Field Engineering
Maintenance Manual

System/360 Model 50 2050 Processing Unit

$\square \square \square \square$ Field Engineering

Maintenance Manual

PREFACE

To obtain the most benefit from this manual, the reader should have a basic knowledge of System/360 concepts and general programming, and a working knowledge of the logical and physical operation of the 2050 Processing Unit. The manual includes diagnostic aids, maintenance features, and maintenance procedures along with reference material that will aid in troubleshooting and maintaining the System/360 Model 50 .

Other Field Engineering Manuals written for the System/360 Model 50 include:

Comprehensive Introduction, FETOM	SY22-2821
Functional Units, FETOM	SY22-2822
Capacitor Read-Only Storage, FETOM	SY22-2823
RR, RX Instructions, FETOM	SY22-2824
RS, SI, SS Instructions, FETOM	SY22-2825
Selectrr Channel, Common Channel, FETOM	SY22-2826
Multiplexor Channel, FETOM	SY22-2827
Main Storage, Local Storage, Storage	
\quad Protection, FETOM	SY22-2828
Power Distribution and Control, FETOM	SY22-2829
Features, FETOM	SY22-2830
2050 Frocessing Unit, FEMDM	SY22-2833
2O50 Processing Unit, FEIM	SY22-9501

Fifth Edition (March 1971)
This is a major revision of, and obsoletes, SY22-2832-3. Maintenance strategy diagrams have been revised, expanded, and placed in the 2050 FEMDM. All CPU timing information has been removed from this manual and placed in the ALD's, Volume 1, Page AA000. Other changes or additions to text and illustrations are indicated by a vertical line to the left of the change.

Changes are periodically made to the specifications herein; any such changes will be reported in subsequent revisions or FE Supplements.

This manual has been prepared by the IBM Systems Development Division, Product Publications, Dept. B96, PO Box 390, Poughkeepsie, N. Y. 12602. A form is provided at the back of this publication for reader's comments. If the form has been removed, comments may be sent to the above address.
DIAGNOSTIC TECHNIQUES 11
Maintenance Philosophy 11
Failure Detection 11
Deferred Maintenance 11
Troubleshooting Flowcharts 11
Power Faults 12
Loading Faults 12
Programming Faults and Error Stops 12
Other Maintenance Documentation 12
Error Check Analysis Diagrams. 12
Service Aids. 12
ALD Page Key 12
CAS Logic Diagram Page Key 13
Optional Feature Version Codes 13
Diagnostic Mode Codes 13
Selector Channel Error Handling 15
Interface Control Check 15
Channel Control Check--Channel Detected 15
Channel Control Check--CPU Detected 15
Program, Storage-Protect, and Chaining Check 15
Data Check 16
SIM Check 16
Incorrect Length Indication (ILI) 16
Error Priority. 17
MAINTENANCE FEATURES 18
CPU Control Modes 18
Sequence Counter Mode 18
Main Store Mode 20
ROS Mode 20
FUNCTIONAL UNITS 21
Sequence Counter 21
Sequence Stats 21
FLT Op Reg. 21
Scan/Log Decoder 21
ROS Kernels 21
Log Trigger 32
Supervisory Stat 32
Progressive Scan Stat 32
Supervisory Enable Storage Stat 32
Binary Trigger 32
Scan Test Counter 32
Pass/Fail Triggers 32
SUPERVISORY CONTROLS 35
Clock Gating Control Circuits 35
CPU Control Status Circuits 35
Changing CPU Control Status 35
Supervisory Interrupts. 35
LINKAGE CONTROL WORD. 40
DIAGNOSE INSTRUCTION 40
FAULT LOCATING TESTS (FLT's) 41
FLT Load 42
Load from Tape 42
Load from Disk 45
Unsuccessful Load 45
Completion of Successful Load. 45
Main Store Mode FLT's 45
MS Mode Hardcore Tests 46
FLT Load Checking Program 46
Test Methods (Mask and Expected Kesponse) 46
MS Mode ROS Bit Tests 47
ROS Mode FLT's 48
ROS Mode Hardcore Tests 48
ROS Mode Zero/One-Cycle Tests 51
Zero/One-Cycle Test Methods 51
FLT Operating/Repair Procedures 53
Main Storage Ripple Test 56
Skipping Bad FLT Records 57
Disk (FLT) Operating Procedures 57
Cycle Test Repair Procedures (Tape/Disk) 58
Checkout After Repair 61
FLT Documentation 61
PROGRESSIVE SCAN 63
Test Descriptions 63
Test Patterns 71
Selector Channel Tape or Disk 71
Selector Channel Clock Control 71
Selector Channel Operating Procedure Example 72
Selector Channel Test Documentation 72
Selector Scan Monitor 74
Multiplexor Channel Tape or Disk 74
Multiplexor Channel Operating Procedure 74
Multiplexor Channel Test Documentation 74
DIAGNOSTIC PROGRAMS 74
MIDAS Sense Switches 74
MIDAS Display Codes 74
MARGINAL CHECKING 75
Nominal Voltages 76
Marginal Voltage Limits 76
Marginal Checking Procedure 76
Error Checking 76
Identification 76
Failure Detection Facilities 76
PREVENTIVE MAINTENANCE 79
Lamp Test 79
Diagnostics 79
SERVICE CHECKS, ADJUSTMENT AND REMOVAL
PROCEDURES 80
CPU AND CHANNEL SERVICECHECKS 80
Waveform Measurements 80
2050 Clock 80
MAIN STORAGE (MS) SERVICE CHECKS 80
Storage Test 80
Main Storage Test Points 80
Main Storage Addressing 81
Main Storage Temperature and Humidity 81
Main Storage Power Information 81
Exercise Bump Storage 82
Continually Address One MS Location 82
Scan MS for Bad Parity 82
Bit Arrangement of MS Word 82
Check Strobe of Main Storage 82
Checking MS Drivers and Terminating Diodes 83
Delay Line Clock 83
Delay Line Driver 84
Layout of M9/M9A Planes 84
X Drive Current 84
Y Drive Current 85
Shorted X Drive Line 85
Open X Drive Line 85
Drive Line Shorted to Ground 86
Sense Inhibit 87
Storage Waveforms (Voltage Probe) 88
Sense Amplifier Output (M9) 88
M9A Differences 89
LOCAL STORAGE (LS) SERVICE CHECKS 90
Local Storage Timings 90
LS Read Operations 90
LS Write Operation 90
LS Functional Packaging 90
Local Storage Word Selection 92
LS Temperature Control Unit Check 92
Local Storage Waveforms 92
Optimize LS Drive Currents (Shmoo) 93
LS Strobe Driver Identification. 95
ROS 201--Cycle One Sector of Local Storage 95
Array Temperature 95
Local Storage Heater 95
Checking Drivers and Terminating Diodes 95
READ ONL.Y STORAGE (ROS) SERVICE CHECKS 95
Ros Retry Adjustment. 95
ROS Waveforms 96
ROS Parity Errors 96
ROS FOO-FO3--ROSDR Test All Ones 97
ROS F01-FO2--ROSDR Test All Zeros 97
ROS Address 000 97
Extra or Missing Bits 97
Sense Latch and Strobe 98
ROS Ripple Test 98
ROS BIT PLANE REMOVALS AND ADJUSTMENTS 100
ROS Bit Plane Adjustments 100
ROS Bit Plane Removal 100
ROS Bit Plane Cleaning 100
ROS Bit Plane Installation 101
Connector Installation 102
STORAGE PROTECT (SP) SERVICE CHECKS 102
Reference Voltage and Sense Level Adjustments 102
Checking SP Drivers and Terminating Diodes 102
Inhibit Drivers and Sense Amplifiers 102
SP Sense Windings 102
Termination Diodes 103
X and Y Drivers 103
Storage Protect Test Points 103
CHANNEL SERVICE CHECKS 103
Selector Channel 103
C Reg Set and IF Service Out Delays 103
Channel Reset 103
A-Clock Check. 107
Cycle Counter Check. 107
B-Clock Check 107
Tag Generator and Manual Stop Controls 107
Indicator Check 108
A-Clock Manual Controls 108
Operation Control Check 109
DTC Hold Check 109
Singleshot Adjustment 109
Selector Channel Clock-Stepping Procedure 109
1052 Adapter/Printer-Keyboard 112
Singleshot Adjustment 112
Switch and Indicator Check 112
EMULATOR SERVICE AIDS 114
410/7010 Emulator Delays 114
1410/7010 Disk Conversion 114
2302 Disk Storage Map 114
2302 Track Correspondence 114
2314 Disk Storage Map 114
2314 Track Correspondence 114
1410/7010 Diagnose Instruction Addresses 115
Start I/O Diagnose Instruction 115
7070/7074 Operation Codes 115
POWER SYSTEM SERVICE CHECKS 120
Converter-Inverter 120
121Gate Signal
Types of Failures 123
Fuse Replacement 23
Converter-Inverter Troubleshooting 123
Voltage Regulator Test Points 123
hanging Voltage Regulators 123
Voltage Sequence Problems 124
Plus 18 Volt Sequence Down 124
Problems 125
Voltage Regulator Problems 125Low Voltage AC Supplies
Power Sequencing Relays 126
Dual or Multi System Emergency Power Off 126
LOCATIONS. 127
Power Distribution Frame Locations 127
Frame and Gate Locations 127

Circuit Breaker Locations 127
Fuse Locations 127
Voltage Regulator Locations
7
Overvoltage Assembly Locations 127
Tailgate Locations 127
1/O Address Cards 127
APPENDIX A - SYSTEM CHARACTERISTICS 138
Physical Data 138
rame Specifications 139
Pabling I
APPENDIX B - SYSTEM CONTROL PANEL 140
Controls and Indicators 140
Section A - Power Display 140
Section B - Storage Test 142
Section C - Emergency Off 142
Section D 142
Section F - Channel Control 142
Sections G and K - Status Indicators 143
Selector Channel Roller Analysis 144
Section H - Blank 149
Section J - Local Store Chart 149
Section L - MC, SDR, IAR Indicators; Data and Address Keys 150
Section M - Intervention and Maintenance Switches 150
Section N - Operator Controls 154
Operating Instructions 155
System Initialization 155
Initial Program Load 155
Display and Store Operations 155
Initial Program Load 158
Miscellaneous Operations 156
Theory of Operation 157
Power On, Power Off 157
System Reset 157
Start, Stop 159
Halt Loop Operations 159
INDEX 189
Figure Title Page
DIAGNOSTIC TECHNIQUES
1 Status of Indicators after System Reset 11
2 ECAD Block Key 12
3 ALD Page Key 13
4 CAS Logic Diagram Page Key 14
MAINTENANCE FEATURES
5 Controls, Latches, Etc., Used in18
6 Basic Operations and CPU Control Modes 19
7 CPU Control Modes for Maintenance Operations 19
8 MS Mode Instructions and Data Paths 20
9 Sequence Counter Logic Chart 21
10 FLT Op Reg Instructions 22
11 Scan/Log Decoder 22
12 Scan-Out/Logout: Locations and Data (4 Parts) 23
13 Scan-Ort/Logout: Logic and Indicators 27
14 ROS Kernels (Maintenance Routines) 28
15 ROS Kemels Flowchart: Diagnose/FLT/ 29
16 Hardware Addresses No. 1 and 2 31
17 Storage Locations and Bits for L Register Logout 31
18 Logout Under Sequence Counter and Main Store Mode (2 Parts) 33
19 Supervisory Controls (2 Parts) 37
20 Clock Distribution. 39
21 Changing CPU Control Status 39
22 Diagnose Usage (Scope Bump Word) 41
23 FLT Tapes: Model 50. 41
24 FLT Disk Packs: Model 50 41
FLT Load via Tape 43
26 FlT Load via Disk 44
27 Mask and Expected Response Examples 47
28 MS Mode ROS Bit Test 48
29 Hardcore Test Sample: ROS Mode (2 Parts) 49
30 FLT Load to Cycle Tests 51
31 FlT Cycle Tests: Word Format 52
32 FIT Zero/One-Cycle Tests 53
33 FlT Compare and Branch Kernel 54
34 FLT Run and Repair Procedure. 55
35 Cycle Test Repair Procedure 56
FLT Scan-In, Parity Generation, and Scan-Out 60
37 Zero-Cycle Test Documentation 61
One-Cycle Test Documentation (Scopex) 62
39 One-Cycle Test Scope Timings 62
40 Sensitive Net Examples 62
41 Interface Register and Functions 64
42 Multiplexor Channel Progressive Scan Run and Repair Procedure 65
43 Selector Channel Progressive Scan Run and
Repair Procedures (3 Parts) 66
44. Test Series 110.1 Test 01 (Diagnose Section--Start I/O Write Series) 69
45 Typical Test Series (Series 110) 69
46 Scan Test Timing Procedure 69
47 Start I/O Write Timing 70
48 Selector Channel A Clock: Signal Sequences 72
49 Progressive Scan Printout (Sel Ch). 73
Figure Title Page
50 Model 50 Diagnostics 75
PREVENTIVE MAINTENANCE
51 Model 50 Preventive Maintenance Schedule 79
SERVICE CHECKS, ADJUSTMENT AND REMOVAL PROCEDURES
Service Checks--CPU and Channel
52 Waveform Measurements 80
53 Main Storage Test Points 81
54 Main and Bump Storage Addressing 82
55 Main Storage Strobe 83
56 Card Extender Jumper Wire 83
57 Delay Line Clock 83
58 Input to Delay Line Driver 84
59 M9/M9A Drive System 84
60 Physical Layout of M9/M9A Planes 85
61 X Drive Current 85
62 Y Drive Current 85
63 Shorted X Drive Line 85
64 Open X Drive Line 86
65 Possible Shorted Drive Line 86
66 Possible Open Drive Line 86
67 Drive Line Shorted to Ground 86
68 Current Turned Off by Terminator Gate 87
69 Blue-White Sense Lines, Sense-Inhibit 87
70 Inhibit Pulse 87
71 Inhibit Pulse with Open Leg 87
72 Inhibit Pulse with Grounded Sense-Inhibit Line or Shorted Inhibit Driver 88
73 Output of Good Sense Amplifier (M9 Only) 88
74 Main Storage Select--Waveform 88
75 Main Storage Terminator--Waveforms 88
76 Main Storage Gate and Driver Patterns--Waveform 89
77 Main Storage Driver Failures--W Waveforms 89
78 Strobe for Each Segment and Bit 89
79 M9A Strobe and Sense Circuits 90
80 M9A Preamplifier Outputs--Waveforms 91
Local Storage Address Bit Functions 92
82 Extender Card Wiring: LS Temperature Check 93
83 LS Write Driver 94
84 LS Bit Driver 94
85 LS Gate Driver 94
86 LS Sense Amplifier 94
87 LS Read Driver 94
88 Module Side of 5801515 Card 95
89 ROS Waveforms 97
90 ROS Drive Line Tests 98
91 ROS Select Line Tests 99
ROS Strobe and Sense Latch Test Points 99
93 ROS Sense Amplifier and Latch Card Locations 99
94 Setscrew Torque Sequence (ROS Bit Planes) 100
95 SP Reference Voltage Tracking 102
96 SP Inhibit Driver and Sense Amp Locations 102
97 SP Sense Winding Test Points 103
98 Storage Protect Driver Locations 103
99 Selector Channel Maintenance Approach 105
100 Reset Pulses (Clock Not Running) 107
Figure Title Page
101 Reset Pulses (Clock Running) 107
102 A Clock 107
103 Cycle Counter 108
104 B Clock 108
105 Tag Generator 108
106 Singleshot Timing Procedure 109
107 Selector Channel Clock-Stepping Block Diagram 110
1081052 Singleshot Timing Procedure 112
1091052 Read Sequence 113
110 1410/7010 Emulator Delays 115
111 Emulated 7070/74 Operation Codes (4 Parts) 116
112 Power On Sequence 120
113 Power/DC Off Sequence 121
114 Converter-Inverter Testpoints and Waveforms 121
115 Converter-Inverter (Cover Off) 122
116 Converter-Inverter Test Points 123
117 Voltage Regulator Test Points 124
118 Overvoltage Adjustment 125
LOCATIONS
119 PDU CB and Switch Layout 127
120 Model 50 Frame and Gate Locations 128
121 Power Distribution Frames (2 Parts) 129
122 Relay and Contactor Location Chart 131
123 Circuit Breaker Location Chart 132
124 Fuse Location Chart 132
125 Voltage Regulator Location Chart 133
126 Voltage Divider Assembly 134
127 Overvoltage Assembly 134
128 I/O Gate Terminators 135
129 I/O Interface Connections 136
1301442 Address Card Locations and Plugging 136
1311443 Address Card Locations and Plugging 136
1322821 Address Card Locations and Plugging 137
133 TAU (2400) Address Cards Locations and Plugging 137
APPENDIX A - SYSTEM CHARACTERISTICS
134 IBM 2050 Processing Unit 138
135 IBM 2050 Frame and Gate Layout 138
Figure Title Page
APPENDIX B - SYSTEM OPERATION
136 System Control Panel. 141
137 Common Channel Roller - Position 1 162
138 Common Channel Roller - Position 2 162
139 Common Channel Roller - Position 3. 163
140 Multiplex Channel Roller - Position 4 163
141 Multiplex Channel Roller - Position 5 164
142 Multiplex Channel Roller - Position 6 164
143 Multiplex Channel Roller - Position 7 165
144 Multiplex Channel Roller - Position 8 165
145 Selector Channel Roller - Position 1 165
146 Selector Channel Roller - Position 2 166
147 Selector Channel Roller - Position 3 167
148 Selector Channel Roller - Position 4. 168
149 Selector Channel Roller - Position 5 169
150 Selector Channel Roller - Position 6. 170
151 Selector Channel Roller - Position 7. 170
152 Selector Channel Roller - Position 8. 171
153 CPU 1 Roller - Position 1 171
154 CPU 1 Roller - Position 2 172
155 CPU 1 Roller - Position 3 173
156 CPU 1 Roller - Position 4 174
157 CPU 1 Roller - Position 5 175
158 CPU 1 Roller - Position 6 176
159 CPU 1 Roller - Position 7 177
160 CPU 1 Roller - Position 8 177
161 CPU 2 Roller - Position 1 178
162 CPU 2 Roller - Position 2 178
163 CPU 2 Roller - Position 3 179
164 CPU 2 Roller - Position 4 180
165 CPU 2 Roller - Position 5 181
166 CPU 2 Roller - Position 6 181
167 CPU 2 Roller - Position 7 182
168 CPU 2 Roller - Position 8 182
169 Maintenance Control Indicators 183
170 SDR Indicators. 184
171 IAR Indicators 184
172 ROS Function Check 184
173 System Reset 185
174 Initial Program Load 186
175 Start, Stop, Exception Logic 187
176 Control Panel Stat Setting 188

ABBREVIATIONS

Adr	Address	MC	Maintenance Console
ALCH	Adder Latches to Channel	Mpx	Multiplexor
ALD	Automated Logic Diagram	MS	Main Storage
$\begin{aligned} & \text { Blk } \\ & \text { BT } \end{aligned}$	Block	Op	Operation
	Binary Tgr		
		P	Parity
CC	Command Chain	PB	Pushbutton
CFC	Control Field Chart	PCI	Program Controlled Interrupt
Ch	Channel	P/F	Pass/Fail
CHAL	Channel to Adder Latches	PL	Program Load
Chk	Check	Pri	Priority
CLF	Condensed Logic Flowchart	PSS	Progressive Scan Stat
Clk	Clock	PSW	Program Status Word
Cnt	Count		
Com	Common	Rd	Read
Ctr	Counter	Reg	Register
Ctrl	Control	Req	Request
Cyl	Cylinder	ROAR	Read Only Storage Address Register
		ROS	Read Only Storage
DTC	Data Transfer and Control	ROSDR	Read Only Storage Data Register
		Rst	Reset
ECAD	Error Check Analysis Diagram	Rtne	Routine
		R/W	Read/Write.
FLT	Fault Lorating Test		
		S	Stat
G/F	Good/Fail	SAR	Storage Address Register
GP	General Purpose (Stats 0-7)	SCR	Silicon-Controlled Rectifier
Gr	Group	SDR	Storage Data Register
Gt	Gate	Seg	Segment
		Sel	Selector
HA	Hardware Address	Seq	Sequence
Hdw	Hardware	SESS	Supervisory Enable Storage Stat
		SILI	Suppress Incorrect Length Indication
IAR	Instruction Address Register	SIM	Simulated Check
IF	Interface Register	SP	Storage Protect
IIC	Inhibit LAR Count	SS	Supervisory Stat
ILI	Incorrect Length Indication	Sto	Storage
Inh	Inhibit	Sw	Switch
Insn	Instruction		
I/O	Input/Output	TD	Time Delay
IPL	Initial Program Load	Term	Termination
Irpt	Interrupt	Tgr	Trigger
		TIM	Timing Chart
LCS	Large Capacity Storage	UA	Unit Address
LCW	Linkage Control Word	UCW	Unit Control Word
Loc	Location		
LS	Local Storage	Wr	Write

Safety cannot be overemphasized. To insure personal safety and the safety of co-workers, each CE should make it an everyday practice to observe safety precautions at all times. All CE's should be familiar with the general safety practices and procedures for performing artificial respiration that are outlined in CE Safety Procedures, S229-1264. For convenience, this form is duplicated below. Always use a reliable voltmeter to verify that power is actually off after using power off switches. Although all power supplies are provided with bleeder
resistors to drain off capacitor charges when power is dropped, it is wise to check all capacitors with a meter before attempting maintenance. A defective bleeder resistor could create an unexpected hazard.

CAUTION

Before changing SLT cards in main storage, storage protect, and local storage, drop power to the unit. Dropping power is the only sure way to prevent card damage from voltage surges during card replacement.

CE SAFETY PRACTICES

All Customer Engineers are expected to take every safety precaution possible and observe the following safety practices while maintaining IBM equipment:

1. You should not work alone under hazardous conditions or around equipment with dangerous voltage. Always advise your manager if you MUST work alone.
2. Remove all power $A C$ and $D C$ when removing or assem. bling major components, working in immediate area of power supplies, performing mechanical inspection of power supplies and installing changes in machine circuitry.
3. Wall box power switch when turned off should be locked or tagged in off position. "Do not Operate" tags, form 229-1266, affixed when applicable. Pull power supply cord whenever possible.
4. When it is absolutely necessary to work on equipment hav. ing exposed operating mechanical parts or exposed live electrical circuitry anywhere in the machine, the following precautions must be followed:
a. Another person familiar with power off controls must be in immediate vicinity.
b. Rings, wrist watches, chains, bracelets, metal cuff links. shall not be worn.
c. Only insulated pliers and screwdrivers shall be used.
d. Keep one hand in pocket.
e. When using test instruments be certain controls are set correctly and proper capacity, insulated probes are used.
f. Avoid contacting ground potential (metal floor strips, machine frames, etc. - use suitable rubber mats pur. chased locally if necessary).
5. Safety Glasses must be worn when:
a. Using a hammer to drive pins, riveting, staking, etc.
b. Power hand drilling, reaming, grinding, etc.
c. Using spring hooks, attaching springs.
d. Soldering, wire cutting, removing steel bands.
e. Parts cleaning, using solvents, sprays, cleaners, chemicals, etc.
f. All other conditions that may be hazardous to your eyes. REMEMBER, THEY ARE YOUR EYES.
6. Special safety instructions such as handling Cathode Ray Tubes and extreme high voltages, must be followed as outlined in CEM's and Safety Section of the Maintenance Manuals.
7. Do not use solvents, chemicals, greases or oils that have not been approved by IBM.
8. Avoid using tools or test equipment that have not been approved by IBM.
9. Replace worn or broken tools and test equipment.
10. Lift by standing or pushing up with stronger leg museles this takes strain off back muscles. Do not lift any equip. ment or parts weighing over 60 pounds.
11. All safety devices such as guards, shields, signs, ground wires, etc. shall be restored after maintenance.

KNOWING SAFETY RULES IS NOT ENOUGH
AN UNSAFE ACT WILL INEVITABLY LEAD TO AN ACCIDENT USE GOOD JUDGMENT - ELIMINATE UNSAFE ACTS S229.1264-1
12. Each Customer Engineer is responsible to be certain that no action on his part renders product unsafe or exposes hazards to customer personnel.
13. Place removed machine covers in a safe out-of-the-way place where no one can trip over them.
14. All machine covers must be in place before machine is returned to customer.
15. Always place CE tool kit away from walk areas where no one can trip over it (i.e., under desk or table).
16. Avoid touching mechanical moving parts (i.e., when lubricating, checking for play, etc.).
17. When using stroboscope - do not touch ANYTHING - it may be moving.
18. Avoid wearing loose clothing that may be caught in machinery. Shirt sleeves must be left buttoned or rolled above the elbow.
19. Ties must be tucked in shirt or have a tie clasp (preferably nonconductive) approximately 3 inches from end. Tie chains are not recommended.
20. Before starting equipment, make certain fellow CE's and customer personnel are not in a hazardous position.
21. Maintain good housekeeping in area of machines while performing and after completing maintenance.

Artificial Respiration

general considerations

1. Start Immediately, Seconds Count Do not move victim unless absolutely necessary to remove from danger. Do not wait or look for help or stop to loosen clathing. warm the victim or apply stimu. lants.
2. Check Mouth for Obstructions

Remove foreign objects - Pull tongue forward.
3. Loosen Clothing - Keep Warm Take care of these items after vic. tim is breathing by himself or when help is available.
4. Remain in Position

After victim revives, be ready to resume respiration if necessary.
5. Call a Doctor

Have someone summon medical aid.
6. Don't Give Up

Continue without interruption until victim is breathing without help or is certainly dead.
Reprint Courtesy Mine Safety Appliances

Rescue Breathing for Adults Vietim on His Back Immediately

1. Clear throat of water, food, or foreign matter.
2. Tilt head back to open air passage.
3. Lift jaw up to keep tongue out of air passage.
4. Pinch nostrils to prevent air leak. age when you blow.
5. Blow until you see chest rise.
6. Remove your lips and allow lungs to empty.
7. Listen for snoring and gurglings, signs of throat obstruction.
8. Repeat mouth to mouth breathings 10.20 times a minute.

Continue rescue breathing until he breathes for himself.

Thumb and finger positions

MAINTENANCE PHILOSOPHY

The system provides facilities that assist the CE in:
Failure Detection
Fault Location
Deferred Maintenance
Rapid Repair

Failure Detection

Error detection is accomplished by hardware parity checking, fault locating tests (FLT's), and functional diagnostic programs. Not all failures can be detected however.

Failure Detection By Hardware

The central processing unit (CPU) is parity checked. All data transfers between registers and main storage are checked by byte. Good parity is always written into main storage by design (except FLT's).

Parity checking is also used on the read-only storage (ROS) at the output.

Any multiplexor and selector channel circuitry not used by the CPU has its own parity checking circuitry.

Each error check is individually indicated on the CE-operator's console. To provide a high diagnostic resolution, the individual checks are OR'ed in groups by timing and function and are also indicated on the console.

Fault Locating Tests (FLT's)

FLT's are semi-automatic diagnostic procedures used in the Model 50 CPU . The procedure involves a battery of diagnostic tests, each performed by forcing the CPU to a predetermined state (scan-in), running the CPU for a specified number of machine cycles (clock advance), logging the resulting state into storage (scan-out), and then comparing the resulting state of the selected machine area under test (compare) with a pre-computed result.

Functional Diagnostics
The functional diagnostic programs are the highest level of testing a system. They are system programs that check for correct system operation. Functional diagnostics have been written for all areas of the Model 50.

Deferred Maintenance

The logout facility allows maintenance activity to be deferred. Certain intermittent failures will be such that long time periods elapse between interruptions. Troubleshooting this type of fault is time-consuming. The failure environment is difficult to reproduce. The customer will often prefer to continue system operation and postpone maintenance activity under these circumstances. The logout feature allows the customer to continue system operation while providing the CE with information on the system state at the time of the error.

TROUBLESHOOTING FLOWCHART

Flowcharts for troubleshooting the 2050 Processing Unit are now in the Maintenance Diagrams Manual for the 2050 .

Figure 1 shows the status of indicators after system reset.

Roller	Indicators	
Common Chan	2	SBCR unpredictable
Common Chan	3	BUFFER 1 and BUFFER 3 reset BUFFER 2 set to previous contents of BUFFER 1
Mpx Chan	4	BUFFER 1 and BUFFER 2 unpredictable
Mpx Chan	5	BUS OUT unpredictable
Mpx Chan	6	POLL on, MPX I/O STATS unpredictable
Selector Chan	1	B-REGISTER P-bits on
Selector Chan	2	C-REGISTER P-bits on
Selector Chan	3	BYTE COUNTER P-bits on
Selector Chan	4	CYCLE COUNTER stepping
Selector Chan	5	POS REG TRF, SP-D2, and INSN SCAN on; A-CLOCK stepping
Selector Chan	6	FIN on
CPU 1	1	L-REGISTER = PSW Backup
CPU 1	2	R-REGISTER P-bits on
CPU 1	3	M-REGISTER P-bits on
CPU I	4	H-REGISTER P-bits on
CPU 1	5	SAR bit 17 on, BYTE STATS unchanged, BYTE STORE STATS set to 1
CPU 1	6	ROSDR $=$ Halt Loop
CPU 2	1	ROSDR $=$ Halt Loop
CPU 2	2	ROSDR = Halt Loop, MOVER FUNCTION unpredi ctable
CPU 2	3	ONE SYL OP on, REFETCH unpredictable. NEXT ROS ADDRESS = Halt Loop, ILC unpredictable
C.PU 2	4	I/O REGISTER P-bit, L BYTE CNTR, and M BYTE CNTR on; F-REG, EDIT STATS, and CARRY unchanged
CPU 2	5	$\text { LSAR }=\operatorname{Hex} 17, \operatorname{LSFN}=1, J-R E G=7, M D=3,$ G1 and G2 have S- and P-bits on
CPU 2	7	CURRENT ROS ADDRESS $=$ Halt Loop
CPU 2	8	PREVIOUS ROS ADDRESS $=$ Halt Loop

Most other indicators are off, but for definite status refer to machine logic.

FIGURE 1. STATUS OF INDICATORS AFTER SYSTEM RESET

Power Faults

See the section, Power System Service Checks, in this manual.

Loading Faults

See the section on FLTs in this manual. Remember that none of the central processing unit and verylittle of the channel circuitry is used to load FLTs.

Programming Faults and Error Stops

Programming faults and error stop approaches to troubleshooting are shown. Note that:

1. The machine status is logged out before beginning a troubleshooting sequence.
2. FLT's are run before functional tests.

OTHER MAINTENANCE DOCUMENTATION

Error Check Analysis Diagrams

Error check analysis diagrams (ECAD's) are com-puter-drawn, engineering controlled, schematic representations of the error register and the circuitry behind each possible error indication.

ECAD's are in Volume 1 Reference of Systems Diagrams. To use ECAD's, turn to page UCA101 and find your particular error in the error register block diagram. The numbers to the left of the error register lead you to an ECAD specifically tailored for that error. Further to the left is the ALD page number of the parity checker for that error.

Each ECAD contains a block diagram simplified to show the basic logic of the error checking circuit and a list of ROS functions that pertain to the circuit. In addition, basic timings, scope points, pertinent notes, and the complete logic for at least one bit position of the error circuit are shown wherever necessary.

Figure 2 shows how to read an ECAD block.

SERVICE AIDS

This section is for Customer Engineering Memorandums (CEM's) and other aids helpful in servicing the Model 50. CEM's are generated and distributed by Field Engineering Technical Operations as the need for them arises.

ALD Page Key

Figure 3 is a key to the Model 50 ALD pages showing the basic content of each section of the ALD's.

1. ROS Functions: Specifies the gating into the register. Enough of the control field specifications are reproduced to permit interpretation of the function. In this example, AL6 would be shown as IAR $\mathrm{H}(8-31)$, and $T R 20$ would be shown as Latch $\mathrm{H}(0-31)$. Thus the two sources of input to the H register are the latch and IAR. By examining the ROS word in control during the error cycle, the source of the data in the H register can be pinpointed.
2. Name of Register: Self explanatory .
3. ALD Pages: Self explanatory.
4. Scoping Point: Refers to an entry in a testpoint table, from which scoping information can be obtained.
5. Logout Location: Refers to the storage word(s) into which the register is logged on an error log out. This is a decimal word address.
6. Indication: Specifies where in the switchable indicators the register is displayed.

FIGURE 2. ECAD BLOCK KEY

AM---	Half Adder	KE---	1/O Adder Lth Tests
AN---	Adder Carry and Mover Parity	KH---	Scan
AP---	Adder Parity	KK---	ROS Address Controls
AQ---	Sum Checking and Correction	KL---	LSAR Controls
AV---	Right Mover Position and Carry	KP---	Mover Controls
AW---	Generation	KQ---	Mover Functions
BA---	SDR	KS---	Stat Setting Controls
BB---	A Lth to Chan	KT---	Scan
BC---	Chan to A Lth	KU---	1/O Computer Mode
BH---	Scan Out	LS---	Local Store
BU---	Outgates to Left Mover	MA---	M-9 32K BOM
BV---	Outgates to Right Mover	MB---	M-9 32K BOM
BW---	Mpx to Mover, Mover to Chan	MC---	Main Storage Tailgate Logic
BX---	Outgates to Left Adder	PA---	Console Controls
BY---	Outgates to Right Adder	PS---	Console Controls
CA---	Instruction Register	PG---	1052 Adapter
CD---	M/D, Byte Counter	QA---	CAS I
CG---	Length Counter	QK---	CAS II
CL---	L Byte Counter	QT---	CAS III
CM---	M Byte Counter	RA---	SAR
DR---	ROSDR	RE---	Exponent Reg
DS---	Mover Counter Controls	RF---	F Reg
ED---	C-13	RH---	HReg
EE---	C-13	RJ---	J Reg
EF---	Multiplexor Chan	RK---	ROSDR Bits
FA---	Multiplexor Chan	RL---	L Reg
GA---	Extemal Chan Controls	RM---	M Reg
GG---	Extemal Chan Controls	RP---	Protect Register
GH---	Extemal Data Flow	RR---	R Reg
GQ---	Interface Controls	RZ---	Direct Data Out
GV---	Interface Controls	XA---	Hi Speed Adaptor,
JC---	Direct Data		Shared Storage,
JV---	Direct Data		LCS
KC---	Clocking	XX---	Chan to Chan
KE---	Common Channel	ZH---	Maint Aids

FIGURE 3. ALD PAGE KEY

CAS Logic Diagram Page Key

Figure 4 is a key to the Model 50 CAS logic diagram pages.

Optional Feature Version Codes

The following version codes are used for optional features on the Model 50 :

Version	B/M	Description
003	5366797	LCS (2361 Attachment)
004	5378078	Extended ROS
005	5364640	1410/7010 Emulator
006	5364641	7070/7074 Emulator
007	5363895	S12K Storage (Mod I)
008	5365430	FLT Disk Load
050	5378451	High-resolution Timer (60 hz)
051	5378076	Fetch Protect
052	5378472	Monitor IF
053	5378528	Mpx Ch IF Extension
054	5378617	High-resolution Timer ($\mathbf{3 0 0} \mathrm{h}$ (${ }_{\text {d }}$
101	5365230	50 hz Power Supply
102	5363828	Direct Control

Version	B/M	Description
105		CAS for Version 005
106		CAS for Version 006
110		CAS for Version 004
A03	5378000	Versions 007 and 050 combined
A04	5378527	Versions 003 and 004 combined
A05	5378667	Versions 050 and 051 combined
A06	5378455	Versions 003, 004, 050, and 052
C05		CAS for Version A05

Diagnostic Mode Codes

The following are diagnostic mode codes on machine histories:

Code Number Item

9-track tape
7-track tape
Cards
1, 600 bpi
Disc
Paper tape
Phase encoding
Scopex listing (bond paper)
Scopex listing (microfiche)

Figure 4. Cas logic diagram page key

SELECTOR CHANNEL ERROR HANDLING

Interface Control Check

The following conditions can cause an interface control check:

1. Parity check on 'bus in' during 'address-in' or 'status-in' tag.
2. Address compare not equal during unit selection.
3. 'Operational in' falling while 'select out' is still active.
4. 'Select in' received by the channel in response to 'address out' during a command chain unit selection or a hardware test I/O selection on a device-end interrupt.
5. More than one in tag active while 'operational in' is active.
6. In response to 'address out', during initial selection on a start I/O or test I/O instruction, if the channel has not received 'operational in', 'select in', or 'status in', and the CPU countdown loop has timed out. The time-out indicator in the common channel will turn off before the system is stopped or logged.
7. In response to the halt disconnect sequence during a halt I / O instruction, if 'operational in' has not fallen and the CPU countdown loop has timed out. The time-out indicator in the common channel will turn off before the system is stopped or logged.

Mode Switch Settings

Stop Mode: Results in a master check and a log request (CPU roller 2, position 6).

Channel Stop Mode: Results in a master check and a \log request (CPU roller 2 , position 6). All chan-nel-out tag responses to an in tag from a control unit are delayed to allow time to stop the channel response on the interface. This prevents the in tag from dropping, thereby freezing the error condition on the interface to facilitate error analysis.

Process Mode: Results in a logout of only the selector channel in error (when the channel is not masked) and in an I/O interrupt. If the error occurred during an initial selection, logout takes place and a channel status word (CSW) is stored.

Disable Mode: Results in a selective reset of the interface and I/O interrupt when the channel is not masked.

Channel Control Check--Channel Detected

The following conditions can cause a channel-detected channel control check:

1. Interface parity check on data going to bus out lines during address out and command out.
2. Byte counter parity check.
3. Log word 4 error.
4. Zero test portion of log word 5 test in the end update routine.

Mode Switch Settings

Results are the same as for interface control check mode switch settings.

Channel Control Check--CPU Detected

The following conditions can cause a CPU-detected channel control check:

1. Time-out check.
2. First-cycle check.
3. ROS parity check.
4. Full-sum check.
5. Mover output or input check.
6. Half-sum check.
7. Storage-protect parity check
8. Parity test portion of the log word 5 test in the end update routine.

Mode Switch Settings

Stop or Channel Stop Mode: Results in a log request, the CPU error displayed on the check register, and a master check. The channel control check is set and displayed in the channel, and the channel indicators remain unchanged.

Process Mode: Results in a logout of the CPU and the channel in error when PSW bit 13 is on. This is followed by a machine check interrupt.

Disable Mode: Results in the error being set into the check register, but the channel control check is not sent to the channel.

Program, Storage-Protect, and Chaining Check
The following conditions will cause a program check:

1. Invalid command in the channel command word (CCW) (positions 4-7 are zero).
2. Invalid flags in the CCW (positions 5-7 of the flag byte are not zero.
3. Count specified in the CCW is zero.
4. Data address specified by the CCW exceeds the storage size.
5. Command address specified by the CCW exceeds the storage size.
6. CCW sequence in which the first CCW specified by the command address word is a transfer in channel.
7. CCW sequence in which two successive CCW's specify transfer in channel.
8. Command address specified in the CCW is not on a doubleword boundary.
9. Command address word in which positions 4-7 are not zero.

The following condition will cause a protection check:

1. The storage-protect tag specified in the command address word does not agree with the key of the addressed area of storage during a data store.

The following conditions will cause a chaining check:

1. The channel accepts more than one byte of read data assembling on word boundaries when the CCW specifies byte boundaries on data chaining. This is detected in the CCW 1 routine.
2. The channel accepts more bytes than CCW specifies while data chaining. This is detected in the CCW 2 routine.

Note: Both of the foregoing conditions are caused by attempting to read data chain with a control unit whose data rate is faster than the maximum specified in the Field Engineering Theory of Operation Manual, Model 50 Functional Units, SY22-2822.

Mode Switch Settings

Stop Mode: The system is not stopped and a master check does not occur. If the system is not masked, an I/O interrupt occurs. If error occurred during an initiation of a new I / O instruction, logout takes place and a CSW is stored.

Channel Stop Mode: The system is stopped by a log request in the check register and a master check. The channel indicators remain unchanged.

Process or Disable Mode: Same as for stop mode.

Data Check

The following conditions will cause a data check:

1. A parity check on 'bus in' while reading data into the channel. The parity is corrected before the data is set into the C-register.
2. A parity check is detected on write data going to 'bus out'. The parity is not corrected.

Mode Switch Settings

Process or Disable Mode: Channel proceeds to end of record; when channel is not masked an I/O interrupt occurs.

Stop or Channel Stop Mode: The channel stops. A master check and log request (CPU roller 2, position 6) are displayed.

SIM Check

This check indicator informs the channel to terminate an operation. It indicates that control unit status is not available for the CSW. SIM check occurs only inside the channel and never appears in the CSW.

The following conditions set SIM check:

1. Channel detects an error before the control unit can be selected to perform an operation.
2. A halt I / O instruction terminates the current operation.
3. An interface selective reset caused by an interface control check occurring in disable mode.

Incorrect Length Indication (ILI)
This indication appears in the CSW and will suppress command chaining unless the suppress incorrect length indication (SILI) flag is present in the currerit CSW. If the current CCW has a data chain and a SILI flag, the indication is not suppressed and will appear in the CSW.

The indication cannot occur on a command immediate. When the channel prefetches an invalid CCW (storage-protect or program check) on a write data chain operation and the control unit sends status in before the count in the current CCW is exhausted. the ILI indication will suppress the storage-protect or program check condition. This is also true if the channel prefetches data with an invalid data address. The ILI indication cannot appear in the CSW as a result of a program controlled interrupt (PCI) flag. ILI is turned on by the following conditions:

1. A control unit sends service in one or more times after the count in the CCW has been exhausted. On a read operation the extra bytes are not placed in main storage. An extra service in almost always occurs on a write or control operation, the only exception being on a formatted type device with a fixed record length. The residual count in the CSW is zero.
2. Service in is sent by a control unit less times than specified by the CCW. The residual count in the CSW is not zero.

Error Priority

Error priority is as follows (highest priority is 1):

1. Channel control check.
2. Interface control check.
3. Storage-protect or program check.
4. Chain check.
5. Incorrect length indication (ILI).
6. Data check.

If any of these errors occur simultaneously, the higher priority error will reset the lower priority error. There is one exception to this rule. On a write operation when the channel prefetches either an invalid CCW on data chaining or data with an invalid data address (storage-protect or program check), an incorrect length indication will reset the storage-protect or program check.

Data-check error is blocked from setting if a higher priority error occurs at the same time but is not reset if it is already on.

Two basic types of operation in the Model 50 are maintenance operations and normal operations. This section concerns itself with maintenance operations only. Figure 5 is a listing of various controls, latches, and triggers used in maintenance operations. These operations are used to:

1. Execute special kernels (maintenance routines) in ROS, entering these kernels via the diagnose instruction and using linkage control words (LCW's) set up by the individual currently using the kernels.
2. Initiate and run predetermined CPU tests (FLT's) that locate errors and the components causing those errors.
3. Initiate and run predetermined channel tests (Progressive Scan) under control of the diagnose instruction.
4. Document the status of registers, counters, and stats, etc. (logout or scan-out).
5. Execute the ROS ripple test program, or run
a MS ripple test from the storage test panel on the console.

All other operations will be considered as normal System/360 operations.

CPU CONTROL MODES

Maintenance operations make use of three different CPU control modes: sequence counter, main store, and ROS. Figure 6 describes the two basic types of Model 50 operation and their possible CPU control modes. Figure 7 lists the entries, objectives, and controls for the three CPU control modes used in maintenance operations.

Sequence Counter Mode

When the sequence counter mode trigger (KT151) is on, the system is under control of the sequence counter and the sequence stats. This mode is used

	ALD Page		ALD Page
Backspace Tgr	KH555	Maintenance Console Controls/Indicators/Etc.	PK001-PS121
Binary Tgr	KH21I	Manual Controls	KE781
		Manual Tgr	KS721
Command Chain (C.C) Tgr	GC161		
CCWI, CCW2, Read Store, or Write Fetch Request Tgr	KH511	Normal Interrupt Tgr	KTIII
Channel Log Controls	KE661		
Clock Stop Tgrs	KT211	Op to ALCH Tgr	KH511
CPU Control Modes	KT151-161		
Cylinder Counter	KH553-554	Pass Tgr	KH321
		Progressive Scan Control	KE701
DTC Tgr	KH531	Progressive Scan Stat	KH321
End Update or Start I/O Reg Tgr	KH511	Read Store, CCWl. CCW 2 , or Write Fetch Request Tgr	KHS1I
Error Interrupt Tgr	KT071	Resel/Restart Controls	KK701
Error Pending Tgr	KT081	Retry Tgr	KH555
Error Reg	KTO11-031	ROAR Backup Regs (Current and Previous)	KK312-313
		ROS Mode	KTIS1
Fail Tgr	KH321		
First/Second Word Tgr	KH541	Scan IPL Tgr	KH521
FLT Lood Controls	KH511-541	Scan/Log Decoder	KHI21-151
FLT Load Request Tgr	KT301	Scan Test Counter	KH31
FLT Op Reg	KHIII	SDR to ROAR Logic	KK081
FLT Op Reg instructions	KH121-151	Seek Control Tgr	K. H555
flt Program Lood Tgr	KIIII	Seek Tgr	KH555
FLT Retry Tgr	KH555	Sequence Counter	KH341
		Sequence Counter Mode	K 151
GP Stats (0-7)	KS101-171	Sequence Stats	KH345
		Suppress Incorrect Length Indication (SILI) Tgr	GC161
Hard Stop Tgr	KT161	Start 1/O to 1/O Tgr	KH511
Hardware Address to ROAR	KH321	Stop Request Tgr	Kliol
		Stop Tgr	K5721
Ignore Error 1/O Tgr	KT161	Storage Holdoff Clock Stop Tgr	KT215
Inhibit IAR Count Tgr	KH511	Storage Holdoff Controls	KC511-531
Inhibit IAR Count Control Tgr	KH511	Storage Ripple Logic	KT501-531
Interrupt Request Tgr	KH521	Storage Test Controls	PK071
1/O Mode Stat	KC531	Supervisory Enable Storage Stat	KH331
IPL Accept Tgr	KH521	Supervisory Stat	KH321
		System Reset Tgr	KT311
Log Decoder	KH371		
Log Request Tgr	KTIOI	Timed Single Cycle Mode Tgr	KT271
Log Tgr	KT151		
Stre		Unit Address to ALCH Tgr	KHSII
Main Store Mode		Write Fetch, CCW1, CCW2, or Read Store Request Tgr	KH511

FIGURE 5. CONTROLS, LATCHES, ETC. USED IN MAINTENANCE OPERATIONS

Maintenance Operation	Normal System / 360 Operation
Sequence Coun 1. FLT Load 2. Logout: a. Error b. Logout Pushbutton	Mode
Main S 1. Main Store Mode FLT's 2. Logout 3. Main Store Ripple Test	Mode $\text { ensuct }>$
1. ROS Kernels (Maintenance Routines): a. ROS Mode FLT's b. All Logouts or Scan-Outs c. Execution of Diagnose Instruction - 2. Diagnostics	1. All System/360 Instructions 2. 1-Fetch of Diagnose Instruction

FIGURE 6. BASIC OPERATIONS AND CPU CONTROL MODES

Sequence Counter Mode	Entered vio:	Objectives	Control or Instruction Source
	1. FLT mode sw on "Sturt-Load" and Load PB 2. Call for FLT load: a. MS mode -- op code A b. ROS mode -- scan* $E, 00$ and Emit 1010 3. Logout PB 4. Initiation of error log	1 or 2. Read FLT mode tapes or disks into storage: "OR's" each pair (odd/even) of consecutive words on tape or disk including parity bit generation, into each storage location used. 3 or 4. Logout into storage: a. SDR to location 80 b. SAR and byte stats to location 84 c. IAR to location 88	Controlled directly by sequence stats and sequence counter.
Main Store Mode	Entered vio:	Objectives	Control or Instruction Source
	1. Call for MS mode while in Seq Ctr mode: a. During FLT load b. Logout 2. Main store ripple test: Storage test sw off Process, and Start PB. NOTE: The MS ripple test must run correctly before trying FLT's.	1a. MS hardcore tests and ROS bit tests or ROS ripple test. ib. Logout into storage: (a) ROSDR (groups 1-4). This is one ROS word $(0-89)$ which is sent to storage locations 8 C , 90,94 , and 98. (b) ROAR to location 9 . 2. Test main storage via ripple (1 's, O's, worst, and reverse worst)	1. FLT op register: Decodes parity bits of word in SDR. 2. Storage test switch: Setting determines test.
ROS Mode	Entered via:	Objectives	Control or Instruction Source
	1. Call for ROS mode while in MS mode: a. Performing FLT's b. Logout 2. Start $P B$, then system reset $P B$.	10. ROS hardcore tests and zero and one cycle tests. 1b. Logout into storage: CPU and/or channel status. 2. Progressive scan of channels, Special maintenance routines (kernels) in ROS.	1. FLT Op register: Decodes emit field bits (under microprogram control). 2. Microprogram control and linkage control words (LCW's).

FIGURE 7. CPU CONTROL MODES FOR MAINTENANCE OPERATIONS
for the FLT load operation and for the first portion of a logout operation.

Main Store Mode

When the main store mode trigger (KT151) is on, the system is under control of words read out of main storage. Main store mode operation provides continued main storage read-outs from addresses specified by the instruction address register (IAR). The IAR is usually incremented by four immediately before each address is requested. Data read out of main storage go into the storage data register (SDR).

