
~ @ @ ~ Processing Unit, Volume 2

Field Engineering

Manual of Instruction

N o en
CII
-u ... a
n • • •
=­IQ

c:
=-....

< a -N

Field Engineering

Manual of Instruction

~ @ @ ~ Processing Unit, Volume 2

REVISION NOTICES

A © 1965 by International Business Machines Corporation

SECTION 3

3.5

3.5.1

3.5.2

'3.5.3

3.5.4

3.5.5

3.5.6

3.5.7

3.5.8

3.6

3.6.1

3.6.1.1

3.6.1.2

3.6.1. 3

3.6.1.4

3.6.2

3.6.2.1

3.6.2.2

3.6.3

3.6.3.1

3.6.3.2

3.6.4

3.6.4.1

3.6.4.2

3.6.5

3.6.5.1

3.6.5.2

3.6.6

3.6.6.1

3.6.6.1. 1

3.6.6.1. 2

3.6.6.1. 3
3.6.6.1. 4

3.6.6.2

3.6.6.2.1

3.6.6.2.2

3.6.6.2.3

3.6.6.2.4

3.6.6.3

3.6.6.3.1

3.6.6.3.2

3.6.6.3.3

3.6.6.3.4
3.6.6.4

3.6.6.4.1

3.6.6.4.2

3.6.6.4.3

3.6.6.4.4

3.6.6.5

3.6.6.5.1

3.6.6.5.2

3.6.6.5 3

3.6.6.5.4

11/65

CHAPTER 3

THEORY OF OPERATION

(Cont)

FLOATING-POINT INSTRUCTIONS

Introduction • • • • • •

Data Format . • . • .

Number Representation

Normalization •.

Instruction Formats

Data Flow ••.•

Condition Codes •

Floating - Point Interruptions

Initial Conditions

Instruction Analysis • . . • •

Load .•••••••••

LER (38) - RR Short Operands

LE (78) - RX Short Operands .

LDR (28) - RR Long Operands

LD (68) - RX Long Operands .

Load and Test . ••.

LTER (32) - RR Short Operands

LTDR (22) - RR Long Operands

Load Complement • . • • . .

LCER (33) - RR Short Operands

LCDR (23) - RR Long Operands

Load Positive. • • • . • . . .

LPER (30) - RR Short Operands

LPDR (20) - RR Long Operands

Load Negative • . • • • • . .

LNER (31) - RR Short Operands

LNDR (21) - RR Long Operands

Add -Type Instructions . • . • •

Add Normalized .•••••

AER (3A) - RR Short Operands

AE (7A) - RX Short Operands •

ADR (2A) - RR Long Operands
AD (6A) - RX Long Operands •

Add Unnormalized ••••••

AUR (3E) - RR Short Operands

AU (7E) - RX Short Operands •

AWR (2E) - RR Long Operands

AW (6E) - RX Long Operands •

Subtract Normalized •••••

SER (3B) - RR Short Operands

SE (7B) - RX Short Operands .

SDR (2B) - RR Long Operands

SD (6B) - RX Long Operands •
Subtract Unnormalized

SUR (3F) - RR Short Operands

SU (7F) - RX Short Operands •

SWR (2F) - RR Long Operands

SW (6F) - RX Long Operands " •

Compare ...••••••.

CER (39) - RR Short Operands

CE (79) - RX Short Operands.

CDR (29) - RR Long Operands

CD (69) - RX Long Operands .

CONTENTS

3-71

3-71

3-71

3-72

3-73

3-73
3-74

3-75

3-76

3-76

3-77

3-77

3-77

3-77

3-79

3-80

3-80

3-80

3-80

3-81

3-81

3-81

3-82

3-82

3-82

3-83

3-83

3-83

3-84

3-85

3-86

3-90

3-91
3-92

3-93
3-93

3-93

3-94

3-94

3-95

3-95

3-96

3-96

3-97

3-97

3-98

3-98

3-98

3-99
3-100

3-100

3-101

3-101

3-101

3.6.7

3.6.7.1

3.6.7.2

3.6.8

3.6.8.1
3.6.8.2

3.6.8.3

3.6.8.4

3.6.9

3.6.9.1

3.6.9.2

3.6.9.3

3.6.9.4

3.6.10

3.6.10.1

3.6.10.2

SECTION 4

3.7

3.7.1

3.7.2

3.7.3

3.7.4

3.7.4.1

3.7.4.2

3.7.4.3

3.7.5

3.7.5.1

3.7.5.2

3.8

3.8.1

3.8.1.1

3.8.1. 1. 1

3.8.1.1.2

3.8.1.1. 3

3.8.1. 2

3.8.1.3
3.8.2

3.8.3
3.8.3.1

3.8.3.2

3.8.3.3

3.8.4

3.8.4.1

3.8.4.2

3.8.4.3

3.8.5

3.8.5.1

3.8.5.2

3.8.6

3.8.6.1

3.8.6.2

3.8.7

3.8.7.1

2065 FEMI

Halve ••••.•••••••

HER (34) - RR Short Operands

HDR (24) - RR Long Operands

Multiply •.••••••.••

MER (3C) - RR Short Operands

ME (7C) - RX Short Operands •

MDR (2C) - RR Long Operands

MD (6C) - RX Long Operands.

Divide ..•.•.••..••

DER (3D) - RR Short Operands

DE (7D) - RX Short Operands •
DDR (2D) - RR Long Operands

DD (6D) - RX Long Operands

Store

STE (70) - RX Short Operands

STD (60) - RX Long Operands

DECIMAL INSTRUCTIONS

Introduction

Number Representation

Data Format • • •

Instruction Format.

Data Handling

Data Flow ••.

Initial Conditions

General Initialization Sequence

Instruction Handling . • •

Word Overlap Condition

Interruption Conditions •

Instruction Execution

Add, Subtract, and Compare Instructions

Add, AP (FA) .•••••.•

GIS for Add Instruction • • • . • •

Signs-Alike Sequence, Add. • • •

Signs-Not-Alike Sequence, Subtract

Subtract, SP (FB) • •

Compare, CP (F9) . .

Zero and Add, ZAP (F8)

Multiply, MP (FC)
Introduction

General Description

Detailed Description.

Divide, DP (FD). • •
Introduction

General Description

Detailed Description

Pack, PACK (F2) ••

Instruction Execution - Not Word

Overlap •...•••••

Instruction Execution - Word

Overlap ••.•.••••

Unpack, UNPK (F3) • • • • •

Instruction Execution - Not Word

Overlap •••••.•••••

Instruction Execution - Word Overlap

Move with Offset, MVO (F1) • . .

Instruction Execution - Not Word

Overlap .•••...••.•

3-102

3-102

3-103

3-103

3-106
3-108

3 c l09

3-110

3-111

3-114

• 3-116

• 3-118
• 3-118

• 3-119

• 3-120

· 3-120

• 3 -121

· 3-121

• 3-121

• 3-121

• 3-122

• 3-122

• 3-124

• 3-126
· 3-126

• 3-127

· 3-129

• 3-131

• 3-131
• 3-132

• 3-132

• 3-132

• 3-133

• 3-136

• 3-138
· 3-138

• 3 -139

• 3-140

• 3-141
• 3-142

• 3-148

• 3-150
• 3-150

· 3-153

• 3-159

• 3-163

· 3-164

• 3 -165

• 3-166

• 3-166

• 3-168

• 3-168

• 3-169

3.8.7.2

SECTION 5

3.9

3.9.1
3.9.2
3.9.3

3.9.4
3.9.5
3.10

3.10.1
3.10.1.1
3.10.1.2

3.10.2
3.10.3
3.10.4

3.10.4.1
3.10.4.2

3.10.4.3
3.10.4.4
3.10.5

3.10.5.1

3.10.5.2
3.10.5.3
3.10.5.4
3.10.6

3.10.6.1

3.10.6.2

3.10.6.3

3.10.6.4

3.10.7
3.10.7.1

3.10.7.2

3.10.7.3
3.10.7.4

3.10.8
3.10.9
3.10.10

3.10.11
3.10.12
3.10.13

3.10.14

3.10.14.1
3.10.14.2

3.10.14.3
3.10.14.4

3.10.14.4.1
3.10.14.4.2

3.10.14.4.3
3.10.15

3.10.16
3.10.17
3.10.18

ii

Instruction Execution - Word

Overlap •.•.•.

LOGICAL INSTRUCTIONS

Introduction • • • .

Data Format • • •
Instruction Format
Data Handling ••

Condition Code Setting
Interruption Conditions

Instruction Execution

Move •••••••
Move, MVI (92) •

Move, MVC (D2) •
Move Numerics, MVN (D1)
Move Zones, MVZ (D3)
Compare Logical • •

Compare, CLR (15)

Compare, CL (55)
Compare, CLI (95)
Compare, CLC (D5)

AND

AND, NR (14)

AND, N (54) .
AND, NI (94)

AND, NC (D4)
OR .•

OR, OR (16)

OR, 0 (56)

OR, 01 (96)

OR, OC (D6)
Exclusive OR

Exclusive OR, XR (17)
Exclusive OR, X (57) •

Exclusive OR, XI (97) •
Exclusive OR, XC (D7)

Test under Mask, TM (91)
Insert Character, IC (43)

Store Character, STC (42)
Load Address, LA (41) ••

Translate, TR (DC). . .
Translate and Test, TRT (DD)
Edit and Edit and Mark Instructions,
ED and EDMK (DE and DF). . •

Introduction to Edit Operation
Introduction to Edit and Mark
Operation •••••••••

General Data Handling
Detailed Microprogram Description

First Cycle. • •
Second Cycle

Exit Conditions •

Shift Left Single, SLL (89)
Shift Right Single, SRL (88)
Shift Left Double, SLDL (8D) •
Shift Right Double, SRDL (8C)

CONTENTS (Cont)

3-170

3-172

3-172

3-172
3-172

3-173
3-173
3-174
3-174

3-174
3-175

3-175

3-177
3-177

3-178
3-178

3-178
3-178
3-179
3-179

3-180
3-180

3-180
3-180
3-181

3-181

3-181

3-182
3-182
3-182
3-183

3-183
3-183

3-183
3-184
3-184

3-184
3-185
3-185

3-186

3-188

3-189

3-191

3-191
3-192

3-192
3-192

3-192

3-193
3-193

3-194
3-194

SECTION 6

3.11
3.11.1

3.11.2
3.11.3
3.12
3.12.1

3.12.1.1
3.12.1.2

3.12.2
3.12.2.1
3.12.2.2

3.12.3
3.12.3.1

3.12.3.2
3.12.4
3.12.4.1

3.12.4.2

3.12.5

SECTION 7

3.13

3.13.1

3.13.1.1
3.13.1.2

3.13.1. 3

3.13.1. 4

3.13.2

3.13.3
3.13.4
3.14

3.14.1

3.14.2
3.14.3

3.14.4
3.14.5

3.14.6
3.14.7
3.14.8

3.14.9
3.14.10

SECTION 8

3.15
3.15,1

3.15.1.1
3.15.1. 2

3.15.1.3

3.15.2
3.15.3

3.15.3.1
3.15.3.2

BRANCHING INSTRUCTIONS

Introduction

Instruction Format

Data Flow
Interruptions

Instruction Analysis
Branch on Condition

BCR (07) .•

BC (47) •••
Branch and Link

BALR (05)

BAL (45) ••
Branch on Count •

BCTR (06) •

BCT (46) •.•
Branch On Index .

Branch on Index High, BXH (86)
Branch on Index Low or Equal,

BXLE (87) •••

Execute, EX (44)

STATUS SWITCHING

Introduction. • • • •
Program States

Problem/ Supervisor

Wait/Running •.•
Masked/ Interruptable

Stopped/ Operating

Instruction Format
Data Flow

Interruptions
Instruction Analysis

Load PSW, LPSW (82)
Set Program Mask, SPM (04)

Set System Mask, SSM (80)

Supervisor Call, SVC (OA)

Set Storage Key, SSK (08)

Insert Storage Key, ISK (09)
Write Direct, WRD (84)
Read Direct, RDD (85)

Diagnose (83) • • • •
Test and Set, TS (93)

INPUT/OUTPUT INSTRUCTIONS

Introduction

I/O System
Channels
Control Units

I/O Devices.
I/O System Operations

Condition Codes • . •

Working Channel
Interruption Pending in
Channel •.•.••

3-195

3-195

3-196
3-196
3-197

3-197
3-197

3-198
3-200
3-200

3-200

3-202
3-204
3-204

3-205
3-206

3-206

3-208
3-208

3-211

3-211
3-211

3-211
3-211

3-211

3-212

3-213
3-213
3-213

3-214
3-214

3-216
3-216
3-216
3-216

3-217
3-218
3-219

3-220
3-222

3-224

3-224

3-224
3-224

3-225
3-226

3-226
3-227
3-229

3-229

11/65

3.15.3.3

3.15.3.4

3.15.3.5

3.15.3.6
3.15.4
3.15.5
3.16
3.16.1
3.16.2
3.16.3
3.16.4

SECTION 9

3.17
3.17.1
3.17.2

3.17.3
3.17.4
3.17.5
3.17.6
3.17.7
3.17.8

3.17.9
3.17.10
3.17.11
3.17.12
3.17.13

3.17.13.1
3.17.13.2
3.17.14

3.17.15
3.17.16
3.17.16.1
3.17.16.2
3.17.16.3

3.17.16.4

3.17.17
3.17.17.1
3.17.17.2

3.17.18
3.17.18.1
3.17.18.2
3.17.19
3.17.20

3.17.21
3.17.22
3.17.23
3.17.24
3.17.24.1
3.17.24.2

3.17.24.3

11/65

Available Channel, Pending Inter­
ruption in Control Unit
Channel Not Available •

Available Channel, Control Unit
Not Available • • •
Polling IntelTUption in Channel

Instruction Format
IntelTUptions

Instruction Analysis
Start I/O, SIO (9C)
Test I/O, TIO (9D)
Halt I/O, HIO (9E)
Test Channel, TCH (9F)

MANUAL CONTROLS AND INDICA TORS

Manual Controls •
Stop Loop.
Power on Reset

SYSTEM RESET Pushbutton
STOP Pushbutton.

ADDRESS COMPARE STOP Switch
DATA Switches •
ADDRESS Switches

STORAGE SELECT Switch
STORE Pushbutton .
DISPLAY Pushbutton
SET IC Pushbutton •
START Pushbutton •
ROS TRANSFER Pushbutton and
Storage-Ripple Microprogram

Storage-Ripple Store Function.
Storage-Ripple Display Function.

PSW RESTART Pushbutton and
Wait State ••
LOAD Pushbutton (IPL)
RATE Switch

PROCESS Position
INSN STEP Position
SINGLE CYCLE Position
SINGLE CYCLE STORAGE INHIBIT
Position

REPEAT INSN Switch.. • •
Repeat Single Instruction Function •
Repeat-Multiple -Instructions Function

PULSE MODE Switch Operation

TIME Position . • • •
COUNT Position .

DISABLE INTERVAL TIMER Switch
DEFEAT INTERLEAVING Switch
CHECK RESET Pushbutton
INTERRUPT Pushbutton.
STOP ON STORAGE CHECK Switch
CPU CHECK Switch

PROC Position
STOP Position
DSBL Position

CONTENTS (Cont)

3-229
3-229

3-230

3-230
3-230

3-230
3-230
3-230
3-232
3-233

3-234

3-235

3-235

3-235
3-236
3-236

3-236
3-236
3-241
3-241
3-241
3-242
3-242
3-242
3-242

3-243
3-243
3-244

3-244

3-244
3-245
3-245
3-245

3-245

3-246

3-246
3-246

3-246
3-247
3-247

3-248
3-248
3-248
3-248

3-249
3-249

3-249

3-249
3-249

3-249

3.17.25
3.17.26
3.17.27
3.18

5.1
5.1.1
5.1.2
5.1. 3
5.1. 4
5.1.4.1
5.1. 4. 2
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2

5.3.3
5.3.4
5.3.5

5.3.6
5.3.6.1
5.3.6.2
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11

5.3.12
5.3.13

APPENDDi: A

APPENDDi: B

B.l
B.l.1
B.1. 2

B.l.3
B.1.4
B.1. 5
B.1. 6
B.1. 7
B.2

2065 FEMI

REPEA T ROS ADDRESS Switch •
CE Key Switch • •
FREQUENCY ALTERATION Switch

Indicators

CHAPTER 4
FEATURES

(To be supplied)

CHAPTER 5
POWER DISTRffiUTION AND CONTROL

2060 Converted to 2065
Power -On Sequence •
Power-Off Sequence

Overcurrent Protection
Overvoltage Protection

Positive Regulators

Negative Regulators
2065 Original Units •

Power-On Sequence.
Power-Off Sequence
Overcurrent Protection

Overvoltage Protection
Common Portions

AC Power Distribution
DC Power Distribution
Power Control Interface
Power-On Logic Reset
Emergency Power Off
Indicators •

Power Check Indicators
System Power-On Indicator

Thermal Protection •
Undervoltage Protection •
Marginal Adjustments
Converter/Inverter
Regulators

Elapsed Time Meters
Alarm Feature • •

3-249

3-249
3-249
3-250

5-1
5-1
5-3

5-4
5-4

5-4
5-4
5-6
5-6
5-8
5-8
5-8
5-9
5-9

5-9
5-9
5-15
5-15
5-15
5-15
5-16
5-16
5-16

5-17
5-17

5-18
5-18
5-18

UNIT CHARACTERISTICS • A-1

CONTROLS AND INDICATORS

System Control Panel
Panel A
Panel B
Panel C
Panel D
Panel E
Panel F
Panel G

CE Panel

B-1

B-1
B-1
B-1

B-1
B-1

B-2

B-2

B-3
B-4

iii

APPENDIX C

C.l
C.2
C.2.1

C.2.2

C.2.3
C.2.4
C.3
C.3.1
C.3.2
C.3.3
C.3.4
C.3.5

C.3.6
C.3.7

3-6
3-7
3-8

3-9
3-10

3-11

3-12

3-13

3-14

3-15

3-16

3-17

iv

CE OPERATIONS

Introduction • •
Power Operatioru;... •

Associated Stand-Alone Units Initial

Power • •
CPU Initial Power •
System Power On
System Power Off •

Normal Processing Operations •
System Resetting •
Check Logic Resetting
New Program Entry •
Program Restart
Instruction Address Change •

Data Entry or Modification •
Data Display . • •

Floating-Point Divide Example ••
General Data Path for Decimal Instructioru; •

Branching Conditions at Start of GIS •
Operand Specificatioru; for MP Instruction
Typical Multiply Add Sequence,
Example 1. •• • •
Typical Multiply Subtract Sequence,
Example 2 • ••
Data Handling during GIS of
Multiply Instruction . •
Data Handling during Multiplier
Left-Adjust Sequence •
Data Flow for Right-4 Shlft of ST to
AB, Multiply Instruction .
Operand Specifications for DP

Instruction • • •
Example of a Typical Divide
Sequence • •
Data Handling during GIS of Divide
Instruction •

CONTENTS (Cont)

C-l

C-l
C-l

C.3.8
C.3.9
C.4
C.4.1
C.4.1.1
C.4.1.2
C.4.2

C.4.3

C.4.4
C.4.5
C.4.6

C.4.7

APPENDIX D

External Interrupting • • •
Terminating Machine Operatioru; •

Testing Operatioru; .

Storage Ripple Tests
Storage Ripple Store
Storage Ripple Display

ROS Repeat Tests
ROS Hardcore Tests

ROS Bit Tests •
FLT Hardcore Tests

.FLT Scan-In/Scan-Out Tests
FLT One-Cycle Tests

SPECIAL CIRCUITS • •

C-3

C-3
C-3
C-3
C-3
C-3
C-4
C-4

C-4

C-4
C-4
C-4

D-1

C-1
C-1

C-1
C-1

C-1
C-2
C-2

C-2
C-2

C-2
C-2
C-2 APPENDIX E ABBREVIATIONS •• • E-1

ILLUSTRATIONS

3-117
3-125
3-127
3-141

3-143

3-144

3-146

3-147

3-151

3-152

3-154

3-155

3-18

3-19

3-20

3-21
3-22
5-1
5-2

5-3

5-4

5-5

5-6

5-7
B-1

Data Handling during Divisor Left­
Adjust Sequence • • . . • • . • •
Data Handling during Dividend Fetch
and Left-Adjust Sequence • . . . •
Example of Use of Branch and Link
lru;truction • • . • . . • • • • •

Basic I/O System •. • • • • • •
System Control Panel (Two Sheets) •
EPO Loops .••••.•••
Overcurrent Protection Loop,
Converted Units • • • • • •
Overcurrent Protection Loop,
Original Units • • . • • • •
Primary AC Power Distribution,

Converted Units • • • • • • •
Primary AC Power Distribution,

Original Units. • . • • • •
Traru;former T1 Load Detail

Power Control Interface
CE Panel ••••••••

3-156

3-157

3-201
3-224
3-238
5-2

5-5

5-6

5-10

5-11
5-12
5-14

B-5

11/65

3-11
3-12

3-13
3-14

3-15

3-16

3-17
3-18

3-19

3-20
3-21
3-22

3-23
3":24
3-25
3-26

3-27
3-28
3-29
3-30

3-31
3-32

3-33
5-1
5-2

5-3

A-1
A-2

A-3
A-4

A-5
A-6
A-7
A-8

A-9

A-10

11/65

Characteristic Notation • •
Condition Codes for Floating-Point

Instructions ••
Floating-Point Instructions
Examples of Branching on Characteristic
Difference. • •
Value of Multiple Determined by
Multiple Selection Bits (Floating-

Point). • •
Multiple Selection Bits, Floating-
Point Multiply • •
Decimal Instruction Set • •
Condition Codes for Decimal

Instructions •• •
Condition Code Setting per Hardware
Conditions, Decimal Instruction Set
Condition Codes for Logical Instructions
Logical Instruction Set • •

Branching Instruction Interruptions
Branching Instructions
Condition Code Mask Bits •
PSW Interruption Bit Designation •
Status Switching Instruction Interruptions
Status Switching Instructions. •
CC for Working Channel •
CC for Interruption Pending in Channel
CC for Available Channel, Pending
Interruption in Control Unit •
CC for Channel Not Available •
CC for Available Channel, Control
Unit Not Available

II 0 Instructions.. •
DC Regulators • • •
Regulator Part Numbers, Converted
Units. • ••••
Regulator Part Numbers, Original
Units. • • •
Characteristics of 2065 Processing Unit
Characteristics of 1052 -7 Printer
Keyboard •• • • • •
Characteristics of 1053 -1 Printer
Characteristics of 1403-2, -3, -7, -N1

Printer •• •
Characteristics of 1442-N2 Card Punch
Characteristics of 1443-N1 Printer ••
Characteristics of 2150 Console

Characteristics of 2250-1, -2 Display
Unit. • • •• •
Characteristics of 2260-1 Display
Station • • •• •
Characteristics of 2280-1 Recorder,
2281-1 Scanner, 2282-1 Recorder
Scanner

TABLES

3-72

3-75
3-78

3-88

3-105

3-105
3-131

3-131

3-136
3-174
3-175
3-197
3-197

3-198
3-212
3-214

3-214
3-227
3-227

3-228
3-229

3-229
3-230
5-13

5-13

5-13
A-1

A-1
A-2

A-Z
A-2
A-3

A-3

A-3

A-4

A-4

A-11
A-12

A-13

A-14

A-15

A-16

A-17

A-18

A-19

A-20

A-21

A-22

A-23

A-24

A-25

A-26

A-27

A-28

A-29

A-30

A-31
A-32
A~33

A-34

A-35

A-36
A-37
A-38

A-39

2065 FEMI

Characteristics of 2301-1 Drum Storage
Characteristics of 2302 -3, -4 Disk
Storage. • •• •
Characteristics of 2311-1 Disk Storage
Drive. • • • •••••
Characteristics of 2314-1 Direct Access
Storage Facility (Disk) • •
Characteristics of 2321-1 Data Cell

Drive. • ••
Characteristics of 2361':'1, -2 Core
Storage •••
Characteristics of 2365-1, -2 Processor
Storage •••
Characteristics of 2401-1, -2, -3
Magnetic Tape Unit • •
Characteristics of 2402 -1, -2, -3
Magnetic Tape Unit •
Characteristics of 2403 and 2404-1, -2,

-3 Magnetic Tape Unit and Control.
Characteristics of 2501-Bl, -B2 Card

Reader. • •
Characteristics of 2520-B1 Card Read
Punch; 2520-B2, -B3 Card Punch. •

Characteristics of 2540-1 Card Read
Punch. • •••
Characteristics of 2701-1 Data Adapter

Unit. • • ••••••
Characteristics of 2702-1 Transmission
Control. •• • • •
Characteristics of 2802-1 Hypertape

Control. •• • ••
Characteristics of 2803-1 and 2804-1
Tape Control • • ••
Characteristics of 2816-1, -2 Switching

Unit • •• •
Characteristics of 2820-1 Storage
Control (Drum)
Characteristics of 2821-1, -2, -3,
-5 Control Unit (Card) ••••
Characteristics of 2840-1 Display Control
Characteristics of 2841-1 Storage Control
Characteristics of 2848-1, :-2, -3 Display

Control. • ••••
Characteristics of 2860-1, -2, -3

Selector Channel. •
Characteristics of 2870-1 Multiplexor
Channel •••• • ••••
Characteristics of 7320-1 Drum Storage
Characteristics of 7340-3 Hypertape Drive
Characteristics of 7770-3 Audio

Response Unit • • •
Characteristics of 7772-3 Audio
Response Unit. •

A-4

A-5

A-5

A-6

A-6

A-6

A-7

A-7

A-8

A-8

A-9

A-9

A-9

A-10

A-10

A-ll

A-11

A-12

A-12

A-12
A-13
A-13

A-14

A-14

A-15
A-15
A-15

A-16

A-16

v

SECTION 3. FLOATING-POINT INSTRUCTIONS

This section describes data and instruction for­
mats, number representation, normalization, data
flow paths, condition codes, and interruptions as
they relate to floating-point instructions. The sec­
tion then analyzes the floating-point instruction set.

3.5 INTRODUCTION

• Long and short operands for all in­
structions.

• Load, add, subtract, multiply, divide,
compare, halve, store, and sign control
instructions.

• Results always in true form.

• Signs determined algebraically.

• Four floating-point registers.

• RR and RX formats.

The floating-point instruction set performs cal­
culations using operands with a wide'range of mag­
nitude and yielding results to preserve precision.
Instructions provide for loading, adding, subtract­
ing, comparing, halving, multiplying, dividing, and
storing as well as sign control of long and short
operands.

The operands and arithmetic results are always
in true form. A plus sign indicates a positive num­
ber; a negative sign, a negative number. Intermed­
iate results are changed to true form, if necessary,
before the final result is stored in the first operand
location. For the add, subtract, multiply, and di­
vide instructions, the result signs are determined
algebraically.

A floating-point number consists of a sign, a
signed exponent (characteristic), and a signed frac­
tion. The quantity expressed by this number is the
product of the fraction and the number 16 raised to
the power of the exponent. The exponent is ex­
pressed in excess 64 binary notation. The fraction
is expressed as a hexadecimal number having a
radix point to the left of the high-order digit. For a
description of numbering systems, refer to para­
graph 1.4 of Chapter 1.

To preserve maximum precision, the results of
addition, subtraction, multiplication, and division
are normalized. Unnormalized addition and sub­
traction may also be performed. Normalized and
unnormalized operands may be used in all floating­
point operations.

The condition code (CC) is set as a result of all
sign control, add, subtract, and compare instruc­
tions.

Four 64-bit floating-point registers in LS are re­
served exclusively for floating-point instructions.
Floating-point instructions occur in the RR and RX
formats.

3.5.1 DATA FORMAT

• Programmer must address LS floating­
point register 0, 2, 4, or 6.

• Data format consists of I-bit sign, 7-bit
characteristic, and 24- or 56-bit
fraction.

• Results are 32 bits (short operand) or
64 bits (long operand) in length.

• Multiply product is always 64 bits.

• Guard digit is retained in short operand
instructions only.

Floating-point data occupies a fixed-length format
which may be either a full-word short format or a
double-word long format. Both formats may be used
in main storage and in the LS floating-point regis­
ters. The four floating-point register addresses are
0, 2, 4, and 6. (See paragraph 3.5.5 for floating­
point addressing.) The data formats for short and
long operands are:

Short Operand

151 Charistic Fraction

o 1 78 31

11/65 2065 FEMI 3-71

Long Operand

~ls~I __ C_h_a_ri_st_iC __ ~ ______________ F_r_ac_t_io_n ________ -J~~
o 1 7 8 63

For both formats, the first bit position is the sign
bit and the subsequent seven bit positions constitute
the characteristic. The following 24 or 56 bits, the
fraction, contain 6 or 14 hexadecimal digits for the
short and long operands, respectively.

When short operands are specified, the results
are 32-bit floating-point words; the rightmost 32 bits
of the floating-point LS register do not participate
in the operation and remain unchanged. An exception
occurs in multiply instructions, where the product
occupies a full floating-point register (64 bits).

When long operands are specified, all operands
and results are 64-bit floating-point double words.

Although short operand results have six hexa­
decimal fractions digits, intermediate results in
addition, subtraction, and compare operations may
extend to seven fraction digits. The low-order digit
of a 7 -digit fraction, called the guard digit, in­
creases the accuracy of the final result. Intermed­
iate results in long operands do not exceed 14 hexa­
decimal fraction digits. No guard digit is used for
long operand instructions.

3.5.2 NUMBER REPRESENTATION

• Radix point is to left of high-order hexa­
decimal digit.

• Number representation is ± fraction
X 16n power.

• Exponent range is -64 to +63.

• Excess 64 exponent range is 0 to
127 with 64 as midpoint.

• True zero result yields positive sign.

The fraction of a floating-point number is ex­
pressed in hexadecimal digits. The radix point of
the fraction is assumed to be immediately to the
left of the high-order fraction digit. To provide the
proper magnitude for a floating-point number, the
fraction is considered to be multiplied by a power of
16 (fraction X 16n power). The characteristic (bits
1-7) of both formats indicates the power (exponent).

3-72

Since the fraction and the exponent are both
signed numbers, some method must be employed
to express the two signs in the data formats that
provide for a single sign. This is accomplished by
having the fraction sign use the sign (bit 0) associ­
ated with the word (or double word) and expressing
the exponent in excess 64 arithmetic; that is, the
original exponent value is added as a Signed number
to 64. The resulting number is called the charac­
teristic. Since 64 is expressed by seven binary
bits, the characteristic will vary from 0 to 127,
permitting the exponent to vary from -64 through 0
to +63.

Because the CPU treats the characteristic in ex­
cess 64 notation, 64 must be algebraically added to
the original hexadecimal exponent and expressed in
true form. Adding 64 to the original exponent yields
a range of 0 to 127 (decimal), which can be ex­
pressed by using 7 binary bits. This range (0-127)
corresponds to the -64 to +63 range. To obtain the
true characteristic value, 64 must be algebraically
subtracted from the value in the characteristic field.
The binary range and equivalent values are shown in
Table 3-11.

TABLE 3-11. CHARACTERISTIC NOTATION

Excess 64 Notation

Binary Decimal Exponent

0000000 0 -64

0000001 1 -63

~ ~ ~
0111111 63 -1

1000000 64 0

1000001 65 +1

~ ~ ~
1111110 126 62

1111111 127 63

48
For example, the value of ±M X 16 must be

stated in excess 64 notation. The characteristic of
the fraction then becomes 48 + 64 = 112 (0110000 +
1000000 = 1110000). The floating-point number thus
takes the form shown in the data format below:

I~±~I l~l_l_OO_O~O~ _________ M ________ ~~~
5 1 7 8 31 or 63

11/65

Both positive and negative quantities are in true
form, with the difference indicated by the sign (0 in­
dicating plus, 1 indicating minus).

A number with a zero characteristic, a zero
fraction, and a plus sign is called a true zero. A
true zero may occur as the result of an arithmetic
operation because of the magnitude of the operands.
A true zero is forced when exponent underflow oc­
curs during add, subtract, multiply, and divide
instructions. A true zero is also forced when a re­
sult fraction is zero and no program interruption
due to lost significance occurs during add, subtract,
multiply, and divide instructions. A zero result
fraction will not cause a true zero result to be
forced for load, store, and halve instructions.
\\Then a lost-significance interruption is indicated,
the true zero is not forced and the result sign is
stored with the result characteristic and the zero
fraction. \\Thenever a result has a zero fraction,
an exponent overflow or exponent underflow inter­
ruption condition is ignored. If the divisor fraction
equals zero, division is omitted and a floating-point­
divide interruption condition exists; a program in­
terruption therefore occurs. If the divisor fraction
does not equal zero, zero fractions and zero char­
acteristics participate as normal numbers in all
arithmetic operations.

The sign of a sum, difference, product, or quo­
tient with a zero fraction is positive. The sign of
a zero fraction resulting from other operations is
established algebraically from the operand signs.

3. 5. 3 NORMALIZA TION

• Fraction is normalized when high -order
hexadecimal digit is not zero.

• Characteristic is adjusted on normali­
zation cycles.

• Postnormalization is normalization of
final result.

• Prenormalization is normalization prior
to result computation.

• Results are truncated when necessary.

A quantity can be represented with the greatest
precision by a floating-point number of a given
fraction length when that number is normalized. A
normalized floating-point number has a nonzero
high-order hexadecimal fraction digit. If one or

more high-order fraction digits are zero, the num­
ber is said to be unnormalized. The process of
normalization consists of shifting the fraction left
until the high-order hexadecimal digit is nonzero
and reducing the characteristic by the number of
hexadecimal digits shifted. A zero fraction cannot
be normalized, and its associated characteristic
therefore remains unchanged when normalization
is called for.

Normalization usually takes place when the inter­
mediate arithmetic result is changed to the final re­
sult. This function is called "postnormalization. "
In performing multiplication and division, the oper­
ands are normalized prior to the arithmetic process.
This function is called "prenormalization. "

Floating-point operations may be performed with
or without normalization. Most operations are per­
formed in only one of these two ways. Addition and
subtraction may be specified either way.

\\Then an operation is performed without normal­
ization, high-order zeros in the result fraction are
not eliminated. The result mayor may not be nor­
malized, depending upon the original operands.

In both normalized and unnormalized operations,
the initial operands need not be in normalized form.
Also, intermediate fraction results are shifted right
whenever a fraction carry from parallel adder bit
position 8 occurs (fraction overflow), and the inter­
mediate fraction result is truncated to the final re­
sult length after the shifting.

Since normalization applies to hexadecimal digits,
the three high-order bits of a normalized number
may be zero.

3.5.4 INSTRUCTION FORMATS

• RR format

Op Code Rl R2

o 7 8 11 12 15

• RX format

Op Code RI X2 B2 D2
7 8 11 12 15 16 19 20 31

11/65 2065 FEMI 3-73

Floating-point instructions occur in the RR and
RX formats. In these formats, Rl is the address of
a floating-point LS register that contains the first
operand. The second operand location is defined
differently for the two formats.

In the RR format, R2 is the address of a floating­
point LS register containing the second operand.
The same register may be specified for the first
and second operands.

In the RX format, the contents of the general­
purpose LS registers specified by X2 and B2 are
added to the contents of the D2 field to form an ad­
dress designating the main storage location of the
second operand. A zero in an X2 or B2 field indi­
cates the absence of the corresponding address
component.

The Rl and R2 fields should each specify 0, 2,
4, or 6 as the floating-point LS register address.
Otherwise, a specification interruption occurs.

I

The main storage address of the .second operand
should designate word boundaries for short operands
and double-word boundaries for long operands.
Otherwise, a specification interruption occurs.

Results replace the first operand except for store
operations, where the result replaces the second
operand.

Except for the storing of the final result, the
contents of all floating-point or general-purpose LS
registers and main storage locations participating
in operand addressing or operation execution re­
main unchanged.

The floating-point instructions are the only in­
structions that use the floating-point registers.

3.5.5 DATA FLOW

• Eight 32-bit LS registers are reserved
for floating-point instructions.

• Micro-orders control low-order fraction
fetch.

• LS floating-point register address spec­
ified must not be odd or greater than 7.

• Sign-handling is achieved via serial
adder or STAT's.

• Characteristic-handling is performed
via serial adder.

3-74

• Fraction-handling is performed via
parallel adder.

Eight 32-bit LS registers (addresses 16-23) are
reserved for floating-point instruction operands and
results. These registers function as four double­
length (64-bit) registers with assigned addresses of
0, 2, 4, and 6. Register 0 is contained in LS loca­
tions 16 and 17; register 2, in locations 18 and 19;
register 4, in locations 20 and 21; register 6, in
locations 22 and 23. For additional information on
local storage, refer to Section 6 of Chapter 2.

Addressing of LS is limited to 16 general-purpose
registers because the Rl and R2 fields contain four
bits each. The LS address register (LAR) contains
five bits. In floating-point instructions, an LS ad­
dress of 0, 2, 4, or 6 must be specified in the R1
and R2 fields of the instruction word.

Because floating-point instructions use only the
floating-point registers in LS, a 1 is forced into the
zero position of LAR. If address 0 is specified in
the Rl or R2 field, LS accesses address 16. Short
operand instructions fetch only 32 bits (single word)
from the specified floating-point LS register. Be­
cause ingating and outgating of LS are limited to 32
bits each, floating-point operands must be divided
into two 32-bit words. A 1 is forced in the low­
order bit position of LAR [LAR(4)J to fetch or
store the low-order 32 bits of a long operand.
Micro-orders are required to fetch the low-order
fraction during instruction execution. The Rl + 1
and R2 + 1 registers are considered to be the odd­
numbered addresses of floating-point LS registers.

At the beginning of the execution phase of floating­
point instructions, a specification check establishes
that:

1. An even address is specified in the Rl and
R2 fields.

2. An address greater than 7 is not specified in
the Rl and R2 fields.

3. The effective main storage address is on a
full-word boundary for long operands and on a
word boundary for short operands.

The specification check is made by testing E(ll)
and E(15) (RR format) to determine an even-odd
address [E(ll) and E(15) must equal zero]. If E(8)
or E(12) is aI, the specified LS address is greater
than 7. In the RX format, the effective address is
in D. D(21-23) must equal zero on long operand
instructions, and D(22, 23) must equal zero on short

11/65

operand instructions. Note that the effective address
check is performed in the PAL's. If a specification
check exists, operation is suppressed and a program
interruption occurs.

At the beginning of the execution phase (RR for­
mat), the first operand is located in A, B, and D.
The second operand is located in Sand T. In the RX
format, the first operand is located in Sand T. The
effective address of the second operand is in D. If
a long operand instruction in the RR format is to be
executed, the low-order fractions must be fetched
from LS during the execute phase.

Data flow may be divided into two paths: (1) the
fraction path and (2) the sign and characteristic path.
See Figure 9054, FEDM. The fractions are trans­
ferred, added, or shifted via the parallel adder.
The operands are located in DT, ST, and AB. The
parallel adder is capable of shifting 0, R4, or L4 bit
positions. Data paths exist between the PAL's and
T, D, A, and B.

The sign and characteristic path is from ST or AB
to F via the serial adder. The byte gated to the in­
puts of the serial adder depends upon the STC and the
ABC values.

In many floating-point instructions, the signs are
saved in STAT's. The sign of the first operand is
stored in STAT F; the sign or the complement of the
sign of the second operand is stored in STA T C.

The F-register is an 8-bit register. The data
from F is gated to the serial adder. From the serial
adder, the data is transferred to ST per the STC.
The serial adder is capable of adding 1 to, and sub­
tracting 1 or 64 from, the value at the inputs of the
serial adder.

3.5.6 CONDITION CODES

• Result equals zero: CC = O.

• Result less than zero: CC = 1.

• Result greater than zero: CC = 2.

• Exponent overflow: CC = 3.

The results of floating-point sign-control, add,
subtract, and compare operations set the CC. Mul­
tiplication, division, loading, and storing leave the
CC unchanged. The CC can be used for decision­
making by subsequent branch-on-condition instruc­
tions.

The CC can be set to reflect two types of results
for floating-point arithmetic. For most operations,
CC's of 0, 1, and 2 respectively indicate that the
contents of the result register are zero, less than
zero, and greater than zero. A zero result is in­
dicated whenever the result fraction is zero, in­
cluding a forced zero. A CC of 3 is used when the
exponent of the result overflows.

For compare instructions, CC's of 0, 1, and 2
respectively indicate that the first operand is equal,
low, and high. The instructions and CC settings
are shown in Table 3-12.

TABLE 3-12. CONDITION CODES FOR FLOATING-POINT
INSTRUCTIONS

Condition Code

Instruction a 1 2 3

Add Normalized Zero* Less than Greater Overflow

SIL zero than zero

Add Unnormal- Zero Less than Greater Overflow

ized SIL zero than zero

Compare SIL Equal Low High -

Load and Zero Less than Greater -
Test SIL zero than zero

Load Comple- Zero Less than Greater -
ment SIL zero than zero

Load Negative Zero Less than - -
SIL zero

Load Positive Zero - Greater -
SIL than zero

Subtract Zer"* Less than Greater Overflow
Normalized zero than zero

SIL

Subtract Un- Zero Less than Greater Overflow
normalized zero than zero

SIL

.S = short operands

L = long operands

* An exponent underflow causes a true zero to be stored and the
CC is set to zero. An interruption occurs if PSW(38) equals 1.

The CC is set at end-op time of the instruction
by a micro-order. Setting the CC register depends
upon hardware conditions at the time the set-condi­
tion-register micro-order is given. The hardware

11/65 2065 FEMI 3-75

conditions for all floating-point instructions that
cause a CC to be set in the CC register are shown
in Figure 9055, FEDM. For discussion purposes,
assume that a Load and Test instruction is to be ex­
ecuted. The Load and Test instruction places the
second operand in the first operand location and sets
the CC. During instruction execution, the sign of
the second operand is stored in STA T C. A zero
test of the fraction is made, and STAT A is set if
the fraction equals zero. If STAT C is set and the
fraction is not zero, the result sign is minus. There­
fore, the result is less than zero and a CC of 1 is set
in the CC register. If the sign is pills, a CC of 2 is
set in the CC register. If the fraction equals zero,
STAT A is set and blocks setting the CC register,
thus yielding a CC of 0 . In add-type instructions,
the CC is determined by STAT C, STAT F, STAT A,
and A(7) values.

3.5.7 FLOATING-POINT INTERRUPTIONS

• Floating-point interruptions and action taken:
1. Protection - Operation suppressed
2. Addressing - Operation terminated
3. Specification - Operation suppressed
4. Exponent overflow
5. Exponent underflow - True zero stored
6. Significance - Sign and characteristic

of result zero fraction stored
7. Floating-point divide - Operation

suppressed

Certain abnormal conditions may exist that re­
quire special attention by the program. When special
proceSSing is required, an interruption request is
generated according to the conditions· that exist. The
interruption request is honored, if not masked off,
and a program interruption occurs. When the inter­
ruption occurs, the current PSW is stored as an old
PSW, and a new PSW is obtained. The interruption
code in the old PSW identifies the cause of the inter­
ruption. The following program interruptions occur
in floating-point instructions:

1. Protection: The storage key does not match
the protection key in the PSW for all RX in­
structions. When an instruction causes a
fetch-protection violation, execution of the in­
struction is terminated, the program execution
is altered by a program interruption, and a
protection interruption is indicated in the old
PSW. When an instruction causes a store­
protection violation, the operation is suppressed.

2. Addressing: An address designates a location
outside the available storage for the installa­
tion. The operation is terminated.

3-76

3. Specification: A short operand is not located
on a 32-bit boundary, or a long operand is not
located on a 64-bit boundary, or a floating­
point register address other than 0, 2, 4, or
6 is specified. The instruction is suppressed.
The address restrictions do not apply to the
components (contents of the D2 field and the
contents of the LS registers specified by X2
and B2) from which an address is generated.

4. Exponent Overflow: The result exponent of an
addition, subtraction, multiplication, or divi­
sion overflows, and the result fraction is not
zero. The operation is terminated: The CC
is set to 3 for addition and subtraction and re­
mains unchanged for multiplication and division.
An unconditional program interruption occurs.

5. Exponent Underflow: The result of an addition,
subtraction, multiplication, or division under­
flows, and the result fraction is not zero. A
program interruption occurs if the exponent­
underflow mask bit is 1. The operation is
completed by replacing the result with a true
zero. The CC is set to 0 in addition and sub­
traction and remains unchanged for multipli­
cation and division. The state of the mask bit
does not affect the result.

6. Significance: The result fraction of an addition
or subtraction is zero. A program interrup­
tion occurs if the significance mask bit is 1.
The mask bit also affects the result of the oper­
ation. When the Significance mask bit is a 0,
the operation is completed by replacing the re­
sult with a true zero. When the Significance
mask bit is 1, the operation is completed with­
out further change to the characteristic of the
result. In either case, the CC is set to O.

7. Floating-Point Divide: Division by a number
with zero fraction is attempted. The division
is suppressed, but the CC and the data in
storage remain unchanged.

3.5.8 INITIAL CONDITIONS

• RR, short operands:
L 1st operand is in A, B, and D (24-bit

fraction only).
2. 2nd operand is in S and T.
3. Instruction is in E.

.) RX, short operands:
1. 1st operand is in Sand T.

11/65

2. Effective address of 2nd operand
is in D.

3. Instruction is in E.

• RR, long operands: .
1. 32 bits of 1st operand are in A, B,

and D (24-bit fraction only).
2. 32 bits of 2nd operand are in Sand T.
3. Instruction is in E.
4. Low-order fractions of 1st and 2nd

operands are in LS.

• RX, long operands:
1. 32 bits of 1st operand are in Sand T.
2. Low-order fraction of 1st operand

is in LS.
3. Effective address of 2nd operand

is in D.
4. 2nd operand is in main storage.
5. 1st 16 bits of instruction are in E.

During an RR I-Fetch (short operands), the sign,
characteristic, and 24-bit fraction of the first oper­
and specified by R1 are placed in A and B, and the
24-bit fraction is placed in D. The sign, character­
istic, and 24-bit fraction of the second operand are
placed in Sand T. The address of the second oper­
and is specified by R2. The instruction is contained
in E.

The objectives of the RX I-Fetch (short operands)
are to compute the effective address of the second
operand and place this address in D. During I-Fetch,
the sign, characteristic, and 24-bit fraction of the
first operand are placed in Sand T. The contents
of A and B are unknown. The R1 and X2 fields of
the instruction are in,E, and the B2 and D2 fields
are in Q. The contents of the LS register specified
by X2 are added to the contents of the LS register
specified by B2, and this total is added to the D2
field to make up the effective address in main storage
of the second operand.

A specification check is made at the beginning of
the execution phase. If an error exists, the opera­
tion is suppressed and an interruption occurs.

If a long operand in the RX format is to be execu­
ted, the low-order fraction of the first operand is
fetched from LS and the entire second operand is
fetched from main storage during the execution
phase. For RR instructions, the low-order fractions
are fetched from LS during the execution phase.

3.6 INSTRUCTION ANALYSIS

• Floating-point instruction set consists
of 44 instructions.

• Table 3-13.

The floating-point instructions and formats, mne­
monic codes, op codes, CC's, and interruptions are
listed in Table 3-13. All operations can be specified
in short and long operands, In the paragraphs follow­
ing, the instructions are analyzed, illustrated by
flow charts.

3.6,1 LOAD

• Loads 2nd operand in 1st operand loca­
tion.

• 2nd operand location remains unchanged.

3.6.1.1 LER (38) - RR Short Operands

• Loads 2nd operand (per R2) in 1st oper­
and location (per R1).

• RR format:

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only).
2nd operand is in S and T.
Instruction is in E.

• Figure 6035, FEDM.

3.6.1. 2 LE (78) - RX Short Operands

• Loads 2nd operand (from main storage)
in 1st operand location (per R1).

• Conditions at start of execution:
1st operand is in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

11/65 2065 FEMI 3-77

TABLE 3-13. FLOATING-POINT IN"STRUCTlONS

Mnemonic Op Condition
Tnstruction Format Code Code Codes Interruption

Load (Short RR LER 38 - S

Load (Short) RX LE 78 - P, A, S

Load (Long) RR illR 28 - S

Load (Long) RX ill 68 - P, A, S

Load and Test (Short) RR LTER 32 0, 1, 2 S

Load and Test (Long) RR LTDR 22 0, 1, 2 S

Load Complement (Short) RR LCER 33 0, 1, 2 S

Load Complement (Long) RR LCDR 23 0, 1, 2 S

Load Positive (Short) RR LPER 30 0, 2 S

Load Positive (Long) RR LPDR 20 0, 2 S

Load Negative (Short) RR LNER 31 0, 1 S

Load Negative (Long) RR LNDR 21 0, 1 S

Add Normalized (Short) RR N AER 3A 0, 1, 2, 3 S, U, E, LS

Add Normalized (Short RX N AE 7A 0, 1, 2, 3 P, A, S, U, E, LS

Add Normalized (Long) RR N ADR 2A 0, 1, 2, 3 S, U, E, LS

Add Normalized (Long) RX N AD 6A 0, 1, 2, 3 P, A, S, U, E, LS

Add Unnormalized (Short) RR AUR 3E 0, 1, 2, 3 S, E, LS

Add Unnormalized (Short) RX AU 7E 0, 1, 2, 3 P, A, S, E, LS

Add Unnormalized (Long) RR AWR 2E 0, 1, 2, 3 S, E, LS

Add Unnormalized (Long) RX AW 6E 0, 1, 2, 3 P, A, S, E, LS

Subtract Normalized (Short) RR N SER 3B 0, 1, 2, 3 S, U, E, LS

Subtract Normalized (Short) RX N SE 7B 0, 1, 2, 3 P, A, S, U, E, LS

Subtract Normalized (Long) RR N SDR 2B 0, 1, 2, 3 S, U, E, LS

Subtract Normalized (Long) RX N SD 6B 0',1, 2, 3 P, A, S, U, E, LS

Subtract Unnormalized (Short) RR SUR 3F 0, 1, 2, 3 S, E, LS

Subtract Unnormalized (Short) RX SU 7F 0, 1, 2, 3, P,A, S, E, LS

Subtract Unnormalized (Long) RR SWR 2F 0, 1, 2, 3 S, E, LS

Subtract Unnormalized (Long) RX SW 6F 0, 1, 2, 3 P, A, S, E, LS

Compare (Short) RR CER 39 0, 1, 2 S

Compare -(Short) RX CE 79 -0, 1,2 P, A, S I

3-78 U/65

TABLE 3-13. FLOATThfG-POThfT ThfSTRUCTIONS (Coni)

Instruction

Compare (Long)

Compare (Long)

Halve (Short)

Halve (Long)

Multiply (Short)

Multiply (Short)

Multiply (Long)

Multiply (Long)

Divide (Short)

Divide (Short)

Divide (Long)

Divide (Long)

Store (Short)

Store (Long)

• RX format:

Format

RR

RX

RR

RR

RR

RX

RR

RX

RR

RX

RR

RX

RX

RX

Notes:

A Addressing
E Exponentovenlow

FK Floating-point divide
LS Significance

Load data from main storage per
effective address in LS per R 1

• Main storage address must be on word
boundary.

• D(21) determines which word of main
storage double word is used: if 1,
right word; if 0, left word.

11/65

Mnemonic Op Condition

N

N

N

N

N

N

N

N

31

Code

CDR

CD

HER

HDR

MER

ME

MDR

MD

DER

DE

DDR

DD

STE

STD

Code Codes Interruption

29 0, 1, 2 S

69 0, 1, 2 P, A, S

34 - S

24 - S

3C - S, U, E

7C - P, A, S, U, E

2C - S, U, E

6C - P, A, S, U, E

3D - S, U, E, FK

7D - P, A, S, U, E, FK

2D - S, U, E, FK

6D - P, A, S, U, E, FK

70 - P, A, S

60 - P, A, S

N Normalized operation
P Protection
S Specification
U Exponent 1lllderflow

• Figure 6036, FEDM

3. 6. 1.3 LDR (28) - RR Long Operands

• Loads 2nd operand (per R2 and R2 + 1) in
1st operand location (per R1 and R1 + 1).

• RR format:

2065 FEMI 3-79

• Conditions at start of execution
32 bits of 1st operand are in A,

B, and D (24-bit fraction only).
32 bits of 2nd operand are in S

and T.
Instruction is in E.

• Figure 6035, FEDM.

3.6.1. 4 LD (68) - RX Long Operands

• Loads 2nd operand (double word
from main storage) in 1st oper­
and location (per R1 and R1 + 1).

• RX format:

31

Load data from main storage per effect­
ive address in LS per Rl and Rl + 1

• Conditions at start of execution:
32 bits of 1st operand are in Sand T.
Effective address of 2nd operand is

in D.
Instruction is in E.

• Main storage address must be on double­
word boundary.

• Figure 6036, FEDM.

3.6.2 LOAD AND TEST

• Loads 2nd operand in 1st operand loca­
tion; sign and magnitude of 2nd operand
determine C.C.

• 2nd operand location is unchanged.

Except for the setting of the CC, the Load and
Test instruction execution is similar to the Load
RR format instructions.

The CC is determined during the normal end-op
cycle. If the fraction in PAL equals zero, the CC

3-80

is set to o. The Sign and the characteristic are not
considered when the fraction equals zero. If the
operand fraction, is not equal to zero, the Sign deter­
mines a greater-than- or less-Ulan-zero condition.
If the Sign is minus (equals 1), the result is less
than zero and a 1 is set in the CC. If the Sign is
plus (equals 0), the result is greater than zero and
a 2 is set in the CC. A CC of 3 is invalid for this
instruction. Setting the CC depends upon a micro­
order, the instruction, and hardware conditions.

3.6.2.1 LTER (32) - RR Short Operands

• Loads 2nd operand (per R2) in 1st oper­
and location (per R1); sign and magnitude
of 2nd operand determine CC.

• RR format:

Load data from LS per R2 in LS per Rl

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only).
2nd operand is in S and T.
Instruction is in E.

• Sign of 2nd operand saved in STAT C.

• STAT A set if fraction equals zero

• CC determined by STAT A, STAT C,
and LTER instruction.

• CC setting:
Fraction equals zero: CC = o.
Result less than zero: CC = 1.
Result greater than zero: CC = 2.

• Figure 6037, FEDM.

3.6.2.2 LTDR (22) - RR Long Operands

• Loads 2nd operand (per R2 and R2 + 1)
in 1st operand location (per R1 and
R1 + 1); sign and magnitude of 2nd
operand determine CC.

11/65

• RR format:

Fetch low -order operand

Load result in LS per Rl and Rl + 1

• Conditions at start of execution:
32 bits of 1st operand are in A, B,

and D (24-bit fraction only).
32 bits of 2nd operand are in Sand T.
Instruction is in E.

• Sign of 2nd operand saved in STAT C.

• STAT A set if fraction equals zero.

• CC determined by STAT A, STAT C,
and L TDR instruction.

• CC setting:
Fraction equals zero: CC = 0
Result less than zero: CC = 1
Result greater than zero: CC = 2.

• Figure 6038, FEDM

3.6.3 LOAD COMPLEMENT

• Loads 2nd operand in 1st operand loca­
tion with sign changed to opposite value
(complemented). Result sign and mag­
nitude determine CC.

• 2nd operand location unchanged.

• Except for complementing sign of 2nd
operand, Load Complement instruc­
tions are similar to Load and Test
instructions (paragraph 3.6.2).

3.6.3.1 LCER (33) - RR Short Operands

• Loads 2nd operand (per R2) in 1st oper­
and location (per R1) with sign comple­
mented. Result sign and magnitude
determine CC.

11/65

• RR format:

• Conditions at start of execution:
1 st operand is in A, B, and D

(24-bit fraction only)
2nd operand is in Sand T.
Instruction is in E.

• Sign of 2nd operand saved in STAT C.

• S TA T A set if fraction equals zero.

• CC determined by STAT A, STAT C,
and LCER instruction.

• CC setting:
Fraction equals zero: CC = O.
Result less than zero: CC = 1.
Result greater than zero: CC = 2.

• Figure 6037, FEDM.

3.6.3.2 LCDR (23) - RR Long Operands

• Loads 2nd operand (per R2 and R2 + 1)
in 1st operand location (per R1 and
R1 + 1) with sign complemented. Re­
sult sign and magnitude determine CC.

• Sign of 2nd operand saved in STAT C.

• STAT A set if fraction equals zero.

• CC determined by STAT A, STAT C,
and LCDR instruction.

• CC setting:

2065 FEMI

Fraction equals zero: CC = O.
Result less than zero: CC = 1.
Result greater than zero: CC = 2.

3-81

• RR format:

• Conditions at start of execution:
32 bits of 1st operapd are in A, B,

and D (24-bit fraction only).
32 bits of 2nd operand are in Sand T.
Instruction is in E.

• Figure 6038, FEDM.

3. 6. 4 LOAD POSITIVE

• Loads 2nd operand in 1 st operand
location with sign made plus

• 2nd operand location unchanged.

• Except for making sign of 2nd operand
plus, Load Positive instructions are
similar to Load and Test instructions
(paragraph 3. 6.2) .

3. 6.4. 1 LPER (30) - RR Short Operands

• Loads 2nd operand (per R2) in 1st oper­
and location (per R1) with sign made
plus.

• Result stored must be zero or greater;

• Sign of 2nd operand saved in STAT C.

• STAT A set if fraction equals zero.

• CC determined by STAT A, STAT C,
and LPER instruction.

• CC setting:

3-82

Fraction equals zero: CC = o.
Result greater than zero: CC = 2.

• RR format:

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only).
2nd operand is in S and T.
Instruction is tn E.

• Figure 6037, FEDM.

3. 6.4.2 LPDR (20) - RR Long Operands

• Loads 2nd operand (per R2 and R2 + 1)
in 1st operand location (per R1 and
in + 1) with sign made plus.

• RR format:

• Conditions at start of execution:
32 bits of 1st operand are in A, B,

and D (24-bit fraction only).
32 bits of 2nd operand are in S

and T.
Instruction is in E.

11/65

• Result stored must be zero or
greater.

• Sign of 2nd operand saved in STAT C.

• STAT A set if fraction equals zero.

• CC determined by STAT A, STAT C,
and LPDR instruction.

• CC setting:
Fraction equals zero: CC = o.
Result greater than zero: CC = 2.

• Figure 6038, FEDM.

3.6.5 LOAD NEGATIVE

• Loads 2nd operand in 1 st operand loca­
tion with sign made minus.

• 2nd operand location unchanged.

• Except for making sign of 2nd operand
minus, Load Negative instructions are
similar to Load and Test Instructions
(paragraph 3.6.2).·

3. 6. 5.1 LNER (31) - RR Short Operands

• Loads 2nd operand (per R2) in 1 st oper­
and location (per R1) with sign made
minus.

• RR format:

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only).

11/65

2nd operand is in S and T.
Instruction is in E.

• Result stored must be zero or less.

• Sign of 2nd operand saved in STAT C.

• STAT A set if fraction equals zero.

• CC determined by STAT A, STAT C,
and LNER instruction.

• CC setting:
Fraction equals zero: CC = o.
Result less than zero: CC = 1.

• Figure 6037, FEDM.

3.6.5.2 LNDR (21) - RR Long Operands

• Loads 2nd operand (per R2 and R2 + 1)
in 1st operand location (per R1 and
R1 + 1) with sign made minus.

• RR format:

• Conditions at start of execution:
32 bits of 1st operand are in A, B,

and D (24-bit fraction only).
32 bits of 2nd operand are in Sand T.
Instruction is in E.

• Result stored must be zero or less.

• Sign of 2nd operand saved in STAT C.

• STAT A set if fraction equals zero.

• CC determined by STAT A, STAT C,
and LNDR instruction.

• CC setting:

2065 FEMI

Fraction equals zero: CC = o.
Fraction less than zero: CC = 1.

3-83

• Figure 6038, FEDM.

3.6.6 ADD-TYPE INSTRUCTIONS

• 20 add, subtract, and compare instruc­
tions.

• Short and long operands available in
both formats.

• 2nd operand location is unchanged.

• Add and subtract instruction results
may be normalized or unnormalized.

• Results in true form with plus or minus
values.

There are 20 floating-point add-type instructions,
divided into three major groups: add, subtract, and
compare. The RR and RX formats using short and
long operands are available in each group. The add
and subtract instruction results may be normalized
or unnormalized, depending upon the instruction
being executed. A CC is set on all add-type instruc­
tions; the compare instructions cause a CC to be
set with no result stored.

The CPU computes the sum of floating-point
numbers as follows:

1. Equalizes the characteristics.

a. If the characteristics are unequal, the oper­
and with the smallest characteristic is
shifted right the number of hexadecimal
digits necessary to equalize the character­
istics.

b. If the number of shifts exceeds the number
of hexadecimal digits available, the oper­
and with the largest characteristic becomes
the intermediate result.

2. When the characteristics are equal, algebrai­
cally adds the first and second operands.

a. If the signs are alike, adds the first oper­
and to the second operand.

3-84

b. If the signs are unlike, subtracts the second
operand from the first operand (adds 2 's
complement of second operand to first
operand) .

3. If the intermediate result fraction is in com­
plement form, recomplements it (takes 2 's
complement) to obtain the true fraction value.

4. Determines the sign and characteristic value.

5. Stores the sign, characteris tic, and fraction
in LS as specified by the R1 field.

6. Sets the CC per hardware conditions.

The add instructions are discussed in paragraphs
3.6.6.1 and 3.6.6.2.

For subtraction of floating-point numbers, the
algebraic rule applies: to subtract two numbers,
change the sign of the subtrahend and proceed as in
addition. When subtracting floating-point numbers,
the sign of the second operand is complemented.
The rules of addition apply as outlined in the pre­
vious paragraph. The subtract instructions are
discussed in paragraphs 3.6.6.3 and 3. 6.6.4.

The compare instructions are similar to the sub­
tract instructions; the res ul ts, however, are not
stored. The objectives of the compare instructions
are to algebraically compare the first operand ,\ith
the second operand and to set the CC accordingly.
These objectives are accomplishcd by complement­
ing the sign, algebraically adding the fraction, de­
termining a high, low, or equal condition, and set­
ting the ce. The compare instructions are dis­
cussed in paragraph 3. 6.6.5.

As discussed in the previous paragraphs, the sub­
tract and compare instructions may be treated as an
add instruction after the sign is complemented. The
basic objectives of the add-type instructions are
shown in Figure 6039A, FEDM. The figure is divi­
ded into three phases. The objectives of the first
phase are I-Fetch, operand fetch, and Sign handling.
After the RR or RX I-Fetch and the specification
check, the remaining operand and/or low-order
fraction(s) must be fetched or the low-order frac­
tions reset to zeros. The signs are saved in STAT'so
In short operand instructions, zeros are gated to the
low-order fractions of the 64-bit operands o

In the second phase. the characteristics are com­
pared. Preshifting occurs. if necessary, follO\ved
by the addition or subtraction of the fractions. Be­
cause the characteristics must be equal before al­
gebraically adding the operands, the characteristics
are subtracted to determine whether they are equal
or whether preshifting is meaningful. For short
operands. the characteristic difference must be 7 or
less; for long operands. 15 or less. An exception

11/65

occurs if the first operand characteristic is greater
than the second operand characteristic and the dif­
ference is 8 (short operands) or 16 (long operands).
In this case, characteristic equalization results in a
zero fraction.

If the characteristic difference is greater than 7
(short operands) or 15 (long operands), the fraction
resulting after right-shifting equals zero. There­
fore, preshifting is not performed and the operand
with the largest characteristic becomes the result.
If pre shifting is meaningless, the value in AB or ST
is the result. If the characteristics are within
range, the smallest fraction is right-shifted until
the characteristics are equal; the operands are then
algebraically added.

Phase 3 tests for compare instructions, normal­
ized instructions, or unnormalized instructions.
Postnormalization, recomplementation, or fraction
overflow correction is accomplished during this
phase. The final result is stored (except on com­
pare instructions), and the CC is set according to
the computed results. An end-op completes instruc­
tion execution.

When short operand instructions are executed,
the low-order halves of the floating-point registers
are ignored and remain unchanged.

The addition of two floating-point numbers con­
sists of a characteristic comparison and a fraction
addition. The characteristics of the two operands
are compared, and the fraction with the smaller
characteristic is right-shifted until the two charac­
teristics agree. The characteristic is increased by
1 for each hexadecimal digit shifted. The fractions
are then added algebraically to form an intermediate
result. If an overflow carry occurs, the interme­
diate result is right-shifted one hexadecimal digit
and the characteristic is increased by 1. If this
increase causes a characteristic overflow, an ex­
ponent-ovcrflow interruption occurs.

The short intermediate result consists of seven
hexadecimal digits and a possible carry. The low­
order digit is a guard digit retained from the frac­
tion which is shifted right. Only one guard digit
participates in the fraction addition. The guard digit
is zero if no shift occurs. For long operands, the
intermediate result consists of 14 hexadecimal digits
and a possible carry. No guard digit is retained.

After the addition, for normalized instructions
the intermediate result fraction is left-shifted as
necessary to form a normalized fraction. Vacated
low-order digit pOSitions are filled wi th zeros, and

the characteristic is reduced by the amount of the
shift.

If normalization causes the characteristic to
underflow, an exponent-underflow interruption con­
dition exists: the sign, characteristic, and fraction
are made zero and, if the corresponding mask bit
is a 1, a program interruption occurs. If no left
shift takes place, the intermediate result is trun­
cated to the proper fraction length (short operands).

When the intermediate result fraction is zero and
the significance mask bit is a 1, a significance in­
terruption takes place. No normalization occurs,
and the intermediate result characteristic remains
unchanged. When the intermediate result is zero
and the significance mask bit is a 0, a significance
interruption does not occur; rather, the character­
istic and the sign are made zero, yielding a true
zero result. Exponent underflow does not occur for
a zero fraction.

The sign of the result is derived algebraically.
However, the sign of a result with a zero result
fraction is always positive.

All instructions depend on ROS microprograms to
perform the logic for instruction execution. Each
instruction enters at a different ROS microprogram
address. After microprogram entry, the address
of the next micro-instruction is determined and the
next micro-instruction is fetched and executed. In
the add-type instructions, there are 20 different
microprogram en tries. The RR or RX I-Fetch rou­
tine is executed. After I-Fetch, one of the 20 ROS
entries is selected and the execution phase begins.
Since the add-type instructions may be considered
as an algebraic add, the 20 microprograms eventu­
ally branch to perform the same logic functions.
Instruction execution for all add-type instructions
eventually continues in the same microprogram.
The point of entry, for discussion purposes, is con­
sidered to be the branch on characteristic difference
(10-way branch) shown in Figure 6039C, FEDM.
The details of instruction execution are included
in the discussion of the specific instruction.

3. 6. 6. 1 Add Normalized

• Algebraically adds 2nd operand to 1st
operand; normalized sum is placed in
1st operand location.

• 2nd operand location is unchanged.

• Instructions:
AER (3A) - RR Short Operands
AE (7 A) - RX Short Operands
ADR (2A) - RR Long Operands
AD (6A) - RX Long Operands

11/65 2065 FEMI 3-85

3.6.6.1.1 AER (3A) - RR Short Operands

• Algebraically adds 2nd operand (per
R2) to 1st operand (per R1); normal­
ized sum is placed in 1st operand
location.

• RR format:

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only) .
2nd operand is in S and T.
Instruction is in E.

• CC setting:
Result fraction equals zero: CC = O.
Result fraction less than zero: CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

The Add Normalized, AER, instruction algebra­
ically adds the second operand specified by R2 to the
first operand specified by R1, and the normalized
sum is placed in the first operand location. The CC
is set according to hardware conditions.

The AER instruction is in the RR format with an
op code of 3A. This instruction uses 32-bit oper­
ands. The contents of the low-order halves of the
floating-point registers in LS remain unchanged.

3-86

The initial conditions at the beginning of the ex­
ecution phase are:

1. The first operand is in A, B, and D
(24-bit fraction only) .

2. The second operand is in Sand T.

3. The STC was set to 4 during I-Fetch.

4. The AER instruction is in E.

A specification check is made at the beginning of
the execution phase. If a specification check condi­
tion exists, instruction execution is suppressed and
a specification interruption occurs. Assume that no
specification check interruption condition exists
(Figure 6039B, FEDM).

Because the AER instruction uses short operands
(32 bits) in the RR format, no operand fetch during
instruction execution is necessary. The sign of the
first operand is saved in STAT F. Because the sign
of the second operand depends upon the instruction
being executed, STAT C contains the original sign
or the complement of the original sign. For the
AER instruction, STAT C contains the original sign.
Because the AER instruction operates on short oper­
ands, Band T are reset, and the operand is treated
as a 56-bit fraction. The first operand character­
istic is subtracted from the second operand charac­
teristic to determine the characteristic difference.
The characteristic difference and the signs deter­
mine the next operation to be performed via a 10-way
ROS branch (Figure 6039C, FEDM).

The 10-way ROS branch on characteristic differ­
ence and signs occurs for all add-type instructions.
When this branch is encountered, the conditions are
as follows:

1. The first operand is in AB (B equals zero for
short operands).

2. The second operand is in S, T, and D (T equals
zero for short operands).

3. The sign of the first operand is in STAT F.

4. The sign of the second operand is in STAT C.

5. The characteristic difference is in SAL and F.

The serial adder consists of eight binary bit posi­
tions. When subtracting the first operand character:"
istic from the second operand characteristic, the 2's
complement of the first operand characteristic is

11/65

added to the second operand characteristic. A 1 is
forced in bit position 0 on the A bus (first operand
side) of the serial adder, and a 0 is forced in bit
position 0 on the B bus (second operand side) of the
serial adder. The characteristic difference is then
routed to SAL and F.

The 10-way ROS branch is determined by the re­
sults of the characteristic subtraction and the signs
in STAT F and STAT C. The 10-way ROS branch
tests are defined as ABCD values in Figure 6039C,
FEDM. The ABCD values are defined as follows:

1. A equals 1 when there is a serial adder carry.
A carry indicates that the second operand is
greater than or equal to the first operand.

2. B equals 1 when the signs are alike. If the
signs are alike, the fractions are added; if
unlike, the fractions are subtracted.

3. C equals 1 when the characteristic difference
is within range. C equaling 1 implies that the
characteristic difference is small enough, and
equalizing the characteristics may be mean­
ingful. (It is possible to have a zero fraction
as a result of characteristic equalization.)

4. D equals 1 when the result in the serial adder
latches is O. This condition indicates that the
characteristics are equal. A serial adder
carry also occurs; thus A will also equal 1.

Assume that the following two characteristics are
to be compared to determine the ABCD value:

2nd operand characteristic 6410 = 1000000z
1st operand characteristic 7310 = 10010012

The first operand characteristic is subtracted from
the second operand characteristic shown below:

2nd operand characteristic 0 1000000

Complement of 1st operand 0 0110110 } 2's com-
Add 1 1 0000001 plement

Characteristic difference in SAL(0-7) 1 1110111

SAL(O) t ~ SAL(1-3)

SAL(4)

Because there was no SAL(O) carry, the value of A
is O. The value of B depends upon the signs assigned
to the fractions of the two operands. The table in
Figure 6039C, FEDM, shows the bit pOSitions tested
in SAL to determine the value of C and whether pre­
shifting is meaningful. In this example, SAL(0-3)

equals 1111 (binary). If a long operand instruction
is being executed, C equals 1 and preshifting is
meaningful. If a short operand instruction is being
executed, C equals 0; therefore, the value is in AB
because no carry from SAL(O) indicated that Rl is
greater than R2. D equals 0 because SAL(0-7) is
not all O's.

If all positions of SAL are 0, D equals aI, indi­
cating that the characteristics of the two operands
are equal. The value of B then determines the next
operation (Signs alike, add Signs; unlike, subtract).
In this case [SAL(0-7) equals OJ , A also equals a 1
because there must be a SAL(O) carry.

Further, assume that the two characteristics in
the previous example are interchanged. The char­
acteristics are compared as follows:

2nd operand characteristic: 1001001
1st operand characteristic: 1000000

The first operand characteristic is subtracted from
the second operand characteristic shown below:

2nd operand characteristic
Complement of 1st operand

Add 1

o 1001001
1 0111111
o 0000001

SAL(O) carry _ 0 0001001

SAL(O) t tttt
SAL(1-3) -----~
SAL(4)---------I

In this example, A equals 1 because there is a SAL(O)
carry. The value of B depends upon the signs of the
two operands. The conditions listed in the table in
Figure 6039C, FEDM, show that C equals 1 for long
operand instructions and 0 for short operand instruc­
tions. If preshifting in this example is meaningless,
the operand in ST is the result fraction because the
SAL(O) carry indicated that the second operand is the
largest.

The two examples discussed above illustrate the
determination of the ABCD values. Additional ex­
amples are shown in Table 3-14. The value of ABCD
determines the ROS branch that performs the next
steps in executing the Add algorithm.

The examples of determining the ABCD values as
shown in Table 3-14 indicate that the fraction of the
operand with the smallest characteristic is shifted
right when the characteristic difference is 7 or less
for short operand instructions and 15 or less for long
operand instructions. An exception occurs when the
characteristic difference is 8 (short operands) or 16
(long operands) and the first operand characteristic

11/65 2065 FEMI 3-87

TABLE 3-14. EXAMPLES OF BRANCHING ON CHARACTERISTIC DIFFERENCE

Example Example Example Exampe Example
Description No.1 No.2 No.3 No.4 No.5

2nd operand characteristic 1000000 1000000 1001000 1000111 1000000
1st operand characteristic 1001001 1001000 1000000 1000000 1000000

2nd operand characteristic 0 1000000 0 1000000 0 1001000 0 1000111 0 1000000
Complement of 1st operand characteristic 1 0110110 1 0110111 1 0111111 1 0111111 1 0111111
Add 1 0 0000001 0 0000001 0 0000001 0 0000001 0 0000001
Difference in SAL(0-7) 1 1110111 1 1111000 _0 0001000

__ 0
0000111 _0 0000000

SAL(O) carry SAL(O) carry SAL(O) carry

Short No Yes No Yes Yes
Within Range?*

Long Yes Yes Yes Yes Yes

ABCD value Sub 0000 Sub 0010 Sub 1000 Sub 1010 Sub 1011
Add 0100 Add 0110 Add 1100 Add 1110 Add 1111

Comments Result in Equalize Result in Equalize Add or sub.
AB fraction ST fraction No shift

in ST inAB necessary.

Notes:
1. A equals 1 when there is a serial adder carry. A carry indicates that R2 ~ Rl.
2. B equals 1 when the signs are alike.

*3. C equals 1 when the characteristics are within range. C equals 1 on SAL results as follows:
a. SAL carry and SAL(0-3) = 0 and long operands.
b. SAL carry and SAL(0-4) = O.
c. No SAL carry and SAL(0-3) = liS and long operands.
d. No SAL carry and SAL(0-4) = liS.

4. D equals 1 when the SAL outputs are equal to O.

is the largest characteristic. In this case, 8 or 16
right hexadecimal shifts occur, resulting in a zero
fraction.

Four possible ABCD values (0010, 0110, 1010,
and 1110) cause characteristic equalization and then
an algebraic addition of fractions (Figure 6039C,
FEDM). For example, assume that an AER instruc­
tion requires characteristic equalization, fraction
subtraction, recomplementation (second operand
fraction is greater than first operand fraction), and
normalization. Further, assume an ABCD value of
0010. The 0010 branch (Figure 6039C, FEDM)
shows that one right shift of the second operand
occurs and 1 is added to F. Note that one guard
digit is retained. SAL(4-7) is checked for 1111 (bi­
nary) (Figure 6039D, FEDM). When SAL(4-7) equals
1111, the characteristics are equal. Since the test
for a branch is made one machine cycle before the
ROS branch occurs, the SAL value is one machine
cycle behind the actual shift count. For this reason,
a test is made for 1111 in SAL(4-7) instead of for
0000. Once the characteristics are equal, the sec­
ond operand is subtracted from the first operand
(signs unlike). To subtract fractions (signs unlike),

3-88

the 2' s complement of the second operand fraction in
DT is added to the first operand fraction in AB with
the intermediate fraction result placed in AB and DT.
The intermediate fraction result may be in true form
or in complement form, or it may be equal to zero.
If a zero fraction results, STAT A is set. If the
fraction of the second operand is greater than the
first operand fraction, the result is in complement
form. Conversely, the result is in true form if the
first operand fraction is greater than the second op­
erand fraction. If AB(7) equals 1, the intermediate
result is in complementform. If AB(7) equals 0,
the intermediate result is in true form. When the
intermediate result is in complement form, the re­
sult must be recomplemented. The true form of
the intermediate result fraction is accomplished by
taking the 2's complement of the intermediate re­
sult after the algebraic addition (Figure 6039G,
FEDM).

When the result is in true form, and if the frac­
tion is not equal to zero, the fraction must be nor­
malized and stored and the CC set. The micropro­
gram assumes that the intermediate result is nor­
malized. Therefore, the low-order result fraction

11/65

is stored in the first operand location in LS (long
operands only). Since the AER instruction is a nor­
malized instruction, the intermediate result is nor­
malized, if necessary. The low-order fraction is
stored after each left shift (long operands). After
normalization is complete, the sign and the charac­
teristic are inserted and stored with the high-order
fraction in the first operand location (specified by
Rl). Assuming no error conditions or zero fraction,
the CC is set (Figure 60391, FEDM). An end-op
cycle completes instruction execution.

When in the normalizing loop (Figure 6039G,
FEDM), the intermediate fraction result can be left­
shifted out of the high-order hexadecimal digit posi­
tion if the intermediate fraction is 0001. This left
shift results in a zero fraction. The zero fraction,
in this case, is not a true zero result or a signifi­
cance condition; therefore, the true value must be
restored.

Since the test for ROS branches is made one ma­
chine cycle before the ROS branch occurs, a test for
normalization is made before the recomplementation
is performed. Therefore, the test for normalization
is determined by the following conditions:

1. PAL(7-11) is 0' sand PAL(7-63) not O's.

2 .. PAL(6, 8-11) is 1 's and PAL(7-63) not O's.

If one of these two conditions is met, the machine
assumes that one normalization cycle is necessary
after the recomplementation machine cycle. For
example, if the following fractions are subtracted,
the assumed normalization cycle is not necessary.

AB bit positions 6 7 8 9 10 11 12 13---!.~63

1st operand fraction 0 0 0 1 1 0 o. ~ 0

2nd operand fraction 0 0 1 0 0 0 0 o. • 0

1st operand fraction o 0 0 1 1 1 0 O _---I.~O

Subtract 2nd operand
from 1st operand
(2 1s complement of
2nd operand) 1 1 0 1 1 1 1 l "III----.~l

Intermediate result 1

fraction 1 1 111 1 0 o •
(Meets condition 2) I I

Indicates recomple-~
• 0

mentation necessary

(2's complement of
111111 00-0) 0 0 0 0 0 0 1 1 • • 1

Result before

The intermediate result fraction above shows that
PAL(6,8-11) equals 1 's and that PAL(7-63) does not
equal O's. This condition causes a ROS branch to
the ROS normalization routine. Since A(7) equals a
1, the intermediate result fraction is in complement
form, and the 2's complement of the intermediate
fraction must be performed to obtain the true result
fraction. As shown in the example, the true result
fraction is .0001 0-0. The one hexadecimal left
shift that occurs yields a zero fraction result.
Therefore, the result fraction located in DT is the
true result fraction. The contents of D are trans­
ferred to T, and the sign, characteristic, and high­
order fraction are stored in LS per the Rl field.
The low-order fraction has previously been stored
(long operands). An end op completes instruction
execution.

If the signs were alike and characteristic equali­
zation was necessary, the fractions are added (Fig­
ure 6039D or E, FEDM). When adding fractions,
the possibility of a fraction overflow exists. The
fraction overflow is indicated by a carry out of the
high-order position [PA(8)]. After addition of the
two fractions, the intermediate result is placed in
DT and AB. If A(7) equals aI, a fraction overflow
occurred. Therefore, the fraction must be right­
shifted one hexadecimal digit and 1 added to the in­
termediate result characteristic. If there is no
fraction overflow, the result is normalized and
stored, and the CC set (Figure 6039F, FEDM).

If a right shift of the intermediate result fraction
is necessary, the possibility of an exponent overflow
exists. During the normalization of the fraction, the
possibility of an exponent underflow exists. When
SAL(O) equals a 1 after a fraction shift (right or left),
an exponent overflow or exponent underflow condition
exists. A true zero result is stored in the first op­
erand location when an exponent underflow occurs.

Whenever an exponent overflow or exponent under­
flow condition exists, F(I) and PSW(38) are exam­
ined to determine whether a program interruption is
to be executed. If F(I) equals a 0, an exponent over­
flow exists and an interruption request is uncondi­
tionally generated. A program interruption occurs
on all exponent overflows. If F(I) equals aI, an ex­
ponent underflow exists; if PSW(38) equals aI, an
exponent underflow interruption request is generated.
If PSW(38) equals a 0, exponent underflow is masked
off, and a true zero is stored with no program inter­
ruption occurring.

Note that an interruption occurs on all exponent
overflows. This overflow indicates that the value of

left shift 0 0 o 0 0 1 0 o "II _-~-I.~O the absolute result exceeds the limits of the machine;

11/65 2065 FEMI 3-89

therefore, the results are unpredictable and further
action is necessary. In some scientific computa­
tions, very small numbers may be eliminated from
an equation without serious error. In the case of
exponent underflow, the computed result approaches
zero. Therefore, the programmer may find that a
program interruption is unnecessary, and a true
zero result is desirable.

Significance and specification interruption condi­
tions may also exist during execution of AER instruc­
tion. The action that occurs is shown in Figure 60391,
FEDM, and is discussed earlier in this section.

