TRM
 Field Engineering Maintenance Manual

Restricted Distribution

This manual is intended for internal use only and may not be used by other than IBM personnel without IBM's written permission.

Preface

This manual contains maintenance and service information for the IBM 2025 Processing Unit and integrated attachment circuitry.

The manual assumes knowledge of the System 360 as described in IBM System/360 Principles of Operation, Form A22-6821, and the following appropriate FE Theory of Operation Manuals:

Form No.
Y24-3527
Y 24-3531
Y24-35 32
Y 24-3533
Y24-3534
Y 24-3535
Y24-3536 Integrated Communications
Att achment

Additional maintenance information can be found in the Symptom Index and Service Aids distributed by FE Technical Operations. Installation instructions, part 5870298 , are included in the basic shipping group for each machine.

This manual contains references to diagrams in the Field Engineering Maintenance Diagrams Manual, 2025 Processing Unit, Form Y24-3529. These references use only the initials of the Maintenance Diagrams Manual followed by the diagram section and number; e.g., MDM X-XX.

RESTRICTED DISTR IBUTION: This publication is intended
for internal use and may not be used by other than IBM cersonnel without IBM's written permission.

Second Edition (July 1969)

[^0]This publication has been prepared by the IBN Systems Development Division, Product Publications, Dept. 171, P.O. Box 6, Endicott, N.Y. 13760 . A form has been provided at the back of this publication for readers' comments. If the form has been removed, address comments regarding this publication to this address.

Preface ii	
bbreviations	
ety	
Chapter 1. Reference Data and Diagnostic	
ECTION 1. REFERENCE DAT	
1 Core Storage (Figures 1-1 through 1-17)	
1.1.1 Trap Addresses. 1.1.1.1 Address Stop/Match 1-2	
1.2 Auxiliary Storage Maps (Figures 1-7 through 1-17)	
1.3 2540 Reader/Punch (Figures 1-18 through 1-23)	
1.4 Storage Protection Features (Figures 1-24 through	
1.5 1400 Compatibility Feature (Figures 1-27 through	
1-33)	
1.5.1 Auxiliary Storage Module 0 (1400 Compatibility)	$1-22$
1.5.2 Auxiliary Storage Module 1 (1400 Compatibility)	$1-24$
1.5.3 Auxiliary Storage Module 2 (1400 Compatibility)	1-24
1.5.4 Auxiliary Storage Module 3(1400 Compatibility)	1-25
1.5.5 Auxiliary Storage Module 4 (1400 Compatibility)	1-25
1.5.6 Auxiliary Storage Module 5 (1400 Compatibility)	
1.5.7 Auxiliary Storage Module 6 (8 in 24 K	
Systems--1400 Compatibility) .1.5.8 Local Storage (1400 Compatibility)--25	
5.8.1 Zone 0 (1400 Compatibility) .	
1.5.8.2 Zone 1 (1400 Compatibility)	
1.5.8.3 Zone 4 (1400 Compatibility).	
1.5.8.4 Zone 6 (1400 Compatibility)	
1.5.8.5 Zone 7 (1400 Compatibility) . . .	
1.7 Control Words (Micro) Figures 1-39 through 1-46 . . 1-35	
1.8 External Decodes, Mnemonics, and Addressing	
(Figure 1-47) 1-43	
CPU.Mode	
2540 Punch Mode	
1403 Mode	
1052 (PRKB) Mode	
Communications Mode	
2540 Reader Mode	
Channel Mode	
2560 MFCM Mode	
External Field Definitions, CPU Mode (EXT to CPU)	
External Field Definitions, CPU Mode (CPU to EX	
External Field Definitions, 2311 Disk Mode (EXT to CPU)	
External Field Definitions, 2311 Disk Mode (CPU to EXT)	
External Field Definitions, 2540 Punch Mode (EXT to CPU)	
External Field Definitions, 2540 Punch Mode	
External Field Definitions, 1403 Mode (EXT to C	1-52
1403 Diagnostic Conditions (PRD) 1	
External Field Definitions, 1403 Mode (CPU to EXT) External Field Definitions, Console Printer-Keyboard	
Mode (EXT to CPU)	
External Field Definitions, Console Printer-Keyboard	
Mode (CPU to EXT) 1-55	
External Field Definitions, Communication Mode (EXT To CPU)	
External Field Definitions, Communication Mode	

External Field Definitions, 2540 Reader Mode
External Field Definitions, Channel Mode
(EXT to CPU)$1-60$
(CPU to EXT) $1-61$(EXT to CPU)
(CPU to EXI1-67
1.10 Code Conversions (Figures 1-54 through 1-60) 1-671.12 Channel Command and Address Formats (Figures1-64 through 1-68)$1-77$
(Figures 1-69 and 1-72) $1-80$1.141403 Printer (Figures $1-73$ througn 1-95)1-104
SECTION 2. DIAGNOSTIC TECHNIQUES 1-1121.16.1 Malfunction Indications1-112
1.16.2 Unit Identification1-113
1.16.4 Repair 1-1131.16.6 Intermittent Malfunction1-113
1.16.7 Protection of Control Storage, CSL$1-114$
1.17.1 Error Handling 1-1141.17.1.2 Interface Control Check$1-116$
1052 Logout 1116
1.17.3 CPU Microprogram Checks1117
1.17.4.1 2540 Attachment Checks 1-117
.4.2 1403 Attachment Checks1-117
17.4.4 2311 Attachment Checks -117
1.17.5 System Checks 1-118
1.17.5.2 Low1-118
1.17.6 Status Byte1-118
17.7 Integrated Disk Attachment 118
1.17.7.3 Integrated 1403 Attachment 1-119
18 Sy. Multipler1-120
18.1 CPU Status Indicators1-122
18.12 Alter/Display PR-KB $1-122$
18.1.4 Allow Manua $1-123$
1.18.1.61-123
18.2 System Checks1-123
18.2.2 Power Check1-1231.18.2.5 PRT (Pinter)1-123
1.18.2.6 CHNL (Channel) 1-123
1.18.2.7 File 1-123
1.18.3 CPU Checks 1-123
1.18.3.1 Control Word 1-123
1.18.3.2 Storage Data 1-123
1.18.3.3 CSL Check 1-123
1.18.4 Operator's Control Panel (OCP) Indicators 1-124
1.18.4.1 Power On Key 1-124
1.18.4.2 Pluggable Indicators 1-124
1.18.5 Keys 1-124
1.18.5.1 Control Storage Load 1-124
1.18.5.2 PSW Restart 1-124
1.18.5.3 Control Address Set 1-124
1.18.5.4 Enable Control Storage Store 1-124
1.18.5.5 Printer-Keyboard Alter/Display 1-124
1.18.6 Mode Switch 1-124
1.18.6.1 Main Storage Address Stop 1-124
1.18.7 Diagnostic Control Switch 1-124
1.18.7.1 Stop 1-124
1.18.7.2 Trap 1-124
1.18.7.3 Scan Storage 1-124
1.18.7.4 Single Address MS 1-125
1.18.7.5 Single Address AS 1-125
1.18.7.6 Test Pattern 1-125
1.18.7.7 Load Program Storage 1-125
1.18.7.8 Load Storage -125
1.19 Maintenance Programs 1-125
1.19.1 Machine Level Control (MLC) and Engineering Changes (EC's). 1-126
1.19.1.1 Field Microprogram Changes 1-126
1.19.2 Field Change Exceptions 1-126
1.19.3 Unique Considerations 1-126
1.20 Multisystem Configuration 1-126
1.21 1401/1460 and 1440 Compatibility Features 1-126
1.22 Model 20 Mode Feature 1-127
1.22.1 Machine-Check Trap and 1052 Logout 1-127
1.22.2 Diagnose Instruction. 1-127
1.22.3 CE Trap 1-127
1.22.4 CE Test Panel Hubs 1-127
1.22.5 CE Display Cable 1-127
1.22.6 Programming Errors 1-127
1.22.7 Local Storage Zone and External Mode for 2560 1-127
1.23 CE Panel 1-128
1.23.1 Stop Position 1-128
1.23.2 Trap Position 1-128
1.24 Power and Cooling 1-128
1.24.1 Failure Detection, Indication, and Isolation 1-128
1.24.2 Cooling Facilities 1-129
1.24.3 Warm-Up 1-129
1.24.4 Convenience Outlets 1-129
1.25 Main Storage Diagnostic Aids 1-129
1.25.1 X and Y Decode Numbering Scheme 1-129
1.25.2 Scoping Storage 1-130
1.25.2.1 Scoping X and Y Source-Terminating Resistors 1-130
1.25.2.2 Scoping Inhibit Drive Terminating Resistors 1-132
1.25.2.3 Array Sense Line Checking 1-132
1.25.2.4 Array X and Y Drive Line Checking 1-135
1.26 Local Storage Diagnostic Aids -135
Chapter 2. Console and Maintenance Features 2-1
SECTION 1. BASIC UNIT 2-1
2.1 Storage Protect Key--Display 2-1
2.2 Patch Card Generation 2-1
2.3 DEBE-2 2-1
2.4 I/O Exerciser Routine With Variable Delay 2-2
2.5 Console Inquiry Program 2-2
2.6 1401 Emulator CSL Deck 2-3
2.71403 Buffer Load Microloop 2-3
2.8 Soft-Stop Loop--Single Cycling 2-3
2.10 Worst-Case Storage Scan Definition 2-3
2.11 MS Address Stop Procedure During IPL or CSL 2-3
2.12 PSW 2-4
2.12.1 PSW Restart 2-4
2.12.1.1 Procedure 2-4
2.12.2 Display of Current PSW 2-4
2.13 Control Storage Load Failure Detection 2-4
2.13.1 Description 2-4
2.13.2 Procedure 2.5
2.13.3 Reader Checks During CSL 2-5
2.14 Checksum Routine--BCHK 2-5
2.15 Initializing Procedure--Checksum 2-5
2.16 System Configuration-CSL 2-6
2.17 BCPL Routine 2-7
2.17.1 Procedure for Punching CSL Cards 2-7
2.17.2 Restrictions When Punching CSL Cards 2-7
2.17.3 Example of Punching and Loading a Replace Card 2-7
2.18 Metering Switch (CE Switch) 2-8
2.19 Display Operations 2-8
2.19.1 Program Storage Display 2-8
2.19.2 Control-Storage Display 2-8
2.19.3 Auxiliary-Storage Display 2-8
2.20 Store Operations 2-9
2.20.1 Program-Storage Store 2-9
2.20.2 Control-Storage Store 2-9
2.20.3 Auxiliary-Storage Store 2-9
SECTION 1A. PR-KB PROCEDURES 2-10
2.21 Addressing, Console Printer-Keyboard 2-10
2.22 Program-Controlled Operations $2-10$
2.22.1 Channel Commands 2-10
2.23 Console Printer Manual Alter/Display 2-10
2.23.1 Setup 2-10
2.23.2 Addressing 2-10
2.23.2.1 Execution of Alter or Display 2-11
2.23.2.2 End Operation 2-11
2.24 Message Formats 2-11
2.24.1 Alter Storage 2-11
2.24.2 Display Storage 2-12
2.25 Errors 2-12
2.26- Logout 2-12
2.27 Suggested Restart Procedures for Integrated PR-KB 2-13
2.27.1 Command Reject (Sense Bit 0) 2-13
2.27.2 Intervention Required (Sense Bit 1) 2-13
2.27.3 Bus-Out Check (Sense Bit 2) 2-13
2.27.4 Equipment Check (Sense Bit 3) 2-13
2.27.5 Sense Bits 4, 5, 6, and 7 2-14
2.28 External to CPU Facilities (1052) 2-1
2.28.1 TI (1052 Data In) 2-14
2.28.2 TR (1052 Tilt/Rotate Register) 2-14
2.28.3 TD (1052 Diagnostic Branch Conditions) 2-14
2.28.4 TT (1052 Branch Conditions) 2-14
2.28.5 TU (1052 Diagnostic Branch Conditions) 2-14
2.29 CPU to External Facilities (1052) 2-15
2.29.1 TA 2-15
2.29.2 TE (1052 Data Out) $2-15$
SECTION 1B. 1403 PROCEDURES 2-16
2.30 Addressing, 1403 Printer Attachment 2-16
2.31 Commands, 1403 Printer Attachment 2-16
2.32 Checks (1403) 2-16
2.32.1 PLB Parity Check 2-16
2.32.2 Hammer Check 2-17
2.32.3 Coil-Protect Check 2-17
2.32.3.1 Hammer Driver Coil--Fuses
2.33.5 Data Check (Sense Bit 4)-MCS Only 2-19
2.33.6 Sense Bit 5 2-20
2.33.7 Sense Bit 6 2-20
2.33.8 Channel 9 (Sense Bit 7) 2-20
2.34 Use Meter (1403) 2-20
2.35 Resets (Integrated 1403). 2-20
2.36 External to CPU Facilities (1403) 2-20
2.36.1 PRI (Print Line Buffer Data-In) 2-20
2.36.2 PRT (Print Line Buffer Address Register Data-In) 2-20
2.36.3 PRS (1403 Sense/Status Conditions) 2-20
2.36.4 PRD (Diagnostic Conditions) 2-21
2.36.4.1 Diagnostic Decode 1 $2-21$
2.36.4.2 Diagnostic Decode 2 2-21
2.36.4.3 Diagnostic Decode 3 2-21
2.36.4.4 Diagnostic Decode 4 2-21
2.37 CPU To External Facilities (1403) 2-21
2.37.1 PRC (Carriage Control Register Data-Out) 2-21
2.38 MCS Table--Utility Program 2-22
SECTION 1C. 2311/DAC Procedures 2.23
2.39 Addressing-2311 Disk Storage Drive 2.23
2.40 Operation Commands, DAC $2-23$
2.41 Sense Conditions, DAC 2-24
2.42 Track Orientation. $2-24$
2.43 Track Initialization (Defective-Track Determination) 2-25
2.44 Error Recovery Procedures, 2311 DAC 2-26
2.44.1 Error Messages, 2311 DAC $2-26$
2.44.2 Error Conditions Table, 2311 DAC 2-26
SECTION 1D. 2540 PROCEDURES 2-29
2.45 Addressing, Integrated 2540 Attachment 2-29
2.46 Error Recovery Routine-Integrated Punch 2-29
2.47 Error Recovery Routine--Integrated Reader 2-29
2.482540 Restarts from Error Conditions 2-29
2.49 Jam Removal 2-33
2.50 External To CPU Facilities (2540) 2-33
2.50.1 RP1 (Reader-Punch Data In) 2.33
2.50.2 RP2 (Reader-Punch Data In) 2-33
2.50.3 RS (Reader Branch Conditions) 2-33
2.50.4 PS (Punch Branch Conditions) 2-33
2.50.5 RPS (Reader and Punch Branch Conditions) 2-34
2.50.6 RPD1 (Diagnostic Reader/Punch Branch
Conditions 2-34
2.50.7 RPD2 (Diagnostic Reader/Punch Branch Conditions) 2-34
2.51 CPU To External Facilities (2540) 2-35
2.51.1 R = K (CS Decode = B) 2-35
2.51.2 $\mathrm{P}=\mathrm{K}(\mathrm{CS}$ Decode $=\mathrm{F})$ 2-35
2.51.3 RP = K (CS Decode = D) 2-36
2.51.4 D = K (CS Decode = 9) 2-36
2.51.5 PO (Card-Punch Data Out) 2-36
SECTION 1E. CHANNEL PROCEDURES 2-37
2.52 Multiplexer Channel Device Addressing 2-37
2.53 Selector Channel Device Addressing 2-37
2.54 Channel and Unit Addressing Restrictions. 2-37
2.54.1 Channel 1 2.37
2.54.2 Channel 0 (Except 16 K and 24 K Systems with Both the MPX Channel and ICA Features 2-38
2.54.3 Channel 0 (16 K and 24 K Systems with Both the MPX Channel and ICA Features) 2-39
2.54.4 Assigning Integrated 1052, 1403, 2311, and 2540 Device Addresses 2-40
2.55 Multiplexer-Channel Unit Control Words 2-41
2.55.1 Channel Status (Byte 0). 2-4
2.55.2 Op-Flag (Byte 1). $2-4$
2.55.3 Data Address (Bytes 2 and 3) 2-4
2.55.4 Count (Bytes 4 and 5) 2-42
2.55.5 Next CCW Address (Byte 6 and 7) 2-42
2.56 Selector Channel Control Information 2-42
2.56.1 Channel Status (LS Zone 7 Register G0) 2-42
2.56.2 Op Flag (LS Zone 7 Register G1) 2-42
2.56.3 Data Address (LS Zone 7 Register V) 2-42
2.56.4 Count (LS Zone 7 Register U) 2-42
2.56.5 Next CCW Address (Auxiliary Storage Location 008A) 2-42
2.57 Channel Error-Handling Philosophy and Logout 2-42
2.57.1 Channel Status Byte 2-43
2.57.2 Logout 2-43
2.57.2.1 Channel Control Check Logout 2-43
2.57.2.2 Interface Control Check Logout 2-44
2.58 Standard Interface Hardware 2-46
2.59 External to CPU Facilities (Channel) 2-46
2.59.1 GS (Channel Branch Conditions) 2-46
2.59.2 GT (Channel Branch Conditions) 2-46
2.59.3 GD (Channel Diagnostic Register) 2-46
2.59.4 GB/IN (Channel Bus-In) 2-47
2.60 CPU to External Facilities (Channel) 2-47
2.60.1 GB/OUT (Channel Bus-Out) 2-47
2.61 Handload Routine for Channel 2-47
SECTION 1F. ICA PROCEDURES 2-48
2.62 Nonoperational Lines 2-48
2.63 Station Selection Feature 2-48
2.64 Jumper Options 2-48
SECTION 2. FEATURES 2-49
2.65 Storage Protect Key-Display 2-49
2.66 Multiple Character Set 2-49
2.67 External Interruption 2-49
2.682560 Procedures 2-49
2.68.1 Handload Routine for 2560 2-49
Chapter 3. Preventive Maintenance 3-1
SECTION 1. BASIC UNIT 3-2
SECTION 2. FEATURES 3-3
Chapter 4. Checks, Adjustments, and Removals. 4-1
SECTION 1. BASIC UNIT 4-1
4.1 CPU Timing 4-1
4.1.1 Specifications 4-1
4.2 Core Storage Array Temperature Control 4-1
4.2.1 Cooling 4-1
4.2.1.1 Specification 4-1
4.2.2 Heating 4-1
4.2.2.1 Specifications 4-1
4.2.2.2 Heater Adjustment 4-1
4.3 Schmoo Curve (Main Storage) 4-3
4.3.1 Example of Schmoo Curve Procedure -4
4.3.2 When to Schmoo 4-4
4.3.3 Service Checks 4-4
4.3.4 Worst-Case Patterns 4-4
4.3.4.1 Worst-Case Test 4-4
4.3.5 Four-Point Strobe Schmoo Procedure 4-4
4.3.6 Checkout Procedures 4-5
4.3.6.1 Scoping Main Storage 4-5
4.3.7 Two-Point Schmoo Procedure 4-5
4.4 Main Storage Replacement $4-5$
4.4.1 Removing the $0-32 \mathrm{~K}$ Unit 4-5
4.4.2 Removing the $32-64 \mathrm{~K}$ Unit $4-6$
4.4.3 Array Changing 4-6
4.4.4 Changing Diodes 4-6
4.5 Local Storage 4-6
4.5.1 Scoping Local Storage. 4-6
4.5.2 Initial Delay Line Settings 4-6
4.5.3 Delay Lines (Local Storage) Adjustment) $4-6$
4.5.4 Local Storage/Storage Protect Cards 4-7
4.6 SCR Circuits 4-7
4.6.1 Replacement 4-8
4.7 System Reset, IPL, or CSL--Singleshot 4-8
4.7.1 Adjustment $4-8$
4.8 Operational Out--Singleshot
4.9.1 Specifications 4-8
4.9.2 Adjustments 4-8
4.10 PR-KB (1052-7)--Singleshots 4-8
4.10.1 Specifications 4-9
4.10.2 Adjustment 4-9
4.11 2311 Read Clock Adjustment 4-9
4.12 DAC--Singleshots 4-9
4.12.1 Specifications 4-9
4.12.2 Adjustments 4-9
4.12.2.1 Head Conditioning Singleshot (FA131) 4-9
4.12.2.2 Index and Delta Index Singleshots (FA131) 4-9
4.12.2.3 Control Tag Singleshot (FA225) 4-10
4.12.2.4 Recalibrate Singleshots (FA611) 4-10
4.13 DAC--Time Delay Circuits 4-10
4.13.1 Specifications. 4-10
4.13.2 Check 4-10
4.14 1403 Attachment (Figure 4-10) 4-10
4.14.1 Timing (Figure 4-11). 4-10
4.14.2 Singleshot Adjustments (Figure 4-12) 4-11
4.14.2.1 PSS (B3E3D04) PR262 4-11
4.14.2.2 Home Gate (B3F3B03)--(Upper) PR252 4-12
4.14.2.3 Coil Protect PR691 4-12
4.14.3 Delays (Figure 4-13) 4-12
4.14.3.1 Speed Limit Delay PR262 4-12
4.14.3.2 Carriage Settling Delay (PR742) 4-12
4.14.4 Buffer Service Checks 4-12
4.14.5 Buffer Adjustment 4-12
4.14.5.1 Vxy Adjustment 4-12
4.14.5.2 Strobe Adjustment 4-13
4.14.5.3 Vsi Adjustment 4-13
4.14.6 Buffer Checkout Procedures 4-13
4.15 2560 Attachment 4-13
4.15.1 Block Feed Check Jumper 4-1
4.15.2 Adjustments 4-13
4.15.2.1 Singleshots 4-13
4.15.2.2 Feed Cells 4-13
4.16 Integrated Communications Attachment 4-13
4.16.1 Timeout Oscillator 4-13
4.16.2 Timeout Clock Singleshot 4-13
4.16.3 System Reset Singleshots 4-13
4.16.4 A-Clock Singleshot 4-13
SECTION 2. FEATURES 4-14
4.17 External Interruption and Direct Control Features 4-14
4.17.1 Specifications 4-14
4.17.2 Adjustments 4-14
4.18 Interval-Timer Adjustment 4-14
4.18.1 Service Check and Checkout Procedure 4-14
4.19 Storage Protection Feature Adjustment -14
Chapter 5. Power Supplies 5-1
5.1 General Information 5-1
5.2 Input Power 5-1
5.3 Power Conversion 5-1
5.4 AC Outputs 5-1
5.4.1 Convenience Outlets 5-1
5.4.2 Blowers 5-2
5.5 DC Outputs 5-2
5.5.1 Marginal Checking Jack Receptacle (P1) 5-2
5.6 Power On/Off Sequencing 5-2
5.6.1 Power On/Off of CPU and Integrated I/O Units 5-2
5.6.1.1 $+6,-3,+3$, and -30 Voltages 5-2
5.6.1.2 $+6,+3,-3$, and +60 Voltages 5-2
5.6.1.3 2311 DC Power 5-3
5.6.1.4 2540 DC Power 5-3
5.6.1.5 2560 AC Power 5-3
5.6.2 Power On/Off to Channel Controlled I/O Units 5-3
5.7 Emergency Power-Off (EPO) 5-3
5.8 Overcurrent, Undervoltage, and Overvoltage Sense 5-3
5.8.1 System-Restart/Power-Check Light Reset 5-3
5.9 Thermal Sensing 5-3
5.10 Service Checks and Checkout Procedures (Figure 5-2) 5-4
5.11 Mid-Pac Power Supply 5-4
5.11.1 Mid-Pac Troubleshooting Procedures 5-5
5.11.1.1 High Voltage 5-5
5.11.1.2 Low Output Voltage 5-5
5.11.1.3 DC Module Circuit Breakers (Individual Tripping) 5-5
5.11.2 Service Checks and Checkout Procedures 5-5
5.11.2.1 Mid-Pac DC Outputs 5-5
Chapter 6. Locations 6-1
Appendix A. Special Circuits A-1
A. 1 Local Storage Card and Storage Protection Card A-1
A.1.1 Functional Description A-1
A.1.2 Circuit Operation (Figure A2) A-2
A.1.2.1 Cell A-3
A.1.3 Storage Module A-3
A.1.4 Peripheral Circuits (Figure A4) A-3
A.1.5 Pin Assignments A-4
Index X-1

Abbreviations

A	AND (logic block)	cyc	cycle
ac	alternating current	C0	carry zero
acv	active		
$a d d r$	address	D	displacement (field)
ALD	automat \in d logic diagram	DAC	disk attachment control
alg	algebraic	DAR	data address register
ALS	arithmetic and logic section	dbl	double
AMWP	bits 12-15 of PSW 1	dc	direct current
AND	AND circuit (logic)	DDC	direct data channel
arith	arithmetic	DE	device end
AS	auxiliary storage	dec	decimal
ASCII	American Standard Code for	decond	deconditioned
	Information Interchange	decr	decrement
atn	attention	Diag	diagnostic
Aux	a uxiliary	DIR	direct in register
		div	divide
		dly	delay, delayed
B	base address (field)	DM	diagnostic monitor
BCD	binary coded decimal	DOR	direct out register
B-cycle	base address cycle	Dply	display
BSM	basic storage module	DR	driver (logic block)
BTU	British Thermal Unit	$\begin{aligned} & \text { Ds ply } \\ & \text { dvd } \end{aligned}$	display dividend
CAR	channel address register	dvr	divisor
CAW	channel address word		
CB	circuit breaker	EA	effective address
CBA	channel background activity	EA-cycle	effective address cycle
c-bit	carry bit	EBCDIC	extended binary coded decimal
CC	chain commaid; condition code compute clock	EC	interchange code engineering change
CCC	channel control check	ECAD	error check analysis diagram
CCW	channel command word	ef	effective
c-cycle	control cycle	End Ex	end execute
CD	chain data	EOB	end of block
CDR	channel data register	EPO	emergency power off
CE	channel end; customer engineer	E-phase	execute phase
chan	channel	Eq	equal
char	character	EXOR	exclusive OR
chk	check	excpn	exception
chnl	channel	exec	execute
CI	command immediate	\exp	exponent
CLA	carry look-ahead	ext	external
CLI	compare logical immediate	extn	extension
clk	clock		
clr	clear	FEMDM	Field Engineering Maintenance
CLT	circuit level test		Diagram Manual
cmnd	command	FEMM	Field Engineering Maintenance
cmpt	compute		Manual
COAR	command address register	FETOM	Field Engineering Theory of
com	common		Operation Manual
comm	communications	FF	flip-flop (logic block)
comp	compare	FL	flip latch (logic block)
compl	complement	$f 1 \mathrm{tg}$	floating
cond	condition	FP	floating point
corrn	correction	FPA	floating point arithmetic
CP	main clock pulse	FPR	floating point register
CPU	central processing unit		
CSL	control storage load	GPR	general purpose register
CSU	core storage unit		
ct	count	hex	hexadecimal
ctr	count er	HI	high
Cu	control unit	hsmpx	high-speed multiplex channel

H/stop	hard stcp	OR	OR circuit (logic)
HW	hardware (funnel)	OS	operating system
Hz	Hertz (cycles per second)	OSC	oscillator (logic)
IB	interrupt kuffer	P	parity bit
IC	instruction counter	PC	parity check
ICC	interface control check	Pch	punch
I-cycle	instruction cycle	PCI	program controlled interrupt
IF	interface	PFR	punch feed read
I-fetch	instruction fetch	PG	parity generation
IL	incorrect length	PIW	priority interrupt wait
ILC	instruction length code	PL. 3	print line buffer
incr	increment	pos	positive
info	information	poss	possible
inh	inhibit	prgm	program
insn	instruction	prgm chk	program check
int	interrupt	pri	priority
intch	interchange	priv	privileged
intv	interval	PR-KB	printer-keyboard
intvn	intervention	prot	protection
inv	invert	Prt	printer
I/O	input/output	PS	power supply (number)
IFL	initial program loading	PSA	protected storage address
IR	interrupt request	PSW	program status word
ISA	invalid storage address	pt	coint
I-time	instruction time	pty	parity
		Pwr	cower
KB	key board	PZR	possible zero remainder
kva	kilovolt ampere		
		QB	quotient bit
LCW	line control word	quot	quotient
LO	low		
10 g	logical	RC	read clock
LS	local storage	Rdr	reader
Ith	latch	recomp	recomplement
LUA	load unit address (switches)	reg	register
		req	request
mA	milliamperes	reqd	required
Man	manual	res	reset
MAP	ma intenance analysis procedure	rgen	regenerate
MAS	microprogram automation system	rmdr	remainder
max	maximum	rms	root mean square
MC	machine check	RPQ	request for price quotation
MDM	Maintenance Diagrams Manual	RR	register-to-register operation
MFCM	Multi-Function Card Nachine	RS	register-to-storage operation
MHz	megacycle	Rst	reset
min	minimum	rt	right
MMSK	Trap (Mask) Priority Register	Rtn	return, routine
mped	multiplicand	R-W	read-write
mplr	multiplier		
Mplx	multiplexer	S	sign bit
mply	multiply	SAR	storage address register
mpx	multiplexer	SC	shift counter
MS	ma in storage	Sc	scratch (register)
ms	millisecond	SCR	silicon controlled rectifier
		SCT	system configuration table
N	inverter (logic block)	SCh	subchannel
$\mathrm{n} \in \mathrm{g}$	negative	SDR	storage data register
no	number	SDSD	single disk storage drive
No-Op	no operation	sel	select
norm	normalize	seq	sequence
ns	nanosecond	serv	service
		sgnf	significance, significant
OE	exclusive OR (logic block)	SI	storage immediate operation
- flo	overflow	SL	shift left
O/L	overload (console)	SLD	simplified logic diagram
op	operation	SLI	suppress incorrect length
ornd	operand		indication

SLT	solid lcgic technology	TP	test point
SMS	standard modular system	T/R	tilt/rotate
spl	special	T/XC	true/criss-cross
SR	shift right		
SRETL	screened resistor etched transistor logic	UCW	unit control word
SRP	serial reader punch	UDT	unit definition table
SS	storage-to-storage operation, singleshot	uf 10 un	underf low unnormalized
st	start	unobt	unobtainable
STP0	storage protect register	usec	microsecond
STP1	storage protect local storage		
STP	storage protect	WC	write clock
subt	subtract	wd	word
svc	supervisor call	WLR	wrong length record
sw	switch		
sys	system	X	index (field)
		X-cycle	index cycle
TB	terminal koard		
T-cycle	timer cycle	The following symbols are used with microword statements:	
TD	time delay (logic)		
Temp	temperature	\$ OR	
TH	thermal (console)	- Minus	
TIC	transfer in channel	+ Add	
$t m r$	timer	*- Complerrent AND	
tgr	trigger	\square Exclusive OR.	

CE SAFETY PRACTICES

All Customer Engineers are expected to take every safety precaution possible and observe the following safety practices while maintaining IBM equipment:

1. You should not work alone under hazardous conditions or around equipment with dangerous voltage. Always advise your manager if you MUST work alone.
2. Remove all power AC and DC when removing or assembling major components, working in immediate area of power supplies, performing mechanical inspection of power supplies and installing changes in machine circuitry.
3. Wall box power switch when turned off should be locked or tagged in off position. "Do not Operate" tags, form 229-1266, affixed when applicable. Pull power supply cord whenever possible.
4. When it is absolutely necessary to work on equipment having exposed operating mechanical parts or exposed live electrical circuitry anywhere in the machine, the following precautions must be followed:
a. Another person familiar with power off controls must be in immediate vicinity.
b. Rings, wrist watches, chains, bracelets, metal cuff links, shall not be worn.
c. Only insulated pliers and screwdrivers shall be used.
d. Keep one hand in pocket.
e. When using test instruments be certain controls are set correctly and proper capacity, insulated probes are used.
f. Avoid contacting ground potential (metal floor strips, machine frames, etc. - use suitable rubber mats purchased locally if necessary).
5. Safety Glasses must be worn when:
a. Using a hammer to drive pins, riveting, staking, etc.
b. Power hand drilling, reaming, grinding, etc.
c. Using spring hooks, attaching springs.
d. Soldering, wire cutting, removing steel bands.
e. Parts cleaning, using solvents, sprays, cleaners, chemicals, etc.
f. All other conditions that may be hazardous to your eyes. REMEMBER, THEY ARE YOUR EYES.
6. Special safety instructions such as handling Cathode Ray Tubes and extreme high voltages, must be followed as outlined in CEM's and Safety Section of the Maintenance Manuals.
7. Do not use solvents, chemicals, greases or oils that have not been approved by IBM.
8. Avoid using tools or test equipment that have not been approved by IBM.
9. Replace worn or broken tools and test equipment.
10. Lift by standing or pushing up with stronger leg muscles this takes strain off back muscles. Do not lift any equipment or parts weighing over 60 pounds.
11. All safety devices such as guards, shields, signs, ground wires, etc. shall be restored after maintenance.

KNOWING SAFETY RULES IS NOT ENOUGH
an UNSAFE ACT WILL INEVITABLY LEAD TO AN ACCIDENT USE GOOD JUDGMENT - ELIMINATE UNSAFE ACTS 229-1264-1
12. Each Customer Engineer is responsible to be certain that no action on his part renders product unsafe or exposes hazards to customer personnel.
13. Place removed machine covers in a safe out-of-the-way place where no one can trip over them.
14. All machine covers must be in place before machine is returned to customer.
15. Always place CE tool kit away from walk areas where no one can trip over it (i.e., under desk or table).
16. Avoid touching mechanical moving parts (i.e., when lubricating, checking for play, etc.).
17. When using stroboscope - do not touch ANYTHING - it may be moving.
18. Avoid wearing loose clothing that may be caught in machinery. Shirt sleeves must be left buttoned or rolled above the elbow.
19. Ties must be tucked in shirt or have a tie clasp (preferably nonconductive) approximately 3 inches from end. Tie chains are not recommended.
20. Before starting equipment, make certain fellow CE's and customer personnel are not in a hazardous position.
21. Maintain good housekeeping in area of machines while performing and after completing maintenance.

Chapter 1. Reference Data and Diagnostic Techniques

Section 1. Reference Data

This section contains charts, listings, and diagrams giving general information for diagnosing system failures.
1.1 CORE STORAGE (FIGURES 1-1 THROUGH 1-17)

Hex Address	Decimal Address		Length

Figure 1-1. Permanent Storage Assignments
16 K Systems

Addrs	Usage	Aux Stor	Array
7 7FFF	Control	2048	32 K
4000	Storage	Bytes	
3 FFF	Program	(see text)	
0000	Storage		

Addrs	Usage	Aux Stor	Array
BFFF 8000	Control Storage	$\begin{aligned} & 2560 \\ & \text { Bytes } \end{aligned}$	16K
$\begin{aligned} & \text { 5FFF } \\ & 0000 \end{aligned}$	Program Storage	$\begin{aligned} & \text { (see } \\ & \text { text) } \end{aligned}$	24K

Note: Addresses 6000-7FFF are not available in the 24 K M2-I storage array.

32K Systems

Addrs	Usage	Aux Stor	Array
BFFF	Control Storage	3072 Bytes	16 K
7FFF	Program 0000	(see Storage	32 K

Addrs	Usage	Aux Stor	Array
$\begin{aligned} & \text { FFFF } \\ & \text { Cooo } \end{aligned}$	Control Storage	4096 Bytes (see text)	32K
$\begin{aligned} & \text { BFFF } \\ & 8000 \end{aligned}$	Program Storage (High)		
$\begin{aligned} & \text { 7FFF } \\ & 4000 \end{aligned}$	Program Storage (Mid)		32K
$\begin{aligned} & 3 F F F \\ & 0000 \end{aligned}$	Program Storage (Low)		

[^1]| | Program Storage | | | Control Storage | | | Auxiliary Storage | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System Size | Array Size | Bytes | Addrs Range (Decimal/Hex) | Array Size | Bytes | Addrs Range (Decimal/Hex) | Bytes | Addrs Range (Decimal/Hex) |
| 16K | 32K
 Low half | 16,384 | $\begin{aligned} & 0-16,383 \\ & 0000-3 F F F \end{aligned}$ | 32K
 High half | 16,384 | $\begin{aligned} & 16,384 \cdot 32,767 \\ & 4000 \cdot 7 F F F \end{aligned}$ | 2,048 | 0x 00-7xFF |
| 24K | $\begin{aligned} & 24 \mathrm{~K} \\ & \text { All } \end{aligned}$ | 24,576 | $\begin{aligned} & 0-24,575 \\ & 0000-5 F F F \end{aligned}$ | $\begin{aligned} & 16 K \\ & \text { All } \end{aligned}$ | 16,384 | $\begin{aligned} & 32,768 \cdot 49,151 \\ & 8000-\text { BFFF } \end{aligned}$ | 2,560 | $0 \times 00-5 \times F F$ and $8 \times 00-\mathrm{BxFF}$ |
| 32K | $\begin{aligned} & 32 K \\ & \text { All } \end{aligned}$ | 32,768 | $\begin{aligned} & 0-32,767 \\ & 0000-7 F F F \end{aligned}$ | $\begin{aligned} & 16 K \\ & \text { All } \end{aligned}$ | 16,384 | $\begin{aligned} & 32,768-49,151 \\ & 8000-B F F F \end{aligned}$ | 3,072 | 0x00-BxFF |
| 48K | $32 \mathrm{~K}(1)$ All Plus $32 \mathrm{~K}(2)$ Low half | 49,152 | $\begin{aligned} & 0-49,151 \\ & 0000-B F F F \end{aligned}$ | 32K(2)
 High
 half | 16,384 | $\begin{aligned} & 49,152-65,535 \\ & \text { C000-FFFF } \end{aligned}$ | 4,096 | 0x00-FxFF |
| Notes: | 1. Program storage is always located in the low-order area of the composite core-storage array(s). For example, program storage for the 48 K system is all of the low-order 32 K unit plus the low-order 16 K bytes of the high-order 32 K unit.
 2. Control storage is always the high-order 16 K bytes of the composite core-storage array(s).
 3. The notation $0 \times 00-7 \times F F$, etc. in the AUX STOR ADDRS RANGE column is defined in section 1.2. | | | | | | | |

Figure 1-3. Core-Storage Allocations and Addressing Scheme

1.1.1 TRAP ADDRESSES

When a microprogram trap occurs, the control-storage address of the routine is forced into the storage address assembler. The trap microprograms are located at the following fixed locations. The trap addresses given are relative to control-storage address 0000 , and this location is 4000 for 16 K systems, 8000 for 24 K or 32 K systems, or C 000 for 48 K systems.

Trap

Address Trap Routine
0010 CSL
0240
0220
0280
0210
System reset or IPL
Machine check
FE trap
Storage-wrap error, or storage protect violation
0170 Channel high priority
0140
0180
01B0
0110
01 E0
0120

1.1.1.1 Address Stop/Match

It is not possible to address stop at the first word of a trap because trap addresses are forced directly to the storage address lines, and the address match function refers to the contents of the M-register. To address match on a trap, make the match on the address of the second word of the trap. The address of the second word of a trap is normally the trap address +2. An exception is the storage-wrap and storage-protect violation trap, where the first word can be a direct branch. The appropriate MAS listing should be used, in this case, to determine the address to be mat ched.

Figure 1-5. Core-Storage Y -Decodes

Figure 1-6. Core-Storage X-Decodes
1.2 AUX IL IARY STORAGE MAPS (FIGURES 1-7 THROUGH 1-17)

Depending on the program-storage capacity of the system, there are from eight to sixteen 256-byte modules of auxiliary storage. Module 0 is used for CPU functions (general registers, etc.) and for storage of addresses and information relative to the integrated I/O attachment features. Module 2 is used for multiplexer-channel unit-control words.

Modules 1 and 3-7 are used for operations involving the integrated attachment features. Modules 8-15 are reserved for special features. The 24 K system (modules 6 and 7) is an exception (Figure 1-7).

Note: Three hexadecimal digits in the first, third and fourth positions of the storage address register are used to address auxiliary storage (the second hex character is not relevant).

Figure 1-7. Auxiliary Storage Map (Part 1 of 2)

		BIT SIGNIFICANCE								
CODE	ROUTINES USING	0	1	2	3	4	5	6	7	USED FOR
A	ETRP-S	$\begin{aligned} & \text { CMD } \\ & \text { REJ } \end{aligned}$	$\begin{array}{\|c} \text { NOT } \\ \text { READY } \end{array}$		$\left\|\begin{array}{l} \text { EOUIP } \\ \text { CHECK } \end{array}\right\|$	$\left\|\begin{array}{\|c\|} \text { VAL } \\ \text { CHECK } \end{array}\right\|$		$\begin{array}{\|l\|} \hline \text { UN- } \\ \text { USUAL } \\ \text { CMD } \end{array}$		PUNCH SENSE
B	ETRP-S, ECOL-R		$\left\lvert\, \begin{gathered} \text { STACK } \\ \text { SEL } \\ 1,2,3 \end{gathered}\right.$	$\begin{gathered} \text { STACK } \\ \text { SEL } \\ \hline, 2,3 \end{gathered}$						STACK SEL
C	EXFR-R	CDA	$\begin{array}{r} \text { STACK } \\ \text { SEL } \\ 1,2,3 \end{array}$	$\begin{gathered} \text { STACK } \\ \text { SEL } \\ 1,2,3 \end{gathered}$		READ	$\begin{aligned} & \text { STOR } \end{aligned}$	FEED	WLR	READER INDICATOR
D	EXFR-R	$\begin{aligned} & \text { CMD } \\ & \text { REJ } \end{aligned}$	$\left.\begin{array}{\|c\|} \text { NOT } \\ \text { READY } \end{array} \right\rvert\,$		$\left\lvert\, \begin{aligned} & \text { EQUIP } \\ & \text { CHECK } \end{aligned}\right.$	$\left\|\begin{array}{\|c\|} \mathrm{VAL} \\ \text { CHECK } \end{array}\right\|$		$\begin{aligned} & \text { UN. } \\ & \text { USUAL } \\ & \text { CMD } \\ & \hline \end{aligned}$		READER SENSE
E	EPCH-R	CDA	$\begin{aligned} & \text { STACK } \\ & \text { STEL } \\ & 1,2,3 \end{aligned}$	$\begin{aligned} & \text { STACK } \\ & \text { SEL } \\ & 1,2,3 \end{aligned}$		$\begin{gathered} \text { PFR } \\ \text { RFAD } \end{gathered}$	$\begin{gathered} \text { CTOR } \end{gathered}$	$\begin{array}{\|c} \text { PFR } \\ \text { COUNTT } \end{array}$	WLR	PUNCH INDICATOR

Note: PCCL byte for 1403 translate table is kept in auxiliary storage 7×00 (9×00 for 24 K machines).

Figure 1-7. Auxiliary Storage Map (Part 2 of 2)

K-ADDRESSABLE AREA
K0-88- CHANNEL 1 INTERRUPT BUFFER
KI-8A- STANDARD INTERFACE, NEXT CCW ADDRESS
K2-8C. CHANNEL UNIT ADDRESS BUFFER
K3-8E- STATUS/ACTIVE BYTE FOR 2311 OR CHANNEL 1
K4.98- 2311 NEXT CCW ADDRESS
K5-9A. 2311 SENSE OR PREVIOUS OP AND MASK
K6-9C- 2311 SENSE OR FILE ADDRESS
K7-9E DIAGNOSTICS, ALTER/DISPLAY BAL BACKUP
K8-A8. SYSTEM MASK -A9. CPU KEY AND AMWP
K9-AA. EXECUTE INSTRUCTION COUNTER---- I REGISTER BACKUP
KA-AC- U REGISTER BACKUP Q FLPT SAVE DURING INSTRUCTIONS
KB-AE- G REGISTER BACKUP
KC-B8- PREGISTER BACKUP
KD-BA- CHANNEL O INTERRUPT BUFFER
KE-BC- ADDRESS OF STRAIGHT MULT/DVD, FLPT SAVE 2540 REGS BACKUP
KF-BE- ADDRESS OF SKEWED MULT/DVD, FLPT SAVE OR CAW KEY
2540 REGS BACKUP
Figure 1-8. Auxiliary Storage Module 0 (Part 1 of 2)

STANDARD DEVICE ADDRESSES

INTEGRATED	LOC	BURST CHANNEL	LOC
1403 ----.-.-........--OE	B4	1443 or 1445 .-..........----- OB	84
2540 RDR----------0C	B5	2540 RDR --.--.------...-------0C	85
2540 PCH OD	B6	2540 PCH ------------------------0D	86
1052 --------.......--1F	B7	1403 --.----.-.---.....---.-.------ OE	87
2311 ------------------9X	F5	1404 or 2ND 1403 .--....--OF	94
Note:		2520 -----------------.------------15	95
The text preceding the -BCPL- Routine contains information on punching cards to reconfigurate the system to other than the standard assignments.			

Figure 1-8. Auxiliary Storage Module 0 (Part 2 of 2)

Figure 1-9. Auxiliary Storage Module 1

	$\times 0$	$\times 2 \quad \times 4$	$\times 6$	$\times 8$	xA	xC	xE
0x	UCW	0 , Addrs 000 or 080*		UCW 16, Addrs 010			
1x	UCW	1. Addrs 001 or 090*			17,	Addr	011
2x	UCW	2, Addrs 002 or OAO*			18,	ddr	012
3 x	UCW	3. Addrs 003 or 0BO*			19,	ddr	013
4x	UCW	4, Addrs 004 or OCO*			20,	Add	014
5x	UCW	5. Addrs 005 or ODO*			21,	Addr	015
6x	UCW	6. Addrs 006 or 0EO*			22,	Add	16
7x	UCW	7, Addrs 007 or OFO*			23,	ddr	017
8 x	UCW	8, Addrs 008			24,	Addr	18
9x	UCW	9, Addrs 009			25,	Addrs	019
Ax	UCW	10. Addrs 00A		UCW	26,	Addr	01A
Bx	UCW	11. Addrs 00B		UCW	27.	Addrs	01B
Cx	UCW	12, Addrs 00C			28,	Addrs	01C
Dx	UCW	13, Addrs 00D		UCW	29,	ddrs	01D
Ex	UCW	14, Addrs 00E		UCW	30,	ddrs	01E
Fx	UCW	15. Addrs 00F		UC	31,	ddrs	01F

Example: Unit control word 27 is located at position B 8 in auxiliary-storage module 2. The unit address is 01B.

* These eight MPX UCW's may be used for single-address subchannels or shared subchannels.

Figure 1-10. Auxiliary Storage Module 2

READER TRANSLATE TABLE (Address 30xx)

TENS	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	OX
OX	40	F1	F2	F3	F4	F5	F6	F7	F0	61	E2	E3	E4	E5	E6	E7	
1X	60	D1	D2	D3	D4	D5	D6	D7	DO	A1	A2	A3	A4	A5	A6	A7	1x
2 X	50	C1	C2	C3	C4	C5	C6	C7	C0	81	82	83	84	85	86	87	2X
3 X	6A	91	92	93	94	95	96	97	70	B1	B2	B3	B4	B5	B6	B7	$3 x$
4X	F9	31	32	33	34	35	36	37	E9	21	22	23	24	25	26	27	4X
5X	D9	11	12	13	14	15	16	17	A9	E1	62	63	64	65	66	67	5X
6X	C9	01	02	03	04	05	06	07	89	41	42	43	44	45	46	47	6X
7X	99	51	52	53	54	55	56	57	B9	71	72	73	74	75	76	77	7X
8X	F8	79	7A	7B	7C	70	7E	7 F	E8	69	E0	6B	6C	6D	6 E	6F	8 X
9x	D8	59	5A	5B	5C	5D	5E	5F	A8	A0	AA	$A B$	AC	AD	AE	AF	9 x
AX	C8	49	4A	4B	4C	4D	4E	4F	88	80	8A	88	8C	8D	8E	8F	AX
BX	98	90	9A	9 B	9C	9 D	9 E	9 F	B8	B0	BA	BB	BC	BD	BE	BF	BX
CX	38	39	3A	3B	3 C	3D	3E	3F	28	29	2A	2B	2C	2D	2 E	2F	CX
DX	18	19	1A	1B	1C	10	1E	1F	68	20	EA	EB	EC	ED	EE	EF	DX
EX	08	09	OA	OB	OC	OD	OE	OF	48	00	CA	CB	CC	CD	CE	CF	EX
FX	58	10	DA	DB	DC	DD	DE	DF	78	30	FA	FB	FC	FD	FE	FF	FX
	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	

UNITS
Figure 1-11. Auxiliary Storage Module 3

Figure 1-12. Auxiliary Storage Module 4

Figure 1-13. Auxiliary Storage Nodule 5

							H	AN	AT	TA							
	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
0X	B9	89	8A	8B	8C	8D	8E	8F	98	99	9A	9B	9C	9D	9 E	9F	0x
1X	D9	49	4A	4B	4C	4D	4E	4F	58	59	5A	5B	5 C	5D	5E	5F	$1 \times$
2X	79	29	2A	2B	2C	2D	2E	2F	38	39	3A	3B	3C	3D	3E	3F	2X
3X	F9	09	OA	OB	OC	OD	OE	OF	18	19	1A	1B	1 C	1D	1E	1F	3 X
4X	00	A9	AA	AB	AC	AD	AE	AF	B8	91	92	93	94	95	96	97	4X
5X	80	C9	CA	CB	CC	CD	CE	CF	D8	51	52	53	54	55	56	57	5X
6X	40	21	6A	6B	6C	6D	6E	6F	78	31	CO	33	34	35	36	37	6X
7X	E0	E9	EA	EB	EC	ED	EE	EF	F8	11	12	13	14	15	16	17	7X
8X	B1	A1	A2	A3	A4	A5	A6	A7	B0	A8	B2	B3	B4	B5	B6	B7	8 X
9X	D1	C1	C2	C3	C4	C5	C6	C7	D0	C8	D2	D3	D4	D5	D6	D7	9X
AX	71	61	62	63	64	65	66	67	70	68	72	73	74	75	76	77	AX
BX	F1	E1	E2	E3	E4	E5	E6	E7	F0	E8	F2	F3	F4	F5	F6	F7	$B X$
CX	A0	81	82	83	84	85	86	87	90	88	BA	BB	BC	BD	BE	BF	CX
DX	60	41	42	43	44	45	46	47	50	48	DA	DB	DC	DD	DE	DF	DX
EX	32	69	22	23	24	25	26	27	30	28	7A	7B	7C	7D	7E	7F	EX
FX	20	01	02	03	04	05	06	07	10	08	FA	FB	FC	FD	FE	FF	FX
	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	

Figure 1-14. Auxiliary Storage Module 6

PRINTER TRANSLATE TABLE (FOLDED, DUALED, BLOCK DATA CHECK) NON MCS CSL LOAD (REFER TO SECTION 1.14)

Figure 1-15. Auxiliary Storage Module 7

Figure 1-16. Auxiliary Storage Module 8

Figure 1-17. Auxiliary Storage Module 9
1.3 2540 READER/PUNCH (FIGURES 1-18 THROUGH 1-23)

$U=$ Upper half of a card column.
$\mathrm{L}=$ Lower half of a card column.
1 U corresponds to data-record byte $1 ; 80 \mathrm{~L}$ corresponds to data-record byte 160.
Hole patterns in a column: Upper -- $12 \begin{array}{lllllll}12 & 0 & 1 & 2 & 3\end{array}$
$\begin{array}{lllllll}\text { Lower -- } & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
Correspond to bit patterns in RO:

0	1	2	3	4	5	6
1	1					
0	0	for	either upper or lower.			

Figure 1-18. 2540 Readout Area of Aux. Storage (160 Bytes of Column Form)

Figure 1-19. 2540 Reader Row Image. Auxiliary Storage

UNITS

	0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
0	40	F1	F2	F3	F4	F5	F6	F7	FO	61	E2	E3	E4	E5	E6	E7
1	60	D1	D2	D3	D4	D5	D6	D7	D0	A1	A2	A3	A4	A5	A6	A7
2	50	C1	C2	C3	C4	C5	C6	C7	Co	81	82	83	84	85	86	87
3	6A	91	92	93	94	95	96	97	70	B1	B2	B3	B4	B5	B6	B7
4	F9	31	32	33	34	35	36	37	E9	21	22	23	24	25	26	27
5	D9	11	12	13	14	15	16	17	A9	E1	62	63	64	65	66	67
6	C9	01	02	03	04	05	06	07	89	41	42	43	44	45	46	47
7	99	51	52	53	54	55	56	57	B9	71	72	73	74	75	. 76	77
8	F8	79	7A	7B	7 C	70	7E	7F	E8	69	EO	6B	6C	6D	6 E	6 F
9	D8	59	5A	5B	5 C	5D	5E	5F	A8	AO	AA	$A B$	AC	AD	AE	AF
A	C8	49	4A	4B	4 C	4D	4E	4F	88	80	8A	8B	8 C	8D	8 E	8 F
B	98	90	9A	98	9 C	9 D	9 E	9 F	B8	B0	BA	BB	BC	BD	BE	BF
c	38	39	3A	3B	3 C	3D	3E	3 F	28	29	2A	2 B	2 C	2D	2 E	2F
D	18	19	1A	1B	1 C	1D	1 E	1F	68	20	EA	EB	EC	ED	EE	EF
E	08	09	OA	OB	OC	OD	OE	OF	48	00	CA	CB	CC	CD	CE	CF
F	58	10	DA	DB	DC	DD	DE	DF	78	30	FA	FB	FC	FD	FE	FF

Figure 1-20. 2540 Reader Translate Table, Auxiliary Storage--30xx

Auxiliary Storage Module 1

* Reader and sense indicators reset on SIO decode (error).

Figure 1-21. 2540 Sense Indicator Bytes

Chnl Status	Flags \& Op	Data Address Unit Status at Interrupt Time	Count Field	Next CCW Address

*With Active Bit $=1, O p-0 \& O p-1$ Decode as follows:
00 - Count Zero Expecting Channel End
01 - Output
10 - Read Forward
11 - Read Backward

Figure 1-22. 2540 Reader-UCW Format

*With Active Bit-1, OP-0 \& OP-1 Decode as Follows:
00 - Count Zero Expecting Channel End
01 - Output
10 - Read Forward
11 - Read Backward
Figure 1-23. 2540 Punch-UCW Format

1.4.STORAGE PRCTECTION FEATURES (FIGURES 1-24 THROUGH 1-26)

Y-Axis

Figure 1-24. STP1 Allocations Map

	Y-Axis**							
0	$\begin{aligned} & 0000- \\ & 07 \mathrm{FF} \\ & 0-2 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 2000- \\ & 27 \mathrm{FF} \\ & 8-10 \mathrm{~K} \end{aligned}$	4000- 47FF 16-18K	6000- 67FF 24-26K	800087FF 32-34K	A000- 40-42K	C000C7FF 48-50K	E000E7FF 56-58K
1	$\begin{aligned} & 0800- \\ & \text { OFFF } \\ & 2-4 K \end{aligned}$	$\begin{aligned} & 2800- \\ & 2 F F F \\ & 10-12 \mathrm{~K} \end{aligned}$	48004FFF 18-20K	68006FFF 26-28K	88008FFF $34-36 \mathrm{~K}$	A800AFFF 42-44K	C800CFFF 50-52K	E800EFFF 58-60K
$\xrightarrow{\text { X-Axis }}$	$\begin{array}{\|l} 1000- \\ 17 \mathrm{FF} \\ 4.6 \mathrm{~K} \end{array}$	$\begin{aligned} & 3000- \\ & 37 \mathrm{FF} \\ & 12-14 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 5000- \\ & 57 \mathrm{FF} \\ & 20-22 \mathrm{~K} \end{aligned}$	$\begin{array}{\|l\|} \hline 7000- \\ 77 \mathrm{FF} \\ 28-30 \mathrm{~K} \end{array}$	900097FF 36-38K	$\begin{aligned} & \text { Booo- } \\ & \text { B7FF } \\ & 44-46 \mathrm{~K} \end{aligned}$	$\begin{aligned} & \hline \text { D000- } \\ & \text { D7FF } \\ & 52-54 \mathrm{~K} \end{aligned}$	F000F7FF 60-62K
3	$\begin{aligned} & 1800 \\ & \text { 1FFF } \\ & 6-8 \mathrm{~K} \end{aligned}$	3800- 3FFF 14-16K	$\begin{aligned} & 5800- \\ & 5 \mathrm{FFF} \end{aligned}$ $22-24 \mathrm{~K}$	$\begin{aligned} & 7800- \\ & 7 F F F \\ & 30-32 K \end{aligned}$	9800 9FFF 38-40K	B800BFFF 46-48K	D800- DFFF 54.56 K	F800FFFF 62.64 K

* These columns are shown for reference only. The storage locations represented are never used for program storage, and thus are not subject to the storage protection feature.
** For systems with less than 48K bytes of program storage, the locations above the installed program storage are not protected.

Figure 1-25. STP1 Allocations for Program Storage
$\underline{Y-A x i s}$

	0	1	2	3	4	5	6	7
4	$\begin{aligned} & 00-07 \\ & (1) \end{aligned}$	$\begin{aligned} & 20-27 \\ & \text { (5) } \end{aligned}$	$\begin{aligned} & 40-47 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & \hline 60-67 \\ & (13) \end{aligned}$	$\begin{aligned} & 80-87 \\ & (17) \end{aligned}$	$\begin{aligned} & \text { A0-A7 } \\ & \text { (21) } \end{aligned}$	$\begin{aligned} & \hline \text { C0-C7 } \\ & (25) \end{aligned}$	$\begin{aligned} & \text { E0-E7 } \\ & \text { (29) } \end{aligned}$
5	$\begin{aligned} & \text { 08-0F } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & 28-2 F \\ & (6) \end{aligned}$	$\begin{aligned} & 48-47 \\ & (10) \end{aligned}$	$\begin{aligned} & 68-67 \\ & (14) \end{aligned}$	$\begin{aligned} & 88-8 \mathrm{~F} \\ & (18) \end{aligned}$	$\begin{aligned} & \text { A8-AF } \\ & \text { (22) } \end{aligned}$	$\begin{aligned} & \text { C8-CF } \\ & (26) \end{aligned}$	$\begin{aligned} & \text { E8-EF } \\ & (30) \end{aligned}$
$\frac{X \text {-Axis }}{6}$	$\begin{aligned} & 10-17 \\ & (3) \end{aligned}$	$30-37$ (7)	$\begin{aligned} & 50-57 \\ & (11) \end{aligned}$	$\begin{aligned} & 70-77 \\ & (15) \end{aligned}$	$\begin{aligned} & 90-97 \\ & (19) \end{aligned}$	$\begin{aligned} & \text { B0-B7 } \\ & \text { (23) } \end{aligned}$	$\begin{aligned} & \text { D0-D7 } \\ & \text { (27) } \end{aligned}$	$\begin{aligned} & \text { F0-F7 } \\ & \text { (31) } \end{aligned}$
7	$\begin{aligned} & 18-1 \mathrm{~F} \\ & (4) \\ & \hline \end{aligned}$	$\begin{aligned} & 38-3 F \\ & \text { (8) } \\ & \hline \end{aligned}$	$\begin{aligned} & 58-5 \mathrm{~F} \\ & \text { (12) } \end{aligned}$	$\begin{aligned} & 78-7 F \\ & (16) \end{aligned}$	$\begin{aligned} & 98-9 \mathrm{~F} \\ & (20) \end{aligned}$	$\begin{aligned} & \text { B8-BF } \\ & \text { (24) } \end{aligned}$	D8-DF (28)	$\begin{aligned} & \text { F8-FF } \\ & \text { (32) } \end{aligned}$

Note: For channel operations, bits $0-3$ (Z-axis) are used for a maximum of 32 keys (shown in parentheses).

For communications channel operations, bits 4-7 are used for a maximum of 32 keys.

Figure 1-26. STP1 Allocations for Channel and Communcations Channel Operation

Figure 1-27. 1401/1460 Compatibility Features Aux. Storage Map (Part 1 of 2)

Figure 1-27. 1401/1460 Compatibility Features Aux. Storage Map (Part 2 of 2)

94-95
$96 \quad 0$

2

3
4

4
5
6
7
disk file functions:
Byte Bit Compatibility Mode Use
A $0-A 1$
A0
0-3 Must be set to 0000
4-7 Modular addresses 0 to 19,999=0000 Modular addresses 20 K to 39. $999=0010$

Modular addresses 40 K to 59, 99 9=0100
Modular addresses 60 K to 79. $999=0110$

Modular addresses 80 K to 99,999=1000

A1
0-3 System/360 File Select
Addresses:
File $0=1000$
File 1=0100
File 2=0010
File 3=0001
4-5 Not used
6 Compare Disable. 6=0; compare
disable is inactive. A
successful address compare on a
1400-series indelible address
(I/A) must occur before an I/A
read or write can be executed.
6=1; compare disable is
active. Read or write with I/A
is executed without first doing an address compare on the 1400 -series indelible address. This bit should be set to 1 only when initializing a disk pack in 1400 mode.
7 Module overflow detection. 7=0; rodule overflow detection is active. The 1400-program

K7
9E

1 On Channel (Integrated Attachicent only)
2
3
4
Go to set Up after Rmt/Rst
(Integrated Attachment Only)
5 From General stop Loop
(Integrated Attachment Only)
6 Last CMD Skip or Spc Sup.
7 Forms After Cmd
Forms command
1403 Printer (Integrated Attachrent Only)

Reader-1 address
Reader-2 address
Sense switch A (last card)
Sense switch B
Sense switch C
Sense switch D
Sense switch E
Sense switch F
Sense switch G
Sense switch A for second serial reader punch
High-compare result (U)
unequal-compare result (/)
Low-compare result (T)
Equal-compare result (S)
Inquiry clear indicator (*)
Overf low indicat or (Z)
6 Inquiry request indicator (c)

7 Not used
Not move or load
instruction ($\mathrm{PR}-\mathrm{KB}$)
1 H-Typehead installed
(PR-KB)
2 Secondary bit (PR-KB)
3 Load mode (PR-KB)
4 Stop message being
performed (PR-KB)
5 Reader error
6 Punch error
Printer error
Unassigned
48K*
24K, 32 K *
$16 \mathrm{~K}, 32 \mathrm{~K}$, or $48 \mathrm{~K} *$
3-7 Initialized to $1 *$
*High-order byte of highest storage address
initialized to $3 F, 5 F, 7 F$, or BF.
$1442 / 1443$ status
0 Skip GMWM check
Channel end only
Last card on
Column binary mode
Print operation
5 Output command
6-7 $00=\mathrm{R} / \mathrm{W}, 01=$ Test I / O,
$10=$ Sense, $11=$ Control

parentheses. Code 34 is used to indicate an invalid 1400-series op-code. Code 06 is used to indicate a No-op.

1.5.4 AUXILIARY STORAGE MODULE 3 (1400 COMPATIBILITY)

Rows 0-9: Punch Check Buffer (row form) or PFR Buffer (column form).
Rows A-F: Read Image Buffer 1 (row form). Partial; remainder of buffer area is in module 4, rows 0 and 1.

1.5.5 AUXILIARY STORAGE MCDULE 4 (1400 COMPATIBILITY)

RCws 0-1: Read Image Buffer 1 (row form) continued from module 3.
Rows 2-B: Reader Buffer (column form).
Rows A-F: Read Image Buffer 2 (row form). Partial; remainder of buffer is in module 5. rows 0 and 1. Rows A and B are shared with the column form buffer.

1. 5. 6 AUXILIARY STORAGE MODULE 5 (1400 CCMPAT IBILITY)

Rcws 0 and 1: Read Image Buffer 2 (row form). Continued from module 4.
Rows 2 and 3: Disk File Takles, conversion tables for cylinder and head decode, file cp-code conversicn, etc.
Rows 4-7: 1443 Translate Table
Rcws 8-B: 1403 Translate Table
Rcws C-E: Working Storage
Row F: (F6-FF) Logout area for card funch errors.

1.5.7 AUXILIARY STORAGE MODULE 6 (8 IN 24K SYSTEMS--1400 CCNPATIBILITY)

Rows 0-3: Console Printer Translate Takle
Rcws 4-7: Punch Translate Table
Row 8: Punch Nask
Rcws 9-B: Unassigned
Rows C-F: Punch Translate Table.
Differences fcr 2540/1442 acplicaticns:
Rews 4-D: Punch Data Buffer (column binary form)
Row E: Punch Mask
Row F: Working Storage and Unassigned.

1.5.8 LOCAI STORAGE (1400 CCMPATIBIIITY)

The 64 -byte local storage is divided into six zones that are used in the same general manner in the 1400 mode as in System/360 mode.

Zone 0,	CPU Mode;	16 bytes
Zone 1,	2311 Mode;	8 bytes
Zone 4,	Backup area;	16 kytes
Zone 5,	Undefined;	8 kytes
Zone 6,	2540 Mode;	8 bytes
Zone 7.	Channel Mode;	8 bytes

Local storage is used when operating in $1401 / 1460$ or 1440 compatibility mode for intermediate storage for factors unique to this mode of operation. Example: I-STAR, $A-S T A R$, $B-S T A R$, Of-register and A-register. In addition, local storage is used for problem-program factors and microprogram factors. Also, data stored in local storage is used by control words to cerform some froblem-program functions.

1.5.8.1 Zone 0 (1400 Compatibility)

Zone 0 is addressed when the Model 25 is operating in CPU mode. There are 16 kytes within the zone-0 area addressed by $x-1$ ines $0-7$ and Y-lines 0 and 1. Not all bytes have assigned functions.

AS/BS			
Decode	Sym		Assigned Function
0	U0	00	A-Address Register
1	U1	10	A-Address Register
2	v0	20	B-Address Register
3	V1	30	B-Address Register
4	G0	40	Working Register
5	G1	50	Op-Register
6	D0	60	Status Indicators
7	D1	70	A-Register
8	I 0	01	I-Address Register
9	I1	11	I-Address Register
A	T0	21	Working Register
B	T1	31	Working Register
C	P0	41	Working Register
D	P1	51	Working Register
E	H0	61	Working Register
F	H1	71	Working Register

1.5.8.2 Zone 1 (1400 Compatibility)

Zone 1 is addressed when the Model 25 is operated in 2311 mode. There are 8 kytes within the zone-1 area addressed by X -lines 0-7 and Y-line 2, as follows.

AS/BS
Decode Sym X Y Assigned Function
8 I0 $0 \quad \frac{1}{2}$ Count Register
9 I1 12 Count Register
A T0 22 Data Address Register
R T1 32 Data Address Register
C

D	P 1	5	2
E	H 0	6	2

F H1 72

1.5.8.3 Zone 4 (1400 Compatibility)

Zone 4 is used as the kackup area for all modes of operation except 2311 mode. There are 16 bytes within the zone- 4 area
addressed by X-lines 0-7 and Y-lines 3 and 4.

For the CPU mode operation the backup area can ke addressed ky setting mode register bits 5, 6, and 7 to 1,0,0. For operation in 2540 or channel mode (MMSK bits 0 . 2, 3, or 4 on), the low-order 8 bytes of zone 4 can be addressed. None of the bytes of the rackup area can be addressed when operating in 2311 mode (MNSK bit 1 on).

All 16 bytes of the backup area can be addressed manually by console switches C and $D_{\text {. Assignments }}$ are as follows.

AS/BS

Decode Sym $\frac{x}{0}$ Assigned Function
$0 \quad \mathrm{U} 0 \quad \frac{1}{4} \frac{1}{\text { High-order Level-1 Backup }}$ addr
1
U1 14 Low-order Level-1 Backup addr
2 Vo 24 High-order Level-2 Backup addr
3 v1 34 Low-order Level-2 Backup addr
4 G0 44 High-order Level-3 Backup addr
5 G1 54 Low-order Level-3 Backup addr
6 D0 64 High-order Machine-Check Backup Addr
7 D1 74 Low-order Machine-Check Backup Addr
8 Io 03 High-order CPU Branch and Iink Backup Adaress
91113 Low-order CPU Branch and Iink Backup address
A T0 23 Spare
B T1 33 spare
C P0 43 Workarea
D P1 53 Workarea H0 63 Workarea H1 73 Workarea

1.5.8.4 Zone 6 (1400 Compatibility)

Zone 6 is addressed when cperating in 2540 mode (MMSK kits 3 or 4 cn). There are eight kytes in the zone-6 area addressed by x-lines $0-7$ and y-line 6. Also, zone 6 can te addressed when in CPU mode by setting the mode register bits 5, 6, 7 to 1, 1, 0 respectively.

1.5.8.5 zone 7 (1400 Compatibility)

Zone 7 is address when operating in channel mode (MMSK bits 0 or 2 on). There are 8 kytes in the zone-7 area addressed by X -lines $0-7$ and Y -line 7. The functional assignments for these bytes are:

AS/BS

Decode Sym $\frac{x}{0} \frac{Y}{7}$ Assigned Function
0 U0 $\frac{1}{7}$
$1 \quad$ U1 17
2 Vo 27 Data Address Register
3 V1 37 Data Address Register
$4 \quad$ G0 47
5 G1 57 Data Register
$6 \quad$ DO 67 Status Register
7 D1 77 Word Secarator

Sequence of Operation for Combination Operations Is Print，Read，and Punch	
1400 Operation	
Read（1）	Starts as 21，and during read ending routine（LRDR）is changed to 20 ．In case of error （and the 1／O Stop switch is on，）the code remains 21 and display stop occurs．
Print（2）	Starts as 22 and is reset to 00 at the end of the normal print routine（MPRT） before return to LOPD and ICYC．
Print，Read（3）	Starts as 23 and is changed to 21 at end of the print routine．Routine branches back to ICYC VALADR 0，is decoded as a 1 Op and executed．
Punch（4） Punch Col Bin（4C）	Starts as 24 and is changed to 20 during punch ending routine（LPCH）． In case of error，code remains 24 and a display stop occurs．
Read，Punch（5）	Starts as 25 and is changed to 24 at read ending（LRDR）．In case of error（with I／O Stop switch on）code remains 25 and display stop occurs．No error routine branches back to LOPD，performs punch op and is changed to 20.
Print，Punch（6）	Starts as 26 and is changed to 24 at end of Print routine．Routine branches back to ICYC VALADR 0 and is decoded as a punch op．Operation is then the same as a 4 op and is changed to 20 at the ending．
Print，Read， Punch（7）	Statts as 27，changes to 25 at end of print operation． 25 causes a read op，at end of read op code changes to 24 and causes a punch op．At end of punch op，code changes to 20．All error limitations for the various operations apply．
Punch Feed Read（4R）	Starts as 24．The d－modifier causes the op code to change to A4，then a normal punch routine is started．At the end of the punch routine the code is changed to 28 and a punch feed read operation is performed．At end op code changes to 20.
Read Column Binary（1C）	Starts as 21．Changes to 20 during read ending routine（RDREND）．Error handling same as for Read op．（Validity not checked．）

Figure 1－28．Op－Code Information（1400 Compatibility）

\downarrow_{0}^{4567}	WITH WORDMARK$0123 \longrightarrow$				NO WORDMARK				WITH WORDMARK				NO WORDMARK			
	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	Blank	\＆	－		Blank	\＆	－－		？	1	\ddagger	0	？	1	\ddagger	0
0001			1				1		A	J		1	A	J		1
0010									B	K	S	2	B	K	S	2
0011									C	L	T	3	C	L	T	3
0100									D	M	U	4	D	M	U	4
0101									E	N	V	5	E	N	V	5
0110									F	0	W	6	F	0	W	6
0111									G	P	X	7	G	P	X	7
1000									H	Q	Y	8	H	Q	Y	8
1001									1	R	Z	9	1	R	Z	9
1010				6				6								
1011	．	\＄	，	\＃	．	\＄	，	\＃								
1100	口	＊	\％	＠	口	＊	\％	＠								
1101	［	］	\checkmark	：	［	］	v	：								
1110	＜	；	\}	$>$	＜	；	1	$>$								
1111	\＃	\triangle	＋	$\sqrt{ }$	丰	\triangle	＋	\checkmark								

Figure 1－29． 1400 Defined Characters

C

0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
(?)	(A)	(B)	(C)	(D)	(E)	(F)		(H)			($\cdot 1$	(口)			
1 C	18	OB	1 F	12	16	2A	34	B1	34	34	02	15	34	34	34
(!)		(K)	(L)	(M)	(N)		(P)	(0)							
1D	34	29	90	80	06	34	1E	F1	34	34	34	34	34	34	34
	(1)	(S)		(U)	(V)	(W)		(V)	(Z)		(,)	(\%)			
34	05	19	34	20	OE	OF	34	13	17	34	04	1 B	34	34	34
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		(\#)	(@)			
34	21	22	23	24	25	26	27	06	06	34	14	1A	34	34	34

Notes:

1. The 1400-series operation code is shown in parentheses.
2. The code 34 is used to indicate an invalid 1400 -series operation code.
3. The code 06 is used to indicate a No Op (no operation).
4. Notice that several 1400 -series special features, such as Branch if

Bit Equal (W op code), Divide (\% op code), etc. are standard with the
compatibility feature. These 1400 -series operations can be made invalid
by inserting the invalid code (34) in the corresponding table location, if desired.