Main Store Mode Timing

Main store mode timing consists of four half-microsecond periods (W2, R1, R2, W1). In the first period (W2), a new address is gated into SAR from the instruction address register (IAR), and a main storage cycle is initiated. Instructions requiring gating action to be performed, and which were read out in the previous main storage cycle, are also executed at this time.

In the second period (R1), the SDR is reset.
During the third half-microsecond period (R2), main storage completes the read portion of its cycle and a word is read into the SDR.

At the beginning of the fourth half-microsecond period (W1), the four SDR parity bits, which constitute the new microorder, are gated into the FLT op reg. If the decoded operation calls for the gating of the SDR into read only address register (ROAR), this is performed toward the end of the period.

During the next first half-microsecond period (W2), a new ROS cycle is taken if an address has just been gated into ROAR; otherwise this is a dead cycle.

Main Store Mode Instructions and Data Paths
With the CPU in MS mode and the storage test switch in the process position, the four parity-bit positions of SDR are gated into the FLT op register. There are 16 instructions (including no-ops) that may be decoded in the FLT op reg. Figure 8 shows the instructions and data paths available in main store mode.

Main Store Mode Ripple

If the storage test switch is not in the process position, the data written into storage are controlled by a set of patterns forced into SDR and selected by means of positions on the storage test switch.

The available patterns are all zeros, ones, worst, and reverse worst. The worst and reverse worst patterns consist of two words of all zeros and then two words of all ones or vice versa. The switching from ones to zeros to ones is controlled by IAR bits 17 and 28 which are exclusive OR'ed.

ROS Mode

When the ROS mode trigger (KT151) is on, the system is under control of read-only storage (ROS). The system is always in ROS mode during normal System $/ 360$ operations, and may or may not be in ROS mode during maintenance operations.

NOTE: Op codes 0,9 , and D ore no ops.

FIGURE 8. MS MODE INSTRUCTIONS AND DATA PATHS

FUNCTIONAL UNITS

Sequence Counter

The sequence counter, in combination with the sequence stats, controls the operations performed in sequence counter mode (FLT load and logout operations). In MS mode, the sequence counter controls the logout of ROSDR and ROAR. In ROS mode, if the supervisory stat is on, the sequence counter determines how many ROS words (microinstructions) are executed under control of the current linkage control word.

The counter equals all zeros when reset off. Microorder $\mathrm{E} \rightarrow$ SCANCTL, in combination with EMIT 1000 (QY110-C5), sets the 2's complement of $\operatorname{SDR}(0-2)$ into the sequence counter indicators (4, 2, 1). See Figure 9, Sequence Counter Logic Chart. The sequence counter is stepped (incremented) by the same control line that sets it (clocked sequence counter select -- KH351).

Sequence Stats

The sequence stats, in combination with the sequence counter, control the operations performed in sequence counter mode.

FLT Op Reg

The FLT op reg controls most main store mode operations by decoding the SDR parity bits. It also
controls many ROS mode operations after being set by the microorder SCAN * E, 00 (or 10) in combination with the emit field bits. Instructions decoded by the FLT op reg are shown on Figure 10. This register, used with general purpose stats $0-3$, forms the scan/log decoder (Figure 11).

Scan/Log Decoder

The scan/log decoder is composed of the FLT op reg and general purpose stats $0-3$ (Figure 11). This decoder controls the operations performed during a scan-out or logout. Figure 12 shows the data and storage locations used during a log or scan-out operation. Figure 13 is a log/scan-out logic diagram.

ROS Kernels

ROS kernels are special maintenance routines (consisting of one or many microinstructions in ROS) that are used by FLT's, progressive scan, error logouts, and the diagnose instruction, etc. Figure 14 is a listing of the ROS kernels. Figure 15 is the ROS kernels flowchart.

Scan-In
The scan-in kernel (maintenance routine) takes up to 11 words from storage, putting them into various CPU counters, registers, and stats. These words, in consecutive storage locations, may be started from any desired address. The scan-in kernel is used by FLT's and progressive scan, and may also

$\begin{aligned} & \text { Input Value } \\ & \operatorname{SDR}(0,1,2) \end{aligned}$	First *PH (I's Compl of Input)	Second *PH (input Value Minus 1)	Seq Ctr Indicators (4, 2, 1) (2's Compl of Input)	$\begin{gathered} \text { Seq Ctr Bit } \\ \text { (Line Nomes on KH341) } \end{gathered}$	
2-0	On	On	10 ff	\rceil	$\underline{\mathrm{Seq} \mathrm{Cr}^{\prime}}$
$1=0$	On	On	2 Off	$\frac{1}{2}$	
$0=0$	On	On	4 Off	$\frac{1}{4}$	0
$2=1$	Off	Off	$10 n$	1	
$1=0$	On	Off	2 On	2	
$0=0$	On	Off	4 On	4	7
$2=0$	On	On	1 Off	\bigcirc	
$1=1$	Off	Off	2 On	2	
$0=0$	On	Off	4 On	4	6
$2=1$	Off	Off	1 On	1	
$1=1$	Off	Cn	2 Off	$\frac{1}{2}$	
$0=0$	On	Off	4 On	4	5
$2=0$	On	On	1 Off	$\overline{1}$	
$1=0$	On	On	2 Off	$\frac{1}{2}$	
$0=1$	Off	Off	4 On	4	4
$2=1$	Off	Off	$1 \mathrm{On}^{\text {n }}$	1	
$1=0$	On	Off	2 On	$\underline{2}$	
$0=1$	Off	On	4 Off	$\frac{2}{4}$	3
$2=0$	On	On	1 Off	$\overline{1}$	
$1=1$	Off	Off	2 On	$\underline{2}$	
$0=1$	Off	On	40 ff	$\frac{2}{4}$	2
$2=1$	Off	Off	$10 n$		
$1=1$	Off	On	2 Off	$\overline{2}$	
$0=1$	Off	On	4 Off	4	1

FLT Op Reg	Hex Op Code	Mode Usage	Operation
000000	00	MS	No op.
000001	01*	MS	ROSDR group $1(0-30)$ to SDR and OR with next word from storage.
000010	02*	MS/ROS	ROSDR group 2 (31-55) to SDR and OR with next word from storage.
000011	03*	MS	ROSDR group $3(56-87)$ to SDR and OR with next word from storage.
000100	04*	MS	ROSDR group 4 (88-97) to SDR and OR with next word from storage.
000101	05*	MS/ROS	ROAR to SDR (6-17) and OR with next word (mask) from storage.
000110	06	MS	Request for ROS mode.
000111	07	MS	SDR (19-30) to ROAR, reset binary tgr.
001000	08	MS	Reset error reg and binary tgr.
001001	09	MS	No op.
001010	OA	MS/ROS	Call for FLT load.
001011	OB	MS	Inhibit SAR clock (to stop--loops on same word in SDR). To continue operation, press start pushbutton.
001100	OC*	MS/ROS	Error reg to SDR (0-31).
001101	OD	MS/ROS	No op or LCS information to SDR (0-8).
001110	OE	MS	SDR (12-31) to IAR if binary tgr is off (causes branch to specified address +4).
001111	OF	MS	Step binary tgr if SDR is all l's.
010000	10*	ROS	SAR and byte stats to SDR (0-31).
010001	11*	ROS	$\mathrm{L}(0-27)$ plus parity bits to SDR (0-31).
110001	31 *	ROS	L (28-31) to SDR (24-27) " L reg fold."
010010	12*	ROS	Selector channel status to SDR ($0-31$). GP stats ($0-3$) are used with these codes
010011	13*	ROS	to further specify what status is used.
010100	14*	ROS	Stats, byte counters, etc. to SDR (0-31).
010101	15*	ROS	H (0-27) plus parity bits to SDR (0-31).
110101	35*	ROS	H (28-31) to SDR (24-27) "H reg fold."
010110	16*	ROS	$M(0-27)$ plus parity bits to SDR (0-31).
110110	36*	ROS	$M(28-31)$ to SDR (24-27) "M reg fold."
010111	17*	ROS	$R(0-27)$ plus parity bits to SDR (0-31).
110111	37*	ROS	$R(28-31)$ to SDR (24-27) "R reg fold."
011000	18*	ROS	LSAR, LSFR, counters, etc. to SDR (0-31).
011001	19*	ROS	Mpx channel (group 1) to SDR (0-31).
011010	$1 A^{*}$	ROS	Mpx channel (group 2) to SDR (0-31).
011011	$1 \mathrm{~B}^{*}$	ROS	Mpx channel (group 3) to SDR (0-31).
011100	10*	ROS	Common channel (group 1) to SDR (0-31).
011101	10^{*}	ROS	Common channel (group 2) to SDR (0-31).
011110	1E*	ROS	Common channel (group 3) to SDR (0-31).
011111	IF	ROS	No op.
NOTES:	The FLT op reg is a part of the scan/log decoder (Figure 11). More detailed information on the functions of these op codes is shown on Figure 12. *All these op codes send data to the SDR via the scan bus. See Figure 13.		

FIGURE 10. FLT OP REG INSTRUCTIONS

FIGURE 11. SCAN/LOG DECODER
be entered by any program or individual using the diagnose instruction.

Scan-Out

The scan-out kernel (maintenance routine) puts the contents of CPU and channel counters, registers, and stats, etc. into consecutive locations in storage. The scan-out kernel is used by FLT's, logout, and progressive scan, and may also be entered by any program or individual using the diagnose instruction. Storage locations used are predetermined for FLT's and logout. Progressive scan uses the diagnose instruction to enter the scan-out kernel; thus the first storage location used is the fullword address immediately following the diagnose instruction. See Figures 12 and 13.

Microorder HA \rightarrow A: The HA \rightarrow A microorder is used to select main storage. This microorder, in combination with the emit field bits, may give an OR select, write select, or a read select. At the same time the storage select is given, a hardware address (hex addresses 80 or 84) is forced to SAR (Figure 16). This microorder is used in the scan-out kernel and the FLT compare and branch kernel. It is also used by the diagnose instruction to store the assembled LCW in hex address 80 .

Parity Bit Propagation/Generation: Normally the parity bit positions from tape or in a register are sent to storage along with the data bytes. These parity bits go into storage bit positions 32-35.

During a logout or scan-out, the parity bit positions are sent to storage along with their data bytes, and in addition, correct parity is generated for each byte of information (data and parity bit) sent to storage. Thus a register with 32 data bit positions plus 4 parity bit positions (total 36 positions) uses two storage locations for log or scan-out. See Figure 17 and the Fold Operation text.

One exception to the two preceding statements is during a log or scan-out into storage location 80. Here the entire SDR (data positions 0-31 plus the 4

CPU Mode	Seq Ctr Value	Data Stored**	Storage Locations		
			$\begin{aligned} & \text { Full } \\ & \text { Logout } \end{aligned}$	Channel Only Logout	$\begin{gathered} \text { FLT } \\ \text { Scan-Out } \end{gathered}$
Sequence Counter	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	SDR (data and parity) Storage Address Register Instruction Address Register	$\begin{aligned} & 80 \\ & 84 \\ & 88 \end{aligned}$		
Main Store	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	Read Only Starage Dara Register ($0-30$) Read Only Storage Data Register (31-55) Read Only Starage Data Register (56-87) Read Only Storage Data Register (88 89) Read Only Storage Address Register	$\begin{aligned} & 8 C \\ & 90 \\ & 94 \\ & 98 \\ & 9 \mathrm{C} \end{aligned}$		
ROS	Scan/Log Decoder - $0 C$ 02 05 14 18 $0 D$ 15 35 16 36 17 37 11 31 111 31 $1 C$ $1 D$ $1 E$ 19 $1 A$ $1 B$ $12-0$ $13-0$ $13-1$ $12-1$ $12-2$ $13-2$ $13-3$ $12-3$ $12-5$ $12-4$ $13-4$	Test Word 13 (actual response adr) Test Word 14 (mask adr) Error Register Mover Function Register Current ROS Address (PSW 32-39) Byte Counters, General Purpose Stats Local Store, Address Register, Length Ctrs LCS Status H Register (0-27, parity) HRegister (28-31) M Register ($0-27$, parity) M Register (28-31) R Register (0-27, pority) R Register (28-31) L Register ($0-27$, parity) L. Register (28-31) Storage Data Register (0-27, parity) Storage Data Register (28-31) Common Channel Group "1 Common Channel Group "2 Common Channel Group "3 Multiplex Channel Group "1 Multiplex Channel Group "2 Multiplex Channel Group "3 Selector Channel Group "1 (0-31) Selector Channel Group "1 (parity) Selector Channe: Group "2 (parity) Selector Channel Group "2 (0-3i) Selector Channel Group *3 (0-31) Selector Channel Group "3 (parity) Selector Channel Group "4 (parity) Selector Channel Group "4 (0-31) Selector Channel Group "o (0-31) Selector Channel Group "5 (0-31) Selector Channel Group "5 (parity)	- AO ${ }^{A 4}$ AC BO ${ }^{B 4}$ B8 co C4 C8 CC DO D4 ${ }^{\text {D }} 8$ EO $E 4$ E8 FO F4 F8 FC 100 $i 04$ 108 100 110 114 IIC 120	$\begin{aligned} & 88 \\ & 8 C \\ & 90 \\ & 94 \\ & 98 \\ & 9 C \\ & \text { AO } \\ & \text { A4 } \\ & \text { AB } \\ & \text { AC } \end{aligned}$	
* Hex values ** Sheets 2-4 show details					

FIGURE 12. SCAN - OUT/LOGOUT: LOCATIONS AND DATA (PART I OF 4)

Storage Location	Bits	Data
0084	0	SAR P (8-15)
	1-8	SAR 8-15
	9	SAR P (16-23)
	10-17	SAR 16-23
	18	SAR P (24-31)
	19-26	SAR 24-31
	27	Unused
	28-31	Byte Stats
0088	0	IAR.P (8-15)
	i-8	IAR 8-15
	9	IAR P (16-23)
	-0-17	IAR 16-23
	18	IAR : (24-31)
	19-26	\|AR 24-31
008C	0	ROSDR P (0-30)
	1-3	ROSDR i-3 Mover Input Left
	4-5	ROSDR 4-5 Mover Input Right
	6-11	ROSDR 6-11 Q and P Address field
	12-15	ROSDR 12-15 Address Extension Field
	16-i8	ROSDR 16-18 Address Control Field
	19	Unused
	20-24	ROSDR 19-25 Adder Latch to Ingate
	25	Emulator Feature
	26-28	ROSDR 25-27 LS Addressing
	29-31	ROSDR 28-30
0090	0	ROSCR P (31-55)
	:-3	ROSDR 32-34 Invalid Digit Test and IC Control
	4-8	ROSDR 35-39 Gating Into Adder Latch
	9-12	ROSDR 40-43 Mover Destination
	13-14	ROSDR 44-45 Byte Ctr Function Control
	15-17	ROSDR 46-48 Counter Controls, MD, L Byte, M Byte
	18-20	ROSDh 49-51 Carry Insert Control
	21-22	ROSDR 52-53 Mover Output Left
	23-24	ROSDR 54-55 Mover Output Right
	25	Unused
	26-28	Mover Function (CPU)
	29-31	Mover Function (1/O)
0094	0	ROSDR P (56-88)
	i-4	ROSDR 57-60 Emit Field
	5-7	.ROSDR $61-63$ Outgates to Left Adder Input Gate
	8	ROSDR 64 TC Goting to Left
	9-11	ROSDR 65-67 Outgates to Right Adder Input Gate
	12-15	ROSDR 68-71 Adder Function CPU
	16-21	ROSDR 72-77 Condition Branch Grp A
	22-26	ROSDR 78-82 Condition Branch Grp B
	27 $28-31$	ROSDR 83 Emulator Feature ROSDR 84-87 Stat Setting Function
0098	28-31 $0-4$	Unused
	5	Emulator Feature
	6-17	Previous ROS Address
	18-23	Unused
	24-25	ROSDR 88-89 Stat Setting Function
	26-31	ROSDR 90-95 Emulator Feature
009C	0	One Syllable Op Stat
	1	Refetch Stat
	2-4	Unused
	5	Emulator Feature
	6-17	Current ROS Address
	18-23	Interrupt Register
	24-31	PSW 32-39
OOAO	0-3	Holf-Sum Cks
	4-7	Sum Cks
	8	Carry Cks
	$9-11$	L, M, MD Ctr Cks
	12-13	G1 and G2 Ck
	14-16	Mover Cks, U, V, W
	17 18 $18-20$	Unused SAR Cks

Storage Location	Bits	Data
	21-23	ROS Cks
	24	Protect Tag
	25	LCS Feature
	26	Log Request
	27-31	Unused
00A4	0-31	Unused
00A8	0-31	Same as Location 009C
O0AC	0	1/O Mode
	1-3	1/O Register ($\mathrm{P}, 30,31$)
	4-5	Interrupt Stats (Timer, Console)
	6-8	L Byte Ctr
	9-11	M Byte Cir
	12-16	F Register
	17	Q Register
	18-19	Edit Stat
	20-27	General Purpose Stats
	28	L Sign
	29	R Sign
	30	Carry
	31	RTL
0080	0-6	LSAR
	7-8	LS Function Register
	9-13	J Register
	14-18	MD Counter
		Unused
	$20-25$ $26-31$	Length Counter 1 (S, P, 0-3) Length Counter 2 (S, P, 0-3)
OOB4	0-3	LCS Feature
	4	Unused
	5-8	LCS Feature
	9-31	Unused
OOB8	0-31	H Register
OOBC	0-23	Unused
	24-27	H Register Fold (28-31)
	28-31	Unused
00C0	0-31	M Register
00 C 4	0-23	Unused
	24-27	M Register Fold (28-31)
	28-31	Unused ,
00C8	0-31	R Register
OOCC	0-23	Unused
	24-27	R Register Fold (28-31)
	28-31	Unused
O0DO	0-31	L Register
O0D4	0-23	Unused
	24-27	L Register fold (28-31)
	28-31	Unused
OOD8	0-31	SDR
OODC	0-23	Unused
	24-27	SDR Fold (28-31)
	28-31	Unused
OOEO	0-3	1/O Inst (Start, Test, Halt, Test)
	4-6	Channel Number
	7-10	Inst Reply
	11	Reply
	12	Branch on Channel Interrupt
	13	Proceed on Interrupt
	14	Time Out
	15	Time Out Ck
	16	Foul
	17-31	Unused
OOE 4	0 1	Routine Received PCI Enable
	2	Break-ln
	3	1/O Routine
	4	Early First Cycle
	5 6	First Cycle Chain First Cycle

FIGURE 12. SCAN-OUT/LOGOUT: LOCATIONS AND DATA (PART 2 OF 4)

Channel Only Logout	Full Logout	Bits	Data
88$8 C$909498	00E4	7	LS Read
		8	LS Write
		9	Channel to Adder Latches Data Transfer and Control
		10	Adder Latches to Channel Data Transfer and Control
		12	Last Cycle
		13	Break-Out
		14-17	Storage Byte Contral Register
		18	Unused
		19-22	ROSDR Bits 33, 34, 47, 48
		23	First C.ycle Check
		24.31	Unused
	OOE8	0-3	Buffer 1
		4-7	Buffer 2
		8-11	Buffer 3
		12-16	1/O Stats
		17	Unused
		18	1/O Check Mode
		19-21	Logs (1, 2, 3)
		22	Gate Status
		23	Log Reset
		24-31	Unused
	OOEC	0-8	Buffer I (P, 0-7)
		9.17	Buffer $2(P, 0-7)$
		18-31	Request Log-Out
	OOFO	0	Select Out
		1	Select In
		2	Op in
		3	Suppress Out
		4	P.equest in
		5	Service Out
		\bigcirc	Address Out
		7	Command Out
		8	Service In
		9	Address in
		10	Status In
		11-19	Bus Out ($P, 0-7$)
		20	Program Check
		21	Storage Protect Check
		22-3i	Unused
	00F 4	0-3	Controlled Emit
		4-8	Routine Request Triggers (A, E1-E4)
		$9-11$	Priority (2, 3, PCI)
		12-17	Control Triggers (CC, DTC, UCW, IB Full, Poll, Burst Mode)
		18-21	Mpx 1/O Stats
		22	Data Transfer Control
		23	CC Reset Control
		24-31	Unused
	OOF 8	0-31	Selector Channel B Register (0-31)
	OOFC	0-27	Unused
		28-31	Selector Chonnel B Register Parity
	0100	0-27	Unused
		28-31	Selector Channel C Re sister Purity
	0108	0-31	Selector Channel C Register (0-31)
		0-1	Byte Counter A $(2,1)$
		2-4	Byte Counter B (P, 2, 1)
		5-6	End Register (2,1)
		7-8	Last Words (3, 1)
		9	EOR Count interlock
		10	EOR I Latch
		11	EOR 2 Latch
		12	EOR Read Interlock
		13	B Almost Changed
		14	Local Store Enable
		15	Local Store Register Full
		16	C Register Full

Channel Only Logout	Full Logout	Bits	Data
98	0108	$\begin{aligned} & 17-20 \\ & 21-23 \\ & 24-31 \end{aligned}$	```Read (Bkwd, Op, Rdy, Interface) Write (Op, Rdy, Interface) Channel Checks(Sim, ILI, Prog, Stor Prot, Chan Data, Chan Ctrl, IF Ctrl, Chain 1)```
9	O10C	$\begin{aligned} & 0-27 \\ & 28-31 \end{aligned}$	Unused Group 3 Parity (Byte Ctr, Last Word 2, Reg Full B, $C D=P C$ Type)
A0	0110	$\begin{aligned} & 0-27 \\ & 28-31 \end{aligned}$	Unused Group 4 parity (UA Fetch, Cycle Ctr Step 0 , Priurity 1, Stat 0)
A4	0114	$\begin{aligned} & 0-7 \\ & 8-10 \\ & 11-13 \\ & 14 \\ & 15 \\ & 16-17 \\ & 18-23 \\ & 24-26 \\ & 28-31 \end{aligned}$	Position Register (CCW-1 Type, CCW-2 Type, Unit Sel, Rd Store, Wr Fetch, Enć Up, Compare, Interrupt) Cycle Ctr Phase A Step (1, 2, 3) Clock (AO, AI, Step) Local Store Request PCl Request Priority (2, 3) Request Register (0-5) Stats 1-3 Common Channel Detect (LS, PRI 1, PRI 2-3, PCI, Inhibit Routine)
A8	0118	$\begin{aligned} & 0-6 \\ & 7-8 \\ & 9-13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20-22 \\ & 23 \\ & 24-27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \end{aligned}$	General Purpose Register (1-7) Unused Flag Register (CDA, CC, SILI, Skip, PCI) Finish First Word First Byte Total Record Fetch Write Chain Preceed Stop Release Unused Status Next Latch Multi-Purpose (Cl-C4) Suppress Out Request in Service Out Hold Block Status In
$A C$	0110	$\begin{aligned} & 31 \\ & 0 \\ & 1-4 \\ & 56 \end{aligned}$	Block Status In Inhibit Read Store A Clock (A, B, C, D) Spzc:a! Pumpose (D!, D2)
		$\begin{array}{\|l} 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14-15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26-28 \\ 29-31 \end{array}$	Instruction Scan Poll Poll Interrupt End Instruction Inhibit BC Ready UA to Bus Out Select Address Out Compare ($=$ or \neq) Interface Chain Data Address First Byte Chain Data Byte Ctr Mad Enable Write Chain Ready Record End Op In Test Channel Stop Select Out Sol in Op in Service Out, Address Out, Command Out Service In, Address In, Status In
80	$\begin{aligned} & 0120 \\ & 0124 \end{aligned}$	$\begin{aligned} & 0-27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \\ & 0-15 \\ & 16-31 \end{aligned}$	Unused Position Register Tronsfer Channel In Use Stop Stop Routine Reserved for Selector Channel and Misc Features Reserved for Mipx Chonnel

FIGURE 12. SCAN-OUT/LOGOUT: LOCATIONS AND DATA (PART 3 OF 4)

FIT Scan-Out Operation

FIGURE 12. SCAN-OUT/LOGOUT: LOCATIONS AND DATA (PART 4 OF 4)

FIGURE 13. SCAN-OUT/LOGOUT: LOGIC AND INDICATORS

Kernel Name	CAS Page	ROS Address (From LCW 19-30)	Equivalent Hex Address in LCW 16-31	Function
Fetch LCW	QY 110	F4E	1 E9C	Read in next LCW from main storage.
Execute LCW	QY110	F8B	1 F16	Set controls and ROAR from LCW.
1-Fetch Entry	QYIIO	FB9	1 F72	Go back to normal 1-fetch.
FLT Load Call	QY140	FBC	1 F78	Initiates FLT load and puts CPU in sequence counter mode.
Scan-ln:	----	----	----	Sets registers, stats, etc. from main
Scan entry	QY310	F48	1590	storage (up to 11 words).
Diagnose entry	QY310	F31	1 E62	
Scan-Out:	----	---	----	Puts contents of registers, stats, etc.
Hardware entry	QY410	2 CO	(0580)	into main storage (up to 34 words).
Full Scan Entry	QY410	F26	1E4C	
Partial Scan Entry	QY410	F23	$1 E 46$	
Com, Mpx, and Sel Ch Entry	QY410	F09	1 E12	
Sel Ch Entry	QY420	F18	1 E36	
FLT Compare and Branch	QY510	F45	1 E8A	Compares actual response with expected response of FLT zero and one cycle tests, sets pass/fail triggers, and branches on results.
Reset Error and FLT Op Registers	QY140	FB7	IF6E	Resets both CPU error and FLT op regs and then goes to 1 -fetch.
Set Ignore Error-1/O Tgr	QY150	F3A	$1 E 74$	Prevents error recognition and $1 / 0$ break-in.
Reset Ignore Error1/O Tgr	QY150	FD3-7	1FA6, 8, A, C, E	Allows error recognition and $1 / 0$ break-in.
	----	---	----	Puts contents of local storage into
Sector 0 Entry	QY450	F51	$1 \mathrm{EA2}$	main storage.
Sector 1 Entry	QY450	F11	1 E22	
Sector 2 Entry	QY450	FDO	1 FAO	
Sector 3 Entry	QY450	F90	1 F20	
Beat Local Storage	QY130	224	0448	Continuous scan-in and check of a specified local storage address.
Ripple Local Storage	QY130	FB8	1770	Scan-in and check of all local storage addresses.
Fetch/Alter Bump:	--.-	FB5	IFOA	
Word 0	QY140	FB5	$1 F 6 A$ 1 E6A	fetched or altered (group specified by
Word 1	QY140	F35	1 E6A	L reg).
Word 2	QY140	FB4	1568	
Word Reset Mpx UCW	QY440	F07	IEOE	Resets mpx unit control word to stop
				1/O device (while logging mpx channel).
Invert SAR Bit 16 Tgr:	----	----	----	----
Turn On	QY140	FB6	1 FbC	Inverts SAR 16, causing 8K (word) relocation of main storage, then goes to l-fetch.
Turn Off	QY140	F36	1E6C	Restores normal storage addressing, then goes to 1 -fetch.
Large Capacity Storage (LCS) Controls	----	---	----	----
	$\begin{aligned} & \text { QY140 } \\ & \text { QY140 } \\ & \text { QY140 } \end{aligned}$	$\begin{aligned} & \text { FB3 } \\ & \text { F33 } \\ & \text { FB2 } \end{aligned}$	$\begin{aligned} & 1 F 66 \\ & 1 E 66 \\ & 1 F 64 \end{aligned}$	Turn on LCS parity control tgr. Turn on LCS byte parity mode tgr. Resets both LCS parity control and LCS byte parity mode triggers.

FIGURE 14. ROS KERNELS (MAINTENANCE ROUTINES)

FIGURE 15. ROS KERNELS FLOWCHART: DIAGNOSE/FLT/LOG TRIGGER ENTRIES (PAR1 1 OF 2)

FIGURE 15. ROS KERNELS FLOWCHART: DIAGNOSE/FLT/LOG TRIGGER ENTRIES (PART 2 OF 2)

FIGURE 16. HARDWARE ADDRESSES NO. I AND NO. 2

Fullword Register Including Parity Bits

FIGURE 17. STORAGE LOCATIONS AND BITS FOR L REGISTER LOGOUT
parity positions) is sent directly to storage location 80 (positions $0-35$) and no parity is generated.

Fold Operation: FLT op reg position 0 specifies the fold operation. This operation is necessary to completely log or scan-out a 32-bit register as discussed in Parity Bit Propagation. The fold operation sends bits 28-31 of the specified register into SDR (24-27) via the scan bus. This operation occurs on FLT op reg codes $31,35,36$, and 37 .

Logout Operation: Initiated by the logout pushbutton or a system error check. Either condition turns on the log trigger (KT151) and the log trigger indicator located on the system control panel. The logout operation uses all three CPU control modes: sequence counter, main store, and ROS. The ROS mode portion of a logout operation is performed by the ROS scan-out kernel. Up to 42 storage locations may be used for the storing of machine status. See Figure 12.

Figure 18 shows the initial logout sequence under sequence counter control mode and main store (MS) mode before logout is completed under ROS mode.

Log Trigger

The log trigger is set on if the log-request trigger ($\mathrm{KT} 101-5 \mathrm{~F}$) is on and an error condition occurs. It may also be set on by depressing the logout PB on the system control panel. Either of the two preceding conditions initiates a logout which is indicated by the log trigger indicator on the system control panel. The log trigger is checked in one of the ROS maintenance routines (scan-out kernel) where its status determines the path to be followed in ROS.

Supervisory Stat

When on, the supervisory stat (SS) puts the number of microinstructions (ROS words) to be executed under control of the sequence counter. The SS also inhibits storage access unless the supervisory enable storage stat (SESS) is on. The SS is set to the value of $\operatorname{SDR}(6)$ by the microorder $\mathrm{E} \rightarrow$ SCANCTL combined with EMIT 1000 (QY110-C5). When the sequence counter reaches seven, the SS is reset off (KH321-6J).

Progressive Scan Stat

The progressive scan stat (PSS) is set on by bit 14 of the diagnose instruction, via $\operatorname{SDR}(5)$, or by bit 5 of a linkage control word (LCW). The PSS is also set on by depressing the start PB when the FLT mode switch is on the force pass position. The PSS is checked in various ROS kernels where its status
determines the path to be followed within ROS. Testing the PSS resets it off unless an inhibit storage condition (SS on and SESS off) exists. When the PSS is tested and found to be on, it usually initiates the fetching of a new LCW from main storage. The PSS is off when reset, normally off for FLT execution, and always off during an error logout.

Supervisory Enable Storage Stat
The supervisory enable storage stat (SESS) allows access to main storage even though the supervisory stat (SS) is on. This is accomplished by deconditioning the inhibit storage line activated by the supervisory stat (KH331-2E). The SESS is set to the value of $\operatorname{SDR}(4)$ by the microorder $E \rightarrow$ SCANCTL combined with EMIT 1000 (QY110-C5). The SESS is reset off when the sequence counter equals seven and the supervisory stat is on (KH321-6J).

Binary Trigger

The binary trigger is used when running FLT's. In main store mode, FLT op reg instructions are used to reset off (op codes 07 or 08), or step (op code 0F), or test (op code 0 E) this trigger. In ROS mode, the microorder $\mathrm{E} \rightarrow$ SCANCTL (combined with the emit field bits) is used to test and/or set or reset the binary trigger in the FLT compare and branch kernel (QY510).

Scan Test Counter
The scan test counter controls the number of times (16) each individual test is executed during the FLT zero and one-cycle tests. The microorder, STC $=0$, branches on and increments the counter (QY510-G5) on each pass through the FLT compare and branch kernel. The counter equals one when in the reset position.

Pass/Fail Triggers

The pass and fail triggers are used in the FLT compare and branch kernel in ROS (QY510). They are set, according to the status of the binary trigger, by the microorder $\mathrm{E} \rightarrow$ SCANCTL in combination with EMIT 0001. That is, if the binary trigger is on, the fail trigger is set; if the binary trigger is off, the pass trigger is set. They are both unconditionally reset off by the same microorder ($\mathrm{E} \rightarrow$ SCANCTL) in combination with EMIT 0101. The pass trigger is tested, and branched on, by the microorder SCPS. The fail trigger is tested, and branched on, by the microorder SCFS.

FIGURE 18. LOGOUT UNDER SEQUENCE COUNTER AND MAIN STORE MODES (PART I OF 2)

FIGURE 18. LOGOUT UNDER SEQUENCE COUNTER AND MAIN STORE MODES (PART 2 OF 2)

SUPERVISORY CONTROLS

The supervisory controls are the hardware circuits that determine the CPU control status and the gating (or blocking) of certain clock pulses within the system (Figure 19). These circuits can be divided into two logical groups.

1. Clock gating control circuits:
a. Circuits to recognize conditions that require the stopping of one or more logic clocks.
b. Four clock stop triggers that block or gate the basic reg and late reg pulses within the system.
2. CPU control status circuits:
a. Circuits that recognize the need for, and request a change in CPU control status.
b. A log trigger and three CPU control mode triggers that determine the CPU control status.

Clock Gating Control Circuits

There are two main types of clocks in the CPU: free-running, and non free-running (Figure 20). The free-running clocks are latch, error, basic reg, and basic late reg. The non free-running clocks are CPU-I/O, ROS, and main storage.

The non free-running clocks are controlled by four clock stop triggers. These clock stop triggers are set/reset latches. Any condition that requires the blocking of a clock pulse(s) will turn on one or more of the following clock stop triggers:

1. CPU-I/O clock stop trigger -- When on, this trigger blocks the reg and late reg pulses to CPU circuits (regs and counters) and the common channel circuits.
2. ROS clock stop trigger -- When on, this trigger blocks the reg and late reg pulses that set and reset ROSDR and ROAR. (This effectively stops ROS.)
3. Main storage clock stop trigger -- When on, this trigger blocks the reg and late reg pulses that are used to generate a storage select from CPU, set IAR, and set SAR.
4. Storage holdoff clock stop trigger -- When on, this trigger serves the same function as the CPU-I/O clock stop trigger within CPU but does not block clock pulses to the common channel.

One way (of many) to stop the non free-running clocks is as follows:

1. The FLT load request trigger on, not start, and not sequence counter mode; brings up the normal interrupt line.
2. Normal interrupt turns on the main store, ROS, and CPU-I/O clock stop triggers.
3. The clock stop triggers, in turn, prevent the indicated clock pulses from occurring.

When all conditions needed to restart a clock are present, a reset to the clock stop trigger is generated.

CPU Control Status Circuits

The supervisory controls determine and set the CPU control status triggers. These are sequence counter mode, main store mode, and ROS mode triggers, and also the log trigger. These triggers disable controls that should not be in command and enable other controls to manipulate identical data paths. Note that this is not a priority function in the sense that one set of controls is caused to wait while another set performs a function.

Changing CPU Control Status

Changing the CPU control status generally involves a three-step sequence.

1. A supervisory interrupt condition turns on the clock stop triggers.
2. One dead cycle is then taken. During this dead cycle, a line labled "gate status" is used to set or reset the CPU control status triggers.
3. The logic clocks needed for the newly selected CPU mode have their clock stop triggers turned off.

A typical example, showing how the CPU control status is changed, is shown in the following logout sequence. Refer to TIM 209 (Sheet 1) and Figure 21. When a logout operation is initiated, the error interrupt line turns on the CPU-I/O, ROS, and MS clock stop triggers, thus freezing all registers. The next machine cycle has its non free-running reg and late reg pulses blocked, and is thus called a dead cycle. During this dead cycle, the log and sequence counter mode triggers are set on with a basic reg pulse.
During the same dead cycle, the MS clock stop trigger is reset off at error reg time. Starting with the next machine cycle, the contents of SDR, SAR, and IAR are stored in locations 80,84 , and 88 . Next, a call for MS mode is initiated. This resets the sequence counter mode trigger off and sets the MS mode trigger on. After the storing of ROSDR (groups 1-4) and ROAR, the ROS clock stop trigger is reset off, thus allowing the ROS clock to run.

During the next two cycles a call for ROS mode is initiated. This turns the MS mode trigger off, sets the ROS mode trigger on, and then resets all clock stop triggers off.

Supervisory Interrupts

The clock stop triggers and the CPU control status triggers make up the output interface of the supervisory controls (Figure 19). This interface is normally in a steady state. The output interface changes

FIGURE 19. SUPRRVISORY CONTROLS (PART 2 Of 2)

I NOTE: All timings are approximate. See your logic for exact timings, Page AA000.
FIGURE 20. CLOCK DISTRIBUTION

FIGURE 21. CHANGING CPU CONTROL STATUS
only as a result of an interrupt on the input interface of the supervisory controls. The three types of supervisory control interrupts and their causes are:

1. Error interrupt -- Parity check with PSW(13) on.
2. Normal interrupt -- System reset, FLT load request, storage test switches, FLT's request CPU mode change, or logout operation request CPU mode change.
3. Clock interrupt -- Storage holdoff or singlecycle operation.

Error Interrupt: An error interrupt is the result of a parity check. The parity check causes all three clock stop triggers to be set on, thus stopping all gated (non free-running) clocks. The parity check also turns on the error interrupt trigger. In parallel with the interrupts, the status of various manual switches, CPU controls, and the type of error are used to set the CPU mode request triggers (Figure 19). At the end of the error detection cycle, the error interrupt trigger signifies that an error has occurred, and the CPU mode request triggers indicate the action to be taken. At the beginning of the next cycle (the first cycle that the clocks are stopped), the CPU mode request triggers are gated to the CPU mode triggers, thus producing a new CPU control mode on the output interface.

Normal Interrupt: A normal interrupt is the result of a manual control operation or a request for a change of CPU control modes. These requests show themselves at the input interface of the supervisory controls where they cause all three clock stop triggers and the normal interrupt trigger to be set on. The CPU mode request triggers are also set on at this time. As in an error interrupt, the CPU mode triggers are gated at the start of the next cycle.

Clock Interrupt: A clock interrupt is the result of a storage holdoff or a single-cycle operation. Clock interrupts cause all three clock stop triggers to be turned on. The error or normal interrupt triggers are not turned on and the CPU control mode triggers are not gated as in error or normal interrupt. This allows the clocks to be controlled without changing the control mode of the CPU.

Pushbuttons That Force ROAR: Figure 19 shows the CE panel pushbuttons that can force a hardware address into ROAR. The address forced is determined by the individual pushbutton whose function is then executed. Many other pushbuttons on the console cause ROS to cycle but do not directly force an address into ROAR.

LINKAGE CONTROL WORD

The linkage control word (LCW) contains information used in setting certain controls and ROAR for maintenance operations in ROS mode. The LCW must be put in the storage data register (SDR) before it can be used. This is accomplished by one of two methods; it is assembled in SDR by the diagnose instruction, or read into the SDR from main storage. With the linkage control word in the SDR, the following items can be set:

1. $\operatorname{SDR}(0-2)$ to sequence counter (Seq Ctr)
2. $\operatorname{SDR}(4)$ to supervisory enable storage stat (SESS)
3. $\operatorname{SDR}(5)$ to progressive scan stat (PSS)
4. $\operatorname{SDR}(6)$ to supervisory stat (SS)
5. $\operatorname{SDR}(7)$ to I / O mode stat
6. $\operatorname{SDR}(19-30)$ to read only storage address register (ROAR)

Items 1-4 (Seq Ctr, SESS, PSS, and SS) are set by microorder $\mathrm{E} \rightarrow$ SCANCTL in combination with EMIT 1000. Item 6 (ROAR) is set by the microorder $\mathrm{D} \rightarrow$ ROAR, SCAN.

Item 5 (I/O mode stat) is set by the microorder $1 \longrightarrow$ IOMODE. This is all accomplished by the execute LCW kernel in ROS (QY110) -- two microinstructions immediately following diagnose instruction, or the fetch LCW kernel.

DIAGNOSE INSTRUCTION

The diagnose instruction provides an exit from a normal operation (System/360 instructions) to a maintenance operation. This is accomplished by assembling a linkage control word (LCW) in the SDR,
storing it (LCW) in hex address 80, and then entering the execute LCW kernel in ROS (Figure 15).

Maintenance operations initiated by the diagnose instruction may be divided into two main catagories as follows:

1. Execution of special kernels (maintenance routines) in ROS (Figure 14). ROS mode FLT's and Progressive Scan make extensive use of some of these kernels.
2. Execution of any microinstruction, or subset of microinstructions, in any desired order. This procedure may be used to examine any specific area in ROS. See Figure 22 for examples.

The diagnose instruction must be located on a fullword boundary in main storage if additional LCW's are to be used. When other LCW's (in addition to the one built by diagnose) are desired, they must be located in main storage starting at the fullword address immediately following the diagnose instruction. Because IAR is used to count up and scan-out subsequent LCW's, any control logic function or malfunction that affects IAR content affects the sequence of the stream of LCW's.

Diagnose is initiated and decoded in I-fetch like all other System/360 instructions. When a controlling LCW contains the address of the entry to I-fetch kernel (FB9), normal operations (System/360 instructions) will be resumed.

FAULT LOCATING TESTS (FLT's)

Fault locating tests (FLT's) are a series of semiautomatic diagnostic tests that contain fault locating abilities. The fault location ability of FLT's is an additional step beyond the fault detection ability of most diagnostic programs. After detecting a failure, FLT's point to the probable cause(s) of the failure through the use of a scoping index called Scopex. FLT's and their supporting documentation are produced by computer programs that operate on data extracted from the design automation logic master tape.

FIGURE 22. DIAGNOSE USAGE (SCOPE BUMP WOPD)

The actual FLT's for the Model 50 are the ROS mode zero and one-cycle tests. Various areas (controls, registers, and circuits, etc.) must be operating correctly before these cycle tests can be run. Most of these areas (defined as hardcore) are checked out first in the hardcore tests. In addition, all of read only storage (ROS) is tested for addressing and content by the ROS bit tests. All tests for the preceding items are contained on the Model 50 FLT tapes (Figure 23). These tests (hardcore, ROS bit, and FLT's) are also available on disk packs. See Figure 24.

	Main Store Mode Tape		
	MS Mode Hardcore Tests:		MS Mode ROS Bit Tests:
1. 2. 3. 4. 5. 6.	Binary trigger: reset off. Address first 4096 words of MS. Binary trigger: step on and off. All ROAR bits. ROS group readout. ROS parity check circuits.		All ROS words for addressing and content.
ROS Mode Tape			
A)	ROS Mode Hardcore Tests:	B)	ROS Made Cycle Tests (FLT's):
1.2	Switch from MS mode to ROS mode. Test the following: Progressive scan stat (via ROS scan-in kernel), supervisory stat, sequence counter, supervisory enable storage stat, log trigger, pass trigger, fail trigger, scan test counter, microorder $\mathrm{HA} \rightarrow \mathrm{A}, \mathrm{ROS}$ scan-out kernel, zero-cycle poss test, and zero-cycle fail test. Reset I/O interface register.		Zero-cycle tests; all storage elements for which scan-in (via odder out bus or emit field) and scan-out paths exist. One-cycle tests as follows: Seg 1: L, F, $Q, 1 / O$, carry stat, PSW (32-39), and MVFR. Seg 2: R, H, GP stats, and half sum. Seg 3: $M, G 1, G 2, J, L$ sign, R Sign, 1 syllable op, refetch, and error (U, V). Seg 4: Full sum, carry, and mover-out errors (2 cycle tests). Seg 5: LSAR and LSFR. Seg 6: ROAR (2 cycle tests). Seg 7: LB, MB, MD, G1, G2, error checks, and LB-MB parity check.

FIGURE 23. FLT TAPES: MODEL 50

Disk Pack 1
MS Mode Hardcore Tests
MS Mode ROS Bit Tests
(ROS Planes 0-5)
Disk Pack 2
MS Mode ROS Bit Tests
(ROS Planes 6-B)
Disk Pack 3
MS Mode ROS Bit Tests
(ROS Planes C F)
Disk Pack 4
ROS Mode Hardcore Tests
ROS Mode Cycle Tests (FLT's)

FIGURE 24. FLT DISK PACKS: MODEL 50

The FLT technique involves the use of test patterns. These (FLT) test patterns are designed to prove that each trigger can be turned on and off and that each transistor in the combinatorial logic connecting triggers can be controlled by each of its inputs.

Each diagnostic test forces the system to the state specified by a particular test pattern. This process, called scan-in, sets the selected triggers to the predetermined values of the test pattern in core storage. The system is then forced to respond to the scan-in values by allowing its clock to operate a specified number of cycles. This process, called clock advance, exercises the combinatorial logic between triggers and places the system in a new internal state. This new internal state is called the actual response. The actual response is then made available for analysis through a process known as scan-out, which stores the actual response pattern into core storage. Next, the actual response is read from storage into the SDR, OR'ed there with a mask word from storage, and then the OR'ed result is tested. Following this, a second test is made with an expected response. The result of these two tests indicates whether the individual circuit under test functioned properly or not. This logical comparison, and a branch on the result, is called FLT compare and branch.

To run FLT's, additional paths to the storage data register (SDR) are used. These new (scan) paths allow the internal status of the CPU and channels to be logged (or scanned -out) to storage. FLT op codes initiating scan-out operations are denoted by an asterisk (*) on Figure 10. A simplified diagram of the scan-out logic is shown on Figure 13.

FLT LOAD

An alternate method of loading FLT's into main storage is required because the normal IPL sequencing is under ROS control and uses CPU and common channel hardware. To achieve an alternate method, additional hardcore controls and a new data path direct to main storage have been provided. A sequence counter and four sequence stats execute the load operation by controlling a selector channel clock, the same selector channel (B register) gating to SDR, the instruction address register (IAR), and the storage data register (SDR).

The main purpose of this alternate (FLT) load method is to store FLT programs in main storage even though the common channel or ROS may not be working correctly. Another reason is to allow either good or bad parity to be loaded into storage. Arbitrary bit patterns, without regard to parity, can be loaded in this way.

An FLT load can be accomplished from tapes or disk packs on a selector channel. See Figures 25 and 26. Data enter storage via the B register of the selector channel, the scan-out/logout logic, and thence over the scan bus into the SDR (Figure 13). Checking is performed in the channel and again in CPU before the data enter storage. Every two consecutive words on tape (or disk) are OR'ed together to produce one word in storage. All 36 positions of this word are the result of the OR'ing mechanism; that is, the 32 data positions are the OR'ed result of the data positions of two words on tape (or disk), and the four parity-bit positions are the OR'ed result of the parity generator output for each of those two words. This OR'ing mechanism allows bad parity to be loaded into storage. The FLT record in storage starts at location zero. There is no check for record length; however, the controls will hang up if the channel does not receive an even number of words.

To convert two words on tape or disk into a single word in storage, the channel sends a read store request which causes a write storage cycle using the current IAR address. If reading an odd word (the first of each pair) from tape or disk, the IAR counter is incremented by four (IAR $+4=$ fullword step), storage is selected, and the word from the B register is stored at that address. When the next (even) word is to be stored, the LAR counter is not incremented, the previously stored word (first of the pair) is read out, OR'ed in the SDR with the even word from the B register, and is then written back into main storage.

An FLT load can be initiated from the system control panel but not from a remote operator control panel. It can also be initiated by the diagnose instruction via the execute LCW kernel and the FLT load call kernel in ROS, or while performing a maintenance operation, in either main store or ROS mode, by inserting op code A in the FLT op register.

When loading FLT's from the system control panel, the unit to be started is specified by the channel and unit rotary switches (load unit switches) on the system control panel. If a channel other than a selector channel, or a device other than a tape drive or disk is specified, the FLT load will not perform, and the FLT controls will hang up.

Load From Tape
To initiate a FLT load from tape via the system control panel, the FLT mode switch is placed in the load position, the system reset $P B$ is depressed, and then the load PB is depressed. (System reset does not occur automatically as in normal IPL and must be performed manually.) The FLT load from tape resets the IAR to zero, sets the sequence counter mode trigger on, and simulates a start I/O operation with a read data command.

figure 25. flt load va tape

figure 26. fit load va disk

44 (3/71) Model 50 FEmM

Load From Disk

When loading FLT's from disk, the procedure is slightly different. First the FLT mode switch is set to the off position and the system reset PB is depressed, thus setting the cylinder counter (KH553554) to zero. The FLT mode switch is then set in the load position and the load PB is depressed. The FLT load from disk resets the IAR to zero, sets the sequence counter mode trigger on, and simulates a start I/O operation with a control seek command. The control seek command initiates a series of three write fetch priority 2 requests (priority 2 , control $1-3)$. The disk unit terminates the operation after accepting six bytes of seek data. As a read data command is command-chained to the control seek command, the FLT controls wait for a fourth priority 2 request (CCW1). When this CCW1 arrives, the read data command takes over control and the system proceeds to read in data. If a unit check or a channel data check is sensed at the end of the control seek operation, command chaining is suppressed and the FLT controls hang up.

Unsuccessful Load

When loading FLT's from either tape or disk, and a parity check, unit check, or channel data check occurs during the read data operation, the FLT load check indicator turns on and loading continues to the end of the record. (A unit check or channel data check is shown on CPU roller 2, positions 6 and 12 , respectively.) Next the CPU stops or attempts to reread the record, depending on the FLT control switch setting. The retry and backspace triggers in conjunction with the FLT control switch are used to control the rereading of a bad record received from tape.

A FLT load hangs up prior to completion if either the selector charnel or the FLT load controls fail to operate correctly. Failures of this type are diagnosable from the sequence stat and sequence counter indicators using Figure 25 or 26.

Completion of Successful Load

At the completion of a successful FLT load, the supervisory controls are set to main store mode, and execution starts at location four. (Locations zero through three are used for record identification.) Main store mode hardcore tests and the ROS bit tests are executed in this (main store) mode. When the ROS mode hardcore or cycle tests are to be executed, op code 06 (in the FLT op reg) will put the CPU in ROS mode.

