
Field Engineering

Manual of Instruction

Processing Unit

System/36D Model 3D

PREFACE

This manual contains information
about the IBM 2030 Processing unit.
A companion manual on input/output
control should be obtained for
information pertaining to the
attachment of I/O devices to the
IBM System/360 Model 30. The
companion manual is the IBM 2030
I/O Control Field Engineering
Manual of Instruction, Form
225-3362.

Minor Revision, August 1965

This edition, 225-3360, is identical in
content to the previous edition, Z25-336Q.
The IBM Confidential classification has
been removed and the form number has been
changed to allow free access to the manual.

Address comments concerning the content of this publication to mM Product Publications, Endicott, New York 13764.

© 1965 by International Business Machines Corporation

CONTENTS

SECTION 1. COMPREHENSIVE INTRODUCTION
System Configurations ...••.••.......
System Concepts•......••
Numbering Systems•.•.....•••••..
Ari thmetic Principles•..•...
Data Flow ..•...•••....•....•..•.•.•.
Basic Programming•.••..•.•.•.
Instruction Sequencing and Branching
The System/360 and Interrupts .••.••.
Storage Protection •••.•.•...•...•.•.

SECTION 2. FUNCTIONAL UNITS ...•.•...
SLT Circuitry .•....••....•••....•...
Remembering Devices .••.••.•..••.••..
Combined Components ..•••...••...•••.
Central Processing Unit (CPU) Clock •.
Arithmetic Logical Unit (ALU)•.
Registers••..•.••....••......•
Core Storage ..••...•..•...•••.......
Memory Control

SECTION 3. THEORY OF OPERATION •...•.
Concepts of Capacitor

Read Only Storage ..•••.....•..•..•
Micro Programming Introduction••
Micro Program Examples •..........•••
Control Field Mnemonics ...•...••..•.
Parity Bits •..•....•....•••...•..••.
ROS Addressing••...•.
ROAR Con tro 1 s•...........•..••
ROS ·T imings •.....•.••..••.•.•...•...
Physical Description•.•...•...•.
Machine Check Handling•.•.•.....
Forced Micro Program Entries ..•.....
Overall Timing Relationships•..

SECTION 4. POWER SUPPLy

SECTION 5. SPECIAL FEATURES ..•.•..•.
1401, 1440, and 1460

Compatibility Features ...•......•.
Interval Timer•....•....•.

APPENDIX 1

APPENDIX 2 ••••••••••••••••••••••••••
Upper Indicator Panel
Lower Indicator Panel••...
Operator Panel•
Control Keys •......•••......••...•..
Mode Control Panel
Meter Panel .••..•.•...••••..........

1-1
1-1
1-5

1-21
1-25
1-31
1-35
1-43
1-49
1-69

2-1
2-1
2-3
2-4
2-5

2-10
2-22
2-23
2-62

3-1

3-1
3-15
3-23
3-44
3-51
3-53
3-60
3-63
3-66
3-7l
3-76
3-80

4-1

5-1

5-1
5-48

6-2

6-5
6-5
6-7
6-9

6-11
6-15
6-17

ANSWERS TO REVIEW QUESTIONS ••......• 6-19

INDEX •...•.....•...•...•.......••.•• 7-1

SYSTEM CONFIGURATIONS

• Single system concept.

• Different models provide a variety
of processing speeds and storage
sizes.

• Broad range of input/output devices.

• Uses an 8-bit coding structure to
represent data.

• program compatibility throughout
system models.

Behind the decision to design the IBM
System/360 - a single system which
encompasses all areas of data processing
lies the awareness that apparently unre-

Figure 1-1. IBM System/360, Model 30

SECTION 1. COMPREHENSIVE INTRODUCTION

lated applications have more similari
ties than differences. For example,
because of teleprocessing and other
factors, scientific applications require
high-speed input/output similar to that
required by commercial applications. In
addition to this versatility, the
System/360, because of its modularity,
adaptability and compatibility, can
handle the many kinds of growth that
normally occur in computer
installations.

Modularity in the System/360 is
achieved through the availability of
seven models. A typical Model 30 system
is shown in Figure 1-1. In addition to
a choice of processing speed through'
model selection, each model offers a
choice of storage capacities.

1-1

AS problems and workloads grow or
change, the System/360 can easily be
expanded o.r changed to handle additional
or different operations. Storage can be
added and input/output and processing
speeds increased -- in small increments,
as needed. This adaptability makes
provision for the inclusion, either
initially or subsequently, of a broad
range of input/output devices.

Versatile performance characteristics
permit handling of data in virtually any
desired character representation.
Instead of the usual six-bit character,
the System/360 employs a new eight-bit
coding structure to represent data. An
8-bit unit of data is called a byte.
This 8-bit coding structure allows 256
possible combinations for letters,
digits and symbols, providing greate.r
versatility in both binary and decimal
operations. It also means that
System/360 can accept a character code
of fewer bits, such as a telegraph code.

More important than the modularity
and adaptability of the System/360 is
its compatibility. A program written
for one configuration will run on any
other, if there is enough memory capaci
ty and input/output equipment, and if
the program is not geared to the operat
ing speed of any particular unit. Sub
ject to these constraints, a program
written for a smaller System/360 will
run without modification on a larger
one. While this -upward- compatibility
is certainly an advantage, -downward
compatibility can be even more valuable;
for example, a small user can utilize

1-2

programs written for larger systems.
This places a total library of programs
at all users' disposal.

Compatibility further allows a
System/360to be tailored to fit either
centralization or decentralization.
That is, a company'sinstallation can be
either a large central processor or a
number of smaller processors. Shifts
between the extremes are possible within
the same system.

Traditionally there have been
constraints on computer versatility, so
that one processor has lent itself to
scientific and engineering application,
another to commercial data processing
applications, another to process
control, and still another to communi
cations.

The System/360 provides a versatile
set of instructions that permit operat
ing quickly and efficiently regardless
of the system application.

MODELS AND SPEEDS

- Different processor models provide a
variety of processing speeds and
core storage siz.es.

-The 2030 is the processor for the
System/360, Model 30 (Figure 1-2).

- The 2030 is available in four core
storage sizes, represented as
System/360, Models C30, D30, E30,
and F30.

Figure 1-2. IBM 2030 Processing Unit

To fit the widely varied cost and volume
needs of all computer users, the IBM
System/360 is available in many differ
ent models. For instance, to fit the
needs of the user who needs a minimal
number of answers per month, a Model 30
is available at a minimal cost. For the
user who needs a greater number of
answers per month, a Model 70 is availa
ble that will give approximately 50
times as many answers per month as a
Model 30. The answers will be the sallie;
only the number of answers in a given
period of time will be different. There
are two basic differences between
models: core storage capacity and inter~
nal processing speeds. Figure 1-3 shows
the core storage capacities for the
different System/360 models. Internal
processing speed is largely dependent on
the speed of the core storage unit and
the amount of data involved on each core

storage access. Core storage speed in
the System/360 varies from 2 micro
seconds per single byte access on the
Model 30's to 1 microsecond per eight
byte access on tpe Model 70's (Figure
1-4) •

1-3

Storage Capaci ty
in Bytes

524,288

262,144

131,072

65,536

32,768

16,384

8,192

System/360 Models

Figure 1-3. System/360 Storage
Sizes

Processor System/360 Models
Bytes/

Memory Speed Access

2030 C30, D30, E30, F30 1 2.0 microseconds

2040 D4O, E40, F40, G40, H40 2 2.5 microseconds

2050 F50, G50, H50 4 2.0 microseconds

2060 G60, H60, 160 8 . 2.0 microseconds

2062 H62, 162 8 1 .0 microseconds

2070 H70, 170 8 1 .0 mi croseconds

Figure 1-4. System/360 Storage
Access and Speed

1-4

GENERAL DATA FLOW

• The processing unit controls the
system.

•

•

•

Information enters the system from
an input device.

The information is manipulated by
the processing unit to develop the
required answers.

The a,nswers are sent to an output
device to be stored.

In the System/360, Model 30, the 2030
processing unit provides all system
control. The processing unit is given
instructions by a programmer. These
instructions are interpreted and
executed by the processing unit. Execu
tion of an instruction might involve
adding two numbers together, or it might
involve causing a printer to print a
check. Regardless of the instruction,
the interpretation and control lies in
the 2030 processing unit.

General data flow is divided into
three operations (Figure 1-5). First,
information comes into the processing
unit via some input device. This infor
mation is then used along with input
information from other devices and con
stant information contained in main
storage to develop the required result
or output. This output is then sent to
an output device where the resultant
information is stored. The information
storage may be a printed report, punched
cards, or magnetized spots on a .reel of
magnetic tape.

2030 Processing Unit

Main
Storage

Input/
r--..-(Output

Channel

Control
Unit

Random
Access
Device

Control
Unit

Random
Access
Device

Data and Control Information -4.----~

Ari thmeti c,
Control, and
Register
Systems

Figure 1-5. General Data Flow

SYSTEM CONCEPTS

• Programming Systems support of the
IBM System/360 is called Operating
System/360.

Control
Unit

• The Operating System/360 supports
the Computing System/360. Together
they make up the IBM System/360.

The introduction of the IBM Systeml360
marks the achievement of a truly all
purpose computer that can solve any type
of data-handling problem with greater
speed and efficiency than ever before.
This opens up greatly increased computer
potential in every area.

In order to realize this potential,
it was apparent to the designers that
the programming support needed to be as
powerful and as extensive as the

Control Unit

Printer

computer. In fact, programming support
should make the IBM System/360 an even
mO.re powerful system.

This lead to the concept of the Com
puting System/360 (hardware) being sup
ported by the Operating System/360
(programming), together making up the

System/360.

r--------------------------,
I I
, I
'r------------------, ,
I IComputing System/3601 I I l ____________________ J I

I I
, Operating System/360 I L __________________________ J

IBM System/360

This means that a customer is getting
a system that is powerful and flexible,

1-5

yet, due to extensive programming sup
port, he can easily apply his problem to
the System. For one thing, he can write
problem solving programs without the
necessity of translating them into a
language understandable by the machine.
Once written, the operation of his pro
gram is controlled or supervised by
Cperating System/360, relieving the
operator of many tasks and increasing
the utilization of the Computing
System/360.

OPERATING SYSTEM/360 CONCEPTS

• Control programs allowing monitored
operation of a system have been
proven by experience to produce
optimum computer utilization.

• Operating System/360 includes both
control programs, and IBM and user
written processing programs.

• Basic programming Support programs
will be provided for System/360
systems with 8R bytes of storage.

As stated previously, IBM's single
system approach with the System/360
recognizes that computing systems and
programming systems should be integrated
and not developed independently.
Experience in the past decade has proved
that the optimum method of producing
this result is with monitored operation.

Early monitors were designed to mini
mize human intervention. The new and
sophisticated control techniques includ
ed in programming systems with the
System/36 0 extend its capabilities so
that the monitor and control functions
make up what is called an operating
system.

The basic purpose of Operating
System/360 is to permit the user to
solve problems and process information
effectively. Included in Operating
System/360 are both processing and con
trol programs. Processing programs
include all application-oriented pro
grams, including both IBM and user
written.

For systems having 16K bytes of main
storage, basic control program functions
will be supplied with magnetic tapes or
direct access devices. Additional

1-6

capability can be utilized as more main
storage is added.

For systems having 8K bytes of main
storage, programming systems is supply
ing basic programming support programs,
which perform many of the functions of
operating systems, including control
functions.

Control Programs

• Control programs perform functions
such as control of administrative
operations, job flow control,
Input/Output control, and program
execution control.

A basic key to achievement of high oper
ating efficiency in a computing or data
processing installation is a good con
trol procedure. This procedure must
include many functions: administrative
control of job schedules, workflow, and
computer usage records; cqntrol over
data and program libraries; control over
computer operations; and control over
the flow of programs and data within the
computing system during Job rUns.

The control programs for the IBM
System/360 set up a comprehensive con
trol framework to assist the user in
satisfying the above objectives. The
control programs operate at various
levels of concept. For example:

1. Operations control of installation
and administration and workflOW,
including instructions from and to
the computer operator, administra
tive records, logs of system opera
tion, and control over library pro
grams.

2. Job flow control, including I/O
transition between jobs and job
segments, unit assignments, initial
loading and initialization when the
computer is first turned on, control
between jobs, and control over the
type of operation mode, ranging from
simple stacked jobs through telepro
cessing systems performing concur
rent ope.rations.

3. Input/Output control, including
physical and logical control over
I/O records, files and units: buffer
control; teleprocessing terminal and
message handling; random access I/O

control, labeling of files, and
error recovery procedures.

q. Program execution control that mana
ges the flow of program instructions
from one routine to another, includ
ing the instantaneous transitions
that take place when any interrupt
occurs, the decisions that control
the next program series to be exe
cuted, the return of control to an
interrupted program, storage alloca
tion and protection, diagnostic
programs. program loading. and man
agement of the interval timer.

Processing Programs

• Processing programs function under
control of operating system control
programs.

• Some IBM supplied processing pro
grams are; the System/360 Assembler,
FORTRAN, new programming language,
COBOL, report program generator,
utility programs, and sort/merge
programs.

Complementing the control programs and
functioning under them are those pro
grams necessary to handle users· speci
fic data processing needs. These pro
grams, known collectively as processing
programs, include application programs
both IBM and user written, compilers,
Report Program Generators, sort/merge,
and utility programs.

Symbolic programming languages and
the programs that translate them
(assemblers and compilers) offer valua
ble aids to the program~er in solving
data processing problems.

The System/360 Assembler language is
a symbolic language that permits the
coding of source programs in convenient,
report program generators, sort/merge,

specialized language. it can be used in
all kinds of applications, including
both commercial and scientific.

The FORTRAN language allows the pro
grammer to code a mathematical or scien
tific problem in te.rms closely resem
bling those he uses in stating the prob
lem mathematically.

The new programming language has some
features that are characteristic of
FORTRAN and incorporates some of the
best features of other languages, such
as extensive editing capabilities, to
take advantage of recent developments in
computer technology.

The COBOL language provides a conven
ient method of coding programs in a form
closely resembling the English language,
using the method sponsored by th~ Con
ference on Data Systems .Languages
(CODASYL), a cooperative effort by a

number of computer manu.facturers and
users.

The report program generato.r (RPG)
provides a convenient method for produc
ing a wide variety of reports, using
IBM-provided coding forms.

Utility programs provide the user
with standard, efficient handling of
routine operations involving data trans
fer between I/O devices. These include
such operations such as card to printer,
card to punch, card to tape, tape to
tape, tape to punch, tape to disk, and
many others.

The sort/merge program is designed to
satisfy the sorting and merging require
ments of all tape-oriented or random
storage-oriented IBM System/360 instal
lations. It is a generalized program
that can produce many different
sorting/merging programs in accordance
with control information specified by
the user.

1-7

COMPUTING SYSTEM/360 CONCEPTS

• System/360 uses binary and BCD.

• Systeml360 uses variable and fixed
length fields.

• System/360 uses a new technology
called solid logic technology.

The Systeml360 is a general purpose
computer system. By this we mean it is
designated to be used for commercial,
scientific, and communications applica
tions. In the past, these applications
were handled by separate computer fami
lies (Figure 1-6).

t
Growth

7090
709
704
701

SCIENTIFIC

7080
705 III
705 II
702

COMMERCIAL

One scientific computer fami Iy and its comparable commercial

equivalent.

Figure 1-6. Commercial vs.
Scientific Computers

1-8

The scientific computers were usually
fixed word length machines and used a
pure binary form of coding. On the
other hand, the commercial computers
were usually variable word length
(character oriented) machines and used a
binary coded representat.ion of decimal
information. The System/360 uses binary
as well as BCD and has both fixed and
variable length fields.

The System/360 also uses a new tech-
nology known as solid logic technology
(SLT). It consists of printed circuitry
instead of physical wiring on the back
panel. It also uses packaged logic
circuits. This new technology reduces
manufacturing costs, increases reliabil
ity and reduces maintenance time.

In Figure 1-1, you can see the compo
nents that make up a data processing
system.

2030 Processing Unit

Main
Storage

Input/
r--~ Output

Channel

Control
Unit

Random
Access
Device

Control
Unit

Random
Access
Device

Data and Control Information i-----..

Arithmetic,
Control, and
Register
Systems

Control
Unit

Figure 1-7. Typical Data Processing System

Primary Storage

• The smallest main storage addressa
ble unit is called the byte.

•

•

•

•
•
•

A byte consists of 8 data bits and 1
parity bit. Cdd parity is main
tained.

The System/360 uses a 24 bit binary
address.

A byte can represent characters,
binary numbers, or many different
codes.

A half word is 2 bytes.

A word is 4 bytes.

A double word is 8 bytes.

•

•

•

Control Unit

Printer

Data can be fixed length (2, 4, or 8
bytes) or variable length (up to 256
bytes) •

Fixed length data must reside on the
correct boundaries in main storage.

A program check occurs if the bound
ary restriction is violated.

The primary storage is that section of a
computing system that contains the pro
gram to be executed as well as the data
to be processed. All data entering the
system goes into the primary storage
before it can be processed. After proc
essing, the data must be placed back
into primary storage before it can be
sent to an output device.

1-9

primary storage is sometimes referred
to as main storage. The System/360 also
uses ferrite cores for its main storage.

The smallest addreSsable unit of main
storage in the System/360 is called the
byte. The byte consists of eight data
bits and one parity bit.

r~-T-T-T-T-T~-~'

I I I I I I I I I 1
IP 0 1 2 3 4 5 6 71
L~_~_~~~_~~_J

The Byte

As can be seen in the preceding exam
ple, the left-most bit of a byte is the
parity bit. The IBM System/360 main
tains odd parity for all bytes in main
storage. The pa.rity bit is added or
removed to make the total bit-count odd
for any byte. This method of coding
provides convenient error checking: an
even number of bits indicates an error
condition.

One thing you should get clear is
that the byte is the smallest addressa
bleunit of main storage. This means
that each and every byte of main storage
is individually addressable. To read
out the first eight bytes of main stor
age, the Model 30 takes eight storage
cycles. For each cycle, the Model 30
changes its storage address by one,
using addresses 0-7.

Main storage addresses start with
00000 for the first byte and increase by
one for each byte in the particular main
storage unit. Valid storage addresses
for a Model 30 would start with 00000
and continue up to 65535. To allow for
program compatibility as well as for
future growth, the System/360 uses a 24
bit binary address to address main stor
age. age. A 24-bit binary number
allows us to go as high as 16777215 for
an address. You can see the future
growth that is possible here! A binary
rather than a binary coded decimal
address is used because it is more effi
cient with large addresses.

The 24-bit binary address that would
be used to address byte location 0007 is
written 000000000000000000000111.

You are probably a little perplexed
about this byte by now. You know that a
byte consists of eight data bits and a
parity bit. You know that each byte is
individually addressable by a 24 bit

1-10

binary address! You know that main
storage size can vary from approximately
8K bytes on a Model 30 to over 500K
bytes on a Model 70. You know that the
Model 30 has access to one byte per
storage cycle.

However, you are probably asking
yourself:

Is the byte a character?

Is it a binary number?

Just what is it?

The answer to these questions is
simple. The eight data bits of a byte
can be coded to represent characters,
binary numbers, or anything you want it
to be. The instructions of the
System/360 are many and varied. Some of
the instructions treat bytes as charac
ters. Some instructions treat bytes as
part of a binary number. So the answer
to the question, ·What does a byte
represent?- is: It depends on the par
ticular instruction being executed at
the time. This question will be
answered more to your satisfaction after
you study the data formats and some of
the instructions.

As was previously stated, the
System/360 is a general purpose data
processing system. As such it is
designed to operate with fixed length as
well as variable length data. The byte
as you have already learned is a very
versatile unit. It is individually
addressable. By further specifying the
number of desired bytes, we can have a
variable length field in main storage
starting and ending at any byte address.

To be truly general purpose, the
System/360 must also be capable of oper
ating with fixed length data. Whereas
variable length data has.a variable
number of bytes, fixed length data
always has a fixed number of bytes.
Letts go on and define these fixed
length fields.

A half word is two bytes in length
(Figure 1-8a).

The data bit positions of a half word
are numbered 0-15 from left to right
(Figure 1-8b).

Notice that the parity bits are not
shown. They will not be shown form here

on, since they do not represent data.
Remember, however, that every byte does
contain a parity bit for checking pur
poses.

A word is 4 bytes long (Figure 1-8c).

The data bit positions o.f a word are
numbered 0-31 from left to right (Figure
1-Sd) •

A double word is 8 bytes long (Figure
1-Se) •

The data bit positions of a double
word are numbered 0-63 from left to
right (Figure 1-8f).

a. Byte Byte

Half Word

b. I 0: > > > > > > > > : 1< 11 >< 13>4>51

c.

d.

e.

Byte : Byte : Byte :

Half Word

Byte 1

Word

I 0 • • 31 I
Word

Byte Byte Byt~ Byte Byte

Double Word

Byte Byte Byte

f. 0 """'.~----------------. 631

Double Word

Figure 1-8. Word Formats

Remember that each byte of a half
word, word, or double word carries its
own parity bit.

Remember also that it is the instruc
tion being executed that determines
whether to consider data as variable or
fixed. The instruction also determines
in the case of fixed length data whether
it is a half word, word, or double word.

Before leaving the definitions of
fixed length data, you must learn the
restrictions placed on the use of fixed
length data.

Byte I Byte Byte I Byte Byte I Byte Byte I Byte Byte
0000 0001 0002 0003 0004 0005 0006 0007 0008

Half Word Half Word Half Word Half Word

Word Word

Double Word

Figure 1-9. Boundary Restrictions

The rule is that fixed length data
must reside on the correct boundaries in
main storage (Figure 1-9).

Fixed length data is addressed by the
high order (left-most byte) of the
field.

For half words this address must
be divisible by two.

For words this address must be
divisible by four •

For double words this address must
be divisible by eight.

Another way of stating this rule is
to say the 24 bit binary address:

1. Of a half word must have one low
order zero bit.

2. Of a word must have two low-order
zero bits.

3. Of a double word must have three
low- order zero bits.

The boundary restriction placed on
the use of fixed length fields is a
restriction placed on the user. Viola
tion of these rules does not produce a
machine check. Instead, violation of
these rules is considered a program
check.

Because there are other restrictions
placed on the programmer, you should be
able to identify program checks by type.
The type of program check caused by a
violation of fixed length boundaries is
known as a specification exception.

1-11

Another exception to valid program
ming is addressing a byte location that
is not available on your particular
model of System/360. The largest size
main storage that is available on the
Model 30 is 65,536 bytes. Any address
other than 00000-65535 results in a
program check. This type of check is
known as an addressing exception.

Central Processing Unit (CPU)

•

•

•

•

•

•

•

The two main sections of the CPU are
(1) the control section and (2) the
arithmetic and logical unit (ALU).

The CPU uses variable field length
instructions for storage to storage
operations.

Variable fields can be up to 256
bytes long.

The CPU uses fixed length instruc
tors for storage to register or
register to register operations.

Fixed length fields can be
half-word, word, or double-word
fields.

Register-to-register or storage to
register operations use any of 16
general purpose registers.

Floating point operations use any of
4 double-word floating-point reg
isters

In Figure 1-10, you can see the logical

1-12

structure of the CPU for the System/360
and its relationship to the main
storage.

There are two main sections in CPU.
They are (1) the control section and (2)
the arithmetic and logical unit (ALU).

From Figure 1-10, you should be able
to see some of the functions of the
control section. They are:

1. All references to main storage,
whether for instructions or for
data, are made by the control sec
tion.

2. During the first part of any
instruction, the control section
addresses main storage and causes
the instruction to be fetched and
sent to the control section. The
instruction is then decoded by the
control section and executed during
the latter part.

The ALU contains the circuits neces
sary for adding and comparing data
fields as well as the other circuits
necessary for operating on data fields.

As can be seen from Figure 1-10, the
ALU can do:

1. Variable field length operations.

2. Fixed-point operations involving
fixed-length fields.

3. Floating point operations.

Storage Address

Instructi ons

Computer
System
Control Indexed Fixed

Address
Point
Operations

16

General
Registers

Figure 1-10. ProceSSing Unit Logic Flow

Variable Field Length Operations: In
looking at the ALU, let us first consid
er variable length fields as used in
many commercial computers of the past.
Two main concepts were used. The
storage-to-storage concept was used by
computers of the IBM 1401 family. In it
the data fields were b~ought out of main
storage, operated upon~ and the results
went back into main storage (Figure
1-11) •

Other computers such as those of the
IB~ 702-705 family used a
storage-to-accumulator concept. The
accumulator was a small storage device.
The storage medium could be core

Main Storage

Data

Variable Floating Ari thmetic and
gic Unit Field length Point lo

Operations Operations

4

Floating Point
Registers

Primary
Storage

1 1
AlU

Storage to Storage Concept

Figure 1-11. Storage to Storage
Concept

1-13

storage. vacuum tubes or transistorized
registers. In the storage to
accumulator concept one of the data
fields would be in main storage and the
other would be in an accumulator. Both
fields would be brought out to the ALU,
operated upon, and the result would go
back into the accumulator (Figure 1-12).

Main
Storoge

1
ALU

J 1
Accumulator

Storage to Accumulator Concept

Figure 1-12. Storage to Accumulator
Concept

Fo.r its variable length operations
the System/360 uses the storage-to
storage storage concept (Figure 1-13).

Main
Storage

1 f
Variable
Field
Length ALU
Operations

Figure 1-13. System/360 Storage to
Storage Operations

As you have previously learned.
variable length fields can start at any
byte location in main storage. They are
not restricted by storage boundaries as
are fixed length operands. However.

1-14

there fixed length operands. (Data
fields are sometimes referred to as
operands.) However. there must be some
way of indicating to the system the
length of the fields. In computers of
the past, this was done several ways.
The 1401 used a special word mark bit
over the high-order position of the
data. The IBM 70S-II used zone bits.
In the System/360 variable length opera
tions use binary and decimal operands.
In order to be code independent,
System/360 specifies the length of these
fields by a length code in the instruc
tion.

The length code can be either 4 or 8
bits long, depending on the instruction.
The length code is in binary. As a
result the maximum length can be either
16 or 256 bytes. The values of the code
is one less than the total number of
bytes.

Length code of 0000 = 1 Byte

Length code of 1111 = 16 Bytes

Length code of 11111111 = 256
Bytes

Fixed-Length Operations: When operat
ing on fixed-length fields (such as half
words. words, or double words). the
System/360 uses the
storage-to-accumulator concept. These
fixed-length operations use binary
operands. For use as accumulators, the
system/360 has 16 registers available to
the programmer. As these registers can
be used for purposes other than accumu
lating. they are called general reg
iste.rs (Figure 1-14).

Control
Section

Fixed
Point
Operatior

Sixteen
General
Registers

Main
Storage

Figure 1-14. 16 General Registers

ALU

These registers are numbered 0-15 and
are addressed in an instruction by a
4-bit binary address field.

Being a word in length, a general
register can easily contain a half word
data field.

As can be seen in Figure 1-15, the
bits of a general register are numbered
left to right starting with the number
O. Also we can see that a half word
operand is placed in the low-order half
(bits 16-31) of a General Register.

BitO ---15 16- -31

I Half Word I
. Operand .

GENERAL REGISTER

Figure 1-15. General Register

None of the General Registers 0-15
can contain a double word. For those
operations that use a double word oper
and, such as fixed length divide, a pair
of adjacent registers are used. In
these cases, an even-odd pair of reg
isters (such as 0-1 or 6-7) are used,
and the even register is addressed.

In this case bits 0-63 of the double
word would be in the registers as shown
in Figure 1-16.

0 31 0 31

1
0 DOUbl~ Word

63
1

Reg 12 Reg 13

Figure 1-16. Using Two General
Registers

Fixed-length operands in main storage
must be on integral boundaries or a
program check will occur indicating a
specification exception.

The general registers are also used
for purposes other than accumulating.
For example, a general purpose register
can be used as an index register.
Indexing is a form of indirect address
ing. An increment contained in an index
register is added to the data address in
the instruction to form an effective
main storage address. Neither the index
register nor the instruction in storage
is changed by indexing_

1-15

Register-to-Register: With sixteen
general registers, sometimes both fixed
length binary operands will be in gener
al registers. In these cases, another
data flow concept is used
(register-to-register operation, Figure
1-17) •

Addresses

Contral
Section

Instruction

Main
Storage

Fixed
length I I

AlU

General
Registers
0-15

Figure 1-17. System/360 Register to
Register Operations

Floating-Point Operation: Floating
point is the term given to arithmetic
operations involving a fraction and an
exponent. For instance:

217,000 can be expressed as:
.217 x 10·

296,000 can be expressed as:
.296 x 10.

Fixed point arithmetic would add the
numbers thusly:

1-16

217,000
+ 296,000

513,000

I

Floating point arithmetic would do it
like this:

.217 x 10·
+ .296 x 10.

.513 X 106

Floating-point arithemetic is most
useful for expressing very large numbers
and operating on them with much
precision. To do floating point arith
metic the System/360 has four floating
point re~isters (Figure 1-18).

Addresses Main

I Storage

Control
Instructions I

Section • I Floating AlU
Point

1 1
Four floating Point
Registers

Figure 1-18. Floating Point
Registers

The four floating point registers are
numbered 0, 2, 4, 6. These are not the
same as general registers 0, 2, 4, 6.
The floating point registers are separ
ate registers used only as accumulators
during floating point operations.

The floating point registers are
double word registers and are addressed
by a four bit binary address in floating
point instructions.

Bits 0 63
r------------------, I F~P. Reg 6 I L-_________________ J

F.P. Reg Address = 0110

Logical vs Hardware Structure of
System/360: The structure of the
System/360 which you have been learning
is its logical structure: By this we
mean that this is the way the System/360
appears to the programmer. The manner
in which this logical structure is
implemented will vary between the dif
ferent models of the System/360.

For example:

1. In Models 60, 62, and 70 of the
System/360, the general and floating
point registers are transistor reg
isters.

2. In Models 40 and 50 a core array is
used. This array is similar to main
storage but is a separate physical
entity.

3. In Model 30 the general and floating
point registers are located in the
main storage unit. However, they do
not use any of the available main

storage addresses. The area of the
main storage unit used for registers
is called auxiliary storage.

Another example of hardware differen
ces is in the control section of the
System/360. In the Model 70, the con
trol section is made up of high speed
transistorized circuits. However, other
models of System/360 use a capacitor- or
a transformer-storage device for most of
their control functions. This device is
called Read Only Storage (ROS). The ROS
is a storage device and cannot be
changed by the programmer. It is
strictly a control device.

1-17

Channels (Figure 1-19)

• Channels handle data transfers
between main storage and I/O
devices.

• All I/O devices are connected to
channels via a standard interface.

• There are 2 types of channels: sel
ector and multiplexor.

• Selector channels are designed for
high data rates.

• Multiplexor channels are designed
for low data rates.

One of the main functions of a chan
nel is to handle I/O requests for a main
storage cycle. The channel receives
data from the I/O devices one byte at a

2030 Processing Unit

Main
Storage

Input/ fo--..., Output
Channel

Control
Unit

time. When enough data has been
received to justify the use of main
storage, the channel requests a storage
cycle. The amount of data bandIed var
ies depending on the particular model of
System/360. After the data has been
placed in main storage, the channel
waits for additional information from
the input device. For an output device
the procedure reverses. The channel
requests a main storage cycle and brings
out data. It passes this data to the
output device one byte at a time.

Since the channel is taking care of
main storage cycles for the I/O device,
the central processing unit is now logi
cally free to continue processing
instructions. We say that processing is
overlapped with the I/O operation.

Random
Access
Device

Control
Unit

Random
Access
Device

Data and Control Information ----~

Arithmetic,
Control, and
Register
Systems

Figure 1-19.

1-18

Control
Unit

Channel Operations

r---

C
H

Main
A

Ctrl

I N Reader
Storage

N
Unit I

E
L

'---

Figure 1-20. Froa Main Storage to I/O Device

On some aodels of the System/360,
overlapping channel with CPU operations
is allowed only at certain times. Once
the CPU has started a channel operation,
it has to wait for the channel operation
to finish before it can continue proc
essing instructions.

Each I/O device ties into the channel
through a control unit (Figure 1-20).

Another name for a control unit is
adapter. For some I/O devices the con
trol unit or adapter is built into the
device. For other devices, the control
unit is external to the device.

Some adapters can control only one
I/O device while others can control a
number of similar I/O devices. The IBM
1443 Printer Model N1 is an example of
an I/O device with a self-contained
adapter. The IBM 2803 tape control is

Adapter

Printer

1443 Model N 1

Standard
Interface

Figure 1-21. Control Units and Adapters

an example of a stand-alone adapter
which can control up to eight IBM 2401
magnetic tape units (Figure 1-21).

Selector Channels: Selector channels
are available on all models of the
System/360. The aaximum number per
aodel varies from two for a Model 30 to
six for a Model 70. 'The Selector chan
nel is so named because only one I/O
device can be selected on the channel at
anyone tiae. Once selected, a complete
record is transferred over the channel
one byte at a time.

Once the record has been transferred,
the channel is free to select another
I/O device. When a channel is transfer
ring an entire record between aain stor
age and an I/O device, it is said to be
operating in burst mode. Because a
selector channel always transfers an

2803

Tape Control

Up to eight (8) 2401 Tape Units

1-19

Standard Interfaces

/ ~
C C
H H

Tape
A

Main A Tape
N N

Ctrl
N

Storage
N

Ctrl

E
L

Sel.
Ch. 1

Figure 1-22. Dual Channel Operation

entire record, it can only operate in
burst mode.

Although only one 1/0 device can be
operating on a selector channel at any
one time, multiple selector channels can
be in operation simultaneously. Figure
1~22 shows an input record being read in
from tape over selector channel 1 at the
same time an output record is being
transferred over selector channel 2.

Selector channels are designed to
operate with high data rates. 1/0 devi
ces such as magnetic tape, disk units,
drums, and buffered card devices are the

1-20

E
L

Sel.
Ch.2

Up to Eight
Tape Drives

devices most likely to be connected to a
selector channel.

Multiplexor Channels: A mult~lexor
channel is designed to operate with a
number of 1/0 devices simultaneously on
a byte basis. That is, several 1/0
devices can be transferring a .record
over the multiplexor channel, time
sharing it on a byte basis. When the
multiplexor channel is being time shared
by several devices, it is said to be
operating in data-interleave mode. The
multiplexor channel can also operate in
burst mode for higher-speed units
(Figure 1-23).

Record A
Byte Byte

I Byte Byte
A A A A

Record B
Byte Byte

I
Byte Byte

B B B B
to Ma; n Storage·

Record C

BURST MODE

Record A

Record B to Ma; n Storage

Record C

DATA INTERLEAVE MODE

Figure 1-23. Burst Mode vs. Multiplex Mode

A comparison of burst versus
multiplex mode can be seen in Figure
1-23.

To handle data flow from an I/O
device, the channel needs to know cer
tain information such as:

1. In which direction must data flow
(input or output)?

2. Where in main storage should data be
placed or taken from?

3. How many bytes should be sent to an
output device or accepted from an
input device?

Information of this type is contained
in the I/O command addressed to a parti
cular I/O device. For a selector chan
nel which operates with only one I/O
device at time, this information may be
placed in the channel registers and left
there

On a multiplexor channel it is possi
ble to have I/O devices operating simul
taneously. To have all this information
in the multiplexor channel's registers
would require a set of registers for
each I/O device. Therefore, the multi
plexor channel keeps this information in
a compact storage area known as auxil-

iary storage. Auxiliary storage is part
of the physical core array used for the
main storage unit.

Auxiliary storage does not use any of
the main storage addresses (Figure
1-24) •

Main } Storage Addresses of 000000 on up to maximum

Multiplexor
Storage Used by multiplexor channel to store registers

Figure 1-24. Local Storage

It is a physical part of the core array
used by the main storage unit. However,
logically auxiliary storage is separate
from local storage. On the Model 30,
part of the auxiliary storage is used to
contain the sixteen general registers
mentioned previously.

NUMBERING SYSTEMS

Numbering systems were developed by man
so that he could count. A number basi-

1-21

cally is a group of symbols. Each sym
bol in a number has a definite place and
value.

The place value of the digit symbol is
some power of the base. The power of
the base starts with zero and increases
by one from right to left. The base of
the decimal numbering system in common
usage is ten (10).

Example:

444 = 4x10a +4x10'+4x10 0 (10 0 = 1)

/ l" Digit Base Place

444 = 400+40+4

The maximum value of a symbol is
always one less than the base. In our
above example. the base is ten (10) so
the maximum value is nine (9). If when
adding two symbols the total exceeds the
base. a carry (value of one) is added to
the next higher place.

Example: 6
+6

Carry 12

BASIC BINARY

Units of Binary

This is a numbering system using a base
of two. All of the rules which we dis
cussed for a numbering system apply
here. Let us check.

The base is two so the maximum symbol
value is one. The binary numbering
system has only two valid symbols, 0 and
1.

Example:

Digit Base Place

"'\/ 0101 = Ox2 3+ 1x2 :a.Ox2'+1x2 0

decimal 5 o o 1

1-22

Binary-Decimal Conversion

The decimal place values of a six posi
tion binary number are:

32 16 8 4 2 1

1x20

1 1 1 1 1

The preceding binary number equals 63
when the place values are added.

The following chart shows conversion
from decimal to binary:

Decimal Binar:l

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

ZONED DECIMAL - EXTENDED BINARY CODED
DECIMAL (BCD)

Zoned decimal is a decimal number rep
resenting a BCD alphanumeric character.
A zoned decimal has eight places divided
into two II-place sections. The high
order places represent the alphanumeric
zone bit and the low-order places
represent the alphanumeric decimal.

Example: 1101 011,=P

11 7
(zone) (digit)

PACKED DECIMAL

The packed decimal coding system allows
two decimal digits to be stored in one
byte-location:

Example:

Binary
Position 8421 8421

Binary
Value 1001 0011

Decimal
Equivalent 9 3

HEXADECIMAL

The hexadecimal system uses the decimal
value of sixteen as its base.

16 3

4096
16 1

16
160

1

In the hexadecimal system you can
count to fifteen before a carry occurs.

14
+ 1

15

a
+0

1

15
+ 1

o

To express the values ten to fifteen,
the symbols A-F are used. Thus, the
sixteen hexadecimal symbols are:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
The following charts lists some sample
decimal to binary to hexadecimal conver-
sion.

Decimal Binary Hexadecimal

1 0001 1
5 0101 5
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 0001 0000 10
17 0001 0001 11
18 0001 0010 12
19 0001 0011 13
20 0001 0100 14
30 0001 1110 lE
40 0010 1000 28
50 0011 0010 32
60 0011 1100 3C

Examples:
Express the hexadecimal (hex) numbers as
a sum of terms in decimal.

hex: 482=4x162 +8x16 1 +2x16°
=4x256+8x16+2x1
= 1024+128+2
= 1154 decimal

hex: 8C6=8x162 +12x16 1 +6x16°
=8x256+12x16+6xl
=2048 +192 +6
= 2246 decimal

Rules for Converting from Decimal to
Hexadecimal

1. Divide decimal numl:er by the new
base (16).

2. Remainder becomes low order of new
number.

3. Divide quotient by the new base
(16) •

4. Remainder becomes next digit of new
number.

5. Repeat steps 3 and 4 until a quo
tient of zero is obtained.

Example: Decimal 456 to
hexadecimal lC8

lC8
t t t
III
I) I

a III
r-- II J

1611 Remainder of 1------------JI I
II

r--- II
16)28 Remainder of 12 or C-------J I

I
r---- I

161456 Remainder of 8--------------J

Binary - Hexadecimal Conversion

The base of the binary system is 21
while the hexadecimal system uses a base
of 2~ (16). There is a direct 4 to 1
relationship (2~ to 21) between the
exponents of the two bases. EVery hexa
decimal digit becomes four binary
digits. Every four binary digits in
turn can be converted to a single hexa
decimal digit.

1-23

Hexadecimal 8 3 4 9 E

Binary 1000 1011 0100 1001 1110

FLOATING POINT

Description

Various computer computations frequently
involve leng.thy and complex calculations
in which it is necessary to manipulate
numbers that may vary widely in magni
tude. To obtain a meaningful answer,
problems of this type usually require
that as many significant digits as pos
sible be retained during calculation and
that the decimal point always be proper
ly located. When applying such problems
to a computer, several factors must be
taken into consideration, the most
important of which is the decimal point
location.

Generally speaking, a computer does
not recognize the decimal point present
in any quantity used during the calcula
tion. Thus, a product of 414154 will
result regardless of whether the factors
are 9.37 X 44.2, 93.7 X 0.442, or 937 X
4.42, etc. A system must be employed in
which information regarding the magni
tude of all numbers accompanies the
quantities in the calculation. Thus, if
all numbers are represented in some
standard, predetermined format which
instructs the computer in an orderly and
simple fashion concerning the location
of the decimal point, and if this rep
resentation is acceptable to the routine
doing the calculation, then quantities
which range from minute fractions having
many decimal places to large whole num
bers having many integer places can be
handled. The arithmetic system used, in
which all numbers are expressed in a
format having the feature just
described, is called floating point
arithmetic.

The notation used in floating point
arithmetic is basically an adaptation of
the scientific notation widely used
today. In scientific work, very large
or very small numbers are expressed as a
number, between one and ten, times. a
power of ten. Thus 427.93456 is written
as 4.2793456 X 102 and 0.0009762 as
9.762 X 10-".

TheSystem/360 uses hexadecimal
floating point and the hexadecimal point

1-24

of all numbers is placed to the left of
the high-order (leftmost) nonzero digit.
Hence, all' quantities may be thought, of
as a hexadecimal fraction times a power
of 16. In addition to the advantages
inherent in scientific notation, the use
of floating point numbers during proc
essing eliminates the necessity of ana
lyzing the operations to determine the
pOSitioning of the decimal point in
intermediate and final results since the
decimal point is always immediately to
the left of the high-orde.r nonzero digit
in the fraction.

Floating ... point arithmetic simplifies
programming by automatically maintaining
hexadecimal point placement (scaling)
during computations in which the range
of values used varies widely or is
unpredictable.

The key to floating-point data rep
resentation is the separation of the
significant digits of a number from the
size (scale) of the number. Thus, the
number is expressed as a fraction times
a power of 16.

A floating-point number has two asso
ciated sets of values. One set rep
resents the significant digits of the
number and is called the fraction. The
second set specifies the power
(exponent) to which 16 is raised and
indicates the location of the binary
point of the number. The term Mantissa
is often used instead of fraction.
Characteristic is another. term for expo
nent ..

These two numbers (the fraction and
exponent) are recorded in a single word
or double-word.

Since each of these two numbers is
signed, Some method must be employed to
express two signs in an area that pro
vides for a single sign. This is accom
plished by having the fraction sign use
the sign associated with the word (or
double word) and expressing the exponent
in excess 64 arithmetic. That is, the
exponent is added as a Signed number to
64. Above 64 is a positive exponent and
below 64 is a negative exponent. The
resulting number is called the charac
teristic. The characteristic can vary
from 0 to 127, permitting the exponent
to vary from -64 through 0 to +63. This

provides a decimal range of 1.2 X 1075

to 2.4 X 10-78 •

Floating~point data in the System/360
may be recorded in short or long
formats, depending on the precision
required. Both formats use a sign bit
in bit position 0, followed by a charac
teristic in bit positions 1-1. Short
precision floating-point data operands
contain the fraction in bit positions
8-31; long-precision operands have the
fraction in bit positions 8-63.

Short-Precision Floating-Point Format
r-~----------T-----------------------' IS I .Exponent t Fraction I l_-L-__________ i-______________________ J

o 1 1 8 31

Long-Precision Floating Point Format
r-~-----------T-----------------------,
IS I Exponent I Fraction J l-~ __________ -L-______________________ J

o 1 1 8 63

The sign of the fraction is indicated
by a zero or one bit in bit position 0
to denote a positive or negative
fraction, respectively.

ARITHMETIC PRINCIPLES

BINARY FIXED POINT

Positive and Negative Numbers

A fixed point number has a signed value
recorded as a binary integer. The first
bit position (high order) holds the sign
of the number, with the remaining bit
poSitions used to designate the magni
tude of the number.

positive fixed-point numbers are
represented in true binary form with a
zero sign bit. Negative fixed-point
numbers are represented in two'S comple
ment notation with a one bit in the sign
position. In all cases, the bits
between the sign bit and the leftmost
Significant bit of the integer are the
same as the sign bit (i.e., all zeros

for positive numbers, all ones for nega
tive numbers) •

Negative fixed-point numbers are
formed in two'S complement notation by
inverting each bit of the positive
binary number and adding one. For exam
ple, the true binary form of the decimal
value (plus 26) is made negative (minus
26) in the following manner:

+26

S INTEGER

o 0000000 00011010
1 1111111 11100101

1
Invert

Add 1
-26 1 1111111 11100110 (Two'S com

plement form)

This is equivalent to subtracting the
number from 1 00000000 00000000.

Binary Addition

0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 0 with a carry of 1

1 + 1 + 1 = 1 with a carry of 1.

The following addition examples
illustrate two's complement arithmetic.
Only eight bit poSitions are used. The
left-most position is the sign pOSition,
the next position to the right is the
high-order position.AII negative numbers
are in two's complement form.

An over.flow condition occurs when
carries out of the sign position and
high order numeric position disagree.
When overflow occurs the sign of the
result is incorrect. This condition
must be noted and properly used by the
processor.

When there is no carry out of the
high order position, the answer is in
complement form. This is the final
anSwer in fixed point binary subtract.
The.model 30 does not recomplement.

1-25

Examples:

+57 =
+35 =
+92

S COMMENTS

00111001 No hiqh-order carry,
00100011 no siqn-position carry,
01011100 no overflow.

Result is in true form.

+57 = 00111001 Hiqh-order carry,
-35 = 11011101 sign-position carry,
+22 = 00010110 no ov~rflow.

Result is in true form.

+35 = 00100011 No high-order carry,
-57 = 11000111 no sign-position carry,
-22 = 11101010 Bit in sign position

indicates result is in
complement form.

-57 = 11000111 High-order carry,
-35 = 11011101 sign-position carry,
-92 = 10100100 no overflow.

Bit in sign position
indicates result is in
complement form.

-57 = 1100i)111 High-order carry,
-92 = 10100100 sign-position carry,

-149 = lQ-e1efe1 overflow. No bit in
sign-position indicates
result is in true form,
but overflow sign
is incorrect.

+57 = 00111001 Hiqh-order carry, no
+92 = 01011100 sign-position carry,

+142 = 10010101 overflow. Sign-position
indicates a complement
result, but overflow
signals are incorrect

1-26

sign indication.

Binary Subtraction

678 001010100110
-456 +111000111000

222 000011011110

Notice that binary subtraction is simply
adqinq the two's complement of the num
ber to be subtracted.

Examples of Fixed Point Numbers:

The following are 16-bit fixed-point
numbers. The first is the largest posi
tive number and the last, the largest
negative number.

2'5 -1
20

0
-20

-2 '5

= 32,737
= 1
= 0
= -1
=-32,768

=0 11111111
=0 00000000
=0 00000000
=1 11111111
=1 00000000

11111111
00000001
00000000
11111111
00000000

Table 1 shows 32-bit fixed-point
numbers. The first is the largest posi
tive number that can be represented by
32 bits, and the last is the largest
negative number.

r-------------~---, I NUMBER DECIMAL S INTEGER 1
I I
1 231 "'1 = 2 147 483 647 =0 1111111 11111111 11111111 111111111
I 21 • = 65 536 =0 0000000 00000001 00000000 000000001
I' 20 = 1 =0 0000000 00000000 00000000 000000011
I 0 = 0 =0 0000000 00000000 00000000 000000001
1-20 = -1 =1 1111111 11111111 11111111 111111111
1-2 1 = -2 =1 1111111 11111111 11111111 111111101
1-2 1 • = -65 536 =1 1111111 11111111 00000000 000000001
1-231 +1= -2 141 483 647 =1 0000000 00000000 00000000 000000011
1-231 = -2 147 483 648 =1 0000000 00000000 00000000 000000001 L-_________________________ ~ ___________________________________ J

Table 1. Fixed Point Numbers

The following is an example of hexa
decimal complement addition. The gener
al method is the same as binary but the
base is sixteen.

Problem: E7A4
-A48E

First, convert the number to be sub
tracted to its sixteen- complement.

FFFF
-A48E
SB71

+1
5B72

Now, add the sixteen·s complement of
A48E to E7A4.

E7A4
+5B72

Carry-4316

Presence of the high-order carry means
the answer is in true form. If there
had been no carry, the result would have
been in complement form.

PACKED DECIMAL

Sign-Operation Analysis

Before any packed decimal arithmetic can
take place, a sign- operation analysis
must be performed. The result of this
analysis determines whether the opera-
tion is to be a true add or a complement
add. There are three conditions that
are analyzed to determine the type of
operation. These are:

1. type of operation
(add or subtract) : • or -

2. sign of first operand: • or -

3. sign of second operand: + or -

An even number of minus signs calls for
a true-add operation to combine the two
operands. An odd number of minus signs
calls for a complement-add operation to
combine the two operands. Thus, eight
conditions can occur. These eight are
analyzed as follows:

First Operation Second True or
Operand Sign Operand Complement

.X + +y True
-X • +y Complement
-X • -y True
+X + -y Complement

.X .y Complement
-x .Y True
-X -y Complement
+X -y True

The signs of the operands are main
tained in the low-order half byte (four
bit positions). The actual bit-coding
of the sign depends on the data-coding
scheme being used.

Packed-Decimal True Add

In the packed-decimal data format, we
want each four bits to represent one
decimal digit. The range of this deci
mal digit is, of course, 0 - 9.
However, four bits with the packed
decimal value of 1,2, 4, and 8 can
represent any decimal number from 00 to

1-27

15. If we are simply storing packed
decimal data, no problem exists because
we make sure that the digit we sto.re at
each packed decimal location is in the
range 0 to 9. However, if we add two
packed-decimal digits together, and
their total exceeds nine, we are in
trouble. Remember that in a decimal
system, we wish to carry from the units
position to the tens position when the
units total exceeds nine. Using the
packed-decimal system just described, if
we added two decimal digits together,
and if their total exceeded nine, the
result would be in hexadecimal form.
For example, if we added nine and four,
the result would be 13, instead of three
with a carry. To compensate for this
discrepancy between the actual capacity
of the 4-bit packed-decimal digit
(00-15) and the desired:t;apacity of the
4-bit packed decimal digit (0-9), we add
a correction factor of six to our rules
for true odd.

Packed-Decimal True Add

The following general rules for packed
decimal true add provide decimal
correction as mentioned previously.

1. Add six to each packed-decimal digit
(4-bit group) of the first operand.

2. Add the result to the second
operand. This should be a conven
tional binary add, allowing carries
from 9ne 4-bit group to the next.

3. Now, conSidering each 4-bit group
(packed-decimal digit) separately,
subtract six from each group where
no high-order carry occurred. If a
high-order carry did occur, add 0000
to that 4-bit group. Remember, that
to subtract six really means comple
ment add six. The result will be
the correct decimal number in true
form.

Example:

8421 8421
0001 0110
0110 0110
0111 1100
0001 1000

NC-C-
1001 .0100
1010 0000
0011 0'00

16 = First operand
18 = Second operand
34 = Result of true add

Packed-decimal value
First operand
Add six per Rule

Second operand

Subtract six per Rule 3
Result of true add

Packed-Decimal Complement Add

The following general rules are for
packed-decimal complement add. Notice
that the necessary correction factor of
six is employed differently than in the
previous example of true add.

1. Develop the binary complement of the
second operand.

i. Add the complement of the second
operand to the first operand.

3. ConSidering each 4-bit group
(packed-decimal digit) separately,
subtract six from each group where
no high-order carry occurred. If a
high-order carry occurred, add 0000
to that 4-bit group. Remember, that
to subtract six, you must add the
binary complement of six (1010).

4. If there is a carry out of the high
order group of four bits at the
completion of the original add (Rule
2), the answer will be in true form.
If there is no carry out of the
high-order group at the completion
of the original add, the answer will
be in complement form and will have
to be recomplemented. To obtain the
correct result when recomplementing,
we must subtract six from each 4-bit
group of the recomplemented number.
To condition this. correction
operation, we must first add the
recomplemented number to zero to
give us the no-carry indication and
apply Rule 3.

Note: When subtracting six from
each 4-bit group, any carry from a
group is ignored.

Example: Packed-Decimal Complement Add

1st Operand +49
2nd Operand -92

+49 = 0100 1001
-92 = 1001 0010

0110 1110 Complement 2nd Opere
0100 1001 Add 1st Opere

Nc:--C---- NC From High order
1011 0111 Position indicates

Recomplement Rule 4
1011 0111
1010 0000 Rule 3
0101 0111
1010 1001 Recomplement
0000 0000 Add to Zero Rule 4

NC:--N-C-
1010 1001
1010 1010 Rule 3

-43 = 0100 0011 Result

FLOATING-POINT ARITHMETIC

Description.

Floating-point is basically a mathemati~
cal shorthand by which numbers are
expressed as a fraction and an exponent.
This notation is an adaptation of the
scientific notation used today. In
scientific work. very large or very
small numbers are expressed as some
number one through ten times a power of
ten.

Example 427.93456 = 4.2793456 X 102

0.0009762 = 9.762 X 10--

System/360 uses hexadecimal floating
point. and the decimal point is always
to the left of the high-order digit.
The hexadecimal fraction may be thought
of as a number (base 16) X a power of
16.

Decimal numbers must first be
converted to numbers the system may use
in floating-point operations. The sign
of the fraction will be noted in the
sign position of the floating-point
word. a 0 for plus a 1 for minus. The
sign of the exponent will be contained
in the characteristic which will rep
resent the exponent and i~s sign.

To develop the characteristic, the
exponent is expressed in excess 64
arithmetic. The Signed exponent is
algebraically added to 64. A result

above 64 indicates a positive exponent;
a result below 64 indicates a negative
exponent.

Conversion Example:

1. The decimal number must be separated
into a decimal integer and a decimal
fraction.

123.725 = 123+.725

2. The decimal integer is converted to
its hexadecimal representation.

decimal 123 = hexadecimal 7B

3. The decimal fraction is converted to
its hexadecimal representation.
decimal .725 = hexadecimal .205

4. Combine the integer and the fraction
and express as a fraction times a
power of 16.

7B.2D5 = .7B2D5 X 162

5. Develop the characteristics and
convert to binary

64+2 = 66 = 1000010

6. The fraction is converted to binary
and grouped hexadecimally •

• 7B20S = 0111 1011 0010 1101 0101

7. The characteristic and the fraction
are stored in floating~point format.
The Sign position contains the sign
of the fraction

Sign
o

Characteristic
1000010

Fraction
0111 1011 0010 1101 0101 00

System/360 provides four floating
point registers, each eight bytes in
length, for use in floating-point
operations. The first operand of any
floating-point instruction is always
contained in one of these registers.
The result of a floating-point operation
replaces the first operand except in a
store operation.

Normalization

A quantity can be represented with the
greatest precision by a floating-point
number of given fraction length when
that number is normalized. A normalized
floating-point number has a nonzero
high-order hexadecimal fraction digit.

1-29

The process of normalization consists
of shifting the fraction left until the
high-order hexadecimal digit is nonzero
and reducing the characteristic by the
number of hexadecimal digits shifted. A
zero fraction cannot be normalized, and
its associated characteristic therefore
remains unchanged when normalization is
called for.

Normalization usually takes place
when the intermediate arithmetic result
is changed to the final result. This
function is called postnormalization.
In performing multiplication and divi
sion, the operands are normalized before
the arithmetic process. This fUnction
is called prenormalization.

Floating-point addition and subtrac
tion may be performed with or without
normalization.

When an operation is performed with
out normalization, high-order zeros in
the result fraction are not eliminated.
The result mayor may not be normalized,
depending on the original operands.

In both normalized and unnormalized
operations, the initial operands need
not be in normalized form.

Floating-Point Addition and Subtraction.

Addition or subtraction of two floating
point numbers consists of characteristic
comparison and fraction addition. The
characteristics of the two operands are
compared, and the fraction with the
smaller characteristic is right shifted.
its characteristic is increased by one
for every hexadecimal digit shift (four
binary places), until the two
characteristics agree. The fractions
are then added algebraically to form an
intermediate sum. Subtraction differs
here only in that the sign of the second
operand is inverted before fraction
addition.

Normalization may be called for in
either addition or subtraction. Normal
ization consists of shifting the frac
tion left and decreasing the charac
teristic one for every hexadecimal digit
shift.

Floating-Point Multiply and Divide

The multiplication of two floating-point
numbers consists of a characteristic
addition and a fraction multiplication.

1-30

The sum of the characteristics less 64
is used as the characteristic of an
intermediate product.

The product fraction is normalized by
prenormalizing the operands before the
operation, and postnormalizing the
intermediate result if necessary.

Division of two floating-point num
bers consists of subtracting the charac
teristics and dividing the fractions.
The difference between the dividend and
divisor characteristics plus 64 is used
as an intermediate characteristic.

The quotient fraction is normalized
by prenormalizing the operands before
the operation. Postnormalizing the
intermediate quotient is never
necessary.

Instruction Format

Floating-point instructions use the
following two formats:

RR Format
r--------T------T------,
lOp Code I R1 I R2 I l _______ -i _____ -i ______ J

o 7 8 11 12 15

RX Format
r--------T------T------T--~---T--------,
lOp Code I R1 1 X2 I B2 I D2 I l-_______ ~ _____ i ______ ~ _____ i ________ J

o 7 8 11 12 15 16 19 20 31

In these formats, R1 deSignates the
address of a floating-point register.
The contents of this register will be
called the first operand. The second
operand location is defined differently
for two formats.

In the RR format, the R2 field speci
fies the address of a floating-point
register containing the second operand.
The same register may be specified for
the first and second operand.

In the RX format, the contents of the
general register specified by X2 and B2
are added to the content of the D2 field
to form an address designating the loca
tion of the second operand.

A zero in an X2 or B2 field indicates
the absence of the corresponding address
component.

The register address specified by the
R .. and R2 fields should be 0, 2, 4, or
6. Otherwise, a specification exception
is recognized, and a program interrup
tion is caused.

The storage address of the second
operand should designate word boundaries
for short operands and doubleword boun
daries for long operands. Otherwise, a
specification exception is recognized,
and a program interruption is caused.

Results replace the first operand,
except for the storing operations, where
the second operand is replaced.

Except for the storing of the final
result, the contents of all floating
point or general registers and storage
locations participating in the
addreSSing or execution part of an oper
ation remain unchanged.

The floating-point instructions are
the only instructions using the
floating-point registers.

DATA FLOW

SYSTEM CONTROL

•

•

Read Only Storage (ROS) controls
data movement.

Capacitor Cards determine ROS
output.

The System/360 Model 30 uses a Read Only
Storage unit to control the movement of
data throughout the system, Figure 1-25.
This control includes the actual circuit
components for addressing the ReS and
for sensing and decoding the output.
Just as you would follow a sequence of
operations to perform a mathematical
coroputation, the ROS steps through a
series of micro-instructions to perform
a xrachine language instruction. These
xricro-instructions consist of storage
control, Arithmetic Logic Unit (ALU)
control, register input and output con
trols, machine status control, ROS
sequencing control, and input-output
controls.

1-31

A Bus "7 A Bus

1--------11')1 Address
V' Decode

P
B

Register

P

r--

ALU

WX
Bus

;.:.:.:.-;.:.:.:.:.:.: •. :.:.:.:.:.:.:.:.:.,:.:.:.:.:.:':':':':':':':!::':.: .. :.':::':':':':':':':':':':':':':.:.:.:.:.:.:.:.:.:.:.:.:!"-:':':':':':':':':':'.':':.: .•.. : A oJ-..

r
-(~

P
ROS

I SAL

WX
Bus

t
Next

~ Address
Information

Control
Register

P

q
z: Bus

-
T

~

F

.I

From External
Interrupt

To Machine Control Points

>

Figure 1-25. IBM 2030 Data Flow

lJ
L

?'J.

Z Bus

Register - ~

Storage

---------~"--- -
Native Interface

1050 Data I
Register

Write UnRead

1050 Interface

ROS is a capacitor storage device
which contains capacitors printed on a
card. The output of ROS, as determined
by the capacitor cards, is latched in
sense amplifier latches (SAL'S). Defin
ite fields in the cards are used to
control entry and exit of data to the
various registers and buses, Figure
1-25.

CORE STORAGE

• Core storage is made of small
doughnut-shaped rings (magnetic
cores).

• Capacities vary from 8,192 bytes to
65,536 bytes.

The basic storage unit of the Model 30
is made of small doughnut-shaped rings
which are used to store information.
This read-write storage is an eight bit
(plus parity) wide binary addressed
storage unit. The size of the core
array can be expanded from the basic
8,192 bytes to a total of 65,536 bytes.

In addition to main storage, there
are 512 positions of storage in the
basic machine which are unaddressable as
far as the programmer is concerned.
These positions can only be used by
internal machine micro-programming.
These added positions give 256 positions
for CPU use and 256 positions for I/O
use.

The data flow ohart (Figure 1-25)
shows that there are two input lines to
storage and one output. To locate data
in storage the address of the data must
be placed in the MN-register and decoded
by circuits which actually address the
proper byte in the core planes. The
data -reads out- to the R-register which
is the storage data register. Notice
also that in order to write into core
the data will come from the R-register
and enter the location in core addressed
by the MN register. These three opera
tions are instructed by micro
programming through the use of ROS
control fields.

DATA BUSES

• There are 7 general data buses which
move information throughout the
Control Processing Unit.

• All buses are 9 bits wide except the
W-bus, which is 6 bits wide, includ
ing the parity bit.

In Figure 1-25 the general data buses
are shown as wide data paths, only to
indicate that they receive or send data
to more than one register. The actual
bit width of all buses is 8 (plus
parity) with the exception of the W bus
which is 5 bits, plus parity (bits 3
through 7 plus P) •

The MN and WX buses are 4 physical
buses feeding individual registers. As
indicated in Figure 1-25, the UV and IJ
registers are larger than the T-register
and yet they feed the same buses. The
'I-register is programmed by ROS to
transfer data to the N-register while at
the same time the high order 8 bits of
the MN register are set to zero. The
A-bus supplies data from all registers
to the A-register, while the B-bus
accepts data from only 3 registers and
then transfers it to the B-register.

The Z-bus is used to transfer data
back to various registers from ALU. The
output of the ALU becomes the Z-bus.
The Z-bus negative-powered bus enters
data to polarity hold latches of the
registers. The Z-bus positive-powered
bus ente.rs data to the Rand S
registers.

ALU AND SOURCE REGISTERS

• The A and B registers supply data to
ALU.

• ALU performs arithmetic and logical
operations.

• The ALU output is corrected for
parity, if necessary.

The data which is supplied to the A and
the B registers by their respective
buses, is fed to the ALU where arithmet-

1-33

ic or logical fUnctions are performed.
ALU is only a bits wide as the parity
bit is not used in this circuitry.
Information enters ALU by the byte (8
bits) or by the half byte (4 bits),
depending again on the controls generat
ed by the ROS fields. The A-register
output data before entry into ALU, pass
es through the straight-crossed switch
and high-low gates.

The B-register output data is gated
by high-low circuitry before it enters
the true-complement side of ALU.

ALU is able to process 8-bit wide
data, as a parity bit is not used. On
the output of ALU, therefore, a parity
bit is inserted, if needed. At this
point the output has been corrected and
becomes the Z-bus.

OTHER REGISTERS

•

•

•

Ten a-bit registers are connected to
the A-bus.

Three of these registers also supply
the B-bus.

All registers are given one charac
ter alphabetic names.

The basic unit of data is 9 bits wide (8
bits plus parity). The 9-bit registers
in the data flow are given alphabetic
names of one character, so that any bit
position within the register can be
referred to by a letter plus a number.
Bits are numbered zero to seven, left to
right, with the high order position
being the zero. Reference to a particu
lar bit in a register then, can be ·S7-,
which is the low order position of the
S-register, etc.

In addition to the ten registers,
there are other registers shown in Fig
ure 1. All of the registers in the data
flow will have, in general, the follow
ing fUnctions:

1-34

Register Name Function

D Temporary Data Register

F For External Interrupt

FW-FX Back-up address registers
for ROS

GW-GX Back-up address registers
for ROS

G General purpose status
register

H

I

J

L

N

Q

R

S

T

U

v

x

Priority Control Register

Address register, high 8
bits

Address registers, low 8
bits

Length of data field

Main Storage address
register, a high bits

Main storage address
register, 8 low bits

Storage Protect Key reg
ister

Storage Data Register

Special purpose status
register

Partial Address Register

Address register, 8 high
bits

Address register, low 8
bits

Read only address reg
ister, high 5 bits

Read only address reg
ister, low bits

The gating in and out of all reg
isters is controlled by ROS fields. A
series of micro-instructions for
example, is needed to move data from the
D-register through ALU to the
G-register. Micro-programming will move
data from One location in main storage
through the R-register and back to stor
age, using the address stored in the UV,
IJ or T-registers to address core

through the MN register. All of the
operation again, is controlled by ROS
fields and micro-programming.

BASIC PROGRAMMING

SYSTEM/360 INSTRUCTIONS

•

•

•

Instructions are 1, 2 or 3 half
words in length.

The Op code is the first byte of an
instruction and specifies
instruction length and format, gen
eral data location, type of data,
and operation to be performed.

General Registers have a 4 bit
address and main storage has a 24
bit address.

• The five instruction formats are
called theRR, RX, RS, SI and. SS
formats.

INSTRUCTION LENGTHS

• System/360 instructions are 1, 2, or
3 Halfwords in length depending on
the location of data.

• Register-to-register instructions
are 1 halfword long.

•

•

•

Storage-to-register instructions are
2 half words long.

Storage-to-storage instructions are
3 halfwords long.

Instructions must reside on halfword
boundaries (low order address bit =
0). Let's learn about the instruc
tion formats of the System/360. As
you know, instructions specify the
operation to be done and the loca
tion of data. Data may be located
in main storage, in general reg
isters or in floating point reg
isters. Main storage is addressed
with a 24 bit binary address while
the general registers and floating
point registers are addressed with a
4 bit binary address. As a result,
instructions are of different
lengths depending on the location of
data. System/360 instructions may
be one, two, or three halfwords in
length.

When both operands or data are in
general registers or floating point
registers, only 8 binary bits are needed
for addresses. As a result the shortest
instruction, one halfword in length, is
used.

When one of the operands is in main
storage, this short instruction cannot
be used. Remember that main storage
requires a longer address. For these
operations, instructions that are 2
halfwords in length must be used.

When both operands are in main stor
age, a total of 48 bits are needed for
the addresses. Accordingly, the longest
instruction format, 3 halfwords in
length, is used.

Because instructions are a multiple
of halfwords in length, they are consid
ered as fixed length information as far
as storage boundaries are concerned. If
the address of an instruction has a low
order 1 bit, a specification exception
will occur.

OPERATION CODES

•

•

•

•

The Op Code (Operation Code) is the
first byte of each instruction.

Bits 0 and 1 specify instruction
length and data location (main stor
age or general registers).

Bits 2 and 3 specify type of data
(fixed or variable length, decimal,
binary, or floating point).

Bits 4 through 7 specify what to do
with data.

1-35

Register to Register:
,---T---'
I Op 1 I
ICodet I '-__ ..&._J

storage to Register:
r--T---T--------,
I Cp I I I
I Code I I I l ____ ..&.---..&.-______ J

storage to Storage:
r----T--T------~---,

lOp J I 'I
,Code I I I I
l ___ ,..&.---..&.------..&.-· __ J

I t I I '-__ J l ________ J

Byte Halfword

Above you can see the three instruc
tion lengths which are used depending on
the location of data. One thing to note
is that the first or high order byte of
each instruction contains the Op Code.

Op codes in the System/360 give
specific information:

1. The Op Code specifies the operation
such as Add, Subtract or Branch.

2.

3.

The Op Code specifies whether the
data is va.riable or fixed in
length.

The Op Code specifies whether the
data is in binary or decimal
format.

4. The Op Code specifies whether the
operands are in main storage or
general registers. The Op Code
does not give the address of data.
It only indicates the data is in
main storage, in general registers
or in floating point registers.

5. The Op Code specifies the length of
the instruction.

As you can see, there is much infor
mation in the 8 bits which make up the
Op Code. So let's break the Op Code
Byte down and see how it gives us this
information.

1-36

The Op Code

-----One Byte----

,--------------,
10 1 2 3 4 5 6 7\ l _______________ J

Bits 0 and 1 of the Op Code specifies
whether data is in main storage, in the
general registers, or in floating point
registers. Because the instruction
length depends on the location of the
data, the instruction length is also
specified by bits 0 + 1 of the Op Code.

There are four possible combinations
of bits 0, 1 of the Op Code: 00, 01,
10, 11. If both bits are zero (00),
both operands are in general registers
or floating pOint registers and the
instruction is one halfword in length.
If bits 0, 1 of the Op Code are either
01 or 10, only one of the operands may
be in main storage and the instruction
is 2 halfwords in length. If both bits
are one (11), both operands are in main
storage and the instruction is 3 half
words words in length.

Quite often the Op Code Byte is
referred to as two hexadecimal digits
rather than eight binary bits. Some
examples of hexadecimal Op Codes, their
binary equivalent, and their instruction
length, are shown below.

Actual
~ Op Code

Length in
Halfwords

SA 01011010
4A 01001010
FA 11111010
18 00011000
58 01011000
94 10010100

Two Halfwords
Two Halfwords
Three Halfwords
One Halfword
Two H~lfwords
Two Halfwords

GENERAL REGISTER ADDRESSING

• A general register has a 4 bit
address.

• To address a general register, its
address (0000 to 1111) is placed in
the correct position of the instruc
tion.

At this point, you should have a good
idea of how the Op Code of an instruc-

tion specifies its length, the type of
data, and what to do with the data.
Before taking a further look at instruc
tion format, let's examine how to
address main storage and the general
registers. We'll take a look at general
register addressing first because of its
simplicity. But first let's review
general registers.

The programmer has sixteen general
registers available for use as accumula
tors when working with fixed length
binary operands. The general registers
are numbered 0 to 15. A general reg
ister is one word in length. Besides
being used as accumulators, the general
registers can also be used as base reg
isters and index registers.

As you learned when you were first
introduced to the general registers,
they are addressed by a 4 bit binary
address. For example, the address of
general register 7 is 0111. When both
operands are in general registers, the
instruction is 1 ha1fword in length.
The first byte of an instruction is the
Op Code. When an instruction is one
ha1fword in length the 2nd byte contains
the addresses of the two general reg
isters.

The following instruction shows how
the general registers are addressed.
r-----~-------T------~-------,
10 0 0 1 1 0 1 0 0 1 0 0 0 0 1 11
~ ____ ~-------£~------£-------J

t
I
I

t ,
I

to 1
Full I

Reg.
Reg.
Word I

1
Add- -- - ..J

t
1
I
I
I
I ,
I
1
Reg.

t
1 ,
I
I
I
I
1
I

14 I
I
Reg. t3

MAIN STORAGE ADDRESSING

• Storage addresses are generated by
adding a displacement value to a
base address.

• The instruction contains the dis
placement value as well as the
address of the general register
containing the base address.

•

•

•

•

•
•

•

The general register that contains
the base address is called the base
register.

Only registers 1-15 can be used as
base registers or index registers.

If register 0 is specified as the
base register or index register, its
contents are ignored. Instead, a
base address or index value of 0 is
used.

The generation of storage addresses
does not change the instruction or
the base register contents.

Some instructions may be indexed.

The index value is contained in a
general register.

An indexed instruction contains the
displacement value, and the address
of the base register and index reg
ister.

Main storage addressing is a little more
difficult. To use a 24 bit address in
the instruction for each operand would
conSume storage space that could be used
for other purposes. In the smaller
models of System/360 (such as the Model
30 with approximately 8K storage), the
amount of main storage space is defin
itely limited. One solution would be to
use 24 bit addresses on the larger
models such as Model 70 and to use
shorter addresses on the smaller models.
This would mean that programs used on
the various System/360 Models would no
longer be compatible because of the
different length addresses. So we must
look for another solution that will
reduce the length of the instructions
and still maintain complete campat
ibility.

1-37

There are other features desirable in
main storage addressing besides a simple
reduction in the length of instructions.

It is also desirable that, each time
the program is loaded into the computer,
the program can start at a different
address without having to change the
addresses in each instruction. This is
known as program relocation, whiohis a
valuable tool in IBM'S latest program
ming systems.

Besides the features of program relo
cation and shorter instructions, it is
also desirable to be able to index
instructions.

To see how main storage is addressed
in the System/360 we must make some
assumptions.

The first assumption is that
System/360 programs will be written in
sections. Each section will be 4096
bytes in length. Of oourse programs
that are less than 4096 bytes can be
written as one section. The beginning
Of each section is called the base
address for that section. ----

ConSider the case of a program that
required 12,000 bytes. By sectioning it
into 4096 byte groups, we would have
three sections of our program with a
base address for each. The program
could start anywhere, so for the example
shown below, the program starts at Byte
location 2,048.

--T--------~---------T---------T---
Section 1 Section 2 Section 31

-~-------~--------~--------~~-
t t t

I 1 I
1 1 I
I f 1
I 1 1
J I I • _________ ~ _________ J

I Base
1 Addresses
I
I
I

Location
2048

t

I
I
t
I
I
I
I
I
1
I
I

Location
14,047

Sectionalized Program in Main Storage

As can be seen in the above example
our 12,000 byte program starts a loca
tion 2,048 and runs through location

1-38

14,047. We have divided the program
into three sections. The first two
sections are 4096 bytes each while the
remainder of the program (the last 3,808
bytes) are in section 3.

Now that the program has been sec
tionalized and base addresses are known,
how can this help in addressing main
storage?

Since each section is a maximum of
4096 bytes long, any byte in a section
can be located by adding to the base
address a number in the range of 0-4095.
This number is called its displacement.
That is, each byte is displaced from the
base address by from 0 to 4095 places.

Displacement
O----from

Base
Address-----4095

r---s;cti~;-~f----~\-;;~gr;;--------1
L ____________________ ~ ~--------------J
t

I
I
I
L----Base Address

$Upposing that the program that we
have been using as an example was moved
so that it started at location 8192.

--~----~---T----~---T---------T---
ISection 11Section 21Section 31
I I I 1

~--------~---------~--------~----
t t t
I 1 I
1 I I
I I I
Location Location Location

8192 12288 16384

The base address for Section 1 is now
8192. The base addresses for Sections 2
and 3 are now 12,288 and 16,384. The
displacement for each byte in the pro
gram has not changed. The last Byte of
section 1 is still displaced from its
base address by 4095.

The above demonstrates the ease with
which a System/360 program can be relo
cated. To relocate as System/360 pro
gram, the base addresses are changed
while the displacements remain the same.

As you know, main storage addresses
are 24 bits long. This allows for com
patibility throughout the range of

System/360 as well as for addressing up
to 16 million bytes. Since a program
can start anywhere in main storage, this
means that the base addresses for the
program must be 24 bits long.

The displacement range for any parti
cular base address is 0-4095. To
express this range requires 12 binary
bits. (You can calculate this by con
verting 4095 to hexadecimal and then to
binary.)

16l4095------..... --F
---- I

I
161255---------F I

--- 1 J
I 1

161 15-----F J 1
1-- 1 I 1

o I I I
I 1 I
1 I I
1 I I

-1. __ -'- _.lo_

111111111111

Any byte in main storage can be
located by adding a 12 bit displacement
to a 24 bit base address.

The use of a base address and a dis
placement certainly makes it easy to
relocate a program each time it is load
ed into the computer. However, we also
wanted a shorter instruction. To put
both the base address and displacement
in the instruction would make the
instruction longer. It would also mean
that each instruction would have to be
changed (base address) every time the
program is relocated. The manner in
which the System/360 handles this is to
carry the base address in one of the
general registers. When a general reg
ister contains a 24 base address, it is
referred to as a base register. The
address of the base register and the 12
bit displacement is carried in the
instruction.

Let's take a look at a typical
instruction used to add an operand in
main storage to an operand in one of the
general registers. When only one of the
operands is in main storage, the
instruction is 2 halfwords in length.

To add a main storage operand (source
operand) to a general register operand,

(destination operand) several items are
necessary. They are:

1. 8 bit Op Code

--,
2. " bit General I Distination

Register 1 Operand
Address

___ J
Address

---,
3. " bit Base I Source

1 Operand.
I

4. 12 bit Displace- 1 Address
ment

___ J

The instruction format for this type
of operation would look like this:

r--------T-----T------T------T---------,
10 7 8 11 12 15 18 18 20 311

I Op tGen I IBase IDisplace-1
1 Code IReg. 1 IReg. Iment 1
1 lAddr·1 IAddr. I I l _______ -.l. _____ .l. ______ .l. ______ .l. _________ J

Bits 12-15 of this instruction are
used for further modification of main
storage address. We will ignore them
for the present and cover them later.

Given a displacement of 100110110010
and base register 11 whose contents are
shown below, the effective storage
binary address would be

010010001001110100100001.
3 31

r--------------------------------,
1000000000100100010010011011011111 l ________________________________ J

General Register 11

Remember that you add the 12 binary
bit displacement to the low order 24
binary bits of the base register.

The address generated by adding the
displacement and base address is used
for addressing main storage. The origi
nal instruction and the base register
remains unchanged.

As we said previously, only general
registers 1-15 can be used as base reg
isters. If general register 0 is speci
fied as the base register, the base
address is assumed to be zero, regard
less of the contents of register o.

1-39

r---,.------,
I 0 I 1022 I L __ -I. ______ J

t t

I t
I 1
I . 1

Base Displacement
Reg.

Contents of Reg. 0 is
,--,
120481 L ____ J

Given the above address portion in
the instruction and the contents of
Register 0, the effective storage
address would be 1022. Because register
o was specified as the Base Register, a
Base Address of 0 is used. The contents
of Reg. 0 is ignored.,

All storage addresses are generated
by using base and displacement. In some
instructions, however, a third factor is
used. The third factor is called the
Index value. It is also contained in a
General Register.

In those instructions that include an
indexing facto~, the address portion
looks like this:

r-----~---T------------,
I Index I Base I Displacement I
I Reg·IReg. I I
IAddr·IAddr·1 1 L-__ ~ ___ ~ ___________ J

4 4 12 bits

The effectiVe storage address would be
generated by adding:
1. Displacement.
2. Contents of Base Register.
3. Contents of Index Register.

For example, suppose the address portion
of an instruction is as follows:

'--T--T------ ... - ,
I 6 I 7 I 1012 t L-__ ..&.-.-~ _________ J

Register 6 contains the value 2048, and
register 1 contains the value 6024. We
can derive the following values:

1. The effective storage address is
9084.

2. The address portion of the instruc
!!2n is unchanged.

3. The values in the base and index
registers are unchanged.

Thus the only thing we did was generate
a storage address by adding the contents
of the base register (6024) plus the
contents of the index register (2048) to
the displacement value given in the
instruction (1012). The values in the
specified registers remain unchanged, as
does the displacement value in the
instruction remain unchanged.

INSTRUCTION FORMATS

• There are 5 basic instruction for
mats.

•

•

•

They are RR, RX, RS , S1 and SS

r------,.--,.--,
RR Op CodelR11R21 L _______ .L __ .L __ J

r------,.--,.--,.-~--,

RX Op CodelRl1X21B21D21 L _______ .L __ .L_-.L __ .L __ J

r------T--T--~-T--'
RS Op CodelRl1R31B21D21 L ______ -.L __ .L_-.L--.L __ J

r-------,.-----,.--T--'
S1 I Op Code 1 12 I B 11 D 11 L--_____ .L _____ .L-_.L-_J

r-------T--T--,.--,.--T--T--'
SS 1 Op Codet L 11 L21 B 11 D 1 J B21 D21

L ____ .L_.L--.L-_.L __ .L-_.L-J

In most operations, the first oper
and (R 1 or B1, Dl) is replaced by
the results or the contents of the
second operand (R2, 12 or ·B2, D2).

The number in the length code in the
SS format is always one less than
the true length of the data field.

Let's take a look at the instruction
formats of the System/360. As you know,
the instructions are of 3 lengths: 1, 2
or 3 halfwords depending on the location
of the operands.

RR FORMAT: A l--halfword instruction is
used when both operands are in two gen
eral registers or in two floating point
registers. What is required is:

1. An 8 bit Op Code.

2. A 4 bit register address for 1st
operand. (Destination)

3. A 4 bit register address for 2nd
operand. (Source)

Instructions that involve register to
register operations are considered to be
of the RR format.

RR Format

r---------T----T----1
I Op Code I Rl I R2 I L-_______ -L-___ ~ ____ J

Bits 0 and 1 of the Op Code indicate
the length of the instruction and the
location of the operands. For the RR
format, bits 0 and 1 are 00.

