the sum of the converted digits, 
and the result is multiplied by 10. This procedure continues 
until all digits have been converted. 

While the last two decimal digits of the high-order word 
are being processed, STAT Dis set to indicate the low-order 
word. When the last decimal digit of the high-order word 
has been transferred to F, the STC is set to 000; the 
low-order word is transferred from the LSWR {where it was 
stored at the beginning of the operation) to S and is 
converted in the same manner as the high-order word. 

When the low-order byte of the low-order word is 
transferred from SAL to F, the sign is tested for validity, 
setting STAT E if invalid. The state of STAT E is then 
tested. If STATE is set, a data-check condition exists and 
an end-op cycle is taken, leaving the contents of LS 
unaltered. If STATE is not set, the sign of the number is 
determined by [F(4-7)], and the last decimal digit is 
converted. If F( 4-7) is a plus sign, the converted data is 
transferred from T to the GPR per E{8-11 ). If F( 4-7) is a 
minus sign, the converted data is first 2's complemented 
and then transferred from T to the GPR per E{8-11). 
STAT G is then set if T{32) = 1. PAL(32-63) is tested for 
all zero's (T = 0), and a branch is made on the result of this 
test. 

The contents of D (overflow bits) are then transferred to 
PAL(40-63), and PAL(32-63) is again tested for all zero's 
(D = 0). Note that D is not 2's complemented when T is 2's 
complemented for a negative sign, and should always equal 
zero unless an overflow occurred. 

If T{32-63) = 0 and D(0-23) = 0, the result is zero and 
a normal end-op cycle is taken. In all cases, if D(0-23) does 
not equal 0, an overflow has occurred, a fixed-point divide 
check condition exists and an· end-op cycle is taken. If 
D(0-23) = 0 and T(32...:.63) does not equal 0, a further test 
is made to determine if the maximum positive or negative 
number has been exceeded. If the decimal sign [F(4-7)] 
was positive and T(32) = 1 (STAT G set), the maximum 
positive number has been exceeded. If the decimal sign 
[F(4-7)] was negative and T(32) = 0 (STAT G reset), the 
maximum negative number has been exceeded. (For a 
negative sign, the contents of T have previously been 
changed to 2's complement form.) In both of the above 
cases, a fixed-point divide check condition exists and an 
end-op cycle is taken. If the maximum number has not 
been exceeded, an end-op cycle is taken, completing the 
operation. 

Note that even if an overflow condition is detected or if 
the maximum positive or negative number has been 
exceeded, the low-order 32 bits of the converted integer are 
stored into the GPR per E{8-11) and the only indication is 



the fixed-point divide check condition. If any decimal digit 
or. the sign is invalid, a data check condition exists and the 
operation is terminated without storing any data. 

Convert to Decimal, CVD (4E) 

• Convert radix of 1st operand (in GPR per RI) from 
binary to decimal and place result into 2nd operand 
location (in storage). 

• RXformat: 

4E RI X2 82 

78 11 12 15 16 19 20 

Fetch binary integer from GPR per RI. 

Convert binary data to decimal 
digits (in BCD form). 

Store converted data (doubleword) 
into main storage per 2nd operand 
address. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 

02 

31 

• Operand to be converted is 32-bit signed binary integer. 

• Converted data is in packed decimal format. 

• Positive sign is encoded as 1100 or 1010. 

• Minus sign is encoded as 1101 or 1011. 

The Convert to Decimal (CVD) instruction converts the 
radix .of the first operand (from GPR per RI) from binary 
to decimal, storing the result into the second operand 
location (in main storage). The number to be converted is 
a 32-bit signed binary integer; the 31 binary bits yield 15 
decimal digits in the packed format. The sign bit may be 
encoded in two forms for both positive and negative 
numbers. A positive sign may be 1100 or 1010; a minus 
sign may be l101 or 1011. The choice between the two 
sign .representations is determined by PSW( 12). 

A binary number is converted to decimal by parallel 
decimal correct function, which operates from AB to the 
parallel adder. The binary number being converted is 
extracted one bit at a time from the most significant bit 
to the least significant bit (left to right) and is added to a 
previous . partially converted decimal· number. The 
resultant number is frrst multiplied by 2, by shifting left 
1, and then decimal-corrected. The parallel decimal­
correct . function extracts 6 or 0 from the partially 

converted number and adds the 6 or 0 to twice the 
partially converted number so that the resulting decimal 
number does not exceed the maximum decimal number of 
9. This function is performed for each half-byte of 
AB(28-63) for every add cycle. Table 3-4 lists the AB 
bits and parallel adder bits used in the decimal-correct 
function. The process of conversion is repeated until all 
bits of the binary number have been examined. At the 
completion of the conversion, the converted number is 
shifted left 4, and the correct sign is placed into the 
low-order bit positions. The example shown in Figure 
3-10 illustrates the method of converting from binary to 
decimal. 

Table 3-4. Conversion to Decimal (Excess-6) 

AB Bits Set Set PAB Bus Bits (+6) 

A(28) PAB(29,30) 
A(29,30) PAB(29,30) 
A(29) and A(31) PAB(.29,30) 
B(32) PAB(33,34) 
B(33,34) PAB(33,34) 
B(33) and B(35) PAB(33,34) 
B(36) PAB(37,38) 
B(37,38) PAB(37,38) 
B(37) and B(39) PAB(37,38) 
B(40) PAB(41,42) 
B(41,42) PAB(41,42) 
B(41) and B(43) PAB(41,42) 
B(44) PAB(45,46) 
B(45,46) PAB(45,46) 
B(45) and B(47) PAB(45,46) 
B(48) PAB(49,50) 
B(49,50) PAB(49,50) 
B(491 and B(51) PAB(49,50I 
B(52) PAB(53,54) 
B(53,54) PAB(53,54) 
B(53) and B(55) PAB(53,54) 
B(56) PAB(57,58) 
B(57,58) PAB(57,58) 
B(57) and B(59) PAB(57,58) 
B(60) PAB(61,62) 
B(61,62) PAB(61,62) 
B(61) and 8(63) PAB(61,62) 

Diagram 5-112, FEMDM, is a flowchart of the CVD 
instruction. At the start of execution, the frrst 16 bits of 
the instruction are in E, the first operand is in Sand T, and 
the second operand address is in D. The first portion of the 
operation is devoted to testing for specification-check and 
address-store-comp.are conditions. If a specification check is 
present, a program specification interruption occurs and the 
operation is suppressed. If an address-store-compare 
condition occurs, the 'PSC' trigger is set and the operation 
continues. The value of S(O) (sign Of original binary 
number) is set into STAT C. At the end of the operation, 
STAT C is examined to determine the sign of the converted 
number. · 
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Convert +146 Binary (92 Hex) to +146 BCD 

l. SAL= 1001 0010 (shift left l after each addition). 
2. Gate 6 or 0 to each half-byte of PAB per AB 

bits (see Table 3-4). 

AB 

52 53 54 55 56 57 58 59 60 61 62 63 

0 0 0 0 0 0 0 0 0 0 0 0 
l 

0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 l 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

1 
0 0 0 0 0 0 0 0 1 0 0 l 
0 0 0 0 0 0 0 l 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 1 l 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 l 0 
0 0 0 0 0 0 1 l 0 1 1 0 
0 0 0 0 0 1 1 0 1 - l 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 

1 
0 0 0 0 0 1 l l 0 0 1 l 
0 0 0 0 l l 1 0 . 0 1 1 0 
0 0 0 0 0 1 1 0 0 0 0 0 
0 0 0 1 0 1 0 0 0 1 1 0 

0001 0100 0110 1100 = +146 in BCD packed format 

Figure 3-10. Convert to Decimal Example 

Because conversion is done on a positive operand basis, 
the sign of the operand is determined by testing T(32). If 
T(32) is a 1, the data to be converted is negative and its 2's 
complement form must be derived; if a 0, the data is 
positive. The contents of D are then shifted left 4 and 
transferred to the LSWR. Because the high-order converted 
data is stored in D, D is cleared. The first byte of data is 
now sent from S to SAL per the STC (STC = 0). 

The first decimal convert value (O or 6) is obtained by 
examining the contents of AB. Because AB is cleared at this 
time, the first decimal convert value is all O's. (See Table 
34 for conversion values.) The decimal convert value is 
placed into PAB(28-63), and a hot carry is generated if 
SAL(O) = 1. If SAL(O) = 0, a hot carry is not generated and 
the value in PAB is transferred directly to PAL. The 
contents in SAL are shifted left 1, thus placing the next bit 
from the byte into SAL(O). Next, PAL(8-63) is transferred 
to AB(8-63), PAL(8-31) is transferred to D(0-23), and 
PAL(32-63) is transferred to T(32-63). This action places 
the first converted bit into AB and DT. The value in DT is 
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Remarks 

-

Gate 0 to each half-byte of PAB. 
Hot carry to PAA(63) [SAL(O) = 1]. 
Sum to AB and DT. 
Gate DT left 1 to PAA. 
Gate 0 to each half-~e of PAB. 
Sum to AB and DT. 
Gate DT left 1 to PAA. 
Gate 0 to each half-~e of PAB. 
Sum to AB and DT. 
Gate DT left l to PAA. 
Gate 0 to each half-byte of PAB. 
Hot carry to PAA(63) [SAL(O) = 1]. 
Sum to AB and DT. 
Gate DT left 1 to PAA. 
Gate 0 or 6 to each half-byte of PAB. 
Sum to AB and DT. 
Gate DT left l to PAA. 
Gate 0 or 6 to each half-byte of PAB. 
Sum to AB and DT, 
Gate DT left l to PAA. 
Gate 0 or 6 to each half-byte of PAB. 
Hot car~ to PAA(63) [SAL(O) = 1]. 
Sum to AB and DT. 
Gate DT left 1 to PAA. 
Gate 0 or 6 to each half-byte of PAB. 
Result [place sign of 1100 into B(64-67) per STAT CJ. 

then shifted left 1 to PAA(7-63). A decimal convert value 
is again obtained from B and placed into P AB. SAL(O) is 
now checked. If it is a 1, a hot carry is generated; if a 0, no 
carry is generated. In either case, the numbers are added. 
The result of the addition is then transferred to DT and AB. 
The contents of SAL are shifted left 1, bringing in the next 
bit for conversion. The ABC is increased by 1. 

The contents of SAL (a byte of S per the STC) are 
shifted left one digit position as follows: F is gated to SAA, 
the byte of S (per the STC) is gated to SAB, and SAL is 
gated to F and S (per the STC). This operation is equivalent 
to adding the contents of SAL to itself, which doubles the 
value of SAL and, in effect, shifts the bits one digit position 
to the ·left. After seven add cycles, every bit in SAL has 
been presented in sequence to PAA(63) via SAL(O), the 
original low-order bit of F (and of the byte of S) has been 
shifted to the high-order bit position of F and of the byte 
of S, and the STC has been incremented by 1 to present the 
next byte of S to SAL and F. To assure that the new byte 
of S presented to SAB will be added to all zeros, F( 4-7) is 
gated to SAA(0-3) and all zeros are gated to SAA( 4-7). 



The ABC indicates the progress of the microprogram in 
converting bits of the byte from S (now located in SAL, F, 
and S). When the ABC = 4, five bits of the byte have been 
converted, the microprogram has branched (per ABC = 3) 
to a routine to convert the last three bits of the byte, the 
ABC is set to 0, and the STC is incremented by 1 to present 
the next byte of S to SAL and F. One conversion cycle is 
taken and the microprogram re-enters the conversion loop, 
converting the next byte of S in the same manner as the 
first. This routine continues until, at the time the 
microprogram branches from the conversion loop, the STC 
= 3. The microprogram then enters a termination routine, 
during which the last three bits of the low-order byte of S 
are converted and the sign is set per STAT C. (Recall that 
STAT C was set to the value of the sign of the binary 
number.) If STAT C is set, the last decimal convert value 
(converting bit 7 of the last byte) is obtained and the hot 
carry is generated according to the value of SAL(O); the 
result is placed into AB and DT. A minus sign (1101 or 
1011) is then placed into B(64-67). AB is sbifted left 4 
and transferred to ST(0-63). Mark triggers 0 through 7 are 
set, and the converted data is transferred to main storage. 
An end-op cycle is taken, completing the operation. If 
STAT C is reset, a positive sign is placed into B(64-67), 
shifted into the low-order bits of the converted operand, 
and stored into main storage. 

The CVD instruction is the only instruction which uses 
the excess-6 gates from B to PAB. (For a discussion of the 
excess-6 gates, refer to "Parallel Adder" in Chapter 2.) Note 

. in the example in Figure 3-10 that the result of each 
addition is gated from PAL to AB and to DT; then the 
contents of DT are gated left 1 to PAA (in effect, doubled 
in value). By examining the bit configuration of each 

Table 3-5. Excess-6 Conversion, B(60-63) 

Decision Making 8·bits 
Factors (ALO RB753) 60 61 62 63 

0 0 0 0 
0 0 0 1 

None of the 0 0 1 0 
below conditions 0 0 1 1 

0 1 0 0 

8(61) and 8(63) = 1 0 1 0 1 

8(61,62) = 11 { 0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 

8(60) = 1 1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

Refer to Table 3-4 for remaining half-bytes of AB. 

half-byte of AB, a decision is made whether to add 6 to the 
corresponding half~byte of DT after being shifted left 1 to 
PAA. This decision is a prediction whether or not each 
half-byte of AB, if doubled in value, will exceed 9. Each 
half-byte of AB which has a value of 5 or greater will, if 
doubled, exceed 9. Therefore, for decimal correction 
purposes, 6 must be added to the corresponding half-bytes 
ofDT. 

For simplicity, the low-order half-byte of Bis taken as 
an example in Table 3-5; however, each half-byte of AB 
(28-63) is simultaneously examined. Note in the table that 
if B(60-63) contains a value of 0 through 4, the value, 
when doubled, will not exceed 9 and a 6 is not added. If 
B(60-63) contains a value of 5 through 15, however, its 
value, when doubled, will exceed 9 and a 6 must be added. 
Note that for values 5 through 15 B(60-63) contains one 
or more of the following bit combinations: B( 60) = 1, 
B(61,62) = 11, B(61) and B(63) = 1. 

STORE 

There are three fixed-point store instructions: Store, ST, 
RX format; Store Halfword, STH, RX format; and Store 
Multiple, STM, RS format. The function of the store 
instructions is to store the contents of specified GPR(s) 
into main storage. 

Store, ST (50) 

• Store 1st operand (in GPR per Rl) into 2nd operand 
location (in storage). 

Decimal Decimal Value Add to 
Value if Doubled PA8(60-63) 

0 0 t 1 2 
2 4 0 
3 6 i 4 8 

5 10 

f 
6 12 
7 14 
8 16 
9 18 6 

10 20 [1 to 
11 22 PA8(61,62)] 
12 24 

l 
13 26 
14 28 
15 30 
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• RX format: 

0 

50 Rl X2 B2 
78 11 12 15 16 19 20 

Fetch 1st operand from GPR per Rl. 

Set mark triggers per 
PAL(61) [0(21)]. 

Store word-length 1st operand into 
word (selected by mark triggers) 
of doubleword specified by 2nd 
operand address. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T. 
2nd operand address is in D. 

02 

31 

• PAL(61) determines into which word qf doubleword 1st 
operand is to be stored: if a 1, right word; if a 0, left 
word. 

The Store, ST, instruction stores the first operand (from 
the GPR per Rl) into the main storage address specified by 
the second operand address. Diagram 5-113, FEMDM, is a 
flowchart of the ST instruction. PAL(61) determines which 
word (right or left) of the doubleword addressed by D will 
receive the first operand; mark triggers 0-3 or 4-7 are set 
accordingly. 

Store Halfword, STH (40) 

• Store halfword 1st operand (in GPR per Rl) into 2nd 
operand location (in storage). 

• RX format: 

40 Rl X2 B2 
7 8 11 12 15 16 19 20 

Fetch word (containing halfword 1st 
operand) from GPR per Rl. 

Select halfword 1st operand 
(low-order 161bits) per A'BC. 

Set mark triggers per 
STC (0(21-23)]. 

Store halfword 1st operand into 
ha I fword (selected by mark 
triggers) of doubleword specified 
by 2nd operand address. 
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D2 
31 

e Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T. 
2nd operand address is in D. 

• ABC selects 16 low-order bits of 1st operand for 
storage; high-order bits are ignored. 

e STC [D(21-23)] positions 16 low-order bytes for 
storage. 

The Store Halfword (STH) instruction stores the 16 
low-order bits of the GPR specified by Rl into the main 
storage location specified by the second operand address. 
The high-order bits are not used. 

The selected halfword is stored through the use of 
mark triggers, which reflect the value of D(21-23). This 
value, plus 1, signifies into which portion of · the 
doubleword the halfword is to be stored. Diagram 5-114, 
FEMDM, is a flowchart of the STH instruction. At the 
start of execution, the fust 16 bits of the instruction are 
in E, the first operand is in S and T, and the second 
operand address (into which the halfword operand is to be 
stored) is in D. · 

The second operand address is first tested to see that it 
is on an integral boundary; if not, a program specification 
interruption occurs and the operation is suppressed. 
Assuming no specification error, D(21-23) is transferred 
to the STC to select the correct portion of the main 
storage doubleword into which the 16 low-order bits of 
the first operand are to be stored. Next, the first operand 
(located in T) is transferred to B. The ABC is then set to 6 
by placing all l's into the ABC and subtracting 1 from this 
value. (The ABC selects the two low-order bytes of the 
operand presently located in B.) The mark trigger, which 
transfers the selected high-order byte of the halfword 
from ST to the main storage location, is selected per the 
STC. (See Table 3-6 for theSTC and mark trigger settings 
and the corresponding operand bits transferred.) The eight 
high-order bits of the halfword are now transferred from 
B( 48-55) to the correct position via the serial adder and 
the STC. A 3-cycle storage request is given. (Three cycles 
later, the data in ST is stored into main storage.) Also at 
this time, the ABC and STC are increased by 1 to select 
the next byte of data and to position the byte into ST by 
the time the 3-cycle storage request has elapsed. 

To determine whether this store operation modified 
the instruction to be executed next, an address-store­
compare test is made by comparing the IC with the main 
storage address used in the store operation. The test is 
made by transferring the 2's complement of,D (address of 
main storage doubleword into which the halfword oper­
and is to be stored) to PAA( 40-63). The contents of the 
IC are transferred to PAB(40-63); PAA and PAB are 
added, and the result is shifted right 4 in PAL. The PAL is 
tested for O; if 0, an address-store-compare condition 
exists and the 'PSC' trigger is set. This trigger is tested 



Table 3-6. Operand Bits Transferred, STH Instruction 

Operand Bits 
STC Mark Trigger Transferred 

0(21) 0(22) 0(23) 

0 0 0 0 0-7 

0 1 0 2 16-23 

1 0 0 4 32-39 

1 1 0 6 48-55 

STC+1 

0 0 1 1 8-15 

0 1 1 3 24-31 

1 0 1 5 40-47 

1 1 1 7 56-63 

during the 1-F etch sequence of the next instruction and, if 
set, causes the modified instruction to be fetched from 
main storage and reloaded in Q. (Refer to "ASC Test" in 
Section 1 of this Chapter for an explanation of the 
address-store-compare test during I-Fetch.) 

At this point, the eight low-order bits of the halfword 
operand are transferred from B(56-63) to ST via tb~ SAL 
and STC. The associated mark triggers are also se1" at this 
time per the STC. An end-op cycle is taken to complete 
the operation. If a protection check condition occurs, the 
operation is suppressed, because no data storage takes 
place. Instead, the next instruction is fetched and exe­
cuted, followed by a program interruption due to the 
"late" protection check. 

Store Multiple, STM (90) 

• Store into 2nd operand location (as many words as 
required, in storage) contents of GPR's, in ascending 
order, starting with 1st operand location (per Rl) and 
ending with 3rd operand location (per R3). 

• RS format: (See adjoining column.) 

• Conditions at start of execution: 
First 16 bits of instructior. are in E. 
1st operand is in S and T. 
2nd operand address is in D. 

• Number of words to be stored is determined by 
E(8-11) and E(12-15). 

• Addressed GPR's wrap around from 15 to 0. 

• 0(21) determines into which word of doubleword the 
first word is to be stored: if a 1, right word; if a 0, left 
word. 

90 RI R3 82 02 

1 a 11 12 1s 16 19 20 31 

Fetch lst word from 
GPR per RI. 

Fetch 2nd word from 
GPR per RI+ I. 

Fetch last word from 
GPR per R3. 

Store into correct word 
[per 0(21)) of doubleword specified 
by 2nd operand address. 

Store into next main stoi-age 
location selected. 

Store into last main storage 
location selected. 

The Store Multiple (STM) instruction stores one or more 
32-bit words from LS, starting with the GPR specified by 
Rl and ending with the GPR specified by R3, into main 
storage. The area in main storage where the contents of 
the GPR's are placed starts at the location designated by 
the second operand address and continues through as 
many words as needed in an ascending order. 

The number of words to be stored is determined by 
E(8-11) and E(l 2-15). If the contents of these bit 
locations are equal, only one word is to be stored. If the 
contents of .the bit locations are not equal, storage of 
words is continued; E(8-11) is updated by 1 for each 
word stored until the bit locations are equal; then, one 
more word is stored, and the operation is completed. 
Once it has been decided whether one or more words are 
to be stored, it must be determined into which word of 
the doubleword, in main storage, the first word is to· be 
stored; 0(21) serves this function. If 0(21) = 0, the first 
word is to be placed into the left word of the doubleword; 
if D(21) = 1, into the right word. 

See Diagram 5-115, FEMDM, a flowchart of the STM 
instruction. At the start of execution, the first 16 bits of 
the instruction are in E, the first operand is in ST, and the 
second operand address is in D. The instruction first tests 
for a specification-check condition. If one exists, a 
program specification interruption occurs and the opera­
tion is suppressed. Assuming there is no specification 
check, the contents of D are transferred to PAA( 40-63). 
A 3-cycle storage•request is given. To determine whether 
one or more words are to be stored, E(8-11), RI, is 
compared with E(12-15), R3. If E(B-11) equals E(12-
15), only one word is to be stored; if it does not, more 
than one word is to be stored. · 

Assume one word is to be stored [E(8-11) equals 
E(12-15)]. 0(21) is tested to determine whether the LS 
operand is to be stored into the left or right word of the 
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main storage doubleword. If D(21) = 0, the left word is 
selected; if D(21) = 1, the right word is selected. Assume 
D(21) = 1. Mark triggers 4 through 7 are set to gate 
T(32-63) to bits 32-63 of the main storage doubleword 
when data is stored. An address-store-compare test is then 
made. This test involves transferring the 2's complement 
of D to PAA(40-63) and 7 to PAA(61-63), and 
transferring the contents of the IC to PAB( 40-63); they 
are added and shifted right 4 to PAL. The PAL is then 
tested for zero. If zero, the 'PSC' trigger is set. This trigger 
is tested during end op and, if set, indicates that the next 
instruction to be executed has been modified. The 
modified instruction must then be refetched into Q during 
I-Fetch. (For information about the address-store­
compare test, refer to "ASC Test" in Section 1 of this 
chapter.) 

A protection test is also made by main storage while 
the next instruction is being fetched. The protection key 
in the PSW is compared with the storage key for the 
location. If the keys agree, storage is permitted~ If the 
keys do not agree, storage is not permitted, the instruc­
tion is terminated, and a "late" protection interruption is 
taken after the execution of the next instruction. 

Now assume D(21) = 0 and E(8-11) equals E(I2-15). 
Again only one word is to be stored into main storage. In 
this case, however, the word is to be stored in the left 
word of the doubleword location in main storage. 
Accordingly, mark triggers 0 through 3 are set to gate 
S(0-31) to bits 0-31 in main storage. 

Now assume E(8-11) is not equal to E(12-15). If 
D(21) = 1, the first word is to be stored into the right 
word of the doubleword (mark triggers 4 through 7 are 
set). Because more than one word is to be loaded the 

. ' 
next sequentially addressed word from LS is transferred 
to S. A storage request is then given. The contents of D 
are increased by 8. E(8-11) and E(12-15) are again 
compared. If equal, mark triggers O through 3 are set and 
the data is gated into main storage. If they are not equal, 
more than two words are to be stored into main storage. 
Because the second operand to. be gated from LS is 
aj.ready in S, and because D contains the address where 
both the second and third -operands are to be stored, the 
third operand is now transferred out of LS and mark 
triggers 0 through 7 are set. The data is stored into main 
storage. Address-store-coJ,ll.pare and protection-key tests 
are made for each new main storage address. Only the last 
storage request issued can cause a "late" protection . 
interruption. 

I(more than two words are to be stored, the operation 
continues as just described. E(8-11) is incremented, a 
word is loaded into ST, the address in D is increased by 8, 
and storage requests are generated when needed. When 
E(8-11) and E(12-15) are equal, the last word is loaded 
into main storage and an end-op cycle is taken. 
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If D(21) = 0, and if E(8-11) and E(12-15) are not 
equal, the first word is to be placed into the left word of 
the doubleword location in main storage and the second 
word into the right word. 

SHIFT 

There are four fixed-point shift instructions: Shift Left 
Single, SLA; Shift Left Double, SLDA; Shift Right Single, 
SRA; and Shift Right Double, SRDA. Their function is to 
shift the first operand (right or left) and to store the result 
into the first operand address. The first operand may be a 
word or a doubleword in length and is shifted the amount 
specified by the low-order six bits of the second operand 
address. The specified amount of shift is accomplished in 
increments of left 1, left 2, left 4, and right 4 shifts. To 
expedite the operation, combinations of these increments 
are used whenever possible, and a maximum number of left 
4 and right 4. shifts are used. 

The CC is set to indicate the status of the result. A 
left-shifted result is tested for an overflow condition to 
determine if significant high-order digits were lost. During a 
right-shift, significant low-order digits may be lost with no 
indication. · 

Shift Left Single, SLA (88) 

• Shift 1st operand (in GPR per Rl) left number of bit 
positions specified by low-order 6 bits of 2nd operand 
address and place result into 1st operand location. 

• RS format: 

0 

88 82 
78 

Fetch 1st operand from GPR per R 1 • 

Shift 1st operand left number 
of bit positions specified 
by low-order 6 bits of 
2nd operand address. 

Store result into GPR per 
Rl, and set CC. 

19 20 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
Amount of shift is in i> and PAL. 

• D(18-23) indicates total amount of shift. 

02 

31 



• Methods of shifting: 
Left 1 from T to PAA. 
Left 2 from AB to PAB. 
Left 4 from PAA or P AB to PAL. 

• E(12-15) indicates number of left 4 shifts to be 
performed. 

• E(12-15) is reduced by 1 after each multiple of four 
shifts occurs. 

• O~s are supplied to vacated bit positions. 

• Overflow occurs if data is shifted out of bit position 1. 

• CC setting: 
Result in PAL is zero: CC = 0. 
Result in PAL is less than zero: CC= 1. 
Result in PAL is greater than zero: CC= 2. 
Overflow: CC= 3. 

The Shift Left Single, SLA, instruction shifts the first 
operand left the number of bit positions specified by the 
low-order six bits of the second operand address. (The 
remainder of the second operand address is ignored.) The 
second operand request per D, normally initiated during RS 
I-Fetch, is blocked during I-Fetch of a shift instruction 
because D does not contain a main storage address. Refer to 
"Basic RS and SI I-Fetch" in Section 1 of this chapter. 

The sign of the first operand remains unchanged. All 
31 bits of the operand participate in the left shift. Zeros 
are transferred into the vacated low-order register posi­
tions. If a'bit unlike the sign bit is shifted out of position 

Table 3-7. Left Shift Combinations 

Total Shift 
PAL(58-61) PAL(62,63) Desired 

0000 00 None 

01 Left 1 

10 Left 2 

11 Left 3 l 
NotOOOO 00 Left 4, 8, 12 

and so on 

01 Left 5, 9, 13 
and so on 

10 Left 6, 10, 14 
and so on 

11 Left 7, 11, 15 
and so on 

1, an overflow occurs, causing a program fixed-point 
overflow interruption during end op if the fixed-point 
overflow mask bit is a 1. 

Left-shifting can be accomplished by three methods: 
(1) shifting left 1 bit position from T to the parallel 
adder, (2) shifting left 2 bit positions from AB to the 
parallel adder, ~d (3) shifting left 4 bit positions from 
the parallel adder to PAL. In the interest of speed, the 
desired amount of left shift is accomplished using a 
maximum number of left 4 shifts and a minimum number 
of left 1 and left 2 shifts (not more than one of each). 
Also, whenever possible, a left 1 or a left 2 shift is 
combined with a left 4 shift because these combinations 
can be accomplished in one pass through the parallel 
adder. Table 3-7 shows how left-shifting is accomplished 
for any amount of shift desired. 

See Diagram 5-116, FEMDM, a flowchart of the SLA 
instruction. At the start of execution, the first 16 bits of 
the instruction are in E, the first operand is in S and T, and 
the number of bit positions to be shifted is in D and PAL. 

In the SLA instruction, PAL(58-63) is first tested to 
determine the amount of shift. (PAL contains the same 
value .as D.) If PAL(58-61) = 0, a shift of less than 4 is 
needed; PAL(62) is then tested. If PAL(62) = 1, a shift of 
either 3 or 2 is to be performed; if PAL(62) = 0, either a 
shift of 1 or no shift is to be performed. 

As an example, assume that PAL( 58-61) does not equal 
0 and that PAL(62,63) = 11. A shift of left 7, left 11, or 
more is indicated. STAT C is set to S(O), the sign of the 

Incremental Shifting Sequence 

None 

Left 1 

Left 2 

Left 1 

Left4 Left 4 until 
E(12-15) = 1 

Left 1 Left 4 until 
and left4 E(12-15) = 1 

Left 2 Left 4 until 
and left 4 E(12-15) = 1 

Left 1 Left 2 if 
and left 4 E(12-15l = 1 

Left 2 and left 4 Left4 
if E(12-15) =/= 1 until 

E(12-15) = 1 
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first operand that will be transferred to LS at the ertd of the 
operation. D(18-21), which is equal to PAL(58-61), is 
transferred to E(12-15). This value is reduced sequentially 
by 1 after every left 4 shift until it equals 0001, at which 
time no more shifting of data is necessary. The contents of 
T are transferred to PAA(31-62), thus achieving a left 1 
shift. T(32) is propagated into P AL(26-31). Because a left 
4 shift takes place only when transferring data from PAA or 
PAB into PAL, PAA(8-67) is shifted left 4 positions into 
PAI.(4-63). PAI.(26-32) is now tested to see that no 
important data has been lost during the shifting. If these 
bits are not all O's or all 1 's, STAT B is set, indicating 
overflow. occured; if found set during end op, a program 
fixed-point overflow interruption occurs if the associated 
overflow mask bit in the PSW is a 1. P AL(24-67) is 
transferred to AB(24-67). £(12-15) is tested to see 
whether it contains a value ofOOOl. If it does, only a left 7 
shift is to be performed; otherwise, a shift of left 11 or 
more is to be made. 

Assume E(12-15) = 0001. A 1 is subtracted from 
E(12-15). The contents of AB(6-67) are transferred to 
PAB( 4-65). This transfer accomplishes a . left 2 shift, 
making a total left shift of 7 positions. PAL(26-32) is 
tested for overflow, and PAL(32-63) is tested for all O's. 
The data is transferred to LS, and an end-op cycle is taken 
to complete the operation. 

Now assume E(12-15) does not equal 0001, indicating a 
total left shift of at least 11 positions or more is called for 
by the instruction. Because at this point the data has 
already been shifted left 5 positions, a left 6 shift is 
necessary to achieve the minimum left 11 shift. A 1 is 
subtracted from E(12-15). AB(6-67) is transferred to 
PAB( 4-65), yielding a left 2 shift. A left 4 shift is achieved 
by shifting the contents of PAB(4-65) to PAL(0-61). 
PAL(26-32) is tested for overflow, and PAI.(32-63) is 
tested for all O's. PAL(32-63) is transferred to T(32-63), 
and T(32-63) is transferred to the GPR per E(8-11). The 
value of STAT C is placed into the sign position of the 
GPR. E( 12-15) is again checked. for a value of 0001. If the 
bits now contain this value, the data has been shifted the 
correct number of times. A 1 is subtracted from E(l 2-15), 
and an end-op cycle is taken, completing the operation. If 
E( 12-15) does not equal 0001, a left shift of more than 11 
is required for this instruction. 

If E( 12-15) still does not equal 0001, 1 is again 
subtracted from E(l2-15). T(32-63) is transferred to 
PAA(32-63), and the data is shifted left 4 positions into 
PAL(·i8-63). After testing PAL(26-32) and PAI.(32-63), 
the .eontents of PAI.(32-63) are transferred to T, and the 
data· in T(33-63) is transferred into the GPR per E(8-11 ). 
The value of STAT C is placed into the GPR sign position 
per.E(8-11). 

Note: The result of the first 11 shifts is transferred to LS 
before E(l 2-15) is tested to see whether a shift of more 

3-58 . (9/68) 

than 11 places is required. If a total shift greater than l1 is 
specified, the data is shifted left an additional four places 
and transferred to LS, where it. destroys the 11-place 
shifted operand stored earlier. E( 12-15) is tested; if a shift 
greater than 15 in specified, the data is again shifted left 4 
and transferred to LS. This procedure of testing E( 12..:..15), 
shifting left 4, and transferring the result to LS continues 
until E(12-15) equals 0001. 

E(12-15) is again checked for 0001. If E(12-15) = 
0001 at this time, 1 is subtracted from it and an end-op 
cycle is taken, completing the operation. If E( 12-15) does 
not equal 0001, the operand continues to be shifted in 
multiples of 4 until E(12-15) equals 0001. The CC is then 
set per ST AT A, ST AT B, and the result sign [T(3 2)] , and 
an end-op cycle is taken. 

Left shifts of other an10unts are performed in a similar 
manner. (Refer to Table 3-7 and Diagram 5-116, FEMDM.) 

Shift Left Double, SLDA (BF) 

• Shift 1st operand (in GPR per Rl and Rl + 1) left 
number of bit positions specified by low-order six bits of 
2nd operand address and place result into 1st operand 
location. 

• RS format: 

BF Rl B2 

7 8 1l 12 15 16 19 20 

Fetch high-order word of 1st 
operand from G PR per R 1 . 
Fetch low-order word of 1st 
operand from G PR per R 1 + l . 

Shift 64-bit 1st operand 
left number of bit positions 
specified by low-order 6 
bits of 2nd operand address. 

Store high-order word of result into 
GPR per R1 and low-order word into 
GPR per Rl + 1, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T. 
Amount of shift is in D and PAL. 

• D(18-23) indicates total amount of shift. 

02 
31 

• E(l 2-15) indicates number of left 4 shifts to be 
performed. 

• E(12-15) is reduced by 1 after each multiple of four 
shifts occurs. 



• High-order bits of low-order word of doubleword 
operand are saved and placed into high-order word 
operand. 

• O's are supplied to vacated bit positions. 
• Overflow occurs if data is shifted out of bit position 1 

of high-order word. 

• CC setting: 
Result in PAL is zero: CC= 0. 
Result in PAL is less than zero: CC = 1. 
Result in PAL is greater than zero: CC= 2. 
Overflow: CC= 3. 

The Shift Left Double, SLDA, instruction shifts the 
doubleword first operand left the number of bit positions 
specified by the low-order six bits of the second operand 
address. The RI field of the instruction is the address of 
the GPR containing the high-order 32 bits of the 
doubleword operand. The low-order word of the double­
word operand is in the GPR per R1 + 1. The RI field of 
the instruction must specify an even register. When RI is 
odd, a program specification interruption occurs. 

The sign of the doubleword operand is the sign of the 
even GPR. The high-order bit (sign) of the odd GPR is 
treated as an integer bit. As the information is shifted, O's 
are supplied to the vacated low-order positions. If a bit 
unlike the sign bit is shifted out of bit position 1 of the 
high-order word of the doubleword operand, an overflow 
occurs. The overflow causes a program fixed-point over­
flow interruption if the associated mask bit in the PSW is 
a 1. 

The SIDA instruction is similar to the SLA instruction 
in that a left 1 shift occurs when transferring data from T 
to PAA, a left 2 shift occurs when transferring data from 
AB to PAB, and a left 4 shift occurs when data is 
transferred from the inputs of the parallel adder to PAL. 
Also, the total shift specified is accomplished using a 
maximum number of left 4 shifts and a minimum number 
of left 1 and left 2 shifts. The differences are a result of 
handling a doubleword, one word at a time, in the SLDA 
instruction. 

B( 64-67), which contains the overflow bits from the 
low-order word, may be thought of as a four-bit register 
inserted between the high-order word and the low-order 
word. It is therefore necessary to shift these bits four bit 
positions to the left to position them correctly into the 
high-order word. This positioning is accomplished in 
different ways according to the shift being performed; the 
result, however, is always that of shifting the overflow bits 
left four bit positions. 

Refer to Diagram 5-117, FEMDM, a flowchart of the 
SLDA instruction. At the start of execution, the first 16 
bits of the instruction are in E, the high-order word of the 
first operand ·is in S and T, and the number of bit 
positions to be shifted is in D and PAL. 

In the beginning of the operation, the sign of ·the 
operand (which will be transferred to LS at the end of the 
operation) is stored into STAT C. Because the low-order 
word of the doubleword operand is treated first, that 
word is now transferred from LS. (Recall that S and T 
presently contain the high-order word of the double­
word.) Once the low-order word of the doubleword is 
obtained, the data is shifted as for the SLA instruction. 
The high-order bits of the low-order word of the 
doubleword are not lost when shifted out but are 
transferred to B( 64-67). When the high-order word of the 
doubleword is obtained, these bits are shifted into the 
high-order word of the operand. 

The low-order word is shifted the amount specified by 
PAL(62,63), and the low-order 32 bits of the result are 
stored in the GPR specified by Rl + 1 (odd register). A 
zero test is performed, and ST AT A is set if the low-order 
word is all zeros. The high-order bits that were shifted out 
of the low-order word are gated from PAL(l8-31) to 
B( 64-67) where they are stored, shifted left four posi­
tions and appended to the high-order word. The high­
order word is transferred from the even GPR specified by 
Rl, is shifted the same amount as the low-order word per 
PAI..(62,63), and is added to the overflow bits from the 
low:.Order word. An overflow test is performed to deter­
mine if significant bits were lost from the high-order 
word, and STAT B is set if an overflow occurred. A zero 
test is performed, and ST AT A is reset if the high-order 
result is not all zeros. 

If PAI..(58-61) was zero at the end of I-Fetch, the last 
shift has been performed and the low-order 31 bits of the 
high-order word, plus the inserted sign bit (per STAT C), 
are stored into the even GPR specified by RI. The CC is 
set per hardware conditions, and an end-op cycle is taken. 

If PAI..(58-61) was not zero, the low-order word has 
been transferred from the odd GPR to S, and one or more 
left 4 shifts remain to be performed. The low-order word 
in S is shifted left 4 and stored into S. The four overflow 
bits are retained in B(64-67), the high-order word in Tis 
gated to PAA, B(64-67) is gated to PAB, and the result is 
shifted left 4 to PAL. This sequence shifts the high-order 
word, plus the overflow bits from the low-order word, left 
4. The low-order 31 bits of the high-order word, plus the 
inserted sign bit (per STAT C), are gated to T and stored 
into the even GPR per Rl. The number of left 4 shifts to 
be performed is determined by E(12-15), which was set 
per D(18-21) at the start of execution. E(12-15) is 
decremented after' each left 4 shift is performed. The 
microprogram remains in the shift left 4 loop until 
E(12-15) is reduced to 0001, at which time the low-order 
word is stored into the odd GPR specified by Rl + 1. The 
CC is 8et per STAT A, STAT B, and the result sign 
[A(O)], and an end-op cycle is taken. 
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When the low-order word is shifted, a zero test is 
performed and STAT A is set if the low-order result is all 
zeros. When the high-order word is shifted, a zero test is 
performed and STAT A is reset if the high-order result is 
not all zeros. When the high-order word is shifted, an 
overflow test is performed; STAT B is set if an overflow 
occurred and a program fixed-point overflow interruption 
is taken if the associated mask bit in the PSW is a 1. 

Shift Right Single, SRA (SA) 

• Shift 1st operand (in GPR per RI) right number of bit 
positions specified by low-order six bits of 2nd 
operand address and place result into 1st operand 
location. 

• RS format: 

8A Rl 82 
78 11 12 15 16 19 20 

Fetch lst operand from GPR per R 1 . 

Shift 1st operand right 
number of bit positions 
specified by low-order 6 
bits of 2nd operand address. 

Store result into GPR 
per Rl, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
Amount of shift is in D and PAL. 

• D(l 8-23) indicates total amount of shift. 

02 
31 

• Method of shifting: right 4 from PAA or PAB to PAL. 

• Shifts of right 3 or less are obtained by combining left 
1; left 2, or left 3 shifts with right 4 shift. 

• E( 12-15) indicates number of shifts to be performed 
iri multiples of 4. 

• E(12-15) is reduced by 1 after each shift of 4. 

• CC setting: 
Result in PAL is zero: CC= 0. 
Result in PAL is less than zero: CC = 1. 
Result in PAL is greater than zero: CC= 2. 

The Shift Right Single, SRA, instruction shifts the first 
operand right the number of bit positions specified by the 
low-order six bits of the second operand address. (The 
remainder of the address is ignored.) 

The sign of the first operand remains unchanged. All 
31 bits of the operand participate in the shift. Bits equal 
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to the sign are supplied to the vacated high-order bit 
positions. Low-order bits are shifted without inspection 
and are lost. 

Right-shifting is accomplished only be shifting right 4 
bit positions at a time from the parallel adder to the 
PAL. Right shifts of less than 4 are obtained by 
combining left 1, left 2, or left 3 shifts with the right 4 
shift. In the interest of speed, the desired amount of right 
shift is accomplished using a maximum number of right 4 
shifts and a minimum number of left 1 and left 2 shifts 
(not more than one of each). Also, wherever possible, a 
left 1 or left 2 shift is combined with a right 4 shift 
because these combinations can be accomplished in one 
pass through the parallel adder. Table 3-8 shows how 
right-shifting is accomplished for any amount of shift 
desired. 

Diagram 5-118, FEMDM, is a flowchart of the SRA 
operation. At the start of execution, the first 16 bits of the 
instruction are in E, the first operand is in S and T, and the 
number of bit positions to be shifted is in D and PAL. 

In the SRA operation, PAI..(58-63) initially determines 
the amount of shift. PAI..(58-61) determines whether a 
shift of more than right 3 is to occur. If PAI..(58-61) = 0, a 
shift of right 3 or less is to be performed; if PAI..(58-61) 
does not equal 0, then shifts of right 4 or more are to 
occur. 

As an example, assume thatPAL(58-61) does not equal 
0 and that PAI..(62,63) = 01. A shift of right 5, right 9, or 
more is indicated. D(18-21) is transferred to E(12-15) to 
determine the number of right 4 shifts to be used if a shift 
of more than right 5 is to occur. PAI..(32-63) is now tested 
for all O's. If this condition is present, ST AT A is set. The 
first operand in T(32-63) is transferred to AB, with T(32) 
propagated into A(26-31). 

The first operand in T(32-63) is transferred to 
PAA(J 1-62), causing a left 1 shift of the data, and T(32) is 
propagated into PAI..(26-31). PAA(31-62) and 
PAI..(26-31) are transferred right 4 positions to 
PAI..(35-66) and PAL(30-35), respectively, giving, in 
effect, a shift of right 3 positions. The data in PAL is 
transferred to AB(24-67), from where it is transferred to 
PAB( 4-65), causing a left 2 shift. The total effective shift 
at this time is a right 1 shift. PAI..(32-63) is now tested for 
all O's, and STAT A is set if all O's are present. PAL(32-63) 
is transferred to T(32-63), . from where the data is 
transferred into the GPR per E(8-11). E{12-15) is tested 
for 0001. If this value exists, an end-op cycle is taken to 
complete the operation. If E(12-15) does not equal 0001, 
then the data continues to be shifted in multiples of 4, and 
E(12-15) is reduced by 1 for each right 4 shift until it 
equals 0001. At this time the CC is set per STAT A and the 
result sign [T{32)], and an end-op cycle is taken. 

Right shifts of other amounts are performed in a similar 
manner. (Refer to Table 3-8 and Diagram 5-118, FEMDM.) 



Table 3-8. Right Shift Combinations 

Total Shift 
PAU58-61l PAL(62,63) Desired 

0000 00 None 

01 Right 1 

10 Right 2 

11 Right 3 

Not 0000 00 Right 4, 8, 12 
and so on 

01 Right 5, 9, 13 
and so on 

10 Rig~t 6, 10, 14 
and so on 

11 Right 7, 11, 15 
and so on 

Shift Right Double, SRDA (SE) 

• Shift 1st operand (in GPR per Rl and RI + 1) right 
number of bit positions specified by low-order six bits of 
2nd operand address and place result into 1st operand 
location. 

• RS format: 

BE Rl B2 
78 11 12 15 16 19 20 

Fetch high-order word of 1st 
operand from GPR per Rl. Fetch 
low-order word of 1st operand 
from GPR per Rl + 1. 

Shift 64-bit of 1st operand right 
number of bit positions specified 
by low-order 6 bits of 2nd 
operand address. 

Store high-order word of result into 
GPR per Rl and low-order word 
into GPR per Rl + 1, and set CC. · 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
Amount of shift is in D and PAL. 

02 

31 

Incremental Shifting Sequence 

None 

Left 1 and 
right 4 

Left 2 and 
right 4 

Left 1 and 
right 4 

Right 4 Right 4 until 
E(12-15) = 1 

Left 1 and Left 2 and Right 4 until 
right 4 right 4 E(12-15)-= 1 

Left 2 and Right4 Right 4 until 
right 4 E(12-15) = 1 

Left 1 and Right 4 Right 4 until 
right 4 E(12-15) = 1 

• D(18-23) indicates total amount of shift. 

• E(12-15) indicates number of shifts to be performed in 
multiples of 4. 

• E(12-1S) is reduced by 1 after each shift of 4. 

• Low-order bits of high-order word of doubleword 
operand are saved and placed into low-order word of 
operand. 

• Value of operand sign is supplied to vacated bit 
positions. 

• CC settings: 
Result in PAL equals zero: CC= 0. 
Result in PAL is less than zero: CC= 1. 
Result in PAL is greater than zero: CC= 2. 

The Shift Right Double, SRDA, instruction right-shifts the 
doubleword first operand the number of bit positions 
specified by the low-order six bits of the second operand 
address. (The remainder of the address is ignored.) The Rl 
field of the instruction addresses the high-order 32 bits of 
the doubleword operand. The low-order word of the 
operand is in the GPR per Rl + 1. The Rl field must 
specify an even GPR; a program specification interruption 
occurs when RI is odd. 

The sign of the doubleword operand is the sign of the 
even GPR (Rl). The sign bit (high-order bit) of the odd 
GPR (Rl + 1) is treated as an integer bit. Bits equal to the 
sign of the doubleword operand are supplied to the vacated 
high-order positions as the information is shifted. Bits 
shifted out of the low-order positions are lost. 
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Diagram 5-119, FEMDM, is a flowchart of the SRDA 
instruction. At the start of execution, the first16 bits of 
the instruction are in E, the first operand is in S and T, and 
the number of bit positions to be shifted is in D and PAL. 

The SRDA instruction execution is similar to that of the 
SRA instruction. The differences are a result of shifting a 
doubleword, one word at a time, in the SRDA instruction. 
Because the high-order word is shifted first, it is necessary 
to retain the underflow bits from the high-order word, to 
shift them right 4, and to append them to the low-order 
word. 
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Any specified amount of right shift involves at least one 
shift of right 4 for both the high-order word and the 
low-order word. Therefore, the underflow bits from the 
high-order word are appended to the low-order word [by 
transferring B(64-67) to PAB(28-31)] before the right 4 
shift. This action results in the underflow bits and the 
low-order word being shifted right 4 as a unit. 

Each time the shifted high-order word is stored, a zero 
test is performed and STAT A is set if the result is 0. When 
the low-order word has been shifted the same amount, 
STAT A is reset if the result is not 0. STAT A and the 
result sign [A(O)] determine the CC. 



This section discusses the 44 instructions making up the 
floating-point instruction set. Before analyzing the in­
structions, however, the following paragraphs discuss 
exponent overflow and underflow and zero results, and 
list the conditions at the start of execution. (For a 
discussion of number representation, data formats, nor­
malization, operand addressing, instruction formats, data 
flow, program interruptions, and condition codes, see 
Chapter 1.) 

EXPONENT OVERFLOW AND UNDERFLOW 

• Exponent overflow occurs if two positive character­
istics are added, or if positive number is added to 
positive characteristic, and final result is negative 
characteristic. 

• Exponent underflow occurs if two negative character-' 
istics are added, or if quantity is subtracted (comple­
ment added) from negative characteristic, and final 
result is positive characteristic. 

• Exponent underflow program interruption occurs if 
PSW(38) = 1. 

During floating-point operations, values may be chosen 
that cause the CPU to yield invalid results. For example, 
the largest positive exponent that can be· expressed as a 
floating-point characteristic is +63, and is represented in 
excess-64 notation as 111 1111 (7F, hex). Assume that 
+63 is the characteristic of a floating-point operand and 
that a 1 is added to it: 

0 1 2 3 4 5 6 7 
s 1 1 1 1 1 1 1 +63 (Excess-64 Notation) 
s 0 0 0 0 0 0 1 + 1 

SI 0 0 0 0 0 0 0 

Carry 

Note that the sum in bits 1-7, instead of indicating an 
exponent of +64, indicates an exponent of -64, 128 less 
than the true exponent. Thus, exponent overflow oc­
curred. The rule for exponent overflow is: if two positive 
characteristics are added, or if a positive number is added 
to a positive characteristic, and the final result is a 
negative characteristic, exponent overflow occurred. This 
rule does not hold for intermediate result characteristics 
which may exceed the highest expressible exponent. 

If exponent overtlow occurs, an interruption is forced 
and cannot be masked off (refer to Chapter 1). The 
resulting invalid characteristic is not altered and remains 
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in the result register for examination by the interruption­
handling microprogram. 

The largest negative exponent that can be expressed as 
a floating-point characteristic is -64, and is represented in 
excess-64 notation as a characteristic of all zeros. Assume 
that -64 is the characteristic of a floating-point operand 
and that a 1 is subtracted from it: 

0 1 2 3 4 5 6 7 
S 0 0 0 0 0 0 0 -64 (Excess-64 Notation) 
S 1 1 1 1 1 2's Complement of 1 
s 1 1 1 1 1 

The difference in bits 1-7, instead of indicating an 
exponent of -65, indicates an exponent of+63, 128 more 
than the true exponent. This is known as exponent 
underflow. The rule for exponent underflow is: if two 

I 

negative characteristics are added, or if a quantity is 
subtracted (complement-added) from a negative characte.r­
istic, and the final result is a positive characteristic, 
exponent underflow occurred. This rule does not hold for 
intermediate characteristics which may exceed the most 
negative expressible exponent. 

If exponent underflow occurs, an intermption t*es 
place only if the exponent-underflow mask bit [PSW(38)] 
is a 1 (refer to Chapter 1). If the interruption is taken, the 
resulting invalid characteristic is not altered and remains 
in the result register for examination by the interruption­
handling microprogram. However, if the underflow 
interruption is masked off, the entire result (sign, charac­
teristic, and fraction) is converted to a true zero (see 
"Zero Results"). This value can be a valid result for some 
calculations because exponent underflow indicates that 
the result was very small (less than 16"64> and therefore 
close to zero. 

Referring to the two examples given above, the CPU 
determines if exponent overflow or underflow occurred 
by examining bit 1 of the final characteristic and testing 
for a carry out of bit 1. If a carry occurred during a 
characteristic addition and bit 1 is a 0, exponent overflow 
occurred; if a carry did not occur during a characteristic 
subtraction and bit 1 is a 1, exponent underflow occurred. 

ZERO RESULTS 

A zero result is normally stored into the result register as a 
true zero; that is, a zero characteristic, a zero fraction, and 
a plus sign. A true zero may occur because of the 
magnitude of the operands or it may be forced. A true 
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zero is forced if exponent underflow occurs during add, 
subtract, multiply, or divide instructions and the expo­
nent•underflow mask is off [PSW(38) = O] . A true zero is 
also forced when a result fraction is zero and the program 
interruption for significance is masked off during add or 
subtract instructions. "Significance" means that an add or 
subtract instruction resulted in a zero fraction. This 
condition causes a significance program interruption if the 
significance mask is on [PSW(39) = 1]. When a signifi­
cance condition occurs with the mask on, the result 
characteristic and sign remain ·unchanged and are stored 
with the zero fraction. True zero is never forced when a 
zero fraction occurs during a load, store, or halve 
instruction. Whenever a result has a zero fraction, an 
exponent overflow or exponent underflow condition is 
ignored. 

CONDITIONS AT START OF EXECUTION 

The conditions at the start of execution for the RR and 
RX instructions, short and long operands, are: · 
1. RR, Short Operands: 

a. First operand is in A, B, and D (24-bit fraction 
only). 

b. Second operand ·is in S and T. 
c. Instruction is in E. 

2. RR,. Long Operands: 
a. 32 bits of frrst operand are in A, B, and D (24-bit 

fraction only). 
b. 32.bits of second operand are in Sand T. 
c. Low-order fractions of first and second operands are 

in LS. 
d. Instruction is in E. 

3. RX, Short Operands: 
a. First operand is in S and T. 
b. Main storage request for second operand has been 

issue.d per D. 
c. First 16 bits of instruction are in E. 

4. RX, Long Operands: 
a. 32 bits offrrst operand are in Sand T. 
b. Low-order fraction of first operand is in LS. 
c. Main storage request for 2nd operand has been 

issued per D. 
d. First 16 bits of instruction are in E. 

LOAD 

The floating-point load instructions provide a means of 
loading operands into the LS FPR's. The load operation 
may be register-to-register (RR format) or storage-to­
register (RX format) and may use short or long operands. 
In any case, the instruction loads the second operand into 
the frrst operand location, and the second operand 
location remains unchanged. 
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In addition, certain floating-point load instructions can 
test or modify the sign of the. second operand before 
loading it· into LS. The second operand may be also 
complemented before loading. 

Load, LER (38) - RR Short Operands 

• Load 2nd operand (in FPR, per R2) into 1st operand 
location (in FPR, per Rl). 

• RRformat: 

38 

0 

Rl R2 

7 8 11 12 15 

Fetch sign, charistic, 
and 24-bit fracrion 
from FPR per R2. 

Load sign, charistic, 
and 24-bit fraction 
into FPR per Rl. 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

The Load, .LER, instruction (Diagram 5-202, FEMDM) 
loads the 32-bit second operand from: the LS FPR 
specified by the R2 field into the frrst operand location 
specified by the Rl field. During the RR I-Fetch, the 
second operand is gated to S and T. At the beginning of 
the execution phase, a specification test is initiated. If no 
specification check occurred, the contents of T (second 
op'erand) are gated to the LS FPR specified by Rl. If a 
specification check did occur, the operation is suppressed 

. and a specification program interruption occurs. 

Load, LE (78) - RX Short Operands 

• Load 2nd operand (in storage) into 1st operand 
location (in FPR, per Ri). 

• RX format: 

78 Rl X2 B2 02 

7 8 11 12 15 16 19 20 31 
\. 

I 
Fetch sign, charisti c, 
and 24-bit fraction 
from main storag.e. 

J: 
Load sign, charistic, 
and 24-bit fraction 
into FP.R per Rl. 



• Conditions at start of execution: 
1st operand is in S and T. 
Main storage request for 2nd operand has been issued 

perD. 
First 16 bits of instruction are in E. 

The Load, LE; instruction (Diagram 5-203, FEMDM) 
loads the 32-bit second operand from the main storage 
location specified by the effective address into the first 
operand location specified by the R1 field. The effective 
address of the second operand must be on a word 
boundary or a specification program interruption occurs. 
During the RX I-Fetch, the effective address is computed 
and placed into D. A main storage request for the second 
operand is then initiated per D. 

At the beginning of the execution phase, a specifica­
tion test is initiated. If no specification check occurred, 
either SDB0(0-31) or SDB0(32-63) is gated to T. 
Because a main storage request is always for a doubleword 
and only a word operand is desired, D(21) determines 
. which word of the main storage doubleword ill used; if 
D(21) = 1, the right word is gated to T; ifD(21) = 0, the 
left word. From T, the second operand is gated to the LS 
FPR specified by R1. 

If a specification check occured at the start of the 
execution phase, the operation is suppressed and a 
specification program interruption occurs. 

Load, LOR (28) - RR Long Operands 

• Load 2nd operand (in FPR, per R2 and R2 + 1) into 
1st operand location (ill FPR, per R1 and R1 + 1). 

• RR· format: 

28 
0 

Rl R2 

78 11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1. 

Load sign, charistic, 
and 56-bit fraction into 
FPR per RI and RI + I. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit 
fraction only). 

32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

The load, LDR, instruction (Diagram 5-202, FEMDM) 
loads the doubleword second operand from the LS FPR . 
specified by R2 and R2 + 1 into the first operand location 

specified by R1 and R1 + 1. During the RR I-Fetch, the 
high-order 32 bits o.f the second operand are placed into S 
and T. At the beginning of the execution phase, a 
specification test is initiated. If no specification check 
occurred, the low-order 32 bits of the second operand are· 
fetched from the odd register of the even/odd pair of 
FPR's specified by the R2 field. From T, the low-order 32 
bits of the second operand are loaded into the odd register 
of the even/odd pair of FPR's specified by the R1 field. 
The high-order 32 bits of the second operand are then 
gated from S to T. From T, they are loaded into the even 
register of the even/odd pair of FPR's specified by the Rl 
field. 

If a specification check occurred at the start of the 
execution phase, the operation is suppressed and a 
specification program interruption occurs. 

Load, LD (68) - RX Long Operands 

• Load 2nd operand (in storage) into 1st operand 
location (in PPR, per RI and R1 + 1). 

• RXformat: 

68 RI I X2 82 D2 
0 7 8 11 12 15 16 19 20 31 

... 
i 

Fetch sign, charistic, 
and 56-bit fraction 

·from main storage, 

i 
Load sign, charistic, 
and 56-bit fraction into 
FPR per RI and Rl + I. 

• Conditions at start of execution: 
32 bits of 1st operand are in Sand T. 
Low order fraction of 1st operand is in LS. 
Main storage request for 2nd operand has been issued 

perD. 
First 16 bits of instruction are in E. 

The Load, ID, instruction (Diagram 5-203, FEMDM) 
loads the doubleword second operand from the main 
storage location specified by the effective address into the 
first operand location specified by R1 and Rl + 1. The 
effective address of the second operand must be on a 
doubleword boundary or a specification program interrup­
tion occurs. During the RX I-Fetch, the effective address 
is computed and placed into D. A main storage request for 
the second operand is then initiated per D. 

At the beginning of the execution phase, a specifica­
tion test is initiated. If no specification check occurred, 
the doubleword second operand is gated from SDBO to 
ST. The low-order 32 bits are then loaded into the odd 
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register of an even/odd pair of FPR's specified by the Rl 
field. The high-order 32-bits of the second operand are 
then gated from S to T. From T, they are loaded into the 
even register of the even/odd pair of FPR's specified by 
the Rl field. 

If a specification check occurred at the start of the 
execution phase, the operation is suppressed, and a 
specification program interruption occurs. 

Load and Test, L TER (32) - RR Short Operands 

• Load 2nd operand (in PPR, per R2) into 1st operand 
location (in FPR, per Rl). 

• RRformat: 

32 
0 

Rl R2 

7 8 11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Load sign, charistic, 
and 24-bit fraction 
into FPR per Rl. 

Set CC per sign 
and magnitude of 
2nd operand. 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC= 0. 
2nd operand is less than zero: CC = 1. 
2nd operand is greater than zero: CC = 2. 

The Load and Test, LTER, instruction (Diagram 5-204, 
FEMDM) loads the 32-bit second operand from the PPR 
specified by the R2 field into the first operand location 
specified by the Rl. field. The sign and magnitude of the 
second operand determine the CC, as follows: 
I. If the fraction of the second operand equals zero, the 

CC is set to 0. 
2. If the second operand (sign, characteristic, and frac­

tion) is less than zero, the CC is set to 1. 
3. If the second operand (sign, characteristic, and frac­

tion) is greater than zero, the CC is set to 2. 
The LTER execution is similar to LER execution. 

However, the sign of the second operand is saved in ST AT 
C, and STAT A is set if the fraction equals zero. The CC is 
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determined during the normal end-op cycle. If STAT A is 
set, indicating that the fraction equals zero, the CC is set 
to 0. The sign and characteristic are not considered when 
the fraction equals zero. If the second operand fraction is 
not equal to zero, the sign {STAT C) determines a 
greater-than-zero or less-than-zero condition. If the sign is 
minus (STAT C set), the second operand is less than zero 
and the CC is set to 1. If the sign is plus (STAT C reset), 
the second operand is greater than zero and the CC is set 
to 2. Setting the CC depends upon the 'Set-CR' micro­
order, the instruction op-code, and the hardware condi­
tions specified above. 

load and Test, L TOR (22) - RR Long Operands 

• Load 2nd operand (in FPR; per R2 and R~ '+ 1) into 
1st operand location (in FPR, per Rl and RI+ 1). 

• RRformat: 

22 

0 

Rl R2 

7 8 11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1. 

Load result into FPR 
per Rl and Rl + 1. 

Set CC per sign 
and magnitude of 
2nd operand. 

e Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D. (24-bit 

fraction only). · 
32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC = 0. 
2nd operand is less than zero: CC = 1. 
2nd operand is greater than zero: CC= 2. 

The LOad and Test, LTDR, instruction (Diagram 5-205, 
FEMDM) loads the doubleword second operand from the 
PPR specified by R2 and R2 + 1 into the first operand 
location specified by RI and Rl + 1. The sign and 
magnitude of the second operand determine the CC, as 
follows: 
1. If the fraction of the se.cond operand equals zero, the 

CC is set to 0. 



2. If the second operand (sign, characteristic, and frac­
tion) is less than zero, the CC is set to 1. 

3. If the second operand (sign, characteristic, and frac­
tion) is greater than zero, the CC is set to 2. 

The LTDR execution is similar to LDR execution. 
However, the sign of the second operand is saved in ST AT 
C, and ST AT A is set if the fraction equals zero. The CC is 
determined during the normal end-op cycle in the same 
manner as explained for the LTER instruction. 

Load Complement, LCER (33) - RR Short Operands 

• Load 2nd operand (in FPR, per R2) into 1st operand 
location (in FPR, per RI) with sign complemented. 

• RRformat: 

33 

0 7 8 

Rl R2 

11 12 15 

Fetch sign, charisti c, 
and 24-bit fraction 
from FPR per R2. 

Complement sign. 

Load result into 
FPR per Rl. 

Set CC per original 
sign and magnitude 
of 2nd operand. 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC= 0. 
Original sign is plus: CC = 1. 
Original sign is minus: CC = 2. 

The · Load Complement, LCER, instruction (Diagram 
5-204) loads the 32-bit second operand from the FPR 
specified by the R2 field into the first operand location 
specified by the RI field. During the loading, the sign is 
changed to the opposite value (complemented). The 
original sign and magnitude of the second operand 
determine the CC, as follows: 
1. If the fraction of the second operand equals zero, the 

CC is set to 0. 

2. If the original sign of the second operand is plus, the 
CC is set to 1. 

3. If the original sign of the second operand is minus, the 
CC is set t.o 2. 

Except for complementing the sign of the second 
operand, LCER execution is identical to LTER execution. 

Load Complement, LCDR (23) - RR Long Operands 

• Load 2nd operand (in FPR, per R2 and R2 + I) into 
1st operand location (in FPR, per RI and Rl + 1) with 
sign complemented. 

• RR format: 

0 

23 Rl R2 

7 8 II 12 15 

Fetch sign, charistic, 
and 56.:.bit fraction from 
FPR per R2 and R2 + I • 

Complement sign. 

Load result into FPR 
per Rl and Rl + 1. 

Set CC per original 
sign and magnitude 
of 2nd operand. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit 

fraction only). 
32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC= 0. 
Original sign is plus: CC = 1. 
Original sign is minus: CC= 2. 

The Load Complement, LCDR, instruction (Diagram 
5-205) loads the doubleword second operand from the 
FPR specified by R2 and R2 + 1 into the first operand 
location specified'by Rl and RI + 1. During the loading, 
the sign is complemented. The original sign and magnitude 
of the second operand determine the CC in the same 
manner as explained for the LCER instruction. 

Except for complementing the sign of the second 
operand, L~DR execution is identical to LTDR execu­
tion. 
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Load Positive, LPER (30) - RR Short Operands 

• Load 2nd operand (in FPR, per R2) into 1st operand 
location (in FPR, per Rl) with sign made plus. 

• RRformat: 

30 
0 78 

Rl R2 
11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Moke sign plus. 

Load result into. 
FPR per Rl. 

Set CC per magnitude 
of 2nd operand. 

• Conditions at start of execution: 
1st operaµdis in A, B, and D (24-bit fraction only). 
2nd oper~d is in· S and T. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC = 0. 
2nd operand is greater than zero: CC = 2. 

The Load Positive, LPER, instruction (Diagram 5-204) 
loads the 32-bit second operand from the FPR specified 
by the R2 field into the first operand location specified 
by the Rl field. During the loading, the sign is made plus. 
Thus, the result stored is always zero or greater. STAT A 
is set if the second operand fraction equals zero. The 
magnitude of the second operand determines the CC, as 
follows: 
1. If the second operand fraction equals zero, the CC is 

set to 0. 
2. If the second operand is greater than zero, the CC is set 

to 2. 

Except for making the sign of the second operand plus, 
LPER execution is identical to LTER execution. 
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Load Positive, LPDR (20) - RR Long Operands 

• Load 2nd operand (in FPR, per R2 and R2 + 1) into 
1st operand location (in FPR, per Rl and Rl + 1) with 
sign made plus. 

• RRformat: 

20. 

0 

Rl R2 
7 8 · II 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
F PR per R2 and R2 + 1 • 

Make sign plus. 

Load result into FPR 
per Rl and Rl + 1. 

Set CC per magnitude 
of 2nd operand. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit 
fraction only). 

32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

• . CC setting: 
2nd operand fraction equals zero: CC = 0. 
2nd operand is greater than zero: CC = 2. 

The Load Positive, LPDR, · instruction (Diagram 5-205) 
loads the doubleword second operand from th~ FPR 
specified by R2 and R2 + 1 into the first operand location 
specified by Rl and Rl + 1. During.the loading, the sign is 
made plus .. Thus, the result stored is always zero or 
greater. STAT A is set if the second operand fraction 
equals zero. The magnitude of the second operand 
determines the CC in the same manner as explained for 
the LPER instruction. 

Except for making the sign of the second operand .plus, . 
LPDR execution is identical to LTDR execution. 

Load Negative, LNER (31) - RR Short Operands 

• Load 2nd operand (in FPR, per R2) into 1st operand · 
location (in FPR, per Rl) with sign made minus. 



• RRformat: 

31 

0 

Rl R2 

7 8 1112 15 

Fetch sign, charisti c, 
and 24-bit fraction 
from FPR per R2. 

Make sign minus. 

Lead result into 
FPR per Rl. 

Set CC per magnitude 
of 2nd operand • 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S andT. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC= 0. 
2nd operand is less than zero: CC = 1. 

The Load Negative, LNER, instruction (Diagram 5-204) 
. loads the 32-bit second operand from the FPR specified 

by the R2 field into the first operand location specified 
by the R1 field. During the loading, the sign is made 
minus. Thus, the result stored is always zero or less. STAT 
A is set if the· second operand fraction equals zero. The 
magnitude of the second operand determines the CC, as 

·follows: 
1. If the second operand fraction equals zero, the CC is 

set to 0. 
2. If the second operand is less than zero, the CC is set to 

1. 

Except for making the sign of the second operand 
minus, LNER execution is identical to LTER execution. 

Load Negative, LNDR (21) - RR Long Operands 

• Load 2nd operand (in FPR, per R2 and R2 + 1) into 
1st operand location (in FPR, per R1 and R1 + 1) with 
sign made minus. 

• RRformat: 

21 
0 

Rl R2 

7 8 ll 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1. 

Make sign minus. 

Load result into FPR 
per Rl and Rl + 1. 

Set CC per magnitude 
of 2nd operand. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit 

fraction only). 
32 bits of 2nd operand are in S and T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC = 0. 
2nd operandis less than zero: CC = 1. 

The Load Negative, LNDR, instruction (Diagram 5-205) 
loads the doubleword second operand from the FPR 
specified by R2 and R2 + I into the first operand location 
specified by R1 and RI + 1. During the loading, the sign is 
made minus. Thus, the result stored is always zero or less. 
ST AT A is set if the second operand fraction equals zero. 
The magnitude of the second operand determines the CC 
in the same manner as explained for the LNER instruc­
tion. 

Except for making the sign of the second operand 
minus, LNDR execution is identical to LTDR execution. 

ADD, SUBTRACT, AND COMPARE . 

• 20 add, subtract, and compare instructions. 

• Short and long operands are available in both formats. 

• Add and subtract instruction results may be normal­
ized or unnormalized. 

• Results are in true form with plus or minus values. 
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The 20 floating-point add-type instructions are divided 
into three major groups: add, subtract, and compare. RR 
and RX formats using short and long operands are 
available in each group. The results of add and subtract 
instruction may be normalized or unnormalized, depend­
ing upon the instruction being executed. A CC is set on all 
add-type instructions; the compare instructions cause a 
CC to be set with no result stored. 

The CPU computes the sum of floating-point numbers 
as follows (assume that 0.00416 x 165 is to be added to 
0.50216 x 164.): 
1. Equalizes the characteristics. 

a. If the characteristics are unequal, the operand with 
the smallest characteristic is shifted right the num­
ber of hex digits necessary to equalize the character­
istics. In the example, 0.50216 x 164 has the 
smallest characteristic (exponent); it is therefore 
changed to 0.050216 x 165, thus making the 
characteristics equal. 

b. If the number of shifts exceeds the number of hex 
digits available, the operand with the largest charac­
teristic becomes the intermediate result. 

2. When the characteristics are equal, algebraically adds 
the first and second operand fractions. 
a. If the signs are alike, adds the first operand fraction 

to the second operand fraction. In the example, the 
signs are alike; therefore, the fractions are added 
giving a sum of 0.054216 x 165. 

b. If the signs are unlike, subtracts the second operand 
fraction from the first operand fraction (adds the 
2's complement of the second operand fraction to 
the first operand fraction). 

3. If the intermediate result fraction is in complement 
form, recomplements it (takes 2's complement) to 
obtain the true fraction value. 

4. Normalizes the intermediate result, if normalization is 
called for. Assume a 3-digit machine. If normalization 
is specified, the final result of the example (2a above) 
becomes 0.54216 x 164. If normalization is not 
specified, the low-order digit (guard digit) is truncated, 
and the final result is 0.05416 x 165. 

5. Determines the sign and characteristic value. 
6. Stores the sign, characteristic, and fraction into LS as 

specified by the Rl field. 
7. Sets the CC per hardware conditions. 

For subtraction of floating-point numbers, the algebra­
ic rule applies: to subtract two numbers, change the sign 
of the subtrahend and proceed as in addition. When 
subtracting floating-point numbers, the sign of the second 
operand is complemented. The rules of addition apply as 
outlined in the previous paragraph. To illustrate, assume 
the same numbers as used above and that the signs are 
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unlike. Thus, a 2;s complement add (step 2b above) is 
performed: 

.050216 

.FFC016 

.04C216 

(2's complement of .004016) 

The difference, then, is 0.04C16 x 165 if unnormalized; 
or 0.4C216 x 164, if normalized. 

The compare instructions are similar to the subtract 
instructions; the results, however, are not stored. The 
compare instructions algebraically compare the first 
operand with the second operand and set the CC 
accordingly. These objectives are accomplished by com­
plementing the sign, algebraically adding the fractions, 
determining a high, low, or equal condition, and setting 
the CC. 

The basic objectives of the add-type instructions are 
shown in Sheet 1 of Diagrams 5-206 and 5-207, FEMDM 
(short and long operands, respectively). After the RR or 
RX I-Fetch and the specification test, the remaining 
operand and/or low-order fraction(s) must be fetched or 
the low-order fractions reset to zeros. The signs are saved 
in STAT's. For short operand instructions (Diagram 
5-206), zeros are gated to the low-order fractions of the 
64-bit operands. 

The characteristics are then compared. Preshifting 
occurs, if necessary, followed by the addition or subtrac­
tion of the fractions. Because the characteristics must be 
equal before algebraically adding the operands, the charac­
teristics are subtracted to determine whether they are 
equal and whether preshifting is meaningful. For short 
operands, the characteristic difference must be 7 or less; 
for long operands, 15 or less. 

If the characteristic difference is greater than 7 (short 
operands) or 15 (long operands) the fraction resulting 
after right-shifting equals zero. Therefore, preshifting is 
not performed, and the operand with the largest charac­
teristic becomes the result. If preshifting is meaningless, 
the value in AB or ST is the result. If the characteristics 
are within range, the smallest fraction is right-shifted until 
the characteristics are equal; the fractions are then added 
algebraically to form an intermediate result. If a high­
order carry occurs as a result of the addition (overflow), 
the intermediate result is right-shifted one hex digit and 
the characteristic is increased by 1. If this increase causes 
a characteristic overflow, an exponent-overflow program 
interruption occurs. 

The intermediate result consists of 7 or 15 hex digits 
and a possible carry. The low-order digit is a guard digit 
retained from the fraction which is shifted right. Only one 



guard digit participates in the fraction addition. The guard 
digit is zero if no shift occurs. 

After the addition or subtraction, a test is made for 
compare instructions, normalized instructions, or unnor­
malized instructions. Postnormalization, recomplementa­
tion, and/or fraction overflow correction is accomplished 
during this phase. The final result is stored (except on 
compare instructions), and the CC is set according to the 
computed results. An end op completes instruction 
execution. 

For normalized instructions the intermediate result 
fraction is left-shifted as necessary to form a normalized 
fraction. Vacated low-order digit positions are filled with 
zeros, and the characteristic is reduced by the amount of 
the shift. If normalization causes the characteristic to 
underflow, an exponent-underflow program interruption 
condition exists; the sign, characteristic, and fraction are 
made zero if the underflow mask bit (PSW(38)] is a 0. If 
PSW(38) is a 1, a program interruption occurs, and the 
characteristic is made 128 larger than the true result; the 
sign and fraction remain unchanged. If no left shift takes 
place, the guard digit is removed to obtain the proper 
fraction length. 

When the intermediate result fraction is zero and the 
significance mask bit is a 1, a significance program 
interruption takes place. No normalization occurs, and the 
intermediate result characteristic remains unchanged. 
When the intermediate result is zero and the significance 
mask bit is a 0, a significance program interruption does 
not occur; rather, the characteristic and the sign are made 
zero, yielding a true zero result. Exponent underflow does 
not occur for a zero fraction. 

The sign of the result is derived algebraically. However, 
the sign of a zero result fraction is always positive. 

Add Normalized, AER (3A) - RR Short Operands 

• Algebraically add 2nd operand (in PPR, per R2) to 1st 
operand (in PPR, per R1) and place normalized sum 
into 1st operand location. 

• RR format: (See adjoining column.) 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in Sand T. 
Instruction is in E. 

• CC setting: 
Result fraction equals zero: CC = 0. 
Result fraction is less than zero: CC = 1. 
Result fraction is greater than zero: CC = 2. 

The Add Normalized, AER, instruction (Diagram 5-206) 
algebraically adds the second operand (specified by R2) to 
the first operand (specified by R1), and places the 
normalized sum into the first operand location. The CC is 
set according to hardware conditions. The AER instruc-

3A Rl R2 

11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R l. 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Equalize choristics and save signs. 

Algebraically add fractions 
of lst and 2nd operands. 

Normalize fraction and 
adjust charistic. 

Determine sign, 

Store sign, charistic, and 
fraction into FPR per Rl. 

Set CC per 
hardware conditions. 

tion uses 32-bit operands; therefore, the contents of the 
low-order halves of the FPR's in LS remain unchanged. 

At the beginning of the execution phase: 
1. The first operand is in A, B, and I) (24-bit fraction 

only). 
2. The second operand is in S and T. 
3. The STC was set to 4 during I-Fetch. 
4. The AER instruction is in E. 

A specification test is made at the beginning of the 
execution phase. If a specification check exists, instruc­
tion execution is suppressed, and a specification program 
interruption occurs. Assume that no specification check 
exists. 

Because the AER instruction uses short operands (32 
bits) in the RR format, no operand fetch during instruc­
tion execution is necessary. The sign of the first operand 
is saved in ST AT F and the sign of the second operand is 
saved in STAT C. The first operand characteristic is 
subtracted from the second operand characteristic to 
determine the characteristic difference. Next, the second 
operand is gated to D and S. Because the AER instruction 
operates on short operands, B and T are reset, and the 
operand is treated as a 56-bit fraction with the low-order 
bits set to zero. The characteristic difference and the signs 
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determine the next operation to be performed by means 
of a 10-way 'FLR' micro-order branch. 

The 10-way 'FLR' branch on characteristic difference 
and signs occurs for all add-type instructions. When this 
branch is encountered, the conditions are as follows: 
1. The first operand is in AB (B equals zero for short 

operands). 
2. The second operand is in DT {T equals zero for short 

operands) and S. 
3. The sign of the first operand is in STAT F. 
4. The sign of the second operand is jn STAT C. 
5. The characteristic difference is in SAL and F. 

To subtract the first operand characteristic from the 
second operand characteristic, the 2's complement of the 
first operand characteristic is added to the second operand 
characteristic. Because the serial adder consists of 8 binary 
bit positions, a 1 is forced into bit position 0 on the A-bus 
{first operand side) of the serial adder, and a 0 is forced 
into bit position 0 on the B-bus (second operand side) of 
the serial adder. The characteristic difference is then 
routed to SAL and F. 

The 10-way 'FLR' branch is determined by the result 
of the characteristic subtraction and by the signs in STAT 
F and STAT C. The 10-way 'FLR' branch affects bits 
8-11 of ROSAR as defined in Sheet 2 of Diagram 5-206. 
ROSAR(8- l 1) is set as follows: 
1. ROSAR{8) = 1 when .a serial adder carry indicates that 

the second operand is greater than or equal to the first 
operand~ 

2. ROSAR:'{9) = 1 when the signs are alike. If the signs are 
alike, tJ:l.e fractions are added; if unlike, the fractions 
are subtracted. 

3. ROSAR{lO) = 1 when the characteristic difference is 
within range. ROSAR{lO) equaling 1 implies that the 
characteristic difference is small enough so that equal­
izing the characteristics is meaningful. {A zero fraction 
may occur as a result of characteristic equalization.) 

4. ROSAR{ll) = 1 when the result in SAL is zero. This 
condition indicates that the characteristics are equal. A 
serial adder carry also occurs; thus ROSAR{8) will also 
equal 1. 

Assume that the following two characteristics are to be 
compared to determine the ROSAR value: 

2nd operand characteristic: 6410 = 10000002 

1st operand characteristic: 7310 = 1001001 2 

The first operand characteristic is subtracted from the 
second operand characteristic shown below: 
2nd operand characteristic: O 1000000 
Complement of 1st operand characteristic: 1 011011O}2's com· 
Add 1 : 0 0000001 plement 
Characteristic difference in SAL(0-7): 1 1110111 
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SAL(O)-+. tttt 
SAL(1-3) __ JI 
SAL(4)-------' 

Because no SAL{O) carry occurred, ROSAR{8) = 0. 
ROSAR{9) depends upon the signs assigned to the 
fractions of the two operands. The table in Sheet 2 of 
Diagram 5·206 shows the bit positions tested in SAL to 
determine the value of ROSAR{ 10) and whether pre­
shifting is meaningful. In this example, SAL{0-3) = 1111 
{binary). Because a short operand instruction is being 
executed, ROSAR{lO) = O; therefore, the value is in AB 
because no carry from SAL{O) indicated that the first 
operand is greater than the second operand. ROSAR{ll) 
= 0 because SAL{O-7) is not all O's. 

If all positions of SAL are 0, ROSAR{ll) = 1, 
indicating that the characteristics of the two operands are 

. equal. ROSAR{9) then determines the next operation 
(signs alike, add; signs unlik~, subtract). In this case 
[SAL{O-7) = O] , ROSAR(8) also equals a 1 because a 
SAL{O) carry occurred. 

For the next example, assume that the two character­
istics in the previous example are interchanged. The 
characteristics are compared as follows: 

2nd operand characteristic: 1001001 
1st operand characteristic: 1000000 

The first operand characteristic is subtracted from the 
second operand characteristic shown befow: 

2nd operand characteristic: 0 1001001 
Complement of 1st operand characteristic: 1 0111111 }2's com· 
Add 1 : 0 0000001 plement 

SAL(O) carry ......_o 0001001 

~:~:~~-3) ___ ..... t tm 
SAL(4)-------'-

In this example, ROSAR{8) = 1 because a SAL{O) carry 
occurred. ROSAR{lO) = 0. Because preshifting in this 
example is meaningless, the operand in ST is the result 
fraction because the SAL{O) carry indicates that the 
second operand is the largest. 

The two examples just discussed illustrate the determi­
nation of the ROSAR(8-11) values. Additional examples 
are shown in Table 3-9. ROSAR{8-11) determines the 
ROS branch that performs the next steps in executing the 
AER instruction. 

The examples of determining the ROSAR{8-11) 
values as shown in Table 3-9 indicate that the fraction of 
the operand with the smallest characteristic is shifted right 
when the characteristic difference is seven or less. 

Four possible ROSAR{8- 1 l) values {0010, 0110, 
1010, and 1110) cause characteristic equalization and 
then an algebraic addition or subtraction of fractions. For 
example, assume that the AER instruction requires 
characteristic equalization, fraction subtraction, recom­
plementation (second operand fraction is greater than first 
operand fraction), and normalization. Further, assume a 
ROSAR{8-11) value of 0010. The 0010 branch causes 

. one right shift of the second operand to occur, and a 1 is 



Table 3-9. Examples of Branching on Characteristic Difference 

Example Example Example Example Example 
Description No.1 No.2 No.3 No.4 No.5 

2nd operand characteristic 1000000 1000000 1001000 1000111 1000000 
1st operand characteristic 1001001 1001000 1000000 1000000 1000000 

2nd operand characteristic 0 1000000 0 1000000 0 _1001000 0 1000111 0 1000000 
Complement of 1st operand characteristic 1 0110110 1 0110111 1 0111111 1 0111111 1 0111111 
Add 1 0 0000001 0 0000001 0 0000001 0 0000001 0 0000001 
Difference in SAL(0-71 1 1110111 1 1111000 4--0 0001000 -+--0 0000111 ~o 0000000 

SAL(OI carry SAL(OI carry SAL(OI carry 

Short No Yes No Yes Yes 
Within Range?* 

Long Yes Yes Yes Yes Yes 

ROSAR(S-111 value SubOOOO Sub 0010 s.ub 1000 Sub 1010 Sub 1011 
Add 0100 Add 0110 Add 1100 Add 1110. Add 1111 

Comments Resulfln Equalize Result in Equalize Add or sub. 
AB.' fraction ST. fraction No shift 

in ST. in AB. necessary. 

Notes: 
1. ROSAR(8) = 1 when there isa serial adder carry. A carry indicates that R2~ R1. 
2. F,!OSAR(91 = 1 when the signs are alike. · 

*3. ROSAR(101=1 when the characteristics are within range. ROSAR(101=1 on SAL results as follows: 
a. SAL carry and SAL(0-3) = 0 and long operands. 
b. SAL carry and SAL(0-4) = 0. 
c. No SAL carry and SAL(0-31 = 1 'sand long operands. 
d. No SAL carry and SAL(0-4) = 1 's. 

4. ROSAR ( 11 I = 1 when the SAL outputs equal 0. 

added to F. Note that one guard digit is retained. 
SAL(4-7) is checked for 1111 (binary). When SAL(4-7) 
= 1111, the characteristics are equal. Because the test for 
a branch is made one machine cycle before the ROS 
branch occurs, the SAL value is one machine cycle behind 
the actual shift count. For this reason, a test is made for 
1111 in SAL( 4-7) instead of for 0000. 

Once the characteristics are equal, the second operand 
is subtracted from the first operand (signs unlike). To 
subtract fractions (signs unlike), the 2's complement of 
the second operand fraction in DT is added to the first 
operand fraction in AB with the intermediate fraction 
result placed into AB and DT. The intermediate fraction 
result may be in true form or in complement form, or it 
may be equal to zero. If a zero fraction results, STAT A is 
set. 

Because the larger characteristic is used as the charac­
teristic of the result, it is gated to F(l-7); F{O) is reset. 

If the second operand fraction is greater than the first 
operand fraction, the result is in complement form. 
Conversely, the result is in true form if the first operand 
fraction is greater than the second operand fraction. If 
A(7) = 1, the intermediate result is in complement form. 

If A(7) = 0, the intermediate result is in true form. When 
the intermediate result is in complement form, the result 
must be recomplemented; that is, the 2's complement of 
the intermediate result is taken after the algebraic 
addition. 

When the result is in true form, and if the fraction is 
not equal to zero, the fraction must be normalized and 
stored and the CC set. Because the AER instruction is a 
normalized instruction, the intermediate result is normal­
ized, if necessary. After normalization, the sign and the 
characteristic are inserted and stored with the fraction 
into the first operand location (specified by Rl). 
Assuming no errors or zero fraction, the CC is set. An 
end-op cycle completes instruction execution. 

When in the normalizi.rig loop after subtraction, the 
intermediate fraction result can be left-shifted out of the 
high-order hex digit position if the intermediate fraction is 
0001. This left shift results in a zero fraction. The zero 
fraction, in this case, is not a true zero result or a 
significance condition; therefore, the true value must be 
restored. 

Because the test for ROS branches is made one 
machine cycle before the ROS branch occurs, a test for 
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normalization is made before the recomplementation is 
performed. Therefore, the test for normalization is deter­
mined by the following conditions: 
1. PAL(7-11) is O's and PAL(7-67) is not O's. 
2. PAL(6,8-11) is l's and PAL(7-67) is not O's. 

If one of these two conditions is met, at least one 
normalization cycle is performed after the recomplement­
ation machine cycle. This action is not always necessary, 
however. For example, if the following fractions are 
subtracted, the assumed normalization cycle is not 
necessary: 

AB bit positions 

1st operand fraction 
2nd operand fraction 

Subtract 2nd operand 
from 1st operand 

1st operand fraction 

(2's complement of 
2nd operand) 

6 7 8 9 10 11 12 13~67 

00011 0 o ....... o 
00100000 ....... 0 

0 0 0 o o~o 

{
1 1 0 1..._.1 

0 0 0 0 0 0 0 o ..... o 1 

Intermediate result 1 1 1 1 1 
fraction (in PAL & AB) 

o o,._...o 

Indicates recomple­
mentation necessary 

(2's complement of 
11 1111 00*'0) 

Result before hex 
left shift 

{ o o o o o o 1 ........ 1 

0 0 0 0 0 0 0 o ... o 1 

0 0 0 0 0 o o...._..o 

The intermediate result fraction above shows that 
PAL(6,8-ll) equals l's and PAL(7-67) does not equal 
O's. This condition causes a branch to the ROS normaliza­
tion routine. Because A(7) = 1, the intermediate result 
fraction is in complement form, and the 2's complement 
of the intermediate fraction must be performed to obtain 
the_ true result fraction. As shown in the example, the true 
result fraction is .0001 CJ#O. The one hex left shift that 
occurs yields a zero fraction result. Therefore, the result 
fraction located in DT is the true result fraction. The 
contents of D are transferred to T, and the sign, 
characteristic, and high-order fraction are stored into the 
FPR per the Rl field. An end op completes instruction 
execution. 
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If the. signs were alike and the characteristic difference 
was within range (i.e., seven or less), the fractions are 
added (ROSAR(8-ll) = 0110, 1110, or 1111]. First,. 
however, the characteristics are equalized, if necessary, by 
right-shifting the fraction of the operand with the smallest 
characteristic one hex digit at a time and subtracting one 
from the characteristic difference. When the characteristic 
difference goes to zero, the characteristics are equal. Note 
that, if the first operand characteristic is larger, a 1 is 
added to the characteristic difference because the charac­
teristic difference is in complement form. 

The fractions are then added and the results are gated 
to DT and AB. A guard digit is retained in B(64-67). The 
characteristic of the larger operand, which is the charac­
teristic of the intermediate result, is placed into F. When 
adding fractions, the possibility of a fraction overflow 
exists. A fraction overflow is indicated by a carry out of 
the high-order position, PA(8). After the two fractions are 
added, the intermediate result is placed into DT and AB. 
If A(7) = 1, a fraction overflow occurred. Therefore, the 
fraction is right-shifted one hex digit, and I is added to 
the intermediate result characteristic. Whether or not a 
fraction overflow occurred, the microprogram now deter­
mines whether the intermediate result fraction is normal­
ized, not normalized, or equal to zero (the guard digit is 
included in the test for zero). If the fraction is normal­
ized, the contents of STAT C are gated to the sign 
position of the LS bus, the result characteristic is 
transferred from F to T(32-39), and the result fraction is 
gated from D to T(40-63). This result (sign, charac­
teristic, and fraction) is stored into the FPR specified by 
the Rl field. If the intermediate result fraction is not 
normalized, it is normalized by shifting left one hex digit 
at a time and subtracting one from the characteristic until 
a significant hex digit appears in the high-order position. 
After normalizing, the operation continues in the same 
manner as a normalized intermediate fraction. If the 
intermediate result is zero, a true zero is stored into the 
FPR specified by the RI field, and the significance mask 
bit (PSW(39)] is tested. If the mask bit is a 1, the 
characteristic is stored with the zero fraction, and a 
program interruption is initiated. Regardless of the setting 
of the mask bit, the CC is set to 0, and the instruction is 
terminated by an end op. 

If the intermediate result fraction is shifted right, the 
possibility of an exponent overflow exists. During normal­
ization of the fraction, the possibility of an exponent 
underflow exists. When SAL(O) = 1 after a fraction shift 
(right or left), an exponent overflow or exponent under­
flow condition exists. The proper sign and fraction are 
stored. Because bit 0 of the characteristic (characteristic 
carry) is inhibited from entering LS by the 'RSLT­
SIGN~LS' micro-order, the characteristic stored is 128 
larger than the true result for underflow and 128 smaller 
on overflow. 



Whenever an exponent overflow or exponent under­
flow condition exists, SAI..(1) and PSW{38) are examined 
to determine whether a program interruption is to be 
executed. If SAL( 1) = 0, an exponent overflow exists, and 
an interruption request is unconditionally generated. A 
program interruption occurs on all exponent overflows. If 
SAL( 1) = 1, an exponent underflow exists; if PSW(38) = 
1, an exponent underflow.program interruption request is 
generated. If PSW(38) = 0, exponent underflow is masked 
off, and a true zero is stored with no program interruption 
occurring. 

Note that an interruption occurs on all exponent 
overflows. This overflow indicates that the value of the 
absolute result exceeds the limits of the machine; there­
fore, further action is necessary. In some scientific 
computations, very small numbers may be eliminated 
from an equation without serious error. An exponent 
underflow means that the comp:uted result approaches 
zero. Therefore, the programmer may find that a program 
interruption is unnecessary, and a true zero result is 
desirable. 

Significance and specification program interruption 
conditions may also exist during execution of an AER 
instruction. The action that occurs is shown in Diagram 
5-206, and is discussed earlier in thiS section. 

Tests for zero intermediate results are made at several 
points during instruction execution. If the result is zero, a 
program interruption occurs if PSW(39) = 1. The positive 
sign, the result characteristic, and a zero fraction are 
stored into LS. A program interruption occurs, and the 
program interruption routine determines the action to be 
taken. If PSW(39) = 0, a true zero result is sfored into LS. 

If the characteristics are not within limits when 
executing the AER instruction [ROSAR(8-11) = 0000, 
0100, 1000, or 1100 on 'FLR' branch], the fractfon with 
the largest characteristic is normalized and stored along 
with the sign into LS per the R1 field. 

This discussion of the AER instruction is referred to in 
the discussions of Add-type instructions that follow. If 
the AER instruction is understood and the instruction 
differences noted, any short operand add-type instruction 
execution path can be followed by referring to Diagram 
5-206. 

Add Normalized, AE (?A) - RX Short Operands 

• Algebraically add 2nd operand (in storage) to 1st 
operand (in FPR, per R1) and place normalized sum 
into 1st operand location. 

• RX format: (See adjoining column,) . 

• Conditions at start of execution: 
1st operand is in S and T. 
Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

7A Rl X2 82 02 
11 12 15 16 19 20 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R 1. 

Fetch sign, charistic, 
and 24-bit fraction 
from main storage. 

Equalize charistics and save signs. 

• CC setting: 

Algebraically add fractions 
of ht and 2nd operands. 

Normalize fraction 
and adjust charistic. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per Rl. 

Set CC per hardware conditions. 

Result fraction equals zero: CC= 0. 
Result fraction is less than zero: CC= 1. 
Result fraction is greater than zero: CC= 2. 

31 

The Add Normalized, AE, instruction (Diagram 5-206) 
algebraically adds the second operand (specified by the 
effective address) to the first operand (specified by R1), 
and places the normalized sum into the first operand 
location. The CC is set according to hardware conditions. 
The AE instruction uses 32-bit operands; therefore the 
contents of the low-order halves of the FPR's remain 
unchanged. 

The conditions at the beginning of the execution phase 
are: 
l. The first operand is in S and T. 
2. A main storage request for the second operand has 

been issued per the effective address in D. 
3. the contents of A and B are unknown. 
4. The first 16 bits of the instruction are in E. 

A specificatio~ test is made at the beginning of the 
execution phase. If a specification check exists, instruc­
tion execution is suppressed, and a specification program 
interruption occurs. Assume that no specification check 
exists. 

Because the AE instruction uses short operands (32 
bits) in the RX format, no low-order fractions need to be 
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fetched. The first operand is moved from T to A. The 
second operand arrives from main storage and is placed 
into T. D(21) determines which word from the SDBO is 
gated to T. (Note that main storage is addressed on 
doubleword boundaries.) If D(21) = 0, SDB0(0-31) is 
gated to T; ifD(21) = 1, SDB0(32-63) is gated to T. 

The remainder of the AE instruction execution is 
identical to the execution of the AER instruction. 

Add Normalized, Ai>R (2A) - RR Long Operands 

• Algebraically add 2nd operand (in PPR, per R2 and R2 
+ I) to 1st operand (in PPR, per Rl and RI + 1) and 
place normalized sum into 1st operand location. 

• RRformat: 

0 

2A Rl R2 

11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
F PR per R 1 and R 1 + 1 • 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1. 

Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Normalize fraction 
and adjust charisti c. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per. Rl and Rl + 1. 

Set CC per hardware conditions. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit 
fraction only). 

32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

• CC setting: 
Result fraction equals zero: CC = 0. 
Result fraction is less than zero: CC = 1. 
Result fraction is greater than zero: CC = 2. 

3-76 (9/68) 

The Add Normalized, ADR, instruction (Diagram 5-207, 
FEMDM) algebraically adds the second operand (specified 
by R2 and R2 + 1) to the first operand (specified by RI 
and Rl + 1), and places the normalized sum into the first 
operand location. The CC is set according to hardware 
conditions. The ADR instruction uses 64-bit operands. 

The conditions at the beginning of the execution phase 
are: 
1. 32 bits of the first operand (sign, characteristic, and 

hlgh-order fraction) are in A and B, and D contains the 
high-order 24 bits of the fraction. 

2. 32 bits of the second operand (sign, characteristic, and 
high-order fraction) are in Sand T. 

3. The STC contains a count of 4. 
4. The instruction is in E. 

Because the ADR instruction uses long operands (64 
bits) in the RR format, the low-order fractions of the first 
and second operands must be fetched from LS. The · 
low-order fraction of the first operand is fetched from LS 
per E(8- l 1) + I and is placed into B via T and the parallel 
adder. The low-order fraction of the second operand is 
fetched from LS per E(12-15) + 1 and placed into T; the 
high-order fraction is placed into D. 

The sign of the first operand is saved in ST AT F and 
the sign of the second operand is saved in STAT C. The 
first operand characteristic is subtracted from the second 
operand characteristic, and the characteristic difference 
and the signs determine the next operation by means of a 
10-way 'FLR' branch. 

Note that with long operands, the characteristics can 
be equalized if the characteristic difference is less than or 
equal to 15. Assume that the following two characteristics 
are to be compared to determine the ROSAR value: 

2nd operand characteristic: 6410 = 10000002 

1st operand characteristic: 7310 = 10010012 

The first operand characteristic is subtracted from the 
second operand characteristic as follows: 

2nd operand characteristic: 0 1000000 
Complement of 1st operand characteristic: 1 0110110} 2's com-
Add 1 : 0 0000001 plement 
Characteristic difference in SAL(0-7): 1 1110111 

Because no SAI.(O) carry occurred, ROSAR(8) = 0. 
ROSAR(9J depends upon the signs assigned to the 
fractions of the two operands. The table in Sheet 2 of 
Diagram 5-207 shows the bit positions tested in SAL to 
determine the value of ROSAR(lO) and whether pre­
shifting is meaningful. In this example, SAL(0-3) = 1111. 
Therefore, because ADR is a long operand instruction, 
ROSAR(lO) is set to 1 and preshifting is meaningful. 
ROSAR(ll) = 0 because SAL(0-7) is not all O's. For 



other examples of ROSAR setting on an 'FLR' branch, 
refer to the description of the AER instruction and Table 
3-9. The examples shown in Table 3-9 indicate that the 
fraction of the operand with the smallest characteristic is 
shifted right when the characteristic difference is 15 or 
less for long operand instructions. 

Four possible ROSAR(8-11) values (0010, 0110, 
1010, and 1110) cause characteristic equalization and 
then an algebraic addition or subtraction of fractions. For 
example, ROSAR(8-1 l) is set to 0110, if an ADR 
instruction is being executed with operands having the 
following parameters: ( 1) the characteristic difference is 
less than 15, (2) the signs of the operands are alike, and 
(3) the second operand characteristic is the smaller of the 
two. The 0110 branch right-shifts the second operand in 
DT one hex digit and adds 1 to the characteristic 
difference in F until the characteristics are equal 
[SAL( 4-7) = 1111] . 

After the characteristics are equalized, the fractions of 
the operands are added and the sum is placed in,to AB and 
DT. A plus sign is set into F(O) (in case of a zero fraction 
result), and the characteristie of the first operand is placed 
into F(l-7). STAT A is set ifthe fraction of the result 
equals zero. 

Because ADR is a normalized instruction, the interme­
diate result is normalized, if necessary. First, however, a 
test determines whether the fraction overflowed due to 
the addition. (A carry into bit 7, the low-order bit of the 
characteristic, is considered a fraction overflow.) If the 
fraction did overflow, it is shifted right one hex digit, and 
a 1 is added to the characteristic. 

The low-order fraction is then stored into the FPR 
specified by Rl + 1, and normalization proceeds if the 
result was not zero and not normalized. The low-order 
fraction is stored after each left-shift. 

After normalization, the sign and the characteristic are 
inserted and stored with the high-order fraction into the 
first operand location (specified by Rl). Assuming no 
error conditions or zero· fraction, the CC is set, and an 
end-op cycle completes the execution. 

If signs are unlike, when in the normalizing loop, the 
intermediate result fraction can be left-shifted out of the 
high-order hex digit position if the intermediate fraction is 
0001. Refer to the description of the AER instruction for 
an explanation of how this problem is handled. 

All other operations that may occur during the 
execution of an ADR instruction are handled as described 
for an AER instruction, with the exception that the 
low-order fraction must be considered in all calculations. 
The major differences are: 
1. An additional operand fetch is needed. 
2. The low-order halves of the FPR's are used. 

Add Normalized, AD (GA) - RX Long Operands 

• Algebraically add 2nd operand (in storage) to 1st 
operand (in FPR, per RI and Rl + I) and place 
normalized sum into 1st operand location. 

• RXformat: 

6A RI X2 B2 D2 

11 12 15 16 19 20 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per RI and R l + 1. 

Fetch sign, charistic, 
and 56-bit fraction from 
main storage. 

Equalize charistics and save signs. 

Algebraically add fractions 
of I st and 2nd operands. 

Normalize fraction 
and adjust charistic. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per RI and Rl + 1. 

Set CC per 
hardware conditions. 

• Conditions at start of execution: 
32 bits ofist operand are in Sand T. 
Low-order fraction of 1st operand is in LS. 

31 

Main storage request for 2nd operand has been issued 
perD. 

First I 6 bits of instruction are in E. 

• CC setting: 
Result fraction equals zero: CC= 0. 
Result fraction is less than zero: CC = 1. 
Result fraction is greater than zero: CC = 2. 

The Add Normalized, AD, instruction (Diagram 5-207) 
algebraically adds the second operand (specified by the 
effective address) to the first operand (specified by RI 
and RI + I), and places the normalized sum into the first 
operand location. The CC is set according to hardware 
conditions. The AD instruction uses 64-bit operands. 
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The conditions at the beginning of the execution phase 
are: 
I. 32 bits of the first operand (sign, characteristic, and 

high-order fraction) are in Sand T. 
2. A main storage request for the second operand has 

been issued per the effective address in D. 
3. The contents of A and B are unknown. 
4. The first 16 bits of the instruction are in E. 

Because the AD instruction uses long operands ( 64 
bits) in the RX format, the low-orderfraction of the first 
operand must be fetched from LS. Accordingly, the sign, 
characteristic, and high-order fraction of the first operand 
are placed into A. The low-order fraction is then fetched 
from LS per E(S-11) and routed to B via T and the 
parallel adder. The 64-bit second operand is fetched from 
main storage per D and placed into ST; the high-order 
fraction is also placed into D. The sign of the first operand 
is saved in STAT F and the sign of the second operand is 
saved in STAT C. 

The first operand characteristic is then subtracted from 
the second operand characteristic, and the characteristic 
difference and the signs determine the next operation by 
means of a 10-way 'FLR' branch. The remainder of the 
execution of the AD instruction is identical to that of the 
ADR instruction. 

Add Unnormalized, AUR (3E) - RR Short Operands 
• Algebraically add 2nd operand (in PPR, per R2) to 1st 

operand (in PPR, per RI) and place unnormalized sum 
into 1st operand location. 

• RR format: 

3E Rl R2 

11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per Rl. 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 
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Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Determine sign. 

Store sign, choristic, and 
fraction into FPR per Rl. 

Set CC per 
hardware conditions. 

• Conditions at start of execution: 
1st operand is inA, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

• CC setting: 
Result fraction equals zero: CC= 0. 
Result fraction is less than zero: CC = 1. 
Result fraction is greater than zero: CC = 2. 

The Add Unnormalized, AUR, instruction (Diagram 
5-206) algebraically adds the second operand (specified by 
R2) to the first operand (specified by RI), and places the 
unnormalized sum into the first operand location. The CC 
is set according to hardware conditions. Note that the 
guard digit is not examined to determine the CC setting or 
checked for a significance condition. Also, because the 
characteristic is not reduced for normalization, exponent 
underflow cannot occur. 

The execution of the AUR instruction is identical to 
that of the AER instruction until the branch on the type 
of instruction is performed. After the fraction is tested for 
overflow and shifted right (if necessary), the result is 
checked to see if it is zero. If the result is not zero, the 
result is immediately stored, along with the sign and 
characteristic, into the FPR specified by Rl. 

A test then determines whether equalization had 
occurred (STAT D set). If it did, a possibility exists that 
the only significant digit may be the guard digit. There­
fore, if equalization did occur and no exponent overflow 
condition exists, the guard digit is removed from the 
result and the fraction is tested to see if it is zero. If the 
fraction equals zero, a true zero is stored and a signifi­
cance program interruption is initiated. Otherwise, the 
instruction terminates normally. 

Add Unnormalized, AU (7E) - RX Short Operands 

• Algebraically add 2nd operand (in storage) to 1st 
operand (in FPR, per Rl) and place unnormalized sum 
into 1st operand location. 

• RX format: (See left column of next page.) 

• Conditions at start of execution: 
1st operand is in Sand T. 
Main storage request for 2nd operand has been issued 

perD. 
First 16 bits of instruction are in E. 

• CC setting: 
Result fraction equals zero: CC= 0. 
.Result fraction is less than zero: CC = 1. 
Result fraction is greater than zero: CC = 2. 

The Add Unnormalized, AU, instruction (Diagram 5-206) 
algebraically adds the second operand (specified by the 
effective address) to the first operand (specified by RI), 
and places the unnormalized sum into the first operand 
location. Exponent underflow cannot occur. The CC is set 



7E Rl X2 B2 D2 

11 12 15 16 19 20 

Fetch sign, choristic, 
and 24-bi t fraction 
from FPR per R l . 

Fetch sign, choristic, 
and 24-bi t fraction 
from main storage, 

Equalize choristics and save signs. 

Algebraically odd fractions 
of ]st and 2nd operands. 

Determine sign. 

Store sign, choristic, and 
fraction into FPR per R l. 

Set CC per 
hardware conditions. 
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according to hardware conditions. The execution is 
identical to that of the AE instruction until the branch to 
determine an unnormalized, normalized, or compare 
instruction. From this point, the execution is identical to 
that of the AUR instruction. 

Add Unnormalized, AWR (2E) - RR Long Operands 

• Algebraically add 2nd operand (in PPR, per R2 and R2 
+ 1) to 1st operand (in PPR, per RI and R1 + 1) and 
place unnormalized sum into 1st operand location. 

• RR for~t: (See adjoining column.) 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit 

fraction only). 
32 bits of 2nd operand are in S and T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

• CC setting: 
Result fraction equals zero: CC= 0. 
Result fraction is less than zero: CC = 1. 
Result fraction is greater than zero: CC= 2. 

The Add Unnormalized, AWR, instruction (Diagram 
5-207) algebraically adds the second operand (specified by 

D 

2E Rl R2 

11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per Rl and Rl + 1. 

Fetch sign, choristic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1. 

Equalize charistics and save signs. 

Algebraically add fractions 
_of lst and 2nd operands. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per Rl and Rl + 1. 

Set CC per hardware conditions. 

R2 and R2 + 1) to the first operand (specified by Rl and 
R1 + 1) and places the unnonnalized sum into the first 
operand location. Exponent underflow cannot occur. 

The execution phase is identical to that of the ADR 
instruction until the branch to determine an unnormal­
ized, normalized, or compare instruction. Assume that the 
operand signs are alike and that the characteristic differ­
ence is less than 15. On Sheet 3 of Diagram 5-207, after 
the branch, a test determines whether the fraction of the 
sum overflowed (indicated by a carry into bit 7). If an 
overflow occurred, the fraction is shifted right one digit, 
and a 1 is added to the characteri~tic. 

The low-order position of the sum (bits 32-63) is then 
stored into the PPR designated by RI + I. The result 
fraction is then tested to see if it equals zero. If it does 
not -equal zero, the sign, characteristic, and high-order 
fraction are stored into the PPR specified by R1. If no 
exponent overflow occurred, the CC is set and the 
instruction is terminated by an end op. 

Add Unnormalized, AW (6E) - RX Long Operands 

• Algebraically add 2nd operand (in storage) to 1st 
operand (in PPR, per RI and R1 + 1) and place 
unnormalized sum into 1st operand location. 
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• RXformat: 

6E Rl X2 82 D2 

11 12 15 16 19 20 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per Rl and Rl + 1. 

Fetch sign, charistic, 
and 56-bi t fraction from 
main storage. 

Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per Rl and Rl + 1. 

Set CC per 
hardware conditions. 

• Conditioris at start of execution: 
32 bits of'Ist operand are in Sand T. 
Low-order fraction of 1st operand is in LS. 
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Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

• CC setting: 
Result fraction equals zero: CC= 0. 
Result fraction is less than zero: CC= 1. 
Result fraction is greater than zero: CC = 2. 

The Add Unnormalized, AW, instruction (Diagram 5-207) 
algebraically adds the second operand (specified by the 
effective address) to the first operand (specified by Rl 
and Rl + 1) and places the unnormalized sum into the 
first operand location. Exponent underflow cannot occur. 
T}le CC is set according to hardware conditions. 

The execution phase is identical to that of the AD 
instruction until the branch to determine an unnormal­
ized, normalized, or compare instruction. From this point, 
execution is identical to execution of the AWR instruc­
tion. 
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Subtract Normalized, SER (38) - RR Short Operands 

• Algebraically subtract 2nd operand (in FPR per R2) 
from 1st operand (in FPR, per Rl) and place normal­
ized difference into 1st operand location. 

• RRformat: 

38 Rl R2 

11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per Rl. 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Invert sign. 

Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Normalize fraction 
and adjust charistic. 

Determine sign. 

Store sign, charistic, and 
fraction into FPR per Rl. 

Set CC per 
hardware conditions. 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

• CC setting: 
Result fraction equals zero: CC= 0. 
Result fraction is less than zero: CC = 1. 
Result fraction is greater than zero: CC = 2. 

The Subtract Normalized, SER, instruction (Diagram 
5-206) algebraically subtracts the second operand (speci­
fied by R2) from the first operand (specified by Rl), and 
places the no~alized difference into the first operand 
location. The second operand location remains un­
changed. The CC is set according to hardware conditions. 



For subtract instructions, the sign of the second 
operand is complemented, after which the algebraic 
subtraction is treated as an algebraic addition. Therefore, 
execution of the SER instruction is identical to that of 
the AER instruction except that the complement of the 
second operand sign rather than the true sign is gated to 
STATC. 

Subtract Normalized, SE (78) - RX Short Operands 

• Algebraically subtract 2nd operand (in storage) from 
1st operand (in PPR, per Rl) and place normalized 
difference into 1st operand location. 

• RX format: 

7B RI X2 B2 D2 

11 12 15 16 19 20 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R 1. 

Fetch sign, charistic, 
and 24-bit fraction 
from.main storage. 

Invert sign. 

Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Normalize fraction and adjust charistic. 

Determine sign. 

Store sign, charistic, and 
fraction into FPR per R 1. 

Set CC per 
hardware conditions. 

• Conditions at start of execution: 
1st operand is in Sand T. 
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Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

• CC setting: 
Result fraction equals zero: CC= 0. 
Result fraction is less than zero: CC = 1. 
Result fraction is greater than zero: CC = 2. 

The Subtract Normalized, SE, instruction (Diagram 
5-206) algebraically subtracts the second operand (spec­
ified by the effective address) . from the first operand 
(specified by Rl) and places the normalized difference 
into the first operand location. The CC is set according to 
hardware conditions. 

Execution of the SE instruction is identical to that of 
the AE instruction except that the complement of the 
second operand sign instead of the true sign is gated to 
STATC. 

Subtract Normalized, SOR (28) - RR Long Operands 

• Algebraically subtract 2nd operand (in PPR, per .R2 
and R2 + 1) from 1st operand (in PPR, per Rl and R1 
+ 1) and place normalized difference into 1st operand 
location. 

• RRformat: 

0 

2B RI R2 

11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per Rl and Rl + I. 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + I. 

Invert sign. 

Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Normalize fraction and adjust charistic. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per RI and Rl + 1. 

.Set CC per 
hardware conditions. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit 

fraction only). 
32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 
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• CC setting: 
Result fraction equals zero: CC = 0. 
Result fraction is less than zero: CC =·I. 
Result fraction is greater than zero: CC = 2. 

The Subtract Normalized, SDR, instruction (Diagram 
5~207) algebraically subtracts the second operand (speci­
fied by R2 and R2 + 1) from the first operand (specified 
by RI and RI + I) and places the normalized difference 
into the first operand location. The CC is set according to 
hardware conditions. 

Execution of the SDR instruction is identical to that of 
the ADR instruction except that the complement of the 
second operand sign instead of the true sign is gated to 
STATC. 