The following sequence of words at the beginning of each FLT record in storage is used to initiate the ROS mode cycle tests.

Word	Location	Operation	Format	
1	0-3	Identification	0-3	Machine type (Mod 50 =A)
			4-7	Type of test $5=$ Zero-cycle test 6 = One-cycle test
			8-11	Zeros
			12-15	Segment number
			16-27	EC Level
			28-31	Undefined
2	4-7	SDR to ROAR and reset binary trigger	FOB (hex) in bits 19-30 0111 in parity bits (MS mode)	
3	8-11	Call for ROS mode	0110 in parity bits (MS mode)	
4	12-15	Turn on ignore error trigger	F3A (hex) in bits 19-30; ones in bits 2,5 , and 6; zeros elsewhere	
5	16-19	Reset pass/ fail triggers	F44 (hex) in bits 19-30; zeros elsewhere	
6	20-23	Reset binary trigger and error register, branch to first test	Address of first test in bits 8-31	

The first word in this sequence is not used. (Location zero is never accessed.) The second word, which is executed from storage locations 4-7, forces the entry address of the fetch LCW kernel into ROAR. Thus when the third word causes ROS mode control, the fetch LCW kernel is executed. Words 4-6 are then executed in sequence under ROS control. Word 6 allows branching to any starting address and contains the location of the first word of scan-in data. Normal FLT execution is now in effect.

MAIN STORE MODE FLT's

Main store mode FLT's consist of hardcore tests and tests for checking out ROS. These tests are on a tape separate from ROS mode FLT's and are normally run first. They are the first step in a "bootstrap" checkout procedure aimed at exercising hardware and validating its operation before using it to control the checkout of other hardware. These tests are loaded via an FLT load operation. Main store mode tests may be terminated by:

1. A system reset
2. A call for FLT load (op code 0A)
3. A request for ROS mode (op code 06)

MS Mode Hardcore Tests

The main store mode hardcore tests consist of the following:

1. A test to reset the binary trigger.
2. A test of the first 4,096 words in main storage. This tests the ability to read into and out of main storage through use of a series of branches.
3. A test of the binary trigger. This tests the ability of the binary trigger to be stepped on and off .
4. A test of the read only address register (ROAR). This tests the ability of the ROAR bits to be turned on and off, one by one.
5. A test of the ROS group-readout op codes. This tests the ability to read a word from ROS and select the proper group.
6. A test of ROS parity check circuits.

Testing is resumed following a halt by pressing the start key. If all tests pass, the following halt occurs:

P	P	P	P
$1 F F$	$0 F F$	$1 F F$	$1 F F$

The tests comprise three FLT records; the first resets the binary trigger, the second is the main storage test, and the third contains the rest of the tests. Records two and three are automatically called by using the "request for FLT load" (op code 0A).

FLT Load Checking Program

The following program can be used to generate a tape of 30 -byte (hex) records (48 decimal) used to check the FLT load circuits. Loading the 30 -byte (hex) records (48 decimal) with FLT load is a good check of the FLT load circuits.

Tape Generate Program

This program will write a series of 30 -byte (hex) records (48 decimal) on 9-track tape or on 7-track tape with data convert.

Location	Data	
0000	$* 0000000$	*Enable channel to be used
0004	00000300	
0048	00000400	CAW
0078	$* 0000000$	*Enable channel to be used
007 O	00000300	
0300	$9 C 000 * 80$	SIO *channel used
0304	47 FO 0304	branch
0400	01000600	CCW
0404	20000030	30 -byte (hex) count (48 decimal)

Lecation	Data	
0600	80808080	
0604	80808080	
0608	00000000	This 12-word record is written
060C	00000000	on tape and is read in as the
0610	AA AA AA AA	6 -word record in step 4, when
0614	55555555	the FLT load ORs a pair of
0618	FF 00 FF 00	tape words into one word to
061C	00 FF 00 FF	load into storage.
0620	FO 80 FO 80	
0624	OF 80 OF 80	
0628	80808080	
062C	80808080	

Loading the Test Program

1. Mount the tape of continuous records that you generated.
2. Set FLT mode switch to LOAD.
3. Set FLT control switch to HALT AFTER LOAD LOAD.
4. Set load unit controls and depress LOAD button.

The first and second words on tape are OR'ed and loaded into the first word location in main storage; the third and fourth words on tape are OR'ed and loaded into the second word location in main storage, and so on, until the first six word locations of main storage are loaded with the twelve words of the record on tape. The six main storage locations should be:

Location	Data	Parity Bits	Operation
0000	80808080	0	No Op
0004	00000000	F	Test SDR Bin Tgr Off
0008	FF FF FF FF	F	Test SDR Bin Tgr On
$000 C$	FF FF FF FF	F	Test SDR Bin Tgr Off
0010	FF 80 FF 80	A	Request FLT Load
0014	80808080	0	No Op

Test Methods (Mask and Expected Response)
The use of a mask and expected response is best explained using examples. Refer to Figure 27 in connection with the following description. In main store mode, FLT words are sent from storage locations into the SDR. The parity bits of these FLT words are then gated into FLT op reg (2-5). Note that there is absolutely no correlation between the parity bits and the data bytes of these FLT words. Note also that these parity bits may be OR'ed with parity bits already in the SDR (due to preceding op

Storage Location	SDR Data	$\begin{aligned} & \text { FLT Op } \\ & \text { Reg }(2-5) \end{aligned}$	Operation	SDR Byte 0	Comments
038	80001000	011	SDR (19-30) to ROAR; reset bin trigger.	10000000	Set ROAR to 800; word from 038 in SDR.
${ }^{03 C}$	80008000	0101	ROAR to SDR (6-17) and OR with next word (mask) from storage.	10000000	Word from 03C in SDR.
1---	02000000	----		00000010	Actual response in SDR.
0^{040}	FDFFFFFF	111	Step bin trigger if SDR (OR'ed result) is all l's.	ו1ו1ו1ו1	Next storage word (mask) in SDR.
(.-.... 044 Example 1	FFFFFFFF FFFFFFFF	1111	Step bin trigger if SDR (expected response) is all 1's.	$\begin{aligned} & 11111111 \\ & 11111111 \end{aligned}$	OR'ed result in SDR. Expected response in SDR.
054	80000000	0111	SDR (19-30) to ROAR; reset bin trigger.	10000000	Set ROAR to 000; word from 054 in SDR.
0^{058}	80008000	0101	ROAR to SDR ($6-17$) and OR with next word (mask) from storage.	10000000	Word from 058 in SDR.
---	00000000	----		00000000	Actual response in SDR.
${ }^{05 C}$	FDFFFFFF	1111	Step bin trigger if SDR (OR'ed result) is all l's.	11111101	Next storage word (mask) in SDR.
-----	FDFFFFFF	---	----	11111101	OR'ed result in SDR.
060 Example 2	FDFFFFFF	1111	Step bin trigger if SDR (expected response) is all l's.	11111101	Expected response in SDR.

FIGURE 27. MASK AND EXPECTED RESPONSE EXAMPLES
code 01-05) before they are sent to the FLT op reg. When this OR'ing occurs, the entire word (data and parity bits) is OR'ed with the SDR contents. This OR'ed result remains in the SDR until replaced with new information. The FLT op reg contents determine what operation is to be performed.

Consider a main store mode hardcore test which sets $\operatorname{ROAR}(0)$ to a 1 . The actual response, ROAR $(0-11)$, is gated to $\operatorname{SDR}(6-17)$ and OR^{\prime} ed with the mask word ($0-31$) which is all 1's except for bit position six. If $\operatorname{ROAR}(0)$ is actually set to a 1 , the OR'ed result will be all 1's (Figure 27, Example 1).

If the test is for a reset of $\operatorname{ROAR}(0)$, the actual response will not have bit position six on (if successful). This actual response will be OR'ed with a mask of all 1's except for bit position six. If this OR'ed result is not all 1's when tested, the binary trigger will not be turned on. The second test, using the expected response, will not step the binary trigger as the expected response will not be all 1's (Figure 27, Example 2).

A successful test is achieved when the binary trigger is off after the testing of the expected result. Thus for a successful test, the binary trigger is stepped twice (Example 1) or not at all (Example 2).

MS Mode ROS Bit Tests

The main store mode ROS bit tests consist of a string of fault-detecting tests with one test for every ROS bit. Each test consists of a sequence of words in main storage. Test format is:

Word	Op	Function
1	07	SDR (19-30) to ROAR and reset binary trigger (18-30 for emulators).
2	01, 2, 3, 4	Selected ROSDR group to SDR and OR with next word (mask) from storage.
3	0F	Step binary trigger if SDR is all 1's. Mask in data field.
4	OF	Step binary trigger if SDR is all 1 's. Expected response in data field.
5	0E	SDR (12-31) to LAR if binary trigger is off (causes branch to specified address +4).
6	00	No-op (necessary to execute branch).
7	0B	Inhibit SAR clock (to loop on same word in SDR). Word address, expected response, and bit number in data field.
8	0A	Call for FLT load (last word of record).

Words 1-7 are repeated for every bit in the ROS word. Word 8 is the last word of the test record.

Word 2 causes a portion of the ROS data register (ROSDR) to be placed in SDR. Word 3 is a mask word and is OR'ed into SDR by inhibiting the normal SDR reset. This mask consists of 1's in all positions except for the bit position to be tested. The op portion of this word causes an all 1's test to be performed on the SDR. If the test is met, indicating that the bit being tested is a 1 , the binary trigger is stepped.

Word 4, the expected response, is placed in SDR and the all 1 's test is repeated. If this test is met, indicating that the expected bit is also a 1 , the binary trigger is stepped again. If both the actual response bit and expected response bit are 1 's, the trigger will have stepped twice and will be off. Similarly, if both bits are 0 's, the trigger will be off. The trigger is on only if the actual response bit and expected response bit differ; therefore, it serves as the basis for a pass/fail decision.

Word 5 tests the binary trigger; if it is off, the program branches to the next test. If this conditional branch is not taken, indicating that the bit under test has not been read out correctly, word 7 is executed continuously by inhibiting the SAR clock. The effect is that of a diagnostic stop; the data portion of this word contains the address of the ROS word under test, and the bit in error. This information is displayed in the SDR. Figure 28 is a typical example of a ROS bit test.

Testing may be continued after a diagnostic stop by pressing the start pushbutton. When a fault exists, it normally causes many tests to fail. For example, a faulty sense amplifier indicates the same bit is incorrect in many unconnected words. By examining the addresses (both word and bit position) of every diagnostic stop, some measure of faultlocalization is possible.

Running time for the test tape containing the ROS bit tests, and the hardcore tests preceding them, is approximately 3-4 minutes (on a good machine with no failures).

ROS MODE FLT's

ROS mode FLT's are the second step in the 'bootstrap" sequence begun with the main store mode FLT's. They are on the FLT ROS mode tape (or FLT disk pack 4) and are loaded with an FLT load. ROS mode FLT's are executed under microprogram control and assume a properly functioning ROS.

FIGURE 28. MS MODE ROS BIT TEST

The ROS mode FLT's consist of hardcore tests, zero-cycle tests, and one-cycle tests.

ROS Mode Hardcore Tests

The ROS mode hardcore tests (Figure 23) check out the pass/fail triggers, control stats and counters, and the scan-in and scan-out kernels in ROS. The tests are executed via a series of linkage control words (LCW's) which exercise specific microprogram steps used by the FLT controls. Failures cause a halt or loop, and a listing must be consulted. These tests are placed first on the ROS mode FLT tape. See Figure 29 for a hardcore test sample.

NOTE: This is an actual ROS mode hardcore test, EC level 255452,
for the progressive scan stat (PSS). This flowchart is for instructional
purposes only, as future engineering changes may alter the method of testing.

FIGURE 29. HARDCORE TEST SAMPLE: ROS MODE (PART I OF 2)

The zero-cycle tests are between the ROS mode hardcore and one-cycle tests. Zero-cycle tests insure that all triggers, for which scan-in paths (via adder out bus or emit field) and scan-out paths (via scan bus to SDR) are provided, can be set and reset.

The format and mode of execution is similar for both zero-cycle and one-cycle tests, however, documentation for these tests is different. A diagnostic index, containing a suspect card list, is provided for the zero-cycle tests. Only the index number displayed on termination and the function that the test was trying to perform are given.

One-cycle tests check the combinational logic between triggers. These tests follow the zero-cycle tests and are the last series of FLT's run. The successful running of all previous tests (on FLT tapes or FLT disk packs) assures that the controls and areas needed to run the one-cycle tests are functioning correctly. If a failure which should have been caught by hardcore or zero-cycle tests appears now, a wrong conclusion may be reached.

A scoping index (Scopex) is provided for the onecycle tests. This index shows the logic that is sensitive for each individual test.

The one-cycle tests are divided into a series of segments. These segments test different areas of logic independently. Checking for intermittent failures is achieved by repeating each test 16 times before reaching a conclusion as to whether the test passed or failed. If the test both passes and fails, an intermittent failure has occurred.

Figure 30 shows the method used (via FLT load) to enter the ROS mode zero/one-cycle tests.

Zero/One-Cycle Test Methods

Each FLT cycle test uses its own individual test program consisting of 22 consecutive test words in storage. These cycle test programs are read into storage (via FLT load) from the FLT ROS mode tape or disk pack. There are approximately 181 cycle test programs on each tape record except for the last record of each segment which is variable. Figure 31 shows the word format of the cycle test programs. Figure 32 is a simplified flowchart of the FLT zero/one-cycle tests. ROS mode zero/onecycle tests are performed as follows:

FIGURE 30. FLT LOAD TO CYCLE TFSTS

ROS Kernel Using	Test Word	Bits	Function
Scan-In	2	0,1	PSW 32,33
		3,4	M byte ctr
		5-8	Length ctr " 2 (G2)
		12-15	J Reg
		16-19	MD ctr
		21-24	F Reg
		26-31	PSW 34-39
		PO P3	Byte Stats
	2	0,1	Sets carry stat if either bit is on
		8-11	Storage protect key (PSW 8-11)
		15-16	Syllable in op buffer stat is set to one
		23-30	if both bits equal zero PSW 0-7
		PO-P3	General purpose stats 4-7
	3		L sign stat
		24-27	Length ctr "1 (GI)
		31	Q Reg
	4	P1-P3	CPU mover function reg
		0	R sign stat
		12-15	PSW 12-15
		PO-P3	General purpose stats 0-3
	5	30-31	L byte ctr
		P2-P3	Local store function reg
	6	30-31	1/O reg
		P3, P2, P1	1/O mover function reg
	7		M reg
	8		L reg
	9		R reg 1/O interface reg
	11		1/O interface reg H reg

FIGURE 31. FLT CYCLE TESTS: WORD FORMAT

Scan-In

The first 11 test words are used to place known values in various registers via the scan-in kernel. This kernel takes 11 consecutive words, addressed by the IAR, to perform the operation. It does nothing else to IAR except advance the address prior to reading the next word from storage.

Fetch/Execute LCW

At the completion of the scan-in sequence, test word 12 is read from storage into the SDR via the fetch LCW kernel. Word 12 is a linkage control word (LCW) whose contents are set into ROAR, the sequence counter, the supervisory stat (set on), the progressive scan and supervisory enable storage stats (set off), and the I/O mode stat (set according to SDR (7) of the 12 th word). The LCW contents are set into the preceding items via the execute LCW kernel.

Clock Advance

At this point ROS executes the ROS word specified by ROAR, and the sequence counter is stepped up by one. This operation is repeated until the sequence

ROS Kernel Using	Test Word	Bits	Function
Fetch/ Execute LCW	12	$\begin{aligned} & 0-2 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 19-30 \end{aligned}$	Sequence counter Supervisory enable storage stat Progressive scan stat Supervisory stat 1/O mode stat ROAR (18-30 for emulators)
Scan- Out	$\begin{aligned} & 13 \\ & 14 \end{aligned}$		Actual response address Mask address
FLT Compare and Branch	15 16 17 18 19 20 21 22		Mask Expected response (word to be tested) (X) Starting address this test (used 15 times) ($\mathrm{X}+1$) Starting address next test (good test or start after checking failure) $(X+2)$ Termination bit (7) and Scopex information $(X+3)$ Starting address this test (restart after termination) $(X+4)$ Starting address next test (forced pass after termination) Test number and segment number

counter equals seven, which occurs after one or two cycles for the tests being described. When the sequence counter steps to seven, a hardware address $(2 \mathrm{C} 0)$ is forced into ROAR. This address is the beginning of the scan-out kernel.

Zero-Cycle: If the ROS word used during clock advance is 000 , we have a zero-cycle test. When a trigger is being tested, three patterns are applied; the first and third reset the trigger, and the second sets it. A random pattern is applied to all other triggers while any particular trigger is being tested to help in the detection of noise and interference problems.

One-Cycle: The ROS word used in one-cycle tests allows a data transfer within CPU. This is normally accomplished in a single cycle except for two areas in which two cycles are needed (segments 4 and 6).

Scan-Out

The scan-out kernel stores test words 13 and 14 in hex address locations 80 and 84 for future use in the compare and branch kernel. Next, scan-out of the various registers and stats is begun. Contents of CPU registers and triggers (14 words) are stored

NOTES:

1. See Figure 15 for details on all kernels except the FLT compare and branch kemel (Figure 33).
2. See Figure 31 for word format of FLT cycle tests.
3. FLT's to date(EC level 255452)always set the SS--on, PSS--off, and the SESS--off.
figure 32. flt Zero / ONE-CYCLE TESTS
in storage hex address 088-0BC. Channel status (17 words) is stored in hex addresses 0C0-104. See Figure 12 for details. When scan-out is complete, the compare and branch kernel is entered.

FLT Compare and Branch

The FLT compare and branch kernel compares the actual response with the expected response and sets the pass/fail triggers on the results. At the same time, the scan test counter is stepped up by one and a return to the beginning of the current test (scan-in) is made. This occurs 16 times except for the 16 th pass which goes to the branch section of the kernel instead of returning to the beginning of the current test. See Figure 33, FLT Compare and Branch Kernel.

In the branch section of the kernel, both the pass and fail triggers are tested. The fail trigger will be on if the OR'ed result of the mask and actual response was different than the expected response for any of the 16 passes. The pass trigger will be on if the OR'ed result of the mask and actual response was the same as the expected response for any of the 16 passes. If a test both passes and fails during execution, the machine stops after the 16 th pass with both the pass and fail triggers on, thus indicating an intermittent failure has occurred.

If both the pass and fail triggers are off at the end of the 16 passes, the machine stops. This condition indicates a failure in the checking circuits with a return to the ROS mode hardcore tests advisable. Pressing the start PB on this stop will force a pass to the next test even though the FLT mode switch is not on the force pass position.

FLT OPERATING/REPAIR PROCEDURES

This section contains the operating and repair procedures for running FLT's from tape or disk. Note that the main storage ripple test is always performed before attempting to run FLT's. For convenience, the operating procedures for tape and disk are senarated. As repair procedures are the same for both tape-and disk-originating FLT's, no distinction is made between the two.

Figure 34 shows the FLT run and repair procedures for main store mode and ROS mode tests.
Figure 35 is a cycle test repair procedure.
FLT's are run in the following sequence only after the main storage ripple test has been run successfully:

1. Main store mode hardcore tests
2. Main store mode ROS bit tests
3. ROS mode hardcore tests
4. ROS mode cycle tests

Note: Disable ROS retry by jumpering 01 C E3C4D11 to a D08 pin before running or biasing FLT's, diagnostics, or progressive scan.

FIGURE 33. FLT COMPARE AND BRANCH KERNEL

figure 34. flt run and repair procedure

FIGURE 35. CYCLE TEST REPAIR PROCEDURE

Main Storage Ripple Test

Following is the procedure for running the main storage ripple test:

1. Set the storage test rotary switch to the zeros position.
2. Press the write lever switch.
3. Press the start key. IAR andSAR indicators 15* through 29 should blink and SDR should contain ones.
4. Return the write lever switch to the neutral position.
5. Press stop on check. IAR and SAR indicators 15* through 29 should blink and SDR should contain zeros. Return stop on check switch to normal.
6. Repeat steps $2-5$ with the rotary switch set to the ones position. Indications should be the same except SDR should contain all ones at step 5 .

Note: While running the ones test, set the storage test switch to the process position. This gates the storage parity bits to the FLT op reg (2-5) thus turning the binary trigger on and off.
7. Repair any failures before continuing.
8. Return the main storage test controls to normal.

[^0]
Skipping Bad FLT Records

If a record on tape or disk cannot be read in correctly, and it is desired to skip that record and read in the next record, the following procedure must be followed:

For Tape: With the FLT control switch not on auto reread, depress the system reset PB and then depress the load PB.

For Disk: With the FLT control switch not on auto reread, set the FLT mode switch to the force pass position and depress the system reset PB. (This steps the cylinder counter up by one.) Next, set the FLT mode switch back to the load position and then depress the load PB.

Disk (FLT) Operating Procedures

The following procedures are for disk-originating FLT's and are not to be confused with the tapeoriginating FLT procedures which precede this section.

MS Mode Hardcore (Disk): For stops and loops not identified in this section, refer to the main store hardcore listing (FLT01) and check the stop codes to identify the failure.

1. Mount disk pack No. 1 containing the MS hardcore tests on a disk drive attached to a selector channel, start motor, and wait until unit is ready.

2 . Select the channel and disk drive address with the load unit switches (switch labeled 0-7 selects the channel).
3. Press system reset with the FLT mode switch in neutral.
4. Place the FLT mode switch in the load position.
5. Place the FLT control switch in the halt-after-load position.
6. Place the check control switch in the stop position.
7. Press the load key. The first record of MS hardcore is read into storage and the following indicators snould now be on:
a. Sequence counter indicators 1 and 2
(equal 3).
b. Sequence stat 3 .
c. Sequence counter mode.
d. Load light.

IAR should equal 024 (1st pack only).
IAR should equal 448C (2nd and 3rd packs).
8. Return the FLT control switch to process if the load was successful; otherwise, repair the load circuitry and reload (Figure 26).
9. Press start.
a. Record 1 is executed. If successful, record 1 calls in record 2 which, if successful, calls in record 3.
b. Record 3 will stop three times for ROS words FD5, FD6, and FD7. These words have bad parity to test ROS parity check circuits.
10. At the first stop, the hard stop indicator should be on.
11. Turn CPU roller 2 to display current ROS address (row 7).
12. Depress the force indicator lever switch; the ROS address shown should be FD5.
13. Press start. The ROS address should be FD6 and the hard stop indicator should be on.
14. Press start. The ROS address should be FD7 and the hard stop indicator should be on.
15. Press start. SDR indicates a successful stop as follows:

P	P	P	P
$1 F F$	$0 F F$	$1 F F$	$1 F F$

MS Mode ROS Bit Tests (Disk): The SDR is used for error analysis and error indications. See the main store mode ROS bit test listing (FLT04) for stops and loops not identified.

1. Press start (following a successful halt of MS hardcore tests).
2. ROS bit test record 1 loads, executes, and calls for the next record.
3. ROS bit test records continue to be executed until the termination record is sensed at the end of the disk pack. If no stops occurred, disk pack No. 1 successfully checked out ROS bits for planes 0-5.

$\mathrm{LAR}=$	004			
$\mathrm{SDR}=$	P	P	P	P
	1 FF	0 FF	1 FF	1 F 1

4. Remove disk pack No. 1 and mount disk pack No. 2 , start disk drive motor and wait for the unit to become ready.
5. Repeat steps 2-8 as described under ''MS Mode Hardcore (Disk). "
6. Press the start key.
7. ROS bit records continue to be executed until the termination record is sensed at the end of the disk pack. If no stops occurred, disk pack No. 2 successfully checked out ROS bits for planes 6-B.

$$
\begin{array}{rlll}
\mathrm{IAR}= & 004 \\
\mathrm{SDR}= & \mathrm{P} & \mathrm{P} & \mathrm{P} \\
& 1 \mathrm{FF} & 0 \mathrm{FF} & 1 \mathrm{FF}
\end{array} 1 \mathrm{P} 2
$$

8. Remove disk pack No. 2 and mount disk pack No. 3. Start disk drive motor and wait for the unit to become ready.
9. Repeat steps 2-8 as described under "MS Mode Hardcore (Disk)."
10. Press start.
11. ROS bit test records continue to be executed until the first good stop at location FD5. This word has bad parity in group 1 and tests the ROS parity check circuits. The hard stop indicator should be on.
12. Press the force indicator switch. The current ROS address should be FD5. At this stop, set the check control switch to disable and press start.
13. SDR indicates a successful stop as follows:

P	P	P	P
$1 F F$	$0 F F$	$1 F F$	$1 F F$

The IAR should equal 1581 (hex).

ROS Mode Hardcore (Disk): For error stops and loops, refer to the ROS hardcore listing (FLT02).

1. Mount disk pack No. 4 containing ROS hardcore, zero-cycle, and one-cycle tests on a disk drive attached to a selector channel, start file motor, and wait until the unit becomes ready.
2. Select the unit with the load unit rotary switches.
3. Make sure the check control switch is set to disable.
4. Set the FLT control switch to halt after load.
5. Press system reset with the FLT mode lever switch in neutral.
6. Place the FLT mode lever switch in the load position.
7. Press the load pushbuiton. IAR should equal 3 FFC.
8. Place the FLT control switch in the process position.
9. Press the start PB. The IAR should equal 490 (hex), and the fail and binary triggers should be on. The SDR should contain the following:

$$
\begin{array}{llll}
P & P & P & P \\
1 F F & 0 F F & 1 F F & 1 F F
\end{array}
$$

10. Place the FLT control switch in the process position.

ROS Mode Cycle Tests (Disk): For stops not identified in this section, refer to the repair procedures.

1. The ROS mode hardcore tests should have run successfully.
2. Press the start PB.
3. The zero-cycle tests are loaded into storage and executed.
4. Completion of the zero-cycle tests automatically calls in the one-cycle tests.
5. Completion of the one-cycle tests results in a successful stop with the SDR equal to the following:

P	P	P	P
$1 F F$	$0 F F$	$1 F F$	$1 F F$

6. Neutralize all the FLT controls (FLT mode switch off, FLT control switch on process, and check control switch on process).
7. Using the storage test switches, write all ones in storage to restore good parity to storage.

Cycle Test Repair Procedures (Tape/Disk)

Note: The FLT compare and branch microprogram (QY510) cannot be single-cycled correctly unless the FLT mode switch is in the neutral (off) position.

If a great deal of trouble is encountered on a particular test failure, make a note of it and then continue on to the following tests to attempt to find an easier failure to troubleshoot.

The following procedure may be used to locate problems that cause FLT's to stop before completing all tests.

1. Check the pass/fail triggers; either fail, or both pass and fail should be on.
2. Check SDR. Byte zero contains hex 01 (bit 7 is the termination bit). Bits 20-31 contain the hex value to use when referring to Scopex. If bits $16-19$ are other than zero, stop is in a one-cycle test. Go to item 17. If bits 16-19 are zero, go to item 4 .
3. If items 1 and 2 are not true, check LAR. If IAR is less than 148 (hex), the first six words of the record were not executed properly. Refer to the record format section. If IAR is more than 148 (hex), storage location 84 will contain the mask address for the current test.

Note: As an aid in finding the error, bypass this test to see if there are multiple errors in the zerocycle tests. If no multiple errors, turn back to first error.
4. Get Scopex for the zero-cycle tests.
5. Find the hex value in Scopex that agrees with SDR 20-31. The column following the test number indicates what the test was trying to do with the trigger. R or 0 equals reset; S or 1 equals set. The next column contains the location of the card that the failing trigger is on. Change the card.
6. Press start.
7. If the card was bad, testing continues. Otherwise, SDR will contain the same hex value as in item 5.
8. If the card was not at fault, turn CPU roller 2 to position 7 and check that the current ROS address is 000 .
Y. Place the FLT control switch in repeat.
10. Set the ROS address compare switch to stop.
11. Place F49 in data keys 20-31 (checks scanin, QY110).
12. Turn CPU roller 1 or 2 (depending on the trigger being tested) to the position containing the failing trigger.
13. Press start.
14. If the block indicators light is on, use the force indicator switch to check the value. The trigger should be in the state that is being tested for. If not, refer to the logic and the scan-in paths. The logic involves a maximum of four cards on scan-in.
15. If scan-in is correct, place F4F in data keys 20-31 (QY510).
16. Press start. SDR contains the actual response. To find the tested bit, refer to Figure 36 and the logic.
17. For one-cycle tests, the segment number and test number are displayed in SDR (16-31). Find this number in the appropriate Scopex volume.
18. Rotate CPU roller 2 to position 7 (current ROS address) for one-cycle tests, or position 8 (previous ROS address) for two-cycle tests (segments four and six).
19. Place the value of the current ROS address for one-cycle tests, or the value of the previous ROS address for two-cycle tests (segments 4 and 6) in data keys (20-31). This is the stop address for static scoping. (Emulators use data keys 19-31.)
20. Place the FLT control switch in the repeat position.
21. Press start. The output point (first line) of the failing test may be scoped dynamically. All other points may be scoped either dynamically or statically.
22. To scope the output of the failing test dynamically:
a. Attach the sync lead to the sync box (positive sync).
b. Rotate the switch on the sync box to FLT cycle sync. If sync box is not a vailable, sync minus on B-D1C3D10 (KH331).
c. Set the scope time base to 0.1 microseconds/ centimeter. (This displays two cycles.)
d. For two-cycle tests sync on first sync pulse.
23. The area of the scope face to check depends on the circuitry being scoped.
a. For group A, look during and after output trigger clock time (the group is indicated in Scopex next to test number. See Figure 9).
b. For group B, look during clock time.
c. For group C, look before and during clock time.
d. For group D, look before clock time.

Figure 34 is a simplified description of the following steps (24-29):
24. Place the scope probe on the output point. If the output level agrees with Scopex and holds that value until logged (see logout chart), check the test number and segment number (step 17) with FLT control switch in process. If step 17 is correct, check the logout circuitry. If the output level agrees with Scopex and does not hold its value until logged (a clock pulse is gated to the trigger before it is logged, or an input has changed during scan-out) or if it does not agree with Scopex, go to step 25 (static) or to step 26 (dynamic).
25. Statically scope as follows:
a. Set the ROS address compare switch to stop. Machine will stop unless the wrong ROS address is set up. (See step 18.)
b. If the check register gated indicator is on, go to step 26 ; otherwise, continue pressing start until the indicator comes on.
26. Scope the G / F entries. If the G / F entries do not agree with Scopex, continue; otherwise, go to step 29.
27. Check to see if the output point is listed as an entry.
a. If the output point is also an entry and this is the error register (KT011-031), ignore this entry and scope other G/F entries. If the output point is also an entry and this is logic (KS101-171, KS201-231, or RP011-021), these triggers have latch-back paths. Refer to logic and repair or bypass the test(s) (step 28) till the output point is not an entry.
b. If the output point is not an entry, bypass the test(s) (step 28) until this net (G/F entry, step 26) is not listed as an entry. If there are no similar failures, return to the original stop, refer to the logic and repair (scanin, dead entry, or ROSDR failure).
28. To bypass tests, place the FLT mode switch in the force pass position, press start, return the FLT mode switch to the load position, and press start again.
29. Scope the G/F points in order after the output point.
a. If there are no G / F points, change the cards listed at the end of the test.
b. If a G/F point agrees with the Scopex:

1. Go to the previous bad G/F point and scope its inputs (FED BY).
2. If the inputs agree with Scopex, the card or some other point in the failing net is bad.

figure 36. FIt SCAN-IN, PARITY GENERATION, AND SCAN-OUT
3. If any input is bad, follow its inputs until a point is found with all inputs good. This point is in the failing net, and the card or some other point in the net is bad.
c. If there are no G/F points listed and no cards listed, or if none of the G/F points agree with Scopex, refer to the logic and scope the dead entries.

Checkout After Repair

After effecting an FLT repair, rerun all FLT's to be sure of the fix. Use storage ripple (all ones) to put all good parity in storage (FLT's use both good and bad parity), and neutralize all FLT controls.

FLT DOCUMENTATION

This section describes documentation presently available for the Model 50 fault locating tests.

MS Mode Hardcore: Documentation consists of a program listing (FLT01) of the tests as they are in storage. This includes the op code, data, function, and IAR value. There is also a table provided for SAR and/or IAR failures.

MS Mode ROS Bit Tests: Documentation consists of a listing (FLT04) providing samples of the first two tests of record 1 and an explanation of how to determine the starting address of a failing test. This includes op code, data, function, and IAR and SDR values.

ROS Mode Hardcore: Documentation consists of a program listing (FLT02) of the tests as they are in storage. This includes data, function, and IAR values.

ROS Mode Zero-Cycle Tests: The zero-cycle test documentation is shown in Figure 37. The first column is the test number in hex. This is the number displayed in SDR bits $20-31$ on a termination.

The second column contains two characters which show the condition the trigger should attain for the test. The first character indicates whether the trigger should be set (S) or reset (R) by the test, and the second character tells whether the scope point given should be an up (1) or a down (0) level. The only combinations that appear are R0 and S1.

The third column gives the pin at which the value (0 or 1) should be observed; the fourth column provides a logic page reference to the trigger being tested, and the fifth column gives the name of the trigger.

Test No.	Desired Result	Test Point	Logic Page	Trigge Name
012D	RO	O1A-C4M4D12	RR071 AA4	R Reg 28
012 E	SI			
012 F	RO			
0130	RO	O1A-C4M4B12	RRO71 AB4	R Reg 29
0131	SI			
0132	RO			
0133	RO	O1A-C4M4J10	RR071 AC4	R Reg 30
0134	SI			
0135	RO			
0136	RO	O1A-C4M4G08	RRO71 AD4	R Reg 31
0137	51			
0138	RO			
0139	RO	O1A-C3H2D06	RROOI AEA	$M \operatorname{Reg} 0$
$013 A$	51			
0138	RO			
$013 C$	RO	O1A-C3H2D05	RMOO1AC4	$M \operatorname{Reg} 1$
013 D	SI			
013 E	RO			
Example: Stop at 133 indicates R register (30) does not reset offStop at 134 indicates R register (30) does not set on.Stop at 135 indicates R register (30) does not reset off				

FIGURE 37. ZERO-CYCLE TEST DOCUMENTATION

ROS Mode One-Cycle Tests (Scopex): The one-cycle test documentation (Scopex) is an automatically produced FLT document that allows conversion from the pattern displayed on the console lights to the suspect cards or nets. Scopex consists of a series of lists, each referring to one particular test. Lists are separated from the identification number of the test by asterisks. Each list consists of several lines of information, each line referring to a particular pin or net in the machine. A typical list is shown in Figure 38. When a test sequence stops, the hex number displayed in bytes two and three is the segment number and test number within the segment.

The term "tree" includes all nets encountered when tracing back from a trigger and continuing until each path reaches either another trigger or another entry to the combinational logic; e.g., I/O lines, console switches, etc. Entries to the trees are identified by the word "entry", if they are triggers which can be set to either state by the scan-in logic. If entry points are always at the same state at the conclusion of scan-in, they are "dead" entries.

Each line of the list refers to a net in the machines which, if it does not assume the value which the input pattern is trying to force it to, will cause the test to fail. These nets are given in the fourth column (net) of the list. The first line (Ref-AA) in each list corresponds to the output point, the next lines to the nets feeding this output point, and so on back through the logic to the entries. The pin at which each net can be observed is shown in the third column (Pin). Generally, only the nets having pins are printed on the list because the failure of a net internal to the card will nearly always propagate and give the wrong value on a pin. The second column
(V) of each list contains the values which should exist on these pins if the test passes. The time relative to the clock at which these points should be observed depends on the position of the block within the logic. The four classes defined, together with their observation times, follow. (The clock referred to is the clock controlling the output trigger, and the logic page for this trigger is always given in line AA. See Figure 39.)

1. Group A scoping values must be measured during and after clock time for the output trigger.
2. Group B must be measured during clock time.
3. Group C must be measured before and during clock time.
4. Group D must be measured before clock time.

The group to which a given line belongs is given next to the value which should be found.

Column 5 of Figure 38 (Ref) contains a reference list for all lines in the list starting from AA (the
exit point) and going through AZ, B, and BA , as far as necessary.

Column 6 (Fed By) contains the references of all sensitive nets feeding the block to which the line refers. This enables the sensitive tree to be built up. Because this is only the sensitive tree and not the complete tree, several points should be noted. The fact that the output of a block is sensitive can still allow either all or some of the inputs to be insensitive. Figure 40 shows that if net BA, a 1 , is sensitive, then neither of its inputs is sensitive because either can change without affecting the output. (The FLT concept assumes only a single failure.) In the case of net CA, a 1, net BA is sensitive but net $A B$ is insensitive.

Figure 40 shows that if net EA is sensitive, then neither net BA nor net DA is sensitive because either could change without affecting the output. However, going back to net AA we see that if this changes, then both inputs to E will change and the output will be affected. Therefore, net AA and both

of the blocks that are set by the scan-in circuitry and which are sensitive, no "fed by" information can be given and the word "entry" is printed in this space. To make it easy to identify these points in the main list, they are referenced differently. They are labeled A1-A9, B0-B9, etc. In the cases where a block is fed by several nets having sequential references, whether entries or in the main part of the list, the references are given as AD-AG, instead of AD, AE, AF, AG.

The only other information on Scopex concerns those cases where a net internal to a card is sensitive but does not propagate its sensitivity to a pin. In these cases, separate lines give the index number followed by the word "card" and then a list of the cards that are suspect.

PROGRESSIVE SCAN

Progressive scan is a method of testing the common channel, the multiplexor channel, and the selector channel, using no additional hardware to scan directly into each loggable storage element. Storage elements are set by controlling the action of the channel clocks and by applying patterns via the diagnose instruction.

Two tapes or disks are created in FLT format, one for testing the common channel and the selector channei, and the other for testing the common channel and the multiplexor channel.

The tests are written in a functional manner using the diagnose instruction as a vehicle for controlling clocks and the action of the I/O interface. Each group of tests making up a complete function is termed a series, and each series may be divided into routines.

Each test begins from a reset condition. A pattern is applied by diagnosing to ROS in a functional manner or after having set the interface (IF) register. Figure 41 shows details of the IF register. Each succeeding test includes ali the preceding testing plus the testing required for the next stopping point prior to logout.

Figures 42 and 43 show multiplexor channel and selector channel progressive scan run and repair procedures, respectively.

Note: Disable ROS retry by jumpering 01CE3C4D11 to a D08 pin before running or biasing FLT's, diagnostics, or progressive scan. (It is normal for the master check indicator to be on during the running of progressive scan tests.)

Test Descriptions

Progressive scan tests are identitied by a series number and a test number along with the name of the test. A typical selector channel series is composed of many individual tests. Each test performs all the operations of the previous test plus additional operations. An example of this appears in Figures

44 and 45 . Figure 46 shows how to determine the length of a progressive scan test when using the repeat instruction with the diagnose address.
Selector Channel Clock -- 100-001-006
The selector channel clock is stepped to each point in its instruction scan sequence, logged out, and compared to a known good pattern. If there is a mismatch between logout and good pattern, the pertinent information is printed on the printer.

Start I/O Write -- 110-101
These tests are the start of true progressive scan. All other tests are modeled after this series. There are 12 stopping points between issuing a start I/O up to and including the second DTC of a start I/O ROS routine.

The selector channel and common channel are logged out when the start I/O microinstruction is given, at break-in for the first selector channel routine, and for each clock of each of two DTC's issued in start I/O routine.

The diagnose instruction is also used to functionally test the start I/O instruction. A description of some of this test follows. Figure 47 shows timing.

SIO Clock A1 -- 110-101: Common and selector channel are first reset. Diagnose instruction is used to scan into L register (unit address and channel), R register (command address), and M register (command code and data address). Next the IF register is set with the scan bit (stops the common channel clock) and the selector channel clock is allowed to advance to A1. The common channel clock will not run unless the diagnose instruction is counting ROS cycles. The diagnose instruction is now used with a count field of two to turn on the start I/O trigger in the common channel (ROS Addr 9BE). At this point the selector channel has acknowledged the start I/O, but it will not request a breakin until its clock reaches clock step. A \log is initiated with the selector channel clock at A1 and with the common channel start I/O trigger on.

Reg SIO Routine -- 110-102: The common and selector channels are again reset. The L, R, and M registers are scanned. The IF register is set to control the common channel clock and to set the selector channel clock at A1. ROS Addr 9BE is again addressed by diagnose instruction to turn on start I/O in the common channel. At this point, test 02 is at the same place as the end point of test 01. To advance to the next logout point, the IF register is set to advance the selector channel clock to clock step. A logout is taken. Normally at this point the selector channel requests the start

FIGURE 41. INTERFACE REGISTER AND FUNCTIONS

FIGURE 42. MULTIPLEXOR CHANNEL PROGRESSIVE SCAN RUN AND REPAIR PROCEDURE

FIGURE 43. SELECTOR CHANNEL PROGRESSIVE SCAN RUN AND REPAIR PROCEDURE (PART 1 OF 3)

FIGURE 43. SELECTOR CHANNEL PROG RESSIVE SCAN RUN AND REPAIR PROCEDURE (PART 2 OF 3)

Note: Scoping Loop:

Do IAR repeat on the diagnose oddress
for the failing test. Use FC5 ROS address for sync To check length of test, scope OIA C3C5D06.
Negative shift is the end of test.
To see the indicators as they are at the end
of test lift IAR repeat switch.

FIGURE 43. SELECTOR CHANNEL PROGRESSIVE SCAN RUN AND REPAIR PROCEDURE (PART 3 OF 3)

FIGIJRF 44. TEST SERIES 110.1 TEST OI (DIAGNOSE SECTION--START I/O WRITE SERIES)

TEST 01	TEST 02	TEST 03	TEST 04
Stop on A0	1. Repeat Test 001	1. Repeat Test 001 steps 1-7	1. Repeat Test 001 steps 1-7
CECC 1,6	steps 1-7 2. Stop on Clock Step	2. No clock Stop	2. No clock stop
Scan into L (UA and Ch) Scan into M (Op code and DA)	3. Link to Logout	3. Link to Logout	3. Link to NOP 919 $\mathrm{C}=3$
Scan into R (SP tag and CA)			(break in will occur)
Stop on A1 Link to St 1/O (905-QK 700) C=2			4. Link to Logout
Link to Logout			
St I/O Cl Al	Req St I/O Rtne	Req St 1/O Rtne	Break In St I/O Rtne

FIGURE 45. TYPICAL TEST SERIES (SERIES 110)

FIGURE 46. SCAN TEST TIMING PROCEDURE

TEST		R LR 1	R LR L	R LR L	Rir l/	R LR L/R	R LR 1	R LR L					
110-101	Run Common Channel Clock wCC STT I/O IF Reg Stop On AI sTI/O Cammon Channel Log												
110-102	Run Common Channel Clock WCC SIO If Reg Stop On AI If Reg Stop On CS Req SIO Rine Log												
110-103	Run Common Channel Clock WCC SIO If Reg Stop On AI IF Reg Stop No Clock Clock Step Req SIO Rtne Log												
110-104	Run Common Channel Clock WCC SIO IF Reg Stop On AI IF Reg Stop On No Clock Clock Step Req SIO Routine Priority Cycle Break In First I/O Cycle \log								010 		\square		
110-105	Run Common Channel Clock WCC STT I/O IF Reg Stop On AI IF Reg Stop On No Clock Clock Step Req SIO Rtre Priority Cycle Break In First I/O Cycle If Reg Stop On AO First DETC STO Rtne Sel Ch Cliock AO								O10 First Adder Sl Rtne 		B39 DTC 		
110-106	Run Common Chonnel Clock WCC STT I/O IF Reg Stop On AI IF Reg Stop On No Clock Clock Step Roq STO Rine Priority Cycle Break In First 1/O Cycle IF Reg Stop On AI First DTC SIO Rtne Sol Ch Clock AO Sol Ch Clock AI								8				

figure 47. start i/O Write timing

I/O routine and the common channel breaks in. However, since the common channel clock is stopped, the detect registers will not turn on even though the selector channel has provided a priority request.

Reg SIO Routine -- 110-103: This test is the same as the previous test, except that the clock pulse is allowed to run at normal machine speed (100 ns) rather than be at a dc level at logout. After the start I/O trigger is turned on, the IF register is set to allow the selector channel clock to advance from A1 through clock step. A logout is taken at this time.

Break-In SIO Routine -- 110-104: The channel is reset and the L, R, and M registers are set prior to diagnosing to start I/O. The IF register allows the selector channel clock to advance past clock step as in test 03. Because the selector channel has a priority request pending, the only requirement of the common channel is that it turn on a detect register and break in to the CPU. Because the common channel clock is stopped, it is necessary to get it running to break in. This is done by diagnosing to a ROS NOP (919) for a count of three. A count of three allows for a break-in and execution of the first microinstruction of the I/O routine. An exit can be made from the routine to a linkage control word at this time in order to prepare the IF register (selector channel clock) for any DTC's in the I/O routine. A logout is taken at breakin time.

First DTC A0 SIO -- 110-105: The channel is exercised to exactly the same place as in the previous test at logout time. It has executed the first microinstruction of the start I/O routine. An exit is now made from the I/O routine, and the IF register is set to stop the selector channel clock on A0. Next the linkage control word goes to the next ROS address in the routine for a count of two in order to issue the DTC to the channel. When the DTC is issued, the selector channel clock steps to A0. A logout is taken here.

First DTC A1 SIO -- 110-106: Everything is the same as the previous test except when an exit is made from the I/O routine after break-in, the IF register is set to stop the selector channel clock on A1. The diagnose instruction calls on the second microinstruction of the SIO routine for a count of two, and the selector channel stops on A1. A logout is taken.

Remaining tests are applied in the same fashion. The selector channel is forced to a known state (not
necessarily a reset state). Then the common channel is run to break in and issue DTC's. However, it is necessary to set the IF register in order to control the selector channel clock.

Test Patterns

The method used to obtain the good patterns is to apply the tests, logout the common and selector channels, and record the logout data as "good machine" patterns. Tests identical to those used for pattern generation are run, and the logout is compared to the pattern residing in storage. If a mismatch is sensed, the same type of information as provided in the selector channel clock test is given.

Selector Channel Tape or Disk

The tests on tape and disk appear in the following sequence:

1. Hardcore -- These tests check the hardware needed for running the progressive scan tests.
2. Common Channel -- These tests check the common channel for channel 0 operations (or channels 1,2 , or 3 , depending on the system configuration).
3. Selector Channel -- These tests exercise the external selector channel.

The tests are arranged so that the greatest coverage occurs in the first few series.

The first two records contain the progressive scan selector channel control program which is used to compare the logout of the machine to a known good logout. The print section of this control program prints or types a heading and a list of the failing triggers. The heading contains the test number and name, the time of failure (log point), the sync point, the loop numper (used for detecting intermittents) and the diagnose address (for looping).

Selector Channel Clock Control

Progressive scan tests the common channel and selector channel together. Both the common and the selector channel clocks are controlled by the diagnose instruction. Tests can therefore be run so that selector channel A clock can be stopped on any clock pulse for each data transfer control (DTC) signal issued by the common channel.

Either a DTC signal or a pulse from the IF register will start the A clock, causing the clock to advance through one cycle. DTC must fall to allow the clock step control signal to rise (Figure 48). Clock outputs then initiate a series of predetermined channel actions. The particular routine performed determines the number of DTC signals sent to the selector channel.

The common channel clock (I / O clock) is inhibited by the diagnose word placing a bit in the IF register. The supervisory stat allows the clock to run for a given number of cycles.

The diagnose instruction begins from a normal I fetch and is executed in the following fashion:

1. The quantities $(B)+D$ and the immediate data field are assembled in the storage data register (SDR) and stored into main storage (hex address 80). From the SDR, bit 8 of $(\mathrm{B})+\mathrm{D}$ is put into the I / O mode stat. Bits 20-31 of (B) + D are put into ROAR. Simultaneously immediate data bits 1-3 are put into the sequence counter, bit 5 is put into the supervisory enable storage stat, and bits 6 and 7 are put into the progressive scan stat and the supervisory stat respectively.
2. ROS now begins executing microinstructions starting from the address put into its address register.
3. If the supervisory stat is on, the CPU clock is advanced synchronously with the sequence counter. When the counter reaches zero, the progressive scan stat is tested.
4. If the progressive scan stat is on, the word following the diagnose instruction is fetched from main storage and used as a linkage control word. Bits 19-30 of this word are put into ROAR. At the same time, bits $0-2$ are put into the sequence counter, bit 4 is put into the supervisory enable
storage stat, bits 5 and 6 are put into the progressive scan stat and the supervisory stat, and bit 7 is put into the I/O mode stat. ROS begins executing microinstructions starting at the address put into ROAR, and step 3 is repeated. This sequence can be extended any number of storage words, allowing the programmer to execute any number of ROS words in any desired order. This is the case in progressive scan.

Selector Channel Operating Procedure Example

The selector channel operating procedure can be summarized as follows:

1. Run all tests, printing either T (for terminate) or fail.
2. Run all tests again and print out the results of the error logout for each routine and load the next routine. When this is finished, by looking at the failing tests you can determine which test to loop on and then
3. Loop on the selected failing routine, bypassing error printouts to allow scoping.

Note: The complete progressive scan operating procedure for the selector channel is on page MC000-01, in Volume 1 Reference of Systems Diagrams.