Figure 1-30. 1400 Operation-Code Decode Table

4

0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
00	40	40	40	40	40	40	40	40	40	40	38	3C	3D	3E	3F
30	40	40	40	40	40	40	40	40	40	40	2B	2C	2D	2 E	2F
20	11	40	40	40	40	40	40	40	40	40	1B	1C	10	1E	1F
40	40	40	40	40	40	40	40	40	40	10	OB	OC	OD	OE	OF

C

$3 A$	31	32	33	34	35	36	37	38	39	40	40	40	48	45	$5 C$
$2 A$	21	22	23	24	25	26	27	28	29	40	40	40	40	46	50
$1 A$	40	12	13	14	15	16	17	18	19	40	40	40	49	$4 F$	56
$0 A$	01	02	03	04	05	06	07	08	09	40	40	40	40	44	$5 F$

Figure 1-31. EBCDIC-to-BCD Translate Takle (1400)

	16,384		24,576		32,768		49,152	
	Bias Constant	File Table	Bias Constant	File Table	Bias Constant	$\begin{array}{r} \text { File } \\ \text { Table } \end{array}$	Bias Constant	$\begin{aligned} & \text { File } \\ & \text { Table } \end{aligned}$
16K	0180	0000	2180	2000	4180	4000	8180	8000
12K	1120	1000	3120	3000	5120	5000	9120	9000
8K	20C0	1 F00	40C0	3F00	60C0	5F00	AOCO	9F00
4K	3060	2F00	5060	4F00	7060	6F00	B060	AF00
2K	3830	3700	5830	5700	7830	7700	B830	B700
1.4K	3 A88	3900	5488	5900	7 788	7900	BA88	B900

Bias Constant: Located in byte 88-89, (K0) in Module 0.
File Table Address: Developed from bias constant during file routine.

Figure 1-32. Storage Bias Constant Values and File Table Addresses (1400 Compatibility)

AUXILIARY STORAGE MODULE 2

$6 \quad 7$	8	8	A	B	C

Note: B=Halfword bias constant in KO (Module 0; 88-89) See previous figure for value.

Hundreds/Thousands/Bias Conversion
AUXILIARY STORAGE MODULE 2

$\begin{array}{lllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E & F\end{array}$ | 00 | $0 A$ | 14 | 1 E | 28 | 32 | $3 C$ | 46 | 50 | $5 A$ | 01 | 01 | 01 | 01 | 01 | 01 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Tens Conversion

Figure 1-33. Decimal-to-Hex Conversion Tables (1400 Compatibility)
1.6 PR-KB (PRINTER-KEYBOARD) FIGURES 1-34 THROUGH 1-38

Note 2: Alternate coding key must be pressed for EOB and Cancel
Figure 1-34. Input Code from Keyboard (PR-KB)

EBCDIC Bits 0123:

Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	111
$\underline{0000}$	sp	\&	-	-	sp	\&	-	-	@	\&	-	0	\%	>	?	0
0001	sp	n	1	8	sp	n	1	8	a	j	1	1	A	J	-	1
0010	sp	0	b	,	sp	0	b	,	b	k	s	2	B	K	S	2
0011	sp	-	s	\#	sp	0	5	\#	c	1	t	3	C	L	T	3
0100	sp	2	@	@	sp	2	@	@	d	m	u	4	D	M	U	A
0101	sp	NL	1	8	sp	5	1	8	e	n	\checkmark	5	E	N	V	5
0110	sp	6	k	\#	sp	6	k	\#	f	0	w	6	F	0	W	6
0111	sp	6	s	\#	sp	6	s	\#	g	p	x	7	G	P	X	7
1000	h	q	y	y	H	0	Y	Y	h	q	v	8	H	Q	Y	8
1001	i	r	z	9	i	r	z	9	i	r	z	9	1	R	Z	9
1010	.	\$.		¢	!	¢	:	@	\$	-	0	\%	$>$?	0
1011	.	\$,	\#		\$,	\#	.	\$,	\#	¢	!	:	\#
1100	3	7	@	@	$<$	*	\%	@	e	n	u	4	E	N	u	4
1101	1	5	1	8	1	1		,	e	n	\checkmark	5	E	N	v	5
1110	2	6	\&	\#	+	;	$>$	$=$	e	p	u	6	E	P	U	6
1111	0	4	-	9	1	7	?	"	e	n	v	5	E	N	v	5

Note: Blocked areas show normal decoded Characters using 1052 keyboard Input

Figure 1-35. EBCDIC Output with Resulting PR-KB Graphics

Note: For alphabetic characters, only the lowercase is shown. The tilt/rotate code for an uppercase alphabetic character is the same as the corresponding lowercase character.

Table Addr	Char	$\begin{gathered} \text { EBCDIC } \\ \text { Hex } \end{gathered}$	Table Addr	Char	$\begin{gathered} \text { EBCDIC } \\ \mathrm{Hex} \end{gathered}$
50B8	Space	40	D8	-	6D
B9	=	7 E	D9	J	D1
BA	<	4 C	DA	K	D2
BB	;	5 E	DB	L	D3
BC	,	7A	DC	M	04
BD	\%	6C	DD	N	D5
BE		7 D	DE	0	D6
BF	$>$	6 E	DF	P	D7
CO	*	5C	EO	0	D8
C1	1	4D	E1	R	D9
C2	1	5D	E2	\$	5B
C3	"	7F	E3	$!$	5A
C4	Space	00	E4	-	60
C5	Space	00	E5	New Line	15
C6	0	FO	E6	$\begin{array}{\|l\|} \hline \text { BKSP } \\ \text { (Not used) }) \end{array}$	16
C7	\#	7B	E7	Space	00
C8	\downarrow	4A	E8	+	4E
C9	?	6 F	E9	A	C1
CA	S	E2	EA	B	C2
CB	T	E3	EB	C	C3
CC	U	E4	EC	D	C4
CD	V	E5	ED	E	C5
CE	W	E6	EE	F	C6
CF	X	E7	EF	G	C7
D0	Y	E8	FO	H	C8
D1	Z	E9	F1	1	c9
D2	,	6B	F2	.	4B
D3	1	4F	F3	\square	5 F
D4	@	7 C	F4	\&	50
D5	LF (not used)	25	F5	$\begin{aligned} & \text { H. Tab } \\ & \text { (not used) } \end{aligned}$	05
D6	Space	00			
D7	Space	00			

Figure 1-37. PR-KB Translate Table (Keyboard Code to EBCDIC)

Figure 1-38. PR-KB Sense Byte and Unit control word -- UCW Format

1.7 CONIROI WORDS (MICRO) FIGURES 1-39 THROUGH 1-46

Set/Reset

Arithmetic/ Constant

Storage

Move/ Arithmetic

Branch Unconditional

Branch on Mask

Branch on Condition

$0 \quad 1$	23	$4 \quad 5 \quad 6$	7	8	9	10	11	12	13	14	15
$0 \quad 0$		CS-Field	3	K-L	w	2	3		gh	3	0
$0 \quad 0$		AS-Field	3			2	3			2	1
$0 \quad 1$	$\begin{aligned} & \text { RCS } \\ & \text { RAS } \\ & \text { SCS } \\ & \text { SAS } \end{aligned}$	AS-Field	$\begin{gathered} \mathrm{B} \\ \mathrm{y} \\ \mathrm{t} \\ \mathrm{e} \\ \mathrm{~S} \\ \mathrm{e} \\ \mathrm{I} \\ \mathrm{e} \\ \mathrm{c} \\ \mathrm{t} \\ 3 \end{gathered}$		ield	2	$\begin{gathered} \mathrm{M} \\ \mathrm{a} \\ \mathrm{i} \\ \mathrm{n} \\ \mathrm{~S} \\ \mathrm{t} \\ \mathrm{o} \\ \mathrm{r} \end{gathered}$	MC 0	ield 1	2	0
$0 \quad 1$	$\begin{array}{\|ll} \hline \text { CD. } & \\ \text { Fld } & \\ 0 & 1 \end{array}$	AS-Field	3		eld 1	2	3			2	1
10	$\begin{array}{ll} \text { RPO } & \\ 2 & 3 \end{array}$	456	7			2	3		5	6	0
10	Mask	AS-Field	3	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~S} \\ & \mathrm{~L} \\ & \mathrm{E} \\ & \mathrm{X} \\ & \mathrm{t} \end{aligned}$	RP1 1	2	0	RPO	6	7	1
11	BC- Fld $0 \quad 1$	AS-Field		$\begin{aligned} & \mathrm{L} \\ & \mathrm{~S} \\ & \mathrm{l} \\ & \mathrm{E} \\ & \mathrm{X} \\ & \mathrm{t} \end{aligned}$	RP1 1	2	3		5	6	T e s t

Figure 1-39. Control-Word Alignment

This section summarizes the detailed bit
definitions of external facilities.
As-decodes followed by asterisk (*) can be
tested with the Branch on Condition or
Branch on Mask words.

CPU,Mode

AS-Field		
Decode	Ext to CPU	CPU to Ext
0 COO	SWA	---
0001	SWCD	---
0010	STP 0	STP 0
0011	STP1	STP1
0100 *	DYN	SM
0101*	S	--
0110*	MMSK	---
0111*	BA	Jo
1000	JI	---
1001	XINT	JA
1010	TIM	---
1011	---	---
1100*	DR	---
1101*	---	---
1110*	MC	---
1111*	BB	MW

2311 Disk Mode

AS-Field Decode			
0000	Ext to CPU		
0001	TGRI	CPU to Ext	
0010	ERI	--	
0011	FOB	STP0	
$0100 *$	DYN	FEBO	
$0101 *$	DASI	---	
$0110 *$	MMSK	---	
$0111 *$	EA	---	
1000	CHI	---	
1001	CLI	MS	
1010	TC	---	
1011	SDI	TGRO	
$1100 *$	FGA	---	
$1101 *$	FFI	FFC	
$1110 *$	DS	FBO	
$1111 *$	FOP	FCP	

2540 Punch Mode

AS-Field Decode	Ext to CPU	CPU to Ext
0000	--	---
0001	---	---
0010	STP0	STP0
0011	STP1	STP1
0100*	DYN	---
0101*	S	---
0110*	MMS K	---
0111*	BA	---
1000	---	---
1001	---	PCCL
1010	PRT	---
1011	PRI	PRO
1100*	---	
1101*	---	PRC
1110*	PRS	---
1111*	PRD	PR

1052 (PRKB) Mode

AS-Field		
Decode	Ext to CPU	CPU to Ext
0000	---	---
0001	---	---
0010	STP0	STP0
0011	STP1	STP1
0100*	DYN	---
0101*	S	---
0110*	MMSK	---
0111*	BA	---
1000	---	---
1001	---	---
1010	TI	---
1011	TR	---
1100*	---	---
1101*	TD	---
1110*	TT	---
1111*	TU	TE

Storage Protect 1, Manual Only (STP1) MDM 4-41

```
0 0 1 1
\begin{tabular}{llll}
0 & STP1 & kit & 0 \\
1 & STP1 & bit & 1 \\
2 & STP1 kit & 2 \\
3 & STP1 & bit & 3 \\
4 & STP1 & kit & 4 \\
5 & STP1 & bit & 5 \\
6 & STP1 & bit & 6 \\
7 & STP1 & kit & 7
\end{tabular}
```

Dynami c Condition Register (DYN) MLM 4-40

```
0100* 0 z=0 (DC Bit 0)
    1 Storage wrap latch
    2 OVFL (overflow) (DC Bit 2)
    3 Adder carry (DC Bit 3)
    4 Not hold in (Dir Ctl feat)
    5 Check disable switch
    6 DYN Reg bit 6 (Hz=0) (DC Bit 6)
    7 DYN Reg bit 7 (LZ=0) (DC Bit 7)
```

Status Register (S)
MDM 4-16

```
0101* 0 S0 True/Compl latch
    1 S1 z=nonzero (all arith ops)
    2 S2 Z=nonzero (log, dec. & binary
        ops)
    3 S3 ALU 0-kit carry
    4 s4 Invalid decimal digit
    5 S5 (general purpose)
    6 S6 Not execute (MDM 4-40)
    7 S7 Not exceptional condition (MDM
        4-40)
```

MMSK Register, Bits 0-7 (MMSK)
MDM 4-15
0110* 0 MMSK 0 Channel high trap
1 MMSK1 2311 disk control trap
2 MMSK 2 Channe 1 low trap
3 MNSK3 2540 reader trap
MMSK 42540 punch trap
5 MMSK5 Comm chnl bit service
6 MMSK 6 Comm chl char service
7 MMSK7 Level 1 priority hcld
Branch Conditicns (BA)
NDM 4-40

0111* 0 Chnl 0 interruption latch
1 Mode bit 0
2 Mode kit 1
3 Mode bit 2
4 IPI latch
5 LS zone bit 0
6 IS zone lit 1
7 LS zone bit 2

```
Direct Control In (JI) **
NDM 4-41
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{1000} & 0 & Dir & In & n bit \\
\hline & 1 & Dir & In & n bit \\
\hline & 2 & Dir & In & n bit \\
\hline & 3 & Dir & In & n bit \\
\hline & 4 & Dir & In & n bit \\
\hline & 5 & Dir & In & n bit \\
\hline & 6 & Dir & In & n bit \\
\hline & 7 & Dir & In & n bit \\
\hline
\end{tabular}
```

External Interruption (XINT) or Dir Ctl **
MDM 4-41

Timer Count (TIM) **
MDM 4-41
101000
10
30
Timer count bit 4
Timer count bit 5 Timer count bit 6 Timer count bit 7

1011 Unassigned

Diagnostic Register (DR)
MDM 4-13
1100* 0 Disakle stop on error
Force all A-Reg ALU entries on Force stor-data parity bits on
Block actual, gen. pseudo I/O
trap requests
40
5 Force external entry to $A / B-$ Regs
6 PSW Restart Latch
7 Turn on diag-branch latch
1011* Unassigned

Error Register (MC) MDM 4-10

1110* 0 File control check Storage address check Control word parity latch Storage data parity latch ALU error latch A-Reg parity latch B-Reg parity latch

Soft-Stop Branch Conditions (BB)
MDM 4-40

```
1111* 0 Not soft stop
    1 Integrated I/O request
    Not chnl 0 Int (rasked)
    Not Ext Int (masked)
    Set IC latch
    Instruction step latch
    Not chnl 1 Int (masked)
    Not comm chnl Int (masked)
```

* These eight fields tested with Branch on
Condition or Branch on Mask control
wor ds.
** The active level is minus.
External Field Definitions, CPU Mode (CFU
to EXT)
0000 Unassigned
0001 Unassigned
Stcrage Protect 0 (STP0)
MDM 4-41

Storage Protect 1 (STP1)
MLM 4-41
00110 STP1 bit 0
1 STP1 bit 1
STP 1 bit 2
STP1 bit 3
STP1 kit 4
STP1 bit 5
STP1 bit 6
STP1 bit 7

System Mask (SM)
MDM 4-50
01000 Chnl 0 mask
1 Chnl 1 mask Chnl 2 mask
Ignored
4 Ignored
5 Igncred
6 Ignored
7 Ext Int mask
0101 Unassigned
0110 Unassigned

```
Direct Control -1 (JO)
```

MDM 4-92

```
0 1 1 1 ~ 0 ~ D i r ~ B u s ~ O u t ~ b i t ~ 0
    1 Dir Bus Out bit 1
    2 Dir Bus Out bit 2
    3 Dir Bus Out bit 3
    4 \text { Dir Bus Out bit } 4
    5 Dir Bus Out bit 5
    6 Dir Bus Out bit 6
    7 \text { Dir Bus Out bit } 7
```

1000 Unassigned
Direct Control - 2 , Timing (JA)
MDM 4-92

```
1001 0 0
    1 0
    2 Sig Out bit 2
    3 Sig Out bit 3
    4 ~ S i g ~ O u t ~ b i t ~ 4 ~
    5 Sig Out bit 5
    6 Sig Out bit 6
    7 \text { Sig Out bit } 7
1010 Unassigned
1 0 1 1 ~ U n a s s i g n e d ~
1100 Unassigned
1101 Unassigned
1110 Unassigned
MW Bits (2) of AMWP Bits (MW)
MDM 4-50
1111 0}
    1 0
    2 0
    30
    4 0
    5 Machine check mask
    6 Wait state latch
    7 0
```

External Field Definitions, 2311 Disk Mode
(EXT to CPU)
Tag Register In (TGRI)
MDM 4-46
00000 Set difference
1 Set Cylinder
2 Set head
3 Control
4 Not 2311 trap latch
5 Machine check
6 Storage protect check
7 Storage wrap check

File Bus In (FBI) MDM 4-46

```
0001 0 Cyl addrs }12
    1 Cyl addrs }6
    2 Cyl addrs }3
    Cyl addrs }1
    Cyl addrs }
    5 Cyl addrs 4
    Cyl addrs 2
    Cyl addrs 1
```

2311 Storage Protect Key (STPO)
MDM 4-41

0010	0	STP 0	bit 3	(FQ 0)
	1	STP0	bit 1	(FQ1)
	2	STP0	bit 2	(FQ 2$)$
	3	STP0	bit 3	(FQ3)
	4	STP0	bit 4	(Q4)
	5	STP0	bit 5	(25)
	6	STP0	bit 6	(c6)
	7	STP 0	bit 7	(Q7)

File Out Bus (FCB) - Diagnostic

```
    Ccntrol Cyl Ha/Dir Difference
0 0 1 1
```



```
Note: Eit 2 can also be Clock
Thrcugh K and D.
Dynamic Condition Register (DYN)
M:DM 4-40
0100* 0 z=0
    1 Storage wrap latch
    2 OVFL (overflow)
    A Adder carry
    4 Not hold in (Dir Ctl feat)
    5 Check disable switch
    6 DYN Reg kit 6 (HZ=0)
    7 DYN Reg bit 7 (IZ=0)
Disk Attachment Status In (DASI)
MDM 4-46
0101 0 Compare home address
    1 Skip
    2 Selected or any gated attention
    3 Erase gate
    4 \text { Unusual condition}
    5 Status modifier not short search
    6 Control unit end
    7 Control unit busy
```

Set Set

MMSK Register. Bits 0-7 (MMSK)
NDM 4-15
0110* 0 MMSK0 Channel high trap
MMSK1 2311 disk control trap
MMSK 2 Channel low trap
MMSK3 2540 reader trap
MMSK 42540 punch trap
MMSK5 Comm chnl bit service
MMSK6 Comm chnl char service
MMSK7 Level 1 friority hold
Branch Conditions (BA)
NDM 4-40

```
0111* 0 Chnl 0 interruption latch
    Mode bit 0
    Mode bit 1
    Mode bit 2
    IPL latch
    IS zone rit 0
    L LS zone bit 1
    IS zone bit 2
```

Counter 1 High in (CHI) - Diagnostic MDM 4-46

```
1000 0 Counter position 32,768
    Counter position 16,384
    counter position 8,192
    Counter position 4,096
    Counter position 2,048
    Counter positicn 1,024
    Counter position }51
    7 counter position }25
```

Counter 1 Low In (CLI) - Diagnostic
MDM 4-46
10010 Counter position 128
1 Counter position 64
Counter position 32
Counter position 16
Counter position 8
counter position 4
Counter position 2
7 counter position 1
Terminating Conditions (TC)
MDM 4-46
10100 Data check in count **
Track overrun **
No record found **
Missing address rark **
Data check **
Overrun **
Track condition **
0

Serializer/Deserializer In (SDI) - Diag.
MDM 4-46

1011	0	Read buffer position 128
1	Read buffer position 64	
2	Read buffer position 32	
3	Read buffer position 16	
4	Read kuffer position 8	
5	Read buffer position 4	
6	Read vuffer Fosition 2	
7	Read buffer Eosition 1	

Disk Status (DS) -- This register is
multiplexed for diagnostic uses (MDM 4-345).

Nondiagnostic
1110* 0 Ready **
On line **
2 Unsafe **
30
4 Trap gate latch **
5 End of cylinder **
6 Low compare
7 Seek incomplete **

	Diag Addr 0	
0	Write kuffer	128
1	Write kuffer	64
2	Write buffer	32
3	Write buffer	16
4	Write kuffer	8
5	Write buffer	4
6	Write kuffer	2
7	Write buffer	1

Diag Addr 1
0 Test unit exception
1 Read Op
2 Erase Op
3 Scan Op
4 Space count OF
5 Home address op
6 Home address or RO Op
7 Count Op

Diag Addr 2
Key Op
Data Op
ROOp
Count, key, or data Op
Count or key Op
Write check OF
Standard index
Bit ring inhibit

Diag Addr 3
CYC code position 1
CYC code position 16
CYC code position 17
cYC code error latch
Unequal compare
Bit ring 7
Write clock bit
Write data bit

Diag Addr 4
0 Zone A
1 Zone B
Zone 1
Zone 2
Zcne 3
Zone 4
HA field
Count field

Diag Addx 5
Key field
Data field
Flag kit 0
Flag bit 6
Flag bit 7
counter decode 0
counter decode 1
Counter decode 2

Diag Addr 6
Counter decode 3
Counter decode 4
counter decode 5
counter decode 6
Counter decode 7
Counter decode 8
Counter decode 9
count $=000$

External Field Definitions. 2540 Punch Mode (EXT to CPU)

0000 Unassigned
0001 Unassigned

Storage Protect 0 (STP0)
MDM 4-41

```
0010 0 STPO bit 0 (Q0)
    1 &TP0 bit 1 (Q1)
    2 STPO bit 2 (Q2)
    3 STPO bit 3 (Q3)
    4 STPO bit 4 (@4)
    5 STPO bit 5 (Q 5)
    6 STPO bit 6 (C6)
    7 STP0 bit 7 (Q7)
```

Storage Protect 1 (STP1)
MDM 4-41
00110 STP1 bit 0
1 STP1 bit 1
2 STP1 bit 2
3 STP1 bit 3
4 STP 1 bit 4
5 STP1 bit 5
6 STP1 bit 6
7 STP1 bit 7
Dynamic condition Register (DYN)
MDM 4-40
0100* $0 \quad \mathrm{X}=0$
1 Storage wrap latch
2 OVFL (overflow)
3 Adder carry
4 Not hold in (Dir Ctl feat)
5 Check disable switch
6 DYN Reg Lit 6 ($\mathrm{HZQ}=0$)
7 dyn Reg bit 7 ($\mathrm{I} z=0$)
Status Register (S)
MDM 4-16
0101* 0 so True/Compl latch
1 S1 Z=ncnzero (all arith ops)
2 s2 z=nonzero (log, dec. E bin ops)
3 S3 ALU 0-bit carry
4 S4 Invalid decimal digit
5 s5 (general purpose)
6 S6 Not execute
7 S7 Not exceptional condition

MMSK Register, Bits 0-7 (MMSK)
MDM 4-15
0110* 0 MMSKO Channel high trap MMSK1 2311 disk control trap MMSK2 Channel low trap
MMSK3 2540 reader trap MMSK 42540 punch trap
MMSK5 Comm chnl bit service MMSK 6 Comm chnl char service MMSK7 Level 1 priority hold

Branch Conditions (BA)
MDM 4-40
0111* 0 Chnl 0 interruption latch Mode bit 0
Mode bit 1
Mode bit 2
IPL latch
LS zone kit 0
6 LS zone bit 1
7 LS zone kit 2

Diagnostic R/P Conditions 1 (RPD1) MDM 4-43
$10000 \mathrm{R} / \mathrm{P}$ tens AR A
R / P tens $A R B$
R/P tens AR C
R/P tens AR D R/P tens AR E Punch address check Punch overrun latch Punch sync check latch

Diagnostic R/P Conditions 2 (RPD2) MDM 4-43

10010 R/P units AR A
R/P units AR B
R/P units AR C
R/P units AR D
R/P units AR E
Reader address check
Reader overrun latch Reader sync check latch

Reader/Punch Data In 2 (RP2)
MDM 4-110
10100 Col 1 RD2 punch check, data in
1 Col 2 RD2 punch check, data in

2 Col 3 RD2 punch check, data in
3 Col 4 RD2 punch check, data in
4 Col 5 RD2 punch check, data in
5 Col 6 RD2 punch check, data in
6 Col 7 RD2 punch check, data in
7 Col 8 RD2 punch check, data in

Reader/Punch Data In 1 (RP1) MDM 4-110

1011		0	Ccl 1	RD1 PFR data in	
	1	Col	2	RD1 PFR data in	
2	Col	3	RD1 PFR data in		
	3	Ccl	4	RD1 PFR data in	
	4	Col	5	RD1 PFR data in	
	5	Col	6	RD1 PFR data in	
	6	Col	7	RD1 PFR data in	
	7	Col	8	RD1 PFR data in	

1100* Unassigned

Reader Branch Conditicns (RS)
MLM 4-43
1101* 0 Not gate read complete 2540
1 Not $r d r$ intervention (rdr ready)
2 Unit exception gate reader
3 Reader check
4 Reader validity check
5 Reader device-end (hardware)
6 Reader status request
7 Not 1400 unit exception

Reader/Punch Branch Conditions (RPS) MDM 4-43

1110*	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Reader punch on-line 2540 rdr trap req (data avail. CSL) Nct 1400 time cut 2540 Pch Trap Req/Diag Stacker Punch brush CI Punch decode Reader select latch Punch select latch
Punch Branch Conditions (PS) MDM 4-43		
1111*		Not punch intervention (pch ready) Not 4-bit mod pull-on PFR unit exception gate Punch equipment check Punch PFR validity Punch device-end (hardware) punch status request 0
* These eight fields tested with Branch on Condition or Branch on Mask control words.		

External Field Definitions, 2540 Punch Mode (CPU to EXT)

0000	Unassigned	
0000	Unassigned	
Storage Protect 0	(STP0)	
0010	0	STP0 bit 3

Storage Protect 1 (STP1)
00110 STP1 bit 0 STP1 kit 1 STP1 bit 2 STP1 bit 3 STP1 bit 4 STP1 bit 5 STP1 bit 6 STP1 bit 7

0100 Unassigned

0101 Unassigned
0110 Unassigned
0111 Unassigned
1000 Unassigned
1001 Unassigned
1010 Unassigned
1011 Unassigned
1100 Unassigned
1101 Unassigned
1110 Unassigned

Punch Data Out (PO)
11110 Pch data cols 1. 9, 17, etc.


```
Sense/Status Conditions (PRS)
MDM 4-44
1110* 0 Device-end
    1 Print ready
    2 Channel 9
    Channel }1
    Initial ready
    Hammer check
    Parity check
    Print request
1403. Diaqnostic Conditions (PRD) 1
MDM 4-202
1111* Diagnostic Decode 1
    O PCC TR 128
    1 PCC TR }6
    2 PCC TR }3
    3 PCC TR 16
    PCC TR }
    PCC TR 4
    PCC TR 2
    PCC TR 1
    Diagnostic Decode 2
        Print Control
        Print Scan 0101 Unassigned
        PSS Gate
        Home Gate
        SS3 TR
        Print Compare
        Last Scan
        Sync Check Latch
1000 Unassigned
Print Character Counter Length (PCCL)
1001 0 spare
    Space Drive
    Skip Drive
    Carriage settling
    Carriage Brush Reg 8
    Carriage Brush Reg 4
    Carriage Brush Reg 2
    Carriage Brush Reg 1
Diagnostic Decode 4
0 PLC
    pIB C1
    PLB C2
    PIB C3
    MCS Mode
    Addr Hd Off
    E1 Emitter
    7 Channel }1\mathrm{ Latch
* These eight fields tested with Branch on
    Condition or Branch on Nask control
    words.
External Field Definitions. }1403\mathrm{ Mode (CPU
tc EXT)
0 0 0 0 \text { Unassigned}
0001 Unassigned
```

Storage Protect 0 (STPO)

0010	0	STP0	bit 0	(Q0)
	1	STP 0	bit 1	(Q1)
	2	STP0	bit 2	(Q2)
	3	STP 0	bit 3	(Q3)
	4	STP0	bit 4	(Q4)
	5	STP 0	kit 5	(Q5)
	6	STP0	bit 6	(Q6)
	7	STP0	kit 7	(Q7)

Storage Protect 1 (STP1)
00110 STP1 bit 0
1 STP1 bit 1
2 STP1 kit 2
3 STP1 bit 3
4 STP1 kit 4
5 STP1 bit 5
6 STP1 bit 6
7 STP1 bit 7

0100 Unassigned

0101 Unassigned
0110 Unassigned
0111 Unassigned
1000 Unassigned

Print Character Counter Length (PCCL)
10010 spare
1 Spare
PCCL 120
3 PCCL 80
4 PCCL 60
5 PCCL 48
6 PCCL 40
7 PCCL 16
Note: If 00,40 , or 80 is specified by the PCCI=AS Move/Arithmetic word, a graphic-set length of 240 is set. A count of 48 applies to all printers without MCS.

1010 Unassigned

1403 PLB Data Out (PRO)
10110 PLB data out 128
1 PLB data out 64
2 PLB data out 32
3 PLB data out 16
4 PLB data out 8
5 PLB data out 4
6 PLB data out 2
7 PLB data out 1
1100 Unassigned

1110 Unassigned

1403 PLBAR Data Out (PR)

1111 | | 0 | PLB AR data out 128 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | PLB AR data out 64 | |
| 2 | PIB AR data out 32 | |
| 3 | PLB AR data out 16 | |
| | 4 | PLB AR data out 8 |
| 5 | PLB AR data out 4 | |
| 6 | PLB AR data out 2 | |
| | 7 | PLB AR data out 1 |

External Field Definitions, Console Printer-Keyboard Mode (EXT to CPO)

Storage Protect 1 (STP1)

```
MDM 4-41
```

0011	0	STP1 bit	0	
	1	STP1 bit	1	
2	STP1 bit	2		
3	STP1 bit	3		
	4	STP1 bit	4	
	5	STP1 bit	5	
	6	STP1 bit	6	
	7	STP1 bit	7	

```
Dynamic Condition Register (DYN)
NDM 4-40
0100* 0 z=0
    1 Storage wrap latch
    2 CVFL (overf low)
    Adder carry
    Not hold in (Dir ctl Feat)
    Check disable switch
    DYN Reg bit 6 (HZ=0)
    DYN Reg kit }7\mathrm{ (LZ=0)
```

Status Register (S)
MDM 4-16
MMSK Register, Bits 0-7 (MMSK)
MDM 4-15

0110* $0 \quad$ NMSK0 Channel high trap \quad 1 | NMSK1 2311 disk control trap |
| :--- |
| 2 | MMSK2 Channel low trap

Branch Conditions (BA)
MDM 4-40
0111* 0 Chnl 0 interruption latch
1 Mode bit 0
2 Mode bit 1
3 Mode bit 2
4 IPL latch
5 LS zone 0
$\begin{array}{lll}6 & \text { LS zone } 1 \\ 7 & \text { LS zone } 2\end{array}$
6 LS zone 1
7
1000 Unassigned
1001 Unassigned
1052 Data In (TI)
MDM 4-73
$\begin{array}{rrl}1010 & 0 & \text { Uppercase store latch (bits } 0-1) \\ 1 & \text { Uppercase store latch (bits } 0-1 \text {) }\end{array}$
$\begin{array}{rrl}1010 & 0 & \text { Uppercase store latch (bits } 0-1) \\ 1 & \text { Uppercase store latch (bits } 0-1 \text {) }\end{array}$
2 KB bit B
3 KB bit A
4 KB bit 8
5 KB bit 4
6 KB bit 2
7 KB bit 1
P KB bit C

```
0101* 0 S0 True/compl latch
```

0101* 0 S0 True/compl latch
1 S1 Z=nonzero (all arith ops)
1 S1 Z=nonzero (all arith ops)
2 S2 Z=nonzero (log, dec, \& bin ops)
2 S2 Z=nonzero (log, dec, \& bin ops)
3 S3 ALU 0-bit carry
3 S3 ALU 0-bit carry
4 S4 Invalid decimal digit
4 S4 Invalid decimal digit
5 S5 (general purfose)
5 S5 (general purfose)
6 S6 Not execute
6 S6 Not execute
7 s7 Not exceptional condition

```
    7 \text { s7 Not exceptional condition}
```

```
1052 Tilt/Rotate Register (TR)
MDM 4-74
```

```
1011 0 Tilt bit 1
```

1011 0 Tilt bit 1
Tilt bit 2
Tilt bit 2
Rotate bit 5
Rotate bit 5
Rotate bit 2A
Rotate bit 2A
Rotate bit 2
Rotate bit 2
Rotate bit 1
Rotate bit 1
Cppercase character
Cppercase character
Function cycle
Function cycle
1100* Unassigned
PRKB Diagnostic Branch Conditions (TD)
MDM 4-75
1101* 0 0
1 0
2 Read/write share latch
3 New line latch
4 Key switch (On), CE mode
5 Shift cycle latch
6 Lowercase decode
7 Uppercase decode
PRKB Branch Conditions (TT)
MDM 4-71
1110* 0 Attn Request key
Not-ready to ready
Intervention required
Alter/display
Keyboard check
Alternate coding key
PRKB request
Logout latch
PRKB Branch Conditions (TU)
MDM 4-71
1111* 0 Read latch
1 Write latch
Nicroforce (Int Stkd)
Alter/display active
Cycle interlock latch
Data ready latch
Initialize printer
Printer kusy

* These eight fields tested with Eranch on
condition or Branch on Mask control
words.
External Field Definitions, Console
Printer-Keykoard Mode (CPU TO EXT)
0C00 Unassigned
0 0 0 1 ~ U n a s s i g n e d ~
Storage Protect 0 (STP 0)
0010 0 STPO kit 0 (Q0)
STP0 bit 1 (Q1)
2 STPO bit 2 (Q2)
3 STP0 bit 3 (Q3)
4 STP0 bit 4 (Q4)
5 STPO bit 5 (Q5)
STP0 bit 6 (Q6)
7 STP0 bit 7 (Q7)
Storage Protect 1 (STP1)
0 0 1 1 ~ 0 ~ S T P 1 ~ b i t ~ 0 ~
1 STP1 bit 1
2 STP1 bit 2
3 STP1 kit 3
4 STP1 bit 4
5 ~ S T P 1 ~ b i t ~ 5 ~
6 STP1 bit 6
7 STP1 bit 7
0 1 0 0 ~ U n a s s i g n e d ~
0101 Unassigned
0110 Unassigned
0111 Unassigned
1000 Unassigned
1001 Unassigned
1010 Unassigned
1011 Unassigned
1100 Unassigned
1101 Unassigned
1110 Unassigned
PRKB Data Out (TE)
1111 0 TE bit 0
1 TE bit 1
2 TE bit 2
3 TE bit 3
4 TE bit 4
5 TE bit 5
6 TE bit 6
7E rit 7
External Field Definiticns, Communication
Mode (EXT TO CPU)
0000 Unassigned
0001 Unassigned

```

Storage Protect 0 (STP0) MDM 4-90
```

0010 0 STPO bit 0 (HQ0)
STPO bit 1 (HQ1)
STPO bit 2 (HQ2)
STPO bit 3 (HC3)
STP0 bit 4 (Q4)
STP0 bit 5 (Q5)
STP0 bit 6 (Q6)
STP0 bit 7 (Q7)

```
Storage 1 (STP1)
MDM 4-41
Dynamic Condition Register (DYN)
MDM 4-40
Status Register (S)
MDM 4-16
```

0101* 0 S0 True/compl latch
S1 Z=nonzero (all arith ces)
S3 ALU 0-bit carry
s4 Invalid decimal digit
S5 (general purpose)
s6 Not execute
S7 Not exceptional condition
2 S2 z=nonzero (log, dec, \& bin ops)

```

MMSK Register, Bits 0-7 (MMSK)
MDM 4-15
0110* 0 NMSKO Channel high trap
    1 MMSK1 2311 disk control trap
    nMSK2 Channel low trap
    3 MMSK 32540 reader trap
    NMSK4 2540 punch trap
    5 NMSK5 Comm chnl bit serv
    6 MMSK6 Comm chnl char serv
    6 MMSK 6 Comm chnl char serv
7 MMSK 7 level 1 priority hold
```

0100* 0 2=0
1 Storage wrap latch
CVFI (overflow)
Adder carry
Not hold in (Dir Ctl Feat)
Check disable switch
DYN reg bit 6 (HZ=0)
DYN reg bit 6 (HZ=0)

```
Branch Conditions (BA)
MDM 4-40
0111* 0. Chnl 0 interruption latch
    1 Mode bit 0
    2 Mode bit 1
    3 Mode bit 2
    4 IPL latch
    5 LS zone kit 0
    6 LS zone bit 1
    7 LS zone bit 2
1000 Unassigned
1001 Unassigned
Data In (DAIN)
MDM 4-47
10100 Sync data in bit 0
    1 Sync data in bit 1
    2 Sync data in bit 2
    3 sync data in bit 3
    4 Sync data in bit 4
    5 Sync data in bit 5
    6 Sync data in bit 6
```

0 0 1 1 ~ 0 ~ S T P 1 ~ b i t ~ 0 ~

```
0 0 1 1 ~ 0 ~ S T P 1 ~ b i t ~ 0 ~
    STP1 bit 1
    STP1 bit 1
    STP1 bit 2
    STP1 bit 2
    STP1 bit 3
    STP1 bit 3
    STP1 bit 4
    STP1 bit 4
    STP1 bit 5
    STP1 bit 5
    STP1 bit 6
    STP1 bit 6
    STP1 bit }
```

 STP1 bit }
    ```
0010 \begin{tabular}{lllll}
0 & 0 & STP0 bit 0 & \((\mathrm{HQO})\) \\
& 1 & STP0 bit 1 & \((\mathrm{HQ1)}\) \\
& 2 & STP0 bit 2 & \((\mathrm{HQ2)}\) \\
3 & STPO bit 3 & \((\mathrm{HQ3})\) \\
& 4 & STP0 bit 4 & \((Q 4)\) \\
& 5 & STP0 bit 5 & \((Q 5)\) \\
& 6 & STP0 bit & 6 & \((Q 6)\) \\
& 7 & STP0 bit 7 & \((\mathrm{Q} 7)\)
\end{tabular}
    7 Sync data in bit 7
Line Address In (LAIN)
MDM 4-47
10110 Comm line address in bit 0
    \(\begin{array}{ll}1 & \text { Comm line address in bit } 1 \\ 2 & \text { Comm line address in bit } 2\end{array}\)
    1 Comm line address in bit 1
    2 Comm line address in bit 2
        3 Comm line address in bit 3
4
5
    50
    \(\begin{array}{ll}5 & 0 \\ 6 & 0\end{array}\)
    \(\begin{array}{ll}6 & 0 \\ 7 & 0\end{array}\)
NDM 4-47
Sync Start/Stop
1100* 0 IA Enable latch LA Enable latch
    1 Sync clock Ind.
    2 Even/odd parity Even/odd parity
    3 Leased/switched L'S'D/SW'D NETWORK
    4 Interface A/B Bit overflow
    5 Test Mode latch Recv bit buffer
    6 Iransmit latch
    7 Req to send lat
\begin{tabular}{ll} 
0110* 0 & NMSKO Channel high trap \\
1 & MMSK1 2311 disk control trap \\
2 & NMSK2 Channel low trap \\
3 & MMSK 32540 reader trap \\
4 & NMSK4 2540 punch trap \\
5 & NMSK5 Comm chnl bit Serv \\
6 & MMSK 6 Comm Chnl char serv \\
7 & MMSK 7 level 1 priority hold
\end{tabular}
```

Line Adapter Status (LASTAT)
MDM 4-47

```
```

Sync Start/Stor

```
Sync Start/Stor
1101* 0}\mathrm{ Clr to send off Clear to send off
1101* 0}\mathrm{ Clr to send off Clear to send off
    1 Data set rdy on Data set ready on
    1 Data set rdy on Data set ready on
    2 Sync Char trap TC type II/I
    2 Sync Char trap TC type II/I
    3 Char overflow Type TTY/IEM
    3 Char overflow Type TTY/IEM
    4 Char phase Transmit latch
    4 Char phase Transmit latch
    5 1-sec timeout Transmit line
    5 1-sec timeout Transmit line
        trap trigger (mrk/sp)
        trap trigger (mrk/sp)
    6 3-sec timeout Line quiet; recv
    6 3-sec timeout Line quiet; recv
        trap line (mark/space)
        trap line (mark/space)
    7 Sync chain trap Telegr line adptr
```

 7 Sync chain trap Telegr line adptr
    ```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Dial In (DIUIN) MDM 4-47} \\
\hline \multirow[t]{8}{*}{1110*} & 0 & Not Pwr Indicator on (PWI) \\
\hline & 1 & Not Atandon Call and Retry (ACR) \\
\hline & 2 & Not Present Next Digit (PND) \\
\hline & 3 & Not Digit Present (DPR) \\
\hline & 4 & Not Call Reqst (CRQ) ; or Nct Di NBRB (if DPR on) \\
\hline & 5 & Not Dial NBR 4 (diag) \\
\hline & 6 & Not Diag NBR2 (diag) \\
\hline & 7 & Valid address; dial NBR1 (if DP on) \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{General Status (GSTAT)}} \\
\hline & & MDM 4-47 \\
\hline \multirow[t]{8}{*}{1111*} & 0 & Sync trap \\
\hline & 1 & Start/stop chain trap \\
\hline & 2 & Start/stop Data set ready trap \\
\hline & 3 & Dial trap \\
\hline & 4 & Start/stop char trap \\
\hline & 5 & Timecut update trap \\
\hline & 7 & \\
\hline & 7 & Timeout remerker \\
\hline
\end{tabular}
* These eight fields tested with Branch on Condition or Branch on Mask control words.

External Field Definitions, Communication Mode (CPU TO EXT)
```

0C00 Unassigned

```
0001 Unassigned
Storage Protect 0 (STP0)
```

0010 0 STP0 kit 0 (\&O)
STP0 kit 1 (Q1)
STPO bit 2 (Q2)
STP0 rit 3 (Q3)
STPO bit 4 (c4)
STPO kit 5 (¢5)
STP0 bit 6 (Q6)
7 STPO kit 7 (Q7)

```

Storage Protect 1 (STP1)
```

0011 0 STP1 bit 0 (Q0)
STP1 bit 1 (Q1)
STP1 bit 2 (Q2)
STP1 bit 3 (Q3)
STP1 bit 4 (Q4)
STP1 bit 5 (Q5)
STP1 bit 6 (Q6)
STP1 kit 7 (Q7)

```

0100 Unassigned

Communications Adptr Diag Register (CADR)
```

0101 0 Bit trap check
General trap
First pricrity-check trap
4
4
5
6
7
0110 Unassigned
Communications Parity Check (PARCK)
0 1 1 1 ~ 0 ~ D a t a ~ k i t ~ 0 ~
Data bit 1
Data kit 2
Data kit 3
Data bit 4
Data kit 5
Data bit }
7 Data bit 7
1000 Unassigned
Line Adapter Diag Register (LADR)
Sync Start/Stop
1001 0 Sync Diag ctls Adpt Grp Test Ocs
Gate A-Reg DAIN Adct Grp Test Ocs
Gate B-Reg DAIN
Gate TRCR to DAIN
Gate Diag Stat-DAIN
Recv data mark diag
Select diag clcck
7 Diag clock
1010 Unassigned
Data Out (DAOUT)
10110 Lata out bit 0 (sync)
Data out bit 1 (sync)
Data out bit 2 (sync)
Data out bit }3\mathrm{ (sync)
Data out bit 4 (sync)
Data out bit 5 (sync)
Data out bit 6 (sync)
Data out bit 7 (sync)

```
```

1100 Unassigned
Dial Out (DILOUT)
1101 0 Diag 1
1 Diag 2
2 Direct present (DPR)
Call request (CRQ)
Dial digit NBR8
Dial digit NBR4
Dial digit NBR2
Dial digit NBR1
1110 Unassigned
Line Address Out (LAOUT)
1111 0
0000 Unassigned
0001 Unassigned

```
Storage Protect 0 (STP0)
00100 STP0 bit 0 ( Q 0 )
    STP0 bit 1 (C1)
    STP0 bit 2 (Q2)
    STPO bit 3 (c3)
    STP0 bit 4 (Q4)
    STPO bit 5 (c5)
    STP0 bit 6 (c6)
    STP 0 bit 7 (Q7)
Storage Protect 1 (STP1)
0011 \begin{tabular}{rlll}
0 & STP1 bit 0 \\
& 1 & STP1 bit 1 \\
& 2 & STP1 bit & 2 \\
& 3 & STP1 bit & 3 \\
& 4 & STP1 bit & 4 \\
& 5 & STP1 bit & 5 \\
& 6 & STP1 bit & 6 \\
& 7 & STP1 bit & 7
\end{tabular}

Diagnostic R/P Conditions 1 (RPD1) MDM 4-43
```

1000 0 R/P tens AR A
1 R/P tens AR B
2 R/P tens AR C
3 R/P tens AR D
4 R/P tens AR E
5 Punch address check
6 Punch overrun latch
7 Punch sync check latch

```

Diagnostic R/P Conditions 2 (RPD2) MDM 4-43
```

1001 0 R/P units AR A
1 R/P units AR B
2 R/p units AR C
3 R/P units AR D
4 R/P units AR E
5 Reader address check
6 Reader overrun latch
7 Reader sync check latch

```
Reader/Punch Data in 2 (RP2)
MLM 4-110
10100 Col 1 RD2 punch check data in
    1 Col 2 RD2 punch check data in
    Ccl 3 RD2 punch check data in
    3 col 4 RD2 punch check data in
    4 Col 5 RD2 punch check data in
    5 Col 6 RD2 punch check data in
    6 Col 7 RD2 punch check data in
    7 Col 8 RD2 punch check data in

Reader/Punch Data In 1 (RP1)
MDM 4-110
1011 \begin{tabular}{llllll}
0 & Col & 1 & RD1 PFR dat in \\
& 1 & Col & 2 & RD1 PFR data in \\
& 2 & Col & 3 & RD1 PFR data in \\
& 3 & Col & 4 & RD1 PFR data in \\
& 4 & Co1 & 5 & RD1 PFR data in \\
& 5 & Col & 6 & RD1 PFR data in \\
& 6 & Col & 7 & RD1 PFR data in \\
& 7 & Col & 8 & RD1 PFR data in
\end{tabular}
1100* Unassigned
Reader Branch Conditions (RS)
MDM 4-43
1101* 0 Not gate read complete 2540
    1 Not reader intervention (rdr
        ready)
    2 Unit exception gate reader
    3 Reader check
    4 Reader validity check
    5 Reader device end (hardware)
    6 Reader status request
    7 Not 1400 unit exception
Reader/Punch Branch Conditions (RPS)
MDM 4-43
1110* 0 Reader punch on-line
    12540 rdr trap req (data avail.
        CSL)
    2 Not 1400 timeout
    30
    4 Punch brush CI
    5 Punch decode
    6 Reader select latch
    7 Punch select latch

Punch Branch Conditicns (PS) MDM 4-43
```

1111* 0 Not pch intervention (pch ready)
Not 4-bit mod cull-on
PFR unit exception gate
Punch equifrent check
Punch PFR validity
Punch device end (hardware)
Punch status request
0

* These eight fields tested with Branch on
Condition or Branch on Mask control
words.

```

External Field Definitions, 2540 Reader Mode (CPU TO EXI)
```

0000 Unassigned
0001 Unassigned

```

Storage Protect 0 (STP 0)
0010 \begin{tabular}{llllll}
0 & STP0 bit 0 & \((Q 0)\) \\
& 1 & STP0 bit 1 & \((Q 1)\) \\
2 & STP0 bit 2 & \((Q 2)\) \\
3 & STP0 bit 3 & \((Q 3)\) \\
& 4 & STP0 bit 4 & \((Q 4)\) \\
& 5 & STP0 bit 5 & \((Q 5)\) \\
6 & STP0 bit & 6 & \((Q 6)\) \\
& 7 & STP0 bit 7 & \((Q 7)\)
\end{tabular}

Storage Protect 1 (STP1)
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{0011} & 0 STP1 bit 0 \\
\hline & 1 STP1 bit 1 \\
\hline & 2 STP1 bit 2 \\
\hline & 3 STP1 bit 3 \\
\hline & 4 STP1 bit 4 \\
\hline & 5 STP1 bit 5 \\
\hline & 6 STP1 bit 6 \\
\hline & 7 STP1 bit 7 \\
\hline 0100 & Unassigned \\
\hline 0101 & Unassigned \\
\hline 0110 & Unassigned \\
\hline 0111 & Unassigned \\
\hline 1000 & Unassigned \\
\hline 1001 & Unassigned \\
\hline 1010 & Unassigned \\
\hline 1011 & Unassigned \\
\hline 1100 & Unassigned \\
\hline 1101 & Unassigned \\
\hline
\end{tabular}

Punch Data Out (PO)
1111 \begin{tabular}{llll} 
& 0 & PO bit & 0 \\
& 1 & PO bit & 1 \\
& 2 & PO bit & 2 \\
& 3 & PO bit & 3 \\
& 4 & PO bit & 4 \\
& 5 & PO bit & 5 \\
& 6 & PO bit & 6 \\
& 7 & PO bit & 7
\end{tabular}

External Field Definitions, Channel Mode (EXT TO CPU)

0000 Unassigned

0001 Unassigned
```

Status Register (S)
MDM 4-16
0101* 0 S0 True/compl latch
1 S1 X=nonzero (all arith ops)
2 S2 z=nonzero (log, dec, \& bin ops)
3 S3 ALU 0-bit carry
4 S4 Invalid decimal digit
5 S5 (general purpose)
6 S6 Not execute
7 S7 Not excepticnal condition
MMSK Register, Bits 0-7 (MMSK)
MDM 4-15
0110* 0 MMSKO Channel high trap
2 MMSK2 Channel low trap
3 MMSK3 2540 reader trap
4 MMSK4 }2540\mathrm{ punch trap
5 MMSK5 Comm chnl bit service
6 MMSK6 Comm chnl char service
7 MMSK7 Level }1\mathrm{ priority hold
Branch Conditions (BA)
MDM 4-40
0111* 0 Chnl 0 interruption latch
1 Mode kit 0
2 Mode bit 1
3 Mode kit 2
4 IPL latch
5 IS zone lit 0
6 LS zone kit 1
IS zone bit 2
1000 Unassigned
1001 Unassigned
1010 Unassigned
1011 Unassigned
Channel Branch Conditions (GS) MDM 4-45

```
```

1100* 0 Data chain request latch

```
1100* 0 Data chain request latch
    1 Buffered device latch
    1 Buffered device latch
    2 Burst latch
    2 Burst latch
    3 Channel parity-errcr latch
    3 Channel parity-errcr latch
    4 Initial select latch
    4 Initial select latch
    5 Channel 1 interrupt buffer latch
    5 Channel 1 interrupt buffer latch
    6 spare
    6 spare
    7 \text { Suppress control latch}
```

 7 \text { Suppress control latch}
    ```

Channel Branch Conditions (GT) MLM 4-409
```

1101* 0 Address in
Not select in
Service in
Status in
Operational in
Not request in
Channel identification latch
Channel diagnostic latch

```

St orage Protect 1 (STP1)
0011 \begin{tabular}{rlllll} 
& 0 & STP1 bit 0 & \((Q 0)\) \\
1 & STP1 bit 1 & \((Q 1)\) \\
& 2 & STP1 bit 2 & \((Q 2)\) \\
3 & STP1 bit & \((Q 3)\) \\
& 4 & STP1 bit 4 & \((Q 4)\) \\
& 5 & STP1 bit 5 & \((Q 5)\) \\
6 & STP1 bit 6 & \((Q 6)\) \\
& 7 & STP1 bit 7 & \((Q 7)\)
\end{tabular}

0100 Unassigned

0101 Unassigned

0110 Unassigned

0111 Unassigned

1000 Unassigned

1001 Unassigned

1010 Unassigned

1011 Unassigned

1100 Unassigned
1101 Unassigned
1110 Unassigned

Channel Bus Out (GB/OUT)
11110 Channel bus out kit 0 1 Channel bus out bit 1 2 Channel bus out bit 2 3 Channel bus out bit 3 Channel bus out bit 4 5 Channel bus out bit 5 Channel bus out bit 6 7 Channel bus out bit 7

External Field Definitions, 2560 Mode (EXT to CPU)

2560 External 3 (MFD3) ( 20 Mode Operation)
```

0000 0 + SEC first PCH EJSEI
1 - FCB4 to FCB5 FL
2 + SEC PRE PCH REG SEI
3 - FCB3 tc FCB6
4 + SEC read inject SEL
5 - Card PRT MAG strobe
6 + Secondary hopper SEL
7 + 100 micro SEC LW POT

```

2560 External 3 (MFD3) ( 2540 Emulator Operation)
```

0000**0 + PRI hopper empty
+ SEC hopper empty
+ Punch check light FL
Spare
+ Punch status request
+ Read check
Spare
Spare

```

\section*{2560 External 1 (MFD1)}
```

0001 0 + Feed CB6
+ Feed CB5
+ Fe\ind CB4
- Feed CB3
+ Fe\ind CB2
Spare
+ Fe\epsilond clutch select
- Motor ready

```
2560 External 4 (MFD4) ( 20 Mode Cperation)
```

0010 0 + Corn kick SC9 EXP
1 + AFT PRT SC8 EXP
2 + PRE PRT SC7 EXP
3 + PRE PCH PRI SC5 EXP
4 - Read cell }3\mathrm{ exposed
- Cell 3 dark FL
+ Input station SC1 EXP
+ Feed CB1
Storage Protect 0 (STFO) (2540 Errulator
Operaticn)

```
```

0010**0 + STP0 kit 0 (Q0)

```
0010**0 + STP0 kit 0 (Q0)
    1 + STP0 bit 1 (Q1)
    1 + STP0 bit 1 (Q1)
    2 + STFO kit 2 (C2)
    2 + STFO kit 2 (C2)
    3 + STP0 bit 3 (Q 3)
    3 + STP0 bit 3 (Q 3)
    4 + STPO kit 4 (C4)
    4 + STPO kit 4 (C4)
    5 + STP0 bit 5 (Q5)
    5 + STP0 bit 5 (Q5)
    + STP0 bit 6 (Q6)
    + STP0 bit 6 (Q6)
    + STP0 kit 7 (Q7)
```

 + STP0 kit 7 (Q7)
    ```

2560 External 2 (MFD2) (20 Mode Operation)
00110 + PRI first PCH EJ SEI
- Allow COL emitter FL
+ PRI FRE PCH REG SEI
- FCB1 to FCB2 FL
+ PRI read inject SEL
+ Read cell -4-9 EXP
+ Primary hopper SEL
+ Any punch DR

Storage Protect 1 (STP1) (2540 Emulator Operation)
```

0011**0 + STP1 bit 0
1 + STP1 bit 1
2 + STP1 bit 2
3 + STP1 bit 3 See Note 5
4 + STP1 bit 4 AAAD Routine
5 + STP1 bit 5 *E60 Listing
6 + STP1 bit 6
7 + STP1 bit 7

```
\begin{tabular}{|c|c|}
\hline 0100* & Same as in CPU Mode \\
\hline 0101* & * Same as in CPU Mode \\
\hline 0110* & Same as in CPU Mode \\
\hline 0111* & * Same as in CPU Mode \\
\hline 2560 & Read Rows 4-9 (MFR1) \\
\hline 1000 & 0 - PRE RD SEC SC2 EXP \\
\hline & 1 + 2540 RDR device end \\
\hline & 2 + Card code FL4 \\
\hline & 3 + Card code FL5 \\
\hline & 4 + Card code FL6 \\
\hline & 5 + Card code FI7 \\
\hline & 6 + Card code FL8 \\
\hline & 7 + Card ccde FI9 \\
\hline
\end{tabular}
2560 External 5 (MFD5)
10010 - Cell 1 dark FL
    1 - Cell 4 dark FL
    - Cell 5 dark FL
    3 - Punch CB1
    4 - Punch CB2
    5 - PCH INCR DR CRE
    6 + PCH push clutch SEL
    7 + Cell 8 dark FL
2560 Read Rows 12-3 (MFR2)
10100 + Diag feed check
    \(1+2540 \mathrm{PCH}\) device end
    2 + Card code FL12
    3 + Card code FI11
    4 + Card ccde FL0
    5 + Card code FI1
    6 + Card code FL2
    7 + Card code FI3
2560 External 6 (MFD6)
```

1011 0 + PRT gate SEL/TRAN RL
1 - Cell }7\mathrm{ dark FI
2 - COL emitter test FL
3 + 2560 stacker SEL REQ
4 + Corner kick MAG SEL
5 - Pass print FL
6 - Pass punch FI
7 + PRE RD PRI SC3 EXP

```