The 2nd byte of the RR format is
divided into two fields: Rl and R2.
The Rl field gives the register address
of the first operand while the R2 field
is the address of the 2nd operand. The
numbers in the address fields of the RR
formats (and all other formats) indicate
whether the operand is the 1st or 2nd
(and is in some cases, the 3rd) operand.

For most operations, the results replace
the 1st operand.

RX FORMAT: Instructions which are two
halfwords in length may have 3 different
formats. As you recall, if bits 0 and 1
of the Op Code are either 01 or 10, the
instruction is two halfwords in length.
Furthermore if bits 0, 1 of the Cp Code
is 01, it indicates a specific format
known as the RX format.

RX Format

r--------~-----~---~-~------T------l
I Op Code I Rl I X2 I B2 I D2 I l ________ ~ _____ ~ ______ ~ ___ --~------J

Gen.
Reg.

Index
Reg.

Base
Reg.

Displace
ment

In the RX format, the effective
address is generated by adding the con
tents of the base register and the index
register to the displacement. The RX
format is used for storage to register
operations. The destination register
address is specified by the R1 field.

r---------T------T------T------T------,
I ADD I 3 I 7 I 4 I 1024 I ________ ~ ______ ~ ______ ~ ______ ~ ______ J

For the above RX-type instruction,
the storage address is generated by
adding the low order 24 bits of the
contents of registers 7 and 4 and the
displacement value of 1024. The storage
(source) operand is added to the con
tents of register 3 and the sum is
placed in register 3.

RS FORMAT: Storage to Register instruc
tions in which the storage address does
not include an indexing factor are
called the RS format. The 4 bits nor
mally used for the X2 field are used for
a 3rd Operand.

r---------T-----~------T------T------l
I Op Code I Rl I R3 I B2 J D2 I l _________ ~ _____ ~ ____ ~ ______ ~ ______ J

RS Format

The RS Format is identified by a 10
in bits 0 and 1 of the Op Code. The R3
field in the RS Format specifies the
general register used for the 3rd oper
and. In some RS instructions, the R3
field is ignored. An example of an
instruction which uses the R3 field is
an instruction called Load Multiple. In
the Load Multiple instruction, the data
in main storage is loaded (or placed)
into the general registers. Loading
begins with the register specified by
the R1 field and continues consecutively
until the register specified by the R3
field has been loaded.

For Example:

r---------T------T------T------~----l
I Op Code I 4 I 7 I 0 0100 I l _________ ~ _____ ~ ______ i_ __________ J

Load Multiple

In the above example the effective
storage address is 0100. This is
because register 0 is specified as the
base register and its contents are
ignored.

In the above example, registers 4
through 7 will be loaded with the. data
in main storage. As each register can
hold one full word, registers 4-7 will
be loaded with the data in storage loca
tion 0100 through 0115. (Each storage
address represents a byte of data.)

1-41

SI FORMAT: There is another instruction
format that is two halfwords in length.
It is called the 51 Format. This format
is used when one operand is in main
storage and the other operand (called
the immediate operand) is carried in the
instruction itself.

The SI Format looks like this:

r--------~------T------T------'
J Op Code I 12 I B1 I D1 I l _________ ~ _____ ~ ______ ~ ______ J

In the SI Format the sto.rage operand
is the first operand. Its effective
address does not include an indexing
factor. In the SI Format the immediate
operand is fixed in length and is one
byte long.

An example of an SI Format is an
instruction called Move Immediate. This
instruction moves the immediate operand
(12) in the instruction to the storage
location. .

r---------T------T------T------'
I Op Code I 12 I 0 I 1000 I l _________ ~ _____ ~ ____ ~ ______ J

Move Immediate

In the above instruction, the con
tents of the 12 Field will be placed in
storage location 1000. The 51 Format is
also identified by a 10 in bits 0 and 1
of the Op Code, just like the RS Format.

5ince bits 0 and 1 of the Op Code are
the same for both the RS and SI formats,
the remaining bits of the Op Code have
to tell the computer whether it is the
R5 or SI Format.

SS FORMAT: In the four previous
formats, the operands were of fixed
length. Now let's take a look at the
instruction format for variable length
operations.

Variable length operation use a stor
age to storage concept. The instruction
format is called the SS Format and looks
like this:

1':'"42

r--------~-----T--~-----~----T----' I Op Code L I B1 I D1 I B2 I D2 I
l---------~-'~r---~-----,~r---~----J

I I I I I I L-___ J l _________ J l ________ J

Length Location Location
Code of 1st of 2nd

Operand Operand
(Destina- (Source)

tion)

The S5 Format, because it must
address two storage operands, is 3 half
words in length.

Because both operands are in storage
and the instruction is 3 halfwords in
length, the S5 Format is identified when
bits 0 and 1 of the Op Code contain 11.

In the S5 Format, an indexing factor
is not included in the generation of
storage addresses. The 2nd byte of the
SS Format is the length code which con
sists of 8 binary bits. The maximum
value that can be expressed with 8
binary bits is 255.

Because all operands are at least one
byte long, the length code is used to
tell how many additional bytes are need
ed. For instance, a length code of 15
would tell us that the operand is 16
bytes long. If an operand is to be one
byte long, the length code would be
zero.

So far we have been treating the
length code as one 8 bit binary number.
However, we are dealing with two oper
ands. Do they both have to be of the
same length? The answer is not always.
It depends on the particular operation.
If we are concerned with moving a data
field from one area of storage to anoth
er, we only need one length code. If,
however, we are adding one storage field
to another, then we need to know the
length of both operands. For arithmetic
type S5 operations, the length code is
split in two:

r-------T---~----T----T----T----~---,
lOp Codel Ll I L2 IBl I D1 I B2 I D2 I l _______ ~ ____ ~ ____ ~ __ ~ ___ ~ ___ ~ ___ J

t t

I I
I I

Length of--J Length of
1st Oper- 2nd Oper-
and and

With tbe length code split into two 4
bit fields, the maximum length of arith
metic variable length operands is 16
bytes. The effective length of variable
length fields is one more than the
length code.

REVIEW QUESTIONS eN SYSTEM/360
INSTRUCTIONS

1. Instructions are a multiple
of in length.

2. Instruction addresses must be divi-
sible by ____ or a __ ~ ____ __
exception will occur.

3. The first byte of every instruction
is tbe

4. For the following Op Codes (in
hexadecimal code), indicate the
binary bit structure of the Op Code
and its length in halfwords.

Op Code Einary Length
a. lA
b. 56
c. 9C
d. FD

5. All effective storage addresses are
generated by adding a 12 bit to
a 24 bit in one of the
general registers.

6. Some effective storage addresses
are generated by also including a
(n) factor in one of the gener-
al registers.

7. Address generation (does/does not)
change the contents of the general
registers or the instruction in
storage.

8. A program can be relocated in stor
age by changing the contents of
the _______ __

9. The displacement has a range of 0
to bytes.

10. Only general
registers to can be used as
Ease or index registers.

11. What happens if register 0 is spec
ified as a base or index register?

12. Label the fields' of the following
formats.

r--T--T-'
a. RR I I I I

L __ J. __ .L-_J

r--T--T~--T--'

b. RX I I I I I I L __ J. __ J._-.L __ J. __ J

'--T--~T--T--~'

c. RS I I I I I I I L __ J. __ J._-.L __ J. __ J. __ J

r--y-----y--T--y--'
d. SI I I I t I I L __ J. _____ J. __ J. __ J. __ J

,--T--T--y--T--T--T----'
e. SS I I I I I I I I

L __ .L-_.L-_J.~_.L__.L-_J. ____ J

13. For most operations, the r~sults
.replace the pst/2nd) operand.

14. Given the following RR type
instruction:

r-------T---y---,
I ADD I 7 I 4 I
L _______ J.---J.---J

The result of .the addition will
replace the contents of register ____ _

15. In the SI format, the 2nd operand
is located in and is
one ___ long.

16. Only the format uses an index
register for address generation.

17. Only the ___ format involves varia-
ble length data.

18. What is the relaticnship between
the number in the length code of
the SS format and the number of
bytes in the data field?

INSTRUCTION SEQUENCING AND BRANCHING

•

•

•

Unless otherwise specified, instruc
tions are handled sequentially.

Instructions are divided into two
parts: Op Code and address.

Instructions are fetched from main
storage during I-time and executed
during E-time.

1-43

Coded information which causes a compu
ter to perform a specific task (such as
Add or Subtract) is called an instruc
tion. A series of instructions used to
solve a problem on a computer is called
a program. A program is sometimes
referred to as a stored program because
of the fact that it is kept in main
storage when it is executed. The
instructions of the stored program are
read out of main storage, one at a
time: Each instruction is decoded in
the control section of the Central Proc
essing Unit (CPU).

After being decoded in the control
section of the CPU, the instruction is
then executed in the Arithmetic Logic
Unit (ALU) section of the CPU. For
every instruction, there are two periods
of time. The time during which the
instruction is read out (fetched) from
main storage and interpreted is known as
I-time. The operation specified by the
instruction is performed during E-time
(or execution time). Data is the name
generally given to information .read out
of main storage during E-time. Instruc
tions are information read out of main
storage during I-time. An instruction
may be treated as data and changed if it
is read out during E-time.

The instructions of a stored program
are generally read out and executed in a
sequential manner. The sequential man
ner of instruction fetching and execu
tion can be changed by instructions
known as branch instructions.

In the System/360there is no clear
division between I-time and E-time.
That is, before the instruction has been
completely read out and analyzed by the
control section, some part of the execu
tion may have already been started. But
for purpose of our discussion, we can
think of I-time as being separate from
E-time.

Instructions are generally thought of
as having two parts. One part of the
instruction is used to tell the computer
what to do (such as Add or Branch) • The
portion of the instruction that tells
the computer what to do is known as the
Cp Code. The othe.r portion of the
instruction generally tells the computer
where the data is located. For this
reason it is called the address portion.

The address portion of an instruction
may contain other information besides

1-44

data addresses. In a branch
instruction, it would give the address
of the next instruction to be executed.
In some instructions, the data to be
operated on may be contained in the
address portion. Let's continue now
with the study of the System/360 and its
Program Status Word (PSW).

INSTRUCTION ADDRESS FIELD

•

•

•

The Program Status Word (PSW) is a
double-word contalning 8 bytes, or
64 bits of control and status infor
mation.

The PSW is maintained as part of the
internal machine circuitry_

The address of the next sequential
instruction to be fetched from main
storage is contained in bits 40-63
(24 bits) of the PSW.

In the System/360 there is a doubleword
of information used to indicate the
status of the program as well as to
control the program. This doubleword is
called the Program Status Word (PSW).
The PSW includes status information such
as:

1. The location of the next instruc
tion.

2. Whether an arithmetic operation has
resulted in a positive or negative
answer. Possibly the operation
ended with a zero balance or an
overflow.

The PSW is a doubleword and contains
8 bytes of information. Like all dou
blewords, the bits of the PSW are num
bered 0 to 63 from. left to right.

0-----------------63

r---------------------,
IPROGRAM STATUS WORD I l _____________________ J

For right now let us examine only one
portion of the PSW.

The location of the next instruction
to be fetched from main storage is indi
cated by bits 40-63 of the PSw. As you
learned earlier, main storage requires
binary addresses. Bits 40-63 of the PSW
contain the 24 bit binary main storage
address of the next sequential instruc
tion.

o 39 40 63
r---------T----------------------------,

I I l _________ ~ ____________________________ J

24-Bit Instruction Address

The PSW is a doubleword which
reflects the status and controls the
program currently being executed. For
this reason, it is often referred to as
the current PSW.

Before examining more of the current
PSW, you may be wondering where this
doubleword is kept. For one thing, the
current PSW does not use any of the 16
general registers or addressable loca
tions in main storage. It is kept in
some internal area or areas of the
System/360 that are not addressable by
the program. Although the current PSW
may be scattered throughout the CPU, it
is considered as one doubleword of
information.

The instruction address portion of
the current PSW must be updated for each
instruction that is fetched and
executed. That is, if an RR type
instruction is fetched from location
1000, the instruction address portion of
the current PSW must be updated. Since
an RR type instruction is one halfword
in length, the location of the next
sequential instruction would be 1002.
Thus the instruction address portion of
the PSW must be updated to contain 1002.

After the RR type instruction at
location 1000 has been executed, the
instruction address portion of the PSW
which contains 1002, will be used to
fetch the next instruction. If the
instruction at location 1002 is the RX
type, the instruction address portion of
the current PSW will then be changed to
1006.

Since instruction length is always a
multiple of halfwords, the instruction
address portion of the current PSW is
always updated by some multiple of 2.
The instruction address in the current
PSW is increased by 2, 4, or 6 depending
on bits 0 and 1 of the current
instruction's Op Code. For example, if
bits 0 and 1 of the current
instruction's Op Code contain 11, the
instruction address in the current PSW
will be increased by 6.

1-45

INSTRUCTION BRANCHING

• A branch instruction is used to make
program decisions"

•

•

A branch instruction provides a way
to leave one instruction sequence
and branch to another instruction
sequence.

The instruction address field of the
current PSW is changed to the branch
to address when the program
branches.

You should be familiar with the use of
flow charts in writing :a, program. Deci
sion blocks in a program are represented
by a diamond shaped symbol.

The use of this symbol in a program
represents a decision as to what to do
next. Should the program continue with
its present sequence of instructions, or
should it branch out to another sequence
of instructions? Sometimes a decision
bloek represents leaving a sequence of
instructions. Xn this case the program
is trying to decide which of two or more
new sequences to branch to.

AS you know the instruction address
portion of the current PSW is used to
fetch the next sequential instruction.
What happens to the instruction address
portion of the current PSW when a branch
is taken? Whenever a branch is
executed, the contents of the instruc
tion address portion of the current PSW
are replaced by the address of the
instruction being branched to,

For Example:

If an RX instruction at location 1000
is fetched, the instruction address
portion of the current PSW would normal
ly be changed to 1004. If howeVer, the
instruction at 1000 says to branch to
location 2000, the instruction address
portion of the current PSW will be
changed to 2000.

In the above example bits 40-63 (the
instruction address) of the current PSW
might actually be updated to 1004 and
then changed to 2000. This depends on
the particular branch-type instruction.
However, at the time the system decides
that it will branch, the address of the

1-46

branch to location is placed in bits 40
to 63 (instruction address portion) of
the current psw.

CONDITION CODE FIELD

•

•

•

•

The condition code occupies bits 34
and 35 of the currentPSW.

The 4 combinations of the condition
code'are 00, 01, 10 and 11.

The condition code indicates the
results of instructions such as add,
subtract, compare, etc.

Not all instructions affect the
condition code.

The condition code is located in bits 34
and 35 of the current PSW.

34,35
I I
I I
I I

o ---33 I I 40-----------38
r---------T4-~T--T---------------------,
I I C I I Instruction I
I I C I I Address I l _________ ~ ___ ~ __ ~ ____________________ J

Condition Code

The condition code can have four
possible bit combinations:

1) 00
2) 01
3) 10
4) 11

The condition code is set to one of
its four possible combinations after an
instruction has been executed. Then it
is placed in the condition code portion
of the current PSW. Not all instruc
tions affect the condition code.

One of the uses of the condition code
is to indicate the result of arithmetic
operations such as add or subtract.
There are 4 possible results of an alge
braic add or subtract. The result could
be a 1) positive number, 2) negative
number, 3) zero balance or, 4) an over
flow. The condition code reflects the
results with these settings:

Condition
Code

00
01
10
11

Arithmetic
Results

zero balance
< zero (negative)
>zero (positive)
overflow

The condition code is set at the end
of algebraic add or subtract operations
(either decimal or binary). The condi
tion code in the PSW retains this set
ting until the end of the next instruc
tion that can change the condition code.
Remember that not all instructions
affect the condition code.

Another use of the condition code is
to indicate the result of a compare
operation. A compare operation consists
of comparing the 1st operand to the 2nd
operand. The condition code is set to
indicate the result. Neither operand is
changed. The condition code is set and
indicates whether the 1st operand is
equal to, less than, or greater than the
2nd operand as follows:

Condition Code

00
01
10

Comparison

equal
low
high

Note that a condition code setting of
11 is not possible after a compare oper
ation. Note also that the condition
code is used to indicate more than just
the result of an algebraic or comparison
operation. Actual meaning of the condi
tion code depends on the instruction it
represents.

CONDITION CODE BRANCHING

• The instruction that tests the con
dition code is called Branch on
Condition.

• Branch on Condition can have either
the RX or RR format.

•

•

•

The Rl field is used as the mask
field t'o test for a specif ic setting
of the condition code (one bit set
in mask field) or a multiple condi
tion code setting (two or more bits
set in mask field) •

A mask field of 0000 results in a
no-op instruction.

A mask field of 1111 results in an
unconditional branch instruction.

One of the instructions of the
System/360 is an instruction called
Branch on Condition. This instruction
causes the system to examine the condi
tion code and branch if its setting
matches that of a code in the Branch on
Condition instruction.

The Branch on Condition instruction
can be either in the RR or the RX
format. In either case the Rl field is
coded so that the condition code can be
tested.

r------T----T----,
Op Codes ttl t

in t 07 I R 1 I R2 t Hexadecimal l _____ -L-__ -i ____ J

·Branch to· location is in
general register specified
by R2 field.

r----~~~--T----T----T----'
J 47 tRl tX2 tB2 ID2 I l ______ ~ ____ i_ ___ ~ ____ ~ ____ J

Branch on Mask Effective
Condition Field Address is

Branch to
location

The Rl field in the Branch on Condition
instruction is referred to as the mask
field. The condition code is tested by
being matched against the mask field.

As you know, the condition code can
mean many things. For instance, it
could indicate a low or equal compare, a
negative arithmetic result, an over-flow
and so forth. However, it can have only
one setting (00, 01, 10, 11) at anyone
time. This setting can represent only
one thing depending on the last instruc
tion that affected the condition code.

The mask field is tested against the
condition code according to the follow
ing chart:

Mask Field

1000
0100
0010
0001

Condition Code

00
01
10
11

As you can see from the above any of
the possible condition code settings can
be tested by setting the appropriate bit
of the mask field. If bits 8-11 of a
branch of condition code contain 1000, a
branch would occur only if the condition

1-47

code had a setting of 00. If the condi
tion code were 01 and the mask field
were 0010, a branch would not occur.

Sometimes the four possible settings
of the condition code are referred to as
decimal digits.

Condition Code Referred To As

00
01
10
11

o
1
2
3

The bits of the branch on condition
mask field correspond to the condition
code settings in a left to right
fashion.

8--------11

r---·----------,
J1 1 1 11 Mask Field L _____________ J

0, 1, 2, 3 Condition Code

To test for a specific condition code
setting, the corresponding bit of the
mask field must contain a 1.

If the mask field contains 0000 none
of the possible condition code settings
will be tested. Therefore, a branch
never occurs if the mask field contains
0000.

If the mask field contains 1111, all
or any of the possible condition code
settings is tested. Because the condi
tion code always contains one of its
four possible settings, a mask field of
1111 always results in a branch.

SUMMARY:

With its 4 bit mask field, the branch on
condition instruction has many uses:

a. It can be used as a no-op instruc
tion, by having a mask field of
0000.

b. It can test for a specific result
(such as an equal compare) by set
ting one of the bits of the mask
field-r1000) •

c. It can test for a multiple result
(such as an equal or low compare)

1-48

by setting tWG or more bits of the
mask field (1100).

d. It can be used as an unconditional
branch by having a mask field of
1111.

REVI.EW QUESTIONS ON INSTRUCTION
SEQUENCING AND BRANCHING

1 • PSW is short for

2. The PSW is bits long.

3. The address of the next instruction
to be fetched is contained in bits

to of the PSW.

4. After an instruction has been
fetched (read out) the instruction
address portion of the PSW is usu-
ally incremented by ____ ,
or •

5. The amount to increase the instruc
tion address in the PSW is deter-
mined by bits , _____ of the
instructions

6. The PSW which is being used to
fetch instructions is sometimes
referred to as the • • PSW.

7. This PSW is located in (main
storage/ a general register/some
type of internal register or stor
age area) •

8. Branching is accomplished by
replacing the in the
PSW with the ·Branch to· ___ a

9. The condition code is in bits ___ ,
of the PSW.

10. The condition code has __ _ possi-
ble settings •.

11. The condition code in the PSW is
changed by (all/some) instructions
that are executed.

12. Indicate the condition code setting
after the following results:

Algebraic
Add

zero
<Zero
>zero

overflow

Condition
Compare Code

Equal
Low
High

13. Following an algebraic add instruc
tion. the following -Branch on
condition- instruction would test
for what result?

r---~-----T-----l
Branch on I 07 I 4 I 5 I Condi tion .l ____ .L.-__ .&. _____ J

ANSWER:

14. Following a compare instruction.
the following instruction would
test for what result?

r----~---T----l
Branch on I 07 I C I 8 I Condition l-___ .&. ____ .L.-___ J

ANSWER: ----------

15. The following instruction would
(always/never) result in a branch.

r---~-·----T----'
Branch on I 07 I F I 1 I Condition l ____ .&.-____ .L.-__ J

ANSWER:

16. If the following instruction
resulted in a branch. the instruc
tion address in the PSW would be
replaced by __________ ~

r---~-----T-----'
Branch on I 07 I 8 I 5 I
Condition l ___ -.&..----.A. _____ J

11. If the following instruction
resulted in a branch. the instruc
tion address in the PSW would be
replaced by __________ ~

r---~-----T-----T-----T---'
Branch on I 41 I 8 I 4 I 7 10001 Condition l ___ -.&.-____ .L.-___ .&. ___ . __ .&. ___ J

THE SYSTEM/360 AND INTERRUPTS

THE SUPERVISOR CONCEPTS

•

•

•

•

Extensive programming features dic
tate the need for an operating sys
tem.

In an operating system environment,
control programs perform such func
tions as program loading, storage
protection, I/O operations, inter
rupt handling, job flow, and opera
tor communications.

One control program (the
supervisor) , remains in core storage
at all times.

Basic fUnctions of the supervisor
program are 1/0 control and inter
rupt handling.

A program is a sequence of instructions
designed to solve a problem. A problem
typical of those solved by a stored
program is a payroll application. A
payroll problem would consist of (1)
getting an employee'S record, (2) calcu
lating gross and net pay, and (3) put
ting the results out in the form of a
pay check. The payroll problem would
then get the next employee'S record and
repeat the process. This sequence of
instructions would continue until all
employee's records had been processed.
Admittedly. this is a gross simplifica
tion of a payroll problem. However,
most programs can be broken down into
the three operations of (1) get record,
(2) process record, and (3) put record
into an output file. These problem
solving programs are referred to as
problem programs.

1-49

r----, I ,
I

I I r-1-------.A.-,
I Get ,
I..-----T---J

I
I
I r----i ---,

,Process ,
L ____ ~----J

I
J
I r----1-----,

I Put I
L ___ ~----J

I
I I L ________ J

Problem Program Logic

Another exa~ple of a Problem Program
is an assembly program. Here the prob
lem is differen~. But the three opera
tions are basically the same. The prob
lem consists of (1) getting a symbolic
(source language) statement, (2) proc

essing it by translating the statement
into machine language and (3) putting
the results in the output file (object
program).

1-50

,---, I
I I I
I I I
I I r
I r-i------------.L---,
I I Get Source Language I
I I Statement I
J
I
I , ,
I
I
I
I
I
I
I
I
I
I

l----------T----------J

I
I
I

r----------i-------~---,
I Process Statement I
I translate into I
I Actual Language I
L ________ ~ __ -------J

J
J
I

r---------.A.-----------,
J Put Results in I
I Object Program ,

J l----------T-----------J L ___________ J

During the past years, data process
ing machines have been developed with
faster and faster internal processing
speeds. As a result, the execution
times for these problem programs have
been continually reduced with no corres
ponding reduction in the time it took
for an operator to load in the next
problem program and manually set up its
input data. In some data processing
installations, the average ·set up· time
was about equal to the average
"execution· time. In other words, the
data processing system was idle about
half the time while the operator was
"Setting up· for the next problem pro
gram. Clearly this was an ineffecient
way to control an installation. In an
attempt to reduce this idle time and
keep the system running, installation
began to use stored programs to control
the execution of problem programs.
These programs in turn were called £2B=
trol Programs. Other names used were
·monitors· of ·supervisors." These
Control Programs were at first written
only for the requirements of a particu
lar installation. Later as the similar
ities between control programs became
obvious, IBM began to supply generalized
cqntrol programs which could be then
tailored to the requirements of each
installation. The simplest type of
control program would be used to super
vise the loading of problem programs.
It would operate like this:

1. An input tape would be prepared
containing the problem programs and
their associated data. See Figure 1-26.

2. The operator would load the control
program into main storage.

3. The control program would load in
the 1st problem program and then
pass control (via a branch) to the
problem program.

4. The problem program would read in
its data and perform its assigned
task.

5. When the problem program is fin
ished, it would not issue a halt
instruction. Instead it would pass
control (by branching) back to the
control program.

Read in by Problem
Program

DATA

PROBLEM
PROGRAM

Read in Manually by
Operator

Figure 1-26. Sample Control Program

6.

7.

The control program would then load
in the next problem program and
pass control to it.

This operation would continue until
all problem programs had been exe
cuted.

Notice several things about the use of a
control program in the above example:

1. The system never halted between
jobs.

2. The control program remained in

3.

main storage as the problem pro
grams were executed.

The control program served only as
a linkage between jobs. Its only
fUnction was to bring in a new
problem program as each job was
finished.

In the simplest use of
program, it was used only
the next problem program.
programs handled their own
operations (Figure 1-27).

the control
to bring in

The problem
input-output

MAIN STORAGE
Control __ -+-

Dato » Read ----

Write ---

CONTROL
PROGRAM

PROBLEM
PROGRAM

C t I P Rd Prog. A Rd Prog. B
on ro rog. S 1 t It... ___It

Problem Prog. • , ... -----..
Prog. A Executed Prog. B Executed

Figure 1-27. Basic Control Program

Rd Prog. C
5

1-51

This is one example of the use of a
control program. Its functions were
limited. As such the entire control
program could be left in main storage.
Other functions can be included as part
of a control program. One such function
is the initiation of input-output opera
tions. The problem program is mainly
interested in processing data. The
actual re,ad and write operations neces
sary to transfer data between the input
output devices and main storage can be
handled by the control program. (Figure
1-28) •

Problem Program Control Program

~-==-------~vi

PROCESS

-~ ----==== WRITE I/O ---- ---
BRANCH

Figure 1-28. Control Program Handling I/O

Read

MAIN STORAGE

CONTROL
PROGRAM

PROBLEM
PROGRAM

I/o for Prog. A Data

In this function of a control
program, control will pass back and
forth between the problem and control
programs during the execution of the
problem program.

This differs from the original
example of using the control program
just to load in new problem programs.

In that example, the only time the con
trol program was in control was between
jobs. In our new example, the control
program will not only read in new prob
lem programs when necessary, it will
also during the execution of the problem
program, be used to start the necessary
I/O units for input-output data (Figure
1-29). So in the control program con
cept, there are always two programs in
main storage: the control program and a
problem program.

Control Prog. Rd Prog. A'--_ ?L ?LL-__ ...J~L. __ ...,jtRd Prog. B
Problem Prog. , t n fl_ fl_ .

EXECUTE PROGRAM A

Figure 1-29. Control Program Sequencing

1-52

The control program can be given
other functions as well. In fact, some
control programs have reached a very
high degree of sophistication. Of
course, the more functions that a con
trol program has, the more main storage
space it requires. This leaves less
storage for problem programs. This
problem is somewhat solved by placing
those sections of the control program
that have infrequent usage on a high
speed fast access I/O device such as a
disk storage unit. Only those sections
that are necessary to supervise the
running of problem programs are kept in
main storage. The portion of the con
trol program that resides in main stor
age is known as the supervisor. The
supervisor program calls in other sec
tions of the control program when neces
sary.

In the simplest use of the control
program, it was used only to bring in
the next problem program. The problem
programs handled their own input-output
operations (Figure 1-27).

In review then, control programs have
come in general acceptance because of
the need to reduce machine idle time and
manual intervention and to increase the
overall efficiency of a data processing
installation.

INTERRUPTS AND THE PSW

• An interrupt terminates the current
sequence of instructions and causes
a machine forced "branch" to the
supervisor program.

•

•

An interrupt stores the current PSW
in main storage, and fetches a new
PSW from main storage.

Processing resumes at the instruc
tion address specified by the
instruction address portion of the
current PSW just loaded.

• There are five classes of
interrupts. Each has an old and new
PSW locations in main storage.

So far we have discussed the use of a
control program to bring in new problem
programs when the old ones are finished.
Because there is no halt instruction in
System/360, a problem program when fin
ished must be able to somehow branch
into the supervisor. Also when a
machine or program check occurs, an
automatic branch to the supervisE>r usu
ally occur.

These automatic branches into the
supervisor are called interrupts. That
is, the current sequence of instructions
is interrupted and an automatic branch
is taken to a new sequence of instruc
tions. Both machine checks and program
checks can cause automatic branches or
interrupts. When a problem program is
finished, it signals the supervisor via
an interrupt.

An interrupt is quite similar to a
branch. However, it does much more than
a simple branch instruction. A branch
instruction only replaces the instruc
tion address portion of the current PSW.

r------T--~-T----T----l
Instruction I Branch I X2 I B2 I D2 I L ______ ~ ___ ~ ___ ~ ___ J

I I
L-----------T--J

Effective I
Address I

I
I r--------J.--,

I I
I 40 631

r-----------------T--------------,
PSW I I Instruction I

, I Address I
L __________ -------.L------------J

When an interrupt occurs: (1) the
current PSW is placed in main storage
where it's called old PSW and (2) a new
PSW is brought out of main storage and
becomes the current PSW.

1-53

r--------------,
1 1
I r--------, 1
I 10Id PSW 1+-+---(1)-----, I l ________ J I I

I 1 I
1 r--------, I .-----------,
1 INew PSW 1--t---(2)---->ICurrent PSWI I l ________ J I l ___________ J

1 I L ______________ J

Main Storage

Assuming that the instruction address
portion of a new PSW contains 1096, the
1st instruction after an interrupt would
be at location 1096.

By now you should realize these new
and old PSW·s are in fixed doubleword
locations in main storage. Just where
are these locations? The answer will
depend on just what class of interrupt
it is. There are five distinct classes
of interrupts:

1. External

2. Supervisor

1-54

Can be caused by
pressing an interrupt
key on the operator's
console.

Caused by an instruc-

3. Program

4. Machine

5. 1/0

tion known as super
visor call.

'':aused by a program
check.

Caused by a machine
check.

Caused by an Input
Output operation.

Each of the above five class.es of
interrupts has its own main storage
locations for new and old PSW's as
follows:

Interrupt

External
Supervisor
Program
Machine
1/0

Old PSW

0024
0032
0040
0048
0056

New PSW

0088
0096
0104
0112
0120

For example a machine check causes the
PSW to be placed in location 0048 and a
new PSW to be brought out from location
0112. Notice that these locations are
all divisible by eight since they con
tain doublewords, and must reside on
doubleword boundaries. Also, each new

Interruption Source Interruption Code Mask ILC Instruct i on
Identification PSW Bits 16-31 Bits Set Execution

Input/Output (Old PSW 56, New PSW 120)

Multiplex Channel 00000000 aaaaaaaa 0 x Complete
Se lector Channe I 1 00000001 aaaaaaaa 1 x Complete
Se lector Channe I 2 00000010 aaaaaaaa 2 x Complete
Selector Channel 3 00000011 aaaaaaaa 3 x Complete
Selector Channel 4 00000100 aaaaaaaa 4 x Complete
Se lector Channe I 5 00000101 aaaaaaaa 5 x Complete
Se lector Channe I 6 00000110 aaaaaaaa 6 x Complete

- - '---- --,--
Program (Old PSW 40, New PSW 104) a = VO Device Address

Operation 00000000 00000001 1,2,3 Suppress
Privi leged Operation 00000000 00000010 1,2 Suppress
Execute 00000000 00000011 2 Suppress
Protection 00000000 00000100 0,2,3 Suppress/Terminate
Addressing 00000000 00000101 0,2,3 Suppress/Terminate
Speci fi cation 00000000 00000110 1,2,3 Suppress
Data 00000000 00000111 2,3 Terminate
Fixed-Point Overflow 00000000 00001000 36 1,2 Complete
Fixed-Point Divide 00000000 00001001 1,2 Suppres!V'Comp lete
Decimal Overflow 00000000 00001010 37 3 Complete
Decimal Divide 00000000 00001011 3 Suppress
Exponent Overflow 00000000 00001100 1,2 Terminate
Exponent Underflow 00000000 00001101 38 1,2 Complete
Signifi cance 60000000 00001110 39 1,2 Complete
Floating-Point Divide 00000000 00001111 1,2 Complete

Supervisor Call (Old PSW 32, New PSW 96)

Instruction Bits 00000000 rrrrrrrr 1 Complete 1---------r = Bits 8-15 of Supervisor
Call Instruction

External (Old PSW 24, New PSW 88)

External Signal 1 00000000 xxxxxxxl 7 x Complete
External Signal 2 00000000 xxxxxxlx 7 x Complete
External Signal 3 00000000 xxxxxlxx 7 x Complete
External Signal 4 00000000 xxxxlxxx 7 x Complete
External Signal 5 00000000 xxx 1 xxxx 7 x Complete
External Signal 6 00000000 xxlxxxxx 7 x Complete
Interrupt Key 00000000 xlxxxxxx 7 x Comp'lete
Timer 00000000 lxxxxxxx 7 x __ Complete ___

x = Unpredictable
Machine Check (Old PSW 48, New PSW 112)

Machine Malfunction 00000000 00000000 13 x Terminate

Figure 1-30. Interruption Code and Action Chart

PSW is located 64 higher than the cor
responding old PSW.

Although an interrupt may be initiat
ed by an instruction (such as when the
instruction supervisor call initiates a
supervisor interrupt), the actual stor
ing and loading of the PSW is done auto
matically by the internal ci~cuitry of
the System/360.

Although we state that interrupts
occur only at the end of an instruction
and never in the middle of one, this
might be a little misleading_ It is
definitely and absolutely true that the
current instruction will be completed
before an I/O, external, or supervisor
call interrupt is taken_ In the case of
program and machine interrupts (which
indicate programming and hardware
errors, respectively), the interrupt

1-55

still occurs at the end of the instruc
tion. However, in these two cases, the
end may be forced by suppressing the
instruction·s execution where a program
ming error is detected during instruc
tion fetch time or by terminating its
execution when a programming or machine
error is detected during execution time
(Figure 1-30). The branch is effected
automatically by the internal circuitry
of System/360. The current PSW is
placed in a fixed location in main stor
age and becomes the old PSW. The old
PSW gives the specific reason for the
interrupt and also provides a return to
the interrupted program. A new PSW is
fetched from a fixed location in main
storage and becomes the current PSW.
The new PSW provides an entry into the
correct routine in the supervisor pro
gram.

r---
I

r---------, I
IOld PSW I----,·-----~a. Gives reason

for interrupt
Provides
return to
Problem
Program

l _______ J , I

I lb.
I I
I I
I I J '-__

I
,-1----------,
ICurrent PSWI+---Controls
lr----------J Program
I
I
I
I
I
I r--------, I ,New PSW , ___ J. ____ _

'-_______ J Provides entry
into supervisor
program

PSW INSTRUCTION LENGTH FIELD: As you
will recall from our earlier discussion
of the PSW, the instruction address
portion of the PSW is used to read out
an instruction. Cnce the instruction
has been read out, the instruction
address portion of the PSW is updated so
as to point to the next instruction.
Interrupts can only occur after an
instruction is finished. Therefore, the
instruction address portion of the old
PSW does not contain the address of the
last instruction executed. Instead it
will contain the address of the next
instruction that would have been execut
ed if the interrupt had not occurred.

1-56

When the interrupt is complete, the
supervisor may elect to return to the
point of departure from the machine
language program. It does this by look
ing at the old PSW from the last
instruction executed before the inter
rupt occurred. In some cases, the
supervisor may have to do that last
instruction over. Because the instruc
tion address portion of the old PSW had
been updated before the interrupt
occurred, and because instruction
lengths vary, the supervisor needs addi
tional information to derive the
instruction address. This additional
information is contained in bits 32 and
33 of the PSW and is called the instruc
tion length code.

r------~--T---T---T-------------------,
I 1 I I I I ,
I I I c, I Instruction I
I I L I I J Address I
I I leI I I
I IC I I I I
l------i-T-i-T-~---~------_----------J

J I
I l----Bits 34, 35--Condition
I C~e

I
l--------Bits 32,33:

Instruction
Length Code

When the supervisor retrieves the old
PSW to determine where to re-enter the
machine language program the instruction
length code indicates what value must be
subtracted from the old PSW instruction
address field to produce the address of
the last op code executed before the
interrupt occurred. The instruction
length code is valid only on certain
types of interrupts. It is the
responsibility of the supervisor to
determine if this information is to be
used.

Bits 32-33 of the PSW are set to 1,
2, or 3 depending on the length of the
instruction, before the current PSW is
stored as the old PSW.

PSW Bits 32-33

01
10
11

Instruction Length

1 Halfword
2 Halfwords
3 Halfwords

For example, an RX-format instruction
would cause the instruction length code
in the PSW to be set to 10 (2).

If the instruction address portion of
the 010 PSW contains 4000 and the
instruction length code contains 3, the
op code of the last instruction prior to
the interrupt is located at 3994.

There are five classes of interrupts.
Each class of interrupt has its own
hanaling routine. Each of these inter
rupt hanaling routines handle the inter
rupts in a aifferent way. Not all of
them are interested in what the last
instruction executea was. In the case
of program, machine or supervisor inter
rupts, an instruction in the problem
program causea the interrupt.

In the case of external and I/O
interrupts, the problem program dia not
cause the interrupts. As a result, the
supervisor could care less what instruc
tion was last executed in the problem
program. It would only want to be able
to return to the next instruction.

PSW INTERRUPTION CODE FIELD:

Another field in the PSW that is of
value to the supervisor is the interrup
tion code field. It appears in bits
16-31 of the PSW.

o 15 16 31 40 63
r----------T-------T-T-T------T--------,
I IInter- I I I I Instruc-I
I I rupt I I I I tion Aa- I
I ICode I I I I dress I
l----------~-------~r~ri------~--------J

I I
I I I L ____ Condition
I Code
I L______ Instruction

Length Code

When an interrupt occurs, the current
PSW is stored in one of five locations
reserved for the old PSW. It is at this
time that the interruption code of the
current PSW is set.

r-------------------,
1 Interrupt I
I Occurs I
I I L---------T---------J

I
I
I

r--------~---------,
I Set Instruction I
I Length Code and I
lInterruption Code I L ___________________ J

I
I
I

r---------~---------,
I Store PSw I
I in I
lold PSW location I L ___________________ J

I
I
I

r---------~---------,
I Fetch I
1 new PSw I
I I l ___________________ J

The five classes of interrupts tell the
supervisor only the general reason for
the interrupt. For instance, the fact
that the new PSW was brought out of
location 0040 tells the supervisor that
the interrupt was causea by a program
check. The supervisor still needs to
know what type of program check
occurred. This is the fUnction of the
interruption code in the PSW. By exam
ining the interruption code in bits
16-31 of the old PSW, the program check
routine in the supervisor can tell
specifically whether it was a specifi
cation, addtessing or some other type of
exception. In the case of I/O inter
rupts, the interruption code tells the
supervisor what channel and I/O unit
causea the I/O interrupt. (Figure
1- 30) •

For example, when a program interrupt
is caused by a fixed point overflow, the
interruption code of the old PSW con
tains 0000000000001000. (Refer to Fig
ure 1-30.)

For brevity's sake, the interruption
code is often represented as 4 hexadeci
mal digits:

1-57

Binary
0000000000001000

Hexadecimal
0008

There are five old PSW's in main
storage. How does the supervisor know
which one to use? The answer is of
course, that each of five new PSW's
point to different routines in the
supervisor. These routines in turn use
the old PSW that corresponds to the
particular class of interrupt. For
instance; the program check routine in
the supervisor uses the old PSW at loca
tion 0040 while the supervisor call
routine will use the old PSW at location
0032.

InterruEt Old PSW New PSW

External 0024 0088
Supervisor 0032 0096
Program 0040 0104
Machine 0048 0112
I/O 0056 0120

In the case of an interrupt caused by
a machine check, the PSW that was con
trolling the program prior to the inter
rupt is stored automatically in location
0048. Then the doubleword at location
0112 is brought out and becomes the
current PSW. This PSW directs the sys
tem to that area of the supervisor pro
gram that handles machine checks. The
machine check handling routine of the
supervisor is written so that the dou
bleword at location 0048 is processed as
the old PSW.

In the case of an interrupt caused by
a program check, the current PSW at the
time the interrupt occurs is stored
automatically as the old PSW at location
0040. Then the doubleword at location
0140 is brought out and becomes the
current PSW. This PSW directs the sys
temto that area of the supervisor that
handles program checks. The program
check handling routine of the supervisor
is written so that the doubleword at
location 0040 will be processed as the
old PSW.

In the case of an interrupt caused by
the instruction supervisor call, the
current PSW (prior to the interrupt) is
stored in location 0032. Then the dou
bleword at location 0096 is brought out
and becomes the current PSW. This PSW
directs the system to that portion of
the supervisor which handles supervisor
calls. One way a problem program could
notify the supervisor that the program
is finished is to issue a supervisor

1-58

call instruction. Thus the last
instruction of a'problem program would
probably be a supervisor call instruc
tion.

If the interrupt key on the
operator's console is pressed, an exter
nal interrupt occurs. In this case, the
current PSW is automatically stored at
location 0024. On an e.xternal
interrupt, the doubleword at location
0088 is brought out and becomes the new
current PSW.

An interrupt may also be caused by
the end of an I/O operation. I/O inter
rupts generally occur at the end of an
I/O operation. Most I/O operations are
overlapped with processing. The I/O
interrupt is an efficient way of sig
nalling the supervisor that the I/O
operation is finished. An I/O interrupt
causes the psw to be sto.red at location
0056. The new PSW at location 0120 is
brought out and becomes the current PSW.
This PSW directs the system to that
section of the supervisor program that
handles I/O interrupts.

Problem Prog.

Supervisor
Prog. I/O
Unit

t

I
I

t t

t t

I --------- I
I I Supervisor _~ _____ J I tlSupervisor

Call Inter-
rupt

I IHandles I/O
I !Interrupt
I I

Supervisor I/O Operation
Starts I/O OVerlapped
Operation with

Processing

At the end of the I/O operation, the
I/O interrupt causes the PSW used in the
processing of the problem program to be
stored in location 0056. The doubleword
at location 0120 is brought out of main
storage and used as the PSW to control
the processing of the I/O interrupt
routine in the supervisor program.

LOAD PSW INSTRUCTION

• The Load PSW (LPSW) instruction is
USED TO RETURN TO THE PROBLEM PRO
GRAM AFTER AN INTERRUPT.

• The Load PSW is in the SI format.
The 12 field is ignored.

• A doubleword is loaded into the
cur.rent PSW from an address in main
storage by the Load PSW instruction.

After the end of the I/O interrupt rou
tine in the supervisor, it is desirable
to return to processing the problem
program. Simply branching back to the
problem progra~ would not be desirable.
A branch instruction only effects the
instruction address portion of the PSW.
Other.parts of the PSW are also impor
tant 1n controlling the processing of a
program. For one thing, the condition
code setting in the controlling PSW for
the I/O interrupt routine would not
necessarily be the same as it was before
the I/O interrupt occurred. It would be
best to be able to give control back to
the problem program with the same PSW
the problem program was using when the
I/O interrupt occurred. This can be
done in the System/360 with an instruc
tion known as Labd PSW. This instruc
tion is used by the supervisor to load
the old PSW back in the system's control
section. This is the last instruction
in the supervisor's interrupt handling
routine. Note that this return to the
problem program by replacing the PSW is
done by means of an instruction (load
PSW) and is not automatic as was an
interrupt.

r--------, (1)
1 Old PSW 1<---,
-------T-- I

1 I
1 I
1 I
I I
1 I
I I

r--->
I (1)
I
I

1 1 I
I r--~-----~-,

(3) L __ > I Current PSW 1 L ___________ J

t I I

r-----------,

Problem
Program

L ___________ J

I I r----------,
I I (1) I Interrupt I
I L ___ > I I
I I Handling I

,------, I I Routine I
I New PSW I----J (2) I I L _______ J I I

I (Supervisor)
10ld PSW I

(3) I Load PSW 1 L-_________ J

As can be seen from the above
diagram, interrupt action is as
follows:

1. At the time of the interrupt, the
current PSW which is controlling
the problem program is stored in
the Old PSW location. The Old PSW
gives the reason for the interrupt.
The instruction address portion of
the old PSW indicates the point at
which we left the problem program.
This is done automatically by
machine circuits.

2. A new PSW is then brought out of
storage and becomes the current
PSW. This new PSW points to the
first instruction of the interrupt
handling routine which is part of
the supervisor program.

3. After the interrupt has been taken
care of, the last instruction of
the interrupt handling routine will
be load PSW. This causes the old
PSW to become the current PSW and
we are baok in the problem program.

1-59

The Load PSW instruction is of the SI
format:

r---------T--------------T----T----,
1 Op Code I 12 I B 1 I 01 I L-________ i ______________ i-___ i-___ J

In the Load PSW instruction, the 12
field is ignored.

r-----T--------~--------~-------,
I 82 I 12 I B1 I 01 I L _____ i-_______ -i ________ i-________ J

ttl
I I I I Load PSW I l _______________ J

Op Code I I
in Hex I I

Ignored I
I
I Effective address of

double word that is
to be loaded as the
PSW. Note that the
current PSW at the
time this instruction
was fetched is not
stored anywhere and
is therfore lost.

The Load PSW instruction can be used
by a supervisor program any time it
wants to change the current PSW. The
main uses is to return to the problem
program after an 1/0, supervisor call,
or external interrupt has been serviced.
It could also be used to load the PSW
for a new problem program after it has
been read into the machine by the super
visor program.

To return to a problem program after
an 1/0 interrupt has been serviced, the
effective address generated by the B1
and 01 fields of a Load PSW instruction
should be 0056 (Figure 1-30).

SUPERVISOR CALL INSTRUCTION

• The Supervisor Call (SVC) is used by
the problem program to pass control
to the supervisor program by causing
a Supervisor Call interruption.

•

•

1-60

The Supervisor Call instruction is
of the RR format.

The R1 and R2 fields of a Supervisor
Call instruction are placed in the
interruption code field of the SVC
old PSW.

The supervisor call interrupt is used by
the problem program to pass control to
the supervisor program. There are a
number of reasons why the problem pro
gram might want to call the supervisor
program. TwO of the major reasons are:

1. To tell the supervisor program that
it (the problem program) is done.
The supervisor could then read in a
new problem program and load its
P$W.

2. To request.the supervisor program
to start an 1/0 operation for the
problem program. The supervisor
call instruction is of the RR for
mat.

r---------T----T----'
lOp Code I Rl I R2 I ________ i-__ i ___ J

The supervisor call instruction caus
es a supervisor call interrupt. The
eight bits of the R1 and R2 fields are
placed in the interruption code of the
oldPSW.

r---------T---~----,
I OA I R1 I R2 I l _________ i-___ i ____ J

I
I I
l----T----J

I
r---T--i------T----'

Location I IOld PSW I I 0032 l ___ i ________ i ____ J

t t
I I
I I
I I
I 16 31 I

r-------~--T------, L-_____ .L __ i ______ J

t

I
I
I
I

,--~--,

Location 00961New PSW I L ______ J

Current PSW

Because the bits of Rl and R2 field
are stored as the interruption code,
they can be used as pre-arranged signals
to tell the supervisor program the rea
son for the interrupt. These pre
arranged signals vary depending on who

wrote the supervisor program. For
instance:

r""'-----T---T---'
1 OA I 0 1 0 I Supervisor
l _____ .L.,; __ .1 ___ J Call Instruction

t I I Everthing l _______ J

in Hex t

I
I
I
I
This interruption code of

00 might be used to signal a supervisor
program that the problem program is
finished.

Given the following supervisor call
instruction (in hex), the binary bit
structure that would be placed in the
interruption code of the old PSW is
11010000 (bits 16-31 of the old PSW in
location 0032).

r----T----T-----'
1 OA I D I 0 I l-__ .1 ____ .1 ___ J

MASKING INTERRUPTS

Supervisor
Call
Instruction

• Interrupts are prevented from occur
ring by mask bits in the current
psw.

• The system mask is in bits 0 to 7 of
the PSW. These are used to prevent
(mask) external and I/O interrupts

from interrupting faster than the
supervisor can handle them.

• The machine check ~ask is bit 13 of
the PSW. It allows machine errors
to be ignored. Machine checks are
not normally masked off except as a
diagnostic aid.

• The program mask is bits 36 to 39 of
the PSW. They are used to prevent 4
of the 16 program checks from caus
ing interrupts.

• 11 program check interrupts, and the
supervisor call interrupt, cannot be
masked.

Sometimes in a program, it is not desir
able to allow an interrupt. This is

most apparent when we consider the I/O
interrupt. In the System/360 it is
possible to have simUltaneous 1/0 opera
tions on two or more channels. When one
operation is completed, an I/O i.nterrupt
will usually occur. The PSW will be
stored to give the supervisor program
the reason (which 1/0 unit) for the
interrupt. This old PSW also gives the
supervisor program a way in which to
return to the interrupted problem pro
gram. If we were to allow another 1/0
interrupt before the first one had been
completely handled, the old PSW (from
the problem program) would be lost. The
supervisor program would not be able to
return to the problem program via the
Load PSW instruction as shown below.

r---------------,
1st I/O Interrupt--T> 1

J I
I I
I I
I I
I I

Location I Problem I
0056 I Program I r------, .• __________ J I

10Id PSWI I
l ______ J -----, I

I I
I I
I I
I I 1 I ________________ J

r-.1----,
Current PSWI 1 L _____ J

2 t

I
I
I

0120 I

r--------------,
1/0 Interrupt

Routine In
r-----~-----J

I
I
I
I
I INew PSWI L ______ ~
I

I I
I I l-__________ > I

I r----------------->I
I I

Supervisor
Program

I I Load PSW
I I from 0056 I L... ______________ J

I
If a 2nd 1/0 interrupt were allowed to
occur he.re, the current PSW at this
point would be stored in location 0056.
This would cause the Old PSW from the
problem program to be destroyed.

1-61

SYSTEM MASK: How does the supervisor
program prevent this 2nd and undesirable
I/O interrupt until it has processed the
first one? It does this by proper usage
of mask bits in the PSW.

o 7 13 16 31 36 40 63

r---~---~------~-T~---~----------'
I I I Inter- III I I Instruc- I
J I Jruption ILICI Ition I
I I I Code ICICI I Address 1 l ____ i-__ -L-______ -L-i_~ ___ _i __________ J

t t
System Machine Program
Mask Check Mask Mask

As can be seen above:

1. Bits 0-7 are known as the system
mask bits

2. Bit 13 is the machine check mask
bit

3. Bits 36-39 are known as the program
mask bits.

When these mask bits are set to zero,
the corresponding interrupts are masked
or prevented. Let's first consider the
system mask bits. These eight bits can
be used selectively or collectively to
mask all I/O and external interrupts as
follows:

PSW Bits 0-7
o
1
2
3
4
5
6
7

System Mask
Multiplexor Channel
Selector Channel 1
Selector Channel 2
Selector Channel 3
Selector Channel 4
Selector Channel 5
Selector Channel 6
External

To prevent (mask) all I/O and exter
nal interrupts, bits 0-7 of the current
PSW must contain zeros.

Notice that there is only one I/O
interrupt. However, each of the six
selector channels and the multiplexor
channel can be selectively prevented
from causing the I/O interrupt.

A system mask of 00111110 would mask
some I/O and all external interrupts. A
system mask of 10000001 would prevent
I/O interrupts by all selector channels.
To prevent all I/O and external inter
rupts, the system mask must contain all
zeros.

1-62

The system mask that determines
whether or not to mask I/O and external
interrupts is in the current PSW. In
the case of an I/O interrupt, the chan
nel causing the interrupt will be stored
in the interruption code of the old PSW.

To prevent a second I/O interrupt
before a first one has been completely
processed, the system mask of the new
PSW should contain zeros.

o 7 From Problem Program
r--· -T----' I
I FF I .----~----------, l_---i ____ J I
tOld PSW 1. I
1 r---T-~'

System Mask in Hex-I FF I I Current
I l~ __ _i_+ __ J PSW

01 7 2. 1
r~-T---l I I 00 I • ___ .,-__________ J
l-__ ~ ____ J t

New PSW To Supervisor Program

One more point that should be made
concerning the system mask. When it
contains zeros, I/O and external inter
rupts will remain pending. As soon as
the system mask is set to ones, another
interrupt will be taken.

The last instruction in the 1-0
interrupt routine of the supervisor
program would be Load PSW. The old PSW
in main storage would be brought out and
placed back in action as the current
PSW. Once this is done I/O interrupt
can once more occur. This is because
the system mask of the problem program's
PSW would probably contain all ones
.(FF). Of course, a system mask of all
Ones would allow not only 1/0 interrupts
but also external interrupts.

MACHINE CHECK MASK:
r---~----T------~~~----T----------'
I I tlnter- III I I Instruc- I
I I Iruption ILICI Ition I
I I 1 Code ICICI 1 Address 1 l __ --i ____ ~ _______ ~~_~ ____ ~ _________ J

t t
System Machine Program
Mask Check Mask Mask

A machine check interrupt can be
masked by means of bit 13 of the PSW.
If this bit contains a zero, machine
checks will be ignored, and no machine
interrupt will occur. Of course, this
is not the usual state of the machine
check mask bit. It is usually set to

one, so that machine checks will cause
an interrupt. In addition there is a
switch on the CE section of the system
control panel that can be used to cause
an error stop rather than have an inter
rupt when a machine check occurs. The
usual mode of operation is to have this
switch off and PSW bit 13 set to one.
This means that when a machine check
(such as even parity) occurs, an error
stop does not occur. Instead a machine
interrupt occurs.

In summary then, there are three
possible courses of action when a
machine check occurs:

1.

2.

A machine interrupt; the PSW is
stored in location 0'0'48 and a new
PSW is fetched from location 0'112.

An error halt.

3. It is ignored if PSW bit 13 is
zero.

There is one other item of informa
tion concerning machine checks. It is
called log~. Unless the machine
check is being ignored, information
concerning the status of internal cir
cuitry is automatically placed in stor
age starting at machine location 0'128.
This log out occurs prior to the machine
interrupt or error stop.

Just how much information is con
tained in a log out and what it means
will depend on the particular model of
System/36O'. However, log out always
occurs prior to a machine interrupt and
places information in storage starting
at location 0'128. The size of this log
out area varies from 4 bytes to 256
bytes, depending on the System/36O'
model. This information reflects the
status of the machine'S internal circui
try. As such it is meaningful only to
someone who has a knowledge of the
machine'S internal circuitry.

PROGRAM MASK: Program checks (such as a
specification exception) also can cause
an interrupt. While machine checks
cause machine interrupts, program checks
will cause a program interrupt. On a
program interrupt, the PSW is stored in
location 0'0'40' and a new PSW: is fetched
from location 0'0'40' and a new PSW: is
fetched from location 0'10'4. Program
interrupts can also be masked by use of
bits 36-39 of the PSW.

r- --1- -- rI~t~: -1 iT T - --II~tr~~-- -1
I I Iruption ILICI Ition I
I I I Code JCIC) I Address 1 l __ ~ ____ ~ ______ -i-i_~ ____ ~ __________ J

t t
System Machine Program
Mask Check Mack Mask

There are 15 possible exceptions
which can cause a program check (Figure
1-30') •

On occasion, four of these may not be
considered as program checks. These
four exceptions are:

1. Fixed Point Overflow

2. Decimal Overflow

3.

4.

Exponent underflOW}COnCerned with

Significance Floating Point

When one of the general registers is
being used as a counter in a program, it
may be desirable to test the counter for
an overflow. In such cases, an overflow
should not be treated as a program
check. As a result the program mask in
the PSW is available to the programmer
to mask program check interrupts caused
by the four exceptions mentioned earlier
as follows:

36 39
r-------,
10' 0' 0' 0'1 L _______ J

Fixed Point t t t t Program Mask
OVerflow ------- I 1 ---Significance

I I
I I

Decimal-----------J l-----Exponent
OVerflow Underflow

All other programming exceptions
(such as specification) are always
treated as programming errors and will
always cause a program interrupt.

It is important to know which classes
of interrupts cannot be masked. They
are the supervisor call interrupt and
program interrupts caused by all but the
four programming exceptions indicated in
bits 36-39 of the PSW.

1-63

SYSTEM/360 STATUS BITS

•

•

•

•

•

•

o

3 bits in the PSW are used to con
trol the System/360 mode or state.

The ASCII mode bit (PSW bit 12)
determines if decimal operations
will be done in EBCDIC mode (0) or
ASCII mode (1).

The Wait State bit (PSW bit 14)
determines if the System/360 is in
the Running (0) or Wait (1) state.

An external or I/O interrupt causes
the System/360 to go from the Wait
state to the Running state.

The Problem State bit (PSW bit 15)
determines if the System/360 is in
the Problem (1) or Supervisor (0)
State.

Privileged instructions are only
allowed in the Supervisor state. A
Program interrupt will occur in the
Problem state, if execution of a
privileged instruction is attempted.

63
r--------T---~-----------------------,
I I 1 1 l ______ .L--_J. _______________________ J

I t
I 1

r--J l-_,

1 1
I 1
I----~
1 A M W P I l--_______ J

12 15
ASCII MODE BIT: Of bits 12-15, you are
already familiar with bit 13. It is the
machine check mask bit. Bit 12 is the
ASCII mode bit. ASCII is an information
interchange code adopted by the American
Standards Association to be used for
data communication. The ASCII mode bit
determines the mode in which decimal
operations will be done; EBCDIC or ASCII
mode. A key difference is in the rep
resentation of sign values. If bit 12
of the PSW contains a one, the ASCII
sign codes will be internally generated
rather than the extended BCD codes for
signs. For example:

The number 1 in EBCDIC looks like this:

1 t 1 1 000 1
Zone Numerics
(bits)

1-64

The number 1 in ASCII looks like this:

o 1 0 1 0 0 0 1
Zone
(bits)

Numerics

When processing data with the
instructions of the decimal feature, the
following are the standard signs gener
ated:

110 = Plus

EBCDIC

1101 = Minus

If bit 12 of the PSW contains a one,
the signs that will be generated when
using the decimal feature are:

1010 = Plus

ASCII

1011 = Minus

When a packed field is converted back
to the unpacked format by the ·Unpack·
instruction, the zero bits that are
inserted will depend on the ASCII mode
bit in the PSW. For instance +101 in
EBCDIC mode is unpacked as follows:

Packed
J
1
1
t

r----T----~---T----'
100011000010111111001 l ____ J. ___ -.1.~~_-.1. ____ J

r---~----T----T----T--------,
Unpacked 111111000111111100001110001111 l ____ J. ____ J.-___ J.-___ J. ________ J

t t
Zones inserted if PSW bit
12 is o (EBCDIC Mode)

The remainder of the packed fields
used by the decimal feature are the
same.

For instance, a +107 would look like
this:

If PSW
bit 12

is 0

if PSW
bit 12
is 1

D D D S

r----T----~---~---,
100011000010111110101 EBCDIC
l_~ __ J. ____ J. ____ J. ____ J

r-~---l----T---'
100011000010111110101 ACCII l-_J. __ .L--__ J. ____ J

If the satre number (+101) is unpacked
when in ASCII mode, the following
results are obtained:

Packed
I
I
I
1

r----T----T----T----'
100011000010111110101 L-___ i ____ i-___ i ____ J

r----T----T----T----T----T----'
Unpacked 1010110001101011000011010101111 l ____ i ____ i-___ i ____ ~ ____ i--__ J

t t
I I
I I

Zoneslinserted if PSW
12 bit is 1 (ASCII)

WAIT STATE BIT:

12 15
r-,,------,
IA M W PI L-______ J

t
I
I L ____ _

PSW

Wait Bit

The wait bit contains a one, instruc
tions are no longer fetched and
executed. Instead the System/360 will
wait until an interrupt occurs and chan
ges the PSW. Of course, the "new· PSW
would contain a zero in bit position 14.

Only the occurrence of I/O external
interrupts can change the status of the
CPU from a wait state to a running
state. Machine, program and supervisor
call interrupts can occur only when the
CPU is in a running state and processing
instructions.

PROBLEM STATE BIT:

As we said earlier, the System/360
may be executing either the supervisor
program or the problem program. Accord
ingly. the System/360 is said to be in
either the supervisor state or the prob
lem state.

All instructions may be executed when
in the supervisor state. However, cer
tain instructions are not allowed in the
problem state. For example, all I/O
instructions must be given by the super
visor program.

Bit 15 of the PSW is called the prob
lem state bit. It is used to indicate

the state of the instruction associated
with that PSW.

12 15
r-------,
IA M W PI L _______ J

t Problem State Bit

When bit 15 of the PSW is zero, the
instruction associated with that PSW is
part of the supervisor program. When
bit 15 of the PSW is one, the instruc
tion associated with that PSW is part of
the problem program. Thus, regardless
of which PSW we are using, bit 15 iden
tifies the state of the System/360.

Knowing the program state allows the
System/360 to be sure that those
instructions reserved for the supervisor
state are executed only when in the
supervisor state. If the problem pro
gram attempts to execute an instruction
reserved for the supervisor state, a
program interruption occurs.

We would expect that bit 15 of any of
the old PSW's in main storage would
contain ones.

We would expect that bit 15 of the
five new PSW's in main storage would
contain zeros.

This is because the old PSW indicates
where we left the problem program while
the new PSW indicates where we are
entering the supervisor program.

PRIVILEGED INSTRUCTIONS

•

•

Privileged instructions are those
which can be executed only in the
Supervisor State (hit 15 of PSW is
0) •

Trying to execute a privileged
instruction in the Problem state
(bit 15 set to 1) will cause a pri

vileged operation program check
interruption.

What instructions are considered
privileged? We do not intend at this
time to list all privileged
instructions. However, you should be
aware of the considerations which deter
mine which instructions are privileged.

1-65

First of all, it would be expected that
the supervisor program should be able to
change any part of the PSW that should
be changed by the problem program.
Let's take a look at the fields of the
PSW:

Field

0-1 System Mask

8-11 (We'll examine
this field
later)

12-15 (AMWP)

16-31 Interruption
Code

32-33 Instruction
Length

34-35 Condition Code

36-39 Program Mask

40-63 Instruction
Address

Changed By

An instruction
called Set
System Mask

An Interrupt

An Interrupt

Many Instructions

An Instruction
Called Set
Program Mask

Execution of
Program

From the above we can see that some
of the PSW fields can be changed by a
special instruction. The other fields
can be changed only by changing the
entire PSW. Basically, there are two
ways of changing the entire PSW. One is
by way of interrupt. The other is by
way of the instruction Load PSW. It
would not be desirable to allow the
problem programmer to use the Load PSW
instruction since this instruction chan
ges all parts of the PSW. You would not
want the problem program to have that
much control over the machine. The
supervisor program only should retain
this control. As a result, the Load PSW
is a privileged instruction. It can
only be used by the supervisor program
(indicated by bit 15 of the PSW). The
supervisor progra1l!mer could use the Load
PSW to change any part of the PSW. It
would also use this instruction to
return to the problem program after an
interrupt has been serviced.

1-66

r----------, r-------,
I Supervisor I I Problem I
I I Load PSW I I
1 ~----------->I I
I Program I I Program I L __________ J L-______ J

The problem program would enter the
supervisor program by way of an inter
rupt. This interrupt would normally be
result of the instruction Supervisor
Call.

r----------, r--~----,
I Supervisor I I Problem I
J I Supervisor Call I I
I I-------·------:-~ I
I I Interrupt I I
I I I I
I Program I I Program I L __________ J L _______ J

Notice that a branch instruction is
not used in either example above. This
is because a branch instruction does not
change the problem state bit (bit 15) in
the PSW.

The supervisor program can change the
state of the machine anytime it wants to
by use of the Load PSW instruction. The
problem program cannot use the Load PSW
instruction because it is a privileged
operation. The problem program can only
use the Supervisor Call instruction to
go from the problem state to the super
visor state (PSW bit 15). Of course,
this assumes that the new PSW in loca
tion 0096 (for supervisor call
interrupts) has a zero in bit 15.

Besides the Load PSW instruction,
there are two other instructions which
can change the PSW. They are Set System
Mask and Set Program Mask. The Set
Program Mask is not a privileged
instruction. As such, the problem pro
grammer can use it to change the program
mask portion of the PSW. Actually the
Set Program Mask instruction changes
bits 34-39 of the PSW. This meanS that
the condition code is also changed.

• The Set System Mask instruction is
used by the supervisor program to
change the PSW system mask field.

• Set System Mask is a priVileged
instruction.

• Set System Mask is of the SI format.
The I/O field is ignored.

The Set System Mask instruction is a
privileged instruction. This is because
the system mask affects I/O interrupts.
The System/360 is designed to have the
supervisor handle all 1/0 operations.
For this reason, the Set System Mask
instruction and the four 1/0 instruc
tions are privileged operations. The
Set System Mask instruction is of the SI
format.

r--------~----~---T----~-'
lOp Code I 12 IB1 I D1 I ________ ~ ____ ~ ____ ~ ______ J

This Set System Mask instruction is
similar to Load PSW instruction in that
the 1/0 field is ignored.

r----~--~~----,
I 80 I 12 I B1 I D1 I l ____ ~ ____ A_ ___ ~ ____ J

t t
Set System I
Mask Op I
Code in Hex I

Effective address
of byte that will
replace the system
mask in the
current PSW

I
Ignored

Given the following Set System Mask
Instruction (in hex), the binary list
bit structure that will be placed in
bits 0-7 of the current PSW is 11110000.

o

r----T------ --~----,
I 80 I 00 0 I 0021 Set System

Mask
l ____ ~ _______ ~ ___ J

7

r-----------,
0000 I 00 I
0001 I FF I
0002 I FO I
0003 I OF I
0004 I AA I L __________ J

Main Storage

SET PROGRAM MAS~ INSTRUCTION

•

•

The Set Program Mask instruction is
used to change the setting of the
condition code and program mask in
the current PSW.

Set Program Mask is of the RR
format. The R2 field is ignored.

The Set Program Mask instruction is of
the RR format.

r-----T----~-----,
I 04 I R1 I R2 I L ____ ~..; ____ ~ _____ J

t t t

I I I
I I I

Set I I Ignored
Program-~---J I
Mask I

I
I
I

Bits 2-7 of this reg
ister replace the
condition code and
program mask bits
(34-39) of the current

PSW

Example:

r---~----T----'
Instruction I 04 I A IB I L ___ ~ ____ ~ ____ J

r----T----T----~---,
Reg B I FF I FF I FF I FF I l __ ~ ____ ~ ____ ~ ____ J

r----T----T----T----'
Reg A I OF I OF I OF I OF I

L-Tr~----~---~----J
II
II
IL....,;--------,
I I
I I
l-__ , I

I I
I I
001111 I
I I
I I

PSW I I
r------T----T------~-t_T----t--------....,;,
I System I IInter- IIICIProgllnstruc- I
IMask I IruptionlLICIMaskltion I
I I I Code ICI I IAddress I l-___ ~ ___ ~ ______ ~~~ ____ J. _________ J

34 39

As can be seen in the above example,
reg B was ignored. Bits 2-7 (001111) of
reg A were placed in positions 34-39 of
the PSW. This action replaced the con
dition code and prograF mask. With a
program mask of all ones, any fixed
point and decimal overflows would be
treated as errors and a program inter
rupt would occur.

1-67

Let's try another example. Given the
following Set Program Mask instruction,
the binary bit structure of bi~s 32-39
of the current PSW after the instruction
is executed would be as shown. Bits
32-33 are the instruction length code.

r----~---T~---1
In ---Instruction! 04 I B I A 1
Hex l __ ~-~-~--~----J

Reg A

Reg B

Bits 32-39 of
PSWbe.fore

Bits 32-39 of
PSW after

r-------------------, I FO FO FO FO I
L--_~---------------J

r-------------------, 1 OF OF OF OF 1 L-_______________ ~ __ J

r-----------------,
I 0 1 0 1 0 1 0 11 L-________________ J

32 39
r-----------------, 1 0 1 0 1 0 1 0 11 L-________________ J

Remember, the program mask is used to
determine which program checks can cause
interrupts. For example, with a program
mask of all zeros, a fixed pOint or
decimal overflow will not be treated as
a programming error and no program
interrupt will o·ccur. Instead an over
flow will set the condition code to 11
(3). This is normal regardless of the

program mask. But now no interrupt
occurs and the problem programmer can
use the branch on condition instruction
to test for overflow.

REVIEW QUESTIONS ON SYSTEM/36 0 AND
INTERRUPTS

1. List the five classes of
interrupts.

a. ______________________ _

b •• ____________________ _

c. ____________________ _

d. _ _ _ _ _ _ _____________ _

1-68

e. ______________________ _

2. Define:

a. Current PSW _____________ _

b. Old PSW __________________ _

c. New PSW _________________ _

---- -~-- ----- -----------
3. The area of main storage reserved

for old PSW's is from 0024 to ____ _

4. The area of main storage reserved
for new PSW's is from to
0127.

5. The area of main storage reserved
for machine check log out's starts at _____ _

6. Label the fields of the PSW.

r---T--~---T-----y_~~-T---------,

I I I I I I I I 1 l ___ .J. __ ~ ___ ~ ____ J._.J....;.J. __ .J. _________ J

o 7 12 1516 31 40 63

7. Which interrupt cannot be masked?

B. To prevent an interrupt, a mask bit
must be (0,1).

9. How can a System/360 be taken out
of the wait state?

10. What can switch the system from a
problem state to a supervisor
state?

11. What is placed in the interruption
code on an I/O interrupt?

12. What is placed in the interruption
code on a supervisor call
interrupt?

13. What is placed in the instruction
length code when an RX type
instruction was the last instruc
tion executed prior to an I/O
interrupt?

14. In the problem state _____ instruc-
tions cannot be used or a
will occur.

15. After handling an 1/0 interrupt,
how does the machine return to the
interrupt program?

16. Which of the following may not be
given by a problem program?

a. Set System Mask

b. Set Program Mask

c. Load PSW

d. Supervisor Call

e. Any 1/0 Instruction

17. The Set System instruction causes
the system mask to be replaced
by ____ _

18. The Set Program Mask instruction
replaces the and ____ _
wi th, _______ __

19. The Load PSW instruction
replaces: (Choose the most correct
answer.)

a. The current PSW with an old PSW

b. The current PSW with the con
tents of a general register

c. A new PSW with a doubleword
from main storage

d. The current PSW with a double
word from main storage.

STORAGE PROTECTION

• There is a 4 bit storage key asso
ciated with each main storage block
of 2048 bytes.

• There is a protection key in bits
8-11 of the PSW.

• Every time a storage modification
cycle is attempted, the associated
storage key and the PSW key are
compared.

• If the two keys are not the same and
one is not zero, a protection excep
tion will occur, causing a program

interrupt. A storage modification
cycle will not be taken.

The problem. programmer may not be able
to change the current PSW easily because
of the concept of privileged instruc
tions. However, what is to prevent the
problem programmer froIl' modifying the
New PSW's which are in main storage?
After all, any information in main stor
age can be treated as data and modified.
The five New PSW's in storage locations
0088-0127 are no different in this res
pect. In fact, we would want the super
visor program to be able to modify this
area of storage. However, we would not
want the problem program to be able to
modify this same area. It is undesira
ble to have any part of the supervisor
program changeable by the problem pro
gram. What is needed here is some meanS
by which the supervisor program can
change any area of main storage while
the problem program can only change its
own aSSigned area. The System/360 has
available a tamper-proof storage protec
tion feature. It is optional on Models
30, 40 and is standard equipment on
Models 50-70.

STORAGE KEYS

To implement the storage protection
feature, each main storage block of 2048
bytes has a key associated with it.
This key is four bits long and may con
tain any number from 0 to 15. These
numbers are referred to as Storage Keys.
They need not be assigned in any order.
Any of the possible 16 keys can be used
regardless of storage size. FO.r
instance, the 85K storage unit below has
had a key assigned for each block of
2048 bytes of 8K Il';ain storage.

1-69

r---------.,..-,
I ~----,
16144 - 81911 131
I--------t----J I
I I 1
I ~--, I
14096 - 61431 5)-

.-----------t----J I I I I Storage ~eys
I .---, I
12048 - 40951 11\-
t----------t----J I
I I I
I .----,1
I 0 - 20471 01-
L------_----t---J 1

A 16~ main storage unit would need 8
storage keys. The hardware necessary
for the storage keys is part of the
Storage Protection feature.

PRCTECTION ~EY

Besides the storage key associated with
each block of 2048 bytes, there is a
Protection ~ey in the PSW. Bits 8-11 of
the PSW contain the Protection ~ey.

r------T-T--T---~---T----T--T------l
ISysteml IAMIInter- II CIProglInstruc- 1
IMask 1 IWPlruptionlL CIMaskltion 1
I I I I Code IC 1 1 Address I L-____ .L-.L-_..l ______ ..l-__ .L-___ ..l __ ..l ______ J

I I
I I

r---J L-___ ,
I t
t 1
t---------~
1 Protection I
I I<ey t l _________ J

Any time the main storage unit takes
a storage modification cycle, the stor
age protection feature is in operation.
A storage modification cycle is one in
which the information brought out of
main storage is not regenerated.
Instead new information is placed back
into main storage. The fetching of
instruction is ~ an example of storage
modification cycle, because the instruc
tion is placed back into storage without
modification.

The operation of the storage protec
tion feature is as follows:

1. Cn every storage modification
cycle, the protection key in the

1-70

PSW is compa.red with the storage
key associated with that block of
main storage.

2. A protection exception will result
in a program interrupt if the two
keys are not identical. If one of
the keys contains a zero, the keys
are said to match and the protec
tion exception does not occur.

For example, if the protection key in
the PSW contains a six and a storage
modification cycle is attempted in an
area whose storage key is five, a pro
graDl interrupt occurs.

If the key in the PSW is zero and the
storage key is six, a program. interrupt
will not occur. As long as either key
is zero, the storage modification cycle
is allowed. Remember now, the storage
protection feature only applies to stor
age modify type cycles.

PROTECTION EXCEPTION

Whenever a program interrupt occurs, the
interruption code placed in the old PSW
indicates the reason for the interrupt.
When storage protection is violated, a
protection exception is indicated in the
interruption code of the old psw (Figure
1-30) •

Assuming the PSW has a protection key
of six, the 2~ blocks of main storage
labeled A, C and D can be successfully
modified.

r----------T-'
1 A 161--
.----------t-~
lB 15 1-
I----------t-i Storage~eys
IC 101-
t----------t-i
I D 16\-L-_________ ..l_J

Blocks A and D have a storage key of
six to match the key in the PSW. Block
C has a key of zero which means it can
be modified by any program.

Likewise if the PSW protection key is
zero, all four areas can be modified.

Thus when the PSW has a protection
key of zero, the current program can
successfully modify data anywhere in
main storage. A protection key of zero

would probably be in the PSW used by a
supervisor program.

SET STCRAGE KEY INSTRUCTICN

• This instruction is used to change
storage keys associated with each
2048 byte block of storage.

• Set Storage Key is a privileged
instruction.

• Set Storage Key is of the .RR format.

The protection key in bits 8-11 of the
PSW cannot be altered except as a result
of changing the entire PSW. The entire
PSW is changeable only by the Load PSW
instruction or by an inte.rrupt.
However, the storage keys for each block
of 2048 bytes can be changed by an
instruction known as Set Storage Key.
This instruction sets the storage key
for one block of 2048 bytes.

To set all the storage keys for a 16k
main storage unit would require 8 execu
tions of the Set Storage Key
instruction. The set storage key
instruction is of the RR format.

r---------T----T----'
I Op Code I Rl I R2 I _________ ~ ____ ~ ___ J

The desired storage key (0-15) is in
bits 24-27 of the general register spec
ified by the R1 field. The remainder of
the register is ignored.

Given register 4 (as shown below in
-hex-), the storage key of the 2048 byte
block will be set to 5.

24 31
-~---T---T---T---T----

Register 3 101110101
I J I I I

--~---~--~--~---~---

The question now arises: -Which 2048
byte block will have its storage key
set?- This is determined by the address
in the general register specified by the
R2 field.

r----T---T---'
I 08 I 3 I 5 I L ____ .!. ___ .!. ___ J

t t t
I I I
I I I

Set I I I This register
Storage----J I l-----has the address
Key I of the 2k block

I
I

Rey is in this
register

Storage addresses in the System/360
are 24 bits long. General register
capacity is 32 bits. AS we discussed
previously, storage addresses are placed
in the low-order 24 bit-positions in a
general register (but positions 8-31).
Because we are concerned only with
2048-position blocks of storage, and not
specific storage addresses, we have to
examine only those bits that define
2048-position blocks. This information
can be determined from bits 8-20. Bits
8-20 of 8R of storage addresses would
appear as follows:

8
0000 0000 0000
0000 0000 0000
0000 0000 0001
0000 0000 0001

20
0
1
0
1

= addresses 0000-2047
= addresses 2048-4095
= addresses 4096-6143
= addresses 6143-8191

Notice that we didn't have to look at
the register positions 0-7 or 21-31.
Bits 8-20 are sufficient to determine
which block of 2048 addresses is to be
used.

A specification is given to the
programmer that requires the four low
order order bits (28-31) to be zero.
Thus, the structure of data in the
general register as far as the set stor
age key instruction is concerned is:

o 7 8 20 21 27 28 31
r-------T--------------T-------T----' IIgnoredlWhich 2k block I Ignored I 00001 L _______ .!. ______________ ~ _______ .!. ____ J

Any address can be used, as long as
the four low-order bits are zero. This
means that the storage key can be set
using any address that is divisible by
16.

1-71

Given the following, the storage key
of block D will be set to 1 •

.-~-r-l

Instruction lOt 813151 (hex)
L-..L-..L-..L- J

r-T-T-T-r-T-T-T-l
Register 3 I 0 I 0 I 0 I 0 I 0 I 4 111 0 I (hex)

L_~_~~~~_~_~_J

r-~T-~T-T-T-r-1

Register 5 I 0 I 0 I 0 I 0 I 0 11 I 41 0 I (hex)
L_~~~~_~_~_~_J

Storage Block Rey
A 6144-8191 0

B

C

D

4096-6143

2048-4095

0000-2047

o
o
1

General register 5 contains the hexa
decimal address 140. This means that
bit-positions 8-20 of register 5 are

1-72

zero. Thus block D, the first block of
2048, has its storage key set to 1.

USING STORAGE PROTECTION

The set storage key instruction is a
privileged operation. It may be issued
only when bit 15 of the PSW (problem
state bit) is zero. In a typical
supervisor-controlled operation, the
supervisor causes a problem program to
be read into main storage. The
supervisor sets the storage keys for the
area of storage used by the problem
program. The supervisor assembles the
PSW to be used by the problem program.
This assembled PSW has a protection key
that matches the storage keys associated
with the problem program. Once the
function of loading a problem program
into main storage and assigning the keys
for storage protection is done, the
supervisor passes control to the problem
program with the Load PSW instruction
whioh specifies the assembled PSW
(Figure 1-31).

Assume: I. That the Problem Program Tokes 5,000 Bytes and Will Begin at
Location 2048.

2. That the Supervisor is in Locations 0000 - 2047 and Has a
Storage Key of 15 and a Protection Key of 0.

,-------, Problem

Set Storage
Key of 2048-
4095 to I

Set Storage
Key of 4095-
6143 to I

Set Storage
Key of 6143-
8191 to I

t

____ Program is

Read Into
Loc. 2048-7074

A Storage Key of I Was Chosen for This Problem
Program. Actually Any Key from 1-14 Could
Have Been Used. Zero Would Offer No Protec
tion, While 15 Is Already Being Used By the
Supervisor Program.

"Assembled"
PSWWould
Probably be
Like This

I. System Mask of All Ones to Allow Interrupts.
2. Protection Key of I to Match the Storage Key --.... - Associated with This Program.

Control

3.AMWPfield ~ ° I ° I~
Allow / Jnning Prob.

- - -+- Passes to the
Prob lem Prog.

Machine State State
Interrupt

4. Instruction Address of 2048.

Problem {
Program

6144 - 8191 III
4096 - 6143 IT1
2043 - 4095 iii

Supervisor Program

~ 0000 - 2047

Figure 1-31. USing Storage Protection

The protection key in the PSW used by
the supervisor program is zero. This
allows the supervisor program to modify
data anywhere in main storage. The main
storage area occupied by t~e supervisor
program has a storage key of 15. This
means that unless a problem program has
a key in its PSW of 0 or 15, it will not
be able to modify or change information
in the area being used by the supervisor
program. This is unlikely because it is
the supervisor program that assigns
storage and protection keys to the prob
lem program.