Selector Channel Test Documentation

Figure 49 shows the type of printout supplied by the selector channel progressive scan tests. A test failure in either or both the common channel and selector channel is printed out. From this printout, the following information may be obtained:

1. Test number - Example: 1921-14.
2. Test name - Indicates what operation is being performed; for example, IF Control Ck-Op In Test.
3. Test cycle - Defines the point in operation at which the failure occurred; for example, Unit Select Drop Op In.
4. Sync point - ROS address for syncing; for example, ROS FC5.
5. Loop number - Tells the number of times the test was run before a failure occurred; for example, 00.
6. Diagnose address - Address to use to loop on the failing test for scoping. This is accomplished by setting IC to the diagnose address and using the repeat IAR switch; for example, 1 FD8.

SELECI OPTIONS IN 5010 AND INTERRUPT.

01	OY ----	PRINT T OR FAIL FOR EACH RTNE.
06	OY XXXX	PRINT FIRST ERROR OF EACH RTNE.
		LOOP ON RTNE XXXX.
07	OY XXXX	PRINT T OR FAIL FOR EACH RTNE.
		LOOP ON RTNE XXXX.
08	OY ----	SUPPRESS TPRINTING.
0A	OY XXXX	SUPPRESS TPRINTING.
		LOOP ON RTINE XXXX.
OD	OY----	LIST FAILING RTNES.
12	OY XXXX	LOOP ON TEST TT OF ROUTINE XXXX.
TT		SDR CONTAINS ADDRESS OF DIAGNOSE
T	EOOI	INSTRUCTION FOR LOOPING.
I	E0] 1	E indicates hardcore
T	E021	
T	C001	
T	C101	C indicates common channel
T	Clll	
T	C011	
T	Cl 21	
T	1000	
T	1011	
T	1021	
T	1022	Series
T	1031	
T	1032	
T	1100	Routine
T	1102	
	1903	

Storage location 5010 = WWOYXXXX
WW refers to $M C_{x x x}$ pages in Volume 1 of ALD Maintenance Diagrams Y denotes channel number:
$01=$ channcl 1
$10=$ channel 2
11 = channel 3
XXXX denotes series and routine
Storage location $5014=\mathrm{TT}$ (if EC 255458 or above)
TT denotes test number
TEST NUMBER TEST NAME IF CONTROL CK-OP IN TEST

TIME CYCLE	Unit-Select-Drop-OP IN
SYNC POINT	ROS FC5

1 GBI8IAT4 05 PREG END UP Example I (position 30) indicates the actual bit position (30)
0 GAl31AT2 09 CC PHASA ST2
1 GBI5IAG4 17 REQRPRI3-(Bit description)
1 GBIOIAC4 21 REQ REG 3
1 GVIllaj4 19 STOP REL
0 GSIllaj4 31 ENBL STAT IN the selector channel roller charts. now shown as 28-31 will soon be shown as positions 32-35 to eliminate this condition.
0 GRIOIAQ4 21 OP IN TEST
0 GRIOIAD4 23 SEL OUT
1 GBI71 AV4 28 POS REG TRF - (Example 2)
The error printout portion (1921-14) indicates an interface control check failure. Using the selector channel IF control check page (E1411-01), or the analysis page (E1321-O1) in Volume 1 of ALD Maintenance Diagrams, the failure can be quickly diagnosed.

To see if an indicator is on while looping IAR on the diagnose address, raise the repeat IAR switch and look at roller position. Lower switch to resume looping.

Selector Scan Monitor

Locations of information within the selector scan monitor are as follows:

EC Level 255458 and Above

Main Storage Location	
5 FO 0	Diagnose address of current instruction.
5 F 04	Current test number.
5 F 08	Diagnose address of previous instruction.
$5 \mathrm{F0C}$	Previous test number.
6F00-0E	Output printer addresses. If none on your
6F01-0B	system, store proper address in 6F03.
6F02-09	That is, 6F03-xx (active device).
	EC Levels Below 255458

Local Storage GP Register	Bits 22 and 23 determine which selector channel is in operation Add one to contents of this reg to get number of times test was executed (including failure).
00	May be diagnose address (current) if between 1000 and 4000. Anything outside of this range is useless.
10	Contains the main storage address of the last test number executed.

Main Storage Location	Address of output device. Normally 00E and must be changed if this is not your printer address.
66 D 3	Typewriter address. Normally 009.

To call next record from tape or disk, press reset PB and then load PB (if then in manual state, press start PB).

Multiplexor Channel Tape or Disk
The tests for the multiplexor channel appear in the following sequence:

1. Hardcore -- These tests check the hardware needed for running progressive scan tests on the multiplexor channel.
2. Common Channel -- These tests check out the hardware in the common channel needed for multiplexor channel operations.
3. Hardcore Check of I/O Stats, Buffer 1, and Buffer 2.
4. Multiplexor Channel Tests -- These tests exercise the external multiplexor channel.

The tests are arranged so that the greatest coverage occurs in the first few series.

The first record on tape contains the multiplexor channel progressive scan control and display program. This program compares the logout with a known good logout pattern for each test and displays in indicators the information needed for troubleshooting when a failure is detected.

Multiplexor Channel Operating Procedure

The complete progressive scan operating procedure for the multiplexor channe! is on page MC000-02 in Volume 1 of the ALD Maintenance Diagrams.

Multiplexor Channel Test Documentation

Hardcore and functional test documentation will take the form of flow charts and timing charts describing the series and the log points. These documents are in Volume 1 of the ALD Maintenance Diagrams.

DIAGNOSTIC PROGRAMS

Figure 50 is a list of Model 50 diagnostics. Each diagnostic is described in the documentation generated for it. Standard documentation for diagnostic programs consists of five major sections.

1. Purpose
2. Prerequisites
3. Use procedure
4. Printouts
5. Comments

Note: Disable ROS retry by jumpering 01CE3C4D11 to a D08 pin before running or biasing FLT's, diagnostics, or progressive scan.

MIDAS replaces diagnostic programs F101X through F1F6X.

MIDAS Sense Switches

Number	r Usage	Number	U Usage
0	Inhibit isolation	12	Test loader device
1	Lock CPU high	13	Unassigned
2	Lock CPU low	14	End report period
3-4	Unassigned	15	Extend report period
5-7	Isolation No. 0-7	16-17	Device control
8	Isolate	18	Alter output device ad-
9	Unassigned		dress
10	Loop isolation No.	19	Unassigned
	in 5-7	20-31	Unit address

MIDAS Display Codes

Wait Codes	
IAR Display	\quad Cause
AAAAAA	Program interrupt
FFFFFF	Program interrupt
CCCCCC	SVC interrupt
999999	Machine check
000 A9A	Machine check
$000 C 14$	External interrupt
000000	Input device failure on initial load

Program Section Number	Program Description	Normal Voltage	Marginal Voltages							
			Ch	CPU	Local Storage		Main Storage		Storage Protecr	
			6 Ml	6M2	6TC	GVAR	56 XY	602	Vs 1	V ref
			$\begin{aligned} & +6.0 v \\ & +0.5 v \\ & -0.5 v \end{aligned}$	$\begin{aligned} & +6.0 v \\ & +0.5 v \\ & -0.5 v \end{aligned}$	$\begin{gathered} \text { Opt } \\ \pm 5 \% \end{gathered}$	$\begin{gathered} \text { Opt } \\ \pm 5 \% \end{gathered}$	$\begin{gathered} \text { Opt } \\ \pm 4.5 \% \end{gathered}$	$\begin{gathered} \text { Opt } \\ \pm 4.5 \% \end{gathered}$	$\begin{gathered} \text { Opt } \\ \pm 6 \% \end{gathered}$	$\begin{array}{r} 1.4 \mathrm{v} \\ \pm 10 \% \end{array}$
MIDAS	CPU Tests	1 Pass		1 Pass						
$\begin{aligned} & 5340 X \\ & 5341 x \\ & 5342 X \end{aligned}$	Diagnose and Error Circuits	1 Pass		1 Pass						
E381X	60 Cycle Int Timing	1 Pass		1 Pass						
E383X	50 Cycle Int Timing	1 Pass		1 Pass						
F38FX	Meter Timing	1 Pass		1 Pass						
$\begin{aligned} & 5391 \mathrm{X} \text { thru } \\ & 5397 \mathrm{x} \\ & 5066 \end{aligned}$	Main Storage Tests	1 Pass			1 Pass	1 Pass				
53C1X	Local Storage	2 Min			2 Min	2 Min				
53C4X	Bump Storage	2 Min					2 Min	2 Min		
E3C9X	Storage Protect	2 Min		2 Min					2 Min	2 Min
$\begin{aligned} & \text { E421X thru } \\ & \text { E426X } \end{aligned}$	Mpx Channel Using 1442	1 Pass	1 Pass							
$\begin{aligned} & \text { E428x thru } \\ & \text { E42BX } \end{aligned}$	Mpx Channel Using 2540	1 Pass	1 Pass							
$\begin{aligned} & \text { E441X thru } \\ & \text { E446X } \end{aligned}$	Sel Channel Using 2400 Each Channel	1 Pass	1 Pass							
$\begin{aligned} & \text { F4D0X } \\ & \text { F4DIX } \end{aligned}$	Channel-to Channel Feature	1 Pass	1 Pass							
$\begin{aligned} & \text { F4EIX } \\ & \text { F4E2X } \end{aligned}$	Direct Control	1 Pass		1 Pass						
$\begin{aligned} & \text { 5FO1X } \\ & \text { 5F02X } \end{aligned}$	1410 Emulator instructions	1 Pass		1 Pass						
$\begin{aligned} & 5 F 03 X \\ & 5 F 04 X \end{aligned}$	1410 Emulator Ch Translators	1 Pass	1 Pass							
$\begin{aligned} & \text { 5F21X } \\ & \text { 5F23X thru } \\ & \text { 5F2AX } \end{aligned}$	7074 Emulator Instructions	1 Pass		1 Pass						
5350	ROS Ripple	1 Pass	1 Pass at limits of -12 ROS voltage							

FIGURE 50. MODEL 50 DIAGNOSTICS

Flashing Lights

AAAAAA and 555555 in IAR alternating every four seconds indicates output device not ready.

FF0000 and 00FFFF in IAR alternating every second indicates crisis.

MARGINAL CHECKING

Marginal checking is a technique used to detect the marginal operation of the most voltage-sensitive circuits in the system. These circuits have nominal levels of voltage and current at which they are designed to function. Each circuit operates within
certain margins (regulator output voltage limits above and below the nominal rating). However, aging and other factors cause a gradual deterioration in the operating characteristics of the circuits. By raising and lowering the regulator output voltage within the design margins, it is possible to inspect all the circuits powered by that voltage. On the basis of this inspection, any circuit approaching a failure condition may be replaced. This type of check is made periodically as a preventive-maintenance technique. Marginal checking is useful also as an aid in locating operator-reported failures.
Costly down time and many trouble calls can be a voided by using marginal checking to make failures less intermittent and more recognizable.

Nominal Voltages

The following regulators and their nominal outputs can be marginally checked:

Regulator	Nominal Output
1	+6 TC
1	+6 VAR
12	-12 ROS
3	+6 M1
4	+6 M2
14	+56 XY1
15	$+60 \mathrm{Z1}$
16	+56 XY2
17	+60 $\mathrm{Z2}$

Marginal Voltage Limits

The system control panel meter is color banded to show the marginal voltage limits. The actual marginal voltage limits are dependent on the results obtained by running shmoo-curves. The following are the specified operating limits.

$\underline{\text { Regulator }}$	Voltage Limits for Testing
1 (+6 TC)	$\pm 5 \%$ of the optimum local storage setting
1 (+6 VAR)	$\pm 5 \%$ of the optimum local storage setting
12 (-12 ROS)	± 2 volts of the optimum ROS setting
3 ($+6 \mathrm{M1}$))	
$\begin{aligned} & 4(+6 \mathrm{M} 2) \\ & 14(+56 \mathrm{XY} 1)) \end{aligned}$	$\pm .5$ volt
15 (+60 Z1)	
$\begin{aligned} & 16 \text { (+56 XY2) } \\ & 17(+60 \mathrm{Z} 2) \end{aligned}$	$\pm 41 / 2 \%$ of the optimum main storage setting

Note: Storage drivers may be damaged if these voltages exceed +68 volts.

Marginal Checking Procedure

All marginal checking controls and indicators are mounted on the system control panel. Each control has an indicator which is activated whenever the margin control is adjusted from its nominal level. Each control varies the output of one regulator. The independent control of each regulator allows several inputs to the same circuit to change at any one time. The marginal voltage select switch determines which voltage is monitored by the meter.

ERROR CHECKING

Identification

All units of the Model 50 are identified, grouped, and provided with a hardware-checking scheme that detects errors at the unit, indicates them at the system control panel, and identifies them as to unit
(for instance, power and overload sensing, cooling, data flow, address checking, channel errors, etc.). I/O errors occurring in a device or a control unit are not included except for their effects on the channels. Each CPU failure detection device has a unique indication in the error register.

Failure Detection Facilities

The data flow of the CPU is checked in eight-bit bytes. Control information is checked in bytes of varying length.

Power and Cooling Failure Detection

Power and overload failures are indicated by lights on the maintenance console. The specific unit at fault is indicated by a tripped circuit breaker or light in the power distribution unit (PDU).

Thermal failures (cooling) are indicated on the maintenance console by lights, one for each frame (CPU, storage, PDU).

CPU Parity Checking

The adder is parity checked and three levels of failure detection are provided: half-sum check, carry check, and full-sum check (adder output latch check).

A half-sum check indicates either incorrect parity on data entering the adder or a failure in the adder half-sum generation circuitry. The carry check indicates a failure in the carry lookahead circuitry. Full-sum checking, which is performed on the adder output latches, checks that correct parity has been generated for the developed sum, or that data entering the adder output latches from an external source (data keys, address keys, selector channel, etc.) has correct parity.

Because the adder is located in the data path between any two registers, it is used as the primary failure detection device for all register-to-register transfers. The adder output latch check also provides the checking for all transfers to and from main storage.

The mover is parity checked at both inputs as well as its output.

The three main groups of bits emerging from ROS are parity checked. Length counters G1 and G2, the L and M byte counters, and the MD counter are also parity checked. Control failures which are not covered by error detection circuitry, in general, cause data errors. For instance, a failure of the adder ingates would result in an invalid no-bit sum in the adder output latches.

SAR is also parity checked.

Timing Considerations

With the exception of the carry, mover output, and full-sum checks, all CPU failures cause the machine status to be frozen the cycle in which the error is detected. This is done by stopping the clock in time to prevent the set register pulse of the next cycle, thereby blocking the register ingating and preserving the contents of all registers.

The carry, mover output, and full-sum checks, however, are detected too late in the CPU cycle to block the next set register pulse. As a result, the clock is stopped one cycle later than the cycle in which the error is detected. In this case, the address of the microinstruction that was controlling the machine during the actual error cycle (previous ROS address) is available in a ROS address backup register. With this address available it is possible to "backup" to the previous cycle for error analysis.

Check Register

Each parity check circuit sets a unique bit in the check register. The table below shows the bit assignment for each position of the check register.

Bit 0	Halt-Sum 0-7
Bit 1	Half-Sum 8-15
Bit 2	Half-Sum 16-23
Bit 3	Half-Sum 24-31
Bit 4	Sum 0-7
Bit 5	Sum 8-15
Bit 6	Sum 16-23
Bit 7	Sum 24-31
Bit 8	Carry
Bit 9	L Byte Counter
Bit 10	M Byte Counter
Bit 11	MD Counter
Bit 12	Length Counter (G1)
Bit 13	Length Counter (G2)
Bit 14	Mover Left Input
Bit 15	Mover Right Input
Bit 16	Mover Output
Bit 17	Unused
Bit 18	Storage Address Register 8-15
Bit 19	Storage Address Register 16-23
Bit 20	Storage Address Register 24-31
Bit 21	ROS 1-30
Bit 22	ROS 32-55
Bit 23	ROS 57-89
Bit 24	Storage Protect
Bit 25	Reserved for LCS Summary Check
Bit 26	Log Request
Bit $27-31$	Reserved for Expansion

Bit 26 is turned on by the logout key or by the channel requesting an error logout. It may not represent an actual CPU error.

The error register is displayed on the system control panel and is included in the logout information. It can be reset by the check reset or system reset pushbuttons or by the diagnose instruction.

It is automatically reset at the conclusion of an error logout immediately prior to the machine check interrupt.

Multiplexor and Selector Channel Parity Checking

The multiplexor and selector channel data flow and addressing are parity checked on the following data paths and registers:

Control Checks

Byte Counter Parity Address Out Parity Operation Parity Routine Response Routine Positional End Control Validity

Interface Checks
Multiple Tags
Address In Parity
Address Compare
Status Parity
Time-out

In addition, the following CPU failure detection circuits are active: SAR, mover, adder, and ROS.

Data entering or leaving the interface is parity checked as is all data transferred between the channel and CPU (adder full-sum check). Detected data errors are not propagated into storage on read operations; data is cycled through the adder to correct the parity before it is stored (disable mode), or an error logout and machine check interrupt occur (process mode).

I/O Errors

I/O errors are handled by IOCS. No I/O error indicators are displayed on the maintenance console.

Main Storage Parity Checking

All main storage checking is performed in CPU. The adder output latches provide parity checking for all transfers to and from storage, because they are located in the data path between the storage data register (SDR) and the CFU working registers. The storage address register (SAR) is also parity checked.

The following data error handling rules apply during Model 50 storage operations:

1. On a fetch operation, data set into SDR and regenerated without being transferred into CPU is not checked. Checking occurs only when the word is transferred through the adder output latches into one of the CPU working registers. An error detected in this word sets the error register whether it is in an addressed byte or not.
2. During a store operation, data from CPU is checked on a full word basis even though only a portion of the word may be set into SDR. An error detected in this word sets the error register
whether it is in the addressed byte or not. Depending upon when the error is detected, three different actions occur with respect to SDR:
a. If the error is detected as SDR is being set (latch check), the data is stored uncorrected.
b. If the error is detected as the data to be stored is passing through the adder (halfsum check), SDR does not set to the data and zeros are stored instead. The bytes of SDR
which were to be replaced with data from CPU will have been reset.
c. If the error is detected after storage selection but in the cycle prior to the cycle in which SDR is set, the store operation is converted to a fetch and the data is regenerated without checking.
3. No checking is performed on data read from the cores during a store operation.

A preventive maintenance schedule for the Model 50 is shown on Figure 51. The asterisked items indicate the frequency that should be used for the first six months of system operation. Because component failures are more frequent during the first six months of operation, frequent preventive maintenance will minimize unscheduled maintenance during that period.

Preventive maintenance should be performed at a critical time, such as the first thing Monday morning or immediately after power has been down for an extended period.

Lamp Test

Use the lamp test switch on the maintenance panel to test and replace all defective lamps. Marginal voltage, frame thermal, open $C B$, and power check lamps are
not tested by the test switch, but should be checked by substitution or by duplicating the situation that would cause the lamp to indicate. The lamps are pluggable and can be replaced from the front of the pannel. Use CE tool \#461420 for removing lamp assemblies.

Diagnostics

Run all diagnostics (CPU and channel multiprograms using all multiplexor and selector channels available in order to get a maximum configuration in overlapped operation).

For biasing, vary the marginal check voltages per the marginal check specifications before running the diagnostics. Test for both upper and lower marginal check limits while running the diagnostics. Figure 50 is a listing of Model 50 diagnostics.

Unit	Item		Frequency (Weeks)						
			1	2	4	8	13	26	52
CPU	Lamp Test (Page 79) Run Diagnostics and FLT's (Page 74) Bias Diagnostics and FLT's (Page 74)	x \times \times \times		X		\times \times			
CPU and Channel	Run CPU and Channel Control Multiprogram Bias CPU and Channel Control Multiprogram	$\begin{aligned} & x \\ & x \end{aligned}$	*			*		X	
Channel	Run Diagnostics (Page 74) Bias Progressive Scan (Page 74)	$\begin{aligned} & x \\ & x \end{aligned}$	*		*	$\begin{aligned} & x \\ & x \end{aligned}$			
Main Storage (Includes Bump and Storage Protect)	Run Diagnostics (Page 74) Bias Diagnostics** (Page 84)	$\begin{aligned} & x \\ & x \end{aligned}$	*		*	$\begin{aligned} & x \\ & x \end{aligned}$			
Local Storage	Run Diagnostics (Page 74) Bias Diagnostics** (Page 76) Check Array Temperature (Page 92)	X x X	*		*	$\begin{aligned} & x \\ & x \end{aligned}$		X	
ROS - Retry	Check Timing (Page 95)	X						X	
Power System	Make Visual Checks	X						X	
Miscellaneous	Check Filters/Screens Check Fans/Blowers Check Usage Meter	X X X			X		X	X	

[^1]
CPU AND CHANNEL SERVICE CHECKS

Waveform Measurements

All waveform measurements for the 2050 Processing Unit are made to the following specifications (Figure 52):

1. The rise time of a pulse is the time required for the transition from 0.3 volts to 1.8 volts as the pulse is going in a positive direction.
2. The fall time of a pulse is the time required for the transition from 1.8 volts to 0.3 volts as the pulse is going in a negative direction.
3. The width of a pulse is measured from the 1.0 volt point at the beginning of the transition on the leading edge to the 1.0 volt point at the beginning of the transition of the trailing edge.
4. The delay between pulses is measured from the 1.0 volt point at the beginning of the transition of the leading edge of the first pulse to the same point on the next pulse.

2050 Clock

The 2050 clock consists of a 4-megacycle oscillator, which is frequency divided to 2 megacycles, and a number of circuit delays which can be adjusted. Oscillator pulses are shaped, delayed, and powered to meet all system requirements.

All 2050 clock timings are on ALD AA000 in Volume 1 of the ALD's.

MAIN STORAGE (MS) SERVICE CHECKS

Storage Test
A rotary switch on the panel selects one four test patterns to be applied to main storage. When the rotary switch is in the fifth position (process), the test light is off (in the operator control section). The four test positions are:

1. All ones
2. All zeros
3. Worst pattern
4. Reverse worst pattern

To operate the storage test:

1. Set the rotary switch to one of the four desired positions.
2. Press the start pushbutton.
3. Set the write lever switch down to write the desired pattern into storage. When the write lever is down, SDR contains all ones regardless of the position of the rotary switch.
4. Return the write lever switch to its normal position to read/regen storage.
5. With the stop on check lever down, IAR contains the address of the error word. Each depression of the start pushbutton resumes storage scanning until the next error word is detected.

Main Storage Test Points

Figure 53 shows important test points for the main storage unit.
$T_{r}=$ Rise $T i m e$
$T_{f}^{r}=$ Fall Time
$T_{w}=$ Pulse Width
$T_{d}=$ Delay

FIGURE 52. WAVEFORM MEASUREMENTS

Bit	A Segment	B Segment	C Segment	D Segment	Gate Pin M9A Strobe Pin M9	SenseAmp Output	Final Amp In	Fina: Aune Out
0	B1L2 B3/B4	B1K2 B3/B4	BIL4 B3/B4	B1K4 B3/B4	B12	B7	B1J4 Glo	$31 J 4$ G12
1	B1L2 D5/D6	B1K2 D5/D6	B1L4 D5/D6	B1K4 D5/D6	B13	D7	BlJ4 G9	B1J4 J12
2	BIL2 B8/B9	B1K2 B8/B9	BIL4 B8/B9	BIK4 B8/B9	D12	G2	BiJ4 G3	B1J4 D2
3	B1L2 B10/D10	B1K2 B10/D10	BIL4 B10/D10	B1K4 B10/D 10	G4	D13	B1J4 G2	B1J4 J05
4	B1 J2 B3/B4	B1H2 B3/B4	B1H4 B3/B4	B1G4 B3/B4	B12	B7	B1J4 J2	B1J4 J4
5	B1J2 D5/D6	B1H2 D5/D6	B1H4 D5/D6	B1G4 D5/D6	813	D7	B1J4 Di3	B1J4 B9
6	B1J2 B8/B9	B1 H2 B8/B9	B1H4 B8/B9	BIG4 B8/B9	D12	G2	B1J4 85	B1J4 B2
7	B1J2 B10/D10	B1H2 B10/D10	B1H4 B10/D10	B1G4 B10/D10	G4	D13	B1J4 D7	B1J4 D11
8	B1G2 B3/B4	B1F2 B3/B4	B1F4 B3/B4	B1E4 B3/B4	B12	B7	B1J4 J9	B1J4 G13
9	B1G2 D5/D6	B1F2 D5/D6	B1F4 D5/D6	B1E4 D5/D6	B13	D7	B1C2 G10	BIC2 G12
10	B1G2 B8/B9	B1F2 B8/B9	B1F4 B8/B9	B1E4 B8/B9	D12	G2	B1C2 G9	B1C2 J12
11	BIG2 B10/D10	B1F2 B10/D10	B1F4 B10/D10	B1E4 B10/D10	G4	D13	B1C2 G3	B1C2 D2
12	BIE2 B3/B4	B1D2 B3/B4	BID4 B3/B4	BIC4 B3/B4	B12	B7	BIC2 G2	BIC2 J5
13	B1E2 D5/D6	B1D2 D5/D6	B1D4 D5/D6	B1C4 D5/D6	B13	D7	B1C2 J2	B1C2 J4
14	BIE2 B8/B9	B1D2 B8/B9	BID 4 B8/B9	B1C4 B8/B9	D12	G2	B1C2 D13	BIC2 B9
15	BIE2 B10/D10	B1D2 B10/D10	B1D4 B10/D10	B1C4 BIO/D10	G4	D13	BIC2 B5	B1C2 B2
16	B1B2 B3/B4	A1M2 B3/B4	B1 B4 B3/B4	AlM4 B3/B4	D12	B7	B1C2 D7	BIC2 DII
17	B1B2 D5/D6	AlM2 D5/D6	B1B4 D5/D6	AlM4 D5/D6	813	D7	BIC2 19	BIC2 G13
18	B1B2 B8/B9	AlM2 $88 / \mathrm{B9}$	B1B4 B8/B9	AlM4 B8/B9	D12	G2	AlJ2 Gl0	AlJ2 G12
19	B1B2 B10/D10	AlM2 B10/D10	B1B4 B10/D10	AlM4 B10/D10	G4	D13	AlJ2 G9	A 1 J2 J12
20	AlL2 B3/B4	Alk 2 B3/B4	AIL4 B3/B4	AlK4 B3/B4	B12	B7	AlJ2 G3	AlJ2 D2
21	All2 D5/D6	Alk 2 D5/D6	All4 D5/D6	AlK4 D5/D6	B13	D7	AlJ2 G2	AlJ2 105
22	AlL2 B8/B9	AlK2 B8/B9	All4 B8/B9	AlK4 B8/B9	D12	G2	A 1 J 2 J2	AlJ 2 J 4
23	AlL2 B10/D10	AlK2 B10/D10	AlL4 B10/D10	AlK4 B10/D10	G4	D13	A1J2 D13	AlJ2 B9
24	A1H2 B3/B4	Al G2 33/B4	AlJ4 B3/B4	AlH4 B3/B4	812	B7	A1J2 B5	AlJ2 B2
25	AlH2 D5/D6	AlG2 D5/D6	AlJ4 D5/D6	AlH4 D5/D6	B13	D7	AlJ2 D7	AlJ2 DI1
26	AlH2 B8/B9	AlG2 B8/B9	AlJ4 B8/B9	AlH4 B8/B9	D12	G2	AlJ2 J9	AlJ2 G13
27	AlH2 B10/D10	AlG2 B10/D 10	AlJ4 B10/D 10	AlH4 B10/D10	G4	D13	AlE4 GIO	AlE4 G12
28	AlF2 $33 / \mathrm{B4}$	AlE2 B3/B4	AlG4 B3/B4	AlF4 B3/B4	B12	B7	AlE4 G9	AlE4 JI2
29	AIF2 D5/D6	AIE2 D5/D6	AlG4 D5/D6	AlF4 D5/D6	B13	D7	AlE4 G3	AIE4 D2
30	AlF2 $88 / 89$	AIE2 B8/B9	AlG4 B8/B9	AlF4 B8/B9	D12	G2	AlE4 G2	AlE 45
31	AlF2 B10/D10	AIE2 610/D10	AlG4 B10/D10	AlF4 B10/D10	G4	D13	AlE4 J2	AlE4 J4
P 0-7	A1D2 B3/B4	AIC2 B3/B4	AlD 4 B3/B4	AIC $4 \mathrm{~B} 3 / \mathrm{B4}$	B1?	B7	AIE4 D! 3	A!E4 B9
P 8-15	A1D2 D5/D6	AlC2 D5/D6	AID4 D5/D6	AIC4 D5/D6	813	D7	AlE4 B5	AlE4 B2
P 16-23	A1D2 B8/B9	AIC2 B8/B9	AlD 4 B8/B9	AIC4 B8/B9	D12	G2	AlE4 D7	AIE4 DII
P 24-31	AlD2 B10/D10	AlC2 B10/D10	AlD4 B10/D10	AlC4 B10/D10	G4	D13	AlE4 J9	AIE4 GI3

FIGURE 53. MAIN STORAGE TEST POINTS

Main Storage Addressing

Figure 54 shows the inputs and functions of SAR for both main and bump storage addressing.

Main Storage Temperature and Humidity
The operating temperature for the main storage unit must be between 60° and $90^{\circ} \mathrm{F}$, and the relative humidity must be between 20% and 80% with a maximum wet bulb temperature of $78^{\circ} \mathrm{F}$. There can be only a two-degree maximum difference in the temperature between two arrays of one main storage unit.

Main Storage Power Information

The +60 volt $X Y$ and Z supplies are manually variable between 48 and 68 volts and are temperaturecompensated.

Measure dc voltages at the logic cards under dynamic conditions. All voltages have $\mathrm{a} \pm 2 \%$ tolerance.

Voltage	$\underline{\text { Amps }}$	Over- voltage Setting	Under- voltage Setting	TB-1 Pins	Wire Color	Type
-3.0	12.0	-4.5	--	1,15	Yellow	Logic
+3.0	5.0	+4.5	--	2,13	Grey	Logic
+6.0	12.0	+9.0	5.2	3,11	Orange	Logic
+18.0	4.5	+22.0	--	9	White	Special
+60.0 XY	2.0	+68.0	--	5	Red	Tracked
$+60.0 Z$	8.0	+68.0	--	7	Blue	Tracked

Upon sensing an under voltage on the +6.0 volt supply, the unit should stop cycling within 20 milliseconds and drop power.

* These operations bring up microorders $[W, E \longrightarrow A$; or $W, E \longrightarrow A(S)]$ which turn on the B bit in SAR.

FIGURE 54. MAIN AND BUMP STORAGE ADDRESSING

Exercise Bump Storage

To exercise the bump storage portion of main storage, tie 01A-B1H7B12 (SAR B Bit) to ground before running any main storage diagnostic.

Continually Address One MS Location

To address a single main storage location continually, the following ROS routine 202 (QW111) may be used:

1. Set IC to the selected address.
2. Place ROS repeat switch in down position.
3. Set data keys to ROS routine 202, and press start pushbutton.

Scan MS for Bad Parity

A simple program for a full storage scan, checking for bad parity, follows:
Location $0-00000000$
Location $4-00000008$
Location $8-41101004$
Location C -02041000
Location $10-100047 \mathrm{~F} 0$
Location $14-00080000$
GP-1 should contain hex 18

This program will scan storage to the error. With the check switch in the stop position, the machine will stop and the failing address will be indicated in SAR, SDR will contain the bad data, but the storage location will have been changed by the program.
Bit Arrangement of MS Word
A full word in main storage is arranged as follows:

Bits $0-7$	Byte 0
Bits $8-15$	Byte 1
Bits $16-23$	Byte 2
Bits 24-31	Byte 3
Bit 32	Parity for byte 0
Bit 33	Parity for byte 1
Bit 34	Parity for byte 2
Bit 35	Parity for byte 3

Check Strobe of Main Storage
To check the main storage strobe, use the following procedure:

1. Use pin B1J4J09 (ALD MC051) in the main storage frame as the test point for strobe A. This is the bit eight (segment A or C) pre-amp output.
2. Run the "ali ones" test and adjust your scope to the same scale as Figure 55.
3. Make sure the strobe falls 120 ± 10 nanoseconds prior to the peak of the output signal and then run a shmoo curve.
4. If the shmoo curve picks or drops bits before it makes the established limits, re-adjust the 5nanosecond delay tap to obtain the best shmoo for both "all ones" and "all zeros."
5. Realize that if the strobe is set near point b (Figure 55) the tendency is to pick bits and if the strobe is set near point c, the tendency is to drop bits.
6. For strobe B use pin B1C2J09 (ALD MC081) as a test point and repeat steps 2-5.

FIGURE 55. MAIN STORAGE STROBE

Checking MS Drivers and Terminating Diodes

Much time is lost in machine storage areas in observing waveforms with a voltage probe. Remember that a line with little or no current on it will appear the same as a good line if you use a voltage probe. If you suspect blown drivers or terminating diodes, use a current probe.

1. Drop dc power on the machine.
2. Locate the card whose outputs you want to scope and extend it with a card extender.
3. On the extender, locate the line you want to scope, remove the short jumper wire (Figure 56), and replace it with a longer wire. This will give you a sufficient loop with which to hang the current probe.
4. Bring up power and observe the pulse.
5. Always drop dc power when changing or removing driver, or the jumper wire on extended drivers.

FIGURE 56. CARD EXTENDER JUMPER WIRE

Delay Line Clock
Timings taken from the A1C6 delay line (Figure 57) are used to set timing latches. Timings from the A1F6 delay line are used to reset timing latches. Changing the set master reset timing on the A1C6 card also changes all timings taken from the A1F6 card. Timings from the A1B6 delay line are used to set the strobe turn-ons.

FIGURE 57. DELAY LINE CLOCK

Two singleshots (135 ns and 450 ns) in the clock section of the M9/M9A should be checked and adjusted. The $450-$ ns singleshot (A1H6D09) prevents any read reset pulse during the first part of a read cycle. If the $450-$ ns singleshot does not fire, check the $+18-$ volt power supply.

When scoping main storage, especially the clock section, the best place to sync the scope is write control at A1H6J07. All timing is with respect to plus store select as it appears at A1H6G05.
X read/write driver timing (A1H6B07) and Y read/write driver timing (A1H6J05) should be a $2.5-$ to 3.0 -volt signal. A pulse of less than 2.5 V decreases driver current and causes random failures. The read-write latch is a 6.0 -volt pulse. If zeros cannot be read, check to see that strobes A and B at A1J6G12 and A1J6J04 are present.

Delay Line Driver

In checking the delay line card (4906), be sure that the input to the delay line driver 02A-A1C6D11 is a positive pulse (Figure 58). The output of the delay line driver (02A-A1C6J11) should be the same as the input.

If the output of the delay line driver (02A-A1C6J11) has ghost pulses between the normal pulses, the delay line is open and the card should be changed. If there is no pulse at $02 \mathrm{~A}-\mathrm{A} 1 \mathrm{C} 6 \mathrm{~J} 11$ on delay line card (4906), the delay line driver may be bad. If changing the card does not correct the pulse, there is probably something shorting out the delay line (for example, a cold flow on one of the yellow timing wires). Check the yellow timing wires associated with the delay line card to see if any of them are pulled tight around a pin and shorting out. The timing chart on ALD Page AA001 should be used if any storage timings are changed.

FIGURE 58. INPUT TO DELAY LINE DRIVER

Layout of M9/M9A Plane

Figure 59 is a block diagram of the M9/M9 A readwrite drive system. Layout of the planes is in Figure 60.

X drive lines in Figure 60 on pins 6 through 69 go through all 18 planes to the D2 board on the back of the array, jumper down, and come back through all 18 planes on pins 228 through 291. X drive lines on pins 80 through 143 go through the array to the D2 board, jumper down, and come back through the array on pins 154 through 217.

Use a current probe when checking the drive circuits. Currents should be checked on the gray wires to card locations B1M2 and B1G6 on the BSM. The X current will be on the gray wires to pins G03 and J04. The Y current will be on the gray wires to pins D12 and B12.

FIGURE 59. M9/M9A DRIVE SYSTEM

X Drive Current

An example of good X current is shown in Figure 61. The read pulse is longer than the write.

FIGURE 60. PHYSICAL LAYOUT OF M9/M9A PLANES

figure 61. X Drive current

I Y Drive Current

An example of good Y current is shown in Figure 62. The read and write pulses have about the same duration. Read will have a larger stagger between the terminator gate turn-on and current turn-on.

FIGURE 62. Y DRIVE CURRENT

Shorted X Drive Line

Figure 63 is a current indication of two drive lines shorted together. In Figures 63 and 64, where all of storage is cycled, the trace will be very light. These traces were taken while cycling $1 / 4$ of storage.

FIGURE 63. SHORTED X DRIVE LINE

| Open X Drive Line

Figure 64 is a current indication of an open drive line. To locate a shorted or open drive line on the array, loop on the failing address. Using a voltage probe, lightly run the tip down the drive lines on the array. Approximately a +60 -volt level will show on all the unselected drive lines. When the selected drive line is reached, a voltage drop indication occurs. With a short, the voltage indication looks

FIGURE 64. OPEN X DRIVE LINE
like that in Figure 65. With an open, the voltage indication resembles that in Figure 66.

With a short, the indication in Figure 65 appears on the line selected and also on the line shorted to it. The shorted lines should be adjacent drive lines. Once the shorted lines have been isolated, take an ohmmeter and walk across the array on the shorted lines until the least resistance is reached. When a resistance of nearly zero is reached, examine the area for the cause of the short. Look for drive line pins bent and touching or a metal chip between the pins. A chip may wedge under the rubber seal between planes. If the shorted lines are not adjacent, replace the gate cards (4196) associated with the shorted lines (see MD030).

An example of an open drive line is shown in Figure 66. To locate an open in the array, use a voltage probe and step across the planes of the array on the open line. When the open is passed, the indication in Figure 66 reverses--positive becomes negative, and negative becomes positive. In the area of the open, check the drive line welds for secure bonding. Remember that the drive lines zigzag across the array, and the weld may be on either side of the array. If the welds appear to be good, use an ohmmeter to isolate the open.

FIGURE 65. POSSIBLE SHORTED DRIVE LINE

1 Drive Line Shorted to Ground

A current indication such as that in Figure 67 usually indicates that a drive line is shorted to ground. If the X current is bad, check the inhibit resistor assembly on the B-side of the array to make sure it is not shorted against the X drive lines. Three standoffs are located on the B and D side of the array and one standoff on the A and C side between the D1 board and the front frame casting. If one or more of the yellow and black wires that go to the pins on the array are pinched between the standoffs, the indication is like that in Figure 67. A shorted limiter on the gate card (4196) can cause the same indication. If a gate card might be the cause of the trouble, watch the defective current and pull the gate cards one at a time. Uhen the defective gate card is pulled, the current is similar to normal current with an open line.

If one of the orange drive lines from the driver card (4904) on the B1 board to the array interface is shorted to ground, or if a transistor in the driver card (4904) is shorted, the indication resembles that in Figure 67. A defective gate clamp card (3583) gives a similar indication.

The turn-off of the driver currents should be before the terminator gate turn-off. If the current is being turned off by the terminator gate, unwanted noise in the array and bit failure may result (Figure 68). To correct this condition, replace the gate cards (4196) or drivers (4904) that have the late turn-offs. If the currents have different amplitudes (read is twice the amplitude of write, or vice versa) a bad gate terminator card (4889) is indicated.

FIGURE 68. CURRENT TURNED OFF BY TERMINATOR GATE

Sense Inhibit
The sense and inhibit circuits use the same blue and white lines (Figure 69) from the logic boards, A1 and B1, to the array. The resistance of each leg of the sense-inhibit line to ground should be about 7.5 ohms. The resistance between the blue and white wires at the output of the sense-inhibit card is about 15 ohms. A normal inhibit pulse at the output of the inhibit driver card is like that in Figure 70. This pulse is the same on either the blue or the white wire.

FIGURE 69. BLUE-WHITE SENSE LINES, SENSE INHIBIT

FIGURE 70. INHIBIT PULSE

When an open occurs in either leg of the senseinhibit lines, the output of the inhibit driver is like that in Figure 71. Check continuity of the blue or white wire from the sense-inhibit card on the A1 or $B 1$ board to where the wire welds onto the B side of the array. If continuity to the array is good, check the small jumpers on the D side of the array for the plane and segment that is bad, to see if the weld has opened up. If the welds on the jumpers are good, check the welds on the inhibit bus on the B side of the array.

FIGURE 71. INHIBIT PULSE WITH OPEN LEG

If a short to ground in either leg of the senseinhibit line occurs, or if the inhibit driver transistor is shorted, the output of the inhibit driver is as shown in Figure 72. If a sense-inhibit card has a shorted inhibit transistor, that segment may run and the other three segments may not run. Replacement of the sense-inhibit card for the segment that is running usually corrects the problem. If the output of the inhibit driver card still resembles Figure 72, use an ohmmeter to check the resistance of the blue and white lines. If a short to ground exists on the blue or white wire, pull the paddle card for that bit and segment (see MD020) on the C1 board to isolate it to the BSM or array.

FIGURE 72. INHIBIT PULSE WITH GROUNDED SENSE INHIBIT LINE OR SHORTED INHIBIT DRIVER

The placement of the strobe turn-on is a controlling factor in the operation of the M9/M9A. To get the strobes in the approximate area of best operation look at the output of the sense amplifier card and set the strobes so that there is a small porch on the leading edge of the pulse (Figure 73). See AA000 for strobe timings of the M9 and M9A.

FIGURE 73. OUTPUT OF GOOD SENSE AMPLIFIER (M9 ONLY)

Storage Waveforms (Voltage Probe)

Figures 74-76 are waveforms for storage select, terminator gate, and X and Y gate decode and X write/read drivers. The sync point for these figures is plus read A1H6G12 (MA011). Figures 74-75 were taken while rippling storage from the storage test switch. Figure 76 was taken while continuously addressing one location. Because of phase reversal, the figures of Y drive lines have a double trace. A good scoping procedure is to scope the yellow wire on the X and Y read and write terminators (Figure 75). Scoping this point detects open, shorted, or weak drivers (see Figure 77).

Storage Select AlH6G05 (MA01I) $0.2 \mathrm{us} / \mathrm{cm} ; 1 \mathrm{v} / \mathrm{cm}$

FIGURE 74. MAIN STORAGE SELECT-WAVEFORM

X-Read Terminator Gate B1M2G02 (yellow wire) MB091 $0.2 \mathrm{us} / \mathrm{cm} ; 20 \mathrm{v} / \mathrm{cm}$

X-Write Terminator Gate B1M2J02 (yellow wire) MB091 0.2 us/cm; 20v/cm

Y-Read Terminator Gate BIM2D13 (yellow wire) MB091 0.2 us $/ \mathrm{cm} ; 20 \mathrm{v} / \mathrm{cm}$

Y-Write Terminator Gate B1M2B13 (yellow wire) MB091 $0.2 \mathrm{us} / \mathrm{cm} ; 20 \mathrm{v} / \mathrm{cm}$

FIGURE 75. MAIN STORAGE TERMINATOR-WAVE FORMS

Sense Amplifier Output (M9)

If no porch is on the leading edge of the pulse (Figure 73), the strobe turn-on is too late and should be moved earlier. If the porch on the leading edge of the pulse is too long (over 60 ns), the strobe turnon is too early. Setting the strobes using the porch
method gives an approximate area of best operation, but the final setting should be done by running a shmoo and moving the strobes to improve operation. The chart in Figure 78 shows the strobe for each segment and bit. With the aid of the chart, adjust the strobes for best operation.

M-9		
Seg	Strobe A	Strobe B
A-B	Bits 9-17 Bits 27-35	Bits 0-8
	Bits 18-26	
C-D 0-8	Bits 9-17	
	Bits 18-26	Bits 27-35

[^2]

X-Gate Decode-02 Active BIM4JO7 (MBO7I) $0.2 \mathrm{us} / \mathrm{cm} ; 2 \mathrm{v} / \mathrm{cm}$

FIGURE 76. MAIN STORAGE GATE AND DRIVER PATTERNS -
Terminator Gate (MBO91)

X-Read Driver- 02 Active BIN4G02 (MB141)
$0.2 \mathrm{us} / \mathrm{cm} ; 2 \mathrm{v} / \mathrm{cm}$

WAVEFORMS

egend:

(1) Normal drive turn-off.
(2) \& (3) Weak drivers turn off.
(4) Distorted pulse shapes can cause intermittent problems that are difficult to analyze.

Scope Picture When Rippling Memory

FIGURE 77. MAIN STORAGE DRIVER FAILURES - WAVEFORMS

If a bit is dropping, when the XY voltage is lowered, try moving the strobe associated with that bit and segment earlier. This usually helps the operation of that bit. If a bit is picking when the XY voltage is raised, move the strobe associated with that bit and segment later. The strobe turnoff placement has little effect unless moved a great distance ($75-100 \mathrm{~ns}$).

M9A Differences

Drive currents are to be measured on the wires to the Cl board from pins listed in the following table.

	Bits 0 thru 17	Bits 18 thru 35
X Read	B1M2G03	B1G6G03
X Write	B1M2J04	B1G6J04
Y Read	B1M2B12	B1G6B12
Y Write	B1M2D12	B1G6D12

Figure 79 represents the sense scheme for the M9A, which is the only significant difference between the M9 and M9A. Note that the following cards are not interchangeable.

Function	M9	M9A
Sense Amp	5804927	5808249
Final Amp	5804920	5808250
Strobe	5804910	5808254
Timing	5804815	5808253

The array part number is 2511311 for both the M9 and M9A.

Figure 80 shows waveforms for the M9A BSM. The sync point is storage select A1H6G5 for all waveforms.

LOCAL STORAGE (LS) SERVICE CHECKS

Local Storage Timings

Local storage timing information is in ALD Volume 1, Page AA000.

Local storage zero time is defined as CPU 255 time.

LS Read Operation

The gate drivers and read drivers supply the current to reset the core and induce an output on the sense winding.

LS Write Operation

The gate drivers and write drivers select the word, and the bit drivers supply the additional current necessary to set the core. A bit driver must be on for each position to be set.

LS Functional Packaging

Local storage drivers and sense amplifiers are functionally packaged as follows:

1. The eight gate drivers are packaged four per card with one fuse per card.
2. The eight read drivers are packaged four per card.
3. The eight write drivers are packaged four per card.

FIGURE 79. M9A STROBE AND SENSE CIRCUITS
4. The 36 bit drivers are packaged four per card with four fuses per card.
5. The 36 sense amplifiers are packaged four per card.
(A)

Preamp output for a 1 Bit scope setting $\mathrm{V} / \mathrm{cm}=.5$ Time $/ \mathrm{cm}=100 \mathrm{~ns}$
(C)

Preamp output $=0 \mathrm{Bit}$
scope setting $\mathrm{V} / \mathrm{cm}=.5$
Time $/ \mathrm{cm}=100 \mathrm{~ns}$
(E)

Input to $S / A=1 B i t$
(Actual core output)
scope setting $\mathrm{V} / \mathrm{cm}=50 \mathrm{mv}$
Time $/ \mathrm{cm}=100 \mathrm{~ns}$

Note: All scope settings were made with sync point storage select A IH6G5

F!GURE 80. M9A PREAMPLIFIER OUTPUTS -- WAVEFORMS

Local Storage Word Selection

Figure 81 shows how the local storage word is selected from the six-bit address.

FIGURE 81. LOCAL STORAGE ADDRESS BIT FUNCTIONS

LS Temperature Control Unit Check
Following is the procedure for calibrating the local storage temperature control unit (TCU) using resistor assembly P/N 461614 and a standard 6-pac card extender P / N 452554. Proper use of this procedure results in the correct TCU setting for controlling the local storage array at a temperature of 1040 F , $\pm 1^{\circ}$. Resistor assembly P/N 461614 is a $1 \%, 8250^{-}$ ohm resistor with two SLT pluggable terminals.

Initial Setup

1. Turn off all power to the local storage unit and TCU. The TCU is located in the power supply section.

Caution

The TCU has a single phase, 60 cycle, 208-230 vac input on terminals L1 and L2.
2. Remove the cover from the TCU and insure that the ac input power terminals L1 and L2 are properly insulated or enclosed. Correct any safety violation before continuing.
3. Connect the standard 6-pac extender jumpers and resistor assembly P/N 461614. Refer to Figure 82 for card plugging.
4. Remove the dust protector around the array board and unplug the SLT connector cable at the M2 location of the local storage array board.
5. Plug the SLT cable connector just removed from the M2 into the SLT pin connectors on the 6pac extender (side opposite the jumper and resistor). Make sure that the B and D sides of the cable connector correspond to that of the 6-pac extender.
6. Plug the shroud end of the 6-pac extender into the M2 position at the local storage array board.
7. Remove the two thermistor wires connected to terminals T1 and T2, located adjacent to the input power terminals of the TCU. Using an ohmmeter calibrated against the 8250 -ohm resistor, measure the resistance between these two disconnected thermistor wires. The meter should read $8250 \mathrm{ohms} \pm 1 \%$. If there is a higher resistance, check for a bad crimp or broken wire and repair before continuing.
8. Replace the two thermistor wires to TCU terminals T1 and T2.