```

1010 Unassigned
2560 Print Latches 17-24 (MFPR3)
1 0 1 1 ~ 0 ~ S e t ~ p r i n t ~ l a t c h ~ 1 7 ~
1 Set print latch 18
2 Set print latch 19
3 Set print latch 20
4 Set print latch 21
5 Set print latch 22
6 Set print latch }2
Set print latch }2
1100 Unassigned
2560 Print Latches 25-32 (MFPR4)
1101 0 Set print latch 25
1 Set print latch 26
2 Set print latch }2
3 Set print latch 28
4 Set print latch }2
5 Set print latch 30
6 Set print latch 31
7 Set print latch 32

```

2560 Print Latches 17-24 (MFPR3)
1011 \begin{tabular}{llll} 
& 0 & Set print latch 17 \\
& 1 & Set print latch 18 \\
2 & Set print latch 19 \\
& 3 & Set print latch 20 \\
& 4 & Set print latch 21 \\
& 5 & Set print latch 22 \\
& 6 & Set print latch 23 \\
& 7 & Set print latch 24
\end{tabular}

1100 Unassigned

2560 Print Latches 25-32 (MFPR 4 )
11010 Set print latch 25
1 Set print latch 26
2 Set print latch 27
3 Set print latch 28
4 Set print latch 29
5 Set print latch 30
7 Set print latch 32
1110 Unassigned

\section*{1110 Unassigned}


Notes:
1. MFSS--Decode sets stacker SEL interlock latch automatically as data is loaded into stacker select registers.
2. MFPU--If punch time \(F L\) is on, data is XFERED to data BFR reg. If punch time FI is off, data is ccmpared to data BFR reg.
3. MFPR5--Sets print latches 33 thru S5 and turns on PRT REQ INIK.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EXTERNAL MNEMONIC & \multicolumn{3}{|l|}{DEFINITION} & DISPLAYABLE FACILITY & SWITCH C & SWITCH D & ACCESSED BY SET/RESET WORD ONLY \\
\hline BA & BRANCH CONDITIONS & ALL MODES & EXT TO CPU & YES & -- & 7 & \\
\hline BB & SOFT STOP BRANCH CONDITIONS & CPU MODE & EXT TO CPU & YES & CPU & F & \\
\hline BC & EXTERNAL FACILITY & ALL MODES & & -- & -- & - & YES \\
\hline CADR & COMM ADAPTER DIAGNOSTIC REG & COMM MODE & CPU TO EXT & - & -- & - & \\
\hline CCTRL & START-STOP CONTROL & COMM MODE & & -- & -- & - & YES \\
\hline CHI & COUNTER 1 HIGH IN-DIAGNOSTIC & 2311 MODE & EXT TO CPU & YES & 2311 & 8 & \\
\hline CLI & COUNTER 1 LOW IN-DIAGNOSTIC & 2311 MODE & EXT TO CPU & YES & 2311 & 9 & \\
\hline CPF & READ DIRECT ENABLE & CPU MODE & & -- & -- & - & YES \\
\hline CSFTF & START STOP/SYNC & COMM MODE & & -- & -- & - & YES \\
\hline DAIN & DATA IN & COMM MODE & EXT TO CPU & YES & COMM & A & \\
\hline DAOUT & DATA OUT & COMM MODE & CPU TO EXT & -- & -- & - & \\
\hline \[
\begin{aligned}
& \text { DASI } \\
& \text { DIAB }
\end{aligned}
\] & dISK ATTACHMENT STATUS IN DIAGNOSTIC REG & \begin{tabular}{l}
2311 MODE \\
2311 MODE
\end{tabular} & EXT TO CPU & YES & 2311 & 5 & YES \\
\hline DIAC & DIAGNOSTIC REG & 2311 MODE & & - & -- & - & YES \\
\hline DILIN & DIAL IN & COMM MODE & EXT TO CPU & YES & COMM & E & \\
\hline DILOUT & DIAL OUT & COMM MODE & CPU TO EXT & -- & -- & - & \\
\hline DR & DIAGNOSTIC REGISTER & ALL MODES & & YES & CPU & C & NOTE 1 \\
\hline DS & DISK STATUS & 2311 MODE & EXT TO CPU & YES & 23.11 & E & \\
\hline DYN & DYNAMIC CONDITION REGISTER & ALL MODES & & YES & - & 4 & \\
\hline FBI & FILE BUS IN & 2311 MODE & EXT TO CPU & YES & 2311 & 1 & \\
\hline FBO & FILE BUS OUT & 2311 MODE & CPU TO EXT & -- & -- & - & \\
\hline FEBO & FILE 1400 EMULATOR BUS OUT & 2311 MODE & CPU TO EXT & -- & -- & - & \\
\hline FFI & FILE FLAGS IN & 2311 MODE & EXT TO CPU & YES & 2311 & D & \\
\hline FFO & FILE FLAGS OUT & 2311 MODE & CPU TO EXT & -- & -- & - & \\
\hline FGA & FILE GATED ATTENTION & 2311 MODE & EXT TO CPU & YES & 2311 & C & \\
\hline FIA & FILE INFORMATION & 2311 MODE & & -- & -- & - & YES \\
\hline FIB & FILE INFORMATION & 2311 MODE & & -- & -- & - & YES \\
\hline FIC & FILE INFORMATION & 2311 MODE & & -- & -- & - & YES \\
\hline FOB & FILE OUT BUS-DIAGNOSTIC & 2311 MODE & EXT TO CPU & YES & 2311 & 3 & \\
\hline FOP & FILE OP REGISTER & 2311 MODE & & YES & 2311 & F & \\
\hline GA & CHANNEL SIGNALS & CHAN MODE & & -- & -- & - & YES \\
\hline GB & CHANNEL SIGNALS & CHAN MODE & & -- & -- & - & YES \\
\hline GB/IN & CHANNEL BUS IN & CHAN MODE & EXT TO CPU & YES & CHNL & F & \\
\hline GB/OUT & CHANNEL BUS OUT & CHAN MODE & CPU TO EXT & -- & - & - & \\
\hline GC & CHANNEL SIGNALS & CHAN MODE & & -- & -- & - & YES \\
\hline GD & CHANNEL DIAGNOSTIC REGISTER & CHAN MODE & EXT TO CPU & YES & CHNL & E & \\
\hline GS & CHANNEL BRANCH CONDITIONS & CHAN MODE & EXT TO CPU & YES & CHNL & C & \\
\hline GSTAT & GENERAL STATUS & COMM MODE & EXT TO CPU & YES & COMM & F & \\
\hline GT & CHANNEL BRANCH CONDITIONS & CHAN MODE & EXT TO CPU & YES & CHNL & D & \\
\hline JA & DIRECT CONTROL-2 TIMING & CPU MODE & CPU TO EXT & -- & -- & - & \\
\hline JI & DIRECT CONTROL IN & CPU MODE & EXT TO CPU & YES & CPU & 8 & \\
\hline JO & DIRECT CONTROL-1 & CPU MODE & CPU TO EXT & -- & -- & - & \\
\hline LACON & LINE ADAPTER CONDITIONS & COMM MODE & EXT TO CPU & YES & COMM & C & \\
\hline LADR & LINE ADAPTER DIAG REGISTER & COMM MODE & CPU TO EXT & -- & -- & - & \\
\hline LAIN & LINE ADDRESS IN & COMM MODE & EXT TO CPU & YES & COMM & B & \\
\hline LAOUT & LINE ADDRESS OUT & COMM MODE & CPU TO EXT & - & -- & - & \\
\hline LASTAT & LINE ADAPTER STATUS & COMM MODE & EXT TO CPU & YES & COMM & D & \\
\hline MC & ERROR REGISTER & CPU MODE & EXT TO CPU & YES & CPU & E & \\
\hline \begin{tabular}{l}
MMSK \\
MODE
\end{tabular} & MICROPROGRAM MASK REGISTER MODE REG (LS AND EXT ADDR & ALL MODES & & YES (0-7) & -- & 6 & \begin{tabular}{l}
NOTE 2 \\
NOTE 3
\end{tabular} \\
\hline & CTRL) & ALL MODES & & -- & -- & - & \\
\hline MS & MODULE SELECT REGISTER & 2311 MODE & CPU TO EXT & -- & -- & - & \\
\hline MW & MACH CHK. WAIT STATE LATCHES & CPU MODE & CPU TO EXT & -- & -- & - & \\
\hline P & PUNCH SIGNALS & 2540 MODE & & - & -- & - & YES \\
\hline PARCK & COMMUNICATIONS PARITY CHECK & COMM MODE & CPU TO EXT & - & -- & - & \\
\hline PCCL & PRINT CHAR COUNTER LENGTH & 1403 MODE & CPU TO EXT & -- & -- & - & \\
\hline PO & PUNCH DATA OUT (READER) & 2540 MODE & CPU TO EXT & -- & -- & - & \\
\hline PR & 1403 PLBAR DATA OUT & 1403 MODE & CPU TO EXT & - & - & - & \\
\hline PRA & PRINTER SIGNALS & 1403 MODE & & -- & -- & - & YES \\
\hline
\end{tabular}

Figure 1-47. External Mnemonics and Addressing (Part 1 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EXTERNAL MNEMONIC & \multicolumn{3}{|c|}{DEFINITION} & DISPLAYABLE FACILITY & \[
\begin{gathered}
\text { SWITCH } \\
C
\end{gathered}
\] & \[
\begin{gathered}
\text { SWITCH } \\
\text { D }
\end{gathered}
\] & ACCESSED BY SET/RESET WORD ONLY \\
\hline PRB & PRINTER SIGNALS & 1403 MODE & & -- & -- & - & YES \\
\hline PRC & 1403 CARRIAGE DATA OUT & 1403 MODE & CPU TO EXT & -- & -- & - & \\
\hline PRD & 1403 DIAGNOSTIC CONDITIONS & 1403 MODE & EXT TO CPU & YES & 1403 & F & \\
\hline PRI & 1403 PLB DATA IN & 1403 MODE & EXT TO CPU & YES & 1403 & B & \\
\hline PRO & 1403 PLB DATA OUT & 1403 MODE & CPU TO EXT & -- & - & - & \\
\hline PRS & SENSE/STATUS CONDITIONS & 1403 MODE & EXT TO CPU & YES & 1403 & E & \\
\hline PRT & PLBAR DATA IN & 1403 MODE & EXT TO CPU & YES & 1403 & A & \\
\hline PS & PUNCH BRANCH CONDITIONS & 2540 MODE & EXT TO CPU & YES & 2540 & F & \\
\hline R & READER SIGNALS & 2540 MODE & & -- & -- & - & YES \\
\hline RP & 2540 SIGNALS & 2540 MODE & & -- & -- & - & YES \\
\hline RP1 & READER/PUNCH DATA IN 1 & 2540 MODE & EXT TO CPU & YES & 2540 & B & \\
\hline RP2 & READER/PUNCH DATA IN 2 & 2540 MODE & EXT TO CPU & YES & 2540 & A & \\
\hline RPD & 2540 SIGNALS DIAG & 2540 MODE & & -- & -- & - & YES \\
\hline RPD1 & DIAGNOSTIC R/P CONDITIONS 1 & 2540 MODE & EXT TO CPU & YES & 2540 & 8 & \\
\hline RPD2 & DIAGNOSTIC R/P CONDITIONS 2 & 2540 MODE & EXT TO CPU & YES & 2540 & 9 & \\
\hline RPS & READER/PUNCH BR CONDITIONS & 2540 MODE & EXT TO CPU & YES & 2540 & E & \\
\hline RS & READER BRANCH CONDITIONS & 2540 MODE & EXT TO CPU & YES & 2540 & D & \\
\hline S & STATUS REGISTER & ALL MODES & & YES & NOT 2311 & 5 & NOTE 4 \\
\hline SDI & SERIALIZER/DESERIALIZER IN & & & & & & \\
\hline & DIAG & 2311 MODE & EXT TO CPU & YES & 2311 & B & \\
\hline SM & SYSTEM MASK & CPU MODE & CPU TO EXT & -- & -- & - & \\
\hline STPO & STORAGE PROTECT KEY & ALL MODES & & YES & NOTE 5 & NOTE 5 & \\
\hline STP1 & STORAGE PROTECT STACK & ALL MODES & (NOT 2311) & YES & NOTE 5 & NOTE 5 & \\
\hline SWAB & CONSOLE ADDRESS SWITCHES A-B & CPU MODE & EXT TO CPU & -- & - & - & \\
\hline SWCD & CONSOLE ADDRESS SWITCHES C-D & CPU MODE & EXT TO CPU & -- & -- & - & \\
\hline TA & 1052 SIGNALS & 1052 MODE & & -- & -- & - & YES \\
\hline TC & TERMINATING CONDITIONS & 2311 MODE & EXT TO CPU & YES & 2311 & A & \\
\hline TD & PRKB DIAGNOSTIC REGISTER & 1052 MODE & EXT TO CPU & YES & PRKB & D & \\
\hline TF & PRKB DATA OUT & 1052 MODE & CPU TO EXT & -- & -- & - & \\
\hline TGRI & TAG REGISTER IN & 2311 MODE & EXT TO CPU & YES & 2311 & 0 & \\
\hline TGRO & TAG REGISTER OUT & 2311 MODE & CPU TO EXT & -- & -- & - & \\
\hline TI & 1052 DATA IN & 1052 MODE & EXT TO CPU & YES & PRKB & A & \\
\hline TIM & TIMER COUNT & CPU MODE & EXT TO CPU & YES & CPU & A & \\
\hline TR & 1052 TIIT/ROTATE REGISTER & 1052 MODE & EXT TO CPU & YES & PRKB & B & \\
\hline TT & PRKB BRANCH CONDITIONS & 1052 MODE & EXT TO CPU & YES & PRKB & E & \\
\hline TU & PRKB BRANCH CONDITIONS & 1052 MODE & EXT TO CPU & YES & PRKB & F & \\
\hline XINT & EXTERNAL INTERRUPT & CPU MODE & EXT TO CPU & YES & CPU & 9 & \\
\hline
\end{tabular}

NOTE 1 THE DR REGISTER IS SET BY THE SET/RESET WORD. EXECUTION OF A BRANCH WORD OR A RETURN WORD WITH BIT-7 OF DR ON SETS THE DIAGNOSTIC BRANCH LATCH.

NOTE 2 THE MMSK REGISTER 0-9 IS SET OR RESET BY THE SET/RESET WORD. FOR OTHER WORD ACCESSES AND DISPLAY, ONLY BITS 0-7 CAN BE ADDRESSED.

NOTE 3 THE MODE REGISTER IS SET BY THE SET/RESET WORD. THE ACTUAL BIT STRUCTURE OF THE MODE REGISTER IS NOT ALWAYS WHAT IS DISPLAYED IN THE CONSOLE INDICATORS LABELED MODE/ZONE REG. THE MODE BIT DECODE IS DISPLAYED IN BITS 2, 3, 4, AND THE LS ZONE BIT DECODE IS DISPLAYED IN BITS 5, 6, AND 7. THESE COULD BE THE FORCED DECODES CAUSED BY AN MMSK BIT BEING SET.

NOTE 4 THE S-REGISTER IS SET OR RESET BY THE SET/RESET WORD. IT CAN ALSO BE ACCESSED BY A BRANCH WORD.
BITS 0-6 CAN BE DISPLAYED DIRECTLY BUT BIT 7 OF THE DISPLAY INDICATES THE STATUS OF THE S7 BRANCH CONDITION LINE. TO DISPLAY THE ACTUAL CONDITION OF THE S7 LATCH. THE BA FACILITY MUST BE DISPLAYED AND BIT 0 WILL INDICATE THE S7 LATCH STATUS.
NOTE 5 REFER TO ROUTINE AAAD IN THE MICROPROGRAM LISTINGS FOR STP DISPLAY DETAILS.

Figure 1-47. External Mnemonics and Addressing (Part 2 of 2)

\subsection*{1.9 LOCAL-STORAGE LOCATION DECODE}

Figures 1-48 through 1-53 give the local storage locations designated ky the AS- or BS-field decodes for the various operation modes specified ky the mode register or the microprogram mask (MMSK) register. The mode register is used for normal
operations. The MMSK register is used during microprogram trap routines.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
AS/BS \\
Field \\
Decode
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{o} \\
& \mathrm{~d} \\
& \mathrm{e}
\end{aligned}
\]} & \multicolumn{6}{|c|}{Zone} \\
\hline & & 0 & 1 & 4 & 5 & 6 & 7 \\
\hline \begin{tabular}{l}
0000 \\
0001 \\
0010 \\
0011 \\
0010 \\
0101 \\
0110 \\
0111
\end{tabular} & \begin{tabular}{l}
U0 \\
U1 \\
Vo \\
V1 \\
GO \\
G1 \\
DO \\
D1
\end{tabular} & CPU & ---- & Backups & Comm Chnl & & Chnl \\
\hline \[
\begin{aligned}
& 1000 \\
& 1001 \\
& 1010 \\
& 1011 \\
& 1100 \\
& 1101 \\
& 1110 \\
& 1111
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 11 \\
& \mathrm{TO} \\
& \mathrm{~T} 1 \\
& \mathrm{PO} \\
& \mathrm{P} 1 \\
& \mathrm{H} 0 \\
& \mathrm{H} 1
\end{aligned}
\] & CPU & 2311 & \begin{tabular}{l}
CPU Bal \\
CPU Bal \\
Comm. \\
Comm. \\
Lv 1 wo \\
local \\
zones \\
and
\end{tabular} & \begin{tabular}{l}
Backu \\
al Backup \\
Chnl Ba \\
Chnl Ba \\
ork area -storage 4, 5, 6 7.
\end{tabular} & ackup ackup for & \\
\hline Note: & \multicolumn{7}{|l|}{The local storage areas are defined in the associated Figures.} \\
\hline
\end{tabular}

Figure 1-48. Local-Storage zones for System/360 Operation
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Local-Storage Allocations, Zone 0} \\
\hline \begin{tabular}{l}
AS or BS \\
Field \\
Decode
\end{tabular} & \begin{tabular}{l}
LS \\
Area \\
Code
\end{tabular} & Local-Storage Area \\
\hline 0000 & U0 & First operand address, high-order byte \\
\hline 0001 & U1 & First operand address, low-order byte \\
\hline 0010 & Vo & Second operand address, high-order byte \\
\hline 0011 & V1 & Second operand address, low-order byte \\
\hline 0100 & G0 & Operation code, byte 0 \\
\hline 0101 & G1 & Operation code, byte 1 \\
\hline 0110 & D0 & Data \\
\hline 0111 & D1 & High-order 8 bits, 24-bit 2nd operand address \\
\hline 1000 & 10 & Instruction counter, high-order byte \\
\hline 1001 & 11 & Instruction counter, low-order byte \\
\hline 1010 & T0 & Working area ( 0 at start of 1 -cycles) \\
\hline 1011 & T1 & Gen Register Addr (B, X, R) \\
\hline 1100 & P0 & Condition code \\
\hline 1101 & P1 & Program mask and AMWP bits* \\
\hline 1110 & H0 & Data \\
\hline 1111 & H1 & High-order 8 bits, 24-bit instruction counter, or first operand address \\
\hline \multicolumn{3}{|l|}{Note 1: *USASCII, machine check, wait state, and problem state bits.} \\
\hline \multicolumn{3}{|l|}{Note 2: Zone 0 is also used for integrated 2540 status and chaining, and console attachment functions between execution of CPU instructions.} \\
\hline
\end{tabular}

\footnotetext{
Figure 1-49. Local-Storage Decodes when Mode Register Bits 5-7 are 000: CPU Functions
}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Local-Storage Allocations, Zone 1} \\
\hline \begin{tabular}{l}
AS or BS \\
Field \\
Decode
\end{tabular} & \begin{tabular}{l}
LS \\
Area \\
Code
\end{tabular} & Local-Storage Area \\
\hline 1000 & 10 & Integrated file attachment CCW count field, high-order byte \\
\hline 1001 & 11 & Integrated file attachment CCW count field, low-order byte \\
\hline 1010 & TO & Integrated file attachment data address, high-order byte \\
\hline 1011 & T1 & Integrated file attachment data address, low-order byte \\
\hline 1100 & P0 & Working area (Flags) \\
\hline 1101 & P1 & Working area (Command) \\
\hline 1110 & H0 & Integrated file attachment next CCW address, high-order byte \\
\hline 1111 & H1 & Integrated file attachment next CCW address, low-order byte \\
\hline
\end{tabular}

Figure 1-50. Local-Storage Decodes when
Mode Register Bits 5-7 are
\(001: 2311\) Disk Locations
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Local-Storage Allocations, Zone 4 } \\
\hline \begin{tabular}{l} 
AS or BS \\
Field \\
Decode
\end{tabular} & \begin{tabular}{l} 
LS \\
Code
\end{tabular} & \multicolumn{1}{l|}{ Local-Storage Area }
\end{tabular}

Figure 1-51. Local-Storage Decodes when Mode Register Bits 5-7 are 100: Address Backup Locations
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
AS or BS \\
Field \\
Decode
\end{tabular} & \begin{tabular}{l}
LS \\
Area \\
Code
\end{tabular} & Local-Storage Area \\
\hline 0000 & U0 & Line control word (LCW) address, high-order btye \\
\hline 0001 & U1 & Line control word (LCW) address, low-order byte \\
\hline 0010 & Vo & Character service pointer, high-order byte \\
\hline 0011 & V1 & Character service pointer, low-order byte \\
\hline 0100 & G0 & Line control word (LCW) \\
\hline 0101 & G1 & Line control word (LCW) +1 \\
\hline 0110 & D0 & Line control word (LCW) +2 \\
\hline 0111 & D1 & Line control word (LCW) +3 \\
\hline \multicolumn{3}{|l|}{The following locations are shared between zones \(4,5,6\), and 7.} \\
\hline 1000 & 10 & CPU branch and link backup, high-order byte \\
\hline 1001 & 11 & CPU branch and link backup, low-order byte \\
\hline 1010 & T0 & Comm chnl branch and link function, high-order byte \\
\hline 1011 & T1 & Comm chnl branch and link function, low-order byte \\
\hline 1100 & PO & Level-1 working area \\
\hline 1101 & P1 & Level-1 working area \\
\hline 1110 & Ho & Level-1 working area \\
\hline 1111 & H1 & Level-1 working area \\
\hline
\end{tabular}

Figure 1-52. Iocal-Storage Deccdes when Mode Register Bits 5-7 are 101: Communications Channel
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Local-Storage Allocations, Zone 6} \\
\hline \begin{tabular}{l}
AS or BS \\
Field \\
Decode
\end{tabular} & \begin{tabular}{l}
LS \\
Area \\
Code
\end{tabular} & Local-Storage Area \\
\hline 0000 & U0 & Reader image buffer address, high-order byte \\
\hline 0001 & U1 & Reader image buffer address, low-order byte \\
\hline 0010 & Vo & Punch image card-image address, high-order byte \\
\hline 0011 & V1 & Punch image card-image address, low-order byte \\
\hline 0100 & G0 & Punch trap count, high-order byte \\
\hline 0101 & G1 & Not used \\
\hline 0110 & DO & Indicators \\
\hline 0111 & D1 & Reader trap count \\
\hline \multicolumn{3}{|l|}{The following locations are shared between zones \(4,5,6\), and 7.} \\
\hline 1000 & 10 & CPU branch and link backup, high-order byte \\
\hline 1001 & 11 & CPU branch and link backup, low-order byte \\
\hline 1010 & T0 & Spare \\
\hline 1011 & T1 & Spare \\
\hline 1100 & PO & Level-1 working area \\
\hline 1101 & P1 & Level-1 working area \\
\hline 1110 & H0 & Level-1 working area \\
\hline 1111 & H1 & Level-1 working area \\
\hline
\end{tabular}

Figure 1-53. Local-Storage Decodes when Mode Register Bits 5-7 are 110: 2540 Reader Punch
1.10 CODE CCNVERSI ONS (FIGURES 1-54 THROUGH 1-60)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Hex & Card Code & Hex & Card Code \\
\hline 00 & 12-0-1-8-9 & 34 & 4-9 & 67 & 11-0-7.9 & 9 A & 12-11-2-8 & CD & 12-0-5-8-9 \\
\hline 01 & 12-1-9 & 35 & 5-9 & 68 & 11-0-8-9 & 9B & 12-11-3-8 & CE & 12-0-6-8-9 \\
\hline 02 & 12-2-9 & 36 & 6-9 & 69 & 0-1-8 & 9C & 12-11-4-8 & CF & 12-0-7-8-9 \\
\hline 03 & 12-3-9 & 37 & 7-9 & 6A & 12-11 & 9D & 12-11-5-8 & D0 & 11-0 \\
\hline 04 & 12-4-9 & 38 & 8-9 & 6B & 0-3-8 & 9E & 12-11-6-8 & D1 & 11-1 \\
\hline 05 & 12-5-9 & 39 & 1-8-9 & 6C & 0-4-8 & 9F & 12-11-7-8 & D2 & 11-2 \\
\hline 06 & 12-6-9 & 3A & 2-8-9 & 6D & 0-5-8 & A0 & 11-0.1-8 & D3 & 11-3 \\
\hline 07 & 12.7-9 & 3B & 3-8-9 & 6E & 0-6-8 & A1 & 11-0-1 & D4 & 11-4 \\
\hline 08 & 12-8-9 & 3C & 4-8-9 & 6F & 0-7-8 & A2 & 11-0-2 & D5 & 11-5 \\
\hline 09 & 12-1-8-9 & 3D & 5-8-9 & 70 & 12-11-0 & A3 & 11-0.3 & D6 & 11-6 \\
\hline OA & 12-2-8-9 & 3E & 6-8-9 & 71 & 12-11-0-1-9 & A4 & 11-0.4 & D7 & 11-7 \\
\hline OB & 12-3-8-9 & 3F & 7-8-9 & 72 & 12-11-0-2-9 & A5 & 11-0-5 & D8 & \(11-8\) \\
\hline OC & 12-4-8-9 & 40 & No Punches & 73 & 12-11-0-3-9 & A6 & 11-0-6 & D9 & 11-9 \\
\hline OD & 12-5-8-9 & 41 & 12-0-1-9 & 74 & 12-11-0-4-9 & A7 & 11-0.7 & DA & 12-11-2-8-9 \\
\hline OE & 12-6-8.9 & 42 & 12-0-2-9 & 75 & 12-11-0-5-9 & A8 & 11-0.8 & DB & 12-11-3-8-9 \\
\hline OF & 12-7-8-9 & 43 & 12-0-3-9 & 76 & 12-11-0-6-9 & A9 & 11-0-9 & DC & 12-11-4-8-9 \\
\hline 10 & 12-11-1-8-9 & 44 & 12-0-4-9 & 77 & 12-11-0-7-9 & AA & 11-0-2-8 & DD & 12-11-5-8-9 \\
\hline 11 & 11-1-9 & 45 & 12-0-5-9 & 78 & 12-11-0-8-9 & \(A B\) & 11-0-3-8 & DE & 12-11-6-8-9 \\
\hline 12 & 11-2-9 & 46 & 12-0-6-9 & 79 & 1-8 & AC & 11-0-4-8 & DF & 12-11-7-8-9 \\
\hline 13 & 11-3-9 & 47 & 12-0-7-9 & 7A & 2-8 & \(A D\) & 11-0.5-8 & E0 & 0-2-8 \\
\hline 14 & 11-4-9 & 48 & 12-0-8-9 & 7B & 3-8 & AE & 11-0-6-8 & E1 & 11-0-1-9 \\
\hline 15 & 11-5-9 & 49 & 12-1-8 & 7C & 4-8 & AF & 11-0-7-8 & E2 & 0-2 \\
\hline 16 & 11-6-9 & 4A & 12-2-8 & 7D & 5-8 & B0 & 12-11-0-1-8 & E3 & 0-3 \\
\hline 17 & 11-7-9 & 4B & 12-3-8 & 7E & 6-8 & B1 & 12-11-0-1 & E4 & 0-4 \\
\hline 18 & 11-8-9 & 4C & 12-4-8 & 7F & 7.8 & B2 & 12-11-0-2 & E5 & 0-5 \\
\hline 19 & 11-1-8-9 & 4D & 12-5-8 & 80 & 12-0-1-8 & B3 & 12-11-0-3 & E6 & 0-6 \\
\hline 1A & 11-2-8-9 & 4E & 12-6-8 & 81 & 12-0-1 & B4 & 12-11-0-4 & E7 & 0-7 \\
\hline 18 & 11-3-8-9 & 4F & 12-7-8 & 82 & 12-0-2 & B5 & 12-11-0-5 & E8 & 0-8 \\
\hline 1C & 11-4-8-9 & 50 & 12 & 83 & 12-0.3 & B6 & 12-11-0-6 & E9 & 0-9 \\
\hline 1D & 11-5-8-9 & 51 & 12-11-1-9 & 84 & 12-0-4 & B7 & 12-11-0-7 & EA & 11-0-2-8-9 \\
\hline 1E & 11-6-8-9 & 52 & 12-11-2-9 & 85 & 12-0-5 & B8 & 12-11-0.8 & EB & 11-0-3-8-9 \\
\hline 1F & 11-7-8-9 & 53 & 12-11-3-9 & 86 & 12-0-6 & B9 & 12-11-0-9 & EC & 11-0-4-8-9 \\
\hline 20 & 11-0-1-8-9 & 54 & 12-11-4-9 & 87 & 12-0.7 & BA & 12-11-0-2-8 & ED & 11-0-5-8-9 \\
\hline 21 & 0-1.9 & 55 & 12-11-5-9 & 88 & 12-0-8 & BB & 12-11-0-3-8 & EE & 11-0-6-8-9 \\
\hline 22 & 0-2-9 & 56 & 12-11-6-9 & 89 & 12-0-9 & BC & 12-11-0-4-8 & EF & 11-0-7-8-9 \\
\hline 23 & 0-3-9 & 57 & 12-11-7-9 & 8A & 12-0-2-8 & BD & 12-11-0-5-8 & F0 & 0 \\
\hline 24 & 0-4-9 & 58 & 12-11-8-9 & 8B & 12-0-3-8 & BE & 12-11-0-6-8 & F1 & 1 \\
\hline 25 & 0-5-9 & 59 & 11.1-8 & 8C & 12.0-4-8 & BF & 12-11-0-7-8 & F2 & 2 \\
\hline 26 & 0-6-9 & 5A & 11-2-8 & 8 D & 12-0-5-8 & CO & 12-0 & F3 & 3 \\
\hline 27 & 0-7-9 & 5B & 11-3-8 & 8E & 12-0-6-8 & C1 & 12-1 & F4 & 4 \\
\hline 28 & 0.8.9 & 5C & 11-4-8 & 8F & 12-0-7-8 & C2 & 12-2 & F5 & 5 \\
\hline 29 & 0-1-8-9 & 5D & 11-5.8 & 90 & 12-11-1-8 & C3 & 12.3 & F6 & 6 \\
\hline 2A & 0-2-8-9 & 5E & 11-6-8 & 91 & 12-11-1 & C4 & 12-4 & F7 & 7 \\
\hline 2B & 0-3-8-9 & 5F & 11.7-8 & 92 & 12-11-2 & C5 & 12-5 & F8 & 8 \\
\hline 2C & 0-4-8-9 & 60 & 11 & 93 & 12-11-3 & C6 & 12-6 & F9 & 9 \\
\hline 2D & 0-5-8-9 & 61 & 0.1 & 94 & 12-11-4 & C7 & 12-7 & FA & 12-11-0-2-8-9 \\
\hline 2E & 0-6-8-9 & 62 & 11-0-2-9 & 95 & 12-11-5 & C8 & 12-8 & FB & 12-11-0-3-8.9 \\
\hline 2 F & 0-7-8-9 & 63 & 11-0-3-9 & 96 & 12-11-6 & C9 & 12-9 & FC & 12-11-0-4-8-9 \\
\hline 30 & 12-11-0-1-8-9 & 64 & 11-0-4-9 & 97 & 12-11-7 & CA & 12-0-2-8-9 & FD & 12-11-0-5-8-9 \\
\hline 31 & 1.9 & 65 & 11-0-5-9 & 98 & 12-11-8 & CB & 12-0-3-8-9 & FE & 12-11-0-6-8-9 \\
\hline 32 & 2-9 & 66 & 11-0-6-9 & 99 & 12-11-9 & CC & 12-0-4-8-9 & FF & 12-11-0-7-8-9 \\
\hline 33 & 3-9 & & & & & & & & \\
\hline
\end{tabular}

Figure 1-54. Hexadecimal/Punched-Card Translate Table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{Zones and 9} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Twelve ( T ) \\
Eleven ( E ) \\
Zero (0)
\end{tabular}} & \multirow[b]{4}{*}{9} & \multirow[b]{4}{*}{9} & \multirow[b]{4}{*}{9} & \multirow[b]{4}{*}{9} & \multirow[t]{4}{*}{1
0
9} & \multirow[t]{3}{*}{t} & \multirow[b]{3}{*}{0} & T & \multirow[t]{4}{*}{\(T\)
0} & \multirow[t]{3}{*}{T} & \multirow{4}{*}{\(E\)
0} & \(\dagger\) & \multirow[t]{2}{*}{\(T\)} & \multirow{3}{*}{E} & & \multirow[b]{4}{*}{-} \\
\hline & & & & & & & & E & & & & E & & & \multirow{3}{*}{0} & \\
\hline & & & & & & & & 0 & & & & 0 & & & & \\
\hline & & & & & & 9 & 9 & 9 & & & & & & & & \\
\hline Blank & C9 & D9 & E9 & F9 & 89 & 99 & A9 & B9 & CO & 6A & DO & 70 & 50 & 60 & FO & 40 \\
\hline 1 & 01 & 11 & 21 & 31 & 41 & 51 & E1 & 71 & 81 & 91 & Al & B1 & Cl & D1 & 61 & F1 \\
\hline 2 & 02 & 12 & 22 & 32 & 42 & 52 & 62 & 72 & 82 & 92 & A2 & B2 & C2 & D2 & E2 & F2 \\
\hline 3 & 03 & 13 & 23 & 33 & 43 & 53 & 63 & 73 & 83 & 93 & A3 & B3 & C3 & D3 & E3 & F3 \\
\hline 4 & 04 & 14 & 24 & 34 & 44 & 54 & 64 & 74 & 84 & 94 & A4 & B4 & C4 & D4 & E4 & F4 \\
\hline 5 & 05 & 15 & 25 & 35 & 45 & 55 & 65 & 75 & 85 & 95 & A5 & B5 & C5 & D5 & E5 & F5 \\
\hline 6 & 06 & 16 & 26 & 36 & 46 & 56 & 66 & 76 & 86 & 96 & A6 & B6 & C6 & D6 & E6 & F6 \\
\hline 7 & 07 & 17 & 27 & 37 & 47 & 57 & 67 & 77 & 87 & 97 & A7 & B7 & C7 & D7 & E7 & F7 \\
\hline 8 & 08 & 18 & 28 & 38 & 48 & 58 & 68 & 78 & 88 & 98 & A8 & B8 & C8 & D8 & E8 & F8 \\
\hline 18 & 09 & 19 & 29 & 39 & 00 & 10 & 20 & 30 & 80 & 90 & AO & B0 & 49 & 59 & 69 & 79 \\
\hline 28 & OA & 1A & 2A & 3A & CA & DA & EA & FA & 8A & 9A & AA & BA & 4A & 5A & EO & 7A \\
\hline 38 & OB & 1B & 2B & 3B & CB & DB & EB & FB & 8B & 98 & \(A B\) & BB & 4B & 5B & 68 & 78 \\
\hline 48 & OC & 1 C & 2 C & 3 C & CC & \(D C\) & EC & FC & 8C & 9 C & \(A C\) & \(B C\) & 4 C & 5C & 6 C & 7 C \\
\hline 58 & OD & 1D & 2D & 3D & \(C D\) & DD & ED & FD & 8D & 90 & AD & BD & 4D & 5D & 6 D & 7D \\
\hline 68 & OE & IE & 2 E & 3 E & CE & DE & EE & FE & 8 E & 9 E & AE & BE & 4 E & 5E & 6E & 7E \\
\hline 78 & OF & IF & 2 F & 3 F & CF & DF & EF & FF & 8 F & 9 F & AF & BF & 4F & 5 F & 6 F & 7F \\
\hline
\end{tabular}

Note: Exceptions to sequence are underlined

Figure 1-55. New Program Card code to Hexadecimal

Extended Binary-Coded-Decimal Interchange Code (EBCDIC)


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{11} & 11 \\
\hline 00 & 01 & 10 & 11 \\
\hline\(>\) & \(<\) & \(\mp\) & 0 \\
\hline\(A\) & \(J\) & & 1 \\
\hline\(B\) & \(K\) & \(S\) & 2 \\
\hline\(C\) & \(L\) & \(T\) & 3 \\
\hline\(D\) & \(M\) & \(U\) & 4 \\
\hline\(E\) & \(N\) & \(V\) & 5 \\
\hline\(F\) & \(O\) & \(W\) & 6 \\
\hline\(G\) & \(P\) & \(X\) & 7 \\
\hline\(H\) & \(Q\) & \(Y\) & 8 \\
\hline I & \(R\) & \(Z\) & 9 \\
\hline & & & \\
\hline
\end{tabular}

Figure 1-56. EBCDIC Chart

\section*{American Standard Code for Information Interchange (ASCII) Extended to Eight Bits}


Figure 1-57. ASCII-8 Chart
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
DEF \\
CHAR
\end{tabular} & \[
\begin{aligned}
& \text { CARD } \\
& \text { CODE }
\end{aligned}
\] & BCD & CM6 & \begin{tabular}{l}
CM6 \\
WM
\end{tabular} \\
\hline Blank & & C & 40 & 00 \\
\hline . & 12-3-8 & BA8 21 & 48 & OB \\
\hline \(\square\) & 12-4-8 & BA84 & 4C & \({ }^{0} \mathrm{C}\) \\
\hline [ & 12-5-8 & BA84 1 & 4D & OD \\
\hline \(<\) & 12-6-8 & BA842 & 4E & OE \\
\hline \# & 12-7-8 & BA8421 & 4F & OF \\
\hline \& & 12 & BA & 50 & 10 \\
\hline \$ & 11-3-8 & B 821 & 5B & 1B \\
\hline * & 11-4-8 & B 84 & 5C & 1 C \\
\hline ] & 11-5-8 & B 841 & 5D & ID \\
\hline ; & 11-6-8 & B 842 & 5E & IE \\
\hline \(\Delta\) & 11-7-8 & B 8421 & 5 F & IF \\
\hline - & 11 & B & 60 & 20 \\
\hline / & 0-1 & A 1 & 61 & 21 \\
\hline , & 0-3-8 & A8 21 & 68 & 2B \\
\hline \% & 0-4-8 & A84 & 6 C & 2 C \\
\hline \(\checkmark\) & 0-5-8 & A84 1 & 6D & 2D \\
\hline \(\backslash\) & 0-6-8 & A842 & 6E & 2E \\
\hline + & 0-7-8 & A8421 & 6 F & 2F \\
\hline \% & 2-8 & A & 7A & 3A \\
\hline \# & 3-8 & 821 & 7B & 3B \\
\hline @ & 4-8 & 84 & 7 C & 3 C \\
\hline : & 5-8 & 841 & 7D & 3D \\
\hline \(>\) & 6-8 & 842 & 7E & 3E \\
\hline \(\sqrt{ }\) & 7-8 & 8421 & 7F & 3F \\
\hline ? & 12-0 & BA8 2 & C0 & 80 \\
\hline A & 12-1 & BA 1 & Cl & 81 \\
\hline B & 12-2 & BA 2 & C2 & 82 \\
\hline C & 12-3 & BA 21 & C3 & 83 \\
\hline D & 12-4 & BA 4 & C4 & 84 \\
\hline E & 12-5 & BA 41 & C5 & 85 \\
\hline F & 12-6 & BA 42 & C6 & 86 \\
\hline G & 12-7 & BA 421 & C7 & 87 \\
\hline H & 12-8 & BA8 & C8 & 88 \\
\hline 1 & 12-9 & BA8 1 & C9 & 89 \\
\hline ! & 11-0 & B 82 & DO & 90 \\
\hline J & 11-1 & B 1 & D1 & 91 \\
\hline K & 11-2 & B 2 & D2 & 92 \\
\hline L & 11-3 & B 21 & D3 & 93 \\
\hline M & 11-4 & B 4 & D4 & 94 \\
\hline N & 11-5 & B 41 & D5 & 95 \\
\hline O & 11-6 & B 42 & D6 & 96 \\
\hline P & 11-7 & B 421 & D7 & 97 \\
\hline Q & 11-8 & B 8 & D8 & 98 \\
\hline R & 11-9 & B 81 & D9 & 99 \\
\hline \# & 0-2-8 & A8 2 & EO & A0 \\
\hline S & 0-2 & A 2 & E2 & A2 \\
\hline T & 0-3 & A 21 & E3 & A3 \\
\hline U & 0-4 & A 4 & E4 & A4 \\
\hline V & 0-5 & A 41 & E5 & A5 \\
\hline W & 0-6 & A 42 & E6 & A6 \\
\hline \(X\) & 0-7 & A 421 & E7 & A7 \\
\hline Y & 0-8 & A8 & E8 & A8 \\
\hline Z & 0-9 & A8 1 & E9 & A9 \\
\hline 0 & 0 & 82 & F0 & B0 \\
\hline 1 & 1 & 1 & F1 & B1 \\
\hline 2 & 2 & 2 & F2 & B2 \\
\hline 3 & 3 & 21 & F3 & B3 \\
\hline 4 & 4 & 4 & F4 & B4 \\
\hline 5 & 5 & 41 & F5 & B5 \\
\hline 6 & 6 & 42 & F6 & B6 \\
\hline 7 & 7 & 421 & F7 & B7 \\
\hline 8 & 8 & 8 & F8 & B8 \\
\hline 9 & 9 & 81 & F9 & B9 \\
\hline
\end{tabular}

Figure 1-58. BCD-to-CM6 Conversion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Collating Sequence} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Graphics 8 Bit \(\mid\) BCD}} & \multicolumn{8}{|c|}{8 Bit Code} & \multicolumn{6}{|c|}{BCD} \\
\hline & & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & B & A & \(\varepsilon\) & 4 & 2 & 1 \\
\hline 00 & blank & blank & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 01 & . & . & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
\hline 02 & \(\leftarrow\) & X) & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0. & 1 & 1 & 1 & 1 & 0 & 0 \\
\hline 03 & 1 & L & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline 04 & + & < & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 05 & GM & GM & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 06 & \& & \& + & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
\hline 07 & 5 & 5 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
\hline 08 & * & * & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1. & 1 & 0 & 0 \\
\hline 09 & ) & \(\square\) & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
\hline 10 & ; & ; & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
\hline 11 & MC & MC & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
\hline 12 & - & - & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 13 & 1 & / & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 14 & , & , & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline 15 & \% & \% ( & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline 16 & WS & WS & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0. & 1 \\
\hline 17 & 1 & \(\backslash\) & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
\hline 18 & SM & SM & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline 19 & B & t & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 20 & " & "= & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
\hline 21 & @ & @ & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline 22 & \(\nabla\) & & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
\hline 23 & \(=\) & > & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
\hline 24 & TM & TM & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
\hline 25 & ¢ & б & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
\hline 26 & A & A & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline 27 & B & B & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline 28 & C & C & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline 29 & D & D & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\hline 30 & E & E & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
\hline 31 & F & F & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
\hline 32 & G & G & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
\hline 33 & H & H & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
\hline 34 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
\hline 35 & \% & - & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline 36 & J & \(J\) & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline 37 & K & K & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline 38 & L & L & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
\hline 39 & M & M & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline 40 & N & N & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 41 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
\hline 42 & P & P & 1 & I & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
\hline 43 & Q & Q & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\hline 44 & R & R & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline 45 & RM & RM & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 46 & 5 & S & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 47 & r & T & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline 48 & U & U & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline 49 & V & V & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 50 & w & w & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 51 & X & X & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 52 & Y & Y & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 53 & Z & Z & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
\hline 54 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 55 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 56 & 2 & 2 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 57 & 3 & 3 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline 58 & 4 & 4 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline 59 & 5 & 5 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline 60 & 6 & 6 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline 61 & 7 & 7 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 62 & 8 & 8 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 63 & 9 & 9 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}

BCD code for blank is:
bit for odd parity
and \(A\) bits for even parity
Figure 1-59. 8-Bit Code--BCD Relations (7and 9-Track Tape)
\begin{tabular}{|c|c|c|c|}
\hline CHARACTER IN STORAGE & \begin{tabular}{l}
CHARACTER \\
TO 1443
\end{tabular} & \begin{tabular}{l}
CHARACTER \\
IN STORAGE
\end{tabular} & CHARACTER TO1443 \\
\hline \＆ & \＆ & Q & Y \\
\hline － & － & 9 & 8 \\
\hline 1 & 0 & Z & 1 \\
\hline \(/\) & A（1） & 1 & R \\
\hline A & J & R & Z \\
\hline \(J\) & 1 （2） & 0 & 9 \\
\hline 2 & 1 & \＃ & \(>\) \\
\hline S & B & ？ & \(<\) \\
\hline B & K & ！ & \＃ \\
\hline K & S & \＃ & ： \\
\hline 3 & 2 & ， & ． \\
\hline T & C & － & \＄ \\
\hline C & L & \＄ & ， \\
\hline L & T & ＠ & \＃ \\
\hline 4 & 3 & \％ & \(\stackrel{-}{-}\) \\
\hline U & D & ロ & ＊ \\
\hline D & M & ＊ & \％ \\
\hline M & U & ： & ＠ \\
\hline 5 & 4 & V & （ \\
\hline V & E & \((\) & ） \\
\hline E & N & ） & \(\checkmark\) \\
\hline N & V & \(>\) & V \\
\hline 6 & 5 & 1 & ＋ \\
\hline W & F & \(<\) & ； \\
\hline F & O & ； & － \\
\hline O & W & \(\sqrt{ }\) & \(=\) \\
\hline 7 & 6 & ＋1＋ & 丰 \\
\hline X & G & 邫 & \(t\) \\
\hline G & P & \(\Delta\) & \(\pm\) \\
\hline P & X & Blank & \(\sqrt{ }\) \\
\hline 8 & 7 & Blank & Blank \\
\hline Y & H & 6 & Blank \\
\hline H & Q & & \\
\hline
\end{tabular}

\footnotetext{
（1）Sent As 01000001
（2）Sent As 1II0000I
}

Figure 1－60．52－and 63－Character Typebar Decode（1400 Compatibility）
1.11 PROGRAM CCDES AND PSW (FIGURES 1-60 THROUGH 1-63)
\begin{tabular}{|c|c|c|c|c|}
\hline Condition Code & 0 & 1 & 2 & 3 \\
\hline Mask bit position & 8 & 4 & 2 & 1 \\
\hline \begin{tabular}{l}
Floating-Point Arithmetic \\
Add Normalized S/L \\
Add Unnormalized \(S / L\) \\
Compare \(S / L\) ( \(\mathrm{A}: \mathrm{B}\) ) \\
Load and Test S/L \\
Load Complement S/L \\
Load Negative S/L \\
Load Positive S/L \\
Subtract \\
Normalized S/L \\
Subtract \\
Unnormalized S/L
\end{tabular} & \begin{tabular}{l}
Zero \\
Zero \\
Equal \\
Zero \\
Zero \\
Zero \\
Zero \\
Zero \\
Zero
\end{tabular} & \[
\begin{gathered}
<\text { Zero } \\
<\text { Zero } \\
\text { A Low } \\
<\text { Zero } \\
<\text { Zero } \\
<\text { Zero } \\
\text { < Zero } \\
<\text { Zero }
\end{gathered}
\] & \[
\begin{aligned}
& >\text { Zero } \\
& >\text { Zero } \\
& \quad \text { A High } \\
& >\text { Zero } \\
& >\text { Zero } \\
& >\overline{\text { Zero }} \\
& >\text { Zero } \\
& >\text { Zero }
\end{aligned}
\] & \begin{tabular}{l}
Overflow Overflow
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) \\
Overflow \\
Overflow
\end{tabular} \\
\hline \begin{tabular}{l}
Fixed-Point Arithmetic \\
Add \(H / F\) \\
Add Logical \\
Compare \(H / F(A: B)\) \\
Load and Test \\
Load Complement \\
Load Negative \\
Load Positive \\
Shift Left Double \\
Shift Left Single \\
Shift Right Double \\
Shift Right Single \\
Subtract \(H / F\) \\
Subtract Logical
\end{tabular} & \begin{tabular}{l}
Zero \\
Zero \\
No Carry \\
Equal \\
Zero \\
Zero
\(\qquad\) \\
-
\end{tabular} & \begin{tabular}{l}
<Zero \\
Not Zero, No Carry A Low <Zero \\
<Zero \\
<Zero \\
<Zero \\
<Zero \\
<Zero \\
\(<\) Zero \\
<Zero \\
Not Zero \\
No Carry
\end{tabular} & \begin{tabular}{l}
\(>\) Zero \\
Zero, \\
Carry \\
A High \\
\(>\) Zero \\
\(>\) Zero \\
\(\overline{\text { Zero }}\) \\
\(>\) Zero \\
Zero, \\
Carry
\end{tabular} & \begin{tabular}{l}
Overflow Not Zero, Carry
\(\qquad\)
\(\qquad\) \\
Overflow
\(\qquad\) \\
Overflow \\
Overflow \\
Overflow
\(\qquad\)
\(\qquad\) \\
Overflow Not Zero, Carry
\end{tabular} \\
\hline \begin{tabular}{l}
Decimal Arithmetic \\
Add Decimal \\
Compare Decimal (A:B) \\
Subtract Decimal \\
Zero and Add
\end{tabular} & \begin{tabular}{l}
Zero \\
Equal \\
Zero \\
Zero
\end{tabular} & \[
\begin{aligned}
& <\text { Zero } \\
& \text { A Low } \\
& <\text { Zero } \\
& <\text { Zero }
\end{aligned}
\] & \[
\begin{aligned}
\text { > } & \text { Zero } \\
& \text { A High } \\
> & \text { Zero } \\
> & \text { Zero }
\end{aligned}
\] & \begin{tabular}{l}
Overflow
\(\qquad\) \\
Overflow Overflow
\end{tabular} \\
\hline \begin{tabular}{l}
Logical Operations \\
AND \\
Compare Logical ( \(\mathrm{A}: \mathrm{B}\) ) \\
Edit \\
Edit and Mark \\
Exclusive OR \\
OR \\
Test Under Mask \\
Translate and Test
\end{tabular} & \begin{tabular}{l}
Zero \\
Equal \\
Zero \\
Zero \\
Zero \\
Zero \\
Zero \\
Zero
\end{tabular} & \begin{tabular}{l}
Not Zero \\
A Low \\
<Zero \\
<Zero \\
Not Zero \\
Not Zero \\
Mixed Incomplete
\end{tabular} & \begin{tabular}{l}
A High \(>\) Zero \\
\(>\) Zero
\(\qquad\)
\(\qquad\)
\(\qquad\) \\
Complete
\end{tabular} &  \\
\hline \begin{tabular}{l}
Input/Output Operations \\
Halt 1/O \\
Start I/O \\
Test Channel \\
Test I/O
\end{tabular} & Int. Pending Available Not Working Available & CSW Stored CSW Stored CSW Ready CSW Stored & \begin{tabular}{l}
Stopped \\
Busy \\
Working \\
Working
\end{tabular} & \begin{tabular}{l}
Not Oper \\
Not Oper \\
Not Oper \\
Not Oper
\end{tabular} \\
\hline
\end{tabular}

Figure 1-61. Condition-Code Settings
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Interruption Code} & \multirow[b]{2}{*}{Program Interruption Cause} \\
\hline Dec & Hex & Binary & \\
\hline 1 & 01 & 00000001 & Operation \\
\hline 2 & 02 & 00000010 & Privileged operation \\
\hline 3 & 03 & 00000011 & Execute \\
\hline 4 & 04 & 00000100 & Protection \\
\hline 5 & 05 & 00000101 & Addressing \\
\hline 6 & 06 & 00000110 & Specification \\
\hline 7 & 07 & 0000011 & Data \\
\hline 8 & 08 & 00001000 & Fixed-point overflow \\
\hline 9 & 09 & 00001001 & Fixed-point divide \\
\hline 10 & OA & 00001010 & Decimal overflow \\
\hline 11 & OB & 00001011 & Decimal divide \\
\hline 12 & 0 C & 00001100 & Exponent overflow \\
\hline 13 & OD & 00001101 & Exponent underflow \\
\hline 14 & OE & 00001110 & Significance \\
\hline 15 & OF & 00001111 & Floating-point divide \\
\hline
\end{tabular}

Figure 1-62. Program Interruption Codes

0 Multiplexer channel mask
1 Selector channel 1 mask
2 Selector channel 2 mask
3 Selector channel 3 mask
4 Selector channel 4 mask
5
Selector channel 5 mask
6 Selector channel 6 mask
7 External mask
12 ASCII mode (A)

0 Multiplexer channel mask
1 Selector channel 1 mask
13 Machine check mask (M)
4 Wait state (W)
15 Problem state (P)
3 Selector channel 3 mask
4 Selector channel 4 mask
5 Selector channel 5 mask
Selector channel 6 mask
2 ASCII mode (A)

2-33 Instruction Length code (ILC)
34-35 Condition code (CC)
36 Fixed-point overflow mask
Decimal overflow mask
Exponent underflow mask
Significance mask
* A one-bit equals on, and permits an interrupt

Figure 1-63. Program status word (PSW)


Figure 1-64. Channel Command codes
\begin{tabular}{|c|cc|c|c|c|c|}
\hline \begin{tabular}{l} 
Command \\
Code
\end{tabular} & Data Address & Flags & 000 & lgnored & \\
\((8)\) & 00000000 & \((24)\) & \((5)\) & \((3)\) & Count \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Command Code & & Flags & \\
\hline 01234567 & & O-CD & Bit 32, causes the address portion of the next CCW to be used. \\
\hline * * * * 0000 & Invalid & 1-CC & Bit 33, causes the command code and data address in the next CCW to be used. \\
\hline mmmm 0100 & Sense & 2-SLI & Bit 34, causes a possible incorrect length indication to be suppressed. \\
\hline ****1000 & TIC & 3-SKIP & Bit 35, suppresses the transfer of information to main storage. \\
\hline mmmml100 & Read Backward & \(4-\mathrm{PCl}\) & Bit 36, causes an interruption as Program Control Interrupt. \\
\hline mmmmmmOl & Write & & \\
\hline mmmmmmlo & Read & & \\
\hline mmmmmmll & Control & & \\
\hline
\end{tabular}

Figure 1-65. Channel Command Word (CCW)

CHANNEL ADDRESS WORD
\begin{tabular}{ll|llll|lll|}
\hline Key & & 0 & 0 & 0 & 0 & & & \\
\hline
\end{tabular}

Figure 1-66. Channel Address Word (CAW)


Figure 1-67. Channel Status Word (CSW)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Halfword 0} & \multicolumn{3}{|c|}{Halfword 1} & \multicolumn{2}{|l|}{Halfword 2} & \multicolumn{2}{|l|}{Halfword 3} \\
\hline Byte 0 & Byte 1 & & Byte 2 & Byte 3 & Byte 4 & Byte 5 & Byte 6 & Byte 7 \\
\hline \multirow[t]{2}{*}{Channel Status} & \multirow[t]{2}{*}{Flags \& Op} & \multicolumn{3}{|c|}{Data Address} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Byte Count}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Next CCW Address}} \\
\hline & & \multicolumn{2}{|r|}{Unit status at interrupt} & Unit address at interrupt & & & & \\
\hline \multicolumn{9}{|c|}{} \\
\hline & & Bit & \multicolumn{6}{|c|}{Significance} \\
\hline &  & 0
1
2
3
4
5 & \multicolumn{6}{|l|}{\begin{tabular}{l}
CDA (Data Chain in progress) \\
Chain Command (Chain Command in progress) \\
SLI (Suppress Length Indication) \\
Skip \\
PCI (Program Controlled Interrupt) \\
Active (On from time operation initiated at device associated with UCW until channel end has been stored in the CSW). \\
Op 0 (See note) \\
Op 1 (See note)
\end{tabular}} \\
\hline
\end{tabular}
** With active bits on, bits 6 and 7 decode as follows:
\(00=\) Count zero, expect channel end (after initial selection; Test I/O or Interrupt (during initial selection). If latter, bit 3=0 means Test I/O; bit 3=1 means interrupt.
\(01=\) Output
\(10=\) Read Forward
11 = Read Backward

Byte 0 (Channel Status)
\begin{tabular}{|l|l|}
\hline Bit & \multicolumn{1}{|c|}{ Significance } \\
\hline 0 & Secondary* \\
1 & Incorrect Length \\
2 & Program Check \\
3 & Protection Check \\
4 & Channel Data Check** \\
5 & Channel Control Check \\
6 & Interface Control Check \\
7 & Interrupt in Interrupt Buffer** \\
\hline
\end{tabular}
*Bits 0 and 7 indicate the following:
\(00=\) Handling data, expecting data
\(01=\) Handling data, expecting status
\(10=\) Status queued at \(1 / O\) device
\(11=\) Status in Interrupt Buffer
** Channel Data Check can be set on only during input operations. The parity check is detected in the CPU A-Register, and no machine check occurs.
Figure 1-68. Channel-UCW Format

\subsection*{1.13 I NTEGRATED CCMMUNICATICNS ADAPTER (FIGURES 1-69 AND 1-72)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
1
\] & & \multicolumn{4}{|c|}{Code Assignment} \\
\hline | Name & Mnemonic & | EBCDIC & | Hex & | US ASCII & Hex \\
\hline |Start of Heading & SOH & SOH & 101 & | SOH & 01 \\
\hline |Start of Text & STX & |STX & 102 & ISTX & 102 \\
\hline |End of Transmission Block & ETB & | ETB & 126 & | ETB & 117 \\
\hline | End of Text & ETX & |ETX & 103 & |ETX & 103 \\
\hline |End of Transmission & EOT & |EOT & 137 & | EOT & 104 \\
\hline | Enquiry & ENQ & | ENQ & | 2D & |ENQ & 05 \\
\hline | Negative Acknowledge & NAK & | NAK & 13D & | NAK & 115 \\
\hline |Synchronous Idle & SYN & |SYN & 132 & 1 SYN & 116 \\
\hline | Lata Link Escape & DLE & |DIE & 110 & | DLE & 110 \\
\hline | Intermediate Block Character & ITB & 1 IUS & | 1 F & | US & 1 F \\
\hline |Even Acknowledge & ACK 0 & | DLE (70)* & \(\mid 1070\) & |DLE0 & | 1030 \\
\hline | Odd Acknowledge & ACK1 & |DLE/ & \(\mid 1061\) & | DLE1 & 1031 \\
\hline |Wait Before Transmit & WABT & |DLE(7F)* & | 107F & | DLE? & 1103F \\
\hline | Mandatory Disconnect & DISC & |DIE ECT & |1037 & |DLE EOT & |1004 \\
\hline Stop Acknowledge & SAK & | DLE, & | 106B & | DLE; & 103B \\
\hline |Reverse Interrupt & RVI & |DLEa & 1107C & | DLE< & |103C \\
\hline | Temporary Text Delay & TTD & STX ENQ & 1022D & |STX ENQ & 0205 \\
\hline |Transparent Start of Text & XSTX & |DLE STX & 11002 & |DIE STX & \(\mid 1002\) \\
\hline | Transparent Intermediate Blcck & XITB & IDIE IUS & |101F & | DLE US & |101F \\
\hline |Transparent End of Text & XETX & DLE ETX & | 1003 & |DLE ETX & |1003 \\
\hline |Transparent End of Trans. Block & XETB & |DIE ETB & |1026 & | DLE ETB & |1017 \\
\hline | Transparent Synchronous Idle & XSYN & | DLE SYN & | 1032 & IDLE SYN & |1016 \\
\hline |Trans parent Block Cancel & XENQ & |DLE ENQ & |102D & |DLE ENQ & \(\mid 1005\) \\
\hline
\end{tabular}

Figure 1-69. Bisynchronous Ccntrcl Character Chart


Figure 1-70. ICA UCW Format


\section*{LCW Byte 4}

STATE HI DECODE
\begin{tabular}{llllll}
\begin{tabular}{llllll} 
BIT \\
HEX
\end{tabular} & 0 & 1 & 2 & 3 & \begin{tabular}{l} 
TRANSMITTING \\
0
\end{tabular} \\
1 & 0 & 0 & 0 & 0 & \begin{tabular}{l} 
Monitor For Clear to Send \\
DLE Decoded, Not In Text Mode
\end{tabular} \\
2 & 0 & 0 & 0 & 1 & \begin{tabular}{l} 
End (WRITE); Turnaround (POLL) \\
3
\end{tabular} \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & \begin{tabular}{l} 
Not In Text Mode \\
Transmit CRC-2
\end{tabular} \\
4 & 0 & 1 & 0 & 0 & \begin{tabular}{l} 
Transmit Pad Character \\
Xmit SYN Time Fill, Transparent \\
6
\end{tabular} \\
0 & 1 & 0 & 1 & \\
Stop
\end{tabular}

RECEIVING
Monitor For First Non-SYN
DLE Decoded, Not in Text Mode
Monitor For First Non-SYN, Poll Read
Receive First Non-SYN Not in Text Mode
Expect CRC-2
Invalid Decode
Invalid Decode

Invalid Decode

Expect CRC-1 (or LRC)
DLE Decoded, In Text Mode
SYN Decoded, In Text Mode
Text Mode
Text Mode
DLE Decoded, In Transparent Mode

DLE SYN Decoded, In Transparent
Mode
Transparent Mode

CONTROL STATE
DISABLE

ENABLE
DIAL
PREPARE

STATE LO DECODE
BIT \(4 \quad 5 \quad 6 \quad 7\)
HEX
\begin{tabular}{llllll}
0 & 0 & 0 & 0 & 0 & Control State; DIAL Step 1 \\
1 & 0 & 0 & 0 & 1 & WRITE \\
2 & 0 & 0 & 1 & 0 & Receive Monitor \\
3 & 0 & 0 & 1 & 1 & READ \\
4 & 0 & 1 & 0 & 0 & DIAL Step 2 \\
5 & 0 & 1 & 0 & 1 & POLL Write \\
6 & 0 & 1 & 1 & 0 & Invalid Decode \\
7 & 0 & 1 & 1 & 1 & POLL Read \\
8 & 1 & 0 & 0 & 0 & DIAL Step 3 \\
9 & 1 & 0 & 0 & 1 & Invalid Decode \\
A & 1 & 0 & 1 & 0 & ADPREP Monitor \\
B & 1 & 0 & 1 & 1 & Invalid Decode \\
C & 1 & 1 & 0 & 1 & Invalid Decode \\
D & 1 & 1 & 0 & 1 & Invalid Decode \\
E & 1 & 1 & 1 & 0 & ADPREP Control \\
F & 1 & 1 & 1 & 1 & Invalid Decode
\end{tabular}

\section*{Figure 1-71. Synchronous LCW Format}


Figure 1-72. Start/Stop LCW Format (Part 1 of 2)

\section*{LCW Byte 4}


\section*{STATE LO DECODE}
```

BIT 4 4 5 6 7
HEX
0
1 0}000
2 0
3
$$
\begin{array} { l l l l l l } { 4 } & { 0 } & { 1 } & { 0 } & { 0 } & { \text { DIAL Step 2} } \end{array}
$$
5
6
7
8}100000 DIAL Step 3
9}10100001 IBM-I Text In, Upshift Mode
A 1}10\begin{array}{llllll}{1}\&{0}\&{1}\&{0}\&{TTY-I Upshift Mode}
B
C 1 1 1 0 0 Invalid
D 1
E 1 1 1 1 0 Invalid
F 1

```
Figure 1-72. Start/Stop LCW Format (Part 2 of 2)
1.14 1403 PRINTER (FIGURES 1-73 THROUGH 1-95.)

Figure 1-73 shows the possible start I/O ccrmand byte configurations for the 1403. The legend for this figure is as follows.

Char in.
\begin{tabular}{|c|c|}
\hline column & Printer Command \\
\hline b & Sense \\
\hline c & Write with valid carriage-control \\
\hline d & No-Op \\
\hline e & Carriage control with valid carriage-control modifier \\
\hline f & Load multiple character set (MCS) and fold \\
\hline g & Load multiple character set (MCS) and no fold \\
\hline h & Gate load \\
\hline j & Block data check \\
\hline k & Allow data check. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\left[\begin{array}{c}
81 T \mathrm{~S} \\
0123 \\
1
\end{array}\right.
\]} & \multicolumn{16}{|c|}{BITS 4567} \\
\hline & 0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111 \\
\hline 0000 & & c & & d & b & & & & & c & & e & & & & \\
\hline 0001 & & c & & e & & & & & & c & & e & & & & \\
\hline \multicolumn{17}{|l|}{0010} \\
\hline \multicolumn{17}{|l|}{0011} \\
\hline \multicolumn{17}{|l|}{0100} \\
\hline \multicolumn{17}{|l|}{0101} \\
\hline \multicolumn{17}{|l|}{0110} \\
\hline 0111 & & & & i & & & & & & & & k & & & & \\
\hline 1000 & & & & & & & & & & c & & e & & & & \\
\hline 1001 & & c & & e & & & & & & c & & e & & & & \\
\hline 1010 & & c & & e & & & & & & c & & e & & & & \\
\hline 1011 & & c & & e & & & & & & c & & e & & & & \\
\hline 1100 & & c & & e & & & & & & c & & e & & & & \\
\hline 1101 & & c & & e & & & & & & c & & e & & & & \\
\hline 1110 & & c & & e & & & & & & & & h & & & & \\
\hline 1111 & & & & f & & & & & & & & g & & & & \\
\hline
\end{tabular}

Figure 1-73. 1403 Command Byte Description

\title{
PCS-AN" ( 3 LEVEL SET-48 "A" GRAPHICS
}

Note I

"PCS-HN" (3 LEVEL SET-48 "H" GRAPHICS)

"AN"

"HN"
 PN" PL/I (60 GRAPHICS)
 QN" PL/I (60 GRAPHICS-45 PREFERRED
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 12 & 34 & 56 & 78 & 90 & XY & 1 s & TU & V w & -" & \$* & , = & J K & LM & N0 & PQ & R- & 21 & A 8 & CD & E F & GH & I + & .) \\
\hline & & & & & & & & & <; & \# * & & & & & & & & & & & & & \\
\hline & & & & & & & & & ? > & ఎ * & & & & & & & & & & & & & \\
\hline & & & & & & & & & \(\square{ }^{\circ}\) & \(\varepsilon *\) & & & & & & & & & & & & & \\
\hline & & & & & & & & & \(1:\) & \(\%\) * & & & & & & & & & & & & & \\
\hline
\end{tabular}
"RN" FORTRAN COBOL COMMERCIAL (52 GRAPHICS - 47 PREFERRED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 12 & 34 & 56 & 78 & 90 & X Y & /s & TU & vw & ' ه & \$ * & , = & JK & LM & No & PO & R- & 21 & AB & Co & EF & GH & I + & .) \\
\hline & & & & & & & & & \% ه & & & & & & & & & & & & & & \\
\hline & & & & & & & & & \# 0 & & & & & & & & & & & & & & \\
\hline & & & & & & & & & 口a) & & & & & & & & & & & & & & \\
\hline & & & & & & & & & \& \({ }^{\text {a }}\) & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Note I Two full sets per cartridge arrangement Note II Four full sets per cartridge arrangement Note III Five full sets per cartridge arrangement Six full sets per cartridge arrangement

SN" TEXT PRINTING (84 GRAPHICS - 78 PREFERRED)

"tN" TEXT PRINTING (IzO GRAPHICS)


XN" HIGH SPEED ALPHANUMERIC (4O GRAPHICS)
Note IV \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 12 & 34 & 56 & 78 & 90 & . & AB & CO & EF & GH & IZ & JK & LM & NO & PQ & \(R *\) & \(\$ \mathrm{~S}\) & TU & VW & XY \\
\hline
\end{tabular}
oda-first array

CNA- FIRST ARRAY
 oAA-FiRST ARRAY
 ONB-FIRST ARRAY (WTC Only)