Each block of 2048 bytes does not
have to have a different number set in
its storage key. However, each program
in main storage should have a different
storage key aSSigned to protect one
program from another. For instance, the
supervisor program may take up one block
of 2048 bytes which is aSSigned a stor-

age key of 15. This storage key would
most likely be assigned by the supervi
sor program just after it is read into
the system. The problem program is then
read into the machine (as a result of a
section of the supervisor program) •
This program takes up 3 blocks of 2048
bytes. Each of these three blocks is
assigned the same storage key (1, for
example) by the supervisor program. The
PSW for the problem program is given a
protection key that matches its storage
keys. This allows the problem program
to alter itself if necessary, but pre
vents it from altering another program.

MULTIPROGRAMMING

So far, we have only discussed the con
cept of two programs in the computer:
a superv1sor program and problem
program. There are two or more problem

1-73

programs in the machine. Of course,
just as in the supervisor~controlled
concept, only one program is being exe
cuted at anyone time.

Storage
...-.,..--------,
I Common I
I f--,
IWork Area I I·'
f------t--J I
I Problem I I
I a--, I
fProgram B 121·'
f---------t-- J I
I Problem I I
I a--, J
IProgram A I 11·'
a---------t~-~ I
I Supervisor I I
I f--, I
I Program 1151·' L... __ .,.. ___ .l.-_J

Key
I
I
I
I l_. __ ,

Storage Probe
Keys Prog. B

I
r.L,

121
l_J

r-,
Probe 111
Prog. A I. J

r-,
Supervisor 101

l_~

In the above example, each problem
program has a different storage key.
The protection keys used by each program
are also different. Each matches the
respective storage keys. Notice that
the supervisor's protection key does not
match its storage key. Because the
supervisor's protection key (in its PSW)
is zero, it does not have to match. It
can unlock any area of main storage and
alter its contents if necessary. Also
note the common work area with a storage
key of zero. This area is not protected
and can be used by any of the programs.

INSERT STORAGE KEY INSTRUCTION

• This instruction is used to find the
current value of a storage key.

• The instruction is of the RR format.

• This is a privileged instruction.

Besides the Set Storage Key instruction,
there is another instruction to help a
supervisor program assign storage keys.
It is called Insert Storage Key. This
instruction does not change any storage
keys. Its purpose is to inspect or
examine a storage key. The Insert Stor
age Key instruction is also of the RR
format.

1-7/J

Op Code Rl R2
r-------------T-~---' I 09 1 4 13 I L... __________ .L""'-_.L ___ J

t t t
I I This register has
I I the address of the
I I 2K block

Insert The Storage Key
Storage is inserted into
key this register

Notice that this instruction works
just opposite to the ·Set Storage Key·
instruction. Here the storage key of
the block addressed by the contents of
the register specified by the R2 field
is inspected. This storage key is then
inserted into bits 24-27 of the register
specified by the Rl field. Bits 28-31
of this register is made zero and bits
0-23 remain unchanged.

Example:

Storage Block Key
2048-4095 1
0000-2047 F

Instruction 0 9 4 3

Register 3 before 0 0 0 0 0 F 0 0
Register 3 after 0 0 0 0 0 F 0 0

Register " before 8 7 6 5 4 3 2 1
Register 4 after 8 7 6 5 4 3 1 0

Notice the storage key (1) of block
2048-4095 was inserted into bits 24-27
of register 4 while bits 28-31 were made
zero. The remainder of the register was
unchanged. The storage keys themselves
were unchanged.

REVIEW QUESTIONS ON STORAGE PROTECTION

1. Storage Block Key

6144 - 8191

4096 - 6143

2048 - 4095

0000 2047

2--,
I

1·-~
I

1--~
I

A"'-~
IThese are referred
to as __ keys.

2.
r--~----T----l

1 I I IPSW l_--.L ____ .L ____ J

t
This field is referred to as the
------ --------.

3. The keys in question 1 can be
changed only by ________ __

4. Bits 8-11 of the PSW can be changed
only by (1)
or by (2) _____ _

5. Storage protection applies to:

6.

7.

8.

a. Modify-type main storage cycles

b. Fetch-type main storage cycles

c. All main storage cycles

Storage Block
A
B
C
o

Rey
o
1
2
3

Assuming a PSW key of 2:

a. From which blocks may informa-
tion be fetched? ________ __

b. In which blocks may information
be altered? ________ __

Storage Block
A
B
C
o

Rey
o
1
2
3

Assuming aPSW key of 0:

a. From which blocks may informa
tion be read out?

b. In which blocks may information
be altered?

Storage Block Rey
A 0
B 1
C 2
0 3

If an instruction with a PSW key of
3 attempts to alter data in block
c:

a. The data will be stored and the
program will continue.

b. The data will be stored and the
program will be interrupted.

c. The data will not be stored and
the program will continue.

d. The data will not be stored and
the program will be
interrupted.

9. In the following example, the
(storage/protection) key of block
(A,B,C,D) will be set to

Storage Block

A 6144-8191

B 4096-6143

C 2048-4095

o 0000-2047

Rey

o

1

2

3

Instruction 0 8 4 6

Register 4 0 0 0 0 2 1 4 0

Register 6 0 0 0 0 0 E F 2

10. Show the register contents after
executing the insert storage key
instruction.

Storage Blank Rey

A 6144-8191 9

B 4096-6143 8

C 2048-4095 7

D 0000-2047 A

Instruction 0 9 2 3

Register 2 before o 0 0 0 o F 0 0

Register 2 after

Register 3 before o 0 0 0 o F 0 0

Register 3 after

1-75

11. A viQlation of storage protection
results in a:

1-76

a. Machine interrupt with a pro
tection violation indicated in
the interruption code of the
new PSW.

b. Program interrupt with a pro
tection violation indicated in

the interruption code of the
new PSW.

c. Program interrupt with a pro
tection violation indicated in
the interruption code of the
old PSW.

d. Machine interrupt with a pro
tection violation indicated in
the interruption code of the
old PSW.

A brief review of the material· contained
in pre-school manuals will be presented
here as they pertain to the IBM 2030
Processing Unit. The intention is not
to delve deeply into transistor theory,
but to present a CEls view of logic
blocks and circuitry as they appear in
this manual and on the ALD's.

SLT CIRCUITRY

• Basic SLT circuitry contains AND, OR
and inverter functions.

• A straight line into or out of a
logic block indicates the more posi
tive level. A wedge on the line
indicates the least positive level
associated with that circuitry.

• +L .(+3 volts) and -L (0 volts)
levels are used throughout the IB~
2030 Processing Unit.

• Voltage levels are Ov, 9v, 3v, and
12v.

• Different circuit speeds are 700
nanoseconds, and 5-10 nanoseconds.

+AND CIRCUIT

A basic +AND circuit consists of input
diodes in parallel, tied through a
resistor to a positive voltage source.
The anodes of the diodes face in the
direction of the positive source (Figure
2-1). While any of the input lines are
negative, current flows through the
resistor, keeping the output at a minus
level. When all inputs are positive,
current is cut off and the positive
voltage level is felt at the output.

SECTION 2. FUNCTIONAL UNITS

RI
Inputs

A o--Kl--~--~ E
B D Output

C o--Kl----{)

A~-...., A

B 0---1 E

Figure 2-1. +AND Circuit

This same basic circuit is sometimes
labeled a -OR circuit when the logic
level needed is minus (Figure 2-2). One
or more inputs must be negative to
satisfy this logic function.

RI.
Inputs

Ao--t>I---<:)o:~-~~E
D Output

B 0--1>1--0

C D----r.::>I--o

Figure 2-2. -OR Circuit

+OR CIRCUIT

A basic +OR circuit consists of input
diodes in parallel, tied through a
resistor to a negative voltage source.
The anodes of the diodes face the input
lines (Figure 2-3). When anyone or all
of the inputs is plus current will flow
in the circuit and the output will be

2-1

positive. All inputs being negative
causes the circuit to be cut off and the
output will be negative.

J Rl
Inputs +
A + E

0 Output +"
B
C

Figure 2-3. + OR Circuit

This circuit is sometimes labeled
-AND when the logic output needed is a
negative level (Figure 2-4). All inputs
must be minus to satisfy this logic
function.

J Rl
Inputs

A

B +
0

.E
Output-

C +

Figure 2-4. -AND Circuit

THE INVERTER

An inverter is labeled ·N· and is an NPN
transistor with the input line tied to
the base and the output line tied to the
collector and a voltage source. (This
is only one type of inverter. Input
lines are connected differently on other
circuits but the principle of operation
is the same). The inverter has only one
input, and the output is always of oppo
site polarity .(Figure 2-5).

2-2

N

P

N

~-.
Figure 2-5. Inverter

THE EXCLUSIVE OR

The exclusive OR is labeled ·OE· and has
its inputs and outputs as noted on the
block. The output of the block will be
at its indicated polarity when one and
only one input is at its indicated
polarity (Figure 2-6).

o----r>OE

One and only
one plus input
for pi us output

Figure 2-6. ExcluSive OR

THE SINGLE SHOT

The single-shot block is labeled ·55·.
~hen an input polarity, as indicated on
the block, is applied, the output will
change temporarily to the polarity indi-

cated. Each SS has its time indicated
on the top of the block. The output
will remain at this level for the time
specified. Figure 2-7 shows positive
input and output lines. Depending on
the type of SS, these polarities can be
negative. When these polarities are
negative, they are indicated as such.

5 Nanosec O-----.jLJ

Input D
Output r=J

Figure 2-7. Single Shot

TIME DELAY.

Another block with an indicated time is
the time-delay block which is used to
delay a signal. This block is shown in
Figure 2-8, and can again have different
input and output polarities depending on
the type of TD.

5 Nanosec

Of------tLJ ~

Input 0
Output I o
~ 5

nsec

Figure 2-8. Time Delay

LINE SENSE AMPLIFIER

The line-sense-amplifier is used to tap
a transmission line at two or more loca
tions. It is an emitter follower, and
therefore presents a high impedance to
the line which prevents signal reflec
tions and noise. The logic block is
labeled -DLR- and is of the 5-10 nanose
cond family of circuits.

REMEMBERING DEVICES

Remembering devices can be shown as
single-unit logic blocks or as multiple
blocks arranged to form one circuit. In
the IBM 2030 a polarity-hold (PH) block
and a trigger (FF) block are generally
shown as single blocks. A latch (FL) is
generally shown as a combination of AND
and OR blocks.

THE FLIP FLOP

The flip-flop, sometimes called a trig
ger, has three inputs and two outputs,
as shown in Figure 2-9.

Gate On. Set
Set On ...) FF
DC Set On • Complement

- Output

DC Set Off •) 0 C;;;;

Set Off 0
Gate Off :) ~C::..!.I!:!ea~r __ -cl ___ J-+~..;;.ut;.,!;.p..;;.ut

Designation from
2nd Level Diagrams

Figure 2-9. Flip Flop

1. The two inputs, ~ and clear, are
always opposite in polarity.

2. A pUlse of the indicated polarity on
the set line cause the flip-flop to
assume-the indicated output polari
ties.

3. These outputs remain at their indi
cated polarities until the flip-flop
is reset.

4. When the clear line is activated,

2-3

the outputs change to the opposite
polarity of that indicated.

5. The third input, complement reverses
the status of the flip-flop whenever
complement is activated.

6. The input and output lines are shown
as indicated in Figure 2-9.

THE POLARITY - HOLD LATCH

The polarity-hold latch is used to
retain information sampled from a data
bus. Figure 2-10 illustrates a
polarity-hold latch with a negative data
bus in. Whenever this data bus is nega
tive, and the control line is active
{plus) the latch is turned on (plus
output). The latch remains on until the
data line and the control line are posi
tive at the same time.

1
PH

I

~ o Data
o Control

D n r=J Data _~_-'-----_--'-_-'--L-L-.l __ ---'---_

Control

Output

D

o CJ

L ThiS spike will be seen on a scope when
"Control" attempts to turn the latch off.

Figure 2-10. Polarity Hold Latch

The polarity-hold latch may be the
type that requires a positive data bus
in. When the data bus and the control
line are positive the output will be
positive. If the data line drops while
the control line is active, the output
will drop. The output line will always
follow the data line when the control
line is active.

THE FLIP LATCH

Combinations of AND and OR logic blocks
are used to allow several set lines and
one or more reset lines to -flip- the

2-4

latch. The flip latch will stay on or
off depending on the active lines
applied. Generally the latch back is
combined with -not- reset lines to form
the normal latch back which keeps the
latch in its turned on state. The flip
latch can have two output lines which
are of opposite polarity.

COM.BINED COMPONENTS

Combinations of the reSistors, diodes
and transistors allow for varied uses of
the basic AND and OR circuits. Figures
2-11, 2-12, and 2-13 show some of these
com.binations. The basic AND circuit can
become an A.ND inverter (AI) with the
addition of a transistor. The 1\01 is a
combined AND, OR and transistor circuit.
These functions and others used on the
IBM 2030 proceSSing Unit are:

1. AI - AND Inverter

2. AOI - AND OR Inverte.r

3. API - AND Power Inverter

4. DCI- Direct Coupled Inverter

5. HPD - High-Power Driver

A 1+

J02 -1<]-.., <~>
~ <:') -t-_....r_-
I

-f--- B04 -K1-J

OR
1+
I
I

.;
A - -t>i-l '>

<'> t--[)i---, I
t--[)i-----l I

[)j--1 I r-I I
I I r-l
I I I-I - -[)i-.J ~--l P I

I I-I

~ LTJ
.> -===-

_r.---J02

e>-D04-

---Boa

I
I -,

---DI2 A

---B07 -
---D02

Figure 2-11. +AOI

+: A' 1+ .> ,
<, l,

---D02 -I<]-~ ~>
I I
1 I

---B03 -1<]-1 i
H:~----, }-I:>--B05-

---D04 -1<]--1 I r l
. I 11_'

1 t----I P 1
___ D05 -1<]--' j ,_',

'> I < L_J
I' -'-
1 =

1- 3V

Figure 2-12. +AI

--J02 A

--B08

--BI2

A
--J02

--BI2

--BI3

Figure 2-13. -AOI

OR

DII---

REVIEW QUESTIONS - BASIC COMPONENTS

1. A wedge on an output line desig
nates the active output as

2. A plus OR is the same as a
AND.

3. Exclusive OR circuits have
input lines.

4. The Exclusive OR is active when the
input levels are ______ __

5. The time designated on an 55 block
is the that the ~ ____ __
is at its designated level.

6. The time on a TD block is the
difference between the

level.

of the input pulse and the
of the designated output

7. Three types of reRembering devices
are the latch,
the latch and the

8. The Control line of a Polarity Hold
latch does not need to be active to
deactivate the output.
(True/False)

9. The output of a Polarity Hold latch
will always follow the Data line.
(True/False) •

10. The requires a
latch back line.

CENTRAL PROCESSING UNIT (CPU) CLOCK

•

•

A 2-megacycle clock circuit produces
clock pulses P1, P2, P3, and P4.

The overlapping of 500 nanosecond P
pulses switch to form 250 nanosecond
1 timing pulses of Tl, T2, T3, and
T4.

• E pulses are distributed to all
large-boards, where the switching is
done near the boards that use the
particular 1 pulse.

The timing pulses for the IBM. 2030 Proc
essing Unit, are derived from a 4-stage
overlapped latch-ring that uses five
nanosecond SLT circuitry_ (All other
portions of the machine use medium speed
30 nanosecond circuits.) A 2-megacycle
crystal oscillator provides the basic
pulses for the latch ring. Looking at
Figure 2-14, these oscillator pulses are
fed to the clock ring by two line names:
oscillator (Osc) and delayed-oscillator
(DIy OSC) _ Each of these lines have two
levels, plus and minus, which means that
there are a total of four lines from the
basic oscillator driving the clock.

2-5

-L osc
or
-DLY osc
+L osc.

~ll's--l

D DOD D o D DO DO o I
or

+DLY osc.
PI

1000 DO DO DO DO o

P2

P3

P4

Tl

T2

1500 ns.

.-----z.-- Set on By Mach. Reset Key

1 1 1 r-I ---'1
--cJ.---2S0 ns • 0 0

\---11'5 ----l
D 0 0

r
o o o

D D 0

T3 o D 0 D 0 0
T4 o

Figure 2-14. Developing Clock
Pulses

D

As can be seen from Figure 2-14,
clock latch 1 is turned on by clock
start, DIy Osc, not-clock-3, and
clock-4. The initial turn-on of clock-4
is by clock-reset, which is initiated by
either the machine-reset switch, or by
power turn-on reset circuits. Clock
latches 1, 2, and 3 turn off with the
initial turn on of clock-4, so that
normal progression of clock latches can
be turned on. When the clock-start line
is activated and the - DIy Osc becomes
plus, clock-l will turn on.

Figure 2-15 shows the relationship of
the turn-on and turn-off of the clock
latches. You will note that the lines
+ Dly Osc and - Dly Osc are not shown on
the timing chart. They are essentially
the same as the + esc and - Osc lines
and are used in the same manner to turn
on and turn off the .clock latches. This
timing chart shows that all clock
latches are on for 500 nanoseconds and
that they successively overlap each
other. Clock-1 is latched eN with the
positive-going -Dly Osc pulse. On the

2-6

D 0 D 0

following plus shift of the + Dly esc
line, clock-2 turns on. The second plus
shift of - Dly Osc and the fact that
clock-2 is on, resets the clock-1 latch.
The binary-connected latches continue in
this manner, and as shown in Figure 2-14
and 2-15, form separate and distinct
pulses.

CLOCK DISTRIBUTION

The clock serves as a central source of
four clock pulses which are put on four
transmission lines. The transmission
lines deliver the pulses to subdistribu
tion points throughout the machine. At
thesesubdistribution points, line-sense
amplifiers tap off from the transmission
line and feed a tWO-input, 30-nanosecond
AOI. This brings together two clock
pulses to form one timing pulse. For
example, P1 and P4 are switched to
develop T1. These pulses are then pow
ered and used by the decision blocks as
their basic timing pulses.

Clock Start Clock I

-DLY esc A PI

Not Clock 3 N

Clock 4 D

I--FL--
Clock Reset ~
-DLYeSC '"A R

N

I~

I Clock 2
P2 A

+DLY OSC N
Not Clock 4 D

'---

Clock Reset
I--FL- -

ro
+OSC ~ R

N

I~

I Clock 3
A P3

Not Clock I N
-DLYeSC D

-
--FL--

Clock Reset r---o
R

-DLyeSC '"A
N

I~

L'A
+DLyeSC N Clock 4
Not Clock 2 D P4 e
Clock Reset '--- R

'---

I--FL-

.---
+OSC A

N

I
D

'---

Figure 2-15. CPU Clock Timings

This distribution system sends out
500 nanosecond pulses to each large card
that needs the particular pulses. The
pulses are then switched to provide 250
nanosecond tiDing pulses. The effect of
this system then allows the subdistribu
tion centers to be close to the load
centers, and ringing and noise are kept
to a minimum. See Figures 2-14 and 2-16
for the development of T pulses from P
pulses.

2-7

CPU
Clock
Circuits

PI

P2

P3

P4

.--__ ,r- ,
" "

/
/

/

pTransmission Line
/

r------ - - ----- --- -- - - - -- -- --,
, I
, Line I

~~ Sense ~
I, L..-A_m_p_ • ...J ,----, r----, r:T2::....:....:Pu""'s:::.e..:..A:..:..l_-+-

AOI Pulse T2 Pulse AI to Cl
I Driver

! Line I"------' T2 Pulse A2

~ Sense
I Amp. L ________________________ ~

Distribution to
Other Large, Cards

~
To Additional
Large Cards

Figure 2-16. CPU Timing Pulses

2-8

CLOCK CONTROL

•

•

•

The line, clock-start, must be
developed and maintained in order
for the clock to start and run.

The following will de-condition
Clock-Start:

1. A hard-stop (This will also
immediately reset 'clock latches
1, 2, and 3.)

2. A selector-share hold

3. A power-off condition

4. A reset of'the clock-start
latch.

The clock-start latch remains on as
long as the latch-back and not
clock-stop or not-clock-reset are
maintained.

The CPU clock must be capable of
originating timing pulses for internal
operations of gates, pulses, and reset
lines as well as providing timing pulses
for the multiplexor channel to which I/O
equipment is attached. The clock must
be told to start and stop, depending on
the use and request of its generated
pulses.

Initially, the clock is started by
setting the clock-start latch. It is
set by:

1. the start key, which turns on the
clock-start-control latch and the
E-cycle Stop-Sample latch,

2. the load key, which turns on the
load latch, and

3. the instruction-address-Ioad key,
which sets the force-IJ request
latch.

The line, cloCk start, is also developed
by other conditions, which are ANDed
with the output of the clock-start
latch. These other lines are shown as
-not- inputs and, in effect, prevent the
restart of the clock if anyone of these
plus lines become minus. When the
clock-start latch is reset or the clock
start line drops, the clock will stop
after it reaches T4 time. The clock
would run for a short period after the

a anua n e a ac ,--

Not Manual Write Call Reset
A
N

NtM I W"t C " L t h
Hardstop

Not Read Echo D
Not Manual Read Call Latch

r--FL-
'--- Machine Reset r--

CLOCK 0
r=Clock Start START Clock Start CTRL R 1

Not E-Cycle Stop SPL r----c> CONTROL

Start Switch R
- Not Force IJ Req. Latch r-;::-

Force IJ Request N I---
'---

D
r----FL- -==-Force IJ Request

Clock Reset Not Force IJ Req. Latch
A
N I---

Converted Oscillator D 0

- R
Clock -

Start Switch
N '--

A A Start
I N Load Key Latch N

Converted Osc ill ator D I-- D
0 ,--

I R E-Cycle A
c---;;:- - N Not Manual Op. t---Stop r----FL-

Selector ROS Control
~ N Sample D

E - Cycle Stop D

J '---

I--
Clock Stop 0-

L---- A Clock Reset R
FT 3-Bit MPX Share N Req. I--
E-Cycle Stop D

r--FL- -

Machine Reset
'--,--

0
T 2 Pulse R

'--

Process Stop Loop Active A 0
Not Selector ROS Req. N R
Not MPX Share Req D

T4 Time

Not Load Request
t---

A
Load Key Switch N

~
System Reset Switch
Clock Stop Key Switch

,---
Timed MC Stop Reset 0
Mach. Reset Switch R
or Power On Reset

L--

Figure 2-17. CPU Clock Control

clock-start latch is reset if it is
required by some I/O device or attach
ment.

The clock-start latch is reset by
clock-stop and clock-reset, as shown in
Figure 2-17. These two lines are used
to stop the clock by manual means, by
programmed stops, by error conditions,
or by a special CE diagnostic test.
Either of these normally plus levels
dropping will reset the clock-start
latch.

r-
A

Not Sel. Share Hold N
D
~

Not Power Off Start

'A [-Chk. Stop Sw.

ROS Chk. Latch
NO-~ D R

Micro Prog. Stop
'---- N

-
Clock Reset To Clock Latch-Ring

REVIEW QUESTIONS - C.P.U. CLOCK

1. The width of a P pulse is
nanoseconds.

2.The circuit components of the clock
are of the nanosecond
family.

3. The reset condition of the clock is
with trigger on and triggers
_____ , _____ and off.

4. Clock trigger 4 is initially turned
on by line.

2-9

5. T pulses are
wide. --------

nanoseconds

6. Pulses on the transmission line are
pulses.

7. Referring to Figure 2-1', what
latches are set to initially bring
up ·clock start· using the start
key?

8. When does the clock normally stop?

9. What P pulses develop T3? Refer to
Figure 2-14.

10. P pulses are distributed to every
large card. (True/False)

ARITHMETIC LOGICAL UNIT (ALU)

• Binary 9rdecimal operations as well
as logical operations ar.e performed
by ALU.

• The a-bit ALU circuitry is con
trolled by ROS fields.

• An excess 6 circuit adds 6 to each
four bits of all decimal-add opera
tions.

• A decimal· corrector subtracts 6 from
each four bits of decimal operations
when necessary.

• ALU is a two-wire 8-bit parallel
adder using + Land - L levels.

2-10

• ALU does not contain a parity line.

The data flow chart in Figure 2-18 shows
that two buses, A-bus and B-bus, feed
data into the A and B registers. The
data is then gated to the ALU in differ
ent combina~ions. Any register can be
gated individually onto the A bus and to
the A register under the control of the
ROS field, CA. The A-register output is
further gated by the CF field to ALU.
The CF field is used in micro
programming to gate the four high bits,
the four low bits, or both or none to
ALU. This field can also gate the eight
bits straight into ALU or can
interchange the four high bits with the
four low bits. In Figure 2-19 you can
see the various combinations of entries
to ALU with their controlling ROS fields
indicated. \~

Not all ~isters are gated to the
B-register. Looking again at the data
flow chart, Figure 2-18, only the L, D,
and R registers are gated individually
by the ROS field, CB. The output of the
B-register is gated under control of the
CG field which instructs either the high
four bits, the low four bits, all bits
or no bits to be sent to ALU. The ROS
CV field determines whe.ther the opera
tion is to be true or complement binary,
or true or complement decimal addition.

....,
1

I-'
I-'

'11
I.Q
c: ...
/I)

....,
I -QO

•
t::l
(Ii
rt
(Ii

'11
I FW

0
€

MN Bus
111111111111111111 11111111111111111111111

S
I MN Bus cl PJ-I _____ ~J'.,I~ Address

I MN I V Decode '---_

b b Machine
Check

MPX Interface

tJ D
I

FX IGW

~ " V' ...,

GX

.-----'----------''---ll Status kV'---'------'----,
...----..------..........-11 Decode 11'r--r--,.--,

CK
0;:::: In Out fc::-

B Bus

A Bus '0 !o A B~ 1
P

B r--

Register
..,..

ALU

P WX
Bus

:.:.:.::::.:.:.:.:.:.::.:.:.:.:.:.:.:.:.::::::.:.:.:.:.:.:.:.:.:.:.:::.::::::::::.:.:.:.:.:.:.:.:.:.:.;.:.:.:.:.:.:.:.:.:.:.:.:.:.:.::::::::.:.:.:.:.:.:.:.:.,':':'::"':' A oJ-.

r

Register -- r-

WX i 4' ,~,~ lJ'~ l1'~ l1'~ ~
~~B~US?tzd~~I,----Iu----Lv -'1 I I J 1 T L D R P~

~I

I Storage

'------.JI
P

ROS

t
Next

I
W Address

SAL t--- Information
1-r"T"'""---.--r-i

Control
Register

P

F

z: Bus

From External
Interrupt

>
To Machine Control Points

>

5

Z Bus
- - - - - - - --~ 1>---
Native Interfoce

1
1050. Data I
RegIster

Write UnRead

1050 Interface

0f
A Reg

A Bus

';-;":''''---,-lIO

True

i'-=:--+-i Tic
C~0;.;.m;;!p:"""''''''---_~17

0-7 Dec

Decimal
Add

Figure 2-19. Arithmetic Operation

B-register 28
A-register + 54

82 =

Figure 2-20. Binary Add

2-12

o
1
2
3
4
5
6
7

128
0
0

0

0-7

0-7

7

o

0 0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7 7 7 7

- Control Register Storage Address Latches

@-ReadintoA-register

@- Read into B-register

@- Functional and Carry Controls

@- A Input to ALU -- High, Low, or Cross

0- B Input to ALU -- High or Low

P

Z Bus I
7

7
@- True-complement, Binary, or Decimal Control

64 32 16 8 4 2 1 • Binary Value
0 0 1 0 0
0 1 1 o 1 1 0

1,\ 1,\ 1,1;'u Carry
1 0 1 0 o • Answer

Complement I ------Force Carry

-28 00011100 Z I I I 0 0 0 I I B-register
A-register ~ 00110110 - 0 0 I I 0 I I 0

26 = '6'6'0 I ~'6'~'0 :------;~:~er
Carry from high-order position indicateto recomplement necessary

Figure 2-21. Binary Complement Add

Looking again at Figure 2-19_ after
gating high_ low or both from the B
register_ the eight data lines_ 0
through 7_ go to either a true
complement binary circuit or to an
excess six circuit. If tbe CV field
calls for a True Binary Add or a Comple
ment Binary Add operation_ a line
labeled Hex is brought up. alongwitb
either True ~r Complement. Using an
example of True Add and the data 54 and
28. the following operation would take
place. In Figure 2-20 the binary break
down of tbe decimal number 54 into eight
bits is 00110110 and 28 is 00011100.
Adding the two numbers and using the
carries_ the answer is 01010010 or 82.

Figure 2-21 is the result of a com
plement add of binary data. The con
trols were decoded again from the ROS CV
field which indicated a complement
binary add. The CC field forces a carry
into position 7 of ALU.

PACKED DECIMAL ADDITION

Two conditions must be considered to do
decimal addition. First, a ·pack·

B-register 14
A-register + 15 --

29 =

instruction must be given. Second, if a
decimal addition is called for, an
excess six circuit will be used. The
operation of the excess six circuit is
used only for decimal~. A decimal
add would work correctly for totals not
exceeding 9. However binary figures
which add up to greater than 9 w;ll not
produce the correct answer. As can be
seen in Figure 2~22. 15 and 14 added
will result in a binary 29. The addi
tion of 15 and 16 will not result in a
correct answer as can be seen in Figure
2-23. The excess six circuit adds six
(0110) to the four high pOSitions and
six to the four low poSitions on all
decimal add operations. See Figure
2"'19. The excess six circuit is not
necessary on a decimal-complement add.
This data as well as any data other than
a decimal add will pass through the
circuit undisturbed.

8 4 2 842 I • Packed Decimal Value
000 o I o 0
0 001 o I o I

I I .. Carry
o 0 1'0 1'0 o I • Answer

Figure 2-22. Packed Decimal Addition--No Correction

2-13

8-register 16 8 4 2 842 1 __ Packed decimal value
A-register 15 000 o 1 1 0

000 010 1
1 1 -Carry

31 ~ o 0 1'0 1'0 l--Answer Incorrect

Figure 2-23. Packed Decimal Addition--No Correction

The output from the A-reg cross-high
low circuit is switched by AND/OR
circuitry with the output from the T/C
excess 6 circuit under control of the
ROS field, CC. The.operation to be
performed is dependent on the control
activated. When the add control is
activated, the bit entries from the
A-register and the T/C + 6 circuit are
added together, as described above.
When controls Or, And, or Exclusive Or
are activated, the logical operation
indicated by the CC field is performed
on the bit entries from the A.-register
and the T/C + 6 circuitry.

The output of the adder is fed to the
decimal corrector circuit. Binary data
from an add or logical operation is
passed through this circuit undisturbed.
For decimal operations the high-order
carryout of each four bit group is

8-register
+6 Circuit +

14
6

000 1 0 1 0 0
o 1 1 0 0 1 1 0

investigated and if no carr! exists, six
is subtracted from each four bit group.
Data from the decimal corrector circuit
is then put on the Z bus.

An example of decimal add is shown in
Figures 2~24and 2-25. The general
rules for decimal adding are as follows.
First add six to each 4-bit group as it
comes from the B-register. Then add the
entire eight bits together as if they
were binary numbers. After addition,
operate only on the successive groups of
4 bits independently. Next, subtract 6
if no carry from this group occurred.
For our purposes, now, keep in mind that
to subtract a 6 (0110) you add the two'S
complement of 6 (1010). If a carry did
occur from the 4-bit group, add 0000 to
that group.

1 -Carry
o 1 1 1 1'0 1 0

A-register +

Decimal -
Corrector
Circuit

15

6

29

000 1 0 1 0 1
1,1,!, .. Carry ..
10UOlfl1
1 0 1 0 1 0 1 0

1, 1,1, --Carry by Group L"() 0 1 0 1 0 0 1 --Answer

Carryout from high-order position indicates correct answer (no
recomplement necessary).

Figure 2-24. Packed Decimal Addition--No Correction

2-14

No carryout from
either group; therefore,
subtract 6 from each
group.

B-register 16
+6 Circuit + 6

A-register + 15

Decimal -6
Corrector

o 0 0 1 o 1 1 0
o 1 1 0 o 1 1 0

1 1
o 1 1 1 1'1'0 0
o 0 0 1 o 1 o 1

I,I~,I, 1
1 0 1 0'0 0 1
1 o I 000 0 0

-Carry

-Carry

• Carry

_--------- ~carry from high
order group; therefore,
subtract 6 from high
order.

Circuit 31
I,

0 0 1 000 1 -Answer

Figure 2-25. Packed Decimal Addition with Correction

Correct parity has not been mentioned
up to this point as a parity line does
not exist in ALU. ALU uses a two wire
approach where both logical levels are
used for every signal. Either an up
(+~ or a down (-L) level will exist for

every bit position throughout ALU. Both
outputs of each signal are then run
through an -exclusive or- unit to check
for the presence of one and only one up
level.

ALU DETAILED DESCRIPTION

The ALU unit. through the combinations
of three control lines can perform the
following functions:

• Adding (and subtracting by comple
ment entry)

• ANDing (output only if both inputs
are present)

• ORing (output if either input is
present)

• Exclusive OR (output if only one
input is present)

The inputs and outputs are divided into

four-bit groups with external controls
to determine if the low order group will
carry into the high order group. Opera
tion can thus be in BCD form or in pure
binary.

Field
012 Value Mnemonic Function

000 0 0 Add Function or Block Carry

001 I I Force a Carry

010 2 AND Function

o I I 3 Q OR Function

I 00 4 OC 5et Carry Latch (53) if a
Carryout of ALU Occurred.

101 5 IC Force a Carry and 5et 53
if Carryout of ALU.

I I 0 6 CC If Carry-In, 5et 53 if Carryout
of ALU.

I I I 7 V- Exclusive OR

Figure 2-26. Read Only Storage
CC Control Field

2-15

'1'0 review briefly the control of ALU
which is decoded from the CC field of
ROS, the three-column field can-contain
a binary zero through seven, depending
on the punches in the sense card. Fig
ure 2-26 shows a breakdown of this
punching and of the use of the decoded
mnemonics.· In addition, Figure 2-21
shows that three control lines can be
obtained from various combinations of
mnemonics and that a further decoding
will develop definite functions which
will control the operation of ALU
(Figure 2-28).

Line CC .Possible
Nome Field Decodes -- ---

{ Not CC2
+L Control LM Not CCO 010

CC1

i Not CC1 XOX

+L Control N Or

'1 cco 1XX

{ Not CCO} 01X
+L Connect or CC1

{ CC1 }
CC2

XII

Figure 2-27. Decode of ALU
Control Lines

2-16

Numeric
Decode Mnemonic

2

0 0
1 1
4 DC
5 1C
4 DC
5 1C
6 CC
7 l.f

{ ~ Q

{ ~ Q
l.f

Add Operation (also Exclusive Or)

From table 1, in Figure 2-28, it can be
seen that control N is the·only control
line activated for A + B. Thus, lines
N, LM will be up and lines N, LM and
Connect will be down during add. With
these controls, AOI 1 will accept an
input (and its output will be down) if
neither A nor B inputs have a bit or if
both A and B inputs have bits. The
output of AOI 2 will be down under the
other twb conditions, a bit on A only or
a bit on B only. Assuming a bit on A
only (or B) the output of AOI 1 will be
up. This condition will switch with a
carry at AOI 3 or a no carry at ACI 4 to
provide a Sum not 1 or a Sum 1, respec
tively.

Carry-In From 2
Not Carry-In

Not Al A
N OR

Not Bl
0 Output

LM ~ -'/ Not Al N
Bl N

D

LM ~ '-----

Al N
Not Bl D

N ---;;:-
Al N
Bl D

AOll

Not LM A
Not Al N

OR

Bl 0 Not Al ,-----
Not LM ~ Not Bl
Al N N -
Not Bl D Connect
Not N ~

~

Al N
Bl 0

AOl2

Table 1

Function Connect LM N

A+B Off Off On Not Connect
A.,.B On Off On

Al
A and B On On ·Off Bl
A or B On Off Off

Figure 2-28. ALU l-Bit

If both (or neither) A and B inputs
have bits, AOI 2 will provide the up
level to switch with Carry or No Carry
at AOI 4 or AOI 3 to provide the Sum 1
or not Sum 1 signals. The above des
cription of this part of the add opera
tion also applies to the E~clusive Or
function.

The carry or not carry from a bit
position (which will be used in the
creation of the next bit sum) is created
in the following manner:

Assuming a carry in condition (Carry.
In line up and Not Carry In line down)
meatlsthat no inputs can be active to
AOI 5 and that an input must be active
at AOI 6. The condition at AOI 5 can be
satisfied by a down level from AOI 1

A OR
N -- D Sum 1 +L

-;;:- N

N -
D

AOl3

A
N OR

,--

D Not Sum 1 +L
~

N -- N '---

D
AOl4

A
OR ~ N

D

~ ,--

N Carry 1 +L
D N

~ '---

N
D

AOl5

A - OR
N -
D Not Carry 1 +L

~ N

N -
D AOI 6

(neither or both bits present at input)
or by a carry into the bit one position
(in this case the Not Carry In line will

be down). The Not Carry 1 line is
brought down through AOI 6 by either the
presence of bits on both A and B or by a
bit on either A or B (up level from AOI
1) together with a carry in. For the
Exclusive Or operation, the Connect line
is activated which effectively elimi
nates the carry circuit by bringing down
the carry 1 line through AOI 5 and
bringing up the Not Carry 1 line through
AOI 6 (all inputs down).

AND Operation

The function is identical to the logical
AND circui t requiring the presence o.f
all inputs in order to create an output

2-17

= 1. This meanS that any output posi
tion will have a bit piesent only when
both A and B input positions have bits.
Table 1, in Figure 2- 28, shows that LM
and Connect controls are CN resulting in
these control lines, plus N being up.
Any of the three conditions, A without
B, B without A, or neither A nor B will
cause the output of AOI 1 to be down and
will allow the output of ACI 2 to be up.
The other condition, both A and B will
cause the opposite outputs with ACI 1 up
and ACI 2 down. For the logical AND
operation, the Not Carry In line is
always up causing Sum 1 output if ACI 1
is up and a Not Sum 1 output if ACI 2 is
up. The Connect control is effective in
preventing a carry output as explained
under Exclusive Cr operation.

(iR Cperation

The logical -CR- function will cause a
bit in any output position in which
there is a bit in either input A or
input B or both. The control lines up
for the operation will be Connect with
LM and N. Thus the output of ACI 1 will
be down only if no bits are present in A
or B. The output of ACI 2 will be down
under the three other possible condi
tions, a bit in either A or B or both.
AS all logic operations use Not Carry
In, the up output of ACI 1 will switch
at ACI 4 to create a Sum, and the up
output of ACI 2 will switch at AOI 3 to
create the Not Sum. Again, the correct
control eliminates the carry as pre
viously described.

CARRY OPERATION

• A Carry from one position to another
occurs only in ALU circuits during
Hex or Decimal Add operations.

• Carries do not occur in the Decimal
Corrector or Excess-6 circuits.
Line Levels are -switched- for cor
rect answers.

• The Carry Latch is the third posi
tion of the S-Register (S-3).

Carries into and out of ALU involve
several circuits. As shown in the exam
ples previously given, a carry can occur
from any pOSition of the byte, zero
through seven. Within ALU, carries only
occur into positions six through zero.
(Carries into position seven will be

2-18

confirmed later). The vehicle for
transferring the carry frQm one position
to the next is simply a line labelled
Carry Bit. The line Carry 1 Bit,
for example, is made active in the ALU 7
Bit circuitry and ties back to the input
of ALU 6 Bit to switch with Control
Lines, A-register inputs and True
Complement inputs. Developed by this
circuit are the lines +L Sum 6 Bit, -L
Sum 6 Bit, +L Carry 6 Bit and -L Carry 6
Bit. See Figure 2-29.

Control~ 1
and
Inputs

5-Bit
Position

Controls !
and
Inputs

+l Carry 7 Bit

and Position '""+'"'l""'S,..u-m.:.:7:-:B,.,.it---.....
Controls I 7-Bit -l Carry 7 Bit

Inputs -------i -l Sum 7 Bit

Carry- {
In

Figure 2-29. ALU Carry

ALU is the only circuit where a carry
can occur from one position to another.
Although carries were shown in the
excess-6 and the decimal corrector
operations of Figures 2-24 and 2-25, a
carry line does not actually exist. The
switching of various lines and levels
result in. the desired output. For exam
ple in Figure 2-24, Bit position 4, the
final answer shows a 4 Bit ON. The
result was obtained by investigating the
4, 5, and 6 positions as shown in Figure
2-30. Other outputs from these correc
tion circuits are determined by the
input lines of Carry 4. The same type
of switching is done in the excess-6
circuitry. In this manner most of the
arithmetic operations require just one
pass through ALU. A recomplement cycle
will be the next micro-program step
however. if there was no carry out of
the high order position.

+L Carry 4 Bit A OR
+l Sum 4 Bit
+L Sum 4 Bit

~
+L Odd
+L Hex 3
+L Sum 4 Bit ~
+L Sum 5 Bit
+L Sum 6 Bit

Pigure 2-30. Decimal Corrector
(4-Bit)

+Z Bus 4 Bit

Figure 2-31 shows a composite of the
carry operations including some that we
have already discussed. The normal
carry out and back into ALU is shown
along with the carries from the zero and
th~four positions to the decimal cor
rector. In addition to these operations

Gate S-Reg to A Bus r--;;:-
S-Reg 3 Bit N

D
'---

Carry 0

Z Bus 3 Bit. 'A"" ~

N (S3)

I

GT Z ·Bus to 5 Reg Carry-in - 3 ~
D 0 Carry PI Time D ---0- Carry In Carr)/' 0 Bit r-,;:- L- A R GT Carry to S3 R N Insert Carry ~_

T4 Time D -
~

-- FL-- -- FL--

Tl Time rA --=-~-Not Carry 0 Bit D 0 Recycle Reset I~· 0
S-Reg Reset ~ R Manual Store L...><.... R

Not S3 -
Carry In-=S3 A

PI
N
D

_L- A
Insert 0 Carry N

D

Figure 2-31. Carry Circuits

the Carry Zero line from the high order
position is used to set the Carry Latch,
which is position 3 of the 5-register
(53). You will notice from Figure 2-31
that in order to set 53 a carry out of
the zero pOSition of ALU had to be
switched with Gate Carry to 53, and T4
Time. Gate Carry to 53 is the result of
a micro-program step which has decoded
the ROS CC field. (Figure 2-26 shows
that a CC 4, 5 or 6 activates the line
Gate Carry to 53) •

Another means of setting 53 is by
decoding the R05 destination field CD.
A CD 6 tells the micro-program to gate
the Z-bus to the S-register. This line,
switching with a Z-bus 3-bit will turn
on S3.

Micro-programming can also use the
5-register as a destination register.
This is done by a ROS CD 6 ANDed with a
Z-bus 3-bit •.

To carry into the 7 position of ALU,
a Carry-in latch is used. You will
notice from Figure 2-31 that two AND

-
-L A Bus 3 Bit

N

'---

5 pas I 6 pas I Immediate
Status Latch

1 r-

N r--

IBC '---

~1-7 Carry

L~J H Subt r-A Not Carry 0 6
Carry-In L Not Corry 4

Subt h U
A Entry Sum 0-7 Bits 6
0-7 Bits L Z Buss

Decimal

Tic + 6 Entry Corrector 0-7

2-19

circuits can be used to set the Carry-in
latch. The first allows a carry in to
~LU if a Carry out had occurred, plus
resetting of S3 by aROS field CC 6.
The second set condition is an insert
Carry (Force Carry), which is decoded as
a 1 or a 5 in the CC field.

ALU CHECK (SEE FIGURE 2-32)

• All Z-bus lines and the ALU Sum
Zero, Sum Four and Carry-Zero lines
are checked for complementary line
levels.

• ALU Check will drop the CPU Clock
Start Line if Check Stop is on.

Plus Z Bus 0 Bit OE
Minus Z Bus 0 Bit 1---.,

Plus Z Bus 1 Bit
Minus Z Bus 1 Bit

Plus Z Bus 2 Bit
Minus Z Bus 2 Bit

OE

OE

Plus Z Bus 3 Bit OE
Minus Z Bus 3 Bit

Z Bus 4 Bit
Z Bus 5 Bit
Z Bus 6 Bit
Z Bus 7 Bit
Sum 0 Bit

Plus Sum 4 Bit OE
Minus Sum 4 Bit 1-----'

Plus Carry 0 Bit OE
Minus Carry Bit t-----'

Figure 2-32. ALU Check

2-20

A

N
ALU Check

The use of two wire circuitry is also
used on the output of the ALU decimal
corrector to check for correct
operation. Each bit position will have
both a plus and a minus level output.
For example, if bit 4 is ON, the output
of the decimal corrector will produce
-+L Z BUS 4 Bit- and --L Z Bus 4 Bit-.
If the 4 bit position is Q!l, these two
lines will have the opposite voltage
level output. Three bit-positions are
also checked directly from ALU in addi
tion to the lines from the decimal cor
rector. All of these complementary
lines are fed to exclusive-or circuits
which produce plus level outputs if ~
and only one input is plus. If any OE
has either both, inputs plus or both
inputs minus the output will be minus
(-L). This minus level will produce a

plus (+L) level output through an AI
circuit to establish the line -+L ALU
check-. Correct operation will result
in --L ALU Check- (Not ALU Check). The
correct operation then is to condition
all OE's so that their plus outputs to
the And block in Figure 2-33 will pro
duce a minus level out.

The output of the ALU check circuits
is used several ways. See Figure 2-33.

1. It blocks the setting of the Wand
X-register Indicating Latches if
Check Stop is on.

2. It sets the Machine Register 7
Latch which can be used in micro
programming.

3. It produces -Any Machine Check
which, depending on switch
settings, will cause a -Hard Stop·
and therefore stop the CPU clock.

T4

~
P4 r-;;:-
Mach Chk Reset I() N
Reset Mach Check I R D

L-

Gate MC Reg to A Bus ~ ,--- A Bus 7 Bit

r-L-r-~

MC7

r---
r-

-FL-

MC 0-6

1 To Indicator Lights

'""()
R

'--

Any Machine Check

ChkSW ~
to Proc

2nd Error Stop r-;;:
Jst Mach Chk

T4

Hard Stop

o
~R

I-FL-

Chk Stop Sw Clock Start

.. ALU Check Additional {~==
Set Lines \-

Reset {===~
Lines -

o W or X Reg ister
f---- ,

~ ,--- r--;;:- Inputs
L..- f---- N I-- f-------'----+------I--PH-

~C_he~c~k_S~t~op ______ ~ ~

Figure 2-33. ALU check Stop Controls

REVIE~ QUESTICNS - ARITHMETIC CPERATICN

1. Data to ALU is supplied from

2. ALU lines are bits wide.

3. The control of data moving through
ALU is by

4. List the four basic ALU operations.

5. Data can be gated to ALU from the
A-register six ways. Name each.

6. Data can be gated to ALU from the
B-register three ways. Name each.

To Indicators
for WX Registers

I--PH-

1----- .

I--PH-

7. The
6 on every

circuit, adds
operation.

8. A decision to subtract six is
caused by

9. Parity is checked by a special
circuit in ALU. (True/False)

10. The Carry Latch is position
_____ of the register.

11. What two latches must be se~ to
carry into position seven of"ALU?

2-21

REGISTERS

• The registers of the CPU are storage
latches.

• polarity Hold latches and AOI latch
es are used.

• Register input and output lines are
controlled by ROS.

Registers have been described in the
section on Data Flow as address reg
isters, data registers, status registers
and other general use registers. These
registers are storage latches wbich can
accept information, store the informa
tion and then read out the information,
without destroying the data
(nondestructive read out). All of these
functions are under control of the ROS
which supplies gates and pulses to allow
movement of the data from one location
to another.

There are two types of latches used
in the 2030 Processor. The first and
most frequently used is the Polarity
Hold latch. Reviewing briefly the PH
latch, the output line follows the data
line when the control line is active.
This means then, that the information on
the data lines will be set into the
register when the control line is
brought up.

One example of register operation,
which is similar to most registers using
a PH circuit, is the R-register. This
register has two input sources and three
major destinations. (See Figure 2-18)
One input comes from the main storage
unit" consists of 9 bit lines (8 +
parity)" and is labeled Storage Data
out bit. This input is gated
into the latches by memory set R. The
control line is Set R-register (Figure
2-34) oj

The second input is from the Z-bus
and is labeled accordingly. The bits on
this bus are gated into the R-register
by Z-bus set R and the control line Set
R-register.

2-22

Z-bus 0 Bit.
Z-.bus Set R. A
Storage Data Out 0 Bit t---- 0

Memory Set R A
R "0" Bit

Set R-register
(control) ---PH---

R-register
(8 Bits + Parity.
One position shown)

Basic CA Decode-
Not CA Zero A L- . - A A-bus Zero Bit
CA 1 ICA 7 OR
CA 2

r- ~

CA 3 ~

~

Set R-register Manually

Figure 2-34. R-Register Zero-Bit
Latch

All of the nine PH latches in the
R-register turn on as described above.
However, the parity latch has one addi
tional turn on, which would not be pre
sent on other registers and is therefore
not shown in Figure 2-34. In order to
prevent an R-register parity check at T2
time, the parity latch is turned on by a
line which comes from the machine reset
circuitry. This prevents a completely
blank R-register from turning on the
Machine Check 6 latch at T2 time or
after a machine reset.

urn on A
A-I

-
Time T4

- A-2 """- 01

CD r--
Turn on B

~

CD r-

Reset N ~ A-3

'-- ~

r- eD Latch Back

(j) T4 and Turn on A or B turns latch on.

T urn on of latch sends Latch Back
pulse to switch with (not) Reset to
keep latch on.

Reset deconditions A-3 to turn latch
off.

Figure 2-35. One Latch Position
of a Register

Latch on

The second type of latch used for
registers is one which is made of sever
al block functions tied together. They
can be called AOI latches as they use
AND fUnctions and OR inverter fUnctions.
A latch back line from the output 01
keeps the latch on, as shown in Figure
2-35. The latch can have many turn-on
lines and will stay turned on until
reset. This allows greater flexibility,
as the output lines can be tested and
switched with other conditions to con
trol operations several cycles later.
This AOI latch is used for:

1. the F-register

2. the S-register

3. the control register

4. the machine check register

REVIEW QUESTIONS - REGISTERS

1. Registers are used as
latches.

2. Registers are controlled by

3. The two types of hard'Nare used for
latches are latch-
es and latches.

4. Register read out is
non-destructive. (True/False)

5. All registers read out to the B-bus
but only three registers read out to
the A-bus. (True/False)

CORE STORAGE

ADDRESSING THEORY

Four-Digit Addressinq

•
•
•

A storage location is a place 'Nhere
something may be kept.
A number assigned to a storage loca
tion is its storage address.
Four binary digits form 16 different
storage addresses.

By definition a storage location is a
place where something may be kept.
Examples of storage locations are
shelves in a library or mail boxes. To
facilitate finding things at different
storage locations, it is convenient to
assign a number to each storage
location. These numbers become the
storage addresses.

USing four binary digits, 16 storage
locations can be assigned addresses.
All items numbered 0000 (decimal 00)
that we wish to store are placed in
storage location 0000 (decimal 00); all
items numbered 0001 (decimal 01) that we
'Nish to store are placed in storag~
location 0001 (decimal 01); etc. It is
now possible to find any item by select
ing the storage location 'Nith the proper
number. In Figure 2-36 storage location
0101 (decimal 05) has been selected by
the combination of binary digits that
represent the decimal number 05.

2-23

0000 00
0001 01

0010 02
Binary Position 8 4 2 1 0011 03

0100 04
Binary Value 0 1 0 1 0101 05

y

Decimal Equivalent = 05

06
01 11 07
1000 08
1001 09

1010 10
1011 11

1100 12
1101 13

1110
1 J1J

Figure 2-36. Four-Digit Addressing

Six-DigiS Addressing

• Six binary digits form 64 different
storage addresses.

• ~ddress range from 000000 to 111111
(00-63 decimal).

If the original four binary digits pro
vide 16 combination of numbers (2 4 =16),
then six binary digits can be used to
provide 64 combinations of numbers
(2 e=64). By using these 6.4 numbers as
storage addresses, it is possible to
have 64 addressable storage locations
with the address range of 000000 to
111111 (00 - 63 decimal) •

There are several ways to apply the
six binary digits to an addressing
scheme. For the purpose of this discus
sion, it is most convenient to expand
the original 4-digit addressing scheme
shown in Figure 2-36. Thus, in Figure
2-37, the four low-order binary digits
describe some number in the range
0000-1111 (00 to 15 decimal), while the
two high-order binary digits describe
which of the four groups of 16 numbers
is to be used. In the example shown,
the four .low-order digits 1111 (15
decimal) combine with the two high-order
digits 10 (32 decimal) to select storage
loca tion 101111 (47 decimal).

Ten-Digit Addressing

• Ten binary digits form 1,024 differ
ent storage addresses.

•

14
15

Address range from 0000000000 to
1111111111 (0000-1023 decimal).

If four additional binary digits are
added to the 6 digit addressing scheme,
it is possible to define 1,024 storage
locations (2~o=l,024). To accommodate
the extra bits in the addressing scheme,
it is necessary to add another dimension
(Figure 2-38).

The four low-order binary digits
describe some basic number from 0000 to
1111. This basic number is represented
by a storage location in each of the 64
blocks of 16 storage locations. To
further select the desired location, the
next two binary digits describe one of
four blocks of 256 storage locations.
Each of these blocks is made up of 16
blocks of 16 storage locations each.
The six low-order digits have narrowed
the selection to 16 storage locations.
With four high-order digits, it is pos
sible to make a final selection of one
of these 16. In the example shown, the
four low-order digits 0000 (00 decimal) ,
plus the next two digits 01 (16
decimal), plus the four high-order
digits 1110 (896 decimal), combine to
form 1110010000 (912 decimal).

Binary Position 32 16 8 4 2 00

Binary Value

15

16

00

16

31

32

32

48

47

48

63

Figure 2~37. Six-Digit Addressing

2-25

9------(0000 896 0960

0--------1 0015 0911 0975

0-------4 0016.

0---------1 0031 0927 0991

0--------/0032

o--------l 0047 0943 1007

0--------/OM8 0944 1008

0063 0959 1023

16
~,

Binary Position 128 64 32 16 8 4 2

Binary Value 0 0 0 0 0 0

Figure 2-38. Ten-Digit Addressing

2-26

~--------------------8GROUPSOF16ROWS--------------------~~

"'o,,°'--ocOl;----I 0000 0896 0960 1-------1 1024 1920 1984 7168 8064 8128

14

15
7183

00
0016 ---- - 7184 8080 8144 01 --- --

1944 ------

~ 00
16 15 --- -- 7199 <>

32 00
(;

-- --- 8000
48 ::l

~ - -----
"

14
15

0047 1071 1967 2031 8015 8111 8175

00
0048 0944 1008 1968 2032 - - --- 8016 01 ------

- - ---

-- ---

7168

Figure 2-39. Thirteen-Digit Addressing

Thirteen-Digit Addressing

• Thirteen binary digits address 8,192
storage locations.

• Address range 0000000000000 to
1111111111111 (0000-8191 decimal).

In the first example of addressing
(Figure 2-36), selection depended on one

group of binary digits. This was
expanded to selection by three groups of
binary digits (Figure 2-38). If a
fourth group is added to provide a
fUrther means of selection, the total
amount of addressable storage can be
increased.

With an additional three binary
digits to provide eight more combina
tions of numbers, the tot~l amount of
addressable storage is increased by a
factor of eight from 1,024 to 8,192
(Figure 2-39). These additional three
binary digits provide a fourth direction
to the addressing. Basic addressing is
the same as shown in Figure 2-38 except
that now there are eight groups of 1,024
storage locations. The three additional
digits determine which of the eight
groups of 1,024 is to he used. Notice
that address selection depends on the
coincidence of lines from four direc
tions.

Up to this point, reference has been
made only to storage locations, with no
attempt made to describe the actual
storage device. In the examples given,
the storage locations could have been in
any storage device, depending on what
was to be stored. In the IBM 2030 Proc
essing Unit, a storage device is needed
to store information, program instruc
tions, constants, and data for process
ing. The storage device must be capable
of storing and/or supplying the required
information in the range of several
microseCOnds. Thus the multiplicity of
switches and boxes used to demonstrate
storage addressing in FIgure 2-39 are

~not satisfactory. However, it is possi
ble to apply the same addressing scheme
to faster storage devices. An investi
gation into the properties of magnetic
core storage reveals that this device
can be readily applied to produce an
extremely fast storage device capable of
storing the information required in the
IBM 2030 Processing Unit.

2-28

The basic core storage size is 8,192
positions. Using the 13-digit address
ing scheme described, a unique binary
address can be assigned to each of the
8,192 positions.

MAGNETIC CORE THEORY

• A magnetic core is a small,
doughnut-shaped object.

•
•

•

Made of ferromagnetic material.

Can be magnetized to either of two
pola.rities.

Once magnetized, the core retains
its magnetism until it is deli
berately changed by an external
magnetizing force.

• External magnetizing force created
by current-carrying wires.

A magnetic core is a tiny, doughnut
shaped object made of a ferromagnetic
material. The properties of this
material are such that if a ferromagnet
ic core is introduced to a sufficiently
strong magnetic field, the core becomes
magnetized. Furthermore, if the core is
removed from the vicinity of the magnet
ic field, it remains magnetized. Unless
it is delibe.rately changed, the core
retains its magnetism indefinitely.

To deliberately change the core, it
must be introduced to a sufficiently
strong magnetic field of the opposite
polarity. This causes the core to be
magnetized in the opposite direction.
Once again, unless deliberately changed,
the core retains its magnetism indefin
itely.

The fact that the core may be set to
either of two states makes it a very
useful binary storage device. If, when
the core is magnetized in one direction
a binary value of 1 is assigned, then a
binary value of 0 results when the core
is magnetized in the opposite direction.

Moving the core to the vicinity of a
magnetic field is not a practical method
of storing binary information. A more
suitable method is to have a controlla
ble magnetic field near the core itself.
To magnetize the core in either of two
directions, this magnetic field must be
reversible in polarity. The desired

result can be obtained by threading a
wire through the center of the core. If
a sufficiently strong current is passed
through the wire, the core will be mag
netized by virtue of the magnetic field
created around the wire as the current
passes through the wire. If the current
through the wire is reversed, the core
becomes magnetized in the opposite
direction (Figure 2-40). Thus, by con
trolling the direction of current flow
through the wire, it is possible to
magnetize the core to a value of either
binary 1 or binary O. Changing the core
from one magnetic polarity to another is
called flipping the core.

+

Figure 2-40. Magnetic Core

Using one wire fo.r each core results
in an expensive, inefficient storage
device. With a slight change in the
method of flipping the cores, it is
possible to produce a more efficient
device.

1/2 Current

1/2 Current +

+

Figure 2-41. Half-Current Principle

TWo-Wire Addressing

• Two wires pass through each magnetic
core.

• Core is magnetized by additive
effects of the two magnetic fields.

By passing two wires through the core,
and by sending just half the current
necessary to magnetize the core through
each wire, the core is flipped by virtue
of the additive effects of the two mag
netic fields (Figure 2-41).

If this half-current is passed
through just one wire instead of both
wires, the core is not flipped because
the magnetic field is not great enough.
Thus the core can be affected only by
the coincidence of the two
half-currents.

This half-current principle can be
used to simplify the setting of cores by
forming a screen of wires with a magnet
ic core at each intersection of the
wires (Figure 2-42). By sending current
in the appropriate direction through the
appropriate pair of wires, the desired
core can be flipped to the desired mag
netic polarity without affecting the
other cores in the group.

2-29

+

Figure 2-42. Coincident Current
Addressing

Core Storage· Addressing

+

• Transistors select address and pro
vide selection current.

• Current flow in drive line deter
mines core magnetic polarity.

It is possible to apply the 2-wire.

2-30

coincident-current addressing scheme to
a larger number of cores. In Figure
2-43, magnetic cores have been added to
the 8,192-position, 13-digit storage
addressing scheme explained previously.
Each box represents a magnetic core, and
the lines between the boxes represent
the screen of wires. If a battery is
connected between the bottom address
selection switch and the top address
selection switch, and if a similar bat
tery is connected between the left
address selection switch and the right
address selection switch, coincident
current will be produced in ~ core.
That one core will be flipped to a
polarity dependent on the direction of
current flow (Figure 2-44). The core
shown can be flipped to the opposite
state by changing the position of the
battery control switch. The four
address selection switches shown corres
pond to the address selection switches
in Figure 2-43.

The use of switches for address sel
ection and polarity control produces the
desired result. However, having a ser
ies of switches is awkward. Moreover,
it is impossible for such a system to be
operated at the speeds required by the
IBM 2030 Processing Unit. A much more
practical approach is to let transistors
do the switching for address selection.
Figure 2-45 shows the windings through a
typical core, and the method of driving
the windings with sufficient current to
flip the core to a logical 1.

N
I
w

00
16

32

Figure 2-43. 8R Storage

00
01

14
15

00
01

14
15

00

08

~1'r---------------------------------------8GROU~OFI6ROWS--~

0000 0896 0960 1024 1920 1984 7168 8064 8128

--'--___ r-, ___ ---"r--- - - - - - - ----, __ ---'"--

--'--__ -'--, __ ---'"--- - - - - - ----, r--

~==~~~-----------L__~

----------, ,--

~~------§-~

-{l9W]-·L~~J----- - -- -=3=E
r-'-___ ,---- - - ---

r---.. __ --.r--------- ----, r-

----------, ,--

--'-__ r-'-__ --.r---- - - - - -----'--__ .r--

~==r_c=J_-------
8127 8191

7168

00

r) 00
0

0

Address 0
0

Value
16 0

1 0

- 0
0

0
0 0

Address
Value
8

Binary 0

Binary 1

~BinaryO

~

Binary 1

o
o

Address 0
Value 0

896

00
00

Address
Value
1024

Figure 2-44. Magnetic Core Drive

2-32

.

00

Address
Value
1024

Address
o Value

00 896
00

Binary 1

Binary 0
0

-

~
Binary 0

<>--jll~

0 0 0

0
0

0
0

0
all
0
0
0
0

0
00

Address
Value
8

0

\ I
04~

1 "'¥

Composite
Selection

8
16

896
1024
1944

Address
Value
16

Figure 2-QS. Core Storage Drive

• Core magnetized to either of two
polarites, represented as logical 1
or logical O.

• Logical 1 called bit status, logical
o called no-bit status.

• When core changes from bit status to
no-bit status, a pulse is induced
onto the sense winding.

•

•

Changing core to bit status called
writing.

Changing core to no-bit status
called reading.

A magnetic core stores information by
remaining in either of two magnetized
states. The two states are logical 1
and logical 0, thereby forming a binary
storage device. The logical 1 state is
called the bit status while the logical
o is the no-bit status.

2-33

Set Core to
Binary 0

Figure 2-46. Core Read

The stored information is of little
value unless it can be retrieved from
the core. To accomplish this, a wire is
threaded through the core. When the
core is flipped from one magnetic state
to the other, a pulse is induced onto
the sense wire. This pulse can be
amplified and used to set a latch. The
latch then provides the usable output
from the core.

If a core is to contain information,
it must be magnetized to the bit status.
Accomplishing this requires coincident
current in the proper direction. Flip
ping the core to the bit status is
called writing, and the coincident cur
rent that causes writing is called write
current. When information is to be
retrieved form the core where it was
stored, drive current is made to flow
through the windings such that the core
is flipped to the no-bit status. This
causes the pulse that is amplified and
used to set the latch (Figure 2-46).
Retrieving this stored information from
core storage is called reading, and the
coincident current that causes reading
is called read current. If coincident
read current is made to flow through a
core that is already in the no-bit sta
tus, the core does not flip, and there
is no pulse induced onto the sense wind
ing.

Notice that to read out the addressed
core requires the core to be flipped to
the no-bit status. As far as the core
itself is concerned, the information is
lost. This type of information retrie
val is called destructive readout. If
it is necessary to have the information

remain in the core after readout, it
must be replaced on a subsequent write
cycle.

STORAGE ADDRESS REGISTER

• M-andN-register hold storage
address.

• Together, ~- and N- register store a
16-bit binary address.

• Low-order 13 bits used to address
basic 8R storage unit.

To retrieve a byte of information from
core storage, the core-storage address
must be available to the address decode
network throughout the time when reading
is taking place. Similarly, the address
where a byte is to be written must be
available during write time.

Two 9-bit registers (8 information
bits plus a parity bit) are provided for
core-storage addressing. Called the
M- and N-registers, these registers
store a 16-bit binary core-storage
address. The low-order position of the
N-register has the value of 1, the next
position has the value of 2, and so on
in binary incre~ents up to the high
order position of the M-register which
has a binary value of 32,768 (Figure
2-47). Used together, these registers
provide 65,536 different numbers,
ranging from 00,000 to 65,535. These
numbers are the core-storage addresses
for the core-storage unit in the 2030.

2-35

Name M-Register

Position 0 I 2 3 4 5 6 7 0 I

3 I

2 6 8 4 2 I

Binary
7 3 I 0 0 0 5 2 I

Value

6 8 9 9 4 2 I 5 2 6

8 4 2 6 8 4 2 6 8 4

Figure 2-47. Storage Address Register

Thus far, we have discussed only the
basic or 8, 192-position block of core
storage. To address this block requires
only the low-order 13 bits of the M- and
N-registers. The remaining 3 high-order
bits are used to complete the addressing
scheme up to the maximum core storage
size available (65,536 bytes).

Address Decode

• Address decode takes place for each
end of the drive lines.

• Four drivers, 16 gate decodes, and
64 gate transistors for each end of
the X-drive lines.

• Eight drivers, 16 gate decodes, and
128 gate transistors for each end of
the Y-drive lines.

• The gate transistor, with both base
and emitter conditioned, is turned
on to supply drive current.

2-36

2

3

2

N-Register

3 4 5 6 7

I

6 8 4 2 I

The examples of Figures 2-45 and 2-46
assume certain address values to be
present at the input of the transistor
circuits. Developing these address
values fr~ the binary address presented
to the core storage unit is known as
address decoding. There is address
decoding circuitry for the 64-line X
dimension, and similar address decoding
circuitry for the 128-line Y-dimension.
min addition, further address decoding
takes place at each end of the lines.
One end is address decode for read, and
one end is address decode for write.
Read and write address decoding for the
X-dimension is shown in Figure 2-48.

128 CORES ON EACH LINE
X 64 LINES

16 LINES PER GROUP
X 4 GROUPS

READ
GATE
TERMINATOR

R GROUPS OF FOU
16W
TRA

RITE GATE
NSISTORS

4 DIODES

t

+

00

~.
(NOT) N-REG 3-BIT

64 DIODES

t

15

f~

N-REG 3-BIT

(NOT) N-REG 2-BIT U
WRITE

N-REG 2-BIT IT
WRITE

4 WRITE DRIVERS
EACH DRIVES 16
READ GATE TRANSISTORS

8192 CORES

,"- ",,,-
q ~,

'" '" v ...

"''>. '<>.
C '>V '>

.<>. .R" A.
~

(NOT) N REG 7-BIT

(NOT) N REG 6-BIT

(NOT) N REG 5-BIT

(NOT) N REG 4-BIT

N REG 7-BIT

(NOT) N REG 6-BIT

(NOT) N REG 5-BIT

(NOT) N REG 4-BIT

N REG 7-BIT

N REG 6-BIT

N REG 5-BIT

N REG 4-BIT

,"

"-

'>- ''>.

,b,' ""'>-.v

A
~

-

-
A

~
'--

A

~
-

64 LINES 64 DIODES 4 DIODES

t t WRITE
GATE
TERMINATOR

t
I

~~.~
FOUR GRO

-§'''~'' TRANSISTO

UPS OF
TE

RS

(NPT) N-REG 3-BIT "'---'00

(NOT) N-REG 2-BIT I A

N-REG 3-BIT r--;;:-' 48

N-REG 2-BIT I
READ READ

~ ~

4READ DRIVERS
EACH DRIVES 16
READ GATE TRANSISTORS

I M-REGISTER N-REGISTER

I 0 1 23456 7 I 0 1 2 3 4 5

16 GATE DECODERS

6 7

X X X X X X X X X X 0 0 0 001

Figure 2-48. X-Drive Address Decode

Four drivers and 16 gate decode
switches define which gate transistor is
to conduct. In Figure 2-48, a single
X-line has been selected to read from
the binary value shown as follows: The
1-. ~-, 4-, and 8-bits (N-register 7-,
6-, 5-, and 4-bits) combine with the
read Signal at a gate decode switch to
condition the bases of four gate tran
sistors (one in each of the four
groups). From the 16- and 32-bits
tN-register 3-, and 2-bits) of the
address, one of four read drivers is
turned on to condition the emitters of
one group of 16 read gate transistors.
The connections form a matrix so that
only one gate transistor will have both
base and emitter conditioned for conduc
tion. At the other end of the selected
X-drive line, the read gate- terminator
is turned on to complete the current
path. Consequently, half-select current
flows through 128 cores located on the
selected drive line. To complete the

addressing to a single core, one of the
128 Y-lines must be selected and driven
with half-select current to provide
coincident current in one core-storage
position. To decode and drive a Y-line,
the 64-, 128-, 256-, and S12-bits
eN-register 1- and O-bits, and M
register 7- and 6-bits) satisfy one of
the 16 read gate decode switches. This
conditions the bases of 16 of the 128
read gate transistors. The 1,024-;
2,048-; and 4,096-bits eM-register 5-,
4-, and 3-bits) turn on one of the eight
Y-read drivers. This conditions 16 read
gate transistor-emitters. The one read
gate transistor with both eIl1itter and
base conditioned turns on to provide
read current for one Y-drive line.

Core Planes

• Nine cores required to store one
byte.

2-37

Address
Selection
and Drive

Figure 2-49. Core Plane Stacking

•

•

Nine core planes wired together to
provide nine cores for each address.

Coincident current produced in nine
core windings.

Up to this point, we have been speaking
of a single core plane consisting of
8,192 cores. This plane can store 8,192
bits of information. At any time, by
correctly impulsing the proper drive
line, a single bit of information can be
stored or retrieved. In the IEM 2030,
it is necessary to store a whole byte of
information at each storage location.
Each byte consists of eight information
bits plus a parity bit. To store a
complete byte requires nine cores (eight
informaion cores plus a parity core) •
In Figure 2-49, nine 8, 192-core planes
have been stacked, and the address lines
have been tied together serially. If
two address lines are selected and are
driven with coincident current, nine
cores are affected. (one in each core
plane), because coincident current is
produced in the same relative core in
each of the nine identical core planes.

Inhibit

• Controls writing in cores.

2-38

•

•

Address
Selection
and Drive

Sense winding shared by inhibit
circuits.

Inhibit current prevents core from
setting.

• Inhibit current opposes X-drive
current.

The 8, 192-position core storage unit
shown in Figure 2-49 has a deficiency:
it can store only all bits or no bits in
a given storage location. To make the
core-storage unit useful, we must be
able to write in cnly the desired cores
within a given core-storage location.

This is necessary because a core
storage position containing useful
information has some cores set to logi
cal 1 and some cores set to logical O.
Additional control over the writing of
the cores is provided by the principle
known as inhibiting. In Figure 2-46, we
added a third wire to the core and used
this wire to sense when the core
flipped. We can now use this same wire
to control writing in the core. This
control is accomplished by sending cur
rent through the third wire during the
time when writing is to take place
(Figure 2-50). Called inhibit current,
this current is equal to the drive cur
rent in the X-drive line, but is oppo-

site in direction. The effect of this
inhibit current cancels the effect of
the current through the X-drive line,
and the addressed core is not flipped.

A combination sense-inhibit winding
is threaded through all the cores in
each of the nine core planes. For each
core that is to be flipped to logical 1
during a write cycle, we block the inhi
bit current from flowing in the respec
tive core plane. With no inhibit cur
rent flowing through the sense-inhibit
winding of the addressed core, coinci-

Figure 2-50. Inhibit

dent current in the drive lines causes
the core to flip. For each core that is
to be blocked from flipping to logical
(ie: is to remain at logical 0), we
allow inhibit current to flow in the
respective core plane. Here the effect
of one of the coincident currents in the
drive line is cancelled by the effect of
the inhibit current and the core does
not flip.

For example; if a core position is to
contain a byte coded with 0-, 1-, 2-,
5-, and P-bits, then inhibit current

2-39

Address
Selection
and Drive

64X
Lines

Figure 2-51. Composite Core Layout

must be made to flow in the 3-, 4-, 6-,
and 7-bit core planes so the 3-, 4-, 6-,
and 1-bit cores in the addressed posi
tion are not set (Figure 2-51).

In the 2030 core-storage unit, each
core plane has two sense-inhibit wind
ings. Each winding is threaded through
4,096 cores. The two windings are func
tionally the same. However, using two
windings for ea~h core plane relaxes the
design requirements for each inhibit
current driver and sense amplifier, and
provides more reliable operation.

8K AUXILIARY STORAGE

•

•

•

•

2-40

Added area for CPO, and I/O control
and status information.

Additional addressing inY-dimension
only.

Main-Auxiliary latch in CPO defines
area to be addressed

M-register 3-bit selects CPO local
or MPX storage

Included in the 8,192-position storage
unit is an additional 512-position aux
iliary storage section. In this
section, 256 positions are reserved for
Use by the multiplexor channel. The
other 256 positions of local storage are
used by the CPU for special and general
purpose registers (Figure 2-52).

The additional 512 storage positions
are formed by adding eight lines in the
Y-direction (eight Y-lines intersect
with 64 X-lines produce 512 additional
storage positions). Eight Y read-gate
transistors provide read current for the
eight auxiliary Y-lines, while eight
write- transistors provide write current
for the auxiliary Y-lines.

At each end of the auxiliary Y-lines,
the auxiliary gate-transistors are con
trolled by the y-gate decode-switches
and two special auxiliary drivers. When
an address in the range of 000-255 is
placed in the MN-register, it refers to
one of three storage positions. The
desired position may be in main storage,
CPU local storage, or multiplexor stor
age. To select which of the three areas
is to be addressed, a latch in the CPU

specifies whether to use main or auxil
iary storage. However, just knowing
that the desired address is in auxiliary
storage is not enough, because there is
more than one area of auxiliary storage.
To select CPU local storage or multi
plexor storage in the 8K storage unit,
the M-register 3-bit is set by the CPU
in a code that determines which area is
to be addressed. In the case of the 8K
storage unit, if the M-register 3-bit is
zero, then the desired address is in
multiplexor storage. If the M-register
3-bit is one, then the desired address
is in CPU local storage.

64Y
Lines

4 Lines
CPU Local
Storage

4 Lines
MPX Storage

{
{

32X Lines 32X Lines
__ --~A~----~ ~ ____ ~A~ ____ ~
(V \

Main
Storage

~-----------I

I~ I
1 Local Storage I

I I L ___________ 255 1

1000------------1
I
I MPX 1 I
I I
L ___________ 2551

64Y Main
Li nes Storage

Figure 2-52. Local Storage

2-41

8 LOCAL STORAGE GATE TRANSISTORS
(4 CPU LOCAL, 4 MPX) 128 Y GATE TRANSISTORS

r-----------~A~----------~
,-____________ ~A~ ______________ ~

16 Y GATE ~~~ ~~ DECODE
SWITCHES

I
NOT NREG 181T

NOT NREG 081T A
0-63

NOT M REG 7 81T

NOT M REG 6 BIT

NREG I BIT

NOT N REG 0 BIT A

NOT M REG 7 BIT
64-127

NOT M REG 6 BIT I

NOT NREG 1 BIT

N REG 0 BIT A
128-191

NOT M REG 7 BIT

NOT MREG6BIT

NREG I BIT

N REG 0 BIT A

I 192-285
NOT M REG 7 BIT

NOT M REG 6 BIT I
I
I

NREG I BIT
,

N REGO BIT

MREG7BIT

A
960-1023

M REG 6 BIT

READ READ
A A

f---
LOCAL STORAGE MPX 1

2 LOCAL READ DRIVERS

Figure 2-53. Local Storage Gate Decode

Figure 2-53 shows auxiliary Y read
gate selection when the address 174 is
placed in the MN-register. The Y gate
decode switch that is turned on by the
MN-register contents conditions the
bases of 18 Y gate-transistors (16 main
Y gate-transistors and two auxiliary Y
gate- transistors). However, only one Y
gate-transistor is further conditioned
by a Y-driver. In this case, the
multiplexor read driver is turned on
because the M-register 3 bit is zero and
because the CPU Main-Auxiliary latch is
set to Auxiliary.

STORAGE CLOCR

• There is a separate clock for the
core storage unit.

• Delay lines produce timing pulses.

• Control latches develop delay line
drive pulses.

~~ ~ ~~~~.

MAIN READ MAIN READ

~
NOT MREG 5 BIT

A M REG 5 SIT J A

I- NOT M REG 4 BIT t-- MREG4BIT

NOT MREG 3 BIT MREG3BIT I

a MAIN Y READ DRIVERS

• Read and write clocking pulse latch
es form storage drive pulses.

• Clock started by signal from CPU.

• Once started, clock operates for
complete cycle.

The core-storage unit is operated on a
cycle-by-cycle basis. If a byte of
information is to be retrieved from the
core-storage unit, a read cycle is ini
tiated. During the subsequent read
cycle, a storage pOSition is addressed
and the byte of information stored in
that position is read out to the data
register. If a byte of information is
to be placed into core storage, a.write
cycle is initiated. During the subse
quent write cycle, a storage position is
addressed and the desired information is
placed into the addressed byte location.

A storage clock provides the neces
sa~ timing pulses and gates to operate
the storage unit on a cycle-by-cycle
basis. This clock is started by the
read or write signal form the cpu. Once
started, it operates for a complete read
or write cycle.

For example, suppose a position is to
be read out, the byte of information
thus obtained is to be used in a compu
tation, and the result of the computa
tion is to be placed back into the same
storage position. The CPU specifies a
storage location by placing a storage
address in the MN-register. The storage
circuitry is signaled to read and the

storage clock is started (Figure 2-54).
A storage read cycle results, during
which time the desired storage location
is read out, and the resulting byte is
placed in the CPU R-register. The CPU
then makes the necessary computation and
places the result back into the R
register. Once again, the storage unit
clock is started. This time, however,
the storage unit is signaled to write.
A storage write cycle results, during
which time the byte from the R-register
is written into the addressed storage
position. In each case (read and
write), the clock operated for a
complete cycle once it had been started.

2-43

Clock Start lO I
A

Mach Reset -- FL1·-

~ ~~
r----""1-...I.---1

Delay Tap --FL2--

From Line

Clock Sequence

1. Machine reset turns FLl off, FL3 off.

2. FL 1 going off turns FL2 on.

3. Clock start turns on FL 1.

4. FLl and FL2 AND to impulsedelay line. Leading
edge of pulse propagates down de lay line.

5. Depending on pulse width desired, a delay line
output tap turns FL2 off.

6. Drive pulse to delay line falls; trailing edge of
pulse propagates down delay line.

7. FL2 going off turns FL 1 off, FL 1 going off turns
FL2 back on.

8, Leading edge of pulse from bottom tap of TD3 sets FL3.

9. Leading edge of drive pulse from FL3 propagates down
remainder of delay line.

10. Depending on drive pulse width requirements, a
delay line tap turns FL3 off.

11. Trailing edge of drive pulse propagates down TD4,
lO5, lO6.

Figure 2-54. Delay Line Clock Drive

The storage clock consists of a ser
ies of delay lines, delay line control
latches, and read and write clocking
pulse latches. The control latches
develop the timing of and control the
width of the pulse that drives the delay

2-44

lO2

500 ns

lO3

750 ns

OR
Ma~c:!h~R:;ese~t~...r-'- - FL3 - -
Delay Tap

TO 4

1000 ns

lO5

1250 ns

TD6

L--___ ---I~- 1500 ns

line. The delay line consists of six
separate delay lines connected in
series. Each delay line has ten
outputs. There is a 25 nanosecond delay
between each of the ten outputs for a
total delay of 250 nanoseconds per delay

line.
delay
1,500
drive

Connected in series, the six
lines produce a total delay of
nanoseconds from the start of the
signal.

The pulses required to operate core
storage are formed by the read and write
clocK pulse latches. The appropriate

. delay-line taps are wired to the set and
reset inputs of these latches to develop
the required pulses at the outputs of
these latches. The same delay line is
impulsed regardless of whether a storage
read cycle or a storage write cycle is
to take place. The tap outputs are then
gated to either the read clock pulse
latches or the write clock pulse latches
to cause either a read or a write cycle
to take place (Figure 2-55 and 2-56) •

8K SUMMARY

Before we go on to larger core storage
units, let's review the 8K unit by list
ing the quantities of different compo
nents. If you understand how these
quantities give the required addressing
configuration, you will have an easier
time understanding the larger storage
units.