Tests for zero intermediate results are made at
several points during instruction execution. If the
result is zero, a program interruption occurs if
PSW(39) is a 1. The positive sign, the result char­
acte~istic, and a zero fraction are stored in LS. A
program interruption occurs, and the program inter­
ruption routine determines the action to be taken. If
PSW(39) equals a 0, a true zero result is stored in LS.

An interruption request is generated during in­
struction execution. At end-op time, the interrup­
tion request is honored, provided no interruption
requests of higher priority are pending.

If the characteristics are not within limits when
executing the AER instruction, the fraction with the
largest characteristic is normalized and stored
along with the sign in LS per the R1 field.

This discussion of the AER instruction is re­
ferred to in paragraphs 3.6.6.1. 2 through 3.6.6.5.4.
If the AER instruction is understood and the instruc­
tion differences noted, any add-type instruction ex­
ecution path can be followed by referring to Figure
6039, FEDM.

3.6.6.1.2 AE (7A) - RX Short Operands

• Algebraically adds 2nd operand (from
main storage) to 1st operand (per R1);
normalized sum is placed in 1st oper­
and location.

• Conditions at start of execution:
1st operand is in Sand T.
Effective address of 2nd operand is

in D.
Instruction is in E.

• CC setting:

3-90

Result fraction equals zero: CC = o.
Result fraction less than zero:

CC = 1.

Result fraction greater than zero:
CC = 2.

Result exponent overflows: CC = 3.

• RX format:

Algebraically add fractions
of 1st and 2nd operands

Normalize fraction
and adjust charistic

Determine sign

Store sign, charistic, and
fraction in LS per R 1.

D2

31

The Add Normalized (AE) instruction algebraically
adds the second operand (from main storage) to the
first operand (specified by R1), and the normalized
sum is placed in the first operand location. The CC
is set according to hardware conditions.

The AE instruction is in the RX format with an op
code of 7A and uses 32-bit operands. The low-order
halves of the floating-point registers in LS remain
unchanged.

The conditions at the beginning of the execution
phase are:

1. The first operand is in Sand T.

2. The effective address of the second operand
is in D.

3. The contents of A and B are unknown.

4. The AE instruction is in E.

11/65

A specification check is made at the beginning of
the execution phase (Figure 6039B, FEDM). If a
specification interruption condition exists, instruc­
tion execution is suppressed and a specification in­
terruption occurs. Assume that no specification
interruption condition exists . . .

Since the AE instruction uses short operands (32
bits) in the RX format, no low-order fractions need
to be fetched. The first operand that is in Sand T
is moved from T to A. The second operand arrives
from main storage and is placed in T. D(21) deter­
mines which word from the SDBO is gated to T.
Note that main storage is addressed on full-word
boundaries. If D(21) is equal to a 0, bit positions
o through 31 of the SDBO are gated to Tj if D(21)
equals a 1, bits 32 through 63 of the SDBO are gated
to T.

The sign of the first operand is saved in STAT Fj
the sign of the second operand is saved in STAT C.
The sign, the characteristic, and the fraction of the
second operand are placed in S. Band T are reset,
and the operands are treated as 56-bit fractions.
The characteristics are subtracted, and the charac­
teristic difference and the signs determine the next
operation to be performed via a 10-way branch
(Figure 6039C, FEDM).

Operation from the 10-way microprogram branch
is similar to the AER instruction (paragraph
3. 6.6.1.1). From this point, the microprogram
is not concerned with the instruction format.

3.6.6.1.3 ADR (2A) - RR Long Operands

• Algebraically adds 2nd operand (per R2
and R2 + 1) to 1st operand (per R1 and
R1 + 1) j normalized sum is placed in 1st
operand location.

• Conditions at start of execution:
32 bits of 1st operand are in A,

B, and D (24-bit fraction only).
32 bits of 2nd operand are in

Sand T.
Instruction is in E.

• CC setting:
Result fraction equals zero: CC = O.
Result fraction less than zero:

CC =1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = .3.

• RR format:

Algebraically add fractions
of 1st and 2nd operands

Normalize fraction
and adjust charistic

Determine sign

Store sign, charistic, and
fraction in LS per R 1 and R 1 + 1.

The Add Normalized (ADR) instructions algebra­
ically adds the second operand (specified by R2 and
R2 + 1) to the first operand (specified by R1 andR1 + 1),
and the normalized sum is placed in the first oper­
and location. The CC is set according to hardware
conditions.

The ADR instruction is in the RR format with an
op code of 2A and uses 64-bit operands.

The conditions at the beginning of the execution
phase are:

1. 32 bits of the first operand (sign, character­
istic, and high-order fraction) are in A, B,
and D (24 bits).

2. The second operand (sign, characteristic, and
high-order fraction) is in Sand T.

3. The STC contains a count of 4.

4. The ADR instruction is in E.

Since the ADR instruction uses long operands (64
bits) in the RR format, the low-order fractions of

11/65 2065 FEM! 3-91

the first and second operands must be fetched from
LS. The low-order fraction of the first operand is
fetched from LS per E(S-ll) + 1 and placed in B via
T and the parallel adder. The low-order fraction of
the second operand is fetched from LS per E(S-ll) + 1
and placed in T. The high -order fraction is placed
in D. Addition is done by algebraically adding the
contents of DT to the contents of AB with the inter­
mediate fraction result placed in AB and DT.

The sign of the first operand is saved in STAT F;
the Sign of the second operand is saved in STAT C.
The first operand characteristic is subtracted from
the second operand characteristic, and the charac­
teristic difference and the signs determine the next
operation via a 10-way branch (Figure 6039C, FEDM).

Operation from the 10-way microprogram branch
is similar to that of the AER instruction (paragraph
3. 6. 6. 1 . 1) . From this point, the microprogram is
not concerned with the instruction format.

The major differences between the ADR instruc­
tion and the AER instructions are as follows:

1. An additional operand fetch is needed.

2. The low-order portion of the floating-point
registers is used.

3.6.6.1. 4 AD (6A) - RX Long Operands

• Algebraically adds 2nd operand (from
main storage) to 1st operand (per R1
and R1 + 1); normalized sum is placed
in 1st operand location.

• RR format (see adjoining column).

• Conditions at start of execution:
32 bits of 1 st operand are in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

• CC setting:
Result fraction equals zero: CC = O.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

The Add Normalized (AD) instruction algebraically
adds the second operand (from main storage) to the
first operand (specified by R1 and R1 + 1), and the
normalized sum is placed in the first operand loca­
tion. The CC is set according to hardware conditions.

3-92

Algebraically add fractions
of 1 st and 2nd operands

Normalize fraction
and adjust charistic

Determine sign

Store sign I charisti c I and frac­
tion in LS per R 1 and R 1 + 1.

The AD instruction is in the RX format with an op
code of 6A and uses 64-bit operands.

The conditions at the beginning of the execution
phase are:

1. The first operand (sign, characteristic, and
high-order fraction) is in Sand T.

2. The main storage effective address is in D.

3. The contents of A and B are unknown.

4. The AD instruction is in E.

Because the AD instruction uses long operands
(64 bits) in the RX format, the low-order fraction
of the first operand must be fetched from LS and
the low-order fraction of the second operand must
be fetched from main storage.

The sign, the characteristic, and the high-order
fraction of the first operand are placed in A. The
low-order fraction is fetched from LS per E(S-ll)
and routed to B via T and the parallel adder. The
64-bit second operand is fetched from main storage
per D and placed in ST. The Sign of the first oper­
and is saved in STAT F; the Sign of the second op­
erand is saved in STAT C.

11/65

The high-order fraction is also placed in D, and
addition is accomplished by algebraically adding the
contents of DT to the contents of AB after charac­
teristic equalization. The intermediate result is
placed in AB and DT.

The first operand characteristic is subtracted
from the second operand characteristic, and the
characteristic difference and the signs determine
the next operation via a 10-way branch (Figure 6039C,
FEDM).

Except for long operands, operation of the AD
instruction is similar to that of the AER instruc­
tion (paragraph 3.6.6.1.1). From this point, the
microprogram is not concerned with instruction
format.

3. 6. 6.2 Add Unnormalized

• Algebraically adds 2nd operand to 1st
operand; unnormalized sum is placed
in 1st operand location.

• 2nd operand location is unchanged.

• Instructions:
AUR (3E) - RR Short Operands
AU (7E) - RX Short Operands
A WR (2E) - RR Long Operands
AW (6E) - RX Long Operands

The Add Unnormalized instructions (A UR, AU,
A WR, and A W) add the second operand to the first
operand, and the unnormalized sum is placed in the
first operand location. The CC is set according to
hardware conditions at end-op time of the instruction
being executed. Note that, when executing Add Un­
normalized short operand instructions, the guard
digit is not examined to determine the CC setting or
checked for a Significance condition.

With the exception that the intermediate result is
not normalized, instruction execution is identical
with that of Add Normalized instructions (AER, AE,
ADR, and AD); therefore, references are made to
the Add Normalized instructions when the Add Un­
normalized instructions are discussed.

3.6.6.2.1 AUR (3E) - RR Short Operands

• Algebraically adds 2nd operand (per R2)
to 1st operand (per R1); unnormalized
sum is placed in 1st operand location.

• RR format:

Algebraically add fractions
of 1st and 2nd operands

Determine sign

Store sign, charistic, and
fraction in LS per R 1.

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only).
2nd operand is in Sand T.
Instruction is in E.

• Exponent underflow will not occur.

• For instruction execution, refer to AER
description (paragraph 3. 6. 6.1 . 1).

• CC setting:
Result fraction equals zero: CC = O.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM.

3.6.6.2.2 AU (7E) - RX Short Operands

• AlgebraicaJly adds 2nd operand (per R2)
to 1st operand (per R1); unnormalized
sum is placed in 1st operand location.

• Conditions at start of execution:
1st operand is in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

11/65 2065 FEMI 3-93

• RX format:

Algebraically add fractions
of 1st and 2nd operands

Determine sign

Store sign, charistic, and
fraction in LS per R1.

• Exponen t underflow will not occur .

• For RX short operand fetch, refer to
paragraph 3.6.6.1.2.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

• CC setting:

D2

Result fraction equals zero: CC = o.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM.

3.6.6.2.3 AWR (2E) - RR Long Operands

• Algebraically adds 2nd operand (per
R2 and R2 + 1) to 1st operand (per R1
and R1 + 1); unnormalized sum is
placed in 1st operand location.

• Exponent underflow will not occur.

• For RR operand fetch, refer to para­
graph 3.6.6.1.3.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

3-94

31

• RR format:

2E

o

Algebraically add fractions
of 1st and 2nd operands

Determine sign

Store sign, charistic, and fraction
in LS per R1 and R1 + 1.

• Conditions at start of execution:
32 bits of 1st operand are in

A, B, and D(24-bit fraction
only).

32 bits of 2nd operand are in S
and T.

Instruction is in E.

• CC setting:
Result fraction equals zero: CC = o.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC =2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM

3.6.6.2.4 AW (6E) - RX Long Operands

• Algebraically adds 2nd operand (from
main storage) to 1st operand (per R1
and R1 + 1); unnormalized sum is
placed in 1st operand location.

• Exponent underflow will not occur.

• For RX operand fetch, refer to para­
graph 3.6.6.1.4.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

11/65

• RR format:

Algebraically add fractions
of 1 st and 2nd operands

Determine sign

Store sign, charistic, and
fraction in lS per Rl and Rl + 1.

• Conditions at start of execution:
32 bits of 1st operand are in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

• CC setting:
Result fracJion equals zero: CC = O.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM.

3.6.6.3 Subtract Normalized

• Algebraically subtracts 2nd operand
from 1st operand; normalized differ­
ence is placed in 1st operand location.

• 2nd operand location is unchanged.

• Instructions:

11/65

SER (3B) - RR Short Operands
SE (7B) - RX Short Operands
SDR (2B) - RR Long Operands
SD (6B) - RX Long Operands

The Subtract Normalized instructions (SER, SE,
SDR, and SD) subtract the second operand from the
first operand, and the normalized difference is
placed in the first operand location. The CC is
set according to hardware conditions at end-op time.

When subtracting two numbers, the sign of the
subtrahend (second operand) is inverted and the two
numbers are algebraically added. In all subtract
instructions (Subtract Normalized and Subtract Un­
normalized), the sign of the second operand is com­
plemented and saved in STAT C (Figure 6039B,
FEDM), after which the algebraic subtraction is
treated as an algebraic addition. Therefore, refer­
ences are made to the add instructions to illustrate
instruction execution.

3.6.6.3.1 SER (3B) - RR Short Operands

• Algebraically subtracts 2nd operand (per
R2) from 1st operand (per R1); normal­
ized c;lifference is placed in 1st operand
location.

• RR format:

Algebraically add fractions
of 1 st and 2nd operands

Normal ize frac tion
and adjust charistic

Determ ine sign

Store sign, charistic, and
fraction in lS per Rl.

• To subtract, change sign of 2nd operand
and proceed as in addition.

2065 FEMI 3-95

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only)
2nd operand is in S and T.
Instruction is in E.

• For RR short operand fetch and in­
struction execution, refer to para­
graph 3.6.6.1.1.

• CC setting:
Result fraction equals zero: CC = o.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM.

3.6.6.3.2 SE (7B) - RX Short Operands

• Algebraically subtracts 2nd operand
(from main storage) from 1st operand
(per R1); normalized difference is
placed in 1st operand location.

• RX format:

3-96

Equal ize charistics and save signs

Algebraically add fractions
of lst and 2nd operands

Normolize fraction ond odjustcharistic

Determine sign

Store sign, charistic, and
fraction in LS per R I.

31

• Conditions at start of execution:
1st operand is in Sand T.
Effective address of 2nd operand is

in D.
Instruction is in E.

• To subtract, change Sign of 2nd oper­
and and proceed as in addition.

• For RX short operand fetch, refer to
paragraph 3.6.6.1.2.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

• CC setting:
Result fraction equals zero: CC = o.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM.

3.6.6.3.3 SDR (2B) - RR Long Operands

• Algebraically subtracts 2nd operand (per
R2 and R2 + 1) from 1st operand (per R1
and R1 + 1); normalized difference is
placed in 1st operand location.

• RR format:

Algebraically add fractions
of 1st and 2nd operands

Normal ize fraction and adjust charistic

Determine sign

Store sign, charistic, and fraction
in LS per R 1 and R 1 + 1 •

11/65

• Conditions at start of execution:
32 bits of 1st operand are in A, B,

and D (24-bit fraction only).
32 bits of 2nd operand are in S

and T.
Instruction is in E.

• To subtract, change sign of 2nd oper­
and and proceed as in addition.

• For RR long operand fetch, refer to
paragraph 3.6.6.1.3.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

• CC setting:
Resul t fraction equals zero: CC = O.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM.

3.6.6.3.4 SD (6B) - RX Long Operands

• Algebraically subtracts 2nd operand
(from main storage) from 1st operand
(per R1 and R1 + 1); normalized differ­
ence is placed in 1st operand location.

• RX format:

Equalize charistics and save signs

Algebraically add fractions
of 1 st and 2nd operands

31

• Conditions at start of execution:
32 bits of 1 st operand are in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

• To subtract, change sign of 2nd oper­
and and proceed as in addition.

• For RX long operand fetch, refer to
paragraph 3.6.6.1.4.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

• CC setting:
Result fraction equals zero: CC = O.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM.

3. 6. 6.4 Subtract Unnormalized

• Algebraically subtracts 2nd operand
from 1st operand; unnormalized dif­
ference is placed in 1st operand
location.

• 2nd operand location is unchanged.

• Instructions:
SUR (3F) - RR Short Operands
SU (7F) - RX Short Operands
SWR (2F) - RR Long Operands
SW (6F) - RX Long Operands

The Subtract Unnormalized instructions (SUR, SU,
SWR, and SW) subtract the second operand from the
first operand, and the unnormalized difference is
placed in the first operand location.

Normalize fraction and adjust, charistic

When subtracting two numbers, the Sign of the
subtrahend (second operand) is inverted and the two
numbers are algebraically added. In all subtract
instructions (Subtract Normalized and Subtract Un­
normalized), the Sign of the second operand is com­
plemented and saved in STAT C. Algebraic addition
is determined by STAT F and STAT C. Sign com­
plementation is shown in Figure 6039B, FEDM.
After the sign is complemented and saved, the al­
gebraic subtraction is treated as an algebraic addi­
tion. The intermediate results of the Subtract Un­
normalized instructions are not normalized. Other-

11/65

Determine sign

Store sign, charistic, and fraction
in LS per R1 and R1 + 1.

2065 FEMI 3-97

wise, the operation is the same as the Subtract Nor­
malized instructions. Because the subtract instruc­
tions are similar to the ad~ instructions, references
are made'to the add instructions to illustrate instruc­
tion execution.

Note that, when executing Subtract Unnormalized
short operand instructions, the guard digit is not
examined to determine the CC setting or checked
for a significance condition.

3.6.6.4.1 SUR (3F) - RR Short Operands

• Algebraically subtracts 2nd operand
(per R2) from 1st operand (per R1);
unnormalized difference is placed in
1st operand location.

• RR format:

Algebraically add fractions
of 1 st and 2nd operands

Determine sign

Store sign, charistic, and
fraction in LS per R 1.

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only) .
2nd operand is in S and T.
Instruction is in E.

• Exponent underflow will not occur.

• To subtract, change sign of 2nd oper­
and and proceed as in addition.

3-98

• For RR short operand fetch and in­
struction execution, refer to para­
graph 3.6.6.1.1.

• CC setting:
Result fraction equals zero: CC = O.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM.

3.6.6.4.2 SU (7F) - RX Short Operands

• Algebraically subtracts 2nd operand
(from main storage) from 1st operand
(per R1); unnormalized difference is
placed in 1st operand location.

• RX format:

Algebraically add fractions
of 1st and 2nd ope ran ds

Determine sign

Store sign, charistic, and
fraction in LS per R 1.

• Conditions at start of execution:
1st operand is in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

D2

• To subtract, change Sign of 2nd oper­
and and proceed as in addition.

31

11/65

• For RX short operand fetch, refer to
paragraph 3.6.6.1.2.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

• CC setting:
Result fraction equals zero: CC = o.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM.

3.6.6.4.3 SWR (2F) - RR Long Operands

• Algebraically subtracts 2nd operand (per
R2 and R2 + 1) from 1st operand (per R1
and R1 + 1); unnormalized difference is
placed in 1st operand location.

• RR format:

Algebraically add fractions
of 1 st and 2nd operands

Determine sign

Store sign, charistic, and fraction
in LS per Rl and Rl + 1.

• Conditions at start of execution:

11/65

32 bits of 1st operand are in A, B,
and D (24-bit fraction only).

32 bits of 2nd operand are in
Sand T.

Instruction is in E.

• To subtract, change sign of 2nd oper­
and and proceed as in addition.

• For RR long operand fetch, refer to
paragraph 3.6.6.1.3.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

• CC setting:
Result fraction equals zero: CC = o.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM.

3.6.6.4.4 SW (6F) - RX Long Operands

• Algebraically subtracts 2nd operand
(from main storage) from 1st operand
(per R1 and R1 + 1); unnormalized re­
sult is placed in 1st operand location.

• RX format:

Algebraically add fractions
of 1st and 2nd operands

Determine sign

D2

Store sign, charistic, and
fraction in LS per Rl and R 1 + 1.

• Conditions at start of execution:
32 bits of 1st operand are in Sand T.

2065 FEMI

31

3-99

Effective address of 2nd operand
is in D.

Instruction is in E.

• To subtract, change sign of 2nd operand
and proceed as in addition.

• For RX long operand fetch, refer to
paragraph 3.6.6.1.4.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

• CC setting:
Result fraction equals zero: CC = O.
Result fraction less than zero:

CC = 1.
Result fraction greater than zero:

CC = 2.
Result exponent overflows: CC = 3.

• Figure 6039, FEDM.

3.6.6.5 Compare

• Algebraically compares 1st operand
with 2nd operand; CC indicates result.

• Operand locations are unchanged.

• Instructions:
CER (39) - RR Short Operands
CE (79) - RX Short Operands
CDR (29) - RR Long Operands
CD (69) - RX Long Operands

The Compare instructions (CER, CE, CDR, and
CD) algebraically compare the first operand with the
second operand; the CC indicates that the first oper­
and is equal to, less than, or greater than the second
operand.

In short operand instructions, the low-order
halves of the floating-point LS registers are ignored.
Neither of the operand locations is changed asa re­
sult of the compare instructions.

Comparison is algebraic, taking into account the
sign, fraction, and characteristic of each operand.
An exponent inequality is not decisive for magnitude
determination since the fractions may have different
numbers of leading zeros. Equality is established
by following the rules for floating-point subtraction.
The intermediate result is not normalized or stored.
The CC is set per hardware conditions atend-op
time. When the intermediate result, including a

3-100

possible guard digit, is 0, the operands are equal.
Numbers with zero fractions compare equal even
when they differ in sign or characteristic. Expo­
nent overflow, exponent underflow, or lost Signifi­
cance cannot occur.

3.6.6.5.1 CER (39) - RR Short Operands

• Algebraically compares 1st operand (per
R1) with 2nd operand (per R2); CC in­
dicates result.

• RR format:

Equal ize charistics and save signs

Algebraically add fractions
of 1 st and 2nd operands

Examine resul t of fraction addition
and set CC per hardware conditions

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only).
2nd operand is in Sand T.
Instruction is in E.

• Exponent underflow, exponent overflow,
or Significance cannot occur.

• For RR short operand fetch and in­
struction execution, refer to paragraph
3.6.6.1.1.

• CC setting:
Operands are equal: CC = O.
1st operand is less than 2nd oper­

and: CC = 1.
1st operand is greater than 2nd

operand: CC = 2.

• Figure 6039, FEDM.

11/65

3.6.6.5.2 CE (79) - RX Short Operands

• Algebraically compares 1st operand
(per R1) with 2nd operand (from main
storage); CC indicates result .

• RX format:

79

Equalize charistics and save signs

Algebraically add fractions
of 1st and 2nd operands

D2

Examine result of fraction addition
and set CC per hardware conditions

• Conditions at start of execution:
1st operand is in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

• Exponent underflow, exponent over­
flow, or significance cannot occur.

• For RX short operand fetch, refer
to paragraph 3.6.6.1. 2.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

• CC setting:
Operands are equal: CC =' O.
1st operand is less than 2nd

operand: CC = 1.
1st operand is greater than 2nd

operand: CC = 2.

• Figure 6039, FEDM.

3.6.6.5.3 CDR (29) - RR Long Operands

• Algebraically compares 1 st operand (per
R1 and R1 + 1) with 2nd operand (per R2
and R2 + 1); CC indicates result.

11/65

31

• RR format:

29

Fetch low-order
fraction of 1 st oper­
and from LS per Rl + 1

Fetch low-order
frac tion of 2nd oper­
and from LS per R2 + 1

Equol ize charistics and save signs

Algebraically add fractions
of 1 st and 2nd operands

Exam i ne resu I t of frac tion addi tion
and set CC per hardware conditions

• Conditions at start of execution:
32 bits of 1st operand are in A, B,

and D (24-bit fraction only).
32 bits of 2nd operand are in S

and T.
Instruction is in E.

• Exponen t underflow, exponent overflow,
or Significance cannot occur.

• For RR long operand fetch, refer to
paragraph 3.6.6.1.3.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

• CC setting:
Operands are equal: CC = O.
1st operand is less than 2nd operand:

CC = 1.
1 st operand is greater than 2nd

operand: CC = 2.

• Figure 6039, FEDM.

3.6.6.5.4 CD (69) - RX Long Operands

• Algebraically compares 1 st operand (per
R1 and R1 + 1) with 2nd operand (from
main storage); CC indicates result.

2065 FEMI
3-101

• RX format:

69 02

o

Fetch low-order
fraction. of 1st oper­
and from lS per Rl + 1

Fetch 2nd operand

Equal ize charistics and save signs

Algebraically add fractions
of 1 st and 2nd operands

Examine result of fraction addition
and set CC per hardware conditions

• Conditions at start of execution:
32 bits of 1st operand are in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

• Exponent underflow, exponent over­
flow, or significance cannot occur.

• For RX long operand fetch, refer to
paragraph 3.6.6.1.4.

• For instruction execution, refer to
paragraph 3.6.6.1.1.

• CC setting:
Operands are equal: CC = O.
1st operand is less than 2nd oper­

and: CC = 1.
1st operand is greater than 2nd

operand: CC = 2.

• Figure 6039, FEDM.

3.6.7 HALVE

• Divides 2nd operand by 2, and quotient
is placed in 1st operand location.

• To halve, shift fraction Rl bit pOSition.

3-102

31

• Instructions:
HER (34) - RR Short Operands
HDR (24) - RR Long Operands

The Halve instructions (HER and HDR) divide
the second operand by 2, and the quotient is placed
in the first operand location. The Halve instruc­
tions are in the RRformat with short and long oper­
.and options available. In the HER instruction, the
low-order half of the result register remains un­
changed.

After the complete second operand is in ST, the
sign and the charactel'istic are saved in F, and the
high-order fraction (24 bits) is placed in D (long
operands). Shifting the fraction Rl bit position
divides the operand by' 2. The sign and the charac­
teristic are unchanged. After the Rl shift is com­
pleted, the sign, characteristic, and fraction are
stored in LS per the Rl field.

Because the Rl shift cannot be accomplished
directly, two machine cycles are necessary. The
Rl shift is accomplished by shifting the fraction Ll
to the parallel adder and performing an R4 shift to
PAL, thus yielding an effective R3 shift. The frac­
tion, shifted R3, is placed in AB. An L2 shift oc­
curs when the fraction is routed to DT, resulting in
an Rl shift and thereby dividing the fraction by 2.
The sign, characteristic, and fraction are stored
in LS, completing instruction execution.

The halve operation differs from the divide op­
eration in that 2 is the divisor, prenormalization
or postnormalization does not occur, and a zero­
fraction test does not occur.

3.6. 7.1 HER (34) - RR Short Operands

• Divides 2nd operand (per R2) by 2;
quotient is placed in 1 st operand
location (per Rl).

• RR format:

11/65

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only).
2nd operand is in S and T.
Instruction is in E.

• To divide by 2, shift fraction R1 bit
position.

• Sign and ch;:tracteristic remain un­
changed.

• Figure 6040, FEDM.

3.6.7.2 HDR (24) - RR Long Operands

• Divides 2nd operand (per R2 and R2 + 1)
by 2; quotient is placed in 1st operand
location (per R1 and R1 + 1).

• RR format:

Fetch low-order fraction
from LS per R2 + 1

Shift fraction R 1 bit position

Store sign, charistic, and fraction
in LS per Rl and Rl + 1.

• Conditions at start of execution:
32 bits of 1st operand are in A, B,

and D (24-bit fraction only).
32 bits of 2nd operand are in

Sand T.
Instruction is in E.

• To divide by 2, shift fraction R1 bit
position.

• Sign and characteristic remain un­
changed.

• Figure 6041, FEDM.

11/65

3.6.8 MULTIPLY

• Multiplies 1st operand (multiplier) by
2nd operand (multiplicand); normalized
product is placed in 1st operand loca­
tion.

• Product is 64 bits for both short and
long operand instructions.

• Characteristics added and 64 subtracted
to obtain intermediate characteristics.

• Operands are always prenormalized
before multiplying.

• Product is always normalized before
storing.

• Sign of product determined algebraically.

• Instructions:
MER (3C) - RR Short Operands
ME (7C) - RX Short Operands
MDR (2C) - RR Long Operands
MD (6C) - RX Long Operands

Multiplication of two floating-point numbers con­
sists of a characteristic addition and a fraction mul­
tiplication. The sum of the characteristics less 64
is used as the characteristic of an intermediate
product. The sign of the product is determined
algebraically.

If necessary, the product fraction is normalized
by prenormalizing the operands and postnormalizing
the intermediate product. The intermediate product
characteristic is reduced by the number of left shifts.
For long operands, the intermediate product fraction
is truncated before left-shifting. For short oper­
ands (6-digit fractions), the product fraction has the
full 14 hexadecimal digits of the long format, and the
two low-order hexadecimal fraction digits are ac­
cordingly always zeros. The two low-order hexadeci­
mal fraction digits are zeros in short operand in­
structions because it is possible to obtain a maximum
of 12 nonzero hexadecimal digits when multiplying
two 6-digit numbers. The maximum number of
digits in the product will not exceed the sum of the
operand digits available. Therefore, since 14 prod­
uct digits are available, the two low-order hexadeci­
mal digits of short operand products are always zeros.

Exponent overflow occurs if the final product
characteristic exceeds 127. The operation is ter­
minated, and a program interruption occurs. The
overflow interruption condition does not occur for a

2065 FEMI 3-103

partial product characteristic exceeding 127 when
the final characteristic is brought within range through
normalization.

When exponent underflow occurs, the final product
characteristic is less than zero. The sign, charac­
teristic, and fraction are made zero, and a program
interruption occurs if the corresponding mask bit is
a 1. Underflow is not Signalled when the character­
istic of an operand becomes less than zero during
prenormalization, and the correct characteristic and
fraction value are used in the multiplication.

When all 14 result fraction digits are zero, the
product sign and characteristic are made zero,
yielding a true zero result, exponent underflow is
not signalled, and no interruption is taken. The
program interruption for lost significance is never
taken for multiplication.

When two floating-point numbers are multiplied,
the characteristics must be added to yield the final
characteristic value of the product. Since excess
64 notation is used, 64 must be subtracted from the
characteristic sum because the characteristic value
is in excess 128 [(Cl + 64) + (C2 + 64) = Cl + C2 +
128J after characteristic addition. When 64 is sub­
tracted, the result is returned to excess 64 notation
(Cl + C2 + 128 .;" 64 = Cl + C2 + 64),

Characteristic computations are accomplished in
the serial adder. The sign and characteristic data
paths are shown in B of Figure 6042A, FEDM. The
signs are saved in STAT C and STAT F. To add
characteristics, the first operand characteristic is
gatedto SAA(I-7) from AB per the ABC, and the
second operand characteristic is gated to SAB(I-7)
from ST per the STC. The characteristic sum is
routed to the SAL's and to F. The characteristic
carry is saved in STAT D and F(O). 64 is sub­
tracted from the characteristic by adding the 2's
complement of 64 to the sum in F.

In floating-point multiply, the operands are nor­
malized before multiplication begins. Prenormali­
zationis necessary to increase product preCiSion.,
By prenormalizing the operands, a maximum of one
postnormalization cycle is necessary. Prenormal­
ization and postnormalization are accomplished by
shifting the fraction left one hexadecimal digit and
subtracting 1 from the characteristic value for each
left shift. To subtract 1 from the characteristic,
the 2' s complement of 1 is added to the value in F
(B of Figure 6042A, FEDM).

The product for both short and long operand mul­
tiply instructions is 64 bits in length. Note that, if

3-104

the fraction is not prenormalized, the truncated
pr~duct may result in loss of th~ low-order fraction
bits, and in a false zero product. This result would
be true in long operand instructions because 56 low­
order bits of the product are lost when executing
the multiply algorithm. To prevent a false zero,
the product for long operand instructions would
need to be 120 bits in length.

The basic multiply algorithm for the floating­
point fraction multiply is similar in operation to
fixed-point multiply. A of Figure 6042A, FEDM, is
a basic flow chart of the floating-point multiply oper­
ation. The signs are'saved, the characteristic is
determined, and the operands are prenormalized be­
fore multiplying the fractions. A multiple of the
multiplicand is then selected. This multiple is add­
ed to a value to form a partial product (PP). Mul­
tiples of the multiplicand are continually selected
until E(12-15) indicates that all multiples have been
selected. The intermediate product is contained in
AB(4-67) and was derived by adding the selected mul­
tiple to the PP values. The intermediate product is
postnormalized, its characteristic is adjusted, and
the signs are determined. The final product is
stored in LS per Rl and Rl + 1.

Selection of the multiplicand multiple is shown in
A of Figure 6042B, FEDM. The contents of S (mul­
tiplier) are sent to the multiplier (MPR) bus, where
the byte to be operated on is selected by means of
E(12,13). Once the byte has been obtained, bits of
that byte are selected to develop the multiple selec­
tion bits Ml and M2, which, with the TX trigger,
gate the correct multiple value of the multiplicand to
the PAA. E(14,15) selects the bits from the byte in
S. During the operation, the contents in E are sequen­
tially reduced by 1 to select the next multiple. Con­
Sidering two multiplier bits at a time (Ml and M2)
and the TX trigger, the multiply algorithm that fol­
lows is controlled by the select-multiple (SEL-MPL­
*E3) micro-order and hardware conditions (the num­
bers in parentheses relate to the Multiple Selection
Bits in Table 3-15):

1. Nothing is added to the PP, and the PP is
shifted R2 bit positions.

2. Add in the multiplicand, and shift the PP R2
bit positions.

3. The multiplicand is Shifted Ll (effective multi­
plication by 2), added to the PP located in AB,
and shifted R2 bit positions.

4. Four times the multiplicand should be added
to the PP in AB; however, minus DT is added

11/65

TABLE 3-15. VALUE OF MULTIPLE DETERMINED BY

MULTIPLE SELECTION BITS (FLOATING-POINT)

Multiple

Selection
DT Register Times

Bits
TX Value Indicated (Add

Ml M2 Trigger to Partial Product in AB)

(1)** 0 0 0 OXDT

(2) 0 1 0 1 XDT

(3) 1 0 0 2 XDT

(4) 1 1 0 -1 x DT (21s Complement)

(5) 0 0 1 1 XDT

(6) 0 1 1 2 XDT

(7) 1 0 1 -1 x DT (21s Complement)

(8) 1 1 1 OXDT

* Used on last multiple select if TX trigger is set.

** Numbers in parentheses used for reference purposes in

discussion.

Set

TX

Trigger

No

No

No

Yes

No*

No

Yes

Yes

and the TX trigger is set to remember this
fact. The PP is shifted R2 bit positions.

5. Add in the multiplicand, and shift the PP R2
bit positions.

6. Add in twice the multiplicand, and shift the PP
R2 bit pOSitions.

7. Subtract the multiplicand from the PP, and
shift the PP R2 bit positions. Set the TX
trigger.

S. Add zero to the PP, and shift the PP R2 bit
positions. Set the TX trigger.

The Ml and M2 bits are considered to be the two
selected bits in S (multiplier). These multiplier bits
are selected by E(12-15) as shown in A of Figure
6042B, FEDM. The byte in S is selected by E(12,13);
the bits within the byte are selected by E(14,15). In­
itially, E(12-15) is set to 15 (1111). Therefore, the
fourth byte (S register byte 3) and bits 30 and 31 are
selected (A of Figure 6042B, FEDM). Table 3-16
shows which S bits are gated to the MPR bus per
E(12-15). The value of Ml and M2 and the TX trig­
ger determine the gating of DT to the PAA as pre­
viously defined (Table 3-15).

Once the multiplicand multiple has been selected,
thePP is derived. The method of deriving the PP

TABLE 3-16. MULTIPLE SELECTION BITS, FLOATING­

POINT MULTIPLY

Multiple Selection

MPR
E Register Bits

5 Register* Bus 14 15 M1 M2

0, 8, 16, 24 0 0 0 1

1, 9, 17, 25 1 0 0 0

2, 10, 18, 26 2 0 1 1

3, 11, 19, 27 3 0 1 0

4, 12, 20, 28 4 1 0 1

5, 13, 21, 29 5 1 0 0

6, 14, 22, 30 6 1 1 1

7, 15, 23, 31 7 1 1 0

* If anyone of these bits is active, the MPR bus is active.

S bits are selected accor~ing to the value of E(12, 13): if
E(12, 13) = 00, select S(0-7); if 01, select 5(8-15); if 10,

select S(16-23); if 11, select 5(24-31).

0

1

0

1

0

1

0

1

is shown in B of Figure 6042B, FEDM. The multiple
is placed in PAA and added to the value generated
from AB, thus forming a new PP. If this is the first
multiple selected from DT, it is added to a value of
zero. If the multiple is some multiple other than the
first, the multiple selected from DT is added to the
PP that was developed in previous cycles. Once the
multiple and the PP have been added, the result is
shifted R4 bit positions. AB(4-65) is then shifted L2
bit pOSitions, thus placing the PP in PAB, where it
is added to another multiple, forming a new PP. For
each PP derived, an effective R2 shift occurs. Two
low-order bits of the PP are shifted out of AB(66, 67)
and lost on each effective R2 shift. Operations con­
tinue in this manner until the intermediate product
is obtained.

After decoding the last S bits, the TX trigger is
checked. If the TX trigger is set, one additional
termination cycle is necessary to obtain the final
intermediate product. If the TX trigger is not set,
no extra cycle is necessary. After the fraction in­
termediate product is obtained, the fraction is nor­
malized (postnormalization), the characteristic is
adjusted, the sign is determined, and the final 64-bit
product is stored in LS as specified by Rl and Rl + 1
[located in E(S-l1)].

To illustrate the multiply operation, assume that
the following fractions are to be multiplied:

11/65 2065 FEMI 3-105

0.2410 X 0.1510 = 0.0360 or 0.18 X • F = 0.168
10 16 16 16

The operands in machine language become:

o 1000000.00011000 0--0 X 0 1000000.11110000 0-0

In hexadecimal notation, the example becomes:

+4O.18X +40.F = +40.168

Further, assume that a short operand instruction in
the RR format is to be executed. For this discus­
sion, assume that 0.15 (decimal) is the multiplier
(first operand) and 0.24 (decimal) is the multipli­
cand (second operand). At the start of execution,
the instruction is contained in E; the first operand
is in A, B, and D (this value is not used and is sub­
sequently destroyed), and the second operand is in
Sand T.

As previously described, the signs are saved, the
characteristics are determined, and the fractions
are prenormalized before beginning the multiply al­
gorithm. The value in E(12-15) selects the correct
multiple of the multiplicand. Initially, E(12-15) is
set to 15 and sequentially reduced by 1 during the
operation. Before multiplication of the fraction be­
gins, the first operand fraction is transferred to S,
the second operand is transferred to D, and Band
T are reset.

The first multiple of the multiplicand is deter­
mined by checking E(12-15), which presently con­
tains 1111 (binary). USing Table 3-16 to determine
the value of the multiple, it is found that the first
byte selected in the multiplier is S(24-31). At this
time, S(24-31) equals O's. Since the multiple is
determined by checking two bits of the multiplier at
a time, it must now be determined by checking E(14,
15). At this point, all bits of the MPR bus are in­
active; therefore, the first PP placed in AB equals
zero. The sequential reduction of E(12-15) con­
tinues until the value equals 0101, at which time
the PP in AB equals zero.

Referring to Table 3-16, when E(12-15) equals
0101, byte 1 in S [S(8-15)J is selected per E(12,13),
and S(10, 11) is selected per E(14, 15). These se­
lected bits determine the multiple (M1,M2) of the
multiplicand to be added to the PP in AB. Because
S(10,11) is equal to 11 (binary), the 2's complement
of DT is gated to PAA. The contents of AB are
shifted L2 at this time (AB equals zero) and gated
to PAB. The output of the PA is shifted R4 to the
PAL's. The contents of the PAL's are gated to AB,
forming a new PP. The contents of AB(4-67) now

3-106

contain 1111.1111111010000-0. Note that PA(4) is
propagated into PAL(4-7) by the R-micro-order.
Because S(10, 11) was equal to 11, the TX trigger is
set (Table 3-15). Remember that E(12-15) is decre­
mented after each multiple selection. Referring to
Table 3-15, it can be seen that O's are added to
P AA on the next multiple selection (0 X DT).
During this select multiple, the contents of AB
are shifted L2 to PAB and the next PP is shifted
R4 to the PAL's and AB(4-67), thus yielding an ef­
fective R2 shift. The new PP in AB(4-67) becomes
1111.111111111010000~0.

At this point, all multiples of the multiplicand
have been selected. If the TX trigger is not set,
the PP in AB becomes the intermediate result. In
this example, however, the TX trigger was set be­
cause the multiplier bits equalled 11 and the TX
trigger was previously set (Table 3-15). There­
fore, DT must be added to the PP in AB. The con­
tents of AB are shifted L2 to PAB and added to DT.
No R4 shift from the PA to the PAL's occurs at this
time. The intermediate product is transferred
from the PAL's to AB(4-67) and DT. The value of
the intermediate product is .0001 0110 1000 0-0
(0.16816). In this example, normalization is not
necessary. The sign, characteristic, and fraction
are stored in LS per R1 and R1 + 1. An end-op
cycle completes the operation.

If the integers were preceded by O's in this ex­
ample, prenormalization of the operands would
occur before executing the multiple algorithm.

3.6.8.1 MER (3C) - RR Short Operands

• Multiplies 1st operand (multiplier per
R1) by 2nd operand (multiplicand per
R2); normalized product is placed in
1st operand location (per R1).

• RR format (see format on next page).

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only) .
2nd operand is in S and T.
Instruction is in E.

The Mul tiply, MER, instruction multiplies the
first operand (multiplier specified by R1) by the
second operand (multiplicand specified by R2), and
the normalized product is placed in the first oper­
and location.

11/65

Mu I ti pI y 0 perands

Normalize fraction and adjust charistic

Determ}ne sign

Store sign, charistic, and fraction
in LS per R 1 and R 1 + 1.

The MER instruction is in the RR format with an
op code of 3C. This instruction uses 32-bit oper­
ands, and the final product is 64 bits in length. The
entire 64-bit product is stored in LS as specified by
Rl and Rl + 1.

The conditions at the beginning of the execution
phase are:

1. The first operand is in A, B, and D
(24-bit fraction only)

2. The second operand is in Sand T.

3. The STC contains a value of 4.

4. The MER instruction is in E.

For the following MER instruction analysis,
refer to Figure 6042, FEDM. '

The second operand fraction (multiplicand) is
transferred from T to D. The first operand Sign
is saved in STAT F; the second operand sign is
saved in STAT C. The characteristics are added,
yielding an excess 128 characteristic, and this sum
is placed in F. SA(O) is saved in STAT D and placed
in F(O). Band T are reset by transferring O's from

PAL(32-63) to B and T. The first operand (multi­
plier) is fetched from LS and placed in S for the
select multiple function. The constant 15 is placed
in E(12-15) for selecting the two multiple bits from
S (Figure 6042E, FEDM). The operands are now in
position so that multiplying may begin. The ROS
microprogram assumes that both operands are nor­
malized. However, the operands are tested to deter­
mine, via a 4-way branch, whether prenormalization
is necessary .. The 4-way branch tests for the follow­
ing conditions;

1. First and second operands are normalized.

2. First operand is'normalized, and the second
operand is unnormalized.

3. First operand is unnormalized, and the
second operand is normalized.

4. First and second operands are unnormalized.

Assume that both operands need normalizing.
The second operand is normalized by shifting the
fraction in DT Ll hexadecimal digit and subtract­
ing 1 from the characteristic. Left-shifting con­
tinues until the second operand fraction is normal­
ized.

After the fraction of the second operand is normal­
ized, the first operand (multiplier) is transferred
from S to B. The contents of T (O'S for short oper­
ands) are saved in the LSWR (Figure 60~2E, FEDM).
Normalization of the first operand is shown in Fig­
ure 6042F, FEDM. Normalization is accomplished
by shifting the contents of AB Ll hexadecimal digit
and subtracting 1 from the characteristic. B is re­
set during the first shift. Left-shifting continues
until the fraction of the first operand is normalized.
On each left shift, the shifted low-order fraction
(O's) is stored in LS per the Rl field [E(8-11)]. S
is loaded with O's for short operand instructions.
The high-order fraction is transferrred from A and
stored in LS per E(8-11). S is -then loaded with the
short operand multiplier. T is reset, and DT be­
comes a 56-bit multiplicand (second operand)
(Figure 6042F, FEDM).

Since the characteristic is in excess 128, 64 is
subtracted from F so that the excess 64 rule ap­
plies. AB is reset, and the multiply algorithm be­
gins (Figure 6042E, FEDM). The multiply algo­
rithm is discussed in paragraph 3.6.8. The multi­
ply function enters at E in Figure 6042G, FEDM.
A SEL"';MPL*E3 micro-order is executed, and 1 is
subtracted from E(12-15) with each machine cycle.
When E(12-15) equals 0100, all 12 pairs of mul-

11/65 2065 FEMI 3-107

tiples have been selected. Since the TX trigger
may have been set on the previous multiple selec­
tion, a select last multiple is necessary to add in
the multiplicand to obtain the correct product.

Since the operands were normalized before mul­
tiplying, a maximum of one left shift is necessary
to normalize the intermediate product fraction
(Figure 6042G, FEDM). IfA(8-11) equals zero,
one left shift of the intermediate product fraction is
neces sary . When the left shift occurs, 1 is sub­
tracted from the characteristic. The characteris­
tic value of the final product is located in SAL(1-7)
and F(1-7). The sign is determined algebraically;
the sign, characteristic, and 56-bit fraction are
stored in LS per the R1 field and R1 + 1.

If SAL(O) equals 1, an exponent overflow or ex­
ponen t underflow condition exists and the product is
incorrect. Zeros are stored in the first operand
location if an exponent underflow has occurred. A
program interruption occurs on all exponent over­
flows and on exponent underflows if masked on. If
SAL(O) equals 0, the stored product is correct. An
end-op cycle completes instruction execution.

3.6.8.2 ME (7C) - RXShortOperands

• Multiplies 1st operand (multiplier per
R1) by 2nd operand (multiplicand from
main storage); normalized product is
placed in 1st operand location (per R1).

• RX format (see adjoining column) .

• Conditions at start of execution
1st operand is in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

The Multiply, ME, instruction multiplies the first
operand (multiplier specified by R1) by the second
operand (multiplicand from main storage), and the
normalized product is placed in the first operand
location.

The ME instruction is in the RX format with an op
code of 7C. This instruction uses 32-bit operands,
and the final product is 64 bits in length. The en­
tire product is stored in LS as specified by R1 and
R1 + 1.

The conditions at the beginning of the execution
phase are:

3-108

D2

Multiply operands

Normal ize fraction and adjust charistic

Determine sign

Store sign, charistic, and
fraction in LS per R 1 and R 1 + 1.

1. The first operand is in Sand T.

2. The effective address of the second operand
is in D.

3. The ME instruction is in E.

31

For the following ME instruction analysis, refer
to Figure 6042, FEDM.

The first operand (multiplier) is placed in A, the
constant 15 is placed in E(12-15), and the STC is set
to 4. Assume that the first operand is not normal­
ized and that the second operand is normalized (Fig­
ure 6042b, FEDM). The second operand is fetched
from main storage (per the effective address in D)
and placed in ST. If D(21) equals 1, the second oper­
and (multiplicand) is in T; conversely, if D(21) equals
0, the second operand is in S and must be placed in
T. The sign of the first operand is saved in STAT F;
the sign of the second operand, in STAT C. The
characteristics are added, and the sum is placed in
F. SAL(O) is saved in STAT D and F(O). The frac­
tion of the second operand is placed in D. Band T
are reset, the first operand is placed in S, and 15 is

11/65

loaded in E(12-15) (Figure 6042E, FEDM). A 4-way
branch determines the next operation. From this
point, operation is similar to that of the MER instruc~
tion (paragraph 3. 6. 8. 1). Refer to paragraph 3. 6. 8
for a discussion of the multiply algorithm.

If the first operand was normalized, the second
operand (multiplicand) from main storage is placed
in AB (Figure 6042D, FEDM). T and the STC are
reset. The transfer of the second operand fraction
to D is determined by D(21). If D(21) equals a 1,
the second operand from B is transferred to A and
D. If D(21) equals a 0, the second operand in A is
transferred to D. Note that the sign of the first op­
erand is saved in STAT C, and the sign of the second
operand is saved in STAT F. The characteristics
are added, and the sum is saved in F. The charac­
teristic carry is saved in STAT D and F(O).

Because the first operand was initially normal­
ized, the ROS microprogram assumes that the
second operand is also normalized. Therefore, the
first PP is computed. If the second operand needs
normalizing, however, the operands and the con­
stant 15 in E(12-15) are restored and the second
operand is normalized before multiplying (Figure
6042D and E, FEDM). Once both operands are
normalized, the operands are multiplied and the
results stored. Refer to paragraphs 3.6.8.1 and
3.6.8 for a discussion of multiply instruction
execution.

3.6.8.3 MDR (2C) - RR Long Operands

• Multiplies 1st operand (multiplier per
R1 and R1 + 1) by 2nd operand (multi­
plicand per R2 and R2 + 1); normalized
product is placed in 1st operand loca­
tion (per R1 and R1 + 1).

• RR format (see adjoining column).

• Conditions at start of execution:
32 bits of 1st operand are in A, B,

and D (24-bit fraction only) .
32 bits of 2nd operand are in S

and T.
Instruction is in E.

The Multiply, MDR, instruction multiplies the
first operand (multiplier specified by R1 and R1 + 1)
by the second operand (multiplicand specified by R2
and R2 + 1), and the normalized product is placed
in the first operand location.

The MDR instruction is in the RR format with
an op code of 2C. This instruction uses 64-bit

Multiply operands

Normalize fraction and adjust charistic

Determine sign

Store sign, charistic, and fraction
in LS per R 1 and R 1 + 1 .

operands, and the final 64-bit product is stored in LS
as specified by R1 and R1 + 1.

The conditions at the beginning of the execution
phase are:

1. 32 bits of the first operand are in A, B, and D
(24-bit fraction only).

2. 32 bits of the second operand are in Sand T.

3. The STC contains a value of 4.

4. The MDR instruction is in E.

For th~ following MDR instruction analysis, refer
to Figure 6042, FEDM.

The second operand (multiplicand) high-order
fraction is transferred from T to D. The low-order
fraction of the first operand (multiplier) is placed in
S, and the low-order fraction of the second operand
is placed in T. DT contains the multiplicand frac­
tion, and S contains the low-order fraction of the

11/65 2065 FEMI 3-109

multiplier. The signs are saved in STAT C and
STAT F. The characteristics are added, and the
sum is placed in F. The characteristic carry is
saved in STAT D and also placed in F(O). The con­
stant 15 is placed in E(12-15) for selectirig the two
multiple bits loc~ted in S (Figure 6042E ,FEDM).

The operands are now in position so that multi­
plying may begin. The ROS microprogram assumes
that both operands are normalized. The operands
are tested, however, to determine, via a 4-way
branch, whether prenormalization is necessary.
Assume that the first operand is normalized and that
the second operand needs normalizing. The second
operand is normalized by shifting the contents of DT
L1 hexadecimal digit and subtractirig 1· from the
characteristic on each shift. Left-shifting continues
until the fraction is normalized. Since the charac­
teristic sum is in excess 128, 64 is subtracted from
the characteristic iri F. AB is reset, and the first
multiple is selected. The multiples are selected per
E(12-15) until E(12-15) equals 0001. This value in­
dicates that the multiples must be selected from the
high-order fraction located in LS. This high-order
fraction of the first operand (multiplier) is fetched
from LS and placed inS as specified by the R1 field
[E(8-11)]. From this point, multiply execution is
the same as for short operand multiply instructions.
See paragraphs 3.6.8.1 for completion of MDR
instruction and 3.6.8 for description of multiply
algorithm.

3.6.8.4 MD (6C) - RX Long Operands

• Multiplies 1st operand (multiplier per R1
and R1 + 1) by 2nd operand (multiplicand
from main storage); normalized product
is placed in 1st operand location.

• RX format (see adjoining column)

• Conditions at start of execution:
32 bits of 1st operand are in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

The Multiply, MD, instruction multiplies the first
operand (multiplier specified by R1 and R1 + 1) by
the second operand (multiplicand from main storage),
and the normalized product is placed in the first
operand location.

The MD instruction is in the RX format with an op
code of 6C. This inStruction uses 64-bit operands,
and the final 64-bit product is stored in LS as speci­
fied by Rl and R1 + 1.

3-110

Multiply operands

Normalize fraction and adjust charistic

Determine sign

Store sign, charistic, and fraction
in LS perRI and RI + 1.

The conditions at the beginning of the execution
phase are:

1. 32 bits of the first operand are in S and T.

2. The effective address of the second operand
is in D.

3. The MD instruction is in E.

For the following MD instruction analysis, refer
to Figure 6042, FEDM.

The first operand (multiplier) sign, characteris­
tic, and high-order fraction are transferred from T
to A. The low-order fraction of the first operand is
fetched from LS and placed in S (Figure 6042C,
FEDM). If the first operand is not normalized, the
STC is reset, the low-order fraction is transferred
from S to B, the sec ondoperand (multiplicand) is
fetched from main storage and placed in ST and D
(high-order fraction in D), the characteristics are
added, and the sign is saved (first operand sign in
STAT F, and second operand sign in STAT C) .

11/65

The low-order fraction of the first operand is
again placed in S, and the constant 15 is placed in
E(12-15). The 4-way branch determines the next
operation. The prenormalization operations, multi­
ply operation, and multiply algorithm are discussed
in paragraphs 3. 6. 8. 1, 3. 6. 8. 3, and 3. 6. 8, re­
spectively.

If the first operand was normalized, the second
operand is fetched from main storage and placed in
AB (Figure 6042C, FEDM). The second operand
fraction (multiplicand) is transferred from AB to DT.
The sign of the first operand is saved in STAT C;
the sign of the second operand is saved in STAT F.
The characteristics of the first and second operands
are added, with the results placed in F, and the
characteristic carry is saved in STAT D. The carry
is also transferred to F(O). Since the first operand
is normalized, the ROS microprogram assumes that
the second operand is also normalized; therefore,
the first multiple is selected. If the second operand
needs normalizing, the initial conditions are re­
stored and the ROS microprogram proceeds with
normalizing the second operand. Normalization of
the second operand is shown in Figure 6042E, FEDM.

3.6.9 DIVIDE

• Divides 1st operand (dividend) by 2nd
operand (divisor); normalized quotient
is placed in 1st operand location.

• Operands are prenormalized before
dividing.

• Quotient is 32 bits for short operands,
64 bits for long operands.

• No remainder is retained.

• Quotient is always normalized.

• Sign of quotient is determined algebra­
ically.

• Characteristics are subtracted, and 64
is added to the characteristic difference.

• Instructions:
DER (3D) - RR Short Operands
DE (7D) - RX Short Operands
DDR (2D) - RR Long Operands
DD (6D) - RX Long Operands

The Divide instruction divides the first operand
(dividend) by the second operand (divisor), and the

normalized quotient is placed in the first operand
location. In short operand instructions, the low­
order halves of the floating-point registers are
ignored and remain unchanged.

A floating-point division consists of a character­
istic subtraction and a fraction division. The dif­
ference between the dividend and divisor character­
istics, plus 64, is used as an intermediate quotient
characteristic. The sign of the quotient is deter­
mined algebraically.

The quotient fraction is normalized by prenor­
malizing the operands. Postnormalizing the inter­
mediate quotient is never necessary, but a right
shift of one hexadecimal digit may be necessary if
the normalized dividend fraction is larger than the
normalized divisor fraction. The intermediate quo­
tient characteristic is adjusted for the shifts. The
quotient fraction is truncated to the desired number
of digits.

A program interruption for exponent overflow
occurs when the final quotient characteristic ex­
ceeds 127. The operation is terminated when an
exponent overflow occurs.

A program interruption for exponent underflow
occurs when the final quotient characteristic is less
than 0 and the corresponding mask bit is a 1. Under-
flow is not signalled for the intermediate quotient or
for the operand characteristics during prenormali­
zation.

If division by a divisor with a zero fraction is at­
tempted, the divide operation is suppressed. The
dividend remains unchanged, and a program inter­
ruption for floating-point divide occurs. When the
dividend fraction is zero, the quotient fraction will
be zero. The quotient sign and the characteristic
are made zero, yielding a true zero result without
taking the program interruption for exponent under­
flow or exponent overflow. The program interruption
for significance is never taken for division. The CC
remains unchanged.

After the first and second operands are fetched
and placed in the proper registers, the characteris­
tics are subtracted. Since the complement gates to
the SA are on the SAA bus, the first operand charac­
teristic (C 1) is subtracted from the second operand
characteristic (C2). Therefore, the characterisitc
computation procedure differs from what might be
expected. (Normally, C1 - C2 would be expected.)

The CPU takes the following steps in computing
the characteristic value:

11/65 2065 FEMI 3-111

1. Subtracts C1 from C2 (dividend characteristic
from divisor characteristic).

2. Subtracts 64 from characteristic difference.

. 3. Normalizes the first operand and adds the
number of shifts taken to the intermediate
characteristic value.

4. Normalizes the second operand and subtracts
(takes 2's complement) the number of shifts
necessary from the intermediate characteris­
tic value.

5. Takes 2's complement of the intermediate
characteristic value.

6. Checks for divisor greater than dividend. If
necessary, shifts the dividend R1 hexadecimal
digit and adds 1 to the characteristic.

7. Saves the final characteristic value.

8. Checks final characteristic for exponent over­
flow or exponent underflow.

As an example of this computation, assume that
two hexadecimal numbers are to be divided, .004
by.02:

5
1st operand divl'dend .004 x 16 3 2 ± = ±. 2 x 16 = ± 3.
2nd operand divisor • 02 xli I :-Fraction

Charac­
teristic

Convert the above characteristics to excess 64
notation:

r,--------------Cl
69.004
66.02
~,---------------C2

Convert the above characteristics to binary form:

after 64 is sub-

01000101.004 = 69.004 = + 67.2 or .2 x 163 tracted from the
01000010.02 66.02 - characteristic.

Step 1. The machine subtracts the characteristics
(C2 - C1):

01000010 C2

10111010 }
1

11111101

3-112

2's complement of Cl
.004

11111101.02

Step 2. 64 is subtracted from the characteristic
value to maintain excess 64 notation:

11111101

10111111 l
__ -,,-1 f
10111101

2's complement of 64
.004

10111101.02

Step 3. Note that the first operand hexadecimal
fraction requires two left shifts to prenor­
malize. Shift L2 and add 2 to the charac­
teristic:

10111101
00000010 .4
10111111 10111111.02

Step 4. The second operand hexadecimal fraction
requires one left shift. Shift L1 and sub­
tract 1 from the characteristic value:

10111111

11111110 } 1 2's complement of 1
------'=- .4
10111110 10111110.2

Step 5. Take the 2's complement of the character­
istic value:

01000001
1

01000010

Step 6.

01000010
00000001

2's complement of 10111110

01000010.4

.2

Since the dividend fraction is greater than
the divisor fraction, the dividend is shifted
R1 and 1 is added to the characteristic
value before dividing fractions:

01000011 = 67 = final characteristic value

01000011. 04

.2

Step 7. Save 67, which is the final characteristic
value.

Step 8. Divide fractions and store quotient:

01000011.04
.2

± 67.2

I I ~ ---- Result fraction
.... ----- Result characteristic

Subtracting the first operand characteristic from
the second operand characteristic effectively makes
the characteristic difference part of the divisor (diV­
idend/ di visor); to add to the characteristic, there­
fore, the value must be subtracted. For example,
excess 64 notion is used in the CPU. Subtracting

11/65

(C1 + 64 from C2 + 64) equals C2 - C1 + 0; therefore,
64 must be added to the characteristic difference to
maintain excess 64 notation. Since the C2 minus C 1
difference is 2' s complemented later in the opera­
tion, 64 must be subtracted (2's complement and add)
from the characteristic that is part of the divisor.
The characteristic must be part of the dividend to
obtain the final quotient characteristic.

The 2's complement of the intermediate charac­
teristic is necessary to obtain the correct charac­
teristic value of the quotient because the initial
characteristic subtraction places the intermediate
characteristic in the divisor. Note that the inter­
mediate characteristic is not considered to be in the
2's complement form.

In the divide operation, both fractions must be
normalized before dividing the fractions. Also, the
divisor must b~ larger than the dividend. If the di­
visor is less than the dividend, the dividend is di­
vided by 16 by shifting the dividend right four binary
bit positions. Prenormalizing and making the divisor
larger than the dividend make postnormalizing un­
necessary.

The basic divide algorithm for the floating-point
fraction divide is similar in operation to the algo­
rithm used in fixed-point divide. The basic floating­
point divide algorithm may be stated as follows: the
characteristics of the two operands are subtracted,
and 64 is added to maintain excess 64 notation. The
divisor fraction is subracted from the dividend
fraction. A carry indicates that the dividend is
greater than the divisor. The dividend must be less
than the divisor; if not, an R4 shift of the dividend
is required. Division is accomplished by successive
subtractions and storing the quotient bits as deter­
mined by the carry. Suc({essive subtractions are
performed, and the dividend is effectively shifted L1
position for each subtraction.

The first operation that occurs in obtaining the
final quotient is computation of the final character­
istic. An example of characteristic computation is
given earlier in this section. The data paths for the
signs and characteristics are shown in A of Figure
6043A, FEDM. The signs are saved in STAT C and
STAT F. Characteristic computation is accom­
plished in the SA. The first and second operand
characteristics are gated to the SAA and SAB per the
ABC and STC, respectively. To subtract character­
istics, the 2' s complement of the first operand char­
acteristic is added to the second operand character­
istic. The characteristic difference is stored in
F(0-7), and the characteristic carry [SA(O)] is saved
in STAT D. Other inputs to the SAB bus allow sub­
tracting 64, subtracting 1, gating the 2's complement

of F, or adding 1 to the value in F. After the final
characteristic is computed, the result is stored in
S(0-7) per the STC.

The data path for the derivation of the divide mul­
tiple is shown in B of Figure 6043A, FEDM. When
the divide algorithm begins, the divisor (first oper­
and) is in DT and the dividend is in AB.

The two micro-orders used when executing the
divide algorithm are Divide Select Multiple LO In­
sertion (DVDLO) and Divide Select Multiple L1 In­
sertion (DVDL1). These micro-orders have three
functions: (1) to gate the true or 2' s complement
of DT to the PAA; (2) to determine the amount of
shift (LO = no shift, L1 = left one shift) of the di­
visor (contents of DT) to the PAA; and (3) to deter­
mine the partial quotient (PQ) bit and the PQ bit
location after addition of the divide multiple and
partial remainder has taken place.

The selection of the divide multiple is determined
by the PA(4) carry from the previous algebraic ad­
dition of the dividend and partial remainder, and by
the DVDLO or the DVDLl micro-order. If a PA(4)
carry occurred, the 2's complem0nt is gated (LO or
L1) to the PA. If not PA(4) carry occurred, DT is
gated (LO or L1) to the PA (C of Figure 6043A,
FEDM). The data in AB is gated to PAB with no
shift or an L2 shift. The gating from AB is under
micro-order control.

As previously noted, the DVDLO and the DVDL1
micro-orders determine the PQ bit and the location
of the bit. The PQ bit is determined by testing
AB(4) for a 0 or a 1. If AB(4) equals a 0, the par­
tial remainder is in true form and a 1 is placed in
the selected PQ bit location in SAL. If AB(4) equals
a 1, the remainder is in 2's complement form and a
o is placed in the selected PQ SAL location (C of
Figure 6043A, FEDM).

As shown in C of Figure 6043A, FEDM, the PQ
location in SAL is determined by E(14, 15) and by the
DVDLO or DVDL1 micro-order. E(14,15) selects
the pair of SAL bits in which the PQ bit is to be
placed. The DVDLO micro-order selects the odd
bit of the selected pair; the DVDL1 micro-order
selects the even bit. At the same time that the PQ
bit is gated into SAL, the contents of F are added to
the PQ bit and saved in F. After a PQ byte (8 bits)
is available, the contents of F(0-7) are gated to S
per the STC. After S is filled with the quotient (or
PQ), the contents of S are stored in LS per E(8-11).

For a discussion of the divide algorithm, assume
that the final characteristic is in S(0-7) and that the

11/65 2065 FEMI 3-113

normalized fractions are in DT (divisor) and AB
(dividend). By definition, the CPU requires that
floating-point numbers consist of a sign, a charac­
teristic, and a fraction. Since no provisions are
made in the CPU to handle integers irr floating-point
instructions, the divisor must be larger than the
dividend to retain a fraction quotient. After both
fractions are normalized, therefore, the contents of
DT are subtracted from the contents of AB. A carry
from PA(4) indicates that the dividend is larger than
the divisor. Whenever the dividend is larger than
the divisor, the contents of AB must be restored and
shifted R4 (divided by 16) before proceeding with the
divide algorithm, and 1 must be added to the charac­
teristic. If there is no carry from PA(4) , the divi­
dend is less than the divisor and the CPU proceeds
with the divide algorithm.

When the divisor (d) is subtracted from the divi­
dend (D), the difference is placed in AB (D-d in AB) .
If an R4 shift was necessary, the divisor (d) is re­
stored and divided by 16 (d in DT). AB now contains
the dividend (D). At the beginning of the divide al­
gorithm, the 2's complement of DT is shifted L1 and
added to the contents of AB; the total is shifted L2
with the result placed in AB, thus yielding an effec­
tive L1 shift of AB (dividend). The contents of AB
may be expressed by the equation 4D - 2d = contents
of AB. The value 4D - 2d is in AB after the first
machine cycle of the divide algorithm.

If the dividend was less than the divisor, D - d is
in AB. The CPU proceeds to add the contents of DT
shifted L1 to the contents of AB shifted L2, with the
result placed in AB. This addition results in the
equation 4(D - d) + 2d = contents of AB. Simplifying
the equation yields 4D - 4d + 2d = 4D - 2d. At the
end of the first cycle of the divide algorithm, the
same result (4D - 2d) is obtained as when the divi­
dend was larger than the divisor. The CPU contin­
ues with the divide algorithm.

During the first machine cycle of the divide al­
gorithm, the DVDLO micro-order also selects the
DT gating to the PA per the PA(4) carry. The actual
subtraction resulting from the DVDLO micro-order
is accomplished during the machine cycle following
the divide multiple selection. The PQ bit is deter­
mined by the A(4) value that was computed during
the previous machine cycle. On the first cycle of
the divide algorithm, the contents of AB are shifted
L2 by a micro-order and added to the contents of DT
shifted L1 per a micro-order. The divisor is
shifted R1 with respect to the dividend but displaced
L2 in AB. On the next divide select multiple sub­
traction, the dividend and the divisor are subtracted,
yielding the correct R1 shift. The following cycle

3-114

causes AB and DT to shift again. Note that, as the
remainder is shifted left, the low-order bit pOSitions
of AB are filled with 0' s .

The divide algorithm may be divided into five
parts:

1. PQ bit gating

2. Byte gating

3. Quotient storage

4. Instruction branch

5. End op

As previously noted, the PQ bit is gated to SAL
per E(14, 15) and the DVDLO or DVDL1 micro-order
(C of Figure 6043A, FEDM). A value of 1 is added
to the ABC after each pair of PQ bits is gated to F
via SAL. When -the ABC equals 3, F contains eight
PQ bits (one PQ byte). The PQ byte is gated to S
per the STC.

After each byte is gated to S, 1 is added to the
STC. When the STC equals 3, S contains the
characteristic and fraction (or high-order fraction) .
The contents of S are stored in the LSWR.

Before initiating the divide algorithm, STAT D
was reset to indicate the first pass at loading PQ
bytes into S. After the sign, characteristic, and
high-order fraction are stored in the LSWR, the
instruction and STAT D determine the next opera­
tion. If a short operand instruction is being exe­
cuted, the sign is inserted and stored with the char­
acteristic and fraction in LS per E(8-11). An
end-op cycle completes instruction execution.

If the instruction was a long operand instruction,
the sign, characteristic, and high-order fraction
are stored in LS per E(8-11). STAT D is set, and
the divide algorithm continues. The contents of
the LSWR are returned to T. The same operations
are performed as described above in obtaining the
remaining low-order fraction part of the quotient,
and the same 3-way branch is encountered. This
time the divide algorithm is completed, and the
low-order fraction is stored in LS per E(8-11) + 1.
An end-op cycle completes instruction execution.
The remainder in AB is not stored.

3.6.9.1 DER (3D) - RR Short Operands

• Divides 1st operand (dividend per
R1) by 2nd operand (divisor per R2);

11/65

normalized quotient is placed in 1st
operand location.

• RR format:

3D

o

Add 64 to charistic difference

Prenormal ize 2nd operand
and adjust charistic

Prenormal ize 1st aperand
and adjust charistic

Shift 1st operand fraction R4 if greater
than 2nd operand fraction; adjust charistic.

Divide fractions

Determine sign

Store sign, charistic, and
fraction in LS per RI.

• Conditions at start of execution:
1st operand is in A, B, and D

(24-bit fraction only).
2nd operand is in Sand T.
Instruction is in E.

The Divide, DER, instruction divides the first
operand (dividend specified by R1) by the second
operand (divisor specified by R2), and the normal­
ized quotient is placed in the first operand location.
No remainder is retained.

The DER instruction is in the RR format with an
op code of 3D. This instruction uses 32-bit oper­
ands, and the final result is 32 bits in length.

The conditions at the beginning of the executio.n
phase are:

1. The first operand is in A, B, and D (24-bit
fraction only) .'

2. The second operand is in Sand T .

3. The STC contains a value of 4.

4. The DER instruction is in E.

For the following DER instruction analysis, re­
fer to Figure 6043, FEDM.

The fraction of the second operand is trans­
ferred from T to D. The characteristics are sub­
tracted, and 64 is algebraically added to the
characteristic difference to maintain excess 64
notation. The sign of the first operand is saved in
STAT F; the sign of the second operand is saved in
STAT C. Band T are reset, and the contents of AB
and ST are treated as 56-bit fractions (Figure 6043B,
FEDM).

In the divide instructions, both operands are
prenormalized before the divide algorithm begins.
A 4-way branch determines the prenormalizing path
that is to be followed. The 4-way branch tests for
the following by testing AB(8-11), the dividend, and
PAL(40-43), the divisor, for the normalized con­
ditions:

1. The first and second operands are normalized.

2. The first operand is normalized, and the
second operand is unnormalized.

3. The first operand is unnormalized, and the
second operand is normalized.

4. The first and second operands are unnor­
malized.

Assume that both operands are unnormalized.
The second operand (dividend in DT) is shifted L4
until the operand is normalized. 1 is subtracted
from the characteristic for each shift. For char­
acteristic computation, refer to paragraph 3.6.9.

After the second operand is normalized, the first
operand is normalized by left-shifting the first
operand until the fraction contains a hexadecimal
digit [A (8 -11) not equal to zero]' On each left shift,
1 is added to the characteristic value in F (Figure
6043C, FEDM).

After.the operands are normalized, the second
operand fraction is subtracted (take 2's comple­
ment of second operand and add) from the first

11/65 2065 FEMI 3-115

operand fraction. Before branching on the PAL(4)
carry, the 2's complement of the characteristic is
computed and placed in F. Also, the constant 5 is
placed in E(12-15) for controlling the divide al­
gorithm (Figure 6043D, FEDM). A carry from
PAL(4) indicates that the dividend is larger than
the divisor. If the dividend is larger than the
divisor, the dividend is restored and is divided by
16 by a right shift of one hexadecimal digit. 1 is
added to the characteristic value, which is the final
characteristic of the quotient. The final character­
istic is placed in S(0-7).

No carry from PAL(4) indicates that the dividend
is less than the divisor, at which time the first
machine cycle of the divide algorithm is executed.
A test is made to determine an overflow or under­
flow condition. Assume that no overflow or under­
flow condition exisits.

Fraction division begins as shown in Figure
6043D, FEDM. (Refer to paragraph 3. 6. 9 for a
discussion of the divide algorithm.) Figure 3 -6 is
an example of the action that occurs in adder bits
4-11 (bits 12-31, or 12-63 for long operands, being
considered to equal O's).

During the normalization routine, tests for zero
fractions are made. If the second operand fraction
(divisor) equals zero, the divide operation is sup­
pressed and a floating-point divide interruption
occurs. If the first operand fraction (dividend)
equals zero, a true zero quotient results (zero/
divisor). A true zero is stored in the first operand
location, and an end-op cycle completes instruction
execution (Figure 6043C and E, FEDM). (Exponent
overflow and underflow conditions are explained in
paragraph 3.5.7.)

3. 6. 9.2 DE (7D) - RX Short Operands

• Divides 1st operand (dividend per R1)
by 2nd operand (divisor from main
storage); normalized quotient is placed
in 1st operand location.

• RX format (see adjoining column)

• Conditions at start of execution:
1st operand is in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

The Divide, DE, instruction divides the first
operand (dividend specified by R1) by the second

3-116

D2

Add 64 10 charistic difference

Prlitnormal ize 2nd operand
and adjust charistic

Prenormalize 1st operand
and adjust charistic

Shift 1st operand fraction R4
if greater than 2nd operand
fraction; adjust charistic.

D i vi de frac tions

Determine sign

Siore sign, charistic, and
fraction in LS per R 1.

31

operand (divisor from main storage), and the nor­
malized quotient is placed in the first operand
location. No remainder is retained.

The DE instruction is in the RX format with an
op code of 7D. This instruction uses 32-bit oper­
ands, and the final result is 32 bits in length.

The conditions at the beginning of the execution
phase are: .

1. The first operand is in Sand T.

2. The effective address of the second operand
is in D.

3. The instruction is in E.

For the following DE analysis, refer to Figure
6043, FEDM.

11/65

AB OT
~""""\ r---"-------.
.0010-0 -:- .0100-0

.1100_0 = 2' s complement of OT

Bit Positions 4 5 6 7 8 9 10 11

AB 0 0 0 0 0 0 1 0 AS - OT No PA(4) carry indicates
Add to AB the 2's complement of OT 1 1 1 1 1 1 0 0 AB less than OT. Therefore, no R4

No PA(4) carry 0 C(AB) shift required.

T
I

OVOLO quotient bit
not saved in SAL(1) Shift AB L2 1 1 1 1 0 0 0 AB(L2) + OT(L 1) Select 1st

Shift OT L 1 and odd to AB 0 0 0 0 0 0 0 divide multiple

PA(4) carry 1 0 0 0 0 0 0 0 0 C(AB)
(OVOLO)

T

1 AB 0 0 0 0 0 0 0 0 AS - OT Select 2nd divide
OVOLI Add to AB the 2's complement of OT 1 1 1 1 1 1 0 0 OVOLO multiple (OVOL 1)

No PA(4) carry 1 1 1 0 0 C(AB)

T

1 OVOLO Shift AB L2 1 1 1 1 0 0 0 0 AB(L2) + OT(L 1) Select 3rd
Shift OT L 1 and odd to AB 0 0 0 0 1 0 0 0 OVOLl divide multiple

No PA(4) carry 1 0 0 0 C(AB) (OVOLO)

T

1 OVOLl AB 1 1 1 1 1 0 0 0 AS + OT Select 4th divide
Add DT to AB 0 J 0 0 0 1 0 0 OVOLO multiple (OVOL 1)

No PA(4) carry 0 0 C(AB)

Shift AB L2 1 1 1 1 0 0 0 0 ~
Shift OT L 1 and add to AB 0 0 0 0 1 0 0 0 OVOLI AB(L2) + OT(Ll) Select 5th

OVOLO No PA(4) carry 1 1 0 0 0 C(AB) divide multiple ~

T
(OVOLO)

I ~ + OVOLI
Notes:

Next cycle

0)
1. C(AB) = contents of AB

1 0 0
\ v 2. Quotient bit determined by AB(4)

To SAL(O-3) SAL(4)
3. ~ivide multiple selected per PA(4)

carry

FIGURE 3-6. FLOATING- POINT DIVIDE EXAMPLE

11/65 2065 FEMI 3-117

The first operand is transferred from T to A,
and the STC is set to 4. The second operand is
fetched from main storage per D. D(21) determines
which 32 bits of the 64-bit double word are gated to
T (Figure 6043B, FEDM).

Instruction execution objectives from this point
are the same as the DER instruction discussed in
paragraph 3.6.9. 1. For characteristic computa­
tion and the divide algorithm discussion, refer to
paragraph 3.6.9.

3.6.9.3 DDR (2D) - RR Long Operands

• Divides 1st operand (dividend per R1
and R1 + 1) by 2nd operand (divisor
per R2 and R2 + 1); normalized quo­
tient is placed in 1st operand location.

• RR format:

3-118

Add 64 to charistic difference

Prenormalize 2nd operand
and adjust charistic

Prenormal ize 1 st operand
and adjust charistic

Shift 1st operand fraction R4
if greater than 2nd operand
fraction; adjust charistic.

Divide fractions

Determine sign

Store sign, charistic, and fraction
in LS per R 1 and R 1 + 1.

• Conditions at start of execution:
32 bits of 1st operand are in A, B,

and D (24-bit fraction only) .
32 bits of 2nd operand are in S

and T.
Instruction is in E.

The Divide, DDR, instruction divides the first
operand (dividend specified by R1 and R1 + 1) by
the second operand (divisor specified by R2 and
R2 + 1), and the normalized quotient is placed in
the first operand location. No remainder is re­
tained.

The DDR instruction is in the RR format with an
op code of 2D. This instruction uses 64-bit oper­
ands, and the final result is 64 bits in length.

The conditions at the beginning of the execution
phase are:

l. 32 bits of the first operand are in A, B, and
D (24-bit fraction only).

2. 32 bits of the second operand are in Sand T.

3. The STC contains a value of 4.

4. The DDR instruction is in E.

For DDR instruction analysis, refer to Figure
6043, FEDM.

The low-order fractions of the first and second
operands are placed in Band T, respectively. Pre­
vious to the operand fetch, the high-order fraction
is gated from T to D. After the operands are
fetched and placed in the proper registers, the
dividend fraction is in AB and the divisor fraction
is in DT (Figure 6043B, FEDM).

The signs are saved in STAT C and STAT F.
The characteristics are subtracted, and excess 64
notation is maintained. The ABC is reset.

The 4-way branch (Figure 6043C, FEDM) de­
termines the next operation. The normalization
routine, divide operation, and end ops are explained
in the DER instruction discussion (paragraph
3.6.9.1) and in the introduction to Divide (para­
graph 3. 6. 9) .

3.6.9.4 DD (6D) - RX Long Operands

• Divides 1st operand (dividend per R1
and R1 + 1) by 2nd operand (divisor
from main storage); normalized

11/65

quotient is placed in 1st operand
location.

• RX format:

Add 64 to charistic difference

Prenormal ize 2nd operand
and adjust charistic

Prenormal ize .1st operand
and adjust charistic

Sh ift 1st operand frac tion R4
if greater than 2nd operand
fraction; adjust charistic.

Divide fractions

Determine sign

Store sign I charistic I and fraction
in LS per Rl and Rl + 1.

• Conditions at start of execution:
32 bits of 1st operand are in S

and T.
Effective address of 2nd operand

is in D.
Instruction is in E.

The Divide, DD, instruction divides the first
. operand (dividend specified by R1 and R1 + 1) by
the second operand (divisor from main storage) ,
and the normalized quotient is placed in the first
operand location. No remainder is retained.

11/65

The DD instruction is in the RX format with an
op code of 6D. This instruction uses 64-bit oper­
ands, and the final result is 64 bits in length .

The conditions at the beginning of the execution
phase are:

1. 32 bits of the first operand are in Sand T.

2. The effective address of the second operand
is in D.

3. The instruction is in E.

For DD instruction analysis, refer to Figure
6043, FEDM.

The sign, characteristic, and high-order fraction
of the first operand are transferred from T to A.
The low-order fraction of the first operand is
fetched from LS and placed in B via T and the par­
allel adder. The second operand (64 bits) i.s fetched
from main storage and placed in ST. The high­
order fraction is transferred from S to D, and the
contents of DT become the 56-bit fraction divisor.
The signs are saved in STAT C and STAT F. The
characteristics are subtracted, and 64 is added to
the characteristic difference to maintain excess 64
notation (Figure 6043B, FEDM).

The first operand (dividend) is located in AB, and
the second operand (divisor) in DT. The next step is
to check for the prenormalization of the dividend and
divisor fractions. Prenormalization, divide opera­
tion, and instruction terminations are discussed in
paragraph 3.6.9.1. The divide algorithm is dis­
cussed in paragraph 3.6. 9.

3. 6. 10 STORE

• Stores 1st operand in 2nd operand
location.

• Instructions:
STE (70) - RX Short Operands
STD (60) - RX Long Operands

• Address store compare test is made
on all store instructions.

The Store instructions (STE and STD) store the
first operand from LS in the second operand loca­
tion in main storage. The Store instructions are in
the RX format with short and long operand options
available. In the STE instruction, the low-order
half of the first operand register is ignored. The
first operand location remains unchanged.

2065 FEMI 3-119

Storing must be on word boundaries for the. STE
instruction and on double-word boundaries for the
STD instruction.

For all Store instructions, an address store
compare test is made because the instructions that
are in Q may be modified in main storage by the
Store instruction. If an instruction is modified in
main storage and is not corrected in Q, the pro­
gram may not be properly executed; therefore, Q
must be reloaded. The address store compare
test is made by comparing the main storage address,
where data is to be stored, with the effective ad­
dress indicated by the Store instruction. The com­
parison is made by subtracting the contents of D
(effective address) from the contents of the IC,
shifting the difference R4, and testing for a zero
result. If the difference equals zero, the difference
is less than 16; therefore, Q must be reloaded. The
address-store-compare trigger is set to indicate
that the instructions in Q must be refetched. The
address store compare test is discussed in detail
in paragraph 3. 2. 5. 1.

3. 6.10. 1 STE (70) - RX Short Operands

• Stores 1st operand (per Rl) in 2nd
operand location (in main storage) .

• RX format:

Store sign, charistic; and
fraction in main storage per
effective address in D.

• Conditions at start of execution:

3-120

1st operand is in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

• Store 1st operand in main storage
per effective address in D.

• Main storage address must be on
word boundary.

• Figure 6044, FEDM.

3.6.10.2 STD (60) - RX Long Operands

• Stores 1st operand (per Rl and Rl + 1)
in 2nd operand location (in main
storage) .

• RX format:

Store sign, charistic, and
fraction in main storage per
effective address in D.

• Conditions at start of execution:
1st operand is in Sand T.
Effective address of 2nd operand

is in D.
Instruction is in E.

• Store 1st operand in main storage per
effective address in D.

