
IBM System/360
Disk Operating System
Sort/Merge

Program Number 360N-SM-450

This publication describes the internal logic of
the IBM System/360 Disk Operating System
Sort/Merge program. It is intended for use by
persons involved in program maintenance. and by
system programmers who are altering the program
design. Program logic information is not
necessary for the operation of the program;
therefore, distribution of this publication is
limited to those with maintenance and alteration
requirements.

RESTRICTED DISTRIBUTION -- SEE ABSTRACT

Y24-5021-0

Program Logic

PREFACE

This Program Logic Manual ('PLM) is a
detailed guide to the IBM System/360 Dis.k
Operating System Sort/Merge Program; it
supplements the program listing by provid­
ing descriptive text and flowcharts.

Effective use of this manual requires an
understanding of IBM System/360 operation
and of IBM System/36 0 Disk Operating System
service programs, assembler language, macro
instructions, and sort/merge program speci­
fications. Reference publications for this
information are:

• IBM system/360 Principles of operation,
Form A22-6821.

• IBM system/36G Disk Operating System,
sort/Merge Program Specifications, Form
C24-3444.

• IBM System/36a Disk Operating system,
Data Management Concepts, Form
C24-3427.

•

•

•

IBM system/360 Disk Operating System,
System control and System Service Pro­
grams, ·Form C24-3428.

IBM System/JoO Disk operating System,
Supervisor and Input/Output Macros,
Form C24-3429.

IBM System/36a Disk operating System,
system Generation and Maintenance, Form
C24-5033.

• IBM System/36G Disk and Tape Operating
Systems, Assembler Specifications, Form
C24-3414.

Titles and abstracts of other related
publications are listed in the IBM
System/36a Bibliography, Form A22-6822.

This manual consists of eight major
sections. The first section is an intro­
duction to the five major components
(phases) of the sort/merge program. The
.next five sections describe each major
component, starting with a general discus­
sion of the phase. Each major component is
further subdivided into logical elements
(routines). Finally, the function blocks
that make up each logical element are des­
cribed in detail. The seventh section
includes the optional routines (data con­
version, etc.) that are available for all
the phases.

The last section of the manual consists
of additional reference material for use in
analyzing p~ogram details.

The flowcharts for all the major compo­
nents and for the optional routines are
located at the end of the manual. The
detailed flowcharts are identified by the
letters AA through ZZ. Numerals. such as
00 for the program level flowchart, iden­
tify the more general flowcharts.

RESTRICTED DISTRIBUTION, This publication is intended primarily for use
by IBM personnel,involved in program design and maintenance. It .may not
be made available to others without the approval of local IBM
management.

First Edition, August 1966

Significant changes and additions to the
specifications contained in this publication will be
reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office se~ing your locality.

A fo~m is provided at the back of this publication for readers'
comments. If the for'm has been removed. comments may be addressed to
IBM Corporation, programming Publications, Endicott, New York 13760.

©International Business Machines corporation 1966

INTRODUCTION • • • • . '" . 9

Program organization ••

Program Generation.

Program Characteristics. •

System Requirements. • • •

ASSIGNMENT PHASE (PHASE 0) - 01 •••

12

12

• 13

22

23

Read and Compress Control Cards - AA •• 25

Sort compressed Control Cards - AB ••• 30

Scan SORT, MERGE 4 and RECORD Control
cards - AC. • • • • • • • • • • • 31

Scan INPFIL, OUTFIL. MODS, OPTION and
END Control Cards - AD. AE. • • 33

Open work Area and pre-Edit - AF.AG.

Open Work Area and Pre-Edit
(continued) - AG. • • • • •

Compute Maximum Allowable Input and

35

• 38

Output Record and Block Lengths AH. 42

Post Edit - AJ • 45

Compute Constants for Fixed-Length
Records - .AK, AL. • • • • • • • • • • • 50

Compute Cons tan ts (Variab le-.Length
Records) - AM • • • • • • • • • • 55

Compute Constants for ADD ROUT Sort -
AN. • • 58

Select Order of Merge - AP, AQ • • 61

Print Control Card and Fetch Next
Phase - AR, AS. • • • • • • • • • 64

INTERNAL SORT (PHASE 1) - 02 • 68

Initialization Routine f~r
Multi-Volume (Exit 11 Linkage) - BA •• 71

Forma t Routine - BB. • 72

Initialization for Disk or Tape Input
- Be ••••• • 72

Input Routine for Disk or Tape - BD. • • 74

Tape Input Routine - BE. 75

Internal Sort - BF • • • • • 75

CONTENTS

output Routine - BG. •

End-of- Phase Routine - BH.

• • 77

80

Initialization for ADDROUT Run - BJ. 81

Input Routine for ADDROUT Run - BK, BL ., 82

In terna 1 Sort (ADDROUT Run) - BF • • 84

output Routine (ADDROUT Run) - BG. • • • 84

Multi-Volume. Exit 11 Linkage - BM, BN • 84

PHASE 2 - EXTERNAL SORT OR MERGE • • • • 86

Phase 2 Initialization, Fixed-Length
Records - CA. • • • • • • • • • • • 96

Pass-Pass Routine, Fixed-Length
Records - CC. • • • • • • • • • .100

Input Routine, Fixed-Length Records -
CD. • • • • • • • • ••••••• 101

Sequence G Compare Loop, Fixed-Length
Records - CEo · · · · · · · · · .103

".
Sequence F Compare Loop, Fixed-Length

Records - CF. · · · · · · · ·0 · .104

Sequence E Compare Loop, Fixed-Length
Records - CG. · · · · · · · 0 0 .105

Sequence D Compare Loop, F ixed- Length
Records - CH. · · · · · · · · · .106

Sequence C Compare Loop. Fixed-Length
Records - CJ. · · , . · · · · · · .107

Sequence B Compare Loop, Fixed-Length
Records - CK. · · · · · · · .107

Output Routine, Fixed-Length Records -
CL. • • • • • ~ • • • • • • • .108

Calculate Interleaved Disk Address
Routine, Fixed-Length Records - CM. • .110

Phase 2 Initialization,
Variable-Length Records - CN.

Merge-Merge Routine, Variable-Length

.110

Records - CP. • • • • • • • • • • • • .114

Pass-Pass Routine, Variable-Length
Records - CQ. • • • • • • • •

Input Routine, Variable-Length Records
- CR ••••• . ·

.117

.119

Sequence F compare Loop,
Variable-Length Records - CS.

Sequence E Compare Loop.

.120

Variable-Length Records - CT. • • .121

Sequence D Compare Loop.
Variable-Length Records - CU. • • • • .122

Sequence C Compare Loop,
Variable-Length Records - CV •••••• 123

Sequence B Compare Loop.
Variable-Length Records - CWo • .125

output Routine. Variable-Length
Records - CX. • • • • • • • ••• 126

Calculate Interleaved Disk Address
Routine. Variable-Length Records - CY .128

FINAL MERGE (PHASE 3) - 04 ••••••• 131

Phase 3 Initialization, Fixed-Length
Records - DA •••••••••••••• 133

Input Routine, Fixed-Length Records -
DB ••• .136

Mainline Compare Routine. Fixed-Length
Records - DC.DD.DE,DF,DG •••••••• 138

Compute Input Interleaved Disk
Address. Fixed-Length Records - DH ••• 141

Output Routine. Fixed-Length Records -
00"'-1 DK • • • .. • • • • •

Label-Linkage Routine (LLR).
Fixed-Length Records - DL •

Phase 3 Initialization,
Variable-Length Records - DM.

.143

.147

.148

Input Routine. Variable-Length Records
- DN151

Mainline Compare Routine,
Variable-Length Records -DP, DQ, DR.
DS. • • _153

Compute Input Interleaved Disk
Address, Variable-Length Records - DT .157

Output Routine. Variable-Length
Records - DU. DV •••••••

Label-Linka~e Routine (LLR).
Variable-Length Records - DW.

MERGE ONLY (PHASE 4) - 05.

.159

.164

••• 167

Initialize Open/Close Routine - EA ••• 169

Initialize Mainline - EB ••

Input Routine - EC • • •

••• 171

• .176

Error Routine - ED . . . · .178

File D Compare Loop - EE .180

File C Compare Loop - EY . . . · .181

File B Compare Loop - EG . · .182

Output Routine - EH. · .182

End-of-Job Routine - EJ. . · .187

End-of-Job Messages - EK • .187

Sequence-Error Routine - EL. • • .188

Open/Close Routine - EM. .188

Checkpoint Routine - EP. .192

OPTIONAL ROUTINES. • .194

Relocator Routine - FA • • ••• 194

Fixed-Point Convert/Reconvert Routine
- FB •••••

Floating-Point Convert/Reconvert
Routine - FC. • • • • • • • • •

Packed-Decimal (SIGPAK)

.196

.196

Convert/Reconvert Routine - FD ••••• 197

Zoned-Decimal (SIGZON)
Convert/Reconvert Routine - FE.

Equal Routine - FF • • • •

APPENDIX A: CONSTANTS AND
ABBREVIATIONS • • • • •

Constants •••

Definitions of Abbreviations • •

APPENDIX B: LABEL REFERENCES •

Assignment Phase •

Phase 1.

Phase 2.

Phase 3 ••

Phase 4 ••

Optional Routines.

.197

• .198

••• 301

.301

• .349

.350

• .350

• .354

• .356

• .358

• .360

• .363

APPENDIX C: EXPLANATION OF FLOWCHART
SYMBOLS • • • • • • • • • • .364

APPENDIX 0: ERROR MESSAGES. • .365

GLOSSARY. • .373

INDEX •• • .374

Chart 00. Program Level Design. • • •• 8
Chart 01. Assignment Phase (Phase 0) •• 200
Chart AA. Read and Compress Control

Cards, DSORT •• _ ••••••••
Chart AB. Sort compressed Control

.201

Cards, DSORT002 •••••••••••• 202
Chart AC. Scan SORT, MERGE, and

RECORD Control Cards, DSORT003.
Chart AD. Scan INPFIL, OUTFIL, MODS,

OPTION and END Control Cards,

• .203

DSOHTOO 4. • • • • • • • • • • • •.• • .204
Chart AE. Scan INPFIL, OUTFIL. MODS,

OPTION and END Control Cards
(Cont' d), DSORT004. • • • • • •

Cha.rt A.F. Open Work Area and
• .205

Pre-edit, DSORT005 ••••••••••• 206
Chart AG. Open Work Area and Pre-edit

(Cont'd), DSORT005 ••••••••••• 207
Chart AH. Compute Maximum Allowable

Input and Output Record and Block
Lengths, DSORT006 ••••••••••• 208

Chart AJ. Post Edit, DSORT007 ••••• 209
Chart AR. Compute Constants, DSORT008 .210
Chart .AL. Compute Constants

(Fixed-Length Records), DSORT008 •••• 211
Chart A.M. Compute Constants

(Variable-Length Hecords), DSORT008 •• 212
Chart AN. Compute Constants

(ADDROUT), DSORT008 •• • • • • • • • .213
Chart AP. select Order of Merge,

DSORT009 •••••••••••••••• 214
Chart AQ. Select Order of Merge

(Cont'd). DSORT009 ••••••••••• 215
Chart AR. Print Option and Fetch Next

Phase, DSORT010 •••••••••••• 216
Chart AS. Print option and Fetch Next

Phase (Cont'd), DSORT010 ••••• .217
.218 Chart 02. Internal Sort (Phase 1)

Chart BA. Initialization for
Multi-Volume (Exit 11 Linkage),
OSORT101. • • • • • • • • • • • .219

Chart BB. Format Routine. DSORT102 ••• 220
Chart BC. Initialization Routine for

Disk or Tape Input, DSORT103 •••••• 221
Chart BO. Input Routine for Disk or

Tape Input. DSORT103 •••••••••• 222
Chart BE. Tape Input Routine,

DSORT103. • • • • • • • • • • • .223
Chart BF. Internal Sort, DSORT103 ••• 224
Chart BG. output Routine, DSORT103 ••• 225
Chart BH. End-of-Phase Routine,

DSORT105. • • • • • • • • •• _ • • •• 226
Chart BJ. Initialization for ADDROUT
Run, DSORT104 • • • ••••• 227

Chart BK. ADD ROUT Run Input Routine,
DSORT104. • •• • • ••••• 228

Chart BL. ADD ROUT Run Input Routine
(Cont'd), DSORT104 ••

Chart BM. Multi-Volume Routine,
• .229

DSORT103 •••••••••••••••• 230
Chart BN. Multi-Volume Routine

(Cont' d), DSORT10 3. • • • • • • • • • .231

Chart 03. External Sort or Merge,
Fixed-Length Records (Phase 2),

CHARTS

DSORT201 or DSORT202 •••••••••• 232
Chart CA. Phase 2 Initialization,
Fixed-Length Records. • • • • • .233

Chart CB. Merge-Merge Routine,
Fixed-Length Records. •• • • • • .234

Chart CC. Pass-Pass Routine,
Fixed-Length Records •••••••••• 235

Chart CD. Input Routine, Fixed-Length
Records •••••••••••••••• 236

Chart CEo Sequence G Compare Loop,
Fixed-Length Records. • • • • •• • • .237

Chart CF. Sequence F Compare Loop,
Fixed-Length Records •••••••••• 238

Chart CG. Sequence E Compare Loop,
Fixed-Length Records •••••••••• 239

Chart CH. Sequence D Compare Loop,
Fixed-Length Records •••••••••• 240

Chart CJ. sequence C Compare Loop,
Fixed-Length Records .••••••••• 241

Chart CK. sequence B Compare Loop,
Fixed-Length Records •••••••••• 242

Chart CL. Output Routine,
Fixed-Length Records •••••••••• 243

Chart CM. Calculate Interleave Disk
Address, Fixed-Length Records ••••• 244

Chart 03. External Sort or Merge,
Variable-Length Records (Phase 2),
DSORT203 or DSORT204. • • • • • • • • .245

Chart CN. Phase 2 Initialization,
Variable-Length Records. • • • • .246

Chart CPo Merge-Merge Routine,
Variable-Length Records •••••••• 247

Chart CQ. Pass-Pass Routi ne,
Variable-Length Records • • .248

Chart CR. Input Routine,
Variable-Length Records •••••••• 249

Chart cs. sequence F Compare Loop,
Variable-Length Records •••••••• 250

Chart CT. Sequence E Compare Loop,
Variable-Length Records ••• •••• • 251

Chart CU. Sequence D Compare Loop,
Variable-Length Records • • • • • • • .252

Chart CV. Sequence C Compare Loop.
Variable-Length Records • • • • • • • .253

Chart CWo Sequence B Compare Loop,
Variable-Length Records •••••••• 254

Chart CX. Output Routine,
Variable-Length Records •••••••• 255

Chart CY. Calculate Interleave Disk
Address, Variable-Length Reco.rds •••• 256

Chart 04. Final Merge, Fixed-Length
Records (Phase 3), DSORT301 or
DSORT302. • • • • • • • • • • • • .257

Chart DA. Phase 3 Initialization,
Fixed-Length Records •••••••••• 258

Chart DB. Input Routine, Fixed-Length
Records • • • • • • • • •••••••• 259

Chart DC. Mainline Compare Routine.
Fixed-Length Records •••••••••• 260

Chart DD. Mainline Compare Routine
Fixed-Length Records (Cont'd) •• ••• 261

Chart DE. Mainline Compare Routine
Fixed-Length Records (Cont'd) ••••• 262

Chart DF. Mainline Compare Routine
Fixed-Length Records (Cont'd) ••••• 263

Chart DG. Mainline Compare Routine
Fixed-Length Records (Cont'd) ••••• 264

Chart DH. Compute Input Inter.leaved
Disk Address, Fixed-Length Records ••• 265

Chart DJ. Output Routine,
Fixed-Length Records •••••••••• 266

Chart DK. Output Routine,
Fixed-Length Records (Cont'.d) .267

Chart DL. Label Linkage Routine
(LLR), Fixed-Length Records. • • • • .268

Chart 04. Final Merge,
Variable-Length Records (Phase 3),
OSORT303 or DSORT304 •••••••••• 269

Chart OM. Phase 3 Initialization,
Variable-Length Records • • .270

Chart DN. Input Routine,
Variable- Length Records • • • • .271

Chart DP. Mainline Compare Routine,
Variable-Length Records •••••••• 272

Chart DO. Mainline Compare Routine,
Variable-Length Records (Cont' d) •••• 273

Chart DR. Mainline Compare Routine,
Variable-Length Records (Cont'd) ••• 274

Chart OS. Mainline Compare Routine,
Variable-Length Records (Cont'd) •••• 275

Chart DT. Compute Input Interleaved
Disk Address, Variable-Length Records .276

Chart DU. Output Houtine,
Variable-Length Records. • • .277

Chart DV. output Routine,
Variable-Length Records (Cont'd) •••• 278

Chart OW. Label Linkage Routine
(LLR), Variable-Length Records ••••• 279

Chart 05. Merge-Only (Phase 4),
DSORT401 and DSORT402 ••••••••• 280

Chart EA. Initialize Open/Close
Routine, DSORT401 ••••••••••• 281

ChartEB. Initialize Mainline, .
DSORT402. • • • • • • • • • .282

Chart EC. Input Routine, DSORT402 ••• 283
Chart ED. Error Routine, DSORT402 • • .284
Chart EE. File 0 Compare Loop,

DSORT402. • • • • • • • ••••
Chart EF. File.C Compare Loop,

DSORT402. • • • • • • • • • • •
Chart EG. File B. Compare Loop,

• .285

• .286

DSORT402. • • • • • • • • • • • • .287
Chart EH. Output Routine, DSORT402 ••• 288
Chart EJ. End of Job Routine,

DSORT402. • • • • • • • • •
Chart EK. End of Job Messages,

DSORT401. • ••••••••
Chart EL. Sequence Error Routine,

DSORT401. • • • • • • • • • • •
Chart EM. Open/Close Routine,

DSORT401. • • • • •• • • • •
Chart EN. Open/Close Routine

(Cont'd), DSORT401 •••••••
Chart EP. Checkpoint Routine,

DSORT402
Chart FA. Relocator Routine, Phases

2, 3, and 4 •••••
Chart FB. Fixed Point
Convert/Reconvert • •

Chart FC. Floating-Point
Convert/Reconvert • • • • •

Chart FD. Packed-Decimal (SIGPAK)
Convert/Reconvert • • • • • • • •

Chart FE. zoned-Decimal (SIGZON)

• .289

• .290

• .291

• .292

• .293

.294

• .295

.296

.297

.298

Convert/Reconvert. • • • • • • • .299
Chart FF. Equal Routine, Phases 2, 3,

and 4 .. • • • • .. • • • • • .. • .300

Figure 1. Program I/O Flow for sort • • 10
Figure 2. Program I/O Flow for

Merge-Only. • • • • • • • • • • • • 11
Figure 3. Interleaved Method of
output. • • • • • • •• • • • • • 14

Figure 4. Summary of sort/Merge
Control statements. • • • • • 15

Figure 5. Disk Input/output Blocking
FOrmats • .. • • • • .. • • • • • .. • • • 16

Figure 6. Tape Input/Output Blocking
Formats 17

Figure 7. Control Field Formats •••• 18
Figure 8. Tape Input/Output Scheme
for Sort or Merge-Only Operation. • • • 22

Figure 9. Assignment Phase
Main-Storage Layout • • • • • • • • 24

Figure 10. Sort Compressed Control
Cards • • • • 30

Figure 11. Work Area Table (2
sect ions) .,. • • • • • • • • • 35

Figure 12. work Area Table (5
sections) • • • • • • • • • • • • 36

Figure 13. Disk Sort/Merge Phase Size
Formulas. • ••••••••••• 41

Figure 14. Exit Chart ••••••••• 50
Figure 15. sort Area Layout - Overlay

8 .. • • • 54
Figure 16. Phase 1 Internal Sorting

(Ascending Sequence) ••
Figure 17. Phase 1 Main Storage

Layout.

69

• 70
• 71
• 73

Figure 18. Disk Address Format ••
Figure 19. Limits of Input Area •
Figure 20. Doublets •••••
Figure 21. 4-Record Sequences •
Figure 22. 8-Record sequences ••
Figure 23. output........
Figure 24. Address Creation •
Figure 25. output, Variable-Length

• • • 75
• • 76

• •• 76
• • • 76

Records .. • • • ..
Figure 26. Phase 1 Compression. • • •
Figure 27. Sort Blocks ••••••
Figure 28. Phase 2 Merge •••••
Figure 29. Variable-Length Record

Input Area.

78

• 79
• 80

87
• 88

89

FIG ORES

Figure 30. Main Storage output Area •• 90
Figure 31. Compare Tree • • • • • • • • 91
Figure 32. Interleaving (3-Way Merge) • 92
Figure 33. Phase 2 Main Storage

Layout fo.r Fixed-Length Reco.rds •••• 94
FigUre 34. Phase 2 Main Storage for
Variable-Length Records • • • • • • • • 95

Figure 35. Calculate Interleaved Disk
Address •••••••••••••••• 111

Figure 36. Variable-Length Disk
Address - Block Count ••••••••• 116

Figure 37. Calculate Interleaved Disk
Address • • • • • • • • • • • • • .130

Figu.re 38. Phase 3 Main Storage
Layout 132

Figure 39. Rewind Action Taken at
End-of-Volume Time for Multi-Volume
Tape Files ••••••••••••••• 134

Figure 40. Contents of Registers at
Fetch Time. • • • • • • • • • • • • • .136

Figure 41. Compare Tree (for a 4-Way
Merge) 141

Figure 42. Calculate Interleaved Disk
Address • • • • • • • • • • • • • • • .142

Figure 43. Rewind Action Taken at
End-of-Volume Time for Multi-Volume
Tape Files ••••••••••••••• 150

Figure 44. Contents of Registers at
Fetch Time. • • • • • • • • • • • • • .152

Figure 45.
Merge) ••

Figure 46.
Address.

Figure 47.
Track ••

Figure 48.
Layout. •

Figure 49.
Track

Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Table

Compare Tree (for a 4-Way
.155

Calculate Interleaved Disk
•• 158

Maximum Use of Output
• .161

Phase 4 Main Storage
..168

Maximum Use of OUtput
••••••••••••• •• 184
Linkages Between OVerlays •• 193
Floating-Point Conversion •• 197
Phase 2 Disk Address Table .324
Phase 2 Limits Table •••• 327
Phase 3 Disk Input Address

.333

Chart 00. Program Level Design

8 IBM S/360 DOS sort/Merge

DSORT 01

Assignment
Phase 0

Sort or Merge

SORT

INITXII 02

Internol Sort
Phase 1

NO

INTPH2 03

External Sort
Phase 2

INTPH3 04

Final Merge
Phase 3

(3

03

MERGE

E3

F3

G3

H3

PAN(O 05

Merge Only
Phose 4

H4

The IBM system/360 Disk Operating System
sort/Merge Program enables the user to sort
multiple files of random records, or merge
mul tiple files of sequenced reco.rds. into
one sequential file. This program is
designed to meet the sorting and merging
requirements of disk-oriented installations
with 16K to S12K bytes of main storage. It
is a generalized program that must be
incorporated into the resident version of
the Disk Operating System library. The
program is designed for operation in a
disk-resident operating system environment
under the supervision of a control program.

At execution time, control statements
(see Program Characteristics) will tailor
the generalized sort/merge program to the
user's specific application. The
sort/merge control statements are punched
into cards and inserted into the card
reader with the symbolic address SYSIPT.
All required user-prepared job-control
statements are read by the device (either a
card reader or a magnetic tape unit)
assigned to SYSRDR. The sort/merge program
will be retrieved in overlays from the
disk-resident core image library by the
control program.

Control-data information may be
contained in as many as 12 fields in each
record. The program assumes that input
records for a sort operation are in random
sequence. Records can be sorted or merged
into ascending or descending sequence. and
an individual sequence can be specified for
each control-data field. The output
sequence for a merge-only operation must be
the same as the input sequence.

The sort/merge program is divided into
five phases (see Chart 00):

Assignment Phase (Phase 0)
Internal-Sort Phase (Phase 1)
External-Sort Phase (Phase 2)
Final Merge Phase (Phase 3)
Merge-Only Phase (Phase 4)

If sorting is to be done, the assignment
phase and phases 1, 2, and 3 are executed.
If only merging is to be done, the
assignment and merge-only phases are
executed. (See Figure~ 1 and 2 for I/O
.flow diagrams.)

The sort/merge program:

• Translates mnemonic sort/merge

•

•

•

•

•

•

•

•

•

•

•

•

INTRODUCTION

control-card information that describes
the file parameters for each input and
output file.

Sorts multiple input files.

Allows multivolume input and/o.r output
for tape and disk.

Provides for input from and output to
disk storage (IBM 2311 Disk Storage
Drive(s) only>, or 7- or 9-track
magnetic tapes (see System Requirements
for possible combinations of 7- and
9-track tapes). Disk and tape input
and output can be distributed over
multiple drives.

Merges up to four tape and/or disk
input files.

Provides for writing on disk or tape an
output file that consists of the disk
addresses of the sorted records
(ADDROUT=A option) or disk addresses
plus control data of the sorted records
(ADDROUT=D option).

Provides for determining the number of
work area tracks required for a sort
operation (CALCAREA option).

Provides for specification of alternate
input tape drives and alternate output
t.ape drives for either a sort or a
merge operation.

Provides checkpoint, interrupt, and
restart procedures for sort operation.

Provides exits and storage areas for
user-written routines.

Prints out control-ca.rd information
(optional), record counts at the end of
phases 1, 3, and 4, and necessary
diagnostics.

Provides, for sorting, the option to
bypass unreadable data blocks when the
input file is being read from tape, or
indicates the need for operator
intervention when the input file is
being read from tape or disk.

ProVides, for the me.rge-only operation,
the option to bypass unreadable data
blocks when the input. files are being
read from tape or disk, or to indicate
the need for operator intervention.

Introduction 9

System
Resident
Device

Figure 1.

Phose I

Phase J

/--..., -- ;------7
/ '< "/ I

(\ AI, \ I lopo' aod/a, 1--_
\ Input J Input) \ Work Area \ 7

'-. -<-Z.L ff\- _ --" ~ r- 7 / " lopot aod/o, \ --/7
/ / / ~k~eo--,

I I / / " in;; ood/o, \--7
I I / / Wo,kA,eo , L

I / / /. -,---' \-7
/ I / // ,,-/ \ lopot

I / / ' /"""--,--~ 1--7
I I / / ,,-'" // \ lopo' \ L

I I / /' ,,-" // -""--,---" -7
I I // /,/,,-"- // -..... \ lopo' \ I

,-_~ __ --,/ 1// ,,- // _.......... _-""'---, __ ..';
/ ; / /,,-"-,./ - ---- \ \

~--''--__It,iI.:_)./ '" // -- ---- ---'-- -----"
//,... ",..--- ------ ------
K,.,... _- ---:::;::--:.-:-------'------------

'----7
I Work Area I
I ood/o, f----7
\ Ootpo' \ I

_----~-T-wo;;~ea r--7
_---- _---~~~~u~~ l--, r---L-----,.k;;;_------ \ Work Area \ I === ____________ ~n!'~~t~t~ ~ __ I

:::::_.::.-:-------____ \ Output \ I

L _-----. __ I;:--- ---_ -----_ ~_,--..'l. L--7
...... --- --- ---- \ \ -_ --__ ---_~ Output I

............. ----_ ----- - '---r---~ 1---7 -- --- \ \
....... --_ ----~ Output I

........ , ----___ -T--~ I
................ ~_......... - __ \ Output \

~-< \ ~-----'
(\ Ait \
r Output J Output /

\ I--~/
'_L

Program I/O Flow f or Sort

10 IBM S/360 DOS Sort/Merge

System
Resident
Device

I
I
I

Assignment Phase

Control Cards

Load
Assignment
Phase Program

Read Control
Cards and
Execute

Load Phase 4

Execute
Phase 4
Initialization

Merge

Figure 2. Program I/O Flow for Merge-Only

• Checks the sequence of the records
during the final output pass of a sort
(phase 3) or during a merge (phase 4).

•

• Permits the user to specify either
ascending or descending sequence for
each individual control-data field.

•

(Up to 4 Tape or Disk or Mixed Tape and Disk)

Processes standard System/360 volume
and file labels.

Provides exits for user processing of
non-standard labels (on tape) and user
labels (on tape or disk).

Introduction 11

• Permits mixed labels for tape input to
a me.rge-only operation.

PROGRAM ORGANIZATION

ASSIGNMENT PHASE (PHASE 0)

The assignment phase:

1. Reads and stores data from the
sort/merge control statements.

2. Performs a diagnostic check for missing
sort/merge control statements and
duplicate or invalid field definers.

3. Prints out the sort/merge control
statements and parameters if the PRINT
option is specified.

4. Converts the parameters to binary
format.

5. Calculates and stores the constants
required by the following phases.

INTERNAL-SORT PHASE (PHASE 1)

Phase 1 performs the initial sequencing of
the input file(s). The records are read
into the main-storage input area and sorted
into sequences that are at least as long as
the number of records that can be sorted
internally at one time. These sequences
are written in either the fi.rst or the
second half of the disk-storage work area.
The output is interleaved to minimize the
time required to complete the sort.

Phase 1 sorts multiple input files
(these files may also be multivolume).
Exits from the program are provided to
allow processing and/or label-checking by
user-prepared routines. The checkpoint,
interrupt, and restart procedure is
provided at the end of the phase.

.EXTERNAL SORT PHASES (PHASE 2 AND PHASE 3)

The external sort phases merge the ordered
sequences produced by the internal sort
phase. They perform a 2-way to 7-way merge
on the record sequences produced by the
internal sort phase.

Phase 2 repeatedly merges the sequences
from the 2311 disk-storage work area until
their numbe.r is equal to or less than the

12 IBM S/360 DOS Sort/Merge

program-determined order of merge. Phase 3
performs the last pass of the external
sort. If the number of sequences produced
by phase 1 is equal to or less than the
order of merge, phase 2 is bypassed and
only phase 3 is executed.

Both phases provide the checkpoint,
interrupt, and restart feature. Phase 2
uses the interleaVed output technique;
phase 3 allows multivolume output files and
provides exits from the program to allOW
user modifications by user-prepared
routines.

MERGE..,.ONLY PHASE (PHASE 4)

The merge-only phase is used to merge
existing presorted files into one
sequential file. A maximum of four input
files can be merged and these may be on
disk and/or tape in any combination. The
program allows for multiple-volume input
and output files. The program also allows
a single file to be reblocked and sequence­
checked. Exits from the program are
provided to allow for user modifications by
user-prepared routines.

PROGRAM GENERATION

The sort/merge program resides in the
relocatable library and consists of three
entities:

• primary processor generation modules

• Intermediate processor generation
modules

• Relocatable object modules

These modules are designed to enable the
user to linkage-edit into the core image
library only those modules required to
formulate a generalized sort/merge program
tailored to the user's specific job
applications. At system generation time,
the user has the choice of linkage editing
anyone of seven distinct sort/merge object
programs into the core image library.
After the specific object program has
become resident in the core image library,
the user can delete all the modules from
the relocatable library.

The programs that can be generated at
linkage-edit time are:

1. The entire sort/merge program.

2. A program that will (1) sort
fixed-length records, and (2) perform
the ADDROUT option for fixed- or
variable-length .records.

3. A program that will (1) sort
variable-length records, and (2)
perform the ADDROUT option for fixed­
or variable-length records.

4. A program that will (1) sort fixed- or
variable-length records, and (2)

perform the AbDROUT option for fixed­
or variable-length records.

5. A. program that will merge fixed- or
variable-length records.

6. A program that will (1) sort
fixed-length records, (2) merge fixed­
or variable-length records, and (3)
perform the ADDROUT option for fixed­
or variable-length records.

7. A program that will (1) sort
variable-length records, (2) merge
fixed- or variable-length records, and
(3) perform the ADDROUT option for
fixed- or variable-length records.

For further details about program
qeneration for sort/merge, see IBM
System/360 Disk Operating System-Bystem
Generation and Maintenance, Form C24-5033.

PROGRAM CHARACTERISTICS

INTERLEAVED OUTPUT

Interleaving is a technique for writing
sequences in the disk work area in a manner
that will minimize seek time during each
subsequent pass. It may be used in a
system with only one disk device but is
most efficient when used with two or more
disk devices. The disk work area is
formatted for interleaved output during
phase 1 and records are blocked for output
before being written in the work area,
except when there is only one sort block
per track.

The interleave factor (sometimes called
the gap factor) is equal to the order of

merge a t the start of a pass and may be
reduced in the late stages of the pass.
Figure 3 is an example of interleaved
output when the order of merge is four.
The blocks that constitute the first
sequence are written at every fourth
address, starting with the first address.
The blocks that constitute the second
sequence are then written at every fourth
address, starting with the second address.
After the first four sequences have been
written, the allotted disk work area (in
this example, 4 x 3 = 12 blocks) will have
been filled and the pattern is then
repeated every four sequences. (For a more
detailed description of interleaving, see
the introduction to phase 2.)

JOB CONl'ROL STATEMENl'S

Standard job-control cards are required to
define a sort or merge operation to the
job-control program. These cards are:

• General--JOB, ASSGN, DATE, EXEC

• Input FUe(s)--VOL,DLAB or TPLAB,XTENT

• Work Area-- VO.L, DIAB, XTENT

• Output File--VOL,DIAB or TPLAB,XTENT

For a complete discussion of the
job-control cards and their formats, see
IBM System/360 Disk Operating System,
System Control and System Service Programs,
Form C24-3428, and IBM Systeml360 Disk
Operating System, Sort/Merge Program
Specifications, Form C24-3444.

Note: For merge-only operations, the
program requires two consecutive
disk tracks to temporarily store
overlay DSORT401 and a portion of
DSORT402 as they exchange residence
in main storage at various points in
the program. The user must define
this area as at least a 2-track work
area.

The job-control statements are followed
by the sort/merge control statements.

Introduction 13

Track 0

Track 1

Track 2

Track 0

Track 1

Track 2

Track 3

Track 4

Track 5

Example: Number of Blocks in on Output Sequence =3
Order of Merge (M) =4
Blocks per Tracks Formatted by Phose 1 =5

Note: Numbers in circles indicate the order in which blocks are written •

...----------------Interleave Factor (4)--------~------..:::::---8 Sequence 1
Block 1 0 0 0 o Sequence 1

Block 2

10 10 10 10 10 1
--
After All Sequences Have Been Written I Work Area is Shown Below

+
I
I

8 Sequence 1 o Sequence 2 o Sequence 3 ® Sequence 4 o Sequence 1
Block 1 Block 1 Block 1 Block 1 Block 2

I
I
I
I
I
I
I

o Sequence 2 8 Sequence 3 o Sequence 4 o Sequence 1 8 Sequence 2
Block 2 Block 2 Block 2 Block 3 Block 3

I
I

1/2 Work
Area

o Sequence 3 o Sequence 4 ®sequence 5 8 Sequence 6 o Sequence 7
Block 3 1 Block 3 Block 1 Block 1 Block 1

I
I
I
I
I
I

G Sequence 8 o Sequence 5 o Sequence 6 Gsequence 7 G Sequence 8
Block 1 Block 2 Block 2 Block 2 Block 2

I
I
I
I
I

t
G Sequence 5 o Sequence 6 o Sequence 7 o Sequence 8

Block 3 Block 3 Block 3 Block 3

Area
1/20ork 1

I ~ ________ _L __________ ~ ________ _L __________ ~ ________ ~

I
,..L,

. Figure 3. Interleaved Method of Output

SORT/MERGE CONTROL STATEMENTS

control statements are necessary to define
the user's specific sort or merge
operation. The user must describe the

14 IBM S/360 DOS Sort/Merge

files to be sorted or merged, the
control-data fields, the program options to
be used, and the modifications to be made
to the program. (See Figure 4, Summary of
Sort/Merge Control statements.) This
information is punched into

STATEMENT STATUS OPERAND DEFINER, STATUS, AND VALUE FORMAT
DEFINER

SORT Required for FiElDS (Required) = (~,MI,~ ••• PI2,MI2,SI2)
sort runs FORMAT (Required) = xx

FILES (Optional) - !!!
SIZE (Required~ = ~

MERGE Required for FiElDS (Required) = (~,MI,~ ••• PI2,MI2,SI2)
merge runs FORMAT (Required) = ~

FILES (Required) - m

RECORD Required TYPE (Required) = x
LENGTH (Required) = (1I,L2,L3) for FLR

= (g,L2,~,~,l5) for VLR

INPFIL Required INPUT (Required) = X for sort
= (Xa, Xb, Xc, Xd) for merge-only

VOLUME (O~tional)= (Na, Nb, Nc, ••• Ni)
BLKSIZE (Required) = (~-:-X) - - -
OPEN (Optionol) - !!
CLOSE (Optionol) = !!
BYPASS (Optional)

OUTFIL Required BLKSIZE (Required).= !!
OUTPUT (Required) = ~
OPEN (Optional) - n
CLOSE (Optional) =""i!
NOTPMK (Optional)

MODS Required if PHI = (Name, Address, Ell, E12, E13)
user-wri tten PH3 = (Name, Address, E31, E32)
subroutines PH4 = (Name, Address, E4J, E42, E43, EM, E45)
will be added

OPTION Optional PRINT (Optionol)
STORAGE (Optional) = n
VERIFY (Optiona!) -
KEYLEN (Optional) = ~
REST ART (Optional)
ADDROUT (Optional) = ~
CALCAREA (Optional)
LABEl (Optional) - (0, I)

(Q,~,~,~, ~)

END Required

Figure 4. Summary of Sort/Merge Control Statements

control-statement cards, and these cards
are inserted into the input stream at
SYSIPT.

given the option to correct the errors and
restart or to cancel the job.

During the aSSignment phase, each
control statement is checked for incorrect
entries and inconsistent combinations of
entries. If any errors are detected, the
program prints a message that indicates the
nature of each error. When all the control
statements have been checked, if no
abort-type errors were detected the user is

If certain optional entries are not
made, the assignment phase will assume
predetermined parameters.

For a complete discussion of control
statements and control card format, see IBM
System/360 Disk Operating System, --­
Sort/Merge Program specifications, Form
C24-3444.

Introduction 15

RECORD FORMAT

The sort/merge program can process
fixed-length or variable-length records.
These records may be unblocked or blocked
in fixed- or variable-length blocks (see
Figures 5 and 6). The most efficient input
file record format is fixed-length records
in fixed-length blocks, and the least
efficient is variable-length records
unblocked.

~ Logical Record.,

r~ ((3 '(3 va
A Count Area A Key Field A Record I Data A
p p

~///. !, !/;

The KEY field, on disk input files, is
used by the sort/merge program only with
fixed-length unblocked records. The REY
field in all other formats is bypassed.

For a merge-only operation, the
sort/merge program will accept. input from
mixed storage media (tape and disk).
However, anyone file must reside
completely on disk or tape. There is no
restriction on how the input media can be
mixed.

~ Logical Record-1

~G' ((3
Count Area A Key Field A Record 2 Data

p p
'/// <-///-

Unblocked Fixed - Length Records (Input / Output) Key Field may be omitted

- Logical Record -
VG' rG ~G' ''G' (G'
A Count Area A Record I Data Record 2 Data A Count Area A Record 3 Data Record 4 Data A
p ~!/. P P P

~//h '//-

Fixed - Length Records in Fixed - Le~th Blocks (Input / Output)

I-- Logical Record

~G ~G
Record I Record 2 Record 3 Record 4

rG fer
.Record 5 Record 6

VG
A Count Area A A Count Area A A

~ 0A
Data Data Data Data

~t ~1
Data Data

~
Fixed - Length Records in Variable - Length Blocks (Input)

. f.- Logical Record-

"G "G' 'G' ''G "G' 'G'
A Count Area A BL RL Record I Data A Count Area A BL RL Record 2 Data A Count Area A

~1 ~1 ~1 Jh ~1 ~L
Variable Length - - Unblocked Records (Input /Output)

r Logical Record -1

"G' (G' (E :>V//,

Record I Record 2
G Record 3 Record 4

A Count Area A BL RL RL A Count Area A BL RL RL

,,!,;, 0h
Data Data

0h ~.
Data Data

Variable Length - - Blocked Records (I nput / Output)

BL (Block Lengths) = The number of bytes between gaps separating count areas.

Figure 5. Disk Input/Output Blocking Formats

16 IBM 5/360 DOS Sort/Merge

V(h. Th. V,t~

Logical
vI'"

Logical
~'t

Logical
R Logical R Logical R R R

~5l
Record I

~5J/-
Record 2

~h
Record 3

y~/-
Record 4 /G Record 5

::;'///-

Unblocked Fixed - Length Records (Input / Output)

:m: Vf ~f I Logical Logical Logical Logical
R Logical Logical Logical R R

0l
Record J Record 2 Record 3

~£;
Record 4 Record 5 Record 6

G Record 7
::;'/-;

Fixed-Length Records in Fixed-Length Blocks (Input/Output)

wr
Logical Logical Logical

P(
Logical Logical Logical Logical ff

Logical Logical ~
R R R R

Record 1 Record 2 Record 3
y~

Record 4 Record 5 Record 6 Record 7
~

Record 8 Record 9
://~, ~/~

Fixed - Length Records in Variable - Length Blocks (Input)

f-- Logical Record ----I
VI ~f
R BL RL Record J Data R BL RL Record 2 Data

::-~ ~~
Unblocked Variable - Length Records (Input/Output)

f.- Logical Record -l
WI

R BL RL Record I Data RL Record 2 Data RL

I/~
Blocked Variable - Length Records (I nput / Output)

BL (Block Length) = The number of bytes between inlerrecord gaps.

F iqure 6. Tape Input/Output Blocking Formats

For a complete discussion of record
formats, see IBM System/360 Disk Operating
System, Data Management Concepts, Form
C24-3427 and IBM System/360 Disk Operating
System, so.rt/Merge Program Specifications,
Form C24-3444.

CONTROL-DATA FIELDS

A control-data field is a group of adjacent
bytes wi thin a da ta record. The program is
capable of sorting or merging records with
up to 12 control-data fields with a maximum
total length of 256 bytes.

rt vI'"
R BL RL Record 3 Data R

I/~ g

~f
Record 3 Data R BL RL Record 4 Data

:/~

The most significant field is the major
control field, and is always compared
first. All other fields are minor fields,
and are compared according to their
relative significance. A given minor
control field is compared only if the major
control fields are compared and found to be
equal.

The individual fields may be adjacent or
separated; if they contain only unsigned
binary data I they may overlap (see Figure
7). They may occur anywhere within a data
record except in the record-length field at
the beginning of each variable-length
record.

Introduction 17

Control Control
FI.ld 3 FI.ld 2
(Minor) (Minor)

I I
Adjacent Control Fields

Control
Field 1
(Maior)

Control
Field 2
(Minor)

Non- Adjacent Control Fields

Control
FI.1d 1
(Malor)

Data

I I

I

Control
Field"
(MInor)

Control
Field 3
(Minor)

Overlapping Control Fields (Unsigned Binary Format)

Figure 7. Control Field Formats

I

A given control field must be located in
the same relative position in each record
of all files. If, for example, the first
two bytes of the records in a file are
designated as the major control field, the
program assumes that these two bytes are
the major control field in every record of
that file.

If a KEY is associated with each disk
input record (fixed-length unblocked
records only>, the KEYLEN entry can be

18 IBM 5/360 DOS Sort/Merge

Data

Data

specified in the OPTION statement, and the
records can be sorted on the contents of
the KEY field.

Control data may be in anyone of the
following forma ts:

1. Binary (character).

2. Packed- or zoned-decimal.

3. Normalized floating point (in either
the short or long format).

". Fixed-point.

The following limitations must be
observed when setting up the control fields
for a file:

1. A control field for a variable-length
record cannot include the record-length
field.

2. Each control field must begin and end
on a byte boundary.

3. Each control field must be at least one
byte long.

4. Each control field may be a maximum of:

• 256 bytes when using binary
(character) data.

•

•

•

•

16 bytes (including the sign) when
using decimal data.

" bytes when using normalized
floating-point data (short format).

8 bytes when using normalized
floating-point data (long format).

256 bytes (including the sign) when
using fixed-point data.

5. The total of the control-field lengths
must not exceed the input record length
(the minimum record length minus four
when processing variable-length
records), unless overlapping control
fields are used.

6. When using either zoned-decimal data or
packed-decimal data, the Signed fields
must be either all ASCII or all EBCDIC;
they must not contain a combination of
both.

Files may be sorted or merged in either
ascending or descending sequence. The
sequence of each control-data field is
independent of the other control-data
fields. For example, a user may specify
ascending sequence for the major control
fields, and descending sequence for all the
minor control fields.

The control-data fields are defined for
the program by means of user-prepared
control statements. These statements
specify the type of operation (sort or
merge), the sequence (ascending o.r
descending), and the size and location of
each control-data field.

For further details about data formats,
see IBM system/360 Disk operating system,
sort/Merge Program Specifications, Form
C24-3444.

DATA CONVERSION

The sort/merge program includes
data-conversion and -reconversion routines.
Data in the format of floating point, fixed
point, packed decimal, or zoned is
converted, before processing, to binary so
tha tit can be compared. The data is
reconverted to its original form before the
output file is written.

USER MODIFICATION

Phases 1, 3. and 4 of the sort/merge
program provide for the addition of
user-written routines. Linkage between the
program and these routines is provided by
branch-and-link instructions (BAL) called
exits. These exits are:

Introduction 19

Return
Branch

1 11 Check nonstandard
input labels (tape
only) or user input

B 0(14)

1

1

3

3

4

4

4

4

labels (tape or disk).

12 Translate or modify B 0(14)
input records.

13 Process incorrectly B 0(14}
read records (tape
only) •
Bypass incorrectly B 4(14)
read records (tape
only) •

31 Create and write B 0(14)
nonstandard output
labels (tape only).
Create user output B 0(14)
labels (tape or disk).
After last user label B 4(14)

32 Alter or delete B 0{14)
records, translate
data, summarize
records, shorten or
lengthen records.
Insert records. B 4(14}
After last insertion B O(lQ)

41 Similar to exit 11, B O(1Q)
but includes mixed
labels

42 Convert data. B 0(14)

43 Same use as exit 32. B 0(14)
or

B 4(14)

44 Same use as exit 31 B 0(14)
or

B 4(14)

45 Similar to exit 13, B 0(14}
but includes tape ~
disk

or
B 4 (14)

For a detailed description of user exits
and user routine formats, see IBM
System/360 Disk operating System;
Sort/Merge Program Specifications, Form
C24-3444.

CHECKPOINT, INTERRUPT. AND RESTART

The checkpoint, interrupt, and restart
feature permits the user to interrupt the
sorting process, and conveniently restart

20 IBM S/360 .DOS Sort/Merge

it. at the end of phase 1 and during phases
2 and 3. If a job is interrupted during
the asSignment phase or phase 1, the job
must be restarted from the beginning. The
feature will not function in a merge-only
operation.

The sort program automatically writes a
checkpoint record on disk during the
assignment phase and updates it at the end
of phase 1 and at the beginning of each
pass in phases 2 and 3. The checkpoint
record is composed of information required
to restore the program to the beginning of
the interrupted pass (the end of phase 1 is
considered to be the start of phase 2).

Execution of a restart restores the
contents of the section of wain storage
recorded at the time of checkpoint, and
processing is continued from the beginning
of the interrupted merge pass.

CHECKING FEATURES

Two sort/merge checking features are
included in the program: A record-count
feature and a sequence-check feature.

The record-COUnt printout is automatic.
A count of the records processed will be
printed on SYSLOG at the end of phases 1,
l, and 4. In phases 3 and 4, the count
will not include user insertions or
deletions.

A sequence check occurs automatically
during phases 3 and 4. If a sequence error
is detected, the system prints a message
and awaits the operator's instruction to
continue processing or to cancel the job.

LABEL PROCESSING

The sort/merge program processes IBM
system/360 standard header and trailer
labels as part of its input/output
processing. Standard file labels are
mandatory for disk input/output files;
non-standard or no labels are permitted
only with tape files.

Programmed exits are provided to read
and check nonstandard tape-input headers
and trailers, and to compile and write
non-standard tape-output headers and
trailers. If the user specifies
nonstandard tape input labels, but does not
specify the accompanying exits, the program
will search.for the tape mark that
separates the labels and the data, thus
bypassing the nonstandard labels.

Unlabeled tape files can be processed by
the program. The first record read from an
unlabeled input volume can be either a tape
.mark or a data record. If it is not a tape
mark, the program will backspace the tape
to the beginning of the first record.

A tape mark can be written before the
first data record, and one will be written
after the last data record on-each output
volume with nonstandard labels or no
labels.

For a complete discussion of label
processing, see IBM System/360 Dis k
operating system, Data Management Concepts,
Form C24-3427, and IBM System/360 Disk
Operating system, Supervisor and I/O
Macros, Form C24-3429.

SYMBOLIC UNIT ASSIGNMENTS

Assignment of input/output devices to
specific channels, if a 2-channel system is
used, is left to the discretion of the
user. The sort/merge program does not
require a particular device on a particular
channel. The program-required disk work
area can be composed of a maximum of six
indi vidual extents. The total number of
tracks required for a work area (the sum of
the extents) must not be greater than the
total number of usable tracks on six disk
packs.

Input to a sort or a merge-only
operation can be read from.multiple disk
drives, and output can be written on
multiple disk drives. The input and output
areas are flexible; multiple extents can be
specified for each input file and for the
output file. These I/O areas can be
arranged around the program-required work
area, which must be on-line at all times
during execution. Regardless of the
arrangement used, the program maximum of
eight drives must not be exceeded. The
user is free to assign any symbolic unit
name to the disk drives used for sorting or
merging, providing the limitations
established h¥ the disk-resident control
program are observed.

When the system includes tape drives,
primary and alternate tape drives can be
specified to eliminate the time required to
rewind and unload a tape reel and mount a
new reel either when reading a multivolume
input file or when writing a multivolume
output file. For example, if an input file
is contained on two volumes. the second
volume can be made ready on the alternate
drive while reading from the primary drive.
This facility exists for both sort and
merge-only operations.

The program assumes. if tape input is
specified, that the initial .reel of the
first input file to be sorted or merged
will be read from the tape unit with the
symbolic address SYS002, and that the
alternate input unit will be assigned as
the alternate unit for SYS002. In the same
manner, the program assumes that the
initial volume of the second input file,
for either a sort or merge-only run, will
be read from the unit assigned to SYS003;
the alternate unit will be assigned as the
alternate for SYS003. If tape output is
specified, the program assumes the output
file will be written on the unit with the
symbolic address SYS001. The alternate
unit, if any, is assigned as the alternate
for SYSOOl.

For a sort operation, the tape units
with the symbolic addresses SYS002 through
SYS010 are assumed to contain the initial
volumes of input files 1 through 9,
respectively. For example, if two tape
files are to be sorted, the initial or only
volumes must reside on SYS002 and SYS003.
which can be assigned to the same tape
drive or to different drives.

For a merge-only operation, the tape
units with the symbolic addresses SYS002
through SYS005 are assumed to contain input
files 1 through 4, respectively. For
example, if three tape files are to be
merged, the initial or only volumes must be
mounted on SYS002, SYS003, and SYS004,
which must be assigned to different drives
(initial volumes of all files must be
on-line) •

Figure 8 illustrates one example of an
inplt/output scheme for a sort or
merge-only operation. In this example. two
files can be sorted or merged with a
minimum of operator intervention by
utilizing alternate drives. The system
illustrated uses six tape units, a central
processing unit, and one or more disk
drives. The diagram is explained as
follows:

1. Two input files. Fx~EA and FILEB, are
to be sorted or merged.

2. Each file consists of two volumes.

3. The initial volumes of FILEA and FILEB
are mounted, as required, on SYS002 and
SYS003, assigned respectively to tape
units A and C.

4. The alternates assigned to SYS002 and
SYS003 (via ASSGN statements) are tape
units Band D, respectively.

5. SYS001, the symbolic unit address for
FILEO, is assigned to tape unit E with
an alternate unit F.

Introduction 21

6. The eutput file censists ef three
velumes. The first is to. be written en
unit E. the second en unit F, and the
third on unit E.

Unit A Unit B

CPU

Unit C

Unit F

Unit D

* (For merge-only I
only two
adjacent tracks
are reqtlired.)

Figure 8. Tape Input/Output Scheme fer
Sert o.r Merge-Only Operatio.n

SYSTEM REQUIREMENTS

The System/360 used to. run the sert/merge
program must have at least:

• 16K (16.384) bytes ef main sterage.

• Standard instructien set.

• One IBM 2311 Disk Sto.rage Drive
attached to. either ene multiplexo.r
channel o.r ene selecto.r channel.
(System residence may require the user
to. have an additienal disk sterage
drive fo.r sorting.)

22 IBM S/360 DOS So.rt/Merge

•

•

One IBM 1403 er 1q43 Printer: o.r o.ne
IBM 1052 Printer-Keyboard

One IBM 1442, 2520, o.r 2540 Card Read
Punch, IBM 2501 Card Reader, er IBM
2400-Series ~~gnetic Tape Unit (7- er
9-track) assigned to. SYSIPT and SYSRDR.

• One IBM 240o-Series Magnetic Tape Unit,
if tape input/o.utput is desired.

The so.rt/merge pregram will also. eperate
with:

•

•

•

•

A maximum ef 512K (524,288) bytes o.f
main sterage.

A maximum ef eight IBM 2311 Disk
Sto.rage Drives (including the system
residence drive), two. to. six ef which
can be used fer intermediate sterage.

One to. ten IBM 2400-Series Magnetic
Tape Units (7- er 9-track) fo.r
input/eutput to. a sort eperatio.n. Any
number o.f alternate tape units can be
supperted.

One to. five IBM 2400-Series Magnetic
Tape Units (1- o.r 9-track) fer
input/o.utput to. a merge eperatio.n. Any
number ef alternate tape units can be
supperted.

The pessible cembinatiens ef 7-track and
9-track tapes fer the so.rt o.peratio.n are:

Input
1
9

Output
7 er 9
7 o.r 9

The pessible cembinatiens ef 7-track and
9-track tapes fer the merge-enly o.peratien
are:

Input
7 and/o.r 9

output
7 o.r 9

The assignment phase reads, from SYSIPT,
the sort/merge control cards prepared by
the user. The control card statements
contain file description and necessary
parameters to perform a specific sort/merge
operation.

The sort/merge control cards need not be
loaded into the reader in any specific
sequence except that the END control card
must follow the control deck. The control
information is rearranged in main storage,
in accordance with the control statement
sequence code, so that the SORT (or MERGE)
statement is processed before any of the
other control statements.

As the statements are processed, tables
are built and areas are defined .for use in
succeeding phases. The constants that are
calculated for a sort/merge run include:

• M - order of merge

• G - size of internal sort sequence

• B - sort blocking factor

Internal diagnostics check the format of
the control statements and the values
within the tables are cross-checked.
Values are assumed for certain optional and
required parameters that may have been
omitted from the control statements; for
example:

• in the SORT statement, an ascending
order is assumed for a missing sequence
parameter (Sn). The assumed value is
flagged as an error, but the assumption
allows processing to continue to the
end of the phase.

•

ASSIGNMENT PHASE (PHASE 0) - 01

when processing fixed-length records,
the field definer (LENGTH) in the
RECORD control card need only contain
an entry for L1 and not for L2 and L3.
This is a valid condition and does not
indicate an error.

• If FILES (an optional parameter) is
omitted, its value is assumed to be 1.
Thus, if FILES i's omitted, the volume,
input, and label entries must be
compatible with FILES = 1 to avoid
subsequent errors.

The user can request that the actual
control ca.rds as well as a detailed
description of the given parameters be
printed on SYSIST. To accomplish this
optional program feature, the user must
specify the PRINT option.

Messages are printed defining the error
conditions detected by the aSSignment
phase. If SYSLOG is a 1052, the user
operator has the option to either cancel
the job or to retry after correcting the
control card errors. If SYSLOG is not a
1052, the job is automatically canceled.

When a RESTART run is to be made
(RESTART runs are not available for
merge-only operations), phase 2 is fetched
at this time. Otherwise, constants for
either a sort or a merge are written in the
2311 disk checkpoint area (last four tracks
of the given FILEW area), and either phase
1 (for a sort) or phase 4 (for a merge) is
fetched.

Figure 9 is a layout of main storage for
the assignment phase, showing each overlay
and its respective routines.

Assignment Phase 23

Overlay
<'

Supervisor Read and Compress <{ w 0 <{
w '" > Z 0 ::c ~ w w

Control Cards a. '" '" <{ ::s V w :> V') ...J ~ a..
<{ w V') <{ I-- > <{ co
V V V V co w <{ <{ ::c <{
V V V V') I-- LL. '" '" ll- l--

2 Patch I
CCSORT Same as Overlay 1

Area I
I

SRTSCN, MRGSCN, Patch I
- Same as Overlay 1

and RCDSCN Area
I

3

INFSCN, OTFSCN, OPTSCN, I
Same as Overlay 1

MODSCN, and ENDSCN I
4

I

Calculate Calculate Same as Overlay 1
Work Area Phase Sizes

P 5

6 Calculate LMAX and BMAX P Same as Overlay 1

7 Post-Edit Control Cards P Same as Overlay 1

8 Calculate Constants P Same as Overlay 1

9 Timing Routine P Same as Overlay 1

PRINT
Checkpoi nt, Restart, or

Same as Overlay 1
Option

End of Assignment P
Phase Routines

·10

Note: Not drawn to scale.

{
ABORT INITWTR

* _ OPERROR DTF [Read Control Cards
ERROR Print Messages
RDRTN CPMOD

P - Patch Area

Figure 9. Assignment Phase Main-Storage Layout

24 I~M 5/360 DOS Sort/Merge

READ AND COMPRESS CONTROL CARDS - AA

This routine (overlay 1> is the first
overlay of the assignment phase: it is used
to .read control cards into storage. check
their validity. and prepare any error
messages that may be required. Phase
tables and other areas used throughout the
assignment phase are contained in this
overlay.

Control cards are read one at a time
into a read-in area and checked ·for:

• User run code

• Blank in first column

• Blank control card

• Valid statement definers

• Duplicate definers

• Definer in correct card position

• Valid continUation cards

• PRINT. CALCAREA. and ADDROUT options

• END ca~d after reading 25 control
cards.

Valid control cards (including their
continuation cards. if any) are processed
to include a code at the beginning of the
card image (to denote SORT, INPFIL, etc.),
and compressed to eliminate blank columns.
A slash (/) is placed at the end of the
card image which is then moved to a save
area for further processing in subsequent
overlays.

The OPTION card is checked for PRINT,
CALCAREA, and ADDROUT in this routine and
the selected bit is set in the phase table.

Control ca.rds are processed until either
an END card or the twenty-fifth control
card has been read. In the former case,
overlay 2 is fetched: in the latter case,
if an END card has not been read. an error
message is printed.

Other error messages are prepared,
depending on the type of error (if any),
but are not printed at this time.

This overlay includes some small
subroutines that will remain in main
storage and will be used by subsequent
overlays:

• Read 1052 replies

• write

• Print error messages

• Print control card contents

• Abort

The print and abort SUbroutines are
initialized for the printing devices and
for operator response depending on the
available system features and I/O
assignments.

DSORT, AA-B1

The three base registers to be used in this
overlay are initialized.

The end of address of the supervisor
area is calculated and stored. A series of
tests is then made to determine if SYSLOG
is a printer and, if so, if it is
designated for the same device as is
SYSLST. Switches and indicators are set,
depending on the result:

•

•

•

SYSLOG is not a printer - turn on bit
#7 in SYSLGBIT to indicate SYSLOG is an
IBM 1052 Printer-Keyboard

SYSLOG is a printer <1403 or 1443) but
is not equal to SYSLST - activate
branch at SW140343 to use the printer
as SYSLOG and activate branch at ABORT
to bypass operator response routine.

SYSLOG is the same printer as SYSLST -
turn on bit #6 in SYSLGBIT to indicate
SYSLOG = SYSLST, activate branch at
OPERRSW to print only on SYSLST, and
activate branch at ABORT to bypass
operator response routine.

other information is then retrieved from
the communications region and, if
necessary, the current date is converted to
MMDDYY format.

The starting and ending address of the
message save area (CCSAVE and CCSAVE + 735)
and the starting address of the card image
save area (SAVIMAG) are stored in CCSADD,
CCEND. and CIMAGSV. respectively.

BEGIN1, AA-Cl

Three registers are initialized for use
during the scanning of control cards:

• R7 - Index for control card area

• R3 - Marker for read-in area address

AsSignment Phase 25

• R4 - Pointer to end of scan area

A test is then made to determine if 25
control cards have been read. If such is
the case at this point, an error condition
exists because no END card has been read; a
branch is made to ERR4. If the card count
is less than 25, a branch-and-link is then
made to RDRTN to read a control card into
location READIN. The routine then
continues to RUNCODSW.

ERR4, AA-C4

Information for the error message at
location E04 is obtained, and a
branch-and-link is made to OPERROR to print
the message. A branch is then made to
LOAD1.

RUNCODSW. AA-Gl

This location is initially a no-op and it
remains so until a run code is given by the
user (this code is found in columns 73-80
of the sort/merge statements and is used by
this phase as an identifier). The code is
stored at RUNCOD and this no-op is made an
unconditional branch to COUNTCDS. Until
such time. the routine tests each card for
a run code before continuing to COUNTCDS.

At COUNTCDS, the control card counter
(CDCOUNT) is increased by one and the
routine continues to READB to test for a
blank in the first column. If the first
column is blank (as it should be), the
routine continues to TSTBLKCD; if not
blank, a branch is made to ERR1.

ERR1, AA-Jl

The control card number is converted to
decinlal and inserted in the error message
at E01. The message is then moved to the
message save area (CCSAVE) if space
permits; if not, the message is not moved
and a branch is made back to BEGIN1+4 for
the next card. If the message is moved to
CCSAVE. a branch is made to BEGIN1+4 except
when the card just read is an END card, in
which case the branch is to LOAD1.

26 IBM S/360 DOS Sort/Merge

TS TBLK CD, AA-J2

As long as blank columns are detected (from
column 2 on), the routine continues testing
each succeeding column for a blank. If the
end of the card is reached, indicating a
blank card, a branch is made to ERR6. As
soon as a column that is not blank is
detected, the card image is moved into the
save area (from READIN to CIMAGSV) and the
routine continues to SW.

ERR6, AA-K2

A bit is set in indicator E06BKT so that
message 7D061 will be printed at the end of
overlay 4. A branch is then made to
BEGIN1+4.

SW, AA-B2

This location is initially a no-op and is
made a branch to C0L16 only when a
continuation card is to be processed, as
determined during the scan of the preceding
card. When SW is a no-op, a branch is made
to CKPARA.

COL16, AA-C2

If the scan register has not reached column
16. the columns preceding column 16 are
tested for blanks. If a non-blank column
is detected before reaching column 16, the
card is in error: the branch at SWl is
activated (to permit this card to be
processed) and a branch is made to ERRS.

When the scan has reached column 16 and
the column is blank. the card is in error
and a branch is made to ERRS. If column 16
is not blank. the card is valid and a
branch is made to UPMOVE to process it.

ERRS, AA-E2

The control card number is converted to
decimal and inserted in the error message
at EOS. The message is then moved to the
message save area (CCSAVE) if space
permits. (If the save area is full, the
message is not moved and the routine
continues.) The branches at SW1 and BSLASH
are made no-opts (because it is not yet
known if the next card is a continuation
card) and the routine continues to SW1.

SW1, AA-F2

This branch is activated when the
information on a continuation card begins
before column 16. In these cases, the
branch is made to UPMOVE to try. to process
the card. Otherwise, this location is a
no-op and a branch is made to BEGIN1+4 to
read the next card.

CKPARA, AA-A3

The statement definer code is determined by
testing for each definer (SORT, MERGE,
etc.) and when one is found:

1. Location DUPBK is tested for a
duplication of the definer (it may have
appeared on a previous card).. If such
is the case, a branch is made to ERR64.

2. If the definer is not a duplicate, the
app~opriate synlbol is placed in DUPBK
(for future testing of duplicate
definers) and the definer length is
placed in location SUBTRC.

3. The address of the instruction for
inserting the appropriate definer code
is placed in register R9; a branch is
then made to INITST.

The labels and constants used for the
various definers are:

DUPBR Length in Address in Code to be
Definer Symbol Bl!e SUBTRC Register R9 Inserted

SORT S 0 5 INITCS

MERGE M 1 6 INITCM

RECORD R 2 7 INITCR

INPFIL I 3 7 INITCI

OUTFIL 0 4 7 INITCO

MODS E 5 5 INITCE

OPTION 0 6 7 INITCP

END D 7 4 INITCD

If none of the listed definers are
found, a test-is .made to determine if 25
cards have been read and if so, a branch is
made to ERR4; if not, the branch is to
ERR3.

ERR64, AA-C3

The duplicate statement definer is moved
into the error message atE64. The message
is then moved to the message save area
(CCSAD) if space permits, and a branch is
made back to BEGIN1+4 for the next card.
(If the save area is full, the message is
not moved.) .

1

2

3

4

5

6

7

8

INITST, AA-A5

A test is made to determine if the
statement definer is in the correct
position on the card (between columns 2 and
15). If not, a return switch (ERR3A) is
set and branch is made to ERR3; upon
return, the ERRJA switch is turned off and
a branch is made to the address in register
R9 (see list at end of text under CKPARA).

When the definer position is valid, a
branch is made directly to the address in
register R9. At these locations, the
definer code that was found is placed in
the byte immediately to the left of the
control card image in the save area

AsSignment Phase 27

(CCAREA) and then. depending on the
definer. one of three branches is made:

• OPTION definer - to OPTSC1

• END definer - to LOAD1

• All others - to UPMOVE

ERR3, AA-B5

The invalid statement definer is moved into
the error message at E03. The message is
then moved to the message save area
(CCSAD). if space permits, and the routine
continues to ERR3A. <If the save area is
full, the message is not moved.}

ERR3A, AA-C5

This location is a return switch that is
turned on (unconditional branch) when ERR3
is to be entered from INITST. If such is
the case, a branch is made from this point
back to that portion of the routine (see
first paragraph under INITST).

When ERR3 is entered from CKPARA, this
switch is off (no-op) and a branch is made
to BEGIN1+4 for the next card except when
the card just read is an END card, in which
case the branch is to LOAD!.

OPTSC1, AA-F3

The switch at location OPTSCS is turned on
(unconditional branch to OPTSC2) and the
address of the first byte of the current
control card is stored. A branch is then
made to UPMOVE.

UP MOVE , AA-G 3

The continuation-card switches at SW and
SW1 are turned off (made no-ops) and.
depending on the results of several tests,
the appropriate course of action is taken:

• continuation column blank but column 71
not blank - Branch to BYTE!, where the
end-of-scan position is incremented by
one to determine the slash (/) position
that denotes the end of the ca.rd image.
The slash is then moved so that it is
immediately to the right of the
high-order byte of the card image. The

28 IBM S/360 DOS Sort/.Merge

•

•

•

slash position is saved and the
compressed card (including the slash)
is moved to the control card area
(CCAREA) •

Continuation column blank and column 71
blank - Scan from column 71 back,
decrementing the end-of-scan position
each time, until the first valid byte
is found. Then, branch to BYTE1 and
process as described in the preceding
paragraph.

Continuation column not blank and
column 7! not blank - Turn on switch SW
and branch to BYTE, where the slash (/)
poSition is saved and the compressed
card (including the slash) is moved to
the control card area (CCAREA).

continuation column not blank but
colUmn 71 blank - Turn on switch SW and
test if current card is valid; if not,
branch to ERRS. If card is valid, scan
from column 71 back, decrementing the
end-of-scan position each time, until
the first valid byte is found. Then,
branch to BYTE and process as described
in the preceding paragraph.

At this point, the current card, if
valid, has been compressed so that no
blanks will be included when the card image
is moved, except for the blank between the
statement definer and the first field
definer.

If the next card is to be a continuation
card, the switch at BSLASH is a no-op and
the routine initializes so that the
information from the next card will be
moved to CCAREA as a continuation of that
from the present card. A branch is then
made to BEGIN1+4 to read in the next card.

When it has been determined that the
next card is not a continuation card, the
scan area is updated and the routine
continues to OPTSCS.

OPTSCS, AA-J 3

This location is a no-op for all cards
except the "OPTION" card and, in all such
cases, a branch is made back to BEGIN1+4 to
read in the next card. However, when the
current card is the "OPTION" card. this
location would have been made an
unconditional branch (see OPTSC1) and the
routine now branches to OPTSC2.

OPTSC2, AA-K3

The switch at OPTSCS is turned off and
tests are made for the PRINT, CALCAREA, and
ADDROUT options. The corresponding bit in
table TAGTYPE is set for each option
specified, and a branch is made back to
BEGIN1+4 to read in the next ca.rd.

LOAD1, AA-E5

The control card image area (CIMAGSV) is
closed by inserting a hexadecimal "EF" at
the end of the last card image in the area.
The current message save area address
(CCSADD) is then checked to determine if it
is at the upper limit (CCEND). If CCSADD
is less than CCEND, a hexadecimal "FF" is
inserted at the end of the last message in
the area; if CCSADD is equal to or greater
than CCEND. the FF indicator is not
required. A branch is then made to FETCH.

FErCH, AA-F5

This location contains an expansion of the
FETCH macro; it is used to fetch the next
required overlay as determined at different
points throughout the assignment phase
overlays 1 through 9. The number of the
overlay to be fetched (2 through 10) is
inserted in the operand for the macro
before branching to this location.

At the end of overlay 1, therefore,
overlay 2 (Chart AB) is fetched for
execution.

CCERR, AA-G4

This location is entered from overlays 2,
3, and 4 of the assignment phase and is
used to print the entire compressed
contents of a particular control card only
when the first error in that card is
detected. This is done so that if the
error indication was caused by a keypunch
error. it may be corrected by the operator
before canceling the job. Subsequent
errors in the same card will cause only an
error message to be printed, but not the
entire card.

The term "card" in the preceding
paragraph means a logical card, which
includes continuation cards. if any,. ·for a
statement. Provision is made for printing
longer logical cards 80 bytes at a time.

After the contents of a particular card
are printed. a branch is made to OPERROR to
print the first error message. Subsequent
entries for the same card branch directly
to OPERROR.

OPERROR, AA-J 4

This location is entered from ERR4 and
ABORT in this overlay and .from several
points in other overlays (either directly
or through CCERR). The entries are made
via a branch-and-link with link register
RA.

If SYSLOG and SYSLST are assigned to the
same printer, a branch is made back to the
address in link register RA where a
branch-and-link to ERROR will be found;
messages will thus be printed on SYSLST
only. Howeve.r, if SYSLOG is not the same
printer as SYSLST, a branch is made to
PRT1403 and the messages are printed on
both SYSLOG and SYSLST.

If SYSLOG is an IBM 1052
printer-Keyboard, the message is typed out
and a branch is made back to the address in
link register RA where a branch-and-link to
ERROR will be found. The messages are then
printed on the SYSLST printer.

In all cases, after the messages are
printed the program returns to the address
in the link register RA to continue
processing.

ABORT, AA-H5

This location was initialized at the start
of overlay 1 to permit operator response
for RETRY or CANCEL only if SYSLOG is a
1052 and if SYSIPT and SYSRDR are not
tapes.

ABORT is entered from overlay 4 (Chart
AE) when there is an error of a type that
will not permit the assignment phase to
continue processing beyond that point. If
operator response is permitted, the message
at location E90 is printed via a
branch-and-link to OPERROR. The operator
may then cancel the job or correct the
error and retry. In the former case, a
CANCEL macro is issued; in the latter, the
program returns to the start of overlay 1
after the job cards and sort cards have
been placed in SYSRDR and SYSIPT.
respecti vely.

If a retry is not permitted because of
the restrictions mentioned, the message at
E92 is printed and the job is canceled.

Assignment Phase 29

"-v-A T

~........ Length

(f)--"'./
TBLADD~~I®I©I I 1 1 3 1 I I 141 1 1 1 I 1 I 1 1 I 1 1 I 1 I I 1\

~ '--v--' \

; ~"- "
CCSAVEI S I 0 I R 1 T I x I x I x I x I / I R I E I C 1 0 1 RID I x 1 x I / II I Nip I F I I L I X I X I X 1 / Ii

AA - 2-byte address of the, compressed control card in CCSAVE.

B - total number of bytes (excl uding code) in compressed control card.

C - code indicating type of card.

J - SORT
2 - MERGE
3 - RECORD
4 - INPFIL

5 - OUTFIL
6 - MODS
7 - OPTION
8-END

Figure 10. sort compressed Control Cards

SORT COMPRESSED CONTROL CARDS - AB

This routine (overlay 2) initializes TBLADD
and CCSAVE so that each logical control
card can be found and scanned by its
respective overlay for errors and
extraction of information. The order in
which the codes are placed in the table
(TBLADD) and in the area (CCSAVE)
is: 1-S0RT, 2-MERGE, 3-RECORD,4-INPFIL,
5-0UTFrL, 6-MODS, 7-0PTION, a-END. Refer
to Figure 10.

DSORT002, AS-B1

The base register is initialized and the
stacked message from overlay 1 is printed.
The routine then continues to CCSO.

CCSO, AB-D2

CCAREA is scanned until a 1 code is
reached, then a 2 code, and so on. When a
valid code is read in its proper order and

30 IBM S/360 DOS Sort/Merge

there is no error, control is passed to
MOVECC. Control cards are checked for
invalid codes and missing mandatory codes.
Overlay 3 is fetched when the END card code
is reached.

MOVECC, AB-D3

If a code is found, the respective area in
the table at location TBLADD is updated
with the code and length of the logical
card. The card is moved to the area
labeled CCSAVE, and its starting address is
placed in TBLADD. The code search register
is incremented to search for the next
sequential respective code in CCAREA.
Control is returned to the CCSO routine at
label CCS2, until all cards have been
scanned.

SCAN SORT, MERGE, AND RECORD CONTROL CARDS
- AC

This routine (overlay 3) scans the
compressed control cards for the statement
define.r of each card. As the statement
definer is read, the appropriate overlay
for that card is determined. The statement
definers and their overlays are:

• SORT, MERGE, and RECORD -- overlay 3

• INPFIL, OUTFIL, MODS, OPTION, and END
-- overlay 4

If it is determined that a SORT or MERGE
card is present. overlay 3 continues and
scans the control card for values and
errors. The values are placed in the phase
tables starting at the label FORMAT.
Insertions are made for missing parameters
(either required or optional) and errors
are explained by messages. When the card
has been completely scanned, control is
returned to the initial scan routine of
overlay 1, which determines the next
overlay to be fetched.

When the appropriate overlay has been
fetched, the next control card is scanned.
Overlays 3 and 4 do not overlay the initial
scan routine of overlay 1.

After all control cards have been
scanned. no errors detected, and the table
built, overlay 5 is fetched.

DSORT003, AC-B2

Registers are initialized to scan the
CCSAVE area for a control card and to call
in the corresponding overlay. The routine
then continues at SRTSCN.

SRTSCN, AC-C2

The address of the first sorted control
card is retrieved from TBLADD and stored in
MSGADD. A test is made to determine if the
card designates a sort or a merge. If a
merge, a branch is made to MRGSCN; if a
sort, the sort indicator (S-character) is
set in MANDBK, and the index register is
initialized with the control field length
minus one (CF1LNG). A test is made to
determine that the proper format for the
control card has been used. If an error is
detected, a branch is made to ERR1 to
execute the corresponding error routine.
If no error is detected, the routine
continues at SRT1 to scan the control card.

SRTl, AC-B3

Scanning of the control card is continued
one byte at a time until a complete
statement, SORT or MERGE, has been scanned
(a slash followed by a hex 61 indicates end
of a statement). A comparison is made
between the field definer and the
dictionary of field definers located at
CKFLDS. When a valid definer is found, the
program branches to the respective routine,
which extracts the values for that definer
and places them in the phase table. The
routines are:

• FLD - field definer

• FILRTN - order of merge for merge-only;
or number of files for sort

• FMAT - format definer

• FILSZE - size definer

If a valid field definer is not found,
the program branches to ERR2 to print the
appropriate error message.

FLD: The FIELD definer is bypassed, and a
check is made for the left delimiter. The
values for each control field are
extracted, converted to useable form, and
placed in the phase table. For example, if
there is only one control field, the code
placed in the phase table is 0080 if
ascending, or OOEO if descending sequence.
However, if there is more than one control
field, the code for ascending sequence in
the first field is 0000, and 0080 in the
last field, if it is designated ascending.
For descending sequence, the first field is
0060, and the last field, if descending, is
OOEO. Further checks are made for the
position and the length of a field. A
missing sequence value is assumed to be
ascending and an error message is printed
to indicate that the sequence value was not
given.

A ma.ximum of 12 control fields can be
specified with this format. The total
length of all control fields must not
exceed 256 bytes.

FILRTN: The number of user-given files is
extracted from the control card and
converted to binary. The binary number is
stored at FILES and, in addition, is used
as the order-of-merge for a merge-only run.
If FILES is left out of the control ca.rd,
the program assumes the number of files to
be 1 for ei the r a sort or a merge.

Note: Errors may be encountered later in
the phase and messages will be
printed if FILES is not given and
assumed to be 1. For example:

Assignment Phase 31

FILES GIVEN EQUAL TO 1, AND INPUT
EQUALS T,D,T

If a sort, no errors would be detected
because the input could then be only disk
or tape, but not a combination of the two.

FMAT: The field definer is bypassed, the
type of format is determined, and the
appropriate bit is set ON in the phase
table at FORMAT. The user's original code
is saved for use with the PRINT option at
FMATBK, if specified. The format codes
a.re:

• FL - floating point

• BI - binary

• FI - fixed point

• PD - packed decimal

• ZD - zoned decimal

FILSZE: The field definer is bypassed and
the user-given file size is stored in the
phase table at FILESZ. Size is required
for a sort, but not used for a merge. The
sort operates at greater efficiency even if
the size entry is only an estimate;
however, the estimated size entry must be
equal to or greater than the actual file
size. Otherwise, the work area calculated
would be incorrect and an error message
will be printed.

When the end of the control card is
reached, control is returned to this
routine at SCAN.

SCAN, AC-C4

If the card is a M.ERGE or RECORD control
card, a branch is made to MRGSCN or RCDSCN,
respectively, in this overlay. For control
cards other than SORT, MERGE or RECORD,
overlay 4 is fetched.

If, for example, an OUTFIL card is
detected in CCSAVE, the overlay numbe.r
(byte 19) is checked to assure that the
required overlay is in main storage.
Because both INPFIL and OUTFIL use the same
overlay, overlay 4 will .be in main storage
when the OUTFIL card is detected.

MRGSCN, AC-D2

Registers are loaded with the MERGE control
card location in CF1LNG and TBLADD, and the
card code is tested. If there is a MERGE

32 IBM S/360 DOS Sort/Merge

card. in TBlADD, the merge indicator
(M-character) is placed in MANDBK+l and a
branch is made to SRT1. If there is not a
MERGE card, the branch is to RCDSCN. An
error is detected if both merge and sort
are specified for the same run or if
neither is specified. In either of these
cases of error, control is given to the
operator (if SYSLOG is a 1052) or the job
is terminated.

RCDSCN, AC-F2

General registers, the index register, and
the return switch are initialized and the
error switch is reset to OFF. The routine
then continues at COMPo

COMP, AC-G2

Control cards are scanned until RECORD card
code is found. The RECORD indicator
(R-character) is placed in MANDBK+2. The
address of the RECORD control card (in
TABLADD) is stored in MSGADD and a branch
is made to RC1.

RCl, AC-H2

The field definer is located and a branch
is made to the respective routine:

• CKTYFE -- to scan the type definer for
F or B (fixed- or variable-length
records).

• CKLENG -- to scan the WlengthW definer.

When a comma follows the first field
definer set of values, the next definer
will be processed. A branch is made back
to BEGIN2 to scan the next control card.
If errors are detected the program branches
to the CCERR routine which is described in
overlay 1.

CKTYPE: This routine turns on the
appropriate bit in the phase table for
fixed- or variable-length records.

RECTYP: Fixed-length records are assumed
if no value is .found for record type, but
an error condition results. If blocking is
variable, the assumption is changed to
variable-length in a later overlay and an
error indication is again given.

CKLENG: This routine stores the I/O record
lengths in the phase table at INTPRL. If
only the Ll value is given, a branch is
made to the routine beginning at label
ASSUMl to assume a value for L3 (for
fixed-length records> or for L3; L~ and L5
(for variable-length records). This
function is not applicable to ADDROUT or
merge runs. L2 is not used by the
sortlmerge program. An error condition
results if no value is given for Ll or if
the w.rong value assumption is forced for L3
thru L5.

Control is returned to SCAN when the end
of a card is detected.

SCAN INPFIL, OUTFIL, MODS, OPTION AND END
CONTROL CARDS - AD, AE

Overlay 4 is fetched to scan:

• INPFIL card

• OUTFIL card

• MODS card

• OPTION card

• END card

DSORTOO 4, AD- B1

Registers are initialized and the error
switch is reset to OFF.

INFSCN, AD-Cl

The INPFIL indicator (I-character) is
placed in MANDBK+3 and MSGADD is updated
with the address of the INPFIL card (from
TBLADD) for use in case of error
conditions. A branch is then made to INFl.

INFl, AD-G1

This routine is initialized to accept
either an INPFIL or OUTFIL control card.
The program locates the field definer and
branches to the respective routine. For an
INPFIL card, the routines are:

• BLOCKI -- block size

• XSCAN -- block type

•
•
•
•
•

VOLl -- volume

CKINPT input media

CKOPEN 1/0 open file routine

CLIFLE I/O close file routine

BYPASS bypass unreadable records
(tape input for sort, tape or disk
input for merge)

BLOCKI: A check is made to determine
whether an INPFIL or OUTFIL card is
present. If it is an INPFIL card and it
has no delimiters, variable blocking is
assumed. The input block size value is
placed in the phase table at BLKSIZ.

XSCAN: The value (X) for fixed-length
blocks is extracted and an indicator is
initialized at BLKSIZ+3. The program
assumes variable-length blockS if there is
no second value in BLKSIZE. The
appropriate bit is turned on in BLKSIZ+3,
and an information message is given to the
operator if the print option is specified.

VOLl: Scans for volume value (tape only).
For a sort run, up to nine volume entries
are allowed and are placed in bytes 0
through 8 of MRGVOL. Any entries over the
maximum will cause an error condition. For
merge-only, a maximum of four entries is
allowed: FILEA, FILEB, FILEC, and FILED
(bytes 0 through 3 res pecti vely) •

CKINPT: The input media specified by the
user is extracted and the appropriate bit
is set in INPUTMRG+l for a sort, or in
INPUTMRG+l through INPUTMRG+4 for a merge.