```

 PPCS-AN"(3 LEVEL SET-48 "A" GRAPHICS)
 Note I

```

```

"PCS-HN"(3 LEVEL SET - 48 "H" GRAPHICS)
Note I

123	456	789	O,-	PQR	- ${ }^{\text {¢ }}$	IST	Uvw	XYZ	1.*	123	456	789	O,-	JKL	MNO	ABC	DEF	GHI	+.*
					\% $\$ 1$														

"AN"

```

```

"HN"

```

```

"PN" PL/I (60 GRAPHICS)

```

```

"ON" PL/I (60 GRAPHICS - 45 PREFERRED)

```

```

												-	-		
						<; *									
						? ${ }^{\text {a }}$									
						-' ${ }^{\text {c }}$									
						1:\%									

```
"ONC" PL/I ( 60 GRAPHICS - 45 PREFERRED)

"RN" FORTRAN-COBOL-COMMERCIAL (52 GRAPHICS-47 PREFERRED)


Note I Two full sets per cartridge arrangement
Note II Four full sets per cartridge arrangement
Note III Five full sets per cartridge arrangement

\section*{"SN" TEXT PRINTING ( 84 GRAPHICS-78 PREFERRED)}

"TN" TEXT PRINTING (IZO GRAPHICS)


"YN" HIGH SPEED ALPHANUMERIC (42 GRAPHICS - 39 PREFERRED)

oda - FIRST ARRAY

ona - FIRST ARRAY
Note II \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 223 & 456 & 789 & O\#D & /ST & UVW & XYZ & \(\varepsilon, H\) & JKL & MNO & PQR & \(-\$ *\) & \(A B C\) & DEF & GHI & Y.N \\
\hline
\end{tabular}
oAA. FIRst arrar
 ONB.finstaray (WTC Only)

Figure 1-75. Train Arrangements for System/360 (Printout Representation)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & OX & 1 X & 2X & 3 X & 4X & 5X & 6X & 7X & 8X & 9x & AX & BX & CX & DX & EX & FX \\
\hline X0 & & \& & & 0 & & \& & - & 0 & \& & & \[
13
\] & 0 & \& &  & & 0 \\
\hline X1 & A & \(j\) & 1 & 1 & A & J & 1 & 1 & A & j & 1 & \[
1
\] & A & J &  & 1 \\
\hline X2 & B & K & S & 2 & B & K & S & 2 & B & K & S & 2 & B & K & S & 2 \\
\hline X3 & C & \(L\) & T & 3 & C & \[
L
\] & T & 3 & C & L & T & 3 & C & L & T & 3 \\
\hline X4 & D & M & U & 4 & D & M & U & 4 & D & M & U & 4 & D & M & U & 4 \\
\hline X5 & E & N & V & 5 & \[
E
\] & N & V & 5 & \[
E
\] & N & V & 5 & E & N & V & 5 \\
\hline X6 & F & 0 & W & 6 & F & 0 & W & 6 & F & 0 & W & 6 & F & 0 & W & 6 \\
\hline X7 & G & P & X & 74 & 6 & P & X & 7 & G & P & - & - 7 & G & P & X & 7 \\
\hline X8 & H & 0 & Y & 8 & H & 0 & \(Y\) & 8 & H & 0 & Y & 8 & H & Q & Y & 8 \\
\hline X9 & 1 & R & z & 9 & 1 & R & \(z\) & 9 & 1 & R & Z & -9 & 1 & R & Z & 9 \\
\hline XA & + & R & \& & 0 &  &  & \[
\&
\] & - 0 & \[
5
\] &  & 8 & 0 & + &  & \(\&\) & 0 \\
\hline XB &  &  &  &  & - & \$ & , &  &  & \$ &  &  & \% & \$ & ! &  \\
\hline XC & \[
51
\] &  & \%
\(\qquad\) &  & \[
4
\] & * &  &  &  & - & \[
\%
\] &  &  &  &  & \[
101
\] \\
\hline XD &  & 75 & & \[
19
\] &  & \[
4
\] & &  & \[
\%
\] & \[
41
\] & & @1, &  & \[
151
\] & &  \\
\hline XE &  & &  & \[
\#=
\] & + &  & &  &  &  &  &  &  &  &  &  \\
\hline XF &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  \\
\hline
\end{tabular}

Characters printed are basic integrated 1403.
Non-shaded graphics indicate the defined codes
in the EBCD interchange code chart.
Figure 1-76. AN and HN Graphics for Basic 1403 Attachment
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Command Byte} & \\
\hline 0123 & 4567 & Function \\
\hline 0000 & 0001 & Write and No Space After Print \\
\hline 0000 & 1001 & Write and Space 1 Line After Print \\
\hline 0001 & 0001 & Write and Space 2 Lines After Print \\
\hline 0001 & 1001 & Write and Space 3 Lines After Print \\
\hline 1000 & 1001 & Write and Skip to Channel 1 After Print \\
\hline 1001 & 0001 & Write and Skip to Channel 2 After Print \\
\hline 1001 & 1001 & Write and Skip to Channel 3 After Print \\
\hline 1010 & 0001 & Write and Skip to Channel 4 After Print \\
\hline 1010 & 1001 & Write and Skip to Channel 5 After Print \\
\hline 1011 & 0001 & Write and Skip to Channel 6 After Print \\
\hline 1011 & 1001 & Write and Skip to Channel 7 After Print \\
\hline 1100 & 0001 & Write and Skip to Channel 8 After Print \\
\hline 1100 & 1001 & Write and Skip to Channel 9 After Print \\
\hline 1101 & 0001 & Write and Skip to Channel 10 After Print \\
\hline 1101 & 1001 & Write and Skip to Channel 11 After Print \\
\hline 1110 & 0001 & Write and Skip to Channel 12 After Print \\
\hline
\end{tabular}

Figure 1-77. 1403 Commands (Write Operation with Various Carriage Functions)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Command Bytes} & \\
\hline 0123 & 4567 & Function \\
\hline 0000 & 1011 & Space 1 Line Immediately \\
\hline 0001 & 0011 & Space 2 Lines Immediately \\
\hline 0001 & 1011 & Space 3 Lines Immediately \\
\hline 1000 & 1011 & Skip to Channel 1 Immediately \\
\hline 1001 & 0011 & Skip to Channel 2 Immediately \\
\hline 1001 & 1011 & Skip to Channel 3 Immediately \\
\hline 1010 & 0011 & Skip to Channel 4 Immediately \\
\hline 1010 & 1011 & Skip to Channel 5 Immediately \\
\hline 1011 & 0011 & Skip to Channel 6 Immediately \\
\hline 1011 & 1011 & Skip to Channel 7 Immediately \\
\hline 1100 & 0011 & Skip to Channel 8 Immediately \\
\hline 1100 & 1011 & Skip to Channel 9 Immediately \\
\hline 1101 & 0011 & Skip to Channel 10 Immediately \\
\hline 1101 & 1011 & Skip to Channel 11 Immediately \\
\hline 1110 & 0011 & Skip to Channel 12 Immediately \\
\hline
\end{tabular}

Figure 1-78. 1403 Comrands (Independent Carriage Operations)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Command Byte} & \multirow[b]{2}{*}{Function} \\
\hline 0123 & 4567 & \\
\hline 0000 & 0011 & No-Op \\
\hline 0111 & 0011 & Block Data Check \\
\hline 0111 & 1011 & Allow Data Check \\
\hline 1110 & 1011 & Gate Load \\
\hline 1111 & 00011 & Load MCS and Fold \\
\hline 1111 & 1011 & Load MCS and No Fold \\
\hline 0000 & 0100 & Sense \\
\hline
\end{tabular}

Figure 1-79. 1403 Commands (No Printing or Carriage Motion)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{\(7 \times 00\) or \(9 \times 00\)} & \\
\hline \begin{tabular}{l} 
Not Block \\
Data Check
\end{tabular} & \begin{tabular}{l} 
Block \\
Data Check
\end{tabular} & \begin{tabular}{c} 
Set Length \\
(Decimal)
\end{tabular} \\
\hline 01 & 81 & 16 \\
02 & 82 & 40 \\
04 & 84 & 48 \\
08 & 88 & 60 \\
10 & 90 & 80 \\
20 & A0 & 120 \\
40 & \(C 0\) & 240 \\
00 & 80 & 240 \\
\hline
\end{tabular}

Figure 1-80. PCCL Code for Different Character Set Lengths

Figure 1-81 shows the contents of the translate table for the basic attachment. The table is loaded for dualed and folded AN or HN chains or trains. The table causes the same translation as the non-UCS translator in the 2821 control unit. The table is loaded in the preceding manner
when the control storage is reloaded with a System/360 load. When control storage is loaded with a system/360 load with MCS, the translate table is unaffected.

PCCL byte is shown with klock data check not set.
da 7000
042526272829 2A2B 2C2D 2E2F 3018 2E00 1619 1A1B 1C1D 1E1F 2021222324300000 220D OEOF 101112131415161718001700 OA01 0203040506070809 OAOB OCOC 0800 002526272829 2A2B 2C2D 2E2F 3018 2E00 1619 1A1B 1C1D 1E1F 2021222324300000 220D OEOF 101112131415161718001700 OA01 0203040506070809 OAOB OCOC OBOO 002526272829 2A2B 2C2D 2E2F 3018 2E00 1619 1A1B 1C1D 1E1F 2021222324300000
220D OEOF 101112131415161718001700 OA01 0203040506070309 OAOB OCOC OBOO
002526272829 2A2B 2C2D 2E2F 3018 2E00 1619 1A1B 1C1D 1E1F 2021222324300000
220D OEOF 101112131415161718001700 OA01 0203040506070809 OAOB OCOC OBOO

Note:
Graphics are folded and dualed
aswith the IBM 2821 non-UCS
translator.

Graphic


Figure 1-81. Printer Translate Table (Basic Attachment)

Figures 1-82 through 1-94 shcw several different versions of the translate table for different MCS chain or train arrangements.

When preferred-character arrangements with MCS are used, only the last character set of the arrangement and uni que
characters in the other sets are printable positions. These positions are indicated ky the heavy bar in the grachic position code charts.

PCCL byte is shown with block data check not set.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{'da 7000} \\
\hline 101FF IFFFF & FFFF FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] \\
\hline IFFFF । FFFF & FFFF FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
100FF \\
IFFFF
\end{tabular} & FFFF FFFF & FFFF FFFF & FFFF FFFF & FFFF FFFF & \[
\begin{aligned}
& \text { FFOF } \\
& \text { FFOD }
\end{aligned}
\] & \[
\begin{aligned}
& 10 \mathrm{FF} \\
& 0 \mathrm{E} 10
\end{aligned}
\] & FFFFI FFFF \\
\hline \[
\begin{aligned}
& \text { OCFFF } \\
& \text { FFFF }
\end{aligned}
\] & FFFF FFFF & FFFF FFFF & FFFF FFFF & FFFF FFFF & \[
\begin{aligned}
& \text { FFOB } \\
& \text { FFFF }
\end{aligned}
\] & FFFF & \[
\begin{aligned}
& \text { FFFFI } \\
& \text { FFFFI }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & FFFF FFFF & FFFFI FFFFI \\
\hline FFFF FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFFI } \\
& \text { FFFF }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { FFFF } \\
& \text { IFFFF }
\end{aligned}
\] & \begin{tabular}{l}
FFFF \\
FFFF
\end{tabular} & FFFF FFFF & \[
\begin{aligned}
& \text { FFFFI } \\
& \text { FFFFI }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
IFFFF \\
I OA01
\end{tabular} & \[
\begin{aligned}
& \text { FFFF } \\
& 0203
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& 0405
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& 0607
\end{aligned}
\] & FFFF & FFFF FFFF & FFFF & FFFFI
FFFFI \\
\hline
\end{tabular}


Graphic


Figure 1-82. Printer Translate Table for MCS: Numeric Arrangement; Ccunt Length 10 (Hex)


AN (Not Folded)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{da 7000} \\
\hline 04FF & FF & & & & & & \\
\hline FFFF & FFF & FF & & FFFF & & F & \\
\hline & FFF & FFFF & FFFF & FFF & FF & & \\
\hline F & FFF & FFFF & FFFF & FFF & & & \\
\hline OFF & FFF & FFF & FFF & F & F & 3 & \\
\hline 16 FF & FFFF & FFFF & FFFF & F & FF23 & 24 & \\
\hline 220 D & FFFF & FFFF & \multirow[t]{2}{*}{FFFF} & FFFF & FF17 & 18FF & \\
\hline FFFF & FFFF & FFFF & & FFFF & FFOB & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\]} & \multirow[t]{2}{*}{FFFF} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\]} & FFFF & FFFF & FFFF & \\
\hline & & & & FFFF & & & \\
\hline \multirow[t]{2}{*}{FFFF FFFF} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\]} & \multirow[t]{2}{*}{FFFF FFFF} & \multirow[t]{2}{*}{FFFF FFFF} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\]} & \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FF2 } \\
& \text { FF19 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2627 \\
& 1 \text { A1B }
\end{aligned}
\]} & 2829 & 2A2B & 2C2D & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\]} & \\
\hline & & 1C1D & 1 E 1 F & 2021 & & & \\
\hline \multicolumn{2}{|l|}{FFFF OEOF} & 1011 & 1213 & \multirow[t]{2}{*}{1415} & \multirow[t]{2}{*}{FFFF} & FFFF & \\
\hline 0 O01 & 0203 & 0405 & 0607 & & & F & \\
\hline
\end{tabular}

HN (Not Folded)


Figure 1-83. Printer Translate Table for MCS: AN-HN Arrangement; Count Length 30 (Hex)


Figure 1-84. Printer Translate Table for MCS: AN-HN Folded; Count Length 30 (Hex)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{da 7000} \\
\hline 08FF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { crc }
\end{aligned}
\] & FFFF & FFFF & FFFF
FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
FFFF \\
FFFF
\end{tabular} & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & FFFF FFFF & FFFF FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 100 F F \\
& 135 F F
\end{aligned}
\] & FFFF FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & FFFF FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FF2F } \\
& \text { FF32 }
\end{aligned}
\] & \[
\begin{aligned}
& 3724 \\
& 3330
\end{aligned}
\] & \[
\begin{aligned}
& 2 \text { E13 } \\
& 3839
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 220 \mathrm{D} \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & FFFF & \[
\begin{aligned}
& \text { FF17 } \\
& 1434
\end{aligned}
\] & \[
\begin{aligned}
& 3115 \\
& 363 A
\end{aligned}
\] & \[
\begin{aligned}
& 3 C 3 B! \\
& 1816!
\end{aligned}
\] \\
\hline \begin{tabular}{l}
1 FFFF \\
FFFF
\end{tabular} & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & FFFF FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF I } \\
& \text { FFFF I }
\end{aligned}
\] \\
\hline FFFF FFFF & FFFF & FFFF FFFF & FFFF FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF I } \\
& \text { FFFF }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { FF25 } \\
& \text { FF19 }
\end{aligned}
\] & \[
\begin{aligned}
& 2627 \\
& \text { 1A1B }
\end{aligned}
\] & \[
\begin{aligned}
& 2829 \\
& 1 \mathrm{C} 1 \mathrm{D}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2A2B } \\
& 1 \mathrm{E} 1 \mathrm{~F}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2C2D } \\
& 2021
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] \\
\hline 1 FFFF
1 OA01 & \[
\begin{aligned}
& \text { OEOF } \\
& 0203
\end{aligned}
\] & 1011
0405 & \(120 \dot{B}\) & \(0 C 23\)
0809 & FFFF FFFF & FFFF
FFFF & FFFF
FFFF \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{1 da 7000} \\
\hline 10825 & 2627 & 2829 & 2A2B & 2C2D & FF2F & 3724 & - \\
\hline 13519 & 1A1B & 1C1D & 1E1F & 2021 & FF32 & 3330 & 3839 \\
\hline 1220 D & OEOF & 1011 & 120B & 0C23 & FF17 & 3115 & \\
\hline | 0401 & 0203 & 0405 & 0607 & 0809 & 1434 & 363A & 1816 \\
\hline 10025 & 2627 & 2829 & 2A2B & 2C2D & FF2F & 3724 & 2E13 \\
\hline 3519 & 1A1B & 1 Cl 1 D & 1 E F & 2021 & FF32 & 3330 & 3839 \\
\hline 12200 & OEOF & 1011 & 120B & 0C23 & FF17 & 3115 & 3C3B \\
\hline 0 AO 1 & 0203 & 0405 & 0607 & 0809 & 1434 & 363A & 1816 \\
\hline 0025 & 2627 & 2829 & 2A2B & 2C2D & FF2F & 3724 & 2 E13 \\
\hline 3519 & 1A1B & 1C1D & \(1 \mathrm{E1F}\) & 2021 & FF32 & 3330 & 3839 \\
\hline 2200 & OEOF & 1011 & 120B & OC23 & FF17 & 3115 & 3C3B \\
\hline 10 AO 1 & 0203 & 0405 & 0607 & 0809 & 1434 & 363A & 1816 \\
\hline 10025 & 2627 & 2829 & 2A2B & 2C2D & FF2F & 3724 & E13 \\
\hline 1.3519 & 1A1B & 1 ClD & \(1 \mathrm{E1F}\) & 2021 & FF32 & 3330 & 38391 \\
\hline 12200 & OEOF & 1011 & 120B & 0C23 & FF17 & 3115 & 3C3B 1 \\
\hline | 0401 & 0203 & 0405 & 0607 & 0809 & 1434 & 363A & 18161 \\
\hline & & & & & & & \\
\hline
\end{tabular}

Graphic
Graphic Position Code
\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & \(O A\) & \(O B\) & \(O C\) & \(O D\) & \(O E\) & \(O F\) & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & \(X\) & \(Y\) & \(/\) & S & T & U & V & W & 1 & \(:\) & - & \(\because\) &, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 19 & 1 A & 1 B & 1 C & 1 D & 1 E & 1 F & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 2 A & 2 B & 2 C & 2 D & 2 E & 2 F & 30 \\
\hline J & K & L & M & N & O & P & Q & R & - & Z & 1 & A & B & C & D & E & F & G & H & I & + &. & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & \(3 A\) & \(3 B\) & \(3 C\) & \(3 D\) & \(3 E\) & \(3 F\) & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 \\
\hline\(\%\) & \(\$\) & \(*\) & \(\#\) & \(\&\) & \(@\) & \(<\) & \(;\) & 7 & \(\cdot\) & \(?\) & \(>\) & & & & & & & & & & & & \\
\hline
\end{tabular}

Figure 1-85. Printer Translate Table for MCS: PN Arrangement; Count Length 3C (Hex)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{da 7000} \\
\hline \[
\begin{aligned}
& 20 \mathrm{FF} \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & FFFF
FFFF & FFFF FFFF & FFFF
FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFF } \\
& \text { FF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { F FFFF } \\
& \text { FFFFF }
\end{aligned}
\] \\
\hline FFFF FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & FFFF FFFF & FFFF FFFF & FFFF FFFF & FFFF FFFF & FFF & \[
\mathrm{FFF}
\] \\
\hline \begin{tabular}{l}
looff \\
4CFF
\end{tabular} & FFFF FFFF & FFFF FFFF & FFFF FFFF & FFFF FFFF & \[
\begin{aligned}
& \text { FF77 } \\
& \text { FF4D }
\end{aligned}
\] & 58F & \\
\hline IFFFF & FFFF FFFF & FFFF FFFF & FFFF FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FF65 }
\end{aligned}
\] & 4EFF & \\
\hline FFFF IFFFF & FFFF FFFF & FFFF & \\
\hline \[
\begin{aligned}
& \text { |FFFF } \\
& \text { FFFF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFEF }
\end{aligned}
\] & FFFF FFFF & FFFF FFFF & FFFF & \[
\begin{aligned}
& \text { FFFF } \\
& \text { FFFF }
\end{aligned}
\] & FFF & \\
\hline \[
\begin{aligned}
& \text { FF6D } \\
& \text { IFF67 }
\end{aligned}
\] & \[
\begin{aligned}
& 6 E 6 F \\
& 6869
\end{aligned}
\] & 7071
\(686 B\) & 7273 & 7475 & FFFF & FFFF & F \\
\hline \[
\begin{aligned}
& \text { IFFFF } \\
& 6458
\end{aligned}
\] & 5051
\(5 C 50\) & 5253
5 E 5 F & 5455 & 5657
6263 & FFFF & FFF & \\
\hline
\end{tabular}
|da 7000
\(\left.\right|^{2060}\) 6E6F 707172737475 FF77 58FF 76FFI
4 C67 6869 6A6B 6 C 49 4A4B FF4D 78 FF FFFF
664F 5051525354555657 FF65 4EFF FFFF
645B 5C5D 5E5F 60616263 FF10 12FF FFFF
\(l_{006 D}\) 6E6F 707172737475 FF77 58FF 78FFI
14 C 676869 6A6B 6 C 49 4A4B FF4D 78 FF FFFFI
1664F 5051525554555657 FF65 4EFF FFFF I |645B 5C5D 5E5F 60616263 FF10 12FF FFFFI
1006D 6E6F 707172737475 FF77 58FF 76FF।
4C67 6869 6A6B 6C49 4A4B FF4D 78FF FFFF,
664F 5051525354555657 FF65 4EFF FFFF, |645B 5C5D 5E5F 60616263 FF10 12FF FFFF
1006D 6E6F 707172737475 FF77 58FF 76FF | 4 C67 6866 6A6B 6C49 4A4B FF4D 78FF FFFFI
1664F 5051525354555657 FF65 4EFF FFFF 1645B 5C5D 5E5F 60616263 FF10 12 FF FFFF।

Graphic
aphic Position Code
\(\longrightarrow\)\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & \(O A\) & \(O B\) & \(O C\) & \(O D\) & \(O E\) & \(O F\) & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline & & & & & & & & & & & & & & & \(\#\) & & \(@\) & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 19 & 1 A & 1 B & 1 C & 1 D & 1 E & 1 F & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 2 A & 2 B & 2 C & 2 D & 2 E & 2 F & 30 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & \(3 A\) & \(3 B\) & \(3 C\) & \(3 D\) & \(3 E\) & \(3 F\) & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 49 & 4 A & 4 B & 4 C & 4 D & 4 E & 4 F & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 5 A & 5 B & 5 C & 5 D & 5 E & 5 F & 60 \\
\hline P & Q & R & \(\&\) & \(\$\) & \(\%\) & \(/\) & S & T & U & V & W & X & Y & Z & \(\square\) & & & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 6 A & 6 B & 6 C & 6 D & 6 E & 6 F & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 \\
\hline 7 & 8 & 9 & 0 &, & - & J & K & L & M & N & O & A & B & C & D & E & F & G & H & I & + &. & \(*\) \\
\hline
\end{tabular}

Figure 1-86. Print \(\in\) Translate Table for MCS: PCS-AN Arrangement; Count Length 78 (Hex)
da 7000
1 20FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF I FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF | FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF | FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 00FF FFFF FFFF FFFF FFFF FF77 FF4E \(76 F F\) l 4CFF FFFF FFFF FFFF FFFF FF4D 7858 FFFFI
664 F FFFF FFFF FFFF FFFF FF65 FFFF FFFF
IFFFF FFFF FFFF FFFF FFFF FFFF FF12 10 FF
| FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF,
I FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
IFF6D 6E6F 707172737475 FFFE FFFF FFFF
IFF67 6869 6A6B 6C49 4A4B FFFF FFFF FFFFI
IFFFF 5051525354555657 FFFF FFFF FFFFI
16458 5C5D 5E5F 60616263 FFFF FFFF FFFF,
(Not Folded)
da 7000
| 206D 6E6F 707172737475 FF77 FF4E \(76 F F\) I
4 C67 6869 6A6B 6C49 4A4B FF4D 7858 FFFF
664F 5051525354555657 FF65 FFFF FFFF | 645B 5C5D 5E5F 60616263 FFFF FF12 10FF
| 006D 6E6F 707172737475 FF77 FF4E 76 FF \({ }^{\prime}\)
4C67 6869 6A6B 6C49 4A4B FF4D 7858 FFFFI
|664F505152535455 5657 FF65 FFFF FFFF | | 645B 5C5D 5E5F 60616263 FFFF FF12 10FF
006D 6E6F 707172737475 FF77 FF4E \(76 F F\) l
|4C67 6869 6A6B 6C49 4A4B FF4D 7858 FFFF|
|664F 5051525354555657 FF65 FFFF FFFF
1645 B 5C5D 5E5F 60616263 FFFF FF12 10FF
006 D 6E6F 707172737475 FF77 FF4E 76 FF
|4C67 6869 6A6B 6 C 49 4A4B FF4D 7858 FFFF|
| 664 F 5051525354555657 FF65 FFFF FFFF I
1645B 5C5D 5E5F 60616263 FFFF FF12 \(10 F F\) |
(Folded)

Graphic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Graphic } P \\
& L \quad 01
\end{aligned}
\] & 02 & Code & 04 & 05 & 06 & 07 & 08 & 09 & OA & OB & OC & OD & OE & OF & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline \(\rightarrow\) & & & & & & & & & & & & & & & \(=\) & & , & & & & & & \\
\hline 19 & 1A & 1B & 1C & 10 & 1E & 1F & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 2A & 2B & 2C & 2D & 2E & 2F & 30 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & \(3 A\) & \(3 B\) & \(3 C\) & \(3 D\) & \(3 E\) & \(3 F\) & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 49 & 4 A & 4 B & 4 C & 4 D & 4 E & 4 F & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 5 A & 5 B & 5 C & 5 D & 5 E & 5 F & 60 \\
\hline P & Q & R & \(\&\) & \(\$\) & I & \(/\) & S & T & U & V & W & X & Y & Z & 1 & & & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 6 A & 6 B & 6 C & 6 D & 6 E & 6 F & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 \\
\hline 7 & 8 & 9 & 0 &, & - & J & K & L & M & N & O & A & B & C & D & E & F & G & H & I & + &. & \(*\) \\
\hline
\end{tabular}

Figure 1-87. Printer Translate Table for MCS: PCS-HN Arrangement; Count Length 78 (Hex)

da 7000
40E5 E6E7 E8E9 EAEB ECED FFEF 43E4 EED3
A5D9 DADB DCDD DEDF E0E1 FF15 D6F0 44A3
E2CD CECF DOD1 D2CB CCE3 FFD7 D5 137473
CAC1 C2C3 C4C5 C6C7 C8C9 D445 75A4 D814
\(00 E 5\) E6E7 E8E9 EAEB ECED FFEF 43E4 EED3
A5D9 DADB DCDD DEDF E0E1 FF15 D6F0 44A3
E2CD CECF D0D1 D2CB CCE3 FFD7 D513 7473।
CAC1 C2C3 C4C5 C6C7 C8C9 D445 75A4 D814
00E5 E6E7 E8E9 EAEB ECED FFEF 43E4 EED3
A5D9 DADB DCDD DEDF E0E1 FF15 D6F0 44A3
E2CD CECF D0D1 D2CB CCE3 FFD7 D513 7473
CAC1 C2C3 C4C5 C6C7 C8C9 D445 75A4 D814!
\(00 E 5\) E6E7 E8E9 EAEB ECED FFEF 43E4 EED3!
A5D9 DADB DCDD DEDF E0E1 FF15 D6F0 44A3
E2CD CECF D0D1 D2CE CCE3 FFD7 D513 7473 ।
CAC1 C2C3 C4C5 C6C7 C8C9 D445 75A4 D814」
(Folded)

Graphic
Graphic Position Code
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & \(O A\) & \(O B\) & \(O C\) & \(O D\) & \(O E\) & \(O F\) & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 19 & 1 A & 1 B & 1 C & 1 D & 1 E & 1 F & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 2 A & 2 B & 2 C & 2 D & 2 E & 2 F & 30 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & \(3 A\) & \(3 B\) & \(3 C\) & \(3 D\) & \(3 E\) & \(3 F\) & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 \\
\hline & & & & & & & & & & & & & & & & & & \(<\) & \(;\) & \(\#\) & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 49 & 4 A & 4 B & 4 C & 4 D & 4 E & 4 F & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 5 A & 5 B & 5 C & 5 D & 5 E & 5 F & 60 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & \(6 A\) & \(6 B\) & \(6 C\) & \(6 D\) & \(6 E\) & \(6 F\) & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 \\
\hline & & & & & & & & & & & & & & & & & & \(?\) & \(>\) & \(@\) & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 79 & 7 A & 7 B & 7 C & 7 D & 7 E & 7 F & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 8 A & 8 B & 8 C & 8 D & 8 E & 8 F & 90 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & \(9 A\) & \(9 B\) & \(9 C\) & \(9 D\) & \(9 E\) & \(9 F\) & \(A 0\) & \(A 1\) & \(A 2\) & \(A 3\) & \(A 4\) & \(A 5\) & \(A 6\) & \(A 7\) & \(A 8\) \\
\hline & & & & & & & & & & & & & & & & & & A & & & \(\&\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A 9 & AA & AB & AC & AD & AE & AF & B 0 & B 1 & B 2 & B 3 & B 4 & B 5 & B 6 & B 7 & B 8 & B 9 & BA & BB & BC & BD & BE & BF & C 0 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline C 1 & C 2 & C 3 & C 4 & C 5 & C 6 & C 7 & C 8 & C 9 & CA & CB & CC & CD & CE & CF & D 0 & D 1 & D 2 & D 3 & D 4 & D 5 & D 6 & D 7 & D 8 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & X & Y & 1 & S & T & U & V & W & I & \(\mathbf{~}\) & \(\%\) & \(*\) &. & \(=\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline D 9 & DA & DB & DC & DD & DE & DF & E 0 & E 1 & E 2 & E 3 & E 4 & E 5 & E 6 & E 7 & E 8 & E 9 & EA & EB & EC & ED & EE & EF & F 0 \\
\hline J & K & L & M & N & O & P & O & R & - & Z & C & A & B & C & D & E & F & G & H & I & \(\mathrm{+}\) & . & C \\
\hline
\end{tabular}

Figure 1-88. Printer Translate Table for MCS: QN Arrangement; Count Length F0 (Hex)


\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & \(3 A\) & \(3 B\) & \(3 C\) & \(3 D\) & \(3 E\) & \(3 F\) & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 49 & 4 A & 4 B & 4 C & 4 D & 4 E & 4 F & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 5 A & 5 B & 5 C & 5 D & 5 E & 5 F & 60 \\
\hline & & & & & & & & & & & & & & & & & & & & & 1 & \(:\) & - \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & \(6 A\) & \(6 B\) & \(6 C\) & 6 D & 6 E & 6 F & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 79 & 7 A & 7 B & 7 C & 7 D & 7 E & 7 F & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 8 A & 8 B & 8 C & 8 D & 8 E & 8 F & 90 \\
\hline & & & & & & & & & & & & & & & & & & & & & \(<\) & \(;\) & 7 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & \(9 A\) & \(9 B\) & \(9 C\) & \(9 D\) & \(9 E\) & \(9 F\) & \(A 0\) & \(A 1\) & \(A 2\) & \(A 3\) & \(A 4\) & \(A 5\) & \(A 6\) & \(A 7\) & \(A 8\) \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A 9 & AA & AB & AC & AD & AE & AF & B 0 & B 1 & B 2 & B 3 & B 4 & B 5 & B 6 & B 7 & B 8 & B 9 & BA & BB & BC & BD & BE & BF & C 0 \\
\hline & & & & & & & & & & & & & & & & & & & & & 6 & \(?\) & \(>\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline C 1 & C 2 & C 3 & C 4 & C 5 & C 6 & C 7 & C 8 & C 9 & CA & CB & CC & CD & CE & CF & D 0 & D 1 & D 2 & D 3 & D 4 & D 5 & D 6 & D 7 & D 8 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & \(\#\) & \(@\) & 1 & S & T & U & V & W & X & Y & Z & \& &. & \(\%\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline D9 & DA & DB & DC & DD & DE & DF & E 0 & E 1 & E 2 & E 3 & E 4 & E 5 & E 6 & E 7 & E 8 & E 9 & EA & EB & EC & ED & EE & EF & F 0 \\
\hline J & K & L & M & N & O & P & Q & R & - & \(\$\) & \(*\) & A & B & C & D & E & F & G & H & I & O & + & ( \\
\hline
\end{tabular}

Figure 1-89. Printer Translate Table for MCS: QNC Arrangement; Count Length F0 (Hex)
| da 7000
140FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF|
, FFFF FFFF \(\operatorname{FFFF}\) FFFF FFFF \(\operatorname{FFFF}\) FFFF FFFF,
, FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF,
OOFF FFFF FFFF FFFF FFFF FFEF A3E4 EEFF,
\({ }^{1}\) D3FF FFFF FFFF FFFF FFFF FFD5 D6F0 FFFF
IE2CD FFFF FFFF FFFF FFFF FFD7 43 FF FFFF
IFFFF FFFF FFFF FFFF FFFF FF73 D413 D8FF
| FFFFF ffff ffff ffff frff ffff ffff ffff \({ }^{1}\)
| FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 1
I FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
, FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF,
, FFE5 E6E7 E8E9 EAEB ECED FFFF FFFF FFFF,
, FFD9 DADB DCDD E0E1 FFFF FFFF FFFF FFFF,
1FFFF CECF DOD 1 D2CB CCE3 FFFF FFFF FFFF I
1 CAC1 C2C3 C4C5 C6C7 C8C9_FFFF_FFFF_FFFF,

Graphic

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 79 & 7 A & 7 B & 7 C & 7 D & 7 E & 7 F & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 8 A & 8 B & 8 C & 8 D & 8 E & 8 F & 90 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & \(9 A\) & \(9 B\) & \(9 C\) & \(9 D\) & \(9 E\) & \(9 F\) & \(A 0\) & \(A 1\) & \(A 2\) & \(A 3\) & \(A 4\) & \(A 5\) & \(A 6\) & \(A 7\) & \(A 8\) \\
\hline & & & & & & & & & & & & & & & & & & 口 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline A 9 & AA & AB & AC & AD & AE & AF & B 0 & B 1 & B 2 & B 3 & B 4 & B 5 & B 6 & B 7 & B 8 & B 9 & BA & BB & BC & BD & BE & BF & C \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline C 1 & C 2 & C 3 & C 4 & C 5 & C 6 & C 7 & C 8 & C 9 & CA & CB & CC & CD & CE & CF & D 0 & D 1 & D 2 & D 3 & D 4 & D 5 & D 6 & D 7 & D 8 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & X & Y & 1 & S & T & U & V & W & \(\&\) & \(@\) & \(\$\) & \(*\) &. & \(=\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline D 9 & DA & DB & DC & DD & DE & DF & E & E 1 & E 2 & E 3 & E 4 & E & E 6 & E 7 & E 8 & E 9 & EA & EB & EC & ED & EE & EF & F 0 \\
\hline J & K & L & M & N & O & P & Q & R & - & Z & I & A & B & C & D & E & F & G & H & I & + & C & C \\
\hline
\end{tabular}

Figure 1-90. Printer Translate Table fcr MCS: RN Arrangement; Count Length F0 (Hex)

\section*{da 7000}

40FF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
OOFF FFFF FFFF FFFF FFFF EEA8 FOE7 CAEA
A7FF FFFF FFFF FFFF FFFF ECB3 B4E8 EDFF
BEA9 FFFF FFFF FFFF FFFF FFB2 EFFF FFEB
FFFF FFFF FFFF FFFF FFFF COFF E5E6 FFBF
FFCB CCCD CECF D0D1 D2D3 FFFF FFFF FFFF
FFD4 D5D6 D7D8 D9DA DBDC FFFF FFFF FFFF
FFFF DDDE DEF0 E1E2 E3E4 FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFE9
FFC1 C2C3 C4C5 C6C7 C8C9 FFFF FFFF FFFF
FFB5 B6B7 B8B9 BABB BCBD FFFF FFFF FFFF
FFFF AAAB ACAD AEAF B0B1 FFFF FFFF FFFF
A69D 9E9F A0A1 A2A3 A4A5 FFFF FFFF FFFF

Graphic

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 19 & 1 A & 1 B & 1 C & 1 D & 1 E & 1 F & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 2 A & 2 B & 2 C & 2 D & 2 E & 2 F & 30 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & \(3 A\) & \(3 B\) & \(3 C\) & \(3 D\) & \(3 E\) & \(3 F\) & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 49 & 4 A & 4 B & 4 C & 4 D & 4 E & 4 F & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 5 A & 5 B & 5 C & 5 D & 5 E & 5 F & 60 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & \(6 A\) & \(6 B\) & 6 C & 6 D & 6 E & 6 F & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 79 & 7 A & 7 B & 7 C & 7 D & 7 E & 7 F & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 8 A & 8 B & 8 C & 8 D & 8 E & 8 F & 90 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 991 & \(9 A\) & \(9 B\) & 9 C & 9 D & 9 E & 9 F & A 0 & A 1 & A 2 & A 3 & A 4 & A 5 & A 6 & A 7 & A 8 \\
\hline & & & & & & & & & & & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & \(\&\) &. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A9 & AA & \(A B\) & AC & AD & AE & AF & B0 & B1 & B2 & B3 & B4 & B5 & B6 & B7 & B8 & B9 & BA & BB & BC & BD & BE & BF & C0 \\
\hline / & S & T & U & V & W & X & Y & Z & , & \$ & * & J & K & L & M & N & 0 & P & Q & R & - & " & . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline C 1 & C 2 & C 3 & C 4 & C 5 & C 6 & C 7 & C 8 & C 9 & CA & CB & CC & CD & CE & CF & D 0 & D 1 & D 2 & D 3 & D 4 & D 5 & D 6 & D 7 & D 8 \\
\hline A & B & C & D & D & F & G & H & I & + & a & b & c & d & e & f & g & h & i & j & k & l & m & n \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline D9 & DA & DB & DC & DD & DE & DF & E0 & E1 & E2 & E3 & E4 & E5 & E6 & E7 & E8 & E9 & EA & EB & EC & ED & EE & EF & F0 \\
\hline - & \(p\) & q & r & s & t & \(u\) & v & w & x & V & z & @ & & 1 & ) & - & 1 & ? & ! & , & \(\downarrow\) & \% & \(\square\) \\
\hline
\end{tabular}

Figure 1-91. Printer Translate Table for MCS: SN Arrangement; Count Length F0 (Hex)


Graphic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{24}{|l|}{Graphic Position Code} \\
\hline \(\rightarrow 01\) & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & OA & OB & OC & OD & OE & OF & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline \(\rightarrow 1\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & = & . & 1 & S & T & U & V & W & x & Y & z & & \# & \& \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 19 & 1A & 18 & 1C & 1D & 1 E & 1F & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 2A & 2B & 2C & 2D & 2E & 2 F & 30 \\
\hline J & K & L & M & N & 0 & P & 0 & R & - & " & : & A & B & c & D & E & F & G & H & 1 & + & a & b \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & \(3 A\) & \(3 B\) & \(3 C\) & \(3 D\) & \(3 E\) & \(3 F\) & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 \\
\hline c & d & e & f & g & h & i & i & k & I & m & n & o & p & q & r & s & t & u & v & w & x & y & z \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 49 & 4 A & 4 B & 4 C & 4 D & 4 E & 4 F & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 5 A & 5 B & 5 C & 5 D & 5 E & 5 F & 60 \\
\hline\(@\) & \(\cdot\) & \(?\) & \(:\) & \(\pm\) & \(!\) & \(\$\) & \(*\) & \(\%\) & \(\square\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & - & + & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 6 A & 6 B & 6 C & 6 D & 6 E & 6 F & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 \\
\hline\(\circ\) & - & 1 & 1 & \(\neq\) & + & \(>\) & \(<\) & \(\leq\) & \(\geq\) & \(\varnothing\) & - & {\([\)} & \(]\) & \(\}\) & \(\{\) & \(\llcorner\) & \(\perp\) & \(\Gamma\) & 7 & \(\bullet\) & - & - & 1 \\
\hline
\end{tabular}

Figure 1-92. Printer Translate Table for MCS: TN Arrangement; Count Length 78 (Hex)



\section*{Graphic}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 19 & 1 A & 1 B & 1 C & 1 D & 1 E & 1 F & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 2 A & 2 B & 2 C & 2 D & 2 E & 2 F & 30 \\
\hline L & M & N & O & P & Q & R & \({ }^{*}\) & \(\$\) & S & T & U & V & W & X & Y & & & & & & & & \\
\hline
\end{tabular}

Figure 1-93. Printer Translate Table for MCS: XN Arrangement; Count Length 28 (Hex)


Graphic

Ida 7000
| 205 E 5 F 60616263646566 FF78 FFFF FFFFl IFF67 6869 6A6B 6C6D 6E6F FF51 76FF FFFF
| 50FF 5C5D 707172737475 FF77 FFFF FFFFI
| 5 B5 2535455565758 595A FF4F FFFF FFFFI
1005E 5F60 616263646566 FF78 FFFF FFFFI
| FF67 6869 6A6B 6C6D 6E6F FF51 76FF FFFF
150FF 5C5D 707172737475 FF77 FFFF FFFF
, 5B52 535455565758 595A FF4F FFFF FFFF
005E 5F60 616263646566 FF78 FFFF FFFF
\({ }^{1}\) FF67 6869 6A6B 6C6D 6E6F FF51 76FF FFFFI
'50FF 5C5D 707172737475 FF77 FFFF FFFFI
| 5 B5 2535455565758 595A FF4F FFFF FFFFI
\({ }^{\prime}\) 005E 5 F60 616263646566 FF78 FFFF FFFFI
IFF67 6869 6A6B 6C6D 6E6F FF51 76FF FFFFI
| 50FF 5C5D 707172737475 FF77 FFFF FFFFI
| 5 B52 5354 5556 5758 595A FF4F FFFF FFFFI (Folded)

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 19 & 1 A & 1 B & 1 C & 1 D & 1 E & 1 F & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 2 A & 2 B & 2 C & 2 D & 2 E & 2 F & 30 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & \(3 A\) & \(3 B\) & \(3 C\) & \(3 D\) & \(3 E\) & \(3 F\) & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 49 & 4 A & 4 B & 4 C & 4 D & 4 E & 4 F & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 5 A & 5 B & 5 C & 5 D & 5 E & 5 F & 60 \\
\hline & & & & & & \(\#\) & - & \(\$\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & S & T & A & B & C \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 6 A & 6 B & 6 C & 6 D & 6 E & 6 F & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 \\
\hline D & E & F & G & H & I & J & K & L & M & N & O & P & Q & R & U & V & W & X & Y & Z & * & , & - \\
\hline
\end{tabular}

Figure 1-94. Printer Translate Table for MCS: YN Arrangement; Count Length 78 (Hex)


Figure 1-95. 1403 UCW Forrat


Figure 1-96. Integrated File Commands
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ TIC Command Code } \\
\hline Decimal & Hexadecimal & Binary \\
\hline\(X 8\) & \(X 8\) & \(X \times X \times 1000\) \\
\hline Positions Marked " \(X\) " are Ignored \\
\hline
\end{tabular}

Figure 1-97. \(2311 / D A C\) Cperaticn Ccde fcr TIC Command
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ No-Operation Command Code } \\
\hline Decimal & Hexadecimal & Binary \\
\hline 03 & 03 & 00000011 \\
\hline
\end{tabular}

Figure 1-98. 2311/DAC Operation Code for No-Op Comma nd
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Recalibrate Command Code } \\
\hline Decimal & Hexadecimal & Binary \\
19 & 13 & 00010011 \\
\hline
\end{tabular}

Figure 1-99. 2311/DAC Operation Code for Recalibrate Command
\begin{tabular}{|c|c|l|}
\hline \multicolumn{3}{|c|}{ Read IPL Command Code } \\
\hline Decimal & Hexadecimal & Binary \\
\hline 02 & 02 & 00000010 \\
\hline
\end{tabular}

Figure 1-100. 2311/DAC Read IPL Command code

\begin{tabular}{|c|c|c|}
\multicolumn{3}{|c|}{ Set File Mask Command Code } \\
\hline Decimal & Hexadecimal & Binary \\
\hline 31 & \(1 F\) & 00011111 \\
\hline
\end{tabular}


For the 2311, bits \(2,5,6\) and 7 of the mask must be zero. If these bits are not zero, the mask is considered to be invalid and a unit check signal is generated. A subsequent sense command indicates command reject.
Figure 1-101. 2311/DAC Set File Mask Command
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{ Command } & \multicolumn{3}{|c|}{ Seek Command Code } \\
\cline { 2 - 4 } & Decimal & Hexadecimal & Binary \\
\hline Seek & 07 & 07 & 00000111 \\
Seek Cylinder & 11 & 08 & 00001011 \\
Seek Head & 27 & \(1 B\) & 00011011 \\
\hline
\end{tabular}

Figure 1-102. 2311/DAC operaticn Codes for Seek Commands
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & Byte 0 & Byte 1 & Byte 2 & Byte 3 & Byte 4 & Byte 5 \\
\hline Binary & 00000000 & 00000000 & 00000000 & \begin{tabular}{c}
00000000 \\
to \\
11001010
\end{tabular} & 00000000 & \begin{tabular}{c}
00000000 \\
to \\
00001001
\end{tabular} \\
\hline \begin{tabular}{l} 
Hexadecimal \\
Equivalent
\end{tabular} & 00 & 00 & 00 & \begin{tabular}{c}
00 \\
to \\
CA
\end{tabular} & 00 & \begin{tabular}{c}
00 \\
to \\
09
\end{tabular} \\
\hline
\end{tabular}

Figure 1-103. 2311/DAC 6-Byte Seek Commands

Space Count Command Code
\begin{tabular}{|c|c|c|}
\hline Decimal & Hexadecimal & Binary \\
\hline 15 & OF & 00001111 \\
\hline
\end{tabular}

Figure 1-104. 2311/DAC Operation Code for Space Count Command

Sense I/O Command Code
\begin{tabular}{|c|c|c|}
\hline Decimal & Hexadecimal & Binary \\
\hline 04 & 04 & 00000100 \\
\hline
\end{tabular}

Figure 1-105. 2311/DAC operation code for Sense Cormand
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Read R0 Command Code } \\
\hline Decimal & Hexadecimal & Binary \\
\hline 22 & 16 & 00010110 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Read R0 Command Code Multiple-Track } \\
\hline Decimal & Hexadecimal & Binary \\
\hline 150 & 96 & 10010110 \\
\hline
\end{tabular}

Figure 1-106. 2311/DAC Read Track Descriftor Record (RO) Command Codes
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Read HA Command Code } \\
\hline Decimal & Hexadecimal & Binary \\
\hline 26 & 1 A & 00011010 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Read HA Command Code Multiple-Track } \\
\hline Decimal & Hexadecimal & Binary \\
\hline 154 & \(9 A\) & 10011010 \\
\hline
\end{tabular}

Figure 1-107. 2311/DAC Read Home Address Command Codes
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Read Count Command Code } \\
\hline Decimal & Hexadecimal & Binary \\
\hline 18 & 12 & 00010010 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Read Count Command Code, Multiple-Track } \\
\hline Decimal & Hexadecimal & Binary \\
\hline 146 & 92 & 10010010 \\
\hline
\end{tabular}

Figure 1-108. 2311/DAC Read Count Command codes

Read Data
Read Key and Data
Command Code
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{ Read Data Command Codes } & \multicolumn{3}{|c|}{} \\
\cline { 2 - 4 } & Decimal & Hexadecimal & Binary \\
\hline Read Data & 06 & 06 & 00000110 \\
Read Key \& Data & 14 & \(0 E\) & 00001110 \\
Read Count, Key \& Data & 30 & \(1 E\) & 00011110 \\
& & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Read Data Command Codes, Multiple Track} \\
\hline & Decimal & Hexadecimal & Binary \\
\hline Read Data & 134 & 86 & 10000110 \\
\hline Read Key \& Date & 142 & 8 E & 10001110 \\
\hline Read Count, Key \& Data & 158 & 9 E & 10011110 \\
\hline
\end{tabular}

Figure 1-109. 2311-DAC Read Data, Read Key Data, and Read Count Key Data Command Codes
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Write Data Command Codes } \\
\hline & Decimal & Hexadecimal & Binary \\
\cline { 2 - 4 } & 05 & 05 & 00000101 \\
Write Data & 05 & 00001101 \\
Write Key \& Data & 13 & \(0 D\) & \\
\hline
\end{tabular}


Figure 1-110. 2311/DAC Write Data and Write Key and Data Command codes


Figure 1-111. 2311/DAC Write Home Address Command Code
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ Sense Byte 0 } & \multicolumn{1}{|c|}{ Sense Byte 1 } & \multicolumn{1}{|c|}{ Sense Byte 2 } & Sense Byte 3 \\
\hline Bit 0 & Command Reject & \begin{tabular}{l} 
Data Check in Count \\
Field
\end{tabular} & Unsafe & Ready \\
\hline Bit 1 & Intervention Required & Track Overrun & & On Line \\
\hline Bit 2 & & End-of-Cylinder & & Unsafe \\
\hline Bit 3 & Equipment Check & Invalid Sequence & Selected Status & \\
\hline Bit 4 & Data Check & No Record Found & Cyclic-Code Check & On Line \\
\hline Bit 5 & Overrun & File Protected & Unselected File Status & End of Cylinder \\
\hline Bit 6 & Track-Condition Check & Missing Address Marker & & \\
\hline Bit 7 & Seek Check & & & Seek Incomplete \\
\hline
\end{tabular}

Figure 1-112. 2311/DAC Sense Byte Summary


Figure 1-115. 2311/DAC Identifier (ID)

Figure 1-113. 2311/DAC Operation Ccdes for Search Home Address Equal Command
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Command } & \multicolumn{3}{|c|}{ Search ID Command Code } \\
\cline { 2 - 4 } & Decimal & Hexadecimal & Binary \\
\hline \begin{tabular}{c} 
Search ID Equal \\
Search ID High
\end{tabular} & 49 & 31 & 00110001 \\
\begin{tabular}{c} 
Search ID Equal \\
or High
\end{tabular} & 81 & 51 & 01010001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Command } & \multicolumn{3}{|c|}{ Search ID Multipule Track Command Code } \\
\cline { 2 - 4 } & Decimal & Hexadecimal & Binary \\
\hline \begin{tabular}{c} 
Search ID Equal \\
Search ID High \\
Search ID Equal \\
or High
\end{tabular} & 177 & B1 & 10110001 \\
\hline
\end{tabular}

Figure 1-114. 2311/DAC Search ID Command Codes
\begin{tabular}{|c|c|c|c|}
\hline Command & Command Sequence & Initial Field and Zone State & Field and Zone State at End of Command \\
\hline Read Count, Key and Data Read Key and Data & \begin{tabular}{l}
None \\
None \\
After Search ID
\end{tabular} & \[
\begin{aligned}
& \mathrm{C} 1 \\
& \mathrm{C} 1 \\
& \mathrm{C} 4
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { D4 } \\
& \text { D4 } \\
& \text { D4 } \\
& \hline
\end{aligned}
\] \\
\hline Read Data & \begin{tabular}{l}
None \\
After Search ID \\
After Search Key
\end{tabular} & \[
\begin{aligned}
& \mathrm{C} 1 \\
& \mathrm{C4} \\
& \mathrm{~K} 4
\end{aligned}
\] & \begin{tabular}{l}
D4 \\
D4
D4
\end{tabular} \\
\hline Write Count, Key and Data & \begin{tabular}{l}
Search Equal ID \\
Search Equal Key \\
Write RO \\
Write Count, Key and Data
\end{tabular} & \[
\begin{aligned}
& \text { C4 } \\
& \text { K4 } \\
& \text { D4 } \\
& \text { D4 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { D4 } \\
& \text { D4 } \\
& \text { D4 } \\
& \text { D4 }
\end{aligned}
\] \\
\hline Write Key and Data & Search Equal ID & C4 & D4 \\
\hline Write Data & \begin{tabular}{l}
Search Equal ID \\
Search Equal Key
\end{tabular} & \[
\begin{aligned}
& \mathrm{C} 4 \\
& \mathrm{~K} 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { D4 } \\
& \text { D4 }
\end{aligned}
\] \\
\hline Search ID & None & C1 & C4 \\
\hline Search Key & \begin{tabular}{l}
None \\
After Read or Search ID
\end{tabular} & \[
\begin{aligned}
& \mathrm{C} 1 \\
& \mathrm{C} 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { K4 } \\
& \text { K4 }
\end{aligned}
\] \\
\hline Search Key and Data & \begin{tabular}{l}
None \\
After Read or Search ID
\end{tabular} & \[
\begin{aligned}
& \mathrm{C} 1 \\
& \mathrm{C} 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { D4 } \\
& \text { D4 }
\end{aligned}
\] \\
\hline Search Home Address & None & HA & H4 \\
\hline Read R0 & \begin{tabular}{l}
None \\
After Read or Search Home Address
\end{tabular} & \[
\begin{aligned}
& \mathrm{HA} \\
& \mathrm{H} 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { D4 } \\
& \text { D4 }
\end{aligned}
\] \\
\hline Write R0 & \begin{tabular}{l}
Write Home Address \\
Search Equal Home Address
\end{tabular} & \[
\begin{aligned}
& \mathrm{H} 4 \\
& \mathrm{H} 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { D4 } \\
& \text { D4 }
\end{aligned}
\] \\
\hline Read Home Address & None & HA & H4 \\
\hline Write Home Address & None & HA & H4 \\
\hline Read Initial Program Load & None & C1 & D4 \\
\hline Read Count & None & C1 & C4 \\
\hline Erase & \begin{tabular}{l}
Search Equal ID \\
Search Equal Key \\
Write RO \\
Write Count, Key and Data
\end{tabular} & \[
\begin{aligned}
& \text { C4 } \\
& \text { K4 } \\
& \text { D4 } \\
& \text { D4 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { D4 } \\
& \hline
\end{aligned}
\] \\
\hline No Operation & None & \multicolumn{2}{|l|}{Reset Condition} \\
\hline
\end{tabular}

Figure 1-116. \(2311 / D A C\) Track Orientation Field and Zone State Summary
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Record & \multicolumn{5}{|c|}{HA} & & \multicolumn{11}{|c|}{Ro} & \multicolumn{13}{|c|}{\(\mathrm{R}_{\mathrm{n}}\)} & \\
\hline Field & \multicolumn{5}{|c|}{H} & \multicolumn{4}{|c|}{C} & \multicolumn{4}{|c|}{K} & \multicolumn{4}{|c|}{D} & \multicolumn{6}{|c|}{c} & \multicolumn{4}{|c|}{K} & \multicolumn{4}{|c|}{D} \\
\hline Zone & A & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & A & B & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Field & Definition \\
\hline H & Home-address area (including gaps) \\
\hline C & Count area (including gaps) \\
\hline K & Key area (including gaps) \\
\hline D & Data area (including gaps) \\
\hline Zone & \(\underline{\text { Definition }}\) \\
\hline 1 & Pre-record gap (including address marker) \\
\hline 2 & Record \\
\hline 3 & Cyclic code \\
\hline 4 & Post-record gap \\
\hline A & Constant gap of 12 -ones bytes in the count field, or 28 all-zeros bytes in the home-address field. \\
\hline B & The \(4.9 \%\) variable gap between records. \\
\hline Notes: & \begin{tabular}{l}
The index point immediately precedes the home-address area. \\
* Location of the address marker.
\end{tabular} \\
\hline
\end{tabular}

Figure 1-117. 2311/DAC Track Orientation

* Flags - - In file external register D (FFI)

Op - - In file external register F (FOP)
Note: Unlike UCW's for other I/O attachments, the 2311 UCW is stored in Local Storage, External Registers, and Auxiliary Storage.

Figure 1-118. 2311 UCW Format

\section*{Section 2. Diagnostic Techniques}

This section of the manual describes maintenance concepts, system failure and handling procedures, and maintenance program definitions. The Model 25 Field Engi.neering Maintenance Diagrams Manual (MDM), Y24-3529, contains detailed analysis routines and should be referred to on other than obvious failures requiring minimal diagnosis.

\subsection*{1.16. MAINTENANCE CCNCEPTS}

Microdiagnostic programs are designed to reduce CE diagnostic time by taking advantage of the CPU speed and capability for self-diagnosis through the reloadable control storage feature. The crograms are intended for use:
1. During unscheduled maintenance
2. During scheduled or deferred ma intenance
3. At installation
4. Before and after EC installation.

There are two general types of microdiagnostic programs:
a. Resident
b. Nonresident.

The primary repair strategy for both types of programs is to replace an SLT card or cards shown on a fault list or logged out on the Console Printer-Keytoard ( \(\mathrm{PR}-\mathrm{KK}\) ) .

In addition, looping capabilities are designed into the programs for scofing and other diagnostic procedures.

The entire strategy has been condensed into diagnostic technique flow diagrams for easy use by the CE and is included in the Mcdel 25 Maintenance Diagram Manual. On other than obvious failures requiring minimal diagnosis, the CE should refer to the diagrams and execute the appropriate section or sections of these programs.

Where the cause of failure cannot be located by microdiagnostic programs (such as in a channel attached I/O device) DMA4 and the associated diagnostic programs already in existence will be used by the CE. The Model 25 macrodiagnostic package is as follows.
```

3020 DMA4 Diagnostic Monitor
310A Message Editor
E108 DMA4 Expansion Section
338F Meter Test
34E1 Direct Control
FFFO Disk Initializer
3FE1 SEREP
FOFE Disk Utility

```
3FCZ SYt-25/30
F061 FRIEND
C675-C67A File Function
C678- File Scan
C67C,C67D 2311 Diagncstic Text

All other monitor-controlled macrodiagnostics presently released for I/O devices that can ke attached to the Model 25 standard interface channel will be functional on the Model 25. These decks and documentation will be shipped from the plant of control for the I/O control unit for device.

Failures not detected by either the micro or macrodiagnostic frograms must be located ky use of the system environment program SYS-M30-B or fossibly the customer problem program.

\section*{1. 16.1 MAL FUNCTION INDICATIONS}
a. Customer Problem Program

Malfunctions during execution of the customer problem program are indicated by console lights (see 3.0 System Failure Detection and Handling) and printed logout on the 1052 (see section 1.17.1.2).

Malfunctions detected during execution of resident microdiagnostics cause a stop word or stop loop. These programs are executed automatically
during system reset, CSL and IPL.
b. Nonresident Micro/Macro Diagnostic

\section*{Programs}

Malfunctions are indicated as follows.
1. Nonresident/nonmenit or-cont rolled microprograms cause a stop word or stop loop.
2. Nonresident/monitor-controlled programs provide fault-locating information on the console printer-keyboard.
3. Macroprograms under DMA4 Monitor. Error messages are determined by system configuration and memory size. These messages can be printed on the output printer defined by CE option (1052, 1403, or 1443).
4. System environment (SYS-M30-B) Error message printout is the same as DMA4 monitor.

A successful reset is indicated by:
a. No console check lights.
b. Manual light turns off then on.
c. System light turns on then off.

\subsection*{1.16.2 UNIT IDENTIFICATION}

Standard SLT nomenclature applies to the 2025 cPU.

\subsection*{1.16.3 MAIFUNCTION ISOLATION}

The aim of the Model 25 Diagnostic Program Package (DPP) is to achieve a minimum DUI by high-resolution fault locaticn of an easily replaceatle component. The package provides effective malfunction isolation to the two general types of exposure:
A. Logic - malfunction in the basic CPU, integrated I/O attachments, channel. and CPU features.

Resolution capabilities within the integrated devices are as follows.

2540
1. Hole-count test, read and punch (krush failures),
2. Manual operations, including card transport paths.
3. Stacker select,
4. PFR.

Chnl 1. Check Sel-out wraparound to Sel-in.
2. Test address response.
3. Test I/O; complete initial selection of all pcssible device addresses, section 1.19.7).
4. Single-cycle routine; command to a particular address and loop.

1403 1. Print coil checking
2. Drum pulse response
3. Hydraulic speed
4. Carriage brushes/emitter/ mechanics
5. Hammer fire,
6. Frint quality.

1052 1. Manual intervention section: Function of all keys, End-of-forms contact, Capability of repeatedly printing any key.
2. Dynamic section: Alility to print characters for all tilt/rotate combinations,

End-of-forms contact.
B. 2311 - Resolution is provided by macrodiagnostics.

Hard Core - for malfunctions that would prevent basic CPU functions necessary for execution of resident diagnostics, the following strategy will be used. 1. Power, clock, etc.

Normal CE repair frocedures will be applied using console capabilities, power diagnostic techniques diagram in the maintenance diagram manual, etc.
2. Nemory

A memory diagnostic techniques diagram for diagncsis and repair is provided in the maintenance diagram manual. The capabilities designed into the Model 25 such as SCAN STOR, TEST PATTERN, etc. are used in this strategy.

A nonresident memory microdiagnostic is also provided for CPU with two memory modules.

The recommended sequence for executing the DPP as outlined in the Maintenance Diagrams Manual provides for a building block approach to locating the failure. Each program basically builds on the successful execution of the previous lower level program.

\subsection*{1.16.4 REPAIR}

Repair will generally consist of replacing the failing component (usually an SIT card) from on site or branch office stock.

\subsection*{1.16.5 REPAIR VERIFICATION}

The micro- or macro-program where the failure was diagnosed should be reexecuted after the repair. Successful execution will ke considered a justification for returning to the customer problem-program.

\subsection*{1.16.6 INTERMITTENT MALFUNCTION}

Intermittent failures as seen by the customer can take one of two forms:
1. The failure is actually a solid hardware defect, but appears intermittent because that area of the logic is called on only to function occasionally.

Microdiagnostic programs will be effective to a high degree on this type of failure kecause by design, they are capable of checking the majority of CPU and integrated I/O attachment logic.
2. The failure is intermittent due to a degraded or marginal component.

The looping capabilities designed into the microdiagnostic frograms will
attack this type of failure effectively by exercising the logic until a pattern can be established.

Other diagnostic capakilities that will also impact intermittent failures are CE Trap (See section 1.18.7) and 1052 Logout (S \(\in \in\) section 1.17.1.3).

\subsection*{1.16.7 PROTECTION OF CONTROL STORAGE, CSL}

Module 0 (first 128 control words) will be protected ky the resident csl routine on all core loads.

Alter control storage from the 1052 will not be operative unless the CE key is on.

The enable control-storage stcre key on the CPU will not \(k \in\) operative unless the CE key is on.

\subsection*{1.17. SYSTEM FAILURE DETECTICN AND HANLL ING}

The objectives of failure detection and handling procedures for the Model 25 are to crovide:
a. Assurance to the customer that the system is functionally operational.
b. Sufficient indication and information to enable the CE to locate the failure rapidly and accurately.

A version of the SEREP program is also provided.

\subsection*{1.17.1 ERRCR HANDIING}

The Model 25 will core to a hard stcp on second error, a second malfunction which occurs before the first malfunction has caused a machine-check interrupt to be taken (Figure 1-119).

There are no special provisions on the Model 25 for continued operation in the presence of a solid malfunction.

Error restart capakilities for such intermittent I/O failures as data checks. punch checks, etc. are provided by the operating system used by the custcmer.

Nonhardware-caused troubles (jams, failures, etc.) are normally nct expected
to result in a customer-reported call. The Model 25 Functional Characteristics Manual. Form A24-3510, provides restart procedures for these situations; also consult the index in this manual for the specific area of interest.

\subsection*{1.17.1.1 Nachine-Check and Channel Control Check}

Any of the following machine-check conditions (if the M-bit of the PSW is on), will cause the corresponding bit to be set in the error register (MC) and initiate the machine-check trap routine:
```

File Control Check
Storage Protect Check
Storage Address Check
Control Word Parity Check
Storage Data Parity Check
ALU Error Latch
A-Reg Parity Check
B-Reg Parity Check

```

The machine-check trap routine stores the following information into program storage starting at hex location 80.

80 - Trap priority register (MMSK)
81 - Branch condition register (BA)
82 - Machine-check register (MC)
83 - Error count*
84-85 - Backup address (address of the microword)
86-87 - Unused
*Bits 1-2 of byte 83 contain the logout code: 00 for machine check or channel control check; or 11 for interface control check.

If none of the 0 through 6 bits of the MMSK register is on (indication that an I/O trap is not in process), the logout area above is printed on the console printer. The machine-check interrupt will then take place.

If an I/O trap is in process (any of the 0 through 6 bits of MMSK register on) when a machine-check trap occurs, the I/O operation involved will be terminated and then the I/C interrupt will take place. The logout area will be printed on the console printer-keyboard before any CPU instructions are executed.


Figure 1-119. Maint Enance Approach

\subsection*{1.17.1.2 Interface Control Check}

When an interface control check is detected on either the multiplexer or selector channel, the following information is stcred in crogram-storage locations 80-87

\section*{(hex).}
\begin{tabular}{|c|c|}
\hline 80 & Trap priority register (MMSK) \\
\hline 81 & Branch conditions register (BA) \\
\hline 82 & Channel branch conditicns register (GS) \\
\hline 83 & Error count* \\
\hline 84 & Channel kranch conditions register (GT) \\
\hline 85 & Channel diagnostic register (GD) \\
\hline 86 & code byte \\
\hline
\end{tabular}

Burst Channel
01XYYYYZ
\(\mathrm{X}=1\) if time out
\(\mathrm{z}=1\) if status trap or chained to CCW.
YYYYY=time out counter bits
Byte Channel
001XnNMZ
XE \(\mathrm{Z}=\) same as kurst channel M=Misc. use

\section*{87 Device address}
*Rits 1-2 of kyte 83 contain the logout code: 00 for machine check or channel control check, or 11 for interface control check.

\subsection*{1.17.1. 31052 Logout}

The 1052 logout is a microprogram-supported function that prints out information contained in the diagnostic logout area of program storage, (locations 80-87, hexadecimal). Existing problem programs are not affected by this logout frovided they do not use this area. The format and contents of the diagnostic logout area are machine dependent. A version of SEREP that acts on this information is available for use on the Model 25.

In general, the function of such macroprograms is provided by the 1052 logout microprogram: Subsequent tc execution of the 1052 logout microprogram, a System/ 360 machine-check or I/O interrupt is initiated. Existing restart frocedures and problem programs that do not act directly on the diagnostic logout area (such as BPS, DOS, OBR/SDR, etc.) are applicable to the Model 25 within the limits of storage size.

The program-storage kyte locaticns and contents of the diagnostic scanout area are given in section 1.17.1.1.

\subsection*{1.17.2 CPU HARDWARE CHECKS}

The setting of the check control switch determines the action taken when a CPU hardware check occurs (see section 1.18).

Checking is provided at the following points; an indicator for the conditions is located on the system ccntrol panel:
1. A-Register Parity Check B-Register Parity Check These checks are not always activated kecause some external registers are set and reset by bit and do not carry parity. In the case cf a byte gated to A or B without parity, the check is disabled. Local-stcrage data is always check \(\in\) d.
2. Storage Address Parity Check A parity check is made on all addresses used to access main storage except on the address after a Branch on Mask word.
3. Storage Data Bus-Out Parity Check

This check is made on all data requested from storage. A control-word check occurs on all machine cycles except during the second cycle of a storage word. A storage data check may occur during the second cycle of a storage contrcl word.
4. ALU Check

Parallel logic is used in the ALU to detect an error between the \(A\) and \(B\) parity checks and the ALU output. Each bit position of ALU (including +6 circuit, complementor and decimal corrector) has two outputs. one output goes to the local store assembler and the system mask register; this output is displayed ky the indicators. The other output goes to the \(\mathrm{Z}=0\) test. Both outputs go to the Earity generator and the ALU check (2-wire check) circuit.
5. Storage Protect Check

This is a parity check on the data out of the storage-protect kuffer (STP1).

\subsection*{1.17.3 CPU MICROPROGRAM CHECKS}

There are some cases during machine operation when a hardware failure that is not detected by hardware checks could occur. In these cases, the microprogram can reach a state from which it must not continue: the microprogram branches to a stop word. The listings will describe the reason for reaching the stof word.

Stop words in Model 25 mode are limited to the system reset diagnostic (BDIA), IPL
routines, and unused control-stcrage lccations.

\subsection*{1.17.4 CPU ATTACHMENT CHECKS}

This section describes sore capabilities for handling check conditions occurring within the integrated I/C attachment devices. For further information, consult the index in this manual for the specific area of interest.

\subsection*{1.17.4.1 2540 Attachment Checks}
1. Overrun--This check occurs when all ten traps that must \(k \in\) completed during each row have not occurred by the time the next row is ready to be read. Priority circuitry ensures that overrun will not occur unless there is a hardware failure.
2. Sync Check--This check ensures that the shift registers receiving data from the 1540 are in synchronism with each ot her.
3. Address Check--This check is cn the address sent to the 2540 for each bit. It checks for a \(2 / 5\) code, and for an address greater than or equal to 90.

Each of these checks will give a unit check to the status byte, with equipment check in the sense information. Hardware checks in the 2540 unit will give the same status and \(s \in n s \in\) information to the program as the 2821. The microprogram interrogates the attachment hardware checks; the 2540 unit checks combines this with the information it may detect itself and places the result in the proper sense bits. The microprogram forms the status and sense informaticn.

\subsection*{1.17.4.2 1403 Attachment Checks}
1. Hammer Check--Equiprent check sense bit. This check is made to determine if each hammer driver that was requested to operate, did operate.
2. Sync Check--Intervention-required sense bit. This check indicates that the chain or train and the printer controls are out of synchronism.
3. Print Buffer Parity Check--Equipment check sense bit. This check is for correct parity on data read from the print buffer while printing a line or when receiving data from the CPU.

The 1403 microprogram interrogates the hardware check information and sets the proper sense and status information. The ricroprogram also checks information for printability when loading the buffer, and signals data check for unprintakle characters. This depends on the information loaded at CSL time into the
module of auxiliary storage used as the print translator, or loaded by the UCS utility program UT048. The 1052 (PR-KB) printouts of the frinter area of auxiliary storage are shown in Section 1.14.

\subsection*{1.17.4.3 1052 Attachment Checks}

The 1052 hardware checks the keyboard data for proper parity. The microprogram detection of a parity error would cause unit-check status and the equipment check sense kit to ke set.

\subsection*{1.17.4.4 2311 Attachment Checks}
1. Data check--unit-check status--data check sense. This check occurs when data read from the file does not generate the proper check character.
2. Overrun--unit-check status--overrun sense. This check occurs when the attachment requires service from the CPU and does not receive it scon enough to keep from losing data or causing improper operation.

The 2311 attachment microprogram checks the hardware signals from the 2311 for errors detected in the unit, interrogates the attachment checks and sets the appropriate status and sense information.

\subsection*{1.17.4.5 Channel Checks}
1. Incorrect Length Check--occurs when the number of lytes contained in the storage areas assigned for the I/O operation is not equal to the number of bytes requested or offered by the I/O device.
2. Program Check--occurs when programming errors are detected by the channel.
3. Protection Check--occurs when the channel attempts to place data in a portion of main storage that is protected for the current operation on the subchannel; or, the protection key associated with the I/O operation does not match the key of the addressed main-storage locaticn, and the protection key is not zero.
4. Channel Data Check--indicates that the channel has detected a parity error in the information transferred to or from main storage during an I/O operation.
5. Channel Control Check--caused by any machine malfunction affecting channel controls. This includes parity errors on CCW and data addresses and parity errors on the contents of the CCW. (Logout is initiated.)
6. Interface Control Check--caused by an invalid signal on the I/O interface. The condition is detected by the channel and usually indicates malfunctioning of an I/O device. (Logout is initiated.)

The channel microprogram is the fath through which all status kytes are set in the CSW. Accesses for sense inf crmation are through the same path as for a read operation to the desired unit.

\subsection*{1.17.5 SYSTEM CHECKS}

\subsection*{1.17.5.1 Power Check}

If any of the dc supplies (except +24 V control voltage) falls below its sensed cutput level, if a circuit kreaker trics, or if a thermal trip occurs, the machine sequences down to its normal power-cff status and the power-check light turns on.

A power-on sequence cannot occur until the power-check light is reset by pressing the power-off key, and by correcting and resetting the condition that caused the Ecwer-off sequence.

\subsection*{1.17.5.2 Iow Temperature}

This light turns on when a temperature below \(96 \pm 5\) degrees is detected at the main stcrage array. When power is turned on initially, this light comes on and remains on until the array is at proper operating temperature (akout two minutes.).

\subsection*{1.17 .6 STATUS BYTES}

Because the integrated attachments present the same status information as did the corresponding System/360 control units, the Mcdel 25 does not introduce any new status byte definitions. The only exception is chaining check (bit 47) which is not used on the Model 25.

\subsection*{1.17.7 EXTERNAL BRANCH CONDITIONS}

The following sections define the external facility bytes for the Model 25 diagncstic microprograms.

\subsection*{1.17.7.1 Integrated Disk Attachment}
```

CHI--COUNTER HIGH IN (for diagncstic
analysis)

```
\begin{tabular}{lllr}
0 & Ctr & Pos & 32.768 \\
1 & Ctr & POS & 16.384 \\
2 & Ctr & PCS & 8,192 \\
3 & Ctr & Pos & 4.096 \\
4 & Ctr & PCS & 2,048 \\
5 & Ctr & POS & 1.024 \\
6 & Ctr & PCS & 512 \\
7 & Ctr & Pos & 256
\end{tabular}
\begin{tabular}{lllr}
\multicolumn{4}{c}{ CLI--COUNTER } \\
analysis) \\
and \\
0 & Ctr & Pos & 128 \\
1 & Ctr & Pos & 64 \\
2 & Ctr & POS & 32 \\
3 & Ctr & Pos & 16 \\
4 & Ctr & Pos & 8 \\
5 & Ctr & Pos & 4 \\
6 & Ctr & Pos & 2 \\
7 & Ctr & Pos & 1
\end{tabular}

SDI--SERIALIZER/DESERIALIZER IN (for diagnostic analysis and comparing of home address ky Model 25 microprogram)
\begin{tabular}{llr}
0 & Read Buffer & 128 \\
1 & Read Buffer & 128 \\
2 & Read Buffer & 64 \\
3 & Read Buffer & 32 \\
4 & Read Buffer & 16 \\
4 & Read Buffer & 8 \\
5 & Read Buffer & 4 \\
6 & Read Buffer & 2 \\
7 & Read Buffer & 1
\end{tabular}

FOB--FILE-CUT BUS (for diagnostic analysis)
\begin{tabular}{|c|c|c|c|}
\hline & Set & Set & Set \\
\hline Ctrl Tag & Cyl Tag & Head Taq & Diff Tag \\
\hline 0 Write Gate & 128 & Forward & Not 128 \\
\hline 1 Read Gate & 64 & Not Used & Not 64 \\
\hline 2 Seek Start & 32 & Not Used & Not 32 \\
\hline 3 Reset Head & 16 & Nct Used & Not 16 \\
\hline 4 Erase Gate & 8 & Head 8 & Not 8 \\
\hline 5 Select Head & 4 & Head 4 & Not 4 \\
\hline 6 Return to 000 & 2 & Head 1 & Not 2 \\
\hline 7 Head Advance & 1 & Head 1 & Not 1 \\
\hline
\end{tabular}

\footnotetext{
DS--Disk Status When Gated with Diagnostic Controls
}

\section*{Gate Diag Addr0}

\section*{WR BUF 128}

WR BUF 64
WR BUF 32
WR BUF 16
WR BUF 8
WR BUF 4
WR BUF 2
WR BUF 1

\section*{Gate_Diag Addr1}

\section*{Test Unit Exec}

RD Op
Erase Cp
Scan Op
space Count Op
HA Op
6 HA or RO Op
7 count op
```