• Main storage address must be on
double-word boundary.

• Figure 6045, FEDM.

11/65

SECTION 4. DECIMAL INSTRUCTIONS

This section describes the general handling and
specific execution sequences of the decimal instruc­
tion set. The decimal instructions provide for
addition, subtraction, comparison, multiplication,
and division, as well as format conversion of vari­
able field length (VFL) operands.

3.7 INTRODUCTION

• Instructions operate on VFL data.

• VFL data is in main storage only.

• All instructions are in SS format.

All decimal instructions operate on VFL data
which may range from 1 to 16 bytes in length. This
data resides in main storage only. All decimal in­
structions are therefore in the SS format to provide
for storage-to-storage operations. In general,
most decimal instructions require fetching the oper­
ands from main storage, performing the operations
specified by the instruction op code, and storing the
results in main storage.

3.7.1 NUMBER REPRESENTATION

• Binary codes 0000-1001 are used for
decimal digits 0-9.

• Binary codes 1010-111 are used for
sign notation, and are invalid as digits.

• Sign notation is dependent on code:
EBCDIC or ASCII-S.

Representation of a binary digit requires a 4-bit
field. Decimal digits 0-9 have the binary codes
0000-1001, respectively. Binary codes 1010-1111
(10 thr,?ugh 15, inclusive) are not valid as digits.
This set of codes is used to represent the operand
sign. Codes 1010, 1100, 1110, and 1111 are rec­
ognized as plus, and codes 1011 and 1101 as minus.

The specific sign codes, generated during deci­
mal operations, differ for the extended binary­
coded-decimal interchange code (EBCDIC) and the

American Standard code for information interchange
extended to S bits (ASCII-S). The choice between
the two codes is established by bit 12 of the PSW.
When bit 12 is 0, the preferred EBCDIC codes are
generated: 1100 for plus, and 1101 for minus. When
bit 12 is 1, the preferred ASCII-S codes are gener­
ated: 1010 for plus, and 1011 for minus.

3.7.2 DATA FORMAT

• Packed: 2 digits per byte.

• Unpacked: zone and digit per byte.

• Operands are right-aligned in their
field.

• Rightmost byte contains sign of
operand.

• Operand processing is from right to
left, or from low-order to high-order.

Data may be in the packed or unpacked (zoned)
format. In the packed format, two decimal digits
are normally placed adjacently in an S-bit byte. An
exception is the rightmost byte of the field, where
a sign is placed to the right of the decimal digit.

i+--------Packed VFL data---------....
(up to 16 bytes)

J Rightmost
---0014--- Byte --, - - - - - r-- byte

i-----r-----w-------.-----ir- - -- -I Digit I Sign I
In the unpacked or zoned format, a decimal digit

normally occupies the four low-order bits of a byte,
the "numeric." The four high -order bits of a byte
are called the "zone. ,,* An exception is the right­
most byte in the field, where the sign occupies the
zone position.

14---------Unpacked VFL data --------....

Leftmost
byte

Zone Digit

(up to 16 bytes) R" h Ig tmost .+. Byte-------l- - - - -I+-- byte

1 Zone I Digit r ---I Sign I Digit

* The zone codes generated in decimal operations differ for the EBCDIC and the ASCII-8 codes. The zone code used in the EBCDIC is

1111; the ASCII-8 uses a 0101 zone code.

11/65 2065 FEMI 3-121

All arithmetic operations are performed on data
in packed format. However, since data is often
communicated to or from external devices in zoned
format, the decimal instruction set provides the
necessary format-conversion operations to convert
from one format to another.

Decimal operands reside in main storage only.
The operand field length may range from a minimum
of 1 byte to a maximum of 16 bytes. The operands
need not occupy the entire field length but are al­
ways right-aligned in the field; i.e., the sign of the
operand is always in the rightmost byte of the speci­
field field. This rightmost byte contains the lowest­
order operand digit and the operand sign. All
decimal instructions (except Divide) process the
operands from low-order to high-order, or from
right to left between main storage locations.

3.7.3 INSTRUCTION FORMAT

• Instructions specify two addresses.

• B1 (contents) + D1 + L1 specifies
rightmost byte of 1st operand.

• B2 (contents) + D2 + L2 specifies
rightmost byte of 2nd operand.

• Results are stored in true form at 1st
operand location.

All decimal instructions use the SS format:

OpCode L2 I 81 I ~~ 01 I 82 I ~G
IS 16 19 20 '--'""3""1 ~32,..--......,..35,.J.,<36 47

L1
78 II 12

An SS instruction operates on two operands in main
storage and stores the result in the same location
from which the first operand was obtained. There­
fore, the address of the first operand is also the
destination address; the address of the second
operand is commonly referred to as the "source
address."

The contents of the general register specified by
the B1 field are added to the D1 field to form an
address. This address specifies the leftmost byte
of the first operand. The number of operand bytes
to the right of this byte is specified by the L1 field
of the instruction. The L1 field may specify up to
16 bytes. Similarly, the address of the second
operand is specified by the B2, D2, and L2 fields
of the instruction. A zero in the instruction B1 or
B2 fields indicates the absence of the correspond­
ing address component.

3-122

Normally, decimal operands are processed from
right to left. Thus the address for the initial
operand fetch is:

LS register per B field + D field + L field.

Operands are fetched from main storage one double
word, or 8 bytes, at a time. Since the L field may
specify up to 16 bytes, several operand fetches may
be required to completely access the operand. After
each fetch, the operand address is decremented by 8
to access the next high-order 8 bytes of the operand.

The results of decimal operations are placed in
the first operand field and must be in true form.
The result is never stored outside the first operand
field specified by the instruction. If the first oper­
and is longer than the second, the second operand is
extended with high-order zeros up to the length of
the first operand. Such extension does not modify
the second operand in main storage, where it re­
mains unchanged.

3.7.4 DATA HANDLING

• In excess-6 arithmetic, 6 is added to
each digit input at A side of serial
adder. Digits at B side are not
affected.

• Decimal correction means subtraction
of 6 from result upon detection of
no-carry condition.

• During subtract operation, a no-carry
condition indicates a complement
result.

As stated preViously, the decimal digits are
represented by a straight binary code. Each digit
consists of a 4-bit field, bit combinations 0000-1001
corresponding to decimal digits 0-9. This system of
decimal notation allows relatively simple binary
techniques to be applied when operating with decimal
data, and also facilitates direct reading of decimal
results. However, two problems are encountered.
One problem is that the 4-bit field used to represent
decimal digits has 16 possible codes, of which 6
(binary combinations for 10 through 15 inclusive)
are invalid as decimal digits. Thus means must be
provided to correct invalid results when they occur
in an arithmetic operation. For example, the ad­
dition of decimal digits 0110 (six) and 0101 (five)
must yield a decimal result of 0001 0001 (eleven).

11/65

If, however, a pure binary addition is carried out,
it will yield an unacceptable result:

0110 (decimal or binary 6)
0101 (decimal or binary 5)
1011 (invalid as decimal, but 11 in binary)

The second problem is in the generation of a
decimal carry. When the sum of two decimal digits
exceeds 9, a carry must be sent to the next high­
order digit. However, a pure binary addition will
not yield a carry unless the sum of the digits ex­
ceeds 1111 (fifteen), which has the effect of a hexa­
decimal carry; i. e., carrying the order of sixteen
rather than ten.

Both of the above problems are solved by the
excess-6 arithmetic scheme and the decimal cor­
rection functions of the serial adder. In the excess-
6 scheme, often referred to as true +6 arithmetic,
a 6 is added to each digit as it is gated to the A side
of the adder; the digits gated to the adder B side are
not affected:

True digits B A

If the sum of the two digits to be added is greater
than ten, the true +6 scheme will automatically
eliminate the unwanted binary configuration and
also supply a decimal carry in terms of hexadecimal
carry. In true +6 arithmetic, the previous add ex­
ample of digits 5 and 6 is executed as follows:

0110 (Six)

0101 (Five, true)
0110 (Plus six)

(Excess-6)

Addition of a 6 in all cases, however, may create
an erroneous and sometimes invalid result. This

occurs if the sum of the two digits to be added is
less than 10. For example, consider the addition of
decimal digits 1 and 2:

0010 (Two)

0001 (One, true)
0110 (Plus six)

0111 (Excess-6)

In the above case, the result (9) is clearly in excess-
6 form; the digit 6 must be subtracted from the re­
sult to obtain the correct answer.

A further example illustrates how an excess-6
digit may generate an invalid result. Consider the
addition of decimal digits 0 and 5:

0101 (Five)

0000 (Zero, true)
0110 (Plus six)

(Excess-6)

(Binary combination 11 is
an invalid decimal digit)

Note that both the erroneous and the invalid re­
sults are characterized by a no-carry to the next
high-order digit. This condition holds true in all
cases when incorrect data is generated, and is uti­
lized by the decimal correction logic of the adder.
When a no-carry condition is detected, this logic
automatically deducts 6 from the result, thus sup­
plying the correct digit to the adder output.

The decimal cbrrect function of the adder is also
used during subtract operations. Subtraction of one
decimal digit from another is carried out by com­
plement addition. The binary codes of the decimal
digits at the adder A side are gated in 2's comple':'
ment form; excess 6's are not supplied. The digits
at the B side of the adder are gated in true form.
The result of a subtract operation may be in true or
complement form.

11/65 2065 FEMI 3-123

If the minuend is larger than the subtrahend, the
result is In true form. Consider subtraction of
decimal digit 5 from 6:

Minuend (six)
Subtrahend (five)

2's complement

OliO True lOll • 0101

A true result is always characterized by a carry
condition to the next digit. As in the case of the add
operation, a carry to the next digit indicates that no
decimal correction of the result is necessary.

If the minuend is smaller than the subtrahend,
the result is in complement form. Since decimal
data is always stored in true form, the result must
be recomplemented. Consider subtraction of deci­
mal digit 6 from 5:

Minuend (five)

B A

Subtrahend (six)

21 s complement
1010·. OliO

Note that the decimal correction feature of the adder
always subtracts 6 from the result upon detecting a
no-carry condition. In subtract operation ,however ,
a no-carry condition also indicates that the result is
in complement form and must be recomplemented.
This requires a second pass through the adder:

2's complement 1001

10's complement result (rst pass)

3. 7.4. 1 Data Flow

• All decimal instructions make use of
serial adder.

3-124

• 1st operand is placed in ST, and 2nd
operand in AB.

• STC specifies which ST byte is to be
processed. ABC specifies which AB
byte is to be processed.

• Destination bytes replace 1st operand
bytes in ST.

• D contains 1st operand and destination
address.

• IC contains 2nd operand address.

• Ll and L2 specify number of 1st and
2nd operand bytes, respectively, to
be processed.

The data path used for decimal operations con­
sists primarily of ST, AB, and the serial adder
(Figure 3-7). ST contains the first operand, and
AB the second. The input byte to the adder A side
is selected from AB under control of ABC. The
input to the B side of the adder is selected from ST
under STC control. The selected bytes are g::ted
to the adder simultaneously.

The serial adder handles the data at a rate of one
byte per cycle; i. e., for each two input bytes, one
output byte is generated at the SAL. The output byte
is gated from SAL to ST under control of STC, after
which ABC and STC are decremented and a new
cycle is started. Thus, as the operation progresses,
the first operand bytes in ST are replaced by the
destination bytes.

The number of first and second operand bytes
processed is dependent on length fields Ll and L2,
respectively. The Ll count contained in E(8-11) is
decremented once for each byte of first operand that
is processed. Similarly, the L2 count, in E(12-15),
is decremented once for each second operand byte
processed.

D contains the address of the first operand, which
is also the address of the destination. The initial
address in D specifies the double word containing
the rightmost byte of the operand. When STC is
decremented to zero, indicating that all first oper­
and bytes in ST have been processed, the contents
of ST are stored in main storage. If additional
first operand bytes remain in main storage (the Ll
count has not stepped to zero), the D address is
decremented by 8 and a fetch of the next operand
double word is made to ST.

11/65

IC
0

11/65

SDBI

-0 RD
0 23

1st operand
0 63

and destination - address
CA
23

2nd operand
Main Storage

address

0 63

SDBO

I -, -I 1st operand & I - I I I S RS T RT destination A RA B Rs
~~~ ____________ ~31~~3=2 ____________ ~6~3~.bytes ~O~ ____________ ~3~1~~3~2 ____ ~ ______ ~63~~~67~ 

8 mark 
triggers 

G 

G G G 

2nd 
operand 
bytes 

Decrement 
L----I ... Logic 

PAA 

PAL 

Parallel 
adder is 
used during 
operand shifting 

FIGURE 3-7. GENERAL DATA PATH FOR DECIMAL INSTRUCTIONS 

2065 FEMI 3-125 



Storage of the destination bytes in ST is controlled 
by the mark triggers. The mark triggers permit 
alteration of only those bytes in main storage that 
belong to the field being processed. There is one 
mark trigger for each of the eight bytes in ST. As a 
byte of processed data is gated to ST, the corre­
sponding mark trigger is set, thus designating the 
byte for main storage. 

The IC contains the address of the second oper­
and (the instruction address is held in LSWR during 
executiqn of SS instructions). The initial IC address 
specifies the double word containing the rightmost 
byte of the second operand. When ABC is decre­
mented to zero, all operand bytes in AB have been 
processed. If additional second operand bytes re­
main in main storage (L2 count has not stepped to 
zero), the IC address is decremented by 8 and a 
fetch is made of the next second operand double 
word to AB. 

This pattern of fetching data, processing via the 
serial adder, assembling the results in ST, and 
storing the contents of ST in main storage is con­
tinued until either the first of the second operand 
length field (L1 or L2 count, respectively) has 
counted below zero. The operation at this point is 
dependent on the individual instruction. If L2 has 
been exhausted but not L1, some instructions may 
require extension of the remaining first operand 
bytes with high-order zeros. On the other hand, if 
L1 is exhausted before L2, the instruction may test 
the remaining second operand bytes for presence of 
significant digits. This test is performed to detect 
a possible overflow condition and is accomplished 
by running the excess second operand bytes through 
the serial adder and sensing nonzeros. In all cases, 
if both L1 and L2 counts are exhausted, the instruc­
tion execution ends after the last destination word is 
stored in main storage. 

Some decimal operations require use of the par­
allel adder to perform a right-4 or left-4 shift of the 
entire operand. The "spilled" bits generated during 
the shift are held in B(64-67). 

3 . 7.4.2 Initial Conditions 

• Conditions prior to GIS: 
1st operand is in ST. 
2nd operand request is in progress. 
1st operand address is in D. 
2nd operand address is in IC. 
Op code and L1, L2 counts are in E. 

At the completion of the SS I-Fetch (paragraph 
3.2. 5), the CPU is in the following status: 

3-126 

1. ST contains the double word from main stor­
age, which includes the low-order bytes of the 
first operand. 

2. An IC request for the second operand, start­
ing with the low-order address, has been 
issued. 

3. The instruction address has been transferred 
from the Ie to the LSWR. 

4. D and the IC contain the low-order byte ad­
dresses for the first and second operands, 
respectively. 

5. E(O-7) contains the instruction op code. 
E(8-11) contains the byte count (L1) for the 
first operand, and E(12-15) contains the byte 
count for the second operand. 

Following the SS I-Fetch, a general initialization 
sequence (GIS) is performed for all decimal instruc­
tions. 

3 . 7.4.3 General Initialization Sequence 

• GIS performs following: 
Setting of STC and ABC. 
Ingating of SDBO to AB. 
Sign handling. 
Word overlap test. 

At the completion of SS I-Fetch, a branch is 
made per the instruction op code to the appropriate 
GIS microprogram as shown in Figure 3-8. The 
general functions of the GIS for decimal instructions 
are described below. Functions peculiar to a spe­
cific instruction are covered in subsequent para­
graphs dealing with the execution of that instruction. 
(The GIS for logical instructions is described in 
Section 5.) 

The function of the GIS microprogram is to set 
up initial conditions for the execution phase. These 
include: 

1. Setting of STC and ABC counters - STC is set 
to the rightmost first operand byte in ST, the 
byte to be processed first. Since the address 
of the rightmost byte is specified by D(21-23), 
STC is set per these bits. Similarly, the 
rightmost second operand byte is selected in 
AB by gating IC(21-23) to ABC. 

2. Gating second operand to AB - An IC request 
for the second operand is issued on the last 

11/65 



+ 
Divide and 
multiply GIS 

Yes Divide 
or 

multiply 

No 

Yes 

SS I-Fetch 

No 
Decimal 

Logical GIS 

, 
Instruction r-p------,,------...... -----....­

GIS 

Add Subtract Compare Zero and 
add 

Pack Unpack 
Move with 
offset 

Invalid 
op code 

FIGURE 3-8. BRANCHING CONDITIONS AT START OF GIS 

cycle of SS I-Fetch. The GIS gates the oper­
and from SDBO to AB. 

3. Sign handling - For add-type instructions, the 
sign of the result is determined prior to the 
execution phase. The GIS examines the signs 
in the rightmost bytes of both operands and 
establishes the sign for the result algebrai­
cally. For multiply and divide instructions, 
the operand signs are recorded by setting the 
appropriate STAT triggers, and the sign for 
the result is established during the execution 
phase. 

4. Word overlap test - A word overlap test is 
performed during the GIS for Pack, Unpack, 
Move with Offset, and Zero and Add instruc­
tions. The purpqse of this test is explained 
in paragraph 3.7,5,1. 

3.7.5 INSTRUCTION HANDLING 

• Depending on instruction, processing 
of 1 or 2 operands may be specified. 

• Pack, Unpack, Move with Offset, and 
Zero and Add instructions operate on 
1 operand. 

• Add, Subtract, Compare, Multiply, 
and Divide instructions operate on 
2 operands. 

• All add-type instructions set CC. 

• Major serial adder functions used by 
decimal instructions are: 

Excess-6 translation. 
Decimal correction. 
Complement gating. 
Cross-gating. 
Zone or sign insertion. 
Invalid digit and sign detection. 
Zero detection. 

Decimal instructions may be classified into the 
general categories of 1- and 2-operand instructions. 
The l-operand instructions are Pack, Unpack, Move 
with Offset, and Zero and Add. The 2-operand 

11/65 2065 FEMI 3-127 



instructions are Add, Subtract, Compare, Multiply, 
and Divide. 

In the I-operand instructions, the first operand 
is not processed but is used only as the destination 
address; the second operand is processed, and the 
results are placed in the first operand location. 
The I-operand instructions are handled by fetching 
the second operand to AB. Successive AB bytes 
are selected per ABC and processed in the serial 
adder, and the resultant bytes entered into ST per 
STC. After all second operand bytes have been 
processed, the contents of ST are stored in main 
storage at the first operand address. 

The 2-operand instructions, such as Add, Sub­
tract, and Compare, are executed by fetching the 
first operand to ST and the second operand to AB. 
An add or subtract operation is then performed in 
the serial adder one byte at a time, with the result­
ant bytes replacing the first operand bytes in ST as 
they are processed. For the Add and Subtract in­
structions, the results are stored in main storage 
at the first operand address. The Compare instruc­
tion does not store the result, but performs a test 
to determine the high, low, or equal relationship of 
first operand to the second and sets the CC accord­
ingly. 

For the 2-operand Multiply and Divide instruc­
tions, the operands must be properly aligned in the 
registers prior to entering execution. This func­
tion is performed by the appropriate right- and 
left-adjust sequences incorporated in the individual 
microprogram of the instruction. 

Basically, the multiply operation is performed 
by over-and-over addition. The product bytes are 
developed one byte at a time, starting with the low­
order byte. Each time that one byte of product is 
developed, it is stored in main storage under 
control of the corresponding mark trigger. The 
instruction then proceeds to develop the next higher­
order product byte. Upon execution of the instruc­
tion, the first operand is completely replaced by 
the product. 

The Divide instruction is performed by over-and­
over subtraction. It is the only decimal instruction 
that processes the operands starting with the high­
order bytes. The full divisor and a sufficient num­
ber of high-order dividend bytes are fetched to 
perform the first successful subtraction. Then by 
repeatedly subtracting the divisor from the dividend 
and counting the number of successful subtractions, 
the high-order quotient byte is developed. This 

3-128 

byte is stored in main storage, and the instruction 
proceeds to develop the next lower-order quotient 
byte. Upon execution of the instruction, the first 
operand is completely replaced by the quotient and 
the remainder. The remainder occupies the low­
order portion of the destination field. 

The results of the Add, Subtract, and Compare 
instructions are used to set the CC. All other 
decimal instructions leave the code unchanged. 
The Add and Subtract instructions set the CC to 0, 
I, or 2 to indicate a zero, less-than-zero, or 
greater-than-zero result; the CC is set to 3 if the 
result of the operation overflows. The Compare 
instruction sets the CC to 0, I, or 2 to indicate 
that the first operand compared equal, low, or high. 

The serial adder performs many functions on its 
input data. The functions of excess-6 translation, 
decimal correction, and complement gating have 
been discussed. Additional serial adder functions 
used by the decimal operations are: 

1. Cross-gating - The 2-digit input to the A 
side of the adder is swapped upon gating to 
SAL; the digit at adder A side (0-3) is gated 
to SAL(4-7), and A side (4-7) is gated to SAL 
(0-3). This function is used mainly by the 
Pack and Unpack instructions to interchange 
the sign and digit positions. 

2. Zone or sign insertion - The correct zone 
or sign code (ASCII-8 or EBCDIC) is applied 
from the ROSDR to the adder A side. The 
zone or sign may be merged with the digit 
in any combination. 

3. Invalid digit and sign detection - The inputs 
to the A and B sides of the adder are checked 
for invalid digits or signs. An appropriate 
interrupt trigger is set upon detection of an 
invalid code. 

4. Zero detection - This function is used to 
sense overflow conditions and also to detect 
all-zero results. An all-zero result placed 
in main storage must carry a positive sign. 
Consequently, arithmetic instructions such 
as Add and Subtract specify checking of each 
SAL byte for zeros. If upon execution of the 
instruction it is found that an all-zero result 
has been stored, the instruction will force 
storing of a plus sign at the low-order byte 
address. 

11/65 



3.7.5.1 Word Overlap Condition 

• Word overlap condition exists when: 
IC(0-20) = D(0-20) and 
IC(21-23) > D(21-23). 

• Test for word overlap is performed 
by GIS of all l-operand instructions. 

• Execution of l-operand instructions 
provides separate microprogram to 
handle word overlap conditions. 

• No special action is taken to detect 
word overlap in 2-operand instructions. 

• Word overlap in 2-operand instructions 
will cause invalid data interruption. 

Data is fetched from and placed in main storage 
one double word at a time. However, program com­
patibility of the 2065 CPU with smaller models in 
the System/360 requires that all results placed in 
main storage must be considered to be stored one 
byte at a time as they are processed. There are 
some cases where this compatibility would not be 
maintained unless special actions were taken. The 
condition that requires special handling is called 
"word overlap" and occurs when the fields of the 
first and second operands specified by the instruc­
tion overlap. 

The operand addresses and field lengths may be 
such that one or more bytes in main storage are spec­
ified as part of both the first and the second operands. 
For example, consider the case in which the IC and 
D specify the same double word in storage; the IC 
specifies byte 7 as the starting second operand byte 
to be processed in this double word, and D specifies 
byte 6 as the starting first operand address. At 
least two operand bytes are to be processed. 

r Do,bI. ~,d ,p.dH.d by Ie OOd: 

! * 
IC 

I I I I I I I I I 
Bytes: o 2 3 4 5 6 7 

This double word is fetched from main storage and 
placed in AB and ST. A single operand instruction, 
such as Move with Offset, will process the first AB 
byte (byte 7) in the serial adder and place the result 
in the designated first operand byte; i. e., byte 6 in 
ST. Then, ABC and STC are reduced 1 count to 
designate the next AB byte to be processed and the 
ST location in which the results must be placed. 

(ABC-l) 

t 
AS I I I I I I I I I 

o 2 3 4 5 6 7 

(STC-l) 

ST 
7 

o 2 3 4 5 6 7 

Note, however, that the preceding move operation 
has replaced the original contents of byte 6 in ST 
with the contents of byte 7. Thus, the next AB byte 
to be processed (original byte 6) is no longer valid 
and must be updated; i. e., the equivalent of storing 
ST byte 6 and then refetching this byte to AB must 
be performed. 

As seen from the preceding example, the word­
overlap condition may require special handling of 
data. Execution of all l-operand decimal instruc­
tions (Pack, Unpack, Move with Offset, and Zero 
and Add) provides for two alternate microprograms. 
One microprogram is for the normal, or not-word­
overlap, case; the other handles the word-overlap 
condition. Selection of the appropriate micropro­
gram is dependent on the outcome of the word­
overlap test, which is performed in the GIS of all 
l-operand instructions. 

A word-overlap condition exists when both oper­
ands have the same double-word address. The 
manner in which the first and second operand bytes 
are specified within this double word determines 
whether special data handling is required. When 

11/65 2065 FEMI 3-129 



the word-overlap condition exists, three cases of 
byte specification may be distinguished: 

1. The first and second operand bytes are the 
same - no special data handling required. * 

ABC , 
AB I I I I I I I I I Source 

STC , , , , , , , t 

ST I I I I I I I I I Destination 

In this case, the destination bytes are placed 
in the same locations from which the source 
bytes are obtained. Since processing of any 
source byte does not affect the contents of the 
next source byte, no updating of source bytes 
is necessary. 

2. The first operand bytes are specified "ahead" 
of the second operand bytes - special data 
handling required. 

ABC 

AB Source 

ST Destination 

In this case, the destination bytes are placed 
in the locations from which the next source 
bytes will be processed. The data in AB be­
comes "obsolete" after processing of one or 
more source bytes. (The cross-over point 
at which data becomes obsolete depends on 
the amount of skew between ABC and STC.) 
This is a case of word overlap which requires 
special data-handling techniques. 

3. The first operand bytes are specified "behind" 
the second operand bytes - no special data 
handling required. 

AB 

ST 

ABC 

Source 

Destination 

In this case, the destination bytes are placed 
behind the source bytes as they are processed. 
Thus processing of any source byte cannot 
affect the contents of the next source byte, and 
no updating is necessary. 

In 2-operand arithmetic instructions, no special 
action is taken to detect word overlap. Word over­
lap is completely ignored during execution of a 
Compare instruction, since this instruction does 
not store the results. The operand fields specified 
for Add, Subtract, Multiply, and Divide instructions 
either should not overlap at all or should have co­
incident rightmost bytes. The GIS for these instruc­
tions does not perform the word overlap test, because 
improper overlap of the operands will cause an in­
valid data condition to be detected in the execution 
phase. In 2-operand instructions, the operand 
fields are correctly specified when the rightmost 
byte of each operand contains the operand sign; all 
bytes to the left of the sign byte must contain only 
digits. This requirement cannot be fulfilled when 
both operands in the instruction specify the same 
double word with different byte addresses. From 
the following example, it can be seen that the sign 
byte of the first operand is also the "digit" byte of 
the second. 

ABC 

AB 2nd operand 
5 

ST 1st operand 

During execution of the instruction, all operand 
digits are checked for validity. Detection of a sign 
code in the digit position will force an invalid data 
interruption. 

* Except for Unpack instruction. This instruction generates two bytes of destination for each byte of source and requires special data 
handling in all cases of word overlap. 

3-130 11/65 



3. 7. 5. 2 Interruption Conditions 

• Protection. 

• Addressing. 

• Specification. 

• Data. 

• Decimal divide check. 

• Decimal overflow. 

Exceptional conditions, data, or results cause a 
program interruption. When the interruption oc­
curs, the current PSW is stored as an old PSW, and 
a new PSW is obtained. The interruption code in 
the old PSW identifies the cause of the interruption. 
The following exceptions cause a program interrup­
tion in decimal instructions: 

1. Protection - The storage key does not match 
the protection key in the PSW. 

2. Addressing - An address designates a loca­
tion outside the available storage for the 
installed system. 

(In the above two exceptions, the operation is termi­
nated. The result data and the CC are unpredictable 
and should not be used for further computation.) 

3. Specification - A multiplier or a divisor size 
exceeds 15 digits and sign or the multiplicand 
or dividend size. The instruction is sup­
pressed. 

4. Data - A sign or digit code of an operand 
specified in the Add, Subtract, Compare, 
Zero and Add, Multiply, or Divide instruction 
is incorrect, a multiplicand has insufficient 
high -order zeros, or the operand fields in 
these instructions overlap. 

5. Decimal Divide Check - The quotient exceeds 
the specified data field, including division by 
zero. Division is suppressed. Therefore, 
the dividend and divisor remain unchanged in 
storage. 

6. Decimal Overflow - Execution of the Add, 
Subtract, or Zero and Add instruction results 
in an overflow condition. The program inter­
ruption occurs only when the decimal-overflow 
mask bit is a 1. The operation is completed 
by placing the truncated low-order result in 

the result field and setting the CC to 3. The 
sign and low-order digits contained in the 
result field are the same as they would have 
been for an infinitely long result field. 

3.8 INSTRUCTION EXECUTION 

The follOWing paragraphs describe the execution 
sequences for the instructions in the deCimal set. 
Table 3-17 lists the instructions with their respec­
tive mnemonic and op codes, and indicates the ex­
ceptions that cause a program interruption for each 
instruction. Table 3-18 lists those instructions 
that affect the CC and indicates how the CC is set. 
All instructions use the SS format and assume 
packed operands and results. The only exceptions 

TABLE 3-17. DECIMAL INSTRUCTION SET 

Instruction Mnemonic Op Code IntelTUptions* 

Add 

Subtract 

Compare 

Zero and Add 

Multiply 

Divide 

Pack 

Unpack 

Move with Offset 

A - Addressing 
D - Invalid data 

AP 

SP 

CP 

ZAP 

MP 

DP 

PACK 

UNPK 

MVO 

DF - Decimal overflow 

FA P, A, D, DF 

FB P, A, D, DF 

F9 D 

F8 P, A, D, DF 

FC P, A, D, 

FD P, A, D, 

F2 P, A 

F3 P, A 

F1 P, A 

DK - Divide check 
P - Protection 
S - Specification 

TABLE 3-18. CONDITION CODES FOR DECIMAL 
INSTRUCTIONS 

Condition Code 

Instruction 0 1 2 

S 

S, 

3 

DK 

Add Result = 0 Result < 0 Result> 0 Overflow 

Subtract Result = 0 Result <0 Result> 0 Overflow 

Compare Equal Low High -

Zero and Result = 0 Result <0 Result >0 Overflow 
Add 

11/65 2065 FEMI 3-131 



are Pack, which has a zoned operand, and Unpack, 
which has a zoned result. 

3.8.1 ADD, SUBTRACT, AND COMPARE 
INSTRUCTIONS 

• All three instructions share common 
ROS microprogram. 

During the GIS, separate sign handling is per­
formed for each instruction; the sign of the second 
operand is effectively inverted for Subtract and 
Compare instructions. After exit from the GIS, all 
three instructions share a common addition or sub­
traction routine, depending on whether the signs of 
the operands are alike or unlike. Since the results 
of a Compare instruction are not stored in main 
storage, the setting of the mark triggers and over­
flow detection are inhibited in hardware during 
execution of this instruction. 

3.8.1.1 Add, AP (FA) 

• 2nd operand is added to 1st operand, 
and sum is placed in 1st operand 
location. 

• SS format: 

Length code of 
1st operand and 
destination 

3-132 

operand 
address 

operand 
address 

• CC setting: 
Result is zero: CC = 0 
Result is less than zero: CC = 1 
Result is greater than zero: 

CC = 2 
Overflow: CC = 3 

• Interruptions: 
Protection. 
Addressing. 
Invalid data. 
Overflow. 

The AP instruction specifies an algebraic addi­
tion. The operand signs are examined, and the sign 
of the sum is established algebraically. Then, if the 
operand signs are alike, an add sequence is per­
formed; if they are not alike, the instruction per­
forms a subtract sequence. All signs and digits are 
checked for validity. The first and the second op­
erand fields may overlap when their low-order bytes 
coincide; therefore, it is possible to add a number 
to itself. 

The resultant sum is stored at the first operand 
address. A zero sum is always stored with a posi­
tive sign. If the first operand field is too short to 
contain all significant digits of the sum, a decimal 
overflow occurs. Overflow has two possible causes. 
The first is the loss of a carry out of the high-order 
digit position of the result field. The second cause 
is an oversized result, which occurs when the sec­
ond operand field is larger than that of the first 
operand and significant result digits are lost. The 
field sizes alone are not an indication of overflow. 

3. 8. 1. 1. 1 GIS for Add Instruction 

• Conditions at start of GIS: 
1st operand is in ST. 
STC is set at lowest-order operand 

byte. 
IC request is issued for 2nd 

operand . 

• GIS: 
Transfers L1 to F(0-3). 
Loads 2nd operand in AB. 
Sets STAT F if 1st operand is 

minus. 
Sets STAT C if 2nd operand is 

minus. 
Branches per STAT's to add or 

subtract routine. 

The GIS microprogram for the Add instruction is 
shown in Figure 6046, FEDM. This microprogram 

11/65 



transfers the Ll count to F(0-3), loads the second 
operand in AB, assigns the algebraic sign to the sum, 
and performs a branch on operand signs to enter 
either the add or subtract sequence. 

The Ll count in E(8-11) is destroyed during sub­
sequent execution and must be preserved in F(0-3). 
This actioI) is necessary because, upon execution of 
the instruction, it may be found that results were 
placed in main storage in complement form. Since 
the final result must be true, the destination field 
is refetched and recomplemented. In such cases, 
the Ll count in F(0-3) is used to refetch the correct 
number of destination bytes. 

The sum is arbitrarily assigned the sign of the 
first operand by performing a branch of STAT's F 
and C. STAT F is set if the first operand is minus. 
Note, however, that the sign of the second operand 
is not known at this time and STAT C will always 
be in the reset state. Thus, when STAT's F and C 
are alike, it indicates that STAT F is not set (first 
operand plus); when the STAT's are not alike, it 
indicates that STAT F has been set and the first 
operand is negative. 

A second branch on STAT's F and C is per­
formed after the sign of the second operand has 
been sensed, and STAT C set accordingly. If the 
STAT's are alike, an add sequence is entered. 
Upon entry into this sequence, the sum always 
carries the correct sign; the sum was assigned 
the sign of the first operand, and both operands 
have the same signs. If the STAT's are not alike, 
a subtract sequence is.entered. In this case, the 
algebraic sign of the sum cannot be known at the 
start of the operation since it is dependent on the 
relative magnitude of the operands. If the sign 
has been assigned incorrectly, the result of the 
subtract operation will be complement form. This 
condition will be detected at the completion of the 
ADD instruction, in which case the result will be 
recomplemented and the correct sign inserted. 

3.8.1.1.2 Signs-Alike Sequence, Add 

• True +6 add operation will exit on one 
or more of following conditions: 

Ll or STC = 0 
L2 = 0 
ABC = 0 

• STAT A set if result not zero. 

• STAT B set if overflow. 

• STATE set if operand digit (or sign) 
invalid. 

• STAT G set if Compare instruction. 

• STAT H set if carry to next byte. 

An overall flow chart of the signs-alike or add , , 
sequence and the data path used for I its execution 
are shown in Figure 6047, FEDM. The flow chart 
outlines the major functional steps and sequences 
used in the Add, Subtract, and Compare micro­
program. 

Upon entry into the add sequence, the signs of 
both operands have been examined (by the GIS) and 
the correct sign has been entered in the low-order 
destination byte in ST. The first step in the micro­
program is to add the digits contained in the sign 
bytes of the operands. The resultant sum is then 
placed in the digit portion of the destination byte. 
At this point, one complete byte of results has been 
developed. The operand length codes (Ll and L2) 
and the status of byte counters (STC and ABC) are 
examined for one or more of the following condi­
tions: 

1. The result byte is contained in the last byte 
of ST and must be stored (STC = 0). 

2. Additional first operand bytes must be fetched 
from main storage (STC = 0 and Ll f- 0). 

3. Additional second operand bytes must be 
fetched from main storage (ABC = 0 and 
L2 f- 0). 

4. The second operand has run out; Le., all 
second operand bytes have been processed, 
and zeros must be added to the first operand 
bytes (L2 = 0 but Ll f- 0). 

5. The first operand has run out, Le., the 
destination field has been completely pro­
cessed (Ll = 0). 

If none of the above exit conditions exist, the 
microprogram enters the add loop to generate the 
next destination byte. Ll, L2, STC, and ABC are 
decremented one count, the selected AB and ST 
bytes are added in the serial adder, and the result­
ant sum replaces the selected ST byte. After this, 
the status of all counters is again sensed for exit 
conditions. 

Upon establishing one or more exit conditions, the 
operations dictated by the conditions are performed, 

11/65 2065 FEMI 3-133 



and if LI is not zero, the add loop is re-entered. 
When LI is zero, all destination bytes have been 
processed. The microprogram then performs an 
overflow test and a test for an all-zero result. * If 
an all-zero result has been obtained, the address of 
the low-order destination byte is restored in D and 
a plus is stored at this address. Restoration is 
necessary, since D is decremented by 8 for each 
double word of first operand that is fetched. If, for 
example, two double words of first operand have 
been fetched, the address of the low-order destina­
tion byte is obtained by adding 16 to D. 

A detailed flow chart of the signs-alike, or add, 
sequence is shown in Figure 6048, FEDM. It is an 
expanded version of the overall flow chart (Figure 
6047, FEDM), showing the data handling used in the 
various subroutines of the add operation. This data 
handling is straightforward for the most part and 
requires no explanation. Those areas in need of 
clarification are discussed below: 

1. Add Operation 

The selected AB byte is gated (true +6) to the 
serial adder and added as a binary number to 
the selected ST byte. The adder output is 
decimal-corrected at the input to SAL and 
gated back to the selected ST byte. For the 
first (or sign) byte, only bits 0-3 of the se­
lected AB byte are gated to the adder. The 
decimal correction involves examining the 
carry from each digit and logically subtract­
ing 6 from each result digit that did not have 
a carry. As each byte is processed, ABC, 
STC, LI, and L2 are decremented by 1 and 
the selected mark trigger is set (except for 
a Compare instruction). The carry from 
each byte is saved in STAT H and, if set, 
results in a carry to bit 7 of the next byte 
processed. STAT A is set if any non-zero 
result digit is detected. STAT E is set if 
any invalid digit is detected at the inputs to 
the serial adder. * * 

2. Exit Conditions 

An exit is made when one or more of the fol­
lowing conditions exist as determined by a 
functional branch micro-order (DECIMAL): 

LI or STC equals zero. 
L2 equals zero. 
ABC equals zero. 

Since any combination of the above may exist, 
there are seven possible exits: 

a. LI or STC == 0, L2 1= 0, ABC 1= o. 

If an Add or Subtract instruction is being 
executed, a storage request per D stores 
the results in ST in the destination field of 
main storage. For a Compare instruction, 
since no mark triggers are set, the D re­
quest fetches the next double word of first 
operand. A further test, LI equal alII's, 
is required to determine whether the LI 
field is exhausted. If not, a first operand 
fetch sequence is started, after which the 
add loop is resumed. 

b. LI or STC == 0, L2 1= 0, ABC == O. 

Same as !!:, except that a second operand 
fetch is made after the first operand fetch 
prior to entering the add loop. 

c. LI or STC == 0, L2 == 0, ABC 1= O. 

A storage request per D is issued to store 
ST in the detination field (unless a Com­
pare instruction is being executed). AB 
and ABC are cleared to start the high-order 
source extend routine. A further test is 
required to determine whether LI was zero. 

If LI is now all 1 's, all destination bytes 
have been processed. A carry from the 
last destination byte indicates an overflow 
condition, and STAT B is set. 

If LI is not all 1 's, a first operand fetch 
sequence is started, after which the high­
order source extend routine is resumed. 

d. LI or STC == 0, L2 == 0, ABC == O. 

Same as c. 

e. LI or STC 1= 0, L2 == 0, ABC == O. 

The second operand field has been com­
pletely processed. AB and ABC are 

* The Add, Subtract, and Compare instructions have the same microprogram. The Compare instruction does not store results in main 
storage and, upon exit from the add loop, enters the end-op sequence. 

** When an invalid digit is detected at the serial adder in-buses, the adder forces l's into its sum and parity output latches. This action 
insures that valid parity is always gated to ST from the serial adder. 

3-134 11/65 



cleared, and the high-order source extend 
routine is started to process the remaining 
destination field. 

f. L1 or STC f, 0, L2 = 0, ABC f, 0. 

Same as~. 

g. L1 or STC f, 0, L2 f, 0, ABC = 0. 

A second operand fetch sequence is started 
to fetch the next double word of second 
operand to AB. 

3. First Operand Fetch 

A separate entry is made into this routine, 
per STAT G, for a Compare instruction. In 
a compare operation, a D request for the next 
double word of first operand has already been 
given. D is decremented by 8, and the double 
word arriving at the SDBO is gated to ST. 

For Add or Subtract instructions, D is decre­
mented by 8, and a D request is made for the 
next double word of first operand. F is incre­
mented by 1 to record the number of fetches 
made. This information will be required to 
restore the low-order address in D in the 
event that an all-zero result is obtained. If 
ABC equals 111, a second operand fetch rou­
tine is started. If ABC does not equal 111, the 
appropriate addition or high-order source 
extend is started. 

4. Second Operand Fetch 

The IC is decremented by 8, and the next 
double word of second operand is fetched to 
AB. After this, the appropriate addition or 
overflow routine is started as determined by 
the L 1 count. 

5. Second Operand Runout 

11/65 

An all-zeros AB byte is gated true +6 to the 
serial adder and added to the selected ST 
byte. The result is decimal-corrected and 
gated back to the selected ST byte. STAT's 
A, E, and H and the mark triggers are set 
as previously explained. 

L1 and STC are decremented by 1 as each 
byte is processed; ABC and L2 are not 
stepped. The sequence is repeated until L1 

2065 FEMI 

is stepped to zero, with an exit to the des­
tination store, and first operand fetch se­
quences whenever STC equals 7. A carry 
from the last destination byte is an overflow 
condition and sets STAT B. The end-op 
sequence is started when L1 equals zero. 

6. First Operand Runout and Overflow Test 

An overflow condition exists whenever a carry 
results as the last destination byte is proc­
essed or whenever a nonzero digit is detected 
in the source field after the destination field 
has been processed. STAT B is set if STAT H 
is set when entering this routine. 

Next, the remaining second operand bytes are 
gated true +6 to the serial adder with STAT B 
being set if any nonzero bytes are detected. 

ABC and STC are decremented by 1 as each 
byte is processed. The next source double 
word is fetched to AB whenever ABC is 
stepped to zero unless L2 equals zero. When 
L2 is stepped to zero, the end-op sequence is 
started. 

7. Zero Result 

If at the completion of the add operation STAT 
A is not set, an all-zero result has been ob­
tained. In this case, the Add and Subtract 
instructions will always force a positive sign 
in the low-order byte of the destination field. 
(If STAT G is set, an exit is made to the end­
op sequence since no correction of the result 
is required for a Compare instruction.) 

The low-order destination address is regen­
erated by adding 8 to D the number of times 
indicated in F(4-7). STC is set per D(21-23), 
and the selected ST byte is cleared. 

STA T B is examined to determine overflow 
condition. For a zero result and no overflow, 
a plus sign is inserted via the serial adder in 
the low-order destination byte with the se­
lected mark trigger being set. A storage 
request is given to store the sign in the des­
tination field, and the end-op sequence is 
started. For a zero result and overflow, the 
destination Sign is not corrected. The end-op 
sequence is started immediately. 

8. End-Op Sequence 

The instruction address (original content of 
the Ie) is restored from the LSWR to the IC, 

3-135 



and STAT G is reset. An invalid data inter­
ruption occurs if STA T E is set. An over­
flow interruption occurs if STAT B is set and 
STAT E is not set. The CC is set per hard­
ware conditions as shown in Table 3-19. 

TABLE 3-19. CONDITION CODE SETTING PER HARDWARE 
CONDITIONS. DECIl\1AL INSTRUCTION SET 

Hardware Conditions 

STAT A • STAT F • (Add. or Subtract, or 
Zero and Add) 

STAT A • STAT F • STAT H • Compare 

STAT A • STAT C • not STAT H • Compare 

STAT F • STAT C • STAT H • Compare 

STAT A • not STAT F • (Add, or Subtract, or 
Zero and Add) 

STAT A • not STAT F • STAT H • Compare 

STAT A • not STAT C • not STAT H • 
Compare 

STAT H • not STAT F • not STAT C. 
Compare 

Setting 

---!.~ 01 

--..,.~ 01 

---!.~ 01 

---!·~01 

---'--! .. ~ 10 

---"~10 

---.~ 10 

---.~10 

STAT B • (Add, or Subtract, or Zero and Add) .. 11 

Note: • Designates logical AND connective. 

3.8.1.1.3 Signs-Not-Alike Sequence, Subtract 

• Complement add operation with exit on 
one or more of following conditions: 

L1 or STC = 0 
L2 = 0 
ABC = 0 

• STAT A set if result not zero. 

• STAT B set if overflow. 

• STAT D set if result must be re­
complemented. 

• STAT E set if operand digit or sign 
invalid. 

• STAT G set if Compare instruction. 

• STAT H set if carry to next byte. 

3-136 

• Carry out of last destination byte indi­
cates that result is in true form; no 
carry condition indicates that result 
is in complement form. 

An overall flow chart of the signs-not-alike, or 
subtract, sequence is shown in Figure 6049, FEDM. 
This flow chart outlines the major functional steps 
and sequences used in the Add, Subtract, and Com­
pare microprogram. 

Upon entry into this sequence, the signs of both 
operands have been examined (by the GIS) and the 
sign of the first operand has been inserted as the 
sign of the result. This sign mayor may not turn 
out to be the correct sign: if the first operand is 
larger than the second, the result carries the cor­
rect sign; if the reverse is true, the sign of the 
result must be corrected. 

Basically, the subtract microprogram is similar 
to the add sequence previously described. The 
first step in the microprogram is to subtract the 
digits contained in the sign bytes of the operands. 
The resultant difference is then placed in the digit 
portion of the destination sign byte. At this point, 
one complete byte of results has been developed. 
The operand length codes (L1 and L2) and the status 
of byte counters (STC and ABC) are examined for 
one or more of the following conditions: 

1. The result byte is contained in the last byte of 
ST and must be stored (STC = 0). 

2. Additional first operand bytes must be fetched 
from main storage (STC = 0 and L1 1= 0). 

3. Additional second operand bytes must be 
fetched from main storage (ABC = 0 and 
L2 1= 0). 

4. The second operand has run out; i. e., all 
second operand bytes have been processed, 
and zeros must be added to the first operand 
bytes (L2 = 0 but L1 -I- 0). 

5. The first operand has run out; i. e., the des­
tination field has been completely processed 
(L1 = 0). 

If none of the above conditions exist, the micro­
program enters the subtract loop to generate the 
next destination byte. L1, L2, STC, and ABC are 
decremented one count, the selected AB byte is 
subtracted from the selected ST byte, and the re­
sultant difference replaces the selected ST byte. 
After this, the status of all counters is again sensed 
for exit conditions. 

11/65 



Upon establishing one or more exit condtions, 
the operations dictated by the conditions are per­
formed and, if L1 is not zero, the subtract loop is 
re-entered. When L1 is zero, all destination bytes 
have been processed. The microprogram then per­
forms an overflow test, a zero-result test, and a 
complement result test. * If an all-zero or comple­
ment result has been generated, the address of the 
low-order destination byte is restored in D. Then, 
the result is either recomplemented or a plus is 
stored in the low-order destination byte. 

A detailed flow chart of the signs-not-alike, or 
subtract, sequence is shown in Figure 6050, FEDM. 
It is an expanded version of the overall flow chart 
(Figure 6049, FEDM), showing the data handling in 
the various subroutines of the subtract operation. 
The subtract operation is similar to the add sequence 
described in paragraph 3.8.1.1.2. For this reason, 
only the differences are discussed below. 

1. Subtract Operation 

The selected AB byte is converted to 2's com­
plement form at the input to the serial adder. 
The 2's complement of the byte is then added 
to the selected ST byte. For the first (or sign) 
byte, bits 0-3 only of the selected AB byte are 
gated complement to the adder, with a hot 
carry supplied to bit 3 to convert to 2's com­
plement. 

2. Second Operand Runout 

An all-zeros AB byte is gated complement to 
the serial adder and added to the selected ST 
byte. Thus the second operand is extended 
with high-order l's. 

3. Overflow Test 

Generally, an overflow condition exists if, 
upon processing all destination bytes, a non­
zero source byte is detected. One exception 
occurs when the first source byte sensed, 
after the first operand has run out, equals 1 
and a "borrow" condition exists. A borrow 
condition is determined by STAT's A and H 
being set; i.e. , a nonzero result and a carry 
from the previous byte. 

When L2 has been stepped to zero, a carry 
from the last destination byte is examined. 
A carry condition indicates a true result, and 

the end-op sequence is started. No carry 
indicates a complement result, and a recom­
plement sequence is started for Add and Sub­
tract instructions. For a Compare instruction 
(STAT G set), the end-op sequence is started 
immediately. 

4. Zero Result and Recomplement Setup 

STAT D is set when an entry is made to this 
routine because of the result's being in com­
plement form. STAT D is not set when an 
entry is made because of zero result. If 
STAT G is set when entering this routine, 
an exit is made to the end-op sequence since 
no corrections of the result are required for 
the Compare instruction. 

The low-order destination address is regen­
erated by adding 8 to D the number of times 
indicated in F(4-7). STC is set per D(21-23), 
and the selected ST byte is cleared. If an 
overflow condition exists (STAT B set), the 
results need not be corrected and the end-op 
sequence is started immediately. 

5. Recomplement Sequence 

The original L1 count was saved in F(0-3) by 
the GIS. This count is now placed in the L2 
location in E; i.e., E(12-15). The L1loca­
tion in E (8-11) is set to zero and then decre­
mented one count to provide an exit from the 
first operand fetch routine to the recomple­
ment sequence. The complement result is 
gated from the SDBO to AB, and the recom­
plement sequence is started. 

The sign byte is processed by gating bits 0-3 
of the selected AB byte complement to the 
serial adder, with a hot carry supplied to bit 
3. A plus or minus sign is inserted in serial 
adder bits 4-7 as determined by the sign of 
the second operand (STAT C). Bits 0-3 are 
decimal-corrected, and the adder output is 
gated to ST. 

All bytes following the sign byte are proc­
essed by gating the selected AB byte com­
plement to the serial adder, where it is added 
to an all-zero ST byte. The adder output is 
decimal-corrected and gated back to the se­
lected ST byte. 

* The Compare instruction does not store results in main storage and, upon exit from the subtract loop, enters the end-op sequence. 

11/65 2065 FEM! 3-137 



As each byte (including the sign byte) is proc­
essed, the ABC, STC, and L2 counts are 
decremented. The mark trigger selected by 
the STC is set. The serial adder carry is 
saved in STAT H. STAT A is set on non­
zero digits, and STATE is set on invalid 
digits. 

Recomplementation is continued until the Ll 
in E(12-15) is stepped to zero. If ABC steps 
to zero and Ll is not zero, ST is stored and 
the next double word of destination is fetched 
to AB. When Ll steps to zero, ST is stored 
in the destination field, AB is cleared, and 
STAT F is set or reset per STAT C. The 
CC is set per hardware conditions (see Table 
3-19), and the instruction is ended. 

3 . 8. 1. 2 Subtract, SP (FB) 

• 2nd operand is subtracted from 1st 
operand, and difference is place in 
1st operand location. 

• SS format: 

Length code of 
1 st operand and 
destination operand 

• CC setting: 
Result is zero: CC = o. 

operand 
address 

Result is less than zero: CC = 1. 

3-138 

operand 
address 

Invert sign 
of 2nd 

Result is greater than zero: 
CC =2. 

Overflow: CC = 3. 

• Interruptions: 
Protection. 
Addressing. 
Invalid data. 
Overflow. 

The SP instruction specifies an algebraic sub­
traction of the second operand from the first oper­
and. The instruction shares the same add or 
subtract routines used by the Add instruction. 
During the GIS of the Subtract instruction, however, 
the sign of the second operand is effectively in­
verted to perform subtraction. The GIS micro­
program for the subtract instruction is shown in 
Figure 6051, FEDM. Upon exit from the GIS, the 
signs-alike sequence (paragraph 3.8.1.1. 2) or the 
signs-not-alike sequence (paragraph 3.8.1.1.3) is 
entered, depending on the operand signs. 

3.8.1.3 Compare, CP (F9) 

• 1st operand is compared with 2nd 
operand, and CC is set to indicate 
results of comparison: 

Operands equal: C C = o. 
1st operand low: CC = 1. 
1st operand high: CC = 2. 

• SS format: 

L..-_F_9 -...L---r--L~---'------'.J.,J~ 01 I 82 I J ~ 
3132 3S 36 47 o 

Length code 
of 1st 
operand operand 

operand 
address 

No 

operand 
address 

Invert sign 
of 2nd 
operand 

11/65 



• Interruptipns: 
Addressing. 
Invalid data. 

The CP instruction shares the same add and sub­
tract routines used by the Add and Subtract instruc­
tions and described in paragraphs 3. B.l.l. 2 and 
3. B. 1. 1. 3. The GIS microprogram for the Compare 
instruction is shown in Figure 6052, FEDM. As in 
the Subtract instruction, this microprogram effec­
tively inverts the sign of the second operand by 
setting STAT C on positive sign. The results of 
the compare operation are not placed in main stor­
age. STAT G is set to provide a means of taking 
special action, where required for the Compare 
instruction, during execution of the common add or 
subtract sequences. 

3.B.2 ZERO AND ADD, ZAP (FB) 

• 2nd operand is placed in 1st operand 
location. 

• SS format: 

~ 011 82 IJG 
.... o------L-r---'-",...-r---.L---",..L2,JO 3132 3536 47 

Fa 

Length 
code of 
destination operand 

• CC setting: 

Destination 
address operand 

address 

Fetch 2nd operand 
and store at 
destination address 

2nd operand is zero: CC = O. 
2nd operand is less than zero: 

CC = 1. 
2nd operand is greater than zero: 

CC =2. 
2nd operand cannot fit in destination 

field: CC= 3. 

• Interruptions: 
Protection. 
Addressing. 
Invalid data. 
Overflow. 

The operation specified by the ZAP instruction 
is equivalent to addition to zero. A zero result is 

always made positive. When high-order digits are 
lost because of overflow, a zero result has the sign 
of the second operand. 

Only the second operand is checked for valid 
sign and digit codes. Extra high-order zeros are 
supplied if needed. When the first operand field is 
too short to contain all significant digits of the 
second operand, a decimal overflow occurs and 
results in a program interruption, provided that 
the decimal overflow mask bit is 1. The first 
and second operand fields may overlap when the 
rightmost byte of the first operand field is coinci­
dent with or to the right of the rightmost byte of 
the second operand. 

A detailed flow chart of the GIS and execution of 
the Zero and Add instruction is shown in Figure 
6053, FEDM. 

A t the start of the GIS, the following actions have 
been performed by SS I-Fetch: (1) the STC has been 
set at the low-order destination byte, and (2) an IC 
request has been issued for the second operand. 
During the GIS, a word overlap test is performed by 
comparing the source address, the destination ad­
dress, and the source length code to determine 
whether a word-overlap condition exists, as defined 
in paragraph 3. 7. 5.1. If a word-overlap condition 
is predicted by this test, the instruction address is 
restored to the IC, the invalid-data-interrupt trig­
ger is set, and the instruction is ended. 

The sign byte is processed by gating bits 0-3 of 
the selected AB byte to the serial adder. Bits 4-7 
of the AB byte are decoded for a positive, negative, 
or invalid sign. The approved plus or minus sign is 
inserted in SAL(4-7) and gated, with the digit, to the 
selected ST byte. 

All bytes following the sign byte are processed 
by gating the selected AB byte true +6 to the serial 
adder. The selected ST byte is not gated to the 
adder, and the validity check at the adder B side 
is inhibited in hardware. The adder output is 
decimal-corrected and gated to the selected ST 
byte. 

As each byte is processed, including the first 
byte, ABC, STC, L1, and L2 are decremented, the 
selected mark trigger is set, STATE is set for in­
Valid data, and STATA is set for a nonzero digit. 

The byte-by-byte transfer from AB to ST is . 
continued until one or more of the following exit 
conditions are detected via anROS branch 
(DECIMAL): L1 or STC equals zero, L2equals 

11/65 2065 FEMI 3-139 



zero, and ABC equal zero. Depending on the exit 
conditions, the following actions may be performed: 

1. L1 and L2 = 0 

a. The contents of ST are stored in the des­
tination field.· Note that F is incremented 
each time that a store operation is per­
formed. This action is taken to enable 
regeneration of the low-order destination 
byte in case an all-zero result is detected 
in the end-op sequence. 

b. AB and ABC are cleared to zero. 

c. STAT F is set or reset per STAT C to 
enter the same end-op routine as that used 
by the signs-alike add sequence. (See 
Table 3-19 for CC setting.) 

2. L1 = 0 

a. The contents of ST are stored in the des­
tination field. 

b. STAT F is set or reset per STAT C. 

c. An overflow test is performed. 

d. If ABC is also zero, the next double word 
of 2nd operand is fetched prior to enter­
ing the overflow test. 

3. L2 = 0 

a. AB and ABC are cleared to zero. 

b. The second operand is extended with high­
order zeros. 

c. If STC is also zero, the contents of ST 
are stored in the destination field prior to 
entering the high-order zeros routine. 

4. STC and ABC = 0 

a. The contents of ST are stored, and a 
fetch of the next double word of second 
operand is made to AB. 

b. The zero and add loop is resumed. 

5. STC = 0 

3-140 

The contents of ST are stored, and the zero 
and add loop is resumed. 

6. ABC = 0 

The next double word of second operand is 
fetched to AB, and the zero and add loop is 
resumed. 

3.8.3 MULTIPLY, MP (FC) 

• Product of multiplicand (1st operand) 
and multiplier (2nd operand) replaces 
mul tiplicand. 

• SS format: 

~ OIl B2 1~0 
... o----~~-r--l~...,.-~--..J..J'---:3..Jl 3""2--3""SLJ36 47 

Fe 

• ~ I. J 

t , , 
Length code Length code 1st operand 2nd operand 
of 1st of 2nd address address 
operand operand (multiplicand) (multipl ier) 

t 
" I Examine 1st low-order 

digit of muliptlicand I 
I 

" " 
Add full multiplier number 
of times spec ified by 
multiplicand digit , 
Retain low-order partial 
product digit as low-order 
digit for final product 

" 
, 

~ 
Exarri'ine next low-order Shift partial product one 
digit of multiplicand digit position to right , , 

Add full mul tipl ier to partial 
product number of times speci-
fied by multiplicand digit 

t 
Retain low-order partial prod-
uct digit as next low-order 
digit of final product , , , 

I Store produc t byte at 
Develop next product byte 1st operand address 

11/65 



3 • 8 . 3 • 1 Introduction 

• Maximum multiplicand field is 16 
bytes. 

• Maximum multiplier field is 8 bytes. 

• Multiplicand field initially contains 
high-order zero field equal in length 
to multiplier field. 

• L2 > 7 or L2 ~ L1 will cause 
specification interruption. 

• Multiplication accomplished by over­
and-over addition or subtraction: 

Multiplicand 
Digit 

o 
1 through 4 
5 through 9 

Sequence 
Selected 

Addition 
Subtraction 

The MP instruction replaces the multiplicand 
(1st operand) with the product of the multiplicand 
and the multiplier (2nd operand). To be able to 
store the product in the multiplicand field at all 
times, several restrictions are imposed on both 
the multiplicand and the multiplier. 

the multiplicand field is initially split into two 
parts; the high-order zero field of length equal 
to the multiplier and the low-order field con­
taining the effective multiplicand digits. This 
arrangement of the multiplicand ensures that 
product overflow will not occur (Figure 3-9). 

2. By definition, the multiplier field must be at 
least one digit less than the multiplicand. 
Since the multiplicand must initially contain a 
zero field equal in size to the multiplier digits, 
the multiplier size is limited to 8 bytes (15 
digits and sign). A specification interruption 
occurs if the multiplier length code deSignates 
more than 8 bytes (L2 is greater than 7), or 
if L2 is greater than or equal to Ll. 

3. The maximum product sIze is 31 digits and 
sign (16 multiplicand digits plus 15 multiplier 
digits) . The sign is determined algebraically 
from the multiplier and multiplicand signs, 
even if one or both operands are zero. Since 
during sign resolution two sign positions are 
merged into one, at least one high-order digit 
of the product field is zero. 

1. In any multiply operation, the maximum 
number of product digits that can be obtained 
is equal to the sum of the digits in the two 
operands. Since the product is stored in the 
multiplicand field, this field must initially 
contain high-order zero digits for at least a 
field size equal to that of the multiplier. Thus 

The multiply operation is executed in much the 
same manner as in manual arithmetic. * The multi­
plicand is examined one digit at a time, starting 
with the low-order digit, and the entire multiplier is 
added the number of times specified by the multipli­
cand digit. After the first multiplicand digit has 
been processed, the low-order digit of the resulting 
partial product (PP) is saved as the low-order prod­
uct digit. The PP is then shifted one digit position 
to the right and brought into computation of the next 
product digit (one order higher than before). This 

Initial contents 
of 1st operand 

High-order 
zero field 

Effective multi­
plicand digits 

Maximum multiplicand 
size is limited to 16 bytes 

x 
Contents of 
2nd operand 

Effective 
multipl ier 
digits 

Maximum 
multiplier size 
is limited to 8 
bytes and must 
be small er than 
multipl icand 

Final contents of 
1st operand 

Effective product digits 

Maximum product size 
is limited to 16 bytes 

FIGURE 3-9. OPERAND SPECIFICATIONS FOR MP INSTRUCTION 

* The major difference is that the roles of the multiplicand and the multiplier are reversed. Because of its size (up to 16 bytes), the 
entire multiplicand cannot be held in the machine at one time. For this reason, the full multiplier (up to 8 bytes) is fetched to the 
CPU and multiplied by the individual digits of the multiplicand, which is fetched from main storage 1 byte at a time. 

11/65 2065 FEMI 3-141 



time, the multiplier is added to the PP the number 
of times specified by the next digit of the multipli­
cand, and the low-order digit of the new PP thus 
formed becomes the next product digit. The PP is 
again shifted to the right, and the sequence is con­
tinued until all digits of the multiplicand have been 
processed. The PP resulting after the last multi­
plicand digit has been processed becomes the high­
order product. 

Figure 3-10 illustrates a typical over-and-over 
addition sequence used for mutiplication. As each 
multiplicand byte is processed, the multiplicand 
length code (L1) is reduced by one count and com­
pared with the multiplier length code (L2). The 
condition when L1 = L2 indicates that all effective 
multiplicand digits have been processed and the 
operation is completed. 

To reduce the number of computations in the 
multiply operation, either an over-and-over add or 
an over-and-over subtract sequence may be per­
formed. Selection of the sequence is dependent on 
the magnitude of the multiplicand digit under con­
sideration. An add sequence is selected if the mag­
nitude of the digit is in the range of 1 through 4 (as 
was illustrated in Figure 6053, FEDM). For 
multiplicand digits of magnitude 5 or greater, a 
subtract sequence is selected. This sequence de­
ducts the multiplier from the PP the number of 
times specified by the 10's complement of the multi­
plicand digit and then adds 1 to the next digit of the 
multiplicand; increasing the next high-order digit 
of the multiplicand has the effect of adding the 
multiplier 10 times. For example, the equivalent 
of a multiplication by 7 is subtracting the operand 3 
times to obtain a negative PP and then effectively 
adding the operand to the PP 10 times. 

An example of a typical subtract sequence used 
to accomplish multiplication is shown in Figure 
3-11. Note that thePP resulting from a subtract 
operation is in 10's complement form. When the 
10's complement PP is shifted right, its high-order 
digit position must be extended with a 9. 

Following are general and detailed descriptions 
of the multiply microprogram. The general de­
scription (paragraph 3.8.3.2) outlines the overall 
structure of the microprogram, enumerates its 
major functional steps and sequences, and explains 
their relationship to the overall operation. The 
detailed description (paragraph 3.8.3.3.) analyzes 
each sequence individually, making specific refer­
ences to the register-to~register data transfer in 
the machine. 

3-142 

3.8.3.2 General Description 

• Initial Conditions: 
1. Low-order multiplicand bytes in ST. 
2. Low-order multiplier bytes re­

quested from main storage. 

• Interruptions: 
Protection. 
Addressing. 
Specification. 
Invalid data. 

Upon entering the multiply microprogram, the 
following actions have been performed by SS I-Fetch: 

1. The instruction address has been transferred 
to the LSWR, and the IC contains the address 
of the second operand. 

2. A request from D has been issued for the 
multiplicand (first operand). This operand 
has been accessed (starting at the low-order 
address) and placed in ST. STC is set at the 
lowest-order multiplicand byte in ST. 

3. A request from the IC has been issued for 
the multiplier (second operand), starting at 
the low-order address. This operand arrives 
at the SDBO during the GIS. 

An overall flow chart of the multiply micropro­
gram and the general data path used for its execu­
tion are shown in Figure 6054, FEDM. The major 
subroutines and functional steps, shown in the fig­
ure, are explained briefly below. Additional sim­
plified diagrams are provided as an aid in visualiz­
ing the data handling performed. For the most part, 
these diagrams do not show the gates and data paths 
used in the machine, but are intended solely to con­
vey how the multiply algorithm is implemented. 
For purposes of illustration, a 7-byte multiplicand 
and a 4-byte multiplier are assumed in these dia­
grams. 

1. General Initialization Sequence (GIS) 

This sequence gates the multiplier from the 
SDBO to AB and sets the ABC at the lowest­
order multiplier byte. It also performs 
several actions relating to the subsequent 
left-adjust sequence of the multiplier: (a) the 
lowest-order digit of the multiplicand (in ST) 
is transferred to F(0-3), (b) STAT F is set· 
if the sign of the multiplicand is negative, and 
(c) the multiplier length code· L2 is transferred 

11/65 



11/65 

Objectives: 

Multiply (+204) by (-32) to obtain a product of ( -6,528) 

Execution: 

x 

Shift multipl ier 
right (to drop sign) 

Extend high-order 
digit with zero~ 

o 0 
Add multiplier 4 times 0 0 3 2 

o 0 3 2 

o 0 
Partial product 0 8 

Shift partial prod­
uct right (to drop 
digit) 

Extend high -order 
digit with zero "r'" 

Multiplicand digit zero, , 
no addition required. 

o 0 

Shift partial prod­
uct right (to drop 
digit) 

Extend hi gh -order 
digit with zero 

') 
Add multiplier twice to 

{~ partial product 0 
0 

0 

J 2 

0 

2 

Partial product o 0 6 5 

Shift partial prod­
uct right (to drop 
digit) 

Extend high -order 
digit with zero "'1 

Multiplicand digit zero, " 
no addition required 

o 0 0 6 

(

At this time, LJ = L2, indicating }----­
that multi pi ication has been 
completed. l J is reduced once 
for each multiplicand byte 
that is processed. When 11 = l2, 
all effective multiplicand 
digits have been processed. 

Compare signs Signs not 
-----------t---j-t--t--' alike 

Save low-order 
digit 

Save low-order 
digit 

Save low-order 
digit 

Save partial product 
as high-order product 

FIGURE 3-10. TYPICAL MULTIPLY ADD SEQUENCE, EXAMPLE 1 

2065 FEMI 3-143 



Multiply (+827) by (+25) to obtain a product of (+20,675) 

Execution: 

I-_--r-'M.;,;;ultiplicand 

Byte Byte Byte 
o 1 2 

1---1-+-10 BI2 

Byte 
3 

Multiplier 

(Ll = 3) x B~e B~te (L2 = 1) 

012 51 + 

Byte 
o 

o 10 

Product 

Byte Byte 
1 2 

Byte 
3 (Ll =3) 

L-----------+--1HIH
1 ~ ,_~. ,;~ ------+---+---i-t___' Signs alike 

Shift multiplier W 

(

At this time, L 1 = L2, indicating 
that mu.ltiplication has been 
completed. Ll is reduced once 
for each multipl icand byte 
that is processed. When Ll. L2, 
all effective multiplicand 
digits have been processed. 

10's 
complement 

right (to drop sign) ~ 
Extend high-
order digit Wi~ 
zero ' 0 0 2 5 

T t 
3 -----;~~ Subtract: 

1 
Add 1 to next digit 
of multiplicand 

Partial product 

Convert multiplier to 10' s 
complement form and add 
3 times 

~ , 
9 9 7 

9 9 7 

9 9 7 

, 
5 

5 

5 
in 10's complement form -------1 

-9 9 2 5 

h I d ~H~ Save low-order ~i~~:rt~r~;:':~~g~tr ___ d_ig_i_t _______ +-_--l_f--J 
Extend high-order 1 
digit with nine . , 

2+1- 3 --.. Add: ~~ ~ ~ ~ 
Add multiplier (true) 0 0 2 5 
to partial product 3 times O· 0 2 5 

Partial product in true form 0 0 6 .7 

~~~plement Shift partial product ~~K 
1 right (to drop digit)

Extend high-order ---,.

2 --.. SUbtroctdi9it with zero {~~ ~ :

Convert multiPlier/ 9 9 7 5

Save low-order
digit

Save low-order
digit

to 10' s complement form 9 9 5 6

and add to partial product I •
2 times

L------------r-~
Partial product in 10's
complement form

Add 1 to next digit Shift partial product
of multiplicand right (to drop digit)

, ~ Extend high-order ~
0+1 = 1 ~ Add digit with nine T

Add multiplier (true) {9 9 9 5
to partial product 1 time 0 0 2 5

Save partial product ~artial product in true form--"-0-"'"0--:2---:0-i

__ -.L-_______ as~h_i~g_h~_rd_e_r~p_ro_d_u_c~t

FIGURE 3-11. TYPICAL MULTIPLY SUBTRACT SEQUENCE, EXAMPLE 2

3-144 11/65

to F(4-7). The functions performed by the
GIS are illustrated in Figure 3-12.

2. Specification Test

This test verifies that the length codes for
both operands in the instruction are correctly
specified; i.e., L2 specifies less than 8 bytes
and is smaller than Ll.

3. Incorrect Specification

Detection of an invalid specification forces
an interruption. The instruction address is
restored from the IC to the LSWR, and the
instruction is ended.

4. Multiplier Left-Adjust Sequence

11/65

The multiplier bytes are transferred from AB
to ST in such a manner that the highest-order
multiplier byte occupies the leftmost byte in
ST. STAT C is set if the multiplier sign is
negative.

The left-adjust transfer is initiated by setting
STC per L2 (Figure 3-13). Since the maxi­
mum multiplier length is limited to 8 bytes,
only 3 of the 4 bit positions in L2 are needed
to effectively specify the length code; i. e. ,
the count in L2 may range from a minimum
of 0000 (for 1 byte) to a maximum of 0111
(for 8 bytes). Setting STC per L2 automati­
cally selects, according to multiplier size,
the correct ST position for the low-order byte
of the multiplier; the number of bytes to the
left of the selected ST position corresponds
to the length field of the full multiplier.

The actual transfer is performed one byte at
a time, through the serial adder, starting
with the low-order multiplier byte. ABC,
STC, and L2 are decremented once for each
byte transferred. The multiplier is completely
transferred when the L2 count is decremented
to zero. Since the first IC request (during
I- Fetch) does not necessarily access the full
multiplier to AB, it may be necessary to fetch
the balance of the multiplier from main storage.
(This fetch occurs if ABC steps to zero before
L2 steps to zero.)

After exit from the left-adjust sequence, the
full multiplier has been fetched and left­
adjusted to ST. Note that the original ST con­
tents (the multiplicand) have been destroyed
except for the lowest-order multiplicand byte,

2065 FEMI

which is saved during the GIS; i.e., digit
placed in F(0-3) and sign recorded by STAT F.
The destroyed multiplicand bytes are later re­
fetched from main storage, one byte at a time,
as required by the multiply operation.

5. L2 Restoration

During transfer of the multiplier bytes from
AB to ST, the L2 count in E(12-15) is decre­
mented once for each byte transferred. At
the completion of the left-adjust sequence,
L2 has been decremented to zero. The initial
L2 count, saved in F(4-7) during the GIS, is
now restored to E(12-15). The L2 count will
be required by the subsequent multiply se­
quence.

6. Multiplier Right-4 Shift to Drop Sign

In the multiply operation to follow, product
bytes are developed by adding the entire
multiplier the number of times specified by
successive digits of the multiplicand. The
sign of the multiplier does not enter into the
over-and-over addition sequence and must be
discarded. The sign is discarded by shifting
the multiplier in ST 4 bit positions (1 digit)
to the right as illustrated below. This action
places the sign beyond the rightmost multi­
plier byte selected by STC for subsequent
computation.

Multiplier bytes
se lected for STC
processing by STC 0 1 1
r------A~------~

5 I I I T
I I I

oioolooloo 5

I
I

i
I
I

I

7. Sign Handling

A test of STAT F and STAT C is made to
establish the product sign algebraically:

,-

Signs alike (both STATS set or reset) -
set sign plus.

3-145

Multiplicand
(7 bytes)

Address of
high-order byte
(B2 + D2)

j
DOUble-WOrd+- -++- --I ?ound.aries 8 bytes ---....-I~--- 8 bytes 8 bytes ---..... 1----

1
8 bytes

In mam
storage

3-146

5 multiplica(ld
bytes remain
in main storoge

Double word containing
2 multiplicand bytes is
accessed during I-Fetch
and ploced in ST

I
I
I
I
I
I
I
I
I
I

Set if minus

Set STC at
lowest-order

Stat
F

E
FC

1 multiplier
byte remains
in ma i n storage

1

I
I

Double word containing
3 multiplier bytes is
requested at I-Fetch
and placed in AB during
the GIS

1

I
I
I
I
I Set ABC at

I
I
I
I

FIGURE 3-12. DATA HANDLING DURING GIS OF MULTIPLY INSTRUCTION

11/65

Multiplier
(4 bytes)

~ ._-------8 bytes ---------+l~tl4----------8 bytes ----------.i ..
I I
I I
I Double word containing the high-order I
I byte is fetched by the left-adjust sequence I

after the initial AB contents have been
I transferred to S T I
: I

3 multiplier bytes
accessed during GIS
and place in AB

ABC

010

+ ~ ---....,- - --,.. --+"!--.... -"""--rr--.,..---------..
IA I B I A
I I ID
L ____ --.J ____ E. r-.L-r--''---,---'----r"""''''"----'---------'

STC

0011

E

STC set per L2
to se lect correct
position for low­
order byte in ST

Set if minus

r:TJ
Lowest-order ~
multiplicand digit

STAT
C

Multiplier
sign

Multiplicand
sign

FIGURE 3-13. DATA HANDLING DURING MULTIPLIER LEFT-ADJUST SEQUENCE

Signs not alike (one STAT set and the other
reset) - set sign minus.

Upon establishing the correct product sign,
it is placed in F(4-7).

8. Basic Multiply Add or Subtract Sequence
for Left Digit

11/65

This sequence processes the digit in the left
portion of the multiplicand byte. (The lowest­
order byte of the multiplicand always contains
the digit in the left portion and the sign in the
right portion.) The entire multiplier (in ST)
is added or subtracted the number of times
specified by the left digit of the multiplicand
saved in F(O-3). An add sequence is per­
formed if the digit in F(O-3) is 4 or less; a
subtract sequence, if 5 or greater. A data

2065 FEMI

interruption occurs if an invalid multiplicand
or multiplier digit is detected. The PP re­
resulting from the add or subtract sequence
replaces the multiplicand in ST.

9. Product Byte Store

The product is stored in main storage one
byte at a time. After exit from the left-digit
sequence, one complete byte of product has
been developed and must be stored. If the
exit is made for the first time, this byte con­
sists of the product sign (in F) and the lowest­
order digit of PP (in ST). All product bytes
generated thereafter consist of two digits:
one digit (in F) has been saved from a pre­
vious PP developed in the right digit sequence,
and the second digit is the low-order digit of
a new PP (in ST) obtained in the left digit
sequence.

3-147

10. Multiplicand Request

A request from D is issued for the next byte
of the multiplicand in main storage.

11. Partial Product Right-4 Shift to Drop Digit

The low-order digit of PP has been stored as
a product digit and must not enter into subse­
quent computation. The digit is discarded by
shifting the PP is ST 4 bit positions to the
right. This action places the digit beyond the
rightmost PP byte selected by STC for com­
putation of the next product digit.

Partial product bytes
selected for STC
processing by STC 0 1 1
,--__ ---'A

12. Ll == L2

This test establishes whether .all digits of the
multiplicand have been processed. At the
start of the multiply operation, the total field
length specified by Ll includes a zero field
equal in size to the multiplier plus the effec­
tive field of the multiplicand:

Ll == L2 + Number of effective multiplicand
bytes.

Since Ll is decremented once after each
effective multiplicand byte is processed, all
the effective multiplicand bytes have been
processed when Ll equals L2.

13. Complete Multiplicand Byte Fetch

3-148

If Ll is not equal to L2, the multiply sequence
is continued. The next byte of the multiplicand
(requested earlier) is selected from the SDBO
and placed in F. Control is then transferred
to the add or subtract sequence for the right
digit of the multiplicand.

14. Basic Multiply Add or Subtract Sequence for
Right Digit, and Shift Right-4 Sequence.

This sequence processes the digit in the right
portion of the multiplicand byte. The entire
multiplier is added to (or subtracted from) the
PP in ST. The number of add or subtract
operations is controlled by the right digit of
the multiplicand contained in F(4-7). After a
new PP has been developed in ST, its low­
order digit replaces the right digit of the
multiplicand in F(4-7). The PP is then shifted
4 bit positions to the right to drop the low­
order digit, and an entry is made to the left­
digit sequence to process the next multiplicand
digit contained in F(0-3).

15. Multiplicand Zero Test and Partial Product
Store

"When Ll equals L2, all the effective digits of
the multiplicand have been processed. The
remaining multiplicand bytes are fetched from
main storage and tested for zero. Detection
of a nonzero digit results in an interruption.
After the zero test is completed, the PP is
stored as the high-order product in main
storage and the instruction is ended.

3.8.3.3 Detailed Description

• STATE set if digit invalid.

• STAT A set if digit not zero.

• STAT G set if multiplier zero.

• STAT H set to generate hot carry.

• STAT D set to add 1 to next digit.

A detailed flow chart of the multiply micropro­
gram is shown in Figure 6055, FEDM. This figure
is an expanded version of the overall flow chart
(Figure 6054, FEDM), showing the data handling
used in the various subroutines of the Multiply in­
struction. For the most part, this data handling
is straightforward and requires no explanation.
Those areas in need of clarification are discussed
below:

1. General Initialization Sequence

This sequence shares a common micropro­
gram with the Divide instruction. An appro­
priate branch is taken to enter either the
divide or the multiply sequence.

11/65

2. Multiplier Left-Adjust Sequence

ABC has been set to select the low-order
multiplier byte in AB. STC is now set per L2
count, E(12-15). The transfer is performed
one byte at a time via the serial adder. As
each byte is gated to the serial adder, it is
tested for nonzero value and for invalid digits.
STAT E is set upon detection of an invalid
digit, and STAT A is set upon detection of a
nonzero digit. If upon completion of the
left-adjust transfer STAT A remains not set,
the multiplier value is zero.

3. Multiplier Right-4 Shift and L2 Restoration

The multiplier is shifted 4 bit positions to the
right and transferred from ST to AB. L2 is
transferred from F(4-7) to E(12-15). Both
actions are performed in parallel. As the
high-order multiplier bytes are gated from S
to PAA and the right-4 shift is initiated, the
L2 count is transferred from F(4-7), via ,the
serial adder, to S(28-31). After the right-4
shift has been performed through the parallel
adder, the L2 count is gated from S to PAA
and the zero count in E(12-15) is gated to PAB.
The net result (original L2 count) is gated
from PAL to E(12-15).

4. Sign Handling

STAT G is set if STAT A has not been set
during preceding sequence. This step is
taken to indicate a zero multiplier condition
which requires special action.

5. Basic Multiply Add or Subtract Sequence

11/65

To perform a branch on the value of the multi­
plicand digit, the digit must be in SAL(4-7).
This requirement is dictated by the W=(1-15)
micro-order which samples SAL(4-7). For
this reason, the contents of F are cross-gated
through the serial adder and placed back in F.
SAL(4-7) is then examined for the following
values:

a. SAL(4-7) = 0

No addition cycles are required.

b. SAL(4-7) = 1 through 4

The multiplier in AB is added to the PP
in ST the number of times specified by the
digit value.

2065 FEMI

c. SAL(4-7) = 5 through 9

The multiplier in AB is subtracted from PP
in ST the number of times specified by the
10's complement of the digit value (10 minus
the digit value) . STAT H is set to supply a
hot carry for the subtract sequence. STA T
D is set to add a 1 to the next digit of the
multiplicand (equivalent to adding the
multiplicand 10 times).

d. SAL(4-7) = invalid digit

The definition of an invalid digit is depend­
ent on whether the digit to be processed is
the first digit of the multiplicand; i. e., the
digit immediately follOWing the sign. If it
is the first digit, then any value in the range
of 10 through 15 is considered invalid and
sets the interrupt trigger. After the first
digit has been processed, a value of 10 is
permissible in SAL(4-7), prOVided that it
was formed by an original value of 9 to
which a 1 has been added because STAT D
was set. Under these conditions, the valu~
of 10 does not set the interrupt trigger, no
addition cycles are required, and a carry
is propagated to the next digit by setting
STAT D.