For an 8K storage unit, there are:

64X drive lines
64X read gate transistors
64X write gate transistors
16X gate decode switches

4X read drivers
4X write drivers

128Y drive lines
128Y read gate transistors
128Y write gate transistors

16Y gate decode switches
8Y read drivers
8Y write drivers

4Y CPU local storage drive lines
4Y MPX storage drive lines

1 CPU local storage read driver
1 CPU local storage write driv

er
1 MPX storage read driver
1 MPX storage write driver

AS an example of how this provides a
convenient review, consider the 64X
lines. At each end of each of the 64X
lines, there isa gate transistor. That
means there is a total of 128 gate tran
sistors. Checking the preceding list
reveals that there are 64X read gate
transistors and 64X write gate transis
tors, for a total of 128X gate transis
tors. For either group of gate transis
tors, each of the 16 gate decode switch
es condition the bases of four of these
gate transistors. Similarly, each driv
er conditions the emitters of 16 gate
transistors. The resulting matrix pro
duces only one gate transistor with both
base and emitter conditioned.
Therefore, only one gate transistor
turns on, and only one X-drive line has
current flowing through it (Figure
2-48) •

2-45

Del T 0 ay ap ns

Delay Tap 1100 ns

Delay Tap 75 ns

Delay Tap 775 ns

Delay Tap 525 ns

Delay Tap 775 ns

Delay Tap 525 ns

Delay Tap 800 ns

Delay Tap 750 ns

Delay Tap 925 ns

1
Set Rd

Delay Tap 300 ns

Read Call Latches

--FL-~-
Set Wr Delay Tap 1200 ns

Write Call Latches
Delay Tap 200 ns

Delay Tap 950 ns

Delay Tap 150 ns

Delay Tap 775 ns

Delay Tap 300 ns

Delay Tap 750 ns

Delay Tap 300 ns

Delay Tap 750 ns

1
Delay Tap 500 ns

Delay Tap 150 ns

Figure 2-55. Memory Clock

2-46

A

r- --FL---

A

A

r- f-- FL-'--

A

A

f--- r--FL---

A

A

r- -- FL---

A

A
r- --FL---

A

IA
L- --FL--

A

r- f---FL---

A

A

r- ,..---FL---

A

A
f--- -- FL---

A

A

r- f--- FL---

A

A
L- --FL---

I--
Phase
Read

I-- Read I

Read 2 1--1

Strobe 1---:

I----

~

I--

-I

Data
Ready

Phase
Write

nhibit

-' Write I

- Write 2

--.J

SIGNAL NAME LOGIC .1 .3 .k .5 l6 .7 ., .9 * 1.1 * 1.3 11.4 1.5 ..rOelay-Line IOutputs Duri~g Read

Delay-Line Outputs During Write ~ .1.2 .3 4 5 6 7 .8 9 1.0 I I

1. Clock Start

2. Delay-Line Drive Pulse
I ,

3. Read Call I • I
From CPU I I from CPU

I ,

-4. Set Read Latches

5. Phase Read

6. Read I

7. Read2 :

8. Strobe

9. Data Ready :

10. Read Reset Control

11. Write Call

12. Set Wr1te Latches

13. Phase Write

14. Inhibit

15. Write I

16. Write2

17. Write Reset Control

Read "Cycle

Figure 2-56. Memory Clock Timings

PHASE REVERSAL ADDRESSING (16K)

• Phase reversal principle allows
twice as many storage positions to
be addressed with the same drive
circuitry.

• Phase reversal takes place between
8K blocks.

• Y-drive lines wired through phase
reversal plane; X-drive lines are
not.

• No cores in the phase reversal
plane.

11

. r+--,.

Fl'OmCPU I

II

v
Write Cycle

• I

• I

The basic 8K storage unit can be expand
ed to 16K without changing the basic
drive scheme or the drive circuitry.
This is accomplished by wiring the same
drive lines through two 8K blocks of
storage. Between the two 8K blocks of
storage is a phase reversal plane con
taining no cores. The Y-drive lines are
wired through the phase reversal plane,
whereas the X-drive lines are not wired
through the phase reversal plane (Figure
2-57) •

'2-47

FUNCTION

Read Basic 8K

Write Basic 8K
X2
Address Read 2nd 8K
Select
and Drive Write 2nd 8K

Y2
Address
Select
and Drive

DRIVERS ON

XI YI

X2 Y2

XI Y2

X2 YI

XI
Address
Select
and Drive

YI
Address
Select
and Drive

'------------v~------------- '-------------y~-------------
Second 8K Phase Reversal Plane Basic 8K

Y Lines go through

Figure 2-57. Phase Reversal X Lin~ do not,

When the addressing circuitry selects
and drives one X- and one Y-drive line,
two storage positions (18 cores) are
addressed. However, the drive currents
are in pbase in one 8K section and out
of-phase in the other 8K section.
Reversing the direction of one of the
drive currents causes the drive currents
to be in phase in the second 8K section.
Reading and writing are controlled by
reversing both drive currents as shown
in Figure 2-57. To read out a core
storage position in the first aK block,
drivers labeled Xl and Yl are caused to
supply drive current while the circuitry
at the other ends of the drive lines
accepts these currents. The result is
in-phase read current in the desired
position in the basic 8K block. To
write into the same position, drivers X2
and Y2 supply drive current and
circuitry at the opposite end provides a
path for these currents. The result is
in-phase write currents in the desired
position in the basic 8K block.

To read out a core-storage position
in the second 8R block, drivers Xl and
Y2 are turned on. Circuitry at the
opposite ends of the drive lines is
conditioned to complete the drive cur-

2-48

rent paths. The result is in-phase read
current in the desired position- of the
additional 8K block. Notice that the
corresponding position in the basic 8X
block is not affected because the read
currents in this block are out-of
phase.

Writing into a core-storage position
in the second 8K block requires drivers
X2 and Yl to be turned on. Circuitry at
the opposite ends of the drive lines
must be conditioned to accept drive
current. The result is in-phase write
current in the position in the addition
al ax block. Once again, the corres
ponding position in the basic 8K block
is not affected because the write cur
rents in this block are out-of-phase.

Notice in Figure 2-51 that the
X1-driver is turned on for each read
cycle while the X2-driver is turned on
for each write cycle. The Yl-driver is
turned on for a read cycle in the basic
8R or for a write cycle in the second
8X. The Y2-driver is turned on for a
write cycle in the basic 8X or for a
read cycle in the second 8K. The
desired 8K block is selected by using
the M-register 2-bitposition in combi-

nation with the function desired
(read,write) to condition the proper

Y-driver. Absence of an M-register
2-bit indicates an address in the .range

'00000 to 08191, and causes Y1 to turn on
for a read cycle or Y2 to turn on for a
write cycle. An M-register 2-bit indi
cates an address in the range 08192 to
"16383 and causes Y2 to turn on for a
read cycle or Y1 to turn on for a write
cycle.

16K AUXILIARY STORAGE

•

•

•

•

Four 256-byte auxiliary storage
areas included in a 16K storage
unit.

M-register 2-bit and 3-bit determine
auxiliary storage to be addressed

N-register determines specific
address from 000-255

CPU local storage in second 8K stor
age unit.

Included in the 16,384 position storage
unit are 1024 additional byte positions
of auxiliary storage. These are divided
into four 256-position areas called MPX
o storage, MPX 1 storage, MPX 2, and CPU
local storage. When the CPU wishes to
address one of these auxiliary storage
areas, the main-auxiliary latch in the
CPU is set to auxiliary, and the desired
addr~ss is placed in the N-register.
The CPU further specifies which area of
auxiliary storage is to be addressed by
coding the M-register 2-and 3-bits as
follows:

M-reg M-reg Auxiliary Storage
2-bit 3-bit Area Selected

0 0 MPX 0
0 1 MPX 1
1 0 MPX 2
1 1 CPU local

For example, if the CPU wishes to
address a byte of information in the CPU
local area of auxiliary storage, the
desired byte-address would be placed
into the N-register. The M-register
2-and 3-bits would both be set to one.
All other M-register bits would be set
to zero.

The 16K auxiliary storage unit has
the four auxiliary drivers: two read
drivers and two write drivers. This is
exactly the same as the 8K auxiliary
storage arrangement. However, now the
drivers must drive the lines through two
8K storage units. This means that the
local drivers must be controlled by the
M-register 3-bit, the M-register 2-bit,
and the fUnctions read and write,
because of the phase reversal between
the two 8K blocks of storage. The need
for this selection can be seen on Figure
2-57.

16K SUMMARY

Just as we did when we finished the 8K
storage unit, let's review the quanti
ties of drivers, gates, etc., in the 16K
storage unit.

For a 16K storage unit, there are:

64X drive lines
64X read gate transistor
64X write gate transistor
16X gate decode switches

4X read drivers
4X write drivers

128Y drive lines
128Y read gate transistors
128Y write gate transistor

16Y gate decode switches
8Y read drivers
8Y write drivers

8Y auxiliary storage drive lines
2 auxiliary storage read drivers
2 auxiliary storage write drivers

Notice that the quantities are all
the same as those quantities given for
the 8K summary. This illustrates why
the phase reversal scheme is used: dou
ble the size of storage unit can be
addressed with the same drive scheme.
The only quantity changed was the number
of core planes, and this of course,
doubled.

PHASE REVERSAL ADDRESSING (32K)

• Four 8K blocks of core storage.

• Phase reversal occurS between the
basic BX and the second 8K, between
the third BK and the fourth 8K.

2-49

•

•

•

2-50

Common Y-drivelines go through all
four 8:K blocks.

Two sets of X-drive lines: one set
for basic and second 8:K addressing,
one set for third and fourth 8K
addressing.

M-register 2- and 1-bits control
drivers.

A 32K core-storage unit is formed by
tying two 16K units together in such a
way that the Y-selection and drive cir
cuitry is shared (Figure 2-58). Addi
tional X-drivers and X-selection circui
try is required. Thus, there are two
sets of Y-drivers (read and write). and
four sets of X-drivers (read and write
for the first 16K, and read and write
for the second 16K).

Figure 2-58. 32K Phase Reversal

M-REGISTER
2-BIT

YES

Address selection above 8K is provid
ed by the M-register 2- and l-hit posi
tions. These two bit positions allow
unique selection of one of the four 8K
blocks. Absence of both M- register 2-
and l-bits indicates an address in the
range of 0000-8191, and therefore sel
ects the basic 8K block. An M-register
2-bit with no M-register l-bit specifies
an address in the range of 8192-16383.
This selects the second 8K block. The
third 8K block has the address range of
16384-24575, and is selected by an M
register l-bit with no M-register 2-bit.
If the address contains both M-register
2- and 1- bits, the fourth 8K block with
the addresses 24576-32767 is selected.
The drivers are controlled by the M
register 2- and 1-bits and the read or
write signal.

32K AUXILIARY STORAGE

• Either four or eight 256-byte
auxiliary storage areas included in
a 32K storage unit.

• M-register 1-, 2-, and 3-bits deter-
1I1ine the auxiliary storage area to
be addressed.

•

•

N-register determines the specific
address from 00-255 within the aux
iliary storage area defined.

CPU local storage is always the
high-order 256-byte auxiliary stor
age area.

Standard auxiliary storage for a 32K
storage unit is four 256-byte areas (MPX
0, MPX 1, MPX 2, and CPU local storage).
These four areas are located in the
first 16K of storage, and are addressed
as described under 16K Auxiliary
Storage. A special feature is available
that provides four additional 256-byte
blocks of auxiliary storage. These
additional blocks of auxiliary storage
provide additional subchannels for the
iBultiplexor channel.

With the four additional blocks,
auxiliary storage is composed of eight

2-52

256-byte blocks of auxiliary storage
named MPX 0, MPX 1, MPX 2, MPX 3, MPX 4,
MPX 5, MPX 6, and CPU local storage.
When the CPU wishes to address a speci
fic byte-location in one of these blocks
of auxiliary storage, the main-auxiliary
latch in the CPU is set to auxiliary,
and the desired byte-address is placed
into the N-register. The CPU further
specifies which block of auxiliary stor
age is to be addressed by coding the
M-registeD 1-, 2-, and 3-bits as
follows:

M-reg
1-bit

M-reg M-reg Auxiliary Storage
2-bit 3-bit J\rea Selected

0 0 0 MPX 0
0 0 1 MPX 1
0 1 0 MPX 2
0 1 1 MPX 3
1 0 0 MPX 4
1 0 1 MPX 5
1 1 0 MPX 6
1 1 1 CPU Local

CLeeK CONTROL ADDRESSING (64K)

• 64K core-storage unit composed of
two separate 32K core storage units.

• Each 32K unit completely independent
of the other.

• O-bit poSition of M-register deter-
mines which storage clock is started

Each 32K core-storage unit is a complete
package that cannot be be further
expanded by merely adding more planes to
the existing array. The package
includes the core planes, the addressing
Circuitry, and the storage clock for
32,768 positions of core storage. To
expand core-storage capacity requires
the addition of a similar 32K unit,
complete with core planes, addreSSing
circuitry, and storage clock. In addi
tion, the CPU provides a second MN
register for second 32K storage unit
(Figure 2-59).

Address Decode

Not M-reg
O-bit

1st 32K
Core Storage

_ P __ -. __ 7_ ~P __ ~~7

f f

2nd 32K
Core Storage

..:.P __ -.-----.:7_ ~P __ .---....:.7 _

t f

Address Decode

M-reg
O-bit

MN BUS

Fiqure 2-59. Clock Control Addressinq

When the CPU requires information
from the 65R storage unit, a 2-byte
address is placed into both
MN-registers. The qates and drivers are
conditioned in both 32R storaqe units.
However, the storage clock is started in
only one of the 32K units. If there is
no bit in the high-order position of the
M-reqister, the storage clock in the
first 32R unit is started and the
desired cycle is completed. This cycle
may be either a read or a write cycle.
A bit in the high- order position of the
M-reqister indicates an address above
the range 00000-32767, and starts the
clock in the second 32K storage unit.

MEM.ORY/CPU INTERFACE

Each 32R storage unit communicates with
the CPU over an interface. All address
es, data, and control signals are trans
ferred over this interface. A brief
description of the interface siqnals
follows.

MN Register Bit Lines

Sixteen bit-lines carry the address in
the MN-register to the core-storaqe
addressing circuitry. The address is
set into the MN-register at T1 time of
the CPU clock cycle following the cycle
when a CPU read is decoded by the con
trol circuitry. The address does not
chanqe until the necessary CPU compute
and core-storage write cycles have been
taken. The MN-register bit lines in
order from the high-order pOSition of
the address to the low-order position of
the address are:

M-Req 0
M-Reg 1
M-Req 2
M-Reg 3
M-Reg 4
M-Req 5
M-Reg 6
M-Req 7
N-Req 0
N-Req 1
N-Req 2
N-Req 3

2-53

Store Bit-Lines

N-Reg 4
N-Reg 5
N-Reg 6
N-Reg 7

The nine store bit-lines provide the
data input to the core-storage unit.
These lines are direct outputs of the
R-register, and they go to the core
storage inhibit drivers. The nine store
bit-lines are:

Store parity Bit
Store 7 Bit
Store 6 Bit
Store 5 Bit
Store 4 Bit
Store 3 Bit
Store 2 Bit
Store 1 Bit
Store 0 Bit

Memory Sense Bit-Lines

These nine lines represent the core
storage data output. They are active at
memory strobe time, which is 525-800
nanoseconds of the memory read cycle.
If the data on the memory sense bit
lines is to be used by the CPU, the
melllory clock data ready pulse (750-900)
is allowed to set the appropriate R
register latches from the data on the
sense lines. The nine sense bit-lines
present at the R-register input are:

Mem Sense Parity Bit
Mem Sense O-bit
Melli Sense 1-bit
Melli Sense 2-bit
Mem Sense 3-bit
Mem Sense 4-bit
mem Sense 5-bit
Mem Sense 6-bit
Mem Sense 7.,.bit

Early MO

The memory clock must be started at the
beginning of T1 time so the CPU and
memory stay in step. Selection of the
first 32K clock or second 32K clock is
dependent on the high-order position of
the M-register (M-reg O-bit). However,
the MN-register set pulse is at Tl tillie,
and it takes approximately 50
nanoseconds to set the MN-register
latches. This would not allow the M
register a-bit to start either of the
two memory clocks at zero time in the
CPU clock cycle. The early-MO pulse

occurs before the M-register has set,
and is actually before zero time in the
CPU clock cycle. If the early-MO signal
is present at the clock control
circuitry at zero time of the CPU clock
cycle, the CPU read-call signal starts
the second 32K clock. If early-MO is
not present when the CPU read-call sig
nal arrives, the first 32K clock is
started.

Early-MO is not brought up for a
write cycle because the MN-registers are
not changed for a memory write cycle.
For a write cycle, the M-register O-bit
line switches with the CPU write-call
signal to control the two clocks.

Early Local Storage

The function of this signal is similar
to that of early-MO: control of the two
memory clocks. Early local storage
occurs before zero time in the CPU clock
cycle to signal the memory that the next
access to memory will be in the first
32R. When read call occurs, the first
32K clock starts.

Read Call

Read-call signals the memory that the
CPU control circuitry has decoded a read
operation.' The read-call pulse occurs
at Tl~time of the CPU clock cycle and it
is used to start the memory clock.
Read-call specifies a memory-read cycle
by setting up the memory clock for a
read operation (Figure 2-55).

Write Call

Write-call occurs at T1 time of the next
cycle after the CPU control circuitry
has decoded a write operation. Write
call starts the memory clock, and
specifies a memory-write cycle by set
ting up the memory clock for a write
operation (Figure 2-55).

Data Ready

Data-ready is the memory data strobe
pulse to the CPU. .At 750-900 nanose
conds of the memory clock read cycle,
the data- ready 'signal sets the data or
the memory sense bit lines into the
R-register, providing the CPU has speci
fied memory as the source for the R
register.

Machine Reset Switch

Machine-reset-switch is a signal from
the CPU that causes all memory control
latches to be reset to a starting
condition when the machine reset func
tion is being performed. The machine
reset function can occur for several
reasons, such as when power on
sequencing is complete or when the sys
tem reset key on the 2030 console is
pressed.

Read Echo

This signal is required by the CPU for
manual store operations. It signals the
CPU that a memory-read cycle is taking
place, and allows a write cycle to fol
low.

Write Echo

This signal is required by the CPU for
manual store operations. It signals the
CPU that a memory-write cycle is taking
place, and allows a read cycle to
follow.

M-REGISTER

Position 0 1 2 3 4 5 6

3 1

Binary
2 6 8 4 2 1
7 3 1 0 0 0 5

Value
6 8 9 9 4 2 1
8 4 2 6 8 4 2

Gate

Purpose
Clock Terminator and Y-Driver
Control Phase Reversal Decode

Control

Sample
Binary 0 1 0 0 1 1 0
Address

7

2
5
6

STORAGE READ EXAMPLE

•

•

•

Storage drive lines selected by MN
register bits.

Clock selected by high-order bit
position of MN-register, and started
by read-call from cpu.

Resultant data byte placed into CPU
R-register.

To read out a byte of data, the core
storage unit must interpret the bits in
the CPU MN-register and select the
appropriate lines so the desired posi
tion can be read out. To read out this
position, an X-line must be driven, a
Y-linemust be driven, and the resultant
data on the sense lines must be ampli
fied and set into a data register. Sel
ecting the correct lines is the result
of decoding various bit groupings in the
MN-register (Figure 2-60). To follow a
storage read example through the core
storage circuitry, assume the address
0100110110001011 is in the MN-register.

N-REGISTER

0 1 2 3 4 5 6 7

1
2 6 3 1
8 4 2 6 8 4 2 1

Y-Gate X-Driver X-Gate
Decode Decode Decode

1 1 0 0 0 1 0 1 1

~ ... -- --------------------------------------~/ Decimal V·
Equivalent 19,851

Figure 2-60. MN Decode

2-55

(Not) N-Reg 3-Bit
(Not) N-Reg 2-Bit

Not Used

Read I 0-161<

X READ DRIVER MS061

N-Reg 7-Bit

Not Used

N-Reg 6-Bit

Nat Used

+18 +18

(Not) N-Reg 5 and 4 Bit <>--------'
X GATE DeCODE MS021

M-Reg 5-Bit

(Not) M-Reg 4-Bit

(Not) M-Reg 3-Bit

R2-8+24K -W2-16+32K

Y READ DRIVER MSIOI

X READ GATE TRANSISTOR MS391

:;:;::::~W~;:<::'::'::':;·W":·:::-:':':':'::::l::::::::::i::::::::~;::~::::::::::;':::=::::::;;;::::;:::::::::::::::'<:}}:::·""""'''~''''''+O'':!'''''''''';'''''''''~+I~;;'8'''''C'1,'a''m'''pedm,;:

(Not) N-Reg I-Bit

Not Used

N-Reg O-Bit

Not Used

M-Reg 7-Bit and
(Not) M-Reg 6-Bit

y GATE DECODE~MS031

+V

Y READ GATE TRANSISTOR MS421

Figure 2-61. Storage Read Example

Circuit Qbjectives (Figure 2-61)

1. Start the clock for the first 32R
storage unit MS321) •

2.

3.

2-56

Start 1st 32R clock
(Not) Early MO eM-register O-bit)

Read Call

Define area of storage to be
addressed (MS321) •
Use Main Mem

(Not) Local St or MPX
Read Call

Decode and drive an X-line.

+40 +0

Phose Read B

rn-...--I~_-o (Not) M-Reg 2-8it

Y READ GATE TERMINATOR MS151

Phase Read A

L!'J-...-IH,,""*--o M-Reg I-Bit

X READ GATE TERMINATOR MS151

a. Read 1 16-32K. This read timing
pulse from the clock conditions
the proper X-drivers as required
by the phase reversal addressing
scheme (MS161).

b. 11

Read 1 (from clock)
M-Reg 1-bit (switched with

Use Main Mem)

Gate TX 16-32K. This is the
X-gate decode (MS021) •

N-Reg 7-Bit
N-Reg 6-Bit
(Not) N-Reg 5-Bit
N-Reg 4-Bit

c. Rd 1 0-15 16-32K. This is the
X-driver decode (MS061).

Read 1 16-32K
(Not) N-Reg 2-Bit
(Not) N-Reg 3-Bit

d. Ary Side C 15X Ln 11 A1. This
is one end of the X- drive line
(MS391) •

11 Gate TX 16-32K
(conditions emitter of
read gate transistor)

Rd 1 0-15 16-32K (conditions
base of read gate
transistor)

e. Read 16-32K. This line provides
a current path at the other end
of the X-line. This requires
that the X read-gate terminator
be turned on (MS151).

M-Reg 1-Bit Controlled
Phase Read A (from clock)
X Gate Term Current Source

(from power supply)

4. Decode and drive a Y-line.

a. R2-8+24K-W2-16+32K.
This read timing pulse from the
clock conditions the proper
Y-drivers as required by the
phase reversal addressing scheme
(MS161) •

(Not) M-Reg 2-Bit
Read 2 (from clock)
Use Main Mem

b. R-8+24K-W16+32K-3072-4095.
This is the Y-driver decode
(MS 101) •

M-Reg 5-Bit
M-Reg 4-Bit
(Not) M-Reg 3-Bit

R2-8+24K-W2-16+32K

c. 384-447 Gate TX Cl. This is the
Y-gate decode (MS031).

(Not) N-Reg l-Bit
N-Reg O-Bit
M-Reg 7-Bit
(Not)M-Reg 6-Bit

d. Ary Side D 99 Y Ln 54 Al. This
is one end of a Y-drive line
(MS421) •

384-447 Gate TX A1
(conditions emitter of
read gate transistor)

R-8+24K-W-16+32K 3072 - 4095
(conditions base of read

gate transistor)

e. R-8+24K-W-16+32K. This line
provides a current path at the
other end of the Y-drive line.
It is the result of the Y read
gate terminator being turned on
(MS151) •

Y Gate Term Current Source
(from power supply)

Phase Read B (from clock)
M-Reg Not 2-Bit controlled

5. Sense and amplify the resultant data
byte. Each 8K block of storage has
two sets of sense amplifiers (one
set for each 4,096 positions).
These amplifiers are active all the
time. Thus, in a 32K storage unit,
there would be eight sets of sense
amplifiers (two for each 8K block) •
To help distinguish between the byte
of information froll'. the addressed 8K
block and noise from the other 8K
blocks, a strobe pulse is developed
for each 8K block. Because the
M-register 2- and l-bit positions
determine which 8K block is
addressed, these bit positions gate
the memory-clock strobe pulse to the
addressed 8K block. In the example
given, there is an M-register l-bit
and no M-register 2-bit, indicating
the desired byte is in the third 8K
block. The output of the third 8K
block sense amplifiers is gated to
the final amplifier by the strobe
pulse that is developed. For sim
plicity, only the 6-bit position is
shown. The other eight bit posi
tions operate similarly.

a. Strobe 6-Bit 16-24K (MS181).
Strobe (from clock)
(Not) M-Reg 2-Bit Controlled
(not) Not M-Reg 1-Bit Con

trolled

b. SA 6 Bit 16-24K A. This is one
half (4,096 positions) of the
sense circuitry for the third 8K
block (MS231).

SA - Inh Line 6-Bit Al
SA - Inh Line 6-Bit A2
Strobe 6-Bit 16-24K

c. SA 6-Bit 16-24K B. This is the
second half (4,096 pOSitions) of
the sense circuitry for the
third 8K block (MS241).

SA - Inh Line 6-Bit B1
SA - Inh Line 6-Bit B2
Strobe 6-Bit 16-24K

2-57

d. Mem Sense 6-Bit 16-32R. (Final
amplifier output MS281) •

SA 6-Bit 16-24R A
- or -

SA 6-Bit 16-24R B

STORAGE WRITE EXAMPLE

• X- and Y- drive lines selected by
MN-register bits.

• Clock selected by high-order bit
position of M-register and started
by write call from CPU.

• Data from R-register activates
appropriate store circuits, allowing

2-58

X- and Y- lines to write the data
into the addressed position.

To write a byte of data into a core
storage position, the CPU signals the
core-storage unit with a write call.
The address in the MN-register does not
change between read and write cycles.
Therefore, we can assuroe the same
address (19,851) is in the MN-register
in binary fiorm. To write data into this
position, an X-line must be driven. a
Y-line must be driven, and the appropri
ate inhibit lines must be driven to
cause the desired bit configuration to
be set into the position addressed by
the X- and Y- lines.

(Not) N-Reg 3-Bit

(Not) N-Reg 2-Bit

Not Used

Write 1 O-16K

X WRITE DRIVER MS061

N-Reg 7-Bit

Not Used

N-Reg 6-Bit

Not Used

(Not) N-Reg 5 and 4 Bit

X GATE DECODE MS021

M-Reg 5-Bit

(Not) M-Reg 4-Bit

(Not) M-Reg "3-Bit

R2-16+32K-W2-B-24K

Y WRITE DRI VER MS091

(Not) N-Reg I-Bit

Not Used

+lB +lB

+6

From 63 Other
X-Lines

Core Position
19,B51

+40 +6

Phase Write B

m __ -il-~-tI---o (Not) M-Reg 2-Bit

Y WRITE GATE TERMINATOR MS151

Phase Write A

IP ~ __ -I<I-"""-I<I---<l M-Reg I-Bit

N-Reg O-Bit

Not Used

Y WRITE GATE TRANSISTOR MS401 X WRITE GATE TERMINATOR MSI51

M-Reg 7-Bit and
(Not) M-Reg 6-Bit

Y GATE DECODE MS031

Figure 2-62. Storage Write Example

Circuit Objectives (Figure 2-62)

Start the clock for the first 32K
storage unit (MS321).

1.

2.

Start 1st 32K clock
(Not) M-Reg O-Bit
Write Call

Define the area of storage to be
addressed (MS321). Use Main Mem
(This latch was set on during the
previous read cycle and stays on
until local storage is addressed on
a read cycle) •

3. Decode and drive an X-line

a.

b.

Write 1 16-32K. This write
timing pulse from the clock
ccnditions the proper X drivers
as required by the phase rever
sal addressing scheme (MS 161).

Write 1 (from clock)
M-Reg l-bit (switched with

Use Main Mem)

11 Gate TX 16-32K. This is the
X Gate decode (MS021).

N-Reg 6-bit

2-59

(~ot) ~-Reg 5-Bit
~-Reg 4-Bit

c. WRl 0-15 16-32K. This is the X
driver decode (101S061).

Write 1 16-32K
(~ot) ~-Reg 2-Bit
(~ot) N-Reg 3-Bit

d. Ary Side A 15 X Ln 11 Al. This
is one end of the X-drive line
(101S381) •

11 Gate TX 16-32K
WRl 0-15 16-32K

e. Write 16-32K. This line pro
vides a current path at the
other end of the X-line. This
requires that the X write-gate
terminator be turned on (MS
151) •

Phase Write A (from clock)
M-Reg l-Bit Controlled
X Gate Term Current Source

(from power supply)

4. Decode and drive a Y-line.

a. R2-16+32K-W2-8+24KA. This write
timing pulse from the clock
conditions the proper Y-drivers
as required by the phase rever-
sal addressing scheme 161) •

(not) M-Reg 2-Bit
Write 2 (from clock)
Use Main Mem

b. R-16+32K-W-8+24K-3072-4095.
This is the Y- driver decode
(101S091) •

(not) M-Reg 3-Bit
M-Reg 4-Bit
M-Reg 5-Bit
R2-16+32K-W2-8+24K A

c. 384-447 Gate TX Cl. This is the
Y-gate decode (101S031).

(not) N-Reg 1-Bit
N-Reg O-Bit
M-Reg 7-Bit
(not) M-Reg 6-bit

d. Ary Side D 99 Y Ln 54 C1. This
is one end of a Y-drive line
(MS401) •

2-60

384-447 Gate TX C1
(conditions emitter of
write gate transistor)

R-16+32K-W-8+24K-3072-4095,
(conditions base of write

gate transistor)

e. R-16+32K-W-8+24K. This line
provides a current path at the
other end of the Y-drive line.
It is the result of the Y read
gate terminator being turned on
(MS 151) •

Y Gate Term Current Source
(from power supply)

Phase Write A (from clock)
M-Reg ~ot 2-Bit controlled

5. Activate the appropriate inhibit
drivers. For each core plane in an
8K unit there are two sense/inhibit
windings. ThUS, there are 18
sense/inhibit windings in an 8K
block of storage. To supply inhibit
current, there is one set of nine
inhibit current drivers for the one
half of the 8K block, and one set of
nine inhibit current drivers for the
other half of the 8K block (Figure
2-63). Only one of these sets of
nine inhibit drivers is allowed to
be active during any storage write
cycle. This means that a set of
nine inhibit drivers lrust be select
ed as a part of the address decode.
Thus, to store a properly coded byte
of information in an addressed posi
tion, the proper set of nine inhibit
drivers must be conditioned to turn
on. Then the bit coding of the byte
to be stored causes the correct
inhibit drivers of that set to be
turned on at inhibit time. For each
bit position of the byte to be
stored, presence of a bit at the
inhibit driver input prevents that
inhibit driver from turning on.
Conversely, for each bit position of
the byte to be stored, absence of a
bit allows the inhibit driver to
turn on. As a result, there is no
inhibit current flowing where a bit
is to be stored, and inhibit current
flows where no bit is to be stored.

0
1

2
3

"-
"-

"-

0

2
3

4
5

6

"-

4
5

6

7

"-

7

2 Sets of Nine
Inhibit Drivers

Figure 2-63. Inhibit Driver Control

To effect inhibit driver selec
tion, the M-register 2- and l-bits
define in which 81< block inhibit
current is to flow. Then the N
register 2-bit further selects
either the nine low-order-half inhi
bit drivers or the nine ,high-order
half inhibit drivers.

a. Inhibit 16-241< A. This line
identifies the address as fall
ing within one group of 4,096
positions of the third 81< block
of storage (MS16l).

M-Reg Not 2-Bit Controlled
M-Reg l-Bit Controlled
(not) N-Reg 2-Bit
Inhibit (from storage clock)

b. SA-Inh
SA-Inh Line 6-Bit Al. These are
the two ends of the inhibit
winding for the desired 4,096
positions of the 6-bit plane of
the third 81< block of storage.
For simplicity, only the 6-bit

is shown. Nine inhibit drivers
are involved to set a byte of
data into a storage position.
Notice that the inhibit driver
is conditioned and that inhibit
current is made to flow because
there is ~ st9re 6-bit input.
Thus, a bit input prevents inhi
bit current which allows the X
and Y-drive lines to set the
core, whereas not-bit input
enables the inhibit driver.
When inhibit current flows, it
opposes the effect of the X
drive current and the core is
not set (MS231).

Inhibit 16-241<
(not) Store 6-Bit

QUESTIONS ON CORE STORAGE

1. How many wires pass through each
core? List them.

2. Addressing of a location in core

2-61

storage consists of selecting the
and lines from the

address in ____ _

3. An X-line is conditioned by what
bits in the address?

4. A Y-line is conditioned by what
bits in the address?

5. What must be accomplished to read
out a core location?

6. A 32K storage array has set
(S) of X lines and set (S)

of Y lines, and phase reversal
planes.

1. Data coming from storage is read
into the register.

8. When is current induced in the
inhibit-sense line during read
time?

9. Noise is eliminated from the data
pulse during reading through use of
a pulse.

10. To write a bit in core, inhibit
current must_(flow, not flow).

11. What is the function of the dummy
planes placed between each 8K of
the 32K storage array?

12. The purpose of the early-MO pulse
is to allow correct selection
before the storage cycle starts.

13 •. To select the upper 32K of a 64K
storage array, the bit of the
address must be ____ _

14. How many gate decode switches are
needed to control X-Line selection
in a 16K array? .

15. How many gate decode switches are
needed to control Y-Line selection
in a 16K array?

16. A read gate transistor must have
both the and
conditioned to cond~

11. What is the purpose of an inhibit
driver?

18. Where can a CEfind troubleshooting
aids for fixiD9 core-storage
troubles?

2-62

19. Read 1 conditions the
Read 2 conditions the -----

MEMORY CONTROL

MN-REGISTER

lines.
lines.

The main MN-register function is to
supply a two-byte address to the core
storage unit. The MN-register consists
of two separate 9-bit registers (8 bits
plus parity bit). The parallel output
of these registers is fed to the core
storage addressing circuitry over the
CPU to memory interface. There is no
gate at the output of the MN-register.
Whatever is stored in the MN-register is
present at the input of the memory
addressing circuitry. Therefore, to
control the address presented to the
core storage unit, the CPU controls the
address in MN by controlling the data at
the ~nput of MN, and by controlling the
time when MN-data can be changed.

The input to the MN-register is the
l8-bit wide MN-register assembler bus.
Feeding this bus are seven possible
sources for MN data. These are:

I.J-registers
UV-registers
LT-registers
GUV-registers
HUV-registers
Console SWitches A, B, C, and 0
Next-address information from
the read-only storage unit.

When the CPU wishes to change an
address in MN, one of the previously
mentioned sources is gated onto theMN
assembler bus. The MN-registers are
polarity hold latches. To change the
information in these latches, the CPU
must activate the control line during
the time when the MN assembler bus is
active. If the CPU clock is running,
the control line is activated at T1-time
of a read cycle. The control line is
not activated during a write or store
cycle. This is because core storage
read-out is destructive: all cores must
be set to logical zero to read out
information. Thus, if we were to read
out a position and change the MN address
before writing something back, the posi
tion read out would have all cores set
to zero, and an R-register parity error
would occur the next time that position
is read out. If the CPU clock is not
running, the MN-register can be set from

switches A, B, C, and D on the
operator's console.

If the 2030 is equipped with the
additional 32R core storage unit, the
CPU has an additional MN-register con
nected to the MN assembler bus. This
additional MN-register supplies address
information to the additional 32R stor
age unit (see Figure 2-59).

The control line to set the addition
al MN-register polarity hold latches is
developed the same way as the control
for the standard MN-registerpolarity
hold latches. Thus, the additional
MN-register is set only at T1 time of a
read cycle, and is not set during a
write or store cycle. The second MN
register can also be set during a manual
store or display operation using console
switches A, S, C, and D.

There is an exclusive OR parity check
circuit tied to each 9-bit register in
the MN-register scheme. Thus, a total
of four exclusive OR parity check
circuits assure correct parity of all
addresses presented to the core storage
addressing circuitry. An even parity
condition in any of the four check cir
cuits activates the MN-register check
line on the MC-register input bus. This
line then sets a latch in the MC
register. The parity of the M-register
is not guaranteed when working with a
local storage address. Therefore, if
local storage is being addressed, the
MN-register check is blocked from
getting on to the MC input bus.

MEMORY WRAP

Binary storage addresses are presented
to the core storage unit over the
memory/CPU interface. It is possible
for the CPU to generate a binary storage
address that is larger than the address
range of the core storage unit on that
particular machine. For example, if the
address 11111111 11111111 is contained
in the MN-register, an 8K storage unit
would interpret this as the address
00011111 1111111" because to the 8K
storage unit, the largest address is
00011111 11111111. Thus, the storage
unit has no way of identifying an
address as being outside its address
range. Therefore, the CPU must check
each address placed into the MN-register
to insure that a legitimate address is
being used. The condition where the

address constructed in MN is outside the
addres.s range of the storage unit is
called memory wrap. Sensing this condi
tion simply involves checking the M
register 0-, 1-, and 2-bits. For an 8R
storage unit, any bit in the M-register
0-, 1-, and 2-bit pOSitions causes a
memory wrap. For a 16K storage unit,
the M-register 0-, and 1-bit positions
are checked. A 32K storage unit
requires an additional bit for address
ing so only the M-register a-bit posi
tion need be considered. For a 65R
storage unit, all possible bit configu
rations in the M-register are
legitimate, and therefore this type of
wrap is not checked for a 65R storage
unit. Th~se variations are accounted
for by tying down different M-register
bit-lines at the input of the memory
wrap detection circuitry (logic page
MW031) •

During address arithmetic, the CPU
increases or decreases the value of the
storage address as required by the pro
gram. For example, it may be necessary
to read out a multiple-byte number
starting at the low order position of
that number. For each byte that must be
read out, the CPU must increase the
address value by a value of 1. If
increasing the address value by 1 causes
the address to go to zero, a memory wrap
has occurred. ThUS, if a 65K storage
unit address is increased from
11111111 11111111 to 00000000 00000000,
then an address wrap has occurred even
though the new address
(00000000 00000000) is legitimate for
this size storage unit. Similarly, if
an 8R storage address is modified from
00011111 11111111 to 00100000 00000000,
a memory wrap occurs because this
address is outside the range of address
es of that particular storage unit.
This type of wrap is detected by the
fact that there is an M-register 2-bit.

To detect the wrap that occurs when a
65K address goes from all one's to all
zero's, the CPU looks at the M-register
source data to see if address arithmetic
has changed the M-register data from all
one's to all zero·s. M-register source
data could come from the I, U, GU, or HU
registers. The CPU need only follow the
arithmetic used with the contents of
these registers to see if a wrap occurs.

A memory wrap sets the memory wrap
request latch. This error is stacked as
part of the machine error priority stack

2-63

system. This is explained in more
detail under Machine Check Handling.

ALLOW READ, ALLOW WRITE

Earlier, when we discussed the MN
register, we discussed the importance of
not changing the MN-register between
read and write cycles. A latch in the
CPU provides the necessary interlock to
prevent changing the MN-register and to
prevent taking succes.si ve memory read
cycles with no intervening write cycles.
The allow write latch is turned on with
a CPU read cycle and turned off with a
CPU write cycle to provide this
interlock. The output of this allow
write latch controls the set of the
MN-register as well as the read call and
write call signals that define core
storage cycles.

R-REGISTER

The R-register acts as a single-byte
buffer for the transfer of information
between core storage and the CPU. It is
both the source and data register for

2-64

the core storage unit. Information to
be placed into the core storage unit
must first be gated through the ALU to
the R-register. Once in the R-register,
this byte is available to the core stor
age inhibit drivers via the memory/CPU
interface. Likewise, information read
out of storage to be used by the CPU
must first be gated to the R-register.
From theR-register the information can
be gated to one of a number of registers
via the A-bus and the B-bus.

There are two levels of control for
placing data into the R-register.
First, the desired R-registe.r source is
selected and gated to the R-register
polarity hold latch data inputs. This
source can be either Z-bus data (CPU) or
storage data (core storage). The second
control is the R-register polarity hold
latch control line. It is here that the
R-register set timing is determined. If
the data source is core storage, the
R-register is set by data ready pulse
from core storage. This occurs at
approximately T4-time. If the R
register source is the Z-bus, the R
register is set with the T4 pulse.

SECTION 2A. M2-I CORE STORAGE SUPPLEMENT

COMPREHENSIVE INTRODUCTION

• The M2-I storage unit is the 1.5 microsecond read-write
storage unit for the IBM 2030.

• The M2-I is a separately packaged core storage unit in
the 2030.

• A memory/CPU interface transfers all information between
the M2-I and the 2030.

The M2-I memory provides the IBM 2030 Proc
essing Unit with a 1.5 microsecond read
write cycle time. The basic unit of infor
mation in the 2030 is the eight-bit byte,
with an additional bit added to maintain
odd parity of data. Storage sizes are the
same as for the 2.0 microsecond M2 memory
offered on early 2030's. The 8K, 16K, 32K,
and 65K refer to 8,192 bytes, 16,384 bytes,
32,768 bytes, and 65,536 bytes of storage,
respectively.

Like the M2 memory, the M2-I is a sepa
rately packaged unit that is installed in
side the 2030 Processing Unit. This sepa
rately packaged unit contains the controls,
timing generator, core arr~y, drive system,
and sense/inhibit system. An M2-I may be
8K, 16K, or 32K in size (Figure 2-64). If
the 2030 requires the full 65K of storage,
two separate M2-I units are installed in
the 2030.

Timing
and
Interface

Array
Gates
and

Heater
Area

Sense Amps
and Z Drivers

R
E
S
I
S
T
o
R~
S

X, Y Drive
Resistors

Figure 2-64. M2-I Storage Unit (8K, 16K,
32K)

2-65

Because the unit is entirely separate
from the 2030, communication between the
two takes place over a number of signal
lines called the Memory/CPU interface. Es
sentially, this interface transfers address
information, input data, output data, and
timing signals. Basic data flow is as fol
lows: the 2030 places a two-byte address
into the M- and N-registers (Figure 2-65).

At the appropriate time, the memory is
signaled to. begin a read cycle. The memory
timing circuits begin a read cycle and the
byte of information located at the address
in the M- and N-registers is read out and
placed on the data lines to the 2030. The
memory signals that the data is "ready".
This allows the 2030 to set the information
into the R data-register. When the read
cycle is complete, the memory stops. The
byte of data read out may be placed back
into the addressed location, or a different
byte may be placed into that storage posi
tion. The byte that is to be placed into
storage is placed into the R-register. The
2030 then signals the memory to begin a
write cycle. The memory timing circuit
starts, and the same position is addressed
again. This time, however, the information
in the R-register is placed into the ad
dressed position.

FUNCTIONAL UNITS

CORE ARRAY

Timing and Interlock Signal,-, -R'I-~

'0-L......L.......' 11--------... Reg r-----r
7 7

1fNO; I~; -r" g;~ ond

Systems
Reg

7 7

2030 Basic
Circuitry

Separate Memory Gate
Located in 2030.

Inhibit

Sen,.

Figure 2-65. Memory-to-CPU Data Flow

• The core array is composed of a number of core planes.

• Three wires go through each core.

• Horizontal drive lines are called X-lines.

• Vertical drive lines are called Y-lines.

• A combination sense/inhibit winding is used.

The core storage array is composed of a
number of core planes. Each core plane
consists of a plastic-material frame ap
proximately 1/8 inch thick and 6 1/2 inches
square. The basic core plane contains
16,384 cores located at the intersection
points of the 128 horizontal drive lines
and the 128 vertical drive lines (Figure
2-66). The horizontal drive lines are
called X-drive lines, whereas the vertical
drive lines are calledY-drive lines. The

2-66

M2-I uses a combination sense/inhibit wind
ing that is wound parallel to the X-line.
Thus, three wires go through each core:
one X-drive wire, one Y-drive wire, and one
sense/inhibit wire.

While an X-drive or Y-drive wire go
through 128 cores in a core plane, the
sense/inhibit wire goes through 4,096 cores
in a core plane. This means there are four
sense/inhibit windings in each core plane.

TOP

T ~ I;, 1/

32 2048 Positions 2048 Positions

1 ~

T .~
32 2048 Positions 2048 Positions

1 ~ 1/,

T ~
2048 Positions 2048 Positions

~

32

1

T ~
1/

2048 Positions 2048 Positions

~ /,

32

1

I "'" .. t---- 64 Lines -----I.~I ""'1 --- 64 Lines ----I.~I

Figure 2-66. Core Plane Layout

32
Lines

-i-------{*
?j<-- -------71""1<:

I I
I I I
*------~71'-

71'- - - 64 Li;;;,5- - -;f ""

Typical
Core
Orientation

2-67

The 8K core array is composed of five
l6,384-core planes (Figure 2-67). The
first plane forms bit-O and bit-5, the
second plane forms bit-l and bit-6, the
third plane forms bit-2 and bit-7, the
fourth plane forms bit-3 and bit-p, and
half of the fifth plane forms bit-4. The
top half of the fifth plane is not used in
the 8K array.

Each X-winding travels through five
planes before crossing to the second half
of the core planes via an X-return card at
one end of the array. This X-return card
contains printed wires that carry X-drive
current from one half of the X-winding to
the other half of the X-winding. The wind
ing pattern of the cor~s is such that
alternate X-drive lines start at opposite
ends of the core plane (see Figures 2-66
and 2-67 for core positioning).

Printed X-Retum
Wires for Odd
Numbered Lines
On This End of
X-Return Card.

2 V-Lines
(9ne End
cif Each)

The Y-drive lines are positioned simi
larly. A Y-drive line starts at either the
top or bottom of the first core plane and
is wound through each plane (Figure 2-67).
Thus, if drive current flows through one X
line and one Y-line, ten cores will experi- Figure 2-67. 8K Storage Winding
ence the coincident drive current necessary
to affect the cores. The tenth core, in the
top half of the last plane, experiences
coincident drive 9urrent. However, this
core output is not sensed. Depending on the
direction of drive current, the ten cores
are switched to read or switched to write.

An 8K storage unit, such as shown in
Figure 2-67, has eighteen sense/inhibit
windings (two per bit plane). There are
two windings per bit plane. Each winding
serves 4,096 cores. The sense/inhibit
winding is wound parallel to the X-winding.

The 16K core array consists of nine
l6,3,84-core planes. The first plane forms
bit-O in both first and second 8K units
(Figure 2-68). The second core plane forms
bit-l in both first and second 8K units.
This same scheme continues through the
ninth core plane which forms bit-P for both
8K units. An X-winding travels through all
nine planes of one 8K unit before crossing
to the second 8K unit via an X-return card
at the end of the array. The X-return
card connects the X-winding to the second
8K unit. The X-winding then continues
through all nine planes of the second 8K
uilit.

The Y-winding goes through both 8K bit
planes in each of the nine planes. The
significant point is that the X-winding
experiences a phase reversal when crossing
from one 8K unit to the other. Because of
this phase reversal, the X- and Y-windings
are in-phase in only one 8K unit at a time.

2-68

Figure 2-68. 16K Storage Winding

Pri nted X -Return

Printed
X-Return
Wire

Sense and inhibit consists of four wind
ings per core plane for a total of 36 wind
ings. Each winding passes through 4,096
cores in a plane.

The 32K array consists of eighteen
16,384-core planes (Figure 2-69). This
array consists of two 16K arrays sharing a
single set of Y-windings. The desired Y
winding is selected and driven. This Y
winding goes through all eighteen planes.
The X-winding goes through all eighteen
planes. The X-windings go through nine
planes, starting at one end, passing
through nine planes, crossing to the other
half of the plane via a printed X-return
wire, and returning through the other half
of the same nine planes. To address a
particular position, the appropriate Y-

One X-Winding
(Second 16K)

V-Winding Goes
Through All 18
Planes

Figure 2-69. 32K Storage Winding

.,
., .,.

winding is selected and driven. This makes
it possible to address four different core
locations. The desired location. is driven
by selecting the appropriate set of X
windings (first 16K or second 16K) by se
lecting the appropriate X-winding within
the selected set, and by driving the selec
ted X-winding with current in the appropri
ate direction. Current direction control
is necessary because of the phase reversal
between 8K blocks of storage on the X
winding.

The 32K storage unit has 72 sensei
inhibit windings (four windings per core
plane). Each winding passes through 4,096
cores, parallel to the X-windings.

I

, .,.

:1
J

/'
/.

II
%

/'

II
X-Retum
Wires.
(Second 16K)

.Third
8K

2-69

A 65K storage unit is actually two sepa
rate storage units. Each unit can store
32,768 bytes of information. Each of these
32K units is the same as described previ
ously (Figure 2-69). The units are sepa
rate physically, and each mounts on a sepa
rate hinged gate in the 2030 (Figure 2-70).

CPU
Power
Supply

I/o Power
Connectors

Figure 2-70. IBM 2030 Showing Two 32K
Storage units

STORAGE CLOCK

• The M2-I has a separate clock which allows it to operate
independently from the 2030.

• The clock consists of delay lines and timing latches.

• The clock is started by either read call or write call
from the 2030.

The M2-I core storage unit contains a tim
ing generator referred to as the storage
clock. Having a clock separate from the
2030 clock allows the storage unit to opera
te independently from the 2030 once the
read call or write call signal starts a
storage cycle.

2-:70

The clock is composed of three 250 nano
second delay lines tied together with ap
propriate controls to form a 750 nanosecond
delay line. The delay line is tapped at 25
nanosecond intervals. These taps are wired
to a series of latches to produce the com
posite timing signals required by the
storage unit (Figure 2-71).

Read Call
30 Delay Taps

Write Call

750 ns
Delay
Line I----,.-----!

Rd Set Ctrl

FL

Tap from
Delay line ____ -'

Wr Set Ctri

FL

Tap from
Delay line ____ --'

Figure 2-71. Simplified Clock Logic

When a read call signal arrives from the
2030, the read set control latch is turned
on, and the delay line is driven. The read
set control latch allows the delay line tap

Line Name Logic 200 ns 400 ns

Read Call MM102 n ,v----~ oA

Read Set Control MM102

lI' -....
Read 1 MM103 /

...
Read 2 MMI03 .r ...,. ..

X .source Read MM102 V-
1'"'"-

-Y Source Read MMI02 - -
Strobe MMI03

La.. -
Read Echo MM113 II

Data Ready MMI02

Figure 2-72. Core Storage Read Timings

X SourcE! Read

7 Read Timilll Latches Y Source Read

FL '--

I-- Read 1 Latch - -
t- Read 2 Latch

--
I--

• Strobe

-- -- --
Data Ready

• Read Echo

6 Write Timilll Latches

FL I--
Write A

-
I-- Write B

l-
t- X Source Write

-- •
--

Y Source Write

• • Inhibit

Write Echo

outputs to reach the read clock latches
(Figure 2-72). A read cycle is completed
in 750 nanoseconds--the same time as one
basic 2030 machine cycle.

600 ns

-
.- - -
~
_-... -

1

\ -- -

" J ,
2:-71

Write call from the 2030 turns on the
write set control latch and drives the de
lay line. The write set control latch
gates the delay line tap outputs to the

Line Name Logic 200 ns

Write Coil MMII3 J I"

Write Set Control MMII3 J' t
Wr (Write) MMI03 /'

...
X Source Write MMII2 V" -

~,

Y Source Write MMII2 ~

Inhibit MMII3

Write Echo MMII2

Figure 2-73. Core Storage Write Timings

CURRENT SOURCES

400 ns

write clock latches (Figure 2-73). A write
cycle is completed in 750 nanoseconds--the
same time required for one 2030 clock cycle.

600ns

\

\

"\

"\

"\

• Current sources supply drive current to the X- and Y-windings.

• The drive current comes from the secondary winding of a
transformer.

• The primary windings of the source transformers are driven
by transistors signaled to turn on by the storage clock.

Current sources are special circuits de
signed to supply drive current to the X
and Y-windings. In the basic 8K storage
unit, there are four current sources: X
source read, X-source write, Y-source read,
and Y-source write. Each current source
consists of a transformer secondary wind
ing. The primary winding of each trans
former is driven by a transistor circuit
(Figure 2-74). When the clock signals read
source timing, the Y-source read circuit is
turned on to cause current to flow in the

2-72

Y-source transformer primary. This in turn
causes transformer secondary current flow.
By this time, the selection circuitry has
coupled the source transformer to a single
drive line and current flows through the
drive line. This same action occurs in
the X-source read circuit: the clock sig
nals when to turn on, the transistors pro
vide transformer primary current, and the
transformer secondary provides drive cur
rent for the selected X-line.

Go

Read Clock Timing

1 U05AE
1 U05AF
I~05AG_

Go A
1

Write Clock Timing

1 U05AE
1 U05AF 1

•

I~O~~ __ I ~6A~ __

Figure 2-74. Current Sources

1

1 I
I~I~T ___ I

I Write Current
1- ---------

Driver

UI6AY

Y Source Write

Read Current
1- - - - - - - - - -

1

1

Driver

Y Source Read

1

1

__ I

2-73

GATE AND SELECTION SYSTEM

• The gate and selection system directs drive current to a
single X-line and a single Y-line.

• The gate and selection logic consists of control drivers,
address decoders, and gates.

The purpose of the gate and selection
system is to direct drive current from a
current source to a single X-line and a
single Y-line. The gate and selection
system acts like a switch at each end of
the drive lines to direct the current
source drive current to a single drive line
(Figure 2-75). Thus, the current source
supplies the current, and the gate and

2-74

selection circuitry simply directs the cur
rent to the appropriate drive line.

The gate and selection circuitry con
sists of control drivers (SI5EX), address
decoders (US3AD), and gates (SI5ES, SI5ET).
In Figure 2-76, the composite logic is
shown for the Y-direction. Notice that
the gates are turned on to direct the cur
rent source to the appropriate drive line.