CKOPEN: The tape-file open options are
extracted and the appropriate bit for input
is set in BLKSIZ+3.

CLIFLE: The tape- file- input CLOSE options
are extracted and the appropriate bit is
set in BLKSIZ+3.

If any errors are detected, control is
passed to CCERR in overlay 1. At the end
of the card, control is returned to SCAN.

For a OUTFIL card, INF1 is initialized
to handle output file card routines:

• BLOCKO -- output block size

• COPENO -- output open option

• CLOFILE -- output close option

• CKOUT -- output device

• C KNOT PMK NOTPMK option (tape output)

Assignment Phase 33

BLOCKO: The BLOCK I routine is initialized
to extract output bloc.k size and place it,
in binary form, in BLKSOZ.

COPENO: The tape-file-output options are
extracted and the appropriate bit is set in
RECTYP+l.

CLOFLE: The tape- file-output CLOSE options
are extracted and the appropriate bit is
set in RECTYP+1.

CKOUT: The output media specified by the
user is extracted and the appropriate bit
is set in INPUTMRG.

If any errors are detected, control is
passed to CCERR in overlay 1. At the end
of a card, control is returned to SCAN.

OTFSCN, AD-D2

MSGADD is updated with the address of the
OUTFIL control card (from TBLADD) for use
in case of error conditions. A branch is
then made to INF1.

MODSCN, AD-C3

MSGADD is updated with the address o.f the
MODS control card (from TBLADD) for use in
case of error conditions. The routine
continues at MOD1.

MODi, AD-G3

Field definers are located and a branch is
made to the respective routines:

• CKFLDi -- phase 1 and 3 user routines
names, length, and exits used.

• CKFLD4 -- phase 4 user routines names,
length, and exits used.

CKFLD1, AD-D4

If phase 1 or phase 3 field definers are
present, the address of the appropriate
phase table, PHASE! -- PHAS34, is
initialized. For a sort run, PHAS34 is
used for phase 3. For a merge, PHAS34 is
used for phase 4.

34 IBM S/360 DOS Sort/Merge

CKFLD4, AD-C5

Field definer PH4 is used only on a merge
run. Values are placed in phase table
PHASE3Ji.

Each field definer is checked for name,
address and exit value by routines labeled
CKNAME, MVADDR, MVEXIT. If any errors are
detected, control is passed to CCERR in
overlay 1. A branch is made to SCAN when
the end of the card is reached.

OPTSCN, AE-B1

MSGADD is updated with the address of the
OPTION card (from TBLADD) for use in case
of error conditions. The option code is
placed in MANDBK and a branch is made to
CKDEFS. If there is no option card, the
branch is to ENDSCN.

CKDEFS, AE-El

The field definers are located and the
corresponding bits are set in the phase
table:
r-------r-------------------T-----·---,
,Constant, I I
I Label 1 Bit I Option I
.---------+--------------------t--------i
J RESTAT I RESTAR I RESTART I
,STORAG 1 (value) ,STORAGE I
'VERFY I VERIFY I VERIFY I
J PRINT2 I PRINT IPRINT I
I CALCAR I CALCAREA I CALCAREA I
I ADDROT I RAF I ADD ROUT I
I LABEL I INPUTMRG-INPUTMRG+4 I LABEL ,
I CKKEY J (value) IKEYLEN I L ________ -L _________________ -L ________ J

Note: PRINT, CALCAREA, and ADDROUT options
have been processed by overlay 1.
STORAGE and KEYLEN definers make use
of count routines to count number of
bytes. LABEL option assumes
standard input and output labels if
not specified. This option must be
compatible with the type of input.

EN DSCN , AE-D2

If no errors are detected in this overlay,
the END card causes the end card code
CD-character) to be placed in MANDBK+7,
overlay 5 is fetched, and the program
continues at DSORT005.

If any errors are detected, the program
may not be able to continue, depending on
the type of error. In such cases, a branch
is made to ABORT (Chart AA); otherwise,
overlay 10 is fetched.

OPEN WORK AREA AND PRE-EDIT - AF,AG

Overlay 5 builds a table of th~ work area
extents for use in phases 1, 2, and 3,
unless the CALCAREA option has been
specified, in which case the building of
the table is bypassed and the program
continues directly to calculate the phase
sizes.

XTENT cards are set up, giving the unit,
class, number, and location of the areas
that are allocated for the user work area.
The information from the cards is extracted
from the supervisor program, and stored in
XTAREA when FILEW DTFPH is opened. The
total available tracks for the work area,
computed using the limits given in the
XTENT cards, need not be a single
continuous extent, but can be a maximum of
six separate areas.

Three tracks are subtracted from the
total available work area .to be used for
checkpoint records. The remaining tracks
are equally divided into two work areas and
each is designated as tracks required (TR).
If the original number of available tracks
was even, a total of four tracks is
subtracted even though only three tracks
are required for checkpointing.

The work area table, labeled TABLEB, is
divided into up to seven sections, which

XTENT Card--l
XTENT Card--2

Cylinder--Head

I 00--06
I

l -+- limits
I I 05--00 l +- li~its

Total Tracks - 29 - 3 Chec~ Point Tracks

1/2 Work Area = 13 Tracks (TR)

will be contained within the two half work
areas. Either half of the work area will
contain at least one but not more than six
of the sections. For example, if the first
half work area consists of four sections,
then the second half work area could
consist of only three.

The number of tracks available (TA) in
the first XTENT card is compared to the
tracks required (TR) for half the work
area. The result is one of two conditions:

• T~TR--TA equal to or greater than TR

• TA<TR--TA less than TR.

(T~TR) if TA (tracks available) in the
extent limits is equal to or greater than
TR (tracks required), the lower limits of
the XTENT card are placed into the lower
limit area of section 1 of TABLEB. The
upper limit is computed using TR. Tracks
left over from this extent are used with
the TR of the second half work a.rea (Figure
11).

(TA<TR) If TA (tracks available) in the
first e.xtent card is less than the tracks
required, the lower and upper limits of the
first card are placed into the first
section of the work area table. The tracks
available in the next extent card are
obtained and added to the tracks available
from the first card. The lower limit of
the second card is placed into the lower
limit area of the next section. If the
combined TA is greater or equal to TR, the
upper I imit of the second section is now
computed. These two sections make up the
first-half work area. Any remaining tracks
are used with the second-balf work area
(Figure 12).

-- U
-_ U
- 26.

C y Ii nder--Head

91--08

06--05
~~} = 29 Track's

TABlEB Section 1 (1/2 WK)

Section 1 (1/2 WK)

C HH R
o 06 0 l l · I. U ... - "'l'lts-..-

C HH R
1 09 0*

5 00 0 l _- li~its -_ U

Note: 6031 is CKPT Address

*The upper limit trock address is not used by. the section.

Figure 11. Work Area Table (2 Sections)

6 03 0*

Assignment Phase 35

Cylinder--Head Cy I inder--Head

XTENT Card 1 00--06 L - Limits -... U 01--04 9

XTENT Card 2 03--00 L -- Limits -. U 03--06 7
= 32 Tracks

XTENT Card 3 06--03 L -- Limits -... U 06--09 7

XTENT Card 4 08--00 L -- Limits -. U 08--08 9

Total Tracks = 32 -4 Checkpoint Tracks = 28
Address of

1/2 Work Area = 14 Tracks (TR)
Next Disk Area

C HH R 'C"HHR'
Section ~ } 1/2 WK

0--06-0 L - Limit~ --. U 1--05-0 9
}. 14 T,",", I

TABLEB Section 3--00-0 L - L' ,I Imlts --. U 3--05-0 5
I

Section

} 1/2 WK

3--05-0 L - Limit~ -. U 3--07-0 2

}= 14 Tm,k,

I
I

Section 2 6--03-0 L~- Limits --. U 7--00-0 7
I

Section 3 8--00-0 L - L' ,I Imlts -... U 8--05-0 5

Note 8051 is CKPT

Figure 12. Work Area Table (5 sections)

Note: In Figure 12, the upper limit of the
XTENT card is included as part of
the area required by that extent.
The upper limit shown for Section 1
of TABLEB. for example, indicates
the start of the next disk area and
is not part of the work area section
1. It is given only to illustrate
the calculation.

The second-half work area is built in
the same manner as the first-half work
area.

With the work area table completed, the
LOGWKA table is set up. This table
contains addresses of the pointers, or
bytes, indicating the first section of each
half-work area.

Four tracks are left over from the total
available tracks for checkpoint records
(Figure 12). The upper limit of the final
section in the second-half work area is the
starting pOint for the checkpoint records.

DSORT005, AF-Bl

The base registers are initialized and a
branch is made to CLEAR.

Note: After base registers are
initialized, the area from IBV005 to
H5 (overlay number) is reserved for
IOCS as a work area for the open
routines (256 bytes).

36 IBM S/360 DOS Sort/Merge

CLEAR, AF-Cl

one of three courses of action is taken,
depending on the type of run:

• CALCAREA option - the processing for
wilding the table of work area extents
is bypassed by a branch to FIRSTED
(Chart AG).

•
•

MERGE - a branch is made to MGINIT.

SORT - general register 4 is
initialized to read a maximum of six
extents and a branch is made to OPEN.

MGINIT, AF-D2

General register 4 is initialized to read
one XTENT during file opening and a branch
is made to OPEN.

OPEN, AF-F1

The work area file (FlLEW) is opened and
roes returns control at READX.

REAOX, AF-Gl

A test is made to determine whether it is a
sort or a merge run. For a merge, a branch
is made to MRGOPN; for a sort, a
branch-and-link is made to SORTXT. In both
cases, the routine then resumes at READX1.

MRGOPN, AF-G2

MRGSW is turned on <unconditional branch)
to allow analysis of only one XTENT; a
branch is then made to REAOXl.

SORTXT, AF-Hl

Extents are sorted by sequence and stored
in XTAREA; a branch is then made to READX1.

Note: XTENTs may be given out of sequence
as long as the symbolic assignments
are in sequence. This feature makes
possible the optimum placement of
the work area for a faster sort.
FILEW XTENTs must follow these rules
if more than one extent is given:

1. XTENT ca.rds must be in sequence by
symbolic unit assignment. For example:

XTENTl 003
002
004
001

SYS005
SYS006
SYS007
SYS008

2. Symbolic units must be assigned to
unique devices. For example, SYS005
cannot be the same unit as SYS008, etc.

3. XTENTs may be out of sequence by extent
sequence number as in item 1 (003, 002,
004, 001). This allows for optimum
placement of work area sections for a
faster sort time. The assignment phase
will sort the given XTENTs by sequence
number and the wo.rk area will be placed
as the user designates according to the
sequence numbers. For example, in the
illustration in item 1 the first XTENT
used to build the work area will be
symbolic SYS008, foHowed by SYS006,
SYS005, and SYS007, in that order. The
checkpoint will reside on the device
assigned to SYS007.

REAOX1, AF-K1

Index registers are initialized.

READXT, AF-B3

The first 12 bytes of each XTENT are moved
to the assignment phase extent work area,
XTENT. When FILEW was opened and each
extent originally fetched, a W was placed
in byte 0 of XTENT. A test is now made for
the W in each extent. If found, the extent
is repositioned for easier handling by the
assignment phase. A branch is then made to
SI1-4.

When no W is found, all the extents have
been processed; a bran ch is made to SAVEWK
to determine if at least four tracks were
given for the last XTENT. If not, a branch
is made to ER3075 to execute the required
error routine. If at least four tracks
were given, the total number of tracks
gi ven is placed in TRACK, from which 3 is
subtracted (for checkpoint tracks). The
routine then continues at METHlI.

SI1-4, AF-C3

The lower and upper limit information is
extracted and converted to tracks. The
difference between the lower and upper
limits determines how many tracks are
available in the current extent; this
number is placed in XTAREA position. The
total number of tracks given by user
(TRACKS) is updated. After all FILEW
extents have been processed, a branch is
made to MRGCKP for a merge or to SAVEWK for
a sort.

Note: For a merge run, the switch at MRGSW
is on (unconditional branch) and the
program would have branched to
MRGCKP after processing one F1LEW
extent.

METHlI, AF-F3

After initializing registers and constants
with extent information, the size of half
work area is calculated and saved in
HALFTK. TA (current extent card) is then
compared to TR (tracks required in half
work area.) If T~TR, a branch is made to
INT1; otherwise,. the branch is to INIT2.

!NIT1, AF-H3

The section counter (SECCTR) is reset to
indicate the first section of a logical
half work area, the lower limit is placed

Assignment Phase 37

in TABLEB, and the number of current tracks
available that are to be used for the
section is determined.

Note: If TA is greater than TR. TR is
added to the lower limit to compute
the upper limit of this logical half
work area.

Excess TA tracks are saved for a
of the next logical half work area.
last section was just computed. the
excess track is saved for the first
checkpoint record. The upper limit
placed in TABLEB.

section
If the

first

is then

If it is not the last half work area, a
branch is made to INITA1.

If there are no excess tracks (TA = TR),
a branch-and-link is made to GETXTN, to get
the next extent card information for the
sta.rt of second-half wo.rk area. before
branching to INITA1.

INITA1. AF-K3

Registers and constants are initialized to
build the next section of the first logical
work area. or a section o.f the second half
logical work area, with TA (tracks
available) remaining from the current
extent card. If the remaining TA is less
than TR, a branch is made to INIT2; if it
is equal to. or greater than TR. the branch
is to INIT1+4.

INIT2, AF-G4

If TA is less than TR, the lower and upper
limits are placed in the section of the
current lo.gical ha If work area. The next
extent card information is obtained and the
TA from this extent is added to the TA of
the last extent. If the current TA is
equal to or greater than TR. the upper
limit is calculated and placed in the
section of the current logical half work
area. If the current TA is less than TR, a
branch is made to. INIT2 for the next
sectio.n of this logical halfwork area. If
the current TA is greater than TR, a branch
is made.to INIT1+4.

EXIT, AF-B5

When it is determined that the work area is
completely built, switches ENOl, END2, and
END3 are initialized to exit from INITl o.r

38 IBM S/360 DOS Sort/Merge

INIT2. The program then branches to EXIT,
where the displacement po.inters of TABLEB
are scanned to determine the beginning of
each logical half work area. The
displacement values are reset to their
o.riginal values and placed in LOGWKA.
Zeros, used to close pointers. are inserted
in the displacement pointer immediately
following the last displacement pointer in
the last section of the second-half work
area table initialized (TABLEB). A branch
is then made to SAVCKP. This signals
phases 2· and 3 that the end o.f one half o.f
the work area has been reached and forces
pro.cess ing of the other half. For example:

0000 - first half pointer
OOOC - second half pointer
0000 - end of table

Phase 2 fills the first half (0000), the
next pass fills the second half (OOOC).
The next pass detects 0000, which points
back to the first half. The process is
repeated until all passes are complete.

SAVCKP •. AF-ES

The checkpoint disk track is computed using
the upper limit of the last section used in
the wo.rk area, and is saved in DOOBLE+26
for SYMBOLONIT displacement and in
DOOBLE+28 for CHHR. A branch is then made
to FIRSTED (Chart AG).

MRGCKP, AF-D4

A. test is made to determine if at least two
tracks were given for checkpoint for a
merge. If not, an error condition results.
If two or more tracks are given, the merge
checkpoint disk address is calculated and a
branch is made to FIRSTED (Chart AG).

OPEN WORK AREA AND PRE-EDIT (CONTINUED) -
AG

Constants from sort control cards, to be
used in the calculation of phase sizes, are
edited. After checking that these
constants are included, the information
needed for phase size calculation is
retrieved and processed. Some of the
information is:

• Format (Floating point, unsigned
binary, fixed point, packed decimal, or
zoned decimal).

• Fields 'control data specification).

• Length (record).

•

•

•

•
•

Block size (input and output).

Block type (fixed or variable).

Record type (fixed-length or
variable-length).

Type of run (so.rt or merge).

Type of input and output (disk or tape
or mixed).

• OM for merge and FILES for sort.

Each phase size is computed as
determined by the factors in the control
cards, such as the record type
(variable-length, fixed-length, ADDROUT),
format, number of control fields, etc.
After all phase sizes are calculated, they
are stored in their respective
constants: PHS1, PHS2, and PHS34 (phase 3
for sort or phase 4 for merge). Maximum
sizes for phases 2 and 3 are calculated and
stored in PH2.MX and PH34MX, respectively.
The length of the user area is computed,
and the result is saved in LEN1 for phase 1
and in LEN34 for phases 3 or 4.

Phase 4 is computed for a merge-only
run.

Formulas not explained in the following
text are in IBM System/360 Disk Operating
System sort/Merge Program Specifications.

.Form C24-3444, unless otherwise stated.

FIRSTED, AG-B1

Information used in phase size calculations
is edited and tested to ensure that all
mandatory information has been given. Any'
mandatory information missing results in an
error condition. Items checked are:

• validity of L5 for sort of
variable-length records (fIRSTED) - if
records are variable-length and ADD ROUT
is not specified, a test is made to
determine if average record length was
given and is valid. L5 must be equal
to or less than L1.

• Format code (FMAT) - check if format
was given in sort or merge control
statement.

•

•

Record length (CLANDB) - check if
length was given.

Input block size (CKBK) - check if
input block size was given.

•

•

•

•

•

•

•

Output block size (CKBRO) - check if
output block size was given.

Number of control fields (CF) - check
if FIELDS was given.

Block type (RT1) - if FlLES=l. check to
determine if block type was specified.
If FILES>l, assume variable blocking
internally for sort. If block type was
not specified, variable blocking is
assumed.

Input and output device (CKOMED) -
determine if input and output device
type was specified.

L4, minimum number of bytes in a Single
logical input record for
variable-length records (RCT) - if
record type is variable and ADDROUT was
not specified, check to determine if L4
is less than L5.

Maximum internal OM for sort (BLK) -
check for specification of fixed
blocking of variable-length records.

Validity of FILES (OMVAL) - check for
validity of number of files for sort
(maximum of 9) or for merge (maximum of
4).

If no errors are detected in the
foregoing checks. the routine continues at
CORVAL. If any errors are detected, the
program branches to the appropr iate error
routine. (See program listing for specific
error routine used.)

CORVAL, AG-E1

CORESZ is checked for zeros. If zero, no
storage entry was specified and the actual
machine size, retrieved from the
communications region, is used. In either
case, tests are made to determine that the
size is between 16,384 and 524,288 bytes.
If less than 16,384, an error condition
results. If more than 524,288, an
information message is printed. Only a
sort run utilizes 524,288 bytes.

Starting at the label BLK, the maximum
internal order of merge is calculated for a
sort run:

• Variable-length records - 16K = 6 way
OM

• Fixed-length records or ADD ROUT - 16K =
7 way OM

The routine then continues at P1SIZE.

Assignment Phase 3'

For a merge run, the OM initialization
is bypassed by a branch to BLK2.

P1SIZE. AG-Gl

Registers are loaded with phase 1 table
address and basic phase 1 size.

~: Figure 13 contains the basic sizes
for all phases, as well as the
formulas for calculating sizes for
the several types of runs with
either fixed- or variable-length
records.

BLK2. AG-F2

Phase 4 size (PHS4) is placed in PHS34,
phase 4 switch (P4NAMS) is turned on
(unconditional branch), and a branch is
made to P4NAM.

P4NAM, AG-Hl

Values Nand M are calculated for phases 1,
2, and 3:

• N = number of control fields times ten.

• M = 6{Ll/256) for phases 1 and 2;
6(L3/256) for phase 3.

For a merge-only run, a branch is now made
to PHSIZ; for a sort run, the routine
continues at STDFV.

P4S IZ, AG-J 2

Phase 4 size (PHS34) is adjusted with M and
N. The conversion routine lengths are
reinitialized for a merge-only run, and a
branch is made to USESTR.

40 IBM S/360 DOS Sort/Merge

STDFV. AG-Kl

The calculations for phase 1 size are
completed using separate routines for:

• Variable-length records with ADDROUT

• Variable-length records without ADD ROUT

• Fixed-length records with ADDROUT

• Fixed-length records without ADDROUT

P2SIZE, AG-A3

Phase 2 size (see Figure 13) is calculated
for the type of record used.

P3SIZE, AG-.B3

Phase 3 size (see Figure 13) is calculated
for type of record used and the routine
branches to USESTR.

USESTR, AG-C3

The length of the user area in phase 1
(LEN1) and in phases 3 and 4 (LEN34) are
calculated, if not given by the user.

• LENl = CORESZ - ADDl (Rounded to next
higher double word boundary.)

• LEN34 = CORESZ - ADD34 (Rounded to next
higher double word boundary.)

The user address is checked to be sure
it is less than CORESZ.

CF256, AG-D3

The total length of all control fields is
calculated, checked for validity, and saved
in TLACFD.

Phase 1 BASIC =2744
Phase 3 BASIC = 1426

Phase 2 BASIC = 1526
Phase 4 BASIC = 2238

N = Np. af control fields
M = (L/256) L = L 1 (phases 1 and 2), L3 (phase 3)
CFADD = 84 when N > 1 (SORT) CFADDM = 66 when N > 1 (MERGE)

PHASE 1 Fixed WIO ADDROUT = BASIC + ION + 6M + DC + Q
Fixed WI ADDROUT = BASIC - TAGDIF + ION + 6M + DC + Ql

Variable WIO ADDROUT = BASIC + ION + DC + Q
Variable WI ADDROUT = BASIC - TAGDIF + ION + DC + Ql

FI FL ZD PD Note: Also Q ar Ql must be added.
DC = 76 120 136 180

TAGDIF= 88

Q= 208
If no addrout and if any of the following conditions occur, add Q once:
Other than BI format; variable records; user routines PHI.

If any of the following conditions occur, add Ql once:
Ql = 128 ADDROUT option; other than BI format; user routines PHI.

Fixed with or
PHASE 2 without ADDROUT = BASIC + ION + 6M + CFADD (OM 2-4 DSORT20l)

or
Variable with
ADDROUT = BASIC + 902 + ION +6M + CFADD (OM 5 - 7 DSORT202)

Variable
without ADDROUT = BASIC + 186 + ION + CFADD (OM 2-3 DSORT203)

" = BASIC + 186 + 928 + ION + CFADD (OM 4-6 DSORT204)

PHASE 3 Fixed with or
without ADDROUT = BASIC + ION + 6M + DC3 + CFADD (OM 2-4 DSORT301)

or
Variable with
ADDROUT = BASIC + 834 + ION + 6M + DC3 + CFADD (OM 5-7 DSORT302)

Variable = BASIC + 134 + ION + DC3 + CFADD (OM 2-3 DSORT303)
without
ADDROUT = BASIC + 134 + 848 + ION + DC3 + CFADD (OM 4-6 DSORT304)

FI FL ZD PD
DC3 = 60 94 114 154

All cases = BASIC + ION - DC4 + CFADDM
PHASE 4

FI FL ZD PD
DC4 50 102 164 274

Figure 13. Disk Sort/Merge Phase Size Formulas

Assignment Phase 41

NOVAR. AG-E3

For other than an ADDROUT run, a branch is
made to TSTER5. For an ADDROUT run, the
validity of L3 (maximum length of a single
output record) is checked, and the tag type
and Exit 32 are initialized. The routine
then branches to TSTER5.

TSTER5, AG-G3

If any errors are detected in this overlay.
a branch is made to GETEOJ to fetch overlay
10. If no errors occurred, overlay 6 is
fetched.

COMPUTE MAXIMUM ALLOWABLE INPUT AND OUTPUT
RECORD AND BLOCK LENGTHS -- AH

Lmax and Bmax are calculated for each
phase, using the phase sizes just
calculated plus core size, supervisor, and,
if applicable, the user area length.
Because Lmax and Bmax must fit into all
phases, the smallest calculated value in
the respective calculations is taken by the
program as LMAX, BMAX.

BMAX must be considered when
minimum-length records are used. and the
a-byte address for each record becomes a
determining factor for the number of
records that can be read into phase 1. An
increased number of minimum-length records
results in using more core space for the
address table, thereby reducing the space
available for record processing.

LMAX, BMAX is calculated for phase 4
only for merge-only runs.

NOTE: Refer to the Systems Reference
Library publication, IBM System/360
Disk operating System, Sort/Merge
Program specifications, Form
C24-3444, for additional
descriptions of the formulas used
throughout this overlay.

DSORT006, .AH-B1

The registers to be used in overlay 6 are
initialized and the routine continues to
CLORBV.

42 IBM S/360 DOS Sort/Merge

CLORBV. Ali-Cl

For a merge-only run, a branch is made to
BLMAX4 to compute LMAX and BMAX for fixed­
or variable-length records.

For a sort run, a branch is made either
to VL1 for variable-length records without
ADDROUT. or to L1 for fixed-length records
or ADDROUT run.

BLMAX4. AH-C2

The maximum record length (LMAX) and
maximum block length (GMAX) are calculated
for fixed- or variable-length records.

LMAX = BMAX = CORESZ - [SUPER + PHS34 +
LEN34+ BLKSOZ + (OM X BLKSIZ)
+ L13]

CORESZ
SUPER
PHS34
LEN34
BLKSOZ
OM
BLKSIZ
L13

Core size.
Length of supervisor.
Length of phase 4 program.
Length of phase 4 user area.
Output block length.
Order of merge (FILES).
Input block length.
(L1-L3), when L1 greater than
L3.

A branch is then made to CKLMAX.

L1, AH-E2

Register 14 is initialized to branch to
CFL3MAX. LMAX for fixed-length records is
calculated for phases' 1, 2, and 3 and
stored in STP123, STP123+4, and STP123+8,
respectively.

•

•

PH1 LMAX :::
CORESZ - (SUPER + PHS1 + LENl + 8) •

2
SUPER Sort program origin.
PHSl Computed length of phase 1

program.
LEN1 Computed length of phase 1 user

area.
8 Two 4-byte address table

entries.
2 Allows at least two areas

(input and output).

PH2 LMAX = CORESZ - SUPER - PHS2 •
3

• Rounded to the next lower whole number.

PHS2
3

Length of phase 2 program.
Minimum OM (2) + 1 for output.

• PH3 LMAX =
CORESZ - (SUPER + PHS34 + LEN34) •

PHS34
LEN34
3

3

Length of phase 3 program.
Length of phase 3 user area.
Minimum OM (2) + 1 for output.

A branch is then made to DETSMALL.

VL1, J\H-Fl

Register 14 is initialized to branch to
CVL3MAX. LMAX for variable-length records
is calculated for phases 1, 2, and 3 and
stored in STPl23, STP123+4, and STP123+8,
respecti vely.

• PHl LMAX =
CORESZ - (SUPER + PHS1 + LENl + 8)

3

CORESZ
SUPER
PHSl

LEN1

8

3

Core size.
sort program origin.
computed length of phase 1
program.
c.omputed length of phase 1 user
area.
Two 4-byte address table
entries.
Allows for 1 input, 1 output,
and 1 overflow area.

• PH2 LMAX = CORESZ - SUPER - PHS2
5

•

PHS2

5

Computed . length of phase 2
program.
Minimum OM (2) + 1 each for
over~low, input, and output.

PH3 LMAX =
CORESZ - (SUPER + PHS34 + LEN34)

5

PHS34

LEN34

Computed length of phase 3
program.
Computed length of phase 3 user
area.

A branch is then made to DETSMALL.

DETSMALL, AH-G2

The LMAX values calculated for phases 1, 2,
and 3 (either fixed-length or
variable-length, as the case may be) are
compared to each other to determine the
smallest value. This value is stored in

LMAX and is the maximum input record length
that will fit in all phases. The routine
then continues at CKLMAX.

CKLMAX, AH-H2

If the computed LMAX is greater than 3624
for ADDROUT or fixed-length records, or
greater than 3620 for variable-length
records, LMAX is reduced to 3624 or 3620,
as the case may be. A branch is then made
to the address contained in register 14
(CFL3MAX for fixed/ADDROUT or CVL3MAX for
variable) •

CFL3MAX, AH-J1

Register 10 is initialized with the address
of CKBI. L3MAX for fixed-length records is
calculated: this is the maximum record
length that phase 3 can process. This
calculated value is compared to tha~ given
by the user to determine if the user-given
value is within the limits compatible with
storage size and the sort program.

ROL=CORESZ-SUPER-PHS34-LEN34-2(LMAX)~3624

A branch is then made to CKL3MAX.

CVL3MAX, AH-K2

Register 10 is initialized with the address
of VB1. L3MAX for variable-length records
is calculated and compared as described in
CFL3MAX. The only difference is in the
formula:

ROL=CORESZ-SUPER-PHS34-LEN34-4(LMAX)~3620

A branch is then made to CKL3MAX.

CKL3MAX, AH-Kl

The calculated maximum phase 3 record
length is compared to 3624 and the smaller
value is used for L3MAX. A branch is then
made to the address stored in register 10.

Assignment Phase 43

CKBI, AH-AII

A branch is made to one of three locations.
depending on the type of run:

• B1 - for fix~length records with
fixed bloc.king, or

•

•

VARBI - for fixed-length records with
variable blocking. or

RAPBI - for ADDROUT sort

VARBI, AH-AS

Phase 1 block length for fixed-length
records with variable blocking is
calculated and stored in BLK123, and a
branch is made to B2.

PH1 BMAX =
CORESZ - (SUPER + PHS1 + LENl - L1) •

3 + (S/Ll)

L1

RAFBI, AH-C5

Maximum number of bytes in a
single logical input record

.Phase 1 block length for fixed-length
records with ADDROUT output is calculated
and stored in BLKl23, and a branch is made
to B2.

PHl BMAX =
CORESZ - (SUPER + PHSl + LEN1> *

3 + (S/CFHO)

CF

B1, AH-C4

Total length of all control
fields.

Phase 1 block length for fixed-length
records in fixed blocks is calculated and
stored in BLK123. and the routine continues
to B2.

PH1 BMAX =
CORESZ - (SUPER + PHS1 + LEN1) *

2 + (S/L1)

1.1 Maximum number of bytes in a
single logical input record.

44 IBM. 5/360 005 So.rt/Me.rge

B2. AH-D4

The block length for fixed-length records
of all types is calculated for phases 2 and
3. and stored in BLK123+4 and BLKl23+8,
respectively.

• PH2 BMAX = CORESZ - SUPER - PHS2 •
3

• PH3 BMAX =
CORESZ - (SUPER + PHS34 + LEN34) •

3

Register 14 is initialized with the address
of CFB3M.AX and a branch is made to
DETLOWER.

VBl, AH-B3

The block lengths for phases 1, 2. and 3
are calculated and stored in BLK123,
BLK123+4, and BLKl23+8, respectively.

•

•

•

L1

PHl BMAX =
CORESZ - (SUPER + PHS1 + LEN1) •

3+(8/L4)

PH2 BMAX =
CORESZ - [SUPER + PHS2 + (2 X L1)]

3

Maximum number of bytes in a
single logical input record.

PH3 BMAX =
CORESZ - [SUPER+PHS34+(2 X Ll) +LEN34]

3

•

*

Register 14 is initialized' with the address
of CVB3M.AX and a branch is made to
DETLOWER.

DETLOWER. AH-D4

The calculated block lengths for phases 1.
2. and 3 (either variable-length or
fixed-length, as the case may be) are
compared to each other to determine the
lowest value. This value is stored in BMAX
and is the maximum allowable block length
for sort. The routine then continues at
CKBMAX.

• Rounded to the next lower whole number.

CKBMAX, AH-D3

The B~X determined, as described under
DETLOWER. is compared to 3624 and the
smaller value is stored in BMAX. A branch
is then made to the address stored in
register 14 <CFB3MAX for fixed/ADDROUT or
CVB3MAX for variable}.

CFB3MAX. AH-F4

B3MAX for fixed-length records is
calculated; this is the maximum block
length that phase 3 can process. This
calculated value is compared to that given
by the user to determine if the user-given
value is within the limits compatible with
storage size and the sort program.

BOL =
CORESZ-SUPER-PHS34-LEN34-L13-2 (BMAX) :S3624

The routine then continues to FETCH7.

CVB3MAX. AH- F3

B3MAX for variable-length records is
calculated and compared as described in
CFB3MAX. The only difference is in the
formula:

BOL =
CORESZ-SUPER-PH34-LEN34-2(Ll)-2(BMAX):S3624

The routine then continues to FETCH7.

FETCH7. AH-G4

If no errors are detected in this overlay,
overlay 7 is fetched. If errors are
detected, a branch is made to FETCHEND to
fetch overlay 10.

POST EDIT - AJ

Overlay 7 completes the editing of the sort
control cards, and of the computed results
of the control card data. Control-field
lengths cannot exceed a total of 256 bytes.
Multiple control fields are checked for
overlapping on all formats except unsigned
binary. Computed maximum record-lengths
are checked against user-given
record-lengths. If user-given L3 is
greater than Ll, a test is made to see that

exit 32 (for sort) or exit 43 (for merge)
is specified. (These exits can be used to
shorten or lengthen record lengths.) When
non-standard labels are specified, exit 31
(for sort) or 44 (for merge-only) must be
specified.

Other checks are made for:

• Given mandatory file size and validity
of same.

•

•

•
•
•

Current tape aSSignments when tape
input or output is specified for sort
or merge.

Input/output media and labels
specified.

Va lidi ty of NOTPMK option.

Valid sort or merge volume entries.

Validity of key length entries.

• Tape options.

DSORT007. AJ-Bl

Registers are initialized for overlay 7 and
the routine continues at NORAY.

NORAF, 1\J-Cl

For a sort of variable.,.length records, the
routine is initialized to use L4 (minimum
length of a single logical input record)
instead of Ll for checking. A branch is
then made to GETL1+4.

For all other types of runs (ADDROUT
sort, fixed-length record sort, or
merge-only), a branch is made to GETLl to
initialize the routine to use Ll (maximum
length of a single logical input record)
for checking.

GETL1, 1\J-Dl

A register is loaded with the address of
the phase table area, CF1LNG, which
contains information pertaining to the
control fields. Several validity checkS
are then made:

• The length of any control field cannot
exceed the end of a record.

• The byte total of all control fields
cannot exceed 256.

Assignment Phase 45

• Floating-point format fields cannot be
greater than 8 bytes. and zoned or
packed decimal cannot be greater than
16 bytes, including the sign.

The control field length and location is
incremented by 1 to obtain the original
value (the value prior to overlay 3) but
the table values are not changed.

L3Ll. AJ-El

Note: For an ADDROUT run, the function
provided at this location would have
been executed in overlay 5 and a
branch is now made to LENHI.

If L3 (output length) is less than L1
(input length), it indicates that the user
desires to shorten records: exits 32 or 43
must be specified for this purpose or an
error results for variable-length records.
Tests are made for the type of record and
for sort or merge-only run. The program
automatically truncates the low-order bytes
of fixed~length records if L3<Ll is
specified. For variable-length records,
the truncating must be done by the user by
means of exit 32 for a sort or exit 43 for
a merge. The routine then continues at
LENHI.

LENHI, AJ-Gl

L1 (maximum number of bytes in a single
logical input record), located in INTPRL,
is tested to determine that it is equal to
or less than the calculated LMAX. If Ll is
greater, an error message is printed. The
routine then continues to CKL3MX.

CKL3MX. AJ-Hl

For a merge-only run, a branch is made to
LENLO.

For a sort, the switch at LENLOSW is
turned off (no-op). L3 (maximum number of
bytes in a single logical output record),
located in INTPRL+4, is compared to
calculated L3MAX. If L3 is greater than
L3MAX, a branch is made to LENLOA+4 to
print the error message. IfL3 is equal to
or less than L3MAX, a branch is made to
LEN.LO.

46 IBM S/360 DOS So.rt/Merge

LENLO, AJ-Jl

For a merge, the number of inputs allowed
is obtained from location OM and loaded in
register 4. For a sort, register 4 is
loaded with one. For a merge or a sort,
register 3 is loaded with the contents of
INPUTMRG.

The routine then continues at LOOP.

LOOP, AJ-A3

INPBK is initialized with the type of input
specified. For a sort, only one input type
(tape or disk) will be indicated in this
byte. For a merge, INPBK can indicate
mixed input types. INPBK is used later
when checking options relating to device
types.

TESTDEV, AJ-B3

This routine determines if system
assignments for tape devices are compatible
with input/output devices specified for the
sort/merge program.

A file count is set up in general
register 4: this count is equal to the
number of input files (FILES), plus 1 for
the output file. Devices are extracted
from the PUB table for SYSOOl through
SYS010, depending on the number in FILES.
When the count in general register 4 is
reduced to zero, indicating that all
devices have been extracted, the remainder
of this routine is bypassed and the program
branches to VALIDATE. If tape was not
specified for any input or output. the
program branches to MINBLKI.

For merge-only: The registers used are
initialized:

R2 - SYSTABLE pointer
R4 - file count
R5 - device pOinter to INPUTMRG
R6 - LUB pointer

The low-order bit of I NPUTMRG is tested
to determine if the device is tape or disk.
If the device is tape, register 9 is zeroed
(at GETDEV) and register 8 is loaded with
the LUB address. Register 8 is then
incremented by 22 (SYSOOl is the eleventh
2-byte entry in the WB table> plus the
value contained in register 6 (zero for
first time through) to obtain the address
of the LUB entry. TheLUB entry (PUB
pointer) is then inserted into register 9

and multiplied b¥ 8 (number of bytes
displacements per PUB) to obtain the
address of the first PUB on the channel
list (PUB address). The channel and unit
identification, and the device type for
SYS001 are then extracted from the PUB
address. For a more detailed description,
refer to the Program Logic Manual
publication, IBM System/360 Tape Operating
System, system Control, Form Z24-5022.

Register 2 contents are increased by 4
to obtain the contents of SYST.ABLE+4
(00000002). The contents of register 6
(zero) are increased by 2 (number of bytes
per LUB) to obtain the address of the next
LUB entry. The contents of register 5
(device pointer) are increased by one to
indicate the first input device, FILEA,
(INPUTMRG+l). The file count, contained in
register 4, is then decreased by one.

The program branches to LooP1 to test
the low order bit of INPUTMRG+l for disk or
tape for SYS002. The proceSSing described
in the preceding paragraph is repeated
until the file count in register 4 is
reduced to zero, at which time a branch
will be made to VALIDATE.

If the device checked (in register 5) is
not tape, the routine to obtain channel,
unit, and device type (at GETDEV) is not
entered but registers 2. 4, 5, and 6 are
altered, for the next SYSTABLE entry, as
described for tape device identification.

For sort: The compatibility check for a
sort run is similar to that described for a
merge. The ma jor difference is that the
switches at SS1 and SS2 are set on
(unconditional branch) so that the contents
of register 5 (output file data from
location INPUTMRG) are altered only once
for input file (FlLEA) data from location
INPUTMRG+l. Specifications for a sort
state that all input files (maximum of 9)
must be of the same type. It is
unnecessary, therefore, to continue to
alter register 5 after processing the first
input file, because compatibility checks
are not required for SYS002 through SYSOIO.
General registers 2, 4, and 6 are altered
for each SYSTABLE entry and processing is .
repeated as described for a merge. A
branch is then made to VALIDATE.

VALIDATE, AJ-B4

Registers 4, 5, and 6 are loaded with
zeroes and if the CALCAREA option is
specified, a branch is made to MINBLKI.For
all other type runs, register 2 is
initialized for SYS001 and register 5 for
output file (INPUTMRG). The output file is

tested for tape device. If the output file
is not tape, registers 2 and 5 are altered
for SYS002 and for the first input file,
FILEA (INPUTMRG+l). respectively. INPBR is
tested to determine if any input file is
tape and, if not, the program branches to
ISMERG.

If the output file is tape, one is added
to the count in register 4, and INPBR is
tested to determine if any input file is
tape. If not, the program branches to
ISMERG.

If any input file is tape, the count in
register 4 is updated with the number of
input files (FILES). If any device that
should be a tape device is not assigned as
such, an error message is printed to
indicate the symbolic assignment in error.

ISMERG: For a me.rge, the first input
file (FILEA) is checked to determine the
device type. If tape, SYS002 is checked
for tape assignment and for duplicate
assignment (error). Registers 2 and 5 are
altered for SYS003 and for the second input
file. FILEB <INPUTMRG+2), respectively, and
the Checking routine is repeated for all
input files. If any input .file is disk and
not tape, the check for tape assignment and
duplicate assignment is bypassed for that
particular file, but registers 2 and 5 are
altered for the next file. When all files
have been checked, a branch is made to
MINBLKI. If any duplicate assignments are
detected, an error message is printed.

For a sort, the switches at locations
SS4A, SS2A, and SS5A are set on and the
switch at location MS1 is set off. This
modifies the processing so that the input
file data contained in register 5 is not
altered for checking SYS003 through SYSOI0.
When all input files have been checked, a
branch is made to MINBLKI.

MI NBLRI; AJ -C3

The input and output block sizes for tape
are checked to determine that they are
equal to or greater than the minimum
specified size of 12 bytes. If so, a
branch is made to BLRHIP. If errors are
detected, a branch-and-link is made to
ERR79 to print an error message, after
which the program returns to BLKHIP.

Assignment Phase 47

BLKHIP, AJ-03

The calculated maximum block size is
checked to determine if it is at least the
minimum of 300 bytes. The routine then
continues at BLKOK.

BLKOK, AJ-E3

For a merge, this routine is bypassed
because its fUnction has already been
performed by overlay 6; a branch is made to
CRSIZ.

For a sort, input and output block sizes
are compared to computed maximums to
determine their validity. For
variable-length records, input and output
block sizes are each checked to ensure that
a 4-byte block size indicator is included.
The routine then continues at CKSIZ.

CKSIZ, AJ-H3

A test is made to determine if file size
was given for sort. The computed file size
is then checked against the given size.

If the ADOROUT option is specified for a
merge run, an error message is printed.

The routine then continues at L1MOLT.

L1MULT, AJ-J2

Tests are made to determine if Ll is a
multiple of the given input block size and
if L3 is a multiple of the given output
block size. These tests are made only for
fixed length records with or without
AODROUT option.

Note: For "A" type ADOROIJT (address only),
L3 must be equal to 10. For "0"
type ADDROUT (address plus control
field), L3 can be less than the
total control field lengths plus 10
(TLACFO+10), but not less than 11;
L3 cannot be greater than TLACFD+IO
unless exit 32 is specified.

48 IBM S/360 DOS Sort/Merge

OVLPCF, AJ -K 2

Tests are made to determine if control
fields overlap, only if there is more than
one control field and if the format is
other than unsigned-binary. The first
control field is checked to see if it
overlaps into anyone of the following
control fields. After checking the first
field, the second is checked against the
rest and so on, until all fields are
compared. The routine then continues at C.
If an overlapping fiel d is found, an error
message is printed before continuing to C.

C, AJ-A5

A check is made for valid placement of the
control fields for variable-length records
only. A control field may not start prior
to byte 5 (bytes 1 through 4 are reserved
for the record length indicator).

CKLABELS, AJ-B5

This routine checks:

•

•

•

if labels were specified (if not,
assume standard labels for all files)

if assumed or given labels are valid
for disk input and output.

if input and output label types are
given and that the types are
compatible.

A merge may have mixed input (tape and
disk) and, therefore, mixed labels. A
check is made to determine that standard
labels only are given for any disk input
files.

The NOTPMK option may be specified at
any time, for tape output. If the NOTPMK
option is specified with standard labels,
however, a warning message is printed. The
process.ing will not be interrupted but a
tape mark is written in later phases.

CKRWD, AJ-C5

The OPEN or CLOSE options are checked for
tape input and output. If either or both
options are not specified, RWD (rewind) is
assumed.

CKTYPEIN, AJ-DS

For a merge, a branch is made to CKMERGE.
For a sort with disk input, tests are made
for any tape options that may have been
given in error. Similar tests are made for
output.

CKMERGE, AJ-E4

Merge-only options are tested for mixed
input and for any tape options that may
have been given in error for disk input.

IABEXCK, AJ-FS

Specified labels are checked against any
User exits that may be required (see Figure
14). These checks are bypassed by
branching to CKKEY if:

• All types of labels specified.

• Unlabeled files not specified.

• Both unlabeled and standard labels
specified.

For a merge of unlabeled files. error
conditions .result if:

•
•

Exit 41 specified for input.

Exit 44 specified for output.

For a sort, error conditions result if:

•

•
•

Exit 11 specified for unlabeled input
files.

Exit 13 specified for disk input files.

Exit 31 not specified for non-standard
output labels.

• Exit 31 specified for unlabeled output
file.

The routine continues at CKKEY.

CKKEY. AJ-GS

The KELEN option may be used only for
fixed-length records that are unblocked
and. in the case of input, for disk only.
Output may be on either tape or disk, and
ADDROUT output may be blocked or unblocked.
If these requirements are not met, an error
message is printed. The routine then
continues to CKVOL.

CKVOL, AJ-H5

Each input file is checked for the number
of volumes (obtained from MRGVOL). The
number of volumes is then set depending on
several conditions:

•

•

•

•

Standard labels - Use number given by
user; if not given, use o.

Non-standard labels with exit 11 or 41
- Use 0 whether or not number is given.

Non-standard labels without exit - Use
number given by user; if not given, use
1.

Unlabeled - Use number given by user;
if not given, use 1.

When all files have been checked, a branch
is made to TSER7.

TSER7, AJ -J5

If no errors were detected in this overlay,
overlay 8 is fetched. If errors were
detected a branch is made to FETCHEND to
fetch overlay 10.

AsS ignment Phase 49

EXIT # USED FOR

II Process User or
Non-std Labels-
Phase I

12 All Purpose
Phase 1

SORT 13 Bypass Unread-
able Tape Input
Blocks Phase I

31 Process User or
Non-std Labels
Phase 3

32 Record Alter-
ing Phase 3:
Fixed Records,
D-type Addrout,
(Forv)
Variable Records

41 Process User or
Non-std Labels
Phase 4 (Input)

42 All Purpose
Phase 4

MERGE 43 Record Alterin$
Phase 4:
Fixed Records,

I Variable Records

44 Process User or
Nonstd (Output)
Labels Phase 4

45 Bypass Unread-
able Tape or
Disk Input
Blocks

Figure 14. Exit Chart

COMPUTE CONSTANTS FOR FIXED- LENGTH RECORDS
- ARc AL

This routine (part of overlay 8) calculates
constants for fixed-length records for a
sort run. It also calculates some disk

SO IBM S/360 DOS Sort/Merge

NOT
REQUIRED OPTIONAL ALLOWED

Never With Std, With
User or Unlabeled
Nonstd Files
Labels

Never Anytime Never

Never With Tape With Disk
Input Input
Only Only

With N:>n-std With Std, With
Labels User or Unlabeled

Nonstd Files
Labels

Anytime Never

When L3 > <I
When L3 > (CF+IO)

When L3 f LI

Never With Std, With
User or Unlabeled
Nonstd Files
Labels

Never Anytime Never

Anytime Never

When L3 > LI
When L3 f LI

With Non-std Std, User With
Labels or Nonstd Unlabeled

Labels Files

Never Anytime Never

input or output constants for a merge-only
run.

Formulas used in the calculations are
described in detail in IBM System/360 Disk
Operating System, Sort/Merge
specifications, Form C24-3444.

DSORT008, AX-B1

The base register is initialized and a
branch is made to CLEAR.

CLEAR, AK-Cl

Registers are cleared and a branch is made
to tbe routine for the type of record to be
processed:

• RAFRTN (Chart AN), for ADDROUT run.

• VARRTN (Chart AM) # for variable-length
records.

• STEP (Chart AK), for fixed-length
records.

If CAICARE.A option is specified, switch
CALCSW2 is turned on (unconditional
branch) •

STEP, AK-Gl

For merge-only, a branch is made to OUTPT
(Chart ALl. For fixed blocking, a branch
is made to STEPl. For variable-blocking,
the switch at C2LPSSW is set to prevent
storing the result of the first calculated
value for PHIBt. In this case, the
denominator is calculated and stored and
the routine continues at CALPHlB2. (Also
see note at end of STEPl.)

STEP1, AK~J1

The maximum number of records in a phase 1
sort block (PHIBl) is calculated:

PHIBI = CORESZ - PHSI - SUPER - LENl
2 (Ll) + S

CORESZ

PHSI

SUPER
LENt

LI

Number of bytes of main storage
available for sort program.
Calculated phase 1 program
size.
Size of supervisor.
Number of bytes required for
user program in phase 1.
Number of bytes in a single or
logical input record.

~: The value of the denominator, 2 (Ll>
+ S, is stored in CP2LPS for use in
later calculations. For
variable-blocking, the result of
this calculation of PHIBlis not

saved but the value of the
denominator is.

CALPHIB2, AK-KI

The alternate PHlBl (PHlB2) is calcul.ated
and compared to that calculated in STEPl.
The smaller value is saved as the effective
PH1Bl.

PHlBl = 3624
-r1

~: The result of this calculation is
temporarily stored in PHIB2.

PHlB2 is then calculated:

PHIB2 =
CORESZ-(PHS1+BLKSIZ-Ll+SUPER+LEN1)

CP2LPS

BLKSIZ Input block size in bytes.

The result of this calculation is
compared with that of the alternate PHIB2
(same as alternate PHlBl) and the lesser
value is saved as the effective PHIB2.

STEPlB, AK~A4

The maximum number of bytes in a phase 2
block and in a .phase 3 block are calculated
and the smaller of the two values is saved
in MAXBL for later calculations.

If the calculated MAXBL exceeds the
maximum number of bytes per 2311 track
(3624>, the calculation is invalid and 3624
is substituted in MAXBL. The MAXBL of 3624
is rounded to a multiple of the input
record length (Ll) and retained in SBSIZE
(computed sort block size).

For phase 3, if the input record length
is equal to or less than the output record
length (L1~L3), then:

MAXBL =
CORESZ-(S+PHS34+BLKSOZ+SUPER+LEN34)

OM

For phase 3, if the input record length
is greater than the output record length
(Ll>L3), then:

MAXBL ::
CORESZ-{8+PRS34+BLKSOZ+Ll~L3+SUPER+LEN34)

OM

BLKSOZ
PHS34

OUtput block size in bytes.
Length of·phase 3 or 4 program.

Assignment Phase 51

.LEN34 Length of uSer program in phase
3 or 4.

For phase 2:

MAXBL = CORESZ-(PHS2+SUPER)
OM+1

STEP3, AK-B4

The maximwn. number of records that a phase
2 or phase 3 block can contain (RECBIJO is
calculated:

RECBLK :: SBSIZE
L1

STEP3A, AK-C4

If calculated RECBLK is equal to or less
than PH1B2, a branch is made to STEP4. If
RECBLK is greater than PHIB2, RECBLK must
be recalculated.

Calculate the largest multiple of number
of records per input block (BI) that is
equal to or less than PHIB1:

• BI = BLKSIZ
Ll

•

•

First try = ~ (largest multiple)
B1

Second try = RECBLK (new or original)
BI

The result of the first try is compared
to that of the second try and the lesser
value is stored in RECBLK.

The new RECBLK is now compa red to PHl B2
and the greater value is stored as the
effective RECBLK. The routine then
continues at STEP4.

STEP4, AK-E4

The number of bytes per sort block (SBSIZE)
is calculated:

SBSIZE = RECBLK X INTPRL

52 IBM S/360 DOS Sort/Merge

COMBPT, AK-F4

Constants are calculated for disk
operation:

•

•

•

BYTBLK (bytes per block including disk
gaps) •

BYTBLK= 61+ [{S31 (SBSIZE+1)}/S12J.

BYBKLS (bytes per last block for disk).

BYBKLS = 1+SBSIZE

BPT fmaximum number of blocks per 2311
track).

BPT = 1 + [(3625- BYBKLS)/BYTBLK] *

CKBPT, AK-G4

The calculated BPT is compared to the
previous BPT. If the calculated value is
greater, a branch is made to CBYPTK; if
not, RECBLK is cheeked to see if it equals
one. If RECBLK equals one, and the
CALCAREA.option is not specified, a branch
is made to SW1; with the CALCAREA option,
the branch is to USEORIG. If the
calculated BPT is less than the previous
BPT but greater than 1, the routine
continues at REDUCE.

REDUCE, AK-HS

RECBLK is reduced by one and a branch is
made back to STEP3A to try to optimize BPT.

USIDRIG, AK-J5

When RECBLK is not to be changed, original
values are saved:

•
•

OM (internal order of merge)

B (number of records per internal sort
block)

• SBSIZE (internal sort block size in
bytes)

•

•

BPT (maximum number of internal sort
blocks per 2311 track)

G (number of records per phase 1
sequence)

• Rounded to the next lower number.

•
•

•

GAl (available core for sort)

GAREA (number of bytes in a phase 1
sequence, excluding tag area, in GAl)

GAREAl (number of bytes in a phase 1
sequence, including tag area, in GAl)

• NOBLKG (number of sort blocks in GAREA)

•

•
•

MXBYPT (maximum number of bytes per
track)

AMAX (size of work area)

NOPASS (number of merge passes in
phases 2 and 3).

A branch is then made to PUTC02.

CBYPTK, AK-H3

The maximum number of bytes per track
(MXBYPT) and the maximum work area size
(AMAX) are calculated:

• MXBYPT = SBSIZE. X BPT

• AMAX = 2 [(FI LESZ X L1) /MXBYPT) *+ 3

*Rounded to the next higher whole number.

If the CALCAREA option is specified
(CALCSW2 switch on - Chart AL). a branch is

made to INITCSWS. If not the CALCAREA
option. AMAX is compared to the work area
given by the user (TRACKS). If AMAX is
greate.r, a branch is made to SW1; if AMAX
is equal to or less than TRACKS, the branch
is to COMPG.

SW1, AL-D2

The constants just calculated are saved but
are not used. To accomplish this, the
second byte of the OM is ORed with a
hexadeciaml FO to Signal future overlays
that the calculated constants for this
particlular OM are nullified and cannot be
used. (For example: an OM of 0007 is made
OOF7.)

If RECBLK is greater than one, a branch
is made to REDUCE (Chart AK) to recalculate
constants for the current OM using a
decreased RECBLK. The set of constants
reSUlting from the recalculation will be
substituted for the nullified set for the
current OM.

If RECBLK is equal to one and the last
set of constants has not been calculated

(OM>2), a branch is made to STEP1B (Chart
AX) to recalculate all constants using a
lower OM.

If RECBLK is equal to one and the last
set of constants has been calculated (OM =
2), a branch is made to OUTPT.

COMPG, AL-Dl

Constants GAl, GA2, GAREA, and GAREAl are
calculated: these will be used to compute G
area.

• GAl (available core for sort)

GAl = CORESZ-SUPER-PHS1-LEN1-SBSIZE

CORESZ

SUPER
PHSl
LENl

SBSIZE

Number 0 f bytes of core
storage available for the
sort program.
Size of supervisor.
Phase 1 program size.
Number of bytes .required for
user program in phase 1.
Sort block size (output area)
in bytes.

Note: If blocking is variable, the
overflow area must be equal to the
minimum input block minus Ll
(maximum number of bytes in a single
or logical input record).

• GA2 (number of sort blocks, plus an
8-byte tag for each record in the sort
block, in G.Al).

GA2 =

L1

GAl

SBSIZE + [8 (SBSIZE/Ll)] *

Maximum length of input
record.

*Rounded to the next lower whole
number.

*

Note: The divisor in this calculation is
saved in SBSZPTAG and is used in
later calculations.

• GAREA (number of bytes in a phase 1
sequence, excluding tag area, in GAl).

•

GAREA = SBSIZEX GA2

GAREAl (number of bytes in a phase 1
sequence, including tag area, in GAl.

GAREAl =
GA2 [SBSIZE+«SBSIZE/SBSZPTAG)X8)]

Figure 15 is an illustration of the sort
area in core as determ ined by the
calculations in COMPG.

Assignment Phase 53

GAl

Supervisor, PHS] and
Required Routines

GAREAI

GAREA
(in equal sort blocks)

Figure 15. Sort Area Layout - Overlay 8

RETRY, AL-E1

For variable blocking, a branch is made to
BYPVAR. For fixed blocking I a test is made
to determine if GAREA is a multiple of the
input block size (BLKSIZ). If it is, a
branch is made to ENDGF to compute G;
otherwise, the routine continues at BYPVAR.

BYPVAR, AL-G1

The size of the overflow area is calculated
and if the size is adequate a branch is
made to ENDGF to compute G. If the area is
too small, GAREA1 is reduced by the
quantity (SBSIZE + SBSZPTAG). and the
routine branches back to RETRY until a
valid overflow area is established. If no
overflow area exists, a branch is made to
SWl to nullify current calculations.

ENDGF,AL-A3

Several constants are calculated and saved:

• Final G (number of records per phase 1
string) •

G = GAREA
-U

• B (number of records per sort block).

B = SBSIZE
L1

• NOBLKG (number of sort blocks in G).

NOB.LKG = GAREA
SBsIZE

• NOPASS (number of merge passes)

File size (FILESZ) is divided by G
and rounded high to obtain the maximum
number of sequences. The OM is then

54 IBM 5/360 DOS Sort/Merge

1 8 x

I Number I Sort Block
..-1 Size

I of I Overflow (SBSIZE)
I Records Area

1 -! ~AREA I

multiplied by itself until a product
equal to o.r greater than the number of
sequences is reached. Each
multiplication is counted, and the
count is taken as the number of merge
passes (NOPASS). If the number of
sequences is less than the OM, NOPASS
is made equal to one and phase 2 of the
sort/merge program will be bypassed.

The routine then continues at PUTCON.

PUTCON, AL-C3

If the CALCAREA option is specified (switch
PUTCONSW is on) and the first series of
calculated constants for each OM have been
saved, a branch is made to CALRPT.
otherwise, the final BPT for the current OM
is calculated and constants are saved:

• OM (internal order of me.rge)

•

•

•

•

B (number of records per internal sort
block)

SBSIZE (internal sort block size in
bytes)

BPT (maximum number of blocks per 2311
track)

G (number of records per phase 1
sequence)

• GAl (available core .for sort)

•

•

GAREA (number of bytes in a phase 1
sequence, excluding tag area, in GAl)

GAREAl (number of bytes in a phase 1
sequence, including tag area, in GAl)

• NOBLKG (number of sort blocks in GAREA)

•

•

MXBYPT (maximum number of bytes per
track)

AMAX (size of work area)

• NOPASS (number of merge passes in
phases 2 and 3).

The routine then continues at CALRPT.

CALRPT, AL-A4

If switch CALRPT is on (unconditional
branch), this routine is bypassed by
branching to REINIT.

If the switch is off {no-op}, switches
CALRPT and PUTCONSW are turned on and a new
value is calculated for records per track
(RPT). The new RPT is compared to the
previous RPT, and if the new value is
greater, the new RPT and AMAX are saved and
the routine continues to REINIT.

If the new RPT is less than the previous
RPT, a branch is made to CKRECBK.

REINIT, AL-B4

Swi tches CALRPT and PUTCONSW are turned 0.££
(no-op) and a new RPT is calculated and
compared as described in the preceding
function block (CALRPT).

CKRECBK, AL- B5

If RECBLK is equal to one, switches
PUTCONSW and CALRPT are turned off (at
REINIT1) and the routine branches to
PUTC02.

If RECBLK is not equal toone and switch
PUTCONSW is on, a branch is made to PUTC02
to reduce OM and recalculate constants. If
RECBLK is not equal to one and PUTCONSW is
off, RECBLK is reduced by one and a branch
is made back to STEP3A (ChartAK) to
recalculate.

PUTC02. AL-F4

. If the last calculation has been made (OM =
2), a branch is made to OUTPT. When OM is
greater than 4, OM is reduced by 1 and a
branch is made to STEP1B (Chart AK) to
recalculate all values. When OM is equal
to or less than 4, the minimum sizes for
phases 2 and 3 are used, OM is decreased by
1, and a branch is made to STEP1B (Chart
AK) to recalculate all values.

OUTPT, AL-G3

• For tape input/output, this routine is
bypassed to fetch the next overlay at
FETCB9.

• For disk output, output BYTBLK. BYB.KLS,
and BPT30P are calculated for phase 3.

• For disk input, input BYTBLK, BYBKLS,
and BPTIIP are calculated for phase 1.

A branch is then made to FETCB9.

FETCH9, AL-B3

The next overlay (DSORT009) is fetched if
no errors were detected. If there were any
errors, the last overlay (DSORT010) is
fetched.

COMPUTE CONSTANTS (VARIABLE,",LENGTH RECORDS)
=-M

This routine {part of overlay 8} calculates
constants for variable-length records for a
sort run. Formulas used in the
calculations are described in detail in IBM
system/360 Disk Operating system, --­
Sort/Merge Program Specifications, Form
C24,",3444.

VARRTN, AM-Bt

For a merge-only run, a branch is nade to
fetch overlay 10 at FETCHEND. If CALCAREA
option is not specified, a branch is made
to STEP1V. For other than merge-only or
CALCAREA runs, switches CALCSWIV and
CALSW2V are turned on (unconditional
branch) and the routine continues to
STEP1V.

STEP1 V, AM-Dl

In order to compute the work area for
variable-length records, it is necessary to
calculate:

• MAXBLl (maximum block size for phase 1)

• MAXBL2 (maximum block size for phase 2)

• MAXBL3 (naximum block size for phase .3)

Assignment Phase 55

MAXBLl =
CORESZ - SOPER - PHS1 - LENt - BLKSIZ

2 + (9/L4)

MAXBL2 =
CORESZ-SUPER~PHS2-(Ll x OM)

OM+l

Ll

OM

length, in bytes, of largest
input record.

Order of Merge (ranges from 2
to 6).

MAXBL3 =
CORESZ-SUPER-PHS34-LEN34-BLKSOZ-CLl X OM)

OM

PHS34

LEN34

BLKSOZ

Phase 3 program size.

Number of bytes required for
user program in Phase 3.

Length, in bytes, of a single
output block.

If the calculated value of MAXBL2 or
MAXBL3 exceeds 3624, the calculations are
disregarded and 3624 is substituted.

MAXBLl is compared to MAXBL2 and the
smaller of the two values is then compared
to MAXBL3. The smaller of the latter two
values is used as the final MAXBL3 and, if
less than 3624, it is also used as SBSIZE.
If MAXBL3 is not less than 3624. SSSIZE is
made equal to 3624. The routine then
continues to COMBPTV.

COMBPTV, AM-Gt

A branch and link is made to COMPBT+4
(Chart AK) to calculate the number of
blocks per track. Upon return to this
routine, the BPT just calculated is
compared to the previous BPT •. If the new
BPT is greater, a branch is made to
CBYPTKV. If the previous BPT is greater or
equal, the routine continues to REDUCEV.

CBYPTKV, AM-J1

The maximum number Of bytes per track
(MXBYPT) is calculated by multiplying sort
block size (SSSIZE) by number of sort
blocks per track (BPT) and the routine
continues to COMPGV.

56 IBM 5/360 DOS Sort/Merge

COMPGV, AM-A4

G area constants are calculated and saved:

• GAl (available core for sort)

GA1=COBESZ-(SUPER+PHS1+LENl+SSSIZE+BLKSIZ>

This calculation is similar to that for
fixed length records and is described in
detail in the narrative for COMPG (Chart
AK).

• NOBLKG (number of sort blocks in GAREA)

GAl
NOBLKG = ---------------{(SBSIZE/L4)X9]+SBSIZE

L4 minimum length, in bytes, of
single logical input record.

~: BLKSEQ is stored in NOBLKG after
calculation.

• G maximum (maximum records per sequence
in Phase 1.)

G maximum = NOBLKG X SBSIZE
L4

Note: G maximum is stored in GAREAl.

• B (average number of records per block>

B = SBSIZE
LAVG

LAVG = L5 = the mean length of a
logical input record (the
intermediate value between Ll
and L4, or Ll).

• GAVG (number of records in a
string/sequence)

GAVG = SSSIZE X NOBLKG
LAVG

Store GAVG in G after calculation.

• GAREA <number of bytes in a phase t
sequence, excluding tag area, in GAl)

GAREA = NOBLKG X 5BSIZE

• AMAX (maximum number of work area
tracks)

The first step in the calculation of
AMAX is to divide FILESZ (number of
input records) by GAVG (number of
re~ords per sequence). The quotient,
rounded high if there is a remainder,
is the number of sequences~ this value
is stored in NOSEQ. The second step is
to divide by BPT. .This quotient,
rounded low. if there is a remainder, is

NIR

the portion of a sequence that can be
written on one 2311 track. The final
step is to multiply the two quotients
(BLKSEW divided by BPT) (NOSEQ), double
the result, and add 3 to include
checkpoint tracks.

AMAX = 2 I (NIR/RECSEQ). (BIJ{SEQ/BPT) #1 + 3

Number of input records given by
user.

*rounded to next higher whole
number

#rounded to next lower whole
number

The routine then continues to CALSW2V.

CALSW2V, .AM-Cq

If the CALCAREA option is specified (switch
CALSW2V is on), a branch is made to CALNOP:
if not, the calculated work area (AMAX) is
compared to the work area given by user
(TRACK). If AMAX is equal to or less than
TRACK, the constants calculated are optimum
values for the current OM and a branch is
made to CALNOP. If AMAX exceeds TRACK, all
calculated constants are nullified. To
accomplish this, the second byte of the OM
is ORed with a hexadecimal FO to signal
future overlays that the constants for this
particular OM cannot be used.

If SBSIZE is greater than Lt, a branch
is made to REDUCE V to initialize for
recalculation of constants using a lower
OM. If SBSIZE is not greater than L1, the
routine continues to SW2V.

CALNOP. AM-CS

The number of merge passes (NOPASS)
required for sort are calculated:

If the number of sequences is less than
the current OM. NOPASS is made 1 and the
routine branches to PUTCOV. If the number
of sequences is equa 1 to or greater than
the current OM, the count (NOPASS) is
started at 1 and the OM is multiplied by
itself until the product equals the number
of sequences (NOSEQ). NOPASS is
incremented by 1 for each multiplication.
The routine then branches to PUTCOV.

PUTCOV, AM-D5

A branch and link is made to COMBPT+4
(Chart AK) to calculate the final sort BPT.
Upon return to this routine (at PUTCOV+8),
the constants calculated for the current OM
are saved:

• OM (internal order of merge)

•

•

•

B (average number of records per
internal sort block)

SBSIZE (internal sort block size in
bytes)

BPT (maximum number of internal sort
blocks per 2311 track)

• G (average number of records per phase
1 sequence)

• GAt (available core for sort)

•

•

•
•

•
•

GAREA (number of bytes in a phase 1
sequence, excluding tag area, in GAl)

GAREA1 (maximum number of records in a
phase 1 sequence)

NOBLKG (number of sort blocks in GAREA)

MXBYPT (maximum number of bytes per
t.rack)

AMAX (calculated size of work area)

NOPASS (number of merge passes in
phases 2 and 3)

The routine then branches to CKAMAX to test
for best AMAX.

CKAMAX, AM-E5

The calculated AMAX is compared with the
previous AMAX (BESTBKT). The better of the
two values is saved in BESTBKT and a branch
is made to SW2V to continue calculations.

REDUCEV, AM-C3

The calculated MAXBL3 (equivalent to
SBSIZE) is compared with Ll (maximum input
record length). If MAXBL3 is greater than
Lt, it is decreased by the value of Lland
compared to Ll again. If MAXBL3 is now
equal to or less than L1, a branch is made
to SW2V. If MAXBL3 remains greater than
L1, a branch is made back to COMBPTV to
recalculate constants using the lower
MAXBL3 value (SBSIZE).

Assignment Phase 51

If in the first comparison at REDUCEV
MAXBL3 is found to be equal to or less than
L1, a test is made for the CALCAREA option.
If the option has been specified, a branch
is made to SVORIG; if it has not been
specified, the branch is to SW2V.

SVORIG, AM-E3

The original constants were found to be
best for the current OM and are saved.
These constants and their definitions are
the same as those listed under PUTCOV.

The routine then continues to CKAMAX.

SW2V, AM-F4

If the last set of constants has been
calculated (OM=2), a branch is made to
FETCH9 to fetch the next overlay. If
another set of constants has yet to be
calculated (OM>2), the new save area
address is calculated by adding 32 bytes to
the address in general register R3. If the
OM is equal to or less than 3, the minimum
phase 2 and 3 sizes are used in the
calculation of the next set of constants.

The OM is then reduced by one and a
branch is made back to location PHZ2 in the
listing (calculation of MAXBL2 in the
narrative for STEPlV) to recalculate all
constants for the new OM.

FETCH9, AM-H4

If no errors were detected, the next
overlay (DSORT009) is fetched. If any
errors were detected, overlay DSORTOlO is
fetched.

COMPUTE CONSTANTS FOR ADDROUT SORT - AN

This routine (part of overlay 8) calculates
constants for use with the RAF-type
(ADDROUT) so.rt for fixed or variable-length
records. Formulas used are described in
detail in IBM System/360 Disk operating
System, Sort/Merge Program Specifications,
Form C24-3444.

58 IBM S/360 DOS Sort/Merge

RAFRTN, AN- B1

If the CALCAREA option is specified. switch
CALSWR2 is turned on (unconditional
branch). In any case, the routine
continues to STEPlR.

STEPlR, AN-D1

Constants for use in the ADDROUT run are
calculated:

• PHlBl (maximum number of records
contained in a phase 1 sort block)

• PHlBl;:

•

•

CORESZ - (PHSl+BLKSIZ+SUPR+LENl)
2 [(CF+lO) +8]

CORESZ

PHSl

BLKSIZ

SUPER

lENl

number of bytes of core
storage available for sort
program (CORESZ)

Phase 1 program size

input block length

supervisor size

Number of bytes required for
user program in phase 1

CFPLlO (calculated control field
length+lO)

CFPLlO = TLACFD+IO

TLACFD total length of all control
fields

PHlBl is recalculated using the
formula:

PHlBl = 3624
CFPLlO

The results of the two calculations for
PHlBl are compared and the lesser value is
stored as the effective PHlBl. The routine
then continues to STEPlBR.

STEPlBR, AN-El

Additional constants are calculated:

• BL2 = CORESZ - (SUPER+PHS2)
OM+l

• MAXBL2 (maximum number of records per
phase 2 block)

MAXBL2 = BL2
CFPLlO

MAXBL2 is compared to PHlBl and the
lesser value is saved in RECBLK.

• BL3 =
CORESZ-(PHS34+BLRSOZ+TLACFD+SUPER+LEN34)

OM

• MAXBL3 (maximum number of records per
phase 3 block)

MAXB.L3 = BL3
:;CFP~L"""l-=-O

PHS34 - computed phase 3 size for
ADDROUT

BLKSOZ - Output block size

TIACFD - Total length of all control
fields

LEN34 - length of user program in phase
3.

MAXBL3, MAXBL2, and PHlBl are compared
to RECBLR and the lesser value is stored as
the maximum number of records per block
(RECBLIO.

STEP4R, AN-Gl

The sort block size (SBSIZE) and maximum
Dl.Dllber of blocks per 2311 track (BPT) are
calculated:

• SSSIZE = RECBLR X CFPLI0

• BPT - A branch and link is made to
COMBPT+4 (Chart AK) to calculate the
blocks per track.

Upon return to this routine (at
S'l'EP4R+24) the newly-calculated BPT is
compared to the previous BPT (SAVE+6).
If the new BPT is greater, a branch is
made to CBYPTKR to continue
calculations. If the previous BPT is
greater or equal, the routine continues
to REDUCER •.

REDUCER, AN-Jl

If the CALCAREA option is specified (switch
CALSWRl is on) . a branch is made to
USEORIGR. If the CALCAREA option is not
specified and RECBLK is equal to one, the
previous BPT is the optimum value for this
set of calculations; a. branch is made to
SWIR to nullify the calculations just made
and to recalculate all values using a lower
OM.

If RECBLR is greater than one, it is
decreased by one and a branch is made back
to STEP4R to recalculate SBSIZE and BPT.

US J!X>RIGR. AN-J2

The original values that were passed to
overlay 8 are saved:

• OM (internal order of merge)

• B (number of records per internal sort
block)

• SBSIZE (internal sort block size in
bytes)

• BPT (maximum number of internal sort
blocks per 2311 track)

• G (number of records per phase 1
sequence)

• GAl (available core for sort)

• GAREA (number of bytes in a phase 1
sequence, excluding tag area, in GAl)

• GAREAl (number of bytes in a phase 1
sequence, including tag area, in GAl)

• NOBLKG (number of sort blocks in GAREA)

• MXBYPT (maximum number of bytes per
track)

• AMAX (size of work area)

• NOPASS (number of merge passes in
phases 2 and 3)

A branch is then made to PUTC02R.

CKBYPTRR, AN-AS

The maximumnurober of bytes per track (RPT)
and the maximum work area (AMAX) are
calculated and stored:

• RPT = (RECBLK X BPT)

• AMAX= 2 {FlLESZIRPT)+3

In the AMAX calculation. FILESZ is the
number of records to be sorted, as given by
the user. Three is added to include the
checkpoint tracks.

If the CALCAREA option is not specified
(switch CALSWR2 is off) AMAX is compared to
the work area given by the user (TRACK).
If TRACK is equal to or greater than TRACK.

Assignment Phase 59

a branch is made to COMPGR. If AMAX is
greater than TRACK, the routine continues
to SW1R to nullify the calculations just
completed.

If the CALCAREA option is specified
(switch CALSWR2 is on), a branch is made to
iNCSWR where switches CALSWR1 and CALCSW3R
are turned on, after which a branch is made
to COMPGR.

COMPGR, AN-B4

G area constants are calculated:

• GAl (available core for sort)

GAl =
CORESZ - (PHS1+SBSIZE+BLKSIZ+SUPER+LEN1)

• GA2 (number of sort blocks, plus an
8-byte tag for each record in the sort
block, in GAl>

GAl
GA2 = -----------------------SBSIZE+ 8 (SBSIZE/CFPLl 0)

Note: The value of the denominator used in
this calculation is stored in
SBSZPTAG for later use.

•

•

GAREA (number of bytes in a phase 1
sequence, excluding tag area, in GAl>

GAREA = GA2 X SBSIZE

GAREAl (number of bytes in a phase 1
sequence. including tag area, in GAl)

GAREAl = SBSZPTAG X GA2

ENDGFR, AN-C4

Additional constants are calculated for the
ADDROUT run:

•

•

•

•

Final G (number of records per phase 1
sequence)

G = GAREA
CFPL10

B (number of records per sort block)

B = SBSIZE
CFPL10

NOBLKG (number of so.rt blocks in G)

NOBLKG = GAREA
SBSIZE

NOPASS (number of merge passes)

60 iBM S/360 DOS Sort/Met'ge

File size CFILESZ) is divided by G
and rounded high to obtain the maxi.mum
number of sequences. The OM is then
multiplied by itself until a product
equal to or greater than the number of
sequences is reached. Each
multiplication is counted, and the
count is taken'as the number of merge
passes (NOPASS). If the number of
sequences is less than the OM, NOPA8S
is made equal to one and phase 2 of the
sort/merge program will be bypassed.

The routine then branches to PUTCNSWR.

PUTCNSWR. AN- D4

If the CALCAREA option is specified (switch
PUTCNSWR is on), a branch is made to CKRPT.
If the CALCAREA option is not specified
(switch PUTCNSWR is off), a branch and link
is made to COMBPI'+4 (Chart AK) to calculate
the maximum number of blocks per 2311 track
(BPT). Upon return to this routine (at
PUTCNSWR+8) the calculated constants are
saved:

•

•

OM (internal order of merge)

B (number of records per internal sort
block)

• SBSIZE (internal sort block size in
bytes)

•

•

•
•

•

•
•

•

BPT (maximum number of internal sort
blocks per 2311 track)

G (number of records per phase 1
sequence)

GAl (available core for sort)

GAREA (number of bytes in a phase 1
sequence, excluding tag area. in GAl)

GAREAl (number of bytes in a phase 1
sequence, including tag area, in GAl)

NOBLKG (number of sort blocks in GAREA)
\

MXBYPT (maximum nU.mber of bytes per
track)

AMAX (size of work. area)

•. NOPASS (number of merge passes in
phases 2 and 3)

CKRPT, AN- A2

If switch CKRPT is on (unconditional
branch), it and switch PUTCNSWR are turned
off and a branch is made to CKRPT1. If
switch CKRPT is off (no-op), it and switch
PUTCNSWR are tu.rned on and the routine
continues to CKRPT1.

CKRPT1. AN-C2

The new RPT (number of records per 2311
track) is compared with the previous RPT.
If the previous value is greater, it and
AMAX are saved as the optimum values
calculated up to this point and a branch is
made to CKRECBKR. If the new value is
greater, a branch is made di rectly to
CKRECBKR.

CKRECBKR, AN-D2

If RECBLK (number of records per block) is
equal to one, switches CKRPT and PUTCNSWR
are turned off and the routine branches to
PUTC02R.

If RECBLl< is not equal to one and switch
PUTCNSWR is off (no CALCAREA option), a
branch is made to .PUTC02R to reduce OM and
recalculate constants. If RECBLK is not
equal to one and switch PUTCNSWR switch is
on (CALCAREA option specified), RECBLK is
decreased by one and a branch is made to
STEP4R to .recalculate.

PUTC02R, AN-F3

A test is made to determine if the
calculation just completed is the last
(OM=2). If it is, a branch is made to
OUTPT (Chart AL). If the calculation just
completed is not the last and OM is greater
than 4, OM is reduced by one and a branch
is made to STEP1R to recalculate all
values. When OM is equal to or less than
4, the minimum sizes for phases 2 and 3 are
used, OM is reduced by one, and a branch is
made to STEP1R to recalculate all values_

SW1R, AN-DS

The constants just calculated are saved but
are not used. To accomplish this, the
second byte of the OM is ORed with a

hexadecimal OF (for example, and OM of 07
is made F7) to signal future overlays that
the calculated constants for this
particular OM are nullified and cannot be
used.

If RECBLK is greater than one, a branch
is made to REDUCER to recalculate constants
for the current OM using a decreased
RECBLK. This set of recalculated constants
will be substituted for the nullified
constants for the current OM.

If RECBLl< is equal to one and the last
set of constants has not been calculated
(OM>2), the constants are to be
recalculated using a lower OM. The OM is
reduced by one, (as described under
PUTC02R) and a branch is made to STEP1R.

If RECBLK is equal to one and the last
set of constants has been calCUlated
(OM=2) f a branch is made to OUTPT (Chart
AL).

SELECT ORDER OF MERGE - .AP, AQ

This routine (overlay 9) selects the order
of merge that produces the most efficient
sort run on a time basis. The overlay
utilizes:

• Record length.

• Input/output blocking.

• User-given file size.

• Sys~em model type.

• Available I/O and disk work areas.

Sort times are calculated for each
possible order of merge. Each sort time
consists of:

• Machine process time.

• Disk read and write time.

• Seek time.

Not all orders of merge are possible with
any sort run becauses of disk work area
limitations.

DSORT009, AP-Bl

Base registers are initialized and a branch
is made to BEGIN.

Assignment Phase 61

BEGIN, AP-Cl

The output block size (IBOC) is obtained
from BLKSOZ and a test is made for
merge-only run. If this is a merge-only
run, the entire .routine for selecting order
of merge and calculating sort time is not
required; a branch is made to FETCI0 to
fetch overlay 10.

For a sort run. the input block size
<IBIC) and sort record length (IRL) are
obtained from BLKSIZ and INTPRL,
respectively. For fixed-length records or
an ADDROUT run, a branch is made to FIXED.
For variable-length records, IRL is
re-initialized with L5 (average length of
input records) before branching to FIXED.

FIXED, AP-H1

Constants and registers are initialized:

• MS (machine size) with CORESZ

• LOWTM (lowest sort time) with LMAXNO
(7FFFFFFF) •

•
•

•

Registers 6 and 10 with zeroes.

8PDFAC (speed fa ctor) wi th val ue
according to machine model

FIOCS (time to execute IOCS) with value
according to machine model

The input blocking factor (BI) is then
calculated and stored:

<IBIC) input block size·
BI = -------------------

(IRL) input record length

For an .ADDROUT sort, IRL is re-initialized
to contain the total length of control
fields (TLACFD) plus 10. The routine then
continues to RETRY.

RETRY, AP-J1

The trial order of merge is retrieved from
SAVE table and tested for validity. I.f
invalid, a branch is made to FINAL. For a
valid order of merge, IBR (records in a
sort block), G (size of internal sort
sequence), and BPT (sort blocks per track)
are obtained from the SAVE table. Then
IRPT (records per track), NRTHWK (number. of
tracks required for half of work area), IBC
(characters in a sort block), and BO
(output blocking factor) are calculated and

62 IBM 8/360 DOS Sort/Merge

stored. The routine then continues to
STBO.

STBO,. AP-D2

For tape input or for variable-length
records, the routine branches to CLUB.

For disk input and fixed-length records,
the number of tracks necessary for the
input (NRTIN) is calculated before
continuing at CLUB:

NRTIN = (BPTIIP) X (BI) *
V

*Rounded high by adding 1 if any
remainder.

HPTIIP
HI

Input blocks per track.
Input blocking factor.

V

CLUB, AP-G2

User given file size (number of
records to be sorted --
FILESZ).

For disk output with either fixed-length
records or ADDROUT, a branch is made to
TAGOUT. For tape output or variable-length
records, the calculations at TAG OUT are
bypassed by a branch to SPADE.

TAGOUT. AP-K2

The number tracks necessary for the output
(NRTOUT) are calculated:

NRTOUT = (BPT30P) x (BO) *
V

*Rounded high by adding 2 if any
remainder.

BPT30P
BO
V

SPADE. AP-A3

Output blocks per track.
output blocking factor.
FILESZ

NRTOUT is stored and registers are
initialized to estimate the total number of
drives and tracks available for sort.

REP1, AP-B3

Table DEVTAB is prepared, using device
numbers from the PUB table. DEVTAB
contains a maximum of seven 4-byte entries.
The first two bytes of each entry contain a
device number obtained from TABLEB. The
second two bytes contain the total number
of tracks available on the device.

Note: TABLEB can contain more than one
work area specified for the same
device. DEVTAB accumulates the
number of a vailable tracks so that
there is only one entry per device.

REPB, AP-C3

The numbe.r of tracks for the work area on
the first drive is accumulated and stored
in DEVTAB+2. This function is repeated,
incrementing the DEVTAB location, for each
available drive.

The number of tracks used for input and
output ar~ estimated and the estimated
total number of tracks used by the sort is
accumulated and stored in NRTRKS.

B118, AP-D3

The number of sequences (strings) produced
by phase 1 is calculated and stored in
STRING:

v

G

STRI'NG::: V *
G

*Rounded high by adding 1 if any
remainder.