TCU Calibration Procedure

1. With an insulated screwdriver, turn the potentiometer dial of the TCU to the extreme counterclockwise position.
2. Turn power on the local storage and the TCU.
3. With an oscilloscope, monitor the +30 volt array heater voltage TCU return line located at D4M2D07 on the local storage array board.
4. With an insulated screwdriver, turn the TCU potentiometer dial clockwise until the heater just barely turns on. The heater is on when the oscilloscope trace at D4M2D07 is at ground; the heater is off when the oscilloscope trace is at +30 volts.
5. Turn power off. Remove the 6-pac extender and replug the connector cable into the M2 position at the array board.
6. Mark the position of the dial setting for future reference. This setting should be at the 9 to 12 o'clock position. If not, the TCU may be defective. Recheck the procedure, especially step 7 in the initial setup.
7. Correct operation is indicated by the heater being turned on and off periodically.

Local Storage Waveforms

Typical waveforms for normal storage operation are illustrated in Figures 83 through 87. These waveforms are not to be used as specifications for levels, rise times, fall times, or pulse widths, but rather as general indications of the wave shapes to be expected.

| Optimize LS Drive Currents (Shmoo)

For a triple-six supply, execute sequence A. For a single +6 -volt supply, execute sequence B.

Sequence A: To optimize the +6 TC and +6 VAR voltage, plot the +6 VAR versus the +6 TC while running the worst case test program as follows:

1. With all logic voltages at nominal and the +6 TC at approximately 4.5 V , vary the +6 VAR to the low and high voltage failure points and record these points on the plot.
2. Increase the +6 TC by 0.5 V and repeat step 1. Continue to perform steps 1 and 2 until the +6 TC can no longer be increased without a failure occurring.
3. The optimum setting of the +6 VAR and +6 TC voltage is the center of the longest rectangle that can be drawn inside the plotted curve. (The sides of the rectangle should be parallel to the X and Y axes of the plot.) The minimum rectangle must be equal to or greater than $\pm 5 \%$ of the nominal setting. The four corners of the rectangle are checked during preventive maintenance.

Sequence B: To optimize the +6 VAR , plot the +6 VAR versus the +6 TC while running the worst case test program as follows:

1. Determine the upper and lower error-free running limits for the +6 VAR. The midpoint of these limits is the operating point.

FIGURE 83. LS WRITE DRIVER

FIGURE 84. LS BIT DRIVER

Figure 85. L5 GATE DRIVER
94 (3/71) Model 50 FEMM
2. Plot the three points on the S 9 driver operating voltage determination graph.
3. Assure that one minute of error-free operation is possible at $\pm 7 \%$ from the operating point.
4. After the run, set +6 VAR to the operating point.

LS Strobe Driver Identification

There are 18 separate strobe drivers. If bits are being dropped, consider the possibility of a missing strobe. The strobe distribution, on ALD page LS721, is arranged as follows:

Strobe bits 00 and 01 Strobe bits 02 and 03 Strobe bits 04 and 05 Strobe bits 06 and 07 Strobe bits 08 and 09 Strobe bits 10 and 11 Strobe bits 12 and 15 Strobe bits 13 and 14 Strobe bits 16 and 19

Strobe bits 17 and 21
Strobe bits 18 and 22
Strobe bits 20 and Parity 8-15 Strobe bits 23 and Parity 16-23
Strobe bits 24 and Parity 0-7
Strobe bits 25 and 26
Strobe bits 27 and 28
Strobe bits 29 and 30
Strobe bits 31 and Parity 24-31

Note: These circuits are al' located on the card at 01A-D4M6

ROS 201--Cycle One Sector of Local Storage

1. System reset; set check control switch to STOP.
2. Display sector to be cycled.
3. Set rate switch to SINGLE CYCLE.
4. Set data keys 22 and 31 on.
5. Set ROS REPEAT INSN down.
6. Press START.
7. Restore ROS REPEAT INSN.
8. Set data to be stored into local storage in data switches.
9. Set rate switch to PROCESS.
10. Press START

The following should occur:
Data keys to L-register.
L-register to local storage.
Local storage to R -register.
R-register to adder for half-sum error check.
Note: If error occurs, LSAR will have advanced one address.

Array Temperature

If intermittent troubles are experienced on local store, check the array temperature. It should be $104^{\circ} \mathrm{F}, \pm 1^{\circ}$.

Local Storage Heater

At time of installation, scope cycle time. Record cycle time and the temperature at entrance to gate near local store on shmoo page S9. The approximate cycle time should be 6 seconds on, 20 seconds off.

Checking Drivers and Terminating Diodes

See the section entitled 'Checking MS Drivers and Terminating Diodes" under "Main Storage (MS)
Service Checks."

READ ONLY STORAGE (ROS) SERVICE CHECKS

ROS Retry Adjustment

This procedure is based on voltage and timings being within specified tolerances. Refer to ALD AA000 for timings. Check -3 volts at 01C-E1B2D06 to be within $\pm 4 \%$. Required equipment is an ohmmeter and a Tektronix 453 oscilloscope.

1. Remove the 5801515 card from 01C-E2L4; disable ROS retry by grounding pin 01C-E3C4D11.
2. With the ohmmeter, set up the following resistances on the two pots on the 1515 card:
a. Measure between pins 1 and 2 (Figure 88) on the top pot and rotate the pot counterclockwise until a minimum reading of about 0 ohms is obtained.
b. Measure between pins 1 and 2 (Figure 88) on the bottom pot and rotate the pot clockwise until a maximum reading of about 1000 ohms is obtained.
3. Re-insert 5801515 card in 01C-E2L4.
4. Enable ROS retry by removing ground from 01C-E3C4D11.
5. Using a 10×1 probe (with ground probe) on the "CH 1 input," scope either:
a. 01C-E2LAG05 if 5801515 card has five modules.
b. 01C-E2L4G07 if 5801515 card has six modules (EC 259398 or later).
6. Set up the scope to single sweep on a 0.5 -volt negative shift. See following section for procedure.
7. Load and run ROS ripple; see "ROS Ripple Test." Machines with EC 259860 or later must ground 01C-E3C2B10 for this procedure only.
8. Ready the single sweep on the scope.
9. For a one-minute period after step 8 was executed, determine whether or not the scope triggered.
a. If the scope was not triggered, skip to step 13.
b. If the scope was triggered, go to step 10.
10. Rotate the lower pot counterclockwise four turns.
11. Ready the single sweep.
12. While running ROS ripple, determine whether or not the scope still triggers during a one-minute period after step 11.
a. If it does not, go to step 13.
b. If it does, repeat steps $10-12$ until it no longer does, then go to step 13.
13. Ready the single sweep.
14. Rotate the top pot clockwise until the scope triggers occasionally during a one-minute interval on a half-volt negative shift.
15. Set up the scope to single sweep on a 1.0volt negative shift.
16. Ready the single sweep.
17. If the scope does not trigger for a one-minute period at this setting, the ROS retry adjustment is complete. If the scope triggers, rotate the top pot $1 / 4$ turn counterclockwise. Repeat this step until the following conditions are met:
a. The scope triggers occasionally on a 0.5volt negative shift.
b. The scope does not trigger when set for a one-volt negative shift.

Setting Up Single Sweep

1. Set the A and B time/div and delay time knob to 0.1 second scale.
2. Set the mode knob on CH 1 and the trigger knob on CH 1 only.
3. Set A TRIGGERING as follows:
a. Source -- Internal
b. Coupling -- DC
c. Slope - Minus
d. Set LEVEL CONTROL to 0 position and HF STAB all the way clockwise.
4. Set A SWEEP MODE to SINGLE SWEEP.
5. Set HORIZ DISPLAY to A and MAG to OFF.
6. Set the volts/div CH 1 knob to 50 MV and the three-way switch below it to the ground position.
7. Rotate the position knob fully clockwise.
8. Press the reset pushbutton and make sure the light comes on.
9. Rotate the position knob slowly counterclockwise until the reset light goes off.
10. The light is to be set to go off either 1 cm below th \geqslant top horizontal graticule (0.5 -volt setting) or 2 cm below the top horizontal graticule (1.0volt setting).
a. If the light went off above this point, rotate the level control slightly counterclockwise and repeat steps 7-10 until the scope fires at the right point. Go to step 11.
b. If the light went off below the reference point, rotate the level control slightly clockwise and repeat steps $7-10$ until the scope fires at the right point.
11. Move the three-way switch below the volts/ div CH 1 knob from the ground position to the DC position.
12. Set the A sweep mode switch to the auto trigger position.
13. Position the trace on the top horizontal graticule.
14. Move the A sweep mode switch back to the single sweep position.
15. Press the reset pushbutton and make sure the light comes on.

ROS Waveforms

Figure 89 shows typical waveforms for normal ROS operation. These waveforms are not to be used as reference for levels, transition times, or pulse widths, but rather as a general indication of a normally functioning ROS unit.

ROS Parity Errors

To check ROS parity error circuits, ROS repeat on one of three ROS words.

ROS Repeat	Error
FD5	$0-30$
FD6	$31-55$
FD7	$56-89$

ROS F00-F03--ROSDR Test All Ones

1. System reset.
2. Set data keys 20-23 (F00).
3. Set ROS REPEAT INSN down.
4. Check CPU roller 1, position 6 and CPU roller 2 , positions 1 and 2 for all bits on except 16,24 , and 83 .
5. Set data keys 30 and 31 on, in addition to $20-23$ (F03).
6. Check for the conditions described in step 4.
7. Restore ROS REPEAT INSN.
8. System reset.

ROS F01-F02--ROSDR Test All Zeros

1. System reset.
2. Set data keys 20-23 and 31 (F01).
3. Set ROS REPEAT INSN down.
4. Check CPU roller 1, position 6 and CPU roller 2 , positions 1 and 2 for all bits off except the parity positions.
5. Set data key 30 on and 31 off (F02) in addition to 20-23.
6. Check for the conditions described in step 4.
7. Restore ROS REPEAT INSN.
8. System reset.

ROS Address 000
ROS Addr 000 has only bits $16,35,37,38,39,50$, 56 (ZN4) (AL23) (DG2).

Extra or Missing Bits

Usually, the picking or dropping of a great number of bits is due to an extra or missing drive line or select line.

To check for a missing or extra drive line, use the ROS addresses in Figure 90. These ROS addresses all use select line one so each drive line may be checked at the console until the faulty line is located. Remember, if two lines are driving at once, the line that gives no error is the failing line.

To check for a missing or extra select line use the ROS addresses in Figure 91. These addresses all use drive line zero so each select line may be checked at the console until the faulty line is located.

Sense Latch and Strobe

If a strobe is lost, the sense latch will not set and the corresponding bits will be set into ROSDR.

If a sense latch reset is lost, the sense latch will not reset and the corresponding bits will not set into ROSDR.

Figure 92 is a list of test points for the ROS strobe pulse and the sense latch reset. These test points can be used to determine which strobe or reset is failing.

Figure 93 shows ROS sense amplifier and sense latch card locations.

ROS Ripple Test

The ROS ripple test tape can be generated with diagnostic program 5350. For systems using disks only, use program 5 FE5 to generate a ROS ripple pack. Since the ROS ripple test checks only the parity of the ROS words, no test tape update is necessary when EC activity affects the ROS bit planes.

The first record on the ROS ripple test tape pack checks all plames. If it is desired to ripple only one given plane, depress system reset pushbutton, and FLT load the next record. The second record ripples plane zero; the third record ripples plane one; etc.

Basic ROS Ripple

1. Set the check control switch to stop position.
2. Place the ROS ripple test tape or pack on an available unit; set the address of the unit in the load unit switches; press the load pushbutton.
3. The first section loads and ripples all planes. If an error occurs, the program stops and the hard

$\begin{aligned} & \text { ROS } \\ & \text { Addr } \end{aligned}$	Cord Location	Drive Line	$\begin{aligned} & \text { ROS } \\ & \text { Addr } \end{aligned}$	Card Location	Drive Line
004	CID2M6	0	804	D1A2L6	32
006	CID2J6	1	806	D1A2H6	33
084	CID2F6	2	884	D1A2E6	34
086	CID2C6	3	886	D1A2B6	35
104	CID2L6	4	904	DIA2M6	36
106	C1D2H6	5	906	DIA2J6	37
184	CID2E6	6	984	DIA2F6	38
186	C1D2B6	7	986	DIA2C6	39
204	CIC2M6	8	A04	D182L6	40
206	CIC2J6	9	A06	D182H6	41
284	CIC2F6	10	A84	D182E6	42
286	C1C2C6	11	A86	D182B6	43
304	C1C2L6	12	B04	DIB2M6	44
306	C1C2H6	13	B06	Dib2J6	45
384	C1C2E6	14	B84	D182F6	46
386	C1C286	15	B86	D132C6	47
404	C182M6	16	C04	DIC2L6	48
406	C182J6	17	C06	DIC2H6	49
484	C182F6	18	C84	DIC2E6	50
486	C182C6	19	C86	DIC2B6	51
504	C182L6	20	D04	DIC2M6	52
506	C182H6	21	D06	DIC2J6	53
584	C182E6	22	D84	DIC2F6	54
586	C182B6	23	D86	DIC2C6	55
604	ClA2M6	24	E04	D1D2L6	56
606	C1A2J6	25	E06	DID2H6	57
684	C1A2F6	26	E84	DID2E6	58
686	ClA2C6	27	E86	D1D2B6	59
704	CIA2L6	28	F04	DID2M6	60
706	C1A2H6	29	F06	DID2J6	61
784	CIA2E6	30	F84	DID2F6	62
786	CIA2B6	31	F86	D1D2C6	63

Note: All of the cards indicated above use output pin B13 for scoping. When a line is addressed, it should pulse. If not conducting, the line should be at $+2 v$. If this level is down only $3 / 4(0.75)_{v}$, trouble is indicated.

FIGURE 90. ROS DRIVE LINE TESTS

Note: Test point pins are the same for each of the eight card locations of a given select line.
figure 91. ROS SELECT LINE TESTS

Strobe Upper Word	Strobe Lower Word	Sense Latch Reset	Bits
E3G3803	E3G3D07	E3G3B02	$0-9$
E3G3D06	E3G3D05	E3G3B02	$10-19$
E3G5813	E3G5B10	E3G5B07	$20-29$
E3G3810	E3G3D10	E3G3DII	$30-39$
E3G6809	E3G6D11	E3G6810	$40-49$
E3G6D06	E3G6D10	E3G6D07	$50-59$
E2G7D02	E2G7D06	E2G7D11	$60-64$ and 75-79
E3G6B02	E3G6D02	E3G6B03	$65-74$
E2G7B02	E2G7D07	E2G7B09	$80-90$

Note: All test points are on gate OIC.

FIGURE 92. ROS STROBE AND SENSE LATCH TEST POINTS

Bit	OX	1 x	2X	3 X	4X	5 X	6X	7X	8X	9 x
0,1	E182	EIG2	E184	EIG4	E1B6	E1G6	E2B2	E2G2	E2B4	E2G4
2,3	EIC2	ElH2	EIC4	ElH4	EIC6	E1H6	E2C2	E2H2	E2C4	E2H4
4,5	EID2	ElJ2	EID4	E1J4	E1D6	E1J6	E2D2	E2J2	E2D4	E2J4
6,7	E1E2	ElK2	EJE4	ElK4	Ele6	ElK6	E2E2	E2K2	E2E4	E2K4
8,9	E1F2	ElL2	E1F4	E1L4	E1F6	Ell6	E2F2	E2L2	E2F4	
Sense Latch										
Bit	0X	$1 \times$	2X	3X	4X	5X	6 X	7X	8 X	9x
0-4	E3E2	E3H2	E3D4	E3H4	E3E6	E3J6	E2B6	E3H6	E2C6	E2H6
5-9	E3F2	E3J2	E3E4	E3J4	E3F6	E3K6	E3F4 E2	E2L6	E2E6 E	E2K 6

Note: All cards are in frame 01, gate C.

FIGURE 93. ROS SENSE AMPLIFIER AND LATCH CARD LOCATIONS
stop indicator comes on. The master check indicator is not set. To determine the failing address, subtract one from the ROS address indicated in SDR (19-30) The force indicator switch must be used to get the proper indication from the switchable indicators.

ROS BIT PLANE REMOVALS AND ADJUSTMENTS
ROS Bit Plane Adjustments
The pressure screws in the spider assemblies must be checked for minimum torque of 4.5 inch-pounds every 90 days. Use the torque screwdriver (P / N 461450) to carry out the adjustment procedure that follows:

1. Following the sequence shown in Figure 94

I check the torque on setscrews 1 through 8,11 , and 12 for 4.5 inch-pounds. Use torque wrench listed above.

Note: Make sure the torque wrench has been recently calibrated. This wrench must be calibrated periodically.
| 2. Check the torque on setscrews 9 and 10 for 3.5 inch-pounds (Figure 94).
3. After completing steps 1 and 2 , check the torque in the same sequence indicated in Figure 94 to | see that torques for positions 1-8, 11 and 12 are within 4.0 to 5.0 inch-pounds and that torques for positions 9 and 10 are within 3.0 to 4.0 inch-pounds. If the torques are not within specifications, re-torque as described above.
4. Repeat steps $1-3$ until the specifications are met.

FIGURE 94. SETSCREWS TORQUE SEQUENCE (ROS BIT PLANES)

ROS Bit Plane Removal

Caution

Use extreme caution when handling bit plates; they are easily damaged.

1. Release pressure on the 12 pressure pads by loosening the setscrews bearing on the center of each pad. Use a standard bristol wrench or a torque wrench (P/N 461450). Do not loosen slotted-head screws that are located toward the center of the casting assembly.
2. Release pressure from upper and lower drive connectors by loosening the four spring-loading screws in each connector. Do not disengage screws completely.
3. Remove the four corner hex-head screws and two center knurled nuts and remove spider assembly from two center studs. (The knurled nuts may be removed by hand.)
4. Remove rubber pressure pad from center studs.
5. Remove upper and lower drive connectors by removing two screws at the end of each connector.

Note: Plastic or lint-free gloves must be worn when handling bit planes.
6. Carefully remove the bit plane from alignment pins and studs by holding at center of each of the horizontal edges. The plane must be held and gently lifted out without being allowed to bow.

Caution

Exercise extreme care in handling the bit plane to avoid creasing, folding, or scratching.
7. Cleanliness of the sense and bit planes is very important. Perform the following cleaning procedure before installing the bit plane.

Note: Elapsed time between cleaning the sense lines and bit planes and installing the bit planes, rubber pressure pad, and spider assembly must be kept to a minimum.

ROS Bit Plane Cleaning

New bit planes are stored in an IBM-approved polyethylene bag. The bag must not be opened until just before the bit plane is to be installed. If the bag is opened or damaged prior to installation the bit plane
must be recleaned. If a new bit plane is to be installed, begin installation procedure; however, do not remove the bit plane from the polyethylene bag until all preparations have been made for immediate installation on the equipment.

Cleaning of the bit plane is necessary when a bit plane is removed and replaced or when the polyethylene bag is accidentally broken.

Caution

IBM-approved nylon or lint-free gloves must be worn during all phases of bit-plane handling.

To clean the bit plane, proceed as follows:

1. Clean a flat surface, as large as or larger than the bit plane with a lint-free cloth well saturated with cleaning fluid ($\mathrm{P} / \mathrm{N} 450608$). The surface must be lint-free.
2. Clean all array hardware associated with the bit plane to be installed.
3. Place the bit plane, with the Mylar* side up, on the lint-free surface.
4. Clean upper and lower connector tabs with lint-free cloth that is thoroughly moistened with circuit cleaner.
5. Fold clean, lint-free cloth into a pad about 3 or 4 inches square and saturate thoroughly with circuit cleaner.

Caution

Do not apply circuit cleaner directly to the bit plane.
6. Briskly rub the Mylar side of the bit plane.

Note; Best results are obtained by starting at one edge and rubbing back and forth over the entire length of the bit plane. If the cloth becomes dry, reapply the circuit cleaner to the pad only.
7. Allow bit plane to dry.
8. Immediately after cleaning, install bit plane in its proper location, using the following ROS bit plane installation procedure.

Note: Carrying the bit plane in a vertical position reduces the possibility of further contamination.

ROS Bit Plane Installation

Note: Extreme care must be taken throughout the following procedure to avoid damage to the bit planes, sense planes, or connector tabs. Plastic or lintfree gloves must be worn when handling bit planes.

1. Turn all setscrews counterclockwise until pressure plates are just flat to the casting. Do not back screws out past this point.
2. Clean the bit plane, if this has not been done, in accordance with cleaning procedure. If a new bit plane is being installed, perform steps 2 and 5 of the cleaning procedure.
3. Carefully place the bit plane over the two center mounting studs with Mylar dielectric side toward sense plane. Gently slip the bit plane over the upper and then the lower alignment pins and press flat on the small copper lands around upper hole and lower slot. The upper alignment hole has a slight press fit and the lower alignment slot prevents any side motion but allows lengthwise motion so that the bit plane can lie flat on the sense plane.
4. Install the upper and lower drive connectors with the mounting screws. Do not tighten springloading screws at this time. This procedure ensures correct location of the bit plane while the spider assembly is being installed and loaded.
5. Install the large-rubber pressure pad by placing it gently over the two center studs.
6. Holding the rubber pressure pad in position, place spider assembly over center studs. The holes in the spider casting are large clearance holes for the studs.
7. Exerting light upward pressure on the casting, align upper corner holes with the mating tapped holes in the vertical bars. Insert and fasten the four corner hex-head mounting screws. Do not over-tighten these screws but make sure they are bottomed. Fasten the two knurled nuts to the center studs. The knurled nuts are to be bottomed but must be only finger-tight when this is done.

Caution:

If the knurled nuts are too tight, bending and fracture of the casting may result when the spider is loaded.
8. Using the torque wrench, tighten all setscrews (1 through 12) to 2 inch-pounds in the sequence shown in Figure 94. Repeating the sequence, | tighten setscrews in positions 1 through 8 and 11-12 to 4.5 inch-pounds; tighten setscrews in positions | 9 and 10 to 3.5 inch-pounds.
9. After completing step 8, check torque in sequence indicated in Figure 94 to see that all torques for positions 1 through 8 and 11-12 are within 4.0 to 5.0 inch-pounds and that torques for positions 9 and 10 are within 3.0 to 4.0 inch-pounds. If torques are not within specifications, re-torque as described above.
10. Repeat steps 8 and 9 until set torque specifications are met.

[^3]
Connector Installation

1. Remove upper and lower drive connectors by removing the mounting screws. Check alignment of bit plane connector tabs with tabs on terminating resistor card at top and the drive card on bottom. Resistor card and lower drive card may be shifted for horizontal alignment by loosening the two holddown screws in each resistor card.
2. Reinstall connectors and tighten the mounting screws.
3. Load upper and lower drive connectors by turning spring-loading screws clockwise until they bottom. Do not over-tighten.

STORAGE PROTECT (SP) SERVICE CHECKS

Storage protect timing information is located in Volume 1 of the ALD's, Page AA000.

Reference Voltage and Sense Level Adjustments
Two potentiometers set the storage protect reference and sense level voltages. The card at $02 \mathrm{~B}-\mathrm{A} 3 \mathrm{~J} 4$ has a $1000-\mathrm{ohm}$ potentiometer (bottom) for the reference voltage and a 2000 -ohm potentiometer (top) for the sense level voltage adjustments.

Reference Voltage

Reference voltage should be set as follows:

1. Connect an accurate dc meter between $02 \mathrm{~B}-\mathrm{A} 3 \mathrm{~J} 4 \mathrm{D} 11$ (+ lead) and any B06 pin (- lead at -3 volt reference).
2. Using the bottom potentiometer at 02B-A3J4, adjust for a potential difference of +4.8 volts. This setting should be made at room temperature of approximately $68^{\circ} \mathrm{F}$. If the system must operate under other temperature conditions, use the graph of Figure 95 to determine the range of allowable reference voltage settings.

With the room temperature between $68^{\circ}-86^{\circ} \mathrm{F}$, the storage protect storage should operate with the reference voltage varied ± 0.4 volts from its nominal point. Before checking this variance, however, be sure that all logic voltages and the sense level voltage are at the nominal points.

Sense Level Voltage

The sense-level voltage is used by the final amplifier to yield the best discrimination between a maximum zero and a minimum one. As an initial setting, adjust the sense- level voltage to 3.1 volts (measured between 02B-A3J4B02 and ground).

To find the optimum setting, run the storage protect diagnostic (E3C9) with all the logic voltages and the reference voltage at their nominal values.

Lower the sense-level voltage (top potentiometer at $02 \mathrm{~B}-\mathrm{A} 3 \mathrm{~J} 4$) until the first error occurs. Return to the nominal value, restart the program, and raise the sense level until another error occurs. Set the sense-level voltage at the mid-point of the high and low values.

With nominal logic voltages and nominal room temperature, the storage protect storage should operate with the sense-level voltage varied ± 0.2 volts from its nominal value.

Checking SP Drivers and Terminating Diodes

See the section entitled "Checking MS Drivers and Terminating Diodes" under "Main Storage (MS) Service Checks."
Inhibit Drivers and Sense Amplifiers
Figure 96 shows the location of the inhibit drivers and sense amplifiers for the storage protect storage

Bit	Location	Out (Inhibit)	Retum	Sense Pin	Line Name
1	B-A3L4	808	$B 07$	802	Parity
2	B-A3L3	$B 03$	810	804	0
3	$B-A 3 J 3$	$B 08$	$B 07$	802	1
4	$B-A 3 L 4$	$B 03$	$B 10$	804	2
5	$B-A 3 L 3$	$B 08$	$B 07$	$B 02$	3

- Figure 96. SP inhibit driver and sense amp locations

SP Sense Windings

Figure 97 shows the location of the storage protect storage sense windings. The sense windings may be scoped using a one-to-one probe and the differential amplifier feature of the scope to cancel noise.

Bit	Location	Pin	Pir.
1	B-A3K4	D05	D06
2	B-A3K3	D11	B10
3	B-A3K3	B03	B04
4	B-A3K4	D04	B05
5	B-A3K3	B13	D13

FIGURE 97. SP SENSE WINDING TEST POINTS

Termination Diodes

The termination diodes (steering diodes) for the storage protect storage are located on the array boards. They are not shown on the logic pages. Remember that there are diodes in the driver lines.

Two types of diodes exist: 03E1 (part number 2414884), and 03E2 (part number 2414885). There are 16 of each type.

X and Y Drivers

Figure 98 shows the location and test points of the storage protect X and Y drivers.

Write Pin	Location	Read Pin	Line Name
010	A3J2	805	Y0, 2,4,6
808	A3J2	B04	Y8,10,12,14
D05	A3J2	D12	Y line in $1 N, 3 N, 5 N, 7 N$
006	A3J2	B13	Y line in $9 \mathrm{~N}, 1 \mathrm{IN}, 13 \mathrm{~N}, 15 \mathrm{~N}$ Y Rd on Read Y WG on Write
805	A3L2	D10	ON, 1,8N,9
804	A3L2	B08	2N, 3, 10N, 11
D12	A3L2	808	$4 \mathrm{~N}, 5,12,13$
813	A3L2	D06	$6 \mathrm{~N}, 7,14 \mathrm{~N}, 15$

Y Drivers

Write Pin	Location	Read Pin	Line Name
D10	A3J5	805	$\times 0,2,4,6$
B08	A3J5	$B 04$	$\times 8,10,12,14$
D05	A3J5	012	$1 \mathrm{~N}, 3 \mathrm{~N}, 5 \mathrm{~N}, 7 \mathrm{~N}$
D06	A3J5	B13	$9 \mathrm{~N}, 11 \mathrm{~N}, 13 \mathrm{~N}, 15 \mathrm{~N}$
			Rd on Read \times WG on Write
BO5	A3L5	010	$0 \mathrm{~N}, 1,88,9$
B04	A3L5	B08	$2 \mathrm{~N}, 3,10 \mathrm{~N}, 11$
D12	A3L5	D05	$4 \mathrm{~N}, 5,12 \mathrm{~N}, 13$
B13	A3L5	D06	$6 \mathrm{~N}, 7,14 \mathrm{~N}, 15$

\times Drivers

FIGURE 98. STORAGE PROTECT DRIVER LOCATIONS

Storage Protect Test Points

Following are some common test points for the storage protect storage.

Sense Gate	B-A3J4B04
Inhibit Timing	B-A3J7D05
Strobe	B-A3K6B12
Read Gate	B-A3K6B13
Write Gate	B-A3K6D02

CHANNEL SERVICE CHECKS

The material in this section can be used to adjust delays and singleshot timings and to check for proper circuit operation of the selector channel and the 1052.

SELECTOR CHANNEL

Figure 99 outlines the maintenance approach for servicing the selector channel when a malfunction is suspected. Procedures are outlined for progressive scan and non-progressive scan diagnostic techniques.

When trouble is suspected in a specific area of the selector channel, the following checks can be used to pinpoint or correct the malfunction.

C Reg Set and IF Service Out Delays

1. Set check switch to disable position. Manually store the following program; press PSW restart pushbutton. The program should be looping.

Location	Data	Symbolic
0000	$* 0000000$	PSW
0004	00000100	PSW
0048	00000200	CAW
0078	$* 0000000$	PSW
$007 C$	00000100	PSW
0100	$9 C 000 \ddagger \times X$	SIO
0104	47 F0 0104	Branch to itself
0200	04000300	CCW
0204	00000006	CCW
* Enable		
\ddagger Channel Tested		
XX Available Tape or Disk		

2. Sync scope plus on rise of IF service in line at $01 \mathrm{X}-\mathrm{N} 4 \mathrm{~K} 7 \mathrm{D} 04$ (0 time).
3. Observe C reg set line ($01 \mathrm{X}-\mathrm{N} 4 \mathrm{G} 6 \mathrm{D} 12$) falls at 340 ns . Adjust delay at $01 \mathrm{X}-\mathrm{L} 4 \mathrm{H} 2$ bottom.
4. Observe that IF service out line (01X-N4L7D05) falls at 215 ns . Adjust delay at $01 \mathrm{X}-\mathrm{N} 3 \mathrm{E} 2$ bottom.

Channel Reset

1. Set check switch to disable position and rate switch to process position.
2. Sync scope on L3E7B08 plus external.
3. Press system reset to time pulses; check all points on Figure 100.
4. If clocks are running, use Figure 101 for reference.

FiGURE 100. RESET PULSES (CLOCK NOT RUNNING)

[^4]
A-Clock Check

Add jumper from XM4H7D04 to ground.

1. Set check switch to disable position and rate switch to process position.
2. Sync scope on L3E7B08 minus external; set first pulse on Figure 102 to zero time.
3. Press system reset to time pulses; check all points in Figure 102; ensure that clock is running.

| Test Point | Page and
 Net No. | Line Title |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

FIGURE 102. A CLOCK

Cycle Counter Check

1. Set check switch to disable position and rate switch to process position.
2. Sync scope on L3E7B08 plus external; set first pulse on Figure 103 at zero time.
3. Check all points in Figure 103.

B-Clock Check

1. Set check switch to disable position and rate switch to process position.
2. Sync scope on L3E7B08 plus external; set first pulse on Figure 104 at zero time.
3. Add a temporary jumper between K4M4D07 and K4H7D10.
4. Check all points in Figure 104.
5. Remove jumper installed in step 3.

Tag Generator and Manual Stop Controls

1. Repeat steps 1 and 2 of preceding "B Clock Check."
2. Add the following temporary jumpers: M4K6B10 (GS111BN4) to M4K6B02 (GS111AK4) M4K7D04 (GS111BP4) to L3F6D04 (GE191BA4)
3. Check all points in Figure 105.
4. Set channel control switch to selector channel position; set channel selector to correct channel.
5. Set address key 9 down (if STOP SEL).
6. Scope test point *1 in Figure 105.
7. Set address key 10 down, address key 11 up (10 code ITD1 and IT); press enter pushbutton. Pulse should change from solid to solid plus dotted line.
8. Press system reset pushbutton.
9. Repeat step 7 and 8 scoping test points *2 (code $01=10$ up, 11 down) and $* 3$ (code $11=10$ down, 11 down) (Figure 105).
10. Remove jumpers installed in step 2 and reset channel control switch to normal position.

Test Point	Page and Net No.	Line Title	
K4H7D06	GB171AQ4	-Trf to Pos Reg	
K485D12	GAI3IAP4	$\begin{aligned} & + \text { CC Step } \\ & 0 \text { Ph A } \end{aligned}$	
K4C7810	GA131AQ4	$\left\lvert\, \begin{gathered} + \text { CC Step } \\ 0 \mathrm{Ph} \text { B } \end{gathered}\right.$	
K485010	GA131AR4	$\begin{gathered} + \text { CC step } \\ 1 \mathrm{Ph} \mathrm{~A} \end{gathered}$	
K4C7809	GAI3IAS4	$\begin{aligned} & \text { +CC Step } \\ & \text { \| Ph B } \end{aligned}$	
K436D04	GA131BL4	$\begin{gathered} + \text { CC Step } \\ 2 \mathrm{Ph} \mathrm{~A} \end{gathered}$	
K4G2B10	GFI21AG4	-No Poll Reset Reg	
L3C2D12	GEI9IAQ4	$\begin{gathered} -C_{L} \text { Reset } \\ \hline 2 \end{gathered}$	
K4C3D06	GFl21AA4	$\begin{aligned} & - \text { Inst } \\ & \text { Scan Start } \end{aligned}$	

FIGURE 103. CYCLE COUNTER

Indicator Check

1. Check that the following indicators are on or rippling:

Roller	
Position	Indicators
3	Byte Counter: A and B parity bits only
4	CC Phase: 0, 1, 2; Clock: A0, A1, step
5	```Pos Reg Trf; A Clock: A, B, C, D; SP: D2```
5	Instruction Scan
5	Byte Counter Mod Enable
6	FIN (Flag Reg Unpredictable)

Position

Byte Counter: A and Bparity bits only
CC Phase: 0, 1, 2; Clock: A0, A1, step
On
Rippling
Rippling
On
May be on dimly or not visibly lighted On

Test Point	Page and Net No.	Line Title	$\begin{array}{cllllllll} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 89 \\ & & 100 & \text { Nanoseconds/Div } \end{array}$
L3F6DIO	GE191A24	-Early Reset	Ω
K4E2B08	GAI21AA4	+8 CIk	
K4H7B12	GAI2IAN4	-B CIk	
K4F6B10	GAI2IAG	-GP to $B C$ Set B	
K4E4B10	GA121AY4	-GP to $B C \operatorname{Set} A$	L
K4C4D05	GA121AH4	-CLk B2	\checkmark
K4J6005	GA121AP4	-B Clk	2

FIGURE 104. B CLOCK

Test Point	Page and Net No.	Line Title	01234567891011 100 Nanoseconds/Div
M4K7D09	GSIIIAL4		
N3F2D 10	GR111AM4	+ ITD 1	-
N3E4D 10	GRIIIAL4	+ ITD 2	
N3F6D 10	GR1118E4	+1TD 3	S
N3E4D12	GRIIIAW4	$\begin{aligned} & +\mid \text { TD } 1 \\ & \text { Not } 2 \end{aligned}$	\rightarrow
N3E4D04	GR1118W4	$\begin{array}{r} +1 \text { TD } 2 \\ \text { Not } 3 \end{array}$	
N3E5D 11	GR 1118M4	$\begin{aligned} & + \text { Sve } \\ & \text { In Dly } \end{aligned}$	
M4 J2D06	GS111BQ4	+IF Sve Lth	
N3D2D10	GR111AC4	$+\mathrm{Not}$ ITD I	

figure 105. tag generator

A-Clock Manual Controls

1. Set channel control switch to selector channel position; set channel selector for correct channel.
2. Using address keys 10 and 11 as follows, press enter pushbutton and check for correct results:

Code	Address Keys	Position
01	10 up and 11 down	Stop AO
11	10 and 11 down	Stop A1
10	10 down and 11 up	Stop CS
3. Set channel control switch to normal position.		
4.	Return address keys to normal position.	

Operation Control Check

1. Set channel control switch to selector channel position, channel selector for correct channel, and rate switch to single-cycle position.
2. Set the following IAR keys down and check for correct results; press the enter key for each and then reset each key off.

IAR Key	Result
30	
29	Select In
27	Service In
26	
31	Poll and Select Out (Do not reset) Operational In (Do not reset) and Operational 28
	In Test
	Status In and Command Out

3. Reset Channel Control to normal position.

DTC Hold Check

1. Add the following jumpers: B-B2G4D04 (KE311AB4 tie I/O routine on) to ground
$\mathrm{B}-\mathrm{B} 2 \mathrm{~K} 5 \mathrm{~B} 09$ to ground if channel 1 under test
$\mathrm{B}-\mathrm{B} 2 \mathrm{C} 7 \mathrm{D} 07$ to ground if channel 2 under test
$\mathrm{B}-\mathrm{B} 2 \mathrm{C} 7 \mathrm{~B} 03$ to ground if channel 3 under test
2. ROS repeat on address $0 B 0$.
3. Set rate switch to single-cycle position.
4. Scope the following points on the channel under tests:

Channel 1 B-B2K7D04 (KE451)
Channel 2 E-C3L2D06 (KE451)
Channel 3 E-C3L2B12 (KE451)
5. Press system start pushbutton; observe a - 350 ns pulse.
6. Set address key 8 down (Hold DTC); press enter and start pushbuttons; point should go down until address key 8 is reset.

Singleshot Adjustment

Adjust singleshots as shown in Figure 106; sync scope on internal.

Selector Channel Clock-Stepping Procedure

The following will allow clock stepping through the start I/O CCW1, CCW2, unit select, end update, and interrupt routines. This procedure is to be used in conjunction with IOP201, 202, 211, 209, and 210, respectively. A mixture of channel clock stops and ROS single cycle is used to step the routines and allow scoping at each stop. The channel stops at the end of the indicated clock cycle; therefore, all conditions on the IOP pages, following a clock cycle and up to the next clock cycle, have been completed. Figure 107 shows a block diagram of the routines that can be stepped by this procedure.

To prepare for selector channel clock stepping, proceed as follows:

1. Mount a scratch tape on a tape drive. Make sure it is not file protected.
2. Key in the following program:

$\frac{\text { Address }}{}$	Data 0000	FF040000	Restart PSW
0004	00000300		
0048	00000400	CAW	

Name	Page	Location	Timing	Procedure
If Line Check	GRIOI	N3D5802	150* (-)	a. Set sel chan switch to desired channel and set manual op switch to sel. b. Set keys 27, 29, and 31 down (addr in, sve in, op in). c. Jumper K4J6D06 to M4E7B02. d. Press ENTER; the single shot should be firing continuously; observe scope and adjust top potentiometer.
Select In Gate	GR101	N3D5002	150* (-)	a. Set sel chan switch to desired channel and manual op switch to sel position. b. Jumper N3D5B02 to N3D05B07. Jumper K4J6D06 to M4E7B02. c. Set keys 27, 29, 30, 31 down (addr in, sve in, sel in, OP (N) and depress ENTER. d. Observe pulse on scope and adjust bottom potentiometer.
Start if POLL	GR121	M4H7002	150* (-)	a. Set manual op switch to off position; set rate switch to process position; press reset and start pushbuttons. (Ensure that channel clocks are running) b. Jumper K4J6D06 to M4H7B08 and M4F6B08 to ground. c. Observe pulse on scope and adiust botrom potentiometer.
If RESET	GS151	M4H7802	8 usec (-)	a. Press RESET repeatedly and observe pulse on scope; adjust top potentiometer. (Place check control switch in any position other than disable.)

[^5]

FIGURE 107. SELECTOR CHANNEL CLOCK-STEPPING BLOCK DIAGRAM

Address		Data	Comments
0078		FF040000	I/O new PSW
$007 C$		00000300	
0300		9C000CUU	SIO--CUU $=$ channel and unit address of scratch tape
0304		$47 F 00304$	Unconditional branch to 304 0400
01000501	CCW		
0404	20000100		

Action	ROS	Channel
	Address	Time
9. Set address key 10 on, 9 and 11 off; press ENTER.		CCW1, CC1, CS
10. Set address key 11 on, 9 and 10 off; press ENTER.		CCW1, CC1
11. Press START.	ABB	
12. Press START.	A80	CCW 1, CC1, A0
13. Set address keys 10 and 11 on, 9 off; press ENTER.		CCW1, CC1, A1
14. Set address key 10 on, 9 and 11 off; press ENTER.		CCW 1, CC2, CS

3. Set selector channel display switch to channel number of scratch tape.
4. Press PSW RESTART and observe that the scratch tape moves.
Any or all of the five following routines may now be stepped through. (Make sure the tape is moving as each routine is started.)

CCW2 Routine IOP202
Action

1. Set ROS address 030 in the
storage data keys.
2. | ROS |
| :--- |
| Address |

set ROS address compare
switch to STOP.
3. Set rate switch to SINGLE
CYCLE.
Time

ROS Address		Channel Time
11. Press START.	A24	CCW2, CC1, A0
12. Set address keys 10 and 11 on, 9 off; press ENTER.		CCW2, CC1, A1
13. Set address key 10 on, 9 and 11 off; press ENTER.		CCW2, CC2, CS
14. Set address key 11 on, 9 and 10 off; press ENTER.		CCW2, CC2
15. Press START.	BA2	
16. Press START.	03C	CCW2, CC2, AO
17. Set address keys 10 and 11 on, 9 off; press ENTER.		CCW2, CC2, A1
18. Set address key 10 on, 9 and 11 off; press ENTER.		CCW2, CC3, CS
19. Set address key 11 on, 9 and 10 off; press ENTER.		CCW2, CC3, A0
20. Set address keys 10 and 11 on, 9 off; press ENTER.		CCW2, CC3, A1
21. Set address key 10 on, 9 and 11 off; press ENTER.		CS
22. Set all address keys off; press ENTER.		
23. Press START.	940	
24. Set rate switch to PROCESS.		

Unit Select Routine IOP211

Note: Since the unit select routine does not have an associated ROS routine, it is impossible to ROS stop at the beginning of unit select. The following procedure will stop near the end of the CCW2 routine, step through to the end, and go to the beginning of the unit select routine.

	ROS	Channel
Action	Address	Time

1. Set ROS address BA2 in the storage data keys.
2. Set ROS address compare switch to STOP.

BA2 CCW2, CC2
3. Set rate switch to SINGLE CYCLE.
4. Set address key 11 on, 9 and 10 off; press ENTER.
5. Press START.

O3C CCW2, CC2, AO
6. Set address keys 10 and 11 on, 9 off; press ENTER.
7. Set address key 11 on, 9 and 10 off; press ENTER.

CCW2, CC2, A1
CCW2, CC3, AO
8. Set address key 10 on, 9 and 11 off; press ENTER.

CS
9. Press START.

940
10. Set address key 11 on, 9 and 10 off; press ENTER.
11. Set address keys 10 and 11 on, 9 off; press ENTER.

Unit Sel, CCO, AO
12. Set address key 10 on, 9 and 11 off; press ENTER.

Unit Sel, CCO, A1
13. Set address key 11 on, 9 and 10 off; press ENTER.

Unit Sel, CC1, CS

Unit Sel, CC1, AO

	ROS	Channel
Action	Address	Time

14. Set address keys 10 and 11 on, 9 off; press ENTER.
15. Set address key 10 on, 9 and 11 off; press ENTER.
16. Set address keys 9 and 11 on, 10 off; press ENTER.
17. Set address keys 9, 10, and 11 on; press ENTER.
18. Set address keys 9 and 10 on, 11 off; press ENTER.
19. Set all address keys off; press ENTER.
20. Set rate switch to PROCESS.

End Update Routine IOP209

| Action | ROS
 Address |
| :--- | :--- | | Channel |
| :---: |
| Time |

1. Set ROS address $00 C$ in the storage data keys.
2. Set ROS address compare switch to STOP.

00 C
3. Set rate switch to SINGLE CYCLE.
4. Set address key 11 on, 9 and 10 off; press ENTER.

End Up, CCO
5. Press START.
6. Press START. BBS
7. Set address keys 10 and 11 on, 9 off; press ENTER.
8. Set address key 10 on, 9 and 11 off; press ENTER.
9. Set address key 11 on, 9 and 10 off; press ENTER.
$\begin{array}{ll}\text { 10. Press START. } & \mathrm{BC} 4 \\ \text { 11. Press START. } & \mathrm{B} 35\end{array}$
12. Set address keys 10 and 11 on, 9 off; press ENTER.
13. Set address key 10 on, 9 and 11 off; press ENTER.
14. Set address key 11 on, 9 and 10 off; press ENTER.
5. Press START. 03C
16. Set rate switch to PROCESS.

Interrupt Routine IOP210

Action	ROS Address	Channel Time
8. Set address key 10 on, 9 and 11 off; press ENTER.		Irpt, CC1, CS
9. Set address key 11 on, 9 and 10 off; press ENTER.		Irpt, CC1
10. Press START.	AA7	
11. Press START.	AC2	Irpt, CC1, A0
12. Set address keys 10 and 11 on, 9 off; press ENTER.		Irpt, CC1, A1
13. Set address key 10 on, 9 and 11 off; press ENTER.		Irpt, CC2, CS
14. Set all address keys off; press ENTER.		Instruction Scan
15. Press START.	AB4	
16. Press START.	03C	

The interface portion of the interrupt routine is now complete. Continue single cycle to observe CSW store, exchange of PSW, and return to I-fetch.

1052 ADAPTER/PRINTER-KEYBOARD

Singleshot Adjustment

1. Turn off motor switch (located under typewriter); press not ready key on typewriter console.
2. Enter ROS address 200 in the data keys; set ROS repeat switch on; press start pushbutton. The IAR should be rippling.
3. Adjust singleshots in Figure 108 (all test points are on C1E4 panel). Connect a long jumper from 1A-B1G4D06 to input point called out in the procedure (RA011 SAR 15). Measure all timings at the 1.5 volt level. See Figure 109 for 1052 read flow chart.

Switch and Indicator Check

1. Set motor switch on (located under typewriter).
2. Set the following typewriter switches on: CE mode and Cont Write; continuous printing of O A O A etc. should occur. While the 1052 is printing recheck and re-adjust (if necessary) all singleshots.
3. The following indicators should be on: Write, Printer, Busy, and Upper Case.
4. Set switch to read position; read indicator and read proceed indicator should come on.
5. Type all characters on keyboard and check printout. Check carriage return key and the fact that the right-hand margin forces a carriage return. Ensure that last character typed on extreme righthand side does not type over character next to it.
6. Put 1052 on line. Ensure that 1052 is in upper case. Press power off pushbutton; press power on pushbutton and ensure that intervention required indicator is on. (Power on reset turns off equipment check on the 1052.) Press ready pushbutton on the 1052 and ensure that the ball on the 1052 rotates 180° and that the intervention required indicator goes off .

Tiedown to ground	Page	SS Designation	Test Point	Duration	Tolerance	Adjust	Input Point
G7803	PG 601	SS 1	F6D04	+ 700 ns	$\pm 35 \mathrm{~ns}$	CPG7	G7807
G7803	PG 601	SS 2	F6D05	$+200 \mathrm{~ms}$	$\pm 10 \mathrm{~ns}$	LPG7	G7807
E7B03	PG 601	SS 4	F6803	+ 200 ns	+0 to -10ns	CPE7	E7807
*	PG 601	SS 5	D5803	$+28 \mathrm{~ms}$	-0 +1.4ms	CPD7	07010
*	PG 601	SS 6	F6808	+ 500 ns	$\pm 25 \mathrm{~ns}$	LPE7	D7D10
*	PG 601	SS 7	F6D11	+ 200 ns	$\pm 10 \mathrm{~ns}$	UPE7	D7010
**	PG 621	Alarm	D7006	- 30 ms	$\pm 1.5 \mathrm{~ms}$	LPD7	D4M5812
Pull G5	PG 621	Ready	G7D12	-200ns	$\pm 10 \mathrm{~ns}$	UPG7	D5006

FIGURE 109. 1052 READ SEQUENCE

2302 Track Correspondence

The 1410/7010 Emulator uses sequential tracks on the 2302 Disk Storage. The location of a 2302 track corresponding to a particular 1301/2302 track may be determined by using the following algorithm:
$(1301 / 2302$ track address +40$) \div 46$
Quotient $=2302$ cylinder number
Remainder $=2302$ head number

Example:
1410/7010 1301/2302 track address $=1000$
$(1000+40) \div 46=22$, remainder $=28$
Therefore: 2302 address is cylinder 22, head 28.

2314 Disk Storage Map

The following map of the 2314 Disk Storage shows the track allocation used by the 1410/7010 Emulator:

From Cylinder/ Head	Through Cylinder/	Function		
$0-0$		$0-19$		Contains standard information
:---				
(initial program loader, volume				

Note: Four 2314 drives are required for each 1410/7010 access; however, only three drives are physically used by the emulator. Drive 1 contains 1410/7010 tracks 0000-3959, drive 2 contains tracks 3960-7919, and drive 3 contains tracks 7920-9999. Drive 4 is available for any function the user desires.

2314 Track Correspondence

The 1410/7010 Emulator uses sequential tracks spread across three 2314 drives, omitting the first and last cylinders on each drive. The location of a 2314 track corresponding to a particular 1301/2302 track may be determined by using the following algorithm:
(1301/2302 track address) $\div 3960$
Quotient $=$ Relative device number
Remainder $=$ Relative track number within the 2314 device
Add 20 to the remainder (to bypass cylinder 0). Divide this sum by 20 (number of tracks per cylinder within a 2314 device).

Quotient $=2314$ cylinder number
Remainder $=2314$ head number.
Example:
$1410 / 70101301 / 2302$ track address $=1000$
$1000 \div 3960=0$, remainder $=1000$
$(1000+20)+20=51$, remainder $=0$
Therefore: $1410 / 7010$ track address 1000 is located on the first 2314 drive, cylinder 51, head 0.