Current
Source

I
I
I
I
I
I
I
I
I
I
I
L_

o 0

- - ---- -------1

o 0 0 0 o 0

Array

Gate and Selection I
System I

o
o 0

I
I
I
I
I
I
I
I
I
I

~ TIII1TIT TIITTlll < TTIll111 TTTITTTT TTllTTTT Il

~~~~-~~------~r-~ 
~44~~~~--------~f~ 

~4-~4-~~i~~ 
~-I-+-+-I-+--I----!I f--

Gate and Selection 
System L _______________ ______________ ~ 

Note: Heavy Line Indicates 
Selected Line. 

Figure 2-75. Gate and Selection System 

2-75 



A 
Read 
ConlTol 
515EX 

A 
Address 
Decode 1---" 
U03AD 

To 15 
other 
Read 
Gates 

A 
Read 
Gate 
515E5 

To 15 
other 
Read 
Gates 

A 
Write 
ConlTol 
515EX 

A 
Write 
Gate 
515ET 

A 
1.l.1./'1 ._. I Write 

To 
other 
Write 
Gates 

Figure 2-76. 

To 15 
other 
Write 
Gates 

532EF 
Diodes 

Gate and Selection Logic 

SENSE/INHIBIT SYSTEM 

• A combination sense/inhibit winding is used. 

532EF 
Diodes 

• Each sense/inhibit winding goes through 4096 cores, parallel 
to the X-drive lines. 

• During a read cycle, the sense/inhibit winding senses 
pulses caused by cores that flip. 

• During a write cycle, the sense/inhibit blocks cores 
from flipping. 

2-76 

Gate 
515ET 

To 15 
other 
Write 
Gates 

A 
Read 

1----+-1 Control 
515EX 

A 
6-----1 Address 

Decode 
U03AD 

A 
1-____ -1 Write 

Control 
515EX 

To other 
Write Gates 



The M2-I uses combination sense/inhibit 
windings for storing and retrieving infor
mation. This winding is wound parallel to 
the X-winding and it goes through 4096 
cores in a single core plane. There are 
four such windings for each l6,384-core 
plane. During a read cycle, a core that 
switches (was logical 1) induces a pulse 
onto the sense/inhibit winding. This 
pulse is amplified by a sense amplifier 
(Figure 2-77). The sense amplifier senses 
a change or difference in current on the 
sense winding and is called a differential 
amplifier. To prevent unwanted noise from 
being amplified in other storage sections, 
only the sense winding outputs for the 
4,096 block of storage being addressed are 
allowed to reach sense amplifiers. The 
sense amplifier gate allows the desired 
sense winding output to reach sense ampli
fiers. The output of the sense amplifiers 
appears at the input of the detector cir
cuit. Here the strobe pulse from the 

U61CD 

+6 +6 

__ I __ _ 

• 
Not-Bit A 

Driver 
Circuit 

storage clock gates the sense amplifier 
output to a data latch which stores the bit 
until used by the processing unit. During 
a read cycle, if a core does not switch 
(was logical 0), no pulse is induced onto 
the sense winding, and therefore the data 
latch is not set. 

During a write cycle, if a bit is to be 
stored in a core, the core is switched by 
the effect of the coincident X and Y drive 
currents. In this case, the inhibit cur
rent is not allowed to flow (Figure 2-77). 
During a write cycle, if the bit is to be 
blocked from setting, inhibit current must 
flow to oppose the magnetic effect of the 
X-winding. With no bit present at the in
hibit drive input, the inhibit driver turns 
on, inhibit current flows and the effect of 
the inhibit current cancels the effect of 
the X winding current. As a result, the 
core is not set. 

Sense/Inhibit Winding 

4096 Cores 

Parallel to X-Winding 

Pre - Amp Gate ______ ~Sense 
Amplifier Use This 

4K Block 1-- - - - --
1 U61CG : 

UcrJAV,AW 

Ul6AX 

..... -:---I~ : 
--I 

-30o--..... --+-........ I I 

1 

I 

1-- - - ---

I 1 
1~6!ES ___ I 

Figure 2-77. Sense and Inhibit Logic 

Strobe ___ ~ Detector 

U07AT,AU 

Reset ____ ...... 

_EL __ 
U03DP 
U03DQ 
U03AF 

Bit 

2-77 



POWER SUPPLY AND TEMPERATURE COMPENSATION 

• Four power supply voltages are required for operation 
of the M2-I: +6, +3, -3, -30. 

• The core array is heated by a heater element, and 
cooled by a fan. 

• A unit called the Proportional Controller controls the 
heat generated by the heater element. 

The M2-I requires four dc power supply 
voltages for operation of the logic and 
drive circuitry. The voltages and the 2030 
power supply from which they originate are: 

+6 Power Supply 3 

-30 Power Supply 6 

+3 Power Supply 7 

-3 Power Supply 8 

Also supplied to the memory gate is a 208 
volt ac line and a 24 volt dc line for 
operation of the temperature control system. 
This system consists of two continuously
running fans to cool the logic gates, and a 
core array heater and fan for controlling 
the temperature of the core array. 

A thermistor near the core array senses 
the array temperature. The variation in 

2-78 

thermistor resistance signals a separate 
unit called a proportional controller. 
This unit is located behind the memory gate 
on the 2030 frame. Its purpose is to con
trol the power supplied to a heater element 
located near the core array. Varying the 
power supplied to the core array heater 
element controls the temperature of the 
core array. The heater fan, located under 
the core array, runs continually to blow 
air past the heater element into the core 
array. 

The LP light on the ROS area of the 2030 
console indicates low pressure in the C
CROS air system. When the M2-I is in
stalled, a thermostatically-controlled re
lay turns the LP light on if the array tem
perature is below its correct operating 
limit. If the array temperature rises 
above 1200 F, a thermal contact located 
in the core array area initiates a power
off sequence in the 2030. 



AUXILIARY STORAGE 

• Auxiliary storage is an added area for CPU, and I/O 
control and status information. 

• Auxiliary storage requires additional addressing in the 
Y-dimension only. 

• Auxiliary storage is referred to as storage bump. 

• The amount of auxiliary storage available varies with 
the size of the main storage unit. 

Included in the storage unit is an ad
ditional area of auxiliary storage used by 
multiplexor channel and by the processing 
unit. This auxiliary storage is formed by 
adding eight extra Y-lines to the basic 
core plane (Figure 2-78). An 8K unit, with 
five core planes, has 512 positions of 
auxiliary storage. Of these 512 positions, 
256 are for CPU local storage, and 256 are 
for multiplexor channel usage. Eight aux
iliary storage lines intersect with the top 
64 lines to form 256 bit-positions for CPU 
local storage, and 256 bit-positions for 
multiplexor storage. In the 8K unit, these 
top positions would correspond to the 5-, 
6-, 7-, or P-bit positions (see figure 
2-67). The eight auxiliary storage wind
ings intersect with the bottom 64 lines to 
form 5l2-bit positions for lower bits. 
This would correspond to bits 0, 1, 2, 3, 
or 4. 

In a 16K core array, four 256-byte aux
iliary storage areas are available. The 

same scheme is used to create the extra 
storage positions: eight auxiliary storage 
lines in the Y-direction intersect with 128 
X-lines to produce 1024 additional byte 
positions of auxiliary storage. The aux
iliary storage areas are labled MPX 0, MPX 
1, MPX 2, and CPU local storage. 

A 32K storage unit provides the maximum 
amount of auxiliary storage. In this unit, 
up to eight 256-byte auxiliary storage 
areas are available. These areas are CPU 
local storage, and MPX 0, MPX 1, MPX 2, MPX 
3, MPX 4, MPX 5, and MPX 6. 

Expansion beyond 32K does not yield 
additional auxiliary storage. Therefore, 
auxiliary storage is always located in the 
first M2-I. 

2-79 



T 
32 

1 

T 
32 

1 

T 
32 

~ 

T 
32 

l 

Figure 2-78. 

2-80 

~ 
2048 Positions 

+ 
128 Positions 

~ 

~ 
2048 Positions 

+ 
128 Positions 

~ 

~ 
2048 Positions 

+ 
128 Positions 

~ 

~ 
2048 Positions 

+ 

~ 
128 Positions 

TOP 

8 Auxiliary Storage Lines 
4 for CPU Local Storage 
4 for Multiplexor Storage 

2048 Positions 
+ 

128 Positions 

2048 Positions 
+ 

128 Positions 

2048 Positions 
+ 

128 Positions 

2048 Positions 
+ 

128 Posi tions 

Eight additional Y lines intersect with 128 X lines to produce 1024 additional bit positions per plane. 

Auxiliary Storage Core Plane Windings 



8K STORAGE OPERATION 

• A complete storage cycle consists of a read cycle and 
a write cycle. 

• In a given storage cycle, drive current flows through 
the selected drive lines in one direction for read, and 
in the opposite direction for write. 

• At the end of the read cycle, all cores at the addressed 
position are logical O. 

• An interlock in the 2030 ensures that a write cycle 
occurs between read cycles so a storage position is not 
left blank. 

• The inhibit drivers turn on for those planes where the 
core is to be left at logical O. 

Description (Figure 2-79) 

When the 2030 places an address into the M
and N-registers and requests a read cycle, 
the storage clock is started. The address 
lines from the M- and N-registers combine 
with clock timing to turn on x- and Y-read 
current sources x- and Y-read gates, and X
and Y-read control drivers. This causes 
read current to flow through one X-winding 
and one Y-winding. The coincident read 
drive currents cause all the cores at the 
addressed position to experience a magnetic 
effect great enough to flip all cores to 
the logical 0 magnetic state. Any cores 
that change magnetic state from logi,cal 1 
to logical 0 cause a current pulse to be 
induced onto the sense winding. The clock 
signals combine with the M- and N-register 
bits to gate the appropriate sense ampli
fiers. The amplified sense bits cause data 
latches to set on. Toward the end of the 
read cycle, the 2030 is signalled that the 
data is ready. At this time, all cores in 
the addressed position are set to logical 
O. This means the addressed position con
tains an even parity byte (000000000). 

The write call signal from the 2030 
starts the storage clock and conditions a 
write cycle. The M- and N-register contain 
the same address as during the preceding 
read cycle. However, the address bits now 
combine with write timings to turn on X
and Y-write current sources, X- and Y-write 

gates, and X- and Y-write control drivers. 
The result is that current flows in the op
posite direction through the same two drive 
.lines as during the preceding read cycle. 
With no further control, this would result 
in all cores in the addressed position 
being set to logical 1. However, during a 
write cycle, it is necessary to set some 
cores to logical 1 while le'aving the other 
cores at logical o. The byte of informa
tion to be stored in core storage was 
placed in the R-register by the 2030 before 
the storage write cycle was initiated. To 
store the correct byte, the byte in the R
register controls the appropriate set of 
inhibit drivers so inhibit current will 
flow in the bit planes where the core is to 
remain logical 0, and inhibit current is 
blocked in the bit-planes where the core is 
to be flipped to logical 1. Thus, if the 
R-register contains the byte POOIOII01, the 
0-, 1-, 3-, and 6-bit inhibit drivers are 
turned on while the P-, 2-, 4-, 5-, and 7-
bit inhibit drivers are blocked from turn 
ing on. The result is that although co
incident write current flows through all 
cores in the addressed position, only those 
cores that experience no inhibit current 
are set to logical 1. This causes the byte 
.that was in the R-register to be stored in 
the addressed storage location. 

2-81 



IV "l 
I 1-'-

<Xl <Q 
IV s:: 

Ii 
CD 

IV 
I 

-..J 
ID 

<Xl 
!:>:: 

Ul 
rt 
0 
Ii 
ill 

<Q 
CD 

0 
'1:l 

CD 
Ii 
ill 
rt 
1-'-
0 
::l 
en 

X=N REG 
5,6, 7 

X A 
X 

X 

Source 

RD O-BK 

X A 
X 

X 

X A 
X 

X 

Sink 

WRO-BK 

X A 
X 

X 

MM302 
Address Decode 
U03AD 

~ all 

;--

-L--~ -~ 

.J.-1. 
-~f-.-J -'---

~ 

~OIO 

~ d.:Iill 
r~ 

16-155 

~~111 L~ 

-

~OOI 

~ 

r-
,---

J--D 

Lor;---'---

'----

~OOO 

'---

l~ 
-0-

L~_~ 

~ 

MM302 
X Read and Write Gates 
SI5ES, S 15ET . 

Y-line 

r c--, ~ 
5157 L ~ L---.J 

[ tJc=J 
[ tJC] 

616 r::; I=::l .r:=:::::l 
L W L---.J 

Y-line 

all -DR 

f-

_-;r-S-t-e-
""'""l)I-

- =!:::r----t-~ f-
157-16 

I-

L----t-fl' 
OIO~ 

L~_ : 

111lfr=~-;= -
h 
W 

'----

OOI~ 

J---< 
~ 

D J-- t-Il '----

~f---~t-W 

-
OOO~ 

-
~f---
-~ 

f---~~ 
~ 

-
M322 
X Read and Write Gates 
S 15ES, S15ET 

XX=N REG 

2, 3, 4 

A XX 

XX 

XX 

Source 

WRO-BK 

A XX 
XX 

XX 

A XX 

XX 

xx 

RD O-BK 

Sink 

A XX 

XX 

XX 

MM322 
Address Decode 
U03AD 



Circuit Objectives 

Assume the binary address 0000 0010 1001 
0010 is in the M- and N-registers and that 
the 2030 calls first for a read cycle, and 
then a write cycle. The byte read out is 
regenerated (placed back into the addressed 
position) on the write cycle. 

1. Start the storage clock (MM122). 

Read Call 

2. Turn on the read set latch to enable a 
read cycle (MMl02). 

Read Call 

(not) Delay Tap 200 ns 

3. Set the main/local storage latch to de
fine the area of storage to be ad
dressed (MM2l2). 

Read Call 

4. Select and drive one Y-line with read 
current. This requires turning on two 
read control drivers (one for each end 
of the Y-line), two address decode 
switches (one for each end of the Y
line), two read gates (one for each de
code switch), and the Y read current 
source. 

a. Turn on Read 2 control 0-32KB 
(MM222). These are the read 
control drivers. 

Use Main Storage 

Read 2 (from storage clock) 

b. Turn on the y read current source 
(MM252) • 

Y Source Read (from storage 
clock) 

Go (not M-register 0 bit) 

c. Turn on RD - 0 - - 010 (MM402). 

This is a Y-decode switch for the 
source side of the Y-line. The 
gates are on the same logic page 
and feed the decode switches di
rectly. 

Y Rd Current Source 

Read 2 Control 0-32KA 

N Reg 0 Bit 

(not) N Reg 1 Bit 

(not) M Reg 7- Bit Ctrl 

(not) M Reg 4 Bit Ctrl 

d. Turn on RD 00--001 (MM442). This 
is the Y-decode switch for the sink 
side of the Y-line. 

Rd Current Sink 

M Reg Not 3 and Not 4 Bits 

(not) M Reg 5 Bit 

M Reg 6 Bit 

5. Select and drive one X-line with read 
current. This involves turning on two 
read control drivers (one for each end 
of the X-line), two address decode 
switches (one for each end of the X
line), two read gates (one for each ad
dress decode switch), and the X-read 
current source. 

a. Turn on Rdl 0-8K WR 8-l6KA and 
Rdl O-SK WR 8-l6KB. 

These are the X control drivers 
(MM232) • 

RDI (from clock) 

(not) M Reg 1 Bit 

(not) M Reg 2 Bit 

b. Turn on the X-read current source 
(MM252) . 

X Source Read 

Go (not M Reg 0 Bit) 

(not) M Reg 2 Bit 

2-83 



c. Turn on RD---OIO (MM302). This is 
the X decode switch for the source 
side of the X-line. 

X RD O-SK WR S-16K Source 

RDI O-SK WR S-16KA 

(not) N Reg S Bit 

(not) N Reg 7 Bit 

d. Turn on RDOlO--- (MM322) . This is 
the sink side of the X line. 

X RD O-SK WRS-16K Sink 

RDI O-SK WR S-16KB 

(not) N Reg 2 Bit 

N Reg 3 Bit 

(not) N Reg 4 Bit 

6. Develop the sense amplifier gate so the 
appropriate sense windings are gated to 
their respective sense amplifiers. The 
gate for this address is SA gate O-SKA 
(MM692) . 

Not M Reg 1 Bit Cont 

(not) M Reg 2 Bit 

(not) N Reg 7 Bit 

7. Amplify and gate the sense pulses to 
the sense amplifier detector latches 
(MMS12 through MMS92) . 

SA Gate O-SKA 

SA In Bit O-SK 

Strobe 0-16K (from clock) 

S. After the SA detector latches are set, 
the storage unit signals the 2030 CPU 
that the read data is ready (MM002). 

Data Ready (from clock) 

9. Without changing the address in the M
and N-registers, the 2030 CPU requests 
a storage write cycle and starts the 
storage clock (MM122). 

10. 

2-S4 

Write Call 

Set up the storage clock for a write 
cycle by turning on the write set latch 
(MM1l3) . 

Write Call 

Go (not M Reg 0 Bit). 

11. For the write cycle, it is necessary 
to select and drive the same X and Y 
drive lines as were driven on the 
read cycle. However, now they are 
driven with current in the opposite 
direction. Consider the Y-line first. 
For this, it is necessary to turn on 
two control drivers (one for each end 
of the Y-line), two address decode 
switches (one for each end of the Y
line), S two address gates (one for 
each decode switch), and the Y-write 
current source. 

12. 

a. Turn on the Y control-drivers, 
Write Control 0-32KB and Write 
Control 0-32KA (MM222). 

Write B (from clock) 

Use Main Storage 

b. Turn on the Y-write current 
source and sink (MM2S2). 

Y Source Write (from clock) 

Go (not M Reg 0 Bit) 

c. Turn on the Wr-O--OIO write ad
dress decode driver (MM402). This 
includes the address gate, and is 
on the sink end of the X line. 

(not) M Reg 7 Bit Ctrl 

(not) M Reg 4 Bit Ctrl 

N Reg 0 Bit 

Y Wr Current Sink 

Write Control 0-32KA 

d. Turn on the WR OOOl---write ad
dress decode driver (MM442). This 
includes the address gate, and is 
on the source end of the X-line. 

M Reg Not 3 and Not 4 Bits 

(not) M Reg S Bit 

M Reg 6 Bit 

Write Control 0-32KB 

Y Wr Current Source 

Select and drive the same X-line in 
the opposite direction. This requires 
two control drivers (one for each end 
of the X-line), two address decode 
switches (one for each end of the X
line) and two address gates (one for 
each decode switch), and the X-write 
current source. 



a. Turn on X-control drivers Wr 0-8K 
Rd 1 8-16K, and Wr 0-8K Rd 1 8-16 
KB (MM232). 

Write A (from clock) 

(not) M Reg 2 Bit 

(not) M Reg 1 Bit 

b. Turn on the X-write current 
source (MM252) . 

X Source Write 

(not) M Reg 2 Bit 

c. Turn on the X decode driver for 
the sink end of the X-line. This 
is Wr---OIO (MM302) • 

(not) N Reg 5 Bit 

N Reg 6 Bit 

(not) N Reg 7 Bit 

X Wr 0-8K Rd 8-16K Sink 

Wr 0-8K Rd 1 8-16KA 

d. Turn on the X decode driver for 
the source end of the X-line. 
This is Wr 010--- (MM322) • 

(not) N Reg 2 Bit 

N Reg 3 Bit 

13. 

14 . 

15. 

(not) N Reg 4 Bit 

X Wr 0-8K Rd 8-16K Source 

Wr 0-8K Rd 1 8-16KB 

The appropriate set of inhibit drivers 
must be gated so that only one set of 
these drivers turns on. For this ad
dress, Inhibit 0-8KA must be turned 
on (MM502). 

(not) N Reg 7 Bit 

(not) M Reg 1 Bit 

(not) M Reg 2 Bit 

Inhibit (from clock) 

For those bits that are to be set ON, 
the inhibit driver must be blocked 
from turning on (MM732 through MM772). 
The store lines block their respective 
inhibit drivers. 

For those bits that are to be blocked 
from setting, the appropriate inhibit 
drivers are turned on by the (not) 
store lines. Inhibit current opposes 
the affect of the X-drive current and 
the core is not set (MM732 through 
MM772) . 

2-85 



8K AUXILIARY STORAGE 

• Auxiliary storage in the 8K unit consists of two 256-byte 
storage areas. 

• Eight additional Y-lines intersect with 64 X-lines to 
produce 512 additional storage positions. 

• Two additional Y-read gates and two additional Y-write 
gates provide control of the extra Y-lines. 

Circuit control of auxiliary storage for 
the 8K unit requires four additional Y-line 
bump decode drivers (Figure 2-80). These 
drivers are controlled by the M-register 
3-bit (MM152). These drivers control one 

end of the eight additional drive lines. 
The other ends are connected to 4 of the 
read and 4 of the write decode drivers used 
to address main storage. X-line decode and 
drive is no different than for main storage. 



--!<} Ine Storage 2nd 

Line 75 Size 8K 16K 32K 32K 
Write Control 0-32K o-r<} 
Wr. Current Sink DR V-Lines 

(WR) 
...... 

for Bump 8 8 8 N-Reg 0 ---

L· 74 

N-Reg 1 IA 1"-- * 
X-Lines 64 128 256 ---

M-Reg 4,7 
I I L~~ ~ 

DR Available 

(RD) Line 72 Bump Pes 512 1024 2048 ---
* Line 73 

rt: -- DR Line 68 I- - (WR) r 
N-Reg 0 

Line 69 r 8 V-Lines 
N-Reg J IA * 

~ L~~ 
Line 66 

Line 67 DR 
(RD) .:!" v 

'--- * Array 

r-- rKJ---- DR 

~ N-Reg 0 
I-- (WR) I-< 

~l r"-- -* N-Reg 1 IA 

Lr-- ri)l H-J 
DR 

I-< H>I (RD) 

"-- * 
X-Lines' - ----- -- ----- -

-~~ DR 

N-Reg 0" - (WR) 

N-Reg 1 I A r'--- * 

L...LJ L.--- ~' 
Rd. Current Source DR H>'-
Read 2 Control 0-32K 

(RD) H 

'--- -'* 

m ~ ---{>' 67 

DR 69 
(WR) 

.........I':>' 73 
r---,---

~, 75 
M-Reg 3" 

~d ~ 
IA 

Bump ~d Drive lns 

Use Mein Storage I A I 
DR 

Rd.2 (RD) ---;~ 
~ 

r-"-- ---l<} 
Even 

~ 
66 

Write B 
68 

A DR 

~ 
(WR) -~ 72 

~ """"" r-,--- .....{>I 74 

A 
Bump Even Drive Lns 

:+g M-Reg 3 Bit Uj 
Even 

DR 
(RD) 

Lkt 
""""" 

Wr. Current Source 

Rd. Current Sink 

*Each Y-line driver is connected to 8 additional main storage Y-lines. 
The 4 RD and 4 WR drivers shown are the only ones that drive 10 lines. 

Figure 2-80. Auxiliary Storage Drive Scheme 

2-87 



16K STORAGE OPERATION 

• The 16K storage unit is composed of nine core planes. 

• The X-return wires connect the two 8K units in the X
direction. 

• Phase reversal takes place between the two 8K.units so 
only one unit is addressed at a time. 

Description 

The 16K storage unit contains nine core 
planes. The planes are wound so that two 
8K storage units are produced (Figure 2-81). 
The X windings thread through all nine core 
planes, cross over to the other half of the 
array, then thread back through the upper 
halves of these same core planes. The Y
winding is one set of 128 lines threading 
through all core planes. The result is 
that if one X-winding and one Y-winding are 
driven with drive current, nine cores ex
perience coincident drive current. Because 
the X-winding undergoes a phase reversal 
between 8K units, the respective cores in 
the other half of the array do not exper
ience coincident drive current. To address 
th~ similar position in the second 8K block 
of storage, the drive current must be re
versed (Figure 2-82). This control takes 
place at the X-control drivers and at the 
X-source drivers. 

X-2 
Drive 

Read lst 8K Y-I X-I 

Read 2nd 8K Y-I X-2 

Write lst 8K Y -2 X-2 

Writ. 2nd 8K Y-2 X-I 

Y-2 

Figure 2-81. 16K Storage Phase Reversal 

2-88 



Array Pin X + 1 

Array Pin X (16 

(8K) 

K) 

V-Line 

Bit 5 (0-8K~", 
Currents Aid 

........ IA 

Phase Reversa I because 
of Connection on 
X-Return Board 0 f 

Side C 16K Storage Unit 

\ 
8K .. -. --- ----------) ~-- --.. - 1---- --------- 1-- _. 16K 

Bit 0 (8-16K) 
X-Current must 
Reversed to Aid 
V-Current 

Sid eS 
Side D 

Bit 0 (8K) 
Currents Aid,\ 

, 

'4 
~ 

Side A 

V-Line 

Figure 2-82. Phase Reversal Wiring for 16K 

Circuit Objectives 

Circuit control for the 16K unit is exactly 
the same as for the 8K unit with the ex
ception of the X-control driver and X
source driver. The X-control driver deter
mines the direction of current flow in the 
X-winding by switching on the proper X
gate, while the X-source drivers turn on 
the actual source current in the appro
priate direction. 

1. The M-register 2-bit combined with the 
function read or write, controls the 
X-control drivers (MM232). 

M Reg 2 Bit 

Rd 1 

write A 

2. The M-register 2-bit, combined with the 
function read or write, controls the 
X-source drivers (MM242). 

M Reg 2 Bit 

(not) M Reg 2 Bit 

Read 1 

Wr 

2-89 



16K AUXILIARY STORAGE 

• Auxiliary storage in the 16K storage unit consists of 
four 256-byte storage areas. 

• The eight additional Y-lines intersect with 128 X-lines 
in each plane to produce 1024 additional storage positions. 

• Two additional Y-read gates and two additional Y-write gates 
control the additional Y-lines. 

The 16K auxiliary storage unit uses the 
same additional Y-line bump decode drivers 
shown in Figure 2-80. These drivers are 
controlled by the M-register 3-bit (MM152). 
In the 16K storage unit the X-lines undergo 

32K STORAGE OPERATION 

a phase reversal between 8K units. Be
cause of this phase reversal, selection of 
an auxiliary storage position requires X
line phase reversal control using the M
register 2-bit (MM232). 

• One single set of Y-lines drives all -18 core planes. 

• Two sets of X-lines drive 18 core planes. 

• Phase reversal takes place between the first and second 
8K on the first set of X-lines, and between the third 
and fourth 8K on the second set of X-lines. 

Description 

The 32K storage unit consists of 18 core 
planes. The Y-windings go through all 18 
planes in a serial manner (see Figure 2-69). 
There are two sets of X-windings; one for 
the first 16K, and one for the second 16K. 
In each 16K, the X-winding undergoes a 
phase reversal between 8K units. Selection 

Circuit Objectives 

Circuit control for 32K takes place at the 
X-contr.ol drivers and X-source drivers. 
The M-register 2- and l-bits select the 
appropriate set of control drivers (0-16K, 
l6-32K), and determine the direction of 
current flow by controlling the X-source 
drivers. 

1. Select the appropriate set of X-control 
drivers. The M-register 2-bit and 1-
bit determines which set (first 16K or 
second 16K) of X-control drivers is 
used (MM232, MM242). 

M Reg 1 Bit 

M Reg 2 Bit 

Rd 1 

Write A 

2-90 

of a single core storage position requires 
control of drive current direction for the 
phase reversal. This control uses the M
register 2- and l-bits to determine which 
X-control drivers and X-source drivers are 
turned on. 

2. Control the direction of current flow 
according to the 8K unit being selected 
and whether the operation is read or 
wri te (MM252). 

Go 

X-Source Write 

M Reg 2 Bit 

X-Source Read 



32K AUXILIARY STORAGE 

• Auxiliary storage for the 32K storage unit provides up 
to eight 256-byte storage areas. 

• One set of eight additional Y-lines goes through all 
core planes. 

• There are two sets of X-lines: one is for the first 16K, 
one is for the second 16K. 

A 32K storage unit can have up to 2048 aux
iliary storage positions in the form of 
eight 256-byte bumps. Four additional Y
line decode drivers combine with the exist
ing Y-decode drivers to select a single Y
line. This selected Y-line goes through 

65K STORAGE OPERATION 

all four 8K storage units. However, only 
one 8K unit is selected because of X-line 
phase reversal, and because there is a 
separate set of X-lines and X-control 
drivers for each 16K of storage (MM232, 
MM242). 

• The 65K core storage unit consists of two 32,768-byte 
storage units. 

• Each 32K unit contains all the necessary circuitry to 
address all positions in that unit. 

• The M-register O-bit determines which 32K unit is used. 

A 2030 with 65K core storage capacity has 
two separate core storage units. Each is 
Illounted on hinges in the lower left side 
of the 2030. The first 32K is the one lo
cated nearest the 2030 console. The sec
ond 32K is between the first 32K and the 
power supply tower. Each is a self
contained unit containing address decode 
and drive curcuitry, and sense and inhibit 
circuitry. A single set of logics is pro
vided to cover addresses up to 32,767. 
These logics contain appropriate notes to 
make one set of logics applicable for both 
units. All pin numbers and other locations 
are the same for both units. 

Address decode and drive circuitry is 
the same regardless of which unit is ad
dressed. When a read call is issued and 
an address is placed into the M- and N
registers, both units begin to address and 
drive the same relative position as de
fined by the low 15 bits of the M- and N
registers (Figure 2-83). The high ord~r 

address bit (M-register 0) determines 
which unit is to be addressed and blocks 
drive current in the unit not being ad
dressed. Thus, the M-register O-bit can 
be thought of as having the value of 
32,768. For example, if the binary ad
dress 00000000 00000000 is placed into the 
M- and N-registers, and a read call is is
sued, both storage units begin addressing 
the low-order core storage position. Be
cause the high-order address bit is logi
cal 0 (not M-register 0 bit), drive cur
rent in the second 32K unit is blocked. 

If the binary address 10000000 00000000 
is placed into the M- and N-registers, and 
a read call is issued, both storage units 
begin addressing the low-orger core storage 
position. Because the high-order address 
bit is logical 1 (M-register 0 bit), the 
address desired is 32,768, and drive cur
rent is blocked in the first 32K. The ad
dress read out is 00,000 + 32,768 which 
is 32,768. 

2-91 



Address Decode 
and Drive 

Not M-reg 
O-bit 

p 

p 

1st 32K 
Core Storage 

7 

7 

2nd 32K 
Core Storage 

Address Decode 
and Drive 

M-reg 
O-bit 

P 7 P 7 ':""'--"--f -=- ':"""-f"---:'" 
s 

MN Bus 

Figure 2-83. 65K Addressing 

Circuit Objectives 

Circuit control for the 65K storage unit is 
dependent on the Go signal, developed from 
theM-register O-bit on logic page MM142. 
This same page applies to both the first 
32K and the second 32K. For the first 32K, 
the M-register O-bit is inverted to p~oduce 
the Go signal. The M-register O-bit is re
quired to produce Go for the second 32K. 
Thus, Go will be active. for either one unit 

5 

or the other, but never both. In the unit 
where the Go signal is down, the following 
functions are blocked: 

Data Ready on Read Cycle (MMI13) 
x- and Y-Source Drivers on Read Cycle 

(MM252) 
Strobe on Read Cycle (MM692) 
Clock Start on Write Cycle (MMI13) 



CSU INTERFACE 

Each 32K M2-I core storage unit communi
cates with the 2030 over a series of signal 
lines known as the CSU Interface. All ad
dresses, data, and control signals are 
transmitted over this interface. A brief 
description of the interface signals fol
lows. 

M- and N-Register Bit Lines (Logic 
Page MMOOl) 

Sixteen bit-lines carry the address in the 
MN-register to the core-storage addressing 
circuitry. The address is set into the 
MN-register at the Tl time of the CPU clock 
cycle following the cycle when a CPU read
in is decoded by the control circuitry. 
The address does not change until the nec
essary CPU-compute and core-storage write 
cycles are taken. The MN-register bit 
lines in order from the high-order position 
of the address to the low-order position of 
the address are: 

M Reg 0 Bit 
M Reg 1 Bit 
M Reg 2 Bit 
M Reg 3 Bit 
M Reg 4 Bit 
M Reg 5 Bit 
M Reg 6 Bit 
M Reg 7 Bit 
N Reg 0 Bit 
N Reg 1 Bit 
N Reg 2 Bit 
N Reg 3 Bit 
N Reg 4 Bit 
N Reg 5 Bit 
N Reg 6 Bit 
N Reg 7 Bit 

The M Reg 0 Bit line serves an additional 
function on a 65K machine. If there is an 
M-register 0 bit present, the desired ad
dress falls in the second 32K. If there is 
no M-register 0 bit, the desired address 
falls in the first 32K. Read Call occurs 
at around Tl CPU-time. This is before the 
address in the M- and N-registers is valid. 
Therefore, a read cycle is started in both 
M2-I units (on a 65K machine). Final se
lection of M2-I units occurs later in the 
read cycle. If there is no M-register 0 
bit, the x- and Y- source drives are 
blocked in the second M2-I (second 32K). 
If there is an M-register 0 bit, the X- and 
Y-source drivers are blocked for the first 
M2-1 (first 32K). In addition, the M
register 0 bit line controls the data ready 
pulse to the 2030 and the strobe pulse in 
the appropriate 32K. 

For the write cycle, the M-register 0 
bit simply blocks the Write Set latch and 
the drive pulse to the delay line when 

Write Call occurs. This is possible be
cause the M-register is not changed between 
read and write cycles and therefore, the 
M-register 0 bit line is valid when the 
Write Call signal occurs. Thus if there is 
no M-register 0 bit, the write cycle is 
blocked in the second 32K. If there is an 
M-register 0 bit, the write cycle is 
blocked for the first 32K. 

Unlike the M2, the 65K M2-I requires 
only one MN-register for address drive. 
An intermemory cable supplies addresses 
from the first 32K to the second 32K. 

Store Bit Lines (Logic Page MMOOl) 

The nine store bit-lines provide the data 
input to the core-storage unit. These lines 
are direct outputs of the R-register, and 
they go to the core storage inhibit drivers. 
The nine store bit-lines are: 

Store P Bit 
Store 0 Bit 
Store 1 Bit 
Store 2 Bit 
Store 3 Bit 
Store 4 Bit 
Store 5 Bit 
Store 6 Bit 
Store 7 Bit 

Read Call to Memory (Logic Page MMOOl) 

Read Call to Memory signals the M2-I that 
the 2030 control circuitry has decoded a 
read operation. It occurs at Tl-time of 
the cycle when a memory read cycle is to 
occur. Read call starts the memory clock 
and sets up a read cycle by turning on the 
Read Set latch (Logic Page MMl02). Regard
less of which 32K is being addressed, both 
clocks are started for Read Call. The M
reg 0 bit line blocks the actual drive cur
rent for the 32K not being addressed. 

Write Call to Memory (Logic Page MMOOl) 

Write Call to Memory signals the M2-I that 
the 2030 control circuitry has decoded a 
write operation. It occurs at about Tl 
CPU-time of the cycle in which a write 
cycle is to occur. Write Call combines with 
the M-register 0 bit line to determine 
which 32K storage clock is to run for a 
write cycle. If there is no M-register 0 
bit, the desired addreSs is located in the 
first 32K and the first 32K clock is 
started. If there is an M-register 0 bit, 
the desired address falls in the second 
32K, and the second 32K clock is started. 

2-93 



Mach Reset Sw (Logic Page MMOOl) 

The machine reset switch signal line blocks 
the advance of the memory clock. Machine 
reset turns off the Read Set control latch 
(Logic Page MMl02), the Write Set control 
latch (Logic Page 113), and blocks the de
lay line drive pulse (Logic Page MM122). 

Early Local Storage (Logic Page MMOOl) 

The early local storage occurs before Read 
Call to allow setting the main/local stor
age latch to the local position (Logic 
Page MM2l2). When set to the local posi
tion, the main/local storage latch blocks 
the Y-control drivers, (Logic Page MM222) , 
and allows the local storage control dri
vers to turn on (Logic Page MM142). The 
next time Read Call occurs when the early' 
local storage line is down, the main/local 
storage latch is reset to main to enable 
the Y-control drivers and block the local 
storage control drivers. 

Read Echo 1 (Logic Page MM002) 

Read echo is a signal required by the 2030 
in manual store operations. It follows a 
.Read Call, and indicates that the Read Call 
was received, the memory clock is running, 
and that a. read cycle is in process. Its 
purpose is to interlock the 2030 until the 
data is read out of the addressed position. 
The read echo results when the delay line 
pulses set and reset the read echo latch 
(Logic Page MMl13). 

Write Echo 1 (Logic Page MM002) 

'.write echo is a signal required by the 2030 
in manual store operations. It follows a 

2-94 

Write Call, and indicates that the Write 
Call has been received, that the memory 
clock is running, and that a write cycle is 
in process. The write echo occurs when the 
delay line pulses set and reset the write 
echo latch (Logic Page MMl12). 

Memory Sense Bit Lines (Logic Page MM002) 

These nine lines represent the data output 
of the core storage unit. They are active 
at memory strobe time. The core storage 
unit identifies the data with the data 
ready pulse to the 2030. If the 2030 
wishes to use this data, the data .ready 
pulse is allowed to set the data into the 
R-register. The nine sense lines presented 
to the 2030 in order from high order to low 
order are: 

Mem Sense P Bit 
Mem Sense 0 Bit 
Mem Sense 1 Bit 
Mem Sense 2 Bit 
Mem Sense 3 Bit 
Mem Sense 4 Bit 
Mem Sense 5 Bit 
Mem Sense 6 Bit 
Mem Sense 7 Bit 

Data Read:t (Logic Page MMOO2) 

Data ready is the data strobe pulse to the 
2030. The M2-I uses this signal to notify 
the 2030 that the read data is available on 
the memory sense lines. If the data is to 
be used by the 2030, the data ready pulse 
is allowed to set the memory sense data 
into the R-register. Data ready is the 
output of the data ready latch, and is 
gated by the M-register 0 bit. An M
register O-bit gates data ready from the 
second 32K, no M-register 0 bit gates data 
ready from the first 32K. This selection 
is necessary because both clocks are star
ted for a Read Call. 



CONCEPTS OF CAPACITOR READ ONLY STORAGE 

• The capacitor is the important 
component of the read only storage 
unit. 

• A line driver impulses many capaci
tors. 

• 

• 

Each control point in the data flow 
is controlled by a SAL. 

The logical statement is the ROS 
word. 

PRINCIPLES 

In the section titled Data Flow, the . 
need for control points:was-rndicated. 
Now let·s use the -big picture- approach 
and build up a simplified block diagram 
of data flow (Figure 3-1) • 

R-Register 

r! 
In Bus 

Figure 3-1. Control Points 

SECTION 3. THEORY OF OPERATION 

On this block diagram, the control 
points have been numbered. For example, 
the in-gate control point for the G
register is numbered 3. To help 
illustrate again the need for control 
points we will use the logic statement 
READ OUT R, GATE THE OUTPUT THROUGH THE 
LOGIC UNIT, AND STORE IT IN S • 

In our development we will show: 
1. A control point source. 
2. A selection device for the source. 
J. Basic operation of ROS (Read-Only 

Storage). 

Consider the first portion of the logic 
statement READ OUT R and, along with 
this, consider the control point for the 
R-register out-gate (2 in Figure 3-1). 
By adding a latch called a SAL (Sense 
Amplifier Latch) to this point, we have 
a device to gate R·s output to this 
in-bus (Figure 3-2). 

S-Register Out Bus 

3-1 



R-Register G-Register 

In Bus ~ 

Line (b) 
Driver .. 

Figure 3-2. SAL Control 

To control the turn-on of the SAL, we 
can use capacitive coupling to another 
device called a line driver (a and b in 
Figure 3-2). 

So, if we impulse the driver, a pulse 
through the capacitor turns the SAL on. 
and its output can gate the contents of 
R to the in-bus. 

3-2 

Out Bus +-
S-Register 

Now let's build a little. The rest 
of the statement says in effect, read in 
and out of the logic unit, and read in 
to the S-register. TO do this we need 
three more SAL's: one for control point 
1, one for control point 8, and one for 
control point 5 (Figure 3-3). He'll 
couple them to the same line-driver. 



R-Register G-Register 

In Bus 

r-

I 

Figure 3-3. Multiple SAL's 

Figure 3-3 shows that with one 
impulse from the line-driver, we can 
perform all the functions of our logic 
statement READ CUT R (control point 2) , 
GATE THE OUTPUT TH.ROUGH THE LOGIC UNIT 
(ccntrol points 7 and 8), AND STORE IT 
IN S (control point 5). We have now 
established a source for our control 
points (the SAL's) , and a selection for 
the source (the line driver and coupling 
capacitor) • 

In our block diagram thus far, we 
have only shown SAL's that were active 

-r- --

s~s--

for our specific logic statement. There 
are a total of eight control points on 
our dataflow, and logically they all 
must have a source and a selection 
device. 

Let's re-exarrine just one register in 
our dataflow, the R-register (Figure 
3-4). Two control points are associated 
with this register: control point 1 for 
the in-gate, and control point 2 for the 
out-gate. 

3-3 



R-Register 

Figure 3-4. SAL Gate 

Line 
Driver 

G-Register 

If we add the source devices (SAL's) 
and couple them to the same line-driver 
we can't perform the first function of 
our logic statement (READ OUT R) (Figure 
3-4). If we impulse the line driver 
now, we will read out R and also read in 
R. Although this is right electrically. 
and is a legitimate operation, it 
doesn't satisfy the function of our 
logic statement. 

3-4 

S-Register 

We must in some way modify the cir
cuitry. Assume for the moment we can 
cut off one of the plates on the cou
pling capacitor for the SAL that condi
tions control point 1. (Figure 3-5). 
We can again perform the function READ 
OUT R. 



R-Register 

In Bus 

Line 
Driver 

Figure 3-5. SAL Selection 

G-Register 

Now we'll expand. Connect all the 
SAL's to their control points, but we 
will qualify them by having only one 
plate on any coupling capacitor we're 
not going to use (Figure 3-6). If we 
impulse the line driver, we can perform 
all the functions of our logic statement 
READ OUT R, PUT THE OUTPUT THROUGH THE 
LOGIC UNIT, AND READ IN S. Check, using 
Figure 3-6. Now we have a storage 
device. and every time we impulse the 

Out Bus 
S-Register 

line driver, it performs the same fUnc
tion or logic statement. Let's state it 
a little more simply. If we impulse the 
line driver, we read out the same con
trol gates every time. We have in real
ity a read only storage device. The 
device is made of capacitors with either 
one or two plates using a common drive 
line. The device is called a Read Only 
Storage, or ROS. 

3-5 



;J 
R-Register G-Register S-Register 

Out Bus 

In Bus 

... ~ ...... ... ... ... ,... 

r 

(EE 
I Lme t=:: 
Driver~ 

Fi9ure 3~6. Multiple SAL Selection 

3-6 



R-Register G-Register 

Figure 3-7. SAL Capacitors 

ROS WORD 

In our development let's point up the 
specific control used to accomplish the 
functions of our logic statem.ent. 

Figure 3-7 shows the SAL's were 
selected by capacitors commoned to a 
line driver. The string of capacitor 
plates having a common line feeding them 
is called a ROS-word. 

If we want to expand the logic func
tions of our machine, we must be able to 
change this word or to add another. We 
would like to continue to perform the 
first function we developed. Let's add 

Out Bus ...". 
S-Register 

another ROS-word and another driver 
(Figure 3-8). This new word can perform 
the fUnction of the logic statement READ 
OUT R, TARE THE OUTPUT THROUGH THE LOGIC 
UNIT, AND READ IN G. Check, using Fig
ure 3-8. Now, if we impulse line driver 
one, we take what's in R and put it in 
S. If we impulse line driver two, we 
take what'S in R and put it in G. We 
can keep adding plates to the SAL's and 
more ROS-words until we can perform any 
function our data flow can handle. 

Now all we need is any easy way to do 
this. 

3-7 



R-Register 

~'"T'" ... 
I 
I 

~T'" 

Line 
Driver 

1 

I 
I 
I 

Figure 3-8. Multiple Drivers 

3-8 

G-Register 

Line 
Driver 

2 

S-Register 



SAL 
1 

SAL 
2 

SAL 
3 

Figure 3-9. Sense Pads 

SAL 
4 

SAL 
5 

First of all, let's look at the plate 
connections to the SAL's. In Figure 3-9 
the capacitor plates are shown connected 
~erially to a SAL. They are copper 
plates, laid out on a board of laminated 
fiber board. These strings of plates 
are called sense pads. 

The plates connected to a line driver 
(RCS-word) are connected differently. 

SAL 
6 

SAL 
7 

SAL 
8 

They are laid out in parallel on a 
Mylar* strip. Figure 3-10a shows a 
ReS-word before it has been programmed. 
Figure 3-10b shows a RCS-word programmed 
to perform the first logic statement we 
used in our data flow development. 

*Trademark of E. I. DuPont de Nemours 

3-9 



(a) ROS-Word 

(b) ROS-Word Programmed to Perform Logic Function: 

Readout R, gate the output through the logic unit and read in S. 

Figure 3-10. Programmed ROS Word 

In Figure 3-11 the Mylar strip with a 
programmed ROS word is shown placed over 
tbe sense-pads. If tbe line driver is 
impulsed, it will activate the SAL's 
required for our first logic statement. 
In Figure 3-12, we add the second ROS-

3-10 

word, and impulsing its driver activates 
the SAL's for statement two. By adding 
more ROS-words and more drivers, we can 
continue to build. 



SAL 
1 

R In 

SAL 
2 

ROut 

SAL 
3 

Gin 

Figure 3-11. Functional Selection 

SAL 
4 

GOut 

In our actual CPU, the data flow is a 
bit more complex than the one we 
developed. It follows then, that our 
choice of control point selection must 
be a little more sophisticated. Our 
first consideration will be given to the 
physical layout and size of the ROS 
word. 

The primary unit of capacitor read 
only storage is the ROS word. In the 
System/360 Model 30, the ROS word is 60 
bits wide. This means there are 60 
capacitor plates on one line driver. 

SAL 
5 

S In 

SAL 
6 

S Out 

SAL 
7 

Logic 
In 

SAL 
8 

Logic 
Out 

The words are packed on a sheet of Mylar 
exactly the same size as an SO-column 
punched card. The plates are positioned 
so as to coincide with the normal punch
ing positions of a card. They are con
nected to a line running from the 
column-1 end to the column-SO end. This 
allows us to place 12 words on a ROS 
document (see Figure 3-13). This also 
gives us the capability of programming 
our wordS on existing punched-card 
equipment, such as the IBM 24, 514, or 
1402. 

3-11 



Line 
Driver 

I 

Line 
Driver 

2 

SAL 
I 

R In 

SAL 
2 

ROut 

Figure 3-12. Two ROS Words 

3-12 

SAL 
3 

Gin 

SAL 
4 

GOut 

SAL 
5 

S In 

SAL 
6 

S Out 

SAL 
7 

logic 
In 

SAL 
8 

Logic 
Out 



Figure 3-13. ROS Document 

3-13 



-
===----=::::: 

~ 111111111111 1IIIIIiiliii illllllllill Ilglllllllll ~ 

_ L"""" ~ '''''''' ~. "" L"" _ i U) 
o 
IX< 

~ ~_~rr "","" i ~ 
rz. M 



ROS Address Read 

Address - Decode - Only r--.-
Register Storage 

--
Next Address Information 

Figure 3-15. ROS Data Flow 

The SAL sense pads are laid out on a 
ROS board as in Figure 3-14. The serial 
sense pad connections run vertically on 
the card. Both sides of the ROS board 
have identical sense pad patterns, so we 
can accommodate 8 ROS documents of 12 
words apiece, for a total of 96 ROS 
words per ROS board. The 41< ROS module 
is made up of 42 ROS boards for a total 
of 4,032 ROS words. 

ROS DATA FLOW 

The control for the System/360 Model 30 
processor is designed around aRCS 
device. It includes hardware for: 
1. Addressing the ROS 
2. Sensing and decoding the output of 

ROS 
3. The basic clock 

Schematically, it is depicted in 
Figure 3-15. The address register is 
decoded to select a word from ROS. This 
word is read out and set into the SALiS. 
Some of this information is set into 
additional latches, control-register 
latches, because it is not used until 
the following clock cycle. The ROS 
fields are decoded to activate the 
machine control points. 

REVIEW QUESTIONS-RCS CONCEPTS 

1. Impulsing a reads out the 
same control gates every time. 

2. An impulsed line driver provides a 
pulse through a capacitor to turn on 

J 
Control 

SALS - Register 

-

Timing Ring 

a 

L 
'----+-

ROS 
Field 
Decoder 

To 
Machine 
Control 
Points 

3. A string of capacitor plates having 
a commOn line feeding them is called 
a word 

4. # line driver (S) may be 
impulsed at one time. 

5. The capacitor plates feeding a SAL 
are connected 

6. The capacitor plates that are fed 
from a line driver are connected in 

7. The RCS word is bits 
wide. 

8. There are ROS words on 
one ROS document. 

9. One ROS board can accommodate 
ROS cards. 

10. A 4K module is made up of 
ROS boards. 

)lICRO PROGRAM)lING INTRCDUCTION 

Briefly, to perform the functions of an 
Cp code, such as move, add or branch, 
requires that the CPU initiate a 
sequence of logical steps. This group 
of steps i~ the System/360 Model 30, is 
called a ml.cro program. Within the 
micro program, the ROS word is the func
tional statement. An Cp code is read 
from main storage by an address initiat
ed in the ROAR (Read Only Storage 
Address Registeq. When the addressed 
ROS word is read, its contents are 
decoded to activate control points in 
the system. The ROS word consists of 
specific fields selected or programmed 
to perform a logic statement. The acti
vated word also sends back next address 

3-15 



information to the ROAR. Coupled with 
branch control (machine status tests) it 
forms the address of the next ROS word. 
To understand ROS words we must know 
what the Res word contains, and what 
format is used to write the word. 

ROS CONTROL FIELDS 

• The 60-bit ROS word is divided into 
14 control fields. 

SALS I 

In Figure 3-16 notice the control 
fields vary in numbers of bit positions. 
If the field is two positions wide, we 
can set and decode four combinations: 
00, 01, 10, 11. If the field is three 
positions wide, it can be set and decod
ed to eight combinations, 000 through 
111. If it is four bit positions wide, 
it can be set and decoded to 16 combina
tions, 0000 through 1111. 

CONTROL REGISTER I IOPTIONSI 

Ip~~p P CH CI,. CM I cu I CA CB I CK I P pi CD I (:F 1 CG 1 CV 1 cc J CS JA A AI I 
N 012345 5 A 0123 0123 012 I 01 I 0]23 01 I 0123 I K C I 0123 I 012 I 01 I 01 I 012 I 0123 I A 

\ \ / //~~ 
0 0 0 
I I I 
2 RO CA-W 
3 V67=0 AI 

4 STI SV I 
5 OPI R=VDD 
6 AC IBC 
7 SO z=o 

8 51 G7 
9 52 53 
A 54 55 
B 56 57 

C GO GI 
0 G2 G3 
E G4 G5 
F G6 INTR 

WRITE MS FT 
LS TT 

STORE MPX 
IJ-MN MIL,S 

UV-MN 5 
T"'N H 
*K+N FI 
GUV"'MN R 

I--
0 
L 
G 
T 

I--
V 
U 
J 
I 

I--

F 
Activated by USE GR SFG 
CM!3-7 K ... W MC 

FWX ... 

C 
Q 
JI 
TI 

GR 
GS 
GT 
GJ 

R 
L 
0 
K 

t--

1--

t--

ACTIVATED BY 
AA=I 

Figure 3-16. ReS Control Fields 

3-16 

Z 0 
TE L 
JE H 
Q 

TA STOP 
H XL 
5 XH 
R X 

0 
L 
G 
T 

f--
V 
U 
J 
I 

I--

STORE WRAP 
RESTORE WRAP 
WRAP 

SHJ 
AC FORCE 
O-UNE 
I"'UNE 

I"'OE 
ASCII 
INTST 
O"'MC 

UV-WX 
O"'IPL 
O"'F 
I"'FO 

\ 
ACTIVATED BY 
AK=I 

o + 0 
L - I 
H ± 

:!: 11. 

o C 
I C 
C C 
¥ 

LZ"'55 
HZ-54 
LZ-55, HZ-54 

0-54, 55 
TREQ-SI 
0-50 
I-SO 

0-52 
ANSNZ-S2 
0-56 
I-56 

0-S7 
I-S7 
K"'FB 
K ... FA 

GUV -GCD 
GR "'GK 

GR ... GF 
GR"'GG 
GR"'GU 
GR-GV 

K ... GH 
GI ... GR 
K"'GB 
K-GA 

1 
ACTIVATED BY 
AS =1 

5 KI I 



STORE WRAP 
RESTORE WRAP 
WRAP 

SHJ 
AC FORCE 
O-LiNE 
I-LINE 

I-OE 
ASCII 
INTST 
O-MC 

UV-WX 
O-IPL 
O-F 
I-FO 

\ 

D 
L 
G 
T 

V 
U 
J 
I 

ACTIVATED BY 
AA=I 

ACTIVATED BY 
AK=I ACTIVATED BY 

AS =1 

Figure 3-11. ROS Function Control Fields 

These 14 fields can be separated into 
three broad groups: 
1. FUnction Control (8 fields) 

CA, CF, CB, CG, CC, CV, CD, CK 
2. Storage Control (2 fields) 

CM, CU 
3. Branching and Address (4 fields) 

CN, CH, CL, CS 

FUnction Control 

Th~ fUnction control fields are subdi
vided into·four groups. Figure 3-11. 
These fields are used to control all 
data movement within the CPU. ALL DATA 
MOVEMENT IS THROUGH THE ALU (Arithmetic 
Logic Unit). We will discuss the func
tion control fields and the way they 

control data presented to either the 
A-register or B-register sides of ALU. 

The function control groups provide: 
1. The source and control for the A

register-CA, CF 
2. The source and control for the B

register CB, CR, CG 
3. ALU cont.rol"'CV, CC 
4. The destination-CD 

-Aft SOURCE (CA): The 4 bit CA field 
selects the source of data for the A 
register. It can be decoded to 32 
combinations, 16 primary and 16 alter
nate. 

-Bft SOURCE (CB): The 2-bit CB field 
selects one of three registers, or the 

3-17 



emit field (CX) to be p~esented to the B 
register. 

EMIT FIELD (Cl<): The 4-bit CK field 
allows the micro programmer to use con
stants from the ROS. When CK is used as 
a B input, its 4-bit configuration is 
presented to both the high order and the 
low order 4 bits of the B-register. 

Example: If the value in the CK field 
is 0110, the value of 6 is presented to 
both high and low positions of the B
register. 

DESTINATION (CD): The 4-bit CD field 
selects the destination of the ALU 
output. 

Note: A given register may be used as 
bot~e source and as the destination 
during a single ROS cycle. 

-A- CONTROL (CF): The 3-bit CF field 
controls the data bit presentation from 
the A-register to ALU. This field is 
essentially bit significant, with a bit 
for the high gate, a bit for the low 
gate, and a bit for the straight or 
cross switches. The machine stop func
tion is also found here. 

-B- CONTROL (CG): The 2-bit CG field 
controls the high/low 4-bit gating from 

3-18 

the B-register to ALU. There is no 
straight/cross function for the B reg
ister. 

ARITHMETIC FUNCTION (CV): The 2-bit CV 
field is the true/complement and 
binary/decimalcontrol~ The B-Register 
input is the true/complement side of 
ALU. 

ARITHMETIC CONTROL (CC): The 3-bit CC 
field controls carry-in, carryout, AND, 
OR, and exclusive OR fUnctions. This 
field also permits the setting of a 
carryout into the carry latch, if 
desired. 

Storage Control (CM, CU) 

• Storage control fields (CM and CU) 
will provide control for storage by: 
1. Section Selection (Main Storage, 

local storage, or MPX 0-6). 
2. Operation-Read, Write, Compute, 

Store. 
3. Storage address source (MN 

source) • 

The CM and CU fields work in conjunc
tion with each other and their control 
is best described considering both 
fields, and some basic core-storage 
cycling. (Figure 3-18). 



Figure 3-18. ROS Storage Control Fields 

In the 2030 there are four basic 
cycles for core storage. 

Read, Write (R, W) 
Read, Compute, Write CR, C, w) 
Read, Store CR, S) 
Read, Compute, Store (R, C, S) 

When a read call is given, the data 
from core storage is not ready for use 
until the beginning of the next ROS 
cycle. The next cycle then must be a 
write, a store, or a compute cycle. 

If the read cycle is followed by a 
write cycle, the data will be set in the 
storage data register (R) and sent back 
to core from R.If followed by a store 
cycle the output from core is not used 
but lost. The new informa·tion for core 

is the data already in R, and this is 
gated back to core. 

If the read cycle is followed bya 
compute cycle, the output from core is 
taken to R and must be written back to 
core on the cycle following the compute 
cycle with either a write or store. 

READ, WRITE (CM): The 3-bit CM field 
controls the operation to be performed. 
A read call is sent to core storage . 
using one of the CM field combinations 3 
through 7. A write call is specified by 
the codings 0 or 2. 

Note: If the CM field is combination 
000 ~rite), 001, or 010 (Store), the 
alternate coding for CU is used. A 001 

3-19 



allows the information to be set in R 
but it is not regenerated. Essentially, 
this is the compute cycle. 

CORE CONTROL (CU) : The 2-bit CU field 
controls which area of core is 
addressed. Its alternate codings have 
special uses. 

Note: The CU coding of 11 is further 
decoded by the Op register (G-reg). If 
the high-order two bits of the Op reg
ister are 00, the instruction to be 
performed is in RR format and this com
bination specifies local storage. If 
the high-order two bits are anything 
other than 00, then this combination 
specifies Main Memory. 

Figure 3-19. ROS Branch Control Fields 

3-20 

Branching Control (CN, CH, CL, CS) 

• The branching control fields, CN (6 
bits), CH (4 bits) , CL (4 bits), and 
CS (4 bits), provide an address for 
the next ROS word to be executed 
(Figure 3-19) • 

A ROS address is a 15-bit binary 
number. The W-register holds the high
order five bits, and the X-register 
contains the low-order eight bits. Two 
positions are used for parity. One 
position for the W-register, the other 
for the X-register. Normally only the 
eight bits in the X-register are 
provided by the branch control fields. 
Of these eight bits, six bit positions 
(O-~ of the X-register are called next 



address bits, and their value is speci
fied directly by the 6-bit CN field in 
the ROS word. The two low-order bit 
positions of the X register, X6 and X7, 
are called the branch bits, and their 
settings are controlled by the CH and CL 
fields, respectively. 

The 4-bit CH and CL fields are decod
ed and switched against machine status 
conditions and/or the status of latches 
in the data flow registers G and S, to 
provide the two low- order bits of the 
address. The CS field controls the 
S-register. This field has alternate 
codings which control the selector chan
nel registers. 

AA, AS. Fields 

• The 1-bit AA field if a 1 activates 
the alternate coding of the CA 
field. 

• The 1-bit AS field if a 1 activates 
the alternate coding of the CS 
field. 

The AA bit is a one, in conjunction 
with the mnemonic CA->W, to set the ROS 
address when in 1401 compatibility mode. 

REVIEW QUESTICNS - MICRO PROGRAM 

1. The series of logical steps executed 
by the CPU is called the 

2. The fUnctional statement ~i-n--'-t""h-e-
micro program is the 

3 • The ROS word is di vid-e-=d'--"i-n-t-o--=f"'-our-
teen .-:-~;--__ 

4. The fields may be divided into three 
groups: , , 

5. If a field is three positions wide, 
it can be decoded to 
combinations. -------

6. The controls for ALU are pro-
vided by the fields. 

7. The ReS address is contained in the 
and registers. 

8. Branching is controlled by the 
and pOSitions 

of the ROS address. 
9. The field is often used 

as the source for constants. 
10. The CM and CU fields provide the 

gates for control. 

ROS WORD FORMAT 

Micro programs are written on CAS 
(Corporate Automation System) sheets. A 

micro program, made up of manyROS 
Words, is the cycle-by-cycle logical 
execution of a particular function. 
Each ROS Word is executed in a one 
microsecond ROS (Read Only Storage) 
cycle. 

• ROS Words are written as an a-line 
statement in box form (Figure 3-20) • 

• The top line of the box is the par
tial address of the ROS Word in bits 
and the actual address of the ROS 
Word in a 4-digit hexadecimal 
number. 

• The second line (E) has an emitted 
value in bit form and the mode of 
data. The PK bit status may be 
indicated on this line. 

• The third line (A) contains the 
arithmetic statement. 

• 

• 

The fourth line (S) is the core
control line. 

, 
The fifth line (C) contains the~ 
status set or test statements. 

• The sixth line(R) contains the 
controls for the ROS address. 

• 

• 

E 
A 
S 
C 
R 
R 

The seventh line (R) controls the 
ROS addressing branches. 

The eight line contains the page 
print position and the block serial 
number of the word. 

11 08A3 
K=OIOJ DEC. 
R+D-+-L 
U..-MN MS 
0"-54,55 
K"-W 
GO GJ 

AS BB 

Figure 3-20. CLD Box Format 

Line DeSignations 

Each line of a ROS word block has its 
own function and will perform its func
tion independent of the others. It is 
not necessary to have an entry on every 
line of the block, so each line is iden-

3-21 



tified by alpha characters on the left 
(F igure 3-2 0) • 

Line One-Partial and Actual: The actual 
address is in 4-digit hexadecimal nota
tion. The partial address, 11, is the 
low-order two bits of the actual 
address,08A3. 

Line Two (E.)-Emitted Value and Mode: 
This line is used if the CK field is 
used to emit a constant. The mode of 
the data is shown. Figure 3-20 shows 
the CK field to have the value of 5 and 
the mode of the data specified is deci
mal. 

Line Three (A)-The Arithmetic Statement: 
This line is used for all arithmetic 
statements. An example is R + D->L. 
This statement adds the contents of the 
D-register to the R-register data and 
the result is stored in the L-register. 

Line Four (S}-Storage Control: This 
line specifies the core-storage area 
being used and the operation desired. 
The expression IJ->MN MS gives a read 
call to Main Storage (MS) addressed by 
IJ. 

Line Five (C) -Status or Test Controls: 
This line is mainly used for setting and 
resetting the bits of the S-register. 
The expression 0->54, 55 resets both 54 
and 55 to zero. 

Line Six m Top)-ROS Controls: This 
line has cont.rol of statements pertain
ingto the W-register and some test 
statements. The expression K->W sets 
the W-register to a value determined by 
the CK field. This value is specified 
on the E line of the CLD box. 

Line Seven (R)-ROS Branch: 'Ibis line 
cheCKS conditions which determine the X6 
and Xl positions for branching. Branch
ing occurs, dependent on GO and Gl. If 
GO and Gl are both set to one, a 1, 1 
branch is taken. Line Eight (Print 
Position and Block Serial Number): The 
location (AS), on a CAS sbeet, of this 
specific ROS word is shown on the bottom 
left. The block serial number (BB) is 
on the right. This number (BB) remains 
the same regardless of the location of 
the word on the page. 

A group of ROS words in box form 
written on one sheet is commonly called 
a CAS logic diagram (CLD). 

3-22 

Syrrbols 

Some common symbols used within a blOCK 
are: 

Symbol 
+ 

= 
-> 
• 
..n. 
V , 

Definition 
plus, add, true 
minus, comple.rrent 
equal 
is set into 
And FUNCTION 
OR function 
Exclusive OR 
and 

Example + B 
A - B 
A = B 
A ->B 

A • 8->C 
AAB ->C 
A"" B ->C 

A->B ,C 

Figure 3-21 contains the complete symbol 
list. 

+ 

I 

+ 

/ 

< 

? 

() 

Definition 

True Add A + B 

Complement A-B 

Equal A=B 

Unequal AlB 

Is set into A--B 

AN D function A B_C 

OR function All. B -+- C 

Exc lusive OR A 41- B __ C 

True-Complement A ! B-C 

and A-B,C 

or A/B-+C 

Is less than A<B 

not 

Is compared to 

Function not controlled by the micro program. 

Used for normal English punctuation or to enclose 
an expression within a statement. 

Special - controlled by the user. A footnote at 
the bottom of the page explains the function. 

Figure 3-21. CLD Box Symbols 

REVIEW QUESTIONS -ROS WORD FORMAT 

1. A CLD box consists of 
line statements. 

2. If the CK field is used to emit a 
constant, the value is shown on the 

line. 

3. The A line contains the ________ __ 
statements. 



4. The ROS branches are indicated on 
the R line. 

5. The symbol.! may be a add 
or a add. 

6. The operation that is executed by 
question 5 is shown on the arithmet
ic line and is further controlled by 
the statement on the __________ _ 
line. 

7. -> means 
8. The symbol for the exclusive OR 

function is 
9. Each ROS word is executed in a 

ROS cycle. 
10. statement(s) can be 

executed during one cycle. 

MICRO-PROGRAM EXAMPLES 

BINARY ADD 

You have seen the many parts that, put 
together, make up the micro-program. To 
tie these pieces together, lets·s work 
our way through a micro program for a 
fixed point binary add. 

R R RX 

FIXED FLT. PT. FIXED FLT, PT, 

BITS 3, 

~ 0123 

4567 0000 0001 0010 0011 0100 OJOT 0110 0111 

0 0000 Load Load Load Half 
Positive Positive Positive Store Ste .. Store D Store S 

Load Load Load Load 
I 0001 Negative Negative Negative Address 

Load & load & load & Store 
2 0010 Test Test Test Char. 

Load Load Load Insert 
3 0011 Complement Complement Complement Char. 

Set Prog 
4 0100 Ma,k AND Halve Halve Execute AND 

Bronch& Compare Branch & Compare 
5 0101 link Logical link Logicql 

Branch on Branch on 
6 0110 Count OR Count OR 

Branch on Branch on 
7 0111 ea,d XOR Cond XOR 

Half 
B 1000 Set Tag Lead Load Lead Load Lead Load D Load S 

I"",,, Half 
9 1001 Tag Compare Compare Compare Compare Compare Compare Compare 

Monitor Half 
A 1010 Call Add Add N D Add N S Add Add Add N D Add N S 

Half 
B 1011 Subtract Sub N D Sub N S S,b S,b Sub N D Sub N S 

Half 
C 1100 Multiply Mutt D MuitS Multiply Mult Mult D MuttS 

D 1101 Divide Divide D Divide S Divide Divide 0 Divide S 

Convert Add 
E 1110 Add Add U D Add U S to Dec logical Add U D Add U S 

Subtract Convert Subtract 
F 1111 logical S'" U D Sub U S to Bin logical Sub U D Sub U S 

Figure 3-22. Op Codes 

The instruction for a binary add is 
written in RR format. Figure 3-22 shows 
the Op code for Fixed-Point Binary Add 
to be 1A in hexadecimal. RR format, if 
you will remember, is two bytes in 
length. The first byte is the Op code. 
The second byte of the instruction con
sists of two general purpose register 
addresses in hexadecimal. 

In the example you will be working 
through, assume that the data in general 
purpose register 5 must be added to the 
data in general purpose register 7. The 
instruction to accomplish this becomes 

1 A 1 5 

0001 1010 0111 0101. 

The first byte is the Op code lA. The 
last byte represents the addresses of 
the two registers. 

Let·s briefly review the addressing 
of a general purpose register. A reg
ister contains four bytes of data. 
Since only one byte of data is addressa
ble at a time, the N-register address 

RS INV SS 

HIOPS LO OPS 

A C 

1000 1001 1010 1011 1100 1101 1110 1111 

Set Sys SteM 
Mask Multiple 

Test Move Move With 
Under Mask Numeric Offset 

Load Move 
PSW Cnar. Move Pack 

Move 
Diagnose Zone Unpack 

Present AND AND 

Compare Compare 
Accept Logical Logical 

Branch 
X HI OR OR 

Branch 
X LO-EQ XOR XOR 

Shift Load Zero and 
RT S L Multiple Add 

Shift 
Left S L Compare 

Shift 
RT S A Add 

Shift 
Left SA Subtract 

Shift Start 
RT D L 1-0 Translate Multiply 

Shift T." Translate 
Left D L 1-0 and Test Divide 

Shift Halt 
RT D A 1-0 Edit 

Shift Test Edit and 
Left DA Channel Marl< 

3-23 



must be constructed by the micro 
program. As an example: To address the 
units position of general purpose reg
ister 1, the N-register must be set to 
0111 0011. The first four bits specify 
the register to use. The last four bits 
specify a particular byte of the reg
ister. 

Before starting into the program 
itself. you should realize some func
tions that must be performed by the 
micro-program. The program m.ust: 

1. Read the instruction, analyze the 
format, determine the Op code. 

2. construct addresses to set the N
register starting with the units 
byte of each register. 

3. Add four bytes of data from register 
5 to the data in register 7. 

4. Check for overflow conditions after 
the data has been added. 

5. Set the condition register to 
indicate the status of the resultant 
answer (greater than, equal to, less 
than zero) • 

6. On overflow conditions, test program 
masks to determine if the condition 
should be ignored or not. 

1. Branch to I-cycles, or to another 
micro program if an overflow is 
unmasked. 

The CAS sheets as written by a micro 
programmer might appear as shown in 
Figures 3-23, 3-25, and 3-26. The des
cription of each ROS word that is used 
to execute the instruction will be made 
in reference to the actual address which 
appears in the upp~r right corner of 
each block. 

3-24 

These facts will be assumed before 
starting the example. 

1. The instruction is 

1 A 1 5 

0001 1010 0111 0101 

2. The address of the instruction is in 
the IJ registers. 

3. The data in register 5 is: 

Byte 0 Byte 1 Byte 2 Byte 3 

00000000 00000000 00000000 01011101 =93 

4. The data in register 7 is: 

Byte 0 Byte 1 Byte 2 Byte 3 

00000000 00000000 00000000 10011001 =153 

5. The Land S registers are zero. 

Objective: The answer in register 7 
as a result of the addition should be: 
00000000 00000000 00000000 11110110 = 
246. Using Figure 3-23 let's determine 
how the first function, the reading and 
decoding of the instruction, is accom
pliShed. The. first ROS word to be exe
cuted is at address 0100 at figure loca
tion A2. Had it been necessary to 
change the instruction counter or test 
for interrupts, a ROS word at address 
0101, 0102, or 0103 would have been 
executed. 

~: It will be wise to keep track 
of the data and addresses used during 
the micro program. 



w 
I 

N 
VI 

00 --- 0100 
BIN 

'::',EX:::~:.::~:.::~.::TL:=----5T-A-'T----~ tJ~l~J M5 

AO A9 ~; 0+-57 

BRANCH 
I -CYCLE 

START 

" J6 
B2 L6 
BO LS 
BO N7 

, 52 ____ 1 

INTERRUPT 

II---OlOB 
E BIN 
A J-O-+-J 

-s WRITE 
C , 
, 56 ___ 0 

NORMAL 1- E 01---~;~1~ 
C;:'B;,,~:.:~:..E ;:,~c..~::;.:T=----__ +-<.-~ C -- D 

A2A7 -C 
03 E6 Dl L9 R INTST 
B2 A4 D6 04 R 1 ____ 1 

00 --- 01101 

INT BRANCH I 
PI G2 

5S Ie 
RESTORE 

RESTORE 
IC 

RESET 
PSW BIT 
P5 05 

lNY SPEC 

00---0114 

E K=OllO BINI 
A O+KL-L 

I-- ~ L---< , 
, 1 ___ 1 

INV ADDR 

10 ___ 0116 

E K=OlOl BINI 
A O+KL-L 
5 

-C 1-
R 
R , ____ , 

11---0187 

RESTORE 
DC 
P4 G3 

I-

l-

-

OO-Oi,'~1 
A LnR-D 
5 WRITE 
C LZ-SS , 
, G2 ___ G3 

01-.---0119 

RX FORMAT 
A1 A2 

----

10---01lA 

RS FORMAT 
AT (2 

----

11---0118 

SS FORMAT 
A1 E2 

----

D1---01OD 

11---0103 11-~IF3 01--- 0105~ D1---
E K;()OlO BIN E BIN ~E K=:OOOI BIN E 
A AR .... J AO .... l AR .... 1 

,~..:~_':::g:.]_O_RE _____ >-_~: ~~~;;---N LS I_~~ WRITE ~ "KA9-N L5 ~ WRITE 

R , ___ , '0____ I , 0 R 

018l 
BIN 

Fi9ure 3-23. I-Cycle Start 

00--- OIle 
E K=iOll BIN 
A DXH-t{J+l .....- V 
5 *KBB ->- N L5 
C , , G4 ___ 53 

10--_011E 

FL PT 
SINGLE HO G 

II ___ OllF 

FL PT 
DOUBLE 
HO A2 

FIXED POINT 

01---011D 

E K;()OI I BINI 
A DXH-+KL-V 
5 
C , 
R ' ___ 53 

*K - N 
K ADDRESSABLE BYlE 

00---0188 
E K-OOll BIN 

00---0128 
BIN 

A DH+Kl ~T 
S WRITE 
C 

A 0-+0+1 __ L 

I---------..... ~~ 0 ........ 56 , , G6 ___ G5 

01---0189 
BIN 

A H .. O+l ........ ' 
5 WRITE 
C , 
, 0 

10---01BA 
E K=QOI J BIN 
A DH+KL-- T 
5 WRITE 
C , , 0 ____ G5 

II---01B8 
BIN 

A 1+0+1-+-1 
5 WRITE 
C , 
, I 

11--- (127 
E BIN 
A HO+l __ 1 
5 
C ., 
R 1 ___ 0 

10---0126 

E K={lOll BINI 
A DH+KL-T 
5 
C , 
, G4 ___ G5 

00---0124 

TAGS AND 
MON CALL 
84 A2 

INV OP 
01---0125 

BIN 
A 0+0+\ __ L 

5 
C 0 +-56 

, 1 ____ 1 

00---0120 

SIGN CTRL 
D6 C2 

D1---0121 

LOGICS RR 
041'2 

, 
, , ____ 1 

01---0129 

RR 
aR, LNK, PRG 
M5K 
BO 1'2 

INVOP 
10---012A 

BIN 
A 0-+0+1 ........ l 
5 
C 0 56 

, 1 ____ 1 

11---0128 

BR (OND 
COUNT 

"1'2 

11---0147 

PROG INT 
P3 E2 

AD 

N SET =: I,O,CNO,KO,1,Kl,K2,K3 
10--- 0122 

ADD, SUBT 
COMP 
DOG 

11---0123 
E K=OOQJ BIN 
A TX·K 
S 
C LZ .... 55 , 
R G6 

10---0106 

RR LOG 
ADD, SUBT 
DO 12 

00---0104 

RR 
MULT, DIV 
EO J2 



ADDRESS 0100: The expression IJ->MN MS 
on the S line will bring up control 
lines to read the first byte of the in
struction from core storage. The 
address in the 1- and J-registers is set 
into the MN register. Main storage is 
specified by MS on this line. Once core 
has been addressed to read out the first 
byte, the address in IJ can be updated 
for reading the next byte of the 
instruction. To be more explicit, only 
the J-register need be increased by the 
value of one because all instructions 
start at an even address. 

Assume that byte 510 in main storage 
is to be addressed by the 1- and J
registers. The 1- and J- registers will 
then contain the address 

I J 

00000001 1111~110. 

To address byte 511 it is only necessary 
to add the value of 1 to the J-register. 
The registers now contain 

I J 

00000001 11111111. 

Notice that, should the value of 1 be 
added to the J-register again, the 
resultant address in I and J is 00000001 
00000000, or 256. Thus, if the value 1 
is added to the J-register when it is 
odd, it is necessary to take into 
account the possibility of a carryout 
which might affect the I-register 
address. There can be no carryout when 
adding 1 to the J~register address when 
the J-address is an even number. 

The statement in the ROS word to 
update the J-register is J + 0 + 1 ->J. 
The A-register input of ALU IS SET WITH 
the data in the J-register. Zeros are 
set into the E-register. The 1 in the 
expression is a carry insert. The addi
tion becomes: 

J data = A-register 
00000000 = B-register 

+ 1 = Carry insert 

J data + 1 = A.LU output 

The arithmetic statement can be 
thought of as being in the format: A
input + B-input + Carry is set into 

3-26 

Destination. It is not necessary to 
have all portions of this format. The 
expression G->J, for example, brings up 
the control lines to set the G-register 
data to the A-register input. The B
register input and carry insert 
pOSitions are zero. 

The expression on the C line is 
0->S7. This statement brings up control 
lines to set position 7 of the S reg
isterto O. The function performed by 
this statement has little bearing on our 
operation. It is used in an indexing 
routine for RX format, which is many ROS 
words away. This brings up an important 
point: in any ROS word, a statement such 
as 0->S7 may be used that seems to have 
no relation to what is being done. HoW
ever, it may be used further in the 
micro program and should not be ignored. 

The expression on the R line is S2,1. 
Ren,ember that when the box format was 
discussed, this line was used for 
branching_ If you look at the output 
line from this box, you will see that 
there are two RCS words that may be 
executed next. They are the ROS words 
at addresses 0109 or 010B. The expres
sion S2, 1 must somehow control a deci
sion circuit. The convenient place to 
make this decision is the ROAR address 
it self. The two low-order pOSitions of 
ROAR, X6 and X7, are controlled for 
branching purposes. To see how this is 
done, first convert the addresses of the 
two ROS wordS to binary. 

XX 
67 

Address 0109 in binary is 0001 0000 1001 
Address 010B in binary is 0001 0000 1011 

Cn the R line, the left portion of 
the expression controls the X6 position 
of ROAR. To carry this one step 
further, the S2 portion of the expres
sion will determine the status of X6. 
Since position 2 of the S register is 
zero, the X6 pOSition of ROAR will be 
set to O. The 1 in the expression 
(S2,1) forces the X7 position of ROAR to 

a one. A 01 branch is taken to 
address 0109. Notice that on the top 
line of the box for address 0109 you see 
01. These are the two low-order bits of 
the actual address. Had position 2 of 
the S register been set, X6 would be set 
to a one and a 1,1 branch would be exe
cuted to address 010B. 



ADDRESS 0109: The first byte, which 
was read and set into the R-register is 
transferred to the G-register by the 
expression R->G. The G-register is 
interrogated later in the program to 
determine the Op code. The data move
ment from the R-register to the G
register is through ALU. The output of 
ALU, if you will recall, feeds the Z 
bus. 

On line C, the expression, HZ->S4, 
brings up control lines that check the 
four high bits of the Z bus for zero. 
Position 4 of the S~register is set to a 
one if the high bits are zero. Since 
the data on the Z bus is: 

1 A 

0001 1010 

the first byte of the instruction, S4 is 
not set. The four high bits are 0001. 
The S4 bit is interrogated in a Branch 
and Link routine and has no bearing on 
our example. 

Because core readout is destructive 
readout, the information in the R
register is returned to core by the 
statement, WRITE. 

A 1,0 branch is forced by the R line 
expression. If you look at the next 
address OlOE, and convert the E to 
binary, 1110, you·ll notice that the two 
low-order bits are 10. 

ADDRESS OlOE: Because the Op code is 
stored in the G-register, the next byte 
of the instruction is read from core by 
the expression IJ->MN MS. This is the 
byte that contains the addresses of the 
two general purpose registers. 

Once the MN registers have been set, 
the J-register is again updated by the 
expression J + 0 + l->JC. Notice that a 
new element has been added to the arith
metic statement. The C to the right of 
the arrow allows a carryout, as a result 
of adding a one to the data in J. to set 
the third position of the S register. 
If no carryout results, the S3 position 
is set to zero. This is necessary 
because, should a carryout result, the 
I-register address portion must also be 
updated. Assume at this point there is 
a carryout, that S3 is,set to a one, and 
let's see when and how this is handled 
by the micro program. 

The C line of this ROS word causes 
the control lines to set SO to zero. 
The 0 position of the S-register is a 
control for true or complement add when 
the arithmetic operation is undetermined 
(t). If SO is zero, the arithmetic 
operation is a true add. If SO is a " 
the operation is complement. 

The G-register positions 0 and 1 are 
interrogated by the expression GO, Gl. 
See Figure 3-22. The data in the G
register is 

1 A 

0001 1010 

testing these positions tells us that 
our Op code must be in RR format. RX Op 
codes begin with 01, RS with 10, and SS 
with 11. 

Because GO and G1 are both zero, a 00 
branch is taken to address 0118. 

ADDRESS 0118: The data in the R
register is again returned to core by 
the WRITE expression. 

The arithmetic expression IJl.->D 
will OR the data in the L- and R
registers and transfer the resultant 
answer to the D-register. The symbol 
for the OR function is the omega. The 
L-register is always zero on entering 
I-phase except for the EXECUTE Op code. 
Since the L-register is zero and the 
R-register contains the second byte of 
the instruction, the D register is set 
01110101. 

The low-order four bits of the Z bus 
are checked for a zero condition by the 
expression LZ->S5. S5 is set to a 1 if 
the data on the low portion of the Z bus 
is zero. Because the data on the low 
portion of the Z bus is 0101, S5 is not 
set to one. 

A test is made on other positions of 
the G-register to further decode the 
instruction. Looking at Figure 3-22, we 
see that by checking G2 and G3 our Op 
code must now be in the right-hand 
column under FIXED POINT. The G2 and G3 
positions set x6 and X7 to 01, which are 
the low-order bits of the next address 
to be executed, 011C. 

Let's pause for a moment to check the 
data in the registers. The D-register 

3-27 



contains 0111 0101, which is the speci
fication·for registers 7 and 5. The 
G-registercontains 0001 1010, the Op 
code. The S3 bit is set to a 1, all 
other positions of the S register are 
still zero. 

ADDRESS 011D: Before any data from the 
general purpose registers can be added, 
the micro program must set up the units 

. address of each register. The address 
for the low-order byte of general pur
pose register 5 is set up by the expres
sion DXH + KL->V. See Figure 3-24. To 
address the low-order byte, the N
register must be set to: 

LOCAL 
STORAGE 

MPX 0 
STORAGE 

o 2 3 4 5 6 7 

Reg 5 Byte 3 
0101 0011. 

In the expression DXH + KL->V, consider 
the DXH portion first. The A-register 
input of ALU is set with the data from 
the D-register. The data in the A
register is now: 

8 9 A S C o E F 

Floating Point Reg. 0 Sense I 1 ox G.P. Reg. 0 Syte I X X+I X+2 

IX (--------,I~--~~'=====I=~~O=U=re====~/~-----------------------------! 
2X 1-------:-2----v77'?'77777771 Floating Point Reg. 2 
3X 1-____ 3 __ -I'0 .... @6M0~@ .... @6M~~ CPU 

~ Store 
4X 4 

5X 1-----'1_--L1--::;.5_-'--1---I Ef~ I J G U V LOS 
6X 6 ~~~~~9~~~~~~~7.~*-~L-~~F~lo~a~tin~g~P~oi~nt~R~egL.~6-L~-L~~ 

Floating Point Reg. 4 

7X 1---J1L...---J1L...-7--J1L...--I Floating Point Multiply 

6 7 8X 1--________ 8 ____ ___1 0 1 2 3 4 5 

9X 1--________ 9:--__ ___1 8 9 10 11 12 13 14 15 
AX A 16 17 18 19 20 21 22 23 

r-------------~ 
SX 1--______ ----'S ____ ___1 24 25 26 27 28 29 30 31 
CX 1--________ C ____ ___1 
OX 1--________ 0 ____ ---1 CPU Working Storage 
EX E 

r-------------~ 

FX I-_________ F ____ ~ ______ ~ ______ ~~------------------------------~ 

OX r----------'----'----'----'----'~------'--~----~----'----'----'----'------___1 Unit Control Word 0 Unit Control Word 16 

IX 1--______________ ----' ___ ~---------------___1 1 17 

2X r----------------4----------------~ 
3X r----------------4----------------~ 

2 18 

3 19 

4X 4 20 
r----------------4----------------~ 

5X I--_______________ ~-------------:__-~ 

6X I--_______________ ~----------------~ 

7X I--_______________ ~---------------~ 

5 21 

6 22 

7 23 

8X r----------------4----------------~ 8 24 

9X I--_______________ ~------------__=_:__-~ 
AXr-_______________ 4-________________________ ~ 

9 25 

10 26 

~ I------------------------~----'----~------------------------=----'--~ 
CX I--_________________________ ~-----------------------__=_:__--~ 

OXI--______________ ~ __ ~--------------__=_--~ 
EX I--________ ~ ___ ~ ___ ~----------------~--------~ 
FX ~ ________________________ ~ ____ ~ ______________________________ ~ 

·11 27 
12 28 

13 29 

14 30 

15 31 

Figure 3-24. Auxiliary Storage Map 

3-28 



High 
0111 

Low 
0101. 

Next, the output from the A- register is 
crossed (X) so that the. data is 

High Low 
0101 0111. 

The data is further controlled by the 
(H). The H specifies that only the high 
portion of the data is to be used as A 
source data. The A source data to ALU 
then becomes, 0101 0000. 

The B source input to ALU is 
controlled by the (XL) portion of the 
expression. R represents a value in the 
CR ROS control field. The constant is 3 
and is shown in binary form on the E 
line of this CAS block. The a-register 
is set with the data 0011 0011. Only 
the low portion (L) of the B- register 
data is gated to ALU. The B source data 
is 0000 0011. 

The result of adding the B source 
data to the A source data is set into 
the V-register. 

A source data 
+ B source data 

= 0101 0000 
= 0000 0011 

Reg 5 Byte 3 
V-register data = 0101 0011 

On the R line the branch expressions 
are 1,53. Remember, 53 was set to a one 
when the J-register was updated to indi
cate a carryout condition. This expres
sion sets X6 and X7 to 1,1 and a branch 
is executed to address 0127. 

ADDRESS 0127: The only function per
formed by this ROS word is 1 + 0 + 1->1 
Didn't we say earlier that when the 
J-register data had the value of one 
added to it and a carryout resulted, 

that the I-register must also be 
updated? 

On the branch line, an unconditional 
1,0 branch is taken to address 0126. 

ADDRESS 0126: We have seen how the 
branch to this address from address 0127 
was set up. We could have branched to 
this step from address 011D. Had S3 at 
address 011D not been set, a 1,0 branch 
would have been set up to this address. 

The arithmetic statement DH + RL->T 
sets up the units address of register 7 
in the T-register. Again let's consider 
the first portion of this expression, 
DH. 

The A-register is set with the data 
in the D-register 

High Low 
0111 0101. 

Only the. high portion (H) is presented 
to ALU. A source data is therefore, 
0111 0000. Again, the expression KL 
brings up the control lines to use the 
CR field constant of 3. The B source 
data is 0000 00t1 because only the low 
portion (L) is gated to ALU. 

A source data 
+ B source data 

= 0111 0000 
= 0000 0011 

~-----------------------------------~---Reg 7 Byte 3 
T-register data = 0111 0011 

The G-register positions 4 and 5 are 
now tested for further decoding of the 
Op code. G 4 is set to a 1. G 5 is set 
to a O. Therefore, 1,0 branch is exe
cuted to address 0122. This address is 
in Figure 3-25 at coordinates C2. Our 
Op code, as a result of checking G 4 and 
G 5, must either be LOAD, COMPARE, ADD, 
or SUBTRACT. 

3-29 



w 
I 

w 
o 

RESET STATS 
10--- 0122 

RR Add, Sub" E K=OI00 BIN 
CMP A S-KH_S 

_A~O_l7 ___ ~ UV-MN LS 

R 
R G6 G7 

EXCEPT 51 

RX Add, Sub. E ~~-I-OO-- ~~~A 
CMP A S-KH_S 

_A3_G3 ___ S UV_ MN MILS 

C 
R 
R G6 G7 

00 ---03CO 
E K=OOOI BIN 

Half Arith A V-I()+l +- V 

----~ 
R K+W 
R 1'--__ -----' 

RX Log and 10 --- 019E 
Sub. E K=OI00 BIN 
A3N4 A S-KH-S 
----_5 UV-MN M5 

C 1+-56 
R 
R 1 G7 

RR 10 --- 0106 
Log Add, Sub. E K=OI00 BIN 
AQ 58 A 5-KH 
-----5 UV-MN LS 

C 1_56 

G7 ----

LOAD 

A O .... L 
OO-~~~CI 

~ ~~~6 ~------------------------------------------------
R 

COMPARE 
01---016D 

E K=OOll BIN 
A R-O+l +-OC 
5 WRITE 
C 1-57 
R K ..... W 
R 1 ___ _ 

ADD 
10---016E 
K=OOII BIN 

AR+-O 
5 WRITE 
C 
R K+W 
R 1'--__ -----' 

5UBT 
11---016F 
K=OOl1 BIN 

A R-O+J ..... DC 
5 WRITE 
C I--50 
R K ..... W 
R 1 ___ _ 

10----0ICE~ Ol----OICl L 11----03A3 00---03A4 00---0100 
E BIN E K=OOl1 BIN E BIN K.j'<lOOI BIN E BIN 
A T-O_T A R_D A V-O-V A R-D-IC_RC A 
5 UV_MN MlL5 5 WRITE --< ..... 5 T-N 5 --<,"""5 WRITE t--< 
CLZ-SS C C L5,...., ..... CAN5NZ_S2 C 

r-~ R K-W R R K_W R 
R Rl G3 RO 57 R56 SS Rl _____ -..: 

EXT MINU5 5GN 
Ol----03AD 

E K=l1l1 BIN 
A O+K- D 
5 T- N L5 
C 
R 
R 1 57 

11 ---03AF 
E BIN 
A 0+-0 

... ~ T-N L5 

R 
R 1 57 

ADD OR 5UBT 
10--- 03A6 

E K=OOOI BIN 
A RID-IC_RC 

..... ~ AN5NZ-S2 
R K+-W 
R 0 SS 

COMPARE 
11----03A7 

E K=OOOI BIN 
A R-D-IC- RC 

..... 5 
C AN5NZ_S2 
R K+-W 
R 0 SS 

HALF WORD 
10---03A2 
K=I000 BIN 

A R-KH-Z 

01---03AS 
E K=OOOI BIN 
A R-D-IC +- DC 

-5 WRITE 
C AN5NZ S2 
R K .... W 
R 1 SS 

'--5 T-N ~ C HZ ... 54 
R 
R 1 57 

01----0105 
E K=I000 BIN 
A R-KH +-D 

--<~~ WRITE 

-

R AC lBC 

00----0104 
-E K=OOl1 BIN 

~A T-O_T 
5 WRITE 
C LZ-+- 55 
R K+-W 
R 54'-__ --' 

00---OIFC 
K=OOl1 BIN 

A T-O+-T 
5 WRITE 
C LZ_ SS 
R K+W 
R 54'--__ --' 

01---0IFO 
E K=I000 BIN 
A D·KH .... O 
5 WRITE 
C 
R 
R AC lBC 

I--

DO 

10---0102 
E BIN 
A 

~5 WRITE 
C 
R 
R _1 ___ ---' 

01---0101 
E K=I000 BIN 
A R-KH_Z 

~~ WRITE r-< 
R 
R AC lBC 

11---0103 
E BIN 
A 

'-~ ~!T~O I-
R 
R 52 53 

11----0ICF 
E K=I000 BIN 
A O'KH ... O 

,---5 
C 
R 
R AC lBC 

Figure 3-25. Fixed Point Add, Subtract, and Compare 
'-.. 

11---01C7 

LOAD RR OR 
RX 
061.6 

00-01J SET ADO, 
5UBT, CR 
01 G3 

00 OlEO 

00---OIEO 

5ET LOG 
ADD, SUBT, 
CR 
01 C5 



ADDRESS 0122: The expression UV->MN LS 
addresses core to read out the first 
byte from general purpose register 5. 
The data read out is 01011101 (93). 
Local storage. rather than main storage, 
is specified by the LS portion of the 
expression. 

The arithmetic S-KH->S sets to zero 
all positions of the 5 register except 
51. To see how this is possible, let's 
assume for the moment that, in addition 
to the 53 position that has been set, 
the 51 position is also set to a 1. The 
• in the expression is the symbol for 
the AND function. The A source data 
(01010000) is set from the S-register. 

KH brings up control pOints to gate the 
high (H) portion of the B register data 
to ALU. Remember, the B register is set 
by the CK ROS control field. 

S-reg. position 01234567 

5 reg Set 01010000=A source data 
01000000 =B source data 

------------------------------------Result of AND 01000000 

Therefore, the result of the AND 
function is to allow 51 to remain set 
and to reset the other positions of the 
S-register. 

The last two bits of the Op code are 
checked by the expression G6 G7. These 
last positions are set 1,0 and a branch 
is executed to address 016E. The micro 
program has .fully decoded the G-register 
data to determine that the Op code must 
be a Fixed-Point Binary A.dd in RR 
Format. While this was being done, we 
have been setting up register addresses 
and even read our first byte of data 
from register 5. 

ADDRESS 016E: The first byte of data 
from general purpose register 5 must be 
stored before reading any data from 
register 7. This is done by the expres
sion R->D. The information in the D
register is no longer needed and it is 
replaced by the data from register 5. 
The first byte of data is regenerated by 
the expression WRITE. 

The expression on the top R line is 
K->W. The W-register, if you will 
remember, controls the high-order poSi
tions of the ROAR address. The CK con
trol field (K) value sets the W-register 
to the value shown on the E line of this 

block. To explain why, let's look at 
the branch line. 

On the lower R line, an unconditional 
1,1 branch is executed to address 03A3. 
All the ROS words until now have been at 
addresses 01XX. When the second high
order position of the ROS word address 
changes value, the W-register must be 
set to a new value. Since we are at 
address 01XX and must step to 03XX, 
the expression K->W is used. Notice, 
the E line specifies the binary value of 
3. 

ADDRESS 03A3: The first byte of data 
from register 7 is read from core by the 
expression T->N LS. The N-register is 
set by the data in the T-register. LS 
defines the core area addressed as local 
storage. 

As this is being done, the expression 
v-o->v causes the value of one to be 
subtracted from the V-register. The 
V-Register contains the address of byte 
3 and must be changed before the next 
byte of data for this register is read. 
Let's see how ONE is subtracted by the 
expression v-o. 

Reg 7 Byte 3 
V-register data = 0111 0011 

minus 0 + = 1111 1111 

Reg 7 Byte 2 

V-register result = 0111 0010 

As you can see, some arithmetic 
statements should be worked out in 
detail less the wrong impression be 
assumed from just the reading of the 
statement. 

A 0,0 branch to address 03A4 is taken 
because 57 is still a zero. 

ADDRESS 03A4: The first byte of data 
from register 5 and register 7 is added 
together by the expression RtD+C->RC The 
C to the left of the arrow is a condi
tional carry insert. If the third posi
tion of the S-register is set to a 1, 
then a carry is inserted. The C to the 
right of the arrow allows a carry out 
that may result from the addition of the 
Rand D data to set 53. The arithmetic 
operation, t, is determined to be an add 
because the SO pOSition of the 5 reg
ister is not set to a 1. Had it been 
the Subtract Op code, SO would have been 

3-31 



set to a 1 at ROS word address 016F 
figure location J). SO, if you recall, 
is the true or complement controlposi
tion of the S-register. We know that it 
is a binary add rather than a decimal 
add because binary is specified on the E 
line of the CAS block. 

The result of the addition is: 
R = +01011101 

Reg 1 byte 3 = +10011001 
----~ ..... ------~----~--------R-register result = 11110110 

The expression ANSNZ->S2 sets S2 to a 
one because the Z bus has on it the data 
11110110. ANSNZ means Answer Non Zero. 
82 is tested further in the program to 
determine whether our answer is plus, 
minus, or zero. 

Since positions 5 and 6 of the S
register are zero, a 0,0 branch is 
executed to address 0100. Because we 
are again changing the second high digit 
of our address, the expression K->W is 
used. This time the value of K is 1 as 
shown on the Eline. 

A.DDRESS 0100: The sum of the first 
byte from each register is regenerated 
(WRITE). The data in byte 3 of register 

1 is now 11110110. An unconditional 1,0 
branch is executed to address 01CE at 
location E4. 

Again, let's pause for a moment to 
review where the data is and the 
addresses in our registers. 

1. The V-register contains Reg 5 Byte 2 
0101 0010. 

2. The T-register contains Reg 1 Byte 3 
0111 0011 

3. Register 7 byte 3 data is 1111 0110 
or 246 

4. The Sl and S2 positions of the S 
register are set to one. 

5. The G-register contains 0001 1010 

ADDRESS 01CE: The second byte of data 
from register 5 is read by the expres
sion, UV->MN M/LS. M/LS can be either 
main core (M) or local storage (LS). 
This portion of the expression further 
checks the G-register. Since G-register 
determines that our Op code is in RR 
format, only the control lines for local 
storage are brought up. The second byte 

3-32 

of data read from register 5 is 
000000000. 

While register 5, byte 2 is read, 
there is no reason why the address of 
the next byte from register 7 cannot be 
set up. This is done by T-O->T, which 
subtracts one from the data in the '1-
register. The resultant answer in the 
'I-register is 

Reg 7 Byte 2 
0111 0010. 

The expression LZ->S5 does not set S5 
to a one at this time. LZ is a check 
for zero on the four lower bits on the Z 
bus as a result of the arithmetic 
statement T-O->T. As you can see, these 
four lower bits will not be 
zero until the last address of register 
1 is obtained, 

Reg 7 Byte 0 

0111 0000. 

A 0, 1 branch is taken to address 
01Cl. 

ADDRESS 01Cl: The byte of data just 
read is regenerated (WRITE). This data 
is also stored in the D-register, R->C. 
The D-register now contains 000000000, 
or byte 2 o.f register 1. 

A 1,1 branch is executed to 
address 03A3. Position 3 of the G
register is a 1 because our Op code is 
still stored there. 

ADDRESS 03A3: 
We have been in this block before. You 
should begin to realize that we are in a 
small loop and will exit from it once 
all four bytes of data from the two 
registers have been added together. 

The second byte from register 1 is 
read, (T->N LS) • 

The V-register address is changed to 

Reg 1 Byte 1 

0111 0001. 

A 0, 0 branch is executed to address 
03A4 because S1 is still zero. 



ADDRESS 03A4: The second byte of data 
from both registers is added and the 
result is stored in the R-register 
(R:!:D+C->RC) • 

The result of this second addition is 
000000000. S2 is not ~et to a zero 
(ANSNZ->S2) even though there is nothing 

on the Z bus because theS-register is 
not made up of polarity hold latches. 
It takes a definite reset expression to 
clear an S-register position to Zero 
(O->SO) • 

S6 and S5 are again tested to 
determine the branch set up. Neither 
position has been set to one therefore 
the 0, 0 branch is again taken to 
address 01DO. R->W sets the W-register 
of ROAR to the value of one because of 
the high-order address change. 

ADDRESS 0100: The second byte of data 
is regenerated (WRITE). A 1,0 branch is 
taken to address OlCE. 

ADDRESS 01CE: Byte 1 of general pur
pose register 5 is addressed (UV->MN 
MILS). The address for byte 1 of reg
ister 7 is set up (T-O->T). 

S5 is still not set to a one because 
the data on the Z bus is 

Reg 7 Byte 1. 

0111 0001 

Take the 0,1 branch to 01C1 

ADDRESS 01Cl: Byte 1 from register 5 
is stored in the D-register (R->D). It 
is also regenerated (WRITE). R->W is 
again used for our address change. Take 
the 1,1 branch to address 03A3. 

ADDRESS 03A3: Byte 1 from register 7 is 
read (T->N LS). The address for general 
purpose register 5, byte 0 is obtained 
(V-O->V). Branch 0,0 to address 03A4 
because S7 is still zero. 

ADDRESS 03A4: Add byte-l data from 
both registers (R:!:D+C->RC). S2 is still 
set to 1 and cannot be changed by the 

.expression ANSNZ->S2. S6 and S5 are 
still zero. Branch to Address 0100. 

ADDRESS 0100: Regenerate (WRITE) the 
sum to core. Branch 1,0 to 
address OleE. 

ADDRESS 01CE: Read the last byte of 
data from register 5 (UV->MN M/LS). 

Change the address in the T-register 
(T-O->T) • 

Reg 7 Byte 1 

Old T-register address = 0111 0001 

minus 0 = 1111 1111 

Reg 7 Byte 0 

New T-register address = 0111 0000 

The information on the Z bus as a 
result of the arithmetic statement is 
0111 0000. The low-order four bits are 
0000. The C line of the box has the 
expression LZ->S5. S5 is now set to a 1 
because the low position of the Z bus is 
zero (LZ). Advance to address 01Cl. 

ADDRESS 01Cl: Store the last byte of 
data that came from register 5 (R->D). 
Regenerate this data (WRITE). Control 
the address change ~->W). Again check 
G3, set up a 1,1 branch to address 03A3. 

ADDRESS 03A3: Address core and read 
the last byte of data from register 
7 (T->N LS). Subtract one from the data 
in the V-register. This address, 0101 
11", is invalid for register 5 but it 
will not be used as we are in this loop 
for the last time. Check S7, which is 
still zero, and branch 0,0 to 
address 03A4. 

ADDRESS 03A4: Add the last byte of data 
from both registers and store the result 
in the R-register (R±D+C->RC). 

S2 is still set and cannot be changed 
by the expression ANSNZ->S2. K->W sets 
up an address change. Positions 6 and 5 
of the S-register are tested. S5 had 
been set to a 1, therefore, a 0, 1 
branch is taken to address 01Dl. 

ADDRESS 0101: The last byte is stored 
in core ~RITE). Register 7 now con
tains our answer: 000000000 000000000 
000000000 11110110. The data in the R
register for our last sum is 000000000. 
In the expression R • K8->Z, this data 
in the R-register is ANDed (e) with the 
R source high (H) and gated_to the Z 
bus. The value of R on the E line is 
shown to be eight (1000). 

3-33 



R data = 00000000 
Constant = 10000000 ----.-.:----.,------.-.---......---------

ANDed result = 00000000 

On the branch line, R, you see the 
two mnemonics AC and lBC. AC,ALU carry, 
brings up control lines to test for a 
carryout condition of ALU as a result of 
the arithmetic expression executed in 
the previous ROS word ~ddress 03A4, 
expression RtD+C->RC). lBC, one bit 
carry, brings up the control lines to 
test for a carry into the highest posi
tion of ALU as a result of the previous 
arithmetic statement. To show the posi
tions of ALU effected, ASSUME this data: 

A-register = 0100 

B-register = 1100 

0000 

0000 
-------------------~---------

11 carries 

ALU output = 0000 
t t 
11 
If 
II 

. 11.---1BC 
I 
I 
L--AC 

0000 

Let·s continue with our example. The 
previous expression RtD+C->RC added the 
last two bytes of data from both reg
isters. Both bytes of data were zero, 
therefore the output from ALU was zero. 
fie had neither an ALU carry nor a 1-bit 
carry. A 0,0 branch is taken to address 
01D8 which is in Figure 3-26, location 
G3. 

The AC and lBC mnemonics test to 
determine overflow conditions. An over
flow condition would have caused branch
ing to either address 01D9 or 01DA. 

ADDRESS 01D8: The expression *XBB->N LS 
addreSses aX addressable byte of local 
storage. See Figure 3-24. This byte 
contains the condition codes and program 
mask bits. Certain bits are set accord
ing to whether the answer is equal to, 
greater, or less than zero. 

Program masks are checked further in 
the program. 

3-34 

A X-addressable byte sets the N
register to the format: 

NO 

" 
N1 
0, 

N2 N3 N4 
CNO, XO, 1, 

N5 N6 N7 
Xl, X2, X3. 

The NO and Nl positions are set 1, a 
respectively •. The 2 position of the 
N-register is set by the CN ROS control 
field, 0 ~it position. Position N3 is 
set by the CX ROS control field 0 
position. N4 is set to a 1 uncondi
tionally. N5,N6, and N7 are set by the 
remaining positions of the CX field. 
You can see by looking at Figure 3-24 
that the coordinates BB address byte 27. 
BB in binary is: 

B 
1011 

B 
1011 

Match this up with the address format 
and you see that the CX field must be 
coded 1011. This is the value that 
appears on the E line of the CAS block. 

Format = 1 .. 0, CNO, XO, 1, Xl, X2, X3, 
Value .BB = 1 0 1 1 1 0 1 1 

The control line expression o->SO 
sets SO to zero in case we had been in a 
complement operation • 

The branch tests are S2 and Z = O. 
S2 was set to a 1 because we had signi
ficant data. The expression Z = 0 
checks the Z bus for a zero as a result 
of the previous expression on the arith
metic line (ReXH->Z). Had the resultant 
answer been minus, the expression 
ReKH->Zwould have provided a 1-bit 
output for the highest position of ALU. 
Because our answer is poSitive, the Z 
bus is zero and therefore, a 1,1 branch 
is executed to address 01EB. Bad our 
answer been minus, the Z= 0 expression 
would have set X7 to a O. A 1,0 branch 
would have taken us to address OlEA. 

ADDRESS 01EB: The byte that was just 
read from core contains information 
pertaining to condition codes and pro
gram masks. The high 4-bit positions 
are for the condition code settings 
according to the answer of the problem. 
The expression RL +KH->R presents the 
data previously read to the A-register. 
A constant (X) sets the B-register to 
the value of 2 as specified by line E. 
The low portion (L) of the data in the 
A-register is used as the A source for 
ALU. The high position (H) of the B-



register data is used as the B source 
for ALU. The data is then: 

A source 

B source+ 

0000 xxxx x are the 
program 
mask tits 

0010 0000 

R-register set 0010 xxxx 

The four high bits 0010 when returned 
to core signify that our resultant 
answer was greater than zero. Notice 
the table in Figure 3-26. 

3-35 



IN 
I 

IN 
0'1 

Set Log Add, Subt, OR 

DQL8 

Set Logics OR 

D4 E8 
NO OVERFLOW 
00--0108 

E K=10ll BIN 
A 

_-=:Se~t..:S",hi;;;ft,-,C=R,--____ .,... 5 'KBB'" N LS 
C8 Nl CO-+- SO 

R 

Set Add, Subt, OR 

DOJ8 DON8 
DON6 O6N7 
C8L5 

R S2 __ Z=O 

NO OVERFLOW 
11--01 DB 

E K=lOl1 BIN 
A 
5 'KBB'" N LS 
C 
R 
R S2 ___ Z=O 

OVERFLOW 
01--0109 
K=lOl1 BIN 

A 0+0+1 - L 
5 *KBB ... N LS 
C 
R 
R 1 ___ 57 

10--0lDA 
E K=lOl1 BIN 
A 0+0+1 ... L 
5 °KBB - N LS 
C 
R 
R 1 ___ 57 

COMPARE OP 
11---0ID7 

E K=I000 BIN 
A D¥KH-Z 
5 WRITE 
C 
R 
R 1 ___ _ 

NOT COMPARE OP 

E K=loo0 BIN 
A RL'KL- Z 

O'~~l oo--OIEO 
E K=1011 BI 
A 
5 *KBB - N LS 
C 
R 
R 0 ___ 1 

NOT 0, NO CARRY 
10--01E2 

E K=1011 BIN 
A 
5 *KBB ---N LS 
C 
R 
R 1 ___ 0 

0, CARRY 
01--01E1 

E K=10ll BIN 
A 
5 *KBB ... N LS 
C 
R 
R 1 ___ 1 

11--0lE3 
E K=I01l BIN 
A 
S *KBB ... N LS 
C 
R 
R 1 ___ 1 

10-
0106

1 
5 WRITE 1-_________ _ 
CO-SO 
R 
R 0, ___ _ 

TEST PRO MASK 

Figure 3-26. Set Condition Register 

00 01E8 
E K=IOO0 BIN 
A RL+KH -R 
5 
C 0-56 
R 
R 0 

ZERO OR EQlIA 
01--0IE9 

E K=looO BIN 
A RL+KH +- R 
5 
C 0 ---56 
R 
R 0 ___ 1 

MINUS OR LOW 
10--01EA 

E K=Oloo BIN 
A RL+KH --- R 
5 
C 0---56 
R 
R 0 ___ 1 

PLUS OR HI 
11--01EB 

E K=OO10 BIN 
A Rl+KH ... R 
5 
CO ... 56 
R 
R 0 ___ 1 

1 1---{)1 DF 
E K=OOOI BIN 
A RL+KH ... R 
5 
CO---56 
R 
R 0 ___ 1 

SET CR=1 
01---0IDD 

E K=1011 BIN 
A LXH+RL ... R 
5 *KBB - N LS 
C 0 ... 56 

: O ____ z=ol 

01 

ADD, SUBT, CMP 

=, ZERO 

LO,<O 

HI,>O 

OVERFLOW 

*K "N 

BITS STORED IN 
K27 HIGH 

1000 

0100 

0010 

0001 

K ADDRESSABLE BYTE 
N SET = 1,0,CNO,KO, I,KI,K2,K3 

E BIN 
AO-L 

01-0lES

I 5 STORE ~ _________ ___ 

CO-52 
R 
R 51 INTR 

TAKE TRAP 
oo---0IC4 

E K=10oo BIN I A O+KL_ L 
5 STORE 1-_________ _ 
CO_52 
R 
R 1 ___ _ 

00---0100 

NORMAL 
I-CYCLE 
START 
AO A2 

11---0147 

PROG INT 
P3 E2 



The expression 0->S6 sets S6 to a 
zero. 

A 0,1 branch is taken to address 
01ES. 

ADDRESS 01ES: The mnemonic, STORE, 
returns to core the information that is 
in the R-register which consists of our 
new condition code and program mask 
bits. 

The L-register is set to zero by the 
expression O->L. 

Position S2 of the S-register is set 
to zero (0->S2). 

The branch mnemonics test Sl and 
INTR, interrupt. S1 is not set. If 
there is an interrupt a 0, 1 branch is 
taken to address 0101, Figure 3-23 loca
tion L2. If no interrupt exists a 0,0 
branch is executed to address 0100, 
Figure 3-23 location A2. Address 0100 
is the ROS word where we began. 
Address 0101 is the beginning of a micro 
program to test the interrupt and deter
mine what it is (selector channel, mul
tiplex, et<:.). 

Our problem is finished, but to gain 
more experience in micro progra.ming 
let's assume that the result of adding 
the data of the two registers ~ pro
duce an overflow condition. 

Start at address 01D9 in Figure 3-26. 

ADDRESS 01D9: The K addressable byte 
is read (*ICBB->N LS). The L-register is 
set to 00000001 (O.O+l->L). 

Since S7 is not set to a 1 a 1,0 
;branch is taken to address 01D6. 

ADDRESS 01D6: The data just read con
sists of the condition code and program 
mask bits. It is regenerated to core 
(WRITE). The arithmetic expression 

RLeKL->Z tests the program mask bits by 
allowing or preventing a bit on the Z 
bus. Let's assume the data in R is xxxx 
1 yyy. The x positions are those for 
the condition code. The.1 means that 
this position is set. The y positions 
are the remaining program mask bits. 

The data for this expression is: 

A source data (RL) = 
B source data (KL) = 

ANDed ALU output = 

0000 1000 
0000 1000 

0000 1000 

position zero of the S-register is 
set to zero. (O->SO) • 

ADDRESS 01DD: Again, the same byte of 
information is read by the expression: 
*KBB->N LS. 

The condition code is set by 
expression LXH+RL->R. The data 
L-register sets the A-register. 
A-register now contains 

0000 0001. 

This is crossed (X) 

High 

0001 

Low 

0000 

the 
in the 

The 

and only the high (H) portion is used 
for the A source to ALU. The data in 
the B-register is xxxx 1 yyy. Only the 
low portion is presented to ALU (RL). 
The result of the addition becomes: 

A source = 
B source '= 

R-reglster set = 

0001 0000 
0000 lyyy 

0001 lyyy 

The C line statement, 0->S6, sets 
pOSition 6 of the S-register to a zero. 

The branch conditions are 0 andZ =0. 
Z = 0 brings up control lines to check 
the Z bus as a result of the arithmetic 
statement executed in the previous ROS 
word. This is how the program mask 
condition is checked. Our output was 
0000 1000 as a result of the expression 
RL e KL->Z. Therefore, Z=O does not set 
X7 to a 1. A 0,0 branch is taken to 
address 01C4 because the overflow was 
masked on. 

ADDRESS 01C4: The data in the R
register is returned to core 
(STORE). The four highest bits are the 

new condition code: 

3-37 



High Low 

0001 lyyy. 

0001 is the coding for an overflow. The 
L-register is set 0000 1000 by the 
expression 0 + KL->L. The S2 position 
is set to zero and a 1,1 branch is .taken 
to a program interrupt routine. Tbis 
completes the branch on overflow ROS 
words. 

INDEXING 

Let·s try a final example. Assume that 
tbe Op code is in this format: 

Op code Rl X2 B2 02 
X 0011 0100 1111 0000 0110 0100 

The objective in working through the 
ROS words in Figure 3-21 is to arrive at 
an address in the'UV-registers. This is 
done by adding the data in the general 
purpose registers, as specified by X2 
and 82, to the binary number specified 

3-38 

by the 02 field. The facts that you 
will need before starting are these: 

1. General purpose register 4 (X2) 
contains the value of 40 in binary. 

2. Register 15 (B2) contains the value 
of 1860 in binary. 

3. The L~ and S-registers are zero. 

4. The R-register contains 

R1 X2 

0011 0100 

5. The IJ-registers contain the address 
of the third byte of the 
instruction, B2 and the high four 
bits of D2. 

Note: While working this problem it will 
be helpful if you keep track of 
the data in the R,T,U,V, and 
S-registers. All reference is 
made to the actual address of the 
ROS word which appears in the 
upper right corner of each block. 
To begin, see Figure 3-27 address 
0119: at A2. 



!.AI 
I 

!.AI 
ID 

OJ RX FORMAT 

10 SS FORMAT 

L 01--0119 
E BIN 
A Ln.R-L 
S WRITE 
C LZ-55 
R 
RA~ 

~ ::R-L ~:~1 
S WRITE 
C I_S6 
R 
R AC ___ 1 

11---011B 
E BIN 
A LJLR .... R 

11 RS FORMAT S WRITE 
~";"';''';''';:'''-'''---- C I_S6 

RS2ND 
INDEX 

R 
R AC 1 

10_
011 E BIN 

A V+R-VC 
S T-N LS 
C 
R 
RS~ . 

Figure 3-27,! Indexing 

01---0111 11---010F 
E BIN E K=OOII BIN 
A J;'O+l .... J A RH+KL-T 
S IJ-MN MS --- S WRITE 
C C HZ-S4 
R R 
Rl 1 RO S7 

00-- OJ2C 
E BIN 
A RL-U 
S IJ-MN MS 
CO-SO 
R 
R S4 ___ 1 

11--- 0117 00---0108 
E BIN 
A 1-10+1-1 
S 

E BIN 
A RL-U 
S IJ-MN MS 

E' BIN 
A O ..... 'C 
S WRITE 

C 

01_
0121 

C --- C 
R 
R 

00---013C 
. BIN 

A T-O ..... 1 
S WRITE 
C 
R 
R SO ____ 1 

10---013E 
BIN 

A 1-0_1 
S WRITE 
C 
R 
RG~O 

R 
R 0 0 

01_'''1 E BIN 
A UiR-tC-UC 
S T-N LS 
C 0-S4, 55 
R 
R 0 55 

11---013F 
E BIN 
A UiR-tC-UC 
S r .... N lS 
C 0':'S4, 55 
R 
R 0'----__ -----' 

00--- 0144 
E BIN 
A UiR-tC-UC 
S T_N LS 
CO-54, 55 
R 
R 0"-__ ----' 

10---0146 

RM RS 
INDEX 

S4 ___ 1 

01---0135 
E BIN 
A V-J 
S 
C 
R 
R 1 ____ 0 

00---0140 
K=ool1 BIN 

A LXH+KL-T 
S WRITE 
C 
R 
R _1 ___ 0 

01---0141 
BIN 

A R+O-tC-OC' 
S WRITE 
C ANSNZ-S2 
R 
R G2 G3 

01-
011 E BIN 

A DiR-tC-OC 
S WRITE 

--- ~ ANSNZ-S2 

RG~3 

01---0131 
E BIN 
A J-IO+l-JC 
S WRITE 
C 
R 
R 1'-__ --" 

11---0133 
E BIN 
A J-+O+l"'J 
S WRITE 
C 
R 
R GO ____ O 

11---013;\ 
E BIN 
A V-J 
S 
C 
R 
R 

10---0132 
E BIN 
A R-IOfC-DC 
S T-N LS 
C I __ S6 

R 
R 0 

00---0148 
'E K=OOOI BIN 
A V·KL-Z 
S 
C ANSNZ-S2 
R 
R G4 ____ Z=0 

01---0149 

RX FIXED 
POINT 

10---014A 

RX FL. PT. 
DOUBLE 

11---014B 

RX FL. PT. 
SINGLE 

10---012E 
E BIN 
A R .... Y 
S T-N LS 
C 

0 ____ S3 

00---0134 
E K=OOl1 BIN 
A LXH+KL-T 
S 
C I_SO 
R 
R 1 55 

11---012F 
E BIN 
A R_V 
S 
C 0-S4, 55 
R 
R 1 S3 

E BIN lO-"l A R_V 
S 
C 
R 
R 0 53 

E 
A 
S 
C 
R 
R 

oo'-"l 
BRAND 
CHAR 
INVALID 

01---0140 

BRAND 
CHAR 
VALID 

00---0138 
E BIN 
A T-O-T 
S WRITE 
C 
R 
R 

01--- 0139 
E BIN 
A 1+O+l+-1 
S 
C 
R 
R o 0 

1O---013A 
E BIN 
A 0+-0 
S 
C ANSNZ_S2 
R 
R G2 ____ G3 

11---013B 
E BIN 
A H()+l-1 
S 
C 
R 
R 1 ____ 0 

00---0160 

RM RS 

- 8--0 
A4 G2 

10--- 014E 11--- 0147. 
E K=0101 BIN 
A Q+KL-L S __ PROG INT 

C056 PJE2 
R 
R 1 ---

11---014F 
E K=OOII BIN 
A LH+KL .... ' 

.---

00---03CO 

HALF 
ARITH 
DO G2 

OJ---03CI 

HALF 
MULT 
EO C2 

10--- 03C2 
E K=0110 BIN 
A O+KL ...... L 
S 

>-- C 0+-56 1-
R CA01-W 
R 1'-----__ .2 

A O+KL_L 
S 
C 

E' ~~-1-1-0- ~1 
________ ~~ S 1_ 

CO-56 
R K+W R CAOI-W 
R S2 ____ G5 R 1 ____ 1 



ADDRBSS 0119: We began the problem at 
this particular ROS word because a look 
at the construction of our Op code shows 
us that it is in RX format. The second 
byte of data which is contained in the 
R-register 

Rl X2 

0011 0100 

is regenerated by the WRITE expression. 
This data is also stored in the L
register by the expression I . .n.R->L.n. 
The data in the L register, zeros, is 
ORed (AJ wi th the data in the R
register, 

Rl X2 

0011 0100 
And the result is set into (-» the 
L-Register. 

The expression LZ->SS does not set 
position 5 of the S-register to a 1 
because the low portion of the Z bUS(LZ) 

has the data: 

X2 

0100 

The branch controls are AC and 1. 
AC, ALU carry, is the mnemonic that 
brings up control lines to check for an 
ALU carry that may have occurred as a 
result of the arithmetic statement in 
the previous ROS'word. Had there been 
an ALU carry, a 1,1 branch would be 
taken to address 0117 where the only 
function performed is to update the 
I-register, 1+0+1->1. Assume that there 
was not an ALUcarry and that the next 
address in sequence is address 0115. 

ADDRESS 0115: The thil:d byte of the 
instruction, B2 and the high-order four 
bits of D2, is read by the expression 
IJ~>MN MS. The MN register is set by 
the 1- and J-registers. MS specifies 
main storage rather than local storage. 

TheJ-register is updated by the 
expression J+0+1->J. The data in the 
J-register sets the A-register input of 
ALU. The B-register input to ALU is set 
to zero. A carry is inserted. The 
result of the addition is set into the 
J-register (->J) 

3-40 

A-Register = 
B-Register = 
Carry Insert 
ALU OUtput = 

xxxx xxxx(J-Reg data) 
0000 0000 

1 
xxxx xxxx +1 

An unconditional 1,1 branch is taken 
to address OlOF. 

ADDRESS 010F: The third byte of data is 
regenerated (WRITE). The data in the 
R-registet is 

B2 D2 High, 

1111 0000. 

Because our objective is to arrive at 
an addressllsing ,data in general purpose 
registers, it is necessary to obtain the 
units address of each register. The 
expression RH + XL->T constructs the 
units address of register 15, specified 
by the B2 portion of our instruction. 
The first portion of this expression, 
RH, sets the A-register input to ALU 
from the data in the R-register, but 
gates as A source data only the high 
portion (H). The B-register is set by 
the value in the CK ROS control field 
(X). This value is 0011, as shown on 
the E line of this box. The B-register 
is set 0011 0011. However, only the low 
portion (L) is presented to ALU as B 
source data. The data is: 

B2 
A source 

+ B source 
= 1111 0000 
= 0000 0011 

T-register 

Reg 15 Byte 3 

= 1111 0011 

The expression HZ->S4 does not set 
position 4 of the S register to a one 
because the high portion of the data on 
the Z bus (HZ) is not all zeros. 

The branch controls are 0,S7. One of 
the facts assumed in starting this micro 
program was that the S- register was 
zero. Therefore, a 0,0 branch is taken 
to address 012C. 

ADDRESS 012C: The fourth and last byte 
of the instruction is read by the 
expression IJ->MN MS. 

The data in the low 
R-register is set into 
the expression RL->U. 
now contains 

portion of the 
the U-register by 
The U-register 



02 
0000 

High 
0000 

Position zero of the S-register is 
set to zero (O->SO). 

Position 4 of the S-register was not 
set. The branch controls set up a 0,1 
cranch to address 0131. 

ADDRESS 0131: The last byte read, 

02 Low 
0110 0100 

is regenerated (WRITE). The J-register 
is again updated (J+O+l->Je). The e to 
the right of the arrow allows a carry 
out, as a result of adding the value of 
one to the data in J, to set position 3 
of the S-register to a one. S3 is the 
carry control pOSition of the 
S-register. If there is a carry out as 
a result of this arithmetic statement it 
indicates that the I register must also 
be updated. 

An unconditional 1, 0 branch is exe
cuted to address 012E. 

ADDRESS 012E: The data in the R
register, 

02 
0110 

Low 
0100 

is stored in the V-register by the 
expression R->V. 

The T-register is used to set the 
N-register and the first byte from gen
eral purpose register 15 is read by the 
expression T->N LS. LS specifies 
local storage. 

The branch controls are 0, S3. Had 
there been a carryout as a result of the 
arithmetic expression in the previous 
ROS word, a 0,1 branch would be taken to 
address 0139 wherein the I-register is 
up dated (I+0+1->I). Assume that S3 is 
a zero so that a 0,0 branch is taken to 
address 0138. 

ADDRESS 0138: The first byte of data 
read from general register 15 is regen
erated (WRITE). The R-register contains 
0100 0100 as data. One of the facts 
given was that register 15 contained the 
value of 1860 in binary this is: 

Byte 0 Byte 1 Byte 2 Byte 3 
00000000 00000000 00000111 01000100 

The T-register data is changed to: 

Reg 1 
1111 

Byte 2 
0010 (T-O->T) • 

An unconditional 1,0 branch is taken 
to address 010A location G2. 

ADDRESS OlOA: The data from byte 2 of 
general purpose register 15 is read by 
the expression T->N LS. This data is 
0000 0111. 

The data in the V-register is added 
to the data in the R-register, with the 
result stored in the V-register by the 
arithmetic expression V+R->Ve. The C to 
the right of the a.rrow allows a carryout 
as a result of adding V+R to set S3 to a 
one. The addition of data is: 

0100 := 02 low V-reg = 0110 
R..-reg = 0100 0100 = Reg 15 Byte 3 data. 

V-Reg result 1010 1000 

There is no carryout as a result of 
this addition. Therefore, S3 is not set 
to a one. 

en the branch line a test is made on 
S6. S6 has never been set to one, thus 
a 0,0 branch is taken to address013e. 

ADDRESS 013C: The data from. GP-register 
15, byte 2, is regenerated (WRITE). 
Again, the data in the T-register is 
changed so that the T-register now con
tains 

Reg 15 Eyte 1 
1111 0001. (T-O->T). 

SO has not been set to a 1. Branch 
to address 0130. 

ADDRESS 013D: The expression U+R+C->UC 
causes the data in the U-register to be 
added to the data in the R-register, 
with a carry insert (e) under control of 
S3. The resultant answer will be stored 
in the U-register and a carryout, if 
there is one is allowed to set S3. S3 
has not been set previously, therefore 
there is no carry insert. The data is: 

3-41 



U-reg 
R-reg 

U-reg 

02 High 

= 0000 0000 
= 0000 0111 = Reg 15 Byte 2 data 

result = 0000 0111 

S3 will remain 0 as there is no 
carryout. 

Local storage is again addressed by 
the expression T->N LS. The data read 
is 00000000. This is the data from byte 
1 of register 15. 

Positions 4 and 5 of the S-register 
are set to zero (0->S4, S5). 

S5 has never been set to one, so the 
0,0 branch is taken to address 0140 .. 

ADDRESS 0140: The data from byte 1 of 
register 15 is regenerated (WRITE). 

The expression LXH + RL->T sets up 
the units byte address of general pur
pose register II in the T-register. Reg
ister 4 is specified by the X2 portion 
of our instruction. Remember, the L
register contains 

Rl X2 

0011 0100. 

The A-register input to ALU is set from 
the L-register. The data in the A
register is 

High Low 

0011 0100. 

This data is crossed (X) and only the 
high portion (H) is used as A source 
data, 0100 0000. 

In the portion of the expression, RL, 
theB-register input to ALU is set from 
the CR ROS control field (R). The value 
in the CR field is specified on the E 
line. The data in the B-register is 
therefore, 0011 0011. Only the low 
portion(L) is used as B source data. 
The data becomes: 

3-42 

A source data 
B source data 

= 0100 
= 0000 

Reg II 

0000 
0011 

Byte 3 

T-register data = 0100 0011 

The next ROS word is at address 0132. 

ADDRESS 0132: The expression R+O+C->DC 
transfers the data in the R-register to 
the D-register. The D-register data is 
00000000, which comes from register 15 
byte 1. No carries are involved. 

Again, core is read (T->N LS). This 
causes the first byte of data to be read 
from register 4. This data is 00101000 
because one of the facts of our problem 
specified that this register contained 
the value of 40 in binary. 

The sixth position of the S-register 
is set to 1 (1->S6). 

The next step is address 0138 at 
location A8. 

ADDRESS 0138: The data just read is 
regenerated (WRITE). The T-register is 
changed to obtain the address of the 
next byte of information. 

Reg II 

0100 

Byte 2 

0010 

is the data in the T-register as a 
.result of the expression T-O->T. 

The next ROS word in sequence is at 
address 010A. 

ADDRESS 010A: The data in the V
register is added to the data in the 
R-register. If a carryout occurs as a 
result of the addition, it is allowed to 
set S3 (V + R->VC). The data added is: 

V-register data 
R-register data 

= 10101000 
= 00101000 

V-register result = 11010000 

There is no carryout. S3 remains zero. 

The reading of core is controlled by 
T->N .LS. This causes the data from 
register 4 byte 2 to be read. This data 
is 0000 0000. 

The branch controls are S6 and O. 
S6, if you will recall, was set to a one 



at the ROS word at address 0132. 
Because of this, a " 0 branch is taken 
to address 013E. 

ADDRESS 013E: The last byte of data 
that was read is regenerated (WRITE). 

The T-register data is again changed 
(T-O->T). The result in the T-register 
is now 

Reg 4 
0100 

Byte 1 
0001. 

Since we did not assign a particular 
Op code to our problem, the G-register 
settings are unknown. Assume that GO is 
a zero and advance to the ROS word at 
address 0144. 

ADDRESS 0144: The expression U +R + 
C->UC brings up control lines to add the 
data in the R-register to the data in 
the U-register with a carry insert. 
Also, the result of the addition is set 
in the U-register and a carryout, if 
there is one. is allowed to set S3. The 
data for this operation is: 

U-reg 
R-reg 

= 0000 0111D2 high plus B2 = 0000 0000 X2 byte 2 
-.-----------------~------.-----~----
Result = 0000 0111 

After the completion of this arith
metic statement, the U and V- contain an 
address that was developed by adding a 
binary value. as specified by D2 in our 
instruction. to the data contained in 
two general purpose registers, as speci-

fied by X2 and B2 in our instruction. 
The U-register and V-register data is 

U-reg V-reg 

00000111 11010000 

or 2000. The value of the D2 portion of 
our instruction is 100. To this was 
added the value in register 4 (X2) and 
register 15 (B2). Register 4 contained 
the value of 40, register 15 the value 
of 1860. 

As you have noticed, each function 
performed in a ROS word can be readily 
determined. To work through any given 
problem you must keep track of the data 
and addresses involved. The mostimpor
tant register to be aware of is the 
S-register. 

SPECIAL STATEMENTS 

o t->Z: Decimal mode is specified on 
the E line. This expression brings up 
the control lines to check positions 4 
and 5 of the R-register. If bit 4 is a 
one, the ASCII latch is set. If bit 5 
is a zero, the suppress malfunction trap 
latch is set. 

J +->Z: Decimal mode is specified on 
the E line. The wait latch is set on 
and the ROS word that contains this 
statement is continually executed until 
an interrupt occurs. 

3-43 



5TART 

L 10 04AA 10 04AE 
E BIN E DEC E 
A D+D-t<:-oC A R±R-t<:~C A 
5 WRITE 5 5 
CO-57 C 0+-56 C 
R R R 
R I 0 R 0 0 R 

AI AA A2 AA 

II 04AF 
E DEC E 
A R±R-t<:~C A 
5 UV+-MN M5 5 
01-56 C 
R R 
R 56 0 R 

A4 AA 

FiC}Ure 3-28. Micro Program Review 

1. Using Figure 3-28 determine the data 
in the R-register after leaving 
block 04B6 the second time. The 
conditions to start are: 

3-44 

a. The UV registers contain the 
address xxxx. 

b. The D-register contains the 
value of 17 in binary 0001 0001. 

c. The S-register is set to zero 
except for 52, which is set to a 
1. 

d. The R-register data is zero. 

00 04B4 
BIN 

D+D-t<:+-DC 
5TORE 
I-57 

I 57 
A3 AA 

10 0486 
BIN 

5TORE 00 
0-52 

52 0 
A5 AA 

CONTROL FIELD MNEMONICS 

FUNCTION CONTROL MNEMONICS 

The mnemonics that provide the source 
data and control for ALU are shown in 
Figure 3-29. The numbers and letters to 
the left in the figure are the coding 
deSignations for each ronemonic. As an 
example: The coding for the mnemonic PI 
in the CA field is 0110, 6. The CA 
field would also be punched 0110, where 
o is the punched-out capacitor plate and 
1 is the representation of the plate 
left intact. 

Some of these mnemonics need further 
explanation. 



IN 
I 
~ 
VI 

CA 

MENMONIC DESCRIPTION 

0 FT MX TAGS IN 

I TT 1050 TAGS IN , 
3 

4 S 

5 H 

6 FI MX BUS IN 

7 R 

8 D 

9 L 

A G , T 

C V 

D U 

E J 

F I 

MNEMONIC DESCRIPTION 

D f F REGISTER 
EXTERNAL INTR. 

I SfG SWITCH F and G 

, MC MACHINE CHECK 
REGISTER 

3 

4 C INTERVAL TIMER 
COUNTER 

5 Q MEMORY PROTECT 
REGISTER 

6 JI DIRECT DATA CHANNEL 
BUS IN 

7 TI IOSO BUS IN 

B 

9 

A 

B 

C m SELECTOR CHANNEL 
R-REGISTER 

D GS SELECTOR CHANNEl 
STATUS REGISTER 

E GT SELECTOR CHANNEL 
TAGS IN 

f GJ SELECTOR CHANNEL 
GJ ASSEMBLER 

CB 

MNEMONIC DESCRIPTION 

R 

L 

D 

K 

~ IVATED BY ACT 
THE 
BEIN 

AA BIT 
GAONE 

MNEMONIC 

I 
I 
I 
I 
I 

MNEMONIC 

_STORE WRAP 

• RESTORE 
WRAP 

• WRAP 

SHJ 

.AC FORCE 

O-L1NE 

I_LINE 

_1_0E 

eASCl1 

.INTST 

O-MC 

UV_WX 

O-/PL 

O_f 

I-FO 

CK 

DESCRIPTION 

DESCRIPTION 

GATE SET OF WRAP 
BUFFER LATCH 

GATE WRAP LATCH 

TEST WRAP LATCH 

SWITCHES Hand J 

FORCE X-REGISTER TO 
ZERO ON ALU CARRY 
RESET LINE LATCH 
(1D50) 
SET LINE LATCH 
(l050) 

FORCE ALU CHECK 

CHECK ASCII 
LATCH 

TEST INTERRUPT 

RESET MACHINE CHECK 

GATE UV REGISTER 
TO WX REGISTER 

RESET LOAD LATCH 

RESET F REGISTER 

SET POSITION 0 OF 
F REGISTER 

Figure 3-29. Function Control Mnemonics 

ROS CONTROL FIELD MNEMONICS 

CD CF CG CV CC 

MNEMONIC DESCRIPTION MNEMONIC DESCRIPTION MNEMONIC DESCRIPTION MNEMONIC DESCRIPTlO~N MNEMONIC DESCRIPTION 

Z Z BUS 0 BLOCK GATE 0 BLOCK GATE + ADD 0 BLOCK CARRY 
TE 1050 BUS OUT L GATE LOW 

L GATE LOW SUBTRACT I INSERT CARRY 
JE DIRECT DATA H GATE HIGH H GATE HIGH BINARY ~8&RACT CHANNEL BUS OUT !: AND FUNCTION 

Q MEMORY PROTECT GATE ALL DATA GATE ALL DATA 
REGISTER 

, 
DECIMAL 1B~TRACT n OR FUNCTION 

TA 1050 TAGS OUT _ STOP MACHINE STOP 0 C NO CARRY INSERT 
ALLOW CARRY OUT 

• H XL CROSS LOW I C INSERT CARRY 
ALLOW CARRY OUT 

S XH CROSS HIGH C C CONDITIONAL CARRY IN 
ALLOW CARRY OUT 

R X CROSS V EXCLUSIVE OR 

D 

L 

G 

T 

V 

U 

J 

I 

ALTERNATE CODINGS 

~ ACTIVATED BY 
THE AK BIT 
BEING A ONE 

-EXPLAINED IN THE TEXT 



AC Force: If there was a carryout of 
ALU on the previous ROS word, the x
register is forced to zero, which causes 
a branch-to-location 00, regardless of 
the normal next address determined by 
the CN, CH, and CL fields. 

ASCII: The CH and CL fields normally 
control the X6 and X1 positions of ROAR. 
The ASCII statement tests the ASCII 
latch and if this latch is on, which 
specifies ASCII mode, the CH field loses 
control of the .X6 posl tion and instead a 
OX7 branch is taken. X7 is still 
controlled by the CL field. If the 
ASCII latch is off, the X6 branching 
remains under control of the CH field. 

The ASCII latch is set by a particu
lar statement. Refer to the section for 
SPECIAL Statements. 

B: When the H-Register is specified by 
the CD field coding 0101, the 
priority-reset-control latch is set on. 
This latch, when on at T3 time, turns 
the priority latch off so that 
priorities may be recognized. 

INTST: This mnemonic, alternate CR 
decode 1010, tests for interrupts and 
sets X6 and X1 according to the inter
rupt that has been stacked. 

Type of Interrupt 

(Not) ASCII 

(Not) Test ASCII 1 
~~~------------~ OR 