The multiplier to PP addition or subtraction
is done one byte at a time in the serial
adder, with the AB byte gated true +6 if
adding and complement if subtracting. ABC
and STC are both initially set to the L2
value and decremented by 1 each time a
byte is processed. When the ABC count is
stepped to 000, F(4-7) is examined to
determine whether further additions or
subtractions are necessary. If so, STC
and ABC are again set to the L2 value,
F(4-7) is incremented if subtracting or
decremented if adding, and the multiplier
is again added to or subtracted from the
PP. The micro-order which steps the
digit in F(4-7) is executed after the digit
has been examined to determine whether
further add or subtract cycles are required.
For this reason, when a branch on F(4-7)
is being made, a value of 1 when adding or
of 9 when subtracting indicates that the
multiplicand digit is completely processed.
The low-order digit of the PP in ST is the
product digit developed.

3-149

6. Product Byte Store - PP Right-4 Shift to
Drop Digit - Multiplicand Request

These three functions are accomplished in
parallel fashion as illustrated in Figure 6055D,
FEDM. After initiating the store operation,
control is transferred to the shift-right-4
sequence. When the ST contents have been
temporarily transferred, the store operation
is resumed; the product byte is cross-gated,
transferred to ST, and stored in main storage
per D address. Thereafter, the micropro­
gram requests the next multiplicand byte from
main storage and simultaneoulsy completes
the right-4 shift.

As illustrated in Figure 3-14, the PP is
shifted right-4 via the parallel adder. This
shifting is done in several steps with the
LSWR being used as temporary storage for
the operand. Upon completion of the right-4
shift, B(64-67) is normally inserted as the
high-order S digit. B(64-67) was previously
set to 0 if the value in F(4-7) was less than 5,
or to 9 if F(4-7) was 5 or greater, for then
the PP was in 10's complement form. An ex­
ception is made when STAT G is set, indicat­
ing an all-zero multiplier. In this case,
B(64-67) is not inserted in the high-order PP
since it should always be zero.

7. Complete Multiplicand Byte Fetch

If there are more multiplicand digits to be
processed (L1 l L2), the contents of Tare
temporarily transferred to the LSWR and
either the left or the right half of the operand
is gated from the SDBO to T. The next byte
of the multiplicand is then selected per STC
and transferred to F. (Note that if the left half
word has been gated to T, the high-order STC
bit is forced to 1, since, otherwise, STC would
select a byte from S.)

8. Basic Multiply Add or Subtract Sequence for
Right Digit, and Shift Right-4 Sequence.

3-150

The next digit of the multiplicand in F(4-7) is
examined, STAT's D and H are set or reset as
required, a 0 or 9 is placed in B(64-67), and
the appropriate add or subtract loop is entered.
After exit from the add or subtract loop, the
low-order digit of the resulting PP is saved in
F(4-7). A right-4 shift is then performed on
the PP in ST so that the low-order digit is
dropped. At the completion of the right-4
shift, the left-digit sequence is resumed. As

explained previously, the contents of Fare
cross-gated and the next digit of the multipli­
cand is sampled from SAL(4-7).

9. Multiplicand Zero Test and Partial Product
Store

An entry to this routine is made from the
left-digit. sequence. By operand definition,
the remaining high-order multiplicand bytes
should all be zeros. The PP in ST is the
actual high-order product and must be stored
in the high-order portion of the initial multi­
plicand field. However, if STAT D is set at
this time, the multiplier must be added to the
PP once more. After this has been done, the
contents of ST are transferred to AB and the
high-order multiplicand bytes are fetched to
ST (per D address). STC is set per D(21-23)
to designate the first high-order multiplicand
byte to be tested for zero; ABC is set per L2
count to designate the first high-order PP
byte in AB.

The selected multiplicand byte in ST is tested
for zero, then the selected PP byte in AB is
transferred via the serial adder to ST, and
the corresponding mark trigger is set. ABC,
STC, and L1 are decremented once for each
byte transferred. If a nonzero byte is de­
tected in the high-order field of the multipli­
cand, the interrupt trigger is set and the
instruction is ended.

The AB-to-ST byte transfer is continued until
L1 or STC is stepped to zero, at which time
the ST contents are stored in main storage.
If STC has been stepped to zero (L1 1= 1111),
the next high-order bytes of the multiplicand
are fetched to ST and the sequence is re­
sumed. If L1 has been stepped to zero
(L1 = 1111), the instruction is ended.

3.8.4 DIVIDE, DP (FD)

• Dividend (1st operand) is divided by
divisor (2nd operand), and quotient
and remainder replace dividend.

• SSformat(see format on page 3-152).

3 . 8 .4. 1 Introduction

• Maximum dividend field is 16 bytes.

• Maximum divisor field is 8 bytes.

11/65

o

11/65

32

PAA

4

-S RS
31

32

32

4

32

63

... 3;,;;2 ___,.. ____ 6_3' 64 67

A. Step 1

63

63

'------ 63

PAL

32

B. Step 2

28 31

I
Shift right-4
to PAL(32-35)

63

-B RB
63

Low-order "S" digit

64 67

PAB

FIGURE 3-14. DATA FLOW FOR RIGHT-4 SHIFT OF ST TO AB, MULTIPLY INSTRUCTION

2065 FEMI 3-151

r I.. , , JI.. •
• L2 specifies byte length for divisor

and remainder.

Length Length lst operand 2nd operand
• L2 > 8 or L2 ~ Ll will cause specifi­

cation interruption.
code of lst code of 2nd address address
operand operand (dividend) (divisor)

t I
"
,

Subtract full divisor from
correct number of dividend
digits until overdraw occurs ,

Record number of
subtractions (less 1)
as quotient digit ,

Restore partial remainder
and shift one digit
posi tion to 'I eft

+
Subtract full divisor from
partial remainder until
overdraw occurs ,

Record number of
subtractions (less 1)
as quotient digit

t
t t

I ' Store quotient byte at I I Develop next
lst operand address

J

Initial cantents
of lst operand

Dividend

Maximum dividend size
is limited to 16 bytes

quotient byte

...!... •

I

Contents of
2nd operand

• Division accomplished by over-and­
over subtraction.

• Dividend field must initially contain
sufficient number of high-order zeros
to make possible storing of quotient
and remainder.

The DP instruction replaces the dividend (1st
operand) with the quotient and the remainder. To
be able to store the quotient and the remainder in
the dividend field at all times, several restrictions
are imposed on the initial size of the dividend and
the divisor (Figure 3-15).

The maximum dividend field is 16 bytes long.
It is eventually replaced by the quotient, which is
stored leftmost in the field, and by the remainder,
which is stored rightmost. The size of the remain­
der is equal to the initial divisor size and is there­
fore predefined by length code L2. Since the
minimum remainder size is 1 byte (L2 = 0), the
maximum quotient size is limited to 15 bytes. By
definition, the size of the divisor (and remainder)
cannot exceed 8 bytes. A divisor greater than 8
bytes, or in excess of the dividend, is recognized
as a specification error; the instruction is sup­
pressed and a program interruption occurs.

Final contents
of lst operand

B Quotient Remainder

Maximum divisor
size is I imited to
8 bytes and must
be less than the
dividend

Maximum quotient and
remainder size is
lim ited to 16 bytes:

Maximum
quotient = 15 bytes

(Minimum remainder
is 1 byte)

Maximum
remainder = 8 bytes

(Remainder is always
equal in size to the
divisor)

FIGURE 3-15. OPERAND SPECIFICATIONS FOR DP INSTRUCTION

3-152 11/65

To make sure that the quotient and remainder
will fit in the destination field, the magnitudes of
the dividend and the divisor are compared prior to
entering the divide sequence. This comparison,
called "divide check" or "trial subtraction," yields
the number of quotient digits that will result if divi­
sion is carried out. If the predicted quotient is
larger than that allowed, the instruction is sup­
pressed and a program interruption occurs. For
this reason, and overflow condition cannot exist
upon execution of a Divide instruction.

The dividend, divisor, quotient, and remainder
are all signed integers, right-aligned in their fields.
The sign of the quotient is determined algebraically
from the dividend and divisor signs. The sign of
the remainder is the same as that of the dividend.
These rules hold true even when the quotient or the
remainder is zero.

The divide operation is executed in much the
same manner as in manual arithmetic. First, the
divisor is properly aligned with the high-order
dividend; then, by repeatedly subtracting the divisor
from the dividend and counting the number of suc­
cessful subtractions, the high-order quotient digit
is determined. The partial remainder resulting
from the last successful subtraction is shifted one
digit position to the left, and the next lower-order
dividend digit is inserted at the low-order end of
the partial remainder. To obtain the next quotient
digit, the divisor is again subtracted from the par­
tial remainder. This sequence is repeated until all
dividend digits have been processed. The remain­
der resulting from the final successful subtraction
is given the sign of the dividend and stored in the
low-order end of the dividend field.

Figure 3-16 illustrates a typical over-and-over
subtract sequence used to accomplish division.
Initially. a sufficient number of high-order dividend
digits must be selected to perform the first suc­
cessful subtraction. Successful subtractions of the
divisor from the dividend occur until the partial re­
mainder is overdrawn. The divisor is then added
back once to restore the correct partial remainder.
At the same time, the quotient digit is decremented
once to compensate for the overdraw. As each
dividend byte is processed, the length code of the
dividend (L1) is reduced by 1 and compared with
the length code of the divisor (L2). Since the size
of the remainder is also defined by length code L2,
the condition of L1 equal to L2 indicates that all
the effective bytes of the dividend have been proc­
essed, and the remainder is to be stored in the
rest of the destination field. Note that, to be able

to fit the quotient and the remainder in the destina­
tion field, this field must initially contain high­
order zeros. A program interruption will occur if
the dividend does not have at least one leading zero.

Following are general and detailed descriptions
of the divide microprogram. The general descrip­
tion (paragraph 3.8.4.2) outlines the overall struc­
ture of the microprogram, enumerates its major
functional steps and subroutines, and explains their
relationship to the overall operation. The detailed
description (paragraph 3.8.4.3) analyzes each se­
quence individually, making specific references to
the register-to-register data transfer in the
machine.

3.8.4.2 General Description

• Initial conditions:
1. High-order dividend bytes in ST.
2. Low-order divisor bytes requested

from main storage.

• CC remains unchanged.

• Interruptions:
Protection.
Addressing.
Specification.
Divide check.
Invalid data.

Upon entering the divide microprogram, the
following actions have been performed by SS 1-Fetch:

1. The instruction address has been transferred
to LSWR, and the IC contains the address of
the divisor (second operand).

2. A request from D has been issued for the
dividend (first operand). This operand has
been accessed (starting at the high-order
address) and placed in ST. STC is set at the
lowest-order dividend byte in ST.

3. A request from the IC has been issued for the
divisor (second operand), starting at the low­
order address. This operand arrives at the
SDBO during GIS.

An overall flow chart of the divide microprogram
and the general data path used for its execution are
shown in Figure 6056, FEDM. The major sub­
routines and functional steps, shown in the figure,
are explained briefly below. Additional simplified
diagrams are provided as an aid in visualizing the

11/65 2065 FEMI 3-153

Objectives:

Divide (+13IS) by (-S7) to obtoin a quotlent of (-23)
and a remainder of (-+4)

Execution:

(LI = 3)

Dividend

Byte 1 Byte Byte 1 Byte
o I 2 3

010101l3111 S I+

T
Select correct number
of high-order dividend
digits to perform suc­
cessful subtraction.

~
I 3 I

o 5 7

o 7 4

o S 7

o I 7

o S 7

(L2 = I)
Divisor

Byte I Byte
o I

o Is 171 -

--
'--~ ,--I ____ ----, ,

Save sign

1 Develop 1st I
quotient digit I

Record 1st
Subtract Subtraction ~

.. ------------~~~~~~~~~ I

Remainder +

, Subtrpct ~
Record 2nd
Subtraction

Remainder +

~
Record 3rd
Subtraction Subtract

Quotient

Byte I Byte
o I

~::;:;,{: :::

'//!
9

Overdraw
Deduct I Add (

Restore
remainder

o r'-"":"',-
I 7 S ..

o S 7

I I B

o 5 7

o 6 I

o 5 7

004

o S 7

{
H OS3

(+) 0 5 7

'/;
O~

\.

Shift left
\ 1 digit position

t
~ ________ { (Insert next

\. digH
Subtract

Remainder +

Subtract ~
+

Remainder +

Subtract A
+

Remainder +

Subtract A
+

Remainder -

J

1 Develop 2nd ,1
quotient digit

Record 1st ~ Subtraction
I

Record 2nd
Subtraction

2

Record 3rd
Subtraction

3

Record 4th
Subtraction

4

Add '\ Deduct I
.... ----'-=----I\. Overdraw JI--==~-+l

I Shift left
.... -----1, 1 digit position

Insert next
\. digit

At this time, l1 = l2,indicating that
all dividend bytes have been processed.
Rest of ~estination field is reserved
for remainder.

1 Store

Compare signs = not alike-

~--~+

o 4 +

Store remainder

FIGURE 3-16. EXAMPLE OF A TYPICAL DIVIDE SEQUENCE

(L1 : 3)

Remainder

Byte I Byte
2 I 3

3-154 11/65

data handling performed. For the most part, these
diagrams do not show the gates and data paths used
in the machine, but are intended solely to convey
how the divide algorithm is implemented. For pur­
poses of illustration, a 9-byte dividend and a 3-byte
divisor are assumed in these diagrams.

1. General Initialization Sequence (GIS)

This sequence gates the divisor from SDBO
to AB and sets ABC at the lowest-order divi­
sor byte in AB (Figure 3-17). Two additional
functions are performed to facilitate subse­
quent data handling: (a) STC is set per L2,
and (b) length codes L1 and L2 are transferred
to F.

2. Specification Test

This test verifies that the length codes for
both operands in the instruction are correctly
specified; i.e., i.2 specifies less than 8 bytes
and is smaller than L1.

3. Incorrect Specification

Detection of an invalid specification forces an
interruption. The instruction address is

Double-word
boundaries
in main

Address of
h igh-order byte
(81 +DI)

Dividend
(9 bytes)

Address 01
low-order byte
(81+DI+L1)

restored to the LSWR, and the instruction is
ended.

4. Divisor Left-Adjust Sequence

The divisor bytes are transferred from AB to
ST in such a manner that the highest-order
divisor byte occupies the leftmost byte in ST.
STAT C is set if the divisor sign is negative.

The left-adjust transfer is initiated by setting
STC per L2 (a function performed during the
GIS) . Since the maximum divisor length is
limited to 8 bytes, only 3 of the 4 bit positions
in L2 are needed to effectively specify the
length code; i. e, the count in L2 may range
from a minimum of 0000 (for 1 byte) to a
maximum of 0111 (for 8 bytes). Setting STC
per L2 automatically selects, according to
the divisor size, the correct ST position for
the low-order byte of the divisor; the number
of bytes to the left of the selected ST position
corresponds to the length field of the full
divisor (Figure 3-18). The actual transfer

Address of
high-order byte
(82 + D2)

Address of
low-order byte
(B2 + D2 + L2)

storage _I
--~----------~~-----8bytes----~~----- ----"II--.'n~-"I-- 8 bytes----i.l---- 8 bytes --I

11/65

Double word containing
6 dividend bytes
accessed during I-Fetch
and placed in ST

3 dividend bytes
remain in main
storage

STC set to where
the lowest-order
divisor byte will
be placed

Double word containing
2 divisor byte. requested
at I-Fetch and placed in
A8 during GIS

I

I
I
I

Set ABC
at lowest-order
divisor byte

FIGURE 3-17. DA TA HANDLING DURlNG GIS OF DIVIDE INSTRUCTION

2065 FEMI 3-155

3-156

Divisor
(3 bytes)

I .4_----- 8 bytes -------'.~ .. ------- 8 bytes ------·~I

I
I
I
I
I
I
I
+

I
Double word containing the high-order byte I
is fetched by the left-adjust sequence after I
the initial AS contents have been transferred
to ST

: I
: I

ABC

001

Double word containing
2 di visor bytes was
ploced in AB during GIS

Se lects lowest-order
divisor byte

i ! ~ ,. .. ~ .. ~ ~
IA I B I A B

L _______ 1 _____ JE.I~ .£ E.~"""T'----..l.---------I
Set if minus I ~---~~~~---~~STAT

/1 C

I I I
DDIDD D?I

T

/"
/"

/"
/"

Divisor sign

F
Ll I L2

011 d 0010

FIGURE 3-18. DATA HANDLING DURING DIVISOR LEFT-ADJUST SEQUENCE

is performed one byte at a time, through the
serial adder, starting with the low-order di­
visor byte. ABC, STC, and L2 are decre­
mented once for each byte transferred. The
divisor is completely transferred when the
L2 count is decremented to zero. Since the
first IG request (during I-Fetch) does not
necessarily access the full divisor to AB, it
may be necessary to fetch the balance of the
divisor from main storage. (This fetch oc-

. curs if ABC steps to zero before L2 steps to
zero.)

After exit from the Divisor Left-Adjust se­
quence, the full divisor has been fetched and
left-adjusted to ST. Note that the original ST
contents (the dividend) have been destroyed.
For this reason the dividend must be refetched
from main storage.

5. Dividend Fetch and Left-Adjust Sequence

This sequence fetches a sufficient number of
high-order dividend bytes to perform a trial
subtraction of the divisor from the dividend.
The full divisor is subtracted once from the
high-order dividend. Since the maximum
divisor size is 8 bytes, 8 high-order dividend
bytes are required for trial subtraction. If
the dividend is 8 bytes or less, it will be com­
pletely fetched during this sequence; if greater
than 8 bytes, only the first 8 high-order bytes
will be fetched. The dividend is fetched to AB
and then transferred to ST in such a manner
that the highest-order byte occupies the left­
most byte in ST.

Upon entry into this .sequence, ST is assumed
to be completely occupied by the divisor. (If

11/65

Dividend (9 bytes)

1 ---...,--- 8 bytes -----+1------ 8 bytes ----...... 1

Double word containing
6 dividend bytes

Double word containing low-order dividendi
bytes is fetched by left-adjust sequence

is accessed and
placed in AS

I Set at highest-order
I dividend byte
I

after initial AB contents have been I
transferred to ST

.. A!"""'"--;. -~"'!'B-,.....,.-,.. :-r- -opoa j B--~
I I I j

'--___ I....;;D,...;;...:....::..r-=D:..=DTD:..J..:D=-r=D'"""'-D.,..::-=-,..::...I g,QIQ.Il?I..Q j __ 1 ______ J

I I

))
I I

/ I
I I

I I
I I

I I
I I

((
I I

I I I I I I
D DID DID DID D D DID DI D DID D

Local
Storage

LSWR

At the start of left-adjust
sequence,divisor is transferred
to PAL and LSWR

Parallel
Adder

PAL

FIGURE 3-19. DATA HANDLING DURING DIVIDEND FETCH AND LEFT-ADJUST SEQUENCE

the divisor is 4 bytes or less, it is confined
solely to Sj if greater than 4 bytes, the divi­
sor extends into T.) Since left-adjustment of
the dividend requires the use of ST, the divi­
sor must be transferred from ST: S is gated
to the parallel adder and held in ,PAL, and T
is stored in the LSWR (Figure 3-19). *

A request per the high-order dividend address
is issued from D. Upon arrival of the dividend
from main storage, the SDBO is gated to AB.
ABC is. set per D(21-23) to point at the highest­
order dividend byte. The left-adjust transfer
is initiated by setting STC to 000, thus select­
ing the leftmost byte in ST. The dividend bytes

* The - HOLD micro-order :is issued on each cycle of the left-adjust sequence to hold the S conteIIts in PAL.

11/65 2065 FEMI 3-157

are then transferred to ST, starting with the
high-order byte. (The actual transfer is per­
formed one byte at a time through the serial
adder.) ABC and STC are incremented, and L1
is decremented once for each byte transferred.
If L1 steps to zero before ABC or STC steps
to 7, the full dividend has been fetched and
left-adjusted to ST. Since the first request
does not necessarily access 8 bytes of dividend
to AB, it may be necessary to fetch additional
dividend bytes from main storage. This fetch
occurs if ABC steps to 7 before STC steps to
7 or L1 steps to zero.

6. Restore L1 and L2 to E

Left-adjustment of the divisor and dividend
has decremented L2 and L1 to zero. The
initial L2 and L1 counts, saved in F during
GIS, are now restored to E(8-15). These
counts will be required by the subsequent
divide sequence.

7. Assemble Divisor in AB and Dividend in ST

The divisor in PAL and LSWR is restored to
AB. Upon completion of this function, both
operands are left-aligned: the dividend is in
ST, and the divisor is in AB.

lAD : :
. D: D DID

8. Trial Subtraction

3-158

The divisor bytes in AB are subtracted from
an equivalent number of high-order dividend
bytes in ST. The remainder is then examined
to establish whether the divide operation to
follow till generate a result (quotient plus
remainder) that will fit in the destination field.
A negative remainder indicates that the desti­
nation field specified in the instruction is
sufficiently large to accommodate the result.
A positive remainder, however, indicates
that the result cannot fit in the destination
field, and an interruption occurs.

How prediction by trial subtraction is pos­
sible may be understood from the following
considerations :

a. By definition, the dividend is at least one
order higher than the divisor. The highest­
order digit position in the dividend is al­
ways zero.

b. The length code of the divisor (L2) is also
the length code for the remainder. Conse­
quently, the maximum number of quotient
bytes that will fit in the destination field is
equal to L1 - L2. By operand definition, the
difference L1 - L2 may range from a mini­
mum of 1 byte to a maximum of 8 bytes.

L Dividend I..!.. §DiVisor -
14r--- L 1 ----.j... ·L2 -

~------~----~

Step 1

Step 2

c. To perform tri;ll subtraction, the high­
order divisor digit is aligned with the
high-order digit of the dividend. This is
performed in two steps: (1) the high-order
divisor byte is aligned with the high-order
byte of the dividend, and (2) since by def­
inition the highest-order digit position in
the dividend is always zero, the divisor
is shifted right one digit position to align
the significant digits in both operands.

Dividend
in ST

S TC (set at high-order dividend byte)

ABC (set at high-order divisor byte)

t

ABC

~ High-order dividend
bytes in ST

Shi~t.divisor.l digit I * I I I
POSI tlon to rrght

-.. DDDDDD
Divisor in AB

d. Because the dividend is at least one order
higher than the divisor, alignment of the
high-order divisor digit with that of the
dividend is equivalent to multiplying the
divisor at least 10 times; if the dividend
is one order higher, the divisor is multi­
plied 10 times; if two orders higher, 100
times; if three orders higher, 1000 times;
and so on. Thus, during trial subtraction,
a quantity at least 10 times that of the
divisor is subtracted from the dividend.

11/65

e. Since the maximum number of quotient
digits allowed (L1 - L2) corresponds to the
difference between the orders of magnitude
in the two operands, the result of the trial
subtraction must always yield a negative
remainder; otherwise, the number of quo­
tient digits that would be generated would
not fit in the destination field.

9. Shift Dividend One Digit to the Left

The dividend is shifted one digit to the left to
allow successful subtraction of the divisor
from the dividend. (To develop the quotient
digit, the divisor must be repeatedly sub­
tracted from the dividend until a negative re­
mainder occurs.) Upon initiating the left-4
shift, a test is made to establish whether an
additional low-order dividend digit is re­
quired for generation of the first quotient
digit. If required, the next low-order divi­
dend byte is fetched from main storage and
placed in F. The digit is selected from
F(0-3) and inserted at the low-order end of
the dividend in ST.

If necessary, fetch next
low-Qrder dividend byte
from main storage

Insert digit at low­
order dividend
end in ST

10. Generate Quotient and Left-Digit Sequence

The divisor is repeatedly subtracted from the
dividend until an overdraw occurs; i.e., a
negative remainder is obtained. The number
of successful subtractions is recorded and,
after the last successful subtraction, becomes
the high-order quotient digit. This digit is
checked for validity and then inserted in F(0-3)
by the left-digit sequence. This sequence
also shifts the partial remainder (in ST) one
digit to the left and inserts the next low-order
dividend digit in the low-order end of ST.

Remainder
will contain
at least one
high-order
zero

11. Correct Low-Order Remainder Byte

In certain cases, the low-order remainder
byte in ST must be corrected. The need for
correction will become apparent when de­
tailed analysis of the Divide instruction is
undertaken (paragraph 3.8.4.3).

12. Generate Next Quotient Digit and Right Digit
Sequence

After exit from the left digit sequence, the
operand length codes (L1 and L2) are com­
pared to establish whether the last byte of
quotient is being processed. If L1 is equal to
L2, the correct quotient sign is inserted in
F(4-7). The last quotient byte (in F) is stored;
then, the partial remainder (in ST) is stored
in the low-order destination field as the final
remainder.

If L1 is not equal to L2, the next quotient digit
is generated and placed in F(4-7) by the right
digit sequence. At the completion of this se­
quence, one complete byte of quotient is con­
tained in F. This byte is stored in main
storage, and the sequence for the left digit
of the next quotient byte is started.

3.8.4.3 Detailed Description

• STAT A set to indicate nonzero
divisor.

• STAT C set if divisor is negative.

• STAT D set if dividend less than 8
bytes.

• STATE set if digit or sign invalid.

• STAT F set if dividend negative.

11/65 2065 FEMI 3-1.59

• STAT G is first set if divisor is 5 bytes
or greater. STAT G is then set again
to enter left-digit sequence.

• STAT H is set to generate hot carry
for subtract sequence.

A detailed flow chart of the divide microprogram
is shown in Figure 6057, FEDM. This figure is an
expanded version of the overall flow chart (Figure
6056, FEDM), showing the data handling used in the
various subroutines of the Divide instruction. The
major subroutines are listed below, and those areas
in need of clarification are explained:

1. General Initialization Sequence

This sequence shares a common micropro­
gram with the Multiply instruction. An
appropriate branch is taken to enter either
the divide or the multiply sequence.

A test of L2 (contained in STC) is performed
to establish the byte size of the divisor.
STAT G is set if divisor is equal to or great­
er than 5 bytes. This function increases the
execution speed when assembling the divisor
in AB (see step 4); i. e., if the divisor is 4
bytes or smaller, the LSWR need not be re­
stored to B.

2. Divisor Left Adjust Sequence

3-160

a. The initial STC setting selects the right­
most ST byte that will contain the lowest­
order divisor byte.

b. STAT C is set if divisor sign is negative.
Since the dividend is accessed starting
with the high-order byte, the dividend sign
is not available at this time.

c. If ABC steps to zero before L2 steps to
zero, the remaining low-order divisor
bytes are fetched from main storage.

d. The divisor digits are checked for validity,
and STAT E is set if an invalid digit is
detected. STAT A is set to indicate a
nonzero divisor. Division by zero will
result in a divide check interruption during
trial subtraction.

e. Upon fetching the full divisor, the divisor
address is no longer needed, and the in­
struction address is restored to the IC.

3. Dividend Fetch and Left Adjust Sequence

a. The divisor is shifted one digit position to
the right so that its high-order digit will be
aligned with that of the dividend. (The
dividend is not yet available at this time.)

b. The low-order divisor word is transferred
from T to the LSWR. The high-order
divisor word is gated to the parallel adder
and held in PAL by the - - HOLD micro­
order.

c. S TC is set to zero to select the high -order
ST byte (where the highest-order dividend
byte will be placed).

d. A test of the high-order L1 bit is performed
to establish the byte size of the dividend.
STAT D is set if the dividend is less than
8 bytes. This function increased the exe­
cution speed upon exit from the trial sub­
traction. As shown in Figure 6057F,
FEDM, a branch per STAT D is made to
determine whether the complete dividend
has been fetched. (If STAT D is set, the
full dividend has been fetched, since at
least 8 dividend bytes are fetched to per­
form trial subtraction.)

e. If ABC steps to zero before L1 or STC
steps to zero, the D address is incre­
mented by 8 and a fetch of the next double
word of the dividend is made. The destina­
tion address for the subsequent quotient
bytes is then restored by subtracting 8
from D.

4. Assemble Divisor in AB and Dividend in ST

This function is performed in parallel with the
L1 and L2 restoration sequence. The high­
order divisor word is transferred from PAL
to A, after which restoration of the L1 and L2
counts is started. During the restoration se­
quence, STAT G is tested to establish whether
the full divisor has been assembled in AB. If
STAT G is not set, the divisor is 4 bytes or
less. Therefore, the full divisor was con­
tained in PAL and has been placed in AB. In
this case, the restoration sequence is com­
pleted and an exit is made to the trial sub­
traction routine.

If STAT G is set, the low-order portion of the
divisor is contained in the LSWR and must be
transferred to B prior to entering trial sub­
traction. Transfer to the LSWR contents to

11/65

B must be performed via ST, which contains
the left-aligned dividend. Several execution
cycles are used to transfer the LSWR contents
to B without destroying the ST contents.

5. Trial Subtraction

The divisor is subtracted from the dividend
one byte at a time. After the last subtract
cycle, a branch is made on a carry condition
from SAL(O). Presence of a carry indicates
that the remainder is positive, and the in­
struction is ended. Absence of a carry indi­
cates a negative remainder, and that the
results of the divide operation will fit in the
destination field.

6. Dividend (or Partial Remainder) Left-4 Shift

11/65

The dividend is shifted left one digit position
to perform the first successful subtraction of
the divisor from the dividend. Upon initiating
the left-4 shift, a test (per STAT D) is made
to establish whether an additional dividend
digit must be inserted in the low-order end
of ST. If STAT D is set (see step 3, d), all
dividend bytes have been fetched from main
storage and the left-4 shift is completed. If
STAT D is not set, the following actions take
place:

a. The D address is incremented by 8, and
the next double word of the dividend is re­
quested from main storage.

b. The T contents are temporarily trans­
ferred to the LSWR. (Upon arrival of the
dividend double word from main storage,
T is loaded with the dividend word contain­
ing the next digit to be inserted.)

c. STC is set per D(21-23) to select the cor­
rect dividend byte in the requested double
word.

d. The left-4 shift of the dividend is com­
pleted. The high-order dividend word is
in S, and the low-order word is in the
LSWR.

e. A branch per D(21) is made to establish
which word in the SDBO contains the next
dividend byte. The correct word is then
gated from SDBO to T. [Note that, if the
left SDBO word is gated to T, STC(O) is
forced to 1 to select the correct byte in T.J

2065 FEMI

f. The selected dividend byte is transferred
from T to F. The shifted low-order divi­
dend word is then restored from the LSWR
to T.

g. The destination address is restored by sub­
tracting 8 from D.

h. The high-order Ll bit is tested to establish
the byte size of the dividend, and STAT D
is set if the dividend is less than 8 bytes.
This function increases the execution speed
upon exit from the right-digit sequence
(Figure 6057H, FEDM).

7. Generate Quotient Sequence

a. ABC and STC are set per L2 to select the
low-order operand bytes. STAT H is set
to provide a hot carry to the serial adder.

b. The selected AB byte is subtracted from the
selected ST byte via the serial adder. The
result is gated back to the selected ST byte,
with the carry being saved in STAT H. Any
invalid digit detected in the serial adder
will set STAT E.

c. ABC and STC are decremented as each byte
is processed. When ABC is stepped to zero,
a 1 is added to F(4-7) and ABC and STC are
again set per L2.

d. If a serial carry results upon processing
the high-order byte, the partial remainder
in ST is positive and the divisor is again
subtracted from the dividend. F(4-7) is
incremented once each time a complete
subtraction is made.

e. If there is no carry upon processing the
high-order byte, an exit is made to the ap­
propriate left- or right-digit sequence ,as
determined per STAT G.

f. Note that, before starting each subtract
sequence, the partial remainder resulting
from the previous subtraction is saved in
the LSWR and PAL. This saving is done
because, upon exit on a no-carry condition,
an overdraw has occurred and the remain­
der in ST cannot be used for computation
of the next quotient digit. Instead, the
partial remainder resulting from the last
successful subtraction is used for subse­
quent computation.

3-161

8. Left-Digit Sequence

a. The quotient digit in F(4-7) is the left digit
of a quotient byte. This digit is reduced
one count, to compensate for the overdraw.
and then cross-gated via the serial adder
to F(0-3).

b. The partial remainder resulting from the
last successful subtraction and saved in
the LSWR and PAL is shifted one digit to
the left and restored to ST. The next low­
order dividend digit, in B(64-67), is in­
serted in the low-order end of ST.

c. A test on STC equal to or greater than 4 is
made to establish whether the low-order
byte of the partial remainder in the LSWR
has been overdrawn. In the generate quo­
tient sequence (Figure 6057F, FEDM), the
contents of T are stored in the LSWR at the
same time that the first subtract cycle is
performed. Thus, if the partial rl?mainder
extends into T (which occurs if STC is 4 or
greater), the low-order divisor byte is
subtracted from the low-order partial re­
mainder byte once to often. In such cases,
the low-order byte of the partial remainder
is corrected by adding it to the low-order
divisor byte. After performing the cor­
rection, the left-digit sequence is re­
entered.

d. If L1 is equal to L2, the quotient sign byte
is processed. Otherwise, the quotient
digit generation routine is resumed to
develop the next digit.

9. Correct Low-Order Remainder Byte

3-162

This routine is entered from the left- or
right-digit sequence if the low-order divisor
byte has been subtracted once too often from
the low-order byte of the partial remainder.
Correction is performed as follows:

a. STAT H is reset to initiate a true add
cycle.

b. The low-order partial remainder word is
placed in T. STC is set per L2 to select
the low-order byte in T.

c. The low-order divisor byte (per ABC) is
added once to the low-order partial re­
mainder byte (per STC), and the result is
gated to T per STC.

d. The left- or right-digit sequence is re­
entered, as applicable.

10. Right-Digit Sequence

This sequence is entered when two quotient
digits have been generated and placed in F.
The following actions are performed:

a. STC is set per D(21-23), and F is trans­
ferred to the selected ST byte. The cor­
responding mark trigger is set per STC.

b. A storage request is issued to store the
quotient byte per D address.

c. A left-4 shift of the partial remainder (in
PAL and LSWR) is initiated.

d. If STAT D is set, indicating that dividend
byte fetch is not required, the left-4 shift
is completed and the partial remainder is
restored to ST.

e. If STAT D is not set, the dividend byte
fetch sequence is entered as shown in
Figure 6057F, FEDM.

f. D is decremented by 1 to obtain the des­
tination address for the next quotient byte.

g. F is cleared and STAT G is set to enter
the left-digit sequence, after the first
quotient digit is generated.

h. If STA T E is set, the invalid-data-inter­
rupt trigger is set and the instruction is
ended.

i. If STAT E is not set, the generate-quo­
tient sequence is entered.

11. Process Quotient Sign Byte

This routine is entered from the left-digit
sequence when L1 equals L2. At this time,
all dividend digits have been processed: the
low-order quotient digit is in F(0-3), the byte
selected by STC is the dividend sign byte, and
the remaining high-order contents of ST are
the final remainder. The following actions
take place:

a. STC and ABC are set per the L2 count.
STA T F is set if bits 4-7 of the selected
ST byte indicate a negative sign. STATE
is set if the sign is invalid.

11/65

b. The correct negative or positive sign is
put in F(4-7) as determined by a compari­
son of STAT's C and F.

c. The ST contents are transferred via the
parallel adder to AB.

d. STC is set per D(21-23), and F is gated to
the selected ST byte. The corresponding
mark trigger is set, and the selected ST
byte is stored in main storage.

12. Store Remainder Routine

a. The byte selected by ABC, which is the
low-order remainder byte, is saved in F.
If necessary, the remainder sign is cor­
rected in the serial adder prior to gating
to F.

b. The remainder is transferred from AB to
ST one byte at a time. As each byte is
transferred, the corresponding mark trig­
ger is set, ABC and STC are incremented
by 1, and L2 is decremented by 1.

c. When STC steps to 7, ST is stored per D
address. D is then incremented by 8, and
byte transfer is resumed.

d. When L2 steps to 0, STC is decremented
by 1, and the remainder sign byte is gated
from F to ST. The contents of ST are then
stored in the low-order destination field,
and the instruction is ended.

e. If STAT E is set, an exit is made to the
interrupt microprogram.

3.8.5 PACK, PACK (F2)

• Format of 2nd operand is changed
from zoned to packed, and result is
stored at 1st operand address.

• Separate microprogram used during
word overlap.

• Interruptions:
Protection.
Addressing.

• SS format:

Length
code of
destination

Length 1 st
code of 2nd operand
operand address

Unpacked

~
cf8

Packed

Yes

Unpacked

2nd

Process
next
byte

The Pack instruction assumes source data in the
unpacked format. The low-order source byte con­
sists of a sign (bits 0-3) and a digit (bits 4-7).
These two characters are swapped as they are gated
to the low-order destination byte. All other source
bytes consist of a zone (bits 0-3) and a digit (bits
4-7) . Only the digits are gated to the destination
field, with two bytes of source being processed for
each byte of destination.

The sign and digits of the second operand are
moved unchanged to the first operand field and are
not checked for valid codes. A separate micropro­
gram is provided for byte processing when a word­
overlap condition exists as defined in paragraph
3.7.5.1. A test for word overlap is performed in
the GIS of the instruction and also each time that a
new double word of source is fetched from main
storage.

11/65 2065 FEMI 3-163

The GIS microprogram for the Pack instruction
is shown in Figure 6058, FEDM. This micropro­
gram gates the second 'operand from the SDBO to
AB and performs the word-overlap test.

The word-overlap test is performed in two steps.
First, the double-word addresses for the destina­
tion and source are compared by subtracting D from
the IC. The difference is then shifted 4 bit positions
to the right and gated to PAL, and PAL(40-64) is
sensed for an all-zero result to detect possible
word overlap. [The right-4 shift is made to avoid
comparison of byte addresses within the double
word; 1. e., the difference for the byte addresses
is shifted to PAL(65-67), which is not sensed by the
branch.J If the addresses for the double words of
source and destination are different, no word-over­
lap condition exists. Thus, if PAL(40-64) is not
zero, a branch is made to the appropriate not-word­
overlap execution sequence of the instruction.

If PAL(40-63) equals zero, indicating that the
same double-word address has been specified for
source and destination, a second test must be made
to verify whether special data handling is required.
The contents of D are again subtracted from the IC,
but this time a right-4 shift on the difference is not
performed and the byte addresses within the same
double word are compared. If PAL(30-63) equals
zero, an identical address has been specified for
both source and destination. Since this case of
word overlap does not require special data handling
(paragraph 3.7.5.1), a branch is made to the not­
word-overlap microprogram. If, however, PAL
(30-63) is not zero, the source and destination
bytes are skewed; special data handling will be re­
quired in the execution phase and, accordingly, a
branch is made to the appropriate microprogram.

3.8.5.1 Instruction Execution - Not Word Overlap

• Basic execution is as follows:
Process sign byte, and test for

exit conditions.
If no exit conditions, process right

destination digit.
Process left destination digit, and

test for exit conditions.

A detailed flow chart of execution of the Pack
instruction without word overlap is shown in Figure
6059, FEDM. The major functional steps in the
microprogram are as follows:

1. Process Sign Byte

3-164

a. The selected AB byte is gated via the
serial adder cross-gates to the selected
ST byte. The mark trigger selected by
STC is set.

b. ABC, STC, L1, and L2 are decremented
by 1.

c. An exit is made to the appropriate routine
if one or more of the counters (ABC, S TC ,
L1, L2) was equal to zero prior to being
stepped,

d. If no exit is made, the next source byte is
processed to obtain the right destination
digit.

2. Generate Right Destination Digit

a. Bits 4-7 of the selected AB byte are gated
to SAA(4-7) , No data is gated to SAA(0-3).
The serial adder output is gated from
SAL(0-7) to the selected ST byte.

b. ABC and the L2 count are decremented by
one count.

c. If L2 equals zero prior to stepping, the
remaining source bytes are extended with
high-order zeros (see step 5).

d. If. ABC equals zero prior to stepping, an
exit is made to the source fetch routine
(see step 6). STAT G is set to cause a
return to the left digit routine after source
fetch.

3. Generate Left Destination Digit

a. Bits 4-7 of the selected AB byte are gated
to SAA(0-3). Bits 4-7 of the selected ST
byte are gated to SAB(4-7). The serial
adder output is gated back to the selected
ST byte, and the mark trigger selected by
STC is set.

b, ABC, STC, L1, and L2 are decremented by
one count. If none of these counters
equalled zero prior to stepping, the right
digit for the next destination byte is gen­
erated.

4. Exit Conditions

An exit is made from the sign byte routine or
from the left digit routine when one or more

11/65

of the following conditions are detected by the
functional branch micro-order (DECIMAL):

a. L1 or STC equals zero.

b. L2 equals zero.

c. ABC equals zero.

When exit is on L1 or STC equals zero, a
second test on L1-equal-all-1's is required to
determine whether an end-op condition exists.

5. Extension of Source Bytes with High-Order
Zeros

This routine is entered when the L2 count has
stepped to zero before the L1 count has
stepped to zero.

The serial adder output (zeros) is gated to the
selected ST byte with the selected mark trig­
ger being set. L1 and STC are decremented
as each byte is processed. When Ll equals
zero, the contents of ST are stored per D ad­
dress and the common end-op routine is
started. When STC equals zero, the contents
of ST are stored, and D is decremented by 8.
STAT H is set to cause a return to this rou­
tine after storing ST.

6. Source Fetch Routine

This routine is shared with the Move with
Offset instruction. STAT D is set to cause
a return to the pack microprogram.

The second operand is requested from main
storage, and the IC is decremented by 8, A
word-overlap test is performed as explained
in the GIS. If no word-overlap condition
exists, the next double word of second operand
is gated from SDBO to AB. Processing of
the left or right destination digit is resumed
as determined by STAT G.

3.8.5.2 Instruction Execution - Word Overlap

• Basic execution is as follows:

11/65

Process sign byte. Update AB, and
test for exit conditions.

If no exit conditions, process right
destination digit.

Process left destination digit,
update AB, and test for exit
conditions.

2065 FEM!

A detailed flow chart of Pack instruction execu­
tion under word-overlap conditions is shown in
Figure 6060, FEDM. This microprogram is en­
tered when a word-overlap condition is detected in
the GIS or during source fetch. The major func­
tional steps in the microprogram are as follows:

1. Process Sign Byte

The sign byte of the second operand in AB is
processed in the same manner as in the not­
word-overlap microprogram.

2. Update AB from ST

The data in AB is updated by transferring the
contents of S to A or the contents of T to B,
depending on the STC setting. ABC, STC,
L1, and L2 counters are decremented by 1,
and the mark trigger selected by STC is set.

If any counter value equalled zero prior to
decrementing, an exit is made to the proper
store, fetch, or extend-with-zeros routine as
explained for the not-word-overlap sequence.
If no exit conditions exist, processing of the
right destination digit is started.

3. Generate Right Destination Digit

This routine is the same as in the not-word­
overlap sequence.

4. Generate Left Destination Digit

This routine is the same as in the not-word­
overlap sequence and is always followed by
the update routine.

5. Source Fetch Routine

The next double word of source is requested
from main storage, after which the IC is
decremented by 8. Upon detection of a word­
overlap condition, however, this double word
is not used, since AB must be updated from
ST. If, upon entering the source fetch rou­
tine, only the right destination digit has been
placed in the selected ST byte, this byte is
not transferred to AB. Instead, the following
action takes place:

a. The portion of ST that has been processed
(as determined by the mark triggers) is
stored in the destination field, refetched
from storage, and gated to both AB and ST.

3-165

b. If STAT G is set, indicating that only the
right digit of the selected ST byte has been
processed, the selected ST byte is trans­
ferred to F prior to ingating SDBO to ST.
After ingating SDBO to ST, F is rein­
serted in the selected ST byte, and proc­
essing of the left digit is started.

c. If STAT G is not set, indicating that a com­
plete ST byte has been processed, it is not
necessary to save the selected ST byte.
Processing of the right digit is started
immediately.

, 3.8.6 UNPACK, UNPK (F3)

• Format of 2nd operand is changed
from packed to zoned, and result
is stored at 1st operand address.

• SS format:

F3 ~ 01 I 82 IJ§
0

Length
code of operand
destination operand address

Packed

~ SID

Unpacked

Yes

Packed

3-166

3132 3536

operand
address

Process sign
byte of 2nd
operand

Process
next
byte

47

• Separate microprogram used during
word overlap.

• Word-overlap test is performed
during GIS and in destination store
and source fetch routines.

• Interruptions:
Protection.
Addressing.

The Unpack instruction assumes data in the
packed format. The low-order source byte con­
sists of a sign (bits 4-7) and a digit (bits 0-3).
These two characters are swapped as they are gated
to the low-order destination byte. All other source
bytes contain a pair of decimal digits. Each digit
is transferred to the low-order portion (bits 4-7)
of the corresponding destination byte, and a zone
character is inserted in the high-order portion byte
(bits 0-3). During this transfer, the digits are not
checked for validity .

A separate microprogram is provided for byte
processing when a word-overlap condition exists.
A test for a word-overlap condition is performed
in the GIS of the instruction and also each time that
a double word of data is fetched from or stored in
main storage.

The Unpack instruction generates two bytes of
destination for each byte of source. Therefore, the
condition when the destination bytes are processed
"ahead" of the source will always exist if the oper­
and fields overlap. When the same double-word
address is specified, special data handling is re­
quired regardless of how the operand bytes are
arranged in this double word. Special handling is
necessary each time that source data is fetched
from main storage; also, upon storing unpacked
data in the destination field, a word-overlap test
must be made to determine whether the source data
in the CPU must be updated from storage.

The GIS microprogram for the Unpack instruc­
tion is shown in Figure 6058, FEDM. When the
first overlap indication occurs, the byte addresses
are not checked. Instead, a branch is forced into
the word-overlap sequence by supplying a hot carry
to PAA(60), so that a test of PAL(30-63) will always
yield a nonzero result.

3.8.6.1 Instruction Execution - Not Word Overlap

• Basic execution is as follows:
Process sign byte and test for e~dt

conditions.

11/65

If no exit conditions, process right
source digit.

Process left source digit, and test
exit conditions.

A detailed flow chart of Unpack instruction exe­
cution without word overlap is shown in Figure
6061, FEDM. The major functional steps in the
microprogram are as follows:

1. Process Sign Byte

The sign byte, selected by ABC, is gated via
the serial adder cross-gates to the selected
ST byte, and the corresponding mark trigger
is set. ABC, STC, L1, and L2 are decre­
mented by 1 count, and an exit is made if any
counter equalled zero prior to stepping.

2. Process Right Source Digit

a. Bits 4-7 of the selected AB byte are gated
to SAA(4-7). The approved zone character
is inserted in SAA(0-3). The serial adder
output is gated to the selected ST byte, and
the selected mark trigger is set.

b. L1 and STC are decremented by 1.

c. If L1 equalled zero prior to stepping, the
contents of ST are stored and the common
end-op sequence is started.

d. If STC equalled zero prior to stepping
(and L1 was not zero), the destination store
routine is started. STAT G is set to re­
cord an exit from the right digit routine.

3. Process Left Source Digit

11/65

a. Bits 0-3 of the selected AB byte are gated
to SAA(4-7), and the zone character is
inserted in SAA(0-3) .

b. The adder output is gated to the selected
ST byte, and the selected mark trigger is
set.

c. ABC, STC, L1, and L2 are decremented
by 1. An exit is made to the appropriate
routine if any of the above counters
equalled zero prior to stepping. If no exit
condition exists, the right source digit in
the next source byte is processed.

2065 FEMI

4. Exit Conditions

An exit is made from the byte processing
routine whenever it is detected that L1, L2,
ABC, or STC is equal to zero. Although a
separate exit is provided for each possible
combination of these conditions, they may be
considered to be examined in the following
order of priority:

a. L1 = 0

The contents of ST are stored per D ad­
dress, and the common end-op routine is
started.

b. L2 = 0

AB is cleared, ABC is set per L2 (which
is 7), and STAT H is set to record the end
of source field. If STC was also zero, the
destination store routine is started. If
STC was not zero, the high-order zeros
routine is entered per STAT H.

c. STC = 0

The destination store routine is started.
If ABC was also zero, STAT D is set to
cause a source fetch after the destination
store.

d. ABC = O.

The source fetch routine is started.

5. Extension of Source Bytes with High-Order
Zeros

AB is cleared, and bits 4-7 of the selected
AB byte (zeros) are gated to SAA(4-7); the
approved zone character is inserted in
SAA(0-3) . The adder output is gated to the
selected ST byte, and the corresponding mark
trigger is set. L1 and STC are decremented
once for each byte that is processed. An exit
is made to the destination store routine when
STC steps to zero, and to end-op when L1
steps to zero.

6. Source Fetch Routine

A request is made per the IC address, after
which the IC is decremented by 8. A word­
overlap test is made. If there is no word­
overlap condition, the next source word is

3-167

gated to AB, and the right digit of the next
source byte is processed.

7. Destination Store Routine

a. The contents of ST are stored in the des­
tination field per D address, and D is
decremented by 8.

b. An exit is made to the source fetch routine
if STA T D is set.

c. An exit is made to the high-order zeros
routine if STAT H is set.

d. If neither STAT D nor STAT H is set, a
word-overlap test is made by comparing
the IC and D addresses. If no word over­
lap exists, the left or right digit is proc­
essed as determined by STAT G.

3.8.6.2 Instruction Execution - Word Overlap

• Basic execution is as follows:
Process sign byte. Update AB,

and test for exit conditions.
If no exit conditions, process

right source digit.
Process left source digit, and

test for exit conditions.

• Word-overlap test performed during
source fetch and destination store
routines.

A detailed flow chart of Unpack instruction execu­
tion under word-overlap conditions is shown in Fig­
ure 6062, FEDM. The steps in which this micro­
program differs from that for not-word-overlap are
explained below:

1. Process Sign Byte

This step is the same as in the not-word­
overlap sequence except that it is always
followed by the update routine.

2. Update AB from ST

3-168

If STC is less than 4, the contents of S are
transferred to A; the contents of T are always
transferred to B. The mark trigger selected
by STC is set. ABC, STC, L1, and L2 are
decremented by 1. An exit is made to the ap­
propriate routine if any of the above counters
equalled zero prior to their being stepped. If
no exit conditions exist, the right digit in the
next source byte is processed.

3. Process Right Source Digit

The right source digit is processed in the
same manner as for not-word-overlap. If
upon processing the right digit an exit is made
on STC equal zero, and ABC is not zero, the
contents of S are transferred to A. In this
manner, the source is correctly updated prior
to storing ST.

4. Process Left Source Digit

This step is the same as in the not-word­
overlap sequence except that it is always
followed by the update routine.

5. Source Fetch Routine

a. The source is requested per the IC address,
after which the IC is decremented by 8.

b. The contents of D are subtracted from the
IC to prepare for the word-overlap test;
also, a test on STC equals 7 is made to
establish how the source is to be updated
in case of an overlap condition.

c. The condition when STC equals 7 indicates
that STC was zero prior to entering the
source fetch routine. In this case, the
destination has been stored in main stor­
age. Thus, to update the source, the
double word at the SDBO is gated to AB
and ST, and processing of the left source
digit is started.

d. If STC is not 7, AB must be updated from
ST. After transfer of the contents of ST
to AB, processing of the right source digit
is started.

3.8.7 MOVE WITH OFFSET, MVO (F1)

• 2nd operand is stored to left and
adjacent to low-order 4 bits of 1st
operand.

• Separate microprogram used during
word overlap.

• Interruptions.
Protection.
Addressing.

11/65

• SS format:

code of
destinotion operand

operand
address

Perform left-4
shift on 2nd
operand

Store resul t
at 1 st operand
address

The MVO instruction performs a left-4 shift on
the second operand and transfers the result to the
first operand location. Thus, the four low-order
bits of the first operand are preserved as the
lowest-order character of the second operand.
During execution of the instruction, the operand
signs and digits are not checked for valid codes.

The decimal instruction set includes no shift in­
structions, since the equivalent of a shift can be
obtained by programming. Programs for right or
left shift, and for an even or an odd shift amount,
are written with Move with Offset instruction and
the logical move instructions described in Section 5.

A separate microprogram is provided for byte
processing when a word-overlap condition exists as
defined in paragrpah 3.7. 5.1. A test for word
overlap is performed in the GIS of the instruction,
and also each time that a new double word of source
is fetched from main storage.

The GIS for the Move with Offset instruction is
shown in Figure 6058, FEDM. This microprogram
is identical with that of the Pack instruction.

3.8.7.1 Instruction Execution - Not Word Overlap

• Basic execution is as follows:
Transfer bits 4-7 of selected AB

byte to bits 0-3 of selected ST
byte. Decrement counters.

Transfer bits 0-3 of selected AB
byte to bits 4-7 of selected ST
byte. Repeat first step.

Exit on L1 or STC = 0, L2 = 0, or
ABC = O.

A detailed flow chart of the execution of the Move
with Offset instruction when no word-overlap condi­
tion exists is shown in Figure 6063, FEDM. Bas­
ically, this microprogram specifies a 2-cycle loop
with appropriate exits to source fetch, destination
store, high-order-zero extend, and end-op routines.

1. Cycle 1

a. Bits 4-7 of the selected AB byte are gated
to SAA(0-3).

b. Bits 4-7 of the selected ST byte are gated
to SAB(4-7).

c. The serial adder output is gated back to
the selected ST byte, and the correspond­
ing mark trigger is set.

d. L1 and STC counters are decremented 1
count. An exit is made to the destination
store routine if L1 or STC equalled zero
prior to stepping.

2. Cycle 2

a. Bits 0-3 of the selected AB byte are gated
to SAA(4-7). No data is gated to serial
adder bits 0-3.

b. The serial adder output is gated to the
selected ST byte.

c. L2 and ABC counters are decremented 1
count. If L2 was zero prior to stepping,
an exit is made to the high-order zero
extend routine. If L2 was not zero but
ABC equalled zero, an exit is made to the
source fetched routine.

d. If L2 or ABC is not equal to zero, cycle 1
is repeated.

3. High-Order Zero Extend Routine

An entry is made into this routine when the
last source byte has been processed. The
selected ST byte contains the high-order
source digit in bits 4-7; bits 0-3 are zeros.

The following actions are performed upon
entry into the routine:

a. STAT H is set.

b. The selected mark trigger is set.

c. L1 and STC are decremented 1 count.

11/65 2065 FEMI 3-169

d. If LI or STC equals zero prior to stepping,
an exit is made to the destination store
routine.

If LI or STC is not zero, a I-cycle loop is
started, which:

a. Gates the serial adder output (zeros) to the
selected ST byte.

b. Sets the mark trigger selected by STC.

c. Decrements LI and STC by I count.

d. Exits to the destination store routine when
LI or STC equals zero. (STAT H is set
to cause re-entry into the high-order
zeros routine after the destination is
stored.)

4. Destination Store Routine

a. The contents of ST are stored in the des­
tination field per D address.

b. A test is made for the end of the destina­
tion field. If the LI count now equals all
I 's, an exit is made to the common end-op
sequence.

c. If LI is not all I 's, D is decremented by 8.

d. If STAT H is set, the high-order zeros
routine is resumed. If STAT H is not set,
the byte processing loop is started at
cycle 2.

5. Source Fetch Routine *

a. The source is requested from storage, and
the IC is decremented by 8.

b. A word-overlap test is made by comparing
the IC and D addresses.

c. If no word-overlap condition exists, the
double word arriving from storage is gated
to AB, and byte processing is resumed.

3.8.7.2 Instruction Execution - Word Overlap

• Basic execution is as follows:
Transfer bits 4-7 of selected AB

byte to bits 0-3 of selected ST byte.
Transfer bits 0-3 of selected AB

byte to bits 4-7 of selected ST byte.
Update AB from ST, and repeat

first step.
Exit on LI or STC 0= 0, L2 0= 0, or

ABC 0= O.

A detailed flow chart of the execution of the Move
with Offset instruction when a word-overlap condi­
tion exists is shown in Figure 6064, FEDM. Bas­
ically, this microprogram specifies a 3-cycle loop
with appropriate exits to source fetch, destination
store, high-order-zero extend, and end-op routines.

1. Cycle I

This cycle is identical with that in the not­
word-overlap microprogram.

2. Cycle 2

a. Bits 0-3 of the selected AB byte are gated
to SAA(4-7).

b. The serial adder output is gated to the
selected ST byte.

3. Cycle 3

a. If STC is less than 4, the contents of S are
transferred to A.

b. The contents of T are transferred via the
parallel adder to B.

c. The L2 and ABC count are decremented
by 1.

d. An exit is made to the high-order zeros
routines if L2 was equal to zero prior to
stepping. An exit is made to the source
fetch routine if ABC was equal to zero
and L2 was not zero.

*This routine is shared with the Pack i.nstruction. Return to the appropriate microprogram is effected per STAT D.

3-170 11/65

11/65

e. If no exit conditions exist, cycle 1 is re­
peated for the next byte.

The high-order zeros and destination store
routines are the same as in the not-word­
overlap sequence. The source fetch routine,
however, is different.

2065 FEMI

4. Source Fetch Routine

Upon detecting a word-overlap condition, the
source from main storage is not used. In­
stead, AB is updated from ST: if STC is
equal to 7, the contents of T are transferred
to B; if STC is not 7, the contents of S are
transferred to A and the contents of T to B.

3-171

SECTION 5. LOGICAL INSTRUCTIONS

This section describes the general handling and
specific execution sequences used by the logical in­
struction set. These instructions provide for logi­
cal manipulation of data: moving, comparing, bit
testing, bit connecting, translating, editing, and
shifting. The logical instructions use all five in­
struction formats and work with both fixed and var­
iable field length (VFL) data.

3.9 INTRODUCTION

The logical instructions operate on data which may
range from 1 to 256 bytes in length. The operands
are obtained either from the main storage or from
a general register in the CPU. Sometimes, the op­
erand may be contained in the instruction itself.

Processing of data in main storage proceeds from
the high-order to the low-order address, or from
left to right. The initial byte selected for process­
ing may be at either an odd or even main storage ad­
dress. As a rule, processing of data in a general
register involves the complete register contents.
Except for the editing instructions, data is not treat­
ed as numbers.

3.9.1 DATA FORMAT

• Fixed or variable-field length.

• Operands in instruction itself are called
"immediate operands. "

The data size may be a single character, a single
word, a double word, or variable in length. The
data format is dependent on the type of operation
performed:

1. In storage-to-storage operations, data has a
VFL format, starting at any byte address and
continuing for a maximum of 256 bytes.

104------- Up to 256 bytes _____ -I~
in main storage

i-----.,----..., - - - - - r------i

":-___ ~----! _____ 1...-___ -'

2. In storage...;to-register operations, the main
storage data occupies either a word of 32 bits

3-172

o

or a byte of eight bits. The word must be
located on word boundaries; that is, the low­
order two bits of its address must be zero.
Data in general registers normally occupies
all 32 bits. Bits are treated uniformly, and
no distinction is made between sign and numer­
ic bits. In a few operations, only the low­
order eight bits of the register participate,
leaving the remaining 24 bits unchanged. In
some operations, 64 bits of an even/odd pair
of registers participate.

Fixed-length logical data
31

3. In operations introducing data directly from the
instruction, as an immediate operand, data is
restricted to an 8-bit byte. Only one byte may
be introduced per instruction, and only one
byte participated in main storage.

3.9.2 INSTRUCTION FORMAT

• RR, RX, RS, SI, and SSG

Logical instructions use the following five for­
mats:

RR format

Op Code Rl R2 I
0 78 \1 12 15

RX format

OpCode Rl X2 B2 02
0 78 \1 12 15 16 1920 31

R5 format

I Op Code Rl R3 B2 02
0 78 II 12 15 16 1920 31

51 format

Op Code 12 Bl 01

0 78 1516 1920 31

55 format

Op Code Bl I ~~ 011 B2 I JG
15 16 19 20 '--~3~1 ~32~-"""35~36 47

LL
78

11/65

In the RR, RX, and RS formats, the contents of
the register specified by R1 are called the "first op­
erand." In the SI and SS formats, the contents of
the general register specified by B1 are added to the
contents of the D1 field to form an address. This
address designates the leftmost byte of the first op­
erand field. The number of bytes to the right of this
first byte is specified by the LL field in the SS in­
struction. In the SI format, the operand size is one
byte.

In the RR format, the R2 field specifies the reg­
ister containing the second operand. The same reg­
ister may be specified for the first and second op­
erands.

In the RX format, the contents of the general reg­
isters specified by the X2 and B2 fields are added to
the contents of the D2 field to form the address of the
second operand.

In the RS format, used for shift operations, the
contents of the general register specified by the B2
field are added to the contents of the D2 field. This
sum is not used as an address but specifies the num­
ber of bits of the shift. The R3 field is ignored in
the shift operations.

In the SI format, the second operand is the 8-bit
immediate data field, 12, of the instruction.

In the SS format, the contents of the general reg­
ister specified by B2 are added to the contents of the
D2 field to form the address of the second operand.
The second operand field has the same length as the
first operand field.

A zero in the X2, B1, or B2 field indicates the ab­
sence of the corresponding address or shift-amount
components. An instruction can specify the same
general register both for address modification and
for operand location. Address modification is always
completed prior to operation execution.

3.9.3 DATA HANDLING

Generally, the operands are treated as 8-bit
bytes. In a few cases, the left or right four bits of
a byte are treated separately or operands are shift­
ed a bit at a time. Except for editing instructions,
data is not treated as numbers.

Results replace the first operand, except in the
Store Character instruction, where the result re­
places the second operand. A variable-length re­
sult is never stored outside the field specified by
the address and length.

The contents of all general registers and storage
locations participating in the addressing or execu­
tion of an operation generally remain unchanged.
Exceptions are the result locations, general regis­
ter 1 in the Edit and Mark instruction, and general
registers 1 and 2 in the Translate and Test instruc­
tion.

Editing operations provide transformation from
packed decimal digits to alphanumeric characters;
i. e., editing requires a packed decimal field and
generated zoned decimal digits. The digits, signs,
and zones are recognized and generated as for deci­
mal arithmetic; all bit configurations are considered
valid.

The translating operations use a list of arbitrary
values. A list provides a relation between an argu­
ment (the quantity used to reference the list) and the
function (the content of the location related to the
argument). The purpose of the translation may be
to convert data from one code to another code or to
perform a control function. The list is speCified by
an initial address - the address deSignating the left­
most byte location of the list. The byte from the op­
erand to be translated is the argument. The address
used to address the list is obtained by adding the
argument t,o the low-order positions of the initial
address. As a consequence, the list contains 256
eight-bit function bytes. Where it is known that not
all 8-bit argument values will occur, it may be pos­
sible to reduce the size of the list.

Use of general register 1 is implied in Edit and
Mark and in Translate and Test instructions. A 24-
bit address may be placed in this register during
these operations. The Translate and Test instruc­
tion also implies general register 2. The low-order
eight bits of register 2 may be replaced by a function
byte during a translate-and-test operation.

3.9.4 CONDITION CODE SETTING

The results of most logical operations are used
to set the CC in the PSW. The Load Address, In­
sert Character, Store Character, Translate, and
the moving and shift instructions leave this code un­
changed. (The CC can be used for decision-making
by subsequent branch-on-condition instructions.)

The CC can be set to reflect five types of results
for logical operations. For the Compare Logical
instructions, the 0, 1, and 2 states indicate that the
first operand is equal, low, or high.

For the logical connectives, the states 0 and 1 in­
dicate a zero or nonzero result field.

11/65 2065 FEMI 3-173

For the Test under Mask instruction, the states
. 0, 1, and 3 indicate that the selected bits are all­
zero, mixed zero and 1, or all-l.

For the Translate and Test instruction, the states
0, 1, and 2 indicate an all-zero function byte, a non­
zero function byte with the operand incompletely
tested, or a last function byte nonzero.

For editing, the states 0, 1, and 2 indicate a zero.
less-than zero, or greater-than-zero content of the
last result field. Table 3-20 lists those instructions
that affect the CC and indicates how the CC is set.

TABLE 3-20. CONDITION CODES FOR LOGICAL

INSTRUCTIONS

Condition Code

Instruction 0 1 2

Compare Equal Low High
Logical

AND Result = 0 Result # 0 -

OR Result = 0 Result # 0 -

Exclusive OR Result = 0 Result # 0 -

3

-

-

-

-

Test under Result = 0 Mixed - Result = 1
Mask result

Translate and Result = 0 Incomplete Complete -
Test result result

Edit Result = 0 Result < 0 Result> 0 -

Edit and Result = 0 Result <0 Result> 0 -
Mark

3.9.5 INTERRUPTION CONDITIONS

• Protection.

• Addressing.

• Specification.

• Data.

Exceptional instructions, data, or results cause
a program interruption. When the interruption oc­
curs, the current PSW is stored as an old PSW and
a new PSW is obtained. The interruption code in the
old PSW identifies the cause of the interruption. The
following exceptions cause a program interruption
in logical operations:

3-174

1. Protection - The storage key of a result loca­
tion in main storage does not match the pro­
tection key in the PSW. The operation is sup­
pressed. Therefore, the CC and data in regis­
ters and main storage remain unchanged. The
only exceptions are the variable-length storage­
to-storage operations, which are terminated.
For terminated operations, the result data and
CC, if affected, are unpredictable and should
not be used for further computation.

2. Addressing - An address designates a loca­
tion outside the available storage for the in­
stalled system. The operation is terminated.
The result data and theCC, if affected, are
unpredictable and should not be used for fur­
ther computation.

3. Specification - A full-word operand in a stor­
age-to-register operation is not located on a
32-bit boundary, or an odd register address is
specified for a pair of general registers con­
taining a 64-bit operand. The operation is
suppressed. Therefore, the CC and data in
registers and storage remain unchanged.

4. Data - A digit code of the second operand in
the Edit or Edit and Mark instruction is in­
valid. The operation is terminated. The re­
sult data and the CC are unpredictable and
should not be used for further computation.

Operand addresses are tested only when used to
address storage. Addresses used as a shift amount
are not tested. Similarly, the address generated by
the use of the Load Address instruction is not tested.
The address restrictions do not apply to the compo­
nents from which an address is generated - the con­
tents of the D1 and D2 fields, and the contents of the
registers specified by X2, B1, and B2.

3.10 INSTRUCTION EXECUTION

The follOWing paragraphs describe the execution
sequences for instructions in the logical set. Table
3-21 lists the instructions with their respective for­
mats, mnemonic and operation codes, and program
interruptions.

3.10.1 MOVE

• 2nd operand is placed in 1st operand
location.

11/65

TABLE 3-21. LOGICAL mSTRUCTION SET • Interruptions:

Instruction

Move

Move

Move Numerics

Move Zones

Compare Logical

Compare Logical

Compare Logical

Compare Logical

AND

AND

AND

AND

OR

OR

OR

OR

Exclusive OR

Exclusive OR

Exclusive OR

Exclusive OR

Test under Mask

Insert Character

Store Character

Load Address

Translate

Translate and Test

Edit

Edit and Mark

Shift Left Single
Logical

Shift Right Single
Logical

Shift Left Double
Logical

Shift Right Double
Logical

* A: AddreSSing
D: Invalid data

P: Protection
S: Specification

11/65

Mnemonk
Format Code

SI MVI

SS MVC

SS MVN

SS MVZ

RR CLR

RX CL

SI CLI

SS CLC

RR NR

RX N

SI NI

SS NC

RR OR

RX 0

SI or

SS OC

RR XR

RX X

SI XI

SS XC

SI TM

RX IC

RX STC

RX LA

SS TR

SS TRT

SS ED

SS EDMK

RS SLL

RS SRL

RS SLDL

RS SRDL

Op
Code

92

D2

Dl

D3

15

55

95

D5

14

54

94

D4

16

56

96

D6

17

57

97

D7

91

43

42

41

DC

DD

DE

DF

89

88

8D

8C

Interruptions*

P, A

P, A

P, A

P, A

A, S

A

A

A, S

P, A

P, A

A, S

P, A

P, A

A, S

P, A

P, A

A

A

P, A

P, A

A

P, A, D

P, A, D

S

S

Protection.
Addressing.

• Instruction uses 81 or 88 format.

3.10.1.1 Move, MV1 (92)

• 81 format:

3.10.1.2 Move, MVC (D2)

• 88 format:

01

31

L--_O_2_-'-----r_~_.J...J~ 01 I B2 I ~G
'---:3:71 ':::32:----.:3~5 -1.36 47

Fetch LL number of bytes
from source address

• Move operation can be high or low
speed.

• Three separate microprograms are
provided:

High-speed move.
Word overlap.
Low-speed move.

Three separate sequences are provided for the
MVC instruction. The high-speed move sequence is
used when it is possible to transfer a double word of
data at a time. This condition exists when the high­
order bytes of the source and destination are speci­
fied on double-word boundaries and a full double word
of data remains to be processed; i. e., both ABC and

2065 FEMI 3-175

STC are equal to zero, and the LL count is greater
than 6. The word-overlap sequence is used when a
word-overlap condition exists (paragraph 3.7.5.1).
The second operand in AB is updated after each AB
byte is processed. The low-speed move sequence is
used when the high-speed or word-overlap condition
does not exist. (The high-speed and word-overlap
conditions are detected in the GIS of the instruction.)

1. Low-Speed Move Sequence

This sequence is basically a 1-cycle operation
in which the AB byte selected by ABC is trans­
ferred through the serial adder to the ST byte
selected by STC, and the mark trigger se­
lected by STC is set.

The STC and ABC are incremented, the LL
count in E(8-15) is decremented, and the cycle
is repeated for the next byte, unless an exit
condition exists.

2. Word Overlap Move Sequence

This sequence is a 2-cycle sequence in which
the first cycle transfers the AB byte, selected
by ABC, to the ST byte selected by STC. The
second cycle updates the source operand in AB
by transferring S to A, or T to B, as deter­
mined by the value of STC. The mark trigger
selected by STC is set. The STC and ABC are
incremented, the LL count is decremented,
and the sequence is repeated for the next byte,
unless an exit condition exists.

3. High-Speed Move Sequence

3-176

This routine is entered from the GIS or from
the low-speed move routine.

·a. When the entrance is made from the GIS,
the source operand has been transferred to
ST. The contents of ST are stored by set­
ting mark triggers 0-7 and issuing a stor­
age request per D.

b. The LL count in E(8-15) is decremented by
8 via the parallel adder and is then tested
for all l's. If this condition exists, an end­
op sequence is started. If no end-op con­
dition exists, the IC is incremented by 8
via the parallel adder and a source fetch
request is given.

c. When the entrance is made from the low­
speed routine, D is incremented by 8 and
the source double word from main storage

is gated to both AB and ST. If at least 8
bytes remain to be processed, as deter­
mined by an ROS branch on LL count being
greater than 6, the high-speed move se­
quence is repeated (starting at step a). If
fewer than 8 bytes remain to be processed,
the low-speed move sequence is started to
process the remaining data.

Exit is made from the low-speed or word-overlap
move routines if one of the following conditions ex­
ists: (1) LL = 0, or STC = 7 and ABC f- 7, (2)
LL = 0, or STC = 7 and ABC = 7, (3) only ABC = 7.
A separate sequence is entered for each of these con­
ditions as explained below:

1. LL = 0, or STC = 7 and ABC f- 7

A destination store is initiated, and a test for
an end-op condition is made. If LL count now
equals all1's, an entry is made into a common
end-op sequence. IT an end-op condition does
not exist, D is incremented by 8 via the paral­
lel adder and low-speed move sequence is con­
tinued.

2. LL = ° or STC = 7 and ABC = 7

A destination store is initiated, and a test for
end-op is made (LL = all l's). A further test
for a high-speed move condition is made. If
at this time the LL count is 7 or greater, the
IC and D are incremented by 8, a source fetch
is initiated, and an entry is made into the high­
speed move sequence. IT neither an end-op nor
a high-speed move condition exists, D is in­
cremented by 8 and a common source fetch
routine is entered which will increment the IC
by 8, fetch the next double word of source to
AB, and test for a word-overlap condition.
Since there is no word-overlap at this time
(ABC = STC), the low-speed move sequence
is continued.

3. ABC = 7

The IC is incremented by 8 through the parallel
adder, and a fetch request is given to fetch the
next double word of source operand. The com­
mon source fetch sequence is entered, which
will test for word overlap. In this case, word
overlap may exist: if it is detected, the source
operand from main storage is not gated to AB,
but instead ST is gated to AB and a branch is
made to the move-word-overlap sequence. IT
no word overlap exists, the low-speed move

11/65

sequence is continued after the source operand
from main storage is gated to AB.

The common end-op routine is entered when the
LL field has been decremented to zero. This routine
restores the instruction address from the LSWR to
the IC and resets STAT G (since it may have been
used during the GIS).

3.10.2 MOVE NUMERICS, MVN (D1)

• Low-order four bits of each byte in
2nd operand field, numeric, are placed
in low-order bit positions of correspond­
ing bytes in 1st operand field.

• SS format:

D1

Extract numerics from LL number
of bytes in source address

• Separate sequence used for word overlap.

• Interruptions:
Protection.
Addressing.

The MVN instruction performs as follows:

1. Bits 4-7 of selected AB byte are gated to
SAA(4-7).

2. Bits 0-3 of selected ST byte are gated to
SAB (0-3).

3. Adder output is gated back to selected ST
byte.

Data is processed one byte at a time, and the
fields may overlap in any way. Separate sequences
are used for the not-word-overlap and the word
overlap conditions.

1. Not-Word-Overlap Sequence

This sequence consists of a I-cycle loop with
an exit when LL = 0, STC = 7, or ABC = 7.
As each byte is processed, the corresponding
mark trigger is set per STC; ABC and STC
are incremented by one count, and LL is de­
cremented by one count.

2. Word Overlap Sequence

This sequence consists of a 2-cycle loop with
an exit when ABC or STC = 7, or when LL = O.

a. Cycle 1

Numeric (bits 4-7) is moved from AB to
ST.

b. Cycle 2

The contents of S are transferred to A, or
the contents of T are transferred to B as
determined by the STC value. The mark
trigger selected by STC is set; STC and
ABC are incremented one count, and LL
is decremented one count.

An exit from the byte processing sequence is
made when LL = 0, STC = 7, or ABC = 7. A sep­
arate sequence is entered for each of these condi­
tions as explained below:

1. LL = 0

The contents of ST are stored per D in the
destination field. The common end-op se­
quence is started.

2. STC = 7

The common destination store-fetch routine
is started. If ABC also equals 7, STAT D is
set to cause a source fetch prior to resuming
the byte processing loop.

3. ABC = 7

The common source fetch routine is started,
which includes a word-overlap test, which will
cause the" appropriate instructions word-over­
lap or not-word-overlap loop to be continued.

3.10.3 MOVE ZONES, MVZ (D3)

• High-order four bits of each byte in 2nd
operand field, zones, are placed in high­
order four bit positions of corresponding
bytes in 1st operand field.

11/65 2065 FEMI 3-177

• SS format:

~ __ D_3 __ ~~ __ ~ __ -U~~D_l~I_B_2~1~~

Extract zones from LL number
of bytes in source address

31 32 3S 36 47

• Separate microprogram used for word
overlap.

• Interruptions:
Protection.
Addressing.

The MVZ instruction specifies the following ac­
tions:

1. Bits 0-3 of the selected AB byte are gated to
SAA(0-3).

2. Bits 4-7 of the selected ST byte are gated to
SAB(4-7).

3. The adder output is gated back to the selected
ST byte.

Except for the above actions, the byte processing
sequence is the same as that for the MVN instruc­
tion (paragraph 3.10.2).

3.10.4 COMPARE LOGICAL

• 1st operand is compared with 2nd oper-
and and CC is set as follows:

Operands are equal, CC = 0
1st operand is low, CC = 1
1st operand is high, CC = 2

• Comparison is binary, and all codes are
valid. Operation is terminated when an
inequality is found.

3-178

• Instruction uses RR, RX, SI, or SS
format.

3.10.4.1 Compare, CLR (15)

• RR format:

o

3.10.4.2 Compare, CL (55)

• RXformat:

55

Equal

• Interruptions:
Addressing.
Protection.

3.10.4.3 Compare, CLI (95)

High

• SI format (see format on following
page)

• Addressing interruption may result.

D2
31

SetCC to 2

11/65

95 12
o 78

3.10.4.4 Compare, CLC (D5)

• SS format:

L....-_0_5_~ __ L_L _-,--B_1-.J..J1 ~~ 01 I
o 7 8 15 16 19 20 31 32

• Addressing interruption may result.

• Since results of operation are
not stored in main storage, no
special action is required
during word overlap.

01

31

B2 I~G
35 36 47

Sequencing of the CLC instruction is as follows:

1. The selected AB byte is gated complement to
the serial adder with a hot carry to bit 7.

2. The selected ST byte is gated true to the serial
adder.

3. The serial adder carry is saved in STAT H.

4. STAT A is set if a nonzero result byte ie de­
tected.

5. As each byte is processed, the LL count is
decremented and the ABC and STC are incre­
mented.

6. The above routine is continued until a nonzero
result is detected in the serial adder, or until
the LL count is stepped to zero, with exits
for operand fetches when STC or ABC is step­
ped to 7.

7. If an exit is made because a nonzero byte is
detected, one additional byte will have been
gated to the serial adder before the exit is
made via the ROS branch. Therefore, STAT
H will reflect the carry of the nonzero result
byte plus 1. Since STAT H is used to deter­
mine the setting of the CC, it is set or reset
per the carry of the first nonzero byte en­
countered.

8. The common end-op routine is used, which
will set the CC per following hardware con­
ditions:

Hardware Conditions CC Setting

ST AT A is reset - equal compare o

STAT A is set - STAT H is reset 1

STAT A is set - STAT H is set 2

3.10.5 AND

• Logical AND product of bits of 1st and
2nd operands is placed at 1st operand
location. Operands are treated as un­
structured logical quantities, and con­
nective AND is applied bit by bit. All
operands and results are valid.

• Instruction uses RR, RX, SI, or SS
format.

• CC setting:
Result is zero, CC = 0
Result is not zero, CC = 1

11/65 2065 FEMI 3-179

The AND instruction mixes two operands on a
logical AND basis. An AND operation is defined as
follows: if both operand bits are 1, the resulting bit
is 1; otherwise, the result is zero. The following
example illustrates the AND'ing of two bytes:

Bit positions 01234567

1st operand 10101010

2nd operand 10011100

Result 10001000

Note that only in bit positions 0 and 4 are both oper­
and bits set to 1. Therefore, only bits 0 and 4 of
the result are set to 1.

The AND operation may be executed by an in­
struction using the RR, RX, SI, or SS format. These
instructions are described in the following para­
graphs.

3.10.5.1 AND, NR (14)

• Contents of LS register specified by R1
are AND'ed with contents of LS register
specified by R2. Result is placed in LS
per R1 address.

• RR format:

14

o

3.10.5.2 AND, N (54)

• Contents of LS register specified by R1
are AND'ed with 2nd operand (obtained·
from main storage). Result is placed
in LS per R1 address.

3-180

• RX format:

I 54 I Rl I X2 I B2 I 02 I
o 78 11 12 15 16 1920 31

I Fetch 2nd operand I ,
"

I AND I
+

I Place resul t in LS per R 1 I .

• Interruptions:
Addressing.
Specification.

3.10.5.3 AND, NI (94)

• 1st operand is fetched from main stor­
age and AND'ed with immediate operand
in 12 field. Result is stored at 1st
operand address.

• SI format:

94 12
o 78

Store resul t in destination field

• Interruptions:
Protection.
Addressing.

3.10.5.4 AND, NC (D4)

01

• AND product of 1st and 2nd operands is
stored at 1st operand address.

31

11/65

• SS format:

L...-_D4_-..L.. __ LL_--L._B_l~1 ~~ Dl I B2 I~~
7 8 15 16 19 20 31 32

Store result in destination field

• Interruptions:
Protection.
Addressing.

3536 47

The NC instruction specified the following actions:

1. The selected AB byte is gated to SAA(0-7).

2. The selected ST byte is gated to SAB(0-7).

3. Each AB and ST bit is combined using the
serial adder AND function.

4. The adder output is gated back to ST.
(STAT A is set if the result byte is not zero.)

Except for the above actions, the byte processing
sequence is the same as that for the MVN instruction
described in paragraph 3.10.2.

3.10.6 OR

• Logical OR sum of bits of 1st and 2nd
operands is placed in 1st operand lo­
cation. Operands are treated as un­
structured logical quantities, and
connective Inclusive OR is applied bit
by bit. All operands and results are
valid.

• Instruction has RR, RX, SI, or SS for­
mat.

• CC setting:
Result is zero, CC == O.
Result is not zero, CC == 1.

The OR instruction mixes two operands on a
logical OR basis. An OR operation is defined as
follows: if either operand bit is a 1, the resulting
bit is a 1: otherwise, the result is zero. The fol­
lowing example illustrates the OR'ing of two bytes.

Bit positions o 1 2 345 6 7

1st operand 1010101 0

2nd operand 10011100

Result 101 1 1 1 1 0

Note that only in bit positions 1 and 7 is neither bit
set to 1. Thus, only bits 1 and 7 of the result are
set to zero, and the remaining bits are set to 1.

The OR operation may be executed by an instruc­
tion in the RR, RX, SI, or SS format. The individual
instructions are described in the following para­
graphs.

3.10.6.1 OR, OR (16)

• Contents of LS register specified by R1
are OR'ed with contents of LS register
specified by R2. Result is placed in LS
per R1 address.

• RR format:

16

o

3. 10.6.2 OR, a (56)

• Contents of LS register specified by R1
are OR'ed with 2nd operand (obtained
from main storage). Result is placed
in LS per R1 address.

11/65 2065 FEMI 3-181

• RX format:

56

o

• Interruptions:
Addressing.
Specification.

3.10.6.3 OR, or (96)

02

• 1st operand is fetched from main stor­
age and OR' ed with immediate operand
in 12 field. Result is stored at 1st
operand address.

• SI format:

96 12
o 78

Store result in destination field

• Interruptions:
Protection.
Addressing.

3.10.6.4 OR, OC (D6)

• OR sum of 1st and 2nd operands is
stored at 1st operand address.