FILESZ {number of .records to be
sorted}.

Number of records in a phase 1
string.

If V (number of records to be sorted) is
less than G (number of records in a phase 1
string), the value in LOWTM is reduced to
indicate this condition and a branch is
made to VLESSG. If V is not less than G,
the routine branches to STVSOM.

STVSOM, AP-G3

If the number of phase 1 strings (STRING)
is less than the order of merge (OM), a
branch is made to FINAL; if not, the
routine continues to B119.

8119, AP-H3

The time required in phase 1 to read input
is calculated.

B126, AP-J3

SKT2 is accumulated for use in the
calculation of phase 2 seek time. (See
TABLEF function, Chart AQ.) B126 is
repeated until the last pass, when the
routine continues to B135.

B135, AP-.A4

WRT (write time for phase 1, read and write
time for phases 2 and 3) is calculated.

8136, AP-B4

The assumed limits for disk work area are
determined and stored in LL1, LL2, LL3, and
LL4.

8170, AP-C4

Phase 2 seek time is calculated, using SKT2
calculated at B126. Phase 2 process time
is then calculated and added to SKT2.

E181, AP-D4

Phase 3 seek time (SKT3) is calCUlated.
(See TABLEF function, Chart AQ.)

ASSignment Phase 63

S188, AP-E4.

Phase 1 seek, process, and format time is
calculated and accumulated as a sum of its
components: RDT1 (phase 1 read time), WRT
(calculated at B13S), SKT2 (calculated at
B170), and SKT3 (phase 3 seek time).

E200, AP-F4

The lowest sort time (LOWTM) is determined
by comparing the time just calculated to
the previous calculated time. The lowest
value is saved in LOWTM.

VLESSG, AP-G4

The contents of register ROM are saved in
SAVROM (points to the parameters in SAVE
table from which the time just calculated
has been derived).

FINAL. AP-H4

When calculations are completed for the
last order of merge, a branch is made to
.RESTOR; otherwise, the routi ne returns to
RETRY.

RESTOR. AP- HS

The maximum file size (MFS) is calculated
and stored. If a sort time has been
determined, the appropriate SAVE table
contents (determined by pointer in SAVROM)
are moved to the respective location in the
PHASE table.

If no time has been determined, an error
message is printed.

If the CALCAREA option is specified, the
optimum number of work area tracks is
stored in TRACK.

FETC10. AP-CS

Overlay 10 is fetched.

64 IBM S/360 OOS Sort/Merge

TABLEF, AQ- B2

The TABLEF subroutine is used in the
calculation of the seek time for each pass
and for phase 3. A search of three tables
(TABLE, TABLE2, and TABLE3) is made and,
for each table a result (ANS1, ANS2, ANS3)
is calculated using OM (o.rder of merge),
BPT (sort blocks per track), and CPST
(number of cylinders per string).

SEEKTM, AQ-GS

The time for one seek (SKT) is calculated
using various seek lengths (SKLEN), given
the number of cylinders per seek.

• SKLEN~26

SKT' = (SKLEN-26)X 6800 + 7700
177

• SKLEN<26 but ~4

SKT = [((SKLEN-4)X2100)/22]+S600+SKT'

• SKLEN<4

SKT = [(SKLEN X 2600)/4]+3000+SKT'

PRINT CONTROL CARD AND F.ETCH NEXT PHASE -
AR, AS

When the PRINT option is specified in the
SORT control card, this routine (overlay
10) extracts and prints the information
contained in the sort control cards. The
constants that were calculated by the
aSSignment phase are also extracted (from
the phase table) and printed. The routine
then checks for errors and type of run
(sort or merge), and fetches the required
phase 1, 2. or 4 overlay.

I.f errors are detected. messages are
printed and, depending on the unit
assignments explained in overlay 1 (Chart
AA). the program either provides for
operator correction of the error and job
re-run, or cancels the job.

For a merge-only run, the checkpoint
record (phase tables) is written on disk
and overlay DSORr401 of phase 4 is fetched.

For a RESTARr run (available for sort
only) the old checkpoint record is read and
tested and one of four phase 2 overlays is
fetched:

• ADDROUT/Fixed-length records,
OM 2-4 •••• DSORT201

•

•

ADDROUT/Fixed-length records,
OM 5-7 •••• DSO.RT202

variable-length records,
OM 2-3 •••• DSORT203

• Variable-length records,
OM 4-6 •••• DSORT204

An invalid checkpoint record is
indicated by one of two error messages:

•

•

Invalid Restart (7D53D): indicates
sort run was terminated before
checkpoint was written by phase 1.

Invalid Restart (70SSA): indicates
incorrect disk pack placement.

For a sort run, the sort checkpoint
record (phase tables) is written, and phase
1 overlay DSORT101 is fetched.

DSORT010, AR-Bl

The base registers are initialized and a
branch is made to CKPRINT.

CKPRINT. AR-C1

For a CALCAREA run, or for any other type
run in which the PRINT option is specified,
a branch is made to CCDESC. If neither the
CALCAREA nor the PRINT option is specified,
a branch is made to EOJ.

CCDESC, AR-El

The job name and date are printed and a
branch-and-link is made to PRNTCARD if the
PRINT option is specified. If the PRINT
option is not specified, a branch is made
to TSTCALCS.

PRNTCARD, AR-Gl

The print operation is initialized and a
branch and link is made to PRTERR, located
in overlay 1, to print the heading. All
the cont.rol card images are then printed
(by successive BAL's to PRTERR). after
which the routine links back to TSTCALCS.

TSTCALCS, AR-J1

If the CALCAREA option is not specified, a
branch is made to NOCALCS; for a CALCAREA
run, the branch is to PRTCALCS.

PRTCALCS, .AR-K1

This routine extracts and prints the
results' of calculations made by the program
for:

•

•

MINTRK - minimum number of work area
tracks

TRACK - optimum number of tracks for
work area

• NOPASS - optimum number of passes

If this routine was entered as the
result of the CALCAREA option and the PRINT
option was not specified, a branch is made
to EOJCALC. If the PRINT option was
specified, the switch at EOJCALSW is turned
on (unconditional branch) and a branch is
made to NOCALCS.

NOCALCS, AR-C2

A test is .made to determine that at le~st
one file is specified. For a merge-only
runt the sort printer routine (BRCH) is
modified at location M1. The routine then
continues at BRCH.

BRCH, AR-E2

The values given by the user (control
fields, format code, size of sort, files)
are extracted from the phase table starting
at CF1LNG. The values are printed out (by
successive BAL's to PRTERR) and the routine
continues at REt.

RE1, AR-F2

The record type and record lengths are
extracted from the phase table and printed.
If only one length is given by user, an
assumed L3 value is pr inted. For
variable-length records, the values for Ll
through L5 are printed; for fixed-length
records, only Ll and L3 are printed.

Assignment Phase 65

INF. AR-G2

The input block size, block type (or
assumptions, for variable-length records),
input media, volume(s), and the CLOSE and
OPEN options are extracted and printed.

OUT F2, AR- H2

The output block size, output media, and
output OPEN and CLOSE options are extracted
and printed. Then, if required, the user
file name, address of user routine, and
exi t numbers fo.r each phase are printed.

OPFLE, AR-K2

All other options given by the user,
whether in the OPTION control card or other
control cards, are ext.racted and printed.

CONOUT, AR-A4

Calculated constants are extracted and
printed:

• Computed maximum file size for sort.

• Computed maximum input and output block
sizes for sort/merge.

• User-given number of tracks for
sort/merge.

• sort/merge program origin.

Note: If the assignment phase was
termina ted before a 11 of the
calculations were completed, and if
the PRINT option is specified, some
constants will be zero or will not
be printed.

EOJ, AR-B4

If the switch at EOJCALSW is on, indicating
that the PRINT option was specified for a
CALCAREA run, a branch is made to EOJCALC.
With switch EOJCALSW off, the routine
branches to EOJZ for a merge-only run. For
a sort, the sort block size (SBSIZE) is
increased by one for phase 2 and, if the
number of passes (NOPASS) is odd, the
pointers to the work area are reversed in
an attempt to improve the sort time and

66 IBM S/360 DOS sort/Merge

save a pass. The routine then continues to
EOJZ.

EOJCALC, AR-C3

This routine is entered upon completion of
the assignment phase for a CALCAREA run.
Register 9 is initialized with the address
of message E80I. Switch EOJCSW is turned
on (unconditional branch> to provide the
correct exit after the end-of-phase message
is printed. A branch is then made to
MSG91A (Chart AS) to print
end-of-assignment-phase message for the
CAICAREA run.

EOJZ, AR-E4

The checkpoint record number is updated,
and locations NOBLKG+2 and NOBLKG+3 are
initialized with output file label data and
SYSLOG data, respectively. If no errors
are detected at this point, the routine
continues at TSMERG. If errorS are
detected, a branch is made to ABORT in
overlay 1 (Chart AA).

TSMERG, AR-G4

For a merge-only run, a branch is made to
WTCKMG; for a sort, the routine continues
at TSREST (Chart AS).

WTCKMG, AR-H4

The checkpoint record is written for the
merge-only run. If the PRINT option is
specified, switch F4SW is turned on
(unconditional branch) to provide the
correct exit after the end-of-phase message
is printed; a branch is then made to MSG91
(Chart AS).

If the PRINT option is not specified, a
branch is made to FETCH4 to fetch the first
overlay of phase 4.

TSREST, AS-BS

If this is not a RESTART run, a branch is
made to WTCKPSi if a RESTART run, a
branch-and-link is made to RDCKPR to read
the previous checkpoint record. The

validity of the record is then tested and,
if invalid, a branch is made to EOJ3RT.

If the previous checkpoint .record is
valid, a test is made for the PRINT option.
If the option is specified, switch F2SW is
turned on (unconditional branch) to provide
the correct exit after the
end-of-assignment-phase message
and a branch is made to MSG91.
PRINT option is not specified a
made directly to FETCH2.

WTCKPS, AS-B4

is printed,
If the
branch is

The checkpoint record for the sort run is
updated and written on the specified
device. If PRINT option is specified, a
branch is made to MSG91 to initialize and
to print the end-of-assignment-phase
message. If the PRINT option is not
specified, a branch is made directly to
FETCH1.

EOJ3RT, AS-E5

The invalid-restart message is printed by a
branch-and-link to ERROR in overlay 1.
Then, depending on the unit assignments,
the user may have the option to resume the
run. If the user reply is IGNORE, the
program will be re-entered at WTCKPS for a
complete sort run; otherwise, the job is
canceled.

MSG91, AS-C1

This location is entered at the end of the
assignment phase, if the PRINT option is
specified, for merge-only, sort, or restart
runs. Register 9 is initialized with the
address of message E91 and a branch is made
to MSG91A.

MSG 91A, AS-Dl

The end-of-assignment-phase message (E91
for sort, merge-only, or restart, E801 for
CALCAREA) is printed. The exit switches

that were initialized earlier in the phase
are now tested. The exit for each type o.f
run, in the order tested, is:

r-----------~-----~----------_, I Switch on: I Go to: I Run type: I
.---------+-------+-----------f
I EOJCSW I EOJCl I CALCAREA I
I F4SW I FETCH4 I MERGE I
I F2SW I FETCH2 I RESTART I
I none I FETCHl I SORT I L-________ ~ _______ ~ __________ J

EOJC1, AS-F1

This is the end-of-job for a CALCAREA run.
If no errors are detected, the EOJ macro is
issued. If errors are detected, a branch
is made to ABORT in overlay 1 (Chart AA).

FETCH4, AS-G2

The first overlay of phase 4 (DSORT401) is
fetched for a merge-only run.

FETCH2, AS-F3

The appropriate phase 2 overlay is fetched,
depending on the type of run for RESTART.

• DSORT201 for ADDROUT or fixed-length
records, order of merge 2-4

• DSORT202 for ADDROUT or fixed-length
records, order of merge 5-7

• DSORT203 for variable-length records,
order of merge 2-3

• DSORT204 for variable-length records,
order of merge 4-6

FETCHl, AS-E4

The first overlay of phase 1 (DSORT10l) is
fetched f or a so.rt run.

Assignment Phase 67

INTERNAL SORT (PHASE 1> - 02

Phase 1 initiates the sort operation. A
modified internal merging technique sorts
the input records into sequences and moves
them to the disk work area.

Phase 1 is divided into five overlays:

• Overlay 1(DSORT101) - Initialization of
the multi-volume (Exit 11 linkage)
routine.

•

•

•

Overlay 2 (DSORT102) - Read checkpoint
and format-disk routine.

overlay 3 (DSORT103) - Initialization
of input-data, internal-sort, and
output-data routines for disk or tape
input.

Overlay 4 (DSORT104) - Initialization
of input data, internal-sort, and
output-data routines for an ADDROUT
type run.

• Overlay S (DSORT10S) - End-of-phase
routine.

The initialization routine modifies the
sort program to perform a specific sort
based on control information supplied by
the user and processed by the assignment
phase. It also:

• Initializes compare instructions.

• Defines the input/output record areas.

•

•

Relocates and/or deletes several
routines so that the program occupies
th~ least amount of main storage for
each type of sort run.

Formats the tracks in the disk work
area, based on the sort-block length.

Phase 1 reads records from disk or tape
into main storage until the input area (G)
is filled. Each record can be located by
the address of its leftmost byte (Figure
16, section 1).

During the sort operation, the records
remain in thei.r original positions in the
input area; only the record addresses are
sorted in tables to indicate the order in
which the records are to be moved to the
output area.

68 IBM S/360 DOS Sort/Merge

There are basically two levels of
sorting in phase 1. Level 1 builds
sequences of two records each (doublets)
from the records in G area. Two records at
a time are compared to each other for high,
equal, or low. The record selected is
determined ~ the user-given sequence for
each field (ascending or descending). The
correctly-sequenced doublet is represented
in a table by the addresses of the two
records.

Level 2 merges the 2-record sequences
into 4-record sequences in a second table.
Again, the sequences are represented by the
addresses of the records. The 4-record
sequences are then merged into 8- record
sequences in the first table. The merging
continues between the two address tables
until there are but two sequences left in
either one of the tables (Figure 16,
section 2). The two remaining sequences
are then merged with the records being
moved from the input area to the output
area.

The records are moved from the input
area to the output area in the order in
which their addresses appear in the address
table (Figure 16, section 3). The output
area can be either equal to G or a
sub-multiple of G so that the sequence may
be written in a blocked format on disk. As
the output sort-block is filled, it is
written in the disk work area at its
calculated interleaved address.
Interleaving is an arrangement of the disk
work area, determined by the assignment
phase, that minimizes disk seek-time in
phase 2 and 3.

After the sequence has been written on
disk, the input volume or file is checked
and, if more records are to be read, the
input a.rea (G) is refi lIed and the program
returns to level 1.

If all records in the input file(s} have
been processed into sequences, the end of
phase .routine is executed. constants are
calculated and tables are updated for phase
2.

Figure 17 is a main-storage layout of
phase 1 showing the five overlays.

I T ,

D@
Disk Tape

Address J ~ ~ ~ ~ ~ ~ ~ 8 : 0
03692581 :

++++++++ :

(W~kA'~ r
1

Block 1

Block 2

Record /170 / 040 / 381 \427 \156 1132 1 079 1 002 1 ~ Output

.""""""'"''''''''''I,l~R~~S:8..r,e..1J~~~'\~~)'''''''''"""""""""",,,,:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,""",:~~~,~\~,k""""""""", .. "".
I 2 Record Sequences f;\ "r~.:':.r~~~u~~ces \

I (040) 0013 VI (040) 0013 1 \

I (170) 0010 _ } ___ -i (170) 0010 I } \
1 (381) OOlr 1 (381) 0016 1 \
I /~ (427) 0019_ I (427) 0019 I - - - - ... - - - - ~
~ - • (132) 0022 -} 1 (002) 0031 I Sequence 1
~ "' (156) 0025 _ I (079) 0028 I
~ (002) 0031 - - - - --I (132) 0022 1

(079) 0028_ L __ Q1~LOQ~ I Note: Records shown in

Address
Table -------....

Rec. Addr. Rec. Addr. Section 2, LEVELS 1 and 2 only for
LEVEL 1 LEVEL 2 illustration.

Figure 164 Phase 1 Internal SOrting (Ascending Sequence)

Internal Sort 69

...J
o

8
CIl

CIl
o
t1
rt
"-
~
~
(!)

Supervisor

Disk label
Processing
Tape label
Processing
Disk DTF Table
Tape DTF Table
Checkpoint
Routine
Disk lable
Initialization
Tape label
Initialization

Overlay 1
DSORT 101

Nate: Nat drawn to sea Ie.

Supervisor

Compare Chain
SIGZON
SIGPAC
Fixed Point
Floating Point
Tape Input

Overlay 2
DSORT 102

" ::0
.E ~
o ~ v._
0-
- " " a "" ""

~
o N ~ .- " - r:: .2 '';:

]~

Supervisor

Mainline
level 1 Routine
level 2 Routine
Output Routine

Disk Input
Variable length
Record Routi ne
Move Rout i ne
Conversion
Routines

Variable length
Input
Internal Sort
Compare Cha i n
Move Routi ne
Output
Conversion

Checkp9int
Record Area

Supervisor

Mainline
level 1 Routi ne
level 2 Routine
Output Routine

Overlay 3
DSORT 103

Relocated
Routines

Table of
Addresses

Input
Area

Output
Area

" ::0
o ~ -" o r:: v._
0-
- "
" 0 "" ""

r::

~
g ~
.- " - r:: 0._

:-€: ~
,E",

Supervisor Supervisor

Mainline Mainline
level 1 Routine level 1 Rout; ne
level 2 Routine level 2 Routi ne
Output Routine Output Routi ne

Addrout Input
Routine

Relocated

Conversion and/or Routines

User Exit linkage

Compare Chain

Table of

Conversion and/or
Addresses

User Exit linkage
Input
I nternal Sort
Compare Chain
Output
Conversion

Input
Area

Checkpoint
Record
Area

Output
Area

Overlay 4
DSORT 104

Supervisor

Mainline
level 1 Routine
level 2 Routine
Output Routi ne

Constants

Compression
Routine

Exit
Routine

Overlay 5
DSORT 105

INITIALIZATION ROUTINE FOR MULTI-VOLUME
(EXIT 11 LINKAGE) - BA.

The multi-volume - exit 11 linkage is
initialized according to the specifications
set by the user in the sort control cards.

The specifications include:

• File type (tape or disk input)

• Label type

1. Disk - standard labels with or
without user additional labels

2. Tape - standard labels with or
without user additional labels,
non-standard labels, or unlabeled

• User options

1. Alternate drive for tape input

2. Rewind option for "open" or "close"
times

When the multi-volume (exit 11 linkage) is
initialized, it is written on disk in the
checkpoint track and the second overlay of
the phase (DSORTI02) is fetched.

The format routine arranges the disk
work area, cylinder by cylinder, for use
with the interleaving technique. The
address for each area (sort block) on disk
is built from constants supplied by the
assignment phase. The lower four bytes are
based on the sort block length (Figure 18).
The next four bytes (CCHH) are based on the
lower limit of work area extents.

Disk
Address

ccw

I 2 Bytes I 4 Bytes I
,I I , ,

" ,
" " / ,

/ ,
/ '! I C I ii

:~ ~ Dala
Ie.. 3 1 Address
lit 31

o
" e..

I
lower 4 Bytes I

I

8 Bytes

Figure 18. Disk Address Format

10 Bytes

The disk work area format is started,
using the ccw's that were built for a
cylinder from the disk addresses just

completed. When the cylinder limits are
reached, the CCHH bytes of the disk address
are updated, and the process is repeated
until the upper limit of the work area is
reached.

INITEX11, BA-B1

The label routine base register is
initialized and a branch is made to
LBLINIT.

LBLINIT, BA-Cl

The address of the checkpoint track and the
user routine are obtained from the
assignment phase table. Then, if the input
file is on tape, a branch is made to
INTAPE; if on disk, the routine continues
to DSKINIT.

DSKINIT, BA-D3

The DTF table DSKDTF is initialized for
disk operation and for user exit 11 (if
specified). The routine continues at
EOFINIT.

EOFINIT, BA-F3

The input file name and the EOF (end of
file) routine address are inserted in the
disk DTF table; a branch is then made to
CBKPT.

INTAPE. BA-Cq.

The tape input switch (MNLDSK) is turned on
and the DTF table TAPDTF is initialized for
tape operation. The multi-volume routine
and the DTF table are initialized for type
of labels (standard, non-standard, or
unlabeled) and for user exit 11, if
specified. The routine then continues to
INIT32.

Internal Sort 71

INIT32, BA-H5

The tape DTF table is initialized for the
open and close rewind options and a branch
is made to CHKPT.

CHKPT, BA-G3

The second checkpoint track is formatted
and the initialized multi/volume routine is
written. The next overlay of phase 1
(DSORT102) is then fetched.

FOR~AT ROUTINE - BB

The checkpoint record that was passed on
from the assignment phase is read into main
storage. Some of the data contained in the
checkpoint record is then used to format
the work area:

• Work area extents (TABLEB from the
assignment phase)

• Blocks per track (BPT)

• sort block length (SBSIZE)

IBV02l, BB-B2

A channel program is initialized and the
checkpoint record is read. The routine
then continues a t FORMAT.

FORMAT. BB-C2

For an ADDROUT run. the branch at FETCH is
initialized so that overlay 4 will be
fetched. Constants 8PT, SBSIZE, and TABLEB
are obtained from the checkpoint record and
inserted in FRMBPT, register XWORK1, and
WKTAB, respectively. If BPT is equal to 1,
the format routine is bypassed by a branch
to FETCH. If the BPT is 2 or more, CCW's
are built to format a cylinder.

72 IBM S/360 DOS Sort/Merge

FORMGO, BB- F4

After the format for a cylinder has been
established, new disk addresses are placea
in existing CCW·s to organize the next
cylinder. Processing continues until the
format of the entire work area is
completed. A branch is then made to FETCH.

FETCH, BB-G4

Overlay 4 (DSORT1041 is fetched for an
ADDROUT run; overlay 3 (DSORTI03) is
fetched for all other runs.

INITIALIZATION FOR DISK OR TAPE INPUT - BC

After the disk work area has been
formatted, this overlay (DSORT103) reads
the checkpoint record and initializes the:

• Input routine.

• Internal-sort routine.

• output routine.

• End-of-phase routine.

Input routine. The initialization
routine determines which input routine is
used for a sort run. Tape input routines
are relocated to the area of the disk input
routine.

Internal-sort routine. Several
constants and addresses are initialized:

• G (number of records to be sorted).

• Number of sort blocks in G.

• Record length.

• Location of address table.

• Number of doublets.

The compare chain sub-routine is
initialized; it is then relocated
regardless of the input type. The lower
and upper limits of the main-storage input
area (Figure 19) are calculated and stored,
as is the start of output area.

Core
Layout Supervisor G

Lower

Limits

Upper

~

oVerlay*3L-----------~-L--------~-------/~7f1----------~~I~----~----~

r- Input Area --:
Transient
Area

Address I
Tables I

Note: Not drawn to scale.

Figure 19. Limits of Input Area

Output routine. The seek and search
CCW's and CCB, and the DSHIFT table are
i ni tialized.

IBV022, BC-B2

The checkpoint record is read in at the end
of the overlay and the routine continues at
VLRINZ.

VLRINZ, BC-C2

The variable-length address routine is
initialized if one or more of the following
routines are specified:

• Variable-length input.

• Data conversion.

• User exit 12.

The variable-length address routine is
also relocated, and the compare chain is
initialized to load addresses from address
table 1.

If user exit 12 is specified, the
linkage to the user programming is
prepared. The variable-length output
routine is then initialized and relocated
and the routine continues to INPTI'Z.

INPTIZ, BC-G2

A test is made to determine the type of
input (disk or tape). Disk input is
initialized to process key. if any; tape
input is initialized and the sub-routine is
relocated at P1INBG. The routine then
continues at IBVAA1.

I BVAAl , BC-B3

G, number of sort blocks in G, and record
length (computed by the assignment phase)
are relocated for use by the internal sort
routine. The number of doublets is
computed and saved in NRDUB.

constants supplied by the assignment
phase are used to initialize the compare
chain with the number of control fields and
the displacement and length of each field.
The compare string is relocated.

If data conversion is specified, the
conversion routine is relocated and
initialized with the number of control
fields and the location of the compare
chain.

FLMVGO, BC- F3

For fixed-length input, the move routine is
initialized with the record length.

FLMVBC, BC-G3

USing G supplied by assignment phase,
calculations are made to determine the
areas necessary for the address tables. the
start and end addresses of the input area,
and the start address of the output area.

OUTIZ, BC-J3

The output routine is initialized for
interleaving. The disk address calculation
routine is initialized to compute disk
addresses for the sort run. The CCW and
CCB are initialized, and the startinq
addresses for the first order of merge are
calculated and placed in the DSHIFT table.

Internal Sort 73

If variable-length records have been
specified, the variable-length output
routine is relocated to IBVMC3 and is
initialized with the start address and
upper limit of the output area.

A branch is then made to DINMVA (Chart
BD) to write the mainline in the checkpoint
track area.

INPUT ROUTINE FOR DISK OR TAPE- BD

The initialization routine of phase 1
determines which input routine (disk or
tape) is to be used for any specific run.
In either case, a test is made for a full G
area. The input area consists of G plus an
overflow area that is used when the input
blocks or records exceed the G area. When
the G area is full, the current address
within the input area is stored and the
program branches to the sort routine.

Disk or tape files were opened by the
mUlti-volume routine at initialization
time.

Disk input. Records are read from disk
to the main storage input area until G is
full. As the records are read, a check is
made for an end-of-volume condition. After
a reco.rd is read, the disk address of the
next input record is built. This address
may be on the same track or on the next
track and/or cylinder.

Tape inPUt. Records are read from tape
and checked for end-of-volume and full G
area. Error records are bypassed, if so
specified by the user.

Fixed-length records with user exits,
variable-length records, or records
requiring data conversion have their
addresses built one at a time as they are
processed.

INMOVE, BD-B1

Registers are loaded with start and end
addresses of the input area and unsorted
records are moved to the start of the input
area. This function is also used to move
variable-length records to the output area.

This routine is not entered the
first time through phase 1.

74 IBM 5/360 DOS Sort/Merge

P1INBG, BD-El

Note: This description is for disk input.
For tape input, the tape-input
routine (Chart BE) will have been
relocated to P1INBG.

When the end of a cylinder is reached,
the address of the next CYlinder is
constructed (at DINJCY). It end-ot-volume
is reached, a branch is made to the
checkpoint sub-routine, DINMVA. If neither
condition exists, CCW's are built (at
DIBERE) for reading the count fields of the
G records. The routine then continues to
DIBLRD.

DINMVA, BD-D4

Phase 1 mainline is written onto the
checkpoint track and the multi-volume
routine (D50RT10l) is read into main
storage. After the multi-volume routine
has been executed, it is written back onto
the checkpoint track and the phase 1
mainline is read into main storage.

DIBLRD, BD-A2

The read CCW is initialized with
information supplied by the read count
chain and records are read from the disk
input area. If end-of-file is detected, a
branch is made to the mUlti-volume routine
via DINMVA. When G area is full, a branch
is made to INEXIT. If end-of-cylinder is
detected, or if G area is not full, the
routine returns to P1INBG.

INFINI, BD-H5

This function is entered when the final
volume of the final file has been read; it
is used to calculate the final G. The
number of doublets is determined and saved
in NRDUB. and the end-of-input switch
(IBVNE4) in the output routine is set so
that the next overlay can be fetched at
that time.

It the output will consist of more than
one block, a padding switch (PADSW) is set
so that the last output block will be
filled with F'S (for ascending records) or
wi th 0' s (for descendi ng records). A
branch is made to INEXIT for fixed-length
records, or to ONEXIT tor variable-length
records.

INEXIT, BD-J5

The current end-of-input-area address is
saved in INMAX and the record count is
updated and saved in RDCNT. A branch is
then made to P1LEVl in the internal sort
routine (Chart BF).

ONEXIT, BD-J4

This sub-routine is entered for
variable-length records and, if required,
for user exit 12 and data conversion;
initialization was done at VLRINZ (Chart
BC). Addresses a.re built for all records
in G area and a branch is made to P1LEVl
(Chart BF).

TAPE INPUT ROUTINE - BE

TINBG, BE-B3

For tape input, this routine is relocated
at P1INBG.

Tape records are read in and tests are
made for end-of-volume, checkpoint records,
errors, and full G area. Checkpoint
records are bypassed and the next record is
read. If end-of-volume is detected, a
branch is made to the mUlti-volume routine
via DINMVA. If an error is deteced, the
record is bypassed, if specified by the
user (exit 13), and the bypassed-record
count is incremented and stored in INTBYP.
If the bypass option is not specified,
operator intervention is allowed.

When the G area is full, a branch is
made to INEXIT (Chart BD). At
end-of-file(s) time, the bypassed-record
count is printed and a branch is made to
INFINI (Chart BD).

INTERNAL SORT - BF

Records in the G area are sorted and merged
by the internal-sort routine, which is
divided into levels 1 and 2.

Note: The records are not phYSically
sorted; their addresses are placed
in sequence in address tables. In
the following illustrations, records
are shown in the address tables for
clarification only.

Level 1. Addresses are built for two
fixed-length records located in the G area.
(The addresses for variable-length records
were built at ONEXIT, Chart BD.> The
control fields of the two records are
compared; the address of the winning record
is placed in one of two address tables,
followed by the address of the losing
record. The two-address sequence in the
address table is referred to as a "dOUblet"
(Figure 20). The sequence that determines
the winning and losing record is designated
by the SORT control card. The
address-building and sorting processes
continue until the G records have been
sorted into doublets.

0010

I~ Main Starage Input Area (G) .\
Record 170 040 381 427 156 132 079 002

Record Address 0010 0013 0016 0019 0022 0025 0028 0031

Record 040 170 381 427 132 156 002 079

Record Address 0013 0010 0016 0019 0025 0022 0031 0028

~

-I ~ Doublet
Address Table 1

Figure 20. Doublets

Level 2. Registers are initialized for
the merge operation. The control fieldS of
the records represented by the first
address of each of the first two sequences
(doublets) are compared. The address of
the winning record is stored in the second
address table. Comparison is then made
between the record represented by the
second address in the winning sequence and
that represented by the first address of
the losing sequence. Again, the address of
the winning record is stored in the second
address table (Figure 21). Merging
continues until the end of one of the
sequences is reached, at which time the
addresses remaining in the alternate
sequence are copied into the second address
table. The process is repeated for the
next two sequences and continues until all
sequences from the first address table have
been transferred to the second address
table. (A sequence may be called a
"string" when it contains more than two
records.)

Internal Sort 75

I_ Address Table 1 ·1
Record 040 170 381 427 132 156 002 079

Record Address 0013 0010 0016 0019 002,5 0022 0031 0028

Record 040 170 381 427 002 079 132 156

Record Address 0013 0010 0016 0019 0031 0028 0025 0022

I·
4-Record Sequence

al Address Table 2

Figure 21. 4-Record Sequences

When all sequences have been
transferred. the address tables are
reversed, and the 4-record sequences are
merged into 8- record sequences (Figure 22).

""'1------ Address Table 2------1--1

Record 040 170 381 427 002 f179 132 156

Recard Address 0013 0010 0016 0019 0031 0028 0025 0022

Record 002 040 f179 132 156 170 381 427

Record Address 0031 0013 0028 0025 0022 0010 0016 0019

I·
8-Record Sequence

al Address Table 1

Figure 22. 8-Record Sequences

When only two strings remain to be
merged in an address table, control is
passed to the output routine (Chart BG).
The records represented by the addresses in
the remaining strings are then merged into
the output area (Figure 23).

76 IBM S/360 DOS Sort/Merge

r-----:;- Ad ,obi. 2 ~I String 1 String 2

" A (V ...
Record 040 170 381 427 002 079 132 156

Record Address 0022

Record

Figure 23. Output

P1LEV1, BF-B2

Addresses are built for G records
(fixed-length) and doublets are created for
processing in level 2. For variable-length
records, addresses for all G records have
been built at ONEXIT (Chart BO).

A flag is entered at the end of the last
doublet created from G and the routine
continues to IBVIF4.

IBVIF4, BF-C2

The level 2 registers are loaded with
branch addresses. A branch is made to
IBVJH2 to get the address of next doublet
from the address table and the routine
continues at CMPCHN.

CMPCHN, BF-D2

Control fields of two records are compared;
when the winning record is determined, a
branch is made to STORMl or STORM2, as the
case may be. When two strings or less
remain, the branches will be to ST01ZZ or
ST02ZZ and the program continues to the
output routine <Chart BG).

STORMi-STORM2, BF-E3

If the record from the doublet of string 1
is the winner, STORMl is entered to store
that address in the second address table.

The string base register is incremented by
4 and if neither string is depleted, a
branch is made to CMPCHN.

Entry to STORM2 is made when the record
from string 2 is the winner. The
processing is the same as that for STORM1.

If string 1 is depleted, but not string
2, a branch is made to STORM2; if string 2
is depleted, but not string 1, the branch
is to STORMl. When both strings have run
out, a branch is made to EXIT.

EXIT, BF-G3

The base registers for string 1 and string
2 are initialized. When two strings are
left in the input address table, the
condition is indicated by a '03' in string
2. A branch is made to CMPCHN for compare,
then to IBVJC2.

REDOUT, BF-H5

If only one string remains in the input
address table, the routine initializes to
move that remaining string to the output
area. A branch is then made to IBVJC2.

IBVJC2, BF-J4

The input/output address tables are
reversed and a test is made to determine if
two or less strings remain in one of the
address tables. If there are more than two
strings remaining a branch is made to
CMPCHN; if not, the last pass branches
(ST01ZZ, ST02ZZ) are initialized before
branching to CMPCHN.

OUTPUT ROUTINE - BG

The output routine merges the remaining two
sequences into the output area instead of
into an address table. When the output
area is full, it is written in the disk
work area. The DSHIFT table is used for
storing the starting disk address of each
sequence in a set. (A set is the number of
sequences, equal to OM, order of merge,
that the next phase will use in a merge.)
The address for block 1 of a sequence is
moved from the DSHIFT table to a storage
area, where the addresses of succeeding
blocks are built. As the blocks per track
or cylinder number in an address is
exceeded, the complement of the record
number or cylinder number is added (Figure
24). If the current disk address just
built exceeds the upper work limit, a new
work area extent is brought in from the
WKTAB table, and a new current disk address
is computed.

After all blocks of a G are written on
disk, the current disk address is saved in
the lower section of the DSHIFT table. All
other sections of this table move up, with
the uppermost section having the starting
disk address for the next sequence of the
set. Control is passed to the input
routine for the reading of the next G
records.

It is possible that the size of the
input file is such that the final output
block cannot be filled. When this is the
case, a padding routine fills in the final
output block so that it can be written in
the disk work area. Ascending control
fields pad a block with hex F's Cl-bits)
and des cending control fields pad with
zeros so that these will be considered
"losing" records. A record count is kept
so that padding records may be dropped in
phase 3.

Internal Sort 77

Max
of
60 Sections

Max
of
60 Sections

I
, ,

I I I I I

DSHIFT Table

4= Order of Merge
5 = Blocks Per Track

------.rJ'I ,.- \.:..J
I IC I H I HI R,t IH HI R I 't I I I I

:S
:S
IS
Is
I

-Before­
I
I

0
0
0
0

7 llA
7 21A
7 31A
7 4 IA

0 0
0 0
0 0
0 0

0
0
0
0

CD
CD
o

Displacement PUB Lower Upper
Table Limit Limit

\----------------y----------------' 0

I I I I I I I I
ICIHIHIR 'CIH'H'R

I IS 0 7 21 A 0 0 0 I
:S 0 0 0 I 0 7 3 I A

I :S 0 7 4:A 0 0 0 I
I

19 o 0 2:A 0 0 0 I -

CD
o
CD
CD
@

@

Starting Address
Add Order of Merge

15 Record Number Val id
(Equal to or Less Than BPT)

Add Order of Merge

Record Number Is Invalid
Add Complement of BPT
to Address (05"FB)

15 Record Number Valid

Add Order of Merge

Record Number 15 Invalid
Add Complement of BPT
to Address (05C"FB)

Is Record Number Valid

Add Order of Merge

Record Number Is Invalid
Add Complement of BPT
to Address (05=FB)

Track Number Invalid
Add Complement of Track

----------B Address of lst Sequence
of Next Set

-After-

Cylinder S

Track 6 [[I J [

Track 7 I Block 1 I I I Block 2

Track S I I I Block 3 I
Work
Area Track 9 Block 4

Cylinder 9

Track 0 Start of
New Set

Trod: 1

Figure 24. Address Creation

78 IBM S/360 DOS Sort/Merge

C H

oe 00

08 00

oe 00
00 00

08 '00

08 00
00 00

08 00

08 00
00 00

08 00
00 FF

09 00

H

07

07

07
00

OS

08
00

09

09
00

OA
F6

00

R

01

05

+4

09
FB

04

+4

08
FB

03

+4

07
FB

02
00

02

Current
Disk
Address

I
t

4--Block 1

+-Block 2

4--Block 3

_Block 4
(G)

Records
Processed

~ Block 1 + • Block 2

I Record 1 I Record 21

Record 3

Example: 3-400 Character Sort Blocks in a Sequence
6-Variable-Length I nput Records

Record 1 - 250 Bytes
Record 2 - 100 Bytes
Record 3 - 400 Bytes
Record 4 - 200 Bytes
Record 5 - 100 Bytes
Record 6 - 200 Bytes

l ~ Block 3

Record 4 I Record 51 Unused*

l
I

I. 400 Bytes .1 I. ·1 ,.....----400 Bytes ---....-.j I· 400 Bytes .1
* Record 6 is not outputed because it will not fit in the last block of the sequence.

Figure 25. Output, Variable-Lenqth Records

The output routine for variable length
differs in that it may be necessary to
split records between blocks (Figure 25).

When the end of the file is reached,
overlay 5 (DSORTl05) is fetched.

MOPS1, 00-82

Records represented by the winning
addresses are moved into the output sort
block and a branch is made to IBVMC3.

IBVMC3, BG-C2

As long as the output area is not full, a
branch is made to IBVME2 to restore the
level 2 registers and to return to the
location stored in XLINK (ST01ZZ+8 or
ST02ZZ+8).

When the output a.rea is full, G count is
reduced by sort block count and tests are
made for end of string and for padding
records. If padding is not required. a
branch is made to IBVMH4. padding records
are used for fixed-length records when the
last sort block is not completely filled.
The padding routine is entered by a branch
to PADRTN.

PADRTN, BG-E3

Records are built as losing records,
depending on the sequence specified in the
SORT control card. Zeros are padded for
descending sequence~ l-bits (hex F) for
ascending sequence. The records are moved
to the output area until it is full. The
routine then continues to IBVMH4.

IBVMB4. BG-F2

An EXCP macro is issued and the output
block is written on disk. The next disk
address is created using BPT (blocks per
track) and the work area limits.
calculations are checked for validity of
tracks and cylinder. (For a more detailed
description of address creation, see Figure
24 and accompanying text.) The routine
then continues to IBVPB2.

IBVPB2, BG-H2

If the block count is equal to the order of
merge times the number of blocks per
string, it indicates the end of a set; a
branch is made to IBV001 where the current
disk address is saved (in OUTRO) as the
starting address of the new set. A branch
is then made to IBVNE4. If it is not the
end of a set, the current block count is
saved and the routine continues to IBVVLR.

Internal Sort 79

I BVVLR. BG-J 2

For an end-of-string condition. a branch is
made to IBVND4 where the DSHIFT table is
initialized to use the next address for the
start of the next sequence. The DSHIFT
table is shifted so that the next starting
address is located at the start of the
table. The routine then continues to
IBVNE4.

If not the end of a string. a branch is
made to IBVMF2 to restore registers and to
return to the location in XLINK (ST01ZZ or
STOR2ZZ).

IBVNE4, BG-J4

A branch is made to INMOVE in the input
routine (Chart BF) until the end-of-file is
reached. Then the routine initializes for
the next overlay and branches to FETCH
where DSORT10S is fetched.

4 -- Order of Merge
3 -- Blocks Per Sequence
8 -- Blocks in Lost Set

Table
IBVTAB

Before Compression

o 3

Sequence
W

o 3

Sequence
X

END-OF- PHASE ROUTINE - BH

When the end-of-file is reached. phase 1
executes the compression routine and
updates the checkpoint record.

The compression routine checks the
number of blocks in the last set of phase
1. Gaps between blocks exist if the number
of blocks do not equal order of merge times
number of blocks per sequence (Figure 26).
A table labeled IBVTAB stores the number of
blocks for each sequence in the last set.

For example, in Figure 26, the first
sequence has three blocks, the second
sequence has three blocks, the third
sequence has two blocks, and the fourth
sequence has no blocks. The count is
stored in IBVTAB table. The compression is
accomplished through the use of read and
write commands. A read command is given
starting with the first block address of
the last set. IBVTAB indicates that there
are three blocks in sequence 1. The write

o 2

Sequence
y

o o
Sequence

Z

FF 00

.---------------------- - Lost Set ----------------------_

Work Disk ~ I W X Y W X y W X
Areo ~~~ ___ B_l~~_B_l~ ___ B_l __ ~ __ ~ __ ~B~2~ __ ~B~2~~~B~2~~ __ ~ __ ~B~3~L_~B~3~L_ __ ~L_ __ ~

CD o
Read CD Read Read Read

I I I

I I I Read
I I I
I I I ;
I I I I

I I I
I I I I
I I I I

800
~ead ~ead Read CD @
I I / Read Read I! / ,-

I I / //
I I / ,.

I I / ,.
I I I I

cb~~d
I I / //

d ~ 05/0/

~ I

Write

W
Bl

Write

X
Bl

A fter Compress ion

Write

y
Bl

Write

W
B2

Figure 26. Phase 1 Compression

80 IBM S/360 DOS Sort/Merge

Write Write Write Write

X
B2

y

B2

W

B3
X
B3

G @
Read Read

command is also initialized with the
address of the first block in the last set.
Because both addresses are tbe same, no
transfer of data is needed. The read and
write commands are updated to the next
block in the set. IBVTAB indicates that
there are three blocks in sequence 2. Read
command number 2 is given. Because there
is a block written here and the write
address is the same, no data is
transferred.

This process continues until the fourth
sequence is reached. Table IBVTAB
indicates that no blocks are written on
disk for sequence~. The read command
address is updated to the next block, while
the write command address stays the same.
As a read command is given for a block, tbe
corresponding area in IBVTAB is decremented
by one. Reading and writing continues
until all sections in IBVTAB are zeros,
indicating the end of compression of blocks
in the last set.

The final routine executed by phase 1
computes constants and updates the
checkpoint record. The constants computed
for phase 2 are:

• Number of passes.

• Number of sequences.

• Number of blocks in last set.

• Number of blocks in last sequence.

• Number of records processed.

The program then fetches the specified
overlay of phase 2.

IBV024, BH-B2

Overlay 5 is relocated to the end of the
mainline (the end of the output routine> ..

CMPRES. BH-C2

If compression is required. the table
IBVTAB is initialized with the number of
blocks in each sequence of the last set.
The program continues in the compression
routine until the records in the last set
are compressed. For a more detailed
description of the compression routine, see
Figure 26 and accompanying text.

The routine then continues at EXITP1.

EX ITP 1 , BH-D2

Constants are calculated for use in the
next phases:

• Number of passes (NRPAS) •

• Number of sequences (NRSEQ) •

• Number of blocks in last set (PB2BKT) ..

• Number of blocks in last sequence
(NRBIS) •

• Number of records processed (RCDCNT) •

The checkpoint record is read in, updated
with the constants just calculated, and
written back on the checkpoint track.

OV2INW, BH-E2

An EXCP macro is issued and the
end-of-phase messages are printed. The
overlay number at the FETCH macro is
initialized for the specified record type
and order of merge.

FETCH. BH-F2

The specified overlay of phase 2 is
fetched.

INITIALIZATION FOR ADD ROUT RUN - BJ

The initialization routine for an
ADDROUT-type sort run is similar to the
initialization routine for tape or disk
input.

The CHNMVE routine is initialized with
the number of control fields, their
lengths. and their displacement within the
record.

The checkpoint record is updated with:

• Input record length.

• Number of control data fields.

• Length of control fields.

• Location of control fields.

Internal Sort 81

IBV023, BJ-B2

The checkpoint record is read in and placed
at the end of phase 1, overlay 3.

If data conversion and/or exit 12 is
specified, the routine is relocated. If
user exit 12 is specified, these functions
are bypassed by a branch to TAGINT.

TAGINT, BJ-E2

The move code in the CHNMVE routine is
initialized with the number o.f control
fields, their lengths, and their
displacement within the record.

TAGCHK, BJ~ F2

The checkpoint record is updated with:

• Input record length -- Total length of
all control fields plus 10 for address.

•

•

Control data fields -- Number of,
control fields. (If the control fields
are in binary format, it is possible to
reduce their number. FOr example, if
there are three CF's to begin with and
all are in ascending sequence, the
number of control fields for the sort
equals 1. If the first and third are
ascending and the second is descending,
the number of control fields equals
three.)

Length -- The number of bytes in one or
more successive control fields with the
same collating sequ.ence, if in binary
format.

• Location -- The location of a control
field is its relative position within
the tag. (A tag is designated as the
10-byte address followed by the control
fields.> The first CF is located in
the eleventh byte.

The type of input is determined and the
input routine is initialized for fixed- or
variable-length records and key.

82 IBM S/360 DOS sort/Merge

IBVAAl, BJ-A4

The internal sort routine is initialized.
The values for G, number of sort blocks in
G, and record-length (computed by the
aSSignment phase) are relocated for use by
the internal-sort routine. The number of
doublets is computed and saved in NRDUB.

CHNCMP, BJ - B4

Constants supplied by the assignment phase
are used to initialize the compare chain
with the number of control fields and the
displacement and length of each field. The
compare string is relocated.

If conversion is specified, the
conversion routine is relocated and
initialized with the number of control
fields and the location of the compare
chain. For fixed-length input. the move
routine is initialized with the
record-length.

LOCARE, BJ-C4

Using G supplied by assignment phase,
calculations are made to determine the
areas necessary for the address tables, the
start and end addresses of the input area,
and the start address of the output area.
The compare chain is initialized using the
number, length, and displacement of control
fields.

OUTIZ, BJ-D4

The output routine is initialized for
interleaving. The disk address calculation
routine is initialized to compute disk
addresses for the sort run. The CCW and
CCB are initialized, and the starting
addresses for the first order of merge are
calculated and placed in the DSHIFT table.
A branch is then made to LBLCHK (Chart BL).

INPUT ROUTINE FOR ADDROUT RUN - BR, BL

The input routine is initialized and a
block .of records is read from disk. After
a record is read into the input area, a tag
is milt consisting of the record disk
address and the control field(s). When the
tag or RAF area is full, control is passed
to the internal-sort routine (Chart BF).

VARBLK, BK-B2

A test is made to determine if the input
volume limit is exceeded and, if so, the
end-of-volume switch is turned on and a
branch is made to DINMVA. If the limit is
not exceeded, the count of the first record
is read (at RDCNT) to determine the length
of the block. The routine then continues
to P1INBG.

P1INBG, BK-B1

The ADDROUT input routine is initialized
with disk input record address, main
storage input area address, and RAF
starting address.

DINGET, BK-C1

A block of records is read from disk and a
test is made for end-of-volume. If
end-of-file, a branch is made to the
checkpoint routine at .LBLCHK (Chart BL).
If not end-of-volume, the routine continues
to DINGUD.

DINGUD, BK-E1

The next input block is located on disk.
For variable blocking, if end of cylinder
is detected, a branch is made to VARBLK.
For fixed-length or variable-length records
when end of cylinder is not detected, the
routine continues to DINLES.

DINLES, BK-Gl

If end-of-extent condition is detected, a
branch is made to DINMVA; if not, the
routine continues to B.LDADR.

BIDADR, BK-Hl

The next record
to determine if
been exceeded.
made to the WLR
message, bypass
PIINBG. If not
to TAGMNL.

address is built and tested
the maximum block size has
If exceeded, a branch is
routine to print WLR
the record, and return to
exceeded, a branch is made

DINMVA, B1(-H2

Registers are restored and the end-of-file
switch is turned on. A branch is then made
to TAGMNL.

TAGMNL, BK- K2

The sort mainline is initialized with the
calculated G, the start address of the
input area, and the·start address of the
RAF (record address file).

TAGADR, BK -A4

The lO-byte disk address portion of the tag
(MBBCCHHRDD) is prepared:

M = Pack number (0-244)
BB = Bin number (always 00)
CC = Cylinder number (0-199)
HH = Head number (0-9)
R = Number of blocks per track (1-50)
DD = Zero for unblocked fixed-length

records, or the displacement (in
bytes) of the record within the
block.

CHNMVE, BK-B4

The designated control field(s) are moved
f rom the input record to the RAF area,
following the disk address just built.

NXTREC, BK-C4

The record length is stored and the block
size is incremented by the reco.rd length.
Then, if the end of the input block has not
been reached, a branch is made to NOEOB.
If the end of the input block has been
reached but end-of-file bas not been
reached, a branch is made to LBLCHK; if
end-of- file has been reached, a test is
made for a full RAF area. If the RAF area
is full, a branch is made to INEXIT (Chart
BL); if not full, the branch is to TAGADR.

Internal sort 83

NOEOB, BK-E5

The record address is incremented by the
record length and the next address for tag
is calculated. A test is then made for a
full RAF area: the .resul ting branches are
the same as in the preceding block, NXTREC.

LBLCHK. BL-B3

Phase 1 mainline is written onto the
checkpoint tra@k and the mUlti-volume label
routine (DSORT101) is read into main
storage. After the multi-volume routine
has been executed, it is written back onto
the checkpoint track and the phase 1
mainline is read back into main storage.

INFINI. BL-F2

This function is entered when the final
volume has been read; it is used to
calculate the final G. The number of
doublets is determined and saved in NRDUB,
and the end-of-volume switch (IBVNE4) in
the output routine is set so that the next
overlay can be fetched at that time.

If the output will consist of more than
one block, a padding switch (PAD.SW) is set
so that the last block will be filled with
F's (for ascending records) or with O's
(for descending reco.rds).

ONEXIT. BL-H3

This sub-routine is entered for user exit
12 and for data conversion, when required:
initialization was done at VLRINZ (Chart
BJ). Addresses are built for all records
in the G area and a branch is made to
P1LEVl (Chart BF).

INEXIT, BL-H1

The record count is updated and saved in
RCDCNT. A branch is then made to PILEVl
(Chart BF).

84 IBM S/360 DOS Sort/Merge

INTERNAL SORT (ADDROUT RUN) - BF

The internal-sort routine for ADDROUT run
is the same as that for disk or tape input.
For details, refer to Chart BF and its
narrative.

OUTPUT ROUTINE (ADDROUT RUN) - BG

The output routine for ADD ROUT run is the
same as that for disk or tape input. For
details, refer to Chart BG and its
narrative.

MULTI-VOLUME. EXIT 11 LINKAGE - BM, BN

The mUlti-volume routine opens, closes, or
processes end-of-volume (EOV) routines for
disk or tape input files and ADD ROUT input.
The file type may be:

• Disk - standard labels without user
labels.

• Tape - standard labels without user
labels, non-standard labels, or
unlabeled.

The routine, initialized according to
user specifications, is called in from the
checkpoint t.rack to process the specific
condition. After execution, the routine is
written back on the checkpoint track and
the mainline is read back into main
storage.

MNLDSK, BM- B3

For tape input, a branch is made to MNLTAP.
For disk input, a test is made for
end-of-file (EOF). If EOF, the selected
bit is set in the disk DTF table and the
routine continues at OPENA.

OPENA, BM-D3

When end-of-file condition is not indicated
by the mainline, control is passed to the
IOCS - OP.EN routine. The next file to be
processed is opened, standard and user
labels are checked, and the end-of-file
condition is tested. For EOF, a branch is
made to ENDINP; otherwise, the routine
continues at GETXT.

GETXT, BM-G3

The log unit address and the upper and
lower limits of the input area in main
storage (extents) are saved. Control is
then returned to the phase 1 mainline at
DINMVA for regular sort or at LB.LCHK for
ADDROUT sort.

ENDINP, BM-G2

A test is made to determine if the EOF was
for the last input file. If so, the
last-file flag and last-file switch are set
and the routine continues to DCLOS E.

DCLOSE, BM-H2

The current input file is closed. If it
was not the last input file, the next file
name is initialized in the Disk DTF and a
branch is made to OPEN. If the last-file
switch (LSTFLSW) is on, control is returned
to the phase 1 mainline at DINMVA for
regular sort or at LBLCHK for ADDROUT sort.

MNLTAP, BM-C4

For the initial open, a branch is made to
OPENT. For all subsequent entries for
open, the branch is to EOVEOF (Chart BN).

OPENT, BM-D4

The log unit address and file name are
updated and placed in the tape DTF table.
The tape is then opened by IOCS and control
is returned at MNLLINK.

MNLLINK, BM-H4

The log unit address is saved and control
is returned to the phase 1 mainline at
DINMVA (Chart BD).

EOVEOF, BN-Bi

The block count is placed in the tape DTF

table and a test is made for end-of-file
(last volume). If not end-of-file, the
volume number is saved and a branch is made
to FEOVBR. For end-of-file, the volume
table is shifted, the number of volumes in
the next file is obtained, and the EOF
switch (byte number 32) is turned on in the
tape DTF. The routine then continues to
FEOVBR.

FEOVER, BN-Fi

For end-of-volume/end-of-file, or
end-of-volume and not end-of-file with
standard labels, a branch is made to
ENDMAC. For end-of-volume/not end-of-file
and not standard labels, the branch is to
FEOVRTN.

FEOVRTN, BN-Jl

This routine uses the FEOV macro to force
an end-of-volume condition. FEOV causes
automatic volume switching. The log unit
address is placed in a register and control
is returned to the phase 1 mainline at
DINMVA (Chart BD).

ENDMAC. BN-G2

Trailer labels are checked and, if
end-of-file, a branch is made to EOFADDR:
if not, the log unit address is placed in a
register and control is returned to the
phase 1 mainline at DINMVA (Chart BD).

EOFADDR, BN-G3

If the EOF is for the last input file, the
last-file indicator and last-file switch
are set and the routine continues to
NXTFILE.

NXTFILE, BN-H3

Control is passed to the IOCS-CLOSE routine
to close the input file. If the last-file
switch (LSTFILSW) is not on, a branch is
made to OPENT (Chart BM). If the last-file
switch is on, control is returned to the
phase 1 mainline at DINMVA (Chart BD).

Internal Sort 85

PHASE 2 - EXTERNAL SORT OR MERGE

Phase 2 consists of one of four overlays,
depending on the order of merge and the
input record type:

• DSORT201 (4-way merge, fixed-length),
for an order of merge from 1 to 4 and
either a fixed-length record sort or
the ADDROUT option for fixed- or
variable-length records.

• DSORT202 (7-way merge, fixed-length).
for an order of merge from 5 to 7 and
either fixed-length record sort or the
ADDROUT option for fixed- or
variable-Iengt h records.

• DSORT203 (3-way merge,
variable-length), for an order of merge
from 1 to 3 and variable-length
records.

• DSORT204 (6-way merge,
variable-length), for an order of merge
from 4 to 6 and variable-length
records.

The overlay to be used in phase 2 is
determined and called in by phase 1. Phase
2 then calls in the corresponding overlay
for phase 3.

For the purpose of describing the
program logic, this phase has been divided
into two general categories:

• Fixed-length records (7-way and 4~way
merges), Charts CA through CM

• variable-length records (6-way and
3-way merges), Charts CN through CY

86 IBM S/360 OOS Sort/Merge

This introduction serves for both
categories. Where necessary, duplicate
figures and charts are provided (with the
required differences, if any) so that each
ca tegory is complete in itself. For
example, there are two major-component
charts (03) and two main sto.rage layout
figures.

The sequences created in phase 1 are
merged in phase 2. The order of merge (M)
represents the number of input sequences
that will be merged into one output
sequence during each merge. The order of
merge, which was determined by the
assignment phase, is considered to be the
fastest possible sort .for the input file.

Strings or sequences are read from the
input portion of the work area, merged
together, then written in the output
portion of the work area. When all strings
from the input portion of the work area
have been merged into the output portion of
thew-ork area, a pass is complete. .For the
next pass, the input half of the work area
becomes the output half and vice-versa.

At the start of phase 2, pass 1, the
sequences developed in phase 1 reside in
the input portion of the disk work area. A
test is made comparing the number of
sequences (at the start of each pass)
against the order of merge. If the number
of sequences is equal to or less than the
order of merge, the upcoming pass is the
last one and phase 3 is fetched from the
core image library. If the upcoming pass
is not the last one. merging begins in
phase 2.

Input File
.......

.......
......

.......
........

Phose
Sort

.......
......

.......

Figure 27. Sort Blocks

Sequence 1

.......
.......

....... Sequence 2

""
Sequence 3

As stated in phase 1, sequences are
placed in the disk work area in a blocked
format. Block 1 is the lowest alphameric
block of each sequence in an ascending
order (Figure 27).

The size of each input area depends on
the type of cecord being processed. For
fixed-length records, each input area is

Block 1
I 21 4 1 7

1 318 I 9

113 1

118 1

Block 2

11511 71 38 142 1

1251431551731

129135158166 1

equal to the length of a block from the
input portion of the disk work area. as
illustrated in the merge example in Figure
28. For variable-length records, each
input area has an additional overflow area,
immediately preceding it (see Figure 29,
item 1). The overflow area is equal in
size to the maximum logical record length
minus one (LMAX-1).

External Sort or Merge 87

Steps
1

2

3

4

5

6

7

Step.
8

9

10

I'h-------=:::::-.: - - -
2 4 :-:-:-r--

7 13
Input

~ (P rtion) 89 8 ~1I2

~ 15 17 3842 I- 56 B2
Wor!< Area
(Blocked Format)

~ 25435573 ~7 Bl

~ 58 Bl

~ W2.. B2
-<

Sequence--l "

Order of Merge (M) = 2

r-_,-...:B:.::lock --1

---...2 1_4_1 7 113

Sequence--2
Block--l

---- -
I ~3 I 8 I 9

-- ---- ._-- _1:> I

-

r-~-..,.-...,--, r-...,--,--r--, ,--,..--,--,--,
I I 4 I 7 I 13 ' I 3 I 8 I 9 I 18 I I 2 I 3 I I I '- _l ___ ' __ L- _ J L..l _ -' __ '- _ ..J L.. _ ..L ..J. , j

_____ ."...c;:.-- ______ ----~ ----

,... - ., - -1- - r- - , r - ,. - -, - -. - -, I"" - ..., - - r- - "'T - ...,

I I 4 I 7 I 13 I I I 8 I 9 I 18' I 2 I 3 ' 4 I I
L.. _L --....~ _ ~ _ -J _ ..J..,.J __ ,_ -.J L... _.L.... _ ;-",- J.... _ .J

------~-----------,-.,..-, ~-"T'---y-....,---, ,-,-,-,-...,

-===-::::::------:;-
2 3 4 7

~ Output - (Portion)

~ 8 9 13 15

-~
~ 5 38
17 1825

-~
,~

Sequence--l

Block--l r - T"

I I
.J...

I 7 I 13 I I I 8 I 9 I 18 I I 2 I 3 I 4 I 7 I -------------oM
..L. ~ _ j L _ ..L..z ...J _ ...J. _ -' L _ _ ..L. _ ~-..J '--

----- ------------r-"'T-"'l--r--, ,-,-,.-.-..., ,..--,-,-,-"",
, I I I 13 ,I I 8 I 9 I 18 I I 8 I I I I
~_J...._.L.._'---=:"..:. L_J....,L: _.L.._.J _L-;;.r-.L..._J..._..J._....J

--- ------­
r-~-r__-I-__, ,--""'T----T-'
I I I I 13 'I , I 9 I 18 I
L.._-'-_.1... _I_~:"" '-_...L_~..J._..J

~--- ----"'-T"-T-r-,
I I , I 13 I
L..._-L_.L..._~~~

~
Sequence--l
Block--2

r-,--.,.-"'T-"'"
I I , I 18 I
L-..L.._..J._~-J

------ --

I, - -r -"'T - "T'" - , r- - T - r - ,.... - ...,
I 15 I 17 I 38 I 42 I I , I I 18 I
L.. -::!::= J.... _.L.-. _J L... _.L _ _..J- r ~

-----------<---r- -, -,.. - T -.., ,... -"'T -""T - -,--,

I I 17 I 38 I 42 I I I I I 18 I
L _ .L.. __ L _ .J- _...J L _..L _ ~ -...L.,.I/r....J

----------<---
,-,-1-"-' r-'T""-,-T--'
, , I 38 I 42 I I I I I 18 I
L _ -'- _1. -1.""-_....J L.- _ ...L _ ..J. _ ...1.,-..J

I-~-T-""---'
I 8 I 9 I 13 I I
L-_...1. -..-~7 ~ _-J

-- -
,.. - -r - - T - .., Block--2
I 8 I 9 I 13 I 15 I -4-....;~--.;...------o+f
L-_~ -.J....~7...J

-,--1'----;:.. -,- ---,
I 17 I I I I

_ '::;;.r- '- - J.... - ...0... --'

r-- ,-,--,.--,
I 17 I 18 I I I
..... _L-.-'-_J-_J

..,...., -_ A..

1 ---------.....;;;---...,. - - - -

.., --
Step.

11

12

13

14

15

16

Sequence--2
Block--2 r-,.....-r--,--, ,-,..-,-,----,

, I I 38 I 42 , I 25 I 43 I 55 I 73 I
L.. _ L- - '-- -=::-:::- - J ':.c.l.. - .I.. _ .I- -j

--- -------­
~-'T""-., r-""'-'T-'T"--,
I 38 I 42 'I I 43 I 55 I 73 I
..L.-""'II::::_.J L--Z~-J,..._.J

---- ------

'--'--r-r--,
I 17 I 18 I 25 I I
L- _ 1-_:!:-..".-...1. __ ..J

,..... -..- - r- - r- -.... Block--3
I 17 I 18 I 25 I 38 I -4-"':~;';"'':;'-------~
,-_J...._.L... __ L......",.-.J

--- ---
1-'--' r--,- T - T- -, ,- T"'" -T""-"T"'-.,
, I 42 I I , 43 I 55 I 73 I I 42 I I I I
.I.. _ '--..... _J L.. _ ..L. r ..!. - ...I. - -' ';r- L.. _.I- - J.... - j

...... _--"" -------,---r-..,--r-,
I I I I ,
'-_.1-_...1-_""-_..J

r--"'T--'-~--'
I , I I I
L.._...o..._-L_-L_-J

'--'-T-'-""
I I I I I
L_-'-_~_.L-_~

,.....-,-r--r-'"
I I 43 I 55 I 73 I
a-_L""'t',:!-_J-_..J

r- - r- - ,- - r- - ,
I 42 I 43 I I I

_ ~ __ "'""r ...L - ~ - ~

~-T"'-_r-"'T-..., ,.--T'""-~-T"'-"

I I I 55 I 73 I I 42 I 43 I 55 I I
L_ _...L.OOIIIC..~~.J L-_.L.-:~L---I

r-- -,..... - r- -,-,- - ;:=-=;:= -,- -1- -t Block--4
I I, I I 73 I I 42 I 43 I 55 I 73 I --....::;;;;;:;:..~------...., _ - _.1-<111::.-:" L.--"'-- --'-7-'

-----

Figure 28. Phase 2 Merge

88 IBM 5/360 DOS Sort/Merge

General Layout

Overflow Area
Equal to LMAX-l

Read-In Area Filled

Read-In Point
,/"

Record 1

Read-in Area

Record 2

Sort Block Size

Record 3

./
A Split Record has on HEX C
in the First Four Bits of the RLI
(Record Length Indicator). It
can Only Occur at the End of
a Block.

Spl it Record is Detected and the lst Port is Moved to the Overflow Area.

--- ------------ ----

Record 1
Depleted

Record 2
Depleted

Record 3
Depleted

When the First Part of a Split Record is Moved to the Overflow Nea, the Split Record Indicator is
Restored to a HEX O.

Next Block is Read in and the Split Record is "Compacted".

~
Record 4
2nd Port

Record 5 Record 6 Record 7

Upan Reading the Next Block, the Split Record Becomes a Whole Record and Comparing
can Continue.

Figure 29. Variable-Length Record Input Area

Because variable-length records are read
and written in fixed-length blocks, phase 2
(as well as phase 3) must process split
records in the overflow a.reas. A split
record is one which is divided into two
portions with one portion in each of two
blocks. Before such a record can be
compared for merging, it must be rejoined
or compacted.

Phase 1, in outputting sequences,
creates a split record (identified by a
hexadecimal C in the first four bits of the
RLI) whenever a winning record cannot
wholly fit into an output block. As many
bytes as can fit into the unfilled portion
of the block are moved. The record is then
marked as a split record, the block is
written, and the remaining portion is then
moved to the start of the next block.

In phase 2, each time a winning record
is moved to the output area the next record

in that input block is tested for a split
condition. If it is a split record, the
remaining bytes within the block (a split
record can be encountered only as the last
record in a block) are moved to the
overflow area; the split condition is
erased and the next block of the sequence
is read into main storage, compacting the
split record. The merging process can then
continue (see Figure 29, items 2, 3, and
4) •

An example of a 2-way merge is
illustrated in Figure 28. The first blocks
(B1) from each of the first M sequences
(M = 2) are read from the input portion of
the disk work area into the main storage
input areas.

Merging of the two sequences will begin
with the first record of 51B1 (sequence 1
block 1) being compared against the first
record in 52B1. working on an ascending

External sort or Merge 89

order, the lowest record is moved into the
output area (Figure 30, step 1).

Step

1

2

from
DISK

Work Area 1. Main Storage

I. \ /'~"' A,~
Sequence--l Sequence--2
Block--l Block--l Output

12141711311£18191181
" ~ _-/ ,

-
Figure 30. Main Storage Output Area

The second record ill S1 Bl is now
compared against the first record in S2Bl
(Figure 28, step 2). Again, the lowest is
moved to the output area. Merging of
records in the input areas continues until
the output area is full, or until one of
the input areas is depleted.

When the output area is full, it is
written in the output disk work area as a
block of this new sequence.

Figure 28, step 7, shows SlBl (sequence
1, block 1) being depleted as a result of a
compare operation. Tqe next sequential
block of the sequence using that a.rea is
read in. Merging continues with the first
record of 81B2 being compared against the
appropriate record of S2B1 (Figure 28, step
8).

This cycle continues until all blocks of
the M sequences now using the main storage
input areas have been merged into one
sequence. This is called a merge within a
pass.

At this time, the next M sequences are
read in and merged as described. This is
repeated until all sequences have been read
from the input disk work area into main
storage input areas, merged, .and written in
the output portion of the disk work area.
This is the end of a pass.

90 IBM S/360 .DOS Sort/.Merge

A checkpoint record is updated at the
start of each phase 2 pass.

When an end-of-pass condition exists but
the upcoming pass is not the last pass, the
phase 2 mainline is reinitialized for a new
pass. Pointers to the input and output
work areas are reversed so that "the output
strings of the previous pass become the
input strings for the upcoming pass.

If the end-of-pass condition exists and
the upcoming pass is the last pass, phase 3
is fetched into main storage.

The "compare tree" in Figure 31
illustrates the compare operation used for
merging.

With M blocks in the input areas, the
first record of each block is compared.
When the winning record is found it is
moved to the output area. Figure 31 shows
four input areas, D, C, B, and A, filled
with two records for each block. Using the
compare tree and the input area example 1,
reco.rd 1 of sequence D is compared against
the first .record of the other sequences and
found to be the winning record. Because D
was the winning record, the next compare
l'IRlst start again with D:C.

In example two of Figure 31, the
sequence C record is found to be the
winner. The next compare must start again
with D:C. In example three of Figure 31,
sequence B is the winning record; in this
case, because sequence C record was
compared to sequence B record, C must be
lower than record D. Therefore, the next
compare is started at level 2, C:B. In
example four, sequence record A is the
winning record. Compa.ring is returned to
level 1 (B:A) because sequence B record was
al ready found to be lower than either
sequence D or C record.

The interleaved output technique that is
used in this program is illustrated in
Figure 32, using a 3-way merge as an
example. In phase 1, the input file was
sorted into a total of 38 sequences. The
gap factor or interleave factor is, for the
most part, equal to the order of merge. It
may, however, be reduced in the later
stages of a pass.

3rd Level Compare D:C

7/\
(D-Lowl I (C-Low) (Equol)

2nd Leve I Compare
1/ \

D:B C:B
::-----

I>; 1\
(D-Low) / , (C-Low) I

I / \ /'
D:A / \ C:A

~-~!~~,~~~~~~
ht Level Compare

Example
1

2

3

4

(D-Low) / /" (B-Low) (A Low) (Equol)

/';:':< 7~~E:~\ " : 'h;.~,~;\ -\
D l to 3 Leve I) C I to 2 Leve I 1 B l to 1 Leve I) A

, Com pore I " Compare I , Compore I

/
/

j... / ,,/ "/ , '- _/ '- _/ , /

Sequence D C B A

~
QiU7~

Output Record

D-- (8)

C-- (7)

B-- (6)

A-- IS)

If D or C is moved to the output area, 3 compares are required before another record can be moved.

If B is moved to the output area, 2 compares are required before another record can be moved.

If A is moved to the output areo, 1 compare is required before another record can be moved.