	Type of Delay	Page	Location	Setting	Test Point
-	Suc Out Suc Out Sue in Suc lis In Tag Oit Teg Select Out Lute Reg Delayed	Xés21	02C-E4G3AI	125	Fixed 'etting
		XE621	02C-F4G3B1	100	Fixed Setting
		XE631	02C-E4H3AI	125	Fixed Setting
		XF631	02C-E41:3B1	100	Fixed Selting
		X $\times 64$!	02C-E4[3A]	50	Fixed Selting
		X[65]	02C-E4E3BI	50	Fixed Setting
		XF661	02C-E4L6BI	60	Fixed Setting
		X 521	02C-E4L6AI	70	$\begin{aligned} & \text { O2C-E4K6D12 } \\ & \text { (XE521 TR4) } \end{aligned}$
	Suc Out	XE801	O1Y-P4G3AI	125	Fixed Setting
3 0	Suc Out	XE801	01Y-P4G3B1	100	Fixed Setting
¢	Suc In	XE811	$01 \mathrm{Y}-\mathrm{P} 4 \mathrm{H} 3 \mathrm{Al}$	125	Fixed Setting
\cdots	Suc in	X6811	OIY-P4H3BI	100	Fixed Setting
先	In Tag	XE821	O1Y-P4[3AI	50	Fixed Setting
$\underset{\sim}{\square}$	Out Tag	XE831	01Y-P4E3B1	50	Fixed Setting
	Selec: Out	XE84	01Y-P4L6B1	00	Fixed Selting

FIGURE 110. 1410/7010 EMULATOR DELAYS

1410/7010 DIAGNOSE INSTRUCTION ADDRESSES

Instruction	ROS Address	CAS Page
Link Back	AB1	QR181
Special Scan	A36	QR900
Start I/O	AB8	QR920
Device Table Search	ADS	QR930
CCW Create	AB5	QR910

START I/O DIAGNOSE INSTRUCTION

Under normal System/ 360 operation, when a start I/O instruction is given. bit positions 4 through 7 of the channel address word (CAW) must contain zeros, and bit positions 38 and 39 of every channel command word (CCW) except one specifying transfer in channel must contain zeros. If either of these restrictions is violated, program check is stored in the channel status word.

The start I/O diagnose instruction inhibits normal validity checks of bits 4 through 7 of the CAW and bit 38 and 39 of CCW. Instead, these bits are used for translator control. CAW bit 5 must be on if the start I/'O diagnose instruction is used; otherwise, a program check indication is stored in the channel status word (CSW).

CAW Bits	
4-7	Meaning
0100	Tape move mode
0101	Disk move mode
0110	Tape load mode
0111	Disk load mode
1100	Tape move mode, odd parity
1101	Illegal
1110	Tape load mode, odd parity
1111	Illegal
CCW Bits	
38-39	Meaning
00	No translation
01	Meaningless results
10	Tape or disk load mode, read
11 (read op)	Tape or disk move mode and wordmark preservation
11 (write op)	Write translation

There is one parameter for the start I/O diagnose instruction. The " x " in the general diagnose instruction format specifies a GPR that contains the channel and unit address (in the low-order 11 bits) of the I/O device to be used.

7070/7074 OPERATION CODES

Figure 111 is a list of emulated operation codes for 7070/7074 systems.

S, 0, 1	Abbreviation	Name	Digit	-Digir 5	Digits 6,7,8,9	Comments
$+\infty$	HB	Halt and Branch	Not used		Branch address	Next instruction from PR 6-9.
-00	HP	Holt and Proceed	Not used		Not used	Next instruction from IC.
+01	B	Branch	Not used		Branch address	Unconditional branch wi thout halt; next instruction from PR 6-9.
-01	NOP	No Operation	Not used		Not used	Next instruction from IC.
+02	BLX	Branch and Load Location in Index Word	Index Word for storing IC		Branch address	Contents of IC are stored in index word, positions 2-5.
+03	CD	Compare Storage to Digit	Valve compored	Position to be compared	Address of data	Turns on high, low, or equal indicator.
-03		Sign Control	Sign value	Operation: O Compare	Address of data for operations	Compare operations turn on high, low, or equal indicator:
	CSA CSM	Compare Sign to Alpha Compare Sign to Minus		1. Make	$0-1$	
	CSP	Compore Sign to Minus		2. Sign change sense 3. Sign change stop	Not used for operations 2 and 3	Highest $\quad+9999999999$ +0000000000
	MSA MSM	Make Sign Alpha Make Sign Minus		4. Sign change test	Branch address for operation 4	-0000000000
	MSP	Make Sign Minus Make Sign Plus				-9999999999
	SMSC	Operation 2				Lowest @0000000000
	HMSC	Operation 3				
	BSC	Operation 4				
+08						
-08	Unemulated Operations					
+09						
+10	BZI	Branch if Zero in Accumulator 1	Not used		Branch address	Sign is ignored.
-10	BMI	Branch if Minus in Accumulator 1	Not used		Branch address	Contents are ignored. If overflow indicator is on, branch and turn it off.
+11	BVI	Branch if Overflow in Accumulator 1	Not used		Branch address	
-11	ZSII	Zero Storage and Store Accumulator 1	Field definition		Address of data	
+12	STI	Store Accumulator 1	Field definition		Address of data	
-12	STDI	Store Digits from Accumulator I and Ignore Sign	Field definition		Address of data	
+13	ZAI	Zero Accumulator 1 and Add	Field definition		Address of data	
-13	ZSI	Zero Accumulator 1 and Subtract	Field definition		Address of data	
+14	A)	Add to Accumulator 1	Field definition		Address of data	
-14	S1	Subtract from Accumulator 1	Field definition		Address of data	
+15	Cl	Compare Accumulator 1 to Storage	Field definition		Address of data	Sets high, low, or equal indicator.
-15	CA	Compare Absolute in Accumulator 1 to Absolute in Storage	Field definition		Address of data	Sets high, low, or equal indicator.
+16	ZAA	Zero Accumulator 1 and Add Absolute	Field definition		Address of data	
-16	ZSA	Zero Accumulator 1 and Subtract Absolute	Field definition		Address of data	
+17	AA	Add Absolute to Accumulator 1	Field definition		Address of data	
-17	SA	Subtract Absolute from Accumulator 1	Field definition		Address of data	
+18	ASI	Add to Storage from Accumulator 1	Field definition		Address of data	
-18	SSI	Subtract Accumulator 1 from Storage	Field definition		Address of data	
+19	AASI	Add to Absolute Storage from Accumulator 1	Field definition		Address of data	
+20	BZ2	Branch if Zero in Accumulator 2	Not used		Bronch address	Sign is ignored.
-20	BM2	Branch if Minus in Accumulator 2	Not used		Branch address	Contents are ignored.
+21	BV2	Branch if Overflow in Accumulator 2	Not used		Branch address	If overflow indicator is on, branch and turn if off.
-21	ZST2	Zero Storage and Store Accumulator 2	Field definition		Address of data	
+22	ST2	Store Accumulator 2	Field definition		Address of data	
+23	ZA2	Zero Accumulator 2 and Add	Field definition		Address of data	
-23	ZS2	Zero Accumulator 2 and Subtroct	Field definition		Address of data	
+24	A2	Add to Accumulator 2	Field definition		Address of data	
-24	S2	Subtract from Accumulator 2	Field definition		Address of data	
+25	C2	Compare Accumulator 2 to Storage	Field definition		Address of data	Sets high, low, or equal indicator.
+28	AS2	Add to Storage from Accumulator 2	Field definition		Address of data	
-28	SS2	Subtract Accumulator 2 from Storage	Field definition		Address of data	
+29	AAS2	Add to Absolute Storage	Field definition		Adoress of deto	
+30	BZ3	Bronch if Zero in Accumulator 3	Not uned		Branch oddress	Sign is ignored.
-30	BM3	Branch if Minus in Accumulator 3	Not used		Branch address	Contents are ignored.
+31	8V3	Branch if Overflow in Accumulator 3	Not used		Branch oddress	If overflow indicator is on, branch and turn it off.
-31	ZST3	Zero Storage and Store Accumulator 3	Field definition		Address of data	
+32	ST3	Store Accurulator 3	Field definition		Address of data	
-32	STD3	Store Digits from Accumulator 3 and Ignore Sign	Field definition		Address of data	

FIGURE 111. EMULATED 7070/74 OPERATION CODES (PART I OF 4)

S,0,1 Abbreviation Name			Digit 4-Digit 5	Digits 6, 7, 8,9		Comments
+33	ZA3	Zero Accumulator 3 and Add	Field definition.	Address of		
-33	ZS3	Zero Accumulator 3 and Subtract	Field definition	Address of		
+34	A3	Add to Accumulator 3	Field definition	Address of		
-34	\$3	Subtract from Accumulator 3	Field definition	Address of		
+35	C3	Compare Accumulator 3 to Storage	Field definition	Address of		Sets high, low, or equal indicator.
- 38	AS3	Add to Storage from Accumulator 3	Field definition	Address of		
-38	SS3	Subtract Accumulotor 3 from Storage	Field definition	Address of		
+39	AAS3	Add to Absolute Storage from Accumulator 3	Field definition	Address of		
+40	BL	Branch if Low	Not used	Branch odd		Tests the low indicator
-40	BH	Branch if High	Not used	Branch add		Tests the high indicator.
+41	BFV SMFV HMFV	Field Overflow Control	Not used Operation: 0 . Test 1. Sense 2. Stop	Branch add operation operations operations		Test operation tests field overflow indicator.
-41	BE	Branch if Equal	Not used	Branch add		Tests the equal indicator.
-43	BCX	Branch Compared Index Word	Operand index word	Branch odd		
+44	BXN	Branch if Index Word Indexing Portion is Non-Zero	Operand index word	Branch ad		Sign and the other six digit positions are ignored.
-44	BXM	Branch if Index Word is Minus	Operand index word	Branch ad		Contents are ignored.
-45	XL	Index Word Load	Operand index word	Address of		
-45	XU	Index Word Unload	Operand index word	Address of		
. 40	XZA	Index Word Zero and Add to Indexing Portion	Operand index word	Four-digit		Sign is set to plus and the other six digits are unchanged.
-46	XZS	Index Ward Zero and Subtract from Indexing Portion	Operand index word	Four-digit		Sign is set to minus and the other six digits are unchanged.
+47	XA	Index Word Add to Indexing Portion	Operand index word	Four-digit		Sign may change; other positions are unchanged.
-47	zS	Index Word Subtract from Indexing Portion	Operand index word	Four-digit		Sign may change; other positions are unchanged.
+48	XSN	Index Word Set Non-indexing	Operand index word	Four-digit		Sign and the other six digits are unchanger
-48	XLIN	Index Word Lood with Interchange	Operand index word	Address of		Positions 2-5 and 6-9 are interchanged.
+49	$81 \times$	Branch Incremented Index Word	Operand index word	Branch ad		Branch if indexing portion (incremented by 1) is not greater than non-indexing portion.
-49	BDX	Branch Decremented Index Word	Operand index word	Branch ad		Branch if decremented indexing portion is not brought to zero or beyond non-indexing value.
+50	$5 R^{*}$ SRR" SL." SLC"	Shift Control	Index word for shift and count	Acc. (1-3)	Length of shift (00-10)	*Operation: 0 . Shift right 1. Shift right and round 2. Shift left 3. Shift left and count
-50	SR SRR SL SLC SRS SLS SRS SLS	Coupled Shift Control	Index word for shift	Digit position for split; 0 for normal	Length of shift (00-20)	*Operation, normal: 0 . Shift right 1. Shift right and round 2. Shift left 3. Shift left and count - Operation, split: 4. Shift right from point Acc 1 . 5. Shift left from point Acc 1 6. Shift right from point Acc 2 7. Shift left from point Acc 2
+51		Brarich on Alteration Switch or Channel Busy	Operation: Switch 1-4 Sync or Chan 1-4 0 . Alteration switch 1. Sync busy 2. Channel busy	Branch ad		
+53	M	Multiply	Field definition of multiplier	Address of		Beginning: Multiplicand in Accumulator 3. End : Product in Accumulators 1 and 2; multiplicand in Accumulator 3.
-53	D	Divide	Field definition of divisor	Address of		Beginning: Dividend in Accumulators 1 and 2. End : Quotient in Accumulator 2 , remainder in Accumulator 1; divisor in Accumulator 3.
+54		Inquiry Control	Unemulated operation			
+55	PC	Priority Control	4: Not used 5: Mask register 0 or 1	Address of		O-Allow; 1-Mask

FIGURE 111. EMULATED 7070/74 OPERATION CODES (PART 2 OF 4)

FIGURE 111. EMULATED 7070/74 OPERATION CODES (PART 3 OF 4)

5,0,1	Abbreviation	Name		Digit 4-Digit 5	Digits 6, 7, 8,9	Comments
+81		Tape Control 1		Operation:	If position 5 is not 0 , address of	
-81	TR^{*}		$(0-9)$	1. Read	first RDW.	
	TRR**			2. Read per RM		
	TW*			3. Write		
	TWR**			4. Write per RM		
	TWZ*******			5. Write with zero elimination 6. Write per RM and zero		
				elimination		
	TSF*			7. Segment forwardspace per count		
	TSB*			8. Segment backspace per count		
	TRA***********			9. Read all alpha 0 . Operation in position 9		
	TSEL	+ Priority			0. No-op select	
	TM*	-No Priority			1. Write tape mark	
	TRW TRU				2. Rewind 3. Rewind/unload	
	TRB				4. Backspace	
	TSM*				5. Write tape segment mark	
	TSK TEF				6. Skip 7. Turn off EOF	
	TSLD				8. Set low density	
	TSHE				9. Set high density	
		*May set a stocking latch **May be treated as a Read				
+82	Same as $* 81$					
-82	except other					
+83 +84	sync is used					
-84						

Note: All other 7070/74 operation codes are unemulated.

FIGURE 111. EMULATED 7070/74 OPERATION CODES (PART 4 OF 4)

POWER SYSTEM SERVICE CHECKS

- Figure 112 shows the power-on sequence.
- Figure 113 shows the power-off sequence.
- YB401 shows how to adjust the overvoltage reference potentiometers.

FIGURE 112. POWER ON SEQUENCE

SCR Gate Signals

Always check the SCR gate signals when a failure occurs. The gate signals are the most critical operating requirement of the inverter. Any abnormal variation from the general voltage wave shapes shown in Figure 114 will cause the inverter to fail. The SCR gate signals are measured when the threephase input power is off. The large allowable percentage variations on the gate signal voltages are mainly attributable to the correspondingly large variations of SCR gate impedance. If all of the timing measurements are out of the specified tolerances, a potentiometer located on the oscillator card may be adjusted to give the correct $2.5-\mathrm{kc}$ operating frequency.

If the SCR gate signals are normal, critical components may be checked at the converter-inverter terminal boards (Figures 115 and 116) with an ohmmeter. Remember that a good rectifier has a high resistance in only one direction but a good SCR has a high resistance in both directions.

FIGURE 113. POWER/DC OFF SEQUENCE

FIGURE 114. CONVERTER-INVERTER TESTPOINTS AND WAVEFORMS

FIGURE 115. CONVERTER-INVERTER (COVER OFF)

FIGURE 116. CONVERTER-INVERTER TEST POINTS

Types of Failures
Following are the four general classifications of failures on the converter-inverter.

1. Inverter blows fuses on start.
2. Inverter blows fuses when load is applied.
3. Inverter blows fuses after running for a short time.
4. Input circuit breaker trips on start.

Inverter Fuses Blow on Start: If the SCR gate signals are normal, use the following procedure to locate the fault.

1. Remove the converter-inverter cover (Figure 115).
2. Replace the blown inverter fuses.
3. With all power removed from the machine, use an ohmmeter to test the components attached to the terminal board terminals in Figure 116 and locate the faulty component. Remove the inverter chassis if necessary.

Inverter Fuses Blow When Load is Applied: If the SCR gate signalo are normal, scope the SCR gate signals for noise while the unit is running with no load. Also, the turn-off time of a newly replaced SCR may not meet the specification.

Inverter Fuses Blow After Running a Short Time: If the SCR gate signals are normal, watch for a change with temperature rise that comes with the application of a load. Check the inverter components per Figure 116. Remove the inverter chassis if necessary.

Inverter Circuit Breaker Trips on Start: This symptom indicates either a short-circuited load or a faulty inverter component. Remove the normal load to prove whether the load is shorted or not before testing for faulty components with an ohmmeter (Figure 116).

Converter-Inverter Fuse Replacement

The converter-inverter fuses may be reached for replacement by removing main power plug P1 from its socket on the back of the PDU and opening the access door.

Converter-Inverter Troubleshooting

Converter-inverter troubles can be worked on without any load. For instance, remove P2-P6 and no dc voltages will be generated.

Voltage Regulator Test Points

Figure 117 shows the meter test points and the ripple test points of all the voltage regulators in the 2050 Processing Unit. The ripple, including noise and voltage variation, should not exceed $\pm 4 \%$.

Changing Voltage Regulators

Remember that with a normal power-off, the 28 volt bias voltage is still present on all voltage regulators. To remove this bias voltage in order to change a regulator, manually trip circuit breaker 9 .

Regulator	Voltage	Ripple Test Point	Meter Point
IA	+6 VAR	01AD4G4B09	Gate A-TB-2-4
1 B	+6 TC	01 AD4G2D04	Gate A-TB-2-5
1 C	+6 ROS	$01 C A 2 B 6 B 11$	Gate C-UOBD-12
2	+3	01 AE4M2D03	Gate A-TB-2-12
3	+6	01884 M 2 B 11	Gate B-TB-2-12
4	+6	O1BAIB2B11	Gate B-TB-1-12
5	+3	$018 B 4 M 2 D 03$	Gate B-TB-2-8
6	+3	02BA3M2D03	02B-TB1-8
7	-3	O1AE1B1B06	Gate A-TB-1-10
8	+6	Gate C-UOBD-8	Gate C-UOBD-8
9	+48	Feed Thru Capacitor C-57 in PDU	Feed Thru Capacitor C-57 in PDU
10	-3	02BA3M2B06	Gate 02B-TB-1-10
11	+30	$014 D 4$ G2B02	Gate A-TB-2-1
12	-18	Gate C-UOBD-6	Gate C-UOBD-6
13	$+18$	M9-BSM 1 TB1-6	M9-BSM I TB1-6
14	+56	M9-BSM 1 TB1-2	M9-BSM I TBI-2
15	+60	M9-BSM 1 TB1-4	M9-BSM 1 TBI-4
16	+56	M9-BSM 2 TBI-2	M9-BSM 2 TBI-2
17	+60	M9-BSM 2 TBI-4	M9-BSM 2 TBI-4

$\begin{aligned} & \text { Reg } \\ & 384 \mathrm{~K} \end{aligned}$	$\begin{aligned} & \text { Reg } \\ & 512 \mathrm{~K} \\ & \hline \end{aligned}$	Voltage	Meter and Ripple Test Point	
1	1	+60	M9-BSM 3 TB1-4	
-	2	+60	M9-BSM 4 TB1-4	
2	3	+56	M9-BSM 3 TBI-2	
-	4	+ 56	M9-BSM 4 TB1-2	
3	5	+18	M9-BSM 3 TBI-9	feature, Located in
4	6	+3	M9-BSM 3 TBI-13	Power frame 04
5	7	-3	M9-BSM 3 TBI-15	
6	8	+6	M9-BSM 3 TBI-11	

Note: Maximum allowable ripple is $\pm 4 \%$ of the nominal voltage. Ripple includes voltage variation, ripple and noise.

FIGURE 117. VOLTAGE REGULATOR TEST POINTS

Voltage Sequence Problems

To assist in servicing sequence problems, the voltage sequencing can be stopped in various points of its cycle by selectively removing the P2-P6 plugs from the converter-inverter. For instance, all power except for the 60 volt $X Y$, the 60 volt Z, and the -12 ROS voltage can be brought up and examined if P5 and P6 are removed. An examination of the YB logic pages shows which regulators are fed from each plug. This allows you to inspect certain voltages in their proper sequence without possible damage to drivers, etc., if one of the logic voltages is not functioning properly.

Plus 18 Volt Sequence Down

The +18 v should remain up for at least one second after the loss of the 56 XY or 60 Z voltages. Adjusting the RC-time constant around the K39 contactor core (YB221) controls K39 dropout. The following sequence can be used to adjust the resistor:

1. With power down, preset resistor R23 (in lower right-hand ac compartment) to half its value.
2. With the A probe, monitor the 60 Z (regulator 15) at the plus bus.
3. Sync on the fall of 60 Z and set the scope sweep for $1 \mathrm{sec} / \mathrm{cm}$.
4. Set the scope mode switch to see both A and B probes simultaneously (chopped).
5. With the B probe, monitor the output of the 18-volt regulator.
6. Drop power; note the time difference between the fall of 60 Z and 18 -volt supplies.
7. Set R23 to approximately one-third resistance so that the time is at least one second; no harm will result if the time is more than one second. To lengthen dropout time, increase the resistance of R23 (however, if a very high resistance is used, the dropout time will be greatly reduced instead of lengthened).

Once the resistor is set, the difference should be checked between all 60- and 56-volt supplies (A probe) and the 18 -volt supply; there should be a delay of at least one second with any one of the 60 or 56 supplies.

Overcurrent Problems

Overcurrent problems usually cannot be found by resistance checking, due to the very low load resistance. However, the load can be selectively uncoupled by removing laminar bus connections or, when the trouble is isolated to a board, by removing the bus to jumper plugs one at a time to find the row at fault. (Use logic pages YB411 and YB421 to assist in finding the proper bus terminals.)

Note: Use care in removing voltage regulator loads in storage areas. If -3 volts are removed and the storage driver voltages are still present, the drivers could be ruined. If a -3 voltage regulator overloads on a storage board, remove the driver voltages before removing the -3 volt loads.

Voltage Regulator Problems

Following is a suggested sequence to use when a voltage regulator is causing a problem:

1. Replace the overcurrent and regulator cards.
2. Make sure the reed relay on the overcurrent card is properly seated.
3. Check for proper bias on the voltage regulator.
4. Check for proper connections of local or remote sensing (or both, if used).
5. Check remote potentiometer connections if used.
6. Check for 150 vac input.
7. Make sure that all terminal screws, screws on capacitor bus, and screws on feed-through capacitors are tight.
8. Replace the voltage regulator.

Overvoltage Unit Adjustment

To adjust an overvoltage unit when no external adjusting device is a vailable:

1. Make sure dc voltage is down.
2. Remove the overvoltage feed wire from the regulator being tested (to prevent feeding dc back to the load).
3. Check that the overvoltage potentiometers on the overvoltage unit are adjusted to their proper firing level (center arm to dc zero). (See logic page YB401.)
4. Connect an external dc supply (or batteries) and a 5000 -ohm potentiometer as shown in Figure 118 to provide a variable input to the overvoltage unit under test.
5. Meter the output pin of the overvoltage unit with a voltmeter. (This is the wire that goes to the firing gate on the overvoltage unit SCR.)
6. Gradually raise the test input voltage with the 5000 -ohm potentiometer until a dip in voltage is noticed at the output. At this point the input can be read to tell at what level the overvoltage unit fired the SCR.
7. If the SCR does not fire, check the components on the overvoltage unit or readjust the dividers on any supply being tested that has an output of over 6 volts. (See logic page YB291.)

Overvoltage occurs when the supplies are at the following levels. The voltage sensitivity of the overvoltage card is also shown.

Supply	Upper-limit	Overvoltage Card
602	67	
56 XY	67	When divider output is
48	57	8.5 volts, the card senses
30	36	the overvoltage condition.
18	22	
-12	-22)	
6	8.5	8.5
3	4.5	4.5

FIGURE 118. OVERVOLTAGE ADJUSTMENT

Low Voltage AC Supplies

With a normal power off, 40 vac and 12.6 vac are present in CPU. If these voltages are to be removed without actuating the emergency power off circuit, CB-1 should be opened.

$\underline{\text { Power Sequencing Relays }}$

When working with sequencing relays, remember not to mix the $18 \mathrm{v}, 24 \mathrm{v}$, and 48 v coils. They all fit in each other's socket. For instance, a 6 point 18v relay coil will fit in a 6 point $24 v$ socket.

Dual or Multi System Emergency Power Off (EPO)
The EPO bypass switch is used to isolate the multi system EPO capability. The EPO bypass switch should only be activated when a shared control unit, channel, storage device, or CPU must be powered down and removed from the system configuration while the rest of the system is being used.

In a dual or multi system configuration, if any 'emergency pull' EPO switch is activated, power is removed from all units. A complete description of the EPO network for dual or multi systems is available in the Original Equipment Manufacturer's Information manual, IBM System/360 Power Control Interface, GA22-6906.

Dual System Control

The EPO circuits of two systems (sharing a control unit, channel, or storage device) are interlocked with the cable connecting the J47 sockets of each system. To remove any unit from the system configuration:

1. Remove power from both systems.
2. Remove the EPO cables connecting shared units and the PDU which is being isolated (at the units) and replace them with dummy plugs.
3. Remove the EPO cable from socket J 47 of the PDU which is not being isolated and replace it with a dummy plug.
4. Power can now be brought up on the remaining system.
5. When repairs are completed, reestablish a common EPO network by removing power from all units, removing the dummy plugs, and reconnecting the EPO cables.

Multi System Control

The EPO circuits of three or more interconnected CPUs are interlocked by connecting the J47 cables from each CPU to the multi-system EPO control box (IBM Part No. 5271793). To drop power and remove any unit from the system configuration:

1. Drop power on the CPU to be isolated.
2. Disconnect all isolated CPU to shared-unit EPO cables. This allows any EPO switch except the one on the isolated CPU to control the EPO interface of the remaining units.
3. Activate the bypass switch on the multi-system EPO control box.
4. Disconnect the EPO cable between the isolated CPU and the multi-systems EPO control box; and insert a dummy plug to bypass the isolated CPU.
5. Deactivate the bypass switch immediately, to restore the interlocked EPO capability to the remainder of the multi-system units.
6. When the isolated CPU is returned to the EPO network, a similar procedure should be used to minimize the time that the bypass switch is active.

This section of the manual concerns itself with the packaging of the 2050 Processing Unit and the location of components and subassemblies within the processing unit. For basic packaging concepts that are common to all models of the System/360, see SLT Packaging, SY23-2800.

Power Distribution Frame Locations

Figure 119 shows the locations of the circuit breakers and switches in the bottom part of frame 03.

Figure 121 (Part 1) shows the location of all major components in the standard power distribution frame (03). Figure 121 (Part 2) shows the location of major components in power distribution frame 05 which is used for the 512 K storage feature only.

Frame and Gate Locations

The frame and gate locations of the 2050 are shown in Figure 120 as are the swing angles of each gate in the processing unit for access to the various areas of the system.

Bottom Section of Power Frame 03

FIGURE 119. PDU CB AND SWITCH LAYOUT

$\underline{\text { Relay and Contactor Locations }}$

Figure 122 shows the location of all relays and contactors in the processing unit. Note that all of the relays and contactors are accessible from the rear of the power frame. For access to K1-K4, hinged
covers must be opened. The remaining relays are mounted in a relay gate in the lower right corner of the power frame.

Circuit Breaker Locations

Figure 123 shows the location of the primary ac circuit breakers in the processing unit. Primary ac circuit breakers 1-8 are mounted on a hinged cover located in the lower center of the drawing on Figure 110. The circuit breakers for each individual service voltage are located with the voltage regulator for that service voltage.

Fuse Locations

Figure 124 shows the location of the fuses in the processing unit. Fuses 1-6 are mounted on a hinged cover located in the right lower center of the drawing in Figure 124.

Voltage Regulator Locations
The voltage regulators that provide the various service voltages for the processing unit are all located in the power frame. Figure 125 shows the location of each voltage regulator, its systems page location, part number, and description.

Figure 126 shows layout and jumpering of the voltage divider assembly.

Overvoltage Assembly Locations

Figure 127 shows locations and adjustments of the overvoltage assembly.

I/O Tailgate Locations
Figure 128 shows locations of the I/O gate terminators; Figure 129 shows locations of the interface connections.

I/O Address Cards

Figures 130-133 show the plugging for address cards for the $1442,1443,2841$, and 2400 TAU, respectively.

FIGURE 120. MODEL 50 FRAME AND GATE LOCATIONS

FIGURE 121. POWER DISTRIBUTION FRAMES (PART I OF 2)

FIGURE 121. POWER DISTRIBUTION FRAMES (PART 2 OF 2)

Relay No.	System Sheet Numbers							Port No.	Function
	Coil	Contact Points							
		5-6-7	8-9-10	11-12-13	14-15-16	17-18-19	20-21-22		
K5	Y8231	Y8271	YB271	Y8271	Y8271	YB271	YB271	5351156	Power On Adapter
K6	Y8231	Y8271	YB271	Y8271	YB271	YB271	Y8271	5351156	Power On Adapter
K'	YB231	Y8271	Y8271	YB271	Y8271	YB271	Y8271	5351156	Power On Adapter
k 8	Y8231	Y8271	Y8281	Y8281	Y8281	Y8281	YB281	5351156	Power On Adapter
K9	YB231	Y8281	YB281	YB281	YB281	Y8281	YB281	5351156	Power On Adapter
$K 10$	YB231	Y8281	Y8281	YB281	Y8281	YB281	YB281	5351156	Power On Adapter
K 11	YB231	Y8281	Y 2881	Y8291	Y8291	Y8291	YB231	5351156	Power On Adapter
K12	YB23!	YB271	Y8271	YB271	Y8271	Y8271	YB271	5351156	EPO Adapter
K13	YB231	YB271	Y8271	Y8271	Y8271	YB271	Y8271	5351156	EPO Adapter
K14	Y8231	YB271	Y8271	YB271	Y8271	Y8271	YB271	5351156	EPO Adapter
K15	YB231	YB271	Y8281	YB281	Y8281	Y8281	YB281	5351156	EPO Adapter
K16	Y8231	Y8281	YB281	YB281	Y8281	Y8281	Y8281	5351156	EPO Adapter
K17	Y8231	Y8281	Y8281	Y8281	Y8281	Y8281	Y8281	5351156	EPO Adapter
K18	Y8231	Y8281	YB281	Y8291	Y8291	Y8291	Spare	5351156	EPO Adapter
K19	Y835i	Y8221	YB221	Spare	Spare			5364161	+18V Sense
K 20	Y8341	Spare	Y8221	Spare	Spare			5213415	-3V Sense
K22	YB261	YB241	Y8231	YB331	YB261	YB251	Spare	5364163	Voltage Sense (48V)
K23	Y8221	YB221	Y8221	Spare	Spare			5318968	Power Check
K24	Y8221	Y8221	YB221	YB231	Spare			5318968	Sequence
K25	YB231	YB231	Y8231	Y8231	Spare			5318968	Thermal Reset
K26	YB231	Y8221	YB231	Spare	Spare			5318968	Thermal Reset
K27	YB231	Y8221	Y8231	Spare	Spare			5318968	Thermal Reset
K28	YB231	YB221	YB231	Spare	Spare			5318968	Thermal Reset
K29	YB221	YB221	Y8291	YB291	Y8351			5318968	EPO
K30	YB221	YB221	Y8231	Spare	Spare			5318968	Power On
K31	Y8301	Y8221	Y8231	YB331	Spare			5364161	Logic Sense (t)
K32	YB301	YB221	Spare	Spare	Spare			5364161	Logic Sense (-)
K33	Y8301	YB221	Spare	Spare	Spare			5364161	Special Sense
K34	YB301	Y8221	YB221	YB221	YB221			5364161	Special Sense
K35	YB301	Y8221	YB221					5364164	Undervoltage
K38	YB351	YB291	Y8291	YB291	Y8291	Spare	Spare	5351156	Bias Sense

* 50 Cycle Only

FIGURE 122. RELAY AND CONTACTOR LOCATION CHART

50 Cycle			
SYMBOL	SYSTEM SHEET NO.	PART NO.	DESCRIPTION
CB1	YB201, YB221	5270651	Circuit breaker, 2 pole, 0.4A, 250 vac
CB2	YB201, Y821	5270559	Circuir breaker, 2 pole, 0.65A, 250 vac
CB3, 16	YB211, YB221	725002	Circuit breaker, 2 pole, 5A, 250 vac
CB4,5,6,7,8,	YB211, YB221	5213816	Circuit breaker, 1 pole, 0.9A, 250 vac
$10,14,15$	YB201	8026896	Circuit breaker, 3 pole, 25/40A, 440 vac
CB9	YB211, YB221	529016	Circuit breaker, 2 pole, 20A, 240 vac
CB11	YB211, YB221	5213818	Circuit breaker, 1 pole, 0.45A, 250 vac
CB12,13			

60 Cycle			
SYMBOL	SYSTEM SHEET NO.	PART NO.	DESCRIPTION
CB1	YB201, YB211	5270651	Circuit breaker, 2 pole, $0.4 \mathrm{~A}, 250$ vac
C82	YB 201, YB 211	5270559	Circuit breaker, 2 pole, $0.65 \mathrm{~A}, 250$ vac
C83	YB 211	5270566	Circuit breaker, 2 pole, $0.85 \mathrm{~A}, 250$ vac
CB4	YB 201, YB 211	5270559	Circuit breaker, 2 pole, $0.65 \mathrm{~A}, 250 \mathrm{vac}$
CB5	Y8 201, YB211	5270559	Circuit breaker, 2 pole, $0.65 \mathrm{~A}, 250$ vac
CB6	YB201, YB211	5270559	Circuit breaker, 2 pole, $0.65 \mathrm{~A}, 250$ vac
CB7	Y8 211	5364273	Circuit breaker, 2 pole, 15A, 250 vac
CB8	YB201, YB 211	5270651	Circuit breaker, 2 pole, $0.4 \mathrm{~A}, 250$ vac

FIGURE 123. CIRCUIT BREAKER LOCATION CHART

SYMBOL	SYSTEM SHEET NO.	PART NO.	DESCRIPTION
F1 and F2	YB201	107669	Fuse, 10A, 250 vac
F3 and F4	YB201	78999	Fuse, 0.5A, 250 vac
F5 and F6	YB201	511063	Fuse, 10A, 250 vac
F7 and F8	YB201	335010	Fuse, 1A, 110 vac (60 Cycle)
F7 and F8	YB201	78999	Fuse, 0.5A, 250 vac (50 Cycle)

FIGURE 124. FUSE LOCATION CHART

Power Frome 03.			
SYMBOL	SYSTLM SHEET NO.	PART NO.	DESCRIPTION
Reg 1	YB 311	5709310	Regulator, +6 V
Reg I	YB 311	5712120	Regulator. +6 v 2. $5 \mathrm{~A}^{*}$
Reg 2	YB 321	5261220	Regulator +3 v a) 40A
Reg 3	Y 321 ,	5261240	Regulator +6 v \% 40A
Reg 4	YB 321,	5261240	Regulator, $+6 \mathrm{v} \bigcirc 40 \mathrm{~A}$
Reg 5	YR 331	5261220	Regulator $+3 \mathrm{v} @$ (0 40
Reg 6	YB 331	5261220	Regulator $+3 \mathrm{v} @ 40 \mathrm{~A}$
Reg 7	Y8331	5261220	Regulator, $-3 \mathrm{v}, ~ 40 \mathrm{~A}$
Reg 8	YB 331	5709300	Regulator, 6 vv 40 A (Non-Variable)
Reg?	YB 341	5261280	Reguiator $+48 \mathrm{Bv} \bigcirc 2 \mathrm{~A}$
Reg 10	YB $341{ }^{-}$	5261220	Regulator -3 v (40A
Reg 11	YB 341	5253790	Regulator +30 v : 0 5A
Reg 12	YB 341 ,	5244090	Regulator, $-12 v^{\prime}$ (11A
Reg 13	YB351	5253800	Regulator, +18 v n 11 A
Reg 14	YB 351 ,	5261480	Regulator, +56 v is 4A
Reg 15	YB351,	5253780	Regulator $\uparrow+60 \mathrm{O}$ 硆
Reg 16	Y 361	5261480	Regulator, +56 v -1/ 4 A
Reg 17	YB361	5253780	Regulator +600 ") 8 A
$\mathrm{Re}=18$		5712100	Regulator, $-12 \mathrm{~V}, 3 \mathrm{~A}$
Reg 19	emulator feature is used.	5712010	Regulator, +3 , 20 A
Ree 2 ?		5712030	Regulator, +6 v 25A
Uivider Assembly	-	5364140	(See Figure 126)

Power Frame 05 (512 K Feature)			
Symbol	System Sheet No.	Part No.	Description
ieg 1	YE141	5712180	Regulotor, $+60 \mathrm{v} \omega 8 \mathrm{~A}^{* *}$
Reg 2	YE141	5712180	Regulator, +60 v " 8 A
Reg 3	YE141	5712480	Regulator, $+56 \mathrm{v}^{\prime}$ a $4 \mathrm{~A}^{* *}$
Reg 4	YE151	5712480	Regulator, $+56 \%$ 4
Reg 5	YEISI	5712100	Regulator, +18 v -11A
$\operatorname{Reg} 6$	YE161	5712020	Regulator, $+3 v$ " 40A
Reg 7	YE161	5712020	Regulator, $-3 v$ - 40 A
Reg 8	YE161	5712140	Regulator, $+6 v$ 40A

*Used on later machines. Not interchangeable.
**Not used on 384 K .

FIGURE 125. VOLTAGE REGULATOR LOCATION CHART

| From | To | From | To | From | To | From | To |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R1-1 | R4-1 | R12-2 | R11-3 | R14-2 | K38-10 | EC2-g | R8-2 |
| R3-1 | R6-1 | R11-1 | R13-1 | R19-2 | K38-11 | EC2-h | R10-2 |
| R6-1 | R8-1 | R15-2 | R14-3 | R17-2 | K38-13 | EC3-a | K38-6 |
| R8-1 | R12-1 | R14-1 | R16-1 | R22-2 | K38-14 | EC3-b | R13-2 |
| R12-1 | R15-1 | R18-2 | R17-3 | R20-2 | K38-16 | EC3-c | K38-9 |
| R15-1 | R18-1 | R17-1 | R19-1 | R13-2 | K38-5 | EC3-d | R16-2 |
| R18-1 | R21-1 | R21-2 | R20-3 | EC2-2 | R1-2 | EC3-e | K38-12 |
| R1-3 | R2-2 | R20-1 | R22-1 | EC2-b | R2-1 | EC3-f | R19-2 |
| R4-2 | R3-3 | R11-2 | K38-7 | EC2-c | R3-2 | EC3-g | K38-15 |
| R6-3 | R7-2 | R16-2 | K38-8 | EC2-d | R5-2 | EC3-h | R22-2 |
| R8-3 | R9-2 | K38-1 | EC1-6 | EC2-e | R6-2 | EC1-c | R12-1 |
| R9-1 | R10-1 | K38-4 | EC1-d | EC2-f | R7-1 | R3-1 | R5-1 |

FIGURE 126. VOLTAGE DIVIDER ASSEMBLY

1
FIGURE 127. OVERVOLTAGE ASSEMBLY

	A	B
Out	Bus	1
	Tag	2
In	Bus	3
	Tag	4

E	Bus	
F	Tag	
G	Bus	
H	Tag	Our

FIGURE 129. I/O INTERFACE CONNECTIONS

FIGURE 130. 1442 ADDRESS CARD LOCATIONS AND PLUGGING

Location OIA-AIH6, Ref AP 051
Plugging Shown: Address 08

FIGURE 131. 1443 ADDRESS CARD LOCATIONS AND PLUGGING

FIGURE 132. 2821 ADDRESS CARD LOCATIONS AND PLUGGING

FIGURE 133. TAU (2400) ADDRESS CARDS LOCATIONS AND PLUGGING

APPENDIX A - SYSTEM CHARACTERISTICS

PHYSICAL DATA

- 2050 Processing Unit has three frames: CPU, Main Storage, and Power.
- Power frame connects the CPU and Main Storage frames.
- System control panel is mounted on the CPU frame.

The 2050 Processing Unit (Figure 134) consists of the CPU frame, the main storage frame, and the power frame.

The CPU frame contains the CPU logic, the channels, the capacitor read only storage, and the local storage. The system control panel is mounted on one end of this frame. Within the CPU frame are three hinged gates (A, B, and E on Figure 135). Each hinged gate holds twenty printed circuit boards. One fixed gate (C) with a hinged section (D) contains the capacitor read only storage (ROS) and twelve printed circuit boards.

The main storage frame houses the main storage modules, their associated logic, and large capacity

FIGURE 134. IBM 2050 PROCESSING UNIT
storage connections. The storage protection buffer is also located in this frame. One main storage module is used for all standard storage sizes up to and including 128 K bytes. Storage sizes greater than 128 K bytes use two main storage modules. The frame capacity is two main storage modules, eight printed circuit boards, and a hinged gate for expansion.

The power frame contains the power converterinverter, the power sequencing and control circuitry, and all regulators. The power frame also serves as a cable path between the CPU and storage frames and contains the Input/Output (I/O) panel for external cables.

Frame Specifications

The following chart gives the physical specifications for the three frames that make up the 2050 Processing Unit.

	$\underline{\text { CPU }}$	Main Storage	Power
Dimensions (inches)			
Length	62.5	60.0	60.0
Width	29.5	24.0	24.0
Height	70.0	72.5	72.5
Floor Area (sq ft)	12.8	10.0	10.0
Weight (pounds)	2000	1100	1500

Cabling
The external cable connectors for the 2050 are located in the power and main storage frames. A raised floor facilitates the routing of external cables but is not an absolute necessity. Cables connecting the channels to external devices pass through the
bottom of the power frame to reach the I/O connector panel. Cables connecting the 2050 to shared or large capacity storage pass through the bottom of the main storage frame to reach the connector panel.

A maximum of twelve external cables may be attached to the I/O panel in the power frame: two for each of five channels (one multiplexor, three selector, one high speed) and two for an external operator's control panel.

POWER REQUIREMENTS

- Three input voltage options.
- Current requirements depend on storage size.

The 2050 Processing Unit is manufactured for one of the following input voltage options:

Option 1

$60 \mathrm{cps} \pm 1 \mathrm{cps}$	$50 \mathrm{cps} \pm 1 \mathrm{cps}$
3 phase -4 wire delta	3 phase-4 wire delta
$208 / 230$ vac $\mathrm{RMS} \pm 10 \%$	$195 / 220 / 235 \mathrm{vac}$ RMS $\pm 10 \%$

Option 3
$50 \mathrm{cps} \pm 1 \mathrm{cps}$
3 phase-5 wire "Y"
380/425 vac RMS $\pm 10 \%$

Current requirements and heat dissipation are dependent on storage size:

	64 K		128 K	
	9.0		956 K	
Power Input (kva)	30			10.0
		30		
Service Rating (amperes)	3,900	14,900		18,700

APPENDIX B - SYSTEM CONTROL PANEL

- System control panel provides operator, intervention, and maintenance controls.

The system control panel (Figure 136) contains the switches and indicators required for system operation. Twelve panel sections contain operator, intervention, and maintenance controls.

Panel sections C and N provide basic operational control. Panel sections G, L, and M provide intervention and maintenance controls. The remaining panels provide maintenance controls.

CONTROLS AND INDICATORS

- Five types of control switches.
- Switchable indicators on panel section G.
- Functional grouping of switches and indicators.

Each panel section contains switches and/or indicators grouped by function.
Five types of switches are used:

1. Rotary Select--Position defines function.
2. Roller Select--Position selects status indicator data.
3. Data Key--Lever switch active in the down position.
4. Control Key--Lever switch selects indicated function.
5. Pushbutton--Active when pressed.

Panel sections A, G, L, and M have verticallyplaced letters and/or horizontally-placed numbers to aid in locating a particular switch or indicator.

Section A - Power Display
The power display panel section contains power check indicators, marginal check controls, a dc off switch and a voltmeter.

DC Off Switch

This keylever switch removes dc power from the CPU, storage, and channels. Attached adapters are not affected except for the 1052 adapter which is packaged in the CPU.

DC Off Indicator
This indicator is on when dc power has been removed from the CPU, storage, and channels.

Frame Thermal

Three indicators monitor frame temperatures in the system. The opening of any thermal switch in the CPU, storage, or power frame causes the removal of dc power from the CPU, storage, and channels. The frame in fault is indicated by a light (CPU, STOR, or PDU) which remains on when power drops.

Open CB

This indicator is turned on if any circuit breaker in the power frame opens.

Power Check

The detection of an overcurrent condition in any dc regulator turns on the power check indicator. The detection circuitry is interlocked with the power sequence controls to remove the voltages or prevent their application. This indicator remains on when power drops.

Meter

The panel meter allows direct monitoring of any system voltage under control of the marginal voltage select and monitor voltage select rotary switches. Two scales are provided: the upper is numbered 2 through 10, with 6 at center scale; the lower is numbered 1 through 5 , with 3 at center scale. Scale reading is either times 1 or times 10. Electrical accuracy at center scale is ± 0.3 percent of fullscale deflection and at end scale it is ± 0.6 percent of full-scale deflection.

Marginal Voltage Select

This rotary switch selects the marginal voltage to be monitored on the meter. The following voltages may be selected:

[^6]

In addition, the monitor select position enables the monitor voltage select switch and the aux voltage select position enables the aux storage select switch when 384 K or 512 K storage is installed.

Marginal Voltage Control

Ten potentiometers (one for each marginal voltage) provide marginal voltage control, allowing the voltage to be varied around its nominal value. More than one voltage can be varied at the same time.

Marginal Voltage Indicators

Ten indicators, one for each of the above-mentioned potentiometers, indicate when a marginal voltage has been varied from its nominal value.

Monitor Voltage Select

This rotary switch selects a non-marginal voltage to be monitored by the meter. The switch is active only when the marginal voltage select switch is in the monitor select position. The following system voltages may be selected:

```
+3#1 (Regulator 6) +6 (Regulator 8)
+3 #2 (Regulator 5) +6 ROS 1 (Regulator 1C)
+3 #3 (Regulator 2) +6 ROS 2 (Emulator)
+3 #4 +18 (Regulator 13)
-3 #1 (Regulator 10) +30 (Regulator 11)
-3#2 (Regulator 7) +48 (Regulator 9)
```

Section B - Storage Test
The storage test panel section permits testing the main storage array.

Storage Test Select
Whis rotary switch selects one of the four test patterns to be applied to main storage. The four patterns are:

1. All Ones
2. All Zeros
3. Worst Pattern
4. Reverse Worst Pattern

The test light (Section N) is on when the storage test select switch is off the Process position.

Write

This keylever switch causes the pattern defined by the storage test select switch to be written into all main storage locations when start is pressed. Storage protection is ignored. The test is terminated by a stop on check condition or by a system reset.

Stop On Check
This keylever switch causes a detected storage error to terminate the storage test.

Invert SAR Bit 16

This keylever switch inverts SAR bit 16, thereby interchanging the two 32 K halves of a 64 K section of main storage. With storage reversed in this manner, words $0-8 \mathrm{~K}$ are referenced as $8-16 \mathrm{~K}$ and vice versa. Words $16-24 \mathrm{~K}$ are referenced as $24-32 \mathrm{~K}$, and so on.

Section C - Emergency Off

The emergency off pull switch is located on panel section C. Pulling this switch turns off all power beyond the entry terminal on every unit which is part of the system or can be switched on to the system. This switch therefore controls the system proper and all control units and I/O devices that are switched offline.

The emergency off switch latches in the "out" position. Mechanical intervention by the customer engineer is required to restore the switch to the "in" position.

Section D
Panel section D shows major data paths in CPU, channels, and storage elements.

Section F - Channel Control

This panel section provides three channel maintenance controls.

Manual Operation

This keylever switch provides a means of manually disconnecting the channels from the CPU and attached adapters, and coupling them to the data and address keys for control purposes. In manual channel operation, the address keys are used to control the channel interfaces (CPU and I/O), and the data keys provide data for use in the various control sequences. The manual sequencing of any channel operation is possible.

When this switch is in the MPX position the multiplexor channel is selected for manual testing; when it is in the SEL position, the selector channels respond.

Address and Data Key Assignments

To visually examine the contents of the adder latch, (the B or C register of an idle selector channel) the A-clock should not be stopped with the keys.

Stopping the sequence at any point or advancing the sequence from one stop to another stop is permissible.

A-Clock Stop: For proper single-step operation, the A-clock sequence should be completed before the start pushbutton is pressed for the next cycle. To examine unit selection, stop the clock before the third DTC in CCW2 routine is issued to the channel, and sequence the A-clock with the keys from that point through CC step 1 (clock A1 of unit select). If operating with a real unit, use tag gate sequencing from that point to the end of unit select.

Tag Gate Generator Stop: When working with a real I/O unit (manual op off) the check control switch should be in the channel stop position to delay transmission of the out tag. Stopping the sequences in the data handling portions of the record may cause overrun conditions in an unbuffered unit.

Enter

This pushbutton switch causes address and data key information to be gated into the channels for manual operation. The switch is active only in the manual mode.

Selector Channel Display

This rotary switch selects one of the selector channels for display in the status indicators. The particular status word displayed is determined by the position of the selector channel status roller select switch.

Section G and K - Status Indicators

The status indicators on panel section G provide a display of CPU and channel status. The 144 indicators are arranged in four rows, 36 to a row. Each row is separated in the center, with positions $0-17$ in the left half and positions $18-35$ in the right half.

Eight status words can be displayed in each row of indicators. The desired word is selected with an eight-position roller select switch. The switch also positions a roller format to identify the information displayed.

Panel section K is mounted to the right of the status indicators to identify each row and the general content of each word position.