Gate Diag Addr2
Key OF
Data Cp
RO OE
Count or Key or Data Op
count or key Cp
WR CKD Op
Standard Index
Bit Ring Inhikit
Gate Diag Addr3
Cyc Code Pos 1
Cyc Code Pos 16
Cyc Code Pos 17
CC Errer
Unequal Compare
Bit Ring 7
Write Clock Bit
Write Data Bit
Gate Diag Addr4
zone A
Zone B
Zone 1
Zone 2
Zone 3
Zone 4
HA Field
Count Field
Gate Diaq Addr5
Key Field
Dat Field
Flag Bit 0
Flag Bit 6
Flag Bit 7
Counter Decode 0
Counter Decode 1
Counter Decode 2
Gate Diag Addr6
Counter Decode 3
Counter Decode 4
Counter Decode 5
Counter Decode 6
Counter Decode 7
Counter Decode 8
Counter Decode 9
Counter $=000$

```

\subsection*{1.17.7.2 Integrated 2540 Attachment}

RPD \(=\mathrm{K}\) (CS Decod \(\epsilon\) )
R/P Diagnostic Latch
    R/P Diagnostic Singleshct
    R/P Diagnostic Single Cycle
    R/P Reset Shift Register
    R/P Diagnostic Attachment Reset
    Unused
    Un used
    Unused
    RPD1--R/P Diag. Cond 1
- 4 R/P Tens AR A-E
    Punch Addr Check
    Punch Overrun Latch
    Punch Sync Check Iatch
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{GB-Channel Conditions Register} \\
\hline 0 & Data Chain Latch \\
\hline 1 & Channel Identification Latch \\
\hline 2 & Burst Latch \\
\hline 3 & Set Buffered Device Latch or Reset Channel Parity-Error Latch \\
\hline 4 & Channel Diagnostic Latch \\
\hline 5 & Channel-1 Interruption Latch \\
\hline 6 & Spare \\
\hline 7 & Suppress Cut Control Latch \\
\hline \multicolumn{2}{|l|}{GD-Channel Diagnostic Register} \\
\hline 0 & Operational Cut \\
\hline 1 & Service Cut \\
\hline 2 & Address Cut \\
\hline 3 & Command Out \\
\hline 4 & 0 \\
\hline 5 & Select Out \\
\hline 6 & 0 \\
\hline 7 & Suppress Out \\
\hline \multicolumn{2}{|l|}{GS - Channel Branch Conditions} \\
\hline 0 & Data Chain Request Iatch \\
\hline 1 & Buffered Device Latch \\
\hline 2 & Burst Iatch \\
\hline 3 & Channel Parity-Error Latch \\
\hline 4 & Initial Select Iatch \\
\hline 5 & Channel 1 Interrupt Buffer Latch \\
\hline 6 & Spare \\
\hline 7 & Suppress Control Iatch \\
\hline
\end{tabular}

GT--Channel Branch Conditions
0 Address In
1 Not Select In
2 Service In
3 Status In
4 Operational In
5 Not Request In
6 Channel Identification Latch
7 Channel Diagnostic Latch

Bits 0-5 of Sense Byte 1: These bits are common to all devices and are described in the System/360 Principles of Operation.
Form A22-6821.

\subsection*{1.18 SYSTEM CONTROL PANEL}

This section describes the controls and indicators on the system control panel that are unique to the Model 25 and or fundamental to maintenance strategy (Figures 1-120 and 1-121). Other controls and functions are explained in the IBM System/360 Model 25 FETOM, Form Y24-3527.




Switch A For 16K Systems


Switch A for 24 K and 32 K Systems

Figure 1-121. Control Panel Switches \(A, ~ B, ~ C, ~ a n d ~ D\)

\subsection*{1.18.1 CPU STATUS INDICATORS}

\subsection*{1.18.1.1 Address Natch}

The address match indicator is turned on by:
a. Address Match Latch - when the mode switch is in AS ADR STOP or MS ADR STOP. The CFU clock stops when the address match latch cores cn. It is reset at T1 time.
b. SAR Delayed Stop Match Latch - when the mode switch is in SAR DLY STOP. The instruction in progress is completed and the cFu enters a soft-stor state; the indicator is reset when the start key is pressed (clock start pulse).

\subsection*{1.18.1.2 Alter/Disclay PR-KB}

Pressing the PR-KR alter display key turns this light on to indicate that the alter/display microprogram is waiting for an operator response on the 1052
printer-keyboard. This light is turned off by pressing the start key, cr after the operator has completed the required keyboard entry.

Control storage cannot be altered from the 1052 unless the ce key is on.

\subsection*{1.18.1.3 CSI}

Pressing the control stcrage load key turns on this light and starts the CSL
microprogram. The indicator is reset when the CSL routine is completed.

\subsection*{1.18.1.4 Allow Manual}

The ALLOW MAN light \(\mathrm{t} \in\) ing on indicates that storage can be manually displayed or altered from the CEU control panel.

The NCDE SW must ke in the AS LATA or MS DATA positions and the CPU is not stopped after the first cycle of a storage word.

\subsection*{1.18.1.5 Trap}

When any TRAP is allowed to occur the trap light is turned on.
1.18.1.6 Clock Off

The CLOCK CFF light is turned on when the CPU clock is not running.
1.18.2 SYSTEM CHECKS

\subsection*{1.18.2.1 Low Temperature}

The LOW TEMP light indicates that the system is not yet up to minimum core-storage array operating temperature ( \(96 \mathrm{~F} \pm 5 \mathrm{~F}\) ). When system power is turned on, this indicator lights and stays on until the specified operating range is reached (approximately 2 minutes, defending upon room temperature).

\subsection*{1.18.2.2 Power Check}

The PWR CHK light turns on if any dc supply falls below its sensed output level (and/or circuit kreaker or thermal senscr trip). The machine sequences down to its normal power-off status.

Power restart cannot be activated until the power-check light is reset by pressing the power-off switch and/or resetting the tripped circuit kreaker or manually oferating the thermal-reset switch. This must be done ky a customer engineer.

If no circuit kreaker is tripped or no thermal indicator is set in the fower tcwer, the reason for the power failure is a sensed low output from any of the dc supplies (except the 24 V dc contrcl vcltage).

The power check light also turns on if any of the fuses F30 through F35 are open. These fuses are in the 1403 attachment. The machine will not power-off under this conditicn. The light will go off when the open fuse is replaced.

\subsection*{1.18.2.3 PCH (Punch)}

The PCH indicator is turned on for the following error conditicns.
- Hole-count check
- Address check
- Shift register sync check
- Overrun
- PFR validity
- Punch not ready at start I/O of a command other than sense or No-Op.

\subsection*{1.18.2.4 RDR (Reader)}

The RDR indicator is turned on for the following error conditions.
- Hole-count check
- Address check
- Shift register sync check
- Overrun
- Validity check
- Reader not ready at start I/O of a command other than sense or No-Op.

\subsection*{1.18.2.5 PRT (Printer)}

The PRT indicator is turned on for the following error conditicns.
- Print hammer check
- PIB parity check
- Printer not ready at start I/O of a command other than sense or No-Op.
- Coil-protect check bypass switch in 1403 CE area is on.
1.18.2.6 CHNL (Channe1)

The CHNL indicator is turned on for a parity check on bus in cr a microprogram-detected channel error.

\subsection*{1.18.2.7 File}

The FIIE indicator is turned on for a machine-check trap or a parity error detected during file oceration.

\subsection*{1.18.3 CPU CHECKS}

\subsection*{1.18.3.1 Control hord}

The CTRI WORD light indicates that the control word currently in the c-register has bad parity when read from the storage data register.

\subsection*{1.18.3.2 Storage Data}

The STOR DATA light indicates that the information contained in the storage data register contains bad parity.

\subsection*{1.18.3.3 CSI Check}

This light is an indication that the checksum microroutine has detected a
difference between the checksum control wcrd and the contents of control stcrage.
1.18.4 OPERATOR'S CONTROL PANEL (OCP) INDICATORS
1.18.4-1 Power on Key

This key is backlighted in white tc indicate that the system power-on sequence is completed. If the key glows fink, the Ecwer-on cr power-off sequence cannot be completed because of a malfunction in a fower supely or an I/C unit.

\subsection*{1.18.4.2 Pluggable Indicators}

Refer tc IBM System 360 Model 25 External Field Definitions, Form Z29-2176.

\subsection*{1.18.5 REYS}

Only those keys that have special significance in the maintenance strategy are discussed here. Refer to the Mcdel 25 FETQM. Form Y24-3527 for a complete description of the console keys.

\subsection*{1.18.5.1 Control Storage Load}

This key is used to initialize the system when:
1. Operating modes are to be changed (as from Model 25 mode to 1400 mode),
2. The contents of control storage have been affected by a syster failure, cr
3. The system is keing returned to the customer after extensive service (such as enginetring change activity.)

\subsection*{1.18.5.2 PSW ReStart}

This key is used to restart an application using the IPL PSW, rather than the current PSW used when the system-reset key is pressed.

\subsection*{1.18.5.3 Control Address Set}

This key must ke pressed to allow the CE to restart the microprogram at an address cther than that specified ky the normal control-storage addressing means. The CTRL ADR SET key is operational only when the CPU clock is off.

\subsection*{1.18.5.4 Enable Control Storage Store}

This switch must \(k \in\) pressed and held during a store into the control storage area of core storage so that the control-storage store circuitry remains activated. The storage operation is successful when the new information is displayed in the byte-0 and byte-1 indicators.

This key is effective cnly when the use-meter key switch is in the CE position.

\subsection*{1.18.5.5 Printer-Keyboard Alter/Display}

Although this key is available for customer use, it is used in maintenance strategy to control certain phases on the 1052 diagnostics.

\subsection*{1.18.6 MODE SWITCH}

Only switch positions that are unique to the Model 25 maintenance strategy are described here. Refer to the Model 25 FETOM, Form Y24-3527 for complete information.

\subsection*{1.18.6.1 Nain Storage Address Stor}

With the switch in MS ADR STOP position, the machine stops at the completion of the microword in progress when the address in switches A, B, C, and D matches the address of the core-storage location being accessed. The address-match indicator turns on. Byte-0 and byte-1 indicators display the address of the position of memory that was just accessed. The match occurs for addresses that specify either frogram or control storage.

\subsection*{1.18.7 DIAGNOSTIC CONTROL SWITCH}

\subsection*{1.18.7.1 Stop}

When the switch is in this position and no hubs are wired on the CE back panel, the system stops every cycle. When a circuitry line is wired to the COND IN hub on the CE back panel, the system stops every cycle in which the line goes positive.

\subsection*{1.18.7.2 Trap}

This position forces a trap to the CE trap area of control storage. With the diagnostic control switch in the trap cosition and either (1) no wiring to the CE panel. or (2) a positive pulse to the IN hub of the CE panel, the rachine-check latch is set and a trap is taken to 0280. If priority is not established in the trap routine, the trap to 0280 is repeated every other cycle. The CE trap routine can be used to \(\log\) information on the printer-keyboard.

\subsection*{1.18.7.3 Scan Storage}

With the switch in this position, all core storage positions are read and regenerated. When the check control switch is in the stop position, a parity error on storage data or a storage address causes a hard stop.

This switch position is also useful in displaying sequential storage lccations when used with the mode switch in either the MS DATA or AS DATA cositicn. With the ncde switch in one of these positions, byte-0 and byte 1 indicators display the addressed location each time the start key is pressed.

\subsection*{1.18.7.4 Single Address MS}

This position permits the CE to scan a single storage address set in switches \(A\), E . C , and D ky pressing the control address set key and then the start key.

\subsection*{1.18.7.5 Single Address AS}

This position permits the CE to repeatedly access a single auxiliary-storage location set in switches \(A, B, C\), and \(D\) by fressing the contrcl address set key and then the start key.

\subsection*{1.18.7.6 Test Fattern}

This switch position is used to exercise core storage with data set in switches \(A\), \(E, C\), and D. Switches \(A\) and \(B\) should contain the complement of switches \(C\) and \(D\); i.e. , \(A B C D=F F 00\), 00FF, 01 FE , or FE01.

The system must be placed in CE mode by the CE key for the test pattern position of the diagnostic control switch to be effective.

Each storage address is accessed four times befcre a +2 address update occurs. During these four accesses a readcut, store, readout, and store sequence is performed as follows ( \(\mathrm{ABCD}=\mathrm{FFO}\) ) .
\begin{tabular}{|c|c|c|c|c|}
\hline Addr & Cycle & Creration & Data & \\
\hline \multirow[t]{4}{*}{OCOO} & 1 & Readout & Unknow & (1st time) \\
\hline & 2 & Store (AB) & FFFF & \\
\hline & 3 & Readout & FFFF & \\
\hline & 4 & Store (CD) & 0000 & \\
\hline 0002 & \multicolumn{4}{|l|}{Same as address 0000.} \\
\hline \multirow[t]{4}{*}{0004} & 1 & Readout & Unknow & (1st time) \\
\hline & 2 & Store (CD) & 0000 & \\
\hline & 3 & Readout & 0000 & \\
\hline & 4 & Store (AB) & FFFF & \\
\hline
\end{tabular}

0006 Same as address 0004.

This pattern continues for the first 256 bytes of storage and reverses every 256 bytes.
\begin{tabular}{cclll}
\(\frac{\text { Addr }}{0100}\) & \(\frac{\text { Cycle }}{1}\) & & Operation & Data \\
& 2 & Store (CD) & 0000 & \\
& 3 & Readout & 000 & \\
& 4 & Store (AB) & 0000 & FFFF
\end{tabular}

0102 Same as address 0100.
01041 Readout Unknown (1st time)
2 Store (AB) FFFF
3 Readout FFFF 4 Store (CD) 0000

0106 Same as address 0104.
This process continues for each program, control, and auxiliary storage location. The resident CSL area of control storage is read out and regenerated only.

\subsection*{1.18.7.7 Load Program Storage}

When the switch is in this position, the data in switches \(A, B, C\), and \(D\) is loaded into every halfword of program storage. When the control storage area of memory is reached, the locations are accessed in sequence, kut the store lines are not activated. A storage scan should follow the load program storage to determine if the data is stored properly.

\subsection*{1.18.7.8 Load Storage}

This function is similar to the load frogram storage operation except that all core-storage locations (program, control, and auxiliary, except the resident CSI area) are loaded with the data set from switches \(A, B, C\), and \(D\).

The system must be put in CE mode with the CE key for the load storage position of the diagnostic control switch to be effective.

To store into the CSI area, set the mode switch to MS DATA. The data switches can then be stored into the CSL area in single cycle.

\subsection*{1.19 MAINTENANCE PROGRAMS}

The maintenance progran package is designed to validate system and unit operation rapidly with a minimum of human intervention. The cackage is designed to progress from kasic CPU-assurance microdiagnostics up thrcugh a system environment macrodiagnostic designed to exercise and test a majcrity of the system in a total system environment. The package provides failing-card lccating information of high resolution for racid repair. Refer to 2025 FEMDM, Form Y24-3529, page 1-1.

\subsection*{1.19.1 MACHINE LEVEL CONTROL (MLC) AND ENGINEERING CHANGES (EC'S)}

Reloadable control storage is the unique Mcdel 25 concept which requires definition under this objective. All IBM-supfcrted Mcdel 25 microprograms are provided with microprogram listings and punched-card decks. The listings and decks are generated by MAS (Mi croprogram Automated System). NAS has the capability of frcducing customized listings and decks on machine-feature sensitive microprograms.

\subsection*{1.19.1.1 FIELD MICROPROGRAM CHANGES}

Field microprogram changes are released ky Field B/M's and utilize existing Field B/M control procedures. These changes are accomplished with replacement core loads (in card form) and lists. The foregoing apflies to all IBN-supported emulator and microdiagnostic microprograms.

\subsection*{1.19.2 FIELD CHANGE EXCEPTIONS}

The following exceptions exist relative to field changes to any machine-feature sensitive microprogram core load.
1. MLC determines field machine requirement for changed micrcprograms (core load decks and lists).
2. MLC requires field machine-feature history information to achieve (1) above.
3. Field B/N's of microprogram emulators cannot be prepackaged.

\subsection*{1.19.3 UNI CUE CCNSIDERATIONS}

Unique \(F E\) responsibilities \(f\) cr field installation of a 2025 microprogram change are:
1. Changes to microdiagnostic programs are applied to FE tapes or disks when the M25 diagnostic program package is maintained in either form in addition to card decks. Tape and file utility programs, FOFF and FOFE, are used for such updates.
2. Changes to emulator microprograms are installed by replacement of the IBM-maintained customer emulator core load decks. The customer will be notified that affected custcrer duplicated emulator core loads should be updated.
3. On emulator microprogram changes the CE loads appropriate EC level
identification into a CSL protected area of control storage. This enables checking for emulation EC level and machine EC level compatibility on CSI.

Check all micrcprograming temporary fixes (NPTF) to ensure that they are incorporated in the current EC. Any missing MPTF must be added to the core load deck and recorded on the list before the customer is given the new deck. It is also necessary to alter the checksum in control storage for the emulatcr affected.

\subsection*{1.20 MULTISYSTEM CONFIGURATION}

The Nodel 25 cannot be the host processor, but can be a supplement in a configuration controlled ky a larger system having the channel-to-channel adapter feature. The direct control and external interruption features are provided on the Model 25 for the necessary intersysten data and control lines.

No unique maintenance features are provided or required on the Model 25 when it is operated in a multisystem environment.

\section*{1. 21 1401/1460 AND 1440 COMPATIBILITY} FEATURES

These special features are implemented almost entirely by micrcfrogramming. The maintainakility plan for this mode of operation assumes that the CPU, circuitry for integrated I/O attachments, and the standard I/O interface will be tested by the Model 25 diagnostic routines (resident and nonresident microdiagnostics, and the System/360 macrodiagnostic tests). No special 1400 compatibility diagnostic or function tests are provided for these features, and no special tools or test equipment are required.

The 1401/1460 and 1440 compatibility microprograms incorporate the following maintenance features.
- Resident CPU microdiagnostic (BDIA) and checksum tests,
- FE trap ( 64 bytes beginning at control-storage address 0280),
- Resident card-reader microdiagnostic (when the card reader is the only input device),
- Machine-check trap and 1052 logout, and
- 1052 alter/display.

The minor additional circuitry required for 1400 -mode operation of 2311 and 2540 devices is tested using the
microdiagnostics for these attachment features. The 1400 -mode test in the CPU nonresident diagnostic must be initiated by a control address to the starting address of routine 314 H in the diagnostic.

\subsection*{1.22 MODEL 20 MODE FEATURE}

The Nodel 20 mode feature is implemented alrost entirely ky microprograms. It uses the normal Model 25 CFU hardware and I/O devices, excect for the 2560 MFCM attachment feature that can be added sfecifically for Nodel 20 mode operations when required.

The maintainakility plan for this mode assumes that the cpu and all I/O devices (except the 2560) are tested by the Model 25 diagnostics (resident and nonresident microdiagnostics, and the System/360 macrodiagnostic tests). The 2560 attachment is tested ky nonresident microdiagnostics, and the 2560 is tested ky Impulse Check Routines (ICRs) and Mcdel 20 Machine Function Tests (MFTs). Refer to 2025 MDM, Form Y \(24-3529\), page 1-1.

The Model 20 Mode feature micrcprograns incorporate the following maintenance features.
- Resident CPU microdiagnostic (BDIA) and checksum tests.
- Fe trap ( 64 kytes keginning at control-storage address 0280),
- Resident card-reader microdiagnostic (when the card reader is the cnly infut device).
- Machine-check trap and 1052 lcgcut, and
- 1052 alter/display.

Operation of these raintenance features under Model 20 Mode is the same as for the basic 2025 except for machine check traf. which is descriked in the following section.

\subsection*{1.22.1 NACHINE-CHECK TRAP ANE 1052 LOGOUT}

With the check control switch set tc PROCESS, detection of rachine check will cause a machine-check trap to be taken. This microprogram stores status infcrmation in a part of the protected first 144 bytes of program storage. This lcgout area is also printed out on the 1052
printer-keyboard. The format of the logout is identical to that presented for Model 25 mode operation, and operation is similar except that after the logout, the rachine stcps instead of initiating an interrupt. (See sections 1.17.1.1 and 1.17.1.2.)

\subsection*{1.22.2 DIAGNCSE INSTRUCTICN}

The Diagnose instruction (CF-code 83) is provided for use with the ICR and machine function tests. This instructicn can perform several functions as specified by the D1 field of the instruction. Fcr example, it is used to store the contents
of the six diagnose op switches (auxiliary storage locations 00 FC through 00 FE ) into frogram storage at locations 00FC through 00 FE .

The diagnose instruction permits a diagnostic program to use special diagnostic microprogram routines in conjunction with normal rachine
instructions. A complete description of diagnose actions is given in the 2560 test descriptions, ID001 in Vol. 44.

\subsection*{1.22.3 CE TRAP}

With the diagnostic control switch in the trap position, and any desired signal wired into the CE test panel, a microprogram trap is entered when the chosen signal goes positive. This function is the same for Model 20 mode as it is fcr Model 25 mode.

\subsection*{1.22.4 CE TEST PANEL HURS}

The function of the CE test-panel hubs (sync, switching, and match) is the same for Model 20 and Model 25 rcdes (see Section 1.23).

\section*{1. 22.5 CE DISPLAY CABLE}

This pluggarle service aid provides similar information on the Model 25 operating in Model 20 mode as is provided on the Model 20 system. The 2560 attachment feature pluggakle display charts are included in the publication, Model 25 External Field Definitions, Form 229-2176, available with the CPU.

\subsection*{1.22.6 PROGRAMMING ERRORS}

Programming errors, such as invalid op-code, addressing error, specification error, etc., are detected by microprogramming during execution of the instruction. On the Model 20, such errors are indicated by stopping the system and displaying an error code in the I-register. However, when in Model 20 mode on the Model 25. the error code is printed on the 1052 to provide a corresponding identification of the error. See MDM 5-604 for a summary of error codes.
1.22.7 LCCAL STORAGE ZONE AND EXTERNAI MODE FOR 2560

In 2020 mode (mode register bit 1 on), 2311 data operations cannot cverlap other operations. Therefore, local storage zone 1 is shared by the 2311 and 2560. External
\begin{tabular}{|cccccc|ccccc|cc|c|}
\hline TEST & GND & 1403 & PCH & RDR & FILE & 1 & 2 & 3 & +OUT & OUT & GATE & OUT & IN \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & & SYNC & & & & & AND & & & & & \\
& & & & & & & & & & \\
\hline
\end{tabular}

Figure 1-122. CE Panel
mode 6 and local storage zone 1 are assigned for use with the 2560.

For local storage zone 1 to be altered or displayed when it is being used for a 2560 operation, switch \(C\) must be set at the lakel 2311. External mode for 2560 can be altered or display \(\in\) ky setting switch \(C\) to the label 2560.

\subsection*{1.23 CE PANEL}

The CE test panel (Figure 1-122) is located on the A-gate back panel between bcards Cl and C2.

Some of the uses of the the panel are to provide:
1. Sync points for scoping.
2. An AND function for varicus diagncstic purposes (scope sync, monitcr, etc.).
3. Capability to stop the system under CE-selected conditions.
3. Capability to stop the system under CE-selected conditions,
4. Capakility to trap into a reserved microprogram area under CE-selected conditions.

The plugs will accept either a banana plug connector or a kare wire.

The sync portion of the \(C E\) test panel has the following meanings.

TEST: This lamp is provided to check status of latches, etc. A \(+3 v\) incut to A2E6B12 turns the lamp on.
GND (Ground): This plug is provided to reduce kreakage of D08 pins.
1403: +3 V print control
RDR: +3 V reader clutch
PCH: +3V punch clutch
FIIE: +3V share cycle.
The AND huts provide a 3-way fositive infut AND circuit with both plus and minus outputs when the three inputs are positive. Input lines ( \(1-I N, 2-I N, 3-I N\) ) flcat pcsitive when not plugged to a signal. The functions of the hubs are:

1 IN: Input to 3 -way positive AND
2 IN: Input to 3-way positive AND

3 IN: Input to 3-way positive AND
+ CUT: Positive AND plus output
-CUT: Positive AND minus output.
The MATCH OUT hub is positive at T7 time when the storage-address register contents match the setting of the console address switches, and the MATCH GATE hut is positive. Because the address match circuits are sampled at \(T 7\), the MATCH GATE input must occur kefore T7.

A positive pulse to the COND IN hub causes either a stop or a trap depending on the setting of the diagnostic control switch.

\subsection*{1.23.1 STOP POSITION}

A positive input pulse will stop the clock and cause a hard stop.

\subsection*{1.23.2 TRAP POSITION}

A positive input fulse will stop the clock and cause a trap to control-storage address 0280. A 64-byte area starting at address 0280 is reserved for CE microprograms.

This area allows the CE to enter microprograms for diagnosing unusual or intermittent failures that do not respond to the primary microdiagnostic maintenance strategy. If desired, a monitor microprogram can ke created and executed without affecting the customer problem frogram.

The system stofs every cycle if the diagnostic control switch is placed in either stop or trap positions without the CCND IN hut keing wired.

\section*{1. 24 POWER AND COOLING}
1.24.1 FAILURE DETECTION, INDICATION, AND ISOLATICN

The power system on the Model 25 features comprehensive circuit protection and failure detection facilities. Each dc power supply has an overcurrent-sensing
circuit kreaker. An overcurrent condition on any supply causes the associated circuit breaker on that supply to trip
mechanically, and the CB-trip light to turn on (light DS1 on the fower control
chassis). The fower-check light on the system console turns on, and a normal pcwer-off sequence occurs. Certain key power supplies have direct cvervcltage detecticn. These are PS-1 (-6), PS-3 \((-12)\). PS-8 \((+12)\), PS \(-10(+6)\), and PS-11 (+6). Detection of an overvoltage condition in these supplies causes the CB for the respective supply to trip, and the fower-off sequence to occur as described previously.

A voltage-sensing syster determines that all dc voltages are on and are supplying at least a certain minimum outfut. Failure in any dc supply causes power to be sequenced off and the power-check light on the system console to ke turned on.

Thermal sensing switches are provided on logic gates. core storage, and fower suffly areas. When any of these thermal switches senses a temperature in excess of its sfecified limit, a normal power-off sequence is initiated and a thermal trif light on the power control chassis is turned on. The thermal trif prevents subsequent power-on sequence until the conditicn that caused the thermal trip is corrected and the therral-trip reset switch on the fower control chassis is actuated.

A power system diagnostic strategy has been developed based on the fower suffly failure detection system. This strategy consists of a guided step-by-stef evaluation of the power syster kased on visual indications to isolate power system failures. To this end, a series of power system diagnostic strategy diagrams have been developed. These are included in the first fart of the FE maintenance diagram manual for ready access by the custcrer engineer.
1.24.2 COOLING FACILITIES

Ccoling facilities for the Model 25 consist of a number of klowers that force air past the component parts. There are three blcwers for the fower supfly tower, three blowers for each SLT gate, three blowers for each core storage unit, and cne blower for the 1403 hammer driver koard. Each blower pulls air through an air filter to minimize dust accumulation. Warmed air exits through the grille at the tof of the Mcdel 25.

\subsection*{1.24.3 WARM-UP}

The core storage units are the only devices in the Model 25 requiring a warm-up period. The temperature of these units must be maintained at fron \(96 \mathrm{~F} \pm 5 \mathrm{~F}(35.6 \mathrm{C} \pm 2.8 \mathrm{C})\) to \(120 \mathrm{~F} \pm 3 \mathrm{~F}\) (49C \(\pm 1.7 \mathrm{C})\). If the temperature is below the limit, the low temp light on the system console turns on. If this light is on, correct operation of the core storage unit is not guaranteed. If the temperature is akove the limit, a normal power-off sequence occurs and the thermal trip light on the power control chassis turns on. Thermal trip prevents subsequent power-on sequence until the condition that caused the thermal trip is corrected and the thermal trip reset switch is actuated.

Core storage temperature is controlled by maintaining the array inlet temperature at \(105 \mathrm{~F} \pm 3 \mathrm{~F}\) ( \(40.4 \mathrm{C} \pm 1.7 \mathrm{C}\) ). An SCR -controlled heating element provides the necessary heat. After initial adjustrent, the temperature is monitored by a thermistor in the array inlet air stream. The thermistor controls the SCR that supplies power to the heating element. The warm-up period varies depending upon the ambient temperature when the Model 25 fower is turned cn. Generally, the warm-up period takes about two minutes.

\subsection*{1.24.4 CONVENIENCE OUTLETS}

Two convenience outlets provide 115 volts 60 Hz , single phase at a maximum of 15 amperes (200, 220, or 235 volts at 8 amperes for 50 Hz ). For 60 Hz machines, an isolation transformer provides the correct voltage. For 50 Hz machines, the convenience outlets are powered either from the line or the adaption aut ot ransformer.

A pair of convenience outlets are mounted on each side of the power supply tower to rinirize the necessity for using extension cords.

\section*{1. 25 MAIN STORAGE DIAGNOSTIC AIDS}

\subsection*{1.25.1 \(X\) AND \(Y\) DECODE NUMBERING SCHEME}

The numbering scheme used to identify the \(X\) and \(Y\) decode drivers makes it possible to identify the active circuit by knowing which bits are present in the storage address register. See Figure 1-123.
\begin{tabular}{lccccccc} 
SAR & Bits & 9 & 10 & 11 & 12 & 13 & 14 \\
RD & \(W R\) & - & - & - & 1 & 0 & 1
\end{tabular}


X-Decode ALD Representation
\begin{tabular}{lllllllll} 
SAR & Bits & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\(R D\) & \(W R\) & - & 1 & - & - & 1 & 0 & 1
\end{tabular}


Y-Decode ALD Representation

Figure 1-123. \(X\) and \(Y\) Decode Drivers
X-Decode: The \(x\)-decode drivers use storage address register bits 1 and 9 tc 14. Three symbols are used in the AIDs to show the conditions necessary to activate a decode driver. They are:
-: This bit is not used to control this driver.
1: This bit must be present in order to activate this driver.
0 : This bit must not be present in order to activate this driver.

Therefore, the \(s\)-decode driver specified in Figure 1-118 is activated when bit 12 of the storage address register is on. bit 13 of SAR is off, and kit 14 of SAR is on. The status of bits 9, 10 and 11 will not affect this driver.

Y-Decode: The \(Y\)-decode drivers use \(S A R\) bits 2 to 8 and are shown in the ALLs in the same way as the X -decode drivers. Therefore, a \(y\)-decode driver specified as in Figure 1-118 is activated when SAR bits 3 and 6 are on and bits 7 and 8 are off. Bits 2, 4 and 5 will not affect this driver.

\subsection*{1.25.2 SCOPING STORAGE}

Use an oscilloscope with a 25- tc 60nanoseccnd rise-time. The DuMont 766 H the

Tektronix* 561 S and 453 are oscilloscopes that meet these specificaticns. Use the oscilloscope probe ground near the point being probed. Use read-call 01 C-B2A3D11 for an oscilloscope sync point.

\subsection*{1.25.2.1 Scoping \(X\) and \(Y\) Source-Terminating Resistors}

When storage problems cannot be easily diagnosed from the console by card substitution, scoping the \(X\) and \(Y\) terminating resistors may provide information that will assist in locating the troukle. When a failure is common to a large block of storage and cannot be easily isolated to a particular \(X-\) or \(Y\)-line, scoping the \(X\) and \(Y\) terminating resistor, while using the Model 25 diagnostic scan functions (MDM starting at Diagram 1-100), may indicate where the trcuble might ke found.

Because of SLT packaging, and because the array plugs into an SLT large koard, a current proke can be used in very few places to check or observe the drive currents. However, all \(X\) and \(Y\) drive current comes from a group of four resistors, two for the X -lines (one for read and one for write) and similarly for the \(Y\)-lines. The resistors are mounted on the swing-open side of the store gate and are connected to the current sources via twisted wire cabling.

An indirect indication of array current is possible by monitoring any of the yellow wires (for example, the yellow wire to pin U4B12 for \(Y\) read current). If a current probe is available this can be done directly on the back panel, or alternatively with a voltage frobe always on the yellow side connection of the resistors; the latter method will require the opening of the resistor gate (Figure 1-124).

Figures 1-125 through 1-130 show the wa veforms for main storage control and drive lines during a specific condition. A variety of situations is represented by these oscilloscope photcgraphs. Because these waveforms will occur only when a specific address cr grcup of addresses is accessed, they will be mixed in with many correct waveforms. Under these conditions they can be difficult to distinguish from incorrect patterns. An attempt should be made to locate the failing address(es) and put the 2025 into an address loop while scoping is performed. Refer to Chapter 2.
* Trademark of Tektronix. Inc.


Figure 1-124. \(X\) and \(Y\) Source Resistors

\(100 \mathrm{~ns} /\) Div.
\(2 \mathrm{~V} / \mathrm{cm}\)
\(2 \mathrm{~V} / \mathrm{cm}\)
Figure 1-125. Storage Controls


Figure 1-126. Read Cycle Controls


Figure 1-127. Store Cycle controls


Figure 1-128. \(X-Y\) Read Current Source Driver at the Resistor

\(100 \mathrm{~ns} /\) Div.

\section*{Figure 1-129. \(X-Y\) Write Current at Resistors for looping and scanning procedures.}

\subsection*{1.25.2.2 Scoping Inhibit Drive Terminating Resi,stors}

Inhibit drive current can te checked in the same way as read or write currents by frcbing the current-limiting resistors associated with each inhibit driver.

The \(Z\) inhibit driver source is essentially two NPN transistors in parallel, each transistor having a 70-ohm wire-wound resistor in series with the emitter. These resistors are mounted on the swing-open side of the BSM gate. The black and red wires are returned to the \(Z\) driver card. The yellow wire is common -30 V . A pair of resistors is, therefore,
cormon to each particular bit position and is also common to the \(0-8 \mathrm{~K}\) segment \(A\) and \(B\), and \(8-16 \mathrm{~K}\) segment \(A\) and \(B\).

The current probe can te used on the yellow wire, and the voltage probe at the red or black side of the resistors. The resulting waveforms of a correct inhibit driver are shown in Figure 1-130.

Approximately 760 mA is shared between the 70 -ohm resistcrs ( 380 mA through each). The voltage swing should be approximately 26 V at the read and black wire side of the resistors.

Sulstitution of the sense amplifier/z power card can determine the failing location.

\subsection*{1.25.2.3 Array Sense Line Checking}

Two methods may be used for checking array sense/inhibit lines.

Figure 1-131 identifies the method to be used with the array plugged to the main storage SLT board. It is possible to meter the connections between sense line input pins and the inhibit line pin.

Figure 1-132 identifies the method to be used with the array rencved from the machine. (The removal procedure is described in Chapter 4 cf this manual.)


Figure 1-130. Z-Inhibit Driver (Writing a zero)


Figure 1-131. Main Storage Array Measurements


Figure 1-132. Nain Storage Array Line Measurements

\subsection*{1.25.2.4 Array \(X\) and \(Y\) Drive Line checking}

With the aid of MDM 4-27 (Part 4 cf 5) and AID pages ND860-ND891, any of the 136 Y-array wires or the 128 X (secticns \(0-8 \mathrm{~K}\) cr 8-16K) array wires can be ascertained.

SAR kits 2-8 select the \(\mathrm{y}-\mathrm{li}\) nes (SAR kit 8 keing the least significant). SAR bits \(9-14\) select the \(x\)-lines (SAR bit 14 being the least significant). SAR bit 1 selects the \(0-8 \mathrm{~K}\) or \(8-16 \mathrm{~K}\) section of the array; the \(8-16 \mathrm{~K}\) section is selected when kit 1 is a 1. SAR bit 15 is ignored.

The following example illustrates checking the continuity of any array drive line without first having to unplug the array.

If an open \(Y\)-drive line is susfected, determine SAR bits 2-8. If, for example, they are 1011111, then reference to MDM 4-27 (Part 4 of 5) shows the \(Y\)-drive line to be 138, c-side. This particular drive
line can be traced to storage logic pages MD412 and MD452.

The continuity of array drive line 138 is checked ky placing the leads of an ohmmeter ketween C-B2E2J02 and C-B2S2J04. The forward resistance is usually between 3.6 kilohms and 4.0 kilohms (that is, two array diodes in series). The dc resistance of the array line itself is approximately 12 ohms. The reverse resistance is normally greater than 100 K ohms.

The X -lines have forward resistance of 3.6 kilohms, which is measured with the 5808198 cards still plugged in. The forward resistance is similar to that of any \(Y\)-line when these cards are removed.

\subsection*{1.26 LOCAL STORAGE DIAGNOSTIC AIDS}

Figures 1-133 through 1-141 show the wa veforms for local stcrage (LS). Figures 1-140 and 1-141 show bad waveforms.

\(40 \mathrm{~ns} /\) Div.
2 Volts/cm
Figure 1-133. LS-Addressing (P1-Time Access)


Figure 1-134. LS-Addressing (P3-Time Relationship Between \(X\) and Read Line)

\(40 \mathrm{~ns} / \mathrm{Div}\)
2 V per cm
Figure 1-135. LS Bit Output (2 Successive Zeros at P1 and P3 Time)


Figure 1-136. LS Bit Output (P1 Access Data is 1. P3 Access Data is 0)


Figure 1-137. IS Write Line (P8-Time)


Figure 1-138. AB-Assembly Data From Local Storage


Figure 1-139. Storage Word (WT-2)


Figure 1-140. Bad Waveforms (Read Line Set Too Early--Zero Delay)

\(100 \mathrm{~ns} / \mathrm{Div}\)
2 Volts/cm
Figure 1-141. Bad Waveforms (LS Address Line Reset Delay Bad--Zero Delay)

\section*{Chapter 2. Console and Maintenance Features}

\author{
Section 1. Basic Unit
}

\subsection*{2.1 STORAGE PRCTECT KEY--DISPLAY}

For the storage key to be displayed, the M-register must be set to the 2.048 bytes associated with the CPU storage key. For the protect key associated with an MPX UCW or ICA UCW to \(k \in\) displayed, the M-register must be set to the UCW auxiliary stcrage address. Therefore, a manual display of auxiliary storage must be done to see the frotect key used ky an SIC; a manual display of main storage must be done to see the CPU storage key.

After the manual display, turn the mode switch to AIU/EXT position and dial switches \(C D\) to 03 (CPU mode external decode 3). Pressing the display switch gates the storage key into byte 1.

> The selector channel key can be displayed by using auxiliary stcrage address Xx88 and following the preceding display procedure. This is possible since MPX UCWs cannot be used when channel burst mode is defined.

There are two exceptions to this display procedure. The M-register does not have to be set up to display the effective file protect key. This is possible because the file key is stored in hardware (not STP local storage). To display the effective file protect key, dial 12 in switch CD and dial ALU/EXT.

To check the protect key associated with the integrated 2540, 1403, or 1052 UCW , refer to the auxiliary storage map for module 0 to determine which byte to display. During data transfer, the protect key is stored with the storage key read from STP local storage.

\section*{2. 2. PATCH CARD GENERATICN}

This procedure can ke used to make a patch card for entering a microprogram into the FE trap area. The system must have the System/360 emulator loaded. Enter the fcllowing data into the locations specified, make the punch ready, set IC to 0058. press the start key. The replace Card will punch in EBCDIC format. This replace card can be inserted befcre the end card of a CSL deck or you can make up a
standalone deck in the following manner.
1. Five card loader
2. Four cards from the 360 emulator CSL deck for CS module addresses 0100 . 0140, 0180, 01c0 (card numbers 6, 7, 8, and 9)
3. The replace card
4. The end card, blank in column 3.

If the loading device is on the channel, use the following.
1. One-card channel loader
2. Four cards from 360 cSL deck
addresses: 0100, 0140, 0180, 01C0
(card numbers 6, 7, 8, and 9).
3. The replace card
4. The end card, blank in column 3.
\begin{tabular}{|c|c|}
\hline 0048-00000 0050 & CAW \\
\hline 004C-00000 0000 & Spacer to align boundary \\
\hline 0050-0100 0068 & \\
\hline 20000050 & CCW, punch \\
\hline 0058-9D00 000D & Test I/O clear status \\
\hline 005C-4770 0058 & Wait for clear status \\
\hline 0060-9C00 000D & Start I/O punch \\
\hline 0064-47F0 0064 & Wait \\
\hline 0068-0280 & FE trap address \\
\hline 006A-10 & 10 Cntrl, 20 Aux, 80 PGM \\
\hline 006B-20 & No. of halfwords to enter hex \\
\hline \[
\begin{aligned}
& 006 \mathrm{C}-\mathrm{xxxx} \text { xxxx } \\
& \text {--etc. }
\end{aligned}
\] & Ctrl words up to 128 hex chars \\
\hline
\end{tabular}

\section*{2. 3 DEBE-2}

Load DEBE-2 from a card reader. When the machine goes to wait state, press the interrupt key. DEBE-2 types out ENTER PROG ID - XX. The correct response to this message is listed as follows.
```

CCSPACE Card-to-card 80/80 using units 00C
and 00D.
CPSPACE Card-to-crinter 80/80 BCD units
00C and 00E.
CTSPACE and-to-tape 80/80 using 00C as the
card reader. A request will be
typed for a tape address.
TCSPACE Tape-to-card 80/80 using 00D for
the card punch. A request will
be typed for a tape address.

```

TLSPACE Tape display) tape-to-printer hex, using 00 E for the printer. A request will ke typed for a tape address.
TPSPACE Tape-to-printer BCD using 00 E for the printer. A request will be typed for a tape address.
TTSPACE Tape-to-tape. Address will be requested.
WTSPACE Write tape mark.
RWSPACE Rewind tape. Address will be requested.
SRSPACE -Space records on tape (fcrward) address and number of reccrds to be skipped will be requested.
SFSPACE Forward space file on tape. Address will ke requested.
BSSPACE Backspace records on tace. Address and number of records to backspace will be requested.

A request for a tape address is in the form MMXXX. The MM refers to the mode set command for 7 -track tapes. Type 00 for 9-track taces.

To put DEBE-2 onto a self-loading tape, change the last card of the DEBE-2 deck cclumn 8 to 12-8-4 punches, load the deck, and at IPL wait, alter storage locaticns 04A0 and 04A1 to the address of the tape drive you are using to kuild the DEBE tape. Then, press the interrupt key. LERE-2 will lcad itself onto the tape. You may then load DEBE by loading directly from the tape.

DEBE CCW are as follows.
\begin{tabular}{ll} 
Reader CCW location & 1 BE0 \\
Punch CCW location & 10 F 0 \\
Print CCW location & 1140 \\
Tape in location & 1228 \\
Tape put CCW location & 1318
\end{tabular}
\begin{tabular}{lllll} 
Reader CCW & 4200 & 1CF0 & 0000 & 0050 \\
Punch CCW & 4100 & 1 CFO & 0000 & 0050 \\
Print CCW & 0900 & 1D 40 & 0000 & 0084 \\
Tape read CCW & 0200 & 1DC8 & 2000 & 2710 \\
Tape write CCW & 0100 & 1DC 8 & 2000 & 0018
\end{tabular}

\subsection*{2.4 TO EXERCISER ROUTINE WITH VARIABLE DEIAY}

This program loop will operate the reader or any I/C device at a repetiticn rate determined by the setting of console switches \(A B C D\). Any value up to 7 FFF may be used. This routine is useful when trying to duplicate intermittent \(I / O\) failures that seem to occur due to the tire frequency at which the I/C device is operated. The channel and device address is in locations 0408-0409 and 0410-0411. The CCW command code is in location 0428. Eighty columns of data are read into or written from
storage starting at location 0600. Start the program at 0400 .
```

0400-D203 0048 0424 Move CAW
0406-9D00 000C Test I/O reader
040A-4770 0406 Wait for clear status
040E-9C00 000C Start I/O reader
0412-8300 0AD4 Store switches ABCD in
0410
0416-0000
0418-4820 0416
041C-4620 041C
0420-47F0 0406
0424-0000 0428
0428-0200 0600
2000 0050

```

Test \(1 / 0\) reader
Start I/O reader
Store switches \(A B C D\) in 0410
Locations for switch bytes
Store switch amount in reg 2
Branch on count reg 2
Branch to read next card
Spare CAW
CCW read and feed

\subsection*{2.5 CCNSCLE INQUIRY PROGRAM}

Load the program using the console alter/display routine. Set IC to 0424 and press start. The system will enter wait state. Press the request key. The proceed light should come on. Key in up to eighty characters. Press \(E O B\) and ALT if less than eighty characters. The information entered should be typed back. The system will enter wait state. To repeat, press the request key etc.
\begin{tabular}{|c|c|}
\hline 0400-9180 0044 & TM attention on \\
\hline 0404-4710 040C & BC SI/O if attention \\
\hline 0408-47F0 041C & BC enter wait \\
\hline 040C-9C00 001F & SI/O to console \\
\hline 0410-4770 040C & BC CC is not zero \\
\hline 0414-9D00 001F & TI/O clear interrupt \\
\hline 0418-4720 0414 & BC branch busy \\
\hline 041C-8200 0440 & LPSW enter wait \\
\hline 0420-47F0 0420 & BC wait lcof \\
\hline 0424-5810 0448 & Load CAW start here \\
\hline 0428-5010 0048 & Store CAW \\
\hline 042C-47F0 041C & Unconditional branch \\
\hline 0430-0A00 0450 & \\
\hline 60000050 & CCW read inquiry \\
\hline 0438-09000450 & \\
\hline 00000050 & CCW write chained \\
\hline 000-800 0000 & \\
\hline 00000420 & PSW frcblem \\
\hline 0448-0000 0430 & Stored CAW \\
\hline 008-000 0000 & \\
\hline 00000400 & PSW I/O new \\
\hline
\end{tabular}

\subsection*{3.61401 EMULATOR CSL DECK}

This procedure can be used to make a system overlay card for entering auxiliary storage module 0 control data intc the 1401 emulator CSL deck. The system must have the 360 emulator loaded. Enter the following data into the lccations specified via the console alter/display routine. Make the punch ready, set IC to location 0058, and press the start key. The
configuration card will be punched continuously in EBCDIC format. It should be inserted before the end card of the 1401 emulator CSL deck.

Note: When a blank is specified key 40:
\begin{tabular}{|c|c|}
\hline 0048-0000 0050 & CAW \\
\hline 004C-0000 0000 & zeros to align boundary \\
\hline 0050-0100 0068 & \\
\hline 20000050 & CCW-punch \\
\hline 0058-9D00 000D & Test I/C clear status \\
\hline 005C-4770 0058 & Wait for clear status \\
\hline 0060-9C00 000D & Start I/O punch \\
\hline 0064-47F0 0064 & Wait \\
\hline 0068-7040* & *9040 to be used on 24 K systems \\
\hline 006A-20 & 20- Enter auxiliary storage \\
\hline 006B-1E & Number of halfwords to b entered \\
\hline 006C-XXXX XXXX etc. & ter 120 hex \\
\hline
\end{tabular}

\subsection*{2.71403 BUFFER LOAD MICROLOOP}

This routine repetitively loads one buffer position with data.
1. Manually set I/C to the desired buffer address.
2. Nanually set \(T 1\) to the desired data character.
\begin{tabular}{|c|c|c|}
\hline Hex Address & Hex Word & Statement \\
\hline 0280 & 2484 & Set Mode \(\mathrm{K}=8\) \\
\hline 0282 & 4F8F & \(\mathrm{PR}=10\) \\
\hline 0284 & 2004 & Set PRA K=20 \\
\hline 0286 & 0000 & No-Cp \\
\hline 0288 & 4 BBF & \(\mathrm{PR} 0=\mathrm{T} 1\) \\
\hline 028A & 8280 & Br to 0280 \\
\hline
\end{tabular}

\subsection*{2.8 SOFT-STOP LOOF-SINGLE CYCLING}

At present, the Model 25 does not allow an operator to single cycle through the scft-stcp loof. This happens because the start key resets the soft-stcf latch and the microlcop exits to I-cycle. This is corrected by blocking the reset of the scft-stce latch ky the start switch with the diagnostic stop switch.

The frocedure to allow single cycle and stay in the loop is to place the diagnostic switch in the stop position. Nothing can be wired to 'condition in" on the CE panel at this time. Exits such as integrated requests, instruction step printcut, etc., will be caparle of taking the microprogram out of the soft-stop loop. If an I-cycle exit is desired, the operator must flace the diagnostic switch kack to process position.

\subsection*{2.9 STCRAGE SCAN}

An operator may be confused when scanning auxiliary storage if the diagnostic switch is in scan, load storage, or test pattern position. The stcrage unit ignores the second hex digit of the auxiliary storage address when auxiliary stcrage is addressed (0x00). In scan mode, advance the storage address by +2 each cycle. As a result, addresses 0000, 0100...0F00 access the same auxiliary storage location 0000. If one syncs on ADDR match or dces an AS ADDR stop on any auxiliary storage address, the machine will stop sixteen times because it accesses each location sixteen times.

\section*{2. 10 WORST-CASE STORAGE SCAN DEFINITION}

The purpose of the test pattern switch is to scan memory and exercise it with a worst-case pattern. The pattern can be one of the following combinations and must be dialed in switches \(A B C D: F F 00,00 F F, 01 F E\), FE01.

During the first scan, switch CD is stored in the first four-bytes of storage. \(A B\) in the next four bytes, and the pattern switches repetitively in this manner. This same pattern flips every 256 addresses (if ADDR 0000 has a FFFF stored in it, hex address 0100 will have 0000).

Each address of storage is accessed four times before a +2 address update occurs. During the first access, the contents of that location are read out. The second access stores the complement of that location in place of the original data. Then, this complerent data is read out, and finally, its complement (the original data) is stored back.

For Example: ADDR 0000
1st Cycle Read Out FEFE
2nd cycle Store 0101
3rd Cycle Read out 0101
4th cycle Store FEFE
This process continues for each address of main storage, auxiliary storage, and control storage. Only the protected area of control storage remains unchanged.

\section*{2. 11 MS ADDRESS STOP PROCEDURE DURI NG I PL OR CSL}

A condition exists when trying to MS-address stop during IPL and CSI because both the device address and the SAR stop address cannot be in switches ABCD. To bypass this condition, the following procedure should te followed.
\begin{tabular}{|c|c|c|}
\hline \multirow{11}{*}{During} & & MS-Address Stor Procedur \\
\hline & IPL - 1 & Set MCDE Sw to MS ADDR STOP. \\
\hline & 2 & Set ABCD sw to CTRL STOR ADDR OADA. \\
\hline & 3 & Press control storage LOAD. \\
\hline & 4 & Press START. \\
\hline & 5 & set NCDE sw to Single Cycle Mode. \\
\hline & 6 & Set BCD Sw to the Load Device Addr. \\
\hline & 7 & Press START sw three (3) times. \\
\hline & 8 & Set MODE sw to MS ADDR STOP. \\
\hline & 9 & Set ABCD sw to the desired MS Addr Location. \\
\hline & 10 & press START. \\
\hline \multirow[t]{7}{*}{During} & CSL - & Set MCDE sw to Single Cycle Mode. \\
\hline & 2 & Set \(A B C D\) sw to the Load Device Addr. \\
\hline & 3 & Press CONTROL STORAGE ICAD. \\
\hline & 4 & Press START 3 times. \\
\hline & 5 & Set MODE sw to MS ADDR STOP. \\
\hline & & Set \(A B C D\) sw to the desired ms Addr location. \\
\hline & 7. & Press START. \\
\hline
\end{tabular}

\subsection*{2.12 PSW}

\subsection*{2.12.1 PSW RESTART}

The function of the PSW restart switch is to perform a PSW restart; this means lcading the restart PSW from locations 0000-0007 of main storage (initial PSW).

\subsection*{2.12.1.1 Procedure}
```

1. Press PSW RESTART.
2. Press SYSTEM RESET.
3. Note: In this case, it is not
necessary to press the start key to
begin program execution. If the
system-reset switch is pressed without
pressing the PSW restart switch, the
current PSW will remain effective.
```

\subsection*{2.12.2 DISPIAY CF CURRENT PSW}

The current PSW is displayed from local storage or auxiliary storage locations ky setting switches \(A, B, C\), and \(D\), the rode switch as shown in the following, and by pressing the display key.
\begin{tabular}{lll} 
Current & Mode & \multicolumn{1}{l}{ Switches } \\
PSWField & Switch & A,B,C, E D \\
Condition code & MOD/LS & P0 \\
Program mask E AMWP & MOD/LS & I0,I0 \\
System mask & AS Data & \(00 A 8\) \\
CPU key and AMWP & AS Data & 00A9
\end{tabular}

Note: The condition code in PO is coded as follows.
\begin{tabular}{ll} 
CC & \(\frac{\text { P0 High }}{0}\) \\
1 & 0 \\
2 & 5 \\
3 & 2 \\
& 7
\end{tabular}

\section*{2. 13 CONTROL STORAGE LOAD FAILURE DETECTION}

Conditions: Loading frcm 2540 integrated unit, a single card at a time, any core load deck.

\subsection*{2.13.1 DESCRIPTION}

This test can be used to trcubleshoot a failure to CSL, especially on systems where the 2540 is the only program load device. It tests the BCPL, BDIA, BCHK, BSYS, BPSW, and BSWI microprograms, the CSL latch, the reader start, feed, and the data transfer circuits. It alsc allows the CE to check the contents of the first bootstrap card that contains a microprogram to start the next bootstrap cards and the control program to load.

The BNSR routine is contained on the first two of the five native bootstrap cards. The native bcotstrap routine (BNSR) is entered at address 0100 from either the handloaded native bootstrap routine, or the resident control storage lcad routine (BCPL). Card number one is loaded into control storage starting or the BCPI routine. Address 0100 is branched to and card number two is loaded into the addresses following those occupied by card number one (this data fcrms the BNSR routine). The information contained in cards number three, four, and five of the native bootstrap is loaded into auxiliary storage to form a translate table which is used to translate the rerraining CSL deck into the hex characters that are to be loaded into the control storage area and certain auxiliary and program storage locations.

The CSL procedure, up to the first actual control stcrage card, is shown in MDM 5-19. The handload procedure is covered in the descriptive text preceding the \(B C P I\) routine.

\subsection*{2.13.2 PRCCEDURE}
1. Set switches \(A, B, C\), and \(D\) to EEOC.
2. Press SYSTEM RESET.
3. Press CONTROL STORAGE LOAD (CSL)

The CPU should ke in a lcof with the system light on. If this does not occur, it indicates a failure in the permanent CSL routine.

Nake certain that the CSL light is on. It may \(k \in\) necessary to restart in single-cycle mode to determine that the permanent CSI microprogram does not contain errors and that it ccrrectly executes each statement.
4. Set switches A, B, C, and D to 407A ( 807 A for \(24 \mathrm{~K}, 807 \mathrm{~A}\) for 32 K , C07A for 48K).
5. Set the mode switch to AS ALR STOP.
6. Place the core load deck in the reader and press the reader start key. The reader will feed one card and stop with the address match light cn.
7. Press the CPU start key and a seccnd card should \(f \in \in d\).
8. At this time, the first bootstraf card has been read at first read. The contents of this card should now be stored in control storage lccations 4100 to 4177 as follows.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 9 & Row & 0100-CC05 & 2040 & 2F53 & 3CC 9 & 2D 07 \\
\hline 8 & Row & 010A-4606 & 5 EEF & DEOC & 5 P9 F & 5360 \\
\hline 7 & Row & 0114-6931 & C496 & 5B3F & F020 & 6348 \\
\hline 6 & Row & 011E-8122 & 73 c 8 & 736A & F08C & 0D04 \\
\hline 5 & Row & 0128-2407 & 2D04 & 2B08 & 2FFF & C48A \\
\hline 4 & Row & 0132-5404 & 7 F 48 & 05FD & C4B4 & 4406 \\
\hline 3 & Row & 013C-5469 & 2E63 & 2E4D & 2 F 45 & 2F1B \\
\hline 2 & Row & 0146-8152 & 794A & F0FB & 221D & F4D6 \\
\hline 1 & Row & 0150-6EF3 & 2785 & 2265 & 5 ELF & LD56 \\
\hline 0 & Row & 015A-5ADF & 5B9F & 6340 & 63D1 & C4E2 \\
\hline 11 & Row & 0164-CA6D & FE77 & 5 ECE & 8180 & 5ECD \\
\hline 12 & Row & 016E-1CFB & C4F8 & 2C 83 & 8180 & 817 \\
\hline
\end{tabular}

To check whether this card read correctly, set switches A, B, C, and D to address 4100 ( 8100 for 24 K machine, 8100
for a 32 K machine, c 100 for a 48 K machine). set the diagnostic control switch tc SCAN STOR and the mode switch to MS IATA. Press CTRL ADR SET and then press the CPU start key. Each depression of the start key will cause the next consecutive hal fword to be displayed. In this way it can be determined if the card reads correctly. A further depression of the start key should cause the remaining rootstrap cards and the control frogram to ke read.

If the alter/display routine has not
been disturked, display the bootstrap card
on the PR-KB:
1. Turn the mode switch to MS DATA (single cycle mode).
2. Press SYSTEM RESET (reset CSL).
3. Turn the mode switch to PROCESS.
4. Press PR-KB ALTER/DISPLAY.
5. Type DC 0100 on PR-KB (bootstrap card will be typed out on the PR-KB).

After the first feed cycle, the above read-in area should have all bits on in each kyte. Because on the first feed cycle the card did not pass the first read krushes and nothing was read, all bits will be on (inverse logic). If all bits are not on at this time, it means not data was transferred.

\subsection*{2.13.3 READER CHECKS DURING CSL}

If a reader check occurs during control storage load, it is not necessary to reload the whole CSL deck. Add the 5 bootstrap cards to the CSL deck prior to the card that caused the reader check and try to CSL again. In this way, it is possible to complete a CSL in increments on a reader that is giving intermittent reader checks.

\section*{2. 14 CHECKSUM ROUTINE--BCHK}

The checksum routine ( \(B C H K\) ), is entered upon completion of the resident CPU microdiagnostic (BDIA). These routines are executed whenever the CSL, system reset, or load keys are pressed.

The checksum routine performs an Exclusive OR on the contents of control storage with the exception of locations 0002-000D and 0280-02BF.

Locations 0002-000D contain the handloaded identificaticn labels of the individual core loads. When a CSI operation is perfcrmed, an identification label is selected from this area and placed in location 0EC4 where it becomes part of the area that is subjected to the Exclusive Or result to be zero.

The handloaded labels are:
\begin{tabular}{lll}
\(\frac{\text { Address }}{0002}\) & & Lakel \\
*E60/*E61 (Model 25 mode) \\
0004 & *E62 \\
0006 & *E63 \\
0008 & *E40 (1401/1460 mode) \\
000 A & *E50 (1440 mode) \\
000 C & *E20 (Model 25 mode).
\end{tabular}

\subsection*{2.15 INITIALIZING PROCEDURE--CHECKSUM}

Effective from the microprogram level
EC128226 and later, the initialization procedure should be as follows.

\section*{Checksum:}
A. Do hand load as per instruction in BCPL routine.
B. CSL the emulator deck in CE mode.
C. At the completion of CSL (when the CSL light goes out), the logcut shculd be:
1. For *E60 errulator: EC Ievel
\begin{tabular}{llll}
8226 & OE60 & OBAD & 0000 \\
8226 & \(0 E 60\) & OBAD & XXXX \\
& & \\
\(X X X X\) & (OBAD) & (YYYY)
\end{tabular}
where YYYY is the checksum printed on the first page of the associated listing as well as punched in columns 21-24 of the header card (first card) of the CSL deck.

Store the checksum YYYY into location 0002 of contrcl stcrage.
2. For *E40 emulator"

8226 OE60 0kad 0000
8226 0E60 0 ad XXXX
0000
Again \(X X X X\) should the the result of Exclusive ORing Obad and YYY, where YYYY is the checksum printed on the first page of the associated listing as well as punched in columns 21-24 of the header card (first card) of the CSL deck.

Store the checksum YYYY into location 0008 of control storage.
3. For *E50 Emulator:

Same as Item 2 except that the second hal fword of the first two lines of the logout should be 0F50 instead of \(0 E 40\) and the checksum YYYY should be stored in 000A instead of in 0008.

D For this procedure to ke verified, the deck should be CSLed again and the following logout should occur the same logout should occur from this point on whenever the deck is csLed):
\begin{tabular}{lllll} 
*E60 -- & 8226 & \(0 E 60\) & YYYY & 0000 \\
*E40 -- & 8226 & \(0 \in 40\) & YYYY & 0000 \\
*E50 -- & 0000 & & \\
& 8226 & \(0 e 50\) & YYYY & 0000 \\
& 0000 & & &
\end{tabular}
E. If the fourth half word of the lcgout in It em \(D\) is nonzero when the logout occurs:
1. After the deck is CSLed, it indicates that either the CSL deck is kad (the actual checksum of the deck is different from YYYY), or YYYY might ke entered erroneously.
2. After the syster reset or load button has been pressed with the XSL deck resident in core, it indicates either that the control storage has been altered or possikly a core storage failure.

\subsection*{2.16 SYSTEM CCNFIGURAT ION--CSL}

Nonstandard address of integrated attached devices or selectcr channel buffered devices:
A. For *E60 emulator:

The CSI deck contains a set of standard addresses as defined in the AAAB routine (auxiliary stcrage module 0 assignment map).

A system configuration card is needed only when a system is using nonstandard addresses. Such a configuration card can be punched as fer instruction in the BCPL routine and inserted in the CSL deck prior to the end card (last card of the deck with blank column 3).
B. For *E40, *E50 emulatcr:

Refer to Acpendix A - system initializer card of the SRL manual of IBM 1401/1460 and 1440 Compatibility Features, Form A24-3512.

On every \(E C\) update of the CSL decks, it is important for the systems with configuration to have the system configuration card removed from the CSL decks being replaced, and inserted into the new decks.
C. Figure 2-1 shows the I/o devices having standard addresses.


Figure 2-1. Standard Address of Devices

\subsection*{2.17 BCPL ROUTINE}

The BCPL routine is normally resident in control storage, and is used to load the initial record of either the channel cr native koctstrap routines.

If the BCPI routine has been altered, the appropriate hand-load information must be entered to be sure of correct CSI
operation. Switch settings for CSL:

\section*{Swit ches}
A. \(B=C C\)
from channel
A. \(B=D D \quad C S L\) from integrated 2560
A. B=EE CSI from integrated 2540

A, \(B=F F\) CSL from integrated 2311
Switches C. D set to actual unit address

\subsection*{2.17.1 PRCCEDURE FCR PUNCHING CSL CARDS}

Refer tc BCPI routine in *E60 micrcfrcgram listingColumns


Do not punch cards to lcad into auxiliary module 1. 3, 4.
2.17.2 RESTRICTIONS WHEN PUNCHING CSL CARDS

Columns
All addresses should be even: Control Storage - These addresses should te in the range of 0000-3FFF only.
Auxiliary Storage-The 2nd hex character in column 1 shculd ke a zero.
Program Storage - The address rust ke in the range of the system.
coded information
Count Ficld - If a count of 0 is indicat \(\epsilon\), 257 halfwords will be loaded.
\(5-68\)
\(69-72\)
\(73-77\)
\(78-80\)

Data Field - Can be anything. Optional - Can be used for any information. Not used by CSL. *NNN 9 (where N is core load ID; e.g., E60, 1C0, 300, etc.

XXX (three digit indicating sequence of fatches).

When a full deck is being loaded with replace cards, the replace cards should go just before the end card. When loading replace cards only, it is necessary to put the control storage cards (normally 4) for module 01XX in the deck. Order of the cards is: bootstrap cards, control storage cards for module 01XX, replace cards, end card.

\subsection*{2.17.3 EXAMPLE OF PUNCHING AND LOADING A REPLACE CARD}

Assume that the device address for the 1403 on the burst channel needed to be changed to -0A0.

The standard address for the 1403 on the kurst channel is -0E- and is located in auxiliary storage module 0 , at address -87-.

The card to change this would ke punched in the following manner.

\section*{Column(s)}


A CSL must be performed to load this reconfiguration card into the system. The reconfiguration card must precede the end
card, and must be present in that fosition for all csLs using that particular core load deck.

Each time a new EC level deck is received, all reconfiguration cards in the deck being replaced must be removed and inserted in front of the end card in the new deck.

\section*{2. 18 METERING SWITCH (CE SWITCH)}

The metering switch enakles operation of one of two use meters. It is operated ky a removable key. Two positions of the metering switch are:
1. Narmal. Enable process meter, disable CE meter.
2. CE. Disakle process meter, enable CF meter.

The 2025 console is provided with two direct-reading meter counters that record operating time: a customer reter and a customer engineer meter. The position of a key switch determines whether the custorer meter or the CE meter is operating. The customer engineer holds the key for this switch, and when he is performing either scheduled or unscheduled maintenance in the PCU he sets the switch to cause the CE meter to operate. Cne of these meters
(determined by key switch setting) ccerates when:
1. The CPU clock is running and the CPU is not in the wait state, cr not in the soft-stop loop.
2. The metering-in signal is up on an \(I / O\) channel.
3. Any file is selected.

The last two conditions dc nct cause the meter to run if the hard-stop latch is set. The meter, when started, is forced to operate for a minimum of 400 milliseccnds.

The system indicator is on when either reter is running.

Not, e : The use-meter key switch must be in the CE fosition to permit any alteration of the contents of control storage.

\subsection*{2.19. DISPIAY OPERATIONS}

Any core-storage locations can be displayed from the system control panel. The pcsition of the mode switch specifies the source of the information to be displayed, as follows.
\begin{tabular}{|c|c|}
\hline MS DATA & Core storage (program storage or control storage, decending upon the address being used) \\
\hline AS DATA & Auxiliary storage \\
\hline NOD/LS & Arithmetic modifier and local storage \\
\hline ALU/EXT & Arithmetic-logic unit and external facilities \\
\hline C & c-register (control register) \\
\hline B/A & \begin{tabular}{l}
\(B\)-register and A-register (the \\
inputs to ALU and core storage)
\end{tabular} \\
\hline W & W-register (storage-address register backup register). \\
\hline only & those data-flow components the \\
\hline Other \(f\) and W) & nctions of the mode switch (C, B/A, re used by the customer engineer. \\
\hline as is th storage. & contrcl-storage area of main \\
\hline
\end{tabular}

\subsection*{2.19.1 PRCGRAM STORAGE DISPLAY}

Press the stop key and wait until the manual light comes on. Set the mode switch to MS DATA. Set switches \(A, B, C\), and \(D\) to the program-storage address to be displayed: for 16 K systems, this address is from hexadecimal 0000 through 3FFF; for 24 K systems, this is \(0000-5 \mathrm{FFF}\); for 32 K systems, 0000-7FFF; and for 48 K systems, \(000-\mathrm{BFFF}\). Press the display key. The addressed hal fword is displayed in the byte-0 and byte-1 indicatcrs.

\subsection*{2.19.2 CCNTROI-STORAGE DISPLAY}

This procedure is identical to the display of program storage except that switches \(A\), \(B, C\), and \(D\) are used to address a control-storage location. For 16 K systems, this is hexadecimal \(4000-7 \mathrm{FFF}\); for 24 K or 32 K systems, \(8000-\mathrm{BFFF}\); and for 48 K systems, C0000-FFFF.

The procedure for displaying control storage is intended only for customer engineering use.

\subsection*{2.19.3 AUXILIARY-STORAGE DISPLAY}

Press the stof key and wait until the manual light comes on. Set the mode switch to AS DATA. Set switches \(A, C\), and \(D\) to the auxiliary-storage address to be displayed. (Switch B is not used.) This address is from \(0 \times 00\) through 7 xFF for 16 K systems; \(0 \times 00-5 \times F F\) and \(8 \times 00-B x F F\) for 24 K systems; \(0 \times 00-B x F F\) for 32 K systems, and \(0 \times 00-\mathrm{FxFF}\) for 48 K systems.

Normally, only the general and floating-point registers, and the MPX UCW areas of auxiliary storage, are displayed by the user.

\section*{2. 20 STCRE CPERATIONS}

Informaticn can te manually stored into any core-storage location. A halfwcrd (two bytes) is always affected. If a single bytes is to be changed, the remainder of the halfword must \(k \in r \in \in n t e r \in d\). The stcre operation must be preceded ky a display operation of the location to be altered.

For all store operations, the manual and the allow-manual lights must be cn.

Note: Storage into a control-stcrage location requires that the use-meter key switch ke in the CE position.

\subsection*{2.20.1 PROGRAM-STORAGE STORE}

Tc alter the contents of a halfword in the program storage:
1. Set the mode switch to MS DATA.
2. Turn switches \(A, B, C\), and \(D\) to the location to ke altered.
3. Press the display key. The kyte-0 and byte-1 indicators show the fresent contents of this halfword location.
4. Set the data halfword into switches A., \(B_{1} C\), and \(D\). If only part of the halfword is to be changed, the unchanged fortion must ke included as part of the two kytes.
5. Press the store \(k \in y\). Th byte-0 and byte-1 lights indicate the new information that has been entered into
the location specified in step 2. 6. Repeat steps 2 through 5 for each half word to be changed.

\subsection*{2.20.2 CONTROL-STORAGE STORE}

This function is identical to the program storage store procedure, except that control-storage addresses are used, the use-meter key-switch must be in the CE position, and the enable control storage store key must be pressed.

\subsection*{2.20.3 AUXIIIARY-STORAGE STORE}

To alter the contents of a halfword in auxiliary storage:
1. Set the mode switch tc AS DATA.
2. Set switch \(A, C\), and \(D\) to the address of the location. (Switch B is not used.)
3. Press the display key.
4. Enter the new data into switches \(A, B\), \(C\), and \(D\).
5. Press the store key.
6. Repeat steps 2 through 5 for each halfword to be changed.

Note: Except for changes to the general and floating-point registers and for customer engineering diagnostic purposes, undisturbed after it has been initialized using the CSL procedure.

\section*{Section 1A. PR-KB Procedures}

\section*{2. 21 ADDRESSING, CONSOLE PRINTER-KEYBOARD}

The integrated console printer-keybcard attachment is addressed as if it were connected to channel 0. The 16-bit address developed from the I/C instruction identifies the attachment and the printer-keyboard. The device address is nct limited ky the usual channel-0 UCW addressing requirements because the attachment has its own UCW that is not device-address dependent. In theory, the frinter-keykcard may have nay address from:
\begin{tabular}{cc} 
Binary & Hex \\
\hline 00000000 & 00 \\
to & to \\
11111111 & FF
\end{tabular}

In practice, the integrated \(P R-K B\) is assigned an address of \(1 F\) to standardize with other System/360 usage. This addressing makes use of one cf the channel-0 sukchannel addresses and prevents its use for the channel. If channel configurations require use of the subchannel, the \(\mathrm{PR}-\mathrm{KB}\) address can be changed ky the customer engineer.

Under no condition should an address assigned to any other I/O device be assigned to the console printer-keyboard.

\subsection*{2.22 PROGRAM-CONTROLLED OPERATIONS}

\subsection*{2.22.1 CHANNEL CCMMANDS}

Valid commands for PR-KB operaticns are:
```