3-182

01

31

31

• SS format:

06 L2 B 1 I ~~'-0_1...L.,1 _B-.,2 ,..wI J G
111215161920 3132 3536 47

Ll
o 78

Store result at 1st operand locatIon

• Interruptions:
Protection.
Addressing.

The OC instruction specifies the following actions:

1. The selected AB byte and the selected ST byte
are gated to the serial adder, where they are
combined per the serial adder OR function.

2. The adder output is gated back to the selected
ST byte, and the selected mark trigger is set
per STC.

3. STAT A is set if the result is not zero.

Except for the above actions, the byte processing
sequence is the same as that for the MVN instruction
described in parlagraph 3.10.2.

3.10.7 EXCLUSIVE OR

• Module-2 sum (Exclusive OR) of bits of
1st and 2nd operands is placed at 1st
operand location. Operands are treated
as unstructured logical quantities, and
connective Exclusive OR is applied bit
by bit. All operands and results are
valid.

• Instruction uses RR, RX, SI, or SS
format.

• CC setting:
Result is zero, CC = o.
Result is not zero, CC = 1.

11/65

The Exclusive OR instruction mixes two operands
on a logical Exclusive OR basis. An Exclusive OR
operation is defined as follows: if one and only one
of the operand bits is a 1, the resulting bit is a 1;
otherwise, the result is zero. The following ex­
ample illustrates the Exclusive OR'ing of two bytes.

Bit position o 2 345 6 7

1st operand 000 o

2nd operand o 0 o 0

Result o 0 o o

Note that in bit positions 2, 3, 5, and 6 one and only
one of the operand bits is a 1, and that the corre­
sponding bit positions of the result are set to 1. In
bit position 0, both operand bits are 1 and the cor­
responding result bit is O. In bit position 1, both
bits are 0 and the result is O.

The Exclusive OR operation may be executed by
an instruction in the RR, RX, SI, or SS format.
The individual instructions are described in the fol­
lowing paragraphs.

3.10.7.1 Exclusive OR, XR (17)

• Contents of LS register specified by R1
are Exclusive OR'ed with contents of
LS register specified by R2. Result is
placed in LS per R1 address.

• RR format:

17

3.10.7.2 Exclusive OR, X (57)

• Contents of LS register specified by R1
are Exclusive OR' ed with 2nd operand
(obtained from main storage). Result
is placed in LS per R1 address.

I

• RX format:

57 I Rl I
0 78 11 12

r

• Interruptions:
AddTessing.
Specification.

X2 I B2 I D2

15 16 19 20 ,
I Fetch 2nd operand ,

"
I Exclusive OR ,

.. Place resul t in LS per R 1 ... ,

3.10.7.3 Exclusive OR, XI (97)

• 1st operand is fetched from main stor­
age and Exclusive OR' ed with immediate
operand in 12 field. Result is stored at
1st operand address.

• SI format:

97 I2
78

Store result in destination field

• Interruptions:
Protection.
Addressing.

Dl

3.10.7.4 Exclusive OR, XC (D7)

• Exclusive OR sum of 1st and 2nd oper­
ands is stored at 1st operand address.

I
31

)

I

I

I

31

11/65 2065 FEMI 3-183

• SS format:

D7 B 1 I ~ ~ D 1 I B2 I ~ G
15 16 19 20 <---'""'3-'1 32--3--5u36 47

LL
78

Exclusive OR

Store resu It at 1st operand location

• Interruptions:
Protection.
Addres sing.

The XC instruction specifies the following actions:

1. The selected AB byte and the selected ST byte
are gated to the serial adder, where they are
combined per the serial adder Exclusive OR
function.

2. The adder output is gated back to the selected
ST byte, and the selected mark trigger is set
per STC.

3. STAT A is set if the result is not zero.

Except for the above actions, the byte processing
sequence is the same as that for the MVN instruction
described in paragraph 3.10.2.

3.10.8 TEST UNDER MASK, TM (91)

• State of 1st operand bits selected by
mask is used to set CC.

• SI format:

91

o

3-184

Select bits of 1st operand
only when mask bits are l's

Set CC

Dl
31

• CC setting:
Selected bits all zero; mask is all

zero - CC = o.
Selected bits mixed zero and 1 -

CC = 1.
Selected bits all 1 - CC = 3.

• Storage contents are not changed.

• Addressing interruption can occur.

The byte of immediate data, 12, is used as an 8-
bit mask. The bits of the mask are made to corre­
spond one for one with the bits of the character in
main storage specified by the first operand address.

A mask bit of 1 indicates that the storage bit is
selected. When the mask bit is 0, the storage bit is
ignored. When all storage bits thus selected are
zero, the CC is made O. The CC is also made 0
when the mask is all-zero. When the selected bits
are all-I, the CC is made 3; otherwise, the CC is
made 1. The character in storage is not changed.

3.10.9 INSERT CHARACTER, IC (43)

• 8-bit character at 2nd operand address
is inserted into bit pOSitions 24-31 of
LS register specified by Rl. Remain­
ing bits of register are not changed.

• RXformat:

43 D2

• Addressing interruption can occur.

3.10.10 STORE CHARACTER, STC (42)

• Bit pOSitions 24-31 of LS register deSig­
nated by Rl are stored at 2nd operand
address.

31

11/65

• RXformat:

42
o

• Interruptions:
Protecting.
Addressing.

3.10.11 LOAD ADDRESS, LA (41)

D2

• Address of 2nd operand is inserted in
low-order 24 bits of LS register spe­
cified by R1. High-order 8 bits of LS
register are made zero. 2nd operand
is not fetched from main storage.

• RXformat:

41

31

The address specified by the X2, B2, and D2
fields is inserted in bits 8-31 of the LS register.
The address is not inspected for availability, pro­
tection, or resolution.

The address computation follows the rules for
address arithmetic. Any carries beyond the 24th bit
are ignored. The same LS register may be speci­
fied by the R1, X2, and B2 instruction field, except
that LS register 0 can be specified only by the R1
field. ,In this manner, it is possible to increment
the low-order 24 bits of an LS register, other than 0,
by the contents of the D2 field of the instruction. The
register to be incremented should be specified by R1
and by either X2 (with B2 set to zero) or B2 (with X2
set to zero).

3.10.12 TRANSLATE, TR (DC)

• 8-bit bytes of 1st operand are used as
arguments to reference table of func­
tion bytes designated by 2nd operand
address. Each function byte selected
from table replaces corresponding
argument byte in destination field.

• SS format:

• Interruptions:
Protection.
Addressing .

The TR instruction selects the first operand bytes
for translation one byte at a time, proceeding from
left to right. Each argument byte is added to the
elltire initial address, the second operand address,
in the low-order bit positions. The sum is used as
the address of the function byte, which then replaces
the original argument byte. All data is valid. The
operation proceeds until the first operand field is
exhausted. The table is not altered unless an over­
lap occurs.

At the start of the execution sequence, the first
operand has been fetched to ST. A request per IC
has been made for the second operand, but this
double word from main storage is not used.

11/65 2065 FEMI 3-185

The execution sequence is as follows:

1. The selected ST byte is saved in F. The con­
tents of T are saved in B. (The contents of
the IC are saved in A.)

2. T is cleared, STC is set to 111, and the con­
tents of F (selected destination byte) are placed
in T(56-63) via the serial adder.

3. The contents of T are added to the contents of
IC in the parallel adder, and the result is
gated back to the IC.

4. A request for the second operand is issued per
the IC.

5. ABC is set per IC(21-23), and STC is set per
D(21-23).

6. The original source address is restored to the
IC from A. The destination word is restored
to T from B.

7. A word-overlap test was made prior to restor­
ing the source address to the Ie. If no word
overlap exists, the table double word fetched
from main storage is gated to AB. If word
overlap is detected, the contents of S are
transferred to A (B is already identical with T)
and the double word from main storage is not
used.

8. The selected AB byte is gated via the serial
adder to the selected ST byte, and the selected
mark trigger is set. The STC and D are incre­
mented by 1. The LL count is decremented
by 1.

9. Unless STC was 7 or LL was zero prior to
stepping, the sequence is repeated for the next
destination byte.

10. If LL was zero, the contents of ST are stored
and the common end-op sequence is started.

11. If STC was 7 and LL not equal to zero, the
contents of ST are stored and the next destina­
tion word is fetched by the common destination
fetch sequence, after which the translate se­
quence is resumed.

3.10.13 TRANSLATE AND TEST, TRT (DD)

• 8-bit bytes of 1st operand are used as
arguments to reference table of func­
tion bytes at 2nd operand address.

3-186

Each function byte thus selected from
table determines continuation of opera­
tion. When function byte is a zero,
operation proceeds by fetching and
translating next argument byte. When
function byte is nonzero, operation is
completed by inserting related argument
address in LS register 1 and function
byte in LS register 2.

• SS format:

L-_DD_--L.._...,L_L _...L.-_J..J~ DI I B2 I ~ ED
7 8 31 32 3536 47

Add argument byte
to base address of
function byte

Fetch function byte per result address

• CC setting:
All function bytes are zero: CC = o.
Nonzero function byte before operand

is exhausted: CC = 1.
Last function byte is nonzero:

CC = 2.

• Addressing interruption may result.

The TR T instruction fetches the function bytes in
the same manner as the TR instruction (paragraph
3.10.12). Each function byte retrieved from the
table is inspected for the all-zero combination.

11/65

When the function byte is zero, the operation
proceeds with the next operand byte. When the first
operand field is exhausted before a nonzero function
byte is encountered, the operation is completed by
setting the CC to O. The contents of LS registers 1
and 2 remain unchanged.

When the function byte is nonzero, the related
argument address is inserted in the low-order 24
bits of LS register 1 •. This address points to the
argument last translated. The high-order eight bits
of register 1 remain unchanged. The function byte
is inserted in the low-order eight bits of LS register
2. Bits 0-23 of register 2 remain unchanged. The
CC is set to 1 when the one-or-more argument bytes
have not been translated. The CC is set to 2 if the
last function byte is nonzero.

The following abbreviations are used in this dis­
cussion of the TRT execution sequence:

DX: first byte in series of destination bytes

T(DX): table byte specified by DX

DX + 1: second byte in series of destination bytes

T(DX + 1): table byte specified by DX + 1

DX + 2: third byte in series of destination bytes

The TRT instruction uses the following execution
sequence:

1. First Byte Sequence

11/65

a. The selected ST byte is saved in F.

b. The contents of ST are transferred to AB.

c. STC is set to 3, and the contents of F (DX)
are gated, via the serial adder, to byte 3
in S.

d. S bytes 0, 1, and 2 are cleared by gating
the contents of SAL to ST and successively
decrementing STC by 1.

e. ABC is set per D(21-23), and STC is set to
011.

f. The DX in S is added to the contents of the
Ie, and an IC request is made for T(DX).

g. A branch per STAT G is made to the T(DX
+ 1) address generation routine. (STAT G
is used to indicate that a table byte has been
fetched and is ready for test.)

2065 FEMI

2. T(DX + 1) Address Generation

a. ABC is incremented by 1.

b. DX is transferred from S to T.

c. STAT G is set.

d. The selected AB byte (DX + 1) is gated via
the serial adder to byte 3 in S.

e. STC is set per Ie(21-23).

f. The T(DX) ingate and T(DX + 1) fetch se­
quence is started.

3. T(DX) Ingate and T(DX + 1) Fetch Sequence

a. The table word which contains byte T(DX)
is available from main storage, and either
the left- or right-half word is gated to T as
determined by IC(21). STC(O) is set to 1 to
select correct T byte. Simultaneously, the
contents of T (DX) are subtracted from the
contents of IC to restore the table base
address.

b. If LL equals zero, an exit is made to the
T(DX) test sequence.

c. If LL is not zero, DX + 1 (in S) is added to
the contents of IC and a fetch request is
made for T(DX + 1).

d. A branch per STAT G starts the T(DX) test
sequence.

4. T(DX) Test Sequence and T(DX + 2) Address
Generation

a. The selected T byte, T(DX) , is gated to the
serial adder for zero detection and is saved
in F.

b. STAT H is set if ABC equals zero.

c. DX + 1 is transferred from S to T.

d. STC is set to 011; and ABC is incremented
by 1 (selecting byte to DX + 2).

e. An exit is made to the LS mark sequence
(see step 6) if a nonzero result is detected
in the serial adder.

f. An exit is made to the common end-op se­
quence if the serial adder result is zero
and the LL count is zero.

3-187

g. The LL count is decremented and address
in D is incremented by 1.

h. If STAT H is set, an exit is made to the
destination fetch routine.

i. If no exit conditions are detected, the se­
lected AB byte (DX + 2) is gated via the
serial adder to S, and STC is set per
IC(21-23).

j. The T(DX) ingating and T(DX + 1) fetch
routine is started. The table byte previ­
ously referred to as T(DX) has been tested.
The table byte' previously referred to as
T(DX + 1) is now considered T(DX), and
processing loop is resumed.

5. Destination Fetch Routine

a. Prior to entering this routine, ABC has
been stepped from 7 to 0 and a fetch request
was made for a table byte using byte 0 of
the present destination word to generate the
table byte address. Since this was an erro­
neous address, the resulting word from
main storage is not used.

b. STAT's G and H are reset, and the IC is
restored to the table base address by sub­
tracting DX + 1.

c. A fetch request is made per Daddress.
The requested double word is gated to AB.

d. ABC was previously stepped from 0 to 1.
It is now decremented to select byte zero
of the new destination double word (con­
sidered byte DX).

e. The selected AB byte (DX) is gated via the
serial adder to byte 3 in S.

f. The DX (in S) is added to the contents of
IC, and a fetch request is made for T(DX).

g. Since STAT G is reset, the T(DX + 1)
address generation routine is started.

6. LS Mark Routine

3-188

a. This routine is entered when a nonzero
table byte is detected in the serial adder
or when the LL count equals zero. (The
last table byte tested is in F.)

b. If the table byte was nonzero, STAT G is
reset.

c. E(8-15) is cleared and used for LAR ad­
dressing.

d. LS register 1 is accessed per E(8-15) + 1
and transferred to T.

e. STC is incremented to 100, and ST byte 4
is gated via the serial adder and back to ST.
Simultaneously, the contents of D are gated
to T via the parallel adder.

f. The contents of T are stored in LS register
1; E(8-11) is incremented twice, and STC is
set to 7.

g. LS register 2 is read into T. The contents
of F are gated via the serial adder to T(56-
63), and the contents of T are stored in LS
register 2.

h. STAT A is set if the byte in F was not zero.

i. The common end-op sequence is started,
which sets CC per STAT's A and G.

3.10.14 EDIT AND EDIT AND MARK INSTRUC­
TIONS, ED AND EDMK (DE AND DF)

• Edit operation changes format of source
(2nd operand) from packed to zoned.
Source bytes are then edited under con­
trol of pattern (1st operand). Edited
result is stored at 1st operand address.

• Edit and mark operation is similar to
edit except that address of 1st signifi­
cant result digit is recorded in LS reg­
ister 1.

• Edit and Edit and Mark instructions
share common ROS microprogram with
exit to separate mark routine for Edit
and Mark instruction.

• SS format (see format on following
page)

• Since results of word-overlap condition
are unpredictable, no special action is
taken when this condition occurs.

• CC setting:
Result is zero: CC = 0
Result is less than zero: CC = 1
Result is greater than zero: CC = 2

11/65

Op Code * I LL I Bl I ~~ Dl I B2 IJB
0 78 IS 16 1920 3132 3536 47

I.. I.. , ,
"

Number of Fetch pattern Fetch source
bytes to be ---.. and se lect 1 st and se lect 1 st
processed pattern byte source byte , , ,

Process
~

Store resu It Edit source byte under

next byte in pattern ... control of pattern

byte byte location byte (result will be
in zoned format)

• EDMK only

I Store address of each 1 st I significant result in LS register 1

* DE for Edit
DF for Edit and Mark

• Interruptions:
Protection.
Addressing.
Invalid data.

3.10.14.1 Introduction to Edit Operation

• Edit instruction is used to:
Eliminate high-order zeros.
Provide asterisk protection.
Handle sign control (CR).
Provide punctuation.
Blank out an all-zero field.
Protect decimal point by use of sig­

nificance start character. (This
character can also be used to re­
tain high-order zeros when deSired.)

Edit multiple adjacent fields via field
separator character.

The edit operation is used to produce easy-to­
read documents by inserting proper punctuation into
a data record. The data to be edited (2nd operand)
is called the "source" and must be in the packed
decimal format. Consider the following source
field:

00 12 49 07 10 7+

For the above field to be printed in a document, it
must first be converted into the zoned format (ASCII-8
or EBCDIC). One function of the edit operation is
to change the source field from packed to zoned
format. * If changing from packed to zoned format
were all that was necessary to produce a legible
report, the Edit instruction would not be necessary,
since the Unpack instruction (paragraph 3.8.6) would
be sufficient. For instance, if the above packed deci­
mal operand were changed to the EBCDIC zoned
format, it would look like this:

Packed

If the above zoned decimal field were printed, it
would look like this:

o 0 1 249 0 710 7 +

By examining the printed document, one could tell
that it was a positive number with a low-order digit
of 7. However, the printed document is still not too
legible. If, for instance, the number represents
money, it would be desirable to obtain the following
printed result:

$1,249,071.07

This would require insertion of the commas and
decimal points in the right place, as well as other
editing. This is the main function of the edit opera­
tions.

The edit operation involves moving the source
field (2nd operand) into the pattern field (1st oper­
and). The pattern field is initially made up of
EBCDIC characters that control the editing. The
final edited result replaces the pattern field:

2nd operand

Source field
in packed
decimal

1st operand

Pattern field
(EBCDIC char­
acters)

* Each time the digit from the source field replaces a digit select character, the 4-bit digit has the proper EBCDIC or ASCII -8 zone bits

inserted. PSW(12) determines whether the EBCDIC or ASCII-8 zone is inserted. For the purposes of this discUBsion, it is assumed that the

system is in EBCDIC mode.

11/65 2065 FEMI 3-189

As a rule, the second operand is shorter than the
first because one source byte yields two result bytes.

The characters in the pattern field determine the
editing that takes place. The high-order (leftmost)
character in the pattern field is known as the "fill"
character. Any of the 256 possible EBCDIC com­
binations can be used as the fill character. In many
edit operations, however, the fill character consists
of an EBCDIC blank (01000000). The blank charac­
ter (represented by "b" in the discussion that fol­
lows) is not printed out and facilitates programmed
blanking of high-order zero fields.

Besides the fill character, three more control
characters in the pattern field have special meaning:

1. The digit select character.

2. The significant start character.

3. The field separator character.

The above characters can appear anywhere in the
pattern field.

For purposes of discussion, the digit select char­
acter is represented by "d." (The binary code for
the digit select character is 00100000, or a hexa­
decimal 20.) When a digit select character is en­
countered in a pattern field, it is usually replaced
with a digit from the source field. If the digit in the
source field is a high -order zero, however, the digit
select character is replaced by the fill character.
By using a blank as the fill character, high-order
zeros can be blanked out. If an asterisk is used as
the fill character, asterisk protection for paychecks
can be achieved.

Since the digit select character may be replaced
by either a source digit or the fill character, the
system needs some way of knowing which of the two
to choose. This function is provided by a special
control trigger, known as the "s trigger". When the
S trigger is set, it indicates that significant source
digits are being processed. Consequently, the digit
select characters in the pattern field are replaced
with the digits from the source field. At the begin­
ning of the edit operation, the S trigger is always
reset. As long as the S trigger is reset, the digit
select characters in the pattern field are replaced
with the fill character.

As stated previously, the S trigger is set when a
nonzero digit is detected in the source field. The S
trigger is also set if a significant start character is
detected in the pattern field. The significant start

3-190

character has a bit code of 00100001 (hexadecimal
21). In this discussion, the symbol for the left pa­
renthesis, (, is used to represent the significant
start character. When a significant start character
is detected in the pattern field, it is replaced by
either a digit from the source field or the fill char­
acter. A typical edit operation using the b, d, and (
characters is illustrated and explained below.

Source field ~O_O~_1_2~_4_9~~O_7~_1_0~ __ ~1

Pattern fie Id ''--b __ .L.... __ -'-_d---J'--d __ .L...._d.....J. __ d __ '-----'1

Result L-_b --'-__ b---J __ O __ '--__ -'-_2---J __ 4 __ L----I1 b. bl ank

d= select

. I O/1~l 1 1 1 ? character
S triggerLVO ~ . {.signifi-

~ cant start

'-... ,~ character

Beginning End of Set by significant-
of eye Ie cycle start character

The edit operation begins by examining the fill
character (which is b in the above case). If it is not
a digit select or a significant start character, it is
left in place in the pattern field. Then, the next
pattern character is examined. Since this is a sig­
nificant start character, the next high-order source
digit is examined. Because this source digit is zero
and the S trigger is reset (at this time), the signifi­
cant start character is replaced with the fill charac­
ter. However, the significant start character sets
the S trigger so that all subsequent source digits are
significant. The remaining pattern characters in the
above example are digit select characters, which
are replaced with source digits.

Once significance is started, the S trigger re­
mains set until the sign of the source operand is ex­
amined. If a plus sign is detected, the S trigger is
reset; if the source has a negative sign, the S trig­
ger remains set because the usual method of indi­
cating a negative quantity in a printed report is with
the letters "CR". The following example illustrates
how the state of the S trigger will identify the number
as a positive or negative quantity:

Source field 10011214910711017+\
(6 bytes)

Pattern field 1 bid I did I did I did I did I did I c I R I
(14 bytes)

Result 1 bib I b 11 1214191 0 1711 I 01 71 bib I
11/65

When a pattern character is not one of the three
special control characters and the S trigger is set,
the character is not changed. If the S trigger is re­
set, the character is replaced by the fill character.
Since detection of a positive sign resets the S trig­
ger, the remaining pattern characters (CR) are re­
placed by the fill character. If the sign of the
source field had been minus, the S trigger would
have remained set and characters CR would have
been left in the pattern field.

As stated previously, the S trigger is reset when
a minus sign is detected in the source field. The S
trigger is also reset if a field separator character
is detected in the pattern field. The field separator
character has a bit code of 00100010 (hexadecimal
22). In this discussion, the symbol for the right
parenthesis,), represents the field separator char­
acter.

The field separator character is used when two
or more packed decimal source fields are to be
edited with one instruction into a single pattern field.
The following edit example illustrates the use of the
field separator character.

Source field H77Hooloolo+1
(6 bytes)

Pattern field I bid I d I (I ·1 did I b lei R I) I did I d I . I did I b I c I R I
(20 bytes)

Result I bib II 171. 17161 bib I bib I bib I bib I bib I bib I b I

Prints out 17.76

Note that after the field separator character resets
the S trigger, the source field does not contain any
Significant digits. As a result, the pattern charac­
ters are replaced by the fill character (blank).

3.10.14.2 Introduction to Edit and Mark Operation

The operation is identical with the Edit instruc­
tion, except for the additional function of inserting
a byte address in LS register 1. The byte address
is inserted in bits 8-31 of this register. The byte
address is inserted each time the S trigger is in the
zero state and a nonzero digit is inserted in the re­
sult field. The address is not inserted when signifi­
cance is forced by the significant start character of
the pattern. Bits 0-7 are not changed. The Edit
and Mark instruction facilitates the programming of
floating currency-symbol insertion. The character
address inserted in LS register 1 is 1 more than the
address where a floating currericy-sign would be in­
serted. (The Branch on Count instruction, with zero

in the R2 field, may be used to reduce the inserted
address by 1.)

The character address is not stored when signifi­
cance is forced. Therefore, the address of the char­
acter following the significant start character should
be placed in LS register 1 prior to the Edit and Mark
instruction.

When a single instruction is used to edit several
numbers, the address of the first significant digit
of each number is inserted in LS register 1. Only
the last address will be available after the instruc­
tion is completed.

3.10.14.3 General Data Handling

Special circuits are packaged in the serial adder
for use in the Edit and Edit and Mark instructions.
These circuits consist of:

1. A Decoder of Serial Adder Bus B (SBB) to de­
tect a digit select, significant start, or field
separator character in the selected ST byte.

2. Right-digit trigger for AB digit selection.

3. Controls for stepping of ABC.

4. Controls for determining which data (i. e., ST
byte, F, or AB digit with zone) is to be used
as the result byte, and controls for gating this
data to the serial adder.

5. Zero detection of the selected AB digit.

6. Sign detection of the low-order digit of the se­
lected AB byte.

7. Detection of a mark condition.

8. The S trigger with associated set-reset
controls.

9. Controls for setting or resetting STAT's.

The destination field is considered a pattern field
and is processed one byte at a time, from left to
right, under control of STC. Each ST byte is gated
to SBB for decoding and will be replaced by a byte
of data which, depending on decoded conditions,
may be:

1. Original data of ST byte.

2. A selected digit of AB with a zone inserted in
the high-order four bits.

11/65 2065 FEMI 3-191

3. A fill character, which is contained in F.

The source field is processed, one digit at a time,
from left to right, under control of ABC and S trig­
ger, which selects which digit of a byte is to be used.
The selected AB digit is examined only if a digit
select or significant start character appears in the
selected ST byte. The selected AB digit is not nec­
essarily used as part of the result byte, but the next
digit to be processed is selected after the digit has
been examined.

3.10.14.4 Detailed Microprogram Description

The flow chart for the Edit and Edit and Mark
microprogram is shown in Figure 6065, FEDM. At
the start of the execution sequence, the fill charac­
ter is gated from ST (per STC) through the serial
adder to F. A 2-cycle data-processing sequence is
then started and is repeated until all destination
operand bytes have been processed. Exits from
this sequence are made when required for operand
fetching or marking, after which this sequence is
continued. The microprogram is explained in three
parts: (1) first cycle, (2) second cycle, and (3) exit
conditions.

3.10.14.4.1 First Cycle

This is a decode cycle; no data is transferred.
The selected ST byte is gated to SBB, and the se­
lected AB byte is gated to serial adder bus A (SBA)
with the digit to be examined determined by the right­
digit trigger. The decode circuits are activated by
ROS. Decoding of SBB, SBA, and the S trigger
governs the selection of appropriate inputs to the
serial adder, and also whether the S trigger is set
or reset. STAT A is set if the selected source digit
(in AB) is a nonzero digit. However, if a field sepa­
rator character is decoded at SBB, STAT A is reset.

STAT E is set if an invalid digit is decoded in
SBA(O-3). A 1 is added to D (except for the first
entry from another sequence) to keep the byte ad­
dress in D at the same value as STC for use in the
marking sequence. A mark condition is detected
and latched for a branch condition of the Edit and
Mark instruction.

3.10.14.4.2 Second Cycle

At the start of this cycle, data is gated to the
serial adder by hardware controls as explained in

3-192

the first cycle. The second cycle performs the fol­
lowing control functions:

1. The serial adder output is gated back to the
selected ST byte, and the appropriate mark
trigger is set.

2. STC is incremented, and the LL count in E(8-
15) is decremented by ROS control.

3. ABC is incremented by hardware controls.

4. If reqUired, the digit-select trigger is comple­
mented. This action is conditional on the fol­
lowing:

a. The digit selection of AB is changed only if
a significant start or a digit select was de­
coded during the first cycle.

b. When a sign code is decoded in SBA(4-7) at
the time bits 0-3 are selected for examina­
tion, the low-order digit (sign) will be
skipped by stepping ABC and leaving the
right-digit trigger reset.

5. If required, exit to a separate routine is made
via an 8-way ROS branch, for end-op, operand
fetching, or marking. If no exit conditions
exist, the execution sequence is repeated.

3.10.14.4.3 Exit Conditions

Exits from the data processing sequence are
made when one or more of the following conditions
exist:

1. Edit and Mark instruction is being executed,
and a mark condition is detected.

2. LL = 0 or STC = 7.

3. ABC = 7.

Where more than one of the above conditions exists,
a branch is made to the proper sequence in the order
they are listed above. An explanation of each se­
quence is given below.

1. Exit on Detection of Mark Condition

Exit to the mark sequence is made regardless
of other branch conditions. Special action is
taken to return counter values to what they
Were prior to entering the mark sequence, so
they can be retested. STAT H is set if ABC

11/65

has just stepped from 7 to 0, to record this
condition. The contents of AB are destroyed
by gating E(8-15) + 1 via the parallel adder to
A, and the contents of T via the parallel adder
to B. E(8-15) is cleared, and LS register 1 is
read to Tusing E(12-15) + 1 as the LAR ad­
dress. The contents of D, the byte address
of the last byte processed, are placed in T(40-
63). T(32-39) is retained by gating it through
the serial adder and back to T at the same
time the D-PAL-T transfer occurs. The con­
tents of T are now written back to LS regis­
ter 1. Registers and counters are restored
to their original contents. The" source operand
is replaced in AB by refetching it from main
storage, and a test is made, via an ROS
branch, for any other exit condition which may
have been present at the time mark sequence
was started. If no other exit condition exists,
the data-processing sequence is resumed.

2. Exit on LL = 0 or STC = 7 (End-Op or Destina­
tion Fetch)

STAT D is set if ABC also equals 7, and a
destination store is started and a check is
made for invalid data. If STAT E has been
set, a data-interruption trigger is set and an
end-op sequence is started. If STAT E is not
set, a test is made for end-op condition via an
ROS branch. If the LL count has been stepped
to alII's, and end-op sequence is started
which sets the CC, restores the instruction
address to the Ie, and resets STAT G.

If an end-op condition does not exist, D is in­
cremented and a fetch request is initiated for
the next double word of destination operand.
A test is made to see whether a source fetch
is also required (ABC = 0 and STAT D set).
If not, the data-processing sequence is re­
sumed.

3. Exit on ABC = 7 (Possible Source Fetch)

A further test must be made to determine
whether the last byte of AB has been com­
pletely processed. This is determined by
testing ABC for an all-zero count (Le., ABC
was stepped from 7 to 0 in the previous cycle).
If ABC is not zero, the data-processing rou­
tine is restarted; otherwise, the IC is incre­
mented by 8 and a fetch is illitiated for the
next double word of source operand. This
source fetch sequence is common to all VFL
logical instructions and incorporates the word­
overlap test. However, this test does not

affect the edit operation. The source double
word from main storage is gated from SDBO
to AB, and the data-processing sequence is
resumed.

3.10.15 SHIFT LEFT SINGLE, SLL (89)

• 1st operand is shifted left number of
bits specified by 2nd operand address.

• RS format:

o

Address of
one LS
register

Shift LS
register con­
tents to left

02

Number of
left shifts
specified

• 2nd operand address is not used to ad­
dress data; its low-order 6 bits indi­
cate number of bit positions to be
shifted. Remainder of address is
ignored.

• All 32 bits of LS register specified by
Rl partiCipate in shift. High-order
bits are shifted out without inspection
and are lost. Zeros are supplied to
vacated low-order register positions.

• SLL instruction shares same micro­
program as SLA instruction (see para­
graph 3. 4. 9 . 1) •

3.10.16 SHIFT RIGHT SINGLE, SRL (88)

• 1st operand is shifted right number of
bits specified by 2nd operand address.

• RS format:

Address of
one LS
register

Shift LS
register con­
tents to right

• 2nd operand address is not used to
address data; its low-order 6 bits

02

Number of
right shifts
specified

31

11/65 2065 FEMl 3-193

indicate number of bit positions to
be shifted. Remainder of address
is ignored.

• All 32 bits of LS register specified by
R1 participate in shift. Low-order bits
are shifted out without inspection and
are lost. Zeros are supplied to va­
cated high-order register positions.

• SRL instruction shares same micro­
program as SRA instruction (see para­
graph 3.4.10.1).

3.10.17 SHIFT LEFT DOUBLE, SLDL (SD)

• Double-length 1~ operand is shifted
left number of bits specified by 2nd
operand address.

• RS format:

o.

Address of
two LS
registers

Shift 64-bit
contents of LS
registers to left

D2

Number of'
left shifts
specified

• R1 field of instruction specifies an
even/odd pair of registers and must
contain an even register address. An
odd value for R1 is a specification ex­
ception and causes a program inter­
ruption. 2nd operand address is not
used to address data; its low-order 6
bits indicate number of bit positions
to be shifted. Remainder of address
is ignored.

• All 64 bits of even/odd register pair
specified by R1 participate in shift.
High-order bits are shifted out of
even-numbered register without

3-194

inspection and are lost. Zeros are
supl"lied to vacated low-order posi­
tions of odd-numbered registers.

• SLDL instruction shares same micro­
program as SLDA instruction (see
paragraph 3.4.9.2).

3.10.1S SHIFT RIGH'T DOUBLE, SRDL (Se)

• Double-length 1st operand is shifted
right number of bits specified by 2nd
operand address.

• RS format:

Address of
!wo LS
registers

Sh ift 64-bit
contents of LS
registers to right

D2

Number of
right shifts
specified

• R1 field of instruction specifies ane
even/odd pair of registers and must
contain an even register address. An
odd value for R1 is a specification ex­
ception and causes a program inter­
ruption. 2nd operand address is not
used to address data; its low-order 6
bits indicate number of bit positions
to be shifted. Remainder of address
is ignored.

• All 64 bits of even/odd register pair
specified by R1 participate in shift.
Low-order bits are shifted out of odd­
numbered register without inspection
and are lost. Zeros are supplied to
vacated high-order positions of the
registers.

• SRDL instruction shares same micro­
program as SRDA instruction (see
paragraph 3.4 .10.2).

31

11/65

SECTION 6. BRANCIllNG INSTRUCTIONS

This section presents a functional analysis of the
branching instructions, including a discussion of
branching, instruction format, data flow, and pro­
gram interruptions. Since the data used and gener­
ated during a branch instruction may depend upon or
be used in the end-op cycle or the I-Fetch sequence,
these operations should be thoroughly understood
before studying the branch instructions. (Refer to
Section 1 of this chapter.)

3.11 INTRODUCTION

• Branching causes departure from normal
address sequencing.

• Branch address introduced as next se­
quential address.

• Branch address obtained from general­
purpose LS register or specified as 2nd
operand address.

• Branch may be conditional or uncondi­
tional.

• Conditional branches:
Branch on Condition
Branch on Count
Branch on Index

• Unconditional branches:
Branch and Link
Execute

• Conditional branches mayor may not
use branch address.

• Unconditional branches always use
branch address.

• If branch is successful, storage re­
quest per IC issued during I-Fetch
is blocked.

• If branch is unsuccessful, Q is re­
filled if required.

Normally, the CPU is controlled by instructions
taken in sequential order. That is, an instruction
is fetched from a main storage location specified by
the instruction address in the IC. The address is

then increased by the number of bytes needed to ad­
dress the next instruction in sequence, and this up­
dated address replaces the old address in the IC.
The current instruction is executed, and the same
steps are repeated using the updated instruction
address to fetch the next instruction.

A departure from the normal instruction sequence
occurs when branching is performed. A branch ad­
dress is introduced as the next instruction address.
This branch address may be obtained from one of
the general-purpose registers in the LS, or it may
be the second operand address specified by a par­
ticular instruction. Depending upon the format and
the instruction, branching may be either conditional
or unconditional. The conditional branches are (1)
branch on condition, (2) branch on count, and (3)
branch on index. The unconditional branches are
(1) branch and link and (2) execute. Conditional
branches mayor may not use the branch address.
If the branch is successful (that is, the branch is
taken), the branch address is used and the storage
request issued per the IC during I-Fetch is blocked.
If the branch is unsuccessful, the instruction ad­
dress in the IC is used to fill Q. Unconditional
branches are always taken and use the branch
address.

Branching is used to reference a subroutine, to
resolve a 2-way choice, or to repeat a portion of a
program. To save time and increase the speed of
the operating program, branching is always con­
sidered to be successful unless proven otherwise.
Therefore, whenever a branch instruction is de­
coded during I-Fetch, the next instruction address
is the branch address located in D. If the branch is
found to be unsuccessful (determined during execu­
tion of the branch instruction), the instruction ad­
dress from D is ignored, and the correct instruction
address is obtained from the IC.

There are two methods of performing an end-op
cycle in the branch operations: (1) normal end op
and (2) branch end op. The normal end-op cycle al­
lows decoding of the next instruction format from R
and of the instruction address from the IC, and is
normally used when ending an operation. Decoding
off R is possible since the data placed in the register
has become stable by the time the end-op cycle be­
gins. The branch end-op cycle, on the other hand,
allows decoding of the next instruction format from
the SDBO and of the instruction address from D.

11/65 2065 FEMI 3-195

This end-op cycle is used when the data, which has
been placed in R, is not yet stable and is some haIf­
word other than the last halfword of Q. Decoding
from the SDBO saves the time it takes for the data
to stabilize in R and the instruction address to
stabilize in the IC.

3.11.1 INSTRUCTION FORMAT

• Branch instructions use three formats:

RR

Op Code

o 78 111215

RX

Op Code I~ X2 82 02
0 18 11 12 15 16 1920

RS

OpCode Rl R3 82 02
0 78 11 12 1516 1920

• In RR format:
R1 is LS address of 1st operand.
M1 is mask field.
R2 is LS register containing branch

address.

• In RX format:
R1 is LS address of 1st operand.
M1 is mask field.
Index + base + displacement = branch

address.

• In RS format:
R1 is LS address of 1st operand.
R3 is LS address of increment value.
Base + displacement = branch

address.

31

31

In the formats shown above, bits 8-11 are nor­
mally the R1 field that specifies the address of an
LS register containing the first operand. In the
Branch on Condition instruction, however, bits 8-11
are designated as M1 and contain mask bits used in
conjunction with PSW CC settings to determine
whether the branch is successful.

In the RR format, the R2 field specifies the ad­
dress of an LS register that contains the branch ad­
dress except when R2 is zero, in which case no~
branching is to take place.

3-196

In the RX format, the contents of the LS registers
specified by the X2 and B2 fields are added to the D2
field to form the branch address.

In the RS format, which is used in Branch on In­
dex operations, the contents of the LS register speci­
fied by the B2 field are added to the D2 field to form
the branch address. The R3 field specifies the ad­
dress in LS of an increment value (third operand)
which is added to the first operand to determine the
index value.

3.11.2 DATA FLOW

• Main functional units used: Q, R, E,
D, and IC.

• Secondary functional units used: T, AB,
parallel adder, STC, and ABC.

Figure 9056, FEDM, is a diagram of the basic
data flow for the branch instructions. The main
functional units used to determine addresses and in­
structions in the branch operations are Q, R, E, D,
and IC. The secondary functional units, T, AB,
parallel adder, STC, and ABC, determine whether
the branch is successful when the branch being ex­
ecuted is a conditional branch. The purpose of each
functional unit is as follows:

1. Q: Holds the double word that contains the in­
struction addressed by the branch instruction
if the branch is successful.

2. R: Contains the instruction to be performed
after execution of the branch instruction.

3. E: Contains the branch instruction presently
being executed.

4. D: Holds the address of the double word
which, if the branch is successful, contains
the next instruction to be executed.

5. IC: Holds the address of the double word
which, if the branch is unsuccessful, contains
the next instruction to be executed.

6. T: BUffers the operand being tested and oper­
ated on.

7. AB: Holds the first operand when added to
so/lle other value to determine whether the
Vranch is successful.

11/65

8. Parallel adder: Determines whether condi­
tions have been met when a conditional branch
is being executed.

9. STC: Allows transfer of last byte of T during
an Execute instruction when modifying the sub­
ject instruction of the Execute instruction.

10. ABC: Selects data being modified in the sub­
ject instruction during an Execute instruction.

3 .ll. 3 INTERRUPTIONS

• Program interruptions:
Execute
Addressing
Specu'~cation
Proteotion

• Current PSW stored as old PSW and
new PSW obtained.

• Interruption code in old PSW identifies
cause of interruption.

Table 3-22 lists the interruptions that may occur
in branching instructions.

TABLE 3-22. BRANCHING INSTRUCTION INTERRUPTIONS

How Instruction

Interruption Code Execution is

Interruption PSW Bits 16-31 ILC Finished

Execute 00000000 00000011 2 Suppressed

Addressing 00000000 00000101 0, 1, 2, 3 Suppressed

Specification 00000000 00000110 1, 2, 3 Suppressed

Protection 00000000 00000100 0, 2, 3 Suppressed

These interruptions cause a program interrup­
tion. When the interruption occurs, the current
PSW is stored as an old PSW and a new PSW is ob­
tained. The interruption code in the old PSW iden­
tifies the cause of the interruption. The following
listing briefly describes the interruptions:

1. Execute: The subject instruction of an Exe­
cute instruction is another Execute instruction.
The operation is suppressed.

2. Addressing: The branch address of an Exe­
cute instruction designates an instruction­
halfword location outside the available storage
area. The operation is suppressed.

3. Specification: The branch address of an Exe­
cute instruction is odd. The operation is sup­
pressed.

4. Protection: The branch address of an Execute
instruction is protected.

3.12 INSTRUCTION ANALYSIS

A list of the branching instructions with their
format, mnemonic code, op-code, and interrup­
tions is given in Table 3-23. A functional descrip­
tion of each instruction is contained in the paragraphs
that follow.

TABLE 3-23. BRANCHING INSTRUCTIONS

Mnemonic Op

Instruction Format Code Code Interruptions

Branch on Con- RR BCR 07 -
dition

Branch on Con- RX BC 47 -
dition

Branch and Link RR BALR 05 -

Branch and Link RX BAL 45 -
Branch on Count RR BCTR 06 -

Branch on Count RX BCT 46 -

Br anch on Index RS BXH 86 -
High

Branch on Index RS BXLE 87 -
Low or Equal

Execute RX EX 44 Execute/

Addressing/

3.12.1 BRANCH ON CONDITION

• Next sequential address replaced by
branch address if state of CC is as
specified by MI.

• Instructions:
Branch on Condition, BCR (07)
Branch on Condition, BC (47)

• Ml field used as 4-bit mask.

Specification/

Protection

• Branch successful when mask bit for
particular CC is 1.

11/65 2065 FEMI 3-197

• Branch unsuccessful if Ml field equals
zero.

• Branch known to be successful or un­
successful before execution of branch
instruction.

• Storage request issued per IC or D,
depending upon whether branch is
successful and Q needs filling.

3.12.1.1 BCR (07)

• Replaces next sequential address with
branch address if state of CC is as
specified by MI.

• RRformat:

• Conditions at start of execution:
Instruction is in E.
Branch address is in D.

• Branch is unsuccessful if R2 field equals
zero.

• CC's and corresponding mask bits listed
in Table 3-24.

The Branch on Condition (BCR) instruction, which
has an RR format with an op code of 07, replaces
the next sequential instruction address with the
branch address located in the LS register specified
by R2 if the CC agrees with the corresponding mask
bit in the Ml field. The Ml field is used as a 4-bit
mask. Table 3-24 lists the CC's and the corre­
sponding mask bits in the Ml field. The branch in­
struction is successful whenever the CC has a cor­
responding mask bit of 1 and the R2 field is not zero.
When all four mask bits are 0 or when the R2 field
contains all O's, the branch instruction is unsuc­
cessful. The BCR is equivalent in this case to a
no-operation instruction.

3-198

TABLE 3-24. CONDITION CODE MASK BITS

Condition Mask Bit

Code In (E(8-11)

0 8

1 9

2 10

3 11

At the start of execution, the instruction is con­
tained in E, the branch address is contained in D,
ant:! a 3-cycle storage request for the branched-to
instruction has been generated. Normally, a stor­
age request is generated per the IC. For a BCR
instruction, however, the storage request can be
generated from two possible places, depending upon
whether the branch is successful. If the branch is
successful, the storage request is generated per D.
If the branch is unsuccessful, the storage request
is generated per the IC if Q needs to be refilled.
Since the CC's, which have to be compared with the
mask bits, are set in the execution phase of a pre­
vious instruction and are tested during I-Fetch of
the branch instruction, success of the branch can be
determined beforehand. Therefore, the BCR in­
struction knows whether it is successful or unsuc­
cessful before actual execution of the instruction.

If the branch is successful, the branch address
is placed in D by the normal I-Fetch sequence. A
storage request is then issued to main storage per D.
The correct halfword within the dOUble word from
main storage is then gated into Q and from Q to R
per D(21, 22). The contents of D are updated by 8
and placed in the Ie to address the next sequential
instruction from main storage. If the branch is un­
successful, the storage request is issued per the IC,
if Q needs to be refilled, during I-Fetch, and the
data from main storage is gated to Q during the exe­
cution of the branch.

A flow chart of the BCR operation is contained in
Figure 6066, FEDM. Assume that the branch oper­
ation is a successful branch (Figure 6066, FEDM,
point A). The execute and address-store-compare
triggers are reset if they are set. The triggers are
set if the branch instruction is the subject instruc­
tion of an Execute instruction.

The contents of D are now transferred to PAA(40-
63). Then 8 is added to PAA, and the result (address
of next double wOFd to be operated on) is transferred

11/65

to the IC. D(21,22) is now tested. If D(21, 22) equals
11, it signifies that the next instruction to be exe­
cuted, when the data is gated into Q from the SDBO,
occupies the last halfword of Q. If D(21, 22) equals
a value other than 11, then the next instruction to be
executed is in some halfword other than the last half­
word of Q.

Assume that D(21,22) equals 11. In this case, a
storage request must be issued to obtain the next in­
struction to be executed. At this time, the data
(branched-to instruction) that was requested during
I-Fetch of the branch instruction is present at the
SDBO and can be gated into Q. From Q, the data is
gated to R per D(21, 22), thus placing the last half­
word of Q in R.

Normally, the instruction format is determined
from R-register decoding. Since the branched-to
instruction (located in the last halfword of Q) has
just been placed in R, decoding cannot be performed
on this cycle because the ingated data is not yet
stable. Therefore, the branch instruction must per­
form a few operations to allow time for R to stabil­
ize. The contents of the IC are then transferred to
the parallel adder, where they are updated by 8 and
replaced in the IC to address the next double word
from main storage. After the IC has been updated,
the next sequential double word (requested during
execution of the branch instruction) is gated from .
the SDBO into Q. The data in R is stable at this
time, and a normal end-op cycle can take place to
complete the operation.

Now assume that D(21, 22) equals a value other
than 11 on a successful branch. This condition
means that the next instruction to be executed is
contained in either the first, second, or third half­
word of Q when the data from storage is gated into Q.
The data which was requested during I-Fetch of the
branch instruction is now present at the SDBO and
can be gated into Q. The halfword that contains the
next instruction to be executed is then gated into R
per D(21, 22). As previously stated, format de­
coding is normally accomplished from R and instruc­
tion address decoding from the IC. Since the data to
be decoded and the address of the next instruction
have just been placed in R and the IC, it is not yet
stable and therefore cannot be decoded in this cycle.
Rather than delaying a few cycles until the informa­
tion is stable, a branch end-op cycle is taken. This
cycle allows decoding of the halfword (containing the
next instruction) from the SDBO as the data is trans­
ferred from the SDBO to Q and decoding of the in­
struction address from D.

Assume, now, that the branch had been found to
be unsuccessful (point B, Figure 6066, FEDM).
Since the storage request was generated per the IC,
IC(21,22) is now tested. At this point, IC(21,22) is
either 11 or 00. First assume that IC(21, 22) is
equal to 00. This value means that the next instruc­
tion to be executed is to come from the first half­
word of the double word which has been requested
during I-Fetch. The contents of the IC are updated
by 8 and placed in both the IC and D. The double
word from main storage requested during I-Fetch
is now gated from the SDBO to Q. The first half­
word from Q is then transferred to R. Since the
next instruction to be executed has just been placed
in R and is not yet stable, the format cannot be de­
coded on this cycle. The instruction must therefore
perform some operation to allow time for R to stabil­
ize. The execute trigger is now tested. If reset,
the branch instruction ends in a branch end op and
format decoding of the next instruction takes place
off the SDBO. If the execute trigger is set, the
branch instruction was the subject instruction of an
Execute instruction and the present contents of the
IC are incorrect since the IC was increased by 8
during the Execute instruction. The contents of the
IC are thus reduced by 8 and replaced in the IC. By
this time, the data gated into R is stable and the
format can be decoded from R. A normal end op,
therefore, can take place to complete the operation.

Now assume that IC(21, 22) equals 11. This value
means that the next instruction to be executed is lo­
cated in the last halfword of the double word from
main storage that contains the branch instruction
unless the branch was the subject instruction of the
Execute instruction. Then, the next instruction is
located in the last halfword of the double word con­
taining the Execute instruction. The contents of the
IC are now transferred to PAB(40-63). Then 8 is
added to PAB, and the result is transferred to the
IC and D. At this time, the data that was requested
during I-Fetch of the branch instruction is present
at the SDBO and can be gated into Q. The execute
trigger is now tested. If the trigger is set, the IC
is reduced by 8 and a normal end-op cycle is taken.
If the execute trigger is reset, a branch end-op
cycle is taken. The branch end-op cycle is taken
because some of the data to be used in the next in­
struction may be in the double word requested
during I- Fetch of the branch instruction. Since this
data has just been placed in Q, it has not yet stabi­
lized and cannot be decoded from Q. Therefore, the
data is decoded from the SDBO during the branch
end-op cycle.

Now assume that IC(21,22) contained either 01 or
10 and that the branch instruction was unsuccessful

11/65 2065 FEMI 3-199

(point C, Figure 6066, FEDM). In this case, the
next instruction to be executed is in either the second
or the third halfword of Q, and Q does not need to be
refilled. Therefore, a normal end-op cycle is taken,
the next instruction format is decoded from R, and
the instruction address is decoded from the IC.

3.12.1.2 BC (47)

• Replaces next sequential address with
branch address if state of CC is as
specified by M1.

• RXformat:

• Conditions at start of execution:
First 16 bits of instruction are in E.
Branch address is in D.

• Operation is identical with BCR. (Refer
to paragraph 3. 12.1. 1.)

• Figure 6066, FEDM.

3.12.2 BRANCH AND LINK

• stores link information in LS register
specified by R1 and branches to ad­
dress specified by 2nd operand.

• Instructions:
Branch and Link, BALR (05)
Branch and Link, BAL (45)

• Link information consists of:
Instruction length code
CC
Program mask bits
Address of next sequential instruction

• Link information stored whether branch
is successful or unsuccessful.

3-200

3.12.2.1 BALR (05)

• Stores link information in LS register
specified by R1 and branches to address
specified by 2nd operand.

• RRformat:

Branch to address specified

• Conditions at start of execution:
Instruction is in E.
2nd operand is in AB and D.

• If execute trigger is set and IC(21, 22)
equals 11, IC is reduced by 16 and
stored as link address informatio.n.

• If execute trigger is set and IC(21, 22)
does not equal 11, IC is reduced by 8
and stored as link address information.

• Branch is unsuccessful if R2 equals zero.

The Branch and Link (BALR) instruction, which
has an RR format with an op code of 05, stores the
address of the instruction which, if the branch is
unsuccessful, is the address of the next sequential
instruction. Stored with the address is link informa­
tion containing the instruction length code, the CC,
and the program mask bits. The instruction length
code stored will be either 1 or 2. If the instruction
length code stored is 2, the BALR instruction is the
subject of an Execute instruction. If during a BALR
operation the R2 field is equal to zero, the branch is
considered unsuccessful.

A flow chart of the BALR instruction is contained
in Figure 6067, FEDM. At the start of execution,
the instruction is contained in E, the second operand
is in AB and D, and a storage request is issued per
D for the branched-to instruction. The purpose of
the BALR instruction is to branch to a subroutine
and provide a means of returning from the subroutine

11/65

to the main flow of instructions in a program. How
this is accomplished is shown in Figure 3-20. When
processing the main instruction flow and a BALR in­
struction is encountered, the address of the double
word containing the instruction which sequentially
follows the BALR in the main instruction flow is
stored in LS. For the example illustrated in Fig­
ure 3-20, the address of the double word containing
the instruction is 8 and is stored in LS address 15.
If the BALR instruction is in address 14 of the main
instruction flow, then the address stored will be 16.
Once the instruction address is stored, the branch
to the subroutine occurs. The subroutine is per­
formed and, when completed, a branch instruction

Main
Instruction

Flow

0 Add

2

is issued using the address that was stored during
the BALR instruction as the branch address to re­
turn to the main flow of instructions. Mter re­
turning to the main flow of instructions, the program
will continue in its normal manner; that is, process­
ing the remaining instructions.

In determining the address which is to be stored
as the link address, IC(21, 22) and the execute trig­
ger must be tested (Figure 6067, FEDM). If IC(21,
22) equals 11 and the execute trigger is set (indi­
cating the BALR is the subject of the Execute in­
struction and the Execute instruction is located in

Local
Storage

.. 15 I Address of doubl e word - containing BALR (8)

Double-word
address

Multiply
Store main storage address

o

Dou~le -word
address

8

Double-word
address

16

11/65

4 Divide of instruction that sequen-
tia��y follows BALR in

6 Add main instruction flow

8 Load ~

10 Add

12 BALR'

14 Add ..-
16 Load Branch to address specifiedl

in the subrouti ne
18 Add

Subroutine

20 Compare
Program

22 Divide
96 Add

~ 98 Subtract

100 Add

102 Branch to t--main program

104

Obtain address which was ~

'--
stored during BALR and
use this address as branch ..
address

FIGURE 3-20. EXAMPLE OF USE OF BRANCH AND LINK INSTRUCTION

2065 FElvlI 3-201

the second and third halfwords of its double word),
16is subtracted from the IC and placed in T. Thus,
if it is necessary to return to the main flow of in­
structions, the instruction which will be performed
next is that instruction sequentially following the
Execute instruction and is contained in the same
double word as the Execute instruction. If IC(21, 22)
does not equal 11 or the execute trigger is reset, 8
is subtracted from the IC and the value is placed
in T.

The contents of E(12-15), which contains the ad­
dress of the LS register which has the branch ad­
dress, are now examined. If E(12-15) equals zero,
branching is not to take place and a No Operation
occurs. If E(12-15) equals anything other than zero,
branching occurs unconditionally. First assume that
the branch is unsuccessful [E(12-15) equals zero]'
The state of IC(21, 22) is tested. If IC(21, 22) equals
11, it indicates that the next instruction to be exe­
cuted is in R (this instruction is the last halfword of
the double word in Q) and a new double word must be
placed in Q. If IC(21, 22) equals any other value, the
next sequential instruction is also located in R but Q
contains data which is still good and may be opcr~
ated on. In either case, the remainder of the link
data [PSW(32-39)] is placed in T(32-39) and from
there transferred to LS per E(8-11). If IC(21, 22)
equals a value other than 11, a normal end op is
taken after storing the data and the next instruction
is decoded from R. If IC(21, 22) equals 11, after
storing the link information, a 3-cycle storage re­
quest is issued per the IC to obtain the next sequen­
tial double word to refill Q. The execute trigger is
again tested. If set, a normal end op is immedi­
ately taken and the next instruction to be executed
is the instruction which sequentially follows the
Execute instruction (of which the BALR instruction
was the subject instruction). If the execute trigger
is reset, the next instruction to be executed is in R.
The IC is updated by 8 to select the next sequential
double word after the one just requested. IC(21,22)
is again tested; if it equals 11, the data on the SDBO
is gated to Q and a branch end-op cycle is taken. If
IC(21,22) equals some other value, the data on the
SDBO is gated to Q and the first halfword of Q is
gated to R. A branch end-op cycle is taken to allow
decoding off the SDBO.

Now assume that E(12-15) does not equal zero
(indicating a successful branch). D(21, 22) is tested
for a value of 11. If not equal to 11, PSW(32-39) is
transferred to T(32-39). The double word contain­
ing the branched-to instruction (requested during
I-Fetch of the branch instruction) is now present at
the SDBO and is gated to Q.

3-202

From Q, the correct halfword is transferred to R
per D(21, 22). Then 8 is added to D, and the result
placed in the IC to address the next sequential double
word from main storage. The data in Tis nowtrans­
ferred to LS per E(8-11). Since the data in Rand
the IC is not yet stable, thus preventing decoding of
the next instruction from R or the instruction ad­
dress from IC, a branch end-op cycle is taken.
Decoding of the next instruction during a branch end
op occurs off the SDBO which, at this time, is stable.

If D(21, 22) is equal to 11, the next instruction is
located in the last halfword of the double word re­
quested during I-Fetch. The PSW data, in this case,
is transferred to T(32-39). The double word re­
quested during I-Fetch is present at the SDBO and is
gated to Q. From Q, the last halfword is transferred
to R per D(21, 22). Since the halfword that contains
the next instruction to be executed is the last half­
word of the double word, Q must be filled with a new
double word to allow continuous operation. Accord­
ingly, a 3-cycle storage request is issued per the IC
to obtain the next double word. The address of the
double word is tested for validity; if the address is
invalid, the I-Fetch-invalid-address trIgger is set.
Then 8 is added to D, and the result is transferred
to the IC. This action allows selection of the next
sequential double word when requested by the IC.

The data in T is then transferred to LS per E(8-11),
and the IC is updated by 8. By this time, the re­
quested double word is present at the SDBO and is
gated to Q. A normal end-op cycle is taken, and
the next instruction to be executed is decoded off R.

3.12.2.2 BAL (45)

• Stores link information in LS register
specified by Rl and branches to address
specified by 2nd operand.

• RX format:

Branch to address spec ified
by 2nd operand address

11/65

• Conditions at start of execution:
1st 16 bits of instruction are in E.
Address of next instruction is in D.

• Unconditional branch.

• If execute trigger is reset and ABC
equals 0, IC reflects correct address
and is stored as link address informa­
tion.

• If execute trigger is reset and ABC
does not equal 0, IC is reduced by 8
and then stored as link address in­
formation.

• If execute trigger is set and IC(21, 22)
equals 11, IC is reduced by 16 and
stored as link address information.

• If execute· trigger is set and IC(21, 22)
does not equal 11, IC is reduced by 8
and stored as link address information.

The Branch and Link (BAL) instruction stores the
address of the instruction which, if the branch were
unsuccessful, would be the next sequential instruc­
tion address. Stored with the address is link infor­
mation consisting of the instruction length code, the
CC, and the program mask bits. The instruction
length code stored is 2. The BAL instruction is an
unconditional branch with an RX format and an op
code of 45.

Figure 6068 FEDM, is a flow chart of the BAL
instruction. At the start of execution, the first 16
bits of the instruction are in E, the address of the
next instruction is in D, and a 3-cycle storage re­
quest has been generated per D for the instruction
being branched to. At the beginning of the operation,
the last three bits of the IC are transferred to the
ABC. This value will be used to determine the cor­
rect value of the IC before it is stored in LS as link
address information. The contents of the IC are
transferred to the parallel adder and reduced by 8.
This value is then transferred to T, from where it
and the remainder of the lillk data [PSW(32-39)] will
be transferred to LS. The state of the execute trig­
ger is then tested; if it is set, the branch operation
is the subject instruction of an Execute instruction.

First assume the execute trigger is reset. The
ABC is now checked for all zeros. If equal to zero,
it indicates that the branch instruction now being
executed was located in the third and fourth half­
words of Q. Normally, when an instruction with an
RX format occupies the last two halfwords of Q, a

storage request is generated during I-Fetch per the
IC and the IC is updated by 8. Since this is a branch
instruction, however, the storage request from the
IC is prevented and the IC is not increased by 8.
Therefore, the address presently in T (after being
reduced by 8) is incorrect and must be changed.

PSW(32-39), which contains the instruction length
code, the CC, and the program mask bits, is trans­
ferred to T(32-39). The contents of D are then
transferred to the parallel adder, increased by 8,
and transferred to the Ie. The IC now contains the
address of the double word in main storage which
follows the double word containing the branched-to
instructiorl. At this time, a storage request for the
next double word is issued if D(21, 22) equals 11.

The contents of T (link information) are now in­
creased by 8 to give the correct double-word ad­
dress in T(40-63). The link information can now be
stored in LS. At this time, the data requested per D
during I-Fetch is at the SDBO and is gated to Q.
From Q, the correct halfword is transferred to R
per D(21, 22). The contents of T are then trans­
ferred into LS per E(8-11).

D(21,22) is now checked for a value of 11. If it is
equal to 11, the next instruction to be executed is in
the last halfword of Q. The IC is then updated by 8
to address the next double word in main storage.
(This double word is two addresses higher than the
branched-to instruction.) By this time, the double
word that was requested during the branch instruc­
tion is present at the SDBO and can be gated into Q.
A normal end-op cycle is then taken to complete the
operation. If D(21, 22) did not equal 11, a branch
end-op cycle is taken and the next instruction is
decoded off the SDBO.

Assume that the ABC did not equal zero (Figure
6068, FEDM). PSW(32-39) is transferred to T(32-
39). Since the ABC was not equal to zero, the ad­
dress portion of the link information is correct and
can be stored in LS per E(8-11). The contents of D
are then increased by 8 and placed in the IC. This
address is the address of the next sequential double
word in main storage, following the double word con­
taining the branched-to instruction. A storage re­
quest for this word is then issued if D(21, 22) is
equal to 11. At this time, the branched-to instruc­
tion (that instruction requested during I-Fetch) is
present at the SDBO and the double word from main
storage is gated into Q. The correct halfword is
transferred to R per D(21, 22). D(21, 22) is then
tested. If D(21, 22) does not equal 11, a branch
end-op cycle is taken, the instruction format to be

11/65 2065 FEMI 3-203

executed next is decoded off the SDBO, and the in­
struction address decoded from D. If D(21,22)
equals 11, the operation is as previously described
with a normal end-op cycle taking place.

Now assume that the execute trigger is set, in­
dicating that the branch instruction is the subject
instruction of an Execute instruction. IC(21,22) is
tested for a value of 11. If IC(21,22) equals 11, the
Execute instruction was located in the second half­
word of its double word and, when in Q, automati­
cally issued a storage request and increased the IC
by 8. This increase results in an address in the IC
that is 16 bytes higher than the double-word address
containing the Execute instruction. Since the ad­
dress that is stored as link information is the ad­
dress of the double word containing the Execute
instruction, the address has to be reduced by 16.
The address in T, however, has already been re­
duced by 8; therefore, only 8 must be subtracted
from it. The remainder of the link information is
now transferred from PSW(32-39) to T(32-39).

The contents of D are transferred to the parallel
adder, updated by 8, and then transferred to the IC
to address the next double word. The execute trig­
ger is now reset. A storage request for that double
word whose address was just placed in the IC is
issued if D(21, 22) equals 11. At this time, the data
requested during I-Fetch of the branch instruction
is present on the SDBO and is gated to Q. The cor­
rect halfword in Q is then transferred to R per D(21,
22). The address portion of the link information
located in T is transferred to the parallel adder,
where it is decreased by 8. This value is now equal
to the address of the double word that contains the
Execute instruction and is transferred to T. From
T, the link information is transferred to LS per
E(8-11). D(21,22) is now tested for a value of 11.
If D(21, 22) equals 11, the data requested during the
branch instruction is gated from the SDBO to Q, and
a normal end-op cycle is taken. If D(21, 22) equals
some value other than 11, the operation proceeds
directly to the normal end-op cycle to complete the
operation.

Now assume that IC(21, 22) did not equal 11. This
condition indicates that the Execute instruction was
not in the second halfword and a storage request was
not automatically generated. The link information
presently in T is therefore correct and can be stored
in LS per E(8-11). The contents of D are increased
by 8 and placed in the IC. Again a storage request
is generated if D(21,22) equals 11. At this time, the
double word containing the branched-to instruction is
located in the SDBO and is gated to Q. The correct
halfword for Q is then transferred byR per D(21, 22).

3-204

The contents of D(21, 22) are tested for a value of 11,
and operations continue as previously described,
ending with a branch end op or a normal end op.

3.12.3 BRANCH ON COUNT

• Subtracts 1 from 1st operand and, if
result is not 0, branches to address
specified.

• Instructions:
Branch on Count, BCTR (06)
Branch on Count, BCT (46)

3.12.3.1 BCTR (06)

• Subtracts 1 from 1st operand and, if
result is not 0, branches to address
specified.

• RR format:

06
o

Subtrac t 1 from 1st operand
and store resul t in LS per R 1

Branch to address specified if
resul t of subtraction is not zero

• Conditions at start of execution:
Instruction is in E.
1st operand is in ST.
Branch address is in D.

The Branch on Count (BC TR) instruction sub­
tracts 1 from the first operand (contents of the LS
register specified by the Rl field) and, if the result
does not equal zero or the R2 field does not equal
zero, branches to the address specified by the con­
tents of the LS register designated by the R2 field.
The result of the subtraction is stored in the first
operand location. If the result of the subtraction
equals zero, the next sequential instruction is exe­
cuted. If E(12-15) equals zero, the branch is auto­
matically unsuccessful. The BCTR instruction has
an RR format with an op code of 06.

11/65

A flow chart of the BCTR instruction is contained
in Figure 6069, FEDM. At the start of execution,
the instruction is in E, the first operand is in ST,
the branch address is in D, and a 3-cycle storage
request has been issued per D for the instruction
being branched to. The first operand is transferred
from T to B and from B to the parallel adder, where
1 is subtracted from the operand to determine
whether the branch is successful. Before sub­
tracting 1, E(12-15) is tested for zeros. As previ­
ously stated, if E(12-15) equals zero, the branch is
unsuccessful; if other than zero, the branch is suc­
cessful. Assume that E(12-15) does not equal zero.
The contents of B are transferred to the parallel ad­
der, where 1 is subtracted from the operand; the
result is transferred via T into LS. The result of
the subtraction is tested for all zeros; if zero, the
branch is unsuccessful; if not zero, the branch is
successful.

First assume that the branch is successful.
Since D(21, 22) indicates in which halfword the
branched-to instruction is located, it is examined.
If D(21, 22) equals 11, the instruction is located in
the last halfword of the double word requested
during 1- Fetch of the branch instruction. The con­
tents of D, therefore, are updated by 8 and trans­
ferred to the IC. By this time, the data requested
during 1-Fetch is present at the SDBO and can be
gated into Q. The last halfword of Q is then trans­
ferred to R per D(21, 22). A 3-cycle storage request
for the next double word is now issued per the IC.
The contents of the IC are then transferred to the
parallel adder, updated by 8, and transferred back
to the IC to select another double word from main
storage. At this time, the double word which se­
quentially follows the double word containing the
branched-to instruction is present at the SDBO and
is gated into Q. A normal end-op cycle is taken,
and the next instruction to be executed is decoded
from R.

If D(21, 22) did not equal 11, the branched-to in­
struction is located in some halfword other than the
last. In this case, the contents of D are transferred
to the parallel adder, updated by 8, and then trans­
ferred to the IC. At this time, the double word con­
taining the branched-to instruction is present at the
SDBO and can be gated into Q. From Q, the correct
halfword is transferred to R per D(21, 22). A branch
end-op cycle is taken, and the next instruction is
decoded off the SDBO.

Now assume that the branch is unsuccessful. If
IC(21,22) equals 11, a storage request per the IC
must be given during the branch operation execution
phase to obtain the next sequential double word from

main storage. Once the storage request is issued,
the execute trigger is tested. If set, it indicates
that the branch instruction is the subject instruction
of aI\ Execute instruction. Therefore, a normal
end-op cycle is taken to complete the operation.
The data requested in this case is not gated into Q.
If the execute trigger is reset, lC(21, 22) is tested
to see whether it contains 11. If the value is 11, the
IC is updated by 8 (to select another double word)
and placed in the IC and D. By this time, the data
requested by the storage request given during the
execution phase of the branch instruction is present
at the SDBO and can be gated into Q. A normal end­
op cycle is then taken, and the next instruction to be
executed is decoded off R. If IC(21, 22) does not
equal 11, then it equals 00, and the next instruction
is located in the first halfword of the double word
requested during the execution phase of the branch
instruction. The IC is updated by 8, and the result
placed in D and the IC. At this time, the data re­
quested during the execution phase is present at the
SDBO. This double word is gated to Q; the correct
halfword from Q(0-15) is transferred to R. Since
the format is normally decoded off R and the data
just placed in R is not yet stable, a branch end-op
cycle is taken. This cycle allows the next instruc­
tion to be decoded off the SDBO, which at this time
is stable.

3.12.3.2 BCT (46)

• Subtracts 1 from 1st operand and, if
result is not 0, branches to address
specified.

• RXformat:

46

o

Subtract 1 from 1st operand
and store resul t in LS per Rl

Branch to address specified if
resul t of subtraction is not zero

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1st operand is in ST.
Branch address is in D.

02

31

11/65 2065 FEM! 3-205

• This instruction is similar to BC TR
but does not test E(12-15) for zero.
(Refer to paragraph 3. 12. 3. 1.)

• Figure 6069, FEDM.

3.12.4 BRANCH ON INDEX

• Adds 1st operand (Rl) to 3rd operand
(R3) and stores sum in LS register
addressed by Rl. Compares sum with
comparand and if sum is greater than,
less than, or equal to the comparand,
depending on the instruction, branches
to address specified.

• Instruction format: RS.

• Instructions:
Branch on Index High, BXH (86)
Branch on Index Low or Equal,

BXLE (87)

• Sum of 1st and 3rd operands always
stored whether branch is successful
or not.

• Comparand address (R3 or R3 + 1)
must be odd.

3. 12.4. 1 Branch on Index High, BXH (86)

• Branches to address specified if result
of addition is greater than comparand.

• RSformat:

o
86

Add 1st and 3rd operands and
store resul t (index) in LS per R 1

Compare index with comparand
located in LS per R3 or R3 + 1

02

Branch to address specified if
index is greater than comparand

3-206

31

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1st operand is in ST.
Branch address is in D.

The Branch on Index High (BXH) instruction,
which has an RS format with an op code of 86:

1. Adds third operand to first operand.

2. Stores result (index) in LS register addressed
by Rl.

3. Compares index with a comparand obtained
from an LS register addressed by R3 or R3 + 1.

4. Branches if sum is larger than comparand.

Figure 6070, FEDM, is a flow chart of the BXH
instruction. At the start of execution, the first 16
bits of the instruction are in E, the first operand is
in ST, the branch address is in D, and a 4-cycle
storage request is issued per D for the instruction
being branched to. To allow the third operand to be
placed in T without destroying the first operand, the
first operand is transferred to B. The third oper­
and is then transferred from LS per E(12-15) and
placed in T. The two operands are added, and the
result is transferred to B. The comparand, the
value that the sum of the two operands (index) is
compared with, is now transferred from LS and
placed in T. The contents of B and the 2's-comple­
ment of T are transferred to the parallel adder and
added to determine whether the branch is successful.
IC(21, 22) is tested for either 11 or 00. If the branch
is unsuccessful, this test sets up conditions to issue
a storage request per the IC to obtain the next se­
quential double word after the double word contain­
ing the branch instruction.

Assume that IC(21, 22) equals 11 or 00. D(21,22)
is now tested to determine where in the double word
the next instruction is located. If D(21, 22) is equal
to 11, the next instruction to be executed is con­
tained in the last halfword of the double word re­
quested during I-Fetch of the branch instruction.
The PAL's and E(7) are now tested to determine
whether the branch is successful. First assume the
branch is successful; that is, the PAL's are positive
(index greater than the comparand) and E(7) equals o.
The contents of B (index) are transferred to T, and
from there to LS per E(8-11). At this time, the
double word requested during I-Fetch is present at
the SDBO and is gated into Q. The halfword con­
taining the next instruction to be executed is then
transferred to R per D(21,22). The contents of D
are now updated by 8 and placed in the IC. This

11/65

action allows the selection of the next double word
in main storage. A 3-cycle storage request is then
issued per the new value in the IC. The IC is then
updated by 8 to allow selection of the next double
word from main storage when needed. By this time,
the data requested during the execution phase of the
branch instruction is available at the SDBO and can
be gated into Q. A normal end-op cycle is then taken
to complete the operation. During the end-op cycle,
the next instruction executed is decoded off R.

Now assume the branch is unsuccessful. That is,
the PAL's are not positive and E(7) is o. The con­
tents of B (index) are transferred to T, and from
there to LS per E(8-11). Also, the double word re­
quested during I-Fetch is present at the SDBO and is
gated into Q. A 3-cycle storage request is issued
per the IC, which at this time contains the address
of the double word that sequentially follows the
double word containing the branch instruction. The
state of the execute trigger is now tested. If set, it
indicates that the branch instruction was the subject
instruction of an Execute instruction and a normal
end-op cycle is taken, completing the operation. If
the execute trigger is reset, IC(21, 22) is tested for
a value of 11. Recall that, when IC(21, 22) was pre­
viously tested, it was checked for a value of either
11 or 00. To proceed sequentially in the program
without any delay, it is now necessary to determine
which value the IC contains. First, assume that
IC(21,22) equals 11. This value indicates that the
next in~truction occupies the last halfword of the
double word in which the branch instruction is lo­
cated and is presently in R. Recall that R is where
format decoding of an instruction occurs. This
situation being the case, the IC is updated by 8 to
address the double word that is 16 bytes from the
double-word address containing the branch instruc­
tion. The data that was requested when it was found
that the branch was unsuccessful is now present at
the SDBO (Figure 6070B, FEDM) and can be gated
into Q. A branch end-op cycle is taken, completing
the operation. The next instruction is decoded off
the SDBO when the data is transferred to Q.

Now assume that IC(21, 22) equals 00. In this
case, the data to be executed is located in the first
halfword of the double word requested during the
execution of the branch when the branch instruction
was found to be unsuccessful. The IC is updated
by 8. At this time, the data is present at the SDBO
and can be gated into Q. The first halfword in Q is
transferred to R. Recall that the format for the next
instruction is normally decoded off R. Since the
next instruction to be executed has just been trans­
ferred into R, this data is not yet stable and cannot
be decoded. A branch end-op cycle is therefore

taken. This cycle allows the next instruction format
to be decoded off the SDBO. The SDBO is stable at
this time and therefore can be used.

Now assume that when D(21, 22) was tested for 11
some other value was found. Again, conditions are
tested to see whether the branch is successful (Fig­
ure 6070A, FEDM). If successful, the data in B is
transferred to T and from there to LS per E(8-11).
Also, the data that was requested during I-Fetch of
the branch instruction is present at the SDBO and
can now be gated into Q. From Q, the halfword con­
taining the next instruction is transferred to R per
D(21,22). The contents of D are then updated by 8
and transferred to the IC to address the next double
word. Since the instruction to be executed next has
just been placed in R and is not yet stable, a branch
end-op cycle is taken and the instruction is decoded
from the SDBO.

If D(21, 22) equals 11 and the branch is unsuccess­
ful, the contents of B are transferred to T, from
where they are transferred to LS per E (8-11).
A 3-cycle storage request is issued per the IC. This
request is for the double word that sequentially fol­
lows the double word in main storage containing the
branch instruction. The state of the execute trigger
is tested next. From this point on, the operation is
the same as that previously discussed for an unsuc­
cessful branch.

Assume, now, that when IC(21, 22) was initially
tested for either 11 or 00 (Figure 6070A, FEDM),
neither of these values was present. Again D(21,
22), the PAL's, and E(7) are tested to determine
whether the operation is a successful branch and
where the next instruction is located in the double­
word address being branched to. Assume that D(21,
22) equals 11 and the branch is successful (Figure
6070B, FEDM). Operation from this point on is
identical with a successful branch, as previously
described, when D(21, 22) equals 11.

Now assume that D(21, 22) equals 11 and that the
branch is unsuccessful. The contents of B are trans­
ferred to T, from where they are transferred to LS
per E(8-11). Since the branch is unsuccessful and
the contents of R have not been changed, R still con­
tains the instruction that is located in the halfword
following the last halfword of the branch instruction.
A normal end-op cycle, therefore, can be taken and
the instruction decoded off R.

Now assume that D(21, 22) did not equal 11 and
the branch is successful (Figure 6070B, FEDM).
The contents of B are transferred to T, from where
they are transferred to LS per E(8-11). At this

11/65 2065 FEMI 3-207

time, the data requested during I-Fetch of the branch
instruction is present at the SDBO and is gated to Q.
From Q, the correct halfword containing the
branched-to instruction is gated into R per D(21, 22).
The contents of D are then updated by 8 and trans­
ferred to the IC to select the next double word from
main storage. Since the instruction to be executed
has just been placed in R and is not yet stable, a
branch end-op cycle is taken and the instruction for­
mat is decoded off the SDBO.

If the branch is unsuccessful and D(21, 22) does
not equal 11, the operation is identical with the case
where D(21, 22) equals 11 and the branch is unsuc­
cessful. A normal end-op cycle is taken.

3.12.4.2 Branch on Index Low or Equal, BXLE (87)

• Branches to address specified if result
of addition is less than or equal to
comparand.

• RS format:

o

87

Add 1st and 3rd operands and
store resul t (index) in LS per R 1

Compare index with comparand
located in LS per R3 or R3 + 1

D2

Branch to address specified if index
is less than or equal to comparand

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1st operand is in ST.
Branch address is in D.

• Instruction is similar to BXH except
branching occurs on low or equal re­
sult (paragraph 3.12.4.1).

• Figure 6070, FEDM.

3-208

31

3.12.5 EXECUTE, EX (44)

• Executes an instruction (subject) speci­
fied by 2nd operand address. Subject
instruction can be modified by contents
of LS register designated by Rl.

• RXformat:

44 D2

o 31

Main storage address of double word
containing subject instruction

Fetch subject instruction

Modify subject instruction
if E(8-11) is not zero

• Conditions at start of execution:
1 st 16 bits of instruction are in E.
1st operand is in ST.
Address of subject instruction is in D.

• Modification of subject instruction ac­
complished by logically OR'ing bits
8-15 of subject instruction and bits
24-31 of LS register specified by Rl.

• If E(S-l1) equals 0, no modification.

• If an Execute instruction is subject
instruction, an execute interruption
occurs.

• If effective address of Execute instruc­
tion is odd, a specification interruption
occurs.

• Execute trigger set to indicate next
instruction is subject of Execute in­
struction.

• Address-store-compare trigger set
to indicate that Q data is not valid and
needs to be refilled.

• If program interruptions are pending,
normal end-op cycle is taken; if not,
branch end-op cycle is taken.

11/65

The Execute (EX) instruction, which has an RX
format with an op code of 44, executes a designated
instruction whose address in main storage is the
second operand address. This designated instruc­
tion is referred to as a subject instruction and can
be modified by the contents of the first operand lo­
cated in the LS register specified by Rl. Modifica­
tion of the subject instruction is accomplished by
ORting bits 8-15 of the subject instruction with bits
24-31 of the LS register specified by Rl. If Rl is
equal to 0, no modification takes place. The subject
instruction may be 16, 32, or 48 bits long. If the
subject instruction is another EX instruction, an
execute interruption occurs and operation is sup­
pressed. If the effective address of the EX is odd,
a specification interruption occurs.

A flow chart of the EX instruction is contained in
Figure 6071, FEDM. At the start of execution, the
first 16 bits of the instruction are in E, the first
operand is In ST, the address of the subject instruc­
tion is contained in D, and a 3-cycle storage request
for the subject instruction is generated per D. At
the beginning of execution, a test for specification

. and execute interruptions is made. If the specifica­
tion interruption is present (effective address of EX
was odd), a program interruption occurs and the
operation is suppressed. If an execute interruption
is present (the EX instruction is the subject instruc­
tion of an Execute .instruction), an execute interrup­
tion occurs and the operation is suppressed. If no
execute or specification interruptions are present,
the operation continues. The STC is loaded to 111,
allowing the transfer of T(56-63) to the serial adder
for modification of the subject instruction if modifi­
cation is to be accomplished. The contents of Dare
now transferred to the parallel adder and updated by
8 to address the double word that follows the double
word containing the subject instruction of the EX in­
struction. This value is then transferred to D.
PAL(61-63) is now transferred to the ABC to select
the correct byte for modification of the subject in­
struction.

D(21, 22) is tested to determine whether the sub­
ject instruction is contained in the last halfword of
the double word that was requested during I-Fetch,
or in some halfword other than the last. If D(21, 22)
equals 11, the subject instruction is in the last half­
word; if any other value, the subject instruction is in
some other halfword. First assume that D(21,22)
equals 11. Since the subject instruction is located
in the last halfword of the double word addressed
during I-Fetch, there is a possibility that part
of the instruction is contained in the next double
word to be addressed. This possibility exists if the
subject instruction has a format other than RR.

Therefore, the next few operations determine the
format of the subject instruction. By doing these
tests, an extra request can be prevented, one that
can cause an invalid address or protection check if
the instruction has an RR format.

At this time, the data requested during I-Fetch
is present at the SDBO and can be gated into Q and
AB. From Q, the last halfword is transferred to R.
The sixth byte in AB is then transferred to the serial
adder per the ABC. Minus 64 (11000000) is sent to
the serial adder, where it is logically AND' ed with
the op code of the subject instruction. If the op code
denotes an RR format, SAL should now equal zero.
1 is then added to the ABC to transfer the last half­
word of AB to the serial adder if the instruction is
to be modified.

E(8-11) is now tested to see whether the subject
instruction is to be modified. If E(8-11) equals 0000,
the subject instruction is not to be modified; if any
other value, the instruction is to be modified. First
assume that E(8-11) equals 0000. SAL(0-7) is now
tested. Recall that the value in SAL indicates
whether the subject instruction has an RR format,
and recall that it has already been determined that
the subject instruction is contained in the last half­
word of Q. Therefore, assume that SAL(0-7) equals
zero. Since this value indicates that the subject in­
struction is an RR instruction, there is no need to
issue a storage request for the next instruction be­
cause there is no information in that double word
that will affect the operation of the RR instruction.
The request for the next double word occurs during
I-Fetch of the RR instruction.

The last byte in AB is then transferred to T via
the serial adder per the ABC and STC. From T,
the data is tranferred to R. The address-store­
compare and execute triggers are set. A test is
made for a pending program interruption. If one
exists, a program interruption cycle is taken; if
there is no interruption, the contents of R are trans­
ferred to E and STAT G is set. A branch end-op
cycle completes the operation.