Figure 31. Compare Tree

External Sort or Merge 91

Order of Merge = 3
Total Work Area = c.y I 0 -- TR 0

Cyl 15-- TR 1

Cyl 0 1 2

TO 51 81 S582 51281

T1 5281 5682 510 8~

T2 5381 5781 511 8

T3 51 82 5881 5128

T4 5282 5981 51381

T5 S382 5782 51481

T6 5481 5882 51581

T7 5581 5982 51382

T8 5681 51081 51482

T9 5482 511 81 IS 15 82

3

51681

51781

51881

51682

51782

51882

51981

52081

521 81

51982

__ ~Phase 2 -- Pass 1 - - - __
~~~ ~~~ 

/ , 
,/ ~ 

: 7 i r--
15358 
1--
1536 B 
~-
153781 
t---

I I 
4 5 

52082 52781 

521 82 525 8~ 

52281 52682 

52381 52782 

52481 S2881 

52282 52981 

52382 53081 

~24 82 !l2882 

1525 81 529 82 

52681 ~30 82 

6 7 

!l31 81 !l35 8 

53281 536 8. 

53381 3781 

531 82 !l38 81 

53282 

53382 5378 

534 81 ~38 8 

53581 

~36 81 

534 82 

I 

~3~~ 
15378 
1---
15388 
1'---
1 
1'---
I ,--
I 
~-­
I 

/L __ 

I 8 9 10 11 12 
)---

5282 5385 5483 5586 5983 
t---

5382 51 86 5583 5686 5784 
--

51 83 5286 5683 5781 5884 
--

S283 S386 5484 5881 S984 
--

5383 5481 5584 5981 5785 
~ 

51 84 S581 S684 5782 5885 
- -
51 81 5284 5681 5485 5882 5985 

5281 5384 5482 5585 5982 5786 

5381 51 85 5582 5685 5783 5886 

51 82 5285 5682 5486 5883 S986 -

13 14 

51081 ~11 84 

511 81 ~12 84 

51281 15 1085 

51082 ~11 85 

511 82 151285 

51282 151086 

51083 ~11 86 

511 83 ~12 86 

51283 51381 

51084 ~13 82 

Output of Phase 1 (Input to Pass 2) Cylinder 7 After 
Pass 1 Compression --- (Pass 1 Output is 

Pass 2 Input) 

TO 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

T9 

0 1 2 

51 81 5284 5387 

5281 5384 51 B8 

538\ 51 85 52 B8 

51 82 5285 53 B8 

5282 5385 51 89 

5382 51 86 5289 

51 83 S286 5389 

5283 5386 51 81( 

5383 51 87 5281C 

51 84 5287 53 B1C 

(Pass 2 Output is 
Pass 3 Input) 

--3 4 5 6 

51 811 ~2 814 ~3 817 5484 

52811 153814 1 818 5584 

53811 j:> 1 815 2818 5485 

51 812 152815 3818 5486 

152 812 3815 5481 5487 

153 812 51 811 5581 5488 

51 813 52811 5482 5489 

152 813 53811 5582 54810 

~3 813 51 817 5483 54811 

~1 814 S2 B\7 S583 54812 

"- ..... ..... 
-- .... -

Phase 2 - -
_ - -- Pass 2 

7 
I 
I 
t---

~4 81~ 
--

154 d14 
-

~4 815 
--

154 Bl~ 
-

154811 
-

~4 81E 

51 81 
. ..., 

5281 ,-
51 82 

--
5282 

8 9 

51 83 51 88 

5283 S288 

51 84 51 89 

5284 5289 

51 85 51 81 C 

5285 528IC 

51 B6 51 811 

52'86 j:>2 811 

51 87 !II 812 

5287 52812 

- - - "Phase 2 Pass 3 - - - - -

10 

51 813 

52813 

51 814 

52814 

51 815 

52815 

15 1 816 

j:>2 816 

::.1 817 

~2 817 

,/ 
.;" 

11 12 13 14 

51 818 51 823 51 833 51 843 

52818 ~1 824 51 834 51 B44 

51 819 

52819 

51 820 

52820 

51 821 

52821 

51 822 

52822 

~ 

51 825 51 835 51 845 

151 826 51 836 51 B46 

IS I 827 51 837 51847 

j:>1 828 51 838 51 848 

151 829 51 839 51 849 

~1 83C pi 84C 51 850 

151 831 !l1841 51 851 

151 832 51 842 51 852 

(Pass 3 Output is 
Phase 3 Input) 

J 1 1213141516171 819110 1111121131141151161171181191201211221231241251261271281291301311321331341351361371381 
I \" --v- -A_-v-_A- -v--A- -y __ ..A.. __ y _ -.A..--v-_A._-v--.J\.--v--A_-y_-A--V- _ A __ y __ A __ y_ -.A.-v • .J 

Pass 1 
\ 
\J I 2 3 4 5: 6 7 8 9 10 11: 12 1 13 1 
,""'--- -----y- - -- - __ J\.-_ - - - - - v --- - - _J\.._ - - - - - y ___ - _ _ J\... __ - __ _ --y _ _____ A-v_J 

Pass 2 , 
\~ 1 : 2 : 3 1 4 : 5 I 
/ 1...- ___________________ y ___________________ A _____ ----v _____ ___ .J 

Pass 3 
I 

\J 2 

Figure 32. Interleaving (3-Way Merge) 

92 IBM S/360 DOS Sort/Merge 

15 

51383 

51384 

15 

51 853 

51 854 



Note that a gap exists between S38B1 and 
S37B2 (Figure 32, section 1). Because the 
actual file size was not known in phase 1. 
537 and 838 were interleaved for a 3-way 
merge. After 838B2 had been written and 
the end-of-file detected, phase 1 
compressed 837 and S38 so that the gap 
would no longer exist. Sequences 37 and 38 
comprise the last merge of phase 2, pass 1, 
and have an interleave factor of 2. The 
information concerning the last merge is 
passed on to phase 2 within the checkpoint 
record. Phase 2 merges the output of phase 
1 using the specified order of merge. 
Figure 32 shows that during the first pass, 
38 sequences are merged into 13 sequences. 
The interleave factor (F) for the first 12 
merges is equal to M; in the last merge, it 
is equal to two. The interleave factor is 
used for input and output and can vary 
indi vidually. 

The factors which cause a reduction in 
(F) are: 

• Input 

1. Number of sequences which will 
comprise the last merge of a pass. 
The last merge of a pass is 
initiated whenever the number of 
sequences remaining is equal to or 
less than the phase 2 order of 
merge, i.e., when S~M. 

• Output 

1. Number of sequences remaining on 
input after each set of M~ input 
sequences have been merged into M 
output sequences. If, after 
merging M~ input sequences, the 
number of remaining sequences is 
equal to or less than Ma, a 
reduction in output interleaviing 
may have to be implemented. 

2. The number of blocks which comprise 
the last merge of a pass; that is, 
the total number of blocks that 
will be merged into an output 
sequence during the last merge of a 
pass. 

Figure 32, section 1, is the input to 
phase 2, pass 1. As the last merge of pass 
1 is detected, the input interleave factor 
is reduced from three to two for sequences 
37 and 38. The input interleave factor is 
two, while the output interleave factor is 
one. Pass 1 determines how many input 

sequences remain before attempting to merge 
M2 sequences. In other words, pass 1 
checked when there were 38, 29, 20, 11, and 
2 sequences remaining on input. The first 
time that Ma or less sequences were 
detected was when there were two sequences 
remaining. Output interleave factor is 
reduced to one, while the input factor is 
reduced to two. Pass 1 alerts pass 2 that 
there are four blocks in the last merge of 
pass 2, and that there will be a 1-way 
merge on input. 

Section 2 of Figure 32 is the output of 
pass 1, or the input to pass 2. The output 
interleave factor changes when the 
remaining sequences are M2 or less, or when 
the remaining sequences equal four in this 
example. Output (F) is reduced to two. 
Note that output st.>quence 4 will contain 18 
blocks whereas sequence 5 will contain only 
four blocks. Output interleave factor for 
sequence 4 will be two only until the block 
count is one more than the total number of 
blocks in the last sequence. It will then 
be reduced to one for the remainder of 
sequence 4. For sequence 5, the output 
interleave factor goes back to two. Input 
interleave factor is reduced to one for the 
last merge, per information left by pass 1. 
Pass 2 output contains five sequences for 
two merge runs. Sequence and block count 
information of the lastrnerge is passed to 
pass 3. 

Pass 3 starts with less than MZ 
sequences. Therefore, the output 
interleave factor starts at less than three 
(in this case, two). Pass 2 information 
contains the number of blocks for the last 
merge of pass 3. When the first sequence 
block count exceeds the total block count 
of the last merge, (sequences 4-5) the 
output factor for the first sequence 
reduces to one (Figure 32, section 
4: 81B24). The output interleave factor 
for the last merge is two; the input factor 
starts at two, then is reduced to one. 

The next pass (4) is the final merge, 
performed by phase 3. The input interleave 
factor starts at two, then is reduced to 
one after the twenty-third input block of 
sequence 1. output is written 
consecutively on the user-specified unit, 
ta pe or disk. 

Figures 33 and 34 illustrate phase 2 
main storage layouts for fixed- and 
variable-length records, respectively. 

External 80rt or Merge 93 



Supervisor 

Mainline 
Constants 

Mainline 

Merge-Merge 
Routine 

Patch Area 

Equal 
Routine 

Move 
Routine 

Phase 2 
Initiali~ation 

Relocator 

Pass-Pass 
Routine 

Remainder of 
Core Storage 

Start of 
Phase '} 

Note: Not drown to sca Ie. 

Supervisor 

Mainline 
Constants 

Mainline 

Merge-Merge 
Routine 

Patch Area 

Equal 
Routine 

Move 
Routine 

Checkpoint 
Record 

Phase 2 
Input/Output 

Pass-Pass 
Routine 

Phase 2 
I/O Area 

Pass- Pass 
Time 

Supervisor 

Mainline 
Constants 

Mainline 

Merge-Merge 
Routine 

Patch Areo 

Equal 
Routine 

Move 
Routine 

Phase 2 
Input/Output 
Areas 

Merging With 
Equal Routine 

Supervisor 

Mainline 
Constants 

Mainline 

Merge-Merge 
Routine 

Patch Area 

Move 
Routine 

Phase 2 
Input/Output 
Areas 

Merging With 
No Equal 
Routine 

Figure 33. Phase 2 Main storage Layout for Fixed":,,Length Records 

94 IBM S/360 DOS Sort/Merge 



Move Routine 
Incorporated 
in Mainline 

Supervisor 

Constants 

Mainline 

Merge-Merge 
Routine 

Patch Area 

Equal 
Routine 

Phase 2 
Initial ization 

Pass-Pass 
Routine 

Start of 
Phase 2 

Note: Not drawn to scale. 

Supervisor 

Constants 

Mainline 

Merge-Merge 
Routine 

Patch Area 

Equal 
Routine 

Checkpoint 
Record 

Phase 2 
Input/Output 
Areas 

Pass-Pass 
Routine 

I/O 
Area 

Pass-Pass 
Time 

Supervisor 

Constants 

Mainline 

Merge-Merge 
Routine 

Patch Area 

Equal 
Routine 

Phase 2 
Input/Output 
Areas 

Merging With 
Equal Routine 

Figure 34. Phase 2 Main storage for Variable-Length Records 

Supervisor 

Constants 

Mainline 

Merge-Merge 
Routine 

Patch Area 

Phase 2 
Input/Output 
Areas 

Merging With 
No Equal 
Routine 

External Sort or Merge 95 



PHASE 2 INITIALIZATION, FIXED-LENGTH 
RECORDS - CA 

The checkpoint record, created by the 
assignment phase and updated by phase 1, is 
read into main storage to obtain 
information to be used in phase 2. This 
routine then initializes: 

• Merge-merge routine 

• Pass-pass routine 

• Sequence compare loops 

• Interleave address routine 

• Relocatable routines 

• Constants 

Merge-merge. Initialized according to 
the order of merge that was calculated by 
the assignment phase (from 2 to 7). 

Pass-pass. Initialized according to the 
order of merge to be used during phase 2. 
Input and output interleave factors, as 
well as pointers to the logical halves of 
the work area table, are stored at this 
time. 

Compare. All compares within the 
compare loops are initialized with the 
length and location of the first control 
data field. Branches are initialized for 
either ascending or descending sequence. 

Interleave address routine. Factors are 
calculated for the input/output disk 
address interleaving for phase 2. 

Relocatable routines. The equal routine 
is not relocated. However, if the equal 
routine is not required or if the records 
contain less than 12 control fields, the 
move routine is relocated by the required 
amount (the amount that the equal routine 
is shortened). When control is returned by 
the relocator, initialization continues and 
the pass-pass routine is written out on the 
2311 checkpoint track as record 2. 
Subsequently, it is brought into main 
storage only when an end-of-pass condition 
exists. 

The next step is to calculate or 
allocate the input/output areas to be used 
in the merging process. The number of main 
storage areas needed is equal to the order 
of merge plus one. Each area is equal to 
the sort-block size. The input/output 
channel programs are then initialized with 
the number of bytes to be transferred 
during an I/O operation (number of bytes is 
equal to the sort-block size). The program 

96 IBM S/360 DOS Sort/Merge 

then continues to the merge-merge routine 
(Chart CBl. 

INTPH2. CA-B2 

The base register (register 11> is loaded 
with the starting address of phase 2. This 
address is obtained from CKPCCB+8. 
Registers 2 and 3, which were loaded at the 
end of phase 1, are stored: 

2 

3 

Contents 

Logical unit 
address of 
device where 
checkpoint is 
written. 

Disk address 
of checkpoint 

RCHKPT, CA-C2 

Stored in 

1. CCB for taking 
checkpoint at 
every pass 
(RSTCCB) • 

2. CCB for reading 
checkpoint 
(CKPCCB) • 

3. CCB for reading 
and writing the 
pass-pass rou­
tine (PPCCB). 

1. Location CHECKP, 
for updating 
checkpoint re­
cord and for 
passing this 
address to 
phase 3. 

2. Location CHHR, 
current disk 
interleave ad­
dress. Used 
only to read the 
checkpoint record 
for initiali­
zation. 

An EXCP macro is issued and the checkpoint 
record is read into location PASSNO. When 
the read operation is completed, the 
routine continues to RDCPOK. 

RDCPOK, CA-D2 

A test is made to determine if the equal 
routine is required (more than one control 
field per record). If so, a branch is made 
to COMFIT; if not. the branches in the 
mainline compare loops are initialized to 



bypass the branch-and-link to the equal 
routine when two equal records are 
encounte.red. 

COMPIT, CA-F2 

The length and displacement (location 
within record) of the first control field 
are OR'ed into the compare instructions in 
the mainline compa.re loops. The 
instructions that determine the branching 
conditions in the compare loops are then 
initialized for ascending or descending 
sequence. 

The mainline is then initialized for the 
record length (from SORTL), which is equal 
to either the input record length (Ll) 
specified in the RECORD control statement 
or, if the ADDROUT option is specified, to 
ten plus the total length of all control 
fields (CF + 10). 

The order of merge (M) and blocks per 
track (BPT1) are obtained from the 
checkpoint record and stored in constants 
PH2IOM and BPT, respectively. Registers 
are then initialized for calculating 
interleave factors for disk addresses. 

DIVAGN. CA-H2 

The interleave factors are calculated by 
di viding the order of me.rge by the sort 
blocks per track. The quotient is stored 
in location NQUOT and the remainder in 
location NRMDR. The order of merge is then 
reduced by one and the next factors are 
calculated and sto.red adjacent to the 
first. This process is repeated for a 
number of times that is equal to the order 
of merge. These factors will be used by 
the interleaved disk address routine; the 
quotients for calculating the head or track 
numbers, the remainders for calculating the 
record numbers. 

The merge-merge routine is initialized 
with a switch (at WAY4) for a specified 
order of merge for phase 2. 

The pass-pass routine is then 
initialized with indexing factors (from 
POINTI) that point to the logical halves of 
the work area table. 

A test is made to dete rrni ne if a copy 
pass is required in phase 2. If the user 
has specified that the output file is to be 
written in the first half of the disk work 
area, and if an inaccurate file size has 
been specified on the SORT control 

statement, the input for phase 3 could be 
in the first half of the work area (based 
on the number of passes calculated by phase 
1). When this condition exists, an extra 
pass must be made so that the phase 3 input 
will be in the second half of the work 
area. 

OUPTOK, CA-D3 

The physical limits of the work area are 
obtained from the checkpoint record 
(LOGPHY) and placed in the LIMITS table. 
The move routine and the equal routine 
indicator bits are set in RLCOND and a 
branch is made to the relocator routine 
(Chart FA). After the equal routine is 
included (if required) and its length is 
determined, the move routine is relocated, 
if necessary, and control is returned to 
this routine at START. 

START, CA-F3 

The pass-pass routine is initialized with 
the starting address of the phase 2 input 
and output areas in main storage. This 
address, which will later be the add.ress 
into which the checkpoint record is read, 
is obtained from location RLISA after the 
relocator routine is executed. 

If the sort blocks per track (BPT) is 
equal to 1, the second half of the work 
area was not formatted by phase 1. When 
such is the case, instructions are now 
modified so that pass .1 of phase 2 will 
format the second half of the disk work 
area, which is the pass 1 output portion. 

The pass-pass routine is then written on 
the checkpoint track as record 2. 

CPIOAS, CA-B4 

Constants for phase 2 input and output 
areas are now calculated. These are: 

• 

• 

• 

ABEGIN through GBEGIN - Starting 
addresses of input areas A, B, C, D, E, , 
F, and G (as required by order of 
merge). 

AEND through GEND - Ending address of 
input areas A, B, C, D, E, F, and G (as 
required by order of merge). 

OBEGIN - starting address of output 
area. 

External Sort or Merge 97 



BYWCKD, CA-C4 

This iI)struction is a no-op except when the 
BPT is greater than 1, in which case a 
branch is made to NOWCKD. When BPT = 1 and 
the format must be established for the 
output portion of the disk work area, the 
routine allocates the output count field 
next to the output area and increases the 
output block count by eight. 

NOWCKD, CA-E4 

The .ending address of the output area 
(OUTEND) is calculated and stored. The 
read and write CCW'S are then initialized 
with the input and output data counts and a 
branch is made to the merge-merge routine 
(Chart CB>. 

MERGE-MERGE ROUTINE, FIXED-LENGTH RECORDS -
Qi 

The merge-merge routine initializes the 
mainline to merge the next set of input 
sequences into one output sequence. A set 
is equal in number to the OM (order of 
merge) calculated by the assignment phase, 
except during the last me.rge of a pass when 
a set may have less sequences than the OM. 

The functions performed by this routine 
vary with the conditions at time of entry. 
These conditions are: 

• End-of-pass, which occurs (1) at the 
start of phase 2 and (2) each time all 
the input sequences have been merged 
into output sequences. For example, if 
phase 1 output is 64 sequences and the 
OM is 4, and end-of-pass condition 
would exist (1) at the start of phase 
2, (2) when 64 input sequences have 
been merged into 16 output sequences, 
and (3) when the 16 new input sequences 
(the output from the previous pass) 
have been merged into 4 new output 
sequences. 

• End-of-merge with more than M2 input 
sequences remaining. 

• End-of-merge with M2 or less input 
sequences remaining. 

• End-of-merge with M or less input 
sequences remaining (which signifies 
that the upcoming merge is the last one 
of the current pass). 

98 IBM S/360 DOS Sort/Merge 

The functions performed for each 
condition are: 

End-of-pass. The last-merge switches in 
the input and output routines are turned 
off and a branch is made to the pass-pass 
routine. When control is returned to this 
routine, there would no longer be an 
end-of-pass condition; at this point, it 
would be either (1) end-of-merge with more 
than M2 sequences or (2) end-of-merge with 
M2 or less sequences. These fUnctions are 
described in the following paragraphs under 
their respective headings. Note that the 
only function that will not be performed in 
an end-of-pass condition is the shifting of 
the output disk address table. This table 
is never shifted before the first merge of 
a pass. 

End-of-merge with more than M2 
sequences. The mainline is re-initialized 
for the order of merge calculated by the 
asSignment phase and the number of input 
sequences is reduced by a number equal to 
the order of merge. The number of merges 
to be done before new output interleave 
factors are implemented is reduced by one. 
Then the output disk address table is 
shifted to obtain the starting address for 
the next output sequence. 

End-of-merge with M2 or less seguences. 
If this is the last merge of a pass, the 
functions performed are discribed in the 
next paragraph. If not the last merge, the 
mainline is initialized with new interleave 
factors to be used in computing the disk 
output addresses for the remainder of the 
pass. The output sequences created from 
this point on will become the input 
sequences for the last merge of the next 
pass. 

End-of-merge with ~ or less sequences. 
When this condition is reached, it is the 
last merge of a pass. The input interleave 
factors are changed and the end-of-pass 
switch is turned on. The program will then 
continue to the pass-pass routine at the 
completion of the last merge. 

MMPP2, CB-B3 

The end-of-merge switch (MMPPl in the 
interleave factors routine, Chart CM) is 
turned off to remain off until next time an 
end-of-merge condition is detected. 
Turning off switch MMPPl consists of 
activating the branch to the move routine. 



MMPPS, CB-C3 

If this routine is being entered on an 
end-of-pass condition, a branch is made to 
LM1234. For an end-of-merge condition, the 
end-of-sequence indicator (hexadecimal EF) 
is clea.red from the end of the output area 
and registers are initialized to open the 
mainline and fill the input areas 
Cregisters SAVEA through SAVED, depending 
on OM). 

The input sequence counter (SR) is 
tested to determine if the next merge 
be the last one of the pass (SRSOM). 
not. a branch is made to WAY4: if so, 
routine continues to REDUCEI. 

REDUCE!, CB-C2 

will 
If 
the 

Instructions at IRMDR and IQUOT are 
initialized with new input interleave 
factors for the last merge. The 
end-of-pass switch at MMPPS is turned on 
(it will be turned off for the next pass in 
the pass-pass routine) and the routine 
continues to LM1234. 

LM1234, CB-D3 

One of two courses of action is taken at 
this point: 

• start of last merge - Turn on last 
merge input interleave switches (LM! 
through LM.!!, depending on OM) and 
continue to WAY4-4. 

• End of pass - Turn off switches LMl 
throughLM.!} and branch to LMOSW. 

At W~Y4-4, the pass-pass routine has 
inserted an instruction that initializes 
the mainline with the order of merge that 
is to be used during the last merge of a 
pass. 

WAY4, CB-E4 

The input sequence counter (SR) is 
decremented ~ a factor equal to the order 
of merge. Location MAXFAC is then tested 
to determine if the output interleave 
factors are to be changed (see Appendix A 
for description of MAXFAC contents). When 
the count in MAXFAC is at zero, it 
Signifies that M2 or less input sequences 
remain to be merged. Under these 

conditions, new output interleave factors 
are to be implemented and the routine 
continues to REDUCEO. As long as the count 
in MAXFAC is not zero, the count is 
decremented ~ one and the routine branches 
to NOCHG. 

REDUCEO, CB-E2 

Instructions at ORMOR and OQUOT are 
initiialized with new output interleave 
factors, which have been pre-determined ~ 
the pass-pass routine. Continue to LMOSW. 

LMOSW, CB-F3 

At the end of a pass, the output interleave 
switch is turned off CLMO in the output 
routine, Chart CL). This switch had been 
turned on (branch 00) during the pass when 
the number of input sequences remaining was 
equal to or less than M2 (when the count in 
MAXFAC was reduced to zero). After switch 
LMO is turned off, a branch is made to 
ENDPAS if it is the end of a pass: 
otherwise, the routine continues to NOCHG. 

ENDPAS, CB-H3 

At the end of each pass, as well as at the 
start of phase 2 (which is considered an 
end-of-pass condition), the pass-pass 
routine is read into the main storage I/O 
a.reas by channel program PPCHPG. The 
program then branches to EXECPP in the 
pass-pass routine, executes the routine, 
and returns control to this point in the 
merge-merge routine. The channel program 
then writes the pass-pass routine back on 
the checkpoint track in the work area and a 
branch is made to .MMPPS+4 to start merging 
in the new pass. 

NOCHG, CB-Hil 

For each new merge within a pass, the count 
for MAXFAC (which was just decremented at 
REDUCEo-4) is stored back in MAXFAC. 
Except for the first merge of every pass, 
the output disk address table (ORADDR) is 
shifted to give the starting disk address 
for the new output sequence. The output 
sequence block counter (LMSTRG) is 
re-initialized with a count equal to the 
number of blocks contained in the sequences 
which comprise the last merge of the pass. 

External Sort or Merge 99 



This counter is used at LMO in the output 
routine to detect when the output 
interleave factors should be reduced. The 
program then branches toUSTO~A to open the 
mainline compare routine for sequence A. 

PASS-PASS ROUTINE, FIXED-LENGTH RECORDS -
CC 

At the beginning of each phase-2 pass, the 
pass-pass routine is read from the 
checkpoint track into the main storage 
input/output areas at location EXECPP. The 
routine first reads the checkpoint record, 
updates it, and restores it to the 
checkpoint track. It then computes the 
initial disk addresses for M sequences for 
bot.h input and output. The two pointers to 
the logical halves of the work area table 
are reversed so that initial disk addresses 
can be computed at the beginning of the 
next pass. Next, the interleave factors 
are restored to their original values, 
which were computed during phase 2 
initialization (order of merge divided by 
BPT). The number of the pass being entered 
is listed on SYSLOG. If the upcoming pass 
is the last one, a switch is set to enable 
job control to fetch phase 3 into main 
storage. 

The pass-pass routine then calculates 
the interleave factors to be used (1) 
during the last merge of the pass for input 
and (2) during the last set of merges for 
output (when M2 or less input sequences are 
merged into M or less output sequences). 
The merge-merge routine is initialized with 
a switch that determines the order of merge 
during the last merge of the pass. 

At the end of the pass-pass routine, 
control is returned to the merge-merge 
routine which writes the pass-pass routine 
back on the checkpoint track (record 2). 

EXECPP, CC-B2 

The pass-pass routine is entered each time 
the entire file has been passed through or 
merged into a new set of sequences. It 
initializes phase 2 for the upcoming pass 
(except the last). 

The end-of-pass switch (MMPPS in the 
me.rge-merge routine), is turned off (branch 
00) and the routine initializes to read the 
checkpoint record into storage. 

100 IBM S/360 DOS Sort/Merge 

TAKECP, cc-c 2 

The checkpoint record is read into the 
first 316 bytes of the phase .2 input/output 
areas. This address was obtained from 
RLISA during the initialization routine. 

CKPTOK, CC-D2 

The checkpoint record is updated with: 

1. A decimal integer representing the 
phase 2 pass numbe.r (PH2PAS) 

2. The number of passes remaining (NOPASS) 

3. The number of sequences to be merged 
during the upcoming pass (NSR) 

4. The number of sort blocks that comprise 
the last merge of the pass (LMBLOK) 

5. The number of sort blocks contained in 
the last sequence of the pass (MERGEL) 

6. Two hexadecimal pointers that reflect 
the logical halves of the work area 
(POINTL) • 

The updated checkpoint record is then 
written back on the checkpoint track. 

CPOADR-8, CC-F2 

The initial disk addresses for the input 
and output sequences of the upcoming pass 
are computed for a maximum order of merge 
(four or seven, as the case may be). The 
addresses are stored in ARADDR-GRADDR for 
input, and starting at ORADDR for output. 
As each initial address is calculated, two 
values are extracted from the work area 
table: 

1. An index value (multiple of 12), or 
pointer to the work area table 
(LIMITS) • 

2. The logical unit address pertaining to 
the address. 

These values are placed adjacent to the 
disk address in the table. 



SHTPTR, CC-G2 

The two hexadecimal pointers to the logical 
halves of the work area table are reversed. 
The input area for the current or upcoming 
pass becomes the output area for the next 
pass, etc., alternating between the two 
halves throughout the phase. 

NEWITL, CC-H2 

The interleave factors to be used during 
the pass are calculated (M/BPT = Q + R) and 
stored at IRMDR+l and IQUOT+l for input and 
at ORMDR+l and OQUOT+l for output. These 
factors are used until it is determined 
late.r in the pass that they are to be 
changed. 

N EXTP ASS, CC-J 2 

If the upcoming pass is the last one, the 
swi tch at NOT LAS is made a no-op to enable 
the pass-pass routine to fetch phase 3 into 
main storage. Until such time, NOTLAS 
remains a branch to ENDPAS in the 
merge-merge routine (Chart CB). The number 
of the upcoming pass (whether for phase 2 
or phase 3) is then printed out: 

"7DB1I PHASE 2, PASS nn" 

or • 7DC1I PHASE 3, PASS nn I 

ILEAVE-10, CC-B3 

The number of output sequences to be formed 
in the upcoming pass is calculated (NSR). 

Note: The output sequences in this pass 
wiil be the input sequences fo.r the 
next pass. 

INITOM, CC-C3 

The input interleave facto.rs that will be 
used in the last merge of the pass (when S 
S OM) are now calculated and stored in 
REDUCEI+l and REDUCEI+5. These are two 
instructions at label REDUCEI in the 
merge-merge routine that will place these 
input interleave factors in IRMDR+1 and 
IQUOT+l, respectively, when the last merge 
is entered. The reduced input interleave 
factors to be used when the order of merge 

is reduced are stored in IRMDR1+1 and 
I QUOTl +1 .• 

The merge-merge routine is then 
initialized with the order of merge to be 
used during the last merge of the pass. 
This consists of inserting one of seven 
possible instructions (which are listed 
beginning at LASTM) at WAY4-4 in the 
merge-merge routine. 

OLEAVE, CC-E3 

The number of merges to be performed during 
the next pass before the output interleave 
factors are to be changed is now calculated 
and stored in MAXFAC. The output 
interleave .factors to be used when MAXFAC 
is reduced to zero (when SSM~) are stored 
in REDUCEO+l and REDUCEO+5. These are two 
instructions at label REDUCEO in the 
merge-merge routine that will place these 
output interleave factors in ORMOR+l and 
OQUOT+l, respectively, when MAXFAC=O. The 
reduced output interleave factors to be 
used when the order of merge is reduced are 
stored in ORMDRl+l and OQUOT1+l. 

NOTLAS, CC-F3 

As noted in the text under label NEXTPASS, 
this location is a branch to ENDPAS in the 
merge-merge .routine until it is determined 
that the upcoming pass will be the last 
pass. NOT.LAS is then made a no-op and the 
routine assembles and writes the constants 
for phase 3 on the checkpoint track and 
fetches phase 3 into main storage. 

INPUT ROUTINE, FIXED-LENGTH RECORDS - CD 

This routine fills the input areas in main 
storage with records from the input portion 
of the disk work area. At the beginning of 
a merge, all the input areas are filled and 
the compare loops are initialized. 
Subsequently, the input areas are refilled 
individually as they are depleted and, as 
input sequences are depleted, the compare 
loops are closed off one by one. 

The maximum number of input sequences (A 
through G f or a 7-way merge or A throug.h .D 
for a 4-way merge) are called in. As each 
block is read into its input 9rea, the disk 
address of the next bloc~ in that sequence 
is calculated by a separate routine (Chart 
CM). The interleave factors for 
calculating the disk addresses are changed 
when necessary. 

External Sort or Merge 101 



The number of sequences that are called 
into the input areas is determined by the 
order of merge. When all the main storage 
input areas are filled, the program 
continues to the compare loops <Charts CE 
through CK, as the case may be). 

USTOPA, CD-B2 

The compare loops are initialized fQr the 
required sequences and a corresponding bit 
is set in the end-of-merge indicator 
(OMERGE) : 

A 

B 

C 

o 

E 

F 

G 

Initialize 
Branches at 

USTOPA BPOTG, BPUTF, 
BPUTE, BPUTD, 
BPUTC, BPUTB, 
FILLA 

USTOPB COMPBA, BGA, 
BFA, BEA, BOA, 
BCA, FILLB 

USTOPC COMPCB, BGB, 
BFB, BEB, BOB, 
FILLC 

USTOPD COMPDC, BGC I 
BFC, BEC, FILLO 

USTOPE COMPED, BGO, 
BFO, FILLE 

USTOPF COMP FE, BGE, 
FILLF 

USTOPG COMPGF, FILLG 

OMERGE Bit 

1 

2 

3 

4 

5 

6 

7 

When all the specified sequences have 
been processed and the 1-bits in OMERGE 
have been inverted to O-bits as described 
in FILLA, a branch is made to the output 
routine (Chart CL). Unti I then. the 
routine continues to FILLA (or FILLB, etc., 
as the case may be). 

FILLA, CD-02 

The unconditional branch at this location 
is a no-op as long as there are records to 
be processed in the current input se'quence; 
the routine thus continues to GETA (or 
GETB, etc. as the case may be). When the 
end of the current input sequence is 
reached, the compare 'loop for that sequence 
is closed off and the corresponding bit in 
OMERGE is inverted to a zero. Then, as 
long as there are more input sequences, a 
branch is made to an address that varies 

102 IBM S/360 DOS Sort/Merge 

according to the current sequence and the 
order of merge. These addresses are listed 
in the table on Chart CO. 

GETA, CD-E2 

This location is entered not only from the 
preceding function block (FILLA) but also 
from the various compare loops as long as 
there are records in the input sequences. 
.As each sequence is depleted, the entry to 
this routine is at USTOPn (to close the 
compare loop for the particular sequence) 
instead of to this point. 

The starting address of the input area 
for the current sequence (ABEGIN, BBEGIN, 
etc.) is used along with the corresponding 
logical unit address to initialize a 
channel program to get a block of records 
from disk storage. 

ROABCO. CO-F2 

An EXCP macro is issued and a block of 
records is read into the specified input 
area in main storage. 

For all sequences except the highest one 
(G in a 7-way me.rge or 0 in a 4-way merge), 
the routine continues to LMl (or LM2, etc., 
as the case may be). When the highest 
sequence is being processed, the routine 
branChes directly to IRMDR. 

LM1, CO-G3 

This location is a switch that will be on 
(no-op) only during the last merge of a 
pass. Until such time, the routine 
branches to IRMOR. 

During the last merge of a pass, a test 
is made to determine if the input 
interleave factor for the current sequence 
should be reduced. This factor is reduced 
when the number of blocks processed in the 
current sequence is one greater than the 
number of blocks in the last sequence of a 
pass CLSTRGn>. The count in LSTRGn is 
reduced by one each time this function is 
entered during the last merge of a pass. 
If the decremented count is equal to or 
higher than zero, a branch is made to 
IRMDR; if lower, the branch is to IRMDR1. 



IRMDR. CD- H4 

This location is entered when the input 
interleave factors are not to be changed. 
The factors are stored in RMDR and QUOT and 
the program continues to the routine to 
calculate the next interleaved disk address 
at CALADR (Chart C.M). The program returns 
to this routine at BYPAS1+4. 

IRMDR1, CD-H5 

This location is entered when the input 
interleave factors need to be changed. The 
reduced factors for the next lower order of 
merge are stored in RMDR and QUOT and a 
branch is made to the routine to calculate 
the next interleaved disk address at CALADR 
(Chart CM). The program returns to this 
routine at BYPAS1+4. 

BYPAS1+4. CD-J3 

The current interleaved disk address (CHHR) 
is stored in ARADDR (or BRADDR, etc., as 
the case may be) and a branch is made to an 
address that varies according to the 
current sequence and the order of merge. 
These addresses are listed in the table on 
Chart CD. 

SEQUENCE G COMPARE LOOP. FIXED-LENGTH 
RECORDS - CE 

The program that was loaded into main 
storage at the start of phase 2 was for 
either a 7-way (DSORT202) or a 4-way merge 
(DSORT20l). For a 4-way merge, the compare 
loops start at sequence D (Chart CH). 

For a 7-way merge, the input routine 
(Chart CD) initialized certain branch 
instructions in all the compare loops from 
G through B. However, the flow through 
these loops varies not only with the order 
o.f me.rge but also, later on, with the 
depletion of records in the sequences being 
merged. As each sequnce is depleted, a 
branch is made to the compare loop for the 
next lower order of merge (Charts CF 
through CK, consecutively). A 
branch-and-link to the output routine 
(Chart CL) moves each winning record, in 
turn, to the output area. The program 
keeps returning to this loop as long as 
there are records to be merged from 
seq uence G, F I or E. It then exits to the 
sequence F compare loop (Chart CF). 

COMPGF, CE-B2 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when sequence G is depleted. If such 
is the case, a branch is made to COMPFE in 
the sequence F compare loop (Chart CF); if 
not, a record from sequence G is compa.red 
with a record from sequence F. As long as 
G is determined to be the winner, it is 
compared with records from the other 
available sequences in turn. The routine 
thus continues in this compare loop or 
exits to another loop, depending on the 
results of each comparison. For example, 
when merging in ascending sequence: 

Function Winner Branch to 

COMPGF G COMPGE 
F COMPFE (Chart CF) 

COMPGE G COMPGD 
E CO MPED (Chart CG) 

COMPGD G COMPGC 
D COMPDC (Chart CH) 

COMPGC G COMPGB 
C COMPCB (Chart CJ) 

COMPGB G COMPGA 
B COMPBA (Chart CK) 

COMPGA G PUTG 
A PUTA (Chart CK) 

The branch exits are determined not only 
by the results of the comparison but also 
by the depletion of input sequences. For 
example, if in COMPGE sequence E is found 
to be depleted. the instruction at BGD is 
an unconditional branch to COMPGD to 
compare the G record with the next D 
record. 

Another variation in the compa.re loop 
operation occurs when, for example, a G 
record is found to be the winner through 
COMPGF and COMPGE. Then, in COMPGD, the D 
record is found to be the winner. The exit 
from the loop, as previously described, is 
to COMPDC (Chart CH); however, the return 
address that is saved in register SAVED is 
COMPGD+2. Then, assuming the D record is 
the winner through compare loops C, B, and 
A, it is moved to the output area, and 
control is returned to the G loop at the 
address in SAVED. The reason for entering 
this loop at COMPGD+2 is that although D 
was the winner, the G record had already 
been determined to be winner over F and E 
at that time. Therefore, the comparing in 
G loop resumes at the point where G is 
compared with the next D record. 

Externa 1 Sort or Merge 103 



PUTG. CE-J2 

The address of the winning record from 
sequence G is loaded into register MREG and 
a branch-and-link is made to OUTFUL in the 
output routine (Chart CL). Control is 
retu.rned to this routine at NXTGR. 

NXTGR, C.E-H4 

The address for the sequence G input area 
is updated and, if there are more records 
in the area, a branch is made back to 
COMPGF to compare the next record. If, 
however, there are no more records in the G 
input area, a test is then made to 
determine if the end of input sequence G 
has been reached <hexadecimal EF in the 
last byte of the block). If so, a branch 
is made to USTOPG in the input routine 
(Chart CD) to clos e the G compare loop so 
that future entries during this merge will 
branch directly from COMPGF to COMPFE. If 
the G sequence is not yet depleted, a 
branch is made to GETG in the input routine 
to refill the input area. 

SEQUENCE F COMPARE LOOP, FIXED-.L.ENGTH 
RECORDS - CF 

For a 6-way merge, the input routine (Chart 
CD) initialized certain branch instructions 
in all the compare loops from F through B. 
However, the flow through these loops 
varies not only with the order of merge but 
also, later on, with the depletion of 
records in the sequences being merged. As 
each sequence is depleted, a branch is made 
to the compare loop for the next lower 
order of merge (Charts CG through CK, 
consecutively). A branch-and-link to the 
output routine <Chart CL) moves each 
winning record, in turn, to the output 
area. The program keeps returning to this 
loop as long as there are records to be 
merged from sequence F. It then exits to 
the sequence E compare loop (Chart CG). 

COMPFE, CF-B2 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when sequence F is depleted. If such 
is the case, a branch is made to COMPED in 
the sequence E compare loop {Chart CG)i if 
not, a record from sequence F is compared 
with a record from sequence E. As long as 
F is determined to be the winner, it is 

104 IBM S/360 DOS Sort/Merge 

compared with records from the other 
available sequences in turn. The routine 
thus continues in this compare loop or 
exits to another loop, depending on the 
results of each comparison. For example, 
when merging in ascending sequence: 

Function Winner Branch to 

COMPFE F COMPFD 
E COMPED (Chart CG) 

COMPFD F COMPFC 
D COMPDC (Chart CH) 

COMPFC F COMPFB 
C COMPCB (Chart CJ) 

COMPFB F COMPFA 
B COMPBA (Chart CK) 

COMPFA F PUTF 
A PUTA (Chart CK) 

The branch locations are detemined not 
only by the results of the comparison but 
also by the depletion of input sequences. 
For example, if in COMPFD sequence D is 
found to be depleted, the instruction at 
BFC is an unconditional branch to COMPFC to 
compare the F record with the next C 
record. 

Another variation in the compare loop 
operation occurs when, for example, an F 
record is found to be the winner through 
COMPFE and COMPFD. Then, in COMPFC, the C 
record is found to be the winner. The exit 
from the loop, as previously described, is 
to COMPCB (Chart CJ); however, the return 
address that is saved in register SAVEC is 
COMPFC+2. Then, assuming the C record is 
the winner through compare loops B and A, 
it is moved to the output area, and control 
is returned to the F loop at the address in 
SAVEC. The reason for entering this loop 
at COMPFC+2 is that although C was the 
winner, the F record had already been 
determined to be winner over E and D at 
that time. Therefore, the comparing in F 
loop resumes at the point where F is 
compared with the next C record. 

PUTF, CF-H2 

The address of the winning record from 
sequence F is loaded into register MREG and 
a branch-and-link is made to OUTFUL in the 
output routine (Chart CL). Control is 
returned to this routine at NXTFR. 



NXTF.R, CF-H4 

The address for the sequence F input area 
is updated and, if there are mo.re records 
in the area, a branch is made back to the 
start of the highest avai lable compare loop 
(COMPGF or COMPFE) to compare the next 
record. If, however, there are no mo.re 
records in the F input area, a test is made 
to determine if the end of input sequence F 
has been reached (hexadecimal EF in last 
byte of block). If so, a branch is made to 
USTOPF in the input routine (Chart CD) to 
close the F compare loop so that future 
entries during this merge will branch 
directly from COMPFE to COMPED. If the F 
sequence is not yet depleted, a branch is 
made to GETF in the input routine to refill 
the input area. 

SEQUENCE E COMPARE LOOP, FIXED-.LENGTH 
.RECORDS - CG 

For a 5-way merge, the input routine (Chart 
CD) initialized certain branch instructions 
in all the compare loops from E through B. 
HoweVer, the flow through these loops 
varies not only with the order of merge but 
also, later on, with the depletion of 
records in the sequences being merged. As 
each sequence is depleted, a branch 1s made 
to the compare loop for the next lower 
order of merge (Charts CH through CK, 
consecutively). A branch-and-link to the 
output routine (Chart CL) moves each 
winning record, in turn, to the output 
area. The program keeps returning to this 
loop as long as there are records to be 
merged from sequenceE. It then exits to 
the sequence D compare loop (Chart CH). 

COMPED, CG-B2 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when sequence E is depleted. If such 
is the case, a branch is made to COMPDC in 
the sequence D compare loop (Chart CH)i if 
not, a record from sequence E is compared 
wi th a record from sequence D. As long as 
E is determined to be the winner, it is 
compared with records from the other 
available sequences in turn. The routine 
thus continues in this compare loop or 
exits to another loop, depending on the 
results of each comparison. For example, 
when merging in ascending sequence: 

Function Winner Branch to 

COt4PED E COMPEC 
D COMPDC (Chart cm 

COMPEC E COMPEB 
C COMPCB (Chart CJ) 

COMPEB E COMPEA 
B COMPBA (Chart CK) 

COMPEA E PUTE 
A PUTA (Chart CK) 

The branch locations are determined not 
only by the results of the comparison but 
also by the depletion of input sequences. 
For example, if in COMPEC sequence C is 
found to be depleted, the instruction at 
BEB is an unconditional branch to COMPEB to 
compare the E record with the next B 
record. 

Another variation in the compare loop 
operation occurs when, for example, an E 
record is found to be the winner through 
COMPED and COMPEC. Then, in COMPEB, the B 
record is found to be the winner. The exit 
from the loop, as previously described, is 
to COMPBA (Chart CK)i however, the return 
address that is saved in register SAVEB is 
COMPEB+2. Then, assuming the B record is 
the winner through compare loop B, it is 
moved to the output area, and control is 
returned to the E loop at the address in 
SAVEB. The reason for ent~xing this loop 
at COMPEB+2 is that although B was the 
winner, the E record had already been 
determined to be winner over D and C at 
that time. Therefore, the comparing in E 
loop resumes at the point where E is 
compared with the next B record. 

PUTE, CG-G2 

The address 0 f the winning record from 
sequence E is loaded into register MHEG and 
a branch-and-link is made to OUTFUL in the 
output routine <Chart CL). control is 
returned to this routine at NXTER. 

NXTER, CG-H4 

The address of the sequence E input area is 
updated and, if there are more records in 
the area, a branch is reade back to the 
start of the highest available compare loop 
(COMPGF, COMPFE, or COMPED) to compare the 
next record. If, however, there are no 
more records in the E input area, a test is 
made to determine if the end of input 
sequence E has been reached (hexadecimal EF 

External Sort or Merge 105 



in last byte of block). If so, a branch is 
made to USTOPE in the input routine (Chart 
CD) to close the E compare loop so that 
future entries during this merge will 
branch directly from COMP.ED to COMPDC. If 
the E sequence is not yet depleted, a 
branch is made to GETE in the input routine 
to refill the input area. 

SEQUENCE D COMPARE LOOP, FIXED-LENGTH 
RECORDS - CH 

This compare loop is entered: 

• In a 7-way merge, when the record from 
sequence D is found to be the winner in 
a previous compare loop. 

• In a 7-way merge, when sequences G, F, 
and E have been depleted. 

• In a 4-way merge, at the completion of 
the input routine. 

For a 4-way merge, the input routine 
(Chart CD) initialized certain branch 
instructions in all the compare loops from 
D through B. However, the flow through 
these loops varies not only with the order 
of merge but also, later on, with the 
depletion of records in the sequences being 
merged. As each sequence is depleted, a 
branch is made to the compare loop for the 
next lower order of merge (Charts CJ and/or 
CK). A branch-and-link to the output 
routine (Chart CL) moves each winning 
record, in turn, to the output area. The 
program keeps returning to this loop as 
long as there are records to be merged from 
sequence D. It then exits to the sequence 
C compare loop (Chart CJ). 

COMPDC, CH- B2 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when sequence D is depleted. If such 
is the case, a branch is made to COMPCB in 
the sequence C compare loop (Chart CJ); if 
not, a record from sequence D is compared 
with a record from sequence C. As long as 
D is determined to be the winner, it is 
compared with records from the other 
available sequences in turn. The routine 
thus continues in this compare loop or 
exits to another loop, depending on the 
results of each comparison. For example, 
when merging in ascending sequence: 

106 IBM 8/360 DOS Sort/Merge 

Function Winner Branch to 

COMPDC D COMPDB 
C COMPCB (Chart CJ) 

CO MPOB D COMPOA 
B COMPBA (Chart CK) 

COMPDA D PUTD 
A PUTA (Chart CK) 

The branch locations are determined not 
only by the results of the comparison but 
also by the depletion of input sequences. 
For example, if in COMPDB sequence B is 
found to be depleted, the instruction at 
BDA is an unconditional branch to COMPDA to 
compare the D record with the next A 
record. 

Another variation in the compare loop 
operation occurs when, for example, a D 
record is found to be the winner in COMPDC. 
Then, in COMPOB, the B record is found to 
be the winner. The exit from the loop, as 
previously described, is to COMPBA (Chart 
CK): however, the return address that is 
saved in register SAVEB is COMPDB+2. Then, 
assuming the B record is the winner in 
compare loop A, it is moved to the output 
area, and control is returned to the D loop 
at the address in SAVEB. The reason for 
entering this loop at COMPOB+2 is that 
although B was the winner, the D record had 
already been determined to be winner over C 
at that time. Therefore, the comparing in 
D loop resumes at the point where D is 
compared with the next B record. 

PUTD, CH-F2 

The address of the winning record from 
sequence D is loaded into register MREG and 
a branch-and-link is made to OUTFUL in the 
output routine (Chart CL). Control is 
returned to this routine at NXTDR. 

NXTDR, CH-H3 

The address for the sequence D input area 
is updated and, if there are more records 
in the area, a branch is made back to the 
start of the highest available compare loop 
(depending upon the order of merge) to 
compare the next record. If, however, 
there are no more records in the D input 
area, a test is made to determine if the 
end of input sequence D has been reached 
(hexadecimal EF in last byte of block). If 
so, a branch is made to USTOPD in the input 
routine (Chart CD) to close the D compare 
loop so that future entries during this 



merge will branch directly from COMPDC to 
COMPCB. If the D sequence is not yet 
depleted, a branch is made to GETD in the 
input routine to refill the input area. 

SEQUENCE C COMPARE LOOP, FIXED-LENGTH 
RECORDS - CJ 

For a 3-way me.rge, the input routine (Chart 
CD> initialized certain branch instructions 
in compare loops C and B. However, the 
flow through these loops varies not only 
with the order of merge but also, later on, 
with the depletion of records in the 
sequences being merged. As each sequence 
is depleted, a branch is made to the 
compare loop for the next lower order of 
merge (Chart CK). A branch-and-link to the 
output routine <Chart CL) moves each 
winning record, in turn, to the output 
area. The program keeps returning to this 
loop as long as there are records to be 
merged from sequence C. It then exits to 
the sequence B compare loop (Chart CK). 

COMPCB, CJ-B2 

The exit from this loop is provided at the 
beg inning so tha t no processi ng need be 
done when sequence C is depleted. If. such 
is the case, a branch is made to COMPBA in 
the sequence B compare loop (Chart CK); if 
not, a record from sequence C is compared 
with a record from sequence B. If the C 
record is the winner, it is compared with a 
record from sequence A. If the C record 
wins again. the routine continues to PUTC. 

The other branch locations, in the event 
that either B o.r A is determined to be the 
winner. are: 

Function Winner Branch to 

COMPCB B COMPBA <Chart CK) 

COMPCA A .PUTA (Chart CK) 

The branch locations are determined not 
only by the results of the comparison but 
also by the depletion of input sequences. 
For example, if in COMPCA sequence A is 
found to be depleted, the instruction at 
BPUTC is an unconditional branch to PUTC to 
prepare to move the C record to the output 
area. 

Another variation in the compare loop 
occurs when, for example, a C record is 
found to be the winner in COMPCB. Then. in 
COMPCA, the A record is found to be the 
winner. The exit from the loop, as 

previously described, is to PUTA (Chart 
CK); however, the return address that is 
sa ved in register SAVEA is COMPCA+ 2. Then, 
after the A record is moved to the output 
area, control is returned to the C loop at 
the address in SAVEA. The reason for 
entering this loop at COMPCA+2 is that 
although .A was the winner, the C record had 
already been determined to be winner over 
the B record. Therefore, the comparing in 
C loop resumes at the point where C is 
compared with the next A record. 

PUTC, CJ-E2 

The address of the winning record from 
sequence C is loaded into register MREG and 
a branch-and-link is made to OUTFUL in the 
output routine (Chart CL). Control is 
returned to this routine at NXTCR. 

NXTCR, CJ -G 3 

The address for the sequence C input area 
is updated and, if there are more records 
in the area, a branch is made back to the 
start of the highest available compare loop 
(depending on the order of merge) to 
compare the next record. If, however. 
there are no more records in the C input 
area, a test is made to determine if the 
end of input sequence C has been reached 
(hexadecimal EF in last byte of block). If 
so, a branch is made to USTOPC in the input 
routine (Chart CD> to close the C compare 
loop so that future entries during this 
merge will branch directly from COMPCB to 
COMPBA. If the C sequence is not yet 
depleted, a branch is made to GETC in the 
input routine to refill the input area. 

SEQUENCE B COMPARE LOOP, FIXED-LENGTH 
RECORDS - CK 

For a 2-way merge, the input routine (Chart 
CD) initialized certain branch instructions 
in compare loop B. However, the flow 
through this loop varies not only with the 
order of merge but also, later on, with the 
depletion of records in sequence B. When 
sequence B is depleted, a branch is made to 
prepare to move the A record to the output 
area. 

A branch-and-link to the output routine 
(ChartCL) moves each winning record, in 
turn, to the output area. The program 
keeps returning to this loop as long as 
there are records to be merged from 

External Sort or Merge 107 



sequence B. It then branches directly to 
PUTA. 

COMPBA, CK-B2 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when sequence B is depleted. If such 
is the case, a branch is made to PUTAi if 
not, a record from sequence B is compared 
with a record from sequence A. If the B 
record is the winner, the routine branches 
to PUTB; if the A record is the winner, the 
routine branches to PUTA. 

PUTB. CK-D2 

The address of the winning record from 
sequence B is loaded into register MREG and 
a branch-and-link is made to OUTFUL in the 
output routine (Chart CL). Control is 
returned to this routine at NXTBR. 

NXTBR, CK-G2 

The address for the sequence B input area 
is updated and, if there are more records 
in the area, a branch is made back to the 
start of the highest available compare loop 
(depending on the order of merge) to 
compare the next record. If, however, 
there are no more records in the B input 
area, a test is made to determine if the 
end of input sequence B has been reached 
(hexadecimal EF in the last byte of block). 
If so, a branch is made to USTOPB in the 
input routine (Chart CD) to close the B 
compare loop so that future entries during 
this merge will branch directly from COMPBA 
to PUTA. If the B sequence is not yet 
depleted, a branch is made to GETB in the 
input routine to refill the input area. 

PUTA, CK-D4 

The address of the winning record from 
sequence A is loaded into register MREG and 
a branch-and-link is made to OUTFUL in the 
output routine (Chart CL). Control is 
returned to this routine at NXTAR. 

108 IBM S/360 DOS sort/Merge 

NXTAR, CK-G4 

The address for the sequence A input area 
is updated and, if there are more records 
in the area, a branch is made back to the 
start of the highest available compare loop 
(depending on the order of merge) to 
compare the next record. If, however, 
there are no more records in the A input 
area, a test is made to determine if the 
end of input sequence A has been reached 
(hexadecimal EF in last byte of block). If 
so, a branch is made to USTOPA in the input 
routine (Chart CD) to close the sequence A 
compares. If the A sequence is not yet 
depleted, a branch is made to GETA in the 
input routine to refill the input area. 

OUTPUT ROUTINE, FIXED-LENGTH RECORDS - CL 

This routine is entered at one of three 
locations: 

• OUTFUL, when a winning record has been 
found in one of the compare loops. 

• MMPP. when an end-of-merge condition is 
detected in the input routine (end of 
current set of input sequences). 

• MOVMVC, (via STR2), when a winning 
record is to be moved immediately after 
writing a block on disk (the output 
area was full). 

When the routine is entered at OUTFUL, 
and the output area is not full, the 
winning reco.rd is moved to the output area 
and the" program returns to the compare loop 
in which the winning record was found. 
When the output area is full, the contents 
are first written in the output portion of 
the disk work area, the output interleave 
factor is reduced, if necessary, and the 
new disk address is calculated (Chart CM). 
The winning record is then moved to the 
output area and the program returns to the 
compare loop in which the winning record 
was found. 

When the routine is entered at MMPP, an 
end-of-sequence indicator (hexadecimal EF) 
is inserted in the last byte of the current 
output block and the end-of-merge switch is 
turned on. The last output block is then 
written out, the output interleave factor 
is changed, if necessary, and the new disk 
address is calculated (Chart CM). The 
program then branches to the merge-merge 
routine (Chart CB). 



OUTFUL, CL-C2 

The current address of the output area (in 
register PUTOUT) is compared to the address 
of the end of the output area (OUTEND). If 
the output area is full, a branch is made 
to WRITE; if not, a branch is made to the 
move routine via the selector table (STR2). 

MOVMVC, CL-02 

The winning record (address in MREG) is 
moved to the output area. This move 
subroutine is entered via STR2; the move 
instructions were initialized so that only 
the actual number of bytes are moved at 
execution time. As part of the 
initialization, a branch exit to ZYXWZY was 
placed at the end of the move 
instruction (s) • 

ZYXWZY, c.L-E2 

The current address of the output area 
(register PUTOUT) is updated and the 
routine branches back through the LINK 
register to the compare loop in which the 
winning record was determined. The 
possible addresses are listed at the 
off-page connector from block E2 on Cnart 
CL. 

MMPP, CL-C3 

The end-of-sequence indicator (hexadecimal 
EF) is inserted at the end of the block 
currently in the output area and the 
end-of-merge switch (MMPPl on Chart CM) is 
turned on. The routine then continues to 
WRITE. 

WRITE, CL-03 

The address of the start of the output area 
(OBEGIN) is restored in register PUTOUT, 
and the current disk address of the output 
sequence is moved to the current disk 
interleave address. If the BPT <blocks per 
track) is greater than 1, a branch is made 
to WTDATA; if BPT = 1 Ca condition that can 
occur only during pass 1), the output count 
field address is stored, the current 
interleave address is reduced by one, and 
the output area address in register PUTOUT 
is incremented by eight to put it past the 

count field. The routine then continues to 
WTDATA. 

WTDATA, CL-E3 

An EXCP macro is issued and the block of 
records is written from the main storage 
output area into the output portion of the 
disk work area. The parameters for the 
write operation are supplied by the command 
control block at OCCB. The routine then 
continues to LMO. 

LMO, CL-F3 

This location is a switch that will be on 
(no-op) only when the remaining input 
sequences are equal to or less than the 
order of merge squared (S~M2). This 
condition is detected in the merge-merge 
routine (see LMOSW, Chart CB-F3). Until 
such time, LMO is a branch to ORMOR. 

When S~M2, a calculation and test are 
made to determine if the number of blocks 
merged to the output sequence is greater by 
one than the number of blocks contained in 
the last merge of the pass. If it is, the 
output interleave factors are to be reduced 
and a branch is made to ORMOR1: otherwise, 
the routine continues to ORMOR. 

ORMOR, CL-H3 

This location is entered when the output 
interleave factors are not to be changed. 
The factors are stored in RMDR and QUOT and 
the program branches to the routine to 
calculate the next interleaved disk address 
at CALADR <Chart CM). Upon return to the 
output routine (when switch MMPP1 is off), 
the entry point is STR2. 

ORMORl, CL-H4 

This location is entered when the output 
interleave factors need to be changed. The 
reduced factors for the next lower order of 
merge are stored in RMDR and QUOT and the 
program branches to the routine to 
calculate the next interleaved disk address 
at CALADR (Chart CM). Upon return to the 
output routine (when switch MMPP1 is off), 
the entry point is STR 2. 

External sort or Merge 109 



CALCULATE lNTERLEAVED DISK ADDRESS ROUTINE, 
FIXED-LENGTH RECORDS - CM 

This routine is entered .from the input 
routine (Chart CD> whenever a block is 
read, or from the output routine (Chart CL) 
whenever a block is written. 

The current interleaved disk address is 
updated with the factors in RMDR and QUOT, 
which have been placed there by the routine 
(input or output) immediately before entry 
to this routine. 

The record number and head/track number 
are calculated and checked for validity. 
If maximums a.re exceeded, the next higher 
valid address is calculated. The upper 
limit of the current work area extent is 
then checked and, if exceeded, a new 
address is calculated based on the lower 
limit of the next logical segment of the 
work area. . 

See Figure 35 for an illustration of 
interleaved disk address calculations. 

CALADR, CM-C2 

The interleave factor in RMDR is used to 
calculate the next record number by adding 
it to the current disk address (CHHR) in 
register o. If the new record number is 
greater than the maximum number of sort 
blocks per track (BPT), it is not val,id; 
the next valid record number is then 
calculated by adding the 256-complement of 
the BPT (BCOMP) to the value in register o. 

The interleave factor in QUOT is then 
used to calculate the new head/track number 
by adding it to the newly-calculated record 
number in register O. If the new 
head/track number exceeds nine, it is not 
valid; the next valid cylinder/head number 
is calculated by adding the 256-complement 
of ten (HCOMP) to the value in register o. 

A test is then made to determine if the 
upper limit of the current work area extent 
has been exceeded by the new disk address 
just calculated in register o. If not, the 
new address is valid and a branch is made 
to LMTSOK; if so, the disk address is 
.re-calculated based on the lower limit of 
the next extent in the work area. 

110 IBM S/360 DOS sort/Merge 

LMTSOK, CM-E3 

The new interleaved disk address, for input 
or output, as the case may be, is stored in 
CHRR. 

BSTR6, CM-F3 

If the interleaved address just calculated 
and stored was for output, it is moved from 
CHRR to ORADDR and the routine continues to 
.MMPP1. If the address was for input, a 
branch is made to BYPAS1+4 (or BYPAS2+4, 
etc., as the case may be) in the input 
routine (Chart CD), where the address will 
be moved from CHHR to ARADDR (or BRADDR, 
etc., as the case may be). 

MMPP1. CM-H3 

This location is normally a branch back to 
MOVMVC (via STR2) in the output routine 
(Chart CL) to move a winning record that 
could not be moved earlier because the 
output area was full. At the end of a 
merge, however, MMPPl would have been 
changed to a no-op (at MMPP in the output 
routine) so that the program will continue 
to MMPP2 in the merge-merge routine (Chart 
CB) • 

PHASE 2 INITIALIZATION, VARIABLE-LENGTH 
RECORDS - CN 

The checkpoint record, created by the 
assignment phase and updated by phase 1, is 
read into main storage to obtain 
information to be used in phase 2. This 
routine then initializes: 

• Merge-merge routine 

• Pass-pass routine 

• sequence compare loops 

• Interleave address routine 

• Relocatable routines 

• Constants 



Order of Merge -- 4 
Blocks Per Track -- 5 

Track 7 

Track 8 

Work Track 9 
Area~ 

Track 0 

Track 1 

RMDR -- 0004 
QUaT -- 0000 
BCOMP --OOFB 

Current Disk Address 

Add (RMDR) Factor 
Record Number Valid 
(Equal to or Less Than BPT) 

Add (Quat) Foetor 
Track Number Valid 
(Equal to or Less Than 09) 

Current Disk Address 

Add (RMDR) Factor 
Record Number Invalid 

Add Complement of BPT 
(05=OOFB) 
Record Number Valid 

Add (Quat) Factor 
Track Number Valid 

Current Disk Address 

Add (RMDR) Factor 
Record N umber I nval id 

Add Complement of BPT 
Record Number Valid 

Add (Quat) Factor 
Track Number Invalid 

Add Complement of 10 

Cylinder 1 

I 
I Block 1 

Cylinder 2 

I 

I Block 4 I 
[ [New Setl I 

C 
01 

01 

01 

C 
01 

01 

01 

01 

C 
01 

01 

01 

01 

00 
02 

Block 3 

Figure 35. Calculate Interleaved Disk Address 

H H 
00 08 

+ 00 
00 08 

+ 00 
00 08 

H H 
00 08 

+ 00 
00 08 

+ 00 
00 09 

+ 00 
00 09 

H H 
00 09 

+ 00 
00 09 

+ 00 
00 OA 

+ 00 
00 OA 

FF F6 
00 00 

--, 

Block 21 

R 
01 

04 
05 

00 
05 

R 
05 

04 
09 

FB 
04 

00 
04 

R 
04 

04 
08 

FB 
03 

00 
03 

00 
03 

Block 1 

Block 2 
I 
I 
I 
I 
I 

+ 
Block 2 

Block 3 
I 
I 
I 
I 
I 
I 
I 

t 
Block 3 

Block 4 

External Sort or Merge 111 



Merge-merge. Initialized according to 
the order of merge that was calculated by 
the assignment phase (from 2 to 6). 

Pass-pass. Initialized according to the 
order of merge to be used during phase 2. 
Input and output interleave factors, as 
well as pOinters to the logical halves of 
the work area table, are stored at this 
time. 

Compare. All compares within the 
compare loops are initialized with the 
length and location of the first control 
data field. Branches are initialized for 
either ascending or descending sequence. 

Interleave Address .routine. Factors are 
calculated for the input/output disk 
address interleaving for phase 2. 

Relocatable routines. The equal routine 
is not relocated. However, if the equal 
routine is not required or if the records 
contain less than 12 control fields, it 
will be bypassed or shortened, as the case 
may be. When control is returned by the 
relocator, initialization continues and the 
pass-pass routine is written out on the 
2311 checkpoint track as record two. 
Subsequently, it is brought in to main 
storage only when an end-of-pass condition 
exists. 

The next step is to calculate or 
allocate the input/output areas to be used 
in the merging process. The number of main 
storage areas needed is equal to the order 
of merge plus one. Each area is equal to 
the sort-block size. Each input area also 
has an overflow area which isLMAX-1 in 
length (maximum logical record length minus 
one). The input/output channel programs 
are then initialized with the number of 
bytes to be transferred during an I/O 
operation (number of bytes is equal to the 
sort-block size). The program then 
continues to the merge-merge routine (Chart 
CP) • 

INTPH2, CN-B2 

The base register (register 11) is loaded 
with the starting address of phase 2. This 
address is obtained from CKPCCB+8. 
Registers 2 and 3, which were loaded at the 
end of phase 1, are stored: 

112 IBM S/360 DOS Sort/Merge 

Reg. contents 

2 Logical unit 
address of de­
vice where 
checkpoint is 
written. 

3 Disk address 
of checkpoint 
record. 

RCHKPT, CN- C2 

Stored in 

1. CCB for taking 
checkpoint at 
every pass 
(RSTCCB) • 

2. CCB for reading 
checkpoint 
(CKPCCB) • 

3. CCB for reading 
and writing the 
pass-pass routine 
(PPCCB). 

1. Location CHECKP, 
for updating 
checkpoint re­
cord and for 
passing this ad­
dress to phase 3. 

2. Location CHHR, 
current disk 
interleave ad­
dress. Used only 
to read the check­
point record for 
initialization. 

An EXCP macro is issued and the checkpoint 
record is read into location PASSNO. When 
the read operation is completed, the 
routine continues to RDCPOK. 

RDCPOK, CN-D2 

A test is made to determine if the equal 
routine is required (more than one control 
field per record). If so, a branch is made 
to COMPITi if not, the branches in the 
mainline compare loops are initialized to 
bypass the branch-and-link to the equal 
routine when two equal records are 
encountered. 

COMPIT. CN-F2 

The length and displacement (location 
wi thin record) of the first control field 
are OR'ed into the compare instructions in 
the mainline compare loops. The 
instructions that determine the branching 
conditions in the compare loops are then 
initialized for ascending or descending 
sequence. 



The order of merge (M) and blocks per 
track (BPT1) are obtained from the 
checkpoint record and stored in constants 
PH2IOM and BPT, respectively. Registers 
are then initialized for calculating 
interleave factors for disk addresses. 

DIVAGN, CN-G2 

The interleave factors are calculated by 
dividing the order of merge by the sort 
blocks per track. The quotient is stored 
in location NQOUT and the remainder in 
location NRMDR. The order of merge is then 
reduced by one and the next factors are 
ca.lculated and stored adjacent to the 
first. This process is repeated for a 
number of times that is equal to the order 
of merge.. These factors will be used by 
the interleaved disk address routine; the 
quotients for calculating the head or track 
numbers, the remainders for calculating the 
record numbers. 

The merge-merge routine is initialized 
with a switch (at WAY4) for the specified 
o.rder of merge for phase 2. 

The pass-pass routine is then 
initialized with indexing factors (from 
POINT!) that point to the logical halves of 
the work area table. 

The number of blocks per sequence is 
then obtained from the checkpoint record 
and stored at OUTPTG. 

A test is made to determine if a copy 
pass is required in phase 2. If the user 
has specified that the output file is to be 
written in the first half of the disk wo.rk 
area, and if an inaccurate file size has 
been specified on the SORT control 
statement, the input for phase 3 could be 
in the first half of the work area (based 
on the number of passes calculated by phase 
1). When this condition exists, an extra 
pass must be made so that the phase 3 input 
will be in the second half of the work 
area. 

OUPTOR, CN-D3 

The physical limits of the work area are 
obtained from the checkpoint record 
(LOGPHY) and placed in the LIMITS table. A 
branch is then made to the relocator 
routine (Chart FA). After the equal 
routine is included (if required) and its 
length is determined, control is returned 
to this routine at START. 

START, CN-F3 

The pass-pass routine is initialized with 
the starting address of the phase 2 input 
and output areas in main storage. This 
address, which wi 11 later be the address 
into which the checkpoint record will be 
read, is obtained from location RLISA afte.r 
the relocator routine is executed. 

CPIOAS, CN-B4 

An overflow area, equal in size to the 
maximum logical record length minus one 
(LMAX-1). is allocated adjacent to the 
beginning of each input area. These areas 
are used for compacting split records when 
they are encountered (see Figure 29). 

Constants for phase 2 input and output 
areas are now calculated. These are: 

• 

• 

• 

ABEGIN through FBEGIN - Starting 
addresses of input a.reas A, B f C, D # E, 
and F (as required by orde.r of merge). 

AEND through FEND - Ending address of 
input areas A, B, C, D, E, and F (as 
required by order of merge). 

OBEGIN 
area. 

Starting address of output 

If the sort blocks per track (BPT) is 
equal to 1, the second half of the work 
area was not formatted by phase 1. When 
such is the case, instructions are now 
modified so that pass 1 of phase 2 will 
format the second half of the disk work 
area, which is the pass 1 output portion. 

The pass-pass routine is then written on 
the checkpoint track as record 2. 

BYWCRD, CN-F4 

This instruction is a no-op except when the 
BPT is greater than 1, in which case a 
branch is made to NOWCKD. When BPT = 1 and 
the format must be established for the 
output portion of the disk work area, the 
routine allocates the output count field 
next to the output area and increases the 
output block count by eight. 

External Sort or Merge 113 



NOWCKD, CN-H4 

The ending address of the output area 
(QUTEND) is calculated and stored. The 
read and write ccw's are then initialized 
with the input and output data counts and a 
branch is made to the merge-merge routine 
(Chart CP). 

MERGE-MERGE ROUTINE, VARIABLE-LENGTH 
RECORDS - CP 

The merge-merge routine initializes the 
mainline to merge the next set of input 
sequences into one output sequence. A set 
is equal in number to the OM (order of 
merge) calculated by the assignment phase, 
except during the last merge of a pass when 
a set may have less sequences than the OM. 

During phase 1, fixed-l~.ngth blocks were 
created to include the variable-length 
records. It is possible, therefore, that 
the last block of an output sequence from 
phase 1 will not be full. Phase 2, in all 
passes except the first, would most likely 
decrease the number of blocks in an output 
sequence in such cases. For example, if 
phase 2 is initialized to merge 2 sequences 
of three blocks each into an output 
sequence, the total output blocks should 
equal 6.. Because the last blocks of the 
two sequences might not be full, the six 
blocks could possibly fit into five output 
blocks when merged in phase 2. To keep the 
interleaving technique the same as for 
fixed-length records, the address of the 
sixth block must be calculated and stored 
in the output address table even though the 
sixth block may be empty. 

The functions performed by this routine 
vary with the conditions at time of entry. 
These conditions are: 

• 

• 

• 

End-of-pass, which occurs (1) at the 
start of phase 2 and (2) each time all 
the input sequences have been merged 
into output sequences. For example, if 
phase 1 output is 64 sequences and the 
OM is 4, an end-of-pass condition would 
exist (1) at the start of phase 2, (2) 
when 64 input sequences have been 
~erged into 16 output sequences, and 
(3) when the 16 new input sequences 
(the output from the previous pass) 
have been merged into 4 new output 
sequences. 

End-of-merge with more than M2 input 
sequences remaining. 

End-of-merge with M2 or less input 
sequences remaining. 

114 IBM S/360 DOS Sort/Merge 

• End-of-merge with M or less input 
sequences remaining (which signifies 
that the upcoming merge is the last one 
of the current pass). 

The functions performed for each 
condition are: 

End-of-pass. The last-merge switches in 
the input and output routines are turned 
off and a branch is made to the pass-pass 
routine. When control is returned to this 
routine, there would no longer be an 
end-of-pass condition; at this point, it 
would be either (1) end-of-merge with more 
than M2 sequences or (2) end-of-merge with 
M2 or less sequences. These functions are 
described in the following paragraphs under 
their respective headings. Note that the 
only function that will QQ1 be performed in 
an end-of-pass condition is the shifting of 
the output disk address table. This table 
is never shifted before the first merge of 
a pass. 

End-of-merge with more than M2 
sequences. The mainline is re-initialized 
for the order of merge calculated by the 
assignment phase and the number of input 
sequences is reduced by a number equal to 
the order of merge. The number of merges 
to be done before new output interleave 
factors are implemented is reduced by one. 
Then the output disk address table is 
shifted to obtain the starting address for 
the next output sequence. 

End-of-merge with M2 or less sequences. 
If this is the last merge of a pass, the 
functions performed are described in the 
next paragraph. If not the last merge, the 
mainline is initialized with new interleave 
factors to be used in computing the disk 
output addresses for the remainder of the 
pass. The output sequences created from 
this point on will become the input 
sequences for the last merge of the next 
pass. 

End-of-merge with M or less sequences. 
When this condition is reached, it is the 
last merge of a pass. The input interleave 
factors are changed and the end-of-pass 
switch is turned on. The program will then 
continue to the pass-pass routine at the 
completion of the last merge. 

MMPP2. CP-B3 

The end-of-merge switch (MMPPl in the 
interleave factors routine, Chart CY) is 
turned off and remains off until next time 
an end-of-merge condition is detected. 
TUrning off switch MMPP1 consists of 
activating the branch to the input routine. 



MMPPS, Cp-C3 

If this routine is being entered on an 
end-of-pass condition, a branch is made to 
LM1234. For an end-of-merge condition, the 
end-of-sequence indicator (hexadecimal FO) 
is cleared from the end of the output area 
and registers are initialized to open the 
mainline and fill the input areas 
(registers SlWEA through SAVEC, depending 
on OM). 

TMINUS, CP-C4 

At the end of every merge in a pass (except 
the last) a check is made to see if the 
input addresses (ARADDR-FRADDR) and the 
output address (ORAnDR) are updated to the 
disk address of the first block for the 
next set of M sequences. If an address is 
not updated (because the previous input or 
output sequence did not contain the number 
of blocks that it should), the address is 
updated in the following manner: 

A new address is computed until the 
sequence block count associated with the 
address becomes zero. Every time an 
address is computed for a sequence during a 
merge, the sequence block count for that 
sequence is decremented by one. At the 
completion of a merge. all sequence block 
counts will be zero if all sequences 
contained the right number of blocks. If 
any sequences were sho.rt, the block counts 
will be positive. Whenever a sequence has 
a block count that is not zero, the address 
for the first block of the next .respective 
sequence must be updated. 

When updating has been completed, if 
necessary, each address (ARADDR-FRADDR and 
ORADDR) is re-initialized with new sequence 
block counts for the next merge. See 
Figure 36 for an illustration of the 
updating procedure just described. 

The input sequence counter (SR) is 
tested to determine if the next merge 
be the last one of the pass (SRSOM). 
not, a branch is made to WAY4; if so, 
routine continues to REDUCEI. 

REDUCEI, CP-C2 

Inst.ructions at IRMDR and IQUOT are 
initialized with new input interleave 
factors for the last merge. The 

will 
If 
the 

end-of-pass switch at MMPPS is turned on 
(it will ce turned off for the next pass in 
the pass-pass routine) and the routine 
continues to LM1234. 

LM1234, CP-D3 

One of two courses of action is taken at 
this pOint: 

• End of merge - TUrn on last merge input 
interleave switches (LM1 through LM~, 
depending on OM) and continue to 
WAY4-4. 

• End of pass - Turn off switches LM1 
through LM~ and branch to LMOSW. 

At WAY4-4, the pass-pass routine has 
inserted an instruction that initializes 
the mainline with the order of merge that 
is to be used during the last merge of a 
pass. 

WAY4, CP-E4 

The input sequence counter (SR) is 
decremented by a factor equal to the order 
of merge. Location MAXFAC is then tested 
to determine if the output interleave 
factors are to be changed (see Appendix A 
for description of MAXFAC contents). When 
the count in MAXFAC is at zero, it 
signifies that M2 or less input sequences 
remain to be merged. Under these 
conditions, new output interleave factors 
are to be implemented and the routine 
continues to REDUCEO. As long as the count 
in MAXFAC is not zero, the count is 
decremented by one and the routine branches 
to NOCHG. 

REDUCEO, CP-E2 

Instructions at ORMOR and OQUOT are 
initialized with new output interleave 
factors, which have been pre-determined by 
the pass-pass routine. Continue to LMOSW. 

External Sort or Merge 115 



EXAMPLE: 3 Way Merge, 1 Block Per Track 

Sequence 
CHHR INDEX SYM. UNIT block count 

ARAOOR 
71 0 0 1 

BRAOOR 
71 0 1 1 

CRAOOR 
71 0 2 1 

ORAOOR 
20 0 0 1 

End of lst merge 

ARAOOR 
72 0 2 1 

BRAOOR 
72 0 3 1 

CRAOOR 
72 0 I I 

ORAD DR 
23 0 3 I 

After 1MINUS updating 

ARAOOR 
72 0 2 I 

BRAD DR 
72 0 3 I 

CRAOOR 
72 0 4 I 

4 

4 

4 

12 

o 

o 

o 

o 

o 

Each input sequence should 
contain 4 blocks. 

./ Each output sequence shou Id 
J>' contain 12 blocks 

(4 x 3 = 12) 

... contained 4 blocks 

... contained 4 blocks 

.... contained 3 blocks, not updated 

-- 4+4+3 = II blocks I not updated. 

starting input addresses for next 
M sequences 

ORAD DR ......... starting output address for 3rd 
L..,;.2_3_0_6_1_"--__ ---''--_________ 0 __ ...J merge from now 

Remember the output address table must be sh if ted; therefore starting 

output disk address is 20.0. I . I 

Figure 36. Variable-Length Disk Address - Block count 

LMOSW, CP-F3 to ENDPAS if it is the end of a pass; 
otherwise. the routine continues to NOCHG. 

At the end of a pass. the output interleave 
switch is turned off (LMO in the output 
routine, Chart CX). This switch had been 
turned on (branch 00) during the pass when 
the number of input sequences remaining was 
equal to, or less than, M2 (when the count 
inMAXFAC was reduced to zero). After 
swi tch LMO is turned off, a branch is made 

116 IBM S/360 DOS Sort/Merge 

ENDPAS. CP-H3 

.At the end of each pass, as well as at the 
start of phase 2 (which is considered an 
end-of-pass condition), the pass-pass 



routine is read into the main storage I/O 
areas by channel program PPCHPG. The 
program then branches to EXECPP in the 
pass-pass routine, executes the routine, 
and returns control to this point in the 
merge-merge routine. The channel program 
then writes the pass-pass routine back on 