Code Bits
0123 4567 Command Name
00000001 Write
0C00 0011 No-Op
0000 0100 Sense
0 0 0 0 1 0 0 0 ~ T I C
0C00 1001 Write with ACR
(Automatic Carrier Return)
00001010 Read

```

Any command code (issued to PR-KB) with a bit structure other than those listed, results in unit-check status (bit 6) and command reject sense (bit 0) indications.

\subsection*{2.23 CONSCIE PRINTER MANUAL ALTER/DISPLAY}

This facility provides for altering or displaying the contents of :
- auxiliary storage
- control storage
- program storage
- print buffer (display only).

Two advantages provided by this facility are:
1. Current I/C operaticns (data transfers and chaining) do not overrun, as they might if alter/display operations were initiated from the system console.
2. The console printer provides a printed copy specifying the operation (alter or display), the locaticns (s) accessed, and the data used.

\subsection*{2.23.1 SETUP}

To initiate an alter or display operation, the operator must first press the PR-KB alter/display button (on the CPU console) and wait for the croceed light and the alter/display light to turn on. If the printer-keyboard is busy executing another operation, these lights do not turn on until that operation is ended.

When these lights turn on, the operator types a two-character sequence. Depending on the desired operation, these characters (called the operation characters) can be:
\(\frac{\text { First Characters }}{a}\)

\section*{Specifies \\ alter cperation display operation}

Second Character
a
c
p
b

Specifies auxiliary storage
*control stcrage
program storage
**print buffer
*Can be done only in CE rode.
**Display only.

\subsection*{2.23.2 ADDRESSING}

Next, the operator must type an address for:
\begin{tabular}{|c|c|}
\hline Area & \begin{tabular}{l}
Address Format \\
(lowercase* hexadecimal)
\end{tabular} \\
\hline auxiliary storage & xxxx \\
\hline control storage & xxxx \\
\hline program storage & \(\mathbf{x x x x}\) \\
\hline *Uppercase charact do not differ fro character. & s can be used if they the lowercase \\
\hline
\end{tabular}

The four-digit hexadecimal address for control storage is typed as it appears on the microprogram listing; i.e., 0000 through 3FFF only.

\subsection*{2.23.2.1 Execution of Alter or Lisclay}

After the operation character and address have been typed, the conscle frinter advances to the keginning of a new line.
1. For a disclay operation:

The keyboard is locked and printing begins starting with the contents of the specified address. After 16 hexadecimal digits ( 4 halfwcrds) have been printed, the console printer stops, the keyboard unlccks, and the proceed light turns on. At this point the operator has two choices:
a. Successive klocks of 4 halfwords can te printed by fressing the spacekar (or any other valid character) after each block is printed.
b. This particular pass of the alter/display routine can be terminated ky pressing either the ECB key or cancel key. This causes a return to the beginning of the routine, allowing the operator to initiate another alter cr disflay oferation.
2. For an alter operation:

The keytcard is unlocked and the data to be stored can be typed immediately. However, it is good practice to first verify the address in the typed input message.

\subsection*{2.23.2.2 End operation}

Either the ECB \(k \in y\) or the cancel key (in conjunction with the alternate ccding key) can be used to end an alter or disflay operaticn, except when the keyboard is locked during a display printout. Pressing either key causes a return to the beginning of the alter/display routine so that the operator can perform another display or alter operation.

An alter or display operation is normally ended ky pressing the ECE key after the requir \(\in d\) data has keen typed. the cancel key is used to end an alter oceraticn, the last character is stored only if it completes a byte. (This is exflained lat \(\in \mathrm{r}\) in this section.)

An exit is not made fron the alter/display routine until:
1. the ECB key or cancel key is operated to end the current alter or display operation; then
2. the CPU start key is pressed.

Therefcre, the operator can perform as many alter and/or display operations as desired without exiting from the routine. Unti. 1 the exit is accomplished, CPU instruction processing is storfed.

CPU instruction processing is resumed when, after an exit is made from the alter/display routine, the start key on the CPU console is pressed.

During an alter operaticn, data is altered on a kyte basis. For example, assume that the byte data to ke entered is af, kut that the operator types sf instead of af. The characters sf are stored. The operator must then press either the EOB or the cancel key to return to the beginning of the routine for a retry of the entire operation.

If the error is noticed before the \(f\) is typed, the kyte is not stored. If the cancel key is then operated (before the \(f\) is entered), a return to the beginning of the routine is made, and the operation can be retired if desired. In either case, the entire manual operation must be repeated to store the af. If the operator types one too many characters (such as aff for the foregoing example), the operation is not repeated.

\section*{2. 24 MESSAGE FORMATS}

The microprogran initiates a line feed and carrier return after sixteen halfwords have been printed on a line (fcr either alter or display). Data is column-justified, and blanks are provided between halfwords for either display or alter data. Also, the routine provides offsetting of two spaces at the left margin if an odd-starting address is specified for alter or display of main, auxiliary, or control storage (see following formats).

All incut typing is lowercase (uppercase can ke used if the uppercase character does not differ from the lowercase character). All output printing of hexadecimal alpha characters is in uppercase. In the following formats, \(x\) recresents any valid hexadecimal digit.

\section*{2. 24.1 AITER STORAGE}

The second operation character can ke a (auxiliary), \(\mathbf{c}^{(\text {(control), cr } E \text { (program). }}\)

Note: Valid only if in CE mode.
\(\frac{\text { Input message: } \quad \text { aa } \mathrm{xxxx}}{\text { Address }}\)
Input data:
(odd address): \(x x\) xxxx \(x x\) (EOB)
(even addresses) : xxxx xxxx xxxx......xxxx
xxxx (EOB) \(\uparrow\)
carrier rtn after 16 th halfword-------

\subsection*{2.24.2 DISPLAY STORAGE}

The second operation character can be a (auxiliary), \(c\) Control), or E (frogram).

Output data:
(odd address): \(\quad x \times\) xxxx \(\times x \times x\) xxxx
(even address): \(x x x x\) xxxx \(x x x x\) xxxx

\section*{2. 25 ERRCRS}

The error message, INVALID CHAR, is printed if any one of the following cperator errors is made.
1. An cperation character is other than: First character: \(a\) or \(d\)
Second character: \(a, c, f\), or \(b\)
2. A character other than a valid hexadecimal digit is typed for an address or input alter data.
3. A key other than \(E O B\) or cancel is operated while the alternate coding key is pressed.

A keyboard check causes a return to the beginning of the alter/display routine.

The error message, INVALID ALDR, is frinted if the program, control, or auxiliary storage address is invalid for the system.

Note: Address checking is performed by the alter/disflay microprogram (not by storage-wrap checking circuits in the hardware).

The valid address koundaries for the various systems are as follcws.

System size: 16K
Program Storage Address Range: \(0000-3 \mathrm{FFF}\) Control Storage Address Range*: 0000-3FFF Auxiliary Storage Address Range: \(0 \times 00-7 \times F F\)

System Size: 24 K
Program Storage Address Range: \(\quad\) C000-5FFF
Ccntrol Storage Address Range*: 0000-3FFF
Auxiliary Storage Address Range: 0x00-5xFF and \(8 \times 00-\) ExFF

System Size: 32K
Program Storage Address Range: 0000-7FFF
Control Storage Address Range*: 0000-3FFF
Auxiliary Storage Address Range: 0x00-ExFF
System Size: 48K
Program Storage Address Range: 0000-BFFF
Control Storage Address Range*: 0000-3FFF
Auxiliary Storage Address Range: 0x00-FxFF
* The four-digit hexadeciral address for control storage is typed as it appears on the microprogram listing; i.e., 0000 through 3FFF.

The following are examples of the invalid-address error message.
1. If the address typed in the input message is invalid, the error message is printed after the conscle printer advances to a new line.

Input message: de 4000
Invalid address (16K)... \(\uparrow\)
Data:
INVAIID ADDR
Error message... 4
Input message: aa 8000
Invalid address (16K)... \(\uparrow\)
Data:
INVAIID ADDR
Error message... \({ }^{\dagger}\)
2. If an invalid address is encountered during the alter or display operation (such as storage wrap), the error message kegins begins on the same line with the data.

Input message: ac 3FFE
Assume 16 K system....... \({ }^{4}\)
Data:
xxx INVAIID ADDR
Note: First two bytes are valid. Error message applies to addresses keyond this pcint.


\section*{2. 26 LOGOUT}

The \(P R-K B\) logout is a microcrogram function that prints (in hexadecimal notation) the information area of program storage. This typeout is initiated for each machine check (when the machine-check mask bit is the current PSW, kit 13, is set to 1). Proklem programs are not affected by this logout. The SEREP problem program is used to interpret and print information from the logout area (refer to Figure 1-116).

Subsequent to the PR-KB logout, a System/360 machine-check interruption is initiated. Existing restart procedures and problem programs that dc not act directly upon the diagnostic logout area (such as BPS, DCS, CLTEP, etc.) are applicable to the Model 25 within the limits of core storage.

The frogram storage kyte locations and contents of the diagnostic logout area are as follows.

\section*{Addres s \(\frac{\text { Decima 1) }}{130}\)}

128
Bit Contents
Machine-check (MC) register File control check
Storage protection check Storage address check Control-word parity latch Storage-data farity latch AlU error latch A-register parity latch \(\mathrm{B}-\mathrm{register}\) parity latch

Nicroprogran mask (MMSK) register
Channel high trap
2311 disk control trap Channel low trap 2540 reader trap 2540 punch trap Communicaticns とit service Communications character service
7 Level-1 priority hold
132-133 Address of control word at which the rachine check occurred.

129
Branch conditicn (EA) register
Channel-0 interruct
Mode itit 0
Mode bit 1
Node bit 2
IPL latch
IS zone bit 0
Ls zone bit 1
IS zone bit 2
131

> \begin{tabular}{l}  Count of rachine-check \\ errors (low-order 6-bits; \\ \(2-7):\) \\ Bits 01 \\ \hline \(0 \quad 0\) = Nachine Check \\ 1 1 Interface Control \\ Check \end{tabular}

\section*{2. 27 SUGGESTED RESTART PROCEDURES FOR INTEGRATED PR-KB}

An I/O error causes an interrupticn conditicn. The condition causing the interruption is indicated in the CSW (Channel status Word). The CSW (a dcublewcrd) is locat \(\epsilon\) d in CPU main storage locations 40 through 47 (hexadecimal). Bit 38 of the CSW, when on, indicates a unit-check condition. This bit is bit 6 of the byte at main storage address 44 (hexadecimal).

When unit-check is detected by the program, a sense cormand should be executed
for the PR-KB. Sense infcrmation sent from the attachment provides more detailed information concerning the cause of the unit-check. As a result of program analysis of the sense information, an error message should be made available to the operator to indicate the condition.

The following information describes the minimum actions that should be performed when the program detects unit-check status in the CSW.

The actions are related to particular sense indications that can occur. These bits are analyzed by the program. The choice of action(s) to be taken by the operator must be established at the installation.

\subsection*{2.27.1 COMMAND REJECT (SENSE BIT O)}

Provide an operator message and exit from this error-recovery procedure. Command reject occurs because of a frogramming error and indicates that a command not valid to the \(P R-K B\) was received at the attachment.

\subsection*{2.27.2 INTERVENTION REQUIRED (SENSE BIT 1)}

The PR-KB enters a not-ready condition (intervention-required light cn ) kecause one of the following has occurred.
1. The not-ready key is cperated. (Possikle operator error).
2. The PR-KB has run out of forms.

The intervention-required light on indicates the operator shculd:
1. load new forms if the \(\mathrm{PR}-\mathrm{KB}\) is out of forms and then press the ready key, or
2. press the ready key if the PR-KB is not out of forms.

\subsection*{2.27.3 BUS-OUT CHECK (SENSE BIT 2)}

Not used for PR-KB operations.

\subsection*{2.27.4 EQUIPMENT CHECK (SENSE BIT 3)}

Provide an operator message to indicate failure to read the input message and do one of the following.
1. If there is no additional error recovery procedure, continue operation kut consider the PR-KR inoperative.
2. If there is an additional error
recovery procedure defined, exit to it. If the additional error recovery procedure fails, continue the operation but consider the \(\mathrm{PR}-\mathrm{KB}\) inoperative.

Equipment check is indicated for read cperaticns cnly, and it indicates that bad parity was detected on a bit gattern sent from the keytoard to the CPU. The read command operation, however, is nct terminated until its normal ending point, even if equipment check occurs.
2.27.5 SENSE BITS 4. 5. 6. AND 7

NCt used for \(\mathrm{FR}-\mathrm{KB}\) operations.
2. 28 EXTERNAL TO CPU FACILITIES (1052)
2.28.1 TI (1052 DATA IN)

This location is accessed by a ncve word with AS-decode=A. TI is set to the keyboard bit pattern when a character key is operated. The contents of TI are then moved to the A-register. in the CPU, where a parity check is made on the byte.
\begin{tabular}{|c|c|c|c|}
\hline Bit & Name & Value & Signifies \\
\hline 0 & UC & 0 & Iowercase \\
\hline 1 & UC & 0 & Lowercase \\
\hline 0 & UG & 1 & Uppercase \\
\hline 1 & UC & 1 & Uppercase (Bcth 0 and 1 are set to a value cf 1 for an upfercase character.) \\
\hline 2 & kB bit B & -- & Bits 2 through 7 \\
\hline 3 & KB bit A & -- & represent the character \\
\hline 4 & KB bit 8 & -- & bit pattern from the \\
\hline 5 & KB kit 4 & -- & keykoard. \\
\hline 6 & KB bit 2 & & \\
\hline 7 & KB kit 1 & & \\
\hline P & KB bit C & - & Bit \(C\) is set cr reset to maintain odd farity. \\
\hline
\end{tabular}

\subsection*{2.28.2 TR (1052 TILT/ROTATE REGISTER)}

This register can \(k \in t e s t \in d\) (diagnostic) to determine if a correct translation from the EBCD interchange code kit pattern to the tilt/rotate code has been made. A move wcrd with AS-DECCDE=B can ke used tc rove TR contents to local storage where the bits can be tested. A branch word cannot be used to test TR directly.
\begin{tabular}{|c|c|c|}
\hline Bit & Name & Signifies (when bit=1) \\
\hline 0 & Tilt kit 1 & Bits 0 through 7 \\
\hline & Tilt bit 2 & are coded to cause the \\
\hline 2 & Rotate kit 5 & desired function or \\
\hline 3 & Rotate bit 2A & tilt/rotate magnet \\
\hline 4 & Rotate bit 2 & activation. \\
\hline 0 & Tilt kit 1 & Bits 0 through 7 \\
\hline 1 & Rotate bit 5 & desired function or \\
\hline 3 & Rotate kit 2A & tilt/rotate magnet \\
\hline 4 & Rotate bit 2 & activation. \\
\hline 5 & Rotate lit 1 & \\
\hline 6 & Uppercase Character & \\
\hline 7 & Function Cycle & \\
\hline
\end{tabular}
2.28.3 TD (1052 DIAGNOSTIC BRANCH CONDITIONS)

A branch (on condition cr on mask) word having an AS-decode=D can be used to test the contents of the \(T D-r e g i s t e r\).
\begin{tabular}{ll} 
Bit & Name \\
& \\
1 & Signifies (when bit is on) \\
2 & RD-WR Share Latch \\
3 & New Line Latch \\
4 & Key Switch On CE Mode \\
5 & Shift Cycle Latch \\
6 & Lowercase Deccde \\
7 & Uppercase Deccde
\end{tabular}

\subsection*{2.28.4 TT (1052 BRANCH CONDITIONS)}

A kranch (on condition cr cn mask) word with AS-decode=E can be used to test the contents of TT. Bits in TT are set/reset ky circuit conditions in the 1052.
Bit \(\frac{\text { Name }}{\text { Attention }} \quad\) (when bit value \(=1\) )

0 Attention
1 Not-ready to ready

The request key has been ccerated.
Ready key pressed and forced not-ready to ready request.
2 Intervention
Required
The 1052 is out of forms or the nct-ready key has been operated.
3 Alter/Display
The alter/display key cn the CPU console has been operated.
A parity check was detected on a bit pattern sent from the 1052 keyboard to the CPU A-register.
5 Alt coding key
\(6 \quad 1052\) share request

7 Logout latch
The alternate-coding key is in its operated position.
On when the 1052 requests service for status or data transfer.
Branch bit to test if logcut latch is on or off.
2.28.5 TU (1052 DIAGNOSTIC BRANCH CONDITIONS)

A kranch (on condition or mask) word with AS-decode \(=\mathrm{F}\) can be used to test the contents of TU. TU contains the kit values set into IA by the microprogram or 1052 hardware.
\begin{tabular}{|c|c|c|}
\hline Eit & Name & \begin{tabular}{l}
Signifies \\
(when kit value \(=1\) )
\end{tabular} \\
\hline 0 & Read latch & A read operation (command, cr read portion of alter/đisflay) is in progress. \\
\hline 1 & Write latch & A write operation (command, write portion of alter/disflay, or logout) is in progress. \\
\hline 2 & Microforce latch & Cn if status is queued at the 1052 attachicent. \\
\hline 3 & Alter/display active & An alter/display operation is in progress. \\
\hline 4 & \begin{tabular}{l}
cycle inter- \\
lock latch
\end{tabular} & Cutput of cycle interlock latch used to check if 1052 is in the process of a print cycle. \\
\hline 5 & Ready latch & Used to check if 1052 is in ready conditicn. \\
\hline 6 & Initialize printer & On when in uppercase and initializing 1052 to lowercase. \\
\hline 7 & Printer busy & On when 1052 is performing some operation and until ready for ancther operation. \\
\hline
\end{tabular}

\section*{Signifies}
(when (command, cr read portion of alter/disflay) is in progress.
write operation portion of alter/disflay, or logout) is in progress.
if status is queued at the 1052 alter/display operation is in progress.
Cutput of cycle interlock latch used in the process of a print cycle.
ed to check if 1052 is in ready when in uppercase and initializing 1052 to lowercase. performing some operation and until ready for ancther operation.

\subsection*{2.29 CPU TO EXTERNAL FACILITIES (1052)}

\subsection*{2.29 .1 TA}

A set/reset word with CS-decode \(F\) is used to set/reset lits in TA. TA bits are set/reset to signify the conditions descriked for the same bits in the TU-register descriction. Setting bit 6 of TA causes the testable TU bit-6 condition of initialize printer. Resetting TA bit 6 causes a pulse to reset a 1052 share-request condition.

Bit 7 of TA (not testable in TU), when set, causes a force-share-request pulse; kit 7, when reset, causes a reset of the attention latch.

Bit 5 is set to indicate that the TA diagnostic singleshot is set. Bit 5 is reset when the TA attachment is reset (normally under diagnostic control).

\section*{2. 29.2 TE (1052 DATA OUT)}

A move word with \(A S-\) decode \(=F\) can be used to set a bit pattern in this register. TE (an 8-bit register) is set with the EBCDIC bit pattern from the CPU during a print operation.

\section*{Section 1B. 1403 Procedures}

\section*{2. 30 ADDRESSING, 1403 FRINTER ATTACHMENT}

The one-kyte unit address of the 1403 used with the printer attachment contrcl is set into auxiliary storage ky the CSI rcutine. This address is used to select the frinter prior to each command.

The integrated 1403 is normally addressed 0 E for compatibility with other System 360 usage. This permits the maximum interchange of programs when required. This addressing makes use of one of the channel-0 subchannel addresses and prevents its use for the channel. If channel configurations require the use of the subchannel, the 1403 address can be changed by the customer engineer to any address between 00 and \(F F\) that is not used ky ancther channel-0 device. The integrated 1403 has its own subchannel (UCW) that is nct dependent on the address assignment.

\section*{2. 31 COMMANDS. 1403 PRINTER ATT ACHMENT}

The following commands are for a write operaticn with various carriage functions.



\section*{2. 32.2 HAMMER CHECK}

This check occurs if the hammer drivers and compare circuitry do not operate properly. Each of the conditions detected sets the harmer check latch. In addition, unique combinations of check bits (C1, C2, and C3) are set to indicate which error causes the hammer check. The check planes can be analyzed to help correct the errcr-causing condition. Listed here are the error conditions detected and the check flanes that are set.

Hammer driver on but no compare--PIC, C2
Compare but hammer driver did not turn on--PIC, C1, C2
Compare with FIC already on--PLC, C1, C2, C3
Hammer driver on with PIC already on--pLC. C2, C3
No compare at last scan--PLC, C3
Any other combinations of PLC with \(\mathrm{C} 1, \mathrm{C} 2\), or C3 indicate failures in the check circuitry. The FIC kit alone indicates proper operation.

\subsection*{2.32.3 CCIL-PROTECT CHECK}

This check occurs when a conditicn cccurs that may cause damage to hammer coils and drivers. The +60 V return to the hamrer ccils is cpened ky turning off the 60V control contactor. This contactor is controlled by a reed relay. If nc check exists, the reed relay is picked and the +60 V control is present.

A coil-protect check can cccur for 3 \(r \in a s\) ons.
1. The hammer check circuitry detects that a hammer driver is on rut shculd nct be. This is detected for each hammer driver when printing is taking flace.
2. A special current sense reed relay assembly detects that +60 V control current of at least 3 amps is being drawn by the hammer coils at a time when no hammer drivers should be on. This detects any harmer cill current that cccurs when no printing is taking place.
3. The special current sense reed relay assembly is checked during printing to see if the reed relay picks if a hammer driver is on. This ensures that the check as stated in iter 2 is çerative.

The check in item 1 can be blocked by cperating the coil protect check bypass switch S3. This switch klocks setting the coil-protect check latch due to a hamrer check. This switch should ke used only if it has been determined that a false errcr is causing the check. Eliminating this check may delay detecting a coil-prctect check until frinting is complete. This
switch causes the printer attention light on the console to light. All of the preceding checks can be prevented from dropping the +60 V control by operation of the current-limit switch S4. This switch opens a short circuit acress a 100 -ohm resistor in the +60 V line to the hammer coil returns. With this resistor in the circuit, a maximur of 600 mA can be drawn through any one circuit. This limited current prevents damage tc hammer coils and drivers even if they are on all of the time. A relay cperated by the switch klocks the coil-protect check from dropping the +60 V control.

\subsection*{2.32.3.1 Hammer Driver Coil--Fuses}

There are four 6-amp fuses in the 2025: F30, F31, F32 and F33. Their purpose is to protect the hamrer coil return wiring in the 1403 and the 1403 signal cables. Under certain power-down conditicns, these fuses may klow kecause all of the hammer drivers may be on for up to 50 milliseconds. The power-down condition that may cause this problem is the loss of one of the logic voltages that control the addressing matrix to the hammer drivers. Another condition that may blow one or more cf the fuses is a short on one of the hammer coil return lines in the 1403.

After the fuse has blown, coil protect checks occur. Print ready is off, print check is on, and the chain motor is not running because +60 V CTR1 is turned off. If this condition occurs only when printing is attempted, the 53 switches should ke turned on. If the coil protect check no longer occurs, cne or more of the fuses is protakly klown.

The power-check light is also turned on if any fuse (F30 through F35) is open. A power-down condition does not occur. The light is turned off when the open fuses are replaced. Because these fuses have ceramic cases, it is necessary to check them with a meter or test light.

\subsection*{2.32.4 SYNC CHECK}

This check occurs when the PCC counter gets out of step with the chain or train. This is detected at hore gate time, which is generated ky an extra drum fulse from the chain or train, and indicates that the PCC should contain a count of hex 01 (non-MCS).

A resync circuit is used to resync the PCC automatically at MCS Home, except if a sync check could cause an improperly printed line. A reset is given to the printer-in-sync latch just before the home-gate time, unless a blcck-reset latch is on. The klock-reset latch is set when a
print line starts and is reset by the next MCS home gate that occurs when printing is not taking place.

\subsection*{2.32.5 ADDITIONAI CHECKS}

Additional checks such as forms check etc.. occur due to conditions in the frinter.

\subsection*{2.32.5.1 Forms Check}

This light indicates paper feed trouble or that the carriage-stop key has been operated. This light must be turned cff ky the check-reset \(k \in y\) kefore the print start key is effective.

\subsection*{2.32.5.2 End Of Forms}

When an end-of-forns condition cccurs, unit-check (status kit 6) is sent to the channel at the next initial selecticn. Subsequently, intervention required (sense bit 1) is sent during a sense operaticn. Also, the printer-ready light turns off and the printer end-of-forms light turns on when the end->-forms condition cccurs.

To reset the printer, press the printer start key. The remaining lines of the form are then printed under progran contrcl. (The operator does not press the start key for each remaining line to be frinted. He presses the start \(k \in y\) only once.) Alternately, the single-cycle key can be used. In this case, one line of print occurs for each operation of the single-cycle key.

When a hole is sensed in channel 1 (either sface or skip to or ky channel 1) of the carriage tape, the operation is terminated with the end-of-forms light on. Therefore, you must provide a carriage tape with a hole in channel 1 for frccer ending of the printing operation. If there is no hole in channel 1 , printing continues even though there are no forms in the printer. (Printing does not occur for any command fcllowing one in which the channel-1 hole is sensed.)

To make the frinter ready after channel 1 has been sensed, correct the end-cf-fcrms condition and press the 1403 start or single-cycle key.

\section*{2. 33 SUGGESTED RESTART PRCCELURES FOR 1403}

An I/O error causes an interruption condition. The condition causing the interruption is indicated in the CSW (Channel status Word). The CSW (a double word) is locat \(\in d\) in CPU main storage locations 40 through 47 (hexadecimal). Bit 38 of the CSW, when on, indicates a
unit-check condition. This bit is bit 6 of the byte at main storage address 44 (hexadecimal).

When unit-check is detected by the program, a sense command shculd be executed for the 1403 that caused the unit-check. Sense information sent from the 1403 attachment provides more detailed information concerning the cause of the unit-check. As a result of program analysis of the sense information, an error message should be made available to the operator to indicate the condition. Depending on installation procedures, the error message can be printed out.

The following information describes the minimum actions that shculd be performed when the program detects unit-check status in the CSW.

The actions are related to particular sense indications that can cccur. These bits are analyzed by the frogram. The choice of action(s) to be taken by the operator rust be established at the installation.

\subsection*{2.33.1 COMMAND REJECT (SENSE BIT 0)}

Provide an operator message and exit from this error recovery procedure. Command reject occurs because of a probable programming error and indicates that a command or a command sequence not valid to the 1403 was received at the 1403 attachment.

\subsection*{2.33.2 INTERVENTION REQUIRED (SENSE BIT 1)}

The printer enters a nct-ready condition (ready light off) because one of the following has occurred.
1. The 1403 stop key is pressed. (Possible operator error.)
2. A mechanical interlock, such as the print unit, is open. (Possible operator error.)
3. A forms check. When the forms-check light is on, paper feed trouble has occurred or the carriage-stop key has been pressed. The frogram should provide an operator ressage and exit from this error recovery procedure. The operator should then perform one of the following.
a. Correct the not-ready condition, accept the reccrd, and allow the application program to proceed without further retries of the command, or
b. Correct the not-ready condition and
restart the program from a logical restart point. The logical restart point should be determined at the installation and specified to the operator.
4. End of forms. If an end-of-forms has occurred, the end-of-forms light is on and the ready light is cff. Tc reset the printer, press the printer start key. The remaining lines of the form are then printed under program control. (The start key is pressed only once.)

When a hole is then sensed in channel 1 of the carriage tape (either space tc, cr skip to or ly channel 1.. the operation is terminated with the end-of-forms light on and the ready light off. Printing does not occur for the line at which the channel-1 hole is sensed. Therefore, a carriage tape with a hole punched in channel 1 should be on the carriage. If there is nc hole in channel 1. printing continues even if no forms are in the printer. If nc skip-to-channel-1 command is issued, lines are printed (after the last form) until the channel-1 punch is sensed.

The program should provide an operator message and exit from this error recovery procedure when the end-of-forms indicaticn is detected. The operator should then perform a forms runout (as just described) and satisfy the requirements of the application program.
5. Sync check. This condition can occur whenever the print chain or train is out of synchronism with the print circuitry. Depending upcn when the sync check occurs, one of the following conditions exists.
a. The sync check occurred during a print operation and one line was printed.
b. The sync check occurred during printing and two lines were printed. Provide an operator message and exit from this error recovery procedure. The operator should then:
c. Correct the not-ready conditicn (press the check-reset key and then the start key) and allow the afclication frogram to proceed without Eurther retries of the command, or
d. Correct the not-ready conditicn (press the check-reset key and then the start key) and restart the program from a logical pcint.
6. Coil-Protect Check. A conditicn occurred that could cause possicle damage to the print-hammer coils cr hammer-driver circuits. A coil-protect check resets the printer tc a not-ready
condition, turns on the print check
light, and turns off the fower (+60V Ctrl) to the hammer coils. Depending upon when the coil-prctect check occurs, one of the following conditions exists.
a. The check occurred when no printing was in progress (no line was printed).
. The check occurred during a print operation (one line was printed). The line may be only partially printed.
c. The check occurred during carriage motion. The carriage motion may not have teen completed. Provide an operator message and edit from this error recovery procedure. The operator should then:
d. Correct the not-ready condition (press the check-reset key and then the start key) and allow the applicaticn program to proceed without further retries of the command, or
e. Correct the not-ready condition (press the check-reset key and then the start key) and restart the program from a logical point.
7. The single-cycle key is pressed (possible operator error).

\subsection*{2.33.3 BUS-CUT CHECK (SENSE BIT 2)}

Not used.

\subsection*{2.33.4 ECUIPMENT CHECK (SENSE BIT 3)}

Equipment check indicates that a frogram-resettakle malfunction is detected in the printer controls.

Provide an operator message and exit from this error recovery procedure. The operator should then:
1. Accept the record and indicate that the application program is to proceed without further retries of the command, or
2. Cause the applicaticn Erogram to restart from a logical point.

If the error persists, call the customer engineer.

\subsection*{2.33.5 DATA CHECK (SENSE EIT 4)--MCS ONLY}

Data check indicates that a data character sent to the printer does not compare equally with data loaded in the MCS table. Print does not occur for the print position for which the unmatching code applies. The remainder of the line prints correctly.

Data check normally indicates improper data in the data record sent to be printed, lut the MCS takle may have keen loaded improperly.

Provide an operator message and exit from this error recovery procedure. The oferator should then:
1. Accept the record and indicate that the applicaticn program is to proceed without further retry of the command, or
2. Cause the application program to restart from a logical fcint.

\subsection*{2.33.6 SENSE BIT 5}

Not used.

\subsection*{2.33.7 SENSE BIT 6}

Nct used.

\subsection*{2.33.8 CHANNEL 9 (SENSE BIT 7)}

The carriage krushes sensed channel 9 during the previous carriage scace. Accept the record and indicate that the program is to proceed without further retries of the command. Iocal installation practices may indicate cther action to ke taken.

\subsection*{2.34 USE NETER (1403)}

The use reter for the integrated 1403 printer is conditioned when the frinter is ready and a write operation is performed. The meter remains conditioned until the carriage space or restore key is cperated.

The use meter records time when it is conditicned and the CPU customer use meter is operating.

\section*{2. 35 RESETS (INTEGRATED 1403)}

A fower-on reset places the integrated 1403 in a reset state; all 1403 check circuitry is reset, and the 1403 is placed in the not-ready state. A system reset flaces the 1403 in the same condition as a power-on reset except that if the 1403 is ready when the system reset is given, it remains ready after the system reste is completed.

System rest should not ke given while a printer operation is in progress because the results of \(t h e\) operation are unpredictable.

\section*{2. 36 EXTERNAL TO CPU FACILITIES (1403)}

\subsection*{2.36.1 PRI (PRINT LINE RUFFER DATA-IN)}

This 8-bit register is used during diagnostic operations to provide data from the PLB to the CPU data flow.

A move word with AS-decode=B is used to move data from PRI to lccal storage.

\subsection*{2.36.2 PRT (PRINT LINE BUFFER ADDRESS REGISTER DATA-IN)}

This 8-bit register is used to send PIB addresses to the CPU data flow during a diagnostic operation.

A move word with AS-decode=A is used to move the address from PRT tc local storage.

\subsection*{2.36.3 PRS (1403 SENSE/STATUS CONDITICNS)}

The AS-decode=E for a move or branch (on condition or on mask) word accessing this external facility. Bit significance is:

PRS
 1 Print ready The frinter is in the

2 Channel 9

3 Channel 12

4 Initial ready

5 Hammer check
6 Parity check

7 Print request
ready state.
A Channel-9 punch has been sensed in the carriage tape during a space (nct skip) operation.
A Channel-12 hole has been sensed in the carriage tape during a space (nct skip) operation.
The frinter has gone from the not-ready to the ready state.
A hammer check has been detected.
A parity check has been detected during a PLB readcut or store.
Set on when device-end occurs for a command, or when the printer goes from the not-ready to the ready state, or if channel-end was queued by the channel, or if the diagnostic request gate latch is on and the frinter clock is at time 7-0.

\subsection*{2.36.4 PRD (DIAGNOSTIC CONDIIIONS)}

```

K- Name and Significance if Set/Reset
Bit Bit = 1 (when K-Bit = 1)
Set single-cycle mode latch
Reset single-cycle mode latch
Not used
3 Set diagnostic gate latch latch
4 Reset diagnostic requires gate latch
5 Set diagnostic decode-2 latch
6 Set diagnostic decode-3 latch
7 Set diagnostic decode-4 latch. Bits
5-7 (diag decodes 2-4) are set to
allow the various diagnostic modes
used in the FRD external. If bits 5,
6, and 7 are all off, diagnostic mode
1 is specified. The diagncstic
deccde latches remain on until
another PRB set word is given. If
neither tit 5, 6, nor 7 is on, the
diagnostic decode 1 corres cn.
K- Name and Significance if Set/Reset
Bit Bit = 0 (when K-Rit = 1)
O Not used
1 Set single-cycle clock run latch
2 Not used
3 Not used
4 Set diagnostic PSS pulse latch (set PSS
gate)
5 Reset diagnostic PSS pulse latch
N Not used
7 Not used

```
2.38 MCS TABLE--UTILITY PROGRAM

Utility Program Number 360p-UT-048 is availakle to load the table. In addition, the program gives the cftion of using folding and klocking data checks. Diagnostic functicns are also performed to ensure that the data cards are correct.

\section*{Section 1C. 2311/DAC Procedures}

\subsection*{2.39 ADERESSING--2311 DISK STORAGE DRIVE}

From one to four 2311 DASDs can be attached tc channel 1 through a single integrated attachment. The addresses for these units consist of thref parts:
- Channel address
- Control unit address
- Device address.

The channel acdress is always 01. The control unit address can be any address within the range of 8 through \(F\) (hex). The device address can be 0 through 3 (hex).

The DAC is limited to the contrcl of one tc four 2311 disk storage drives connected directly to the control unit interface in the CPU. No additional 2311s can be attached to the systerf through the channel because of the data transfer rate of the channel. The 16 address bits develcped from the I/C instruction identify the DAC and the disk drive for the operation.

The frcgram views the disk attachment as if it is a channel with an attached control unit and disk drives. The sixteen bits of the I/O address are assigned as follows.

Channel Numker (Bits 16 to 23)
01 Hex (Channel 1)
Control-Unit Number (Bits 24 to 27)
8-F Hex (Assigned at Installation)
Eit 28 set to 0 for system compatibility
Device Number (Bits 29 to 31 )
000 Unit 1
001 Unit 2
010 Unit 3
011 Unit 4.
For example, a syster with fcur 2311s with the control unit address assigned as 9 would have the following addresses:
\begin{tabular}{ccc}
2311 & \begin{tabular}{c} 
Channel \\
Address
\end{tabular} & \begin{tabular}{c} 
Control Unit \\
and Device Address
\end{tabular} \\
0 & 01 & \\
1 & 01 & 90 \\
2 & 01 & 91 \\
3 & 01 & 92 \\
& & 93
\end{tabular}

If fewer than four 2311s are attached, the device address for each can be any value in the range \(0-3\), providing each has a different device address and all have the same control unit address. In the previous example, if only two 2311s were attached. the addresses could be 90 and 91,91 and 92, or 90 and 92, etc.

In any case, twc (or more) different addresses cannot be assigned to the same 2311.

The 2311 control unit address must be different than of any cther device attached to channel 1 through the standard I/O interface.

\subsection*{2.40 CPERATICN COMMANDS, DAC}

Figure 2-2 1 ists the channel commands recognized by the DAC fcr control of the attached 2311 units. These commands are presented to the DAC in the first byte of each channel command word (CCW) from the processing unit. Any other command configuration except that of the transfer-in-channel command is considered invalid by the DAC.
\begin{tabular}{|c|c|c|c|}
\hline Type & Command Name & \begin{tabular}{l}
Single \\
Track
\end{tabular} & \begin{tabular}{l}
Multi- \\
Track
\end{tabular} \\
\hline \multirow[t]{8}{*}{Control} & No Operation & 03 & - \\
\hline & Recalibrate & 13 & \(\cdots\) \\
\hline & Restore & 17 & -- \\
\hline & Set File Mask & 1 F & .. \\
\hline & Seek & 07 & . \\
\hline & Seek Cylinder & OB & -- \\
\hline & Seek Head & 18 & -- \\
\hline & Space Count & OF & - \\
\hline Sense & Sense 1/O & 04 & .- \\
\hline \multirow[t]{7}{*}{Read} & Read Home Address & 1A & 9A \\
\hline & Read Count & 16 & 92 \\
\hline & Read Record Zero & 16 & 96 \\
\hline & Read Data & 06 & 86 \\
\hline & Read Key and Data & OE & 8E \\
\hline & Read Count, Key and Data & 1 E & 9 E \\
\hline & Read IPL & 02 & -- \\
\hline \multirow[t]{6}{*}{Write} & Write Home Address & 19 & \(\cdots\) \\
\hline & Write Ro & 15 & .. \\
\hline & Write Count, Key and Data & 1D & .- \\
\hline & Erase & 11 & -- \\
\hline & Write Data & 05 & -- \\
\hline & Write Key and Data & OD & -- \\
\hline \multirow[t]{10}{*}{Search} & Search Home Address Equal & 39 & B9 \\
\hline & Search ID Equal & 31 & B1 \\
\hline & Search ID High & 51 & D1 \\
\hline & Search ID Equal or High & 71 & F1 \\
\hline & Search Key Equal & 29 & A9 \\
\hline & Search Key High & 49 & C9 \\
\hline & Search Key Equal or High & 69 & E9 \\
\hline & * Search Key and Data Equal & 2D & AD \\
\hline & * Search Key and Data High & 4D & \(C D\) \\
\hline & *Search Key and Data Equal or High & 6 D & ED \\
\hline
\end{tabular}
*Used with File Scan feature (standard).
Figure 2-2. DAC Commands
The commands are chained to execute the desired sequence of events. The transfer-in-channel command (Figure 2-3) is
used to repeat search commands until the desired area is lccated. A read or write command is then given for the desired data. Each of the chanrel ccmmands is acted upon in the same manner as a control unit connected tc a System/360 channel. The usual status is returred after
initialization and at the completion of the command. Sense informaticn is developed for unusual conditions and is available through the sense command. A parity error that occurs during the transfer of the CCW causes a machine check.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ TIC Command Code } \\
\hline Decimal & Hexadecimal & Binary \\
\hline X8 & X8 & \(\mathrm{XXXX1000}\) \\
\hline \multicolumn{2}{|c|}{ Positions Marked " XX " Are Ignored } \\
\hline
\end{tabular}

Figure 2-3. Operation Code for TIC Command

\subsection*{2.41. SENSE CONDITIONS EAC}

Six bytes of sense-conditions information are provided by the DAC tc completely identify the setting of unit-check. These six bytes are transferred to the system by issuing a sense commard (Figure 2-4).

\subsection*{2.42 TRACK QRIENTATION}

Figure 2-5 shows the relaticnshif of the fields and zones to the track format and Figure 2-6 shows the initializing states of fields and zones and the command sequences required tc perform a data command.

\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ Sense Byte 0 } & \multicolumn{1}{|c|}{ Sense Byte 1 } & \multicolumn{1}{|c|}{ Sense Byte 2 } & Sense Byte 3 \\
\hline Bit 0 & Command Reject & \begin{tabular}{l} 
Data Check in Count \\
Field
\end{tabular} & Unsafe & Ready \\
\hline Bit 1 & Intervention Required & Track Overrun & & On Line \\
\hline Bit 2 & & End-of-Cylinder & & Unsafe \\
\hline Bit 3 & Equipment Check & Invalid Sequence & Selected Status & \\
\hline Bit 4 & Data Check & No Record Found & Cyclic-Code Check & On Line \\
\hline Bit 5 & Overrun & File Protected & Unselected File Status & End of Cylinder \\
\hline Bit 6 & Track-Condition Check & Missing Address Marker & & \\
\hline Bit 7 & Seek Check & & & Seek Incomplete \\
\hline
\end{tabular}

Figure 2-4. Sense-Eyte Summary (DAC)
\begin{tabular}{|c|c|c|c|}
\hline Command & Command Sequence & Initial Field and Zone State & Field and Zone State at End of Command \\
\hline \multirow[t]{3}{*}{Read Count, Key and Data Read Key and Data} & None & C1 & D4 \\
\hline & None & C1 & D4 \\
\hline & After Search ID & C4 & D4 \\
\hline \multirow[t]{3}{*}{Read Data} & None & C1 & D4 \\
\hline & After Search 1D & C4 & D4 \\
\hline & After Search Key & K4 & D4 \\
\hline \multirow[t]{4}{*}{Write Count, Key and Data} & Search Equal ID & C4 & D4 \\
\hline & Search Equal Key & K4 & D4 \\
\hline & Write R0 & D4 & D4 \\
\hline & Write Count, Key and Ddata & D4 & D4 \\
\hline Write Key and Data & Search Equal ID & C4 & D4 \\
\hline \multirow[t]{2}{*}{Write Data} & Search Equal ID & C4 & D4 \\
\hline & Search Equal Key & K4 & D4 \\
\hline Search ID & None & C1 & C4 \\
\hline \multirow[t]{2}{*}{Search Key} & None & C1 & K4 \\
\hline & After Read or Search ID & C4 & K4 \\
\hline \multirow[t]{2}{*}{Search Key and Data} & None & C1 & D4 \\
\hline & After Read or Search ID & C4 & D4 \\
\hline Search Home Address & None & HA & H4 \\
\hline \multirow[t]{2}{*}{Read RO} & None & HA & D4 \\
\hline & After Read or Search Home Addrs & H4 & D4 \\
\hline \multirow[t]{2}{*}{Write Ro} & Write Home Address & H4 & D4 \\
\hline & Search Equal Home Address & H4 & D4 \\
\hline Read Home Address & None & HA & H4 \\
\hline Write Home Address & None & HA & H4 \\
\hline Read Initial Program Load & None & C1 & D4 \\
\hline Read Count & None & C1 & C4 \\
\hline \multirow[t]{4}{*}{Erase} & Search Equal ID & C4 & D4 \\
\hline & Search Equal Key & K4 & D4 \\
\hline & Write R0 & D4 & D4 \\
\hline & Write Count, Key and Data & D4 & D4 \\
\hline No Operation & None & \multicolumn{2}{|l|}{Reset Condition} \\
\hline
\end{tabular}

Figure 2-6. Track Orientaticn Field and Zone State Summary

\subsection*{2.43 TRACK INITIALIZATION (DEFECTIVE-TRACK DETERMI NATICN)}

The following procedure must be followed by track-initialization prograns fcr the IBM 2311 files. This procedure is intended to write home addresses on each track and to analyze the condition of the recording surface. The progran should be written to handle the tracks in cylinder mode to reduce running time.
1. Read home address. Verify that the track has not been previcusly flagged. This step must \(k \in\) kypassed by operator action when initializing the reccrding surface for the first time. Unless specifically optioned by the cperatcr. no frogram should change the flagging of a previously flagged alternate or defective track.
2. Write home address and record zerc (R0) with a maximum-length data field on all
tracks. The data pattern should ke hexadecimal 55.
3. Read home address and R0 of each track to ensure that the data can be recovered successfully. If an error occurs, go to step 7.
4. Repeat step 2. using a data pattern of hexadecimal 00.
5. Repeat step 3. If an error occurs, go to step 7.
6. Rewrite home address and a standard length record 0 on all good tracks. Read and verify that these records can ke recovered successfully. If an error occurs, go the step 7. The surface analysis is ncw complete.
7. When an error occurs, an analysis of the sense information must be made. If the error is a data-check in the count
field an/or a data-check, an attempt is made to reread the home address and R0 ten times on the track in question. If a data check (also includes a
count-field data check) occurs a second time on the track, the track must be flagged as defective. Tc tc stef 8. Other errors should be handled as defined in Section 2.44. If all ten rereads are successful, return to the program at point of exit.
8. Assign an alternate track.
9. Write home address and \(R 0\) on the defective track. Set the hore-address flag kyte to hexadecimal 02. The home address is the physical address of the defective track. The R0 count field contains the address of the alternate track. The content and length of the data-field length (DL) shculd be kept to a minimum (kut greater than zero) to avoid spanning the track defect. No other records should be written on the track.
10. Read-check the hore address and R0. If a data check (also includes a count-field data check) cr rissing address marker and no-record fcund errors occur, go to step 14. Other errors should be handled as in Section 2.44. Error Recovery Procedure. DAC.
11. Seek the alternate track.
12. Write home address and record zerc cn the alternate track. Set the home-address flag byte to hexadecimal 01. This home address is the chysical address of the alternate track. The R0 count field normally contains the address of the oriqinal defective track. Surface analysis must be completed on the alternate track candidates kefore they can be assigned as alternates.
13. Continue initialization on next track.
14. Track flogging requires a perfect recording surface from the index foint to the end of record zero. If attempts to write home address and R0 indicate that this area is defective, the recording medium (disk pack) must be repaired.

The basic requirement is cne pass through the test (steps 2-5). An option should ke crovided to increase the number of tests to 255 .

Additional requi rerrents for programs that write the home address and R0 area (and in particular, Surface Analysis, Diagnostic, and other track utility frograms such as UT069, UT098, and DASDI) are as follows.
1. Unless specifically cftioned by action of the operator, no program should change the flagging cf a previously flagged alternate or defective track.
2. Specific acticn by an cperator should ke required to unflag a track.
3. Provision must be made to flag or unflag individual cr grcups of tracks.
4. Operating prograns that have provisions for dynamically flagging tracks must perform the 14 steps given previously.
2. 44 ERROR RECOVERY PROCEDURES, 2311 DAC
2.44.1 ERRCR MESS AGES, 2311 DAC

The following two error ressages should be included in the operating environment of all DAC users.

Nessage 1 (should be printed on all uncorrectable errcrs).
a. Message code
b. Error type-read, write, or control
c. Unit designation, cell number, cylinder number, head number and head position; i.e., device addresses and seek address.
d. Channel designation
e. Status and sense bytes sent to CPU

Message 2 (should be printed periodically, upon completion of a run, cr in response to operator request).
a. Unit designation
k. Number of entries into error routine
c. Number of unccrrectable errors.

\subsection*{2.44.2 ERROR CONDITIONS TABIE, 2311 DAC}

This section gives the recommended corrective acticn for the error conditions that may occur when using IBM 2311 units attached to the System \(/ 360\) Model 25 through the disk attachment control The recovery procedures are listed in the Action column. These are given in detail following the Error Condition Table (Figure 2-7).
\begin{tabular}{|c|c|c|c|}
\hline Sense Bit and Name & Explanation & Error Type & Action \\
\hline Byte 0, bit 0 (Command Reject) & The DAC has received an invalid command code. & Program error & 1 \\
\hline Byte 0, bit 0 (Command Reject) and byte 0, bit 7 (Seek Check) & The DAC has received an invalid seek address. & Program error & 1 \\
\hline Byte 0, bit 0 (Command Reject) byte 1, bit 3 (Invalid Sequence) & The DAC has received an invalid sequence of commands. & Program error & 1 \\
\hline Byte 0, bit 0 (Command Reject) and byte 1, bit 5 (File Protected) & The DAC has received a command that violates the Inhibit Write portion of the File Mask. & Program error & 1 \\
\hline Byte 0, bit 1 (Intervention Required) & \begin{tabular}{l}
The specified 2311 unit is: \\
1. Not on line, or \\
2. Not available for use due to cover interlock open, file motor off, etc.
\end{tabular} & Equipment error & 2 \\
\hline Byte 0, bit 3 (Equipment check) and & An unusual condition has been detected in the DAC or the file unit. The condition is indicated by sense-byte 2. & \multirow[t]{5}{*}{Equipment error} & \multirow[t]{5}{*}{2} \\
\hline Byte 2, bit 0 (Unsafe) or & A file malfunction has been detected. & & \\
\hline Byte 2, bit 4 (Cyclic Code Check) or & Circuitry used to generate the cyclic-code check did not function properly. & & \\
\hline Byte 2, bit 3 (Selected Status) or & Microprogram decode of the status byte yielded self-contradictory results. & & \\
\hline Byte 2, bit 5 (Unselected Status) & The status line from the files is on, but no file has been selected. & & \\
\hline Byte 0, bit 4 (Data Check) & The DAC has detected an error in the data field received from the file. & Equipment error & 8 \\
\hline Byte 1, bit 6 (Missing Address Marker) & \begin{tabular}{l}
The DAC has received: \\
1. Two index points without an intervening address marker, or \\
2. Two successive count fields with equal bit conditions in bit 0 of the flag bytes.
\end{tabular} & Equipment error & 5 \\
\hline Byte 0, bit 5 (Overrun) & The DAC access to main storage was suppressed longer than one byte time on the 2311 , or a chained CCW was received too late to be properly executed. & Equipment error & 3 \\
\hline Byte 0, bit 6 (Track Condition Check) & \begin{tabular}{l}
1. A Search, Read, or Write command was attempted on a flagged defective track (track-condition bit 6 was set to 1 ). Exceptions: HA and RO operations. \\
2. Command chaining and multitrack code signals indicate that operations from an alternate track are to continue on the next higher-order track.
\end{tabular} & Program error & 6 \\
\hline Byte 0, bit 7 (Seek Check) & \begin{tabular}{l}
The 2311 has been unable to complete the Seek because: \\
1. The access mechanism failed to reposition properly, or \\
2. The home-address-compare failed after automatic head switching on a multitrack operation
\end{tabular} & Equipment error & 4 \\
\hline Byte 1, bit 0 (Data Check in count Field) and byte 0, bit 4, (Data Check) & The DAC has detected an error in the count field received from the 2311. & Equipment error & 8 \\
\hline Byte 1, bit 1 (Track Overrun) & The index point was detected before writing was completed & Program error & 1 \\
\hline Byte 1, bit 2 (End of Cylinder) & An end-of-cylinder was detected before the CCW command chain was completed while in multitrack mode. & Program error & 1 \\
\hline Byte 1, bit 4 (No Record Found) and not byte 1, bit 6 (missing address marker) & Two index points were detected while executing a chain of CCWs with no intervening Read or Write operation on the data field of any record, or Read HA or Read RO CCW. Note: This could be an expected condition on Search command chains. & Program error or equipment error & 7 \\
\hline Byte 1, bit 5 (File Protect) & The DAC has received a Seek, a multitrack Read, or multitrack search that violated the Seek File Mask. & Program error & 1 \\
\hline Byte 1, bit 4 (No Record Found) and byte 1, bit 6 (Missing Address Marker) & Home address or R0 cannot be found on the track. & Equipment error & 9 \\
\hline
\end{tabular}

Figure 2-7. Error Condition Table 2311/DAC (Fart 1 of 2)
\begin{tabular}{|c|c|}
\hline Action & Recovery Procedure \\
\hline 1 & Exit with Program Error indication. \\
\hline 2 & \begin{tabular}{l}
Repeat original sequence once. \\
If the error condition still occurs, print Message 1 for the operator and/or customer engineer notification. This is considered an uncorrectable error; the recovery procedure depends on the application.
\end{tabular} \\
\hline 3 & \begin{tabular}{l}
Repeat the original sequence ten times if the error persists. \\
After ten unsuccessful retries, print Message 1 for the operator and/or CE notification.
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
Issue a Recalibrate command. \\
Seek to the original address. \\
Repeat the original sequence ten times if the error persists. \\
Print Mesaage 1 and exit with the error indication.
\end{tabular} \\
\hline 5 & \begin{tabular}{l}
Repeat the original sequence ten times if the error persists. \\
After ten unsuccessful retries, the error is said to be "hard". At this point, the hard-error recovery procedure may be employed at the user's option. \\
Print Mesasge 1 and exit with the error indication and option information.
\end{tabular} \\
\hline 6 & \begin{tabular}{l}
If this is an alternate track, use the defective-track address, plus 1, in the Seek command. (This is found in the ID field of the R0 count area.) Resume the operation after searching to the desired track position. \\
If this is a defective track, use the alternate-track address in the Seek command. (This is found in the ID field of the R0 record.) Resume the operation after searching to the desired track position.
\end{tabular} \\
\hline 7 & \begin{tabular}{l}
Issue a Read Home Address command to verify that the correct track has been reached. (Correct cylinder is sufficient on multitrack operation.) \\
If the correct cylinder (and/or track) is found, perform Action 1. \\
If the incorrect cylinder (and/or track) is found, perform Action 4.
\end{tabular} \\
\hline 8 & \begin{tabular}{l}
Repeat the original sequence sixteen times if the error persists. \\
After sixteen unsuccessful retries, issue instructions to Recalibrate, and then Seek to the original cylinder. Repeat first two steps sixteen times if the error persists. \\
After sixteen unsucceesful retries of second step (a total of 256 entries for the data), the data-error is said to be "hard". At this point, the hard-error recovery operations may be employed at the user.s operation. \\
Print Message 1 and exit with the data-error indication and option information.
\end{tabular} \\
\hline 9 & \begin{tabular}{l}
issue a Recalibrate and then a Seek to the original address. \\
Repeat the operation that failed. \\
Repeat the first two steps twice if the error persists. \\
Issue a Read HA to a different track in some cylinder. \\
If the Read HA is successful, return to the original track and perform Action 3. \\
If the Read HA is unsuccessful after two tries and causes the same error indication, print Message 1 for operator and/or CE notification.
\end{tabular} \\
\hline
\end{tabular}

Figure 2-7. Error Condition Table 2311/DAC (Part 2 of 2 )

\section*{Section 1D. 2540 Procedures}
2. 45. ADDRESSING, INTEGRATED 2540 ATTACHMENT

The integrated 2540 attachment is addressed as if it were connected to channel 0 . The sixteen-bit address developed from the I/O instruction identifies the attachment and the reader or punch unit. The device address is not limited by usual channel-0 UCW addressing requirements recause the attachment has its own UCWs that are not device address dependent. In theory, the attachment may hav \(\epsilon\) any address from:
\begin{tabular}{cc} 
Binary. & Hex \\
\hline 00000000 & 00 \\
to & to \\
11111111 & FF
\end{tabular}

In practice, the integrated 2540 is assigned an address of \(0 C\) for the reader and \(O D\) for the punch, to standardize with other System/ 360 usage. This addressing makes use of two of the channel-0 subchannel addresses and prevents their use for the channel. If the channel ccnfigurations require the use of the subchannels, the 2540 addresses can be changed by the custorer engineer.

Under no condition should an address assigned to any other I/O device be assigned to either the 2540 reader cr or punch.

\section*{2. 46 ERRCR RECCVERY RCUTINE--INTEGRATED PUNCH}

This procedure is included at the beginning of the Native Punch Trap Routine (ETRP).

For examining punch-check problems, the fcllowing procedure can be fcllcwed.
1. SAR delay stop at the address labeled PCH CHK in this routine.
2. When PCH CHK is detected the processor will stop with the punch attention light on.
3. Display of error logout (auxiliary storage 50F6-50FF) can be performed using 1052. The bit significance of the error logout is as follows. \(\begin{array}{lllll}\mathrm{AR} & 50 \mathrm{~F} 6 & 50 \mathrm{~F} 7 & 50 \mathrm{~F} 8 & 50 \mathrm{FF}\end{array}\) BIT 01234567012345670123456701234567 Co1 1--8 9 9--16 \(17-24 \quad 73-80\)

When bit=1, that column is in error.
4. Nanually clear logout area after analysis is completed.
5. The punch ifrage for a card in error is located in auxiliary storage 400C through 4083. The fcrrat for this area starting at address 400 C is 10 bytes, for the 12 row of the card, the next 10 bytes for the 11 rcw etc. A kit keing a zero in this area designates a hole in the card.

The registers are used as follows. GC=Trap count
V=Auxiliary storage address modification D05=1 normal write indicatcr
D07=1 12-row punch

\subsection*{2.47 ERRCR RECOVERY ROUTINE--INTEGRATED READER}

The reader check logout format is as follows.
\begin{tabular}{llll} 
AUX ADR & 10F6 & 10F7 & 10 FF \\
BITS & 01234567 & 01234567 & 01234567 \\
COL & 1 THRU 8 & 9 THRU 16 & 73 THRU 80
\end{tabular}

The format for the row form in a uxiliary storage (4FA0 thrcugh 5017) is as follows. The first 10 kytes, row 9 of card; the next 10 bytes, row 8 of the cards; etc. A bit keing zero signifies a punched hole.

\subsection*{2.482540 RESTARTS FROM ERROR CONDITIONS}

The 2540 uses the flexible System/360 command set; therefore, different external error conditions can each require different restart procedures, depending on whether the 2540 operation is reading, punching or PFR. If the frogran provides some programmed message to indicate the 2540 sense conditions (such as PR-KB typeout), the operator can use this message to determine which specific restart procedure he should follow. To locate the error card for read-check and validity-check errors, the operator should be familiar with the with the type of processing used by the program; that is, whether the program is reading and stacking each card with a single command, or delaying the stacker selection until the data from the card is analyzed.

Figure 2-8 shows the various 2540 error indications and appropriate restart procedures for standard operations, and for PFR operations.
\begin{tabular}{|c|c|}
\hline Indications & Restart Procedures \\
\hline \begin{tabular}{l}
Reader Feed Stop Light (Only) \\
Sense Bit 1-Intervention Required (Only) \\
Note: If read check/bit 3 or validity check/bit 4 indications accompany feed stop/bit 1, follow procedure for read check or validity check.
\end{tabular} & \begin{tabular}{l}
1. Remove cards from stacker R1. \\
2. Open hopper joggler gate and remove cards from hopper. \\
3. Open covers and remove any jammed cards from read feed. Reconstruct any damaged cards. \\
4. With joggler gate still open, press reader start key to clear feed. \\
5. Remove cards just run out into stacker R1, place them and any reconstructed cards, in proper sequence, ahead of cards removed from hopper, and replace this deck in hopper or ahead of cards in file feed magazine. \\
6. Close joggler gate. \\
7. Press reader start key.
\end{tabular} \\
\hline \begin{tabular}{l}
Reader Feed Stop Light \\
Reader Check Light \\
Sense Bit 1--Intervention Required (Only)
\end{tabular} & This combination of error indications accompanies a 2540 read clutch failure; there may be cards in stacker R1 that have not been read. Restart the job from the last checkpoint. \\
\hline \begin{tabular}{l}
Read Check Light \\
Sense Bit 3-Equipment Check \\
(If card is read and stacked with single command.)
\end{tabular} & \begin{tabular}{l}
1. Remove cards from stacker R1. Determine (perhaps with aid from programmed message) which was last card read into processing unit, and correct any off-registration punching in it. Place this corrected card in stacker R1. \\
2. Open joggler gate and remove cards from hopper. \\
3. With joggier gate open, press reader start key to clear read feed. \\
4. Remove cards from stacker R1 and place them ahead of cards removed from hopper. Place this deck in hopper or ahead of cards in file feed magazine. \\
5. Close joggler gate. \\
6. Press reader start key.
\end{tabular} \\
\hline \begin{tabular}{l}
Read Check Light \\
Sense Bit 3-Equipment Check \\
(If stacker selection is delayed.)
\end{tabular} & \begin{tabular}{l}
1. Remove cards from stacker R1. \\
2. Follow steps 2-6 of preceding procedure, correcting any off-registration punching in first card run out into stacker R1.
\end{tabular} \\
\hline \begin{tabular}{l}
Validity Check Light \\
Sense Bit 4--Data Check \\
UIf card is read and stacked with single command)
\end{tabular} & \begin{tabular}{l}
1. Remove cards from stacker R1. Determine (perhaps with aid from programmed message) which was last card read into processing unit (this card may be in another stacker) and correct any errors in this card. Place the corrected card in stacker R1. \\
2. Open joggler gate and remove cards from hopper. \\
3. With joggler gate open, press reader start key to clear read feed. \\
4. Remove cards from stacker R1 and place them ahead of cards removed from hopper. Place this deck in hopper or ahead of cards in file feed magazine. \\
5. Close joggier gate. \\
6. Press reader start key.
\end{tabular} \\
\hline
\end{tabular}

\section*{Figure 2-8. Restart Procedures--Standard and PFR Operation (Part 1 of 3)}
\begin{tabular}{|c|c|}
\hline Indications & Restart Procedures \\
\hline \begin{tabular}{l}
Validity Check Light \\
Sense Bit 4-Data Check \\
(If stacker selection is delayed.) \\
Punch Feed Stop Light (Only) \\
Sense Bit 1-Intervention Required Only) \\
(If the \(\mathbf{2 5 4 0}\) is not performing PFR operations.)
\end{tabular} & \begin{tabular}{l}
1. Remove cards from stacker R1. \\
2. Open joggler gate and remove cards from hopper. \\
3. With joggler gate open, press start key to clear read feed. \\
4. Locate and correct invalid character(s) in first card in stacker R1. \\
5. Place corrected card ahead of cards in stacker R1. Place all cards in stacker R1 ahead of cards removed from hopper. Place this deck in hopper ahead of cards in file feed magazine. \\
6. Close joggler gate. \\
7. Press reader start key. \\
1. Remove cards from stacker P1. \\
2. Remove cards from hopper. \\
3. Open covers and remvoe any jammed cards from punch feed. \\
4. Press punch start key to clear punch feed. \\
5. Discard last card punched ( 2540 will repunch this card automatically). \\
6. Replace blank cards in hopper and press punch start key. Last card will be repunched automatically and 2540 enters ready status.
\end{tabular} \\
\hline
\end{tabular}

Figure 2-8. Restart Procedures--Standard and PFR Operation (Part 2 of 3)


Figure 2-8. Restart Frocedures--Standard and PFR Operations (Part 3 of 3)

\subsection*{2.49 JAM REMOVAL}

Fcr a descriftion of how card jans can be cleared from the 2540, refer to IEM 2540 Component Description and ckerating Procedures, Form A21-9033.

\subsection*{2.50 EXTERNAL TO CPU FACILITIES (2540)}
2.50.1 RP1 (READER-PUNCH DATA IN)

Bits are shifted into this register during reading from read station 1 cr from the PFR brushes. A move word with As-deccde=B is used to move the contents of RP1 tc auxiliary storage.
2.50.2 RP2 (READER-PUNCH DATA IN)

The same as RP1, but for the read station 2 and punch check trushes. A move word with AS-decode=A is used to move the contents of RP2 to auxiliary storage.

\subsection*{2.50.3 RS (READER BRANCH CCNDITIONS)}

A kranch (on condition or on mask) word with AS-decode=D is used to test the following conditions.

Bit: 0
Name: Not gate read complete
Value: 0
Signifies: No cards in read feed, cr a card is passing read station 2.

Bit: 1
Name: Reader ready
Value: 1
Sionifies: The reader is in the ready state.

Bit: 2
Name: Reader unit exception gate
Value: 1
Sionifies: All cards have been run out of the read feed and end-of-file is cn.

Bit: 3
Name: Reader check
Value: 1
Siqnifies: A hole-count, shift-register, or address check occurred in the reader.

Bit: 4
Name: Reader validity check
Value: 1
Signifies: Nore than one punch was detected in rows 1-7 of a single card column during reading in data mode 1.

Bit: 5
Name: Reader hardware DE
Value: 1
Signifies: Device-end is set on because of either an overrun condition or a not-ready to ready transition.

Bit: 6
Name: Reader status request
Signifies: set on for channel-end or device-end.

Bit: 7
Name: 1400 unit exception
Value: 0
Signifies: The last card has passed the read station 2 and end-cf-file is on.

\subsection*{2.50.4 PS (PUNCH ERANCH CONDITIONS)}

A kranch (on condition cr on mask) word with AS-d \(\epsilon \operatorname{cod} \epsilon=F\) is used to test these conditions.

Bit: 0
Name: Punch ready
Value: 1
Signifies: The punch is in the ready state.

Bit: 1
Name: Not 4-rit mod pull on
Value: 0
Signifies: A normal run-in has occurred (two feed cycles).

Bit: 2
Name: PFR unit exception gate
Value: 1
Signifies: The last card has passed the punch station and end-of-file is on.

Bit: 3
Name: Punch check
Value: 1
Signifies: A hole count, shift register, or address check occurred in the punch.

Bit: 4
Name: PFR validity
Value: 1
Signifies: More than one punch was detected in rows 1-7 of a single card column of a card read at the PFR brushes.

Bit: 5
Name: Punch hardware DE
Value: 1
Signifies: Device-end is set on because of either an overrun condition or a not-ready to ready transition.

```

2.50.6 RPD1 (DIAGNOSTIC READER/PUNCH BRANCH
CONDITIONS)
A branch (on condition cr cn mask) word
with AS-decode=8 is used to test these
conditions.
Bit: 0
Name: Tens AR A
Value: 1
Signifies: Address for brushes or punch
magnets.
Bit: 1
Name: Tens AR B
value: 1
Signifies: Same as bit 0.
Bit: 2
Name: Tens AR C
value: 1
Signifies: Same as bit 0.
Bit: 3
Name: Tens AR D
Value: 1
Signifies: Same as bit 0.
Bit: 4
Name: Tens AR E
Value: 1
Signifies: Same as bit 0.
Bit: 5
Name: Pch Address Reg Check
Value: 1
Signifies: Address check in diag op.
Bit: 6
Name: Pch overrun check
Value: 1
Signifies: Punch overrun in diag op.
Bit: 7
Name: Pch shifting reg sync check
Value: 1
Signifies: Shift register check in
diagnostic operation.
2.50.7 RPD2 (DIAGNOSTIC READER/PUNCH BRANCH
CCNDITIONS)
A kranch (on condition or on mask) word
with AS-decode=9 is used to test these
conditions.
Bit: 0
Name: Unit AR A
Value: 1
Signifies: Address for brushes or punch
magnets.
Bit: 1
Name: Units AR B
Value: 1
Signifies: Same as bit 0.

```


Name: Units AR C
Value: 1
Siqnifies: \(S a m e\) as kit 0.
Bit: 3
Name: Units AR D
Value: 1
Signifies: Same as bit 0.
Bit: 4
Name: Units AR E
value: 1
Signifies: Same as kit 0 .
Bit: 5
Name: Reader address reg check
Value: 1
Signifies: Address check in diag op.
Bit: 6
Name: Reader overrun check
Value: 1
Signifies: Reader overrun in diag op.
Bit: 7
Name: Reader shift reg sync check
Signifies: Shift register check in diagnostic operation.
2.51 CPU TO EXTERNAL FACILIIIES (2540)

The following are set cn or cff by means of a set/reset word in which the CS decode has the value listed.
2.5.1.1 \(\mathrm{R}=\mathrm{K}(\mathrm{CS} \operatorname{DECCDE}=\mathrm{P})\)

Bit: 0
ader check
Value: 1 error in reader.

Bit: 0
Name: Reader check
Valye: 0
Signifies: Reset reader sense byte.
Bit: 1
Name: Read feed
Value: 1
Signifies: Signals reader to feed cards.
Bit: 2
Name: Read select stacker R2
Value: 1
Sionifies: Sets up for stacker selection in R2.

Bit: 3
Narre: Read select stacker R3
Value: 1 R3.

\section*{Bit: 4}

Name: Validity check
Value: 1
Signifies: Set on when rore than one hole is read from columns 1-7 of a single card column in the reader.

Bit: 5
Name: Sense set reader
Value: 1
Signifies: Sets reader-check light on if bit 0 is on.

Bit: 6
Name: Reader status latch
Value: 1
Signifies: Set at channel-end or device-end so that reader can request to present status in channel \(0 I B\).
Value: 0
Signifies: Reset reader status and reader queued latches.

Bit: 7
Name: Reader queued
Value: 1
Signifies: Blocks attachment from sending reader status to channel \(01 B\) (Interrupt Buffer).
Value: 0
Signifies: Reset reader device-end.
2. \(51.2 \mathrm{P}=\mathrm{K}(\mathrm{CS} \operatorname{DECODE}=\mathrm{F})\)

Bit: 0
Name: Punch check
Value: 1
Signifies: set on to indicate a hole-count error in the punch; turns punch-check light on.

Bit: 0
Name: Punch check
Value: 0
Signifies: Resets punch sense byte.
Bit: 1
Name: Punch feed
Value: 1
Signifies: Signals the funch to feed cards.

Bit: 2
Name: Punch select stacker P2
Value: 1
Signifies: sets up for stacker selection in P2.

Bit: 3
Name: Punch select stacker P3
Value: 1
Signifies: Same as bit 2, but for stacker P3.

Bit: 4
Name: PFR validity check
Value: 1
Signifies: Set on when more than one hcle is read by the PFR brushes, from columns \(1-7\) of a single card column.

Bit: 5
Name: Punch restart gate (PFR write and feed comd)
Value: 1
Signifies: Prevents rerun-in of 3 cards; provides for normal run-in of 2 cards after a PFR write and feed command in which a feed check occurred, or a feed check and a punch check occurred simultaneously.

Bit: 6
Name: Punch status latch
Value: 1
Siqnifies: Set at channel-end or
device-end so that punch can request to present status in channel 0 IB.
Value: 0
Signifies: Reset device-end, punch status, and punch queued latches.

Bit: 7
Name: Pch queued
Value: 1
Signifies: Blocks attachment from sending punch status to channel OIB.
2.51.3 RP \(=\mathrm{K}(\mathrm{CS}\) DECODE \(=\mathrm{D})\)

Bit: 0
Name: Unit-exception status reader accected.
Value: 1
Signifies: Indicates to reader circuits that reader ready can ke turned off (i.e., the last card has been read and stacked on an end-of-file operation and unit-exception status has then been accepted by channel 0 ).

\section*{Bit: 1}

Name: 1400 latch
Value: 1
Signifies: Causes a delayed feed for 1400 operations. Value 0 not used.

Bit: 2
Name: Reader card interlock
Value: 1
Signifies: Set on when any command is accepted by the reader. Resets when device-end is sent, for the command, to channel OIB.

Bit: 3
Name: Reader machine check
Value: 1
Sionifies: Machine check occurred during reader trap microprogram. value 0 not used.

Bit: 4
Name: Punch command interlock
Value: 1
Signifies: Same as bit 2, but for the punch.

Bit: 5
Name: Punch machine check
Value: 1
Signifies: Machine check occurred while microprogram was in a punch trap. Value 0 not used.

Bit: 6
Value: 1
Signifies: Reader device-end.

Bit: 7
Value: 1
Signifies: Punch device-end.
2.51.4 D \(=\mathrm{K}(\mathrm{CS} \operatorname{DECODE}=9)\)

Bit: 0
Name: R/P diagnostic latch
Value: 1
Signifies: Allows other diagnostic external lines to function.

Bit: 1
Name: R/P diagnostic singleshot
Value: 1
Signifies: Simulates reader or punch scan impulse to start read or punch (i.e., shifting into RP1 and RP2 or out of PO).

Bit: 2
Name: R/P diagnostic single cycle
Value: 1
Signifies: Allows bits to be shifted one at a time through RP1 and RP2 or PO.

Eit: 3
Name: Diagnostic reset shift reg (reset) Value: 1
Signifies: Simulates a machine reset.
Bits: 4,5,6,7 Not used

\subsection*{2.51.5 PC (CARD-PUNCH DATA OUT)}

Bits are set into this 8 -bit register from \(P\) (punch image area of auxiliary storage). From PC the kits are then shifted out to the punch magnet latches during punching. A storage word with As-decode \(=\) F is used to load PC from the funch-image area of auxiliary storage.

\section*{Section 1E. Channel Procedures}

\subsection*{2.52 MULTIPLEXER CHANNEL DEVICE ADDRESSING}

The multiclexer channel address leight high-order bits of the 16 -bit address) is 00 hex. Device addressing on the multiplexer channel depends upon how a device and its control unit operate with the channel. The Model 25 multiplexer channel has 32 subchannels, each cf which is associated with an individual device address. For devices that have their own control unit self-contained, and fcr ccntrol units that operate two or more devices simultaneously (such as the 2821), individual sutchannel addresses are assigned to each device. These addresses are designated with a 0 -cit in the high-order position of the device address. All of the 32 subchannels can be assigned to individual control units using the addressing shown in Figure 2-9.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Subchannel \\
(UCW)
\end{tabular} & \multicolumn{2}{|c|}{ Device Address } \\
Binary & Hex \\
\hline 0 & 00000000 & 00 \\
to & to & to \\
31 & 00011111 & \(1 F\) \\
\hline
\end{tabular}

Figure 2-9. Subchannel Addresses
For a third class of control units that can operate two or more devices of which cnly one can operate at a time, a single subchannel can be used with a special addressing scheme. The first eight subchannels also can \(k \in\) addressed and operated as shared subchannels. In this case, the 0-tit position of the device address is set to 1 . The remaining three bits of the high-order kyte are used to designate the subchannel instead of the ncrmally used three kits in the low-order byte. The bits of the low-order byte are then used to designate the device address. The comparable addresses for use of the subchannel as individual control unit and as shared control unit are shown in Figure 2-10.

In assigning device addresses, be careful that a single subchannel is not addressed by both its individual address and by its shared address. If this were to harpen, the operation data in the UCW could be accessed by both device cperations and result in transmission errors for both devices. In addition these addresses shculd not te assign \(\in\) d to any of the integrated I/O devices assigned to channel 0 in a manner that would prevent the use of a UCW as either individual or shared. An example of this lockout would be the
addressing the 2540 Reader as 01 and the 2540 punch as 9 X . Any atterpt to use either of these addresses for channel devices would result in ccerating either the reader or punch of the 2540 . The channel UCW-1 could not be used for the channel tecause the 2540 is selected first. The integrated \(I / O\) devices have their own UCWs.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Individual C.U. Address} & \multicolumn{2}{|l|}{Shared C.U. Address Binary} & Hex \\
\hline 0 & 0000 & 0000 & 00 & 1000 & XXXX & 8X \\
\hline 1 & 0000 & 0001 & 01 & 1001 & XXXX & 9X \\
\hline 2 & 0000 & 0010 & 02 & 1010 & XXXX & AX \\
\hline 3 & 0000 & 0011 & 03 & 1011 & XXXX & BX \\
\hline 4 & 0000 & 0100 & 04 & 1100 & XXXX & CX \\
\hline 5 & 0000 & 0101 & 05 & 1101 & XXXX & DX \\
\hline 6 & 0000 & 0110 & 06 & 1110 & XXXX & EX \\
\hline 7 & \[
\frac{0000}{\mathrm{t}}
\] & \[
\frac{0111}{1}
\] & 07 & & \[
\frac{x x x x}{1}
\] & FX \\
\hline Share UCW Devic & dress & ts & &  & & \\
\hline
\end{tabular}

Figure 2-10. Subchannel Addresses Individual and Shared Control Unit

\section*{2. 53 SELECTOR CHANNEL DEVICE ADDRESSI NG}

The selector channel address (eight high-order kits of the 11-bit address) is 01 hex. Device addressing on the selector channel may in theory be any of the 256 possible bit combinaticns. The addressing is limited at two points by the integrated disk storage devices that are also assigned to channel 1 and addresses 9X (Hex). The value of \(x\) ranges from 0 to 3 for the four possible disk drives. The remaining addresses have no special significance in the processing unit, and ray be assigned as required ky the program for the selector channel devices.

\section*{2. 54 CHANNEL AND UNIT ADDRESSING RESTRICTICNS}

No more than one addressing bit structure can be assigned tc a specific \(I / O\) unit. Also, the same unit address may not be assigned to two or more devices.

\subsection*{2.54.1 CHANNEL 1}

When the BURSTCH (selector channel) core load is loaded, device addresses 00 through

FF are valid. Integrated 2311 units however, can be \(0 x-F x\) and consume sixteen of these 256 possible address combinaticns.
2.54.2 CHANNEL 0 (EXCEPT 16K AND 24 K SYSTEMS WITH BCTH THE MPX CHANNEL AND ICA FEATURES)

When the standard interface channel feature is installed and the BYTECH (rultiplexer) ccre load is contained in control storage on 32 K and 48 K systems, the following device addresses may ke used.

Device
Address Usage
00-1F MPX Channel single-unit adapter (SUA) addresses
20-3F Communications attachment addresses*
40-7F Invalid (condition code 3)
80-FF MPX channel multiple-unit adapter (NUA) addresses
00-FF Integrated 1052, 1403, and 2540**
* If the Integrat \(\in d\) Communications Attachment (ICA) feature is nct installed, use of these addresses results in condition code 3.
** Althcugh these integrated attachment features can use any address (00-FF), they should be assigned an address outside the ranges allocated for the MPX addressing capabilities of these facilities are not decreased.


\footnotetext{
* (Except 16K and 24K Systems having both MPX and ICA features)
}

Figure 2-11. *Auxiliary Stcrage Mcdule 2 (Channel)

Figure 2-11 is a map of auxiliary storage module 2 showing single-unit addresses and multiple-unit addresses (inside the figure), and the corresponding UCW addresses (figure cccrdinates), for systems except 16 K and 24 K systems having koth the MPX channel and ICA features.

Eight UCWs (00-07) can be used either ky SUA or MUA device addresses. Thirty-two subchannels are available (Figure 2-12).
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
MUA \\
Device \\
Addrs
\end{tabular} & SUA Device Addrs & Corresponding UCW Address \\
\hline 8x & 00 & 00 \\
\hline -- & 10 & 08 \\
\hline 9 x & 01 & 10 \\
\hline -- & 11 & 18 \\
\hline Ax & 02 & 20 \\
\hline -. & 12 & 28 \\
\hline Bx & 03 & 30 \\
\hline -- & 13 & 38 \\
\hline Cx & 04 & 40 \\
\hline -- & 14 & 48 \\
\hline Dx & 05 & 50 \\
\hline -- & 15 & 58 \\
\hline Ex & 06 & 60 \\
\hline -- & 16 & 68 \\
\hline Fx & 07 & 70 \\
\hline -- & 17 & 78 \\
\hline .- & 08 & 80 \\
\hline -- & 18 & 88 \\
\hline -- & 09 & 90 \\
\hline - & 19 & 98 \\
\hline .- & OA & A0 \\
\hline -- & 1A & A8 \\
\hline -- & OB & Bо \\
\hline .- & 18 & B8 \\
\hline - & OC & C0 \\
\hline .. & 1 C & C8 \\
\hline .- & OD & D0 \\
\hline -- & 10 & D8 \\
\hline .- & OE & E0 \\
\hline -- & 1E & E8 \\
\hline -- & OF & F0 \\
\hline .- & 1F & F8 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{5}{*}{*For all versions except the Combinational Versions of ICA and MPX Channel and 16 K or 24 K Program Storage}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Figure 2-12. *UCW Allocations (Channel)

The device address is used to develop the UCW address (except for 16 K and 24 K systems having both the multiplexer channel and ICA features) as shown in Figure 2-13.

For single-unit addresses (SUA), \(A=0, B=0\), \(\mathrm{C}=0\) for MPX, and \(\mathrm{C}=1\) for ICA:

Device Address


UCW Address

For multiple-unit addresses (MUA), \(A=1\), and \(E, F, G\). and \(H\) are ignored:

Device Address


UCW Address
* Except for 16 K and 24 K systems having both the multiplexer channels and ICA features.

Figure 2-13. *UCW Formulation (Channel)
2.54.3 CHANNEL 0 (16K AND 24K SYSTEMS WITH BOTH THE MPX CHANNEI AND ICA FEATURES)

When the standard interface is ccerated on 16 K and 24 K system as a multiplexer channel (BYTECH loaded), the following device addresses are used.

Device
Address Usage
00-07 Invalid*
08-0F MPX channel SUA UCWs
10-17 Invalid
18-1F MPX channel SUA UCWs
20-27 Communications UCWs/LCWs**
28-7F Invalid
80-FF NPX channel MUA UCWs
00-FF Integrated 1052, 1403, E 2540***
* Invalid addresses cause setting of condition code 3.
** If the ICA feature is not installed, these addresses are invalid.
*** Unit addresses for these devices should not be assigned in the ranges reserved for the MPX channel cr ICA feature.

Figure 2-14 gives the UCW allocations for the multiplexer channel and integrated communications feature for 11 K and 24 K systems having both these features. Multiple-unit addresses ( \(80-\mathrm{FF}\) ) and the corresponding single-unit addresses (18-1F) are mutually exclusive. Sixteen MPX subchannels are available with this system configuration.
\begin{tabular}{|c|c|c|c|c|}
\hline MUA Device Addrs & SUA Device Addrs & \multicolumn{2}{|l|}{Corresponding UCW Address} & Feature \\
\hline 9 x & 18 & \multicolumn{2}{|c|}{CO} & MPX \\
\hline Cx & 19 & \multicolumn{2}{|c|}{C8} & Channel \\
\hline 9 x & 1A & \multicolumn{2}{|c|}{D0} & \\
\hline Dx & 1 B & \multicolumn{2}{|c|}{D8} & \\
\hline Ax & 1 C & \multicolumn{2}{|c|}{EO} & \\
\hline Ex & 1 D & \multicolumn{2}{|c|}{E8} & \\
\hline Bx & 1E & \multicolumn{2}{|c|}{F0} & \\
\hline Fx & 1F & \multicolumn{2}{|c|}{F8} & \\
\hline -- & 08 & \multicolumn{2}{|c|}{40} & \\
\hline -- & 09 & \multicolumn{2}{|c|}{48} & \\
\hline - & OA & \multicolumn{2}{|c|}{50} & \\
\hline \(\because\) & OB & \multicolumn{2}{|c|}{58} & \\
\hline -. & OC & \multicolumn{2}{|c|}{60} & \\
\hline - & OD & \multicolumn{2}{|c|}{68} & \\
\hline - & OE & \multicolumn{2}{|c|}{70} & \\
\hline \multirow[t]{2}{*}{--} & OF & \multicolumn{2}{|c|}{78} & \\
\hline & & (UCW) & LCW & \\
\hline - & 20 & 80 & 00 & Integr. \\
\hline -- & 21 & 88 & 08 & Comm. \\
\hline -- & 22 & 90 & 10 & Attach. \\
\hline -- & 23 & 98 & 18 & (ICA) \\
\hline - & 24 & A0 & 20 & \\
\hline -- & 25 & A8 & 28 & \\
\hline - & 26 & B0 & 30 & \\
\hline .. & 27 & B8 & 38 & \\
\hline
\end{tabular}

Figure 2-14. MPX and ICA UCW Allocations for 16 K and 24 K Systems

Figure \(2-15\) recresents a map of
auxiliary storage module 2 for 16 K and 24 K systems having both the MPX and ICA
features. It shows the SUA, MUA, and ICA device addresses and the corresponding UCW addresses.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{0} & \multicolumn{1}{l|}{8} \\
\hline 0 & ICA & ICA \\
\hline 1 & ICA & ICA \\
\hline 2 & ICA & ICA \\
\hline 3 & ICA & ICA \\
\hline 4 & SUA 08 & SUA 09 \\
\hline 5 & SUA OA & SUA OB \\
\hline 6 & SUA 0C & SUA 0D \\
\hline 7 & SUA 0E & SUA 0F \\
\hline 8 & ICA & ICA \\
\hline 9 & ICA & ICA \\
\hline A & ICA & ICA \\
\hline B & ICA & ICA \\
\hline C & SUA 18 or MUA 8x & SUA 19 or MUA 9x \\
\hline D & SUA 1A or MUA 8x & SUA 1B or MUA Bx \\
\hline E & SUA 1C or MUA Cx & SUA 1D or MUA Dx \\
\hline F & SUA 1E or MUA Ex & SUA 1F or MUA Fx \\
\hline
\end{tabular}
*Auxiliary storage module 2 for 16 K and 24 K systems with both the MPX and ICA features

Figure 2-15. *Auxiliary Stcrage Mcdule 2 (Channel)

The algorithm used to kuild UCW addresses from device addresses for this system configuration differs from other versions, as shown in Figure 2-16.
2.54.4 ASSIGNING INTEGRATED 1052. 1403, 2311. AND 2540 DEVICE ADDRESSES

The mi croprogram assembler system (NAS) assigns the device addresses shown in Figure 2-17. These standard addresses are placed in fixed auxiliary storage locations by the CSI deck.

The device addresses for the integrated attachments can ke anywhere within the range of 00 through FF . The address to be used for any integrated attachment can be changed by changing the contents of the auxiliary storage location specified for that device in Figure 2-19.

MAS inserts \(F F\) in the auxiliary storage location for any of these optional attachment features not selected in the farticular core load.

Putting \(F F\) in the auxiliary stcrage location for devices not included in the core load inhibits the use of FF as a device address for any device on the same channel.
```