Now assume that SAL(0-7) does not equal zero,
indicating that the subject instruction has some
format other than RR. So that the complete word
may be decoded prior to execution of the instruction,
the double word that sequentially follows the subject
instruction must be requested. The last byte in AB
is transferred to T via the serial adder per the ABC
and STC. The address-store-compare trigger is
set, and a 3-cycle storage request is issued for the
next sequential double word. The microprogram
waits (two storage cycles) until the data requested

11/65 2065 FEM! 3-209

is present at the SDBO, at which time the data is
gated to Q. The execute trigger is set, and a test
is made for a pending interruption. If an interrup­
tion is present, a program interruption cycle is
taken; if not, the data in R is transferred to E and
STAT G is set. A branch end-op cycle completes
the operation.

If when E(8-11) is tested some value other than
0000 is found, the subject instruction is to be modi­
fied. SAL(0-7) is tested to determin,e whether the
subject instruction has an RR format. Assume an
RR format. The last byte in AB is then transferred
to the serial adder per the ABC. This byte is then
logically OR'ed with the last byte of ST which was
transferred to the serial adder per the STC. The
results of this OR'ing are then transferred to ST
per the STC. The data in T is transferred to R.
The execute trigger is set, and the operation con­
tinues in the same manner described previously.

Now assume that SAL(0-7) contains some value
other than zero. In this case, after the subject in­
struction is modified, a storage request for the next
double word must be made. The microprogram

3-210

waits (two storage cycles) until the data is present
at the SDBO, after which the data is transferred
to Q. From this point on, the operation is identical
with that described for an RR instruction.

Now return to the point where D(21, 22) is tested
to see whether the subject instruction occupies the
last halfword of the double word requested during
I-Fetch. If D(21, 22) equals some value other than
11, a storage request is not issued during the exe­
cution of the EX instruction. E(8-11) is now tested
to determine whether the subject instruction is to be
modified. If E(8-11) does not equal 0000, the in­
struction must be modified. Mter the data is
placed in Q and AB, and the correct data is placed
in the serial adder per the ABC, operation is iden­
tical with that of an RR instrw::tion that is to be
modified (Figure 6071, FEDM).

If E(8-11) equals 0000, however, the subject in­
struction is not to be modified. Therefore, the
correct halfword in Q need only be transferred to R
per D(21, 22). The address-stare-compare and exe­
cute triggers are set, and the test for a pending in­
terruption is made. The operation continues in the
same manner described previously.

11/65

SECTION 7. STATUS SWITCHING

This section discusses the program states and
the instruction format, data flow, and interruptions
for the status switching instructions. An analysis
of these instructions follows.

3.13 INTRODUCTION

A set of instructions is provided to switch the
status of the CPU and main storage, and for com­
munication between systems. The overall CPU
status is determined by eight program states:
problem/ supervisor, wait/running, masked/ inter­
ruptable, and stopped/operating. Most of these
states are indicated by a bit in the program status
word (PSW). The CPU status is further determined
by the instruction address, the CC, the instruction
length code, the storage protection key, and the
interruption code. These also occupy PSW bits.

3.13.1 PROGRAM STATES

The eight program states which determine th,e
overall CPU status differ in the way they affect the
CPU functions and in the way their status is indi­
cated and switched. The following paragraphs con­
tain a brief description of the program states.

3.13.1.1 Problem/Supervisor

• In problem state, all I/O, protection,
and direct control instructions as well
as Load PSW, Set System Mask, and
Diagnose instructions are invalid.

• In supervisor state, all instructions
are valid.

• PSW(15) determines whether problem
or supervisor state:

If a 1, CPU is in problem state.
If a 0, CPU is in supervisor state.

• State of PSW(15) is changed by issuing
Load PSW instruction or through IPL.

In the problem state, all I/O, protection, and
direct control instructions are invalid as well as the
Load PSW, Set System Mask, and Diagnose instruc­
tions. These instructions are called "privileged in­
structions". A privileged instruction encountered in

the problem state constitutes a privileged-operation
interruption and interrupts the operation. In the
supervisor state, all instructions are valid.

The CPU is switched between the problem and
supervisor states by changing PSW(15). When
PSW(15) is a 1, the CPU is in the problem state;
when a 0, the CPU is in the supervisor state. This
bit c an be changed only by introducing a new PSW.
Thus, the status switching for problem! supervisor
state may be performed by a Load PSW instruction
containing a new PSW with the desired value in bit
15. Because the Load PSW instruction is a privi­
leged instruction, the CPU must be in the super­
visor state prior to the switch. The CPU status
can also be changed between problem and super­
visor states by issuing a Supervisor Call instruction
or an initial program load (IPL). The Supervisor
Call instruction causes an interruption which will
load new PSW data. This new PSW data may change
the state of the CPU. Similarly, the IPL introduces
a new PSW. The new PSW may introduce the prob­
lem or supervisor state, regardless of the preceding
CPU state.

3.13.1.2 Wait/Running

In the wait state, no instructions are processed
and main storage is not addressed. In the running
state, I-Fetch and execution proceed in the normal
manner. The CPU status is switched between the
wait and running states by PSW(14). When PSW(14)
is a 1, the CPU is in the wait state; when a 0, in the
running state. This bit can only be changed by in­
troducing a new PSW. Thus, switching from the
running to the wait state may be achieved by the
privileged instruction Load PSW, by an interruption
such as given by a Supervisor Call instruction, or
by the IPL. Switching from the wait to the running
state may be achieved by an I/O or external inter­
ruption or by IPL. The new PSW may introduce
the wait or running state regardless of the preceding
CPU state.

3.13.1. 3 Masked/Interruptable

• Masked/interruptable state is deter-
mined by:

System mask bits [PSW(0-7)].
Machine check mask bit [PSW(13)].
Program mask bits [PSW(36-39)].

11/65 2065 FEMI 3-211

• If mask bit = 1 (interruptable state),
associated interruption is accepted.

• If mask bit = 0 (masked state), system
and machine-check interruptions re­
main pending; program interruptions
are ignored.

• Mask bit status is changed by issuing
Load PSW or Supervisor Call instruc­
tion or by issuing IPL.

The masked/interruptable state of the CPU is de­
termined by the system mask bits [PSW(O-7)], the
machine-check mask bit [PSW(13)], and the pro­
gram mask bits [PSW(36-39)]. If a mask bit = 1,
the associated interruption is accepted; if it = 0,
system and machine-check interruptions remain
pending and program interruptions are ignored. The
PSW bits and interruptions that will occur if the bit
is active are listed in Table 3-25.

TABLE 3 -25. PSW INTERRUPTION
BIT DESIGNATION

PSW Bit Interruption

System mask

0 Multiplexor channel

1 Selector channel 1

2 Selector chanriel 2

3 Selector channel 3

4 Selector channel 4

5 Selector channel 5

6 Selector channel 6

7 Timer, INTERRUPT pushbutton,
external signals

Machine check mask

13 Machine check

Program mask

36 Fixed -point overflow

37 Decimal overflow

38 Exponent underflow

39 Significance

3-212

or

The masked/interruptable state of the CPU is
switched by changing the mask bits in the PSW. The
program mask may be changed separately by the Set
Program Mask instruction, and the system mask
may be changed separately by the Set System Mask
instruction. The machine-check mask bit can be
changed only by introducing an entirely new PSW, as
in the problem/ supervisor and wait/running states.
Thus, a change in the entire masked status may be
achieved by the privileged instruction Load PSW, by
an interruption such as for the Supervisor Call in­
struction, or by the IPL. Regardless of the preced­
ing program state, the new PSW may introduce a
new mask status.

3.13.1.4 Stopped/Operating

• In stopped state, instructions and
interruptions are not executed.

• In operating state, instructions are
executed as long as CPU is not in wait
state. Interruptions are taken if not
masked off.

• A change in the stopped/operating
states can occur only by manual in­
tervention or machine malfunction.

When the CPU is in the stopped state, instruc­
tions and interruptions are not executed. When the
CPU is in the operating state, instructions are exe­
cuted as long as the CPU is not also in the wait
state. Interruptions are taken if they are not
masked off. A change in the stopped/operating
states can occur only by manual intervention or by
machine malfunction. No instruction or interruption
can start or stop the CPU. The CPU is placed in
the stopped state when the STOP pushbutton on the
system control panel is depressed, when an address
comparison indicates equality, when the RATE switch
is set to the INSN STEP pOSition, and after power is
turned on or following a system reset, except during
IPL. The CPU is placed in the operating state when
the START pushbutton on the system control panel is
depressed and when an IPL is successfully com­
pleted.

Changing from the operating state to the stopped
state occurs at the end of instruction execution and
prior to the start of the next instruction execution.
When the CPU is in the wait state, the change from
operating to stopped occurs immediately. All in­
terruptions pending and masked on are taken while
the CPU is still in the operating state. The inter­
ruptions cause an old PSW to be stored and a new

11/65

PSW to be fetched before entering the stopped state.
Once the CPU is in the stopped state, interruptions
are no longer taken but remain pending.

3.13.2 INSTRUCTION FORMAT

Status switching instructions have two formats:

RR

Op Code R1 R2 I
o 7 8 11 12 15

51

I Op Code 12 81 D1
o 78 15 16 19 20 31

In the RR format, the R1 and R2 fields specify an
LS general register except when used in the Super­
visor Call instruction. The R1 and R2 fields in the
Supervisor Call instruction contain interruption
codes. In the Set Program Mask instruction, the
R2 field is ignored.

In the SI format, the 12 field is ignored for the
Load PSW and Set System Mask instructions. In the
Write Direct and Read Direct instructions, the 12
field contains eight timing signals that are sent to
an external unit. The contents of the LS general
register specified by the B1 field are added to D1 to
form a main storage address of an operand to be
used in the instruction specified except for Read
Direct. The Read Direct instruction uses the ad­
dress derived as the address where the data from
an external unit is to be stored.

3.13.3 DATA FLOW

• Functional units used are Q, R, E, ST,
AB, F, G, D, IC, parallel adder,
serial adder, STC, and ABC.

Figure 9057, FEDM, is a diagram of the data
flow for the status switching instructions. Following
is a list of the functional units and their purposes:

1. Q: Holds the double word containing the in­
struction being executed. It may also hold the
next sequential double word after the double
word containing the instruction being executed.

2. R: Contains the instruction to be performed
after the instruction presently being executed.

3. E: Contains the instruction presently being
executed. For Read Direct and Write Direct

instructions, E contains the timing signals
sent to the external unit.

4. ST: Buffers the operand being operated on.

5. AB: Buffers the operand being operated on.

6. F: Buffers the storage key both before it is
placed in main storage during the Set Storage
Key instruction and after it is taken from
main storage during the Insert Storage Key
instruction. This register also holds data
coming from an internal unit during the Read
Direct instruction.

7. G: Buffers a byte of data being sent to an ex­
ternal unit when performing a Write Direct
instruction.

8. D: Contains the main storage address of the
block containing the storage key requested
during Set Storage Key and Insert Storage Key
instructions. This register also selects the
byte to be used in Set System Mask, Write
Direct, and Read Direct instructions.

9. IC: Contains the address of the double word
to be operated on next.

10. Parallel adder: Provides the data transfer
path between AB, ST, D, and IC.

11. Serial adder: Provides the data transfer path
between AB, F, ST, and PSW.

12. STC: Controls the selection of data from and
placement of data into ST, primarily during
the Set Storage Key, Insert Storage Key, Write
Direct, Read Direct, and Test and Set instruc­
tions.

13. ABC: Controls the selection of data from and
placement of data in AB, primarily during the
Set System Mask, Set Storage Key, and Test
and Set instructions.

3. 13.4 INTERRUPTIONS

• Program interruptions:
Operation
Privileged operation
Protection
Addressing
Specification

• Current PSW is stored as old PSWand
new PSW is obtained.

11/65 2065 FEMI 3-213

• Interruption code in old PSW identifies
cause of interruption.

Table 3-26 lists the interruptions that may occur
in the status switching instructions.

TABLE 3-26. STATUS SWITCHING INSTRUCTION
INTERR UPTIONS

How Instruction
IntelTUption Code Execution Is

Interruption PSW Bits 16-31 ILC Finished

Operation 00000000 00000001 1, 2, 3 Suppressed

Privileged 00000000 00000010 1, 2 Suppressed
operation

Protection 00000000 00000011 0, 2, 3 Terminated

Addressing 00000000 00000101 1, 2, 3 Suppressed

Specific ation 00000000 00000110 1, 2, 3 Suppressed

These interruptions cause a program interrup­
tion. When the interruption occurs, the current
PSW is stored as an old PSW, and a new PSW is
obtained. The interruption code inserted in the .old
PSW identifies the cause of the interruption. The
following listing briefly describes the interruptions:

1. Operation: Occurs if the direct control fea­
ture is not installed and the instruction being
executed is either Read Direct or Write Direct.
The operation is suppressed.

2. Privileged Operation: Occurs if a Load PSW,
Set System Mask, Set Storage Key, Insert
Storage Key, Write Direct, Read Direct, or
Diagnose instruction is encountered while the
CPU is in the problem state. The operation
is suppressed.

3. Protection: Occurs if the storage key of the
location designated by the instruction does not
match the protection key in the PSW. The
operation is terminated.

4. Addressing: Occurs if an address designates
a location outside the available main storage.
The operation is suppressed.

5. Specification: Occurs if (1) the operand ad­
dress of a Load PSWor Diagnose instruction
does not have O's in the three low-:-order bit
positions, (2) the block address specified by

3-214

the Set Storage Key or Insert Storage Key in­
struction does not have O's in the four low­
order bit pOSitions, or (3) the protection
feature is not installed and a PSW with two
nonzero protection keys is introduced. The
operation is suppressed.

3.14 INSTRUCTION ANALYSIS

Table 3-27 lists the 10 status switching instruc­
tions with their format, mnemonic code, op code,
and interruptions. A functional description of each
instruction is contained in the following paragraphs.

TABLE 3-27. STATUS SWITCHING INSTRUCTIONS

Mnemonic Op
Instruction Format Code Code Interruptions

Load PSW SI LPSW 82 M, P, A, S

Set Program Mask RR SPM 04 -
Set System Mask S1 SSM 80 M, P, A

Supervisor Call RR SVC OA -

Set Storage Key RR SSK 08 M, A, S, 0

Insert Storage Key RR ISK 09 M, A, S, 0

Write Direct SI WRD 84 M, P, A, 0

Read Direct sr RDD 85 M,

Diagnose SI - 83 M,

Test and Set S1 TS 93

Notes: M: Privileged operation
P: Protection
A: Addressing
S: Specification
0: Operation

3.14.1 LOAD PSW, LPSW (82)

• Loads 2nd operand into PSW register,
thereby making operand new PSW.

• Bits 16-33 of double word are ignored
and not loaded into new PSW.

• Bits 0-15 become new system mask,
protection key, and program state bits.

• Bits 34-39 become new CC and pro­
gram mask.

P, A, 0

P, A, S

P, A

11/65

• Bits 40-63 become new instruction
address.

• SI format:

82 ~B1
78 15 16 1920

2nd operand address

Fetch 2nd operand

Load bits 0-15 and 34-39 of
2nd operand into PSW register

D1

Load bits 40-63 of 2nd operand into
Ie to become new instruc tion address

• Conditions at start of execution:
1st 16 bits of instruction are in E.
2nd operand address is in D.

31

The Load PSW (LPSW) instruction, which has an
SI format with an op code of 82, loads into the CPU
the double word that is contained in the location de­
signated by the second operand address. The double
word becomes the new PSW for the next sequence of
instructions. Bits 40 through 63 of the double word
become the new instruction address. During the
LPSW instruction, the address is not checked for
storage availability or for an even byte address;
these checks occur as part of the execution of the
next instruction. Since bits 16 through 33 of the
PSW (interruption code and instruction length code)
are changed when the PSW is stored during an inter­
ruption, they are ignored when performing the LPSW
instruction. When the double word being loaded as
the new PSW contains a 1 in position 15 or 14, the
CPU enters the problem state or wait state, respec­
tively. This instruction is the only instruction
available for entering the problem state or wait
state.

Figure 6072, FEDM, is a flow chart of the LPSW
instruction. At the start of execution, the first 16
bits of the instruction are in E, the second operand
address is in D, and a storage request for the sec­
ond operand has been issued per D.

A test for a specification check is made at the
beginning of the operation. The operand address

for the LPSW must have O's in its three low-order
bit positions to designate a double word, and the
CPU must be in the supervisor mode; otherwise, a
specification interruption results. If there is no
specification interruption, the 1-Fetch-invalid­
address trigger is now reset. This trigger is set
if an invalid address was detected during I-Fetch.
For an understanding of I-Fetch-invalid-address
detection, refer to paragraph 3.2.6.5.2. At this
time, a delay of one clock cycle occurs, allowing
the data requested during I-Fetch (new PSW) to be­
come present at the SDBO. When the data is at the
SDBO, it is gated to ST. The contents of T are then
transferred to PAL(32-63), from where the instruc­
tion address of the new PSW is transferred to the IC.
A 3-cycle storage request is then issued per the IC.
The instruction-memory-fetch trigger is set and
will be used for invalid instruction address detection.

At this point, S(0-15) and T(34-39) are transferred to
PSW(0-15) and PSW(34-39), respectively. S(0-15) com­
prises the new system mask [S(0-7)J, key [S(8-11)J,
and program state [S(12-15)]. T(34-39) makes up
the CC [T(34, 35)J and the instruction address
[T(36-39) J. The address-store-compare and exe­
cute triggers are reset. These triggers are set if
the LPSW is the subject instruction of an Execute
instruction. Since the next instruction to be per­
formed is determined by the new PSW being loaded,
the triggers must be reset to prevent the instruction
normally following the Execute instruction from
being performed after the LPSW. T(40-63) is then
transferred to D, and the IC is updated by 8 to select
the double word from main storage which follows the
instruction addressed by the new PSW instruction
address. The interrupt triggers are now reset.
These triggers are set only if the IPL is in process.
By this time, the data requested per the new PSW
instruction address is available at the SDBO and can
be gated to Q. FromQ, the correct halfword is
transferred to R per D(21, 22). A 3-cycle storage
request is then issued per the IC if D(21, 22) equals
11. If D(21, 22) equals 11, the halfword transferred
to R from Q was located in the last halfword portion
of Q. Therefore, another double word from main
storage must be obtained to refill Q. The con~ents
of D are updated by 8 and transferred to the IC to
select the next double word.

D(21, 22) is now tested for a value of 11. If it
equals 11, the IC is updated by 8 and replaced in the
IC to address the double word which sequentially
follows the double word requested during the opera­
tion. The data requested during the operation should
now be present at the SDBO and is gated to Q. A
normal end-op cycle is taken to complete the opera­
tion.

11/65 2065 FEMI 3-215

If, when tested, D(21, 22) did not equal 11, a
branch end-op cycle takes place. This action allows
the instruction format to be decoded off the SDBO
since the data placed in R is not stable.

3.14.2 SET PROGRAM MASK, SPM (04)

• Transfers bits 2-7 of 1st operand to
PSW(34-39).

• RRformat:

04

1st operand address

Transfer bits 2-7 of 1st operand to PSW(34-39)

• Conditions at start of execution:
Instruction is in E.
1st operand is in AB and D.
2nd operand is in ST (not used).

• Bits 2 and 3 of 1st operand are used
as new CC.

• Bits 4-7 of 1st operand are used as
new program mask.

3.14.3 SET SYSTEM MASK, SSM (SO)

• Transfers byte of 2nd operand to
PSW(0-7), replacing the system mask.

• SI format:

3-216

80 ~ Bl
7 8 15 16 1920

2nd operand address

Fetch 2nd operand

Transfer byte of 2nd operand
to PSW(O-7) per D(21-23)

Dl

31

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1st operand (not used) is in ST.
2nd operand address is in AB and D.

• Byte to be used as new system mask is
selected per D(21-23).

• Byte is transferred to ST and PSW
via SA.

• Delay 1 cycle to allow new system
mask to become effective.

• Figure 6073, FEDM.

3.14.4 SUPERVISOR CALL, SVC (OA)

• Causes a supervisor call interruption;
R1 and R2 fields of instruction provide
interruption code to be stored in PSW.

• RRformat:

OA Rl R2

7 8 11 12 15

Transfer E(8-15) to PSW(24-3l) of old PSW

Clear PSW(16-23) of old PSWand
store in main storage location 32

Fetch new PSW from main storage location 96

• Conditions at start of execution:
Instruction is in E [E(S-15) is inter­

ruption code)].
1st operand (not used) is in AB and D.
2nd operand (not used) is in ST.

• Instruction sets supervisor-interrupt
trigger and takes an end-op cycle.

• End-op cycle performs supervisor
interruption.

3.14.5 SET STORAGE KEY, SSK (OS)

• Sets storage key (designated by 1st
operand) for block of storage bytes
addressed by 2nd operand.

11/65

• RRformat:

08

o

Sel ect storage key from 1st operand

Store in address designated by R2

• Conditions at start of execution:
Instruction is in E.
1st operand is in AB and D.
2nd operand is in ST.

• Bits 8-20 of 2nd operand designate
block of storage bytes.

• Bits 21-27 of 2nd operand are ignored.

• Bits 28-31 of 2nd operand must be o.

• Bits 24-28 of 1st operand are new
storage key.

The Set Storage Key (SSK) instruction, which has
an RR format with an op code of 08, sets the key of
the storage block addressed by the second operand
according to the key in the register designated by
the first operand. Bits 8 through 20 of the second
operand address a block of 2048 storage bytes.
During the SSK instruction, bits 21 through 27,
which address double words in the storage block,
are ignored. Bits 28 through 31 of the second oper­
and must be zero, or a specification interruption
occurs. The new storage key is obtained from bits
24 through 28 of the first operand. The remaining
bits of the operand are ignored.

Figure 6074, FEDM, is a flow chart of the SSK
instruction. At the start of execution, the instruc­
tion is in E, the first operand is in AB and D, and
the second operand is in ST. The ABC and STC are
set to 111 at the beginning of the operation. This
action allows selection of the correct byte containing
the new storage key from AB. The contents of S are
transferred to the parallel adder, where 8 is sub­
tracted from it. The result is placed in D. A test
for a specification check is then made. If PAL(28-
31) contains a value other than zero, a specificatiQn
interruption occurs.

Assuming no specification check, the byte con­
taining the new storage key [B(56-63)] is trans­
ferred to F per the ABC. A 4-cycle storage request
is then issued per D to set the storage key for the
even or odd storage addresses. The set-key trig­
ger for the even or odd storage (depending on the
address) is then set, and F(0-4) is transferred to
the storage-key bus. Mark triggers 0 through 7
are set, and the storage key is written into the ad­
dress specified. The contents of D are then in­
creased by 8 to address the other storage addresses.
Assume that the last storage unit addressed was
even. This time, the 4-cycle storage request is
issued for the odd storage. The set-key trigger for
the odd storage is set, and F(0-4) is transferred to
the storage-key bus. Mark triggers 0 through 7 are
set, and the storage key is written into the address
specified. D is again updated by 8 to address the
next storage unit. If a large-capacity storage is
being used in the system, four storage units will
have to be addressed. The SSK operation must
then loop back and again send the storage key to
these units.

STAT D is then examined to see whether it is
set; at this time, STAT D is not set, indicating that
only one odd and one even storage have had their
storage keys changed. If the system has a large­
capacity storage, another odd and even storage unit
exists and their storage keys must be changed.
Therefore, STAT D is set and a 4-cycle storage
request is issued. From this point on, the opera­
tion is the same as previously discussed (Figure
6074, FEDM).

3.14.6 INSERT STORAGE KEY, ISK (09)

• Inserts into 1st operand and stores in
LS a storage key (addressed by 2nd
operand) of block of bytes in main
storage.

• Bits 8-20 of 2nd operand address block
of bytes in main storage.

• Bits 0-7 and 21-27 of 2nd operand are
ignored.

• Bits 28-31 of 2nd operand must be O's
or specification interruption occurs.

• Storage key is inserted in bits 24-28
of 1st operand.

• Bits 29-31 of 1st operand are cleared.

11/65 2065 FEMI 3-217

• RRformat:

• Conditions at start of execution:
Instruction is in E.
1st operand is in AB and D.
2nd operand is in ST.

The Insert Storage Key (ISK) instruction, which
has an RR format with an op code of 09, inserts the
storage key addressed by the second operand into
bits 24 through 28 of the first operand. Bits 8
through 20 of the second operand address a block of
2048 bytes in main storage. Bits 0 through 7 and 21
through 27 of the second operand are ignored, where­
as bits 28 through 31 must be O's or a specification
interruption occurs. The 5-bit storage key is set
into bits 24 through 28 of the first operand; bits 29
through 31 are cleared.

Figure 6075, FEDM, is a flow chart of the ISK
instruction. At the start of execution, the instruc­
tion is in E, the first operand is in AB and D, and
the second operand is in ST. The STC is set to OIl.
The contents of S (second operand) are then trans­
ferred to A .. (Later in the operation, the value in A
will be reduced and placed in D to address storage.)
A test for a specification check is now made. If
PAL(28-31) contains a value other than zero, a
specification interruption occurs.

Assuming no specification check, the contents of
B are transferred to T. This action places the first
operand, which is to hold the storage key when re­
trieved from storage, in T. The STC is set to 111
by placing a 1 in STC(O). This setting allows the
last byte of ST to be gated to the serial adder, where
it will be logically OR' ed with the storage key. The
data in A is now transferred to PAB(32-63). Then 8
is subtracted from PAB, and the result is trans­
ferred to D. The contents of SAL are transferred

3-218

to ST per the STC and to F(0-7}. Since SAL is
cleared at this time, the last bytes in ST and in
F(0-7) are cleared.

The insert-key trigger is set to allow the storage
key to be gated into F(0-4) when a storage request is
issued. After the insert-key trigger is set, a 3-
cycle storage request is issued per D for the stor­
age key. The contents of D are transferred to the
parallel adder, 8 is added, and the result is trans­
ferred back to D. This address selects the odd or
even storage unit, depending on the address of the
last storage unit. That is, if the last storage unit
address was odd, the next storage address will be
even' if it was even the next storage address will
be odd. The conte;ts of Fare then transferred to
the serial adder and logically OR'ed with the con­
tents of the last byte of ST (selected per the STC).
The result is transferred to ST per the STC.

The insert-key trigger is again set. This time it
is used with the storage address that was just placed
in D. When the 3-cycle storage request is issued
for the storage key, the insert-key trigger allows
the key to be gated into F(O-4). The contents of D
are updated by 8, and the result is placed in D. If
the Large Capacity Storage feature is incorporated
in the system, this new address allows selection of
the correct storage unit to obtain the next storage
key. If the Large Capacity Storage feature is not
used, the address is ignored. At this time, the
storage key just placed in F is transferred to the
serial adder where it is logically OR'ed with the
contents of the last byte in ST. Because there is a
possibility that the storage key may have been
changed by some other operation in process, the
data in ST must be logically OR' ed with the last
storage key to obtain the latest data available. This
result is then placed in the last byte of ST per the
STC. STAT D is tested. At this time, STAT Dis
not set and the insert-key trigger is set. Mter the
trigger is set, STAT D is set. From this point on,
the operation is identical with that previously de­
scribed for the first two storage units (Figure 6075,
FEDM).

When STAT D is again tested, it will be set. The
data in T is therefore transferred to LS per E(8-11).
This action places the storage key in LS. An end-op
cycle completes the operation.

3.14.7 WRITE DIRECT, WRD (84)

• Sends 8 data bits and 9 signal-out
timing Signals to an external unit.

11/65

• 8I format:

Send direct-control-write-out signal
and 8 timing signals to external unit

Make 8 data bits available
to external unit

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1st operand is not applicable.
2nd operand address is in D.

• Nine signal-out timing signals are
available to external unit for 0.5
to 1.OILS.

Dl

• Eight of the signal-out signals perform
predetermined functions in external unit.

• Ninth signal-out timing signal (direct­
control-write-out signal) alerts ex­
ternal unit that data is available.

• Eight data bits remain present until
another WRD instruction is issued.

31

The Write Direct (WRD) instruction, which has
an 8I format with an op code of 84, sends eight data
bits as static signals to an external device and
makes nine signal-out timing signals available for
a period of 0.5 to 1.0 IL s. The eight data bits re­
main until the next WRD instruction is executed. No
parity is presented with the eight data bits when sent
to the external unit.

Figure 6076, FEDM, is a flow chart of the WRD
instruction. At the start of execution, the first 16
bits of the instruction are in E, the second operand
address is in D, and a storage request for the sec­
ond operand has been issued. (The first operand is
not applicable in this instruction.) A privileged
operation check is first made. If the privileged­
operation condition exists, a privileged-operation

interruption occurs; if not, D(21-23) is transferred
to the 8TC. The 8TC is used later to select the byte
of the second operand that contains the eight data
bits to be sent to the external unit. At this point,
the second operand is gated from the 8DBO to 8T.
Next, the timing-gate trigger is set. This trigger
allows sending of the nine signal-out timing signals
to the external unit. Eight timing signals, E(8-15),
are now sent to the timing bus-out, and the direct­
control-write-out signal (ninth signal-out timing
signal) is sent to the external unit. The eight timing
signals (bits) from E perform certain predetermined
functions in the external unit; the direct-control­
write-out signal alerts the external unit that data is
available. These nine signal-out timing signals are
present for a period of 0.5 to 1. O,u s. A byte of 8T
(the eight data bits) is then selected per the 8TC and
transferred to G. From G, the data is transferred
to the external unit when needed. This data remains
in G until another WRD instruction is issued and re­
fills G. After the delay of 0.5 to 1. O,us has elapsed,
the timing-gate trigger is reset and an end-op cycle
is taken to complete the operation.

3.14.8 READ DIRECT, RDD (85)

• Stores in main storage location desig­
nated by 2nd operand address eight
data bits accepted from an external
unit, if hold signal is not present.

• 8I format:

85 I 12 I Bl I Dl
0 78 I 15 16 1920

t ,
Main storage address

8 timing signals to be
where data from external sent to external device
unit is to be stored

+
Send direct-control-read-
out signal and 8 timing
signals to external unit ,

"
Gate in 8 data bits from external unit

+
Check hoi d signal: if on, loop
until off; if off, store data in
main storage

I
• Nine signal-out timing signals are

available to external unit for 0.5
to 1.O,us.

.~

J
31

11/65 2065 FEMI 3-219

• Eight data bits are accepted from ex­
ternal unit and stored in main storage
if hold signal is off.

• If hold signal is on and not removed,
CPU does not complete instruction.

• Excessive duration of instruction may
result in incomplete updating of CPU
timer.

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1st operand is not applicable.
2nd operand address is in D.

The Read Direct (RDD) instruction, which has an
SI format and an op code of 85, stores, in main
storage, eight data bits that are accepted from an
external unit if the hold signal is not present. Nine
signal-out timing signals are made available to the
external unit to perform predetermined functions in
that unit. These signals are present for a period of
0.5 to 1.0 J.L s. Eight data bits are accepted from a
set of eight data-in lines when the hold signal is ab­
sent. The hold signal is sampled after the direct­
control-read-out signal has been completed and
should be absent for at least 0.5 J.Ls if data -is to be
accepted. No parity is accepted with the data sig­
nals, but a parity bit is generated as the data is
placed in main storage. If the hold signal is not
removed, the CPU does not complete the instruction.
Excessive duration of this instruction may result in
incomplete updating of the CPU timer.

Figure 6077, FEDM, is a flow chart of the RDD
instruction. At the start of execution, the first 16
bits of the instruction are in E, the second operand
address is in D, and a storage request for the sec­
ond operand is given. (The first operand is not
applicable.) The second operand is never gated in
and, therefore, is never used. A privileged-opera­
tion check is first made in the operation. If a privi­
leged-operation error exists, a privileged-operation
interruption is taken; if not, D(21-23) is transferred
to the STC. The STC selects the byte in which the
eight data bits are placed and also determines which
mark triggers are to be set when storing the data in
main storage. The timing-gate trigger is set. Eight
timing signals, E(8-15), are then transferred to the
timing bus-out and sent to an external unit along with
the direct-control-read-out signal (ninth timing sig­
nal). An address-store-compare test is made on the
second operand address to see whether the double
word in which the data bits are to be stored is going
to modify the double word presently being operated
on. The eight data bits are then gated from the ex­
tenial unit to F. At this time, approximately 0.5 to

3-220

L 0 J.Ls has elapsed and the timing-gate trigger is re­
set, thus deactivating the nine signal-out timing sig­
nals. The mark triggers are then set per the STC.

The direct-control-hold latch is now tested. If it
is set, the CPU goes into a loop, gating in the eight
data bits from the external unit and setting the mark
triggers according to the STC until the direct­
control-hold latch is reset. If the hold signal is not
removed, excessive duration of this instruction may
result in incomplete updating of the CPU timer. If
the direct-control-hold latch is not set, a 4-cycle
storage request is issued per D. The contents of F
are then transferred to ST per the STC, and from
ST to the main storage per the mark triggers. An
end-op cycle is taken to complete the operation.

Communication between CPU's can be provided
by use of the RDD and WRD instructions. When
CPU-to-cPU communication is desired, the data­
out lines of one CPU are connected to the data-in
lines of the other CPU. The signal-out timing sig­
nals of each CPU cause external interruptions in the
other CPU. For example, assume there are two
CPU's: CPU 1 and CPU 2. CPU 1 requests data by
executing an RDD instruction. When CPU 1 deter­
mines it needs data, the signal-out timing signals
are sent to CPU 2, causing an external interruption
within CPU 2. After decoding the interruption code
and determining the operation to be performed,
CPU 2 starts a WRD operation, issues signal-out
timing signals to CPU 1, and places data on the data­
out lines. When CPU 1 receives the signal-out
timing signals, an external interruption occurs with­
in CPU 1, informing it that the data that was re­
quested may now be read in. After the data has been
read in, the operation is completed. The direct­
control-write-out signal issued by CPU 2 during the
operation may serve as the hold signal for the re­
questing CPU (CPU 1), temporarily inhibiting the
RDD instruction when the timing signals are in
transition.

3.14.9 DIAGNOSE (83)

• Loads word designated by 2nd operand
address into MCW and branches to ad­
dress specified by MCW.

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1st operand is not applicable.
2nd operand address is in D.

11/65

• If MCW(7) = 1 and MCW(6) = 0, chan­
nels are selected and MCW(0-5) applies
to channel diagnostic functions.

• If MCW(7) = 1, CPU is selected and
MCW(0-6) applies to CPU diagnostic
functions.

• MCW(8-63) and the 12 field of the in­
struction are independent of MCW(7)
and perform identically for either
channel or CPU.

• SI format:

83 WIA Bl
o 78 15 16 1920

Dl

Main storage address of double word
containing word to be placed in MeW

Fetch word and place in MeW

Branch to ROS address specified
and operate per MeW

31

The Diagnose instruction, which is valid only in
the supervisor mode, loads a word designated by
the second operand address into the Maintenance
Control Word (MCW) and branches to a location in
ROS as designated by the MCW. The MCW causes
certain predetermined functions to be performed
according to its bit configuration. If MCW(7) is a 1
and MCW(6) is a 0, the MCW bits apply to the chan­
nels and MCW(0-5) assumes certain channel diag­
nostic functions. When a channel is selected by the
MCW, the channel is disconnected from its control
units and is connected to an internal interface simu­
lator. The interface simulator consists of a I-byte
register and associated controls. This simulator
allows the diagnostic program to test the channel
regardless of the type of control units that may be
attached and available. When used for channel
selection, MCW(0-5) performs the following func­
tions:

1. MCW(0-2): Selects the channel to be diagnosed
according to the following bit configuration:

000 - Select channel 0 (multiplexor channel).
001 - Select channell.
010 - Select cha,nnel 2.
011 - Select channel 3.

100 - Select channel 4.
101 - Select channel 5.
110 - Select channel 6.
111 - No channel selected.

2. MCW(3) - Reverse Data Parity: Causes all
bytes that are read from the interface simu­
lator to have reversed parity. This action
allows testing of the storage bus-in parity
checker.

3. MCW(4) - Reverse Byte Counter Parity: Pro­
vides a means of testing the byte control check
circuits.

4. MCW(5) - Suppress storage Data Check: Pre­
vents a storage data check from causing a
channel data check and prevents a channel con­
trol check on a CCW fetch operation. Prevent­
ing the channel control check allows invalid
CCW's to be brought into the channel to test
sections of the channel check circuitry.

If MCW(7) is a 1, the MCW bits apply to the CPU
and MCW(0-6) assumes certain CPU diagnostic func­
tions. When used for CPU diagnose, MCW(0-6) per­
forms the following functions:

1. MCW(0,1): These bits are spares and are not
applicable when the CPU is selected.

2. MCW(2) - Reverse SA Full-Sum Parity: Re­
, verses the parity bit in the full-sum latch of
the serial adder, thus allowing testing of the
parity-checking circuits.

3. MCW(3) - Reverse Mark Parity: Reverses the
parity of the mark bits being sent from the BCU
to main storage, thus allowing testing of the
mark parity-checking circuits in main storage.

4. MCW(4,5) - Reverse SAR Parity 1 and 2:
Causes the parity bits which are sent to the
storage address register to be reversed as
follows:

00: No parity reversal
01: Reverse low-order parity bit
10: Reverse next-higher parity bit
11: Reverse high-order parity bit

5. MCW(6) - Log on Count: Causes a log-out to
main storage when the scan counter reaches a
value of zero while performing fault-locating
tests. At the conclusion of the logging opera­
tion, the CPU interrupts to the machine-check
interruption location.

11/65 2065 FEMI 3-221

MCW(8-63) and the 12 field of the instruction are
independent of MCW(7) and are used identically for
both the channel and CPU Diagnose as follows:

1. MCW(8-19) - ROS Starting Address: When the
Diagnose instruction has completed its exe­
cution phase, these address bits are placed in
ROSAR and the operation branches to this lo­
cation. The address placed in ROSAR can
specify any location in ROS. The three loca­
tions most commonly used are (1) end-op, (2)
enter FLT sequence, and (3) enter PADD full­
sum sequence.

2. MCW(20) - This bit is a spare bit and is not
used.

3. MCW(21-31) - Count Field: Specifies the
number of cycles (200 ns) that are to occur
before either a diagnostic-stop signal is sent
to the channel selected or the CPU enters a
log-out routine. The maximum value that can
be set in this field is 2047. The value is
placed in the scan counter, which is decre­
mented by 1 after every cycle. The counter
begins decrementing the first cycle after com­
pletion of the Diagnose instruction.

4. MCW(32-63) - These bits are spares and are
not used.

5. 12 field of Diagnose instruction:

3-222

a. Bit 8 - Disable Interleave: Disables inter­
leaving and causes consecutive addresses
to be in the same storage unit. .

b. Bit 9 - Disable Interleaving and Reverse
Storage Address: Disables interleaving
and reverses the high- and low-order
halves of storage on the 2365 Storage
Unit, the high- and low-order halves of
storage in each unit are reversed.

c. Bit 10 - Diagnose FLT: Allows FLT tests
to be executed under control of the Diagnose
instruction. During the time the FL T' s are
being executed, special CPU functions are
generated, and storage requests and clock
are inhibited. .

d. Bit 11 - Spare.

e. Bit 12 - Permanent Spare.

f. Bit 13 - Set Extended PSW Mode: Sets the
extended- PSW-mode trigger when the
channel-controller feature is present.

g. Bit 14 - Set Emulator Mode: Allows the
CPU to enter the emulator mode.

h. Bit 15 - Spare.

Figure 6078, FEDM, is a flow chart of the Diag­
nose instruction. This instruction has an SI format
with an op code of 83. At the start of execution, the
first 16 bits of the instruction are in E, the second
operand address is in D, and a storage request for
the second operand has been given (the first operand
is not applicable). The first operation to occur is
to test for a specification check. If a specification
check is present, a specification interruption is
taken. If not, a test for an address-store-compare
condition is made. If PAL(40-63) equals zero, then
the address-store-compare trigger is set. The con­
tents of D are transferred to the parallel adder and
updated by 8. The result is then transferred back
to D. This action places the next main storage
double-word address in D. The scan-mode trigger
is set, thus placing the D, F, and G fields of the
ROS sense latches in the scan mode. The double
word from main storage which was requested during
1- Fetch is now present at the SDBO. SDBO(0-31) is
transferred to T and SDBO(0-63) is transferred to
AB. This data will be placed in the MCW.

T(32-39) is now placed in MCW(0-7). These bits
allow the appropriate diagnostic functions to be per­
formed at the end of the execution phase of the Diag­
nose instruction. T(54-63) is transferred to the scan
counter [MCW(21-31)]. As preViously stated, the
scan counter specifies the number of cycles that
occur before a diagnostic-stop signal is sent to the
channel selected or a log-out signal is sent to the
CPU. The counter is decremented by 1 for every
cycle following the completion of the Diagnose in­
struction. At this point, the scan-counter-control
trigger is set. Then, T(40-51) [MCW(21-31)] is
transferred to ROSAR to select the next ROS word
to be executed. The scan-mode trigger is reset,
and the operation is turned over to the next ROS
word. Operations continue stepping through ROS
until the scan counter reaches a value of zero. At
this time, the operation issues either a diagnostic­
stop signal if a channel is selected or a log-out
signal if the CPU is selected to complete the Diag­
nose instruction.

3.14.10 TEST AND SET, TS (93)

• Selects a byte from double word ad­
dressed by Bl + Dl and tests high­
order bit of byte setting CC according
to value of that bit. When double word

11/65

is regenerated into storage, selected
byte is changed to alII's.

• SI format:

93

78

When selected byte is re­
generated into storage, place
all l's into that byte location

11/65

B1

15 16

D1

1920

Test high-order bit of
selected byte and set
CC accordingly

31

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1 st operand (not used) is in ST.
2nd operand address is in AB and D.

• Selects proper byte per D(21-23) via
mark triggers.

• Tests high-order bit of selected byte;
if equal to 1, sets CC to 1; if equal
to 0, sets CC to 0.

• Causes l' s to be regenerated into
storage in place of selected byte when
selected double word is regenerated
into storage.

• Figure 6079, FEDM.

2065 FEMI 3-223

SECTION 8. INPUT/OUTPUT INSTRUCTIONS

This section describes an I/O system, its opera­
tion and system states, the condition codes derived
from the system states, the I/O instruction format,
and the interruptions that may occur during the ex­
ecution of I/O instructions. Following this descrip­
tion is an analysis of the I/O instructions.

3.15 INTRODUCTION

Because the I/O instructions are dependent upon
the I/O system attached to the CPU, a thorough
understanding of the I/O system is required. The
following paragraphs give a basic description of the
I/O system attached to the 2065. For a detailed
analysis of each I/O unit, refer to the applicable
FEMI.

3.15.1 I/O SYSTEM

The transfer of information to and from main
storage (other than to or from the CPU via the direct
control path) is referred to as an "I/O operation. "
And I/O operation involves the use of an I/O device,

'-----.,y~---'

To control
units 1-8

y

To control
units 1-8

a control unit to control the I/O device, and a chan­
nel which is used as a means of attaching the control
unit to the CPU. Figure 3-21 illustrates the I/O
system applicable to the System/360, Model 65.
The CPU controls up to six selector channels and
one multiplexor channel. These channels, in turn,
control up to eight control units and up to 256 I/O
devices.

3.15.1.1 Channels

• Direct flow of information between I/O
devices and main storage.

• Provide standard interface for con­
necting different I/O devices to CPU
and main storage.

• Contain all common facilities for
control of I/O operations.

• Channel facilities required to sustain
an I/O operation are called "sub­
channels. "

Main Storage

Channel 6

T

To control
units 1-8

FIGURE 3-21. BASIC I/O SYSTEM

3-224 11/65

• Only 1 subchannel for selector channels.

• Multiple subchannels for multiplexor
channels.

The channel directs the flow of information be­
tween the I/O devices and main storage. It relieves
the CPU of the task of communicating directly with
the I/O devices and permits data processing to pro­
ceed concurrently with I/O operations.

The channel provides a standard interface for
connecting different types of I/O devices to the CPU
and to main storage. It accepts control information
from the CPU and changes it into a sequence of sig­
nals acceptable to a control unit. After the opera­
tion with the device has been initiated, the channel
assembles or disassembles data and synchronizes
the transfer of data bytes over the interface with
main-storage cycles. When an I/O device provides
signals that should be brought to the attention of the
program, the channel again converts the signals to
a format compatible with that used in the CPU.

The channel contains all the common facilities
for the control of I/O operations. When these fa­
cilities are provided in the form of separate, auto­
nomous equipment designed specifically to control
I/O devices, I/O operations are completely over­
lapped with the activity in th~ CPU. The only main­
storage cycles required during I/O operations in
such channels are those needed to transfer data and
control information to or from the final locations in
main storage. These cycles do not interfere with
the CPU program, except when the CPU and the
channel simultaneously attempt to refer to the same
main storage.

The channel facilities required for sustaining a
single I/O operation are called "subchannels." The
subchannel consists of a channel storage used for
recording addresses, counts, and any status and
control data associated with the I/O operation. If
a channel contains more than one subchannel, it is
referred to as a "multiplexor channel." If a channel
contains only one subchannel and operates in the
burst mode, it is referred to as a "selector channel."
The 2065 uses both a multiplexor channel (channel
address/D) and selector channels (channel addresses
1 through 6). When the selector channels are oper­
ating, a device monopolizes the channel and stays
logically connected to the channel for the transmis- .
sion of an information burst. The burst can consist
of a number of bytes, a block of data or a sequence
of blocks with associated control Signals.

When the multiplexor channel is operating, the
facilities of the channel may be shared by a number

of concurrent I/O operations. The multiplex mode
causes all I/O operations to be split into short inter­
vals of time during which only a segment of infor­
mation is transferred over the interface. The
intervals associated with different operations are
intermixed in response to demands from the I/O
devices. The channel controls are occupied with
anyone operation only for the time required to
transfer a segment of information. The segment
of information can consist of a single byte of data,
a few bytes of data, or a control sequence such as
initiation of a new operation or a status report from
the device.

3.15.1.2 Control Units

• Provide logical capability necessary
to operate and control I/O devices.

• May be housed separately or may be
physically and logically integral with
I/O devices.

• Accept signals from channel and con­
trol timing of data transfer to channel.

The control unit provides the logical capability
necessary to operate and control an I/O device and
adapts the characteristics of each device to the
standard form of control provided by the channel.
A control unit may be housed separately or it may
be physically and logically integral with the I/O
device. The control unit accepts control signals
from the channel, controls rue timing of data trans­
fer to the channel, and provides indications of de­
vice status.

Except for the signal used to establish priority
among control units, all communications to and
from the channel occur over a common bus, andany
bus signals provided by the channel are available to
all control units. At any instant, only one control
unit is logically connected to the channel. Selection
of a control unit for communication with the channel
is controlled by a signal that passes serially through
all control units and permits each control unit to
respond sequentially to the signals provided by the
channel. A control unit remains logically connected
to the channel until it has transferred the informa­
tion it needs or has, or until the channel Signals it
to disconnect.

The I/o device attached to the control unit may
be designed to perform only certain limited opera­
tions, such as moving the recording medium and
recording data. To accomplish these functions, the

11/65 2065 FEMI 3-225

device needs detailed signal sequences peculiar to
the type of device. The control unit decodes the
command received from the channel and then pro­
vides, for the particular I/o device, the signal se­
quence required for the operation.

3.15.1.3 I/O Devices

The I/O devices provide external storage and a
means of communication between data-processing
systems or between a system and the surrounding
environment. I/O devices may be accessible from
one or more channels. Devices accessible from
one channel normally are attached to only one con­
trol unit. A device can be made accessible to two
or more channels by switching it between two or
more control units, each attached to a different
channel, or by switching the control unit between
two or more channels. The System/360, Model 65,
has up to 256 directly addressable devices which
can be attached to one channel.

3.15.2 I/O SYSTEM OPERATIONS

• I/o operations initiated and controlled
by instructions, commands, and
orders.

• Instructions are decoded by CPU and
consist of:

Start I/O.
Test I/O.
Halt I/O.
Test Channel.

• Commands are decoded by channel
and consist of:

Read.
Write.
Read backward.
Control.
Sense.
Transfer in channel.

• Orders are functions peculiar to I/O
devices.

1/ a operations are initiated and controlled by in­
structions, commands, and orders. Instructions
are decoded by the CPU and are part of the CPU
program. Commands are decoded and executed by
the channels, and initiate I/o operations such as
reading and writing. Both instructions and com­
mands are fetched from main storage and are com­
mon to I/o devices of all types. The 2065 has four

3-226

I/O instructions: Start I/O, Test I/O, Halt I/O, and
Test Channel. The commands associated with the
system are read, write, read backward, control,
sense, and transfer in channel.

Functions peculiar to an I/o device, such as re­
winding tape or spacing a line on the printer, are
specified by orders. Orders are decoded and exe­
cuted by I/O devices. The execution of orders is
initiated by a control command, and the associated
control information is transferred to the device, as
data, during the control operation or is specified in
the modifier bits of the command code.

The CPU program initiates I/o operations with
the start I/o instruction. This instruction identifies
the I/O device and causes the channel to fetch a
channel address word (CAW) from a fixed location
in main storage. The CAW contains a protection
key and designates the location in main storage from
which the channel subsequently fetches the first chan­
nel command word (CCW). The CCW specifies the
command to be executed and the storage area, if
any, to be used.

If the channel is not operating and if the subchan­
nel is not busy, the channel attempts to select the
addressed I/O device by sending the address to all
attached control units. A control unit that recog­
nizes the address connects itself logically to the
channel and responds to the selection by returning
the address. The channel subsequently sends the
command code over the interface, and the device
responds with a status byte indicating whether it
can execute the command.

At this time, the execution of the Start I/O in­
struction is terminated. The results of the attempt
to initiate the execution of the command are indi­
cated by setting the CC in the PSW and, under
certain conditions, by storing a portion of the chan­
nel status word (CSW).

An I/O operation may involve the transfer of data
to one main storage area or to a number of main
storage areas. In the latter case, a chain of CCW's
is used where each CCW designates an area in main
storage for the 'original operation. The program can
be notified of the chaining progress by specifying
that the channel interrupt the program upon fetching
a new CCW.

Termination of the I/o operation normally is
indicated by two conditions: channel end and device
end. The channel-end condition indicates that the
control unit has received or provided all informa­
tion associated with the operation and no longer

11/65

needs channel facilities. The device-end signal
indicates that the I/O device has terminated the
operation. The device-end condition can occur con­
currently with the channel-end condition or later in
the operation.

Operations that tie up the control unit after re­
leasing the channel facilities may, under certain
conditions, cause a third type of signal. This sig­
nal, called control-unit-end, may occur only after
the channel-end signal and indicates that the control
unit is available for initiation of another operation.

The conditions signalling the termination of an
I/O operation can be brought to the attention of the
CPU program by I/O interruptions or, when the
channel is masked, by programmed interrogation
of the I/O devices. In either case, these conditions
cause storing of the CSW, which contains additional
information concerning the execution of the opera­
tion. At the time the channel-end signal is gener­
ated, the channel provides an address and a count
that indicates the extent of main storage used. Both
the channel and the I/O device can provide indica­
tions of unusual conditions. The device-end and
control-unit-end Signals can be accompanied by
error indications from the I/o device. For a more
complete analysis of the I/O system operations,
refer to the particular FEMI for the channel or I/O
device concerned.

3. 15. 3 CONDITION COD ES

The state of an I/O system depends upon the col­
lective state of the channel, the control unit, and the
I/O device. Each of these components of the I/O
system can have up to four states in response to an
I/o instruction from the CPU: (1) available, (2) in­
terruption pending, (3) working, and (4) not opera­
tional. A channel, a control unit, or an I/O device
that is available, that contains a pending interrup­
tion condition, or that is working is said to be
"operational." A channel, a control unit, or an I/O
device that is not in the system, that has power
down, or that is in the test mode is said to be "not
available. "

The CC for an I/O instruction will vary according
to the state of the I/O system and of the I/O instruc­
tion being performed. The CC is set in PSW(34, 35)
to indicate whether the channel has performed the
function specified by the I/O instruction. Para­
graphs 3.15.3.1 through 3.15.3.6 discuss the state
of the I/O system and the CC generated when each
instruction is issued. Tables 3-28 through 3-32 list

the results of attempting to execute an I/O instruc­
tion under working or busy, interruption, and not­
available conditions in a channel, control unit, and
device. An equipment configuration is assumed with
more than one channel, more than one control unit
per channel, and more than one device per control
unit.

TABLE 3-28. CC FOR WORKING CHANNEL

CSW
Instruction CC Stored Comment

Start 1/0 to any 2 No No I/O operation started.
control unit

Test 1/0 to any 2 No Control unit not selected,
control unit status not transferred.

Halt 1/0 to any 2 No Halt 1/0 instruction causes
control1Ulit a chalUlel intelTupt after

halting current operation.

Test ChalUlel 2 No Indication given that
ch=el is operating in
burst mode.

TABLE 3-29. CC FOR INTERRUPTION PENDING IN CHANNEL

Channel
CSW IntelTUption

Instruction CC Stored Cleared Comment

Start I/O to 2 No No No 1/0 operation
any control started.
unit

Test I/O to 1 Yes Yes Path cleared for
control unit new operation.
and device

Test I/O to 2 No No No address match,
control unit status not stored.
and other
devices

Test 1/0 to 2 No No No address match,
other control status not stored.
unit

Halt I/O to 0 No No Channel already
any control not working.
unit

Test Channel 1 No No Indication given
that an interruption
is available.

11/65 2065 FEMI 3-227

TABLE 3-30. CC FOR AVAILABLE CHANNEL, PENDING INTERRUPI'ION IN CONTROL UNIT

Control Unit
1 Status

Instruction CC CSW Stored Cleared Comment

Start I/O to control unit and device 1 Status only (Notes 1, 7) Yes No I/O operation started, but path is
now clear.

Start I/O to control lUlit and other 1 Status only (Notes 1, 7) No Status will probably be busy and
devices (Note 2) status-modifier.

Start I/O to controllUlit and other 0 No No I/O operation will be performed.
device (Note 3)

Start I/O to other control lUlit 0 No No I/O operetion will be performed.

Test I/O to control unit and device 1 Yes Yes Path cleared for new oper8tion.

Test I/O to control unit and other 1 Yes (Note 7) No Status will probably be busy rnd
device (Note 2) status-modifier.

Test I/O to control unit and other 0 No No Zero status on Test I/O instruction
device (Note 3) 'causes CC 0 and release signal to CPU.

Test I/O to other control unit 0 No No Same as "bove.

Halt I/O to control unit and device 1 All-zero status only (Note 1) No Halt I/O instruction does not request
status from addressed unit.

Halt I/O to control lUlit and other 1 All-zero status only (Note 1) No Same as above.
device (Note 4)

Halt I/O to control unit and other 1 Busy, status modifier, and No Same as above except that a control-
device (Note 5) all-zero chalUlel status only unit-busy selection sequence forces

(Note 1) unit status to channel.

Halt I/ 0 to other control ~t 1 All-zero status only (Note 1) No Halt I/O instruction does not request
status from addressed unit.

Test ChalUlel 0 No No Note 6

Note 1 - "Status only" means that the CSW will store only the unit and chalUlel status bytes (bits 32-47), leaving all other bits
lUlchanged.

Note 2 - Assume that the outstandin~ status is the control unit type that makes the control unit appear busy. Examples are control
lUlitend, channel end, device end with unit check, and device end with lUlit exception.

Note 3 - Assume that the outstanding status is the device type that does not make the control unit appear busy. Examples are device
end only and attention only.

Note 4 - Assume that the control unit does not appear busy, or that the control unit is busy but must wait for a normal selection
sequence to present nonzero &tatus.

Note 5 - Assume that the control unit appears busy and responds with the control-unit-busy selection sequence.

Note 6' - This response is possible only for a short time, because the unit status immediately attempts to enter channel as a polling
interruption, changing the test chalUlel response to CC 1.

Note 7 - The busy bit will appear in the unit-status byte.

3-228 11/65

TABLE 3-31. CC FOR CHANNEL NOT AVAILABLE

Instruction CC* CSW Stored

Start I/O to any control unit 3 No

Test I/O to any control unit 3 No

Halt I/O to any control unit 3 No

Test Channel 3 No

* Channel does not generate the CC or release signal in
any of these cases. The CPU generates the CC 3 and
release signal internally as a result of the channel­
available line to the CPU being functionally inactive.

TABLE 3-32. CC FOR AVAILABLE CHANNEL, CONTROL
UNIT NOT AVAIT.(\BLE

Instruction CC CSW Stored Comment

Start I/O to 3 No Channel fetches CAW
control unit and CCW before finding

no -selection condition.

Start I/O to 0 No Proceed with normal
other con- Start I/ 0 operation.
trol unit

Test I/O to 3 No Channel sends CC 3
control unit and re1e ase signal im-

mediately after select-
in signal returns on the
unit selection attempt.

Test I/O to 0 No Zero status on Test I/O
other con- instruction causes CC
tro1 unit 0, re1e ase signal, and

no CSW store.

Halt I/O to 3 No Channel sends CC 3
control unit and release signal im-

mediately after select-

in signal returns on the
unit selection attempt.

Halt I/O 1:0 1 All-zero status Halt I/ 0 instruction
other con- only (Note 1, does not request status
tro1 unit Table 3-30) from addressed unit.

Test Channel 0 No Indication is given that
channel is available.

Note: Some control units, when the control unit meter is
disabled, may provide a unit check status bit in­
stead of appearing nonexistent to selection
attempts. Responses to CPU instructions for these
units would be as expected for a nonzero status
condition.

3.15.3.1 Working Channel

Table 3-28 lists the CC placed in the PSW for
each of the four 110 instructions when the channel
being addressed is working. The channel appears
busy to all CPU instructions except Halt 1/0, which
terminates the operation occurring in the channel.
Conditions of the working channel do not affect the
responses of other channels to new instructions.

3.15.3.2 Interruption Pending in Channel

Table 3-29 lists the CC I s placed in the PSW for
the four 110 instructions when an interruption is
pending in the channel. The table is based on the
assumption that a normal operation occurred for a
Start 1/0 instruction in a channel, in the associated
control unit, and in the 1/0 device, and that the data
transfer, if any, has been completed with an inter­
ruption to store the CSW generated. The CPU in
this example is masked for the channel and cannot
respond to the channel interruption request. Any
110 instruction generated for other channels is not
affected by the condition of the addressed channel.
If a Test I/o instruction has not cleared the inter­
ruption, the CSW is not stored until the CPU un­
masks the channel and accepts the interruption.
When the CPU accepts the interruption, the inter­
ruption condition in the channel is cleared.

3.15.3.3 Available Channel, Pending Interruption
in Control Unit

Table 3-30 lists the CCls placed in the PSW for
the four 110 instructions when the channel is avail­
able and an interruption is pending in the control
unit. The table is based on the assumption that the
addressed channel has just become not-busy and has
not yet begun polling. It is also assumed that asso­
ciated control units have outstanding status from
their devices, which has not yet been accepted by
the channel. No other control units or devices are
busy or working.

3.15.3.4 Channel Not Available

Table 3-31 lists the CC I s placed in the PSW for
the four 110 instructions when a channel is not
available. One of the follOWing conditions is as­
sumed to be present in the addressed channel:

1. Channel disconnected from CPU interface.

11/65 2065 FEMI 3-229

2. Channel power down.

3. Channel in test mode.

4. Channel meter disabled.

3.15.3.5 Available Channel, Control Unit Not
Available

Table 3-32 lists the CC ' s placed in the PSW for
the four I/o instructions when a channel is available
and the control unit is not available. It is assumed
that the addressed channel is operative but not busy,
and that one of the following conditions may be
present in the control unit on the channel:

1. Control unit power down.

2. Control unit disconnected from the I/O inter­
face and the interface cables jumpered.

3. Control unit under test.

4. Control unit meter disabled.

All other channels, control units, and devices in .
the system are operative but not busy.

3.15.3.6 Polling Interruption in Channel

The CC's placed in the PSW when a polling inter­
ruption in the channel occurs are identical with those
listed in Table 3-30 for the start I/O, Test I/O, and
Halt I/O instructions. The assumption is that the
control unit and device status has entered the chan­
nel and that the channel interruption request to the
CPU is present but the CPU has not replied with a
CPU interruption response. No other control units
or devices have outstanding status. The Test Chan­
nel instruction CC changes from that listed in Table
3-30. This instruction sees the channel polling in­
terruption as an interruption-available condition and
provides a CC of 1 rather than of O.

3.15.4 INSTRUCTION FORMAT

I/O instructions use the SI format:

OpCode _ 81 I 01
o 7 8 15 16 19 20 31

Bits 8-15 are ignored. The base plus the dis­
placement determines the channel and device ad­
dress: bits 16-23 of the sum are the channel

3-230

address, and bits 24-31 of the sum are the device
address.

3.15.5 INTERRUPTIONS

The only interruption that may occur for an I/O
instruction is the privileged-operation interruption.
It occurs if the CPU is in any state other than the
supervisor mode. The instruction is suppressed
before the channel has been signalled to execute the
instruction. The CSW, the CC in the PSW, and the
state of the addressed channel and the I/O device
remain unchanged. The interruption code in PSW(16-
31) is 00000000 00000010. The instruction length
code may be 1 or 2.

3.16 INSTRUCTION ANALYSIS

The four I/O instructions and their format, mne­
monic code, op code, CC's, and interruptions are
shown in Table 3-33. A functional analysis of each
instruction is given in the following paragraphs.

TABLE 3-33. I/O INSTRUCTIONS

Mnemonic Op Condition
Instruction Format Code Code Codes

Start I/O SI SIO 9C 0, 1, 2, 3

Test I/O SI TIO 9D 0, 1, 2, 3

Halt I/O 51 HIO 9E 0, 1, 2, 3

Test SI TCH 9F 0, 1, 2, 3
Channel

3.16.1 START I/O, S10 (9C)

• Selects specified I/O unit and initiates
channel commands to that unit.

• D(8-15) is channel address.

• D(16-23) is I/O unit address.

• If available, channel selects CAW.

• CAW specifies CCW location.

• Channel stores status byte if errors
in CAW or unit address.

Interruption

Privileged
Operation

Privileged
Operation

Privileged
Operation

Privileged
Operation

11/65

• SI format:

9C __ B1 D1

o 7 8 15 16 1920

1

Address of I/o unit and channel

Select channel and I/o unit per addresses

Fetch CAW and CCW

Start I/o operation, send CPU CC
infarming it of channel and I/O
unit status, and release CPU.

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1st operand is not applicable.
2nd operand address (address of

channel and device) is in D.

• CC's specify status of channel and
I/O unit.

• CC setting:
I/O operation initiated and channel

proceeding with its execution:
CC = o.

CSW stored: CC = 1.
Channel busy: CC = 2.
Channel not operational: CC = 3.

31

The Start I/O (SIO) instruction, which has an SI
format with an op code of 9C, selects a specified
I/O unit and initiates a channel command to that unit.
The following channel commands are associated with
the SIO instruction: read, read backward, write,
sense, and control. The effective operand address
(base + displacement) determined during 1- Fetch of
the SIO instruction addresses the channel and I/O
unit. Bits 21 through 23 of the effective operand
address are decoded to select 1 of 7 channels; bits
24 through 31 are sent to the channel as an 8-bit
I/O unit address, selecting the correct I/O unit.

Figure 6080, FEDM, is a flow chart of the SIO
instruction. At the start of execution, the first 16
bits of the instruction are in E and the second oper­
and address is in D; the first operand is not appli­
cable. Because this instruction is an I/O instruction,
the address in D is the address of the channel and

I/O unit .and is not to be interpreted as a main stor­
age address. Therefore, no data is requested from
main storage. The SIO instruction can be executed
only when the CPU is in the supervisor state. The
first operation of the instruction; therefore, is to
determine the state of the CPU. If the CPU is not
in the supervisor state, a privileged-operation
check occurs, causing a privileged-operation inter­
ruption. If the CPU is in the supervisor state, exe­
cution of 810 instruction begins by setting the
timing-gate trigger. This trigger sends a select
signal to the proper channel as determined by D(8-
15). At this time, the unit address [D(16-23)] is
also sent to the channel. If at this point the selected
channel is busy or in the test mode, a CC of 2 or 3,
respectively, is sent to the CPU. A release signal
is also sent to the CPU, releasing it for execution
of other instructions. If the channel is available,
the unit address is gated to the unit address register
in the channel. The channel then fetches the CAW
from main storage address 72. The CAW specifies
the address of the first CCW and the storage protec­
tion key for all the channel commands associated
with the SIO instruction. If any errors are dis­
covered in the CAW or the unit address, a status
byte is stored in the channel and a CC of 1 is sent
to the CPU. A release signal is also sent to the
CPU, releaSing it for execution of other instructions.

Two operations, fetching the CCW and selecting
the I/O unit per the unit address, are now started
simultaneously. Fetching of the CCW is initiated
by issuing a storage request from the channel to
main storage. When the BCU response is received
by the channel, the channel places the command
address on the storage address bus and waits for
the advance pulse. The advance pulse is used to
place the command information (command code,
data address, flags, and counts) into the proper
registers in the channel. The CCW-valid trigger
is set, if there were no errors, to show that the
CCW has been received. The CCW information is
then checked for correct parity. During the stor­
age operation, the command address was incre­
mented by 1; the updated quantity is now gated back
to the command address register in the channel.

The second operation, selection of the proper
I/O unit, is started at the same time as fetching of
the CCW. Selecting the proper I/O unit is accom­
plished by placing the unit address on the bus-out
to the control unit and issuing an address-out signal
followed approximately 400 ns later by a select-out
signal. The control unit responds with an operation­
in signal, which causes the channel to deactivate the
address-out signal. When the control unit senses
the deactivation of the address-out signal, it places

11/65 2065 FEMI 3-231

the address of the device selected on the bus-in and
activates its address-in signal. The channel then
compares the address it received from the control
unit with the address it sent to the control unit to
determine that'proper selection has been made.

If the addresses are identical, the CCW-valid
trigger is set, and no errors have been encountered,
the operation continues. The CC is placed on the
bus-out, and the command-out signal is sent to the
control unit. The control unit responds with zero
status if it can accept the command. The channel
then sends a CC of 0 and a release signal to the CPU,
releasing the CPU for further instruction execution.
When the CPU receives the release signal, the
timing-gate trigger is reset and an end-op cycle is
taken, completing the operation.

If any errors occurred up to the point where the
channel and control unit compare addresses or if
the control unit responded with anything other than
zero status, a hardware-generated test-I/O code
would be placed on the bus-out to the control unit
instead of the command code and the device status
would be cleared. The channel would then discon­
nect from the device and request a storage cycle.
When the BCU response is received, the status in­
formation, a CC of 1, is placed in the CSW, and a
release signal is sent to the CPU. This action
leaves the channel clear and ready to receive an­
other instruction.

3.16.2 TEST I/O, TIO (9D)

• Clears interruption condition existing
in addressed channel or associated
I/O units and stores CSW in main
storage location 64.

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1st operand is not applicable.
2nd operand address (address of

channel and device) is in D.

• D(8-15) is channel address.

• D(16-23) is I/O unit address.

• Sends CC to CPU, indicating status of
channel or I/O unit, then releases CPU
for next instruction.

3-232

• SI format:
'-....

9D __ 'Bl

78 15 16 1920

Address of I/o unit and channel

Test channel and I/O unit selected

Clear interruption conditions
in channel and I/O unit

Store status in CSW

Send CC to CPU and release
CPU for next instruction

• CC setting:
Channel available: CC = o.
CSW stored: CC = 1.
Channel busy: CC = 2.
Channel unavailable: CC = 3.

Dl

31

The Test I/O (TIO) instruction, which has an SI
format with an op code of 9D, clears interruption
conditions existing in the addressed channel or its
associated I/O units and stores a CSW in main stor­
age location 64 whenever the I/O unit being tested
has conditions for interruptions either within the
channel or within the I/O unit itself. The CSW is
also stored when the channel or I/O device detects
an error during the execution of the TIO instruction.
The status bits of the CSW identify the error condi­
tions that occurred in the channel or I/O unit. The
contents of the CSW pertain to the I/O device which
is addressed by the effective operand address (base
+ displacement) determined during I-Fetch of the
TIO instruction. Bits 21 through 23 of the effective
operand address are decoded to select 1 of 6 chan­
nels; bits 24 through 31 are sent to the channel as
an 8-bit I/O unit address to select the correct I/o
unit.

Figure 6081, FEDM, is a flow chart of the TIO
instruction. At the start of execution, the first 16
bits of the instruction are in E and the second oper­
and address is in D; the first operand is not appli­
cable. Because this instruction is an I/O instruction,
the address in D is the address of the channel and
I/O unit and is not to be interpreted as a main stor­
age address. Therefore, no data is requested from

11/65

main storage. The TIO instruction can be executed
only when the CPU is in the supervisor state. There­
fore, the first operation of the instruction is to de­
termine the state of the CPU. If the CPU is not in
the supervisor state, a privileged operation check
occurs, causing a privileged operation interruption.
If the CPU is in the supervisor state, execution of
the TIO instruction begins by setting the timing-
gate trigger. This trigger sends a select signal to
the proper channel as determined by D(8-15). At
this time, the unit address [D(16-23)J is sent to
the channel. The channel, if not working, compares
this unit address with the unit address it is holding
in its unit address register. If they are equal, the
interruption condition in the channel is stored in
main storage location 64 (contains CSW) and a re­
lease signal is sent to the CPU, releaSing if for
execution of other instructions. If the addresses
are not equal, a CC of 2 is sent to the CPU along
with a release signal, allowing the CPU to start
proceSSing the next instruction. When the CPU re­
ceives the release Signal, it resets the timing-gate
trigger and takes an end-op cycle, completing the
operation.

If the channel is available (working), the unit ad­
dress sent from the CPU is placed in the unit ad­
dress register in the channel to select the specified
110 unit in the same manner as the Start 110 in­
struction. (Refer to paragraph 3.16.1.) Because
this is the TIO instruction, only status is required
from the selected I/o unit. When the status of the
I/o unit is received, a CSW is stored in main stor­
age location 64 and a CC of 1 is sent to the CPU.
A release signal is then sent to the CPU. When the
CPU receives the release signal, the timing-gate
trigger is reset and an end-op cycle is taken, com­
pleting the operation. If the status returned to the
channel when the test I/o command is issued is all
zeros, a CC of 0 is sent to the CPU. This value
indicates that the 1/0 unit is available. The CPU is
then released for further instruction execution.

3.16.3 HALT 1/0, HIO (9E)

• Terminates current 110 operation at the
selected channel. Status of channel and
1/0 device is sent to CPU via CC and
status byte in CSW, respectively.

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1st operand is not applicable.
2nd operand address (address of

channel and device) is in D.

• SI format:

9E 81 01
o 7 8 15 16 1920

Address of channel and I/O device

Select channel and I/O device

Terminate operation in channel and device

• Instruction is executed only in super­
visor state.

• Channel to be halted is determined
by D(8-15).

• 110 unit to be halted is determined
by D(16-23).

• Channel sends status to CPU via CC
and status byte.

• CC setting:
Channel not working: CC = o.
CSW stored: CC = 1.
Operation terminated: CC = 2.
Not operational: CC = 3.

31

The Halt 110 (HIO) instruction, which has an SI
format with an op code of 9E, terminates the cur­
rent 110 operation at the selected channel. The
status of the channel is sent, and the status of the
1/0 device may be sent, to the CPU through the CC
and the CSW status byte, respectively. The effec­
tive operand address (base + displacement) deter­
mined during 1-Fetch of the RIO instruction is used
to address the channel and I/o unit. Bits 21 through
23 of the effective address select one of the channels
available to the CPU, and bits 24 through 31 select
the units available for that channel; the remaining
bits are ignored.

Figure 6082, FEDM, is a flow chart of the HIO
instruction. At the start of execution, the first 16
bits of the instruction are in E and the second oper­
and address is in D; the first operand is not appli­
cable. Because this instruction is an 1/0 instruction,
the address in D is the address of the channel and
110 unit and is not to be interpreted as a main stor­
age address. Therefore, no data is requested from
main storage. The RIO instruction can be executed

11/65 2065 FEMI 3-233

only when the CPU is in the supervisor state. There­
fore, the first operation of the instruction is. to de-

. termine the state of the CPU. If the CPU is not in
the supervisor state, a privileged-operation check
occurs, causing a privileged-operation interruption.
If the CPU is in the supervisor state, execution of
the HIO instruction begins by setting the timing-gate
trigger. This trigger sends a select signal to the
proper channel as determined by D(8-15). At this
time, the unit address, D(16-23) is also gated to the
channel.

When the channel receives the select signal, it is
tested to see whether it is working. If not working,
a CC of 0 is sent to the CPU. A release signal is
then sent to the CPU, which resets the timing-gate
trigger. An end-op cycle is taken, and the CPU is
ready to process more instructions. If the channel
is working, it is tested for possible interruptions
pending. Assuming interruptions are pending, the
I/O device addressed by the unit address is selected.
The device response is determined. If a control­
unit-busy response is found, the I/O device status
is transferred to the CSW in main storage. The
channel status bits of the CSW are set to 0 IS. If the
I/O unit responds with an operational-in signal, an
interface disconnect sequence is performed; when
the sequence is completed, the CSW status bits are
set to zero, and a CC of 1 is sent to the CPU. A
release signal is also sent to the CPU to release
the CPU for further instruction execution. If the
I/O device responds with a select-in signal, a CC
of 3 is sent to the CPU along with the release signal
to release the CPU for further instruction execution.

Now assume no interruptions are pending. The
address-out signal is activated, and the select-out
signal is deactivated. The I/O unit operating on the
I/o interface responds to this action by deactivating
all in-tag signals and disconnecting itself from the
channel. The channel then sets its interrupt-request
trigger and issues a CC of 2 to the CPU. A release
signal is sent to the CPU to reset the timing-gate
trigger. An end-op cycle is taken to complete the
operation.

3-234

3.16.4 TEST CHANNEL, TCH (9F)

• Tests state of channel addressed by
bits 21-23 of effective operand address.

• SI format:

9F FlA81 D1

o 78 1516 1920

Address of channel h:l be tested

Select channel to be tested per D(13-15)

Set CC according to results
found in channel

• Conditions at start of execution:
1st 16 bits of instruction are in E.
1st operand is not applicable.
2nd operand address (address of

channel and device) is in D.

• Instruction is executed only when CPU
is in supervisor state.

• Channel to be tested is determined by
D(8-15).

• D(16-23), which normally selects
I/o unit, is ignored.

• State of channel is not affected by
instruction.

• CC setting:
Channel available: CC = o.
Interruption pending in channel:

CC = 1.
Channel operating in burst mode:

CC = 2.
Channel not operational: CC = 3.

• Figure 6083, FEDM.

31

11/65

SECTION 9. MANUAL CONTROLS AND INDICATORS

The system control panel (Figure 3-22) contains
the switches and indicators necessary to operate the
system. The main functions of the panel are to re­
set the system, to store and display information in
LS or main storage, in registers, and in the PSW,
and to load program information.

3.17 MANUAL CONTROLS

• Hardware and ROS-controlled operations.

• CPU must be in stopped state before
exiting to selected manual function.

Functionally, manual controls consist of special
hardware and ROS-controlled microprograms. Spe­
cial control logic and triggers control the selected
manual operations. The CPU must be in the stopped
state before most manual operations can be initiated.
The force-address trigger (used during the pulse
mode, system reset, and initial program-load oper­
ations) forces an overriding branch to a predeter­
mined ROS microprogram. There are six normal
methods of placing the CPU in the stopped state:

1. Perform power-on-reset operation.

2. Depress SYSTEM RESET pushbutton.

3. Depress STOP pushbutton.

4. Detect an address-compare condition when
ADDRESS COMPARE STOP switch is in Stop
position.

5. Initiate instruction-step-mode operation.

6. Initiate scan operation.

When the CPU is in the stopped state, it is in a
ROS-controlled microprogram loop (stop loop) and
the MANUAL indicator is on.

3.17.1 STOP LOOP

• ROS-controlled microprogram loop.

• Address of next instruction displayed
in D.

• Stop and manual triggers control stop
loop.

• Interruptions and I/O operations must
be completed before entering stop loop.

• Six pushbuttons sampled by stop loop.

When the CPU is in the stopped state~ a ROS­
controlled microprogram, called the "stop loop," is
continuously being executed. The stop loop is shown
by the heavy lines in Figure 6084, FEDM.

When in the stop loop, no program instructions
are executed, the interval timer (location 80 of main
storage) is not stepped, and the time meters are
stopped unless a channel is running. Also, the
MANUAL indicator is on, and the stop loop deter­
mines the starting location of the next instruction to
be executed and displays the results in D (contents
of Ie minus 8 or 16). To display the contents of D,
set roller switch 1 to position 2; to display the con­
tents of the IC, set roller switch 6 to position 3.

Two triggers control the stop loop: the stop trig­
ger and the manual trigger. The stop trigger forces
the CPU to the stop loop and is set by:

1. Depressing the STOP pushbutton.

2. Setting the instruction-step trigger in conjunc­
tion with an I-Fetch-reset micro-order or a
reset-interrupt-triggers micro-order.

3. Detecting an address-compare condition when
the ADDRESS COMPARE STOP switch is in
the Stop position.

4. Being in scan operation.

At end op, the stop trigger's being set indicates
an exceptional condition. A branch is forced to a
count delay microprogram, provided all pending
interruptions and I/O ope rations are completed.
All interruptions (not masked off) and I/O operations
are completed before entering the count delay and
stop loop microprograms. The stop trigger forces
in ROSAR the ROS address of a count delay micro­
program. The count delay routine allows time to
recognize that a pushbutton has been depressed be­
fore the stop loop is entered.

11/65 2065 FEMI 3-235

Mter the count delay microprogram is executed,
the manual trigger is set by the set-stop-Ioop­
trigger (1- STOP LOOP) micro-order (Figure
6084, FEDM) and the stop loop is entered. The
purpose of the manual trigger is to allow manual
control operations only when the CPU is in the
stopped state; however, SYSTEM RESET, CHECK
RESET, and LOAD pushbuttons operate in all modes.
The manual trigger also makes the RATE switch in­
operative. Whenever the CPU is in the stop loop or
in one of the microprogram routines entered from
the stop loop, the CPU operates at normal machine
speed regardless of the RATE switch position.

The stop trigger is not set during system reset
or power-on reset; therefore, the stop loop is en­
tered directly (Figure 6084, FEDM).

The stop loop continuously samples six push-
buttons: .

1. STORE

2. DISPLAY

3. SET IC

4. START

5. ROS TRANSFER

6. PSW RESTART

When the stop loop senses that a pushbutton has been
depressed, a branch is made to a new microprogram
to perform the pushbutton function. The micropro­
gram just executed either branches to the count de­
lay microprogram and re-enters the stop loop or
continues other preselected operations.

The microprograms executed for the six push­
buttons are shown in Figure 6084, FEDM, and
discussed in paragraphs 3.17.9 through 3.17.14.

3.17.2 POWER ON RESET

Depressing the POWER ON pushbutton initiates
the power-on sequence. Mter power is applied to
the system, a system reset occurs. The power-on­
system-reset signal forces an address in ROSAR,
causes a system reset, and the power-on-reset
microprogram is executed to clear all LS locations
(Figure 6084, FEDM). Main storage locations re­
main unchanged. The stop loop is then entered.

3-236

3.17.3 SYSTEM RESET PUSHBUTTON

Activating the SYSTEM RESET pushbutton resets
all channels, CPU controls, and check indicators to
an initial state. Data flow registers remain un­
changed. A system reset does not affect equipment
in off-line channel operation. The SYSTEM RESET
pushbutton is active in all modes of operation. After
the system reset occurs, the stop loop is automati­
cally entered.

Since a system reset may occur in the middle of
an operation, the contents of the PSW and of result
registers or storage locations are unpredictable.

A system reset micro-order is provided to reset
the CPU in the scan mode. The micro-order does
not reset the channels or storage units and does not
force an ROS address. Depressing the LOAD push­
button initiates a system reset before entering the
initial program load (IPL) microprogram. When the
LOAD pushbutton is depressed, the channels are not
reset by the IPL line sent to the channels.

3.17.4 STOP PUSHBUTTON

The STOP pushbutton provides the ability to ter­
minate machine operations while retaining the ma­
chine environment. The CPU proceeds to the end of
the machine instruction being executed at the time
the stop command is recognized. All I/O operations
in process and all pending interruptions not masked
off are completed before entering the stop loop. De­
pressing the STOP pushbutton sets the stop trigger.
If there are no I/O operations in process or inter­
ruptions pending, the count delay microprogram is
executed before entering the stop loop.

The operator may continue normal program oper­
ation by depressing the START pushbutton, or he
may execute certain manual operations (e.g., in­
struction- step operation).

3.17.5 ADDRESS COMPARE STOP SWITCH

The ADDRESS COMPARE STOP switch provides
the operator with a means of stopping at a predeter­
mined address. To do so, he enters the address in
the ADDRESS switches and places the ADDRESS
COMPARE STOP switch in the Stop (down) position.
When ADDRESS switches 2 through 20 match the
address sent to the BCU, the address-compare-stop
trigger is set. (Address comparison is performed
on double-word boundaries.) The stop trigger is
set, and the count delay microprogram is entered.