Subtract Normalized, SD (68} - RX Long Operands 
• Algebraically subtract 2nd operand (in storage) from 

1st operand (in FPR, per RI and RI + 1) and place 
normalized difference into 1st operand location. 

• RXformat: 

68 Rl X2 82 02 
0 11 12 15 16 19 20 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per Rl and RI + 1. 

Fetch sign, charistic, 
and 56-bit fraction 
from main storage. 

Invert sign. 

Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Normalize fraction and adjust charistic. 

Determine sign. 

Store sign, charistic, and. fraction 
into FPR per RI and Rl +I. 

Set CC per hardware conditions. 

• Conditions at start of execution: 
32 bits of 1st operand are in Sand T. 
Low-order fraction of 1st operand is in LS. 

31 

Main storage re'quest for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 
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• CC setting: 
Result fraction equals zero: CC = 0. 
Result frac~ion is less than zero: CC = 1. 
Result fraction is greater than zero: CC = 2. 

The Subtract Normalized, SD, instruction (Diagram 
5-207) algebraically subtracts the second operand (speci­
fied by the effective address) from the first operand 
(specified by RI and Rl + I) and places the normalized 
difference into the first operand location. The CC is set 
according to hardware conditions. 

Execution of the SD instruction is identical to the 
execution of the AD instruction except that the comple­
ment of the second operand sign instead of the true sign is 
gated to ST AT C. 

Subtract Unnormalized, SUR (3F} - RR Short Operands 
• Algebraically subtract 2nd operand (in FPR, per R2) 

from 1st operand (in FPR, per RI) and place unnor­
malized difference into 1st operand location. 

• RRformat: 

3F Rl R2 

11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R 1. 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Invert sign, 

Equalize charistics and save signs, 

Algebraically add fractions 
of 1st and 2nd operands, 

Determine sign, 

Store sign, charistic, and 
fraction into FPR per RI• 

Set CC per hardware conditions. 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

• CC setting: 
Result fraction equals zero: CC= 0. 
Result fraction is less than zero: CC= 1. 
Result fraction is greater than zero: CC = 2. 



The Subtract Unnormalized, SUR, instruction (Diagram 
5-206) algebraically subtracts the second operand (speci­
fied by R2) from the first operand (specified by RI) and 
places the unnormalized difference into the first operand 
location. The CC is set according to hardware conditions. 

Except that the intermediate results of the Subtract 
Unnormalized instructions are not normalized, the opera­
tion is the same as that of the Subtract Normalized' 
instructions. That is, the second operand sign is inverted 
(and saved in STAT C) and the fractions are-algebraically 
added. 

The SUR instruction is executed in the same manner as 
the AUR instruction except that the complement of the 
second operand sign instead of the true sign is gated to 
STAT C. Note that, when executing Subtract Unnormal­
ized instructions, the guard digit is not examined to 
determine the CC setting or checked for a significance 
condition. Also, as in Unnormalized Add instructions, 
exponent underflow cannot occur. 

Subtract Unnormalized, SU (7F) - RX Short Operands 

• Algebraically subtract 2nd operand (in storage) from 
1st operand (in FPR, per RI) and place unnormalized 
difference into 1st operand location. 

• RXformat: 

0 

7F Rl X2 B2 D2 

II 12 15 16 19 20 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per Rl. 

Fetch sign, charistic, 
and 24-bit fraction 
from main storage. 

Invert sign. 

Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Determine sign. 

Store sign, charistic, and 
fraction into FPR per R 1. 

Set CC per 
hardware conditions. 
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• Conditions at start of execution: 
1st operand is in Sand T. 
Main storage request for 2nd operand has been issued 

perD. 
First 16 ,bits of instruction are in E. 

• CC setting: 
Result fraction equals zero: CC= 0. 
Result fraction is less than zero: CC = 1. 
Result fraction is gre~ter than zero: CC = 2. 

The Subtract Unnormalized, SU, instruction (Diagram 
5-206) algebraically subtracts the second operand (speci­
fied by the effective address) from the first operand 
(specified by Rl) and places .the unnormalized difference 
into the first operand location. The CC is set according to 
hardware conditions. 

Execution of the SU instruction is identical to that of 
the AU instruction except that the complement of the 
second operand sign instead of the true sign is gated to 
STATC. 

Subtract Unnormalized, SWR (2F) - RR Long Operands 

• Algebraically subtract 2nd operand (in FPR, per R2 
and R2 + 1) from 1st operand (in FPR, per RI and RI 
+ J) and place unnormalized difference into 1st 
operand location. 

• RRformat: 

0 

2F Rl R2 

11 12 15 

Fetch sign, charistic, 
arid 56-bit fraction from 
FPR per Rl and Rl + 1. 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1 • 

Invert sign. 

Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per Rl and Rl + 1. 

Set CC per 
hardware conditions. 
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• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit 
fraction only). 

32 bits of 2nd. operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

• CC setting: 
Result fraction equals zero: CC= 0. 
Result fraction is less than zero: CC = 1. 
Result fractfon is greater than zero: CC= 2. 

The Subtract Unnormalized, SWR, instruction (Diagram 
5-207) algebraically subtracts the second operand 
(specified by R2 and R2 + 1) from the first operand 
(specified by Rl and Rl + 1) and places the unnormalized 
difference into the first operand location. The CC is set 
according to hardware conditions. 

Execution of the SWR instruction is i~entical to that 
of the AWR instruction except that the complement of 
the second operand sign instead of the true sign is gated to 
STATC. 

Subtract Unnormalized, SW (6F) - RX Long Operands 

• Algebraically subtract 2nd operand (in storage) from 
1st operand (in FPR, per R1 and R1 + 1) and place 
unnormalized difference into 1st operand location. 

• RXformat: 

6F RI X2 82 02 

11 12 15 16 19 20 

Fetch sign, choristic, 
and 56-bit fraction from 
FPR per RI and RI +·1. 

Fetch sign, choristic, 
and 56-bit fraction from 
main storage. 
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Invert sign. 

Equalize charistics and save signs. 

Algebraically odd fractions 
of 1st and 2nd operands. 

Determine sign, 

Store sign, choristic, and fraction 
into FPR per Rl and R1 + 1, 

Set CC per 
hardware conditions. 

31 

• Conditions at start of execution: 
32 bits of 1st operand are in Sand T. 
Low-order fraction of 1st operand is in LS. 
Main storage request for 2nd operand has been issued 

perD. 
First 16 bits of instruction are in E. 

• CC setting: . 
Result fraction equals zero: CC= 0. 
Resqlt fraction is less than zero: CC= 1. 
Result fraction is greater than zero: CC = 2. 

The Subtract Unnormalized, SW, instruction (Diagram 
5-207) algebraically subtracts the second operand 
(specified by the effective address) from the first operand 
(specified by R1 and R1 + I) and places the unnormalized 
difference into the first operand location. The CC is set 
according to hardware conditions. 

Execution of the SW instruction is identical to that of 
the AW instruction except that the complement of the 
second operand sign instead of the true sign is gated to 
STATC. 

Compare, CER (39) - RR Short Operands 

• Algebraically compare 1st operand (in FPR, per RI) 
with 2nd operand (in FPR, per R2); CC indicates 
result. 

• RRformat: 

0 

39 R1 R2 

11 12 15 

Fetch sign, choristic, 
and 24-bit fraction 
from FPR per RI. 

Fetch sign, choristic, 
and 24-bit fraction 
from FPR per R2. 

Invert sign. 

Equalize charistics and save signs. 

Algebraically odd fractions 
of 1st and 2nd operands. 

Examine result of fraction addition 
and set CC per hardware conditions. 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 



• CC setting: 
Operands are.equal: CC= 0. 
1st operand is less than 2nd operand: CC= 1. 
1st operand is greater than 2nd operand: CC= 2. 

The Compare, CER, instruction (Diagram 5-206) algebra­
ically compares the first operand (specified by RI) with 
the second operand (specified by R2); the CC indicates 
that the first operand is equal to, less than, or greater than 
the second operand. 

Comparison is algebraic, taking into account the sign, 
fraction, and characteristic of each operand. An exponent 
inequality is not decisive for magnitude determination 
because the fractions may have different numbers of 
leading zeros. Equality is established by following the 
rules for floating-point subtraction. The intermediate 
result is not normalized or stored. When the intermediate 
result, including a possible guard digit, is zero, the 
operands are equal. Numbers with zero fractions compare 
equal even when they differ in sign or characteristic. 
Exponent overflow, exponent underflow, or significance 
check cannot occur. The CC is set per hardware condi~ 
tions at end-op time. 

In the CER instruction, the contents of the low-order 
halves of the FPR's are ignored. (Neither operand location 
is changed _as a result of any compare instructions.) 

Execution of the CER instruction is identical to that of 
the SER instruction until the branch to determine an 
unnormalized, normalized, or compare instruction. At 
that point, the CC is set per hardware conditions, and the 
instruction is terminated by an end op. 

Compare, CE (79) - RX Short Operands 
• Algebraically compare 1st operand (in FPR, per RI) 

with 2nd operand (in storage); CC indicates result. 

• RXformat: 

0 

79 RI X2 . 82 02 
11 12 15 16 19 20 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per RI. 

Fetch sign, charistic, 
and 24-bit fraction 
from main storage. 

Invert sign. 

Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Examine result of fraction addition 
and set_ CCper hardware conditions. 

31 

• Conditions at start of execution: 
1st operand is in S and T. 
Main storage request for 2nd operand has been issued 
perD. 

1st 16 bits of instruction are in E. 

• CC setting: 
Operands are equal: CC= 0. 
1st operand is less than 2nd operand: CC = 1. 
1st operand is greater than 2nd operand: CC= 2. 

The Compare, CE, instruction {Diagram 5-206) algebra­
ically compares the first operand (specified by Rl) with 
the second operand {specified by the effective address); 
the CC indicates ·the result. Exponent underflow, 
exponent overflow, or significance check cannot occur. 

Execution of t4e CE instruction is identical to that of 
the SE instruction until the branch to determine an 
unnormalized,, normalized, or compare instruction. At 
that point, the CC is set per hardware conditions, and the 
instruction is terminated by an end op. 

Compare, CDR (29) - RR Long Operands 

• Algebraically compare 1st operand (in FPR, per R1 
and Rl + 1) with 2nd operand (in FPR, per R2 and R2 
+ 1); CC indicates result. 

• RR format: 

29 RI 

11 12 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per Rl and Rl + 1. 

R2 
15 

Fetch sign, charistic, 
and 56-bi t fraction from 
FPR per R2 and R2 + I. 

Invert sign. 

Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Examine result of fraction addition 
and set CC per hardward conditions. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D {24-bit 

fraction only). 
32 bits of 2nd operand are in Sand T. 
Low-order· fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

• CC setting: 
Operands are equal: CC = 0. 
1st operand is less than 2nd operand: CC= 1. 
1st operand is greater than 2nd operand: CC = 2. 
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The Compare, CDR, instruction (Diagram 5-207) algebra­
ically compares the first operand (specified by RI and RI 
+ 1) with the second operand (specified by R2 and R2 + 
I); the CC in!'.licates the result. Exponent underflow, 
exponent overflow, or significance check cannot occur. 

Execution of the CDR instruction is identical to that 
of the SOR instruction until the branch to determine an 
unnormalized, normalized, or compare. instruction. At 
that po~nt, the CC is set per hardware conditions, and the 
instruction is terminated by an end op. 

Compare, CD (69) - RX Long Operands 

• Algebraically compare 1st operand (in PPR, per RI 
and RI + 1) with 2nd operand (in storage); CC 
indicates result. 

• RX format: 

69 Rl X2 82 02 
11 12 15 16 19 20 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per Rl and Rl + 1. 

Fetch sign, charistic, 
and 56-bit fraction 
from main.storage. 

Invert .sign. 

Equalize charistics and save signs, 

Algebraically add fractions 
of 1st and 2nd operands. 

Examine result of fraction addition 
and set CC per hardware conditions. 

• Conditions at start of execution: 
32 bits of 1st operand are in Sand T. 
Low-order fraction of 1st operand is in LS. 

31 

Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

• CC setting: 
Operands are equal: CC= 0. 
1st operand is less than 2nd operand: CC = 1. 
1st operand is greater than 2nd operand: CC= 2. 

The Compare, CD, instruction (Diagram 5-207) algebrai­
cally compares the first operand (specified by RI and RI 
+ l) with the second operand (specified by the effective 
address); the CC indicates the result. Exponent underflow, 
exponent overflow, or significance check cannot occur. 

Execution of the CD instruction is identical to that of 
the SD instruction until the branch to determine an 
unnormalized, normalized, or compare instruction. At 
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that point, the CC is set per hardware conditions, and the 
instruction is terminated by an end op. 

HALVE 
The Halve instructions (HER and HOR) divide the second 
operand by 2 and place the normalized quotient into the 
first operand location. The Halve instructions are in the 
RR format with short and long operand options available. 
In the HER instruction, the low-order half of the result 
register remains unchanged. 

After the second operand is in ST, the sign and the 
characteristic are saved in F, and the high-order fraction 
(24 bits) is placed into D (long operands). Shifting the 
fraction one bit position to the right divides the operand 
by 2. Because the data in PAL cannot be shifted right 1 
directly, two machine cycles are necessary. First the 
fraction is shifted left 1 from D to the parallel adder and 
then shifted right 4 to PAL, thus yielding an effective 
right 3 shift. Next, the fraction is placed into AB. A left 2 
shift occurs when the fraction is routed to DT via the 
parallel adder, thus resulting in a right 1 shift and thereby 
dividing the fraction by 2. Guard digits are saved and u~ed 
if normalization is necessary. After the fraction is normal­
ized, the sign, characteristic, and fraction are stored into 
LS per RI, completing instruction execution. 

The halve operation differs from the divide operation 
in that 2 is the only divisor. 

Halve, HER (34) - RR Short Operands 

• Divide 2nd operand (in FPR, per R2) by 2 and place 
normalized quotient into 1st operand location (in FPR, 
per RI). 

• RRformat: 

34 Rl R2 
0 78 11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Shift fraction right 
1 bit position. 

Normalize result. 

Store sign, charistic, 
and fraction into 
FPR per Rl. 



• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

The Halve, HER, instruction (Diagram 5-208, FEMDM) 
divides the second operand (specified by R2) by 2 and 
places the normalized quotient into the FPR specified by 
RI. To divide by 2, the fraction is shifted right one bit 
position. 

At the start of execution, the second operand is in S 
and T. After a specification test, the fraction is placed 
into D, the sign is saved in STAT C, and the characteristic 
is saved in F. The· fraction in D is then shifted right one 
bit position. A test is initiated to determine whether the 
fraction is zero and normalized. If the fraction equals 
zero, the FPR specified by R1 is set to a true zero and the 

· operation terminates with an end op. If the fraction 
contains leading zero's, it is normalized by shifting left 
one hex digit at a time until a significant hex !ligit appears 
in the high-order position. A 1 is subtracted from the 
characteristic for each shift. 

After normalization, the characteristic and fraction are 
gated to T from F andD, respectively. The result is then 
stored into the FPR specified by RI. The sign position is 
set by forcing the contents of ST AT C onto the LS bus as 
the fraction and characteristic are being stored. 

The characteristic is then tested for a possible expo­
nent underflow. If no underflow occurred, the instruction 
is terminated. If an underflow did occur, the remainder of 
the operation is determined by the state of the underflow 
mask bit. 

Halve, HOR (24) - RR Long Operands 

• Divide 2nd operand (in FPR, per R2 and R2 +I) by 2 
and place normalized quotient into 1st operand loca­
tion (in FPR, per R1 and R1 + 1 ). · 

• RRformat: 

24 Rl R2 

7 8. 11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1. 

Shift fraction right 
1 bit position. 

Normalize result. 

Store sign, charistic, 
and fraction into 
FPR per Rl and Rl + 1. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit 

fraction only). 
32 bits of 2nd operand are in S and T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. · 

The Halve, HDR, instruction (Diagram 5~209, FEMDM) 
. divides the second operand, (specified by R2 and R2 + 1) 

by 2 and places the normalized quotient into the FPR 
specified by RI and RI + I. To divide by 2, the fraction is 
shifted right one bit position. 

At the start of the execution phase, the sign, character­
istic, and high-order fraction are in S and T. After a 
specification test, the high-order fraction is placed into D 
and the low-order fraction is fetched from LS per R1 + 1 
and gated to T. The sign is saved in STAT C, and the 
characteristic is saved in F. The fraction in DT is then 
shifted right one bit position, and a test determines 
whether the fraction is equal to zero and normalized. If 
the. fraction equals zero, the FPR specified by R1 and Rl 
+ 1 is set to a true zero and the operation terminates with 
an end op. If the fraction contains leading zero's, it is 
normalized by shifting left one hex digit at a time until a 
significant hex digit appears in the high-order position. A 
1 is subtracted from the chai:acteristic for each shift. 

After normalization, the low-order fraction is stored 
µito the FPR specified by Rl + 1. The characteristic and 
high-order fraction are then gated to T from F and D, 
respectively. The result is stored into the FPR specified by 
RI. The sign position is set by forcing the contents of 
ST AT C onfo the LS bus as the fraction and characteristic 
are being stored. 

The characteristic is then tested for a possible expo­
nent underflow. If 110 underflow occurred, the instruction 
is termi1;1ated. If an underflow did occur, the remainder of 
the operation is determined by the state of the underflow 
mask bit. 

MULTIPLY 

• Multiplies 1st operand and 2nd operand and places 
normalized product into 1st operand location. 

• Note: In 2065 flo11:ting-j>oint multiply operations, roles 
of 1st and 2nd operands are reversed from roles 
defined in System/360 Principles of Operation, SRL, 
Form A22-6821-6. That is, 2nd operand is multipli­
cand and 1st operand is multiplier. (Interchanging 
operand roles does not affect product.) Result, how­
ever, still replaces 1st operand. 

• Product· is 64 bits for both short and long operand 
instructions. 

• Characteristics are added and 64 is subtracted to obtai.n 
intermediate characteristic. 

• Operands are prenormaljzed before multiplying. 
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• Product is normalized before storing. 

o Sign of product is determined algebraically. 

Two floating-point numbers are multiplied by adding their 
characteristics and multiplying their fractions. For ex­
ample, if 1250 is to be multiplied by 5, converting these 
numbers to hex notation yields the equation · 

3 1 (.4E216 x 16 ) x (.5 x 16 ). 

The product is obtained, as follows: 

3 .4E216 x 16 

x .516 x 16 1 

Product of fractions - .186A16 x 104""' Exponents are added 

The product (.186A16 x 164) equals 6250 (decimal), 
which is the product of 1250 x 5. . 

When two floating-point numbers are multiplied, the 
characteristics are 'added to yield the final characteristic 
value of the product, as shown above. Because excess-64 
notation is . used, 64 must be subtracted from the 
characteristic sum because the characteristic value is in 
excess-128 [(Cl + 64) + (C2 + 64) =Cl + C2 t 128] after 
characteristic addition. When 64 is subtracted, the result is 
returned to excess-64 notation (Cl+ C2 + 128 --64 =Cl + 
C2 + 64). For instance, in floating-point format, the 
exponents used in the example above yield characteristics 
of 67 (3 + 64) and 65 (1 + 64). The sum of these 
characteristics is 132. Subtracting 64 from 132 leaves 68, 
which is equivalent to an exponent of 4 in excess-64 
notation. 

If one or both operand fractions contain leading zeros, 
the unnormalized operand(s) is prenormalized. That is, 
the operands are norma~ized before multiplication begins. 
Prenormalization increases product precision. By prenor­
malizing the operands, a maximum of one postnormaliza­
tion cycle is necessary. Postnormalization is the process of 
normalizing the product after fraction multiplication. 
Prenormalization and postnormalization are accomplished 
by shifting the fraction left one hex digit and subtracting 
1 from the characteristic value for each left shift until a 
signific~t hex digit appears in the high-order position of 
the fraction. 

The product for both short an~ long operand ~ultiply 
instructions is 64 bits long. Note that, if the fraction is 
not prenormalized, dropping the low-order bits of the 
product in excess of 64 may result in a false zero product 
without prenormalization. This result would occur. often 
in long operandinstructions because 56 low-order bits of 
the product are lost when executing the multiply algo­
rithm. Thus; to prevent a false zero, the product for long 
operand instructions would have to be 120 bits long. A 
false zero is prevented, however, by prenormalizing the 
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operands and postnormalizing the intermediate p~oduct. 
During postnormalization, the intermediate product char­
acteristic is reduced by the number of left shifts. For long 
operands, the low-order bits of the intermediate product 
are dropped before left-shifting. For short operands 
(six-digit fractions)~ the product fraction has the full 14 
hex digits of the long format, and the two low-order hex 
fraction digits are accordingly always zeros. The two 
low-order hex fraction digits are zeros in short operand 
instructions because a maximum of 12 nonzero hex digits 
is possible whim multiplying two six-digit numbers'. In 
multiplication, the number of digits in the product cannot 
exceed the sum of the available operand digits. Therefore, 
because 14 product digits are available_, the two low-order 
hex digits of short operand products are always zeros. 

The sign of the product is determined algebraically; 
that is, if the signs of the operands are alike (both plus or 
both minus), the product is assigned a plus sign; if the 
signs are unlike, the product is made negative. 

Exponent overflow occurs if the final product charac­
teristic exceeds i 27. The operation is terminated, and a 
program interruption occurs. The overflow interruption 
condition does not occur for a partial product .character­
istic exceeding 127 when the final characteristic is 
brought within range through normalization. 

When exponent underflqw occurs, the final product 
characteristic is less· than zero. The sign, characteristic, 
and fraction are ~de zero, and a program interruption 
occurs if the corresponding mask bit is a 1. Underflow is 
not signalled when the characteristic . of an operand 
becomes less than zero during prehormalization, and the 
correct characteristic and fradion value are used in the 
multiplication. 

When all 14 result fra<;tion digits are zero, the product 
sign- and characteristic are made zero, yielding a true zero 
result, exponent underflow is not signalled, and no 
inteuuption is taken. The program interruption for 
significance -is never taken for multiplication. 

Data Flow and Algorithm 

o See Note under "Multiply". 

e Signs are saved in STAT's C and F. 

• Characteristics are added in serial adder; carry is saved 
in STATD. 

e Fraction multiplication is performed by multiply I 
divide logic. 

e E(l2-15) selects two multiplier bits from S. 

e S bits determine multiple value to be added to partial 
product. 

The data paths of the floating-point operands during 
multiplication are shown in Diagram 5-210, FEMDM. The 
characteristic is computed in the serial adder (A of the 



diagram). The signs are saved in STAT C and STAT F. To 
add the characteristics, the first operand characteristic is 
gated to SAA(l-7) from AB per the ABC, and the second 
is gated to SAB(l-7) from ST per. the STC. The 
characteristic sum is routed to F and the characteristic 
carry is saved in STAT D and F(O). 64 is subtracted from 
the characteristic by adding the 2's complement of 64 to 
the sum in F. 

Note: For an RX instruction with a normalized first 
operand, the first operand characteristic and sign are in S 
or T and the second operand characteristic and sign are in 
A. 

Fraction multiplication is performed by the multiply/ 
divide logic (B of Diagram S-210) and is similar to 
fixed-point multiplication (Section 2 of this Chapter) 
except that the operands are shorter. After the signs are 
saved, the characteristic is determined and the operands 
are prenormalized; the multiplicand is in DT, the multi­
plier is in S, and a count, representing the> number of 
repetitive operations necessary to perform the multiplica­
tion, is in E(12-15). Multiplication is performed two bits 
at a time; that is, the multiplicand in DT is multiplied by 
two bits of the multiplier in S using the multiple-selection 
decoder and the parallel adder. The count ill E(12-1S), in 
addition to keeping track of the number of operations, 
determines which multiplier bits are to be used, starting 
with the low-order bits and moving two bits to the left for · 
each multiplication. The result of each two-bit multiplica­
tion is a multiple of the multiplicand which is then added 
to the partial product formed by previous two-bit 
multiplications. Thus, a new partial product is obtained. 
The two-bit multiplications continue until E(l2-1S) 
indicates that all bits of the multiplier have been used. At 
that time, the intermediate product is contained in 
~(4-67). 

The steps of the fraction multiplication are: 
L Place the constant F (hex) into E(l2-1S). 
2. Using the value in E(l2-15), select two multiplier bits 

(Ml and M2) from S. E(12,13) selects the byte and 
E(l4,15) selects the two bits within a byte (see B of 
Diagram S-210). For example, with the original value 
in E(l2-1S), E(l2,13) = 11 selecting the third byte in 
S (bits 24-31), and E(l4,1S) = 11 selecting bits 6 and 
7 within that byte. Thus, the first Ml, M2 values used 
are S(30,31). Table 3-10 shows which S bits are 
selected for all values of E(l2-15). 

3. The value of the Ml, M2 bits, in conjunction with the 
'TX' trigger, gates the correct multiple of the multipli­
cand to the PAA. Considering the M 1, M2 bits as a 
two-bit multiplier, the multiplicand in DT can be 
multiplied by 0 (Ml, M2 = 00), by 1 (Ml, M2 = 01), by 
2 (Ml, M2 = 10), or by 3 (Ml, M2 = 11), as follows: 
a. Ml, M2 = 00 and 'TX' Trigger Is Reset: Because 

zero times the multiplicand is zero, nothing is added 

Table 3-10. Multiplier Bits Selected, Floating-Point Multiply 

E(14, 15) 

00 01 10 11 

E(12,13) M1 M2 M1 M2 M1 M2 M1 M2 

00 0 1 2 3 4 5 6 7 

01 ' 8 9 10 11 12 13 14 15 

10 16 17 18 19 20 21 22 23 

11 24 25 26 27 28 29 30 31 

to the partial product. However, the partial product 
is shifted right two bit positions. 

b. Ml, M2 = 01 and 'TX' Trigger Is Reset: One times 
the multiplicand equals the multiplicand. Thus, the 
multiplicand is added to the partial product, and the 
partial product is shifted right two bit positions. 

c. Ml, M2 = 10 and 'TX' Trigger Is Reset: The 
multiplicand is multiplied by 2 by shifting it left 
one bit position. The result is then added to the 
partial product, and the partial product is shifted 
right two bit positions. 

d. M 1, M 2 = 11 and 'TX' Trigger Is Reset: Because the 
facilities for multiplying the multiplicand by 3 are 
not directly available, an effective multiplication by 
3 is accomplished by multiplying by 4 and subtract­
ing one times the multiplicand (4X - lX = 3X). The 
minus lXoccurs first by adding the 2's cQmplement 
of the multiplicand to the partial product, and 4X 
occurs by adding 1 to the next two multiplier bits. 
The 'TX' trigger is set to remember that an 
additional 1 is required in the next cycle. After 
adding the 2's complement of the multiplicand to. 
the partial product, the partial product is shifted 
right two bit positions. 

e. Ml, M2 = 00 and 'TX' Triggeris Set: One times the 
multiplicand is added to thj:: partial product, which 
is then shifted right two bit positions. 

f. Ml, M2 = 01 and 'TX' Trigger Is Set: Two times 
(left 1 shift) the multiplicand is added to the partial 
product, which is then shifted right two bit posi­
tions. 

g. Ml, M2 = 10 and 'TX' Trigger Is Set: The 2'8 
complement of the multiplicand is added to the 
partial product, and the 'TX' trigger is again set. The 
resulting partial product is shifted ri~t two bit 
positions. 

h. Ml, M2 = 11 and 'TX' Trigger is Set: Zero is added 
to the partial product, and the 'TX' trigger is set. 
The partial product is shifted right two bit posi­
tions. 

Note that in each case the new partial product is 
shifted right two bit positions. Thus, each higher-order 
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multiplicand multiple is displaced two positions to the 
left when added to the partial product. This right 2 
shift is accomplished by shifting the partial product 
right 4 as it enters PAL, and shifting it left 2 when it 
is gated to P AB for addition to the · next multiplicand 
multiple. The two low-order bits [B(66,67)] are 
shifted out, and therefore lost on each cycle. 

Note: Steps 2 and 3 are performed by the 'SEL­
MPL *E3' micro-order and hardware conditions. 

4. Reduce E(l2-15) by 1. 
5. Determine, by the count in E(12-15); whether all bits 

of the multiplier fraction have been used to select . a 
multiplicand multiple. If not, repeat steps 2-4; if they 
have all been used, proceed to step 6. . 

6. After decoding the last S bits, the 'TX' trigger is 
checked. If the 'TX' trigger . is set, one additional 
termination cycle is necessary to obtain the final 
intermediate product. If the 'TX' trigger is reset, no 
extra cycle is necessary. After the· fraction intermediate 
product is obtained, the fraction is normalized (post­
normalization), the characteristic is adjusted, the sign is 
determined, and the final 64-bit product is stored into 
the PPR specified by Rl and Rl + 1 [located in 
E(8-11)]. . 

To illustrate the multiply operation, assume that the 
following fractions are to be multiplied: · 

0.2410 X 0.1510 = 0.036010 or 0.1816 X.F 16 = 0.16816 

The operands in machine language become: 

0 1000000. 0001 1000 0#0 x 0 1000000.1111 0000 0#0 

In hex notation, the example becomes: 

+40.18 X +40.F = +40.168 

Further, assume that a short operand instruction in the 
RR format is to be executed. For this discussion, assume 
that 0.15 (decimal) is the multipUer (first operand) and 
0.24 (decimal) is the multiplicand (second operand). At 
the start of execution, the instruction is in E; the first 
operand is in A, B, and D (this value is not used and is 
subsequently destroyed), and the second operand is in S 
and T. 

The signs are saved, the characteristics are determined, 
and the fractions are prenorrrialized before beginning the 
multiply algorithm. The. value in E(l2-15) is set to 15 
and sequentially reduced . by 1 during the operation. 
Before fraction multiplication begins, the first operand 
fraction is transferred to· S, the second operand is 
transferred to D, and B and T are reset. 
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The first multiple of the multiplicand is determined by 
checking E( 12-15), which initially contains 1111 (bi­
nary). Using Table 3-10 to determine the Ml and M2 bits, 
the first bits selected are 8(30,31). At this time, 8(30,31) 
= 00. Thus, the first partial product placed into AB 
equals zero. The sequential reduction of E(12-15) 
continues until the value equals 0101, at which time the 
partial product in AB equals zero. 

Referring to Table 3-10, when E(12-15) = 0101, 
S(l0,11) is selected. These selected bits determine the 
multiple (Ml, M2) of the multiplicand to be added to the 
partial product in AB. Because S(l0,11) = 11 (binary), 
the 2's complement of DT is gated to PAA. The contents 
of AB are shifted left 2 at this time (AB equals zero) and 
gated to PAB. The output of the parallel adder is shifted 
right 4 to the PAL's. The contents of the PAL's are gated 
to AB, forming a new .partial product. AB( 4-67) now 
contains 1111.11111110 lOOOO#Q. PA(4) is propagated 
into PAL( 4-7) by the 'R-+' micro-order. Because 
S(l0,11) = 11, the 'TX' trigger. is set (Table 3-11). 
Because E(12-15) is decremented after each multiple 
selection, zeros are added to PAA on the ne~t multiple 
selection (0 X DT), as shown in Table 3-11. During this 
select multiple, the contents of AB are shifted left 2 to 
PAB, and the next partial product is shifted right 4 to the 
PAL's and AB(4-67), thus yielding an effective right 2 
shift. The new partial product in AB(4-67) becomes 
1111.1111 1111 1010 0#0. 

. Table 3-11. Value· of Multiple Determined by 
Multiple Selection Bits (Floating-Point) 

Multiple 
Selection DT Register Times 

Bits TX Value Indicated (Add 
M1 M2 Trigger to Partial Product in AB) 

0 0 0 OXDT 

0 1 0 1 X DT 

1 0 0 2X DT 

1 1 0 -1 x DT (2's Complement) 

0 0 1 1 XDT 

0 1 1 2X DT 

1 0 1 -1 x DT (2's Complement) 

1 1 1 OXDT 

*Used on last multiple selection if 'TX' trigger is set. 

Set 
TX 

Trigger 

No 

No 

No 

Yes 

No* 

No 

Yes 

Yes 



At this point, all multiples of the multiplicand have 
been selected. If the 'TX' trigger is not set, the partial 
product in AB becomes the intermediate result. In this 
example, however, the 'TX' trigger was set because the 
multiplier bits equalled 11 and the 'TX' trigger was 
previously set (Table 3-11). Therefore, DT. must be added 
to the partial· product· in AB. The contents of AB are 
shifted left 2 to PAB and added to DT. No right 4 shift 
from the parallel adder to the PAL's occurs at this time. 
The intermediate product is transferred from the PAL's to 
AB(4-67) and DT. The intermediate product is 
.0001 0110 1000 Q#Q (0.16816). In this example, nor­
malization is not necessary. The sign, characteristic, and 
fraction are stored into the FPR specified by Rl and Rl + 
1. An end-op cycle completes the operation. 

If the integers were preceded by zeros in this example, 
prenormalization of the operands would occur before 
executing the multiple algorithm. 

Multiply, MER (3C) - RR Short Operands 

• Multiply 1st operand (in FPR, per Rl) and 2nd 
operand (in FPR, per R2) and place normalized 
product into 1st operand location (in FPR, per Rl and 
Rl + 1). 

• See Note under "Multiply". 

• RRformat: 

0 

3C Rl R2 

11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R 1. 

Fetch sign, charistic, 
and 24-biHraction 
from FPR per R2. 

Add charistics and save signs. · 

Subtract 64 from charlstic. 

Prenormal ize 1st operand 
and adjust charistic. 

Multiply operands. 

Normal.ize fraction and adjust charistic. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per Rl and Rl + 1. 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

The Multiply, MER, instruction (Diagram 5-211, 
FEMDM) multiplies the second operand (specified by RI) 
by the first operand (specified by R2) and places the 
normalized product into the first operand location (per 
RI and Rl + 1). 

The conditions at the beginning of the execution phase 
are: 
1. The first operand is in A, B, and D (24-bit fraction 

only). 
2. The second operand is in S and T. 
3. The STC contains a value of 4. 
4. The instruction is in E. 

The second operand fraction (multiplicand) is trans­
ferred from T to D. The first operand sign is saved in 
STAT F and the second is saved in STAT C. The 
characteristics are added, yielding an excess-128 character­
istic, and the sum is placed into F. SA(O) is saved in S'fAT 
D and placed into F(O). B and T are reset by transferring 
zeros from PAL(32-63) to B and T. The first operand 
(multiplier) is fetched from LS and placed into S to be 
used for the select multiple function. A constant of 15 is 
placed into E(12-15) to be used for selecting the two 
multiple bits from S. The operands are now in position so 
that multiplying may begin. The ROS microprogram 
assumes that both operands are normalized. Howeve·r, the 
operands are tested, via a four-way branch, to determine 
whether prenormalization is necessary. The four-way 
branch tests for the following conditions: 
1. First and second operands are normalized. 
2. First operand is normalized and the second is unnor­

malized. 
3. First operand is unnormalized and the second is 

normalized. 
4. First and second operands are unnormalized. 

Assume that both operands need normalizing. The 
second operand is normalized by left-shifting the fraction 
in DT one hex digit and subtracting 1 from the character­
istic. Left-shifting continues until the second operand 
fraction is normalized.' 

After the fraction of the second operand is normalized, 
the first operand (multiplier) is transferred from S to B. 
The contents ofT (O's for short operands) are saved in the 
LSWR. Normalizatjon is accomplished by left-shifting the 
contents of AB one hex digit and subtracting r from the 
characteristic. (B is reset during the first shift.) Left­
shifting continues until the fraction of the first operand is. 
normalized. On each left-shift, the shifted low-order 
fraction (O's) is stored into the FPR specified by Ri 

2065 FETOM (9/68) 3~91· 



[E(8-ll)]. S is then loaded with the short operand 
multiplier. T is reset, and DT becomes a 56-bit multipli­
cand (second operand). 

Because the characteristic is in excess-128 notation, 64 
is subtracted from F so that the excess-64 rule applies. AB 
is reset, and the multiply algorithm begins. A 'SEL­
MPL *E3' micro-order is executed, and 1 is subtracted 
from E(12-15) for each machine cycle. When E(12-15) 
= 0100, all 12 pairs of multiples have been selected. 
Because the 'TX' trigger may have been set on the 
previous multiple selection, a last multiple selection is 
necessary to add in the multiplicand to obtain the correct 
product. 

Because the operands were normalized before multi­
plying, a maximum of one left-shift is necessary to 
normalize the intermediate product fraction. If A(8-ll) 
= 0, one left shift of the intermediate product fraction is 
necessary. When the left shift occurs, .a 1 is subtracted 
from the characteristic sum. The characteristic of the final 
product is located in SAL(l-7) and F(l-7). The sign is 
determined algebraiciilly, and then the sign, characteristic, 
and 56-bit fraction ai:e stored into the FPR specified by 
RI and Rl + 1. 

If SAL(O) = 1, an exponent overflow or exponent 
underflow condition exists and the product is incorrect. 
Zeros are stored into the first operand location if an 
exponent underflow has occurred. A program interruption 
occurs on all exponent overflows, and on exponent 
underflows if masked on. If SAL(O) = 0, the stored 
product is correct. An end-op cycle completes instruction 
execution. 

Multiply, ME (7C) - RX Short Operands 
• Multiply 1st operand (in FPR, per Rl) and 2nd 

operand (in storage) and place normalized product into 
1st operand location (in FPR, per Rl and RI + 1). 

• See Note under "Multiply". 

• RX format: (See adjoining column.) 
• Conditions at start of execution: 

1st operand is in Sand T. 
Main storage request for· 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 
The Multiply, ME, instruction (Diagram 5-211) multiplies 
the second operand (specified by ·the effective address) by 
the first operand (specified by Rl) and places the 
normalized product into the first operand location (per 
Rl andRl + 1) 

The conditions at the beginning of the execution phase 
are: 
1. The first operand is in S and T. 
2. A main storage request for the second operand has 

been issued per the effective address in D. 
3. The first 16 bits of the instruction are in E. 
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0 

7C Rl X2 B2 02 
11 12 15 16 19 20 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R 1. 

Fetch sign, charistic, 
and 24-bit fraction 
from main storage. 

Add charistics and save signs. 

Subtract 64 from charistic. 

Prenormalize 1st operand 
and adjust charistic. 

Multiply operands. 

Normalize fraction and adjust charistic. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per Rl and Rl + 1. 

31 

The first operand (multiplier) is placed into A, a 
constant of 15 is placed into E(l 2-15), and the STC is set 
to 4. Assume that the first operand is not normalized and 
that the second is normalized. The second operand is 
fetched from main storage (per the effective address in D) 
and placed into ST. If 0(21) = 1, the second operand 
(multiplicand) is in T; conversely, if 0(21) = 0, the second 
operand is in Sand must be placed into T. The sign of the 
first operand is saved in STAT F and the sign of the 
second is saved in ST AT C. The characteristics- are added, 
and the sum is placed into F. SAL(O) is saved in STAT D 
and F(O). The fraction of the second operand is placed 
into D. Band Tare reset, the first operand is placed into 
S, and 15 is placed into E(12-15). A four-way branch 
determines the next operation. From this point; operation 
is similar to that of the MER instruction. 

If the first operand was normalized, the second 
operand (multiplicand) from main storage is placed into 
AB. T and the STC are reset. The transfer of the second 
operand fraction to Dis determined by 0(21). IfD(21) = 
l, the second operand from Bis transferred to A and D. If 
0(21) = 0, the second operand in A is transferred to D. 
Note that the sign of the first operand is saved in STAT C 
and that of the second in STAT F. The characteristics are 
added, and the sum is saved in F. The characteristic carry 
is saved in ST AT D and F(O). 



Because the first operand was initially normalized, the 
ROS microprogram assumes that the second operand is 
also normalized. Therefore, the first partial product is 
computed. If the second operand needs normalizing, 
however, the operands and the constant 15 in E(12-15) 
are restored, and the second operand is normalized before 
multiplying. Once both operands are normalized, the 
operands are multiplied and the results stored. 

Multiply, MOR (2C) - RR Long Operands 

• Multiply 1st operand (in FPR, per R1 and R1+1) and 
2nd operand (in FPR, per R2 and R2 + 1) and place 
normalized product into 1st operand location (in FPR, 
per R1 and R1 + 1). 

• See Note under "Multiply". 

• RRformat: 

2C Rl R2 

11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR er Rl and Rl + 1. 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR er R2 and R2 + 1. 

Add charistics and save signs. 

Subtract 64 from charistic. 

Prenarmalize 1st operand 
and adjust charistic. 

Multiply operands. 

Normalize fraction and adjust charistic. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per Rl and Rl + 1. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit 

fraction only). 
32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

The Multiply, MDR, instruction (Diagram 5-212, 
FEMDM) multiplies the second operand (specified by R2 
and R2 + 1) by the first operand (specified by RI and R1 
+ 1) and places the normalized product into the first 
operand location (per R1 and Rl + 1). 

The conditions at the beginning of the execution phase 
are: 
1. 32 blts of the first operand are in A, B, and D (24-bit 

fraction only). · 
2. 32 bits of the second operand are in S and T. 
3. The STC contains a value of 4. 
4. The instruction is in E. 

The high-order fraction of the second operand (multi­
plicand) is transferred from T to D. The low-order 
fraction of the first operand (multiplier) is placed into S, 
and that of the second operand is placed into T. DT 
contains the multiplicand fraction, and S contains the 
low-order fraction of the multiplier. The signs are saved in 
STAT C and STAT F. The characteristics are added, and 
the sum is placed into F. The characteristic carry is saved 
in STAT D and also placed into F(O). A constant of 15 is 
placed into E(12-15) to be used for selecting the two 
multiple bits located in S. 

The operands are now in position so that multiplying 
may begin. The ROS microprogram assumes that both 
operands are normalized. However, the operands are 
tested, via a four-way branch, to determine whether 
prenormalization is necessary. Assume that the first 
operand is normalized and that the second needs. normal­
izing. The second operand is normalized by left-shifting 
the contents of DT one hex digit and subtracting 1 from 
the characteristic on each shift. Left-shifting continues 
until the fraction is normalized. Because the characteristic 
sum is in excess-128 notation, 64 is subtracted from the 
characteristic in F. AB is reset, and the first multiple is 
selected. The multiples are selected per E(12-15) until 
E(12-15) = 0001, indicating that the multiples must be 
selected from the high-order fraction located in LS. 
Accordingly, the high-order fraction of the first operand 
(multiplier) is fetched from LS per Rl [E(8-11)], and 
placed into S. From this point, the multiply execution is 
the same as that for the MER instruction. 

Multiply, MD (6C) - RX Long Operands 

• Multiply 1st operand (in FPR, per RI and R1 + 1) and 
2nd operand (in storage) and place normalized product 
into 1st operand location (in FPR, per Rl and Rl + 1). 

• See Note under "Multiply". 
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• RXformat: 

6C Rl X2 82 02 

11 12 15 16 19 20 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR er Rl and Rl + 1. 

Fetch sign, charistic, 
and 56-bit fraction from 

Add charistics and save signs. 

Subtract 64 from charistic. 

Prenormal i ze 1st operand 
and adjust charistic. 

Multiply operands. 

Normalize fraction and adjust charistic. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per Rl and Rl + 1. 

• Conditions at start of execution: 
32 bits of 1st operand are in Sand T. 
Low-order fraction of 1st operand is in LS. 

31 

Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

The Multiply, MD, instruction (Diagram 5-212) multiplies 
the second operand (in storage) by the first operand 
(specified by R1 and R1 + 1) and places the normalized 
product into the first operand location (per RI and R1 + 
I). 

The conditions at the beginning of the execution phase 
are: 
1. 32 bits of the first operand are in S and T. 
2. The low-order fraction of the first operand is in LS. 
3. A main storage request for the second operand has 

been issued per the effective address in D. 
4. The first 16 bits of the instruction are in E. 

The first operand (multiplier) sign, characteristic, and 
high-order fraction are transferred from T to A. The 
low-order fraction of the first operand is fetched from LS 
and placed into S. If the first operand is not normalized, 
the STC is reset, the low-order fraction is transferred from 
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S to B, the second operand (multiplicand) is fetched from 
main storage and placed into ST and D (high-order 
fraction in D), the characteristics are added, and the signs 
are saved (first operand sign in STAT F and second in 
STATC). . 

The low-order fraction of the first operand is again 
placed into S, and a constant of 15 is placed into 
E(l2-15). The four-way branch determines the next 
operation. The remainder of the operation is identical to 
that of the MDR instruction. 

If the first operand was normalized, the second 
operand is fetched from main storage and placed into AB. 
The second operand fraction (multiplicand) is transferred 
from AB to DT. The sign of the first operand is saved in 
STAT C and that of the second in STAT F. The 
characteristics of the first and second operands are added; 
the result is placed into F, and the characteristic carry is 
saved in STAT D. [The carry is also transferred to F(O).] 
Because the first operand is normalized, the ROS micro­
program assumes that the second operand is also nor­
malized; therefore, the first multiple is selected. If the 
second operand needs to be normalized, the initial 
conditions are restored and the ROS microprogram 
proceeds with the normalization of the second operand. 

DIVIDE 

• Divides 1st operand (dividend) by 2nd operand ( divi­
sor) and places nor.malized quotient into 1st operand 
location. 

• Characteristics are subtracted, and 64 is added to the 
characteristic difference. 

• Operands are prenormalized before dividing. 

• Quotient is 32 bits for short operands, 64 bits for long 
operands. 

• Quotient is normalized. 

• Sign of quotient is determined algebraically. 

• No remainder is retained. 

The Divide instruction divides the first operand (dividend) 
by the second operand (divisor) and places the normalized 
quotient into the first operand location. In short operand 
instructions, the low-order halves of the FPR's are ignored 
and remain unchanged. 

A floating-point division consists of a characteristic 
subtraction and a fraction division. The difference be­
tween the dividend and divisor characteristics, plus 64, is 
used as an intermediate quotient characteristic·. 

The quotient fraction is normalized by prenormalizing 
the operands. Postnormalizing the intermediate quotient 
is never necessary, but a right-shift of one hex digit may 
be necessary if the normalized dividend fraction is larger 



than the normalized divisor fraction. The intermediate 
quotient characteristic is adjusted for the shifts. Low­
order digits of the quotient fraction are removed to obtain 
the desired number of digits. 

The sign of the quotient is determined algebraically. 
That is, if the signs of the operands are alike, a plus sign is 
assigned to the quotient; if the signs are unlike, a minus 
sign is set into the quotient. 

A program interruption for exponent overflow occurs 
when the final quotient characteristic exceeds 127; the 
operation is terminated. 

A program interruption for exponent underflow occurs 
when the final quotient characteristic is less than zero and 
the corresponding mask bit is a 1. Underflow is not 
signalled for the intermediate quotient or for the operand 
characteristics during prenormalization. 

If division by a divisor with a zero fraction is 
attempted, the divide operation is suppressed. The divi­
dend remains unchanged, and a program interruption for 
floating-point divide occurs. When the dividend fraction is 
zero, the quotient fraction will be zero. The quotient sign 
and characteristic are made zero, yielding a true zero 
result without taking the program interruption for expo­
nent underflow or exponent overflow. The program 
interruption for significance is never taken for division. 
The CC remains unchanged. 

Characteristic Computation 

After the first and second operands are fetched and placed 
into the proper registers, the characteristics are sub­
tracted. Because the complement gates to the serial adder 
are on the SAA bus, the first operand characteristic (Cl) 
is subtracted from the second operand characteristic (C2). 
Therefore, the characteristic computations differ from 
what might be expected. (Normally, Cl - C2 would be 
expected.) 

The CPU takes the following steps in computing the 
quotient characteristic: 
1. Subtracts C 1 from C2 (dividend characteristic from 

divisor characteristic). 
2. Subtracts 64 from the characteristic difference. 
3. Normalizes the first operand and adds a 1 to the 

intermediate characteristic for each digit position that 
the fraction is shifted. 

4. Normalizes the second operand and subtracts a 1 froni 
the intermediate characteristic for each digit position 
that the fraction is shifted. 

5. Takes the 2's complement of the intermediate charac­
teristic. 

6. Checks for a divisor fraction greater than a dividend 
fraction. If. the dividend is the larger number, right­
shifts the dividend one hex digit and adds 1 to the 
characteristic. 

7. Saves the final characteristic. 
8. Checks the final characteristic for exponent overflow 

or exponent underflow. 

As an example of this computation, assume that two 
hex numbers are to be divided, .004 by .02: 

1st operand dividend± .004 x 165 = ± .2 x 163 = ± 3.2 
2nd operand divisor .02 x 152 I I.Fraction 

4charac· 
teristic 

Convert the above characteristics to excess 64 notation: 

~------C1 

69.004 
66.02 
~------C2 

Convert the above characteristics to binary form: 

1000101.004 = 69.004 = ± 67.2 or .2 x 163 
1000010.02 66.02 

after 64 is sub­
tracted from the 
characteristic. 

Step 1. The machine subtracts the characteristics (C2 -
Cl): 

1000010 C2 

011101 ~ } 2's complement of C1 

1111101 
.004 

1111101.02 

Step 2. 64 is 'Subtracted from the characteristic to main­
tain excess-64 notation: 

1111101 

011111 ~ } 2's complement of 64 

0111101 
.004 

0111101.02 

Step 3. Note that the first operand hex fraction requires 
two left-shifts to prenormalize. Shift left 2 and 
add 2 to the characteristic: 

0111101 
0000010 
0111111 

.4 
0111111.02 

Step 4. The second operand hex fraction requires one 
left-shift. Shift left 1 and subtract 1 from the 
characteristic: 

0111111 
11111101 l f 2's con;iplement of 1 

0111110 
.4 

0111110.2 

Step 5. take the 2's complement of the characteristic: 

1 00000~ } 2's complement of 0111110 

1000010 
1000010.4 

.2 

2065 FETOM (9/68) 3-95 



Step 6. Because the dividend fraction is greater than the 
divisor fraction, the dividend is shifted right 1 and 
1 is added to the characteristic before dividing 
fractions: 

1000010 
0000001 
1000011 = 67 =final characteristic 

1000011.04 
.2 

Step 7. Save 67, which is the final characteristic. 
Step 8. Divide fractions and store quotient: 

1000011.04 
.2 =± 67.2 

11 ..... ___ Result fraction 
'-·----Result characteristic 

Subtracting the first operand characteristic from the 
second effectively makes the characteristic difference part 
of the divisor (dividend/divisor); to add to the character­
istic, therefore, the value must be subtracted. For ex­
ample, excess-64 notion is used in the CPU. Subtracting 
(Cl + 64 from C2 + 64) equals C2 - Cl + O; therefore, 64 
must be added to the characteristic difference to maintain 
excess-64 notation. Because the C2 minus Cl difference is 
2's-complemented later . in the operation, 64 must be 
subtracted (2's complement and add) from the character­
istic that is part of the divisor. The characteristic must be 
part of the dividend to obtain the final quotient character­
istic. 

The intermediate characteristic is 2's-complemented to 
obtain the correct characteristic of the quotient because 
the initial characteristic subtraction places the inter­
mediate characteristic in the divisor. The intermediate 
characteristic is not considered to be in the 2's comple­
ment form. 

Normalization 

In the divide operation, both fractions must be normal­
ized before dividing the fractions. Also, the divisor must 
be larger than the dividend. If the divisor is less than the 
dividend, the dividend is divided by 16 by right-shifting 
the dividend four binary bit positions. Prenormalization 
and making the divisor larger than the dividend make 
postnormalization unnecessary. 

Fraction Division 

• Is performed as follows: 
1. Gate dividend to adder, shifted left 2; gate divisor to 

adder, shifted left 1. 
2. Add; result is partial dividend. 
3. Develop quotient bit: if partial dividend is in true 

form, place a 1 into quotient; if partial dividend is 
in 2's complement form, place a 0 into quotient. 
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4. Gate partial dividend and divisor to adder (no shift). 
If partial dividend is in true form, gate divisor in 2's 
complement form; if partial dividend is in 2's 
complement form, gate divisor in true form. 

5. Perform steps 2 and 3. 
6. Perform steps 1-5. 
7. Continue until count signals end of algorithm. 

The basic algorithm for the floating-point fraction divide 
operation is similar to the algorithm used in fixed-point 
divide. The characteristics of the two operands are 
subtracted, and 64 is added to maintain excess-64 
notation. The divisor fraction is subtracted from the 
dividend fraction. A carry indicates that the dividend is 
greater than the divisor. The dividend must be less than 
the divisor; if not, a right 4 shift of the dividend is 
required. Division is accomplished by successive subtrac­
tions and storing of quotient bits as determined by the 
carry. Successive subtractions are performed, and the 
divisor i~, in effect, shifted right one position with respect 
to the dividend for each subtraction (actually, the 
dividend is shifted left as explained below). 

In binary arithmetic, to divide one number (dividend) 
by another (divisor), the dividend is repeatedly reduced 
by subtracting the divisor. The number of times this 
reduction can be done is the soluiion (quotient). There 
are two methods of performing binary division: restore 
and nonrestore (Figure 3-11). 

In restore division, the · result of a reduction of the 
dividend by the divisor is retained only if the result is the 
true difference (as opposed to a 2's complement differ­
ence); a carry indicates that the result is in true form. This 
result, called the partial dividend, is used in the next 
reduction. However, if the result is the 2's complement of 
the difference (no carry), the result is discarded and the 
old .Partial dividend is doubled in relation to the divisor to 
participate in the next reduction. A 1 is inserted into the 
quotient when.the result is true (carry), and a 0 is inserted 
when the result is in 2's complement form (no carry). 

In the nonrestoring method of division, the result of a 
reduction is retained as the new partial dividend whether 
it is in true or 2's complement form. When a partial 
dividend is in true form, the 2's complement of the divisor 
is added to it; when the partial dividend is in 2's 
complement form, the true divisor is added to it. In each 
reduction, the partial dividend is shifted left one bit in 
relation to the divisor; also, a 1 is inserted into the 
quotient when the result is true (carry) and a 0 is inserted 
into the quotient when the result is in 2's complement 
form (no carry). 

Shifting the dividend left one position doubles its value 
and is equivalent to halving the divisor. Similarly; shifting 
the dividend left two positions quadruples it and is 
equivalent to reducing the divisor to ~ of its value. Note 



Problem: 45 .;. 7 = 6 3/7 

Dividend: 0 0 1 0 1 1 0 1 = (2 x 16) + (13 x 1) = 45 
Divisor: 0 1 1 1 = ( 7 x 1) = 7 
Quotient: 0 1 J. 0 = ( 6 x 1) = 6 
Remainder: 0 0 1 1 = ( 3 x 1) = 3 

A. Restore 

2's Complement Divisor: 

2's Complement Result (Discarded): 

True Partial Dividend: 
2's Complement Divisor: 
2's Complement Result (Discarded): 

True Partial Dividend: 
2's Complement Divisor: 
True Result: 

True Partial Dividend: 
2's Complement Divisor: 

True Result: 

True Partial Dividend (Remainder): 
2's Complement Di visor: 
2's Complement Result (Discarded): 

B. Non-Restore 

2's Complement Divisor: 
2's Complement Result: 

2's Complement Partial Dividend: 
True Divisor: 
2's Complement Result: 

2's Complement Partial Dividend: 

True Divisor: 
True Result: 

True Partial Dividend: 
2's Complement Divisor: 
True Result: 

True Partial Dividend (Remainder): 
2's Complement Divisor: 
2's Complement Result: 

2's Complement Partial Dividend (Remainder-Divisor): 

True Divisor: 
True Result (Remainder): 

Figure 3-11. Restore and Non-Restore Division 

0 0 1 1 0 
0111100101101 

l..Q_Q_! 
n/c 1 0 1 1 

0 101 
1 0 0 1 

n/c lTiO 

101 1 
1 0 0 1 

c ,0 1 0 0 

1000 
1001 

c (OffOT 
0 0 1 1 
1 0 0 1 

n/c TiOO 

0 0 1 1 0 
o 1 1 1 lo o 1 o 1 1 o 1 

1 0 0 1 
n/c TOTl 

0 1 1 1 
0 1 1 1 

n/c 1'""110 

1 101 
0 1 1 1 

c{OlOo 
1 0 0 0 
1 0 0 1 

c (OffOT 
0 0 1 1 
100 1 

n/c TTOO 

1 100 
0 1 1 1 

c +OOli 

n/c = no carry 
c =carry 

1st Reduction 

2nd Reduction 

3rd Reduction 

4th Reduction 

5th Reduction 

1st Reduction 

2nd Reduction 

3rd Reduction 

4th Reduction 

5th Reduction 

Correction Cycle 

the similarity between the restore and nonrestore methods 
of division (the first successful reduction of the dividend 
is made by one-quarter of the divisor): 

the divisor right. The development of the quotient and the 
left-shifting of the dividend is performed as follows: 

(Restore) Dividend minus lJi Divisor, is equivalent to 
(Non-Restore) Dividend minus Divisor+ 72 Divisor+ lJi 
Divisor. 

In the 2065, the nonrestoring method of division is 
used, and the dividend is shifted left rather than shifting 

1. The dividend is gated to the adder shifted left 2. The 
divisor is gated to the adder shifted left 1, thus yielding 
an equivalent right 1 displacement with respect to the 
dividend. (The divisor may be in true or 2's comple­
ment form, depending on the partial dividend.) 

2. The two numbers are added, and the result (partial 
dividend) is placed back into the dividend register. 
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3. A quotient bit is developed from the partial dividend 
obtained in step 2. If the partial dividend is in true 
form, a high-order carry occurred and the high-order 
bit is a O; a 1 is therefore placed into the quotient. 
Conversely, if the partial dividend is in 2's complement 
form, a high-order carry did not occur and the 
high-order bit is a 1 ; a 0 is therefore placed into the 
quotient. 

4. The partial dividend and the divisor are gated to the 
adder. Because the partial dividend was shifted left 2 in 
step 1, the correct displacement between them exists, 
and they are not shifted now. If the partial dividend 
obtained in step 2 is in true form, the divisor is gated in 
2's complement form; if the partial dividend is in 2's 
complement form, the divisor is gated in true form. 

· 5. Steps 2 and 3 are repeated. 
6. Steps 1 through 5 are repeated. 

The operation continues developing quotient bits, 
developing new partial dividends, gating the partial divi-

Problem: .12410 + .410 = .3110 

Dividend= . lFB 
Divisor = .666 
Quotient= .4F5 

0 1 0 0 1 l 
0 l l 0 0 l l 0 o l 1 o I 0 0 0 1 1 l 1 1 l 0 1 l 

l 0 0 1 1 0 0 l l 0 0 l 
l 

rn/c 
1 0 1 1 100 1 0 l 0 1 

l 0 l 1 l 0 0 l 0 1 0 1 
True 0 1 1 0 0 l 1 0 0 1 l 0 
n/c 1 1 0 l l 0 0 1 0 000 

l 0 l l 0 0 l 0 000 

True 0 1 1 0 0 1 l 0 0 1 l 0 
c-0001 l 0 0 0 0 1 l 0 

00 01100001 1 0 
2's Complement ! l 0 0 l l 0 0 l 1 0 0 1 

l 
n/c 1001 0100 l 1 0 

1001 0100 l 1 0 
True 0 l 1 0 0 l 1 0 0 l l 0 

n/c l l l l 1 0 l l 0 0 l 0 

1 l l l 1 0 l l 0 0 1 0 
True 0 l l 0 0 l l 0 0 l l 0 
c--o l 0 l l 1 0 0 0 l 1 0 

0 1 0 1 l l 0 0 0 l 1 0 

2's Complement [ 1 0 0 1 100 1 l 0 0 1 
l 

c 0 l 0 l 0 0 l 0 0 l 1 0 

! 
And So On 

Figure 3-12. Fraction Divide Example 
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dend to the adder (shifted left 2 every other time), and 
gating the divisor to the adder in true or 2's complement 
form (shifted left 1 every other time) until a count, which 
is reduced every time the partial dividend is shifted, 
signals the end of the algorithm. 

Figure 3-12 is an example of the divide operation as it 
is performed in the 2065 CPU. Note that the first 
subtraction does not result in a quotient bit but is used to 
decide whether the divisor is to be true- or 2's comple­
ment-added on the next cycle. 

Data Flow and Algorithm 

• Signs are saved in ST A T's C and F. 

• Characteristic computation is performed in serial 
adder. 

• Characteristic difference is saved in F. 

• 'DVD LO' and 'DVDLl' micro-orders are unique to 
divide algorithm. 

I 2's Complement of Divisor 

Dividend (L2) 
Divisor (L l) 
Partial Dividend 

Dividend (LO) 
Divisor (LO) 
Partial Dividend 

Dividend (L2) 
Divisor (Ll) 

Partial Dividend 

Dividend (LO) 
Divisor (LO) 
Partial Dividend 

Dividend (L2) 
Di visor (L l) 
Partial Dividend 

Dividend (LO) 
Divisor (LO) 

Partial Dividend 



• Fraction division uses parallel adder. 

• Divisor is in DT; dividend is in AB; quotient is 
developed in S. 

The first operation that occurs is the computation of the 
final characteristic (For an example, see "Characteristic 
Computation"). The data paths for the signs and charac­
teristics are shown in A of Diagram 5-213, FEMDM. The 
signs are saved in ST AT C and ST AT F. The first and 
second operand characteristics are gated to the SAA and 
SAB per the ABC and STC, respectively. To subtract the 
characteristics, the 2's complement of the first operand 
characteristic is added to the second operand character­
istic. The characteristic difference is stored into F(O-7), 
and the characteristic carry [SA(O)] is saved in STAT D. 
Other inputs to the SAB bus allow subtracting 64, 
subtracting 1, gating the 2's complement of F, or adding 1 
to the value in F. After the final characteristic is 
computed, the result is stored into S(0-7) per the STC. 

The data path for the derivation of the divide multiple 
is shown in B of Diagram 5-213. When the divide 
algorithm begins, the divisor (first operand) is in DT and 
the dividend is in AB. 

Two micro-orders ('DVDLO' and 'DVDLl ') are used 
specifically during the divide algorithm. These micro­
orders have three functions: (1) to gate the true or 2's 
complement of DT (divisor) to the PAA; (2) to determine 
the amount of shift (LO = no shift, L1 = left 1 shift) of 
the divisor (contents of DT) to the PAA; and (3) to 
determine the partial quotient (PQ) bit and the PQ bit 
location after the subtraction of the divisor and the partial 
dividend has taken place. 

Whether the true or 2's complement form of the 
divisor is sent to the PAA is determined by the PA( 4) 
carry from the previous algebraic subtraction of the 
divisor and partial dividend, and the amount of shift (LO 
or Ll) as determined by the 'DVDLO' or the 'DVDLl' 
micro-order. If a PA(4) carry occurred, the 2's comple­
ment is gated (LO or L1) to the parallel adder. If a PA( 4) 
carry did not occur, DT is gated (LO or Ll) in true form 
to the parallel adder. The data in AB is gated to PAB with 
no shift or a left 2 shift under micro-order control ('AB' 
and 'ABL2'). 

As previously noted, the 'DVDLO' and the 'DVDLl' 
micro-orders determine the PQ bit and the location of the 
bit. The PQ bit is determined by testing AB( 4) for a 0 or a 
1. If AB(4) = 1, the partial dividend is in 2's complement 
form and a 0 is placed into the selected PQ SAL location. 
If AB( 4) = 0, the partial dividend is in true form, and a 1 
is placed into the selected PQ SAL location. 

As shown in B of Diagram 5-213, the PQ location in 
SAL is determined by E(l4,15) and by the 'DVDLO' or 
'DVDLl' micro-order. E(l4,15) selects the pair of SAL 
bits into which the PQ bit is to be placed. The 'DVDLO' 
micro-order selects the odd bit of the selected pair; the 

'DVDLl' micro-order selects the even bit. At the same 
time that the PQ bit is gated into SAL, the contents of F 
are added to the PQ bit and saved in F. After a PQ byte 
(eight bits) is available, the contents of F(O-7) are gated 
to S per the STC. After S is filled with the quotient (or 
PQ), the contents of S are stored into LS per E(8-11). 

For a discussion of the divide algorithm, assume that 
the final characteristic is in S(O-7) and that the normal­
ized fractions are in DT (divisor) and AB (dividend). By 
definition, the CPU requires that floating-point numbers 
consist of a sign, a characteristic, and a fraction. Because 
no provisions are made in the CPU to handle integers in 
floating-point instructions, the divisor must be larger than 
the dividend to retain a fraction quotient. After both 
fractions are normalized, therefore, the contents of DT 
are subtracted from the contents of AB. A carry from 
PA( 4) indicates that the dividend is larger than the divisor. 
Whenever the dividend is larger than the divisor, the 
contents of AB must be restored and shifted right 4 
(divided by 16) before proceeding with the divide 
algorithm, and a 1 must be added to the characteristic. If 
no carry occurred from PA(4), the dividend is less than 
the divisor, and the CPU proceeds with the divide 
algorithm. 

When the divisor ( d) is subtracted from the dividend 
(D), the difference is placed into AB (D - d in AB). If a 
right 4 shift was necessary, the divisor ( d) is restored and 
divided by 16 (d in DT). AB now contains the dividend 
(D). At the beginning of the divide algorithm, the 2's 
complement of DT is shifted left 1 and added to the 
contents of AB shifted left 2; the result is placed into AB, 
thus yielding an effective left 1 shift of AB (dividend). 
The contents of AB may be expressed by the equation 4D 
- 2d = contents of AB. The value 4D - 2d is in AB after the 
first machine cycle. of the divide algorithm. 

If the dividend was less than the divisor, D - d is in AB. 
The CPU proceeds to add the contents of DT shifted left 
1 to the contents of AB shifted left 2, with the result 
placed into AB. This addition results in the equation 4(D -
d) + 2d = contents of AB. Simplifying the equation yields 
4D - 4d + 2d = 4D - 2d. At the end of the first cycle of the 
divide algorithm, the same result (4D - 2d) is obtained as 
when the dividend was larger than the divisor. The CPU 
continues with the divide algorithm. 

During the first machine cycle of the divide algorithm, 
the 'DVDLO' micro-order also selects the DT gating to the 
parallel adder per the PA(4) carry. The subtraction 
resulting from the 'DVDLO' micro-order is accomplished 
during the next machine cycle. The PQ bit, however, is 
determined by the A( 4) value that was computed during 
the previous machine cycle. On the first cycle of the 
divide algorithm, ·the contents of AB (dividend) are 
shifted left 2 by a micro-order and added to the contents 
of DT (divisor) shifted left 1 per a micro-order. Thus the 
divisor is shifted right 1 with respect to the dividend, but 
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the resulting.partial dividend is displaced left 2 in AB. On 
the next divide select multiple subtraction, the dividend 
and the divisor are subtracted without shifting, yielding 
the correct right 1 displacement. The following cycle 
causes AB and DT to shift again. Note that, as the 
dividend is shifted left, the low-order bit positions of AB 
are filled with O's. 

As previously noted, the PQ bit is gated to SAL per 
E(14,15) and the 'DVDLO' or 'DVDLl' micro-order. A 1 
is added to the ABC after each pair of PQ bits is gated to 
F via SAL. When the ABC equals 3, F contains eight PQ 
bits (one per byte). The PQ byte is gated to S per the 
STC. 

After each byte is gated to S, a 1 is added to the STC. 
When the STC equals 3, S contains the characteristic and 
fraction (or high-order fraction). The contents of S are 
stored into the LSWR. 

Before initiating the divide algorithm, STAT D was 
reset to indicate the first pass at loading PQ bytes into S. 
After the sign, characteristic, and high-order fraction are 
stored into the LSWR, the instruction and STAT D 
determine the next operation. If a short operand instruc­
tion is being executed, the sign is inserted and stored with 
the characteristic and fraction into the FPR per E(8-11). 
An end-op cycle completes instruction execution. 

If the instruction was a long operand instruction, the 
sign, characteristic, and high-order fraction are stored into 
the FPR per E(8-11). STAT D is set, and the divide 
algorithm continues. The contents of the LSWR are 
returned to T. The .same operations as described above are 
performed to obtain the remaining low-order fraction part 
of the quotient, and the same three-way branch is 
encountered. This time the divide algorithm is completed, 
and the low-order fraction is stored into the FPR per 
E(8-11) + 1. An end-op cycle completes instruction 
execution. The remainder in AB is not stored. 

Divide, DER (3D) - RR Short Operands 

• Divide 1st operand (in FPR, per RI) by 2nd operand 
(in FPR, per R2) and place normalized quotient into 
1st operand location. 

• RR format: (See adjoining column;) 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

The Divide, DER, instruction (Diagram 5-214, FEMDM) 
divides the first operand (specified by Rl) by the second 
operand (specified by R2) and places the normalized 
quotient into the first operand location. No remainder is 
retained. 
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0 

3D R1 R2 

7 8 11 12 15 

Fetch sign, charistic, 
·and 24-bit fraction 
from FPR per R 1. 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Subtract 1st operand charistic 
from 2nd operand charistic. 

Add 64 to charistic difference. 

Prenormalize 2.nd operand 
and adjust charistic. 

Prenormalize 1st operand 
and adjust charistic. 

Shift 1st operand fraction right 
4 bit positions if greater than 2nd 
operand fraction; adjust charistic. 

Divide fractions. 

Determine sign. 

Store sign, charistic, and 
fraction into FPR per R 1. 

The conditions at the beginning of the execution phase 
are: 
1. The first operand is in A, B, and D (24-bit fraction 

only). 
2. The second operand is in Sand T. 
3. The STC contains a value of 4. 
4. The instruction is in E. 

If no specification check occurred, the second operand 
fraction is transferred from T to D. The characteristics are 
subtracted, and 64 is algebraically added to the character­
istic difference to maintain excess 64-notation. The sign 
of the first operand is saved in ST AT F and the sign of the 
second operand is saved in STAT C. Band Tare reset, and 
the contents of AB an!;! ST are treated as 56-bit fractions. 

In the divide instructions, both operands are prenor­
malized before the divide algorithm begins. A four-way 
branch determines the prenormalization path by testing 
A(8-ll), the dividend, and PAl..(40-43), the divisor, for 
the normalized conditions: 
1. The first and second operands are normalized. 



2. The first operand is normalized, and the second is 
unnormalized. 

3. The first operand is unnormalized, and the second is 
normalized. 

4. The first and second operands are unnormalized. 

Assume that both operands are unnormalized. The 
second operand (divisor in DT) is shifted left 4 until the 
operand is normalized. A 1 is subtracted from the 
intermediate quotient characteristic for, each shift. 

After the second operand is normalized, the first 
operand is normalized by left-shifting until the fraction 
contains a hex digit [A(8-11) not equal to zero]. On 
each left-shift, a 1 is added to the intermediate quotient 
characteristic in F. 

After the operands are normalized, the second operand 
fraction (divisor) is subtracted (take 2's complement of 
second operand and add) from the first operand fraction. 
Before branching on the PAI.(4) carry, the 2's comple­
ment of the intermediate characteristic is compttted and 
placed into F. Also, the constant 5 ·is placed into 
E(12-15) for controlling the divide algorithm. A carry 
from PAI.( 4) indicates that the dividend is larger than the 
divisor. If the dividend is larger than the divisor, the 
dividend is restored and is divided by 16 by a right-shift of 
one hex digit. A 1 is added to the characteristic value, 
which is the fmal characteristic of the quotient. The fmal 
characteristic is placed into S(O-7). 

No carry from PAI.(4) indicates that the dividend is 
less than the divisor, at which time the first machine cycle 
of the divide algorithm is executed. A test is made to 

· determine an overflow or underflow condition. Assume 
that no overflow or underflow condition exists. 

Fraction division begins· as shown in Sheet 4 of 
Diagram 5-214. Figure 3-13 is an example of the action 
that occurs in parallel adder bits 4-11(bits12-31 being 
considered to equal O's). 

During the normalization routine, tests for zero frac­
tions are made. If the second operand fraction (divisor) 
equals zero, the divide operation is suppressed and a 
floating-point divide program interruption occurs~ If the 
first operand fraction (dividend) equals zero, a true zero 
quotient results. A true zero is stored into the first 
operand location, and an end-op cycle completes instruc­
tion execution. 

Divide, DE (7D) - RX Short Operands 

• Divide 1st operand (in FPR, per Rl) by 2rid operand 
(in storage) and place normalized quotient into 1st 
operand location. 

• RX format: 

70 RI X2 B2 02 

11 12 15 16 19 20 

Fetch sign, charistic, 
and 24-bi t fraction 
from FPR per R1. 

Fetch sign, charistic, 
and 24-bit fraction 
from main storage. 

Subtract 1st operand charistic 
from 2nd operand charistic. 

Add ~4 to charistic difference. 

Prenormalize 2nd operand 
and ad'ust charistic. 

Prenormali ze 1st operand 
and adjust charistic. 

Shift 1st operand fraction right 
4 bit positions if greater than 2nd 
operand fraction; adjust charistic. 

Divide fractions. 

Determine sign. 

Store sign, charistic, and 
fraction into FPR er R 1. 

• Conditions at start of execution: 
1st operand is in S and T. 

31 

Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

The Divide, DE, instruction (Diagram 5-214) divides the 
first operand (specified by Rl) by the second operand 
(from main storage) and places the normalized quotient 
into the first operand location. No remainder is retained. 

The conditions at the beginning of the execution phase 
are: 
1. The first operand is in S and T. 
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AB OT 
,---A-,~ 
.0010...-0 + .0100 - 0 

. 1100- 0 = 2's complement of DT 

Parallel Adder Bit Positions 

AB 

4 5 6 

0 0 0 

7 8 9 10 11 

0 0 0 0 AB - DT No PA(4) carry indicates 
Add to AB the 2's complement of DT 1 1 1 0 0 AB I ess than DT. Therefore, no 

DVDLl 

R4 shift is required. 
No PA(4) carry 1 0 C(AB) 

DVDLO; Quotient bit 
not saved in SAL(l) Shift AB L2 1 1 1 1 1 O O O AB (L2) + DT (Ll) Select 1st 

Shift DT Ll and add to AB _o_o_o_o __ l_O_O_O_ divide multiple 
(DVDLOJ----, 

PA(4) carryl .... _f_o_o_o __ o_o_o_o _ ___,C(AB)r----------------' 

l AB - OT Select 2nd divide 
multiple (DVDLl) --~ 

AB 0 0 0 0 0 0 0 0 
Add to AB the 2's complement of DT 1 1 1 1 1 1 0 0 DVDLO 

No PA(4) carry l 1 1 1 O O C(AB) 

.-----'---+--I -1 ·.-----------' 
DVDLO Shift AB L2 1 1 1 1 0 0 0 0 AB (L2) +OT (Ll) Select 3rd 

0 

Shift DT L1 and add to AB _o_o_o_o __ l _o_o_o_ DVDLl divide multiple 

No PA(4) carry] 1 0 0 0 C(AB) (DVDLO)---~ 

.-----~'---4-T--~l ....--------' 

DVDLl AB 1 1 1 1 1 0 0 0 ... AB+ OT Select 4th divide 
Add DT to AB 0 0 0 0 0 1 0 0 DVDLO multiple (DVDL 1) 

DVD LO 

0 0 

---------
No PA(4) carry 0 0 C(AB) 

Shift AB L2 1 1 1 1 0 0 0 0 
Shift DT L 1 and add to AB 0 0 0 0 1 0 0 0 DVDL 1 AB (L2) + DT (L 1) Select 5th 

I 
DVDLl 

--------- divide multiple~ 
No PA(4) carr1...._-fJ--1 _____ 0_0_0_----.C(AB.-) ________ (o_v_D_Lo_J ___ __j _ _, 

+ + Notes: 
Next Cycle 

1 . C (AB) = Contents of AB. 

--

2. Quotient bit is determined by AB(4). 
To SAL(0-3) SAL(4) 

Figure 3-13. Floating-Point Divide Example 

2. A main storage request for the second operand has 
been issued per the effective address in D. 

3. The first 16 bits of the instruction are in E. 

The first operand is transferred from T to A, and the 
STC is set to 4. The second operand is fetched from main 
storage per D. D(21) determines which 32 bits of the 
64-bit doubleword are gated to T (Sheet 2 of Diagram 
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3. Divide multiple is selected per 

PA(4) carry. 

5-214). From this point, instruction execution is the same 
as that of the DER instruction. 

Divide, DOR (20) - RR Long Operands 

• Divide 1st operand (in FPR, per Rl and Rl + 1) by 
2nd operand (in FPR, per R2 and R2 + 1) and place 
normalized quotient into 1st operand location. 



• RRformat: 

2D R1 R2 

0 II 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R1 and R1 + 1. 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1. 

Subtract 1st operand charistic 
from 2nd operand charistic. 

Add 64 to charistic difference. 

Pre normalize 2nd operand 
and adjust charistic. 

Prenormalize 1st operand 
and adjust charistic. 

Shift 1st operand fraction right 
4 bit positions if greater than 2nd 
operand fraction; adjust chari stic. 

Divide fractions. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per R1 and R1 + 1. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit 

fraction only). 
32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

The Divide, DDR, instruction (Diagram 5-215, FEMDM) 
divides the first operand (specified by Rl and Rl + 1) by 
the second operand (specified by R2 and R2 + 1) and 
places the normalized quotient into the first operand 
location. No remainder is retained. 

The conditions. at the beginning of the execution phase 
are: 
1. 32 bits of the first operand are in A, B, and D (24-bit 

fraction only). 
2. 32 bits of the second operand are in Sand T. 
3. The STC contains a value of 4. 
4. The instruction is in E. 

If no specification check occurred, the high-order 
fraction of the divisor is gated from T to D. The low-order 
fractions of the first and second operands are placed into 
B and T, respectively. As a result, the dividend fraction is 
in AB and the divisor fraction is in DT. 

The signs are saved in ST AT C and STAT F. The 
characteristics are subtracted, and excess-64 notation is 
maintained. The ABC is reset. 

The four-way branch (Sheet 3 of Diagram 5-215) -
determines the next operation. The normalization routine, 
divide algorithm, and end ops are explained in the DER 
instruction discussion. 

Divide, DD (6D) - RX Long Operands 

• Divide 1st operand (in FPR, per Rl and Rl + 1) by 
2nd operand (in storage) and place normalized quo­
tient into 1st operand location. 

• RX format: 

6D R1 X2 B2 D2 

II 12 15 16 19 20 

Fetch sign, charistic, 
and 56-bi t fraction from 
FPR per R1 and R 1 + 1. 

Fetch sign, charistic, 
and 56-bit fraction 
from main storage. 

Subtract 1st operand charistic 
from 2nd operand charistic. 

Add 64 to charistic difference. 

Prenormalize 2nd operand 
and adjust charistic. 

Prenormalize 1st operand 
and adjust charistic. 

Shift 1st operand fraction right 
4 bit positions if greater than 2nd 
operand fraction; adjust charistic. 

Divide fractions. 

Determine sign. 

Store sign, charistic, and fraction 
into FPR per R1 and R 1 + 1. 

31 
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• Conditions at start of execution: 
32 bits of 1st operand are in Sand T. 
Low-order fraction of 1st operand is in LS. 
Main storage request for 2nd operand has been issued 

perD. 
First 16 bits of instruction are in E. 

The Divide, DD, instruction (Diagram 5-215) divides the 
first operand (specified by RI and RI + I) by the second 
operand (from main storage) and places the normalized 
quotient into the first operand location. No remainder is 
retained. 

The conditions at the beginning of the execution phase 
are: 
I. 32 bits of the first operand are in Sand T. 
2. The low-order fraction of the first operand is in LS. 
3. A main storage request for the second operand has 

been issued per the effective address in D. 
4. The first 16 bits of the instruction are in E. 

The sign, characteristic, and high-order fraction of the 
first operand are transferred from T to A. The low-order 
fraction of the first operand is fetched from LS and 
placed into B via T and the parallel adder. The second 
operand (64 bits) is fetched from main storage and placed 
into ST. The high-order fraction is transferred from S to 
D, and the contents of DT become the 56-bit fraction 
divisor. The signs are saved in STAT C and STAT F. The 
characteristics are subtracted, and 64 is added to the 
characteristic difference to maintain excess-64 notation. 

The first operand (dividend) is in AB, and the second 
operand (divisor) is in DT. The next step is to check for 
the prenormalization of the dividend and divisor fractions 
(Sheet 3 of Diagram 5-215). The remainder of the 
operation is identical to that of the DDR instruction. 

STORE. 

The Store instructions (STE and STD) store the first 
operand from an PPR in LS into the second operand 
location in main storage. The Store instructions are in the 
RX format with short and long operand options available. 
In the · STE instruction, the low-order half of the first 
operand register is ignored. The first operand location 
remains unchanged. 

Storing must be on word boundaries for the STE 
instruction and on doubleword booodaries for the STD 
instruction. 

For all Store instructions, an address store compare 
test is made because the. instructions that are in Q may be 
modified in main storage by the Store instruction. If an 
instruction . is modified in main storage and is not 
corrected in Q, the program may not be properly 
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executed; therefore, Q must be reloaded. The address 
store compare test compares the main storage address, 
where data is to be stored, with the effective address 
indicated by the Store instruction. The comparison is 
made by subtracting the contents ofD (effective address) 
from the contents of the IC, shifting the difference right 
4, and testing for a zero result. If the difference equals 
zero, the difference is less than 16; therefore, the 
'program store compare' trigger is set to indicate that the 
instructions in Q must be refetched. The address store 
compare test is discussed in Section 1 of this Chapter. 

Store, STE (70) - RX Short Operands 

• Store 1st operand (in PPR, per Rl) into 2nd operand 
location (in storage). 

• RXformat: 

0 

70 RI X2 82 

7 8 II 12 15 16 19 20 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per Rl. 

Store sign, charistic, and 
fraction into main storage 
per effective address in D. 

• Conditions at start of execution: 
1st operand is in Sand T. 

D2 
31 

Main storage request has been issued per effective 
address in D~ 

First 16 bits of.instruction are in E. 

The Store, STE, instruction (Diagram 5-216, FEMDM) 
stores the first operand from the PPR specified by Rl 
into the main storage location specified by the effective 
address (second operand location). During the RX 1-
Fetch, the effective address is computed and placed into 
D, and a main storage request is initiated. The effective 
address must be on a word boundary or a specification 
program interruption is taken. Bit 21 of the effective 
address [PAL( 61)] is tested to determine which mark 
triggers are set. If PAL(61) = 1, mark triggers 4-7 are set; 
if PAL(61) = 0, Mark triggers 0-3 are set. An address 
store compare test is then performed, and the instruction 
is terminated by an end-op cycle. 



Store, STD (60) - RX Long Operands 

• Store 1st operand (in FPR, per Rl and Rl + I) into 
2nd operand location (in storage). 

• RXformat: 

60 Rl X2 82 

7 8 II 12 15 16 19 20 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per Rl and Rl + l. 

Store sign, charistic, and 
fraction into main storage 
per effective address in D. 

02 

• Conditions at start of execution: 
32 bits of 1st operand are in S and T. 
Low-order fraction of I st operand is in LS. 
Main storage request has been issued per effective 

address in D. 
First 16 bits of instruction are in E. 

The Store, STD, instruction (Diagram 5-216) stores the 
first operii,nd from the even/odd pair of FPR's specified 
by Rl and Rl + 1 into the main storage location specified 
by the effective address (second operand location). During 
the RX I-Fetch, the effective address is computed and 
placed into D and a main storage request is initiated. The 
effective address must be on a doubleword boundary or a 
specification program interruption is taken. The low-order 
half of the first operand is gated to T from the FPR 
specified by Rl + 1, and mark triggers 0-7 are set. After 
an address store compare test is performed, the 64-bit 
operand is stored per the effective address, and the 
instruction is terminated by an end-op cycle. 
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Section 4. Decimal Instructions 

This section discusses the nine instructions that operate 
on decimal data. The instructions use the SS format and · 
assume packed operands and results except for Pack, 
which has a zoned operand, and Unpack, which has a 
zoned result. For a discussion of the number representa· 
tion, data formats, excess-6 arithmetic, operand address­
ing, instruction formats, data flow, program interruptions, 
and condition codes, refer to Chapter I. 

INSTRUCTION HANDLING 

• Depending on instruction, processing of I or 2 op­
erands may be specified. 

• Pack, Unpack, Move with Offset, and Zero and Add 
instructions operate on I operand. 

• Add, Subtract, Compare, Multiply, and Divide instruc­
tions operate on 2 operands. 

• All add-type instructions set CC. 

• Major serial adder functions used by decimal instruc­
tions are: 
Excess-6 translation. 
Decimal correction. 
Complement gating. 
Cross-gating. 
Zone or sign insertion. 
Invalid digit and sign detection. 
Zero detection. 

Decimal instructions may be classified into the general 
categories of I- and 2-operand instructions. The I -operand 
instructions are Pack, Unpack, Move with Offset, and 
Zero and Add. The 2-operand instructions are Add, 
Subtract, Compare, Multiply, and Divide. 

In the I -operand instructions, the first operand is not 
processed but its address is used as the destination 
address; the second operand is processed, and the results 
are placed into the first operand location. The I-operand 
instructions are handled by fetching the second operand 
to AB. Successive AB bytes are selected per the ABC and 
are processed in the serial adder, and the resultant bytes 
are entered into ST per the STC. After all second operand 
bytes have been processed, the contents of ST are stored 
into main storage at the first operand address. 

The 2-operand Add, Subtract, and Compare instMc­
tions are executed by fetching the first operand to ST and 
the second operand to AB. A true add or complement add 
operation is then performed in the serial adder one byte at 
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a time, with the resultant bytes replacing the first operand 
bytes in ST as they are processed. For the Add and 
Subtract instructions, the results are stored into main 
storage at the first operand address. The Compare 
instruction does not store the result, but performs a test 
to determine the high, low, or equal relationship of the 
first operand to the second operand and sets the CC 
accordingly. 

For the 2-operand Multiply and Divide instructions, 
the operands must be properly aligned in the registers 
prior to entering execution. This function is performed by 
the appropriate right- and left-adjust sequences incorpo­
rated in the individual microprogram of the instruction. 

Basically, the multiply operation is performed by 
repetitive addition. The product bytes are developed one 
byte at a time, starting with the low-order byte. Each time 
one byte of product is developed, it is stored into main 
storage under control of the corresponding mark. trigger. 
The instruction then proceeds to develop the next 
higher-order product byte. Upon execution of the instruc­
tion, the first operand is completely replaced by the 
product. 

The Divide instruction is performed by repetitive 
subtraction. It is the only decimal instruction that 
processes the operands starting with the high-order bytes. 
The full divisor and a sufficient number of high-order 
dividend bytes are fetched to perform the first successful 
subtraction. Then by repeatedly subtracting the divisor 
from the dividend and counting the number of successful 
subtractions, the high-order quotient byte is developed. 
This byte is stored into main storage, and the instruction 
proceeds to develop the next lower-order quotient byte. 
Upon execution of the instruction, the first operand is 
completely replaced by the quotient and the remainder. 
The remainder occupies the low-order portion of the 
destination field. 

The results of the Add, Subtract, and Compare 
instructions are used to set the CC. All other decimal 
instructions leave the code unchanged. The Add and 
Subtract instructions set the CC to 0, I, or 2 to indicate a 
zero, less-than-zero, or greater-than-zero result; the CC is 
set to 3 if the result of the operation overflows. The 
Compare instruction sets the CC to 0, I, or 2 to indicate 
that the first operand was equal to, less than, or greater 
than the second operand. 

The serial adder performs many functions on its input 
data. The functions of excess-6 translation, decimal 
correction, and complement gating are discussed in "Data 



Handling" in Chapter 1, Section 4. Additional serial adder 
functions used by the decimal operations are: 
1. Cross-gating. The two-digit input to the A-side of the 

adder is swapped upon gating to SAL; the digit at 
adder A-side (0-3) is gated to SAL( 4-7), and A-side 
( 4-7) is gated to SAL(0-3). This function is used 
mainly by the Pack and Unpack instructions to 
interchange the sign and digit positions. 

2. Zone or sign insertion. The correct zone or sign code 
(USASCII-8 or EBCDIC) is applied from the ROSDR 
to the adder A-side. The zone or sign may be merged 
with the digit in any combination. 

3. Invalid digit and sign detection. The inputs to the A 
and B sides of the adder are tested for invalid digits or 
signs. An appropriate interrupt trigger is set upon 
detection of an invalid code. 

4. Zero detection. This function is used to sense overflow 
conditions and also to detect all-zero results. An 
all-zero result placed into main storage must carry a 
positive sign. Consequently, arithmetic instructions 
such as Add and Subtract specify testing of each SAL 
byte for zeros. If upon execution of the instruction it 
is found that an all-zero result has been stored, the 
instruction forces storing of a plus sign at the low-order 
byte address. 

WORD OVERLAP CONDITION 

• Word overlap condition exists when: 
IC(0-20) = D(0-20) and IC(21-23) > D(21-23). 

• Test for word overlap is performed by GIS of all 
one-operand instructions. 

• Execution of one-operand instructions provides sepa­
rate microprogram to handle word overlap conditions. 

• No special action is taken to detect word overlap in 
two-operand instructions. 

• Word overlap in two-operand instructions causes data 
program interruption. 

Data is fetched from and placed into main storage one 
doubleword at a time. However, program compatibility of 
the 2065 CPU with smaller models in the System/360 
requires that all results placed into main storage must be 
considered to be stored one byte at a time as they are 
processed. There are some cases where this compatibility 
would not be maintained unless special actions were 
taken. The condition that requires special handling is 
called "word overlap" and occurs when the fields of the 
first and second operands specified by the instruction 
overlap. 

The operand addresses and field lengths may be such 
that one or more bytes in main storage are specified as 
part of both the first and the second operands. For 
example, consider the case in which the IC and D specify 

the same doubleword in storage; the IC specifies byte 7 as 
the starting second operand byte to be processed in this 
doubleword, and D specifies byte 6 as the starting first 
operand address. At least two operand bytes are to be 
processed. 

---- Doubleword specified by IC and D----

D IC 

+ * 
I I I I I I I I I 

Bytes: 0 2 3 4 5 6 7 

This doubleword is fetched from main storage and 
placed into AB and ST. A one-operand instruction, such 
as Move with Offset, will process the first AB byte (byte 
7) in the serial adder and place the result into the 
designated first operand byte; i.e., byte 6 in ST. Then, 
ABC and STC are reduced one count to designate the next 
AB byte to be processed and the ST location into which 
the results must be placed. 

(ABC-1) 

t 
AB I I I I I I I I I 

0 2 3 4 5 6 7 

SA 

(STC-1) 

ST 

0 2 3 4 5 6 7 

Note, however, that the preceding move operation has 
replaced the original contents of byte 6 in ST with the 
contents of byte 7. Thus, the next AB byte to be 
processed (original byte 6) is no longer valid and must be 
updated; i.e., the equivalent of storing ST byte 6 and then 
refetching this byte to AB must be performed. 

As seen from the preceding example, the word-overlap 
condition may require special handling of data. Execution 
of all one-operand decimal instructions (Pack, Unpack, 
Move with Offset, and Zero and Add) provides for two 
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alternate microprograms. One microprogram is for the 
normal, or not-word-overlap, case; the other handles the 
word-overlap condition. Selection of the appropriate 
microprogram is dependent on the outcome of the 
word-overlap test, which is performed in the General 
Initialization Sequence (GIS) of all one-operand instruc­
tions. 

A word-overlap condition exists when both operands 
have the same doubleword address. The manner in which 
the first and second operand bytes are specified within 
this doubleword determines whether special data handling 
is required. When the word-overlap condition exists, three 
cases of byte specification may be distinguished: 
1. The first and second operand bytes are the same; no 

special data handling is required.t 

ABC 

+ 
AB I I I I I I I I I Source 

STC 

+ + ' t ' ' ' ' 
ST I I I I I I I I I Destination 

In this case, the destination bytes are placed into the 
same locations from which the source bytes are 
obtained. Because processing of any source byte does 
not affect the contents of the next source byte, no 
updating of source bytes is necessary. 

2. The first operand bytes are specified "ahead" of the 
second operand bytes; special data handling is required. 

AB 

ST 

ABC 

Source 

Destination 

In this case, the destination bytes are placed into the 
locations from which the next source bytes Will be 
processed. The data in AB becomes "obsolete" after 
processing of one or more source bytes. {The crossover 
point at which data becomes obsolete depends on the 

t Except for Unpack instruction. This instruction generates two 
bytes of destination for each byte of source and requires special 
data handling in all cases of word overlap. 
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amount of skew between ABC and STC.) This word 
overlap case requires special data-handling techniques. 

3. The first operand bytes are specified "behind" the 
second operand bytes; no special data handling is 
required. 

AB 

ST 

ABC 

Source 

Destination 

In this case, the destination bytes are placed behind the 
source bytes as they are processed. Thus processing of 
any source byte cannot affect the contents of the next 
source byte, and no updating is necessary. 

In two-operand arithmetic instructions, no special 
action is taken to detect word overlap. Word overlap is 
ignored during execution of a Compare instruction, 
because this instruction does not store the results. The 
operand fields specified for Add, Subtract, Multiply, and 
Divide instructions either should not overlap at all or 
should have coincident rightmost bytes. The GIS for these 
instructions does not perform the word overlap test, 
because improper overlap of the operands causes an 
invalid data condition to be detected in the execution 
phase. In two-operand instructions, the operand fields are 
correctly specified when the rightmost byte of each 
operand contains the operand sign; all bytes to the left of 
the sign byte must contain only digits. This requirement 
cannot be fulfilled when both operands in the instruction 
specify the same doubleword with different byte 
addresses. The following example shows that the sign byte 
of the first operand is also the "digit" byte of the second 
operand. 

ABC 

AB 
D S 

Same Doubleworci STC 

ST 1st Operand 

During execution of the instruction, all operand digits are 
checked for validity. Detection of a sign code in the digit 
position forces a data program interruption. 



GENERAL INITIALIZATION SEQUENCE 

At the completion of the SS I-Fetch, the CPU is in the 
following status: 
1. A main storage request for the doubleword containing 

the low-order byte of the first operand has been issued 
perD. 

2. D contains the low-order byte address (contents of 
GPR addressed by B 1, + D 1, + L1) of the first operand. 

3. The IC contains the high-order byte address (contents 
of GPR addressed.by B2, + D2) of the second operand. 

4. The next instruction address has been transferred from 
the IC to the LSWR. 

5. E(O-7) contains the instruction op code. 
6. The 'PSC' trigger has been set, if appropriate. 

Following the SS I-Fetch, a branch is made per the 
instruction op code to the appropriate General Initializa· 
tion Sequence (GIS). The general functions of the GIS for 
decimal instructions are described below. Functions· 
peculiar to a specific instruction are covered in subsequent 
paragraphs dealing with the execution of that instruction. 

The function of the GIS microprogram is to set up 
initial conditions for the execution phase. These include: 
1. Gating the first operand from the SDBO to ST. AD 

request for the doubleword containing the low-order 
byte of the first operand was issued during SS I-Fetch. 

2. Adding of L2 field to IC. At the end of SS I-Feteh, the 
IC contains the address of the high-order byte of the 
second operand. To address the low-order byte of the 
second operand, the IC must be incremented by the L2 
field during GIS. 

3. Initiating a storage request per the IC for the second 
operand. GIS initiates a storage request for the 
doubleword containing the low-order byte of the 
second operand. 

4. Setting of STC and ABC. The STC is set to the 
rightmost first operand byte in ST, the byte to be 
processed first. Because the address of the rightmost 
byte is specified by D(21-23), the STC is set per these 
bits. Similarly, the rightmost second operand byte is 
selected in AB by gating IC(21-23) to the ABC. 

5. Gating the second operand from the SDBO to AB. An 
IC request for the second operand is issued during GIS. 
Subsequently, the GIS gates the second operand from 
the SDBO to AB. 

6. Performing a sign handling function. For add-type 
instructions, the sign of the result is tentatively set to 
agree with the sign of the first operand before the 
execution phase. The GIS examines the signs in the 
rightmost bytes of both operands and establishes 
whether to perform a true add or a complement add 
operation. For multiply and divide operations, the sign 
of the result is determined during the execution phase 
by examining the appropriate STAT's, which have been 

previously set according to the signs of the two 
operands. Both operands are tested for an invalid sign. 

7. Performing the word overlap test. A word overlap test 
is performed during the GIS for Pack, Unpack, Move 
with Offset, and Zero and Add instructions. 

ADD, SUBTRACT, AND COMPARE 

During the GIS, separate sign handling is performed for 
the Add, Subtract, and Compare instructions; the sign of 
the second operand is, in effect, inverted for Subtract and 
Compare instructions. After exit from the GIS, the three 
instructions share a common true add or complement add 
routine, depending on the operand signs and the instruc­
tion. Because the result of a Compare instruction is not 
stored into main storage, the setting of the mark triggers 
and overflow detection are inhibited in hardware during 
execution of this instruction. 

Add, AP (FA) and Subtract, SP (FB) 

• Algebraically add (subtract) 2nd operand (in storage) 
to (from) 1st operand (in storage) and place result into 
1st operand location. 

• SS format: (See following page.) 

• CC setting: 
Result is zero: CC = 0. 
Result is less than zero: CC = 1. 
Result is greater than zero: CC= 2. 
Overflow: CC = 3. 

The Decimal Add and Subtract instructions specify an 
algebraic addition with the sign of the second operand 
inverted for the subtract instruction. The sign of the result 
is tentatively set to agree with the sign of the first 
operand. Then, if the algebraic signs of the two operands 
are alike, a true add sequence is performed; if unlike, a 
complement add sequence is performed. The tentative 
result sign is correct in all cases except for a complement 
add operation where the magnitude of the second operand 
is equal to or greater than the magnitude of the first 
operand. If the magnitudes of the two operands are equal, 
the result is zero and a positive sign is stored into the 
result field. If the magnitude of the second operand is 
greater than that of the first, a complement result is 
formed and the sign of the result is inverted by setting it 
to the algebraic sign of the second operand when the 
result is recomplemented; All signs and digits are tested 
for validity. The operand fields may overlap when their 
low-order bytes coincide; therefore, it is possible to add a 
number to itself. 

The result is stored at the first operand address. If the 
first operand field is too short to contain all significant 
digits of the result, a decimal overflow occurs. 
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FAorF8 Ll L2 Bl Soil B2 IJG 
7 8 11 12 15 16 19 20 31 32 35 36 47 

Fetch 1st operand, 
starting with doubleword 
containing low-order 
byte, per contents of 
G PR addressed by 
81,+Dl+Ll. 

Fetch 2nd operand, 
starting with doubleword 
containing low-order 
byte, per contents of 
G PR addressed by 
82, + D2 + L2. 

No (Subtract) Yes 

Yes 

Perform true 
add sequence. 

Store result at 1st 
operand address, 
starting at low-order 
byte. 

Fetch next doubleword 
af operands as needed. 

Invert sign of 
2nd operand. 

Yes 

Set CC. 

End op. 

GJS for Add and Subtract 

No 

Perform complement 
add sequence. 

Store result at 1st 
operand address, 
starting at low-order 
byte. 

Yes 

Fetch next doubleword 
of operands as needed. 

The GIS microprogram for the Add and Subtract instruc· 
tions is shown in.Diagram 5-301, FEMDM. It performs the 
following functions: 
l. Loads into ST the doubleword containing the low­

order byte of the frrst operand. 
2. Adds L2 to the IC, after which it requests, per the IC, 

the doubleword containing the low-order byte of the 
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second operand. When this doubleword arrives, loads it 
into AB. 

3. Transfers the LI count to F{0-3). 
4. Assigns a result sign that agrees with the sign of the 

frrst operand. 
5. Performs a branch on the algebraic signs of the 

operands (contained in ST AT's C and F) to enter the 
true add or complement add sequence. 
At the start of GIS, the IC contains the address of the 

high-order byte of the second operand (contents of GPR 
addressed by B2, + D2). To obtain the address of the 
low-order byte, L2 is added to the IC, and a main storage 
request is issued per the result. 

The L1 count in E{8-11) is destroyed during subse­
quent execution and must be preserved in F(0-3). This 
aCtion is necessary because, U:pon execution of the 
instruction, it may· be found that results were placed in 
main storage in complement form. Because the final result 
must be true, the destination field is refetched and 
recomplemented, and the sign is inverted. In such cases, 
the L1 count in F(0-3) is used to refetch the correct 
number of destination bytes. 

The result is arbitrarily assigned the sign of the frrst 
operand by performing a branch of STAT's F and C. 
STAT Fis set if the frrst operand is minus. Note, however, 
that the sign of the second operand is not known at this 
time and STAT C will always be in the reset state. Thus, 
when STAT's F and Care alike, it indicates that STAT F 
is not set (frrst operand plus); when the STAT's are not 
alike, it indicates that STAT F has been set and the frrst 
operand is negative. 

, A second branch on STAT's F and C is performed after 
tlle sign of the second operand has been sensed, and ST AT 
C set accordingly. ST AT C is set for a minus sign for an 
Add instruction and for a plus sign for a Subtract 
instruction. This is the only difference in the execution of 
an Add or Subtract instruction. If the STAT's are alike, a 
true add sequence is entered. Upon entry into this 
sequence, the result always carries the correct sign. If the 
STAT's are not alike, a complement add sequence is 
entered. In this case, the algebraic sign of the result 
cannot be known at the start of the operation because it is 
dependent on the relative magnitude of the operands, If 
the sign has been assigned incorrectly, the result of the 
complement add operation will be in coniplenient form. 
This condition will be detected at the completion of the 
instruction, in which case the result will be recomple­
mented and the sign inverted by setting the result sign to 
the algebraic sign of the second operand (per STATC). 

True Add Sequence 

• True +6 add operation exits on one or more of the 
following conditions: 
LI or STC=O. 
L2=0. 
ABC=O. 



• ST AT A is set ifresult is not zero. 

• ST AT B is set if overflow occurs. 

• ST AT E is set if operand digit or sign is invalid. 

• STAT G is set if Compare instruction. 

• ST AT H is set if carry to next byte occurs. 

An overall flowchart of the true add sequence and the 
data path used for its execution are shown in Sheet 1 of 
Diagram 5-302, FEMDM. The flowchart outlines the 
major functional steps and sequences used in the Add, 
Subtract, and Compare microprogram. 

Upon entry into the true add sequence, the signs of 
both operands have been examined (by the GIS) and the 
correct sign has been entered into the low-order destina­
tion byte in ST. The first step in the micropro!5fam is to 
true-add the digits contained in the sign bytes of the 
operands. The result is then placed into the digit portion 
of the destination byte. At this point, one complete byte 
of the result has been developed. The operand length 
codes (Ll and L2) and the status of the byte counters 
(STC and. ABC) are examined for one or more of the 
following exit conditions from the true add loop: 
1. STC and L1 =f. 0, L2 = 0. 

The second operand field has run out. 
2. STC and L1 =f. 0, L2 =f. 0, ABC = 0. 

More second operand bytes are needed. 
3. STC or L1 = 0, L2 =f. 0, ABC = 0. 

The first operand field has run out, or ST is full and 
more first operand bytes are needed. In either case, ST 
must be stored into the destination address per D. 
More second operand bytes are needed. 

4. STC or L1 = 0, L2 =f. 0, ABC =f. 0. 
The same conditions exist as in item 3 except that 
more second operand bytes are not needed. 

5. STC or L1 = 0, L2 = 0. 
The first operand field has run out, or ST is full and 
more first operand bytes are needed. In either case, ST 
must be stored into the destination address per D. The 
second operand field has run out. 

If none of the above exit conditions exist, the 
microprogram re-enters the true add loop to generate the 
next destination byte. L1, L2, STC, and ABC are 
decremented one count, the selected AB and ST bytes are 
added in the serial adder, and the result replaces the 
selected ST byte. After this, the status of all counters is 
again sensed for exit conditions. 

Upon establishing. one or more exit conditions, the 
operations dictated by the conditions are performed, and, 
if L1 is not zero, the true add loop is re-entered. When L1 
is zero, all destination bytes have been processed. The 
microprogram then performs an overflow test and a test 

for all-zero result.t If an all-zero result has been 'obtained, 
the address of the low-order destination byte is restored in 
D and a plus is stored at this address. Restoration is 
necessary, because D is decremented by 8 for each 
doubleword of first operand that is fetched. If, for 
example, two doublewords of first operand have been 
fetched, the address of the low-order destination byte is 
obtained by adding 16 to D. 

A detailed flowchart of the true add sequence is shown 
in Sheet 2 of Diagram 5-302. It is an expanded version of 
the overall flowchart; showing the data handling used in 
the various subroutines of the true add operation. This 
data handling is straightforward for the most part and 
requires no explanation. Those areas in need of clarifica­
tion are discussed in the following subparagraphs. 

True Add Operation. The selected AB byte is gated (true 
+6) to the serial adder and added as a binary number to 
the selected ST byte. The adder output is decimal­
corrected at the input to SAL and gated back to the 
selected ST byte. For the first (or sign) byte, only bits 
0-3 of the selected AB byte are gated to the adder. The 
decimal correction involves examining the carry from each 
digit and logically subtracting 6 from each result digit that 
did not have a carry. As each byte is processed, ABC, 
STC, L1 and L2 are decremented by 1 and the selected 
mark trigger is set (except for a Compare instruction). The 
carry from each byte is saved in ST AT H and, if set, 
results in a carry to bit 7 of the next byte processed. 
STAT A is set if any nonzero result digit is detected. 
STAT Eis set if any invalid digit is detected at the inputs 
to the serial adder.tt 

Exit Conditions. An exit is made when one or more of the 
following conditions exist as determined by a functional 
branch micro-order ('Decimal' micro-order): 
1. L1 or STC = 0. 
2. L2= 0. 
3. ABC=O. 

Five possible exit conditions exist: 
1. STC and L1 =f. 0, L2 = 0. 

The second operand field has been completely proc­
essed. AB and ABC are cleared, and the high-order 
source extend routine is started to process the 
remaining destination field. 

t The Add, Subtract, ,and Compare instructions have the same 
micxoprogram. The Compare instruction does not store the 
result into main storage and, upon exit from the true add loop, 
enters the end-op sequence. 

tt When an invalid digit is detected at the serial adder in-buses, the 
adder forces 1 's into its sum and parity output latches. This 
action insures that valid parity is always gated to ST from the 
serial adder. 
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2. STC and L1 =/= 0, L2 =/= 0, ABC = 0. 
A second operand fetch sequence is started to fetch the 
next doubleword of second operand to AB. 

3. STC or L1 = 0, L2 =/= 0, ABC = 0. 
The first operand has either run out, or ST is full and 
the next doubleword of the first operand is needed. In 
either case, ST must be stored if an Add or Subtract 
instruction is being executed. (If a Compare instruction 
is being executed, no mark triggers are set and ST is 
not stored.) The next doubleword of the second 
opetand is needed. 

After the destination store cycle, Ll is tested for all 
l's to determine whether the L1 field has run out. If 
L1 equals all l's, a second operand fetch is initiated 
before entering the first operand runout sequence; if 
Ll does not equal all l's, the first operand fetch 
sequence is performed, followed by the second op­
erand fetch sequence and resumption of the true add 
loop. 

4. STC or L1 = 0, L2 =/= 0, ABC =/= 0. 
The same conditions exist as in item 3 except that a 
second operand fetch is not needed and is not 
performed. 

5. STC or Ll = 0, L2 = 0. 
A storage request per D is issued to store ST into the 
destination field (unless a Compare instruction is being 
executed). AB and ABC are cleared to start the 
high-order source extend routine. A further test is 
required to determine whether L1 was zero. 

If Ll is now all l's, all destination bytes have been 
processed. A carry from the last destination byte 
indicates an overflow condition, and STAT Bis set. 

If L1 is not all l's, a first operand fetch sequence is 
started, after which the high-order source extend 
routine is resumed. 

First Operand Fetch. A separate entry is made into this 
routine, per STAT G, for a Compare instruction. In a 
compare operation, a D request for the next doubleword 
of first operand has already been given. D is decremented 
by 8, and the doubleword arriving at the SDBO is gated to 
ST. 

For Add or Subtract instructions, Dis decremented by 
8, and a D request is made for the next doubleword of 
first operand. F is incremented by 1 to record the number 
of fetches made. This information will be required to 
restore the low-order address in Din case an all~zero result 
is obtained. If ABC equals 111, a second operand fetch 
routine is started. If ABC does not equal 111, the 
appropriate addition or high-order source extend is 
started. · 

Second Operand Fetch. The IC is decremented by 8, and 
the next doubleword of second operand is fetched to AB. 
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After this, the appropriate addition or overflow routine is 
started as determined by the Ll count. 

Second Operand Runout. An all-zeros AB byte is gated 
true +6 to the serial adder and added to the selected ST 
byte. The result is decimal-corrected and gated back to 
the selected ST byte. STAT's A, E, and Hand the mark 
triggers are set as previously explained. 

L1 and STC are decremented by 1 as each byte is 
processed; ABC and L2 are not stepped. The sequence is 
repeated until Ll is stepped to zero, with an exit to the 
destination store and first operand fetch sequences when· 
ever STC equals 7. A carry from the last destination byte 
is an overflow condition and sets ST AT B. The end-op 
sequence is started when L1 equals zero. 

First Operand Runout and Overflow Test An overflow 
condition exists whenever a carry results as the last 
destination byte is processed or whenever a nonzero digit 
is detected in the source field after the destination field 
has been processed. STAT B is set if STAT H is set when 
entering this routine. Next, the remaining second operand 
bytes are gated true +6 to the serial adder with ST AT B 
being set if any nonzero bytes are detected. 

ABC and STC are decremented by 1 as each byte is 
processed. The next source doubleword is fetched to AB 
whenever ABC is stepped to zero unless L2 equals zero. 
When L2 is stepped to zero, the end-op sequence is 
started. 

Zero Result. If at the completion of the true add 
operation ST AT A is not set, an all-zero result has been 
obtained. In this case, the Add and Subtract instructions 
always force a positive sign into the low-order byte of the 
destination field. (If ST AT G is set, an exit is made to the 
end-op· sequence because no correction of the result is 
required for a Compare instruction.) 

The low-order destination address is regenerated by 
adding 8 to D the number of times indicated in F(4-7). 
STC is set per 0(21-23), and the selected ST byte is 
cleared. 

STAT B is examined to determine an overflow condi· 
tion. For a zero result and no overflow, a plus sign is 
inserted via the serial adder into the low-order destination 
byte with the selected mark trigger being set. A storage 
request is given to store the sign into the destination field, 
and the end-op sequence is started. For a zero result and 
overflow, the .destination sign is not corrected. The end-op 
sequence is started immediately. 

End-Op Sequence. The instruction address (original con­
tent of the IC) is restored from the LSWR to the IC, and 
ST AT G is reset. A data program interruption occurs if 
STAT E is set. A decimal overflow program interruption 
occurs if STAT B is set and STAT E is not set. The CC is 
set per hardware conditions as shown in Table 3-12. 



Table 3-12. Condition Code Setting Per Hardware 
Conditions, Decimal Instructions 

Hardware Conditions Setting 

NotSTATB e NotSTATA e (Add,or 
Subtract, or Zero and Add) 0 

Not ST AT A • Not ST AT H • Compare 0 

Not STAT A e STAT H e STAT F e Not 
STAT C • Compare 0 

Not STAT A e STAT H • Not STAT F • 
STAT C • Compare 0 

Not STAT 8 o STAT A e STAT F • (Add, 
or Subtract, or Zero and Add) 1 

STAT A • STAT F • STAT H o Compare 1 

STAT A • STAT C e Not STAT H • Compare 1 

STAT F • STAT C • STAT H • Compare 1 

Not STAT 8 e STAT A e Not STAT F • 
(Add, or Subtract, or Zero and Add) 2 

STAT A • Not STAT F •STAT H • Compare 2 

STAT Ao NotSTATC • NotSTATH • 
Compare 2 

STAT H e Not STAT F • Not STAT C • 
Compare 2 

STAT 8 • (Add, or Subtract, or Zero and Add) 3 

Note: • Designates logical AND connective. 

Complement Add Sequence 

• Complement add operation with exits on one or more 
of the following conditions: 
1. Ll or STC = 0. 
2. L2=0. 
3. ABC=O. 

• STAT A is set if result is not zero. 