The roller positions are explained in:

Figure*	Roller Position	Content
		Common Channel
137	1/1	1/O instructions
138	1/2	I/O routines
139	$1 / 3$	Control register
		Multiplex Channel
140	1/4	Data buffers
141	1/5	Interface and control
142	1/6	Control triggers
143	1/7	(Special features)
144	1/8	(Special features)
		Selector Channel
145	2/1	B-register
146	2/2	C-register
147	2/3	BC LW operations or checks
148	2/4	Position and request registers A-Clock
149	2/5	Interface and control
150	2/6	GP MP and flag registers
151	2/7	(Special features)
152	2/8	(Special features)

Figure *	Roller Position	Content
		CPU1
153	3/1	L-register
154	3/2	M-register
155	3/3	M-register
156	3/4	H-register
157	3/5	SAR byte stats
158	3/6	ROS 56-89
159	3/7	(Special feature)
160	3/8	(Special feature)
		CPU2
161	4/1	ROS 0-30
162	4/2	ROS 31-55 mover function
163	4/3	Next ROS address
164	4/4	Byte ctr F-register GP stats
165	4/5	LSAR J-register MD G1 G2
166	4/6	Check register
167	4/7	Current ROS address
168	4/8	Previous ROS address
Selector Channel Roller Analysis		

The following information will aid in interpreting the indicators on the selector channel roller and logout.

Word 3

Bits 0-5 Byte Counter: Phases A and B should have correct parity. Phase A normally equals Phase B; if unequal:

1. On write, 'sve in' is still active.
2. The stop lines to the tag gate generator are active from the IF register.
3. Overrun condition was detected in CCW2, in which case $\operatorname{BC}(\mathrm{B})$ equals $E R$. Chain check is active.
4. During end update, ER transferred to $\mathrm{BC}(\mathrm{B})$.
5. CDA chaining occurs before the first 'sve in' of the new record arrives and before the arrival of new BC information. $\mathrm{BC}(\mathrm{B})$ equals $\mathrm{ER}, \mathrm{BC}(\mathrm{A})$ equals 00 and 'if CDA first byte LA' is active.
6. The stop channel line is active, $\mathrm{BC}(\mathrm{A})$ is 1 less than $\mathrm{BC}(\mathrm{B})$.

The byte counter incrementing is not changed in a read backward operation; however, its output gating is inverted.

Bits 6-7 End Register: The end register should contain the count modification information obtained in the CCW2 routine, except in the case where it is reset to 00 on detection of a program-type check in a write operation. The end register should have no effect on the channel, unless both EOR1 and L1W latches are active. At the end of an operation if there are no channel check indications, $\mathrm{BC}(\mathrm{A}, \mathrm{B})$ equals ER.

Bits 8-10 Last Word Register:

1. Conditions: Read op and read ready are active, CL step is not active.
a. If EOR1 is active, the lowest active LW latch (L 3 W is high, L1W is low) indicates the additional number of buffers needed for collection of data from the interface to complete the block of data
b. If EOR2 is active, the lowest active LW latch indicates the additional number of read store routines needed to completely store the block of data.
2. Conditions: Write op and finish (fin) latches are active, A clock is not active.
a. If EOR1 is active, the lowest active LW latch indicates the number of buffers that contain the old record.
For EOR2 with read op or EOR1 with write op, if the number of full latches ($\mathrm{C}, \mathrm{B}, \mathrm{LS}$) exceeds the lowest active LW latch, CDA chaining is implied, with part of the new record block resting in the channel buffers.

At the end of a write operation, L2W and L3W should never be active.

For any operation, if L1W is not active, the record has not reached the end of count as specified by the CCW.

Bits 11-14 End of Record:

1. EOR Cnt Intlk: Interface controls are about to be informed that the end of the block of data approaches. Routine request circuits wait for a reaction from the interface controls in a read op only.
2. EOR1: The interface clocks the LW registers.
3. EOR2: Routine request circuits clock the LW register in read op.
4. Read Intlk La: To inform the routine controls that the interface controls have completed their use of the LW register.

This table shows the invalid combinations of the end of record latches:

Bit Position				
Other				
	12	13	14	Conditions
Count Intlk	EOR 1	EOR 1	Read Intlk	
1	-	-	1	Not Svc In
1	-	1	-	
-	1	1	-	
-	-	1	-	Write Op
-	-	-	1	Write Op
-	-	1	-	L3W

If EOR1 and 'ent intlk' are both active when 'svc in' is not active, a write op, is in progress and a complete short record has just been fetched.

[^7]Bit 15 BAC Latch: If the B almost changed latch is active:

1. For read operations, the preceding or present transfer is from the B register.
2. For write operations; the present storage data transfer is to the B register and the channel has not finished with the data transfer.
'BAC' and 'LS full' should never be active at the same time.

Bit 16 LS Enable: A priority 1 request should not be present if LS enable is active. LS enable, LS full, and B full should not be active concurrently.

1. For read operations, if LS enable latch is active, the contents of the B register will be or are being transferred to the buffer in LS. If LS full is also active, the LS DTC is active.
2. For write operations, if the LS enable latch is active, the buffer in LS is available for new data from main storage. If LS full is aiso active, the data has not been transfered from LS to the B register.

Bits 17-19 Register Full:

Operation	BAC	ENA	Funi	Fun	Description
	$\begin{gathered} \hline \text { Bit } \\ 15 \end{gathered}$	$\begin{aligned} & \hline \text { Bit } \\ & 16 \end{aligned}$	$\begin{gathered} \text { Bit } \\ 17 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Bit } \\ 18 \\ \hline \end{array}$	
--	0	0	0	1	Data in B register.
--	0	0	1	-	Data in LS.
Read	0	1	0	0	Illegal.
"	0	1	0	1	LS routine in progress; LS DTC has not arrived;
"	0	1	1	0	LS DTC present.
"	0	1	1	1	Illegal.
"	1	0	0	0	Previous routine: B to main storage.
"	1	0	0	1	B being or just transferred to main storage.
"	1	1	0	0	Illegal.
"	1	1	0	1 -	B to main storage. C full active, one cycle to end read store routine. rllegal
Write	1	1	1	0	Last fetch transferred to B via
Write ",	0 0	1	0	0 1	IS.
"	0	1	1	0	LS routine in progress, LS DTC has not arrived.
"	0	1	1	1	Illegal.
"	1	0	0	0	Write fetch routine in progress, data destined for B register.
\cdots	1	0	0	1	Write fetch step 2, clock AO or A1.
"	1	1	0	0	Illegal.

Bits 20-26 Read, Write Latches: Any active indications in both the read and write groups at any one time are signs of malfunction.

Op	Rdy	IF	Description
Read Bits			
21	22	2.3	
Write Bits			
24	2.5	26	
0	0	0	Not performing that operation.
0	0	1	Illegal.
0	1	0	Illegal.
0	1	1	Illegal.
1	0	0	Channel in CCW1 or CCW2 routine not CDA chaining.
1	0	1	Channel working in routines other than above.
1	1	0	Channel performing unit selection.
1	1	1	Channel waiting to perform any of the above.

Bits 27-35 Channel Checks: 'Sim check' signals the channel to terminate the operation. Unit status will not be available for the CSW. Three conditions set sim check:

1. Channel discovered a check condition before the unit could be selected to perform the operation.
2. A halt I/O terminated the current operation.
3. An IF control check occured to disconnect the unit by a selective reset.

Word 4

Bits 0-8 Position Register: Only one position in this field should be active at any one time. If none of the positions is active, the channel is in one of two states:

1. Idle (instruction scan latch is active).
2. Unit selection routine is finishing or has just finished; rd rdy or wr rdy latch is active.

The CCW1 type position is used for:

1. Start I/O routine.
2. CCW1 routine.
3. TIC routine.

If the end up position is active and the PCI req is active, the CPU may be masking interrupts for this channel.

Bits 9-12 Cycle Counter Phase A: Only one position in this field may be active at any one time. If no bits are active, the channel has either:

1. Completed unit selection (MP C2, C3, C4 latches are all active).
2. Completed CCW2 routine previously.

If the A-clock A and B latches are not active, the number associated with the active light indicates the number of clock sequences (A0, A1, CL STEP equal one sequence) that have occurred and are associated with the routine in the position register.

Clock step pulses advance the cycle counter if clock step is active; the channel gating is associated with the cycle counter step previous to the one that is active at the time.

$\begin{array}{\|l\|} \hline \text { Pos } 4 \\ \text { Bit } 9 \end{array}$	Pos 5 Bits 4-5	$\begin{array}{\|l\|} \hline \text { Pos } 5 \\ \text { Bit } 0 \end{array}$	$\begin{array}{\|l\|} \hline \text { Pos } 6 \\ \text { Bit } 16 \end{array}$	
Cycle Counter Step 0	A-clock C, D latch	Position Register Transfer	Finish Latch	Remarks
1	0	1	1	Request register equals position register; first clock sequence in routine has not occurred.
-	0	0	1	Last clock sequence in routine has occurred (unit select and CCW2 are exceptions). New request register can transfer to position register.
-	-	0	0	The routine in the position register is being processed and is not associated with the routine in the request register.
-	0	1	0	Illegal.

Bits 13-15 Clock A0, A1, Clock Step: Only one light should be active at any one time. If one position is active the clock is:

1. Stopped by the setting of the interface register.
2. Stopped because of an error detection outside of the clock circuitry.
3. Stopped because of a clock malfunction.

For analysis of the A clock see word 5 bits 2-5.
Bit 16 LS request: Channel wishes to perform LS-B transfer. No LS request should exist if:

1. On read, $L S$ full is active.
2. On write, LS full is not active

If $L S$ enable is also active, the $L S$ routine is being serviced, but the LS DTC is still to come.

Bit 17 PCI Request: Channel wishes to present status information to CPU.

1. If 'PCI req,' 'end up (position register), and 'rec end' are all active, the channel has stopped record transmission to the unit. C register bits 8-15 contain the unit status.
2. If 'PCI req' and 'poll' latches are both active, the unit presented status while the channel was idle. C register 0-7 contains unit address; C register 815 contains unit status.
3. If 'PCI req' is active with either 'IF read' or 'IF write' active and 'rec end' is not active, the request is due to the PCI flag.

Bits 18-30 Request Register: Positions 21-26 should have only one position active at any time, except for unit select routine where bits 2 and 4 are active. There should be at least one active priority bit if one position in 21-26 is active.

If the 'fin' latch is active when the request register contains a request, the request should be in the position register and the common channel has not yet sent a DTC associated with the routine (the 'inh rtne' indication should not be active). If the 'fin' latch is not on, the channel has not transfered the request into the position register.

Bits 31-35 Common Channel Detect:

1. PCI: If PCI's is active, the CPU has issued a proceed with interrupt signal, the interrupt mask is not active and the common channel is in the breakin cycle.
2. Inh Rtne: If the inhibit routine is active, the selector channel has not responded to the first DTC associated with the routine serviced by CPU. Further requests from the channel will not be considered in the priority matrix until the channel passes through step 0 clock A1 time.

LS Request (pos 16) Priority 1, or 3 request in Sel Ch (18-20)	LS Detect (pos 31)	Pri 1 detect (32) Pri 2-3 detect (33)
1	0	Remarks Either LS detect inhibit latch (for a local store request) (not indicated) inhibit routine latch (for a priority 1, 2, or 3 request) (pos 35), or the routine received latch is active.
0	1	The routine received latch is active and the channel is selected for a routine break-in cycle.
1	1	The channel has responded to a previous routine and the request is not being serviced.

Word 5

Bit 0 Position Register Transfer: If bit 0 is active together with cycle counter step 0 and the 'fin' latch; the request register equals the position register and the first clock sequence in the routine has not occurred.

Bit 1 Inh Rd Store: If bit 1 is active, the last word of data has been stored in CPU even though some of the register full indications are active. Too many bytes were accepted by the channel before the record count information was available in the CCW2 routine when CDA chaining.

Bits 2-5 A-clock Latches: Latches A and B verify proper clock sequencing and outputs. Latches C and D are used with delay lines to generate the clock timings. If improper operation exists, latches A and B stop the sequence.

A Clock		Clock State
A latch	B latch	
0	0	Clock A0 pulse has not occurred.
1	0	Clock A0 occurred. Clock A1 did not occur.
1	1	Clock A0 and A1 occurred. Clock step did not occur. DTC may be active.
0	1	Clock step is active

C and D Latches

A Clock		Clock State
C latch	D latch	
1	0	Clock A0 time
0	1	Clock step time
1	1	Clock step time and request was made to start another sequence.
0	0	Clock A1 time or DTC is active or clock sequence is complete.

Bits 6-7 SP Latches:

1. D1 active and:
a. Rd rdy or wr rdy are not active. Tic op has been detected, second op was not yet examined.
b. Rd rdy or wr rdy is active. PCI interrupt in progress due to the PCI flag.
2. D2 active and:
a. Instruction scan latch is not active. Channel is performing compare routine for test I/O.
b. Instruction scan latch is active. Channel is in idle mode.

Bit 8 Instruction Scan Latch: Channel is either:

1. Idle - clock is cycling.
2. Polling - poll latch is active.
3. Performing unit selection and has not yet replied to an initial instruction.

Bit 9 Channel in Use: Channel is in operation as a result of a start, halt or test I/O instruction.

Bit 10 Poll: The channel is attempting to accept interrupt status from an I/O device.

Pos 4 Bit 3	Pos 5 Bit 10	Pos 5 Bit 11	
Unit Sel in Position Reg	Poll LA	Poll Int End LA	
0	1	0	State Description
0	1	1	Channel has not stacked poll status.
1	1	1	Channel has stacked status; PC1 request is active, common channel has not honored request.
1	0	1	PC1 enable received; channel attempts to select unit; unit sel, step 1, CL step not reached.
SEL out sent to unit; polling status taken; channel has not requested the interrupt routine.			
0	0	1	Channel should have the interrupt routine in the position register.

Bit 11 Poll Interrupt End: The CPU has received the polling status, causing channel to reply to status in with command out.

Bit 12 Instruction Inhibit: This bit gates the instruction lines when performing a unit selection as the result of control word chaining. It should be reset before a read store or write fetch operation is performed.

Bit 13 BC ready: The new byte count information is available in the selector channel; the interface has not reached a state permitting modification of the byte counter. The fourth clock sequence in CCW2 will not occur until BC rdy is inactive.

Bit 14 UA to Bus Out: In unit selection, the unit address is being gated to bus out. C register byte 0 contains the UA.

Bit 15 Unit Select Adr Out: In unit selection, address out is being generated.

Bit 16 Compare equal: In unit selection, the unit address sent by the channel was the same as that returned by the I/O control unit.

Bit 17 Compare unequal: In unit selection, the unit address sent by the channel was different from that returned by the I/O control unit but each has correct parity.

Bit 18 Stop: The channel has detected conditions for terminating an operation on the interface.

Bit 19 IF CDA First Byte: The channel has accepted the last byte of a read CDA data block. If the latch remains set, the next data byte will be set into all positions of the C register.

Bit 20 CD : Channel is performing a CDA chain operation, collecting and preparing new control information for the handling of the next block of data. The new control information has not been completely transfered to the proper channel registers.

Bit 21 BC Mod Enable: A response to the BC mod request line stating that the interface is at a static state, 'In' tags are not serviced in this period.

Bit 22 Wr Chain Rdy:

Roller 5 Bit 20	Roller 5 Bit 22	Roller 6 Bit 21	Roller 6 Bit 20	
CD LA	Write Chain Ready	Write Chain Procd	Total Rec'd Fetch	
1	1	0	0	Analysis
1	1	0	1	New control information ready in selector channel, old record not fully transmitted.
1	1	1	-	Same as above. Whole new record totally assembled in channel registers.
1	0	1	0	New control information ready, old record fully transmitted, first word of new record not yet sent by CPU.
1	0	-	1	Old record completely transmitted, new control information not ready or the first byte of previous block not transmitted on interface.
1	Channel after prefetching total record and transferring control to proper registers, has requested CCW1 routine and is waiting for DTC.			
0	0	1	-	New control transferred to proper registers, new data in C register, first SVC in is not present. CCW1 step 1 CL step has not occurred.

Bit 23 Rec End: The channel is finished with an operation and wishes to store status in the CSW.

Bit 24 Op In Test: 'Op in' line is active in response to sel out, which remains active through the operation. If 'op in' drops while the 'op in test' latch is active, 'IF ctrl check' will be set.

Bit 25 Channel Stop: Channel has immediately stopped all operations. The reason for stopping depends on the check control switch on the CE panel.

1. Process--Stop and log on detection of:
a. Channel control check
b. Interface control check
2. Stop:--Stop on detection of:
a. Channel control check
b. Interface control check
c. Data check
d. Any CPU check (freeze channel line)
3. Channel Stop--Stop on detection of:
a. Channel control check
b. Interface control check
c. Data check
d. Storage protect or program check
e. Chain check
f. Any CPU check (freeze channel line)

Bit 26 Sel Out: Sel out line is active on the interface unless blocked by program scan or manual controls.

Bit 27 Stop Routine: Stop latch has been set and the 'in' tag associated with its setting has fallen.

Bit 28 Sel In: Sel in is active on the interface or it is being simulated by the interface register.

Bit 29 Op In: Op in is active on the interface or it is being simulated by the interface register.

Bits 30-32 IF Out Tags: Conditions have been generated for activating the out tag, but the actual IF line may be blocked by program scan, manual controls or channel stop condition.

Bits 33-35 IF In Tags: Either the in tag is active on the interface or it is being provided by the IF register. 'Svc in' can be blocked on read by 'C full active' and on write by 'C full not active.' Status in can be blocked by the reset of the enable status latch.

Word 6

Bits 1-7 GP Register: The GP register is set from the ALCH bus and is used to hold various types of data during a channel operation. Register contents are:

General Purpose Latches						Channel State
$1{ }^{1}$	3	4	5	6	7	
0	0	0	0	0	0	Idle to CCW1, Step 1
BC Info	0	0	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Cp} \end{aligned}$	Backwards	$\begin{aligned} & \hline W R \\ & O p \end{aligned}$	CCW1, Step 1 to CCW2, Step 1
BC Info	0	0	0	0	0	CCW2, Step 1 to CCW2, Step 2
BC Info	LR Info		L1W	L2W	L3W	$\begin{aligned} & \text { CCW2, Step } 2 \text { to } \\ & \text { CCW2, Step 3, A1 } \\ & \hline \end{aligned}$
BC Info	0	0	L1W	L2W	L3W	CCW2, Step 3A, to Rd Store or Wr Fetch
MB CR Info			L1W	L2W	L3W	Rd Store
BC Info Original	0	0	L1W	L2W	L3W	Wr Fetch
$-{ }^{-}$	BC		$\begin{array}{\|l\|} \hline \text { L1W } \\ \text { or } \\ \text { Comp } \\ \hline \end{array}$	L2W	L3W	End up (Rd) to Intrpt to Reset
BC Info Original	0	0	$\begin{aligned} & \text { L1W } \\ & \text { or } \\ & \text { Comp } \end{aligned}$	L2W	L3W	End up (WR) to Intrpt to Reset

Bits 11-15 Flag Register: This regiater stores the special conditions that the channel command word (CCW) designates for the operation. Flag register positions correspond to flag bits in the CCW. The positions are: chain data, chain command, suppress incorrect length indication (SILI), skip, and program controlled interruption (PCI). The set state of any flag register position causes the channel to deviate from normal procedures in executing the operation.

Except in write chain data operations, the channel sets the flag register while processing the second half of the channel command word (CCW2):

An active CDA flag resets the CC and SILI flags. The CC flag is reset also when control word chaining is suppressed because of checks detected by the interface controls.

Bit 16 Fin Latch: The last clock sequence in the routine has occurred; new request register information can transfer to the position register.

Bits 17-19 First Word, First Byte: On write, if both are active, control information is completely fetched and the first data word is not fetched. On read if both are active, first data byte not yet transmitted on interface.

Bits 20-21 Total Rec Fetch, Wr Chain PRCD: If these bits are active, with the CDA latch; the channel after prefetching total record and transfering control to proper register has requested a CCW1 routine and is waiting for DTC.

Bit 22 Stop Rel: Channel has terminated an operation on the interface. The setting of this latch normally results in dropping sel out and either interrupting or fetching a new CCW.
Bit 26 Stat Next: Channel has detected that the last valid byte has been transmitted on the interface.

Bits 28-31 MP latches:

Routine	MP Latch	Function
Idle	C1	Degates start clock signal when start, test, or halt I/O instruction is detected.
	C4	Unit wants service but instruction line appears. Used for reset of channel and handling the instruction.
CCW1	C1	TIC op is detected.
CCW2	C1	CDA chaining; used in the request of unit select.
	C2	Chain check detected in CCW2; used to end update.
	C3	A channel check is present.
	C4	Starts the clock for the fourth sequence except in Wr CDA.
Wr Fetch	C1	Data is sent from storage to B register.
	C2	L1W line was sent by common channel.
Unit Sclect	C2	Degates the A clock in the first sequence of two complete clock cycles.
	C3	Degates the A clock in the second sequence of two complete clock cycles.
	C4	Used in the gating of the command to bus out.

Bit 32 Sup Out: This is set:

1. If CC chaining conditions were present when channel end status was received. Reset in next unit selection.
2. When read CDA chaining to prevent chain checks when starting on byte boundaries and working with buffered units. Reset when byte counter is set with new information.
3. For suppressing data under the following conditions:
a. On read, if common channel allows LS fetches with the LS buffer finish latch on; on write, if one register is full and the end of the record has not been reached.
b. If the multiplexor channel is in use and is not resetting the interface and the selector channel is transmitting data.

Bit 33 Request In: The request in line is active.
Bit 34 Svc Out Hold: This bit is set in unit selection in response to status in (except on $C U$ busy sequence). Used in write operation to prevent the active state of 'sve in' until data is fetched from storage.

Bit 35 Enable Stat: This bit allows the interface status in line to be gated to the IF controls when I/O status may be gated to the C register.

Section H - Blank

This panel is blank on the basic system.

Section J - Local Store Chart

The printed chart on this panel shows fixed assignments in the local storage area.

Section L - MC, SDR, IAR Indicators; Data and Address Keys

This panel section contains indicators and switches for system maintenance and operator intervention.

Master Check Indicator

The master check light is on when any trigger in the error register is on (KT081).

Maintenance Control (MC) Indicators

This row of 36 indicators is used with the Fault Locating Tests (FLT's). Figure 169 shows the ALD page, bit position, and a description of the 36 indicators.

Storage Data Register

The 36 indicators in this row display the Storage Data Register (SDR). Bit positions 0, 9, 18, and 27 display the parity of the associated byte. Figure 170 shows the ALD location of the indicators.

Data Keys

The 32 data keylever switches specify four data bytes to be stored in an addressed location. Correct parity is normally generated. Incorrect parity may be generated with the reverse data parity switch.

Data keys may be used to specify a selected ROS address for display or compare. A storage address is set into the data keys for SAR compare. The data keys are also used to simulate bytes of data when testing the channels. The keys can be changed without disrupting CPU operations.

Reverse Data Parity

This switch generates incorrect parity for data specified in the data keys. Parity is inverted for all bytes of the word. The test light is on when this switch is on.

Storage Select Switch

The storage select rotary switch selects the storage area that is to be addressed by the address keys. This switch can be moved without disrupting CPU operations. The four switch positions are: Local Storage, Main Storage, Protect Storage, and MPX Storage (Bump).

Instruction Address Register

This row of 27 indicators displays the Instruction Address Register (IAR). Bit positions 9, 18, and 27
indicate the parity of the associated byte. Figure 171 shows the ALD locations of the indicators.

Address Keys

The 24 address keylever switches address a location in a storage area. These keys, in conjunction with the storage select switch, permit store or display access to any location in local storage, main storage, protect storage, and bump storage. The keys can be changed without disrupting CPU operations.

The address keys are also used to simulate various conditions when manually testing the channels. (Refer to Panel Section F - Channel Control.)

Section M - Intervention and Maintenance Switches

This panel section contains pushbutton, rotary select, and keylever switches that are required for operator intervention and system maintenance. The customer and CE usage meters and a permanent storage assignment chart are also located on panel section M.

Rate Select Switch

The rate switch determines the manner in which instructions are to be performed. Three positions are provided: process, instruction step, and single cycle. When the rate switch is off the process position, the test light is on.

Process: The system operates at normal clock speed.
Instruction Step: One complete machine instruction is executed for each depression of the start switch, after which the CPU returns to the stopped state. The stop point is identical to that achieved by the stop switch. Any machine instruction can be executed in this mode. Input/output instructions are completed to the interruption point. The interval timer is not incremented while the rate switch is set to the instruction step position. Moving the rate switch from process to instruction step while the CPU is running has no effect.

Single Cycle: The CPU advances by its minimum clock amount for each depression of the start switch, returning to the stopped state each time. Input/output instructions can be single-cycled to the point where asynchronous operation begins. The asynchronous portion starts with the next depression of the start switch and runs to completion. If the start switch is
depressed during this time, the next cycle is taken. If an interruption results, the interruption sequence is not automatically executed but must be singlecycled. Moving the rate switch from process to single cycle while the CPU is running stops the CPU.

The stopped state for single cycle is one in which no CPU clocks are running. In the normal stopped state, ROS is running and executing the halt loop.

Start PB Switch

The start pushbutton switch starts system operation as defined by the rate switch. If it is pressed after a normal stop, it causes continuation of instruction processing as if no stop had occurred. If it is pressed after a system reset, the instruction designated by the instruction address register is the first one executed.

Stop PB Switch
The stop pushbutton switch causes the CPU to enter the stopped state. The stopped state is indicated by the manual light being on. The transition from operating state to stopped state occurs at the end of instruction execution. When the CPU is in the wait state, the transition takes place immediately. All interruptions which are pending and not masked off are taken, causing the old PSW to be stored and the new one fetched before entering the stopped state.

System Reset PB Switch

The system reset pushbutton switch resets the system to its initial state. The switch is active in all modes. The general status of the system after a system reset is:

1. CPU is in the stopped state.
2. All pending interruptions are eliminated.
3. Each channel in the system receives a reset. The channels, in turn, issue a general reset to the I/O interfaces. (Off-line control units and I/O devices are not reset.)
4. All error indicators are reset. Errors occurring during initialization will show.
5. All local store registers are set to good parity.
6. The bump area of main storage is set to good parity. The DA word is set to zero. The other three words associated with each subchannel are set to 07000000 .
7. The instruction address register is set to zero.
8. The L, M, H, R, J, and MD registers are set to good partiy.
9. The FLT Op register, pass and fail triggers, ignore error I/O trigger, and progressive scan stat are reset.

PSW Restart PB Switch

The PSW restart pushbutton switch causes a system reset followed by a load PSW operation from storage location zero. At completion of the load PSW, the CPU changes from stopped to operating state. This switch is active in all modes.

Check Reset PB Switch

The check reset pushbutton switch resets all check triggers in the error register and turns off the master check light.

Set IC PB Switch

The set IC pushbutton switch enters an address into the instruction address register. The address is specified by the address keys. This switch is active only when the CPU is in the manual state.

Store PB Switch

The store pushbutton switch stores information in an addressed location. Data specified by the data keys is placed in the location specified by the address keys and the storage select switch. Storage protection is ignored. The store switch is active only while the CPU is in the manual state.

Display PB Switch

The display pushbutton switch causes information in an addressed location to be displayed. The switch is active only while the CPU is in the manual state.

The information at the storage location specified by the address keys and the storage select switch is displayed in the following indicators:

Storage	Indicators
Main	Storage Data Register L Register (CPU Roller \#1, Roller Switch Position \#1)
MPX (Bump)	Storage Data Register Frotect
	Fegister (CPU Roller \#2, Roller Switch Position \#4)

Log Out PB Switch

The log out pushbutton switch causes a complete log out of CPU and channel status. This log out is identical to that which occurs when an error is detected.

The log out switch is active when CPU is in one of the following states:

Manual
Single cycle
Hard stop
ROS address compare stop

Address Compare Key (IAR)

The address compare (IAR) keylever switch provides a means of stopping the CPU or generating an oscilloscope sync pulse on an instruction address comparison. Three switch positions are provided: process, stop, and sync. When this switch is set to stop or sync, the test light is on.

Process: No comparison is performen.
Stop: An equal comparison between the address keys and the instruction address register causes the CPU to enter the stopped state. The stop occurs at completion of the addressed instruction.

Sync: An equal comparison between the address keys and the instruction address register causes an oscilloscope sync pulse to be generated at the sync control box. (The sync control box is mounted on the end of C gate behind the control panel.)

Repeat Instruction Key (IAR)
The repeat instruction (IAR) keyiever switch causes the instruction at the location specified by the ad-dress keys to be repeated, under control of the rate and start switches. The test light is on when this switch is not in its normal position.

Address Compare Key (ROS)

The address compare (ROS) keylever switch causes a comparison qf the twelve low-order data keys (thirteen for extended ROS) and the ROS address. Two positions are provided; stop and sync. The test light is on when the switch is not in the sync position.

Stop: The CPU stops on an equal comparison. The stop occurs at completion of the addressed microinstruction.

Sync: An oscilloscope sync pulse is generated by an equal comparison. The sync pulse is available at the sync control box.

Repeat Instruction Key (ROS)

The repeat instruction (ROS) keylever switch causes the microinstruction at the location specified by the twelve (thirteen for extended ROS) low-order data keys to be repeated continuously. The test light is on when this switch is on.

Address Compare Key (SAR)

The address compare (SAR) keylever switch provides a means of stopping the CPU or generating an oscilloscope sync pulse on any address other than instruction addresses used for main storage. Two positions are provided: stop and sync.

Stop: An equal comparison between ihe SAR compare keys (data keys $8-31$) and the AOB to SAR causes the CPU to enter the stopped. state.

Sync: An equal comparison between the SAR compare keys and the AOB to SAR generates an oscilloscope sync pulse as the sync control box.

The above address comparisons are further gated to distinguish between I/O and CPU addresses by the SAR compare control keys (data keys 0 and 1). Both switches off (straight out) deconditions the SAR compare. The SAR Address Compare switch is ineffective in FL'T modes.

Disable Interval Timer Key

This keylever switch prevents the interval timer from advancing. The test light is on when this switch is on.

Lamp Test Key

The lamp test keylever switch permits all indicators (except marginal voltage, frame thermal, open $C B$, and power check) to be tested simultaneously. The indicator driver is tested as well as the lamp.

Force Indicators Key

A special FLT op register is used to control scanout during execution of FLT tests. At such times the information displayed in the status indicators is under control of this special op register rather than the status roller select switches.

The force indicators keylever switch provides a partial override of the FLT op register. Any indicator that was off will give a valid indication when the switch is pressed. The force indicators switch
allows certain registers and status information to be displayed regardless of the FLT op register and is primarily intended for use during single cycling of FLT's.

FLT Mode Key

The FLT mode keylever switch is used with the FLT tests. Two positions are provided: start/load and force pass.

Start/Load: This position redefines the start and load switches to provide for initial loading of FLT programs and starting up after a test termination. When the load switch is pressed, IPL is not executed. Instead, an FLT load occurs using hardcore controls, and data enters storage directly, bypassing common channel hardware. If the start switch is pressed following a stop condition, testing is resumed.

Force Pass: This position causes bypassing of a failing FLT when the start switch is pressed following a stop condition.

FLT Control Select Switch
The FLT control rotary select switch provides five modes of operation when performing FLT load or executing tests. The switch positions are: process, stop, repeat, auto re-read, and halt after load.

Process: Each FLT is executed 16 times before branching to the next test.

Stop: The CPU stops after repeating a test 16 times if the fail trigger has been set.

Repeat: The FLT being executed is repeated continuously. The pass/fail indicators are reset every 16 times.

In each of the first three positions (process, stop, and repeat) a data check during FLT load causes the CPU to hang up. The two additional positions of the switch are provided to control retry; both cause execution in the process mode once the FLT record is in main storage.

Auto Re-Read: Backspace and retry occur automatically without the need for manual intervention.

Halt After Load: CPU hangs up at the end of any FLT load sequence whether it was correct or not. If correct, the start switch causes execution. If incorrect, the start switch causes a backspace and then a hang up.

Check Control Select Switch (CPU or Channel Op)
The check control rotary select switch provides four modes of operation when an error is detected in either the CPU or channels.

CPU OPERATION:

Process: Unless PSW bit 13 is masked, this position causes an error log of the entire system followed by a machine-check interrupt. If PSW bit 13 is masked, the error register will be set but the error will remain pending. Error log and machine-check interrupt will occur upon unmasking of bit 13.

Disable: Any errors that occur are set into the error register but operation continues. No log out or interrupt occurs.

Stop: The first error that occurs stops the system with the error displayed in the error register.

Chan Stop: The first error that occurs stops the system with the error displayed in the error register.

CHANNEL OPERATION:

Process: If bit 13 is masked, operation proceeds (as in disable mode) except that system log out due to error detection takes place when bit 13 is unmasked. The selector channel stops and is logged upon detection of a channel control or interface control check. Two types of logouts may occur; (1) full \log out, which includes the selector channel in error and CPU registers; or (2) partial log out, which includes only the selector channel.

Full log out occurs as a result of the following check conditions:

Parity check of logword 5 test
Parity check detected by CPU
First cycle test
Chain check
Time out check
Partial log out occurs as a result of the following check conditions:

Interface control checks
Byte counter parity check
Interface bus out parity check on non-data sent to the unit
Logword 4 test
Zero test o! logword 5 test
Any other selector channel errors request an I/O Interrupt with the status in the CSW.

Disable: When a check condition is detected, the channel attempts to terminate the operation and have status formed in the CSW. If an interface control check exists, an interface reset sequence occurs immediately.

The time out signal associated with an I/O instruction is not sent to the selector channel; the time out check causes the common channel to initiate formation of the CSW and reset the selector channel.

Stop: The selector channel and CPU stop upon detection of a channel control check, interface control check, or any CPU check condition.

Channel Stop: The selector channel stops on detection of any channel check condition except ILI, program check, storage protect check, or channel data check. CPU check conditions also freeze channel operations.

In this mode, interface responses (out tags) are delayed until 'in tag delay 3 ' time so that a check condition detected by interface tests can stop the channel response on the interface. This mode should not be used with diagnostic programs that force check conditions.

Metering

Two time-recording meters and a key-operated switch are located on panel section M. One meter records customer usage time; the other records maintenance time. The key-operated switch selects which meter is to record the running time. The selected meter accumulates time when:

1. The manual light is off and there is no wait bit in the PSW.
2. A metering-in signal is received from any I/O device.
3. Any system control panel pushbutton switch is pressed.

Section N - Operator Controls

This section of the system control panel contains the controls required by the operator when the CPU is operating under full monitor control. A minimum of direct intervention is required of the operator because the control program performs routine operations such as store and display. The main functions provided on this panel section are the control and indication of power and initial program load controls.

Power On PB Switch

The power-on switch initiates the power-on sequence for the system. Power is applied to de supplies in five groups. Power controls include sensing circuits to prevent application of the next group until all levels in the previous group are present. Power and cooling failures bring power down in reverse sequence.

A system reset occurs at the completion of the power-on sequence. The button is backlighted to indicate when power is on and the I/O Adapter relay has stepped to completion. Power-on switch is active only when emergency off switch is 'in'.

Power Off PB Switch

The power-off switch initiates the power-off sequence for the system.

Load PB Switch

The load switch causes a system reset and starts the Initial Program Load (IPL) routine.

Load Unit Select Switches

Three rotary select switches provide an 11-bit number to select the channel and I/O device for IPL. The left switch has eight positions labeled 0 through 7 to select the channel. The other two switches select the device and are labeled with the hexadecimal characters 0-9 and A-F.

Interrupt PB Switch

The interrupt switch causes an external interruption request. The interruption is taken when not masked off and when the CPU is not stopped. Otherwise the interruption request remains pending. When the interrupt is taken, bit 25 of the PSW is set to one to indicate that the interrupt switch is the source of the external interruption.

System Indicator

This indicator (PK101) is on whenever the customer usage meter or the maintenance meter on the system control panel is running.

Manual Indicator

This indicator (PK101) is on when the CPU is in the stopped state.

Wait Indicator

This indicator (PK101) is on when the CPU is in the wait state (bit 14 of the current PSW is one).

Note: Operations cannot be single-cycled while the CPU is in the wait state.

Test Indicator

This indicator (PK101) is on when a manual control is not in its normal position or when a maintenance function is being performed for CPU, storage, or channels. The following switches light the test indicator when not in their normal positions:

Check Control	Manual Operation
Reverse Data Parity	Rate
FLT Mode	Address Compare (ROS)
FLT Control	Repeat Instruction (ROS)
Address Compare (IAR)	Storage Test
Repeat Instruction (IAR)	Invert SAR Bit 16
Disable Interval Timer	CE Mode (Metering)
Address Compare (SAR) - Stop	

Load Indicator

This indicator (PL031) is on while the CPU is executing the IPL routine. The indicator is turned on
when the load switch is pressed and is turned off after the read operation and loading of the new Program Status Word (PSW) are successfully completed.

OPERATING INSTRUCTIONS

- Power, interrupt, and initial program load switches on panel section N provide basic system control.
- Switches and indicators on panel sections L and M permit program intervention by the operator.

The switches on panel section N permit the manual operations that are necessary when the system is to be operated under full supervisor control. Power switches apply or remove system power; initial program load switches reset the system and load the first program; and the interrupt switch allows an external interrupt request to be made. Five indicators on panel section N display overall system status to the operator. Start, stop, reset, display, store, and other intervention operations are performed with the switches and indicators located on panel sections L and M.

System Initialization
System initialization results from a system reset. A system reset occurs with the power-on sequence, the initial program load routine, or from the depression of either the system reset or the PSW restart switch.

Initial Program Load (IPL)

Initial program load is performed by selecting a properly-prepared input device with the load unit rotary select switches and pressing the load pushbutton switch. The three rotary switches provide the 11 -bit address of the desired device. The leftmost switch, labeled 0-7, designates the channel number. The two remaining switches, labeled with the Hex characters $0-9$ and A-F, designate the device. Pressing the load pushbutton switch causes a system reset, turns on the load indicator, turns off the manual indicator, and initiates a read operation from the selected input device.

IPL reads new information into the first six words of main storage. The remainder of the IPL program may be placed in any desired section of storage. Storage protection, program controlled interruption, and incorrect length indication are ignored.

Display and Store Operations

Intervention controls on panel sections L and M per-
mit the operator to display or store data in main storage, in local storage, and in the working PSW. For these operations the system must be in the stopped state (manual indicator on). The stopped state is achieved at the end of the current instruction when the stop switch is pressed, when single instruction execution is specified, or when a preset stop address is reached.

Display Main Storage

1. Manual mode.
2. Set the desired address in address switches 8 through 29.
3. Turn the storage select switch to "Main."
4. Press the display switch.
5. The word at the desired address is displayed in the SDR indicators.

Store in Main Storage

1. Manual Mode.
2. Set the desired address in address switches 8 through 29.
3. Turn the storage select switch to "Main."
4. Set the desired data switches.
5. Press the store switch.

Display Local Storage

1. Manual mode.
2. Set the sector to be displayed in address switches 22 and 23 .
3. Set the word to be displayed in address switches 24 through 27.
4. Turn the storage select switch to "Local."
5. Press the display switch.
6. The selected word is displayed in the L Register (CPU Roller \#1, Switch Position \#1).

Store in Local Storage

1. Manual mode.
2. Set the desired sector in address switches 22 and 23 .
3. Set the desired word in address switches 24 through 27.
4. Set the desired data switches.
5. Set the storage select switch to "Local."
6. Press the store switch.

Display the Working PSW

1. Manual mode.
2. Set address 170 in the address switches.
3. Set the storage select switch to "Local."
4. Press the display switch.
5. The working PSW (first half) is displayed in the L Register (CPU Roller \#1, Position \#1).

Alter the Working PSW

1. Manual mode.
2. Set address 170 in the address switches.
3. Set the storage select switch to "Local."
4. Set the desired data switches.
5. Press the store switch.

Miscellaneous Operations

Set the Instruction Counter

1. Manual Mode.
2. Set the desired instruction address in the address switches.
3. Press the set IC switch.

Stop on an Instruction Address
The following steps should not be taken while executing a program but may be taken in any other mode.

1. Set the desired address in the address keylever switches.
2. Place the IAR address compare switch in the stop position.
3. The address in the address switches will be executed and the next address in the program will be displayed in the IAR. If the instruction at the address in the address switches is a branch instruction and the branch is taken, the address displayed in the IAR is the address of the branch instruction.

Changing the address keys while in IAR stop or sync mode and a program is running, may cause a machine check condition to occur.

Reset An Error Indication

The check reset switch is normally used to reset all machine check indicators. Check reset only resets the error indicators and does not guarantee that the object program has not been altered by a machine failure. A system reset, however, resets the complete system, including all pending interruptions.

Bump Storage Display

To display bump storage:

1. Set the storage select switch to MPX 22-31.
2. Set the desired word in address switches 22 and 23.
3. If an unshared subchannel is being displayed, set the unit address in address switches 24-31.
4. If a shared subchannel is being displayed, set the modified unit address in address switches 24-31.
5. Press the display switch.

To display bump storage after a hard stop:

1. Set the ROS address switches (data switches)
to 191 (Hex).
2. Set ROS REPEAT INSN down.
3. Press START.
4. Set check control switch to DISABLE.
5. Set manual channel control to MPX.
6. Restore ROS REPEAT INSN.
7. Set the rate switch to INSN STEP.
8. Press START.
9. Press STOP.
10. Follow the foregoing procedure to display desired location.

Clear Storage

1. System reset.
2. Set IAR keys to zero.
3. Set rate switch to SINGLE CYCLE.
4. Set data switch 22 down (all others straight out).
5. Set ROS REPEAT INSN down.
. Press START.
. Restore ROS REPEAT INSN.
Restore data switch 22.
Set rate switch to PROCESS.
Press START.
System reset.
6. Press STORE.

Alternate Method of Clearing Storage

1. Set data switch 22 down (all others up).
2. Set ROS REPEAT INSN down.
3. System reset.
4. Restore ROS REPEAT INSN.
5. Restore data switch 22.
6. Allow IAR to ripple through one time.
7. Set ROS REPEAT INSN down to terminate.
8. System reset.

ROS Function Check

Figure 172 shows the content of the closed loop starting at ROS 202 that can be used to display, change, and observe the content of the various CPU registers (QW111).

ROS 202 Loop Procedure:

1. System reset.
2. Set check control switch to DISABLE.
3. Set rate switch to SINGLE CYCLE.
4. Set data switches 22 and 30 down.
5. Set ROS REPEAT INSN down.
6. Press START.
. Restore ROS REPEAT INSN.
Set desired data in data and address switches.
7. Set rate switch to PROCESS.
8. Press START.

The following results will occur:
Data keys to the L, R, M, and H registers, and SDR.
Data keys $12-15$ to J-reg; 8-11 to MD; and 28-31 to F-reg.
Address keys to IAR and SAR (to initiate storage cycle for read out and regenerate).
Note: For ZCT failures, use this routine to load all registers.

Recycle Any Maintenance Console PB Operation

1. Tie C-A4H23 (manual control pulse SS) PK001 to A-A4E2D2 (60-cycle interval timer KS252) .
2. Depress pushbutton to be tested, and hold it depressed as long as cycling is desired.

Note: The 60-cycle interval timer pulse will fire the manual control pulse SS, and, as long as any maintenance console pushbutton is depressed, the operation will be restarted by the pulse that updates the timer.

THEORY OF OPERATION

- System reset, power-on reset, PSW restart, and IPL use common reset routine.
- IPL routine loads the initial program and starts program execution.
- Stop switch sets stopped state and halt loop.
- ROS halt loop samples panel switches for display and store operations.
Power On, Power Off
The power-on switch initiates the power-on sequence. The pushbutton is backlighted to indicate when power is on. The power-off switch initiates the power-off sequence. For theory of operation of the power-on and power-off sequences refer to FE Thenry of Operation, System/360 Model 50 Power Distribution and Control SY22-2829.

System Reset

The Model 50 is initialized with a system reset. A system reset occurs with the power-on sequence; the initial program load routine; or from depression of the system reset or the PSW restart switch. The
general status of the system after a system reset is:

1. CPU is in the stopped state.
2. All pending interruptions are eliminated.
3. Each channel in the system receives a reset. The channels, in turn, issue a general reset to the I/O interfaces. (Off-line control units and I/O devices are not reset.)
4. All error indicators are reset. Errors occurring during initialization will show.
5. All local store registers are set to good parity.
6. The bump area of main storage is set to good parity. The DA word is set to zero. The other three words associated with each subchannel are set to 07000000 .
7. The instruction address register is set to zero.
8. The L, M, H, R, J, and MD registers are set to good parity.
9. The FLT Op register, pass and fail triggers, ignore error I/O trigger, and progressive scan stat are reset.

System Reset Operation

The system reset timing sequence is shown on Timing Chart 203--System Reset Sequence, \#T2031. Figure 173 in this manual is a flow diagram of microprogram system reset.

System reset or power-on reset forces address 242 on QU100. IPL routine and PSW restart enter the common reset routine at block 2 B 2 . At this point, two parallel operations are started: correct local store parity, and load bump storage. Local store data is run through the adder for correct parity insertion. The DA word of bump storage is loaded with zeros; the other three words associated with each subchannel are loaded with 07000000 .

Local store is addressed with bits 2 and 3 of the emit field and bits 24 through 27 of the R register. The R register must therefore be decremented 16 times to cause a change in bits $2-5$ of LSAR. Because of this, each local store word is parity-corrected a number of times while bump is being loaded. When byte three of the R register is reduced to all zeros, the loop operation is finished and a branch exit results from S3 and MD settings. For system reset, $\mathrm{S} 3=0$ and $\mathrm{MD}=3$ cause a branch to block 204 to restore PSW $0-7$ and $12-15$. The routine then goes to the halt loop on QT200.

Microprogram Reset: The following procedure can be used to check the reset loop on QU100:

1. Set rate switch to l'ROCESS: enter address 242 in ROS address entry keys.
2. Set the stop on ROS address switch to ON.
3. Depress system reset pushbuttons; the system should stop at next ROS address 2BA. FLT 2 and block indicators should light (to check ROAR, depress force indicator lever). Each subsequent address will appear in the next ROS address field and represents the true next address.
4. Set rate switch to SINGLE CYCLE.
5. Single cycle through the microprogram and assure that the proper conditions are set.
6. Single-step through the bump storage loop and local storage loop.
7. Enter 243 in ROS address entry keys.
8. Set the stop on ROS address switch to ON.
9. Set rate switch to PROCESS.
10. Depress the system start pushbutton; this will loop through all of the bump storage loop. Current ROS will stop at 243.
Halt Loop: The following procedure can be used to check the halt loop on QT200:
11. Perform step (7) through (10) from previous operation (microprogram reset).
12. Set the rate switch to SINGLE CYCLE and continue single stepping through the microprogram until current ROAR 150.
13. Set the rate switch to PROCESS. Depress START.

Current ROS Address	Condition
243	Set allow error and error interrupt on
204	
150	Halt loop
191	Halt loop
18 C	Halt loop
208	Halt loop

4. Enter 208 in ROS address entry keys, set the stop on ROS address switch to ON.
5. Depress the system reset pushbutton; CPU will stop with current ROAR at 208.
6. Return the stop on ROS address switch to normal; depress the system reset pushbutton.

When ROAR is at address 208, halt loop is operating correctly. Set the rate switch to PROCESS and depress the system start pushbutton; all four clock indicators should come on.

Initial Program Load

To load a program, the channel number and the desired device must be entered in the three load unit switches.
Pressing the lcad pushbutton causes a system reset and initiates a read operation from the selected input device.

The first 24 bytes read are placed in storage locations $0-23$. The doubleword in location 0 is the IPL PSW. The doubleword read in location 8 is the channel command word (CCW). When chaining is specified in this CCW, the operation proceeds with the CCW at location 16 (CCW2).

After the input operation is performed, the I/O address is stored in bits 21-31 of the first word in storage. Bits $\mathbf{1 6 - 2 0}$ are set to zero; bits $0-15$ remain unchanged. The CPU proceeds under control of the new PSW in location 0 and the load indicator is turned off. Interruptions that become pending during IPL are taken before instruction execution.

If the PSW in location 0 has bit 14 set to one, the CPU is in the wait state after IPL. If the I/O operation and PSW loading are not completed satisfactorily, the CPU idles and the load indicator remains on.

IPL Operation

IPL timing and clock controls are shown on Timing Chart 202--Load Sequence, \#T2021. Microprogram logic flow is shown on Figure 174 in this manual.

The IPL load switch forces address 240 on QU100. The error and H registers are cleared; MD is set to 3 ; S3 is set to 1 ; and the common reset routine is initiated. At the completion of system reset, $\mathrm{MD}=3$ and $\mathrm{S} 3=1$ branches the microprogram to QK800.

On QK800: CCW2 is set up, the unit and channel addresses are set in the L register, and zeros are set in the R register for the command address. S3 is reset; S 7 is set; and Start I/O is issued. The program then loops on block 988 waiting for the channel response.

With the channel response, S3 is set on to break out of the wait loop. Stats $0-3$ are reset and a test is made for condition code $(C C)=0 . \quad C C=1,2$. or 3 indicates that Start I/O is not accepted by the channel and the microprogram will loop in block 98 C . $\mathrm{CC}=0$ indicates that Start I/O has been accepted and begun by the channel. $S 7$ is reset, Test I / O is issued, and the wait loop is taken for channel response. S3 is turned on with channel response and a test is made for CC = 1 (channel end). The microprogram loops on $\mathrm{CC}=2$ (channel busy) until $\mathrm{CC}=1$ is received. After channel end sets $C C=1$, channel status and unit status checks are made on logic QK801.