11/65

A

B METER

C

10

0

E

F

G

H

J

~ ---PANEL D

FIGURE 3-22. SYSTEM CONTROL PANEL
(SHEET 1 OF 2)

3-238 2065 FEMI

PANEL A

\
MARGIN POWER CHECK

STOR FRAME CHAN FRAME

ACTIVE LOCATE CPU I 2 3 4 I 2 3

to to 0 0000 000
MARGIN/METER SEL MARGIN CHANNEL/STOR

[;~'J'~' STORE 0 2 FRAME
FRAME 3 3

LOWER 0 RAISE 4 ROS LOCATE

[~ ~]
CPU

15 20 25 30

I I

000000000000000000

I I

000000000000000000

I I

000000000000000000

I I

000000000000000000

I I

000000000000000000

I I

000000000000000000
~

7
PANEL E

PANEL B PANEL C

I I

ROS

LOWERO RAISE EMERGENCY
PULL

+ 6M A GT + 6M B GT + 6M C GT + 6M E GT

LOWERO RAISE LOWER 0 RAISE LOWERO RAISE LOWERO RAISE

35 40 45 50

I FEATURES GREG LCS
CHECK SUMMARY

2 o REG, F REG • I I
3 S REGISTER 0-31
4 ROSAR, ROSPAR A & B
5 STORAGE I SUMMARY

STORAGE PROTECT

000000000000000000
6

I TIME CLOCK FEATURES
2 PROCESSOR CHECKS

I I
3 T REGISTER 32-63 • 4 ROSOR 0-35
5 STORAGE 2 SUMMARY

STORAGE PROTECT

000000000000000000
6 FEATURES

I STOR REG, MAN CTRLS,
FLT CONTROLS

~ I I
2 Q REG ISTER 0-31
3 A REGISTER 0-31
4 ROSOR 36-68
5 EMULATOR

000000000000000000 6 EMULATOR

1 PSW
2 Q REGISTER 32-63

I I
3 8 REGISTER 32-63

~ 4 ROSOR 69-99, EDIT
5 STATUS INSN FETCH,

INTERRUPT

000000000000000000 6

I ROS FIELOS 000,
FEATURES

~ I I
2 MCW & FL T CONTROL
3 R REG, E REG
4 GATE CON TROL TGRS
5 STORAGE 3 SUMMARY

000000000000000000 6

I PAOOL 32-63
2 MARK, LAR, 8 REG

I I
A8C, PAOOL, sre

~ 3 IC, SAOOL
4 STORAGE CHECKS
5 STORAGE 4 SUMMARY

000000000000000000 STORAGE PROTECT
6 LAMP TEST

11/65

PANEL D PANEL E - .L /
"'- I

BYTE 0

0 1 2 3 4 5 6 7

K BBB~BBBB
BYTE 4

32 33 34 35 36 37 38 39

L BB~BBBBB
ROS ADDRESS COMPARE

0 1 2 3 4 5 6 7

M BB~BBB§BB

N 15 20

TEST MODE
DEFEAT STORAGE CPU PULSE

INTERlEAVll'lG SELECT CHECK MODE

~"' r f' r B § § B
REV

B B
BYTE

§ N MAIN PRQC ROC

MAIN

REV LOCAL DSAB COUNT
P

FREQUENCY STOP ON DISABLE ADDRESS
REPEAT FLT ROS STORAGE INTERVAL COMPARE

ALTERATION CHECK TIMER STOP

Q

0 o a 0 0
1 o a 0 1
2 o 0 1 0

HOIOHO\sl @) IOH+H 3 1

3 o a 1 1
4 o 1 0 0

R 5 o 1 0 1
6 o 1 1 0
7 o 1 1 1
8 1 a 0 0
9 1 a a 1
A 1 a 1 0
B 1 0 1 1

S C 1 1 1 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1

I
/

PANEL F

11/65

DATA 0 - 31

BYTE 1 BYTE 2

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

BBBBBBBB BBBBBBBB
DATA 32 - 63

BYTE 5 BYTE 6

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

BB~BB~BB BBB~B§§§
1024 512 256

ADDRESS

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

§§§§BBBB B ~ B B §~B B B
MAIN STOR ADDRESS COMPARE I

25 30 35 40

REPEAT
INSN

r § B PRQC

D I SYSTEM I ~. CHECK J SINGLE RESET RESET
REPEAT

ROS
PROCESS

RATE
PROCESS SI NGLE I PSW I D I TR:~;FER I 'N"~'"'' STEP RESTART o SINGLE CYCLE

STORAGE
INHIBIT

B EJ CD IC

I
I

: STOP I RESTART I ~ START I FLT I/O OUT

STOR CHK

BYTE 3 I
24 25 26 27 28 29 30 31

BBBBBBBB ©

'" ..
"'

BYTE 7 J
56 57 58 59 60 61 62 63

§§§§§§§§
128 64 32 16 8 4 2 1

COUNT PROC CHK

19 201 21-23

LOCAL STORE 0 REGISTERS 0-15 (Q)
FP 1 0 I REGISTERS 16-23

WORKI NG REGISTER 1 11 REGISTER 24

45 50

~ ON ~ OFF

LOAD UNIT

\ a \ 0 F \ 0 F

'\- '\- ,.
'"

,.

0 '" 0
0 '" 0

0

) .. .() .,. ()

"' '" "' '"
SJ J) .. J) ..

<: <: 8 b <: 8 ,b

I INTERRUPT I SYo MOL 0 0 0 B
t

I

PANEL G

FIGURE 3-22. SYSTEM CONTROL PANEL
(SHEET 2 OF 2)

2065 FEMI 3-239

After the stop trigger is set, entry to the stop loop
is identical with depressing the STOP pushbutton
(see paragraph 3.17.4).

3.17.6 DATA SWITCHES

The 64 DATA switches allow the operator to
manually enter data into the system. Each switch
is a 2-position toggle switch with the up position
equalling a 0 and the down position equalling a 1.
The 64 DATA switches are colored gray and white
in hexadecimal groups to facilitate entering data in
the CPU.

When data is entered in the CPU, correct parity
is automatically generated. If the switches are al­
tered during an operation, such as repeat instruc­
tion or storage ripple, an error will probably occur.

The DATA switches are used during the following
manual operations:

1. Store

2. Storage ripple store

3. Repeat instruction

4. Pulse mode (count)

During manual operations, the selected manual
microprogram places l's in ST. IT a DATA switch
equals a 1, the corresponding bit in ST is unchanged
(remains set). IT a DATA switch equals a 0, however,
the corresponding bit in ST is reset to o.

3.17.7 ADDRESS SWITCHES

The 24 ADDRESS switches allow the operator to
manually select any address in ROS. LS, or main
storage.

Each switch is a 2-position toggle switch with the
up position indicating a 0 and the down pOSition indi­
cating a 1. The 24 address switches are colored
gray and white in hexadecimal groups. When an
address is entered, correct parity is automatically
generated when gated to the CPU.

To address main storage or LS, the ADDRESS
switches are used with the STORAGE SELECT
switch. ADDRESS switches 2 through 20 select a
double word in main storage (may be used in con­
junction with the ADDRESS COMPARE STOP switch
when selecting an address for an address-compare

stop or sync). ADDRESS switches 19 through 23
select an LS address.

ADDRESS switches 0 through 11 select an ROS
address for comparison to obtain an ROS address
sync or contain an ROS address for the ROS
TRANSFER pushbutton.

The ADDRESS switches are used during the fol­
lowing functions:

1. Store

2. Display

3. Set IC

4. ROS transfer

5. ROS repeat

6. Main storage address-compare stop or sync

7. ROS address-compare sync

During manual operations, the selected manual
microprogram places l's in D. If an ADDRESS
switch equals a 1, the corresponding bit in D is un­
changed. IT an ADDRESS switch equals a 0, how­
ever, the corresponding bit in D is reset.

3.17.8 STORAGE SELECT SWITCH

The STORAGE SELECT switch is a 3-position
toggle switch that selects LS or main storage when
storing or displaying data. The positions and cor­
responding functions are:

1. MAIN (center) position - Selects the double­
word main storage address specified by
ADDRESS switches 0 through 20 for both
storing and displaying data.

2. MAIN BYTE position - For storing, selects
the double-word location (per ADDRESS
switches 0 through 20) and byte (per ADDRESS
switches 21, 22, and 23) within the double
word. For displaying, selects the double word
in main storage to be displayed (same as MAIN
position).

3. LOCAL position - Selects LS location (per
ADDRESS switches 19 through 23) for both
storing and displaying data.

11/65 2065 FEMI 3-241

The use of the STORAGE SELECT switch is dis­
cussed in the following paragraphs whenever it is
involved in a specific manual operation.

3.17.9 STORE PUSHBUTTON

• Allows storing data in main storage or
LS from DATA switches per STORAGE
SELECT switch and ADDRESS switches.

The STORE pushbutton provides a means of stor­
ing information in any address of LS or main stor­
age. The contents of the DATA switches are placed
in the location specified by the ADDRESS switches
and the STORAGE SELECT switch (Figure 6084,
FEDM). If the STORAGE SELECT switch is in the
LOCAL (down) position, the five low-order ADDRESS
switches specify the LS location in which the con­
tents (32 data bits plus 4 parity bits) of the right­
half of the DATA switches will be stored.

If the STORAGE SELECT switch is in the MAIN
BYTE position, one byte is stored in main storage
per bits 12-23 of the ADDRESS switches. Bit posi­
tions 0 through 20 of the ADDRESS switches specify
the double-word boundary in main storage. The
value contained in the ADDRESS switches is' placed
in D for storing in main storage. The contents of
the ADDRESS switches are placed in E for storing
in LS.

If the STORAGE SELECT switch is in the MAIN
position, the contents (64 data bits plus 8 parity
bits) of the DATA switches are stored in main stor­
age on a double-word boundary per the ADDRESS
switches (0 through 20).

For all store operations, the original contents of
D, S, and T are destroyed. Correct parity is auto­
matically generated before storing in either main
storage or LS.

After the data is stored, the microprogram en­
t~rs the count delay routine and the CPU re-enters

/the stop loop (Figure 6084, FEDM).

3.17.10 DISPLAY PUSHBUTTON

• Allows displaying of data from main
storage or LS in ST and AB per
STORAGE SELECT switch and
ADDRESS switches.

The DISPLAY pushbutton provides a means of
displaying the contents of any location in LS or ma,in

3-242

storage. The address and the storage to be used
are determined by the ADDRESS switches and the
position of the STORAGE SELECT switch, respec­
tively (Figure 6084, FEDM). Data from main stor­
age (64 data bits plus 8 parity bits) is displayed in
ST and AB. (Set roller switches 1 and 2 to position
3 for visual inspection of ST and roller switches 3
and 4 to position 3 for visual inspection of AB.)
Data from LS (32 data bits plus 4 parity bits) is
displayed in T. (Set roller switch 2 to position 3
for visual inspection of T.)

The original contents of S, T, and D are de­
stroyed. After the selected data has been displayed,
the count delay microprogram is executed and the
stop loop is re-entered (Figure 6084, FEDM).

3.17.11 SET IC PUSHBUTTON

• Loads Q and R per ADDRESS switches.

The SET IC pushbutton sets the value contained
in the ADDRESS switches into the instruction-ad­
dress portion (bits 40 through 63) of the PSW
[D(0-23)] and fills Q and R with the instructions
beginning at the selected address. The value en­
tered into the ADDRESS switches is the starting
address of the next instruction to be executed.
During the set-IC microprogram, four instruction
halfwords are loaded into Q per the address in D
(contents of the ADDRESS switches); 8 is then added
to D, and the sum is placed in the IC.

The first addressed instruction halfword is
loaded in R per D(21, 22) (Figure 6084, FEDM). If
D(21,22) equals 11, Q is loaded with the next group
of four instruction halfwords per the IC, and 8 is
added to the IC. If D(21, 22) does not equal 11, Q is
loaded only once.

Once the instruction halfwords are fetched and
loaded into Q and R, the count delay microprogram
is entered. After the count delay, the stop loop is
entered (Figure 6084, FEDM). Further manual
intervention is required to start program execution.
(Normally, the START pushbutton is depressed.)

3.17.12 START PUSHBUTTON

• Starts CPU processing.

• Initiates selected manual functions.

The START pushbutton provides a means of start­
ing the CPU in the process, instruction step, single-

11/65

cycle, or single-cycle storage inhibit mode. This
pushbutton initiates manual operations depending
upon the selected manual-control function. Figure
6084, FEDM, assumes that the CPU is in the
process mode.

When the START pushbutton is depressed, a
reset-stop-and-manual-triggers (0 -- STP, STPLP)
micro-order resets the stop and manual triggers.
An end op occurs, and the I-Fetch of the next in­
struction begins program execution. If the START
pushbutton is depressed after an abnormal stop loop
entry or system reset, the results are unpredictable.

The block-interrupt trigger blocks interruptions
at end op of the start microprogram. Therefore,
interruptions are blocked until end op of the first
instruction. The block-interrupt trigger is set by
the 0 -- STP, STPLP micro-order and reset by
the 1-Fetch-reset micro-order. This trigger does
not block interruptions when the CPU is in the wait
state.

3. 17.13 ROS TRANSFER PUSHBUTTON AND
STORAGE-RIPPLE MICROPROGRAM

• Allows ROS microprogram branch to
any ROS location.

The ROS TRANSFER pushbutton allows entry into
an ROS word. Depressing the ROS TRANSFER push­
button places the contents of the 12 high-order
ADDRESS switches in ROSAR. The next micro­
instruction is taken from ROS and placed in the ROS
sense latches. Further action now depends upon the
RATE switch position.

If the RATE switch is in the PROCESS position,
the CPU continues executing ROS commands from
the entry point. In the instruction-step mode, the
CPU continues until an end op is reached.

If the RATE switch is in the SINGLE CYCLE or
SINGLE CYCLE STORAGE INHIBIT position, the
CPU stops with the micro-instruction displayed in
the sense latches (indicators selected by switches).
Depressing the START pushbutton advances ROS
one cycle. RATE switch operation is discussed in
paragraph 3.17. 16.

Within ROS are microprograms that can be en­
tered by placing the ROS address in the ADDRESS
switches and depressing the ROS TRANSFER push­
button, but only when the CPU is in the stop loop.
To enter the ROS storage ripple microprogram, for

example, with the CPU in the stop loop, a transfer
to the correct ROS address (placed in the ADDRESS
switches) is made by depressing the ROS TRANSFER
pushbutton. The storage ripple routine is capable of
(1) storing the data from the DATA switches in all
addresses in LS or main storage and putting good
parity in the storage-protect keys, or (2) reading
all locations of LS or main storage and displaying
the data. The choice of main storage or LS is made
through the STORAGE SELECT switch.

If main storage is selected, the storage-ripple
microprogram begins at address 0 and continues
until an invalid address is detected. After the in­
valid address is detected, a restart beginning at
address 0 occurs. Figure 6085, FEDM, shows the
restart on an interruption request that resulted from
detecting an invalid address. If LS is selected, the
storage-ripple microprogram begins at address 0
and loops through all addresses in LS. Manual in­
tervention (e.g., system reset or IPL) is required
to exit from the storage-ripple microprogram.

The storage-ripple microprogram may also be
used in troubleshooting by loading all storage loca­
tions with a predetermined value and then reading
back the data. This microprogram may be used in
conjunction with the STOP ON STORAGE CHECK
switch. The storage-ripple microprogram is shown
in Figure 6085, FEDM.

3.17.13.1 Storage-Ripple-Store Function

• Allows storing data in all locations in
LS or main storage.

To store data in LS or main storage, the CPU
must be in the stopped state, the data to be stored
is entered in the DATA switches, and the STORAGE
SELECT switch is positioned to select LS or main
storage. Enter 800006 (hexadecimal) in ADDRESS
switches 0 through 23, and depress the ROS TRANS­
FER pushbutton. The data previously entered in the
DA TA switches is stored in all locations in the se­
lected storage. Also, good parity is placed in the
storage protect keys on main storage ripple. In­
correct data may be stored if the DATA switches
are changed when in the storage-ripple store routine.
The ROS microprogram for the storage-ripple func­
tion is shown in Figure 6085, FEDM.

Since there is no automatic means of clearing
main storage and LS, the storage-ripple store
microprogram may be used to clear main storage
and LS.

11/65 2065 FEMI 3-243

3. 17. 13.2 Storage-Ripple Display Function

• Allows reading and displaying data
from all locations in LS or main
storage.

The storage-ripple display microprogram reads
all locations in LS or main storage as determined
by the setting of the STORAGE SELECT switch.
The CPU must be in the stopped state before the
ROS TRANSFER pushbutton is depressed. To exe­
cute the storage-ripple display routine, enter
800000 (hexadecimal) in the ADDRESS switches,
select main storage or LS, and depress the ROS
TRANSFER pushbutton (Figure 6085, FEDM).

If LS is selected by means of the STORAGE
SELECT switch, the data is displayed in S and
PAL(32-63). If main storage is selected, the data
is displayed in AB and ST. Data is checked in PAL
for good parity.

3.17.14 PSW RESTART PUSHBUTTON AND
WAIT STATE

• Allows loading new PSW.

• If PSW(14) = 1, enter wait state; if 0,
enter running state.

The PSW RESTART pushbutton allows the opera­
tor to load a new PSW from main storage location 0
into the CPU. Mter the new PSW is fetched, the
CPU will continue processing if the RATE switch is
in the PROCESS position.

The stop and stop-loop (manual) triggers are
reset at the beginning of the PSW-restart micro­
program (Figure 6084, FEDM). The PSW RESTART
pushbutton causes entry to the normal Load PSW in­
struction routine, which refills Q, R, and E.

At every end-op, PSW(14) is tested (Figure 6086,
FEDM). If PSW(14) equals a 1, the wait state is
entered. If the interval timer (location 80 of main
storage) is to be stepped, the interval timer is
stepped and the wait loop microprogram is re­
entered. If the STOP pushbutton is depressed, the
stop loop is entered. When a restart from the stop
loop is executed, the wait state is re-entered if
PSW(14) equals a 1.

An interruption causes a new PSW to be loaded in
the CPU. PSW(14) is again tested, and the wait
state is re-entered if PSW(14) equals a 1. If
PSW(14) equals a 0, the CPU is placed in the run-

3-244

ning state. The time meter is stopped when in the
wait state or stop loop unless a channel is running.

3.17.15 LOAD PUSHBUTTON (IPL)

• Allows loading a new program from
preselected I/o device per LOAD
UNIT switches.

• 24 bytes of data are read automati­
cally into main storage locations 0-23.
Remaining data is read in under CCW
control.

• LOAD pushbutton is active in all
modes of operation.

The IPL function provides a means of loading a
new program Into main storage from a preselected
input device. Initial program loading is initiated
manually by selecting the channel and I/O device by
means of the three LOAD UNIT switches and de­
preSSing the LOAD pushbutton. The left LOAD
UNIT switch, numbered from 0 through 7, selects 1
of 7 allowable channels. The remaining two switches
are both numbered 0 through F (hexadecimal) and
represent the unit address of the selected device.

Depressing the LOAD pushbutton causes a system
reset, turns on the LOAD indicator, turns off the
MANUAL indicator (if on), selects the I/O deVice,
sends a start signal to the selected channel, and
enters the IPL microprogram. The IPL operation
is shown in Figure 6087, FEDM.

During the IPL, hardware-controlled logic gen­
erates an initial CCW. This initial CCW indicates
that 24 bytes of data are to be read into locations 0
through 23 of main storage, and that chaining is
required.

Mter the first 24 bytes are read into main stor­
age, a new CCW is sent to the channel from main
storage location 8. If chaining is indicated in the
present CCW (from location 8), the next CCW is
taken from location 16. The CCW also indicates
the starting main storage address in which data is
to be read. If more than two CCW's are required,
the read-in program must control the additional
CCW's.

Mter all program data is read into main storage,
the channel sends a channel-release signal to the
CPU. The signal is sensed by the microprogram
(Figure 6087, FEDM). The I/O address is auto­
matically stored in bits 21 through 31 of the first

11/65

word (PSW) in main storage. Bits 16 through 20
are made O's, and bits 0 through 15 remain un­
changed. The load-PSW microprogram loads the
PSW from location 0 into the CPU. The PSW con­
tains the starting address of the program which is
loaded into the IC; assuming no errors or excep­
tional conditions exist, normal program execution
begins.

The LOAD pushbutton is active in all CPU modes.
The IPL system reset suspends all instruction proc­
essing, interruptions, and timer undating, and re­
sets all channels, on-line nonshared control units,
and I/O devices. The contents of general and
floating-point LS registers remain unchanged.

If the selected I/O device is a disk file, the IPL
information is read from track O. If the I/O opera­
tions and PSW loading are not completed satisfacto­
rily, the LOAD indicator remains on and the CPU
waits for the release-CPU signal from the channel.

3.17.16 RATE SWITCH

• Controls rate of instruction execution.

• Must be in stop loop before activating
switch.

The RATE switch selects the rate that instruc­
tions are executed. This rotary switch has four
positions: PROCESS, INSN STEP, SINGLE CYCLE,
and SINGLE CYCLE STORAGE INHIBIT.

Four triggers control the RATE switch operation:
instruction-step, single-cycle, pass-pulse, and
block.

The instruction-step trigger is set when the CPU
is in the stopped state and the RATE switch is in the
INSN STEP position, or when the pass-pulse trigger
is reset and the RATE switch is in the INSN STEP
pOSition. The instruction-step trigger performs
two functions: (1) it allows setting the stop trigger
so that only one instruction is executed with each
depression of the START pushbutton; (2) it disables
the stepping of the interval timer.

The single-cycle trigger is set when the CPU is
in the stopped state and the RATE switch is in the
SINGLE CYCLE or SINGLE CYCLE STORAGE IN­
HIBIT pOSition. This trigger allows single-cycle
operation. One machine cycle is allowed with each
depression of the START pushbutton unless the CPU
requests additional machine cycles (single cycle).
The interval timer is disabled by the single-cycle
trigger.

When the pass-pulse trigger is set, CPU machine
cycles are allowed. This trigger blocks the CPU
machine cycles when in the single-cycle mode (RA TE
switch in SINGLE CYCLE or SINGLE CYCLE STOR­
AGE INIllBIT position).

The block trigger is used in single-cycle opera­
tions to allow one clock pulse to be gated to the CPU
each time the START pushbutton is depressed. Pulse
blocking is accomplished by resetting the pass-pulse
trigger.

3.17.16.1 PROCESS Position

When the RATE switch is in the PROCESS posi­
tion, the system operates at the normal clock speed
of 200 ns. This position is the pOSition for normal
program execution.

3.17.16.2 INSN STEP Position

The INSN STEP position allows the execution of
one complete machine instruction for each depres­
sion of the START pushbutton. Any machine in­
struction may be executed in this mode. Mter
completion of the instruction, the CPU enters the
stop loop. The stop loop entry is identical with that
achieved by the STOP pushbutton. All I/o opera­
tions and interruptions (if not masked off) are com­
pleted before the stop loop is entered.

When in the INSN STEP position, the stop trigger
is set by an I-Fetch-reset micro-order or a reset­
interrupt-triggers micro-order. The CPU remains
in the stop loop until further action is taken by the
operator.

Instruction-step operation is shown in Figure
6088, FEDM. The CPU must be in the stop loop
before entering or leaving the instruction-step mode;
the interval timer is disabled during the instruction­
step mode.

3.17.16.3 SINGLE CYCLE Position

The SINGLE CYCLE position allows the CPU to
advance one machine cycle (200 ns) each time the
START pushbutton is depressed.

Single-cycle operation is shown in Figure 6089,
FEDM. The CPU must be in the stop loop before
entering or leaving the single-cycle mode and re­
mains in the stop loop until the START pushbutton
is depressed. The CPU begins executing instruc-

11/65 2065 FEMI 3-245

tions one machine cycle at a time for each depres­
sion of the START pushbutton. Figure 6089, FEDM,
assumes that no CPU requests are generated; how­
ever, more than one machine cycle is required when
an asynchronous device is used or a storage request
is given. The single-cycle mode will continue
through all CPU functions of the instruction to the
point of initiation of the asynchronous operation.
The asynchronous operation begins on the next de­
pression of the START pushbutton and runs to the
completion point in a normal manner.

If the asynchronous device initiates a~ interrup­
tion request during single-cycle operation, the in­
terruption is broken into single machine cycles.
More than one depression of the START pushbutton
is therefore required. The CPU runs at normal
machine speed in the stop loop.

3.17.16.4 SINGLE CYCLE STORAGE INHIBIT
Position

The SINGLE CYCLE STORAGE INHIBIT position
allows the CPU to advance one machine cycle (200 ns)
each time the START pushbutton is depressed. All
CPU requests are ignored, and asynchronous opera­
tions are suppressed.

3.17.17 REPEATINSN SWITCH

The repeat-instruction functions provide a means
of repeating a single instruction or repeating four
instruction halfwords. The REPEAT INSN toggle
switch has three positions:

1. PROC (center position) normal CPU operation.

2. SINGLE (down position).

3. MPLE (up position).

Two triggers control the repeat-instruction func­
tions: (1) repeat-instruction-adjust trigger and (2)
repeat-instruction-initialization trigger.

The repeat-instruction-adjust trigger sets the
repeat-instruction-initialization trigger and forces
a branch to the repeat-instruction microprogram at
end op of the start microprogram. STAT G is set
to block re-entering the repeat-instruction micro­
program at end op. The repeat-instruction-adjust
trigger is set when the CPU is in the stopped state
and the REPEAT INSN switch is in the SINGLE or
MPLE position. The trigger is reset when the CPU
is in the stopped state and the REPEAT INSN switch
is placed in the PROC position.

3-246

The pulse-mode-initialization trigger blocks
ingating to Q and biocks stepping of the interval
timer when in repeat-single-instruction mode. The
trigger is reset when in the stop loop, and the RATE
switch is placed in the PROCESS position. The CPU
must be in the stopped state before entering or
leaving the repeat-instruction mode. See Figure
6090, FEDM, for the repeat-instruction operations.

3. 17. 17. 1 Repeat Single Instruction Function

When the REPEAT INSN switch is in the SINGLE
position, one instruction is continuously executed.
The instruction to be repeated must be entered in
the DATA switches beginning with byte O. If the
CPU is in the stop loop, the repeat-instruction­
adjust trigger is set when the REPEAT INSN switch
is placed in either the MPLE or SINGLE position.
To begin the instruction, the START pushbutton
must be depressed.

In the repeat-single-instruction mode, a micro­
program is executed to set up initial conditions be­
fore enterIng I-Fetch of the instruction to be
executed (Figure 6090, FEDM).

The objectives of the repeat-instruction micro­
program are to load the contents of the DATA
switches in Q, set IC(21, 22) to 00, inhibit updating
of IC(20) or above, gate the first instruction half­
word from Q to R, set STAT G, and set the repeat­
instruction-initialization trigger (Figure 6090,
FEDM). A normal end op completes the repeat­
instruction routine.

The instruction that was loaded in Q from the
DATA switches is executed. Because the repeat­
instruction-adjust trigger was not reset during the
initial set-up routine, the ROS address to the
repeat-instruction microprogram is forced at end op
of the instruction. Re-entering the repeat-instruc­
tion microprogram on each instruction resets IC(21,
22) to 00, thus causing the first instruction to be re­
peated. Setting STAT G prevents returning to the
repeat-instruction microprogram at end op.

3. 17. 17.2 Repeat-Multiple-Instructions Function

When the REPEAT INSN switch is in tl).e MPLE
position, the four instruction halfwords loaded in Q
are continuously executed per IC(21, 22). The
repeat-instruction-initialization trigger inhibits
data from being gated from the SDBO to Q. Once
instruction execution begins, the repeat-instruction
microprogram is noV entered because the repeat­
instruction-adjust trigger is reset (Figure 6090,
FEDM).

11/65

The repeat-multiple-instructions function is
similar in operation to the repeat-single-instruction
function except for the following:

1. The interval timer is allowed to step.

2. The repeat-instruction-adjust trigger is reset.

3. Interruptions are executed.

3.17.18 PULSE MODE SWITCH OPERATION

Pulse-mode operation provides a means of loop­
ing through a selected number of machine cycles,
starting at a selected address, or of looping each
time the interval timer is advanced.

The PULSE MODE toggle switch has three posi­
tions:

1. PROC (center position), normal CPU
operation

2. TIME (up position)

3. COUNT (down position)

The PROC pOSition of the PULSE MODE switch
is used during normal program execution. The CPU
must be in the stop loop before entering or leaving
the pulse mode.

Two triggers control pulse mode operation: (1)
pulse-mode-adjust trigger and (2) pulse-mode­
initialization trigger. The pulse-mode-adjust trig­
ger determines when to force an overriding branch
to the pulse-mode-initialization microprogram and
when to reset the system. This trigger can be set
in one of three ways:

1. When the CPU is in the stop loop and the
PULSE MODE switch is in either COUNT or
TIME pOSition.

2. When the CPU is not in the stop loop, the
PULSE MODE switch is in the COUNT posi­
tion, the scan-counter latch equals 0, and the
pulse-mode-initialization trigger is set.

3. When the CPU is not in the stop loop, the
PULSE MODE switch is in the TIME position,
the time-clock-step single-shot is fired, and
the pulse-mode-initialization trigger is set.

The pulse-mode-initialization trigger is set by
depressing the START pushbutton with the pulse-

11/65 2065 FEMI

mode-adjust trigger set. When the pulse-mode­
initialization trigger is set, pulse mode operation
begins.

3.17.18.1 TIME Position

• Load program in main storage.

• Place starting address of program in
main storage byte locations 5-7.

• Enter stop loop.

• Place PULSE MODE switch in TIME
position.

• Depress START pushbutton.

When the PULSE MODE switch is in the TIME
position, instruction execution begins at the address
specified in the address portion of the double word
located in address 0 of main storage. Therefore,
the starting address must be loaded in bits 40
through 63 of the double word located at address 0
prior to depressing the START pushbutton. Enter­
ing data manually into main storage (from the DATA
switches) must be done with the CPU in the stop loop
and the STORE pushbutton depressed. It is assumed
that the program to be executed is contained in main
storage.

The initial set-up conditions are:

1. The program is in main storage.

2. The starting address is in main storage byte
locations 5 through 7.

3. The CPU is in the stop loop.

4. The PULSE MODE switch is in the TIME
pOSition.

Execution does not begin until the START push­
button is depressed (Figure 6091, FEDM). Mter
the START pushbutton is depressed, the pulse mode
ROS address is forced in ROSAR. The objectives
of the pulse-mode microprogram are to fetch the
program starting address from main storage, load
and update the IC, fetch the instruction halfwords,
and branch to the first instruction. (These micro­
program objectives are shown in Figure 6091,
FEDM.) In TIME operation, the loading of the count
in the maintenance-control-word (T - MCW micro­
order) is meaningless. Program execution continues
until the interval timer is stepped. The pulse from

3-247

the time-clock-step single-shot causes a system
reset. The pulse-mode microprogram is again en­
tered and executed. This action results in executing
the program from clock step to clock step. Looping
through the pUlse-mode microprogram and the main
storage program continues until manually stopped.

3.17.18.2 COUNT Position

• Load program in main storage.

• Place starting address of program in
main storage byte locations 5-7.

• Enter stop loop.

• Place PULSE MODE switch in COUNT
position.

• Enter number of machine cycles (up
to 2047) to be executed in DATA
switches.

• Depress START pushbutton.

When the PULSE MODE switch is in the COUNT
position, instruction execution begins at the address
specified in the address portion of the double word
located in address 0 of main storage. Each time
the cycle counter is reduced to 0, a reset and a
program restart occur.

Before executing the pulse-mode-count routine,
the number of machine cycles must be determined
and entered in DATA switches 53 through 63. The
maximum count (number of machine cycles) is 2047.

Except for the PULSE MODE switch's being in
the COUNT position and the count entered in DATA
switches 53 through 63, the initial set-up conditions
are similar to the Time mode. As shown in Figure
6091, FEDM, the same microprogram is executed
for both COUNT and TIME positions. The program
in main storage is entered at end-op of the micro­
program. The cycle counter is reduced by 1 on
each machine cycle. When the counter equals 0, a
machine reset occurs and the pulse-mode micro­
program is again executed. The looping through
the microprogram and the storage program con­
tinues until manually stopped.

3.17.19 DISABLE INTERVAL TIMER SWITCH

The DISABLE INTERVAL TIMER switch prevents
the interval timer from being advanced when placed

3-248

in the down position. In the center position, the
timer is stepped at regular predetermined intervals.
The timer is contained in main storage location 80.

In addition to the switch, the timer is disabled
when operating in the:

1. Single-cycle mode.

2. Instruction-step mode.

3. Repeat-instruction mode.

4. Stop-loop routine.

The DISABLE INTERVAL TIMER switch is in­
active when the PULSE MODE switch is in the TIME
position and the pulse-mode-initialization trigger
is set.

3.17.20 DEFEAT INTERLEAVING SWITCH

The DEFEAT INTERLEAVING switch is a 3-
position switch that performs the following functions:

1. NO REV (up) position - Interleaving of main
storage addressing is disabled.

2. REV (down) position - Interleaving of main
storage addressing is disabled, and the main
storage addresses are reversed.

3. PROC (center) position - Normal position of
the switch. Addressing is interleaved with no
reversal of storage addresses.

This switch permits the operator to choose which
halves of main storage are the high-order and low­
order portions. When the switch is placed in the
NO REV or REV position, the TEST indicator lights,
indicating that the CPU is in the test mode.

3.17.21 CHECK RESET PUSHBUTTON

The CHECK RESET pushbutton provides a means
of resetting all CPU and storage check triggers to
the nonerror state. All logic check indicators are
turned off. The CHECK RESET pushbutton is active
in all modes of operation. Depressing the CHECK
RESET pushbutton does not change the mode of oper­
ation. The operation continues as though no error
conditions existed; the results, however, may be
unpredictable.

11/65

3. 17.22 INTERRUPT PUSHBUTTON

• If PSW(7) = 1, external interruptions
occur; if 0, interruptions remain
pending.

Depressing the INTERRUPT pushbutton initiates
an external-interruption request by setting the con­
sole-signal trigger. If bit 7 of the current PSW is
a 1, an interruption is taken after the current in­
struction and interruptions of higher priority are
completed. If bit 7 of the current PSW is a 0, the
manual interruption request remains pending.

During the interruption, bit 25 (interruption code
portion) cif the current PSW is made aI, indicating
that the INTERRUPT pushbutton is the source of the
interruption. This pushbutton is effective while
power is up for the system.

3.17.23 STOP ON STORAGE CHECK SWITCH

The STOP ON STORAGE CHECK switch provides
a means of inhibiting storage accesses when a stor­
age error occurs, so that the indicators will not be
changed. The STOR CHK indicator lights to show
that a storage error occurred and requires attention.
The switchable indicators (rollers) are checked to
determine the error and the address of the failing
m~in storage word. The STOP ON STORAGE CHECK
switch provides a storage stop upon encountering a
storage check. The machine stop must not be con­
fused with the stopped state or the stop loop. The
STOP ON STORAGE CHECK switch may be used in
conjunction with the CPU CHECK switch (see para­
graph 3.17.24). The stop-on-storage-check func­
tion does not apply to LCS units.

3.17.24 CPU CHECK SWITCH

The CPU CHECK switch, a 3-position toggle
switch, provides a means of controlling the system
when a machine check is encountered.

3.17.24.1 PROC Position

Upon detection of a machine check and if PSW(13)
(machine check mask bit) equals a 1, CPU clock
pulses are blocked until the machine status is logged
out to main storage. A machine check interruption
is then executed. If PSW(13) equals a 0, the check
triggers are set but no logout or interruption occurs
until the PSW mask bit is set to 1.

3.17.24.2 STOP Position

Upon detection of a machine check, CPU clock
pulses are blocked and no logout occurs. The check
triggers are set, and the type of error is determined

by examining the rollers. If the CHECK RESET
pushbutton is depressed, operation is resumed, but
the results may be unpredictable.

3. 17.24.3 DSBL Position

Upon detection of a machine check, the check
trigger are set. Logout or interruptions do not
occur, and the operation is not terminated. Pro­
gram execution continues, ignoring machine check
errors. The check triggers may be reset by de­
pressing the CHECK RESET pushbutton or the
SYSTEM RESET pushbutton.

3.17.25 REPEAT ROS ADDRESS SWITCH

The REPEAT ROS ADDRESS switch provides a
means for continuous readout of a specified ROS
address. The address of the ROS microinstruction
is entered in the ADDRESS switches, and the ROS
TRANSFER pushbutton is depressed. This action
initiates the reading of the specified ROS micro­
instruction. The same ROS address is accessed on
each machine cycle. All storage requests are
blocked. Changing the ADDRESS switches while in
the repeat ROS loop may result in ROS parity checks.

3.17.26 CE KEY SWITCH

The CE key switch is a 2-position key-operated
switch that selects one of two meters to indicate the
CPU running time. In the Customer position, the
customer meter indicates how long the customer
used the CPU. In the CE position, the CE meter
indicates the length of time that the CPU is used
for noncustomer operation. The key cannot be re­
moved when the switch is in the CE position.

3. 17.27 FREQUENCY ALTERATION SWITCH

The FREQUENCY ALTERATION switch provides
a means of increasing the CPU clock frequency.
When the FREQUENCY ALTERATION switch is in
the center position, each machine cycle is 200 ns
(the normal machine speed).

The CE key switch must be in the CE position be­
fore the FREQUENCY ALTERATION switch functions

11/65 2065 FEMI 3-249

in the down position. When the FREQUENCY
ALTERATION switch is in the down position and
the CE key switch is in the CE position, the CPU
clock cycle is decreased to 195 ns.

3.18 INDICATORS

The system control panel has 6 rows of indicators
with 36 indicators in each row. Each row may be
considered to represent one 32-bit word plus 4 parity
bits (Figure 3-22). Associated with each row of in­
dicators is a 6-position (position 6 not used) roller
switch. The operator may display a register or the
status of a trigger by placing the proper roller in
the correct position. A roll chart is provided above
each row of indicators to show the information being
displayed for each indicator. As the roller position
is changed, the roll chart rotates to correspond with
the roller position. The rollers, the positions, and
the information displayed for each row of indicators
are shown in Figure 9058, FEDM.

Indicator lights are also located behind the
POWER ON pushbutton on the system control panel.
When power is on, the indicator glows white; when
power is off or not completely cycled on for all units,
the indicator glows red. other indicators on the
system control panel indicate machine status, check
conditions, and power status. These indicators are
defined below:

1. SYSTEM - Lights when the customer meter or
CE meter is running.

2. MANUAL - Lights when the CPU is in the
stopped state. The CPU is executing the stop
loop ROS microprogram.

3. WAIT - Lights when the CPU is in the wait
state. The CPU is executing the wait-loop
ROS microprogram.

4. TEST - Lights when the following occur:

3-250

a. The RATE switch is in a pOSition other
than PROCESS.

b. The CPU CHECK switch is in a position
other than PROC.

c. The DISABLE INTERVAL TIMER switch is
in the down position.

d. The ADDRESS COMPARE STOP switch is
in the stop pOSition.

e. The PULSE MODE switch is in a position
other than PROC.

f. The FL T switch is in the test mode position.

g. The ROS switch is in the test mode position.

h. The STOP ON STORAGE CHECK switch is
in the down position.

i. The REPEAT INSN switch is in a position
other than PROC.

j. The DEFEAT INTERLEAVING switch is in
the NO REV or REV position.

k. The channel is in test mode.

1. The Diagnose instruction is active.

m. The REPEAT ROS ADDRESS switch is in
the repeat (down) position.

5. LOAD - Lights when the CPU is in a load
state (IPL microprogram). The LOAD indi­
cator is turned off after a successful load.

6. STOR CHK - Lights on all storage errors
associated with the CPU. The rollers should
be examined to determine the specific error.

7. PROC CHK - Lights on all CPU errors. A
check of the rollers is necessary to determine
the specific error.

11/65

11/65

CHAPTER 4

FEATURES

The features available for the 2065 are listed in the feature index below.
Feature 7920 is described in a separate manual; features 3274, 8070, and 8080
are described elsewhere in this manual; features 7117, 7118, and 7119 will be
issued as sections of this chapter by means of FE Supplements (FES).

FEATURE INDEX

Feature No. Descri pti on Refer To

3274 Direct Control:

Read Direct Paragraphs 2. 20 and 3. 14. 8

Write Direct Paragraphs 2.21 and 3.14.7

7117 7070/7074 Compatibility Future FES

7118 7080 Compatibility Future FES

7119 709/7040/7044/7090/7094/7094 II Compatibility Future FES

7920 1052 Adapter System/360 1052 Adapter, FEMI/FEMD,

Form 223-2808

8070 2870 Attachment Chapter 2, Section 3

8080 2361 Attachment Chapter 2, Section 3

2065 FEMI 4-1

CHAPTER 5

POWER DISTRIBUTION AND CONTROL

This chapter describes the power distribution and
control within the 2065 and the power control inter­
face with the other units in the system. In this chap­
ter, "system" refers to the 2065 CPU, the 2365
Storage unit(s), the 2860 and 2870 Channels, the
2361 Large Capacity Storage (LCS) unit(s), or any
combination of these.

This chapter is divided into three major para­
graphs. Paragraph 5.1 discusses the power for the
2060-2 or 2060-3 CPU converted to a 2065 CPU.
This unit may be identified by the relay gate hinges
on the right edge of the gate. Paragraph 5.2 dis­
cusses the power for the 2065 CPU as originally
constructed. This unit may be identified by the
relay gate hinge on the bottom edge of the gate.
Paragraph 5.3 discusses those portions of power
logic that are common to both versions.

Each unit (converted or originally constructed)
has its own set of logic. Although the same logic
page designations are used for both units, the part
numbers are different, as shown in paragraphs 5.1
and 5.2,

5.1 2060 CONVERTED TO 2065

The descriptions and figures in this paragraph
and in paragraph 5.3 are taken from the following
logic:

Part Number EC Level

5276565 705008C

5276578 705031

5276580 and 5276582 705008C

5276606 707482

5722219 through 5722221 707081

5753380 through 5753397 707481

A change is pending to modify 5753381 (logic
YA021) from EC level 707481 to the level indicated
in Figure 9059, FEDM.

5.1. 1 POWER-ON SEQUENCE

• Close all circuit breakers.

• Close wall power switch.

• Move CPU READY switch to READY
position.

• Depress CPU ON or POWER ON
pushbutton.

Dc power in the CPU may be brought up in two
ways. It may be initiated at the CE panel if only
CPU power on is desired, or it may be initiated at
the system control panel or the 2150 Console if full
system power is desired. Figure 5-1 shows how the
EPa loop is established. Figure 6092, FEDM, is a
flow chart of the CPU power-on sequence, and
Figure 9059, FEDM, is a simplified diagram of
the circuits that are used.

The CPU power-on sequence is as follows:

1. Close all circuit breakers (CB1 through CB12).

2. Close wall power switch to apply main power
at CB1.

3. Move CPU READY switch on CE panel to
READY position.

As a result of these three steps, the following
occurs:

a, K4, the EPO-drive relay, and K28, the
shared-EPO relay, are picked by 24vdc
through the EPO switches and the multi­
system EPO control box.

b, PK1, the EPO c ontac tor , is picked by
24vdc through K4 contacts.

c. The 24vdc bus, source of all other 24vdc
used in the CPU, is energized through PK1
contacts.

d, Main power is applied to PK2, the CPU­
power contactor, through PK1 contacts
and CB9.

11/65 2065 FEMI 5-1

Multisystem EPa Control Box
Part No. 5271793 (60 Cycles)