• ST AT B is set if overflow occurs. 

• STAT Dis set if result must be recomplemented. 

• STATE is set if operand digit or sign is invalid. 

• ST AT G is set if Compare instruction. 

• STAT His set if carry to next byte occurs. 

• Carry out of last destination byte indicates result is in 
true form; no carry condition indicates result is in 
complement form. 

Diagram 5-303, Sheet 1, FEMDM, is an overall flowchart 
of the complement add sequence. This flowchart outlines 
the major functional steps and sequences used in the Add, 
Subtract, and Compare microprogram. 

Upon entry into this sequence, the signs of both 
operands have been examined (by the GIS) and the sign of 
the first operand has been inserted as the sign of the 
result. This sign may or may not turn out to be the 
correct sign: if the first operand is larger than the second, 
the result carries the correct sign; if the reverse is true, the 
sign of the result must be inverted. 

Basically, the complement add microprogram is similar 
to the true add sequence previously described. The first 
step in the microprogram is to complement add the digits 
contained in the sign bytes of the operands. The result is 
then placed into the digit portion of the destination sign 
byte. At this point, one complete byte of result has been 
developed. The operand length codes (LI and L2) and the 
status of the byte counters (STC and ABC) are examined 
for one or more of the following conditions: 
1. The result byte is contained in the last byte of ST and 

must be stored (STC = 0). 
2. Additional first operand bytes must be fetched from 

main storage (STC = 0 and L1 * 0). 
3. Additional second operand bytes must be fetched from 

main storage (ABC = 0 and L2 * 0). 
4. The second operand has run out; i.e., all second 

operand bytes have been processed, and zeros must be 
added to the first operand bytes (L2 = 0 but Ll * 0). 

S. The first operand has run out; i.e., the destination 
field has been completely processed (LI = 0). 

If none of the above conditions exist, the micropro­
gram enters the complement add loop to generate the 
next destination byte. Ll, L2, STC, and ABC are 
decremented one count, the selected AB byte is comple­
ment-added to the selected ST byte, and the result 
replaces the selected ST byte. After this, the status of all 
counters is again sensed for exit conditions. 

Upon establishing one or more exit conditions, the 
operations dictated by the conditions are performed and, 
if Ll is not zero, the complement add loop is re-entered. 
When L1 is zero, all destination bytes have been proc­
essed. The microprogram then performs an overflow test, 
a zero-result test, and a complement result test.t If an 

t The Compare instruction does not store the result into main 
storage and, upon exit from the subtract loop, enters the 
end-op sequence. 
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all-zero or complement result has been generated, the 
address of the low-order destination byte is restored to D. 
Then, the result is either recomplemented and the sign 
inverted or a plus· is stored into ~e low-order destination 
byte. 

Sheet 2 of Diagram 5-303 is a detailed flowchart of the 
complement add sequence. It is an expanded version of 
the overall flowchart, showing the data handling in the 
various subroutines of the complement add operation. 
The complement add operation is similar to the true add 
sequence described previously. For this reason, only the 
differences are discussed below. 

Complement Add OperatiOIJ. The selected AB byte is 
converted to 2's complement form at the input to the 
serial adder, and is then added to the selected ST byte. 
For the first (or sign) byte, bits 0-3 only of the selected 
AB byte are gated in inverted binary form to the adder, 
with a hot carry supplied to bit 3 to convert to 2's 
complement. 

Second Operand Runout. An all-zeros AB byte is gated in 
complement form to the serial adder and added to the 
selected ST byte. Thus the second operand is extended 
with high-order binary 1 's (decimal 9's + 6). 

Overflow Test. Generally, an overflow condition exists, if, 
upon processing all destination bytes, a non-zero source 
byte is detected. One exception occurs when the frrst 
source byte sensed, after the first operand has run out, 
equals 1 and a "cany" condition exists. A carry condition 
is determined by STAT's A and H being set; i.e., a 
nonzero result and a carry from the previous byte. 

When L2 has been stepped to zero, a carry from the 
last destination byte is examined. A carry condition 
indicates a true result, and the end-op sequence is started. 
No carry indicates a complement result, and a recomple­
ment sequence is started for Add and· Subtract instruc­
tions. For a Compare instruction (STAT G set), the 
end-op sequence is started immediately. 

Zero Result and Recomplement Setup. STAT D is set 
when an entry is made to this routine because of the 
result's being in complement form. STAT D is not set 
when an entry is made because of a zero result. If STAT G 
is set when entering this routine, an exit is made to the 
end•op sequence because no corrections of ·the result are 
required for the Compare instruction. 

The low-order destination address is regenerated by 
adding 8 to D the number of times indicated in F( 4-7)~ 
STC is set per 0(21-23), and the selected ST byte is 
cleared. If an overflow condition exists (STAT B set), the 
results need not be corrected and the end-op sequence is 
started immediately. 
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Recomplement Sequence. The original L1 count was 
saved in F(0-3) by the GIS. This count is now placed into 
the L2 location in E; i.e., E(12-15). The LI location in 
E(8- l 1) is set to zero and then decremented one count to 
provide an exit from the frrst operand fetch routine to the 
recomplement sequence. The complement result is gated 
from the SDBO to AB, and the recomplement sequence is 
started. 

The sign byte is processed by gating bits 0-3 of the 
selected AB byte in inverted binary form to the serial 
adder, with a hot carry supplied to bit 3. The sign is 
inverted by inserting the algebraic sign of the second 
operand into serial adder bits 4-7, as determined by 
STAT C. Bits 0-3 are decimal-corrected, and the adder 
output is gated to ST. 

All bytes following the sign byte are processed by 
gating the selected AB byte complement to the serial 
adder, where it is added to an all-zero ST byte. The adder 
output is decimal-corrected and gated back to the selected 
ST byte. 

As each byte (including the sign byte) is processed, the 
ABC, STC, and L2 counts are decremented. The mark 
trigger selected by the STC is set. The serial adder carry is 
saved in STAT H. STAT A is set on nonzero digits, and 
STATE is set on invalid digits. 

Recomplementation is continued until the L1 in 
E( 12-15) is stepped to zero. If ABC steps to zero and L1 
is not zero, ST is stored and the next doubleword of 
destination is fetched to AB. When Ll steps to zero, ST is 
stored into the destination field, AB is cleared, and STAT 
F is set or reset per STAT C. The CC is set per hardware 
conditions (see Table 3-12), and the instruction is ended, 

Compare, CP (F9) 

• Algebraically compare 1st operand (in storage) with 
2nd operand (in storage) and set CC according to 
result. 

• SS format: (See left column of next page.) 

• CC setting: 
Operands are equal: CC = 0. 
1st operand is less than 2nd operand: CC = 1. 
1st operand is greater than 2nd operand: CC = 2. 

The CP instruction shares the same true add and comple­
ment add routines used by the Add and Subtract 
instructions. The GIS microprogram for the Compare 
instruction is shown in Diagram 5-301. As in the Subtract 
instruction, this microprogram effectively inverts the sign 
of the second operand by setting ST AT C on a positive 
sign. The result of the compare operation is not placed 



F9 LI L2 Bl s DJ I 82 I JG 
1 B 11 12 15 16 19 20 31 32 35 36 41 

Fetch 1st operand, 
starting with doubleword 
containing low-order 
byte, per contents of 
G PR addressed by 
BJ,+DJ+LI. 

Perform true 
add sequence. 

Yes 

Fetch next doubleword 
of operands as needed. 

Set cc. 

End op. 

Fetch 2nd operand, 
starting with doubleword 
containing law-order 
byte, per contents of 
G PR addressed by 
B2, + D2 ... L2. 

Invert sign of 
2nd operand. 

Fetch next doubleword 
of operands as needed. 

into main storage. STAT G is set to provide a means of 
taking special action, where -required for the Compare 
instruction, during execution of the common true add or 
complement add sequences. 

ZERO AND ADD, ZAP (FS) 

• Place 2nd operand "(in storage) into 1st operand 
location (in storage). 

• SS format: 

FS LI L2 Bl s DJ I 82 !JG 
1 8 11 12 15 16 19 20 31 32 35 36 47 

Fetch 1st operand, 
starting with doubleword 
containing low-order 
byte' per contents of 
G PR addressed by 
Bl,+ DI+ LI (1st 
operand is not used). 

• CC setting: 

Set CC. 

End op. 

2nd operand is zero: CC = 0. 

. Fetch 2nd operand, 
starting with doubleword 
containing low-order 
byte, per contents of 
G PR addressed by 
82, + D2 + L2. 

Add O's to 2nd O"erand. 

Yes 

Store result into 1st 
operand location, 
starting at low-order 
byte. 

Fetch next doubleword 
of 2nd operan~ as 
needed. 

2nd operand is less than zero: CC = 1. 
2nd operand is greater than zero: CC= 2. 
2nd operand cannot fit into destination field: C = 3. 

The operation specified by the ZAP instruction is equiva­
lent to addition to zero. A zero result is always made 
positive. When high-order digits are lost because of 
overflow, a zero result has the sign of the second operand. 
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Only the second operand is checked for valid sign and 
digit codes. Extra high-order zeros are supplied if needed. 
When the first operand field is too short to contain all 
significant digits of . the second operand, / a decimal 
overflow occurs and results in a decimal overflow program 
interruption, provided that the decimal overflow mask bit, 
PSW(37), is 1. The first and second operand fields may 
overlap when the rightmost byte of the first operand field 
is coincident with or to the right of the rightmost byte of 
the second operand. A flowchart of the GIS and execu­
tion of the Zero and Add instruction is shown in Diagram 
5-304, FEMDM; 

At the start of the GIS, the following actions have been 
performed by SS I-Fetch: (1) a D request has been issued 
for the doubleword containing the low-order byte of the 
first operand; (2) the low-order byte address of the first 
operand (contents of GPR addressed by Bl,+ Dl +LI) is 
in D; and (3) the high-order byte address of the second 
operand (contents of GPR addressed by B2, +D2) is in the 
IC. During the GIS, the doubleword containing the 
low-order byte of the first operand is gated from the 
SDBO to ST, the IC is incremented by the L2 count to 
address the low-order byte of the second operand, the 
STC is set to the low-order destination byte, an IC request 
for the second operand is issued, and a word overlap test 
is performed. If a word-overlap condition is predicted by 
this test, the instruction address is restored to the IC, the 
'invalid data interrupt' trigger is set, and the instruction is 
ended. If no word-overlap condition is detected, the 
doubleword containing the low-order byte of the second 
operand is gated from the SDBO to AB. 

The sign byte is processed. by gating bits 0-3 of the 
selected AB byte to the serial adder. Bits 4-7 of the AB 
byte are decoded for a positive, negative, or invalid sign. 
The approved plus or minus sign is inserted into 
SAL( 4-7) and gated, with the digit, to the selected ST 
byte. 

All bytes following the sign byte are processed by 
gating the selected AB byte true +6 to the serial adder. 
The selected ST byte is not gated to the adder, and the 
validity check at the adder B·side is inhibited in hardware. 
The adder output is decimal-corrected and gated to the 
selected ST byte. 

As each byte is processed, including the first byte, the 
ABC, STC, L1, and L2 are decremented, the selected 
mark trigger is set, STAT E is se~ for invalid data, and 
STAT A is set for a nonzero digit. 

The byte-by-byte transfer from AB to ST is continued 
until one or more of the following exit conditions are 
detected via a ROS branch ('Decimal' micro-order): 
1. STC and L1::/=0, L2 = 0. 

The second operand field has run out. AB and ABC are 
cleared and zeros are gated to ST per the STC until L1 
or STC equals zero. If the STC is reduced to zero 
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before Ll, ST is stored per the D address, and zeros are 
gated to ST per the STC until LI is reduced to zero. 

2. STC and L1::/=0, L2::/= O,ABC = 0. 
More second operand bytes are needed. The next 
doubleword of the second C?Perand is gated to AB and 
the zero and add loop is resumed. 

3. STC or L1=0, L2::/= 0, ABC= 0. 
The destination field has run out or ST is full, requiring 
a destination store cycle. More second operand bytes 
are needed. ST is stored into the destination address 
per D, and the next doubleword of the second operan_d 
is fetched per the IC and gated to AB. If Ll equals all 
l's (the destination field has run out), AB is tested for 
nonzero digits to determine if a decimal overflow 
condition exists. If L1 does not equal all l's, the zero 
and add loop is resumed. 

4. STC or L1 = 0, L2 ::/= 0, ABC ::/= 0. 
The same conditions exist as in item 3, except that a 
second operand fetch is not needed and is not 
performed. 

5. STC or L1 = 0, L2 = 0. 
The destination field has run out or ST is full, requiring 
a destination store cycle. The second operand field has 
run out. ST is stored in the destination address per D. 
If L1 equals all l's, both operands have run out. If Ll 
does not equal all l's, the second operand runout 
sequence is performed. 

MULTIPLY, MP (FC) 

• Multiply lst operand (in storage) by 2nd operand (in 
storage) and place result into 1 st operand location. 

• SS format: (See following page.) 

• Maximum multiplicand field (1st operand) is 16 bytes .. 

• Maximum multiplier field (2nd operand) is 8 bytes. 

• Multiplicand field initially contains high-order zero field 
equal in length to multiplier field. 

• L2 > 7 or L2 > LI causes specification program 
interruption. 

• Multiplication accomplished by repetitive addition or 
subtraction: 

Multiplicand 
Digit 

0 
1-4 
5-9 

Sequence 
Selected 

Addition 
Subtraction 

The Decimal Multiply instruction replaces the 
multiplicand (1st operand) with the product of the 
multiplicand and the multiplier (2nd operand). To be able 



FC LI L2 81 ~ 01 I 82 I~(§] 
7 B 11 12 1516 19 20 3132 3536 47 

Fetch doubleword containing 
·low-order byte of 1st operand 
(multiplicand) per content. 
of GPR addressed by B 1, + D 1 
+ Ll. 

Examine 1st low-order 
digit of multiplicand. 

Examine next low-order 
digit of multiplicand 

Fetch doubleword containing 
low-order byte of 2nd operand 
(multiplier) per contents of 
G PR addressed by 82, + 02 
+ L2. 

Align low-order multiplier and 
fetch doubleword containi~g 
high-order portion of multiplier. 

Add full multiplier number 
of times specified by 
multiplicand digit. 

Retain law-order partial 
product digit as low-order 
digit for final product. 

Shift partial product one 
digit position to right 

Add full multi plier to partial 
product number of tinies speci­
fied by multiplicand digit. 

Retain low-order partial prod­
uct dlg it as next low-order 
digit of final product. 

Store product byte at 1st 
operand address, starting 
at low-order byte. 

Develop next product byte. 

to store the product in the multiplicand field at all times, 
several restrictions are imposed on both the multiplicand 
and the multiplier: 
1. In any multiply operation, the maximum number of 

product digits that can be obtained is equal to the sum 
of the digits in the two operands. Because the product 
is stored in the multiplicand field, this field must 
initially contain high-order zero digits for at least a 
field size equal to that of the multiplier. Thus the 
multiplicand field is. initially split into two parts; the 
high-order zero field of length equal to the multiplier, 
and the low-order field containing the effective multi­
plicand digits. This arrangement of the multiplicand 
ensures that product overflow will not occur (Figure 
3-14). 

2. By definition, the multiplier field must be at least one 
digit less than the multiplicand. Because the multi­
plicand must initially contain a zero field equal in size 

to the multiplier digits, the multiplier size is limited to 
8 bytes (15 digits and sign). A specification program 
interruption occurs if the multiplier length code 
designates more than 8 bytes (L2 is greater than 7), or 
if L2 is greater than or equal to Ll. 

3. The maximum product size is 31 digits and sign (16 
multiplicand digits plus 15 multiplier digits). The sign 
is determined algebraically from the multiplier and the 
multiplicand signs, even if one or both operands are 
zero. Because during sign resolution two sign positions 
are merged into one, at least one high-order digit of 
the product field is zero. 

The multiply operation is executed in much the same 
manner as in manual arithmetic.t The multiplicand is 
examined one digit at a time, starting with the low-order 
digit, and the entire multiplier is added the number of 
times specified by the multiplicand digit. After the first 
multiplicand digit has been processed, the low-order digit 
of the resulting partial product (PP) is saved as the 
low-order product digit .. The PP is then shifted one digit 
position to the right and brought into computation of the 
next product digit (one order higher than before). This 
time, the multiplier is added to the PP the number of 
times specified by the next digit of the multiplicand, and 
the low-order digit of the new PP thus formed becomes 
the next product digit. The PP is again shifted to the 
right, and the sequence is continued until all digits of the 
multiplicand have been processed. The PP resulting after 
the last multiplicand digit has been processed becomes the 
high-order product. 

Figure 3-15 illustrates a typical repetitive· addition 
sequence used for multiplication. As each multiplicand 
byte is processed, the multiplicand length code (Ll) is 
reduced by one count and compared with the multiplier 
length code (L2). When L1 = L2, all effective 
multiplicand digits have been processed and the operation 
is completed. 

To reduce the number of computations in the multiply 
operation, either a repetitive add or a repetitive subtract 
sequence may be performed. Selection of the sequence is 
dependent on the magnitude of the multiplicand digit 
under consideration. An add sequence is selected if the 
magnitude of the digit is in the range of 1 through 4. For 
multiplicand digits of magnitude 5 or greater, a subtract 
sequence is selected. This sequence deducts the multiplier 
from the PP the number of times specified by the lO's 
complement of the multiplicand digit and then adds 1 to 
the next digit of the multiplicand; increasing the next 
high-order digit of the multiplicand has the effect of 

t The major difference is that the roles of the multiplicand and the 
multiplier are reversed. Because of its size (up to 16 bytes), the 
entire multiplicand cannot be held in the CPU at one time. For 
this reason, the full multiplier (up to 8 bytes) is fetched to the 
CPU and multiplied by the individual digits of the multiplicand, 
which is fetched from main storage 1 byte at a time. 
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adding the multiplier 10 times. For example, the equiva­
lent of a multiplication by 7 is subtracting the operand 3 
times to obtain a negative PP and then effectively adding 
the operand to the PP 10 times. 

An example of a typical subtract sequence used for 
multiplication is shown in Figure 3-16. Note that the PP 
resulting from a subtract operation is in lO's complement 
form. When the lO's complement PP is shifted right, its 
high-order digit position must be extended with a 9. 

Following are general and detailed descriptions of the 
multiply microprogram. The general description outlines 
the overall structure of the microprogram, enumerates its 
major functional steps and sequences, and explains their 
relationship to the overall operation. The detailed descrip­
tion analyzes each sequence· individually, making specific 
references to the register-to-register data transfer in the 
CPU. 

General Description 

Upon entering the multiply microprogram, the following 
actions have been performed by SS I-Fetch: 
1. A D request has been issued for the doubleword 

containing the low-order multiplicand byte. 
2. The low-order multiplicand address has been placed 

intoD. 
3. The IC contents have been transferred to the LSWR, 

and the high-order multiplier address has been placed 
into the IC. 
An overall flowchart of the multiply microprogram and 

the general data path used for its execution are shown in 
Sheet 1, of Diagram 5·305, FEMDM. The major sub­
routines and functional steps, shown in the figure, are 
explained below. Additional simplified diagrams are pro­
vided as an aid in visualizing the data handling performed. 
For the most part, these diagrams do not show the gates 
and data paths used in the CPU, but are intended solely to 
convey how the multiply algorithm is implemented. For 
purposes of illustration, a seven-byte multiplicand and a 
four-byte multiplier are assumed in these diagrams. 

General Initialization Sequence 

This sequence gates the multiplicand from the SDBO to 
ST and sets the STC to the low-order multiplicand byte. It 
increments the address in the IC to the address of the 
low-order byte of the multiplier by adding L2 to the IC 
contents. An IC request is issued for the multiplier 
(second operand), starting at the low-order address. The 
contents of D are transferred to the STC. 

The GIS gates the multiplier from the SDBO to AB and 
sets the ABC to the low-order multiplier byte. It also 
performs several actions relating to the subsequent left. 
adjust sequence of the multiplier: 
1. The low-order digit of the multiplicand (in ST) is 

transferred to F(0-3). 
2. STAT Fis set if the sign of the multiplicand is negative 

and ST AT E is set if the sign is invalid. 
3. The . multiplier length code, L2, is transferred to 

F(4-7). 
The functions performed by the GIS are illustrated in 

Figure 3-17. 

Specification Test 

This test verifies that the length codes for both operands 
in the instruction .are correctly specified; i.e., L2 specifies 
eight bytes or less and is smaller than Ll. 

Incorrect Specification 

Detection of an invalid specification forces a specification 
program interruption. The instruction address is restored 
from the IC to the LSWR, and the instruction is ended. 

Multiplier Left-Adjust Sequence 

The multiplier bytes are transferred from AB to ST in 
such a manner that the high-order multiplier byte 
occupies the leftmost byte in ST. ST AT C is set· if the 
multiplier sign is negative and STAT E is set if the 
multiplier sign is invalid. 

Initial contents 
of 1st operand 

Contents of 
2nd operand 

Final contents of 
1st operand 

High-Order Effective 
Zero Field Multiplicand Digits 

Maximum multiplicand 
size is limited to 16 bytes. 

x Effective 
Multiplier 
Digits 

Maximum 
multiplier size 
is limited to 8 
bytes and must 
be smaller than 
multiplicand. 

Figure 3-14. Operand Specifications for Decimal Multiply Instruction 
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Effective Product Digits 

Maximum prod1.1ct size 
is limited to 16 bytes. 



Multiply (+204) by (-32) to obtain a product of ( -6,528). 

Execution: 

Multiplicand Multiplier Product 

Byte Byte Byte Byte (L 1 = 3) x Byte Byte (L2 = l) Byte Byte Byte (Ll = 3) 
3 0 l 2 3 0 l 

0000204+ 0 3 

Shift multiplier 
right (to drop sign) 

Extend high-order 
digit with zero-+ 

0 
Add multiplier 4 times. O 

0 

0 

Partial product 0 

Shift partial prod­
uct right (to drop 
digit). 

Multiplicand digit zero, 
no addition required. 

0 

0 

0 

0 

0 0 

Shift partial prod­
uct right (to drop 
digit). 

Extend high-order 
digit with zero. 

) 
Add multiplier twice to 

{~ partial product, 0 
0 

0 

3 2 

3 2 

3 2 
3 2 

2 8 

1 2 

0 
3 2 

3 2 

. Partial product 0 0 6 5 

Shift partial prod­
uct right (to drop 
digit). 

Extend high-order 
digit with zero. "1 

Multiplicand digit zero, T 
no addition required. 

I At this time, l l = L2, indicating 
that multiplication has been 
completed. l 1 is reduced once 
for each multiplicand byte 
that is processed. When Ll = l2, 
all effective multiplicand 
digits have been processed. 

Figure 3-15. Typical Multiply Add Sequence 

0 l 

0 0 0 6 

Compare signs Signs nat 
----------+---+--+-+--'alike 

Save low-order 
digit. 

Save low-order 
digit .. 

Save low-order 
digit. 

Save partial product 
as high-order product 
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Multiply (-+827) by (+25) to obtain a product of (+20,675), 

Execution: 

Multiplicand Multiplier 

Byte Byte Byte Byte Byte Byte 
3 (Ll= 3) x 0 l 0 l 2 

0000827+ 0 2 

( 

At this time, L l = L2 , indicating 
that m~ltipl ication has been 
completed. L 1 is reduced once 
for each multiplicand byte 
that is processed. When L l • L2, 
all effective multiplicand 
digits have been processed. 

]Q's 

Shift multiplier 
right (to drop sign). 
Extend high-
order digit wi~ 
zero. 0 0 2 5 

T r·~" 
3 ------

Subtract: 

! 
Convert multiplier to lO's 
complement form and add 
3 times. 

' ~ Add l to next digit 
of multiplicand. 

9 9 7 5 

9 9 7 5 

Partial product 9 9 7 5 
in lO's complement form ______ ,_. 