 If FF is desired as a valid device
 address, the CE or SE must replace the FF,
inserted by NAS for all attachment features

```
not included, with any unused device address. This can be done by punching a card with the beginning data address, length of data field, and data to be loaded and by inserting the card in the NAS core load deck. The detailed instructions for preparing additional CSL cards are presented at the beginning of the BCPL microprogram routine.

For single-unit addresses (SUA), \(A=0, B=0\), \(C=0\) for MPX, and \(C=1\) for ICA:

Device Address


UCW Address

For multiple-unit addresses (MUA), \(A=1\), and \(E, F, G\), and \(H\) are ignored:

Device Address


UCW Address
* For 16 K and 24 K systems having both the MPX and ICA features.

Figure 2-16. *UCW Formulation (Channel)
\begin{tabular}{|c|c|c|c|}
\hline & & Standard Device Address & \begin{tabular}{l}
AS-Location \\
of Device \\
Address
\end{tabular} \\
\hline \multirow[t]{4}{*}{Chnl 0} & 1052 PrinterKeyboard & 1F & 00B4 \\
\hline & 2540 Reader & OC & 0085 \\
\hline & 2540 Punch & OD & 0086 \\
\hline & 1403 Printer & OE & 00B7 \\
\hline \multirow[t]{2}{*}{Chnl 1} & 2311 Disk Storage & 0090 & 0084 \\
\hline & Drive (control unit address) & & \\
\hline
\end{tabular}

Figure 2-17. Standard Integrated Attachment Device Addresses and AS-Iocaticns

\subsection*{2.55 MULTIPIEXER-CHANNEI UNIT CONTROL WORDS}

A UCW (unit control word) contains the information necessary to sustain an I/O cperation for a device. The UCW format for Channel-0 devices operated through the standard I/O interface is shown in Figure 2-18 and Figure 1-68.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Byte} \\
\hline 0 & 1 & \multicolumn{2}{|l|}{2 and 3} & 4 and 5 & 6 and 7 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Chnl \\
Status
\end{tabular}} & \multirow[t]{2}{*}{Flags and \(O p\)} & \multicolumn{2}{|l|}{Data Address} & \multirow[t]{2}{*}{Cnt} & \multirow[t]{2}{*}{\begin{tabular}{l}
Next CCW \\
Address
\end{tabular}} \\
\hline & & Unit Status at Interrupt & Unit Addrs at Interrupt & & \\
\hline
\end{tabular}

Note: Fields in this figure are defined in the associated text.

\section*{Figure 2-18. Channel-0 UCW Format (Standard I/C Interface)}

The number of UCWs available fcr devices attached to channel 0 via the standard I/O interface depends upon:
1. the program-storage size, and
2. the optional features installed on the system.
Fcr 16 K and 24 K systems with both the multiplexer channel and integrated
communications attachment features, 16 UCWs are availakle for the multiplexer channel. For all other systems, 32 UCWs are available for the multiplexer channel.

These UCWs are in additicn to the UCWs allocated for the integrated 1052, 1403 2540 reader, 2540 punch, and communications lines.

The following definitions apply to the most common usage of the UCW bits (Figure 2-18). Refer to the microprogran listings
for exceptions during execution of various channel microprogram routine. Unless otherwise not \(\in\) d, the bit value is 1.

\subsection*{2.55.1 CHANNEL STATUS (EYTE 0)}
```

Bit Meaning
0 *Secondary
1 Incorrect length
2 Program check
3 Protection Check
4 **Channel data check
5 Channel control check
6 Interface control check
7 *Interrupt in interrupt buffer
*Bits 0 and 7 indicate the following.
07}\mathrm{ Indicate
00 Handling data, excepting data
0 1 Handling data, excection status
10 Status queued at I/O device
11 Status in IB (Interrupt Buffer)
** Channel data check can be set on only
during input cperaticns. The parity
check is detected in the CPU
A-register, and no machine check
occurs.

```
2.55.2 OP-FLAG (BYTE 1)
Bit Meaning
    CDA (data chain in progress)
    CC (command chain in frogress)
    SLI (Suppress Length Indication)
    SKIP
    PCI (Program Controlled Interruption)
    *Active
    **Op 1
    **Op 2
* The active kit is on from the time that an operation is initiated at the device associated with the UCW until channel-send of the cperation (i.e., such as for the last command of a command chain) has been stored in the CSW.
** op-0 and cp-1 signify (when the active kit=1) :

67 Indicate
00 Count zero (expecting channel-end)
01 Output command (write or control)
10 Read forward command (read or sense)
11 Read backward command (read backward)

\subsection*{2.55.3 DATA ADDRESS (BYTES 2 AND 3)}

Two kytes are used to maintain the current data address for the command operation: any System/360 Model 25 program-storage location can be specified with a two-byte address.

When status (channel-end) is presented by the device for the operaticn, the unit status byte is flaced in the high-order address lyte location. The device address is placed in the low-order address byte location. (The data address is no longer needed at that time.)

\subsection*{2.55.4 COUNT (BYTES 4 AND 5)}

These two kytes contain the current count for the operation.

\subsection*{2.55.5 NEXT CCW ADDRESS (BYTE 6 AND 7)}

These two bytes contain the address of the next CCW.

\subsection*{2.56 SELECTCR CHANNEL CCNTROL INFORMATION}

The inforration necessary to sustain an \(I / O\) operaticn on the selector channel is kept either in the IS-register reserved for the channel ( \(U, V, G\), and \(D\) in zone 7 ) or in K-addressable auxiliary storage locations.

The channel status, op-flag byte, count, and data address are \(k\) ept in the and data address are kept in the channel IS-registers.

The next CCW address is kect in k-addressable auxiliary storage because this information is needed only if command chaining cr data chaining is performed.
2. 56.1 CHANNEL STATUS (LS ZCNE 7 REGISTER G0)
```

Bit Meaning
Program-control interruption
Incorrect length
Prcgram check
Protection check
Channel data check
Channel control check
Interface control check
7** Initial status received.

```
* This kit is meaningful only when the burst latch is on. When cff, this bit indicates that the channel is handling data, expecting data. When on, it indicates that data transfer is complete and channel-end has keen presented by the I/C device.
** Channel data check can le set on only during input operations. The farity check is detected in the CPU A-register: no machine check occurs.
```

2.56.2 OP FLAG (LS ZONE 7 REGISTER G1)
Bit Meaning
0 CDA (chain data in progress)
CC (command chain in progress)
SLI (suppress length indication)
Skip
PCI (program controlled interruption)
5* General purpcse
6** Op 1
7** Op 2

```
* This bit is used to stcre various indications and conditions at different points in the microprcgram routines.
** When the kurst latch is on, the op-1 and Op-2 bits have the following significance.

\section*{\(6 \frac{7}{6}\) Meaning}
\(\frac{6}{0} \frac{7}{0}\) Count zero (excepting channel end)
01 Output command (write or control)
10 Read forward command (read or sense)
11 Read kackward command (read backward)
2.56.3 DATA ADDRESS (LS ZONE 7 REGISTER V)

Two bytes are used to maintain the correct data address for the command operation; any System/ 360 Model 25 program storage
location can be specified with a 2-byte address.

When channel-end status is presented by the device for the operation, the unit status is placed in the high-order address-lyte location (the data address is no longer needed at this time).
2.56.4 COUNT (LS ZONE 7 REGISTER U)

These two bytes contain the current data count for the operation.
2.56.5 NEXT CCW ADDRESS (AUXIIIARY STCRAGE LOCATION 008A)

These two bytes contain the address of the next CCW.

\section*{2. 57 CHANNEL ERROR-HANDLING PHILOSOPHY AND} LOGOUT

Error conditions that can be detected by the Model 25 channel interface are:
1. Incorrect Length
2. Program Check
3. Protection Check
4. Channel Data Check
5. Channel Control Check
6. Interface Control Check.

These error conditions are discussed in the System \(/ 360\) Principles of Operation.

\subsection*{2.57.1 ChANNEI STATUS BYTE}

Channel status kits, stored in the CSW for Mcdel 25 channel operations, are defined as follows.

Incorrect Length (Bit 41): This condition is tested at channel-end time. The suppress incorrect length flag causes this indication to \(k \in\) suppressed.

Program. Check (Bit 42): A11 prcgran checks (except when the data address used exceeds the installed program storage capacity) are detected by the microprograr.

Program checks caused by attempting to address a program storage location above the installed capacity are detected by circuitry.

Prctection Check (Bit 43): A circuitry test is made for this condition. In the Model 25, a protection check can occur only when data is reing stored into core storage; that is. only when a read cr sense is being executed.

Channel Data Check (Bit 44): This condition is detected by setting a circuitry latch whenever the kus-in is being stored or gated into local storage or core storage. If incorrect parity exists during such an operation, the channel data check bit is set on.

If the latch is set when unit status or unit address is keing gated into local storage (because of incorrect farity), an interface control check is indicated. Also, see Section 2.57.2.2 for errors that afply tc the integrated attachments.

Channel control checks can occur only when the CPU check control switch is in the process position. When this switch is in the disable position, the check is ignored. When in stof, a hard stop occurs in the microprogram step in which the error occurred. The appropriate error lights are turned cn .

Channel Control Check (Bit 45): This error indicates that a machine check occurred during a channel-high or channel-low Eriority trap (NNSK Lit 0 or 2 on).

Interface Control Check (Eit 46): Except as noted in the Channel Data Check section (unit status or address), this condition is detected ky microprogramming.

Chaining Check (Bit 47): This indication is not used on the Nodel 25.

\subsection*{2.57.2 LOGOUT}

The channel performs a logout for two types of errors:
1. Channel Control Check (logged synchronously on the 1052), and
2. Interface Control Check (logged asynchronously in rain stcrage).

\subsection*{2.57.2.1 Channel Control Check Logout}

The channel microcrogram initiates a logout on the 1052 only on channel control checks. A channel control check is a machine check while in a channel high or low eriority trap.

The logout is as follcws, When a channel control check trap occurs, this routine stores into the progran storage starting at hex location 80 and prints out on the PR-KB (console printer-keyboard) through the ALDP routine, the following information.

80 Trap priority register (MMSK)
81 Branch condition register (BA)
82 Machine-check register (MC)
83 Error Count
84-85 Backup Address. Address of the microword where the machine check occurred.

Trap Priority (MMSK) Register
Bit 0 Channel high pricrity trap 2311 Disk Control trap
2 Channel low pricrity trap
32540 Reader trap
42540 punch trap
5 Communication bit service trap
6 Communication character service trap
7 Level-1 friority hcld.
Branch Condition (BA) Register
Bit 0 Channel-0 Interrupt Latch
Mode Bit 0
Mode Bit 1
3 Mode Bit 2
4 IPI Latch
5 Ls Zone Bit 0
6 Is Zone Bit 1
7 LS zone Bit 2.
Nachine Check (MC) Register
Bit 0 File Contrcl Check
1 Storage Protect Parity Check
2 Storage Address Parity Check
3 Control word Parity Check.
4 Storage Data Parity Check
5 ALU Error Check
6 A-Register Parity Check
7 B-Register Parity Check.
Machine-check trap cccurs only if the
M-bit (bit 13) of the PSW is on.

Because the logout latch is set here, no CPU instruction is executed before the printout of the logout area is completed.

Any frevious \(P R-K B\) operation in process, such as alter/display display, instruction step address typeout, or normal 1052 functions, are terminated.

When a machine check or channel control check is detected. NMSK bit 9 is set and remains set until the check is subsequently logged out on the 1052. If a second machine check or channel control check occurs while MMSK-9 is still on, the CPU clock is stopped with the appropriate error light on.

The flow chart in Figure 2-19 shows the channel control check operaticn. This check can occur only when the check control switch is set to the process position.

\subsection*{2.57.2.2 Interface Control Check Logout}

The channel performs an asynchronous logout in main storage when an interface control check is detected by the microprogram. The following information is lcgged.


Figure 2-19. Channel Control Check Flowchart
\begin{tabular}{l} 
Stcrage \\
Location \\
\hline 80 \\
81 \\
82 \\
83 \\
\\
84 \\
85 \\
\(86-87\)
\end{tabular}
```

Contents
Trap priority register (MMSK)
Branch condition register (EA)
GS channel external conditions
Error count (6 Bits, 2-7; Bits 0,
1=11)
GT channel external conditicns
GD channel external conditions
Unit identificaticn halfword.

```
Trap Priority (NNSK) Register
```

Bit 0 Channel high priority trap
2311 Disk Control trap
Channel low priority trap
2540 Punch trap
Communication Bit service trap
Communications character service
trap
7 Level-1 priority hold.

```
Branch Conditicn (BA) Register
Bit 0 Channel-0 Interrupt Iatch
    Mode Bit 0
    Node Bit 1
    Mode Bit 2
    IPI Latch
    LS Zone Bit 0
    LS Zone Bit 1
    Is Bit 2.
GS Channel External Conditions
Bit 0 Data chain request
    Buffered device latch
    Channel-1 burst latch
    channel parity-error latch
    Initial selection latch
    Channel-1 interruption latch
    Spare
    Suppress control latch

GT Channel External Conditions
```

Bit 0 Address in
1 Not select-in
2* Service-in
3* Status-in
O Operational-in
Not request-in
Channel identification latch
Channel diagnostic latch

```
* Service-In and Status-In conditions from the interface are detectable in GT only if neither command-Cut nor Service-Out have yet keen krought up in response to Service-In or Status-In.

GD Channel External Conditions
```

Bit 0 Cperational-cut
Service-out
Address-out
command-out
Spare
Select-out
Spare
Suppress-out

```

Unit Identification Halfword
Byte 0
Bits
012 Meaning
\(\begin{array}{lll}0 & 1 & 2 \\ 0 & \text { Meaning } \\ \text { Integrated 1052, 1403, or } 2540\end{array}\)
001 Multiplexer channel
01 X Selector channel
100 Integrated communications attachment

If bits 0-2 indicate the MPX channel feature, kits 3-6 are used for various functions under microprogram control.

If bits 0-1 indicate the selector channel feature, bits 2-6 are used as a timeout counter for interface sequences.

Bit 7 is used to indicate whether any unit or channel status may be stored directly in a CSW, or whether the interruption must be put in the interrupt kuffer and subsequently cleared by an I/O instructicn or an I/O interrupt.

Byte 1, for the selector channel or multiplexer feature, contains the current device address.

GA (Channel Conditions)
A set/reset word with Cs-field=B is used to set or reset bits in GA. The set/reset bit in the set/reset word is ignored whether the bits are to be set or reset. The K-bit values determine which kits are set or reset. If a K bit=1, the corresponding lit in GA is set; if a \(K\) bit=0, the corresponding bit in GA is reset.
\begin{tabular}{|c|c|}
\hline Eit & Meaning \\
\hline 0 & Selective reset. Drops operational-out for 6 microseconds. \\
\hline 1 & Service-out \\
\hline 2 & Address-out \\
\hline 3 & Command-out \\
\hline 4 & Initial selection (Inhibits \\
\hline & low-priority traps during an initial selection sequence. That is, data or chaining traps for channel 0 , chaining or status traps for channel 1.) \\
\hline 5 & Select-out \\
\hline 6 & Channel reset (diagnostic). Resets channel latches. \\
\hline & Spar \\
\hline
\end{tabular}

The standard interface hardware is identical for the multiplexer or selector versions of the channel. The function cf the channel (multiplexer or selector) depends entirely upon the microprcgram ( BYTECH or BURSTCH).

Figure 2-20 is a summary of GA- and GBregister definitions.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ GA Register } & \multicolumn{1}{c|}{ GB Register } \\
\hline KH0 & 8 & Not Op-Out (Set Only) & Data Chain Request Latch \\
\hline KH1 & 4 & Service-Out (Set/Rst) & \begin{tabular}{l} 
Chnl ID Latch \\
(Chnl 0 if 0; Chnl 1 if 1)
\end{tabular} \\
\hline KH2 & 2 & Address-Out (Set/Rst) & Burst Latch \\
\hline KH3 & 1 & Command-Out (Set/Rst) & \begin{tabular}{l} 
Set Buffered Device Latch \\
if 1; Reset Chnl Par-Error \\
Latch if 0
\end{tabular} \\
\hline KL0 & 8 & Initial Selection (Set/Rst) & Channel Diagnostic Latch \\
\hline KL1 & 4 & Select-Out (Set/Rst) & Chnl 1 Interrupt Buffer \\
\hline KL2 & 2 & Diagnostic Chnl Reset & Not Used \\
\hline KL3 & 1 & Not Used & Suppress-Out Control \\
\hline
\end{tabular}

Figure 2-20. GA- and GB-Register Definitions

Note: All of the GA and GR latches may be displayed in one of the GS, GD, GT, cr GE/IN Channel external displays (see Figure 2-21).
\begin{tabular}{|c|l|l|l|}
\hline Display Bit & \multicolumn{1}{|c|}{ GS=C } & \multicolumn{1}{|c|}{ GT=D } & \multicolumn{1}{c|}{ GD=E } \\
\hline 0 & Data Chain Reg Latch & Addrs-In & Op-out \\
\hline 1 & Buffered Dev Lat & Not Sel In & Serv-Out \\
\hline 2 & Burst Lat & Serv-In & Adrs-Out \\
\hline 3 & Chnl Par Ck Lat & Stat-In & Cmd-Out \\
\hline 4 & Initial Selection & Op-In & Spare \\
\hline 5 & Chnl 1 IB & Not Reg In & Sel-Out \\
\hline 6 & Spare & ChnI ID (Sel) & Spare \\
\hline 7 & Supp Ctrl Latch & \begin{tabular}{l} 
Channel Diag \\
Lat
\end{tabular} & Suppress Out \\
\hline
\end{tabular}

Figure 2-21. Display of GA and GB External Facilities

\subsection*{2.59 EXTERNAL TO CPU FACILITIES (CHANNEI)}

\subsection*{2.59.1 GS (CHANNEL BRANCH CONDITIONS.)}

A kranch (on condition or mask) wcrd with AS-decode=c can ke used to test the following conditions. Unless otherwise ncted, a kit must \(k \in\) on (set to 1) for the meaning to be applicable.
\begin{tabular}{|c|c|c|}
\hline GS & & \\
\hline Eit & On If & Meaning \\
\hline 0 & GB0 \(=1\) & Data chain request latch \\
\hline 1 & \(\mathrm{GB} 3=1\) & Buffered device latch \\
\hline 2 & GB2 \(2=1\) & Burst latch (used only for channel 1; signifies that a kurst operation is in progress). \\
\hline 3 & & Channel parity-error latch. A parity error has been detected on a byte received kus in. \\
\hline 4 & GA4=1 & Initial selection latch. Blocks channel-low priority traps. \\
\hline 5 & GB5 \(=1\) & Channel-1 interruption latch (on to indicate that channel 1 has status to present to the CPU). \\
\hline 6 & & STP trap inhibit latch. \\
\hline 7 & GB7=1 & \begin{tabular}{l}
Suppress contrcl latch. \\
Indicates that a command chain is in progress and that a new CCW is being fetched by the channel.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.59.2 GT (CHANNEL BRANCH CONDITIONS)}

A tranch (on condition or mask) word with AS-decode=D can be used tc test the following conditions. These bits are in in-tags for the I/O interface.

GT
\begin{tabular}{ll} 
Bit & Meaning \\
0 & Address-in \\
1 & Not select-in \\
\(2 *\) & Service-in \\
\(3 *\) & Status-in \\
4 & Cperational-in \\
5 & Not request-in \\
6 & Channel identification latch \\
7 & Channel diagnostic latch
\end{tabular}
* Service-in and status-in conditions from the interface are detectable in GT only if neither command-out nor service-out has yet been brcught up in response to service-in or status-in.

\subsection*{2.59.3 GD (CHANNEI DIAGNOSTIC REGISTER)}

A branch (on condition or on mask) word with AS-decode=E can be used to test these kits (from channel to interface).

GD
\begin{tabular}{|c|c|c|}
\hline Bit & On If & Meaning \\
\hline 0 & GA0 \(=0\) & Cperational-Out \\
\hline 1 & GA1=1 & Service-Out \\
\hline 2 & GA2 \(=1\) & Address-Out \\
\hline 3 & GA 3=1 & Command-Out \\
\hline 4 & & Saved GB/IN Bit 1 \\
\hline 5 & GA5 \(=1\) & Select-Out \\
\hline 6 & & Not 1400 word separator \\
\hline 7 & GB7=1* & Suppress-Out \\
\hline
\end{tabular}
* Suppress-out is also testable if the interruction kuffer latch is on.
2.59.4 GB/IN (CHANNEL BUS-IN)

A Eranch (on condition or on mask), storage, or move word with AS-deccde=F can be used tc access these bits. Eits 0 through 7 of GB/IN corresfond tc bits 0 through 7 of the interface bus-in lines.
2. 60 CPU TC EXTERNAI FACIIITIES (CHANNEL)
2.60.1 GB/OUT (CHANNEL BUS-OUT)

A storage or move word with AS-deccde \(=F\) can be used to set the kus-out register. This
is the same decode used for the bus-in lines. The specific operation determines whether data is tc be received into the kus-in (GB/IN) from the interface, or set into the bus-out (GB/OUT) from the CPU.

\section*{2. 61 HANDICAD ROUTINE FOR CHANNEL}

When the BCPL Routine has been altered or destroyed and a CSL from a card reader on the channel is not possible, the handload routine as shown in Figure 2-22 must be entered.
\begin{tabular}{|c|c|c|c|}
\hline Addr & word & St at ement & Comment \\
\hline 0010 & 3210 & SET MMSK K=81 & Blcck traps \\
\hline 0012 & 2610 & SET RC K=01 & Set logout latch \\
\hline 0014 & 2C07 & \(\mathrm{P} 0=0\) & Zerc cut switch \\
\hline 0016 & 2413 & \(\mathrm{G} 0=0 \$ \mathrm{K01}\) & Start setur of addr 0100 \\
\hline 0018 & 51AF & TO = SWCD & SwCD equal device addr. \\
\hline 001A & 802C & BR & Eranch tc location 002C \\
\hline 002C & 2486 & SET NCDE K=38 & Set channel mode, PCU zcne \\
\hline 002E & 2507 & \(\mathrm{G} 0=0\) & Finish setup of addr 0100 \\
\hline 0030 & 2B08 & SET GA K=40 & Set service out \\
\hline 0032 & C9B3 & BR IF GT4=1 & Branch on OP-IN \\
\hline 0034 & 4 FAF & GB/CUT=TO & Send device address out \\
\hline 0036 & 2B0 4 & SET GA K=20 & Raise address out \\
\hline 003. & 2B44 & SET GAK=24 & and select out \\
\hline 003A & C9BA & BR IF GT \(4=0\) & Wait for OP IN \\
\hline 003C & 2B40 & SET GA K=04 & Reset address out \\
\hline 003 E & CDBE & BR IF GT0 \(=0\) & Wait for address in \\
\hline 0040 & 2B23 & T1 \(=0\) \$K 02 & Build read command \\
\hline 0042 & 4 FBF & \(\mathrm{GB} / \mathrm{CUT}=\mathrm{T} 1\) & Send cut read command \\
\hline 0044 & 2B42 & SET GA K=14 & Raise command out \\
\hline 0046 & FDC6 & BR IF GT3 \(=0\) & Wait here for status \\
\hline 004 & 5FBF & \(\mathrm{T} 1=\mathrm{GB} / \mathrm{IN}\) & Read status \\
\hline 004A & C4CA & BR IF ZNZ & Icce here if invalid stat \\
\hline 004C & 2B48 & SET GA K=44 & Set service out \\
\hline 004 E & FDCF & BR IF GT3=1 & Wait for \\
\hline 0050 & EDCE & BR IF FT2 \(=0\) & data \\
\hline 0052 & 5 FFF & \(\mathrm{H} 1=\mathrm{GB} / \mathrm{IN}\) & Get data byte \\
\hline 0054 & F05B & BR IF G07=1 & PR if kcotstrap reading \\
\hline 0056 & 7 F 48 & STE H1 AS, G+1 & Not boot info, stor in aux \\
\hline 0058 & F05E & BR IF G0 7 \(=0\) & Unccnditicnal kranch \\
\hline 005 A & 6 F 48 & STB H1 CS, G/1 & Put boot in cntrl storage \\
\hline 005C & 055D & \(\mathrm{Z}=\mathrm{G} 1 \mathrm{~K} 50\) & Check if all data in, \\
\hline 005E & C4CC & BR IF ZNZ & if not, get more. \\
\hline 0060 & 8100 & BR & Branch to bootstrap \\
\hline
\end{tabular}

Figure 2-22. Handload Routine for Channel

\section*{Section 1F. ICA Procedures}

\section*{2. 62 NONOFERATIONAI IINES}

All ICA lines are in a nonoperational state at shipment. If an I/O instructicn is issued to a line, a condition code of 3 (nonoperational) is set. To rake the lines cperational, refer to microprogram routine GASN or the Model 25 Installation
Instructions.
2.63 STATION SELECTICN FEATURE

If the Station Selection feature is installed (check the front of the
microprogram listing for ADPREP), line addresses must ke entered into storage via patch cards at ICPL time. Refer to microprogram routine GASN or the Model 25 Installation Instructions.
2.64 JUMPER CPTIONS

Refer to logic pages HAOOO for the jumpering options associated with the ICA and related data sets and/cr modems.

\section*{Section 2. Features}
2.65 S,TORAGE PROTECT KEY--DISPLAY
Refer tc section 2.1.
2.66 MUITIPLE CHARACTER SET
 27
This feature allows the use cf print chainscr trains of other than 48-character size.The printer translat \(\epsilon\) table must be loadedwith utility program UTO48 when the NiCSfeature is installed.
2.67 EXTERNAL INTERRUPTION
This feature allows the Nodel 25 tc respondto signals from an external device crancther CPU. An external interruption alsocan occur from the interrupt key on thesystem control panel (standard on the Model25) or from the interval tirer (specialfeature). An external interruption canoccur only when PSW bit 7 (syster mask) isset to 1. The sfecific interrupticnsources identified by PSW bits 24-31 are asfollows.

Interruption
Code Bit
24 25 26 28 29 30 31
External Interruption Cause
Interval timer Interrupt key External signal 2 External signal 3 External signal 4 External signal 5
External signal 6

The interval-timer and interruption-key lines are available from within the CPU.

\subsection*{2.682560 PROCEDURES}

\subsection*{2.68.1 HANDLCAD ROUTINE FOR 2560}

When the BCPL routine has been altered or destroyed and a CSL from the 2540 is not possikle, the handlcad rcutine as shown in Figure 2-23 must ke entered manually. For bootstrap information, refer to the AKXXX logic pages.


Figure 2-23. Handload Routine for 2560

\section*{Chapter 3. Preventive Maintenance}

\section*{Section 1. Basic Unit}
a. Perform the following maintenance every 26 weeks:
1. Test lamps using the lamp test key on the console. Replace lamps as necessary.
2. Check blowers and replace filters every 26 weeks. Filters may require more frequent replacement depending on cleanliness of environment.
b. Replace coil protect relay, part 2532227, under the following conditions.
1403 Model 2 or 7
Every 18 months based on average usage
of 2 to 2.5 million 1 ines per month. 1403 Model N1
Every 12 months based on average usage of 5 to 5.5 million lines per month.

This schedule should be adjusted proportionally for any deviation from average usage.
c. Run usage meter test every 6 months.
d. 1052-7: Refer to the Selectric I/O

Keyboardless Printer FE Maintenance
Manual, Form 225-3207; 1052-1053
Keyboard Printer FE
Instruction=Maintenance Manual, Form 225-3179.

\section*{Section 2. Features}

I/O DEVICE MAINTENANCE
Scheduled maintenance for \(I / O\) devices is included in the maintenance manual for the particular device.

\title{
Chapter 4. Checks, Adjustments, and Removals
}

\author{
Section 1. Basic Unit
}

\subsection*{4.1 CPU TI MI NG}

Timing for the CPU is developed from a crystal controlled oscillator. The CPU clock is located in board position B2-C4 and D4 on the A-gate.

\subsection*{4.1.1 SPECIFICATIONS}
1. Os cillator frequency: \(5.56 \mathrm{MHz} \pm .03 \%\).
2. T-Pulses (Figure 4-1 and 4-2):
a. Width--180 \(\mathrm{ns}+25 /-10 \mathrm{~ns}\), measured from the 1.2 V level of the leading or rising edge to the 1.9 V level of the trailing, or falling edge.
b. Level--each pulse has a down level of 0.49 V to 1.06 V , and an up level of 2.68 V to 3.33 V .
C. Overlap--adjacent \(T\)-pulses are overlapped by \(90 \mathrm{~ns}+25 /-10 \mathrm{~ns}\) as measured from the 1.2 V level of the rising pulse to the 1.9 V level of the falling pulse.
d. Skew--the skew between \(T 0\) pulse and T2 pulse (and subsequent alternate pulses) on the transmission line is \(+30 /-25 \mathrm{~ns}\), as measured from the 1.9V level of the falling pulse to the 1.2 V level of the rising pulse.
3. Clock Pulses On the Boards: (applies to nets driven by line receiver-power driver):
a. T-pulses-- (180 ns) have \(+20 /-40 \mathrm{~ns}\) tolerance as measured from the 0.3 volt level of the rising pulse to the 1.8 volt level of the falling pulse.
b. P-pulses-- (90 ns) have \(+20 / 40 \mathrm{~ns}\) control tolerance as measured from the 0.3 volt 1 evel of the rising pulse to the 1.8 volt level of the falling pulse.
4. 2 CORE STORAGE ARRAY TEMPERATURE CONTROL

\subsection*{4.2.1 COOLING}

The BSM (Basic Storage Module) provides the SLT cards with forced air cooling with fans operating at 208-volts ac 60-cycle single phase, or 220-volts ac 50-cycle single phase.

\subsection*{4.2.1.1 Specification}

The maximum temperature anywhere within the BSM must not exceed 133 F (55C).

\subsection*{4.2.2 HEAT ING}

A heater, fan, and associated control circuitry provide a wide temperature range by maintaining the core array at a fixed elevated temperature. The heater \(\in l e m e n t\), control circuits, temperature adjustment, and temperature sensing devices are packaged in a complete heater subassembly that is part of the BSM.

\subsection*{4.2.2.1.Specifications}
1. The array inlet temperature must be maintained at \(105 \pm 3 \mathrm{~F}(40.4 \pm 1.7 \mathrm{C})\).
2. The low temperature light on the console must go off when the array inlet temperature exceeds \(96 \pm 5 \mathrm{~F}(35.6 \pm 2.8 \mathrm{C})\) 。
3. The thermal trip mechanism (normally closed switches) operates at over and under temperatures of \(120 \pm 3 \mathrm{~F}\) and \(96 \pm 5 \mathrm{~F}(49 \pm 1\). 7 C and \(35.6 \pm 2.8 \mathrm{C})\).

\subsection*{4.2.2.2 Heater Adjustment}

Do not attempt to adjust the array inlet temperature if the machine ambient temperature is greater than 95F (35C).
1. With power on, allow five minutes for warm-up.
2. Carefully insert a nonmetallic thermometer (part 5392366 or equivalent) through the array cover access hole and into the rear of the heater plenum. The thermometer should extend about 3. 25 in. ( \(82,6 \mathrm{~mm}\) ) into the unit and the tip should be slightly downward.
3. The heater adjustment potentiometer is adjusted from the front of the heater box. Turn the potentiometer clockwise to decrease the temperature or counterclockwise to increase the temperature until a stabilized temperature of \(105 \pm 3 \mathrm{~F}(40.4 \pm 1.7 \mathrm{C})\) is indicated. Allow about three minutes for the thermometer to record properly.
4. Remove thermometer.


Figure 4-2. T-Pulse

\subsection*{4.3 SCHMOO CURVE (MAIN STORAGE)}

\subsection*{4.3.1. EXAMPLE OF SCHMOO CURVE PROCEDURE}

Figure 4-3 shows an example of a typical four-point schmoo procedure. It is used for plotting the optimum storage strobe and voltage operating point. A no-failure voltage and strobe setting is selected as a starting point. The voltage is varied over its range up and down to a point of failure, and varied from that failing point into the no-failure range (1 in Figure 4-3). The no-failure points are determined at four different strobe settings by running the worst-case patterns (Section 4. 3. 4. 1) with the diagnostic control switch set at TEST PATTERN. Switches A, B, C, D must equal FF00, 00FF, 01FE, or, FE01.

Once the no-failure voltages have been plotted, the optimum strobe setting for a
single \(\operatorname{BSM}\) is a point where the difference between the upper and lower BSM limits is greater than 5.0 volts ( 2 in Figure 4-3). At a strobe setting \(\pm 10 \mathrm{~ns}\) from optimum, the difference between the high and low voltage setting must be greater than 3.0 volts (3 in Figure 4-3).

For a double BSM, the difference between the upper and lower BSM limits at optimum strobe must be greater than 3.6 volts. At a strobe setting \(\pm 10 \mathrm{~ns}\) from optimum, the worst-case diagnostic must still run successfully. In both cases the strobe setting must be between 35 ns and 55 ns . It should be the earliest setting that will meet requirements, and 35 ns should be used if possible.


Figure 4-3. Schmoo Curve Example (Single BSM)

\subsection*{4.3.2 WHEN TO SCHMOO}

A four-point strobe and a two-point strobe schmos procedure are given. The four-point strobe schmoo procedure should be used only when an array is replaced. The two-point strobe schmoo procedure should be used only under the following conditions.
1. When any one of the following cards is replaced or identified as a trouble area.
a. Sense amp, part 58004648
b. Source driver, part 58004649
c. St robe, part 58007237
d. Clock, part 58001762
2. An intermittent problem exists and it is desired to increase the failure rate to isolate the trouble within the memory area.
3. On a new memory installation.

\subsection*{4.3.3 SERVICE CHECKS}

Refer to Section 4.3.6. Checkout Procedures.

\subsection*{4.3.4 WORST-CASE PATTERNS}

The worst-case test patterns are run from the console by the customer engineer as a diagnostic to test the storage unit for a failing condition. The test is done with the diagnostic control switch set to TEST PATTERN, and the check control switch set to STOP.

\subsection*{4.3.4.1 Worst-Case Test}

Each test should be run for approximately fifteen seconds with switches \(A, B, C\), and D set as follows.


\subsection*{4.3.5 FOUR-POINT STROBE SCHMOO PROCEDURE}

Note: For measuring critical voltages, use Weston* 901 (or equivalent)
1. Set the -30 voltage ( \(X Y Z\) ) to -29 volts \(\pm 0.5\) volts.
2. The schmoo timing points are taken at \(25 \mathrm{~ns}, 35 \mathrm{~ns}, 45 \mathrm{~ns}\), and 55 ns .
*Trademark of Sangamo Electric Co., U.S.A.
3. Refer to logic MD008 for instruction on how to set the strobe card. The strobe card is part 5807237 and is plugged in B1E3.
4. Start the schmoo at a setting of 35 ns .
5. Run worst-case patterns (Section 4.3.4.1) at -29 volts. If failures are noted (stor data light turns on), lower the voltage until a running point can be found. To restart the test after failure, press CHECK RESET then START. If no running point can be found, consult memory strategy diagrams in the 2025 Maintenance Diagram Manual (MDM).
6. Increase voltage in one volt increments and run the worst-case patterns until a failure occurs.
7. Decrease the voltage in one-half volt increments and run the worst-case patterns until no failure occurs. Record this voltage as the upper voltage limit for this particular strobe setting. Figure 4-3 shows an example that can be used as reference for this procedure.
8. Start at running point found in step 5, repeat steps 6 and 7 in the opposite direction, and record the setting found in step 7 as the lower voltage limit for this strobe setting.
9. Repeat this procedure, beginning at step 5, using strobe settings of 25 ns , 40 ns , and 55 ns , and plot these values on a graph (Figure 4-3).
10. The optimum strobe setting for a single BSM is at a point where the difference between the upper and lower BSM limits (on the graph) is greater than 5.0 volts. At a strobe setting \(\pm 10 \mathrm{~ns}\) from optimum, the difference between the upper and lower BSM limits must be greater than 3.0 volts.

For a double BSM, the difference between the upper and lower BSM limits at optimum strobe must be greater than 3.6 volts. At a strobe setting \(\pm 10 \mathrm{~ns}\) from optimum, the worst-case diagnostic must still run successfully. In both cases the strobe setting must be between 35 ns and 55 ns . It should be the earliest setting that will meet requirements, and 35 ns should be used if possible.
11. Set the voltage midway between the upper and lower limits (steps 7 and 8) for the optimum strobe setting.

\subsection*{4.3.6 CHECKOUT PROCEDURES}
1. Check to see if all logic voltages are within tolerances, that the array heater is operating, and that the array temperature is properly adjusted (Section 4.2).
2. Measure the voltage on B1U2D07 (referenced to B1U2D08) using a Weston 901 meter (or equivalent). The sense-amplifier voltage is set to -18 volts \(\pm 0.1\) volt accuracy (see decal) by means of the potentiometer on the card located in B1U2.

At EC 799307, 16K and 32K BSM sizes have the -18 V set at -17.6 V . The 32 K BSM remains at -18 V .

\section*{CAUTION}

This is a critical, highly regulated voltage that is set under controlled conditions at the factory before shipment. The voltage setting should be changed only when the card that generates it is replaced. It should then be set using a Weston 901 meter (or equivalent). In case of array replacement, this voltage should not be tou ched.
3. Changing any memory card should not change the timing more than 5 ns .
4. The optimum strobe setting of the System 360 Model 25 memory should fall between 35 to 55 ns .

\subsection*{4.3.6.1 Scoping Main Storage}

Refer to Section 1.31 for main storage diagnostic information and scope waveforms.

\subsection*{4.3.7 TWO-POINT SCHMOO PROCEDURE}

Note: Use a Weston 901 meter (or equivalent) when measuring the -18 voltage. The -18 volt supply should not be changed, and should measure as follows.

8 K ( 16 K bytes) -17.6 volts
12 K ( 24 K bytes) -17.6 volts
16K (32K bytes) -18.0 volts
1. Record the voltage at which memories are set.
2. Vary the voltage 2 volts above that voltage.
3. Ran the worst-case patterms (Section 4.3.4).
4. Vary the voltage 2 volts below value recorded in step 1.
5. Run the worst-case patterns. If machine does not fail at this voltage setting, restore the voltage to that recorded in step 1. (This indicates that memory is within operating schmoo tolerance; return to routine in ) MDM.)
6. If machine fails during steps 3 or 5
(indicated when STOR DATA lights on console), measure the -18 volt supply between, B1U2D07 and B1U2D0 8 (MD999) to ensure it is not grossly in error.

If the spread from high to low operating limits is still below 4 volts, a memory component failure is indicated. Set the voltage and strobe as recorded in step 1, indentify the circuit failure, and re-schmoo the memory (starting at step 2).
7. Vary the -30 volt supply 0.2 volts toward the voltage recorded in step 1.
8. Repeat the worst-case pattern that failed in step 6.
9. If failures continue, repeat step 7 and step 8 until no failure is detected and record the voltage setting used in this step.

CAUTION
Do not exceed -35 volts.
10. Set the voltage 4 volts from the limit recorded in step 9 toward the original setting (step 1).
11. If the worst-case patterns run at voltage setting in step 10, set the voltage midway between the high and low operating limits.
12. If the worst-case patterns do not run at the voltage setting in step 10, increase the strobe timing on the failing BSM, 5 ns.

Note: The failing BSM can be identified by the higher address-bit of the failing address. \(0=1\) ower BSM, which is adjacent to power supply; 1=higher BSM, which is adjacent to console.
13. Repeat procedures starting at step 1 and attempt to establish a 4-volt spread from the high to low operating limits.

\subsection*{4.4 MAIN STORAGE REPLACEMENT}

\subsection*{4.4.1 REMOVING THE \(0-32 \mathrm{~K}\) UNIT}
1. Ensure that power to the system is off.
2. Disconnect the wires from terminal blocks TB12-L and U. These are the terminal blocks at the heater box. Label the wires if necessary.
3. Remove the power-i nput cable from LBC-1 (mounted on top of cSU frame). Number the wires if necessary.
4. Remove the ribbon cable connectors from B1A3. B1A2; and B2A2. Remove the cable clamp and cables.
5. Lift the storage unit free of its hinges and remove.
6. Replace in the reverse order.

\section*{4. 4. 2 REMOVI NG THE \(32-64 \mathrm{~K}\) UNIT}
1. Ensure that power to the system is off. 2. Disconnect the wires from terminal blocks TB12-L and \(u\). These are the terminal blocks at the heater box. Label the wires if necessary.
3. Remove the power-input cable from LBC-1 and 2 (mounted on top of the BSM frame). Number the wires if necessary.
4. Remove the ribbon cable connectors from B1A2, B1A3 and B2B2. (These are cables from the adjacent 32 K unit.) Remove the cable clamp and cables.
5. Lift the storage unit free of its hinges and remove.
6. Replace in the reverse order.

\subsection*{4.4.3 ARRAY CHANGING}

To remove the array from either storage unit:
1. Ensure that power to the system is off.
2. Viewing the core storage unit from the card side, remove the outrigger by loosening the screws on the BSM frame and array. Lift the outrigger up to remove.
3. Open the two side doors (right and left side of array).
4. Disengage the four locking screws in the array cover and remove the cover.
5. Loosen the two screws on the underside of the cross member that separates the B1 and B2 card areas. These screws hold the sense cable clamp and the array to the frame.
6. Remove the top cover (B1 board card area) and unplug the sense cables.
7. Remove the two screws holding the heater plenum to the array.
8. Remove the six screws (four on card side, two on opposite side) in the bracket holding the heater plenum to the BSM frame.
9. Viewing the BSM from the front, place one hand beneath the heater plenum to the BSM frame (located immediately above the terminal blocks). The heater can now be lowered down away from the array.
10. Using the diode board stiffeners and/or the U-shaped bracket (not diode boards), pull the array out by rocking it up and down slightly until it comes free from the large board. Cover the top of the array (c-side) and carefully feed the sense cables down through the card area as the array is removed.
11. Replace in the reverse order.

\subsection*{4.4.4 CHANGING DIODES}

If diode or drive-line trouble is suspected in storage, follow the storage address
lines in storage logic through the
read/write drivers and eventually to the pin numbers on the array diode cards.

The logic shows the layout of the array diode cards and diode pack. The removal procedure is:
1. Extract the array from the logic boards.
2. Place the array carefully on a flat work area.
3. Unsolder the four diode-pack pin connections, taking care not to apply excessive heat or to damage any land pattern.
4. Extract the defective diode-pack and replace it with a tested spare.
5. Inspect the card for damage.
5. Inspect the card for damage.
6. Replace the array.

Note: Diode card location on array ALD page MD007. Diode-pack location on diode card ALD page MD007. Diode-pack pin location on ALD page MD007. Note 2. Diode cards land patterns on AID pages MD860-MD890.

\section*{4. 5 LOCAL STORAGE}

Two delay lines are used in the local storage (B150 stack) circuit (01A-B1E2). The tolerance on the delay lines is \(\pm 4.5\) for the 90 ns delay line and \(+3.0 /-2.0\) for the 30 ns delay line. The 30 ns delay line controls the sense amplifier gate pulse (LS Read Line), and the 90 ns delay line controls the bit timing pulse (LS Write Line) and the width of the \(X\) - and \(Y\)-address lines.

\subsection*{4.5.1 SCOPING LOCAL STORAGE}

Refer to Section 1.32 for local storage waveforms.

\subsection*{4.5.2 INITIAL DELAY LINE SETTINGS}

The initial settings for the two delay lines are:
LS Read Line -- 30 ns
LS Write Line -- 90 ns.

\subsection*{4.5.3 DELAY LINES (LOCAL STORAGE) ADJUSTMENT}
1. Store the following arithmetic into an unused portion of control storage (FE trap area). \(\quad \mathbf{0} 0=00+\mathrm{U} 1\) (hexword 6013) followed by an unconditional branch back to this word.

Example:

2. Sync the scope on word type 3 (01A-B1G7B05).
3. Scope and record the duration from the \(10 \%\) fall -LS ADDR X0 to the \(10 \%\) fall -LS READ LINE (AID-CC131). Refer to Figure 4-4.


Figure 4-4. LS Address Lines and Read Line
4. Scope and record the duration from the \(10 \%\) fall of -LS ADDR X1 to the \(10 \%\) fall of -LS READ IINE. Refer to Figure 4-4.
5. Take the average of the durations recorded in steps 3 and 4 . The average of these two durations must fall between 27 ns to 37 ns . If the average do es not meet this requirement, plug the appropriate jumpers to increase or decrease the delay.
6. Scope -LS ADDR X0 and +LS WRITE LINE using the same sync as in step 2. These two signals must be coincident for a minimum of 70 ns from the \(10 \%\) point of the rising edge to the \(10 \%\) point of the falling edge (Figure 4-5).
7. Scope +LS ADDR Y0 to ensure that the
same coincidence holds true as in step 6 (Figure 4-5). If not, the delay line value must be increased to satisfy this requirement.

Note: In Figure 4-5, points \(E\) and \(F\) must fall inside points \(A\) and \(B\), and \(C\) and D, for a minimum of 70 ns . The +LS WRITE LINE may fall outside address pulses if there is no second address selected.

\subsection*{4.5.4 LOCAL STORAGE/STORAGE PROTECT CARDS}

Machines with the storage protect feature use a local storage card in the storage protect circuits (the cards are identical). If the local storage card is suspected to be failing, it can be swapped with the storage protect card.

Refer to Appendix A for detailed operation and circuit specifications.

\section*{4. 6 SCR CIRCUITS}

There are three spare indicator SCR circuits for use as replacements for defective SCR light drivers. The load input pins, wire number and cable position on the SCR boards in cable part 2532050 are as follows.
\begin{tabular}{lccc} 
Location & Wire No. & Cable Position \\
A2A2B10 & 19 & & 20 \\
D1N7B10 & 39 & & 20 \\
C2N7D0 & 57 & 9
\end{tabular}

The wires 19, 39, and 57 are connected to the SCR in the respective paddle card. The console-end of these spare wires are taped back in a group. Figure 4-6 shows the point from which continuity can be checked to find the correct spare wire at the console-end of the cable.

+LS WRITE LINE (A-B1J2D09)


Figure 4-5. Local Storage Address Lines and Write Line


Figure 4-6. \(\begin{aligned} & \text { SCR Card Cable-Connecting } \\ & \text { Terminals }\end{aligned}\)

\subsection*{4.6. 1 REPLACEMENT}

Connect the signal to the input pin of the spare circuit to be used. Replace the wire to the indicator lamp with the spare cable lead to be used.

\subsection*{4.7 SYSTEM RESET, IPL, OR CSL--SINGLESHOT}

The CPU contains a singleshot that is activated when the system reset. IPL, or ICPL switches are pressed. Its purpose is to prevent switch kounce noise from stopping the CPU clock.

\subsection*{4.7.1 ADJUSTMENT}
1. Turn the process switch to single cycle and press the system reset key.
2. Adjust the singleshot (logic PF 251) to \(30 \mathrm{~ms} \pm 5 \mathrm{~ms}\), using the upper potentiometer (Figure 4-7).


Figure 4-7. System Reset, IPL or CSL (Singleshot)

\section*{4. 8 OPERATIONAL OUT--SINGLESHOT}

The System/360 standard interface contains a singleshot (A-E1G7) with an adjustable potentiometer on it to adjust the operational-out signal.

\subsection*{4.8.1 ADJUSTMENT}

Scope A-E1G7D12 and adjust the lower potentiometer on A-E1G7, while pressing the system reset key, to obtain a negative pulse of 8.0 us \(+1 /-0\) us.

\subsection*{4.8.2 CHECKOUT PROCEDURE}

Operational-out singleshot is checked in routine 3 (YMO3) in the channel microdiagnostic *600. See instructions in routine YM03 for ad justments.

\subsection*{4.92540 ATTACHMENT}

The optional 2540 attachment consists of two SLT boards located in the A-gate, E2, and E3. Three leading-edge time delay cards are located at A-E3D5, A-E3E5, and A-E3E4.

\subsection*{4.9.1 SPECIFICATIONS}

The 2540 attachment clock is driven from a 1.667 megahertz oscillator located in the A-E3 board. This provides a 4.8 us clock cycle for communication with the 2540 and the attachment in the CPU.

The timing for the three leading-edge time delay cards are as follows.
\begin{tabular}{|c|c|c|}
\hline Location & Timing & \\
\hline A-E3D5 & 150 us, & +20/-0 us \\
\hline A-E3 E5 & 2.2 ms , & +50/-50 u \\
\hline A-E3E4 & 5.5 ms & +0/-100 \\
\hline
\end{tabular}

\subsection*{4.9.2 ADJUSTMENTS}

The adjustments for the three leading-edge time delay cards are made using the following routines in the nonresident microdiagnostics.


The PR-KB attachment circuitry is located on the A-gate, A2 board. The circuitry
contains two singleshot cards having two adjustable singleshots per card.

\subsection*{4.10.1 SPECIFICATI ONS}

The singleshots must be adjusted so that when the input signal goes from its negative level to its positive level, the output of the singleshots will go to a negative level for the following durations.

Number: SS1
Duration: \(28.0 \mathrm{~ms}(+15.0 \mathrm{~ms} /-1.0 \mathrm{~ms})\)
Location: A-A2G7D04 (PF021) Upper Pot.
Number: SS2
Duration: \(500 \mathrm{~ns}(+100 \mathrm{~ns} /-100 \mathrm{~ns})\)
Location: A-A2G7D06 (PF021) Lower Pot.
Number: SS3
Duration: \(\quad 40.0 \mathrm{~ms}( \pm 15 \%)\)
Location: A-A2H7D06 (PF0 21) Lower Pot.

\subsection*{4.10.2 ADJUSTMENT}

Refer to TYDD diagnostic routine *110. This describes the procedure to adjust and check the \(\mathrm{PR}-\mathrm{KB}\) singleshots.

\subsection*{4.112311 READ CLOCK ADJUSTMENT}

The 2311 read clock card is located in the B-gate in E3-board, J5-socket. This adjustment procedure makes use of the write clock signal as an input to the read clock to allow the adjustment to be made without using a disk drive.

Note: Use a Tektronix* 453 oscilloscope or equivalent.
```

SCOPE SETUP
Chan 1: B-E3J5J10 (FA 111)
Chan 2: B-E3J5G02 (FA 111)

```
    Sync: Minus Internal Chan 1
1. Jumper B-D3M5D05 to ground (D08 pin). This resets the chain-end and NTO-OP latches (FA 651).
2. Jumper B-E3J 3B04 (FA 109) to B-E3K6B09 (FA 111). This feeds write pulses into the read clock.
3. Jumper B-E3J5G04 (FA 111) to ground (D08). This forces the read clock to use the long time constant.
4. SYNC minus (-) on Channel 1. This is the 800 ns write pulse (Figure 4-8). Make certain that points \(A\) and \(B\) are exactly 8 divisions apart. If they are not, adjust the scope until they are.
5. Display Channel 2 and adjust potentiometer on B-E3J5 (FA 111) until
*Trademark of Tektronix, Incorporated
the \(10 \%\) level of the rising clock puise is \(640(+0,-5)\) ns from point A.
6. Remove all jumpers.


Figure 4-8. Read Clock Traces

\subsection*{4.12 DAC--SINGLESHOTS}
4.12.1 SPECIFICATIONS

Recalibrate Time Out SS1 16 ms ( \(\pm 5 \%\) )
Recalibrate Time Out SS2 \(16 \mathrm{~ms}( \pm 5 \%)\)
Head Conditioning SS 60 us ( \(\pm 5 \%\) )
Index SS (2)
\(400 \mathrm{~ns}( \pm 5 \%)\)
Control Tag SS
1.0 us (minimum)

\subsection*{4.12.2 ADJUSTMENTS}

All singleshot adjustments for the DAC are made while using microdiagnostic \(* 300\), routine 6. First, load \(* 300\), set switches ABCD to 0106, press and release SET IC, and press and release START. This forces a loop on routine 6 . For the adjustment to be performed, the sense switch specified in the adjustment must be on. Only one section sense switch can be on at any one time.
4.12.2.1 Head Conditioning Singleshot (FA131)
1. Turn section sense switch 2 on.
2. Sync the scope on 01B-E3G7D12 (negative).
3. Look at the output on E3G7D04 and adjust to 60 us \(\pm 5 \%\).
4.12.2.2 Index and Delta Index Singleshots (FA131)
1. Turn section sense switch 3 on.
2. Sync the scope on 01B-E 3G3D12 (neg).
3. Look at the output on E3F2D13 and adjust to \(400 \mathrm{~ns} \pm 5 \%\) by varying the
bottom potentiometer.
4. Look at the output on E3F2B13 and adjust to \(400 \mathrm{~ns} \pm 5 \%\) by varying the bottom potentiometer.

\subsection*{4.12.2.3 Control Tag Singleshot (FA225)}
1. Turn section sense switch 4 on.
2. Sync the scope on 01B-E3F2D02 (negative).
3. Look at the output on E3F2D12 and adjust to one microsecond (minimum) by adjusting the upper potentiometer.
4.12.2.4 Recalibrate Singleshots (FA611)
1. Turn section sense switch 5 on.
2. Sync the scope on 01B-C3C2B10 (negative).
3. Look at the output on C3C2D11 and adjust to \(16 \mathrm{~ms} \pm 5 \%\) by varying the upper potentiometer.
4. Sync the scope on 01B-C3C2D13 (negative).
5. Look at the output on C3C2D12 and adjust to \(16 \mathrm{~ms} \pm 5 \%\) by varying the lower potentiometer.

\subsection*{4.13 DAC--TIME DELAY CIRCUITS}

\subsection*{4.13.1 SPECIFICATIONS}

The DAC contains two time-delay cards that have two delay circuits on each card. These delay circuits are pluggable in increments of 5 ns with a maximum of 125 ns delay per circuit.

These circuits are plugged at 75 ns and 125 ns in the 2025 DAC.

\subsection*{4.13.2 CHECK}
1. Loop *300 routine 05.
2. Scope delays as indicated in Figure 4-9.
3. Refer to ALD zZ016 for card plugging if necessary -

\section*{4. 141403 ATTACHMENT (FIGURE 4-10)}

An optional integrated printer attachment may be provided in the CPU. This attachment is capable of operating either a


1403-2, 1403-7, or 1403-N1 printer. The attachment is housed in the CPU frame on the A-gate. Three boards, B3, C3, and D3, contain the control logic. A fourth board, H-P1, contains hammer, magnet, and indicator drivers, including associated interface circuitry for the printer. The H-P1 board is located in the power tower.

The integrated printer attachment uses SIT circuits of the 30 nanosecond group for all areas except for the hammer and magnet drivers, and interface to the printer. The hammer and magnet drivers are mounted on SLT cards and use discrete transistors capable of providing the current necessary to operate the printer. The hammer driver and the switch level set cards contain SLD modules of the 100-nanosecond group.

The print buffer consists of 168 positions of 13 bits. Of the 13 bits, nine are used for data and parity. The remaining four bits are used for checking purposes.

\subsection*{4.14.1 TIMING (FIGURE 4-11)}

The attachment clock for the 1403 Model 2 or 7 is an eight-point clock controlled by a \(720-\mathrm{KHz}\) oscillator having a \(\pm 0.1 \%\) stability. The clock runs only during printing and produces 11.1-microsecond pulses.

The attachment clock for the 1403 Model N1 is an eight-point clock controlled by a \(1667-\mathrm{KHz}\) oscillator having a \(\pm 0.03 \%\) stability. The clock runs only during
printing and produces 4.8-microsecond pulses.

The timing pulses necessary during loading of the kuffer from the CPU are provided by the microprogram.
4.14.2.1 PSS (B3E3D04) PR262

Adjust to 15 us +5 us/ -0 us, with the printer idling and T -casting closed.

\subsection*{4.14.2 SINGLESHOT ADJUSTMENTS (FIGURE 4-12)}

Refer to Section 4.18 for MCS feature.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name of Unit or Item } & \multicolumn{1}{|c|}{ Model 2 } & \multicolumn{1}{|c|}{ Model 7 } & \multicolumn{1}{|c|}{ Model N1 } \\
\hline Cartridge Type & Chain & Chain & Train \\
Number of Print Positions & 132 & 120 & 132 \\
Max. Printing Speed (LPM) & \(610^{*}\) & \(610^{*}\) & \(1127^{* *}\) \\
Chain Motor Speed (RPM) & 3600 & 3600 & 3600 \\
Chain Velocity (IPS) & 90.3 & 90.3 & 206.0 \\
Time Required for Type to move .001" & & & \\
(Microseconds) & 11.1 & 11.1 & 4.8 \\
Settling for Calibration of Print-Timing & & & \\
Dial with Print Density Lever set at C & 20 & 20 & 1714 \\
Timing Disk Speed (RPM) & 750 & 750 & 53.2 \\
Time Required to Print One Line with & & & 20.7 \\
Single Space (Milliseconds) & 98.3 & 98.3 & 21.4 \\
Carriage Interlock Time & 21.4 & \(23 \mathrm{in} . / \mathrm{sec}\) & Single 33in./sec \\
Carriage Type (Speed) & Dual \(33 \mathrm{in} . / \mathrm{sec}\) \\
& \(75 \mathrm{in} . / \mathrm{sec}\) & & \(75 \mathrm{in} . / \mathrm{sec}\) \\
\hline
\end{tabular}
*750 (LPM) with MCS feature \(\quad{ }^{* *} 1419\) (LPM) with MCS feature
Figure 4-10. IBM 1403 Reference Chart


Figure 4-11. Print Clock
\begin{tabular}{|c|c|c|c|}
\hline Name & Location & Length & Tolerance \\
\hline PSS & B3 E3D04 & 15 us. & +5, 0 \\
\hline Strobe Delay & B3 M2D04 & 250ns. & Note 1 \\
\hline Home Gate & B3 F3B03 & 340 us . & \(\pm 20\) us. \\
\hline (Model 2, 7) & (Upper) & & \\
\hline Home Gate & B3 F3803 & 160 us. & \(\pm 15\) us. \\
\hline (Model N1) & (Upper) & & \\
\hline Coil Protect & B3 D3B03 (Upper) & 3.5 ms & \(\pm 350\) us. \\
\hline Coil Protect & B3 C4B03 (Upper) & 1.5 ms & \(\pm 150\) us. \\
\hline Coil Protect & B3 D3D10 (Lower) & 2.0 ms & \(\pm 200\) us. \\
\hline Coil Protect & B3 C4D10 (Lower) & 5.0 ms & \(\pm 500\) us. \\
\hline Single Space & B3 L6B03 & 5.5 ms & Note 2 \\
\hline Double Space & B3 F3807 & 9.8 ms & Note 2 \\
\hline Triple Space & B3 L6D10 & 13.8 ms & Note 2 \\
\hline
\end{tabular}

Note 1: This value is given as a starting point - see Buffer Adjustment
Note 2: These values are given as a starting point.
The exact value varies with each printer and must be obtained by using the procedure outlined in Diagnostic Section * 420, Routine WESS.

Figure 4-12. 1403 Singleshots

\subsection*{4.14.2-2 Home Gate (B3F3B03)-(Upper) PR252}

Model 2 or 7: Adjust using diagnostic routine WE06 in section \(* 400\). This provides a range of 320 to 360 microseconds.

Mode1 N1: Adjust using diagnostic routine WE06 in Section *400. This provides a range of 145 to 175 microseconds.

\subsection*{4.14.2. 3 Coi1 Protect PR691}

Adjust using diagnostic routine WE26 in Section *400. The diagnostic fires the singleshots, and the resulting waveforms can be observed on the oscilloscope.

\subsection*{4.14.3 Delays (Figure 4-13)}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Input } & Output & Length \\
\hline \begin{tabular}{l} 
Carriage Settling Delay \\
Speed Limit
\end{tabular} & B3 H7D02 & B3 H7D13 & See 4.14.3.2 \\
\hline & B3 J2D05 & B3 J2D13 & See 4.14.3.1 \\
\hline
\end{tabular}

Figure 4-13. 1403 Delays
4.14.3.1 Speed Limit Delay PR262

Adjust using diagnostic routine WE 29 in section \(* 400\).

1403-2 or 1403-7 without MCS: A minimum of 46 print scans must be taken before the last scan is allowed. This gives a maximum speed of 610 lines per minute.

1403-2 or 1403-7 with MCS: A minimum of 35 print scans are taken before the last scan is allowed. This gives a maximum speed of 750 lines per minute.

1403-N1 without MCS: A minimum of 45 print scans must be taken before the last scan is allowed. This gives a maximum speed of 1127 lines per minute.

1403-N1 with MCS: A minimum of 30 print scans must be taken before the last scan is allowed. This gives a maximum speed of 1419 lines per minute.

\subsection*{4.14.3.2 Carriage Settling Delay (PR742)}

Adjust using diagnostic routine WE51 in Section \(* 420\) after setting the single-space singleshot. For the 1403-2 or 1403-7, this will give a combined single space and carriage settling range of 20.4 to 21.4 ms. For the 1403 N 1 this gives a combined single space and carriage settling range of 20.6 to 20.9 ms .

\section*{4. 14. 4 BUFFER SERVICE CHECKS}

Refer to Section 4.14.6.

\subsection*{4.14.5 BUFFER ADJUSTMENT}
1. Set all voltages are specified in Chapter 5.
2. Initially set Vsl to +3 V with respect to ground (PR551) using the upper potentiometer.

\subsection*{4.14.5.1 Vxy Adjustment}
1. Estimate the temperature of the room. Measure Vxy (01A-C3L2D11) with respect to ground.
2. Set Vxy using the lower potentiometer ofC3L2 to the appropriate value with respect to the room temperature:
\begin{tabular}{lll}
60 F & \((15.6 \mathrm{C})\) & +1.6 V \\
70 F & \((21.1 \mathrm{C})\) & +1.5 V \\
80 F & \((26.7 \mathrm{C})\) & +1.4 V \\
90 F & \((32.2 \mathrm{C})\) & 1.3 V
\end{tabular}

Note: If air conditioning ducts or floor cutouts allow air colder than room temperature at the input to Gate-A in the c-board area, use the Vxy setting for the next lower temperature. If such cooling conditions are present, check Vxy after the gates have been closed to verify that the voltage is at the desired value. It may be necessary to readjust for the proper setting.

\subsection*{4.14.5.2 Strobe Ad justment}
1. Attempt to write all bits in the buffer (Diagnostic Routine WE15, Section *400); disregard any errors.
2. Sync the scope on \({ }^{\prime}-0 \quad x+4 x\) Strobe \(S A\) ' (PR551) (01A-C3L2B04).
3. Observe the output of the PLB1 sense amplifier, "-0 PLB sense 1" (PR561) ( \(01 \mathrm{~A}-\mathrm{C} 3 \mathrm{~K} 2 \mathrm{BO} 2\) ).
4. Adjust the strobe delay singleshot in 01A-B3M2 until the sense amplifier output appears. Adjust the singleshot potentiometer to obtain an output pulse of maximum width. If the maximum width occurs over a range, adjust the potentiometer to the center of the range.

\subsection*{4.14.5.3 Vsl Adjustment}
1. Loop on the 1403 buffer voltage routine (WE16 in Section *400), set sense switches to continue after errors, and print an asterisk (*) only on errors.
2. Adjust the upper potentiometer on C3L2 clockwise until an error message prints (or until a print check occurs).
3. Adjust the potentiometer clockwise until the error conditions show up and set the Vsl .1 volt more negative than the high failure level of Vsl.

Note: The range between the failure points should be at least. 3V. A range of less than . 3 V may indicate a bad component such as a sense amplifier.
4. The buffer should now be adjusted properly to track effectively over its specified operating temperature range. If any of the buffer components (sense amplifier, driver, etc.) are replaced, the Buffer Adjustments procedure (section 4.14 .5 ) must be repeated to obtain optimum operation.

\subsection*{4.14.6 BUFFER CHECKOUT PROCEDURES}

Loop the ripple print routine to test accuracy of buffer adjustments.

\subsection*{4.152560 ATTACHMENT}
4.15.1 BLOCK FEED CHECK JUMPER

When the block feed check jumper is installed, all 2560 feed checks are prevented. To scope the feed and feed check circuitry:
1. Set up a short instruction loop according to the type of feed check, using MFT 72.
2. Connect the block feed check jumper (MF 506), and load blank cards in the selected hoppers.

Control and check circuitry can then be scoped as desired. Sync signals are FCB 1 to 6 , trailing edge, or those signals that initiate a feed cycle.

\subsection*{4.15.2 ADJUSTMENTS}

\subsection*{4.15.2.1 Sinqleshots}

The monitor-controlled 2560 diagnostic coreload *820, routines UM35 and UM36, describes the adjustment of all singleshots in the 2560 attachment feature for both print and nonprint 2560 s.

\subsection*{4.15.2.2 Feed Cells}

Refer to the publication, Model 25
Pluggable Display and External Field Definitions, and plug the display cable in the location that brings the signal, 'any feed cell dark," to the indicator lights. Adjust the feed cells as described in the 2560 FEMM.
4. 16 INTEGRATED COMMUNICAT IONS ATTACHMENT

\subsection*{4.16.1 TIMEOUT OSCILLA TOR}

The timeout oscillator contains two 115-ms singleshots. The singleshots are running continuously: adjust each one to \(115 \pm 5 \mathrm{~ms}\) while scoping the output pin. See ALD page HA064.

\subsection*{4.16.2 TIMEOUT CLOCK SINGLESHOT}

The 350-ns timeout clock singleshot is started every 460 ns , and should be adjusted to \(350 \pm 35 \mathrm{~ns}\) while scoping the output pin. See ALD page HA064.

\subsection*{4.16.3 SYSTEM RESET SINGLESHOTS}

There are two 5-microsecond system reset singleshots. One is started by the system reset switch on the console (Note 4 on ALD HA064). The second is used by the ICA microdiagnostics and can be scoped by looping the entire section or any routine in \(* 700\) (Note 5 on ALD HAO64).

\subsection*{4.16.4 A-CLOCK SINGLESHOT}

There is one 2.5 -microsecond A-clock singleshot per start/stop base board. The singleshot runs continuously and can be adjusted while the output pin is being scoped. See ALD HA137 for EIA boards (B-X1). See ALD HA 337 for TLG boards (B-Y1).

\section*{Section 2. Features}

\subsection*{4.17 EXTERNAL INTERRUPTION AND DIRECT CONTROL FEATURES}

The external interruption and direct control features are combined here because installation of the direct control feature requires that the external interruption feature also be installed. The external interruption feature, however, can be installed without the direct control feature.

Both features are plugged on board A1-A3.

\subsection*{4.17.1 SPECIFICATIONS}

Signals on the direct control interface are of three types:
1. The direct-control bus-out and the direct-control bus-in lines carry static levels that remain on the lines until changed by the CPU program or by the external equipment.
2. The timing-out, read-out, write-out, and external bus-in lines carry pulses.
3. The hold-in line may carry either a pulse or a static signal.

These signals are shown in Figures 4-14 and 4-15. In these figures, all pulses are considered positive and the up-level is considered a logical one.

When the CPU power is off, all outputs to the outbound busses or tag lines must be at a logical zero.

\subsection*{4.17.2 ADJUSTMENTS}

Although circuit adjustments cannot be made to these features, the circuit cards of any given type must operate satisfactorily in any socket location specifying that type. Selection or interchange of cards to obtain satisfactory performance is unnecessary and should not be done.

\subsection*{4.18 I NTERVAL-TI MER ADJUSTMENT}

The singles hot located at A- A3J7 must be adjusted as follows. Scope the signal at A-A3H3D05 (CT011). Adjust the singleshot to give a \(10-\mathrm{millisecond} \pm 10 \%\) positive going pulse at this point for 60-cycle machines, or an 11 -millisecond \(\pm 10 \%\) positive going pulse for 50-cycle machines. It is not necessary to have the CPU clock running to make this adjustment. The singleshot must be functioning all the time power is on.

\subsection*{4.18.1 SERVICE CHECK AND CHECKOUT PROCEDURE}

To test the interval-timer feature, first run microdiagnostic *200. Timer switch must be on to run this test. Next place the machine in single-cycle mode and press system reset. Display the interval-timer register; it must be zero. Now alternately press start and then display the
interval-timer register. Each time this is done, there is a \(50 \%\) chance that the register will be advanced. Each time it does advance, it is increased by only one count. When a count of one has been reached, turn the interval-timer switch off. The interval-timer register should continue to advance. When all bits of the C-register are on (interval-timer register equals 15), press the start button ten more times. The value in the interval timer must not change.

Leaving the interval-timer switch off and the machine in single-cycle mode, press system reset. Display the interval-timer register; it must be zero. Press start ten times. The interval-timer register must still be zero.

\subsection*{4.19 STORAGE PROTECTION FEATURE ADJUSTMENT}

Figure 4-16 shows the time relationship of the STP 1 local storage compared to the CPU word type 2. A delay line is used to adjust the STP local storage read line. This delay line has a tolerance of +3 to -2 nanoseconds and can be adjusted by using the following procedure.
1. Store the storage word 5210, followed by an unconditional branch back to this word, into an unused portion of control storage.

Example:
Address Contents
\(0280 \quad \frac{1}{5210}\) (Fe Trap Area) 02828280
2. Sync on word type 2 (location 01A B1C7B03).
3. Scope and record the duration from the \(10 \%\) rise of 'Y0 ADDR LINES STP1' to the \(10 \%\) fall of 'STP1 READ LINE' (ALD XQ007).
4. The duration (Figure 4-17) must be between 27 ns and 37 ns . If this requirement is not met, the delay line must be plugged to satisfy this condition.

\begin{tabular}{rl} 
A. B. C. K. L. & No minimum transition duration specified \\
D & Minimum is 500 nsec. no maximum specified \\
E & Minimum is 500 nsec. no maximum specified \\
F & Minimum overlap between data change. 100 nsec. no maximum specified \\
G & Minimum overlap after data change. 100 nsec. no maximum specified \\
H & Minimum duration 500 nsec. \\
\(J\) & Maximum including transition 1000 nsec. \\
\(M\) & Minimum down level between pulses not specified
\end{tabular}

Figure 4-14. Direct Control Signals Originating Outside the CPU

A. B. C. D. E. F. G Maximum transition time is 200 nsec.
H. J. K Minimum duration is 500 nsec .
L. M. N Maximum including transition. 100 ns.
B. D Leading edges coincidental within skew tolerances
F. D Leading edges coincidental within skew tolerances
S. Overlap start Write Out to change D. C. P. O. 100 nsec. (MIN)

U Overlap change of D. C. P. O to finish of Write Out 100 nsec . (MIN)
T Earliest time to sample hold line during read direct.
P. Q. R Minimum down time between pulses is 500 nsec .

Figure 4-15. Direct Control Signals Originating within the CPU


Figure 4-16. STP1 Time Relationship to Word Type 2


Figure 4-17. STP1 Read Line Delay

\title{
Chapter 5. Power Supplies
}

\subsection*{5.1 GENERAL I NFORMATION}

Electrical power requirements for the 2025 processing unit and integrated input/output attachment features, including the associated I/O devices, are supplied through the 2025 processing unit.

The ac service into the 2025 processing unit is 208/230V, 60 amps, 3-phase, 60 Hz ac for domestic machines. For World Trade machines, provision is made for 50 Hz . \(195 / 220 / 235 \mathrm{~V}\). delta input, or 50 Hz , 380/408v. Y-input.

The dc supplies are ferroresonant for all levels.

The dc supplies are sequenced. The ac power to the 2311 disk drives and the 2560 MFCM is also sequenced.

Some of the power supplies and associated components are used only with certain integrated I/O attachments. Where possible, these components are specified in feature groups, and are installed only when the associated features are installed.

The following is a listing of the power supplies by group.
```