the checkpoint track in the work area and a 
branch is made to MMPPS+4 to start merging 
in the new pass. 

NOCHG, CP-H4 

For each new merge within a pass, the count 
for MAXFAC (which was just decremented at 
REDUCEO-4) is stored back in .MAXFAC. 
Except for the first merge of every pass, 
the output disk address table (ORADDR) is 
shifted to give the starting disk address 
for the new output sequence. The output 
sequence block counter (LMSTRG) is 
re-initialized with a count equal to the 
number of blocks contained in the sequences 
which comprise the last merge of the pass. 
This counter is used at LMO in the output 
roUtine to detect when the output 
interleave factors should be reduced. The 
program then branches to USTOPA to open the 
mainline compare routine for sequence A. 

PASS-PASS ROUTINE, VARIABLE-LENGTH RECORDS 
=-£2 

At the beginning of each phase-2 pass, the 
pass-pass routine is read from the 
checkpoint track into the main storage 
input/output areas at location EXECPP. The 
routine first reads the checkpoint record, 
updates it, and restores it to the 
checkpoint track. It then computes the 
initial disk addresses for M sequences for 
both input and output. The two pointers to 
the logical halves of the work area table 
are reversed so that initial disk add.resses 
can be computed at the beginning of the 
next pass. Next, the interleave factors 
are restored to their original values which 
were computed during phase 2 initialization 
(order of merge divided by BPT). The 
number of the pass being entered is listed 
on SYSLOG. If the upcoming pass is the 
last one, a switch is set to enable job 
control to fetch phase 3 into main storage. 

The pass-pass routine then calculates 
the interleave factors to be used (1) 
during the last merge of the pass for input 
and (2) during the last set of merges for 
output (when M2 or less input sequences are 
merged into M or less output sequences). 
The merge-merge routine is initialized with 
a switch that determines the order of merge 
during the last merge of the pass. 

At the end of the pass-pass routine, 
control is returned to the merge-merge 
routine which writes the pass-pass routine 
back on the checkpoint track (record 2). 

EXECPP. CQ-B2 

The pass-pass routine is entered each time 
the entire file has been passed through or 
merged into a new set of sequences. It 
initializes phase 2 for the upcoming pass 
(except the last). 

The end-of-pass switch (MMPPS in the 
merge-merge routine), is turned off (branch 
00) and the routine initializes to read the 
checkpoint .record into storage. 

TA KECP, CQ-C2 

The checkpoint record is read into the 
first 316 bytes of the phase 2 input/output 
areas. 

CKPTOK, CQ-D2 

The checkpoint record is updated with: 

1. A decimal integer representing the 
phase 2 pass number (PH2PAS) 

2. The number of passes remaining (NOPASS) 

3. The number of sequences to be merged 
during the upcoming pass (NSR) 

4. The number of so.rt blocks that comprise 
the last merge of the pass (LMBLOK) 

5. The number of sort blocks contained in 
the last sequence of the pass (MERGEL) 

6. The number of sort blocks whiCh should 
be contained in a given sequence 
(OUTPTG) 

7. Two hexadecimal pointers that reflect 
the logical halves of the work area 
(POINTL) • 

The updated checkpoint record is then 
written back on the checkpoint track. 

The output sequence block count (OUTPTG) 
is calculated by multiplying the input 
sequence block count (INPUTG) by the order 
of merge (PH2IOM). 

External Sort or Merge 117 



CPOADR-l~, CQ-G2 

The initial disk addresses for the input 
and output sequences of the upcoming pass 
are computed for a maximum order of merge 
(three o.r six, as the case may be). The 
addresses are stored in ARADDR-FRADDR for 
input, and starting at ORAnDR for output. 
As each initial address is calculated, two 
values are extracted from the work area 
table: 

1. An index value (multiple of 12), or 
pointer to the work area table (LIMITS) 

2. The logical unit address pertaining to 
the address 

These values are placed adjacent to the 
disk address in the table. 

SHTPTR, CQ-H2 

The two hexadecimal pointers to the logical 
halves of the work area table are reversed. 
The input area for the current or upcoming 
pass becomes the output area for the next 
pass, etc., alternating between the two 
halves throughout the phase. 

NEWITL, CQ-J 2 

The interleave factors to be used during 
the pass are calculated (M/BPT = Q + R) and 
stored at IRMDR+1 and IQUOT+l for input and 
at ORMOR+l and OQUOT+l for output. These 
factors will be used until it is determined 
later in the pass that they are to be 
changed. 

NEXTPASS, CC-K2 

If the upcoming pass is the last one, the 
switch at NOTLAS is made a no-op to enable 
the pass-pass routine to fetch phase 3 into 
main storage. Until such time, NOTLAS 
remains a branch to ENDPAS in the 
merge-merge routine (Chart CP). The number 
of the upcoming pass (whether for phase 2 
or phase 3) is then printed out: 

'7DB11 PHASE 2, PASS nn' 
or 

'7DC1I PHASE 3, PASS nnt 

118 IBM 8/360 DOS Sort/Merge 

ILEAVE-l0, CQ-B3 

The number of output sequences to be formed 
in the upcoming pass is calculated (NSR). 

Note: The output sequences in this pass 
will be the input sequences for the 
next pass. 

INITOM, CQ-C3 

The input interleave factors that will be 
used in the last merge of the pass (when S 
S OM) are now calculated and stored in 
REDUCEI+l and REDUCEI+5. These are two 
instructions at label REDUCEI in the 
merge-merge routine that will place these 
input interleave factors in IRMDR+l and 
IQUOT+l, respectively, when the last merge 
is entered. The reduced input interleave 
factors to be used when the order of merge 
is reduced are stored in IRMDR1+1 and 
IQUOT1+1. 

The merge-merge routine is then 
initialized with the order of merge to be 
used during the last merge of the pass. 
This consists of inserting one of six 
possible instructions (which are listed 
beginning at LASTM) at WAY4-4 in the 
merge-merge routine. 

OLEAVE, CQ-E3 

The number of merges to be performed during 
the next pass before the output interleave 
factors are to be changed is now calculated 
and stored in MAXFAC. The output 
interleave factors to be used when MAXFAC 
is reduced to zero (when SSM~) are stored 
in REDUCEO+l and REDUCED+5. These are two 
instructions at label REDUCED in the 
merge-merge routine that will place these 
output interleave factors in ORMOR+l and 
OQUOT+l, respectively, when MAXFAC=O. The 
reduced output interleave factors to be 
used when the order of merge is reduced are 
stored in ORMDR1+1 and OQUOT1+1. 

NOTLAS, CQ-F3 

As noted in the text under label NEXTPASS, 
this location is a branch to END PAS in the 
merge-merge routine until it is determined 
that the upcoming pass will be the last 
pa SSe NOTLAS is then made a no-op and the 
routine assembles and writes the constants 
for phase 3 on the checkpoint track and 
fetches phase 3 into main sto.rage. 



INPUT ROUTINE, V.ARIABLE-LENGTH RECORDS - CR 

This routine fills the input areas in main 
storage with records from the input portion 
of the disk work area. At the beginning of 
a merge, all the input areas are filled and 
the compare loops are initialized. 
subsequently, the input areas are refilled 
individually as they are depleted and, as 
input sequences are depleted, the compa.re 
loOES are closed off one by one. 

The maximum number of input sequences (A 
through F for a 6-way merge or A through C 
for a 3-way merge) are called in. As each 
block is read into its input area, the disk 
address of the next block in that sequence 
is calculated by a separate routine (Chart 
CY). The interleave factors for 
calculating the disk addresses are changed 
when necessary. 

The number of sequences that are called 
into the input areas is determined by the 
order of merge. When all the main storage 
input areas are filled, the program 
continues to the compare loops (Charts CS 
through cw, as the case may be). 

USTOPA, CR-B2 

The compare loops.are initialized for the 
required sequences and a corresponding bit 
is set in the end-of-merge indicator 
(OMERGE) : 

Initialize 
Seq. Label Branches at OMERGE Bit 

A USTOPA BPUTF, BPUTE, 1 
BPUTO, BPUTC, 
BPUTB, FILLA 

B USTOPB COMPBA, BFA, BEA, 2 
BOA, BCA, FILLB 

C USTOPC COMPCB, BFS, BEB, 3 
BOB, FILLC 

D USTOPD COMPDC, BFC, BEC, 4 
FILLD 

E USTOPE COMPED, BFD, 5 
FILLE 

F USTOPF COMPFE, FILLF 6 

When all the specified sequences have 
been processed and the 1-bits in OMERGE 
have been inverted to O-bits as described 
in FILLA, a branch is made to the output 
routine (Chart CX). Until then, the 
routine continues to FILLA (or FILLB, etc., 
as the case may be). 

FILLA, CR-D2 

The unconditional branch at this location 
is a no-op as long as there are records to 
be processed in the current input sequence; 
the routine thus continues to GET (or GETB, 
etc., as the case may be). When the end of 
the current input sequence is reached, the 
compare loop for that sequence is closed 
off and the corresponding bit in OMERGE is 
inverted to a zero. Then, as long as there 
are more input sequences, a branch is made 
to an address that varies according to the 
current sequence and the order of merge; 
these addresses are listed in the table on 
Chart CR. 

GETA, CR-E2 

This location is entered not only from the 
preceding function block (FILLA) but also 
from the various compare loops as long as 
there are records in the input sequences. 
As each sequence is depleted, the entry to 
this routine is at USTOPn (to close the 
compare loop for the particular sequence) 
instead of to this point. 

The starting address of the input area 
for the current sequence (ABEGIN, BBEGIN, 
etc.> is used along with the corresponding 
logical unit address to initialize a 
channel program to get a block of records 
from disk storage. 

RDABCD, CR-F2 

An EXCP macro is issued and a block of 
records is read into the specified input 
area in main storage. 

For all sequences except the highest one 
(F in a 6-way merge or C in a 3-way merge), 
the routine continues to LMl (or LM2, etc., 
as the case may be). When the highest 
sequence is being processed, the routine 
branches directly to IRMDR. 

LM1, CR-G3 

This location is a switch that will be on 
(no-op) only during the last merge of a 
pass. until such time, the routine 
branches to IRMDR. 

ouring the last merge of a pass, a test 
is made to determine if the input 
interleave factor for the current sequence 

.External sort or Merge 119 



should be reduced. This factor is reduced 
when the number of blocks processed in the 
current sequence is one greater than the 
number of blocks in the last sequence of a 
pass (LSTRGn). The count in LSTRGn is 
reduced by one each time this function is 
entered during the last merge of a pass. 
If the decremented count is equal to or 
higher than zero, a branch is made to 
IRMDR; if lower. the branch is to IRMDR1. 

IRMDR, CR-H4 

This location is entered when the input 
interleave factors are not to be changed. 
The factors are stored in RMDR and QUOT and 
the program continues to the routine to 
calculate the next interleaved disk address 
at CALADR (Chart CY). The program returns 
to this routine at BYPAS1+4. 

IRMDR1, CR-HS 

This location is entered when the input 
interleave factors need to be changed. the 
reduced factors for the ne.xt lower order of 
merge are stored in RMDR and QUOT and a 
branch is made to the routine to calculate 
the next interleaved disk address at CALADR 
(Chart CY). The program returns to this 
routine at BYPAS1+4. 

BYPAS1 +4, CR-J3 

The current interleaved disk address (CHER) 
is stored in ARADDR (o.r BRADDR~ etc., as 
the case may be) and a branch is made to an 
address that varies according to the 
current sequence and the order of merge. 
These addresses are listed in the table on 
Chart CR. 

SEQUENCE F COMPARE LOOP, VARIABLE-LENGTH 
RECORDS - CS 

The program that was loaded into main 
storage at the start of phase 2 was for 
either a 6-way (DSORT204) or a 3-way merge 
(DSORT201). For a 3-way merge, the compare 
loops sta.rt at sequence C <Chart CV). 

For a 6-waymerge, the input routine 
(Chart CR) initialized certain branch 
instructions in all the compare loops from 
F through B. However, the f low through 
these loops varies not only with the order 

120 IBM S/360 DOS Sort/Merge 

of merge but also, later on, with the 
depletion of records in the sequences being 
merged. As each sequence is depleted, a 
branch is made to the compare loop for the 
next lower order of merge (Charts CT 
through CW, consecutively). 

As previously described in the 
introduction to phase 2 and in the 
initialization routine (CPIOM, Chart CN), 
each input area has an overflow area equal 
in size to LMAX-l. These overflow areas 
are used for split records so that when the 
next block is read in the split record can 
be compacted and merging can continue. A 
split record will cause a 
depleted-input-block condition so that the 
input area will be refilled and the second 
part of the split record will thus be 
available. 

A branch-and-link to the output routine 
(Chart CX) moves each winning record, in 
turn, to the output area. The program 
keeps returning to this loop as long as 
there are records to be merged from 
sequence F, E, or D. It then exits to the 
sequence E compare loop (Chart CT). 

COMPFE. CS-B2 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when sequence F is depleted. If such 
is the case, a branch is made to COMPED in 
the sequence E compare loop (Chart CT) ~ if 
not, a record from sequence F is compared 
with a record from sequence E. As long as 
F is determined to be the winner, it is 
compared with records from the other 
available sequences in turn. The routine 
thus continues in this compare loop or 
exits to another loop, depending on the 
results of each comparison. For example, 
when merging in ascending sequence: 

FUnction Winner Branch to 

COMPFE F COMPFD 
E COMPED (Chart CT) 

COMPFD F COMPFC 
D COMPDC (Chart cu) 

COMPFC F COMPFB 
C COMPCB (Chart CV) 

COMPFB F COMPFA 
B COMPBA (Chart CW) 

COMPFA F PUTF 
A PUTA (Chart CW) 

The branch exits are determined not only 
by the results of the comparison but also 



by the depletion of input sequences. For 
example, if in COMPFD sequence D is found 
to be depleted, the instruction at BFC is 
an unconditional branch to COMPFC to 
compare the F record with the next C 
record. 

Another variation in the compare loop 
operation occurs when, for example, an F 
record is found to be the winner through 
COMPFE and COMPFD. Then, in COMPFC, the C 
record is found to be the winner. The exit 
from the loop, as previously described, is 
to COMPCB (Chart CV); however, the return 
address that is saved in register SAVEC is 
COMPFC+2. Then, assuming the C record is 
the winner through compare loops B and A, 
it is moved to the output area, and control 
is returned to the F loop at the address in 
SAVEC. The reason for entering this loop 
at COMPFC+2 is that although C was the 
winner, the F record had already been 
determined to be winner over E and D at 
that time. Therefore, the comparing in F 
loop resumes at the point where F is 
compared with the next C record. 

PUTF, CS-H2 

The address of the winning record from 
sequence F is loaded into register MREG and 
a branch-and-link is made to the OUTFUL in 
output routine (Chart CX). control is 
returned to this routine at NXTFR. 

NXTFR, CS-G4 

The address for the sequence F input area 
is updated and a test is made to determine 
if the end of input sequence F has been 
reached (hexadecimal F denotes end of 
sequence) • If so, a branch is made to 
USTOPF in the input routine (Chart CR) to 
close the F compare loop so that future 
entries during this merge will branch 
directly from COMPFE to COMPED. If the F 
sequence is not yet depleted, one of two 
courses of action may be taken: 

• The next record from sequence F is a 
split record - branch to SPLITF. 

• The next record from sequence F is not 
a split record - test for sequence F 
input area depleted. 

If the input area is depleted, a branch 
is made to GETF in the input routine to 
refill the input area. If the input area 
is not depleted, a branch is made back to 
the start of the highest available compare 
loop (COMPFE )to compare the next record. 

SPLITF, CS-J5 

The routine initializes to move the first 
part of the split record to the overflow 
area adjacent to the F input area. A 
branch-and-link is then made to SPLITI in 
the output routine. Upon return to this 
routine, the real output address (SAVPUT) 
is reloaded in register PUTOUT and a branch 
is made to GETF in the input routine. This 
last branch is made because a split record 
signals a depleted input area. 

SEQUENCE E COMPARE LOOP, VARIABLE-LENGTH 
RECORDS - CT 

For a 5-way merge, the input routine (Chart 
CR) initialized certain branch instructions 
in all the compare loops from E through B. 
However, the flow through these loops 
varies not only with the order of merge but 
also, later on, with the depletion of 
records in the sequences being merged. As 
each sequence is depleted, a branch is made 
to the compare loop for the next lower 
order of merge (Charts CU through CW, 
consecutively) • 

As previously described in the 
introduction to phase 2 and in the 
initia lization routine (CPIOAS, Chart CN), 
each input area has an overflow area equal 
in size to LMAX-1. These overflow areas 
are used for split records so that when the 
next block is read in the split record can 
be compacted and merging can continue. A 
split record will cause a 
depleted-input-block condition so that the 
input area will be refilled and the second 
part of the split record will thus be 
available. 

A branch-and-link to the output routine 
(Chart CX) moves each winning record, in 
turn, to the output area. The program 
keeps returning to this loop as long as 
there are records to be merged from 
sequence E. It then exits to the sequence 
D compare loop (Chart CO). 

COMPED, CT-B2 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when sequence E is depleted. If such 
is the case, a branch is made to COMPDC in 
the sequence D compare loop (Chart CU); if 
not, a record from sequence E is compared 
with a record from sequence D. As long as 
E is determined to be the winner, it is 
compared with records from the other 

External Sort or Merge 121 



available sequences in turn. The routine 
thus continues in this compare loop or 
exits to another loop, depending on the 
resul ts of each comparison. For example, 
when merging in ascending sequence: 

Function Winner Branch to 

COMPED E COMPEC 
D COMPDC (Chart cu) 

COMPEC E COMPEB 
C COMPCB (Chart cv) 

COMPEB E COMPEA 
B COMPBA (Chart CW) 

COMPEA E PUTE 
A PUTA (Chart CW) 

The branch locations are determined not 
only by the results of the comparison but 
also by the depletion of input sequences. 
For example, if in COMPEC sequence C is 
found to be depleted, the instruction at 
BEB is an unconditional branch to COMPEB to 
compare the E record with the next B 
record. 

Another variation in the compare loop 
operation occurs when, for example, an E 
record is found to be the winner through 
COMPED and COMPEC. Then, in COMPEB, the B 
record is found to be the winner. The exit 
from the loop, as previously described, is 
to COMPBA (Chart CW); however, the return 
address that is saved in register SAVEB is 
COMPEB+2. Then, assuming the B record is 
the winner through compare loop B, it is 
moved to the output area, and control is 
returned to the E loop at the address in 
SAVEB. The reason for entering this loop 
at COMPEB+2 is that although B was the 
winner, the E record had already been 
determined to be winner over D and C at 
that time. Therefore, the comparing in E 
loop resumes at the point where E is 
compared with the next B record. 

PUTE, CT-G2 

The address of the ~nning record from 
sequence E is loaded into register MREG and 
a branch-and-link is made to OUTFUL in the 
output routine (Chart ex). Control is 
returned to this routine at NXTER. 

NXTER, CT-G4 

The address for the sequence E input area 
is updated and a test is made to determine 
if the end of input sequence E has been 

122 IBM S/360 DOS Sort/Merge 

reached (hexadecimal F denotes end of 
sequence). If so, a branch is made to 
USTOPE in the input routine (Chart CR) to 
close the E compare loop so that future 
entries during this merge will branch 
directly from COMPED to COMPDC. If the E 
sequence is not yet depleted, one of two 
courses of action may be taken: 

• The next record from sequence is a 
split record - branch to SPLITE. 

• The next record from sequence E is not 
a split record - test for sequence E 
input area depleted. 

If the input area is depleted, a branch 
is made to GETE in the input routine to 
refill the input area. If the input area 
is not depleted. a branch is made back to 
the start of the highest available compare 
loop (COMPFE) to compare the next record. 

SPLlTE, CT-J5 

The routine initializes to move the first 
part of the split record to the overflow 
area adjacent to the E input area. A 
branch-and-link is then made to SPLITI in 
the output routine. Upon return to this 
routine, the real output address (SAVPUT) 
is reloaded in register PUTOUT and a branch 
is made to GETE in the input routine. This 
last branch is made because a split record 
Signals a depleted input area. 

SEQUENCE D COMPARE LOOP, VARIABLE-LENGTH 
RECORDS - CU 

For a 4-way merge, the input routine (Chart 
CR) initialized certain branch instructions 
in all the compare loops from D through B. 
However, the flow through these loops 
varies not only with the order of merge but 
also, later on, with the depletion of 
records in the sequences being merged. As 
each sequence is depleted, a branch is made 
to the compare loop for the next lower 
order of merge (Charts CV and/or CW). 

As previously described in the 
introduction to phase 2 and in the 
initialization routine (CPIOAS, Chart CN), 
each input area has an overflow area equal 
in size to LMAX-1. These overflow areas 
are used for split records so that when the 
next block is read in the split record can 
be compacted and merging can continue. A 
split record will cause a 
depleted-input-block condition so that the 
input area will be refilled and the second 
part of the split record will thus be 
available. 



A branch-and-link to the output routine 
(Chart CX) moves each winning record, in 
turn, to the output area. The program 
keeps returning to this loop as long as 
there are records to be merged from 
sequence D. It then exits to the sequence 
C compare loop (Chart CV). 

COMPDC 4 CU-B2 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when sequence D is depleted. If such 
is the case, a branch is made to COMPCB in 
the sequence C compare loop (Chart CV); if 
not, a record from sequence 0 is compared 
with a record from sequence C. AS long as 
D is determined to be the winner, it is 
compared with records from the other 
available sequences in turn. The routine 
thus continues in this compare loop or 
exits to another loop, depending on the 
results of each comparison. For example, 
when merging in ascending sequence: 

Function Winner Branch to 

COMPDC 0 COMPDB 
C COMPCB (Cha.rt CV) 

COMPDB D COMPDA 
B COMPBA (Chart CW) 

COMPOA D PUTD 
A PUTA (Chart cw) 

The branch locations are determined not 
only by the results of the comparison but 
also by the depletion of input sequences. 
For example, if in COMPDS sequence B is 
found to be depleted, the instruction at 
BOA is an unconditional branch to COMPOA to 
compare the 0 record wi th the next A 
record. 

Another variation in the compare loop 
operation occurs when, for example, a D 
record is found to be the winner in COMPDC. 
Then, in COMPOB, the B .record is found to 
be the winner. The exit from the loop, as 
previously described, is to COMPBA (Chart 
CW); however, the return address that is 
saved in register SAVEB is COMPOB+2. Then, 
assuming the B record is the winner in 
compare loop A, it is moved to the output 
area, and control is returned to the D loop 
at the address in SAVEB. The reason for 
entering this loop at COMPDB+2 is that 
although B was the winner, the 0 record had 
already been determined to be winner over C 
at that time. Therefore, the comparing in 
D loop resumes at the point where 0 is 
compared with the next B record. 

PUTD, CU-F2 

The address of the winning record from 
sequence 0 is loaded into register MREG and 
a branch-and-link is made to OUTFUL of the 
output routine (Chart CX). Control is 
returned to this routine at NXTDR. 

NXTDR, CU-G4 

The address for the sequence 0 input area 
is updated and a test is made to determine 
if the end of input sequence 0 has been 
.reached (hexadecimal F denotes end of 
sequence). If so, a branch is made to 
USTOPO in the input routine (Chart CR) to 
close the 0 compare loop so that future 
entries during this merge will branch 
directly from COMPOC to CO.MPCB. If the 0 
sequence is not yet depleted, one of two 
courses of action may be taken! 

• The next record from sequence 0 is a 
split record - branch to SPLITD. 

• The next record from sequence 0 is not 
a split record - test for sequence 0-­
input area depleted. 

If the input area is depleted, a branch 
is made to GETO in the input routine to 
refill the input area. If the input area 
is not depleted, a branch is made back to 
the start of the highest available compare 
loop (COMPFE) to compare the next record. 

SPLITD, CU-J5 

The routine initializes to move the first 
part of the split record to the ove.rflow 
area adjacent to the 0 input area. A 
branch-and-link is then made to SPLITI in 
the output routine. Upon return to this 
routine, the real output address (SAVPUT) 
is reloaded in register PUTOUT and a branch 
is made to GETD in the input routine. This 
last branch is made because a split reco.rd 
signals a depleted input area. 

SEQUENCE C COMPARE LOOP, VARIABLE-LENGTH 
RECORDS - CV 

This compare loop is entered: 

• In a 6-way merge, when the record from 
sequence C is found to be the winner in 
a previous compare loop. 

External Sort or Merge 123 



" In a 6-way merge, when sequences F, E, 
and D have been depleted. 

" In a 3-way merge, at the completion of 
the input routine. 

For a 3-way merge, the input routine (Chart 
CR) initialized certain branch instructions 
in compare loops C and B. However, the 
flow through these loops varies not only 
wi til the order of merge but also, later on, 
with the depletion of records in the 
sequences being merged. As each sequence 
is depleted, a branch is made to the 
compare loop for the next lower order of 
merge (Chart CW). 

As previously described in the 
introduction to phase 2 and in the 
initialization routine (CPIOAS, Chart CN), 
each input area has an overflow area equal 
in size to LMAX-1. These overflow areas 
are used for split records so that when the 
next block is read in the split record can 
be compacted and merging can continue. A 
split record will cause a 
depleted-input-block condition so that the 
input area will be refilled and the second 
part of the split record will thus be 
available. 

A branch-and-link to the output routine 
(Chart CX) moves each winning record, in 
turn, to the output area. The program 
keeps returning to this loop as long as 
there are records to be merged from 
sequence C. It then exits to the sequence 
B compare loop (Chart CW). 

COMPCB, CV-B2 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when sequence C is depleted. If such 
is the case, a branch is made to COMPBA in 
the sequence B compare loop (Chart CW); if 
not, a record from sequence C is compared 
with a record from sequence B. If the C 
reco.rd is the winner, it is compared with a 
record from sequence A. If the C record 
wins again, the routine continues to PUTC. 

The other branch locations. in the event 
that either B or A is determined to be the 
winner, are: 

Function Winner 

COMPCB B COMPBA (Chart CW) 

COMPCA A PUTA (Chart CW) 

The branch locations are determined not 
only by the results of the comparison but 
also by the depletion of input sequences. 

124 IBM S/360 DOS Sort/Merge 

For example, if in COMPCA sequence A is 
found to be depleted, the instruction at 
BPUTC is an unconditional branch to PUTC to 
prepare to move the C record to the output 
area. 

Another variation in the compare loop 
occurs when, for example, a C record is 
found to be the winner in COMPCB. Then, in 
COMPCA, the A record is found to be the 
winner. The exit from the loop, as 
previously described, is to PUTA (Chart 
CW)i however, the return address that is 
saved in register SAVEA is COMPCA+2. Then, 
after the A record is moved to the output 
area. control is returned to the C loop at 
the address in SAVEA. The reason for 
entering this loop at COMPCA+2 is that 
although A was the winner, the C record had 
already been determined to be winner over 
the B record. Therefore, the comparing in 
C loop resumes at the point where C is 
compared with the next A record. 

PUTC, CV-E2 

The address of the winning record from 
sequence C is loaded into register MREG and 
a branch-and-link is made to OUTFUL in the 
output routine (Chart CX). Control is 
returned to this routine at NXTCR. 

NXTCR, CV-G3 

The address for the sequence C input area 
is updated and a test is made to determine 
if the end of input sequence C has been 
reached (hexadecimal F denotes end of 
sequence). If so, a branch is made to 
USTOPC in the input routine (Chart CR) to 
close the C compare loop so that future 
entries during this merge will branch 
directly from COMPCB to COMPBA. If the C 
sequence is not yet depleted, one of two 
courses of action may be taken: 

" 

" 

The next record from sequence C is a 
split record - branch to SPLITC. 

The next record from sequence C is not 
a split record - test for sequence C 
input area depleted. 

If the input area is depleted, a branch 
is made to GETC in the input routine to 
refill the input area. If the input area 
is not depleted, a branch is made back to 
the start of the highest available compare 
loop (depending on the order of merge) to 
compare the next record. 



SPLITC, CV-J 4 

The routine initializes to move the first 
part of the split record to the overflow 
area adjacent to the C input area. .A 
branch-and-link is then made to SPLITI in 
the output routine. Upon return to this 
routine, the real output address (SAVPUT) 
is reloaded in register PUTOUT and a branch 
is made to GETC in the input routine. This 
last branch is made because a split record 
signals a depleted input area. 

SEQUENCE B COMPARE LOOP, VARIABLE-LENGTH 
RECORDS - CW 

For a 2-way merge, the input routine (Chart 
CR) initialized certain branch instructions 
in compare loop B. However, the flow 
through this loop varies not only with the 
order of merge but also, later on, with the 
depletion of records in sequence B. When 
sequence B is depleted, a branch is made to 
prepare to move the A record to the output 
area. 

As previously described in the 
introduction to phase 2 and in the 
initialization routine (CPIOAS, Chart CN), 
each input area has an overflow area equal 
in size to LMAX-l. These overflow areas 
a.re used for split records so that when the 
next block is read in the split record can 
be compacted and merging can continue. A 
split record will cause a 
depleted-input-block condi ti on so that the 
input area will be refilled and the second 
part of the split record will thus be 
available. 

A branch-and-link to the output routine 
<Chart CX) moves each winning record, in 
turn, to the output area. The program 
keeps returning to this loop as long as 
there are records to ·be me.rged from 
sequence B. It then branches directly to 
PUTA. 

COMPBA, CW-B2 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when sequence B is depleted. If such 
is the case, a branch is made to PUTA: if 
not, a record from sequence B is compared 
with a record from sequence A. If the B 
record is the. winner, the routine branches 
to PUTB; if the A record is the winner, the 
routine branches to PUTA. 

PUTB, CW-D2 

The address of the winning record from 
sequence B is loaded into register MREG and 
a branch-and-link is made to OUTFUL in the 
output routine (Chart CX). Control is 
returned to this routine at NXTBR. 

NXTBR, CW-G2 

The address for the sequence B input area 
is updated and a test is made to determine 
if the end of input sequence B has been 
reached (hexadecimal F denotes end of 
sequence). If so, a branch is made to 
USTOPB in the input routine (Chart CR) to 
close the B compare loop so that future 
entries during this merge will branch 
directly from COMPBA to PUTA. If the 
sequence is not yet depleted, one of two 
courses of action may be taken: 

• The next record from sequence B is a 
split record - branch to SPLITB. 

• The next .record from sequence B is not 
a split record - test for sequence B 
input area depleted. 

If the input area is depleted, a branch 
is made to GETB in the input routine to 
refill the input area. If the input area 
is not depleted, a branch is made back to 
the start of the highest available compare 
loop (depending on theorde.r of merge) to 
compare the next record. 

SPLITB, CW-J3 

The routine initializes to move the first 
part of the split record to the overflow 
area adjacent to the B input area. A 
branch-and-link is then made to SPLITI in 
the output routine. Upon return to this 
routine, the real output address (SAVPUT) 
is reloaded in register PUTOUT and a branch 
is made to GETB in the input routine. This 
last branch is made because a split record 
signals a depleted input area. 

PUTA, CW-D4 

The address of the winning record from 
sequence A is loaded into register MREG and 
a branch-and-link is made to OUTFUL in the 
output routine (Chart CX). Control is 
returned to this routine at NXTAR. 

External sort or Merge 125 



NXTAR, CW-G4 

The address for the sequence A input area 
is updated and a test is made to determine 
if the end of input sequence A has been 
reached (hexadecimal F denotes end of 
sequence). If so, a branch is made to 
USTOPA in the input routine (Chart CR) to 
close the sequence A compares. If the A 
sequence is not yet depleted, one of two 
courses of action may be taken: 

• The next record from sequence A is a 
split record - branch to SPLITA. 

• The next record from sequence A is not 
a split record - test for sequence ~ 
input area depleted. 

If the input area is depleted, a branch 
is made to GETA in the input routine to 
refill the input area. If the input area 
is not depleted, a branch is made back to 
the start of the highest available compare 
loop (depending on the order of merge) to 
compare the next record. 

SPLITA, CW-J5 

The routine initializes to move the first 
part of the split record to the overflow 
area adjacent to the A input area. A 
branch-and-link is then made to SPLITI in 
the output routine. Upon return to this 
routine, the real output address (SAVPUT) 
is reloaded in registe.r PUTOUT and a branch 
is made to GETA in the input routine. This 
last branch is made because a split record 
signals a depleted input area. 

OUTPUT ROUTINE, VARIABLE-LENGTH RECORDS -
CX 

This routine is entered at one of four 
locations: 

• OUTFUL, when a wi nm ng .record has been 
found in one of the compare loops. 

• 

• 

• 

MMPP, when an end-of-merge condition is 
detected in the input routine (end of 
all input sequences). 

SPLITI, when a split record has been 
found in one of the input areas during 
the compare process. 

SPLITM, when the second part of a split 
record is to be moved to the output 
area. 

126 IBM S/360 DOS Sort/Merge 

When the routine is entered at OUTFUL, 
and the entire winning record will fit in 
the output area, the winning record is 
moved to the output area. The program then 
branches back to NXTAR (or NXT.BR, etc.) in 
the compare loop in which the winning 
record was found. When the winning record 
will not fit in the output area, a split 
output record is indicated and the portion 
that will fit is moved to the output area. 
The output area is then written on disk and 
the second part of the winning record is 
moved to the start of the output area. 

When the routine is entered at MMPP, an 
end-of-sequence indicator (he.xadecimal FO) 
is inserted in the last byte of the current 
output block and the end-of-merge switch is 
turned on. The last output block is then 
written out, the output interleave factor 
is changed, if necessary, and the new disk 
address is calculated (Chart CY). The 
program then branches to the merge-merge 
routine (Chart CPl. 

When the routine is entered at SPLITI, 
the first portion of the split record is 
moved to the overflow area adjacent to the 
input area for the sequence. The program 
then branches back to GETA (or GETB, etc.) 
in the input routine (Chart CR). 

When the routine is entered at SPLITM, 
the second part of the winning record that 
could not fit in the output area (when the 
routine was originally entered at OUTFUL) 
is now moved to the output area. 

When the output area is full after a 
move, the contents are first written in the 
output portion of the disk work area, the 
input interleave factor is reduced, if 
necessary, and the new disk address is 
calculated (Chart Cy). The winning record 
is then moved to the output area and the 
program returns to the compare loop in 
which the winning record was found. 

OUTFUL, CX-B2 

The record-length indicator of the record 
to be moved is extracted and used to 
determine if the entire record will fit in 
the available output area. If so, the 
routine continues to SPLITM; if the record 
is too long to fit. a branch is made to 
SPLITO. 



SPLITI, CX-Cl 

The split-record indicator (hexadecimal C) 
is erased and the real output address is 
saved (to be restored on return to the 
compare loops). The number of bytes to be 
moved to the input overflow area are then 
calculated and a branch is made to SPLITM. 

SPLITO. CX-B3 

The number of bytes in the second part of 
the winning record (the part that will not 
fit in the output area) is calculated. 
Then the number of bytes in the first part 
(the part that will fit) is calculated. 
The split-record indicator is inserted in 
the first part of the record and the switch 
at OSPLIT (Chart CY) is turned on so that 
the second part of the record will be moved 
after the output block has been written on 
disk. 

SPLITM, CX-D2 

Registers are initialized to move a record 
or a part of a record and a branch is made 
to VARMOV. 

VARMOV, CX-E2 

One of three types of moves is performed: 

• An entire winning record to the output 
area 

• The first or second part of a winning 
record to the output area 

• The first part of a split input record 
to the corresponding input overflow 
area. 

If the number of bytes to be moved is 256 
or less, the exact number of bytes is moved 
to the output area or to the input overf low 
area, as the case may be. For longer 
moves, a 256-byte portion is moved and 
registers are adjusted for the length of 
the remaining portion and for the new 
output area address. This operation is 
repeated until the remaining portion of the 
record is 256 bytes or less in length. The 
length of the remaining portion is then 
calculated and the final move is executed. 

After the required number of bytes has 
been moved, the next available output area 

address is calculated for the next move and 
for testing if the output area is full. 

The current address of the output area 
(in register PUTOUT) is compared to the 
address of the end of the output area 
(OUTEND). If the output area is full, a 
branch is made to WRITE; if not, a branch 
is made to NXTAR (or NXTBR, etc.) in the 
compare loop in whiCh the winning record 
was found or, in the case of split input 
records, to GETA (or GETB, etc.) in the 
input routine. Note that when the first 
part of a split output record has been 
moved to the output area, the output area 
will be full. 

MMPP, CX-B4 

The end-o.f-sequence indicator (hexadecimal 
FO) is inserted at the end of the block 
currently in the output area and the 
end-of-merge switch (MMPPl on Chart CY) is 
turned on. The routine then continues to 
WRITE. 

WRITE, CX-CLl 

The address of the start of the output area 
(OBEGIN) is restored in register PUTOUT, 
and the current disk address of the output 
sequence is moved to the current disk 
interleave address. If the BPT (blocks per 
track) is greater than 1, a branch is made 
to WTDATAi if BPT = 1 (a condition that can 
occur only during passU, the output count 
field address is stored, the current 
interleave address is reduced by one, and 
the output area address in register PUTOUT 
is incremented by eight to put it past the 
count field. The routine then continues to 
WTDATA. 

WTDATA, CX-D4 

An EXCP macro is issued and the block of 
records is written from the main storage 
output area into the output portion of the 
disk work area. The parameters for the 
write operation are supplied by the command 
control block at OCCB. The routine then 
continues to LMO. 

External Sort or Merge 127 



LMO. CX-E4 

This location is a switch that will be on 
(no-op) only when the remaining input 
sequences are equal to or less than the 
order of merge squared (S~2). This 
condition is detected in the merge-merge 
routine (see LMOSW. Cha~t CP-F3). Until 
such time, LMO is a branch to ORMDR. 

when S5M2, is a calculation and test are 
made to determine if the number of blocks 
merged to the output sequence is greater by 
one than the number of blocks contained in 
the las~ merge of the pass. If it is, the 
output interleave factors are to be reduced 
and a branch is made to ORMDR1: otherwise, 
the routine continues to ORMDR. 

ORMOR, CX-G4 

This location is entered when the output 
interleave factors are not to be changed. 
The factors are stored in RMDR and QUOT and 
the program branches to the routine to 
calculate the next interleaved disk address 
(Chart Cy). 

ORMDR1. CX-G5 

This location is entered when the output 
interleave factors need to be changed. The 
.reduced factors for the next lower order of 
merge are stored in RMDR and QUOT and the 
program branches to the routine to 
calculate the next interleaved disk address 
(Chart Cy). 

CALCULATE INTERLEAVED DISK ADDRESS ROUTINE, 
VARIABLE-LENGTH RECORDS - CY 

This routine is entered f rom the input 
routine (Chart CR) whenever a block is 
read, or from the output routine (Chart CX) 
whenever a block is written. 

The current interleaved disk address is 
updated with the factors in RMDR and QUOT, 
Which have been placed there by the routine 
(input or output) immediately before entry 
to this routine. 

The record number and head/track number 
are calculated and checked for validity. 
If maximums are exceeded, the next higher 
valid address is calculated. The upper 
limit of the current work area extent is 
then checked and, if exceeded, a new 

128 IBM S/360 DOS Sort/Merge 

address is calculated based on the lower 
limit of the next lCXJical segment of the 
work area. 

See Figure 37 for an illustration of 
interleaved disk address calculations. 

CAUDR, CY-C2 

The interleave factor in RMDR is used to 
calculate the next record number by adding 
it to the current disk address (CHHR) in 
register O. If the new record number is 
greater than the maximum number of sort 
blockS per track (BPT), it is not valid: 
the next valid record number is then 
calculated by adding the 256-complement of 
the BPT (BCOMP) to the value in register O. 

The interleave factor in QUOT is then 
used to calculate the new head/track number 
by adding it to the newly-calculated record 
address in register o. If the new 
head/track number exceeds nine, it is not 
valid; the next valid cylinder/head number 
is calculated by adding the 256-complement 
of ten (HCOMP) to the value in register O. 

A test is then made to determine if the 
upper limit of the current work area extent 
has been exceeded by the new disk address 
just calculated in register O. If not, the 
new address is valid and a branch is made 
to LMTSOK: if so. the disk address is 
re-calculated based on the lower limit of 
the next extent in the work area. 

LMTSOK, CY-E3 

The new interleaved disk address, for input 
or output, as the case may be, is stored in 
CHHR. The sequence block count (BLOCKC) is 
reduced by one. 

BSTR6, CY-F3 

If the interleaved address just calculated 
and stored was for output, it is moved from 
CHHR to ORADDR and the routine continues to 
OSPLIT. If the address was for input, a 
branch is made to BYPAS1+4 (or BYPAS2+4, 
etc., as the case may be) in the input 
routine (Chart CR), where the address will 
be moved from CHHR to ARADDR (or BRADDR, 
et c., as the case may be). 



OSPLIT, CY-H3 

This location is normally a branch to 
MlV'.PP1, the end-of-merge switch. However, 
when a winning record is split because it 
would not fit in the output area, OSPLIT 
would have been made a no-op (at SPLITO in 
the output routine). The routine now 
ini tiali zes to move the second part of the 
split output record and branches back to 
SPLITM in the output routi ne (Chart CX). 

MMPP1, CY-H4 

This location is normally a branch back to 
BYPAS1+4 (or BYPAS2+4, etc.) in the input 
routine (Cha .rt CR). At th e end of a merge, 
however, MMPPl would have been changed to a 
no-op (at .MMPP in the output routine) so 
that the program will continue to MMPP2 in 
the merge-merge routine (Chart CP). 

External Sort or Merge 129 



Order of Merge -- 4 
Blocks Per Track -- S 

Track 7 

Track 8 

Work Track 9 
Area~ 

Track 0 

Trock 1 

RMDR -- 0004 
QUOT -- 0000 
BCOMP --OOFB 

Current Disk Address 

Add (RMDR) Factor 
Record Number Valid 
(Equal to or Less Than BPT) 

Add (Quot) Factor 
Track Number Valid 
(Eq ua I to or Less Than 09) 

Current Disk Address 

Add (RMDR) Factor 
Record Number Invalid 

Add Complement of BPT 
(OS=()OFB) 
Record Number Valid 

Add (Quot) Factor 
Track Number Valid 

Current Disk Address 

Add (RMDR) Fodor 
Record Number Invalid 

Add Complement of BPT 
Record Number Valid 

Add (Quot) Factor 
Track Number Invalid 

Add Complement of 10 

Cylinder 1 

I 

I Block 1 

Cylinder 2 

I 

I Block 4 I 
[ I New Setl ] 

C 
01 

01 

01 

C 
01 

01 

01 

01 

C 
01 

01 

01 

01 

00 
02 

I 

Block 3 

Figure 37. Calculate Interleaved Disk Address 

130 IBM S/360 DOS Sort/Merge 

H H 
UO 08 

+ 00 

00 08 

+ 00 
00 08 

H H 
00 08 

+ 00 
00 08 

+ 00 
00 09 

+ 00 
00 09 

H H 
00 09 

+ 00 
00 09 

+ 00 
00 OA 

+ 00 
00 OA 

FF F6 
00 00 

-"I 

Block 2 I 

R 
01 

04 

OS 

00 
OS 

R 
OS 

04 
09 

FB 
04 

00 
04 

R 
04 

04 
08 

FB 
03 

00 
03 

00 
03 

Block 1 

Block 2 
I 
I 
I 
I 
I 

+ 
Block 2 

Block 3 
I 
I 
I 
I 
I 
I 
I 

t 
Block 3 

Block 4 



Phase 3 consists of one of four overlays, 
depending on the order of merge and the 
input record type: 

• DSORT301 C4-way merge, fixed-length), 
for an order of merge from 1 to 4 and 
either a fixed-length record sort or 
the ADD ROUT option per fixed- or 
variable-length records. 

• DSORT302 C7-way merge, fixed-length), 
for an order of merge from 5 to 7 and 
either a fixed-length record sort or 
the ADDROUT option for fixed- or 
variable-length records. 

• DSORT303 C3-way merge, 
variable-length), for an order of merge 
from 1 to 3 and variable-length 
records. 

• DSORT304 C6-way merge, 
variable-length), for an order of merge 
from 4 to 6 and variable-length 
records. 

The overlay to be used in this phase was 
determined by phase 1 and called in by 
phase 2. 

For the purpose of describing the 
program logic, this phase has been divided 
into two general categories: 

• Fixed-length records (7-way and 4-way 
merges), Charts DA through DL 

• Variable-length records C6-way and 
3-way merges), Charts DM through DW 

This introduction serves for both 
categories. Where necessary, duplicate 
figures and charts are provided (with the 
required differences, if any) so that each 
category is complete in itself. For 
example, there a.re two rna jor-component 
charts (04). 

Phase 3 is initialized for either disk 
or tape output. Routines for output and 
label linkage are relocated for tape 
output. 

Phase 3 performs the final merge pass, 
creating the output file from the sequences 
located in the input half of the disk work 

FINAL MERGE (PHASE 3) - 04 

area. The number of input sequences is 
equal to or less than the order of merge 
used in phase 2. Merging is accomplished 
in a manner similar to the last merge of a 
phase 2 pass except that the output is 
written consecutively. 

The read-input-data and the mainline 
compare routines are similar to phase 2. 
The compute-interleave-address routine is 
also similar to its phase 2 counterpart, 
except that the output from the sort is not 
interleaved. 

After a winning record has been 
determined by the compare routine, it is 
sequence-checked with the previous record 
moved to the output area. Following the 
sequence check, the previous record is 
converted in the output area if data 
conversion has been specified by the user. 

The label-linkage routine is initialized 
for label processing of the output file. 
Linkage to the transient IOCS 
label-checking routine is initialized 
within this routine, which is entered for 
open, close, end of volume, sequence error, 
and end of job. 

User programming, in phase 3, is 
accessed via exit 31 and exit 32. Exit 31, 
located within the label-linkage routine, 
permits the user to create and write 
non-standard header and trailer labels for 
tape volumes, or to create user header and 
trailer labels for disk or tape volumes. 
Exit 32, located in the output routine, is 
available after each logical record has 
been moved into the main storage output 
area in its proper sequence and format, as 
determined by the user SORT control card. 

When the last logical record has been 
merged and written into the output file, 
the label-linkage routine passes control to 
IOCS to close the output file. The 
end-of-job routine, indicating completion 
of the sort operation. is entered when lOCS 
returns control. 

Figure 38 illustrates main storage 
layout for phase 3 for fixed-length 
records. For variable-length records, the 
layout is identical except that the move 
routine is deleted. 

Final Merge 131 



Supervisor 

Phase 3 Constants 

Mainline 

Resident Checkpoint 
Routine 

Equal Routine 

Move Routine 
Zoned Decimal 

Packed Decimal 

Fixed Point 

Floating Point 

Phase-3-
Initialization 

Relocator 

Phase-3-
Initialization 
(cont.) 

Label Linkage 
Routine 

Start of Phase-3-

Note: For variable-length records, the core 
layout is identical except that no 
reference is made to the move-routine. 

Note: Not drown to scale. 

Figure 38. Phase 3 Main storage Layout 

132 IBM S/360 DOS Sort/Merge 

Supervisor 

Phase 3 Constants 

Mainline 

Resident Checkpoint 
Routine 

Optional and Move 
Routines 

Phase-3-
I/O Areas 

User 
Programming 
(If Speci fied) 

End of Phase- 3-
Initialization or 
During 
Merging in Phase 3 

Supervisor 

10CS Label Checking 
Routines 

label Linkage Routine 

Resident 
Portion of Mainline 

Resident Checkpoint 
Routine 

Move Routine and Any 
Optional Routines 

Phase-3-
I/O Areas 

User 
Programming 
(If Specified) 

"Open", "EOV", "Clase", 
and "Sequence Error" 
Times or at End-of-
Job 



PHASE 3 INITIALIZATION, FIXED-LENGTH 
RECORDS - DA 

The checkpoint record and the phase 2 
constants pertinent to phase 3 are read 
into main storage and several routines are 
initialized: 

• Mainline compare routine. 

• ADDROUT and exit 32 routines. 

• Disk or tape output routine. 

• Disk or tape label-linkage routine. 

• Relocatable routines. 

The interleave factors used for the disk 
input routine are calculated, as are the 
constants for phase 3 input/output areas. 

For disk output, the output routine is 
executed as shown in the listing. For tape 
output, the routines at labels OP1EOV and 
EOJTAP are relocated to LWRITE+4 and 
PH3EOJ,respectively, at initialization 
time. 

. A check is made to determine if user 
programming is to be included. Exits 
available to the user in this phase are 31 
and 32. 

After initialization is complete, 
control is passed to the input-data 
routine. 

INTPH3, DA-B1 

Job control, employing the system loader, 
loads phase 3 into main storage following 
the supervisor. The transfer address is 
identified by the label INTPH3. Base 
register 11 is loaded, and registers 2 and 
3 are stored. These two registers contain 
the logical unit address and the disk 
address (CHHR) of the checkpoint record, 
respectively. The checkpoint record, 
created by the aSSignment phase and updated 
by phases 1 and 2, is read into main 
storage (starting at CKPTRD) by the channel 
program. 

PH3CON, DA-C1 

The channel program is modified to read 
phase 3 constants from the checkpoint track 
into main storage, starting at IPTCCB and 
continuing through GRADDR for a 7-way merge 
or DRADDR for a 4-way merge. A 

branch-and-link is made to CHEKPT to read 
these constants into mai n sto.rage and 
control is returned at TESTEQ. 

TESTEQ, DA-D1 

If multiple control data fields are 
specified in the SORT control card, the 
equal routine is required and 
initialization of the mainline compare 
branches is bypassed. If the equal routine 
is not required, the branch instructions 
following each mainline compare are 
initialized accordingly. For example, if a 
.record from sequence 4 is equal to a record 
from sequence 3, the next compare is 
between records from sequences 3 and 2, not 
sequences 4 and 2. 

The sequence error routine is 
initialized according to the unit 
assignments. If SYSLOG is a 1052 
Printer-Keyboard, the operator may either 
ignore a sequence error and continue 
processing or cancel the job when a 
sequence error is detected. If SYSLOG is 
not a 1052 Printer-Keyboard, a sequence 
error automatically cancels the job • 

ITCOMP, DA-E1 

The mainline compare loops are initialized 
for length, location, and collating 
sequence of control data field 1. This 
information is contained in the 96-byte 
table (CF1LCT) in the checkpoint record. 

• 

• 

The mainline is initialized to update: 

each input area with the length of user 
record after a winning record has been 
moved to the output area (as in phase 
2). When the ADDROUT OPtion is being 
performed, the length of the record is 
CF+10. 

the output area with the length of the 
output record after a winning record 
has been moved to the output area. 
This length may be equal to, less than, 
or greater than the length of of the 
input logical record. 

OPTION, DA-Hl 

A test is made to determine if the ADDROUT 
option has been specified. If it has, and 
the control field data is not pa.rt of the 
disk address, a switch is set at NOCONV. 

Final Merge 133 



This prevents any translation of the 
control data associated with the to-byte 
tag. 

A test is made to determine if exit 32 
is specified and, if it is, the switch at 
NOCONV is bypassed. If exit 32 is not 
specified, the output routine is 
initialized to bypass the exit. 

RECORDO, DA-J 1 

The number of records processed by phase 1 
(RECPH1) is obtained from the checkpoint 
record. If the number of records processed 
is greater than zero, a branch is made to 
INTLEAVE; if zero, the branch is to PRTEOJ 
(Chart DP). 

INTLEAVE, DA-B3 

The interleave factors are calculated and 
the input disk address routine is 
initialized: 

The order of merge to be used in phase 3 
(number of remaining sequences) is divided 
by BPT (number of sort blocks per 2311 
track). The quotient and remainder are the 
initial interleave factors for accessing 
the· input to phase 3. The OM is reduced by 
one and the process is repeated to obtain 
the reduced interleave factors. If OM is 
equal to one, reduced factors are not 
calculated. 

The input disk address .routine is 
initialized .by storing the interleave 
factors in LRMDR+1 and LQUOT+1, and the 
reduced interleave factors in LRMDR1+1 and 
LQUOT1+1. 

TAPLLR, DA-C3 

For disk output, this fUnction is bypassed 
by branching to OUTDSK. For tape output, 
the CCB (OCCB) and the CCW (WTCCW> are 
initialized to write tape. The routines 
for OPEN and EOV (OP1EOV), and the routine 
to write the last output tape block and to 
link to close file (EOJTAP), are relocated 
and initialized. 

TheLLR <label-linkage routine) is 
initialized to set the rewind code for 
close time in the DTF table immediately 
after the OPEN has been executed. This 
rewind code is in effect at end-of-volume 
time (multi-volume file). For instance, if 

134 IBM 8/360 DOS Sort/Merge 

the user specifies UNLD (unload), each 
volume is rewound and unloaded at EOV time, 
and the next volume is rewound (see Figure 
39). 

If nonstandard labels or no labels are 
specified, the tape mark option is 
initialized. ThiS applies only to an OPEN 
condition. In this case, the user has the 
option of inserting or not inserting a tape 
mark prior to the first record of each 
output volume. In the case of standard 
labels, a tape mark is always written by 
IOCS. 

If non-standard or additional user 
header and trailer labels have been 
specified, the DTF is initialized to enable 
IOCS to link to the LLR which, in turn, 
links to the user through exit 31 to 
process labels. 

At this point, the initialization steps 
fo.r tape output only are complete and a 
branch is made to CPLINK to continue 
initializing for disk and tape. 

NO ALTERNATE DRIVE 
USER'S REWIND 

ALTERNATE DRIVElS 
SPECIFICATIONS 

Remarks OPEN CLOSE Remarks 

The vol ume h rewound The valumeisrewaund. 
and unloaded. The next RWD RWD The next volume is 
volume is rewound. rewound. 

The volume is rewound The volume is rewound 
and unloaded. The next RWD UNLD and unloaded. The next 
volume is rewound. volume is rewound. 

The volume is rewound The vol ume is not 
and unloaded. The next RWD NORWD rewound, and the next 
volume is not rewound. vol ume is not rewound. 

The volume is rewound The volume isrewound, 
and unloaded. The next NORWD RWD and the next volume is 
volume is rewound. rewound. 

The volume is rewound The volume is rewound 
and unloaded. The next NORWD UNLD and unloaded. The next 
volume is rewound. volume is rewound. 

The volume is rewound The volume is not 
and unloaded. The next NORWD NORWD rewound, and the next 
vol ume is not rewound. volume is not rewound. 

Figure 39. Rewind Action Taken at 
End-of-Volume Time for 
Multi-Volume Tape Files 

OUTDSK, DA-D4 

Portions of Phase 3 are initialized for 
disk output: 

• Output disk address routine with thei 



• 

• 

• 

number of blocks that will be written 
on each output track (BPTO). 

Output channel program to verify each 
output block as it is written on disk, 
if VERIFY option is specified. 

Disk DTFSD for additional user labels, 
if exit 31 is specified. 

Label-linkage routine, by overlaying 
DTFSD (disk) onto DTFMT (tape). 

CPLINK, DA-F3 

The label-linkage routine is written on the 
checkpoint track. 

Whenever an OPEN, EOV (tape only) I 
CLOSE, or sequence error condition exists, 
the label-linkage routine is read into main 
storage and the condition is processed. 

RTNEQ, DA-G3 

The relocator routine is initialized to 
include the equal routine (if number of 
control data fields is greater than one) 
and the move routine. 

~: The move routine is not optional but 
its size is. 

If user' s forma t does not requi re 
conversion, phase 3 is initialized to 
bypass the linkage to the conversion 
routine. 

A branch-and-link is then made to the 
relocator routine (Chart FA) to initialize 
and relocate the move, reconversion, and 
equal routines. Control is returned by the 
relocator at START. 

START, DA-J3 

The constants required for the remaining 
initialization routines are obtained from 
the checkpoint record and stored at CTDLDL 
- PHEX34. These constants contain output 
data length. output block length, and 
information pertinent to user-programmed 
routines in phase 3. 

The relocator routine has stored, in the 
full word constant RLISA, the main storage 
address of the first available byte to be 
used by the phase 3 input/output areas. 
The remaining initialization routines are 

relocated, starting at the main storage 
address contained in RLISA. This is 
necessary because, in the case of disk 
output, initialization of the output count 
field (key length and data length) could 
possibly destroy unexecuted instructions in 
routines starting at OUT APE and ending at 
PHEX34. 

START1, DA-B5 

The input areas are allocated fo.r reading 
the input sequences into main storage. The 
number of input areas required is equal to 
the number of sequences to be merged 
(PH3IOM) in phase 3. Each input area is 
equal in length to the sort block size 
<SORTL) • 

The starting and ending addresses for 
each input area are calculated and stored 
in the constants AEND through GBEGIN 
(DBEGIN for 4-way merge). For example, 

AEND contains the end address (address of 
last byte) of the input sequence 1 block 
(sequence A from phase 2), and ABEGIN· 
contains the starting address of the input 
sequence 1 block. If disk output has been 
specified, the a-byte count field (the 
field immediately following the last input 
area and adjacent to the first. byte of the 
output area) is initialized. The count 
field becomes part of each output block and 
is written out with the data portion and 
key portion (if specif ied) • The output ccw 
is initialized with the actual data count 
for either disk or tape output. 

OUTAPE, DA-C5 

The output area constants OBEGIN-OUTEND are 
calculated, and the data count for the 
input CCW is initialized with the sort 
block length. 

The size of the output area depends upon 
the user specification in the SORT control 
statements. 

PH3MRG, DA-D5 

Phase 3 is initialized to execute during 
the final pass: 

• 

• 

a 1,2,3,4,5,6, or 7-way merge (for 
7-way merge) 

a 1,2.3, or 4-way merge (for 4-way 
merge) 

Final Merge 135 



Register 2 

Bits a 

Output Record 
Length (L3) 

: 
I 
I 

15 116 

Input Record Length: 
L lor Ten Plus Length 
of CF's if ADDROUT. 

31 

Register 3 

I 
: 

I I I 
I I I I Control Field-l Location 
I I I Control Field-l 

I or Displacement Relative 
1 I I Length Minus 1. 

d2 
I I I to 1 st Byte ina Record. 

a 3:45 617 18 15 1 16 31 Bits 

"- --..... --- ------... /' 
/' 

/' 
'\ 

'\ ----- ::----- ------
/' 

/' 
/' 

Type Labels 

00 = standard 
01 = nonstandard 
10 = unlabeled 

'\ 
'\ 

'\ 

-- -.....-..... 

-- -- -
ADDROUT Option 

01 = disk address 
10 = disk address + 

control data 

-- --- ------- ----- --- ---
Data Format Record Type 

000 = binary a = fixed-
001 = packed decimal length 
010 = zoned decimal 1 = variable-
all = fixed point length 
100 = floating point 

Figure 40. Contents of Registers at Fetch Time 

A test is made for any user programming 
(exits 31 and 32). If a user program phase 
is to be fetched from the core image 
library, it is necessary to: 

• Extract the origin address of the user 
program (stored in PHEX34) and insert 
it in USADDR. 

• 

• 

• 

Load user base register (15) with user 
program origin address (uSADDR) • 

Load use.r Link register (14) with the 
phase 3 return address (USTOPl) • 

Execute FETCH macro to load the user 
program. 

When job control has loaded the user 
program phase into main storage, control is 
transferred to the user routine so that it 
may be initialized, if so desired, be.fore 
phase 3 is executed. If the user program 
is to be initialized at this time, the 
information in Figure 40 will be available 
in the indicated registers at user program 
fetch time. 

The use.r must be able to return to the 
sort program, via the address (USTOPl> 
stored in general register 14, to open the 
mainline. If user programming is not 
specified, only the branch to USTOP1 is 
executed and the remainder of the routine 
is bypassed. 

136 IBM S/360 DOS Sort/Merge 

INPUT ROUTINE, FIXED-LENGTH RECORDS - DB 

After completing the initialization 
routine. the input areas are filled with 
records from the input portion of the disk 
work area. Phase 3 deSignates the input 
sequences 1, 2, 3, 4, 5, 6, and 7, 
respectively, for a 7-way merge only; in 
the case of a 4-way merge, input sequences 
are designated 1, 2, 3, and 4. 

"l 

At the start of phase 3, mainline 
compares are opened for sequence 1. A 
channel program and CCB are prepared to 
read the first block of sequence 1. After 
a block is read into an input area, the 
disk address of the next sequence 1 block 
is calculated (see compute disk address 
routine, Chart DH). The new disk address 
is stored in the input address table 
(ARADDR) • 

Input areas for all other sequences are 
filled in the same rranner as sequence 1. 
The number of input areas filled is 
determined by the number of remaining 
sequences. When the input areas are 
filled, control is passed to the 
mainline-compare routine. 

USTOP1, DB-B2 

The mainline compares are initialized to 
open sequence 1, channel programs are 
prepared with the main storage input area 



address contained in ABEGIN, and a sequence 
1 block is read into the input area. 

If the interleave factors need not be 
reduced, a branch is made to LRMDR (Chart 
DH) to calculate the next input interleave 
address; if the interleave factors are to 
be reduced, the next input address is 
calculated at LRMDRl (Chart DB). Upon 
return to this routine, the calculated 
address is stored in ARADDR. 

For more than a i-way merge, a branch is 
made to USTOP2i for a i-way merge, the 
branch is to PUTl (Chart DG). 

At the end of sequence 1, this routine 
is entered at USTOPl to close the mainline 
compares for this sequence. A branch is 
then made to the location stored in 
register SAVEA, depending on the current 
sequence and the order of merge. These 
locations are listed in the tables on Chart 
DB. 

USTOP2, DB-B2 

The mainline compares are initialized to 
open sequence 2, channel programs are 
prepared with the nain storage input area 
address contained in BBEGIN, and a sequence 
2 block is read into the input area. 

If the interleave factors need not be 
reduced, a branch is made to LRMDR (Chart 
DB> to calculate the next input interleave 
address; if the interleave factors are to 
be reduced, the next input address is 
calculated at .LRMDRl (Chart DB). Upon 
return to this routine, the calculated 
address is stored in BRADDR. 

For more than a 2-way merge, a branch is 
made to USTOP3; for a 2-way merge, the 
branch is to COMP21 (Chart DG). 

At tne end of sequence 2, this routine 
is entered at USTOP2 to close the mainline 
compares for this sequence. A branch is 
then made to the location stored in 
register SAVEB, depending on the cur.rent 
sequence and the order of merge. These 
locations are listed in the tables on Chart 
DB. 

USTOP3, DB-B2 

The mainline compares are initialized to 
open sequence 3, channel programs are 
prepared with the nain storage input area 
address contain~d in CBEG.IN, and a sequence 
3 block is read into the input area. 

If the interleave factors need not be 
reduced, a branch is made to LRMDR (Chart 
DH) to calculate the next input interleave 
address; if the interleave factors are to 
be reduced, the next input address is 
calculated at LRMDRl (Chart DH). Upon 
return to this routine, the calculated 
address is stored in CRADDR. 

For more than a 3-way merge, a branch is 
made to USTOP4; for a 3-way merge, the 
branch is to COMP32 (Chart DG) for a 7-way 
program or to COMP43 (Chart DF) for a 4-way 
program. 

At the end of sequence 3, this routine 
is entered at USTOP3 to close the mainline 
compares for this sequence. A branch is 
then made to the location stored in 
register SAVEC, depending on the current 
sequence and the order of merge. These 
locations are listed in the tables on Chart 
DB. 

USTOP4, DB-B2 

The mainline compares are initialized to 
open sequence 4, channel programs are 
prepared with the main storage input area 
address contained in DBEGIN, and a sequence 
4 block is read into the input area. 

If the interleave factors need not be 
reduced, a branch is made to LRMDR (Chart 
DH) to calculate the next input interleave 
address; if the interleave factors are to 
be reduced, the next input address is 
calculated at LRMDR1 (Chart DH). Upon 
return to this routine, the calculated 
address is stored in DRADDR. 

For more than a 4-way merge, a branch is 
made to USTOP5; for a 4-way merge, the 
branch is to COMP43 (Chart DF). 

At the end of sequence 4, this routine 
is entered at USTOP4 to close the mainline 
compares for this sequence. A branch is 
then made to the location stored in 
register SAVED, depending on the current 
sequence and the order of merge. These 
locations are listed in the tables on Chart 
DB. 

USTOP5, DB-B2 

The mainline compares are initialized to 
open sequence 5, channel prog.rams are 
prepared with the main storage input area 
address contained in EBEGIN, and a sequence 
5 block is read into the input area. 

Final Merge 137 



If the interleave factors need not be 
reduced, a branch is made to LRMDR (Chart 
DB) to calculate the next input interleave 
address; if the interleave factors are to 
be reduced, the next input address is 
calculated at LRMDR1 (Chart DH). Upon 
return to this routine, the calculated 
address is stored in ERADDR. 

For more than a 5-way merge, a branch is 
made to USTOP6; for a 5-way merge, the 
branch is to COMP76 (Chart DC). 

At the end of sequence 5, this routine 
is entered at USTOP5 to close the mainline 
compares for this sequence. A branch is 
then made to COMP76 (Chart DC). 

USTOP6, DB-B2 

The mainline compares are initialized to 
open sequence 6, channel programs are 
prepared with the main storage input area 
address contained in FBEGIN, and a sequence 
6 block is read into the input area. 

If the interleave factors need not be 
reduced, a branch is made to LRMDR (Chart 
DH) to calculate the next input interleave 
address; if the interleave factors are to 
be reduced, the next input address is 
calculated at LRMDRl (Chart DB). Upon 
return to this routine, the calCUlated 
address is stored in FRADDR. 

For more than a 6-way merge, a branch is 
made to USTOP7; for a 6-way merge, the 
branch is to COMP76 (Chart DC). 

At the end of sequence 6, this routine 
is entered at USTOP6 to close the mainline 
compares for this sequence. A branch is 
then made to COMP76 (Chart DC). 

USTOP7, DB-B2 

The mainline compares are initialized to 
open sequence 7, cqannel programs are 
prepared with the main storage input area 
address contained in GBEGIN, and a sequence 
7 block is read into the input area. 

A branch is made to LRMDR (Chart DH) to 
calculate the next input interleave 
address. Upon return to this routine, the 
calculated address is stored in GRADDR and 
a branch is made to COMP76 (Chart DC). 

At the end of sequence 7, this routine 
is entered at USTOP7 to close the mainline 
compares for this sequence. A branch is 
then made to COMP76 (Chart DC). 

138 IBM S/360 DOS sort/Merge 

MAINLINE COMPARE ROUTINE, FIXED-LENGTH 
RECORDS - DC,DD, DE, OF, DG 

The mainline compare routine in this phase 
is the same as that in phase 2 except for 
label changes. Records are compared until 
a winning record is found. Control is then 
passed to the output routine where the 
winning record is sequence-checked before 
being moved to the output area. Before 
returning to the compare routine, a check 
is made to see if. the last record in the 
output file has been processed. 

Note: The COmpare routine uses the 
registers labeled SAVEA, SAVEB, SAVEC, 
and SAVED as link registers for a 7-way 
merge. For a 4-way merge, the link 
registers are SAVEA and SAVEB. The 
link address for return to the mainline 
compare routine depends on the sequence 
from which a winning record is chosen. 
For example, if the winning record is 
from sequence 3, the return point 
(stored in register SAVEC) is to 
COMP73+2, COMP63+2, COMPS3+2, or 
COMP43+2. 

COMP76, DC-B2 

Comparing of records starts at COMP76 for a 
7-way merge and continues through the 
mainline until a winning record is found. 
A record from sequence 7 is compared with a 
record from sequence 6. If the record from 
7 wins, it is cOmpared with a record from 
sequence 5; as long as 7 is the winner, it 
is compared with records from the other 
available sequences, in turn. If 7 is the 
'4inner at COMP71, the sequence 7 record is 
moved to the output area by means of a 
branch to SEQCHK (Chart OJ). 

The program then returns to this routine 
to check for a depleted sequence 7 block, 
and for end of input sequence 7. If 
sequence 7 block is not depleted, a branch 
is made to COMP76 to compare the next 
record in sequence 7 with a record in 
sequence 6, and so on, until a winner is 
found. If sequence 7 block is depleted but 
it is not the end of the sequence, a branch 
is made to GET7 to read in another block. 

If the winning record is: 

• 6, branch to COMP65 (Chart DO) • 

• 5, branch to COMP54 (Chart DE) • 

• 4, branch to COMP43 (Chart OF>. 

• 3, branch to COMP32 (Chart DG). 



• 2, branch to. COMP21 (Chart DG). 

• 1, branch to. PUTl <Chart DG). 

Other canditians will alter the flow 
thraugh the mainline campares. Far 
example, if the end af sequence 6 is 
reached, the branch cade at 875 is set to. 
15 (uncanditianal branch). The pragram 
then branches to. compare 7:5. 

If, after maving the sequence 7 winning 
recard to. the aut put area, the end af 
sequence 7 is reached, cantral returns to. 
USTOP7 to. clase all campares far sequence 
7. 

If a recard in sequence 7 is campared 
against 6, 5, and 4, and 4 is determined to. 
be the winning recard, the address af 
COMP74+2 is stared in register SAVED and 
the rautine cantinues to. COMP43. If 
sequence 4 recard is the winner aver 3, 2, 
and 1, 4 is maved to. the autput area and 
cantral is returned to. the mainline 
locatian stared in register SAVED. 
Althaugh the sequence 4 recard was faund to. 
be the winner, the sequence 7 recard had 
already been faund to. be the winner aver 6 
and 5 sequence recards. Therefare, cantral 
is returned to. the campare rautine at the 
paint where the previaus sequence 7 recard 
is campa red to. a new sequence 4 recard. 
See Figure 41. 

COMP65, DD-B2 

A recard fram sequence 6 is campa red with a 
recard fram sequence 5. If the recard from 
6 is faund to. be the winner, it is campa red 
with a recard fram sequence 4, and so. an 
until a winner is determined. 

If the winner is: 

• 6. branch to. PUT6. 

• 5, branch to. COMP54 (Chart DE) • 

• 4, branch to. COMP43 (Chart DF). 

• 3, branch to. COMP32 (Chart DG). 

• 2. branch to. COMP21 (Chart DG) • 

• 1, branch to. PUTl (Chart DG) • 

After maving the sequence 6 recard to. 
the autput area, the campa res resume at 
COMP76 if sequence 6 black is nat depleted. 

If sequence 6 black is depleted but it 
is nat the end af the sequence, a branch is 
made to. GET6 to. fill the sequence 6 input 
area. If the end af sequence 6 is reached, 

cantral returns to. USTOP6 to. clase all 
campa res far sequence 6. 

COMP54. DE-B2 

A recard fram sequence S is campa red with a 
recard fram sequence 4. If the recard fram 
S is faund to. be the winner, it is campared 
with a record fram sequence 3, and so. an 
until a winning recard is determined. 

If the wi nm ng reca rd is: 

• 5, branch to. PUTS. 

• 4, branch to. COMP43 (Chart DF). 

• 3, branch to. COMP32 (Chart DG). 

• 2, branch to. COMP21 (Chart DG). 

• 1, branch to. PUTl (Chart DG). 

After maving the sequence recard 5 to. 
the aut put area, the campares resume at 
COMP76 if sequence 5 block is not depleted. 

If sequence 5 block is depleted but it 
is nat the end af the sequence, a branch is 
made to. GETS to. fill the sequence 5 input 
area. If the end af sequence 5 is reached, 
cantral returns to. USTOP5 to. clase all 
campares for sequence 5. 

COMP43, DF-B2 

Nate: Far a 4-way merge, camparing af 
recards starts at COMP43 and 
cantinues thraugh the mainline in 
the same manner described under 
COMP76, until a winning recard is 
faund. 

A recard fram sequence 4 is campared 
with recards fram sequences 3, 2, and 1. 
If the winner is: 

• 4, branch to. PUT4. 

• 3, branch to. COMP32 (Chart DG). 

• 2, branch to. COMP21 (Chart DG). 

• 1, branch to. PUTl (Chart DG). 

After maving the sequence 4 recard to. 
the autput area, cantral is returned at the 
lacatian stared in register SAVED (far 
7-way merge) or at COMP43 (far 4-way 
merge), if sequence 4 black is nat 
depleted. 

Final Merge 139 



3rd Leve I Compare O:C -7!i '\ 
(O-Low) I (C-Low) (Equal) 

1/ \ o:s C:S 2nd Leve I Compare -----

/\ 1\ 
l"~) / \ I"O"? B-l~\'OI) 

OA / \ CA 1st Level Compare 

~-~!~~,~~~~~~ 
(O-Low) I ...... /" (S-Low) (A Low) (Eq al) 

//;:.:< 7~~E:~\ " ~ '-i;.:,~, -\' 
o (to 3 Leve I 1 C I to 2 Leve I ) B A 

, Compare I \ Compare I 

Example 
1 

2 

3 

4 

/ 
/ 

,j... / ,/ '" - ..... - -" ....... - ..... / 

Sequence D C B A 

8~ 

QilJ7JE23~ 

8JfU7~'JE23~ 
8JfU7Jjlj6~5~ 

Output Record 

0-- (8) 

C-- (7) 

B-- (6) 

A--(5) 

If 0 or C is moved to the output area, 3 compares are required before another record can be moved. 

If B is moved to the output area, 2 compares are required before another record can be moved • 

. If A is moved to the output area, 1 compare is required before another record can be moved. 

Figure 41. Compare Tree (for a 4-Way Merge) 

140 IBM S/360 DOS Sort/M.erge 



If sequence 4 block is depleted but it 
is not the end of the sequence, a branch is 
made to GET4 to fill the sequence 4 input 
area. If the end of sequence 4 is reached, 
control returns to USTOP4 to close all 
compares for sequence 4. 

COMP32. DG-B1 

A record from sequence 3 is compared with 
records from sequences 2 and 1. If the 
winner is: 

• 3, branch to PUT3. 

• 2, branch to COMP21. 

• 1, branch to PUT1. 

After moving the sequence 3 record to 
the output area, control is returned at the 
location stored in register SAVEC (for 
7-way merge) or to COMP43 (for 4-way 
merge), if sequence 3 block is not 
depleted. 

If sequence 3 block is depleted but it 
is not the end of the sequence, a branch is 
made to GET3 to fill the sequence 3 input 
area. If the end of sequence 3 is reached, 
control returns to USTOP3 to close all 
compares for sequence 3. 

COMP21, DG-C3 

A record from sequence 2 is compared with a 
record from sequence 1. If 2 is the 
winner, branch to PUT2; if 1 is the winner. 
branch to PUT1. 

After moving the sequence 2 record to 
the output area, control is returned at the 
location stored in register SAVEB if 
sequence 2 block is not depleted. 

If sequence 2 block is depleted but it 
is not the end of the sequence, a branch is 
made to GET2 to fill the sequence 2 input 
area. I f the end of sequence 2 is reached, 
control returns to USTOP2 to close all 
compares for sequence 2. 

PUT1, DG-E5 

When the winning record is from sequence 1 
and it has been moved to the output area, 
control is returned at the location stored 
in register SAVEA, if sequence 1 block is 
not depleted. If sequence .1 block is 
depleted but it is not the end of the 
sequence, a branch is made to GET.1 to fill 
the sequence .1 input area. If end of 
sequence 1 is detected, control returns to 
USTOP1 to close all compares for sequence 
1. 

COMPUTE INPUT INTERLEAVED DISK ADDRESS, 
FIXED-LENGTH RECORDS - DH 

The current input disk interleave address 
is updated by the input inte.rleave factors. 
The interleave factor RMDR (remainder 
of: OM divided by BPT) is added to the 
record number (the R portion of CHHR). If 
the new record number exceeds the maximum 
BPT, the next record number is computed by 
adding the 256 complement of BPT. Refer to 
Figure 42. 

Final Merge 141 



Order of Merge -- 4 
Blocks Per Track -- 5 

Track 7 

Track 8 

Work Track 9 
Area~ 

Track 0 

Track 1 

RMDR -- 0004 
QUOT -- 0000 
BCOMP --OOFB 

Current Disk Address 

Add (RMDR) Factor 
Record Number Valid 
(Equal to or Less Than BPT) 

Add (Quat) Factor 
Track Number Valid 
(Equal to or Less Than 09) 

Current Disk Address 

Add (RMDR) Foetor 
Record Number Invalid 

Add Complement of BPT 
(05=OOFB) 
Record Number Valid 

Add (Quat) Factor 
Track Number Valid 

Current Disk Address 

Add (RMDR) Fodor 
Record Number Invalid 

Add Complement of BPT 
Record Number Valid 

Add (Quat) Foetor 
Track Number Invalid 

Add Complement of 10 

Cylinder 

I 
Block I 

Cylinder 2 

I Block 4 I 
[ [New Setl I 

C 
01 

01 

01 

C 
01 

01 

01 

01 

C 
01 

01 

01 

01 

00 
02 

[ 

Block 3 

Figure 42. Calculate Interleaved Disk Address 

142 IBM S/360 DOS Sort/Merge 

H H 
UU U8 

+ 00 
00 08 

+ 00 
00 08 

H H 
00 08 

+ 00 
00 08 

+ 00 
00 09 

+ 00 
00 09 

H H 
00 09 

+ 00 
00 09 

+ 00 
00 OA 

+ 00 
00 OA 

FF F6 
00 00 

-----, 

Block 2 I 

R 
01 

04 
05 

00 
05 

R 
05 

04 
09 

FB 
04 

00 
04 

R 
04 

04 
08 

FB 
03 

00 
03 

00 
03 

Block 1 

Block 2 
I 
I 
I 
I 
I 

+ 
Block 2 

Block 3 
I 
I 
I 
I 
I 
I 
I 

t 
Block 3 

Block 4 



The head number is updated by adding 
QUOT (quotient of: OM divided by BPT). 
The new head number is then checked for 
validity; if it is greater than 9, the next 
cylinder-head number is calculated by 
adding the 256 complement of 10. 

If the upper limit of the current work 
area section has been exceeded, the next 
work area section is accessed. A new 
interleave disk address is then calculated, 
based on the lower limit of the new work 
area section. 

LRMDR, DH-B3 

The input disk address routine is 
initialized with the interleave factors for 