-9 9 2 5 

;i~~: rt~rtJ~~:~~:~t)'. HH~ 
Extend high-order J. . 
digit with 9. · T 

2+1• 3 _. Add: -i~ ~ : ! 
Add multiplier (true) O O 2 5 

to partial product 3 times. 0 0 2 5 

Partial product in true form 0 0 6 7 

~~~plement Shift partial product ~~~ l right (to drop digit). 

Extend high-order T · 
2 

__.,. Subtract~igit with zero. {~ ~ ; : 

Convert multiplier/ 9 9 7 5 
to lO's complement form 9 9 5 6 
and add to partial product I 
2 times. 

Partial product in 10' s 
complement form 

Adcf l to next digit 
of multiplicand. 

Shift partial product 
right (to drop digit). 

i~ 
0 + l = l 

Extend high-order"-]_ 
_.,. Add digit with 9. f 

Add multi plier (true) { 9 9 9 5 
to partial product l time. O O 2 5 

-~------1 
2 0 

Figure 3-16. Typical Multiply Subtract Sequence 
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(L2 = l) 
Byte 

0 

Product 

Byte Byte 
l 2 

0 0 2 0 

Byte 
3 

Compare signs------1---11--+--4--

Save low-order 
digit. 

Save law-order 
digit. 

Save low-order 
digit. 

Save portiol product 
as high-order product, 

(Ll =3) 

Signs alike 



Address of 
low-order byte 

Address af 
high-order byte 
(GPR per 81, +DI) l (GPRr 01,; DH LI) 

;------------
Multiplicand 
(7 Bytes) 

Address of Address of 
.1igh-order byte low-order byte 
(GPR per 82, (GPR per B2, 

. "'' J . T"' 
rr------

Multiplier 
(4 Bytes) 

Doubleword 
boundaries 
in main 
st a rage 

-f-a Bytes ___ ..,_ ___ 8 Bytes-+~ 8 Bytes-----1----
1 
s Bytes --1 

5 multiplicand 
bytes remain 
in main storage 

Doubleword containing 
2 multiplicand bytes is 
accessed during I-Fetch 
ond ploced into ST 
duri~g GIS 

Set STC to 
low-order 
multiplicand 
byte 

Set if invalid 

Set if minus STAT F 
T 

figure 3-17. Data Handling During GIS of Decunal Multiply 

STATE 

1 multiplier 
byte remains 
in main storage· 

I Ll I L2 

I 0111 1 0011 

I 
I 
I 

Doubleword containing 
3 multiplier bytes is 
requested during GI S 
and placed into AB 

Set ABC to 
low-order 
multiplier 
byte. 
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The left-adjust transfer is initiated by setting the STC 
per L2 (Figure 3-18). Because the maximum multiplier 
length is limited to eight bytes, only three of the four bit 
positions in L2 are needed to specify the length code; i.e., 
the count in L2 may range from a minimum of 0000 (for 
1 byte) to a maximum of 0111 (for eight bytes). Setting 
the STC per L2 automatically selects, according to the 
multiplier size, the correct ST position for the low-order 
byte of the multiplier; the number of bytes to the left of 
the selected ST position corresponds to the length field of 
the full multiplier. 

The transfer is performed one byte at a time, through 
the serial adder, starting with the low-order multiplier 
byte. ABC, STC, and L2 are decremented by 1 for each 
byte transferred. The multiplier is completely transferred 
when the L2 count is decremented to zero. Because the 
first IC request (during I-Fetch) does not necessarily gate 
the full multiplier to AB; it may be necessary to fetch the 
balance of the multiplier from main storage. (This fetch 
occurs if the ABC steps to zero before L2 steps to zero.) 

After exit from the left-adjust sequence, the full 
multiplier has been fetched and left-adjusted to ST. Note 

Multiplier 
(4 Bytes) 

that the original ST contents (multiplicand) have been 
destroyed except for the low-order multiplicand byte, 
which is saved during the GIS; i.e.,· digit placed into 
F(0-3) and sign-recorded by STAT F. The destroyed 
multiplicand bytes are later refetched from main storage, 
one byte at a time, as required by the multiply operation. 

L2 Restoration 

During transfer of the multiplier bytes from AB to ST, the 
L2 count in E( 12-15) is decremented by 1 for each byte 
transferred. At the completion of the left-adjust sequence, 
L2 has been decremented to zero. The initial L2 count, 
saved in F( 4-7) during the GIS, is now restored to 
E(12-15). The L2 count will be required by the 
subsequent multiply sequence. 

Multiplier R ight-4 Shift to Drop Sign 

In the multiply operation to follow, product bytes are 
developed by adding the entire multiplier the number of 
times specified by successive digits of the multiplicand. 
The sign of the multiplier does not enter into the 

, ... ,.~------8 Bytes--------1"94--------8 Bytes------<•._, 

I 
I 
I 
I 
I 
I 
I 

Doubleword containing high-order 
byte is fetched .by left-adjust sequence 
after initial AB contents have been 
transferred to ST 

+ I 

3 multiplier bytes 
accessed during GIS 
and place into AB 

..---~--,---..,--·-... -... -.... -... -------... IA I B 1 A I 
I I lo sl L_ __ -- --l_ - - _ E _..._,..........._,,.__.~__,...-__.. __ __. ____ __, 

I I I T 

o o1o o1o o1o 

E 

STC set per L2 
ta select correct 
position far low· 
order byte in ST 

I Ll L2 
I 0111 

IT,l 
Law-Order ~ J Multiplier . J r--Left-Adjusted---, Multiplicand Digit 

Figure 3-18. Data Handling During Multiplier Left-Adjust Sequence 
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Set if 
Invalid STAT F 

T 

Set if 
Minus STAT C 

T 

Multiplier 
Sign 

STAT F 

D 
Multiplicand 
Sign 



repetitive addition sequence and must be discarded. The 
sign is discarded by shifting the multiplier in ST 4 bit 
positions (one digit) to the right as illustrated below. This 
action places the sign beyond the rightmost multiplier 
byte selected by the STC for subsequent computation. 

Multiplier bytes 
selected for STC 
processing by STC 0 l l 

I I I I 

s I I I T 
I I I 

oJooJooloos 

Sign Handling 

I 
I 

l 
I 
I 

l 
I 
I 

J 

A test of STAT F and STAT C is made to establish the 
product sign algebraically: 
1. Signs alike (both STATS set or reset)- set sign plus. 
2. Signs not alike (one STAT set and the other reset) -

set sign minus. 

Upon establishing the correct product sign, it is placed 
into F( 4-7). 

Basic Multiply Add or Subtract Sequence for Left Digit 

This sequence processes the digit in the left portion of the 
multiplicand byte. (The low-order byte of the multipli­
cand always contains the digit in the left portion and the 
sign in the right portion.) The entire multiplier (in ST) is 
added or subtracted the number of times specified by the 
left digit of the multiplicand saved in F(0-3). An add 
sequence is performed if the digit in F(0-3) is 4 or less; a 
subtract sequence, if 5 or greater. A data program 
interruption occurs prior to a storage cycle if an invalid 
multiplicand or multiplier digit or sign is detected. The PP 
resulting from the add or subtract sequence replaces the 
multiplicand in ST. 

Product Byte Store 

The product is stored into main storage one byte at a 
time. After exit from the left-digit sequence, one com­
plete byte of product has been developed and must be 
stored. If the exit is made for the first time, this byte 
consists of the product sign (in F) and the low-order digit 
of PP. (in ST). All product bytes generated thereafter 
consist of two digits: one (in F) has been saved from a 
previous PP developed in the right digit sequence, and the 

second is the low-order digit of a new PP (in ST) obtained 
in the left-digit sequence. 

Multiplicand Request 

A request from D is issued for the next byte of the 
multiplicand in main storage. 

Partial Product Right-4 Shift to Drop Digit 

The low-order digit of PP has been stored as a product 
digit and must not enter into subsequent computation. 
The digit is discarded by shifting the PP in ST four bit 
positions to the right. This action places the digit beyond 
the rightmost PP byte selected by the STC for computa­
tion of the next product digit. 

Partial product bytes 
selected for 
processing by STC 

s 
D 

STC 
0 1 1 

T 

s I I I T 
I I I 

o 1 oo 1 oo 1 ooo 

L1 =L2 

This test establishes whether all digits of the multiplicand 
have been processed. At the start of the multiply 
operation, the total field length specified by Ll includes a 
zero field equal in size to the multiplier plus the effective 
field of the multiplicand: 

L1 = L2 + number of effective multiplicand bytes. 

Because L1 is decremented once after each effective 
multiplicand byte is processed, all the effective multipli­
cand bytes have been processed when LI equals L2. 

Complete Multiplicand Byte Fetch 

If L1 is not equal to L2, the multiply sequence is 
continued. The next byte of the multiplicand (requested 
earlier) is selected from the SDBO and placed into F. 
Control is then transferred to the add or subtract 
sequence for the rigl).t digit of the multiplicand. 

Basic Multiply Add or Subtract Sequence for 
Right Digit, and ShiftRight-4 Sequence 

This sequence processes the digit in the right portion of 
the multiplicand byte. The entire multiplier is added to 
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(or subtracted from) the PP in ST. The number of add or 
subtract operations is controlled by the right digit of the 
multiplicand contained in F( 4-7). After a new PP has 
been developed in ST, its low-order digit replaces the right 
digit of the multiplicand in F( 4-7). The PP is then shifted 
four bit positions to the right to drop the low-order digit, 
and an entry is made to the left-digit sequence to process 
the next multiplicand digit contained in F(0-3). 

Multiplicand Zero Test and Partial Product Store 

When Ll · equals L2, all the effective digits of the 
multiplicand have been processed. The remaining multipli­
cand bytes are fetched from main storage and tested for 
zero. Detection of !l nonzero digit results in an interrup­
tion. After the zero test is completed, the PP is stored as 
the high-order product into main storage and the instruc­
tion is ended. 

Detailed Description 

• STATE is set if digit or sign is invalid. 

• STAT A is set if digit is not zero. 

• STAT G is set if multiplier is zero. 

• ST AT H is set to generate hot carry. 

• STAT Dis set to add 1 to next digit. 

Sheet 2 of Diagram 5-305 is a detailed flowchart of the 
multiply microprogram. This flowchart is an expanded 
version of the overall flowchart, showing the data 
handling used in the various subroutines of the Multiply 
instruction. For the most part, this data handling is 
straightforward and requires no explanation. Those areas 
in need of clarification are discussed in the following 
subparagraphs. 

General Initialization Sequence 

This sequence shares a common microprogram with the 
Divide instruction. An appropriate branch is taken to 
enter either the divide or the multiply sequence. 

Multiplier Left-Adjust Sequence 

The ABC has been set to select the low-order multiplier 
byte in AB. The STC is now set per L2, E(12-15). The 
transfer is performed one byte at a time via the serial 
adder. As each byte is gated to the serial adder, it is tested 
for nonzero value and for invalid digits. ST AT E is set 
upon detection of an invalid digit or sign, and STAT A is 
set upon detection of a nonzero digit. If upon completion 
of the left-adjust transfer ST AT A remains reset, the 
multiplier value is zero. 
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Multiplier Right-4 Shift and L2 Restoration 

The multiplier is shifted four bit positions to the right and 
transferred from ST to AB. L2 is transferred from F( 4-7) 
to E( 12-15). Both actions are performed in parallel. As 
the high-order multiplier bytes are gated from S to PAA 
and the right-4 shift is initiated, the L2 count is 
transferred from F(4-7), via the serial adder, to 
8(28-31). After the right-4 shift has been performed 
through the parallel adder, the L2 count is gated from S 
to PAA and the zero count in E(12-15) is gated to PAB. 
The net result (original L2 count) is gated from PAL to 
E(12-15). 

Sign Handling 

STAT G is set if STAT A has not been set during the 
preceding sequence. This step is taken to indicate a zero 
multiplier condition which requires special action. 

Basic Multiply Add or Subtract Sequence 

To perform a branch on the value of the multiplicand 
digit, the digit must be in SAL( 4-7). This requirement is 
dictated by the 'W=(l-15)' micro-order which samples 
SAL( 4-7). For this reason, the contents of F are 
cross-gated through the serial adder and placed back into 
F. SAL( 4-7) is ·then examined for the following values: 
1. SAL(4-7) = 0 

No addition cycles are required. 
2. SAL( 4-7) = 1 through 4 

The multiplier in AB is added to the PP in ST the 
number of times specified by the digit value. 

3. SAL( 4-7) = 5 through 9 
The multiplier in AB is subtracted from the PP in ST 
the number of times specified by the lO's complement 
of the digit value (10 minus the digit value). STAT His 
set to supply a hot carry for the subtract sequence. 
STAT D is set to add a 1 to the next digit of the 
multiplicand (equivalent to addµig the multiplicand 10 
times). · 

4. SAL( 4-7) = invalid digit 
The definition of an invalid digit is dependent on 
whether the digit to be processed is the first digit of 
the multiplicand; i.e., the digit immediately following 
the sign. If it is the first digit, then any value in the 
range of 10 through 15 is considered invalid and sets 
the interrupt trigger. After the first digit has been 
processed, a value of 10 is permissible in SAL( 4-7), 
provided that it was formed by an original value of 9 to 
which a 1 has been added because STAT D was set. 
Under these conditions, the value of 10 does not set 
the interrupt trigger, no addition cycles are required, 
and a carry is propagated to the next digit by· setting 
STATD. 



The multiplier-to-PP addition or subtraction is done 
one byte at a time in the serial adder, with the AB byte 
gated true +6 if adding and complemen~ if subtracting. 
The ABC and STC are both initially set to the L2 value 
and are decremented by 1 each time a byte is processed. 
When the ABC count is stepped to 000, F( 4-7) is 
examined to determine whether further additions or 
subtractions are necessary. If so, the STC and ABC are 
again set to the L2 value, F( 4-7) is incremented if 
subtracting or decremented if adding, and the multiplier is 
again added to or subtracted from the PP. The micro­
order which steps the digit in F( 4-7) is executed after the 
digit has been examined to determine whether further add 
or subtract cycles are required. For this reason, when a 
branch on F( 4-7) is being made, a value of 1 when adding 
or of 9 when subtracting indicates that the multiplicand 
digit is completely processed. The low-order digit of the 
PP in ST is the product digit developed. 

Product Byte Store, PP Right-4 Shift to 
Drop Digit, Multiplicand Request 

These three functions are accomplished in parallel fashion. 
After initiating the store operation, control is transferred 
to the shift-right-4 sequence. When the ST contents have 
been temporarily transferred, the store operation is 
resumed; the product byte is cross-gated, transferred to 
ST, and stored into main storage per the D·address. 
Thereafter, the microprogram requests the next multipli­
cand byte from main storage and simultaneously com­
pletes the right-4 shift. 

As illustrated in Figure 3-19, the PP is shifted right-4 
via the parallel adder. This shifting is done in several steps, 
with the LSWR being used as temporary storage for the 
operand. Upon completion of the right-4 shift, B(64-67) 
is normally inserted as the high-order S digit. B( 64-67) 
was previously· set to 0 if the value in F( 4-7) was less 
than 5, or to 9 if F( 4-7) was 5 or greater, for then the PP 
was in lO's complement form. An exception is made when 
STAT G is set, indicating an all-zero multiplier. In this 
case, B( 64-67) is not inserted into high-order PP because 
it should always be zero. 

Complete Multiplicand Byte Fetch 

If there are more multiplicand digits to be processed (Ll 
i:- L2), the contents of T are temporarily transferred to 
the LSWR and either the left or the right half of the 
operanci is. gated from the SDBO to T. The next byte of 
the multiplicand is then selected per the STC and 
transferred to F. (Note that if the left halfword has been 

gated to T, the high-order STC bit is forced to 1, because, 
otherwise, the STC would select a byte from S.) 

Basic Multiply Add or Subtract Sequence 
for Right Digit, and Shift Right-4 Sequence 

The next digit of the multiplicand in F( 4-7) is examined, 
STAT's D and H are set or reset as required, a 0 or 9 is 
placed into B(64-67), and the appropriate add or 
subtract loop is entered. After exit from the add or 
subtract loop, the low-order digit of the resulting PP is 
saved in F( 4-7). A right-4 shift is then performed on the 
PP in ST so that the low-order digit is dropped. At the 
completion of the right-4 shift, the left-digit sequence is 
resumed. As explained previously,' the contents of F are 
cross-gated and the next digit of the multiplicand is 
sampled from SAL( 4-7). 

Multiplicand Zero Test and Partial Product Store 

An entry to this routine is made from the left-digit 
sequence. By operand definition, the remaining high-order 
multiplicand bytes should all be zeros. The PP in ST is the 
high-order product and must be stored into the high-order 
portion of the initial multiplicand field. However, if STAT 
D is set at this time, the multiplier must be added to the 
PP once more. After this has been done, the contents of 
ST are transferred to AB and the high-order multiplicand 
bytes are fetched to ST (per the D-address). The STC is 
set per D(21-23) to designate the first high-order 
multiplicand byte to be tested for zero. The ABC is set 
per L2 to designate the first high-order PP byte in AB. 

The selected multiplicand byte in ST is tested for zero; 
then the selected PP byte in AB is transferred via the serial 
adder to ST, and the corresponding mark trigger is set. 
ABC, STC, and L1 are decremented by 1 for each byte 
transferred. ·If a nonzero byte is detected in the high-order 
field of the multiplicand, the interrupt trigger is set and 
the instruction is ended. 

The AB-to-ST byte transfer is continued until L1 or 
STC is stepped to zero, at which time the ST contents are 
stored into main storage. If the STC has been stepped to 
zero (Ll * 1111), the next high-order bytes of the 
multiplicand are fetched to ST and the sequence is 
resumed. If L1 has been stepped to zero (Ll = 1111), the 
instruction is ended. 

DIVIDE, DP (FD) 

e Divide 1st operand (in storage) by 2nd operand (in 
storage) and place result into 1st operand location 
(quotient is leftmost in 1st operand location; remain­
der, rightmost). 
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32 

B. Step 2 

Figure 3-19. Data Flow for Right-4 Shift of ST to AB, Decimal Multiply 
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• SS format: 

FD l Ll l L2 l Bl 15~ Dl I B2 l~G 
0 7 8 11 12 115 16 19 20 31 32 35 36 47 

! " IJ _f 
Fetch doubleword containing Fetch doubleword containing 
low-order byte of 1st operand low-order byte of 2nd 
(dividend) per contents of operand (divisor) per contents 
GPR addressed by Bl, + Dl + of GPR addressed by B2, + D2 

L1 . Test sign. + L2. 

t _J_:' 

Fetch doubleword containing 
Align low-order divisor and 
fetch doubleword containing 

high-order byte of dividend high-order portion of divisor 
per contents of GPR addressed per contents of GPR addressed 
by Bl, + Dl. by B2, + D2. 

l J_2 
Subtract full divisor from 

I correct number of dividend 
digits until overdraw occurs, 

i 
Record number of 
subtractions (less 1} 
as quotient digit, 

I 
Restore partial remainder 
and shift one digit 
position to left 

i 
Subtract full diviso·r from 
partial remainder until 
overdraw occurs. 

J 
Record number of 
subtractions (less 1) 
as quotient digit. 

I 
f i 

Store quotient byte at 1st [ Develop next 
operand address, starting quotient byte 
at high-order byte. 

• Maximum dividend field (1st operand) is 16 bytes. 

• Maximum divisor field (2nd operand) is 8 bytes. 

• 12 specifies byte length for divisor and remainder. 

• 12 > 7 or 12 ~ 11 causes specification program 
interruption. 

• Division accomplished by repetitive subtraction. 

• Dividend field must initially contain sufficient number 
of high-order zeros to make possible storing of quo­
tient and remainder. 

The Decimal Divide instruction replaces the dividend (1st 
operand) with the quotient and the remainder. To be able 
to store the quotient and the remainder into the dividend 
field at all times, several restrictions are imposed on the 
initial size of the dividend and the divisor (Figure 3-20). 

The maximum dividend field is 16 bytes long. It is 
eventually replaced by the quotient, which is stored 
leftmost in the field, and by the remainder, which is 
stored rightmost. The size of the remainder is equal to the 
initial divisor size and is therefore predefined by length 
code 12. Because the minimum remainder size is 1 byte 
(12 = 0), the maximum quotient size is limited to 15 
bytes. By definition, the size of the divisor (and remain­
der) cannot exceed 8 bytes. A divisor greater than 8 bytes, 
or in excess of the dividend, is recognized as a specifica­
tion error; the instruction is suppressed and a specification 
program interruption occurs. 

The operand signs are tested for validity before 
instruction execution, and, if either sign is invalid, a data 

·program interruption is taken before the contents of main 
sto~age are altered. 

To make sure that the quotient and remainder will fit 
into the destination field, the magnitudes of the dividend 
and the divisor are compared before entering the divide 
sequence. This comparison, called "divide check" or "trial 
subtraction," yields the number of quotient digits that 
will result if division is carried out. If the predicted 
quotient is larger than that allowed, the instruction is 
suppressed and a decimal divide program interruption 
occurs. For this reason, an overflow condition cannot 
exist upon execution of a Divide instruction. 

The dividend, divisor, quotient, and remainder are all 
signed integers, right-aligned in their fields. The sign of the 
quotient is determined algebraically from the dividend 
and divisor signs. The sign of the remainder is the same as 
the sign of the dividend. These rules hold true even when 
the quotient or the remainder is zero. 

The divide operation is executed in much the same 
manner as in manual arithmetic. First, the divisor is 
properly aligned with the high-order dividend; then, by 
repeatedly subtracting the divisor from the dividend and 
counting the number of successful subtractions, the 
high-order quotient digit is determined. The partial 
remainder resulting from the last successful subtraction is 
shifted one digit position to the left, and the next 
lower-order dividend digit is inserted at the low-order end 
of the partial remainder. To obtain the next quotient 
digit, the divisor Is again subtracted from the partial 
remainder. This sequence is repeated until all dividend 
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Initial contents 
of 1st operand 

Contents of 
2nd operand 

Final contents 
of 1st operand 

B Dividend • ....... Quotient Remainder 

Maximum dividend size 
is limited to 16 bytes 

Figure 3-20. Operand Specifications for Decimal Divide. 

Maximum divisor 
size is limited to 
8 bytes and must 
be less than the 
dividend 

digits have been processed. The remainder resulting from 
the final successful subtraction is given the sign of the 
dividend and stored into the low-order end of the 
dividend field. · 

Figure 3-21 illustrates a typical repetitive subtract 
sequence used to accomplish division. Initially, a suffi­
cient number of high-order dividend digits must be 
selected to perform the first successful subtraction. 
Successful subtractions of the divisor from the dividend 
occur until the partial remainder is overdrawn. The divisor 
is then added back once to restore the correct partial 
remainder. At the same time, the quotient digit is 
decremented by 1 to compensate for the overdraw. As 
each dividend byte. is processed, the .length code of the 
dividend (Ll) is reduced by 1 and compared with the 
length code of the divisor (L2). Because the size of the 
remainder is also defined by length code L2, the condition 
of Ll equal to L2 indicates that all the effective bytes of 
the dividend have been processed, and the remainder is to 
be stored into the resf:. of the destination field. Note that, 
to be able to fit the quotient and the remainder into the 
destination field, this field must initially contain high­
order zeros. A data program interruption occurs if the 
dividend does not have at least one leading zero. 

Following are general and detailed descriptions of the 
divide microprogram. The general description outlines the 
overall structure of the microprogram, enumerates its 
major functional steps and subroutines, and explains their 
relationship to the overall operation. The detailed descrip­
tion analyzes each sequence individually, making specific 
references to the register-to-register data transfer in the 
CPU. 

General Description 

Upon entering the divide microprogram, the following 
actions have been performed by SS I-Fetch: 
1. A D-request has been issued for the doubleword 

containing the low-order dividend byte. 
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Maximum quotient and 
remainder size is 
I imited to 16 bytes: 

I . 
Maximum I Maximum 
quotient= 15 bytes I remainder = 8 bytes 

: (Minimum remainder is 
I 1 byte) 
I (Remainder is .always 
I equol in size to the 
I divisor) 

2. The low-order dividend address has been placed into D. 
3. The contents of the IC have been transferred to the 

LSWR, and the high-order divisor address has been 
placed into the IC. 
An overall flowchart of the divide microprogram and 

the general data path used for its execution are shown in 
Sheet 1 of Diagram 5-306, FEMDM. The major subrou­
tines and functional steps, shown in the figure, are 
explained in the following subparagraphs. Additional 
simplified diagrams are provided as an aid in visualizing 
the data handling performed. For the most part, these 
diagrams do not show the gates and data paths used in the 
CPU, but are intended solely to convey how the divide 
algorithm is implemented. For purposes of illustration, a 
nine-byte dividend and a three-byte divisor are assumed in 
these diagrams. 

General Initialization Sequence 

This sequence shares a common microprogram with the 
Multiply instruction. An appropriate branch is taken to 
enter either the. divide or the multiply sequence. GIS gates 
the low-order dividend from the SDBO to ST, increments 
the IC by L2 to address the low-order byte of the divisor, 
issues an IC request for the divisor, and gates the divisor 
to AB. The ABC is set to the low-order divisor byte in AB 
(Figure 3-22), and the STCis set per L2. STATE is set if 
the dividend sign is invalid, and D is decremented by L1 
to the address of the high-order byte of the dividend. 

Specification Test 

This test verifies that the length codes for both operands 
in the instruction are correctly specified; i.e., L2 specifies 
eight bytes or less and is smaller than L1. 

Incorrect SpecificatiOIJ 

Detection of an invalid specification forces a specification 
program interruption. The instruction address is restored 
to the LSWR, and the instruction is ended. 



Divide (+1315) by (-57) to obtain a quotient 
of (-23) and a remainder of (+4). 

Execution: 
low-order byte is oddre55ed to c:heck 
for valid sign, then D is decremented 
by l 1 to address high-order byte. 

(Ll : 3) 

~ 
Select correct number 
of high"Order dividend 
digits to perform suc­
c:essful subtraction. 

~ 

7 4 

0 7 

0 0 

Subtract 

Subtrpct 

Subtract 

Record 1st 
Subtraction 

Record 2nd 
Subt1ttction 

Record 3rd 
Subtraction 

r Restore 
remainder (+). 0 7 

(-!) 

JI/ 
0 

7 

7 

4 

7 

Restore 7 
remainder 

4 

Add Deduct 1. 

Rec:ord 1st 
Subtract Subtraction 

Remainder + 
Record 2nd 

Subtract Subtivction 

Remainder + 
Record 3rd 

Subtract SUbtraction 

Remainder + 
Record 4th 

Subtract Subtraction 

Remainder -

AIJd Deduc:t 1 

At this time, l I = l2,indicating that 
all dividend bytes have been processed. 
Rest of destination field is reserved 
for remainder. 

Store Remainder 

Figure 3-21. Example of a Typical Divide Sequence 

t 
Save Sign 

Develop 1st 
quotient digit 

4 

Store 

Compare signs: 

They are not cilike 

(Ll: 3) 
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Address of 
high-order byte (G""[",>Dl) 

Dividend 
(9 Bytes) 

Address of 
low-order byte 

(GPR P" Bir DI+ LI) 

Address of Address of 
high-order byte low-order byte 
(GPR per B2, + 02) (GPR per B2, + 02 + L2) 

l l 
Divisor 
(3 Bytes) 

boundaries 8 B 8 B . 8 B t 8 B t Doubleword += ------1-1+- --1 
in main storage ytes-----t---- ytes Yes ---------- Yes 

6 dividend bytes remain 
in main storage. 

Doubleword containing 3 
dividend bytes is 

1 divisor byte remains 
in main storage. 

accessed during I-Fetch and 
placed into ST during G IS. 

T 

STC set to where the 
low-order divisor byte 
will be placed. 

Set if invalid 

Set 
if minus, 
then 
reset 

STAT F 

I L1 I L2 

1100010010 

Figure 3-22. Data Handling During GIS of Decimal Divide 
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Doubleword containing 2 
divisor bytes requested 
during G IS and placed 
into AB. 

Set ABC to low­
order divisor byte 



Divisor Left-Adjust Sequence 

The divisor bytes are transferred from AB to ST in such a 
manner that the high-order divisor byte occupies the 
leftmost byte in ST. STAT C is set if the divisor sign is 
negative. 

The left-adjust transfer is initiated by setting the STC 
per L2 (a function performed during the GIS). Because 
the maximum divisor length is limited to eight bytes, only 
three of the four bit positions in L2 are needed to 
effectively specify the length code; i.e., the count in L2 
may range from a minimum of 0000 (for one byte) to a 
maximum of 0111 (for eight bytes). Setting the STC per 
L2 automatically selects, according to the divisor size, the 
correct ST position for the low-order byte of the divisor; 
the number of bytes to the left of the selected ST position 
corresponds to the length field of the full divisor (Figure 
3-23). The actual transfer is performed one byte at a 
time, through the serial adder, starting with the low-order 

Divisor 
(3 Bytes) 

divisor byte. ABC, STC, and L2 are decremented by 1 for 
each byte transferred. The divisor is completely trans­
ferred when L2 is decremented to zero. Because the first 
IC request (during I-Fetch) does not necessarily access the 
full divisor to AB, it may be necessary to fetch the 
balance of the divisor from main storage. (This fetch 
occurs if the ABC steps to zero before L2 st.eps to zero.) 

After exit from the Divisor Left-Adjust sequence, the 
full divisor has been fetched and left-adjusted to ST. 

Dividend Fetch and'Left-Adjust Sequence 

This sequence fetches a sufficient number of high-order 
dividend bytes to perform a trial subtraction of the divisor 
from the dividend. The full divisor is subtracted once 
from the high-order dividend. Because the maximum 
divisor size is eight bytes, eight high-order dividend bytes 
are required for trial subtraction. If the dividend is eight 
bytes or less, it is completely fetched during this 

.. ~------ 8 Bytes ______ .., ____ _..._ __ 8 Bytes _____ _.,·.,. .. 1 

I 
I 
I 
I 
I 
I 
I 
~ 

I 
Doubleword containing the high-order b;te I 
is fetched by the left-adjust sequence after I 
the initial AB contents have been transferred 
to ST. 

: I 
: I 

ABC 

Doubleword containing 
2 divisor bytes was 
placed into AB during GIS. 

Selects low-order 
001 divisor byte. 

i ! ....... ..... .... .... ... ... ,... ...................................... ... 
IA Is I A B 
I I I L _______ I_ ____ _iE/ 

....... 
( 

....... 
....... 

./ 

I I I 
DDIDD OSI 

/ ....... 

T 

./ 
./ 

/ 
./ 

I 
........ 

Figure 3-23.· Data Handling During Divisor Left-Adjust Sequence 

Set if minus 

F 
L 1 I L2 

1000!0010 

STAT C 
Divisor Sign 

T 
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sequence; if greater than eight bytes, only the first eight 
high-order bytes are fetched. The dividend is fetched to 
AB and then transferred to ST in such a manner that the 
high-order byte occupies the leftmost byte in ST. 

Upon entry into this sequence, ST is assumed to be 
completely occupied by the divisor. (If the divisor is four 
bytes or less, it is confined solely to S; if greater than four 
bytes, the divisor extends into T .) Because left-adjustment 
of the dividend requires the use of ST, the divisor must be 
transferred from ST; S is gated to the parallel adder and 
held in PAL, and T is stored into the LSWR (Figure 
3-24).t 

A request per the high-order dividend address is issued 
from D. Upon. arrival of the dividend from main storage, 
the SDBO is gated to AB. The ABC is set per D(21-23) to 
select the high-order dividend byte. The left-adjust trans­
fer is initiated by setting STC to 000, thus selecting the 
leftmost byte in ST. The dividend bytes are then 
transferred to ST, starting with the high-order byte. (The 
actual transfer is pel:formed one byte at a time through 
the serial adder.) The ABC and STC are incremented, and 
L1 is decremented by 1 for each byte transferred. If Ll 
steps to zero before the ABC or STC steps to 7, the full 
dividend has been fetched and left-adjusted to ST. 
Because the first request does not necessarily access eight 
bytes of dividend to AB, it may be· necessary to fetch 
additional dividend bytes from main storage. This fetch 
occurs if the ABC steps to 7 before the STC steps to 7 or 
L1 steps to zero. 

Restore l 1 and l2 to E 

Left-adjustment of the divisor and dividend has decre­
mented L2 and Ll to zero. The initial L2 and Ll counts, 
saved in F during GIS, are now restored to E(8-15). 
These counts are required by the subsequent divide 
sequence. 

Assemble Divisor in AB and Dividend in ST 

The divisor in PAL and LSWR is restored to AB. Upon 
completion of this function, both operands are left. 
aligned: the dividend .is in ST, and the divisor is in AB. 

IAD l : . o1o o:o 

t The •-+ HOLD' micro-order is issued on each cycle of the 
left-adjust sequence to hold the S contents in PAL. 
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Trial Subtraction 

The divisor bytes in AB are subtracted from an equivalent 
number of high-order dividend bytes in ST. The remainder 
is then examined to establish whether the divide operation 
to follow will generate a result (quotient plus remainder) 
that will fit into the destination field. A negative 
remainder indicates that the destination field specified in 
the instruction is sufficiently large to accommodate the 
result. A positive remainder, however, indicates that the 
result cannot fit into the destination field, and a decimal 
divide program interruption occurs. 

How prediction by trial subtraction is possible may be 
understood from the following considerations: 
1. By definition, the dividend is at least one order higher 

than the divisor. The high-order digit position in the 
dividend is always zero. 

2. The length code of the divisor (L2) is also the length 
code for the remainder. Consequently, the maximum 
number of quotient bytes that will fit into the 
destination field is equal to L1 minus L2. By operand 
definition, the difference of L1 minus L2 may range 
from a minimum of one byte to a maximum of eight 
bytes. 

~ Dividend I~ Givlsor _ 

M-f---- Ll ---~ • l2 -

Quotient 

Ll-L2 

Remainder 

L2 '--___ ...._ __ _. 

3. To perform the trial subtraction, the high-order divisor 
digit is aligned with the high-order digit of the 
dividend. This is performed in two steps: (1) the 
high-order divisor byte is aligned with the high-order 
byte of the dividend, and (2) because by definition the 
high-order digit position in the dividend is always zero, 
the divisor is shifted right one digit position to align 
the significant digits in both operands. 

Step I 

Step 2 

Shift divisor 1 digit I 
position to right ..... 

STC (Set ot high-order dividend byte) 

ABC (Set at high-order divisor byte) 

+ 

ABC 

* 

~ High-order dividend 
bytes in ST 

Divisor in AB 



STC 

000 

A 

I 

I 

Dividend (9 Bytes) 

] 
8 Bytes ------~--1 ...... 1-------1 8 Bytes 

Doubleword containing 
6 dividend bytes 
is accessed and 
placed into AB. 

Set to high-order 
dividend byte. 

ABC 

010 

B 

I 
I 
I 
l 

Doubleword containing low-order dividend I 
bytes is fetched by left-adjust sequence 
after initial AB contents have been 

1 transferred lo ST 

~ 
I 

is 
I I 

I lo DD D D D D D D D o olo olo s I ___ - _____ J -,- -,- --
I I 
) ) 

I 
I I 

I I 
I 

I I I I I 
I I 

I I 
I I 
I I 
I I 

I I I I I 
DjD DjD DID D D DID DID DID D 

Local 
Storage 

------
LSWR ------

At the start of left.:.Odjust 
sequence,divisor is transferred 
to PAL and LSWR. 

Parallel 
Adder 

PAL 

Figure 3-24. Data Handling During Dividend Fetch and Left-Adjust Sequence 
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4. Because the dividend is at least one order higher than 
the divisor, alignment of the high-order divisor digit 
with that of the dividend is equivalent to multiplying 
the divisor at least 10 times; if the dividend is one 
order higher, the divisor is multiplied 10 times; if two 
orders higher, 100 times; if three orders higher, 1000 
times; and so on. Thus, during the trial subtraction, a 
quantity at least 10 times that of the divisor is 
subtracted from the dividend. 

5. Because the maximum number of quotient digits 
allowed (Ll minus L2) corresponds to the difference 
between the orders of magnitude in the two operands, 
the result of the trial subtraction must always yield a 
negative remainder; otherwise, the number of quotient 
digits that would be generated would not fit into the 
destination field. 

Shift Dividend One Digit to Left 

The dividend is shifted one digit to the left to allow a 
successful subtraction of the divisor from the dividend. 
(To develop the quotient digit, the divisor must be 
repeatedly subtracted from the dividend until a negative 
remainder occurs.) Upon initiating the left-4 shift, a test is 
made to establish whether an additional low-order divi­
dend digit is required for generation of the first quotient 
digit. If required, the next low-order dividend byte is 
fetched from main storage and placed into F. The digit is 
selected from F(0-3) and inserted at the low-order end of 
the dividend in ST. 

ST 

If necessary, fetch next 
low-order dividend byte 
from main storage 

Insert digit at low­
order dividend 
end in ST 

Generate Quotient and Left-Digit Sequence 

The divisor is repeatedly subtracted from the dividend 
until an overdraw occurs; i.e., a negative remainder is 
obtained. The number of successful subtractions is re­
corded and, after the last successful subtraction, becomes 
the high-order quotient digit. This digit is tested for 
validity and then inserted into F(0-3) by the left-digit 
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sequence. This sequence also shifts the partial remainder 
(in ST) one digit to the left and inserts the next low-order 
dividend digit into the low-order end of ST. 

Next low-order 
dividend digit 

High-order quotient \ 
Remaind3r 
will contain 
at least ane 
high-order 
zero 

Correct Low-Order Remainder Byte 

In certain cases, the low-order remainder byte in ST must 
be corrected. The need for correction Will ·become 
apparent when the Divide instruction is analyzed in detail. 
(See "Detailed Description" below.) 

Generate Next Quotient Digit and Right Digit Sequence 

After exit from the left-digit sequence, the operand length 
codes (Ll and L2) are compared to establish whether the 
last byte of the quotient is being processed. If L1 equals 
L2, the correct quotient sign is inserted into F( 4-7). The 
last quotient byte (in F) is stored; then, the partial 
remainder (in ST) is stored into the low-order destination 
field as the final remainder. 

If L1 does not equal L2, the next quotient digit is 
generated and placed into F( 4-1) by the right-digit 
sequence. At the completion of this sequence, one 
complete byte of quotient is contained in F. This byte is 
stored into main storage, and the sequence for the left 
digit of the next quotient byte is started. 

Detailed Description 

• STAT A is set to indicate nonzero divisor. 

• STAT C is set if divisor is negative. 

• ST AT D is set if dividend is less than eight bytes. 

• STATE is set if digit or sign is invalid. 

• ST AT F is set if dividend is negative. 

• STAT G is first set if divisor is five bytes' or greater. 
STAT G is then set again to enter left-digit sequence. 

• STAT H is set to generate hot carry for subtract 
sequence. 



Sheet 2 of Diagram 5-306 is a detailed flowchart of the 
divide microprogram. This figure is an expanded version 
of the overall flowchart, showing the data handling used 
in the various subroutines of the Divide instruction. The 
major subroutines and those areas in need of clarification 
are explained in the following subparagraphs. 

Gener11/ Initialization Sequence 

This sequence shares a common microprogram with the 
Multiply instruction. An appropriate branch is taken to 
enter either the divide or the multiply sequence. 

To test for an invalid dividend sign before the dividend 
is altered in main storage, the low-order dividend ·is 
accessed by a D request during SS I-Fetch. At the start of 
GIS, the doubleword containing the low-order byte of the 
dividend is gated to ST. The IC is incremented by L2 to 
address the low-order divisor byte, and the low-order 
divisor is accessed by an IC request. The contents of D are 
transferred to the STC, length codes LI and L2 are 
transferred to F, the ABC is set to 7, and the IC is 
decremented by 8 to address the next doubleword of the 
divisor. 

The dividend sign is tested, and STAT E is set if the 
sign is invalid. STAT F is set if the dividend sign is 
negative, but is immediately reset. D contains the address 
of the low-order byte of the dividend (contents of GPR 
addressed by B 1, + D 1 + LI). Because the divide 
operation begins at the high-order byte of the dividend, D 
is decremented by LI to address the high-order byte of 
the dividend (contents of GPR addressed by Bl,+ Dl). 
The STC is set per L2. 

A test of L2 (contained in the STC) is performed to 
establish the byte size of the divisor. ST AT G is set if the 
divisor is equal to or greater than five bytes. This function 
increases the execution speed when assembling the divisor 
in AB (see "Assemble Divisor in AB and Dividend in ST"); 
ie., if the divisor is four bytes or smaller, the LSWR need 
not be restored to B. 

Divisor Left-Adjust Sequence 

1. The initial STC setting selects the rightmost ST byte 
that contains the low-order divisor byte. 

2. STAT C is set if the divisor sign is negative. 
3. If the ABC steps to zero before L2 steps to zero, the 

remaining low-order divisor bytes are fetched from 
main storage. 

4. The divisor digits are checked for validity, and ST AT E 
is set if an invalid digit is detected. STAT A is set to 
indicate a nonzero divisor. Division by zero i:esults in a 
decimal divide program interruption during trial 
subtraction. 

5. Upon fetching the full divisor, the divisor address is no 
longer needed, and the instruction address is restored 
to the IC. 

Dividend Fetch and Left Adjust Sequence 

1. The divisor is shifted one digit position to the right so 
that its high-or4er digit will be aligned with that of the 
dividend. (The dividend is not yet available at this 
time.) 

2. The low-order divisor word is transferred from T to the 
LSWR. The high-order divisor word is gated to the 
parallel adder and held in PAL by the '· -+ HOLD' 
micro-order. ' 

3. The STC is set to zero to select the high-order ST byte 
(where the high-order dividend byte will be placed). 

4. A test of the high-order LI bit is performed to 
establish the byte size of the dividend. ST AT D is set if 
the dividend is less than eight bytes. This function 
increased the execution speed upon exit from the trial 
subtraction. A branch per STAT D is made to 
determine whether the complete dividend has been 
fetched. (If STAT D is set, the full dividend has been 
fetched, because at least eight dividend bytes are 
fetched to perform the trial subtraction.) 

5. If the ABC steps to zero before LI or STC steps to 
zero, the D-address is incremented by 8 and a fetch of 
the next doubleword of the dividend is made. The 
destination address for the subsequent quotient bytes 
is then restored by subtracting 8 from D. 

Assemble Divisor in AB and Dividend in ST 

This function is performed in parallel with the LI ·and L2 
restoration sequence. The high-order divisor word is 
transferred from PAL to A, after which restoration of the 
LI and L2 counts is started. During the restoration 
sequence, ST AT G is tested to establish whether the full 
divisor has been assembled in AB. If STAT G is not set, 
the divisor is four bytes or less. Therefore, the full divisor 
was contained in PAL and has been placed into AB. In 
this case, the restoration sequence is completed and an 
exit is made to the trial subtraction routine. 

If STAT G is set, the low-order portion of the divisor is 
contained in the LSWR and must be transferred to B 
before entering the trial subtraction. The LSWR contents 
must be transferred to B via ST, which contains the 
left-aligned dividend. Several execution cycles are used to 
transfer the LSWR contents to B without destroying the 
ST contents. 

Trial Subtraction 

The divisor is subtracted from the dividend one byte at a 
time. After the last subtract cycle, a branch is made on a 
carry condition from SAI.(O). Presence of a carry indi­
cates that the remainder is positive, and the instruction is 
ended. Absence of a carry indicates a negative remainder, 
and that the result of the divide operation will fit into the 
destination field. 
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Dividend (or Partial Remainder) left-4 Shift 

The dividend is shifted left one digit position to perform 
the first successful subtraction of the divisor from the 
dividend. Upon initiating the left-4 shift, a test (per STAT 
D) is made to establish whether an additional dividend 
digit must be inserted into the low-order end of ST. If 
STAT D is set (see "Dividend Fetch and Left-Adjust 

-- Sequence," step 4), all dividend bytes have been fetched 
from main storage and the left-4 shift is completed. If · 
STAT Dis not set, the following actions take place: 
1. The D-address is incremented by 8, and the next 

doubleword of the dividend is requested from main 
storage. 

2. The contents of T are temporarily transferred to the 
LSWR. (Upon arrival of the dividend doubleword from 
main storage, T is loaded with the dividend word 
containing the next digit to be inserted.) 

3. The STC is set per 0(21-23) to select the correct 
dividend byte in the requested doubleword. 

4. The left-4 shift of the dividend is completed. The 
high-order dividend word is in S, and the low-order 
word is in the LSWR. 

5. A branch per D(21) is made to establish which word in 
the SDBO contains the next dividend byte. The correct 
word is then gated from SDBO to T. [Note that, ifthe 
left SDBO word is gated to T, STC{O) is forced to 1 to 
select the correct byte in T.] 

6. The selected dividend byte is transferred from T to F. 
The shifted low-order dividend word is then restored 
from the LSwR to T. 

7. The destination address is restored by subtracting 8 
fromD. 

8. The high-order LI bit is tested to establish the byte 
size of the dividend, and STAT D is set if the dividend 
is less than eight bytes. This function increases the 
execution speed upon exit from the right-digit 
sequence. 

Generate Quotient Sequence 

1. The ABC and STC are set per L2 to select the 
low-order operand bytes. STAT H is set to provide a 
hot carry to the serial adder. 

2. The selected AB byte is subtracted from the selected 
ST byte via the serial adder. The result is gated back to 
the selected ST byte, with the carry being saved in 
ST AT H. Any invalid digit detected in the serial adder 
sets STATE. 

3. The ABC and STC are decremented as each byte is 
processed. When the ABC is stepped to zero, a 1 is 
added to F{ 4-7) and the ABC and STC are again set 
per L2. 

4. If a serial adder carry results upon processing the 
high-order byte, the partial remainder in ST is positive 
and the divisor is again subtracted from the dividend. 
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F{ 4-7) is incremented by 1 each time a complete 
subtraction is made. 

5. If there is no carry upon processing the high-order 
byte, an exit is made to the appropriate left- or 
right-digit sequence, as determined per STAT G. 

6. Note that, before starting each subtract sequence, the 
partial remainder resulting from the previous subtrac­
tion is saved in the LSWR and PAL. The saving is done 
because, upon exit on a no-carry condjtion, an over­
draw has occurred and the remainder in ST cannot be 
used for computation of the next quotient digit. 
Instead, the partial remainder resulting from the last 
successful subtraction is used for subsequent computa­
tion. 

left-Digit Sequence 

1. The quotient digit in F( 4-7) is the left digit of a 
quotient byte. This digit is reduced one count, to 
compensate for the overdraw, and then cross-gated via 
the serial adder to F{0-3). 

2. The partial remainder resulting from the last successful 
subtraction and saved in the LSWR and PAL is shifted 
one digit to the left and restored to ST. The next 
low-order dividend digit, in B{64-67), is inserted into 
the low-order end of ST. 

3. A test on STC equal to or greater than 4 is made to 
establish whether the low-order byte of the partial 
remainder in the LSWR has been overdrawn. In the 
generate quotient sequence, the contents of T are 
stored into the LSWR at the same time that the ·first 
subtract cycle is performed. Thus, if the partial 
remainder extends into T (which occurs if the STC is 4 
or greater), the low-order divisor byte is subtracted 
from the low-order partial remainder byte once too 
often. In such cases, the low-order byte of the partial 
remainder is corrected by adding it to the low-order 
divisor byte. After performing the correction, the 
left-digit sequence is re-entered. 

4. If L1 equals L2, the quotient sign byte is processed. 
Otherwise, the quotient digit generation routine is 
resumed to develop the next digit. 

Correct low-Order Remainder Byte 

This routine is entered from the left· or right-digit 
sequence if the low-order divisor byte has been subtracted 
once too· often from the low-order byte' of the partial 
remainder. Correction is performed as follows: 
1. STAT His reset to initiate a true add cycle. 
2. The low-order partial remainder word is placed into T. 

The STC is set per L2 to select the low-order byte in T. 
3. The low-order divisor byte (per the ABC) is added once 

to the low-order partial remainder byte (per the STC), 
and the result is gated to T per the STC. 

4. The left- or right-digit sequence is re-entered, as 
applicable. 



Right-Digit Sequence 

This sequence is entered when two quotient digits have 
been generated and placed into F. The·following actions 
are performed: 
1. The STC is set per 0(21-23), and F is transferred to 

the selected ST byte. The corresponding mark trigger is 
set per the STC. 

2. A storage request is issued to store the quotient byte 
per the 0 address. 

3.· A left-4 shift of the partial remainder (in PAL and 
LSWR) is initiated. 

4. If STAT 0 is set, indicating that a dividend byte fetch 
is not required, the left-4 shift is completed and the 
partial remainder is restored to ST. 

5. If STAT Dis not set, the dividend byte fetch sequence 
is entered. 

6. 0 is decremented by 1 to obtain the destination 
address for the next quotient byte. 

7. F is cleared and STAT G is set to enter the left-digit 
sequence, after the first quotient digit is generated. 

8. If STAT Eis set, the 'invalid data interrupt' trigger is 
set and the instruction is ended. 

9. If STATE is not set, the generate-quotient sequence is 
entered. 

Process Quotient Sign Byte 

This routine is entered from the left-digit sequence when 
L1 equals L2. At this time, all dividend digits have been 
processed: the low-order quotient digit is in F(0-3), the 
byte selected by the STC is the dividend sign byte, and 
the remaining high-order contents of ST are the final 
remainder. The following actions take place: 
1. The STC and ABC are set per the L2 count. STAT Fis 

set if bits 4-7 of the selected ST byte indicate a 
negative sign. STAT E is set if the sign is invalid; 
however, if an invalid sign existed, STATE would have 
been set and a data program interruption would have 
occurred earlier. 

2. The correct negative or positive sign is put into F( 4-7) 
as determined by a comparison of STAT's C and F. 

3. The ST contents are transferred to AB via the parallel 
adder. 

4. The STC is set per 0(21-23), and F is ·gated to the 
selected ST byte. The corresponding mark trigger is set, 
and the selected ST byte is stored into main storage. 

Store Remainder Routine 

1. The byte selected by the ABC, which is the low-order 
remainder byte, is saved in F. If necessary, the 
remainder sign is corrected in the serial adder before 
gating to F. 

2. The remainder is transferred from AB to ST one byte 
at a time. As each byte is transferred, the corres­
ponding mark trigger is set, the ABC and STC are 
incremented by 1, and L2 is decremented by 1. 

3. When the STC steps to 7, ST contents are stored per 
the 0-address. 0 is then incremented by 8, and the 
byte transfer is resumed. 

4. When L2 steps to 0, the STC is decremented by 1, and 
the remainder sign byte is gated from F to ST. The 
contents of ST are then stored into the low-order 
destination field, and the instruction is ended. 

5. If STAT E is set, an exit is made to the program 
interruption microprogram. 

PACK, PACK (f2) 

• Convert format of 2nd operand (in storage) from 
zoned fo packed and place result into 1st operand 
location (in storage). 

• SS format: 

F2 LI L2 Bl ~ Dl I 82 IJ[§J 
7 B 1112 1516 19 20 3132 3536 47 

Store result at 1st 
operand address, starting 
at low-order byte. 

Unpacked 

Fetch doubleword contoining 
low-order byte of 2nd 
operand per contents of GPR 
addressed by 82, + 02 + L2. 

Unpacked 

~ 
Process sign 
byte of 2nd 
operand. 

Packed 

Yes 

.Process 
next 
byte 

Generate right 
destination digit. 

Generate left 
destination digit. 

• Separate microprogram is used during word overlap. 

The Pack instruction assumes source data in the unpacked 
format. The low-order source byte consists of a sign (bits 
0-3) and a digit (bits 4-7). These two characters are 
swapped as they are gated to the low-order destination 
byte. All other source bytes consist of a zone (bits 0-3) 
and a digit (bits 4-7). Only the digits are gated to the 
destination field, with two bytes of source . being 
processed for each byte of destination. 
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The sign and digits of the second operand are moved 
unchanged to the first operand field and are not checked 
for valid codes. A separate microprogram is provided for 
byte processing when a word-overlap condition exists. A 
test for word overlap is performed in the GIS of the 
instruction and also each time that a new doubleword of 
source is fetched from main storage. 

The GIS microprogram for the Pack instruction is 
shown in Diagram 5-307, FEMDM. This microprogram 
gates the low-order frrst operand from the SDBO to ST, 
increments the IC by L2 to address the low-order byte of 
the second operand, gates the low-order second operand 
from the SDBO to AB, and performs the word-overlap 
test. 

The word-overlap test is performed in two steps. First, 
the doubleword addresses for the destination and source 
are compared by subtracting D from the IC. The 
difference is then shifted four bit positions to the right 

· and gated to PAL, and PAL( 40-64) is sensed for an 
all-zero result to detect a possible word overlap. [The 
right4 shift is made to avoid comparison of byte 
addresses within the doubleword; i.e., the difference for 
the byte addresses is shifted to PAL(65-67), which is not 
sensed by the branch.] If the addresses for the double­
words of source and destination are different, no word­
overlap condition exists. Thus, if PAl.(40-64) is not zero, 
a branch is made to the appropriate not-word-overlap 
execution sequence of the instruction. 

If PAl.(40-63) equals zero, indicating that the same 
doubleword address has been specified for the source and 
destination, a second test must be made to verify whether 
special data handling is required. The contents of D are 
again subtracted from the IC, but this time a right4 shift 
on the difference is not performed and the byte addresses 
within the same doubleword are compared. If 
PAl.(40-63) equals zero, an identical address has been 
specified for ·both source and destination. Because this 
case of word overlap does not require special data 
handling, a branch is made to the not-word-overlap 
microprogram. If, however, PAL(40-63) is not zero, the 
source and destination bytes are skewed; special data 
handling is required in the execution phase and, 
accordingly, a branch is made to the appropriate program. 

Instruction Execution, Not Word Overlap 

• Basic execution is as follows: 
1. Process sign byte and test for exit conditions. 
2. If no exit conditions, process right destination digit. 
3. Process left destination digit and test for exit 

conditions. 

A flowchart of the execution of the Pack instruction 
without word overlap is shown in Diagram 5-308, 
FEMDM. The major functional steps in the microprogram 
are described in the following subparagraphs. 
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Process Sign Byte 

1. The selected AB byte is gated via the serial adder 
cross-gates to the selected ST byte. The mark trigger 
selected by the STC is set. 

2. ABC, STC, Ll, and L2 are decremented by 1. 
3. An exit is made to the appropriate routine if one or 

more of the counters {ABC, STC, Ll, L2) was equal to 
zero before being stepped. 

4. If no exit is made, the next source byte is processed to 
obtain the right destination digit. 

Generate Right Destination Digit 

1. Bits 4-7 of the selected AB byte are gated to 
SAA{4-7); no data is gated to SAA{0-3). The serial 
adder output is gated from SAL(O-7) to the selected 
ST byte. 

2. The ABC and L2 are decremented by one count. 
3. If L2 equals zero before stepping, the remaining source 

bytes are extended with high-order zeros. {See "Exten­
sion of Source Bytes with High-Order Zeros.'') 

4. If the ABC equals zero before stepping, an exit is made 
to the source fetch routine. STAT G is set to cause a 
return to the Generate Left Destination Digit routine 
after the source fetch. 

Generate left Destination Digit 

1. Bits 4-7 of the selected AB byte are gated to 
SAA{0-3). Bits 4-7 of the selected ST byte are gated 
to SAB{ 4-7). The serial adder output is gated back to 
the selected ST byte, and the mark trigger selected by 
the STC is set. 

2. ABC, STC, L1, and L2 are decremented by 1. If none 
of these counters equalled zero before stepping, the 
right digit for the next destination byte is generated. 
(Generate Right Destination Digit sequence is entered.) 

Exit Conditions 

An exit is made from the sign byte routine or from the 
left-digit routine when one or more of the following 
conditions are detected by the 'DECIMAL' {functional 
branch) micro-order: 
1. L1 or STC = 0. 
2. L2= 0. 
3. ABC=O. 

When the exit is on L1 or STC equals zero, a second 
test on Ll-equal-all-1 's is required to determine whether 
an end-op condition exists. 

Extension of Source Bytes with High-Order Zeros 

This routine is entered when L2 has stepped to zero 
before Ll has stepped to zero. 

The serial adder output (zeros) is gated to the selected 
ST byte with the selected mark trigger being set. Ll and 
STC are decremented as each byte is processed. When Ll 
equals zero, the contents of ST are stored per the 



D-address and the common end-op routine is started. 
When the STC equals zero, the contents of ST are stored, 
and D is decremented by 8. STAT H is set to cause a 
return to this routine after storing the contents of ST. 

Source Fetch Routine 

This routine is shared with the Move with Offset 
instruction. STAT D is set to cause a return to the pack 
microprogram. 

The second operand is requested from main storage, 
and the IC is decremented by 8. A word-overlap test is 
performed. If no word-overlap condition exists, the next 
doubleword of the second operand is gated from the 
SDBO to AB. Processing of the left or right destination 
digit is resumed as determined by STAT G. 

Instruction Execution, Word Overlap 

• Basic execution is as follows: 
1. Process sign byte. Update AB and test for exit 

conditions. 
2. If no exit conditions, process right destination digit. 
3. Process left destination digit, update AB, and test 

for exit conditions. 
A flowchart of the Pack instruction exeeution under 
word-overlap conditions is shown in Diagram 5-309, 
FEMDM. This microprogram is entered when a word-over­
lap condition is detected in the GIS or during a source 
fetch. The major functional steps in the microprogram are 
described in the following subparagraphs: 

Process Sign Byte 

The sign byte of the second operand in AB is processed in 
the same manner as in the not-word-overlap micro­
program. 

Update AB from ST 

The data in AB is updated by transferring the contents of 
S to A or the contents of T to B, depending on the STC 
setting. ABC, STC, LI, and L2 are decremented by l, and 
the mark trigger selected by the STC is set. 

If any counter equalled zero before decrementing, an 
exit is made to the proper store, fetch, or extend-with­
zeros routine as explained for the not-word-overlap 
sequence. If no exit conditions exist, processing of the 
right destination digit is started. 

Generate Right Destination Digit 

This routine is the same as in the not-word-overlap 
sequence. 

Generate Left Destination Digit 

This routine is the same as in the not-word-overlap 
sequence and is always followed by the update routine. 

Source Fetch Routine 

The next doubleword of source is requested from main 
storage, after which the IC is decremented by 8. Upon 

detection of a word-overlap condition, however, this 
doubleword is not used, because AB must be updated 
from ST. If, upon entering the source fetch routine, only 
the right destination digit has been placed into the 
selected ST byte, this byte is not transferred to AB. 
Instead, the following action takes place: 
1. The portion of ST that has been processed (as 

determined by the mark triggers) is stored into the 
destination field, refetched from storage, and gated to 
both AB and ST. 

2. If STAT G is·set, indicating that only the right digit of 
the selected ST byte has been processed, the selected 
ST byte is transferred to F before the SDBO is gated to 
ST. After the SDBO is gated to ST, F is reinserted into 
the selected· ST byte, and processing of the left digit is 
started. 

3. If STAT G is not set, indicating that a complete ST 
byte has been processed, it is not necessary to save the 
selected ST byte. Processing of the right digit is started 
immediately. 

UNPACK, UNPK (F3) 

• Convert format of 2nd operand (in storage) from 
packed to zoned and place result into 1st operand 
location (in storage). 

• SS format: 

F3 Ll L2 81 ~ Dl 1 82 m::§J 
78 1112 1516 1920 3132 ·3536 "' 

Store result at ht 
operand address, starting 
at low-order byte. 

Packed 

Packed 

~ 
dTIJ 

Yes 

Fetch daubleword containing 
low-order byte of 2nd operand 
per contents of GPR per 
B2, + D2 + L2. 

Process sign 
byte of 2nd. 
operand. 

Process 
next 
byte 

Process right 
source digit. 

Process left 
source digit, 
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• Separate microprogram is used during word overlap. 

• Word-overlap test is performed during GIS and in 
destination store and source fetch routines. 

The Unpack instruction assumes data in the packed 
format. The low-order source byte consists of a sign (bits 
4-7) and a digit (bits 0-3). These two characters are 
swapped as they are gated to the low-order destination 
byte. All other source bytes contain a pair of binary· 
coded-decimal digits. Each digit is transferred to the 
low-order portion (bits 4-7) of the corresponding destina­
tion byte, and a zone .character is inserted into the 
high-order portion byte (bits 0-3). During this transfer, 
the digits are not tested for validity. 

A separate microprogram is provided for byte process­
ing when a word-overlap condition exists. A test for a 
word-overlap condition is performed in the GIS of the 
instruction and also each time that a doubleword of data 
is fetched from or stored into main storage. 

The Unpack instruction generates two bytes of destina­
tion for each byte of source. Therefore, the condition 
when the destination bytes are processed "ahead" of the 
source always exists if the operand fields overlap. When 
the same doubleword address is specified, special . data 
handling is required regardless of how the operand bytes 
are arranged in this doubleword. Special handling is 
necessary each time that source data is fetched from main 
storage; also, upon storing unpacked data into the 
destination field, a word-overlap test must be made to 
determine whether the source data in the CPU must be 
updatedfrom storage. 

The GIS microprogram for the Unpack instruction is 
shown in Diagram 5-307. When the first overlap indication 
occurs, the byte addresses are not checked~ Instead, a 
branch is forced into the word-overlap sequence by 
supplying a hot carry to PAA(60), so that a test of 
·PAI..(40-63) always yields a nonzero result. 

Instruction Execution, Not Word Overlap 

• Basic execution is as follows: 
1. Process sign byte and test for exit conditions. 
2. If no exit conditions, process right source digit. 
3. Process left source digit, and test exit conditions. 

A flowchart of Unpack instruction execution without 
word overlap is shown in Diagram 5-310, FEMDM. The 
major functional steps in the microprogram are described 
in the following paragraphs. 

Process Sign Byte 

The sign byte, selected by the ABC, is gated via the serial 
adder cross-gates to the selected ST byte, and the 
corresponding mark trigger is set. ABC, STC, Ll, and L2 
are decremented by 1, and an exit is made if any counter 
equalled zero before stepping. · 
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Process Right Source Digit 

1; Bits 4-7 of the selected AB byte are gated to 
SAA( 4-7). The approved zone character is inserted 
into SAA(0-3). The serial adder output is gated to the 
selected ST byte, and the selected mark trigger is set. 

2. Ll and STC are decremented by 1. 
3. If L1 equalled zero before stepping, the contents of ST 

are stored and the common end-op sequence is started. 
4. If STC equalled zero before stepping (and L1 was not 

zero), the destination store routine is started. STAT G 
is set to record an exit from the right digit routine. 

Process Left Source Digit 

1. Bits 0-3 of the selected AB byte are gated to 
SAA( 4-7), ail.d the zone character is inserted into 
SAA(0-3). 

2. The adder output is gated to the selected ST byte, and 
the selected mark trigger is set. 

3. ABC, STC, L1, and L2 are decremented by 1. An exit 
is made to the appropriate routine if any of the above 
counters equalled zero before stepping. If no exit 
condition exists, the right source digit in the next 
source byte is processed. 

Exit Conditions 

,An exit is made from the byte processing routine 
whenever it is detected that Ll, L2, ABC, or STC is equal 
to zero. Although a separate exit is provided for each 
possible combination of these conditions, they may be 
considered to be examined in the following order of 
prioz:jty: 
l.Ll=O 

The contents of ST are stored· per the D-address, and 
the common end-op routine is started. 

2. L2=0 
AB is cleared, the ABC is set per L2 (which is 7), and 
ST AT H is set to record the end of the source field. If 
the STC was also zero, the destination store routine is 
started. If the STC was not zer.o, the high-order zeros 
routine is entered per STAT H. 

3. STC=O 
The destination store routine is started. If the ABC was 
also zero, STAT Dis set to cause a source fetch after 
the destination store. 

4. ABC=O. 
The source fetch routine is started. 

Extension of Source Bytes with High-Order Zeros 

AB is cleared, and bits 4-7 of the selected AB byte 
(zeros) are gated to SAA(4-7); the approved zone 
character is inserted into SAA(0-3). The adder output is 
gated to the selected ST byte, and the corresponding mark 
trigger is set. Ll and STC are decremented by 1 for each 



byte that is processed. An exit is made to the destination 
store routine when the STC steps to zero, and to end-op 
when L1 steps to zero. 

Source Fetch Routine 

A request is made per the IC address, after which the IC is 
decremented by 8. A word-overlap test is made. If there is 
no word-overlap condition, the next source word is gated 
to AB, and the right digit of the next source byte is 
processed. 

Destination Store Routine 

1. The contents of ST are stored into the destination field 
per the D-address, and D is decremented by 8. 

2. An exit is made to the source fetch routine if ST AT D 
is set. 

3. An exit is made to the high-order zeros routine if 
STAT His set. 

4. If neither STAT D nor STAT His set, a word-overlap 
test is made by comparing the IC and D addresses. If 
no word overlap exists, the left or right digit is 
processed as determined by STAT G. 

Instruction Execution, Word Overlap 

• Basic execution is as follows: 
1. Process sign byte. Update AB and test for exit 

conditions. 
2. If no exit conditions, process right source digit. 
3. Process left source digit, and test for exit condi­

tions. 

• Word-overlap test is performed during source fetch and 
destination store routines. 

A flowchart of Unpack instruction execution under 
word-overlap conditions is shown in Diagram 5-311, 
FEMDM. The steps in which this microprogram differs 
from that for not-word-overlap are explained in the 
following paragraphs. 

Process Sign Byte 

This step is the same as in the not-word-overlap sequence 
except that it is always followed by the update routine. 

. Update AB from ST 

If the STC is less than 4, the contents of S are transferred 
to A; the contents of T are always transferred to B. The 
mark trigger selected by the STC is set. ABC, STC, L1, 
and L2 are decremented by 1. An exit is made to the 
appropriate routine if any of the above counters equalled 
zero before their being stepped. If no exit conditions 
exist, the right digit in the next source byte- is processed. 

Process Right Source Digit 

The right source digit is processed in the same manner as 
for not-word-overlap. If upon processing the right digit an 
exit is made on STC equal zero, and ABC is not zero, the 

contents of S are transferred to A. In this manner, the 
source is correctly updated before storing the contents of 
ST. 

Process Left Source Digit 

This step is the same as in the not-word-overlap sequence 
except that it is always followed by the update routine. 

Source Fetch Routine 

1. The. source is requested per the IC address, after which 
the IC is decremented by 8. 

2. The contents of D are subtracted from the IC to 
prepare for the word-overlap test; also, a test on STC 
equals 7 is made to establish how the source is to be 
updated in case of an overlap condition. 

3. The condition when STC equals 7 indicates that the 
STC was zero before entering the source fetch routine. 
In this case, the destination has been stored into main 
storage. Thus, to update the source, the doubleword at 
the SDBO is gated to AB and ST, and processing of the 
left source digit is started. 

4. If the STC is not 7, AB must be updated from ST. 
After transfer of the contents of ST to AB, processing 
of the right source digit is started. 

MOVE WITH OFFSET, MVO (F1) 

• Store 2nd operand (in storage) to left of and adjacent 
to low-order 4 bits of 1st operand (in storage). 

• SS format: 

Fl L1 L2 Bl ~ 01 I B2 I J~ 
78 1112 IS 16 192D 3132 3536 47 

Fetch doubleword 
containing low-order 
byte of 2nd operand 
per contents of GPR 
addressed by B2, 
+ 02 + L2 • 

Perform left-4 shift 
on 2nd operand. 

Store result at 1st 
operand address, 
starting ot low-order 
byte. 

End op. 
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• Separate microprogram is used during word overlap. 

The MVO instruction performs a left-4 shift on the second 
operand and transfers the result to the first operand 
location. Thus, the four low-order bits of the first operand 
are preserved as the lowest-order character of the second 
operand. During execution of the instruction, the operand 
signs and digits are not tested for valid codes. 

No decimal shift instruction is provided, because the 
equivalent of a shift can be obtained by programming. 
Programs for right or left shift, and for an even or an odd 
shift amount, are written with Move with Offset instruc­
tion and the logical move instructions described in Section 
5 ofthis Chapter. 

A separate microprogram is provided for byte process­
ing when a word-overlap condition exists. A test for word 
overlap is performed in the GIS of the instruction, and 
also each time that a new doubleword of source is fetched 
from main storage. 

The GIS for the Move with Offset instruction is shown 
in Diagram 5-307. This microprogram is identical with the 
GIS microprogram of the Pack instruction. 

Instruction Execution, Not Word Overlap 

• Basic execution is as follows: 
1. Transfer bits 4-7 of selected AB byte to bits 0-3 

of selected ST byte. Decrement counters. 
2. Transfer bits 0-3 of selected AB byte to bits 4-7 

of selected ST byte. Repeat first step. 
3. Exit on L1 or STC = 0, L2 = 0, or ABC= 0. 

A flowchart of the execution of the Move with Offset 
instruction when no word-overlap condition exists is 
shown in Diagram 5-312, FEMDM. Basically, this micro­
program specifies a 2-cycle loop with appropriate exits to 
source fetch, destination store, high-order-zero extend, 
and end-op routines. 

Cycle 1 

1. Bits 4-7 of the selected AB byte are gated to 
SAA(0-3). 

2. Bits 4-7 of the selected ST byte are gated to 
SAB(4-7). 

3. The serial adder output is gated back to the selected ST 
byte, and the corresponding mark trigger is set. 

4. L1 and STC are decremented by 1. An exit is made to 
the destination store routine if L1 or STC equalled 
zero before stepping. 

Cycle2 

1. Bits 0-3 of the selected AB byte are gated to 
SAA( 4-7). No data is gated to serial adder bits 0-3. 

2. The serial adder output is gated to the selected ST 
byte. 
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3. L2 and ABC are decremented by 1. If L2 was zero 
before stepping, an exit is made to the high-order zero 
extend routine. If L2 was not zero but ABC equalled 
zero, an exit is made to the source fetch routine. 

4. If L2 or ABC is not equal to zero, cycle 1 is repeated. 

High-Order Zero Extend Routine 

An entry is made into this routine when the last source 
byte has been processed. The selected ST byte contains 
the high-order source digit in bits 4-7; bits 0-3 are zeros. 

The following actions are performed upon entry into 
the routine: 
1. STAT His set. 
2. The selected mark trigger is set. 
3. L1 and STC are decremented by 1. 
4. If Ll or STC equals zero before stepping, an exit is 

made to the destination store routine. 

If L1 or STC is not zero, a I-cycle loop is started, 
which: 
1. Gates the serial adder output (zeros) to the selected ST 

byte. 
2. Sets the mark trigger selected by the STC. 
3. Decrements L1 and STC by 1. 
4. Exits to the destination store routine when LI or STC 

equals zero. (STAT His set to cause re-entry into the 
high-order zeros routine after the destination is stored.) 

Destination Store Routine 

1. The contents of ST are stored into the destination field 
per the D-address. 

2. A test is made for the end of the destination field. If 
the L1 fount now equals all l's, an exit is made to the 
common end-op sequence. 

3. If L1 is not all 1 's, D is decremented by 8. 
4. If STAT H is set, the high-order zeros routine is 

resumed. If ST AT H is not set, the byte processing 
loop is started at cycle 2. 

Source Fetch Routinet 

1. The source is requested from storage, and the IC is 
decremented by 8. 

2. A word-overlap test is made by comparing the IC and 
D addresses. 

3. If no word-overlap condition exists, the doubleword 
arriving from storage is gated to AB, and byte 
processing is resumed. 

Instruction Execution, Word Overlap 

• Basic execution is as follows: 
1. Transfer bits 4-7 of selected AB byte to bits 0-3 

of selected ST byte. 

t This routine is shared with the Pack instruction. Return to the 
appropriate microprogram is effected per STAT D. 



2. Transfer bits 0-3 of selected AB byte to bits 4-7 
of selected ST byte. 

3. Update AB from ST, and repeat first step. 
4. Exit on L1 or STC = 0, L2 = 0, or ABC = 0. 

A flowchart of the execution of the Move with Offset 
instruction when a word-overlap condition exists is shown 
in Diagram 5-313, FEMDM. Basically, this microprogram 
specifies a 3-cycle loop with appropriate exits to source 
fetch, destination store, high-order-zero extend, and end­
op routines. 

Cycle 1 

This cycle is identical with cycle 1 in the not-word-overlap 
microprogram. 

Cyc/e2 

1. Bits 0-3 of the selected AB byte are gated to 
SAA(4-7). 

2. The serial adder output is gated to the selected ST 
byte. 

Cycle3 

1. If the STC is less than 4, the contents of S are 
transferred to A. 

2. The co:Otents of T are transferred to B via the parallel 
adder. 

3. L2 and ABC are decremented by 1. 
4. An exit is made to the high-order zeros routine if L2 

was equal. to zero before stepping. An exit is made to 
the source fetch routine if the ABC was equal to zero 
and L2 was not zero. 

S. If no exit conditions exist, cycle 1 is repeated for the 
next byte. 

High-Order Zero, Destination Store, and 
Source Fetch Routines 

The high-order zero and destination store routines are the 
same as in the not-word-overlap sequence. The source 
fetch routine, however, is different. 

Upon detecting a word-overlap condition, the source 
from main storage is not used. Instead, AB is updated 
from ST: if the STC is equal to 7, the contents of T are 
transferred to B; if the STC is not 7, the contents of S are· 
transferred to A and the contents ofT to B. 
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Section 5. Logical Instructions 

This section discusses the 32 logical instructions. The 
instructions use all five formats and operate on fJXed- and 
variable-field length data. For a discussion of data 
formats, operand addressing, instruction formats, data 
flow, program interruptions, and condition codes, see 
Chapter 1. 

GENERAL INITIALIZATION SEQUENCE 

Before execution of SS logical instructions, a .General 
Initialization Sequence (GIS) is performed (Diagram 
5-401, FEMDM). The general function of the GIS is to set 
up initial conditions for the execution phase. These 
include: 
1. Setting of STC and ABC. The STC is set to the 

rightmost first operand byte in ST, the byte to be 
processed first. Because the address of the rightmost 
byte is specified by D(21-23), the STC is set per these 
bits. Similarly, the rightmost second operand byte is 
selected in AB by transferring IC(21-23) to the ABC. 

2. Transferring the first operand to ST during the first 
cycle of GIS. 

3. Transferring the second operand to AB. An IC request 
for the second operand is issued on the first cycle of 
GIS; subsequently, GIS transfers the operand from the 
SDBO to AB. 

4. Performing a word overlap test. For the purpose of this 
test, refer to "Word Overlap Condition", Section 4 of 
this Chapter. 

At the completion of SS I-Fetch, a branch is made per 
the instruction op-code to the appropriate GIS micro­
program. Note that, because of similarities in the GIS 
microprograms, the SS logical instructions are divided into 
two . groups. One group consists of the Translate and 
Translate and Test instructions; the remaining SS instruc­
tions form the second group. 

MOVE 

Four logical move instructions are available: 
1. Move, MVI, SI format. Places an immediate operand 

into the first operand location. 
2. Move, MVC, SS format. Places the second operand into 

the first operand location. 
3. Move Numerics, MVN, SS format. Places the numerics 

of the second operand bytes into the corresponding 
positions of the first operand bytes. 

3-144 (9/68) 

4. Move Zones, MVZ, SS format. Places the zones of the 
second operand bytes into the corresponding positions 
of the first operand bytes. 

Move, MVI (92) 

• Place immediate operand (I2 of instruction) into 1st 
operand location (in storage). 

• SI format: 

92 
0 

12 81 

78 15 16 19 20 

Store immediate operand 
(in E) into destination 
per 1st operand address. 

01 

31 

• Conditions at start of execution: 
First 16 bits of instruction, containing immediate 

operand, are in E. 
Main storage request for 1st operand has been issued 

perD. 

The Move, MVI, instruction places the immediate operand 
into the first operand location. The immediate operand 
(12 of instruction) is in E. 

Move, MVC (02) 

• Place 2nd operand (in storage) into 1st operand 
location (in storage). 

• SS'format: 

.___02 _ __,_ __ L __ L _ _,___81--*J~ DJ I 82 I j§ 
0 7 8 15 16 19 20 31 32 35 36 47 

Fetch LL number of bytes from 
source per 2nd operand address. 

Store into destination 
per 1st c;iperand address. 

• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 
ABC is set to select byte to be routed through serial 

adder. 
First 16 bits of instruction are in E. 



• Move operation can be high or low speed. 

• Three separate microprograms are provided: 
High-speed move. 
Word overlap. 
Low-speed move. 

Three separate sequences are provided for the MVC 
instruction. The high-speed move sequence is used when it 
is possible to transfer a doubleword of data at a time. 
This condition exists when the high-order bytes of the 
source and destination are specified on doubleword 
boundaries and a full doubleword of data remains to be 
processed; i.e., both the ABC and STC are equal to zero, 
and the LL count is greater than 6. The word-overlap 
sequence is used when a word-overlap condition exists. 
The second operand in AB is updated after each AB byte 
is processed. The low-speed move sequence is used when 
the high-speed or word-overlap condition does not exist. 
(The '1igh-speed and word-overlap conditions are detected 
in the GIS of the instruction.) 
1. Low-Speed Move Sequence 

This sequence is basically a 1-cycle operation in which 
the AB byte selected by the ABC is transferred 
through the serial adder to the ST byte selected by the 
STC, and the mark trigger selected by the STC is set. 

The STC and ABC are incremented, the LL count 
in E(8-15) is decremented, and the cycle is repeated 
for the next byte, unless an exit condition exists. 

2. Word-Overlap Move Sequence 
This sequence is a 2-cycle sequence in which the first 
cycle transfers the AB byte, selected by the ABC, to 
the ST byte selected by the STC. The second cycle 
updates the source operand in AB by transferring S to 
A, or T to B, as determined by the value of the STC. 
The mark trigger selected by the STC is set. The STC 
and ABC are incremented, the LL count is decre­
mented, and the sequence is repeated for the next 
byte, unless an exit condition exists. 

3. High-Speed Move Sequence 
This routine is entered from the GIS or from the 
low-speed move routine. 
a. When the entrance is made from the GIS, the 

source operand has been transferred to ST. The 
contents of ST are stored by setting mark triggers 
0-7 and issuing a storage request per D. 

b. The LL count in E(8-15) is decremented by 8 via 
the parallel adder and is then tested for all l's. If 
this condition exists, an end-op sequence is started. 
If no end-op condition exists, the IC is incremented 
by 8 via the parallel adder and a source fetch 
request is given. 

c. When the entrance is made from the low-speed 
routine, D is incremented by 8 and the source 
doubleword from main storage is gated to both AB 
and ST. If at least 8 bytes remain to be processed, 

as determined by a ROS branch on LL count being· 
greater than 6, the high-speed move sequence is 
repeated (starting at step a). If fewer than 8 bytes 
remain to be processed, the low-speed move se­
quence is started to process the remaining data. 

Exit is made from the low-speed or word-overlap move 
routines is one of the following conditions exists: (1) LL 
= 0, or STC = 7 and ABC =fo 7; (2) LL .= 0, or STC = 7 
and ABC = 7; (3) only ABC = 7. A separate sequence is 
entered for each of these conditions, as explained below: 
1. LL = 0, or STC = 7 and ABC =fo 7 

A destination store is initiated, and a test for an 
end-op condition is made. If the LL count now equals 
all l's, an entry is made into a common end-op 
sequence·. If an end-op condition does not exist, D is 
incremented by 8 via the parallel adder and the 
low-speed move sequence is continued. 

2. LL = 0, or STC = 7 and ABC = 7 
A destination store is initiated, and a test for end-op is 
made (LL = all l's). A further test for a high-speed 
move condition is made. If at this time the LL count 
is 7 or greater, the IC and D are incremented by 8, a 
source fetch is initiated, and an entry is made into the 
high-speed move sequence. If neither an end-op nor a 
high-speed move condition exists, D is incremented by 
8 and a common source fetch routine is entered which 
increments the IC by 8, fetches the next doubleword 
of s.ource to AB, and tests for a word-overlap 
condition. Because there is no word-overlap at this 
time (ABC = STC), the low-speed move ·sequence is 
continued. 

3. ABC= 7 
The IC is incremented by 8 through the parallel adder, 
and a fetch request is given to fetch the next 
doubleword of source operand. The common source 
fetch sequence is entered, which tests for word 
overlap. In this case, word overlap may exist: if it is 
detected, the source operand from main storage is not 
gated to AB, but instead ST is gated to AB and a 
branch is made to the move-word-overlap sequence. If 
no word overlap exists, the low-speed move sequence is 
continued after the source operand from main storage 
is gated to AB. 

The common end-op routine is entered when the LL 
field has been decremented to zero. This routine restores 
the instruction address from the LSWR to the IC and 
resets STAT G (because it may have been used during the 
GIS). . 

Move Numerics, MVN (01) 

• Place numeric portion (low-order 4 bits) of each byte of 
2nd operand (in storage) into low-order 4 bits of 
corresponding byte of 1st operand (in storage). 
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• SS format: 

Dl LL Bl ~DI I B2 I JG 
'------, ...... 8--........ --1-5 .... 16--19.....,20 3132 3536 47 

Fetch LL number of bytes from 
source per 2nd operand address. 

Extract numerics. 

Store numerics into destination 
per 1st operand address. 

• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 
ABC and STC are set to select byte(s) to be routed 

through serial adder. 
First 16 bits of instruction are in E. 

• Separate microprogram is used for word overlap. 

The MVN instruction is executed as follows: 
1. Bits 4-7 of the selected AB byte are gated to 

SAA(4-7). 
2. ·Bits 0-3 of the selected ST byte are gated to 

SAB(0-3). 
3. Adder output is gated back to the selected ST byte. 

Data is processed one byte at a time, and the fields 
may overlap in any way. Separate sequences are used for 
the not-word-overlap and the word-overlap conditions: 
1. Not-Word-Overlap Sequence 

This sequence consists of a I-cycle loop with an exit 
when LL= 0, STC = 7, or ABC= 7. As each byte is 
processed, the corresponding mark trigger is set per 
the STC; ABC and STC are incremented by 1 and LL 
is decremented by 1. 

2. Word-Overlap Sequence 
This sequence consists of a 2-cycle loop with an exit 
when ABC or STC = 7, or when LL= 0. 
a. Cycle 1 

Numeric (bits 4-7) is moved from AB to ST. 
b. Cycle 2 

The contents of S are transferred to A, or the 
contents of T are transferred to B as determined by 
the STC value. The mark trigger selected by the STC 
is set; STC and ABC are incremented by 1, and LL 
is decremented by 1. 
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An exit from the byte processing sequence is made 
when LL= 0, STC = 7, or ABC= 7. A separate sequence is 
entered for each of these conditions, as explained below: 
1. LL= 0 

The contents of ST are stored per D into the 
destination field. The common end-op sequence is 
started. 

2. STC = 7 
The common destination store-fetch routine is started. 
If the ABC also equals 7, ST AT D is set to cause a 
source fetch before resuming the byte processing loop. 

3. ABC=7 
The common source fetch routine is started, which 
includes a word-overlap test, which causes the appro­
priate instruction word-overlap or not-word-overlap 
loop to be continued. 

Move Zones, MVZ (03) 

• Place zone portion (high-order 4 bits) of each byte of 
2nd operand (in storage) into high-order 4 bits of 
corresponding byte of 1st operand (in storage). 

• SS format: 

D3 LL Bl ~ 01 I B2 I JG L..-----, ..... 8--....... --1-5 .... 16--19.....,20 31 32 35 36 47 

Fetch LL number of bytes from 
source per 2nd operand address. 

Ex tract zones. 

Store zones into destination 
per I st operand address. 

• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 
STC and ABC are set to select byte(s) to be routed 

through serial adder. 
First 16 bits of instruction are in E. 

• Separate microprogram is used for word overlap. 

The MVZ instruction specifies the following actions: 
1. Bits 0-3 of the selected AB byte are gated to 

SAA(0-3). 
2. Bits 4-7 of the selected ST byte are gated to 

SAB(4-7). 
3. The adder output is gated back to the selected ST byte. 

Except for the above actions, the byte processing 
sequence is the same as that for the MVN instruction. 



COMPARE 

Four Compare Logical instructions are provided, in the 
RR, RX, SI, and SS formats. Comparison is.binary, and all 
codes are valid. Operation is terminated when an 
inequality is found. 

Compare Logical, CLR (15} 

~ Binarily compare 1st operand (in GPR, per RI) with 
2nd operand (in GPR, per R2) and set CC according to 
result. 

© RRformat: 

15 RI R2 
7 B 11 12 15 

Fetch I st operand 
from GPR per RI. 

Fetch 2nd operond 
from G PR per R2 • 

Compare I st operand with 2nd operand. 

Equal l st is High 

Set CC to 0. Set CC to 1. 

• Conditions at start of execution: 
1st operand is in Sand T. 
2nd operand is in A and B. 
Instruction is in E. 

• CC setting: 
Operands are equal: CC = 0. 

Set CC to 2. 

1st operand is less than 2nd operand: CC = 1. 
1st operand is greater than 2nd operand: CC= 2. 

The Compare Logical, CLR, instruction, which is in the 
RR format, compares the first operand with the second 
operand. Comparison in biriary, and is performed left to 
right, byte by byte. The CC is set according to the result. 

Compare Logical, CL (55) 

• Binarily compare 1st operand (in GPR, per Rl) with 
2nd operand (in storage) and set CC according to 
result. 

• RXformat: 

55 RI X2 

78 1112 1516 

Fetch 1st operand 
from G PR per R 1. 

82 02 
19 20 

Fetch 2nd operand 
from main storage. 

Compare l st operand with 2nd operand. 

Equai 1st is High 

Set CC to 0. Set CC to 1. 

11' Conditions at start of execution: 
1st operand is in S and T. 

Set CC to 2. 

31 

Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

ct CC setting: 
Operands are equal: CC = 0. 
1st operand is less than 2nd operand: CC = 1. 
1st operand is greater than 2nd operand: CC= 2. 

The Compare Logical, CL, instruction, which is in the RX 
format, compares the first operand with the second 
operand. Comparison is binary, and is performed left to 
right, byte by byte. The CC is set according to the result. 

Compare Logical, CU (95) 

• Binarily compare 1st operand (in storage) with imme­
diate operand (12 of instruction) and set CC according 
to result. 

• SI format: 

Obtain immediate 
operand from E • 

DI 

Fetch l st operand 
from main storage . 

31 

Compare 1st operand with 2nd operand. 

Equal 1st is High 

Set CC to .0. Set CC to 1. Set CC to 2. 
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• Conditions at start of execution: 
Main storage request for 1st operand has been issued 

perD. 
1st 16 bits of instruction, containing immediate op­
erand, are in E. 

• CC setting: 
Operands are equal: CC = 0. 
1st operand is less than 2nd operand: CC = l. 
1st operand is greater than 2nd operand: CC= 2. 

The Compare Logical, CLI, instruction, which is in the SI 
format, compares the first operand with the immediate 
second operand. Comparison is binary, and is performed 
left to right. The CC is set according to the result. 

Compare Logical. CLC (05) 

• Binarily compare 1st operand (in storage) with 2nd 
operand (in storage) and set CC according to result. 

• SS format: 

1 LL 1 Bl m 01 1 82 n0 ____ 7 __ 8 ____ 15 ... 16--1, ...... 20 3132 3536 li1 
05 

Fetch 1st operand 
from main storage. 

Fetch 2nd operand 
from main storage • 

Compare 1st operand with 2nd operand. 

Equal 

Set CC to O. Set CC to l. 

• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 

lst is High 

Set CC to 2. 

ABC and STC are set to select byte(s) to be routed 
through serial adder. 

First 16 bits of instruction are in E. 

• CC setting: 
Operands are equal: CC = 0. 
1st operand is less than 2nd operand: CC = 1. 
1st operand is greater than 2nd operand: CC = 2. 

• Because results of operation are not stored into main 
storage, no special action is required during word 
overlap. 

The CLC instruction is sequenced as follows: 
1. The selected AB byte is gated complement to the serial 

adder with a hot carry to bit 7. 
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2. The selected ST byte is gated true to the serial adder. 
3. The serial adder carry is saved in STAT H. 
4. ST AT A is set if a nonzero result byte is detected. 
5. As each byte is processed, the LL count is decremented 

and the ABC and STC are incremented. 
6. The above routine is continued until a nonzero result is 

detected in the serial adder, or until the LL count is 
stepped to zero, with exits for operand fetches when 
the STC or ABC is stepped to 7. 

7. If an exit is made because a nonzero byte is detected, 
one additional byte will have been gated to the serial 
adder before the exit is made via the ROS branch. 
Therefore, ST AT H will reflect the carry of the 
nonzero result byte plus 1. Because STAT His used to 
determine the setting of the . CC, it is set or reset per 
the carry of the first nonzero byte encountered. 

8. The common end-op routine is used, which sets the CC 
per the following hardware conditions: 

AND 

Hardware Conditions 

STAT A is reset and equal compare 

STAT A is set and STAT His reset 

STAT A and STAT Hare set 

CC Setting 

0 

1 

2 

The AND instruction mixes two operands on a logical 
AND basis. An AND operation is defined as foUows: if 
both operand bits are l's, the resulting bit is 1; otherwise, 
the result is a 0. The following example illustrates the 
AND'ing of two bytes: 

Bit positions 0 1 2 3 4 5 6 7 

1st operand 1 0 1 0 1 0 1 0 

2nd operand 1 0 0 1 1 1 0 0 

Result 1 0 0 0 1 0 0 0 

Note that only in bit positions 0 and 4 are both operand 
bits set to 1. Therefore, only bits 0 and 4 of the result are 
set to 1. 

A simplified data flow path for AND, OR, and 
Exclusive-OR instructions is shown in Figure 3-25. All 
logical AND's, OR's, and Exclusive-OR's are performed in 
the serial adder, a byte at a time. The frrst operand is 
placed into ST and the second operand is placed into AB. 
Upon completion of the instruction, the result is placed 
into ST. 

The sequencing of individual bytes from ST and AB 
through the serial adder is controlled by the STC and the 
ABC. In the fJXed-format RR and RX instructions, the 
STC and ABC are preset to 4 and incremented to 7 as the 
four data bytes from ST and AB are routed through the 
serial adder. For SS instructions, the STC and ABC are 
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bytes selected by STt and ABC. 

Figure 3-25. Simplified Data Flow for AND, OR, and Exclusive-OR Instructions 

preset to values that point to the bytes where the data 
starts in their respective registers. For SI instructions, in 
which the second operand is one byte long (12 field), the 
ABC points to the second operand location in AB, and the 
STC points to the first operand in ST. 

AND, NR (14) 

• AND 1st operand (in GPR, per R1) with 2nd operand 
(in GPR, per R2) and place result into 1st operand 
location. 

• RR format: 

0 

14 Rl 

78 11 12 

Fetch lst operand 
from GPR per Rl. 

R2 

15 

AND. 

Fetch 2nd operand 
from G PR per R2. 

Store resu It into GPR 
per Rl and set CC. 

• Conditions at start of execution: 
1st operand is in S and T. 
2nd operand is in A and B. 
Instruction is in E. 

• CC setting: · 
Result is zero: CC = 0. 
Result is not zero: CC= 1. 

The AND, NR, instruction, which is in the RR format, 
AND's the first operand with the second operand. The 
AND function is applied left to right, byte by byte. 

AND, N (54) 

• AND 1st operand (in GPR, per R1) with 2nd operand 
(in storage) and place result into 1st operand location. 

• RXformat: 

54 

0 

Rl X2 B2 D2 
7 8 11,12 _ __;,;15~1~6-~1~9~20'-----..,,,----~31 

Fetch lst operand 
from GPR per Rl. 

Fetch 2nd operand 
from main storage. 

AND. 

Store result into GPR 
per Rl and set CC. 

• Conditions at start of execution: 
1st operand is in S and T. 
Main storage request for 2nd operand has been issued 

perD. 
First 16 bits of instruction are in E. 
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• CC setting: 
Result is zero: CC = 0. 
Resultis not zero: CC = 1. 

The AND, N, instruction, which is in the RX format, 
AND's the first operand with the second operand from 
main storage. The AND function is applied left to right, 
byte by byte. 

AND, NI (94) 

• AND immediate operand (12 of instruction) with 1st 
operand (in storage) and place result into 1st operand 
location. 

• SI format: 

94 12 Bl 
1 a 15 16 19 20 

Obtain immediate 
operand from E. 

AND. 

01 

31 

Fetch 1st operand 
from main storage. 

Store result into main storage per 
1st operand address and set CC. 

• Conditions at start of execution: 
Main storage request for 1st operand has been issued per 
D. 

First 16 bits of instruction, containing immediate 
operand, are in E. 

• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC = 1. 

The AND, NI, instruction, which is in the SI format, AND's 
the first operand with the immediate second operand. The 
AND function is applied left to right. 

AND, NC (04) 

• AND 1st operand (in storage) with 2nd operand (in 
storage) and place result into 1st operand location. 

3-150 (9/68) 

• SS format: 

LL I Bl I~~ 01 I 82 I JG 
.. 0 _____ 7 .... -----15 ... 16--19 ..... 20 31 32 35 36 47 

04 

Fetch 1st operand 
from main storage. 

AND. 

Fetch 2nd operand 
from moin storage. 

Store result into main storage per 
1st operand address and set CC. 

• Conditions at end ofGIS: 
1st operand is in ST. 
2nd operand is in AB. 
ABC and STC are set to select byte(s) to be routed 

through serial adder. · . 
First 16 bits ofinstruction are in E. 

• CC setting: 
Result is zero: CC = 0. 
Result is not zero: CC = 1. 

• Maximum number of bytes is 256. 

The NC instruction specifies the following actions: 
1. The selected AB byte is gated to SAA(0-7). 
2. The selected ST byte is gated to SAB(O-7). 
3. Each AB and ST bit is combined using the serial adder 

AND function. 
4. The adder output is gated back to ST. (STAT A is set if 

the result byte is not zero.) 

Except for the above actions, the byte processing 
sequence is the same as for the Move Numerics instruc­
tion. 

OR 

The OR instruction mixes two operands on .a logical OR 
basis. An OR operation is defined as follows: if either 
operand bit is a 1, the resulting bit is a 1: otherwise, the 



result is a 0. The following example illustrates the OR'ing 
of two bytes. 

Bit positions 0 1 2 3 4 5 6 7 

1st operand 1 0 1 0 1 0 1 0 

2nd operand 1 0 0 1 1 1 0 0 

Result 1 0 1 1 1 1 1 0 

Note that only in bit positions 1 and 7 is neither bit a 1. 
Thus, only bits 1 and 7 of the result are set to 0, and the 
remaining bits are set to 1. 

The sequencing of operands through the serial adder is 
similar to the sequencing of the AND instructions. The 
major difference is that the serial adder applies the OR 
function. 

The OR operation may be executed by an instruction 
in the RR, RX, SI, or SS format. 

OR, OR (16) 

• OR 1st operand (in GPR, per Rl) with 2nd operand (in 
GPR, per R2) and place result into 1st operand 
location. 

• RRformat: 

0 

16 Rl R2 

Fetch 1st operand 
from GPR per R 1 • 

11 12 15 

OR. 

Fetch 2nd operand 
from GPR per R2. 

Store result into GPR 
per Rl ond set CC. 

• Conditions at start of execution: 
1st operand is in S and T. 
2nd operand is in A and B. 
Instruction is in E. 

• CC setting: 
Result is zero: CC = 0. 
Result is not zero: CC = 1. 

The OR, OR, instruction, which is in the RR format, OR's 
the first operand with the second operand. The OR 
function is applied left to right, byte by byte. 

OR, 0 (56) 

• OR 1st operand (in GPR, per Rl) with 2nd operand (in 
storage) and place result into 1st operand location. 

• RXformat: 

56 Rl X2 82 02 
0 11 12 15 16 19 20 

Fetch 1st operand 
from GPR per R 1 • 

Fetch 2nd operand 
from main storage. 

OR. 

Store result into GPR 
per Rl and set CC. 

• Conditions at start of execution: 
1st operand is in S and T. 

31 

Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

• CC setting: 
Result is zero: CC = 0. 
Result is not zero: CC= 1. 

The OR, 0, instruction, which is in the RXformat, OR's 
the first operand with the second operand from main 
storage. The OR function is applied left to right, byte by 
byte. 

OR, 01 (96) 

• OR immediate operand (12 of instruction) with 1st 
operand (in storage) and place result into 1st operand 
location. 

• SI format: 

0 

96 12 

Obtain immediate 
operand from E. 

~1 01 
15 16 19 20 

OR. 

Fetch 1st operand 
from main storage. 

Store result into main storage per 
1st operand address and set CC. 

31 
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• Conditions at start of execution: 
Main storage request for 1st operand has been issued 

perD. 
First 16 bits of instruction, containing immediate. 

operand, are in E. 

• CC setting: 
Result is zero: CC = 0. 
Result is not zero: CC = 1. 

The OR, OI, instruction, which is in the SI format, OR's 
the first operand with the immediate second.operand. The 
OR function is applied left to right. 

OR,OC (06) 

• OR 1st operand (in storage) with 2nd operand (in 
storage) and place result into 1st operand location. 

• SS format:. 

LL I Bl I ~~ 01 I 82 I JG 
Lo-----7'-8----l-5._16--1-9 .... 20 ·3132 3536 47 

06 

Fetch 1st operand 
from main storage. 

OR. 

Fetch 2nd operand 
from main storage . 

Store result into main storage per 
1st operand address and set CC. 

• Conditibns at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 
ABC and STC are set to select byte(s) to be routed 

through serial adder. 
First 16 bits of instruction are in E. 

• CC setting: 
Result is zero: CC = 0. 
Result is not zero: CC = 1. 

• Maximilm number of bytes is 256. 

The OC instruction specifies the following actions: 
1. The selected AB byte and the selected ST byte are 

gated to the serial adder, where they are combined per 
the serial adder OR function. 

2. The adder output is gated back to the selected ST byte, 
and the selected mark trigger is set per the STC. 

3. STAT A is set ifthe result is not zero. 

Except for the above actions, the byte processing 
sequence is the same as that for the Move Numerics 
instruction. 
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EXCLUSIVE-OR 

The Exclusive-OR instruction mixes two operands on a 
logical Exclusive-OR basis. An Exclusive-OR operation is 
defined as follows: if one and only one of the operand 
bits is a 1, the resulting bit is a 1 ; otherwise, the result is a 
0. The following example illustrates the Exclusive-OR'ing 
of two bytes. 

Bit position 0 1 2 3 4 s 6 7 

1st operand 1 0 1 0 1 0 1 0 

2nd operand 1 0 0 1 1 1 0 0 

Result 0 0 1 1 0 1 1 0 

Note that in bit positions 2, 3, 5, and 6 one and only one 
of the operand bits is a 1, and that the corresponding bit 
positions of the result are set to 1. In bit position 0, both 
operand bits are 1 and the corresponding result bit is 0. In 
bit position 1, both bits are 0 and the result is 0. 

The sequencing of operands through the serial adder is 
similar to the sequencing of the AND instructions. The 
major difference is that the serial adder applies the 
Exclusive-OR function. 

The Exclusive-OR operation may be executed by an 
instruction in the RR, RX, SI, or SS format. 

Exclusive-OR, XR (17) 

• Exclusive-OR 1st operand (in GPR, per Rl) with 2nd 
operand (in GPR; per R2) and place result into 1st 
operand location. 

• RRformat: 

0 

17 Rl . R2 

Fetch l st operand 
from GPR per Rl. 

II 12 15 

Exclusive OR. 

Fetch 2nd operand 
from G PR per R2. 

Store result into GPR 
per Rl and set CC. 

• Conditions at start of execution: 
1st operand is in Sand T. 
2nd operand is in A and B. 
·Instruction is in E. 



• CC setting: 
Result is zero: CC = 0. 
Result is not zero: CC= 1. 

The Exclusive-OR, XR, instruction, which is in the RR 
format, exclusive-OR's the first operand with the second 
operand. The exclusive-OR function is applied left to 
right, byte by byte. 

Exclusive-OR, X (57) 

• Exclusive-OR 1st operand (in GPR, per R1) with 2nd 
operand (in storage) and place result into 1st operand 
location. 

• RX format: 

57 RI X2 B2 p2 
0 II 12 15 16 19 20 

Fetch 1st operand 
from GPR per Rl. 

Fetch 2nd operand 
_ from_ main storage. 

Exclusive OR. 

Store result into GPR 
per RI and set CC. 

• Conditions at start of execution: 
1st operand is in S and T. 

31 

Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

• CC setting: 
. Result is zero: CC = 0. 
Result is not zero: CC = 1. 

. The Exclusive-OR, X, instruction, which is in the RX 
format, exclusive-OR's the first operand with the second 
operand from main storage. The. exclusive-OR function is 
applied left to right, byte by byte. 

Exclusive-OR, Xi (97) 

e Exclusive-OR immediate operand (12 of instruction) 
with 1st operand (in storage) and place result into 1st 
operand location. · 

• SI format: 

0 

97 12 

Obtain immediate 
operond from E. 

Bl DI 

Exclusive OR. 

Fetch 1st operand 
from main storage. 

Store result into main storage per 
lst operand address and set CC. 

• Conditions at start of execution: 
Main storage request for 1st operand has been issued 

perD. 
First 16 bits of instruction, containing immediate 

operand, are in E. 

• CC setting: 
Result is zero: CC = 0. 
Result is not zero: CC = 1. 

The Exclusive-OR, XI, instruction, which is in the SI 
format, exclusive-OR's the first operand with the imme­
diate second operand. The exclusive-OR function is 
applied left to right. 

Exclusive-OR, XC (07) 

• Exclusive-OR 1st operand (in storage) with 2nd op­
erand (in storage) and place result into 1st operand 
location. 

• SS format: 

,___·_D7 _ __.___L_L_ ...... l _e_1 ....... l~S DI I 02 IJ~ 
0 1 a 

Fetch 1st operand 
from main stordge. 

15 16 19 20 31 32 35 36 ~7 

Fetch 2nd operand 
. ',.,from main storage. 

Exclusive OR. 

Store result· into main-storag·e per 
1st operand address and set CC. 
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• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 
ABC and STC are set to select byte(s) to be routed 

through serial adder. 
First 16 bits of instruction are in E. 

• CC setting: 
Result is zero: CC = 0. 
Result is not zero: CC= 1. 

• Maximum number of bytes is 256. 

The XC instruction specifies the following action~: 
1. The selected AB byte and the selected ST byte are 

gated to the serial adder, where they are combined per 
the serial adder Exclusive-OR function. 

2. The adder output is gated back to the selected ST byte, 
and the selected mark trigger is set per 'the STC. 

3. STAT A is set ifthe result is not zero. 

Except for the above actions, the byte processing 
sequence is the same as that for the Move Numerics 
instruction. 

TEST UNDER MASK, TM (91) 

• Set CC according to state of 1st operand bits (in storage) 
selected by mask bits (12 of instruction). 

• SI .format: 

0 

91 12 
78 

Obtain immediate operand 
from E and use as mask. 

81 01 
15 16 19 20 

Fetch 1st operand 
from main storage. 

Select bits of 1st operand 
only when mask bits are 1 's. 

Set CC. 

31 

• Conditions atstart of execution: 
Main storage request for 1st operand has been issued per 
D. 

First 16 bits of instruction, containing immediate 
operand, are in E. 
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• CC setting: 
Selected bits all zero; mask is all zero: CC= 0. 
Selected bits mixed zero and 1 : CC = 1. 
Selected bits all 1 : CC = 3. 

• Storage contents are not changed. 

The byte of immediate data, 12, is used as an eight-bit 
mask. The bits of the mask are made to correspond one for 
one with the bits of the character in main storage specified 
by the first operand address. 

A mask bit of 1 indicates that the storage bit is selected. 
When the mask bit is 0, the storage bit is ignored. When all 
storage bits thus selected are zero, the CC is made 0. The 
CC is also made 0 when the mask is all-zero. When the 
selected bits are all-1, the CC is made 3; otherwise, the CC 
is made 1. The character in storage is not changed. 

INSERT CHARACTER, IC (43) 

• Insert 2nd operand (byte; in storage) into bits 24-31 
of 1st operand location (in GPR, per Rl). 

• RXformat: 

43 Rl I X2 82 02 
0 7 8 11 12 15 16 19 20 

Fetch doubleword {containing 
8-bit character) from main storage. 

Insert character into bits 
24-31 of GPR per Rl. 

• Conditions at start of execution: 
1st operand is in Sand T. 

31 

Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

The Insert Character instruction, which 1s m the RX 
format, inserts the byte of second operand into bits 24-31 
of the GPR specified by R1. The remaining bits in the GPR 
are unchanged. 

STORE CHARACTER, STC (42) 

• Store bits 24'-31 of 1st operand (in GPR, per RI) into 
2nd operand location (in storage). 



• RXformat: 

0 

42 RI X2 82 
78 11 12 15 16 19 20 

Fetch character from bits 
24-31 of GPR per .Rl. 

Store character into main 
storage per 2nd operand address. 

• Conditions at start of execution: 
1st operand is in S and T. 

02 

31 

Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

The Store Character instruction, which is in the RX format, 
stores the byte (bits 24-31) of first operand into main 
storage per the second operand address. 

LOAD ADDRESS, LA (41) 

• Insert 2nd operand address into bits 8-31 of GPR 
specified by Rl. 

• RXformat: 

41 RI 

0 78 11 12 

X2 82 02 

15 16 19 20 

Insert 2nd operand address in to 

bits 8-31 of GPR per Rl. 

• Conditions at start of execution: 
1st operand is in Sand T. 

31 

Main storage request for 2nd operand has been issued 
perD. 

First 16 bits of instruction are in E. 

The address specified by the X2, B2 and D2 fields is 
inserted into bits 8-31 of the GPR specified by R1; bits 
0-7 are made O's. The address is not inspected for 
availability, protection, or resolution. 

The address computation follows the rules for address 
arithmetic. Any carries beyond the 24th bit are ignored. 
The same GPR may be specified by the Rl, X2, and B2 
instruction field, except that GPRO can be specified only 
by the Rl field. In this manner, it is possible to increment 
the low-order 24 bits of a GPR, other than 0, by the 

contents of the 02 field of the instruction. The GPR to be 
incremented should be specified by Rl and by either X2 
(with B2 set to zero) or B2 (with X2 set to zero). 

TRANSLATE TR (DC) 

• Add 1st operand byte (argument; in storage) to effective 
2nd operand address, use result as storage address, and 
place function byte from resulting storage address into 
corresponding 1st operand byte location. 

• SS format: 

I Bl l>S 01 I 82 I JG 
..,_ ___ ..,,.7..,.,8 ----,,.,,., ..,.,,6-...,,19~20 3132 35 36 47 

DC LL 

Fetch doubleword (containing lsl 
argument byte) from moin storage 
per 1st operand storage. 

Select argument byte. 

Add argument byte to base 
address of function byte 
(2nd aperond address). 

Fetch function byte per result address. 

Stare function byte into 
argument byte location. 

Tranolafe next 
argument byte. 

No 

• Conditions at end ofGIS: 
1st operand (destination) is in ST. 
Destination address is in D. 

Yes 

End op. 

Source address (contents of GPR per B2, + D2) is in IC. 

The Translate instruction selects the first operand bytes for 
translation one byte at a time, proceeding from left to 
right. Each argument byte is added to the entire initial 
address, the second operand address, in the low-order bit 
positions. The sum is used as the address of the function 
byte, which then replaces the original argument byte. All 

2065 FETOM (9/68) 3-155 



data is valid. The operation proceeds until the first 
operand field is exhausted. The table is not altered unless 
an overlap occurs. 

At the start of the execution sequence, the first 
operand has been fetched to ST. A request per the IC has 
been made for the second operand, but this doubleword 
from main storage is not used. 

The execution sequence is as follows: 
1. The selected ST byte is saved in F. The contents of T 

are saved in B. (The contents of the IC are saved in 
A.) 

2. T is cleared, the STC is set to 111, and the contents 
of F (selected destination byte) are placed into 
T(56-63) via the serial adder, 

3. The contents of T are added to the contents of the 
IC in the parallel adder, and the result is gated back 
to the IC. 

4. A request for the second operand is issued per the 
IC. 

5. The ABC is set per IC(21-23), and the STC is set 
per D(21-23). 

6. The original source address is restored to the IC from 
A. The destination word is restored to T from B. 

7. A word-overlap test was made before the source 
address was restored to the IC. If no word overlap 
exists, the table doubleword fetched from main 
storage is gated to AB. If word overlap is detected, 
the contents of S are transferred to A (B is already 
identical with T) and the doubleword from main 
stora~e is not used. 

8. The selected AB byte is gated via the serial adder to 
the selected ST byte, and the selected mark trigger is 
set. The STC and D are incremented by 1. The LL 
count is decremented by 1. 

9. Unless the STC was 7 or LL was zero before 
stepping, the sequence is repeated for the next 
destination byte. 

10. If LL was zero, the contents of ST are stored and the 
common end-op sequence is started. 

11. If the STC was 7 and LL not equal to zero, the 
contents of ST are stored and the next destination 
word is fetched by the common destination fetch 
sequence, after which the translate sequence is re­
sumed. 

TRANSLATE AND TEST, TRT (DD) 

• Add 1st operand byte (argument; in storage) to 
effective 2nd operand address, use result as storage 
address, and test function byte from resulting storage 
address. If 0, translate and test next argument byte; 
if non-0, complete operation by inserting related 
argument address into GPRl and function byte into 
GPR2. 
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• SS format: 

DD LL 1 Bl 1 ~s 01 1 82 1 JG 
.___ ___ __.7 ,----..,.,15~1"'."'6 -. ~19~20 31 32 35 36 47 

Fetch doubleword (containing 
1st argument byte) from main 
storage per 1st operand address. 

Select argument byte. 

Add argument byte to bose address of 
function byte (2nd operand address). 

Fetch function byte per result address. 

Yes 

T ronslate next 
argument byte. 

Store function byte 
into GPR2. 

Store oddr.ess of argument 
byte into GPRI . 

End-op; set CC. 

• Conditions at end of GIS: 
1st operand (destination) is in ST. 
Destination address is in D. 

Source address (contents of GPR per B2, + 02) is in 
IC. 

• CC setting: 
All function bytes are zero: CC= 0. 
Nonzero function byte encountered before operand is 

exhausted: CC = 1. 
Last function byte is nonzero: CC= 2. 

The Translate and Test instruction fetches the function 
bytes in the same manner as the Translate instruction. Each 
function byte retrieved from the table is inspected for an 
all-zero combination. 



When the function byte is zero, the operation proceeds 
with the next operand byte. When the first operand field is 
exhausted before a nonzero function byte is encountered, 
the operation is completed by setting the CC to 0. The 
contents of GPR's 1 and 2 remain unchanged. 

When the function byte is nonzero, the related argument 
address is inserted into the low-order 24 bits of GPRI. This 
address indicates the argument last translated. The 
high-order eight bits of GPRI remain unchanged. The 
function . byte is inserted into the low-order eight bits of 
GPR2. Bits 0-23 ofGPR2 remain unchanged. The.CC is set 
to I when one or more argument bytes have not been 
translated. The CC is set to 2 if the last function byte is 
nonzero. 

The following abbreviations are used in this discussion of 
the Translate and Test execution sequence: 

DX: first byte in series of destination bytes. 
T(DX): table byte specified by DX. 
DX + I: second byte in series of destination bytes. 
T(DX + I): table byte specified by DX + 1.' 
DX + 2: third byte in series of destination bytes. 

The Translate and Test instruction uses the following 
execution sequence: 
1. First Byte Sequence 

a. The selected ST byte is saved in F. 
b. The contents of ST are transferred to AB. 
c. The STC is set to 3, and the contents of F (DX) are. 

gated, via the serial adder, to byte 3 in S. 
d. Bytes 0, 1, and 2 in S are cleared by gating the 

contents of SAL to ST and successively decrementing 
the STC by I. 

e. The ABC is set per D{21-23), and the STC is set to 
3. 

f. The DX in S is added to the contents of the IC, and 
an IC request is made for T(DX). 

g. A branch per STAT G is made to the T(DX + I) 
address generation routine. (STAT G is used to 
indicate that a table byte has been fetched and is 
ready for test.) 

2. T(DX + 1) Address Generation 
a. The ABC is incremented by 1. 
b. DX is transferred from S to T. 
c. STAT G is set. 
d. The selected AB byte (DX + 1) is gated via the serial 

adder to byte 3 in S. 
e. The STC is set per IC(21-23). 
f. The T(DX) ingate and T(i>X + 1) fetch sequence is 

started. 
3. T(DX) Ingate and T(DX + 1) Fetch Sequence 

a. The table word which contains byte T(DX) is 
available from main storage, and either the left- or 
right-half word is gated to T as determined by 
IC(21). STC(O) is set to 1 to select the correct byte 
in T. Simultaneously, the contents of T(DX) are 

subtracted from the contents of IC to restore the 
table base address. 

b. If LL equals zero, an exit is made to the T(DX) test 
sequence. 

c. If LL is not zero, DX + 1 (in S) is added to the 
contents of IC and a fetch request is made for T(DX 
+ 1). 

d. A branch per STAT G starts the T(DX) test 
sequence. 

4. T(DX) Test Sequence and T(DX + 2) Address Genera­
tion 
a. The selected byte in T, T(DX), is gated to the serial 

adder for zero detection and is saved in F. 
b. ST AT H is set if the ABC equals zero. 
c. DX + .1 is transferred from S to T. 
d. The STC is set to 3, and the ABC is incremented by 

1 (selecting byte to DX+ 2). 
e. An exit is made to the LS mark sequence (step 6) if 

a nonzero result is detected in the serial adder. 
f. An exit is made to the common end-op sequence if 

the serial adder result is zero and the LL count is 
zero. 

g. The LL count is decremented and the address in D 
is incremented by 1. 

h. If STAT His set, an exit is made to the destination 
fetch routine. 

i. If no exit conditions are detected, the selected AB 
byte (DX+ 2) is gated via the serial adder to S, and 
the STC is set per IC(21-23). 

j. The T(DX) ingating and T(DX + 1) fetcJ:i sequence 
. is started. The table byte previously referred to as 
T(DX) has been tested. The table byte previously 
referred to as T(DX + 1) is now considered T(DX), 
and the processing loop is resumed. 

5. Destination Fetch Routine 
a. Before entering this routine, the ABC has been 

stepped from 7 to 0 and a fetch request was made 
for a table byte using byte 0 of the present 
destination word.to generate the table byte address. 
Because this was an erroneous address, the resulting 
word from main storage is not used. 

b. STAT's G and Hare reset, and the IC is restored to 
the table base address by subtracting DX + 1. 

c. A fetch request 'is made per the D-address. The 
requested doubleword is gated to AB. 

d. The ABC was previously stepped from 0 to 1. It is 
now decremented to select byte 0 of the new 
destination doubleword (considered byte DX). 

e. The selected AB byte (DX) is gated via the serial 
adder to byte 3 in S. 

f. The DX (in S) is added.fo the contents oflC, and a 
fetch request is made for T(DX). 

g. Because STAT G is reset, the T(DX + I) address 
generation routine is started. 
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6. LS Mark Sequence 
a. This routine is entered when a nonzero table byte is 

detected in the serial adder or when the LL count 
equals zero. (The last table byte tested is in F.) 

b. If the table byte was nonzero, STAT G is reset. 
c. E(8-15) is cleared and used for LAR addressing. 
d. GPRl is accessed per E(8-15) + 1 and its contents 

transferred to T. 
e. The STC is incremented to 4, and byte 4 of ST is 

gated via the serial adder back to ST. Simultaneous­
ly, the contents of D are gated to T via the parallel 
adder. 

f. The contents ofT are stored into GPR1;E(8-11) is 
incremented twice, and the STC is set to 7. 

g. The contents of GPR2 are transferred to T. The 
contents of F are gated via the serial adder to 
T(56-63), and the contents of T are stored into 
GPR2. 

h. STAT A is set ifthe byte in F was not zero. 
i. The common end-op sequence is started, which sets 

the CC per STAT's A and G. 

EDIT AND EDIT AND MARK, ED AND EDMK 
(DE AND DF) 

e Edit: change format of source (2nd operand; in 
storage) from packed . to zoned, edit source under 
control of pattern (1st operand; in storage), and place 
result into 1st operand locatic>n. 

e Edit and Mark: same as Edit, but in addition place 
location of each 1st significant digit into GPRI. 

• SS format: 

I OpCodet I LL I 81 m DI I 82 IJG 
L,0_,.;. __ ,.,18 ___ "::"15':':'16---;1:":9 20 Slll 3U6 47 

foe for Edit 
DF far Edit and Mark 
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Fetch pottem from 
main storage per 
1st operand address. 

Select pottern byte. 

Fetch source from 
main storage per 
2nd operand address. 

Select SOIWCO byte. 

Edit source byte under control of pattern 
byte (result is in zoned format}. 

Store result byte Into pattem byte locatlon. 

Store address of each 
1st significant result 
digit into GPRI. 

• Conditions at end of GIS: 
Pattern (destination operand) is in ST. 
Pattern address is in D. 
Source address (contents of GPR per B2, + D2) is in 

IC. 
First 16 bits of instruction are in E. 

• CC setting: 
Result is zero: CC= 0. 
Result is less than zero: CC = 1. 
Result is greater than zero: CC= 2. 

The Edit instruction changes the format of the source 
(second operand) from packed to zoned, edits the source 
under control of a pattern (first operand), and places the 
result into the first operand location. The Edit and Mark 
instruction performs the same functions and, in addition, 
places the location of each first significant digit into 
GPRl. Both instructions are in the SS format, and share a 
common ROS microprogram with an exit to a separate 
mark routine for the Edit and Mark instruction. Because 
the results of a word-overlap condition are unpredictable, 
no special action is taken when tIµs condition occurs. 

Introduction to Edit Operation 

• Edit instruction is used to: 
Eliminate high-order zeros. 
Provide asterisk protection. 
Handle sign control (CR). 
Provide punctuation. 
Blank out an all-zero field. 
Protect decimal point by use of significance start 

character. (This character can also be used to retain 
high-order zeros when desired.) 

Edit multiple adjacent fields via field separator charac-
ter. 

The edit operation is used to produce easy-to-read 
documents by inserting proper punctuation into a data 
record. The data to be edited (second operand) is called 
the "source" and must be in the packed BCD format. 
Consider the following source field: 

00 12 49 07 10 7+ 

For the above field to be printed in a document, it 
must first be converted into the zoned format (USASCII-8 
or EBCDIC). One function of the edit operation is to · 
change the source field from packed to zoned format.t If 

t Each time the digit from the source field replaces a digit select 
character, the four-bit digit has the proper EBCDIC or 
USASCII-8 zone bits inserted. PSW(12) determines whether the 
EBCDIC or USASCII-8 zone is inserted. For this. discussion, it 
is assumed that the system is in EBCDIC mode. 



changing from packed to zoned format were all that was 
necessary to produce a legible report, the Edit instruction 
would not be necessary, because the Unpack instruction 
would be sufficient. For instance, if the above packed 
BCD operand were changed to the EBCDIC zoned format, 
it would look like this: 

Packed 00 12 49 07 10 7+ 

Zoned FO FO Fl F2 F4 F9 FO F7 Fl FO C7 

If the above zoned BCD field were printed, it would 
look like this: 

0 0 1 2 4 9 0 7 1 0 7 + 

By examining the printed document, one could tell 
that it was a positive number with a low-order digit of 7. 
However, the printed document is still not legible. If, for 
instance, the number represents money, it would be 
desirable to obtain the following printed result: 

$1,249,071.07 

This result would require insertion of the commas and 
decimal points in the right place, as well as other editing. 
This is the main function of the edit operation. 

The edit operation involves moving the source field 
(second operand) into the pattern field (first operand). 
The pattern field is initially made up of EBCDIC 
characters that control the editing. The final edited result 
replaces the pattern field: 

2nd Operand 

Source Field 
in Packed 
Decimal 

lst Operand 

Pattern Field 
(EBCDIC Char­
acters) 

As a rule, the second operand is shorter than the first 
because one source byte yields two result bytes. 

The characters in the pattern field determine the 
editing that takes place. The high-order (leftmost) charac­
ter in the pattern field is known as the "fill" character. 
Any of the 256 possible EBCDIC combinatfons can be 
used as the fill character. In many edit operations, 
however, the fill character consists of an EBCDIC blank 
(0100 0000). The blank character (represented by "b" in 
the discussion that follows) is not printed out and 
facilitates programmed blanking of high-order zero fields. 

Besides the fill character, three more control characters 
in the pattern field have special meaning: the digit select 
character, the significant start character, and the field 
separator character. These characters can appear anywhere 
in the pattern field. 

For purposes of discussion, the digit select character is 
represented by "d." (The binary code for the digit select 
character is 0010 0000, or a hex 20.) When a digit select 
character is encountered in a pattern field, it is usually 
replaced with a digit from the source field. ff the digit in 
the source field 1s a high-order zero, however, the digit 
select character is replaced by the ftll character.By using a 
blank as the fill character, high-order zeros can be blanked 
out. If an asterisk is used as the fill character, asterisk 
protection for paychecks can be achieved. 

Because the digit select character may be replaced by 
either a source digit or the fill character, the system needs 
some way of knowing which of the two to choose. This 
function is provided by a special control trigger, known as 
the 'S' trigger. When the 'S' trigger is set, it indicates that 
significant source digits are being processed. Conse­
quently, the digit select characters in the pattern field are 
replaced with the digits from the source field. At the 
beginning of the edit operation, the 'S' trigger is always 
r.eset. As long as the 'S' trigger is reset, the digit select 
characters in the ·pattern field are replaced with the ftll 
character. 

As stated previously, the 'S' trigger is set when a 
nonzero digit is detected in the source field. The 'S' 
trigger is also set if a significant start character is 
detected in the pattern field. The significant start 
character has a bit code of 0010 0001 (hex 21). In this 
discussion, the symbol for the left parenthesis is used to 
represent the significant start character. When a 
significant start character is detected in the pattern field, 
it is replaced by either a digit from the source field or 
the fill character. A typical edit operation using the b, 
d, and ( characters is illustrated and explained below. 

Source Field 00 12 49 07 10 \ 
'---'------'---'--......_____,___..( 

Pattern Field''--_b_.____.l_d__._d--'L-d-'--d-.L---J/ 

The edit operation begins by examining the fill 
character (which is b in the above case). If it is not a 
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digit select or a significant start character, it is left in 
place in the pattern field. Then, the next pattern 
character is examined. Because this is a significant start 
character, the next high-order source digit is examined. 
Because this source digit is zero and the 'S' trigger is 
reset (at this time), the significant start character is 
replaced with the fill charac.ter. However, the significant 
start character sets the 'S' trigger so that all subsequent 
source digits are significant. The remaining pattern 
characters in the above example are digit select charac-
ters, which are replaced with source digits. . 

Once significance is started, the 'S' trigger remams 
set until the sign of the source operand is examined. If a 
plus sign is detected, the 'S' trigger is reset; if the source 
has a negative sign, the 'S' trigger remains set because 
the usual method of indicating a negative quantity in a 
printed report is with the letters "CR". The following 
example illustrates how the state of the 'S' trigger 
identifies the number as a positive or negative quantity: 

Source Field lool 12l49lo7l1017+1 
(6 Bytes) 

Pattern Field I b I d I d I d I d I d I d I d I d I d I d I d I CI R I 
(14 Bytes) 

Result I b I b I b I 1 I 214191 0 1711 I 0 171 b I b I 
When a pattern character is not one of the three special 
control characters and the 'S' trigger is set, the character 
is not changed. If the 'S' trigger is reset, the character is 
replaced by the fill character. Because detection of a 
positive sign resets the 'S' trigger, the remaining pattern 
characters (CR) are replaced by the fill character. If the 
sign of the source field had been minus, the 'S' trigger 
would have remained set and characters CR would have 
been left in the pattern field. 

As stated previously, the 'S' trigger is reset when a 
plus sign is detected in the source field. The 'S' trigger is 
also reset if a field separator character is detected in the 
pattern fiel.d. The field separator character has a bit 
code of 0010 0010 (hex 22). In this discussion, the 
symbol for the right parenthesis represents the field 
separator character. 

The field separator character is used when two or 
more packed BCD source fields are to be edited with 
one instruction into a: single pattern field. The following 
edit example illustrates the use of the field separator 
character. 

Source Field H77Hooloolo+I 
(6 Bytes) 

Pattern Field I b Id Id I ( I · Id Id I b IC I RI ) Id Id Id I · Id Id I b IC I RI 
(20 Bytes) 

Resu It I b I b I 1 j 7 I · 17 16 1 b I b I b I b I b I b I b I b I b I b I b I b I b I 
Prints Out 17.76 
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Note that after the field separator character resets the 
'S' trigger, the source field does not contain any signifi­
cant digits. As a result, the pattern characters are 
replaced by the fill character (blank). 

Introduction to Edit and Mark Operation 

The Edit and Mark operation is identical with that of the 
Edit instruction, except for the additional function of 
inserting a byte address into bits 8-31 of GPRl. The byte 
address is inserted each time the 'S' trigger is reset and a 
nonzero digit is inserted in the result field. The address is 
not inserted when significance is forced by the significant 
start character of the pattern. Bits 0-7 of GPRl are not 
changed. The Edit and Mark instruction facilitates the 
programming of floating currency-symbol insertion. The 
character address inserted into GPRl is I more than the 
address where a floating currency-sign would be inserted. 
(The Branch on Count instruction, with zero in the R2 
field, may be used to reduce the inserted address by 1.) 

The character address is not stored when significance is 
forced. Therefore, the address of the character following 
the significant start character should be placed into GPRl 
before the Edit and Mark instruction is executed. 

When a single instruction is · used to edit several 
numbers, the address of the first significant digit of each 
number is inserted into GPRl. Only the last address will 