Channel status (40-47 of CSW) must be XX000000 or the program will loop on block 990. Unit status (33-39 of CSW) must be $0 \times X 01 \mathrm{X} 00$ or the program will loop on block 919. If both status checks are good, the PSW is loaded from location zero and program execution is started.

Note: If IPL hangs up with the CPU idle and the load indicator on, the microprogram will most
likely be in one of the following loops:
Block 988 - No channel response
Block 98C - Start I/O not accepted by channel
Block 990 - Channel status bad
Block 919 - Unit status bad

Start, Stcp
The start and stop switches on panel section M allow the operator to intervene in programmed system operation.

The start switch initiates system operation under control of the rate switch. After a system reset, the start switch begins program execution with the instruction designated by IAR. After a normal stop, the start switch causes processing to continue as if no stop had occurred.

The stop switch places the CPU in the stopped state. The manual trigger is turned on and the resultant exception branch causes ROS to enter the halt loop. Store, display, and other exception-type manual operations are dependent on the halt loop.

Figure 175 in this manual is a diagram of start, stop, and exception logic. For start and stop sequence timing refer to Timing Chart 210--Start, Stop, Check Reset, \#T2101. Exception logic flow is shown on CLF 121, Basic Interruption Flow and CLF 122, Interruptions/Exceptions, in the Diagrams Manual.

Start

Pressing the start switch after a normal stop turns off the manual trigger to allow ROS to break out of the halt loop and branch to I-fetch. The start switch fires the 135 ns singleshot (any pushbutton) to bring up the MC Pulse Ungated line. This line develops MC Pulse Gated which AND's with the start PB switch to bring up Start Sw. With the rate switch set to process, Start Sw turns off both manual triggers and the stop trigger. Manual trigger off drops the Exception line allowing ROS to exit from the halt loop.

On QT200, Exception $=0$ causes a branch out of the halt loop. PSW 0-15 is set in the L Register to restore the storage protect key; IAR is set in the H Register and through the adder to set SAR; and a branch is made to I-fetch. The Start PB line that is brought up along with Start Sw develops the Pulsed Start PB line (circled 5 on Figure 175). Pulsed Start PB drops Hard Stop and develops the clock controls on logic KT211 and KT221.

Stop

Pressing the stop switch turns on the manual trigger to place the CPU in the stopped state and ROS in the
halt loop. The stop PB switch generates the same MC pulse as the start switch. MC Pulse Gated AND's with the stop PB switch to bring up Stop Sw which turns on manual triggers A and B. Manual trigger A sets Exception $=1$ to cause ROS to branch to the halt loop after the current instruction has been executed. Manual trigger A also turns on the manual indicator and brings up Halt Trigger (KS141) to enable the setting of stats 4-7 for subsequent manual operations. Manual trigger B on inhibits the Timer Update Signal (Timer Tick).

The halt loop on QT200 consists of four microprogram instructions. The first instruction samples the control panel switches to set stats 4-7, turns off the stop trigger, and checks for external or channel interruptions. The second and third instructions decode stats 4-7 for manual operation requests. The fourth instruction indicates no manual requests have been made and therefore turns on the stop trigger and tests for exception. With exception held on by the manual trigger on, ROS will continue cycling in the halt loop waiting for operator intervention.

Halt loop manual operations (display, store, set IAR, etc.) set stats 4-7 for the correct branch from microinstruction two or three of the halt loop. All branch instructions, except one, will turn on the stop trigger to inhibit any external or channel interruptions. The one exception is the instruction step operation which allows one instruction to be executed and interrupts, if any, to be taken after execution. On return to the halt loop, the fourth instruction turns on the stop trigger to prevent any subsequent interruptions.

Halt Loop Operations

Halt loop operations are performed under control of the halt loop and GP stats 4 through 7. The Op Panel to S 4-7 microorder (step one of the halt loop) sets the stats indicated by the Cons Fcn lines that are brought up by the panel switches. The halt loop controlled operations are:

Instruction step
Set IC
Repeat instruction (IAR)
Address compare (IAR)
Display and store main storage
Display and store protection key
Display and store local storage
Display and store bump storage
All of the above operations, except address compare, require that the CPU be in the stopped state (ROS in the halt loop, QT200). Address compare will force ROS into a halt loop cycle after each instruction execution. Step one of the halt loop allows
the control panel switches to set stats 4-7. Steps two and three of the halt loop decode the stats and branch ROS to the desired routine. Logic flow for the operations is shown on CLF 122, Interruptions/ Exceptions, in the Diagrams Manual.

Stat Setting

Figure 176 shows the GP stats that are set by the panel switches and the logic involved. The Hex value of the four stat bits is used on the Interruption/ Exceptions CLF chart to denote the operation. The switch settings on the control panel bring up the proper Stat Cons Fen lines which are gated by Set Sts 4-7 Per CE Cons and the halt trigger to set the general purpose stats.

Instruction Step

The rate switch set to instruction step turns on the manual trigger (if off) and brings up the exception line (Figure 175). Pressing the start switch (wait bit must be off) develops the Stat 7 Cons Fen line allowing stat 7 to be turned on. Decode of stats 4-7 branches ROS to instruction 151. The stop trigger is left off to allow interrupts following instruction execution to be honored. Storage protect key is restored and a branch to I-fetch is made with the H register (instruction address) in SAR. (Refer to CLF Interruptions/Exceptions.)

After the single instruction has been executed and interrupts, if any, taken, the halt loop is reentered. Step four of the halt loop (150) turns on the stop trigger to prevent any subsequent interruptions.

Set IC

The seî IC switch enters an address, specified by the address switches, into the IAR. Set IC develops Set IAR to set stat 6. Halt loop decode branches ROS to instruction 152. The stop trigger is turned on; the address keys are set in IAR; and ROS returns to the halt loop.

Repeat Instruction (IAR)

The repeat instruction switch causes the instruction at the location specified by the address keys to be repeated. Pressing the keylever switch down allows the setting of stats 6 and 7. Stat decode causes ROS to branch out of the halt loop to instruction 153. The stop trigger is turned on; storage protect key is restored; the address keys are set in SAR; and ROS branches to I-fetch. At the completion of instruction execution, the exception branch returns ROS to the halt loop and the same routine is repeated.

Address Compare (IAR)

With the address compare switch in the stop position, an equal compare between the address keys and the IAR causes the CPU to enter the stopped state after execution of the addressed instruction. In the sync position, the same comparison causes an oscilloscope sync pulse to be generated but processing continues.

The address compare switch set to stop or sync sets the exception branch (Figure 175) and causes the turn on of stat 5 (Figure 176). The exception branch takes ROS to the halt loop after each instruction execution. Stat decode branches ROS to instruction 209 to turn on the stop trigger and set the address keys in the L register. The L register is compared with IAR (R register) and the storage protect key is restored. An unequal compare allows ROS to branch directly to I-fetch with the next address.

An equal compare between the L and R registers causes generation of the sync pulse by instruction 107. If the address compare switch is set to the sync position, ROS branches to I-fetch with the next instruction address. If the address compare switch is set to the stop position, the sync pulse turns on the manual trigger (Figure 175) to place CPU in the stopped state.

Note: The address compare switch in the stop or sync position adds a minimum of 3 microseconds (time required to check IAR keys and IC for comparison) to each instruction.

Display and Store
Figure 176 shows the stats that are set for each unique display or store operation. Use the Hex value of the stat bits to follow the CLF Interruptions/ Exceptions diagram.

All display or store operations cause stat 4 to be set on. Store operations will also set stat 7 on. The setting of stats 5 and 6 is dependent on the storage area defined by the storage select switch: main, local, protect, or bump (MPX).

Halt loop decode of stats 4-7 causes all display and store operations to branch to logic QT220 (20A for main storage and storage protect; 20B for local storage and MPX bump storage). The display timing sequence is shown on Timing Chart 208, \#T2081; the store timing sequence is shown on Timing Chart 207, \#T2071.
Display: The display pushbutton switch causes the data at the address and the storage unit specified by the control panel switches to be displayed. The 135 ns (any pushbutton) singleshot generates the MC Pulse Gated line which AND's with the display PB
switch to develop Display Stor. The Display Stor line allows stat 4 to be set. The position of the storage select rotary switch determines the setting of stats 5 and 6 (Figure 176). Halt loop decode of stats 4-7 branches ROS to QT220 for the selected routine as follows:

Display Main Storage--20A, 20D, 235. Address keys to R register to SAR. SDR displays data at the location specified.
Display Storage Protect Key--20A, 20E, 2BB, 2BE.

Address keys to R register to SAR. Storage Protect Key to F register. F register indicators display Protect Key (CPU Roller \#2, Position \#4).
Display Local Storage--20B, 244, 2C1, 21(branch on sector), 234.

Address keys 22-23 to LSFR, 24-27 to MD (LS sector, address). Local Storage to L register. L register indicators display local storage (CPU Roller \#1, Position \#1).

Display MPX Bump Storage--20B, 244, 2C3, 21(branch on sector), 235. Address keys $22-31$ to SAR ($22-23=$ sector $)$ SDR indicators display bump area specified.

All display routines end by branching back to the halt loop.

Store: The store pushbutton switch causes the data specified by the data keylever switches to be stored in the selected area. The MC Pulse Gated line AND's with the store PB switch to develop the Write Stor line. Write Stor allows the setting of stats 4 and 7. The setting of stats 5 and 6 is dependent on the posi-tion of the storage select rotary switch. Halt loop decoding of stats $4-7$ branches ROS to QT220 for the selected routine as follows:

Store in Main Storage--20A, 20D, 237. Address keys to R register to SAR. Data keys to SDR.

Store Storage Protect Key--20A, 20F, 2BF. Address keys to R register to SAR. Data keys to F register. F register to storage protect.

Store in Local Storage--20B, 244, 2C1, 21(branch on sector), 236.

Address keys 22-23 to LSFR, 24-27 to MD (LS sector, address). Data keys to Local Storage.

Store in MPX Bump--20B, 244, 2C3, 21-
(branch on sector), 237.
Address keys 22-31 to SAR (sector, address). Data keys to SDR.

All store routines end with ROS branching back to the halt loop.

FIGURE 137. COMMON CHANNEL ROLLER - POSITION I

					EARLY		CHAIN								SBCR			
2	$\begin{aligned} & \text { RTNE } \\ & \text { RECD } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{PCI} \\ \text { ENABL } \\ \hline \end{array}$	$\begin{gathered} \text { BREAK } \\ \text { IN } \end{gathered}$	$\begin{aligned} & 1 / \mathrm{O} \\ & \text { RTNE } \end{aligned}$	$\begin{aligned} & \text { FIRST } \\ & \text { CYCLE } \end{aligned}$	$\begin{aligned} & \text { FIRST } \\ & \text { CYCLE } \end{aligned}$	$\begin{aligned} & \text { FIRST } \\ & \text { CYCLE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LS } \\ & \text { RD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LS } \\ & \text { WR } \end{aligned}$	CHAL DTC	ALCH DTC	CHAIN	$\begin{aligned} & \text { LAST } \\ & \text { CYCLE } \\ & \hline \end{aligned}$	BREAK OUT	0	1	2	3

Indicator	ALD	$\begin{gathered} \text { Bit } \\ \text { Position } \end{gathered}$	Description
RTNE RCVD	KE301	0	Routine received is on when a request to break into CPU is granted.
PCI ENABL	KE131	1	PCl enable is on during a PCl routine.
BREAK IN	KE301	2	Break in is on after a routine received signal has been received and break in is occurring.
1/O RTNE	KE311	3	1/O routine is on whenever an 1/O routine is being processed.
EARLY FIRST CYC	KE301	4	Early first cycle is on early in the first cycle of an 1/O routine.
FIRST CYC	KE301	5	First cycle is on during the first cycle of an 1/0 routine.
CHAIN FIRST CYC	KE321	6	Chain first cycle is on during the first cycle of a chained routine. (One routine is finished and the next started without CPU breaking in.)
LS RD	KE471	7	Local store read is on during a local store read routine when data is transferred from the Bregister to the local store buffer.
LS WR	KE471	8	Local store write is on during a local store write routine when data is transferred from the local store buffer to the B register.
CHAL DTC	KE441	9	Channel to adder latch data transfer and control is on when the micro-order is given telling a selector channol to transfor information from the channel to the adder latch.
ALCH DTC	KE441	10	Adder latch to channel data transfer and control is on when the micro-arder is given telling a selector shannel to transfer information from the adder latch to the channel.
CHAIN	KE321	11	Chain is on during the last cycle of a routine and indicates that another routine is to be chained into.
LAST CYC	KE321	12	Last cycle is on during the last cycle of a routine and indicates that chaining to another routine will not occur.
BREAK OUT	KE321	13	Break out is on when a routine is completed and CPU and ROS are restored to the point they were at before break in.
SBCR $\quad\left\{\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right.$	$\begin{array}{\|l\|} \hline \text { KE381 } \\ \hline \end{array}$	14-17	Storage byte control register is used by the selector channel to designate the bytes that are to be placed placed in storage during a read store.
		18	Not Used
$\begin{aligned} & \text { ROS } \\ & \text { BITS } \end{aligned}\left\{\begin{array}{l} 33 \\ 34 \\ 47 \\ 48 \end{array}\right.$	$\begin{array}{\|l\|} \hline \text { KE441 } \\ \text { KE441 } \\ \text { KE321 } \\ \text { KE321 } \\ \hline \end{array}$	$\begin{aligned} & 19-20 \\ & 21-22 \end{aligned}$	ROS bits 33 and 34 represent timing signals to the channel ($1 / \mathrm{O}$ mode). ROS bits 47 and 48 represent control signals to the channel (I/O mode).
FIRST CYC CHK	KE531	23	First cycle check is mode during the first cycle to make sure that ROS is really in the first cycle of an 1/O routine.
		24-35	Not used.

FIGURE 138. COMMON CHANNEL ROLLER - POSITION 2
162 (3/71) Model 50 FEMM

FIGURE 139. COMMON CHANNEL ROLLER--POSITION 3

FIGURE 140. MULTIPLEX CHANNEL ROLLER--POSITION 4

5	SEL out	$\begin{aligned} & \text { SEL } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { iN } \end{aligned}$	$\begin{aligned} & \text { SUP } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \text { REQ } \\ & \mathbb{I N} \end{aligned}$	OUT			IN			BUS OUT						
						SVC	ADR	CMND	SVC	ADR	STAT	P	0	1	2	3		
		BUS OUT				${ }^{\text {b }}$ \%	- 7											
		4	5	6			wor										5	
Indicator			ALD		Bit Position		Description											
SEL OUT			FA141		0		Indicates when select out is up on the interface.											
SEL IN			FA361		1		Indicates when select in is up on the interface.											
OP IN			FA361		2		Indicates when op in is up on the interface.											
SUP IN			FA151		3		Indicates when suppress out is up on the interface.											
REQ IN			FA361		4		Indicates when request in is up on the interface.											
SVC OUT			FA141		5		Indicates when service out is up on the interface.											
ADR OUT			FA131		6		Indicates when address out is up on the interface.											
CMND OUT			FA141		7		Indicates when command out is up on the interface.											
SVC IN			FA351		8		Indicates when service in is up on the inferface.											
ADR IN			FA351		9		Indicates when address in is up on the interface.											
STAT IN			FA351		10		Indicates when status in is up on the interface.											
					11-12		Not used.											
$\begin{aligned} & \text { BUS } \\ & \text { OUT } \end{aligned}$		${ }^{P}$	FA051		13-21		Displays the information that is on bus out plus parity.											
		0	FAOS															
		1	FAO															
		2	FA05I FA05I FA05I FA05I fA05I FA051															
		3																
		4																
		5																
		6																
		7																
PRGM CHK			FA371		22		Program check indicates a boundary violation in storage.											
STOR PROT CHK			FA371		23		Storage protect check indicates that data is trying to be stored in a protected storage location and the keys do not match.											
					24-35		Not used.											

FIGURE 141. MULTIPLEX CHANNEL ROLLER - POSITION 5

FIGURE 142. MULTIPLEX CHANNEL ROLLER - POSITION 6

Indicator	ALD	Bit Position	
		$0-35$	Description used.

FIGURE 143. MULTIPLEX CHANNEL ROLLER - POSITION 7

Indicator	ALD	Bit Position	
		$0-35$	Not used.

FIGURE 144. MULTIPLEX CHANNEL ROLLER - POSITION 8

FIGURE 145. SELECTOR CHANNEL ROLLER - POSITION I

FIGURE 146. SELECTOR CHANNEL ROLLER - POSITION 2

FIGURE 147. SELECTOR CHANNEL ROLLER - POSITION 3

FIGURE 148. SELECTOR CHANNEL ROLLER - POSITION 4

FIGURE 149. SELECTOR CHANNEL ROLLER - POSITION 5

FIGURE 150. SELECTOR CHAINNEL ROLLER - POSITION 6

FIGURE 151. SELECTOR CHANNEL ROLLER - POSITION 7

Indicator	ALD	Bit Position	Description
		$0-35$	Not used.

FIGURE 152. SELECTOR CHANNEL ROLLER - POSITION 8

	L REGISTER																	
1	$\begin{aligned} & \hline \mathrm{P} \\ & 0-7 \end{aligned}$	0	1	2	3	4	5	6	7	$\begin{gathered} p \\ 8-15 \end{gathered}$	8	9	10	11	12	13	14	15

L REGISTER																		1
$\begin{gathered} p \\ 16-23 \end{gathered}$	16	17	18	19	20	21	22	23	$\begin{gathered} P \\ 24-31 \end{gathered}$	24	25	26	27	28	29	30	31	

Indicator	ALD	Bit Position	Description
P 0-7	RL001		
0	RL001		
1	RLOOI		
2	RLOO1		
3	RLOOI		
4	RLOII		
5	RLOII		
6	RLOII		
7	RLOII		
P 8-15	RLO21		
8	RL021		
9	RL 02!		
10	RL021		
11	RL021		
12	RL031		
13	RL031		
14	RL031	0-35	Word 1 indicators display the contents of the L register. The L register is a primary source of
15	RL031		data for adder XG input and buffer for local store. The L register can also gate a byte of
P16-23	RL04 1		data at a time to the mover. Bit positions $0,9,18$, and 27 display the parity of the associ-
16.	RL04 1		ated byte.
17	RL041		
18	RL04 1		
19	RL04 1		
20	RL05 1		
21	RL05 1		
22	RL05 1		
23	RL05 1		
P24-31	RL06 1		
24	RL06 1		
25	RL06 1		
26	RL06 1		
27	RL061		
28	RL071		
29	RL071		
30	RL071		
31	RL071		

FIGURE 153. CPU I ROLLER - POSITION I

FIGURE 154. CPU I.ROLLER - POSITION 2

FIGURE 155. CPU I ROLLER - POSITION 3

FIGURE 156. CPU I ROLLER - POSITION 4

FIGURE 157. CPU I ROLLER - POSITION 5

\bigcirc	ROS	CE				LX			TC	RY			$A D$					
	f													CL				
	57-89	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73

Indicator	ALD	Bir Position	Description
ROS P57-89	RK301	0	Parity of bits 57-89.
CE $\quad\left\{\begin{array}{l}57 \\ 58 \\ 59 \\ 60\end{array}\right.$	$\begin{aligned} & \text { RK301 } \\ & \hline \end{aligned}$	1-4	Emit field.
LX $\left\{\begin{array}{l}61 \\ 62 \\ 63\end{array}\right.$	$\begin{aligned} & \text { RK311 } \\ & \text { RK311 } \\ & \text { RK311 } \\ & \hline \end{aligned}$	5-7	Left input to adder (XG).
TC 64	RK311	8	True or complement to left adder input (XG).
RY $\quad\left\{\begin{array}{l}65 \\ 66 \\ 67\end{array}\right.$	$\begin{aligned} & \text { RK311 } \\ & \text { RK311 } \\ & \text { RK311 } \\ & \hline \end{aligned}$	$9-11$	Right input to adder (Y).
$A D\left\{\begin{array}{l} C L\left\{\begin{array}{l} 68 \\ 69 \\ 70 \\ 71 \end{array}\right. \end{array}\right.$	$\begin{aligned} & \mathrm{BHO61} \\ & \mathrm{BH} 061 \\ & \mathrm{BH} 061 \\ & \mathrm{BH} \mathrm{H} 1 \end{aligned}$	$\begin{aligned} & 12-15 \\ & 12-14 \\ & 15 \end{aligned}$	Adder function (CPU mode). \qquad \qquad \qquad \qquad \qquad Selector channel adder larch tests (1/O mode). Spare position (1/O mode).
AB $\left\{\begin{array}{l}72 \\ 73 \\ 74 \\ 75 \\ 76 \\ 77\end{array}\right.$	$\begin{aligned} & \text { RK331 } \\ & \text { RK331 } \end{aligned}$	16-21	Condition branch test A (furnishes bir 11 of next ROS address).
88 $\quad\left\{\begin{array}{l}78 \\ 79 \\ 80 \\ 81 \\ 82\end{array}\right.$	RK341 RK341 RK341 RK341 RK341	22-26	Condition branch test 8 (furnishes bit 12 of next ROS address).
83	XG401	27	Used in 1410 compatibility feature to expand the UR field (54-55) for control of the decimal adder in the mover circuits.
$\text { SS }\left\{\begin{array}{l} 84 \\ 85 \\ 85 \\ 87 \\ 88 \\ 89 \end{array}\right.$	RK351 RK351 RK351 RK351 RK351 RK351	28-33	Stat setting and micellaneous control.
		34-35	Not used.

FIGURE 158. CPU I ROLLER - POSITION 6

FIGURE 159. CPU I ROLLER - POSITION 7

FIGURE 160. CPU I ROLLER - POSITION 8

FIGURE 161. CPU 2 ROLLER - POSITION I

FIGURE 162. CPU 2 ROLLER - POSITION 2

3	$\begin{aligned} & \hline \text { ONE } \\ & \text { SYL } \\ & \text { OP } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RE- } \\ & \text { FETCH } \end{aligned}$				NEXT ROS ADDRESS													
						EXT	ROS BASE ADDRESS						FUNCTION BIT				BRANCH		
							0	1	2	3	4	5	0	1	2	3	A	B	
		EXTERNAL INTERRUPT REGISTER						PSW											3
							6	ILC		CC		PM							
		1	2	3	4	5		32	33	34	35	36	37	38	39				

FIGURE 163. CPU 2 ROLLER - POSITION 3

FIGURE 164. CPU 2 ROLLER - POSITION 4

FIGURE 165. CPU 2 ROLLER - POSITION 5

Indicator	ALD	Bit Position	Description
HALF SUM $\quad\left\{\begin{array}{c}0-7 \\ 8-15 \\ 16-23 \\ 24-31\end{array}\right.$	KTOII KTOII KTOII KTOII	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	Half sum 0-7. Half sum 8-15. Half sum 16-23 Half sum 24-31.
SUM $\left\{\begin{array}{r}0-7 \\ 8-15 \\ 16-23 \\ 24-31\end{array}\right.$	$\begin{aligned} & \text { KT011 } \\ & \text { KTO11 } \\ & \text { KT011 } \\ & \text { KTO11 } \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Sum 0-7. Sum 8-15. Sum 16-23. Sum 24-31.
CARRY	KT021	8	Carry.
$\text { CNTRS }\left\{\begin{array}{l} \text { LBYTE } \\ \text { M BYTE } \\ \text { MD } \\ G 1 \\ G 2 \end{array}\right.$	$\begin{aligned} & \text { KTO21 } \\ & \text { KTO21 } \\ & \text { KTO21 } \\ & \text { KTO31 } \\ & \text { KTO31 } \end{aligned}$	$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \\ 13 \end{gathered}$	L byte counter . Mbyte counter. MD counter. G1 length counter. G2 length counter.
MVR INL MVR INR MVR OUT	$\begin{aligned} & \text { KTO21 } \\ & \text { KT021 } \\ & \text { KT021 } \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \\ & 16 \end{aligned}$	Mover left input. Mover right input. Mover output.
		17	Not used.
SAR $\quad\left\{\begin{array}{r}8-15 \\ 16-23 \\ 24-31\end{array}\right.$	$\begin{aligned} & \text { KT031 } \\ & \text { KT031 } \\ & \text { KT031 } \end{aligned}$	$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$	Storage address register 8-15. Storage address register 16-23. Storage address register 24-31.
ROS $\quad\left\{\begin{array}{r}1-30 \\ 32-55 \\ 57-89\end{array}\right.$	$\begin{aligned} & \text { KT031 } \\ & \text { KT031 } \\ & \text { KT031 } \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & \text { ROS 1-30. } \\ & \text { ROS } 32-55 . \\ & \text { ROS } 57-89 . \\ & \hline \end{aligned}$
PROT TAG	KT041	24	Storage protect.
LCS		25	LCS summary check.
LOG REQ	KT041	26	Log request (turned on by \log out switch or common chan \log out request).
		27-35	Not used.

FIGURE 166. CPU 2 ROLLER - POSITION 6

7						CURRENT ROS ADDRESS												
						EXT	0	1	2	3	4	5	6	7	8	9	10	11

Indicator		ALD	Bit Position	
		$0-4$	Noscription used.	
	EXT	KK302		
	0	KK312		
	1	KK312		
CURRENT	2	KK312		
ROS	3	KK312		
ADDRESS	4	KK312		
	5	KK312	$5-17$	Current ROS address.
	6	KK313		
7	KK313			
8	KK313			
9	KK313			
10	KK313			

FIGURE 167. CPU 2 ROLLER - POSITION 7

Indicator	ALD	Bit Position.		Description
		0-4	Not used.	
EXT	$\begin{aligned} & \text { KK302 } \\ & \text { KK312 } \end{aligned}$			
1	KK312			*
2	KK312			
3	KK312			
PREVIOUS 4	KK312			
ROS 5	KK312	5-17	Previous ROS address.	
ADDRESS 6	KK313			
7	KK313			
8	KK313			
9	KK313			
10	KK313			
11	KK313			
		18-35	Not used.	

FIGURE 168. CPU 2 ROLLER - POSITION 8

ALD	Bit Position	Title	Description
KH321	0	PASS	Turned on by a successful FLT test execution.
KH321	1	FAIL	Tumed on by a failing FLT.
KH211	2	BINARY TGR	Turned on or off for each good comparison. For a successful test, the light will return to its initial off state.
KH311	3	TEST CNTR $=0$	Indicates a test has been executed 16 times (normal operation).
KHIII	4-9	FLT OPREG	Six indicators display the FLT op register, which is used for decoding FLT operation routines.
KH341	10-12	SEQ CNTR	The three-position sequence counter is used for control during FLT load and for clock advance during FLT execution.
KH345	13-16	SEQ STAT	Indicates the four stats that are used in conjunction with the sequence counter during FLT load.
KH555	17	FLT LOAD CHK	Indicates a detected parity error in an unsuccessful FLT load.
KH321	18	SUPV STAT	Supervisory stat on allows the sequence counter to be decremented.
KH321	19	PROGSV SCAN STAT	Progressive scan stat on causes a return to main storage for control or scan information during execution of the diagnose instruction. (Normally off during FLT execution.)
KH321	20	SUPV ENABLE STOR	Supervisory enable store on disables the storage inhibit function of the supervisory stat during execution of the diagnose instruction. (Normally off during FLT execution.)
KT151	21	SEQ CNTR MODE	Indicates the CPU is under sequence counter control.
KT151	22	MAIN STOR MODE	Indicates the CPU is under main storage control.
KT151	23	ROS MODE	Indicates the CPU is under ROS control.
	24	ALT PREFIX	Indicates the state of the prefix trigger (this indicator is part of the multisystem feature).
KT161	25	HARD STOP	Indicates the four clocks are stopped due to an error.
KT151	26	LOG TGR	Indicates an error condition when a log out is to be initiated.
KH231	27	BLOCK INDIC	Block indicators is on when a bit in the FLT op register indicates that the information displayed in the status indicators is not being gnted hy the select switches. (At such times the force indicators keylever switch may be used.)
KT271	28	SINGLE CYCLE	Indicates when the CPU is in single cycle mode, or if the rate switch has been turned off single cycle but the start switch has not been pressed.
KT215	29	CPU CLOCK	On when the CPU clock is running.
KT211	30	CHAN CLOCK	On when the 1/O clock is running.
KT211	31	ROS CLOCK	On when the ROS clock is running.
KT211	32	MAIN STOR CLOCK	On when the main storage clock is running.
KT161	33	CHK IRPT ENABLED	Check interrupt enabled is on whenever an error interrupt is possible.
KT161	34	CHK REG GATED	Check register gated is on whenever the error register is gated.
KT081	35	CHK PEND	The check pending trigger is set at the time the error register is set if PSW 13 is masked off. Upon unmasking, this trigger causes a log out and machine-check interrupt.

FIGURE 169. MAINTENANCE CONTROL INDICATORS

FIGURE 17I. IAR INDICATORS

FIGURE 170. SDR INDICATORS

ROS Address		Function	Results Observed
202	$\begin{aligned} * A K & \rightarrow T \\ T & \rightarrow A \end{aligned}$	Address keys to latches (8-31). Latches (8-31) to SAR .	Display latches, change and observe address key settings. Display SAR, change and observe address key settings.
203	$\begin{aligned} * A K & \rightarrow T \\ T & \rightarrow I A \end{aligned}$	Address keys to latches (8-31). Latches (8-31) to IAR .	Display IAR, change and observe address key settings.
205	$\begin{aligned} \mathrm{DK} & \rightarrow \mathrm{~T} \\ \mathrm{~T} & \rightarrow \mathrm{~L} \end{aligned}$	Data keys to latches; bits 28-31 to F. Latches to L register.	Display latches, change and observe data key settings. Display L register, change and observe data koy settings.
$20 C$	$\begin{aligned} D K & \rightarrow T \\ T & \rightarrow R \end{aligned}$	Data keys to latches; bits 28-31 to F. Latches to R register	Display R register, change and observe data key settings.
$21 F$	$\begin{array}{r} \mathrm{DK} \rightarrow \mathrm{~T} \\ \mathrm{~T} \rightarrow \mathrm{H} \end{array}$	Data keys to latches; bits 28-31 to F. Latches to H register	Display H register, change and observe data key settings
283	$\begin{aligned} D K & \rightarrow T \\ T & \rightarrow M \end{aligned}$	Data keys to latches; bits 28-31 to F. Latches to M register	Display A register, change and observe data key settings .
2AA	$\begin{aligned} D K & \rightarrow T \\ T & \rightarrow D \end{aligned}$	Data keys to latches; bits 28-31 to F. Latches to MDR.	Display MDR, change and observe data key settings
2AB	$\begin{aligned} D K & \rightarrow T \\ T & \rightarrow J \end{aligned}$	Data keys to latches; bits 28-31 to F. Latches 12-15 to J register.	Display J register, change and observe data key settings.
2AE	$\begin{aligned} & D K \rightarrow T \\ & T \rightarrow M D \end{aligned}$	Data keys to latches. Latches 8-11 to MD.	Display MD, change and observe data key settings.
202	$A K \rightarrow T$	Back to first step in closed loop.	

* For $A K \rightarrow T$ machine check will come on when keys are changed; change keys and reset. Error should remain off

Channel Check Note: Display B and C registers for each channel. Set data keys to the fellowing combinations: zeros, all ones, and alremats
hex 5 's and A's and check for correct data transfer.

FIGURE 172. ROS FUNCTION CHECK
184 (3/71) Model 50 FEMM

FIGURE 173. SYSTEM RESET

FIGURE 174. INITIAL PROGRAM LOAD

FIGURE 175. START,STOP,EXCEPTION LOGIC

Operation	Stats Set				Hex Value (Use with CLF 122)	Notes
	4	5	6	7		
Halt Loop	0	0	0	0	0	Stay in Halt Loop
Instruction Step	0	0	0	1	1	Wait Bit (PSW 14) must be off
Set IC	0	0	1	0	2	Set IAR
Repeat Instruction (IAR)	0	0	1	1	3	Instruction set by Address Switches
Address Compare (IAR)	0	1	0	0	4	Stop or Sync Position and Not Manual and Not Wait Bit
Display Main Storage	1	0	0	0	8	SDR Indicators
Stare Main Storage	1	0	0	1	9	Data Switches to SDR
Display Storage Protect Key	1	0	1	0	A	F Register Indicators (CPU Roller "2, Position *4)
Store Storage Protect Key	1	0	1	1	B	Data Switches 28-31 to F Register
Display Local Storage	1	1	0	0	C	L Register Indicators (CPU Roller "1, Position "1)
Store Local Storage	1	1	0	1	D	Data Switches to L Register to Local Store
Display Bump Storage	1	1	1	0	E	SDR Indicators
Store Bump Storage	1	1	1	1	F	Data Switches to SDR

FIGURE 176. CONTROL PANEL SETTING
188 (3/71) Model 50 FEMM
Address compare (IAR) 152Adjustments, electrical -- see timings/test pointsALD page key 12Bump storage, display and store82
Bump storage diagnosticsCabling 139CAS logic diagram page key 14Channel -- see CPU and channelsaddress and data key assignment153
Circuit breakers 123, 12Clock advance counter -- see sequence counte22free running 39
39stop triggers 36Common channel -- see CPU and channelsContractors/relays 127address compare (IAR) 152address compare (SAR) 152channel maintenance 142check reset 151DC off 140display 151enter 143FIT mode 153halt loop operationsinterrupt 153load 154log out 151manul operation 14214power off 15

PSW restart 151
rate select 150
repeat instruction (IAR) 152
repeat instruction (ROS) 152
reset, system 151, 157
reverse data parity 150
roller select 140
selector channel display 143
set IC 151, 156
start 151, 158
stop 151, 158
stop on check 142
storage select 150,155
storage test select 142
store 151, 155
write 142
Converter-inverter -- see power system
Counters -- see functional units
CPU and channels
CPU parity checking 76
diagnostics 76
multiplexor channel parity checking 77
preventive maintenance schedule 79
selector channel analysis chart 104
selector channel parity checking 77
selector channel timings 103
service checks 80
singleshot timings 109
waveform measurements 80
2050 clock 80
CPU control modes 18
changing status (modes) 36
entries/objectives/controls 19
main store mode 20
ROS mode 20
sequence counter mode 18
Current requirements 139
Cycle tests -- see fault locating tests

Data flow 10
Dead entries -- see SCOPEX 61
Deferred maintenance 11
Diagnose addresses, 1410/7010 115
Diagnose control word -- see linkage control word 40
Diagnose instruction 40 start I/O 115
Diagnostic mode codes 13
Diagnostic programs 74
Diagnostic techniques 11
Dimensions 139
Disk conversion, 1410/7010 114
Disk storage maps, 2302/2314 114
Display 151
ECAD's 12
Emergency Off 142
Emulator diagnostics 76
Emulator service aids 114
Error check analysis diagrams 12
Error checking 76
Error register 77
Error reset 156
Error stops 12

Fail trigger 33

Failure detection 11

Fault locating tests (FLT's) 41
bad FLT records, how to skip 57
checkout after repair 61
clock advance 55
compare and branch, FLT 55
cycle tests 51
cycle tests, areas tested 41
cycle tests, documentation 61
cycle tests, flowchart 53
cycle tests, loading to 51
cycle tests, operating procedures 53
cycle tests, repair procedures 58
cycle tests, test methods 51
cycle tests, word format 48
disk packs, contents of FLT 41
documentation 61
expected response, mask and 46
fetch/execute LCW 52
hardcore tests, areas tested 41
hardcore tests, documentation 61
hardcore tests, main store mode 46
hardcore tests, operating procedures 53
hardcore tests, ROS mode 48
hardcore tests, test methods 46
indicators, scan-out logic and 28
load checking program 46
load controls (seq ctr and stats), FLT 22
load, FLT 42
load, from disk, FLT 45
load, from tape, FLT 42
load paths (via scan-out logic), 28
load, skipping bad records on FLT 57
load, successful FLT 45
load to cycle tests, FLT 51
load, unsuccessful 45
mask and expected response 46
one-cycle tests 51
operating/repair procedures 53
parity generation 60
ROS bit tests 47
ROS bit tests, documentation 61
ROS mode tests 48
run and repair procedure 55
scan-in 51, 60
scan-out 53, 60
scan-out controls (scan/log decoder) 22
scan-out (locations/data) 24
scan-out (logic/indicators) 28
scan-out (parity bit propagation/generation) 23
SCOPEX 61
sensitive net -- see SCOPEX 61
tapes, contents of FLT 41
test methods 46
tree -- see SCOPEX 61
zero-cycle tests 51
FLT op reg 22
Fold operation 33
Frame and gate locations 127
Functional diagnostics 11
Functional units 22
ALD locations 13
backspace trigger 43

binary trigger 33

command chain trigger 44
CCW1, CCW2, read store, or write fetch request trigger 43
CHAL 28
clock oscillator 39
clock stop triggers 37
CPU control mode triggers 34
cylinder counter 44
DTC trigger 43
error interrupt trigger 38
error pending trigger 38
error register 77
fail trigger 33
first/second word trigger 43
FLT compare and branch kernel 29
FLT load request trigger 37
FLT op reg 22
FLT program load trigger 37
FLT retry trigger 43
general purpose stats (0-3) 23
hardware address (HA 1, 2) triggers 32
indicators, control panel roller 28
inhibit IAR count trigger 43
interface register 64
load trigger 37
log request trigger 37
log trigger 33
main store mode request trigger 37
main store mode trigger 20,37
oscillator, clock 39
parity generator 28
pass trigger 33
progressive scan stat 33
PSW restart trigger 37
reset/restart controls 37
retry trigger, FLT 43
read store, CCW1, CCW2, or write fetch request trigger 43
ROS kernels 22
ROS mode request trigger 37
ROS mode trigger 20
scan bus 28
scan-in kernel 22
scan/log decoder 22
scan-out kemel 23
scan test counter 33
seek control trigger 44
seek trigger 44
sequence counter 22
sequence counter mode trigger 18
sequence stats 22
SILI trigger 44
single cycle mode trigger, timed 38
start I/O to I/O trigger 43
stop request trigger 37
storage holdoff clock stop trigger 38
supervisory enable storage stat 33
supervisory stat 33
suppress incorrect length indication trigger 44
system reset trigger 37
write fetch, CCW1, CCW2, or read store request trigger 43
Fuses 127
$\mathrm{HA} \rightarrow \mathrm{A}$ (microorder) 23
Halt loop operations 159
Hardcore tests -- see fault locating tests
Hardware address 23
Heat dissipation 139
Heater, local storage 95
Indicators
channel status 143
control panel roller 28
CPU statu 143
DC off 140
instruction address register 150
load 15
maintenance control 150
manual 154
marginal voltage 1 142
master check
open CB 140
power chec
status 143
storage data register 150
system 154
test 154
thermal 140
wait 154
Initial program load (IPL) 155
Instruction address stop 159
Instruction step 150
Interface control check 15
Interface register 64
Interrupts, supervisory 36
I/O address card plugging 127
I/O tailgate locations 127
K-39 dropout timing adjustment 124
Lamp test 79
Latches -- see functional units
Lights (see indicators)
Linkage control word 40
assembled by diagnose instruction 40
block mover latch pulse logic 64
diagnose usage 41
fetch and execute flowchart 30
FLT usage 51
Loading FLT's -- see fault locating tests
Loading faults 12
Local storage
address bit functions 92
array temperature 9
beat local store (ROS kemel) 29
diagnostics 74
display and store 151
drive currents optimization (shmoo) 93
drivers and terminating diodes 95
functional packaging 90
gate drivers 90
log local store (ROS kernel) 29
preventive maintenance schedule 79
read operation 90
read/write drivers 90
ripple local store (ROS kernel) 29
service checks 90
strobe drivers 95
temperature control unit 92
waveforms 94
Locations (physical and/or documentation)
ALD page key 13
CAS page key 14
circuit breakers 127
contacters
controls 18
converter-inverter 123
counters 18
decoders 18
FLT scan-out/logout 24
frames/gates 127
functional units 18
fuses 127
gates/frames 127
indicators, control panel roller 28
latches./stats/triggers 18
logout/FLT scan-out 22
microprograms, CAS pages for 14
overvoltage check jacks 127
power frame components 127
registers 18
relays29
scan bus 28scan-out 60
stats/triggers/latches 18
voltage divider 127
voltage divider components 127
voltage regulators 127
Log counter -- see sequence counter 22
Logout operation 33
controls (seq ctr and scan/log decoder) 22
fold operation 33
instructions, FLT op reg 23
locations and data 24
log trigger 33
logic and indicators 28
parity bit propagation/generation 23
scan-out kernel 23
Log/scan stat -- see log trigger
Log trigger 3
Main storage
addressing, main and bump 82
address one location continuously 82
bit arrangement of word 82
bump, fetch/alter (ROS kernel) 29
bump storage, exercis 82
clock stop trigger 38
delay line clock 83
delay line driver 8
diagnostics 67
display and store 151
drivers and terminating diodes 83
failures 85
layout of planes 84
M9A differences 89
M9A strobe 90
M9A waveforms 85
parity checking 7
power information 81

Main Storage (cont)		
ripple test procedure 56		
scan for bad parity (program) 82		
service checks 80		
strobe checking 82		
test points 80		
temperature and humiditywaveforms 88		
Main store mode 20		
data paths 20		
entries/objectives/controls 20		
FLT's 45		
instructions, FLT op reg 22		
logout, portion of 24		
operations 18		
ripple (test patterns) 20		
ripple (test procedure) 56		
timing 20		
trigger and request logic 37		
Maintenance operations 18		
Maintenance philosophy 11		
Marginal checking 75		
Meter, voltage 140		
Metering 154		
Mover latch pulse, block 64		
One-cycle tests -- see fault locating tests		
Operating instructions 155		
Operator control section 154		
Optional feature version codes 13		
Overcurrent -- see power system		
Overvoltage -- see power system		
Parity		
bit propagation/generation 23		
checking, channels 77		
checking, CPU 76		
checking, I/O errors 73		
checking, main storage 73		
generator 28		
Pass trigger 33		
Physical data 138		
Power		
and cooling failure detection 76		
display section 140		
distribution frames 127		
faults 12		
off 157		
on 154, 157		
requirements 139		
Power system		
AC supplies 125		
converter-inverter troubleshooting 120		
failure detection, power/cooling 76		
marginal checking 75		
overcurrent problems 125		
overvoltage unit adjustment 125		
+18. vdc sequence down 124		
preventive maintenance schedule 79		
SCR gate signals 121		
sequence problems 123		
sequencing relays 123		
voltage regulator problems 125		
voltage regulator test points	S 123	

preventive maintenance schedule79scan for bad parity (program)82
strobe checking 8test points 80waveforms 88data paths 20FLT's 45
ions, FLT op reg
20
pple (test patterns)
iming 20
Maintenance operations 18Marginal checking75Metering 154One-cycle tests -- see fault locating tests
Pperatig instructions154
n codes 13Overvoltage -- see power system
Paritybit propagation/generation 23checking, channels 77checking, CPU 76checking, I/O errors 73generator 28
33Powerdisplay sectio0faults 1on 154,15Power system
AC suppliestroubleshooting120vercurrent125overvoltage unit adjutment79
SCR gate signal 121sequencing relays123
voltage regulator test points 123
voltage regulators, changing 123
waveforms (SCR gate signals) 121
Preventive maintenance 79
Programming faults 12
Progressive scan 6
documentation, multiplexor channel 74
documentation, selector channel 72
interface register 64
monitor, selector scan 74
operating procedure, multiplexor channel 74
operating procedure, selector channel 72
selector channel clock control 71
selector scan monitor 7
tape/disk, multiplexor channel 74
tape/disk, selector channel 71
test descriptions 63
test patterns 71
Progressive scan stat 33
Protect key, display and store 160
PSW, display and store 156
Read-only storage (ROS)
bit plane adjustments 100
bit plane cleaning 100
bit plane connectors 102
bit plane installation 101
bit plane removal 100
bits, missing or extra 97
clock stop trigger
drive line tests 98
function check 156
preventive maintenance schedule 79
retry timing 95
ripple test 98
waveforms 96Registers -- see functional units
Relays/contactors 127
Repeat instruction (IAR) 152
Reset, system 15
Ring counter -- see sequence counter 22
ROS -- see read-only storage
ROS kernels 22
ROS mode 18
entries/objectives/controls 19
FLT's 48
instructions, FLT op reg 23
logout, portion o 24
operations 19
triggers and request logic 37
ROS retry timing 95
ROS testing 97
ROS 201 -- cycle one section of local storage 95
Safety procedures 5
Scan bus, inputs to 28
Scan control triggers -- see FLT op reg 22
Scan counter -- see sequence counter 22
Scan fail stat -- see fail trigger 33
Scan groups 28
Scan-in (ROS kernel) 22
Scan/log decoder 22
Scan op reg -- see FLT op reg 22
Scan-out, FLT -- see fault locating tests
Scan-out (ROS kernel) 23
Scan test counter 33Scheduled maintenance 79B, CG 143K 143M 150Segment, referred to by SCOPEX61
Segments (one-cycle test groups)annels107charrce
TC hold check15
F service out delay107
operation control check
tag generatorer Analysis
A148byte counterchanne
clock AO, A1, clock stop 146
compare equal, unequal 147enable stat 149
end of record 144finish latch 149
rst byte 149flag registerIF CDA first byte 148IF out tags 148
inibitread itore147lan 144LS request 146Op in 148
Op In test 148
PCI request 146
poll 14
poll interrupt end 147
position register 145
position register transfer 146
read latche 145
record end 148
register full 145
request in 146
request registe 146
select in 148
select out 148
service out hold 149
special purpose latches 147
tat next 149
stop 148
stop release 149
stop routine 148
suppress out 149
total record fetch 149
unit address to bus out 147
unit select address out 147
write chain proceed 149
write chain ready 148
write latches 145
Sensitive net--see SCOPEX 61
Sequence counter 22
Sequence counter mode 20
entries/objectives/controis19
FLT load 42
logout, portion of 24
operations 20
trigger and request logic 37
Sequence stats 22
Service checks
see CPU and channels
see local storage
see main storagesee power system
see read-only storage
see selector channel
see storage protect
see 1052 Adapter
Set IC
Shmoo
local storage 93
Singleshots 109
Specifications, frame 139
Start switch 142
Start I/O diagnose instruction 115
Stat setting 150
Status indicators 134
Stop switch 151
Stopped state 151
Storage
see bump storage
see local storage
see main storage
see read-only storage
Storage holdoff 36
Storage protect
diagnostics 76
drivers and terminating. diodes 102
Storage protect (cont)
inhibit drivers 102
preventive maintenance 79
reference voltage 102
sense amplifiers 102
sense level voltage 102
sense windings 102
service checks 102
termination diodes 102
test points 103
X and Y drivers 103
Storage test section 142
Store 15
Supervisory controls 36
changing CPU control status (modes) 36
clock distribution/gating 39
clock gating control circuits 36
control request/status logic 37
CPU control status circuits 36
force ROAR, pushbuttons that 40
interrupts, supervisory 36
Supervisory enable storage stat 33
Supervisory ring counter--see sequence counter 22
Supervisory sta 33
Switch types 140
Switchable indicators 143
Switches (see controls)
System reset 151
Test points-asee timings/test points
Thermal indicators--see power and cooling failure detection 76
Timings/test points
channel 103
converter-inverter 120
CPU (see AA000)
singleshots, channel 109
voltage regulators 123
waveform measurements 80
Triggers -- see functional unit
Version codes, optional features 13
Voltage limits, marginal 76
Voltage options 139
Voltage regulators 109
Weights 139
Zero-cycle tests--see fault locating tests
1052 Adapter - printer/keyboard
indicator check 112
singleshots 112
switch check 112

- How did you use this publication?

```
As a reference source
As a classroom text
As
```

- Based on your own experience, rate this publication...

What is your occupation?

- We would appreciate your other comments; please give specific page and line references where appropriate. If you wish a reply, be sure to include your name and address.

ATTENTION: MAINTENANCE LIBRARY MANUALS, DEPT. B96
\square

TBM

[^8]IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

[^0]: * Depends on storage size; 15 equals 128 K .

[^1]: *Denotes frequency during first six months of operation.
 (A diagnostic listing is shown on Figure 50.)
 **Biasing in these cases means checking operation at the four corners of the shmoo plot limits; that is, the corners of the rectangle in local storage and the corners of the rectangle in main storage whose sides are at least 4.5% (of the operating point voltages) away from the operating
 point.

[^2]: FIGURE 78. STROBE FOR EACH SEGMENT AND BIT

[^3]: * Trademark of E. I. duPont deNemours \& Co. (Inc.)

[^4]: FIGURE 101. RESET PULSES (CLOCK RUNNING)

[^5]: FIGURE 106. SINGLESHOT TIMING PROCEDURE

[^6]: +6 TC (Temperature Compensated - Local Storage)
 +6 VAR (Variable - Local Storage)
 +6 M1 (Variable - Channel)
 +6 M2 (Variable - CPU)
 -12 ROS \#1
 -12 ROS \#2
 +56 XY 1 (Main Storage XY Drivers)
 +60 Z 1 (Main Storage Z Drivers)
 +56 XY 2 (Main Storage XY Drivers)
 +60 22 (Main Storage 2 Drivers)

[^7]: * Located at end of this Appendix

[^8]: International Business Machines Corporation
 Dala Processing Division
 1133 Westchester Avenue, White Plains, New York 10604
 (U.S.A. only)