~--JI95--------~

Other
Systems

'----- J13 E P13 ------G"7T.."....- P13 D JI3----- J20 5 --~0u-rT"""---6J20--JI9 6---------
I I
I I
1 I
I 1
I I
I I

+24vdc ----- J13X P13 ~ P13 F J13 -J20 3 --_0-1 __ ---4J20 J194 1
~~~ :~~ - f 

YA081 Jurper if single system 

Return .----_--_-Dl-~----_----------------------------- J 19 3 ------------' 

K4 
6 7 

+24vdc ~---(lr Jo---..q.~-lC}-O--I -.~ Return 

I PKI I 
YA021 EPa Contactor 

Logic page YA051 , except os noted 

FIGURE 5-1. EPa LOOPS 

e. K25 is picked by 24vdc through the power­
off pushbuttons, K12 contacts, CPU READY 
switch, and protection-relay contacts. K25 
has a 5-second resistive-capacitive (RC) 
time delay before it transfers. 

The system waits at this point for the CPU ON 
pushbutton (step 4) or a POWER ON pushbutton 
(step 5) to be depressed. At least 5 seconds 
must elapse before the pushbutton is depressed. 

4. Depress CPU ON pushbutton on CE panel. 

5-2 

a. K5 is picked by 24vdc through K12 contacts, 
CPU ON pushbutton, K25 contacts, and diode 
CR14. 

b. K2 is picked through CRll. 

c. K2 is held by 24vdc through K12 contacts, 
CPU READY switch, thermal and overcur­
rent sense relay contacts, CR7, and the K2 
contacts. 

d. K5 is momentarily held by 24vdc through 
the same protection-relay contacts, CR10, 
K5 and K26 contacts, and CR14. 

\ 

e. K26 is picked by 24vdc through K5 contacts. 
K26 has a 5-second RC time delay before it 
transfers. 

f. PK2 is picked by 24vdc through K5 contacts. 

g. Main power is applied to the converter/ 
inverter and the blowers through PK2 
contacts. 

h. The converter/inverter supplies 140v, 
2500-cps ac to the regulators. 

i. As the regulators develop the dc power for 
the CPU logic, the undervoltage sense 
relays, K10 and Kll, are picked. 

j. K5 is now held by 24vdc through the same 
protection-relay contacts as before, CR10, 
K5, K10, and Kll contacts, and CR14. 

11/65 



Note 

If K10 and Kll had not picked before 
K26 transferred, K5 would have 
dropped, thus dropping PK2 and K26. 

k. K25 drops as K10 or Kll picks. 

1. If PS9 is in the CPU, it receives 140v, 
2500-cps ac through relay II-K1 contacts. 
II-K1 is picked by 24vdc through K5, K10, 
and Kll contacts. 

5. Depress POWER ON pushbutton on either 
system control panel or 2150 Console. 

a. The stepper drive coil is pulsed by 24vdc 
through stepper switch contacts A-26 to 
A-COM and the interrupter contacts; the 
stepper switch advances to position 1. 

b. K7 and K32 are picked through CR9; K6 is 
picked through CR9 and CR8. 

c. K6, K7, and K32 are held by 24vdc through 
the power-off switches and K7 contacts. K6 
may also be held by 24vdc from the storage 
units through K6 contacts. K7 and K32 are 
isolated from this 24vdc by CR8. 

Note 

If the stepper :;witch is not at the 
start position (position 26) when 
the 24vdc bus is energized, it is 
advanced to the start position by 
24vdc through K32 and the start­
interlock contacts. The start­
interlock contacts remain closed 
until the stepper switch reaches 
the start position. 

d. K12 is picked by 24vdc through K6 contacts. 

e. K5 is picked by 24vdc through stepper 
switch contacts C-1 to B-1, K25 and K26 
contacts, and CR14. 

f. K2 is picked through CRll. 

g. K2 is held by 24vdc through K6 contacts, 
CPU READY switch, thermal and over­
current sense relay contacts, CR7, and 
K2 contacts. 

h. K5 is momentarily held by 24vdc through 
the same protection-relay contacts, CR10, 
K5 and K26 contacts, and CR14. 

i. The sequencing continues as described in 
steps 4e to 41. The holding 24vdc, however, 
is through K6 contacts and not K12 contacts. 

j. The stepper switch is advanced to position 
2 by 24vdc through K10, Kll, and stepper 
switch contacts A-1 to A-COM. 

5.1.2 POWER-OFF SEQUENCE 

• Move CPU READY switch to OFF position, or 
depress POWER OFF pushbutton. 

Dc power in the CPU may be dropped in two ways. 
It may be initiated at the CE panel if only the CPU 
power is on. However, if any attached storage unit 
is on, data in storage may be lost as the CPU dc 
goes down. System dc power off may be initiated at 
the system control panel or at the 2150 Console. A 
holding line prevents the CPU and channel power 
from going off before the storage units to protect 
the data. Figure 6094, FEDM, is a flow chart of 
the power-off sequence. 

The CPU power-off sequence is as follows: 

1. Move CPU READY switch on CE panel to 
OFF position. 

a. The 24vdc holding line to K5 and K2 is 
opened, causing them to drop. 

b. The 24vdc holding line to PK2, through K5 
contacts, is opened, causing PK2 to drop. 

c.Main power to the converter/inverter, 
through PK2 contacts, is opened, causing 
CPU dc to go off. 

d. If system power was up, it remains up 
since K6, K7, and K32 did not drop. 

Note 

Under these conditions, data may 
be lost in the storage units as the 
CPU dc goes down. 

2. Depress POWER OFF pushbutton on either 
system control panel or 2150 Console. As 
a result: 

a. The 24vdc holding line to K6, K7, and 
K32 is opened, causing them to drop. 

11/65 2065 FEMI 5-3 



Note 

If any storage unit is on, K6 con­
tinues to hold with 24vdc (CPU 
voltage) returned from the unit, 
through K6 contacts. 

b. The power-hold line to the storage units, 
through K7 and K32 contacts, is opened, 
causing them to cycle down. 

c. As the last storage unit does down, the 
24vdc holding K6 goes off, causing K6 to 
drop. 

d. The 24vdc holding line to K12, K5, and K2, 
through K6 contacts, is opened, causing 
them to drop. 

e. Th~ 24vdc holding line to PK2, through 
K5 contacts, is opened, causing it to drop. 

f. Main power to the converter/inverter, 
through PK2 contacts, is opened, causing 
CPU dc to go off. 

g. The power-hold line to the channels, through 
K6 contacts, is opened, causing them to 
cycle down. 

5.1.3 OVERCURRENT PROTECTION 

The overcurrent sensing circuits are internal to 
each regulator. Refer to SLT Power Supply, FEMI, 
Form Z22-2799, for details of the circuits. Any 
fault that draws excessive current from any regulator, 
except PS9, causes the CPU to drop power. Figure 
5-2 shows the overcurrent sense loop for converted 
units. 

When an overcurrent condition exists, continuity 
between terminals 8 and 9 is broken. 24vdc, through 
auxiliary switch contacts on CB2 through CB8 and 
through terminals 8 and 9 of the regulators, except 
PS9, pick K8, the overcurrent-sense relay. 

24vdc through terminals 8 and 9 of PS9 pickK18, 
the 48v power-check relay. 

5.1. 4 OVERVOLTAGE PROTECTION 

The overvoltage sensing circuits provide fault 
protection and an indication that all CPU dc is below 
maximum voltage levels. Any fault that will raise 
the output voltage level of any regulator. except PS9, , 

5-4 

above the maximum causes CPU power to drop. 
(See logic YA091 for the sensing circuits.) 

A silicon-controlled rectifier (SCR) in series 
with a low resistance is connected across the output 
terminals of each regulator, except PS9. When 
gated on, this SCR shorts the regulator output through 
the low resistance, causing an overcurrent condition 
within the regulator. The internal overcurrent pro­
tection circuit initiates CPU power off. The SCR 
gate is fed directly from the collector circuit of a 
sensing transistor (positive supplies) or an SCR 
gating transistor (negative supplies). 

5.1.4.1 Positive Regulators 

A line from each positive regulator, except PS9, 
is fed through a metering jack to the emitter of a 
sensing transistor. The base of this transistor is 
held at a preset upper limit voltage by Zener diode 
Zl and potentiometer R4 (3v supplies) or R9 (6v sup­
plies). The collector series load resistors are con­
nected to ground or Ov. When its emitter is held 
negative with respect to its base by the regulator, 
the transistor is biased off, holding the collector 
circuit and the SCR gate at Ov. When the regulator 
output rises above the upper limit, causing the 
emitter to become positive with respect to the base, 
the transistor starts to conduct. The current drawn 
through the collector load resistors raises the col­
lector circuit and the SCR gate to a positive level 
with respect to the regulator output level; the SCR 
is gated on. 

5.1.4.2 Negative Regulators 

A line from each negative regulator, except PSll, 
provides, through a metering jack, the return path 
for the collector circuit of an SCR gating transistor_ 
and the emitter of a sensing transistor. The base of 
the sensing transistor is held at a preset negative 
voltage limit by Z2 and R7. The collector load re­
sistor is connected to ground or Ov. The base of the 
SCR gating transistor is fed by a resistor from the 
collector of the sensing transistor. The emitter of 
the SCR gating transistor is connected to ground or 
Ov. The sensing transistor, when its emitter is 
held positive with respect to its base by the regulator, 
is biased off, and its collector circuit and the base of 
the SCR gating transistor are held at Ov. As a result, 
the SCR gating transistor is biased off and its collec­
tor circuit and the SCR gate are held at the regulator 
output level. When the regulator output level increases 
beyond the negative voltage limit, causing the emitter 
of the sensing transistor to become negative with 

11/65 



CB2 CB3 CB4 CBS CB6 CB7 CBa 
+24vdc -----~ 0----<1 9--~ Q-----Q Q-----Q Q----q 0----<1 <>----

Auxiliary Switch Contacts 

a 0~9 ___ ~_~~ 0-09_~_~_~~ 
PSIS PSI3 PSll 

a 9 a 9 a 9 89 
L-_-;-_~ 0>---.;--:----'0 0>----:-------0-----00 O>----.!..----!----<O <>-------'------, 

PSI6 PSI4 PSI2 PS 10 

a 9 89 89 a 9 
L-_~_~ o>----.;-~---o o>---.;-~~-o oo--:-~---o o---~----~ 

PS7 PS5 PS3 PSI 

a 9 8 9 a 9 a 9 
0 0 0 0 0 0 0 r:r PS2 PS4 PS6 PS8 

I K8 

YA021 

See logic page YAI41 far PS9 ond Kia 

FIGURE 5-2. OVERCURRENT PROTECTION LOOP, CONVERTED UNITS 

11/65 2065 FEMI 

I 

Logic Page 
YA021 

YA071 

YAOn 

YA061 

YA062 

~ Return 

5-5 



respect to its base, the transistor starts to conduct. 
The current drawn through the collector load resistor 
lowers its collector circuit and the base of the SCR 
gating transistor to a negative level. With its base 
made negative with respect to its emitter, the SCR 
gating transistor starts to conduct. The current 
drawn through the collector load resistor raises the 
collector circuit and the SCR gate to a positive level 
with respect to the regulator output level; the SCR is 
gated on. 

Regulator PSll is sensed in the same way as the 
other negative supplies, except that the emitter 
voltage of the sensing transistor is established 
through an adjustable voltage-dividing network in 
the line from the regulator. This dividing network 
permits the sensing transistor to use the same 
voltage reference (Z2 and R7) as the other negative 
supplies. 

5.2 2065 ORIGINAL UNITS 

The descriptions and figures in this paragraph 
and in paragraph 5. 3 are taken from the following 
logic: 

+24vdc 

CB2 , 
• I· 

\ 
T 

CB7 

Part Number EC Level 

5276606 707482 

5722202 and 5722203 707482 

5722204 through 5722214 707081 

5722215 through 5722218 707482 

5722219 through 5722221 707081 

5722222 707482 

5722223 through 5722225 707081 

A change is pending to modify 5722204 (logic 
YA021) from EC level 707081 to the level indicated 
in Figure 9060, FEDM, and Figure 5-3. 

5.2.1 POWER-ON SEQUENCE 

• Close all circuit breakers. 

• Close wall power switch. 

• Move CPU READY switch to READY position. 

• Depress CPU ON or POWER ON pushbutton. 

CBa YA021 . 
J 

Auxiliary Switch Contacts 

.--- .--- ;---- ~ - .--- r---

a a a a a a a 

9 9 9 9 9 9 9 

~ PS12 ~ ~ ~ PS13 PS15 
~ "---

\ ) \ J 
Y Y 

YA072 YA071 

r--- r--- - ~ - - ~ 

a a a a a a a a~ 

9 9 9 9 9 9 9 9 

~ PS5 ~ ~ PS2 ~ ~ ~ 
\ ) 

y \ J 
Y 

YA061 YA062 

R - .. eturn T v j 
See logic page YA141 for PS9 and Kla Kg ] 

YA021 

FIGURE 5-3. OVERCURRENT PROTECTION LOOP, ORIGINAL UNITS 

5-6 11/65 



Dc power in the CPU may be brought up in two 
ways. It may be initiated at the CE panel if only 
CPU power on is desired, or it may be initiated at 
the system control panel or the 2150 Console if full 
system power is desired. Figure 5-1 shows how 
the EPa loop is established. Figure 6093, FEDM, 
is a flow chart of the CPU power-on sequence, and 
Figure 9060, FEDM, is a simplified diagram of the 
circuits that are used. 

CPU power-on sequence is as follows: 

1. Close all circuit breakers (CB1, CB2, and 
CB7 through CB12). 

2. Close wall power switch to apply main power 
at CB1. 

~ 

3. Move CPU READY switch on CE panel to 
READY position. 

As a result of these three steps, the following 
occurs: 

a. K4, the EPa-drive relay, and K28, the 
shared-EPa relay, are pIcked by 24vdc 
through the EPa switches and the multi­
system EPa control box. 

b. PK1, the EPa contactor, is picked by 
24vdc through K4 contacts. 

c. The 24vdc bus, source of all other 24vdc 
used in the CPU, is energized through 
PK1 contacts. 

d. Main power is applied to PK2, the CPU­
power contactor, through PK1 contacts 
and CB9. 

e. K47 is picked by 24vdc through the power­
off pushbuttons, CPU READY switch, and 
protection-relay contacts. K47 has a 5-
second RC time delay before it transfers. 

The system waits at this point for the CPU ON 
pushbutton (step 4) or a POWER ON pushbutton 
(step 5) to be depressed. At least 5 seconds 
must elapse before the pushbutton is depressed. 

4. Depress CPU ON pushbutton on CE panel. 

11/65 

a. K5 is picked by 24vdc through CPU ON 
pushbutton, K47 contacts, and diode CR14. 

b. K2 is picked through CRll. 

2065 FEMI 

c. K2 is held by 24vdc through CPU READY 
switch, thermal and overcurrent sense 
relay contacts, CR7, and K2 contacts. 

d. K5 is momentarily held by 24vdc through 
the same protection-relay contacts, CR10, 
K5 and K46 contacts, and CR14. 

e. K46 is picked by 24vdc through K5 contacts. 
K46 has a 5-second RC time delay before it 
transfers. 

f. PK2 is picked by 24vdc through K5 contacts. 

g. Main power is applied to the converter/ 
inverter and the blowers through PK2 
contacts. 

h. The converter /inverter supplies 140v, 
2500-cps ac to the regulators. 

i. As the regulators develop the dc power for 
the CPU logic, the undervol tage sense 
relays, K10 and Kll, are picked. 

j. K5 is now held by 24vdc through the same 
protection-relay contacts as before, CR10, 
K5, K10, and Kll contacts, and CR14. 

Note 

If K10 and Kll had not picked before 
K46 transferred, K5 would have 
dropped, thereby dropping PK2 
and K46. 

k. K47 drops as K10 or Kll picks. 

1. If PS9 is in the CPU, it receives 140v, 
2500-cps ac through relay ll-K1 contacts. 
ll-K1 is picked by 24vdc through K5, K10, 
and Kll contacts. 

5. Depress POWER ON pushbutton on either 
system control panel or 2150 Console. 

a. The stepper drive coil is pulsed by 24vdc 
through stepper switch contacts A-26 to 
A-COM and the interrupter contacts; the 
stepper advances to position 1. 

b. K7 and K32 are picked through CR9; K6 
through CR9 and CR8. 

c. K6, K7, and K32 are held by 24vdc through 
the power-off switches and K7 contacts. 

5-7 



Note 

If the stepper switch is not at the 
start position (position 26) when 
the 24vdc bus is energized, it is 
advanced to the start position by 
24vdc through K6 and the start­
interlock contacts. The start­
interlock contacts remain closed 
until the stepper switch reaches 
the start position. 

d. K5 is picked by 24vdc through stepper switch 
contacts C-l to B-1, K47 and K46 contacts, 
and CRI4. 

e. K2 is picked through CRll. 

f. K2 is held by 24vdc through the CPU READY 
switch, thermal and overcurrent t:iense 
relay contacts, CR7, and K2 contacts. 

g. K5 is momentarily held by 24vdc through 
the same protection-relay contacts, CRI0, 
K5 and K46 contacts, and CRI4. 

h. The sequencing continues as described in 
steps 4e to 41. 

i. The stepper switch is advanced to position 
2 by 24vdc through KI0, Kll, and stepper 
switch contacts A-I to A-COM. 

5.2.2 POWER-OFF SEQUENCE 

• Move CPU READY switch to OFF position, or 
depress POWER OFF pushbutton. 

Dc power in the CPU may be dropped in two ways. 
It may be initiated at the CE panel if only the CPU 
power is on, or it may be initiated at the system 
control panel or 2150 Console if system power off is 
desired. If, however, any attached storage unit is 
on, data in storage may be lost as the CPU dc goes 
down. A change is pending to prevent this loss of 
data. Figure 6094, FEDM, is a flow chart of the 
power-off sequence. 

5-8 

The CPU power-off sequence is as follows: 

1. Move CPU READY switch on CE panel to OFF 
position. 

a. The 24vdc holding line to K5 and K2 is 
opened, causing them to drop. 

b. The 24vdc holding line to PK2, through K5 
contacts, is opened, causing PK2 to drop. 

c. Main power to the converter/inverter, 
through PK2 contacts, is opened, causing 
CPU dc to go off. 

d. If system power was up, it remains up 
since K6, K7, and K32 did not drop. 

2. Depress POWER OFF pushbutton on either 
system control panel or 2150 Console. Asa 
result: 

a. The 24vdc holding line to K2, K5, K6, K7, 
and K32 is opened, causing them to drop. 

b. The power-hold line to the storage units, 
through K7 and K32 contacts, is opened, 
causing them to cycle down. 

c. The 24vdc holding line to PK2, through K5 
contacts, is opened, causing it to drop. 

d. Main power to the converter/inverter, 
through PK2 contacts, is opened, causing 
CPU dc to go off. 

e. The power-hold line to the channels, through 
K6 contacts, is opened, causing them to 
cycle down. 

5.2.3 OVERCURRENT PROTEC TION 

The overcurrent sensing circuits are internal to 
each regulator. Refer to SLT Power Supply, FEMI, 
Form Z22-2799, for details of the circuits. Any 
fault that draws excessive current from any regulator, 
except PS9, causes the CPU to drop power. Figure 
5-3 shows the overcurrent sense loop for original 
units. 

When an overcurrent condition exists, continuity 
is provided between terminals Sand 9. 24vdc, 
through auxiliary switch contacts on CB2, CB7, or 
CBS, or through terminals Sand 9 of the regulators, 
except PS9, pick KS, the overcurrent-sense relay. 

24vdc through terminals Sand 9 of PS9 pick KlS, 
the 4Sv power-check relay. 

5.2.4 OVERVOLTAGE PROTECTION 

The overvoltage sensing and protection circuits 
are internal to each regulator. Any fault that will 

11/65 



raise the output voltage level of any regulator, except 
PS9, above the maximum causes the CPU to drop 
power via the overcurrent sense loop. 

5.3 COMMON PORTIONS 

The descriptions and figures in this paragraph 
are taken from the prints referenced in paragraphs 
5.1 and 5.2. 

5.3.1 AC POWER DISTRIBUTION 

The primary ac power distribution is shown in 
Figures 5-4 and 5-5, and the load on transformer 
T1 is shown in Figure 5-6. 

Main power from CB1 is applied to T1 via fuses 
F1 and F2. T1 provides 28vac for the remote mar­
gin power, the alarm circuit, and T1-TB2. T1-TB2 
supplies 24vdc to the EPO loop and, via PK1 contacts, 
to the 24vdc bus. 

Main power is applied by PK1 contacts to: 

1. T2, via CB12. T2 provides 115vac to (1) 
storage 1, via CB11, (2) wall convenience 
outlets, via CB10, and (3) 1052 Printer­
Keyboard, via CB10 and PK2 contacts. 

2. T3, via F3, F4, and CB2. T3 provides 40vac 
to the elapsed-time meters, 12.6vac to the 
logic clock, and low-voltage ac to T3-P-TB, 
which, in turn, provides 20vdc to the under­
voltage and overvoltage protection Circuits. 

3. T4, via F3, F4, and CB7. T4 provides 28vac 
to the converter/inverter. 

4. Three-phase line detector and PK2, via CB9. 
The 3-phase line detector is not used at this 
time and may not be installed. 

5. 3.2 DC POWER DISTRIBUTION 

The various dc voltages required by the CPU logic 
are provided by 15 regulators. A 16th regulator, 
the 48v power supply (PS9), is not installed in the 
CPU when the 2150 Console option is used. The 
2150 Console has a multivoltage power supply which 
provides the 48vdc. Table 5-1 lists the output voltage 
levels and the major load for each regulator. Tables 
5-2 and 5-3 list the part numbers of the regulators 
for the converted units and the original units, 
respectively. 

5.3.3 POWER CONTROL INTERFACE 

Full system power is achieved in a sequential and 
interlocked manner by the power control interface 
circuitry. After initiating power on in the CPU, the 
CPU stepper switch waits for CPU power up to be 
confirmed, then advances to an attached stand-alone 
unit, directs it to bring its power up, waits for 
power up to be confirmed, and advances to the next 
unit, repeating this procedure until power is up in 
all attached units. Each stand-alone unit has its own 
internal power-sequencing control. Figure 5-7 
shows a typical power control interface connection, 
using channell as an example. 

With the stepper switch at position 2 (see 5. 1.1, 
step 5j, or 5.2.1, step 5i), the system power-on 
sequence continues automatically: 

1. 24vdc (supplied by channell) through K4, K6, 
and stepper switch contacts C-2 to B-2 provide 
channell with a power-pick level. This power­
pick level initiates internal power-on sequenc­
ing of channell. When channel 1 has completed 
power-on sequencing, 24vdc (from the CPU) 
are returned as a power-complete signal 
through stepper switch contacts A-2 to A-COM 
to advance the stepper switch to position 3. 
K19 is picked and held at the same time. 

2. Channel 2 is picked using pOSition 3, K4, and 
K6 contacts. The power-complete signal 
advances the stepper switch to position 4 and 
picks and holds K21. 

3. Channel 3 is picked using position 4, K4, and 
K6 contacts. The power-complete signal 
advances the stepper switch to position 5 and 
picks and holds K31. 

4. The stepper switch is advanced to position 11 
by 24vdc at stepper switch contacts A-5 
through A-10 to A-COM. 

5. Storage unit 1 is picked using position 11, K4, 
and K7 contacts. The power-complete signal 
advances the stepper switch to position 12 and 
picks and holds K29. 

6. Storage unit 2 is picked using position 12, K4, 
and K7 contacts. The power-complete signal 
advances the stepper switch to position 13 and 
picks and holds K30. 

7. Storage unit 3 is picked using position 13, K28, 
and K7 contacts. The power-complete signal 
advances the stepper switch to position 14 and 
picks and holds K20. 

11/65 2065 FEMI 5-9 



VI 
I ,... 
o 

CBl 

Main 1 : 
Power : 

---o+J...o...I"Jr<d)--) 

208voc, 6O-cycle 
3-phase I 4-wire 

Qli~ 
28vac 

CB12 

, 
I 
I 

Logic pages YAOll and YA012 

~ 

} Remote margin 
power I alarm 

CBB 
r---- ~~ 

Tl-TB2 I 
I --

24vdc } EPO loop power I 
I 

'----
PKl L: 
.h- } 24vdc bus PK2 

I ~:~ I 

1 -t- CB9 -+-
I 

I ~ 
, 

* 
I -+-
I 

I 
I 
~ I ~ 

CP ..... ~ 

F3 CB7 T4 

I ~:JII~ F4 
I 

."., 
I 

28vac 

CB2 T3 

I ~Ir-I 

~I~ I 

I~ 

PK2 
I 
I 

r~ .. } 1052 
~ Printer-Keyboard ~ CBlO 

-~ 

.. } Convenience 

~ outlets 

T2 CBll 

II~ } Storage frame 1 ~ 
115voc 

FIGURE 5-4. PRIMARY AC POWER DISTRIBUTION, CONVERTED UNITS 

.. 
CB6 
~ 

I 
I 

~ 
CB5 

~ -<>--. 
I 
I 

~ 

CB4 

, 
I 

~ CB3 -0--. 
I 
I 

~ 

Converter/ 
Inverter 

T3-P-TB 

20vdc 

20vdc 

40vac : 

r 

12.6VO~ 

} Power supply 

blowers 

} Gate A 
blowers 

} Gate B 
blowers 

} Gate CjD 
blowers 

} Gate E 
blowers 

} 
140vac, 2500 cps 

I not isolated 

} Bios power 

} 
Undervoltoge 
protection logic 

} 
Overvoltoge 
protection logic 

} 
Elapsed time 
meters 

} 
Logic 
clock 



CJ1 
I 

1-' 
1-' 

CBI 

~::r! ; 
~~ 

20Bvac I 60 -eye! e 
3-phase, 4-wire 

logic pego. YAOll and YAOl2 

FI 

} 
Remote margin 

;-_____________ power, alarm 

Tl 
r---4---+---1 Tl-TB2 I-..... _____ ---"~ 

1-+ __ 2_4V-.:d-.:C __ -.---..} EPa loop pewer 

28vac 

24vdc bus 

CB9 
"" -

I , 
~ I 

, , 
04....1..;: I 

PK2 , , 

CBIO 

rT--. 

CBI2 T2 CBll 

I -~II~ I 
I 

. .-. 
115vac 

?K2 , 
I , 
~ , , 
~ , 
-.:-

1.3 

l.4 

.. } 1052 
,--.. Printer-Keyboord 

} Convenience 

~ outlets 

--. } Storage frame I 

CBB 

} Power supply 
;-_________ • blowers 

} Gale A 

t----------... blowers 

} Gate B 

r---------. blowers 

} Gate C/D 

t---------.. blowers 

r-_t-'-<>-'rr>rV'--<:>----4-------~~} Gate E blowers 

CB7 T4 
~, 

~=JIIL , , 
~ 

28vac 

CB2 T3 
, ~~IC I , 

I~ 

~ 

~ 

Converter/ 
Inverter 

T3-P- TB 

20vdc 

40vac : 

12.6va~ 

} 
l40vac, 2500 cps 

Inot isolated 

} Bia. pewer 

} 
Undervoltage 
protection logic 

} 
Elapsed time 
meters 

} 
Lagic 
clack 

FIGURE 5-5. PRIMARY AC POWER DISTRIBUTION, ORIGINAL UNITS 



T1 

II ~ 
Bridge 
Rectifier 

28vac line 

FIGURE 5-6. 

5-12 

EPO I oop power · .. 
· --.. 

· 

PKI 
-:'T7 24vdc bus 

I 
I 

In converted units only _ --.. 

-
· 
-
~ 

C 

--

EPO switch loop 

EPO contactor 

EPO contactor return 

Return bus 

Thermal reset; reloy gate bus 

Thermo I trip indicator bus 

POWER ON indicator 

System source 

Power hold loop 

ACTIVE MARGIN indicator 

Storage frames 

Remote margin power; alarm 

Return 

logic page YAOIl, 
except as noted 

T2 load deta ils 

T3 load details 

T4 load details 

TRANSFORMER Tl LOAD DETAIL 

logic 
Page 

YA081 

YA021 

YA021 

YA023 

YA021 

YA022 

YA026 

YA031 

YA032 

YA041 

YA042 

YA051 

YA082 

YAOII 

YA051 

YA051 

YAOl2 
YAOIl 

YAOIl 

11/65 



11/65 

TABLE 5-1. DC REGULATORS 

Distribution 

Regulator Output Bus 

PS1 +6v 25 amp Gate C/D upper 

PS2 +3v 40 amp Gate Blower 

PS3 +3v 40 amp Gate E lower 

PS4 -3v 40 amp Gate C/D upper 
Gate C/D lower 
Gate E upper 
Gate E lower 

PS5 +3v 40 amp Gate E upper 

PS6 +3v 40 amp Gate C/D upper 
Gate C/D lower 

PS7 +6v 40 amp Gate E upper 
Gate E lower 

PS8 +6v 40 amp Gate C/D lower 

PS9* +48v 2 amp II BB9 

PS10 -3v 40 amp Gate A upper 
Gate A lower 
Gate B upper 
Gate Blower 

PS11 -18v 11 amp Gate C/D upper 

PS12 +3v 40 amp Gate A lower 
Indicators (J13) 

PS13 +3v 40 amp Gate Bupper 

PS14 +3v 40 amp Gate A upper 
Indicators, meter U13) 

PS15 +6v 40 amp Gate B upper 
Gate Blower 

PS16 +6v 40 amp Gate A upper 
Gate A lower 

* PS9 may not be installed 

TABLE 5-2, REGULATOR PART NUMBERS, 
CONVERTED UNITS 

Regulator Part Number SCR Card 

3v 40 amp 5261220 5276857 

6v 25 amp 5261230 5276858 

6v 40 amp 5261240 5276858 

48v 2 amp 5261280 ' -

18v 11 amp 5244090 5351199 

2065 FEMI 

Pin 

12 

8 

8 

10 
10 
10 
10 

8 

4 
8 

12 
12 

12 

1 

10 
10 
10 
10 

6 

12 

-' 

8 

12 

-
12 
12 

8 
8 

Return 

Pin Common path Logic 

11 Return bus: YA023 YA061 

7 Jumper: YA131 YA062 

7 Jumper: YA131 YA061 

9 Jumper: YA131 YA062 

9 Jumper: YA131 YA062 
9 Jumper: YA131 YA062 
9 Jumper: YA131 YA062 

7 Jumper: YA131 YA061 

3 - - YA062 

7 Jumper: YA131 YA062 

11 Return bus: YA023 YA061 
11 Return bus: YA023 YA061 

11 Return bus: YA023 YA062 

- Return bus: YA023 YA141 

9 Jumper: YA131 YA072 
9 Jumper: YA131 YA072 
9 Jumper: YA131 YA072 
9 Jumper: YA131 YA072 

5 Jumper to 7: YA131 YA071 

11 Return bus: YA023 YA072 

- , - - YA072 

7 Jumper: YA131 YA071 

11 Return bus: YA023 YA072 

- - - YA072 

11 Return bus: YA023 YA071 
11 Return bus: YA023 YA071 

7 Jumper: YA131 YA072 

7 Jumper: YA131 YA072 

TABLE 5-3. REGULATOR PART NUMBERS, 
ORIGINAL UNITS 

Regulator Part Number 

3v 40 amp 5712020 

6v 25 amp 5712030 

6v 40 amp 5712040 

48v 2 amp 5712080 

18v 11 amp 5709320 

5-13 



_CPU Unit_ 

K4 
10 9 Unit source 

r-------~i~-------------------------------J3A 

24vdc Sciurce 

-

t-__________________________________ ~E~P~0~co=n~t~ro~I ______ J3 B 

1 I 
EPa I 

1 I 
r-- Power ani 
I 
I 

Stepper Switch 
I 
I 

C-2 8-2 Power pick 
J3 R 

Remote 
I 
1 
1 Power Hold 

YA024 
0 1 L--1.1 I Local 1 

1 
1 
I 

K6 
1 
1 

10 9 Power hold 1 
J 

I 
3T------------~~~1 

1 -------------------------------~ 
o 

System source 

+24vdc -----------------.:....!...:..:..:..:~~=---- J3 L1 lL __ O _________ ~DC on 

r 0;>-------1 

I ~~:=MC).r _SW
-.c

it
)-:_-_2 __ --l:--__ -.________________ r~' =',~,=~ 

Stepper Dril ... e_r ________ Y_A_0_2_5 ______ --I J3 M 

","I 
Return .. ~t-----------_9_1lvDI-<)--I---------l 

r K19 1 

FIGURE 5-7" 

5-14 

Connections sHown are for 
channel frame 1 but are 
typical for any stand-alone unit_ 
Logic page YA031 , except as noted, 

POWER CONTROL INTERFACE 

11/65 



8. Storage unit 4 is picked using position 14, K28, 
and K7 contacts. The power-complete signal 
advances the stepper switch to position 15 and 
picks and holds K22. 

9. LCS unit 1 is picked using position 15, K28, 
and K32 cqntacts. The power-complete signal 
advances the stepper switch to position 16. 

10. LCS unit 2 is picked using position 16, K28, 
and K32 contacts. The power-complete signal 
advances the stepper switch to position 17. 

n. LCS unit 3 is picked using position 17, K28, 
and K32 contacts. The power-complete signal 
advances the stepper switch to position 18. 

12. LCS unit 4 is picked using position 18, K28, 
and K32 contacts. The power-complete signal 
advances the stepper switch to position 19. 

13. The stepper switch is advanced to position 26, 
the start position, by 24vdc at stepper switch 
contacts A-19 through A-25 to A-COM. 

Note 

If any of these units are not at­
tached to the CPU, a jumper 
must be installed to provide a 
simulated power-complete level 
return to advance the stepper 
switch to the next position. If 
any unit is attached to the CPU, 
but is not being used in the sys­
tem, a LOCAL-REMOTE switch 
in the unit allows it to be bypassed 
in the sequencing. In the LOCAL 
position, power control is at the 
unit, except for EPO. In the 
REMOTE position, the unit is 
sequenced on by the stepper switch. 
The partition switches for storage 
units 3 and 4 (located in the CPU) 
allow them to be bypassed from 
the CPU. 

5.3.4 POWER-ON LOGIC RESET 

Provision is made for resetting the CPU logic 
after power has been brought up. (See logic YA021.) 

The momentary continuity required by the CPU 
logic for reset is provided by K35 contacts. K35 is 
in series with a 100-p.f (converted units) or a 350-p.f 
(original units) capacitor and a set of normally open 
contacts of K26 (converted units) or K46 (original 
units) to the 24vdc bus. The initial charging current 

of the capacitor is sufficient to pick K35. As the 
charge on the capacitor builds up, the current be­
comes insufficient to hold K35, causing it to drop. 
When K26 or K46 drops, the capacitor is discharged 
through a 12-ohm resistor. Relay K26 or K46 trans­
fers 5 seconds after the regulators are energized 
and drops as the regulators are de-energized. 

5.3.5 EMERGENCY POWER OFF 

• Pull any EMERGENCY PULL switch. 

Emergency power off in the system may be effect­
ed by pulling the EMERGENCY PULL switch at either 
the system control panel or the 2150 Console or by 
losing continuity through the multisystem EPO inter­
face control box. If the switch at the system control 
panel or the 2150 Console is pulled, the multisystem 
EPO control box initiates emergency power off in the 
other systems connected to it. Figure 5-1 shows the 
circuits to establish the EPO loop. Figure 5-7 shows 
the circuit to drop power in the stand-alone units in 
this system, using channell as an example. 

Wi thin the CPU, the following takes place: 

1. The 24vdc holding line to K4, through the pull 
switches and the multisystem EPO control box, 
is opened, causing K4 to drop. 

2. The 24vdc holding line to PK1, through K4 
contacts, is opened, causing PK1 to drop. 

3. Main power to the CPU, except to T1, through 
PK1 contacts, is opened, causing a complete 
power off. T1 provides the low-voltage ac to 
T1-TB2 for the dc to establish the EPO loop. 

4. The EPO-hold line to the stand-alone units, 
through K4 or K28 contacts, is opened, causing 
them to drop complete power, even if they are 
in the LOCAL control mode. 

Note 

All EMERGENCY PULL switches 
latch mechanically and must be re­
set by maintenance personnel. 

5.3.6 INDICATORS 

5.3. 6.1 Power Check Indicators 

Indicators on the system control panel show an 
incomplete power-up status in the CPU or in the 

11/65 2065 FEMI 5-15 



attached storage units and channels. The CPU and 
the units are individually indicated, as is the system 
status. (See logic YA026 and YA083.) The system 
status is shown by the "system power check" indica­
tion consisting of red lamps backlighting the POWER 
ON pushbutton. This pushbutton is normally white. 
This condition is also indicated on the 2150 Console. 
There are nine power check indicators. 

1. CPU POWER CHECK: 24vdc through K2 con­
tacts are fed through parallel-connected con­
tacts on the undervoltage-sense relays to the 
CPU POWER CHECK indicator. If either of 
these two relays is not picked after K2 is 
picked, this indicator lights. 24vdc are also 
fed through parallel-connected contacts on the 
overcurrent and thermal-sense relays to the 
CPU POWER CHECK indicator. 24vdc through 
48v power-check relay contacts, or through 
the CPU READY switch in the OFF position, 
also light this indicator. 

2. STOR FRAME 1 POWER CHECK: 24vdc, via 
K32 (converted units) or K6 (original units) 
contacts, are fed through K29 contacts to this 
indicator. If K29 is not picked after K32 or K6 
is picked, this indicator lights. 

3. STOR FRAME 2 POWER CHECK: Similarly, 
through K30 contacts, this indicator lights. 

4. STaR FRAME 3 POWER CHECK: Similarly, 
through K20 contacts, this indicator lights. 

5. STaR FRAME 4 POWER CHECK: Similarly, 
through K22 contacts, this indicator lights. 

6. CHAN FRAME 1 POWER CHECK: Similarly, 
through K19 contacts, this indicator lights. 

7. CHAN FRAME 2 POWER CHECK: Similarly, 
through K21 contacts, this indicator lights. 

8. CHAN FRAME 3 POWER CHECK: Similarly, 
through K31 contacts, this indicator lights. 

9. System Power Check 

A line from the CPU POWER CHECK indicator 
and a line from each unit power check indicator are 
combined at an OR. The OR turns on the system 
power check indicator. If anyone of the power check 
indicators is on, the system power check indicator 
also lights. 

5-16 

5.3.6.2 System Power-On Indicator 

An indicator on the system control panel shows 
complete power-up status in the CPU and in the at­
tached storage units and channels. (See logic Y A02 6 
and YA083.) This "system power on" indicator con­
sists of clear or white lamps backlighting the POWER 
ON pushbutton. This condition is also indicated on 
the 2150 Console. 

24vdc through the CPU undervoltage-sense relay 
contacts and the storage units and channels power­
check relay contacts light the system power on in­
dicator. If any of these relays is not picked, the 
indicator remains off. 

5.3.7 THERMAL PROTEC TION 

Thermal protection is provided by placing sensing 
elements in the return path of each thermal relay. 
If an overtemperature condition exists, the return 
path is opened, thus dropping the associated relay 
and lighting an indicator. Logic YA022 shows the 
relay and indicator circuits. 

The thermal relays are automatically reset when 
the 24vdc bus is energized by PK1 contacts, or when 
the THERMAL RESET pushbutton on the CE panel is 
depressed. 

Relay K3, which provides the 24vdc pulse to reset 
the thermal relays, is in series with a 1500f.Lf cap­
acitor and a set of normally closed contacts of K26 
(converted units) or K46 (original units) and the 24vdc 
bus. The initial charging current of the capacitor is 
sufficient to pick K3. As the charge on the capacitor 
builds up, the current becomes insufficient to hold 
K3, causing it to drop. An alternate path to pick K3 
is through the THERMAL RESET pushbutton to the 
24vdc bus. When K26 or K46 transfers, the capaci­
tor is discharged through a 12-ohm resistor. Relay 
K26 or K46 transfers 5 seconds after the regulators 
are energized. 

24vdc through the transferred contacts of K3 and 
through diodes CR1 through CR6 cause the thermal 
relays to pick, provided a normal temperature con­
dition exists (sensors closed). Each thermal relay 
holds through its own contacts as K3 drops. An open 
sensor causes the relay to drop, and its contacts 
light the associated indicator on the CE panel. 

5.3.8 UNDERVOLTAGE PROTECTION 

The undervoltage sensing circuits provide fault 
protection and an indication that all CPU dc is above 

11/65 



minimum voltage levels (2.4v). Any fault that will 
lower the output voltage level of any regulator, ex­
cept PS9, below the minimum causes CPU power to 
drop. (See logic YA111 for the sensing circuits.) 

A line from each positive regulator, except PS9, 
is fed through isolation switches to an input of an 
AND. The output level of the AND is determined by 
the lowest input level; that is, the one nearest zero 
or ground. Thus, if any supply, not isolated, is off, 
the output level of the AND is near zero. The output 
of the AND is transferred directly to the base of 
transistor Q1. Transistor Q1 shares an emitter 
load resistor with Q2. The base of Q2 is held at 
2.4v by Zener diode CR59 and resistor R8. Transis­
tor Q2 now carries the full emitter load current and 
holds the common emitter circuit to 2.4v. With its 
emitter held positive with respect to its base, Q1 is 
biased off. As the output level of the AND raises the 
base of Q1 to 2. 4v, Q1 begins to conduct and starts 
to share with Q2 the current drawn by the emitter 
load resistor. As the output level of the AND raises 
the base of Q1 above 2. 4v, Q1 raises the emitter cir­
cuit above 2. 4v. With its emitter raised to a level 
positive with respect to its base, Q2 is biased off. 
Transistor Q1 now carries the full emitter load cur­
rent; this current is sufficient to pick K10. 

A similar circuit, of opposite polarity, checks the 
negative regulators and picks Kl1. 

The isolation switches permit CPU dc power to be 
brought up; for servicing purposes, with a low output­
voltage level from a regulator. At least one positive 
and one negative regulator isolation switch must be 
on to pick K10 and Kl1. 

CAUTION 

Under these conditions, CPU logic 
circuitry may be damaged by the 
nonstandard voltages. 

5.3.9 MARGINAL ADJUSTMENTS 

Several power supplies in the CPU and in the at­
tached storage units and channels may have their 
output level varied from the nominal output. This 
feature allows testing critical circuits with nonstand­
ard voltages as an aid in predicting failures. 

When a supply or attached unit is margined, an 
"active margin" 24vdc level is generated. Each 24vdc 
level is fed to an input of an OR to light the AC­
TNE MARGIN indicator, showing the system has an 

active marginal adjustment. The MARGIN/METER 
SEL rotary switch may be turned to successive posi­
tions to locate the margined supply or unit. The 
LOCATE MARGIN indicator lights when the switch is 
at the position of a margined supply or unit. The 
voltage level is shown on the meter. (See logic 
YA081, YA082, and YA121 for the circuits.) 

Wi thin the CPU, four of the 6v supplies (PS7, PS8, 
PS15, and PS16) and the 18 v ROS supply (PSll) have 
their output levels adjusted by individual panel con­
trols. These marginal controls have a cam and 
switch for the 24vdc active margin level. 

In the attached units, the margined supplies are 
adjusted by a motor drive which is controlled by lever 
switch MARGIN CHANNEL/STOR and selected by the 
MARGIN/METER SEL switch. 28vac through the 
raise and lower motor in each unit are returned through 
the rotary switch to select the unit and the lever switch 
to actuate the motor. The RAISE position causes the 
motor to adjust the marginal voltages to a higher level. 
The LOWER position adjusts the marginal voltages to 
a lower level. The active margin 24vdc level is sent 
to the CPU by each unit with a margined supply. 

5.3.10 CONVERTER/INVERTER 

The converter/inverter (PN 5703200) converts the 
280v, 60-cps, 3-phase ac to dc and inverts the dc to 
140v,2500-cps, I-phase ac for the regulators. A 
detailed description of the operation is given in the 
SLT Power Supply Manual of Instruction, Form Z22-
2799. Figure 9061, FEDM, is a simplified schematic. 

The 3-phase wall power is converted to dc by the 
3-phase bridge rectifier. The output of the rectifier 
is filtered by capacitors CO, C1, and C2. In addition 
to filtering, C1 and C2 provide a split source for the 
inverter. Resistors R1 and R2 help balance this 
split source and provide bleeder loading to discharge 
the capacitors when power is turned off. 

The inverter is basically two SCR's that alternate­
ly switch the load across Edc at a 2500-cycle rate. 
A 2500-cps square wave is formed at load points A 
and B. Switching is performed by the two load SCR's, 
SCR 1 and SCR 2, and the two commutating SCR's, 
SCR 3 and SCR 4. Assume SCR 1 and SCR 3 are 
gated on. Load current I1 enters the load at point A. 
Capacitor C3 charges to Edc. When C3 reaches full 
Edc, SCR 3 turns off. At this point, SCR 4 is gated 
on. Capacitor C3 discharges against SCR 1, turning 
it off. At this point, SCR 2 is gated on. Load cur­
rent 12 enters the load at point B; C 3 charges to Edc. 
When C3 reaches full Edc, SCR 4 turns off. At this 

11/65 2065 FEMI 5-17 



point, SCR 3 is gated on. Capacitor C3 discharges 
against SCR 2, turning it off. The cycle then re­
peats with SCR 1 gated on. 

DANGER 

The output to the regulators is 
not isolated from the wall power, 
presenting a lethal potential to 
ground, 

5,3.11 REGULATORS 

The regulators rectify, control, and filter the 
2500-cps ac from the converter/inverter to the nec­
essary dc voltage levels. Isolation from the wall 
power is provided. The operation of the regulators 
is described in detail in the SLT Power Supply Man­
ual of Instruction, Form Z22-2799. Figure 9062, 
FEDM, is a simplified schematic, 

DANGER 

The input to the regulators from 
the converter/inverter is not iso­
lated from the wall power, pre­
senting a lethal potential to ground. 

A bridge magnetic amplifier determines and con­
trols the output dc voltage level. The magnetic am­
plifier is a "square loop" toroidal core with three 
windings. The gate winding passes power to the out­
put relative to the degree of saturation in the core. 
The current in a bias winding sets the core at the 
approximate middle of the slope of the saturation 
curve. The current in a control winding adjusts this 
point according to the amount of error detected by 
the output voltage level check circuit. 

At the start of the gate cycle (the half of the input 
ac cycle determined by the diodes to the particular 

5~18 

gate winding), the inductance of the gate winding is 
high, causing a slow current rise. At some point in 
the gate cycle, the current in the gate winding rises 
to a point where the total of the currents in all three 
windings is sufficient to saturate the core. At satu­
ration, the gate winding current jumps to full current. 
When the current cycle passes through zero, the sat­
uration level returns to the point determined by the 
control and bias winding currents. 

5.3,12 ELAPSED TIME METERS 

Two meters on the system control panel show the 
CPU running time while it is processing customer 
data (process meter) and while it is being operated 
by the customer engineer (CE meter). A key-oper­
ated switch selects the meter to be driven. The 
normal position of this switch allows power to be 
applied to the process meter. The customer en­
gineer, using a key, switches to the CE meter. 
(See logic YA082 for the circuit.) 

Relay RR1 on the use meter card is picked by a 
signal from the CPU logic. 40vac through RRl con­
tacts drive the meter clock. 

5. 3. 13 ALARM FEATURE 

The alarm feature, a customer option, provides 
the operator with an audible signal when directed by 
the program. It may be used, for example, to signal 
a program hangup or the end of a program. (See 
logic Y A141 for the circuit. ) 

The 48vdc through relay A-K2 have a return path 
through the CPU logic. When the CPU logic grounds 
the return path, A-K2 is picked. A-K2 is then held 
by A-Kl and A-K2 contacts. The 28vac through 
A-K2 contacts pick A-Kl and start the bell ringing. 
A-K1 has a short delay before it transfers; A-K2 
drops as A-K1 transfers, and the bell stops ringing. 

11/65 



APPENDIX A 

UNIT CHARACTERISTICS 

Tables A-l through A-39 give the characteristics 
of the units that may be part of a Model 65 system. 

See IBM System/360 Installation Manual - Phys­
ical Planning SRL, Form C22-6820, for further 
details on the physical characteristics. For further 
details on the performance characteristics, see the 
Manual of Instruction and associated SRL for the 
particular unit. 

TABLE A-1. CHARACTERISTICS OF 2065 
PROCESSING UNIT 

Characteristics 

Unit dimensions (including 2365 
Processor Storage): 

Front width 

Depth 

Height 

Service clearances (including 2365 
Processor Storage): 

Front 

Rear 

Left 

Right 

Weight 

Heat dissipation 

Operating environment (inclUding 2365 
Processor Storage): 

Temperature 

Relative humidity 

Wet bulb temperature 

Nonoperating environment: 

Temperature 

Relative humidity 

Wet bulb temperature 

Power requirements 

Description 

19 feet, 8.5 inches 

22 feet, 4. 5 inches 

72.5 inches 

48 inches 

30 inches 

53 inches 

53 inches 

2400 lbs 

12, 000 BTU/hour 
3100 cfm 

600f - 90~ 

500f -110~ 

8-80% 

800f 

208v or 23Ov, 
6.9-kva, 3-phase, 
4-wire, 60-cycle 

TABLE A-1. CHARACTERISTICS OF 2065 
PROCESSING UNIT (Cont) 

-
Characteristics Description 

Storage capacity May use up to four 
2365 Processor Stor-
age units and up to 
four 2361 Core Stor-
age Units 

Access time (8-byte access), maximum 750 ns 

Bytes per second 'Up to 1.3 million 
(set by channels) 

TABLE A-2. CHARACTERISTICS OF 1052-7 
PRINTER-KEYBOARD* 

Characteristics Description 

Unit dimensions: 

Front width 23 inches 

Depth 19. 75 inches 

Height 9 inches 

Weight 65lbs 

Heat dissipation 335 BTU/hour 
Ocfm 

Operating environment: 

Temperature 500f _110oF 

Relative humidity 10-80% 

Wet bulb tempe:ooture 800F 

Nonoperating environment: 

Temperature 500f -110~ 

Relative humidity 10-80% 

Wet bulb temperature 800f 

Power requirements (power from CPU) O.l-kva 

Prmting rate 14.8 characters per 
second 

Control unit required None, direct to 2065 

* Used as data entry and printout unit for 2065 CPU. 

11/65 2065 FEMI A-1 



TABLE A-3. CHARACTERISTICS OF 1053-1 PRINTER 

Characteristics Description 

Unit dimensions: 

Front width 33 inches 

Depth 11.5 inches 

Height 9 inches 

Weight 35100 

Heat dissipation 335 BTU/hour 

Operating environment: 

Temperature 500F -HoOf 

Relative humidity 10-80% 

Wet bult temperature 800F 

Nonoperating environment: 

Temperature 500f -110Of 

Relative humidity 10-80% 

Wet bulb temperature 800f 

Power reqttirements 208v or 23Ov, 
O.l-kva, l-phase, 
3-wire, 60-cycle 

Printing rate 14.8 characters 
per second 

Typing line length 13 inches 

Control unit required 1051 Control Unit 

TABLE A-4. CHARACTERISTICS OF 1403-2, -3, -7, 
-Nl PRINTER 

Characteristics 

Unit dimensions: 

Front width 

Depth 

Height 

Service clearances: 

Front 

Rear 

Left 

Right 

Weight 

A-2 

Description 

57. 125 inches 

29 inches 

53.5 inches 

36 inches 

36 inches 

42 inches 

42 inches 

825100 

TABLE A-4. CHARACTERISTICS OF 1403-2, -3, -7, 
-Nl PRINTER (Cont) 

Characteristics Description 

Heat dissipation 4600 BTU/hour 
350 cfm 

Operating environment: 

Temperature 600f - 900f 

Relative humidity 20-80% 

Nonoperating environment: 

Temperature soOf -l1oOf 

Relative humidity 8-80% 

Power requirements (from 2821 Control 1.4-kva 
Unit) 

Printing rate (lines per minute) Model 2: 600 
Model 3: 1100 
Model 7: 600 
Model N1: 1100 

Printing positions (60 characters) Model 2: 132 
Model 3: 132 
Model 7: 120 
Model N1: 132 

Control unit reqttired 2821 Control Unit 

TABLE A-S. CHARACTERISTICS OF 1442-N2 
CARD PUNCH 

Characteristics Description 

Unit dimensions Not available 

Service clearances Not available 

Weight Not available 

Heat dissipation Not available 

Operating environment Not available 

Nonoperating environment Not available 

Power requirements Not available 

Storage capacity 1200 cards in hopper 
1300 cards in stacker 

Punch rate Columns 1 to 10: 
270 cards per minute 

Columns 1 to 80: 
91 cards per minute 

Channel required Multiplexor or selector 
(control tnrlt position) 

11/65 



TABLE A-6. CHARACTERISTICS OF 1443-Nl PRINTER 

Characteristics Description 

Unit dimensions: 

Front width 58. 875 inches 

Depth 43 inches 

Height 46 inches 

Service clearances: 

Front 36 inches 

Rear 36 inches 

Left 30 inches 

Right 48 inches 

Weight 8001bs 

Heat dissipation 3200 BTU/hour 
50cfm 

Operating environment: 

Temperature 60Dr - 90Dr 

Relative humidity 10-80% 

Nonoperating environment: 

Temperature 50ar -110Dr 

Relative humidity 8-80% 

Power requirements 208v or 23Ov, 
l.l-kva, l-phase, 
3-wire, 60-cycle 

Printing rate (lines per minute) 240 

Printing positions (52 characters) 120 

Channel required Multiplexor or 
selector 

TABLE A-7. CHARACTERISTICS OF 2150 CONSOLE* 

Characteristics 

Unit dimensions: 

Front width 

Depth 

Height 

Service clearances: 

Front 

Rear 

Left 

Right 

11/65 

Description 

64 inches 

28. 75 inches 

52. 125 inches 

30 inches 

48 inches 

30 inches 

30 inches 

TABLE A-7. CHARACTERISTICS OF 2150 CONSOLE* (Cont) 

Characteristics Description 

Weight 8001bs 

Heat dissipation 1740 BTU/hour 
180 cfm 

Operating environment: 

Temperature 60ar - 90er 

Relative humidity 10-80% 

Wet bulb temperature 78Dr 

Nonoperating environment: 

Temperature 50Dr - 110Dr 

Relative humidity 8-80% 

Wet bulb temperature 80Dr 

Power requirements 208v or 23Ov, 
0.65-kva, 3-phase, 
4-wire, 60-cycle 

Control unit required None, direct to 2065 

* Remote operators position for 2065 CPU 

TABLE A-8. CHARACTERISTICS OF 2250-1, -2 DISPLAY UNIT 

Characteristics Description 

Unit dimensions: 

Front width Modell: 58 inches 
Model 2: 36 inches 

Depth Modell: 72 inches 
Model 2: 44 inches 

Height Modell: 50 inches 
Model 2: 50 inches 

Service clearances: 

Front Modell: 27 inches 
Model 2: 30 inches 

Rear Modell: 30 inches 
Model 2: 30 inches 

Left Modell: 30 inches 
Model 2: 30 inches 

Right Modell: 25 inches 
Model 2: 30 inches 

Weight Modell: 8941bs 
Model 2: 3751bs 

Heat dissipation Modell: 7200 BTU/hour 
480cfm 

Model 2: 6600 BTU/hour 
320 cfm 

2065 FEMI A-3 



TABLE A-f>. CHARACTERISTICS OF 2250-1, -2 DISPLAY 

UNIT (Cont) 

Characteristics Description 

Op~atingenvtto.wnent: 

Temperature 50~ - 90~ 

Relative humidity 8-80% 

Wet bulb temperature 78~ 

Nonoperating envttonment: 

Temperature 500F -150~ 

Relative humidity 8-80% 

Wet bulb temperature 850f 

Pow~ requirements 208v or 23Ov, 2. 8-kva for 
Modell, 2. 4-kva for 
Model 2, l-phase, 3 -wire, 
60-cycle 

Storage capacity Modell: up to 8192 bytes 

Access time (1 byte) Modell; 4.2 ms 
c 

Channel or control unit required Modell: Multiplexor or 
selector (con-
trol unit position) 

Model 2: 2840-1 Display 
Control Unit 

TABLE A-9. CHARACTERISTICS OF 2260-1 DISPLAY STATION 

Characteristics Description 

Unit dimensions: 

Front width 13 inches 

Depth 21 inches 

Height 16 inches 

Weight 40lbs 

Heat dissipation 408 BTU/hour 

Op~ating envttonment: 

Temperature 50~ -110~ 

Relative humidity 8-80% 

Nonop~ating envttonment: 

Temp~ature 50~ -150~ 

Relative humidity 8-80% 

Pow~ requirements 11 5v, l-phase, 
3-wire, 60-cycle 

Control unit required 2848-1, -2, -3 Display 
Control Unit 

A-4 

TABLE A-l0. CHARACTERISTICS OF 2280-1 RECORDER, 
2281-1 SCANNER, 2282-1 RECORDER SCANNER 

Characteristics Description 

Unit dimensions: 

Front width 111 inches 

Depth 42 inches 

Height 70 inches 

S~ce clearances: 

Front 69 inches 

Rear 48 inches 

Left 54 inches 

Right 36 inches 

Weight 19001bs 

Heat dissipation 19,600 BTU/hour 
1405cfm 

O~ating envtto.wnent: 

Temp~ature 60~ - 900 F 

Relative humidity 20-70% 

Wet bulb tem~ature 780f 

Nonoperating environment: 

Temperature 500f -110Of 

Relative humidity 10-80% 

Wet bulb temp~ature 800f 

Power requirements 208v or 23Ov, 
6.2-kva, 3-phase, 
4-wire, 60-cycle 

Cornxolunitrequired 2840 Display Cornxol 
Unit 

TABLE A-11. CHARACTERISTICS OF 2301-1 DRUM STORAGE 

Characteristics Description 

Unit dimensions: 

Front width 34.5 inches 

Depth 29 inches 

Height 64 inches 

S~ce clearances: 

Front 48 inches 

Rear 48 inches 

Left 42 inches 

Right 42 inches 

11/65 



TABLE A-11. CHARACTERISTICS OF 2301-1 

DRUM STORAGE (Cont) 

Characteristics Description 

Weight 850100 

Heat dissipation 3800 BTU/hour 
320 cfm 

Operating environment:* 

Temperature 60~ - 900f 

Relative humidity 8-80% 

Wet bulb temperature 78~ 

Nonoperating env.ironment: 

Temperature 50~ -110~ 

Relative humidity 0-80% 

Powerreq~emen~ 208v or 23Ov, 1.5-kva, 
3 -phase, 4-wire, 
60-cycle 

Storage capacity 4. 09 million bytes 
(200 tracks) 

Access time: 

Average 8.6 ms 

Maximum 17.5 ms 

Bytes per second 1.2 million (from 2820 
to CPU) 

Bytes per track-density 20, 486, maximum 

Co~olunitreq~ed 2820 Storage Control Unit 

* 2-hour temperature stabilization period req~ed before 
power is applied. 

TABLE A-12. CHARACTERISTICS OF 2302-3, -4 DISK 
STORAGE 

Characteristics 

Unit dimensions: 

Front width 

Depth 

Height 

Service clearances: 

Front 

Rear 

Left 

Right 

Weight 

Description 

85.5 inches 

33 inches 

68. 75 inches 

60 inches 

60 inches 

60 inches 

60 inches 

Model 3: 4025 1bs 
Model 4: .4425 Ibs 

TABLE A-12. CHARACTERISTICS OF 2302-3, -4 DISK 
STORAGE (Cont) 

Characteristics Description 

Heat dissipation Mode13: 20, 000 BTU/hour 
2210 cfm 

Mode14: 28, 000 BTU/hour 
2210 cfm 

Operating environment: 

Temperature 650f - 90~ 

Relative humidity 10-80% 

Wet bulb temperature 780f 

Nonoperating environment: 

Temperature 500f -110oF 

Power reqWremen~ 208v or 23Ov, 
9. O-kva for Model 3, 
12. 6-kva for Model 4, 
3-phase, 4-wire, 
60-cycle 

Storage capacity Model 3: 112.14 million 
bytes 

Model 4: 224. 28 million 
bytes 

Access time, maximum 180 ms 

Bytes per second 156,000 

Bytes per record -density 4984, maximum 

Control unit req~ed 2841 Storage Control Unit 

TABLE A-13. CHARACTERISTICS OF 2311-1 DISK 
STORAGE DRIVE 

Characteristics 

Unit dimensions: 

Front width 

Depth 

Height 

Service clearances: 

Front 

Rear 

Left 

Right 

Weight 

Heat disSipation 

Description 

30 inches 

24 inches 

38 inches 

36 inches 

36 inches 

30 inches 

30 inches 

390100 

2000 BTU/hour 
100 cfm 

11/65 2065 FEMI A-5 



TABLE A-13. CHARACTERISTICS OF 2311-1 DISK 
STORAGE DRiVE (Cont) 

Characteristics Description 

Op~atingen~orunent 

Temp~ature 600 F - 90Df 

Relative humidity 8-80% 

Nonop~ating envirorunent: 

Temp~ature 500 F -110Df 

Relative humidity 0-80% 

Power requirements 208v or 23Ov, 0.75-kva, 
3 -phase, 4-wire, 
60-cycle 

Storage capacity 7. 25 million bytes 

Bytes per second 156,000 

Access time: 

Average 85 ms 

MaJCimum 145 ms 

Control unit required 2841 Storage Control Unit 

TABLE A-14. CHARACTERISTICS OF 2314-1 DIRECT 
ACCESS STORAGE FACILITY (DISK) 

Characteristics Description 

Unit dimensions Not available , 

S~ce clearances Not available 

Weight Not available 

Heat dissipation Not available 

Operatingen~onment Not available 

Nonoperating en~onment Not available 

Power requirements Not available 

Storage capacity 207 million bytes in eight 
modules at anyone time 

Access time: 

Average 75 ms 

MaJCimum 140 ms 

Bytes ~ second 312,000 

Bytes per track-density 7188 

Channel required Selector (control unit 
position) . 

A-6 

TABLEA-15. CHARACTERISTICS OF 2321-1 DATA 
CELL DRIVE 

Characteristics Description 

Unit dimensions: 

Front width 68.5 inches 

Depth 50.5 inches 

Height 60 inches 

S~ce clearances: 

Front 30 inches 

Rear 30 inches 

Left 30 inches 

Right 34 inches 

Weight 1950lbs 

Heat dissipation 19, 500 BTU/hour 
850 cfm 

O~ating envirorunent 

Temperature 650 F - 90Df 

Relative humidity 20-80% 

Wet bulb temperature 780 F 

Nonoperating envirorunent 

Temperature 500 F -110Df 

Relative humidity 8-80% 

Wet bulb tem~ature 800 F 

Power requirements 208v or 23Ov, 8.7-kva, 
3-phase, 4-wire, 
60-cycle 

Storage capacity 400 million bytes in 10 
cells at anyone time 

Access time 175 to 600 ms 

Bytes p~ record -density 2000 maJCimum 

Control unit required 2841 Storage Control Unit 

TABLE A-16. CHARACTERISTICS OF 2361-1, -2 CORE 
STORAGE 

Characteristics 

Unit dimensions: 

Front width 

Depth 

Height 

Service clearances: 

Front 

Rear 

Left 

Right 

Description 

64. 25 inches 

31. 75 inches 

70.5 inches 

72 inches 

42 inches 

36 inches 

30 inches 

11/65 



TABLE A-16. CHARACTERISTICS OF 2361-1, -2 CORE 
STORAGE (Cont) 

Char acteristics Description 

Weight 2125100 

Heat dissipation 24, 600 BTU/hour 
1095 cfm 

Op~atingen~onmenc 

Temperature 60~ - 90~ 

Relative humidity 8-80% 

Wet bulb temperature 780 F 

Nonoperating envirorunenc 

Temperature 50~ -110Of 

Relative humidity 8-80% 

Wet bulb temperature 780f 

Power requirements 208v or 23Ov, 9.0-kva, 
3-phase, 4-wire, 
60-cycle 

Storage capacity Modell: 1, 048, 576 bytes 
Model 2: 2, 097, 152 bytes 

Access time (8-byte access), 8us 
maximum 

Control unit required None, direct to 2065 

TABLE A-17. CHARACTERISTICS OF 2365-1, -2 PROCESSOR 
STORAGE 

Characteristics Description 

Unit dimensions See Table A-l 

S~ce clearances See Table A-l 

Weight Not available 

Heat dissipation Not available 

Operating en~orunent Not available 

Nonoperating en~orunent: 

Temperature 500f -l1oOf 

Relative humidity 8-80% 

Wet bulb temperature 800 F 

Power requirements Not available 

Storage capacity Modell: 131,076 bytes 
Model 2: 262, 144 bytes 

Access time (8-byte access), 750ns 
maximum 

Control unit required None, direct to 2065 

11/65 2065 FEMI 

TABLE A-18. CHARACTERISTICS OF 2401-1, -2, -3 

MAGNETIC TAPE UNIT 

Charac~istics Description 

Unit dimensions: 

Front width 30 inches 

Depth 29 inches 

Height 60 inches 

S~ce clearances: 

Front 36 inches 

Rear 36 inches 

Left 30 inches t when not 
abutted to 

30 inches ~ 
another tape 

Right or control 

unit 

Weight 800100 

Heat dissipation 3500 BTU/hour 
500 cfm 

Op~ating envirorunenc 

Temperature 60~ - 900 F 

Relative humidity 20-80% 

Wet bulb temperature 780f 

Nonoperating envirorunenc 

Temperature 500 F -110oF 

Relative humidity 8-80% 

Wet bulb temperature 800f 

Power requirements (from 208v or 23Ov, 1.6-kva, 
control unit) 3 -phase, 4-wire, 

60-cycle 

Storage capacity O. 5-inch magnetic tape 

Bytes per second Modell: 30,000 
Model 2: 60,000 
Model 3: 90,000 

Bytes per inch -density Modell: 800 
Model 2: 800 
Model 3: 800 

Tape speed (inches per second) Modell: 37.5 
Model 2: 75.0 
Model 3: 112.5 

Rewind and unload time Modell: 2.2 
(minutes) Model 2: 1.5 

Model 3: 1.1 

Interrecord gap Modell: 0.6 inch 
16.0 ms 

Model 2: 0.6 inch 
8.0 ms 

Model 3: 0.6 inch 
5.3 ms 

Control unit required 2403, 2404, 2803, or 
2804 Control Unit 

A-7 



TABLE A-19. CHARACTERISTICS OF 2402-1, -2, -3 
MAGNETIC TAPE UNIT* 

Characteristics Description 

Unit dimensions: 
Front width 60 inches 
Depth 29 inches 
Height 60 inches 

Service clearances: 
Front 36 inches 
Rear 36 inches 

~ 
when not 

Left 30 inches abutted to 
another tape 

Right 30 inches or control 
unit 

Weight 1600 lbs 

Heat dissipation 7000 BTU/hour 
1000 cfm 

Operating environment: 
Temperature 600 F - 900 F 
Relative humidity 20-80% 
Wet bulb temperature 780 F 

Nonoperating environment: 
Temperature 500 F - 1100 F 

Relative humidity 8-80% 
Wet bulb temperature 800f 

Power requirements (from 208v or 230v, 3.2-kva, 
control unit) 3 -phase, 4-'wire, 

60-cycle 

Storage ~apacity O. 5 -inch magnetic 

tape 

Bytes per second Modell: 30,000 
Model 2: 60,000 
Model 3: 90,000 

Bytes per inch -density Modell: 800 
Model 2: 800 
Model 3: 800 

Tape speed (inches per second) Modell: 37.5 
Model 2: 75.0 
Model 3: 112.5 

Rewind and unload time Modell: 2.2 
(minutes) Model 2: 1.5 

Model 3: 1.1 

lnterrecord gap Modell: 0.6 inch 
16.0 ms 

Model 2: 0.6 inch 
8.0 ms 

Model 3: 0.6 inch 
5.3 ms 

Control unit required 2403, 2404, 2803, or 
2804 Control 
Unit 

*Consists of two independent drives in one frame. 

A-8 

TABLE A-20. CHARACTERISTICS OF 2403 AND 2404-1, -2. 
-3 MAGNETIC TAPE UNIT AND CONTROL 

Characteristics Description 

Unit dimensions: 

Front width 60 inches 
Depth 29 inches 
Height 60 inches 

Service clearances: 
Front 42 inches 
Rear 42 inches 

Left 30 inches ~ when not 
abutted to 

Right 30 inches ~ 
another tape 
or control unit 

Weight 20001bs 

Heat dissipation For 2403: 5500 BTU/hour 
1000 cfm 

For 2404: 6300 BTU/hour 
1200 cfm 

Operating environment: 
Temperature 60~ - 90~ 
Relative humidity 20-80% 
Wet bulb temperature 780F 

Nonoperating environment: 
Temperature 50~ -110~ 

Relative humidity 8-80% 
Wet bulb temperature 80~ 

Power requirements 208v or 23Ov, 
2. l-kva for 2403, 
2. 4-kva for 2402, 
3-phase, 4-wire, 60-cycle 

Storage capacity O. 5-inph magnetic tape 

Bytes per second Modell: 30,000 
Model 2: 60,000 
Model 3: 90,000 

Bytes per inch-density Modell: 800 
Model 2: 800 
Model 3: 800 

Tape speed (inches per second) Modell: 37.5 
Model 2: 75.0 
Model 3: 112.5 

Rewind and unload time Modell: 2.2 
(minutes) Model 2: 1.5 

Model 3: 1.1 

Interrecord gap Modell: 0.6 inch 
16.0 ms 

Model 2: 0.6 inch 
8.0ms 

Model 3: 0.6 inch 
5.3 ms 

Type of channel required For 2403: Multiplexor 
or selector (con-
trol unit position) 

For 2404: Multiplexor or 
selector (control 
unit position) 

Number of drives controlled 8 maximum 

11/65 



TABLE A-21. CHARACTERISTICS OF 2501-Bl, -B2 CARD 

READER 

Characteristics 

Unit dimensions: 

Front width 

Depth 

Height 

Service clearances: 

Front 

Rear 

Left 

Right 

Weight 

Heat dissipation 

Operating environment: 

Temperature 

Relative htunidity 

Wet bulb temperature 

Nonoperating environment: 

Temperature 

Relative htunidity 

Wet bulb temperature 

Power requirements 

Storage capacity 

Read rate (cards per minute) 

Channel required 

Description 

30 inches 

24 inches 

44.5 inches 

36 inches 

42 inches 

6 inches 

24 inches 

290lbs 

2700 BTU/hour 

10-80% 

500f -110Of 

8-80% 

208vor 23Ov, 0.5-kva, 

1-phase, 3 -wire, 
60-cycle 

1200 cards in hopper 
1300 cards in stacker 

Model B1: 600 
Model B2: 1000 

Multiplexor or selector 
(control unit position) 

TABLE A-22. CHARACTERISTICS OF 2520-B1 CARD READ 

PUNCH; 2520-B2, -B3 CARD PUNCH 

Characteristics Description 

Unit dimensions: 

Front width 43 inches 

Depth 24 inches 

Height 50 inches 

11/65 

TABLE A-22. CHARACTERISTICS OF 2520-B1 CARD READ 

PUNCH; 2520-B2, -B3 CARD PUNCH (Cont) 

Characteristics Description 

Service clearances: 

Front 48 inches 

Rear 36 inches 

Left 36 inches 

Right 18 inches 

Weight 660 lbs 

Heat dissipation 6350 BTU/hour 
75 cfm 

Operating environment: 

Temperature 500f - 900f 

Relative humidity 10-80% 

Wet bulb temperature 780f 

Nonoperating environment: 

Temperature 500f -11oOf 

Relative humidity 8-80% 

Wet bulb temperature 800 F 

Power requirements 208v or 23Ov, 1.85-kva, 
1-phase, 3 -wire, 
60-cycle 

Storage capacity 1200 cards in hopper 
1300 cards in stacker 

Read rate (cards per minute) Model B1: 500 
Model B2: -
Model B3: -

Punch rate (cards per minute) Model B1: 500 

Model B2: 500 
Model B3: 300 

Channel required Multiplexor or selector 
(control unit position) 

TABLE A-23. CHARACTERISTICS OF 2540-1 CARD 

READ PUNCH 

Characteristics 

Unit dimensions: 

Front width 

Depth 

Height 

2065 FEMI 

Description 

57. 50 inches 

29.25 inches 

45.25 inches (plus 20 
inches for 
read file 
feed feature) 

A-9 



TABLE A-23. CHARACTERISTICS OF 2540-1 CARD 

READ PUNCH (Cont) 

Characteristics Description 

Service clearances: 

Front 36 inches 

Rear 36 inches 

Left 36 inches 

Right 36 inches 

Weight 10501bs 

Heat dissipation 3000 BTU/hour 
50 cfm 

Operating environment: 

Temperature 60°F - 90°F 

Relative humidity 20-80% 

Wet bulb temperature 78°F 

Nonoperating environment: 

Temperature 500F - 110°F 

Relative humidity 8-80% 

Wet bulb temperature 80°F 

Power requirements (from 2821 1. 2-kva 
Control Unit) 

Storage capacity 3100 cards in hopper 
1350 cards in each of 
five stackers 

Read rate (cards per minute) 1000 

Punch rate (cards per minute) 300 

Control unit required 2821-1, -5 Control Unit 

TABLE A-24. CHARACTERISTICS OF 2701-1 DATA 
ADAPTER UNIT 

Characteristics Description 

Unit dimensions: 

Front width 40 inches 

Depth 25.5 inches 

Height 40 inches 

Service clearances: 

Front 42 inches 

Rear 42 inches 

Left o inch 

Right 42 inches 

A-10 

TABLE A-24. CHARACTERISTICS OF 2701-1 DATA 
ADAPTER UNIT (Cont) 

Characteristics 

Weight 

Heat dissipation 

Operating environment: 

Temperature 

Relative humidity 

Wet bulb temperature 

Nonoperating environment: 

Temperature 

Relative humidity 

Wet bulb temperature 

Power requirements 

Bauds per second 

Channel required 

* Can handle 48 parallel data bits. 

Description 

3201bs 

1200 BTU/hour 
120 cfm 

8-80% 

8-80% 

208v or 23Ov, 0.3-kva, 
1-phase, 3 -wire, 
60-cycle 

2 million, maximum* 

Multiplexor or selector 
(control unit position) 

TABLE A-25. CHARACTERISTICS OF 2702-1 TRANSMISSION 
CONTROL 

Characteristics Description 

Unit dimensions: 

Front width 28. 75 inches 

Depth 61.50 inches 

Height 60 inches 

Service clearances: 

Front 30 inches 

Rear 18 inches 

Left 30 inches 

Right 42 inches 

Weight 9001bs 

Heat dissipation 1800 BTU/hour 
800 cfm 

Operating environment: 

Temperature 60°F - 90~ 

Relative humidity 8-80% 

Wet bulb temperature 78°F 

11/65 



TABLE A-25. CHARACTERISTICS OF 2702-1 TRANSMISSION 
CONTROL (Cont) 

Characteristics Description 

Nonoperating environment: 

Temperature 500f - 1100 F 

Relative humidity 8-80% 

Wet bulb temperature 800 F 

Power requirements 208" or 23Ov, 2.0-kva, 
l-phase, 3-wire, 
60-cycle 

Bits per second: 180, maximum* 

Channel required Multiplexor 

* Up to 31 lines may be connected. 

TABLE A-26. CHARACTERISTICS OF 2802-1 HYPERTAPE 
CONTROL 

Characteristics 

Unit dimensions: 

Front width 

Depth 

Height 

Service clearances: 

Front 

Rear 

Left 

Right 

Weight 

Heat dissipation 

Operating environment: 

Temperature 

Relative humidity 

Wet bulb temperature 

Nonoperating environment: 

Temperature 

Relative humidity 

Wet bulb temperature 

Power requirements 

11/65 

Description 

28. 75 in::hes 

61. 5 inches 

60 inches 

30 inches 

30 inches 

42 inches 

42 inches 

5501bs 

1360 BTU/hour 
300 cfm 

20-80% 

500f -110Of 

8-80% 

208v or 230v, 0.6-kva 
(plus 4.0 kva per 7340-3 
attached), 3-phase, 
4-wire, 60-cycle 

TABLE A-26. CHARACTERISTICS OF 2802-1 HYPERTAPE 
CONTROL (Cont) 

Char acteristics Description 

Bytes per second: 

Low 170,000 

High 340,000 

Channel required: 

Low Selector or multiplexor 

High Selector only 

Number and type of units Maximum of eight 

controlled 7340-3's * 

* This unit may handle up to 16 tape drives with two 
2816 -2 units. 

2065 FEMI 

TABLE·A-27. CHARACTERISTICS OF 2803-1 AND 2804-1 

TAPE CONTROL* 

Characteristics 

Unit dimensions: 
Front width 
Depth 
Height 

Service clearances: 
Front 
Rear 
Left 

Right 

Weight 

Heat dissipation 

Operating environment: 
Temperature 
Relative humidity 
Wet bulb temperature 

Nonoperating environment: 
Temperature 
Relative humidity 

Wet bulb temperature 

Power requirements 

Bytes per second: 

Description 

60 inches 
29 inches 

60 inches 

42 inches 
42 inches 
30 inches 
30 inches (when not 

abutted to 
another tape 
or control unit) 

For 2803: 1400 Ibs 

For 2804: 1600 Ibs 

For 2803: 2500 BTU/hour 
500 cfm 

For 2804: 4000 BTU/hour 
700 cfm 

600 F - 900f 
20-80% 

780 F 

500 F - 1100f 
8-80% 

800f 

208v or 23Ov, 
1. O-kva for 2803, 
1. 5-kva for 2804, 
3 -phase, 4-wire, 
60-cycle 

Determined by tape drive 

A-ll 



TABLE A-27. CHARACTERISTICS OF 2803-1 AND 2804-1 

TAPE CONTROL* (Cont) 

Characteristics Description 

Channel reqttixed For 2803: Multiplexor or 
selector (con-

trol unit 

position) 

For 2804: Multiplexor or 
selector 

(control unit 
position) 

Number and type of units Up to 16 2401's or 

controlled 2402's 

* 2803 is a single-channel, read or write control 
2804 is a two-channel, simultaneous-read-while-write control 

TABLE A-28. CHARACTERISTICS OF 2816-1, -2 

SWITCHING UNIT 

Characteristics Description 

Unit dimensions: 

Front width 29 inches 

Depth 42 inches 

Height 60 inches 

Service clearances: 

Front 30 inches 

Rear 18 inches 

Left 42 inches 

Right 42 inches 

Weight 500lbs 

Heat dissipation 1500 BTU/hour 
280 cfm 

Operating environment: 

Temperature 600f - 90~ 

Relative humidity 20-80% 

Wet bulb temperature 780 F 

Nonoperating environment: 

Temperature 500 F -110oF 

Relative humidity 8-80% 

Wet bulb temperature 800f 

Power reqttixements 208v or 23Ov, 1.2-kva, 

+ -phase, 3 -wire, 

Control unit reqttixed Tape Control Unit 

Number of units controlled Up to 16 drives (with two 

2816's) 

A-12 

TABLE A-29. CHARACTERISTICS OF 2820-1 STORAGE 

CONTROL (DRUM) 

Characteristics Description 

Unit dimensions: 

Front width 28. 75 inches 

Depth 61. 50 inches 

Height 60 inches 

Service clearances: 

Front 30 inches 

Rear 30 inches 

Left 42 inches 

Right 42 inches 

Weight 7501bs 

Heat dissipation 4000 BTU/hour 
550 cfm 

Operating environment: 

Temperature 500 F - 900 F 

Relative humidity 8-80% 

Wet bulb temperature 780 F 

Nonoperating environment: 

Temperature 500f - 1100 F 

Relative humidity 8-80% 

Wet bulb temperature 800 F 

Power reqttixements 208v or 23Ov, 1.5-kva, 

i-phase, 3 -wire, 

60-cycle 

Bytes per second 1. 2 million transfer rate 

Channel reqttixed Selector (control unit 

position) 

Number and type of units Up to four 2301's 

controlled 

TABLE A-30. CHARACTERISTICS OF 2821-1, -2, -3, -5 

CONTROL UNIT (CARD) 

Characteristics Description 

Unit dimensions: 

Front width 32 inches 

Depth 46 inches 

Height 60 inches 

( 

11/65 



TABLE A-30. CHARACTERISTICS OF 2821-1, -2, -3, -5 
CONTROL UNIT (CARD) (Cont) 

Characteristics Description 

Service clearances: 

Front 30 inches 

Rear 18 inches 

Left 48 inches 

Right 48 inches 

Weight 1000 lbs 

Heat dissipation 7000 BTU/hour 
300 cfm 

Operating environment: 

Temperature GOOf - 900f 

Relative humidity 8-80% 

Wet bulb temperature 78~ 

Nonoperating environment: 

Temperature 500f -110~ 

Relative humidity 8-80% 

Wet bulb temperature 80~ 

Power requirements 208v or 23Ov, 2.4-kva, 
3-phase, 4-wire, 
60-cycle 

Channel required Multiplexor or selector 
(control unit position) 

Type of units controlled 2540 and 1403 

TABLE A-31. CHARACTERISTICS OF 2840-1 DISPLAY 
CONTROL 

Characteristics 

Unit dimensions: 

Front width 

Depth 

Height 

Service clearances: 

Front 

Rear 

Left 

Right 

Weight 

Heat dissipation 

11/65 

Description 

29 inches 

42 inches 

GO inches 

30 inches 

30 inches 

30 inches 

30 inches 

550lbs 

4800 BTU/hour 
300 cfm 

TABLE A-31. CHARACTERISTICS OF 2840-1 DISPLAY 
CONTROL (Cont) 

Characteristics Descriptibn 

Operating environment: 

Temperature 500F - 900f 

Relative humidity 8-80% 

Wet bulb temperature 780 F 

Nonoperating environment: 

Temperature 50~ -150~ 

Relative humidity 8-80% 

Wet bulb temperature 85~ 

Power requirements 208v or 23Ov, 1. 4-kva, 
1-phase, 3 "'Wire, 
60-cycle 

Storage capacity Up to 16,384 bytes 

Access time (2 bytes) 4.2 ms 

Channel required Multiplexor or selector 
(control unit position) 

Number and type of units Up to eight 2250-2's 
controlled or up to four 2280's, 

2281's or 2282's 

TABLE A-32. CHARACTERISTICS OF 2841-1 STORAGE 
CONTROL 

Characteristics 

Unit dimensions: 

Front width 

Depth 

Height 

Service clearances: 

Front 

Rear 

Left 

Right 

Weight 

Heat disSipation 

Opoerating environment: 

2065 FEMI 

Temperature 

Relative humidity 

Wet bulb temperature 

Description 

32 inches 

45.5 inches 

60 inches 

30 inches 

30 inches 

48 inches 

30 inches 

750 lbs 

5500 BTU/hour 
1000 cfm 

20-80% 

780f 

A-13 



TABLE A-32. CHARACTERISTICS OF 2841-1 STORAGE 
CONTROL (Cont) 

Characteristics Description 

Nonoperating environment: 

Temperature 500f -110~ 

Relative humidity 8-80% 

Wet bulb temperature 800f 

Power requirements 208v or 23Ov, 1. !,-kva, 
3-phase, 4-wire, 60-cycle 

Bytes per second Up to 156,000 (depends 
on storage unit) 

Channel required Multiplexor or selector 
(control unit position) 

Number and type of units Two access mechanisms per 

controlled (8 access mech- 2302 -3, four per 2302 -4, 
anisms maximum) eight per 2311-1, one per 

2321-1, and one per 7320-4 

TABLE A-33. CHARACTERISTICS OF 2848-1, -2, -3 
DISPLAY CONTROL 

Char acteristics 

Unit dime~ons: 

Front width 

Depth 

Height 

Service clearances: 

Front 

'Rear 

Left 

Right 

Weight 

Heat dissipation 

Operating environment: 

Temperature 

Relative humidity 

Wet bulb temperature 

Nonoperating environment: 

Temperature 

Relative humidity 

Wet bulb temperature 

Power requirements 

Characters per second 

A-14 

D escri ption 

29 inches 

60. 75 inches 

72.5 inches 

30 inches 

30 inches 

48 inches 

48 inches 

10001bs 

3542 BTU/hour 

8-80% 

78~ 

500f -110~ 

8-80% 

800f 

208v or 23Ov, 1.5-kva, ' 

l-phase,3-wire, 60-cycle 

12560 maximum 

TABLE A-33. CHARACTERISTICS OF 2848-1, -2, -3 
DISPLAY CONTROL (Cont) 

Characteristics Description 

Channel required Multiplexor or selector 
(control unit position) 

Number and type of units Modell: up to 24 2260's 
controlled Model 2: up to 16 2260's 

Model 3: up to 82260's 

TABLE A-34. CHARACTERISTICS OF 2860-1, -2, -3 
SELECTOR CHANNEL* 

Characteristics Description 

Unit dimensions: 
Front width 32. 25 inches 
Depth 67.75 inches 
Height 71 inches 

Service clearances: 
Front 30 inches 
Rear 51 inches 
Left 66 inches 
Right 66 inches 

Weight Modell: 11501bs 
Model 2: 14501bs 
Model 3: 17501bs 

Heat diSSipation Modell: 8200 BTU/hour 
420 cfm 

Model 2: 10,000 BTU/hour 
740 cfm 

Model 3: 11, 600 BTU/hour 
1060 cfm 

Operating environment: 
Temperature 600f - 90~ 
Relative humidity 20-80% 
Wet bulb temperature 780f 

Nonoperating environment: 
Temperature 500f -110~ 
Relative humidity 20-80% 
Wet bulb temperature 800f 

Power requirements 208v or 23Ov, 
3. 05-kva for Modell, 
3. 65-kva for Model 2, 
4. 25-kva for Model 3, 
3-phase, 4-wire, 60-cycle 

Bytes per second Up to 1. 3 million 

Control required None, direct to 2065 CPU 

Number and type of units Up to eight control units 
controlled per channel 

Modell: one channel = 
8 control units 

Model 2: two channels = 
16 control units 

Model 3: three channels = 
24 control units 

* Two of these units may be connected to 2065 CPU 

11/65 



TABLE A-35. CHARACTERISTICS OF 2S70-1 MULTIPLEXOR 

CHANNEL 

Chaxacteristics 

Unit dimensions: 

Front width 

Depth 

Height 

Service cleaxances: 

Front 

Reax 

Left 

Right 

Weight 

Heat dissipation 

Operating environment: 

Temperature 

Relative hmnidity 

Wet bulb temperature 

Nonoperating environment: 

Temperature 

Relative hmnidity 

Wet bulb temperature 

Power requirements 

Aggregate data rate: 

Control required 

Number and type of units 
controlled 

D escri ption 

32. 75 inches 

67. 75 inches 

71 inches 

30 inches 

51 inches 

66 inches 

66 inches 

1450 lbs 

11, 600 BTU/hour 
1060 dm 

600f - 900f 

20-S0% 

20-S0% 

soar 

20Svor 23Ov, 4.25-ma, 
3 -phase, 4-wire, 
60-cycle 

Up to 450 kc 

None, direct to 2065 
CPU 

Up to 190 I/O units 

TABLE A-36. CHARACTERISTICS OF 7320-1 DRUM STORAGE 

Chaxacteristics Description 

Unit dimensions: 

Front width 30 inches 

Depth 29 inches 

Height 60 inches 

11/65 

TABLE A-36. CHARACTERISTICS OF 7320-1 

DRUM STORAGE (Cont) 

Chaxacteristics Description 

Service cleaxances: 

Front 40 inches 

Reax 40 inches 

Left 42 inches 

Right 42 inches 

Weight 850 lbs 

Heat dissipation 2S00 BTU/hour 
320 dm 

Operating environment: 

Temperature 600f - 900f 

Relative humidity 8-S0% 

Wet bulb temperature 780f 

Nonoperating environment: 

Temperature 500f -110Of 

Relative humidity O-SO% 

Wet bulb temperature SOoF 

Power requirements 208v or 23Ov, 1.1-ma, 
3 -phase, 4-wire, 
60-cycle 

Storage capacity 830, 000 bytes on 400 
tracks 

Access time: 

Average S.6 IDS 

Maximum 17.5 IDS 

Bytes per second: 136,000 

Bytes per track-density 2075 

Control unit required 2841 Storage Control Unit 

TABLE A-37. CHARACTERISTICS OF 7340-3 HYPER TAPE 

DRIVE 

Chaxacteristics 

Unit dimensions: 

Front width 

Depth 

Height 

2065 FEMI 

Description 

29 inches 

60 inches 

48 inches (plus 22 
inches if autoloader is 
installed) 

A-15 



TABLE A-37. CHARACTERISTICS OF 7340-3 HYPERTAPE 

DRIVE (Cont) 

Characteristics 

~ervice clearances: 

Front 

Rear 

Left 

Right 

Weight 

Heat dissipation 

Operating envirorunent: 

Temperature· 

Relative humidity 

Wet bulb temperature 

Nonoperating envirorunent: 

Temperature 

Relative humidity 

Wet bulb temperature 

Power requirements 

Bytes per second: 

Low 

High 

Bytes per inch -density: 

Low 

High 

Access time 

Tape speed 

Rewind time 

Interrecord gap 

Control unit required 

Description 

46 inches 

52 inches 

See Note 

See Note 

1500 lbs (plus 250 lbs if 

autoloader is installed) 

12,000 BTU/hour 
700 cfm 

20-80% 

8-80% 

208vor 230v, 4.0-kva 
(from control unit), 
3 -phase, 4-wire, 

60-cycle 

170,000 

340,000 

1511 

3022 

3. 5 ms average 

112. 5 inches per second 

1. 5 minutes 

0.38 inch 

2802 Hypertape Control 
Unit 

Note: 7 inches minimum for two 7340's clearances should alternate: 
7, 22, 7, 22 inches, etc. 30 inches minimum between any other units. 

A-16 

TABLE A-38. CHARACTERISTICS OF 7770-3 AUDIO 

RESPONSE UNIT 

Char acteristics Description 

Unit dimensions: 

Front width 37.50 inches (73.5 inches 

with expander) 

Depth 31. 50 inches 

Height 70 inches 

Service clearances: 

Front 42 inches 

Rear 36 inches 

Left 30 inches 

Right 30 inches 

Weight For 16-line unit: 500lbs 
For 48-line unit: 1000lbs 

Heat dissipation For 16-line unit: 3000 BTU/hour 
400cfm 

For 48-line unit: 6000 BTU/hour 
800 cfm 

Operating environment: 

Temperature 600f - 900 F 

Relative humidity 20-80% 

Wet bulb temperature 780r 

Power requirements 208v or 23Ov, 
1. 6-kva for 16 lines, 
2. 5-kva for 48 lines, 
i-phase, 3 -wire, 60-cycle 

Storage capacity 128 words 

Channel required Multiplexor 

TABLE A-39. CHARACTERISTICS OF 7772-3 AUDIO 
RESPONSE UNIT 

Characteristics 

Unit dimensions: 

Front width 

Depth 

Height 

Description 

37.50 inches (73.5 inches 
with expander) 

31.50 inches 

70 inches 

11/65 



TABLE A-39. CHARACTERISTICS OF 7772-3 AUDIO 
RESPONSE UNIT (Cont) 

Characteristics Description 

Service clearances: 

Front 42 inches 

Rear 36 inches 

Left 30 inches 

Right 30 inches 

Weight For 4-line unit: 600100 
For 8-line unit: 1000 100 

Heat disSipation For 4-line unit: 5100 BTU/hour 
900 cfm 

For 8 -line unit: 7700 BTU/hour 
1800 cfm 

Operating environment: 

Temperature sOOp - 900p 

Relative htunidity 10-90% 

Wet bulb temperature 78°F 

Nonoperating environment: 

Temperature sOOp -110Op 

Relative htunidity 0-90% 

Wet bulb temperature 8QOp 

Power requirements 208v or 23Ov, 
1. O-kva for 4 lines, 
1. s-kva for 8 lines, 
1-phase, 3 -wire, 
60-cycle 

Channel required Multiplexor (control unit 
position) 

11/65 2065 FEMI A-17 

/ 



APPENDIX B 

CONTROLS AND INDICA TORS 

This appendix defines the functions of the controls 
and indicators on the system control panel and the 
CE panel. These two panels contain all the controls 
and indicators required for system operation. 

B.1 SYSTEM CONTROL PANEL 

The system control panel is divided into seven 
separate panels, as shown in Figure 3-22. 

B.1.1 PANEL A 

1. Meter. The meter indicates the voltage 
levels of the marginable supplies. The 
particular supply indicated is determined 
by the MARGIN/METER SEL switch. 

2. MARGIN/METER SEL switch. This switch 
has 12 positions to select the power supply 
to be indicated by the meter and to deter­
mine which of the attached stand-alone units 
may be marginally checked: 

a. STORE FRAME 1: Indicates and selects 
storage unit 1. 

b. STORE FRAME 2: Indicates and selects 
storage unit 2. 

c. STORE FRAME 3: Indicates and selects 
storage unit 3. 

d. STORE FRAME 4: Indicates and selects 
storage unit 4. 

e. CHAN FRAME 1: Indicates and selects 
channelL 

f. CHAN FRAME 2: Indicates and selects 
channel 2. 

g. CHAN FRAME .3: Indicates and selects 
channel 3. 

h. ROS LOCATE: Indicates gate D in the 
CPU (ROS gate). 

i. CPU A: Indicates gate A in the CPU. 

j. CPU B: Indicates gate B in the CPU. 

k. CPU C: Indicates gate C in the CPU. 

1. CPU E: Indicates gate E in the CPU. 

3. MARGIN indicators 

a. ACTIVE: Indicates that an internal power 
supply or an attached storage unit or 
channel is being marginally checked. 

b. LOCATE: Indicates when the MARGIN/ 
METER SEL switch is at the position of 
a margined power supply or attached 
storage unit or channel. 

4. POWER CHECK indicators: These eight 
indicators, CPU, STOR FRAME 1, 2, 3, and 
4, and CHAN FRAME 1, 2, and 3, indicate an 
incomplete power-up status in the CPU, stor­
age units 1, 2, 3, and 4, and channels 1, 2, 
and 3, respectively. 

5. MARGIN CHANNEL/STOR switch: This switch 
applies power to a motor in the channel or 
storage unit selected by the MARGIN/METER 
SEL switch to lower or raise the output volt­
age levels from the marginable supplies in 
that unit or channel. 

B.1.2 PANEL B 

The five controls on this panel, ROS, +6M A GT, 
+6M B GT, +6M C GT, and +6M E GT, raise or 
lower the output voltage levels from the 18v ROS 
and the 6v gate A, B, C, and E supplies, respec­
tively. 

B.1.3 PANELC 

The pull switch on this panel, EMERGENCY 
PULL, initiates emergency power off in the system 
when it is pulled. 

B.1.4 PANEL D 

This panel is blank at present. 

11/65 2065 FEMI B-1 



B.1. 5 PANEL E 

1. Roller switches and indicators. This section 
of the panel contains six roller switches and 
associated indicators. Figure 9058, FEDM 
identifies the indicators for the six positions 
of each roller switch. The roller switch 
indicators are tested between positions of the 
switch. Position 6 of roller 6 is used to test 
the remaining indicators on the system control 
panel and on the 2150 Console. 

2. DATA 0-31 and DATA 3~-63 data switches: 
These 64 switches, in hexadecimal groups, 
permit data to be entered manually. Correct 
parity is automatically generated. 

3. ADDRESS switches: These 24 switches, in 
hexadecimal groups, select an addressable 
location in storage. Correct parity is auto­
matically generated. 

4. STOR CHK (storage check) indicator: Indicates 
an error in the storage units. 

5. PROC CHK (prqcessor check) indicator: 
Indicates an error in the CPU. 

B.1. 6 PANEL F 

1. TEST MODE switches 

a. REPEAT switch: Repeats the ROS or FLT 
test in storage continuously. 

b. FLT switch: Places the CPU in the FLT 
mode and removes program control. 

c. ROS switch: Provides for checking each 
bit in ROSagainst a test tape. 

2. FREQUENCY ALTERATION switch: Decreases 
the CPU clock cycle from 200 ns to 195 ns. 
Operates only with the CE key switch in the 
CE position. 

3. DE FEA T INTER LEA VING switch. This switch 
has three positions: 

B-2 

a. PROC (process) - normal position: 
Addressing is interleaved with no address 
reversal. 

b. REV (reverse): Interleaving is disabled 
with addresses reversed. 

c. NO REV (no reverse): Interleaving is 
disabled with no address reversal. 

4. STOP ON STORAGE CHECK switch: Inhibits 
operation and maintains environment of 
storage upon detection of a storage error. 

5. DISABLE INTERVAL TIMER switch: Prevents 
the interval timer from decrementing. 

6. STORAGE SELECT switch. This switch has 
three positions: 

a. MAIN - normal pOSition: Selects main 
storage for storing or displaying data. 

b. LOCAL: Selects local storage for storing 
or displaying data. 

c. MAIN BYTE: Same as the normal position 
except that the byte selected is the only 
byte affected by a manual store operation. 

7. ADDRESS COMPARE STOP switch: stops 
processing if the storage address agrees with 
bits 2 through 20 of the ADDRESS switches. 

8. CPU CHECK switch. This switch has three 
positions: 

a. PROC (process) - normal position: If the 
PSW machine check mask is a 1, the CPU 
stops on detection of a CPU check and the 
status is logged into main storage. If the 
mask is a 0, the result is the same as if 
the switch is in the DSBL position. 

b. DSBL (disable): The CPU does not stop on 
detection of a machine check, but the check 
trigger is set. 

c. STOP: The CPU stops on detection of a 
machine check, but there is no log-in of 
data. 

9. PULSE MODE switch. This switch has three 
positions: 

a. PROC (process) - normal position: Does 
not affect CPU operation. 

'b. COUNT: Provides a means of looping 
through a selected number of machine 
cycles (maximum of 2047). The number of 
cycles is entered in DATA switches 53-63. 
Each loop starts at the address contained 
in main storage address zero. 

11/65 



c. TIME: Provides looping when the interval 
timer is decremented. Each loop starts 
at the address contained in main storage 
address zero. 

10. REPEAT INSN (instruction) switch. This 
switch has three positions: 

a. PROC (process) - normal position: Does 
not affect CPU operation. 

b. SINGLE: Allows the first instruction in 
the DATA switch to be repeated continuously. 

c. MPLE (multiple): Allows looping through 
the four instruction halfwords in the DATA 
swiiches continuously. 

11. REPEAT ROS ADDRESS switch: Continually 
reads out the ROS address specified in 
ADDRESS switches 0-11. The ROS TRANSFER 
pushbutton must be depressed to start this 
loop. 

12. RATE switch. This switch has four positions: 

a. INSN STEP (instruction step): CPU executes 
one machine instruction for each depression 
of the START pushbutton. 

b. PROCESS: Does not affect CPU operation; 
CPU operates at normal clock speed. 

c. SINGLE CYCLE: CPU advances by its 
minimum clock amount for each depres­
sion of the START pushbutton; all CPU 
operations are as in PROC position. 

d. SINGLE CYCLE STORAGE INHIBIT: Same­
as SINGLE CYCLE position without storage 
references. 

13. SYSTEM RESET pushbutton: Resets on-line 
channels, control units, and CPU controls, 
including machine checks, to their initial state. 

14. CHECK RESET pushbutton. Resets all CPU 
and storage check triggers. 

15. PSW RESTART pushbutton. Loads a PSW from 
main storage address zero and stars processing. 

16. ROS TRANSFER pushbutton. Provides a means 
of visually interrogating the contents of an ROS 
location or of beginning processing from any 
ROS address. 

17. SET IC (instruction counter) pushbutton. Enters 
an address from the ADDRESS switches into the 
active (current) PSW. 

18. STORE pushbutton: Enters data into the storage 
location specified by the STORAGE SELECT 
and ADDRESS switches. 

19. DISPLAY pushbutton: Displays data specified by 
the STORAGE SELECT and ADDRESS switches. 

20. START pushbutton: Starts the CPU operating in 
the mode selected by the RATE switch. 

21. STOP pushbutton: Terminates CPU operation 
without changing environment. 

22. RESTART FLT I/O pushbutton: Backspaces one 
tape record and starts reading during FLT 
Test Mode operation. 

23. LOG OUT pushbutton: Stores CPU status in 
fixed locations in main storage. 

24. Elapsed-time meters and CE key switch: The 
elapsed-time meters indicate elapsed CPU run­
ning time: the process meter shows customer 
elapsed time; the CE meter shows customer 

. engineering elapsed time. The key switch 
determines the meter used. 

B.1. 7 PANEL G 

1. POWER ON pushbutton: Initiates power on in 
the CPU and the system units as defined in 
Chapter 5. 

2. POWER OFF pushbutton: Initiates power off 
in the CPU and the system units as defined in 
Chapter 5. 

3. LOAD UNIT switches: These three switches 
select the I/O unit used by a load operation. 

4. INTERRUPT pushbutton: Causes an external 
interruption in the system and sets bit 25 of 
the interruption code to a 1. 

5. LOAD pushbutton: Resets the system and 
starts a load'operation. 

6. SYSTEM indicator: Indicates a CPU elapsed­
time meter is running. 

7. MANUAL indicator: Indicates CPU is in the 
stopped state. 

11/65 2065 FEMI B-3 



8. WAIT indicator: Indicates CPU is in the wait 
state. 

9. TEST indicator: Indicates that a switch on 
panel F is not in the normal operating position 
or that a channel is in the test mode. 

10. LOAD indicator: Indicates a CPU load opera­
tion. A successful load turns indicator off. 

B.2 CE PANEL 

The CE panel is shown in Figure B-1. The panel 
indicators and controls are as follows: 

B-4 

1. THERMAL RESET pushbutton: Resets the 
thermal sense relays in the CPU. 

2. CPU READY switch. This switch has two 
positions: 

a. READY - normal position: Allows CPU 
power-up sequencing to continue if the 

thermal and overcurrent conditions are 
normal. 

b. OFF: Drops CPU power without affecting 
system power. 

3. CPU ON pushbutton: Starts CPU power-on 
sequencing if the CPU READY swifch is in 
the READY position. Does not affect system 
power. 

4. THERMAL TRIP indicators: These six indi­
cators show the location of the overtemperature 
condition that dropped CPU power. The tem­
perature sensors are located in gates A, B, 
C/D, and E, the converter/inverter, and the 
power supplies tub. 

5. UNDER VOLTAGE CHECK switches (located on 
the relay gate below the CE panel in the con­
verted units): These 15 switches isolate the 
power supplies from the undervoltage sensing 
circuits. See paragraph 5.3.8 for details. 

11/65 



Overvoltage 
potentiom­
eters 

Undervoltage 
isolation 
switches 

Relays 

11/65 

switches 

Overvoltage 
metering 
jacks 

Stepper 
switch 

Converted Units Original Units 

FIGURE B-l. CE PANEL 

2065 FEMI B-5 



APPENDIX C 

CE OPERATIONS 

C.l INTRODUCTION 

This appendix outlines the steps to operate the 
system for normal powering, processing, and 
testing. 

Normal processing operations described in this 
appendix are limited to the use of the switches and 
pushbuttons on the system control panel. 

Testing operations described in this appendix 
are limited to the Fault Locating Tests (FLT). 
These tests isolate to an average of four small 
cards on solid failures and to an average of 100 
logic blocks on intermittent failures, provided the 
frequency of the failure is equal to or less than the 
time it takes to run the applicable test. See Appen­
dix B and the 2065 Processing Unit, FEMM, Form 
226-2039, for details of the controls and indicators 
for program diagnostic aids. 

At least one of the following input units is re­
quired with the associated test formats: 

1. 2400 series tape unit and control unit 

2. 7340 Hypertape Drive and control unit 

3. 2311 Disk Storage Drive and control unit 

At least one of the following output units is 
required: 

1. 1052 Printer-Keyboard 

2. 1403 Printer and control unit 

3. 1443 Printer and control unit 

C.2 POWER OPERATIONS 

The procedures in paragraphs C. 2.1 and C. 2.2 
are required only after initial installation of the 
system and of the primary ac power or in the event 
of a change in the system configuration. 

C.2.1 ASSOCIATED STAND-ALONE UNITS 
INITIAL POWER 

The following steps are required at each unit in 
the system, except the CPU: 

1. Close all internal circuit breakers. 

2. Close associated wall primary power switch. 

3. Set LOCAL/REMOTE switch to REMOTE 
position. 

C. 2.2 CPU INITIAL POWER 

The following steps are required at the CPU: 

1. Close all internal circuit breakers. 

2. Close associated wall primary power switch. 

3. Set CPU READY switch (on CE panel) to 
READY pOSition. 

C. 2. 3 SYSTEM POWER ON 

After the procedures in paragraphs C. 2.1 and 
C. 2. 2 have been completed, the only step required 
to turn system power on is to depress the POWER 
ON pushbutton at either the system control panel 
or the 2150 Console. 

C.2.4 SYSTEM POWER OFF 

Depress the POWER OFF pushbutton at either 
the system control panel or the 2150 Console. 

C.3 NORMAL PROCESSING OPERATIONS 

Normal processing operations consist of the 
following procedures: 

1. System Resetting 

2. Check Logic Resetting 

3. New Program Entry 

4. Program Restart 

5. Instruction Address Change 

6. Data Entry or Modification 

11/65 2065 FEMI C-l 



7. Data Display 

8. External Interrupting 

9. Terminating Machine Operations 

C.3.1 SYSTEM RESETTING 

The initial condition of the system is the stopped 
state with all channel, control unit, and CPU con­
troIs, including machine check logic, in the normal 
state. This condition is automatically set during 
normal power-on sequencing and may be manually 
set by depressing the SYSTEM RESET pushbutton. 

C. 3.2 CHECK LOGIC RESETTING 

To restore the CPU error check logic to the 
normal or nonerror state, depress the CHECK 
RESET pushbutton. All CPU check indicators will 
clear, and processing will resume if it stopped 
because of a machine check; the results, however, 
may be inaccurate. 

C. 3. 3 NEW PROGRAM ENTRY 

To enter a new program, set the address of the 
input unit (e. g., tape or disk), in the LOAD UNIT 
rotary switches and depress the LOAD pushbutton. 
The left LOAD UNIT switch selects the channel 
(0 through 7), and the remaining two switches select 
the unit (00 through FF). The LOAD pushbutton 
causes a system reset and then loads the first 24 
bytes from the input unit into main storage locations 
o through 23. These first 24 bytes contain the infor:­
mation required to store the remainder of the pro­
gram. The CPU then starts to execute the program. 

C.3.4 PROGRAM RESTART 

To restart a program, depress the PSW RE­
START pushbutton. The CPU takes the PSW in 
main storage location 0 for the one to continue 
processing with. This PSW contains the address 
of the next instruction to be executed. If processing 
was stopped because of an interruption, the proc­
eSSing will resume where it left off. If processing 
was stopped because the STOP pushbutton was de­
pressed, the processing will return to the first 
instru~tion in the program, unless previous inter­
ruptions occurred. 

C-2 

C. 3. 5 INSTRUCTION ADDRESS CHANGE 

To change the address of the instruction to be 
called by the current PSW, set the new address in 
ADDRESS switches 0-23 and depress the SET IC 
pushbutton. To commence processing with the new 
instruction, depress the START pushbutton. 

C.3.6 DATA ENTRY OR MODIFICATION 

Data may be entered in a specific location of 
either main or local storage from the DATA switches. 
The STORAGE SELECT and ADDRESS switches 
determine the location. 

If the STORAGE SELECT switch is in the MAIN 
position, the contents of DATA switches 0-63 (plus 
automatically generated parity bits) will be entered 
in the main storage address selected by ADDRESS 
switches 0-20 when the STORE pushbutton is 
depressed. 

If the STORAGE SELECT switch is in the LOCAL 
position, the contents of DATA switches 32-63 
(Plus parity) will be entered in the local storage 
address selected by ADDRESS switches 19-23 when 
the STORE pushbutton is depressed. 

If the STORAGE SELECT switch iS,in the MAIN 
BYTE position, the contents of one byte group of the 
DA TA switches (plus parity), selected by ADDRESS 
switches 21, 22, and 23 (hexadecimal), will be 
entered in the main storage address selected by 
ADDRESS switches 0-20 when the STORE pushbutton 
is depressed. 

C. 3. 7 DATA DISPLAY 

The contents of a specific location in either main 
or local storage may be displayed by the register 
indicators. Set roller switches 1, 2, 3, and 4 to 
position 3 to view the contents of ST and AB. 

If the STORAGE SELECT switch is in the MAIN 
position, the contents of the main storage address 
selected by ADDRESS switches 0-20 are displayed 
in ST and AB when the DISPLAY pushbutton is 
depressed. 

If the STORAGE SELECT switch is in the LOCAL 
position, the contents of the local storage address 
selected by ADDRESS switches 19-23 are displayed 
in T when the DISPLAY pushbutton is depressed. 

If the STORAGE SELECT switch is in the MAIN 
BYTE pOSition, the display is the same as for the 
MAIN position of the switch. 

11/65 



C. 3. 8 EXTERNAL INTERRUPTING 

To stop the processing at a normal program in­
terruption recognition point, depress the INTER­
RUPT pushbutton. 

C. 3. 9 TERMINATING MACHINE OPERATIONS 

To stop all machine operations without destroying 
the machine environment, depress the STOP push­
button. 'The CPU will complete the instruction or I/o 
operation in process and enter the stopped state. 
Depressing the START pushbutton will cause the 
system to continue as if the STOP pushbutton had 
not been depressed. 

C.4 TESTING OPERA TIONS 

'The following tests locate hardware faults and 
are not of a program diagnostic nature. 'These 
tests should be run in the order shown unless the 
specific area of trouble is known. See the 2065 
Processing Unit, FEMM, Form 226-2039, for test 
details and trOUble-locating. 

1. Storage Ripple Tests 

2. ROS Repeat Tests 

3. ROS Hardcore Tests 

4. ROS Bit Tests 

5. FLT Hardcore Tests 

6. FLT Scan.:"In/Scan-Out Tests 

7. FLT One-Cycle Tests 

C.4.1 STORAGE RIPPLE TESTS 

'These tests first store data in all locations in 
main or local storage and then display the contents 
of all locations for checking. 

C.4.1.1 Storage Ripple Store 

1. Depress SYSTEM RESET pushbutton. 

2. Set STORAGE SELECT switch to either MAIN 
or LOCAL position. 

3. Enter desired data in DATA switches 0-63. 

4. Enter 800006 (hexadecimal) in ADDRESS 
switches 0-23. 

5. Depress ROS TRANSFER pushbutton. 

Note 

STOR CHK indicator should not 
come on. 

6. Wait several seconds, then depress SYSTEM 
RESE T pushbutton. 

Note 

STORAGE SELECT switch must 
be set to LOCAL pOSition before 
SYSTEM RESET pushbutton is 
depressed or storage errors 
may occur. 

'The data entered in the DATA switches will have 
been stored in all storage locations several times; 
the system reset halted the loop. 

C. 4.1. 2 Storage Ripple Display 

1. Depress SYSTEM RESET pushbutton. 

2. Set STORAGE SELECT switch to either MAIN 
or LOCAL pOSition. 

3. Enter 800000 (hexadecimal) in ADDRESS 
switches 0-23. 

4. Depress ROS TRANSFER pushbutton. 

Note 

STOR CHK and PROC CHK indica­
tors should not come on. 

5. Set roller switches 3 and 4 to position 3 to 
view main storage in AB. Set roller switch 
1 to pOSition 3 and roller switch 6 to pOSition 
1 to view local storage in S and PAL. 

6. If displayed data agrees with stored data, de­
press SYSTEM RESET pushbutton to halt dis­
play loop. 

Note 

STORAGE SELECT switch must be 
set to LOCAL position before SYS­
TEM RESET pushbutton is depressed, 
or storage errors may occur. 

11/65 2065 FEMI C-3 



C.4.2 ROS REPEAT TESTS 

1. Depress SYSTEM RESET pushbutton. 

2. Enter 000 (hexadecimal) in ADDRESS 
switches 0-11. 

3. Set REPEAT ROS ADDRESS switch. 

4. Depress ROS TRANSFER pushbutton. 

5. Set roller switches 1, 2, 3, and 4 to position 4. 

a. ROSAR should contain all O's. 

b. ROSDR should contain all O's. 

c. All ROS parity errors should be 1 (lit). 

6. Depress SYSTEM RESET pushbutton. 

7. Enter 801 (hexadecimal) in ADDRESS 
switches 0-11. 

8. Depress ROS TRANSFER pushbutton. 

9. View same registers as before. 

a. ROSAR should contain 801 801 801. 

b. ROSDR should contain all l' s. 

c. All ROS parity errors should be O. 

10. Depress SYSTEM RESET pushbutton. 

11. Restore REPEAT ROS ADDRESS switch to 
normal position. 

C.4.3 ROS HARD CORE TESTS 

1. Load test tape or disk pack in appropriate 
input unit. 

2. Set LOAD UNIT switches to address of input 
unit. 

3. Set DATA switches 32-63 to l's. 

4. Depress STORE pushbutton. 

5. Set TEST MODE ROS switch. 

6. Set CPU CHECK switch to DSBL (disable) 
position. 

C-4 

7. Depress LOAD pushbutton. Machine should 
stop immediately. 

8. Set roller switches 1 and 2 to position 3 and 
roller switch 5 to position 2: 

a. S should contain alII' s. 

b. T should contain all O's. 

c. MCW register as follows: 

(1) UNCT should be 1. 

(2) CONDT should be O. 

(3) ERSLT should be 1. 

(4) PASS should be 1. 

(5) BFR1 should be 1. 

9. Depress RESTART FLT I/o pushbutton. 
Machine should stop immediately. 

10. View roller switches for same conditions as 
in step 8. 

11. Depress LOAD pushbutton. Machine should 
stop immediately 

12. View roller switches for the following: 

a. S should contain all D's. 

b. T should contain FFFFOOOO. 

c. BFR1 should be 1. 

13. Depress RESTART FLT I/o pushbutton. 
Machine should complete remaining hardcore 
tests without stopping. 

C.4.4 ROS BIT TESTS 

These tests follow the hardcore tests and should 
be called in automatically. There are no stops 
until terminat,ion of these tests, about 40 seconds. 

1. Set roller switches as in step 8 of paragraph 
C.4.3. 

a. S should contain all l' s. 

b. T should contain all l' s. 

c. MCW(0-3) show the ROS plane under test. 

11/65 



2. To repeat a failing test after an error stop, 
set TEST MODE REPEAT switch and depress 
START pushbutton. To halt repeat loop, 
restore TEST MODE REPEAT switch. 

3. To continue to next test after an error stop, 
depress RESTART FLT I/O pushbutton. 

C. 4.5 FLT HARDCORE TESTS 

The procedures for these tests are identical with 
those of ROS Hardcore tes ts (paragraph C. 4. 3), 
except for step 12, b, where T should contain 
FEFE0101 (not FFFFOOOO). 

C.4.6 FLT SCAN-IN/SCAN-OUT TESTS 

These tests follow the hardcore tests and should 
be called in automatically. To repeat a failing 
test, perform steps 2 and 3 of paragraph C .4 .4. 

C.4.7 FLT ONE-CYCLE TESTS 

These tests follow the scan-in/scan-out tests and 
should be called in automatically. To repeat a 
failing test, perform steps 2 and 3 of paragraph 
C.4.4. 

11/65 2065 FEMI C-5 



11/65 

APPENDIX D 

SPECIAL CIRCUITS 

This appendix is reserved for special circuits. 

2065 FEMI D-l 



ABC 

ALD 

ASC 

ASCII-8 

BCD 

BCU 

BTU 

CAS 

CAW 

CB 

CC 

CCW 

cfm 

charistic 

CLD 

CPU 

CROS 

CSW 

DVD 

DVR 

DX 

DX + 1 

DX + 2 

11/65 

APPENDIX E 

ABBREVIA TrONS 

AB byte counter EBCDIC 

automated logic diagram 

address store compare 
EC 

American Standard Code for Informa-
end op 

tion Interchange, extended to 8 bits FEDM 

binary-coded decimal FEMI 

bus control unit FEMM 

British thermal unit FLT 

control automation system GIS 

channel address word HO 

circuit breaker HSS 

condi tion code IC 

channel command word I-Fetch 

cubic feet per minute ILC 

characteristic I/O 

CAS logic diagram IPL 

central processing unit kc 

capacitive read-only storage kva 

channel status word LAR 

dividend LCS 

divisor LO 

first byte in a series of destination LS . 

Bytes 
LSWR 

second byte in a series of destination 
mc 

bytes 

third byte in a series of destination MCW 

bytes MPD 

2065 FEMI 

Extentied Binary-Coded-Decimal Inter-

change Code 

engineering change 

end operation 

Field Engineering Diagram Manual 

Field Engineering Manual of Instruction 

Field Engineering Maintenance Manual 

fault locating test 

General Initialization Sequence 

high order 

high -speed storage 

instruction counter 

instruction-fetching 

instruction length code 

input/ output 

initial program load 

kilocycle 

kilovolt ampere 

local storage address register 

large-capacity storage 

low order 

local storage 

local storage working register 

megacycle 

maintenance control word 

multiplicand 

E-l 



MPR multiplier SAB serial adder B side 

ms millisecond SAL serial adder latch 

ns nanosecond SAR storage address register 

op code operation code 
SBA serial adder bus A 

PAA parallel adder A side 
SBB serial adder bus B 

PAB parallel adder B side 
SCR silicon-controlled rectifier 

PAL parallel adder latch 
SDBI storage data bus in 

pf picofarad 
SDBO storage data bus out 

PP partial product 
STAT status trigger 

PQ partial quotient 
STC ST byte counter 

PSW program status word 

RC resistive-capacitive 
T(DX) table byte specified by DX 

ROS read-only storage 
T(DX + 1) table byte specified by DX + 1 

ROSAR read-only storage address register ,.d microfarad 

ROSDR read-only storage data register jJ-s microsecond 

SAA serial adder A side VFL variable field length 

E-2 11/65 



I 
1111 
ZI 
-I 
.II 
ell 
ZI 
0 1 
.II 
(I 

I 
I-t 
:JI 
U 

FOLD 

COMMENT SHEET 

FROM 

OFFICE NO. DATE 

TYPE OF USING SYSTEM 

MANUAL TITLE FORM NO. 

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED FOLD 

o SUGGESTED ADDITION (PAGE , TIMING CHART, DRAWING, PROCEDURE, ETC.) 

o SUGGESTED DELETION (PAGE 

o ERROR (PAGE 

EXPLANA TION 

FOLD 

NO POSTAGE NECESSARY IF MAILED IN U. S. A. 
FOLD ON TWO LINES, STAPLE, AND MAI·L 



226-2037-0 

·OLD FOLD 

-~, - - -- -- - ---- -~------------- ... -----~--------

OLD 

BUSINESS, REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 

CPO BOX 120 

KINGSTON"y~. Y. 12401 
;\{:(:lJ;:~ 

ATTN: PRODUCT PUBLICATION MANUAL WRITING 

DEPARTMENT 526 

ru]5~ 
<l> 

International Business Machines Corporation 
F~~JltJn'ineering Division 
;nfi'.st Post Road, White Plains, N. Y. 11)601 

FIRST CLASS 
PERMIT NO. 116 

KINGSTON. N. Y. 

FOLD 


	0000
	0001
	0002
	001
	002
	003
	004
	005
	006
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144
	3-145
	3-146
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156
	3-157
	3-158
	3-159
	3-160
	3-161
	3-162
	3-163
	3-164
	3-165
	3-166
	3-167
	3-168
	3-169
	3-170
	3-171
	3-172
	3-173
	3-174
	3-175
	3-176
	3-177
	3-178
	3-179
	3-180
	3-181
	3-182
	3-183
	3-184
	3-185
	3-186
	3-187
	3-188
	3-189
	3-190
	3-191
	3-192
	3-193
	3-194
	3-195
	3-196
	3-197
	3-198
	3-199
	3-200
	3-201
	3-202
	3-203
	3-204
	3-205
	3-206
	3-207
	3-208
	3-209
	3-210
	3-211
	3-212
	3-213
	3-214
	3-215
	3-216
	3-217
	3-218
	3-219
	3-220
	3-221
	3-222
	3-223
	3-224
	3-225
	3-226
	3-227
	3-228
	3-229
	3-230
	3-231
	3-232
	3-233
	3-234
	3-235
	3-236
	3-238
	3-239
	3-241
	3-242
	3-243
	3-244
	3-245
	3-246
	3-247
	3-248
	3-249
	3-250
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	E-01
	E-02
	replyA
	replyB