be available after the instruction is completed. 

General Data Handling 

Special circuits are packaged in the serial adder for use in 
the Edit .and Edit and Mark instructions. These circuits 
consist of: 
1. A decoder of serial adder bus B (SBB) to detect a digit 

select, significant start, or field separator character in 
the selected ST byte. 

2. 'Right digit' trigger for AB digit selection. 
3: Controls for stepping the ABC. 
4. Controls for determining which data (i.e., ST byte, F, 

or AB digit with zone) is to be used as the result byte, 
and controls for gating this data to the serial adder. 

S. Zero detection of the selected AB digit. 
6. Sign detection of the low-order digit of the selected AB 

byte. · 
7. Detection of a mark condition. 
8. The 'S' trigger with associated set-reset controls. 
9. Controls for setting or resetting STAT's. 

The destination field is considered a pattern field and is 
processed one byte at a time, from left to right, under 
control of the STC. Each ST byte is gated to SBB for 
decoding and is replaced by ·a byte of data which, 
depending on decoded conditions, may be: 
1. Original data of ST byte. 
2. A selected digit of AB with a zone inserted .into the 

high-order four bits. 
3. ·A fill character, which is contained in F: 



The source field is processed, one digit at a time, from left 
to right, under control of the ABC and 'S' trigger, which 
selects which digit of a byte is to be used. The selected AB 
digit is examined only if a digit select or significant start 
character appears in the selected ST byte. The selected AB 
digit is not necessarily used as part of the result byte, but 
the next digit to be processed is selected after the digit has 
been examined. 

Microprogram Description 

The flowchart for the Edit and Edit and Mark micro­
program is shown in Diagram 5-411, FEMDM. At the start 
of the execution sequence, the fill character is gated from 
ST (per the STC) through the serial adder to F. A 2-cycle 
data-processing sequence is then started and is repeated 
until all destination operand bytes have been processed. 
Exits from this sequence are made when required for 
operand fetching or marking, after which this sequence is 
continued. The microprogram may be divided into three 
parts: (1) first cycle, (2) second cycle, and (3) exit 
conditions. 

First Cycle 

The frrst cycle is a decode cycle; no data is transferred. 
The selected ST byte is gated to SBB, and the selected AB 
byte is gated to serial adder bus A (SBA) with the digit to 
be examined determined by the 'right digit' trigger. The 
decode circuits are activated by ROS. Decoding of SBB, 
SBA, and the 'S' trigger governs the selection of appro­
priate inputs to the serial adder, and also whether the 'S' 
trigger is set or reset. ST AT A is set if the selected source 
digit (in AB) is a nonzero digit. However, if a field 
separator character is decoded at SBB, STAT A is reset. 

STAT E is set if an invalid digit is decoded in 
SBA(0-3). A 1 is added to D (except for the frrst entry 
from another sequence) to keep the byte address in D at 
the same value as the STC for use in the marking 
sequence. A mark condition is detected and latched for a 
branch condition of the Edit and Mark instruction. 

Second Cycle 

At the start of this cycle, data is gated to the serial adder 
by hardware controls as explained in the frrst cycle. The 
second cycle performs the following control functions: 
1. The serial adder output is gated back to the selected ST 

byte, and the appropriate mark trigger is set. 
2. The STC is incremented, and the LL count in E(8-15) 

is decremented by ROS control. 
3. The ABC is incremented by hardware controls. 
4. If required, the 'digit select' trigger is complemented. 

This action is conditional on the following: 
a. The digit selection of AB is changed only if a 

significant start or digit select character was de-. 
coded during the frrst cycle. 

b. When a sign code is decoded in SBA( 4-7) at the 
time bits 0-3 are selected for examination, the 
low-order digit (sign) is skipped by stepping the 
ABC and leaving the 'right digit' trigger reset. 

5. If required, exit to a separate routine is made via an 
eight-way ROS branch, for end-op, operand fetching, 
or marking. If no exit conditions exist, the execution 
sequence is repeated. 

Exit Conditions 

Exits from the data processing sequence are made when 
one or more of the following conditions exist: 
1. Edit and Mark instruction is being executed and a mark 

condition is detected. 
2. LL = 0 cir STC = 7. 
3. ABC= 7. 

Where more than one of the above conditions exists, a 
branch is made to the proper sequence in the order they 
are listed above. An explanation of each sequence is given 
below: 
1. Exit on Detection of Mark Condition 

Exit to the mark sequence is made regardless of other 
branch conditions. Special action is taken to return 
counter values to what they were before entering the 

·mark sequence, so they can be retested. STAT His set 
if the ABC has just stepped from 7 to 0, to record this 
condition. The contents of AB are destroyed by gating 
E(8-15) + 1 via the parallel adder to A, and the 
contents of T via the parallel adder to B. E(8-15) is 
cleared, and GPRl is transferred to T using E( 12-15) 
+ 1 as the LAR address. The contents of D, the byte 
address of the last byte processed, are placed into 
T(40-63). T(32-39) is retained by gating it through 
the serial adder and back to T at the same time the 
D-PAL-T transfer occurs. The contents of T are now 
transferred back to GPRl. Registers and counters are 
restored to their original contents. The source operand 
is replaced in AB by refetching it from main storage, 
and a test is made, via a ROS branch, for any other exit 
condition which may have been present at the time the 
mark sequence was started. If no other exit condition 
exists, the data-processing sequence is resumed. 

2. Exit on LL = 0 or STC = 7 (End-Op or Destination 
Fetch) 
STAT D is set if the ABC also equals 7, and a 
destination store is started and a test is made for 
invalid data. If STAT E has been set, an interruption 
code trigger is set and an end-op sequence is started. If 
STAT E is not set, a test is made for an end-op 
condition via a ROS branch. If the LL count has been 
stepped to all l's, an end-op sequence is started which 
sets the CC, restores the instruction address to the IC, 
and resets STAT G. If an end-op condition does not 
exist, D is incremented and a fetch request is initiated 
for the next doubleword of destination operand. A test 
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is made to see whether a source fetch is also required 
(ABC= O and STAT D set). Ifnot, the data-processing 
sequence is resumed. 

3. Exit on ABC= 7 (Possible Source Fetch) 
A further test must· be made to determine whether the 
last byte of AB has been processed. This is determined 
by testing the ABC for an all-zero count (i.e., the ABC 
was stepped from 7 to 0 in the previous cycle). If the 
ABC is not zero, the data-processing routine is re­
started; otherwise, the IC is incremented by 8, and a 
fetch is initiated for the next doubleword of source 
operand. This source fetch sequence is common to all 
VFL logical instructions and incorporates the word­
overlap test. However, this test does not affect the edit 
operation. The source doubleword from main storage is 
gated from the SDBO to AB, and the data-processing 
sequence is resumed. 

SHIFT 
Four logical shift instructions are available: 
1. Shift Left Single. Shifts a 32-bit operand left. 
2. Shift Left Double. Shifts a 64-bit operand left. 
3. Shift Right Single. Shifts a 32-bit operand right. 
4. Shift Right Double. Shifts a 64-bit operand right. 

The second operand address is not used to address 
data. Rather, its low-order six bits indicate the number of 
bit positions to be shifted; the rest of the address is 
ignored. 

Shifting is accomplished as follows: 
1. Left 1 from T to PAA. 
2. Left 2 from AB to P AB. 
3. Left 4 from PAA orPAB to PAL. 
4. Right 4 from PAA or PAB to PAL. 

Shifts of right 3 or less are obtained by combining left 
1, left 2, or left 3 shifts with a right 4 shift. 

Shift Left Single, SLL (89) 

• Shift 1st operand (in GPR, per Rl) left number of bit 
positions specified by low-order 6 bits of 2nd operand 
address. 

• RS format: 

0 

89 R1 B2 

7 B 

Fetch 1st operand from GPR per R1. 

Shift 1st operand left number of bit 
positions speci fled by low-order 
6 bits of 2nd operand address. 

Store result into GPR per R1. 
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02 
19 20 31 

• Conditions at start of execution: 
1st operand is in Sand T. 
D(18-23) specifies amount of shift. 
First 16 bits of instruction are in E. 

The Shift Left Single, SLL, instruction shifts the 32-bit 
first operand left the number of bit positions specified by 
the low-order six bits of the second operand address. All 
32 bits of the GPR participate in the shift. High-order bits 
are shifted out without inspection and are lost. Zeros are 
supplied to vacated low-order GPR positions. This instruc­
tion shares the same microprogram as the fixed-point 
Shift Left Single, SLA, instruction (Section 2 of this 
chapter). 

Shift Left Double, SLDL (80) 

• Shift 1st operand (in GPR, per Rl and R1 + 1) left 
number of bit positions specified by low-order 6 bits of 
2nd operand address. 

• RS format: 

0 

80 R1 

7 B 

Fetch 1st operand from 
G PR per R 1 and R 1 + 1 . 

B2 

Shift 64-bit 1st operand left number 
of bit positions specified by low­
order 6 bi ts of 2nd operand address. 

Store result into GPR 
per R1 and R1 + l. 

19 20 

• Conditions at start of execution: 
1st operand is in ST. 
D(18-23) specifies amount of shift. 
First 16 bits of instruction are in E. 

02 

31 

The Shift Left Double, SLDL, instruction shifts the 64-bit 
first operand left the number of bit positions specified by 
the low-ord~r six bits of the second operand address. The 
Rl field of the instruction specifies an even/odd pair of 
GPR's and must contain an even GPR address. An odd 
value for Rl is a specification exception and causes a 
specification program interruption. All 64 bits of the 
even/odd GPR pair participate in the shift. High-order bits 
are shifted out of the even-numbered · GPR without 
inspection and are lost. Zeros are supplied to vacated 
low-order positions of the odd-numbered GPR. This 
instruction shares the same microprogram as the fixed­
point Shift Left Double, SLDA, instruction (Section 2 of 
this chapter). 



Shift Right Single, SRL (88) 

• Shift 1st operand (in GPR, per RI) right number of bit 
positions specified by low-order 6 bits of 2nd operand 
address. 

• RS format: 

0 

88 Rl B2 

Fetch lst operand from GPR per Rl. 

Shift lst operand right number of 
bit positions specified by low-order 
6 bits of 2nd operand address. 

Store result into GPR per Rl. 

• Conditions at start of execution: 
1st operand is in Sand T. 
D(l 8-23) specifies amount of shift. 
First 16 bits of instruction are in E. 

02 
31 

The Shift Right Single, SRL, instruction shifts the 32-bit 
first operand right the number of bit positions specified 
by the low-order six bits of the second operand address. 
All 32 bits of the GPR participate in the shift. Low-order 
bits are shifted out without inspection and are lost. Zeros 
are supplied to vacated high-order GPR positions. This 
instruction shares the same microprogram as the fixed­
point Shift Right Single, SRA, instruction (Section 2 of 
this chapter). 

Shift Right Double, SRDL (SC) 

• Shift 1st operand (in GPR, per Rl and Rl + 1) right 
number of bit positions specified by low-order 6 bits of 
2nd operand address. 

• RS format: 

BC Rl 

7 8 

Fetch 1st operand from 
GPR per Rl and Rl + 1. 

B2 
19 20 

Shift 64-bit 1st operand right 
number of bit positions specified 
by low-order 6 bits of 2nd 
operand address. 

Store result into GPR 
per R 1 and R 1 + 1 . 

• Conditions at start of execution: 
1st operand is in ST. 
D(l8-23) specifies amount of shift. 
First 16 bits of instruction are in E. 

02 
31 

The Shift Right Double, SRDL, instruction shifts the 
64-bit first operand right the number of bit positions 
specified by the low-order six bits of the second operand 
address. The RI field of the instruction specifies an 
even/odd pair of GPR's and must contain an even GPR 
address. An odd value for Rl is a specification exception 
and causes a specification program interruption. All 64 
bits of the even/odd GPR pair participate in the shift. 
Low-order bits are shifted out of the odd-numbered GPR 
without inspection and are lost. Zeros are supplied to 
vacated high-order positions of the even-numbered GPR. 
This instruction shares the same microprogram as the 
fixed-point Shift Right Double, SRDA, instruction (Sec­
tion 2 of this chapter). 
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Section 6. Branching Instructions 

This section discusses the nine branching il,lstructions. The 
instructions use the RR, RX, and RS formats. For a 
discussion of branching, operand addressing, instruction 
formats, data flow, and program interruptions, see Chap­
ter 1. 

BRANCH ON CONDITION, BCR (07) 

• Branch to location specified by GPR (addressed by R2) 
if state of CC is as specified by M 1. 

• RRformat: 

07 Ml R2 

7 8 11 12 15 

Obtain CC mask bits from E. 

Compare CC with mask bits. 

Branch t.o location specified by 
GPR (per R2) if condition is met. 

• Conditions at start of execution: 
Branch address is in D. 
3-cycle storage request for branch-to instruction has 
been issued per 0 if branch is successful. 

Instruction is in E. 

• If branch is unsuccessful, 3-cycle storage request to 
refill Q will be issued per IC, if required. 

• Branch is unsuccessful if R2 = 0 or if condition is not 
met. 

The Branch on Condition, BCR, instruction, which has an 
RR format with an op code of 07, replaces the next 
sequential instruction address with the branch address 
located in the GPR specified by R~ if the CC agrees with 
the corresponding mask bit(s) in the Ml field. The Ml 
field is used as a four-bit mask. The four bits of the mask 
correspond, left to right, with the four CC's (0, l, 2, and 
3) as follows: 

Ml Mask Position 
Field Value cc 

8 8 0 
9 4 1 

10 2 2 
11 1 3 
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The branch is successful whenever the CC has a corre­
sponding mask bit(s) of 1. 

When a branch is to be made on more than one CC, the 
pertinent CC's are specified in the mask as the sum of 
their mask position values. A mask of 12, for example, 
specifies that a branch is to be made on CC's 0 and 1. 

When all four mask bits are l's, that is, the mask 
position value is 15, the branch is unconditional. When all 
four mask bits are 0 . or when R2 = 0, the branch 
instruction is equivalent to a No-Operation. 

At the start of execution, the instruction is in E and 
the branch address is in D. For a BCR instruction, the 
storage request can be generated from two possible places, 
depending upon whether the branch is successful (Dia­
gram 5-501, FEMDM). If the branch is successful, the 
storage request is generated per O. If the branch is 
unsuccessful, the storage request is generated per the IC if 
Q needs to be refilled. Because the CC's, which have to be 
compared with the mask bits, are set during the execution 
phase of a previous instruction and are tested during 
I-Fetch of the branch instruction, success of the branch 
can be determined beforehand. Therefore, the BCR 
instruction knows whether it is successful or unsuccessful 
before instruction execution. 

The branch-to address is always placed in 0 by the 
I-Fetch sequence. If the branch is successful, a request is 
made per 0 by means of the 'I-Fetch reset' micro-order. 
The correct halfword within . the doubleword from main 
storage is then gated into Q, and from Q to R per 
0(21,22). The contents of 0 are updated by 8 and placed 
into the IC to address the next sequential doubleword 
from main storage. If the branch is unsuccessful, the 
storage request is issued per the IC, if Q needs to be 
refilled, during I-Fetch (by means of the 'I-Fetch reset' 
micro-order), and the data from main storage is gated to Q 
during the execution of the unsuccessful branch. 

Successful Branch 

The 'execute' and 'PSC' triggers are reset if the branch is 
successful. The triggers are set if the branch instruction is 
the subject instruction of an Execute instruction. 

The contents of 0 are transferred to PAA(40-63). 
Then 8 is added to PAA, and the result (address of next 
doubleword to be operated on) is transferred to the IC. 
0(21,22) is now tested. If D(21,22) = 11, it signifies that 
the next instruction to be executed, when the data is 
gated into Q from the SDBO, occupies the last halfword 
of Q, and a request must be made to obtain additional 
instructions for Q. If 0(21,22) equals a value other than 



11, then the next instruction to be executed is in some 
·halfword other than the last halfword ofQ. 

Assume that D(21,22) = 11. In this· case, a storage 
request per the updated instruction address in the IC is 
given to refill Q. At this time, the data (branch-to 
instruction) that was requested during I-Fetch of the 
branch instruction is present at the SDBO and is gated 
into Q. From Q, the data is gated to R per D(21,22), thus 
placing the last halfword of Q into R 

The contents of the IC are transferred to the parallel 
adder, where they are updated by 8 and replaced into the 
IC to address the next doubleword from main storage. 
After the IC has been updated, the next sequential 
doubleword (requested during execution of the branch 
instruction) is gated from the SDBO into Q. A normal 
end-op cycle completes the operation. 

Now assume that D(21,22) equals a value other than 
l l on a successful branch. This condition means that the 
next instruction to be executed is contained in either the 
first, second, or third halfword of Q when the data from 
storage is gated into Q. The data which was requested 
during I-Fetch of the branch instruction is now present at 
the SDBO and is gated into Q. The halfword that contains 
the next instruction to be executed is then gated into R 
per D(21,22). Format decoding is normally accomplished 
from R and instruction address decoding from the IC. 
Because the data to be decoded has just been placed into 
R and the IC, it is not yet stable and therefore cannot be 
decoded during this cycle. Rather than delaying a cycle 
until the information is stable, a branch end-op cycle is 
taken. This cycle allows decoding of the halfword 
(containing the next instruction) from the SDBO as the 
data is transferred from the SDBO to Q and decoding of 
the instruction address from D. 

Unsuccessful Branch 

Assume, now, that the branch had been found to be 
unsuccessful (point B, Diagram 5-501, Sheet 2). Because 
the storage request was generated per the IC, IC(21,22) is 
now tested. Assume that IC(21,22) = 11. This value means 
that the next instruction to be executed is located in the 
last halfword of the doubleword from main storage that 
contains the branch instruction. This instruction is in R. 
Because a request to refill Q per the IC was made during 
I-Fetch, the IC must be updated. Accordingly, the 
contents of the IC are now transferred to PAB(40-63). 
Then 8 is added to PAB, and the result is transferred to 
the IC and D. At this time, the data that was requested 
during I-Fetch of the branch instruction is present at the 
SDBO and is gated into Q. The 'execute' trigger is now 
tested. If the trigger is set, the IC is reduced by 8 (because 
8 had been added to it and the I-Fetch request was 
blocked by STAT G being set by the Execute instruction), 
a normal end-op cycle is taken, and an address-store-

compare refill of Q will be performed. If the 'execute' 
trigger is reset, a branch end-op cycle is taken. 

Now assume that IC(21,22) = 00, 01, or 10 and that 
the branch instruction was unsuccessful (point C, Diagram 
5-501, Sheet 2). In this case, the next instruction to be 
executed is in either the first, second, or third halfword of 
Q, and Q does not need to be refilled. Therefore, a normal 
end-op cycle is taken, the next instruction format is 
decoded from R, and the instruction address is decoded 
from the IC. 

A unique situation occurs for the BCR instruction 
when the 'PSC' trigger is set by an Execute instruction. 
This situation causes a Q-register refill following the 
Execute instruction. A branch is taken to the address­
store-compare ROS microprogram, 8 or 16 is subtracted 
from the IC to select the doubleword that contains the 
instruction following the Execute instruction, and a 
storage request per the IC is made for that doubleword. 

BRANCH ON CONDITION, BC (47) 

• Branch to location specified by 2nd operand address if 
state of CC is as specified by Ml. 

• RXformat: 

0 

47 Ml X2 B2 

7 B 11 12 15 16 19 20 

Obtain CC mask bits from E, 

Compare CC with mask bits. 

Branch to location specified by 2nd 
operand address if condition is met. 

D2 
31 

o Conditions at start of execution: 
Branch address is in D. 
3-cycle storage request for branch-to instruction has 

been issued per D, if branch is successful. 
First 16 bits of instruction are in E. 

• If branch is unsuccessful, 3-cycle storage request to 
refill Q will be issued per IC, if required. 

The BC instruction is similar to the BCR instruction, 
differing only when IC(21,22) = 00 when the branch is 
unsuccessful (point B, Diagram 5-501, Sheet 2). This value 
means that the next instruction to be executed is to come 
from the first halfword of the doubleword which has been 
requested during I-Fetch. The contents of the IC are 
updated by 8 and placed into the IC and D. The 
doubleword from main storage requested during I-Fetch is 
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now gated from the SDBO to Q. The first halfword from 
Q is then transferred to R. 

The 'execute' trigger is now tested. If reset, the branch 
instruction ends in a branch end op, and format decoding 
of the next instruction takes place off the SDBO because 
R is not stable. If the 'execute' trigger is set, the branch 
instruction was the subject instruction of an Execute 
instruction, and the present contents of the IC are 
incorrect because the IC was increased by 8 during this 
instruction. The contents of the IC are thus reduced by 8 
and replaced in the IC. A normal end op completes the 
operation. Because the BC instruction was the subject of 
an Execute instruction, the return to the proper next 
instruction occurs during I-Fetch, as discussed in the BCR 
instruction. 

BRANCH AND LINK, BALR (05) 

• Store PSW(32-63), link information, into GPR (ad­
dressed by Rl) and branch to location specified by 
GPR (addressed by R2). 

• RR format: 

0 

05 Rl R2 

7 B 11 12 15 

Obtain link information 
[PSW(32-63)]. 

Store link information 
into GPR per Rl. 

Branch to location specified 
by GPR addressed by R2; 

• Conditions at start of execution: 
2nd operand is in A, B, and D. 
3-cycle storage request has been issued per D for 

branch-to instruction. 
Instruction is in E. 

• Link information consists of: 
Instruction length code. 
cc. 
Program mask bits. 
Address of next sequential instruction (link address). 

• Link information is stored whether branch is successful 
or unsuccessful. 

• If 'execute' trigger is set, link address is address of 
instruction following Execute instruction. 

• Branch is unsuccessful if R2 = 0. 
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The Branch and Link, BALR, instruction, which has an 
RR format with an op code of 05, stores the address of 
the next sequential instruction. Stored with the address is 
link information containing the instruction length code, 
the CC, and the program mask bits. The instruction length 
code stored will be either 1 or 2. If the instruction length 
code stored is 2, the BALR instruction is the subject of an 
Execute instruction. If during a BALR operation the R2 
field is equal to zero, the branch is considered unsuccess­
ful. 

The purpose of the BALR instruction is to branch to a 
subroutine and provide a means of returning from the 
subroutine to the main flow of instructions in a program. 
How this is accomplished is shown in Figure 3-26. When 
processing the main instruction flow and a BALR instruc­
tion is encountered, the address of the instruction which 
sequentially follows the BALR in the main instruction 
flow is stored in LS. For the example illustrated in Figure 
3-26, the address of the next sequential instruction is 14 
and is stored in GPR9. (If the BALR instruction was in 
address 14 of the main program, then the address stored 
would be 16.) Once the instruction address is stored, the 
branch to the subroutine occurs. The subroutine is 
performed and, when completed, a branch instruction 
could be issued using the address that was stored during 
the BALR instruction as the branch address to return to 
the main flow of instructions. After returning to the main 
flow of instructions, the program will continue in its 
normal manner, processing the remaining instructions. 

In determining the address which is to be stored as the 
link address, IC{21,22) and the 'execute' trigger must be 
tested (Diagram 5-502, Sheet 2, FEMDM). IfIC{21,22) = 
11 and the 'execute' trigger is set (indicating the BALR is 
the subject of the Execute instruction and the Execute 
instruction is located in the second and third halfwords of 
its doubleword), 16 is subtracted from the IC and placed 
into T. Thus, if it is necessary to return to the main flow 
of instructions, the instruction which will be performed 
next is that instruction sequentially following the Execute 
instruction. If IC(21,22) does not equal 11 or the 
'execute' trigger is reset, 8 is subtracted from the IC and 
the value is placed into T. 

Unsuccessful Branch 

E(12-15), which contains the address of the GPR which 
has the branch address, is examined. If E{12-15) = 0, 
branching is not to take place and a No-Operation occurs. 
If E( 12-15) equals anything other than zero, branching 
occurs unconditionally. First assume that the branch is 
unsuccessful [E(12-15) equals zero]. IC{21,22) is tested. 
If IC(21,22) = 11, it indicates that the next instruction to 
be executed is in R (this instruction is the last halfword of 
the doubleword in Q) and a new doubleword must be 
placed into Q. If IC(21,22) equals any other value, the 
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Figure 3-26. Example of Use of Branch and Link Instruction 

next sequential instruction is also located in R but Q 
contains data which is still correct and may be operated 
on. In either case, the remainder of the link data 
(PSW(32-39)] is placed into T(32-39) and from there 
transferred to the GPR per E(8-11). IfIC(21,22) equals a 
value . other than 11, a normal end op is taken after storing 
the data and the next instruction is decoded from R. If 
IC(21,22) = 11, after storing the link information, a 
3-cycle storage request is issued per the IC to obtain the 
next sequential doubleword to refill Q. The 'execute' 
trigger is again tested. If set, a normal end op is 
immediately taken and the next instruction to be exe­
cuted is the instruction which sequentially follows the 
Execute instruction (of which the BALR instruction was 
the subject instruction). (This action is accomplished 
during the next I-Fetch by means of the ASC micro­
program branch which will refetch the instruction follow­
ing the Execute instruction.) If the 'execute' trigger is 
reset, the next instruction to be executed is in R. The IC 
is updated by 8 to select the next sequential doubleword 

after the one just requested. IC(21,22) is again tested; if it 
equals 11, the data on the SDBO is gated to Q and a 
branch end-op cycle is taken. 

Successful Branch 

Now assume that E(12-15) does not equal zero (indi­
cating a successful branch). The 'PSC' and 'execute' 
triggers are reset by a combination of the 'T6' and 'M4' 
micro-orders. PSW(32-39) is transferred to T(32-39). 
The doubleword containing the branch-to instruction 
(requested during I-Fetch of the branch instruction) is 
now present at the SDBO and is gated to Q. 

From Q, the correct halfword is transferred to R per 
D(21,22). Then 8 is added to D, and the result is placed 
into the IC to address the next sequential doubleword 
from main storage. The data in T is now transferred to the 
GPR per E(8-11). 

D(21,22) is tested for a value of 11. If it does not equal 
11, the data in R and the IC is not yet stable, thus 
preventing decoding of the next instruction from R or 
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decoding of the instruction address from the IC. A branch 
end-op cycle is taken, and the next instruction is decoded 
offthe SDBO which, at this time, is stable. IfD(21,22) = 
11, the next instruction is located in the last halfword of 
the doubleword requested during I-Fetch. From Q, the 
last halfword is transferred to R per D(21,22). Because 
the halfword that contains the next instruction to be 
executed is the last halfword of the doubleword, Q must 
be filled with a new doubleword to allow continuous 
operation. Then 8 is added to D, and the result is 
transferred to the IC. A 3-cycle storage request is issued 
per the IC to obtain the next doubleword. The address of 
the doubleword is tested· for validity; if the address is 
invalid, the 'I-Fetch invalid address' trigger is set. The IC is 
updated by 8. By this time, the requested doubleword is 
present at the SDBO and is gated to Q. A normal end-op 
cycle is taken, and the next instruction to be executed is 
decoded off R. 

BRANCH AND LINK, BAL (45) 

• Store PSW(32-63), link information, into GPR 
(addressed by RI) and branch to focation specified by 
2nd operand address .. 

• RXformat: 

45 RI X2 B2 

0 78 11 12 15 16 19 20 

Obtain link information 
[PSW(32-63)]. 

Store link information 
into GPR per Rl. 

Branch to location specified 
by 2nd operand address. 

• Conditions at start of execution: 
Branch address is in D. 

D2 
31 

3-cycle storage request . has been issued per D for 
branch-to instruction. 

First 16 bits of instruction are in E. 

• Link information consists of: 
Instruction length code. 
cc. 
Program mask bits. 
Address of next sequential instruction (link address). 

• Link information is stored whether branch is successful 
or unsuccessful. 

• BAL is unconditional branch. 

3-168 (9/68) 

• If 'execute' trigger is reset and ABC = 0, IC reflects 
correct address and is stored as link address. 

• If 'execute' trigger is reset and ABC does not equal 0, 
IC is reduced by 8 and then stored as link address. 

• If 'execute' trigger is set, link address is address of 
instruction following Execute instruction. 

The Branch and Link, BAL, instruction stores the address 
of the instruction which, if the branch were unsuccessful, 
would be the.· next sequential instruction address. Stored 
with the address is link information consisting of the 
instruction length code, the CC, and the program mask 
bits. The instruction length code stored is 2. The BAL 
instruction is an unconditional branch with an RX format 
and an op code of 45. 

At the start of execution, the first 16 bits of the 
instruction are in E, the branch address is in D, and a 
3-cycle storage request has been generated per D for the · 
branch-to instruction (Diagram 5,503, FEMDM). At the 
beginning of the operation, the last three bits of the IC are 
transferred to the ABC. This value will be used to 
determine the correct value of the IC before it is stored 
into LS as link address information. The contents of the 
IC are transferred to the parallel adder and reduced by 8. 
This value is then transferred to T, from where it and the 
remainder of the link data [PSW(32-39)] will be trans­
ferred to LS. The 'execute' trigger is then tested; if it is 
set, the branch operation is the subject instruction of an 
Execute instruction. 

First assume the 'execute' trigger is reset. The ABC is 
now checked for all zeros. If equal to zero, it indicates 
that the branch instruction now being executed was 
located in the third and fourth halfwords of Q. Normally, 
when an instruction with an RX format occupies the last 
two halfwords of Q, a storage request is generated during 
I-Fetch per the IC and the IC is updated by 8. Because 
thiS' is a branch instruction, however, the storage request 
from the IC is prevented and the IC is not increased by 8. 
Therefore, the address presently in T (after being reduced 
by. 8) is incorrect and 8 must be added to it before it is 
stored into LS. 

Assume that the ABC did not equal zero. PSW(32-39) 
is transferred to T(32-39). Because the ABC was not 
equal to zero, the link address is correct and can be stored 
into the GPR per E(8-11). The contents of Dare then 
transferred to the parallel adder; increased by 8, and 
transferred to the IC. The IC now contains the address of 
the doubleword in main storage which follows the 
doubleword containing the branch-to instruction. At this 
time, a storage request for the next doubleword is issued 
if D(21,22) = 1 l. The data requested per D during I-Fetch 
is at the SDBO and is gated to. Q. From Q, the correct 
halfword is transferred to R per D(21,22). 

D(21,22) is now checked for a value of 11. If it is equal 
to 11, the next instruction to be executed is in the last 



halfword of Q. The IC is then updated by 8 to address the 
next doubleword in main storage. By this time, the 
doubleword that was requested during th~ branch instruc­
tion is present at the SDBO and can be gated into Q. A 
normal end-op cycle is then taken to complete the 
operation. If D(21,22) did not equal 11, a branch end-op 
cycle is taken and the next instruction is decoded off the 
SDBO. 

Now assume that the 'execute' trigger is set, indicating 
that the branch instruction is the subject instruction of an 
Execute instruction. IC(21,22) is tested for a value of 11. 
If it equals 11, the Execute instruction was located in the 
second and third halfword of its doubleword and, when in 
Q, I-Fetch issued a storage request and increased the IC by 
8. This increase results in an address in the IC that is 16 
bytes higher than the doubleword address containing the 
Execute instruction. Because the address that is stored as 
link information is the address · of the doubleword 
containing the instruction immediately following the 
Execute instruction, the address has to be reduced by 16. 
The address in T, however, has already been reduced by 8; 
therefore, only 8 must be subtracted from it. The 

. remainder of the link information is now transferred from 
PSW(32-39) to T(32-39). 

The contents of D are transferred to the parallel adder, 
updated by 8, and then transferred to the IC to address 
the next doubleword. The 'execute' trigger is now reset. A 
storage request for that doubleword whose address was 
just placed into the IC is issued if D(21,22) = 11. At this 
time, the data requested during I-Fetch of the branch 
instruction is present on the SDBO and is gated to Q. The 
correct halfword in Q is then transferred to R per 
0(21,22). The link address located in T is transferred to 
the parallel adder, where it is decreased by 8. This value is 
now equal to the address of the doubleword that contains 
the Execute instruction and is transferred to T. From T, 
the link information is transferred to the GPR per 
E(8-11). 

D( 21,22) is now checked for a value of 11. If it equals 
11, the next instruction to be executed is in the last 
halfword of Q. The IC is then updated by 8 to address the 
next doubleword in main storage. By this time, the 
doubleword that was requested during the brarwh instruc­
tion is present at the SDBO and can be gated into Q. A 
normal end-op cycle is then taken to complete the 
operation. If D(21,22) did not equal 11, a branch end-op 
cycle is taken and the next instruction is decoded off the 
SDBO. 

Now assume that IC(21,22) did not equal 11. This 
condition indicates that the Execute instruction was not 
in the second halfword and a storage request was not 
automatically generated. The link information presently 
in T is therefore correct and can be stored into the GPR 
per E(8-ll). The contents of D are increased by 8 and 
placed into the IC. Again a storage request is generated if 

0(21,22) = 11. At this time, the doubleword containing 
the branch-to instruction is located in the SDBO and is 
gated to Q. The correct halfword in Q is then transferred 
to R per 0(21,22). 0(21,22) is tested for a value of 11, 
and operations continue as previously described, ending 
with a branch end op or a normal end op. 

BRANCH ON COUNT, BCTR (06) 

• Subtract 1 from 1st operand (in GPR, per Rl) and, if 
result is not 0, branch to address specified by GPR 
(addressed by R2). 

• RR format: 

0 

06 Rl R2 

7 8 11 12 15 

Fetch 1st operand from GPR per R 1 . 

Subtract 1 from 1st operand and 
store result into GPR per Rl . 

Branch to location specified by 
GPR addressed by R2 if result 
of subtraction is not zero. 

e Conditions at start of execution: 
Branch address is in D. 
3-cycle storage request has been issued per D for 

branch-to instruction. 
First operand is in Sand T. 
Instruction is in E. 

The Branch on Count, BCTR, instruction subtracts 1 from 
the first operand (contents of the GPR specified by RI) 
and, if the result does not equal zero or R2 does not equal 
zero, branches to the address specified by the contents of· 
the GPR designated by R2. The result of the subtraction 
is stored into the first operand location. If the result of 
the subtraction equals zero, the next sequential instruc­
tion is executed. If E(I2-15) = 0, the branch is 
automatically unsuccessful. The BCTR instruction has an 
RR format with an op code of 06. 

At the start of execution, the instruction is in E, the 
first operand is in S and T, the branch address is in D, and 
a 3-cycle storage request has been issued per D for the 
branch-to instruction (Diagram 5-504, FEMDM). The frrst 
operand is transferred from T to B and from B to the 
parallel adder, where 1 is subtracted from the operand to 
determine whether the branch is successful. Before 
subtracting 1, E(I2-15) is tested for zeros. As previously 
stated, if E( 12-15) = 0, the branch is unsuccessful. 
Assume that E(12-15) does not equal zero. The contents 
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of B are transferred to the parallel adder, where I is 
subtracted from the operand; the result is transferred via 
T into LS. The result of the subtraction is tested for all 
zeros; if zero, the branch is unsuccessful; if not zero, the 
branch is successful. 

Successful Branch 

First assume that the branch is successful. The 'PSC' and 
'execute' triggers are reset. Because D(2I,22) indicates in 
which halfword the branch-to instruction is located, it is 
examined. If D(2I,22) = 11, the instruction is located in 
the last halfword of the doubleword requested during 
I-Fetch of the branch instruction. The contents of D, 
therefore, are updated by 8 and transferred to the IC. By 
this time, the data requested during I-Fetch is present at 
the SDBO and can be gated into Q. The last halfword of Q 
is then transferred to R per D(21,22). A 3-cycle storage 
request for the next doubleword is now issued per the IC. 
The contents of the IC are then transferred to the parallel 
adder, updated by 8, and transferred back to the IC to 
select the next doubleword from main storage. At this 
time, the doubleword which sequentially follows the 
doubleword containing the branch-to instruction is 
present at the SDBO and is gated into Q. A normal end-op 
cycle is taken, and the next instruction to be executed is 
decoded from R. 

If D(21,22) did not equal I l, the branch-to instruction 
is located in some halfword other than the last. In this 
case, the contents of D are transferred to the parallel 
adder, updated by 8, and then transferred to the IC. At 
this time, the doubleword containing the branch-to 
instruction is present at the SDBO and can be gated into 
Q. From Q, the correct halfword is transferred to R per 
D(21,22). A branch end-op cycle is taken, and the next 
instruction is decoded off the SDBO. 

Unsuccessful Branch 

Now assume that the branch is unsuccessful. If IC(21,22) = 
I I or 00, a storage request per the IC must be given during 
the branch execution phase to obtain the next sequential 
doubleword from main storage (because this action was 
inhibited during the end-op cycle by ·the branch decoder). 
Once the storage request is issued, the 'execute' trigger is 
tested. If set, it indicates that the branch instruction is the 
subject instruction of an Execute instruction. Therefore, a 
normal end-op cycle is taken to complete the operation. 
The data requested in this case is not gated into Q. If the 
'execute' trigger is reset, IC(2I ,22) is tested to see whether 
it contains 11. If the value is 11, the IC is updated by 8 (to 
select another doubleword) and placed into the IC and D. 
By this time, the data requested by tlie storage request 
given during the execution phase of the branch instruction 
is present at the SDBO and can be gated into Q. A normal 
end-op cycle is then taken, and the next instruction to be 
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executed is decoded off R. If IC(21,22) does not equal 11, 
then it equals 00, and the next instruction is located in the 
first halfword of the doubleword requested during the 
execution phase of the branch instruction. The IC is 
updated by 8, and the result is placed into D and the IC. At 
this time, the data requested during the execution phase is 
present at the SDBO. This doubleword is gated to Q; the 
correct halfword from Q(O-I 5) is transferred to R. Because 
the format is normally decode<;l off R and the data just 
placed in R is not yet stable, a branch end-op cycle is taken. 
This cycle allows the next instruction to be decoded off the 
SDBO, which at this time is stable. 

BRANCH ON COUNT, BCT (46) 

• Subtract 1 from 1st operand (in GPR, per RI) and, if 
result is not 0, branch to location specified by 2nd 
operand address. 

• RXformat: 

0 

46 Rl X2 B2 
78 11 12 15 16 19 20 

Fetch 1st operand from GPR per Rl. 

Subtract 1 from 1st operand and 
store result into GPR per Rl. 

Branch to location specified by 
2nd operand address if result 
of subtraction is not zero. 

• Conditions at start of execution: 
Branch address is in D. 

02 
31 

3-cycle storage request has been issued per D for 
branch-to instruction. 

1st operand is in Sand T. 
First I6 bits of instruction are in E. 

The Branch On Count, BCT, instruction is similar to the 
BCTR instruction except that E(12-15) is not tested for 
zero. Refer to Diagram 5-504 for a flowchart of the BCT 
instruction. 

BRANCH ON INDEX HIGH, BXH (86) 

• Add increment (3rd operand; in GPR, p,er R3) to 1st 
operand (in GPR, per RI), algebraically compare result 
(index) with comparand (in odd-address GPR specified 
by R3 or R3 + 1), and, if index is greater than 
comparand, branch to location specified by 2nd operand 
address. 



• RS format: 

0 

86 RI R3 82 D2 
11 12 15 16 19 20 

Fetch 1st operand 
from G PR per R 1. 

Fetch 3rd operand 
(increment) from 
GPR per R3. 

Add 1st and 3rd operands and store 
result (index) into GPR per Rl. 

Algebraically compare index with 
comparand located in odd-address 
GPR per R3 or R3 + 1 • 

Branch to location specified by 
2nd operand address if index 
is greater than comparand. 

• Conditions at start of execution: 
Branch address is in D. 

31 

3-cycle storage request has been issued per D for 
branch-to instruction. 

1st operand is in S and T. 
First 16 bits of instruction are in E. 

• Sum of 1st and 3rd operands is always stored whether 
branch is successful or not. 

• Comparand address (R3 or R3 + 1) must be odd. 

The Branch on Index High, BXH, instruction, which has an 
RS format with an op code of 86: 
1. Adds the third operand to the first operand. 
2. Stores the result (index) into the GPR addressed by Rl. 
3. Compares the index with a comparand obtained from a 

GPR addressed by R3 or R3 + 1. 
4. Branches if the sum is greater than the comparand. 

At the start of execution, the frrst 16 bits of the 
instruction are in E, the first operand is in S and T, the 
branch address is in D, and a: 3-cycle storage request has 
been issued per D for the branch-to instruction (Diagram 
5-505, FEMDM). To allow the third operand to be placed 
into T without destroying the first operand, the first 
operand is transferred to B. The third operand is then 
transferred from the GPR per E(12-15) and placed into T. 

The two operands are added, and the result is transferred to 
B. The comparand, the value that the ·sum of the two 
operands (index) is compared with, is now transferred from 
LS and placed into T. The contents of B and the 
2's-complement of T are transferred to the parallel adder 
and added to determine whether the branch is successful. 
IC(21,22) is tested for either 11 or 00. If the branch is 
unsuccessful, this test sets up conditions to issue a storage 
request per the IC to obtain the next sequential 
doubleword after .the doubleword containing ·the branch 
instruction. 

Assume that IC(21,22) = 11 or 00. D(21,22) is now 
tested to determine where in the doubleword the next 
instruction is located. If D(21,22) = 11, the next 
instruction to be executed is contained in the last halfword 
of the doubleword requested during I-Fetch of the branch 
instruction. The P AL's and E(7) are now tested (by means 
of the 'J47 f'= O' micro-order) to determine whether the 
branch is successful. First assume the branch is successful; 
that is, the PAL's are positive (index greater than the 
comparand) and E(7) = 0. The contents of B (index) are 
transferred to T, and from there to the GPR per E(8-11 ). 
The 'PSC' and 'execute' triggers are reset by means of the 
'TIF' ·micro-order. At this time, the doubleword requested 
during I-Fetch is present at the SDBO and is gated into Q. 
The halfword containing the next instruction to be 
executed is then transferred to R per 0(21,22). A test is 
made to re-establish that D(21,22) = 11. Assuming the 
original conditions still exist, the contents of D ·are now 
updated by 8 and placed into the IC. This action allows the 
selection of the next doubleword in main storage. A 3-cycle 
storage request is then issued per the new value in the IC. 
The IC is then updated by 8 to allow selection of the next 
doubleword from main storage when needed. By this time, 
the data requested during the execution phase of the 
branch instruction is available at the SDBO and can be 
gated into Q. A normal end-op cycle is then taken to 
complete the operation. During the end-op· cycle, the next 
instruction executed is decoded off R. 

Now assume the branch is unsuccessful. That is, the 
PAL's are not positive and E(7) = 0. The contents of B 
(index) are transferred to T, and from there to the GPR per 
E(8-11). Because the branch·· is unsuccessful and the 
contents of R have not been changed, R still contains the 
instruction that is located in the halfword following the last 
halfword of the branch instruction. A normal end-op cycle, 
therefore, can be taken and the instruction decoded off R. 
If IC(21,22) = 1l or 00, a 3-cycle storage request is issued 
per the IC, which at this time contains the address of the 
doubleword that sequentially follows the doubleword 
containing the branch instruction. The 'execute' trigger is 
now tested. If set, it indicates that the branch instruction 
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was the subject instruction of an Execute instruction and a 
normal end-op cycle is taken, completing the operation. If 
the 'execute' trigger is reset, IC(21,22) is tested for a value 
of 11. Recall that, when IC(21,22) was previously tested, it 
was checked for a value of either 11 or 00. To proceed 
sequentially in the program without any delay, it is now 
necessary to determine which value the IC contains. First, 
assume that IC(21,22) = 11. This value indicates that the 
next instruction occupies the last halfword of the 

· doubleword in which the branch instruction is located and 
is presently in R. Recall that R is where format decoding of 
an instruction occurs. This situation being the case, the IC 
is updated by 8 to address the doubleword that is 16 bytes 
from the doubleword address containing the branch 
instruction. The data that was requested when it was found 
that the branch was unsuccessful is now present at the 
SDBO (Diagram 5-505, Sheet 3), and can be gated into Q. 
A branch end-op cycle is taken, completing the operation. 
The next instruction is decoded off the SDBO when the 
data is transferred to Q. 

Now assume that IC(21,22) = 00. In this case, the data 
to be executed is located in the. first halfword of the 
doubleword requested during the execution of the branch 
when the branch instruction was found to be unsuccess­
ful. The IC is updated by 8. At this time, the data is 
present at the SDBO and can be gated into Q. The first 
halfword in Q is transferred to R. Recall that the format 
for the next instruction is normally decoded off R. 
Because the next instruction to be executed has just been 
transferred into R., this data is not yet stable and cannot 
be decod~d. A branch end-op cycle is therefore taken. 
This cycle allows the next instruction format to be 
decoded off the SDBO. The SDBO is stable at this time 
and therefore can be used. 

Now assume that when D(21,22) was tested for 11 
some other value was found. Again, conditions are tested 
to see whether the branch is successful (Diagram 5-505, 
Sheet 2). If successful, the data in B is transferred to T 
and from there to the GPR per E(S-11 ). Also, the data 
that was requested during I-Fetch of the branch instruc­
tion is present at the SDBO and can now be gated into Q. 
From Q, the halfword containing the next instruction is 
transferred to R per 0(21,22). If 0(21,22) = 11, the 
contents of D are now updated by 8 and placed into the 
IC. This action allows selection of the next doubleword in 
main storage. A 3-cycle storage request is then issued per 
the. new value in the IC. The IC is then updated by 8 to 
allow selection of the next doubleword from main storage 
when needed. By this time, the data requested during the 
execution phase of the branch instruction is available at 
the SDBO and can be gated into Q. A normal end-op 
cycle is then taken to complete the operation. During the 
end-op cycle, the next instruction executed is decoded off 
R. 
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If D(21,22) = 11 and the branch is unsuccessful, the 
contents of B are transferred to T, from where they are 
transferred to the GPR per E(S-11). If IC(21,22) = 11 or 
00, a 3-cycle storage request is issued per the IC. [If 
IC(21,22) equals a value other than 11 or 00, a normal 
end cycle is taken.] This request is for the doubleword 
that sequentially follows the doubleword in main storage 
containing the branch instruction. The 'execute' trigger is 
tested next. From this point on, the operation is the same 
as that previously discussed for an unsuccessful branch. 

Assume, now, that when IC(21,22) was initially tested 
for either 11 or 00, neither ·of these values was present 
(Diagram 5-505, Sheet 2). Again 0(21,22), the PAL's, and 
E(7) are tested to determine whether the operation is a 
successful branch and where the next instruction is 
located in the doubleword address being branched to. 
Assume that D(21,22) = 11 and the branch is successful 
(Diagram 5-505, Sheet 3). Operation from this point on is 
identical with a successful branch, as previously described, 
when 0(21,22) = 11. 

Now assume that 0(21,22) = 11 and that the branch is 
unsuccessful. The contents of B are transferred to T, from 
where they are transferred to the GPR per E(8-ll). 
Because the branch is unsuccessful and the contents of R 
have not been changed, R still contains the instruction 
that is located in the halfword following the last halfword 
of the branch instruction. A normal end-op cycle, 
therefore, can be taken and the instruction decoded off R. 

Now assume that D(21,22) did not equal 11 and the 
branch is successful (Diagram 5-505, Sheet 3). The 
contents of B are transferred to T, from where they are 
transferred to the GPR per E(8-11). At this time, the 
data requested during I-Fetch of the branch instruction is 
present at the SDBO and is gated to Q. From Q, the 
correct halfword containing the branch-to instruction is 
gated into R per D(21,22). The contents of D are then 
updated by 8. and transferred to the IC to select the next 
doubleword from main storage. Because the instruction to 
be executed has just been placed into R and is not yet 
stable, a branch end-op cycle is taken and the instruction 
format is decoded off the SDBO. 

If the branch is unsuccessful and 0(21,22) does not 
equal 11, the operation is identical . with the case where 
0(21,22) = 11 and the branch is unsuccessful. A normal 
end-op cycle is taken. 

BRANCH ON INDEX LOW OR EQUAL, BXLE (87) 

• Add increment (3rd operand; in GPR, per R3) to 1st 
operand (in GPR, per Rl), algebraically compare result 
(index) with comparand (in odd-address GPR specified 
by R3 or R3 + 1), and, if index is equal to or is less 
than comparand, branch to location specified by 2nd 
operand address. 



• RSformat: 

. 87 RI R3 B2 D2 

7 8 . 11 12 15 16 19 20 

Fetch I st operand 
from GPR per Rl. 

Fetch 3rd operand 
(increment) from 

· GPR per R3. 

Add 1st and 3rd aperands and store 
result (index) into GPR per RI. · 

Algebraically compare index with 
comparand located in odd-address 
GPR per R3 or R3 + I. 

Branch to location specified by 
2nd operand address if index 
is equal to or less than comparand. 

• Conditions at start of execution: 
Branch address is in D. 

31 

3-cycle storage request has been issued per D for 
branch-to instruction. 

1st operand is in S and T. 
First 16 bits of instruction are in E. 

• Sum of 1st and 3rd operands is always stored whether 
branch is successful or not. 

• Comparand address (R3 or R3 + 1) must be odd. 

The Branch on Index Low or Equal, BXLE, instruction is 
similar to the BXH instruction except that branching 
occurs on a low or equal result (Diagram 5-505). 

EXECUTE, EX (44) 

• Execute subject instructjon at location specified by 
2nd operand address. Subject instruction may be · 
modified by 1st operand (in GPR, per RI} if:E{8-ll} 
is not equal to zero. 

• RX format: (See adjoining column.) 

• Conditions at start of execution: 
Address of subject instruction is in D. 
3-cycle storage request for subject instruction has been 
issued per D. · 

1st operand is in S and T. 
First 16 bits of instruction are in E. 

44 I Rl I X2 I 82 02 
7 8 l1 12 15 16 19 20 

Fetch doubleword cont,;ining 
subject instruction from main 
storage per 2nd operand address. 

No 

Modify subject instruction by 
OR 'ing bits 8-15 of subject 
instruction with bits 24-31 
of GPR specified by R 1. 

31 

Execute subject instruction. 

• Modification of subject instruction is accomplished by 
OR'ing bits 8-15 of subject instruction with bits 
24-31 of 1st operand. 

• If subject instruction is an Execute instruction, a 
program execute interruption occurs. 

• If effective address of Execute instruction is odd, a 
program specification interruption occurs. 

• 'Execute' trigger is set to indicate next instruction is 
subject of Execute instruction. 

• 'PSC' trigger is set to indicate that Q data is. not valid 
and needs to be refilled. 

• If program interruptions are pending, normal end-op 
cycle is taken; if not, branch end-op cycle is taken. 

The Execute, EX, instruction, which has an RX format 
with an op code of 44, executes a designated instruction 
whose address in main storage is the second operand 
address. · This designated instruction is referred to as a 
subject instruction and can be modified by the contents . 
of the first operand located in the GPR register specified 
by Rl. Modification of the subject instruction is accol,ll­
plished by OR'ing bits 8-15 of the subject instruction 
with bits 24-31 of the first operand. If RI = 0, no 
modification takes place. The subject instruction may be 
16, 32, or 48 bits long. If the subject instruction is 
another Execute instruction, a program execute inter­
ruption occurs and operation is suppressed. If the effec­
tive address of the EX is odd, a program specification 
interruption occurs. 

At the start of execution, the first 16 bits of the 
instruction are in E, the first operand is in S and T, the 
address of the subject instruction is in D, and a 3-cycle · 
storage request for the subject instruction has been issued 
per D (Diagram 5-506, FEMDM). At the beginning of 
execution, a test for program specification and execute 
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interruptions is made. If the program specification inter­
ruption is present (effective address of Execute instruc­
tion is odd), a program interruption occurs and the 
operation is suppressed. If a program execute interruption 
is present (the Execute instruction is the subject instruc­
tion of an Execute instruction), a program execute 
interruption occurs and the operation is suppressed. If no 
interruptions are pr,esent, the operation. continues. The 
STC is loaded to 111, allowing the transfer of T(56-63) 
to the serial adder for modification of the subject 
instruction if modification is to be accomplished. The 
contents of D are now transferred to the parallel adder 
and updated by 8 to address the doubleword that follows 
the doubleword containing the subject instruction of the 
Execute instruction. This value is then transferred to D. 
PAL(61-63) is now transferred to the ABC to select the 
correct byte for modification of the subject instruction. 

. D(21,22) is tested to determine whether the subject 
instruction is contained in the last halfword of the 
doubleword that was requested during I-Fetch, or in some 
halfword other than the last. If D(21,22) = 11, the subject 
instruction is in the last halfword; if any other value, the 
subject instruction is in some other halfword. First assume 
that 0(21,22) = 11. Because the subject instruction is 
located in the last halfword of the doubleword addressed 
during I-Fetch, there is a possibility that part of the 
instruction is contained in the next doubleword to be 
addressed. This possibility exists if the subject instruction 
has a format other than RR. Therefore, the next few 
operations determine the format of the subject instruc­
tion. By doing these tests, an extra request can be 
prevented, one that can cause an invalid address or 
protection check if the instruction has an RR format. 

At this time, the data requested during I-Fetch is 
present at the SDBO and can be gated into Q and AB. 
From Q, the last halfword is transferred to R. The sixth 
byte in AB is then transferred to the serial adder per the 
ABC. Minus 64 (1100 0000) is sent to the serial adder, 
where it is logically AND'ed with the op code of the 
subject instruction. If the op code denotes an RR format, 
SAL should now equal zero. 1 is then added to the ABC 
to transfer the last halfword of AB to the serial adder if 
the instruction is to be modified. " 

E(8-11) is now tested to see whether the subject 
instruction is to be modified. If E(8-11) = 0000, the 
subject instruction is not to be modified; if any other 
value, the instruction is to be modified. First assume that 
E(8-11) = 0000. SAL(O-7) is now tested. Recall that the 
value in SAL indicates whether the subject instruction has 
an RR format, and recall that it has already been 
determined that the subject instruction is contained in the 
last halfword ofQ. Therefore, assume that SAL(0-7) = 0. 
Because this value indicates that the subject instruction is 
an RR instruction, there is no need to issue· a storage 
request for the next instruction because there is no 
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information in that doubleword . that will affect the 
operation of the RR instruction. The request for the next 
doubleword occurs during I-Fetch of the RR instruction. 

The last byte in AB is then transferred to T via the 
serial adder per the ABC and STC. From T, the data is 
transferred to R. The 'PSC' and 'execute' triggers are set. 
A test is made for a pending program interrupt~on. If one 
exists, a program interruption cycle is taken; if there is no 
interruption, the contents of R are transferred to E and 
STAT G is set. The setting of STAT G prevents the 
occurrence of interruptions · and the premature pre­
fetching of the next instruction from interfering with the 
execution of the subject instruction. A branch end-op 
cycle completes the operation. 

Now assume that SAL(0-7) does not equal zero, 
indicating that the subject instruction has some format 
other than RR. So that the complete word may be 
decoded before instruction execution, the doubleword 
that sequentially follows the subject instruction must be 
requested. The last byte in AB is transferred to T via the 
serial adder per the ABC and STC. The 'PSC' trigger is set 
(insuring return to the main instruction flow upon 
execution of the subject instruction). This action causes 
an ASC exceptional condition branch to occur during the 
I-Fetch following execution of the subject instruction. 
The ROS microprogram subtracts the correct amount 
from the IC to select the doubleword containing the 
instruction following the Execute instruction, and issues a 
request for that doubleword. A 3-cycle storage request is 
issued for the next sequential doubleword. The micro­
program waits (two storage cycles) until the data re­
quested is present at the SDBO, at which time the data is 
gated to Q. The 'execute' trigger is set, and a test is made 
for a pending interruption. If an interruption is present, a 
program interruption cycle is taken; if not, the data in R 
is transferred to E and SfAT G is set. A branch end-op 
cycle completes the operation. 

If when E(8-ll) is tested some value other than 0000 
is found, the subject instruction is to be modified. 
SAL(O-7) is tested to determine whether the subject 
instruction has an RR format. Assume an RR format. The 
last byte in AB is then transferred to the serial adder per 
the ABC; This byte is then OR'ed with the last byte of ST 
which was transferred to the serial adder per the STC. The 
results of this OR'ing are then transferred to ST per the 
STC. The data in T is transferred to R. The 'execute' 
trigger is set, and the operation continues in the same 
manner described previously. 

Now assume that SAL(O-7) contains some value other 
than zero. In this case, after the subject instruction is 
modified, a storage request for the next doubleword must 
be made. The microprogram waits (two storage cycles) 
until the data is present at the SDBO, after which the data 
is transferred to Q. From this. point on, the operation is 
identical with that described for an RR instruction. 



Now return to the point where 0(21,22) is tested to 
see whether the subject instruction occupies the last 
halfword of the doubleword requested during I-Fetch. If 
D(21,22) equals some value other than 11, a storage 
request is not issued during execution of the Execute 
instruction. E(S-11) is now tested to deterlnine whether 
the subject instruction is to be modified. IfE(S-11) does 
not equal 0000, the instruction must be modified. After 
the data is placed into Q and AB, and the correct data is 

placed into the serial adder per the ABC, operation is 
identical with that of an RR instruction that is to be 
modified. 

If E(S-11) = 0000, however, the subject instruction is 
not to be modified. Therefore, the correct halfword in Q 
need only be transferred to R per 0(21,22). The 'PSC' 
and 'execute' triggers are set, and the test for a pending 
interruption is made. The operation continues in the same 
manner described previously. 
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Section 7. Status Switching Instructions 

The 10 status switching instructions can change the status 
of the CPU, the channels, the external units, and the data in 
main storage: 
1. The Load PSW, Set Program Mask, Set System Mask, 

and Supervisor Call instructions control the status of 
the CPU. 

2. The Set Storage Key, Insert Storage Key, and Test and 
Set instructions control the status of the data in main 
storage. 

3. The Write Direct and Read Direct instructions control 
the status of external units (and also transfer data 
bytes). 

4. The Diagnose instruction controls the status of the 
CPU and channels. 

For a discussion of operand addressing, program states, 
PSW, status switching, instruction formats, data flow, 
program interruptions, and CC's, see Chapter 1. 

LOAD PSW. LPSW (82) 

• Load doubleword storage operand (designated. by 
storage operand address) into CPU, thus replacing 
current PSW, and branch to new instruction sequence. 

• SI format: 

82 
0 

~Bl 
78 1516 1920 

Fetch storage operand 
from main storage. 

Load bits 0-15 and 34-39 of storage 
operand into PSW register. 

01 

Load bits 40-63 of storage operand into 
IC and branch to new instruction address. 

31 

• Use same microprogram as IPL, PSW RESTART, and 
interruption operations. 
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• Conditions at start of execution: 
First 16 bits of instruction are in E. 
Storage operand address is in D. 
Storage request has been issued per D. 

The Load PSW, LPSW, instruction loads into the CPU the 
doubleword from main storage designated by the storage 
operand address. The doubleword (a new PSW) becomes 

. the current PSW for the next instruction. Bits 40-63 of the 
doubleword become the address of the next instruction. 
The new PSW will not allow interruptions until after the 
LPSW instruction is executed. When the doubleword being 
loaded has a 1 in position 14 or 15, the CPU enters the Wait 
state or the Problem state, respectively; this is the only 
instruction available for entering these states. 

Diagram 5-601, FEMDM, is a flowchart of the LPSW 
instruction. At the start of execution, the first 16 bits of 
the instruction are in E, the storage operand address is in D, 
and a storage request for the storage operand has been 
issued per D. 

Tests for a privileged operation check and a specification 
check are made at the beginning of the execution. The CPU 
must be in the Supervisor state, and the address of the 
LPSW instruction must have three low-order O's; otherwise, 
a program interruption results. 

When the data (new PSW) requested during I-Fetch is 
~vailable on the SDBO, it is gated to ST. The new PSW is 
then assembled by transferring S(0-15) and T(34-39) to 
tlie PSW register, transferring T(40-63) to the IC, and 
resetting the_ interruption request triggers. The ILC remains 
unchanged until an interruption occurs. 

The instruction next makes a 3-cycle storage request per 
the IC to fill Q with the next instruction. Although the 
I-Fetch checking circuits have been activated previously, 
interruptions are inhibited by the setting of the 'I-Fetch 
request' trigger. The contents ofT are now transferred to D 
so that, when the data is available, D will be able to select 
the correct halfword in Q to transfer to R. The IC is 
incremented by 8 to select the next doubleword to be 
fetched to refill Q. The 'PSC' and 'execute' triggers are 
reset. The~e triggers are set if the LPSW instruction is the 
subject instruction of an Execute instruction. Because the 
next instruction to be· performed is determined by the new 
PSW being loaded, the triggers must be reset to prevent the 
instruction following the Execute instruction from being 
performed after the LPSW instruction. 

From this point on, the LPSW instruction execution is 
the same as for the Branch on Count .instruction following a 



successful branch. When the requested data is available, it is 
gated to Q, and then transferred to R per D. A decision is 
now made to refill Q under control of this instruction if 
D(21,22) = 11. If Q does not need refilling, the instruction 
terminates with a branch end op. If, however, Q is refilled, 
a branch end op is not necessary and the instruction 
terminates with a normal end op. 

The LPSW microprogram used by the LPSW instruction 
is also entered by th~ interruption, PSW RESTART, and 
IPL microprograms. The storage operand address is forced 
to zero by the IPL microprogram and by the depression of 
the PSW RESTART pushbutton. One of the five new PSW 
addresses in permanent storage is generated by the 
interruption microprogram. 

SET PROGRAM MASK, SPM (04) 

• Replace CC and program mask (bits 34-39) of current 
PSW with bits 2-7 of 1st operand (in GPR per Rl ). 

• RRformat: 

04 Rl 

0 7 8 

Fetch 1st operand from GPR per Rl. 

Transfer bits 2-7 of 1st operand to PSW(34-39), 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is not used. 

The Set Program Mask, SPM, instruction replaces the CC 
and the program mask of the current PSW with the 
contents of the GPR addressed by Rl (Diagram 5-602, 
FEMDM). Bits 2 and 3 of the GPR become the new CC in 
the current PSW, and bits 4-7 become the new program 
mask. Bits 2-7 of the first operand may have been loaded 
from the PSW register by a previous Branch and Link 
instruction. 

SET SYSTEM MASK, SSM (80) 

• Replace system mask (bits 0-7) of current PSW with 
byte from location designated by storage operand 
address. 

• SI format: 

0 
BO -Bl 

7 8 15 16 19 20 

Fetch storage operand 
from main storage. 

Transfer byte of storage operand 
to PSW(0-7) per 0(21-23). 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
Storage operand address is in D. 
Storage request has been issued per D. 

Dl 
31 

The Set System Mask, SSM, instruction replaces the system 
mask of the current PSW with the addressed storage 
operand byte (Diagram 5-603, FEMDM). The addressed 
storage operand byte is fetched from main storage and 
placed into PSW(O-7) via AB, the serial adder, and S(O-7). 
The ABC is set per D(21-23) to select the correct byte in 
AB to gate to the serial adder. 

SUPERVISOR CALL, SVC (OA) 

• Cause supervisor call interruption; replace old 
PSW(24-31) with I-field (bits 8-15) of instruction, 
providing interruption code. 

• RRformat: 

OA 
0 7 8 

I I 
15 

Transfer E(8-15) to PSW(24-31 ). 

·Clear PSW(16-23) and store complete PSW 
into main storage location 32 (20, hex). 

Fetch new PSW from main 
storage location 96 (60, hex). 
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• Conditions at start of execution: 
Instruction is in E. 
E(8-15) is interruption code. 

The Supervisor Call, SVC, instruction causes a supervisor 
call interruption at end-op (Diagram 5-604, FEMDM). The 
'supervisor call' trigger is set and, if a timer exceptional 
condition, a machine check interruption, or a program 
protection interruption is not pending, the CPU takes a 
supervisor call interruption. During that operation, bits 
8-15 of the instruction, still in E(8-15), are stored as the 
interruption code into the supervisor call old PSW. The new 
PSW usually switches the CPU to the Supervisor state. 
Refer to Section 1 of this Chapter for a discussion of the 
supervisor call interruption. 

SET STORAGE KEY, SSK (08) 

• Set storage key (bits 24-28 of 1st operand; in GPR per 
Rl) for 2048-byte storage block (addressed by bits 
8-20 of 2nd operand; in GPR per R2) into storage 
protection logic in main storage. 

• RR format: 

08 Rl R2 

7 8 11 12 15 

Fetch 1st operand from G PR per R 1 • 

Select storage key from 1st operand. 

Store into storage protection block 
designated by 2nd operand address 
(in GPR per R2). 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is in Sand T. 

• Format of LS word addressed by Rl: 

• Format of LS word addressed by R2: 

7 8 

3-178 (9/68) 

. Storage Data-Block 
Address ~oooo\ 

2021 2728 31 

• New key is set twice because of two-way interleaving. 

The Set Storage Key, SSK, instruction sets the key of the 
storage block addressed by the second operand according to 
the key in the GPR designated by Rl. Bits 8-20 of the 
second operand address a block of 2048 storage bytes. (It is 
not necessary for the second operand to address the first 
byte in the block.) During the SSK instruction, bits 21-27 
of the second operand, which address doublewords in the 
storage block, are ignored. Bits 28-31 · of the second 
operand, however, must be O's, or a program specification 
interruption occurs. The new storage key is obtained from 
bits 24-28 of the first operand; the rest of the operand is 
ignored. 

Diagram 5-605, FEMDM, is a flowchart of the SSK 
instruction. At the start of execution, the instruction is in 
E, the first operand is in A, B, and D, and the second 
operand is in Sand T. The ABC is set to 7 (111) to allow 
selection of the new storage key byte from B. The STC is 
set to 3 (011) to select the low-order byte of the second 
operand in S, the byte to be tested for a specification 
check.Dis set to the address of the storage block minus 8; 
this step allows construction of a loop later in the 
microprogram. If the system is in the Problem state, a 
program privileged operation interruption occurs. If the 
system is in the Supervisor state and the address of the 
storage block does not specify an even doubleword 
boundary [S(28-31) = O], a program specification 
interruption occurs. Otherwise, the execution of the 
instruction continues by transferring the new key from B to 
F, via the serial adder. 

The new key is now iri position to be set into the storage 
unit. D is incremented by 8, and a 4-cycle storage request is 
issued per the block address in D. The 'set key' trigger is 
set, causing a 'set key' signal to be sent to main storage with 
the 'storage select' signal, and all of the mark triggers are 
set. As a result, the selected storage unit recognizes its 
selection as being a request to change one of the keys 
stored in its storage protection area. The new key is gated 
from F to the 'key in' bus for the use of the selected 
storage unit. 

Execution of this instruction may change the protection 
status of unprocessed instructions already in the CPU. 
Therefore, the 'PSC' trigger is set to force a program store 
compare exceptional condition during the next I-Fetch to 
refill Q. 

At this point, the setting of one key into main storage 
has taken place. When operating normally with a 2365 
Processor Storage, Model 2, one setting of a new key for 
2048 contiguous bytes of data is sufficient, as shown in 
Figure 3-27(A). However, the SSK instruction in the 2065 
always sets the key twice, first for an even doubleword 
address and then again for the succeeding odd doubleword 
address. This duplicated setting of the key is done because 
the System/360 Model 65 has two-way interleaving of 



DATA KEYS 

Even-High Odd-High 
I, 

_J__ 
Even-Low 1 Odd-Low 

A, 2365-2 Normal Operation. 
One Key per 2048-Byte Block. 

DATA KEYS 

Even-High 

DATA 

Even 

DATA KEYS 

Even-High I Odd-High 

B. 2365-2 Defeat Interleave Operation, 
Two Keys per 2048-Byte Block. 

KEYS DATA KEYS 

Odd 

C. 2365-1 Normal Operation. D. 2361 Paired Operation • 
Two Keys per 2048-Byte Block. 

Figure 3-27. Storage Protection Key Assignments 

'storage select' signals based on even and odd storage 
addresses. There are three cases when contiguous even and 
odd storage addresses are not in the same storage~protection 
block in main storage: 

1. When the defeat interleave maintenance aid is .used, 
contiguous even and odd storage addresses in the 
2365-2 are in two different protected blocks within 
the same unit, as shown in Figure 3-27{B). 

2. When operating normally with a 2365-1, interleaving is 
always defeated because the 2365-1 has only half the 
core size of the 2365-2, as shown in Figure 3-27(C). 

3. When pairs of 2361 Core Storage (LCS) are attached, 
even and odd addresses reside in two different storage 
units, as shown in Figure 3-27(0). 

Therefore, after setting the first key, the SSK instruction 
again increments D by 8 and another 'set key' signal is 

. issued to storage. For the case shown in Figure 3-27(A), the 

Two Keys per 2048-Byte Block. 

same key location is set again; otherwise, a different key 
location is set. 

Although the System/360 Model 65 always uses two-way 
interleaving, there is provision in the microprogram for 
future four-way interleaving which would necessitate 
setting the key four times. After the key is processed twice, 
STAT D would be tested. If reset, it would be set, and the 
new key would be processed twice again into succeeding 
even and odd storage addresses. However, STAT D now is 
found set when tested; it is set when the 'set key' trigger is 
first set and is not reset until after the SSK instruction is 
completed. 

INSERT STORAG'E KEV, ISK (09) 

• Insert storage protection key for 2048-byte storage 
block, addressed by bits 8-20 of 2nd operand (in GPR 
per R2), into bits 24~28 of 1st operand (in GPR per 
Rl). 
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• RRformat: 

09 Rl R2 
7 8 11 12 15 

Fetch 2nd operand from GPR per R2. 

Fetch storage key from main storage 
per bits 8-20 of 2nd operand. 

Place storage key into bits 24-28 
of lst operand (in GPR per Rl). 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is in S and T. 

• Format of LS word addressed by R2: 

0 7 8 

Storage Data-Block 
Address ~ooool 

20 21 2728 31 

• Storage key is inserted into bits 24-28of1st operand. 

• Bits 0-23 of 1st operand remain unchanged; bits 
29-31 are cleared. 

• Key is fetched twice because of two-way interleaving. 

The Insert Storage Key, ISK, instruction inserts the storage 
key addressed by the second operand into bits 24-28 of 
the first operand (in GPR, per Rl ). Bits 8-20 of the second 
operand address a block of 2048 bytes in main storage. Bits 
0-7 and 21-27 of the second operand are ignored, whereas 
bits 28-31. must · be O's or a program specification 
interruption occurs. The five-bit storage key is set into bits 
24-28 of the first operand; bits 29-31 are cleared. 

Diagram 5-606, FEMDM, is a flowchart of the ISK 
instruction. At the start of execution, the instruction is in 
E, the first operand is in A, B, .and D, and the second 
operand is in S and T. The stc is set to 3 (011) in 
preparation of setting D to the address of the storage block 
minus 8, thus allowing the construction of a loop later in 
the microprogram. The ·first operand is transferred from B 
to T via the parallel adder, and the STC is set to 7 ( 111 ). 
The contents of T, with the fetched key inserted into byte 
7, will later be transferred back into the GPR designated by 
Rl . Before fetching the key, however; program tests are 
made. If the system is in the Problem state, a program 

3-180 (9/68) 

privileged-operation interruption occurs. If the system is in 
the Supervisor state and the address of the storage block 
does not specify an even doubleword boundary [S(28-31) 
= O] , a program specification interruption occurs. 
Otherwise, the execution continues. F and the last byte of 
T are set to O's. The fetching of the key can now begin. 

The contents of F are logically OR'ed into the last byte 
of T via the serial adder, again setting O's. (This step would 
be important if the 2065 used four-way interleaving of 
'storage select' sigilals; as with the SSK instruction, the ISK 
instruction has an unused loop that would result in the 
fetching of the key four times.) D is incremented by 8 and 
a 3-cycle storage request is issued per the block address in 
D. The 'insert key' trigger is set, causing an 'insert key' 
·signal to be sent with the 'storage select' signal. As a result, 
the selected storage unit recognizes its selection as being a 
fetc;:h request for one of the keys stored in its storage 
protection area. The CPU waits until the 'key advance' 
signal from storage is received and then gates the key from 
the 'key out' bus into F. 

Because the key can be m two different locations, as 
explained for the Set Storage Key instruction, it is always 
fetched twice. This scheme ensures that odd addresses can 
be successfully accessed. After the fetched key is logically 
OR'ed into T from F, the key for the next doubleword is 
fetched exactly as before. 

When the key is again available, this time from an odd 
doubleword address, it is logically OR'ed with the key first 
fetched. The thus modified first operand is then returned to 
the GPR from which it came. A normal end op completes 
the execution of the instruction. 

WRITE DIRECT, WRD (84) 

• Send 'direct control write out' signal and timing signal 
code (12 in instruction) to external device for about 
0.8usec; make 1 data byte from storage (per storage 
operand address) available to external device until next 
WRD is executed. 

• SI format: 

84 12 Bl 01 

7 8 

Issue timing signal code 
(12) ond 'direct control 
write out' signal to 
external device. 

15 16 19 20 

Fetch data byte from 
main storage per 
storage operand address. 

Make data byte available 
to external device. 

31 



• Conditions at start of execution: 
First 16 bits of instruction are in E. 
Storage operand address is in D. 
Storage request has been issued per D. 

• 8 data bits remain available in G until another WRD 
instruction is issued. 

• 'Direct control write out' signal and timing signal code 
may be considered instruction for external device. 

Note:. The operation of the Write Direct instruction is 
modified if the Multisystem Feature is installed and if the 
CPU is not in Model 65 Mode. Refer to Chapter 4, Section 
2, Multisystem Feature, "Write Direct Instruction (Not 
Model 65 Mode)". · 

The Write Direct, WRD, instruction sends the eight bits of 
the immediate operand plus a 'direct control write out' 
signal to an external device for about 0.8usec. During that 
time, the storage operand becomes available to tJie external 
device and remains available until the next WRD instruction 
is executed. No parity is presented with either the 
immediate or storage operands when sent to the external 
device. 

Diagram· 5-607, Sheet l, A, FEMDM, is a flowchart of 
the WRD instruction. At the start of execution, the first 16 
bits of the instruction are in E, the storage operand address 
is in D, and a storage request for the storage operand has 
been issued per D. A privileged operation test is first made. 
If th.e system is in the Problem state, a program 
privileged-operation interruption occurs. Also, the validity 
of the instruction is tested. If the Direct Control Feature is 
not installed or if the DISABLE DIRECT CONTROL 
switch is in the active (down) position, the instruction is 
invalid and a program operation interruption occurs. 
Otherwise, instruction execution continues. 

The 'timing gate' trigger is set for about 0.8usec. During 
this time~ the immediate operand, containing the timing 
signal code, is sent from E to the external device via the 
'timing signal bus out' lines; a 'direct control write out' 
timing signal is also sent to the external device. These nine 
timing signals may be considered an instruction for the 
external device. 

While the nine timing signals are being sent, the storage 
operand is transferred from the SDBO to G ·via ST and the 
serial adder. Note that the 'direct control write out' signal is 
sent when the data in G is being changed. There is no 
outgating from G to the external device; the contents of G 
are always available on the 'direct control bus out' lines. G 
is reset only by the next WRD instruction. After the 'timing 
gate' trigger is reset, the instruction ends with a normal end 
op. 

READ DIRECT, ROD (85) 

• Send 'direct control read out' signal and timing signal 
code (12; in instruction) to external device for about 
0.6 usec; store 1 data byte from external device into 
storage (per storage operand address) when 'direct 
control hold in' signal is absent. 

• SI format: 

0 

85 12 Bl 
78 15 16 19 20 

Issue timing signal code (12) and 'direct 
control read out' signal to external device. 

Gate 'direct control bus in' from external 
device until 'direct control hold.in' 
signal is de-activated. 

Store byte read into main storage 
per storage operand address. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
Storage operand address is in D. 
Storage request has been issued per D. 

Dl 
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• Timing signal code and 'direct control read out' signal 
may be considered instruction for external device. 

Note: The operation of the Read Direct instruction is 
modified if the Multisystem Feature is installed and if the 
CPU is not in Model 65 Mode. Refer to Chapter 4, Section 
2, Multisystem Feature, "Read Dire~t Instruction (Not 
Model 65 Mode)". · 

' 
During the Read Direct, RDD, instruction, nine timing 
signals are sent to an external device: Next, a byte of data is 
read from an external device until the 'direct control hold 
in' signal is de-activated; the byte of data is then stored into 
main storage. 

Diagram 5-607, Sheet 1, B, FEMDM, is a flowchart of 
the RDD instruction. At the start of execution, the first 16 
bits of the instruction are in E, the storage operand address 
is in D, and a storage request has been issued per D. A 
privileged operation test is first made. If the system is in the 
Problem state, a program privileged-operation interruption 
occurs. Also, the validity of the instruction is tested. If the 
Direct Control Feature is not installed or if the DISABLE 
DIRECT CONTROL switch is in the active (down) 
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position, the instruction is invalid and a program operation 
interruption occurs. Otherwise, instruction execution 
continues. The STC is set per D(21-23), indicating the 
location in ST that the byte of read-direct data will occupy. 

The 'timing gate' trigger is set for about 0.6 usec. During 
this time, the immediate operand, containing the timing 
signal code, is sent from E to the external device via the 
'timing signal bus out' lines; a 'direct control read out' 
signal is also sent to the external device. These timing 
signals may be considered an instruction for the external 
device. While the 'timing gate' trigger is set, an address store 
compare test is made; its purpose is to cause Q to be refilled 
during the next I-Fetch if the byte being changed in main 
storage is also in Q. 

The 'direct control bus in' lines, containing the byte of 
data to be read from the external device, are gated to F, 
and a mark trigger is set per the STC. These two actions 
continuously cycle as long as the 'direct control hold in' 
signal is being received from the external device. Otherwise, 
instruction execution continues by storing the contents of 
F into main storage (via the serial adder, ST per STC, and 
the SDBI), and finishes with a normal end op. 

Neither the 'direct control bus in' lines nor the 'external 
signal in' lines include a parity bit. However, the serial 
adder generates odd parity for the data byte before it is 
stored. 

DIAGNOSE (83) 

e Load word designated by storage operand address into 
MCW, set or reset certain control triggers, and branch to 
ROS address specified by MCW. 

• SI format: 

83 I2 Bl DI 
7 8 15 16 19 20 
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Fetch MCW per storage 
operand address. 

Set or reset MCW, counters, test control 
triggers, and next ROS address, 

Continue instruction per 
branched-to microprogram. 

31 

e Conditions at start of execution: 
First 16 bits of instruction are in E. 
Storage operand address is in D. 
Storage request has been issued per D. 

• Enable and disable various system maintenance aids. 

• Available for entering and leaving emulator mode. 

The Diagnose instruction has two purposes: it is available to 
the diagnostic programmer as a maintenance aid and to the 
system programmer for emulator mode operations. 
Whichever instruction application is made, the beginning of . 
its execution is basically the same. The immediate operand 
is used to set or reset control triggers. The storage operand 
(a doubleword termed the maintenance control word, 
MCW) is used to set the MCW register, counters, and the 
address of the next ROS word. The remainder of the 
executfon is determined by the ROS microprogram 
branched to and the control triggers. 

Diagram 5-608, FEMDM, is a flowchart of the Diagnose 
instruction. For a description of the MCW format, see 
Section 2 of Chapter 6. For a description of the branches to 
emulator microprograms, see the applicable Compatibility 
Feature FETOM. 

At the start of execution, the first 16 bits of the 
instruction are in E, the address of the storage operand is in 
D, and a storage request for the storage operand has been 
issued per D. If the system is in the Problem state, a 
program privileged-operation interruption occurs. If the 
system is in the Supervisor state and the address of the 
storage operand does not specify a doubleword boundary, a 
program specification interruption occurs. Otherwise, 
instruction execution continues by making an address store 
compare test similar to the test performed during the SS 
I-Fetch operation. Here it is important for 2067 operations 
but not for 2065 operations. At this point, the address of 
the storage operand is no longer needed and is incremented · 
by 8. 

The CPU is. placed into the scan mode, and the MCW is 
gated from the SDBO to T (and also to A). The control 
triggers are now set or reset: T(32-39, 52) is transferred to 
the MCW register, T(S3-57) to the address sequencer, 
T(58-61) to the FLT counter, T(62, 63) to the FLT clock, 
E(8, 9) to the two interleave control triggers, and E(lO) to 
the 'diagnose FLT' trigger. The 'scan counter control' and 
'diagnose' triggers are set. They remain set depending on 
the application. The CPU is now taken out of the scan 
mode and a ROS branch is taken. 

The ROS branch address is transferred from T( 40-51) 
to ROSAR(0-11). If the instruction is being used to reset a 
previously set trigger, the address of a normal end op, 010 
(hex), is usually specified and the execution is completed. 
However, any ROS address may be specified, depending on 
the application. 



TEST AND SET, TS (93) 

• Test high-order bit (bit 0) of storage operand byte (in 
storage), set CC according to state of tested bit, and set 
addressed byte back into storage as all l's. 

• SI format: 

L 93 

7 8 

Bl Dl 

15 16 19 20 

Fetch doubleword (containing byte 
to be tested) from main storage per 
~torage operand address. Ind i cote 
se I ected byte by means of mark 
trigger [per 0(21-23)]. 

Select byte to be tested per STC. 

Storage replaces marked byte with 
all l's when regenerating storage 
operand back into cores. 

0 

Set CC to 0. Set CC to 1. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
Storage operand address is in D. 

• CC setting: 
High-order bit= 0: CC= 0. 
High-order bit = 1 : CC = 1. 

31 

The Test and Set, TS, instruction tests the high-order bit of 
a single byte in main storage and then sets the byte tested 
to all l's. The byte to be tested and set to l's is specified in 
the storage operand address. The result of the test of the 
high-order bit is recorded in the CC: if the high-order bit is 
a 0, the CC is set to O; if a 1, the CC is set to 1. 

Diagram 5-609, FEMDM, is. a flowchart of the execution 
of the Test and Set instruction. The first 16 bits of the 
instruction are in E, and the storage operand address is in 
D. The immediate operand and the storage operand 
requested during I-Fetch are not used. Instead, a storage 
request per D is made during execution accompanied by a 
'test and set' signal. This action allows no other access to 
this storage location between the fetching and regeneration 
of the byte. Before issuing the storage request, a mark 
trigger is set per 0(21-23), via the STC, for use later by the 
storage unit. 

The storage unit performs a unique regeneration 
operation for the Test and Set instruction. The addressed 
storage doubleword is fetched and set unaltered onto the 
SDBO exactly as during a fetch operation. Unlike a normal 
fetch operation, however, the storage unit uses the mark bit 
supplied by the CPU to designate the byte to be changed. 
When regenerating the 72-bit word, the storage unit sets the 
designated byte in core storage to all l's. Thus, the storage 
unit does a combination store and fetch operation. The 
storage protection facility operates as normal for a store 
operation. 

While generating the request for the storage operand, an 
address store compare test is started, similar to the test 
performed during the SS I-Fetch operation. Its purpose is 
to detect if the s~orage operand is buffered in Q. If it is, the 
'PSC' trigger is set, forcing an exceptional condition during 
the next I-Fetch, thus refilling Q. 

The bit to be tested must be placed into T(32). 
Therefore, the second operand is gated from the SDBO to 
AB where the proper byte is selected and transferred to 
T(32-29) via the serial adder and F. An early end op is 
taken, overlapping the setting of the CC. 
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Sect~on 8. Input/Output Instructions 

The four 1/0 .instructions are executed by the same ROS 
sequence (CLD QK021). An 1/0 instruction may be 
executed only when the CPU is in the Supervisor state. The . 
fust operation of an 1/0 instruction, therefore, is· to 
deterinine the state of the CPU. If the CPU is not in the 
Supervisor state, a privileged-operation check occurs, 
causing a program privileged-operation interruption. If the 
CPU is in the Supervisor state, execution of an 1/0 
instruction begins by setting the 'timing gate' trigger 
(Diagram 3-8, FEMDM). The 'timing gate' trigger gates a 
'channel select' signal to select 1 of 7 channels, as 
determined by bits 16-23 of the operand address (base 
plus displacement). As long as the 'timing gate' trigger 
remains set, the CPU waits for a 'release' signal from the 
channel before initiating the I-Fetch of the next 
instruction. 

At the start of execution, the first 16 bits of the 
instruction are in E; the first operand is not applicable. The 
base plus displacement produces a 32-bit result, the 
high-order 8 bits of· which are not significant for storage 
addressing; hence only the low-order 24 bits are stored into 
D. Because this is ·an I/O instruction, the address in D is the 
address of the channel and 1/0 unit and is not to be 
interpreted as a main storage address. 

For .an I/O instruction, only the low-order 11 bits are 
significant and valid. Although an 8-bit byte . has been 
reserved for the channel address, D(8-15), only seven 
channels can be attached to a System/360, Model 65. 
Hence only D(13-l5) is necessary to address all possible 
channels, and all channel addresses above 6 are considered 
invalid. Therefore, a 1 in any position, of D(8-12) indicates 
an invalid channel address, the 'channel select' signal is 
blocked, and the operation is terminated with a condition 
code of3. 

A properly addressed channel may also be unavailable 
because the channel: 
1. Is physically disconnected from the CPU. 
2. Power is down. 
3. Meter is disabled. 
4. Is in the test mode (the CE AUfO/TEST switch is in 

the TEST position). 

If the addressed channel is unavailable for any of the 
above reasons, the CPU generates a CC of 3 and a 'release' 
signal so that the CPU may proceed. 
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If the channel is available, the I/O unit address, 
D(16-23), is gated to the unit address register in the 
channel. (The I/O unit address is ignored by the channel for 
the Test Channel instruction.) 

At this point, the CPU is awaiting a 'release' signal from 
the channel, and the channel is initiating . the operation 
determined by the I/O instruction. When the channel 
operation has been initiated, a 'release' signal is generated 

·for the CPU. The 'release' signal allows the microprogram 
to advance and reset the 'timing gate' trigger, thus dropping 
the 'chaiinel select' signal. The CPU is now free to initiate 
the next instruction, while the channel may continue to 
execute the specified operation. The CPU and the channel 
may continue to share main storage under control of the 
priority function of the BCU. Priority is, from highest to 
lowest, channels 1, 2, 0, 3, 4, 5, 6, and CPU. 

When the I/O operation is completed after the CPU is 
released, the channel initiates an 1/0 interruption to store 
the stattis and condition code. If the CPU accepts the 
interruption, the channel is freed for further 1/0 operations 
initiated by the CPU; otherwise, the channel is unavailable 
because of the pending 1/0 interruption. 

When the 'release' signal enters the CPU, it becomes the 
'release CPU' signal. For normal 1/0 operations, when the 
'timing gate' trigger has been set, the ROS microprogram is 
looping (CLD QK021), and the 'channel selecf ·line is 
active. The 'relea.Se CPU' signal sets the 'release CPU' latch 
(KX411), the output of which sets ROSAR(ll) (DS151). 
As a result, the microprogram branches and resets the 
'timing gate' trigger and proceeds to an end op. The reset 
'timing gate' trigger drops the 'channel select' signal and 
resets the 'release CPU' latch. 

When selection of an unavailable channel is attempted, a 
'release' signal is not available from the channel. The 
'release CPU' latch and a CC of 3 are set by the inactive 
'channel available' line. The 'release CPU' latch sets 
ROSAR( 11) as before. 

START 1/0, SIO (9C) 

• Select specified 1/0 unit and initiate channel command 
to that unit. 



• SI format:· 

9C 

0 

WllA· Bl I Dl 
7 B 15 16 19 20 

Select channel and 1/0 
unit per operand address. 

Channel fetches CAW and CCW. 

Start 1/0 operation, send CPU CC 
informing it of channel and 1/0 
unit status, and release CPU. 

Channel executes command specified 
in CCW. CPU resumes processing. 

On completion of 1/0 operation, 
send 1/0 interruption to CPU 
to store status and CC. 

• Conditions at start of execution: 
1st 16 bits of instruction are in E. 
1st operand is not applicable. 

31 

Operand address (address of channel and 1/0 unit) is in 
D. 

• 0(13-15) is channel address. 

• 0(16-23) is 1/0 unit address. 

• If available, channel fetches CAW, specifying CCW 
location. 

• Channel stores status byte if errors in CAW or unit 
address. 

• CC's specify status of channel and 1/0 unit. 

• CC setting: 
Available: CC = 0. 
CSW stored: CC = 1. 
Working: CC= 2. 
Unavailable: CC= 3. 

The Start 1/0, SIO, instruction selects a specified 1/0 unit 
and initiates a channel command to that unit. The channel 
commands associated with the SIO instruction are: read, 
read backward, write, sense, control, and transfer in 
channel. 

Diagram 5-701, FEMDM, is a· flowchart of the SIO 
instruction. At the start of execution, the frrst 16 bits of 
the instruction are in E and the operand address is in D; the 

first operand is not applicable. If the channel is available, 
the unit address is gated to the unit address register in the 
channel. The channel then fetches the CAW from main 
storage address 72 (48, hex). The CAW specifies the address 
of the first CCW and the storage protection key for all 
channel commands associated with the SIO instruction. 

Two operations, fetching the CCW and selecting the 1/0 
unit per the unit address, are now started simultaneously. 
Fetching of the CCW is initiated by issuing a storage request 
from the channel to main storage. When the BCU response 
is received by the channel, the channel places the command 
address on the SAB and waits for the 'adv~ce' signal. The 
'advance' signal is used to place the command information 
(command code, data address, flags, and counts) into the, 
proper registers in the channel. The 'CCW valid' trigger. is 
set, if there were no errors, to show that the CCW has been 
received. The CCW information is then checked for correct 
parity. During the storage operation, the command address 
was incremented by 1; the updated quantity is now gated 
back to the command address register in the channel, and 
may be used to fetch another CCW if chaining was 
indicated in the frrst CCW. 

The second operation, selection of the proper 1/0 unit, is 
started at the same time as fetching of the CCW. Selecting 
the proper 1/0 unit is accomplished by placing the unit· 
address on the bus-out to the controf unit and issuing an 
'address out' signal followed approximately 400ns later by 
a 'select out' signal. The control unit responds with an 
'operation in' signal, which causes the channel to deactivate 
the 'address out' signal. When the control unit senses the 
deactivation of the 'address out' signal, itplaces the address 
of the selected 1/0 unit on the bus-in and activates its 
'address in' signal. The channel then compares the address it 
received from the control unit with the address it sent to 
the control unit to determine that proper selection has been 
made. 

If the addresses are identical, the 'CCW valid' trigger is 
set, and the operation continues. The CC is placed on the 
bus-out, and the 'command out' signal is sent to the control 
unit. The control unit responds with zero status if it can 
accept the command. The channel then sends a CC of 0 and 
a 'release' signal to the CPU. When the CPU receives the 
'release' signal and the CC is set, the 'timing gate' trigger is 
reset, dropping the 'channel select' signal. At this point, the 
CPU and the channel may resume independent operation. 

If any errors occurred up to the point where the channel . 
and control unit compare addresses or if the control unit 
responded with anything other. than zero status, a 
hardware-generated test-1/0 code would be placed on the 
bus-out to the control unit instead of the command code, 
and the device status would be cleared. The channel would 
then disconnect from the 1/0 unit and request a storage 
cycle. When the BCU response is received, the status 
information is stored into the CSW, and a CC of 1 and a 
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'release' signal are sent to the CPU. This action leaves the 
channel clear and ready to receive another instruction. 

If, when the channel is selected, the selected channel is 
working or unavailable, a CC of 2 or 3, respectively, is sent 
to the CPU. A 'release' signal is also sent to the CPU, 
releasing it for execution of other instructions. If any errors 
are discovered in the CAW or in the unit address, a status 
byte is stored into the CSW and a CC of 1 is sent to the 
CPU. A 'release' signal is also sent to the CPU, releasing it 
for execution of otherinstructions. 

If, when the control unit and the I/O unit are selected, 
either the control unit or the I/O unit is unavailable, a CC 
of 3 is sent to the CPU, together with a 'release' signal, thus 
releasing the CPU for execution of other instructions. 

TEST 1/0, TIO (90) 

• Clear interruption condition in addressed channel or 
associated I/O units, and set CC according to status of 
addressed channel and 1/0 units. 

• SI format: 

9D 

0 
-Bl Dl 

7 8 15 16 19 20 

Test channel and 1/0 unit 
selected by operand address. 

Clear interruption conditions 
in channel and 1/0 unit. 

Store status into CSW. 

Send CC to CPU and release 
CPU for next instruction. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is not applicable. 

31 

Operand address (address of channel and 1/0 unit) is in 
D. 

• D( 13-15) is channel address. 

• D(16-23) is 1/0 unit address. 

• CC setting: 
Available: CC= 0. 
CSW stored: CC= 1. 
Working: CC= 2. 
Unavailable: CC= 3. 

3-186 (9/68) 

The Test I/O, TIO, instruction clears interruption 
conditions existing in the addressed channel or addressed 
I/O unit and stores a CSW in main storage location 64 ( 40, 
hex). The CSW is also stored when the channel or 1/0 unit 
detects an error during execution of the TIO instruction. 
The status bits of the CSW identify the error conditions 
that occurred in the channel or I/O unit. The contents of 
the CSW pertain to the 1/0 unit which is addressed by the 
operand address (base plus displacement) determined 
during I-Fetch of the TIO instruction. 

Diagram 5-702, FEMDM, is a flowchart of the TIO 
instruction. At the start of execution, the first 16 bits of 
the instruction are in E and the operand address is in D; the 
first operand is not applicable. 

If the CPU is in the Supervisor state, execution of the 
TIO instruction begins by setting the 'timing gate' trigger. 
This trigger sends a 'select' signal to the proper channel as 
determined by D(l3-15). At this time, the unit address 
[D(l6-23)] is sent to the channel. If an interruption is 
pending, the channel compares this unit address with the 
unit address it is holding in its unit address register. If they 
are equal, the interruption condition in the channel is 
stored into the CSW in main storage location 64 ( 40, hex), 
and a CC of 1 is sent to the CPU together with a 'release' 
signal, releasing the CPU for execution of other 
instructions. If the addresses are not equal, a CC of 2 is sent 
to the CPU along with a 'release' signal, allowing the CPU 
to start processing the next instruction. When the CPU 
receives the 'release' signal, it resets the 'timing gate' trigger 
and takes an end-op cycle, completing the operation. 

If an interruption is not pending, the unit address sent 
from the CPU is placed into the unit address register in the 
channel to select the specified 1/0 unit. Because this is the 
TIO instruction, only status is required from the selected 
1/0 unit. If the status of the I/O unit is other than all O's, a 
CSW is stored into main storage location 64 ( 40, hex) and a 
CC of 1 is sent to the CPU. If the 1/0 unit status is all O's, a 
CC of 0 is sent to the CPU. 

A 'release' signal is then sent to the CPU. When the CPU 
receives the 'release' signal, the 'timing gate' trigger is reset 
and an end-op cycle is taken, completing the operation. If 
the status returned to the channel when the test 1/0 
command is issued is all O's, a CC of 0 is sent to the CPU. 
This value indicates that the I/O unit is available. The CPU 
is then released for further instruction execution. 

HALT 1/0, HIO (9E) 

• Terminate current 1/0 operation at selected channel 
and I/O unit. 



• SI format: 

9E 

0 
wa Bl' 

7 8 15 16 19 20 

Select channel and 1/0 
unit per operand address. 

Terminate operation in 
channel and 1/0 unit. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is not applicable. 

Dl 
31 

Operand address (address of channel and 1/0 unit) is in 
D. 

• Channel to be halted is determined by D(l3-15). 

e 1/0 unit to be halted is determined by D(16-23). 

• Channel sends status to CPU via CC and by storing 
status byte into CSW. 

• CC setting: 
Interruption in channel: CC= 0. 
CSW stored: CC = 1. 
Halted: CC = 2. 
Unavailable: CC= 3. 

The Halt 1/0, HIO, instruction terminates the current 1/0 
operation at the selected channel. The status of the channel 
is sent, and the status of the 1/0 unit may be sent, to·the 
CPU by setting the CC and by storing the CSW status byte. 
The operand address (base plus displacement) determined 
during I-Fetch of the HIO instruction is used to address the 
channel and 1/0 unit. 

Diagram 5-703, FEMDM, is a flowchart of the HIO 
instruction. At the start of execution, the first 16 bits of 
the instruction are in E and the operand address is in D; the 
first operand is not applicable. If the CPU is in the 
Supervisor state, execution of the HIO instruction begins 
by setting the 'timing gate' trigger. This trigger sends a 
'select' signal to the proper channel as determined by 
0(13-15). At this time, the unit address, D(16-23), is also 
gated to the channel. 

When the specified channel receives the 'channel select' 
signal, the channel is tested for a pending interruption. If an 
interruption is pending, a CC of 0 is sent to the CPU 
together with a 'release' signal. (The interruption is not 
cleared and remains pending.) 

If an interruption is not pending, the channel is tested to 
determine if it is free (not performing an operation). If the 

channel is not free ('command out' signal), the 1/0 unit is 
disconnected from the channel with an incorrect-length 
indication, the 'interrupt request' trigger is set, and a CC of 
2 is sent to the CPU together with a 'release' signal. (The 
requested interruption remains pending in the channel.) 

If the channel is free, an attempt is made to seleCt the 
specified 1/0 unit. If an 1/0 unit is not selected (control 
unit or 1/0 unit is unavailable), a CC of 3 is sent to the CPU 
together with a 'release' signal. 

If an 1/0 unit i~ selected, an address compare test is 
performed to determine if the correct 1/0 unit was selected. 
If the specified 1/0 unit was selected, it is disconnected 
from the channel; if some other 1/0 unit was selected, the 
'interface control check' latch is set and an interface reset 
operation occurs. In either case, an interruption is initiated 
to store the status bits into the CSW, and a CC of 1 is sent 
to the CPU together with a 'release' signal. 

When a 'release' signal is received by the CPU, the 'timing 
gate' trigger is reset, dropping the 'channel select' signal. An 
end-op cycle is taken, completing the operation, and the 
CPU is free to resume processing. 

TEST CHANNEL, TCH (9F) 

• 
• 

0 

Test state of selected channel and set CC accordingly . 

SI format: 

9F W.s1 
7 8 15 16 19 20 

Sel"ect channel to be 
tested per operand 
address [D{l3-15)]. 

Set CC according to 
results found in channel. 

Dl 
31 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is not applicable. 
Operand address (address of channel and 1/0 unit) is in 

D. 
• Channel to be tested is determined by D( 13-15). 

• D(16-23), which normally selects 1/0 unit, is ignored. 

• CC setting: 
Available: CC= 0. 
CSW ready: CC = 1. 
Working: CC= 2. 
Unavailable: CC= 3. 
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The Test Channel, TCH, instruction is used to obtain a CC 
describing the current state of the channel addressed by 
D(13-15). The channel state is not affected by the TCH 
instruction. The appropriate CC is generated and set into 
the CPU CC register, and the CPU is released to perform 
further instructions (Diagram 5-704, FEMDM). 

If an interruption is pending, a CC of 1 is generated; if 
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an interruption is not pending, the channel is tested to 
determine if it is working. If the channel is working, a CC 
of 2 is generated; if not working, a CC of 0 is generated. 
The generated CC is sent to the CPU, together with a 
'release' signal. When the CC is set into the CPU CC register, 
the 'timing gate' trigger is reset and the CPU takes an 
end-op cycle, after which it is free to initiate the next 
instruction. 



Chapter 4. Features 

Section 1. Feature Index 

The features available for the 2065 are listed in Table 4-1. 
·Those features discussed in this manual are indicated by a 
page or chapter and section reference; only the major 

references are listed. Some of the features are discussed iri 
separate Field Engineering manuals; the title and form 
number of these manuals are referenced. 

Table 4-1. Feature Index 

Name and Number Reference 

Additional Storage Attachment Chapter 4, Section 2: Multiprocessing Features 
1305 (5th Storage Unit) 
1306 (6th Storage Unit) 
1307 (7th Storage Unit) 
1308 (8th Storage Unit) 

Direct Control DISABLE DIRECT CONTROL switch: p6-17 
3274 Discussion: p1·2 

G-register: p2-58 
Operation: p3-180, 3-181, 4.4 
Power: p5-12 

Emergency Power-Off Control Discussion: p5-8 
3621 (2 Systems) 
3622 (Up to 12 Systems) 

Multisystem Chapter 4, Section 2: Multiprocessing Features 
4951 (CPU 1) 
4952 (CPU 2) 

1052 Adapter Power: p5-12 
· 7920 (1st Adapter) 1052 Adapter and 2150 Console 

7921 (2nd Adapter) FETOM: Form Y22-2808 
7922 (Dual Adapter) 

2361 Attachment Disc'ussion: p2-4, 2-31, 2-37 
8080 

7070/7074 Compatibility 2065 Processing Unit, 7070/7074 Compatibility Feature 
7117 FETOM: Form Y27-2106 

FEDM: Form Y27•2107 

7080 Compatibility 2065 Proces5ing Unit, 7080 Compatibility Feature 
7118 FETOM: Form Y27-2090 

FEDM: Form Y27-2091 

709/7040/7044/7090/7094/7094 II Compatibility 2065/2067 Processing Unit, 709/7040/7044/7090/7094/709411 Compatibility Feature 
7119 FETOM: Form Y27-2098 

FEDM: Form Y27-2099 
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Section 2. Multiprocessing Features 

MULTIPROCESSING SYSTEM/360 MODEL 65 

The Multiprocessing System/360 Model 65 (Diagram 7-2, 
FEMDM) is a particular multiprocessor configuration. It 
contains two System/360 Model 65's with the Multi­
system feature added to each CPU. The Multisystem 
feature can only be understood when described in the 
context of the Multiprocessing System/360 Model 65. 

The Multiprocessing System/360 Model 65, also called 
here the multiprocessing system, can operate in one of 
three ways. Firstly, it can operate as one system, both 
CPU's controlled by the same supervisor program stored 
in the completely shared main storage units; because most 
I/O units are also shared by the CPU's, almost any 1/0 
task can be assigned by the supervisor program to either 
CPU. Operating two CPU's as resources of one system is 
termed multiprocessor operation or simply multiprocess­
ing. Secondly, it can be operated as two separate systems, 
each with its own supervisor program, main storage, CPU, 
and 1/0 units. Thirdly, it can be operated with only some 
of the storage units shared; this case is of limited interest 
and is not considered here. 

The multiprocessing system has a configuration control 
panel (Diagram 7-11, FEMDM) mounted on the frame 
section connecting the two CPU's. The following discus­
sion of each of the three major machine areas (main 
storage, 1/0, and CPU): 
1. Describes the concepts of multiprocessing. 
2. Lists features added to the basic System/360 Model 

65's to achieve the multiprocessing system. 
3. Describes how the multiprocessing system is tailored 

by the configuration control panel switches. 

Main Storage 

In general, a multiprocessing system is characterized by 
multiple CPU's, each having access to all of main storage. In 
this fully shared main storage resides a supervisor program 
that regards the CPU's as a pool of processing resources. 
The supervisor program can then use the CPU's alternately 
or simultaneously on one task or separately on two tasks to 
achieve maximum thruput. Although the supervisor pro­
gram is necessarily long and complex, it need be placed in 
only one area of main storage to operate the CPU's; thus, 
given a fixed number of main storage units and CPU's, more 
of main storage is available for use by problem programs. 

In the Multiprocessing System/360 Model 65, main 
storage consists of at least two and up to eight 2365-13 
Processor Storage units. Each storage unit added after the 
fourth requires an Additional Wall Section feature and, 
installed in each CPU, an Additional Storage Attachment 

4-2 (10/69) 

feature. Each storage unit has a double BCD-storage 
interface. Priority circuits in the interface determine which 
BCU last had access to storage and, in the event of 
simultaneous requests, give access to the other BCU. This 
scheme ensures that neither CPU is allowed two successive· 
storage references to a particular storage unit if the other 
CPU is waiting. Each storage unit has a CE panel allowing 
off-line maintenance. 

Storage A/location 

Each of the main storage units can be allocated to both, 
either, or none of the CPU's; Storage Allocation switches 
on the configuration control panel determine which 
BCU-storage interfaces are enabled. Therefore, the multi­
processing system need not always be operated in a fully 
shared multiprocessing environment. For example, if 
multiprocessing is inappropriate for a certain workload, 
one group of storage units can be allocated to CPU I and 
the remaining storage units to CPU 2. The multiprocessing 
system can then be operated as two conventional System/ 
360 Model 65's, each CPU run by a different supervisor 
program. 

When allocated to neither CPU, a faulty storage unit 
can usually be repaired off-line using its CE panel. 

F /oating Addressing 

Because any group of storage units can be allocated to the 
CPU's, a flexible means of arranging the main storage 
addresses must be provided. This arrangement is done by 
Floating Address rotary switches on the configuration 
control panel, one switch ptr storage unit. Any of the 
storage units in a group can contain any of the possible 
address intervals. This is what is meant by floating 
addressing. 

In round decimal numbers, 262 kilobytes of data can be 
stored in one 2365-13 Processor Storage, each byte 
individually addressable; it contains, then, an address 
interval of 262 kilobytes. The assignment of address 
intervals to the allocated storage units is therefore in 
multiples of 262, (i.e., 0 to 262; 262 to 524; and so on). 
Once the assignments for a group are made, they remain 
unchanged at least until the next IPL. Exact address ranges 
are listed in Table 4-2. 

Whether the group of storage units is assigned to one 
CPU or shared by both, the assignment of floating 
addresses has one restriction: the first address interval of 0 
to 262 must be assigned. For example, assume storage 
units l, 3, and 4 have been allocated to CPU 1. The 



Table 4-2. Floating Address Intervals 

Rotary Switch 
Label Decimal Hex 

OTO 262K Oto 262,143 Oto 3 FF FF 
262K TO 524K 262, 144 to 524,287 4 00 00 to 7 FF FF 
524K TO 786K 524,288 to 786,431 8 00 00 to B FF FF 
786K TO 1048K 786,432 to 1,048,575 COOOOto F FF FF 

1048K TO 1310K 1,048,576 to 1,310,719 10 00 00 to 13 FF FF 
1310K TO 1572K 1,310,720 to 1,572,863 140000to 17 FF FF 
1572K TO 1834K 1,572,864 to 1,835,007 180000to 1B FF FF 
1834K TO 2096K 1,835,008to 2,097,151 1C 00 00 to 1 F FF FF 

highest possible address is 786K because 262K X 3 = 
786K. Then the contiguous address intervals to be 
assigned are 0 to 262, 262 to 524, and 524 to 786. They 
can be assigned to the three storage units in any 
combination such as storage 3 = 0 to 262, storage 1 = 262 
to 524, and storage 4 = 524 to 786. Thus in hex notation, 
storage 1 contains locations 4 00 00 - 7 FF FF, storage 3 
contains locations 0 - 3 FF FF, and storage 4 contains 
locations 8 00 00 - B FF FF. Presumably, storage 2 has 
been allocated to CPU 2. In tha,t case, storage 2 also has 
the address interval of 0 to 262 assigned to it. 

Direct Address Relocation 

Addresses 0-4095 (decimal) are generated without a base 
address or index and so are called the direct addresses. 
Direct address relocation causes CPU and attached­
channel accesses to the lowest 4096 data bytes in 

allocated main storage to be made to the highest 4096 
bytes; in addition, CPU accesses to the highest 4096 bytes 
are made to the lowest 4096 bytes. Only one CPU 
operating in the fully shared multiprocessing environment 
requires this ability. The assignment is made by a PREFIX 
switch on the configuration control panel, one switch per 
CPU. Refer to Figure 4-1 for the relocated addresses. The 
highest area is relocated to by inserting. a 12-bit prefix 
into each address which has the high order 12 bits set to 
zero, SAB(0-11) "" 0, and hence pertains to locations 
0-4095. 

The need for direct address relocation by one of the 
two CPU's sharing all of main storage is understood when 
the permanent storage assignment addresses are con­
sidered. Main storage bytes 0-383 (decimal) constitute 
the permanent storage area of System/360. It is these 
locations that are referenced by the programs, CPU, and 
channels for such data as the old and new PSW's, the 
interval timer value, the CAW, the CSW, the CPU logout, 
and the channel logout. It is impossible for rnultiple CPU's 
to operate normally sharing the same physical locations in 
main storage for this purpose. For example, old PSW's 
stored by CPU 1 would be destroyed by old PSW's stored 
by CPU 2; CPU 1, therefore, would re-enter the inter­
rupted programs of CPU 2. Clearly, each CPU requires a 
separate permanent storage area. When operating separate­
ly with unshared storage allocated to each CPU, no 
conflict results. When operating together in the fully 
shared multiprocessing environment, however, the conflict 
would result if not for direct-address-relocation logic 

CPU Requests for: Channel Requests for: 

Highest 
4K Block 

Yes 

No 

Lowest 
4K Block 

Figure 4-1. Direct Address Relocation 

Lowest Highest 
4K Block 4K Block 

Yes 

Highest 
Address 
(Decimal) 

262K 
524K 
786K 

1048K 

1310K 
1572K 
1834K 
2096K 

Relocated 
Locations 

(Hex) 

3 .FO 00 to 3 FF FF 
7 FO 00 to 7 FF FF 
B FO 00 to B FF FF 
F FO 00 to F FF FF 

13 FO 00 to 13 FF F 
17 FO 00 to 17 FF FF 
1 B FO 00 to 1 B FF F 
lF FOOO to TF FF FF 

Locations 0 to FFF (Hexadecimal) 

Al located Main Storage 
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added to the BCU by the Multisystem feature. Just as the 
CPU uses main storage addresses up to 383 (decimal) for 
its operations, the supervisor program uses up to address 
4095, generally, for its operations. The tables, pointers, 
and control blocks associated with only one CPU are 
stored in that area or conflicts result. Therefore, the first 
4096 bytes (0 to FFF, hex) are relocated. 

Notice in Figure 4-1 that both permanent storage areas 
can be made accessible to both CPU's. This function is 
important for the supervisor program and error recovery 
routines. Notice also that the channels attached to the 
relocating CPU do not have access to the permanent 
storage area of the other CPU. This hardware-imposed 
restriction is inconsequential because the channels never 
need access to the other CPU's permanent storage area. 

Input/Output 

Not every 1/0 device in a multiprocessing system is 
connected to both CPU's. The 1052 Printer-Keyboard is 
an example. However, most of the devices are connected 
to both CPU's. The path of connection is from separate 
channels, through a double channel-control unit interface, 
to the control unit of the device. The double channel­
control unit interface might be a separate standalone unit 
or a special feature (Two-Channel Switch feature) of the 
control unit, dependirig on the device .. In either case, .the 
Remote Switch Attachment feature is added to this 
two-channel switch · interface placing 1/0 Allocation 
switches on the configuration control panel, one switch· 
associateg with each interface. When operating as a 
multiprocessing system, all the 1/0 Allocation switches are 
enabled. The supervisor program can then issue 1/0 
commands from either CPU to most of the 1/0 devices. If 
one ·CPU is busy, the ·other can perform the 1/0 
instruction. The CPU that starts an 1/0 operation is 
generally the CPU that is interrupted by the 1/0 when the 
operation finishes. The two-channel switch interface in 
the selected path directs the interruption request to the 
correct CPU. 

When operating the two CPU's independently, the 1/0 
devices are usually allocated to only one of the two 
CPU's. Remember that with or without the Multisystem 
feature, a System/360 Model 65 can operate as part of a 
multisystem by a shared-control-unit connection. Other 
1/0 multisystein connections ca~ exist through Channel-

. to-Channel Adapter feature, shared-device, or commu­
nication-line connections. The channels, control units, and 
devices (and their features) attachable to a basic System/ 
360 Model 6.5 are attachable to a Multiprocessing System/ 
S60 Model ~5. 

Processing Units 

In some multiprocessing systems, one of the CPU's is 
designed primarily, or even solely, for I/O processing, thus 
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allowing economies in that CPU's capabilities. For in­
stance, a floating-point instruction set is not needed in 
that CPU. However, when this assignment is done in a 
multiprocessing system of two CPU's, versatility is lost. In 
the Multiprocessing System/360 Model 65, the CPU's have 
equal capabilities. If both CPU's are busy processing, the 
next task - 1/0, logical, or arithmetic....:. can be processed 
by the first CPU to become idle. 

There are two three-position rotary switches on the 
configuration control panel, one per CPU. These rotary 
switches control the mode of system operation of the two 
CPU's. When multiprocessing together (duplexed), both 
rotary switches are placed in the MS position (Multisystem 
mode), enabling use of six special-purpose, inter-CPU 
signals, the multisystem signals. Also only in this mode, the 
Set System Mask instruction is modified. When operating 
independently (simplexed), the CPU is placed in either 
Model 65 (65 position) or Partition (PTN position) ·mode. 
Operation of the Direct Control feature (a prerequisite for 
installation of the Multisystem feature) is modified in 
Multisystem and Partition modes. The mode of operation 
does not affect storage allocation, floating addressing, 
direct address relocation or 1/0 allocation. 

One Emergency Power-Off Control feature is required in 
the system. 

Multisystem Mode 

When multiprocessing in a fully shared environment, both 
CPU's are manually placed into Multisystem mode. To 
enhance multiprocessor operations, five inultisystem signals 
are enabled between the CPU's in this mode. One of the 
signals, 'malfunction alert', is machine-generated. Another, 
'gated load pb', is manually generated when LOAD is 
depressed. The remaining four signals are issued by execu­
tion of the Write Direct instruction as shown below: 

84 12 I Bl I 01 

78 15 16 19 20 31 

12 Field Multisystem Signal 

r 
'system reset' 

Bits8 and 9 = 10 'external start" 

= 11 'log 1/0 interrupt' 

Bit 10 =1 (reserved) 

Bit 11 =· 1 'system call' 

The Write Direct instruction is performed and the 
multisystem signals are issued regardless of the position of 
the DISABLE DIRECT CONTROL switch on the CPU 
system control panel. 'System reset', 'external start', and 
'log 1/0 interrupt' signals are recognized by the receiving 



CPU even if its direct control is disabled. Only the 'system 
call' and 'malfunction alert' signals can cause an external 
interruption of the receiving CPU. 

Direct control might be iriterconnected between the 
CPU's or might be connected to external devices, depend­
ing on the system configuration. This can be done because 
the multisystem signals are separate from the direct 
control interface. However, direct control operations are 
modified when operating in Multisystem mode. Because 
the four high-order bits of the 12 field are assigned for 
special functions, their use in the Read Direct instruction, 
as well as external signals 0-3, are ignored. Use of bits 
8-11 in the Write Direct instruction is restricted to the 
multiprocessing functions. Also, although direct control 
operations are still controlled by the DISABLE DIRECT 
CONTROL switch, no operation program interruption 
occurs if the switch is in the active (depressed) position. 
All other direct control operations, including external 
signals 4-7, are unchanged. 

, The Set System Mask instruction is modified . in 
Multisystem mode only. The current system mask bits can 
not be changed by execution of the Set System Mask 
instruction when operating in Multisystem mode. If 
operating in the Supervisor state and Multisystelll mode, 
the Set System Mask instruction is suppressed and causes 
a multisystem program interruption. The interruption 
code of 12 {hex) stored in the old PSW is used by the 
supervisor program to identify this source of interruption. 

Model 65 Mode 

Usually, both CPU's are switched to Model 65 mode when 
independent operation is desired. The Model 65 mode 
allows each 2065 to function as if the Multisystem 
features were not installed. Storage allocation, floating 
addressing, direct address relocation, and 1/0 allocation . 
are active regardless of the operating mode. However, the 
multisystem signals and the multisystem program inter­
ruption are not needed when a non-multiprocessing 
supervisor program is operating one CPU. Therefore, the 
Direct Control feature and the Set System Mask instruc­
tion are as described for a System/360 Model 65 without 
the Multisystem feature. 

The supervisor programs applicable to the conventional 
System/360 Model 65 are run in Model 65 J!lOde. The 
emulator program for a Compatibility feature, for ex­
ample, is run in Model 65 inode. (Any of the three 
Compatibility features might be installed in the two 
206S's, depending on the system requirements.) Before 
initially loading the emulator program, a simplex system 
must be manually selected from the multiprocessing 
system. This selection is done by switching the CPU with 
the desired Compatibility feature to Model 65 mode and 
allocating to it the required storage and 1/0 units; the 
Floating Address switches are dialed so that storage 

addressing is continuous from location 0. Direct address 
relocation is not enabled because the IBM-suppiied emu­
lator program cannot be shared by the other CPU. 

Partition Mode 

Partition mode allows a multiprocessing supervisor program 
to run with one CPU if the other CPU in the multi­
processing system is unavailable. The other CPU may be 
unavailable to the multiprocessing program because of a 
changing workload or because of a machine malfunction. 
The configuration control panel is used to partition a 
simplex system from the multiprocessing system to perform 
other work or system maintenance. 

Multiprocessing is simplified in Partition mode. Because 
the multiprocessing program handles 1/0 interruptions from 
only one CPU when ·running in Partition mode, the Set 
System Mask instruction operates as described for the 2065 
without the Multisystem feature. Direct control operations 
in Partition mode, however, remain modified as in Multi­
system mode; the multiprocessing program can then 
perform direct control operations the same way in both 
modes. Because the CPU is operating independently, the 
multisystem signals are neither issued nor recognized by a 
CPU in Partition mode. 

Multisystem Signals 

The six multisystem signals are issued and recognized only 
in Multisystem mode. Therefore, they are meaningful only 
if both CPU's are in Multisystem mode: 

1. Malfunction Alert. The 'malfunction alert' signal is 
issued when CPU power is turned off or when a CPU 
machine , check requires a logout operation. (As in a 
2065 without the Multisystem feature, a CPU machine 
check requires a logout followed by a machine check 
interruption if the CPU CHECK switch is in the PROC 
position and the machine check mask bit is set to 1.) 
The receiving CPU is externally interrupted if the 
external mask bit is set to 1; bit 26 is set to 1 in the 
external-interruption old PSW. Thus, even if the mal­
function of the sending CPU prevents it from performing 
a reliable logout arid machine check interruption, the 
supervisor program can be notified via the external 
interruption of the receiving CPU that a malfunction has 
occurred. An additional CPU machine check· condition 
can be detected in Multisystem mode to enhance the 
programmed recovery from "hang"-type malfunctions; a 
system hang machine check is caused if the enabled 
interval timer is not updated within eight cycles of the 
line frequency (116.7 to 133.3 ms in 60-Hz installations, 
140 to 160 ms in SO-Hz installations). A multisystem 
timer, added by the Multisystem feature, colints the 
line-frequency cycles. The 'malfunction alert' signal 
remains pending in the receiving CPU if the external 
mask bit is set to 0. 
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2. Gated Load Pushbutton. The 'gated load pb' signal is 
issued when LOAD is depressed. All the units available 
to the receiving CPU, as well as the receiving CPU, are 
immediately reset: storage units, channels, control units, 
and devices. After being reset, the receiving CPU is 
placed in manual mode. 

3. System Call. The 'system call' signal is issued by the 
Write Direct instruction if bit 11 of the I2 field is set to 
I. Like the 'malfunction alert' signal, the 'system call' 
signal causes an external interruption of the receiving 
CPU if its external mask is set to 1. Bit 27 is set in the 
external-interruption old PSW. Unless direct control is 
interconnected between the CPU's> this is the only 
programmable means of externally interrupting the 
receiving CPU. The 'system call' signal remains pending 
in the receiving CPU if the external mask bit is set to 0. 

The remaining three signals are mutually exclusive for 
any one Write Direct instruction because bits 8 and 9 of the 
I2 field can be coded for only one at a time. The signals do 
not externally interrupt the receiving CPU. Rather, they 
cause specific operations used by the multiprocessing 
program for recovery from program and machine malfunc­
tions. These operations cannot be disabled by PSW mask 
bits or by the DISABLE DIRECT CONTROL switch. 

4. Log I/O Interrupt. The 'log I/O interrupt' signal is issued 
by the Write Direct instruction if bits 8 and 9 of the I2 
field are set to 11. If an I/O interruption is pending in 
the receiving CPU, the signal causes the CSW and 
interruption code of the waiting channel to be stored, 
regardless of its system mask bit. The multiprocessing 
program can thus recover I/O interruptions left pending 
at a malfunctioning CPU. Because the status of the I/O 
operation is not lost, the I/O operation does not have to 
be repeated. 

The microprogram in process when the 'log I/O 
interrupt' signal is received is immediately discontinued 
and the receiving CPU is forced to the manual mode. 
The operation of the system remains consistent if the 
CPU is in the Wait state and has all channels masked off 
when the 'log I/O interrupt' signal is received. If multiple 
I/O interruptions are pending, only the channel with 
highest priority is serviced. CPU· machine checks are 
caused and ignored by the log I/O interrupt operation. 