calculating the next disk address of a 
given sequence t1, 2, 3, 4, 5, 6, or 7 for 
a 7-way merge; 1. 2. 3, or 4 fo.r a 4-way 
merge). A branch is then made to CPBPTI. 

Note: LRMDR is entered after a block from 
one of the input sequences has been 
read into main storage and the 
interleave factors need not be 
changed. In these cases, the number 
of blocks processed (merged to the 
output file) from the given sequence 
is equal to or less than the number 
of blocks in the last sequence 
passed to phase 3 from phase 2. 

LRMDR1. DH-B2 

The input disk address routine is 
initialized with reduced interleave factors 
for calculating the next disk address of a 
given sequence (1, 2, 3, 4, 5, or 6 for a 
7-way merge; 1, 2, or 3 for a 4-way merge). 
A branch is then made to CPBPTI. 

Note: LRMDRl is similar to LRMDR except 
that it is entered after a block has 
been read into main storage from a 
sequence other tha n the last 
(sequence 7 for a 7-way merge. or 
sequence 4 for a 4-way merge) and 
the number of blocks merged to the 
output file from that sequence is at 
least one greater than the number of 
blocks in the last sequence passed 
to phase 3. 

CPBPTI, DH-C2 

The next input disk interleave address is 
calculated with the factors from LRMDR or 
LRMDR1, as the case may be. The program 
then returns to the input routine (Chart 
DB) to store the newly calculated 
interleave address in the input area table. 

OUTPUT ROUTINE, FIXED-LENGTH RECORDS -
OJ,DK 

When a winning record is determined by the 
mainline compare loop, this routine is 
entered for: 

,. Sequence- checking the output file. 

• Data conversion, if specified. 

• 

• 

• 

• 

• 
• 

User exit 32, if specified. 

Updating the main storage output area. 

Moving a record to the main storage 
output area. 

Note: This can be either a winning 
record or a user-inserted record 
(via exit 32). 

Writing on tape or disk whenever the 
main storage output area becomes full. 

Updating the phase 3 record count. 

Open, close, EOV (end-of-volume), and 
sequence-error conditions. 

• Executing end-of-job routine after the 
last record has been moved to the 
output area. 

Sequence checking is performed by 
comparing the current winning record (which 
is about to be moved to the main-storage 
output area) with the last winning record 
that was moved to the output area. Because 
this is the first fUnction of the output 
routine, the first winning record is not 
sequence checked. Each record (after the 
first record) is sequence checked before 
conversion (if specified) is performed and 
before the user has access to the record in 
the output area via exit 32. 

Note: The data-conversion routine converts 
the previous record moved to the 
output area. 

For disk output, the output address is 
calculated before writing a block of 
records on the disk output unit. For the 
first output blOCK, a dummy address 0010 

Final Merge 143 



(CHHR) is used to force the upper limit 
(also a dwmny address) to be exceeded. 
This causes the initial output file extents 
and the logical unit address to be 
retrieved, so that a write command can be 
given to the output file. 

For tape output, the initialization 
routine has relocated routines OP1EOV and 
EOJTAP to LWRITE+4 and PH3EOJ+4, 
respectively. Prior to writing the first 
output block on tape, the initial open 
condition is executed. 

End-ot-job routine fUnctions are: 

• Initialize to write last output block 
for disk or tape. 

• Initialize to write EOF record and to 
close output file (disk only). 

• Close output file. 

• Print end-of-job messages. 

• Issue EOJ macro and return control to 
job control. 

The resident checkpoint routine is used 
to: 

• Checkpoint mainline program when open, 
end-of-volume, close, or sequence-error 
conditions are found. 

• Read in and link to label-linkage 
routine (LLR). 

• Checkpoint the LLR. 

• Restore mainline program to main 
storage and return control to 
appropriate point in phase 3. 

SEQCHK, OO-B3 

For the first winning record, the sequence 
check, conversion, and exit 32 routines are 
bypassed; a branch is made to FULOUT. For 
all subsequent records, the routine 
continues to CHKSEQ. 

CHKSEQ, OO-B2 

The control data field(s) of the winning 
record is (are) compared with the previous 
record moved to the output area. If the 
record to be moved is out of sequence, a 
branch is made to SEQERR; if no error, the 
branch is to CONVRT. 

144 IBM S/360 DOS Sort/Merge 

SEQERR, DJ-C2 

The sequence-error indicator (S-character) 
is inserted in location OPEN and a branch 
is made to OPENF {Chart OK) to checkpoint 
the mainline and read the LLR (label 
linkage routine) into main storage. 

CONVRT, DJ-C1 

If data conversion was not specified, the 
routine continues to EXIT32. If conversion 
was specified by the user, the record 
previously moved to the output area is to 
be reconverted to the format specified in 
the control statements. A branch-and-link 
is made to the selected reconversion 
routine; control is returned at EXIT32. 

EXIT32, DJ-E1 

If exit 32 was not specified, the routine 
continues at NX'1'OR. If exit 32 has been 
specified, user base register 15 is loaded 
with the address of the user routine 
(USADDR) and register 14 CLINK) is loaded 
with the return address. Control is then 
passed to the user program. After 
execution of the user routine, control is 
returned to the sort program via register 
14. For a detailed description of user 
functions in exit 32, refer to IBM 
System/360 Disk Operating System;­
Sort/Merge Program specifications, Form 
C24-3444. 

NXTOR, OJ-G1 

The output area address in main storage is 
updated to move the next winning record, 
and the switch that permits entry to SEQCHK 
(for sequence check) is turned on (no-op). 
The routine then continues to FULOUT. 

FULOUT, OJ-C3 

A test is made to determine if the main 
storage output area is full; if it is, a 
branch is made to LWRITE to write records 
from the output area onto disk or tape. 

If the output area is not full and there 
is room for at least one more record, the 
move routine (STR2) is entered to move a 
record into the output area. This record 



may be either a winning record or a 
user-inserted record. The routine then 
continues at ZYXWZY-INSERT. 

ZYXWZY-INSERT, OJ-E3 

If exit 32 was specified and if the record 
just moved was a user-inserted record, a 
branch is made to EXIT32 to permit multiple 
insertions by the user. without exit 32, 
this branch is not activated. 

A count of the records processed by 
phase 1 was placed in register 10 (for the 
4-way merge program) or in location COUNTR 
(for the 7-way merge program) during the 
initialization of phase 3. Every time a 
winning record is moved to the main storage 
output a.rea, this count is reduced by one 
(for the 7-way merge program, the count is 
loaded in register 10, decremented. and 
returned to COUNTR). If the result is 
posi ti ve (more records remai n), a branch is 
made back to the mainline compares at 
NXT1R, NXT2R, NXT3R, etc., as the case may 
be (Charts OC through OG), to resume 
processing. If the result is zero (last 
record has been moved into the output 
area), the routine returns to SEQCHK to 
allow the user to perform end-of-job 
operations via exit 32 (if specified). 

Entry to SEQCHK produces a negative 
value (hexadecimal FFFFFFFF) in register 
10. This negative value is provided so 
that the user program can determine a 
last-record condition. Control is returned 
to initiate the end-of-job function. 

LWRITE, DJ-C4 

After initializing to write a block of 
records from the output area. the routine 
continues either to CPBPTO for disk output 
or to TAPEO for tape output. 

For tape output, the sUb-routine at 
label OP1EOV has been relocated to LWRlTE+4 
during initialization routine. A branch to 
TAPEO is usually executed to write a block 
of records on tape. The only e.xception 
occurs when the first block is about to be 
written. Here, as in the case of disk 
output, the open condition must be 
performed: The output volume must be 
rewound (If specified), labelS checked and 
created, etc. For the first eutput block, 
a branch is made to OPENF (start of 
resident checkpoint routine, Chart OK) to 
read in the label-linkage routine and 
perform these functions. 

CPBPTO, OJ-OS 

The next output disk address (CHHR) is 
calculated; this calculation is similar to 
that for an input disk address except that 
the interleave factors are not used. The 
record number (R) is always incremented by 
one, and head and record numbers are 
checked for validity. The newly-computed 
2311 address is checked to determine if the 
upper limit of the output extent has been 
exceeded. If it has, a branch is made to 
OPENF (Chart OK) to initiate retrieval of 
the next set of extents and the logical 
unit address. 

At the start of phase 3, the lower limit 
is initialized with the address 0010 
(CHHR). The upper limit is 0000. For the 
initial output block, the first calculated 
disk address is DOll, thus forcing the 
upper limit to be exceeded. This causes 
retrieval of the initial output file 
extents and the logica 1 unit address before 
a write command is given to the output 
file. 

The disk search address is stored in 
CHHR, and the actual add.ress is stored in 
the count field immediately preceding the 
main storage output area. The R value of 
the search address (CCHHR) is always one 
less than the R value of the actual 2311 
address. A branch is then made to TAPEO. 

TAPEO, DJ-GS 

An EXCP macro is issued for IOCS to write a 
block of records to the output file (tape 
or disk). 

This function is also used to write an 
end-of-file record on disk (data count of 
zero) after the last output block has been 
written in the disk file. 

For tape output, when an end-of-reel 
condition has been detected. a branch is 
made to CLOSE (Chart OK) to initiate the 
execution of end-o.f-volume and open 
functions for the next output tape volume. 
When writing the last output tape block of 
the file, an end-of-volume condition is 
forced; in this case, the branch is made to 
CLOSE (Chart OK) to initiate the closing of 
the output file. 

If disk output. or if not end of reel 
for tape output, the routine continues to 
PH3EJ1. 

Final Merge 145 



PH3EJ1, DJ-J5 

If more records remain to be processed, a 
branch is made to STR2 to move the last 
winning record to the main-storage output 
area. For disk output only. when no more 
.records remain to be processed, control is 
returned to PH3EOJ. 

PH3EOJ, DK-B1 

The end-of-job functions are initialized 
for disk or tape: 

• For disk output, the number of bytes 
remaining in the main-storage output 
area are calculated to determine if the 
last output block has been written. A 
byte count of zero indicates that the 
final output block was already written; 
tile switch at BCLOSE is set so that an 
unconditional branch is made to OPENF-4 
to initiate the final close action. 

• 

In either case, the computed data 
length of the last block (or of the EOF 
record) is stored in the output count 
field. The data length is then 
incremented by eight and stored in the 
write CCW (WTCCW). The branch at 
PH3EJl is made a no-op to allow 
re-entry to the end-of-job function at 
PH3EOJ. 

A branch is then made to LWRITE to 
write either the last output block or 
the EOF record. If the last block is 
still to be written, this end-of-job 
function is re-entered to write the EOF 
record. If the EOF record is to be 
written, the switch at BCLOSE initiates 
the final closing routine. 

For tape output, this function is 
entered once. (The sub-routine at 
EOJTAP will have been relocated to 
PH3EOJ+4 by the initialization 
routine.) If the ADDROUT "Aft option is 
specified, ten blanks are moved into 
the main-storage output area 
(significant only when last block has 
not been written). This avoids the 
possibility of a "noise" record because 
the last output block then contains at 
least 20 bytes. 

The end-of-volume indicator 
(V-character) is changed to a close 
indicator (F-character). If last block 
has been written, a branch is made to 
CLOSE (Chart OK). If last block has 
not been written, the switch at BCLOSE 
is made unconditional branch and a 
branch is made back to LWRITE+4 to 

146 IBM S/360 DOS Sort/Merge 

write the last block. Then, when IOCS 
returns control to the mainline, a 
branch is made to CLOSE. 

CLOSE, DK-D3 

This routine is relocated, during phase 3 
initialization, to location OP1EOV+24. The 
end-of-volume indicator (V-character) is 
loaded in register 0 for tape EOV, and a 
branch is made to RWLABL to read in the LLR 
and initiate the end-of-vol ume functions. 
If end of file, the EOF close indicator 
(F-character) is loaded in register 0 so 
that the branch to RWLABL will initiate the 
close functions. 

OPENF, DR-D2 

Register 0 is initialized for the condition 
to be processed: 

• Open - o-character 

• Close - F-character 

• Sequence error - S-character 

The routine then continues to RWLABL. 

RWLABL, DK-E2 

The R value of the disk 
the checkpoint track is 
checkpoint the mainline 
label-linkage routine. 
made to LABETY • 

LABETY, DK-F2 

address (CHHR) for 
initialized to 
and read in the 
A branch is then 

The command code in the channel program 
(WRMAIN+24) is modified to: 

1. Checkpoint mainline (write) 

2. Read in label-linkage routine (read) 

3. Checkpoint LLR (write) 

4. Read-in mainline (read), 

Refer to Chart OK for the exit points from 
LABETY after each of these listed 
functions. 



LABEL-LINKAGE ROUTINE (LLR) , FIXED-LENGTH 
RECORDS - DL 

The start of the LLR (label-linkage 
routine) is identified by the label LINKRT 
in the program listing. The LLR is written 
on the checkpoint track during phase 3 
initialization; it is then read into main 
storage (at the end of the supervisor, 
location RDCHPG) for open, end-of-volume, 
close, or sequence-error conditions. (A 
po.rtion of the mainline is checkpointed 
before the LLR is .read in.) When in main 
storage. the LLR receives control .from the 
resident checkpoint routine through linkage 
prepared in register 14. 

The label-linkage routine initiates 
open, end-of-volume, and close operations 
for: 

• Disk output - standard file labels 

• Tape output - standard file labels, 
non-standa.rd labels, or no labels. 

X31LNK, DL-B2 

The condition indicator is obtained from 
register 0, stored in X31IND, and the 
indicated branch is made: 

• 

• 

• 

• 

Indica tor is • S· (sequence error) -
branch to SEQERROR. 

Indicator is 'V' or 'F' and output is 
on tape <EOV or EOF) - branch to 
X31CLS-12. 

Indicator is 'F' and output is on disk 
(EOV or EOF) - branch to X31CLS+B. 
(This branch replaced the one for tape 
output during initialization.) 

Indicator '0' (open) - continue to 
IOCSOPEN. 

IOCSOPEN, DL-C2 

An OPEN macro is issued to open the output 
file. (This fUnction is executed by the 
transient IOCS label processing routine.) 
If exit 31 is specified. IOes returns 
control at USRLAB; in either case. this 
routine is re-entered at X31 TS1. 

X31TS1, DL-G2 

For disk output, the extents are obtained 
from the DTFSD table and stored in 
ORAnOR-LIMITO. The logical unit address is 
obtained from the DTF table and placed in 
the output CCB at OCCB+6. 

For tape output, the rewind code in 
DTFt<lT is initialized for end-of-volume time 
and for close time. 

This function opens each disk extent or, 
for tape output, the initial tape volume. 

A branch is then made to LABETY 
(checkpoint routine, Chart DK) to write the 
LLR on the checkpoint track and to read the 
mainline into main storage. 

USRLAB, DL-E2 

Note: This sUb-routine is entered from: 

1. Transient IOCS label-processing 
routines. 

2. User program associated with 
exit 31. 

The sub-routine is used only if exit 31 has 
been specified in the MODS control 
statement. The DTF table COTF.iYIT or DTFSD) 
has been initialized to indicate 
label-address exit. IOCS enters here to 
permit linkage to the user program via exit 
31. Exit 31 functions are: 

• 

• 

create and write non-standard header 
and trailer labels for tape output. 

build user header and trailer labels 
for disk or tape output. 

The user returns control here to 
indica te tha t : 

• all non-standard tape header and 
trailer labels have been created and 
written. or 

• a user header. or trailer label has been 
built and is to be written (with more 
to follow), or 

• the last user header or trailer label 
has been built and is to be written. 

This sUb-routine returns control to IOCS 
with an LBRET macro. When user or 
non-standard label processing is complete, 
IOCS then returns to the next sequential 
instruction after the macro (OPEN, FEOV, or 
CLOSE) that initiated the label processing 
operation. 

Final Merge 147 



Note: When exit 31 is entered for label 
processing, the low-order byte of 
general register 0 contains: 0 
(open), V (end-of-volume), or F 
(close) to enable the execution of 
the user label function. 

X31CLS-12, DL-C4 (TAPE ONLY) 

FOr EOV or CLOSE conditions, the volume 
block count (for standard labels) is 
inserted in the DTF table to enable IOCS to 
incorporate it into the standard trailer 
label. The volume block count is made zero 
in preparation for the next volume. 

X31CLS, DL-D4 (TAPE ONLY) 

Location X31IND is tested to determine 
which of the two conditions exists. For 
end of volume, a branch is made to X31EVT; 
for close, the routine continues to 
IOCSCLOS to close the output file. 

X31EVT, DL-E4 (TAPE ONLY) 

An FEOV macro is issued and IOCS creates 
the required output labels. 

Afte.r the loeS end-of-volume function is 
complete# the FEOV switch in the DTFMT 
table is turned off and the next output 
volume is opened. 

If an alternate drive has been assigned 
in the SYSOOl ASSGN card, automatic volume 
Switching is also done. 

A branch is then made to LABETY to write 
the LLR on the chec~point track and to read 
the mainline into main storage. 

IOCSCLOS, DL-C3 

loeS closes the output file (disk or tape) 
and returns control at PRTEOJ. 

PRTEOJ, DL-D3 

An EXCP macro is issued and the end-of-job 
messages are printed: 

• 7DC4I RECORDS PROCESSED 0000000 

148 IBM S/360 DOS Sort/Merge 

• 7DC51 END OF SORT 

When IOCS returns control to this 
sub-routine, an EOJ INlcro is issued. 

SEQERROR, DL-C5 

An EXCP macro is issued and the message 
"7DC2D SEQ. ERRORR is printed on SYSLOG. 

Note: If SYSLOG is an IBM 1052 
printer-Keyboard, the operator's 
.reply to this message is either 
IGNORE or CANCEL. CANCEL results in 
program cancellation by IOCS. 
IGNORE permits processing to 
continue; a branch is made to LABETY 
to write the LLR on the checkpoint 
track and to read the mainline into 
main storage. 

If the operator's reply is incorrect 
(nei ther IGNORE nor CANCEL in upper or 
lowe.r case letters), the message "7DC2A 
INVALID RESPONSE" is printed. The operator 
must retype the reply to the sequence-error 
message. 

If SYSLOG is not an IBM 1052 
Printer-Keyboard, the program is 
automatically canceled. 

PHASE 3 INITIALIZATION, VARIABLE-LENGTH 
RECORDS - DM 

The checkpoint record and the phase 2 
constants pertinent to phase 3 are read 
into main storage and several routines are 
ini tia li zed: 

• Mainline compare routine. 

• Exit 32 routines. 

• Disk or tape output routine. 

• Disk or tape label-linkage routine. 

• Relocatable routines. 

The interleave factors used for the disk 
input routine are calculated, as are the 
constants for phase 3 input/output areas. 

For disk output, the output routine is 
executed as shown in the listing. For tape 
output, the routines at labels OP1EOV and 
EOJTAP are relocated to TAPOV2+4 and 
PH3EOJ, respectively, at initialization 
time. 



A check is made to determine if user 
programming is to be included. Exits 
available to the user in this phase are 31 
and 32. 

After initialization is complete, 
control is passed to the input-data 
routine. 

INTPH3, DM-B1 

Job control, employing the system loader, 
loads phase 3 into main storage following 
the supervisor. The transfer address is 
identified by the label INTPH3. Base 
register 11 is loaded, and registers 2 and 
3 are stored. These two registers contain 
the logical unit address and the disk 
address (CHHR) of the checkpoint record, 
respectively. The checkpoint record, 
created by the assignment phase and updated 
by phases 1 and 2, is read into main 
storage (starting at CI<PTRD) by the channel 
program. 

PH3CON. DM-Cl 

The channel program is modified to read 
phase 3 constants from the checkpoint track 
into main storage, starting at IPTCCB and 
continuing through FRAnDR for a 6-way merge 
or CRAnDR for a 3-\06 y merge. A 
branch-and-link is made to CHEI<PT to read 
these constants into main storage and 
control is returned at TESTEQ. 

TESTEQ, DM-D1 

If multiple control data fields are 
specified in the SORT control card, the 
equal routine is required and 
initialization of the mainline compare 
branches is bypassed. If the equal routine 
is not required, the branch instructions 
foJlowing each mainline compare are 
initialized accordingly. For example, if a 
record from sequence 4 is equal to a record 
from sequence 3; the next compare is 
between record~ from sequences 3 and 2, not 
sequences 4 and 2. 

The sequence error routine is 
initialized according to the unit 
assignments. If SYSLOG is a 1052 
printer-I<e,.Yboard the operator may either 
ignore a sequence error and continue 
processing or cancel the job when a 
sequence error is detected. If SYSLOG is 
not a 1052 Printer-I<eyboard, a sequence 
error automatically cancels the job. 

ITCOMP, DM-E1 

The mainline compare loops are initialized 
for length, location, and collating 
sequence of control data field 1. This 
information is contained in the 96-byte 
table (CF1LCT) in the checkpoint record. 

OPTION, DM-G1 

A test is made to determ.ine if exit 32 is 
specified and, if it is, a branch is made 
to bypass the EXIT32 initialization. If 
exit 32 1S not specified, the output 
routine is initialized to bypass the exit. 

RECORDO, DM-H1 

The number of records processed by phase 1 
(RECPH1) is obtained from the checkpoint 
record. If the number of records processed 
is greater than zero, a branch is made to 
INTLEAVE; if zero, the branch is to PRTEOJ 
(Chart DW). 

INTLEAVE. DM-B3 

The interleave factors are calculated and 
the input disk address routine is 
ini tia li zed. 

The order of merge to be used in phase 3 
(number of remaining sequences) is divided 
by BPT (number of sort blocks per 2311 
track). The quotient and remainder are the 
initial interleave factors for accessing 
the input to phase 3. The OM is reduced by 
one and the process is repeated to obtain 
the reduced interleave factors. If OM is 
equal to one, reduced factors are not 
calculated. 

The input disk address routine is 
initialized by storing the interleave 
factors in LRMDR+l and LQOUT+l, and the 
reduced interleave factors in LRMDR1+1 and 
LQ OUT 1 + 1. 

TAPLLR, DM-C3 

For disk output, this function is bypassed 
by branching to OUTDSK. For tape output, 
the CCB (OCCB) and the CCW (WTCCW) are 
initialized to write tape. The routines 
for open and EOV (OP1EOV), and the routine 

Final Merge 149 



to write the last output tape block and to 
link to close file (EOJTAP), are relocated 
and initialized. 

The LLR (label-linkage routine) is 
initialized to set the rewind code for 
close time in the DTF table immediately 
after the OPEN has been executed. This 
rewind code is in effect at end-of-volume 
time (multi-volume file). For instance, if 
the user specifies UNLD (unload), each 
volume is rewound and unloaded at EOV time, 
and the next volume is rewound {see Figure 
43). 

NO ALTERNATE DRIVE 
USER'S REWIND 

ALTERNATE DRIVElS 
SPECIFICATIONS 

Remarks OPEN CLOSE Remarks 

The volume is rewound The vol ume is rewound. 
and unloaded. The next RWD RWD The next volume is 
volume is rewound. rewound. 

The volume is rewound The volume is rewound 
and unloaded. The next RWD UNLD and unloaded. The next 
volume is rewound. volume is rewound. 

The volume is rewound The volume is not 
and unloaded. The next RWD NORWD rewound, and the next 
volume is not rewound. volume is not rewound. 

The volume is rewound The volume is rewound, 
and unloaded. The next NORWD RWD and the next volume is 
volume is rewound. rewound. 

The vol ume is rewound The volume is rewound 
and unloaded. The next NORWD UNLD and unloaded. The next 
volume is rewound. volume is rewound. 

The vol ume is rewound The volume is not 
and unloaded. The next NORWD NORWD rewound, and the next 
volume is not rewound. volume is not rewound. 

Figure 43. Rewind Action Taken at 
End-of-Volume Time for 
Multi-Volume Tape Files 

If nonstandard labels or no labels are 
specified, the tape mark option is 
initialized. This applies only to an OPEN 
condition. In this case, the user has the 
option of inserting or not inserting a tape 
mark prior to the first .reco.rd of each 
output volume. In the case of standard 
labels, a tape mark is written by IOCS. 

If nonstandard or additional user header 
and trailer labels have been specified, the 
DTF is initialized to enable IOCS to link 
to the LLR which, in turn, links to the 
user through exit 31 to process labels. 

At this point, the initialization steps 
for tape output only are complete and a 
branch is made to CPLINK to continue 
initializing for disk and tape. 

150 IBM S/360 DOS Sort/Merge 

OUTDSK, DM-D4 

Portions of Phase 3 are initialized for 
disk output: 

• 

• 

• 

Output channel program to verify each 
output block as it is written on disk, 
if VERIFY option is specified. 

Disk DTFSD for additional user labels, 
if exit 31 is specified. 

Label-linkage routine, by overlaying 
DTFSO (disk) onto DTFMT (tape). 

CPLINK, OM-F3 

The label-linkage routine is written on the 
checkpoint track. 

Whenever an OPEN., EOV (tape only), 
CLOSE, or sequence error condition exists. 
the label-linkage routine is read into main 
storage and the condition is processed. 

RTNEQ, DM-G3 

The relocator routine is initialized to 
include the equal routine (if number of 
control data fields is greater than one). 
If user's format does not require 
conversion, phase 3 is initialized to 
bypass the linkage to the conve.rsion 
routine. 

A branch-and-link is then made to the 
relocator routine (Chart FA) to initialize 
and relocate the reconversion and equal 
routines. Control is returned by the 
relocato.r at START. 

START, DM-J 3 

The output block length and information 
pertinent to user-programmed routines in 
phase 3 are obtained from the checkpoint 
record, and stored at BKLOUT-PHEX34. 

The relocator routine has stored, in the 
full word constant RLlSA, the main storage 
address of the first available byte to be 
used by the phase 3 input/output areas. 
The remaining initialization routines are 
relocated, starting at the main storage 
address contained in RLISA. This is 
necessary because, in the case of disk 
output, initialization of the output count 
field (key length and data length) could 



possibly destroy unexecuted instructions in 
routines starting at OUT APE and ending at 
PHEX34. 

START1, OM-B5 

The input areas are allocated for reading 
the input sequences into main storage. The 
number of input areas required is equal to 
the number of sequences to be merged 
(PH310M) in phase 3. Each input area is 
equal in length to the sort block size 
(SORTL) plus an overflow area equal to the 
maximum record length (LMAX) minus one. 
The overflow area is located in front of 
each input area and is used in compacting 
split input records. 

The starting and ending addresses for 
each input area are calculated and stored 
in the constants AEND through FBEGIN 
(CBEGIN for a 3-way merge). For example. 
AEND contains the end address (address of 
last byte) of input sequence 1 block 
(sequence A from phase 2), and ABEGIN 
contains the starting address of input 
sequence 1 block. If disk output has been 
specified, the a-byte count field (the 
field immediately following the last input 
area and adjacent to the first byte of the 
output area) is initialized. The count 
field becomes part of each output block and 
is written out with the data portion and 
key portion (if specified). The output ccw 
is initialized with the actual data count 
for either disk or tape output. 

OUT APE, DM-CS 

The output area addresses are calculated 
and stored; the starting address in OBEGIN, 
the end address in OUTEND and OUTEN01. The 
data count for the input CCW is initialized 
with the sort block length. 

The size of the output area depends on 
the user specification in the SORT control 
statements. 

PH3MRG, OM-D5 

Phase 3 is initialized to execute during 
the 'final pass: 

• a 1, 2, 3, 4, 5, or 6-way merge (for 
6-way merge) 

• a 1, 2, or 3-way merge (for 3-way 
merge) 

A test is made for any user programming 
(exit 31 and 32). If a user program phase 
is to be fetched from the core image 
library, it is necessary to: 

• 

• 

• 

• 

Extract the origin address of the user 
program (stored in PHEX34) and insert 
it in USADDR. 

Load user base register (15) with user 
program origin address (USADDR). 

Load us er link register (14) with the 
phase 3 return address (US~OP1). 

Execute FETCH macro to load the user 
program. 

When job control has loaded the user 
program phase into main storage, control is 
transferred to the user routine so that it 
may be initiialized, if so desired, before 
phase 3 is executed. If the user program 
is to be initialized at this time, the 
information in Figure 44 will be available 
in the indicated registers at user program 
fetch time. 

The user must be able to return to the 
sort program, via the address (USTOP1) 
stored in general register 14, to open the 
mainline. If user programming is not 
specified, only the branch to USTOP1 is 
executed and the remainder of the routine 
is bypassed. 

INPUT ROUTINE, VARIABLE-LENGTH RECORDS - ON 

After completing the initialization 
routine, the input areas are filled with 
records f.rom the input portion of the disk 
work area. Phase 3 designates the input 
sequences 1, 2, 3. 4, 5, and 6, 
respectively, for a 6-way merge only; in 
the case of a 3-way merge, input sequences 
are designated 1, 2, and 3. 

At the start of phase 3, mainline 
compares are opened for sequence 1. A 
channel program and CCB are prepared to 
read the first block of sequence 1. After 
a block is read into an input area, the 
disk address of the next sequence 1 block. 
is calculated (see compute-disk-address 
routine, Chart DT). The new disk address 
is stored in the input address table 
(ARADDR). 

Final Merge 151 



Register 2 

Bits o 

Output Record 
Length (L3) 

I 
I 
I 
I 

151I6 

Input Record Length: 
L I or Ten Plus Length 
of CF's if ADDROUT • 

31 

Register 3 
I : I I I 
I I I I Control Field-I Location 
I I I Control Field-I 

I or Displacement Relative 
I I I Length Minus I. 

d2 
I I I to 1st Byte in a Record. 

0 3145 617 I 8 15,16 31 Bits 

"- ---/ 
/ 

/ " " 
"- ---"""'-"",,",- ----:::::-..:::-_._-

......... --- ---
/ " " 

.-..." ~- - --
"""'............... ------ -------/ 

./ " 
...... - --- ---

Type Labels ADDROUT Option Data Format Record Type 

000 = binary 0= fixed-
00 = standard 00 001 = packed decimal length 
01 = nonstandard 010 = zoned decimal I = variable-
10 = unlabeled OIl = fixed point length 

100 = floating point 

Figure 44. Contents of Registers at Fetch Time 

Input areas for all other sequences are 
filled in the same manner as sequence 1. 
The number of input areas filled is 
determined by the number of remaining 
sequences. When the input areas are 
filled. control is passed to the 
mainline-compare routine. 

USTOP1, ON-B2 

The mainline compares are initialized to 
open sequence 1, channel programs are 
prepared with the main storage input area 
address contained in ABEGIN, and a sequence 
1 block is read into the input area. 

If the interleave factors need not be 
reduced, a branch is made to LRMDR (Chart 
OT) to calculate the next input interleave 
address; if the interleave factors are to 
be reduced, the next input address is 
calculated at LRMDRl (Chart DT). Upon 
return to this routine, the calculated 
address is stored in ARADDR. 

For more than a 1-way merge, a branch is 
made to USTOP2; for a 1-way merge, the 
branch is to PUTl (Chart OS). 

At the end of sequence 1, this routine 
is entered at USTOPl to close the mainline 
compares for this sequence. A branch is 
then made to the location stored in 
register SAVEA, depending on the current 
sequence and the order of merge. These 
locations are listed in the tables on Chart 
ON. 

152 IB.M S/360 DOS Sort/.Merge 

USTOP2, 0N-B2 

The mainline compares are initialized to 
open sequence 2, channel programs are 
prepared with the main storage input area 
address contained in BBEGIN, and a sequence 
2 block is read into the input area. 

If the interleave factors need not be 
reduced, a branch is made to LRMDR (Chart 
DT) to calculate the next input interleave 
address; if the interleave factors are to 
be reduced, the next input address is 
ca lcula ted at LRMDR1 (Cha.rt DT). Upon 
return to this routine, the calculated 
address is stored in BRADDR. 

For more than a 2-way merge, a branch is 
made to the address in register SAVEB (if 
at least a 3-way merge and O~3); for a 
2-way merge, the branch is to COMP21 (Chart 
DS). 

At the end of sequence 2, this routine 
is entered at USTOP2 to close the mainline 
compares for this sequence. A branch is 
then made to the location stored in 
register SAVEn, depending on the current 
sequence and the order of merge. These 
locations are listed in the tables on Chart 
ON. 



USTOP3, DN-B2 

The mainline compares are initialized to 
open sequence 3, channel programs are 
prepared with the main storage input area 
address contained in CBEGIN, and a sequence 
3 block is read into the input area. 

If the interleave factors need not be 
reduced, a branch is made to LRMDR (Chart 
DT) to calculate the next input interleave 
address; if the interleave factors are to 
be reduced, the next input address is 
calculated at LRMDRl (Chart ur). Upon 
return to this routine, the calculated 
address is stored in CRADDR. 

For more than a 3-way merge, a branch is 
made to USTOP4; for a 3-way merge, the 
branch is to COMP32 (Chart DS). 

At the end of sequence 3, this routine 
is entered at USTOP3 to close the mainline 
compares for this sequence. A branch is 
then made to the location stored in 
register SAVEC, depending on the currertt 
sequence and the order of merge. These. 
locations are listed in the tables on Chart 
DN. 

USTOP4, DN-B2 

The mainline compares are initialized to 
open sequence 4, channel programs are 
prepared with the Jl\3. in storage input area 
address contained in DBEGIN, and a sequence 
4 block is read into the input area. 

If the interleave factors need not be 
reduced, a branch is made to LRMDR (Chart 
DT) to calculate the next input interleave 
address; if the interleave factors are to 
be reduced, the next input address is 
calculated at LRMDRl (Chart DT). Upon 
return to this routine, the calculated 
address is stored in DRADDR. 

For more than a 4-way merge, a branch is 
made to USTOP5; for a 4-way merge, the 
branch is to COMP65 (Chart DP). 

At the end of sequence 4, this routine 
is en~ered at USTOP4 to close the mainline 
compares for this sequence. A branch is 
then made to COMP65 (Chart DP). 

USTOP5, DN-B2 

The mainline compares are initialized to 
open sequence 5, channel programs are 
prepared with the main storage input area 

address contained in EBEGIN, and a sequence 
5 block is read into the input area. 

If the interleave factors need not be 
reduced, a branch is made toLRMDR (Chart 
DT) to calculate the next input interleave 
address; if the interleave factors are to 
be reduced, the next input address is 
calculated at LRMDRl (Chart DT). Upon 
return to this routine, the calculated 
address is stored in ERADDR. 

For more than a S-way merge, a branch is 
made to USTOP6; for a 5-way merge, the 
branch is to COMP65 (Chart DP). 

At the end of sequence 5, this routine 
is entered at USTOP5 to close the mainline 
compares for this sequence. A branch is 
then made to COMP65 (Chart DP). 

USTOP6, DN-B2 

The mainline compares are initialized to 
open sequence 6, channel programs are 
prepared with the main storage input area 
address contained in FBEGIN, and a sequence 
6 block is read into the input area. 

A branch is made to LRMDR (Chart DT) to 
calculate the next input inte.rleave 
address. Upon return to this routine, the 
calculated address is stored in FRADDR and 
a branch is made to COMP65 (Chart DP). 

At the end of sequence 6, this routine 
is entered at USTOP6 to close the mainline 
compares for this sequence. A branch is 
then made to COMP65 (Chart DP). 

MAINLINE COMPARE ROUTINE, VARIABLE-LENGTH 
RECORDS - DP, DQ, DR, DS 

The mainline compare routine in this phase 
is the same as that in phase 2 except for 
label changes. Records are compared until 
a winning reco.rd is found. Control is then 
passed to the output routine where the 
winning record is sequence-checked before 
being moved to the output area. Before 
returning to the compare routine, a check 
is made to see if the last record in the 
output file has been processed. 

Note: The compare routine uses the 
registers labeled SAVEA, SAVEB, and 
SAVEC as link registers for a 6-way 
merge. For a 3-way merge, the link 
register is SAVEA. The link address 
for return to the mainline compare 
routine depends on the sequence from 
which a winning record is chosen. 

Final Merge 153 



For example, if the winning record 
is from sequence 3, the return point 
(stored in register SAVEC) is to 

COMP63+ 2, COMP53+2, or COMP43+2. 

COMP65. OP-B2 

Comparing of records starts at COMP65 for a 
6-way merge dnd continues through the 
mainline until a winning record is found. 
~ record from sequence 6 is compared with a 
record from sequence 5. If the record from 
sequence 6 wins. it is compared with a 
record from sequence 4; as long as 6 is the 
winner. it is compared with records from 
the other available sequences, in turn. If 
6 is the winner at COMP61, the sequence 6 
record is moved to the output area by means 
of a branch to SEQCHK (Chart DU). 

The program then returns to this routine 
to check for a split record, for a depleted 
sequence 6 block, and for end of input 
sequence 6. If a split record. a branch is 
made to SPLIT6. If sequence 6 block is not 
depleted. a branch is made to COMP65 to 
compare the next record in sequence 6 with 
a record in sequence 5. and so on. until a 
winner is found. If sequence 6 block is 
depleted but it is not the end of the 
sequence, a branch is made to GET6 to read 
in another block. 

If the winning record is: 

• 5, branch to COMP54 <Chart DQ). 

• 4, branch to COMP43 (Chart DR). 

• 3, branch to COMP32 (Chart OS) • 

• 2. branch to COMP21 (Chart OS) • 

• 1, branch to PUT1 (Chart OS). 

Other conditions will alter the flow 
through the mainline compares. For 
example, if the end of sequence 5 is 

154 IBM S/360 DOS Sort/Merge 

reached. the branch code at B64 is set to 
15 (unconditional branch). The program 
then branches to compare 6:4. 

If, after moving the sequence 6 winning 
record to the output area, the end of 
sequence 6 is reached, control returns to 
USTOP6 to close all compares for sequence 
6. 

If a record in sequence 6 is compared 
against 5, 4, and 3, and 3 is determined to 
be the winning record, the address of 
COMP6.;3+2 is stored in register S~VEC and 
the routine continues to COMP32. If 
sequence 3 record is the winner over 2 and 
1, 3 is moved to the output area and 
control is retu.rned to the mainline 
location stored in register SAVEC. 
Although the sequence 3 record was found to 
be the winner, the sequence 6 record had 
already been found to be the winner over 5 
and 4 sequence records. Therefore, control 
is returned to the compare routine at the 
point where the previous sequence 6 record 
is compared to a new sequence 3 record. 
see Figure 45. 

COMP54, OQ-B2 

A record from sequence 5 is compared with a 
record from sequence 4. If the record from 
5 is found to be the winner, it is compared 
with a record f.rom sequence 3, and so on 
until a winning record is determined. 

If the winning record is: 

• 5, branch to PUTS. 

• 4. branch to COMP43 (Chart DR). 

• 3, branch to COMP32 (Chart DS). 

• 2, branch to COMP21 (Chart DS). 

• 1. branch to PUT1 (Chart DS). 



3rd Level Compare 

2nd Leve I Compare 

1st Level Compare 

D:C 

7/\ 
(D-Low) I (C-Law) (Equal) 

1/ \ 
D:S C:S -----

/\ !\ 
l'~l / \ ;"W/ "-',\",11 

D:A / \ C:A 

~-~!~~~~~~~~~ 
(D-Low) I " /" (S-Low) (A Low) (Eq 01) 

//;:.:< 7:~E:~\ --. ~ i;.~"~;\ -\" 

Example 
1 

2 

3 

4 

D (to 3 Leve I 1 C I to 2 Leve I ) S (to 1 Leve I J A 
\ Compare / \ Compare / \ Compare I 

Sequence D 

/ 
/ 

~ / ,,/ '/ , '- _/ '- ~/ '-- / 

C S A 

'---S~--'1-9-~ 
Output Record 

D-- (S) 

C-- (7) 

S-- (6) 

A-- (5) 

If D or C is moved to the output area, 3 compares are required before another record can be moved. 

If S is moved to the output area, 2 compares are required before another record can be moved. 

If A is moved to the output area, 1 compare is required before another record can be moved. 

Figure 45. Compare Tree (for a 4-Way Merge) 

Final Merge 155 



After moving the sequence record 5 to 
the output area, the compares resume at 
COMP65 if sequence 5 block is not depleted 
or if next record is not a split record. 

If sequence 5 block is depleted but it 
is not the end of the sequence, a branch is 
made to GETS to fill the sequence S input 
area. if the end of sequence 5 is reached, 
control returns to USTOPS to close all 
compares for sequence 5. If a split record 
condition exists, a branch is made to 
SPLITS. 

COMP43, DR-B2 

A record from sequence 4 is compared with 
records from sequences 3, 2, and 1. If the 
winner is: 

• 4. branch to PUT4. 

• 3. branch to COMP32 (Chart DS) 

• 2. branch to COMP21 (Chart DS) 

• 1, branch to PUTl (Chart DS). 

After moving the sequence 4 record to 
the output area, control is returned to 
COMP54 if sequence 4 block is not depleted 
or if next record is not a split record. 

If sequence 4 block is depleted but it 
is not the end of the sequence, a branch is 
made to GET4 to fill the sequence 4 input 
area. If the end of sequence 4 is reached. 
control returns to USTOP4 to close all 
compares for sequence 4. If a split record 
condition exists. a branch is made to 
SPLIT4. 

COMP32. DS-Al 

Note: For a 3-way merge. comparing of 
records starts at COMP32 and 
continues through the mainline in 
the same manner described under 
COMP65. until a winning record is 
found. 

A record from sequence 3 is compared 
with records from sequences 2 and 1. If 
the winner is: 

• 3, branch to PUT3. 

• 2, branch to COMP21. 

• 1, branch to PUT1. 

156 IBM S/360 DOS sort/Merge 

After moving the sequence 3 record to 
the output area, control is returned at the 
location stored in register SAVEC (for 
6-way merge) o.r to COMP32 (for 3-way 
merge). if sequence 3 block is not depleted 
or if next record is not a split record. 

If sequence 3 block is depleted but it 
is not the end of the sequence, a branch is 
made to GET3 to fill the sequence 3 input 
area. If the end of sequence 3 is reached. 
control returns to USTOP3 to close all 
compares for sequence 3. If a split record 
condition exists, a branch is made to 
SPLIT3. 

COMP21, OS-B3 

A record from sequence 2 
record from sequence 1. 
winner, branch to PUT2. 
~inner, branch to PUT1. 

is compared with a 
If 2 is the 
If 1 is the 

After moving the sequence 2 record to 
the output area, control is returned at the 
location stored in register SAVEB if 
sequence 2 block is not depleted or if next 
record is not a split record. 

If sequence 2 block is depleted but it 
is not the end of the sequence, a branch is 
made to G.ET2 to fill the sequence 2 input 
area. If the end of sequence 2 is reached, 
a branch is made to US TOP 2 to close all 
compares for sequence 2. If a split record 
condition exists, a branch is made to 
SPLIT2. 

PUT1, OS-05 

When the winning record is from sequence 1 
and it has been moved to the output area, 
control is returned at the location stored 
in register SAVEA, if sequence 1 block is 
not depleted. If sequence 1 block is 
depleted but it is not the end of the 
sequence nor a split record, a branch is 
made to GET1. If end of sequence 1 is 
reached. a branch is made to USTOPl to 
close all compares for sequence 1. If a 
split record condition exists, a branch is 
made to SPLIT1. 

SPLIT6, OP- H5 

Note: The description of this function 
also applies to: 

• SPLITS, OQ-HS 



• SPLITij, DR-H5 

• SPLIT3, DS-H2 

• SPLIT2, DS-Hij 

• SPLIT1, DS-K5 

This routine initializes to move the first 
part of the split record to the overflow 
area for the corresponding input area. A 
branch-and-link is then made to ISPLIT in 
the output routine. Upon return to this 
routine, the real output address (SAVPUT) 
is reloaded in register PUTOUT and a branch 
is made to GET6 (or GETS, etc., as the case 
may be) in the input routine. This last 
branch is made because a split .record 
signals a depleted input area. 

COMPUTE INPUT INTERLEAVED DISK ADDRESS, 
VARIABLE-LENGTH RECORDS - DT 

The current input disk interleave address 
is updated by the input interleave factors. 
The interleave factor RMDR (remainder 
of: OM divided by BPT) is added to the 
record number (the R portion of CHHR). If 
the new record number exceeds the maximum 
BPT, the next record number is computed by 
adding the 256 complement of BPT. Refer to 
Figure 46. 

The head number is updated by adding 
QUOT (quotient of: OM divided by BPT). 
The new head number is then checked for 
validity; if it is greater than 9, the next 
cylinder-head number is calculated by 
adding the 256 complement of 10. 

If the upper limit of the current work 
area section has been exceeded, the next 
work area section is accessed. A new 
interleave disk add.ress is then calculated, 
based on the lower limit of the new work 
area section. 

LRMDR, DT-B3 

The input disk address routine is 
initialized with the interleave factors for 
calculating the next disk address of a 

given sequence (1, 2, 3, 4, 5, or 6 for a 
6-way mergeJ 1, 2, or 3 fo.r a 3-way merge) • 
. A branch is then made to CPBPTI. 

Note: LRMDR is entered after a block from 
one of the input sequences has been 
read into main storage and the 
interleave factors need not be 
changed. In these cases, the number 
of blocks processed (merged to the 
output file) from the given sequence 
is equal to or less than the nwnber 
of blocks in the last sequence 
passed to phase 3 from phase 2. 

LRMDR1, DT-B2 

The input disk address routine is 
initialized with reduced interleave factors 
for calculating the next disk address of a 
given sequence (1, 2. 3, 4, or 5 for a 
6-way merge: 1 or 2 for a 3-way merge). A 
branch is then made to CPBPTI. 

Note: LRMDR1 is similar toLRMDR except 
that it is entered after a block has 
been read into main storage from a 
sequence other than the last 
(sequence 6 for a 6-way merge, or 
sequence 3 for a 3-way merge) and 
the number of blocks merged to the 
output file from that sequence is at 
least one greater than the number of 
blocks in the last sequence passed 
to phase 3. 

CPBPTI, DT-C2 

The next input disk interleave address is 
calculated with the factors from LRMDR or 
LRMDR1, as the case may be. The program 
then returns to the input routine (Chart 
DN) to store the newly calculated 
interleave address in the input area table. 

Final Merge 157 



Order of Merge -- 4 
Blocks Per Trock -- 5 

Track 7 

Track 8 

RMDR -- 0004 
QUOT -- 0000 
BCOMP --OOFB 

Current Disk Address 

Add (RMDR) Factor 
Record Number Valid 
(Equal to or Less Than BPT) 

Add (Quot) Factor 
Track Number Valid 
(Equal to or Less Than 09) 

Current Disk Address 

Add (RMDR) Factor 
Record Number Invalid 

Add Complement of BPT 
(05=OOFB) 
Record Number Valid 

Add (Quot) Factor 
Track Number Valid 

Current Disk Address 

Add (RMDR) Factor 
Re.cord N umber I nval id 

Add Complement of BPT 
Record Number Valid 

Add (Quot) Factor 
Track Number Invalid 

Add Complement of 10 

Cylinder 1 

I I 

1 Block 1 

C 
01 

01 

01 

C 
01 

01 

01 

01 

C 
01 

01 

01 

01 

00 
02 

r 

Work Track 9 1 Block 31 

Area~ 
Cylinder 2 

Track 0 1 Block 4 1 

Track 1 
[ 1 New Se!I 1 

Figure 46. calculate Interleaved Disk Address 

158 IBM S/360 DOS sort/Merge 

H H 
00 08 

+ 00 

00 08 

+ 00 
00 08 

H H 
00 08 

+ 00 
00 08 

+ 00 
00 09 

+ 00 
00 09 

H H 
00 09 

+ 00 
00 09 

+ 00 
00 OA 

+ 00 
00 OA 

FF F6 
00 00 

Block 21 

R 
01 

04 
05 

00 
05 

R 
05 

04 
09 

FB 
04 

00 
04 

R 
04 

04 
08 

FB 
03 

00 
03 

00 
03 

Block 1 

Block 2 
I 
I 
I 
I 
I 

+ 
Block 2 

Block 3 
I 
I 
I 
I 
I 
I 
I , 

Block 3 

Block 4 



OUTPUT ROUTINE, VARIABLE-LENGTH RECORDS -
DU, DV 

When a winning record is determined by the 
mainline compare loop, this routine is 
entered for: 

• Sequence-checking the output file. 

• Data conversion, if specified. 

• User exit 32, if specified. 

• Updating the main-storage output area. 

• 

• 

• 

Moving a record to the main-storage 
output area. 

Note: This can be eithe.r a winning 
record or a user-inserted record 
(via exit 32). 

Writing on tape or disk whenever the 
main-storage output area becomes full. 

Providing for naximum usage of track 
capacity. 

• Updating the phase 3 record count. 

• 

• 

Open,. close, EOV (end-of-volume), and 
sequence-error conditions. 

Executing end-of-job routine after the 
last record has been moved to the 
output area. 

Sequence checking is performed by 
comparing the current winning record (which 
is about to be moved to the main-storage 
output area) with the last winning record 
that was moved to the output area. Because 
this is the first fUnction of the output 
routine, the first winning record is not 
sequence' checked. Each record (after the 
first record) is sequence checked before 
conversion (if specified) is performed and 
before the user has access to the record in 
the output area via exit 32. 

Note: The data-conversion routine converts 
the previous record moved to the 
output area. 

For disk output, the output address is 
calculated before writing a block of 
records on the disk output unit. For the 
first output block, a dummy address 0010 
(CHHR) is used to force the upper limit 
(also a dummy address) to be exceeded. 
This caUSeS the initial output file extents 
and the logical unit address to be 
retrieved, so that a write command can be 
given to the output file. 

For tape output, the initialization 
routine has relocated routines OP1EOV and 

EOJTAP to TAPOV2+4 and PH3EOJ+4, 
respectively. Prior to writing the first 
output block on tape, the initial open 
condition is executed. 

• 

• 

End-of-job routine functions are: 

Intialize to write last output block 
for disk or tape. 

Initialize to write EOF record and to 
close output file (disk only). 

• Close output file. 

• Print end-of-job messages. 

• Issue EOJ macro and return control to 
job control. 

The resident checkpoint routine is used 
to: 

• 

• 

Checkpoint mainline program when open, 
end-of-volume, close, or sequence-error 
conditions are found. 

Read in and link to label-linkage 
routine (LLR). 

• Checkpoint the LLR. 

• Restore mainline program to main 
storage and return control to 
appropriate point in phase 3. 

SEQCHK, DU-B2 

For the first winning record, the sequence 
check, conversion, and exit 32 routines are 
bypassed; a branch is made to FULOUT. For 
all subsequent records, the routine 
continues to CHKS EQ. 

CHKSEQ, DU-C2 

The control data field(s) of the winning 
record is (are) compared with the previous 
record moved to the output area. If the 
record to be moved is out of sequence, a 
branch. is made to SEQERR; if no error, the 
branch is to CONVRT. 

SEQERR, DU-D2 

The sequence-error indicator (S-character) 
is inserted in location OPEN and a branch 
is made to OPENF (Chart DV) to checkpoint 
the mainline and read the LLR (label 
linkage routine> into main storage. 

Final Merge 159 



CONVRT. DO-D1 

If data conversion was not specified, the 
routine continues to EXIT32. If conversion 
was specified by the user. the record 
previously moved to the output area is to 
be reconverted to the format specified in 
the control statements. A branch-and-link 
is made to the selected reconversion 
routine; control is returned at EXIT32. 

EXIT32, DO-F1 

If exit 32 was not specified, the routine 
continues at EOJSW. If exit 32 has been 
specified, the user base register 15 is 
loaded with the address of the user routine 
(USADDR) and register 14 (LINK) is loaded 
with the return address. Control is then 
passed to the user program. After 
execution of the user routine, control is 
returned to the sort/merge program via 
register 14. For a detailed description of 
user functions in exit 32, refer to IBM 
System/360 Disk Operating System, -­
Sort/Merge Program specifications, Form 
C24-3444. 

EOJ5W, DO-Hi 

The output area address (PUTOUT) is 
increased by the length (RLI) of the last 
record moved to the main-storage output 
area. 

At this point, provision is made for 
maximum usage of output track capacity. In 
the initialization routine, the end address 
of the output area was stored in two 
locations: 

• 

• 

OOTEND1, which contains the original 
end address throughout the phase. 

OUTEND, which contains the original end 
address (OOTEND1) at least until after 
the first block has been written and 

160 IBM 5/360 DOS Sort/Merge 

the amount of trac.k capacity remaining 
has been calculated. If this amount is 
less than the maximum output block 
size, the output area is truncated so 
that it equals the track capacity 
remaining and the new end address is 
inserted in OOTEND for testing the next 
record. 

After the first block of a track has 
been built in the main-storage output area, 
the track capacity remaining after it is 
written on disk is calculated. If the 
track capacity remaining is equal to or 
greater than the maximum output block size, 
the block is written and the next record is 
unconditionally moved to the output area. 

If the track capacity rema1n1ng is less 
than the maximum block size. the 
main-storage output area is truncated 
(shortened) so that it equals the remaining 
track capacity, and the new end address of 
the main-storage output area is placed in 
OOTEND. The block is written on disk and 
the next record is unconditionally moved to 
the main-storage output area. 

A test is made to determine if the 
record unconditionally moved exceeds the 
shortened output area. If it does not, the 
record length indicator of the next record 
to be moved to the main-storage output area 
is tested to determine if the record will 
also fit in the output area, and the next 
output block is built as described in 
FOLOUT. If the unconditionally-moved 
record does exceed the shortened output 
area, the output area will be restored to 
its original length by moving the value of 
OUTEND1 into OOTEND. The new output block. 
the first record of which is the 
unconditionally-moved record, is built and 
written on the next available track (Figure 
47). 

The branch at CHK5EQ-3 is made a no-op, 
after the first record is moved to the 
main-storage output area, to permit 
sequence-checking the next record and the 
routine continues to FULOUT (if the last 
record has not been processed) or to WLTBLK 
(if the last record has been processed). 



Track 
3625 bytes 

Maximum I ,.rOUTENDl 
Output Block 
Size 1500 bytes L..-_____ --' 

Records in 
bytes 

Block 1 

Track 1 

Block 2 

Track 1 

Block 3 

Track 1 

Block 4 

Track 2 

Block 1 
1400 bytes 

D E 
700 600 

Block 1 
1400 bytes 

E 
600 

F 
'800 

I ...... OUTEND=OUTENDI 
I 
I 

Remaining track capacity 2225 
bytes >Maximum output block siz 

r ...... OUTEND = OUT END 1 
: (Output area not truncated) 

I 

W t'""Truncated output area 
F I = 925 bytes (OUTEND) 

800 I 

Black 1 
1400 bytes 

Block 2 
1300 bytes 

unused. 
125 

lo= Truncated output area } 
I = 125 bytes 
I 

Record length exceeds 
Truncated output a rea 

I Record G = 400 bytes 

I I .... Output area restored to full 
G I H : length of 1500 bytes 

~400-'--_---I1 
~ 

~ 
Block 4 

Note: Block sizes in bytes are given for illustration only and do not 
represent the actual number of bytes consumed in writing the 
equivalent black. 

Figure 47. Maximum Use of Output Track 
Capacity 

FULOUT, DU-B3 

The record-length indicator of the record 
is extracted and stored in the location 
labeled OUTRLI+2. Register 0, which is 
used by the move routine, is loaded with 

this value. A switch is set (at SPLITR) to 
inform the move routine that an output 
record, not a split input record, has been 
moved. If the output area is filled 
(cannot contain another record), a branch 
is made to LWRITE; otherwise, the routine 
continues to MSPLIT to move the record. 

ISPLIT, DU-B4 

The output routine is entered at this point 
from SPLIT6. SPLITS, SPLIT4, SPLIT3, 
SPLIT2, or SPLIT1. The split-record 
indicator (hexadecimal C) of the split 
record to be moved is erased. Using the 
index value stored in register 1, the 
number of bytes of the spl it record to be 
moved is calculated. Next, the input 
overflow area address (the starting byte 
location to which the first part of the 
record is to be moved> is computed. A 
switch is set to inform the move routine 
that a split record is being moved. A 
branch is then made to MSPLIT to move the 
first part of a split input record. 

MSPLIT, DU-C3 

This function is entered from: 

• 
• 

• 

FULOUT, if the output area is not full. 

ISPLIT, if a split input record is to 
be moved. 

PH3EJI, if an output block has just 
been written. 

Register 0, which contains the RLI 
(number of bytes) of the record or split 
record to be moved, is decremented by one. 
The variable-length move routine is then 
initialized and a branch is made to MOVVAR. 

MOWAR, DU-D3 

One of two functions is performed at this 
point. If an output record is to be moved, 
the record is moved to the main- storage 
output area. If a split input record is to 
be moved, the first part of it is moved to 
the appropriate input overflow area. In 
either case, register 9 (MREG) , which 
contains the address of the first byte to 
be moved, is updated to contain the address 
of the first byte of the next record (if 
any) within the area from which the record 
or split record was moved. The routine 
then continues to SPLITR. 

Final Merge 161 



SPLITR, DU-E3 

If a split input record was just moved, 
this switch is an unconditional branch back 
to GETl, GET2, etc., (via register LINK) to 
fill the appropriate main-storage input 
area with a block of records. If an output 
record was just moved, this switch is a 
no-op and the routine continues to INSERT. 

INSERT, DU-F3 

If exit 32 was specified and if the record 
just moved was a user-inserted record, a 
branch is made to EXIT32 to permit multiple 
insertions by the user. without exit 32, 
this branch is not activated. 

A count ot the records processed by 
phase 1 was placed in register 10 (for the 
3-way merge program) or in location COUNTR 
(for the 6-way merge program) during the 
initialization of phase 3. Every time a 
winning .record is moved to the main-storage 
output area, this count is reduced by one 
(for the 6-way merge program, the count is 
laoded in register 10, decremented, and 
returned to COUNTR). If the result is 
positive (more records rerr:ain), a branch is 
made back to the mainline compa.res at 
NXTIR, NXT2R, NXT3R, etc., as the case may 
be <Charts DP through DS), to resume 
processing. If the result is zero (last 
record has been moved into the output 
area), the routine returns to SEQCHK to 
allow the user to perform end-ot-job 
operations via exit 32 (if specified). 

Entry to SEQCHK produces a negative 
value <hexadecimal FFFFFFFF) in register 
10. This negative value is provided so 
that the user program can determine a 
last- record condition. Control is returned 
to initiate the end-of-job function. 

WTLBLK, DU-B5 

The entry to this function is at WTLBLK+8 
and it is used only when disk output is 
specified. Entry is made from FULOUT-4 
after the last record has been processed in 
the main-storage output area. A switch is 
set at PH3EJl so that the routine enters 
the end-ot-job fUnctions at PH3EOJ after 
the last output block has been written. 
The routine now continues to LWRITE. 

162 IBM S/360 DOS sort/Merge 

LWRITE, DU-C5 

Functions of this sub-routine are to: 

• Write an output block when the 
main-storage output area is full. 

• Write the last output block. 

• write an end-of-file record for disk 
output. 

The number of bytes to be written in the 
current output block is computed. This 
data count is then inserted into the BLI 
(block-length indicator) of the output 
block in main storage. For disk output, 
the data count is also inserted into the 
DLDL portion of the count field; the data 
count is incremented by eight and inserted 
in the write CCW. For tape output, the 
actual data count is inserted into the 
write CCW. 

For disk output, the 2311 track capacity 
sub-routine calculates the portion of a 
2311 track that will be used in writing the 
current output block. The method used is 
to multiply the data count by 537 and 
divide the product by 512. The result is 
then incremented by 61 to give the total 
number of bytes on a track that will be 
used to write the current block. A test is 
then made to determine if the records in 
the output area will fit on the current 
track; it not, the track capacity is 
restored to 3633 and the end-of-track 
indicator (FF) is set. The area remaining 
on the track is then calculated and stored 
in TKLEFT. 

A calculation and test are now made to 
determine if the amount of track left is 
less than the maximum output block size. 
If so, the output area is truncated to 
equal the amount of track left (for the 
reason described in the text under EOJSW). 
This lower value for the end address of the 
output area is stored in OUTEND. If this 
amount of track left is equal to or greater 
than the maximum output block size, the 
original end address of the output area is 
left in OUTEND. Whenever the output area 
is truncated. it will be restored to its 
original length at EOJSW (if the record 
moved does not fit as the first record in 
the truncated area) after the last block is 
written on the current track. 

The routine then continues to CPBPTO. 

For tape output, the sub-routine at 
label OP1EOV has been relocated to TAPOV2+4 
during the initialization routine. A 
branch to TAPEO is usually executed to 
write a block of records on tape. The only 
exception is when the first block is about 



to be written. Here, as in the case of 
disk output, the initial open condition 
must be performed: The output volume must 
be rewound (if specified), labels checked 
and created, etc. For the first output 
block, a branch is made to OPENF (start of 
resident-checkpoint routine, Chart DV) to 
read in the label-linkage routine and to 
perform these functions. 

CPBPTO, DU-D4 

The next output disk address (CHHR) is 
calculated: this calculation is similar to 
that for an input disk address except that 
the interleave factors are not used. The 
record number (R) is always incremented by 
one, and head and record numbers are 
checked for validity. The newly-computed 
2311 address is checked to determine if the 
upper limit of the output extent has been 
exceeded. If it has, a branch is made to 
OPENF (Chart DV) to initiate retrieval of 
the next set of extents and the logical 
unit address. 

At the start of phase 3, the lower limit 
is initialized with the address 0010 
(CHHR). The upper limit is 0000. For the 
initial output block, the first calculated 
disk address is 0011, thus forcing the 
upper limit to be exceeded. This causes 
retrieval of the initial output file 
extents and the logical unit address before 
a write command is given to the output 
file.· 

The disk search address is stored in 
CHRR, and the actual address is stored in 
the count field immediately preceding the 
main-storage output area. The R value of 
the search address (CCHHR) is always one 
less than the R value of the actual 2311 
address. A branch is then made to TAPEO. 

TAPEO, DU-G5 

An EXCP macro is issued for loeS to write a 
block of records to the output file (tape 
or disk). 

This function is also used to write an 
end of file record on disk (data count of 
zero) after the last output block has been 
written in the disk file. 

For tape output. when an end-of-reel 
condition has been detected, a branch is 
made to CLOSE (Chart DV) to initiate the 
execution of end-ot-volume and open 
functions for the next output tape volume. 
When writing the last output tape block of 

the file, an end-of-volume condition is 
forced: in this case, the branch is made to 
CroSE (Chart DV) to initiate the closing of 
the output file. 

If disk output, or if not end of reel 
for ta pe output, the routine continues to 
PH3EJ1. 

In either case, the computed data length 
of the last block, or of the EOF record, is 
stored in the output count field. The data 
length is then incremented by eight and 
stored in the write CCW (WTCCW). A switch 
is set at PH3EJ1 (no-op) to allow re-entry 
to the end-of-job functions at PH3EOJ. 

PH3.EJ1, DU-J5 

If more records remain to be processed, a 
branch is made to MSPLIT (3-way program) or 
.MSP.LIT-8 (6-way program) to move the last 
winning record to the main-storage output 
area. For disk output only, when no more 
records remain to be processed, control is 
returned to PH3EOJ. 

PH3EOJ, DV-B1 

Note: For disk output, the last block has 
been written before this sub-routine 
is entered. 

The switch at BCLOSE is set so that an 
unconditional branch is made to OPENF-4 to 
initiate the final close action, and a 
branch is made to LWRITE. After the EOF 
record has been written, the open indicator 
at OPEN is changed to an • F' (Signaling a 
close operation). A branch is then made to 
OPENF to close the output file. 

For tape output, this function is 
entered once. (The sub-routine at EOJTAP 
will have been relocated to the. label 
PH3EOJ+4 by the initialization routine.) 
The number of bytes contained in the final 
output block is calculated and inserted in 
the channel program. The write routine is 
modified to force an end-of-volume 
condition and the end-of-volume indicator 
at EOV is changed to an 'F'. A branch is 
then made to LWRITE to wri te the last 
output block and close the file. 

Final Merge 163 



CLOSE, DV-C4 

This routine is relocated, during phase 3 
initialization to location OP1EOV+24. The 
end-of-volume indicator (V-character) is 
loaded in register 0 for tape EOV, and a 
branch is made to RWLABL to read in the LLR 
and initiate the end-of-volume functions. 
If end of file, the EOF close indicator 
(F-character) is loaded in register 0 so 
that the branch to RWLABL will initiate the 
close functions. 

OPENF, DV-C3 

Register 0 is initialized for the condition 
to be processed: 

• Open - O-character 

• Close - F-character 

• sequence error - s-character 

The routine then continues to RWLABL. 

RWLABL, DV-D3 

The R value of the disk 
the checkpoint track is 
checkpoint the mainline 
label-linkage routine. 
made to LABETY. 

LABETY, DV-E3 

address (CHHR) for 
initialized to 
and read in the 
A branch is then 

The command code in the channel program 
(WRMAIN+24) is modified to: 

• Checkpoint mainline (write) 

• Read in label-linkage routine (read) 

• Checkpoint LLR (write) 

• Read-in mainline (read) 

Refer to Chart DV for the exit points from 
IABETY after each of these listed 
functions. 

164 IBM 5/360 DOS sort/Merge 

LABEL-LINKAGE ROUTINE (LLR), 
VARIABLE-LENGTH RECORDS - OW 

The start of the LLR (label-linkage 
routine> is identified by the label LINKRT 
in the program listing. The LLR is written 
on the checkpoint track during phase 3 
initialization; it is then read into main 
storage (at the end of the supervisor, 
location RDCHPG) for open, end-of-volume, 
close, or sequence-error conditions. (A 
portion of the mainline is checkpointed 
before the LLR is read in.) When in main 
storage, the LLR receives control from the 
resident checkpoint routine through linkage 
prepared in register 14. 

The label-linkage routine initiates 
open, end-of-volume, and close operations 
for: 

• Disk output - standard file labels 

• Tape output - standard file labels, 
non-standard labels, or no labels. 

X31LNK, DW-B2 

The condition indicator is obtained from 
register 0, stored in X31IND, and the 
indicated branch is made: 

• 

• 

Indicator is '5' (sequence error) -
branch to SEQERROR. 

Indicator is 'V' or 'F' and output is 
on tape (EOV or EOF) - branch to 
X31CLS-12. 

• Indicator is 'F' and output is on disk 
(EOV or EOF) - branch to X31CLS+B. 
(This branch replaced the one for tape 
output during initialization.) 

• Indicator '0' (open) - continue to 
IOCSOPEN. 

IOCSOPEN, DW-C2 

An OPEN macro is issued to open the output 
file. (This function is executed by the 
transient IOCS label processing routine.) 
If exit 31 is specified, IOCS returns 
control at USRLAB; in either case, this 
routine is re-entered at X31TS1. 



X31TS1, DW-G2 

For disk output, the extents are obtained 
from the DTFSD table and stored in 
ORADDR-LIMITO. The logical unit address is 
obtained from the DTF table and placed in 
the output CCB at OCCB+6. 

For tape output, the rewind code in 
DTFMT is initialized for end-of-volume time 
and for close time. 

This function opens each disk extent or, 
for tape output, the initial tape volume. 

A branch is then made to LABETY 
(checkpoint routine. Chart DV) to write the 
LLR on the checkpoint track and to read the 
mainline into main storage. 

USRLAB, DW-E2 

Note: This sub-routine is entered from: 

1. Transient IOCS label-processing 
routines. 

2. User program associated with 
exit 31. 

The sub-routine is used only if exit 31 has 
been specified in the MODS control 
statement. The DTF table (DTFMT or DTFSD) 
has been initialized to indicate 
label-address exit. loes enters here to 
permit linkage to the user program via exit 
31. Exit 31 functions a.re: 

• create and write non-standard header 
and trailer labels for tape output. 

• build user header and trailer labels 
for disk or tape output. 

The user returns control here to 
indicate that: 

• 

• 

• 

all non-standard tape header and 
trailer labels have been created and 
written, or 

a user header or trailer label has been 
built and is to be written (with more 
to follow), or 

the last user header or trailer label 
has been built and is to be written. 

This sub-routine returns control to IOCS 
with an LBRET macro. When user or 
non-standard label processing is complete, 
IOCS then returns to the next sequential 
instruction after the macro (OPEN, FEOV. or 
CLOSE) that initiated the label processing 
operation. 

Note: When exit 31 is entered for label 
processing, the low-order byte of 
general register 0 contains 0 
(open), V (end-of-volume), or F 
(close) to enable the execution of 
the user label function. 

X31CLS-12, DW-C4 (TAPE ONLY) 

For EOV or CLOSE conditions, the volume 
block count (for standard labels) is 
inserted in the DTF table to enable IOCS to 
incorporate it into the standard trailer 
label. The volume block count is made zero 
in preparation for the next volume. 

X31CLS, DW-D4 (TAPE ONLY) 

Location X31IND is tested to determine 
which of the two conditions exists. For 
end of volume, a branch is made to X31EVTj 
for close, the routine continues to 
IOCSCLOS to close the output file. 

X31EVT, DW-E4 (TAPE ONLY) 

An FEOV macro is issued and IOCS creates 
the required output labels. 

After the IOCS end-of-volume function is 
complete, the FEOV switch in the DTFMT 
table is turned off and the next output 
volume is opened. If an alternate drive 
has been assigned in the SYS001ASSGN card, 
automatic volume switching is also done. 

A branch is then made to LABETY to write 
the LLR on the checkpoint track and to read 
the mainline into main storage. 

IOCSCLOS, DW-C3 

IOCS closes the output file (disk or tape) 
and returns control at PRTEOJ. 

PRTEOJ, DW-D3 

An EXCP macro is issued and the end-of-job 
messages are printed: 

• 7DC41 RECORDS PROCESSED 0000000 

• 7DC51 END OF SORT 

Final Merge 165 



When IOCS returns control to this 
subroutine, an EOJ macro is issued. 

SEQERROR, DW-C5 

An EXCP macro is issued and the message 
"7DC2D SEQ. ERROR n is p.rinted on SYSLOG. 

Note: If SYSLOG is an IBM 1052 
printer-Keyboard, the operator's 
reply to this message is either 
IGNORE or CANCEL. CANCEL results in 
program cancellation by IOCS. 

166 IBM S/360 DOS Sort/Merge 

IGNORE permits processing to 
continue; a branch is made to LABETY 
to write the LLR on the checkpoint 
track and to read the mainline into 
main storage. 

If the operator's reply is incorrect 
(neither IGNORE nor CANCEL in upper or 
lower case letters). the message "7DC2A 
INVALID RESPONSE" is printed. The operator 
must retype the reply to the sequence-error 
message. 

If SYSLOG is not an IBM 1052 
Printer-Keyboard, the program is 
automatically canceled. 



This phase merges up to four pre-sorted 
files into one sequential file. This 
operation is controlled by a MERGE 
statement in a control card. If a MERGE 
statement is detected while the assignment 
phase is processing the control cards, the 
program initializes for a merge-only 
operation and phase 4 is fetched. 

Input for this phase may be on tape or 
disk or both; the output may be on tape or 
disk. 

Phase 4 consists of two overlays: 

• DSORT401 - open/close routine and its 
initialization, sequence error routine, 
and end-of-job messages. 

• DSORT402 - merge mainline and its 
initialization (includes input, compare 
loops, output, error, end-of-job, and 
optional routines). 

DSORT401 is fetched first, the 
open/close routine is initialized and 
written on disk (checkpoint track 2), and 
DSORT402 is fetched. The merge mainline is 
initialized and a portion of it is written 
on dis.k (checkpoint track 1): part of the 
mainline resides permanently in storage. 
DSORT401 is then called in to open the 
output file, written back on disk, and the 
non-resident portion of DSORT402 is called 
in to prepare to open the first input file. 
The two overlays are then called in. 
executed, and written back on disk 
alternately as many times as necessary to 
perform the initial open and the initial 
read of all the input files (from 1 to 4, 
depending on the order of merge). 

The merging process is similar to that 
of phase 3; the major differences are: 

• 

• 
• 

MERGE ONLY (PHASE 4) - 05 

Output records are not interleaved 

The restart feature cannot be used 

Data that is not in binary format is 
both converted and reconverted 

After all the files are open and the 
input areas filled, records are compared to 
determine the winner in the user-specified 
sequence (ascending or descending). The 
winner is sequence-checked and moved to the 
output area. As each input area is 
depleted, it is refilled from its 
corresponding file until the file is 
depleted. As the output area is filled, it 
is written on disk or tape, as specified. 
End-of-job is reached when all input files 
have been depleted and tpe last output 
block has been written. 

Overlay DSORT401 is called in at: 

• End of initialization, to open output 
file and all input files 

• End-of-volume, to close and open input 
volumes 

• End-of-file, to close each input file 

• Sequence-error, to process the error 

• End-of-job, to close the output file 
and print end-of-job messages 

User exits 41 to 45, inclusive, are 
provided in this phase; 41 and 44 in 
DSORT401 and 42, 43, and 45 in DSORT402. 

Figure 48 is a layout of main storage, 
showing the two overlays during 
initialization and execution. 

Merge Only 167 



< 

Supervisor 

Tape Label 
Processing 

Open/Close 
Routine 

Open/Close 
Routine 
Initialization 

Unused 

DSORT401 
Initialization 

Note: Not drawn to scale. 

Supervisor 

Merge 
Mainline 

Relocatable 
Routines 

Initialization 
of Mainline, 
Relocatable 
Routines, 
and I/O Areas 

DSORT402 
Initialization 

Figure 48. Phase 4 Main storage Layout 

168 IBM S/360 DOS Sort/Merge 

Supervisor 

Merge 
Mainline 
(Portion that 
is called in 
and written 
back on disk 
as needed.) 

Resident 
Portion 
of Mainline 

Selected 
Optional 
Routine(s) 

Input 
and 
Output 
Areas 

User Routines 

DSORT401 
Execution 

Supervisor 

Tape Label 
Processing 

Open/Close 
Routine 

Resident 
Portion 
of Mainline 

Sel ected 
Optional 
Routines 

Input 
and 
Output 
Areas 

User Routines 

DSORT402 
Execution 



INITIAL! ZE OPEN/CLOSE ROUTINE -EA 

using the checkpoint record that was 
created by the assignment phase, this 
routine prepares the open/close routine 
according to number and type of files for 
use with the merge mainline. Its functions 
are: 

• Read in checkpoint record 

• Initialize sequence-error routine for 
type of message 

• Initialize output DTF table for disk or 
tape and for user and label options 

• 

• 

Initialize input DTF tables (number 
depends on OM) for disk or tape (or 
combination of both) and for user and 
label options 

write the initialized open/close 
routine on disk 

The routine then fetches the merge mainline 
(overlay DSORT402). 

PANCO, EA-Bl 

The mainline base register (RGll) is loaded 
and the contents of registers RG2 and RG3 
are stored: 

• RG2 - logical unit address of 
checkpoint - stored in LOGUNIT 

• RG3 - address of first track of the 
work area - stored in TRACKl and TRACK2 

A test is made to determine if both 
tracks of the work area are in the same 
cylinder. If they are, the head number is 
increased by one and the new head address 
is stored in TRACK2+2: the .routine then 
branches to GETAB. If the tracks are not 
in the same cylinder. the address of the 
second track of the work area will be the 
next cylinder, head zero: this address is 
stored in TRACK2 and the routine continues 
to GETAB. 

GI:."T AB,EA- E1 

The checkpoint record that was created by 
the assignment phase is read into location 
FORMAT in main storage for use by phase 4. 
The address of the user routines and the 
order of merge are stored in USADDR and OM. 
respectively. 

A test is then made to determine if 
SYSLOG is a 1052 Printer-Keyboard and, if 
so, a branch is made to INIT1. If SYSLOG 
is other than a 1052, the sequence-error 
routine (Chart EL) is initialized (at 
instruction RESPONSE) to branch back to the 
merge mainline through location EXIT in the 
open/close routine. (Without a 1052, 
operator response is not possible: message 
'7DD2D' will be printed and proceSSing will 
continue.> After modifying instruction 
RESPONSE, this routine continues to INIT1. 

IN IT1, EA- H1 

Location INOUT is tested to determine if 
the output is to be on disk and, if not, a 
branch is made to TAPOUT. For disk output: 

• Initialize DTF table FILEOD for disk 
output. 

• store EOF address in DTF table. 

• 

• 

Change DTF tabl e name from FILEOD to 
FILEO (this table was assembled as 
FlLEOD to distinguish it from the tape 
output DTF table, FILEO). 

Test for user exit 44 and, if not 
specified, turn off the user label 
address bit in the DTF table. 

• Relocate the DTF table to location 
FILEO. 

• Initialize the open/close routine for 
disk output by modifying the branches 
at NIEFO, OUTPUT, and OUTDK. 

The routine then branches to INIT2. 

TAPOUT, EA-Jl 

The tape output DTF table (FlLEO> is 
initialized for several options, depending 
on the results of tests: 

Merge Only 169 



Test 
O~tion Location Bit 

Rewind first volume OUTOPT 3 

Close unload OUTOPT 5 

Close no-rewind OUTOPT 7 

No tapemark NOTPMK 2 

Non-standard labels INOUT 2 

Unlabeled file INOUT 1 

User exit 44 PH34EX 4 

(NOTE: If unlabeled file, user exit 44 not 
used) 

The bit in FILEO + 36 that denotes physical 
DTF is turned off to convert to logical DTF 
(to prevent generation of information not 
needed by this program, the DTF was 
assembled as DTFPH). A branch is then made 
to INIT2. 

INIT2, EA-A3 

Depending on the order of merge, one of the 
instructions INIT3, INIT4, or INITS is made 
an unconditional branch to CHKPOINT to 
permit exit from this routine after the 
required input DTF tables have been 

Disk In~ut Files 

DTF Table 

initialized. For example, if the order of 
merge is two, (1) the instruction at INIT4 
is made an unconditional branch, (2) the 
DTF tables for files A and B (disk or tape, 
as the case may be) are initialized. and 
(3) the routine branches to CHKPOINT 
without initializing the DTF tables for 
files C and D. 

When the branch to CHKPOINT has been 
initialized, location INPUTA is tested to 
determine whether file A is on disk or on 
tape: 

• 

• 

If on disk, load the address of input 
DTF table FILEAD in register R3, load 
the address of input DTF table FILEA in 
R4 (to permit relocating FILEAD later), 
and branch-and-link to DISK. 

If on tape, load the address of input 
DTF table FILEA in register R3, load 
the return address (INIT3) in register 
LINK, and branch to TAPE. 

A similar procedure is followed at 
INIT3, INIT4, and INITS (as required by the 
order of merge) except that if the file is 
on tape, INPUTB (and INPUTC and INPUTD, as 
the case may be) are moved to location 