(Not) Timer Update or Ext. I nt .

(Not) Test Int.

Sel.l Int.

(Not) Se I. 2 Int.

(Not) I Wrapped

(Not) Test Wrap

CH 1010

S4 = 1 A

2
OR

3
OR

4
OR

CH
F
I
E
l
D

X6

Figure 3-30. Test Interrupts

3-46

X1

X6 Branch

A

Timer or External
Selector Channel 1
Selector Channel 2
Multiplexor Channel

o
1
o
1

o
o
1
1

See Figure 3-30. This mnemonic is
used at the same time that the CH and CL
fields are coded 0001. This coding in
each field tries to set X6 and X7 to
one. The OR'S in this figure may be
thought of as inhibit control. In the
case of a timer interrupt, the X6 and X7
AND'S are blocked, and therefore X6 and
X1 are set to zero. Should either AND
be satisfied it sets its respective
poSition of ROAR to a one. Assume that
there had been a timer interrupt.

OR number 2 in the X6 circuit is not
satisfied. The output from this OR then
blocks the X6 AND. OR number 6 in the
X1 circuit is also dissatisfied and
blocks the X1 AND. With both AND's
blocked, a 0, 0 branch is set up.

If we now assume that there is a
selector channel 1 interrupt, the X6 AND
must be satisfied and the X1 AND dissa
tisfied. The bottom input to the X6 AND
is satisfied by the CH field coded for
the forced one. The next input, from OR
number 4, is satisfied because we are
not testing for a memory wrap. OR num
ber 3 is satisfied because of the selec
tor channel 1 line. OR number 2 is
satisfied because we have neither a
timer nor an external interrupt.

(Not) SXl Intr.
5

(Not) Test Int. OR

X7 Branch

(Not) Timer Update or 6 A
OR

Ext. Int.

Cll0l0

S5 = 1 A Cl
F
I
E
l
D

Lastly, OR number 1 is satisfied because
we are not testing to see if we are in
ASCII mode. The X7 AND is dissatisfied
because OR number 5 is dissatisfied. We
are testing interrupts, and our assump
tion was that we had a selector channel
1 interrupt.

RESTORE WRAP-STORE WRAP-WRAP: An
address overflow, memory wrap, may arise
on a 64K core storage unit. Additional
circuitry is needed to detect the error
which occurs when there is a carryout of
the high-order 1- or U-register position
as a result of updating the address.

If the IJ registers are used to
address core, a memory wrap condition
sets the I-wrap latch. It is sometimes
necessary to remem.ber the status of this
latch. The mnemonic STORE WRAP will
gate the status of the I-wrap latch to
the wrap-buffer latch.

When it is again necessary to deter
mine whether there had been a wrap, the
mnemonic RESTORE WRAP will gate the
status of the wrap-buffer latch back
into the I-wrap latch.

The mnemonic WRAP tests the status of
the I-wrap latch, and if this latch is
on a 0, X branch is taken. If it is
off, the X6 portion of the branch is
still controlled by the CH field.

1 -- OE
I ~ Odd-Even
- Ctrl. Lotch

Even
A

T2 T1
FL- -

Machine Resetr---

Reset Load
Reset Load

OR
r-- Machine Reset

r-
A

'-----

A wrapped condition can also occur on
a 8k, 16k, or 32k unit. This is detect
ed by testing the high-order positions
of the M-register.

l->OE: This mnemonic is used in diag
nostic testing. The first time this
expression appears, it forces bad parity
by blocking the +L Z bus 0 and +L Z BUS
4 lines. The next time this expreSSion
is used in the program, it forces an ALU
check by forcing all the minus SUM lines
and the minus carry O-bit line to plus L
levels. See Figure 3-31. The odd-even
control latch is turned on (EVEN) by the
decoding l->CE, T2 and the introduce
latch set OFF. A circuit to gate the +L
Z bus 0 and +L Z bus 4 lines requi.res
that the odd-even latch be ODD. The
introduce-ALU-check latch is turned on
at Tl when the expression l->OE is used
again. This latch blocks the-L SUM
lines and the -L carry 0 line so that
the lines are all plus and an ALU check
is forced. The odd-even-control latch
is turned off three ways: machine reset,
rp.set load line, (which is developed
when the mnemonic LOAD O->IPL is used),
or at T2 time when the introduce-ALU
check latch is on.

STOP: This mnemonic appears in the CLC
box as STOP or S STOP. The CF field
coding, 100, causes the stop latch to be
turned on at T4 time, Figure 3-32. The
output from this latch feeds two

,--- Introduce
Alu Chk Latch

A

-FL --

r--- f-

OR

T1 T2 T3 T4 T1 T2 T3 T4
I I ,

I I
I I I I I I Odd-Even Ctrl Lat I

I I I I I I I

I I I
,

I I I I

Int. Alu Chk Let I I
I

I I I I I I
I

Figure 3-31. l->OE Control

3-47

circuits. If the S,..register is not
specified by the CA field, one circuit
causes a micro-program stop line to be
active. This line stops the CPU clock
by blocking the clock start circuit. If
the S-register is specified by the CA
field, S STOP, and if the process-stop
latch is on as a result of certain
switch conditions, a process-loop-stop
line is made active. This line allows

CF Sal 100 - Stop
T4

A
{Not} S-Reg

FL --

Stop SW ,--- Process
Stop

S-Reg Inst Add Load SW

DLYD Stop SW OR

I nstr Step SW

FL--

Figure 3-32. Stop Mnemonic

3-48

~

A

~

-
A

-

the CPU clock .to be started until all
ROS share requests or multiplexor share
requests have been honored. The CPU
clock is stopped by turning off the
clock-start latch. The process-loop
stop line blocks the set of the W- and
X-registers so that the micro program
returns to the address of the S STOP
word after execution of any ROS share or
multiplexor share request.

Micro Program Stop

Proc. Loop Stop Active

ROS CONTROL FIELD MNEMONICS

CM CU

MNEMONIC DESCRIPTION MNEMONIC DESCRIPTION

0 WRITe
ALLOW DATA TO SET

MS MAIN STORAGE R REGISTER-REGENERATE

1 LS LOCAL STORAGE

2 STORE BLOCK SET OF R REGISTER MPX MPX STORAGE
WRITE TO CORE

MAIN OR
MILS 3 IJ-MN READ CORE • LOCAL STORAGE

4 UV-MN READ CORE

5 T-N READ CORE

6 *K+N • ADDRESS N-REGISTER
USING CK FIELD

7 GUV +-MN READ CORE

• EXPLAINED IN THE TEXT

ACTIVATED BY
CM-!3-7 ""

0

1 USE GR SELECTOR CHANNEL
R-REGISTER

2 K+-W SET W-REGISTER

3 FWX-WX MPX BACKUP ROAR

Figure 3-33. Storage Control Mnemonics

STORAGE CONTROL MNEMONICS (FIGURE 3-33)

*K->N: This mnemonic addresses a byte
in the local storage. The N-register is
set using the format: 1,0, CNO, KO, 1,
1<1, K2, 1<3. Let's assume byte 27 has to
be read. The address in hexa- decimal
for byte 21 is BB. This must appear in
the N-register. BB in bit form looks
like this, 1011 1011. If the
designations NO through N1 are assigned
to this number let's determine how each
bit is set.

NO=l Forced
Nl=O Forced
N2=1 CNO is set to a 1
N3;:1 C1<-O a 1
NfI=l Forced
N5=0 C&-l a 0
N6=1 C&-2 a 1
N7=1 C1<-3 a 1

Since
must be
CLD box.

The CR field must be 1011.
this is used as a constant, it
specified on the E line of the
The expression to read byte 27 is
*1<BB->N LS.

M/LS: This mnemonic controls which
portion of core is used. A test is made
on the status of the G-register at the
time it contains an Op code. If, as a
result of testing the G-register, the Op
code is determined to be in RR format,
then the expression M/LS controls local
storage. Any other format causes main
storage to be selected.

3-49

I ROS CONTROL

I CN CH

MNEMONIC DESCRIPTION

0 0

I I

2 RO

3 V6NJ.
V-REGISTER POS.
6 and 7

4 STI STATUS IN

5 OPI OP IN

6 AC ALU CARRY

7 SO

8 SI

9 S2

A S4

B S6

C GO

D G2

E G4

F G6

• EXPLAINED IN THE TEXT

Figure 3-34. Branch Control Mnemonics

BRANCH CONTROL MNEMCNICS

Branch mnemonics are shown in Figure
3-34. Some mnemonics require further
explanation.

3-50

FIELD

MNEMONIC

0

I

CA W.

AI

SVI

R=VDD.

IBC

Z=O

G7

S3

S5

S7

Gl

G3

G5

INTR

CL

DESCRIPTION

GATE CA FIELD
TO SET W REGISTER

ADDRESS IN

SERVICE IN

TEST R REGISTER
FOR VALID DECIMAL DIGIT

ONE BIT CARRY

Z BUS

TEST FOR ANY
INTERRUPT

ACTIVATED BY
AS COL 64=1

0

I

2

3

4

5

6

7

8

9

A

B

C

D

E

F

MNEMONICS

CS

MNEMONIC DESCRIPTIO N

LZ ... 55
LOW Z BUS EQUAL
ZERO
HIGH Z BUS EQUAL HZ ... S4
ZERO

LZ-55,HZ~4

0- S4, 55 RESET S4, 55

TREQ ... SI 1050 REQUEST

O-SO

I-SO

o _S2

ANSWER ON Z BUS
ANSNZ .. S2 NON ZERO

0-S6

l-S6

0 ... S7

I"'S7
FB REGISTER-MX TAGS

K- FB. OUT
FA REGISTER-MX TAGS

K-FA. OUT

1\ GUV_GCD

GR_GK

GR .. GF

GR_GG SELECTOR
CHANNEL

GR-GU REGISTERS

GR GV

K-GH 1/ GI_GR

K-GB SX TAGS OUT

K-+-GA SET SX TAGS OUT

CA->W: The CA field is gated to set the
W-register for address changing of the
ROS word. Example: to change from
address OjA3 to OjB6 the expression
CA08->W is used. parity is maintained
for the W- register by using the PK bit.
An Xl branch is taken.

K->FA: The CK field is used to set and
reset latches in the multiplexor FA
register, singly or in combination. The
value of the CK field is shown on the E
line of the CLD box. The PK bit is
necessary and its condition is also
specified on the E line. If the CK
field value is 3 and the PK bit is used,
on the E line you will find K=0011 Pl.

K->FE: TheCK field and the- PK tit
control the set and reset of some multi
plexor or FE register latches. This
mnemonic also provides a gate for the
set and reset of other latches.

R = vno: Each half of the R-register is
checked for a valid decimal digit.
Positions 0-3 and 4 through 7 of the
R-register, if valid, contain any digits
from 0 through .9.

V67=O: Positions 6 and 7 of the v
register are tested. If both positions
are 0, the X6 position of ROAR is set to
one~

Status: The bits of the S-register
normally are set and reset to control
specific functions.

so True or complement. If SO is a
o the operation to be executed
is true (used when the CV field
is coded!).

51 A 1050 request will set S1 to
1.

S2 52 is set to a 1 if there is a
bit on the Z bus. AN5NZ->S2.

53 Carryout from ALU. This bit is
used with the CC field decoding
4,5, and 6.

54

55

56

57

High Z bus zero

Low Z bus zero

Miscellaneous

Miscellaneous

PARITY EIT5

• The PK bit provides odd parity for
the CK or the CA fields.

• The PA bit provides odd parity on
the ROAR address.

• The PC bit provides odd parity on
the .control registers.

• The P5 bit provides odd parity for
the 5ALs.

• The PN bit provides odd parity for
the CN field.

The PK bit is used with either theCA or
the CK field. When the CK field is used
as a constant in an arithmetic
statement, the PK bit is not specified
(0). If K appears in a storage
statement (*KBE->N), or in a statement
which changes the W-register, the PK bit
is used to provide odd parity on the CK
field. In the expression K->W the CK
field is used to set the W-register. If
the value in the CK field is 0011 (3)
the PK bit must be a one to maintain odd
parity of the CK field. If the CA field
is used to set the W-register, CCA->~,
the PK tit maintains odd parity for the
CA field.

3-51

PS

CH 0-3

CL 0-3
CM 0-2

CU 0-1

CA 0-3

CB 0-1

CK 0-3

AA SAL

SAL Parity Checking

Yes

Good Parity

PA

X7 Data

P Bit

CN 0-5

Yes

Good Parity

AS SAL

CS 0-3

CC 0-2

CY 0-1

CG 0-1

CF 0-2

PC

Yes Odd
Inputs

CN Parity Check Yes

Good Parity

Figure 3-35. Parity Check Bits

The PA bit sets parity for the ROAR
address. As an example, if the address
of the Res word is OlBF (0001 1011
1111), the PA bit must be a one to main
tain odd parity.

Lines controlled by the AS bit posi
tion and the Res control fields (CD, CF,
CG, CV, CC, CS) are maintained in odd
parity by use of the PC bit.

Lines controlled by the PA bit posi
tion, the AA bit position and the SA .. L's
(CH, CL, CM, CU, CA, CB, CR) are kept in

odd parity by use of the PS bit.

ThePN bit is used to maintain odd
parity on the CN SAL s.

Figure 3~35 shows the fields and the
parity bits used for each checking cir
cuit.

REVIEW QUESTIONS - CONTROL FIELD
MNEMONICS

1. What mnemonic is used to gate the
status of the I-Wrap latch into the
Wrap-Buffer latch?

3-52

2.

3.

4.

Inputs

If the ASCII latch is on,
monic ASCII forces a ____ _

Good Parity

the mne
branch.

Is the symbol ± in the CV field a
binary or decimal operation ?

How is the CC field encoded to
perform the function?

5. In reference to question four, are
the capacitors for this field
punched out or are they left
intact?

6. Can the data in the G-register be
gated to the B-register of ALU?

7. How are the CH and CL fields encod
ed when the mn~monic INTST IS USED?

8. A line called Reset Load may reset
the Odd/Even latch and the intro
duce ALU Check latch. What Mnemon
ic activates this line?

9. How is the CR field punched when it
is to be used as an emit constant
of 2?

10. How are the lines for local storage
made active when the mnemonic M/LS
is used?

11. What affect does the CM field cod
ing 001 have on storage?

12. If the four low bits on the Z bus
are zero when the mnemonic LZ->S5,
HZ->S4 is used, how is S5 set?

13. Can a four way branch be set up
using the status of SO and Sl?

14. How many parity bits are there?
Name there.

15. Is the PK bit ever used to maintain
w-register parity? If it is,
explain.

ROS ADDRESSING

GENERAL INTRODUCTION

• There are 96 ROS words of 60 bits
each on one ROS board.

• A 4K module contains 4032 words on
42 ROS boards.

•

•

•

A ROAR (Read Only Add.ress Register)
address selects two ROS words to
read out.

The address in ROAR gates the proper
ROS word to the sense areplifier
latches.

Maximum storage is 8064 words.

A ROS board accomreodates 8 ROS
documents. Each ROS document contains
12 ROS words of 60 bits each. The total
number of words on a RCS board is 96.
All words on a ROS board are used. In a
4K module the addresses are sequential.
Because of the electrical connections on
a ROS board, a ROAR address selects two
ROS words. However, only one of these
words is gated to the sense amplifier
latches. Since there are 96 words on a
ROS board and two words are addressed at
a given time, 48 drivers are needed to
read out the 96 words.

3-53

IN
I

U'1

"'" 0

I

2

3· __

4

}"
5~

6_

70-

J-4K
80-

INPUT 4 9_

5
10_

110--

12 __

13

14

(15

W-REGISTER

BIT POSITION t ".",\ Iii
BINARY VALUE=7J2 0 0 0

CONVERSION 2 I

M
OG

OE~~ o A
U T
L I
E N

G

0000 0064 0096 0160 0192
0001 0065 0097 0161 OJ93

0034 0130
0035 0131

0060 0156
0061 0157

0030 0094 0126 0190 0222
0031 0095 0127 OJ91 0223

0256 0288 ~;;~ 0257 0289

0226 0322
0227 0323

0252 0348
0253 0349

0286 0318 0382
0287 0319 0383

ADDRESS SELECTION

ROS BOARDS

0384 0448
0385 0449

0418
0419

0444
0445

0414 0478
0415 0479

0480
0481

0510
0511

~\\//f ~\\!!
I

0

X-REGISTER

6) 8' ,it ii~' ;1'· 'i~: .lii "I: 7

I 0 I I 0 0 I 0 0 0

2 I 4 2 I 8 4 2 I

S

OE~~
A G
L A

A T
DECODE T LINES I

N
G

Figure 3-36. Switch Addressing

0544 0576 0640 0672 0736
0545 0577 0641 0673 0737

0514 0610 0706
0515 0611 0707

0712
0713

0540 0636 0732
0541 0637 0733

0574 0606 0670 0702 0766
0575 0607 0671 0703 0767

~\,/,,(j
I

B
2

3

2

0768
0769

080
080

082
082

0798
0799

\

1,
0 C

3

0832
0833

INPUT

10 II
0864 0928 09ffJ 1024
0865 0929 0961 1025

0898 0994
0899 0995

0924
0925

0894 0958
0895 0959

3 1 /
A

7.

1024-2047
2048-3071

3072-4032

In Figure 3-36 notice the addresses
on ROS board O. Each small block rep
resents two ROS word addresses. The
decimal addresses on this first board
are 0000 through 0095. These addresses
are contained in the 48 blocks which
represent our units of selection, driv
ers. Note at this time, that a 3 by 16
matrix is used.

An even address in ROAR selects that
address and the .next high-order odd
address. An odd address in ROAR selects
that address and the next lower even
address. As an example: If ROAR con
tains the decimal address 0057, this
address and address 0056 are selected.
However, only the ROS word at address
0057 is gated to the sense amplifier
latches.

ADDRESSING PRINCIPLES

• A driver is selected by the coinci
dence of a T line and a driver
decode line.

•

•

•

There are 16 T lines, TO througb
T15, in a 4R module.

A driver decode line provides half
selection for 32 addresses.

ROAR consists of 15 latches, 13 are
used for addressing and 2 for
parity.

Assume that ROAR contains the address of
the ROS word at location 0112. The
binary value in ROAR that represents
this address is: 0001011001·000. This
value is shown in the small table in
Figure 3-36. Address 0712 is found on
ROS board 7. The horizontal line to
this address is developed f.rom the T
switch. The vertical line to this block
is developed from switch A, poSition 6.
See Figure 3-36 (j). The lines from
switches A, Band C are the driver
decode lines. Remember, both a T line
and a driver decode line are necessary
for full driver selection.

To see why line 6 from switch A is
used, see the chart in this figure.
ROAR consists of 15 latches. The W
portion consists of 5 latches, the X
portion 8. Two latches are used to
maintain parity. The darkened portion,
XO, Xl, and X2 positions of ROAR provide
selection for the A switches. If binary

weights are given to these positions, as
shown on the conversion line, then the
result is:

POSition Value Conversion

XO = 1 = 4
Xl = 1 = 2
X2 = 0 = + 0

6

Note: If a bit value is a one, use
~number below it on the conversion
line.

Because there is an A switch for
every 256 addresses, further selection
is necessary. This is done by switch B, a> in Figure 3-36. With switch B at
position 2, our selection narrows to the
third group of 256 address in each 1R
unit of words. The B switch is con
trolled by positions W6 andW1 of ROAR.
Again, using the bit value and conver
sion line, our result becomes:

Position

W6
W1 =

ValUe

1
o

=
=

Conversion

2
+ 0

---2nd
position
of
switch B

This is all well and good, but remember
that there is a switch B for each 1R
unit of words. This decoding is dupli
cated three more times for a 4R module.

Swi tch C G> in Figure 3~36 is used to
select which lR unit contains our
desired address. This decoding is con
trolled by the W4 and W5 pOSitions of
ROAR. Since the bit values of these
pOSitions is zero, the conversion values
are not used and position 0 of switch C
is active. If you are wondering why
there are only four poSitions of switch
C even though the maximum amount of
storage is SR. it is because the selec
tion that determines whether our address
is in the first 4K module or the second
4R module is made elsewhere.

Let's review for a moment. The driv
er for address 0712 and 0713 requires 2
inputs for full selection. One of these
inputs is developed through switches A,
B, and C. Switch C determines that our

3-55

address is in a particular block of 1024
addresses. Switch B divided this block
into smaller divisions of 256 addresses.
Switch A divided a block of 256 address
es into eight sections of 32 addresses
each.

To get back to our address of 0712,
follow the horizontal selection line to
the T switch, position 4. See @ Figure
3-36. These 16 positions of the T
switch are controlled by the X3, X4, X5,
and X6 positions of ROAR.

Position

x3 =
X4 =
X5 =
X6 =

Value

0
1
0
0

=
=
=
=

Conversion

o
4
o

+ 0

4th
position
of
switch T

We have previously mentioned the fact
that selection is made in modules of 4K.
Figure 3- 36 ® shows that the T switch is
further controlled. There are two T
switches, one that activates addresses
lK-4K, and the other, 4K-8K. Which 4K
module is selected depends on the W3
position of ROAR.

The selection is complete. Addresses
0712 and 0713 are selected. Position X7
of ROAR was never used for address sel-

3-56

ection. This bit position provides a
gate to the sense amplifier latches.
If, as in the case of address 0712,
position X7 is a 0, then the 60 bits
stored at the even address are gated to
the sense latches. Had address 0713
been desired, the X7 bit would have been
a one. All other positions would be
identical. The one in position X7 gates
the 60 bits stored at the odd address to
the sense latches.

APPLIED PRINCIPLES

•

•

•

•

There are 48 drivers for one ROS
board.

The ROS unit uses both the bit and
non-bit lines sent from the CPU.

There are 120 sense amplifiers.

There are 60 Sense Amplifier Latches
(SAL's)

Until now, we have used switches to
explain the addressing principles.
Switches are slow-operating and cumber
some. Faster and more reliable address
ing is done electronically.

Figure 3-37 is a representation of
the electronic addressing for one ROS
board. Again, let us start with the
smallest unit of selection, a driver.
The driver connections are shown in
Figure 3-38.

A, B,C, DECODE BUS 0

AO

3

4
5

6

7

BO

2
3

C1

2

CO or C3

P
R
a
G
R
A
M

C
A
R
D

Figure 3-37.

A

X1X12
XO

A

GROUP DECODES

B
W7

W6

A

DRIVER DECODES

ROS Addressing

A

3

Figure 3-38 represents the 48 drivers
of one board. The drivers are physical
ly located On two small cards, driver
card A and driver card B, attached to
the ROS board. There are 24 electrical
ly connected drivers on each small card.

A

X6
X5

X4

T PULSES

1 K -4K ARRAY

2
ROS WORDS

SENSE OUTPUT

ROS BOARD

Each driver is a one transistor circuit.
A transistor consists of a base,
erritter, and a collector. Let us con
sider the connections to each.

3-57

DRIVER T INPUTS

H
J

s

{

DRIVER CARD A

Figure 3-38. Driver Cards

The Base 1: Three driver bases are
cOII'Jnon. The darkened line that connects
these three drivers is a T input line.
Since one T line feeds three drivers,
there must be 16 T lines going to each
ROS board.

The Emitter 2 : Sixteen drivers have
their emitters commoned. The darkened
line that connects these 16 drivers is
the driver decode line. Notice that the
driver decoders are on the driver cards.
Two decoders are on driver-card A, one
driver decoder is on driver-card B.
Since one driver decoder line controls
the emitters of 16 drivers, three driver
decoders are used for controlling the
addresses on one ROS board.

The Collector 3 : The output from the
collector drives two ROS Words.

Again, see Figure 3-37. The T lines
for a 4K module are developed from 16
four-input AND circuits. Only one T
output line is active at a time. The
CPU provides both the bit and not-bit
lines to satisfy the AND inputs. Three
inputs to each AND are controlled by the
six lines for the X4, X5 and X6 posi
tions of ROAR. The other input is

3-58

1

I
1

I
I
I

I
1

1

1

I
I
I

.1

1

DRIVER T INPUTS

10 11 12 13 14 15

Ii

DRIVER CARD B

developed from the ANDed conditions of
the X3 and W3 positions of ROAR plus the
timing pulse, RO (Read Out).

In the 8K module there are two sets
of 16 AND circuits. One set is used for
addresses 0000 through 4031, the other
set for addresses 4096 through 8127.
The addresses 4032 through 4095 are non
existent. The W] bit, when set to a
one, selects the second 4K module. The
binary weight for this position is 4096
if you use a powers of 2 table.

The other half of the driver selec
tion is done by the driver decode cir
cuits. These are essentially three
input AND circuits. Only one of these
circuits is active at a time.

The inputs to these circuits are: HA,
HB, HC, MA, etc. The A, B, C portions
of these notations correspond to the
previously discussed switches. H, M and
L mean high, middle, and low and refer
to the three address groups on a ROS
board. These nine lines, which feed our
driver decoder circuits, are selected by
means of a program card. A program card
is nothing more than a pluggable card
used to join the circuits from the

decode bus to the decoder input
circuits. There are 15 inputs to the
program card from this decode bus. They
are the lines:

1. AO through A1
2. BO through B3
3. Cl, C2, and either CO or C3.

Six lines are sent from the CPU, bit
and non-bit lines from positions XO, Xl,
and X2. These lines are ANCed to devel
op the eight bus lines AO through A1.
The BO through B3 bus lines are devel
oped by the four lines from the W6 and
W7 positions of ROAR. Lastly, the CO
through C3 bus lines are made active by
positions W4 and W5.

It should be evident that with a
given setting in ROAR, one each of the
A, and B, and the C decode bus line is
active and the other 13 are inactive.
The program card uses these lines from
the deocde bus to satisfy. the inputs of
the three input decoder circuits.
Therefore, any group of 96 ROS words can
be physically located on another ROS
board in the array just by changing the
position of the program card. There are
some physical limitations in that a
program card for an even ROS board, 0 2,
4, etc., can only be put in another even
location. An odd program card may only
be plugged in another odd location.
There is also an electrical restriction
in that the CO pulse is supplied to the
first 11 boards, the C3 pulse is only
supplied to boards 12 through 42.

When a driver is fully selected it
provides the drive to two ROS words.
See the insert for the sense output
circuit in Figure 3-31. These two ROS
words are read out to sense amplifiers.
Each word contains 60 bits therefore,
there are 120 sense amplifiers. The
output from one set of 60 sense ampli
fiers is gated to the sense latches,
depending on the setting of the X7 posi
tion of ROA.R. If X1 is set to a one,
the word at the odd address is set into
the sense latches. The words located in .
the 4K-8K section of an 8K module have
their own sense amplifiers. These are
ORed with the amplifiers in the 1K to 4K
section ahead of the gating circuit.
This is possible as only one driver is
active in either the 1K to 4K section or
the 4K-8K section.

From Figure 3-39 you can determine
the inputs to the three input AND decod-

er circuits for any address desired. If
the console indication of the ROAR
address is converted to decimal, then
the three inputs for address 0112 are
CO, B2, and A6. CO is used for any
address 0000 through 1023. B2 is used
for addresses 0512 through 0767 within
this group. A6 selects the addresses
0104 through 0735. Our selection has
been narrowed to 32 addresses. The
additional selection is made by the T
line. Remember, two words are read out
at a time, one of which is gated into
the latches under control of X7.

AO I A1 I A2 I A3 I A4 1·A5 I A6 I A7

0

~I ~I '" BO 0 0 1 2 '" 0 ~ 0

2 ~I ~I ~15 -B1 3 4
~

co
fQl ~I " B2 5
~

6 7 ~
0

~I 0-1 "" B3 8 9 g; 10 N
~

BO 10 ~I 11 §I 12 "I 0-~ 13 ~

~I ~I '" B1 13 14 15 "" ~
C1

B2 16 ~I 17 §I 18 g:

18 ~I ~I "'I " B3 19 20 021 (!;
N N

~I ~I "" BO 21 22 23 0

"" N

~I ~I
0-

B1 24 25 26 '" '" N
C2

26 ~I ~I ""I '" B2 27 28 R 29 co
N N

B3 29 ~I 30 ~I 31 ;;:::
0

""

~I ~I " BO 32 33 34 N

"" ""
B1 34 ~I 35 ~I 36 ~ 37 ~ -I ""

"" "" C3

~I ~I
0-

B2 37 38 39 "" co

""
B3 40 ~I 41 ~I

Figure 3-39. Address Table

Let us try. as an example, the
address 2181. This address occurs in
the third unit of 1024 addresses; there
fore, the C2 input is needed. The
address 2181 falls in the horizontal B2
row. Vertically, it is in the A1 row.
The three inputs to the decoder circuit
must be C2, B2, and A7. Figure 3-39 can

3-59

also be used to determine the ROS board
on which any given address is located.
Using out last example, address 2787,
you can see that it appears on ROS board
29. Our first address of 0712 is found
on ROS board 7.

By doing some simple arithmetic,
Figure 3-39 may be used for addresses
greater than 4032. Take, for example,
address 6789. Subtract 4096 from this.
The result is 2693. This is the equi
valent address in the first 41< module.
The three inputs to the decoder circuit
for this address are C2, B2, and A4.
The address is located on ROS board 28
of the second module, 41<-81<.

REVIEW QUESTIONS - ROS ADDRESSING

1. How many words are read out by the
address in ROAR?

2. What is the maximum am.ount of ROS
storage?

3.

4.

5.

3-60

A driver is selected by means of a
line and a line.

ROAR consists of ______ __ latches.

How many drivers are used for each
ROS board?

6. How many sense amplifiers and sense
amplifier latches are there ?

7. What is a program card?

8. Are additional SALs needed for the
41< to 81< section of an 81< ROS unit?
If yes, how many?

9. What position of ROAR selects the
addresses in the 41< to 81< unit?

10. Which position of ROAR provides the
final gate to the SAL's?

ROAR CONTROLS

•

•

•

The console lights for a ROS word
address are controlled by an indi
cating ROAR.

The address in ROAR may be stored in
one of two J::ackup ROAR s.

Two latches are used to store backup
branch conditions.

Refer to Figure 3-40 <D. You have seen
how an address in ROAR selects a parti
cular ROS word. ROAR consists of 15
polarity hold latches. Thirteen are
used for address deCoding and two for
parity.

(0 0
Selector Mu I tip lexor

Backup
ROAR Indicating WX

P

=tJ------1 E8 3

GW Backup
FW

A X7 W WI

ROAR 7

0 0
GX

FX
FWX-WX

GWX-WX

W - Register

CA +- W PK AA
CA
0

K ..- W PK
CK
0

PF
SFG SHJ PG

F3 GO

0 UV WX PU U3 U4

CN FIELD

PRIORITY

CH CL

Figure 3-40. ROAR Controls

ROAR is set from many sources. Let's
first consider the sources shown in
Figure 3-40 <2>. The sources set all or
some positions of ROAR. The table in
this figure will help explain the speci
fic positions of Wand X that are set
from each source.

The source CA->W is an expression
found in a micro program that causes
control lines to be brought up and gate
the CA control field SAL output to the
W-register. Notice in the table that
the parity bit for W, P, is set by PRe
PR is the parity position for the CK
field and is used because the CA field
has no parity bit of its own. The W3
position is determined by the one bit AA
field. Note. The W3 bit is set when in
1401 mode-iO address a second 4R ROS
module. Acornplete description of 1401
mode operation is found in the Special
Feature section. The remaining posi
tions of the "-register, W4 through 7

CA
I

CK
I

GI

lJ5

P
0

TI
X

Address
Decode

OR

X - Register

CA CA
2 3

CK CK
2 3

G2 G3
PH
PJ HO HI H2 H3 JO JI J2 J3

U6 U7 PV VO VI V2 V3 V4 V5 V6 V7

PN CN eN CN CN CN CN
0 1 2 3 4 5

X X X X X X X X X

X X

are set from the CA 0 through 3 SAL
outputs.

XI

The R->" expression is similar to
CA->W, except that the "-register is set
from theCR field SAL output.

Switches F, G, Hand J are used to
set the ROAR also. Each position on a
switch provides five output lines when
decoded. The lines are 0, 1, 2, 3 and a
parity line. The 0 through 3 lines can
handle any value from 0 through F in
hexadecimal. As an example: If switch G
is set to position A, the lines 0
through 3 would contain the value 1010.
1010 is A in hexadecimal.

Refer to the table in Figure 3-40 to
see the switch control of ROAR. The
parity position of the "-register is set
from the parity lines of switch F and
switch G. The "3 position is set from
line 3 of switchF. The "4 through W7
positions are set by switch Glines 0

3-61

through 3. The parity for the X
register is determined by the parity
lines of both the Hand J switches.
Switch H lines 0 through 3 and switch J
lines 0 through 3 set the XO through X7
positions, respectively.

UV..,>WX is a statement in micro
programming that brings up control lines
to gate the U- and V-register to set
ROAR. The U-register positions 3
through 7 control the W-register.

The CN control field, which is part
of every ROS word, sets the XO through
X5 positions of ROAR and provides parity
on the X-register.

A priority is an interruption of a
micro program routine. There are nine
orders of priority and each sets one
specific position of the X register.
The position that is set in the X- reg
ister determines the starting address of
a micro program to handle that particu
lar interruption. The priorities and
the positions of ROAR that are set are
listed:

Priority

S'IOP
PROTECT
WRAP
MPX Share
SX Chain Pulse
Machine Check
Initial Program Load
Force IJ
Machine Reset

ROAR Position

xo
Xl
X2
X3
X4 see ~
X5
X6
X7
XP

Note: Other positions of X may be set
in combination because of specific
conditions.

The CH and CL control fields are
decoded to test for branch conditions.
The conditions that are tested determine
how the X6 and X7 positions are set.

Recall that each micro program step
is addressed by a 4-digit number in
hexadecimal. Let's try an example.
Assume that the ROS cycle that is active
is decoding the ROS word at
address 0123. If the next address to be
executed in the program is 0225, what

3-62

positions of ROAR are changed and how
might they be changed?

ADDRESS ROAR
W Position X position

Register
Positions = 3 4567 0123 4567

123
in hexadecimal = 0 0001 0010 0011

225
in hexadecimal = 0 0010 0010 0101

First: The W portion of ROAR has to
be changed from 0001 to 0010. One way
to set the W-register might be to use
the mnem.onic j(->W. The CR control field
would be coded 0010. Remember, the
address 0225 must be set up while
address 0123 is being executed.

Second: The X-register positions 0
through 5 have to be changed from 001000
to 001001. The CN field of ROS word
0123 must, therefore, be coded 001001.

Last: The X6 and X7 positions of ROAR
are controlled by the CH and CL fields.
The CH field must be coded 0 and the CL
field must be coded 1 to satisfy the
relnaining ROAR positions.

Now that you have seen some of the
ways that ROAR can be set, refer to
Figure 3-40 (j). This portion of the
figure shows another W- and X register
which is used for indicating purposes.
Because of timing considerations the
output from ROAR is gated to the indi
cating ROAR to control console lights.

Refer to Figure 3-40 @. These two
registers, GWX and FWX, are backup reg
isters for RCAR. As an example: If
during a step of a micro program the
selector channel has to break in, the
address in the W- and X-registers is
stored in the GW an GX registers. An
'address will be set into Wand X that is
the first step of another micro program
to handle the interruption. After the
selector channel roicro prograro is com
plete, the address that was stored in GW
and GX is returned to ROAR and the orig
inal program continues.

(Not) Inh ROAR Set -

ot) Inhibit ROAR Set (N

(Not) Block W-Reg Set
A ---<

Any Priority Pulse

Gt UV to WX

Gt CA to W
A

t--

'---

A -
OR

Gt BU ROAR to WX Gt CKto W Reg
-

Figure 3-41. WX Register Sets

See Figure 3-40 (5). There are also
backup positions for branching. X6 and
X7 backup latches are necessary because
of timing considerations.

Specific controls for ROAR and indi
cating ROAR are shown in Figure 3-41 and
3-42.

Check Stop Sw

ALU Chk
C'hTReg. Chk.

,:"M,:,-N.;,;;Re;,,:g',:-:C::;;h;,:.:kO __ -l OR

B-Reg ° Chk °

A-Reg ° Chk °
Allow A-Reg. Chk. A

A A

T4

Figure 3-42. Set Indicating RCAR

REVIEW QUESTICNS - ROAR CONTRCLS

Set WI - XI

1. How is position 3 of the W-register
set when the mnemonic CA->W us used?

2. What console switches are used to
set ROAR?

3. Which control field sets positions
0-5 of the X-register?

4. What address is set in RCAR as a
result of a machine check?

5. There are console lights that indi
cate the status of ROAR.

TRUE FALSE

A X-Reg
- OR

Set
'--

Tl - W-Reg

OR Set

-
~

'-- A

OR -

--

6. An ALU check blocks the set of the
indicating ROAR.

TRUE FALSE

RCS TIMINGS

• ROAR is set at Tl time.

• The CPU GC pulse is used to develop
the RCAR read out pulse.

• The SAL'S are good at T4 time.

• The control registers are set at T1
time.

• Backup ROAR is set at T4 time.

The ROS timings may be divided into
three groups:

1. Basic
2. Micro Program Break In
3. Parity Check

BASIC TIMINGS

Figure 3-43 shows the basic timings
associated with RCAR. Two 1-microsecond
ROS cycles are represented. Each cycle
is divided by the CPU times Tl, T2, T3,
and T4.

3-63

Cycle I
SIGNAL NAME

TI I T2 I T3 r

I Set ROAR
I

2 ROAR Go
J I

3 SALS Good
I I

4 Set Control Reg.
I

5 Reset Control Reg.
I

6 Control Reg. Good
I

Figure 3-43. Basic Timings

Before any ROS word can be executed,
there must be an address in ROAR. The
pulse to set ROAR is atT1 time. Remem
ber, ROAR consists of polarity hold
latches and that to set a latch it takes
a set pulse ~1) plus a bit input. If a
latch is ON at set time with no-bit
input, it is turned off.

Once ROAR has been set and the latch
es have been allowed to settle down, the
latches can be used to bring up the gate
and drive lines for addressing. This is
done at T2 time by the GO pulse. The GO
pulse is delayed to set up a readout
pulse, which allows the SAL's to set at
T4 time. The GO pulse is also used to
reset. the SAL's. The SAL's are consid
ered good from T4 time through a portion
of T3 time.

The addressed ROS word contained in
the SAL~S is not gated to the control
latches until T1 of the following cycle.
If the clock were to stop at T4 time,
the SAL's would contain the information

3-64

I Cycle 2 I

T4 I TI I T2 I T3 I T4

I I

I I

I I

I I

I I

I I

of the ROS word addressed. The control
register latches would contain the
information from the previous ROS word.
Though the set and reset times of these
latches partially overlap, the set time
takes preference.

BREAK-IN TIMINGS

To help explain the timings during a
micro program break-in, let's use the
example shown in Figure 3-44. Consider
the main micro program to be executed
consists of the ROS words at addresses
0001 and 0002. A micro program break-in
will cause the main program to stop
while the ROS words at addresses 0103
and 0104 are executed. The sequence of
operation is shown by the darkened
arrow. Let's take the operation cycle
by cycle. The cycles are labeled
according to the time that the control
register latches are good£or that
address.

01-0001

" =1

Set ROAR o
ROAR Go o
~SA~L~Go~od~ _______ L-~OO~OO~.~··LI -L __ ~0~OO~1 __ SL~ __ ~01~03 __ ~-L~ ____ ~ ____ J-~ __ ~0~104~~~ __ ~0~OO~1 __ -L-L __ ~00~02_~

C
R F'NX -+- WX
R

Figure 3-44. Micro Program Break-In

0001

L

Cycle 0000 is executed, the 6 and 7 positions of
the S-register could be changed.

At T1 of this cycle, the address of the
next micro program step, 0001, is set
into ROAR. At T2 time, the GO pulse
causes the data at address 0001 to be
read out to the SAL'S. The SAL'S are
good during T4 time. Assume that during
T4 time, a micro program break-in is
called for. Because of this int~rrup
tion, the address in ROAR, 0001, is
stored in a backup storage address reg
ister (ROBAR).

Dead Cycle

This is called a dead cycle because no
control latches are set. The set pulse
to the latches is blocked fo.r the first
cycle of the interruption. This should
have been the time the control latches
were set for address 0001. At T1 time
of this cycle, a new address (0103) is
forced into ROAR. This address is the
first step of the alternate rricro pro
gram to handle the interruption.

Also at this time, the branch condi
tions for address 0001 are set into
backup X6 and X7 latches. The branch
conditions, S6 and S7, have been tested
by the SAL's that are good for
address 0001. Their status must be
stored because, as the alternate program

Cycle 0103

This is a normal cycle that executes the
ROS word at address 0103.

Set Up Cycle

This cycle is a normal cycle before the
last step in the alternate routine. Its
only function in this example is to set
ROAR with the address 0104 and begin
execution of this ROS word.

Cycle 0104

During this cycle, the control-register
latches are good for address 0104. At
T1 time, it ib necessary to set ROAR
with the next address to be executed.
Since this is the last step of the
altt:rnate routine, the address in backup
ROAR, 0001, is gated to ROAR so that the
original micro program that was inter
rupted may be resumed.

ROAR Restore Buffer Latch

This latch is turned on at T2 time when
a statement in the micro program speci
fies that ROAR must be changed. This
statement appears in the last step of

3-65

the alternate routine. An example:
FWX->WX, which means gate the multiplex
or channel backup register to ROAR.

Cycle 0001

The control-register latches are good
for address 0001 during this cycle. Even
though we have addressed this ROS word
again, this is the first time that it is
fully executed. The first time
that 0001 was addressed, the control
registers were not set. At T1 of this
cycle, the branch portion of
address 0002 is set up by using the
backup X6 and X7 latches.

ROAR Restore Latch

This latch is turned on by the coinci
dence of a ROAR-restore-buffer latch
being on and T4 time. This latch pro
vides a gate to set the X6 and X7 posi
tion of ROAR from backup X6 and X7.

Cycle 0002

This is the normal execution of the Ro.S
word at address 0002.

PA.R.ITY CHECK TIMINGS

A parity check is made on the SAL's,
control registers, and Ro.AR. The SAL'S
are active from T4 time of one cycle
through T3time of the following cycle.
The SA.L outputs are sampled at T2 time
for odd parity. Machine check register
position 4 is set if there is an even
number of SAL outputs.

The control-register latches, which
are set at T1 time, have their outputs
sampled at T4 time. A control-register
check sets position 3 of the machine
check register. It also blocks the set
of the indicator ROAR if the check-stop
switch is set to STOP.

The combination of the parity bits
for the W- and X-registers and the PA
bit must be odd (all three or anyone) •
If not, the WX check line is active and
the ROAR check latch is set (Figure
3-45). If this latch is on at T2 time,

3-66

the MC-5 latch is set.

T2 MC-5
ROAR Check A

ROAR Chk

T4

OR

--PH-- A - FL ---
Timed MC Stop

Figure 3-45. Ro.AR Check

If the SAL'S are bad parity, the
Go.-pulse is blocked. 'Ihe control
register checking is done from the SAL'S
for those fields. The address in Wand
X on a check stop is the address of the
ROS-word that failed.

REVIEW QUESTIONS - Ro.S TIMINGS

1. Arrange the following functions in
the correct sequence of operation.
a. Set the SALs
b. Read out ROAR
c. Set the control register latches
d. CPU Go. pulse
e. Set Ro.AR

2. Explain what data is contained in
the SALs and the control register
latches if the CPU clock is stopped
at T4 time.

3. What is meant by the term -dead
cycle-?

4. Why are there backup positions for
the X6 and X7 branch controls?

5. At what time are the control reg
ister latches checked for odd
parity?

PHYSICAL DESCRIPTION

Figures 3-46 and 3-47 show a 4K Ro.S
module as viewed from the left side of
the console. The ROS documents are
inserted from this side.

Figure 3-46. IBM 2030, Left Side

One side of a ROS board is pictured
in Figure 3-48. The ROS documents are
held to this board by means of an air
bag_ There is a ground plane between
adjacent boards as well as within the
RCS board itself.

3-67

Figure 3-47. ROS Module, Front
View

3-68

W
I

0'1
ID

:>t:OL-ottt

Figure 3-48. ReS Board Layout

~ 11111111

IIIIIIII1111

Figure 3-49 is a rear view of the Res
module. This figure shows the location
of the driver connections and the plug
gable program cards. The circuits and
cabling for ROS are located in the area
below the ROS boards.

Figure 3-49. ROS Module, Rear
View

3-70

Figure 3-50 shows the addresses as
they appear on ReS boards 0 and 1. Even
addresses are on the left side of a Res
board, odd addresses on the right. As
an example: address 0017 is on Res docu
ment number 1. Document 1 is the upper
most card on the right side of board O.

ROS Board ROS Board

o

o. 0000 0001 I 8 0096 0097 9

0022 01fl.'3 0118 0119
2 0024 00~5 '3 10 0120 Ol~I II

0046 00A7 I Console > 0142 OlA'3
4 0048 00A9 5 12 0144 OlA5 1'3

0071 0167
6 007'3 7 0169 15

0190 0191

Figure 3-50. Res Docum.ent
Addresses

Figure 3-51 shows the layout of the
ReS document. The drive tabs are locat
ed on the column-SO end of the card.
The document is inserted into the module
drive tab first. Because the capacitor
plates on this document m.ust be next to
the ROS board, all the ReS documents
that contain words at odd addresses must
first be flipped over before insertion.

Figure 3-51. ROS Document Layout

If all the ROS documents are viewed
with column-800fthe card to the right,
then it follows that the odd addresses
are numbered from the 9-edge to the
12-edge of the document. The documents
that contain the ROS words at even
addresses are numbered from top to bot
tom as viewed(Figure 3-52).

Drive Tab End

0000 0023
0

0022 0001

r0024 2

I r:: 3
0046

r0048 4

I
(0071 5

_0070 0049

I

I

r= 6

I G095
7 I 0094 0073

Figure 3-52. ROS Word Numbering

M.ACHINE CHECK HANDLING

CPU ERRORS

Error conditions (ALU check, SAL check,
etc.) may be highly intermittent. The
CPU clock circuits are so designed that
intermittent errors do not necessarily
stop the clock. Each type of error sets
a particular position of the machine
check check register. If the CPU is
allowed to recognize error conditions,
an address is set in ROAR that is the
start of a micro program to handle
machine checks. This micro program
stores the status of the machine-check
register, sets registers to correct
parity, and initiates a PSW store and
load routine which causes a branch to a
Control program. The Control Program
handles all machine checks. If a second
er~or should occur before the Control
Program can clear the first error, the
CPU clock will stop. Should errors
occur during a selector-channel ROS
request or in a multiplexor-share
request, further testing must be done
before the Control Program is executed.
Four main functions to consider are: 1.
The setting of the machine-check reg
ister. 2. The start of the MC micro
program. 3. The objectives of the MC
micro program. 4. Stop on error condi
tions.

3-71

MACHINE CHECK REGISTER

The MC register consists of eight latch
es. Consider the setting of each latch
(Figure 3-53).

(0)

3-72

This position is set at T4 time if
there is an A-register check and
the allow-A-register-check latch
is ON. The allow-A-register-check
latch is set on at Pl time with
certain decodings of the CA con
trol field. This latch is set off
at Tl time if the
suppress-A-register-check latch is
on. Remember, when there is an
A-register check, a machine check
micro program may be entered. It
is conceivable that the register
that caused the error may be used
in this micro program. If further
A-register checks were not
blocked, a second error would
occur which would stop the CPU
clock. The
suppress-A-register-check latch
blocks further A-register checks
until the D-register is gated to
the A bus. This does not occur in
the micro program until the
registers used in the MC micro

(1)

program have been set to good
parity.

This position is set ON at T4 time
if there is a B-register check.

(2) An MN register check sets position
2 at T4 time if the allow-write
line is active. This line is
active early during the read cycle
when MN has been set.

(3) A control-register check sets
position 3 at T4 time.

(4) MC-4 is set ON at T2 time with a
SAL parity check

(5) position 5 is set ON to indicate a
ROAR check.

(6) An R-register check sets position
6.

(7) Set by an ALU check at T4 time.

Any MC register latch (0-7) that is
on, sets the first-machine-check latch
if the console check switch is set to
PROCESS.

CA Field A
PI

L--

-FL-
T1

j"" Supr
A-Reg

(Not) H Reg 5 Bit
Chk

A
Mach Chk Pulse
(Not) MPX OPlN lch
T2

'--
~Fl-

Mach Rst OR
Gt D-ReQ to A Bus ~
TI I

L--

Allow

Mach Rst Sw - N
PCSAlr--G

-FL-

T4

ROAR

WX Chk CHK ROAR Chk

-' A T2
A

T4
L--

f-PH-
----:---

Mach Chk Rst fhk Stop Sw ~ A

limed MC
Stop Rst -

Priority Pulse

(Not) Supr Malf Trap ;:;:-
(Not) Priority lch
(Not) Gt Switch WX Mach Chk

Pulse
Fi rst Mach lch

-

Pigure 3-53. Me Regis~er

All ow A-Reg Chk
A-Reg Chk
T4

B-Reg Chk

T4

MN Reg Chk
Allow Write
T4

Ctrl-Reg Chk
T4

Allow SAL PC
SAlS PC
T2

I

I

R Reg PC
T2
Wr in R Reg

AlU Chk
T4

I
A

I

I
A

L---

I
A

I

I A
L--

I
A

I

lOR
L--

I
A

I

I
A

Machine Check
Register

r--
0
Fl-

----<

I
-Fl-

L---

----<

2
Fl-

"------

r---
3

f-Fl-

----<

4
-Fl-

-

~

5
-Fl-

"------

r---
6
FL-

-
'--- 7 Chk Sw Proc

I--Fl-

T4
'---- Mach Chk

Pulse

First
Mach
Chk

A
I
L-- 1 st

r-FL-

r;;:-
I

~-73

The next objective is to enter the Me
micro program. The insert in Figure
3-53 shows the machine-check-pulse line.
This line brings up controls to enter
the MC micro program. The line is
active when:

1. The priority latch is off.

2. Switches are not being used to set W
and X.

3-74

3. The first-machine-check latch is on.

4. The suppress-malfunction latch is
off. This latch determines whether
errors are to be recognized. If
this latch is on, the line to enter
the MC micro program (machine -check
pulse) is not active.

Note: The machine-check latches are
res~t P4 time with a reset line.

Stop
2nd Error

Figure 3-54.

Yes

No H6
On?

No

Yes

Stort
0004

H5
On?

Yes

Multiplexor
Error Routine

From Selector or
I------------------....,~ Multiplexor Error Routines

HI
On?

No

Set HI to
a ONE Enter
Machine Check
Error Rout i ne

1. Store MC-Register
in Location 80

2. Store 20 in Loc. 81
(if CPU Error)

3. Store Old PSW

4. Set Registers to
Good Parity

5. Allow A-Reg
Checks-

Load New MC
PSW - Perform
Control Program
for Handling
Machine Checks

Reset HI when
Contro I Program
Issues "Lood PSW"

Continue Instructions

Me Micro Program

Selector Channel
Error Routine

I,J,U, V, T,G, L, D
Set to Good Parity

Wi th HI Reset
Further Errors are
Considered First Error
No CPU Clock Stop

3-75

MACHINE CHECK MICRO PROGRAM

The starting address for this program is
0004 (Figure 3-54). Position 5 of the
H-register is checked to see if it is
set. If this position is set, it means
that the error occurred during a
selector-channel-ROS request and further
testing is necessary to determine wheth
er the error is to be charged to the
channel or the cpu. The next decision
is made by testing H-6 to see if the
error occurred during a
multiplexor-channel-share request.
Position H1 is then tested. Since this
is the first time through this flow
chart, H1 is not set. The next step in
the program is to set position 1 of the
H-register. Should another error occur
before the Control Program resets H1 to
a zero, a branch would again be taken to
the start of this routine. The micro
order that tests H1 sets up a branch to
a STOP if H1 is set ON. Let us assume
there are no further errors and continue
with the flow chart. The information in
the MC register is stored in location
0080 (HEX). A 20 (HEX) is stored in
location 0081 (HEX) to signify that the
failure is charged to the cpu. The Old
PSW is stored. Some hardware registers
are set to good parity. The last reg
ister set to good parity is the D
register. This allows further A
register checking by turning off
suppress-A-register-check latch. A new
machine-check PSW is loaded to handle
the different checks. During this
Control Program, a ROS word in the Load
PSW operation will cause H1 to be reset.
The instructions that follow depend on
the Control Program.

Errors could occur that would cause
the CPU to execute a tight loop of ROS
words without stopping. Consider what
would happen if a second error occurred
before H1 is set ON. A continuous
branch would be forced to address 0004,
the start of the machine-check micro
program. To overcome this condition,
there is a hardware circuit which turns
on the hard-stop latch (Figure 3-55).
The first error that brings up the
machine-check line turns on the second
error-stop latch. If this latch is
still on when the next error occurs, a
circuit is active to turn on the hard
stop latch. The second error-stop latch
is turned off when position 1 of the
H-register is set. This gives the
Control Program an opportunity to handle
the error condition.