After log I/O interrupt operations, the receiving CPU 
must be reset and restarted to continue normal process­
ing. 

5. System Reset. The 'system reset' signal is issued by the 
Write Direct instruction if bits 8 and 9 of the I2 field are 
set to 01. All the units available to the receiving CPU, as 
well as the receiving CPU, are reset: storage units, 
channels, control units, and devices. After being reset, 
the receiving CPU is placed in manual mode. Unlike the 
actions started by the 'gated load pb' signal, the system 
reset operation is delayed for two counts of the line 
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frequency, allowing any storage of data in progress to 
finish. The multisystem timer is used for this counting 
function also, regardless of the position of the DISABLE 
INTERVAL TIMER switch. 

6. External Start. The 'external start' signal is issued by the 
Write Direct instruction if bits 8 and 9 of the I2 field are 
set to 10. The receiving CPU is started (or restarted) by 
the 'external start' signal as if the PSW REST ART 
pushbutton were depressed. That is, the reception of the 
'external start' signal causes processing to resume per the 
PSW in main storage address 0. The external-start 
operation begins immediately if the receiving CPU is in 
the Wait or Stopped state; otherwise it begins at the next 
end op. (If an external system-reset operation is in 
progress, the external-start operation begins whert the 
reset is finished.) No system reset is performed, no 1/0 
operation is initiated, and no old PSW is stored during 
the external-start operation. 

Summary of Multiprocessing System Advantages 

The key advantages of the multiprocessing system may be 
summarized as follows: 

Increased Utilization: In installations having two indepen­
dent CPU's, certain jobs possibly cannot be processed on 
one system because sufficient main storage or I/O devices 
are lacking. The other system, at the same time, may have 
main storage or I/O devices not being used. Resource 
sharing by the multiprocessing system minimizes these 
shortcomings. 

Increased Availability: Resource sharing leads to another 
advantage. The multiprocessing system can continue to 
process in the event of most single machine malfunctions, 
even CPU malfunctions. This increases system availability. 
Concurrent repair of the faulty unit is possible in most 
cases. 

Simplified Management: In an installation with two inde­
pendent systems, manual balancing of the daily workload 
between two job queues is needed. Also, the installation 
data base might be split between the two systems, requiring 
duplication of records. The multiprocessing system allevi­
ates these two problems when operated as a single system. 
The need for manually balancing the workload is mini­
mized, and efficient operation is possible for applications 
needing large online data bases and higher file access rates. 

!4lexibility: The multiprocessing system can also be recon­
figured into two independent systems when required by the 
workload. 

FUNCTIONAL UNITS 

Two functional units, the configuration control panel and 
the multisystem timer, are added; one functional unit, the 
BCU, is modified by the Multisystem feature. 



Configuration Control Panel 

The configuration control panel (Diagram 7-11, FEMDM) is 
mounted on the frame section connecting the two CPU's. 
The manual switches on this panel, the 'system X available' 
latches in the storage units, and the 'enable prefix' and 
'multisystem mode' triggers in the CPU control the opera­
tion of the multiprocessing system. These controls are 
shown simplified in Diagram 7-3, FEMDM, and are de­
scribed in the following paragraphs. 

Storage Allocation Control 

There is one double-pole, two-position toggle switch for 
each CPU-storage interface. When in the enabled position, 
CPU de ground through one pole and -3V de through the 
other pole are connected to the floating address switch of 
the same storage unit; this gates the setting of the floating 
address switch to the CPU to which that storage unit is 
allocated. The enabled de ground is also sent to the 
designated CPU-storage interface in the storage unit, setting 
the 'system X available' latch when a 'not clock out' level is 
received from the same CPU. A 'power on storage frame X' 
level is then returned to the CPU if the storage unit is 
ready; that is, if it has power on and is not in t'est mode. 
The 'system X available' latch is reset when the CPU or 
storage unit power is turned off or when the 'not clock out' 
level from the CPU detects the absence of the enabled de . 
ground. This interlocking prevents selecting an unavailable 
storage unit and manually disabling a busy CPU-storage 
interface. 

Floating Address Control 

• One switch per storage unit. 

• Logical address of each storage unit is encoded into 
three binary bits. 

• 'Floating prefix bit' signals are encoded from allocated 
Floating Address switch set in highest position. 

• If set storage addresses allocated to one CPU are 
duplicated or are higher than 1048K (without Addition­
al Storage Attachment feature installed), then storage 
address decoding is blocked and VALID ADDRESS 
indicator is not lit. 

There is one seven-deck, eight-position rotary switch for 
each storage unit. Decks A, B, and C of each switch encode 
the position into a three-bit binary value. For example, 
position 1 = 000, position 2 = 001, position 3 = 010, and so 
on. Both CPl'.I'Neceive the encoded value regardless of the 
storage unit's allocation. 

Deck E is used by CPU 1 (deck D by CPU 2) for 
encoding a three-bit floating prefix. The 'floating prefix bit' 
signals define the storage unit containing the highest 4K 
block of storage. They correspond to SAB{3-S) and are 
important during direct address relocation operations. The 

highest address range set into the allocated Floating 
Address switches is encoded into a three-bit binary code. 

Deck G is used by CPU 1 (deck F by CPU 2) to detect 
when more than one of the storage units allocated to CPU 1 
are assigned the same interval of addresses. The CPU 
detecting that conflict is blocked from decoding the storage 
address until the Floating Address switches are correctly 
positioned. Storage address decoding is also disabled when 
the rotary switch for any allocated storage unit is assigned 
an address interval above 1048K (without an Additional 
Storage Attachment feature installed). If the floating 
addresses of the allocated storage units are not duplicated 
and within the correct storage bounds, the VALID 
ADDRESS indicator lights. 

The scheme for detecting duplicate addressing is shown 
in Figure 4-2, using CPU 1, storage I, and storage 2 as 
examples. When the input to the receiver is greater than 
l .9V de, as when no duplicate addresses are assigned, a 
positive logic level is recognized and inverted to a negative 
logic level. However, both storage units are shown assigned 
the address interval of 000 to 262K. Because both storage 
units are allocated to CPU I, two 270-ohm resistors are in 
parallel, lowering the resistance in series with the 200-ohm 
resistor. This action, in turn, lowers the receiver's input 
voltage to near ground potential (logical 0 level) instead of 
+2.4V de (logical I level). Because the input to the receiver 
is now less than l .OV de, a negative logic level is recognized 
and inverted to a positive voltage level. A positive output 
voltage from the receiver, therefore, is indicative of a 
duplicate address assignment. Any further duplication of 
addresses lowers the input voltage even more; the receiver's 
output, therefore, remains at the positive logic level. 

Allocate 
Storage l 
to CPU 1 

-3Vdc---<>1 
I 
I 
I 

0 

~ 
Allocate· 
Storoge 2 
to CPU 1 

270 

270 

+6V de 

Storage 1 = 
Range 1 

0 

Deck G 

Storage 2 = 
Range 1· 

Deck G 

200 Receiver 
in 
CPU 1 Duplicate Address 

000 to 262K N.__ ____ _ 

<::.C733 

Minimum up level = 1. 9V de; 
maximum down level = 
1.0V de. 

ALD PKl 11 except as noted. 

· Figure 4-2. Duplicate Storage Addressing Detection 
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Direct Address Relocation Control 

The relocation of direct addresses (prefixing) may be 
enabled manually for either or both CPU's, or may be 
disabled for both CPU's. There is a two-position toggle 
switch, labelled PREFIX, for each CPU. The position of the 
switch is sampled when initially loading programs into the 
system; that is, when the WAD pushbutton is depressed or 
when an external restart operatiOn is performed. The switch 
position is also sampled when the CPU's power is turned 
on. If the PREFIX switch is in the ENABLE position, the 
'enable prefix' trigger for that CPU is set. Otherwise, the 
CPU de ground is returned to the CPU through the PREFIX 
switch and loading resets the 'enable prefix' trigger. Only 
when the 'enable prefix' trigger is set Will storage requests 
for direct addresses be relocated. 

Multiprocessing System Mode Control 

The operating modes of the CPU's are separately con­
trolled; either CPU can be placed in Multisystem, Partition, 
or Model 65 mode by its own Mode switch. Both of these 
switches are three-position, normally closed rotary 
switches, with the common terminal connected to the de 
ground of the associate CPU. The Multisystem mode is 
entered and left only. when the CPU's usage meter is 
stopped, such as when in the Stopped state. For this reason, 
the 'CPU clock stopped' signal samples the level returned 
from the MS position of the rotary switch. If the level is 
floating, a logical 1 is ·sensed and the 'multisystem mode' 
trigger is ,set; if CPU de ground is returned, a logical 0 is 
sensed an\(l the 'multisystem mode' trigger is reset. Switch­
ing between Partition and Model 65 modes is not synchro­
nized with the operation of the CPU. 

1/0 A/location Control 

There are two .switches on the configuration control panel 
for each Two-Channel Switch feature. Unlike all the other 
switches, they do not interface with the CPU logic. Refer to 
the FETOM of· the applicable control unit for the opera­
tional · description of the Remote Switch Attachment 
feature. 

BCU Modifications 

The following discussion explains the modifications to the 
BCU to accommodate up to 8 shared main storage units. 

Storage Address Decoding with Prefixing Disabled 

In a 2065 without the Multisystepi feature, SAB( 4,5) is 
decoded to select one of up to four 2365 Processor Storage 
units. Because Additional Storage Attachment features 
might be installed, the Multiprocessing system must provide 
for selecting up to eight storage units. Therefore, storage 
address decoding is concerned with SAB(3-5). Because of 
floating ·addressing, SAB(3--:-S) is not directly decoded but 
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rather compared to the three binary-encoded lines returned 
from the Floating Address switches of each storage ·unit. If 
an equal comparison is made and the 262K block of 
addresses is available to the CPU, then the 'select' signal is 
issued to that storage unit. 

Diagram 7-4, FEMDM, shows the storage address decod­
ing. The circuits shown in the lower part of the diagram 
relocate direct addresses; if the CPU is not enabled for 
prefixing, these circuits are inactive. When the CPU has 
priority to access main storage, the address of the desired 
storage location is gated from D, IC, or PAL to SAB via a 
24-bit OR in the BCU. Bits 3, 4, and 5 are gated from the 
OR by the 'not channel priority' signal to floating address 
comparison circuits, one for each storage unit. The desired 
.storage unit is decoded if the storage unit with the equal 
comparison is available to the CPU and if the Floating 
Address switches are properly set. As in the 2065 without 
the Multisystem feature, bits 6 and 20 of the storage 
address are de.coded in parallel to the decoding of bits 3-5; 
this decoding causes an. even or odd interleaved storage 
selection to be made by the 'select timing pulse' signal. 
Unlike storage requests made by the CPU, the storage 
address decoding is done directly from the SAB when the 
storage request is made by an attached channel. Otherwise, 
the same decoding circuits are used for both CPU~ and 
channel-initiated storage requests. 

Storage Address Decoding with Prefixing Enabled 

Three storage address detectors, in parallel with the 
decoding of the storage address and activated by the 'enable 
prefix' trigger, determine when prefixing is needed (Dia­
gram 7-4, FEMDM). One detector determines if the CPU is 
attempting to access a location within its first 4K block of 
main storage addresses (prefix oompare CPU). Another 
detector determines if an attached channel is attempting to 
access that first 4K block (prefix compare channel). The 
third· detector determines if the CPU is attempting to access 
its last 4K block (reverse prefix compare). If such is not the. 
case, prefixing is not needed and the 'select timing pulse' 
signal is issued to the decoded storage unit as a selection 
signal, just as if prefixing were not enabled. If, however, 
one of the three detectors determines that prefixing is 
needed, the 'select timing pulse' signal is blocked from 
being sent to main storage as a selection signal. Instead, the 
'select timing pulse' signal sets the 'normal prefix' latch if 
relocation to its highest 4K block is needed (Prefix compare 
CPU or channel) or sets the 'reverse prefix' latch if 
relocation to its lowest 4K blbck is needed (reverse prefix 
compare). 

With either the 'normal prefix' or 'reverse prefix' latch 
set, the SAB is changed and a different storage unit is 
decoded to reflect this change. The 'normal prefix' latch 
changes SAB(3-5) to the 'floating prefix bit' signals and 
SAB( 6-11) to all l's. Thus, instead of the storage urut with 



the lowest addresses being decoded, the storage unit with 
the highest addresses is now decoded. The 'reverse prefix' 
latch changes SAB(0-11) to all O's by degating the IC and 
D inputs to the SAB OR in the BCU. Because the BCU 
cannot degate bits put on the SAB by the channel, reverse 
prefixing is limited to CPU storage requests for the highest 
4K block. The 'normal prefix' or 'reverse prefix' latch sets 
the 'any prefix' trigger, which deactivates the three storage 
address detectors; this action allows the second 'select 
timing pulse' signal, generated because a selection has been 
unsuccessfully tried, to be issued' as an even or odd 
selection signal to_ the correct storage unit. 

Invalid Storage Address 

Addressing is invalid if: 
1. More than one allocated storage unit is assigned the same 

addresses, whether or not requested. 
2. Any storage unit, whether or not requested, is manually 

assigned an address interval greater than 1048K and an 
additional Storage Attachment feature is not installed. 

3. The storage unit containing the requested address is not 
allocated to the CPU, is in test mode, or does not have 
de power on. 

4. No storage unit is assigned the requested address. 
5. The requested address is higher than 2,097,151, decimal; 

that is, SAB(O, 1, or 2) = 1. 

Specific circuits in the BCU are needed to detect all 
invalid addresses except for the fourth case listed: no 
storage unit assigned the requested address. In this case, a 
successful comparison of the three 'combined SAB' lines to 
the Floating Address switches does not occur. Therefore, 
none of the 'decode frame X select' lines are activated at 
the time of the first 'select timing pulse' signal. No plug 
card is needed to specify the highest valid address as in the 
2065 without the Multisystem feature. 

Just as in the 2065 without the Multisystem feature, a 
second 'select timing pulse' signal is generated· when a 
selection of an invalid address is tried but a 'sel~ct' signal is 
not sent. The second signal is issued to the first available 
storage unit as a selection signal together with a 'cancel' 
signal. The first available storage unit is identified by the 
lowest-numbered physical frame returning a 'power on 

frame' level to the CPU. Although prefixing also blocks the 
first 'select timing pulse' signal and causes a second one to 
be generated, the requested address is not considered 
invalid and a 'cancel' signal is not sent. 

BCV-Storage Operations 

The BCD-storage operations differ from the 2065 without 
the Multisystem feature in two major respects: (I) the 
storage selection signal is issued even if the decoded storage 
unit is busy, and (2) an extra decoding cycle is added by 
the prefixing operation. 

Because the selection signal is issued even if the decoded 
storage unit is busy, the BCD-cleanup operation is delayed 
until the 'accept' signal is returned from the storage unit. A 
non-busy storage unit immediately returns an 'accept' signal 
to the BCU. Even though not busy; the response time from 
different storage units varies because of different cable 
lengths to the CPU. A busy storage unit records the 'select' 
signal until all higher-priority requests are serviced. For 
'select' signals arriving at a busy storage unit, the time 
necessary to establish priority is overlapped with the 
storage cycle in progress. 

A CPU-initiated storage request is shown in Diagram 7-5, 
FEMDM. The 'accept' signal is received 300 ns after the 
earliest expected time. Because the 'accept' signal is not 
detected at the start of tl;i.e cycle following the issuance of 
the selection signal, an 'inhibit oscillator' signal is generated 
(line 25 in the diagram). The BCU and CPU clocks are 
inhibited at not-clock time by turning off the gated 
oscillator pulses. The gated oscillator is similar to that used 
in the Model J65; see Chapter 2, Section 1. The 'accept' 
signal forms the not-clock-time pulses needed to complete 
the stopped cycle and turns on the gated oscillator that 
forms the succeeding timing pulses (lines 2 and 3). The 
'BCU cleanup' signal (line 30) is generated by the setting of 
the 'HSS accept' latch (line 29). Therefore, not until then 
are the CPU priority circuits reset. However, to speed up 
the servicing of pending channel requests, the 'accept' signal 
is delayed 25 ns to form the 'timed accept pulse' signal (not 
shown). The 'timed accept pulse' signal scans the channel 
sync ·latch outputs, setting the channel priority trigger of 
the highest-priority request regardless of the BCU cleanup. 

The extra cycle needed for the normal prefixing of a 
CPU storage request is shown in Diagram 7-6, FEMDM. The 
BCU timing of a channel request needing normal prefixing 
or a CPU request needing reverse prefixing is the same as 
that shown. Notice that the CPU clock is stopped for one 
cycle, even though in the example shown there is no delay 
receiving the 'accept' signal from the selected storage unit. 
This ensures_ that the data is gated at the correct time. When 
prefixing a channel request, the CPU clock is not stopped. 

Multisystem Timer 

The multisystem timer is a four-bit counter made up of 
polarity-hold circuits. It is added by the Multisystem 
feature to detect CPU inactivity and to delay the external 
system reset operation. Counting occurs only in Multi­
system mode. The interval timer must be enabled for CPU 
inactivity to be detected and identified as a machine 
malfunction. 

Operation 

Diagram 7-7, FEMDM, shows the logic, timing, and 
counting scheme of the multisystem timer. 'Time clock 
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step' pulses are counted if the CPU is in the Multisystetn 
mode and either the interval timer is enabled or an external 
system reset operation is in progress. These 300-ns 'time 
clock step' pulses arrive at input-power line frequency 
(every 16 2/3 ms in 60-Hz systems; 20 ms in .SO-Hz 
systems). A 100-ns time delay forms two 100-ns pulses; the 
first pulse, 'update overflow counter', is followed 300 ns 
later by the second pulse, 'transfer counter to latch'. Until 
the conditions for a counter reset are met, the counter 
triggers are set per the latches by the 'update overflow 
counter' pulse; following this, the triggers are set directly 
into the latches by the 'transfer counter to latch' pulse. The 
counter then waits for the next 'time clock step' pulse. 

The counter is reset ·to zero by either an end op or an 
'external system reset' signal. Both of these conditions 
degate the inputs to the triggers, update the triggers to zero, 
and then transfer the zero state of the triggers to the 
latches. The 'end op' trigger is set for 200 ns; therefore, in 
this case the second 100-ns pulse follows the first by 
200-ns. The 'external system reset' signal is about 80 ns 
long, so in this case the two pulses are about 70 ns long and 
the second follows the first by 100 ns. 

System Hang Timing 

The timer, when in the Multisystem mode, counts the 
number of input-power frequency cycles occurring from 
the latest end-op cycle. While the CPU is operating 
normally, the counter may count one cycle, two at the 
most, before the next end op occurs. When the high-order 
bit of the counter, the 'system hang' trigger, is set, eight 
cycles are counted and it is assumed the CPU has ceased to 
operate, or is "hung", due to a machine malfunction. This 
assumption need not always be true. For example, a slow 
external device can cause the Read Direct instruction to be 
excessively long. Performing a manual storage ripple opera­
tion (as when clearing storage) with the interval timer 
enabled also sets the 'system hang' trigger; therefore, the 
interval timer should be manually disabled when clearing 
storage in Multisystem mode. The malfunction need not 
occur in the CPU eitl,ler. For example, as previously 
discussed, the· CPU and BCU clocks are inhibited until an 
'accept' signal is received from the seiected storage unit. If a 
machine malfonction in storage prevents the 'accept' signal 
from being issued, the CPU is "hung" and the 'system hang' 
trigger is set. 

The eight 'time clock step' pulses are counted within 
116.7 to 133.3 ms. because the end op is independent from 
the counting and the period of a 60-Hz pulse is 16-2/3 ms. 
(140 to 160 ms are needed if the input-power frequency is 
SO Hz.) The 'system hang' trigger sets the 'system hang 
error' latch and, if set, resets the gated oscillator control 
latches: 'select sent' and 'inhibit'. The 'system hang error' 
latch sets the 'error' trigger in the machine check interrup­
tion logic. The resetting of the oscillator control latches 
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ensures that the BCU and CPU clocks are running; without 
these timing pulses the logout and machine check interrup­
tion microprograms cannot be performed. 

External System Reset Timing 

The timer delays the resetting of the system by the 
'external system reset' signal for two counts of the 'time 
clock step' pulse. The 'external system reset' signal sets the 
'external· system reset' trigger and resets the counter. The 
'external system reset' trigger then allows 'time clock step' 
pulses· to be counted. The second 'time clock step' pulse 
updates the counter, setting the 'overflow l' trigger. This 
action requires 16.7-33.3 ms for 60-Hz power (20-40 ms 
for SO-Hz power). At that time, then, the 'external reset 
delayed' trigger is set. 

MUL TISYSTEM OPERATIONS · 

The Multisystem feature modifies three instructions (Set 
System Mask, Write Direct, and Read Direct), and adds six 
operations (one per multisystem signal). 

Set System Mask Instruction (Multisystem Mode) 

The Set System Mask instruction operates as described in 
Chapter 3, Section 7, if the CPU is not in Multisystem 
mode. In Multisystem mode, the instruction is always 
suppressed and a program interruption occurs: in . the 
Problem state, ari interruption code of 2 (privileged 
operation) is stored into the old PSW; in the Supervisor 
state, an interruption code of 18, decimal (multisystem), is 
stored into the old PSW. 

To set an interruption code of 18, the 'interrupt code 
16' trigger is added by the Multisystem feature (Diagram 
S-22, FEMDM). The 'SPEC' micro-order in the first ROS 
word sets 'interrupt code 2' and '16' triggers and forces an 
end op if the 'multisystem mode' trigger is set in the 
Supervisor state. 

Write Direct Instruction (Not Model 65 Mode) 

The Multisystem feature modifies the direct control circuits 
for the Write Direct instruction (Diagram 7-8, FEMDM) but 
does not change the write-direct microprogram. If the CPU 
is in Model 65 mode, the Write Direct instruction operates 
as described in Chapter 3, Section 7. 

In the Partition mode, the instruction begins with a 
privileged operation test. If PSW(l 5) = 1, 'interrupt code 2' 
trigger is set and the instruction is suppressed by forcing an 
end op and is followed by a privileged operation program 
interruption. If PSW(l S) = 0, the CPU is in the Supervisor 
state and execution continues. The 'partition mode' signal 
disables the invalid op code detector in case the DISABLE 
DIRECT CONTROL switch is in the active (down) posi­
tion, preventing an operation program interruption. The 



'partition mode' signal also prevents the issuing of E(8- I I) 
to the external device when the 'timing gate' trigger is set. 
If the DISABLE DIRECT CONTROL switch is active, the 
'direct control write out' signal and E(8-l 5) are blocked 
when the 'timing gate' trigger is set. The data byte is 
fetched and placed into the G-register as in Model 65 mode, 
and the instruction is completed with an end op regardless 
of the position of the DISABLE DIRECT CONTROL 
switch. 

In Multisystem mode, the instruction, beginning with 
the same privileged operation test, continues if PSW(l 5) = 
O. The 'multisystem mode' trigger disables the invalid op 
code detector, preventing an operation program interrup­
tion if the DISABLE DIRECT CONTROL switch is active. 
The 'multisystem mode' trigger also prevents the issuing of 
E(8-l I) to the external device when the 'timing gate' 
trigger is set. If the DISABLE DIRECT CONTROL switch 
is active, the 'direct control write out' signal and E(8-15) 
are blocked when the 'timing gate' trigger is set. Regardless 
of the position of the DISABLE DIRECT CONTROL 
switch, the multisystem signals, E(8- I I), are decoded and 
issued to the other CPU when the 'timing gate' trigger is set; 
'system reset', 'external start', .'log 1/0 interrupt', and 
'system call' signals can be issued by the Write Direct 
instruction only when executed in Multisystem mode. The 
data byte is fetched and placed into G as in Model 65 
mode, and the instruction is completed with an end op. 

Read Direct Instruction (Not Model 65 Mode) 

The Multisystem feature modifies the direct control circuits 
but does not change the read-direct microprogram. The 
Read Direct instruction (Diagram 7-8, FEMDM) operates as 
described in Chapter 3, Section 7, if the CPU is in the 
Model 65 mode. 

In Partition or Multisystem mode, the instruction begins 
by testing whether PSW(l5) = 0. If it does not equal 0, 
'interrupt code 2' trigger is set and the instructi<?n is 
suppressed by forcing an end op and is followed by a 
privileged operation program interruption. If PSW(l5) = 0, 
the CPU is in the Supervisor state and the execution 
continues. The 'partition mode' signal or the 'multisystem 
mode' trigger disables the invalid op code detector in case 
the DISABLE DIRECT CONTROL switch is in the active 
(down) position, preventing an operation program interrup­
tion. The 'partition mode' signal or 'multisystem mode' 
trigger also prevents the issuing of E(8- l l) to the external 
device when the 'timing gate' trigger is set. If the DISABLE 
DIRECT CONTROL switch is active, the 'direct control 
read out' signal and E(8-15) are blocked when the 'timing 
gate' trigger is set. The data byte received from the external 
device is stored as in Model 65 mode, and the instruction is 
completed with an end op. 

Malfunction Alert 

The 'malfunction alert' signal, generated only in Multi­
system mode, results from either a CPU machine check or a 
loss of CPU power. A CPU machine check is detected when 
the 'error' trigger is set and the CPU CHECK switch is in 
the PROC (process) position. A loss of CPU power is 
detected by the dropping of the 'enable direct control' 
relay, K50; K50 is one of the first relays to drop during a 
manual or automatic power-off operation. Either of these 
conditions triggers a' singleshot, generating a 825-ns pulse 
(Diagram 7-9, FEMDM). This pulse is issued to the other 
CPU via a gated driver. All the direct control signals use a 
gated driver to prevent the issuing of spurious signals during 
normal power-up and power-down operations. However, 
the gating of the 'MS malfunction alert' signal is han'dled 
slightly differently to assure its issuance when the CPU 
power is removed, whether accidentally or purposely. A 
reed relay provides an electromechanical delay of the 
'power off signal. The reed relay is on a standard SLT card 
and is not a special circuit. The 5-second pick delay of the 
'power on' relay, K47, prevents the 'MS malfunction alert' 
signal from being issued during the power-on sequence. 

The 'MS malfunction alert' signal sets the 'external signal 
2' latch in the receiving CPU if that CPU also is in 
Multisystem mode. If no higher-priority exceptional condi­
tions or interruptions are pending at the next end op and 
the external mask bit is set, the receiving CPU is then 
externally interrupted. 

Gated Load 

Depressing the LOAD pushbutton causes a normal initial 
program load operation and, if the CPU Mode switch is in 
the MS position, the. issuance of an 'MS· gated load pb' 
signal (Diagram 7-9, FEMDM) to the other CPU. The driver. 
for this multisystem signal is gated by the same electro­
mechanically delayed 'power off signal as the 'malfunction 
alert' signal. 

The receiving CPU forms the 'MS gated load pb' signal 
into a 30-usec pulse if it also has its CPU Mode switch in 
the MS position. This pulse resets the receiving CPU and its 
attached units at the same time the sending CPU and its 
attached units are being reset. The receiving system is reset 
as if its SYSTEM RESET pushbutton were depressed, as 
shown in Diagram 8-7, FEMDM. At the end of the reset 
operation, the CPU is in the stop loop. 

System Call 

An 'MS system call' signal is issued when. a Write ·Direct 
instruction with bit 11 specified is executed in Multisystem 
mode; it sets the 'external signal 3' latch in the receiving 
CPU if that CPU also is in Multisystem mode. If no 
higher"priority exceptional conditions or interruptions are 
pending at the next end op and the external mask bit is set, 
the receiving CPU is then externally interrupted. 
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Log 1/0 Interrupt 

• Three latches control receiving CPU, not ROS. 

• D is forced to address of 1/0 old PSW, and 'priority 1' 
and 'priority 2' triggers are set. 

• 'Timing gate' trigger gates 'interrupt response' signal to 
highest-priority channel requesting 1/0 interruption. 

• After channel stores CSW, CPU issues D-request to store 
interruption code. 

• CPU is reset before and after log 1/0 interrupt operation. · 

A 'log 1/0 interrupt' signal is issued when a Write Direct 
instruction with bits 8 and 9 of the 12 field set to 11 is 
executed in Multisystem mode. If the receiving CPU is also 
in Multisystem mode, it is reset and then its 'manual' trigger 
and 'log 1/0 preparation' latch are set, initiating the log 1/0 
interrupt operation (Diagram 7-10, FEMDM). Setting the 
'manual' trigger lights the MANUAL indicator on the 
system control panel, disables the interval and multisystem 
timers, and stops the selected usage meter on the CPU; 
because the 'stop' trigger is not set, the stop loop is not 
entered. Setting of the 'log 1/0 preparation' latch prevents 
further ROS control of the CPU by holding the ROS sense 
latches reset. The receiving CPU is now controlled by the 
three sequence latches: 'log 1/0 preparation', 'log 1/0 
execute', and 'log 1/0 terminate'. The operation· of the 
channels, main storage, and the BCU is not affected. Direct 
address relocation remains active if the CPU's PREFIX 
switch is set to ENABLE. 

Once the 'log 1/0 preparation' latch is set, up to five 
machine cycles might elapse before FLT-2 time when the 
'log 1/0 execute' latch is set. With both of these latches set, 
the interrupt request trigger of the highest-priority channel 
requesting an 1/0 interruption is set, regardless of the 
channel mask bits in PSW(0-6). Next, at FLT-1 time plus 
80 ns, a 'branch or normal end op' signal is generated that 
(1) forces D to 38 (hex), the location of the 1/0 old PSW, 
and (2) sets the 'priority l' and 'priority 2' triggers, 
preventing .. any further change of the 'channel X interrupt 
request' triggers and setting the 'timing gate' trigger. If any 
'channel X interrupt request' trigger is set, the setting of the 
'priority 1' and 'priority 2' triggers is ensured by either the 
resetting or the inhibiting of all higher-priority exceptional 
conditions and interruptions. 

The 'timing gate' trigger gates the 'interrupt response' 
signal to the channel determined by the 'channel X 

interrupt request' trigger set. The channel then proceeds to 
store a CSW into direct-address bytes 40-47. The channel's 
interruption operation is unchanged by the log 1/0 inter­
rupt operation. When the channel finishes storing the CSW, 
it sets the 'release CPU' latch in the CPU. Waiting until 
FLT-2 time, the 'log 1/0 terminate' latch is set. At FLT-3 
time, the 'log 1/0 store. interrupt' signal is generated, 
causing: 

4-12 (10/69) 

1. The 'log 1/0 preparation' latch to be reset. 
2. The 1/0 interruption code to be transferred to 

S(21-31). 
3. The 'D sync' trigger to be set. 
4. The 'mark 2' and 'mark 3' triggers to be set. 

During the next machine cycle a 'log 1/0 terminate and 0 
time' signal is generated, resetting the CPU. The CPU is now 
ready to receive another 'log 1/0 interrupt' signal from the 
other CPU. Meanwhile, the BCU, if not busy with a channel 
storage request, immediately services the D-request. D still 
contains the direct address of the 1/0 old PSW, 38 (hex). 
Because only 'mark 2' and '3' signals are issued, only the 
interruption code field is altered. 

The log 1/0 interrupt operation ends with the 'log 1/0 
terminate' latch set. The latch is reset while another log 1/0 
interrupt operation is executed or if a system reset is 
performed; Until a system reset is performed, either the 'log 
1/0 preparation' or 'log 1/0 terminate' latch is set, holding 
the ROS sense latches reset. 

If there is no 1/0 interruption request pending when a 
'log 1/0 interrupt' signal is received, the CPU waits with 
both the 'log 1/0 preparation' and 'log 1/0 execute' latches 
.set. Once every four cycles the forced 'branch or normal 
end op' signal tests whether any 'channel X interrupt 
request' trigger is set. 

External System Reset 

A 'system reset' signal is issued when a Write Direct 
instruction with bits 8 and 9 set to 01 is executed in 
Multisystem mode. The 'system reset' signal sets the 
'external system reset' trigger in the receiving CPU if that 
CPU's Mode switch is in the MS position. When set, this 
trigger ·performs five functions: 
1. Inhibits further setting of the channel sync latches, 

preventing the honoring of channel storage requests. 
2. Blocks the setting of the 'storage 2' trigger, preventing 

selection of main storage. 
3. Blocks the issuance of any. 'malfunction alert' signals. 
4. Enables the multisystem timer. 
5. Keeps external starts pending until the system is reset. 

The multisystem timer delays the system reset operation 
until all processing has stopped. When the multisystem 
timer counts two line frequency cycles, the receiving 
system is reset as if the SYSTEM RESET pushbutton on its 
system control panel were depressed. At the end of the 
reset operation, the CPU is in the stop loop. 

External Start 

An 'external start' signal is issued when a Write Direct 
instruction with bits 8 and 9 set to IO is executed in 
Multisystem mode; it sets the 'external start' trigger in the 
receiving CPU if that CPU also is in the Multisystem mode. 



This trigger sets the 'external start' latch, waiting first for 
any end-op or external system reset operations in progress 
to finish. The 'external start' latch puts the CPU into the 
stop loop by setting the 'stop' trigger. When the stop loop 
tests whether the PSW REST ART pushbutton has been 
depressed (ROS micro-order J30), the 'external start' latch 
forces ROSAR(l 1) to set, causing a branch to the load PSW 
routine. Also at this time the 'enable prefix' trigger is· set 
per the PREFIX switch on the configuration control panel. 

POWER DISTRIBUTION AND CONTROL 

The Multisystem and Additional Storage Attachment 
features do not change the power distribution of the CPU 
except that in CPU 2 the DC return bus is not connected to 
the frame bond (logic Y A023). 

With the installation of the Multisystem feature, relay 
K6 in the CPU is no longer held picked by the last active 
'storage driver on' signal (logic Y A021 ). Therefore, when 
the POWER OFF pushbutton is depressed on. the system 
control panel, K6 immediately drops regardless of the 
status of the storage units. The dropping of K6 does not 
allow the system power-off sequence to wait until the core 
driver power of the last storage unit is off but immediately 
turns off CPU power, channel power, and (only if the 
POWER. OFF pushbutton is being depressed on the last 
CPU with power on) main storage. power. To protect the 
contents of main storage, each 2365 Model 13 contains 
gated line drivers similar to those used in the Direct Control 
feature in the CPU. The gated line drivers are the first 
circuits to be turned off during the storage power-off 
sequence and the last circuits to be turned on during t~e 
storage power-on sequence. Refer to the FETOM of the 
2065 Model 13 storage for a complete discussion of its 
power controls. 

Several of the power controls are modified by both the 
Multisystem feature and the first Additional Storage 
Attachment feature. The changes are discussed next under 
"Console Controls and Maintenance Features". 

CONSOLE CONTROLS 
AND MAINTENANCE FEATURES 

The following paragraphs describe the ·Configuration control 
panel and the modifications made by the Multisystem 
feature to the system control panel and to the logout and · 
scan-in operations. 

Configuration Control Panel 

The configuration control panel is added by the Multi­
system feature and is shared by the two CPU's. For the 
following discussion of the configuration control panel, 
refer to Diagram 7~11, FEMDM. 

Storage Allocation Switches 

A Storage Allocation toggle switch for each CPU is 
associated with each storage unit. Only with the switch set 
to ENABLE is the storage unit available to that CPU. At 
least one storage unit is allocated to each operating CPU. 
The same storage unit may be allocated to both CPU's. A 
change in storage allocation becomes effective when the 
associated CPU enters the Stopped or Wait state. 

Floating Address Switches 

One Floating Address switch is associated with each storage 
unit. These rotary switches control the address range of 
each storage unit in 262 kilobyte intervals. The first four 
positions are: 0 TO 262K, 262K TO 524K, 524K TO 786K, 
and 786K TO 1048K. If the first Additional Storage 
Attachment feature is installed, these switches may also be 
placed in one of the next four positions: 1048K TO 13 lOK, 
1310 TO 1572K, 1572K TO 1834K, and 1834K TO 
2096K. 

Contiguous addresses are usually assigned for each CPU, 
starting with address 0. Two storage units may not be 
assigned the same address interval if either is allocated to 
both CPU's. To provide maximum thruput, the direct~ 

address main storage unit(s) should be as close to the CPU 
as possible; refer to Diagram 7-2, FEMDM. The Floating 
Address switches are always active. 

PREFIX Switches 

One PREFIX toggle switch is associated with each CPU. 
With the switch set to ENABLE, CPU references to the 
low-order 4096 (decimal) bytes arid the high-order 4096 
bytes of main storage are swapped, ~r relocated; also, 
channel references to the low-order 4096 bytes are re­
located to the high-order 4096 bytes. Relocation does not 
occur when the PREFIX siwtch is set to DISABLE. 
Normally, neither of these two switches is set to ENABLE 
when no storage units are shared; only one is enabled when 
all storage units are shared. A change in position of a 
PREFIX switch becomes effective when the associated CPU 
(1) performs a power-on sequence, (2) has its LOAD 
pushbutton depressed, or (3) performs an external start 
operation. 

CPU Mode Switches 

One CPU Mode switch is associated with each CPU and 
determines the operating mode of that CPU. Multisystem 
mode (MS) is entered or exited when the CPU clock is 
stopped, according to the position of the switch. Switching 
between Partition (PTN) and Model 65 (65) modes is 
immediately effective. 
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1/0 Allocation Switches 

These switches enable or disable communications between 
the associated CPU and the control unit attached to two 
channels. Switches for up to 24 control units can be 
accommodated on the configuration control panel. These 
switches are labeled as a group, 1/0 CONTROL, and 
individually according to the control unit type. Refer to the 
applicable control unit FETOM for a further description of 
these switches. 

VALID ADDRESS Indicators 

One VALID ADDRESS indicator is associated with each 
CPU. When not lit, an incorrect manual assignment of an 
allocated storage unit has. been made: either the same 
floating addresses have been assigned more than once or a 
Floating Address switch is in one of the last four positions 
without an Additional Storage Attachment feature being 
installed. The indicator lights after the needed correction is 
made. Not until then can the assoCiated CPU be operated. 

System Control Panel Modifications, Multisystem Feature 

EMERGENCY PULL Switch 

The pulling of an EMERGENCY PULL, EPO, switch on 
either CPU removes power beyond the entry point from all 
units in the multiprocessing system. The two EPO switches 
of the CPU's are directly interconnected by Emergency 
Power-Off Control feature No. 3621 or, if there are other 
EPO switches in the multiprocessing system, by Emergency 
Power-Off Control feature No. 3622. 

POWER ON Pushbutton 

The POWER ON pushbutton on the system control panel 
of each CPU turns on the power of that CPU and all the 
units, shared and nonshared, controlled by that CPU. Power 
is applied to all storage units. The POWER OFF pushbutton 
removes power from that CPU and all the nonshared units 
controlled by that CPU; however, if the power of the other 
CPU has previously been turned off, the power of the 
shared units and all storage units is also turned off. The 
power of units having their LOCAL/REMOTE switch in 
LOCAL is not controlled. 

Marginal Voltage Control 

The +6VM power supplies of the channels attached to the 
CPU can be varied from the system control panel. Only the 
storage units with the 6VMC switch (on each 2365's power 
control panel) in the proper position .can be margined from 
the system control panel: SYSA for CPU 1 and SYSB for 
CPU2. 
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DISABLE INTERVAL TIMER Switch 

The activation of the DISABLE INTERVAL TIMER switch 
(N13) prevents decrementing of the interval timer and 
incrementing of the multisystem timer. 

DISABLE DIRECT CONTROL Switch 

The activation (depression) of the DISABLE DIRECT 
CONTROL toggle switch (N27) still disables the 'direct 
control timing signal out' bus and the external signals 
received from the external device. However, only in Model 
65 mode does a Read Direct or Write Direct instruction 
cause a program interruption when the switch is active. In 
Multisystem and Partition modes, the instructions are 
executed but no direct control timing signals are issued to 
the external device. The DISABLE DIRECT CONTROL 
switch does not affect the issuing or receiving of the six 
multisystem signals. 

Storage Switches 

The storage ADDRESS switches must be set to the 
relocated storage address, when applicable, for scoping or 
stop-on-storage-address~compare functions. Store and Dis­
play manual operations are not affected. 

When the CPU's share main storage, the DEFEAT 
INTERLEA YING switches (N9) on both system control 
panels must be in the same position (unless specified 
otherwise during a diagnostic program). 

When a storage unit available to both CPU's detects an 
error while the requesting CPU's STOP ON STORAGE 
CHECK switch (N11) is active, the operation of that 
storage unit immediately stops. Therefore, if the requesting 
CPU has not already received the 'accept' signal, its 
operation is also stopped. Eventually, when both CPU's are 
waiting for the 'accept' signal from the stopped storage 
unit, the entire multiprocessing system enters the Stopped 
state. The CPU's do not automatically enter the stop loop. 

Indicators 

The indicators added by the Multisystem feature are shown 
in Diagram 7-12, FEMDM. The STORAGE FRAME X 
ENAB indicator shows the storage unit's status with respect 
to the CPU; regardless of that status, the STORAGE 
FRAME X 1048K, 524K, and 262K indicators show the · 
binary-encoded position of the Floating Address switch 
and, hence, the storage unit's lowest address. The CPU 
identification indicators I and 2 are Wired into the 
respective CPU's during system installation. The remaining 
indicators are self-explanatory. 



System Control Panel Modifications, 
Additional Storage Attachment Features 

The installation of the first Additional Storage Attachment 
feature adds a section to the configuration control panel (as 
shown in Diagram 7-11, FEMDM) and further modifies the 
system control paMl as next described. 

Marginal Voltage Control 

Marginal voltage control and metering for storage units I 
through 4 can only be done from CPUI. For storage units 5 
through 8, marginal checking can only be done from CPU2. 

POWER CHECK Indicators 

POWER CHECK indicators for storage units I through 4 
are on CPUI; those for storage units 5 through 8 are on 
CPU2. 

STORAGE IND/CA TE Switch and Indicators 

A four-position rotary switch is added to panel D, replacing 
the two-position STORAGE INDICATE lever switch on 
panel F. The four positions are 1-4, 5-8, 9-12, and 
13-16 for the basic storage modules (BSM's) in storage 
units 1 and 2, 3 and 4, 5 and 6, and 7 and 8, respectively. 
The display, shown in Diagram 7-123, FEMDM, is made 
regardless of storage allocations. 

Logout and Scan In 

The indicators added by the Multisystem feature are 
included in the logout data. Only in Multisystem and 
Partition modes are the 16 GPR's also included in the 
logout data (Diagram 8-115, FEMDM). Three feature 
triggers can be set by a scan-in operation: 'enable prefix', 
'external start', and 'external system reset'. 
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When the 2065 CPU was introduced, the 2060 CPU's 
already produced were converted to 2065's. Although the 
functions of the two resulting power systems are the 
same, it is occasionally necessary to differentiate between 
the converted units and those originally manufactured as 
2065's: Converted and original units may be identified by 
comparing the CE panel with Diagram 8-29, FEMDM. 
Additional variations in the power system are descri~ed 
for 50-Hz and 60-Hz line frequency and the installed 
optional features. 

AC POWER DISTRIBUTION 

The primary ac power distribution is shown in Figure 5-1 
for 60-Hz units and in Figure 5-2 for 50-Hz units. 

60-Hz Units 

Main power from circuit breaker 1 (CBI) is applied tO 

transformer Tl via fuses Fl and F2 (Fig. 5-1). Tl provides 
28V ac for the channel's and 2365's remote margin 
power, the alarm circuit, and a full-wave bridge rectifier. 
This bridge rectifier supplies 24V de to the Emergency 
Power-Off (EPO) loop and, via PKl contacts, to the 24V 
de bus. (The 24V de bus energizes the thermal protection 
circuits and the relay gate.) 

Main power is applied by PKl contacts to: 
1. T2 via CB12. T2 provides 115V ac to convenience 

outlets in the CPU and the 236S's via CBl 1, and to the 
1052 Printer-Keyboard via F4 and PK2 contacts. 

2. T3 via F3 and CB2. T3 provides 40V ac to· the usage 
meters, 12.6V ac to the interval timer logic and the 
1052 adapter logic, and low-voltage ac to another 
full~wave bridge rectifier, which in turn provides ±20V 
de to the undervoltage (and overvoltage in the con­
verted units) protection circuits. 

3. T4 via F3 and CB7. T4 provides 28V ac to the 
converter /inverter. 

4. PK2 via CB9. 

Main power is applied ·by PK2 contacts to: 
1. Gate and power supply blowers via CB8 {and CB3 

through CB6 in the converted units). 
2. Converter/inverter. 

50-Hz Units 

Main power is taken across the three phases or across each 
phase and neutral, depending on the voltages at the 
location (Figure 5-2). Transformer taps and switches are 
adjusted accordingly. 

Chapter 5. Power Distribution and Control 

Main power from CB 1 is applied to T 1 via F 1 and the 
phase/neutral terminals (Switchboard 1, SW BDl). 

Tl provides 28V ac for the channel's and 236S's 
remote margin power, the alarm circuit, and a full-wave 
bridge rectifier. This bridge rectifier supplies 24V de to 
the EPO loop, and, via PKl contacts, to the 24V de bus. 

Main power is applied by PKl contacts to: 
1. Convenience outlets in the CPU and 236S's via CBS 

and the phase/neutral terminals (SW BD2), and to 
1052 Printer-Keyboard via CBS, PK2 contacts, and the 
phase/neutral terminals (SW BD2). 

2. T3 via F2, CB2, and the phase/neutral terminals (SW 
B~2). T3 provides 40V ac to the usage meters, 12.6V 
ac to the interval timer logic and the 1052 adapter 
logic, and low-voltage ac to another full-wave bridge 
rectifier, which in turn provides ±20V de to the 
undervoltage protection circuits. 

3. T4 via F2, CB3, and P.hase/neutral terminals {SW BD2). 
T4 provides 28V ac to the converter/inverter. 

4. PK2. 

Main power is applied by PK2 contacts to: 
1. Gate and power supply blowers via CB4, T2, and 

phase/neutral terminals {SW BD 2). 
2. Converter/inverter via a three-phase autotransformer. 

Converter/Inverter 

The converter/inverter converts the main 50-Hz or 60-Hz, 
3-phase ac to de and inverts the de to 140V, 2500-Hz, 
I-phase ac for the regulators. A detailed description of the 
operation is given in the SL T Power Supply, FEMI, Form 
223-2799. Diagram 6-1, FEMDM, is a simplified schernat-. 
ic. 

The 3-phase wall power is converted to de by the 
3-phase bridge rectifier. The output of the rectifier is 
filtered by capacitors CO, Cl, and C2. In addition to 
filtering, Cl and C2 provide a split source for the inverter. 
Resistors R 1 and R2 help balance this split source and 
provide bleeder loading to discharge the capacitors when 
power is turned off. 

The inverter is basically two silicon-controlled rectifiers 
{SCR's) that altermitely switch the load across Ede at a 
2500-Hz rate. A 2SOO~Hz square wave is formed at load 
points A and B. Switching is performed by the two load 
SCR's, SCRl and SCR2, and the two commutation SCR's, 
SCR3 and SCR4. Assume SCRl and SCR3 are gated on. 
Load current I 1 enters the load at point A. Capacitor C3 
charges to Ede. When C3 reaches full Ede; SCR3 turns off. 
At this point, SCR4 is gated on. C3 discharges against 
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Figure 5-1. Primary AC Power Distribution, 60-Hertz Units 
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SCRl, turning it off. At this point, SCR2 is gated on. 
Load current 12 enters the load at point B; C3 charges to 
Ede. When C3 reaches full Ede, SCR4 turns off. At this 
point, SCR3 is gated on. C3 discharges against SCR2, 
turning it off. The cycle then repeats with SCRl gated on. 

I DANGER 
The output to the regulators is not isolated from the 
wall power, presenting a letllaJ. potential to ground. 

DC POWER DISTRIBUTION 

The various de voltages required by the CPU logic are 
provided by 15 regulators. A 16th regulator, the 48V 
power supply (PS9), is not installed in the CPU when the 
2150 Console option is used. The 2150 Console has a 
multivoltage power supply which provides the 48V de. 

Table 5-1. High-Frequency Regulator Modules 

Power Wall Nominal 
Location Output Logic 

PS1 +6V 25amp YA061 

PS2 +3V 40amp YA062 

PS3 +3V 40amp YA061 

PS4 -3V 40amp YA062 

PS5 +3V 40amp YA061 

PS6 +3V 40amp YA062 

PS7* +6V 40amp YA061 

PSS* +6V 40amp YA062 

PS9f · +48V 2amp YA141 

PS10 -3V 40amp YA072 

PS11* -18V 11 amp YA071 

PS12 +3V 40amp YA072 

PS13 +3V 40amp YA071 

PS14 +3V 40amp YA072 

PS15* +6V 40amp YA071 

PS16* +6V 40amp YA072 

* Marginable regulator, 

Table 5-1 lists the output voltage levels and the major load 
for each regulator. Figure 5-3 is representative of their 
distribution. 

High-Frequency Regulator Modules 

• CPU regulators: 

Volts, de Amps, de Type Qty 

+6 25 

+6 40 4 
SCR Control 

+3 40 7 

.3 40 2 

-18 11 Magnetic amplifier 
control 

Load 
CPU Gate Other 

C and D upper -

Blower· -

. E lower -
Cand D -
Band E upper -
Cand D -
E -
Cand D lower -

- Keyboard, printer, and 
audible alarm of 1052 

A, B,and E -
C and D upper -
A lower Upper roller switch 

indicators 

B upper -
A upper Lower roller switch 

indicators, usage meters 

B -
A -

t PS9 is added by 1052 Adapter Feature if 2150 Console is not included in system. 
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The high-frequency regulators rectify, control, and filter 
the 2500-Hz ac from the converter/inverter to the 
necessary de voltage levels. There is transformer isolation 
from the wall · power. A detailed description of the 
operation is given in the SL T Power Supply, FEMI, Form 
223-2799. 

I DANGER 
The input to the regulators from the converter/inverter 
is not isolated from the wall power, presenting a lethal 
potential to ground. 

Two types of regulators are used in the CPU: the 
$CR-controlled output type and the magnetic~amplifier­
controlled output type. The 18V de ROS regulator (PSl 1) 
is of the first type, the others are of the second type. 

The SCR-controlled output regulator utilizes the SCR's 
ability not to conduct until it is gated on to control the 
output voltage level. The duty cycle (time on versus time 
off in each half of the input ac cycle) of the SCR is 
determined by an adjustable voltage-sentitive feedback 
loop from the output terminals. The time that the SCR's 
are gated on determines the output voltage level (after 
averaging by the filters) at the immediate load current. 

The magnetic-amplifier-cop.trolled output regulator 
uses a bridge magnetic amplifier to control the output 
voltage level. The magnetic amplifier is a "square loop" 
toroidal core with three windings: gate, bias, and control 
(Diagram 6-2, FEMDM). The gate winding passes power to 
the output relative to the degree of saturation in the core. 
The core is set at a point on the slope of the saturation 
curve below saturation by the relative sum of the currents 
in the bias and control windings. The fixed current in the 

bias winding is counteracted by the variable out-of-phase 
current in the control winding. The amount of counter_. 
action (and, therefore, the degree of saturation) deter­
mined by the two windings is adjusted according to the 
amount of error detected by the voltage feedback sensed 
from the output terminals. The remote sensing feature of 
these regulators is not used. 

At the start of the gate cycle (the half of the input ac 
cycle determined by the diodes in the particular gate 
winding current path), the inductance of the gate winding 
is high (because the core is not saturated), causing a slow 
current rise. At some point in the gate cycle, the current 
in the gate winding rises (because the saturation level is 
rising with the additional current) to a point where the 
relative total of the currents in all three windings is 
sufficient to saturate the core. At saturation, the gate­
winding current jumps to full current. When the current 
cycle passes through zero into the reset cycle, the 
saturation level returns to the point determined by the 
bias·and control-winding currents. 

The de return levels of the regulators (logic or system 
ground) are made common with the wall power ground, 
the convenience outlet ground, the relay ground, and the 
frame at one point (frame bond bus). Voltage transients 
of high potential can exist in these other circuits at any 
time; usually these transients are caused by the switching 
of relays or contactors within the system. No ground 
circuit is completely without resistance. Therefore, if 
more than one low-resistance path were allowed between 
the logic ground circuits and the other ground circuits, 
transient currents could circulate in the "ground loop" 
thus formed, possibly high enough to induce erroneous 
switching of the semi-conductor components. 
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Marginal Adjustments 
Several power supplies in the CPU and in the attached 
storage units and channels may have their output level 
varied from the nominal output. This feature allows 
critical circuits to be tested with nonstandard voltages as 
an aid in predicting failures. 

When a power supply or attached unit is margined, an 
'active margin' 24V de level is generated. Each 24V de 
level is fed to an OR to light the ACTIVE MARGIN 
indicator, showing the system has an active marginal 
adjustment. The MARGIN/METER SEL rotary switch 

may be turned to successive positions to locate the 
margined supply or unit. The LOCATE MARGIN indica­
tor lights when the switch is at the position of a margined 
supply or unit. The voltage level is shown on the meter. 
(See logic YA081, YA082, and YA121 for the circuits.) 

Within the CPU, four of the 6V power supplies (PS7, 
PS8, PSIS, and PS16) and the 18V ROS supply (PSll) 
have their output levels adjusted by individual panel 
controls. These marginal controls have a cam and switch 
for the 24V de 'active margin' level. 

In the channels and 2365's, the margined supplies are 
adjusted by a motor drive controlled by the MARGIN 
CHANNEL/STOR lever switch and selected by the 
MARGIN/METER SEL switch. 28V ac through the raise 
and lower motor in each unit are returned through the 
rotary switch to select the unit and the lever switch to 
actuate the motor. The RAISE position causes the motor 
to adjust the marginal voltages to a higher level. The 
LOWER position adjusts the marginal voltages to a lower 
level. The 'active margin' 24V de level is sent to the CPU 
by each unit with a margined supply. 

POWER-ON SEQUENCE 

e Close all CPU CB's. 

e Move CPU READY /OFF switch to READY position. 

e Close service CB. 

e Depress CPU ON or POWER ON pushbutton after 
waiting 5 seconds. 

DC power in the CPU may be brought up in two way·s. It 
may be initiated at the CE panel if only CPU power-on is 
desired, or it may be initiated at the system control panel 
or at the 2150 Console if full system power is desired. 
Diagram 6-3, FEMDM, shows the primary power-on 
sequence; Diagram 6-4, FEMDM, shows the secondary 
power-on sequence; and Diagram 6-5, FEMDM, is a 
simplified diagram of the CPU power control circuits. 

The priritary power is sequenced on as follows: 
1. Close all CB's: CBI, CB2, CB7, CB9 (60-Hz units 

only), CBl l, and CB12 (also CB3-CB6 in converted 
units). 
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2. Move CPU READY/OFF switch on CE panel to 
READY. 

3. Close service CB to apply main power to CBl. As a 
result, the following occurs: 
a. K4 and K28, the EPO relays, are picked by 24V 

de through the EPO switch( es). 
b. PKl, the EPO contactor, is picked by 24V de 

through K4 contacts. 
c. The 24V de bus, source of all other 24V de used 

in the CPU, is energized through PKl contacts. 
d. If the stepping switch is not at the start position 

(position 26) when the 24V de bus is energized, 
it is advanced to the start position by 24V de 
through K32 and the start-interlock contacts. 
These contacts remain closed until the stepping 
switch reaches the start position. Refer to SL T 
Power Supply, FEMI, Form 223-2799, for a 
description of the stepping switch. 

e. Main power is applied to PK2, the CPU power 
contactor, through PKl contacts and CB9. (CB9 
is in 60-Hz units only.) 

f. K47 (K25 in converted units) is picked by 24V 
de through the power-off pushbuttons, Kl 2 
contacts, CPU READY/OFF switch, and 
protection-relay contacts. K47. (K25) has a 
5-second RC time delay before it transfers. 
Secondary power is usually sequenced on by 
depressing a POWER ON pushbutton (step 4) but 
is also sequenced on when the. CPU ON push­
button is depressed (step 5). Because of the 
delaying action of K47 (K25), at least 5 seconds 
must elapse before either pushbutton has any 
effect. (The 5-second delay ensures the delay of 
the RC turn-on circuits in the regulators. 
Otherwise, rapid alternations between automatic 
power-offs and attempted power-ons could cause 
overcurrents in the regulators.) 

4. Depress POWER ON on system control panel or 2150 
Console. 
a. The stepping switch drive coil is pulsed by 24V 

de through stepping switch contacts A-26 to 
A-COM and the interrupter contacts; the 
stepping switch advances to position 1. 

b. K7 and K32 are picked through CR9; K6 
through CR9 and CR8. 

c. K6, K7, and K32 are held by 24V de through the 
power-off pushbuttons and K7 contacts. 

d. Kl 2 is picked by 24V de through K6 contacts. 
e. KS is picked by 24V de through the POWER ON 

pushbutton, stepping switch contacts C-1 to B-1, 
and K47 (K25) and K46 (K26) contacts. 

f. K2 is picked through CRl l. 
g. K2 is held by 24V de through K6 contacts, CPU 

READY/OFF switch, thermal and overcurrent 
sense relay contacts, CR7, and K2 contacts. 



h. KS is momentarily held by 24V de through the 
same protection-relay contacts, CRlO, and KS 
and K46 (K26) contacts. 

i. K46 (K26) is energized by 24V de through KS 
contacts and transfers after a S-second RC time 
delay. 

j. PK2 is picked by 24V de through KS contacts. 
k. Main power is applied to the converter/inverter 

and the blowers through PK2 contacts. 
I. The converter/inverter supplies 140V, 2SOO-Hz 

ac to the regulators. 
m. As the regulators develop the de power for the 

CPU logic, undervoltage sense relays Kl 0 and 
K11 are picked. 

n. KS is now held by 24V de through the same 
protection-relay contacts as before, CRlO, and 
KS, KIO, and Kl l contacts. 

Note: If Kl 0 and Kl 1 are not picked by the time 
K46 (K26) transfers, KS is not held, thus 
dropping PK2 and K46 (K26). 

o. K47 (K2S) drops as KIO and Kll pick. 
p. If PS9 is in the CPU, it supplies 48V de to bus II 

BB 9 through relay II-Kl contacts. II-Kl is 
picked by 24V de through KS, KIO, and K11 
contacts. 

q. Momentary continuity through K3S contacts 
starts the power-on reset operation described in 
Chapter 6, Section 1. K3S, which is shown in 
Diagram 6-6, A, FEMDM, is in series with CRIS, 
a 100-uf capacitor, and a set of normally open 
contacts of K46 (K26) to the 24V de bus. The 
initial charging current of the capacitor is suffi­
cient to pick K3S. As the charge on the capacitor 
builds up, the current becomes insufficient to 
hold K3S, causing it to drop. 

r. The stepping switch is advanced to position 2 by 
24V de through KIO, Kl1, and stepping switch 
contacts A-1 to A-COM. 

Full system power is achieved in a sequential 
and interlocked manner by the power control 
interface circuitry: After initiating power on in 
the CPU, the CPU stepping switch waits for CPU 
power-up to be confirmed, then advances to an 
attached stand-alone unit, directs it to bring its 
power up, waits for power-up to be confirmed, 
and advances to the next unit, repeating this 
procedure until power is up in all attached units. 
Each stand-alone unit has its own internal power­
sequencing control. Diagram 6-7, FEMDM, shows 
a typical power control interface connection, 
using channel 1 as an example. 

With the stepping switch at position 2, the 
system power-on sequence continues automati­
cally. 

s. 24V de (supplied by channel 1) through K4, K6, 
and stepping switch contacts C-2 to B-2 provide 
channel 1 with a 'power pick' level. This level 
initiates internal power-on sequencing of channel 
1. When channel 1 has completed power-on 
sequencing, 24V de (from the CPU) are returned 
as a 'power complete' signal through stepping 
switch contacts A-2 to A-COM to advance 
stepping switch to position 3. K19 is picked and 
held at the same time. 

t. Channel 2 is picked using position 3, K4, and K6 
contacts. The 'power complete' signal advances 
the stepping switch to position 4 and picks and 
holds K21. 

u. Channel 3 is picked using position 4, K4, and K6 
contacts. The 'power complete' signal advances 
the stepping switch to position S and picks and 
holds K31. 

v. The stepping switch is advanced to position 11 
by 24V de at stepping switch contacts A-S 
through A-10 to A-COM. 

w. Storage unit 1 is picked using position 11, K4, 
and K7 contacts. The 'power complete' signal 
advances the stepping switch to position 12 and 
picks and holds K29. 

x. Storage unit 2 is picked using position 12, K4, 
and K7 contacts. The 'power complete' signal 
advances the stepping switch to position 13 and 
picks and holds K30. 

y. Storage unit 3 is picked using position 13, K28, 
and K7 contacts. The 'power complete' signal 
advances the stepping switch to position 14 and 
picks and holds K20. 

z. Storage unit 4 is picked using position 14, K28, 
and K7 contacts. The 'power complete' signal 
advances the stepping switch to position IS and 
picks and holds K22. 

aa. LCS unit 1 is picked using position lS, K28, and 
K32 contacts. The 'power complete' signal 
advances the stepping switch to position 16. 

ab. LCS unit 2 is picked using position 16, K28, and 
K32 contacts. The 'power complete' signal 
advances the stepping switch to position 17. 

ac. LCS unit 3 is picked using position 17, K28, and 
K32 contacts. The 'power complete' signal 
advances the stepping switch to position 18. 

ad. LCS unit 4 is picked using position 18, K28, and 
K32 contacts. The 'power complete' signal 
advances the stepping switch to position 19. 

Note: If any of these units are not attached to 
the CPU, a jumper must he installed to provide a 
simulated 'power complete' level return to 
advance the stepping switch to the next position. 
If any unit is attached to the CPU but is not 
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being used in the system, a LOCAL/REMOTE 
switch in the unit allows it to be bypassed in the 
sequencing. In LOCAL, power control is at the 
unit, except for EPO. In REMOTE, the unit is 
sequenced on by the stepping switch. 

ae. In converted units, the stepping switch is 
advanced to position 26, the start position, by 
24V de at stepping switch contacts A-19 through 
A-2S to A-COM. This action completes the 
system power-on sequence of the converted 
units. 

af. In original units, the stepping switch is advanced 
to position 2S by 24V de at stepping switch 
contacts A-19 through A-24 to A-COM. 

ag. K3S is momentarily picked through stepping 
switch contacts B-2S and C-2S, CR16, and 
another 100-uf capacitor. In large system con­
figurations, the 'power-on reset' signal follows 
the one issued when K46 was picked. This action 
completes the system power-on sequence of the 
original units. 

S. Depress CPU ON pushbutton on CE panel. 
a. KS is picked by 24V de through K12 contacts, 

CPU ON pushbutton, and K47 contacts. 
b. K2 is picked through CRl l. 
c. K2 is held by 24V de through Kl 2 contacts, CPU 

READY switch, thermal and overcurrent sense 
relay contacts, CR7, and K2 contacts. 

d. KS is momentarily held by 24V de through the 
same protection-relay contacts, CRlO, and KS 
and K46 contacts. 

e. The sequencing continues as described in steps 4i 
through 4q. (The holding 24V de, however, is 
through K12 contacts rather than K6 contacts.) 

POWER-OFF SEQUENCE 

·cpu power-off can be initiated manually or 
automatically. Secondary power in the CPU is dropped if 
the CPU READY /OFF switch is placed in OFF, if an 
automatic power-off sequence is initiated, or if a system 
POWER OFF pushbutton is depressed (as well as all other 
re~otely controlled units). Primary and secondary power 
of all units is dropped if an EPO switch is pulled. 

Normal Power-Off 

• Depress POWER OFF to drop system secondary 
power. 

• Move CPU READY /OFF switch to OFF to drop only 
CPU secondary power. 

System secondary power-off is initiated at the system 
control panel or at the 21 SO Console; the CPU and 
channel power goes off after the storage units to protect 
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the stored data .. CPU secondary power can be separately 
controlled at the CE panel; however, if any attached 
storage unit is on, data in storage may be lost. Diagram 
6-8, FEMDM, shows the power-off sequence, which is as 
follows: 
1. Depress POWER OFF on either system control panel 

or 21SO Console. As a result: 
a. The 24V de holding line to K7 and K32 is opened, 

causing them to drop. 
b. The stepping switch is advanced to position 26 

when the step relay driver is energized through the 
normally closed contacts of K32. (In converted 
units, the stepping switch is already in position 26.) 

c. The 'power hold' line to the storage units, through 
K7 and K32 contacts, is opened, causing them to 
cycle down unless they are shared with another CPU 
that is still on. 

d. As the last storage unit goes down, the 24V de 
holding K6 drops, causing K6 to drop. 

e. The 24V de holding line to Kl2, KS, and K2, 
through K6 contacts, is opened, causing them to 
drop. 

f. The 24V de holding line to PK2, through KS 
contacts, is opened, causing it to drop. 

g. Main power to the converter/inverter, through PK2 
contacts, is opened, causing CPU de to go off. 

h. AC power through PK2 contacts is opened to the 
blowers and to the 10S2 Printer. 

i. The 'power hold' line to the channels, through K6 
contacts, is opened, causing them to cycle down. 
(They do not cycle down if in local-control mode or 
if equipped with a Two-Channel Switch feature and 
the other interface has its power on.) 

j. K47 (K25 in converted units) is again picked 
through the path described in the power-on 
sequence, step 3f, allowing de power to be turned 
on again. 

2. Move CPU READY/OFF switch on CE panel to OFF. 

Note: Under these conditions, data may be lost in the 
storage units as the CPU de goes down. 

a. The 24V de holding line to KS and K2 is opened, 
causing them to drop. 

b. Same as steps If through lh of the normal 
power-off sequence. 

c. If system power was up, it remains up because K6, 
K7, and K32 did npt drop. 

d. The CPU de power cannot be turned on again until­
K47 (K2S) is again picked by returning the CPU 
READY/OFF switch to CPU READY and waiting 5 
seconds. Both the system and CPU power-on pick 
paths are open when K47 (K2S) is dropped. 

Emergency Power-Off 

• Pull any EMERGENCY PULL (EPO) switch. 



Emergency power-off in the system is initiated by pulling 
the EMERGENCY PULL (EPO) switch at either the 
system control panel or at the 2150 Console, or by losing 
continuity through the Emergency Power-Off Control 
Feature (Diagram 6-7, FEMDM). 

Note: All EMERGENCY PULL switches latch mechani­
cally and must be reset by the CE. 

For safety, the Emergency Power-Off Control Feature 
may be installed whenever more than one system is in an 
area or room; the feature is always installed when the 
systems are interconnected by other than communication 
lines. Feature No. 3621 is shared by two systems; feature 
No. 3622 can be shared by up to 12 systems. If the 
feature is added to the CPU, it is located in frame 4. Any 
EPO switch can initiate an emergency power-off in all 
systems sharing the feature. While correcting the power 
fault in one system, the power of the remaining system(s) 
can be returned by means of the NORMAL/BY-PASS 
switch located on the feature. The switch should be 
placed in BY-PASS by a CE only after the cause of the 
EPO event has been identified; the switch should be 
returned to NORMAL as soon as the cause has been 
corrected. 

Diagram 6-7 shows the EPO circuits in the stand-alone 
units using the CPU and channel I as an example. Within 
the CPU, the following takes place during an emergency 
power-off: 
1. The 24V holding line to K4, through the EPO switches 

and the Emergency Power-Off Control Feature, is 
opened, causing K4 to drop. 

2. The 24V de holding line to PKI, through K4 contacts, 
is opened, causing PKI to drop. 

3. Main power to the CPU, except to Tl, through PKI 
contacts, is opened, causing a complete power-off. Tl 
provides the low-voltage ac to a bridge rectifier for the 
de to establish the EPO loop. 

4. The EPO-hold line to the stand-alone units, through K4 
or K28 contacts, is opened, causing them to drop 
complete power, even if they are in the local-control 
mode. 

Automatic Power-Off 

Secondary CPU power. is sequenced down if an over­
current (K8), overvoltage (also K8), undervoltage (KIO or 
Kl 1), or thermal (K9, Kl4-Kl 7, or K24) condition is 
detected. K8, K9, Kl4-Kl 7, and K24 contacts are in 
series with the CPU READY/OFF switch; transfer of any 
of these relays causes a CPU power-off sequence similar to 
the sequence when the CPU RE;\DY /OFF switch is 
moved to 0 FF. Refer to the discussion of normal 
power-off, steps 2a through 2c. Because K47 (K25 in 
converted units) remains dropped, the cause of the 

power-off must first be corrected before CPU de power 
can again be turned on. 

The dropping of KIO or Kll results in a similar 
power-off sequence, except K2 remains held and K47 
picks after a 5-second delay. Because K47 is picked, the 
CPU de power may be turned on again; however, unless 
the faulty regulator voltage to the undervoltage sense 
circuit is corrected or turned off, the CPU power is again 
automatically removed. 

Overcurrent Protection 

The overcurrent sensing circuits are internal to each 
regulator. (Refer to SL T Power· Supply, FEMI, Form 
223-2799, for circuit details.) Any fault that draws 
excessive current from any regulator, except PS9, causes 
the CPU to drop power. 

Figure 5-4, A, shows the overcurrent sense loop for 
original units. When an overcurrent condition exists, 
continuity is provided between terminals 8 and 9. 24V de, 
through auxiliary switch contacts on CB2, CB7, or CB8 in 
60-Hz units (or CB2, CB3, and CB4 in 50-Hz units) or 
through terminals 8 and 9 of the regulators except PS9, 
pick K8, the overcurrent sense relay. 

Figure 5-4, B, shows the overcurrent sense loop for 
converted units. When an overcnrrent condition exists, 
continuity between terminals 8 and 9 is broken. 24V de, 
through auxiliary switch contacts on CB2 through CB8 
and through terminals 8 and 9 of the regulators except 
PS9, drop K8, the overcurrent sense relay. 

Terminals 8 and 9 of PS9 are not in the overcurrent 
sense loop because PS9 is used only by the 1052 Adapter 
feature. 24V de, through terminals 8 and 9 of PS9, pick 
K18, the 48V power-check relay. (K18 is dropped in 
converted units.) 

Overvoltage Protection 

• Excessively high regulator output voltage causes CPU 
de power to drop via overcurrent sense loop. 

• Original units have overcurrent/overvoltage SMS card 
in each regulator. 

• Converted units have positive and negative overcurrent 
circuits external to regulators. 

Any fault that raises the output voltage level of any 
regulator except PS9 above a preset level causes the CPU 
to drop power via the overcurrent sense loop. (Because 
PS9 is not required for CPU operation, an overvoltage 
condition sensed in that regulator only lights power fault 
indicators.) An SCR, in series with a low resistance, is 
connected across the output terminals of each regulator 
except PS9. When gated on, the SCR shorts the regulator 
output through the low resistance, causing an overcurrent 
condition within the regulator. The internal overcurrent 
protection circuit initiates a CPU power-off sequence. 
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A. Original Units 

+24V de CB4 CBS CB6 CB7 CBS 

B. Converted Units 

Auxiliary switch contacts ore drown in 
the position corresponding to the closed CB. 

Figure 54. Overcurrent Protection Loop 

The original units have separate overvoltage protection 
circuits for each regulator. An external assembly mounted 
on the output bus senses the output voltage and provides 
the low-resistance path through an SCR; the internal 
overcurrent/overvoltage SMS card provides the gating 
voltage to turn on the SCR. The overvoltage protection 
circuits in converted units have some logic in common 
with all the regulators (see logic YA091). Also, the 
overvoltage protection circuits in converted units are 
completely external to the regulators. Their operation is 
discussed in the following paragraphs. 

Positive Regulators, Converted Units. A line from each 
positive regulator except PS9 is fed through a metering 
jack to the emitter of a sensing transistor. The base of this 
transistor is held at a preset upper limit voltage by Zener 
diode Zl and potentiometer R4 (3V supplies) or R9 (6V 
supplies). The collector series load resistors are connected 
to ground or OV. When its emitter is held negative with 
respect to its base by the regulator, the transistor is biased 
off, holding the collector circuit and the SCR gate at OV. 
When the regulator output rises above the upper limit, 
causing the emitter to become positive with respect to the 
base, the transistor starts to conduct. The current drawn 
through the collector load resistors raises the collector 
circuit and the SCR gate to a positive level with respect to 
the regulator output level, gating the SCR on. 
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Regulators PSI through PS16 (except 
PS9). Overcurrent·or overvoltoge 
condition causes protection circuit 
in regulator to transfer from the shown 
position. 

Return 

Return 

Negative Regulators, Converted Units. A line from each 
negative regulator except PSll provides, through· a 
metering jack, the return path for the collector circuit of 
an SCR gating transistor and the emitter of a sensing 
transistor. The base of the sensing transistor is held at a 
preset negative voltage limit by Z2 and R7. The collector 
load resistor is connected to ground or OV. The base of 
the .SCR gating transistor is fed by a resistor from the 
collector of the sensing transistor. The emitter of the SCR 
gating transistor is connected to ground or OV. The 
sensing transistor, when its emitter is held positive with 
respect to its base by the regulator, is biased off, and its 
collector circuit and the base of the SCR gating transistor 
are held at OV. As a result, the SCR gating transistor is 
biased off, and its collector circuit and the SCR gate are 
held at the regulator output level. When the regulator 
output level increases beyond the negative voltage limit, 
causing the emitter of the sensing transistor to become 
negative. with respect to its base, the transistor starts to 
conduct. The current drawn through the collector load 
resistor lowers its collector circuit and the base of the 
SCR gating transistor to a negative level. With its base 
made negative with respect to its emitter, the SCR gating 
transistor starts to conduct. The current drawn through 
the collector load resistor raises the collector circuit and 
the SCR gate to a positive level with respect to the 
regulator output level; the SCR is gated on. 



Regulator PS 11 is sensed in the same way as the other 
negative supplies, except that the emitter voltage of the 
sensing transistor is established through an adjustable 
voltage-dividing network in the line from the regulator. 
This dividing network permits the sensing transistor to use 
the same voltage reference (Z2 and R 7) as the other 
negative supplies. 

Undervoltage Protection 

The logic voltage sensing circuits provide an indication 
that all CPU de is above minimum voltage levels (2.4V). 
Any fault that lowers the output voltage level of any 
regulator except PS9 below the minimum causes CPU 
power to drop. (See logic YAll 1 for the sensing circuits.)· 

A line from each positive regulator except PS9 is fed 
through isolation switches, labeled UNDER VOLTAGE 
CHECK, to an AND. The output level of the AND is 
determined by the lowest input level; that is, the one 
nearest zero or ground. Thus, if any supply not isolated is 
off, the output level of the AND is near zero. However, if 
all the supplies are on, the output level of the AND is 
about 3V. The output of the AND is transferred directly 
to the base of transistor Q 1, which shares an emitter load 
resistor with Q2. The base of Q2 is held at 2.4V by Zener 
diode CR59 and resistor RB. Q2 now carries the full 
emitter load current and holds the common emitter 
circuit to 2.4V. With its emitter held positive with respect 
to its base, Ql is biased off. As the output level of the 
AND raises the base of QI to 2.4V, Ql begins to conduct 
and starts to share with Q2 . the current drawn by the 
emitter load resistor. As the output level of the AND 
raises the base of Ql above 2.4V, Ql raises the emitter 
circuit above 2.4V. With its emitter raised to a level 
positive with respect to its base, Q2 is biased off. Q 1 now 
carries the full emitter load current, which is sufficient to 
pick KIO. 

A similar circuit, of opposite polarity, checks the 
negative regulators and picks Kl l. 

The UNDER VOLTAGE CHECK switches permit CPU 
de power to be brought up for servicillg purposes, with a 
low output-voltage level from a regulator. 

CAUTION 
Under these conditions, CPU logic may be damaged by 
the nonstandard voltages. Refer to the 2065 Processing 
Unit FEMM, Form Y27-2039-2, Chapter 5, for under­
voltage troubleshooting. 

Thermal Protection 

• Thermal relays are picked during power-on sequence. 

• Over.temperature . condition drops thermal relay, 
causmg CPU power to drop and indicators to light. 

• THERMAL RESET pushbutton on CE panel must be 
depressed before CPU power can be restored. 

Thermal protection is provided by sensing elements 
(thermostats) in the return path of each thermal reiay. If 
an overtemperature condition exists, the return path is 
opened, dropping the associated relay (causing CPU de to 
drop) and lighting an indicator. The thermostats are at the 
top of the following areas: logic gate A (K9), gate B 
(K14), gates C and D (K15), gate E (K16), high-frequency 
regulator modules (Kl 7), and the converter/inverter 
(K24). Logic YA022 shows the relay and indicator 
circuits. 

The thermal relays are automatically reset when the 
24V de bus is energized by PKl contacts, and are 
manually reset when the THERMAL RESET pushbutton 
on the CE panel is depressed. · 

Relay K3, which provides the 24V de pulse to reset the 
thermal relays, is in series with a 1500-uf capacitor and a 
set of normally closed contacts of K46 (K26 in converted 
units) and the 24V de bus. The initial charging current of 
the capacitor is sufficient to pick K3. As the charge on the 
capacitor builds up, the current becomes insufficient to 
hold K3, causing it to drop. [When K46 (K26) transfers, 
the capacitor is discharged through a 12-ohm resistor. 
Relay K46 (K26) transfers about 5 seconds after CPU ON 
or POWER ON are depressed.] The manual path for 
picking K3 is through the THERMAL RESET pushbutton 
to the 24V de bus. 

24V de, through the transferred contacts of K3 and 
through diodes CR1-CR6, cause the· thermal relays to 
pick, providing no.rmal temperature conditions exist (all 
thermostats closed). Each thermal relay holds through its 
own contacts as K3 drops. An open thermostat causes the 
relay to drop, and its contacts light the associated 
indicator on the CE panel. 

INDICATORS 

Indicators on the system control panel show an 
incomplete power-up status in the CPU or in the attached 
HSS units and channels. The CPU and the units are 
individually indicated, as is the system status. (See logic 
YA026 and YA083, and Diagram 8-1, FEMDM.) The 
system status is shown by the POWER ON pushbutton. 
This pushbutton is normally white but glows red when 
system power is incomplete. This condition is also 
indicated on the 2150.Console. 

System Power-On Indicator 

24V de, through the CPU voltage-sense relay contacts 
(KIO and Kll) and the HSS units and channels 
power-complete relay contacts (K19-K22 and 
K29-K31), light the System Power-On indicator (clear or 
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white lamp backlighting the POWER ON pushbutton). If 
any of these relays is not picked, the indicator remains off 
and the dual lighted POWER ON pushbutton glows red as 
described below. 

Power Check Indicators 

There are nine power check indicators: 
1. CPU POWER CHECK. 24V de through K2 contacts are 

fed through parallel-connected contacts on voltage­
sense relays Kl 0 and Kl l to the CPU POWER CHECK 
indicator. If either of these two relays is not picked 
after K2 is picked, this indicator lights. 24V de are also 
fed through parallel-connected contacts on overcurrent 
relay K8 and thermal-sense relays K9, Kl 4-17, and 
K24 to the CPU POWER CHECK indicator. 24V de, 
through 48V power check relay contacts Kl 8 or 
through the CPU READY /OFF switch in OFF, also 
light this indicator. 

2. STOR FRAME 1 POWER CHECK. 24V de, via K32 
contacts, are fed through K29 contacts to this indica­
tor. If K29 is not picked after K32 is picked, this 
indicator lights. 

3. STOR FRAME 2 POWER CHECK. Similarly, through 
K30 contacts, this indicator lights. 

4. STOR FRAME 3 POWER CHECK. Similarly,·through 
K20 contacts, this indicator lights. 

S. STOR FRAME 4 POWER CHECK. Similarly, through 
K22 contacts, this indicator lights. 

6. CHAN FRAME 1 POWER CHECK. Similarly, through 
Kl 9 contacts, this indicator lights. 

7. CHAN FRAME 2 POWER CHECK. Similarly, through 
K21 contacts, this indicator lights. 

8. CHAN FRAME 3 POWER CHECK. Similarly, through 
K3 l contacts, this indicator lights. 

9. System Power Check. A line from the CPU POWER 
CHECK indicator and a. line from each unit power 
check indicator are combined at an OR. The OR turns 
on the System Power Check indicator. The System 
Power Check indicator also lights when any of the unit 
power check indicators is on. Because the bulb of the 
System Power Check indicator is red and backlights the 
translucent POWER ON pushbutton, the pushbutton 
glows red. 

1052 PRINTER-KEYBOARD POWER 

The CPU contains the +48V de power supply (PS9) l!lld 
the audible alarm used by the 1052 Adapter feature if a 
21 SO Console is not attached to the system. The power 
circuits added to the CPU for the 1052 Printer-Keyboard 
and the audible alarm are discussed here and are shown in 
Diagram 6-9, FEMDM. The manner of sequencing on the 
+48V de has been described in step 4p of the power-on 
sequence. 
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Audible Alarm 

The audible alarm provides the operator with a signal 
when directed by the program. It may be used, for 
example, to signal a program hangup or the end of a 
program. 

The 48V de through relay A-K2 have a return path 
through the 10S2 Adapter logic. When logic grounds the 
return path, A-K2 is picked. A-K2 is then held by A-Kl 
and A-K2 contacts. 28V ac, through A-Kl and A-K2 
contacts, starts the bell' ringing. The 24V de, through 
A-K2 contacts, picks A-Kl. A-Kl has a short delay before 
it transfers; A-K2 drops and the bell stops ringing as A-Kl 
transfers. 

Dual 1052 Power Interface 

The CPU provides +48V de for the keyboard of the 10S2 
via one connector and +48V de and ac power to the 
printer via another connector. When a second 10S2 is 
added, a Dual 10S2 Adapter junction box is plugged into 
this second connector. The adapter box has two sets of 
connectors, one set for the 1 OS2 on the right side of the 
system console, the other set for the 10S2 on the left side. 
Four switches on the junction box allow the power in any 
cable to be turned off so that a faulty 10S2 may be 
removed for maintenance without removing CPU power. 

DIRECT CONTROL POWER 

• Spurious direct control signals are avoided during 
normal CPU power transitions. 

Two precautions are taken to ensure that spurious signals 
are not issued via the direct control feature during normal 
CPU power transitions: (1) the stepping switch is pre­
vented from generating a 'power-on-reset' signal until K46 
{K26 in converted units) has picked, and (2) signal line 
drivers with gated power are used. Diagram 6-6, B, 
FEMDM, shows the relay logic. 

24V de go through K46 normally-open contacts to 
position 2S contacts of the stepping switch, ensuring that 
the direct control circuits are reset after all regulators have 
reached their nominal voltage levels .. Also, K47 (K25 in 
converted units) is again energized by 24V de through the 
same K46 and stepping-switch position 25 contacts, 
CRl 7, KS contacts, and CR18. After the 5-second 
transfer delay of K47, the power and logic of the system 
is quiescent. KSO is then picked through K47 contacts, 
turning on the +6V de to the G-register and timing-signal 
line drivers. Until then, no direct control signals may be 
issued to the external device. (If only CPU power is 
turned on, the stepping switch remains in position 26. In 
this case, only one power-on reset occurs; K46 is picked 
by 24V de through K46, K7, and KS contacts and CR18.) 

Although KSO picks last during a power-on sequence, it 
drops first during a normal power-off sequence. If a 



system POWER OFF pushbutton is depressed, the 
stepping switch is immediately advanced to position 26, 
removing the 24V de holding KSO; if the CPU READY/ 
OFF switch is placed in OFF, KS immediately drops, 
removing the 24V de holding KSO. With KSO de­
energized, the direct control interface line drivers are 
grounded, disabling them from transmitting a spurious 
signal. 

USAGE METERS AND KEY SWITCH 

• Process (left) meter records time customer used 
system. 

• System maintenance time is recorded on CE (right) 
meter by key-switch control. 

Two meters on the system control panel show the system 
running time while it is processing customer data (process 
meter) and while it is being operated by the CE (CE 
meter). (The process meter is also known as the cluster, 
central processing complex, system, and customer meter.) 
A key-operated switch selects the meter to be driven. The 
normal position of this switch allows power to be applied 
to the process meter. The CE, using a key, switches to the 
CE meter. The key cannot be removed when the switch is 
in the CE position. 

The meter selected by the key switch records time as 
long as the 'pass pulse' trigger is set if ( 1) not in the Wait 
state and the 'manual' trigger is not set or (2) a 'meter in' 
signal is received from the channels. The selected meter 

also runs momentarily when any pushbutton on the 
system control panel is depressed (except STOP while 
already in the manual mode). The 'pass pulse' trigger is set 
by a start, load, or reset operation and, when in 
single-cycle-mode operation, is reset after gating one pulse 
(refer to "Clock Control and Signal Distribution", 
Chapter 2, Section 1 ). In general, the recording of time 
stops while a CPU machine check condition exists; 
however, the recording continues if, during an IPL 
operation, the CPU CHECK switch is in the DSBL 
position when the check condition occurs or if, during 
any other operation, the STOP ON STORAGE CHECK 
switch is depressed (activated) when the check condition 
occurs. 

The multiplexed 'meter in' signal from the channels is 
received whenever an 1/0 operation initiated by the CPU 
is still in progress and requires recording. The CPU sends 
two signals to the channels. The 'CPU clock not stopped' 
signal is sent unless the CPU is in the Wait state or manual 
mode or is not recording time due to a CPU machine 
check. The 'meter out' signal is sent whenever time is 
being recorded on the process meter. These two signals are 
used by the channels and their attached units in running 
their own usage meters and, in turn, in generating the 
'meter in' signal. 

Diagram 8-28, FEMDM, shows the CPU metering 
circuits. The selected meter runs for a minimum of 400 
ms. Relay RRl on the usage meter card is picked by a 
signal from the CPU logic. 40V ac through RRl contacts 
drive the meter. 

2065 FETOM (9/68) S-13 



Maintenance aids available to the CE for the 2065 CPU 
fall into two categories: (1) those used for error detection 
during normal operation, such as error detection logic and 
interruptions (discussed in Chapter 1, Section 3), and (2) 
those aids used for diagnosing the cause of failures and for 
preventive maintenance. This second category includes: 
1. System control panel: Contains' the controls necessary 

for initiating any operation, for manual testing, and for 
performing various maintenance tasks. In addition, 
indicators allow monitoring of the CPU operation by 
displaying the status of important registers and control 
triggers. 

2. CE panel: Contains the controls necessary for initiating 
power on and off sequences. In addition, indicators 
show the power status. 

3. Diagnose instruction: Allows certain diagnostic 
functions to be performed on the CPU or 'the channel. 
It is used in conjunction with the maintenance control 
word (MCW) to allow such diagnostic functions as 
reversing parity and suppressing data checks. In addi­
tion, it can be used to initiate the logout and FLT 
functions. 

4. MCW: Used in conjunction with the Diagnose instruc­
tion, FLT's, and ROS tests. 

5. Logout, ROS tests, and FLT's: Logout stores the status 
of the console indicators into fixed positions of main 
storage when a trouble symptom occurs; the data 
logged out may be subsequently recalled for analysis 
although the status of the indicated logic is changed 
from what it was when the symptom appeared. ROS 
tests check each bit position of every ROS word. FLT's 
check the CPU at the logic-block level. 

Section 1. Console Controls 

SYSTEM CONTROL PANEL 

The system control panel, in addition to its main function 
as the operating and monitoring center of the system, is 
one of the prime maintenance aids available to the CE. 
Using this par:iel, a CE can duplicate many program 
operations or portions of operations manually and can 
repeatedly exercise portions of the machine logic at a 
normal or a reduced rate of operation. 

Some of the maintenance routines that can be per­
formed from the system control panel include storage 
ripple, marginal checking, and frequency bias. Other 
controls allow the CE to stop the CPU at the end of the 
current instruction, to display main storage or LS, to store 

Chapter 6. Console Controls and Maintenance Features 

6. Ripple tests: Provide the capability of (1) storing data 
from the DATA switches into all addresses in LS or 
main storage and inserting l's with correct parity into 
the storage-protect keys, and (2) reading out all 
locations of LS or main storage and displaying the 
data. 

7. Diagnostic programs: Check the CPU on a functional 
basis by programming the CPU to perform one or more 
instructions or sets of instructions. 

8. Marginal checking: Allows operation of critical circuits 
with nonstandard voltages to detect if any are ap­
proaching failure. 
The maintenance aids provide the CE with a wide 

choice of troubleshooting techniques when isolating a 
fault. Thus, the CE can tailor his troubleshooting pro­
cedure to suit the particular problem and his own 
experience. 

The maintenance aids have interrelated functions, 
dependent upon the troubleshooting technique used. For 
example, scan logic, which provides the control necessary 
to perform ROS tests and FLT's, is also used in logout, a 
system control panel function. On the other hand, 
switches on the system control panel are used to initiate 
all maintenance programs (i.e., FLT's, ROS tests, and 
diagnostics). 

This chapter is divided into two sections. Section 1, 
Console Controls, discusses the manual controls and 
indicators on the system control panel and ·on the CE 
panel, and their application. Section 2, Maintenance 
Features, discusses the Diagnose instruction, MCW's, 
logout, ROS tests, FLT's, ripple tests, diagnostic pro· 
grams, and marginal checkirig. 

into main storage or LS, and to log out indicator status to 
fixed positions in main storage. (The latter is a function of 
the scan logic and is described in Section 2 of this 
chapter.) 

The system control panel is divided into seven separate 
panels (A to G), as shown in Diagram 8-1, FEMDM. The 
operator control section (panel G) is identical to those 
used on the other models of the System/360, thus 
providing the operators with compatibility between 
models. If the 2150 Console or the 2250-1 Display Unit is 
included in the Model 65 System, the operator control 
section and the EMERGENCY PULL switch may be 
duplicated on one of these units to provide monitor 
control operation. 
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The functions of the controls and indicators, by panel, 
on the system control panel are defined briefly in the 
following listing: 

PANELA 

l. DC voltmeter. Indicates the voltage levels of the 
marginable supplies. The particular supply indicated is 
determined by the MARGIN/METER SEL switch. 

2. MARGIN/METER SEL switch. Has 12 positions to 
select the power supply to be indicated by the meter 
and .to determine which of the attached stand-alone 
units may be marginally checked: 
a. STORE FRAME 1: Selects HSS unit 1. 
b. STORE FRAME 2: Selects HSS unit 2. 
c. STORE FRAME 3: Selects HSS unit 3. 
d. STORE FRAME 4: Selects HSS unit 4. 
e. CHAN FRAME 1: Selects channel I. 
f. CHAN FRAME 2: Selects channel 2. 

. g. CHAN FRAME 3: Selects channel 3. 
h. ROS LOCATE: Selects the 18V ROS bias power 

supply (gate Din the CPU). 
i. CPU A: Selects gate A in the CPU. 
j. CPU B: Selects gate Bin the CPU. 
k. CPU C: Selects gate C in the CPU. 
l. CPU E: Selects gate E in the CPU. 

Note: When an Additional Storage Attachment 
feature is installed in CPU2, STORE FRAME 1, 2, 3, 
and 4 select HSS units 5, 6, 7, and 8, respectively. 

3. MARGIN indicators: 
a. ACTIVE: Indicates that an internal power supply or 

an attached HSS ·unit or channel is being marginally 
checked. · 

b. LOCATE: Indicates when the MARGIN/METER 
SEL switch is set to the position corresponding to 

the margined power supply, attached HSS unit, or 
channel. 

4. POWER CHECK indicators. These eight indicators 
(CPU, STOR FRAME 1, 2, 3, and 4, and CHAN 
FRAME 1, 2, and 3) indicate an incomplete power-up 
status in the CPU, HSS units 1, 2, 3, and 4, and 
channels 1, 2, and 3, respectively. 

Note: When an Additional Storage Attachment 
feature is installed in CPU2, STOR FRAME 1, 2, 3 
and 4 indicate an incomplete powerup status in HSS 
units 5, 6, 7, and 8, respectively. 

5. MARGIN CHANNEL/STOR switch. Applies power to 
a motor in the channel or HSS unit selected by the 
MARGIN/METER SEL switch to lower or raise the 
output voltage levels from the marginable supplies in 
that unit or channel. The channel or storage unit must 
be in remote operation. 
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PANELB 

The five .potentiometers on this panel (ROS, +6M A 
GT, +6M B GT, +6M C GT, and +6M E GT) raise or 
lower the output voltage levels from the 18V ROS and 
the 6V gate A, B, C, and E supplies, respectively. 

PANELC 

The pull switch on this panel, EMERGENCY PULL, 
when pulled, initiates emergency power-off in the 
system. The switch latches in the out position and 
must be manually restored by the CE. 

PANELD 

This panel is blank in the basic 2065. When an 
Additional Storage Attachment feature is installed, a 
four-position STORAGE INDICATE rotary switch is 
added: 
1. STOR 1-4: Allows the contents of the storage 

address registers for HSS units 1 and 2 to be 
displayed on the roller switches. 

2. STOR 5-8: Indicates HSS units 3 and 4. 
3. STOR 9-12: Indicates HSS units 5 and 6.' 
4. STOR 13-16: Indicates HSS units 7 and 8. 

PANELE 

1. Roller switches and indicators. This section of the 
panel contains six six-position roller switches, with 36 
·indicators (implicitly numbered 0-35) associated with 
each roller switch. A roll chart associated with each 
roller switch rotates with the roller switch to corre­
spond with the roller position, thus showing the 
information being displayed for each indicator. Dia- . 
gram 8-2, FEMDM, identifies the indicators for the six 
positions of each roller switch. These indicators are 
tested between positions of the switch. Position 6 of 
roller 6 is used to test the remaining indicators on the 
system control panel and on the 2150 Console. 

2. DATA 0-31 and DATA 32-63 switches. These 64 
switches, in hexadecimal groups, permit data to be 
entered manually. Correct parity is automatically 
generated by contacts on the switches. 

3. ADDRESS switches. These 24 switches, in hexadecimal 
groups, select an addressable location in ROS, LS, or 
main storage. Correct parity is automatically generated 
by contacts on the switches. 

4. STOR CHK (storage check) indicator: Indicates an 
error in the storage units. 

5. PROC CHK (processor check) indicator: Indicates an 
error in the CPU. 

PANELF 

1. TEST MODE, REPEAT switch: Repeats the ROS test 
or FLT in main storage contfouously. 



2. TEST MODE, ROS/PROC/FLT switch. This switch 
has three positions: 
a. ROS: Places the CPU into ROS test mode and 

removes program control. 
b. PROC (process) - normal position for CPU 

operation. 
c. FLT: Places ~e CPU in the FLT mode and 

removes program control. 
3. STORAGE INDICATE switch. This switch has two 

positions: 
a. STOR 1-4 - normal position: Allows the con­

tents of the storage address registers for HSS 
units 1 and 2 to be displayed on the roller 
switches. 

b. STOR 5-8: When in this position, the operation 
is the same as in the normal position for all Model 
65 configurations except Models IH and J. For 
these models, the contents of the storage address 
registers for HSS units 3 'and 4 are displayed on 
the roller switches. 

Note: This switch is spare if an Additional Storage 
Attachment feature is installed. 

4. FREQUENCY ALTERATION switch: Decreases the 
CPU clock period from 200 ns to 195 ns. Operates 
only with the CE key switch in the CE position. 

5. DEFEAT INTERLEAVING switch. This switch has 
three positions: 
a. PROC (process) - normal position: Addressing is 

interleaved with no even/odd storage area 
reversal, unless changed by the Diagnose instruc­
tion. 

b. REV (reverse): Interleaving is disabled and the 
even and odd storage areas are reversed. No 
reversal occurs on Model G65. 

c. NO REV (no reverse): Interleaving is disabled and 
no even/odd storage area reversal takes place. 

6. STOP ON STORAGE CHECK switch: Inhibits opera­
tion of and maintains the environment of the main 
storage basic storage module in 'which an error was 
detected. 0th.er basic storage modules are not 
affected. 

7. DISABLE INTERVAL TIMER switch: Prevents the 
interval timer from being decremented. 

Note: When the Multisystem feature is installed, 
disabling the interval timer when operating in the 
multisystem mode also disables the detection of CPU 
inactivity. 

8. STORAGE SELECT switch. This switch has three 
positions: 
a. MAIN - normal position: Selects main storage 

for manually storing or displaying data. 

b. LOCAL: Selects LS for manually storing or 
displaying data. 

c. MAIN BYTE: Same as MAIN except that the 
byte selected by ADDRESS switches 21-23 is 
the only byte affected by a manual store opera­
tion. 

9. ADDRESS COMPARE STOP switch: Stops proc­
essing if the main storage address being requested 
agrees with bits 2 through 20 of the ADDRESS 
switches. 

10. CPU CHECK switch. This switch has three positions: 
a .. PROC (process) - normal position: If the PSW 

machine check mask [PSW(13)] is a 1, the CPU 
stops on detection of a CPU check and the status 
is logged into main storage. A machine check 
interruption then takes place. If the mask is a 0, 
the result is the same as if the switch is in the 
DSBL position. 

b. DSBL (disable): The CPU does not stop on 
detection of a machine check, but the check 
trigger is set. No logout or interruption takes 
place. 

c. STOP: The CPU stops on detection of a machine 
check, but there is no logout of data. The check 
trigger is set. 

11. PULSE MODE switch. This switch has three posi­
tions: 
a. PROC (process) - normal position: Does not 

affect CPU operation. 
b. COUNT: Provides a means of looping through a 

selected number of machine cycles (maximum of 
2047). The number of cycles is entered into 
DATA switches 53-63. Each loop starts at the 
address contained in main storage location 0. The 
EA.TE switch must be in the PROCESS position. 

c. TIME: Provides looping when the interval timer is· 
decremented. Each loop starts at the address 
contained in main storage location 0. The RATE 
switch must be in the PROCESS position. 

12. REPEAT INSN (instruction) switch. This switch has 
three positions: 
a. PROC (process) - normal position: Does not 

affect CPU operation. 
b. SINGLE: Allows the first instruction in the 

DATA switches to be repeated continuously. 
c. MPLE (multiple): Allows continuous looping 

through the four instruction halfwords in the 
DATA switches. 

13. REPEAT ROS ADDRESS switch: Continuously reads 
out the ROS address specified by ADDRESS switches 
0-11. ROS TRANSFER must be depressed to start 
this loop. 

14. DISABLE DIRECT CONTROL switch. Causes Write 
Direct and Read Direct instructions to become invalid 
instructions. 
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Note: The DISABLE DIRECT CONTROL switch is 
added by the Direct Control feature. Refer to Chapter 
4 if the Multisystem feature is also installed. 

15. RATE switch. This switch has four positions: 
a. INSN STEP (instruction step): CPU executes one 

machine instruction for each time START is 
depressed. 

b. PROCESS: Does not affect CPU operation; CPU 
operates at normal clock speed. 

c. SINGLE CYCLE: CPU advances by its minimum 
clock amount for each depression of START; all 
CPU operations are the same as for the PROCESS 
position. 

d. SINGLE CYCLE STORAGE INHIBIT: Same as 
SINGLE CYCLE without storage references. 

16. SYSTEM RESET pushbutton: Resets main storage 
check triggers, on-line channels and control units, and 
CPU controls and check triggers to their initial state. 

17. CHECK RESET pushbutton: Resets all CPU check 
triggers and latches to the non-error state. 

18. PSW RESTART pushbutton: Loads a new PSW from 
main storage location 0 and starts processing if the 
RATE switch is in PROCESS. 

19. ROS TRANSFER pushbutton: Serves to display the 
contents of any ROS location or to begin processing 
from any ROS address. 

20. SET IC (instruction counter) pushbutton: Enters an 
address from the ADDRESS switches into bits 40-63 
of the active (current) PSW. The data referenced will 
be loaded into. Q, the first instruction will be 
transferred to R, and the IC will be updated by +8 
bytes. 

21. STORE· pushbutton: Enters data from the DATA 
switches into the storage location specified by the 
STORAGE SELECT and ADDRESS switches. 

22. DISPLAY puShbutton: Displays data from LS or 
main storage specified by the STORAGE SELECT 
and ADDRESS switches. 

Note: If the Multisystem feature is installed and 
prefixing is active when the SET IC, STO~, or 
DISPLAY pushbutton is depressed, the main storage 
address set into the ADDRESS switches is relocated. 

23. START pushbutton: Starts the CPU operating in the 
mode selected by the RA TE switch. 

24. STOP pushbutton: Terminates CPU operation with­
out changing the environment. 

25. RESTART FLT 1/0 pushbutton: Backspaces one tape 
record and starts reading during ROS test or FLT 
operations. 

26. LOG OUT pushbutton: Stores CPU status into fixed 
locations in main storage when the ·CPU is in the 
Stopped state. 
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27. Usage meters and CE Key switch: The usage meters 
indicate elapsed CPU running time: the Process (left) 
meter shows. elapsed customer usage time; the CE 
(right) meter shows elapsed system maintenance time .. 
The CE Key switch, when turned to the right, disables 
the Process meter and enables the CE meter and the 
FREQUENCY ALTERATION switch. 

PANELG 

1. POWER ON .Pushbutton: Initiates power-on sequence 
in the CPU and the system units. The pushbutton is 
back-lighted by two indicator lights. When system 
power is on, the pushbutton glows white; when 
system power is off or not correctly on, the push­
button glows red. 

2. POWER OFF pushbutton: Initiates power-off se­
quence in the CPU and the system units. 

3. LOAD UNIT switches: These three switches select the 
1/0 unit to be used by a load operation. 

4. INTERRUPT pushbutton: Causes an external inter­
ruption in the system and sets bit 25 of the 
interruption code to a 1. 

5. SYSTEM indicator: Indicates that a CPU usage meter 
is running. 

6. MANUAL indicator: Indicates the CPU is in the 
Stopped state. 

7. WAIT indicator: Indicates the CPU is in the Wait 
state. 

8. TEST indicator: Indicates that a switch on panel F is 
not in the normal operating position or that a channel 
is in the test mode. · 

9. LOAD indicator: Indicates a CPU load operation. A 
successful load turns this indicator off. 

10. LOAD pushbutton: Resets the system and starts a 
load operation. 

In the following paragraphs, the system control panel 
is presented in two parts: (1) manual controls, which 
discusses the function of each control on panels E, F, and 
G, and describes any interrelationship between the con­
trols; and (2) indicators, which lists the conditions under 
which each indicator is. turned on. Each control and 
indicator is located by an alphameric designation, refer­
enced to the system control panel co-ordinates. For 
example, the SYSTEM RESET pushbutton is located at 
P30; the roller switches are located at D-J, 13-49. 

Manual Controls 

Manual operations are initiated and controlled by switches 
and pushbuttons. Pushbutton operation is synchronized 
with CPU clock signals as shown in Diagram 8-3, FEMDM. 
Depressing any of the pushbuttons (or performing a 
power-on reset) generates 'switch SS', 'delayed SS', and 
'short SS' signals; which are used during manual control 
functions. 



Functionally, manual controls consist of special logic 
and ROS microprograms. The CPU must be. in the 
Stopped state before most manual operations can be 
initiated. The CPU is placed in the Stopped state by: 
1. Performing a power-on-reset operation. 
2. Depressing SYSTEM RESET (P30). 
3. Depressing STOP (S30). 
4. Detecting an address-compare condition when the 

ADDRESS COMPARE STOP switch (N17) is in the 
stop position. 

5. Initiating an instruction-step-mode operation. 
6. Initiating a scan operation. 

When the CPU is in the Stopped state, it is in a ROS 
microprogram loop (stop loop) and the MANUAL indica­
tor (S46) is lit. 

Note: When the Multisystem feature is installed, the 
external reset operation generates the pushbutton single­
shot signals and simulates depression of SYSTEM RESET, 
thus placing the CPU into the Stopped state. The external 
start operation also momentarily places the CPU into the 
Stopped state. 

Stop Loop 

• ROS microprogram loop. 

• 'Stop' and 'manual' triggers control stop loop. 

• Address of next instruction is in D. 

• Interruptions and 1/0 operations are completed before 
entering stop loop. 

• Six pushbuttons are sampled by stop loop: STORE, 
DISPLAY, SET IC, START, ROS TRANSFER, PSW 
RESTART. 

When the CPU is in the Stopped state, a ROS micro­
program, called the "stop loop", is continuously exe­
cuted. The stop loop is shown by the heavy lines in 
Diagram 8-4, FEMDM; Stop loop pushbutton gating is 
shown in Diagram 8-5, FEMDM. 

When in the stop loop, no program instructions are 
executed, the interval timer [location 80, decimal (50, 
hex), of main storage] is not stepped, and. the usage 
meters are stopped unless a channel is running. Also, the 
MANUAL indicator (S46) is lit, and the stop loop 
determines the starting location of the next instruction to 
be executed and transfers the result to D (contents of IC 
minus 8 or 16). The contents of D are displayed in roller 
switch 1, position 2; the contents of the IC are displayed 
in roller switch 6, position 3. 

Two triggers control the stop loop: the 'stop' trigger 
and the 'manual' trigger; Diagram 8-6, FEMDM. The 'stop' 
trigger, which forces the CPU to the stop loop, is set by: 
1. Depressing STOP (S30). 
2. Setting the 'instruction step' trigger in conjunction 

with an 'I-Fetch reset' micro-order or a 'reset interrupt 
triggers' micro-order. 

3. Detecting an address-compare condition when the 
ADDRESS COMPARE STOP switch (N17) is in the 
stop position. 

4. Being in scan operation. 

Note: When the Multisystem feature is installed, the 'stop' 
trigger is also set at· the initiation of an external start 
operation. 

At end op, the 'stop' trigger's being set indicates an 
exceptional condition. A br-anch is forced to a count delay 
microprogram, provided all pending interruptions and I/O 
operations are completed. (All interruptions not masked 
off and all I/O operations are completed before entering 
the count delay and stop loop microprograms.) The 'stop' 
trigger forces address 026 (hex) into ROSAR to enter the 
count delay microprogram, which allows time to recog­
nize that a pushbutton has been depressed before. the stop 
loop is entered. 

After the count delay microprogram is executed, the 
'manual' trigger is set by the 'set stop loop trigger' 
micro-order (Diagram 8-6, FEMDM), and the stop loop is 
entered. The 'manual' trigger allows manual operations 
only when the CPU is in the Stopped state; however, the 
SYSTEM RESET (P30), CHECK RESET (P35), and 
WAD (S5J) pushbuttons operate in all modes. The 
'manual' trigger also makes the RATE switch (Q25) 
inoperative. Whenever the CPU is in the stop loop or in 
one of the microprogram routines entered froth the stop 
loop, the CPU operates at normal machine speed regard­
less of the position of the RATE switch .. 

The 'stop' trigger is not set during a system reset or 
power-on reset; therefore, the stop loop is entered directly 
(Diagram 8-4). 

The stop loop continually samples six pushbuttons: 
STORE (R32), DISPLAY (R35), SET IC (R30), START 
(S25), ROS TRANSFER (Q35), and PSW RESTART 
(Q30). When the stop loop senses that one of these 
pushbuttons has been depressed, a branch is made to a 
new microprogram to perform the pushbutton function 
(Diagram 8-5). The microprograms for . the six push­
buttons are shown in Diagram 8-4. The microprogram just 
executed either branches to the count delay micro­
program and re-enters the stop loop or continues other 
preselected operations. 

Note: When the Multisystem feature is installed, the stop 
loop also senses the state of the 'external start' latch, 
branching to the PSW-restart microprogram when it is set. 

Power-On Reset 

Depressing POWER ON (N43) initiates the power-on 
sequence. After power is applied to the system, a 
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system-reset occurs; ·The 'power-on reset' signal resets the 
system to an initial state and generates the 'switch SS', 
'delayed SS', and 'short SS' signals. A ROS address of OOB 
(hex) is forced to execute the power-on reset micro­
program to clear all LS locations (Diagram 8.-7); main 
storage locations remain unchanged. The stop loop micro­
program is then entered. 

The 'system reset' signal performs the same reset 
functions as the SYSTEM RESET pushbutton (P30) 
(Diagram 8-7). After the system is reset, the ROS 
microprogram is entered by setting ROSAR(8,10,11) 
(address OOB, hex). LS is reset, and the stop loop is then 
entered. 

SYSTEM RESET Pushbutton 

Activating the SYSTEM RESET pushbutton (P30) resets 
all main storage check triggers, on-line channels and 
control units, and CPU controls and check triggers to their 
initial state. Data-flow registers remain unchanged. A 
system reset does not affect equipment in off-line channel 
operation. The SYSTEM RESET pushbutton is active in 
all modes of operation. When it is depressed, the system is 
reset to an initial state and ROSAR ( 10, 11) is set (address 
003). The CPU enters the stop loop. Because a system 
reset may occur in the middle of an operation, the 
contents of the PSW and of result registers or storage 
locations are unpredictable. If the CPU is in the pulse 
mode, the manual controls are not reset when a system 
reset is initiated (Diagram 8-7). 

The lines used during a system reset are also activated 
for a power-on reset ~nd IPL reset. Depressing LOAD 
(S51) initiates a system reset before entering the IPL 
microprogram. This system reset, however, is not propa­
gated to the channels. During the IPL, the channel latches 
the 'initial program load' signal from the CPU, and thus 

· initiates a channel reset anci a control unit and I/O device 
reset. 

A system reset micro-order is provided to reset the 
CPU when in the scan mode. The micro-order resets all 
check conditions but does not reset the channels or 
storage units and does not force a ROS address. 

CHECK RESET Pushbutton 

The CHECK RESET pushbutton (P35) serves to reset all 
CPU check triggers and latches to the nonerror state 
(Diagram 8-7). All logic check indicators on the system 
control . panel are turned off. The CHECK RESET 
pushbutton is active in all modes of operation; depressing 
it does not change the mode of operation. The operation 
continues as though no error conditions existed; · the 
results, however, may be unpredictable. 

STOP Pushbutton 

The STOP pushbutton (S30) terminates machine opera­
tions while retaining the machine environment. The CPU 
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proceeds to the en<!- of the instruction being executed at 
the time STOP is depressed; all I/O operations in process 
and all pending interruptions not masked off are com­
pleted before entering the stop loop. The operator may 
continue normal program operation by depressing START 
(S25), or he may execute certain manual operations (e.g., 
instruction-step operation). 

If the ROS microprogram is not performing an end-op 
micro-order, depressing STOP sets the 'stop' trigger 
(Diagram 8-6). At end-op, an exceptional condition is 
signaled to I-Fetch. The 'EXCEP' micro-order and the 
'stop' trigger set ROSAR(6,9,10) (address 026 hex); the 
count-delay microprogram is executed and the stop loop 
is entered. 

LOAD Pushbutton (IPL) 

• LOAD pushbutton is active in all modes of operation. 

• Loads program from preselected I/O unit per LOAD 
UNIT switches. · 

• 24 bytes of ·data are read automatically into main 
storage locations 0, 8, 10 (hex). 

• CPU initiates channel operation, which loads program 
and passes control back to CPU for execution of 
program. 

• Channel does not release CPU until program is loaded 
and channel and I/0 unit addresses have been stored 
into bits 21-31 of IPL PSW in main,storage location 0. 

• CPU starts execution of program by loading double-
word from main storage location 0 as current PSW. 

The purpose of the initial program load (IPL) operation is 
to allow the channel to load a new program, or a series of 
programs, into main storage from a preselected I/O unit 
and to initiate the execution of the program by the CPU. 
The basic function of the IPL operation is to read in from 
a specified I/O unit and to store into main storage 24 
bytes of data (three doublewords) which will control the 
operation while the desired programs are being loaded 
into main storage. (The IPL procedure is common to all 
models of the IBM System/360.) The first doubleword, 
starting at address 0, is the IPL PSW, which is used by the 
CPU to initiate the program once it has been loaded 
(Figure 6-1). The next two doublewords, starting at 
addresses 8 and 10 (hex), are the IPL CCWl and IPL 
CCW2, respectively, which control the channel during the 
IPL operation. 

The IPL operation is initiated manually from the 
system control panel. The input channel and I/O unit are 
selected by the LOAD UNIT switches (Q, 43-51). The 
left switch, numbered 0 through 7, selects 1 of 7 
allowable channels (channels 0-6). The other two 
switches, which are numbered 0 through F (hex), are set 
to the unit address of the selected I/O unit. When the 
selected I/O unit is ready, depression of LOAD (851) 
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initiates the IPL operation. The LOAD pushbutton causes 
a system reset, turns on the LOAD indicator (S49), turns 
off the MANUAL indicator (S46) (if on), selects the 
channel, sends an eight-bit ( + P) unit address to the 
channel, sends an 'IPL' signal to the channel, and causes 
the CPU to enter the IPL microprogram. Diagram 8-8, 
FEMDM, is a flow chart of the IPL operation. 

The 3-usec IPL 'system reset' signal resets the CPU by 
suspending all instruction processing, interruptions, and 
timer updating. The contents of LS remain unchanged. 
The IPL 'system reset' signal is not propagated to the 
channel. Instead, the channel receives the 'IPL' signal 
from the CPU, thus initiating a channel reset and dropping 
the 'operational out' signal to all on-line nonshared 
control units for 6 usec. Thus, all control units and their 
I/O units are reset. 

After the system reset, ROSAR(9-11) is set, thus 
forcing a ROS address of 007 (Diagram 8-9, FEMDM). 
ROSAR(9,10) is set directly from the LOAD pushbutton. 
ROSAR(ll) is set by the 'force address' trigger, which is 
set by the LOAD pushbutton. The 'timing gate' trigger is 
then set and the channel is tested for a 'release' signal. The 
LOAD pushbutton also sends an 'IPL' signal to the 
channel. The 'IPL status' trigger and the 'hold mainte­
nance console IPL' latch gate the channel address and the 
I/O unit address to the channel. The selected channel 
gates the unit address to its unit address register and 
selects the specified I/O unit. The channel forces a 
hardware-generated initial CCW for a Read command, 
with a byte count of 24, and sets a 'chain command' bit in 
its flag register. The 'CCW valid' trigger is set, a command 
address of 8 (the address ofIPL CCW 1 in main storage) is 
set, and the data address is set to 0. This initial CCW 
indicates that 24 bytes of data are to be read into 
locations 0, 8, and 10 (hex) of main storage and that 
chaining will take place to IPL CCW 1. 

After the I/O unit has been selected, the IPL-forced 
CCW controls the transfer of the first three doublewords 
of data into main storage locations 0, 8, and 10 (hex); it 
then initiates· a chain operation to IPL CCWl at location 
8. The data just stored governs further operation. IPL 
CCWl may. specify any valid operation for the selected 
I/O unit, and may be chained to IPL CCW2. Normally, 
IPL CCWl initiates the read-in of another series of CCW's, 
then chains to IPL CCW2, which is a 'transfer in channel' 
(TIC) command, placing the channel under control of the 
new CCW's just read in under control of IPL CCWl. When 
the load-routine command chain is completed, the entire 
program has been loaded from the I/O unit and stored 
iii.to main storage; the CPU can thus start executing the 
programjustloaded. 

The CPU, which is awaiting a 'release' signal from the 
channel, requires the identity of the channel and I/O unit 
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involved in the IPL operation. When the first three 
doublewords of data were stored, the IPL PSW was stored 
into location 0. Because the interruption code of the IPL 
PSW (bits 21-31) has no other function, the channel 
stores the channel and 1/0 unit address into the IPL PSW 
interruption code, and sets bits 16-20 to all O's as part of 
the IPL termination. (Bits 40-63 contain the starting 
instruction address of the program.) A 'release' signal is 
then sent to the CPU as the last function of the channel 
IPL routine. 

During the channel operation, the 'select channel' 
signal is active. Normally, the channel time-out circuits 
detect the absence of a 'release' signal to the CPU after 
about 100 ms, and the channel and I/O interface are reset. 
During an IPL operation, however, the time-out circuits 
are deactivated because the channel must hold the CPU 
long enough to load the complete program; channel 
detection of interruptions is also blocked. (For a detailed 
analysis of the channel portion of an IPL operation, refer 
to the applicable channel FETOM.) 

When the 'release' signal is sent to the CPU, the 'timing 
gate' trigger is reset and the 'channel select' signal is 
deactivated. The CPU starts an "IPL load PSW" routine, 
which loads the CPU PSW-register with the doubleword 
stored at main storage location 0 (IPL PSW). The CPU and 
the channel now resume normal operation. The CPU 
initiates the program just loaded; the instruction address 
in the current PSW is the address of the first instruction of 
the new program. 

When the IPL operation was started by depressing 
LOAD, the LOAD indicator was turned on. When the IPL 
operation is successfully completed, the LOAD indicator 
is turned off. If a check condition or a selection failure 
occurs during the IPL operation, or if the I/O unit 
specified is not ready or available, the CPU continues to 
await a 'release' signal from the channel and the LOAD 
indicator r~mains on. 

If the program to be loaded is a ROS test, the TEST 
MODE, ROS/PROC/FLT switch (N3) is set to ROS, the 
CPU CHECK switch (N19) is set to DSBL {disable), and 
SYSTEM RESET (P30) is depressed before LOAD is 
depressed. This procedure causes the ROS test to be 
loaded similar to a normal IPL, except that logic hardware 
circuits, rather than the normal ROS microprogram, 
control the CPU operation. A ROS test sets the 'mainte­
nance mode stop clock' trigger, which stops the CPU 
clock and prevents a ROS cycle (Diagram 8-8). Thus, the 
ROS test is loaded even though ROS may be failing. The 
operating procedure for the ROS test is given in ALD 
M8005. 

If an FLT is to be performed, the TEST MODE, 
ROS/PROC/FLT switch is set to FLT, the CPU CHECK 
switch is set to DSBL, and SYSTEM RESET is depressed 



before LOAD is depressed. This procedure causes the FLT 
to be loaded similar to a normal IPL, except that the 
setup operation for execution of the FLT is different 
(Diagram 8-8). The operating procedure for the FLT is 
given in ALD M8005. 

DA TA Switches 

The 64 DATA switches (K, L, 14-49) (Diagram 8-1, 
Sheet 2 of 2) allow the operator. to enter data manually 
into the system. They are alternately colored black and 
white in groups of four to facilitate entering hex data into 
the CPU. Each switch is a two-position toggle switch, with 
the up position equalling a 0 and the down position 
equalling a 1. When using the DAT A switches, the selected 
microprogram first places 1 's into ST. Then if a DATA 
switch equals a 1, the corresponding bit in ST is 
unchanged (remains set); if a DATA switch equals a 0, 
however, the corresponding bit is reset to 0. 

The DATA switches are used during the following 
manual operations (DATA switch gating 'is shown in 
Figure 6-2): 
I. Store. 
2. Storage ripple store. 
3. Repeat instruction. 
4. Pulse mode count function (switches 53-63). 

The DAT A switches are used during the following 
programmed operations: 
1. Diagnose, with MCW(8-19) = 5B7. 
2. FLT test number search after a stop. 

When data is entered into the CPU, correct parity is 
automatically generated. If the switches are altered during 
an operation, such as repeat instruction or storage ripple, 
an error will probably occur. 

ADDRESS Switches 

The 24 ADDRESS switches (M, 14-40) allow the 
operator to manually select any address in ROS, LS, or 
main storage. They are alternately colored black and 
white in groups of four to facilitate entering hex addresses 
into the CPU. Each is a two-position toggle switch, with 
the up position equalling a 0 and the down position 
equalling a 1. During manual operations, the selected 
manual microprogram places 1 's into D. If an ADDRESS 
switch equals a 1, the corresponding bit in D is un­
changed. If an ADDRESS switch equals a 0, however, the 
corresponding bit in D is reset. 

The ADDRESS switches are used during the following 
manual operations (ADDRESS switch gating to D, 
ROSAR, and comparison circuits is shown in Figure 6-3): 
I. Store. 
2. Display. 
3. Set IC. 

4. ROS transfer. 
5. ROS repeat address. 
6. Main storage address-compare stop or sync. 
7. ROS address-compare sync. 

To address main storage or LS, the ADDRESS switches 
are used with the STORAGE SELECT switch (N15). 
ADDRESS switches 0-20 select a doubleword in main 
storage; ADDRESS switches 2-20 may be used in 
conjunction with the ADDRESS COMPARE STOP switch 
(Nl 7) when selecting an address for an address-compare 
stop or sync. ADDRESS switches 19-23 select an LS 
address. 

ADDRESS switches 0-11 select a ROS address to be 
used to obtain a ROS address sync (a sync pulse is 
generated when the ROS address and the ADDRESS 
switches agree), or contain a ROS address for use with the 
ROS TRANSFER pushbutton (Q35). 

When an address is entered, correct parity is auto­
matically generated when gated to the CPU. 

ADDRESS COMPARE STOP Switch 

The ADDRESS COMPARE STOP switch (NI 7) enables 
the operator to stop at a predetermined address. To do so, 
he enters the address into the ADDRESS switches and 
places the ADDRESS COMPARE STOP switch in the stop 
(down) position. When ADDRESS switches 2-:--20 match 
the address sent to the BCU, the 'address compare' trigger 
is set (address comparison is performed on doubleword 
boundaries). The CPU will stop at the end of the 
instruction in progress. The 'stop' trigger is set, and the 
count delay microprogram is entered; entry to the stop 
loop is identical with depressing STOP. The TEST 
indicator (S48) is lit whenever this switch is in the down 
position. 

In the center or normal position, a sync pulse is 
generated whenever SAB(2-20) matches ADDRESS 
switches 2-20 (Figure 6-3). 

STORAGE SELECT Switch 

The STORAGE SELECT switch (N15) is a three-position 
toggle switch that selects LS or main storage. It is used in 
conjunction with the ADDRESS switches and the STORE 
(R32) or DISPLAY (R35) pushbutton. The positions and 
corresponding functions are: 
1. MAIN position - Selects the doubleword main storage 

location specified by ADDRESS switches 0-20 for 
both storing and displaying data. 

2. MAIN BYTE position - For storing, selects the 
doubleword location (per ADDRESS switches 0-20) 
and byte (per ADDRESS switches 21-23) within the 
doubleword. For displaying, selects the doubleword in 
main storage to be displayed (same as MAIN). 
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3. LOCAL position - Selects an LS location (per AD­
DRESS switches 19-23) for both storing and display­
ing data. 

The STORAGE SELECT switch conditions hardware 
so that a ROS branch may occur by setting or inhibiting 
ROSAR(ll). The 'SB-PB' and 'LS-PB' micro-orders allow 
the stop loop microprogram to perform the storage 
selection specified by the STORAGE SELECT switch. 
STORAGE SELECT switch gating is shown in Diagram 
8-10, FEMDM. 

The use of the STORAGE SELECT switch is discussed 
in the following paragraphs whenever it is involved in a 
specific manual operation. 

DEFEAT INTERLEAVING Switch 

The DEFEAT INTERLEA YING switch (NlO) permits the 
CE to choose which halves of main storage are the 
high-order and low-order portions for maintenance use. It 
is a three-position switch that performs the following 
functions (Diagram 8-11, FEMDM): 
1. NO REV (up) position - Interleaving of main storage 

addresses is disabled, and locations in each storage unit 
are addressed consecutively. 

2. REV (down) position - Interleaving of main storage 
addresses is disabled, and locations in each storage unit 
are addressed consecutively. Also, the high and low 
halves of each storage unit are reversed. No reversal 
occurs on Model G65. 

3. PROC (center) position - Normal position of the 
switch. Addresses are interleaved in the nonnal manner 
with no reversal of storage addresses, unless changed by 
the Diagnose instruction. 

By using this switch, the CE may address the frrst 
16,383 doublewords consecutively rather than in an 
interleaved manner. When used for this purpose and the 
switch is in NO REV, the frrst 16,383 doubleword 
addresses to be selected will be even and the next 16,383 
doubleword addresses· will be odd. In REV, the frrst 
16,383 doubleword addresses will be odd and the next 
16,383 doubleword addresses will be even. 

The signals generated by this switch are sent to the 
BCU and to main storage. When in NO REV or REV, the 
TEST indicator (S48) is lit. 

STORAGE INDICATE Switch 

The STORAGE INDICATE switch (NS) selects one of 
two pairs of storage units so that the contents of their 
storage address registers may be displayed on the roller 
switches. This switch has two positions: 
1. STOR 1-4 (normal position). Storage address register 

contents for storage units 1 and 2 are displayed on 
position 5 of roller switches l, 2, 5, and 6. 
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2. STOR 5-8. The operation is the same as for the 
normal position for all Model 65 configurations except 
Models IH and J. For these models, Storage address 
register contents for storage units 3 and 4 are displayed 
on position 5 of roller switches 1, 2, 5, and 6. 

STOP ON STORAGE CHECK Switch 

The STOP ON STORAGE CHECK switch (Nl 1) inhibits 
further storage accesses in the main storage unit in which 
a storage error occurred so that the indicators will not be 
changed. The STOR CHK indicator (K52) lights to show 
that a storage error occurred and requires attention. The 