INPUTA just before the branch to TAPE. 
(This permits using just the one location 
(at INPUTA) to check each tape file, in 
turn, for the options detailed under TAPE.) 

The variations for each file are: 

Location ~ in RG3 in RG4 BAL to Return to 

INIT3 INPUTB FILEBD FlLEB DISK INIT4 

INIT4 INPUTC FILECD FILEC DISK INITS 

INIT5 INPUTD FILEDD FI.LED DISK CHKPOINT 

Ta:Qe In~ut Files 

DTF Table Address 
Location ~ in RG3 in LINK Branch to Return to 

INIT3 INPUTB FILEB INIT4 TAPE INIT4 

INIT4 INPUTC FILEC INITS TAPE INIT5 

INIT5 INPUTD FILED CHKPOINT TAPE CHKPOINT 

170 IBM S/360 DOS Sort/Merge 



DISK, EA-C3 

The disk input DTF table FILEAD (or FILEBD, 
FILECD, or FILEDD) is initialized with EOF 
address EOFDK, its name is changed to FILEA 
(or FILEB, FILEC, or FILED, as the case may 
be), and it is relocated to overlay the 
tape DTF table for that particular input 
file. A branch is then made to the address 
in register LINK (see table following the 
text at INIT2). 

TAPE, EA-C4 

The tape input DTF table FILEA (or FILEB, 
FILEC, or FILED, as the case may be) is 
initialized for several options depending 
on the results of tests: 

Open rewind 

Close unload 

Close no-rewind 

Non-standard labels 

Unlabeled file 

User exit 41 

Test 
Location 

TBKLAB 

TBKLAB 

TBKLAB 

INPUT!.! 

INPUT!! 

PH34EX 

3 

5 

7 

2 

1 

7 

(Note: If unlabeled file, user exit 41 not 
used) 

The bit in FlLE!!+36 that denotes physical 
DTF is turned off to convert to logical DTF 
(to prevent generation of information not 
needed by this program, the DTF was 
assembled as DTFPH). A branch is then made 
to the address in register LINK (see table 
following the text at INIT2). 

CHKPOINT, EA-G4 

The second track of the work area is 
formatted and a checkpoint record of the 
initialized open/close routine is written 
on disk. 

FETCH, EA-H4 

The record addresses stored in locations 
TRACK1 and TRACK2 are set to 1 so that in 
the merge mainline the checkpoint may be 
read from, and written back on, disk with 

the READ DATA command. Registers RG2 
through RG5 are loaded with information for 
the next overlay (merge mainline): 

Regist~ Load With Contents 

RG2 LOGUNIT Logical unit address 
of checkpoint 

RG3 TRACK1 Address of first 
track in disk work 
area 

RG4 TRACK2 

RG5 LENGTH 

Address of second 
track in disk work 
area 

Length of the 
checkpoint record 

The merge mainline (overlay DSORT402) is 
then fetched into main storage for 
execution. 

INITIALIZE MAINLINE - EB 

The checkpoint record created by the 
assignment phase for phase 4 is read into 
main storage. This routine then: 

• 

• 

• 

• 

• 

• 

• 

• 

Initializes for input files on tape or 
disk or both. 

Includes or excludes bypass and verify 
options. 

Provides for conversion and 
reconversion routines and for user's 
routines, if required. Exits available 
to the user are 42, 43, and 45. 

Initializes for fixed- or 
variable-length records and for 
variable blocking. 

Initializes for tape or disk output. 

Initializes for ascending or descending 
sequence and for output sequence 
checking. 

Initializes and relocates optional 
routines, if required. 

computes constants for I/O areas. 

• Initializes input and compare loops for 
order of merge. 

• 

• 

• 

Stores file and record information for 
the user. 

Fetches user routines (if required). 

Branches to open/close routine for 
initial open of all files. 

Merge Only 171 



After initialization is complete, the 
program continues to the input routine 
(Chart EC). 

PANCO, EB-B1 

The base registers are loaded and the 
contents of registers RG2 through RGS, 
which contain information for 
checkpointing, are stored. (See text for 
FETCH in the initialization of the 
open/close routine, Chart EA, for contents 
of RG2 through RGS). An EXCP macro is then 
issued and the checkpoint record, which was 
created by the assignment phase, is read 
into main storage. The routine then 
con tinues to INIT1. 

INIT1, EB-D1 

Constants are stored for use during the 
merge: 

• Number of volumes for each input file 
(to be used for tape input only) 

• Input block size (maximum for 
variable-length records) 

• output record length (fixed-length 
records only) 

• Input record length (fixed-length 
records only> 

The last three values listed are also 
stored in USINF1, USINF2, and USINF2+2, 
respectively, for user's information in 
case user exits are specified. 

A series of tests are then made to 
determine Which input files, if any, are on 
tape. If none are, the routine branches 
through TESTC, TESTB, and TESTA and resumes 
processing at INIT2. Although the order of 
merge may be less than 4, all four files 
are tested; any initialized portions that 
are not needed will not be used at 
execution time. 

For each file that is on tape, the 
corresponding CCB is changed to include the 
read-tape CCW instead of the read-disk 
channel program. The rest of the 
initialization for tape input includes: 

• The hranch to calculate disk addresses 
in the input routine is made a no-ope 

• The instruction in the input routine 
that moves the data address into the 
CCW is changed to inclUde the tape CCW 
instead of the disk CCW. 

172 IBM S/360 DOS Sort/Merge 

• 

• 

The tape indicator (T) is moved to VOLQ 

For standard labels, a hexadecimal • FO' 
is placed in LABTY~. (This will 
result in a branch to the END macro 
instead of to the FEOV macro in the 
open/close routine at EOV time.) 

• For non-standard labels with user exit 
41, the number of volumes in the file 
(VOLn+l) is set to zero and LABTYPn is 
initialized as for standard labels: 

• For non-standard labels without user 
exit and for unlabeled files, no 
modifications are made to LABTYPn nor 
to VOLQ+l. -

The routine then continues to INIT2. 

INIT2, EB-E1 

A test is made of location KEY to determine 
if there is a key to be read which 
signifies that the input files must be on 
disk only (not mixed) and that only 
unblocked fixed-length records are being 
processed. If there is a key, a branch is 
made to REYOK; if not, the read CCW is 
changed to read only data and the error 
routine is initialized to bypass the 
function at WLR where the key length is 
added to the data length. A branch is then 
made to TSTFORM. 

REYOK, EB-F2 

The entry point to the output routine from 
the end-of-job routine is changed from 
WRITEV to LWRITE (to write the last block). 
The test-error routine is initialized to 
immediately print the wrong-length-record 
message in case a short block is detected 
and to return to the input routine 
immediately. The routine then continues to 
TSTFORM. 

TSTFORM, EB-G1 

Tests are made to determine if the data is 
in a form that must be converted before 
processing and/or if user exit 42 is 
specified: 

1. Test location FORMAT for conversion. 
If yes, go to item 3. If no, modify 
the input routine (chart EC) so that 
the branch-and-link to the conversion 
routine is bypassed. Go to item 2. 



2. Test location PH34EX for user exit 42. 
If yes, go to TESTON. If no, modify 
the input routine <Chart EC) to bypass 
the branch-and-link to the user's 
routine as well as the one to the 
conversion routine. Then go to TESTON. 

3. Test location PH34EX for user exit 42. 
If yes, go to TESTON. If no, modify 
the input routine (ChartEC) to bypass 
only the branch-and-link to the user's 
routine. Then go to TESTON. 

The reason for testing twice for user exit 
42 is to initialize the input routine with 
the proper single instruction that will 
satisfy anyone of three possibilities: 

• Bypass the conversion routine. 

• Bypass user exit 42. 

• Bypass the conversion routine and user 
exit 42. 

TESTON, EB-Hl 

Tests are made to determine if the data is 
to be reconverted in the output area to its 
original format and/or if user exit 43 is 
specified: 

1. Test location FORMAT for reconversion. 
If yes, go to item 3. If no, modify 
the output routine (Chart EH) to branch 
to EXIT to bypass the reconversion 
routine. Go to item 2. 

2. Test location PH34EX for user exit 43. 
If yes, go to TESTEX. If no, modify 
the output routine (Chart EH) to branch 
to UPDTO, thus bypassing both the 
branch to the reconversion routine and 
the branch-and-link to the user's 
routine. Also insert a branch from 
INSERT to ZYXWZY in the outp'ut routine. 
Finally, insert an unconditional branch 
from MODFl to ADDl in the end-of-job 
routine (Chart EJ) and go to TESTEX. 

3. Test location PH34EX for user exit 43. 
If yes, go to TESTEX. If no, replace 
the instruction in the output routine 
(Chart EH) to bypass the 
branch-and-link to the user's routine 
and insert a branch from INSERT to 
ZYXWZY. Finally, insert an 
unconditional branch from MODFl to ADDl 
in the end-of-job routine (Chart EJ) 
and go to TESTEX. 

The reason for testing twice for user 
exit 43 is to initialize the output routine 
and the end-of-job routine with the fewest 
possible instructions to satisfy anyone of 
three possibilities: 

• 

• 
• 

Bypass the reconversion routine. 

Bypass user exit 43. 

Bypass the reconversion routine and 
user exit 43. 

TESTEX, EB-Jl 

If no user exits are required (determined 
by testing PH34EX), the error routine 
(Chart ED) is modified to bypass exit 45 
and the routine continues to TSBPASS. 

If any exits at all are specified, the 
address of the user's routines is saved and 
the branch at NOUSER is made a no-op to 
permit calling in the user routines at the 
end of the initialization. A test is then 
made for user exit 45 specifically and, if 
specified, a branch is made to GOGO; 
otherwise, the error routine (Chart ED) is 
modified to bypass this exit and the 
routine continues to TSBPASS. 

TSBPASS, EB-C2 

If the BYPASS option has been specified, a 
branch is made to GOGO; if not, the error 
routine (Chart ED) is modified to branch 
past the test for data check. This routine 
then branches to TSTREC. 

GOGO, EB-D3 

A bit is turned on in each input file CCB 
so that control will be returned to this 
program if a data check is encountered. 
The routine then continues to TSTREC. 

Note: At this point, the processing that 
began at TESTEX has initialized the 
mainline so that in case of an 
unreadable record: 

• without exit 45 and without bypass, 
phase 4 will not receive control back 
from IOCS if the particular input file 
is on disk; if on tape, control will be 
received if the operator response to 
the IOCS message is 'ignore'. The 
error routine will then continue to 
check for wrong-length record. 

• With exit 45 and with bypass, phase 4 
will receive control from laCS and 
branch-and-link to user 45. When the 
user returns control, phase 4 will 
either bypass or process the record, 

Merge Only 173 



depending on the user return point in 
the error routine. 

• With bypass but without exit 45, phase 
4 will test for a data check and will 
either bypass the record or process it, 
depending on the result. 

Note that when exit 45 is specified, the 
BYPASS option is assumed. 

TSTREC, EB-E3 

Location TYPREC is tested for the type of 
records to be processed: 

• For fixed-length, a branch is made to 
FIX.LGN. 

• For variable-length, the output routine 
(Chart EH) and the error routine (Chart 
ED) are initialized for variable-length 
records, and a bit is set on in USINF3 
to denote VLR to the user. Then, for 
disk output only, the instructions for 
calculating the next disk address for 
output are initialized for 
variable-length records and a hranch is 
made to FLDSKO+14. For tape output 
only, the routine branches to TAPOFX+8. 

FIXLGN, EB-F3 

The output routine (Chart EH) and the input 
routine (Chart EC) are initialized for 
fixed-length records, tape or disk output. 

A test is made to determine if Ll (the 
input record length) is less than L3 (the 
output record length). If L1 is greater 
than L3, it indicates that the user wants 
to shorten records as they are moved to the 
output aJ;ea. (Exit 43 must be specified 
for this purpose when variable-length 
records are being processed.) Ll will then 
be used for the move length in the output 
routine but L3 will be used for 
incrementing the output area address. The 
output routine is written for moving Ll, so 
no initialization is necessary in this case 
and a branch is made to PROS. 

In the event that L1 is less than L3, 
the user wants to lengthen records as they 
are moved to the output area. The output 
routine is then initialized for 
fixed-length .records to use L3 for the move 
length as well as for incrementing the 
output area address. {Exit 43 must be 
specified; the user's data will overlay any 
extraneous matter in the output area that 
was moved along with the record.) When 

174 IBM S/360 DOS Sort/Merge 

processing variable-length records and Ll 
is less than L3, the output routine will 
move the entire record (the length 
specified by the RLI). However, the user 
must then move the record to the user's 
work area (via exit 43), lengthen it, and 
move it back as a user- inserted record. 
The output routine will then increment the 
output area address according to the new 
RLI and move it if there is room in the 
output area. This procedure is followed 
because it cannot be known in advance if a 
variable-length record will fit in the 
available output area after the user has 
lengthened it. 

The initialization then continues at 
PROS. 

PROS, EB-H3 

Location TBKLAB is tested for the type of 
blocks (fixed or variable) and a branch is 
made to TAPOFX in case of fixed blocks. 
Otherwise, the error routine (Chart .ED) is 
initialized to admit variable blocks before 
continuing at TAPOFX. 

TAPOFX, EB-J3 

Location INOUT is tested for disk or tape 
output. For disk output, a branch is made 
to FLDSKO; for tape, the routine continues 
at TAPOFX+8. 

TAPOFX+8, EB-KJ 

The mainline is initialized for fixed- or 
variable-length records, tape output: 

• output routine (Chart EH) 

• End-of-job routine (Chart EJ) 

• Write Channel Command Word (WTCCW) 

• Output COlllIUand Control Block (OCCB) 

The switch at TPOUT is then turned on 
(unconditional branch) and a branch is made 
to ITCOMP. 



FLOSKO, EB-J 2 

The calculations in the output routine for 
determining the disk output address are 
initialized with the maximum blocks per 
track. Note that this is done for 
fixed-length records only. 

FLOSKO+14, EB-K2 

The initialization of instructions for disk 
output is completed and a test is made for 
the VERIFY option, which is valid only for 
disk output. If the option is required, 
the Write CCW is modified to chain to the 
Verify CCW. The routine then continues to 
ITCOMP. 

ITCOMP, EB-A4 

Mainline compare loops are initialized with 
the length and location of the first 
control field. This information is 
contained in the first eight bytes of the 
96-byte table starting at location CF1LCT. 
The length-1 and location-1 of the first 
control field are then stored in USINF3+1 
for the user's information and the output 
sequence check compare is initialized with 
the data in CF1LCT+l and CF1LCT+7. 

The instructions in USTOP1, 2, and 3 
that determine the branch conditions in the 
compare loops when results are low, 
depleted, or equal, are initialized for 
ascending or descending sequence as 
required by the data in CF1LCT+7. 

CLIFOR, EB-C4 

A series of tests is made of location 
FORMAT to determine which, if any, of the 
data conversion and reconversion routines 
is required. The corresponding bit is set 
in RLCOND for the relocator and in USINF3 
for the user's information. A branch is 
then made to the relocator (Chart FA) to 
relocate the selected routine, if any, and 
to initialize the equal routine, if 
required. The relocation then branches 
back to this routine of INIT3. 

INIT3, EB-E4 

The relocator will have stored in location 
RLISA the address of the first available 
byte of storage to be used by phase 4 for 
input and output areas. Using this 
address, the order of merge (OM) ,and the 
input block size (INPBKL), the start and 
end of each input. area is calculated 
(ABEGIN to AEND, BBEGIN to BEND, etc.). If 
necessary, the starting point of each area 
is adjusted to begin at a halfword 
boundary. 

The starting address (OBEGIN) of the 
output area is calculated after an 
adjustment is made for it to be at a 
fUllword boundary. OBEGIN is then stored 
in the write and verify CCW's, the output 
block size (OUTBKL) is obtained, and the 
routine continues to TPOUT. 

TPOUT, EB-AS 

For tape output, this location would have 
been made an unconditional branch to OUT.APE 
(see text under TAPOFX+8). 

For disk output, a count field is 
prepared by storing the data length 
(OUTBKL-key length) in CCOUNT+6 and the key 
length in CCOUNT+S. OUTBLK is then 
increased by eight bytes for the count 
field and the routine continues to OUTAPE. 

OUTAPE, EB-C5 

The starting address of the output area 
(OBEGIN), which is in register FILEA, is 
increased by eight bytes to obtain the 
address at which the first byte of data 
will appear in the output area. FlLEA is 
then stored at location OUTEND so that the 
"move" instruction immediately following 
can effectively move the address OBEGIN+B 
into the write tape ccw. 

Using the value in OUTBLK, the end 
address of the output area is calculated 
and stored in OUTENO and OUTEND1. The data 
count for output is inserted in the write 
and verify CCW's and the data count for 
input is inserted in the read CCW's for 
disk and tape. 

The byte from the assignment phase table 
that contains the label information for 
file A is moved into location LABEL. The 
corresponding byte for each additional file 
(B, C, and 0, as required by OM) is ANCed, 
in turn, at location LABEL. If all the 

Merge Only 175 



files have the same type labels, the 
corresponding bit in LABEL will thus be set 
on; for mixed labels, no bits will be set 
on. LABEL will then contain a bit 
configuration that denotes unlabeled, 
non-standard, standard, or mixed labels for 
input. LABEL is then tested and the label 
type is inserted USINF3 .for the user's 
information. The order of.merge is 
determined and also stored in USINF3. 

The mainline is then initialized, 
depending on the order of merge, to fill 
the input areas and open the corresponding 
compare loops. 

The two instructions at FILLDL are now 
moved to the beginning of the first input 
area (at location ABEGIN). This is done so 
that the execution of these instructions 
(after fetching the user's routines) will 
not destroy some part of the initialization 
routine that has not yet been executed. 

NOUSER, EB-FS 

When there are no user exits specified, 
this location is a branch to ABEGIN, where 
FILLDL is now located. If user exits are 
specified, however, this location would 
have been a no-op (see text under TESTEX) 
and the user routines a.re now fetched into 
main storage. When the user returns 
control to this program through register 14 
(which is register LINK), the 
initialization continues with FILLDL. 

FILLDL, EB-HS 

The output count field and four blanks (for 
the BLI in case of variable-length records) 
are moved to the beginning of the output 
area and a branch is made to CEVCHK to: 

1. write the initialized mainline on disk, 

2. Read in the open/close routine, which 
will open the output file, 

3. Write the open/close routine back on 
disk. and 

4. Read the mainline back into main 
storage. The program then continues to 
the input routine (Chart EC) at 
location TAPEl-2. the address of which 
is in register RG13. 

176 IBM S/360 DOS Sort/Merge 

INPUT ROUTINE - EC 

The initial entry to this routine is after 
the mainline initialization and the opening 
of the outpt file. The open/close routine 
branches back (through CEVCHK) to TAPEl-2 
to open the first input file and perfor.m 
the first read operation. All the files 
are then opened in turn. 

subsequent entries are made to TAPEGl-4 
and FIXIP1 from the error routine, and to 
GET1 from the compare loops. 

Note: The labels in this routine are 
written on Chart EC with the suffix 
1 or A and referred to in the text 
wi th the same suffixes most of the 
time. The same logic applies to the 
similar labels in the listing with 
suffixes 2, 3, and 4 or B, C, and D, 
depending on the file in process. 

The .routine reads in a block of records 
at a time and branches to the error routine 
to test for errors. If no errors exist, a 
branch is made back to this routine at 
FIXIP1 to provide user exit 42 and/or data 
conversion, as required. The routine then 
branches to the compare loops to start 
merging records. 

TAPE1-2, EC-C2 

The address of TAPE1 is loaded in register 
RG13 and the routine continues to TAPE1. 

TAPE1,.EC-D2 

The address of the CCB for the current file 
(ACCB, BCCB, etc.) is loaded in register 
MREG, the file indicator is placed in 
XFlLE, and register RG10 is loaded with the 
address of the input area for that file. 

The ne.xt instruction in the listing is a 
no-op except for two occasions: 

1. During initial open time, a branch is 
made to EOFDK in the error routine 
(Chart ED) to call in the open/close 
routine via CEVCHK. This branch is 
then made a no-op until a valid short 
block is detected at the end of a 
volume or file. 

2. When a vall d short block is to be 
processed, this instruction would have 
again been made a branch to EOFDK, 
after which it will be made a no-ope 



At all other times, the routine continues 
to CPlADD for disk input or to TAPEGI for 
tape input. 

CPIAnD, EC-C4 

The record number in register RGO (the 
current disk address) is increased by one. 
Location CHHR is then tested for the 
end-of-track indicator (FF) and, if 
present, the address is increased to the 
next track and a test is made to determine 
if the new head number exceeds nine. If 
so, the next cylinder number is calculated 
by adding the 256-complement of ten (SCOMP) 
to the address in register RGO. 

A test is then made to determine if the 
upper limit of the extent has been exceeded 
by the new disk address just calculated in 
register RGO. If not, a branch is made to 
OKLMTSi if so, location BCERRW+1 is tested 
to determine if there is a short block to 
process. If an 'FO' is detected, a branch 
is made to FROMDK in the error routine 
(Chart ED) to process the short block; if 
not, a 'V' for end-of-volume is placed in 
register 12 and a branch is made to CEVCHK 
to call in the open-close routine to get 
the next extent. Control is returned to 
this routine at GET1 (or GET2, etc., as the 
case may be). 

OKLMTS, EC-F4 

The new address in the current extent is 
stored in ARADDR (or BRMDR, etc.). The 
new record number is then reduced by one 
(to obtain the seek address) and stored 
back in CHHR. A branch is then made to 
TAPEG1 (or TAPEG2, etc.). 

TAPEG1, EC-H2 

AnEXCP macro is issued to read in a block 
of records from the file in process. The 
parameters for the read-in operation are 
supplied by ACCB, BCCB, CCCB, or DCCB, as 
the case may be. The routine then branches 
to the error routine (Chart CD). If no 
error nor end-of-file conditions are found, 
a branch is made back to this routine from 
RESTOR+4 to FIXIP1. 

FIXIP1, EC-B3 

The end-of-block address is stored in AEND 
(or BEND, etc.). When variable-length 
records are being processed, the input area 
address in FILEA (or FlLEB, etc.) is 
incremented by four bytes for the 
block-length indicator. Then the file 
designation (A, B, C, or D) is restored in 
XFlLE to be used in case a sequence error 
is detected later in the output routine. 
This routine tben continues to TR1. 

TRI. EC-D3 

The input area address in register FILEA 
(or FILEB, etc.) is loaded in register 
MREG. Then, if so initialized, a 
branch-and-link is made to user exit 42 
before continuing to LRA. 

LRA, EC-F3 

If the data is in a form that must be 
converted before merging, a 'T' 
<hexadecimal 'E3') is placed in location 
XTIME and a branch-and-link is made to STR3 
for the initialized conversion routine. 
After linking back, this routine exits to 
the compare loops at an address that varies 
with the file in process and with the order 
of merge: 

Order of Branch to Which is in 
Merge Address Register 

A 4 COMP41 SAVEA 
3 COMP31 SAVEA 
2 COMP21 SAVE A 

B 4 COMP42 SAVEB 
3 COMP32 SAVEB 

C 4 COMP43 

D 4 COMP43 

GET1. EC-B1 

This location is entered from the 
open/close routine whenever a new disk or 
tape volume was opened and from the compare 
loops whenever a block in a particular 
input area was depleted. The entry label 
will be GET1, GET2, GET3, or GET4. 

The starting address of the input area 
for the current file is loaded in the 

Merge Only 177 



corresponding register (FILEA, FILEB, etc.) 
and in the corresponding CCW (for tape or 
disk). The routine then continues to 
TAPEl-2. 

ERROR ROOTINE - ED 

Tests are made for checkpoint record (tape 
only), end-of-volume and end-of-file, no 
record found (disk only), wrong-length 
record, and good, short block. All 
conditions except end-of-file are processed 
according to the condition found, after 
which a branch is made back to the input 
routine (Chart EC) to read the next block. 
For end-of-file, the depleted file is 
closed and merging is resumed with the 
remaining files. When all input files are 
closed, a branch is made to the end-of-job 
routine (Chart EJ). 

In case of no record found, the 
remaining portion of the track is bypassed. 
In case of a data check, a bypass option 
and user exit 45 are available to permit 
the user to. continue processing the record 
if so desired. In case of a wrong-length 
record the record will always be bypassed. 

For valid records, the routine returns 
to FIXIP1 in the input routine to continue 
process ing. 

TEST, ED-Ai 

A WAIT macro is issued to ensure the read 
operaticn is complete before the routine 
ccntinues to test for errors. Then, if the 
input file from which the blcck was just 
read is on tape, a branch is made to. TAPEX. 

For disk input, if a no-record-found 
condition is detected an end-of-track 
indicatcr (FF) is set in MREG+19 (ARADDR+3 
or BRADDR+3, etc.) and a branch is made to 
TAPEGl-4 (or TAPEG2-4, etc.) to. read the 
first block cn the next track. Next, a 
test is made to. determine if the blcck just 
read was the last blcck on the track. This 
test compares the next record count with 
the current one and if the next ccunt is 
equal cr lcwer, the end cf the track has 
been reached. If such is the case, the 
end-cf-track indicatcr (FF) is inserted in 
ARADDR+3 or BRADDR+3, etc. (MREG+19). 
Then, in either case, the data length is 
loaded in register RG15 and the rcutine 
ccntinues to TMEOF. 

178 IBM 8/360 DOS Scrt/Merge 

TAPEX, ED- A2 

The block just read is tested to. determine 
if it was a checkpcint header record and, 
if so, a branch is made back to the input 
routine (Chart EC) to. TAPE1 (or TAPE2, etc) 
to read the next block un til a checkpoint 
trailer record is read, thus bypassing the 
checkpcint records. If not a checkpoint 
record, the block count is increased by one 
and the input block length is loaded in 
registe.r RG15. 

The CCB is tested for the WLR 
(wrong-length record) bit and if it is not 
cn, a branch is made to TMEOF. If the CCB 
has a WLR indication, the residual ccunt in 
the CCB is tested; if it is zero, a long 
WLR has been read and a branch is made to 
LALINK. If the residual count is not zero, 
it is subtracted from the input block 
length (in RGiS) to cbtain the length of 
the record read. A branch is then made to 
TMEOF. 

TMEOF, ED-Fi 

The CCB is tested fcr end-of-file 
condition; if yes, a branch is made to 
EOFDK. If not end-of-file, the LINK 
register is loaded with the return address 
BPA8S for use in the event that the 
previous block (fixed blocks only) was 
fcund to. be a short block (BCERRW will be 
on). The routine then continues to BCERRW. 

EOFDK, ED-Gl 

This location is entered when: 

• End-of-file is detected at TMEOF. 

• Initial open of input files is being 
performed. 

• A good, short block at the end of a 
volume or a file is being processed. 

An 'F' fnr end-of-file is placed in 
register RG12 (this will be stored in XFlLE 
in the open/close rcutine and is 
significant for disk input only). The 
branch to. EOFDK from the input routine is 
made a no-op and the rcutine continues to. 
EOF. 



EOF, ED-Jl 

This location is a branch to CEVCHK to call 
in the open/close routine at initial open 
time, at EOV or EOF for tape input, and at 
EOF for disk input. The return from the 
open/close routine is to open the next file 
at initial open, to close the particular 
file at EOF for tape o.r disk input, or to 
perform the next read operation at EOV for 
tape input. 

At all other times, this location is a 
detected at the end of a volume or of a 
file. The branch to EOFDK from the input 
routine is activated so that when the 
records in the short block have been 
processed the input routine will branch to 
EOFDK. This routine then continues to 
FROMDK. 

FROMDK, ED-C5 

This location is entered from the preceding 
function at EOF or from CPlADD in the input 
routine, in both cases when a short block 
is being processed. The branch at EOF is 
activated and BCERRW is made a no-op. The 
routine then branches to RESTOR to process 
the short block as a valid record. 

BCERRW, ED-B3 

This location is a no-op until a short 
block is detected (for fixed block input 
only), at which time it is made an 
unconditional branch toERRW. 

Note: This location is entered only when 
EOF condition has not been detected. 
Then, if applicable;-the WLR message 
is printed and the program returns 
to BPASS. 

BPASS, ED-C3 

This location is an unconditional branch to 
WLR if the BYPASS option was not specified. 
With the BYPASS option, a test is made for 
a data check in the CCB; if present, a 
branch is made to ERR. If there is no data 
check, the routine continues to WLR. 

ERR, ED-E3 

This location is an unconditional branch to 
ERROR if user exit 45 was not specif ied. 
Otherwise, a .branch-and-link is made to the 
user's routine after which control is 
returned at one of two points: 

• User desires to ignore error indication 
-- return (via B,14) to instruction 
preceding ERROR which is a branch to 
WLR to continue processing the block. 

• User desires to bypass the block 
return (via B. 4 (14» to ERROR. 

ERROR, ED-H3 

The count of unreadable records (ERRCT) is 
increased by one (ERRCT will be printed out 
at end-of- job) and the routine branches 
back to the input routine (Chart EC) to 
TAPEGl-4 (or TAPEG2-4, etc.). 

WLR, ED-B4 

If there is no key to read, this location 
is a branch to WLR2. With key, the key 
length is added to the data length (in 
RG1S) before continuing to WLR2. 

Note: In case of data check and no BYPASS 
option or no exit 45, IOCS does not 
return control to this program if 
input is on disk. For tape input, 
control is returned if the operator 
response to the IOCS message is 
'ignore'. If BYPASS only or if exit 
45 was specified, control is 
returned as described under ERR. 

WLR2, ED-D4 

Calculations and tests are made to 
determine if there is a wrong-length-record 
condition. This provision is made to 
prevent erroneous WLR indications for: 

• variable-length reco.rds 

• fixed-length records in variable blocks 

• short, good blocks at the end of a 
volume or file of fixed-block, 
fixed-length records. 

Register RG15 is saved so that its 
contents may be retrieved later (at RESTOR) 

Merge Only 179 



if required. For tape. this is the actual 
input block length and for disk it is the 
data length (plus the key length, if so 
specified). This value is compared to 
BLKINP which contains the input block 
length (for fixed blocks) or to the 
block-length indicator, the address of 
which is in RG10 (for variable blocks). If 
the result of the comparison is equal, it 
indicates a good record and a branch is 
made to RESTOR+4. If the result is low, it 
is a wrong length record for all types 
except fixed-length without key: a branch 
is then made depending on the type of 
record: 

• Fixed-length without key - to MULTPL 

• Fixed-length with key - to LALINK 

• Variable-length - to LALlNK 

Note: For disk input, a WLR cannot be 
detected by testing the WLR bit in 
the CCB. Setting the SILl bit off 
in the CCW would cause a break in 
the disk CCW chain if a WLR 
condition is detected. 

MULTPL. ED-G4 

If the block length is not a multiple of 
the record length. a true WLR exists and a 
branch is made to LALINK. otherwise, the 
branch is to LASTBLK (for fixed blocks) or 
to RESTOR (for variable blocks). 

LAS TB LK , ED-J4 

The return branch at EOF is made a no-op 
and the no-op at BCERRW is changed to an 
unconditional branch to ERRW. The routine 
then branches with register RG13 back to 
the input routine (Chart EC) to TAPEGl-4 
(or TAPEG2-4, etc.). 

RESTOR, ED-DS 

The contents of register RG15 are restored. 
For tape, this is the actual input block 
length and for disk it is the data length 
(plus the key length, if so specified). 
Then, at RESTOR+4. the end-of-block address 
is calculated by adding the contents of 
RG15 to the current address of the input 
area for the file in process (FILEA, FlLEB, 
etc.) which is in register RG10. 

180 IBM S/360 DOS Sort/Merge 

The routine then branches back to the 
input routine (Chart EC) to FIXIPl to 
continue processing the good block of 
records. 

LALINK, ED-G5 

The return address in the input routine 
(TAPEGl-4, TAPEG2-4, etc.) is loaded in 
the LINK register and the routine branches 
to ERRW. 

ERRW, ED-HS 

This location is entered from BCERRW or 
from LALINK; in either case, the function 
here is to print wrong-length-record 
message WLRMES, which contains the file 
designation (A. B, C, or D) retrieved from 
XFILE. The branch at BCERRW is made a 
no-op and £OF is made an unconditional 
branch to CEVCHK. 

The routine then branches back to the 
address in the LINK register, the 
difference being due to the location from 
which ERRW was entered: 

• 

• 

From BCERRW, branch back to BPASS 
(previous block was a wrong-length 
record) • 

From LALlNK, branch back to the input 
routine (Chart EC) to TAPEGl-4 or 
TAPEG2-4, etc. (current block is a 
wrong-length record). 

Fl LE D COMPARE LOOP - EE 

For a 4-way merge, the initialization 
routine prepared certain branch 
instructions in compare loops D through B 
and the initial entry for merging is to 
this loop at COMP43. However, the flow 
through these loops varies not only with 
the order of merge but also, later on, with 
the depletion of records in the files being 
processed. As each file is depleted, an 
exit is made to the compare loop for the 
next lower order of merge (Charts EF and/or 
EG). A branch-and-link to the output 
routine (Chart EH) moves each winning 
record, in turn, to the output area for 
further processing. The program keeps 
returning to this loop as long as there are 
records to process in file D. It then 
exits to the file C compare loop (Chart 
EF). 



COMP43, EE-B3 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when file D is depleted. If such is 
the case, a branch is made to COMP32 in the 
file C compare loop (Chart EF); if not, a 
record from the file D sequence is compared 
with a record from the file C sequence. As 
long as D is determined to be the winner, 
it is compared with reco.rds f.rom the other 
available sequences, in turn. The routine 
thus continues in this compare loop or 
exits to another loop, depending on the 
results of each comparison. For example, 
when merging in ascending sequence: 

Function Winner Branch to 

COMP43 D COMP42 
C COMP32 (Chart EF) 

COMP42 D COMP41 
B COMP21 (Chart EG) 

COMP41 D PUT4 
A PUTl (Chart EG) 

The branch locations are determined not 
only by the results of the comparison but 
also by the depletion of input sequences. 
For example, if in COMP42 sequence B is 
found to be depleted, the instruction at 
B41 is an unconditional branch to COMP41 to 
compare the D record with the next A 
record. 

Another variation in the compare loop 
operation occurs when, for example, a D 
record is found to be the winner in COMP43. 
Then, in COMP42, the B record is found to 
be the winer. The exit from the loop, as 
previously desc.ribed, is to COMP21 (Chart 
EG); however, the return address that is 
saved in .register SAVEB is COMP42+2. Then, 
assun1ing the B record is the winner in 
compare loop A and is moved to the output 
area, control is returned to the D loop at 
the a.ddress in SAVEB. The reason for 
entering this loop at COMP42+2 is that 
although B was the winner, the D record had 
already been determined to be winner over C 
at that time. Therefore, the comparing in 
D loop resumes at the point where D is 
compared with the next B record. 

PUT4, EE-F3 

The address of the winning record from the 
file D sequence is loaded into register 
MREG and a branch-and-link is made to 
OUTFIL in the output routine (Chart EH). 
Control is returned to this routine where 
the address for the file D input area is 

updated. 1.£ there a.re no more records in 
the area, a branch is made to GET4 in the 
input routine (Chart EC) to refill the 
inr:ut area. If however, there are more 
records in the D input area, the compare 
loop is re-entered at COMP43 via TR4-4 in 
the input routine. 

FILE C COMPARE LOOP - EF 

For a 3-way merge, the initialization 
routine prepared certain branch 
instructions in compare loops C and Band 
the initial entry for merging is to this 
loop at COMP32. However, the flow through 
these loops varies not only with the order 
of merge but also, later on, with the 
depletion of records in the files being 
merged. As each £ ile is depleted, a branch 
is made to the compare loop for the next 
lower order of merge (Chart EG). A 
branch-and-link to the output routine 
(Chart EH) moves each winning record, in 
turn, to the output area. The program 
keeps returning to this loop as long as 
there are records to be merged from file C. 
It then exits to the file B compare loop 
(Chart EG). 

COMP32, EF-B3 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when file C is depleted. If such is 
the case, a branch is made to COMP21 in the 
file B compare loop (Chart EG); if not, a 
record from the file C sequence is compared 
wi th a record from the file B sequence. If 
the C record is the winner, it is compared 
with a record from sequence A. If the C 
record wins again, the routine continues to 
PUT3. 

The other branch locations, in the event 
that either B or A is determined to be the 
winner, are: 

Function Branch to 

COMP32 B COMP21 (Chart EG) 

COMP31 A PUT1 (Chart EG) 

The branch locations are determined not 
only by the results of the comparison but 
also by the depletion of input sequences. 
For example, if in COMP31 sequence A is 
found to be depleted, the instruction at 
BPUT3 is an unconditional branch to PUT3 to 
prepare to ~ve the C record to the output 
area. 

Merge Only 181 



Another variation in the compare loop 
occurs when, for example, a C record is 
found to be the winner in COMP32. Then. in 
COMP31, the A record is found to be the 
winner. The exit from the loop, as 
previously described, is to PUTl (Chart 
EG); however, the return address that is 
saved in register SAVEA is COMP31+2. Then, 
after the A record is moved to the output 
area, control is returned to the C loop at 
the address in SAVEA. The reason for 
entering this loop at COMP31 +2 is that 
although A was the winner, the C record had 
already been determined to be winner over 
the B record. Therefore, the comparing in 
C loop resumes at the point where C is 
compared with the next A record. 

PUT3, EF-E3 

The address of the winning record from the 
file C sequence is loaded into register 
MREG and a branch-and-link is made to 
OUTFIL in the output routine (Chart EH). 
Control is returned to this routine where 
the address for the file C input area is 
updated. If there are no more records in 
the area, a branch is made to GET3 in the 
input routine (Chart EC) to refill the 
input area. If, however, there are mo.re 
records in the C input area, the compare 
loop is re-entered at COMP43 via TR3-4 in 
the input routine. 

FILE B COMPARE LOOP - EG 

For a 2-way merge, the initialization 
routine prepared certain branch 
instructions in compare loop B and the 
initial entry for merging is to this loop 
at COMP21. However, the flow through this 
loop varies not only with the order of 
merge but also, later on, with the 
depletion of records in file B. When file 
B is depleted, a branch is made to prepare 
to move the A record to the output area. 

A branch-and-link to the output routine 
(Chart EH) moves each winning record, in 
turn, to the output area. The program 
keeps returning to this loop as long as 
there are records to be merged from file B. 
It then branches directly to PUT1. 

COMP21, EG-C2 

The exit from this loop is provided at the 
beginning so that no processing need be 
done when file B is depleted. If such is 

182 IBM S/360 DOS Sort/Merge 

the case, a branch is made to PUT1; if not, 
a record from the file B sequence is 
compared with a record from the file A 
sequence. If the B record is the winner, 
the routine branches to PUT2: if the A 
record is the winner, the routine branches 
to PUT1. 

PUT2, EG-E2 

The address of the winning record from the 
file B sequence is loaded into register 
MREG and a branch-and-link is made to 
OUTFIL in the output routine (Chart EB). 
Control is returned to this routine where 
the address for the file B input area is 
updated. If there a.re no more records in 
the area, a branch is made to GET2 in the 
input routine <Chart EC) to refill the 
input area. 

If. howeve.r, there are more records in 
the B input area, the compare loop is 
re-entered at the address in register SAVEB 
via TR2-4 in the input routine. This 
address is COMP42 if the OM is 4, or COMP32 
if the OM is 3. 

PUT1, EG-E4 

The address of the winning record from the 
file A sequence is loaded into register 
MREG and a branch-and-link is made to 
OUTFIL in the output routine (Chart EH). 
Control is returned to this routine where 
the address for the file A input area is 
updated. If there are no more records in 
the area, a branch is made to GETl in the 
input routine (Chart EC) to refill the 
input area. If, however, there are more 
records in the A input area, the compare 
loop is re-entered at the address in 
register SAVEA via TRl-4 in the input 
routine. This address is COMP41 if the OM 
is 4, or COMP31 if the OM is 3, or COMP21 
if the OM is 2. 

OUTPUT ROUTINE - EH 

When a winning record has been 
by the mainline compare loops, 
routine is entered at OUTFIL. 
routine: 

determined 
the output 
This 

• sequence checks the output file. 

• Reconverts data, if specified. 

• Exits to user routine, if specified 
(via en t 43). 



• 

• 

Updates the main storage output area. 

Moves records to the main storage 
output area. 

Note: This can be either winning 
records or user-inserted 
records. 

• Maintains a count of records merged. 

• Writes blocks of records on tape or 
disk whenever the output area fills up. 

• Provides for maximum usage of track 
capacity. 

• Tests for end-of-volume and end-of-job 
and branches to the appropriate routine 
for fu.rther processing. 

The routine normally exits back to the 
compare loops to the address in the LINK 
register. For end-of-volume, the 
open/close routine is called in to process 
the condition. When end-of-job is 
detected, it exits to the end-of-job 
routine (Chart EJ). 

OUTFIL, EH-Bl 

The address in register LINK is stored so 
that this register may be used to 
branch-and-link to user and/or reconversion 
routines, if specified. 

The first record to be moved to the 
output area cannot be sequence-checked 
because there is no preceding record in the 
output area. Also, the user and 
reconversion routines, even i.f specified, 
cannot be executed for the first record 
because these functions are performed on 
records that already have been moved to the 
output area. Therefore, a branch is made 
to the instruction preceding FULOUT where 
the instruction at SEQCK1 is made a no-op 
so that all subsequent records will be 
sequence-checked. 

Beginning with the second winning 
record, each record is compared with the 
one that preceded it to the output area. 
If the record to be moved is out of 
sequence, a branch is made to S.EQERR; 
otherwise, the routine branches to CONVRT. 

SEQERR, EH-Dl 

The address of the out-of-sequence record 
(in MREG) is saved in register RG13, the 
address for the return to this routine is 

loaded in register MREG, and the file 
identification (A, B, C, or D in XFILE) is 
loaded in register RG12. A branch is then 
made to CEVCHK to call in overlay DSORT401 
to process the error condition in the 
sequence-error routine (Chart EL). If the 
merge is to continue, the program returns 
to this routine at SEQBACK (via EXIT in 
DSORT40l) • 

SEQBACK, EH-Hl 

The address of the out-of-sequence record 
is restored to register MREG and a branch 
is made to CONVRT to continue processing. 
The out-of-sequence record will thus be 
moved to its output location either because 
an IBM 1052 Printer-Keyboard was not 
available or. if it was, because the user 
response was "ignore". 

CONVRT, EH-J1 

This location may have been initialized to 
branch to EXIT (if reconversion is not 
required) or to UPDTO (if neither 
reconversion nor exit 43 are required). 
However. if the data was converted for 
merging, it must now be reconverted to its 
original format. An 'R' (hexadecimal D9) 
is placed in XTIME and a branch-and-link is 
made to STR3 for the initialized 
reconversion routine. Control is returned 
to this routine at EXIT. 

Note: If reconversion is required, it will 
be done after the sequence check and 
before the user exit. 

EXIT, EH-A2 

This location will have been initialized to 
branch to UPDTO after data reconversion if 
user exit 43 is not required; otherwise, a 
branch-and-link is made to the user's 
routine. Control is returned by the user 
either at UPDTO or at the instruction 
preceding UPDTO; in the latter case, the 
user did not insert a record so location 
INSERT is made a no-op before continuing to 
UPDTO. 

Note: The record made available to the 
user at exit 43 is the one that 
preceded the current winning record 
and that has been sequence-checked 
and, if necessary, reconverted. 

Merge Only 183 



UPDTO, EH-C2 

The output area (FlLEO) address is 
increased by the value in OUTLGN, which is: 

• For fixed-length records, the length of 
the output record (L3, which was moved 
to OUTLGN during initialization). 

• For variable-length records. the length 
of the last record moved. 

When variable-length records are being 
processed, the program provides for maximum 
usage of each track's capacity. The end 
address of the output area is carried in 
two loca tions: 

• 

• 

OUTEND1, which contains the original 
end address throughout the merge phase. 

OUTEND. which will contain the original 
end address (OUTEND1) at least until 
after the first block has been written 
and the amount of track capacity 
remaining has been calCUlated. If this 
amount is less than the maximum output 
block size, the output area is 
truncated so that it equals the t.rack 
capacity remaining and the new end 
add.ress is inserted in OUTE.'ND for 
testing the next record. 

After the first block of a track has 
been built in the main storage output area. 
the track capacity remaining after it is 
written on disk is calculated. If the 
track capacity remaining is equal to or 
greater than the maximum output block size, 
the block is written and the next record is 
unconditionally moved to the output area. 

If the track capacity remaining is less 
than the maximum block size, the main 
storage output area is truncated 
(shortened) so that it equals the remaining 
track capacity, and the new end address of 
the main storage output area is placed in 
OUTEND. The block is written on disk and 
the next record is unconditionally moved to 
the main storage output area. A test is 
made to determine i1; the record 
unconditionally moved exceeds the shortened 
output area. If it does not, the record 
length indicator of the next .record to be 
moved to the main storage output area is 
tested to determine if the reco.rd will also 
fit in the output area, and the next output 
block is built as described in FULOUT. If 
the unconditionally moved record does 
exceed the Shortened output area, the 
output area will be restored to its 
original length by moving the value of 
OUTENDl into OUTEND. The new output block, 
the first record of which is the 
unconditionally moved record. is built and 

1.84 IBM 5/360 DOS Sort/Merge 

written on the next available track. 
Figure 49.) 

(See 

The branch at SEQCKl is made a no-op, 
after the first record is moved to the main 
storage output area. to permit 
sequence-checking the next record: the 
routine then continues to FULOUT. 

Track 
3625 byte. 

Maximum I rOUTENDl 
Output Block 
Size 1500 bytes L.. _____ ---' 

Records in 
bytes . 

Block 1 

Track 1 

Block 2 

Track 1 

Block 3 

Track 1 

Block 4 

Track 2 

Block 1 
1400 bytes 

o E 
700 600 

E 
600 

F 
'800 

,_OUTEND=OUTENDI , , 

Remaining track capacity 2225 
bytes >Maximum output block siz 

,-OUTEND=OUTENDI 
: (Output arell not truncated) 

I 

W~Truncated output area 
F ,= 925 bytes (OUTEND) 

800 I 

Block 1 
1400 bytes 

Block 2 
1300 bytes 

unused. 
125 

, = 125 bytes Record length exceeds w= Truncated output area } 

I Truncated output area 
, Record G = 400 bytes 

\400
G I , ..... Output area restored to.full 

H : length of 1500 bytes 

~"-I-----~' 
'------------v-

~ 
Block 4 

Note: Block sizes in bytes are given for illustration only and do not 
represent the actual number of byte. consumed in writing the 
equivalent block. 

Figure 49. Maximum Use of Output Track 
Capacity 



FULOUT, EH-F2 

~ test is made to determine if the output 
area is full. If it is, a branch is made 
to LWRITE for fixed-length records or to 
WRITEV for variable-length records. 

If the record will fit in the output 
area, one of two courses of action is 
taken: 

• 

• 

For fixed-length records, the record 
length (FIXDRL if L1>L3 or OUTLGN if 
L1<L3) is loaded in a register, reduced 
by one, and a branch is made to FIXMOV. 

For variable-length records, the length 
of the record to be moved is obtained 
from register MREG (via OUTRLI+2) and 
stored in OUTLGN. The length is 
reduced by one and the routine 
continues to FIXMOV. 

FIXMOV, EH-J 2 

The record length, minus one, is stored in 
Ot1TRLI+2 and registers RG4 and RG5 are 
initialized for moving 256 bytes at a time 
to the output area. Register FILEO (output 
area address) is saved in case user exit is 
made later (at INSERT) because FILEO will 
change if there are more than 256 bytes to 
move. 

Records are moved from the address in 
MREG to that in FlLEO, using the contents 
of registers RG4 and RG5 in a loop that 
moves 256 bytes at a time. MREG and FILEO 
are updated each time through the loop. 
When the count in index register RGl 
becomes greater than that in RG5. the 
length of the last move is calculated and 
the remaining bytes are moved to the output 
area. 

Example: 600-byte record to be moved. 
From FULOUT, register RG4=256 and .register 
RG5=600. 

RG4 RG5 RG1 (Index) 

Start 256 600 0 

1st move 256 600 256 

2nd move 256 600 512 

3rd move * 256 600 768 

*(Not executed because RG1 is neither 
lower nor equal to RGS) 

Then, register 4 plus register 5 minus 
~egister 1 = 88 rema.ining bytes. 

The final move thus consists of 88 bytes 
and is executed by the instructions at 
RESTMV. After the entire record has been 
moved, the record length is incremented by 
one to restore the original value. MREG is 
updated to the next record location and 
registers FILEO, RG4, and RG5 are restored. 

INSERT. EH-K2 

This location is a branch to ZYXWZY if user 
exit 43 was not specified. When exit 43 is 
initialized, if the last record moved is a 
user-inserted record, a branch is made to 
EXIT to permit multiple insertions by the 
user. otherwise, the routine continues to 
ZYXWZY. 

ZYXWZY, EH-J3 

After each record is moved to the output 
area, the count in RCOUNT (number of 
records processed) is increased by one and 
the new total is stored back in RCOUNT. 
The LINK register is restored and the 
routine branches back to the compare loop 
in which the winning record was found to 
test if the block in that input area is 
depleted. 

WRITEV, EH-B3 

When variable-length records are to be 
written on disk or tape, o BEG IN (the 
starting address of the output area) is 
incremented by eight to bypass the record 
count at the beginning of the output area. 
The block-length indicator is then 
calculated and stored following the record 
count. 

For tape output, the data count is 
stored in the write CCw and a branch is 
made to LWRITE. For disk output, the 
output block length is stored in the 
data-length portion of the disk count and 
in a work register. The data count is 
incremented by 8 and stored in the write 
CCW and the verify CCW. Calculations are 
then made to determine if the records in 
the output area will fit on the current 
track; if not, the track capacity is 
restored to 3625 and the end-of-track 
indicator (FF) is set. The area remaining 
on the track is then calculated and stored 
in TKLEFT. 

A calculation and test are now made to 
determine if the amount of track left is 

Merge only 185 



less than the maximum output block size. 
If so, the output area is truncated to 
equal the amount of track: left (for the 
reason described in the text under UPDTO). 
This lower value for the end address of the 
output ·area is stored in ou'rEND. If the 
amount of track left is equal to or greater 
than the maximum output block size, the 
original end address of the output area is 
left in OUTEND. Whenever the output area 
is truncated, it will be restored to its 

AD JOUT , EH";'F5 

The address in register FI.LEO is increased 
by eight bytes for fixed-length records, or 
twelve bytes for variable-length records, 
to obtain the address of the first byte of 
data. This increase bypasses the count 
field and, in the case of variable-length 
.records, the BLI as we 11. 

original length at UPDTO if the record A test is then made for end-of-volume 
moved does not fit as the f;"rst record-in (and, if detected, the branch-back address 

. the truncated area, after the last block is for tape (PH3EJ1) is loaded in register 
written on the current tr-ack. ' . RG13 and the routine continues to EOVDSK. 

The routine then continues to LWRITE. 

LWRITE, EH-A4 

OBEGIN (the starting address of the output 
area) is restored in register FILEO. For 
tape output, a branch is made to TAPPUT. 

For disk output, the current disk 
address of the output file, ORADDR, is 
incremented by one. Then, in the case of 
fixed-length blocks, a test is made to 
determine if the record number has exceeded 
the maximum on the current track. If it 
has, the 2.S6-complement .of the 
blocks-per-track count is added to obtain a 
new head number. In the case of 
variable-length blocks, a test is made for 
the end-of-track indicato.r. If present, 
the record number is made one. Then, for 
both variable- and fixed-length blocks, the 
maximum head number is tested. If 
exceeded, a new cylinder number is 
calculated. Finally, the output extent 
upper limit is tested. If not exceeded, 
the new cylinder number is stored in 
ORADDR, and register RGO is decreased by 
one and stored in CHHR for the seek command 
in the write CCW chain. The routine then 
continues to TAPPUT. If the limits are 
exceeded, the branch-back address for disk 
(TAPE 0) is loaded in register RG13 and a 
branch is made to .EOVDSK. 

TAPPUT, .EH-CS 

An EXCP macro is issued and IOes writes a 
block of records on the disk or tape output 
file. The parameters for the write 
operation are supplied by OCCB., When 
control is returned by IOes, this routine 
branches to ADJOUT if the output is on 
disk; if on tape, the output block count is 
updated before continuing to ADJOUT. 

186 IBM S/360 DOS sort/Merge 

If not end-of-volume, the routine continues 
toPH3EJ1. 

PH3EJ1, EH-HS 

The functions performed at this location 
vary with the type of record and end-of-job 
conditions: 

• If end-of-job, a branch is made to the 
end-of-job routine (Chart EJ) at PH3EJ2 
(after the last block has been written) 
or at TAPOUT (after the EOF indicator 
has been written). 

• If not end-of-job, a branch is made 
back to FULOUT+8 for fixed-length 
records or to VARMOV for 
variable-length records to prepare to 
move the record to the output area (the 
record that would not fit previously 
because the output area was full). 

Note: This is the only time that a 
record will be moved without 
first testing to determine if it 
will fit in the output area. It 
is certain to fit because it is 
the first one after a block has 
been written. (See note at end 
of UPDTO.) 

FDVDSK, EH-G4 

Register MREG is saved and the address of 
ecCB is loaded in MREG. A 'V' is placed in 
register RG12 and the open/close routine 
(Chart EM) is called in (via CEVCHIO to 
process the end-of-volume condition. 

If end-of-job has not yet been reached, 
control is returned to this routine (via 
CEVCHK) • After restor ing register MREG. a 
branch is made to the address in register 
RG13, which is FULOUT+8 for fixed-length 
records on tape, or VARMOV for 
variable-length records on tape, or TAPFD 
for either record type on disk. 



END-OF-JOB ROUTINE - EJ 

This routine is entered when all the input 
files have been closed. Its principal 
functions are: 

• Initialize to reconvert the last record 
moved and to exit to the user (if 
required). 

• Initialize to write the last bl~ck. 

• 

• 

• 

Initialize to write an EOF record (di~k 
output only). 

Insert an EOF indicator for the 
open/close routine. 

Call in the open/close routine to close 
the output file, print an EOJ message, 
and end the job. 

PH3EOJ, EJ-B3 

Register RG10 is made negative to indicate 
to the user that the last record is in the 
output area. The instruction before UPDTO 
and the one at ENTRY (both in the output 
routine, Chart EH) are modified to branch 
back to this routine at ADDl after the last 
record has been processed. A branch is 
then made to CONVRT in the output routine. 
If necessary, the record is reconverted and 
a branch is made back to ADDl if user exit 
43 was not specified; otherwise, the output 
routine exits to the user routine after 
which a branch is made back to ADD1. 

ADD1, EJ-E3 

The output routine is modified to write the 
last block from the output area and a 
branch-and-link is made to WRITEV (if no 
key) or to LWRITE (with key) in the output 
routine. After the last block is written, 
a branch is made back to this routine at 
PH3EJ2 from the instruction following 
PH3EJl in the output routine. 

PH3EJ2, EJ-H3 

For tape output, a branch is made to 
TAPOUT. For disk output, OBEGIN (address 
of start of output area) is loaded into 
register FILEO, eight is added to FILEO, 
and a branch-and-link is made to WRITEV in 
the output routine to write an end-of-file 
record on the disk. At WRITEV, register 

RG1, which contains OBEGIN+8, is subtracted 
from FILEO, thus giving a result of 0 for 
the data length. This data length of 0 on 
disk is the end-of-file record. A branch 
is then made back to this routine at TAPOUT 
from the instruction following PH3EJl in 
the output routine. 

TAPODT. F.J-J"3 

"Ii, 

The output CCB (OCCB) is loaded in register 
MREG and an 'F' for end-of-file is loaded 
in register RG12. The open/close routine 
is then called in (via CEVCHK) to close the 
output file and to branch to the end-of-job 
messages routine. The job will then be 
ended with an EOJ macro. 

END-OF-JOB MESSAGES - EK 

After the last block has been written out 
in the end-of-job routine (Chart EJ) in the 
mainline, overlay DSORT401 is called into 
main storage and this routine is entered 
through CLamo in the open/close routine 
(Chart EM). 

EOJMES. EK-C3 

The number of unreadable blockS that were 
bypassed in the mainline is obtained from 
location ERRCT. If the number is zero, a 
branch is made to PH4EOJ; if not, message 
BYPMES is printed: " 

• 70041 PHASE 4 UNREADABLE BLOCKS 
BYPASSED 00000' 

The zeros at the end of the message are 
replaced by the number from ERRCT. 

PH4EOJ, EK-E3 

The number of records processed by phase 4 
is obtained from location RCOUNT and 
messages RECMES and MESEOJ are printed: 

·'7DD5I RECORDS PROCESSED 000000000' 

'7DD6I END OF MERGE' 

The zerQs at the end of the first message 
are replaced by the number from RCOUNT. 

The EOJ macro is then issued and the job 
is terminated. . 

Merge Only 187 



SEQUENCE-ERROR ROUTINE - EL 

When a record is found to be out of 
sequence in the output routine (chart EH) 
in the mainline, overlay DSORT401 is called 
into main storage and this routine is 
entered through COMP in the open/close 
routine (Chart EM). The branch to this 
routine is made when COMP detects that the 
mainline return address is lower than that 
of the CCB for file A. 

The routine first prints a 
sequence-error message. Then, if a 1052 
Printer-Keyboard is provided, it checks for 
the operator response and either returns to 
the output routine in t.he mainline to 
resume processing or cancels the job. If a 
1052 is not provided, the routine returns 
to the output routine immediately after 
printing the message. 

SEQERR, EL-C3 

The file designation CA, B, C, or D) is 
obtained from XFILE and inserted in the 
error message (SEQMES1). An EXCP macro is 
issued and the message is printed: 

'7DD2D SEQ. ERROR FILE n' 

The routine then continues to RESPONSE. 

RESPONSE, EL-E3 

When this overlay was initialized (Chart 
EA), the instruction at this location was 
made an unconditional branch to EXIT (Chart 
EM) if the system does not include a 1052 
Printer-Keyboard. In this case, the 
program returns to the output routine at 
location SEQBACK (Chart EH) and processing 
is resumed. 

When a 1052 is provided, the operator 
response appears in SEQMES2 and an EXCP 
macro is issued to read the response. 
Tests are made for the words 'IGNORE' and 
• CA.NCEL , in both upper- and lower-case 
characters and one of three courses of 
action is taken, depending on the results: 

• IGNORE or ignore - branch to EXIT to 
return to output routine at SEQBACK 
(Chart EH). 

• CANCEL or cancel - Issue CANCEL macro. 

• None of preceding - Issue EXCP macro 
and print message SEQMES3: 

188 IBM S/360 DOS Sort/Merge 

'7DD2A INVALID RESPONSE'. 

When an invalid response is made, the 
routine branches back to read the corrected 
response as described in the preceding 
paragraph. 

OPEN/CLOSE ROUTINE - EM 

This routine is read from disk into main 
storage whenever the merge mainline detects 
an end-of-volume or end-of-file condition. 
It is also called in at the start of the 
merge phase to perform the initial OPEN for 
the output file and all the input files. 

The routine was initialized (Chart EA) 
fo.r the type of output file and of each 
input file (disk, tape, or mixed) as well 
as for label types and user options. Its 
fUnctions now vary not only with the manner 
in which it was initialized, but also with 
the condition for which it was called and 
with conditions that are detected within 
the routine and in IOCS. 

The rna jor functions are: 

• Open the output file and all the input 
files required by the order of merge. 
This is done at initial open time. 

• 

• 

Provide linkage to IOCS and between 
IOCS and the user's routines at exits 
41 and 44. Exit linkage is provided 
only when specified. 

Note: When exit 41 is specified by the 
user, the sort/merge program 
turns on the corresponding bit 
in the DTF tables for all the 
input files. loes will then 
provide linkage to exit 41 only 
for those files that have 
non-standard or user labels. 

Open and close individual input volumes 
and files as required by the merge 
mainline, IOCS, or this routine. 

• Open and close output volumes (if 
multivolume output) and, when the 
output file is closed, branch to the 
end-of-job routine (Chart EJ). 

• Test if entry was for sequence error 
and, if so, branch to the 
sequence-error routine (Chart EL). 

After each execution, the routine is 
written back on disk in the checkpoint 
track and the merge mainline resumes 
processing in all cases except at 
end-of-job or if job is canceled by user 
because of sequence error. 



BEGIN, EM-B2 

The contents of registers RGI0 through RG15 
are stored so that these six registers can 
be used in this routine. 

The first time that this routine is 
called into main storage by the merge 
mainline will be when the output file is to 
be opened. The address of the output CCB 
(which is in register MREG) is stored in 
ADOROUT and the routine continues to OPENO 
where the output file (FILEO) is opened. 
If the user has specified exit 44, IOCS 
branches to USEREX44. When control is 
returned to this routine by IOCS, the 
program continues at NIEFO. 

The second entry to this routine (after 
the output file is opened) branches 
directly to OPENA. 

USEREX44, EM-B5 

When the user has specifed exit 44 in the 
.MOOS control card, IOCS branches back to 
this location after each OPEN and CLOSE of 
an output volume or file. 

The address of the user's routine 
(USADDR) is loaded and a branch-and-link is 
made to the user's routine. Control is 
returned by the user at one of two 
locations where the appropriate LBRET macro 
is issued:LBRETl indicating no more 
labels or LBRET2 indicating more labels. 
Control is then returned to IOCS. 

NIEFO, EM-E2 

Fbr disk output, the upper and lower limits 
of the extent are stored at ORADOR 
(OCCB+16) and the logical unit address is 
stored in OCCB in the merge mainline; the 
routine then continues to EXIT. 

For tape output, the routine branches 
directly to EXIT. 

EXIT. EM-H2 

The contents of registers RGIO through RG15 
are restored and a branch is made back to 
the merge mainline to the address in 
register LINK. 

OPENA, EM-B3 

When this location is entered for the first 
time, the first input file (file A) is to 
be opened. The address of the CCB for file 
A (ACCB, which is in register MHEG) is 
stored in ADDRINP. The instruction at 
BEGIN+ 4 is then made an uncondi tiona I 
branch to OPENX for all future entries 
during this job because the initial open of 
the output file and of the first input file 
(OM is at least 1) will not be repeated. 
The routine now continues to OPENX. 

All subsequent entries to this routine 
will branch directly to OPENX. 

OPENX, EM-D3 

The end-of-volume ('V') or end-of-file 
('F') indica tor, which was inserted in 
register RG12 by the merge mainline. is 
stored in XFILE (this indicator will have 
no effect when input is on tape). 
Registers RG12 and RG13 are loaded with the 
addresses of oces and ACCB, respectively, 
and a test is made (using RG12) to 
determine if this routine was entered for 
the output file. If so, a branch is made 
to OUTPUT; for an input file, the routine 
continues to COMP. 

COMP, EM-D4 

A test is made (using RG13) for the input 
file that is to be opened or closed (from A 
to D, depending on the order of merge). If 
the result of the test is: 

• 

• 

• 

lower than A - a sequence error was 
detected in the merge mainline; branch 
to sequence-error routine (Chart EL). 

equal to A - file A is to be opened o.r 
closed; branch to INPUT. 

higher than A - file B, C, or 0 is to 
be opened or closed; get the addresses 
of next highest DTF and CCB and repeat 
the test until an equal condition 
results; branch to INPUT. 

OUTPUT, EM-F3 

This location was initialized for either 
disk or tape output: 

• Disk - Branch to OUTOK 

Merge Only 189 



• Tape - Move the output block count into 
the tape output OTF (FILEO+40), then 
reset the block count (in OCCB+20) to 
zero. continue to OUTOK. 

OUTDK, EM-H3 

A test is made for end-of-file (IF' in 
XFlLE). If such is the case, a branch is 
made to CLOSED; if not, the branch depends 
on the type of file: 

• Disk - to OPENO 

• Tape - to FEOVOUT 

FEOVOUT, .EM-J5 

An FEOV macro is issued, loes closes the 
tape output volume and opens the next 
volume. If user exit 44 was specified, 
IOCS branches back to USEREX44 in both 
cases (close and open). When control is 
returned to this routine by IOCS, the FEOV 
bit in the DTF table is turned off and a 
branch is made to EXIT. 

CLOSEO, EM-J3 

A CLOSE macro is issued and IOCS closes the 
output file. This occurs after the last 
block has been written and an "F' has been 
placed in register RGl2 in the merge 
mainline. If user exit 44 was specified, 
IOCS branches back to USEREX44. When 
control is returned to this routine by 
IOCS, the program continues to the 
end-of-job routine (Chart EJ). 

INPUT. EM-E4 

The processing between this point and GOG01 
varIes with the OM (order of merge) and the 
time of entry to INPUT. The purpose of 
this portion of the routine is to first 
perform the initial OPEN for all the input 
files required by the OM, then to prepare 
for subsequent entries, and finally to 
bypass this portion when it is no longer 
needed. The several courses of action are: 

1. On the first entry to INPUT, at least 
one input file must be opened, 
therefore: 

a. As long as the OM is one or more, 

190 IBM S/360 DOS sort/Merge 

there are additional input files to 
open. The OM is decremented by 
one, a 'V' is placed in XFILE (to 
denote not end-of-file), and a 
branch is made to GOGOl. 

b. When the OM has been decremented to 
zero, all but one of the required 
input files have been opened. A 
branch is activated from INPUT to 
GOGO, a "V' is placed in XFILE, and 
a branch is made to GOG01 to 
continue processing for the initial 
OPEN of the last file. 

2. When INPUT is entered the first time 
after the initial OPEN'S have all been 
executed, a branch is made to GOGO. 
Here, the instruction at location 
MODIFY is initialized to return to the 
mainline at the appropriate GETg 
instruction (see MODIFY for further 
details). Then a branch is activated 
from INPUT to GOGOl and the routine 
continues to GOG01. 

3. All subsequent entries to INPUT branch 
directly to GOG01 because the functions 
described in the preceding items la, 
lb, and 2 are no longer needed. 

GOGOl, EN-C1 

The address of the OTF table for the file 
to be opened or closed is stored in the 
OPEN and CLOSE macros. The file 
designation (A, B, C, or D) is stored in 
FILETYPE+3 to be available to the user (in 
case exit 41 is specified). 

A test is then made for tape input and, 
if positive, a branch is made to TAPEIN. 
For disk input, the switch at TPDKSW is 
turned off (no-op) and a '0' is stored in 
FILETYPE+l to be available to the user (in 
case exit 41 is specified). Location XFILE 
is then tested and if a 'V' is detected a 
branch is made to OPENI. If an 'F' is 
detected in XFlLE, the unit exception bit 
is turned on in the CCB portion of the DTF 
table for the current file and the routine 
continues to OPENI. 

OPENI, EN-G2 

An OPEN macro is issued and IOCS opens the 
designated input file (or volume of a 
file). If the user has specified exit 41, 
loes branches to USEREX41. When control is 
returned to this routine, one of two 
courses of action is taken at TPDKSW: 



• 

• 

For tape (TPDKSW is ON) - Branch to 
NIEFI 

For disk (TPDKSW is OFF) - The upper 
and lower limits of the extent are 
stored at ARADDR in the merge mainline 
(or BRADDR. etc., as the case may be). 
The logical unit address is stored in 
the CCB for the file that was just 
opened and the routine continues to 
MODIFY. 

MODIFY, EN-J3 

This instruction was initialized earlier in 
this routine (see text for item 2 under 
INPUT) after the initial OPEN of all the 
required input files. It is entered after 
each subsequent OPEN of disk input files, 
except when an end-of-file is detected. 

The address in the mainline to which the 
program will return (after this open/close 
routine is written back on the checkpoint 
track) is incremented so that the branch to 
the input routine will be to the next GETn 
instead of to the USTOPn for that file -
(Chart EC). After incrementing register 
MREG by the required amount, a branch is 
made to EXIT. 

NIEFI, EN-J2 

The instruction at this location was 
initialized for the CLOSE rewind option. 
The bit in the DTF table (for the file that 
was just opened) is now set for the 
specified option and a branch is made to 
EXIT. 

USEREX41, EN-B3 

When the user has specified exit 41 in the 
MODS control card, IOCS branches back to 
this location after each OPEN and CLOSE of 
an input volume or file.. After 
designating the type of labels and the file 
in process, the address of the user's 
routi ne (USADDR) is loaded and a 
branch-and-link is made to the user's 
routine. When control is returned by the 
user, an LBRET2 macro is issued by this 
routine and control is returned to IOCS. 

*See note in the introduction to this 
routine pertaining to the linkage 
between IOCS and exit 41. 

TAPEIN, EN-El 

The switch at TPDSKW is turned on 
(unconditional branch) and a 'T' is stored 
in FlLETYPE+1 to be available to the user 
(in case exit 41 is specified). The 
routine then continues to SWITCH2. 

SWITCH2, EN-F1 

As long as the order of merge for tape 
(TPOM) is one or more, the routine branches 
to OPENI for the initial OPEN of each tape 
input file. When TPOM has been decremented 
to zero, SWITCH2 is made in unconditional 
branch to GOG02 for end-of-volume or 
end-of-' file processing. 

GOG02, EN-G1 

The input .block count is reduced by one 
because it would have been inc.remented in 
the mainline before the EOV or EOF was 
detected. The corrected count is stored in 
the DTF table for the current file and is 
then reset to zero for the next volume or 
file. 

If the last volume of a file is to be 
closed (test VOLA, which is equal to 
current CCB+19), a branch is made to 
EOFTAPE. If there are more volumes in the 
current file, the label type is obtained 
from LABTYPn (current CCB+16) and used to 
initialize the branch at FEOVTP: 

• Standard labels and non-standard labels 
with user exit - activate the branch to 
MEND. 

• Non-standard labels without user exit 
and unlabeled files - do not activate 
branch. 

The number of volumes in the current 
file is reduced by one and the routine 
continues to FEOVTP. 

FEOVTP, EN-HS 

An FEOV macro is issued, IOCS closes the 
tape input volume and opens the next 
volume. When control is returned to this 
routine, the FEOV bit in the DTF table is 
turned off. 

The address in the mainline to which the 
program will return (after this open/close 

Merge Only 191 



routine is written back on the checkpoint 
track) is incremented at location ADD26 so 
that the branch to the input routine will 
be to the next GETn instead of to the 
USTOPQ for that file. After incrementing 
register MREG by the required amount, a 
branch is made to EXIT. 

Note that FEOVTP is entered for 
unlabeled files and for non-standard labels 
without user exit. In both cases, the 'user 
exit bit will be off. 

EOFTAPE, EN-G4 

The hit in the DTF table at FILEn+32 is set 
on to force an end-of-file condition, and 
the routine continues to MEND. 

MEND, EN-H4 

The FEOV bit is turned off in the DTF table 
for the current input file, and an 
expansion of the END macro is executed. If 
user exit 41 was specified, IOCS branches 
back to USEREX41. 

If IOCS detects an end-of-fi le condition 
(ei ther in the EOF bit which was turned on 
in the DTF by this program or in labels), 
it branches back to CLOSEI, which is the 
end-of-file address that rocs finds in the 
DTF table. If end of file is not detected, 
when IOCS returns control to this routine 
the branch address in the mainline is 
modified at location ADD26 so that the 
branch to the input routine will be to the 
next GETn instead of to the USTOPn for that 
file. The routine then branches to EXIT. 

CLOSEI, EN-B4 

A CLOSE macro is issued and IOCS closes the 
input file. If user exit 41 was specified, 
IOCS branches back to USEREX41. When 
control is returned to this routine by 
IOCS, a branch is made to EXIT. 

Note that when a CLOSE macro is 
executed, the address in the fiBinline to 
which the program returns will not have 
been incremented at MODIFY nor at ADD26. 
The return point is therefore to USTOPn 
(for the file that was just closed) and the 
compare loop for that file is deactivated 
or closed. 

192 IBM S/360 DOS Sort/Merge 

CHECKPOINT ROUTINE - EP 

This routine is used to alternately write 
on disk and read into main storage overlays 
DSORT401 and DSORT402. At the beginning of 
phase 4, DSORT401 is loaded by job control 
and, at the completion of its 
initialization, it is written on disk and 
DSORT402 is fetched by a self-contained 
subroutine in DSORT401. All subsequent 
linkage between the two overlays is made by 
this checkpoint routine which is in the 
resident portion of DSORT402 in main 
storage. 

The read and write functions are 
performed by the same set of instructions, 
starting at location SVCKPT. The first 
instruction changes the command code in the 
read/write CCW from 'read data' (06) to 
'write data' (05) alternately each time it 
is executed, the second one loads the CCB 
address (CHKCCB), and the third issues the 
EXCP macro. The program is assembled with 
the read command code in the CCW and it is 
left that same way at the end of each 
execution of this routine. The routine is 
written so that the checkpoint track number 
is also alternated as required: Track 1 
for DSORT402, Track 2 for DSORT401. 

When this routine is entered at CEVCHK 
for initial open of files or for EOV or 
EOF, register RG9 (MREG) will have been 
loaded with the address of the CCB for the 
file in process. The return linkage to the 
mainline is then made with MREG after the 
DSORT401 functions are completed. Note 
that each CCB in the mainline is followed 
by three full words and one halfword which 
contain constants that are used throughout 
the phase. Not all of these constants are 
used by the DSORT401 overlay, but they were 
placed at these locations to maintain the 
same displacement between the CCR's. For 
the same reason, no-ops have been placed in 
the series of instructions following USTOP3 
and USTOP4. Thus, USTOP1 through USTOP4 
are located at MREG+30 for ACCB through 
DCCB, and the branches to GET1 through GET4 
are at MREG+30+26 (the 26 additional bytes 
are added by MODIFY for disk or by ADD26 
for tape in the open/close routine, Chart 
EN, and are used for return after end of 
volume) • 

The various linkages between overlays 
and within overlay DSORT401 are summarized 
in Figure 50. 



Enter from Routine Purpose 

FILLDL Initialization Open output fi Ie 

EOFDK Error 1. Initial open of input 
files 

2. EOVon input tape 
(open next volume) 

3. EOF on input tape 
or disk 

CPIADD Input EOV on input disk (get 
next extent) 

SEQERR Output Sequence error 

EOVDSK Output 1. EOV on output tape 
or disk 

2. EOF on output tape 
or disk 

Figu.re 50. Linkages Between Overlays 

At USTOPn (MREG+30), when the input 
files are being opened, the compare loop 
branches are initialized for the 
corresponding file and a bit is set in the 
merge-status indicator (PH2MOM). The 
instruction at USTOPn+20 is a no-op at this 
time so that a branch is made to GETn to 
perform the first read from that file. 

As soon as the no-op at USTOPn+20 is 
passed, it is converted to an unconditional 
branch. When a particular USTOPn is 
entered the second time, it will be because 
an EOF has been detected in that input 

Return to 

OCCB+30, which is a branch via 
register RG13 to TAPEl-2 in the 
input routi ne 

1 • nCCB+30, which is USTOPI through 
USTOP4, per order" of merge. 

2. nCCB+30+26, which is GETnfor 
corresponding file 

3. nCCB+30, which is USTOPnfor 
corresponding file (to close 
loop for depleted file) 

nCCB+30+26, which is GETn for 
corresponding file 

MREG+30, which is SEQBACK in 
output routine, if the sequence 
error is to be ignored; if not, see 
Chart EL. 

1. OCCB+30, which is a branch via 
register RG13 to TAPEO (for disk) 
or PH3EJ 1 (for tape) in the 
output routine 

2. EOJMES, Chart EK 

file. This time through, the compare loop 
tranches for the depleted file are closed 
off and the corresponding bit in PH2MOM is 
inverted to zero. As long as there are 
more files to merge, the branch at 
USTOPn+20 is to an address in the remaining 
compare loops which varies with current 
file and the order of merge; these 
addresses are listed on Chart EC. When all 
the input files are depleted and the l-bits 
in PH2MOM have been inverted to O-bits, a 
branch is made to the end-of-job routine 
(ChartEJ) • 

Merge only 193 



QfTIONAL ROUTINES 

,BELOCATOR ROUTINE· - fA 

Phases 2, 3, and 4 each have a relocator as 
part of the individual phase. The three 
routines are enough alike that their logic 
is described in this one section; any 
significant differences are noted in the 
fUnction-block text .. 

The optional routines required in each 
phase are initialized and relocated in main 
storage in the minimum required area 
depending on the number and length of 
required routines. The major steps 
performed are: 

• Initialize the relocator by turning on 
specified bits only for those optional 
routines that are required. 

• Adjust the lengths of the optional 
routines to the next full-word 
boundary, if necessary. 

• 

• 

Relocate each required routine when 
necessary so that they immediately 
follow each other starting at the end 
of the mainline. In this manner, any 