Basic Power Group:
50A
-3 a 30A
+6 a 40A
+12 a 13A
-12 a 13A
-30 a 8A Core storage
7.25V ac a 2Console indicators
41v ac a --- Meter power pack
115V ac a 15A Convenience outlets and
1052 motor
+24 a 4.5A Sequence circuitry
Ferrotransformer T1 Supplies:
+48 a 3A Console typewriter,
communications

```

Power requirements supplied from the processing unit for integrated I/O attachment devices are as follows.

\section*{1403/2540 Power Group:}
```

-6 a 4A
-20 - 4A
1403 Power Group:
+6 a 16A Hammer drivers
+60 a 20A Hammer drivers

```

\section*{2311 Power Group:}
-36 a 2 A
2560/Communications Power Group:
+3 a 45A
+6 - 32 A
2560 Power Group:
+20 a 1A

\section*{5. 2 INPUT POWER}

Input power for domestic installations is 208 volts \(\pm 10 \%\) or 230 volts \(\pm 10 \%, 60 \pm .5\) hertz, 60-amperes three-phase four-wire (the fourth wire is equipment ground) shielded cable. The shield and ground wire are bonded to the input line filter case at the cable entry point.

Input power for World Trade installations is 200, 220 , \(235 / 380\), or 408 volts \(\pm 10 \%\), \(50 \pm .5\) hertz, 60 -amperes three-phase five-wire shielded cable the fourth wire is neutral for a WYE system and not used on DELTA, and the fifth wire is equipment ground. The shield and ground wire are bonded to the input line filter case at the cable entry point. An autotransformer is provided for 200 volts. 235 volts, or 408 volts, 50 hertz inputs.

Power supply logics YA 011, YA 092, and. YA 101 show input connections to voltage sensitive units and YA 031 shows the power on/off sequence. The 2025 power supply is described in detail under power Supply in the IBM 2025 FE Theory of operations Manual, Form Y24-3527.

\subsection*{5.3 POWER CONVERSION}

Ferroresonant regulators feeding full wave bridge rectifiers are used to transform the systems ac input voltage to the dc voltage required by the series regulators and the special power requirements. The special power requirements do not require close regulation.

\subsection*{5.4 AC OUT PUTS}

\subsection*{5.4.1 CONVENIENCE OUTLETS}

For domestic machines, two convenience outlets provide 115 volts; 60 hertz, single
phase, at a maximum of 15 amperes for the CPU For World Trade, two convenience outlets provide 200. 220, or 235 volts at 8 amperes for the CPU. Integrated units can draw up to 8 amperes per unit. The convenience outlets for the cPU and the integrated attachments cannot exceed a total of 15 amperes.

\subsection*{5.4.2 BLOWERS}

The CPU has three blowers in the power supply tower, three blowers per SLT gate, and three blowers in each M2-I unit. These blowers require 208 or 230 volts, 60 hertz, or 220 volts at 50 hertz, single phase.

\subsection*{5.5 DC OUTPUTS}

The power system of the 2025 supplies dc outputs as shown in Figure 5-1.

All dc voltages must be within the tolerances indicated in Figure 5-1 (excluding transient noise) at any card socket in the CPU. Therefore, each power supply must mainta in its output voltage in accordance with its individual performance specification. The distribution tolerance must not exceed \(\pm 2 \%\) within the CPU and devices with reference established at the point of the external entry into the devi.ce.

\subsection*{5.5.1 MARGINAL CHECKING JACK RECEPTACLE (P1)}

A jack receptacle (P1) located on the 2025 relay panel provides +12 volts for marginal checking the 2540 (logic YA 241).

\subsection*{5.6 POWER ON/OFF SEQUENCING}

See timing power supply logic YA 031.
5.6.1 POWER ON/OFF OF CPU AND.INTEGRATED I/O UNITS

\subsection*{5.6.1.1 +6, \(-3,+3\), and -30 Voltages}

The \(+6,-3\), and +3 voltages must be within a sensed percentage of their rated level prior to bringing up the -30 volts used by storage. The -30 volt supply must be down to or below a sensed level before removing \(+6,+3\), or -3 . Whenever the +6 volt supply is between +5.4 volts and +2.0 volts for more than \(100 \mathrm{~ms},-30\) volts should be dropped to 1 ess than -10 volts. Any loss of the +6 volts should result in the removal of -30 volts from the BSM (basic storage modules).

\subsection*{5.6.1.2 \(2.62+3 .-3\). and +60 Voltages}

The \(+6,+3,-3\), and +60 volts direct must be up within a sensed percentage of their rated level prior to applying the +60 volts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Supply Rating & Maximum Current Permitted (Avg.) & Power Supply Location No. & Tolerance at Circuits & \[
\begin{aligned}
& \text { Setting } \\
& \pm 0.5 \%
\end{aligned}
\] & Position & Feature \\
\hline +12V 13A & 11.7 A & 8 & \(\pm 4 \%\) & 12.24 & PS-TB1-2, TB1-5 & Basic \\
\hline -12V 13A & 13.0 A & 3 & & 12.24 & PS-TB1-2, TB1-5 & Basic \\
\hline - 3V 30A & 30.0 A & 6 & & 3.01 & *A-LBA1 & Basic \\
\hline -6V 4A & 4-0 A & 1 & & 6.24 & PS-TB1-5, TB1-2 & 1403, 2540 \\
\hline + 3V 45A & 42.0 A & 2 & & 3.12 & PS-TB1-2, TB1-5 & 2560, Comm \\
\hline -30V 8A & \[
\begin{gathered}
8.0 \mathrm{~A} \\
(9.0 \mathrm{~A} \text { at } 34.5 \mathrm{~V})
\end{gathered}
\] & 12 & & (Per Mem Spec) & * \({ }^{\text {M } 21 L B}\) & Basic \\
\hline \({ }^{* * *}+6 \mathrm{~V} 40 \mathrm{~A}\) & 47.0 A & 10 & \(\pm 4 \%\) & 6.02 & *A-LBA1 & Basic \\
\hline +60V 20A & 20.0 A & 14 & \(\pm 10 \%\) & N/A & N/A & 1403 \\
\hline \(+6 \mathrm{~V} 16 \mathrm{~A}\) & 15.5 A & 11 & +4\% & & & \\
\hline & & & -7\% & 6.02 & TB25-15, 13 & 1403 \\
\hline -30V 2A & 2.0 A & 4 & \(\pm 4 \%\) & 36.72 & PS-TB1-2, TB1-5 & 2311 \\
\hline -20V 4A & 4.0 A & Developed from T1 & \(\pm 10 \%\) & N/A & N/A & Basic \\
\hline +24V 4.2A & 4.2 A & Developed from T3 & \(\pm 15 \%\) & N/A & N/A & Basic \\
\hline +48V 3A & 3.0 A & Developed from T1 & \(\pm 10 \%\) & N/A & N/A & Basic \\
\hline + 6V 32A & 30.0 A & 5 & \(\pm 4 \%\) & 6.24 & PS-TB1-2, TB1-5 & 2560, Comm \\
\hline + 3V 50A & 50.0 A & 9 & \(\pm 4 \%\) & 3.01 & *A-LBA1 & Basic \\
\hline +20V 1.0A & 1.0 A & Developed from T7 & \(\pm 10 \%\) & N/A & N/A & 2560 \\
\hline
\end{tabular}
*See logic page YA251 ** See logic page YA271 *** +6V @ 50A on machines with EC133539
Figure 5-1. DC Outputs
controlled output to the 1403. This makes the three-phase ac power available for the motors. The +60 volts controlled must be down to or below a sensed level before removing other dc voltages used by the 1403.

\subsection*{5.6.1.3 2311 DC Power}

The first dc power on the 2311 is the +6 , +3 , and -3 volts; then the ac power-on control line is activated. The first step in power-off is to deactivate the ' cower-on cont rol' line, remove ac power, and finally remove dc voltages. The 2311 heads extended prohibit sequence down until the heads retract or an EPO occurs.
5.6.1.4 2540 DC Power

The -20 volt dc power to the 2540 is applied at the same time as the -30 volts is supplied to main storage.

\subsection*{5.6.1.5 2560 AC Power}

The ac to the 2560 is applied after the dc voltages and removed before the dc voltages.

\subsection*{5.6.2 POWER ON/OFF TO CHANNEL CONTROLIED I/O UNITS}

A maximum of eight I/O control units can be controlled by the CPU channels. These units are powered up after all CPU and integrated \(I / O\) units have been sequenced on. The channel controlled I/O units step their power on one at a time. When the last I/O unit has completed its power-on sequence under remote control and the memory temperature is above the low limit. the system power-on reset line is deactivated and the system power-on light is turned on.

Power off occurs in the same sequence as power on, with the following exception: if the 2311 heads are extended at the time of power off, the power-down sequence is prohibited until the heads retract or an EPO occurs.

\subsection*{5.7 EMERGENCY POWER-OFF (EPO)}

Operation of the emergency-pull switch removes primary power within two seconds from the CPU and every I/O control unit attached to a channel simultaneously, and without stepping down. An emergency power-off can cause the data in main storage to be lost. Operation of the emergency-pull switch sets a mechanical latch within the switch mechanism that must be man ually reset before power can be restored.
5. 8 OVERCURRENT, UNDERVOLTAGE, AND OVERVOLTAGE SENSE

When an overcurrent or an overvoltage condition occurs on dc power supplies with an overcurrent \(C B\), the following events take place.
1. A circuit breaker is tripped and the \(C B\) trip light is on.
2. A normal power-off sequence is initiated.
3. A power-check light is energized on the console.

The dc power supplies not provided with an overcurrent \(C B\) are fused for overcurrent protection. Loss of the supply outputs when system power is on initializes a normal power-off sequence and turns on the power-check light on the console panel. Loss of the +24 volt supply causes a random power off and does not light the power check light.

Loss of any dc supply (except the +24 volt) below its sensed rating initiates a normal power-off sequence and lights the power-check light on the console panel.

The 20 -volt, 24 -volt, 36 -volt, 48 -volt, and 60 -volt dc supplies do not require overvoltage circuits.

\subsection*{5.8.1 SYSTEM-RESTART/POWER-CHECK LIGHT RESET}

System restart can not be accomplished without first pressing the power-off button to reset the power-check light. Inability to reset the power-check light indicates the power failure is caused by an overcurrent, overvoltage, or thermal-trip condition. The system power-off button must be pressed after resetting the condition at the cower tower.

\subsection*{5.9 THERMAL SENSING}

Thermal sensing switches are provided on logic gates, main storage, and power supply areas. Whenever any of these thermal switches senses a temperature in excess of their specified limit, the following occurs.
1. A normal power-off sequence is initiated.
2. The thermal-trip light on the power tower is turned on and remains on until the condition is corrected and the thermal reset switch is actuated.
3. The power-check light on the console is turned on.

\section*{5. 10 SERVICE CHECKS AND CHECKOUT PROCEDURES (FIGURE 5-2)}

Continued problems with the 2025 power supplies could be an indication that:
1. Line in use is out of specification. The voltage must be within \(\pm 10 \%\) of rated input line voltage. (See Physical Planning Manual, Form C22-6820, for complete requi rements.)
2. Transformer taps set for wrong line voltage. If the voltage is ever changed, the correct Feature Bill of

Material should be ordered through Plant Field Engineering. These B/Ms contain complete instructions for the 2025 conversion as well as the correct voltage nameplate tags. The voltage nameplate must always reflect the voltage for which the machine is wired. When the \(B / M\) is ordered and installed, Machine Level Control Department is advised of the change in the machine voltage wiring.
3. On thermal failures, check blowers and filters for sufficient air flow. Room temperature can also be a factor.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Logic Page & Descripton & Part Number & EC133201 & EC133323 & EC133539 \\
\hline YA011 & Switching Instruction for Input Voltage & 2542161 & & & \\
\hline YA021 & Machine Layout Data (Door Side) & 2542162 & 2543021 & 2470741 & \\
\hline YA022 & Machine Layout Data (Gate Side) & 2542163 & & 2470739 & \\
\hline YA031 & Power "On" - "Off" Sequence & 2542164 & & & \\
\hline YA041 & Component Data Location Chart & 2542165 & 2543022 & & \\
\hline YA042 & Component Data Location Chart & 2542166 & & & 2470747 \\
\hline YA043 & Terminal Location Chart & 2542167 & & & \\
\hline YA061 & Connector Reference Chart & 2542168 & & & \\
\hline YA071 & External Cable Connections & 2542169 & & 2470740 & \\
\hline YA072 & External Cable Connections & 2542170 & & & \\
\hline YA091 & AC Power Control & 2542171 & 2543023 & & \\
\hline YA092 & Control Transformer and Conv. Outlet Power Dist. & 2542172 & & & \\
\hline YA101 & AC Distribution & 2542173 & & & \\
\hline YA111 & AC - Distribution to 1052 and Blower Circuits & 2542174 & & & \\
\hline YA131 & 1403 AC - Control and Distribution & 2542175 & & 2470732 & \\
\hline YA132 & Solid State Switch and 1403 Motors & 2542191 & & & \\
\hline YA141 & \(1403+60 \mathrm{~V}\) Control and Disteibution & 2542176 & & 2470733 & \\
\hline YA151 & System Power Control & 2542177 & & & \\
\hline YA161 & System Power Control & 2542178 & & & \\
\hline YA171 & EPO and PWR "On" Control for I/O Control Units & 2542179 & & & \\
\hline YA181 & Voltage Sense Circuits CB Trip Sense Circuits, Over Temperature Circuits & 2542180 & & & \\
\hline YA185 & Lamp Supply and Time Meter Circuit & 2542181 & & & \\
\hline YA191 & Ferro Mid Pack T1, T2, and Power Supplies PS1, PS4 & 2542182 & & & \\
\hline YA201 & Ferro Mid Pack T6, T7, and Power Supplies PS2, PS5, PS11, PS12 & 2542183 & & & \\
\hline YA211 & -3V - Power Supply and Distribution & 2542184 & & & \\
\hline YA221 & +3V - Power Supply and Distribution & 2542185 & & & \\
\hline YA231 & +6V - Power Supply and Distribution & 2542186 & & & \\
\hline YA241 & +12V, -12 V - Power Supply and Distribution & 2542187 & & & \\
\hline YA251 & DC Distribution to Gate " \(A\) " & 2542188 & & & \\
\hline YA261 & DC Distribution to Gate "B" & 2542189 & & & \\
\hline YA271 & DC Distribution to Gate " C 1 ", Gate " C 2 " and Gate 01H01-A (Hammer Driver Board) & 2542190 & & & \\
\hline YA112 & & 2539396 & & & \\
\hline YA182 & & 2470789 & & & \\
\hline
\end{tabular}

Figure 5-2. Power Supply Logic Pages

\subsection*{5.11 MID-PAC POWER SUPPLY}

\subsection*{5.10.1 MID-FAC TROUBLESHOOTING PROCEDURES}

The following procedure is recommended for troubleshooting the Mid-Pac power supply. Only the most probable conditions are indicated.

\subsection*{5.11.1.1 High Voltage}

Either a defective amplifier card or a shorted series regulator power transistor. To determine which of these is causing the high voltage, remove the amplifier card and press the power-on key just long enough to determine whether voltage is present.
Voltage being present indicates that one or more of the power transistors (normally clamped to 0 -volts with the amplifier removed) is shorted. If no output voltage is present, the amplifier card is probably defective. It may be necessary to disconnect the output cable and remove the overvoltage card. Never remove the overvoltage card with the dc output cable connected to the module if power is to be applied to the machine.

\subsection*{5.11.1.2 Low output Voltage}

Low output voltage usually is caused by a defective amplifier card.
5.11.1.3 DC Module Circuit Breakers (Individual Tripping)

Either a shorted series regulator power transistor, or a short in the logic wiring (load). To determine which condition is causing the circuit breaker to trip, remove
the amplifier card. If the circuit breaker trips with the card removed, the power transistor is shorted. If the circuit breaker does not trip with the card removed, the short is probably somewhere in the load circuits.

CAUTION
The CPU should not be running when tools or scopes are plugged into the convenience outlet.

If necessary, normal processor operation may be interrupted to utilize the convenience outlet by:
1. pressing STOP.
2. connecting tools.
3. pressing START.
5.11.2 SERVICE CHECKS AND CHECKOUT PROCEDURES

\subsection*{5.11.2.1 Mid-Pac DC Outputs}

All dc voltages must be within rated tolerances when measured anywhere in the CPU Logic area such as memory units and logic gates. Refer to Figures 5-1 and 5-2 for a chart and reference of the Mid-Pac power system.

Measure and monitor the output voltage at the designated test point for the applicable power supply. Vary the red knurled knob of the potentiometer on the SMS card until the meter reads the specified voltage. Use a Weston 901 meter or equivalent.

Chapter 6. Locations


Figure 6-1. E-Gate (Connector Rack)

Chapter 6. Locations


Figure 6-1. E-Gate (Connector Rack)


Figure 6-2. DC Distribution and Power Supplies


Figure 6-2. DC Distribution and Power Supplies


Figure 6-3. Left Side


Figure 6-3. Left Side


Figure 6-4. Power Supplies (Left Side)


Figure 6-4. Power Supplies (Left Side)


Figure 6-5. Fuses (Lower Left Side)


Figure 6-5. Fuses (Lower Left Side)


Figure 6-6. Main Storage Units (Pin Side)


Figure 6-6. Main Storage Units (Pin Side)


Figure 6-7. Main Storage Components (Card Side)

Yellow Wire ( -30 v )



Figure 6-8. Main Storage Components (Card Side)


Figure 6-8. Main Storage Components (Card Side)




Figure 6-10. Logic Gate A (Card Side)


Figure 6-10. Logic Gate A (Card Side)


Figure 6-11. Logic Gate A (Pin Side)


Figure 6-1l. Logic Gate A (Pin Side)


Figure 6-12. Right Side (Behind Logic Gates)


Figure 6-12. Right Side (Behind Logic Gates)


Figure 6-13. Power Supplies (Right Side)


Figure 6-13. Power Supplies (Right Side)


Figure 6-14. 1403 Controls (Right Side)


Figure 6-14. 1403 Controls (Right Side)


Figure 6-15. 1403 Control Panel (Open)


Figure 6-15. 1403 Control Panel (Open)


Figure 6-16. Hammer Driver Gate (Open)


Figure 6-16. Hammer Driver Gate (Open)

\section*{Appendix A. Special Circuits}

\section*{A. 1 LOCAL STORAGE CARD AND STORAGE PROTECTION CARD}

\section*{A.1.1 FUNCTIONAL DESCRIPTION}

A \(64 \times 10\) self-contained functional three-dimensional storage-array card (including word drivers, storage elements, bit drivers, sense amplifiers and a voltage regulator) is used for local storage and storage protection. When the storage protection feature is present, the two cards (Figure A-1) can be swapped for diagnostic purposes. The inputs to the storage unit are an 8 X by 8 Y matrix.

Two modes of operation are possible:
1. A write operation, or
2. A nondestructive read operation (NDR).

The NDR operation is accomplished by supplying a valid address (one \(X\) - and one Y-line selected), and sampling the output by conditioning the sense amplifier gate on. (If minimum access time is not needed, the sense amplifier gate can be left on at all times.) The write operation requires a valid address input, 10 data inputs, and a bit driver timing pulse (timed write instruction), all of which must be coincident. All signal input and output lines are compatibie with SLD/SLT circuits.


Figure A-1. Local Storage and Storage Protection Card

\section*{Appendix A. Special Circuits}

\section*{A. 1 LOCAL STORAGE CARD AND STORAGE} PROTECTION CARD

\section*{A. 1. 1 FUNCTIONAL DESCRIPTION}

A \(64 \times 10\) self-contained functional three-dimensional storage-array card (including word drivers, storage elements, bit drivers, sense amplifiers and a voltage regulator) is used for local storage and storage protection. When the storage protection feature is present, the two cards (Figure A-1) can be swapped for diagnostic purposes. The inputs to the storage unit are an 8 X by 8 Y matrix.

Two modes of operation are possible:
1. A write operation, or
2. A nondestructive read operation ( \(N D R\) ).

The NDR operation is accomplished by supplying a valid address (one \(X\) - and one y-line selected), and sampling the output by conditioning the sense amplifier gate on. (If minimum access time is not needed, the sense amplifier gate can be left on at all times.) The write operation requires a valid address input, 10 data inputs, and a bit driver timing pulse (timed write instruction), all of which must be coincident. All signal input and output lines are compatible with SLD/SLT circuits.


Figure A-1. Local Storage and Storage Protection Card

(Read)

Figure A-2. Local Storage and Storage Protection Addressing

\section*{A.1.2 CIRCUIT OPERATION (FIGURE A-2)}

An address is selected in the array with the coincidence of a positive \(Y-l i n e\) and a negative X -line. This condition selects 10 storage cells, one in each bit or plane. Selection of a cell causes current to flow in either the bit-one sense zero-line or the bit-zero sense-one line, depending on the state of the storage cell. The differential sense amplifier, when gated, provides an output indicative of the polarity of the input.

For the selected cell to be written into, the bit-one or bit-zero driver is turned on, depending on input data. The cell is left in the appropriate state when the bit driver is turned off.

Because the array module cannot be powered directly from +6 volts, circuitry on the card provides the proper levels ( +2 volts and approximately 3.25 volts).

There are two parts to the regulator circuitry:
1. a two-volt shunt regulator, and 2. a series-dropping resistor.

The regulator amplifier absorbs the load change while a resistor in parallel with it conducts the major portion of the current. The series-dropping resistor provides a voltage drop from +6 volts to approximately 3.25 volts. The storage latches are connected (all in parallel) between +2 volts and 3.25 volts.


Figure A-3. Basic Storage Cell

\section*{A.1.2.1 Cell}
A.1.2.1.1 Steady-State operation: In Figure A-3. the inboard transistors T1 and T2 form a direct-coupled saturating flip-flop. Under steady-state conditions, one transistor is saturated with a collector voltage of approximately 2.2 volts while the other is cut off with a collector voltage of approximately 2.8 volts. Assuming a 1 is stored in the cell. transistor \(T 1\) is on and T2 off. The base
of T1 and T3 is 2.8 volts while the base of T 2 and T 4 is 2.2 volts.
A.1.2.1.2 Read operation: To read information from the cell requires the coincidence of \(X\) - and \(Y\)-voltage pulses. The \(X\)-voltage at the base of T6 is decreased from 2.6 volts to. 7 volts while the \(Y\)-voltage at the base of T 5 is increased from 0 volts to 1.7 volts. Thus, T6 is turned off and T5 is turned on. Due to the state of the flip-flop, T3 is enabled and the sense current, which is determined at the emitter of T5, flows to B0. In the case of a 0 being stored, the state of the flip-flop is reversed and T4 is enabled.
A.1.2.1.3 Write Operation: To write into the cell requires the coincidence of \(X, Y\), and either BO or B 1 . Assuming a 1 is stored in the cell and a 0 is to be written, transistor T 1 is on and transistor T2 off. The base of \(T 1\) and \(T 3\) is at 2.8 volts. The \(X\) - and Y-lines are pulsed as previously indicated for a read cycle. Bo is decreased from 5 volts to approximately 1.5 volts. With the collector voltage of T3 reduced to saturation level, the enabled transistor T 3 conducts all of its emitter current through the base and pulls down the collector voltage of transistor \(T 2\), which in turn tends to turn off transistor T1. As \(T 1\) turns off, its collector voltage rises and turns on T2. At the completion of this process a steady-state condition is reached with \(T 1\) off and \(T 2\) on. Thus, the saturating flip-flop is in its opposite condition and the 0 is stored in the cell.

\section*{A.1.3 STORAGE MODULE}

The storage module is a one-half inch by one-half inch module consisting of a single substrate with twenty-three SLT input/output pins and eleven interstitial (feed through) pins.

Two 64 -bit chips arranged in an 8 y by 8 X by 1-bit configuration are mounted on the substrate making the module organization 64 by 2 bits. Nominal power dissipation per module is approximately 275 mw .

\section*{A.1.4 PERIPHERAL CIRCUITS (FIGURE A4)}

X-Drivers: The \(X\)-driver is similar in configuration to the SLD100 A0I circuit except that it is clamped out of saturation. The driver input is a two-way AND circuit. There are four drivers per module and four load resistors per R-pack.

Y-Drivers: The \(Y\)-driver is a saturating emitter follower. It has one input and cannot be used as an AND circuit. There
\begin{tabular}{|c|c|c|c|c|}
\hline are four complete circuits per module & Y-Inputs & & & X-Inputs \\
\hline including load resistors. & 0 D02 & & & 0 J09 \\
\hline & 1 B03 & & & \(1 \mathrm{G10}\) \\
\hline Bit Drivers: A one and a zero driver is & 2 B04 & & & 2 J10 \\
\hline required for each bit. The bit-1 driver is & 3 D04 & & & 3 J11 \\
\hline identical to the X -driver. The bit-0 & 4 B05 & & & 4 G12 \\
\hline driver is slightly different in that an & 5 D05 & & & 5 J 12 \\
\hline input diode is used to clamp the output & 6 D06 & & & 6 G13 \\
\hline down level to a higher voltage. The & 7 B07 & & & 7 J13 \\
\hline bit-one driver is used as an inverter for the data input to the zero driver. & & & & \\
\hline & In & Data & & Out \\
\hline Sense Amplifier: The first stage of the & D10 & 1 & & B10 \\
\hline sense amplifier is a gated differential & D07 & 2 & & B08 \\
\hline amplifier followed by a level translating & D13 & 3 & & B12 \\
\hline PNP stage and a saturating inverter. There & D11 & 4 & & D12 \\
\hline are four bit drivers and two sense & G0 3 & 5 & & G04 \\
\hline amplifiers on a stacked module. & G 02 & 6 & & J0 2 \\
\hline & J05 & 7 & & G07 \\
\hline Voltage Regulator: Plus-two volts is & G05 & 8 & & J04 \\
\hline defined by a shunt regulator consisting of & G08 & 9 & & G09 \\
\hline a differential amplifier and an emitter & J07 & 10 & & J06 \\
\hline follower that drives the common emitter output transistor. The larger versions & & & & \\
\hline have two emitter followers. The reference & Bit T. P. & D09 & +6 & B11, G11 \\
\hline voltage is generated by a resistor divider. & S. A. GATE & B09 & GND & D08, J0 8 \\
\hline & +2.0 Test Pin & B02 & Not Used & D03,J03, B06, 006 \\
\hline Cell and Drive Circuit: See Figure A-4 for & +3.2 Test Pin & B13 & & \\
\hline a representation of the drive circuits with & & & & \\
\hline
\end{tabular}

\section*{A. 1. 5 PIN ASSIGNMENTS}

Card pin assignments for the communicating lines and power connections to and from the storage card are as follows.


Figure A-4. Composite View of Circuits

A- or B-Register Parity Check 1-ll6
A-Clock Singleshot (ICA) 4-13
AB-Assembly Data from Local Storage (Waveform) l-138
AC Distribution and Primary Power Control 6-3
AC Outputs 5-1
Access Hole for Measuring Temperature
(Location) 6-7
Address Backup Locations, Local Storage Decodes when Mode Register Bits 5-7 are 100 l-68
Address Match 1-122
Address Match (Indicator) l-122
Address Stop, MS, Procedure During IPL or CSL 2-3
Address Stop/Match 1-2
Addresses
File Table (1400 Compatibility) l-29 Standard, Integrated Attachment Devices 2-41
Subchannel 2-37
Trap 1-2
Addressing 1403 Printer Attachment 2-16 2311/DAC 2-23 2540 Attachment 2-29
Console Printer Keyboard 2-10
Core-Storaqe Allocations and 1-2
External 1-43
Local Storage and Storage
Protection A-2
LS (Pl-Time Access) 1-135
Multiplexer Channel Device 2-37
Ranges for Program Storage, Control Storage and Auxiliary Storage l-1 Restrictions, Channel and Unit 2-37 Selector Channel Device 2-37
Adjustments
A-Clock Singleshot (ICA) 4-13 Buffer (1403) 4-12
Carriage Settling Delay (1403) 4-12 Coil Protect Singleshot (1403) 4-12 Control Tag Singleshot (DAC) 4-10 Delay Lines, Local Storage 4-6 Head Conditioning Singleshot (DAC) 4-9 Heater, Storage Array 4-1
Home Gate Singleshot (1403) 4-12
Index and Delta Index Singheshots
(DAC) 4-9
Interval Timer 4-14
Mid-Pac 5-5
Operational-Out Singleshot 4-8
PR-KB Singleshots 4-9 PSS Singleshot 4-11
Recalibrate Singleshot (DAC) 4-10
Speed Limit Delay (1403) 4-12
Storage Protection 4-14
Strobe (1403 Buffer) 4-13
System Reset, IPL, or CSL Singleshot 4-8
System Reset Singleshots (ICA) 4-13

Timeout Clock Singleshot (ICA) 4-13
Vsl (1403 Buffer) 4-13
2311 Read Clock 4-9
2540 Attachment Clock 4-8
2560 Feed Cells 4-13
2560 Singleshots 4-13
Air Filters (Location) 6-4, 6-5
Allow Manual 1-123
Allow Manual (Indicator) l-123
Alter/Display
Errors 2-12
Key, Printer-Keyboard 1-124
Manual, Console Printer 2-10
PR-KB 1-122
PR-KB (Indicator) l-1.22
Alter Storage 2-11
ALU Check 1-116
AN-HN Arrangement, Printer Translate
Table 1-92
AN/HN Folded, Printer Translate Table 1-93
AN/HN Graphics for Basic 1403
Attachment 1-88
Arithmetic Constant Word (Word Type I) 1-37
Array
Changing 4-6
Gates and Controls (Location) 6-8
Line Measurements, Main Storage 1-134
Matrix (Location) 6-8
Measurements, Main Storage 1-133
Sense Line Checking l-132
X and Y Drive Line Checking 1-135
ASCII-8 Chart 1-72
Attachment Checks (See Checks, CPU
Attachment)
Auxiliary Storage
Addressing Relationships Between Program
Storage, Control Storage and 1-1
Display 2-8
Maps 1-6
Maps, 1401/1460 Compatibility Features 1-20
Module 1-6
Module 0 l-8
Module 0 (1400 Compatibility) 1-22
Module 1 1-9
Module 1 (1400 Compatibility) 1-24
Module 2 1-9
Module 2 (Channel) 2-38, 2-40
Module 2 (1400 Compatibility) l-24
Module 3 1-10
Module 4 1-11
Module 4 (1400 Compatibility) 1-25
Module 5 1-12
Module 5 (1400 Compatibility) l-25
Module 6 1-13
Module 6 ( 8 in 24 K Systems- 1400
Compatibility) 1-25
Module 7 l-14
Module 8 1-14
Module 9 1-14
Store 2-9
2540 Reader Row Image 1-15
```

 2540 Readout Area (160 Bytes of
 Column Form) 1-15
 30xX, 2540 Reader Translate Table 1-16
 Al Gate (Hammer Driver Gate) (Location) 6-12
Backup Locations, Address 1-68
Bad Waveforms
LS Address Line Reset Delay Bad--
Zero Delay l-139
Read Line Set too Early--Zero
Delay l-139
Basic Storage Cell (LS) A-3
BCD-to-CM6 Conversion l-73
BCHK, Checksum Routine 2-5
BCPL Routine 2-7
Bias Constant, Storage, (1400
Compatibility) 1-29
Bisynchronous Control Character Chart 1-80
Bleeder Resistors R18 to R29(Location) 6-12
Block Feed Check Jumper 4-13
Blowers l-129
Branch on Condition Code (Word Type
6 or 7) l-42
Branch on Mask Word (Word Type 5) 1-41
Branch Unconditional Word (Word Type 4) 1-40
Buffer Adjustment, 1403 4-12
Buffer Load Microloop, 1403 2-3
Bl-TBl (Location) 6-4, 6-5
B2-TB1 (Location) 6-13
Carriage Settling Delay (1403) 4-12
CAW, Channel Address Word l-78
CBl (Location) 6-5
CCW, Channel Command Word 1-78
CE Display Cable (Model 20 Mode) l-127
CE Panel 1-128
CE Test Panel Hubs 1-128
CE Test Panel Hubs (Model 20 Mode) l-127
CE Test Panel (Location) 6-9
CE Trap l-128
CE Trap (Model 20 Mode) l-127
Cell, Basic Storage (LS) A-3
Chain Arrangements for System/360
(Printout Representation) 1-86
Chaining Check l-118
Channel
Address Word (CAW) 1-78
Checks 1-116
Checks 1-1l6
Command Codes 1-77
Command Word (CCW) 1-78
Connector Location 6-3
Control Check Flowchart 2-44
Control Check Logout 2-43
Control Check, Machine Check and l-ll4
Control Information, Selector
Channel 2-42
Device Addressing 2-37
Error Handling Philosophy and
Logout 2-42
External Facilities 2-46, 2-47
Handload Routine 2-47
Logout 2-43
Mode 1-44
Mode (CPU to EXT) 1-61
Mode (EXT to CPU) 1-60
Status Byte 2-43
Status Word (CSW) 1-78
Mogout 2-43

```

Channel UCW Allocations 2-37
UCW Format 1-79
UCW Formulation 2-39, 2-40
Channel-0 UCW Format (Standard I/O
Interface) 2-41
Channel 9 (1403) 2-20
Check
Channel Control 1-114
Coil Protect 2-17, 2-19
Control Switch 1-116
Forms (1403) 2-18
Hammer 2-17
Interface Control 1-115
Machine 1-114
Sync (1403) 2-17, 2-19
Checks, Adjustments, and Removals 4-1
Checks
CPU Attachment 1-116
CPU Hardware 1-116
CPU (Indicators) (See Indicators,
CPU Checks)
CPU Microprogram 1-116
Reader, During CSL 2-5
System l-118
1403 2-16
Checksum Routine--BCHK 2-5
CHNL (Channel) 1-123
CHNL (Channel), Indicator 1-123
Circuit Breakers, DC Module 5-5
Clock
CPU 4-1
Off (Indicator) l-123
1403 Attachment 4-10 2540 Attachment 4-8
CM6, Conversion to BCD 1-73
Code Conversions l-70
Coil-Protect
\(\begin{array}{lr}\text { Check } \quad 2-17,2-19 & \\ \text { Relay, Replacement } & 3-1 \\ \text { Singleshot (1403) } & 4-12\end{array}\)
Command
Byte Description, 1403 1-85
Codes, Channel l-77
Reject (PR-KB) 2-13
Reject, 1403 2-18
Word, Channel (CCW) 1-78
Commands
Integrated File l-104
PR-KB 2-10
1403 Printer Attachment 2-16
2311/DAC 2-23
Communications
Adapter, Integrated 1-80
Connector Location 6-3
Mode 1-44
Mode (CPU to EXT) 1-57
Mode (EXT to CPU) 1-55
Power Group 5-1
Compatibility Feature 1401/1460 and
1440 l-20, 1-126
Condition Code Settings 1-75
Configuration, System--CSL 2-6
Console Inquiry Program 2-2
Console and Maintenance Features 2-1
Console Printer-Keyboard Mode (CPU to
EXT) 1-55
Console Printer-Keyboard Mode (EXT to
CPU) 1-54

Control Address Set Key l-124
Control Character Chart, Bisynchronous 1-80
Control Panel, Operators, Indicators (See Indicators Operator's Control Panel)
Control Panel Switches A, B, C, and D l-122
Control Panel, System 1-120, 1-121
Control Storage
Addressing Relationships Between Control Storage, and Auxiliary Storage l-1
CSL, Protection 1-114
Display 2-8
Enable Store, Key 1-124
Control Storage Load (See also CSL)
Failure Detection 2-4
Key 1-124
Control Storage Store 2-9
Control Tag Singleshot (DAC) 4-10
Control Word 1-123
Control-Word Alignment 1-35
Control Words (Micro) 1-35
Convenience Outlets 1-129
Conversion Tables, Decimal-to-Hex, (1400
Compatibility) I-29
Conversions, Code (See Code
Conversions)
Cooling, BSM 4-1
Cooling Facilities 1-129
Core Storage 1-1
Allocations and Addressing Scheme 1-2
Array Temperature Control 4-1
Plug Chart l-3
X-Decodes 1-5
Y-Decodes 1-4
CPU
Attachment Checks (See Checks, CPU Attachment)
Checks (Indicators) (See Indicators, CPU Checks)
Hardware Checks (See Checks, CPU Hardware)
Microprogram Checks 1-116
Mode 1-43
Mode (CPU to EXT) 1-46
Mode (EXT to CPU) 1-44
Status Indicators (See Indicators, CPU)
Timing 4-1
Timing Pulses 4-2
2540 (Connectors) 6-3
CSL
(See also Control Storage Load)
Cards, Procedures for Punching 2-7
Cards, Restrictions when Punching 2-7
Check 1-123
Check, Indicator 1-123
Deck, 1401 Emulator 2-2
Indicator 1-122
Key 1-124
CSW, Channel Status Word 1-78
CTRL ADR SET, Key 1-124
Current Probe 1-130
Cl Gate (Location 6-3, 6-6, 6-12
Cl-TBl2L (Location 6-6
Cl-TBl2U (Location) 6-6
C2 (Location) 6-15
C2 Gate (Location) 6-3, 6-6, 6-12
C2-TBl2L (Location) 6-6
C2-TBl2U (Location) 6-6

DAC
(See also 2311)
Commands 2-23
Sense Byte Summary 2-24
Singleshots 4-9
Time Delay 4-10
Data Check, 1403 (MCS Only) 2-19
DC Distribution and Power Supplies 6-2
DC Outputs 5-2
DEBE-2 2-1
Decimal-to-Hex Conversion Tables (1400
Compatibility) 1-29
Delay
Carriage Settling (1403) 4-12
Lines, Local Storage, Adjustment 4-6
Line Settings, Initial, Local Storage 4-6
Speed Limit (1403) 4-12
Delays, 1403 4-12
Device Addresses, Standard 2-6
Diagnose Instruction (Model 20 Mode) 1-127
Diagnostic
Aids, Local Storage l-135
Aids, Main Storage 1-129
Control Switch 1-124
Techniques 1-112
Diode Card 1 (Location) 6-7
Diode Card 2 (Location) 6-7
Diodes, Storage Array, Changing 4-6
Direct Control 4-14
Direct Control Signals Originating Outside
the CPU 4-15
Direct Control Signals Originating Within
the CPU 4-16
Display
Auxiliary Storage 2-8
Cable, CE (Model 20 Mode) 1-127
Control Storage 2-8
Current PSW 2-4
GA and GB External Facilities 2-46
Operation, Storage \(2-8\)
Program Storage 2-8
Storage 2-12
Double Fan Unit 6-3
Drivers, \(X\) and \(Y\) Decode l-130

E-Gate (Connector Rack) 6-1
EBCDIC-to-BCD Translate Table (1400) 1-28
EBCDIC Chart 1-72
EBCDIC Output with Resulting PR-KB
Graphics l-31
Emergency Power-Off (EPO) 5-3
Enable Control Storage Store Key 1-124
End-of-Forms (1403) 2-18, 2-19
EPO, Emergency Power-Off 5-3
Equipment Check
PR-KB 2-13
\(1403 \quad 2-19\)
Error
Conditions Table, 2311/DAC 2-26
Handling 1-114
Messages, 2311/DAC 2-26
Recovery Procedures, 2311/DAC 2-26
Recovery Routine, Punch 2-29
Recovery Routine, Reader 2-29
Register (MC) 1-114
Errors, Alter Display 2-12
Errors, Programming (Model 20 Mode) 1-127

External
Branch Conditions l-ll8
Decodes, Mnemonics, and
Addressing l-43
Facilities, Channel 2-46
Facilities, 1052 2-14
Facilities, 1403 2-20
Facilities, 2540 2-33
Field Definitions 1-44
Interruption 2-49, 4-14
Mnemonics and Addressing 1-65

Fan Unit, Hammer Driver (Location) 6-14
Fans, Gate A, Gate B (Location) 6-9
Fans, Main Storage (Location) 6-8
Feature
Model 20 Mode l-127
Storage Protection 1-19
1401/1460 and 1440 Compatibility l-20, 1-126
Feed Cells, 2560 4-13
File
Commands 1-104
Indicator l-123
Mask, Set Command, 2311/DAC 1-105
Table Address, Storage Bias Constant Values, (1400 Compatibility) 1-29
Filter, Air (Location) 6-4, 6-5, 6-7, 6-13
Forms Check (1403) 2-18
Four-Point Strobe Schmoo Procedure 4-4
Fuses, Hammer Driver Coil 2-17
Fuses, Lower Left Side (Location) 6-5
GA and GB External Facilities, Display 2-46
GA- and GB-Register Definitions 2-46
Gate A (Location) 6-9
Gate B (Location) 6-9
Graphics, AN and HN for Basic 1403
Attachment 1-88
Graphics, PR-KB l-31
Ground Bus (Location) 6-5
Hammer Check 2-17
Hammer Driver
Board, 01H-Al (Location) 6-14
Coil-Fuses 2-17
Fan Unit (Location) 6-14
Gate (Al) (Location) 6-12
Gate (Open) 6-16
Handload Routine for Channel 2-47
Handload Routine for 2560 2-49, 2-50
HDTBl (Location) 6-14
Head Conditioning Singleshot (DAC) 4-9
Heater Adjustment, Storage Array 4-1
Heaters (Location) 6-12
Heating, BSM 4-1
Hexadecimal/Punched Card Translate
Table 1-70
Home Address
Equal, Search Command, Operation Codes, 2311/DAC 1-109
Read, Command Codes, 2311/DAC 1-106
Write, Command Code, 2311/DAC 1-108
Home Gate Singleshot (1403) 4-12
ICA
A-Clock Singleshot 4-13

Jumper Options 2-48
Lines, Nonoperational 2-48
System Reset Singleshots 4-13
Timeout Clock Singleshot 4-13
UCW Format 1-81
ID, Search Command Codes, 2311/DAC 1-109
ID, 2311/DAC Identifier 1-109
Identifier (ID), 231l/DAC 1-109
Independent Carriage Operations 1-89
Index and Delta Index Singleshots
(DAC) 4-9
Indicators
CPU 1-122
CPU Checks 1-123
Operator's Control Panel (OCP) 1-124
Pluggable 1-124
System Checks 1-123
Inhibit Drive Terminating Resistors
(Location) 6-7
Inhibit Drive Terminating Resistors,
Scoping l-132
Input Code from Keyboard (PR-KB) 1-30
Inquiry Program, Console 2-2
Integrated Communications Adapter
(Figures) l-80
Integrated Communications Attachment (See
ICA, Communications Attachment)
Integrated File Commands 1-104
Interface
Control Check l-115
Control Check Logout \(2-44\)

Hardware 2-46
Intermittent I/O Failures 2-2
Intermittent Malfunction 1-113
Interruption Codes, Program 1-76
Interruption, External 2-49
Interval Timer 4-14
Intervention Required, \(\mathrm{PR}-\mathrm{KB}\) 2-13
Intervention Required, 1403 2-18
I/O Control Connectors 6-3
I/O Device Addresses, Standard 2-6
I/O Exerciser Routine with Variable
Delay 2-2
I/O Units, Channel Controlled, Power
On/Off 5-3
IPL, Read, Command Code, 2311/DAC 1-105
Jam Removal (2540) 2-33
Jumper Options (ICA) 2-48
J1-J8 and J24, I/O Control
Connectors 6-3
J17, AC to 1403 6-3
J18, AC to 2311 6-3
J19, AC and DC to 2540 6-3
J20 (AC) and J2l (DC) to 2560 6-3
Keyboard to EBCDIC Translate Table
(PR-KB) 1-33
Keys
Control Address Set 1-124
Control Storage Load 1-124
Enable Control Storage Store 1-124
Printer-Keyboard Alter/Display 1-124
PSW Restart I-124
K1 (Location) 6-5
K4 (Location) 6-5, 6-15
K5 (Location) 6-15


LS Bit Output ( Pl Access Data is 1, P3
Access Data is 0) (Waveform) 1-137
LS Bit Output (2 Successive Zeros at Pl and P3 Time) (Waveform) 1-136
LS Write Line (P8-Time) (Waveform) 1-137
Machine Check and Channel Control Check 1-114
Machine Check Trap and 1052 Logout 1-127
Machine Check Trap and 1052 Logout (Model 20 Mode) 1-127
Machine Check Trap Routine 1-114
Machine Level Control (MLC) and
Engineering Changes (EC's) 1-126
Main Storage
Address Stop l-124
Array Line Measurements l-134
Array Measurements 1-133
Components (Card Side) (Locations) 6-7, 6-8
Diagnostic Aids 1-129
Replacement 4-5
Schmoo Procedure 4-3, 4-4
Units (Pin Side) (Locations) 6-6
Maintenance
Approach (Flowchart) 1-115
Concepts l-112
Preventive 3-1
Programs 1-125
Maps, Auxiliary Storage 1-6
Marginal Checking 5-2
Mask, File, Set Command, 2311/DAC 1-105
Match, Trap Address 1-2
MCS Table--Utility Program 2-22
Meter Power Pac 6-2
Meter, Use, 1403 2-20
Metering Switch (CE Switch) 2-8
Microprogram Changes, Field 1-126
Mid-Pac (Locations) 6-12
Mid-Pac, Power Supply 5-5
Mnemonics, External 1-43
Mode Switch 1-124
Model 20 Mode Feature 1-127
Module, Auxiliary l-6
Module 0, Auxiliary Storage 1-8
Module 0, Auxiliary Storage, (1400 Compatibility) 1-22
Module 1, Auxiliary Storage 1-9
Module l, Auxiliary Storage, (1400 Compatibility) 1-24
Module 2, Auxiliary Storage 1-9
Module 2, Auxiliary Storage, (1400 Compatibility) 1-24
Module 3, Auxiliary Storage 1-10
Module 4, Auxiliary Storage 1-ll
Module 4, Auxiliary Storage, (1400 Compatibility) 1-25
Module 5, Auxiliary Storage 1-12
Module 5, Auxiliary Storage, (1400 Compatibility) 1-25
Module 6, Auxiliary Storage 1-13
Module 6 ( 8 in 24 K Systems- 1400 Compatibility) Auxiliary Storage 1-25
Module 7, Auxiliary Storage 1-14
Module 8, Auxiliary Storage l-14
Module 9, Auxiliary Storage 1-14
Move/Arithmetic (Word Type 3) 1-39
MS Address Stop Procedure During IPL
or CSL \(2-3\)

MS ADR STOP, Position of Mode Switch 1-124 Multiple Character Set (MCS) 2-49
Multiplexer Channel Device Addressing 2-37
Multiplexer Channel Unit Control Words 2-41
Multisystem Configuration l-126
New Program Card Code to Hexadecimal l-7l
No-Op Command, 2311/DAC, Operation
Code 1-105
No Printing or Carriage Motion 1-89
Numeric Arrangement, Printer Translate
Table 1-91
Op-Code Information (1400
Compatibility) 1-27
Operation-Code Decode Table, 1400 1-28
Operation Code for TIC Command (2311) 2-24
Operational-Out Singleshot, Adjustment 4-8
Operator's Control Panel (OCP) Indicators
(See Indicators, Operator's Control Panel (OCP)
Orientation Field, Track, and Zone State
Summary, 2311/DAC 1-110
Orientation, Track, 2311/DAC l-lll
Outlets, Convenience 1-129
Overcurrent Condition 1-129
Overcurrent Sense 5-3
Overvoltage Condition 1-129
Overvoltage Sense 5-3
Parity Check
(See Also Checks, CPU Hardware)
PLB (1403) 2-16
Patch Card Generation 2-1
PCCL l-90, l-91
PCCL Code for Different Character Set
Lengths 1-89
PCH (Punch) Indicator 1-123
PCS-AN Arrangement, Printer Translate Table 1-95
PCS-HN Arrangement, Printer Translate Table 1-96
Permanent Storage Assignments 1-1
Plug Chart, Core Storage 1-3
Pluggable Indicators 1-124
PN Arrangement, Printer Translate Table 1-94
Power and Cooling 1-128
Power Check l-118
Power Check/System-Restart Light Reset 5-3
Power Check Indicator 1-123
Power Conversion 5-1
Power Group
Basic 5-1
1403/2540 5-1
2311 5-1
2560 5-1
2560/Communications 5-1
Power, Input 5-1
Power On/Off Sequencing 5-2
Power On/Off to Channel Controlled I/O Units 5-3
power On Key 1-124
Power Supplies 5-1 Left Side (Locations) 6-4 Right Side (Locations) 6-13 Service Checks and Checkout Procedures 5-4

Power Supply
Logic Pages 5-4
Mid-Pac 5-5
Protection 1-128
Troubleshooting (Mid-Pac) 5-5
PR-KB (Printer-Keyboard) 1-30
(See Also Printer-Keyboard, 1052)
Commands 2-10
Logout 2-12
Restart Procedures 2-13
Sense Byte and Unit Control Word--UCW
Format 1-34
Singleshots 4-8
Translate Table (Keyboard to EBCDIC) 1-33
Preferred-Character Arrangements 1-91
Preventive Maintenance 3-1
Print Clock 4-11
Printer-Keyboard 1-30
(See Also PR-KB, 1052)
Alter/Display Key 1-124
Printer Translate Table (Basic
Attachment) 1-90
Printer Translate Table for MCS
AN-HN Arrangement; Count Length 30 (Hex) 1-92
AN-HN Folded; Count Length 30 (Hex) 1-93
Numeric Arrangement; Count Length
10 (Hex) 1-91
PCS-AN Arrangement; Count Length 78 (Hex) 1-95
PCS-HN Arrangement; Count Length 78 (Hex) 1-96
PN Arrangement; Count Length 3C (Hex) I-94
QN Arrangement; Count Length F0 (Hex) 1-97
QNC Arrangement; Count Length FO (Hex) 1-98
RN Arrangement; Count Length F0 (Hex) 1-99
SN Arrangement; Count Length F0 (Hex) \(\quad 1-100\)
TN Arrangement; Count Length 78 (Hex) 1-101
XN Arrangement; Count Length 28
(Hex) 1-102
YN Arrangement; Count Length 78
(Hex) 1-103
Probe
Current 1-130
Voltage 1-130
Program Codes and PSW 1-75
Program Interruption Codes 1-76
Program Status Word (PSW) 1-76
Program Storage
Addressing Ranges, Control Storage, and Auxiliary Storage 1-1
Display 2-8
Store 2-9
STP1 Allocations 1-19
Programming Errors 1-127
Programming Errors (Model 20 Mode) l-127
Protection of Control Storage, CSL I-ll4
Protection, Storage 1-19
PRT (Printer), Indicator 1-123
PSS Singleshot 4-ll
PSW (Program Status Word) 1-76
Display 2-4
```

 Restart 2-4
 Restart Key l-124
 PSl, -6V @ 4A (1403-2540) (Location) 6-4
PS2, +3V @ 45A (Comm. Feat. and 2560)
(Location) 6-4, 6-12
PS3, -12V @ 13A (Basic) (Location) 6-4
PS4, -36V @ 2A (2311) (Location) 6-4
PS5, +6V @ 32A (Comm. Feat. and 2560)
(Location) 6-4, 6-12
PS9, +3V @ 50A (Basic) (Location) 6-4
PSl0, +6V @ 40A (Location) 6-12
PSll, +6V @ 16A (1403) (Location) 6-12
PSl2, -30V @ 8A (Location) 6-12
PSl3, 7.25V AC @ 25A (Location) 6-2
PSl4, +60V @ 20A (Location) 6-12
PS14 - Fl (Location) 6-14
PS14 - TB2 (Location) 6-14
Punch
(See Also 2540)
Error Recovery Routine 2-29
UCW Format, 2540 l-18
QN Arrangement, Printer Translate
Table l-97
QNC Arrangement, Printer Translate
Table l-98
RDR (Reader), Indicator 1-123
Read Clock Adjustment, 2311 4-9
Read Clock Traces 4-9
Read Count Command Codes, 2311/DAC 1-106
Read Cycle Controls (Waveform) l-131
Read Home Address Command Codes,
2311/DAC 1-106
Read IPL Command Code, 2311/DAC 1-105
Read Track Descriptor Record (RO)
Command Codes, 2311/DAC 1-106
Reader
(See Also 2540)
Checks During CSL 2-5
Error Recovery Routine 2-29
Row Image, 2540, Auxiliary Storage l-15
Translate Table, 2540, Auxiliary
Storage--30XX 1-16
UCW Format, 2540 l-18
Reader/Punch, 2540 1-15
Readout Area of Aux. Storage, 2540,
(160 Bytes of Column Form) 1-15
Recalibrate Command, 231l/DAC,
Operation Code I-105
Recalibrate Singleshots (DAC) 4-10
Reference Data 1-1
Removal
Storage Array 4-6
0-32K Storage Unit 4-5
32-64K Storage Unit 4-6
Replace Card, Example of Punching and
Loading 2-7
Replacement, Main Storage 4-5
Resets, 1403 2-24
Resistance, Array Drive Line l-135
Resistor Gate (Location) 6-7
Resistors
Bleeder, R18 to R29 (Location) 6-12
Inhibit Drive Terminating
(Location) 6-7
X and Y Source 1-131
X and Y Source--Terminating,
Scoping l-130

```

Restart Procedures
PR-KB 2-13
Standard and PFR Operation (2540) 2-30 1403 2-18
Restart, PSW 2-4
Restarts from Error Conditions, 2540 2-29
Right Side (Behind Logic Gates) 6-12
RN Arrangement, Printer Translate
Table 1-99
R18 to R29, Bleeder Resistors,
(Location) 6-12
Scan, Storage 2-3
Scan Storage (Position of Diagnostic
Control Switch) 1-124
Schmoo Curve Example (Single BSM) 4-3
Schmoo Curve Procedure 4-3, 4-4
Schmoo Procedure, Two-Point 4-5
Schmoo, When to 4-4
Scoping
Inhibit Drive Terminating
Resistors 1-132
Storage \(1-130\)
Xand Y Source-Terminating
Resistors \(1-130\)
2560 Feed \(4-13\)

SCR Card Cable-Connecting Terminals 4-8
SCR Light Drivers 4-7
Search Home Address Equal Command,
Operation Codes, 2311/DAC 1-109
Search ID Command Codes, 2311/DAC 1-109
Seek Command, 6-Byte 2311/DAC 1-106
Seek Command, 2311/DAC Operation
Codes l-106
Selector Channel Control Information 2-42
Selector Channel Device Addressing 2-37
Sense Amps and Z-Drivers (Location) 6-8
Sense Bits (PR-KB) 2-13
Sense Bits (1403) 2-18
Sense Byte and Unit Control Word--UCW
Format, PR-KB l-34
Sense Byte Summary, 2311/DAC 1-109, 2-24
Sense Command, 2311/DAC, Operation
Code 1-106
Sense/Inhibit Connectors (Location) 6-7
Sense Indicator Bytes, 2540 1-17
Sense Line Checking 1-132
Sequencing, Power On/Off 5-2
Set File Mask Command, 2311/DAC 1-105
Set/Reset Word (Word Type 0) 1-36
Single Address AS (Position of Diagnostic
Control Switch) l-l25
Single Address MS (Position of Diagnostic
Control Switch) 1-125
Single Fan Unit (Location) 6-13
Singleshot
A-Clock (ICA) 4-13
Coil Protect (1403) 4-12
Control Tag (DAC) 4-10
Head Conditioning (DAC) 4-9
Home Gate (1403) 4-12
Index and Delta Index (DAC) 4-9
Operational-Out, Adjustment 4-8
PSS 4-11
Recalibrate (DAC) 4-10
Strobe Delay ( 1403 Buffer) 4-13
System Reset (ICA) 4-13
System Reset, IPL, or CSL,
```

 Timeout Clock (ICA) 4-13
 Singleshots
PR-KB 4-8
1403 (Chart) 4-12
2560 4-13
SN Arrangement, Printer Translate
Table l-100
Soft-Stop Loop--Single Cycling 2-3
Space Count Command, 2311/DAC
Operation Code l-106
Special Circuits A-1
Speed Limit Delay (1403) 4-12
Standard Address of Devices 2-6
Standard Integrated Attachment Device
Addresses and AS-Locations 2-41
Standard Interface Hardware 2-46
Start/Stop LCW Format 1-83
Station Selection Feature (ICA) 2-48
Status Byte, Channel 2-43
Status Bytes 1-118
Status Word, Channel (CSW) 1-78
Stop (Position of Diagnostic Control
Switch) l-l24
Stop Position (CE Panel) l-128
Storage
See also Main Storage, Control Storage,
Local Storage, Program Storage
Address Parity Check
Array Changing
Assignments, Permanent l-1
Auxiliary
$\begin{array}{lll}\text { Module } 0 & 1-8 \\ \text { Module } 1 & 1-9 \\ \text { Module } 2 & 1-9 \\ \text { Module } 3 & 1-10 \\ \text { Module } 4 & 1-11 \\ \text { Module } 5 & 1-12 \\ \text { Module } 6 & 1-13 \\ \text { Module } 7 & 1-14 \\ \text { Module } 8 & 1-14 \\ \text { Module } 9 & 1-14\end{array}$
Bias Constant Values and File Table
Addresses (1400 Compatibility) 1-29
Cell (LS) A-3
Controls (Waveform) 1-131
Core 1-1
Allocations and Addressing
Scheme l-2
Plug Chart 1-3
X-Decodes 1-5
Y-Decodes 1-4
Data (Check Indicator) l-123
Data Bus-Out Parity Check l-116
Local
Location Decode l-67
1400 Compatibility 1-25
Maps, Auxiliary l-6
Protect Check 1-116
Protection
Addressing A-2
Adjustment 4-14
Card A-1
Features 1-19
Protect Key-Display 2-1
Protect/Local Storage Cards 4-7
Removal, $0-32 \mathrm{~K}$ Unit $4-5$
Removal, 32-64K Unit 4-6
Scan 2-3

```

Scoping 1-130
Word (Word Type 2) 1-38
Word (WT-2) (Waveform) 1-138
Store
Auxiliary Storage 2-9
Control Storage 2-9
Cycle Controls (Waveform) 1-131
Operations 2-9
Program Storage 2-9
STPI
Allocations for Channel and Communications Channel Operation 1-19
Allocations for Program Storage 1-19
Allocations Map l-19
Read Line 4-17
Read Line Delay 4-17
Time Relationship to Word Type 2 4-17
Strobe
Adjustment (1403 Buffer) 4-13
Card (Storage) 4-4
Delay Singleshot (1403 Buffer) 4-13
Optimum (Storage) 4-4
Subchannel Addresses, Individual and
Shared Control Unit 2-37
Switch
Diagnostic Control (See Diagnostic Control Switch)
Metering 2-8
Mode 1-124
Switches
A, B, C, and D, Control Panel 1-122
Thermal Sensing l-129
Sync Check (1403) 2-17, 2-19
Synchronous LCW Format 1-82
System
Checks l-118
Checks (Indicators) 1-123
Configuration--CSL 2-6
Control Panel 1-120, l-121
Reset, IPL, or CSL (Singleshot) (Figure) 4-8
System-Restart/Power-Check Light
Reset 5-3
Systems Control Gate 6-3
S3, 1403 Coil Protect Check Bypass
(Location) 6-14
T-Pulses 4-1, 4-2
TB3 (Location) 6-5
TB9 (Location) 6-1
TB18 (Location) 6-4
TB25 (Location) 6-14
Temperature
Access Hole for Measuring (Location) 6-7
Control, Core Storage 1-129, 4-1
Low 1-118
Test Panel, CE (Location) 6-9
Test Panel Hubs, CE (Model 20 Mode) 1-127
Test Pattern 2-3
Test Pattern (Position of Diagnostic
Control. Switch) 1-125
Thermal Sensing 5-3
Thermal Sensing Switches l-129
Thermal Switch S7 (Location) 6-4
TIC Command, 2311/DAC, Operation
Code 1-105, 2-24
Tilt/Rotate Code (PR-KB) 1-32
Time Delay, DAC 4-10
```

Timeout Clock Singleshot (ICA) 4-13
Timer, Interval 4-14
Timing Pulses, CPU 4-2
TN Arrangement, Printer Translate
Table l-101
Track
Descriptor Record, Read (RO), Command
Codes, 231l/DAC 1-106
Initialization (Lafective Track
Determination), 2311 2-25
Orientation Field and Zone State
Summary, 231l/DAC l-110, 2-25
Orientation, 2311/DAC 1-111, 2-24
Train Arrangements for System/360
(Printout Representation) 1-87
Translate Table, PR-KB Keyboard to
EBCDIC 1-33
Trap l-123
Address Match 1-2
Addresses l-2
CE (Model 20 Mode) 1-127
Indicator 1-123 (CE Panel) 1-128
Position of Diagnostic Control
Switch 1-124
Routine, Machine-Check l-114
Two-Point Schmoo Procedure 4-5
T7 Mid-Pac (2560/Communications Feature
(Location) 6-12
T6-TB1 (Location) 6-13
T6-TB2 (Location) 6-13
T6 Mid-Pac (Location) 6-12
T2-TB1 (Location) 6-13
T2-TB2 (Location) 6-13
T1 Mid-Pac (Location)
T1 Mid-Pac (Location)
UCW
Allocations (Channel) 2-38
Format
Channel l-79
Channel l-79
face) 2-41
ICA 1-81
PR-KB 1-34
2311 1-111
2540 Punch 1-18
2540 Reader l-18
Formulation (Channel) 2-39, 2-40
Multiplexer Channel 2-41
Undervoltage Sense 5-3
Utility Program--MCS Table 2-22
Voltage Probe 1-130
Voltage Probe l-130
Vxy Adjustment (1403 Buffer) 4-12
Warm-Up, Core Storage 1-129
Waveforms
AB-Assembly Data from Local
Storage 1-138
LS-Addressing (Pl-Time Access) 1-135
LS-Addressing (P3-Time Relationship
between X and Read Line) 1-136
LS Bit Output (PI Access Data is l,
P3 Access Data is 0) 1-137
LS Bit Output (2 Successive Zeros
at P1 and P3 Time) 1-136
Timeout Clock Singleshot (ICA) 4-13
Timer, Interval 4-14

```

LS Write Line (P8-Time) 1-137
Read Cycle Controls 1-131
Storage Controls 1-131
Storage Word (WT-2) 1-138
Store Cycle Controls 1-131
X-Y Read Current Source Driver at the Resistor l-131
X-Y Write Current at Resistors for Looping and Scanning Procedures 1-132
Z-Inhibit Driver (Writing a Zero) 1-132
Waveforms, Bad
LS Address Line Reset Delay Bad--Zero Delay . 1-139
Word Type 0, Set/Reset 1-36
Word Type 1, Arithmetic Constant 1-37
Word Type 2, Storage 1-38
Word Type 3 (Move Arithmetic) 1-39
Word Type 4 (Branch Unconditional) 1-40
Word Type 5 (Branch on Mask) 1-4l
Word Type 6 or 7 (Branch on Condition
Code) 1-42
Worst-Case Test, Main Storage 4-4
Write Home Address Command Codes,
2311/DAC 1-108
Write Operation with Various Carriage
Functions 1-89
\(X\) and \(Y\) Decode Drivers 1-130
\(X\) and \(Y\) Drive Line Checking l-135
\(X\) and \(Y\) Source Resistors 1-131
X-Decodes, Core Storage l-5
X-Read Resistors (Location) 6-7
X-Write Resistors (Location) 6-7
X-Y Read Current Source Driver at the Resistor (Waveform) 1-131
X-Y Write Current at Resistors for Looping
and Scanning Procedures (Waveform) l-132
XN Arrangement, Printer Translate
Table 1-102
Y-Decodes, Core Storage 1-4
Y-Read Resistors (Location) 6-7
Y-Write Resistors (Location) 6-7
YN Arrangement, Printer Translate
Table 1-103
Z-Inhibit Driver (Writing a Zero)
(Waveform) l-132
Z-Resistors (Location) 6-7
Zone State Summary, Track Orientation
Field, 2311/DAC 1-110
Zone 0 ( 1400 Compatibility) 1-25
Zone 1 (1400 Compatibility) 1-25
Zone 4 (1400 Compatibility) 1-25
Zone 6 (1400 Compatibility) l-26
Zone 7 ( 1400 Compatibility) 1-26
Zones for System/360 Operation, Local Storage 1-67

01H-Al Hammer Driver Board (Location) 6-14
6-Byte Seek Commands, 2311/DAC 1-106
8-Bit Code--BCD Relations (7 and 9-Track
Tape) 1-73
52- and 63-Character Typebar Decode
(1400 Compatibility) l-74
1052 1-116
(See Also PR-KB, Printer-Keyboard)
Attachment Checks 1-116
```

 External Facilities 2-14
 Logout 1-115
 PR-KB Mode 1-43
 1400 Compatibility Feature 1-20
1400 Compatibility, 52- and 63-Character
Typebar Decode 1-74
1400 Defined Characters 1-27
1400, EBCDIC-to-BCD Translate Table l-28
1400 Operation-Code Decode Table 1-28
1401 Emulator CSL Deck 2-2
1401/1460 and 1440 Compatibility
Features l-126
1401/1460 Compatibility Features Auxiliary
Storage Map l-20
1403 1-85
Addressing 2-16
Attachment, AN and HN Graphics for l-88
Attachment Checks l-116
Attachment Clock 4-10
Buffer Adjustment 4-12
Buffer Load Microloop 2-3
Checks 2-16
Coil Protect Check Bypass, Switch 3
(Location) 6-14
Command Byte Description 1-85
Commands 2-16
Connector Location 6-3
Control Panel (Location) 6-12
Control Panel (Open) 6-15
Controls (Right Side)(Locations) 6-14
Current Limit Switch (Location) 6-14
Delays 4-12
Diagnostic Conditions (PRD) l l-53
External Facilities 2-20 - 2-22
Mode l-43
Mode (CPU to EXT) 1-53
Mode (EXT to CPU) 1-52
Power Group 5-1
Reference Chart 4-11
Resets 2-20
Restart Procedures 2-18
Signal (Cables) 6-3
Singleshots (Chart) 4-12
Use Meter 2-20
2311 1-116
(See Also DAC)
Connector Location 6-3
Disk Mode l-43
Disk Mode (CPU to EXT) 1-49
Disk Mode (EXT to CPU) l-46
Power Group 5-1
Read Clock Adjustment 4-9
Signal Cables (Location) 6-3
UCW Format l-lll
2311/DAC 1-104
Addressing 2-23
Error Conditions Table 2-26 - 2-28
Error Messages 2-26
Error Recovery Procedures 2-26
Identifier (ID) l-109
Operation Code
No-Op Command 1-105
Recalibrate Command l-105
Search Home Address Equal
Command 1-109
Seek Commands 1-106
Sense Command 1-106
Space Count Command 1-106

```

TIC Command 1-105
Read Count Command Codes 1-106
Read Data, Read Key Data, and Read
Count Key Data Command Codes 1-107
Read Home Address Command Codes 1-106
Read IPL Command Code 1-105
Read Track Descriptor Record (RO)
Command Codes l-106
Search ID Command Codes 1-109
Sense Byte Summary l-109
Set File Mask Command l-l05
Track Orientation l-lll, 2-24
Track Orientation Field and Zero
State Summary l-llo
Write Data and Write Key and Data
Command Codes l-108
Write Home Address Command Code I-108
6-Byte Seek Commands 1-106
2540 1-116
(See Also Reader, Punch)
Addressing 2-29
Attachment Checks 1-116
Attachment Clock 4-8
Connector Location 6-3
External Facilities 2-33 - 2-36
Jam Removal 2-33
Power Group 5-1
Punch Mode 1-43
CPU to EXT 1-5l
EXT to CPU 1-50
Punch-UCW Format 1-18
Reader
Row Image, Auxiliary Storage l-15
Translate Table, Auxiliary Storage--30xX l-16 UCW Format 1-18
Reader Mode 1-44 CPU to EXT 1-59 EXT to CPU 1-58
Reader/Punch 1-15
Readout Area of Auxiliary Storage
(160 Bytes of Column Form) 1-15
Restarts from Error Conditions 2-29
Sense Indicator Bytes l-17
2560
Connector Location 6-3
Feed Cells 4-13
Feed Scoping 4-13
Handload Routine 2-49, 2-50
Local Storage Zone and External Mode
(Model 20 Mode) l-127
Power Group
Singleshots 4-13
2560 Mode 1-44
CPU to EXT 1-63
EXT to CPU 1-61

How did you use this publication?


What is your occupation?
- We would appreciate your other comments; please give specific page and line references where appropriate.

YOUR COMMENTS, PLEASE ....
Your answers to the questions on the back of this form, together with your comments, will help us produce better publications for your use. Each reply will be carefully reviewed by the persons responsible for writing and publishing this material. All comments and suggestions become the property of IBM.
Please note: Requests for copies of publications and for assistance in utilizing your IBM system should be directed to your IBM representative or to the IBM branch
office serving your locality.
old
Fold
\begin{tabular}{|c|c|}
\hline & FIRST CLASS PERMIT NO. 170 ENDICOTT, N.Y. \\
\hline BUS INESS
R R EPLY Y M M I L
No Postage Stamp necessary if Mailed in the united states & \\
\hline postage will be paid by . . . & \\
\hline IBM Corporation & \\
\hline P. O. Box 6 & \\
\hline Endicott, N. Y. 13760 & \\
\hline
\end{tabular}

Attention: Product Publications, Dept. 171



Y24-3528-1
[BMT
International Business Machines Corporation
Field Engineering Division
112 East Post Road, White Plains, N. Y. 10601```


[^0]:    This edition, Y24-3528-1, is a major revision of and obsoletes Y24-3528-0. It also obsoletes FE Supplements Y24-0096 and Y24-0100. This publication has been revised completely with additions, deletions, and reformatting of existing material. For this reason, the reader should review this edition in its entirety.

    Significant changes or additions to the specifications contained in this publication are continually being made. Any such changes will be reported in subsequent revisions or FE Supplements.

[^1]:    Figure 1-2. Addressing Ranges for Program Storage, Control Storage, and Auxiliary Storage