roller switches must be examined to determine the error 
and the address of the failing main storage word. The 
STOP ON STORAGE CHECK switch provides a storage 
stop upon encountering a storage check; this machine stop 
must not be confused with the Stopped state or the stop 
loop. The STOP ON STORAGE CHECK. switch may be 
used in conjunction with the CPU CHECK switch (N19). 

The 'stop on storage check switch' signal is sent to 
main storage, where the check signals are generated and 
sent back to the CPU. Storage checks caused by accesses 
by channels and by other CPU's also cause a stop. The 
TEST indicator (S48) is lit when this switch is not in the 
normal position. 

SET IC Pushbutton 

The SET IC pushbutton (R30) provides a means of 
entering an address into the current PSW. The pushbutton 
sets the instruction-address portion (bits 40-63) of the 
PSW [D(0-23)) to the value specified by the ADDRESS 
switches. The CPU is reset to the start of an I-Fetch at 
that address. Four instruction halfwords are loaded into Q 
per the address iii D (contents of the ADDRESS 
switches); 8 is then added to D, and the sum is placed into 
the IC. 

The frrst addressed instruction halfword is loaded into 
R per D(21,22). If D(21,22) = 11', Q is loaded with the 
next group of four instruction halfwords per the IC, and 8 
is added to the IC (Diagram 8-4). If D(21,22) =F 11, Q is 
loaded only once. 

After the instruction halfwords are fetched and loaded 
into Q and R, the count delay microprogram is entered. 
After the count delay, the stop loop is re-entered. Further 
manual intervention is required to start. program execu­
tion. [Normally, START (S25) is depressed.] Note that 
the CPU must be in the Stopped state (stop loop) for this 
pushbutton to function. Note, too, that when the CPU is 
in the Stopped state, the instruction address is contained 
in D. After depressing the SET IC pushbutton, the new 
address contained in the IC is one or two doublewords 

· more than the address contained fu the ADDRESS 
switches. 



RATE Switch 

• Controls rate of instruction execution. 

• CPU must be in stop loop before switch is activated. 

The RATE switch (Q25) selects the rate at which 
instructions are to be executed. This rotary switch has 
four positions: PROCESS, INSN (instruction) STEP, 
SINGLE CYCLE, and SINGLE CYCLE STORAGE IN­
HIBIT. 

Two latches and two triggers control the RA TE switch 
operation: 'instruction step' and 'single cycle' latches, and 
'pass pulse' and 'block' triggers (Diagram 8-12,FEMDM). 

The 'instruction step' latch performs two functions: 
(I) it allows setting the 'stop' trigger so that only one 
instruction is executed with each depression of ST ART 
(S25); (2) it disables the stepping of the interval timer. 

The 'single cycle' latch allows single-cycle operation. 
One machine cycle is allowed with each depression of 
START, unless the CPU requests additional machine 
cycles. The interval timer is disabled by thi:l 'single cycle' 
latch. 

When the 'pass pulse' trigger is ~et, CPU machine cycles 
are allowed. This trigger blocks the CPU machine cycles 
when in the single-cycle mode (RATE switch in SINGLE 
CYCLE or SINGLE CYCLE STORAGE INHIBIT posi­
tion). 

The 'block' trigger is used in single-cycle operation to 
allow one clock signal to be gated to the CPU each time 
START is depressed. The clock signal is blOcked by 
resetting the 'pass pulse' trigger. 

The TEST indicator is lit when the RATE switch is in 
any position other then PROCESS. 

PROCESS Position. When the RATE switch is in PRO­
CESS, the system operates at the normal clock speed of 
200 ns; this is the position for normal program execution. 

INSN STEP Position. The INSN STEP position allows the 
execution of one machine instruction for each depression 
of START; any instruction may be executed. All 1/0 
operations and interruptions (not masked off) are exe­
cuted after the instruction is completed. The CPU then 
enters the stop loop at the same point as the STOP 
pushbutton. The TEST indicator (S48) is lit when the 
RATE switch is in INSN STEP. 

Instruction-step operation is shown in Diagram 8-13, 
FEMDM. The CPU must be in the stop loop before 
entering or leaving the instruction-step mode; the interval 
timer is disabled during the instruction-step mode. 

When the RATE switch is moved to INSN STEP, the 
'instruction step' latch is set if the CPU is in the stop loop 
or if the 'pass pulse' trigger is reset (Diagram 8-12). The 
interval timer is disabled after the 'instruction step' latch 
is set. No further action occurs until START (S25) is 
depressed, at which time one instruction is executed. At 

end-op, the 'stop' trigger is set by an 'I-Fetch reset' 
micro~order or a 'reset inter~pt triggers' micro-order, thus 
forcing the CPU to enter the stop loop. The CPU remains 
in the stop loop until further action is taken by the 
operator. 

SINGLE CYCLE Position. The SINGLE CYCLE position 
allows the CPU to advance one machine cycle (200 ns) 
each time START (S25) is depressed (Diagram 8-14, 
FEMDM). The CPU must be in the stop loop before 
entering or leaving the single-cycle mode and remains in 
the stop loop until START is depressed. The CPU begins 
executing instructions one machine cycle at a time for 
each depression of START. in Diagram 8-14, it is assumed 
that no CPU requests are generated; if an asynchronous 
device is used or if a storage request is given, however, 
more than one machine cycle is required. The single-cycle 
mode continues through all CPU functions of the instruc­
tion to the point of initiation of the asynchronous 
operation. The asynchronous operation begins on the next 
depression of ST ART and runs to the completion point in 
a nonnal manner. 

If the asynchronous device initiates an interruption 
request during single-cycle operation, the interruption is 
broken into single machine cycles. More than one depres­
sion· of ST ART is therefore required. The CPU runs at 
normal machine speed in the stop loop. 

When the RATE switch is in SINGLE CYCLE, the 
'single cycle' latch is set (Diagram 8-12). The CPU remains 
in the stop loop until START is depressed, at which time 
the CPU advances one machine cycle. The 'block' trigger 
is set as shown in Diagram 8-12. If there is no 'BCU hold 
on clock' signal, the 'pass pulse' trigger is reset after the 
'block' trigger is set, thus inhibiting CPU clock signal 
distribution. START must be depressed for each CPU 
machine cycle advance. The TEST indicator (S48) is lit 
when the RATE switch is in SINGLE CYCLE. 

SINGLE CYCLE STORAGE INHIBIT Position. The 
SINGLE CYCLE STORAGE INHIBIT position allows the 
CPU to advance one machine cycle (200 ns) each time 
START is depressed. All CPU requests are ignored, and 
asynchronous operations are suppressed. 

Except for the inhibit signals sent to the BCU and 
inhibiting the 'stop 1' and 'stop 2' triggers from affecting 
the CPU clock, the single-cycle-storage-inhibit function is 
the same as the single-cycle function, Diagrams 8-12 and 
8-14. 

REPEAT INSN Switch 

The REPEAT INSN (instruction) switch (N23) provides a 
means of repeating a single instruction or of repeating up 
to four instruction halfwords. The REPEAT INSN switch 
has three positions (Diagram 8-lS, FEMDM): PROC, 
normal CPU operation; SINGLE; and MPLE (multiple). 
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A trigger-latch combination controls the repeat­
instruction functions: 'repeat instruction adjust' trigger 
and 'repeat instruction initialization' latch. 

The 'repeat instruction adjust' trigger forces a branch 
to the manual control repeat exceptional condition 
microprogram (ROS address 028, hex) at end-op of the 
start microprogram and sets the 'repeat instruction ini· 
tialization' latch. STAT G is set to block re-entering the 
repeat-instruction microprogram at microprogram end-op. 
The trigger is set when the CPU is in the Stopped state 
and the REPEAT INSN switch is in SINGLE or MPLE; it 
is reset when the CPU is in the Stopped state and the 
REPEAT INSN switch is placed in PROC. 

The 'repeat instruction initialization' latch blocks 
transfer to Q and stepping of the interval timer when in 
repeat-single-instruction mode. The latch is reset when in 
the stop loop and the RATE switch (Q25) is placed in 
PROCESS. The CPU must be in the Stopped state before 
entering or leaving the repeat-instruction mode. See 
Diagram 8-16, FEMDM, for the repeat-instruction opera­
tions. 

The TEST indicator (S48) is lit when . the REPEAT 
INSN switch is in any position other then PROC. 

Repeat Single Instruction. When the REPEAT INSN 
switch is in SINGLE, one instruction is continuously 
executed. The instruction to be repeated is entered into 
the DATA switches, beginning with byte 0. If the CPU is 
in the stop loop, the 'repeat instruction adjust' trigger is 
set when the REPEAT INSN switch is placed in either 
MPLE or SINGLE. To begin the instruction, depress 
ST ART (S25). 

In the repeat-single-instruction mode, the repeat­
instruction microprogram is executed to set up initial 
conditions before entering I-Fetch of the instruction to be 
executed (Diagram 8-16). The objectives of the micro­
program are to load the contents of the DATA switches 
into Q, set IC(21,22) to 00, inhibit updating of IC(20) or 
above, gate the first instruction halfword from Q to R, set 
STAT G, and set the 'repeat instruction initialization' 
latch. 

When the CPU is in the stop loop and the REPEAT 
INSN switch is in SINGLE, the 'repeat instruction adjust' 
trigger is set. The START puShbutton initiates the 
repeat-instruction function. A ROS address of 028 (hex) 
is forced into ROSAR to enter the repeat-instruction 
microprogram (Diagram 8-15). During this microprogram, 
ST AT G is set which, in tum, sets the 'repeat instruction 
initialization' latch. This action prevents the loading of 
new instructions into Q~ Note that STAT G is reset by the 
'reset' micro-order that performs all the resets necessary 
before the next I-Fetch. The instruction that was loaded 
into Q from the DATA switches is executed. 

Because the 'repeat instruction adjust' trigger was not 
reset during the initial setup routine, ROS address 028 
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. (hex) is forced at end-op of the instruction to enter the 
repeat-instruction microprogram. Re-entering the repeat· 
instruction microprogram on each instruction· resets 
IC(21,22) to 00, thus causing the first instruction to be 
repeated. Because the 'repeat instruction initialization' 
latch is set, Q is not loaded after the initial loading. The 
instruction is continuously executed until the CPU is 
manually stopped. The TEST indicator (S48) is lit while 
the REPEAT INSN switch is in SINGLE. 

Repeat Multiple Instructions. When the REPEAT INSN 
switch is placed in MPLE, the four instruction halfwords 
loaded into Q are continuously executed per IC(21,22). 
The 'repeat instruction initialization' latch inhibits data 
from being transferred from the SDBO to Q. Once 
instruction execution begins, the repeat-instruction micro· 
program is not entered because the 'repeat instruction 
adjust' trigger is reset (Diagram 8-16). 

The repeat-multiple-instructions function is similar in 
operation to the repeat-single-instruction function except 
for the following: 
1. The intervaltimer is allowed to step. 
2. The 'repeat instruction adjust' trigger is Feset. 
3. Interruptions are executed. 

Resetting the 'repeat instruction adjust' trigger pre­
vents re-entry to the repeat-instruction microprogram. 
Four instruction halfwords are continuously executed per 
IC(21,22), until the CPU is manually stopped. The TEST 
indicator (S48) is lit when the REPEAT INSN switch is in 
MPLE. 

STORE Pushbutton 

• Allows storing data into main storage or LS from 
DATA switches per STORAGE SELECT switch and 
ADDRESS switches. 

The STORE puShbutton (R32) provides a means of 
storing information into any address of LS or main 
storage. The CPU must be in the $topped state for this 
pushbutton to function. 

The contents of the DATA switches are placed into the 
location specified by the ADDRESS switches and the 
STORAGE SELECT switch (N15) (Diagram 8-4)~ If the 
STORAGE SELECT switch is in LOCAL, the five 
low-order ADDRESS switches (19-23) specify the LS 
location into which the contents (32 bits plus 4 parity 
bits) of the right-half of the DATA switches (32-63) are 
to be stored. ADDRESS switch 19 in the 0 position 
permits storing into the general-purpose registers and in 
the 1 (down) position permits storing into the floating­
point registers. ADDRESS switches 19 and 20, when set 
to l's, address the working register. 

If the STORAGE SELECT switch is in MAIN, the 
contents (64 data bits plus 8 parity bits) of the DATA 
switches are stored into main storage on a doubleword 
boundary per ADDRESS switches 0-20. 



If the STORAGE SELECT switch is in MAIN BYTE, 
one byte is stored into main . storage per ADDRESS 
switches 21-23. ADDRESS switches 0-20 specify the 
doubleword boundary in main storage. The value con­
tained in the ADDRESS switches is placed into D for 
storing in main storage. The contents of the ADDRESS 
switches are placed into E (via D) for storing in LS. 

For all store operations, the original contents of D, S, 
and T are destroyed. Correct parity is automatically 
generated before storing into either main storage or LS. 
After the data is stored, the microprogram enters the 
count delay routine and the CPU re-enters the stop loop 
(Diagram 8-4). 

When STORE is depressed, the pushbutton signal is 
AND'ed with the 'STO-PB' micro-order. When the stop 
loop microprogram senses that STORE has been de­
pressed, ROSAR{ll) is set, causing entry into the store 
microprogram routine. The stop loop is ·re-entered after 
the store operation is executed. 

DISPLAY Pushbutton 

• Allows displaying of data from main storage into ST 
and AB or from LS into T .per STORAGE SELECT 
switch and ADDRESS switches. 

The DISPLAY pushbutton (R35) serves to display the 
contents of any location in LS or main storage. The CPU 
must be in the Stopped state for this pushbutton to 
function. The address and the storage to be used are 
determined by the ADDRESS switches and the position 
of the STORAGE SELECT switch (N15), respectively 
(Diagram 8-4). Data from main storage (64 data bits plus 
8 parity bits) is displayed in ST and AB. (Set roller 
switches 1 and 2 to position 3 to display contents of ST, 
and set roller switches 3 and 4 to position 3 to display the 
contents of AB.) Data from LS (32 data bits plus 4 parity 
bits) is displayed in T. (Set roller switch 2 to position 3 to 
display contents of T .) 

When DISPLAY is depressed, the pushbutton signal is 
AND'ed with the 'DIS-PB' micro-order. When the· stop 
loop microprogram senses that DISPLAY has been de­
pressed, ROSAR {11) is set, causing entry into the display 
microprogram. The original contents of S, T, and D are 
destroyed. After the selected data has been displayed, the 
count delay microprogram is executed and the stop loop 
is re·entered. 

START Pushbutton 

• Starts CPU processing. 

• Initiates selected manual functions. 

The START pushbutton (S25) serves to start the CPU in 
the process, instruction step, single-cycle, or single-cycle 
storage inhibit mode, depending on the position of the 

RATE switch (Q25). In D~agram 8-4, it is assumed that 
the CPU is in the process mode. 

When START is depressed, a 'reset stop and manual 
triggers' micro-order resets the 'stop' and 'manual' trig­
gers. An end-op occurs, and processing begins with I-Fetch 
of the next instruction. The 'interrupts' fatch blocks 
interruptions at end-op of the start microprogram (Dia­
gram 8-17, FEMDM). Therefore, interruptions are blocked 
until end-op of the first instruction. This latch does not 
block interruptions ~hen the CPU is in the Wait state. 

When START is depressed, the pushbutton signal is 
AND'ed with the 'STT-PB' micro-order. When the stop 
loop microprogram senses that START has been de­
pressed, ROSAR(ll) is set, causing entry to the start 
microprogram. Normal program execution continues .. 

If START is depressed after a normal halt, instruction 
processing continues as if no halt had occurred; pending 
interruptions are taken after execution of the first 
instruction. If START is depressed after an abnormal 
stop-loop entry or after a system reset, the results are 
unpredictable. 

ROS TRANSFER Pushbutton 

• ROS TRANSFER pushbutton allows ROS micro-
program branch to any ROS location. 

The ROS TRANSFER pushbutton {Q35) allows entry 
into a ROS word. Depressing ROS TRANSFER places the 
contents of the 12 high-order ADDRESS switches into 
ROSAR (Diagram 8-18, FEMDM). The next micro­

instruction is taken from ROS and placed into the ROS 
sense latches. Further action now depends upon the 
position of the RA TE switch. 

If the RATE switch (Q25) is in PROCESS, the CPU 
continues executing ROS words from the entry point. If 
the RATE switch is in INSN STEP, the CPU continues 
until an end-op is reached. 

If the RATE switch is in SINGLE CYCLE or SINGLE 
CYCLE STORAGE INHIBIT, the CPU stops with· the 
ROS word specified by the ADDRESS switches contained 
in the sense latches. (This ROS word may be displayed by 
means of the appropriate indicators.) Depressing ST ART 
(S25) advances ROS one cycle, and the contents of the 
ROS data register may then be displayed. Further 
depressions of START advances ROS as in the single-cycle 

·mode. · 

Regardless of the position of the RATE switch, checks 
may occur as a result of storage data bus transfer to 
registers and from the registers through the parallel adder. 
To prevent. the CPU from stopping on these checks, place 
the CPU CHECK switch (N19) in DSBL. (See "CPU 

·CHECK Switch".) 
When ROS TRANSFER is depressed, the pushbutton 

signal is AND'ed with the 'ROS-PB' micro-order. When 
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the stop loop microprogram senses that ROS TRANSFER 
has been depressed, ROSAR(ll) is set, causing entry into 
the ROS transfer microprogram. Instruction execution 
eontinues from the ROS address entered into the 12 
high-order ADDRESS switches. 

Storage-Ripple Microprogram 

The storage-ripple microprogram (Diagram 8-19, FEMDM) 
is capable of (1) storing data from the DATA switches in 
all addresses in LS or main storage and putting correct 
parity into the storage-protect keys, or (2) reading all 
locations of LS or main storage and displaying the data. 
Main storage or LS is chosen by means of the STORAGE 
SELECT switch (N15). 

If main storage is selected, the storage-ripple micro­
program begins at address 0 and continues until an invalid 
address is detected, at which point a restart beginning at 
address 0 occurs. Diagram 8-19 shows the restart on an 
interruption request that resulted from detecting an 
invalid address. If LS is selected, the storage-ripple 
microprogram begins at address 0 and loops through all 
addresses in LS. Manual intervention (e.g., system reset or 
IPL) is required to exit from the storage-ripple micro­
program. 

The storage-ripple microprogram may also be used in 
troubleshooting by loading all storage locations with a 
predetermined value and then reading back the data. This 
microprogram may be used in conjunction with the STOP 
ON STORAGE ,CHECK switch (NI I). 

Storage-Ripple-Store Function. This function allows stor­
ing data into all locations of LS or main storage. To store 
data into LS or main storage, the CPU must be in the 
Stopped state. Enter the data to be stored into the DATA 
switches, and position the STORAGE SELECT switch 
(NI 5) to select LS or main storage. Enter 800006 (hex) 
into ADDRESS switches 0-23, and depress ROS TRANS­
FER. The data previously entered into the DATA 
switches is continually stored into all locations in the 
selected storage. Also, correct parity is placed into the 
storage protect keys on main storage ripple. Incorrect data 
may be stored if the DAT A switches are changed when in 
the storage-ripple-store routine. To terminate the routine, 
depress SYSTEM RESET (P30). The ROS microprogram 
for the storage-ripple-store function is shown in Diagram 
8-19. 

Because there is no automatic means of clearing main 
storage and LS, the storage-ripple-store microprogram 
may be used for this purpose. 

Storage-Ripple-Display Function. This function allows 
reading and displaying data from all locations in LS or 
main storage. The storage-ripple-display microprogram 
continuously reads all locations in LS or main storage as 
determined by the setting of the STORAGE SELECT 
switch (N15). The CPU must be in the Stopped state 
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before ROS TRANSFER is depressed. To execute the 
storage-ripple-display routine, enter 800000 (hex) into the 
ADDRESS switches, select main storage or LS, and 
depress ROS TRANSFER (Diagram 8-19). If LS is 
selected by means of the STORAGE SELECT switch, the 
data is contained in Sand PAL(32~63). If main storage is 
selected, the data is contained in AB and ST. The data 
may then be displayed using roller switches. Data is 
checked in PAL for correct parity. 

To terminate the routine, depress SYSTEM RESET 
(P30). 

REPEAT ROS ADDRESS Switch 

The REPEAT ROS ADDRESS switch (N25) provides a 
means of continuously reading out a specified ROS 
address (Diagram 8-18). To do so, enter the address of the 
ROS word into the ADDRESS switches, activate the 
REPEAT ROS ADDRESS switch, and depress ROS 
TRANSFER (Q35). The same ROS address is accessed on 
each machine cycle. All storage requests are blocked. 
Changing the ADDRESS switches while in the repeat ROS 
loop may result in ROS parity checks. 

The TEST indicator (S48) is lit when the REPEAT 
ROS ADDRESS switch is in the down position. 

PSW RESTART Pushbutton and Wait State 

• Allows loading new PSW from main storage location 0. 

• If PSW(14) = 1, enter Wait state; if 0, enter Running 
state. 

The PSW RESTART pushbutton (Q30) allows the opera­
tor to load a new PSW from main storage location 0 into 
the CPU. After the new PSW is fetched, the CPU 
continues processing if the RATE switch (Q25) is in 
PROCESS. 

The 'stop' and 'manual' triggers are reset at the 
beginning of the PSW-restart microprogram (Diagram 8-4). 
The PSW RESTART pushbutton causes entry to the 
normal load PSW instruction routine, which refills Q, R, 
and E. 

At every end-op, PSW(14) is tested. If PSW(14) = 1, 
the Wait state is entered (Diagram 8-20, FEMDM). [If 
PSW(l4) = 0, the CPU is placed in the Running state.] 
The wait-state routine is depicted in Diagram 8-20, B, 
FEMDM. If the interval timer is to be stepped, the wait 
loop is re-entered after stepping the timer. If STOP (S30) 
is depressed, the stop loop is entered. When a restart from 
the stop loop is executed, the Wait state is re-entered if 
PSW(14) = 1. 

An interruption causes a new PSW to be loaded into 
the CPU. PSW(14) is again tested, and the Wait state is 
re-entered if PSW( 14) = 1; otherwise, the CPU is placed in 
the Running state. The usage meter is stopped when in the 
Wait state or stop loop unless a channel is operating. 



When PSW RESTART is depressed, the pushbutton 
signal is AND'ed with the 'PSW-PB' micro-order. When the 
stop loop microprogram senses that PSW: RESTART has 
been depressed, ROSAR(l 1) is set, causing entry to the 
PSW restart microprogram. A new PSW is loaded, and 
program execution continues. 

DISABLE DIRECT CONTROL Switch 

The DISABLE DIRECT CONTROL switch (N27) is added 
by the Direct Control feature. It is used to manually 
inhibit (partition) communications between the CPU and 
the external unit. When the switch is placed in the down 
position: 
1. Write Drrect and Read Direct instructions become 

invalid instructions, causing an operation program 
interruption after their I-Fetch. 

2. Generation of 'direct control write out' and 'direct 
control read out' timing signals is inhibited. 

3. The setting of the 'external interruption' latches for 
signals 2-7 is inhibited. 

Note: When the Multisystem feature. is installed, the 
functions of the DISABLE DIRECT CONTROL switch 
are altered when operating in the partitioned or multi­
system mode. Refer to the discussion of this switch in the 
Multisystem feature write-up in Chapter 4. 

DISABLE INTERVAL TIMER Switch 

The DISABLE INTERVAL TIMER switch (N13), when 
placed in the down position, prevents the interval timer 
[main storage location 80, decimal (50, hex)] from being 
advanced (Diagram 8-21, FEMDM). In the center position, 
the timer is stepped at regular predetennined intervals. 

In addition to the switch, the timer is disabled when 
the Diagnose instruction sets MCW(O) (disable timer bit) 
or when operating in the: 
1. Stop-loop routine. 
2. Single-cycle mode. 
3. Instruction-step mode. 
4. Repeat-instruction mode. 
5. Scan mode. 

The DISABLE INTERVAL TIMER switch is inactive 
when the PULSE MODE switch (N21) is in the TIME 
position and the 'pulse mode initialization' trigger is set. 
When this switch is in the down position, the TEST 
indicator (S48) is lit. 

INTERRUPT Pushbutton 

The INTERRUPT pushbutton (S43) initiates an external 
interruption by setting the 'console signal' trigger. If 
PSW(7) = 1, an interruption is taken after the current 
instruction, and interruptions of higher priority are 

completed. If PSW(7) = 0, the interruption request 
remains pending. 

During the interruption, PSW(25) is made a 1, indi­
cating that the INTERRUPT pushbutton is the source of 
the interruption. This pushbutton is effective while power 
is up for the system. 

CPU CHECK Switch 

The CPU CHECK switch (N19), a three-position toggle 
switch, is used to control the system when a machine 
check is encountered. The machine checks that set the 
error trigger and the logic controlled by the CPU CHECK 
switch are shown in Diagram 8-22, FEMDM. The TEST 
indicator (S48) is lit when this switch is in any position 
other than PROC. 

When the CPU CHECK switch is ·in PROC and a 
machine check is detected, and PSW(13) = 1 (machine 
check mask bit), the CPU is stopped and the machine 
status is logged out to main storage. A machine check 
interruption is then executed. If PSW(13) = 0, the check is 
ignored, except that the error trigger is set, and no logout 
or interruption occurs. 

When CPU CHECK is in STOP and a machine check is 
detected, the CPU clock is stopped and no logout occurs. 
The error trigger is set; the type of error may be 
determined by examining the roller switches. If CHECK 
RESET (P35) is depressed, operation is resumed, but the 
results may be unpredictable. 

When CPU CHECK is in DS.BL and a machine check is 
detected, the error trigger is set. Logout and interruptions 
do not occur, and the operation is not terminated. 
Program execution continues, ignoring machine checks. 
The error trigger may be reset by depressing CHECK 
RESET or SYSTEM RESET (P30). 

PULSE MODE Switch 

The PULSE MODE switch (N21) provides a means of 
looping through a number of machine cycles, starting at a 
selected address, or of looping each time the interval timer 
is advanced. The PULSE MODE switch has three posi­
tions: PROC (process), normal CPU operation; TIME; and 
COUNT. 

The CPU must be in the stop loop before entering or 
leaving pulse mode operation. The PULSE MODE switch 
is inoperative during repeat-instruction mode. 

Two triggers control pulse mode operation: 'pulse 
mode adjust' trigger and 'pulse mode initialization' trigger 
(Diagram 8-23, FEMDM). The 'pulse mode adjust' trigger 
determines when to force an overriding branch to the 
pulse-mode-initialization microprogram and when to reset 
the system. The 'pulse mode initialization' trigger is set by 
depressing ST ART (S25) with the 'pulse mode adjust' 
trigger set. As a result, pulse mode operation begins. 
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The TEST indicator . (S48) is lit when the PULSE 
MODE switch is in any position other then PROC. 

PROC Position. The PROC position is used during normal 
program execution. 

TIME Position. Highlights: 

• Load program into main storage. 

• Place starting address of program into main storage 
byte locations 5-7 by means of ADDRESS switches. 

• Enter stop loop. 

• Place PULSE MODE in TIME position. 

• Depress START. 

When the PULSE MODE switch is in the TIME position, 
instruction execution begins at the address specified in the 
address portion of the doubleword located in location 0 
of main storage. Therefore, the starting address must be 
loaded (by means of the ADDRESS switches) into bits 
40-63 of the doubleword located at location 0 before 
depressing ST ART (S25). Entering data manually into 
main storage (from the DATA switches) must be done 
with the CPU in the stop loop and with STORE (R32) 
depressed. The RATE switch (Q25) must be in the 
PROCESS position. 

The initial setup conditions are: 
1. The program is in main storage. 
2. The starting address is in main storage byte locations 5 

through 7. 
3. The CPU is in the stop loop. 
4. The PULSE MODE switch is in the TIME position. 

A flowchart of the pulse mode operation is shown in 
Diagram 8-24, FEMDM. When the CPU is in the stop loop 
and the PULSE MODE switch is set to TIME, the 'pulse 
mode adjust' trigger is set (Diagram 8-23). Depressing 
ST ART sets the 'pulse mode setup' latch. This action fires 
a 350-ns singleshot that initiates the pulse-mode function. 
The 'pulse mode initialization' and th.e 'force address' 
triggers are set. This action, coupled with the set 'pulse 
mode adjust' trigger, sets ROSAR(9,l l) to force an 
address of 005 into ROSAR. A system reset is generated. 
Note that the 'reset manual control' signal is inhibited 
(Diagram 8-23). The CPU then enters the pulse-mode 
microprogram. The 'pulse mode adjust' trigger is.reset by 
the pulse-mode microprogram. The loading of the count 
into the MCW is meaningless. Instructions are then 
executed until the interval timer is stepped, at which time 
the 'pulse mode adjust' trigger is set. Because the 'pulse 
mode initialization' trigger is set, a system reset occurs, .an 
address of 005 is forced into ROSAR, and the pulse-mode 
microprogram is re-entered. This action results in execut­
ing the program from clock step to clock step. Looping 
through the pulse-mode microprogram and the main 
storage program continues until manually stopped. 
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COUNT Position. Highlights: 

• Load program into main storage. 

• Place starting address of program into main storage 
byte locations 5-7 by means of ADDRESS switches. 

• Enter stop loop. 

• Place PULSE MODE in COUNT position. 

• Enter number of machine cycles (up to 2047) to be 
executed into DATA switches 53-63. 

• Depress START. 

When the PULSE MODE switch is in the COUNT 
position, instruction execution begins at the address 
specified in the address portion of the doubleword located 
in location 0 of main storage, and proceeds through the 
number of machine cycles entered into DATA switches 
53-63. Each time the cycle counter is reduced to 0, a 
machine reset occurs and the program is re-entered. 

Except for PULSE MODE being in the COUNT 
position and the count entered into DATA switches 
53-63, the initial setup conditions are similar to the 
time-mode routine. As shown in Diagram 8-24, the same 
microprogram is executed for both COUNT and TIME 
positions. The program in main storage is entered at 
end-op of the microprogram. The cycle counter is reduced 
by 1 on each machine cycle. When the counter equals 0, a 
machine reset occurs, and the pulse-mode microprogram is 
again executed. The looping through the microprogram 
and the storage program continues until manually 
stopped. 

LOG OUT Pushbutton 

The LOG OUT pushbutton (S35) serves to log the 
machine status into fixed locations of main storage. This 
pushbutton is inactive during normal processing. The logic 
associated with the LOG OUT pushbutton is shown· in 
Diagram 8-25, FEMDM. 

TEST MODE, Ff OSIPROC/FL T Switch 

The TEST MODE, ROS/PROC/FLT switch (N3) serves to 
take the CPU out of program control for FLT's or ROS 
tests. It has three positions: 
1. ROS: When in this position and LOAD (S51) is 

depressed, ROS tests are read into storage from the 1/0 
unit selected by the LOAD UNIT switches. Signals 
from the selected channels cause the tests to be 
executed in the CPU. 

2. PROC - normal position: Normal CPU processing 
takes place. 

3. FLT: When in this position and LOAD is depressed, 
FLT's are read into storage from the 1/0 unit selected 
by the LOAD UNIT switches. Signals from the selected 
channels cause the tests to be executed in the CPU. 



Logic associated with this switch is shown in Diagram 
8-26, FEMDM. The interval timer is disabled and the 
TEST indicator (S48) is lit when this switch is in the ROS 
or FLT position. 

TEST MODE, REPEAT Switch 

The TEST MODE, REPEAT switch (Nl) is used to 
continuously repeat the test in main storage or the new 
test being sought. When this switch is in the Repeat 
(down) position, depressing START (S25) causes the ROS 
test or FLT in main storage to be executed repeatedly. If 
RESTART FLT 1/0 (S32) is depressed, a new FLT is 
sought, according to the alternate test number in T, and 
executed repeatedly. 

RESTART FLT 1/0 Pushbutton 

The RESTART FLT 1/0 pushbutton (S32) provides a 
means of backspacing tape one record and of starting a 
read operation during an FLT or a ROS test. When the 
TEST MODE, ROS/PROC/FLT switch (N3) is in the ROS 
or FLT position, depressing this pushbutton signals the 
channel to start with the backspace-CCW at byte location 
128, decimal (80, hex). The associated logic is shown in 
Diagram 8-27, FEMDM. 

CE Key Switch and Usage Meters 

• Selected usage meter records time CPU or channel is 
operating. 

• 'Meter in' signal indicates channel is operating. 

• 'Meter out' signal indicates Proces"S meter is recording. 

• 'Not clock out' signal indicates CPU is not processing. 

Two meters on the system control panel show the system 
running time while it is processing customer data (Process 
meter, RS) and while it is being operated by the CE (CE 
meter, R13). (The Process meter is also known as the 
cluster, central processing complex, system, and customer 
meter.) A key-operated switch (R9) selects the meter to 

. be activated. The normal position of this switch allows 
power to be applied to the Process meter. The CE, using a 
key, switches to the CE meter. When in the CE position, 
the key cannot be removed and the TEST indicator (S48) 
is lit. 

The meter selected by the key switch records time as 
long as the 'pass pulse' trigger is set if: (1) not in the Wait 
state and the 'manual' trigger is not set or (2) a 'meter in' 
signal is received from the channels. The selected . meter 
also runs momentarily when any pushbutton on the 
system control panel is depressed (except the STOP 
pushbutton while already in the manual state). The 'pass 
pulse' trigger is set by a start, load, or reset operation and, 
when in single-cycle-mode operation, is reset after gating 
one pulse (refer to Chapter 2, Section 1). The recording of 

time is inhibited as soon as a stop-on-CPU-check condition 
is detected, without waiting for the 'manual' trigger to be 
set during the ensuing stop-loop operation. 

The 'meter in' signal, multiplexed from the channels, is 
received whenever an 1/0 operation initiated by the CPU 
still is in· progress and requires recording. The CPU sends 
two signals to the channels. The 'meter out' signal is sent 
whenever time is being recorded on the Process meter. 
The 'not clock out' signal is sent when the CPU is in the 
Wait or manual states or is not recording time due to a 
CPU machine check. These two signals are used by the 
channels and their attached units in running their own 
usage meters and, in turn, generating the 'meter in' signal. 

Diagram 8-28, FEMDM, shows the CPU metering 
circuits. The selected meter runs for a minimum of 400 
ms. Relay RRl on the use meter card is picked by a signal 
from the CPU logic. 40V ac through RRl contacts drive 
the meter. 

FREQUENCY AL TERA TION Switch 

The FREQUENCY ALTERATION switch (N7) is used to 
increase the CPU clock frequency. When this switch is in 
the center position, each machine cycle is 200 ns (normal 
speed). With the CE Key switch in the CE position and 
the FREQUENCY ALTERATION switch in the down 
position, the CPU clock cycle is decreased to 195 ns ±~ ns 
(Diagram 8-28). 

Indicators 

On panel E of the system control panel, there are six rows 
of indicators, with 36 indicators (implicitly numbered 
0-35) in each row (Diagram 8-1). Associated with each 
row of indicators is a six-position roller switch. The 
operator may display the contents of a register or the 
status of a trigger or latch by placing the proper roller 
switch in the correct position. A roll chart above each row 
of indicators shows the information being displayed for 
each indicator. As the roller position is changed, the roll 
chart rotates to correspond with the roller position. The 
roller switch, the positions, and the information displayed 
for each row of indicators are shown in Diagram 8-2. 

A lamp test for the roller switches is provided by 
positioning the roller switches between detent positions. 

· The sixth position of roller 6 is a lamp test for the panel E 
and G indicators on the system control panel and on the 
remote operator's console. 

Other indicators on the system control panel indicate 
machine statu~ check conditions, and power status, as 
follows: 

1. SYSTEM (S45) - Lights when the Process meter or 
CE meter is running. 

2. MANUAL (S46) - Lights when the CPU is in the 
Stopped state. The CPU is executing the stop loop 
microprogram. 
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3. WAIT (S47) - Lights when the CPU is in the Wait 
state. The CPU is executing the wait-loop micro­
program, if the MANUAL indicator is not lit. 

4. TEST (S48) - Lights when a manual control is not in 
a position for normal processing or a maintenance 
function is being applied, as follows: 
a. The RATE switch (Q25) is in a position other 

than PROCESS. 
b. The CPU CHECK switch (N 19) is in STOP or 

DSBL. . 
c. The DISABLE INTERVAL TIMER switch (N13) 

is down. 
d. The ADDRESS COMPARE STOP switch (NI 7) is 

down. 
e. The PULSE MODE switch (N21) is in TIME or 

COUNT. 
f. The TEST MODE, ROS/PROC/FLT switch (N3) 

is in ROS or FLT. 
g. The STOP ON STORAGE CHECK switch (Nll) 

is down. 
h. The REPEAT INSN switch (N23) is in MPLE or 

SINGLE. 
i. The DEFEAT INTERLEAVING switch (N9) is in 

NO REV or REV. 
j. The REPEAT ROS ADDRESS switch (N25) is 

down. 
k. A channel is in test mode. 
1. The Diagnose instruction is active. 
m. The "lamp test" position (position 6 of roller 6) 

is selected. 
n. The 'FLT TON test light' signal is active. 
o. The CE Key switch is in CE. 

5. LOAD (S49) - Lights when the CPU is in a load state 
(IPL microprogram). The LOAD indicator is turned 
off after a successful load. 

6. STOR CHK (KSI) - Lights on all storage errors 
associated with the CPU or channel. The roller 
switches must be examined to determine the specific 
error. 

7. PROC CHK (MSJ) - Lights on all CPU errors. The 
roller switches must be examined to determine the 
specific error. 

8. MARGIN indicators: 
a. ACTIVE (AlS): Lights when an internal power 

supply or an attached s~orage unit or channel is 
being marginally checked. . 

b. LOCATE (A17): Lights when the MARGIN/ 
METER SEL switch is set to the position 
corresponding to the margined power supply, 
attached storage unit, or channel. 

9. Power Check indicators - Indicators on the system 
control panel show an incomplete power-up status in 
the CPU or in the attached storage units and channels. 
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The CPU and the units are individually indicated, as is 
the system status. There are nine power check 
indicators: 

a. CPU POWER CHECK (Al9): 24V de through 
relay K2 contacts are fed through parallel­
connected contacts on the two voltage-sense 
relays to the CPU POWER CHECK indicator. If 
either of these relays is not picked after K2 is 
picked, this indicator lights (ALD Y A021). 24V 
de are also fed through parallel-connected con­
tacts on the overcurrent and thermal-sense relays 
to the CPU POWER CHECK indicator (ALD 
Y A022). 24V de through 48V power-check relay 
contacts, or through the CPU READY /OFF 
switch (on the CE panel) in the OFF position, 
also light this indicator (ALD YA021). 

b. STOR FRAME 1 POWER CHECK (A21): 24V 
de, via relay K37 zontacts are fed through relay 
K29 contacts to this indicator. If K29 is not 
picked after K32 is picked, this indicator lights 
(ALD YA026). 

c. STOR FRAME 2 POWER CHECK (A22): Simi· 
larly, through relay K30 contacts, this indicator 
lights. 

d. STOR FRAME 3 POWER CHECK (A23): Simi­
larly, through relay K20 contacts, this indicator 
lights. 

e. STOR FRAME 4 POWER CHECK (A24): Simi­
larly, through relay K22 contacts, this indicator 
lights. 

f. CHAN FRAME 1 POWER CHECK {A26): Simi­
larly, through relay K19 contacts, this indicator 
lights. 

g. CHAN FRAME 2 POWER CHECK (A27): Simi· 
larly, through relay K21 contacts, this indicator 
lights. 

h. CHAN FRAME 3 POWER CHECK (A28): Simi­
larly, through relay K31 contacts, this indicator 
lights. 

i. System Power Check: A line from the CPU 
POWER CHECK indicator and a line from each 
unit Power Check indicator are combined at an 
OR. The OR turns on the System Power Check 
indicator, which is a red lamp backlighting the 
POWER ON pushbutton (N43). If a Power Check 
indicator is on, the System Power Check indica­
tor also lights. 

10. System Power-On Indicator: An indicator on the 
system control panel shows complete power-up status 
in the CPU and in the attached storage units and 
channels (ALD's YA026 and YA083). This System 
Power On indicator consists of a clear or white lamp 



backlighting the POWER ON pushbutton (N43). This 
condition is also indicated on the remote operator's 
console. The operation of the System Power On 
indicator is described in Chapter 5. 

CE PANEL 

The CE panel is shown in Diagram 8-29, FEMDM. The 
controls and indicators function as follows (see Chapter 5 
for details): 
1. THERMAL RESET pushbutton: Resets the thermal 

sense relays in the CPU. 
2. CPU READY/OFF switch. This switch has two 

positions: 
a. READY - normal position: Allows CPU power­

up sequencing to continue if the thermal and 
overcurrent conditions are normal. 

b. OFF: Drops CPU power without affecting system 
power. The CPU is bypassed on a system power­
on sequence. 

3. CPU ON pushbutton: Starts CPU power-on se­
quencing if the CPU READY/OFF switch is in the 
READY position. Does not affect system power. 

4. THERMAL TRIP indicators: These six indicators 
show the location of the overtemperature condition 
that dropped CPU power. The temperature sensors 
are located in gates A, B, C/D, and E, the converter/ 
inverter, and the power supply tubs. · 

5. UNDER VOLTAGE CHECK switches Oocated on the 
relay gate below the CE panel in the converted units): 
These 15 switches isolate the power supplies from the 
undervoltage sensing circuits. 
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Section 2. Maintenance Features 

This section discusses the 2065 maintenance features 
available to the CE: (1) Diagnose instruction and associ­
ated MCW's; (2) Logout, ROS tests, and FLT's; (3) ripple 
tests; (4) diagnostic programs; and (5) marginal checking. 
For a discussion of the system control panel and the CE 
panel, refer to Section 1 of this chapter.· 

DIAGNOSE INSTRUCTION AND MCW'S 

The Diagnose instruction (Section 7 of Chapter 3) has two 
purposes: it is available to the diagnostic programmer as a 
maintenance aid and to the system programmer for 
emulator mode operations. The Diagnose instruction has 
an SI format with an op code of 83: 

83 12 I Bl I Dl 
7 8 1516 "20 31 

The operations that the Diagnose instruction can do 
are selected by the 12 field of the instruction and by the 
bit configuration of the doubleword addressed by the 
storage operand address (contents of GPR addressed by 
Bl,+ Dl). The right half of this doubleword is the MCW, 
and bears the same relation to the Diagnose instruction as 
the CCW does to an 1/0 instruction. That is, the Diagnose 
instruction addresses the location of the MCW, and the 
MCW specifies the machine function. Note that an 
exception to this analogy is the 12 field, which can also 
designate certain diagnostic functions. 

The bits of the 12 field have the following meaning: 

Defeat 
Int Iv Diag 

,,_N,....o .... R ... ev..,._..,,.Re-v--t FLT 

9 10 11 

1. Bit 8, Defeat Interleaving and No Reversal of Storage 
Addresses. Interleaving is disabled and no even/odd 
storage area reversal takes place. 

2. Bit 9, Defeat Interleaving and Reverse Storage Ad­
dresses. Interleaving is disabled and the even and odd 
storage areas are reversed. 

3. Bit 10, Diagnose FLT. Allows portions of FLT's to be 
executed under control of the Diagnose instruction. 
While the FLT's are being executed, special CPU 
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functions are generated, and storage requests and clock 
are inhibited. This bit, which is used in conjunction 
with the setting of address 6BO in ROSAR, simulates 
the FLT position of the TEST MODE, ROS/PROC/ 
FLT switch on the system control panel. 

4. Bits 11-13. Spares. 
5. Bit 14, Set Emulator Mode. Allows the CPU to enter 

the emulator mode. (See Compatibility Feature 
FETOM's for a discussion of emulator mode opera­
tions.) 

6. Bit 15. Spare. 

Besides the functions that can be selected by the I2 
field, the Diagnose instruction can: 

1. Perform channel diagnostic functions. When a channel 
is selected by the MCW, it is disconnected from its 
control units and connected to an internal (to the 
channel) interface simulator which consists of a 
one-byte register and associated controls. This simula­
tor allows the diagnostic program to test the channel 
regardless of the type of attached control units that 
may be available. 

2. Reverse the state of certain parity bits. Incorrect 
parity can thus be placed into the CPU or into the 
channel to test the error detection logic. 

3~ Cause a logout after a specified number of cycles 
(CPU only). 

4. Branch into the ROS microprogram at any point. 
5. Perform portions of the LS ripple tests. 
6. Branch to an end-op micro-order and thus terminate 

normally. 
7. Force PAL full-sum errors. 
8. Perform scan-in operations. (Refer to 2065 Processing 

Unit FEMM, Form Y27-2039-2 for the procedure.) 
9. Stop the CPU clock. 

10. Read the contents of the system control panel DATA 
switches into storage. 

The MCW is a 32-bit word used to control Diagnose­
instruction and scan operations. When the Diagnose 
instruction is executed, the MCW is in the main storage 
location specified by the storage operand address and 
designates the diagnostic function(s) to be performed. For 
ROS tests and FLT's, the MCW is contained in word 1 of 
each test on the ROS or FLT test tape and specifies the 
control conditions necessary for the test, such as the 
expected result and the ROS word to be used for gating 
control. A different format is used for each MCW. 



Diagnose Instruction MCW for CPU 

When executing the Diagnose instruction and MCW(7) = 
0, the MCW applies to the CPU, as follows: 

0 I 2 5 6 7 8 19 20 21 31 

----..Jylog on count. 
2: Reverse serial adder full sum parity. 
3: Reverse mark parity. 
4,5: Reverse SAR parity. 
Start count on storage address compare • 

.__ _____ Disable interval timer. 

1. Bit 0, Disable Interval Timer. Disables the interval 
timer. 

2. Bit 1, Start Count on Storage Address Compare. 
When used with bit 6, the FLT counter does not 
begin decrementing until the BCU addresses the same 
location as set into the MAIN STOR ADDRESS 
COMPARE (ADDRESS switches 2-20) switches. 

3. Bit 2, Reverse Serial Adder Full-Sum Parity. Reverses 
the parity bit in the full-sum latch of the serial adder, 
thus allowing testing of the parity-checking circuits. 

4. Bit 3, Reverse Mark Parity. Reverses the parity of the 
mark bits being sent from the BCU to main storage, 
thus allowing testing of the mark parity-checking 
circuits in main storage. 

5. Bits 4 and 5, Reverse SAR Parity. Cause the parity 
bits which are sent to the storage address register to 
be reversed as follows: 
00 - No parity reversal. 
01 -Reverse low-order parity bit. 
10 - Reverse next-higher parity bit. 
11 - Reverse high-order parity bit. 

6. Bit 6, Log On Count. Causes a logout to main storage 
when the FLT counter reaches 0. At the conclusion 
of the logging operation, the CPU performs a machine 
check interruption. 

7. Bit 7. Must be a 0. 
8. Bits 8-19, ROS Address. When the Diagnose instruc­

tion has completed its execution phase, these address 
bits are placed into ROSAR, and the operation 
branches to this location. The address placed into 
ROSAR can specify any location in ROS. Refer to 
Diagram 5-608, Sheet 2, FEMDM, for the most 
frequently used ROS addresses. 

9. Bit 20. Spare. 
10. Bits. 21-31, Count. Specify the number of cycles 

(200 ns) that are to occur before the CPU enters a 
logout routine. The count field is made up as follows: 
MCW(21-25) is loaded into the address sequencer; 
MCW(26-29) is loaded into the FLT counter; 
MCW(30,31) is loaded into the FLT clock. By 

combining the address sequencer, the FLT counter, 
and the FLT clock, a maximum count of 2047 (11 
bits) can be obtained. (These three counters are 
combined only when the · MCW is used with the 
Diagnose Instruction.) The FLT clock controls the 
decrementing of the FLT counter and address sequen­
cer by 1; when the three· counters combined equal 0, 
the logout routine is started. 

Diagnose I nstructi~n MCW for Channel 

When executing the Diagnose insfruction and MCW(7) = 
1, the MCW applies to the channel. When a channel is 
selected by the MCW, the channel is disconnected from its 
control units and is connected to an internal interface 
simulator. The interface simulator consists of a one-byte 
register and associated controls. This simulator allows the 
diagnostic program to test the channel regardless of the 
type of control units that may be attached and available. 

The MCW format for the channel diagnostic function 
is: 

ROS Address -19 20 31 ...__, 
+ L_ Suppress storage data check. 
L__ Reverse byte count parity. 

Reverse data parity. 
Channel address of 7 causes all attached ·channels 
to be diagnostically selected simultaneously. 

1. Bits 0-2, Channel Address. Select the channel to be 
diagnosed according to the following bit configuration: 
000 - Select channel 0 (multiplexer channel). 
001 - Select channel 1. 
010 - Select channel 2. 
011 - Select channel 3. 
100 - Select channel 4. 
101 - Select channel 5. 
110 - Select channel 6. 
111 · - Select all channels simultaneously. 

2. Bit 3, Reverse Data Parity. Causes all bytes that are 
read from the interface simulator to have reversed 
parity. This action allows testing of the storage bus-in 
parity check circuit. 

3. Bit 4, Reverse Byte Count Parity. Provides a means of 
testing the byte control check circuits. 

4. Bit 5, Suppre~ Storage Data Check. Prevents a storage · 
data check from causing a channel data check and 
prevents a channel control check on a CCW fetch 
operation. Preventing the channel control check allows 
invalid CCW's to be brought into the channel to test 
sections of the channel check circuits. 

5. Bit 6. Must be a 0. 
6. Bit 7. Must be a 1. 
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7. Bits 8-19, ROS Address. When the Diagnose instruc­
tion has completed its execution phase, these address 
bits are placed into ROSAR and the operation 
branches to this location. The address placed into 
ROSAR can specify any location in ROS. Refer to 
Diagram 5-608, Sheet 2, FEMDM, for the most 
frequently used ROS addresses. 

. 8. Bits 20.....:3i. Spares. 

ROSTestMCW 

The MCW for ROS tests, the right half of word 1 of each 
test, contains the following control information about the 
test: 

CT 
ERSLT 

ROS Address 
Scan Out Cycle 
Address Count 

192021 2526 31 

1. Bits 0-3, Bit Plane. Contain the number of the ROS 
bit plane tested. These bits are for display only; the 
ROS word is selected by the ROS address in bits 8-19, 
and the bit to be tested is selected by the mask. 

2. Bit 4. Spare. . 
3. Bit 5, Unconditional Terminate (UT). If this bit equals 

1, the test always causes a stop. 
4. Bit 6, Conditional Terminate (CT). If this bit equals 1 

and an error is encountered, testing is terminated. If, 
however, it equals 1 and the test does not detect an 
error, the CPU continues with the next ROS test. If 
this bit equals 0, termination is dependent upon the 
status ofMCW(5). 

5. Bit 7, Expected Result (ERSLT). Defines what the 
status of the ROS bit being tested should be. Com­
paring the· ROS bit with the 1 or 0 in this bit 
determines whether the test passed or failed. 

6. Bits 8-19, ROS Address. Contain the ROS address of 
the micro-instruction that contains the bit to be tested. 

7. Bit 20. Spare. 
8. Bits 21-25, Scan Out Address. Specify the scan-out 

address (roller switch position) of the portion of the 
ROSDR that contains the bit to be tested. This address 
will be either 15, 16, or 17. (See ALD M3051.) 

9. Bits 26-31, Cycle Count. Determine the number of 
CPU clock cycles ROS must cycle to fetch the desired 
ROS word into ROSDR. 

FLTMCW 

The MCW in the right half of word 1 of every FLT 
contains control data about the test being performed. 
Pertinent bits of the MCW are retained in the MCW 
register during the running of an FLT. Other bits set the 
address sequencer, determine the ROS starting address, 
and fix the number of clock cycles the CPU will take 
following scan in. 
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Following is the format of an MCW during an FLT: 

ROS Address Scan Out Cycle 
Address Count 

19 2021 25 26 31 

1. Bits 0-3. Contain O's. 
2. Bit 4, LW. Defines whether the left half or right half of 

the word to be scanned out· contains the exit trigger 
status. If bit 4 equals 1, the left half is the desired 
word. If bit 4 equals 0, the right half word contains the 
trigger status. 

3. Bit 5, UT. Always causes a stop when it equals l. 
4. Bit 6, CT. May cause a stop, depending on the outcome 

of the test. If this bit · equals 1 and an error is 
encountered, testing is terminated. This bit is always 
set in zero-cycle and one-cycle FLT's currently in use. 

5. Bit 7, ERSLT. Defines what the status of the exit 
trigger should be. Comparing the exit trigger state with 
the 1 or 0 in this bit determines whether the test 
passed or failed. 

6. Bits 8-19, ROS Address. Contain the ROS address of 
the ROS word to be used for gating control. 

7. Bit 20. Spare. 
8. Bits 21-25, Scan Out Adaress. Specify the scan-out 

address of the scan-out word containing the status of 
the exit trigger. 

9. Bits 26-31, Cycle Count. Fix the number of times the 
CPU is to cycle following scan in. 

LOGOUT, ROS TESTS, AND FL T'S 

Logout stores the status of the system control panel 
indicators into fixed positions of main storage when a 
trouble symptom occurs; the data logged out may be 
subsequently recalled for analysis although the status of 
the indicated logic is changed from what it was when the 
symptom appeared. ROS tests check each bit position of 
every ROS word. FLT's check the CPU at the logic block 

.level. 

Introduction 

Logout, ROS tests, and FLT's are implemented by special 
hardware called scan logic. Therefore, when employing 
these maintenance aids, the CPU is said to be in the scan 
mode. 

The scan logic performs the following functions: 
I. Controls the operation of FLT's. 
2. Records the state of the CPU when a machine 

malfunction is detected (logout). 
3. Executes the Diagnose instruction. 
4. Controls the operation of the ROS tests. 

In the discussion that follows, certain terms are used 
which refer only to scan operations. These terms are 
defmed as follows: 



1. Scan mode. The CPU is said to be in "scan mode" 
during those operations that use the scan logic; i.e., 
FLT, ROS tests, and logout. 

2. Scan in. The process of loading CPU register positions . 
and control triggers with a predetermined bit pattern 
from storage. 

3. Scan out. The sampling of the status of certain triggers 
via a special data path from the indicator logic to PAL. 

4. Logout. The function that transfers status indicators 
and register contents to storage when signaled by the 
system. 

Logout 

The logout function of the scan logic stores the status of 
various triggers and registers, reflecting the state of the 
CPU, into predesignated locations of main storage. The 22 
doublewords logged out (Table 6-1) are stored into main 
storage locations 80 through 128 (hex). (For a detailed 
list of the 22 doublewords, refer to ALD's 
M3021-M3061.) 

Note: The Multisystem feature adds 16 log words (22-37, 
in main storage locations 180-1 F8); see Chapter 4, 
Section 2. 

The status of each trigger logged out is represented by 
a 1 if it is set, or by a 0 if it is reset. Thus a record of the 
machine state, at the time that a CPU or storage error 
occurs, is stored unchanged in predetermined locations of 
main storage with a fixed format. This record can then be 
accessed by a program or by manual controls for analysis, 
printout, or display. 

A logout operation can be initiated by: 
1. Manually depressing the LOG OUT pushbutton on the 

system control panel. The system must be in manual 
mode. 

2. Executing the Diagnose instruction when a log-on­
count function is specified. Logout occurs after a 
predetermined number of CPU clock cycles (preset by 
the programmer). 

3. Detecting a machine check during normal CPU opera­
tion if the CPU CHECK switch is in the PROC position 
and the PSW machine check mask bit is on. When a 
storage error is detected and the CPU is enabled for 
machine checks, an additional word (log word 20) is 
logged out. This word, from the roller switch associ­
ated with the storage in error (position 5 on rollers 1, 
2, 5, or 6), contains the information, excluding storage 
protect indicators, that is displayed in the roller switch 
indicators. 

Table 6-1. Logout Format 

Main Storage 
Byte Address Log 

(Hex) Word Left Half Rig_ht Half 

080 0 Parity for D-, F-, Parity for ST -
and a-registers register 

088 1 Miscellaneous Parity for AB-, E-, 
controls and A-registers 

090 2 G-register, LCS, Storage checks 
and segmented 
clock 

098 3 ----· Interruption, 1-
Fetch, and 
STA T's 

OAO 4 PSW BCU,FLT,and 
manual controls 

OAS 5 ----- FLT controls, MCW, 
and counters 

OBO 6 
__ ,,_ 

ABC, STC, LAR, 
B(64-67), mark 
triggers, and 
PAL(64-67) 

088 7 A-register B-register 

oco 8 ---- Features 

OC8 9 ----- IC and SAL 

ODO 10 R- and E· D- and F·registers 
registers 

008 11 0(0-31) 0(32-63) 

OEO 12 .......... CPU checks 

OE8 13 Parity for LSWR, LSWR 
PSW,and IC; 
LSWR, PSW, IC, 
and checks 

OFO 14 ----- Gate control triggers 

OF8 15 --- ROSDR(70-99) and 
edit triggers 

100 16 ---- ROSDR(37-69) 

108 17 ---- ROSDR(1-35) 

110 18 ----- ROSAR (3 registers) 

118 19 .......... ROSAR, parity for 
ROSDR, LS address 
register, and gate 
control triggers 

120 20 .......... Storage address, 
cycle, and data 
check(s)* 

128 21 S·register T·register 

Note: PAL(64-67) and SAL(0-7) should always= 0 on logout, 
and the parity bits should always= 1. 

*Present only when a storage check occurs and machine checks are 
enabled. 
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ROS Tests 
• Test each bit of each ROS word. 

• Tests are on tapes or disks. 
ROS tests are the principal means of testing the validity of 
the ROS bit planes. These tests, generated by a computer 
program from the tapes used in the manufacture of the 
ROS bit planes, are stored on magnetic tape or disks. 
When testing ROS, the tests are read into two main 
storage buffer areas, starting at locations 8000 and 8080 
(hex). Under scan logic control, the ROS tests compare 
the value of a particular bit in a selected ROS word with 
its expected value as specified on the ROS test tape. Each 
ROS test is read into the CPU and checks one bit of a 
ROS word. At the same time that the test from one buffer 
area is being executed in the CPU, the other buffer area is 
being filled from the test tape via the channel. 

The ROS test format consists of two doublewords: 
word 0 and word 1. Word 1 contains the mask and MCW. 
The mask, a 32-bit field, in conjunction with the scan-out 
address field of the MCW, selects the ROS bit to be tested 
from the word read out of ROS. A particular bit is tested 
by making all mask bits l's except the bit that corre­
sponds to the test bit. Word 0 contains the test number 
(TN) and alternate test number (ATN). The TN, a 
four-byte field, contains two two-byte numbers that 
identify the test pattern. The lower-order two bytes are 
the complement of the TN, and the high-order two bytes 
are the TN. The ATN, which refers to another ROS test, is 
also represented in true and complement form, with the 
complement and true numbers reversed from that of the 
TN format. The TN refers to the test being executed. The 
ATN refers to the test .that will be executed if the tests are 
restarted after a failure stop (generally, it refers to the 
next test). 

The first part of each ROS test tape contains hardcore 
tests to establish that the CPU is able to run ROS tests. 
Testing should not proceed beyond the hardcore tests if 
failures are encountered. 

Following the hardcore tests are the actual ROS tests. 
During these tests, the ROS word to be tested is selected 
by the ROS address in the MCW. The CPU clock is 
allowed to generate clock signals to cycle ROS so that the 
bit under test is placed into the ROSDR. The word 
containing this bit is defined by the scan-out address in 
the MCW and is transferred (scanned out) via the indicator 
driver logic and PAL to the T -register. 

The mask is transferred from main storage to the 
$-register, and then the status of the bit under test is 
determined by comparing S with T. The result of this 
comparison is compared with the ERSLT bit to determine 
whether the test passed or failed. Pass, fail, and intermit­
tent-fail are the three possible results of the comparison. 
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The CT and UT bits in the MCW then determine whether 
to proceed with testing or to terminate. 

If testing is terminated on a failure, the last two hex 
digits of the ROS address of the failing word are displayed 
in S(0-15) (roller 1, position 3), and the bit plane is 
displayed as the CPU TEST ADDRESS on roller 5, 
position 2, bits 0-3. To further define the S-register 
contents, S(0-7) indicates the failing word in hex, and 
8(8-1 S) indicates the failing bit in decimal. 

The test is repeated until a transfer in channel (TIC) 
pulse notifies the CPU that the alternate buff er is filled 
and new test data is available. 

Because FLT's cannot be run if malfunctions exist in 
ROS, the ROS tests should be run first, followed by the 
FLT's. 

FL T's 
• FLT's check CPU logic at block level. 

• Exit trigger determines whether test passed or failed. 

• FLT's have three basic phases: scan in, clock advance, 
scan out. 

• Three categories of FLT's are hardcore tests, zero-cycle 
tests, and one-cycle tests. 

FLT's are a unique maintenance concept in that CPU logic 
is checked without executing CPU instructions (i.e., 
without executing a program in the ordinary sense). In an 
FLT, fault detection is performed at the logic level. That 
is, FLT's are concerned with the logical function (OR, 
AND, INVERT) of a block rather than with its opera· 
tional function (e.g., as an adder, counter, control) in the 
CPU. 

The tests are automatically produced by an IBM 7090 
System which uses as its source the logic description of 
the CPU. Because the FLT's are not generated from an 
actual machine but are made from a mathematical model 
stored in 7090 storage, the FLT generator program treats 
the CPU as a set of triggers which can take on a new state 
(S) every time a clock signal is generated: 

s 
n 

~ ~ ~ 

Combinational " Combinational " Combinational " Combinational "' m "' Logic .2' Logic ·~ Logic .g> Logic .= ... ... 

Clock Clock Clock 

~~-rl-~~-rl-~~-rl--~-

Thus, FLT's are generated for groups of logic blocks. A 
group consists of an exit trigger (!l temporary storage 



element taking on new data at clock time and holding the 
information during not-clock time) and associated logic 
that can affect the trigger during an advance of a 
predetermined number of cycles. 

The FLT generating programs analyze the group of 
logic blocks and determine, from a set of input values, an 
expected response at the output of the exit trigger. (Note 
that, although the exit trigger determines whether the test 
passed or failed, it is not being tested per se; the FLT tests 
the logic that precedes it.) Using the information gained 
by the analysis, the program generates a test pattern 
which it places on tape. Each test pattern is an FLT. At 
the same time, the program generates the documentation 
necessary to troubleshoot a failure detected by the FLT. 

The application of an FLT can be broken into three 
phases: 
1. Scan in. Triggers are set to the desired state by a 

scan~in microprogram. Triggers that cannot be set are 
assumed to be at a predetermined value. 

2. Clock advance. The number of clock signals specified 
by the FLT MCW are allowed to be generated. These 
signals advance the CPU from one trigger level to the 
next. The exit trigger assumes a value that is a function 
of the state of the CPU during the previous cycle. 

3. Scan out. The new value of the exit trigger is compared 
with the expected result. If. the machine is operating 
properly, the two values should agree. If the new value 
and the expected result differ, a fault has been located, 
and testing terminatest with reference to the FLT 
documentation. 

FLT's can be divided into three categories: 
1. Hardcore tests. Check the scan and normal CPU logic 

necessary to run FLT's. 
2. Zero-cycle tests. Determine whether a .trigger value can 

be changed by scan in and also whether the new value 
can be sensed. Zero-cycle tests establish the machine 
capability to scan in and scan out before running 
one-cycle FLT's. 

3. One-cycle tests. During these FLT's, data is scanned 
into the CPU, the clock is allowed to run, and the exit 
trigger is scanned out and compared with a kriown 
value. One-cycle tests check· combinationaltt logic 
within the CPU. 
Note that the terms "zero-cycle" and "one-cycle" do 

not refer to the number of clock cycles allowed after scan 
in. For example, if dllri.ng a zero-cycle test the exit trigger 
requires a clock signal to set it, the clock must run for one 
cycle. These terms refer to test techniques rather than to 
any time element. 

t Termination is conditional upon the contents of the MCW. 

tt Combinational logic is all the logic required to pass the state of 
one trigger to the next by executing a specified number of 
clock cycles. 

FLT Tapes. Highlights: 

• FLT's are stored on magnetic tape or disks in the 
following order: hardcore tests, zero-cycle tests, one­
cycle tests. 

The FLT's are stored on magnetic tape or disks. Each FLT 
tape consists of thousands of tests, each concerned with a 
single sensitive path. Also contained on the tapes are tests 
preliminary to FLT's; i.e., tests designed to ensure that 
the CPU is capable of performing FLT's and that the 
triggers to be tested can be set or reset and the change 
sensed. 

Each tape is divided into three sections: hardcore tests, 
zero-cycle tests, and one-cycle tests. The · one-cycle tests 
are considered to be the true FLT's because these test 
combinational logic. A brief description of the three kinds 
of tests on the FLT tape follows: 
1. Hardcore tests. The test tape begins with hardcore tests 

to check out the CPU hardware necessary, for operating 
the FLT's. Hardcore tests determine that the S- and 
T-registers are functioning properly, that their bit 
content can be correctly sensed at PAL, and that the 
CPU can make decisions based on the outcome of a 
test and then act on that decision. 

2. Zero-cycle tests. Next in the testing sequence are the 
zero-cycle tests. Thest: tests verify that the exit trigger 
status can be changed and that the change can then be 
observed or sensed. Zero-cycle tests set the trigger, 
using either a special scan input or a normal machine 
path, and then verify the change in status of the 'trigger 
being tested. Because clock signals are needed to set 
most triggers, the CPU clock is allowed to cycle just 
enough times to set the trigger. Upon completion of 
the zero-cycle tests, the CPU's ability to run FLT's has 
been verified. 

3. One-cycle tests. These tests make up the bu)k of the 
FLT tape. They vary in the amount of logic checked, 
and run in sequence until a failing test is encountered, 
whereupon testing is terminated and the failing test 
number is displayed in the S-register. One-cycle tests 
require two or three clock cycles to set a trigger. 

Tape Generation. Highlights: 

• FLT tape is computer-generated from ALD data. 

• Program develops sensitive tree with entry points and 
terminating in an exit trigger. 

• Tests are printed out in two formats: test, including 
entry pattern, and listing of sensitive points (SCOPEX) 
which is used in troubleshooting. 

• New tests are added to existing tape using FLUT. 

The FLT tape is' computer-generated from ALD data. 
Using this data, a special program develops tests that, 
when executed, affect triggers indicatable on the system 
control panel (designated exit triggers). The program 
works back from all entries into each of these triggers, 
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searching the logic path for "sensitive" points; i.e., points 
at which an error or a failure would propagate to the exit 
trigger. Only one fault is assumed for each sensitive point. 

The logic feeding these sensitive points makes up a 
sensitive net, and, as the number of nets grows, the 
combinational logic involved resembles a tree; the exit 
trigger forms the tip of the tree, 'and the sensitive nets 
make up the body of the tree. The search continues until 
the program encounters another trigger that can be used 
as an entry point into the sensitive tree. Usually, several 
entry points into a particular tree are available. However, 
entry points are selected on the basis that data injected at 
the entry points will propagate through to the exit trigger. 
The program also selects micro-orders that will move data 
from the entry points to the exit trigger. Upon comple­
tion of the search, the program has developed a sensitive 
tree with entry points and terminating in an exit trigger. 
The program also has developed an entry pattern that 
results in a predictable status of the sensitive nets and a 
predictable change at the exit trigger. Once this pattern 
has been developed, an evaluator program verifies its 
correctness. 

Upon verification, the test is printed out in two 
formats: the test itself, including the entry pattern, and a 
listing of the sensitive points within the tree. The first of 
these becomes the taped FLT, and the latter is·the scoping 
documentation (scoping index, or SCOPEX), used in 
troubleshooting a failing test. 

To put the FLT's in CPU language, the entry pattern is 
scanned into the CPU, micro-instructions are selected to 
move the data through the sensitive tree during a given 
number of clock cycles, arid the exit trigger is then 
observed (scanned out) to determine whether it is at the 
predicted value for the test. If the trigger is not at the 
predicted value, the test has failed, and the CE may then 
repeat the failing test continuously and scope the sensitive 
points on the tree to find the net with the failure in it. 
Certain sensitive points appear in more than one test, and 
the same exit trigger may be the observation point for 
more than a single sensitive path. Thus, newly tested 
points are indicated as being newly tested on SCOPEX to 
indicate to the CE that this is the first time these sensitive 
nets have been encountered and tested. 

By verifying that AND's, OR's, and INVERT's are 
functioning as designed, FLT's verify the operating 
capability of the CPU although specific computer func­
tions are not performed. FLT's ascertain that the CPU is 
operating according to design specifications and, there­
fore, should be capable of functioning as a CPU. 

After the FLT has been evaluated as a valid test, it 
becomes a part of the FLT tape and is distributed for field 
use. New FLT's are continually being generated, some to 
test new logic that results from engineering changes and 
other to test areas of the CPU that are not now being 
checked. New tests are incorporated into existing tapes 
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with the Fault Locating Utility (FLUT) program. 
Norm11lly, however, a complete tape is sent to the field 
incorporating both old and new tests. An example of how 
one FLT is generated appears in Appendix C. 

FLT Hardcore Tests. The first eight records on the FLT 
tape contain tests that ensure that the hardcore logic 
necessary to run zero-cycle and one-cycle tests is oper­
ational. Hardcore logic is defined as all the logic, scan and 
normal, necessary to load the· FLT's into storage, to scan 
in, to scan out, to make decisions based on the outcome 
of a test, and to act on those decisions. 

The CPU hardcore hardware testing is subject to the 
following limitations: 
I. Scan hardware is not tested directly; it is, however, 

exercised in the hardcore portion with tests designed to 
isolate the trouble. 

2. The BCU is not tested in the FLT's, but the BCU must 
be functioning properly to run FLT's. Also, main 
storage and storage buses must be operating. Main 
storage may be checked using ripple tests. 

3. The channel and tape drive (or disk) used to read in the 
FLT's are not tested. These units must be tested using 
manual controls on the channel. 

4. Local storage is not needed to run FLT's, and, 
therefore, is not tested. Local storage is checked by 
ripple tests. 

5. The ROS microprogram and ROS must be fault-free to 
run FLT's. Therefore, because hardcore tests do not 
check ROS, ROS tests should be run before FLT's. 

Zero-Cycle Tests. To further check the operation of the 
scan hardware, zero-cycle tests determine whether the 
scan-in 'hnd/or scan-out paths are operative. Zero-cycle 
tests check only those triggers displayed on the system 
control panel. In these tests, a pattern is scanned into the 
machine, the clock is not advanced, and the exit trigger is 
observed. If the trigger has a scan-in path, three tests are 
performed: one for the reset state, one for the set state, 
and one for the reset state again. If the trigger has no 
scan-in path, only one test is performed for the reset state. 
While one trigger is being tested, other triggers can assume 
various states. Whenever possible, random states are used 
to simulate the combinations that may be used in a 
normal test and to reveal interaction between triggers. 

The functions checked with zero-cycle tests include: 
I. Reset to triggers (this is, in effect, a scan-in-zero 

operation). 
2. Scan-in path to triggers. 
3. Ability of a trigger to hold its value in the absence of a 

clock signal. 
4. That scan-out bus gating signals can be generated. 

One-Cycle Tests. One-cycle tests are the true FLT's. The 
input, produced by the FLT generating system, is a test 
that detects and locates at least one fault. The input 
pattern is scanned into selected triggers, and the CPU is 



allowed to advance a given number of cycles. The result, 
which is in the exit trigger, is compared with the value 
expected for a correctly operating machine. 

If the value in the trigger does not agree with the 
expected result, testing is terminated and the failing TN is 
displayed in S(0-15) for reference to the SCOPEX. 

The SCOPEX is a series of lists, one for each test. Each 
list is headed by the test number in hex, followed by a 
row of asterisks, and consists of several lines, each line 
referring to a pin in the machine. If a pin in the machine is 
contained in a list, the net which feeds that pin is sensitive 
for the test pattern applied; a failure on the card, which 
can be observed with an oscilloscope at that pin, would 
cause the test to fail. 

FLT Format. Each FLT on the test tape consists of nine 
doublewords, numbered 0 through 8 (10 doublewords for 
machines with the 7080 Compatibility Feature or the 
709/7040/7044/7090/7094/709411 Compatibility 
Feature). This is one complete test. Each test occupies 
one of two areas in storage. Buffer 1 begins at main 
storage location 8000 (hex) and contains nine 
doublewords. Buffer 2 begins at main storage location 
8080 (hex) and also contains nine doublewords. 

While one test is being executed from one buffer, the 
other buffer is being filled from the channel. Filling the 
buffers is a sequential process, and the processing of the 
FLT's is in the same sequence, without further addressing. 

The contents of the nine or ten doublewords is as 
follows: 
1. Word 0 and words 2 through 7 or 8 contain bit 

patterns that are scanned into the CPU. 
2. Word 1 contains a mask and the FLT MCW. The mask 

defines the exit trigger; the MCW, in the right half, 
contains control information about the test. 

3. Word 8 (or 9) contains the TN in both true and 
complement form and the ATN in the same format. 
Word 8 (or 9) is not read into the CPU during test 
sequencing unless a fault is encountered or an ATN 
search is performed. 
At the satisfactory completion of a test, the 'pass' 

trigger is set, the address sequencer is set to 7 (or 8), and 
word 7 (or 8) of the test is the first word scanned in again. 
When a test fails, the 'fail' trigger is set. After a 'TIC' pulse 
is received from the channel, . the last thing the CPU does 
is to fetch word 8 (or 9) from storage and leave it in the S­
and T-registers. If the CE desires to skip this test and 
continue with the remainder of the tests on the tape, he 
may depress the RESTART FLT I/O pushbutton. The 
signal generated by depressing this pushbutton causes the 
1/0 device to backspace to the beginning of the record 
and to start reading the tests into storage again. As each 
buffer is filled, the TN in the left half of word 8 (or 9) is 
put into the $-register, and a comparison is made between 
the new TN in the $-register and the ATN in the T-register 

by using the scan out S and T facility. The result is O for 
the test immediately following that test in which a failure 
occurred. Upon detection of this 0 result in PAL, the CPU 
again begins testing and continues until the next failure. 
This procedure is the only way of getting past a failing 
test and continuing the test tape sequence. 

Scan Logic Functional Units 

The scan logic functional units (Diagram 8-101, FEMDM), 
in conjunction with the CPU operational hardware and 
the ROS microprogram, control the CPU during FLT, 
ROS tests, logout, and Diagnose instruction execution. 
During these operations, the scan logic supplements and 
sometimes overrides the operational CPU logic. In addi­
tion, the scan logic provides direct data flow paths (scan 
in) into triggers not ordinarily having direct entry paths 
and from indicatable storage devices to PAL (scan out). 

During scan operations, CPU timing is controlled by 
two clocks (scan clock and FLT clock), and sequential 
operation is determined by four counters: address sequen­
cer, check counter, FLT counter, and ROS test sequencer. 
These counters time-share the scan counter latches and 
decrementer. That is, although each counter is used for a 
specific function at a specific time, their contents are all 
decremented by the scan counter decrementer. For 
certain operations, the address sequencer and the FLT 
counter can be logically joined to triggers in the FLT 
clock to form an 11-bit cycle counter. 

The five-bit address sequencer contains the low-order 
bits of storage word addresses, and its decoded value 
controls the gating signals to the scan-in or scan-Out logic. 
The address sequencer also forms the high-order five bits 
of an 11-bit counter (as mentioned previously) for the 
Diagnose instruction and pulse-mode functions. The six­
bit FLT counter counts CPU clock signals when required; 
the low-order two bits of the FLT counter, which are 
contained in the FLT clock, count oscillator signals 
reaching FLT controls. The check counter permits a tape 
record to be read a maximum of 32 times in case of tape 
errors or storage errors before determining that a test 
cannot be performed. The three-bit ROS test sequencer 
sequences the scan hardware during ROS tests. 

Each ROS test or FLT has an associated MCW which 
allows the test to be controlled by a test pattern on tape. 
MCW's, including the Diagnose instruction MCW, are 
stored in the scan functional units and decoded by scan 
hardware. 

Scan Timing 

Scan timing is controlled by two clocks, the scan clock 
and the FLT clock. The scan clock is synchronized to the 
CPU clock and produces clock and not-clock signals 
similar to the CPU clock. Normally, the scan clock runs 
continuously whether the CPU is in scan mode or 
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functional operation, and can be made to run with the 
CPU clock off. The output of the scan clock steps the 
FLT clock. 

The FLT clock is used in conjunction with the scan 
clock to provide scan control timing. It is synchronized to 
the scan and CPU clocks, and provides four output signals, 
FLT-time 0-3. The two FLT clock triggers can be 
logically combined with the address sequencer and the 
FLT counter to form an 11-bit cycle counter. 

Scan Clock. Highlights: 

• Consists of inverters which delay 'gated oscillator D' 
signal from CPU clock. 

• Distributes clock and not-clock signals with delay levels 
of P0-3 to P2. 

• Runs continuously unless blocked by BCU. 

• During scan operations, CPU clock is turned off, 
leaving scan clock in control. 

The scan clock (Diagram 8-102, FEMDM) consists of a 
number of inverters, each of which delays a 'gated 
oscillator D' signal from the CPU clock approximately 10 
ns. The output of each delaying inverter is distributed as a 
clock or not-clock signal with a delay level of from P0-3 
to P2. (See Chapter 2, Section 1, for an explanation of 
clock, not-clock, and delay levels.) The scan clock runs 
continuously unless one of the following actions stops it: 
1. The 'pass pi.llse' trigger is reset (which also stops the 

CPU clock). This trigger is set when any operation is 
initiated from the system control panel, and normally 
remains set throughout most CPU operations. 
However, it can be reset by one of the following 
conditions, if the BCU is not holding the CPU clock 
on: 
a. 32 attempts to read in an FLT or ROS test were 

·unsuccessful because of channel or storage errors. 
b. The UT bit was on at the completion of an FLT or 

ROS test. 
c. The CT bit was on and the 'fail' trigger was set 

during an FLT or ROS test. 

Note: The above three conditions reset the 'pass pulse' 
trigger at FLT-clock-2 time if the ROS test sequencer is 
at 0. 

d. The 'block' trigger is set. This trigger is set if one of 
the pushbuttons listed in Diagram 8-102 is de­
pressed in single-cycle mode. 

2. The 'stop clock' trigger is set with the RATE switch 
not in the SINGLE CYCLE STORAGE INHIBIT 
position and with the TEST MODE, REPEAT switch 
not set. The 'stop clock' trigger is set by the 'CPU 2' 
latch, the 'insert key' trigger, or the 'LCS interleave' 
latch. 

3. The 'STOP l' or 'STOP 2' micro-orders are executed. 
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Because the scan clock is driven by a 'gated oscillator 
D' signal (basic clock signal delayed; Diagram 4-3, 
FEMDM), it is always in synchronization with the CPU 
clock. The scan clock signals, P0-3, P0-2, P0-1, PO, Pl, and 
P2 (Diagram 8-102) are developed by passing the 'gated 
oscillator D' signal through inverters. Each inverter delays 
the signal approximately 10 ns. The P0-3 signal is the first 
scan clock output and is developed after being delayed by 
an adjustable time delay. (The time delay should be 
adjusted so that PO from the scan clock coincide~ with PO 
from the CPU clock; See ALD M8001.) The P0-3 signal is 
then inverted and delayed 10 ns to produce the P0-2 
signal. Ute P0-2 signal, in turn, is inverted and delayed to 
generate P0-1. The remaining scan clock signals are 
generated in the same manner as P0-2 and P0-1. These 
clock signals are distributed throughout the scan logic to 
time scan operations. Clock and not-clock signals have the 
same relation to scan triggers and latches as CPU clock 
and not-clock signals have to. functional logic (see Chapter 
2, Section 1). 

The advantage of having a separate scan clock for scan 
logic is that during scan operations the CPU clock can be 
turned off, leaving the scan clock in control. This function 
is under control of the 'maintenance mode stop clock' 
(MMSC) trigger. (The operation of the MMSC trigger is 
discussed in "Scan Stop-CPU-Clock Logic".) 

With both the scan and CPU clocks running, scan 
hardware is controlled by the scan clock, and normal CPU 
functions are controlled by the CPU clock. 

FLT Clock. Highligh'is: 

• Provides scan control timing and counts machine 
cycles. 

• Consists of 'FLT clock-0' and '-1' triggers and 'FLT 
time-0' to '·3' latches. 

• Stepped by scan clock. 

The FLT clock (Diagram 8-103, FEMDM) is the prime 
scan operation sequencer which, in conjunction with the 
scan clock, provides scan control timing and counts 
machine cycles. It consists of two triggers, 'FLT clock-0' 
and '-1 ', and four latches, 'FLT time-0' to '-3'. Clock and 
not-clock signals from the scan clock step the FLT clock 
to provide the outputs shown in the timing chart. Six 
signals are generated, 'clock-0' and '-1 ', and 'FLT ·time-0' 
to '-3'. The clock steps once for each machine cycle. Thus, 
in four machine cycles, the FLT clock steps from 'FLT 
time-0' to '-3' and then recycles. 

Two triggers, 'FLT clock O' and 'FLT clock l ', are 
stepped by scan clock signals and by the conditions of the 
four latches. 'FLT time-0', '-1', '-2', and '-3'. The FLT 
clock triggers function as a reverse binary counter of scan 
clock cycles. The FLT time latches record the count 
indicated in the FLT clock triggers. 



Assume that the 'FLT time O' latch is set and both 
FLT clock triggers are reset (OO). Because 'FLT time-I' to 
'-3' latches are reset, the rise of scan clock PO sets both 
FLT clock triggers (11). At not-clock PO time, the 'FLT 
time O' latch is reset, and at not-clock Pl time, the 'FLT 
time 1' latch is set. Then, at clock P0-1 time, both FLT 
clock triggers are reset. 

Because the 'FLT time l' latch is set, only the 'FLT 
clock O' trigger is set at clock PO time, at which time the 
triggers equal 10. This operation continues with the 
triggers counting down binarily from 11 to 00 during 
clock time and the latches stepping up to 11 during 
not-clock time. When the trigger count is 00, the next 
not-clock Pl signal sets the 'FLT time O' latch, and the 
cycle is repeated. 

The FLT clock triggers are also used as the low-order 
two bits of the FLT counter and the cycle counter. As 
shown in Diagram 8-103, T(62,63), containing 
MCW(30,31), can be transferred to these triggers during 
cycle counter operation. Operation of the triggers as part 
of the FLT counter and the cycle counter is discussed in 
"FLT Counter" and "Cycle Counter", respectively. 

Scan Counter Latches and Decrementer 

Three counters and two sequencers (Figure 6-4) control 
the sequential operation of scan associated functions: the 
address sequencer, the check counter, the FLT counter, 
the ROS test sequencer, and the cycle counter. (The latter 
is an 11-bit counter composed of the address sequencer, 
the FLT counter, and the two FLT clock triggers.) Each 
sequencer or counter is decremented by routing the 
contents of the sequencer or counter through the scan 
counter latches and back to the source via the scan 
counter decrementer. The scan counter decrementer 
subtracts 1 from the value gated through it. However, 
although all counters are decremented by the scan counter 
decrementer, only one counter may be stepped during any 
one clock cycle. 

Input and Output. Inputs to the scan counter latclies are 
from the address sequencer, the check counter, the FLT 
counter, and the ROS test sequencer. Input is accom­
plished at not-clock time. The scan counter latch output 
automatically conditions the scan counter decrementer 
and, at the following clock time, the decrementer output 
is transferred into the source counter or sequencer. Inputs 
to the scan counter latches and to the source counter or 
sequencer are under control of the same 'not-clock Pl' 
signal as shown in Figure 6-4. This signal resets the 
counter or sequencer before the decremented value is 
entered. 

Scan Counter Decrementer. The scan counter decrementer 
·(Diagram 8-104, FEMDM) is a logic network that 
subtracts 1 from any value routed through it. For 
example, assume that the address sequencer contains 21 

(decimal) or 10101. When the address sequencer contents 
are to be decremented, they are transferred to the scan 
counter latches. The value is then routed through the 
decrenienter, where it is reduced to 20 (10100) and sent 
back to the address sequencer. 

Address Sequencer 

• Provides data used to generate main storage addresses; 
generates signals to select scannable triggers and latches 
on scan operations; functions as five high-order posi­
tions of cycle counter. 

• Inputs are from T(53-57), hardware (set to 21 or 23), 
ROS micro-orders (set to 7, 8, or 21). 

The address sequencer, a five-position trigger register, has 
two main functions: to sequence through a predetermined 
number of main storage addresses, and to select the scan 
address of the scannable triggers and latches to be scanned 
out to PAL. When the address sequencer is performing the 
first function, either a fixed address or a portion of the 
MCW is placed in· it, and its output is transferred to a 
storage address generator which adds the necessary bits to 
make up the main storage address. The address sequencer 
cqntents are then decremented and ti:ansferred to the 
storage address generator to select the next address, and 
so forth. For the second function, the sequence is 
generally the same, except that the contents are trans­
ferred to the address sequencer decoder, which brings up 
1 of 21 gating signals to scan out the proper scannable 
triggers and latches. Decrementing is accomplished by 
transferring the address sequencer contents to the scan 
counter latches and back again via the scan counter 
decrementer. 

The address sequencer is also used as the five high­
order positions of the 11-bit cycle counter during log-on­
count or pulse-mode operation. This function of the 
address sequencer is discussed in "Cycle Counter". 

The address sequencer (Figure 6-'5) can be loaded with 
preassigned values by micro-orders or hardware, or 
T(53-57) can be transferred to it depending upon the 
operation. Its contents can be transferred to the address 
sequencer decoder for selection of scannable triggers and 
latches, to the storage address generator for addressing 
storage, or to the scan counter latches and decrementer. 

During the scan-in portion of FLT's, the address 
sequencer is set to a count of 8 and then decremented by 
1 for each test word fetched from main storage. The 
eighth word fetched (address sequencer equals 1) is the 
MCW part of the FLT test pattern and contains a new 
setting for the address sequencer. This new setting selects 
the scannable triggers and latches to be scanned out for 
the test comparison. The scan-out word is selected by 
decoding the address sequencer contents and the LW bit 
of the MCW. This action selects the roller switch 
indicating the exit trigger. 
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Figure 6-4. Scan Counter Latches and Decrementer Data Flow 
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Figure 6-5. Address Sequencer Data Flow 

The action taking place while the address sequencer 
steps from 8 to 0 is under control of the microprogram. 
When the count in the address sequencer is 0, the scan-in 
is complete for FLT's. 

During a logout operation, the address sequencer is 
initially set to a count of 21 or 23 (decimal) !ind then 
decremented by 1 for each doubleword logged out. Again, 
the count in the address sequencer is decoded by the 
address sequencer decoder, and the logout word is 
selected using the indicator drivers as the source point. 
The address sequencer count is also decoded by the 
storage address generator to yield a main storage address 
for the logout word. This address is then put on the SAB 
before storing the logout word into main storage. While 
the sequencer steps from 21 (or 23) to 14, the CPU clock 
is turned off to prevent register operation. At a count of 
13 (decimal), the CPU clock is again allowed to run, and 
the logout operation continues under ROS control. At 
_count 0, logout is complete. 

4 

During logout, the address sequencer goes to 0 twice. 
The first time the count goes to 0, the sequencer is forced 
to a count of 21. This action recalls the first word logged 
out (word 21, ST contents) to correct possible incorrect 
parity. The word is then restored, and the sequencer is set 
to a count of 7 and again allowed to count down to 0, at 
which time the original parity bits are stored and the 
operation is completed. (Because no micro-order exists to 
set the address sequencer to 0, it is set to 7 and allowed to 
decrement to 0.) 

Address Sequencer Decoder 

The address sequencer decoder (Figure 6-6) interprets the 
output of the address sequencer during scan operations. 
The decoder consists of a high-order and a low-order bit 
section. The high-order bit section decodes _the two 
high-oi:der bits to yield, for example, lOXXX. The three 
low-order bits are then decoded to give, for example, 
XX101. The combination of the two, in this instance, 
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shows the address sequencer count to be 21 (10101). 
Thus, the word logged out or scanned out would be word 
21, the contents ofS and T. 

The scan logic uses the indicator drivers, normally used 
for system control panel display, as scan-out source 
points. Therefore, the address sequencer selects the roller 
switch that contains the desired information. In the case 
where the count of the address sequencer is 21, the 
desired information is. found in rollers 1 and 2, position 3 
(S and T) (see "Scan-Out Bus"). 

Storage Address Gen~rator 

• Scan operations use three areas of main storage: logout 
area (80-128, hex), buffer 1 (8000-8048, hex), 
buffer 2 (8080-80C8, hex). 

• SAB values to address location within the three areas 
are derived from address sequencer contents. 

Three areas of main storage are used for scan operations: 
locations 80 through 128 (hex) is 'the logout area, which 
contains the log words after a log operation; and locations 
8000 through 8048 (hex) and 8080 through 80C8 (hex) 
are the two areas that contain the FLT's or ROS tests. 
The SAB values necessary to address any location within 
these three areas are basically derived from the contents 
of the address sequencer. Forming a 24-bit address from 
the five bits of the address sequencer is accomplished by 
the storage address generator (Diagram 8-105, FEMDM). 

The chart in Diagram 8-105 shows how the storage 
address is encoded. For all scan operations, bits 0-7, 
9-14, and 21-23 of the storage address are set to O's 
(bits 21-23 are O's because logout woi:ds, FLT words; and 
ROS-test words are doublewords which are always on 
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doubleword boundaries). Address sequencer bits 0 and 
1-4 are transferred to SAB(l 5, 17-20) to select the 
location within a scan area of storage. 

In logout operations, bit 16 of the address is set to the 
complement of bit 0 of the address sequencer. Thus, for 
logout area addresses 80 through F8 (hex), SAB(15) is set 
to 0 and SAB(l 6) to 1 ; for addresses 100 through 128 
(hex), SAB(15) is set to 1 and SAB(16) to 0. SAB(8) is 
always set to 0. · 

FLT's or ROS tests are always contained in two areas 
of storage called buffers. Buffer 1 is from 8000 through 
8048 (hex), and buffer 2 is from 8080 through 80C8 
(hex). When ROS tests or FLT's are being performed, 
each test, as it is read in, goes to the opposite buffer. For 
example, if the first test read from tape is placed into 
buffer 1, the next test is placed into buffer 2, the third 
into buffer 1, and the fourth into buffer 2, and so on. 
This scheme allows one test to be performed while the 
next test is being read into storage. 

SAB(16) controls which buffer is addressed. When 
SAB(16) = 0, buffer 1 is addressed; when SAB(16) = 1, 
buffer 2 is addressed. During FLT's and ROS tests, 
SAB(16) is under control of the 'buffer l' trigger. When 
this trigger is set, indicating that buffer 1 is to be 
addressed, SAB( 16) is forced to 0. When the 'buffer l' 
trigger is reset, indicating that buffer 2 is to be addressed, 
SAB( 16) is set to 1. 

During ROS tests, the 'buffer l' trigger is comple­
mented every time the ROS test sequencer equals 5. 
During FLT's, the 'buffer 1' trigger is under control of the 
'ROS 31-+CHK-CNTR' micro-order. If this micro-order is 
decoded and a test is in storage ('TIC' pulse received), the 
'buffer 1' trigger is complemented. 

For FLT's and ROS tests, SAB(8) is always set to 1 to 
address the portion of main storage starting at 8000 (hex). 

SAB gating signals during scan operations are con­
trolled by the 'scan sync' trigger. When this trigger is set, 
the contents of the address sequencer are transferred onto 
SAB. During FLT's and logout operations, the trigger is 
set by the 'ROS MS-REQ*SCAN4' micro-order. During 
ROS tests, it is set when the ROS test sequencer equals 1, 
3, and 6. 

Check Counter 

The check counter, a five-position polarity-hold register, 
records errors encountered while reading FLT or ROS test 
tapes into storage and during scan in. At the start of the 
read-in operation, the check counter is set to 31 (decimal) 
(maximum count for a 5-bit register). It is then decre­
mented by 1 each time an error is encountered. At the 
same time that the check counter is decremented, another 
attempt is made to read in the test that produced the 
error. After 32 errors (attempts at reading in the test), the 
check counter is stepped to 0, and the operation is 
terminated. 



Decrementing is accomplished by transferring the 
check counter contents to the scan counter latches and 
back again via the scan decrementer. 

Input and Output. The check counter (Figure 6-7) can 
only be set to 31 (decimal) or decremented via the scan 
counter decrementer; it has no other data inputs or 
outputs. It is set to 31 (decimal) if any of the following 
conditions occur: 
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c. The 'fail' trigger is set. 
d. The test comparison in PAL resulted in 0. 

5. An IPL is initiated or the test is restarted. 

Check Counter Decrementing. The check counter decre­
menting controls, when activated, transfer the contents of 
the check counter to the scan counter latches and 
decrementer and back to the check counter; thus, the 
check counter is reduced by 1. During FLT's, the check 
counter is decremented by the 'ROS CHK CNTR-1' 
micro-order. During ROS tests, the check counter is 
decremented whenever an input error is detected. 

FLT Counter 

The FLT counter is a four-latch register/counter which is 
coupled with the two triggers of the FLT clock to make a 
six-position counter. Its main purpose is to count the 
number of cycles that the CPU is allowed to advance after 
scan in and before scan out. During FLT's and ROS tests, 
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the FLT counter is set to the desired count by the cycle 
count field [MCW(26-31)]. During log-on-count and 
pulse-mode operations, the FLT counter (four bits) is 
combined with the address sequencer (five bits) and the 
two triggers of the FLT clock to make up an 11-bit cycle 
counter. 

The two parts of the FLT counter are decremented 
differently. The low-order bits, FLT-clock 1 and 2, are a 
reverse binary counter that counts down from 3 to 0. 
Decrementing is accomplished by signals from the scan 
clock. Each time the low-order bits reach 0, the high-order 
bits, FLT-counter 0-3, are decremented via the scan 
counter decrementer in the same manner as the address 
sequencer and the check counter. The following scan 
clock signal resets the FLT-clock 1 and 2 to 3. 

Input. The FLT counter (Figure 6-8) is loaded from 
T(58-61) or forced to the maximum count. Except 
during certain portions of the ROS tests, the MCW cycle 
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count field is gated from T(58-63) to the FLT counter 
and FLT clock by the 'ROS T-+MCW' micro-order. During 
ROS tests, the cycle count field is gated from T to the 
FLT counter when the ROS test sequencer equals 2. 

FLT Counter Decrementing. The FLT counter (Diagram 
8-106, FEMDM) is decremented under control of two 
latches: the 'scan counter control' latch and the 'FLT 
counter equal O' latch. Initially, the 'FLT counter equal O' 
latch is reset, conditioning one leg .of AND 1, the 'FLT 
clock-0' and '-1' triggers are set to some value (normally 3; 
see "FLT Clock"), and the 'FLT counter-0' to '-3' triggers 
are set to some value (either to maximum or to the value 
contained in the MCW cycle count field). When the FLT 
counter is to be decremented, the 'scan counter control' 
trigger is set which, in tum, sets the 'scan counter control' 
latch to bring up a second leg of AND I. 

For FLT operations, the 'scan counter control' trigger 
is set by the 'ROS 1-+CTR CTL TGR' micro-order. For 
ROS tests, the trigger is set when the ROS test, sequencer 
equals 2. A log-on-count-with-address-compare operation 
[Diagnose instruction with MCW(l) set] also sets the 
trigger if the storage address agrees with the ROS address 
field of the MCW. 
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With three conditions on AND 1 met (i.e., 'scan 
counter control' latch set, not SOROS and sync latch, and 
FLT counter not equal to 0), as soon as the FLT clock is 
decremented to 0 (decremented once per cycle), the FLT 
counter contents are decremented by transferring them to 
the scan counter decrementer and back again. At the same 
time, the FLT clock is reset to 3. When the FLT clock is 
again decremented to 0, the FLT counter is again 
decremented. This operation continues until the FLT 
counter, including the 'FLT clock-0' and '-1' triggers, are 
at 0 (reset). At that time, the 'FLT counter equal O' latch 
is set, which inhibits further decrementing of the FLT 
counter. 

Cycle Counter 

During pulse-mode and log-on-count operations, the 
address sequencer is joined with the FLT counter and the 
two triggers of the FLT clock to form an 11-bit cycle 
counter (Figure 6-9). The low-order positions of the cycle 
counter are decremented as described in "FLT Counter 
Decrementing". When the FLT counter is decremented to 
0 ('FLT counter equal O' latch set), the address sequencer 
contents are decremented (gated to scan counter decre-
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Figure 6-9. Cycle Counter Data Flow 
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menter and returned to address sequencer). At the same 
time, the 'FLT clock-0' and '-1; triggers are set, and the 
FLT counter is set to the maximum (all l's). These 
counters are decremented as before until they reach 0 
again; the address sequencer is then decremented, and the 
operation is repeated. 

When all three counters equal 0, the 'cycle counter 
equals zero' signal is generated to stop the clock (pulse­
mode) or to perform a logout operation. 

ROS Test Sequencer 

The ROS test sequencer (Figure 6-10), three polarity-hold 
circuits, controls the scan logic during a ROS test. At the 
start of the ROS test routine, the ROS test sequencer is 
set to a count of 7; it is decremented at FLT-time 3 by 
having its contents transferred to the scan counter latches 
and decrementer. The output is decoded by the ROS test 
decoder, which generates one of seven signals, depending 
upon the present value of the sequencer. These signals 
control the sequential operation of a ROS test. 
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Figure 6-10. ROS Test Sequencer Data Flow 

Scan-Out Bus 

• Scan-out bus is data path from indicator logic to PAL. 

• Status of 64 indicatable storage devices (scan-out 
word) is scanned out to PAL by one scan-out address. 

• One half of scan-out word is transferred to PAL during 
one cycle. 

The scan-out bus (Diagram 8-107, FEMDM) is a special 
data path used in scan operations that allows direct 
transfer into PAL from storage devices (triggers, latches, 
polarity-holds) which ordinarily have no direct input into 
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PAL. The operation that performs this function is referred 
to as "scan out". Scan out makes use of the indicator 
roller switch position logic to perform this transfer. Thus, 
the first requirement necessary to scan out a storage 
device (except for the LSWR) is that the device is 
indicatable; that is, that is has an indicator on the system 
control panel roller switches. 

During a scan out, the status of 64 indicatable storage 
devices are scanned out using one scan address (address 
sequencer contents); the 64 bits transferred to PAL are 
referred to as a scan~out word. The 22 scan-out words are 
listed on ALD's M3021-M3061 as logout words, because 
in a logout operation, the scan-out words are logged out 
(placed into the logout locations of main storage). Note 
that there is no direct correlation· between the scan-out 
address and the roller switch position of the indicator. For 
example, in Diagram 8-107, scan-out address 21 is shown 
as selecting the same storage device as the 'roller 1 
position 3' signal from the system control panel. 

The indicatable storage devices to be scanned out at 
any one time are selected by the output of the address 
sequencer decoder and by a signal from the scan controls. 
Only one half of the scan word is transferred to PAL 
during one cycle; therefore the signal from the scan 
controls will be either 'scan out left' (selects bits 0-31 of 
a scan word) or 'scan out right' (selects bits 32-63). The 
output of the address sequencer decoder and the 'scan out 
left' or 'scan out right' signal places a signal on the same 
line as does the system control panel roller switch 
(Diagram 8-107). This signal allows the storage device 
output signal to light an indicator on the system control 
panel, or to be transferred to PAL via the scan logic. 

At the same time, to prevent the roller switch setting 
from affecting the scan out, the 'not block indicator 
switches' signal is activated. Thus, the only indicatable 
storage devices whose outputs are sent to the indicator 
drivers are the ones selected by the address sequencer 
decoder output and the scan-out signal. 

Gating signals route the indicator signals from the 
storage devices to two places: to indicators on the system 
control panel and to the scan-out bus. From the scan-out 
bus, they are transferred by the 'enable bus' signal to 
PAI..(32-63). 

Logout Controls. The controls for a logout operation are 
shown in Diagram 8-108, FEMDM. A logout is started by 
an 'error log required' signal, by depressing the LOG OUT 
pushbutton (in manual mode only), or by executing the 
Diagnose instruction. The 'SOROS' trigger sets the address 
sequencer to 21. The 'SOROS' trigger and the 'sync' latch 
request a storage cycle to store the logged out word. The 
FLT clock provides timing signals to control the logout 
operation until the address sequencer reaches 14; the CPU 
clock is then started and ROSAR is forced to 019 (hex) to 
control the rest of the logout operation. 



Diagram 8-109, FEMDM, illustrates the scan-out path 
to PAL( 54) on a logout operation. Assume that the 
address sequencer equals 10 (decimal). A scan out is 
initiated to transfer the contents of D(22) to PAL(54) if 
the 'scan out right' signal is generated. Normally, the 'scan 
out right' signal is· generated by the 'SCAN OUT-RTWD' 
micro-order. However, on a scan-out ROS operation, it is 
generated by the scan controls. At the same time that the 
'scan out right' signal is generated, the 'enable scan 
bypass' signal is produced. This signal is generated by the 
'SCAN BYPASS' micro-order or, in the case of a scan-out 
ROS operation, by the scan controls. In addition to 
allowing tra!lsfer into PAL, the 'enable scan bypass' signal 
inhibits transfer to the s}'stem control panel indicators by 
the switchable indicator logic. 

With the 'scan out right' signal active and the address 
sequencer equal to 10 (decimal). D(22) is transferred to 
indicator 25 of the row of indicators normally selected by 
roller 1 and to the scan out bus. Because the 'scan out S 
and T' signal is not up at this time, D(22) is transferred to 
PAL(54) by the 'enable scan bypass' signal. At the same 
time, the remainder of the right half of scan word 10 is 
transferred to the appropriate bits of PAL. 

Because there are only four storage indicator roller 
areas and one logout area for a possible eight storage 
units, special provisions are made to log· out the roller 
indicators of the failing unit. Diagram 8-110, FEMDM, 
shows the selection of the roller indicators of the failing 
unit. When an error signal is sent from storage I, AND I is 
satisified, AND 2 is not satisfied, and the 'gate storage 
(1-4) indicators' signal is generated. Storage units 1-4 
are conditioned to be indicated, but th~ storage unit 
check (in this case the 'storage 1 check' signal) generates 
the scan-out· signal for the failing unit only. The storage 
frame indicators (always logged out) identify the particu­
lar failing unit and type of error (data or address). 

Scan Out S and T. The scan out S and T operation is the 
method by which the mask in a ROS test or FLT selects 
the particular bit of the scan word to be tested. During a 
ROS test or FLT; the mask, which is set to all l's except 
for the bit corresponding to the bit of the scan word to be 
tested, is placed into S(0-31), and the scan word 
containing the bit to be tested is placed into T(32-63). 
Using the scan-out bus (Diagram 8-109), the S and T 
contents are transferred by the 'scan out S and T' signal to 
a network composed of two AND's and an OR with an 
inverted output for each bit of S and T. 

As can be seen from Diagram 8-109, the· PAL bit 
positions remain O's except for the position where both 
the input from S and the input from T are O's. For 
example, if T(54) = 0 and S(22) = 0, PAL(54) is set. For 
any other combination of T(54) and S(22), PAL(54) 
remains reset. Because S contains a mask in which all bits 
are set to l's except the bit that corresponds to the bit to 

be tested in-T, an bits of PAL are always set to O's except 
the bit to be tested, and that bit is also a 0 unless the scan 
word in T contains a 0 in the tested position~ 

The 'scan out S and T' signal is a result of the 'SCAN 
OUT S-REG' and 'SCAN OUT T-REG' micro-orders or 
the ROS test sequencer equalling l or 4. 

Scan Stop-CPU-Clock Logic 

During certain scan operations, the CPU clock must be 
stopped while the scan clock is allowed to .run. This 
operation is controlled by the 'MMSC' trigger (Diagram 
8-111, FEMDM). When this trigger is set, the unsymmetri­
cal clock signal that controls CPU trigger and latch setting 
and resetting is inhibited; thus all CPU ftinctions con­
trolled by CPU clock signals are stopped, except as 
allowed by scan clock signals. 

The 'MMSC' trigger is set by the following conditions: 
1. Depressing LOAD with the TEST MODE, ROS/PROC/ 

FLT switch in the ROS position. 
2. Depressing RESTART FLT 1/0. 
3. Depressing WAD. The system reset initiated by the 

IPL function resets the 'MMSC' trigger; thus, the CPU 
clock is restarted after the system has been reset. 

4. Depressing WG OUT. 
5. Certain errors occur with the CPU CHECK switch in 

the STOP position. 
6. Cycle counter equals 0 on a pulse-mode or log-on­

count operation .. 
7. FLT counter steps to 0 during a ROS test or FLT. 

Control Triggers 

The scan logic contains many triggers which are used for 
status and control. The most important of these, with 
their function, are: 
1. 'Restart 1/0' (Diagram 8-112, FEMDM). Set whenever 

RESTART FLT 1/0 is depressed with the TEST 
MODE, ROS/PROC/FLT switch in either the ROS or 
FLT position. When set, this trigger causes the ROS or 
FLT tape to be backspaced to the beginning of the 
record. The buffers are then refilled by reading in each 
test until the test specified by the ATN is scanned into 
the CPU. 

2. 'Scan mode'. Set when the scan controls are under 
microprogram control. The ROS fields used by the 
scan microprogram are shared by the non-scan func­
tions of the. CPU. They are interpreted as scan 
micro-orders if the 'scan mode' trigger is set. 

3. 'Sync' (Diagram 8-112). Starts a ROS test or an FLT 
after an IPL or· restart-1/0 operation by synchronizing 
these operations with the scan controls. 

4. 'Repeat'. Set by the RESTART FLT 1/0 pushbutton. 
When set, the ROS test or FLT currently running is 
repeated continuously. 
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5. 'FLT test' (Diagram 8-112). Set by the TEST MODE, 
ROS/PROC/FLT switch being in the FLT position. It 
puts the CPU into FLT mode. 

6. 'Scan out ROS' (SOROS) (Djagram 8-108). Set by a 
machine error when in log-on-error mode, by the LOG 
OUT pushbutton, or by the 'cycle counter = O' signal 
when performing a log-on-count operation. Initiates 
the scan-out portion of a logout operation. 

7. 'Pass', 'fail', 'intermittent' (Diagram 8-112). Store the 
results of a ROS test or FLT. MCW(7) is the ERSLT 
bit, and PAL equals 0 if the bit to be tested in the scan 
word is a 1. Thus, if MCW(7) equals 1 and PAL equals 
0, or if MCW(7) equals 0 and PAL is not equal to 0, the 
'pass' trigger is set. If MCW(7) equals 1 and PAL is not 
equal to 0, or if MCW(7) equals 0 and PAL is equal to 
0, the 'fail' trigger is set. For FLT's, the test is 
performed under microprogram control. For ROS 
tests, the test is performed when the ROS test 
sequencer equals 1. In either case, if both the 'pass' and 
'fail' triggers are set, the 'intermittent' trigger is set. 

Scan Mode Control of ROS 

Scan mode operations affect three fields of ROSDR: field 
D (bits 17-19), field F (bits 25-30), and field G (bits 
31-35). These fields serve dual functions. In the normal 
mode, they are decoded from the ROSDR latches as 
standard CPU control lines. In scan mode, they are 
decoded as special scan control lines and are referred to as 
field S. 

The scan mode is controlled by the 'scan mode' trigger. 
When the 'scan mode' trigger is reset, the standard decode 
path is used. When the 'scan mode' trigger is set, however, 
the standard control lines are blocked and scan control 
lines (using common CPU control line codes) are acti­
vated. 

The 'scan mode' trigger can only be set in normal CPU 
mode and reset only in scan mode. The scan control logic 
generates blocking signals to inhibit register gating signals 
at the ROSDR decode logic and to allow scan control use 
of ROS in sequencing through its test operations. 

Scan logic also affects ROS microbranching (Diagram 
8-113, FEMDM). The J-field micro-orders shown in the 
diagram are listed on ALD M7021. 

Scan/Channel Interface 

Because ROS tests and FLT's are read in from an 1/0 
device (tape or disk), special interface lines (Diagram 
8-114, FEMDM) are necessary for communication be­
t)V~en the channel and the scan logic. A brief description 
6(iliese lines follows: 
L ':TIC pulse'. A multiplex line from the channels to the 

scan controls that carries a 250 ±30-ns signal when a 
'TIC' command is encountered after the 'IPL' latch is 

. reset. This signal indicates a buffer has been filled. 
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2. 'Gap pulse'. A multiplex line from the channels to the 
scan controls that carries a minimum 1-usec signal 
whenever an end of record is passed. This signal does 
not occur if an error was detected in the record. 

3. 'Unit data error'. A multiplex line from the channels to 
the scan controls that signals a data error from the time 
of discovery until a restart is initiated. 

4. 'Channel control error'. A multiplex line from the 
channels to the scan controls that rises on a control 
error, command reject, or exceptional condition, and 
signals that the channel is unable to proceed. 

5. 'Stop scan'. A multiplex line from the scan controls to 
the channels. This line carries a 250 ±50-ns signal that 
commands the operating channel to stop transmission 
to storage and wait. The tape or disk proceeds to the 
end of record and is deselected. 

6. 'Start scan'. A multiplex line from the scan controls to 
the channels. This line carries a 250 ±50-ns signal that 
commands the selected channel to restart transmission 
of data to storage. The channel fetches the command 
at location 80 (hex) and continues. This action causes 
the restart to begin always at the front of the block it 
was transmitting at the time the 'stop scan' signal was 
received. If the 'stop scan' signal is received during an 
error backspace, the backspace is concluded and the 
ensuing 'start scan' signal initiates the read command 
that loads buffer 1. 

7. 'Scan mode'. A multiplex line that indicates to the 
channel that the CPU scan controls are operative. It 
causes the channel to go into FLT mode when it 
receives the 'IPL' signal. 

Operational Analysis 

The following paragraphs present a detailed operational 
analysis of logout, ROS tests, and FLT's. 

Logout 

• Logout stores 22 doublewords, which reflect CPU 
status, into main storage locations 80-128 (hex). 

• Operation is controlled by scan logic and ROS micro­
program. 

• Address sequencer is set to 21 and decremented by 1 
for each log word stored. 

The logout function, whether initiated by depressing the 
LOG OUT pushbutton, by executing the Diagnose instruc­
tion, or by detecting a machine check, stores 22 double­
words (log words), which reflect the CPU status, into 
main storage locations 80-128 (hex). The information 
presented in these log words is determined by the scan 
logic and is therefore fixed at a specified engineering level 
for any particular 2065 CPU. A list of the log-word 
locations and their contents is presented in ALD's 
M3021-M3061. 



The words are logged out in a frxed sequence, as 
defined by the scan logic, with log word 21 being stored 
into location 128 (hex), log word 20 into location 120, 
and so on in reverse order until log word 0 is stored into 
location 80 (hex). 

The logout operation is both hardware- and ROS­
controlled. When a logout operation is initiated, for 
example by depressing the LOG OUT pushbuttont, the 
address sequencer is set to 21 (23 on a storage logout) and 
is decremented by 1 for each log word stored. From the 
instant that LOG OUT is depressed until the address 
sequencer is reduced to 14, the scan hardware controls the 
operation. When the address sequencer equals 13, control 
is switched to a ROS microprogram which completes the 
logout. 

Although the CPU is under ROS control for the last 14 
words logged out, the address sequencer is still decre­
mented for each log word. This decrementing occurs 
because the address sequencer, in addition to controlling 
the logout sequence, defines the storage address for each 
log word and the indicatable storage devices to be logged 
out. 

The log words compose the status of most indicatable 
storage .devices (i.e., triggers, latches, and registers that 
have an indicator on the roller switches). For this reason, 
the scan-out bus, which is a data path from the indicator 
drivers to PAL, is used to transfer the status of these 
devices to PAL (the path used is identical to that used in 
an FLT or ROS test during a scan out; see "Scan-Out 
Bus"). From PAL, the log words are gated to ST, and then 
to main storage via the SDBI. Correct parity is assigned in 
PAL. 

Because cycling of the CPU clock could change the 
contents of some of the storage devices logged out, the 
CPU clock is turned off (blocked) while log words 21 
through 14 are being logged out, and timing is controlled 
by the scan and FLT clocks. Scan/FLT clock signals are 
distributed throughout the scan logic to control the 
logout function during the period that the CPU clock is 
turned off. For example, the address sequencer is decre­
mented at FLT-time 3, a latched output of 190-ns 
duration. 

At the end of a logout, the CPU performs an end op, 
and the 'machine check interrupt' trigger is set. 

If the logout is caused by a storage error, all storage 
units are disabled because the CPU cannot determine 
which storage had the error. Therefore, no storage unit 
can be recycled until the contents of its indicators have 
been saved. As the first step in saving the indicators, the 
address sequencer is set to 23. The two extra counts of 
the address sequencer provide a delay which is necessary 
because of the cable delay and of the relatively slow 

t Note that the LOG OUT pushbutton can initiate a logout only 
when the CPU is in the manual mode. 

indicator drivers in storage and the CPU. When the 
sequencer reaches 21, the· storage units are again made 
available, and the contents of the indicators displaying 
information pertaining to the faulty main storage are 
transferred to PAL and held in PAL(32-63). The re­
mainder of the logout sequence is the same as for a 
machine check logout. 

Hardware-Controlled Sequence. Highlights: 

• Logout is initiated by Diagnose instruction, LOG OUT 
pushbutton, or machine error. 

• 'SOROS' trigger initiates hardware-controlled portion 
oflogoutsequence. 

• For each word logged out: (I) address sequencer is 
decremented, (2) scan-out logic places right half of log 
word into T, and (3) log word is stored into main 
storage location addressed by storage address genera­
tor. 

• Only right half of log words 20-14 contain data. 

As stated previously, a logout (Diagram 8-115, FEMDM) 
may be initiated by executing the Diagnose instruction, 
by depressing LOG OUT, or by detecting a machine error 
when in log-on-error mode. The operational differences 
between the three methods occur before the actual logout 
sequence and are as follows: 
I. The Diagnose instruction initiates a logout operation if 

MCW( 6) = I, thus specifying a log-on-count op~ration. 
In this case, MCW(21-31) is sent to the cycle counter, 
which is decremented by I each machine cycle. When 
the cycle counter equals 0, the 'SOROS' trigger is set, 
initiating a logout sequence. 

2. If the logout operation is initiated by depressing LOG 
OUT with the CPU in manual mode, the 'console 
logout' latch and the 'pass pulse' trigger are set. 
Normally, the 'pass pulse' trigger will already be set. 
However, if the RATE switch is in the SINGLE 
CYCLE position, the 'pass pulse' trigger remains set 
only for the duration of one CPU clock signal (Diagram 
4-3, FEMDM). This action allows the logout operation 
to be stepped through one cycle at a time by 
depressing START for each cycle. With the 'pass pulse' 
trigger and 'console logout' latch both set, the 
'SOROS' trigger is set. 

3. When the CPU CHECK switch iS in the PROC position 
and the PSW machine check mask bit is a 1, a machine 
check ('error' trigger set) initiates a logout. Any of the 
following errors sets the 'error' trigger (which, in turn, 
sets the 'SOROS' trigger): 
a. CPU/storage error. 
b. Serial adder half-sum or full-sum error. 
c. Parallel adder half-sum or full-sum error. 
d. ROS error. 
e. E(0-15) parity error. 
f. MPR bus parity error. 
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When a storage check is detected by the processor, the 
following sequences occur: 
a. The BCU resets any CPU request triggers that might 

have just been set. If the request triggers were set 
early enough to have i;ent a 'select' signal to storage, 
they are reset in a normal fashion and are, therefore, 
not reset by the storage check sequence. 

b. All storages are made to look busy by blocking the 
set input to the 'not busy' triggers. This action 
prevents any channel from selecting the faulty 
storage unit. 

c. The CPU 'stop clock' trigger is held reset. Because . 
the storage check is asynchronous to any other BCU 
activity, this trigger might have been set by some 
other CPU 'select' signal. 

All of these conditions persist until the scan logic 
signals release to the BCU. At the same time, the 
address sequencer is set to 23 instead of the normal 21. 
This setting allows a delay of approximately 1.6 usec 
until the count is reduced to 21. A 'scan-out storage X' 
line is activated to transfer the contents of the storage 
indicators to PAL(32-63). During this delay, the 
address or data check indicator stabilizes (worst case is 
1 usec) and provides the proper gating signal level for 
its respective roller switch; e.g., storage 1 is roller 1, 
position 5; storage 4 is roller 6, position 5. When the 
address sequencer equals 21, the contents of the proper 
roller switch is transferred to PAL. Just before 
dropping the gating signal level, a 'hold paddl 32-63' 
line is activated to allow the input gates to be 
deactivated without losing the storage indicator infor­
mation. At this point, the BCU is released by the scan 
logic. Any channel requests that were held pending in 
the BCU start being serviced in a normal manner, and a 
scan storage request for_ storing ST is issued. The 
remainder of the logout sequence is identical to a 
machine check logout sequence, except for the gate 
PAL to T and the set marks functions when the address 
sequencer equals 20. (Normally, these signals are 
blocked.) 

Note that, in each case, the 'SOROS' trigger is set, thus 
starting the hardware portion of the logout sequence 
(Diagram 8-115). After the 'SOROS' trigger is set, the 
'sync' trigger is set at FLT-time 3 to synchronize the 
logout operation to the· FLT_ clock. The output of the 
'sync' trigger sets the address sequencer to 21 (first log 
word), and sets the 'sync' latch at not-clock time. (The 
'sync' latch being set causes the address sequencer to be 
decremented every FLT-time 3.) 

With the 'sync' latch set, a storage request to the BCU 
is initiated at FLT-time 0. This request gates the address 
generated by the storage address generator -to SAB. 
Because the first word to be logged out reflects the 
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contents of ST (log word 21), the contents of ST are now 
stored (gated to SDBI). 

When the 'sync' trigger was set, the 'MMSC' trigger was 
also set. This action keeps the CPU clock off (the 'error' 
trigger inhibited CPU clock signals) but allows the scan 
clock to run. Therefore, the status of all operational 
registers, except the registers used· for the logout (S, T, 
and PAL), is preserved during the logout sequence. 

Because the contents of ST have been stored, the 
address sequencer is decremented to 20 at FLT-time 3. A 
scan-out operation is performed, which gates the right half 
of log word 20 (selected by the address sequencer 
decoder) to PAL(32-63) from the indicatable storage 
devices via the scan-out bus. From PAL, log word 20 is 
gated to T for transfer to main storage. At FLT-time 0, 
another storage request is issued to store the contents of 
ST. This operation continues for log words 19 through 14; 
that is, for each word logged out: (1) the address 
sequencer is decremented, (2) a scan out places the right 
half of the log word into PAL, which is subsequently 
gated to T, and (3) the log word is stored into the main 
storage location addressed by the storage addre$S _ genera­
tor. Note that only the right half oflog words 20 through 
14 is stored; the left half in storage remains unchanged 
and could contain anything. 

When the address sequencer has been decremented to 
14 and the log word has been stored, the 'MMSC' trigger is 
reset to start the CPU clock, address 19 is forced into 
ROSAR, and the address sequencer is reduced to 13. 
(Note that the ROSAR contents have been already logged 
out.) At this point, control is transferred to a ROS 
microprogram. 

ROS-Controlled Sequence. Highlights: 

• ROS microprogram directs logout from time address 
sequencer equals 13 until end oflogout sequence. 

• Log word 13 is formed by: (1) scanning out to T, (2) 
transferring T to LSWR, (3) transferring S to T, ( 4) 
transferring LSWR to S. 

• Remaining words are formed by: (1) decrementing 
address sequencer by 1, (2) scanning out to T, (3) 
transferring T to LSWR, ( 4) transferring S to T, ( 5) 
transferring LSWR to S, (6) storing log word into 
storage. 

• When address sequencer equals 0, plirity is corrected on 
log word 21 (ST). - · 

The ROS microprogram directs the logout operation from 
the time the address sequencer equals 13 until the end of 
the logout sequence (Diagram 8-115). The first micro­
order in the logout microprogram transfers the contents 
of the LSWR to S, thus preserving the LSWR contents in a_ 
log word because the LSWR is used during the remainder 
of the operation. Snow contains half oflog word 13. The 



complete log word is formed by: (1) scanning to T (scan 
out to PAL whose contents are transferred to T), (2) 
transferring the data in T to the LSWR, (3) transferring 
the contents of S to T, and ( 4) transferring the contents 
of the LSWR to S. As a result, ST contains the 13th log 
word. The operation continues in the following cycle: 
1. Decrement address sequencer by 1. 
2. Scan out to T (left halt). 
3. Transfer contents ofT to LSWR. 
4. Scan out to T (right half). 
5. Transfer contents of l.SWR to S. 
6. Store word into main storage. 

This cycle is repeated until the address sequencer 
equals 0, at which time 22 log words have been stored 
into main storage locations 80-128 (hex). 

When the logout operation was started, the first word 
stored into main storage (log won;l 21) was composed of 
the contents of ST. The parity associated with this data is 
not always correct. Therefore, to insure that correct 
parity is stored with log word 21, the address sequencer is 
set to 21, and a scan storage request is initiated to fetch 
the original contents of ST in log word 21. When available 
on the SDBO, the word is gated to AB. The· address 
sequencer is then set to 7, and AB (scan address 7) is 
scanned out. When AB is scanned out, correct parity is 
inserted for the data (original ST contents). The address' 
sequencer is again set to 21, and a scan storage request is 
initiated to put log word 21 back into main storage with 
correct parity. Next, the address sequencer is reset to 7 
and repeatedly decremented by 1 until it equals 0, at 
which time the original ST parity bits are stored. The scan 
system is then reset, the 'machine check interrupt' trigger 
is set, and the operation concludes at end op .. 

ROS Tests 

• ROS tests consist of two doublewords: word 0 has TN 
andATN;word 1 hasmaskandMCW. 

• All bits of ROS bit planes are checked for 1 or 0. 

• Each ROS test is repeated until receipt of 'TIC' pulse. 

ROS tests are scan-controlled tests of the ROS micro­
program. Each ROS test consists of two doublewords, 
designated words 0 and 1, which are read into the CPU 
from the ROS test tape. Word 0 contains the TN and 
ATN, and word 1 contains a mask and the MCW. A single 
ROS test checks one bit position of one ROS word ·and 
the cycling of data from ROS to the ROSDR. 

Each ROS test tape begins with hardcore tests to check 
out the hardware that controls subsequent ROS tests. 
Upon successful completion of these hardcore tests, the 
true ROS tests are begun and continue until all bits of the 
ROS bit planes have been checked for a 1 or 0, or until an 
error is encountered. If an error occurs, the CPU stops and 

the failing bit number is displayed in S. Thus, no 
documentation is required. 

The tests are loaded into buffer areas 1 and 2, and 
'TIC' pulses are generated as the buffers are filled. Each 
ROS test is continuously repeated until the CPU receives 
the 'TIC' pulse. 

A single test consists of fetching the MCW from 
storage, permitting the CPU clock to advance a given 
number of cycles, and comparing one of the ROSDR 
triggers with an expected result. If the state of the trigger 
matches its predicted value, the 'pass' trigger is set and 
testing proceeds to the next sequential test. If the actual 
and predicted values disagree, the 'fail' trigger is set and 
testing is terminated. 

The ROS · tests are controlled by the ROS test 
sequencer, which is stepped by the scan clock. At the start 
of the ROS test, the ROS test sequencer is set to 7 and is 
decremented to 0 as the test progresses to conclusion. For 
each count of the test sequencer, a certain part of the 
ROS test is performed. 

The number of clock signals required to move the 
selected ROS word into the ROSDR is specified in the 
cycle count field of the MCW. This count is set into the 
FLT counter; when the counter equals 0, the CPU clock is 
stopped and the bit comparison begins. 

ROS Test Tape. The ROS test tape contains the followihg 
records: 

Record Gap 

ROS Bit Tests 

1. Record 1, IPL 1. Contains the 24-byte "bootstrap" 
program necessary for any IPL operation. When LOAD 
is depressed, the three doublewords of this record are 
read into storage locations, as follows: 

Storage Location 
(Hex) Word Contents 