3-76

Hard Stop

2nd Error OR

Mach Chk
Stop

J A
,----

T4 A -P1
L- First Mach f-- FL -

Chk '--

. FL-

Mach Chk Rst r(5jf -
HZ - Dest Rst I

Figure 3-55. 2nd Error Stop Latch

REVIEW QUESTIONS - MACHINE CHECK
HANDLING

I--

1. Why are further A-register checks
blocked when entering the machine
check microprogram?

2. How is position 7 of the machine
check register set?

3. There are several conditions that
must be met before the machine check
microprogram can be entered. Name
two.

4. How are H5 and H6 used in the MC
micro program?

5. How is further A-register checking
allowed by the MC microprogram?

6. How is H1 used by the MC
microprogram?

FORCED MICRO PROGRAM ENTRIES

• Ten ROAR addresses may be forced.

• Priorities are executed in order of
importance.

• Waiting priorities are stacked.

What is a priority? By definition, a
priority is that which is superior in
rank, privilege, or position. As an
example: Assume that an instruction
micro program is being executed and a
machine check occurs. The instruction
micro program must be halted while a

trap is taken to another micro program
that will handle the error. Since the
original program is interrupted, the
machine check must have the higher
priority.

There are nine orders of priority
(Figure 3-56). Each order of priority

will set a specific address in ROAR.
This is done by setting a particular
position of the X-register. The excep
tion to this is a selector-channel-ROS
request, which sets positions 4, 6, and
7 of the X-register. There is one func
tion that has priority over all others.
This is machine reset. The machine
reset function sets the P bit of the
X-register. The ROAR address,
therefore, is 0000 (HEX) • This is the
starting address of a microprogram
routine to zero the UCW's, clear 1050
locations in local storage, set psw tit
to zero, etc.

Figure 3-56. Priority Micro
Program Entries

(Not) Supr Malf Trap r-
+':(N-:-o~tf-) p=-'r""i o;;"'rii'f-ty""':-'La-:'t"'ch;;.L---t A
(Not) GT Switches to WX I X5 Mach Chk Pulse

First Mach Chk Lat 2f.L

(;;.N.;.;o~t);...:P.,;.r=io.;"ri~tY,...L;;.;a;,;.,tc;.;.h;"""'''''''''''-I~
(Not) GT Switches to WX 2
(Not) PPI
Load Req. Lot.
(Not) H-Reg 0

~(N~o~t~)P~r~io~ri~ty~L~c_h~~~~
(Not) GT Switches to WX 3
(Not) PPI PP2
Force IJ Req Lch
(Not) H Req 4

A
4

X6 IPL Pulse

X7 Force IJ

X2 Wrap

PP4

(Not) GT Switches to WX 'A Allow Low Priority
(Not) PPI -2-3-4
(Not) Force Dead Cy Lch

Allow Low Prior ~
(~N~o~t)~P~ri~o~rit~y~L;;"'c'h----~

5 XI Protect
Mem Protect Req Lch
(Not) H-Reg 3

~A~II~ow~L?ow~Pr~io~r~ __ -t~
(Not) Priority Lch 6 XO Stop
(Not) PP5
.:::;St~ot:...:,;;pRe::.:aqL..::::C::..:-h ______ ~_ --ill..

A
7

Sel Chain Req Lch
(Not) H Reg 5

Allow Low Prior ~
(~N~o~t)~P~ri~o~ri~tY~L~c~h----t 8

(Not) PP5-6-7
(NotlH-Reg 5 or 6
MPX Share Req Lch

(Not) GT SW to WX

Force Dead Cycle
(Not) Allow PC SALS

(Not) Allow·

A

OR

X3 MPX Shore

-:-Lo:-:-w_P_ri~o=-ri-:ty:-:-::,.---;C5R Any Priority
Allow PC SALS Pulse
PP5-6-7-8

SX Chain

A X6 - X7

3-77

The other priorities are shown top to
bottom in order of importance. As an
example: AND number four must be satis
fied to enter the micro program that
handles a memory wrap condition (X2
wrap). The X-register is set, 0010000.
The inputs to this AND are:

1. not priority latch - This line
blocks the AND if there is another
priority in process.

2. not gate switches to WX.

3. not PP 1-2-3 - This input aSsureS
that no higher priority must be
taken first. PPl is an output from
AND circuit number 1. PP2 is an
output from AND number 2, etc.

4. m.em.ory-wrap-request latch - This
line is developed from a priority
stacking latch, which was set
because of a memory-wrap condition.

5. not H-register 2 - There are times
when a memory wrap can occur but may
be ignored. The micro program can
set position 2 of the H-register.
When this position is set, memory
wraps are ignored.

Two other lines are developed when
there is a priority entry; they are:

ALLOW LOW PRIORITY: Active on priority,
PPl-2-3 or 4. Used to satisfy lower
order priorities.

ANY PRIORITY PULSE: Active when any
priority, PP1 through 8, is active.
This line is used to set a latch which
block further priorities, and is dis
cussed later.

PRIORITY STACI< LATCHES AND CONTROLS

TheAND·s that develop the priority
pulses each have an input that is satis
fied by a stacking latch (Figure 3-57).
These latches are needed because several
priorities may occur at one time, but
only one can be handled. Notice that to
set tbe stacking latch for a MPX-share
request (PH1), position 6 of the H-

3-78

register must not be set. Early in the
MPX-share request micro program, this
position of the H-register is set.
Further MPX-share requests are then
blocked from setting the stacking latch.
When there is a.selector-channel-ROS
request, the micro program that handles
the request sets position 5 of the H
register. This not only blocks further
selector-channel ROS-requests, but also
MPX-channel-share requests.

While one priority is being handled,
others must be temporarily blocked.
Remember, if a priority pulse is
developed, the line (any-priority-pulse)
is active. This line turns on the any
priority latch at Tl time. With this
latch on, a T3 pulse turns on the
priority latch. The priority latch,
when it is on, blocks the AND circuits
that develop further priority pulses
until the latch is reset. Some of the
ways to reset the priority latch are:

1. At Tl time, with a process-stop~loop
active. This line is active when
the mnemonic S STOP is encountered
in the micro program.

2. At P4 time, with the WX SABC latch
on. This latch is turned ON at Tl
time if WX must be set manually.

3. At T3 time, if the
priority-reset-control latch is on.
This latch is set on when the H
register is specified as the
destination of data (eg. A + B
->H) •

REVIEW QUESTIONS--FORCED MICROPROGRAM
ENTRIES

1. What address is set in ROAR for MPX
share request?

2. Which function has highest priority?

3. Priorities are stored while awaiting
execution by means of latches.

4. How is the priority reset control
latch turned on?

To T3
~

A
Micro Program
AND I---

First Mach Chk Req Entries Mach Rst '---
0 Priority
R Latch (Figure 3-56) To Priority roo-

PH L-- Pulse
0 Circuits

i---Fl--
.-

0
Load Req R .----

~ r-
PH '---
1

Force IJ

~
PH
2

Any
Priority

Memory Wrap Any Priority Pulse latch

T1 -
~ OR f--

I- -PH--PH Mach Rst
3

'--

Memory Protect Req

~ T1 r-- r-
A

PH Proc Stop loop Mach Rst
OR r-

4 Active Gt Sw to Wx
L-- '---

Stop Req
WX SABC ~r--;;:--

~
r--

PH Tl
OR f--

5 Mach Rst --PH-- '---

'--

~ Sel Ros Req r-
(Not) H-Reg. 5

I---
~

PH Priority
'-- 6 Reset E--~

CD - 0101 (H) Control

L..-ry T4 r---
(Not) H-Reg 6 r- t- OR I--
MPX Share Req ~

Mach Rst I--- -PH-- '---

'--- PH
7

L--

Gate Switches to WX Gt Switches to WX

~
Main First Trap

PH Micro ROS Cyc:fe
8 Program (Dead Cycle)

T1 T2 T3 T4 Tl T2 T3 T4 T1 T2

Mach Rst 'ORJ Priority Stack I 1 I I I I
I I I I

Latch I I I I I , I I I r;;:- I I I Gt Sw,to WX I I Any Priority I I I I I I I
P4 latch I I

I , I I I j I - I I I I I I I '--- Priority I I I I I
I I I I I I r-- Latch I I I ITI Not Allow Write A I I I

T3
f--

Priority Reset I I I I I ! I I I ! I I I I
'---

Control I I i I I I I I

Figure 3-57. Priority Stack Registers and Controls

3-79

CVERALL TIMING RELATIONSHIPS

Earlier, wnen we discussed core stor
age, we emphasized the fact that it is
an independent unit. It communicates
with the CPT} through the memory-to-CPU
interface. Core storage has its own
clock that is started by a signal from
the CPU. This means that ROS requests
core storage service on one time ~sis
(CPU clock), whereas core storage

answers this request on another time
basis (memory clock). Although these
two clocks operate independently, their
timings are definitely related. When
the ROS reC'ds out a word that .requests
core storage service, the mem.ory clock
is signalled to start at the beginning
of the next CPU cycle. In Figure 3-58
read call is develoF~d and sent to the
core storage unit as a result of the
statem.ent IJ->MN. Read call starts the

3-80

memory dock and specifies a memory read
cycle. While the core storage unit ls
reading out the requested byte, the Res
is reading out and executing the second
micro-word. When the memory has the
requested byte ready (about T4 time), it
signals the CPU with the data ready
signal. The CPU then accepts the byte
and gates the byte to the R-register.

The second micro-word contained the
statement write. Thus when the core
stora~e unitfinishes its read cycle,
the write statement develops the write
call signal to start the memory clock
tor a memory write cycle. These timing
relationships are important because they
point out how the core storage cycle
seems to be one cycle behind the CPU
cycle.

2

3

4

5

6

7

8

9

10

11

12

13

First Two Micro
Words of I-Phase

CPU Clock

Set ROAR

ROAR Go

SAL's Good

Orl Reg Good

Read De lay li ne

Write De lay line

Read Call

Strobe

Data Ready

R Reg

Update J Reg

Write Call

Inhibit

Gate R-G

Set Destination

Cycle
Function

I I I I I I I

: T2 : T3 : T 4 : T 1 : T2 : T3 I

I I
T1 T4 T 1

I I

.lA R1 R2
Op Code

:
T2 I T3 T4

0100 I I 0109 I I

I

I

I

:
I

I

I

I

I

I

I

I I

Read Word 1

I
I
I

I I

IJ_MN I

I J + 0 + l_J

I I I

I I

Write I

o .2 I .4 I .6 1.8 1.0

I

P
I

.4 I .6 .2 '.8
I

1.0 ,
I i I I I I I

I""' .. I-----Memory Read Cycle -----1 .. -iI , I I I
I I I

I

:
I I

I

:

I

I

I

I

Execute Word 1
Read Word 2

I I I I

""'1 .. >---- Memory Write Cycle .-j
I

I

I I

n:
I I

I Op Code -lA

I

, I

i I

I

I J

I
I

I
I

Execute Word 2

I

I

I

I

I
I
I

I I

rGl

Pigure 3-58. ROS to Memory Timings

T1

I
I

r

t:

3-81

POWER-ON SEQUENCE

Before power can be applied to the IB~
2030 processing unit, the over-voltage,
over-current, andover-temperature con
ditions must be normal and the high
frequency inverter/converter oscillator
must be running.

Pressing the power-on switch picks
RY3 to initiate the power-on sequence
{Figures 4-1 and 4-2). Relay RY3 in
turn picks contactor K2 applying power
to the blower motors and the converter
inverter, and starts the delayed pick of
TDR1 for the two second power-on-reset.
By this time all DC voltages are applied
to the circuits except +40 volts and the
special -3 sequence voltage for Gate B
(board E3 only). With +6 volts up, a
point of RY3 picks RY4, the 6 volt sense
relay. The pick of RY4 causes contactor
K3 to pick applying +40 volts and the -3
volt sequence voltage to the circuits.

At the end of the two second time
delay, the -3 volts is removed from the
-Y reset line by the pick of TDR1 and
relay RY5 picks to indicate that the
processor is ready.

During this power-on sequence, each
I/O control unit on the channels will
powe.r up and the last I/O control unit
in the chain completes a circuit to turn
on the power-on light on the console
panel.

POWER-OFF SEQUENCE

pressing the power-off switch on the
console panel sequences power down in
the CPO and the power-on control relays
(Figures 4-1 and 4-3). Power to all I/O
units is dropped simultaneously.

All data in core storage remains
unchanged. If the allow-write latch is
on at the time the power-off switch is

SECTION 4. POWER SUPPLY

pressed, a memory write is forced and
the contents of the R-register is
inhibited into core.

EMERGENCY POWER-OFF

The EPO switch rereoves all power except
the 24 volt control power from the CPU
and every I/O control unit attached to a
channel simultaneously, and without
sequencing.

An emergency power-off can cause the
data in core storage to be lost.

OVERVOLTAGE OR OVERCURRENT SENSE

Either of these conditions remove pri
mary power from the inverter/converter
and the blowers by initiating a normal
power-off sequence. An indicator lights
on the power supply module affected, or
on the relay and connector panel.

Power cannot be .restored until the
cause of the overload is corrected and
the reset pushbutton, located on the
high-frequency inverter, is pressed.

eVER TEMPERATURE SENSE

The thermal switches, located throughout
the CPU, remove primary power from the
inverter/converter and the blowers by a
normal power-off sequence.

The thermal trip light on the relay
and connector panel rerr,ains on and RY7,
the thermal interlock relay, re-picks
even though the thermal reset switch is
pressed as long as the over-temperature
condition exists. Power cannot be
restored while any thermal switch is
open. when the over-temperature condi
tion is corrected, power can be restored
only after the thermal reset switch is
pressed to pick RY2 and to drop RY7.

4-1

24 Volts DC
+

Power On Switch

Power Off Switch

RYI

RY2

~ +6V DC

All Supplies in Series

All Thermal

RY3

RY3

RY5

K3-4

ct=Y_3---<>-_O

Figure 4-1. Power-On-Off Control

4-2

RY2

+6V
Sense

Convenience
Outlet

Over current
Trip

Thermo I Trip

Overcurrent
Sense

Thermal
Sense

RY4

Thermal
Interlock

Power
On

To DC Ground Bus

No Name Logic

1 Power On Sw. YZ041 n
2 Relay RY3 YZ041 11

3 Relay K2 YZ041 21

4 Start TORI YZ041 21

5 Power On Rst YZ042 41 18

6 ReiayRY4 YZ041 2(

7 Relay K3 YZ041 61

8 Relay TORI YZ041 1

9 Relay RY5 YZ041 81

10 Power On Light YZ041 9*1

.. Oepends on number of I/O units attached.

Figure 4-2. Power-Cn Sequence

No Name Logic

1 Power Off Sw. YZ041 _n
2 ReiayRY6 YZ041 11 1

3 Relay K3 YZ041 12

4 Relay RY3 YZ041 J2

5 Relay TORI YZ041 14

6 Relay RY4 YZ041 \,3

7 Relay RY5 YZ041 15

8 Power On Light YZ041 17

Figure 4-3. Power-Off Sequence

MARGINAL CHECKING

Marginal checking consists of varying
certain supply voltages so that inter
mittent failures become solid failures,
permitting more rapid trouble diagnosis.
Marginal checking has two basic applica
tions:

1. Unscheduled to minimize system down
time when troubleshooting intermit
tent failures.

2. Scheduled maintenance: to decrease
system failures by eliminating trou
bles that would limit the marginal
check range.

The marginal-check scheme used in the
20)0 is a part of the circuit design and
requires no separate voltage supply.
Three of the supply voltages are varia
ble within a certain range:

The +60 volt supply is variable +
15 percent.

The +40 volt supply is variable +
15 percent.

The +6M volt supply is variable
from 4 to 1 volts.

4-3

Each supply can be varied by means of
a potentiometer located on the amplifier
card in the power supply module.

208 Vor 230 V
Contactor K2

3-Phase

POWER DISTRIBUTION

The power distribution throughout the
2030 is shown in Figure 4-4.

+60 M

+ 18 V

+6 V

+6 M

- 3 V

+3V

+40 V

+3V

208 V AC 3-Phase
Inverter/Converter

208 V AC 3-Phase

208 V AC I-Phase

Transformer
7.25 V AC
Ferro-Supp Iy

DC Dist.

R/W Storage

R/W Storage
CCROS

Console
R/W Storage
CCROS

Gate A
Gate B

System

Gate A
Console
R/W Storage
CCROS

R/W Storage

Gate B Only

To Blower Motor

Distribution

To Power Supply

Blower Motors

To Console

Indicator Lights

Convenience Outlet

Figure 4-4.

4-4

Contacter K 1

Transformer
28 V AC
Step Down

Power Distribution

Distribution

To Interval
Timer, Audible
Alarm, and
Inverter/Converter

Rectifier
24V DC

To Power On-Off

Controls

1.01, 1440, AND 1460 COMPATIBILITY
FEATURES

• The Syste~/360 is in compatibility
mode when W3 of the WX Reg is on.

• Only one compatibility feature can
be present on the machine.

• Any system reset causes the 2030 to
leave 1401 mode.

• IJ, LT and UV perform the functions
of I-Star, A-Star,and B-Star, res
pectively.

• Sense switch settings for 1401
object program are stored in R8,
local storage.

The 1401, 1440, and 1460 Compatibility
Features are special features available
to the customer to allow him to run 1400
system (1401, 1440, 1460) object pro
grams. The facilitate the processing of
1400 system programs, a second 4R ROS
has been added to the 2030. This addi
tional ROS contains the micro program
ming necessary to process 1400 system
instructions. The 2030 can be put into
compatibility mode by turning on the W3
bit of the W-register. This bit causes
the added 4R ROS to be addressed, and
controls all mode dependent functions.
Hardware is provided to allow W3 to be
sent from:

1. the console switches
2. the micro-program cont.rol UV->WX
3. the micro-program control CA->WW.

When W3 is set from the console
switches, the position of rotary switch
F determines W3 (ie: F at an odd hex
digit will turn on W3). The status of
U3 determines W3 when the micro-program
statement UV->WX is used to turn on
compatibility mode. When the micro
program program statement CA->W is used,
the status of AA determines the status
of W3. Any system reset turns off W3
and causes the 2030 to leave
compatibility mode. Recycle reset, the
micro-program control R->W, and priority
trapping, do not affect the setting of
W3 when the compatibility feature is
present on the machine.

SECTION 5. SPECIAL FE~TURES

When operating in compatibility mode,
IJ performs the functions of the I-star,
and UV performs the functions of B-star.
Hardware is provided so that the Land T
registers may be gated as a pair into
the MN-register when the T-register is
named as the source (ie: T->N LS causes
the address contained in LT to gate to
MN). LT performs the fUnctions of the
A-star in compatibility mode.

To run 1401, ,.40 or 1460 object
programs on the 2030, an initiali2ing
program is loaded ahead of the object
program. The purpose of the initializ
ing program is to load the conversion
tables and address constants necessary
to perform 1401, 1440, or 1460 instruc
tions into the ~PX 1 and local storage
areas of main storage. The initializing
deck also defines by meanS of control
cards, the characteristics of the 1400
system being simulated (ie: memory size,
special features, and the I/O configu
ration.)

IBM 1400 system sense switches are
set local storage by use of switch F on
the console. The procedure is : set
switch F to the alpha-character designa
tion of tpe sense switch desired, press
the interrupt key; press the start but
ton. The sense switch has now been set.
To turn off, the same procedure is used,
except switch F should be dialed 180
degrees opposite the alpha character
deSignation of the sense switch that you
wish to turn off (ie, switch F to C
turns on sense switch C, switch F to C
(4) turns off sense switch C.) At t~e
oomp1etion of altering sense switches,
the R-register displays 01110111, and
the A-register displays the whole sense
switch byte, (KS local storage) to indi
cate the status of the sense switches.

After altering the desired sense
switches, pressing the start key causes
the processor to continue.

For additional info~ation on console
operation, read the SRL publication,
System/360 Model 30 1401 Compatibility
Feature,Form A24-3255. The topic
·Operating Considerations· covers the
complete console operation for the Com
patibility mode.

5-1

CHARACTER CONFIGURATION

• The internal character code for
compatibility mode is EBCDI code.

•

•

Bit 1 of the character off rep
resents a WM associated with the
character.

Character conversion from EBCDI to
BCD and vice-versa can be accom
plished through a table loo~up if
conversion is necessary.

WITH WORDMARK NO WORDMARK

0123-+-

Characters in core sto.rage in compat
ibility mode are represented in EBCDI
code configuration. (See Figure 5-1.)

All 1400 systems characters without
word marks have bit 1 of the byte on.
If a word mark is associated with the
character, it is represented by having
the bit 1 of the byte off. The charac
ter A without a word mark is represented
as 11000001 in EBCDI code, while the
character A with a wordmark is rep
resented as 10000001 in EBCDI code.

WITH WORDMARK NO WORDMARK

45r
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 Blank & - Blank & - ? ! =f 0 ? ! :f 0

0001 / / A J 1 A J 1

0010 B K S 2 B K S 2

0011 C L T 3 C L T 3

0100 D M U 4 0 M U 4

0101 E N V 5 E N V 5

0110 F 0 W 6 F 0 W 6

0111 G P X 7 G P X 7

1000 H Q y 8 H Q y 8

1001 I R Z 9 I R ;?; 9

1010 Ii Ii

1011 S , # , , #

1100 II * % @ Xl * % @

1101 C j V : C .:J V :

1110 < i \ > < ; \ >
1111 $ t::. +1+ ..r-

'"
f::, +++ -r-

Figure 5-1. 1400 Defined Characters

5-2

Figure 5-2. Auxiliary Storage Map for Character Conversion

The internal code used in the 2030
for the compatibility feature is the
EECDI code. Because the 2030 is basi-

cally a binary system, occasionally a
translation of character codes from
EBCDI to BCD and tack again is necessary
to process certain 1400 system instruc
tions, such as bit test, in the 2030.

5-3

Most conversions are done through a
table lookup procedure, utilizing tables
in local storage. These tables are read
into storage as part of the initializing
routine that was run in ahead of the
1400 system object program. To illus
trate the use of the table using the
local storage map (Figure 5-2) , we will
convert a character from EBCDI to BCD.
The character ·C· in EBCDI ceDE IS A C3
(HEX). By checking the EBCDI to BCD
table for C3, we will pullout of MPXl a
33, or 00110011, which is the BCD con
figuration of a ·C·

BA 8421
0011 0011

In utilizing the conversion tables,
if a WM is present with the character,
the micro program eliminates it from the
character before the table lookup is
done to convert the character. In the
BBCDI to BCD conversion table, any
01000000 configuration read out of the
table is detected as an invalid BCD
configuration, and will read out as a
blank in BCD.

1400 SYSTEM ADDRESSING

•

•

•

All 1400 systems object programs are
loaded into upper storage of the
2030.
Tens and hundreds address bytes have
the upper and lower 4 bits of the
byte crossed in local storage.
Address bytes in local storage con
tain a bias constant.

All 1400 systems programs are loaded
into upper storage in the 2030. If a
1401 p~ogram written for 4K of storage
is going to be run on a 2030 with 16,384
positions of storage, the program is
stored in IBM 2030 stor.age locations
12,384 to 16,383. This is done to allow
the 2030 to detect 1401 storage wrap
errors through existing circuits. As
previously mentioned, the 2030 uses a
conversion table in the local storage
and MPX 1 areas of core storage to con
vert 1401 BCD addresses to 2030 binary
addresses. This table also includes a
storage bias constant to cause IBM 1401
addresses to address upper 2030 storage.
The storage bias constant is a number
equal to the 2030 storage size minus the
1400 system storage size (Figure 5-3).
To illustrate, assume we attempted to
run a 1401 program, written for 4K of

5-4

storage, on a 2030 with 16,384 positions
of storage. The storage bias constant
would be:

16,384 (2030 storage size)
- 4,000 (1401 storage size)

12,384 or 3060 in hexadecimal

In our example of storage bias 3060,
this could be further broken down to: 30
is bias for the high-order byte of the
address, and 60 is bias for the low
order byte of the address. The local
storage map for compatibility mode
refers to the high-order bias as Z, and
the low-order bias as Y.

~~ Y BIAS
1400 16,384 32,768

16K 80 01 41

12K 20 11 51

8K CO 20 60

4K 60 30 70

2K 30 38 78

1.4K 88 3A 7A

Y = Bias for low-Order Byte in Hex.
Z = Bias for High-Order Byte in Hex.

Z BIAS

65,536

Cl

Dl

EO

FO

F8

FA

Figure 5-3. Compatibility Mode
Memory Bias

8,192

[>(
00

10

18

lA

When the I-cycles micro program reads
out IBM 1400 system addresses and con
verts them to binary addresses it inter
rogates the hundreds digit on two occa
sions, since the hundreds digit affects
the value stored in both the high-order
byte of the address and the low-order
byte of the address. For example,
hundreds 3 inserts 0000 0001 in the
high-order byte, and 0010 100 in the
low-order byte.

Again, assuming a 2030 with 16,384
positions of storage simulating a 1401
with 4& memory, let us examine the A
star address formed during I-cycles for
1401 instruction~ 122.

The micro program reads out the
hundreds position of the 1401 instruc
tion, in this case a 1. Next, an
address is formed to address local stor
age. The micro program uses the hun
derds digit to form bits 4-7 of the
address, and since this is the hundreds
position, forces the bits 0-3 to a 2
(HEX). The resultant address 21 in HEX
is used to address local storage. Posi
tion 21 in local storage brings out a C4
(HEX). C4 represents the Y bias 60 plus
the binary equivalent of 100 (64 in
HEX). If the same address, 21, is now
used to address the MPX 1 portion of
local storage, it will bring out the
high-order byte of the address being
formed. In this case, 21 hrings out 30.
30 represents the Z bias plus 00
hundred. At this point the micro pro
gram has developed the address 3064
(HEX). Now the micro pr9gram forms an
address of ex, where X is the units
digit of the 1401 address. In this case
the address is 02 (HEX). Addressing
local storage with 02 brings out 02,
which is added to 30C4 already stored,
giving new value of 30C6. Finally, the
«,icro program processes the tens posi
tion of the 1401 address by forcing a
constant of 1 in the high order of the
local storage address and inserting the
tens digit of the 1401 address in the
low order of the byte. In this case, 12
is formed to address the tens conversion
table, bringing out a 14 (HEX). This is
added to 30C6. The result, 30DA, is
inserted into UV (1401 B-Star). The

micro program tests to see if it is
forming an A-field address, and if so,
the micro program takes the contents of
UV and inserts it into IT (1401 A-Star).
See Figure 5-4.

TO ADDRESS BUMP

M N

Hrds Low rn
Hrds High rn
Units rn
Tens rn
Figure 5-4.

CONVERTED 1400 ADDRESS

\ 0 \ 0 \ C \4\ Hrds Low Bias 60 + 100

\3 \ 0 \ C \ 4\ Hrds Hig h Bias 30 + 0 Hrds

1400 System Address
Conversion

Zone bits in the hundreds and units
positions of the 1401 are tested for by
the micro program and are not found in
the address conversion tables (Figure
5-5) •

5-5

Figure 5-5. Auxiliary Storage Map for Address Conversion

5-6

ADDRESS ERROR DETECTION

• An invalid 1400 character (SF) is
placed in 1401 address 000 minus 1
for error detection4

• 2030 circuits detect a storage wrap
error4

.R3 bit on signifies and invalid
address character4

Because the high-order position of
the 1400 system storage is physically
the same location as the high-order
position of 2030 memory, 1400 systems
storage wrap errors are detected in the
2030 through existing error detection
circuits4 To detect an error when
address 000 is modified by minus one, an
invalid character has been placed in
2030 memory one core location below the
address assigned to 1400 storage loca
tion 000. If this location is
addressed, the invalid character causes
a wrap trap that initializes the halt
routine. The invalid character is
placed in storage by the 1401 initializ
ing program that loads local storage and
puts the machine into compatibility
mode.

When converting 1400 system addresses
to 2030 addresses, another error detec
tion device detects invalid characters
in the address4 When the micro program
converts a 1400 system address to a
binary address, it is done in three
stages. First, the hundreds digit is
used to address the table and a binary
equivalent is extracted. Next, a binary
equivalent of the tens digit is extract
ed and added to the hundreds value.
Finally, the units digit is obtained and
added to the total of the tens and
hundreds already obtained. When the
hundreds digit addresses local storage
to obtain a binary equivalent, the tens
and units of the address are disregarded
and assumed to be zero. (ie: 5 in the
hundreds position brings out the binary
equivalent of 500 plus bias). When the
tens digit addresses local storage for
conversion, the units position is
assumed to be zero. Since the tens and

hundreds digits extract binary values
that are round numbers (numbers that end
in zero), the 1 bit is not turned on.
To provide for error detection the hexa
decimal values in the conversion table
for the tens and hundreds have been
crossed. An example is : the tens 2
(20) equivalent in hex is 1 4, but it is
stored in local storage as 4 1.

When 4 1 is read out of local
storage, the R-register 3-bit (R3) is
not turned on. Note also that the
units, 0-9 if not crossed, will never
turn on R3. Therefore, when addresses
are read out, if R3 is on, it is an
invalid address. Observe the local
storage map for compatibility mode anJ
note that all invalid digit values in a
1400 system address turn on the R3 bit
when they are read out (Figure 5-5) •

OP COD.E RECOGNITICN

• 1400 system Op codes are convert- to
bit significant characters.

• Op code conversion table is stored
in local storage.

• 1400 system Op code character bits 0
and 1 are forced on before using the
character to address the conversion
table.

• Converted Cp code is stored in the
G-register during I cycles.

1400 system Op codes in their EBCDI
configuration would require extensive
interrogation by the micro program to
determine exactly what the Op code is,
since their EBCDI bit configurations
would not readily indicate what type of
Op code the machine is handling_ To
make Op codes more easily identified as
to the type, a table of all 1400 system
Op codes has been made and stored in
local storage. This table groups simi
lar Op codes together. The bit configu
rations are bit sensitive for easy iden
tification by the micro program. (See
Figure 5-6.)

5-7

0123 0000 0001 0010 0011 0100 0101 0110

0000 . N 8
9

, /

Cpu Ops 0001 D Y # :It E

I/O Op s 0010 U 1 2 3 4 5 6

Mise Op s 0011

Invalid
0100 Ops

0101

0110

Column
0111 Binary

1000 M

1001 L

1010

1011 H

1100

1101

1110

1111 Q

Figure 5-6. Op Code Conversion Table

To understand the addressing of the
Cp code table in the local storage,
first refer back to the EBCDI code of
1400 system character configurations
(Figure 5-1). Notice that if the bit 0

of all 1400 system Cp codes that did not
have bit 0 on are forced on, characters
in EBCDI with their bit 0 off can be
overlaid with the rest of the EBCD!
characters with the exception of the
blank, +, and -, which are not valid
1400 system Op codes. (See Figure 5-7.)

5-8

0111 1000 1001 1010 1011 1100 1101 1110 1111

B

Z A 5 ·rlJ % ? ! P C

7 PFR K F
(I/O)
U

(I/O) (I/O)
M L

V W

BITS BITS
4567 0123
r-"'\ r,..----A-..... ---~"

1100 1101 1110 1111
0000 ? ! =t=RM 0
0001 A J / 1
0010 B K S 2
0011 C L T 3
0100 D M U 4
0101 E N V 5
0110 F 0 W 6
0111 G P X 7
1000 H Q y 8
1001 i R Z 9
1010 J6
1011 $, #
1100 X * % @
1101 c ::J vWS :
1110 - (; "-)

1111 * GM l':J. MC +++ SM r-TM

Figure 5-7. Modified 1400
System Op Codes

When the micro program reads out the
Op code in EBcnI form, it turns on the 0
and 1 bits of the Cp code. Next, the
EBCnI character formed in the previous
step is used to address local storage

and remove the new character that is
stored in the G-register. (In the case
of a blank, +, or -, the contents of the
Op code table are ignored and the G
register is forced to an invalid Cp
code.) The new character has a bit
configuration that is more readily
tested to tell the type of operation
desired. To illustrate the use of the
Cp code table, assume that the Op code
read out of the 1400 system program is
an edit Ope The hexadecimal bit con
figuration of an E with a WM in EBcnI is
85. Forcing on the bits 0 and 1 changes
the configuration to CS. Using CS to
address the Op code table in local stor
age (Figure 5-8) a 16 is read out and
stored in the G-register. The 16 is bit
sensitive to the micro program as an
edit Op code. Any Invalid EBCDI Cp code
configuration addressing the Op code
table brings out a 34 byte that is rec
ognized by the micro program as an
error. To assist in understanding the
method used by the 2030 to process 1400
system instructions in compatibility
mode, logic flow charts are included in
Figures 5-9, 5-10, and 5-11 for I-phase
of a 1401 instruction and the execute
phases of a ,",ove operation and an Add
operation. It should be stressed that
these flow charts are for instructional
use only and may not be exactly the same
as the microprograms they represent.

5-9

Figure 5-8. Auxiliary Storage Map for Op Code Conversion

5-10

LT - A Star
UV - B Star
IJ - Instruction Counter
G - Op Register
D .. Holds d Modifier
52= 1 A Address Read Out
52=0 B Address Read Out
56=1 Invalid A Address
57=1 Invalid B Address

Yes

Word
Mark?

Read Out Translated Op
Cade (Bit Significant

'>---....... - Op Without WM

Fram Auxiliary Storage)
Set Op Into G Register
54=1 for B,', L, N, or Op
55=1 for M, L, or U Op

Invalid
A Addr?

56

Yes

Store LT Regs in UV Back
Place A Hundreds Back
up in B Hundreds Back
up Set 57=1

MLQH?
(RORI)

Q up Locations Place LT
/"---.., Regs in UV Regs Set 57=0

and 50=1

All Other Ops
L-----------------~No

56=0

MLU
I/o Op

Word
Mark

Invalid
Digit

Hundred
Zones

Read Out Tens Digit
Place Digit in U Reg
(High) Set 56=0

Yes I/O A Address

Routine

Yes Op Alone

I/E Change Routine

Word
Mark

Invalid
Digit

Tens
Zones

Hundreds Look Up
(Read Out Two Low Hex
Equivalent Digits + Bias)
Add These Digits to D
Reg

Branch

On 55

MLQH

Hundreds Look Up
(Read Out High Hex
Equivalent Digit + Bias)
Put Tens Digit in V
(Low) Add "Hundreds"
Digits to U-Low Reset
U-High

Yes 2 or 5 Character Instruction

Address Invalid Routine

Yes
Indexing Routine

55=1
Address Invalid Routine

No

Figure 5-9. I-Cycles (Part 1 of 3)

5-11

Units Read Out - Add
Dig it to D Reg Save
Carry

Units
Zones

Yes Add Zone Equiva lent
Constants to D and U
Regs

Yes 3 ar 6 Ch .. racter Instructi .. n
Add,..,ss Invalid Rautine

Invalid
Di!J it

Yes > ___ --"'~ Address Invalid Routine

Tens Digit Look Up -
Add Binary Equivalent
Digits to DReg - Place
Result in V Reg Save
Carry

Tens
Digit

Address Invalid Completed
I/O A Address Completed
Indexing Address Completed

Read Out Hundreds
Dig it Of B Address or
Passible d Modifier

Yes

S2=0

.-_______ ,Address Inva lid
Routine

No

B Address

No Word
Mark

S4:0

Ward
Mark

Yes

S Character Instruction
I/E Change Routine

Figure 5-9. I-Cycles (Part 2 of 3)

5-12

S2=1

Branch
On S4

Branch
On G6

G6:0

Brench
On S4

7 Character Instruction
B, , ,/, N or • Op
I/E Change Routine

7 Character Instruction
I/E Change Routine

54=1

4 Character Instruction
B, t ,/, N or . Op
I/E Change Routine

50=1
Op Is M,

L,Q, or H

Figure 5-9.

Branch
On
54

54=0

Branch
On 50

4 Character Instruction
I/E Change Routine

Yes

50=0

I-Cycles (Part 3 of 3)

C

No

Branch
On
54

54=1

Is
Digit
A Blank

4 Character B Instruction
Ended By A Blank To
I/E Change Routine

$4=0 Invalid
Hundreds

Yes

Digit

No

5-13

No Yes
Correct for WM Return to I Cyc les

Figure 5-10. Move Op

5-14

Start E Cyc Ie

Figure 5-11.

Store J in J Back -up
Read Out Units Positian
af A Field. Store It in'
Reg D

RO, Rl

A Field Sign Analysis

Was It A Special Ch?

Test Add

B Field Sign Analysis

R2, R3

RO

No

Add the Numeric Portion
of A Field (Reg D) and
B Field (Reg R) and Store
the Result in Reg J

R2 & R3

Add Cp (Part 1 of 5)

S2 = 0

Pos

S2 = 1

G4, G7

Correct R2 & ·R3 for Proper
Sign Ana lysis

B Field

Was It An
A Field Ch or
B Field Ch?

52

5-15

so, Rl

B Field Single Ch

Add The Numeric Portions
Of A Field (Reg D) and B
Field (Reg R). Stare
Result in Reg J and Save
The Carry-Out

Add The 10's Campi Of
The Numeric Portion Of
A Field (Reg D) to The
Numeric Portion Of B
Fie Id (Reg R). Store
Result in Reg J and Save
The Carry-Out

Add The Numeric Portions
Of A Fie I d (Reg D) and
B Fie Id (Reg R). Store
Result in Reg J and Save
The Carry-Out

?

No

Pas

Add The Zone Bits Of
The Standard Pas Fonn
& A WM to The Numeric
Resultant (RegJ). Put
The Result in Reg R

Was B Field Pos or Neg?

Neg

Add The Zone Bits Of
The Standard Neg Form
& A WM to The Numeric
Resultant (Reg J). Put
The Result in Reg R

Z~O

?

No

Set The Zane Bits Of The
Resu It to Be The Same As
B Field. Put The Result

Add The Zone Bits Of
B Field (Reg R) to The
Numeric Resultant (Reg
J) and Put The Result in
Reg R

Was There A Carry?

53

C

Figure 5-11. Add Cp (Part 2 of 5)

5-16

Add The 10 's Camp I Of
The Numeric Portion Of
A Fie Id (Reg D) to The
Numeric Portion Of B
Fie Id (Reg R). Store
Result in Reg J and Save
The Carry-Out

Was B Field Pos or Neg?

57

Add The Zone Bits Of
Standard Neg Form to
The Numeric Resultant
(Reg J) and Put The
Result in Reg R

Set The Zone Bits of The
Result to The Standard
Pos Form and Put The
Result in Reg R

. 56 "ON" INDICATES PROCESSING C? I
THE WM POSITION OF A FIELD. I 1 57 "ON" INDICATES EliMINATION
OF fURTHER A CYCLES. I STORE THE RESULT (REG I READ OUT THE NEXT CH I

"* 52 "OFF" INDICATES A FIELD DATA. OF A FIELD R) BACK TO B FIELD IN I $2=0 52 "ON" INDICATES B FIELD DATA. MEMORY __ I 1 I 56=0 I I PUT THE NUMERIC

I PORTION OF A FIELD ,~ A FIE LD IS NOT

I
I CH IN REG 0

TERMINATED

""'''"'<$> 56 ON,S7 ON 56 ON, 57 OFF $6 OFF, 57 ON 56 OFF, 57 OFF t
I I I RO, Rl

NEVER OCCURS I I A FIELD TERMINATED I B CYCLE ONLY I
I ---.J RO OFF

I 56=0 I I I I RO ON I
I SP CH WITHOUT WM I $P CH WITH WM I I~LPHABETIC & NUMERIC I ALPHABETIC & NUMERIC I

CH WITHOUT WM CH WllHWM

I
57"' I

I
(FURTHER A CYCLES 56=1 J I
ELIMINATED BY 57=1) I READ OUT THE NEXT J I CH OF B FIELD

56=1

I
I IFO I I

COMPLADD Z=O IF THE CH WAS A¥ I
I I

SO

I 56=0 I STRIP THE NUMERIC 8 L
BlT 9 <$>

TRUE ADD I
TRUE ADD I ~

OFF ON

1
CDMPL ADD

I
ADD THE CARRY-IN AND ADD THE CARRY-IN ADD THE 9'S COMPL OF
THE 9'S COMPL OF THE AND THE A FIElD (REG '- THE NUMERIC PORTION
A FIELD (REG 0 EQUALS D EQUALS ZERO) TO I I OF A FIELD (REG D) TO
ZERO) TO THE NUMERIC THE NUMERIC PORTION

I
THE NUMERIC PORTION

PORTION OF B FIELD OF B FIELD (REG R) AND B FIE LD SP CH, NOT A F[ELD SP CH, NOT I
OF B FIELD (REG R).

(REG R) & SAVE THE SAVE THE CARRY- OUT A¥ A¥
STORE RESULT IN REG

CARRY-Our

J I
J AND SAVE THE CARRY-,

l 1 l I
OUT

B FIELD IS AIS A FIELD [S A¥

I ~ j

I
S~. I ADD THE CARRY-IN &

[F NUMERIC RESULT I CHANGE IT TO A ZERO! I CHANGE IT TO A ZERO I THE NUMERIC

IS ZERO PORTIONS OF A FIELD

I (REG D) & B FIE LD (REG

I t I R) STORE RESULT IN

I ~-. I I I I
REG J AND SAVE TH~

:~ THERE WAS A CARRY
RO=I R~' THE CARRY-OUT

<$>
I J

1 I

I
S4=1 IF NUMERIC
RESULT [S ZERO

J
I S5=1 IF THERE WAS A I

I I + + CARRY-IN

COMPL ADD WITH COMPL ADD WITH NO TRUE ADD WITH TRUE ADD WITH NO t
CARRY-IN CARRY-IN CARRY-IN CARRY-IN

I READ OUT AGAIN THE I
t I I I SAME B F[E LD CH

ADD 1 AND THE 9'S ADD THE 9'S COMPL OF ADD 1 AND THE NU- ADD THE NUMERIC j
COMPL OF THE NUMERIC THE NUMER[C PORTION MERIC PORTIONS OF PORTIONS OF A F[ELD
PORTION OF A FIELD OF A FIELD (REG D) TO A F[ELD (REG D) & B (REG D) & B FIE LD (REG 52 •

(REG D) TO THE NUMERIC THE NUMERIC PORTION F[ELD (REG R). STORE R). STORE RESULT [N
PORTION OF B FIELD OF B FIELD (REG R) RESULT IN REG J & SAVE REG J & SAVE THE

,m" ::$> (REG R). STORE RESULT STORE RESULT IN REG J THE CARRY-OUT CARRY ... OUT
CH ANALYSIS IN REG J AND SAVE THE & SAVE THE CARRY-OUT

1 1
. RO, R\

CARRY-OUT

! +
j RO OFF RO On

l S4=1 IF NUMERIC I I
RESULT [S ZERO I SP CH WITHOUT WM I

I
SP CHWITH WM I I ~LPHABETIC & NUMERIC I

CH WITHWM

t
J I ALPHABETIC & NUMERICI

I !"J IF THE CH WAS I CH WITHOUTWM

t
I

I
PUT. THE NUMERIC

I • RESULT (REG J) .N

I PUT THE NUMERIC
REG R

~SULT (REG J) IN REG I

SO

H G

Figure 5-11. Add Op (Part 3 of 5)

5-17

Resultant
Sign Test

Insert No Zone Bits. Put
The Numeric Resu It (Reg
G) in Reg R

Yes

Yes

Restore UV From UV
Back-Up to Unit's
Position

.---___ ---Il....-___ --, (Indicates A Carry-Out

Into The Next Higher
L-___ ~~---..--.J Position)

Insert Minus Sign to The
Numeric Result (Reg G)
and Put The Result in
Reg R

Take 9's Compl Of The
Numeric Portion & Put It

Rl

Was There A WM

Is It The Unit's Position

Negative

Insert Plus Sign to The
Numeric Result (Reg G)
and Put The Result in
Reg R

Was There
A Carry-Out
From Previous
Position?

No

Figure 5-11. Add Op (Part 4 of 5)

5-18

No

No

Store The Resu It (Reg J)
(Without Zone Bits) Back
to B Field in Memory

Read Out The Last Ch Of
A Field and Put It in
Reg D

E

D

No Numeric
Result
Zero?

F

Translate The Last Ch
of B Field (Reg R) From
EBCDI to BCD and Put
It in Reg R

Add The Overflow To The
Zone Bits Of B Field
(Reg R) & Put It in Reg D

Set the Overflow in The
Hi-Lo-Eq Byte Of The
Locol Storoge

Add The Zone Bits (Reg
D) to The Numeric (Reg
G) & Put The Resu It In
Reg J

Add The Zone Bits Of B
Field (Reg R) to The
Numeric Result (Reg G)
& Put 11 in Reg J

Translate The Result (Reg
J) From BCD Bock to
EBCDI & Put It in Reg R

Figure 5-11. Add Op (Part 5 of 5)

Translate The A Field Ch
(Reg R) From EBCDI to
BCD & Put It in Reg R

Add The Zone Bits Of A
Field (Reg R) to The Result
(Reg G) and Put It in Reg
J

Was It A Sing Ie Ch Add?

5-19

BRANCHING

• In compatibility mode, a branch can
'be executed from bits Rl, R2, or R3.

• A branch on GMWM can be executed.

Certain branch conditions normally avai
lable in the 2030 are replaced bydH
ferent branch conditions when the 2030
is operating in compatibility mode.
These changes are shown in the following
table:

COltlEatibilitI
Mode 2030 Mode g g

Rl 1 BC 0110
R2 Sl 1000
R3 G2 1100

GMWM V67=0 0011

The Rl, R2, and R3 branches are made
from the contents of the R-register.
These branches can be given in the cycle
immediately following a read cycle. A
GMWM latch has been added that detects a
GMWM On the storage sense bus when a
read cycle occurs. The GMWM latch feeds
the stat use decoder and remains latched
cn until the next read call is given to
core storage.

I/O OPERATIONS

• All I/O operations in compatibility
mode are executed in burst mode.

• The 1402 reader automatically feeds

5-20

•

•

•

a card 6 milliseconds after a read
command.

A stacker select command for the
1402 must be given within 6 millise
conds after a read command.

End of file occurs with channel end
of the last card read.

Character representation to and from
I/O apparatus is in EBCDI code.

All 1400 systems 1/0 operations are
executed in burst mode. Tape and file
operations always force burst mode on
the multiplex channel (compatibility
mode included). Burst mode for 1402 and
1403 operations is forced in the 2030 by
holding up Select Out until Channel End
occurs (Figure 5-12). The normal resets
of Select Out in 2030 mode is blocked by
the line -Not 1401 Mode." The only
resets available to turn off Select Out
are Recycle Reset, Select In, or the
micro-program statement R->FB. Recycle
Reset is the result of giving a system
reset or a recycle reset when in CE
mode. In compatibility mode, Select In
from the channel can come up only due to
an abnormal condition existing, such as
having leu power turned off, or a
machine failure. Therefore, the only
controlled reset to Select Out will be
the micro program statement R->FB, which
is given when a Channel End is sensed by
the 2030.

CD

Bus Out Control r--
A

Address Out

T3

;---
ecycle Reset OR R

F B=K

'----

A OR r--A -
L.-

A - -
Se lect in

Status in ;;:-

r--

Not 1401 Mode

'--- A OR

Address in

Not Op Out Signal 7 r--

'-r-;;:-
r--

Address Out
~

1.1401 Reset Of Burst Mode
2. Blocks Norma I Reset to Se lect Out

Figure 5-12. Select Out

1402 Read Operation

With a 1402 operating with a 1401 or a
1460 system, the programmer has 10 mil
liseconds after a read-a-card instruc
tion to give a stacker select instruc
tion. The card being read then feeds
past the read brushes and into the
stacker selected.

When a 1402 is operating on
System/360, Model 30, a read command
causes the buffer to transmit data to
the CPU, but no card movement takes
place.

TO make the 1402 on a 2030 act like a
1402 on a 1401, a circuit is added to

Select Out 'OR Select Out

1
__ FL __

~

OR

-

cause a provisional feed 6 milliseconds
after a read command is given. Basical
ly this circuit accomplishes this: 6
milliseconds after the data transfer of
a read command starts, an automatic feed
cycle occurs and the card just read
selects to the normal pocket. If, dur
ing the 6- millisecond timeout period, a
1401 or 1460 stacker select command is
sensed, a feed and stacker select com
mand is issued to the 1402. This feed
command causes the card to feed immedi
ately and stacker select and also pre
vents the provisional feed from occur
ring (Figure 5-13).

5-21

1400 Provisional Feed Latch 1400 Compat Timeout

1400 Comp Read Feed

Rd r Rely and Comd Valid AO
1400 Comp Read Feed '-=.;.;:;.....;;.:;..c""--. AO 1---" Rdr Command Gate

Bus Out 0

Bus Out 1
Bus Out 3 1400 Comp Rdr Busy

Bus Out 6

Not Rdr Adapter Reset AO

Not Rdr Device End Smp

Not Rdr Adapter Reset AO
10 1400 Comp Rdr Feed Command

Not Rdr Queued On

Not Rdr Feed Command

1400 Campat Prov Feed AO 1400 Comp Rd Pch Bus in

Rdr Command Gate
Reoder Sense
Not 1400 Compat Timeout

Not Rdr Adapter Reset AO

Status in Sample

Figure 5-13. Card Read

The micro program for stacker select
can detect whether or not the
6-millisecond timeout is over by issuing
a sense command prior to the feed and
stacker select command. If the status
byte coming back from the channel does
not contain the attention bit, the
6-millisecond stacker select time has
expired (Figure 5-13). In this case;
the micro program does not issue the
stacker select command, but will
indicate an invalid stacker select to
the operator by a coded byte in the
R-register.

Another modification of the 1402
circuitry on the 2030 changes the end
of-file condition. When the 1402 is
operating in 2030 mode, an extra Read
command must be issued after the last
card is read in order for the end-of
file file condition to occur. In
compatibility mode on the 2030, end-of
file occurs with channel end of the. last
card read. This allows the branch on
last card to occur without issuing an
extra read command.

5-22

1402 Punch Operation

A stacker select command given by a 2030
to the 1402 punch causes the card about
to be punched to be selected. A stacker
select command given to the 1402 punch
on the 1401 or 1460 systems causes the
card at the punch check station to be
selected. To make the stacker select
command on the 2030 system apply to the
card at the punch check station while
operating in compatibility mode, the
punch 3-bit modifier latch has been
added to the control circuitry_ The
punch 3-bit modifier latch turns on when
a 3 bit is on the bus with a punch
command.

When the punch 3-bit modifier latch
is on, it prevents the punch stacker
sequence 1 latch from turning on and
causes the punch stacker sequence 2
latch to come on at punch counter F-E
tim.e.

Yes

Test Space Supp and Set
Command and Address

of Unit in UV

Yes

Reset Sense I/O Command 1-------'*---------------,..--;

Yes

Yes

Figure 5-14. 1402-1403 Compatibility (Part 1 of 2)

Restore L, T, and S Regs
test Branch and Return

'to I Cycles

In from Forms or Stacker

'Sel Routine

5-23

No-

40p

Yes

r-~::':::~-C Status in Service in

PFR Op

Figure 5-14. 1402-1403 Compatibility (Part 2 of 2)

5-24

See Figure 5-14 for reader/punch
operational flow.

The I/O operations required by the
1400 object program are performed by
their respective micro programs. The
1400 I/O commands must be able to sense
status, perform the operation, and
detect any errors that occur during that
operation. To further illustrate this
point, let us examine the 1402 opera
tional flow chart. Notice the micro
program will first define what operation
is to be performed. Next, it fetches
the unit address from local storage and
issues a sense command. The micro pro
gram then examines the status byte com
ing back to make sure the 1402 can
accept the com~and. If the 1402 status
is good, the command is given and the
micro program goes into a data loop.
While in the data loop, the micro pro
gram is continually looking for a Chan
nel End to occur. The operation is
being done in burst mode because select
out cannot be reset. When Channel End
occurs, the micro program gives the
statement FB->K, which resets select out
and allows the 1402 to drop-off the
channel. The micro program will examine
the status byte that came with Channel
End to make sure the operation was per
formed error free. If not, the micro
program will go to an error routine to
display a coded byte in the R register
to indicate a 1402 error. If the opera
tion did occur error free, the micro
program goes back to interrogate the Cp
code again. This is done to determine
whether or not it is a combined Cp
(read, punch, etc.). If it was not a

combined Op, the micro program will exit
to I-cycles for the nex.t Op code.
Notice the micro program does not use
Device End at all. The micro program
will accept Device End to get it off the
line, but does not use it because Chan
nel End indicates the end of the opera
tion.

1442 Reader/Punch Operation

When running the 1442 in compatibility
mode, there are two operational differ
ences between the 1442 on the 1440 sys
tem and the 1442 on a 2030 in compat
ibility mode. The 1442 when reading or
punching in compatibility mode: does not
stop on a column in error, but continues
to the end of the card'. The micro pro
gram tests for errors at the end of the
card operation. The second difference
modifies the last card indication. Last

card (end-of-file) occurs with the Chan
nel End of the last card read.

The 34 MLP characters transmitted by
the 1442 are changed by the micro pro
gram so that the 8-9 punches that desig
nated the characters as MLP characters
are eliminated. The characters in core
storage are the EBCDI equivalent of the
card code minus the 8-9 punches. For
1442 operational flow, see Figure 5-16.

CHARACTER CHARACTER CHARACTER CHARACTER
IN STORAGE TO 1443

&
-
1
/
A
J
2
S
B
K
3
T
C
L
4
U
D
M
5
V
E
N
6
W
F
0
7
X
G
p
8
y
H

CD Sent As 01000001
 Sent As 11100001

&
-
0
A
J
/
1
B
K
S
2
C
L
T
3
D
M
U
4
E
N
V
5
F
0
w
6
G
P
X
7
H
Q

CD

®

IN STORAGE TO 1443

Q y
9 8
~ I
I R
R ~

0 9
:j: >
? <
~ :j:
:
,

I
$,

@ #
% -J::r *
* %
: @
v (
()
) -v-
> -v
\ +
< ;
; -

'("""""""' -

+++ *
* I-
~ +

Blank ..-
Blank Blank
J{ Blank

Figure 5-15. 52 and 63 Character
Typebar Decode

1443 Printer Operation

The character configuration of the
52- and 63-character type bar for the
1443 N1 is not the same as the 52- and
63- character bar for the 1443 on the
1440 system. To run the 1443 N1 in
compatibility mode, the 52- or
63-character bar for the 1440 system
must be installed in the 1443 N1. Since

5-25

the characters on the bar are not the
same as the 1443 toi1 bar, the micro
program must const.ruct different charac
ters configurations to send to the prin
ter (Figure 5-15). If the character in
storage to be printed is an A, the micro
program sends a J to the 1443 N1. The
1443 N1 circuits fire the hammer when it

5-26

thinks there is a J in front of the
hatrlTler. Actually, since the type bar is
from the 1440, there will be an "A" in
front of the hammer when the print com
pare equal for a "J H occurred. For
operational flow of 1443 in compat
ibility mode, see Figure 5-16.

Se t Up K3 for a Contro I
Command Check Address
Validity

Figure 5-16.

Forms or Stacker
Select Op

Set Up K3 for a Control
Command
Check Address Validity

Decode d-modifier
Form Command
Set S6 for Command
Immediate Iy

B

Reset Errors in K10,
if Any

Yes

1442/1443 Operational Flow (Part 1 of 3)

4

E

Yes

Yes

To I Cycles

5-27

Stacker
Sel or Punch

Col Skip

Counter 0

Figure 5-16.

5-28

Yes

Stacker Sel

Yes

Unit Exception

Unit Check

Channel End

Send Character
Update UV

Yes

Yes

B Field GMWM

Set SO to 0

Yes

SO On

Stop in Error Tag On>_Y.!..!e'-!s-<: Char Invalid

Yes
1--------------11-------.-1 Set Error in KIO

Set Stop Code in KO Stop

1442/1443 Operational Flow (Part 20£ 3)

1443 Sense Status in 1442 Sense Status in

Yes Yes
Equipment Check .--------<:: Intervention Required

No

Yes
Intervention Required

Yes

Yes

No

Set K3 to Read Write
Command

Set Up Stop Code
in KO
Stop

Stop On Error Tag On > __ ~ -------,

Set Up Stop Code in
KO Stop

Yes

Yes

Service Request

B Field GMWM

2030 Type Bar

Equipment Check

No

Is Stop On

Error Tag On

K3 OPERATIONAL BYTE

BIT

0 2 3 4 5 6

R/W X X X X 0 0 0

No Special Character 1442 Sense X X X X ,0 0

Stacker Se I X X X X 0 0

Print Control After 0 X X 0 0 0

1443 Sense 0 0 X X 0 0

Forms Op 0 0 X X 0 0

13/39 Char Bar X X X X X X

Channel 9 X X X X X X

Channel 12 X X X X X X

Figure 5-16. 1442/1443 Operational Flow (Part 3 of 3)

Yes

No

7

0

0

0

X

X

X

Data Check
or

Read Check

Punch Check

Set Error Stop Code
in KO Stop

KO-Error Stop Code

K 1-1442 # 1 Unit Address

K2-1443 Forms Modifier

Yes

K3-0perational Control Byte

K4-1442 #2 Unit Address

K5-1443 Unit Address

Kl0-1/0 Error Location

5-29

Magnetic Tape Control

The following conditions should be noted
in order to understand tape operations
in compatibility mode on the 2030. In a
1401 or a 1460, an erase tape instruc
tion causes a long gap to be erased when
the next write command is issued. In
compatibility mode on the 2030, an erase
tape instruction causes a long gap to be
erased immediately. The 1401 or 1460
stores an end-of-file in the tape unit
as a tape indicate. Tape indicate is
reset by unloading the tape unit or by
branching on the end-of-file condition.
In compatibility mode on the 2030. the
end-of-file condition is stored as a bit
in the tape unit control byte in local
storage. This bit is reset by a rewind
unload ins~ruction or a branch on end
of-file. The tape indicate in the tape
unit is set only by the end-of-file
reflective strip on the tape during a
write instruction and reset by any
backward command. Because the bit in
local storage is not reset by manually
unloading the tape unit, the operator
must insure that the bit is reset when
reloading the tape unit to eliminate
false end of file conditions.

A tape error during initial program
load causes a micro-program stop with a
coded byte in RO of MPX1 storage indi
cating the error. The tape control word
in local storage is a double word stored
in local storage locations 80 through 87
(HEX) with the following format:

o 1

TCU TCU TU1 TUl
8X Control Address Control Address

2 3

TU2 TU2 TU3 TU3
Control Address Control Address

4 5

TU4 TU4 TU5 TU5
Control Address Control Address

6 7

TU6 TU6 Last Status
Control Address from TCU

5-30

The TCU bit 0 on indicates an initial
program load condition. Bits 1, 2, and
3 contain the 1401 or 1460 address for
the last tape unit addressed. The TCU
tape control unit as provided by the
initial program load deck. In the tape
units 1-6 control. bits 0 and 1 provide
the density or unit identification as
follows:

00 = 7 Track a 200 BPI
01 = 7 Track a 556 BPI
10 : 7 Track a 800 BPI
11 = 9 Track

When on, bit 2 of the TU control indi
cates the last operation performed on
this unit was a backspace operation.
When on, bit 3 of the TU control indi
cates an end-of-file condition outstand
ing on this unit. Tape unit 1-6 address
contains the address assignment of the
tape unit to be used as a 1401 or 1460
unit. The tape unit control bits 0 and
1 and the tape unit address are provided
by the initial program load routine.

The following miscellaneous storage
locations in the MPX1 storage are used
for tape operations.

R6, R7

Rl1

R25

R26

R27

R28

O-Star locations used during a
read operation as back up for
the starting address of the
Read In area (B-Star)

Track in Error sense byte
which is stored if a read
error occurs on a 9 track
tape.

Temporary storage of tape unit
control byte address for unit
being used.

Storage Location used in Read
Mask of setting H5 bit. The
actual address of the unit
being used is also stored
here.

Temporary storage of command
byte.

Temporary storage of the read
status byte for 9 track opera7
tion.

For tape operation on a multiplex chan
nel, see Figure 5-11.

No

Nine Track Op Fetch
and Transfer Track in
Error

Cannot Nonnally Occur
If it Does, Recycle the
Program

Yes

Yes

Yes

Control Immediate, Go to
I/O Common End Routine

A

"'ega I Response, Go to
Errar Stop Routine

Figure 5-17. Tape Compatibility (Part 1 of 2)

Read

GMWM

Issue Test I/o to Last·
TU Addressed

Status in On Write Op
Illegal
Go to Stop Routine

5-31

Figure 5-11. Tape Compatibility (Part 2 of 2)

5-32

Disk Storage Control

All disk packs run on the 2030, includ
ing those processed in compatibility
mode, must have their addresses in
System/360 format. The System/360 disk
addreSs is a 5-byte binary address,
where the bytes represent cylinder,
cylinder, head, head, and record in that
order. In compatibility mode, the data
record is in EECDI code.

Let us assume the 2030 in compat
ibility mode encounters the disk opera
tion M"F1bbbR, where bbb represents the
high-order position of the disk control
field. To execute this instrUction the
micro program converts the 6-position
1401 address that is in the disk control
field to the 5-position binary address
that is compatible with the disk
addresses. The converted address is
stored in MPX1 storage in locations AD
through Sl. This address will be the
address presented to the disk storage
unit. Disk storage unit addresses are
found through a table lookup method and
extracted from MPX1 storage where they
were stored by the initial program load.
Associated with each disk unit address
in a unit cylinder byte. The unit cyl
inder byte indicates to the micro pro
gram the cylinder number where the
access arm is located for seek commands.
This byte is one position displaced from
the disk unit address, such as disk 0
unit address is in MPX1 storage location

9 0 and 0 cylinder is in MPX1 storage
location 9 1.

As previously mentioned, the disk
address in AD through E1 is the address
presented to the disk storage drive. In
a sector operation, as each sector is
successfully completed, this address is
updated to the address of the next sec
tor. It is important to note here that
the address found in the disk control
field represented by the bbb address of
the disk Op code will not be increased
as each successful sector is read or
written. Instead, the disk control
field in the bbb address is updated at
the successful completion of the disk
operation.

TO provide an address register to
gate MN while executing disk operations,
IJ is stored at the end if I phase into
IJ backup locations 88 and 89 of Local
Storage, and restored at the end of the
disk operation. The four sense bytes
from the disk storage drive are stored
in MPX1 storage locations E9 through EC
to indicate to the micro program if the
operation can be continued. MPX1 stor
age location AA contains the previous
disk operation performed. When a disk
scan operation is performed, the result
is stored in 99 local storage for test
ing. If needed, the address of the
alternate track is stored in local
storage locations AO through AB. See
Figure 5-18 for the storage locations
for disk operation.

5-33

Figure 5-18. Auxiliary Storage Map for Disk Operation

5-34

To assist in troubleshooting disk
operations, B9 through BF of the MPX 1
storage contain information that is of
value to the C E in his trouble
analysis:

B9 - Sense 0 byte
BA - Sense 1 byte

BB - Sense 2 byte
BC - Sense 3 byte

BD - File Address

BE - File Conmand

BF - Scan Condition

Same bit
significance as 2030
errors.

Current or last file
address ~orked ~ith.
Last file command
issued.
Is file scanning
Hi/Lo/Eq?

See Figure 5-19 for disk operational
flo~.

5-35

Seek Set S2 = 1
Seek Check T -Reg for Seek, >-.!!R:::.;bc,,-! RBC Set S6 = 1

RBC, R/W '-------------'
Check Interlock

Interlock On
Stop

On

Direct Seek
Test for Direct Seek

Test for Seek
Seek Direct Seek Add to

Present Cylinder

.--_____ Y:...;e:...;s-<Test for Write Addr Op

Generate Write Count
and Data Command
G4= 1
SO = 0, S2 = 0

OK

A

S7=1

No

Generate Head Seek
Command S2=1, SO=1

Test Status NG

Normal

Norma I Status
End Operation

Abnorma I Status Stop

Figure 5-19. Disk Storage Compatibility (Part 1 of 3)

5-36

Test Status

Return to
Home·
Seek

Return to Home Seek
Store New Cylinder

Abnormal

Abnorma I Status Stop

No

Increment Binary Dcf
G4~ 0

D

Figure 5-19.

Abnorma I Status Set
Parity Kll CPU

Sector Zero End
Operation

Write Address Op Yes
Decode First Address

t-__;N..;,o;;.:::: Test for Sector Count
000

Generate Search ID
Ro~O, G~O, SO~O

S2~0, S~O, S5~0

Norma I Status

Yes

Generate Read/Write
Command
G4~1

SO~O S2=0

Disk Storage Compatibility (Part 2 of 3)

4

5-37

Generate Read Count
Data Cammand
G4.= 0
SO = 0 S2 = 0

G REG DURING FILE OP

GO Using Alt Track
GI RBC Op
G2 Move Mode
G3 Read Modifier
G4 Data Transfer
G5 Scan Op
G6 Address Op
G7 Sector Count OOO/End Op

S REG FOR
SO

Seek 0 0

Seek Head I

Seek to Alt Track 0

Seek to Dep Track 0

Search Id 0
Search Id Head Sw 0

Read 0 0
R/W Count and Data 0

R/W Data Record 0

Abnorma I Status Set
Parity in KII CPU

Yes Sector Count Zero End·
Operation

COMMAND.

S2 S3 S4 55 G

0 0 0 X

0 0 0 X

0 X

0 0 X

0 0 0 0 0
0 0 0 0

0 0 0
0 0 0 0 I

0 X X X

TRANSFER

SO S4 S6 57

0 0 o 0

0 0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

I 0 I 0
0 I 1100

X X X X

Figure 5-19. Disk Storage Compatibility (Part 3 of 3)

5-38

00 01 10

00 01 10 II 00 01 10 II 00 01 10 11

0000 SP & -
0001 / A J

0010 B K 5

0011 C L T

0100 D M U

0101 E N V

0110 F 0 W

om G P X

1000 H Q y

1001 I R Z

1010 ± ! j6'

1011 S I #

1100 n * % @

1101 [::J :

1110 < ; \ =

1111 * t:. +++ "
Figure 5-20. EBCDI Translation for 1050

Console InguirypOSO)

When operating in compatibility mode,
the 1050 perform the functions of the
1401 inquiry station. Since the graphic
representation of 1400 system defined
character is not the same as the 1050
graphic representation of EBCDI charac
ters, some graphic conversion is neces
sary to obtain the correct character
print out for 1400 system characters.
The micro program converts the charac
ters going to and coming from the 1050
in accordance with the chart in Figure
5-20. To illustrate this conversion, if
a? (11000000) is sent to the 1050, it
is first converted by the micro program
to 11000111 to comply with the special
typehead.

11

00 01 10 II

0

1

2

3

4

) (5

II
v

= 6

? I f 7

8

9

There is one operational difference
between a 1447 on a 1400 system, and a
1050 on a 2030 in compatibility mode. A
character in error on a typewriter read
operation prints as an underscoreL) on
a 1400 system, but on the 1050 the char
acter prints as the character is most
closely resembles. However, the charac
ter in error presents an error conqition
to the 2030 that can be tested by the
1400 system object program.

The special typehead should be used
on the 1050, when in compatibility mode,
to get the correct character printout.
See Figure 5-21 for 1050 operational
flow in compatibility mode.

5-39

Entry From Intv Read
Routine

Yes Is This A Manua I
Op

Is This Load Mode

No

No Is This A Reod Op Yes

s This Alter or Displa~,>A:.!I!.::te;!.r+ _____________ ..J

No Is This A Reod Op

Is Attention On in TT >'=---,

Is It At Req 51=1 Yes

Is Addr in Up No

Figure 5-21. Compatibility Feature Console Inquiry (Part 1 of 5)

5-40

Yes

iJ=UV Reset 1050 Reset
H Reg

Exit to 1050 Alter Display
Stop

No
Is It Low Bits 5

No

Display

No

G

Yes

Is 1050 Operationa I

Is This Read Write
Display Alter

Read Write

Is This A Read Op

Is This An End

No

Alter

Good Char

No

Quad 11

Yes

C

Is This A Good Char. -:>--,=C",a""n::,:ce;;.:l--,
Cance I or Data

Ck

Data Check

Is Cance I Bit Set

Figure 5-21. Compatibility Feature Console Inquiry (Part 2 of 5)

5-41

Encode High Order Bits
to 6 (

Figure 5-21.

5-42

Yes

Set low Order Bits to 12

01

Encode High Order Bits
to 4)

No

01

Encode b Set R=O

Yes

Yes

Reset 57=0 Set S6= 1
Reset T A Reg Set CR +
LF

Compatibility Feature Console Inquiry (Part 3 of 5)

Set WM Bit S6=o 1

F

No

Encode WM 11100110
Set 56

Yes No
Is There A Data Check >;....;,;.-or------...,

Set Error Bit in K 10 UCW

Is Character GMWM >..;.Y,;;,es:...--<: Is This Disp loy Mode

Yes

Is This Load Mode

Yes

01

No
Is Zone 1111

Yes
Use Character As Is

J

Figure 5-21. Compatibility Feature Console Inquiry (Part q of 5)

No

5-43

1""'==;;';"';"'-<:' Is Z Buss> < or = to >~"'-------,
Zero

Greater Than
Load

No

1'+ _____ 10-',_1_1-<.115 It Zones 0001 or 101

"A" Option

11

Is Low Byte 1100

No.

Encode) 11000101 Encode = 11010·110

Use Character As Is

-- --(Start Tronsfer to 1051)

Yes

Figure 5-21. Compatibility Feature Console Inquiry (Part 5 of 5)

5-44

ERRo.RS AND PROGRAM HALTS IN
COMPATIBILITY MODE

• A common lllicro-program halt routine
is used to display IJ, LT and a
coded byte in the R-register to
indicate the cause of an error.

A common stop routine is micro pro
grammed to handle all stops in compat
ibility mode that can be brought to a
stop through micro programming. This
routine accomplishes the following:

1. Stores the address registers along
with the D-, G-, and S- register in
their local storage backup
locations.

2. Converts all addresses to the
form:

N

r-------T-------T--------T----~----l
14bits I 4bits I 4bits t 4bits I
11 1213 14 I l _______ ~ _____ ~ _______ ~ ________ J

Where 1 denotes the thousands posi
of a 1400 system address in binary.

Where 2 denotes the hundreds posi-

tion of a 1400 system address in
decimal.

Where 3 denotes the tens position of
a 1400 system address in decimal.

Where 4 denotes the units position
of a 1400 system address in decimal.

3. Displays the converted IJ address in
the MN lights.

4. Displays the converted LT address in
the B- and A- register lights.

5. Displays a coded byte in the R
register lights which indicates the
cause of a stop to the operator.

The stop routine does not run invalid
addresses through the conversion
routine. However, it does display the
addresses in their binary form, so the
CE can inspect their contents to
diagnose the error.

The coded byte displayed in the R
register lights is backed up in byte KO
of MPX 1 storage before the 2030 stops
(Figure 5-22).

5-45

U1
I

""" C7\
X

X

X

X

X

X

X

7X

X

X

A X

X

X

X

X

FX

OX

IX

2X

3X

4X

5X

6X

7X

ax

9X

AX

'X
CX

DX

EX

FX

0 I 2

----- ---- - INVALID B ADDRESS INVALID A ADDRESS

FILE-RBe STOP NO ADDRESS RESPONSE SX

FILE-NO ENDS ADDRESS MISMATCH

FI LE-NO ADDR COMP INY UNIT STATION INlT SEL-SX

FILE-SEEK UNIT CHECK RDR INTV REQ'D INV CHNL STATION ON INIT SE

FILE-OPNL INTLK PCH DEY ENDING 1ST ON TAPE WR

NON-ZERO STATUS RESPONSE
PRT

OP IN DISC ON TAPE WR-MPX

TO SENSE COMMAND STI & SVI ON TAPE NR-SX

FILE-UNIT # CK COMM OUT LATE STACKER SELECT 1402 WS SENT LAST, NO WM THIS SX

42-43-NO ADDR COMP 1050 INTV REQ'D STI & SVI ON READ MOVE-SX

42-43-INV MODIFIER HALT & BRANCH TAPE ERROR ON rPL

42-43-NO GMWM ALTER-DISPLAY STOP INY CHNL STAT FOR BR ON SXER

42 ERR ON RD OR PCH 1402 READER E~ROR STI & SVI ON READ LOAD-5X

OP IN DISC ON READ-MPX

PREMATURE END ON SENSE-MPX

OP IN DISC ON MODE SET -MPX

HALT-NO INV ADDR'" HALT-INV B '" ADDR" HALT-INV A ADDR*

" THESE STOPS INDICATE EXECUTION OF THE 1401 HALT INSTRUCTION (.) WITH THE
STATUS OF THE A & B ADDRESSES THEN EXISTING SHOWN

8 9 A

MODE SW ATTEMPT INV ADDR ON PMS TAPE OP

Figure 5-22. R-Register Er.ror Bytes

3 4 5 6 7

INVALID A & B ADDRESS INVALID OP CODE INVALID I/O OP MEMORY WRAP-HIGH MEMORY PROTECT

SENSE SWITCH PERFORMED

HALT-INV A & B ADDR'"

,
C D E F

MEMORY WRAP LOW IJ=:ZERO LOAD ADDR INVALID
IMPROPER INDEXING
NO A DV PRO G FEATURE NON 1050 DATA CYCLE

NO OP WORD MARK

WM IN I/O A ADDR

START R$T PERFORMED

SET IC PERFOR.M.ED

If the start button is pushed after
coming to a stop as just described, a
restart routine is started. All
registers stored by the stop routine are
restored to the values then in their
respective storage backup locations. A
new I-cycle is started at the address in
IJ, unless the stop was due to an I/O
device needing operator intervention for
such things as full stackers, out of
paper, etc. In the latter case; the
restart routine returns to a specific
micro-program entry for that particular
device.

The restart routine also turns on bit
o of byte R1 in MPX 1 storage. This bit
is used to interlock against giving a
stacker select instruction after
restarting, which applies to a card read
operation given before the stop
occurred. If a stacker select instruc
tion is given while bit 0 is on, the CPU
stops again and indicates with a coded
byte in KO of MPX 1 storage that the
operator should check the last card
stacked to be sure it is in the right
stacker. A new card read or punch
instruction resets bit 0 of Kl MPX 1
storage.

PROGRAMMED MODE SWITCH

• The 2030 can switch modes from com
patibility mode to 2030 mode and
vice-versa under program control.

• Local storage and MPX 1 for compat
ibility mode are relocated to MPX 2
and MPX 3 storage respectively.

• A program mask in R12 and 1(13 con
trols when a mode switch is taken.
is taken.

• Additional diagnose instructions are
provided to facilitate programmed
mode switching.

Programmed Mode Switching is a spe
cial feature made available to the cus
tomer to allow switching the 2030 from
compatibility mode to 2030 mode and
vice- versa under 2030 controL. It
provides the customer the means to util
ize some System/360 capabilities that
are not available in compatibility mode.
Th~ Programmed Mode Switch option allows
the customer to place IBM 2030 programs
and IBM 1400 systems programs in storage
at the same time. A switch from compat-

ibility mode to 2030 mode can occur due
to any of the following conditions:

Mode Switch on Invalid Op code.
Mode Switch on Halt Ope
Mode Switch on Error stops.
Mode Switch on Invalid I/O Ops.
Mode Switch on Console Ops.
Mode switch on Printer Ops.
Mode Switch on Reader/Punch Ops.
Mode Switch on Tape Ops.
Mode Switch on File Ops.

Provisions are made to allow any of the
preceding conditions to cause a supervi
sor call interrupt. Normally, these
conditions would cause the processor to
come to a micro-programmed stop. Wheth
er or not a mode switch actually occurs
is controlled by the 2030 supervisor
program. A program mask for mode
switching is contained in local storage
locations R12 and R13. If a mode switch
occurs, all current 1400 system address
es and the contents of the 1400 A-Star
are stored in backup locations in local
storage. The Supervisor Call old PSW
contains a special code to indicate the
type of error. It also contains the
1400 system instruction address of the
last Op code processed.

The programmed mode switch-feature is
only available on a 2030 having 16,384
or more positions of core storage. When
programmed mode switch is installed,
local storage and MPX 1 tables and con
trol bytes needed to run in compat
ibili ty mode are relocated to MPX sto.r
age 2 and 3, respectively. This leaves
the CPU local storage and MPX 1 storage
available to the 2030 mode of operation.
A circuit change has been added to cause
MPX 2 storage to be addressed in compat
ibility mode if the micro program calls
for information in local storage. For
example R1', local storage addresses Kl1
MPX 2 in the 2030. If the program
desires to address local storage in
compatibility mode, the micro-program
statement MLS causes local storage to be
addressed. In compatibility mode when
the programmed mode switch is present,
the compatibility micro program cannot
address MPX 1 storage.

Because extra diagnose instructions
are available to the programmer to allow
communication between tbe 2030 program
and the 1400 system program. Review
System Reference Library publication for
the compatibility and programmed mode
switch features.

5-47

QUESTIONS ON COMPATIBILITY FEATURE

1. If a 2030 with 32,168 positions of
storage is simulating a 1401 with 8R
storage, 1401 storage location 1056
is located in storage location

in the 2030?

2. During I cycles, the G-register
content for a 1401 clear Op instruc-
tion would be ?

3. What is the purpose of the invalid
character (8F) that is placed one
position below the low-order posi
tion of storage used by the 1401
object program.

4. For what purpose are 1400 system Op
codes converted?

5. How is the storage bias constant
derived?

6. If system reset is pressed when
operating in compatibility mode,
what will happen?

7. What will happen if a 1402 stacker
select command is issued 11 millise
conds after a read command?

8. If the programmed mode switch
feature is present on the machine,
where will the compatibility mode
conversion and control tables be
found?

9. If an invalid 1400 system character
addresses local storage during
conversion of the character from
BBCDI to BCD, what bit configuration
will be read out?

10. What internal character code is used
when processing data in compat
ibility mode?

INTERVAL TIMER

INTRODUCTION

•

•

•

5-48

The interval timer consists of three
bytes of data in main storage loca
tions 50, 51, and 52 (HEX).

The value in the timer is decreased
for intervals of time.

An external interrupt is signaled
when the timer goes from a positive
to a negative value.

What good is the interval timer? Let's
make a few assumptions. Assume that a
customer must run two jobs during the
day. Job., takes seven hours of run
ning time. The information to run Job
12 is not available until 2 P.M. By
using the interval timer feature the
customer, in effect, can tell System/360
to stop working on Job 11 and start on
Job .2 at 2 P.M. If the customer knows
that Job 12 is usually completed in 15
minutes, he might then set the timer for
17 minutes. The extra 2 minutes are his
safety margin. Then, whether Job 12 is
completed or not, the work is halted
after 17 minutes and Job 11 is automat
ically resumed.

How is the timer used? To use this
feature, the customer will set a certain
value in main storage locations 50, 51,
and 52. This automatically starts a
counter which keeps track of time. The
value that is set in main storage by the
customer represents total elapsed time.
When the counter value is subtracted
from the timer value enough times, the
timer value will go from a positive to a
negative value. At this time, an exter
nal interrupt is taken to whatever has
been previously set up by the customer.
In our example, it would be the start of
a routine to handle Job '2.

How is the timer value computed?
First, the high-order bit of location SO
is reserved for sign control. This
leaves the other 23 bit positions (7
positions in byte SO plus the two bytes
51 and 52) free for data. If you use a
Powers of 2 table you can see that a
value of over 16700000 can be set with
23 bit positions. A micro program sub
tracts the value of 300 from the timer
for every second of elapsed time. As a
result, the full cycle time of the timer
is about 15.5 hours. If 300 is sub
tracted from the timer for an elapsed
time of one second, then the timer must
be set to the value of 1080000 for each
hour (lOO/sec X 60 sec X 60 min) of
elapsed time that is desired.

60 CYCLE OPERATION

•

•

The value that is subtracted from
the timer depends on the setting of
the 4 position, binary connected
counter.

The C counter is driven at a 60
cycle rate

•

•

•

The C counter is FULL every .25
seconds •

A latch ON in the C counter causes a
timer interrupt at the end of E
phase.

For machines operating on 60 cycle
alternating current.

The C counter is used to keep track of
time. A 60 cycle pulse provides the
drive for this counter. Though this
'-position counter is FULL with only 15
impulses (.25 sec), any position of this
counter that is set at the end of E
phase will cause a timer interrupt.

The interrupt routine takes the value
in the C-counter, multiplies it by 5,
and subtracts this from the timer value.
If there is a sign change as a result of
the subtraction, an extp.rnal interrupt
is ~aken. If no Sign change the
interrupt routine exists to I-phase for
the next instruction. The big question
in your mind is probably, -multiply by
5?- Remember, the value of 300 is sub
tracted from the timer for one second of

Latches
Contro I Latc h

elapsed time. For .25 of a second, the
value of 75 must be subtracted from the
timer. If the C counter has only four
positions, the highest value it can
contain is 15 (1111, all positions set).
All positions of the C-counter are set
in .25 of a second. Therefore, the full
value in the counter (15) multiplied by
5 gives the value (75) that must be
subtracted from the timer for this
elapsed time.