0 PSW Backspace (not used). 

8 CCW1 Read command to read 40 bytes 
to location 80, and chain com-
mand to location 10. 

10 CCW2 TIC command to location 88. 
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2. Record 2, Loader. Contains the "loader" program that 
reads in the ROS tests. The IPL program in record 1 
reads this record into storage locations as follows: 

Storage Location 
(Hex) Word Contents 

80 

88 

90 

98 

AO 

CCW Backspace command. 

CCW Read command to read 16 (deci­
mal) bytes to buffer 1 (location 
8000, hex), and a chain data tag 
to location 90. 

ccw TIC command to location 98. 

ccw Read command to read 16 bytes 
to buffer 2 (location 8080), and 
a chain data tag to location AO. 

ccw TIC command to location 88. 

3. Record 3, Hardcore Test 1 and 2. Contains the first 
ROS hardcore test, two doublewords. Hardcore tests 
check the scan and CPU hardware required to do the 
actual ROS testing. Any failure encountered during the 
hardcore tests must be corrected before the actual tests 
have validity. 

4. Record 4, IPL 2. The first hardcore test causes a stop. 
When LOAD is depressed, the following IPL program 
replaces the IPL 1 program: 

Storage Location 
(Hex) Word Contents 

0 PSW Backspace record. 

8 CCW TIC command to location 88 
(loader program). 

5. Records 5-8, Hardcore Tests. Contain the remaining 
hardcore tests. 

6. ROS Bit Tests. The remaining records on the tape 
contain the true ROS tests. Each test pattern (two 
doublewords) tests one bit of one ROS word. 

ROS Test Setup. Several controls on the system control 
panel must be operated to initiate the ROS tests. The 
procedure to run a ROS test appears in 2065 Processing 
Unit FEMM, Form Y27-2039-2 and in ALD M8005. 
However, a short discussion of the· setup is included here 
because it affects the operation: 

Diagram 8-116, Sheet 2, FEMDM, shows the start of a 
ROS test. The ROS test tape is mounted first. The LOAD 
UNIT switches are set to the address of the tape unit 
holding the test tape, the TEST MODE, ROS/PROC/FLT 
switch is set to the ROS position, and the CPU CHECK 
switch is set to DSBL. Going into ROS test mode causes 
the 'ROS test initiated' latch to be set and a 'scan mode' 
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signal to be sent to the channel to prepare for a read 
operation. The manual control operations necessary to get 
started are concluded by depressing SYSTEM RESET, 
loading all DATA switches to l's, depressing STORE to 
transfer the DATA switches to ST, and depressing LOAD. 

IPL 1. Highlights: 

• IPL is under hardware control. 

• Channel operations are same as normal IPL. 

• CPU clock is stopped until release is received from 
channel. 

• 40 bytes are read into storage, starting at location 80 
{hex). 

Depressing LOAD with the TEST MODE, ROS/PROC/ 
FLT switch set to ROS initiates an IPL operation that is 
different from the normal program load in that the 
operation is under hardware control (Diagram 8-8, 
FEMDM). Channel operations are identical to a normal 
IPL operation; 24 bytes are read from the selected device 
into the first three doubleword locations of main storage. 
However, when the 'IPL status' trigger is set, the 'MMSC' 
trigger is also set, which stops the CPU clock. Because the 
CPU clock is stopped, the IPL microprogram is not 
initiated and the remainder of the IPL is under scan and 
channel control. 

At this point, the CPU is idle, waiting for a 'release 
CPU' signal from the channel; only the scan clock is 
running. Meanwhile, the channel IPL operation reads in 
record 1 of the ROS test tape, and executes the channel 
program specified by record 1. As a result, 40 bytes 
(record 2) are read into storage starting at location 80 
(hex). Record 2 contains the loader program that reads 
each ROS test into the proper buffer area in storage. 

After record 2 has been read in, command chaining 
causes CCW 2 in record 1 to be executed. CCW 2 is a TIC 
command to location 88, which now contains a read 
CCW. When the channel has finished executing the TIC 
command, it sends a 'release' signal to the CPU. 

Because the CPU is in the ROS test condition, receipt 
of the 'release CPU' signal from the channel causes the 
'timing gate' trigger to be reset. With the 'timing gate' 
trigger reset, the 'release CPU' latch is reset and the 'IPL 
status' latch is set. The 'sync' trigger and 'sync' latch are 
set to synchronize the operation to the FLT clock. In 
addition, the 'sync' trigger output resets the ROS sense 
latches and inhibits register ingating. At this point, 
channel selection is dropped and a scan reset is initiated. 
The scan controls are set up for operation by resetting the 
'MMSC' trigger, setting the 'pass' trigger, resetting the 
'fail' trigger, and setting the check counter to 31 and the 
ROS test sequencer to 7. The CPU is now ready to run the 
first hardcore tests. 



Loader. While 'the scan controls are being set up to run the 
first hardcore test, the TIC command in CCW 2 of the IPL 
1 program causes the channel program in record . 2 of the 
ROS test tape [now in the 40 byte locations of storage 
beginning at 80 (hex)] to be executed. The read CCW's in 
locations 88 and 98 cause the channel to read the 
hardcore tests in record 3 into buffers 1 and 2 (8000 and 
8080, respectively). 

Meanwhile, scan control operations in the CPU begin 
when the ROS test sequencer. is set to maximum, thus 
placiiJ.g the CPU into ROS test state 7; In state 7, the 
'buffer l' trigger is reset, the 'ROS test' trigger is set, and 
a scan system reset clears the scan IPL controls. The ROS 
test sequencer is decremented by 1. During ROS test state 
6, the 'sync' latch is reset, an address is forced to storage 
controls; and a scan storage request for the ROS test word 
containing the TN and the ATN word is initiated. The 
operation then waits for a 'TIC' pulse before progressing. 
This 'TIC' pulse results when the first hardcore test in 
record 3 has been read into storage from· the channel 
(execution of TIC CCW in location 90). After the 'TIC' 
pulse, the ROS test sequencer is decremented by 1. 

At this time, an ATN search is made. The test number, 
all 1 's, from the test buffer is transferred to the S-register, 
and a successful search should result. 

Hardcore Tests and IPL 2. Highlights: 

• Eight records of hardcore tests at beginning of FLT 
and ROS test tapes detennine that CPU hardware used 
to run tests is functioning. 

• Failing test stops, with failing bit pattern in S. 

• If hardcore tests run successfully, testing terminates on 
correct stop; when testing is resumed, CPU enters true 
ROS tests or FLT zero-cycle tests. 

Every FLT and ROS test tape begins with hardcore tests 
(see AID M8006) to determine that the CPU hardware 
used in running these tests is functioning properly. These 
tests are almost identic~ for ROS tests and FLT's; 
differences will be pointed out. Because the CPU hard· 
ware most involved in· running FLT's or ROS tests is S, T, 
PAL, and the connecting paths between these points, 
·these are the logic areas checked by the hardcore tests. 

Eight records of tests are involved with hardcore 
testing. Records 1, 2, and 4 load the CPU for testing; the 
others check the CPU for various functions or capabilities. 

· These functions include sensing for 1 's or O's in S and T, 
verifying the CPU's ability to stop when the stop 
conditions are met, and verifying the ability of the CPU to 
conduct an ATN search and sequential testing. A failing 
test stops testing, with the failing. test bit identification 
pattern displayed in S and T. If all hardcore tests are run 
successfully, testing terminates on a hardcore stop 
(correct stop); when testing is restarted, the CPU enters 

the true ROS tests or, in the case of FLT's, the zero-cycle 
tests. 

Because the ROS hardcore tests are sequenced by the 
same controls that sequence the ROS tests and because 
the FLT hardcore tests are executed in the same manner 
as the regular FLT's, the hardcore tests have ·a different 
format for ROS tests and FLT's. ROS hardcore tests have 
the following format: 

Buffer 1 Buffer 2 

TN ATN 8000 8080 

Mask MCW 8008 8088 

Each FLT hardcore test contains the nine or ten words 
used in an FLT; however, only two of the words are 
significant to the test. These are words 8 or 9, and 1, the 
TN/ATN and the MCW, respectively. The TN/ATN causes 
the CPU to progress through the tape records. The MCW 
causes the CPU to make decisions. The other seven words 
read in during a hardcore test contain O's and contribute 
nothing to the test. 

Ha~dcore tests check S, T, and PAL by performing the 
TN/ATN comparison. The TN is in S, and the ATN from 
the previously executed test is in T. The corresponding 
bits in each register are compared at the scan-out-bus OR. 
If either bit is a l, the inverted output of the OR is sensed 
as a 0. 

For the result comparison, the mask is brought to S 
and compared with the value scanned into T during 
execution of the test. In hardcore tests, the mask is all 1 's 
or all O's. This condition forces a pass or fail condition 
regardless of the value scanned into T during execution. A 
Q output is sensed if the mask is all l's; a positive output 
is sensed if the mask is all O's. Using the mask in this 
manner, in conjunction with the MCW, causes the CPU to 
decide whether to take the next test, an alternate test, or 
to terminate testing. 

The significant bits of the MCW used during hardcore 
testing are 5, 6, and 7. MCW(S) is the UT bit, and, if set, 
causes the CPU to stop after the test, regardless of the 
outcome of the test. MCW(6) is the CT bit, and, if set, 
causes the CPU to stop if the test fails or to take the next 
test if the test passes. MCW(7) is the ERSLT bit, which 
specifies whether a 0 or a 1 should be sensed at PAL 
following the resl.ilt-comparison portion of the test. The 
combinations of the ERSLT and the output at PAL .that 
determine the setting of the 'pass' or 'fail' trigger are: 

ERS,LT Bit PAL=O Set 'Pass' Tgr Set 'Fail' Tgr ---
0 Yes Yes 
0 No Yes 

Yes Yes 
No Yes 
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The setting of the 'pass' or 'fail' trigger is then 
compared with the setting ofMCW(5, 6) to determine the 
next operation, as follows: 

Trigger Output 'Pass' 
MCW(5) (UT) MCW(6) (CT) Tgr 

0 0 

0 

0 0 0 

0 0 

0 

0 0 

'Fail' 
Tgr Action 

0 Continue - alternate 
test 

0 Continue - next test 

Continue - next test 

Stop - gate alternate 
test on restart 

0 Stop - gate alternate 
test on restart 

Stop - gate alternate 
test on restart 

Whenever the CPU stops during hardcore tests 
(whether an error stop or an unconditional stop), the 
ATN is left in T. When the test is restarted, the tape 
backspaces to the beginning of the test record and begins 
reading into storage. As each test is brought in, the CPU 
brings the TN of each sequential test into S. S and T are 
then compared, and, when PAL equals 0, the CPU 
performs the test that is iri the buffer at that time. 

One of the preliminary steps in preparing the CPU to 
perform ROS tests or FLT's is to set S and T to all l's by 
setting. the DATA switches to the down position and 
depressing STORE (see ALD M8005-l). This step is 
required because it is not known initially that these 
registers are functioning. By forcing 1 's into all positions, 
the CPU is forced to take the first test, which is test 1 on 
record 3. The rationale is that a failing bit in one register 
is compensated for by the bit in the other register, so that 
when S and T are compared, the result is 0 and the test is 
taken. Shown below is a single position of the scan-out 
bus; a similar position exists f()r each bit in S and T. 

$-Register 
(Mask or TN) 

T-Register 
(Scan Out Data or ATN) 

OR PAL (Latches Are 0 
if OR Is Satisfied) 

Note that a 1 input to either side of the OR satisfies 
the OR condition, and the inverted output is sensed as a 
0. If neither input is a 1, the OR is not satisfied, and the 
inverted output is sensed as a 1. 

Test 1, Record 3. Highlights: 

• Determiries that l's in Scan be sensed as O's at PAL. 
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• If test passes, CPU stops with 'pass' trigger set. 

• If .test fails, CPU stops with 'fail' trigger set or does not 
stop. 

• Depressing RESTART FLT 1/0 on passing test repeats 
test. If restart is initiated on failirig test, "runaway" 
tape may occur. 

Note: This test must be taken because of setting S all,d T 
manually (assuming dat_a failures only). 

This test is the first of the hardcore series and has the 
following format: 

Mask (S) MCW(T) TN (S) ATN (T) 

FF FF FF FF 05000000 FF FF FF FF 00000000 

The MCW defines the conditions of the test, and in this 
instance the MCW has the configuration, in the first eight 
bits, of 0000 0101. With bits 5 and 7 set to l's, the 
conditions of the test are that the· test must terminate 
unconditionally (bit 5) and the ERSLT bit (bit 7) is a 1; 
therefore, the output of PAL, following the result­
comparison, should be sensed as 0. This result means that 
the mask of all l's in S should be sensed as all O's if S and 
the paths through the PAL are functioning properly. This 
is the purpose of this first test - to determine that l's in S 
can be sensed as O's at PAL, and that an unconditional . 
termination stops testing. 

If this first test passes, the CPU stops with the 'pass' 
trigger set. Should the test fail, the CPU stops with the 
'fail' trigger set. If the CPU does not stop, a malfunction 
exists in some other portibn of the machine, an ATN was 
not performed successfully (could not sense l's in S or T), 
or the CPU failed to act on the UT bit. 

The correct indications for the successful passing of 
test 1 are: 
1. S all l's (roller 1, position 3). 
2. Tall O's (roller 2, position 3). 
3. 'Pass' trigger set (roller 5, position 2, bit 29). 
4. UT bit set (roller 5, position 2, bit 5). 
5. ERSLT bit set (roller 5, position 2, bit 7). 
6. 'Buffer l' trigger set (roller 5, position 2, bit 35). 

When RESTART FLT 1/0 is depressed after a passing 
test, the test is repeated and again stops because the TN is 
all l's. If a restart is initiated after a failing test, a 
"runaway" tape may occur. (A runaway tape condition 
occurs because the TN search routine keeps searching the 
tape for a nonexistent TN.) The indication of this 
condition is that S continues incrementing as test numbers 
are brought in for comparison. The failure is in S, in that 
one bit is being sensed as a 1 (0 in S). This runaway 
condition should result anytime the restart sequence is 
initiated following a failure indication on test 1. 



On a failure indication or tape runaway on restart, T 
can be used to compensate for the failing bit in S by 
performing the following procedure: 

Note: This procedure applies to the FLT tape only. 

1. Reset (place in up position) DATA switches 32-63 
(T), one at a time, keeping all other switches set 
(down). Depress STORE and RESTART FLT I/O in 
that order. 

2. Repeat step I until resetting one of the DATA switches 
causes the tape to run away. The bit in S corresponding 
to the up switch in T is the failing bit, and is not being 
recognized as a 0 in PAL. · 

Analysis of the above procedure reveals that the DATA 
switches, by setting T to I's, is compensating for the bit in 
S that is not being sensed as a 0 at PAL. The test fails, but 
the CPU stops until the bit in T, corresponding to. the 
failing bit in S, is 0, at which time both inputs to the OR 
are 0 ·and the tape runs away. Assume the test fails when 
DATA switch 37 is up (reset). This condition means that 
bit 5 of S is failing. 

Because the TN/ ATN comparison and the result­
comparison tests in this hardcore test are identical, a 
failing test may be repeated for scoping during the 
result-comparison portion of the test. The recommended 
procedure after the failing S-bit has been determined 
follows: 
1. Restart from the beginning with all DATA switches set. 

At the first stop, set the TEST MODE, REPEAT switch 
and depress START. Scope the suspected S-bit at the 
time it is used for the result-comparison test (not 
TN/ ATN compare). S should contain an all l's mask 
for the result-comparison. 

2. While synchronizing the scope on the 'scan out S and 
T' signal, scope the OR's shown on the left side of 
ALD AP691 for the suspected S-bit. 

A tape runaway can continue because of failure of the 
UT bit. If the tape runaway continues when the above 
sequence is performed, the single-cycle routine detailed in 
2065 Processing Unit FEMM, form Y27-2039-2, should be 
followed. 

If test I passes, test 2 must be taken on the second 
IPL 

IPL 2. Depressing LOAD after the stop at the end of the 
hardcore tests in record 3 reads in record 4, which 
contains the IPL 2 channel program. (See "ROS Test 
Tape".) The IPL 2 channel program replaces IPL I and 
contains a TIC CCW at location 8. Executing this TIC 
causes a branch to the read CCW in location 88 (loader), 
which, in turn, refills the buffer I area of storage from the 
next tape record. 

The next CCW is a TIC to location 98, which contains 
a read CCW that fills buffer 2. At the same time that 
buffer 2 is being filled, the hardcore test (test 2, record 5) 
in buffer I is executed. 

Test 2, Record 5. Test number 2 in the hardcore sequence 
determines whether l's in T can be sensed as O's at PAL. 
This test also leads into record 6. The format of test 2 is: 

Mask (Sl MCW!Tr TN (Sl ATN (Tl 

FF FF FF FF 01 00 00 00 FF FF FF FF FF FF FF FF 

The test is taken because the TN is all l's (S equals 0 at 
PAL). The MCW sets up the condition that the ERSLT bit 
is a 1, and, because there is no termination bit, an ATN 
search is performed. The mask of all 1 's causes the test to 
pass unconditionally. (Test I determined that S is 
functioning properly.) 

Following the test, the CPU immediately begins execu­
tion of the first test of record 6, as determined by the 
TN/ATN search (all 1 's in T and all O's in S). Recall that 
on a TN search, the 32-bit TN of each test in sequence is 
put into S to be compared with the 32 bits left in T by 
the previously executed test. 

If the next test to be executed is not test 1 in record 6, 
a 1-bit in T is not being sensed at PAL. Should this occur, 
the failing bit results in a configuration in S that causes 
the CPU to do a successful TN search. The CPU stops at 
the test in record 6 bearing the bit configuration that 
agrees with the failing bit in T. The possible configura­
tions are listed in ALD M8006-1. 

To summarize, test 2 should cause the CPU to execute 
the first test in record 6. A failing bit in T, however, 
causes the CPU to execute an alternate test in record 6 
and then stop, displaying a bit in S. The corresponding bit 
in T is the bit that is failing. The recomrtlended procedure 
following a hardcore stop at this point is discussed next. 

Record 6. The CPU stops in record 6 only if the ATN 
from test 2 cannot be sensed as all O's. If no failures 
occurred in T and in the scan-out path from T to PAL, the 
first test in record 6 is executed and has the following 
format: 

Mask (Sl MCW (T) TN (S) ATN (Tl 

FF FF FF FF 01 00 00 00 00 00 00 00 80 00 00 01 

This test passes unconditionally because of l's in the 
mask. The CPU does a TN search because the 'pass' trigger 
is set and no termination bit exists. The search leads the 
CPU to the first test in record 7 because the TN of test I 
in record 7 has the configuration 7F FF FF FE, which is 
the complement of the ATN of the first test in record 6 .. 
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If the ATN from test 2 cannot be sensed as all O's, a 
successful test number comparison is not performed for 
test 1 of record 6. The test is not executed, and record 6 
is searched ·until a test is found whose test number 
contains a bit corresponding to the failing bit in T. This 
test is executed and the CPU stops because the UT bit is 
set. For example, if the CPU executes the test with the 
TN configuration of 00 00 80 00, bit 48 in T is being 
sensed as a I at PAL. Scoping this error is difficult 
because the CPU does not refetch the TN during repeat. 
To pin-point the malfunction to a test that can be 
repeated and scoped, use the following procedure (FLT's 
only): 
1. Put all O's into DATA switches 0-63 on the system 

control panel. Depress STORE and RESTART FLT 
1/0. This procedure should bring the CPU to the 
second correct hardcore stop in record 8 (test 3). 

2. Depress REST ART FLT 1/0 again. This action should 
cause the CPU to begin the zero-cycle tests. A failing 
test should be encountered in the zero-cycle test 
sequence that tests the T-bit that failed when running 
record 6. This zero-cycle test may be repeated and the 
failing points scoped to isolate the malfunction. 

Note: If tape runaway is encountered during this routine, 
bit 63 or 55 in T is in error, and the TN search (which 
involves these bit positions) to start the zero-cycle tests is 
unsuccessful. Should this event happen, return the CPU to 
the second hardcore stop and repeat the procedure, 
changing the A TN of the second hardcore stop to 102 or 
201. 

If no error is encountered, the first test of record 6 will 
lead into the first test of record 7. 

Test 1, Record 7. The first test in record 7 normally 
follows the successful testing of test 1 in record 6. The 
record 7 test places a 0 into each bit position in T and 

· verifies that the 0 can be sensed as a 1 at PAL; the 
procedure is then repeated for S. Each test checks one bit 
position only. Error indications are the same for either 
register. Error stops are listed in ALD M8006-2. If all tests 
in record 7 are run successfully, the CPU begins the tests 
on record 8. 

Test 1, Record 8. Test 1 in record 8 determines the ability 
of the CPU to take the next test rather than do a TN 
search, as was done in the previous records. The format of 
test 1 is: 

Mask (S) MCW (T) TN (S) ATN (T) 

FF FF FF FF 03 00 00 00 22 22 22 22 44 44 44 44 

The MCW, with a configuration of 0000 0011 (bits 6 
and 7 set), determines the abnlty of the CPU to take the 
next test in sequence rather than search for the alternate 
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test. The 'pass' trigger is set by the mask being all l's and 
the ERSLT bit equal to 1. With the 'pass' trigger set and 
the CT bit equal to I, the next test is executed without a 
TN search. If the CPU cannot force the next test under 
these conditions, it stops when it reaches test 5 of record 
8. Assuming that test 1 passes, the CPU executes the next 
test, which is test 2 in record 8. · 

Test 2, Record 8. Test 2 in record 8 tests the ability of the 
CPU to take the next test on a failing condition. The 
format of test 2 is: 

Mask (S) MCW (T) TN (S) ATN (T) 

This test must fail because the mask is all O's and the 
ERSLT bit equals 1. With no termination bit set, the 
conditions dictate that the CPU is to execute the next 
test. If an error is encountered in this test, the CPU 
executes test 6, and stops. If test 2 is translated correctly, 
the CPU executes test 3, the second correct hardcore stop. 

Test 3, Record 8. Test 3 in record 8 tests the ability of the 
CPU to stop on a failure. The format of test 3 is: 

MCW (T) ATN (T) 

FF FF FF FF 02 00 00 00 DD DD DD DD FE FE 01 01 

The MCW in this test has a fonnat of 0000 0010, with 
the CT bit set to a 1. Because the ERSL T bit equals 0 and 
all l's are in the mask, this test must fail. With the CT bit 
set and a failing test, the CPU should stop with the ATN 
in T. The complement of this ATN is the first true ROS 
test or, if the FLT tape is being run, the first test in the 
zero-cycle series. Therefore, when RESTART FLT I/O is 
depressed, testing should start with the first ROS test or 
the frrst zero-cycle test. 

The correct indications for the successful passing of 
test 3 of record 8 are: 
1. S: all D's (roller 1, position 3). 
2. T: FE FE 01 01 (FFFF 0000 for ROS tests) (roller 2, 

position 3). 
3. 'Fail' trigger set (roller 5, position 2, bit 30). 
4. CT bit set (roller 5, position 2, bit 6). 
5. UT bit set (set by hardware) (roller 5, position 2, bit 

5). 
6. ERSLT bit reset (roller 5, position 2, bit 7). 
7. 'Buffer l' trigger set (roller 5, position 2, bit 35). 

If the CPU does not stop on this test, it will take the 
next test, 4, which has the UT bit set. The CPU must then 
stop because this bit has already been successfully tested. 

Summary of Hardcore Tests. The hardcore tests have 
checked the CPU for the following: 
1. Ability to sense l's in Sand T as O's at PAL. 
2. Ability to sense O's in Sand T as 1 'sat PAL. 



3. Ability to take next test. 
4. Ability to perform a TN search. 
5. Ability to stop on: a failing test. 
6. Ability to stop on an UT signal. 
7. Ability to make a result-comparison and decide on 

next step. 
8. That all data paths connected with the above functions 

are operating properly. 

ROS Bit Tests. Highlights: 

• ROS tests, two doublewords, are read from tape one at 
a time, alternately into buffers 1 and 2. 

• Test sequencing is controlled by ROS test sequencer. 

• A test consists of: (1) fetching MCW from storage, (2) 
advancing CPU clock, (3) comparing state of one 
ROSDR trigger with predetermined result. 

• If 'pass' trigger is set, operation proceeds to next test; 
if 'fail' trigger is set, testing is terminated. 

The remaining records on the ROS test tape contain the 
test patterns used to check the ROS bit planes. Each ROS 
test pattern consists of two doublewords in the same 
configuration as the hardcore tests. (See "Hardcore Tests 
and IPL 2".) These tests are read from the tape one at a 
time, alternately into buffer 1 and buffer 2. At ·the 
completion of each read-in cycle, a 'TIC' pulse is 
generated (by the channel) which initiates the ROS test 
sequence. 

Test sequencing is controlled by the ROS test sequen­
cer. When the 'TIC' pulse is received, the ROS test 
sequencer is set to maximum (7). Then, as each portion of 
the test is executed, it is decremented by 1. For each 
count of the sequencer, the CPU is said to be in a certain 
"ROS state"; for example, if the ROS test sequencer 
equals 5, the CPU is in ROS test state 5. When the count 
reaches 0, the test is complete and the CPU enters the · 
Wait state until another 'TIC' pulse is received. 

A test consists of fetching the MCW from storage, 
permitting the CPU clock to advance a given number of 
cycles, and comparing the state of one of the ROSDR 
triggers with a predetermined result. If the state of the 
trigger matches its predicted value, the 'pass' trigger is set 
and the operation proceeds to the next test. If the actual 
and predicted values disagree, the 'fail' trigger is set and 
testing is terminated. 

When the 'TIC' pulse is received, a TN comparison 
takes place. If the TN comparison is successful, the 
operation proceeds to scan in the MCW; otherwise, the 
operation reverts to the Wait state. CPU clock signals are 
distributed as long as the FLT counter does not equal 0 .. 
When the FLT counter equals 0, the CPU clock is stopped 
and the expected result comparison is started. The address 
sequencer governs the loading of a portion of the ROSDR 
word (32 bits) into T. The mask is in S (the other half of 
the word that was loaded into the MCW), and the result 

comparison takes place. If a 'TIC' or 'gap' pulse is not 
received, the operation returns to scan in and repeats the 
test. 

For the following discussion of the ROS test, refer to 
Diagram 8-116, FEMDM. 

ROS Test State 7. A ROS test is started when the ROS 
test sequencer and the check counter are set to maximum. 
This action occurs because one of the following condi­
tions is present: 
I. A 'gap' pulse is received from the channel, indicating 

an end of record. This condition is . tested for during 
ROS test state 6. 

2. The ROS test sequencer stepped to 0. This condition is 
the successful end of one ROS test; therefore the next 
test is initiated automatically. 

3. The TN comparison failed during ROS test state 4; 
therefore the next test is brought in. 

4. LOAD or REST ART FLT I/O was depressed. 

During ROS test state · 7, the only operation is the 
decrementation of the ROS test sequencer. 

ROS Test State 6. During ROS test state 6, the 'sync' 
latch is reset, the TN/ATN address is forced to storage 
controls, and a scan storage request for the TN/ ATN word 
is initiated. The operation then waits for a 'TIC' pulse 
before progressing. When the 'TIC' pulse is received, 
ensuring that a test is in storage, the ROS test sequencer is 
decremented by 1. 

ROS Test State 5. During ROS test state 5, the state of 
the 'buffer l' trigger is inverted so that the nex-t ROS test 
is read into the other buffer. The TN· of the incoming 
word is gated to S, and the 'TIC' latch is reset. The ROS 
test sequencer is then decremented by 1. 

ROS Test State 4. During ROS test state 4, a 'scan out S 
and T' signal determines whether this is the test to be 
executed. This determination is accomplished by com­
paring the contents of Sand T, via the negative-OR inputs 
to PAL (scan-out bus). S contains the TN of the current 
test obtained from the ROS test just read into storage 
during ROS test state 5. For the first test (hardcore test in 
record 3), T contains all i's loaded from the DATA 
switches. For all subsequent tests, T contains the ATN of 
the previous test. This number should be the complement 
of the current TN. Thus, a successful comparison results 
in all O's being sent to PAL. 

PAL is then checked for an all 0 result. If PAL does 
not contain all O's, indicating that the test currently in 
storage is not the one searched for, the ROS test 
sequencer is again set to maximum and decremented by 1 ~ 
This action causes the CPU to be again in ROS test state 
6, and the next sequential test on the tape is initiated. 
This operation continues until either the entire tape has 
been searched or the correct TN has been found. If a valid 
TN cannot be found, this condition is known as a tape 
runaway. 
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If PAL does contain all O's, indicating a successful 
comparison, the 'pass' and 'fail' triggers are reset and the 
ROS test sequencer is decremented by 1. 

ROS Test State 3. During ROS test state 3, a storage 
request is made for the mask/MCW word, and the ROS 
test sequencer is decremented by 1. 

ROS Test State 2. Highlights: 

• MCW fetched from storage is transferred to ST and 
subsequently distributed to address sequencer (bits 
21-25), MCW-register (bits 0-7,20), ROSAR (bits 
8-19), FLT counter (bits 26-31). 

e CPU clock signals cycle ROS until FLT counter is 
reduced to 0. 

o When FLT counter equals 0, CPU clock is stopped and 
result in ROSDR is scanned out to T. 

• ROS test sequencer is decremented by 1. 

During ROS test state 2, the doubleword fetched from 
storage is transferred to ST, and the address sequencer, 
the FLT counter, and the FLT clock are reset. T now 
contains the MCW which is subsequently distributed as 
follows: 
1. T(32-39,52), which contains the ROS plane number 

[MCW(0-3)), the UT bit [MCW(S)], the CT bit 
[MCW(6)), and the ERSLT bit [MCW(7)], is trans­
ferred to the MCW register. Note that MCW(4) and 
MCW(20) are not used and therefore contain O's. The 
ROS plane number is not used for the test but is 
displayed in case of a failure as a guide to the CE. For 
most ROS tests, except the hardcore tests, the UT bit 
is a 0 and the CT bit is a 1. The ERSLT bit is a 1 or a 
0, depending upon the design of the ROS plane being 
tested. 

2. T(40-51), which contains the ROS address of the 
plane to be tested, is set into ROSAR. 

3. T(53-57), which contains the scan word address of the 
ROSDR bit to be tested, is transferred to the address 
sequencer. 

4. T(58-63), which contains a count of the number of 
clock cycles needed to read out one ROS word, is 
transferred to the FLT counter and FLT clock. 

At the same time, the 'scan counter control' trigger is 
set. The trigger output deactivates the ROS sense latch 
reset (up until this time the ROS sense latches have been 
held reset; therefore no microprogram operations have 
been taking place) and sets the 'scan counter control' 
latch. This latch causes the ROS test sequencer output to 
be blocked, thus taking the operation out of ROS test 
sequencer control, and inhibits stepping the ROS test 
sequencer. 

At this time, the bit test begins ROS functions using 
the address in ROSAR. The CPU clock cycles ROS until 
the FLT counter (loaded from the MCW word and 
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decremented by 1 in synchronism with the CPU clock 
cycles) is reduced to 0. When the FLT counter equals 0, 
the 'cycle counter equals zero' latch is set and the 'MMSC' 
trigger is set to stop the CPU clock and the test. The 
scan-out bus is now used to scan out the results. The 
'SOROS' and 'sync' triggers are set, and the 'sync' latch is 
set . to complete synchronization of the controls with the 
FLT clock. The ROS sense latches are reset, and register 
ingating is inhibited. The 'MMSC' trigger is then reset. The 
output of the scan-out bus is transferred to PAL and 
subsequently to T. The 'scan counter control' latch is 
reset, thus activating the 'reset ROS sense latch' signal and 
restoring control to ROS test state 2. A scan system reset 
resets the latches and triggers used to control scan out. 
The ROS test sequencer is decremented by 1. 

ROS Test State 1. During ROS test state 1, the results in 
T and the mask in S are negative-OR'ed into PAL by the 
'scan out S and T' signal. A scan storage request for the 
TN/ATN word is initiated and, depending on the ERSLT 
bit value and the PAL zero-result check, the 'pass' or 'fail' 
trigger is set as follows: 

PAL ERSLT Bit 

=O 
=Fo 0 
=O 0 
=Fo 

'Pass' Tgr 

set 
set 

'Fail' Tgr 

set 
set 

If a 'TIC' signal has not arrived to indicate that the 
alternate buffer is full, and a scan input error did not 
occur, the operation returns to ROS test state 3 to repeat 
the test. If an error or a 'TIC' or 'gap' signal occurred, the 
ROS test sequencer is decremented by 1, thereby going to 
ROS test state 0. 

ROS Test State 0. During ROS test state 0, the word 
fetched in ROS test state 1 is loaded into ST, and a stop 
or continue decision is made. If the test is to be 
continued, a TN or an ATN is specified, and the ROS test 
sequencer is set to 7 and decremented by 1. If the test is 
to be stopped, the 'pass pulse' trigger is reset to stop the 
FLT and scan clocks, the UT bit, MCW(S), is set, and a 
'stop scan' signal stops the tape at the end of the current 
record. The ROS test sequencer is set to 7, and the scan 
controls stop. To continue testing ROS, either RESTART 
FLT 1/0 or LOAD must be depressed. 

If the ROS tests are restarted by depressing REST ART 
FLT 1/0, the same conditions are set up as for an IPL, 
except that instead of an 'IPL' signal, a 'start scan' signal 
is raised to the channel. This signal causes the backspace 
CCW in location 80 to be performed. 

When the ROS test stops because of a failure, the 
following information is displayed in the system control 
panel indicators: 



I. Failing plane (frrst digit of ROS address), in hex [roller 
5; position 2, bits 0-3 (CPU TEST ADDRESS)]. 

2. Failing ROS address (last two digits of ROS address), 
in hex [roller 1, positiOn 3, S(0-7)]. 

3. Failing bit in decimal [roller 1, position 3, S(8-15)]. 

Fault Locating Tests 

• Each FLT checks small portion of logic by setting up 
conditions that affect. exit trigger which can then be 
sensed for proper output. 

• If error occurs, test is terminated and CE uses SCOPEX 
card with failing TN identification to determine test 
points to scope. 

• FLT tapes consist of hardcore, zero·cycle, and one-
cycle tests. 

• FLT test consists of 9 or 10 doublewords. 

As discussed earlier, each FLT checks a small portion of 
the logic by setting up certain conditions that affect a 
specific trigger (known as an exit trigger) which can then 
be sensed for the proper output. Each test on the tape, 
therefore, sets up the CPU to the proper status (certain 
triggers set) that results in a particular output of the logic 
under test. After the CPU has been set up for a test (scan 
in), the CPU clock is advanced a sufficient number of 
cycles to change the status of the exit trigger. The 
indicator associated with the exit trigger is then selected 
(scan out) and compared with an ERSLT bit in the FLT 
MCW, set as part of the scan-in routine .. If the values are 
equal, the test passes; if unequal, the test fails. Because 
each test is repeated a number of times, both the pass and 
fail indicators may be on, which is interpreted as an 
intermittent failure. 

A summary of an FLT includes: 
1. Load test into storage. 
2. Scan into CPU triggers. 
3. Advance CPU clock. 
4. Stop CPU clock. 
5. Scan ciut to T (scans desired indicator to T). 
6. Load mask into S. 
7. Scan out S and T (compares exit trigger with expected 

result). 
8. Go to next test, or terminate and display failing TN. 

CE action following this sequence (assuming an error 
or fault) requires locating the SCOPEX card with the 
failing TN identification, scoping the test pojnts listed, 
and replacing the failing card(s). 

FLT's are rarely run singly. So little time is involved 
that it is easier to run the entire series on a tape or until a 
failing test is encountered. The failing test may then .be 
repeated until the fault is isolated. 

FLT Tape. The make-up of the FLT tape is similar to that . 
of the ROS test tape and contains the following records: 

IPL Load- ~&r_:l- IPL Hard- Zera-Cycle One-Cycle 
I er Tests 2 care Tests Tests 

2 Tests 

1. Record 1, IPL 1. This record contains the 24-byte 
"bootstrap" program necessary for any IPL operation. 
When WAD is depressed, the three doublewords of 
this record are read into storage locations, as follows: 

Storage Location 
(Hex) Word Contents 

0 PSW Backspace (not used). 

8 CCW1 Read command to read 40 bytes 
·to location 80, and chain com-
mand to location 10. 

10 CCW2 TIC command to location 88. 

2. Record 2, Loader. This record contains the loader 
program that reads in the FLT's. The IPL program in 
record 1 reads this record into storage locations, as 
follows: 

Storage Location 
(Hex) ~ Contents 

80 ccw Backspace command. 

88 ccw Read command to read 72 bytes 
to buffer t (location 8000), and 
a chain data tag to location 90. 

90 ccw TIC command to location 98. 

98 ccw Read command to read 72 bytes 
to buffer 2 (location 8080). and 
a chain data tag to. location AO. 

AO ccw TIC command to location 88. 

3. Record 3, Hardcore Tests 1 and 2. This record contains 
the frrst FLT hardcore test. The hardcore tests for. 
FLT's are identical to the ROS test hardcore tests 
except for their format. The FLT hardcore tests have 
the following format: 

Storage Location 
(Hex) FLT Word Left Word Right Word 

8000 0 0 0 
8008 1 Mask MCW 
8010 2 0 0 
8018 3 0 0 
8020 4 0 0 
8028 5. 0 0 
8030 6 0 0 
8038 7 0 0 
8040 8 TN ATN 
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Note that all locations except those containing FLT 
words 1 and 8 are blank. These blank locations are not 
used in hardcore tests. 

4. Record 4, IPL 2. The first hardcore test causes a stop. 
When LOAD is depressed, the following IPL program 
replaces the IPL 1 program: 

Storage Location 
(Hex) Word Contents 

0 PSW Backspace record. 

8 CCW TIC command to location 88 
(loader program). 

5. Records 5-8, Hardcore Tests. These ·records contain 
the remaining hardcore tests. 

6. Zero-Cycle· Tests. The next series of records on the 
FLT tape are the zero-cycle tests. These tests further 
check the scan logic necessary to run the main FLT's 
(one-cycle tests). They determine whether the scan-in 
and scan-out paths are operative. Scan-in and scan-out 
tests can exist only for triggers which have a scan-out 
path. In these tests, a pattern is scanned into the 
machine, the CPU clock is allowed to advance, and the 
output. trigger is observed. If the trigger has a scan-in 
path, three tests are performed: for a reset state, for a 
set state, and again for a reset state. If the trigger has 
no scan-in path, only one test is performed, and this 
test ascertains that the trigger is at its reset state. While 
one trigger is being tested, other triggers can take on 
various, staies.· Whenever possible, random ~tates 
simulate the combinations which may be used in a 
one-cycle test and reveal interaction between triggers. 

7. One-Cycle Tests. The remainder of the tape contains 
the one-cycle tests which are the true FLT's. The input 
has been generated by the FLT generating system and 
found to be a test that will detect and locate at least a 
single fault. An input pattern is scanned into the 
predetermined triggers, and the CPU clock is allowed 
to advance; the result, which is in the exit trigger, is 
compared with the value expected for a machine 
operating correctly. 

The last test in each record is a dummy test, which 
keeps the .channel from reading across the interrecord gap 
before the result of the last one-cycle test is known. Thus, 
if the last one-cycle test fails, a stop-scan sequence can be 
executed before the interrecord. gap is reached. The 
dummy test is also used by the FLUT program. When 
used with FLUT, the dummy test is identified by a TN of 
all 1 's and is forced to pass by having a mask of all l's and 
an expected result bit of 1. The dummy test also provides 
a successful restart if the last test in a segment should fail. 

FLT Format. Zero-cycle and one-cycle FLT's have the 
same format (Table 6-2), consisting of 9 doublewords (10 
if a 7080 Compatibility Feature or a 

6-52 (9/68) 

Table 6-2. FLT Format 

Storage Location Scan-
(Hex) In Word* Left Word Right Word 

8000 and 8080 0 s T 
8008 and 8088 1 Mask MCW 
8010 and 8090 2 Q Q 

8018 and 8098 3 A Miscellaneous triggers 
8020 .1:1nd 80AO 4 8 Miscellaneous triggers 
8028 and 80A8 5 0 Miscellaneous triggers 
8030 and 8080 6 PSW IC 
8038 and 8088 7 E,R LAA 
8040 and 80CO 8 TN ATN 

*Refer to ALD's M3071 and M3081 for bit assignments. 

709/7040/7044/7090/7094/709411 Compatibility Feature 
is attached). The doublewords (scan-in words) are used as 
follows (see ALD's M3071 and M3081 for the FLT 
format if a Compatibility Feature is attached): 

I. Scan-In Words 0 and 2-7. Contain the scan-in test 
pattern, which is·distributed to registers and triggers as 
shown in Table· 6-2. The data establishes a CPU state 
before performing the FLT. 

2. Scan-In Word I, Left Half (Mask). Specifies the exit 
trigger to be .sensed. This is accomplished in the 
scan-out bus by OR'ing the scan-out word containing 
the exit trigger status with the mask bits. The mask 
contains all l's except for a 0 in the position 
corresponding to the trigger being sensed. The output 
of the OR is inverted so that if the exit trigger is set, 
the value sent to PAL is 0. 

3. Scan~In Word I, Right Half (MCW). Contains the 
control information necessary to run the test: 

Se1:1n·I n Word 1 
MCW Bits Position Contents 

0-3 32-35 O's 

4 36 LWbit 

5 37 UT bit 

6 38 CT bit 

7 39 ERSLTbit 

8-19 40-51 ROS address (bits 73-84 of 
input pattern) 

20 52 0 

21-25 53-57 Se1:1n out address 

26-31 58-63 Cycle count 

4. Scan-In Word 8. Contains the TN and ATN as follows: 
bits 0-15, TN; bits 16-31, complement of TN; bits 
32-47, complement of ATN; bits 48-63, ATN. 



FLT Test Setup. Several controls on the system control 
panel must be operated to initiate FLT's. The procedure 
for running FLT's appears in 2065 Processing Unit 
FEMM form Y27-2039-2 and ALD M8005. However, a 
short description of the setup is included here because it 
affects the operation. 

Diagram 8-117, Sheet 2, FEMDM, shows the start of an 
FLT. The FLT tape is mounted first. The LOAD UNIT 
switches are set to the address of the tape unit holding the 
test tape, the TEST MODE, ROS/PROC/FLT switch is set 
to FLT, and the CPU CHECK switch is set to DSBL. 
Going into FLT test mode causes the 'FLT test' trigger to 
be set and a 'scan mode' signal to be sent to the channel. 
SYSTEM RESET is now depressed to place the CPU in a 
stop loop with the 'manual' trigger set. The DATA 
switches are set to all l's, and STORE is depressed. This 
action places all 1 's into ST so that T now contains an 
ATN for the first hardcore test. Lastly, LOAD is 
depressed, initiating a normal IPL operation which reads 
in IPL 1. 

IPL 1. Depressing LOAD with the CPU in FLT test mode 
initiates operations that are identical to a normal IPL until 
a 'release' signal is received from the channel; i.e., 24 
bytes are read from the selected device into the first three 
doubleword locations of main storage under ROS micro­
program and channel control. At this point the CPU is 
idle, waiting for a 'release' signal from the channel. 
Meanwhile, the channel IPL operation reads iil record 1 of 
the FLT tape and executes the channel program specified 
by record I. (See "FLT Tape".) As a result, 40 bytes 
(record 2) are read into storage, starting at location 80 
(hex). Record 2 contains the loader program that will read 
each FLT into the proper buffer area in storage. 

After record 2 has been read in, command chaining 
causes CCW 2 in record 1 to be executed. This CCW is a 
TIC command to location 88, which now contains a read 
CCW. When the channel has finished executing the TIC 
command, it sends a 'release CPU' signal to the CPU. As 
soon as the 'release CPU' signal is received, the IPL 
microprogram is continued and the CPU proceeds as 
though performing a normal IPL. However, when the 
'timing gate' trigger is reset (Diagram 8-117, Sheet 3), the 
'IPL status' latch is set, which in turn sets the 'MMSC' 
trigger. With the 'MMSC' trigger set, the CPU clock is 
stopped, thus halting all ROS operations. 

The 'sync' trigger and 'sync' latch are set to synchro­
nize the operation to the FLT clock. In addition, the 
'sync' trigger output resets the ROS sense latches and 
inhibits register input. Address 001 is forced into ROSAR, 
and the 'MMSC' trigger is reset to release the CPU clock. 
Thus, the FLT microprogram is initiated. ROS control 
now places the CPU in scan mode and sets the address 
sequencer to 7. The CPU is now ready to run the first 
hardcore tests. 

Loader. Highlights: 

• FLT's are read into two buffer areas (8000 and 8080, 
hex) in main storage. 

• Each time a buffer is filled, 'TIC' pulse informs CPU 
that test can be performed. 

• Read-in operation continuously checks for errors. 

• After 32 errors, test is halted. 
• Test is repeated until 'TIC' pulse is received. 

The loader channel program read in by IPL 1 is used to 
transfer all FLT's, whether hardcore, zero-cycle, or 
one-cycle tests, to main storage. The test data is read into 
two buffer areas in main storage [starting at locations 
8000 (hex), designated buffer 1, and 8080 (hex), desig­
nated buffer 2), Each time a buffer is filled with a single 
test, a 'TIC' pulse informs the CPU that the buffer is filled 
and the test can be used by the CPU. 

The tests are read into the buffer areas on a sequential 
basis. For example, test 1 is read into buffer 1. As test 1 is 
being processed, buffer 2 is being filled with test 2. As test 
2 is being performed, buffer 1 is being refilled with test 3, 
and so on. 

A continuing check for errors is made during read in 
and during transfer of data to the CPU. If an error is 
encountered, the tape is backspaced and another attempt 
is made to read the data into storage. The check counter, 
8et to 31 by a micro-order, keeps track of the number of 
errors encountered and allows 32 attempts to read in 
before the test is halted. Detection of an error decrements 
the check counter by 1 and causes a backspace of the tape 
so that the read in is retried. Manual intervention is 
required following a stop under these conditions. Channel­
control checks may also occur which halt the test 
procedure immediately. 

Once a.test is begun, it is repeated until a 'TIC' pulse is 
received, indicating the next test is ready for processing. 
No count is made of the number of times a test is run as 
this is a function of the data rate of the 1/0 device 
involved. 

During normal sequential processing of FLT's (no 
faults encountered), the address sequencer is set to 7 and 
the eight doublewords composing a single FLT are 
scanned into the CPU. The following is a summary of the 
read-in and test sequence: 
1. While the FLT is being scanned into the CPU, a 

continuing check for storage and/or input errors is 
made. Storage errors might occur between storage and 
the CPU. Input errors might occur between channel 
and storage while the next FLT is being r.ead into the 
alternate buffer. For each error sensed, the check 
counter is decremented by 1. Detection of an error 
results in a backspace of the tape and a retry. 

2. When scan in is complete, the 'scan mode' trigger is 
reset, and an unconditional branch to the ROS word 
addressed by MCW(8-19) is performed. 
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3. The 'scan counter control' trigger is set, and the FLT 
counter keeps track of the number of CPU cycles 
specified by MCW(26-31). The CPU clock is stopped 
when the FLT counter equals 0. 

4 .. Following a successful scan in and clock advance, a 
scan-out operation places the ·test result into T. The 
combination of MCW( 4) and MCW(21-25) determines 

. the scan-out word that is transferred to T. 
5. At this point, the mask is fetched from storage and 

transferred to . S. A result comparison between the 
mask and the scanned-out word is made, and the 'pass' 
or 'fail' trigger is set. The next operation to be 
performed is determined by pass, fail, unconditional-, 
or conditional-terminate conditions. 

6. Execution of this FLT is repeated until a 'TIC' or 'end 
of record' ('gap') signal is ~eceived. When either signal 
is received, the decision to stop or continue is made, 
and appropriate controls are set. 

Transmission Checks During FLT Read In. When the 
channel discovers a data check, it sends a 'unit data error' 
signal to the FLT controls. The channel then automat­
ically backspaces one record and starts reading into buffer 
1 again. 

The FLT controls, upon receipt of the 'unit data error' 
signal, decrement the check counter, reset the CPU, and 
wait for a 'TIC' pulse from the channel. When the 'TIC' 
pUise is received, the FLT controls start the testing from 
storage buffer 1, repeating the tests from the record that 
had the data check. If the check persists, the record is 
retried up to 32 times. If 32 attempts to complete the 
record are unsuccessful, the machine stops with the UDC 
(Unit Data Check) indicator (roller 5, position 2, bit. 32) 
on. 

If a control check occurs in the channel, the channel 
stops transmission and sends the 'channel control error' 
signal to the FLT controls. The signal stops the testing 
immediately and turns on the CCC (Channel Control 
Check) indicator (roller 5, position 2, bit 33). 

If the BCU recognizes an address check, data check, or 
invalid address check, this information is sent to the FLT 
controls. On any of these checks, a 'stop scan' signal 
backspaces the record and starts reading into buffer 1 
again. The CPU and FLT controls are reset, and the check 
counter is decremented. The FLT controls wait for a 'TIC' 
pulse from the channel. When this pulse is received, the 
FLT controls start testing from buffer 1, repeating the 
tests from the record involved. After 32 unsuccessful 
attempts to complete the test record, automatic testing 
stops with the error indicator on. 

Hardcore Tests. Functionally, the hardcore tests at the 
beginning of the FLT tape are identical to the ROS 
hardcore tests. The differences are in the format and 
control of the tests. ·FLT hardcore tests have the same 
format as. zero-cycle and one-cycle tests except that all 

6-54 (9/68) 

scan-in words except words 1 and 8 are O's. Word 1 
contains the mask and MCW, and word 8 contains the 
TN/ATN. These words are used in the same manner as in 
the ROS hardcore tests. 

FLT hardcore tests are controlled by the FLT ROS 
microprogram instead of by hardware as in the ROS 
hardcore tests. Successful testing terminates on a hardcore 
stop (a correct stop), and, upon restart, the CPU enters 
zero-cycle tests. The ·cE may attempt isolation and repair 
on an error stop encountered during hardcore tests 
according to the procedure in ALD M8006. 

Zero-Cycle and One-Cycle Tests. Highlights: 

• Scan in loads CPU with test data. 

• Test cycle allows CPU to act on scan-in data. 

• Scan out collects data after clock advance. 

• Mask is compared with scan-out data. 

• Testing ends or continues, depending on result com-
parison. 

Each FLT follows a similar 6-step routjne under ROS 
control (with the exception of scan out, which may be 
either under ROS or hardware control). The FLT se­
quence may be summariz~d as follows: 
1. Scan In. When a storage buffer has been filled with an 

FLT and the CPU receives a 'TIC' pulse, scan in begins. 
The address sequencer is set to 7 by a micro-order, and 
words 0 through 7 are read into the CPU. These words 
enter the CPU via Q or ST, and are scanned into 
various registers and triggers throughout the CPU, using 
normal data paths, to set up the machine environment 
for a particular test. During scan in, certain rnicro­
orders are interpreted for scan control rather than for 
functional operations. From T, the MCW is transferred 
to the address sequencer, the FLT counter, and the 
MCW register when the address sequencer equals 1. 
When the address sequencer equals 0, scan in is 
completed except for ST, and the test cycle phase is 
entered. A micro-order transfers T to ROSAR, and on 
the next cycle ST is scanned in. . 

2. Test Cycles. The count in the FLT counter, set by the 
MCW, determines the number of cycles taken by the 
CPU. A micro-order, specified by MCW(8-19), con­
trols this portion of the test. When the FLT counter 
equals 0, the CPU clock is stopped and scan out begins. 

3. Scan Out. The status of the exit trigger is placed into 
T. The scan-out word containing the status of the exit 
trigger is specified by the count in· the address 
sequencer. MCW(4) determines whether the right or 
left word contains the exit trigger status. If the count 
in. the address sequencer is 14 or greater, scan out is 
controlled by hardware. If the count is 13 or less, scan 
out is controlled by ROS. · 



4. Result Comparison. The exit trigger is compared with a 
known value, one that is predicted on the basis of the 
information scanned in. This comparison is accom­
plished by fetching the mask from storage, placing it 
into S, then OR'ing the scan-out word and the mask in 
the scan-out bus. The mask contains all 1 's except for 
the position cor~esponding to the exit trigger, which is 
a 0. Assuming the exit trigger is set when it is OR'ed. 
with the 0 in the mask, the output is transferred to 
PAL as a 0. Next, the CPU compares the output ofthe 
OR with MCW(7), the ERSLT bit. With all O's in PAL 
and MCW(7) = 1, the CPU detem:Unes that the test has 
passed and sets the 'pass' trigger. If the comparison is 
unfavorable, the 'fail' trigger is set. Because the test is 
continually repeated until the next 'TIC' pulse is 
received, both the 'pass' and the 'fail' triggers can be 
set, indicating an intermittent failure, in which case the 
'intermittent' trigger is also set. After the result­
comparison, the CPU must decide whether to termin­
ate testing or to continue. 

5. Terminate or Continue. This decision is a major point 
in the FLT sequence. Four triggers determine what the 
CPU will do next: 'pass', 'fail', 'UT' [MCW(5)], and. 
'CT' (MCW(6)]. The CT bit is always set in current 
FLT's (except for certain hardcore tests). Depending 
upon the setting of these triggers, the decision that will 
be made is as follows: 

Trigger Output 
'UT' 'CT' 'Pass' 'Fail' 

0 0 0 
0 1 0 
0 0 0 1 
0 1 0 1 
1 0 1 0 
1 0 0 

Action 

Continue~ alternate test 
Continue - next test 
Continue - next test 
Stop - gate alternate test on restart 
Stop - gate alternate test ori restart 
Stop - gate alternate test on restart 

The CPU repeats the current test. until the 'TIC' pulse 
is received from the channel. At that time, the decision 
to stop or continue is made. If the CPU is to continue, 
the test in the opposite buffer is scanned in. No count 
is made of the number of times the test is repeated. 

6. TN/ATN Comparison. This comparison is accom­
plished in hardcore and whenever RESTART FLT 1/0 
is depressed. The TN located in word 8 (word 9 for a 
7080 Compatibility Feature or a 709/7040/ 
7044/7090/7094/709411 Compatibility Feature) is 
compared with the ATN left in T by the last test to be 
executed. Also, a specific TN may be entered via the 
DATA switches, and the CPU searches for this number 
to the exclusion of all other tests. As FLT's are now set 
up, the ATN in each test is the number of the next 
FLT on the tape (with the exception of hardcore 
tests). 

Scan-In. Highlights: 

• Test pattern establishes trigger status before test. 

• Test wo~ds are read into S, T, or Q, then distributed 
throughout CPU under microprogram control. 

The scan-in portion of an FLT consists of fetching a test 
pattern to establish a trigger status before a test. Scan-in 
test words are read into S, T, or Q from the FLT buffers. 
From these registers, the data is transferred throughout 
the CPU, under microprogram control, via special scan 
circuits and normal CPU paths. Transfer paths are 
determined by the microprogram, whic;h is repeated 
without variation for each FLT. At the end of scan in, the 
CPU clock is allowed to cycle the number of times 
required to condition the exit trigger. Scan in ordinarily 
fetches eight words from storage into the CPU· but 
provision has been made for a ninth word to be used with 
the 7080 Compatibility Feature or the 709/7040/ 
7044/7090/7094/709411 Compatibility Feature. 

A scan in is started with the address sequencer set to 7 
(Diagram 8-117, Sheet 3, FEMDM). A scan storage 
request fetches scan-in word 7 of the record. This word is 
transferred to ST, the address sequencer is reduced by 1, 
and a check is made for a scan input error. If an error is 
encountered, the check counter is reduced by 1, a 'start 
scan' signal causes the tape to backspace, and the 
operation begins again where scan-mode is set into the 
CPU. If no error occurred, another scan storage request is 
made for word 6, which is held in the CPU pending a 
check for a: 'TIC' or 'gap' pulse. A 'TIC' or 'gap' pulse 
indicates the alternate storage buffer is full. Because the 
scan in was just started and the CPU is much faster than a 
tape drive, it can be assumed that no 'TIC' or 'gap' pulse is 
received. The address sequencer is reduced by 1, and a 
scan input error sample is made. If no scan input error 
occurred, another scan storage request is made. Anytime a 
scan input error occurs, the check counter is reduced by 
1, the 'start scan' signal causes the tape drive to backspace 
one record, and the operation repeats from the time 
scan-mode is set. 

Scan in continues to operate for words 5, 4, 3, and 2 
exactly as it did for word 6, except that no check for a 
'TIC' or 'gap' pulse is made when the address sequencer 
equals 2. Word 1 (mask and MCW) is loaded into ST, and 
a check is made for a 'TIC' or 'gap' pulse. Before word 0 is 
transferred into the CPU, the mask and MCW (word 1) are 
transferred out of ST. Diagram 8-117, Sheet 4, shows that 
T(32-39) is transferred to the MCW, T(53-57) is 
transferred to the address sequencer, T(58-61) is trans­
ferred to the FLT counter and FLT clock, and the 'scan 
counter control' trigger is set. If no scan input error 
occurred, word 0 is loaded into ST after T(40-51) is 
loaded into ROSAR. The 'scan counter control' latch is 
then set to allow the test to be performed. 
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Test Cycles. The CPU clock is allowed to advance a 
number of cycles as specified by MCW(26-31) (Diagram 
8-117, Sheet 5). A portion of the microprogram starting 
at the . address specified by MCW(8-19) is performed. 
Note that at this point the CPU seems to be running a 
program. However, this is not the case. The micro-orders 
being performed merely allow the scan-in test pattern to 
be transferred through the logic being tested to change the 
state of the exit trigger. If setting these triggers at 
scattered points causes three legs of an AND to be tested, 
then l's are directed to those triggers when testing the 
AND. If the three triggers happen to be those normally set 
during, for example, I~Fetch, this fact is incidental to FLT 
testing. 

As soon as the CPU clock cycles begin, the FLT 
counter is stepped in synchronism with the clock. When 
the proper number of cycles has been taken, the FLT 
counter steps to 0, which causes the 'cycle counter equals 
zero' latch to be set. The 'SOROS' and 'MMSC' triggers 
and the 'sync' latch are then set. The 'MMSC' trigger stops 
the CPU clock. As soon as the 'sync' latch is set and the 
operation is synchronized to the scan and FLT clocks, the 
'MMSC' trigger is reset. The operation proceeds under 
ROS or scan logic control, depending on the value in the 
address sequencer. 

Scan Out. During scan out (Diagram 8-117, Sheet 5), the 
exit trigger status is transferred from the indicator driver 
circuits, through PAL, to T. This path is the same path 
used for logout operations. 

The word scanned out is determined by the scan-out 
address in the address sequencer. The setting of the 
address sequencer determines which roller switch on the 
system control panel contains the desired information, 
and MCW( 4) determines whether the right or left half of 
the word should be scanned out. Scan out is first 
controlled by scan hardware and then by the micro­
program. The hardware-controlled portion of scan out is 
always performed first regardless of the value in the 
address sequencer, although only those fields addressed by 
a value of 14 or greater are scanned out. If the exit trigger 
is in a scan-out word whose address is 13 or less, the field 
is scanned out under microprogram control. 

ROS control is resumed by forcing one address if the 
address sequencer is greater than 13, and another address 
if it is less than 14. The microprogram started by the 
former is ready to perform a result comparison because 
the exit trigger value is in T. The latter program first 
branches on MCW( 4) to determine if the left or the right 
half of the doubleword addressed by the address se­
quencer should be scanned out. The LSWR is gated to T 
by a normal CPU gating signal; therefore a branch must be 
made on address sequencer equal 13. Because the LSWR is 
contained in the right half ~f word 13, a branch on 
address sequencer equal 13 is unnecessary if MCW(4) 
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equals 1. By means of these branches, the microprogram 
transfers the field to be tested to T, and thus begins the 
result comparison. 

Result Comparison. FLT's check logic by moving data 
through a group of logic to an exit trigger and causing a 
change in the state of the exit trigger. To determine the 
success or failure of a test, the change in the exit trigger 
must be sensed on the basis of the data entered into the 
logic. This change is predictable, and the data on the test 
tape designates whether the exit trigger is to be a 1 or a 0 
at the conclusion of each test. The expected state of the 
trigger is contained in the MCW as the ERSLT bit. 

The scan out S-and-T function (Diagram 8-117, Sheet 
5) determines the setting of the exit trigger by comparing 
a mask with the scan-out word containing the status of 
the exit trigger. Scan out places the selected scan-out 
word into T. A mask word, fetched from storage, is put 
into S. The mask contains all l's except for the bit 
position corresponding to the exit trigger in T. This bit 
position is a 0, and therefore the exit trigger determines 
the setting of PAL. 

If the exit trigger is set, a 0 is transferred to the 
corresponding PAL bit; if reset, a 1 is transferred to PAL. 
Thus, PAL equals 0 only if the exit trigger equals 1. If the 
ERSLT bit [MCW(7)] also equals 1, or if PAL does not 
equal 0 (indicating that the exit trigger is reset) and the 
ERSLT bit equals 0, the 'pass' trigger is set. If MCW(7) 
equals 1 and PAL does not equal 0, or if MCW(7) equals 0 
and PAL equals 0, the 'fail' trigger is set. In any case, if 
both the 'pass' and 'fail' triggers are set, the 'intermittent' 
trigger is also set. 

Terminate or Continue, When the mask was loaded into S, 
the address sequencer was set to 8 and a scan storage 
request was initiated to fetch scari-in word 8 (TN/ATN). 
At the same time that the mask is compared with the 
scan-out word, scan-in word 8 arrives from storage and is 
gated to ST. The result in PAL and the ERSLT bit are 
used to set the 'pass' or 'fail' trigger, and thus record the 
result. The address sequencer is then decremented, result­
ing in a repeat of the same test just executed. 

Assuming the test was successful and no errors were 
found, the operation described is repeated until the buffer 
is filled with the next test or until an end-of-record gap is 
signalled. These conditions are repeatedly sampled for 
during scan in. If a 'TIC' or 'gap' pulse is received, scan-in 
execution is abandoned. The address sequencer is set to 8 
and the TN/ATN of the test in progress is fetched and 
loaded into ST. After a system reset which clears the CPU 
registers, a stop or continue check is then made (Diagram 
8-117, Sheet 5). If a continue condition results, the 
operation proceeds to the setting of scan mode to start 
the next or alternate test as determined by the stop or 
continue controls. In case of a stop conclusion, the 'stop 
scan' signal goes to the channel and the UT bit [MCW(S)] 



is set. The clocks are then stopped by resetting the 'pass 
pulse' trigger, and the CPU enters a microprogram loop. 

After a stop condition, manual inter\rention is neces­
sary. The operation then depends upon the pushbutton 
depressed, as follows: 
I. START (with TEST MODE, REPEAT switch off). 

Runs the test that causes the stop one time and causes 
another stop. · 

2. START [with TEST MODE, REPEAT switch in the 
Repeat (down) position]. Continues to run the test 
that caused the stop until TEST MODE, REPEAT is 
turned off. 

3. STORE. May be used to set an ATN into T. (May be 
used in conjunction with REST ART FLT 1/0 to 
perform an ATN search for a known test.) 

4. RESTART FLT 1/0. Sends a 'start FLT' signal to 
channel and resets the UT and CT bits and the 'fail' 
and 'buffer l' triggers. The 'pass' trigger is set. (This 
combination represents an ATN search condition.) 

5. LOAD. Initiates a system reset and begins at the start 
of the FLT test tape. 

TN/ATN Comparison. Every FLT contains the TN and 
the ATN of the test which the CPU is to execute upon 
completion of the current test. This information is 
contained in word 8 (word 9 for the 7080 Compatibility 
Feature or the 709/7040/7044/7090/7094/709411 Com­
patibility Feature) and consists of the TN and ATN in 
both true and complement form. · 

The hardcore tests verify the ability of the CPU to 
conduct a TN search by comparing the TN (in S) with the 
ATN (in T) using the 'scan out Sand T' signal. A 0 output 
indicates a favorable comparison, and the CPU then 
executes the test. If the inverted-OR output is not sensed 
as all O's, the CPU rejects the test and continues searching. 
The bit configuration in hardcore tests cannot strictly be 
called a TN, but the functions of comparison, acceptance, 
or rejection of the test are valid. 

During zero-cycle and one-cycle tests, the TN search is 
rarely used. If the CPU does not encounter a failing test 
once it has entered the FLT sequence, word 8 is not even 
used. The address sequencer is set to 7, and scan in begins 
immediately. 

However, if a failing test is encountered, the last action 
the CPU takes is to put the ATN into T. The test 
immediately following the failing test has a TN that is the 
complement of the ATN. When this TN is brought into S 
and compared with the ATN, a 0 output results, and the 
CPU begins testing again with this test. This action allows 
the CE to get past a failing test when he desires to do so. 
This situation could happen, for example, when an FLT is 
failing because of an engineering change and the CE is 
aware that failure is not due to a malfunction. Each FLT 
has the TN of the next sequential FLT as its ATN. 

For example, assume the computer has just run TN 01 
09 and the test has failed. The next test is TN 01 OA. 

RESTART FLT 1/0 is depressed to get past the failing 
test. Upon restart the tape \s backspaced to the beginning 
of the record containing the failing test. The TN of each 
test in the record is brought into S for comparison with 
the ATN left in T by the failing test. The comparison is 
favorable when the test immediately following the failing 
test is encountered, and the CPU resumes testing at that 
point. TN 01 09 leaves the following configuration in T 
(right half of word 8): 

ATN Complement ATN 

FE F5 01 OA 

TN 01 OA, the next test, has the following configura­
tion in the left half of word 8 which was brought into S: 

TN TN Complement 

01 OA FE F5 

The following binary bit configuration is scanned out: 

T: 1111 1110 1111 0101 0000 0001 0000 1010 

S: 0000 0001 0000 1010 1111 1110 1111 0101 

The CPU resumes testing with TN 01 OA and continues · 
until another failure is encountered or to the end of the 
testing sequence. . 

RIPPLE TESTS 

The ripple tests may be used to exercise . either main 
storage or local storage and several functional units within 
the CPU. The tests use only the internal hardware of the 
CPU, including several ROS words, and storage. The 
procedure stores the contents of the DATA switches into 
all locations of storage or displays the contents of all 
storage locations. 

The ripple tests may be used as a quick confidence test 
of CPU and storage operation or as a means of identifying, 
with the parity check indicators, a failing major functional 
unit within the CPU. The overall ripple test routine is 
contained in 2065 Processing Unit, FEMM, form 
Y27-2039-2. 

DIAGNOSTIC PROGRAMS 

For a list and discussion of the diagnostic programs 
available for the Model 65, refer to the 2065 Processing 
Unit, FEMM, form Y27-2039-2. 
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MARGINAL CHECKING 

The marginal checking facility enables several units in the 
system to be operated with nonstandard voltage condi­
tions, thus providing a means of detecting critical circuits 
that are deteriorating to a critical voltage-sensitive oper­
ating point. In addition, the CPU may have its clock 
period decreased from 200 ns to 195 ns, thus providing a 
means of detecting circuits that have developed a slower 
switching speed. 

Several of the power supplies .in the CPU, and several 
power supplies in the storage units and channels whose 
power control is interconnected with the CPU, may be 
varied from the nominal output voltage by controls at the 
CPU. The CPU power supplies are varied directly from the 
system control panel. (fhe adjustment procedure for 
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these controls is contained in 2065 Processing Unit, 
FEMM, form Y27-2039-2.) The storage units and channels 
are ·varied by motor drives controlled from the system 
control panel. (fhe adjustments of the· remote control 
assemblies are contained in their respective FEMM's.) 

The marginal checks are performed by running the 
ROS tests and FLT's with all 6V marginable power 
supplies in the CPU reduced to 5.SV de and the ROS 
power supply reduced to 80 percent of nominal. If the 
tests passed, rerun them with normal voltages, but with 
the FREQUENCY ALTERATION switch set. After a 
successful run of the ROS tests and FLT's, run selected 
diagnostic programs with the marginable power supplies in 
the CPU, storage units, and channels set from nominal to 
higher or lower output .. 



The only special circuits in the 2065 are in ROS for the 
differential amplifiers, latches, and driver circuits; they are 
not, however, field repairable. For a discussion of the 
standard SLT circuits, refer to the SLT Component 
Circuits, FEMI, Form Z22-2798 (IBM Confidential, for 
release only to authorized persons). 

Appendix A. Special Circuits 
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The major difference between World Trade versions of the 
Model 65 and the domestic version is that 50-Hz power is 
used in World Trade machines. This change primarily 
affects: (1) power distribution and control (Chapter 5), (2) 
decrementing of the interval timer (Chapter 3, Section I: 
"Timer Exceptional Condition"), and (3) decrementing of 
the Multisystem timer, if the Multisystem feature is 
installed (Chapter 4, "Multisystem Timer"). 

Appendix B. World Trade Differences 
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Consider the simple four-block tree shown in Figure C-1. 
Assume that output Z is observable. and that inputs P, Q, R, 
and S can be set directly. The FLT generating programs try 
to develop tests for each block to show that each input can, 
by itself, control the output and that the output can take 
both values. For example, the tests for a three-input OR 
would be 100, 101, 001, which check the inputs, and 000, 
which checks for a 0 output. 

If tests are to be generated for the logic shown in Figure 
C-1, the first test pattern generated would put 10 as the 
inputs to block Z, which then yields a 1 output and is 
sensitive. The 1 input (P) is also sensitive, but the 0 input is 
not. To make the output of Y 0, a 1 is required on at least 
one input. Assume the program chooses W, which requires 
Q and R to be O. This action forces X to O; S can be any 
value, and is arbitrarily set to 0. Thus, the first test pattern 
is 1000 and tests only two nets. (See line 1 of the table in 
Figure C-1.) 

p 

Q l 
01 OR 

w - z 
01 1--

R w y z 
y 

---;::--
._L 

s x 

Test# p Q R s w x y z 
1 1$ 0 0 0 1 0 0 1$ 
2 0 1$ 0 0 0$ 0$ 1$ 1$ 
3 0$ 0$ 0$ 0 1$ 0 0$ 0$ 
4 0$ 1$ 1$ 1$ 0 1$ 0$ 0$ 
5 0 0 1$ 0 0$ 0$ 1$ 1$ 
6 0 0$ 1 1 0$ 0$ 1$ 1$ 
7 0 1 0$ 1 0$ 0$ 1$ 1$ 
8 0 1 1 0$ 0$ 0$ 1$ 1$ 

Legend: $ means that this net is sensitive, 

Figure C-1. Four-Block Tree and FLT Pattern Generated 

Appendix C. Example of FLT Generation 

To test the other input of Z, a pattern 01 is needed. For 
the Y output to be 1, W and X must both be 0 and, because 
Y is now sensitive, so are W and X. To make the output of 
X 0, at least one input must be 0, and R is arbitrarily 
chosen. Now to make the output o( W 0, Q must be 1 and 
is sensitive. Again, S is set to 0. 

The next test pattern generated puts 00 as inputs to Z 
a.nd checks the output for 0. The same procedure that set Y 
to 0 in test 1 is followed. However, Y is now sensitive and, 
as shown iii line 3 of the table, sq are Q, R, and W. 

Block Z has now been fully tested and so the program 
steps back a level to check block Y. The first test for this 
sequence already exists in test 3 and so is not redeveloped. 
The second test requires 01 as the Y inputs. For the X 
output to be a 1 means that Q, R, and S must all be l's. 
This condition automatically causes the output of W to be 
0, which is correct. Because Y cannot be observed directly, 
its output must be propagated to Z as a sensitive path. This 
propagation is done by making P 0. Now Z, Y, X, and all of 
the inputs to X are sensitive. Because the output test for 
block Y is performed by the second test, testing of block Y 
is now complete. 

The first input test for block W is already included in test 
2. The second test makes Q 0 and R 1, which causes the 
output W to be 0. To propagate this condition sensitively 
through Y requires that X be 0, which it is. Again, to 
propagate through Z, P must be 0. Sis arbitrarily set to 0. 
This condition is line 5 of the table in Figure C-L The 
output test for block W is included in test 3 . 

The input test patterns for AND X should be 011, 101, 
and 110. None of these has been set up so far. Because 
these are all primary inputs, no real test development is 
needed. The only other important input is P, which must be 
0 for Y to be sensitive. These three patterns are shown in 
lines 6, 7, and 8 of the table in Figure C-1. The output test 
for block Xis already in pattern 4. 

A test now exists for every possible logic failure in the 
network, and the process ends. The test patterns are 
formatted for the machine, termination bits are added, and 
index numbers are assigned. These numbers are those in the 
table in Figure C-1, with a constant added to define the 
segment. 

The failure data from the table is now used to produce a 
SCOPEX. In a SCOPEX, all sensitive points .are listed for 
each test, together with indications showing which are 
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newly tested. Table C-1 · is an abbreviated version of 
SCOPEX for the first five tests. Note that the "Fed By" 
column refers only to those sensitive items feeding the 
given net. Thus, in test 2, although the output of block X is 
sensitive, no inputs are sensitive and so no input is listed. 
The list for test 4 shows an example of the G/FI notation. 
In this test, all three inputs to X are 1 and are sensitive. 
However, entry Q has been tested at 1 through block W 
before this. Therefore, the entry is now newly tested, but is 
newly tested as an input to X. For this reason, the G/FI is 
put on the line of X. 

Table C-1. SCOPEX Example 

v Net Ref Fed By 

***1 

G/F 1 z AA A1 

G/F 1 p A1 Entry 

***2 

1 z AA AB 

G/F 1 y AB AC,AD 

G/F 0 x AC -
G/F 0 w AD A1 

G/F 1 Q A1 Entry 

***3 

G/F 0 A AA AB,A1 

G/F 0 y AB AC 

G/F 1 w AC A2,A3 

G/F 0 p A1 Entry 

G/F 0 Q A2 Entry 

G/F 0 R A3 Entry 

***4 

0 z AA AB,A1 

0 y AB AC 

G/Fl 1 x AC A2,A3,A4 

0 p A1 Entry 

1 Q A2 Entry 

G/F 1 R A3 Entry 

G/F 1 s A4 Entry 

***5 

1 z AA AB 

1 y AB AC,AD 

0 w AC -

0 x AD A1 

G/F 1 R A1 Entry 
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Note: All index entries for Chapters 1 and 2 are in Volume 1; all 
other entries are in Volume 2. 

A-Register (see AB Register) 
AB Byte Counter (see ABC) 
AB Register: 

Data Flow 2-53 (Fig. 2-32) 
Input 2-52 
Introduction 1-64 
Output 2-54 

AB Register Byte Counter (see ABC) 
ABC: 

Discussion 2-54 
Introduction 1-65 

AC Power Distribution 5-1 
Add A, (SA); Fix Pt, RX 3-31 
Add, AP (FA); Dec, SS: 

Complement Add Sequence 3-113 
Discussion 3-109 
GIS 3-110 
True Add Sequence 3-110 

Add, AR (lA); Fix Pt, RR 3-31 
Add Halfword, AH (4A); Fix Pt, RX 3-32 
Add Logical, AL (5E); Fix Pt, RX 3-33 
Add Logical, ALR (lE); Fix Pt, RR 3-32 
Add Normalized, AD (6A); Fl Pt, RX (Long) 3-77 
Add Normalized, ADR (2A); Fl Pt, RR (Long) 3-76 
Add Normalized, AE (7A); Fl Pt, RX (Short) 3-75 
Add Normalized, AER (3A); Fl Pt, RR (Short) 3-71 
Add-Type Instructions, Floating-Point 3-69 
Add Unnormalized, AU (7E); Fl Pt, RX (Short) 3-78 
Add Unnormalized, AUR (3E); Fl Pt, RR (Short) 3-78 
Add Unnormalized, AW (6E); Fl Pt, RX (Long) 3-79 
Add Unnormalized, AWR (2E); Fl Pt, RR (Long) 3-79 
Addition, Binary 2-67 
Additional Storage Attachment Feature: 

Description 1-2 
Floating Address Switches 4-13 
Invalid Storage Addressing 4-8 
Multiprocessing Feature 4-2 
Number 4-1 (Table 4-1) 

Address Buses, BCU 1-51 
ADDRESS COMPARE STOP Switch 6-9 
Address Decoding, Storage; Multiprocessing System 4-8 
Address, Invalid Storage; Multiprocessing System 4-8 
Address Relocation, Multiprocessing System 4-3, 4-8 
Address Sequencer, Scan Logic 6-31 
Address Sequencer Decoder, Scan Logic 6-33 
Address Store Compare (see ASC) 
ADDRESS Switches: 

Basic System 6-9 
Multiprocessing System 4-13 

Addressing, Floating; Multiprocessing System 4-2, 4-6 
Addressing, Instruction: 

Incrementing IC 2-50 
Introduction 1-56 
Invalid Address Detection 3-19 
Invalid Instruction Address Microprogram 3-21 
Specification Detection 3-18 

Addressing, Local Storage; Manually 6-9 

Addressing, Main Storage: 
Manually 6-9 
SET IC Pushbutton 6-12 

Addressing, Operand 1-56 
Addressing Program Interruption 1-34 
Addressing, ROS: 

Introduction 1-42 
Manually 6-9 
REPEAT ROS ADDRESS Switch 6-16 
ROSAR 2-12 
ROSAR(0-10) Decoding 2-13 
ROSAR(ll) Function 2-13 

Alternate Test Number (see ATN) 
AND, N (54); Lgic, RX 3-149 
AND, NC (D4); Lgic, SS 3-150 
AND, NI (94); Lgic, SI 3-150 
AND, NR (14); Lgic, RR 3-149 
AND Function: 

Introduction 1-68 
Logical Instructions 3-148 
Parity Generation 2-72 
Serial Adder Operation 2-68 

Array Drivers, ROS 2-14 
ASC Test 3-9 
ATN, ROS Tests 6-26 
Audible Alarm 5-12 

B-Register (see AB Register) 
Balance Lines, CROS 2-6 
Base Address 1-14 
BCU: 

Channel Request 1-54 
Clocks 1-53 
Control Considerations, Basic 2-24 
Converting SAB Parity 2-34 
CPU Clock, Stopping of 2-29 
CPU Request 1-54 
CPU Sequencers 2-29 
Establishing Priority 2-29 
Gating Address to SAB 2-29 
General Description 2-20 
Initial Handling of Requests 2-28 
Interface, Basic Considerations 2-20 
Interface Lines, Major 1-51 
Invalid Address Detection 2-38 
Modifications to, Multiprocessing System 4-8 
Operation with Channels 2-22 
Operation with CPU 2-21 
Operation with LCS 2-24 
Operation with Main Storage 2-22 
Operational Sequence, Basic 2-26 
Priority ·Logic 1-5 3 
Resetting of 2-38 
Select Signal, Generation of 2-34 
Storage Errors 2-38 
Storage Operation, Multiprocessing System 4-9 
Storage Unit, Selection of 2-30 
Timing Considerations, Basic 2-24 

Bit Capacitors, CROS 2-10 
Bit-Level Carry-Into Logic, Parallel Adder 2-78 
Bit Plates, CROS 2-6 
Bit Position Logic, Parallel Adder 2-73 

Index 
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BitTests, ROS Tests: 
Discussion 6-49 
ROS Test State 0 6-50 
ROS Test State 1 6-50 
ROS Test State 2 6-50 
ROS Test State 3 6-50 
ROS Test State 4 6-49 
ROS Test State 5 6-49 
ROS Test State 6 6-49 
ROS Test State 7 6-49 

Block I-Fetch Trigger: 
Discussion 3-13 
Function 2-89 (Table 2-2) 

Branch and Link, BAL (45); Br, RX 3-168 
Branch and Link, BALR (05); Br, RR 3-166 
Branch Invalid Address Trigger 2-89 (Table 2-2) 
Branch on Condition, BC (47); Br, RX 3-165 
Branch on Conrlaion, BCR (07); Br, RR 3-164 
Branch on Count, BCT (46); Br, RX 3-170 
Branch on Count, BCTR (06); Br, RR 3-169 
Branch on Index High, BXH (86); Br, RS 3-170 
Branch on Index Low or Equal, BXLE (87); Br, RS 3-172 
Branch Instructions: 

Branch and Link, BAL (45); RX 3-168 
Branch and Link, BALR (05); RR: 

Discussion 3~166 · 
Successful Branch 3-167 
Unsuccessful Branch 3-166 

Branch on Conditio!l, BC (47); RX 3-165 
Branch on Condition, BCR (07); RR: 

Discussion 3-164 
Successful Branch 3-164 
Unsuccessful Branch 3-165 

Branch on Count, BCT ( 46); RX 3-170 
Branch on Count, BCTR (06); RR: 

I;liscussio11.. 3-169 
S'Uccessful .Branch 3-1 70 
Unsuccessful Branch 3-170 

Branch on Index High, BXH (86); RS 3-170 
Branch on Index Low or Equal, BXLE (87); RS 3-172 
cc 1-94 
Data Flow 1 ~94 
Discussion 1-91 
Execute, EX (44); RX 3-173 
Fetching 1-63 
Format 1-92 
List of 1-93 (Table 1-12) 
Program Interruptions 1-94 

Branching, ROS: 
Discussion 1-42 
No Branch 1-43 
Overriding Branch 1-4 7 
X-Branch 1-43 
Y-Branch 1-43 
Z-Branch 1-43 

Bus Control Unit (see BCU) 
Buses, BCU 1-51, 2-20 

Capacitive Read-Only Storage (see CROS) 
Carry-Into-Bit Logic, Parallel Adder 2-76 
Carry Lookahead, Parallel Adder 2-77 
Carry, Parallel Adder: 

Bit-Level Carry~Into Logic 2-78 
Carry-Into-Bit Logic. 2-76 
Group-Level Carry 2-77 
Group-Level Carry-Into Logic 2-78 
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Lookahead 2-77 
Section-Level Carry 2-78 
Section-Level Carry-Into Logic 2-78 

CAW 1-37 
CC: 

Branching Instructions 1-94 
Decimal Instructions 1-87 
Fixed-Point Instructions 1-7 5 
Floating-Point Instructions 1-82 
1/0 Instructions 1-99 
Logical Instructions 1-91 
Parallel Adder Function 2-85 
PSW 1-25 
Status Switching Instructions 1-97 

ccw 1-37 
CE Key Switch 5-13, 6-19 
CE Panel: 

CPU ON Pushbutton 6-21 
CPU READY /OFF Switch 6-21 
THERMAL RESET Pushbutton 6-21 
THERMAL TRIP Indicators 6-21 
UNDER VOLTAGE CHECK Switches 6-21 

CHAN FRAME i POWER CHECK Indicator 5-12, 6-20 
CHAN FRAME 2 POWER CHECK Indicator 5-12, 6-20 
CHAN FRAME 3 POWER CHECK Indicator 5-12, 6-20 
Channel: 

Introduction 1-7 
Modes of Operation 1-7 
Operation with BCU 2-22 
2860 Selector 1-7 
2870 Multiplexer 1-7 

Channel Address Word (see CAW) 
Channel Command Word (see CCW) 
Channel, MCW Application 6-23 
Channel/Scan Interface 6-40 
Channel Status Word (see CSW) 
Channel-to-Channel Adapter 1-8 
Check Counter, Scan Logic 6-34 
Check Indicators, Power 5-12 
CHECK RESET Pushbutton 6-6 
Circuits, Special A-1 
Clock: 

BCU 1-53 
Control 2-3 
CPU 1-39 
FLT. 6-30 
FREQUENCY ALTERATION Switch 6-19 
Scan 6-30 
Scan Stop-CPU-Clock Logic 6-39 
Signal Distribution 2-3 
Signal Generators 2-1 
Timing 2~2 

Commands, I/O 1-37 
Compare, C(59); Fix Pt, RX 3-36 
Compare, CD (69); Fl Pt, RX (Long) 3-86 
Compare, CDR (29); Fl Pt, RR (Long} 3-85 
Compare, CE (79); Fl Pt, RX (Short) 3-85 
Compare, .CER (39); Fl Pt, RR (Short) 3-84 
Compare, CP (F9}; Dec, SS 3-114 
Compare, CR (19}; Fix Pt, RR 3-36 
Compare Halfword, CH (49}; Fix Pt, RX 3-37 
Compare Logical, CL (55}; Lgic, RX 3-147 
Compare Logical, CLC (D5); Lgic, SS 3-148 
Compare Logical, CLI (95); Lgic, SI 3-147 
Compare Logical, CLR (15); Lgic, RR 3-147 



Configuration Control Panel, Multiprocessing System: 
Additional Storage Attach Feature 4-14, 4-15 
CPU Mode Switches 4-13 
Discussion 4-7 
Floating Address Switches 4-13 
I/O Allocation Switches 4-13 
PREFIX Switches 4-13 
Storage Allocation Switches 4-13 
VALID ADDRESS Indicators 4-14 

Continue or Terminate, FLT 6-55, 6-56 
Control Lines, BCU 2-20 
Control Program 1-22 
Control Signals, BCU 1-52 
Control Triggers 2-89 
Control Unit, 1/0 1-8 
Convert to Binary, CVB (4F); Fix Pt, RX 3-49 
Convert to Decimal, CVD (4E); Fix Pt, RX 3-51 
Convert to Decimal Operation, Parallel Adder 2-85 
Converter/Inverter 5-1 
CPU, Basic Description: 

BCU 1-5 
Control Section 1-5 
Instruction Execution Section 1-6 
Instruction Fetching Section 1-5 

CPU CHECK Switch 6-17 
CPU Clock: 

Scan Stop-CPU-Clock Logic 6-39 
Stopping of, by BCU 2-29 

CPU, MCW Application 6-23 
CPU Mode Switches, Multiprocessing System 4-13 
CPU ON Pushbutton 6-21 
CPU POWER CHECK Indicator 5-12, 6-20 
CPU READY /OFF Switch 6-21 
CPU Sequencers 2-29 
CPU Store in Progress Exceptional Condition: 

Discussion 1-36 
Effect on I-Fetch 3-14 

CROS: 
Electrical Theory 2-6 
Planes 2-6 

csw 1-38 
Current PSW 1-26, 1-29 
Cycle Counter, Scan Logic 6-37 

D-Register: 
Branch Function 2-51 
Data Flow 2-51 (Fig. 2-31) 
Fixed-Point Function 2-52 
Floating-Point Function 2-52 
Input 2-50 
Interruption Function 2-52 
Introduction 1-58 
IfO Function 2-52 
Manual Control Function 2-52 
Output 2-50 
Shift Function 2-52 
VFL Function 2-52 

Data Buses, BCU 1-51 
Data Entry, Manually 6-9 
Data Flow: 

AB Register 2-53 (Fig. 2-32) 
Branching Instructions 1-94 
D-Register 2-51 (Fig. 2-31) 
Decimal Instructions 1-86 
E-Register 2-48 (Fig. 2-29) 
F-Register 2-58 (Fig. 2-35) 

Fixed-Point Instructions 1-70 
Floating-Point Instructions 1-76 
G-Register 2-59 (Fig. 2-36) 
IC 2-49 (Fig. 2-30) 

· 1/0 Instructions 1-98 
Local Storage 2-62 (Fig. 2-40) 
Logical Instructions 1-90 
MCW Register 2-60 (Fig. 2-39) 
Parallel Adder 2-74 (Fig. 2~49) 
PSW Register 2-60 (Fig. 2-37) 
Q-Register 2-45 (Fig. 2-26) 
R-Register 2-47 (Fig. 2-28) 
ROS 1-45 (Fig. 1-19), 1-47, 2-14 
Serial Adder 2-65 (Fig. 2-41) 
ST Register 2-55 (Fig. 2-33) 
Status Switching Instructions 1-95 
System 1-3 

Data Formats: 
Decimal 1-21 
Fixed-Point 1-16 
Floating-Point 1-19 
Logical 1-21 

Data Program Interruption 1-34 
DAT A Switches 6-9 
Data Transfer 1-39 
DC Power Distribution 5-4 
Decimal Correction, Serial Adder 2-67 
Decimal Data: 

Discussion 1-20 
Formats 1-21 
Number Representation 1-20 

Decimal Divide Program Interruption 1-34 
Decimal Instructions: 

Add, AP (FA); SS: 
Complement Add Sequence 3-113 
Discussion 3-109 
GIS 3-110 
True Add Sequence 3-110 

cc.: 1-87 
Compare, CP (F9); SS 3-114 
Data Flow 1-86 
Data Handling 1-82 · 
Divide, DP (FD); SS: 

D11tailed Description 3-134 
·Discussion 3-125 
General Description 3-128 
Operand Specifications 3-127 
Typical Sequence 3-128 

Format 1-86 
GIS 3-109, 3-110 
Instruction Handling 3-106 
List of 1-83 (Table 1-10) 
Move with Offset, MVO (Fl); SS: 

Discussion 3-141 
Not Word Overlap 3-142 
Word Overlap 3-142 

Multiply, MP (FC); SS: 
Add Sequence 3-11 7 
Detailed Description 3-124 
Discussion 3-116 
General Description 3-118 
Operand Specifications 3-117 
Subtract Sequence 3-117 

Pack, PACK (F2); SS: 
Discussion 3-137 
Not Word Overlap 3-138 
Word Overlap 3-139 
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Program Interruptions 1-87 
Serial Adder Functions 3-106 
Subtract, SP (FB); SS: 

Complement Add Sequence 3-113 
Discussion 3-109 
GIS 3-110 
True Add Sequence 3-110 

Unpack, UNPK (F3); SS: 
Discussion 3-139 
Not Word Overlap 3-140 
Word Overlap 3-141 

Word Overlap 3-107 
Zero and Add, ZAP (F8); SS 3-115 

Decimal Overflow Program Interruption 1-34 
DEFEAT INTERLEAVING Switch: 

Basic System 6-1.2 
Multiprocessing System 4-14 

Device Switching Unit 1-9 
Diagnose (83); s.,,t Sw, SI: 

12 Field Format 6-22 
MCW, Role of 6-22, 6-23 
Operation 3-182 

Diagnostic Programs 6-57 
Direct Control, Multiprocessing System 4-4 
Direct Control Feature: 

DISABLE DIRECT CONTROL Switch 6-17 
Introduction 1-2 
Multisystem Configuration 1-8 
Power 5-12 
Read Direct, RDD (85); Stat Sw, SI 3-181 
Write Direct, WRD (84); Stat Sw, SI 3-180 

DISABLE DIRECT CONTROL Switch: 
Multiprocessing System Operation 4-14 
Operation 6-17 

DISABLE INTERVAL TIMER Switch 6-17 
Displacement 1-14 
DISPLAY Pushbutton 6-15 
Divide, D (SD); Fix Pt, RX 3-47 
Divide, DD (6D); Fl Pt, RX (Long) 3-103 
Divide, DDR (2D); Fl Pt, RR (Long) 3-102 
Divide, DE (7D); Fl Pt, RX (Short) 3-101 
Divide, DER (3D); Fl Pt, RR (Short) 3-100 
Divide, DP (FD); Dec, SS 3-125 
Divide, DR (lD); Fix Pt, RR 3-43 
Divide, Fixed-Point: 

Divisor Multiple Selection 3-44 
DVDLO Micro-Order Function 3-44 
DVDLl Micro-Order Function 3-44 
Examples 3-48 (Figs. 3-8 and 3-9) 
Partial Quotient Bits, Determination of 3-44 

Divide, Floating-Point: 
Characteristic Computation 3-95 
Data Flow and Algorithm 3-98 
DVDLO Micro-Order Function 3-99 
DVDLl Micro-Order Function 3-99 
Example 3-102 
Fraction Division 3-96 
Normalization 3-96 

Division, Non-Restoring 3-96 
Division, Restore 3-96 
Divisor Multiple Selection, Fixed-Point 3-44 
Drive Lines, CROS 2-6, 2-14 
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E-Register: 
Data Flow 2-48 (Fig. 2-29) 
lncrementers 2-46 
Input 2-46 
Introduction 1-56 
Output 2-46 

Early End Op: 
Discussion 3-3 
Instruction Fetching 3-4 

EBCDIC 1-12 
Edit, ED (DE); Lgic, SS 3-158 
Edit and Mark, EDMK (DF); Lgic, SS 3-158 
Emergency Power-Off Control Feature 1-2 
EMERGENCY PULL Switch 5-8 
End Op: 

Branch 3-2 
Discussion 3-1 
Function 1-55 
Instruction Fetching 3-3 
Normal 3-1 
Normal, Deviations from 3-12 
Operand Prefetching 3-2 

End-Operation (see End Op) 
EPO Switch 5-8 
Error Checking: 

Parallel Adder 2-84 
ROS 2-18 

Error Detection: 
CPU CHECK Switch 6-17 
PROC CHK Indicator 6-20 
Serial Adder 2-72 
STOP ON STORAGE CHECK Switch 6-12 
STOR CHK Indicator 6-20 

Exceptional Conditions: 
CPU Store in Progress: 

Discussion 1-36 
Effect on I-Fetch 3-14 

Discussion 1-26 
Invalid Instruction Address Test: 

Discussion 1-36 
Effect on I-Fetch 3-18 

Manual Control Repeat: 
Discussion 1-36 
Effect on I-Fetch 3-17 

Manual Control Stop: 
Discussion 1-36 
Effect on I-Fetch 3-17 

Manual Control Wait: 
Discussion 1-36 
Effect on I-Fetch 3-17 

Priority 1-27 
Program Store Compare: 

Discussion 1-36 
Effect on I-Fetch 3-17 

Q-Register Refill: 
Discussion 1-36 
Effect on I-Fetch 3-22 

Recovery from 1-64 
Timer: 

Discussion 1-36 
Effect on I-Fetch 3-14 

Excess-6 Arithmetic: 
Complement Add Examples 1-85 
Introduction 1-66 
Serial Adder Operation 2-67 
True Add Examples · 1-85 



Exclusive-OR, X (S7); Lgic, RX 3-1S3 
Exclusive-OR, XC (D7); Lgic, SS 3-1S3 
Exclusive-OR, XI (97); Lgic, SI 3-1S3 
Exclusive-OR, XR (17); Lgic, RR 3-1S2 
Exclusive-OR Function: 

Discussion 3-1S2 
Paiity Generation 2-72 
Serial Adder Operation 2-68 

Execute, EX (44); Br, RX 3-173 
Execute Program Interruption 1-34 
Exponent Overflow 3-63 
Exponent Overflow Program Interruption 1-34 
Exponent Underflow 3-63 
Exponent Underflow Program Interruption 1-34 
Extended Binaiy-Coded-Decimal Interchange Code (see EBCDIC) 
External Interruption: 

Discussion 1~3S 

Effect on I-Fetch 3-16 
External Start, Multiprocessing System 4-12 
External Start Signal, Multiprocessing System 4-6, 4-12 
External System Reset, Multiprocessing System 4-12 
External System Reset Timing, Multiprocessing System 4-10 

F-Register: 
Data Flow 2-S8 (Fig. 2-3S) 
Discussion 1-66 
Input 2-S8 
Output 2-SS 

Fail Trigger, Scan Logic 6-40 
Feature Index 4-1 (Table 4-1) 
Features: 

Index 4-1 (Table 4-1) 
List of 1-2 
Multiprocessing 4-2 
Multisystem (see Multiprocessing System) 

Fetch Protection, Detection of 3-21 
Fetch Requests 2-22, 2-24, 2-40 
50-Hz Power Distribution 5-1 
Fixed-Point Data: 

Discussion 1-16 
Formats 1-16 
Number Representation 1-16 

Fixed-Point Divide Program Interruption 1-34 
Fixed-Point Instructions: 

Add, A (SA); RX 3-31 
Add, AR (lA); RR 3-31 
Add Halfword, AH (4A); RX 3-31 
Add Logical, AL (SE); RX 3-33 
Add Logical, ALR (lE); RR 3-32 
Add-Type, Discussion 3-30 
cc 1-7S 
Compaie, C (S9); RX 3-36 
Compaie, CR (19); RR 3-36 
Compaie Halfword, CH (49); RX 3-37 
Convert to Binaiy, CVB (4F); RX 3-49 
Convert to Decimal, CVD (4E); RX 3-Sl 
Data Flow 1-70 
Divide, D (SD); RX 3-47 
Divide, Discussion 3-42 
Divide, DR (lD); RR 3-43 
Formats 1-70 
List of 1-71 (Table 1-8) 
Load, L (SS); RX 3-2S 
Load, LR (18); RR 3-2S 
Load and Test, LTR (12); RR 3-27 
Load Complement, LCR (13); RR 3-27 

Load Halfword, LH (48); RX 3-26 
Load Multiple, LM (98); RS 3-29 
Load Negative, LNR (11); RR 3-2S 
Load Positive, LPR (10); RR 3-2S 
Multiply, Discussion 3-37 
Multiply, M (SC); RX 3-42 
Multiply, MR (lC); RR 3-3S 
Multiply Halfword, MH (4C); RX 3-42 
Program Interruptions 1-70 
Shift Left Double, SLDA (SF); RS 3-SS 
Shift Left Single, SLA (SB); R:S 3-S6 
Shift Right Double, SRDA (SE); RS 3-61 
Shift Right Single, SRA (SA); RS 3-60 
Store, ST (SO); RX 3-53 
Store Halfword, STH (40); RX 3-S4 
Store Multiple, STM (90}; RS 3-SS 
Subtract, S (SB); RX 3-34 
Subtract, SR (lB}; RR 3-33 
Subtract Halfword, SH (4B); RX 3-34 
Subtract Logical, SL (SF); RX 3-3S 
Subtract Logical, SLR (lF); RR 3-3S 

Fixed-Point Overflow Program Interruption 1-34 
Floating Address Switches, Multiprocessing System 4-13 
Floating Addressing, Multiprocessing System 4-2, 4-7 
Floating-Point Data: 

Discussion 1-17 
Formats 1-19 
Normalization 1-19 
Number Representation 1-17 

Floating-Point Divide Program Interruption 1-34 
Floating-Point Instructions: 

Add Normalized, AD (6A}; RX (Long) 3-77 
Add Normalized, ADR (2A); RR (Long) 3-76 
Add Normalized, AE (7A); RX (Short) 3-75 
Add° Normalized, AER (3A); RR (Short) 3-71 
Add-Type, Discussion 3-69 
Add Unnormalized, AU (7E); RX (Short} 3-7S 
Add Unnormalized, AUR (3E); RR (Short) 3-7S 
Add Unnormalized, AW (6E); RX (Long) 3-79 
Add Unnormalized, AWR (2E); RR (Long) 3-79 
cc 1-S2 
Compaie, CD (69); RX (Long) 3-S6 
Compaie, CDR (29); RR (Long) 3-SS 
Compaie, CE (79); RX (Short) 3-SS 
Compare, CER (39); RR (Short) 3-84 
Conditions at Start of Execution 3-64 
Data Flow 1-76 
Discussion 1-7 S 
Divide: 

Chlll"acteristic Computation 3-95 
Data Flow and Algorithm 3-98 
Discussion 3-94 
Fraction Division 3-96 
Normalization 3-96 

Divide, DD (6D); RX (Long) 3-103 
Divide, DDR (2D); RR (Long)) 3-102 
Divide, DE (7D); RX (Short) 3-101 
Divide, DER (3D}.; RR (Short) 3-100 
Exponent Overflow 3-63 
Exponent Underflow 3-63 
Formats 1-76 
Halve, HDR (24}; RR (Long} 3-S7 
Halve, HER (34}; RR (Short} 3-S6 
List of 1-77 (Table 1-9} 
Load, LD (68}; RX (Long) 3-6S 
Load, LDR (2S}; RR (Long} 3-6S 
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Load, LE (78); RX (Short) 3-64 
Load, LER (38); RR (Short) 3-64 
Load and Test, LTDR (22); RR (Long) 3-66 
Load and Test, LTER (32); RR (Short) 3-66 
Load Complement, LCDR (23); RR (Long) 3-67 
Load Complement, LCER (33); RR (Short) 3-67 
Load Negative, LNDR (21); RR (Long) 3-69 
Load Negative, LNER (31); RR (Short) 3-68 
Load Positive, LPDR (20); RR (Long) 3-68 
Load Positive, LPER (30); RR (Short) 3-68 
Multiply: 

Data Flow and Algorithm 3-88 
Discussion 3-87 

Multiply, MD (6C); RX (Long) 3-93 
Multiply, MDR (2C); RR (Long) 3-93 
Multiply, ME (7C); RX (Short) 3-92 
Multiply, MER (3C); RR (Short) 3-91 
Program Interruptions 1-81 
Store, STD (60); RX (Long) 3-105 
Store, STE (70); RX (Short) 3-104 
Subtract Normalized, SD (6B); RX (Long) 3-82 
Subtract Normalized, SDR (2B); RR (Long) 3-81 
Subtract Normalized, SE (7B); RX (Short) 3-81 
Subtract Normalized, SER (3B); RR (Short) 3-80 
Subtract Unnormalized, SU (7F); RX (Short) 3-83 
Subtract Unnormalized, SUR (3F); RR (Short) 3-82 
Subtract Unnormalized, SW (6F); RX (Long) 3-84 
Subtract Unnormalized, SWR (2F); RR (Long) 3-83 
Zero Results 3-63 

FLT: 
Clock 6-30 
Clock Advance 6-27 
Counter 6-36 
Discussion 6-51 
Format 6-29, 6-52 
Generation of, Example C-1 
Hardcore Tests 6-27, 6-28,r6-51, 6-54 
Harde.ore Tests 1 and 2 6-51 
Introduction 6-26 
IPL 1 6-51, 6-53 
IPL 2 6-52 
Loader 6-51, 6-53 
MCW Application 6-24 
One-Cycle Tests: 

Discussion 6-54 
Introduction 6-52 
Result Comparison 6-55, 6-56 
Scan In 6-52, 6-55 
Scan Out 6-54, 6-56 
Terminate or Continue 6-55, 6-56 
Test Cycles 6-54, 6-56 
TN/ATN Comparison 6-55, 6-57 

RESTART FLT 1/0 Pushbutton 6-19 
Scan In 6-27 
Scan-In Words 6-52 
Scan Out 6-27 
Setup 6-53 
Tape Generation 6-27 
Tape Make-Up 6-51 
TEST MODE, REPEAT Switch 6-19 
TEST MODE, ROS/PROC/FLT Switch 6-18 
Transmission Checks 6-54 
Zero-Cycle Tests: 

Discussion 6-54 
Introduction 6-52 
Result Comparison 6-55, 6-56 
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Scan In 6-54, 6-55 
Scan Out 6-54, 6-56 
Terminate or Continue 6-55, 6-56 
Test Cycles 6-54, 6-56 
TN/ATN Comparison 6-55, 6-57 

FLT Test Trigger 6-50 
Formats: 

Data 1-15 
Instruction 1-13, 1-14 (Fig. 1-11) 

4-Cycle Fetch Request 2-22, 2-26, 2-40 
FREQUENCY ALTERATION Switch 6-19 
Full Sum: 

Checking, Parallel Adder 2-84 
Development, Parallel Adder 2-78 
Logic, Parallel Adder 2-76 

Functional Units: 
AB Register 2-52 
ABC 2-54 
Address Sequencer, Scan Logic 6-31 
Address Sequencer Decoder, Scan Logic 6-33 · 
BCU 2-20 
BCU, Modification; Multiprocessing System 4-8 
Check Counter, Scan Logic 6-34 
Clock Signal Generator 2-1 
Cycle Counter, Scan Logic 6-37 
D-Register 2-50 
E-Register 2-46 
F-Register 2-58 
FLT Clock 6-30 
FLT Counte,r 6-36 
G-Register 2-58 
IC 2-49 
Local Storage 2-61 
Mark Triggers 2-58 
MCW Register 2-59 
Multiprocessing System 4-6 
Multisystem Timer, Multiprocessing System 4-9 
Parallel Adder 2-7 3 
PSW Register 2-5 8 
Q-Register 2-44 
R-Register 2-46 
ROS 2-6 
ROS Test Sequencer 6-38 
Scan Counter Latches and Decrementer 6-31 
Scan Logic 6-29 
Scan-Out Bus 6-38 
Serial Adder 2-64 
ST Register 2-54 
STAT's 2-86 
STC 2-54, 2-57 
Storage Address Generator, Scan Logic 6-34 

G-Register: 
Data Flow 2-59 (Fig. 2-36) 
Discussion 2-58 
Introduction 1-66 

Gated Load Pb Signal, Multiprocessing System: 
Function 4-6 
Operation 4-11 

General Initialization Sequence (see GIS) 
GIS: 

Decimal Instructions 3-109, 3-110 
Logical Instructions 3-144 

Group,-Level Carry-Into Logic, Parallel Adder 2-78 
Group-Level Carry Logic, Parallel Adder 2-77 



Half Adder, Parallel Adder 2-76 
Half-Sum Checking, Parallel Adder 2-84 
Halt 1/0, HIO (9E); 1/0, SI 3-186 
Halve, HDR (24); Fl Pt, RR (Long) 3-87 
Halve, HER (34); Fl Pt, RR (Short) 3-86 
Hardcore Tests, FLT 6-27, 6-28, 6-51, 6-54 
Hardcore Tests 1 and 2, FLT's 6-51 
Hardcore Tests, ROS Tests: 

Discussion 6-45 
Format 6-45 
IPL2 6-45, 6-47 
Record 6 6-4 7 
Summary of 6-48 
Tape Runaway 6-48 
Test l, Record 3 6-46 
Test 1, Record 7 6-48 
Test 1, Record 8 6-48 
Test 2, Record 5 6-4 7 
Test 2, Record 8 6-48 
Test 3, Record 8 6-48 

Hexadecimal Number System 1-12 
High-Frequency Regulator Modules 5-4 
High-Speed Storage (see Main Storage) 

I-Fetch: 
ASCTest 3-9 
Basic, Deviations from 3-12 
Block I-Fetch Trigger 3-13 
Branching Instructions 1-63 
CPU Store in Progress Exceptional Condition 3-14 
Early End Op 3-3 
End Op, Branch 3-2 
End-Op Cycle 1-55 
End Op, Early 3-3 
End Op, Normal 3-1 
Exceptional Conditions, Recovery from 1-64 
External Interruption 3-16 
Fetch Protection, Detection of 3-21 
Functional Units Used 1-55 
General 3-1 
Instruction Address Specification, Detection of 3-18 
Instruction Addressing 1-56 
Instruction Path 1-58 
Interruption Routine, Common 3~17 

Interruptions, Recovery from 1-64 
Introduction 1-5 5 
Invalid Address Detection 3-19 
Invalid Instruction Address Microprogram 3-21 
Invalid Instruction Address Test Exceptional Condition 3-18 
1/0 Interruption 3-16 
Machine Check Interruption 3-14 
Manual Control Repeat Exceptional Condition 3-17 
Manual Control Stop Exceptional Condition 3-17 
Manual Control Wait Exceptional Condition 3-17 
Microprogram Selection 3-4 
Obtaining New Instructions 1-63. 
Op-Code Halfword, Transfer to R-Register 1-56 
Operand Addressing 1-56 
Operand Prefetching 1-60, 3-2 
Program Interruption 3-15 
Program Store Compare Exceptional Condition 3-17 
Q-Register Refill Exceptional Condition 3-22 
RefillingofQ-Register 1-55, 1-63 
RR, Basic 3-5 
RR, 2-Cycle 3-23 
RS, Basic 3-6 

RS, 2-Cycle 3-24 
RX, Basic 3-6 
RX, Forced Cycle 3-24 

. Sequencers 3-12 
SI, Basic 3-6 
SI, 2-Cycle 3-24 
SS: 

ASC Test 3-9 
Detailed Description 3-9 
General 3-7 

Storage Requests 2-28 
Supervisor Call Interruption 3-15 
Timer Exceptional Condition 3-14 

I-Fetch Invalid Address Trigger 2-89 (Table 2-2) 
IC: 

Data Flow 2-49 (Fig. 2-30) 
Incrementing IC(0-20) 2-50 
Incrementing IC(21-23) 2-50 
Input 2-49 
Introduction 1-56 

. Op-Code Halfword Selection 2-44, 2-50 
Output 2-49 
Parity Adjust Logic 2-50 
SET IC Pushbutton 6-12 

IC in LSWR Trigger 2-90 (Table 2-2) 
ILC, PSW 1-25, 1-32 
Incrementers, E-Register 2-46 
Index Value 1-14 
Indicators (see Specific Indicator or Panel) 
Initial Program Load (see IPL) 
Input/Output (see 1/0) 
Insert Character, IC (43); Lgic, RX 3-154 
Insert Storage Key 2-23, 2-41 
Insert Storage Key, ISK (09); Stat Sw, RR 3-179 
Instruction Address, PSW 1-26 
Instruction Addressing: 

B-Field Transfer to LAL 2-44 
D-Field Transfer to Parallel Adder 2-44 
Doubleword 1-56 
Incrementing IC 2-50 
Op-Code Halfword Selection 1-57, 2-50 

Instruction Counter (see IC) 
Instruction Execution, Effect on by RATE Switch: 

Discussion 6-13 
INSN STEP Position 6-13 
PROCESS Position 6-13 
SINGLE CYCLE Position 6-13 
SINGLE CYCLE STORAGE INHIBIT Position 6-13 

Instruction Execution, Effect on by REPEAT INSN Switch: 
Discussion 6-13 
Repeat Multiple Iristructions 6-14 
Repeat Single Instruction 6-14 

Instruction Fetching (see I-Fetch) 
Instruction Format: 

Branching 1-92 
Decimal 1-86 
Fixed-Point 1-70 
Floating-Point 1-76 
Introduction 1-13 
I/O 1-98 
Logical 1-87 
Status Switching 1-95 

Instruction Length Not Available Trigger 2-89 (Table 2-2) 
Instruction Predecoding 2-46 
Instructions (see Specific Instruction; or Class of Instructions, 
e.g., Fixed-Point Instructions) 
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Integral Boundaries, Main Storage 1-13 
Interface, BCU 1-51, 2-20 
Interleaving: 

DEFEAT INTERLEA YING Switch 6-12 
Main Storage 2-22 
Protection Key Assignments, Effect on 3-178 

Intermittent Trigger, Scan Logic 6-40 
INTERRUPT Pushbutton 6-17 
Interruptable State 1-24 
Interruption Code, PSW 1-25 
Interruptions: 

Associated PSW's 1-29 
Common Routine 3-17 
D-Register Function 2-52 
Discussion 1-26, 1-29 
Effect on PSW 1-29 
External: 

Discussion 1-35 
Effect on I-Fetch 3-16 

ILC 1-32 
Instruction Completion 1-27 
Instruction Suppression 1-27 
Instruction Termination 1-27 
INTERRUPT Pushbutton 6-17 
1/0: 

Discussion 1-35 
Effect on I-Fetch 3-16 

Log 1/0, Multiprocessing System 4-11 
Machine Check: 

Discussfon 1-33 
Effect on I-Fetch 3-14 

Masking 1-29 
Priority 1-2 7 
Program: 

Discussion 1-33 
Effect on I-Fetch 3-15 

Recovery from 1-64 
Supervisor Call: 

Discussion 1-35 
Effect on I-Fetch 3-15 

Interval Timer: 
DISABLE INTERVAL TIMER Switch 6-17 
Disabling 6-17 

Invalid Address Detection 2-38 
Invalid Instruction Address Test Exceptional Condition: 

Discussion 1-36 
Effect on I-Fetch 3-18 

Invalid Storage Address, Multiprocessing System 4-9 
1/0: 

Burst Mode of Operation 1-7 
CAW 1-37 
ccw 1-37 
Channel 1-7 
Commands 1-37 
Control Unit 1-8 
csw 1-38 
D-Register ·Function 2-5 2 
Devices 1-8 
Interruption: 

Discussion 1-35 
Effect on I-Fetch 3-16 

Introduction 1-6 
Multiplex Mode of Operation 1-7 
Multiprocessing System 4-4 
Operations 1-37 
Orders 1-37 
System Operation 1-38 
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1/0 Allocation, Multiprocessing System 4-4, 4-7 
1/0 Allocation Switches, Multiprocessing System 4-14 
1/0 Instructions: 

cc 1-99 
Data Flow 1-98 
Discussion 3-184 
Halt 1/0, HIO (9E); SI 3-186 
Instruction Format 1-98 
List of 1-98 (Table 1-14) 
Program Interruption 1-99 
Start 1/0, SIO (9C); SI 3-184 
Test Channel, TCH (9F); SI 3-187 
Test 1/0, TIO (9D); SI 3-186 

IPL 6-6 
IPL 1, FLT's 6-51, 6-53 
IPL 1, ROS Tests 6-44 
IPL 2, FLT's 6-52 
IPL 2, ROS Tests 6-45, 6-47 

Key, PSW 1-25 
Key Switch, CE 5-13 

Large-Capacity Stor.age (see LCS) 
Latch, Definition 2-2 
Latch-Shifter Logic, Parallel Adder 2-76 
LCS: 

Introduction 1-4 
Operation with BCU 2-24 
Select Signal, Generation of, by BCU 2-37 

Leave Trigger 2-89 (Table 2-2) 
Load, L (58); Fix Pt, RX 3-25 
Load, LD (68); Fl Pt, RX (Long) 3-65 
Load, LDR (28); Fl Pt, RR (Long) 3-65 
Load, LE (78); Fl Pt, RX (Short) 3-64 
Load, LER (38); Fl Pt, RR (Short) 3-64 
Load, LR (18); Fix Pt, RR 3-25 
Load Address, LA (41); Lgic, RX 3-155 
Load and Test, LTDR (22); Fl Pt, RR (Long) 3,;66 
Load and Test, LTER (32); Fl Pt, RR (Short) 3-66 
Load and Test, LTR (12); Fix Pt, RR 3-27 
Load Complement, LCDR (23); Fl Pt, RR (Long) 3-67 
Load Complement, LCER (33); Fl Pt, RR (Short) 3-67 
Load Complement, LCR (13); Fix Pt, RR 3-27 
Load Halfword, LH (48); Fix Pt, RX 3-26 
LOAD Indicator 6-20 
Load Multiple, LM (98); Fix Pt, RS 3-29 
Load Negative, LNDR (21); Fl Pt, RR (Long) 3-68 
Load Negative, LNER (31); Fl Pt, RR (Short) 3-68 
Load Negative, LNR (11); Fix Pt, RR 3-28 
Load Positive, LPDR (20); Fl Pt, RR (Long) 3-.68 
Load Positive, LPER (30); Fl Pt, RR (Short) 3-68 
Load Positive, LPR (10); Fix Pt, RR 3-28 
Load PSW, LPSW (82); Stat Sw, SI 3-176 
LOAD. Pushbutton: 

Basic System 6-6 
Gated Load Pb.Signal, Multiprocessing System: 

Function 4-6 
Operation 4-11 

Loader: 
FLT 6-51, 6-53 
ROS Tests 6-45 

Local Storage: 
Addressing 2-61 
Addressing, Manually 6-9 
Data Flow 2-62 (Fig. 2-40) 



DISPLAY Pushbutton 6-lS 
Introduction 1-69 
Read Operation 2-61 
Register Addresses 1-69 
Ripple Tests 6-S7 
Selection Manually 6-9 
Storage-Ripple Microprogram 6-16 
STORE Pushbutton 6-14 
Timing 2-63 
Write Operation 2-63 

Log 1/0 Interrupt Signal, Multiprocessing System 4-6, 4-12 
Log 1/0 Interruption, Multiprocessing System 4-12 
LOG OUT Pushbutton 6-18 
Logical Data 1-21 
Logical Instructions: 

AND, Discussion 3-148 
AND, N (S4); RX 3-149 
AND, NC (D4); SS 3-lSO 
AND, NI (94); SI 3-lSO 
AND, NR (14); RR 3-149 
cc 1-91 
Compare, CL (SS); RX 3-147 
Compare, CLC (DS); SS 3-148 
Compare, CLI (9S); SI 3-147 
Compare, CLR (lS); RR 3-147 
Data Flow 1-90 
Edit, ED (DE); SS 3-1S8 
Edit and Mark, EDMK (DF); SS 3-1S8 
Exclusive-OR, Discussion 3-1S2 
Exclusive-OR, X (S7); RX 3-1S3 
Exclusive-OR, XC (D7); SS 3-1S3 
Exclusive-OR, XI (97); SI 3-1S3 
Exclusive-OR, XR (17); RR 3-1 S2 
Formats 1-87 
GIS 3-144 
Insert Character, IC (43); RX 3-1S4 
List of 1-88 (Table 1-11) 
Load Address, LA (41); RX 3-lSS 
Move, MVC (D2); SS 3-144 
Move, MVI (92); SI 3-144 
Move Numerics, MVN (Dl); SS 3-14S 
Move Zones, MVZ (D3); SS 3-146 
OR, 0 (S6); RX 3-lSl 
OR, OC (D6); SS 3-1S2 
OR, 01 (96); SI 3-lSl 
OR, OR (16); RR 3-lSl 
OR, Discussion 3-lSO 
Progiam Interruptions 1-91 
Shift, Discussion 3-162 
Shift Left Double, SLDL (SD); RS 3-162 
Shift Left Single, SLL (89); RS 3-162 
Shift Right Double, SRDL (8C); RS 3-163 
Shift Right Single, SRL (88); RS 3-163 
Store Character, STC (42); RX 3-1S4 
Test Under Mask, TM (91); SI 3-1S4 
Translate, TR (DC); SS 3-lSS 
Translate and Test, TRT (DD); SS 3-1S6 

Logout: 
Controls 6-38 
Discussion 6-40 
Format 6-2S (Table 6-1) 
Hardware-Controlled Sequence 6-41 
Introduction 6-2S 
LOG OUT Pushbutton 6-18 
Multiprocessing System 4-lS 
ROS-Controlled Sequence 6-42 

Lookahead, Parallel Adder Carry 2-77 
LS (see Local storage) 

M-Bit, PSW 1-2S, 1-32 
Machine Check Interruption: 

Discussion 1-33 
Effect on I-Fetch 3-14 

Magnetic-Amplifier-Controlled Regulator S-S 
Main Storage: 

Addressing, Manually 6-9 
Channel Request 1-S4 
CPU Request 1-S4 
Direct Address Refoc4tion, Multiprocessing System 4-3, 4-8 
Discussion 1-3 
DISPLAY Pushbutton 6-lS 
Floating Addressing, Multiprocessing System 4-2, 4-7 
Integral Boundaries 1-13 
Interleaving: 

DEFEAT INTERLEAVING Switch 6-12 
Discussion 2-22 

Multiprocessing System 4-2 
Operation with BCU 1-S4, 2-22 
Permanent Address Assignments 1-4 (Table 1-1) 
Protection 1-4, 2-23 
Ripple Tests 6-S7. 
Selection, Manually 6-9 
STOP ON STORAGE CHECK Switch 6-12 
STbR CHK Indicator 6.-20 
Storage Allocation, Multiprocessing System 4-2, 4-7 
STORAGE INDICATE Switch 6-12 
Storage-Ripple Microprogram 6-16 
STORE Pushbutton 6-14 
2361 Core Storage 1-4 
236S-l, -2 Processor Storage 1-4 
236S-13 Processor Storage 4-2 

Maintenance Aids, ROS 2-16 
Maintenance Features: 

Diagnose (83); Stat Sw, SI 3-182, 6-22 
Diagnostic Programs 6-S7 
FLT's: 

Detailed Discussion 6-Sl 
Introduction 6-26 

Logout: 
Detailed Discussion 6-40 
Introduction 6-2S 

Marginal Checking 6-S8 
MCW's 6-22 
Ripple Tests 6-S7 
ROS Tests: 

Detailed Discussion 6-43 
Introduction 6-26 

Scan Logic: 
Functional Units 6-29 
Introduction 6-24 

Malfunction Alert, Multiprocessing System 4-11 
Malfunction Alert Signal, Multiprocessing System 4-S, 4-11 
Manual Control, D-Register Function 2-52 
Manual Control Repeat Exceptional Condition: 

Discussion 1-36 
Effect on I-Fetch 3-17 

Manual Control Stop Exceptional Condition: 
Discussion 1-36 
Effect on I-Fetch 3-17 

Manual Control Wait Exceptional Condition: 
Discussion 1-36 
Effect on I-Fetch 3-17 
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MANUAL Indicator 6-19 
MARGIN Indicators: 

Additional Storage Attachment Feature 4-15 
Basic Unit 6-20 
Multisystem Feature 4-14 

Marginal Checking: 
Discussion 5-6, 6-58 
MARGIN Indicators 6-20 

Mark Triggers: 
Discussion 2-58 
Introduction 1-65 

Masked State 1-24 
MCW: 

Channel 6-23 
CPU 6-23 
Diagnose (83); Stat Sw, SI 3-182, 6-22 
FLT 6-24 
Role of 6-22 
ROS Test 6-24 

MCW Register: 
Data Flow 2-60 (Fig. 2-39) 
Discussion 2-59 

Meters, Usage 5-13 
Micro-Orders 1-41 
Microprogram-Generated Storage Requests 2-28 
Mode Control, Multiprocessing System 4-7 
Model 65 Mode, Multiprocessing System 4-5 
Move, MVC (D2); Lgic, SS 3-144 
Move, MVI (92); Lgic, SI 3-144 
Move Numerics, MVN (Dl); Lgic, SS 3-145 
Move with Offset, MVO (Fl); Dec, SS 3-141 
Move Zones, MVZ (D3); Lgic, SS 3-146 
Multiple Selection Fixed-Point 3-38 
Multiply, Fixed-Point: 

Multiple Selection 3-3 8 
Partial Product, Formation of 3-39 
Partial ·Product Bits, Extraction of 3-39 
RR Format Examples 3-40 (Fig. 3-6), 3-41 (Fig. 3-7) 
Termination 3-39 

Multiply, Floating-Point: 
Data Flow and Algorithm 3-88 
Example 3-90 

Multiply, M (SC); Fix Pt, RX 3-42 
Multiply, MD (6C); Fl Pt, RX (Long) 3-93 
Multiply, MDR (2C); Fl Pt, RR (Long) 3-93 
Multiply, ME (7C); Fl Pt, RX (Short) 3-92 
Multiply, MER (3C); Fl Pt, RR (Short) 3-91 
Multiply, MP (FC); Dec, SS 3-116 
Multiply, MR (lC); Fix Pt, RR 3-38 
Multiply Halfword, MH (4C); Fix Pt, RX 3-42 
Multiprocessing System: 

BCU Modifications 4-8 
BCU-Storage Operation 4-9 
Configuration Control Panel 4-2, 4-6, 4-13 
CPU Mode Switches 4-13 
DEFEAT INTERLEAVING Switch 4-13 
Direct Address Relocation 4-3 
Direct Address Relocation Control 4-8 
Direct Control 4-4 
DISABLE DIRECT CONTROL Switch 4-13 
Discussion 4-2 
External Start 4-12 
.External Start Signal 4-6, 4-12 
External System Reset 4-12 
External System Reset Timing 4-10 
Floating Address Control 4-7 
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Floating Address Switches 4-i.3 
Floating Addressing 4-2 
Functional Units 4-6 
Gated Load Pb Signal 4-6, 4-11 
Indicators, Roller Switch 4-14 
Invalid Storage Address 4-9 
I/O 4-4 
1/0 Allocation Control 4-7 
1/0 Allocation Switches 4-13 
Log I/O Interrupt Signal 4-6, 4-12 
Log 1/0 Interruption 4-12 
Logout 4-15 
Main Storage 4-2 
Malfunction Alert 4-11 
Malfunction Alert Signal 4-5, 4-11 
Mode Control 4-8 
Multisystem Configuration 1-10 
Multisystem Feature 1-2, 4-1 
Multisystem Timer 4-9 
Power Distribution and Control 4-13 
PREFIX Switches 4-13 
Processing Units: 

Discussion 4-4 
Model 65 Mode 4-5 
Multisystem Mode 4-4 
Multisystem Signals 4-5 
Partition Mode 4-5 

Read Direct, RDD (85); Stat Sw, SI 4-11 
Scan In 4-15 
Set System Mask, SSM (80); Stat Sw, SI 4-10 
STOP ON STORAGE CHECK Switch 4-14 
Storage Address Decoding 4-8 
Storage ADDRESS Switches 4-14 
Storage Allocation 4-2 
Storage Allocation Control 4-7 
Storage Allocation Switches 4-14 
System Call 4-11 
System Call Signal 4-6, 4-11 
System Control Panel, Modifications 4-14 
System Hang Timing 4-10 
System Reset Signal 4-6, 4-12 
VALID ADDRESS Indicators 4-14 
Write Direct, WRD (84); Stat Sw, SI 4-10 

Multiprocessing System/360 Model 65 4-2 
Multisystem Configuration: 

Channel-to-Channel Adapter 1-8 
Device Switching Unit 1-9 
Direct Control Feature 1-10 
Discussion 1-8 
Multisystem Feature 1-10 
Shared LCS Feature 1-10 
Transmission Control Unit 1-9 
2-Channel Switch Feature 1-9 

Multisystem Feature (see Multiprocessing System) 
Multisystem Mode, Multiprocessing System 4-4 
Multisystem Program Interruption 1-35 
Multisystem Signals: 

External Start 4-6, 4-12 
Gated Load Pb 4-6, 4-11 
Log 1/0 Interrupt 4-6, 4-12 
Malfunction Alert 4-5, 4-11 
System Call 4-6, 4-11 
System Reset 4-6, 4-12 

Multisystem Timer 4-9 



New PSW 1-26, 1-29 
No Retry Trigger 2-90 (Table 2-2) 
Normalization 1-19 
Number Representation: 

Decimal 1-20 
Fixed-Point 1-16 
Floating-Point 1-17 

Old PSW 1-26, 1-29 
One-Cycle Tests: 

Discussion 6-54 
FLT 6-27, 6-28 
Introduction 6-52 
Result Comparison 6-55, 6-56 
Scan In 6-54, 6-55 
Scan Out 6-54, 6-56 
Terminate or Continue 6-55, 6-56 
Test Cycles 6-54, 6-56 
TN/ATN Comparison 6-55, 6-57 

Op-Code Halfword Transfer 2-44, 2-50 
Operand Addressing: 

Byte Selection 1-57 
Doubleword 1-56 . 
Effectively Addressed Operands 1-14 
~mmediate Operands 1-15 
Operands in Local Storage 1-15 

Operand Prefetching: 
Discussion 3-2 
Introduction 1-60 

Operand Specifications: 
Decimal Divide 3-127 
Decimal Multiply 3-117 

Operands: 
Effectively Addressed 1-14 
Immediate 1-15 
In Local Storage 1-15 

Operating State 1-24 
Operation Program Interruption 1-34 
OR, 0 (56); Lgic, RX 3-151 
OR, OC (D6); Lgic, SS 3-152 
OR, OI (96); Lgic, SI 3-151 
OR, OR (16); Lgic, RR 3-151 
OR Function: 

Discussion 3-150 
Parity Generation 2-72 
Serial Adder Operation 2-68 

Orders, 1/0 1-37 
Oscillator: 

Crystal-Controlled, Continuously Running 2-1, 2-2 
Gated Delay Line 2-1 

Overcuirent Protection 5-9 
Overriding Branch, ROS 1-47 
Overvoltage Protection 5-9 

P-Bit, PSW 1-25 
Pack, PACK (F2); Dec, SS 3-137 
Parallel Adder: 

Arithmetic Function Sequence 2-81 
Bit-Level Carry-Into Logic 2-78 
Bit Position Logic 2-73 
Carry-Into-Bit Logic 2-76 
Carry Lookahead 2-77 
Convert to Decimal Operation 2-85 
Data Flow 2-74 (Fig. 2-49) 
Data Input 2-73 

Error Checking . 2-84 
Full-Sum Checking 2-84 
Full-Sum Development 2-78 
Full-Sum Logic 2-76 
Functional Breakdown 2-73 
Group-Level Carry-Into Logic 2-78 
Group-Level Carry Logic 2-77 
Half Adder · 2-7 6 
Half-Sum Checking 2-84 
Introduction 1-68 
Latch-Shifter Logic· 2-76 
Parity Predict Logic 2-82 
Section-Level Carry-Into Logic 2-78 
Section-Level Carry Logic 2-78 
Set CC 2-85 

Parity Adjust Logic, IC 2-50 
Parity Checking 1-56 
Parity Correction, Serial Adder 2-68 
Parity Generation: 

AND Function 2-72 
Exclusive-OR Function 2-72 
OR Function 2-72 

Parity Predict Logic, Parallel Adder 2-82 
Parity Predict Logic, Serial Adder 2-68 
Parity, SAB; Conversion of 2-34 
Partial Product Bit Extraction, Fixed-Point 3-39 
Partial Product Formation, Fixed-Point 3-39 
Partial Quotient Bit Determination, Fixed-Point 3-46 
Partition Mode, Multiprocessing System 4-5 
Pass Trigger, Scan Logic 6-40 
Physical Layout, CPU and Main Storage 1-2 (Fig. 1-2) 
Plane, CROS: 

Balance Lines 2-6 
Bit Capacitors 2-10 
Bit Plates 2-6 
Drive Li.nes 2-6 
Physical Package 2-10 
Sense Lines 2-9 

Postnormalization 1-20 
Power: 

Audible Alarm 5-12 
CE Key Switch 5-13 
·CE Panel 6-21 
Check Indicators 5-12, 6-20 
Converter/Inverter 5-1 
CPU ON Pushbutton 6-21 
CPU READY/OFF Switch 6-21 
Direc.t Control 5-12 
Distribution: 

DC 5-4 
50-Hz 5-1 
Multiprocessing System 4-13 
60-Hz 5-1 

EMERGENCY PULL Switch 5-8 
Introduction 1-99 
MARGIN Indicators 6-20 
Marginal Checking 5-6 
Overcurrent Protection 5-9 
Overvoltage Protection 5-9 
Power-Off Sequence: 

Automatic 5-9 
Emergency 5-8 
Multisystem Feature 4-13 
Normal 5-8 

Power-On Sequence 5-6 
Regulators 5-4 
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System Power-On Indicator 5-11, 6-20 
1052 Power Interface 5-12 
1052 Printer-Keyboard 5-12 
Thermal Protection 5-11 
THERMAL RESET Pushbutton 6-21 
THERMAL TRIP Indicators 6-21 
UNDER VOLTAGE CHECK Switches 6-21 
Undervoltage Protection 5-11 
Usage Meters 5-13 

Power Check Indicators: 
Additional Storage Attachment Feature 4-15 
Basic Unit 5-12 

Power-On Indicator, System 5-11 
Power-On Reset 6-5 
Predecoding, Instruction 2-46 
PREFIX Switches, Multiprocessing System 4-13 
Prenormalization 1-20 
Priority Logic, BCU 1-53 
Privileged Operauon Program Interruption 1-33 
Problem State 1-23 
PROC CHK Indicator 6-20 
Program Interruptions: 

Branching Instructions 1-94 
Decimal Instructions 1-87 
Discussion 1-33 
Effect on I-Fetch 3-15 
Fixed-Point Instructions 1-70 
Floating-Point Instructions 1-81 
1/0 Instructions 1-99 
Logical Instructions 1-91 
Status Switching Instructions 1-97 

Program Mask, PSW 1-26, 1-32 
Program States: 

Interruptable 1-24 
Masked 1-24 
Operating 1-24 
Problem 1-23 
Running 1-24 
Stopped 1-24 
Supervisor 1-23 
Wait 1-24 

Program Status Word (see PSW} 
Program Store Compare Exceptional Condition: 

Discussion 1-36 
Effect on I-Fetch 3-17 

Protection Key Assignments, Storage 3-179 (Fig. 3-27) 
Protection Program Interruption 1-34 
PSW: 

Current 1-26, 1-29 
Discussion 1-25 
Effect on by Interruption 1-29 
Main Storage Addresses 1-29 
New 1-26, 1-29 
Old 1-26, 1-29 
PSW RESTART Pushbutton 6-16 

PSW Register: 
Data Flow 2-60 (Fig. 2-37) 
Discussion 2-58 
Introduction 1-50 

PSW RESTART Pushbutton 6-16 
Pulse Mode Operation 6-17 
PULSE MODE Switch 6-17 
Pushbuttons (see Specific Pushbutton or Panel) 
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Q-Register: 
B-Field Transfer 2-44 
D-Field Transfer 2-44 
Data Flow 2-45 (Fig. 2-26) 
Input 2-44 
Introduction 1-55 
Op-Code Halfword Transfer 2-44 
Refilling of 1-63 

Q-Register Refill Exceptional Condition: 
Discussion 1-36 
Effect on I-Fetch 3-22 

R-Register: 
Data Flow 2-47 (Fig. 2-28) 
Input 2-46 
Instruction Predecoding 2-46 
Introduction 1-56 
Output 2-46 

RATE Switch 6-13 
Read Direct, RDD (85); Stat Sw, SI: 

Basic System 3-181 
Multiprocessing System 4-5, 4-11 

Read-Only Storage (see ROS) 
Read-Only Storage Address Register (see ROSAR) 
Read-Only Storage Backup Register (see ROSBR) 
Read-Only Storage Data Register (see ROSDR) 
Read-Only Storage Previous Address Register A and B (see 

ROSPARA and ROSPARB) . 
Regulators, High-Frequency: 

List of 5-4 (Table 5-1) 
Magnetic-Amplifier Controlled 5-5 
SCR-Controlled Output 5-5 

REPEAT INSN Switch 6-13 
REPEAT ROS ADDRESS Switch 6-16 
Repeat Trigger, Scan Logic 6-39 
Reset: 

External System, Multiprocessing System 4-12 
Power-On 6-5 
System 6-6 

RESTART FLT 1/0 Pushbutton 6-19 
Restart 1/0 Trig'ger, Scan Logic 6-39 
Res,!llt Comparison, FLT 6-55, 6-56 
Right Digit Trigger 2-89 (Table 2-2) 
Ripple Tests 6-57 
Roller Switches: 

Basic System 6-19 
Multiprocessing System 4-14 

ROS: 
Addressing: 

Discussion 2-10 
Introduction 1-42 
Manually 6-9 

Branching 1-4 2 
Control of, by Scan Logic 6-40 
Control of CPU 1-48 
CROS 2-6 
Data Flow: 

Decoders 2-15 
Introduction 1-45 (Fig. 1-19), 1-4 7 
ROSDR 2-14 
ROSDR Latches 2-14 
Sense Latches 2-14 
Timing 2-15 



Decoders 2-15 
Error Checking 2-18 
Introduction 1-39 
Logout, Control of 6-42 
Maintenance Aids: 

ROSAR Latches 2-16 
ROSBR 2-18 
ROSPARA and ROSPARB 2-16 
ROSPARA and ROSPARB Alternator 2-16 

Micro-Instruction (see ROS Word) 
Micro-Orders 1-41 
Relationship to Conventional Controls 1-40 
REPEAT ROS ADDRESS Switch 6-16 
ROS TRANSFER Pushbutton 6-15 
Scan Mode Operation 2-18 
Word 1-41 (Table 1-6) 

ROS Test Sequencer 6-38 
ROS Test State: 

0 6-50 
1 6-50 
2 6-50 
3 6-50 
4 6-49 
5 6-49 
6 6-49 
7 6-49 

ROS Tests: 
ATN 6-26 
Bit Tests: 

Discussion 6-49 
ROS Test State 0 6-50 
ROS Test State 1 6-50 
ROS Test State 2 6-50 
ROS Test State 3 6-50 
ROS Test State 4 6-49 
ROS Test State 5 6-49 
ROS Test State 6 6-49 
ROS Test State 7 6-49 

Format 6-26 
General Discussion 6-43 
Hardcore Tests: 

Discussion 6-43 
Format 6-43 
Introduction 6-26 
IPL 2 6-45, 6-47 
Record 6 6-47 
Summary of 6-48 
Tape Runaway 6-46 
Test 1, Record 3 6-46 
Test 1, Record 7 6-48 
Test 1, Record 8 6-48 
Test 2, Record 5 6-4 7 
Test 2, Record 8 6-48 
Test 3, Record 8 6-48 

Introduction 6-26 
IPL 1 6-44 
IPL 2 6-45 
Loader 6-45 
MCW Application 6-24 
Setup 6-44 
TEST MODE, REPEAT Switch 6-19 
TEST MODE, ROS/PROC/FLT Switch 6-18 
Test Tape 6-43 
TN 6-26 

ROS TRANSFER Pushbutton 6-15 

ROSAR: 
Introduction 2-10, 2-12 
Latches 2-16 
ROSAR(0-5) 2-13 
ROSAR(6-9) 2-13 
ROSAR(lO) 2-13 
ROSAR(ll) 2-13 

ROSAR(0-10) Decoding: 
Array Drivers 2-14 
Select Lines 2-14 
Strobed Drive Lines 2-14 

ROSBR 2-18 
ROSDR 2-14 
ROSDR Latches 2-14 
ROSPARA and ROSPARB 2-16 
ROSPARA and ROSPARB Alternator 2-16 
RR I-Fetch: 

Basic 3-5 
2-Cycle 3-23 

RS I-Fetch: 
Basic 3-6 
2-Cycle 3-24 

Running State 1-24 
RX I-Fetch: 

Basic 3-6 
Forced-Cycle 3-24 

S-Register (see ST Register) 
S-Trigger 2-89 (Table 2-2) 
SAB Parity, Conversion of 2-34 
Scan/Channel Interface 6-40 
Scan Clock 6-30 
Scan Counter Latches and Decrementer 6-31 
Scan Hardware-Generated Storage Requests 2-28 
Scan In: 

FLT 6-27, 6-54, 6-55 
Multiprocessing System 4-14 
Words 6-52 

Scan Logic: 
Address Sequencer 6-31 
Address Sequencer Decoder 6-33 
Check Counter 6-34 
Control of ROS 6-40 
Cycle Counter 6-37 
Fail Trigger 6-40 
FLT Clock 6-30 
FLT Counter 6-36 
FLT Test Trigger 6-40 
General 6-29 
Intermittent Trigger 6-40 
Introduction 6-24 
Logout Controls 6-38 
Pass Trigger 6-40 
Repeat Trigger 6-39 
Restart 1/0 Trigger 6-39 
ROS Test Sequencer 6-38 
Scan/Channel Inter(ace 6-40 
Scan Clock 6-30 
Scan Counter Latches and Decrementer 6-31 
Scan Mode Trigger 6-39 
Scan-Out Bus 6-38 
Scan Out Sand T Operation 6-39 
Scan Stop-CPU-Clock Logic 6-39 
SOROS Trigger 6-40 
Storage Address Generator 6-34 
Sync Trigger 6-39 
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Scan Mode Operation, ROS 2-18 
Scan Mode Trigger 6-39 
Scan-Out Bus 6-38 
Scan Out, FLT 6-27, 6-54, 6-56 
Scan Out ROS Trigger (see SOROS Trigger) 
Scan Out Sand T Operation 6-39 
Scan Stop-CPU-Clock Logic 6-39 
SCOPEX, Example C-2 (Table C-1) 
SCR-Controlled-Output Regulator 5-5 
Section-Level Carry-Into Logic, Parallel Adder 2-78 
Section-Level Carry Logic, Parallel Adder 2-78 
Select Lines, ROS 2-14 
Select Signal, Generation of, by BCU 2-34 
Sense Amplifiers, ROS 2-14 
Sense Latches, ROS 2-14 
Sense Lines, CROS 2-9 
Sequencers, I-Fetch 3-12 
Serial Adder: 

AND Function 2-68 
Arithmetic Functions 1-66 
Binary Addition 2-67 
Controls 2-64 
Data Flow 2-65 (Fig. 2-41) 
Data Form 2-64 
Decimal Instruction Functions 3-106 
Error Detection 2-72 
Excess-6 Arithmetic 2-67 
Exclusive-OR Funcfam 2-68 
Input 2-64 
Logical Functions 1-68, 2-68 
Operation, Simplified 2-64 
OR Function 2-68 
Output 2~64 

Parity Correction 2-68 
ParitY, Predict Logic 2-6 8 

SET IC Pushbutton 6-12 
Set Program Mask, SPM (04); Stat Sw, RR 3-177 
Set Storage Key 2-22, 2-41 
Set Storage Key, SSK (08); Stat Sw, RR 3-178 
Set System Mask, SSM (80); Stat Sw, SI: 

Basic System 3-177 
Multiprocessing System 4-10 

709/7040/7044/7090/7094/709411 Compatibility Feature 1-2 
7070/7074 Compatibility Feature 1-2 . 
7080 Compatibility Feature 1-2 
Shared LCS Feature 1-10 
Shift Left Double, SLDA (8F); Fix Pt, RS 3-58 
Shift Left Double, SLDL (8D); Lgic, RS 3~162 

Shift Left Single, SLA (8B); Fix Pt, RS 3-56 
Shift Left Single, SLL (89); Lgic, RS 3-162 
Shift, Logical Instructions; Discussion 3-162 
Shift Right Double, SRDA (8E); Fix Pt, RS 3-61 
Shift Right Double, SRDL (8C); Lgic, RS 3-163 
Shift Right Single, SRA (8A); Fix Pt, RS 3-60 
Shift Right ~ingle, SRL (88); Lgic, RS 3-163 
SI I-Fetch: 

Basic 3-6 
2-Cycle 3-24 

Significance Program Interruption 1-34 
Single-Cycle Operation 2-41 
60-Hz Power Distribution 5-1 
SOROS Trigger 6-40 
Special Circuits A-1 
Specification Program Interruption 1-34 
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SS I-Fetch: 
ASC Test 3-9 
Detailed Description 3-9 
General 3-7 
IC(21,22) = 00 at End Op 3-11 
IC(21,22) = 01 at End Op 3-12 
IC(21,22) = 10 at End Op 3-12 
IC(21,22) = 11 at End Op 3-12 

ST Byte Counter (see STC) 
ST Register: 

Data Flow 2-55 (Fig. 2-33) 
Input 2-54 ' 
Introduction 1-65 
Output 2-54 

ST Register Byte Counter (see STC) 
Start 1/0, SIO (9C) - 1/0, SI 3-184 
START Pushbutton 6-15 
States, Program: 

Interruptable 1-24 
Masked 1-24 
Operating 1-24 
Problem 1-23 
Running 1-24 
Stopped 1-24 
Supervisor 1-23 
Wait 1-24, 6-16 

STAT's: 
General 2-86 
Introduction 1-69 
Setting, Summary of 2-87 (Fig. 2-58) 
STAT A 2-86 
STAT B 2-86 
STATC 2-87 
STAT D 2-88 
STATE 2-88 
STATF 2-88 
STAT G 2-88 
STAT H 2-89 

Status Switching Instructions: 
cc 1-97 
Data Flow 1-95 
Diagnose (83); SI 3-182 
Discussion 1-94 
Formats· 1-95 
Insert Storage Key, ISK (09); RR 3-179 
List of 1-96 (Table 1-13) 
Load PSW, LPSW (82); SI 3-176 
Program Interruptions 1-97 
Read Direct, RDD (85); SI 3-181 
Set Program Mask, SPM (04); RR 3-177 
Set Storage Key, SSK (08); RR 3-178 
Set System Mask, SSM (80); SI 3-177 
Supervisor Call, SVC (OA); RR 3-177 
Test and Set, TS (93); SI 3-183 
Write Direct, WRD (84); SI 3-180 

Status Triggers (see STAT's) 
STC: 

Discussion 2-5 7 
Introduction 1-65 

Step ABC Trigger 2-89 (Table 2-2) 
Stop Loop 6-5 
STOP ON STORAGE CHECK Switch: 

Basic System 6-12 
Multiprocessing System 4-14 



STOP Pushbutton 6-6 
Stopped State 1-24 
STOR CHK Indicator 6-20 
STOR FRAME 1 POWER CHECK Indicator S-12, 6-20 
STOR FRAME 2 POWER CHECK Indicator S-12, 6-20 
STOR FRAME 3 POWER CHECK Indicator S-12, 6-20 
STOR FRAME 4 POWER CHECK Indicator S-12, 6-20 
Storage Address Decoding, Multiprocessing System 4-8 
Storage Address Generator, Scan Logic 6-34 
Storage ADDRESS Switches: 

Basic System 6-9 
Multiprocessing System 4-14 

Storage Allocation, Multiprocessing Systein 4-2, 4-7 
Storage Allocation Switches, Multiprocessing System 4-13 
Storage-BCV Operation, Multiprocessing System 4-9 
Storage Errors 2-38 
STORAGE INDICATE Switch: 

Additional Storage Attachment Feature 6-2 
Basic Unit 6-3, 6-12 

Storage Protection 1-4 
Storage Protection Key Assignments 3-179 (Fig. 3-27) 
Storage Requests: 

Channel 2-22, 2-28, 2-42 
CPU 2-22, 2-28, 2-40 
Priority, Establishment of 2-29 

Storage-Ripple Microprogram: 
Discussion 6-16 
Display Function 6-16 
Store Function 6-16 

STORAGE SELECT Switch 6-9 
Storage Selection: 

BCU 2-30 
Manually 6-9 

Store, ST (SO); Fix Pt, RX 3-S3 
Store, STD (60); Fl Pt, RX (Long) 3-lOS 
Store, STE (70); Fl Pt, RX (Short) 3-104 
Store Character, STC (42); Lgic, RX 3-1S4 
Store Halfword, STH (40); Fix Pt, RX 3-S4 
Store Multiple, STM (90); Fix Pt, RS 3-SS 
STORE Pushbutton 6-14 
Store Requests 2-22, 2-40, 2-42 
Subtract, S (SB); Fix Pt, RX 3-34 
Subtract, SP (FB); Dec, SS: 

Complement Add Sequence 3-113 
Discussion 3-109 
GIS 3-110 
True Add Sequence 3-110 

Subtract, SR (lB); Fix Pt, RR 3-33 
Subtract Halfword, SH (4B); Fix Pt, RX 3-34 
Subtract Logical, SL (SF); Fix Pt, RX 3-3S 
Subtract Logical, SLR (lF); Fix Pt, RR 3-3S 
Subtract Normalized, SD (6B); Fl Pt, RX (Long) 3-82 
Subtract Normalized, SDR (2B); Fl Pt, RR (Long) 3-81 
Subtract Normalized, SE (7B); Fl Pt, RX (Short) 3-81 
Subtract Normalized, SER (3B); Fl Pt,. RR (Short) 3-80 
Subtract Unnormalized, SU (7f); Fl Pt, RX (Short) 3-83 
Subtract Unnormalized, SUR (3F); Fl Pt, RR (Short) 3-82 
Subtract Unnormalized, SW (6F); Fl Pt, RX (Long) 3-84 
Subtract Unnormalized, SWR (2F); Fl Pt, RR (Long) 3-83 
Supervisor Call, SVC (OA); Stat Sw, RR 3-177 
Supervisor Call Interruption: 

Discussion l-3S 
Effect on I-Fetch 3-lS 

Supervisor Program 1-23 
Supervisor State 1-23 
Switches (see Specific Switch or Panel) 

Symmetrical Clock Signal 2-2 
Sync Trigger, Scan Logic 6-39 
System Call, Multiprocessing System 4-11 
System Call Signal, Multiprocessing System 4-6, 4-11 
System Coding 1-12 
System Control Panel: 

ADDRESS COMPARE STOP Switch 6-9 
ADDRESS Switches: 

Basic System 6-9 
Multiprocessing System 4-14 

CE Key Switch 6-19 
CHECK RESET Pushbutton 6-6 
CPU CHECK Switch 6-17 
DATA Switches 6-9 
DEFEAT INTERLEAVING Switch: 

Basic System 6-12 
Multiprocessing System 4-14 

DISABLE DIRECT CONTROL Switch: 
Basic System 6-1 7 
Multiprocessing System 4-14 

DISABLE INTERVAL TIMER Switch 6-1 7 
DISPLAY Pushbutton 6-lS 
FREQUENCY ALTERATION Switch 6-19 
INTERRUPT Pushbutton 6-17 
LOAD Indicator 6-20 
LOAD Pushbutton 6-6 
LOG OUT Pushbutton 6-18 
MANUAL Indicator 6-19 
MARGIN Indicators 6-20 
Modifications, Multiprocessing System 4-13 
Panel A 6-2 
Panel B 6-2 
Panel C 6-2 
Panel D 6-2 
Panel E 6-2 
Panel F 6-2 
Panel G 6-4 
Power Check Indicators 6-20 
PROC CHK Indicator 6-20 
PSW RESTART Pushbutton 6-16 
PULSE MODE Switch 6-17 
RATE Switch 6-13 
REPEAT INSN Switch 6-13 
REPEAT ROS ADDRESS Switch 6-16 
RESTART FLT 1/0 Pushbutton 6-19 
Roller Switches 6-19 
ROS TRANSFER Pushbutton 6-lS 
SET IC Pushbutton 6-12 
START Pushbutton 6-lS 
STOP ON STORAGE CHECK Switch: 

Basic System 6-12 
Multiprocessing System 4-13 

STOP Pushbutton 6-6 
STOR CHK Indicator 6-20 
STORAGE INDICATE Switch 6-12 
STORAGE SELECT Switch 6-9 
STORE Pushbutton 6-14 
SYSTEM Indicator 6-19 
System Power On Indicator 6-20 
SYSTEM RESET Pushbutton 6-6 
TEST Indicator 6-20 
TEST MODE, REPEAT Switch 6-19 
TEST MODE, ROS/PROC/FLT Switch 6-18 
WAIT Indicator 6-20 

System Data Flow 1-3 
System Description 1-1 
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System Hang Timing, Multiprocessing System 4-10 
SYSTEM Indicator 6-19 
System Mask, PSW 1-25, 1-32 
System Power Check Indicator 5~12, 6-20 
System Power On Indicator 5-11, 6-20 
System Reset 6-6 
System Reset, External; Multiprocessing System 4-12 
System Reset, Multiprocessing System 4-10 
SYSTEM RESET Pushbutton 6-6 
System Reset Signal, Multiprocessing System 4-6, 4-12 

T-Register (see ST Register) 
Tape Runaway, ROS Tests 6-46 
1052 Adapter Feature 1-2 
1052 Power Interface 5-12 
1052 Printer-Keyboard, Power 5-12 
Terminate or Continue, FLT 6-55, 6-56 
Test and Set, TS (93); Stat Sw, SI 3-183 
Test and Set Storage Request 2-23, 2-41 
Test Channel, TCH (9F); 1/0, SI 3-187 
Test Cycles, FLT 6-54, 6-56 
TEST Indicator 6-20 
Test 1/0, TIO (9D); 1/0, SI 3-186 
TEST MODE, REPEAT Switch 6-19 
TEST MODE, ROS/PROC/FLT Switch 6-18 
Test Number (see TN) 
Test Under Mask, TM (91); Lgic, SI 3-154 
Thermal Protection 5-11 
THERMAL RESET Pushbutton 6-21 
THERMAL TRIP Indicators 6-21 
3-Cycie Fetch Request 2-22, 2-26, 2-40 
Time Clock at Limit Trigger 2-90 (Table 2-2) 
Timer Exceptional Condition: 

Discussion 1-36 
Effect on I-Fetch 3-14 

Timer, Multisystem 4-9 
Timing, CPU 1-39 
Timing, External System Reset; Multiprocessing System 4-10 
Timing Gate Trigger 2-90 (Table 2-2) 
Timing, ROS Data Flow 2-15 
Timing, Scan 6-29 
Timing, System Hang; Multiprocessing System 4-9 
TN, .ROS Tests 6-26 
TN/ATN Comparison, FLT 6-55, 6-57 
Translate, TR (DC); Lgic, SS 3-155 
Translate apd Test, TRT (DD); Lgic, SS 3-156 
Transmission Checks, FLT 6-54 
Transmission Control Unit 1-9 
Trigger, Definition 2-2 
True +6 Arithmetic (see Excess-6 Arithmetic) 
2-Channel Switch Feature 1-9 
2065 Models 1-1 
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2361 Attachment Feature 1-2 
2361 Core Storage 1-4 
2365-1, -2 Processor Storage 1-4 
2365-13 Processor Storage 4-2 
2860 Selector Channel 1-7 
2870 Multiplexer Channel 1-7 

U-Bit, PSW 1-25 
UNDER VOLTAGE CHECK Switches 6-21 
Undervoltage Protection 5-11 
Universal Instruction Set 1-13 
Unpack, UNPK (F3); Dec, SS 3-139 
Unsymmetrical Clock Signal 2-2 
USA Standard Code for Information Interchange, Extended to 8 
Bits (see USASCII-8) 

Usage Meters: 
CE Key Switch 6-19 
Power 5-13 

USASCII-8 1-12 

VALID ADDRESS Indicators, Multiprocessing System 4-14 

W-Bit, PSW 1-25 
WAIT Indicator 6-20 
Wait State 1-24, 6-16 
Word Overlap: 

Decimal Instructions, General 3-107 
Move With Offset, MVO (Fl); Dec, SS 3-142 
Pack, PACK (F2); Dec, SS 3-139 
Unpack, UNPK (F3); Dec, SS 3-141 

World Trade Differences B-1 
Write Direct, WRD (84); Stat Sw, SI: 

Basic Syst_em 3-180 
Multiprocessing System 4-4, 4-10 

X-Branch, ROS 1-43 

Y-Branch, ROS 1-43 

Z-Branch, ROS 1-43 
Zero and Add, ZAP (F8); Dec, SS 3-115 
Zero Cycle Tests: 

Discussion 6-54 
Introduction 6-52 
Result Comparison 6-55, 6-56 
Scan In 6-54, 6-55 
Scan Out 6-54, 6-56 
Terminate or Continue 6-55, 6-56 
Test Cycles 6-54, 6-56 
TN/ATN Comparison 6-55, 6-57 
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