The controls for the C-counter are
shown in Figure 5-23. The governing
latch is the control latch. This latch
must be off to allow the C counter to
run. If the disable-timer switch is
off, the control latch will be turned on
when main storage location 51 is
addressed. This location is addressed
when the customer desires to set the
timer to a new value. ~ith the control
latch on, the control FF latch is set at
T4 time. This latch controls the lines
to reset the C counter latches. The
control FF latch turns the control latch
off at T3 time. The control latch going
off resets the control FF latch.

C Counter

Reset
(Binary Connected)

Control FF
Control --'T"'4 ___ .., A

Drive

Interva I Timer Sw Off

Tl

Hex Add 0051 A
Allow Timer Rst

Tl
Gt C Reg to

A Bus

T3

Control FF Latch

(Not Control Latch

OR Control Latch (Not) Ctr Full

-FL- T2 A

A Not T2

Figure 5-23. Interval Timer Controls

-FF-

Drive

-FF-

Drive

-FF-
4

-FF-
5

-FF-
6

-FF-
7

Timer Update

A Cntr Full

5-49

With the control latch off and the C
counter empty, the 60 cycle time pulse
will set the drive latch at T2 time.
The drive latch· provides one pulse at a
time to the C-counter. Two lines are
developed from the C-counter:

1. Counter Full - blocks further drive
pulses to the C-counter by not
allowing the drive latch to be set.

2. Timer Update - If any position of
the C-counter is set this is active
and a timer interrupt is signaled.

During the interrupt routine, the
setting in the C-counter is set into the
D-register (C->D) for the multiplIcation
by 5. This causes the control latch to
be set ON again. The C counter is reset
so that it may again start counting the
timed pulses. A flow chart of the timer

No

Enter I Cycles

interrupt routine is shown in Figure
5-24.

50 CYCLE OPERATION

•

•

•

The C-counter is driven at a 50
cycle rate.

The C-counter is full every .3 sec
onds.

Counter value multiplied by 6 is
subtracted from timer during timer
update~

• For machines operating on 50 cycle
alternating current.

If the 2030 is operating on 50 cycle
alternating current, a slight change in

Timer
External or Timer?

External

I. Multiply Value in
C Counter X5

2. Subt from Timer

Yes

Set FO to One, Set Up
External Interrupt

External Interrupt
Routine

Next Instruction
(If SO = I, It Indicates
2030 Was in Wait State
When Update Was Done.
In This Case, Machine
Returns to Wait State).

External Interrupt
Routine (If Ext Int is
Masked On)

Figure 5-24. Timer Update Micro Program

5-50

the timer update controls takes place.
Instead of multiplying the counter value
by 5 to get the correct number to sub
tract from the timer, the 50 cycle
machine timer interrupt routine multi
ples the counter value by 6. This is
necessary because on a 50 cycle machine,
the counter is full every .3 seconds
instead of every .25 seconds. We still

want the value 300 to be subtracted from
the timer each second. By using a mul
tiplier of 6 for 50 cycle machines, and
a multiplier of 5 for 60 cycle machines,
the same value (30~ is subtracted from
the timer on all machines. This allows
timer programming to be compatible for
all machines.

5-51

6-1

APPENDIX 1.

6-2

SYSTEM CHARACTERISTICS

Type Mod Description

360

360

360

360

360

360

360

1015
1015

1016

1051
1052

1231

1285

1302
1302

1402

1403

1403

1404

1412

1418

1418
1419

1428

1428

1442

1443

1445

2150

2201
2250

2250

2301
2311
2321
2360

2361

2361

2362

2401
2402

2403
2404

2671

2701

2702

2802

2803

2804
2816

2820

2821
2822

2840

2841

2860
2860

2860

7320

7340

7770

7772

30

40
50F,G

50H
60

62

70

Nl

Nl

Nl
N2

Nl
2

1,3
2

1

1,3

2

Nl
Nl
Nl

1,2,3
1

1,2

1,2,3
1,2,3
1,2,3
1,2,3

Inquiry Display Terminal
Inquiry Display Terminal

Control Unit
Control Unit

Printer-Keyboard

Opti cal Mark Pag e Rdr
Optical Reader
Disk Storag e

Disk Storage

Card Re ad Punch

Printer

Printer

Printer

Magnetic Char Rdr

Optical Char Rdr
Optical Char Rdr
Magnetic Char Rdr

Alphameric Optical Rdr
Alphameric Optical Rdr
Card Re ad Punch

Printer

Printer

Console
Printer

Display Unit
Display Unit
Drum 'Storage
Disk Storage Drive

Data Cell Drive
Core Storage
Cor,e Storage

Core Storage
Storage
Magnetic Tape Unit
Magnetic Tape Unit

Magnetic Tape Unit and Ctrl
Magnetic Tape Unit and Ctrl
Paper Tape Reader
Data Adapter Unit
Transmission Control
Hypertape Control
Tape Control
Tape Control

1,2 Switching Unit

Drum Storage Control
1,2,3,4 Control Unit

Paper Tape Rdr Ctrl Unit
Display Control

Storage Control Unit
Selector Channel
Selector Channel
Selector Channel
Drum Storage
Hypertape Drive
Audio Response Unit
Audio Response Unit

Conn Dimensions (inches)

BTU/Hr KVA CFM Type Weight H F S

10,000
6,000

14,900

18,700

28,000
12,000

38,700

900
900

1,600

670

335

3,700

5,000
20,000
28,000

2,600

3,000
4,600

5,100

6,300

8,300
8,300

8,500

10,500

10,500

1,500

3,200
3,200

1,740

4,600

7,200

6,600

3,800

2,000

19,500
2,500

8,200

8,200
33,000

3,500
7,000

5,500

6,300

1,200

1,800

1,360
2,500

4,000
1,500

4,000

7,000

1,·700

4,800

5,500

8,200

10,000

11,600

2,800
12,000

3.8
2.8

9.0

10.6

12.4

6.9

16.2

0.5

0.2

0.1
1.2

2.0

9.0
12.0

1.2

1.0

1.4

2.1

2.7

3.8
3.8

3.3

4.6

4.6

0.7
1.1
1.1

0.65

1.4

2.8

2.4

1.5

0.75

8.7

3.0

3.0

12.5

1.6
3.2

2.1
2.4

0.3

1.0

0.6
1.0

1.5

0.9

1.5

2.4

2.05

1.4

1.9

3.05

3.65

900

300
2,350

2,990

2,840

2,100

2,700

o
o

50

o
o

300

600
2,210

2,210

50

310

350

280

320

575
575

400

575

575

o
50
50

180

350

480
320

320

100

850
1,000

620

620

2,150

500
1,000

1,000

1,200

120

800

300
500

700
280

400

300
150

300

1,000
420

740

4.25 1,060

1.1 320

4.0 700

B
D

E

E
E
E

E

A

A

A

D

E
E

C

D

D

C

D

D

A

A

A

B

A

A

D

D

D

D

E

E
E

A

A

F

E
E
A

C
D

A

A

D

D

D

D

D

A

A

1,500
1,700

4,700

5,350

2,800
2,400

4,575

375
300
200

195

65
620

850

4,025
4,400

1,000

750

750

1,600

2,475

2,650
2,700

2,675

2,750

2,800

575

800
825

800

825

590

375

850

390

1,950
1,200

1,600

1,700

2,560
800

1,600

2,000
2,000

320

900

425

1,400

1,600
500

650

1,000
400

550

750

1,800
1,900

60
60

72-1/2

72-1/2

72-1/2
72-1/2

72-1/2
47

47
29

27

9

44-3/4

60

68-3/4
68-3/4

45-1/4

53-1/4

53-1/4

53-1/2

60-1/4

60-1/4
60-1/4

60-t/4

60-1/4

60-1/4

49

46

46

52-1/8

53-1/2

50
50

64

38

60
70

70-1/2

70-1/2

70

60

60

60

60

40

60

60
60

60

60

60

60

40

60

60

71

71
2,000 71

850 60

1,500 48

70

43

68
60

48
48

15

26

23

43-1/2

71-1/4

85-1/2
85-1/2

57-1/2
47-3/4

47-3/4

67 -1/8

112

112
112
112

112

112

43

55-7/8

55-7/8

64

57 -1/8

22

34-1/2

30

68-1/2

62-1/4

62-1/4

30

60

60
60

40

28-3/4

28-3/4

60
60

29

28-3/4

32
30

29

31

31

31

31

30

29

84

109

29
29

37

15

19-3/4

24

35-3/4

33
33

29-3/4

28-1/2

28-1/2

31-3/4

41-1/4

41-1/4
41-1/4

41-1/2

41-1/4

41-1/4

24

43
43

28-3/4

29

28

29

24

50-1/2
72
31-3/4

31-3/4

29
29

29

29

25-1/2

61-1/2

61-1/2
29

29

42

61-1/2

46

24

42

42

70

70

70
29

60

31-1/2

24

Service
Clearances (inches)

F R Rt L

42

48

36
36
30

o
o

42

36

44
44
36

36
36

36

42

42
42

42

42

42

36

36
36

30

36

30

48

36

30

72
72

36

36

42

42

42

30

30
42

42

30

30

30

30

30

30

30

30

18

48

6
6

30

36

o
42

48
44
44

36

36

36

36

48

48
48

48

48

48

42

36
36

48

36

30

48

36

30

42

42

36
36

42
42

42

18

30
42
42

18

30

18
30

30

30

36

36

60

30

36
36
30

o
o

30

42

40
40

36

30

30

48

36

36
36

36

36

36

o
48
48

30

42

30

42

30

34

30

30

30
30

30

30

30

42

42

30
30

42

42

48

30

30

48

66

66

30

72

30

30

30

30

o
36

48

40
40

36
30

30
42

36

36

36
36

36

36
o

30

50

30

42

30

42

30

30

36

36

30
30

30

30

42

30
42

30
30
42

42

42

30

30

30

66

66

30 36 66 66
40 40 42 42

Notes

4
4

4

4

4
4,11
4,11

12

4

7

5,12

2

7

7

10

46 52 7,8

4
4

NOTES:

1. For airflow, see specifications page for 1302 Disk Storage.

2. This unit is equipped with radio interference control circuitry and requires a good wired earth or

building ground. Total resistance of the ground conductor, measured between the receptacle and
the building grounding point, may not exceed 3 ohms. For proper operation, all components of the

system or systems to which this unit is attached must have the same ground reference. Conduit is

not a satisfactory means of grounding.

3. Powered from 2821.

4. For data, see specifications page for that item.

5. See System/360 specifications page for this data.

6. It is recommended that in the area immediately surrounding this unit provision be made for lowering the
lighting level to provide good image resolution.

7. Powered from control unit.

8. Minimum clearance for two 7340 units is 7 inches; clearances should alternate: 7, 22, 7, and 22

inches. Clearance between 7340 and any other unit Of structure is 30 inches.

9. Shipped in two sections, 50-1/8 inches and 35-3/8 inches long.

10. Included in specifications for 2822.

11. Available for remote installation only.

12. Powered from 5ystem/360

Type Plug Connector Receptacle Rating

A Russell & Stoll, FS3720 FS3913 FS3743 15 amp, 1 phase, 3 wire

B Russell & Stoll, FS3730 FS3914 FS3744 15 amp, 3 phase, 4 wire

C Russell & Stoll, FS3750 FS3933 FS3753 30 amp, 1 phase, 3 wire

D Russell & Stoll, FS3760 FS3934 FS3754 30 amp, 3 phase, 4 wire

E Russell & Stoll, SC7328 SC7428 SC7324 60 amp, 3 phase, 4 wire
F Russell & Stoll, JP51034H JCS1034H JRS1034H 100 amp, 3 phase, 4 wire

6-3

R AD ONLY TORAGE

A D. I W REGISTER I X REGI ER

,I , I , . . ,I , 1 "I :I: 1 . . ! I I ~ I g . , ~ I : . , I . , , I , , , ,
AI H I I A I . M I CU I CK

'I , I , '1 , I , , 1 A , I , , 1 , I 1 , I ,
1 ' 1 IA pi 0 12 3 . I F I I I I

'I , I , , 1 1 , I , 1 , I 1 , I I' I 21 A 0 1 , ,

~ I g :1 . ! ~ I g ~ I : ,
HA 0

I I • I I MAD

1:1 : :1 ; I n . ~ I: , ;1 , ,
FLAGS TAGS I C E

'" '" "" 'ow I g~~l g~R~" IN.
FACf

G. '" CMHD S~RY
G", G",

ER WO

DATA R GISTER I KEY I COMMAND I'

~ I g : ,
~ I ! ;1 ~ I g :1 . . , ;1 , . , ,

FLAGS TAGS CHECKS

" >0. $T ... r ,.,

I ~~ g~~L
,m
FACE .. ". .. ~

G. 001 G. 00'

PX HANNEL TA • I

". sr ... r - ~". .. ~ '"'
, . . , I

'" '" G., G. G. , , , , ,"
AIN A ADDR SS EGI TE

: Ig , :1 : . , ; I ~ I ~ ~ I : , I I;' , , . . ,
MAIN STORAGE OA 'A REGISTER I ALU OUTPUT PU STATUS PU CHECKS

, I. t! I I. II. " MATCH ~L~~~ STOR STOR . , , AOR DATA

B REGISTER I A R GISTER I~:~ 1050 . A

"" "" '"
:.I.g , q: ; I ~ I ~ . , ~ I : M" m COMP '03 '0' i~~" , , , CHNl CHNL MODE .OR ,."

SYSTEM D I~TT~I RESET

~ ReSET m " EJ
D CHECK ~ RUH TEST

I STA~ 1 B tOISPLAyl

Figure 6-1. IBM 2030 Control Panel

6-4

ROS CONTROL

~~HIBIT ~ROICESr :g!N
STOP \ /

ADDRESS COMPARE

ROARSYNC~PROCLESS SARDELAYEO I STOP

ROARSTOP--....: y--SARSTOP

EARLY ---J1,\:,-SARRfSTART
ROARSTOP J __ \..
ROAR RESTART ROAR ROAR RESTART
WITHOUTHESET RESTART STOI!BYPASS

I POWER I ON

o
o

CHECI(CONTROL

DISABLE~ROCE/STOP

DIAGNOSTIC -\ I t..--RESTART

I POWER I 0"

IIN1ERRUPTI 00000 81

•

•

•

Controls are on IBM 2030 control
panel (Figure 6-1).

2030 panel is divided functionally
into seven sections.

2030 panel allows display and alter
ation of data, and control and sta
tus information.

UPPER INDICATOR PANEL (FIGURE 6-2)

READ ONLY STORAGE DISPLAY

•

•

Display consists of fifteen bits of
address and fifty-four output bits.

When the system stops, the displayed
address is normally the address of
the displayed control word.

Description

Whenever the system stops, the displayed
address is the address of the displayed
control word, except when the address-

REAO ONLY STORAGE

CN , ADDR , , W REGISTER

P I 0 , 2 3 4 5 I P I lP I ~ I ~ I ! 4 2 ,
5 6 7

AI CH , Cl , CA , CB
pi 0 I 2 3 I 0 I 2 3 I A 0 , 2 3 I 0 ,

CR' CD , , F , CG
pi 0 , 2 3 I I 0 , 2 I 0 ,

C UNf REGISTER

~ I , 4 2 ; I , , 2 ~ I ~ I ~ 4 2
0 , 2 , 5 6 , 2

HANNEl NUMBE E
, OAT REGIS ER , KEY

I ~ I ~ 4 2 i I , 4 2 ~ I ~ I
, 4 2 , 2 4. 5 6 0 , 2

FLAGS , TAGS ,
CD CC Sll SKIP PC' I '" ". STAT ~~RV I IN IN IN

m AOI CMND "IV '" 0"' 0", 0", OUT 0",

Figure 6-2. UpPer Indicator Panel

,
I
,
I
,
I

0

APPENDIX 2

compare switch is in the Early Roar Stop
position and a match occurs, or the
check control switch is in the Stop
position: and one (or more) of the
following checks occur: CTRL-REG, A-REG,
B-REG, ALU, STOR DATA, or STOR ADDR.

COUNT REGISTER DISPLAY

• A group of eighteen indicators.

• Allow the contents of either the GCD
or HCD register to be observed.

CHANNEL NUMBER ONE DISPLAY

• A group of indicators provided to
observe Selector Channel One opera
tion.

DATA REGISTER

•

~ I ~
CM , 2

A display of the channel data reg
ister for channel one.

X REGISTER

4 2 ~ I 4 4 2 , , 2 5 6 7

, C , CK

I 0
, IAPlol23

cv , C , 5
0 , I 0 , 2 I A 0 , 2 3

~ I : , 2 ,
5 6 7

, COMMAND ,
, I' , 2 ;j 3 4 5 6

HECKS
Il PRaG PROT CHNL CHNL 'NT

DATA CTRl fACE

6-5

REY

• A display o.f four bits plus parity.

• Indicates the main storage protec
tion key for all commands associated
with the start I/O instruction.

COMMAND

• These four bits, when decoded, iden
tify the channel command.

FLAGS

• This group of five indicators dis
plays the manner in which a channel
command is executed.

• These indicators, when on, have the
following meaning:

TAGS

•

6-6

CD Indicates chaining of data
addresses

CC Indicates command chaining

SLI Indicates that the program
will not be notified in the
event of wrong length record.

SRIP This bit is turned on when it
is desired to inhibit writing
data into storage during Read,
Read Backwards, or Sense oper
ations.

PCI This is the Program Controlled
Interrupt bit, which permits
the channel to generate an
interrupt upon fetching the
CCW.

Nine selector channel tags are dis
played as follows:

OP IN-Indicates that an I/O unit has
been selected and is in COIHlluni
cation with the channel.

ADDR IN- Indicates that the address
of the currently selected I/O
unit is on Bus In.

STAT IN - Indicates that the select
I/O unit has placed status infor
mation on Bus In.

SERV IN - Indicates that the select
ed I/O unit is ready to transmit
or receive data.

SEL OUT - When this light is on, the
several I/O units are being
polled to determine which unit
requested service.

ADDR OUT - Indicates that the infor
mation on Bus Out is an address.

CMND OUT - Indicates that the infor
mation on Bus-Out is a command.

SERV CUT - Indicates that the CPU
has accepted the information on
Bus In or has provided data on
Bus Out.

SUPP OUT - This Signal used alone or
with other tags indicates the
following functions:

Suppress Status
Suppress Data Transfer
Chained Command Control
Selective Reset.

CHECRS

• Indicates a detected malfunction
during selector channel operation.

• The Check lights are turned on for
the following reasons:
IL - This light is turned on whenev

er the number of bytes con
tained in the assigned storage
area is not equal to the number
of bytes requested or offered
by the I/O unit, provided the
SLI flag is not on.

PROG - When this light is on, the
channel has detected a program
min9 error.

PROT - This light is turned on
whenever the channel attempts
to violate a protected area of
Main Storage durin9 an I/O
operation.

CHNL DATA and CHNL CTRL - Any time
an invalid byte of data is
detected in the data register,
the CHNL DATA Check light is
turned on. If a control byte
is contained in the data reg
ister at the time the error is
detected, the CHNL CTRL Check

liqht for the appropriate chan
nel will be turned on. There
are additional checking cir
cuits which can turn on the
CHNL CTRL light.

LOWER INDICATOR PANEL (FIGURE 6-3)

CHANNEL NUMBER TWO DISPLAY

• These indicators provide the same
function as the Channel Number One
display.

INT FACE

This indicator turns on when:
1. A response, from a control unit, is

not qiven to a siqnallinq sequence
initiated by the channel.

2. A device indicates that it is busy
(after device end has been given) to

an initial selection sequence.

3. Either no address response or an
address mismatch occurred as a
result of an addressing sequence
initiated by the channel.

4. A parity error was detected on sta-

AN NUMB TWO

I DATA REGISTER I KEY

I ~ I ~ 4 2 ; I ~ 4 2 i I ~ I ~ 4 , 2 5 6 ,
flAGS I TAGS I

CD CC SLI SKIP 'CI I ~ AD. fJAT "" I '" ,"
'" AO, "'"' m" '" 0", 0"' Otn 0", ""'

MPX CHANNEl TAGS I PX

~ AD. m, SERV '" AOO CMND ~E~J '" I
, •

'" 'N '" 0"' 0"' 0", 0"' , 0

MAIN STORAGE ADDRESS REGISTER

d ; I ~ ~ I ! ; I g 4 2 4 2 4 2 ~ I ! 4 2 , , 2 , 6 , 2 , 6 7

MAIN STORAGE DATA REGISTER I AlU OUTPUT

, I. 4 2 ,I • 4 2 , I I. 4 2 , I. 4 2 ,
B REGISTER I A REGISTER

i I ; I ~ 4 2 ~ I. ! 4 2 ~ I ~ 4 2 11 ! 4 2 , , 2 , 6 , 2 , 6 7

Figure 6-3. Lower Indicator Panel

2
2

tus or address information sent from
a control unit to the channel.

In addition to the two sets of lights
for the two selector channels, a group
of eighteen indicators is provided to
allow the operator to observe the con
tents of either count register for the
appropriate channel. The leftmost nine
bits displayed are for channel number
one, the rightmost nine for channel
number two.

MPX (MULTIPLE~ CHANNEL TAGS

•

I

; I

IL

• 4

Nine Multiplex channel tags are
displayed as follows:

OP IN - Indicates that an I/O unit
has been selected and is in com
munication with the channel.

ADDR IN - Indicates that the address
of the currently selected I/O unit
is on Bus In.

STAT IN - Indicates that the address
of the currently selected I/O unit
has placed status information on
Bus In.

SERV IN - Indicates that the select-

COMMAND I
4 2 i 1 5 6

CHECKS

PROG PROT CHNL CHNL INT
DATA CTRL FACE

HANNEL BUS- UT REGISTER
4 2 , • 4 2 , , 2 3 4 , 6 7

MA'" I STOR

A"' ,,"'
CPU STATUS PU CHECKS

EX MATCH ~l~~t STOR STOR
AD. DATA

1050 1050 • A ALU
INTV REQ REG REG

M'X SEL COMP '0' 'OS CTRl
CHNL CHNL MODE AD. SALS REG

6-7

ed I/O unit wants to transmit or
receive data.

SEL OUT - When this light is on, the
several I/O units are being polled
to determine whether any unit
requests service.

ADDR OUT - Indicates that the infor
mation on Bus Out is an address.

CMND OUT - Indicates that the infor
mation on BUS Out is a command.

SERV OUT - Indicates that the CPU
has accepted the information on
Bus In or has provided data on Bus
Out.

SUPP OUT - This signal used alone or
with other tags provides the fol
lowing functions:

Suppress Status
Suppress Data Transfer
Chained Command Control
Selective Reset

BASIC CPU DISPLAY

• A display of registers, status con
ditions, and checks in the CPU.

• Those registers with full time indi
cators are:
MPX Channel Bus-Out Register 9 bits
Main Storage Address
Register 18 bits
Main Storage Data
Reg.i.ster 9 bits
B Register 9 Bits
A Register 9 Bits
ALU Output
(not a register) 9 Bits

Whenever a storage cycle is taken, an
address is gated into the Storage
Address Register, and one of two indica
tors will be turned on to indicate
whether the access is in Main Storage or
Auxiliary Storage (Local Storage or one
of the MPX Storages). These lamps are
labeled MAIN STOR and AUX STOR, respec
tively_ If an access to Auxiliary Stor
age is required, the contents of the
high order digit of the Main Storage
Address Register will determine which
part of the Auxiliary Storage is to be
used.

During wait state and process stop,
the instruction counter is displayed in

6-8

the B and A registers. The current
operation code is not displayed.

CPU STATUS

• These indicators Signal the actual
operating status of the CPU at any
time.

Description

The indicators and their meanings are:

EX: This lamp is turned on at the end
of each instruction execution, that is,
whenever the micro-instruction -Branch
on Interrupt- occurs. In the micro
instruction word immediately following
the interrupt word, the EX latch is
reset. Note that if the system stops at
the end of instruction execution (for
example, if the Stop button has
pressed), the EX lamp remains on. It is
extinguished upon restarting the CPU
clock.

MATCH: Some modes of operation require
the use of an exclusive or match
ci~cuit, and the MATCH indicator is
turned on whenever the Compare Address
in switches A, B, C, and D matches the
contents of either the R/W Storage
Address Register or the Read/Only Stor
age Address Register. The position of
the Address Compare Switch determines
which of these registers is monitored,
as well as the system response to a
match.

ALLOW WRITE: Whenever the allow write
indicator is on,the R/W Storage has
completed a read operation, but not the
corresP9nding write operation.

1050 INTV: This light is turned on
whenever operator intervention is
required at the 1050.

1050 REQ:When this light is on, the
CPU has recognized a request for service
that was initiated at the 1050.

MPX CHNL: Whenever a multiplex channel
share request is recognized by the CPU,
the MPX light is turned on. This light
is turned off at the completion of the
share cycle.

SEL CHNL: This lamp is lighted whenever
either selector channel is using the
Read-Only Storage.

CO~P ~ODE: Whenever the system is proc
essing a 1400 type program, the comp
~ode lamp is turned on. This lamp is
turned on at the same time as the W3
lamp.

CPU CHECKS

•

•

•

Errors detected during CPU operation
set a check latch.

Each check latch turns on a corres
ponding indicator.

These indicators are:
STOR ADDR
STOR DATA
B REG
A REG
ALU
ROS ADDR
ROS SALS
CTRLREG

Except for the ALU check, the turning on
of any of these lamps is an indication
of detected parity error in the asso
ciated register. In the ALU, a dupli
cate check is made.

COMPARE ADDRESS

MAIN STORAGE ADDRESS

DC] I I , ,
3 , I

Figure 6-4. Operator Panel

OPERATOR PANEL (FIGURE 6-4)

SYS (SYSTE.~) INDICATOR

•

•

This indicator is on whenever the
customer or CE usage meter is
recording time.

The System Indicator is located on
logic page PA 061.

~N (MANUAL) INDICATOR

• The Manual Indicator is on whenever
the CPU clock is stopped.

• When on, this light indicates that
manual controls requiring a stopped
clock may be performed.

• The Manual Indicator is located on
logic page PA 061.

WAIT INDICATOR

• The Wait Indicator turns on when the
CPU is in the wait state.

• An interrupt causes a ROS branch-out
of the wait state.

• The Wait Indicator is located on
logic page KU 011.

I POWER I ON I POWER I OFF

INSTRUCTION ADDRESS - ROS ADDRESS

00000 EJ

6-9

TEST INDICATOR

• The Test Indicator comes on when
either the Rate Switch, the Address
Com.pare Switch, the Check Control
Switch, or the ROS control switch
are not in the Process position.

• When on, the Test light indicates
that a test is in progress.

• The Test Indicator is located on
logic page PA 061.

LeAD INDICATOR

• The Load Indicator comes on when the
Load Rey is pressed and turns off at
the completion of the initial pro
gram load sequence.

• When the Load Indicator turns off,
it means that the input device has
finished reading in the new program
and that the new PSW has been
loaded.

• The Load Indicator is located on
logic page PA 061.

DATA AND ADDRESS ENTRY SWITCHES

• Allow manual entry of data and
addresses to the CPU.

• Each switch provides more than one
function.

• Data and addresses are entered with
correct parity.

pescription

Eight rotary switches are provided for
entering manual data or addresses into
the system. Each of these is a sixteen
position switch which pro:vides one hexa
decimal digit, or four bits plus parity.
Th~ first four switches, labeled A, B,
C, and D are used to set up the address
for manual operations of the core stor
age, or to set up a compare address.
The switches labeled F, G, H, and J are
used to set up an Instruction Address, a
ROS Address, a Load Unit Address, or
manual data.

6-10

The following chart shows the switch
es used to perform the various
functions. r------------T--------, I I Switches I
I fUnctions I Used I
.-------------------+-----------~ I Compare ROAR J I
,Stop Address IA,B,C,D I
r---· ----.-------+--------~
I Compare ROAR I I
,Restart Address IA,B,C,D I
r-----~--- - ----+-----------~
,Compare SAR I I
IRestart Address IA,B,C,D I
.--------------------+-----------~ I Compare SAR I I
Istop Address IA,B,C,D I
.--------.....,..------+---------~ JHanual Display I I
lor Store Address lA, B, C, D I
.-------------------t-----------~ I Instruction Address IF,G,H,J ,
• -.---------------+----------~
IROS Address IF,G,H,J I
.-------------------t-· ----~ ILoad Unit Address I I
I (IPL) I G, H, J I
.---------------t--------~ ,Store Data IB,J I
_~ __ ~_-------~-~---__ ------J

DISPLAY STORAGE SELECTION

•

•

•

Two concentric switches at one loca
tion.

Inner switch has 3 positions; outer
switch has 16 positions.

Define register or storage area to
be addressed on a display Or store
operatioJ'l.

DESCRIPTION

The Display/Storage Selection switch
(switch E) provides a means of selecting

a register or one location of main stor
age or auxiliary storage, in order to
display or store information. Selection
is made according to the following
table.

Inner Inner Inner
Cuter Switch Switch Switch
Switch Position Position Position

Position 1 2 __ 3

1 Q MS I
2 C AS J
3 F Spare U
4 TT Spare V
5 TT Spare L
6 JI Spare T
7 GS Spare D
8 GT Spare R
9 GUV,GCD Spare S

10 HS Spare G
11 HT Spare H
12 HUV,HCO Spare FI
13 SPARE SPARE FT
14 SPARE SPARE SPARE
15 SPARE SPARE SPARE
16 COMMON COMMON

POWER ON KEY

•

Lighted Key

Initiates power on sequencing of
entire system

• Power On key is located on logic
page YZ041.

Description

Pressing the Power-On key starts the
normal power on sequence. (Information
in core storage remains unchanged.)
When the system power-on sequence has
been completed, the indicator bulb
behind the Power On key lights. A sys
tem reset function occurs during the
power-on sequence.

Power-Off Key

• The Power-Off Key provides a means
of removing power from the entire
system via a normal power-off
sequence.

• Core storage data remains unchanged.

•

•

R-register is written into core if
the allow write latch is on.

The Power-Off key is located on
logic page PA 111.

Description

Pressing the Power-Off key on the con
sole initiates the power-off sequence in
the CPU and the remainder of the system.

INTERRUPT KEY

• PreSSing the Interrupt Key gene.rates
a console interrupt which the system
will recognize if programm.ed to do
so.

• The Interrupt Key is located on
logic page PA 111.

LOAD KEY

• When pressed, the Load Key sets bit
25 in the PSW and causes a system
reset function to occur.

•

•

When released, the Load Key ini
tiates an initial program load rou
tine.

The Load Key is located on logic
page PA 101.

Description

The Load Key causes a system reset and
sets the machine reset latch. The
machine reset latch establishes
priority. At the end of the clear-UCW
routine, the machine reset latch is
reset and a load trap occurs. This load
trap starts the load microprogram. This
microprogram does not restore any old
PSW information as part of its
operation. ~: The trap is allowed
because the system reset function resets
the F-register to all 11S (With the
exception of the lA bit). The F
register contains the external interrupt
mask, and all bits on means that all
external interrupts are allowed.

CONTROL KEYS (FIGURE 6-5)

SYSTEM RESET KEY

• Resets system (CPU, channels, and
control units) to its initial state.

• Sets up Ras branch to 0000.

• Active in all modes of operation.

6-11

•
•

Error status information is reset.

System Reset key is found on logic
page PA 101.

Description

Pressing the system reset key causes a
system reset function to occur. The
system reset function causes all
hardware registers to be set to zero
with proper parity. All hardware latch
es are reset with the exception of the
machine reset latch, which is set on.
The machine reset latch disables all
traps until it is reset. PreSSing the
start key starts the machine at a micro
program that clears all UCW'S (Unit
Control Words). After the UCW's are
cleared, the machine reset latch is
reset and traps may occur. When the
machine reset latch is reset, the system
reset function is over. Note: The ROAR
Reset key may be pressed prior to press
ing the start key to prevent clearing
the UCW'S (see ROAR Reset key) •

D
OU Ie B

D ~ TEST

B B I DISPLAY I

Figure 6-5. Control Keys

ROAR RESET KEY

• Allows manual change of ROAR address
by gating contents of switches F, G,
H, and J into ROAR.

• The ROAR reset key is effective when
the clock is running.

6-12

•

•

Can also be used to block the clear
UCW routine after a system reset.

ROAR Reset switch is located on
logic page PA 111.

Description

To manually change the address in WX,
the CPU clock must be stopped. Pressing
the ROAR reset key turns on the gate
switches to WX stacking latch. When the
clock is re-started and traps are
allowed to take place according to their
aSSigned priority, the gate switches to
WX stacking latch, forces an address
into WX, which locates the trap to gate
the switches to WX.

The ROA.R reset key also alters the
events that take place after a system
reset function. A system reset function
resets all registers and latches except
the machine reset latch, which is turned
on. The machine reset latch forces an
address of 0000 to ROAR. If ROAR reset
is pressed after a system reset
function, but before the CPU clock is
started, the machine reset latch is
turned off. Then, when the clock is
started, the clear UCW's trap is not
taken. Other traps of higher priority
may take place before the gate switches
to WX trap takes place.

SET IC KEY

• Allows manual setting of instruction
counter from console.

• Forces ROS branch to 0001, which is
the address of the Set IC Trap.

• Set IC key is inoperative if CPU
clock is running.

• Set IC key is located on logic page
PA 101.

Description

The Set IC key is used to change the
core storage address in the instruction
counter (registers I and J). PreSSing
this key forces the address 0001 into
WK, and starts the CPU clock. Located
at ROS-address 0001 is the routine that
sets I and J from switches F, G, H, and
J. After entering IJ, the address is
also gated into the A- and B-registers
so it will be displayed on completion of

the Set IC trap, the CPU again enters
the wait state.

If a system. reset had occurred prior
to pressing the Set IC key, the micro
program starts at address 0000. This
causes the UCW'S to be cleared prior to
setting the instruction counter from the
switches.

STORE :KEY

•

•

•

Loads the byte specified by the Data
Switches (H and ~ into the area
specified by Display-Store Selection
Switch (E).

Store key is inoperative if the CPU
clock is running.

The Store key is located on logic
page PA 111.

Description

Pressing the store key gates the con
tents of switches Hand J into the B
register. TheB-register is gated high
and low through ALU. The resultant data
byte appears on the Z-bus and is gated
to the area selected by switch E. If a
register is selected to receive the data
byte, the Z-bus is gated directly to the
selected register. If memory is
selected to receive the contents of H
and J, the Z-bus is gated to the R
register. In the case where memory is
selected by switch E. switches A, B, C,
and D provide the memory address, and a
manual read cycle and a manual write
cycle are taken to place the data byte
from switches Hand J (now in the
R-register) into the desired address.

The CPU clock mUst be stopped, and
the allow write latch m.ust be off for
the store operation to take place.

CHECK RESET KEY

• Resets the machine check register as
well as several machine check
control latches to the no error
state.

• Check reset may occur with the CPU
clock running or stopped.

• Check reset key is located on logic
page PA 111.

Description

Pressing the check reset key resets all
positions of the machine check register
to the no error state. In addition, the
first machine cheok, the second error
stop, and the check restart latches are
reset. This means that all machine
check logic is reset.

LAMP TEST KEY

• Turns on all console indicator driv
ers.

• Can be pressed while system is run
ning.

• The lamp test key is located on
logic page PA 111.

Description

An additional input is provided on all
indicator driver circuits for testing
purposes. This input serves an OR func
tion along with the normal driver input.
When the lamp test key is pressed, all
indicator drivers should turn on to
light all console panel lights.

START KEY

• The start key starts the CPU clock.

• System operation depends on what
conditions exist when the start key
is pressed.

• The start key is located on logic
page PA 101.

Description

If the start key is pressed after a
normal stop (for example, if the stop
key had been pressed), instruction proc
essing continues as if no stop had
occurred. Machine status is not affect
ed.

If the start key is pressed after a
system reset, the machine reset latch
forces the address 0000 into WX. This
causes the microprograrr to start at the
ucw clear routine. Other traps are then
allowed to occur in the order of their
assigned priority.

6-13

STOP :KEY

• Stops the CPU clock. at the end o.f
the instruction in process.

• All pending interrupts are taken
before CPU clock is stopped.

• Machine status is not effected.

• Stop key is located on logic page PA
101.

Description

The CPU proceeds to the end of the
instruction in process at the time the
stop key is pressed. All pending inter
rupts are taken before the CPU clock is
stopped. Once the clock is stopped, no
traps are allowed. Any I/O operation in
process at the time the stop key is
pressed is allowed to finish before the
CPU clock is stopped. If an I/O device
is involved in command or data chaining,
these chains are completed before the
clock is stopped.

When the CPU has stopped, the storage
address of the next instruction is dis
played in the B and A registers.

DISPLAY :KEY

• Allows a selected byte to be gated
to a display register.

• Selected byte may be from any reg
ister or from any core storage area.

• CPU clock must be stopped, and allow
write latch must be off.

• Display :Key located on logic page PA

Description

Because certain registers in the 2030 do
not have their own console indicators,
provision has been made to display these
registers in another way. With the CPU
clock off, pressing the display key
caUses the contents of the register or
storage location specified by console
switch E to be displayed in a display
register.

An ~dditional display feature occurs
when the 1-, J-, U-, or V-registers are
selected. If either the I- or J- reg
ister is selected, both I and.J are
transferred to the M- and N-registers so

6-14

the entire address is displayed by the
M- and N-register indicators. Similar
if either the U- or V-registers is dis
played via the A-register, then both U
and V are transferred to and displayed
by the M- and N-registers. Note: this
transfer of IJ or UV to MN during dis
play takes place only if the allow write
latch is off and the CPU clock is
stopped. Allow write must be off to
permit changing the address in MN.

To use the display feature, first
make sure that the CPU clock is stopped.
In addition, if a storage position or
the I-, J-, U- or. V-registers are to be
displayed, the allow write latch must be
off. (The allow write latch lights the
Allow Write CPU status indicator on the
lower console indicator panel.) Next,
set the display-store select switch,
switch E, to define the register or
storage area to be displayed. If a
storage area is selected (main storage,
or auxiliary storage), or the storage
address must be set up in the main stor
age address switches, switches A, B, C,
and D. If a register is being
displayed, pressing the display key
gates the selected register into the
A-register for display. No storage
cycle is taken. If the I-, J-, U-, or
V-register is being displayed, pressing
the display key gates the selected reg
ister to the A-register, and gates the
selected register and its complementing
register to the MN-registers for
display. No storage cycle is taken.

If a storage location is being dis
played, a storage read cycle is taken
followed by a storage write cycle. This
retrieves the desired byte from storage
and places it into the R-register for
display. When a storage location is
being displayed, where a program has
been halted, it is a good idea to note
the contents of the R-register prior to
the display operation. Then, the R
register can be restored prior to
reentering the program and starting the
CPU clock.

INTERVAL TIMER SWITCH

•

•

When on, the interval timer switch
allows the interval timer to
advance.

When off, the interval timer switch
prevents interval timer advance.

• The interval timer switch is located
on logic page PA 111.

Description

If the interval ti~er feature is
installed on the 2030, the interval
timer switch controls its operation. If
the interval timer switch is off, the
timer control latch is held on to block
C-counter drive pulses, thus preventing
timer advance.

MODE CONTROL PANEL (FIGURE 6- 6)

RATE SWITCH

• Three position switch with process,
instruction step, and single cycle
positions.

• Lights test light on operator panel
if in instruction step or single
cycle position.

• The Rate Switch controls the manner
the CPU processes instructions.

• The Rate Switch is located on logic
page PA 081.

INSTR (INSTRUCTIO~ STEP POSITION: When
the Rate Switch is in the Instr Step
position, one complete instruction,
including interrupts, is executed each
tim~ the start key is pressed. When the
clock stops after executing an instruc
tion, the B and A-register lights dis
play the address of the next
instruction.

ROS CONTROL

~~HIBIT ~ROICESr ~~;N
STOP \ /

ADDRESS COMPARE

ROAR SYNC --\ROC
1

ESr~~~pDElAYED

ROARSTOP~ ~SARSTOP

EARLY JI\:,--SAR RESTART
ROAR STOP ~

ROAR RESTART ROAR ROAR RESTART
WITHOUT RESET RESTART STOR BYPASS

RATE

INSTR PROCESS SINGLE

STEP \ I / CYCLE

CHECK CONTROL

DISABLE PROCESS STOP

DIAGNO=--S I Z:START

Figure 6-6. Mode Control Panel

If the instruction is an I/O opera
tion, then the I/O operation is complet
ed and interrupts are pending before the
CPU clock is stopped.

SINGLE CYCLE POSITION: When the Rate
Switch is in the Single Cycle position,
the CPU advances 1:;y oneRCS cycle each
ti~e the start key is pressed. Thus,
the CPU processes instructions in one
microsecond increments, I/O instructions
included. This means that I/O data
overrunS may occur in this mode.

PROCESS POSITION: When the Rate switch
is set at the process position, the CPU
clock is allowed to run at the one
microsecond rate until some condition
causes a stop. This is the position in
which customer's will process data.

ADDRESS COMPARE SWITCH

• Determines function to te performed
by the address match circuit.

• If the Address Compare switch is at
other than the process pOSition, the
~indicator on the operator panel
is lighted.

• SWitches A, B, C, and D are compared
with either ROAR or SAR as defined
by the Address Compare switch.

6-15

• The Address Compare switch is locat
ed on logiC page PA 081.

PROCESS POSITION: This is the position
in which customers will run their pro
grams. A sync pulse is provided when
the address specified in the address
switches matches an address in SAR.

ROAR SYNC POSITION: This position pro
videsa sync pulse when the address
specified in switches A, B, C, and D
matches the contents of the Read Only
Storage Address Register.

ROAR STOP POSITION: With this switch
setting, the operation proceeds until
the contents of the ROAR match the con
tents of Switches A, B, C, and D. When
this match occurs, the clock is turned
off at the end of that ROS cycle and the
system stops.

EARLY ROAR STOP POSITION: With this
switch setting, proceSSing proceeds
until the contents of the ROAR match the
contents of switches A, B, C, and D.
When the match occurs, the clock is
turned off immediately and the system
stops. This function differs from the
ROAR Stop function. This reset occurs
before ROAR is reset and the address
displayed is the address of the ROS word
just prior to the word-address set in
switches A, B. C, and D. ROAR Restart
Without Reset, ROAR Restart, and ROAR
Restart Stor (Storage) Bypass Positions.
These three pOSitions are similar in
that the occurrence of a match between
the ROAR and the Switches A, B, C, and D
cause the ROAR to be reset to the value
set in Switches F, G, H, and J. In the
case of the ROAR Restart position, the
CPU hardware registers are reset to zero
before the ROAR is reset to the value in
Switches F, G, H, and J. In the ROAR
Restart Store Bypass poSition, opera
tion is similar to that in the ROAR
Restart positiOn except that main stor
age is not permitted to operate. Note
that a normal problem prograu cannot be
processed if the main storage does not
operate.

SAR RESTART POSITION: When a match
occurs in this mode, the CPU is reset
and a fixed address is forced into the
ROAR. The resulting microprogram loads
the contents of Switches F, G, H. and J
into the instruction counter (Registers
I and J) and then starts an instruction
cycle.

6-16

SAR STOP POSITION: In this position a
match between switches A, B, C, and D
and the address in SAR causes the CPU
clock to stop at the end of the write
cycle in which the match occurs.

SAR DELAYED STOP POSITION: In this
mode, a match causes the CPU clock to
stop at the conclusion of the execution
of the instruction in which the match
occurs. All pending interrupts will be
taken before the clock is stopped.

INHIBIT CF STOP: In this pOSition proc
eSSing occurs in the normal fashion
except that microprogram stops (a parti
cular pattern of bits in the CF field)
are ignored.

ROS SCAN: A combination of hardware
control and a particular m.icroprogram
allows the ROS to be scanned sequential
ly for the purpose of cheCking. AS each
ROS word is scanned it is parity
checked, but is not used for control.
By using the ROAR RESTART operation, the
scan can be started at any word and
restarted at any word. Setting the
ADDRESS COMPARE Switch to ROAR STOP will
cause only one scan. If the RATE Switch
is set to -INSTR STEP- the clock will
stop with each scanned word displayed in
the ROS display.

PROCESS: This pOSition allows normal
operation of the ROS. This -PROCESS
poSition is like the equivalent on the
other three switches on this panel in
that when not in this position the
-TEST- indicator will be turned on.

CHECR CONTROL SWITCH

• Determines system action when an
error is encountered.

• Causes the Test indicator on the
operator panel to light when not in
the process position.

• The Check Control Switch is located
on logic page PA 081.

DISABLE POSITION: In this position any
parity check causes its associated check
latch to be set, but otherwise the fail
ure will be ignored. Results may be
wrong when updating in this mode.

STOP POSITION: Detection of a parity
error in the Stop pOSition causes an
immediate unconditional clock stop.

DIAGNOSTIC POSITION: In this position
stopping or ignoring of machine checks
is under the control of a latch that can
be turned on or off with micro-program
words.

RESTART POSITION: Upon the detection of
an error, action is conditioned by the
setting of the Address Compare Switch,
as follows:

1. With the Address Compare Switch: In
the SAR Restart, a system reset is
initiated following which the
instruction counter is loaded with
the contents of the Switches F, G,
H, and J and an I-cycle is started.

2. In the ROAR RESTART position or the
ROAR Restart Storage Bypass
position, a recycle reset is given
which resets hardware only (not the
UCW's) and then gates the contents
of Switches F, G, H, and J to the
Read Only Storage Address Register
and starts the resulting micro
program (with or without the of
tion of Main Storage).

3. In the ROAR Restart Without Reset
position, operation is identical to
that in ROAR Restart position except
that no reset is initiated.

4. In any other position, operation is
like that in SAR Restart position
except that no reset is initiated.

PROCESS POSITION: This position is the
position in which problem programs are
processed. Upon detection of a parity
check with the switch in this position,
the ROS will automatically initiate what
is known as the Malfunction Trap
Routine. This routine stores the con
tents of the Check Register in a fixed
location of Main Storage, as well as the
Program Status Word, and upon successful
completion of this task, originates a
Machine Check Interruption.

METER PANEL (FIGURE 6-7)

EM.ERGENCY POWER OFF SWITCH

• Causes power to turn off beyond the
entry terminal of every unit on the
system.

• All power in the CPU and all I/O
devices- is dropped immediately.

• The contents of core storage is not
guaranteed.

o
o

Figure 6-1. Meter Panel

METERING SWITCH

•

•

•

Enables or disables the timing met
ers.

Operated by a removable key.

Two positions are:

1. Normal -- Enable process meter,
disable CE meter.

2. CE -- Disable process meter,
enable CE meter.

PROCESS METER AND CE METER

•

•

Measure operating time when the CPU
clock is running, the CPU is not in
the Wait state, or no external
interrupts are pending.

The position of the key switch de
termines which meter is recording
time.

6-17

ANSWERS -- SYSTEM/360 INSTRUCTIONS

1. Halfwords

2. Two, Specification

3. Op Code

4. a. 1A 00011010 1
b. 56 01010110 2
c. 9C 10011100 2
d. FD 11111101 3

5. Displacelf,ent, Base Address

6. Index

1. Does not

8. Base Registers

9. 4095

10. 1 to 15

11. The contents of Register 0 are
ignored and a value of zero is used
for the Base or Index factor.

12.

r-----· -T----'
a. RR lOp CodelR1 R21 L _____ --1-____ J

r-~---T-----~--,
b. RX lOp CodelRl X211 B2\ 021 l __ ---.L __ --1--~ __ J

r-------~--~~--l
c. RS lOp CodelR1 R31B21D21 l ______ ~ _____ ~ __ J

r-------------T--T--'
d. SI lOp Code 12 IB11D11 l ____________ ~_~J

r-----~--T--~-T--T-~T--l
e. 5S lOp CodeJL1 1L21B11Dl1B2JD21 l _______ ~_4-_~~ __ ~_~_J

13. 1st

14. 7

APPENDIX 3 •• ANSWERS TO REVIEW QUESTIONS

15. The Instruction, Byte

16. RX

11. SS

18. The number of Bytes in the data
field is one greater than the num
ber in the length code.

ANSWERS -- INSTRUCTION SEQUENCING AND
BRANCHING

1. Program Status Word

2. 64

3. 40 - 63

4. 2, 4, 6

5. 0-' ; Op Code

6. ·Current·

1. Some type of internal register
storage area

8. Instruction address,
(location)

9. 34 - 35

10. 4

11. Some

12. Condition Code

13. <zero

00
01
10
11

14. Equal or Low

15. Always

address

or

16. Bits 8 - 31 of general register 5

17. The effective address generated by
adding the contents of register 4
and register 7 and a displacement
factor of O.

6-19

ANSWERS -- SYSTEM/360 AND INTERRUPTS

1. a. External
b. Supervisor Call
c. Program
d. Machine
e. I/O

2. a. Current PSW is the double
being used by CPU to control
the execution of a sequence of
instructions. There is only
one current psw.

b. Old PSW is the doubleword
placed in main storage as a
result of an interrupt. There
are five locations reserved in
main storage, one for each
class of interrupt.

c. New PSW is the doubleword
fetched from main storage as a
result of an interrupt. It
then becomes the ·current· PSW.
Bits 40-63 of this doubleword
would switch the machine to a
new sequence of instructions.

3. 0063; there are 5 old PSW'S of 8
bytes each. Each main storage
address refers to an individual
byte.

4. 0088

5. 0128; it uses the area of main
storage just above the area for new
PSW·s.
r-----~T--~---~------------,

6. I System 1 IAMWPI Interruption 1
lMask 1 1 1 Code I
I 1 I I I
l ______ i ___ i_---i-~ __ --------J

o 7 12 1 IS 16 31

r---T----T------T-----------,
I I I C IProg. lInstructionl
I L J C IMask I Address I
l ___ i-___ i ______ i~----------J

32 83

7. Supervisor call interrupts and
those program interrupts not caused
by a.) fixed point overflow, b.)
decimal overflow, c.) exponent
underflow, or, d.) significant.
The last two deal with floating
point arithmetic.

8. 0

9. Only by an I/O or external inter
rupt.

6-20

10. Any interrupt

11. The address of the channel and 1/0
unit

12. The 8 bits in the Rl and R2 field
of the supervisor call instruction.

13. 32 33

r--~--'
11 01 L _____ J

t
ILC

14. Privileged, Program Interrupt

15. By issuing a ·LoadPSW· instruction
addressing the doubleword at loca
tion 0120 (the old PSW for an I/O
interrupt) •

16. a, c, e

17. A. byte from main storage

r----T--T--T--'
J Op 1 I I I
t Code 1121 B 1 t D 11 l ____ i __ i __ i __ J

r-----------,
IMain storage 1 l ___________ J

o 7

r----T-----'
I I 1 L ____ i _____ J

PSW

18. Condition code and program mask
with bits 2-7 of the register
addressed by the R1 field.

r--------~----T---,

cycles
b. Blocks A and C

7. a. All blocks

I Op Code I R1 1 R21 b. All blocks L _________ ~ ___ ~ __ J

.2 .,

r----------------,
IGeneral Register \ L----____________ J

3.. 38

r---------~-----~-----,
I PSW I I I I.. ~ _____ ~ __ ~ ____ J

19. d. Although the ·Load PSW·
instruction is used to return to an
interrupted program by loading the
old PSW. this old PSW has to be
addressed from main storage just
like any other doubleword.

r---------~--~----~--, I Op Code I 12 1 B1 I D1 I L _________ ~ ___ ~_--~----J

r----------,
1 psw I
L ... ___ --___ J

Main storage
r----------,
I r----------, I
I I Doubleword I 1 I "-_______ J I
L ____ ------J

ANSWERS -- STORAGE PROTECTION

1. Storage Keys

2. Protection Key

3. A p~ivileged instruction called
·Set Storage Rey·

4. (1) A privileged instruction
called ·Load PSW·

(2) An Interrupt

5. a. Modify-type main storage cycles

6. a. All blocks; storage protection
does not apply to fetch-type

~: As long as either key
(storage or protection)
is zero. the store cycle
is allowed and not
interrupt occurs.

8. d. The data will not be stored and
the program will be interrupted

9. Storage, C, 4

10. Reg 2 Reg 3
r---------------, r--------------,
10 0 0 0 0 F 7 01 10 0 0 0 0 FOOl L~ _____________ J L _____________ J

11. c. Program interrupt with a pro
tection violation indicated in
the interruption code of the
old PSW.

ANSWERS -- BASIC COMPO!lENTS

1. negative

2. minus

3. 2

4. opposite

5. time, output

6. time, start, start

7. Flip Flop, Polarity Bold

8. false

9. false

ANSWERS -- CPU CLOCK

1. 500

2. 5

3. 4, 1, 2 and 3

4. clock reset

5. 250

6-21

6. P

7. Clock Start Control, E-cycle Stop
Sample, and Clock Start latches

8. After T4 time

9. P2 and P3 -

10. False

ANSWERS -- ARITHMETIC OPERATION

1. The A and the B-registers

2. 8

3. Micro-programming

4. Add, and, or, exclusive or

5. Higb, low, straight, cross, cross
higb, cross low.

6. High, low, straight

7. Excess six, decimal add

8. No carry out of the high order
position of a group.

9. False

10. 3, S

11. Carry latch, . carry-in latch

ANSWERS -- REGISTERS

1. Storage
)

2. ROS

3. polarity hold, AOI

4. True

5. False

ANSWERS -- CORE STORAGE

1. Three, an X-line, a Y-line, and an
Inhibit-Sense Line.

2. X, Y, MN-Regs.

3. The base of the decode switch is
conditioned by the ~-register 4, 5,
6, and 7 bits. The emitter of the

6-22

decode switch is conditioned by the
N-register 2, and 3 bits.

4. The base of the decode switch is
conditioned by the M-register 6 and
7 bits plus the N-register 0 and 1
bits. The emitter of the decode
switch is conditioned by the M
register 3, 4, and 5 bits.

5. Coincidence of current flow in an
X-band and Y-line, the flipping of
a core, strobing of the pulse.

6. 2 sets of X-lines, 1 set of Y-lines
3 phase reversal planes.

7. R-reg.

8. When a core flips from the logical
1 state to the logical 0 state.

9. Strobe pulse

10. Not flow.

11. To reverse the direction of current
flow in the Y-lines of
corresponding planes in alternate
8X arrays. (i.e., if Y-current is
flowing from top to bottom is left
to through the 1-bit plane of the
first 8X array, it will be flowing
from bottom to top through the
l-bit plane of the second 8R array.

12. Of·the lower or upper 32R clock.

13. M 0 bit, on

14. 16 gate decode switches

15. 16 gate decode switches

16. Emitter and base conditioned to
conduct.

17. To cause current to flow opposite
the X-lines to prevent the core
from flipping if the bit is not
desired in storage.

18. The maintenance manual.

19. X-lines, Y-lines.

ANSWERS-- ROS CONCEPTS

1. line driver

2. SAL

3. ROS

4. one

5. serially

6. parallel

7. 60

8. 12

9. 8

10. 42

ANSW'ERS -- MICRO PROGRAM

1. Micro-program

2. ROS word

3. control fields

4. function control, storage control,
branching and address.

5. 8

6. fUnction control

7. W, X

8. X6, X7

9. eK

10. storage

ANSWERS -- ROS WORD FORMAT

1. 8

2. E

3. arithmetic

". lower

s. binary, decimal

6. E binary or decimal mode must be
specified.

7. is set into

8. V

9. one microsecond

10. Many

ANSWERS -- BLOCK EXAMPLE

1. The data in the R-register after
completing block 04B6 the second
time is 0001 0111.

This is arrived at by exe
cuting the blocks in the fol
lowing order.

ADDRESS 04AA: The data in the
R-register is returned to core
(WRITE.) The data in the D
is presented to both the A
register and B-register inputs
to ALU. There is no carry
insert because position 3 of
the S-register is zero. There
is no carryout as a result of
the addition to set 53 (D+D+C
DC) •

A source 0001 0001
B source 0001 0001
D-register 0010 0010

Position 7 of the S-register
is set to zero (0->S7). An
unconditional 1, 0 branch is
taken to address 4AE.

ADDRESS 04AE: The data in the
R-register is DECIMAL added to
itself (RtR+C->RC). Decimal
mode is specified by the E
line. 53 is still zero,
therefore no carry is
inserted. Because the data in
the R-register is zero, the
resultant addition provides no
carry out to set 53. Position
6 of the S-register is set to
zero (0->56), Branch 0,0 to
address 04B4.

ADDRESS 04B4: The mnemonic
STORE, does nothing for us at
this time because the previous
cycle was not a read. The
data in the D-register is
again added to itself. Still,
there are no carries.

A source 0010 0010
B source 0010 0010
D-register 0100 0100

You can see that every time
the data in the D-register is
added to itself, the data
shifts one position to the
left.

6-23

6-24

Position 7 of the S
register is set to a 1
(1->S7). On the branch line a
test is made on S7. This test
is done early in the cycle
before any status is set by
the C line statement. As a
result, a 1, 0 branch is
executed to 04AE.

ADDRESS 04AE: Again, the
R-register data is decimal
added to itself. And again,
since the data in the R
register is zero and there is
no carry insert, the resultant
answer is zero with no carry
out. S6 is set to zero
(O->S6). Branch 0,0 to
address 04E4.

ADDRESS 04B4: The S line
statement, STORE, has no
effect. The data in the D
register is added to itself
(D/D+->DC) •

A source 0100 0100
B source 0100 0100
D-register 1000 1000

no carryout, S3 is still zero.
Position 7 of the S-register
is set to a 1 (1->S7). Since
S7 was set previously, the
branch conditions now set up a
1,1 branch to address 04AF.

ADDRESS 04AF: The MN
registers, set by UV, address
main core eMS) to read data at
address XXXX (UV->MN MS). The
data in the R-register is
again DECIMAL added to itself
(RtR+C->RC). No carries are
involved. Position 6 of the
S-register is set to 1
(1->S6), but not before the
branch test is made and a 0 0
branch is taken to address
04B4.

ADDRESS 0484: The data just
read from address XXX X is lost
and the data in the
R-register, all zeros, is
returned to core (STORE). The
data in the D-register is
added to itself with no carry
insert.

A source 1000 1000

B source 1000 1000
D-register 0001 0000

with a carryout. Because of
the C to the right of the
arrow, the carry out sets
position 3 of the S-register.
Even though S7 is set to a
one, the expression 1->S7 sets
S7 again. A 1,1 branch is
taken to address 04AF.

ADDRESS 04AF: The data in the
R-register is decimal added to
itself with a carry insert.
The C to the left of the arrow
allows S3 to set a carry into
ALU. (RtR+C->RC). The data
in the R-register is now 0000
0001. The C to the right of
the arrow allows a carryout to
set S3. Because there is no
carryout, S3 is again zero.
Main storage (MS) is again
read (UV->MN). Position 6 of
the S-register is set to one
(1 S6). S6 had previously

been set to a one so the
branch test executes a 1,0
branch to address 04B6.

ADDRESS 04B6: The data just
computed is written at address
XXXX (STORE). Position 2 of
the S-register is set to 0
(0->S2) but not before the
branch tests (S2,0) determine
that a 1,0 branch is to be
taken to address 04AA. Remem
ber, one of the conditions
given before starting the
problem was that S2 was set to
a one.

AD.DRESS 04AA: The expression
WRITE has no effect at this
time, because it follows the
STORE operation of address
04B6. The data in the D
register is added to itself
with no carry inserted.

A source 0001
B source 0001
D-register 0010

0000
0000
0000

no carryout S3 = o. Position
7 of the S-register is set to
zero (0->S7). A 1,0 branch is
taken to address 04AE.

ADDRESS 04AE: The data in the
R-register is DECIl>1.AL added to

itself with no carry inserts.
The resultant data in the
R-register is 0000 0010. S3
remains zero (R±R+C->RC).
position 6 of the S-register
is set to zero (0 S6).
Advance 0,0 to address 04B4.

ADDRESS 04B4: The mnemonic,
STORE, does not affect the
problem becduse it does not
follow a read call. The data
in the D-register is added to
itself with no carry insert
(D+D+C->DC) •

A source 0100
B source 0010
D-register 0100

0000
0000
0000

no carryout, S3=0. Position 7
of the S-register is set to a
one (1 S7), but not before the
branch tests determines that a
1,0 branch to address 04AE is
called for.

ADDRESS 04AE: The data in the
R-register is DECIMAL added to
itself and becomes 0000 0100.
No carryout therefore, S3 is
still zero (R±R+C->RC). posi
tion 6 of the S-register is
set to zero (0 S6). Advance
0,0 to address 0454.

ADDRESS 04B4: STCRE, again
accomplishes nothing for our
program at this point. The
data in the D-register is
added to itself with no carry
insert (D+D+C->DC).

A source 0100
B source 0100
D-register 1000

0000
0000
0000

no carry out, S3=0. S7 is set
to as one (1->S7). This pOSi
tion of the S-register was
previously set therefore a 1,1
branch is taken to address
04AF.

ADDRESS 04AF: The data in the
R-register is DECIMAL added to
itself. There is no carry
insert as S3 is a zero. No
carryout results. The resul
tant data is 0000 1000 in the
R-register. Core address XXXX
is read (UV->MN MS). S6 is
set to a one (lS6) but not

before a 0,0 branch is taken
to address 04B4.

ADDRESS 04B4: The data just
read is lost, and the computed
data, 0000 1000, is returned
to core (STORE). The data in
the D-register is added to
itself with no carry insert.
A carryout results that sets
S3 to a one (D+D+C->DC).

A source 1000
B source 1000
D-register 0000

0000
0000
0000

carryout S3=1. S7 is set to a
one (1->S7). A 1,1 branch is
taken to address 04AF.

ADDRESS 04AF: The data in the
R-register is DECIMAL added to
itself. A carry is inserted.
No carryout results, and S3 is
set to zero (R±R+C->RC). The
result is R is 0000 0111.
Core address XXXX is read
again (UV->MN MS). 56 is
again set to one (1->S6). A
1,0 cranch is executed to
address 0486.

ADDRESS 04B6: The data read
from address XXXX is lost and
the data just computed, 0001,
0111 is returned to core
(STORE). S2 is set to zero
(0->S2). The data in the

R-register is 0001 0111, which
is 17 in decimal mode. Effec
tively then, this small 5
ROS-word loop has converted a
binary number to a decimal
number.

ANSWER -- CONTRCL FIELD MNEMONICS

1. STORE WRAP

2. 0,X7

3. either -- The operation is speci
fied on the E line of the CLD box.

4. 1 1 1

5. left intact

6. No, the CB control field only spe
cifies R, L, D, and R.

7. 0001 - Force a 1, 1 branch

6-25

8. O->IPL

9. 0010 - The zeros represent capaci
tor plates that are punched out.

10. GO and G1 are interrogated. Local
storage is specified if these posi
tions are both zero.

11. This coding allows the R-register
to be set from core if the previous
ROS word gave a read call. This is
the CM coding used for the
"compute" cycle.

12. To one

13. No, the SO and Sl mnemonics are
.both in the CH field.

14. 5 PK, PA, PS, PC, PN

15. Yes. When the mnemonic K->W or
CA->W is used.

ANSWERS -- ROS ADDRESSING

1. Two

2. 8K unit 8064 ROS words

3. T, driver decode

4. 15

5. 48

6. 120 sense amps, 60 SALs.

7. A small pluggable card which is
used to satisfy the inputs to the 3
driver decodes for each RCS board.

8. No, the SALs are shared by each 4K
unit. Additional sense amplifiers
are needed.

9. W3

10. X7

ANSWERS -- ROAR CONTROLS

1. By means of the AA bit. If the AA
is a one then W3 is set to one.

2. F, G, H, and J

3. CN

4. 0004 (HEX)

6-2.6

5. False. The lights are actually
tied to an indicating ROAR.

6. False. The A.LU check is further
controlled by the CPU Check switch.

ANSWERS ROS TIMINGS

1. e, d, b, a, c

2. The SALs are set by the .ROS word as
specified by the address in ROAR.
The control register latches con
tain the data of the previous ROS
word.

3. The first cycle of a micro program
break-in is called a dead cycle
because no control register latches
are set.

4. The branch conditions such as
Z = 0, AC, and 1Be which depend on
a previous RCS word would be lost
due to a program break in.

5. T4

ANSWERS -- MACHINE CHECK HANDLING

1. To insure that a second error does
not occur if the failing register
is one which is used in the machine
check microprogram.

2. By an ALU check

3. Priority latch off; First machine
check latch on; Suppress malfunc
tiontrap latch off; Switches not
used to set Wand X.

4. If H5 is set the error occurred
during a selector RCS request. If
H6 is set the error occurred during
a multiplexor share request.

5. A microprogram step that specifies
the D-register as the destination
of the arithmetic statement.

6. If H1 can be reset by the MC micro
program, further errors are consid
ered first errors.

ANSWERS -- FORCED MICROPROGRAM ENTRIES

1 • 00 1 0 (HEX)

2. Machine reset

3. Stacking

4. By a microprogram step that speci
fies the H-register as the destina
tion of the arithmetic statement.

ANSWERS -- COMPATIBILITY FEATURE

2. 00000101

3. Wrap detection

4. So that they may be more easily
tested by the microprogram.

5. The storage bias constant is a
number equal to the 2030 storage
size minus the 1400 system sto.rage
size, in HEX.

6. The 2030 will leave compatibility

mode, and possibly destroy a con
trol byte in local storage.

7. The 2030 comes to a program halt
with a coded byte in the R-register
showing an invalid stacker select
command because a stacker select
command must be issued within 6
milliseconds after a read cOIr.mand.

8. If the Programmed Mode Switch fea
ture is present on the 2030, the
compatibility features normally
found in local storage will be
relocated to MPX 2 storage.

9. The local storage will read out a
01000000, which is a blank.

10. The internal code used for the
compatibility mode is the EBeD!
character representation.

6-27

Figures 6-8 1 6-9 1 6-10, 6-11, and 6-12
are provided to help you understand
mioro program concepts.

Press System Reset Key.
Hardware Set to Zero.
Priority Latch On

Press Start. Trap to
000. Set T -Reg. 01.
Set XH, XL Latch From
SI, S2.

Read UCW Byte I.
(Flags and Op Code).
Add 8 ta T-Reg.

MPX
Storage
Clear

01

10

Clear Byte Just Read.
Set Up V-Reg. Address.
Determine S3.

II

10

RD K Byte 28. Reset
S-Reg. to Zero Except
S3.

Lacal
Storage
Clear

01

LS Bytes C I eared

SI,S2 = 00
SI,S2 = 01
SI,S2=10

MPX
o
I
2

No
00

Set T -Reg to 01
Set XH, XL Latches
from SI, 52

Figure 6-8. System Reset

6-28

In This Order.

K9 1050 Unit Status

K28 Op Code Mask

F4 } 1050 Sense
F5 and Status

F6 } Cleared for
F7 Convenience

04 } 05 1050 Use
06
07

K4

RD. K4 Byte. H-Reg.
Priority Latch is Destina
tion to Allow Traps.

Clear Byte Just Read.
Set S-Reg. to 00. Re
set MPX Latches.

Set V-Reg to Zero.
Take Trap Now, 1£
Pending. -

{

If No trap and Start
Key is Pressed Again-

L-________ --l Continue to Load PSW
Routine From 0000.

Yes

CMD

~
Data
Address

Press Load Key
Set Load Latch

Caunt

Figure 6-9. IPL

Yes

(Count)

(Flags)

Wait

Yes

Build the UCW
Wait for Request in
From Device

Request In ?

Yes

Load IPL Unit Address
from Switches into
0003

Load IPL Channel
Address from Switch G
into 0002

Load New IPL PSW
from 0000 - 0007.
Op Now from Data
Read In.

Yes

Data or Status

No

Status From
IPL Unit?

No

Data

No

6-29

No

Figure 6-10.

6-30

Floating

Poinrt~_<:::

Fixed Point

Start

01=RX
10=R5
11=55

Store R-Reg Data in
1st Operand

Read From 2nd Operand
Decrement T -Register
Address

Ignore Overflow

Micro Program

Program
Interrupt

Regenerate Move
R--D

56-0 Alter -
1 l

56=1
Read Ma i n Star. by IJ

Display Registers Set R-Reg.

l From Switches HJ.
Set 56 to O.

Read Ma i n Storage T
Addr By IJ. Set 56 to
1 Put Data in R-Reg Back

1
In Core. Update J-Reg.
Allow Carryout to-Set

Regenerate Data Just

I Read. Update J-Reg.
All ow Carry out to Set 1
53 Update I-Reg if 53 is

I On.

I
Reset 53
STOP

I

.Figure 6-11. Manual Traps to Display or Alter

MANUAL TRAPS
to DISPLAY
or ALTER

PROCEDURE

1. System Reset
2. Store Desired Address in IJ (Set IC)

Registers
3. ROAR Reset to ROS Address of

Display Q[Alter
4. Press Start
5. To Display Successive Characters

Depress Start Key.

6. To Change New Data (STORE).
Set Switches Hand J to Desired
Character and Press START •

6-31

,--- ----1
I ROS Word Set Up By I
I uv is Parity Checked I
I in this MPX Trap Dead
I Cycle J L ______ _

Figure 6-12. Ros Scan

6-32

Set Odd/Even Latch
Destination is H-Reg.
to Allow Traps

Transfer J-Reg to V
Reg • Turn on Intra
ALU Check Latch

Update V-Reg. if
Needed. Set Up for
Possible Update of U
Reg.

No

Set S3 On. Reset S2
Destination is H to
Allow Traps.

Turn On As Many SALs
as Possible. Gate UV
to WX Take MPX Trap

Loop Test

MPX Trap Hardware
Control ROS SCAN
Position

Yes

Update U-Reg if
Carryout of V-Reg
Update

Yes

PROCEDURE

1. System Reset
2. Set IJ to Address of First ROS Word

To Be Scanned.
3. Rate Switch to PROCESS
4. Check Switch to STOP
5. ROAR RESET to 1st ROS Address of

This Test

Note 1: If Rate Switch is Set to
Instr Step, the System Stops
With Each Scanned Word in
the SALs.

Note 2: If Check Switch is On Disable,
Scan Through Errors.

INDEX

+AND Circuit 2-1 Carry Operation 2-18
+OR Circuit 2-1 Central Processing Unit 1-12
8K Auxiliary Storage 2-40 Character Configuration 5-2
16K Auxiliary Storage 2-49 Channels 1-19
32K Auxiliary Storage 2-52 Channel Number One Display 6-5
50 Cycle Interval Timer 5-50 Channel Number Two Display 6-7
60 Cycle Interval Timer 5-48 Check Control Switch 6-16
1050 Intv Light 6-8 Checks Indicators 6-6
1050 Req Light 6-8 Check Reset Key 6-13
1400 System Addressing 5-4 CLD Box Symbols 3-22
1401, 1440, 1460 CLD Line Designations 3-21

Compatibility Features 5-1 Clock, CPU 2-5
1402 Punch Operation 5-22 Clock Control 2-8
1402 Read Operation 5-20 Clock Control Addressing (64K) 2-52
1442 Reader/Punch Operation 5-25 Clock Distribution 2-6
1443 Printer Operation 5-25 Combined Components 2-4

Comp Mode Light 6-9
AA, AS # Fields 3-21 Comprehensive Introduction 1-1
"A" Control (CF) 3-18 Command Lights 6-6
AC Force 3-46 Computing System/360 1-8
"A" Source (CA) 3-17 Concepts of Capacitor
Address Compare Switch 6-15 Read-Only Storage 3-1
Address Decode 2-36 Condition Code 1-46
Address Error Detection 5-7 Control Field Mnemonics 3-44
Addressing Principles 3-55 Control Keys 6-11
ALU Check 2-20 Control Programs 1-6
ALU Add Operation 2-16 Console Inquiry (1050) 5-39
ALU AND Operation 2-17 Core Control (CU) 3-20
ALU and Source Registers 1-33 Core Planes 2-37
ALU OR Operation 2-18 Core Storage 1-33
Allow Low Priority 3-78 Core Storage 2-23
Allow Read, Allow Write 2-64 Core Storage Addressing 2-30
Allow Write Light 6-8 Count Registers Display 6-5
Any Priority Pulse 3-78 CPU Checks 6-9
Appendix 1 6-2 CPU Errors 2-71
Appendix 2 6-5 CPU Status Indicators 6-8
Arithmetic Control (CC) 3-18
Arithmetic Function 3-18 Data Buses 1-33
Arithmetic Logical Unit 2-10 Data and Address Entry Switches 6-10
Arithmetic Principles 1-25
Answers to Review Questions 6-19

Data Flow 1-31
Data Ready -2-54

ASCII 3-46 Data Register Lights 6-5
ASCII Mode Bit 1-64 Dead Cycle 3-65

Decimal Corrector 2-19
Basic CPU Display 6-8 Destination (CD) 3-18
Basic Programming 1-35 Disk Storage Control 5-33
Basic Timings 3-63 Display Key 6-14
"B" Control (CG) 3-18 Display Storage Selection 6-10
Binary 1-22
Binary Addition 1-25 Early Local Storage 2-54
Binary-Decimal Conversion 1-22 Early MO 2-54
Binary Fixed Point 1-25 Emergency Power Off 4-1
Binary Subtraction 1-26 Emergency Power Off Switch 6-17
Boundary Restrictions 1-11 Emit Field (CK) 3-18
Branching 5-20 Errors and Program Halts in
Branch Control Mnemonics 3~50 Compatibility Mode 5-45
Branching Control (CN,CH,CL,CS) 3-20 Ex Light 6-8
Break-in Timings 3-65 Exclusive OR 2-2
"B" Source (CB) , 3-17

, 7-1

Fixed-Length Operations 1-14
Fixed Point Numbers 1-26
Flag Lights 6-6
Flip Flop 2-3
Flip Latch 2-4
Floating Point 1-24

1-30
1-29

1-30

Floating Point Addition
Floating Point Arithmetic
Floating Point Division
Floating Point Multiply
Floating Point Operation
Floating Point Subtraction
Forced Micro Program Entries

1-30
1-16

1-30
3-76

Four-Digit Addressing 2-23
Function Control 3-17
Funct-ion Control Mnemonics
Functional Units 2-1

General Data Flow 1-4
General Register Addressing

Hexadecimal

Indexing
Inhibit

1-23

3-38
2-38

Insert Storage Key 1-74
Instructions 1-35

3-44

1-36

Instruction Address Field 1~44
Instruction Branching 1-46
Instruction Format 1-30
Instruction Formats 1-40
Instruction Lengths 1-35
Instruction Sequencing 1-47
Int Face Indicator 6-7
Interrupt Key 6-11
Interrupts 1-49
Interval Timer 5-48
Interval Timer Switch 6-14
Intst 3-46
Inverter 2-2
I/O Operations~ Compatibility 5-20

Key Lights 6-6

Lamp Test Key 6-13
Line Sense Amplifier 2-3
Load Indicator 6-10
Lower Indicator Panel 6-7
Load Key 6-11
Load PSW 1-59

Machine Check Handling 3-71
Machine Check Mask 1-62
Machine Check Micro Program 3-76
Machine Check Register 3-72
Machine Reset Switch 2-55
Magnetic Core Theory 2-28
Magnetic Tape Control 5-30
Main Storage Addressing 1-37
Match Light 6-8
Marginal Checking 4-3
Masking Interrupts 1-61
Memory Control 2-62
Memory/CPU Interface 2-53
Memory Sense Bit-Lines 2-54
Memory Wrap 2-63

7-2

Meter P~nel 6-17
Micro Program Examples 3-23
Micro Programming Introduction
Multiplexor Channels 1-20
Multiprogramming 1-73
MPX Chnl Light 6-8
MPX Channel Tags 6-7
Mode Control Panel 6-15
Models and Speeds 1-2
MN-Register 2-62
MN Register Bit Lines 2-53

Normalization
Numbering Systems

1-29
1-21

Op Code Recognition 5-8
Operation Codes 1-35
Operating System/360 1-6
Operator Panel 6-9
Overall Timing Relationships
Overvoltage or Overcurrent Sense

Packed Decimal 1-23
Packed Decimal 1-27
Packed Decimal Addition 2-13
Parity Bits 3-5+
Parity Check Timings 3-66
Phase Reversal Addressing (16K)
Phase Reversal Addressing (32K)
Polarity-Hold Latch 2-4
Power Distribution 4-4
Power Off Key 6-11
Power Off Sequence 4-1
Power On Key 6-11
Power On Sequence 4-1
Power Supply 4-1
Primary Storage 1-9
Priority 3-62

3-15

3-80
4-1

2-47
2-49

Priority Stack Latches and Controls 3-78
Priveleged Instructions 1-65
Processing Programs 1-7
Program Mask 1-63
Program Status Word
Programmed Mode Switch
Protection Key 1-70

1-44
5-47

Rate Switch 6-15
ROS Addressing 3-53
ROAR Controls 3-60
ROS Control Fields 3-16
ROS Data Flow 3-15
ROS Physical Description
ROS Timings 3-63
ROS Word 3-7
ROS Word Format 3-21
ROAR Reset Key 6-12
ROAR Restore Buffer Latch
ROAR Restore Latch 3-66
Read Call 2-54
Read Echo 2-55

Display
3-19

2-3

Read Only Storage
Read, Write (eM)
Remembering Devices
Registers 2-22

3-66

3-65

6-5

Register-to-Register
,Restore Wrap-Store Wrap

1-16
3-47

RS Format
RR Format
R-Register

1-41
1-41

2-64

Sel Chnl Light
Selector Channels
Sense 2-33
Set IC Key 6-12

6-9
1-19

Set Program Mask 1-77
Set Storage Key 1-71
Set System Mask 1-66
Sign-Operation Analysis 1-27
Single Shot 2-2
Six-Digit Addressing
SLT Circuitry 2-1
Special Features 5-1

2-24

Special Statements 3-43
SI Format 1-42
SS Format 1-42
Status 3-51
Start Key 6-13
Stop 3-47
Stop Key 6-14
Storage Address Register
Storage Clock 2-42
Storage Control (CM, CU)
Storage Control Mnemonics
Storage Keys 1-69
Storage Protection
Store Bit-Lines
Store Key 6-13
Supervisor 1-49

1-69
2-54

Supervisor Call Instruction
System Indicator 6-9
System Concepts 1-5
System Configurations 1-1
System Control 1-31
System Mask 1-62

6-11

2-35

3-18
3-49

1-60

System Reset Key
System/360 Status Bits 1-64

Tag Lights 6-6
Test Indicator 6-10
Ten-Digit Addressing 2-24
Theory of Operation 3-1
Thirteen-Digit Addressing 2-28
Time Delay 2-3
Two-Wire Addressing 2-29

Upper Indicator Panel 6-5
Using Storage Protection 1-72

Variable Field Length 1-13

Wait Indicator 6-9
Wait State Bit 1-65
Write Call 2-54
Write Echo 2-55

7-3

READER'S SURVEY FORM

IBM 2030 Processing Unit Field Engineering Manual of Instruction
Form 225-3360-0

• Is the material: Yes No

Easy to read? 0 0
Well organized? 0 0
Fully covered? 0 0
Clearly explained? 0 0
Well illustrated? 0 0

• How did you use this publication?

As an introduction to the subject 0
For additional knowledge of the subject 0
Studying machine operation 0
During an actual service call 0

• Which of the following terms best describes your job?

Customer Engineer 0
Instructor 0
Sales Representative 0
Systems Engineer 0
Trainee 0

Field Stock Personnel 0
Manufacturing Engineering 0
Manufacturing 0
Development Engineering 0
Other ________ _

• How often do you use this publication?

Often 0 Occasionally 0 Seldom 0

• Comments:
Your comments help us produce better publications. Please include specific page references
if appropriate. You may include your name and address if you wish.

Space is available on the other side of this page for additional comments.
Thank you for your cooperation.

Fold

BUSINESS REPLY MAil
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

Attention: Product Publications, Dept. 171

Fold

l!rn~
@

POSTAGE WILL BE PAID BY ...

IBM Corporation

P. O. Box 6

Endicott, N. Y. 13764

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N. Y. 10601

FIRST CLASS

PERMIT NO. 170

ENDICOTT, N. Y.

Stapk

Fold

Fold

:s~uaWLUOJ IBuomppv

01
c
o
<
'S
u

FE Supplement System/Unit IBM 2030 Processing Unit

Re: Form No. 225-3360

This Supplement No. 825-0030

Date: December 7, 1965

Previous Supplement Nos. None

This supplement, Form 825-0030, pertains to the 1.5 microsecond
core storage unit for the IBM 2030 Processing Unit. This mater
ial should be inserted after the 2.0 microsecond storage unit
write-up in the IBM 2030 Processing Unit FE Manual of
Instruction, Form 225-3360.

IBM Corp., Product Publications Dept., Endicott, N. Y. 13764

PRINTED IN u. S.A. 825-0030 (225-3360)

------------~~------~---~

225-3360-0

International Business Mechines Corporation

Field Engineering Division

112 East Post Road, White Plains, N, Y. 10601

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-80
	2-81
	2-82
	2-83
	2-84
	2-85
	2-86
	2-87
	2-88
	2-89
	2-90
	2-91
	2-92
	2-93
	2-94
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	7-01
	7-02
	7-03
	replyA
	replyB
	upd1
	xBack