unneeded routines, or portions of 
routines, are overlaid and the program 
then occupies the least possible amount 
of main storage. 

Activate branches in the selector to 
the proper address for a routine, if 
required. 

The relocator then returns to the 
mainline initialization routine in its 
respective phase. 

RELOCA,. FA-Bl 

The operations Performed between this 
location and RLFWB vary, depending on the 
phase in process: 

• In phase 2, a branch-and-link is made 
to EQINIT to initialize the equal 
routine, if required. The move routine 
in the mainline is then initialized to 
move the specified record length 
(fixed-length records only). If 
necessary, the move routine is then 
relocated to the end of the mainline 
or, if the equal routine is included, 
to the end of the equal routine. 

194 IBM S/360 DOS Sort/Merge 

• 

• 

In phase 3, in addition to initializing 
the move routine as described for phase 
2, a bit is turned on in RLCOND for the 
required data reconversion routine, if 
any. The selected routine is then 
init ializ ed by prepar ing the selector 
at STR3 with the address of the desired 
routine and by inserting the number of 
control fields. Finally, the equal 
routine, if required, is initialized at 
EQINIT. 

In phase 4. the selected data 
conversion/reconversion routine, if 
any, is initialized as described for 
phase 3. Then the equal routine, if 
required, is initialized at EQINIT. 
The other operations described for 
phases 2 and 3 are not required in the 
phase 4 relocator, because the move 
routine is assembled and executed in a 
different manner and the bits in RLCOND 
were set at CLIFOR in the 
initialization routine (Chart EB). 

RLFWB, FA-D2 

The optional routines are aligned to 
full-word boundaries, if necessary, and the 
routine continues to RLRUTR. 

RLRUTR, FA-E2 

Starting with the equal routine, location 
RLCOND is tested to determine which of the 
optional routines are required. If the 
optional routine tested for is not 
required, the program branches to RLMDGT to 
modify the relocator to test for the next 
optional routine. 

If the routine tested for is required. 
its starting address is compared to the 
address of the first byte available for the 
optional routines in the main storage I/O 
area (RLISA). 

If the two addresses are equal, no 
relocation is required and a branch is made 
to RLUPDT. The need for relocation depends 
on one or more of several factors: 

• Whether or not a data conversion 
routine is required, and if it is, 
which one and for how many control 
fields. 



• Whether or not the equal routine is 
required. 

• The length of the move routine (phases 
2 and ] only). 

If relocation is required, the routine 
is moved from its old address (original> to 
its new address (starting at the address 
contained in RLISA), 256 bytes at a time. 
After the last move (which may contain less 
than 256 bytes) is executed, the selector 
branch is updated for the routine just 
moved. The total length count (counting 
from the end of the mainline program) is 
increased by the length of the routine just 
included. The relocator then continues to 
RLUPDT. 

RLUPDT. FA-C] 

The starting address of the I/O area 
(RLISA) is increased by an amount equal to 
the length of the optional routine just 
included in the program. This will be the 
new starting address for the next optional 
routine that may be required or, if no more 
are required, this will be the starting 
address of the I/O areas. 

RLMDGT, FA-H] 

The relocator is modified to process the 
next optional routine. This includes: 

• The loca tion of the length of the next 
routine. 

• The testing mask at RLINVR for 
determining if the next sequential 
routine is required. 

• The constant used for updating the 
testing mask. 

RLSTRP, FA-J3 

The relocator branches back to RLRUTR to 
process the next optional routine until all 
the assembled optional routines have been 
checked and processed. control is then 
returned to the mainline initialization 
routine: 

• In phase 2, at START in Chart CA. 

• In phase 3, at START in Chart DA. 

• In phase 4, at INIT3 in Chart EB. 

EQINIT, FA-B4 

In phases 3 and 4, a test is made to 
determine the number of control fields. 
For more than one cont.rol field, register 9 
is initialized with the address of the 
control field table (CF1LCT-1) and the 
sequence of the first control field is 
saved. If the record contains only one 
control field, the program branches to 
ANONE to initialize the data conversion 
routines for one control field. 

Note: In phase 2, ANONE is not used (no 
data conversion in phase 2). 

In phases 2, 3, and 4, register 8 is 
then loaded with the number of control 
fields, and the routine continues to 
ANIVTA. 

ANIVTA, FA-D4 

The displacement and length of the control 
field are inserted in the compare set in 
the equal routine. The first time through, 
both operands are initialized for the first 
control field only. On subsequent passes 
(one for each control field), the operands 
for the other control .fields are 
initialized. 

A test is then made to determine if the 
sequence of the current control field is 
the same as that of the first control 
field. If it is, the equal routine base 
registers are placed in ascending order in 
the first and second operands of the 
compare instruction for that control field. 
If the sequence is opposite to that of the 
first control field, the base registers are 
reversed in the operands. The equal 
routine is thus initialized to sort each 
control field in the specified sequence. 

ANIULT, FA-G4 

The addresses of the next control field 
location and of the next compare 
instruction in the equal routine compare 
set are obtained. The routine then 
branches back to ANIVTA to initialize the 
compare for the next control field. When 
processing for all control fields is 
complete, the length of the equal routine 
is computed and inserted in RLNG2. Control 
is then returned to the relocator at label 
RLFWB. 

Optional Routines 195 



FIXED-POINT CONVERT/RECONVERT .ROUTINE - FB 

This routine converts the control data 
fields from fixed-point format to binary by 
inverting the sign of each control field. 

FIXPNT, FB-B3 

A register is initialized with the starting 
address of the compare set. (Compare set 
at .IGLCOM in the equal routine contains the 
length and the displacement of the control 
fields. ) 

FIXR2, FB-C3 

The number of control fields (established 
by the fixed-point initialization .routine) 
is loaded into a register. This number is 
used to end the conversion routine after 
all control fields have been processed. 

FIXVTA, FB-D3 

The address of the control field to be 
converted is calculated and the sign bit is 
inverted. The address is mOdified to 
determine the starting address of the next 
control field, and the count of the number 
of control fields is reduced by one. The 
program returns to the instruction at the 
label FIXVT.A, and the process is repeated 
until the count of the number of control 
fields is reduced to zero and control is 
returned to the mainline. 

Reconversion follows the same procedure, 
thus restoring the inverted sign bit of 
each control field to its original form. 

FLOATING-POINT CONVERT/RECONVERT ROUTINE -
FC 

Thi s routine converts the control data 
fields from floating-point format to 
binary. The program modifies negative and 

196 IBM S/360 DOS Sort/Merge 

positive floating-point fields within each 
record so that they can be used in the 
compare operations of the sort program. 

FLTPNT,FC-B1 (FOR CONVERSION ONLY) 

Registers are initialized with the address 
of the compare set and the number of 
control fields to be converted. 

FLTVTA, FC-Fi 

The address of the first control field is 
determined. If the sign of this field is 
positive, the sign only is inverted 
(FLTCSG). If the sign is negative, the 
entire control field, including the sign, 
is complemented (FLTCML). 

FLTBCK, FC-E3 

The starting address for the next control 
field is determined. and the count of the 
number of control fields is reduced by one. 
The program returns to the instruction at 
the label FLTVTA. and the process is 
repeated until the control field count 
becomes zero, indicating that all the 
control fields ha.ve been converted. 
Control is returned to the mainline via the 
link register in phases 2 and If; phase 3 
branches to EXIT32 in the output routine. 

To reconvert the control fields to the 
floating-point format, the reconversion 
switch (FLTSWH) is set, reversing the 
procedure in FLTVTA and restoring the 
control field to its original form (Figure 
51>. 



· 
Control Reconversion Converted 
Field Sign Switch Invert Field Sign 

Conversion + OFF Sign bit -
- OFF Field + 

Reconversion - ON Sign bit + } Restored 
+ ON Field - Sign 

Figure 51. Floating-Point Conversion 

PACKED-DECIMAL (SIGPAK) CONVERT/RECONVERT 
,gOUTINE - FD 

This routine converts control data fields 
from packed-decimal format to binary. The 
sign is moved to the high-order half byte 
of the control field, and the entire field 
is shifted (one byte at a time) a half byte 
to the right. The sign is always reversed 
and, if the number is negative. the entire 
control field is complemented. 

SIGPK2, FD-Cl 

The address of the compare set is loaded 
into a register. 

SIGKR2, FD-D1 

The number of control fields (obtained 
during initialization of packed-decimal 
conversion routine) is loaded into a 
register. This number is used to end the 
conversion routine after all control fields 
have been processed. 

SIGCP4, FD-E1 

The address of the sign byte is calculated. 
and the sign bits are stored in PKSGN2. 
The sign bits are tested for a negative or 
a positive value (in either EBCDIC or ASCII 
code). I.f positive, a true positive sign 
(hex C for EBCDIC or hex A fO.r ASCln is 
generated. ' 

PAKLP2, FD-E2 

The digit portion (two hex digits) is 
shifted a half byte to the right and is 
complemented if the sign value (PKSGN2) is 
negative. 

A test is made to determine if the 
left-most byte of the control field 
(high-order position) has been reached. If 
not, the byte address is modified to obtain 
the next byte to the left, and the program 
returns to PAKLP2 to repeat the process for 
the next byte. If the high-order byte is 
detected (indicating the end of the control 
field), the Sign bits are retrieved from 
PKSGN2 and placed in the leftmost 4 bits of 
the converted control field. The sign is 
then reversed. 

The control-field address is modified 
for the next field to be converted. Each 
control field is converted in the same 
manner and, when the last field bas been 
converted, control is returned to the 
mainline via the link register. 

Reconversion takes place in a similar 
manner, except that the digit portion is 
shifted le.ft (instead of right) a half 
byte, and the sign bits are restored to the 
low-order byte of the control field. 

ZONED-DECIMAL (SIGZON) CONVERT/RECONVERT 
ROUTINE - FE 

This routine converts cont.rol' data fields 
from zoned-decimal format to binary. The 
sign of the control field is saved, and the 
leftmost zone is moved to the sign 
position. The si gn is then inserted in the 
leftmost zone of the control field and 
reversed. If the number is negative, the 
entire field is complemented. 

Optional Routines 197 



SIGZN2. FE-Bl 

Registers are initialized with the address 
of the compare set and the number of 
control fields to be converted. 

SIGCP2, FE-Dl 

The address of the last, low-order, byte of 
the cont.rol field is calculated and the 
sign is stored in ZONZN2. The leftmost 
(high-order) zone bits are moved to the 
position previously occupied by the sign 
bits, and the content of ZONZN2 is tested 
for a positive or negative value (in either 
EBCDIC or ASCII code). If pOSitive, a true 
positive sign (hex C for EBCDIC or hex A 
for ASCII) is generated in ZONZN2. In 
either case, the sign is then moved to the 
position vacated by the zone bits. Once 
moved, the sign is reversed, and a branch 
is made to ZNLST2. 

ZONPS2, FE-E4 

If ZONZN2 is negative, the digit bits are 
complemented, and the byte address is 
updated for the next byte to the left. The 
program returns to ZONPS2 to invert the 
digit portion of each byte (one byte at a 
time) until the high-order byte is 
processed. The routine then continues to 
ZNLST2. 

ZNLST2, FE-H4 

When the last byte of the control field has 
been processed, the control field address 
is modified for the next field, and the 
routine returns to SIGCP2 to convert the 
remaining control fields in the same 
manner. 

When all control fields have been 
processed, control is returned to the 
mainline via the lirik register. 

The control fields are reconverted from 
binary to zoned-decimal format by: 

• 

• 

• 

Restoring the sign to the original 
pOSition and reversing it to its 
o.riginal state. 

Restoring zone bits to their original 
locations. 

Inverting the digit portions of each 
byte, if necessary. 

198 IBM S/360 DOS Sort/Merge 

EQUAL ROUTINE - FF 

This routine compares record control fields 
subsequent to the first if the first fields 
are found to be equal when compared in the 
mainline. 

The compare set was previously 
initialized for proper sequencing of each 
control field. As a result, if any fields 
are now found to be unequal, the proper 
sequence will be observed upon returning to 
the mainline conditional branches. If all 
fields are equal, the return point in the 
mainline is: 

• In phases 2 and 3, to the branch 
instruction preceding the BAL or BA.LR 
to this routine. 

• In phase 4, to the next sequential 
instruction after the BAL to this 
routine. 

ROUT1, FF-B3 

~: In phases 2 and 3, this label is 
EQUAL. 

Entry is made to this point when the first 
control fields of two records were found to 
be equal in the mainline compare loops. 
The link register (register 14) is adjusted 
to the address of the mainline compare 
instruction from which this routine was 
entered. 

The base registers from the mainline 
compare instruction are determined and 
inserted in the instructions at IGCAR1 and 
IGCAR2. These two instructions then load 
the registers in the operands of the 
compare set of this routine. Note that the 
compare set was initialized with its base 
registers in the proper operand in each 
compare, depending on whether the sequence 
for that control field was the same as or 
different from that of the first control 
field. In this way, each of the required 
control fields will be compared for the 
proper sequence, regardless of whether it 
is ascending or descending. 

IGLCOM, FF-D3 

The corresponding control fields in the two 
records are compared until either an 
unequal condition is found or the end o.f 
the compare set is reached. In the former 
case, a branch is made (via IGOUT) back to 
the conditional branches following the 



mainline compare instruction to continue 
processing the record. In the latter case, 
when all corresponding fields within the 
two records were found to be equal, the 
address for returning to the mainline is 
adjusted (at IGDUM): 

• In phases 2 and 3, to the branch 
instruction preceding the SAL or the 
BALR to this routine. 

• In phase 4, to the next sequential 
instruction after the BAL to this 
routine. 

A branch is then made (via IGDUM) back 
to the mainline to continue processing. 

Optional Routines 199 



START 

DSORT B2 
AA 

Read and Compress 
Control Cards 

DS ORTOO2 C2 

AB 

Sort Compressed 
Control Cards 

D SORTOO3 D2 

AC 

Scan SORT, 
MERGE, and 
RECORD Control 
Cards 

D SORT004 E2 

AD,AE 
Scan INPFIL, 
OUTFIL, MODS, 
OPTION and END 
Control Cords 

D SORTOO5 F2 

AF,AG 

Open Work Area 
and Pre-Edit 

D SORTOO6 G2 

AH 
Compute Maximum 
Allowable Input 
and Output Record 
and Block Lengths 

8 

C3 

AK,AL 

Compute Constants 
for Fixed-Length 
Records 

DSORTOO7 A4 

AJ 

Post Edit 

.DSORTOOB B4 

FIXED 
Record Type 

VARIABLE 

C4 

VARRTN AM 

Compute Constants 
for Voriob le­
Length Records 

DSORT009 D4 

AP,AQ 

Select Order of 
Merge 

DSORTOIO E4 

AR,AS 

Print Option 
and Fetch 
Next Phase 

F4 

...-____ ...;S:..;O;;R .. T-< Type of Run 

FET CrH,-l --''------,G3 

INITEXll INTPH2 

Chart 01. Assignment Phase (Phase 0) 

200 IBM 5/360 DOS Sort/Merge 

ADDROUT 

MERGE 

C5 
RAFRTN AN 

Compute Constants 
for ADDROUT Sort 

FETCrH4C--...L._,G5 

PAN CO 
(DSORT401) 



A2 CKPARA A3 A4 INITST A5 

Determine 
Move Card Image Statement 

YES 
Definer Found 

to Save Area Definer 

NO NO 

DSORT Bl SW' B2 83 B4 ERR3 B5 

Initialize Insert the Definer 
Base Registers in Message and 
and Get Data Move Message 
and Addresses 

YES 

BEGINI Cl COLI6 C2 ERR3A C5 

Initialize Control Continuation NO Insert the Definer Prepare to Print 
Cord Area Index Card Error in Message and No-End-Card 

Move Message Message 

YES 

Dl D2 

Initialize Read-In 
Initialize to 

and End-oF-Scan 
Registers 

Process Error 
Image 

EI ERRS E2 E3 E4 

Convert Card Overlays NO YES Insert End-oF-Area 
OPTION Coed END Card 2-9, Incl. 

YES NO 

F2 OPTSCI F3 

Continuation YES 
Turn On OPTION 
Card Switch 

Card 'OPTSCS' (BAL Via 
Reg. RA) 

Gl UPMOVE G3 CCERR G4 

Store User Run Turn OFF '5W' NO 
Code When found and 'SW1' and First Error for 
and Increment Scan for Fi rsf this Card 
Cord Count Valid Byte TESTOPERR 

READB HI H3 

First Column YES Compress and Move 
Card Image to CC 

Blank 
Area 

NO 

ERRI Jl TSTBLKCD J2 OPTSCS J3 

Get Card Number 
and Move Message 
to Save Area 

Kl 

Set Indicator for Check for PRINT 1 (BRANCH V;o 
Message to be 

CALCAREA, and Reg. RA) 
Printed ADDROUT 

Options 

Chart AA. Read and Compress Control Cards, DSORT 

Charts 201 



FETCH 

Initialize for 
Overlay 2 

CLEAR CI 

Retrieve Messoges 
Stored in CCSAVE 

01 CCSO 02 

Have All YES Initialize to Sort 
Messages Been "),,:=---1 Compressed Control 

Pr i nted Cords 

NO 

EI 

Initialize to Print 
Error Message 

CCS2 E2 

Scan ((SAVE for 
Each Code 1 
Through a 

TSTLGN C3 

Determine Length 
of Cord (less Code) 
to Move-Init 
TBLAOO 

MOVECC 

Move Sorted 
Control Cord to 
CCSAVE for Later 
Scanning 

03 

F2 LOA02 F3 

Have YES 
All Cades Been >-----< 

Checked 

NO 

TEST 

Increment Index 
Register to Test 
Next Byte 

G2 

YES 

OSORT003 

04 TSTENO 05 

NO Is YES End af 
Code Not Found;-"'---<"FHe Scan for this 

Mandatory 

ERROR 

Cade 

NO 

E5 

Initialize to Check 
Next Logical Cord 
Cade 

Chart AB. Sort Compressed Control cards, DSORT002 

202 IBM 8/360 DOS SortlMerge 



YES 

LOAD 2 

r-===-'--..... B2 

Initialize 
Overloy 3 

Cl SRTSCH 

Set Sort Indicator 
and Initialize Index 1-4-~:!lJ.,( 
Register 

Block Column 
After Definer >-..,.--<: 

E 1 

Initialize Merge 
Indicator 

ERROR 

Scan Card 
for Values 

C2 

D2 

F2 

G2 

NO 

J2 

SET] B3 

Continue to Scon 
Control Cord for 

CCERR 
YES 

NO 

INPFIL Ca,d 

Is Overlay 
4 in Core 

ENDSCN 

F4 

Chart AC. Scan SORT, MERGE, and RECORD Control Cards, DSORT003 

Charts 203 



Scan Cord for 
Values and 
Build Tobl. 

0'rT:..:FS::C::..N:"-L----,02 

InitJol ize for 
Scan of OUTFll 
Cord and Reset 
Err", Switch Off 

NO 

G4 

CCERR 

E2 

AC 

MOOSCN 

r~~L-,:C3 
Reset Error 
Switch Off and 
Initialize Error 
Return Switch 
and TBlAOO Ctr 

COMPM 03 

Initialize for Scan 
of MODS Card 

F3 

Blank 

;-__ '-___ G3 

Clear Counter 

Continue Sean for 
Values and Build 
Tab I. 

NO 

YE 

B4 

Will 
YES 

CKFl04 C5 

YES 
Initialize to 
Extract Merge-
Only Exit Data 

04 05 

Initialize to 
YES Extract Phase 1 

Exit Data 

E5 

YES Initialize to 
Phase 3 Exit Extract Phase 3 

Exit Data 

J4 

OPTION Cord 

ENDSCN 

OPTSCN 

Chart AD. Scan INPFIL, OUTFIL, MODS, OPTION and END Control Cards# DSORT004 

204 IBM S/360 DOS Sort/Merge 



Of'TSCN 

Option Cards, 
Reset Error 
SwOl1 

Sc:an Option Card 
for Values and 
Build Tabl. 

CKDEFS EI 

Search Dictionary 
of Definers 

CCERR 

ENDSCN 

• AC-J4 
AD-J4 

02 TESTOPERR 03 

E4 

'E06 to Print 

ERROR+4 
(SAL Via Rog 10) 

DSORTOO6 DSORT010 

Chart AE. Scan INPFIL, OUTFIL, MODS, OPTION and END Control ca.rds (Cont'd), DSORT004 

Charts 205 



OSORTOO5 81 

Initialize 
Overlay 5 

CLEAR CI 

M61NIT 02 ,.-----, 
Init Counter 

Merge Run >-Y_E;...S __ .., ~:t~~t'7ro~ne 

Merge 

NO 

SORTXT HI 

Sort Extents by 
Sequence and Sove 

YES 

REAOX I 

Get Number of 
Extent Tracks 
Required 

J I 

KI 

YES 

Open of FILEW 

MRGOPN G2 

Initialize 
MRGSW On 

REAOXT 83 

Get SOR TW Extent 
I nformation from 
Open 

511-4 C3 

Compute and Save 
Available 
Tmcks (TA) 

03 

YES 
MRGSW 0" 

Compute Number 
of Tracks 

TA ::: TR 

YES 

INITI 

Build Half Work 
Area, Try to 
Build 2nd Half 

Initialize to 
Build 2nd Half, 
Get Next Extent 

E3 

G3 

NO 

H3 

J3 

Chart AF. Open work Area and Pre-edit, DSORT005 

206 IBM 8/360 DOS Sort/Merge 

MRGCKP 

INIT2 

Compute 
Checkpoint 
Disk Address 

Build Section of 
Half Work Areal 
Get Next Extent 
Value 

04 

E4 

G4 

EXIT 

Initialize 
LOGWKA Tobie 

EXIT8 

8und LOGWKA 

85 

C5 

05 

Compute Checkpoi nt 
Disk Address 

FIRSTEO 



FIRSTEO 

• AF-E4 
AF-E5 
AF-Cl 

Bl 

Check Format, 
Record Length, 
Input 8Iocksl.e, 
Output 8Iocksl.e, 
Control Field. 

RTI Cl 

Check Block Type, 
Input and Output 
Specified, and L4 

CORVAL 01 

Doterm ine CORESZ 
from User or 
Supervlocr 

Compute M&N for 
all Ph .... 

Complete Pha .. 1 
SIze Calculatlan 

;)2. 

P2SIZE A3 

Camput. Pha •• 2 
Size 

P35IZE 83 

Compute User Alea 
Length 

CF256 03 

NO 

Compute Total 
Length 01 All 
Control Fields 

Check Tag Type, 
L3, ond Test for 
E.lt 32 

DSORTOO6 

GETEOJ H4 

DSORT010 

Chart AG. Open Work Area and Pre-edit (Cont'd>, DSORT005 

Charts 207 



DSORT006 BI 

Initialize for 
Overlay 6 

CLORBV CI 

Sort 01' Merge 

SORT 

Record Type 

VLI 

Initialize Reg 14 
for Branch to 
CVL3MAX 

DI 

GI 

Calculate LMAX 
for Phases 1,2, 
and 3 

CFL3MAX JI 

KI 

Determine Smaller 
of L3MAX ond 
3624 and Sove in 
L3MAX 

MERGE 

FIXED 

Variable 
Blocking 

A4 VARBI AS 

YES Calculate Phose 1 
)'':'':'::'''''--1 BMAXfor Variable 

Blocking 

VARIABLE SORT NO 

BLMAX4 

Compule lMAX 
and BMAX for 

LI E2 

VBI B3 

Calculate BMAX 

Determine Smaller 

of BMAX or 3624 
and Save in BMAX 

E3 

Initialize Reg 14 
for Branch to 
CFL3MAX 

MERGE 

F2 

Calculate lMAX 
for Phases 1,2, 
and 3 

DETSMALL G2 

Determine Smallest 
LMAX Just 

Determine Smaller 
of: 
LMAX, 3624 (F;xi 
LMAX, 3620 (Voc( 
Save in LMAX 

CVL3MAX 

J2 

VARIABLE SORT 

K2 

Calculate Phase 3 
LMAX and Save in 
L3MAX, !nit Reg 
Awith VBI 

CVB3MAX F3 

Calculate B3MAX 
for Varioble­
Length Records 

.J3 

B4 

Addrout Sort 

NO 

C4 81 
r---'----. 

B2 

Calculate Phose 1 
BMAX for Fixed 

Calculate BMAX 
for Phases 2 and 3 
Init Reg 14 to Rein 
to CF83MAX 

FIXED/ADDROUT SORT 

CFB3MAX F4 

Calculate B3MAX 
for Fixed/Addrout 
and Save in B3MAX 

FETCH7 

Any Errors 
Detected 

DSORT007 

G4 

YES 

RAFBI C5 

YES 

Chart AH. Compute Maximum Allowable Input and Output Record and Block Lengths, DSORT006 

208 IBM S/360 DOS Sort/Merge 



CI 

Initialize Routine 
to Compore l4, 
not LJ 

CKL3MX GI 

YES 
Merge 

NO 

L3 ~L3MAX 

LENLO 

Get Number of 
Inputs Allowed 

HI 

JI 

DSORT007 B2 

Initialize Registers 
for Overlay 7 

NORAf C2 

YES Variable -
Length 
Records 

NO 

GETU D2 

Initialize Rtn to 
Compare L 1 not l4 
and Check Validity 
of Contfol Fields 

L3U E2 

YES 
Addrout Run 

NO 

F2 

If L3<11, Test for 
Exit to Shorten Of 

Lengthen Records 

LENHI G2 

YES 
LI ~LMAX 

H2 

Check for Valid 
File Size Given 

llMUlT J2 

NO 

NO 

Chart AJ. Post Edit, DSORT007 

LOOP A3 

Initialize for Device 
Type (Disk or Tope) 

TESTDEV B3 

Any I/O 
Device Tope 

NO 

MINBLKI C3 

Any Tape 
Specified 

NO 

BLKHIP D3 

NO BMAX 
within Range of 

300 Bytes 

YES 

BLKOK 

NO 

Merge 

NO 

Valid Input 
Block Size 

Valid Output 
Block Size 

YES 

CKSIZ 

NO 
Merge 

YES 

NO Addrout 

E3 

F3 

G3 

H3 

J3 

YES 

YES 

YES 

VALIDATE B4 

Test Compatibility 
of Devices 
Specified with 
Sys Ass ignments 

C4 

Tope 
Inputand Out-
put Block Sizes 

Valid 

YES 

CKMERGE E4 

Check Merge Only 
Options 

J4 
r---~ 

DSORTOIO 

C,-_-.L_--.:A.::,5 

Check Valid Place­
ment of Control 
Fields for 
Variable-Length 

Records 

CKLABLES B5 

Check Labels or 
Assume Standard 
and NOTPMK 
Option 

CKRWD (5 

YES 

D5 

Merge 

NO 

E5 

Check Type of 
Input, Output 
and Edit Options 

LABLEXCK f5 

Check label 
Specification and 
Exits Required 

CKKEY G5 

Check Validity of 
KEYlEN Option 

CKVOL H5 

Check Volumes and 
Alter if not Given 

TSER7 J5 

Charts 209 



DS,...O;...R_T_O_OB-4._-.. B I 

Initialize 
Overlay 008 

CI 

Turn On CAlCSW2 

STEP GI 

Calculate PHIBI 

CAlPHIB2 KI 

Calculat. PHIB2 

Al-J2 
Al-J4 

CBYPTK H3 

Calculate Maximum 
Bytes per 
Trock 

Calculate 
Maximum 
Work Area 

CAlSW2 

J3 

Chart AK. Compute Constants, DSORT008 

210 IBM 8/360 DOS Sort/Merge 

STEPIB A4 

STEP3 B4 

RECBlK> 

D4 

Reeal cui ate 
RECBlK 

STEP4 E4 

Calculate Sort 
Block Size 
(SBSIZE) 

COMBPT F4 

Compute 
Blocks per 
Track (BPT) 

CKBPT G4 

YES New 
BPT> 
Old BPT 

REDUCE H5 

Reduce RECBlK 
by I 

J4 USEORIG 

Switch On 
YES Save Original 

Calculations 

SWI PUT C02 



BI 

Switch On 

YES 

INITCSWS CI 

Turn on CAlCSWI 

COMPG 

NO 

i!YPVAR GI 

Calculote Overflow 
Area Size 

Reduce GA I by 
SBSIZE 

NO 

C2 

Nulify Previous 
Calculations 

Initialize to 
Recalculate with 
Lower OM 

Decrease OM and 
Recalculate All 
Values with Lower 
Phase 2 and J Sizes 

ENOGF A3 

Calculate: Final G, 
SBSIZE, NOBLKG 
and NOPASS 

PUTCONSW B3 

Switch On 

NO 

PUTCON C3 

• AK-G I, STEP 
AN-F3, PUTC02K 
AN-F5 

OUTPT G3 

Calculate PHI or 
4 Input BPT and PH3 
or 4 Output BPT 
when 1/0 Disk 

OSORTOO9 

CALRPT A4 A5 

Switch On 

Turn on CAlPRT 
>~:.-_~ and PUTCONSW NO 

B4 

YES Tum off CALRPT 
and PUTCON 
Switches 

REINITI 04 

USEORIG 
AK 
J5 

T urn off CAlRPT 
and PUTCONSW 

PUTC02 F4 

YES 

G4 

NO 

H4 

Get Minimum Size 
for Phase 2 and 3 

J4 

Decrease OM by I 
to Recalculate 

Calculate Reoords 
Per Track (RPT) 

B5 

NO 

C5 

Save New RPT and 
AMAX 

CHKRECBK D5 

YES 
RECBLK" 1 

NO 

E5 

YES Time to 

Reduce OM 

NO 

F5 

Reduce RECBL K 
by I 

STEP3A 

Chart AL. Compute Constants (Fixed-Length Records). DSORT008 

Charts 211 



YES 

Cl 

Turn on: 
CALCSWI V and 
CALSW2V 
Switches 

STEP IV 01 

Calculate MAXBLl 

OlVBL El 

Calculate: 
MAXBL2, MAXBL3, 
and SBSIZE 

COMBPTV Gl 

Colculote New BPT 

HI 

Calculate Maximum 
Bytes/Track 
(MXBYPT) 

02 

Decrease SBSIZE 
by Ll 

F2 

NO 

REOUCEV 

YES SBSIZE 
>Ll 

NO 

NO CALCSWIV 
Switch On 

YES 

SVORIG 

Sove Original 
ConstantS 

Reduce OM to 
Recalculate All 
Constants 

C3 

03 

E3 

G3 

A4 

Calculate: GAl, 
GAREA, NOBLKG 
G /IAox, 8, G avg 

Calculate Work 
keo (AMAX) 

B4 

CALSW2V C4 CALNOP C5 

YES 

CALSW2V 
Switch On 

YES Calculate and Sove 
)';';;;'-..--1 Number of Passes 

04 

AMAX Large 
Enough 

NO 

E4 

Nullify Calculated 
Constants for this 
OM 

YES 

F4 

OM>2 

( NOPASS) 

PUTCOV 

Calculate Finol 
BPT and Sove All 
Colculated 

NO 

05 

F5 

Sove New AMAX 

FETCH9 H4 

YES 
Errors Detected'>-------......, 

FETCHENO J5 

OSORTOO9 OSORTOIO 

Chart AM. Compute Constants (Variable-Length Records), DSORT008 

212 IBM S/360 DOS Sort/Merge 



CKRPT A2 REINITR A3 INCSWR A4 A5 

YES Tum off CKRPT Tum off CALSWR2 Calculate RPT and 
and PUTCNSWR AMAX 
Switches 

B4 B5 

Turn on CKRPT Calculate: GAl, 

anrl PUTCNSWR GA2,GAREA and 

Switches GAREAI 

C2 C3 ENOGFR C4 'C5 

Turn on YES Save AMAX and 
Calculate: Finol G, 

CALSWR2 Switch Old RPT 
B, NOBLKG and 
NOPASS 

STFPI R 02 REINITIR 03 05 

Calculate Length Tum off CKRPT 
of Control Fields RECBLK ?I and PUTCNSWR Nullify Previous 

and PHIBI Switches Calculations 

NO 

STEPI BR EI E2 E4 

Calculate BL2 and PUTCNSW NO Save All Computed 

MAXBL2 Switch on Constants 

FI F2 PUTC02R F3 

Calculate BL3, YES 
MAXBL3 and OM=2 OM"2 
RECBLK 

NO OUTPUT NO 

STEP4R 

Calculate BPT and 
SBSIZE 

H3 

Initialize to 
Recalculate with 
a Lower OM 

USEORIGR J2 J4 

Save Orignial 
NO Get Minimum 

Constants Phase 2 Size 

K2 

NO Decrease RECBLK 
Decrease OM and 

by I 
Recalculate All 
Values 

Chart AN. compute Constants (ADDROUT). DSORT008 

Charts 213 



YES 

FIX 

FETCH 9 

DSORT009 Bl 
,----'---, 

Initialize for 
Overlay 9 

BEGIN 

Initialize ISIC 

Cl 

with Input Block 
Size and IRL with 
Input Record length 

El 

Addrout Run 

NO 

Fl 

Record Type 

VAR 

Gl 

Initialize IRl 
with L5 (Average 
Length) 

FIXED 

Retrieve Trial 
Order of Merge 

HI 

A2 

YES 

B2 

Retrieve ISR, 
G, and 8PT 

C2 

D2 

NO 
Disk Input 

YES 

E2 

FIXED 

F2 

Compute Number 
of Tracks Needed 
for Input 

CLUB G2 

NO 
Disk Output 

YES 

H2 

Addrout 
Output 

J2 

VAR 
Record Type 

FIXED 

TAG OUT K2 

Compute Number 
of Tracks Needed 
for Output 

YES 

SPADE A3 

Initiol ize to 
Estimate Total 

REPI B3 

Bu;ld DEVTAB 
Table of Device 
Numbers from 
the PUBJable 

REPB C3 

Accumulate Tracks 
per Dr i ve for 
Work Area, and 
Input and Output 

Bl18 D3 

Determine Number 
of Stri n9s Out 
of Phose I 

E3 

YES 

F3 

Reduce LOWTM 
Below Maximum 

STVSOM G3 

Number 

NO 

BI19 H3 

Calculote Phase 1 
Read Time 

BI26 

Calculate Seek 
Time for Each 
Pass (BAL to 

J3 

TAB LEF -Chart AQ 

K3 

last Pass 

YES 

Chart AP. select Order of Merge, DSORT009 

214 IBM S/360 DOS Sort/Merge 

NO 

B135 A4 

Compute WRT 

B 136 B4 

Determine limits for 
Disk Work Area 

B 170 C4 

Colc Phose 2 
Seek Time 
(BAL to SEEKTM 
-Chart AQ) 

E 181 D4 

Cole Phose 3 
Seek Time 
(BAL to TABLEF 
-Chart AQ) 

S188 E4 

Colc Phose 1 
Seek (BAL to 
SEEKTM - Chart 
AQ), Process 
4 Format Time 

E200 F4 

lowest Time 

YES 

VLESSG G4 

Save Pointer for 
this OM in 
SAVROM and 
Store Time 
in Save Table 

FINAL H4 

NO 

NO 

A5 

CALCAREA 
Option 

YES 

Place Best Work 
Area Size in 
TRACK 

DSORT010 

B5 

RESTOR H5 

lost Trial OM 
YES Determine Maximum 

)-----tFile Size 

NO 

PRINTE K4 

Print Error Messoge 

NO Sort Time 
Determined 

YES 

J5 

VAREND K5 

Move Appropri ate 
Save Table 
Contents 



Chart AQ. 

TA8LEF 82 

Initialize for Tables 
1,2ond3 

COMP 02 

Increase LOC by 
kOMx2 )-4j 

E2 

F2 

Set: ANSI, ANS2 
and ANS3 Equal 
to One 

NO 

E3 E4 

CPST < 2 
NO Search Table 

>----iAccording to Value 
of CPST 

ONETWO F3 

Interpolate Between 
Table Values for 
CPST Equal to I 
and 2 

CALC F4 

Calculate Ax + ax 
for 2 Sets of Tobie 
Values and 
Interpolate 

Select Order of Me.rge (Cont'd), DSORT009 

Charts 215 



• AE-G4,FETCHEND 
AG-H4, GETEOJ 
AH-H5,FETCHENO 
AJ-J4 
AL-H3,FETCH9 
AP-C5,FETCIO 

CKPRINT 

Turn on 
EOJCALCSW 

NO 

C2 EOJCALC C3 

Initialize to 
Print CALCAREA 
Message for 
End of Assi g" 
Phase (E801) 

03 

Turn on EOJCSW 
Switch 

MSG91A 

of Posses 

NO 

EOJZ 

C4 

Flip Pointers to 
>Y:.:E;,::5 __ -I Speed Sort and 

Save a Merge 
Pass 

E4 

Update Checkpoint 
Record Number 

Turn on Switch 

05 

J5 

YES F4SW and Initialize 

FETCH4 

to Print Message 
(E91) 

MSG91 

Chart AR. Print option and Fetch Next Phase, D50RT010 

216 IBM 5/360 DOS SortlMerge 



MSG91 

Load Reg 9 w1th 
Address of 
Message E91 

EOJC1 F1 

NO ABORT 

Turn on Switch 
F2SW and Initialize 

FETVAR 

4-6 

VARIABLE 

H3 

,....-_____ -< Order 01 Merge 

J2 

INTPH2 

WTCKPS 

Update Sort 
Checkpoint 

INITEXll 

Cancel Job 

B4 

H4 

TSMERG 

TSREST 

NO 
Restart Run 

NO I, SYSLOG a 
1052 

YES 

CANCEL 

Order of Merge'>5'--;...7 _____ --, 

~--'---. 

INTPH2 

Chart AS. Print Option and Fetch Next Phase (Conttd), DSORT010 

B5 

G5 

J5 

Charts 217 



INMOVE GI 

BO 

Input Data Routine 

PILEVI HI 

BF 

Internal Sort 

MOPSI 

Output oato 
Routine 

JI 

BG 

KI 

IBV022 E2 

Be 

BM 

Multi-Volume 
Routine 

G2 

NO End of Files YES 

Chart 02. Internal Sort (Phase 1> 

218 IBM S/360 DOS Sort/Merge 

FETCHI 

INITEXII B3 

BA 

Routine 

I BV02 I 

NO 

Read Checkpoint 
and Format Disk 

Addrout Run 

D3 

For ADDROUT Run 

See Nan'Ot ives on 
Chorts 8F, BG, 
and BM 

I BV023 E4 

IBV024 G3 

BJ 

Multi-Volume 
Routine 

BH 

End of Phase 
Routine 

INTPH2 

YES End of Files 

H3 

4-WAY FIXED LENGTH 
3-WAY VARIABLE LENGTH 
7-WAY FIXED LENGTH 
6-WAY VARIABLE LENGTH 

G4 

NO 

PIINBG G5 

BK 

Input Data Routine 

PILEVI H5 

BF 

Internal Sort 

MOPSI J5 

BG 

Output Data 
Routine 



INITEXII 

Initialize Base 
Registers 

BI 

LBLINIT CI 

Save Disk Address 

01 CYLINC 

End 01 Cylinder )-Y.;.;E;,;;S __ -I 
Increment 
Cylinder 
Number 

NO 

EI 

Increment 
T rock Number 

SAVAOR FI 

Sove New Check­
point Address 

GI 

Format Disk for 
Phase 1 Mainline 

02 

EXITSW B3 

Get User Routine 
Address 

C3 

Is this Tope 
Input 

NO 

OSKINIT 03 

User Exit 11 
Specified 

NO 

E3 

Turn Off Bit in DTF 

EOFINIT F3 

Put EOF Return 
Address and Fi Ie 
Name in DTF 

Format Disk for 
Lobel Routine 

I BV02 1 

G3 

YES 

YES 

INTAPE (4 

Set Tope Input 
Switch, Initialize 
EOF Addr in OTF 
and Sove Volume 
Tobie 

(HKUSER 

User Exit 1 J 
Specified 

NO 

Standard Lobel 

NO 

NONSTO 

D4 

E4 

F4 

G4 

Set Non-Standard 
Sit and Switch 

YES 

YES 

ES 

Set User Exit Bit 

GS 

Set Unlabeled Bit 
and Switch 

INIT32 HS 

Initialize Byte 
32 01 Tape OTF 
and Set Rewind 
Options 

Chart BA. Initialization for Multi-Volume (Exit 11 Linkage), DSORT101 

Charts 219 



Set Addrout 
Switch "ON" 

CI 

IBV021 

YES 
Addraut Run 

NO 

B2 

D2 

Initialize limits 

fRMSTT 

Build Disk 
Addresses for 
1 Track 

B4 

C4 

D5 

Blocks YES 
per Track End of Cylinder NO Limits Exceded >-N .. O::.... __ < 

Chart BB. 

"I 

YES 

Initialize Work Bump to Next 
Area Table Cylinder 

fRMBPT f2 

Build Disk Address 

NO Add" 
for 10 Tracks 

Built 

G2 

H2 
r---'---.. 

Build CCW Chain 
for 1 Track 

K2 

Format Routine. DSORT102 

NO Have 
All Limits Been 

Formatted 

fETCH 

YES 

Addrout Run 
Sw On 

I BV022 

G4 

YES 

IBV023 

220 IBM S/360 DOS Sort/Merge 

E5 



1 BV022 

YES 

NO 

01 

Initialize for 
Conversion, 
Exit 12 

VLlNAC El VLINAA 

Initialize for 
Variable Address 
Routine 

NO 

lNPITZ 

Initialize for 
Fixed length 
Record 

VLl125 HI 

Turn On Exit 
Switch 

B2 

E2 

G2 

J2 

A3 

Check for Key ond 
Initialize for Disk 
Input 

lZTAPE A4 

Mrove Tope Input 
Rtn to Locat ion 
Stortlng at PllNBG 
and Initialize for 
Exit 13 

,--___ __, D4 

Conversion YES Relocate and 
Routine Called >-;;';"---llnitiol ize Nesellor>: 

for Conyers ion Rtn 

FLMVBC 

H3 

Compute Address 
Table Size, Start of 
Input Area, Start 
of Output Area 

OUTIZ J3 

Initial ize Output 
Routine for 
Fixed or 
Variable 

01NMVA 

Chart BC. Initialization Routine for Disk or Tape Input, DSORTl03 

Charts 221 



IBVNE4 

BI 

Initialize Registers 
for Input Routine 

Move Remaining 

Records to Start 
of Input Area 

Cl 

PIJNBG El 

Fl 

NO 
End of Cylinder 

YES 

DINJCY Gl 

Construct Next 
Cylinder Address 

HI 

DIHERE Jl 

Build Read·Count 
CCW'S 

T1NBG 

DIBLRD A2 

Initialize and Build 
Read CCW1S 

End of File 

NO 

D2 

YES 

After Any 
Write 

F3 

Change CCW Op 
Code to Read 

After Read 
Multi-Volume 

~ 
MNLDSK 

ON EXIT 

YES 

• BC-J3, OUTIZ 
BE-D3 
BM-G3, GET EX 
BM-J2, LSTFLSW 
BM-H4, MNLlINK 
BN-J4 
BN-KI 
BN-H2 
BN-J3, LSTFILSW 

After Read 
Phase 1 Mainl ine 

F5 

YES 

G5 

NO 

Variable-Length 
Address Rtn ~---< Vori'able length 
Exit 12 

NO 

Save End of Input 
j..,-------l Area ond Update 

Record Count 

BF PI LEVI 
B2 

K5 

Chart BD. Input Routine for Disk or Tape Input, D80RTl03 

222 IBM 8/360 DOS Sort/Merge 



Chart BE. 

Print Byposs.ed 
Record Number 

INFINI 

10 S AI ow, 
Operator 
Intervention 
at this Point if 
Bypass Option 

PIINBG 

I, 

F3 

Increment 

Block Count 

G3 

Errors 

H3 

Increment Bypassed 
Record Count 
EXIT 13 

Tape Input Routine, DSORT103 

YES 

NO 

I Set Switches: 
: I. Exit 13 
12. Fixed-Length 
13. Variable-block 
14. Short Block Ck 

DINMVA 

F4 

Bypass this 
Record 

G4 

G Area Full 

INEXIT 

NO 

Charts 223 



r - -, '" BL-Hl, INEXIT 
l * j BL-H3, ONEXIT 
'y' 

I 

'BD-K5 
BD-J4, ONEXIT 

r---------
r - - - - L - - _ .., P ,..:ll::.EV.:..I~....L_---=B:,2 r 
I I 

I Dotted Connector : 
1 for Addrout Run I 
I I L ______ --1 

'BG-C2,IBVMC3 
BG- J2, IB'JVlR 

Initialize Levell 
Registers and Sort 
G into Doublets 

IBVIF4 C2 

IInternol SORT 
I Routine Is Some for 
I Addrout Run. Dotted 
I Connectors Are for 
I Addrout Run 

Initialize Level 2 

Compare Control 
Fields 

this Final Pass 
Through G 

YES 

BG 
B2 

MOPSI 

D2 

STORM] or 
STORM2 
Selected as Result 
of CMPCHM 

E2 
STORMI 
STORM2 

NO Save Winning 
).--'---~ Record Address In 

Address Table 

YES 

F3 

EXIT G3 

or More NO 
Strings Remoiningi>-______ --, 

in Input Addr. 

Chart BF. Internal sort, DSORT103 

224 IBM S/360 DOS sort/Merge 

Table 

YES 

H3 

Initialize for New 
Strings 

String 
Remaining in 

Input Addres 
Table 

NO 

H4 

YES 

IBVJC2 J4 

or Less YES 

READOUT 

Move Remaining 
String to Output 
Address Table 

Strings Remoiningl>-___ -1 Initialize Lost 
Pass Branches 

in Output 
TobIe 

NO 

Reverse Input/ 
Output Address 
Tables 

K4 

H5 

J5 



Chart BG. 

Mr°,-P_S_I_-,-__ B-,2 --------"--------, 

YES 

Registers-In itial ize 
Output Rtn Regs -
Move Record to 
Output Area 

End 
Of String 

E2 

Requires 
Padding 

Creote Next 
Disk Address 

YES 

I 
I Output Routine is 
l the Some for 
I Addrout Run , 

PADRTN E3 

Podding Routine 

IBVPB2 H2 IBVOOI H3 

End of Set 

IBVVLR 

End of String 

CMPCHN 

YES 
Save Starting Disk 
Address of Next 

r-----t String and Update 

J2 

YES 

Block Count 

IBVND4 

Initialize "0" 
Shift Table 

J3 

Output Routine, DSORT103 

IBVNE4 FETCH J5 

End of Files 

I BV024 

Charts 225 



Chart BH. 

I 
rtAl 
,82 ) 

V 
INTPH2 

18V024 82 

Relocate Overlay 5 

CMPRES C2 

Compreu last Set 
of Phase 1 Output 

EXITPI D2 

Update Checkpoint 
Record and 
Compute Constants 

I 
r~l 
,82 ) 

V 
INTPH2 

Phose 2 Type 
Determined by User 
Specifications 

End-of-Phase Routine, DSORT105 

226 IBM S/360 DOS Sort/Merge 



Chart ru. 

YES 

Initialize for Exit 
12, Conversion 

D2 

TAGINT E2 

Initialize for 
Addrout Run 

TAGCHK F2 

Update Check­
point Record and 
Initialize Input 
Routine 

Fixed 
Length 
Records 

G2 

NO 

H2 

YES 

G3 

r-___ ----.;H3 

>-----llnitialize for Key 

IBVAAI 

Initialize level 1 
Internal Sort 

CHNCMP B4 

Compute Location 
of Areas 

OUIZ 

Initialize Output 
Routine 

LBLCHK 

Initialization for ADDROUT Run, DSORT104 

Charts 227 



r:-='-----'---_,BI 

LBLCHK 

DINGUD EI 

Locate Next Record 

F I 

Variable YES 

Blocking 

NO 

DINLES GI 

Input YES 
Volume Limits 

Exceeded 

NO 

BLOADR HI 

Build Next Record 
Address 

JI 

/-kx NO 
Block Size 

Exceeded 

YES 

WLR KI 

WLR Routine 

B2 

F2 

Start 
of Track or 
(yl inder 

NO 

DINMVA H2 

Restore Registers 
and Turn on EOF 
Switch 

TAGMNL K2 

Initialize for 
Addrout Sort 

Build Tag for 
One Record 

CHNMVE 

A4 

B4 

Move Control Field 
from Record to 
RAF Area 

NXTREC C4 

Store Record Length 
and Increment 

Block Size 

D4 

End of NO 
Input Block ~-------, 

YES 

NO EOF 

LBLCHK 
YES 

INEXIT 

E4 

F4 

NOEOB 

YES 

Increment Record 

Address and 
Compute Next 
Address for Tog 

RAF Area Full 

NO 

Chart BK. ADDROUT Run Input Routine, DSORT104 

228 IBM S/360 DOS Sort/Merge 

E5 

F5 



• BK-F4, LBLCHK 
BK-F5 

INEXIT HI 

Save End of Input 
Alec Address and 
Update Record 
Count 

AFTER ANY 
WRITE 

D2 

Change CCW Op 
Code to Read 

INFINI F2 

NO 

Compute Final G 
and Initialize Final 
G for Sorting 

G2 

Exit 12 
0' 

Conversio 

YES 

YES 

AFTER READ 
MAINLINE 

VARBLK 

• BJ-D4, OUTIZ 
BK-E4 
BK-Dl 
BM-G3, GETEX 
BM-J2, LSTFLSW 
BM-H4, MNLLlNK 

AFTER READ 
MULTI-VOLUME 

! ~ 
MNDLSK 

E3 

ON EXIT H3 

Build Record 
Address and Save 
Record Count 

PI L~VI 

Chart BL. ADDROUT Run Input Routine (Cont·d), DSORT104 

Charts 229 



Set Last Fj Ie 
Flag and last 
File Switch 

GI 

YES 

Dotted Connector 
for Addrout 
Type Run 

Decision Made 
by 10CS 

ENDINP 

last Input 
File 

NO 

Initialize Next 
File Name to 
Disk DTF 

C2 

02 

G2 

K2 

Disk Input 

YES 

YES 
End of File 

NO 

GETXT 

Place Log Unit 
Address and 
Extent limits 
in Registers 

BD 
04 

DINMVA 

Chart BM. Multi-Volume Routine, DSORT103 

230 IBM 8/360 DOS Sort/Merge 

B3 

C3 

F3 

G3 

NO 

I 
fstt 
""~;') 

LBLCHK 

MNlTAP C4 

Set Log Unit 
Address and File 
Name in Tape DTF 

Exit 11 

NO 

MNLlINK H4 

I 

Place log Unit 
Address in Register 

: Dotted Connector 
I for ADDROUT Run 
I , 

YES 

Decision Made 
by 10CS 



MNLTAP 

BI 

Put Block Count in 
OTF 

CI SAVVOL C2 

NO Set Rewind Bits in 
End of Volume >-___ ~ DTF and Save 

YES 

01 

Shift Volume Tobie 

EI 

Initialize Byte 32 
in OTF for Close 

FEOVBR FI 

Volume Number 

ENOMAC 

YES 
EOF Switch On ;,..-.... --4 End Routine 

F2 ,-----1 
I I 
I Decision Mode by I 
I 10CS I 
L--T-_-J 

I ---------_ ..... 
GI G2 EOFAOOR G3 

EOF 
YES 

lost File 
YES Set last File >-.:..:...--.., Indicator and 

Last File Switch 

H2 

P lace log Unit 
Address in Register 

last File 
Switch On 

YES 

NO 

r-----, 
I I 

Place log Unit 1-_____ --1*_____ _~ Dotted Connector I 
Address in Register r"""I.:, I for Addrout Run 

~ q~) I '" L ____ J 

OINMVA LBLCHK 

Chart BN. Multi-Volume Routine <Cont'd), DSORT103 

Reset Byte 32 in 
OTF for Open 

G4 

J4 

Charts 231 



INTPH2 

MMPP2 

• 02-G3, IBV024 
OI-G4, FETCH2 

B2 

CA 

NO 

D2 

C8 

E2 

CD 

F2 

CM 

Calculate Next 
Interleaved 
Input/Output 
Address 

G2 

Pass-Pass 
Routine 

Input 
NO >-___ <. End of Merge 

83 

G3 

NO 

DSORT301 (4-WAY) 
DSORT302 (J-WAY) 

Merge Records 

Move Record to 
Output Area 

E4 

DSORT201 - 4-WAY MERGE 
DSORT202 - 7-WAY MERGE 

G4 

Chart 03. External Sort or Merge, Fixed-Length Records (Phase 2), DSORT201 or DSORT2Q2 

232 IBM S/360 DOS Sort/Merge 



Chart CA. 

FETCH 

INTPH2 

Initialize 
Registers and 
Constants 

82 

Initialize Compare 
loop Branches for 
No Equal Routine 

COMPIT F2 

Initialize Compare 
Loops with Control 
Field 
Information 

G2 

Initialize Mainline 
with Input 
Logical Record 
length 

OIVAGN H2 

Calculate 
Interleave Factors 
for Disk 
Address Routine 

Initialize 
Merge-Merge 
and Pass-Past 
Routines 
f", Phase 2 OM 

J2 

Increment Number 
of Posses by One 

OUPTOK 03 

Extract Work Area 
and Initialize 
Relocator 

E3 

RELOCA FA 

Include Equal 
Routine and Reloc­
ate Move Routine 
(If Required) 

START 

Initialize to 
Write Pass­
Pass Routine 

YES 

Initialize to 
Format Disk 
Output Area 

F3 

G3 

H3 

CPIOAS 84 

Calculate Constants 
for Input and 
Output Routines 

Initialize Output 
Count Field and 
Block Count 

NOWCKO 

Initialize I/O 
Channel Programs 

MMPP2 

E4 

Phase 2 Initialization, Fixed-Length Records 

Charts 233 



Chart CB. 

(2 

Initialize Mainline 
with New Input 
Interleave Factors 

• <:A-E4, NOWCKD 
CM- H3, MMPP I 

MMPP2 

Turn Off 
End-oF-Merge 
Switch 'MMPPJ I 

MMPPS 

83 

(3 

NO 
Pass Just Ended )-_....L_..., 

YES 
1...--------1 

E2 

Initialize Mainline 
with New Output 
Interleave Factors 

LMI234 03 

Initialize last 
Merge Input 
Interleave 
Switches 

Pass Just Ended 

NO Pass-Poss 

E3 

.--------< Routine 
Executed 

EXE(PP 

NO 

NO 

WAY4 F4 

Initio I ize for OM 
from Assign Phase 

Reduce Number 
of Sequences in 
this Poss by 
Phase 2 OM 

F4 

G4 

Are 

NO 

SFOAOR J4 

Shift Disk 
Address Output 
Table for Next 
Output Sequence 

USTOPA 

Merge-Merge Routine, Fixed-Length Records 

234 IBM 8/360 DOS Sort/Merge 



Chart cc. 

EXECPP B2 

Turn Off End-of­
Pass Switch 

Update Checkpoint 
Record 

Calculate Initial 
1/0 ~isk Addr.ss 
for Current Pass 

SHTPTR G2 

Reverse I/O Areas 
for Next Pass 

NEWITL H2 

Calculate 
Interleave Factors 
for Current Pass 

NEXTPASS J2 

Determine and 
Print Poss Number 

B3 

Calculate Number 
of Output 
Sequences in 
Upcoming PoSos 

INITOM C3 

Calculate 
Interleave Factors 
for last Merge of 
Pan 

03 

Initialize Merge­
Merge Routine 
with OM to be 
used in last 
Merge 

OLEAVE E3 

Calculate Output 
Interleave Foctors 
when 5,. M2 

NOTLAS F3 

INTPH3 

Pass-Pass Routine, Fixed-Length Records 

Charts .235 



'CE-J4 CH-J3 
CF-J4 CJ-H3 
CG-J4 CK-H2 

CK-H4 

• CB-J4 

CE-J4 
CF-J4 
CG-J4 

CH-J3 
CJ-H3 
CK-H2 
CK-H4 

Initialize Compare 
loops per Order of 
Merge 

C2 

YES 

NO 
MMPP 

FILLA D2 

YES 

r------L-, E2 

Initialize to Read 
a Block of Records 

VIA REG 

NOTE: U5TOPA, FILLA, ondGETAlabels apply to I-way 
merge. For 2-way to 7-way merges, label suffixes 
are B to G, respectively, Similarly, lMi and 
BYPAS 1 +4 become lM2 to lM6 and BYPAS2+4 to 
BYPAS7+4, respectively. 

Branch to: 

SEQ A SEQ B 
CE-G2 COMPGB 
CF-F2,COMPFB 
CG-E2 COMPEB 

CH-E2 COMPDA CH-D2 COMPDB 
C -D2 COMPCA CJ-B2 COMPCB 
CK-B2,COMPBA 

SAVE A SAVE B 

SEQC SEQD 
CE-F2 COMPGC CE-E2 COMPGD 
CF-E2, COMPFC CF-D2,COMPFD 
CG-D2 COMPEC CG-B2 COMPED 
CH-B2, COMPDC 

SAVE C SAVE D 

SAVEC and SAVED 
not used in 4-woy 
merge program 

(DSORT201) 

r-------,- - - ...!,'!.! - - G3 G4 

This Function not 
Applicable to Seq 
G (in 7-Way) nor 
to Seq 0 (in 4-
Way) 

Lost Merge of 
a Pass 

NO 

BSTR6 

YES 

J3 

Store Current 
Interleaved Disk 
Address 

Reduce 
Interleave 

Factor 

IRMDR 

Initialize Disk 

Address Routine 
with Interleave 
Foctors 

YES 

IRMDRI 

Initioliz-e Disk 
Address Routine 
with Reduced 
Interleave 
Factors 

CALADR 

H5 

Chart CD. Input Routine, Fixed-Length Records 

236 IBM 8/360 DOS Sort/Merge 

SEQ E, 
F, AND G 

-B , 
COMPGF 



• CO-02, FILLO 
CO-J3, BVPAS4+4 
CO-H3, NXTOR 

• CO-02, FILLC 
CO-J3, BVPAS3+4 
CJ-G3, NXTCR 

• CO-02, FILLB 
CO-J3, BVPAS2+4 
CK-G2, NXTBR 

• CO-02, FI LLA 
CO-J3, BVPASI+4 
CK-G4, NXTAR 

'CO-02, FILLE, FILLF, FILLG 
CO-J3, BVPAS5+4, BYPAS6+4, BVPAS7+4 
CG-H4, NXTER 

Sequence G 
Depleted 

NO 

Compare G:F 

B2 

YES 

C2 

HI/EQ 

LOW OR 

COMPGE 
F OEPLETEO 

02 

LOW OR 
L----~E OEPLETED 

Prepare to Move 
Sequence G 
Record to 
Output Area 

OUTFUL 

E2 

H COMPFE 

COMPEO 

COMPOC 

COMPCB 

COMPBA 

PUTA 

NOTE; Compare deci~iom are 
based on one control 
field (no equal routine) 
and ascending sequence. 

ZVXWZV 

NXTGR H4 

GETG 

USTOPG 

Chart CEo Sequence G Compare Loop. Fixed-Length Records 

Charts 237 



• CD-D2, FILLD 
CD-J3, BYPAS4+4 
CH-H3, NXTDR 

• CD-D2, FlLLC 
CD-J3, BYPAS3+4 
CJ':-G3, NXTCR 

'CD-D2, FILLB 
CD-J3, BYPAS2+4 
CK-G2, NX,BR 

'CO-02, FILLA 
CD-J3, BYPAS I +4 
CK-G4, NXTAR 

• CE-B2, COMPGF 
CE-C2 

Sequence F 
Depleted 

Compare F:E 

B2 

YES 

HI/EQ 

LOW OR 

PUTF 
A DEPLETED 

H2 

Prepore to Move 
Sequence F 
Record to 
Output Area 

OUTFUL 

COMPED 

COMPDC 

COM PCB 

COMPBA 

PUT A 

NOTE: Compare decisions ·ore based on one 
control field (no equal routine) and 
ascending sequence. 

ZYXWZY 

NXTFR H4 

USTOPF 

Chart CF. Sequence F Compare Loop, Fixed-Length Records 

238 IBM S/360 DOS sort/Merge 



• (;D-D2, FILLC 
CD-J3, BYPAS3·4 
CJ-G3, NXTCR 

• CD-D2, FIl.LB 
CD-J3,BYPAS2 ·4 
C~-G2, NXTBR 

• CD-D2, FILLA 
CD-J3, BYPASI 4 
CK-G4, NXTAR 

• CD-D2, FILLD 
CD-J3, BYPAS4 4 
CE-D2, COMPGE 

CF-B2, COMPFE 
CF-C2 
CH-H3, NXTDR 

COMPED B2 

Sequence E 

Depleted 

NO 

C2 

YES 

HI/EO 
Compare E:D 

HI/EO 

LOW OR 
'------IC DEPLETED 

E2 

HI/EO 

LOW OR 
'-____ -1 B DEPLETED 

F2 

LOW OR 
A DEPLETED 

PUTE G2 

Prepare to Move 
Sequence E Record 

COMPDC 

COMPCB 

COMPBA 

PUTA 

NOTE: Compare decisions ore based on one 
control field (no equal routine) and 

ascending sequence. 

to Output Alec ZYXWZY 

NXTER H4 

OUTFUL 

YES COMPGF 

J4 

USTOPE 

Chart CG. Sequence E Compare Loop, Fixed-Length Records 

Charts 239 



• CD-D2, FILLB 
CD-J3, BYPAS2·4 
CK-G2, NXTBR 

• CD-D2, FILLA 
CD-J3, BYPAS 1-4 
CK-G4, NXT AR 

'CD-D2, FILLC 
CD-J3, BYPAS3+4, BYPAS4+4 
CE -E2, COMPG 0 
CF-D2, COMPFD CG-C2 
CG-B2, COMPED CJ-J3, NXTCR 

Sequence D 
Depleted 

NO 

Compare D:C 

B2 

YES 

C2 

HI/EQ 

CJ COMPCB 
B2 

LOW OR 
L. ____ -jC DEPLETED 

02 

HI/EO 

PUTD 

LOW OR 
A DEPLETED 

F2 

Prepare to Move 
Sequence D Record 
to Output Area 

CL 
C2 

OUTFUL 

COMPBA 

PUTA 

ZYXWZY 

NXTDR 

USTOPD 

H3 

NOTE: Compare decisions are b05ed on one 
control field Ino equal routine: and 
ascending sequence. 

GElD 

• CE-E2, COMPGD 
CF-D2, COMPFD 
CG-B2, COMPED 

Chart CH. Sequence D Compare Loop, Fixed-Length Reco.rds 

240 IBM S/360 DOS sort/Merge 



Chart CJ. 

• CD-D2, FILLA 

Sequence C 
Depleted 

NO 

B2 

YES 

C2 

CD-J3, BYPASlq • 
CK-G4, NXTAR 

LOW OR B 
'------1 DEPLETED 

07 

LOVI OR A 
DEPLETED 

PUTC E2 

Prepare to Move 
Sequence C Record 

to Output Area 

OUTFUL 

CD-D2, FILLB 
CD-J3, BYPAS2·4 
CE-F2, COMPGC 
CF-E2, COMPFC 

COMPBA 

PUT A 

ZYXWZY 

NXTCR 

YES 

USTOPC 

G3 

H3 

CG-D2, COMPEC 
CH-B2, COMPDC 
CH-C2 
CK-G2, NXTBR 

NOTE: Compare Jecisions ale based on one 
control field Ino equal routine'l and 

ascending sequence. 

GETC 

• CE-F2, COMPGC 
CF-E2, COMPFC 
CG-D2, COMPEC 
CH-B2, COMPDC 

Seguence C Compare Loop, Fixed-.Length Records 

Charts 241 



• CD-D2, FI LLA 
CD-J3, BYPASI+4 
CE-G2, COMPGB 
CF-F2, COMPFB 

CG-E2, COMPEB 
CH-D2, COMPDB 
CJ-B2, COMPCB 
CJ-C2 

B2 

Sequence B YES 
Depleted 

NO 

C2 

LOW ORA 
DEPLETED 

PUTB 02 

Prepare to Move 
Sequence B 
Record to 
Output Area 

NXTBR 

OUTFUL 

I 
I 
I 
I 
I 
I 
I 
I 

USTOPB 

G2 

• CE-G2, COMPGB 
CF-F2, COMPFB 
CG-E2, COMPEB 
CH-02, COMPOB 
CJ-B2, COMPCB 

NOTE: Compare decisions are 
based on one control 
field (no equal routine) 
and ascending sequence. 

• CD-J3, BYPAS I +4 
CE-H2, COMPGA 
CF-G2, COMPFA 

D4 

Prepare to Move 
Sequence A 
Record to 

Output Area 

CL 
C2 

OUTFUL 
J 

I 
J 

I 
I 
I 
I 
I 
J 

ZYX~ZY 

G4 

Block A 
Depleted 

YES 

H4 

GETA 

USTOPA 

Chart CK. Sequence B Compare Loop, Fixed-.Length Records 

242 IBM S/360 DOS Sort/Merge 

CG-F2, COMPEA 
CH-E2, COMPDA 
CJ-D2, COMPCA 

• CE-H2, COMPGA 
CF-G2, COMPFA 
CG-F2, COM PEA 
CH-E2, COMPDA 
CJ-D2, COMPCA 



Chart CL. 

• CE-J2, PUTG 
CF-H2, PUTF 
CG-G2, PUTE 
CH-F2, PUT D 
CJ-E2, PUTC 
CK-D2, PUTB 
CK-D4 PUTA 

OUTFUl 

Move Winning 
Record to Output 
!>;eo 

C2 

ZYXWZY E2 

Update Output 
Area for 

Next Record 

• CE-H4, NXTGR 
CF-H4, NXTFR 
CG-H4, NXTER 
CH-H3, NXTDR 
CJ-G3, NXTCR 
CK-G2, NXTBR 
CK-G4, NXTAR 

MMPP C3 

In~ert End-of­
Sequence Indicator 
cnd Turn on Merge­
Merge Switch 

WRITE 

Initiol ize to 
Write 0 Block 
of Records 

Reduce 

Output 
Interleave 

Foctor 

D3 

YES 

0pRM=D,,-R_.L-_,H3 

Initiolize Disk 
Address Rout'ine 
with Interleave 
Foctor 

output Routine. Fixed-Length Records 

O,...R_M_D_R_I --'_----. H4 

Initialize Disk 
Address Routine 
with Reduced 
Interleave Foctor 

CAlADR 

Charts 243 



Chart CM. 

CALADR 

• CD-H4, IRMDR 
CD-H5,IRMDRl 
CL-H3,ORDMR 
CL-H4,ORMDRl 

C2 

Calculate Next 
Valid Record 

D2 

Calculate Next 
Valid Track 
Number 

E2 LMTSOK 

Store New 
Work )\rea NO Input or Output 
Extent Interleave 
Exceeded Address 

YES 

F2 BSTR6 

Calculate Amount 
Exceeded 

E3 

F3 

YES 

NO BYPAS1+4 

r-__ ~L-__ ~G~2 G3 

Calculate New 
Address With i n 
Next Extent 

Determine 
logical 
Unit Address 
for New Extent 

H2 

Store New 
Interleaved Output 
Address 

MMPPI H3 

MMPP2 

Calculate Interleave Disk Address, Fixed-Length .Records 

244 IBM 5/360 DOS Sort/Merge 



16V024 
OSORT203-3- WAY MERGE 
OSORT204-6-WAY MERGE 

INTPH2 62 63 

CN 

YES 

OSORT303 (3-WAY) 
OSORT304 (6-WAY) 

NO 

C2 C3 

CQ 

YES 
End of Poss 

Pass-Pass Routine 

NO 

MMPP2 02 COMPFE 04 

CP CS-CW 

Merge-Merge Merge Records 

E2 E4 E5 

CR 

Output keo 
Full 

NO 

F2 F4 

CY 

Colculate Next Move Record to 

Interleaved Input/ Output keo 

Output Address 

G2 G3 G4 

NO NO 
Input End of Merge 

YES YES 

J4 

End of a Merge NO 

Chart 03. External Sort or Merge, Variable-Length Records (Phase 2), DSORT203 or DSORT204 

Charts 245 



PETCH 

I Nl'f'H2 82 

Initialize Regi-stets 
and Constants 

NO 

Increment Number 
of Passes by One 

OUPTOK 03 

Extract Work Area 
and Initialize 
Relocator 

E2 E3 
r---L----, RElOCA FA 

InitioHze Compare 
Loop Branches for 
No Equal RouHne 

COMPIT F2 

Initialize Compare 
Loops with Control 
Fi'eld Doto 

OIVAGN G2 

Co·leulate Inter­
leave Factors for 
Disk Address 
Routine 

Initialize Metge­
Merge and Pass­
Pass Routines for 
Phose 2 OM 

H2 

Adjust Equal 
Routine if Required 

START F3 

Initialize to Write 
Poss-Pass Routine 

CPIOAS 84 

Colculate Constants 
for Input and 
Output Routines 

C4 

YeS 

04 

Initialize to Format 
Disk Output Area 

YES 

G4 

Initialize Output 
Count Field and 
Block Count 

NOWCKO H4 

.'nitial'ize I/O 
Channel Programs 

MMPP2 

Chart CN. Phase 2 Initialization, Variable-Length "Records 

246 IBM S/360 DOS Sort./Merge 



Chart CPo 

RE;:D:.:U:.:C::;EI'-''--___ C2 

Initializ.e 
Mainline with 
New Input 
Interleave Factors 

E2 
,.....---'--...... 
Initialize 
Mainline with 

EXECPP 

J2 

'CN-H4, NOWCKD 
CY-H4, MMPPI 

MMPP2 83 r-----I-t 

Turn-Off End-of­
Merge Switch 
'MMPP1' 

MMPPS C3 

LMI234 

Merge Input Inter­
leave Switches 

Initialize Output 
Interleave Factor 
Switch 

E3 

TMINUS 

Upclot. I/O Di.k 
Addresses for Start 
of Next Merge 

Initial ize for 
OM from 
Assignment 
Phase 

F4 

Reduce Number of 
Sequences in this 
Pass by Phase 2 OM 

Sh ill Disk Addr ... 
Output T abl. for 
Next Output 
Sequence 

USTOPA 

Merge-Merge Routine. Variable-Length Records 

Charts 247 



EXECPP 82 

Turn orf End- of ... 
Phase Switch 

Update Checkpoint 
Record 

Determine Input/ 
Output Sequence 
Block Count 

CPOAOR-12 G2 

Calcl:.llate Initiol 
I/O Disk Addresses 
for Current Pass 

SHTPTR H2 

Reverse I/O Areos 
for Next Pass 

NEWITL J2 

Calculate 
Interleave Factors 
for Current Pass 

NEXTPASS K2 

OetemH'ne and Print 
Pass Number 

B3 

Calculate Number 
of Output Sequence 
in Upcoming Poss 

INITOM C3 

Calculate 
Interleave Factors 
for Lost h\erg8 
of Pass 

03 

Initialize Merge­
Merge Routine W!th 
OM to be Used in 
Lost Merge 

OLEAVE E3 

Calculate Output. 
Interleave Factors 
fOr When S~M2 

NOTLAS F3 

INTPH3 

Chart CQ. Pass-Pass Routine, variable-Length Records 

248 IBM S/360 DOS Sort/Merge 



Chart CR. 

• CS-J4 CV-J3 
CT-J4 CW-J2 
CU-J4 CW-J4 
CX-F2 (SPLIT 
RECOROS ON L y) 

USTOPA 

Records 

• CP-J4, SFOAOR 
CS-G4, NXTFR 
CT -G4, NXTER 

C2 

CU-G4, NXTOR 
CV-G3, NXTCR 
CW-G2, NXTBR 
CW-G4, NXTAR 

NOTE, USTOPA, FILLA, and GETA labels apply to I-way 
merge. For 2-way to 6-way merges, label suffixes 
are BtoF , respectively. Similarly, LMI and BVPAS1+4 
become LM2 to LM5 and BYPAS2+4 to BYPAS6+4, 
respectively. 

1-'°;;::"+C"'S,..._S:;;~;;:~:....,;t';'O""M"'P"'F"'A+-C"'S':::!~;';~::"""~:;'O"'M"'P"'FB::-I"'C"'S!:';:':i'~'-.,;C~;""M"'P"'FC::-I ~E '!N ~ F 
5 CT-F2 COMPEA CT-E2 COMPEB CT-02 COMPEC -B2 
4 CU-E2 COMPOA CU-02 COMPOB CU-B2 COMPOC 
3 CV-02 COMPCA CV-B2 COMPCB 
2 CW-B2 COMPBA 

VIA REG. SAVEA IAVEB SAVEC 

LMI G3 

SAVES and SAVEC 
not used in 3-way 
merge program 
(OSORT203). 

G4 
,-----,- -- - ----

This Function not 
Applicable to Seq 
F (in 6-Woy) nor 
to Seq C (in 3-
Way) 

• CY-F3, BSTR6 
CY-H4, MMPPI 

Last Merge 
of a Pass 

NO 

Store Current 
Interleaved 
Disk Address 

YES 

J3 

Reduce 
Interleave 

Fodor 

Address Routine 
with Interleave 
Factors 

YES 

IR,..M",O-'OR_I_.L...._,H5 

Initialize Disk 
Address Routine 
with Reduced 

CALAOR 

Input Routine, variable-Length Records 

Charts 249 



• CR-D2, F ILLD 
CR-J3, BYPAS4+4 

• CR-D2, FILLC 
CR-J3, BVPAS3+4 
CV-J3 

'CR-D2, FILLS 
CR-J3, BYPAS2+4 
CW-J2 

'CR-D2, FILLA 
CR-J3, BYPAS I +4 
CW-J4 

• CR-D2, F ILLE/F ILLF 
CR-J3, BVPAS5+4/BYPAS6+4 
CT-J4 
CU-J4 

82 NOTE: Compare decisions ore based on one 

Sequence F YES 
Depleted 

NO 

C2 

Compare F:E 
HI/EO 

HI/EO 

LOW OR 
A DEPLETED 

PUTF H2 

Prepare to Move 
Sequence F Record 
to Output Area 

OUTFUL 

COMPED 

COMPDC 

COMPCS 

COMPBA 

PUTA 

control field (no equal routine) and 
ascending sequence. 

NXTFR 

CX 
F2 

Next F Recor 
Spi;, 

G4 

YES 

Chart CS. Sequence F Compare Loop, variable~Length Records 

250 IBM S/360 DOS Sort/Merge 

J5 

SPLITI 



• CR-D2, FILLC 
CR-J3, BYPA53+4 
CV-J3 

• CR-D2, FILLB 
CR-J3, BYPA52+4 
CW-J2 

• CR-D2, FILLA 
CR-J3, BYPA51+4 
CW-J4 

• C5-B2, COMPFE 
CS-C2 

B2 

NO 

C2 

4 

lOW OR PUT A 
A DEPLETED 

PUTE G2 

Prepare to Move 
Sequence E 
Record to 
Output Area 

OUTFUL 

NOTE: Compare decisions are 
based on one control 
field {no equal routine} 
and ascending sequence. 

NXTER G4 

NO USTOPE 

H4 

Next E YES 
Record Split 

NO 

J4 SPLITE 

COMPFE 

Chart CT. Sequence E Compare Loop, Variable-Length Records 

J5 

SPLIT! 

Charts 251 



'CR-D2, FILLS 
CR-J3, SVPAS2+4 
CW-J2 

• CR-D2, FILLA 
CR-J3, BVPASI+4 
CW-J4 

• CR-D2, FILLC 
CR-J3, SVPAS3+4/SVPAS4+4 
CS-D2, COMPFD CT-C2 
CT -82, COMPED CV-J3 

S2 

NO 

C2 

Prepare to Move 
Sequence D Record 
to Output Area 

OUTFUL 

COMPCB 

COMPBA 

PUTA 

NOTE: Compare decisions are based on one 
control field (no equal routine) and 
ascending sequence. 

NXTDR G4 

Next DYES 
Record Split >---------, 

NO 

J4 

COMPFE SPLITI 

Chart CU. Sequence D Compare Loop, Variable-Length Records 

252 IBM 8/360 DOS Sort/Merge 

J5 



'CR-02, FILLA 
CR-J3, BYPAS1+4 
CW-J4 

'CR-02, FILLB 
CR-J3, BYPAS2+4 
CS-E2, COMPFC 
CT -D2, COMPEC 

CU-B2, COMP DC 
CU-C2 

PUTC 

Sequence C 
Depleted 

NO 

Compare C:B 

B2 

YES 

C2 

HI/EQ 

LOW OR 
A DEPLETED 

E2 

Prepare to Move 
Sequence C Record 

to Output Alea 

OUTFUL 

CW-J2 

COMPBA 

PUTA 

NXTCR G3 

H3 

NOTE: Compare decisions are based on one 
control field (no equol routine) and 
ascending sequence. 

USTOPC 

Next YES 
C Record 

Split 

NO 

J3 

'CS-E2, COMPFC 
O-D2, COMPEC 
CU-B2, COMP DC 

SPLITC J4 
.---'--"""", 

Chart CV. Sequence C Compare Loop, Variable-Length Records 

Charts 253 



PUTS 

• CR-D2, FILLA 
CR-J3, SYPASI+4 
CS-F2, COMPFS 
CT -E2, COMPES 

Sequence B 
Depleted 

NO 

Compare B:A 

S2 

YES 

C2 

HI/EQ 

LOW OR A 
DEPLETED 

D2 

Prepare to Move 
Sequence B 
Record to 
Output Area 

OUTFUL 

NXTSR G2 

NO USTOPS 

H2 

Next B YES 
Record Spl i t 

NO 

CU-D2, COMPDS 
CV-S2, COMPCS 
CV-C2 

J2 SPLITS J3 

• CS-F2, COMPFS 
CT -E2, COMPES 
CU-DI, COMPOS 
CV-B2, COMPCS 

Initialize 

SPLITI 

NOTE: Compare decisions are 
based on one control 
field (no equal routine) 
and ascending sequence. 

• CR-J3, SYPASI+4 
CS-G2, COMPFA 
CT -F2, COMPEA 
CU-E2, COMPDA 
CV-D2, COMPCA 

PUTA 

Prepare to Move 
Sequence A 
Record to 
Output Area 

OUTFUL 

NXTAR 

End of A 

NO 

Next A 
Record Spl it 

NO 

D4 

G4 

YES 

USTOPA 

H4 

YES 

J4 SPLITA 

• CS-G2, COMPFA 
CT -F2, COMPEA 
CU-E2, COMPOA 
CV-D2, COMPCA 

Initialize 

Chart CWo Sequence B Compare Loop, Variable-Length Records 

254 IBM S/360 DOS Sort/Merge 

J5 



• CS-J5, SPUTF 
CT -J5, SPLITE 
CU-J5, SPLITD 
CV-J4, SPLITC 
CW-J3, SPLITB 
CW-J5, SPUTA 

SPrL"'IT_I_-'-_ .... CI 

• CS-H2, PUTF 
CT-G2, PUTE 
CU-F2, PUTD 
CV-E2, PUTC 
CW-D2, PUTB 
CW-D4, PUTA 

B2 

Get RLI of Record 
to be Moved to 
Output Area 

C2 

Calculate Number 
of Bytes to be 
Moved 

VARMOV E2 

Move Record or 
Port of Split Record 

• CS-H4, NXTFR 
CT-H4, NXTER 
CU-H3, NXTDR 
CV-G3, NXTCR 
CW-G2, NXTBR 
CW-G4, NXTAR 

CR-E2, GETA } Only in 
Through GETF, cose of 
Depending .plit 
on Sequence records. 

SPLITO B3 

Calculate Number 
of Bytes in 
Second Part of 
Record 

Record 

MMPP B4 

Insert End-of­
Sequence 
Indicator and 

of Records 

Reduce 
Output YES 

Interleave >-;..;..;-------, 
Foctor 

NO 

O';:.R:.:M:;:D::.R .......JL-~G4 
Initialize 
Oi sk Address 
Routine with 
Interleave 
Foctor 

0r=RM=DR"'l---l_---.G5 
Initialize Disk 
Address Routi ne 
with Reduced 
Interleave 
Factor 

CALADR 

Chart CX. output Routine, Variable-Length Records 

Charts 255 



CALADR 

• CR-H4, IRMDR 
CR-H5, IRMDR I 
CX-G4, ORMDR 
CX-G5, ORMDRI 

C2 

Calculate Next 
Valid Record 

D2 

Calculate Next 
Val id Track 
Number 

E2 LMTSOK E3 

I. 
Work Area 

Extent 

F2 

Calculate Amount 
Exceeded 

NO 

G2 

Calculate New 
Address within 
Next Extent 

H2 

Determine Symbolic 
Unit Address for 
New Extent 

Store New Input 
or Output I nter­
leaved Address 

BSTR6 

New 
Address 
is for 
Input 

NO 

F3 

YES 

G3 

Store New 
Interleaved Output 
Address 

OSPLIT 

Split 
Output 
Record 

YES 

H3 

r--_--'-_-.J3 

Initialize to Move 
Second Part of SpJ it 
Record to Output 
Area 

SPLlTM 

NO 

MMPPI H4 

End of Merge 

MMPP2 

NO 

CR 
3 

BYPAS1+4 

Chart CY. Calculate Interleave Disk Address, Variable-Length Records 

256 IBM S/360 DOS Sort/Merge 



Chart 04. 

INTPH3 B2 

DA 

Phase 3 

C2 

Fill Input Areas 

LRMDRI D2 

SEQCHK 

DH 

E2 

DC-DG 

Merge 

Records 

F2 

DJ,DK 

Sequence Check, 
Reconvert I 
Exit 32, and 

Output Routi ne 

G2 G3 

Output Area Full;-Y_E_S __ -< Open,EOV, 
or Close Time 

NO YES 

X31LNK H3 

DL 

Label linkage 
Routine 

J3 

Last Record 
Processed 

YES 

NO 

YES 

NO 

DSORT301 - 4-WAY MERGE 
DSORT302 - 7-WAY MERGE 

Move Record to 
Output Area 

Last Record 
Processed 

Last Record 
Processed 

NO 

E4 

F4 

NO 

F5 

Input Area NO 
Depleted 

YES 

G5 

End of a YES 

Sequence 

Final Merge, Fixed-Length Records (Phase 3), DSORT301 or DSORT302 

Charts 257 



INTPH3 BI 

Initialize 
Mainline 
Compare Branches 
if Equal Routine 
is Not Required 

ITCOMP 

FI 

Initialize 
Sequence Error 
Routine 

GI 

Initialize 
Mainline for 
Input/Output 
Record Length 

OPTION 

Initialize 
for Addrout 
and Exit 32 
as Specified 

RECORDO J I 

PRTEOJ 

INTLEAVE B3 

Compute 
Interleave Factors 
for Input Disk 
Address Routine 

TAPLLR C3 

Tape Output 

Initialize 
Phase 3 Output 
Channel Program 
and Output Rtn 
for Tape Output 

E3 

Initialize Lobel 
Routine for 
Tape Output 
Specifications 

Initial ize to 
Indude or Delete 
Equal 
Routine 

H3 

RELOCA FA 

Relocater Routine 

START 

NO 

OUTDSK 04 
.-----'----, 
Initialize for 
Disk Output and 
label linkoge 
Routine for Disk 
Output 

Chart DA. Phase 3 Initialization, Fixed-Length Records 

258 IBM S/360 DOS Sort/Merge 

START! 85 

Calculate Constants 
for Phose 3 Input 
Areas 

OUTAPE 

Compute Output 
Area Constants 
and Initialize 
Channel Program 
with Dota Count 

PH3MRG 

3 to Execute a 
I, 2, 3, 4, 5, 6, 
or 7-Way 
Merge 

C5 

E5 

NO User 
Programming 

USTOPI 



Init 

OM FROM 
7 OC-J4 
6 DD-J4 
5 DE-J4 
4 DF-J4 
3 OF-JI 
2 OG-J3 
I DG-J5 

FI 

Not Applicable 
to Seq G (in 
7-Woy) Nor to I 
Seq D On 4-Way) I 

OM Seq I Seq 2 
7 OC-H27:1 OC-G27:2 
6 DO-G26:1 00-F26:2 
5 DE-F2 5: I OE-E25:2 
4 DF-E2 4: I DF-D24:2 
3 OG-OI 3: I DG-81 3:2 
2 DG-C3 2:1 DG-C3 2:1 
I DG-E5 

PUTI 
D8-82 08-82 

Read-in USTOP2 USTOP3 

82 
,----'--, 

Initialize 
Compare Rtn 
Bronches for 

YES 

r-_-'L----,D2 

to Read in a 
Block of Records 
from Current 
Sequence 

LRMORI 

Seq 3 Seq 4 
OC-F27:3 OC-E27:4 
00-E2 6:3 00-D26:4 
OE-02 5:3 OE-82 5:4 
OF-82 4:3 OF-82 4:3 
OG-81 3:2 

08-82 08-82 
USTOP4 USTOP5 

OM FROM 
7 OC-J4 

- 4 
OE-J4 
OF-J4 
OG-JI 
OG-J3 
DG-J5 

OM 
7 
6 
5 
4 
3 
2 

Seq 5 

Seq I Seq 2 
OC-H27:1 OC-G27:2 
DO-G26:1 OD-F2 6:2 
DE-F2 5: I DE-E2 5:2 
DF-E24:1 DF-02 4:2 
DG-DI3:1 OG-81 3:2 
DG-D3 2: I 

Seq 6 Seq 7 
DC-D2 7:5 OC-827:6 OC-827:6 
DO-82 6:5 00-8;2 6:5 
DE-82 5:4 

08-82 08-82 OC-82 
USTOP 6 USTOP7 COMP76 

Chart DB. Input Routine, Fixed-Length Records 

NOTE: USTOPI, FILLI, GETI, and IFI Lobel. 
Apply for Input Sequence 1. For 
Sequences 2 Through 7, lobe I Suffixes 
are 2 Through 7 Respectively. 

Seq 3 Seq 4 
OC-F2 7:3 DC-E I 7:4 
DO-E26:3 DO-DI 6:4 
OE-02 5:3 DE 825:4 
OF-82 4:3 DF-82 4:3 

OKLMTS 

Store Current 
Sequence 
Interleave 
Factors 

H4 

Seq 5 Seq 6 
OC-D27:5 OC-82 7:6 
DO-82 6:5 

Seq 7 
OC- 82 7:6 

Charts 259 



• OB-C2, FILL5 
OB-H4 
OE-H4, NXT5R 

• OB-C2, FILL4 
OB-H4 
OF-H4, NXT 4R 

• OB-C2, FILL3 
OB-H4 
OG-Hl, NXT3R 

• OB-C2, FILL2 
OB-H4 
OG-H3, NXT2R 

• OB-C2, FILL! 
OB-H4 
OG-H5, NXTTR 

COMP54 

COMP43 

COMP32 

COMP21 

PUTI 

SEQCHK 

NOTE: Compare decisions are 
-- based on one controJ 

field (no equal routine) 
and ascending sequence. 

USTOP7 

Chart DC. Mainline Compare Routine. Fixed-Length Records 

260 IBM S/360 DOS sort/Merge 



• DB-O, FI LL4 
DB-H4 
DF-H4, NXT4R 

'DB-O, flLL3 
DB-H4 
DG-HI, NXT3R 

DB-C2, flLL2 
DB-H4 
DG-H3, NXT2R 

'DB-O, flLLI 
DB-H4 
DG-H5, NXTIR 

'DB-C2, FILL5 
DB-H4, 
DE-H4, NXT5R 
DC-B2, COMP76 
DC-O 

B2 

Sequence YES 
Depleted 

NO 

C2 

HI/EO 

LOW OR 5 

L---::-~=-:--f DE P LETE D 
D2 

LOW OR 3 
'------1 DEPLETED 

f2 

LOW OR 2 
'-.....,.----/ DEPLETED 

G2 

LOW OR I 
DEPLETED 

PUT6 H2 

Prepare to Move 
Seq 6 Record to 
Output Area 

DJ 
B3 

SEOCHK 

COMP54 

COMP43 

COMP32 

COMP21 

PUTI 

DJ 
G3 

HXT6R 

YES 

End of 6 

YES 

DB 
B2 

USTOP6 

NOTE: Compare deci~iomare 
based on one control 
field (no equal routine) 
and ascendi n9 sequence. 

H4 

HO 

COMP76 

J4 

HO 

GET6 

Chart DD. f.lainline Compare Routine Fixed-Length Records (Cant' d) 

Charts 261 



• DB-C2, FILL3 
DB- H4 
DG-Hl, NXT3R 

• DB-C2, FILL2 
DB-H4 
DG-H3, NXT2R 

• DB-C2, FILl! 
DB-H4 
DG-H5, NXTlR 

• DB-C2, FILL4 
DB-H4 
DC-D2, COMP75 
DD-B2, COMP65 
DD-C2 
DF-H4, NXT4R 

COMP54 B2 

Sequence 5 
Depleted 

NO 

C2 

YES 

HI/EO 

LOW OR 3 
L..-----1 DE PLETED 

E2 

LOW OR 1 
DEPLETED 

PUT5 G2 

Prepare to Move 
Seq 5 Record to 
Output Area 

DJ 
33 

SEQCHK 

COMP43 

COMP32 

COMP21 

PUTl 

NOTE: Compare decisions are 
based on one control 
field (no equal routine) 
and ascending sequence. 

NXT5R 

YES 

USTOP5 

H4 

J4 

GET5 

• DC-D2, COMP75 
DD-B2, COMP65 

Chart DE. Mainline Compare Routine Fixed-Length .Records (Cont'd) 

262 IBM S/360 DOS Sort/Merge 



Chart DF. 

DB-C2, FILL2 
DB-H4 
DG-H3, NXT2R 

DB-C2, F I LLl 
DB-H4 

Sequence 
Depleted 

NO 

SEQCHK 

• DB-C2,FILL3 
DB-H4 
DC-E2,COMP74 
DD-D2, COMP64 
DE-B2,COMP54 
DE-C2 
DG-HI,NXT3R 

L2 

YES 

C2 

COMP32 

COMP21 

PUTI 

NOTE: Compare decisions ore based on one 
control field (no equol routine) and 
ascending sequence. 

NXT4R H4 

USTOP4 

Mainline Compare Routine Fixed-Length Records (Cont'd) 

'DC-E2, COMP74 
DD-D2, COMP64 
DE-B2, COMP54 

Charts 263 



• D8-C2, FILL2 
DB-H4 
DC-F2, COMP73 
DD-E2, COMP63 
DE-D2, COMP53 
DF-B2, COMP43 
DF-C2 

BI 

• DB-C2, FILLI 
DB-H4 

Sequence 3 YES 
Depleted >---r-----L-----------I 

DC-G2, COMP72 
DD-F2, COMP62 
DE-E2, COMP52 
DF-D2, COMP42 

DJ 
B3 

SEQCHK 

NXT3R 

USTOP3 

HI 

• DC-F2, COMP73 
DD-E2, COMP63 

J I DE-D2, COMP53 
DF-B2, COMP43 

COMP21 C3 

NO 

D3 

HI/EQ 
Compare 2:1 

PU;.:T",2 __ ,-_"", E3 

Prepare to Move 
Seq 2 Record to 
Output Area 

SEQCHK 

NXT2R 

USTOP2 

H3 

NOTE: Compare decisions ore 
based on one control 
field {no equal routine} 
and ascending sequence. 

* DB-H4 
DC-H2, COMP71 
DD-G2, COMP61 
DE-F2, COMP51 
DF-E2, COMP41 

PUTI 

Prepare to Move 
Seq 1 Record to 
Output Area 

SEQCHK 

NXTlR 

USTOPI 

E5 

H5 

Chart DG. Mainline Compare Routine .Fixed-Length Records (Cont'd) 

264 IBM S/360 DOS Sort/Merge 



Chart DH. 

IFI 

LRMDRI 

Initialize Input 
Disk Address 
Routine with 
Reduced Inter­
leave Foctors 

CPBPTI C2 

Increment Register 
o for Next Valid 
Record Number 

D2 

Increment Register 
o for Next Vol id 
T rack Number 

E2 

An Extend NO 

IF I 

DB 
FI 

LRMDR B3 
,---'--., 

Initialize Input 
Disk Address 
Routine with 
Interleave Factors 

OKLMTS E3 

Upper Limit 
Exceeded 

>----.1 
Store New Input 
Interleave 
Address 

YES 

F2 

Compute Exceeded 
Factor 

Retrieve Next 
Lower Extent and 

Compute Next 
Address 

G2 

H2 

Retrieve and Store 
Symbol ic Unit 
Address for New 
Extent 

compute Input Interleaved Disk Address, Fixed-Length Records 

Charts 265 



Reconversion 
Routine 
(One of Four) 

B2 

NO 

SEQERR 

7-Way 4-Way 
DC-H4 DF-H4 
DD-H4 DG-HI 
DE-H4 DG-H3 
DF-H4 DG-H5 
DG-HI 
DG'-H3 
DG-H5 

For Tape Output, I 
Initialization I 
Routine Reloca.... : 
EOJTAP Following I 
Th is Dec ision I 

*DC-J2,PUT7 
DD-H2,PUT6 
DE-G2,PUT5 
DF-F2,PUT4 

Move Record 

Phase 3 Record 
Count Routi ne 

B3 

DG-EI,PUT3 
DG-E3,PUT2 
DG-ES,PUTI 

*DK-C1 
DK-F2, LABETY 

" < , , , 

04 

H4 

'" , 
"" ,;' ......... YES Initialize to Write < Tape Output ~~--~Last Output Block 
',/'" and Close File , " 

Chart OJ. Output Routine, Fixed-Length Records 

266 IBM S/360 DOS Sort/Merge 

NO 

I For Tape Output, 
I Inillollzallon 
I Routine Reloca .... 
10PIEOVat 
I LWRITE+4 

r--·.!-----' 
I 
I CPBPTO 

I 
I 

Colculate Next 
Output Disk 
Address 

os 

ES 



PH3EOJ B1 82 r----, 

EOF Record >-Y~E::S __ -! Prepare to Close 
Written Output File 

NO 

C1 
r--~-, 

Initialize to Write 
Disk EOF Record 

LWRITE 

• DL-DS 
DL-E4 
DL-G3 
DL-H2 
DL-H4 

OPENF D2 

Insert Open, 
Close or Sequence 
Error Indicator 
in Register 0 

.~ 
c 
~ 
! 

~ 
~ a: ..: J2 

Initial ize to 
Read In Label 
Li nkoge Routi ne 

• DJ-E4, LWRITE+4 
DJ-ES 
DJ-C2, SEOERR 

j 
" 0 

.:! 
~ 

'" ..: 

X31LNK 

CLOSE 

Insert End-of­
Volume Indicator 
in Register 0 

D3 

I 
I 

,------1 
I Re located Duri n9 I 
I Initialization with I 
I OPl EOV Routine 
I (Tape Output Only): 
L _____ ...J 

j 
2 

~ 

~ 
DL 
H4 

"5 ]. Q. 

"5 <3 0 
-" . 

Q. 

9 i .~ 

1 c 
5 :;: 

" " 0 0 
.:! .:! 
~ . 
'" '" ..: ..: 

DJ DJ 
C4 D3 

LWRITE 

Chart OK. Output Rout ine, Fixed- Length Records (Cont I d) 

5 
.E w . 0 U 
c 

! 
z 
Q 
.-
>-a. . .:! 

~ £ 
~ [ 

::;: Q 
DJ 
C1 

CONVRT 

Charts 267 



X31lNK B2 

Store Indicator and 
Test for Open, 
End .. Of-Volume, 
Close or Sequence­
Error Condition 

B3 ,-------, 
I : 
I Close I ... Disk I 
, I 
L---r--...J 

I-----T------

: Decision Mode ,I 

I by Ion 

I I L _____ ...1 

YES 

Extract Extents 
and Logical 
Unit Address 
Irom DTF Table 

lABETY 

.-___ ,G3 

Initialize 
NO Tope DTF Table >,;..;.;;...-- with Rewind Code 

for EOV Time 
and Close Ti me 

H2. 

B4 
1-----1 
I I I End-ai-Volume I 
I or Close for Tope I 

L--T--...J 

Insert Block (aunt 
in OTF Table and 
Clear Tape Block 
Counter 

LABETY 

Initialize 
to Restore 
Mainline from 
Checkpoint 
Track 

LABETY 

H4 

Chart DL. Label Linkage Routine (LLR). Fixed-Length Records 

268 IBM 5/360 DOS Sort/Merge 

B5 

r----- --I 
I Sequence Error I 
I Terminates Sort Run 1 
I I L __ ., __ --1 

CANCEL 



Chart 04. 

INTPH3 B2 

DM 

Phase 3 

C2 

DN 

Fi II I nput Areas 

LRMDRI D2 

DT 

E2 

Merge Records 

SEQCHK F2 

DU,DV 

Sequence Check, 
.Reconvert, 
Exit 32, and 
Output Routine 

Output 
Area Full 

G2 

YES 

G3 

Open, EOV, NO 
or Close Time 

YES 

X31LNK H3' 

DW 

lobe I Li nkoge 
Routine 

J3 

YES 

DSORT303 - 3-WAY MERGE 
DSORT304 - 6-WAY MERGE 

Move Record to 
Output Area 

Lost 
Record 
Processed 

Last Record 
Processed 

NO 

E4 

F4 

NO 

last Record NO 
Processed '>-.:.:.:=-----~ 

YES 

F5 

Input Area NO 
Depleted 

G5 

End of a YES 
Sequence 

Final Merge, Variable-Length Records (Phase 3), DSORT303 or DSORT304 

Charts 269 



Equal Routine is 
Not Required 

Initialize 
Sequence 
Error Routi ne 

O;...PT.:..:I-=O.:...N'---L-~G I 

Initialize for 
Exit 32 as 
Specified 

PRTEOJ 

.--_...J.._ ..... 03 

Initialize Phase 
3 Output Channel 
Program and 
Output Rtn for 
Tape Output 

r-_-1._-,E3 

Initialize 
Lobe I Routi ne 
for Tape Output 
Specifications 

Initial ize to 
Indude or 
Delete Equal 
Routine 

RELOCA H3 

RELOCA FA 

Relocator Routine 

START J3 
Extract onstants 
from Checkpoint 
Record and 
Relocate Routines 
Starting at 
STARTI 

NO 

OUTOSK 04 
~_...J.._-. 

Initialize for 
Disk Output and 
Label linkage 
Routine for 
Disk Output 

Chart DM. Phase 3 Initialization. Variable-Length Records 

270 IBM S/360 DOS Sort/Merge 

STARTI 

Calculate Con­
statns for Phase 3 
Input Areas 

85 

OUTAPE C5 

Compute Output 
Area Constants 

PH3MRG 

Initialize Phase 

USTOPI 

05 



OM 

6 

5 

4 

3 

2 

1 

Not Applicable 
to Seq F (In 6-
Way) Nor to Seq 
C (In 3-Woy) 

Seq 1 Seq 2 

DP-G26:1 DP-F26:2 

DQ-F2 5:1 DQ-E25:2 

DR-E2 4: 1 DR-D2 4:2 

DS-CI3:1 OS-AI 3:2 

DS-B3 2: I DS-B3 2: 1 

DS-D5PUT 

IFI 

Seq 3 

DP-E2 6:3 

DQ-D25:3 

DR-B2 4:3 

OS-AI 3:2 

OM FROM 
6 DP-G4 NXTR6 

DQ-G4 NXTR5 

DR-G4 NXTR4 

DS-GI NXTR3 

DS-G3 NXTR2 

DS-G5 NXTRI 

F2 

LRMDRI 

Seq 4 Seq 5 Seq 6 

DP-D26:4 DP-B26:5 DP-B2 6:5 
DQ-B25:4 DQ-B25:4 

DR-B2 4:3 

OM Seq I 

6 DP-G26:1 

5 DQ-F25:1 

4 DR-E2 4: I 

3 DS-CI 3:1 

2 DS-B3 2: I 

NOTE: USTOPI, FILLl, GETI, and IFI label. 
apply for input sequence 1. For 
input sequences 2 through 6, label 
suffixes are 2 through 6 respectively. 

Seq 2 Seq 3 

DP-F26:2 DP-E2 6:3 

DQ-E25:2 DQ-D25:3 

DR-D24:2 DR-B2 4:3 

DS-AI 3:2 

OKLlMTS 

Store Current 
Sequence 
Interleave 
Factors 

H4 

Seq 4 Seq 5 Seq 6 

DP-D26:4 DP-B26:5 DP-B26:5 

DQ-B25:4 

Chart DN. Input Routine. Variable-Length Records 

Charts 271 



* DN-C2,Flll4 
DN-H4 
DR-J4 

*DN-C2, FIll3 
DN-H4 
DS-Jl 

• DNCC2, FllL2 
DN-H4 
DS-J3 

*DN-C2, FllLi 
DN-H4 
DS-J5 

SEQCHK 

COMP54 

COMP43 

COMP32 

COMP21 

PUll 

NOTE: Compare decisions ore based on one 
control field (no equol routine) and 
ascending sequence. 

GET6 

Chart DP. Mainline Compare Routine, Variable-Length Records 

272 IBM S/360 DOS sort/Merge 

H5 

ISPLIT 



Chart DQ. 

• DA-C2,Flll3 
DN-H4 
DS-JI 

• DN-C2,Flll2 
DN-H4 
DS-J3 

• DA-C2, Fllli 
DN-H4 
DS-JS 

DN-C2,Flll4 
DN-H4 
0I'-82,COMP65 
0I'-C2 
DR-J4 

Prepare to I'kve 
Seq 5 Record to 
Ouptut Alea 

SEQCHK 

COMP43 

COMP32 

COMP21 

PUTI 

NOTE: Compare decisions are 
based on one control field (no 
equal routine) and ascending 
sequence. 

SPLlT5 H5 

Next 5 
Record 
SpH' 

GETS 

YES 

,-----, 

ISi'LIT 

Mainline Compare Routine. Variable-Length Records <Cont'd) 

Charts 273 



• ON-C2,FILL2 
ON-H4 
OS-J3 

'ON-C2, FILLI 
ON-H4 
OS-J5 

• DN-C2, FILL3 
ON-H4 
05-JI 
OP-02, COMPl>4 
OQ-82, COMPS4 
OO-C2 

Prepare to Move 
Sequence 4-
Record to Output 

"'.0 

COMP32 

COMP21 

PUTI 

NOTE: Compare decisions are 
based on one control field (no 
equal routine) and ascending 
sequence. 

SPLlT4 H5 

Next 4 YES 
>----1 

GET4 

ISPLIT 

'DP-02,COMP64 
OQ-B2,COMP54 

Chart DR. Mainline Compare Routine, Variable-Length Records (Cont'd) 

274 IBM S/360 DOS Sort/Merge 



OP-E2,COMP63 OR-82,COM43 

Prepare to Move 
Seq uence 3 Record 
to Output Area 

DU 
82 

SEQCHK 

NXT3R Gl 

OQ-02,COMPS3 OR-C2 

'ON-C2,FILLl 
ON-H4 
OP-F2, COMP62 
00- E2, COMPS2 
OR-D2, COMP42 

SP,.L::.IT:..:3'--______ H2 

Initialize to Next 3 
Record 
Split 

YES Move 1st Part of >='----1 Split Record to 3 
Overflow Mea 

JI 

ISPLIT 

DR- 82, COMP63 
DQ-D2, COMPS3 
DP-E2,COMP43 

PU ~T:..:2 __ -,--_~ 03 

Prepare to Move 
Sequence 2 Record 
to Output Area 

NXT2R 

DU 
82 

SEOCHK 

Next 2 
Record 
Split 

NO 

GET2 

G3 

J3 

YES 

NOTE: Compare decisions are 
-- based on one contral field (no 

equal routine) and ascending 
sequence. 

DN-H4 
DP-G2,COMP61 
DO-F2, CaMPS I 
DR-E2,COMP41 

PUTI D5 

Prepare to Move 
Sequence 1 Record 
to Output Area 

SP~L::.IT:..:2 ___ ~ H4 

ISPLIT 

'DP-F2,COMP62 
DO-E2,COMPS2 
DR-D2,COMP42 

NXTIR 

SEQCHK 

G5 

NO USTOPI 

HS 

Chart DS. Mainline Compare Routine, Variable-Length Records (Cont'd) 

Charts 275 



IFI 

LRMDRI B2 

Initialize Input 
Disk Address 
with Reduced 
Interleave 
Factors 

CPBPTI C2 

Increment 
Register 0 for 
Next Valid 

02 

Increment 
Regi ste r 0 for 
Next Valid 
Track Number 

E2 

Compute Exceeded 
Foctor 

Retrieve Next 
Lower Extent 
and Compute 
Next Address 

Retrieve and 
Store Symbolic 
Unit Address 
for New Extent 

G2 

H2 

IFI 

LRMOR B3 

Initialize Input 
Disk Address 
with Interleave 
Facto" 

OKLMTS E3 

NO Store New 
Input Interleave 
Address 

Chart DT. Compute Input Interleaved Disk Address, variable-Length Records 

276 IBM S/360 DOS Sort/Merge 



* OP-H2, PUT6 
OQ-G2,PUT5 
OR-F2,PUT4 
OS-01,PUT3 
OS-03,PUT2 
OS-05,PUTI 

First Winning 
Record 

82 

L-____ .. ____ -..:..N;.;O~ Sequence Ercer 

Update Output 
Area to Move 
Next Output 
Record 

01 

)1 

YES 

SEQERR 02 
,----'---, 

Set Sequence 
Error Indicator 

OPENF 

ON-02 

S." To 
1 
2 
3 
4 
5 
6 

GET! 
GET2 
GET3 
GET4 
GET5 
GET6 

* OP-G4, NXT6R 
OQ-G4, NXT5R 
OR-G4, NXT4R 
OS-G I, NX T3R 
OS-G3, NXT2R 
OS-G5, NXTI R 

• OP-H5,SPLlT6 
OQ-H5,SPLlT5 
OR-H5, SPLlT4 
OS-H2,SPLlT3 
0S-H4,SPLlT2 
OS-K5,SPLITI 

83 ISPLIT 84 
r----L--..., 

(3 

Prepare to Move 
a Split Record or 

an Output Record 

r-------, 
I For Tape Output, I 
I Initialization I 
I Routine Relocates I 

I OPlEOVal 1 
I TAPOV2+4 I 
~-------l 

1 

WTL8LK 

Initialize to 
Write a Block of 
Records 

85 

L _____ _ 

MOWAR 03 

Move Record 

SPLlTR 

Phose 3 Record 
Count Routine 

E3 

H3 

(P8PTO 04 

Calculate Next 
Output Disk Address 

E4 

F4 
r-----'---, 

05 

/ "­
/ "-

NO // ""''- ..... 

OPENF 

<, Tape Output /) 

" / " / " / 
yES 

E5 

PH3EO) 

Chart DU. output Routine, Variable-Length Records 

Charts 277 



PH3EJI 

EOF Record 
Written 

NO 

r----'--,01 

Initialize to 
Write Disk EOF 
Record 

LWRITE 

YES Set Close 
Switch On 

~ 
~ 
~ 
I!! 

~ 
'" t 
..: 

Initialize to 
Read in 
Label Linkage 
Routine 

• OU-E4 
OU-ES 
OU-02, 
SEQERR OPENF C3 

Insert Open, Close, 

)--'-""'""1 ~d~;~~:rn~: Error 

Register 0 

j '" ~ ~ 
Cl I!! ..: 

~ ~ 

~ '" I!! 
..: ~ 

H2 

ow m B2 

X31LNK 

>-:::> r: 
:::> 
0 
~ 
is 
I 

~ 
~ 
~ 
Cl ..: 
~ 

'" t ..: 

ou 
CS 

LWRITE 

CLOSE C4 

Insert End-of­
Volume Indicator 
in Register 0 

5 r: 
:::> 
0 
l!! ..: 
>-
I 

~ 
~ 
~ 
Cl ..: 
~ 

'" t ..: 

ou 
C3 

'OW-OS 
OW-E4,X31EVT 
OW-G3 
OW-H2 
OW-H4 

'" 0 
~ 
~ ~ 

Z 0 
Z 

~ Q 
(J 

ill ~ 
0:. ~ 
::l !!1 
I!! '" ii1 

~ 3: 
'" ffi t ..: Q 
OU 
01 

MSPLIT CONVRT 

Chart DV. output Routine, Variable-Length Records (Cont'd) 

278 IBM S/360 DOS Sort/Merge 



LABETY 

B2 

Store Indicator and 
Test for Open, 
End-of-Volume, 
Close or Sequence 
Error Condition 

r-------,---- --
: Decision Made 
I by 10CS 

I 
I 
I 
I 

~ _____ J 

X31TSl G2 

Disk Output 

YES 

H2 

Extract Extents and 
Logical Unit 
Address from OTF 
Table 

NO 

B3 r------., 
I I 
I I 
I Close for Disk I 
I I 

I L __ , __ -l 

G3 

Initialize Tape 
OlF Table with 
Rewind Code for 
fOV Time and 
CLOSE Time 

DV 
E3 

LABETY 

B4 
r-------, 
I I 
I End-of-Vol ume or I 
I Close for Tape I 
I I 
L--r--...J 

X31CLS-12 C4 

Insert Block Count 
in DTF Table and 
Clear Tape Block 
Counter 

X31CLS 04 

LABETY 

LABETY 

H4 

Initialize 
to Restore 
Mainline from 
Checkpoint 
Track 

Chart ow. .Label Linkage Routine (LLR), Variable-Length Records 

B5 
,-----1 
I Sequence Error 
I Terminotes Sort 
I Run 

I 
I 

I I 
L--r--...J 

CANCEL 

Charts 



PANCO B2 

401 EA 

Initialize 
Open/Close 
Routine 

PANCO (2 

402 EB 

Initialize Merge 
Mainline 

Merge Records 

OUTFIL 

402 

G2 

H2 

EH 

Output Routine 

B3 

Sequence Error 

NO 

YES 

End of File 

PH3EOJ 

402 

End-oF-Job 
Routine 

C3 

D3 

G3 

EJ 

401 

YES 
Sequence Error 

Routine 

NO 

Chart 05. Merge-Only (Phase 4), DSORT401 and DSORT402 

280 IBM S/360 DOS Sort/Merge 

B4 

EL 

NOTE, 401 and 402 In 
blocks denote 
DSORTnnn in 
which routine 
appears. 
linkage between 
the overlays is 
provided by 
checkpoint routine 
(Chart EPl. 



PANCO 

FETCH4 

AS 
G2 

BI 

Load Base Register 
and Store Logical 
Unit Address 

Store Address 
of First Track 
of Work Area 

CI 

01 

Calculate Address 
of Second Track 
of Wo~k Area 

Get Address of 
User Routines and 
Get OM 

GI 

Is SYSlOG 
a 1052 

YES 

INITI HI 

Disk Output 

NO 

TAP OUT J I 

Initialize Tape 
Output DTF 
Table 

G2 

Initialize 
NO Sequence Error 

Routine for No 
~esponse 

H2 

Initial ize and 
YES Relocate Disk 

Output DTF 
Tobie 

J2 

Initialize 
Open/Close 
Routine for 
Disk Output 

INIT2 A3 

Initial ize Bronch 
to CHKPOINT 
Dependi ng on OM 

B3 

DISK 

Input Fi Ie 

A on Disk 

YES 

Initialize and 
Relocate Disk 
Input DTF Table 
for this File 

C3 

NO 

TAPE 

Initialize Tope 

Input OTF Table 
for this File 

C4 

INIT3 _l!L __ -,-_____ ~ 

OM=I 

NO 

BAl to TAPE or 
DISK for File B 
and Return to 

INIT4 

INIT4 

OM~2 

NO 

BAl to TAPE 
or DISK for File 
C and Return 

to INIT5 

INIT5 

NO 

BAl to TAPE or 

DISK for File 0 
and Return to 
CHKPOINT 

YES 

E3 

F3 

YES 

G3 

H3 

J3 

G4 

Write Initialized 

Open/Close 
Routine on Disk 

FETCH 

lood Information 
for Merge 
Mainline 

PANCO 
(OSORT402) 

H4 

Chart EA. Initialize open/Close Routine, DSORT401 

Charts 281 



A2 ITCOMP A4 TPOUT A5 

Initial ize Compare 
Exit 45 YES Loop~ and Disk or TAPE 

Sequence Check Tape Output 

FETCH Compare 

NO DISK 

PAN CO BI B2 B4 B5 

Load Base Modify Error 
Initialize 

Registers and Routine for 
for Ascending Prepare Count 

Store Information No Exit 45 
or Descending Field 

rcom DSORT 401 Sequence 

TSBPASS C2 CllFOR C4 OUTAPE (5 

Initialize to 

BYPASS Op';on 
YES Include or Colcultae End 

Exclude Optional of Output Area 

Routines 

NO 

D2 GOGO D3 D4 D5 

Store Constants and 
RElOCA FA 

Initialize Each 
Modify Error Initiolize to Determine Label 

Input Fi Ie for 
Routi ne for No Bypass Unreodobl e Relocate Optional Type and OM 

Disk or Tape 
Bypass Records Routines for User 

INIT2 EI TSTREC E3 INIT3 E4 E5 

Does Key Calculate Input 
Initialjze 10 

YES Open Mainline 
Have to Areas and Start 

and to Fill 
Be Read of Output Area 

Input Areas 

NO YES 

FI KEYOK F2 FIXlGN F3 NOUSER F5 

Initialize to Initiol ize·Error 
Initial ize for 

Exclude Key and and EOJ Routines 
FlR Input and NO 
Output on User Routine(s) 

Key length for Key 
Tape or Disk 

TSTFORM GI G2 G3 G4 

Initial ize for Initialize to Use YES Initialize for VlR Data Conversion l3 for Maving 1I <l3 
and Exit 42 Records 

on Disk or Tape 

NO 

TESTON HI H2 PROS H3 H4 FlllDl H5 

Initialize for 
YES Variable NO 

Data Reconversion Initialize for Disk Output 
Initialize ·Output 

and Exit 43 Variable Blocks Blocking Count Field 

NO YES 

TESTEX J I FlDSKO J2 TAPOFX J3 J4 J5 

Compute Constants 
NO Initialize to load Registers 

for Disk Address Tape Output Compute Di sk for Open/Close 
Output Addresses Routine 

YES 

K2 TAPOFX+8 K3 

Initialize to 
Initialize for Initialize for TAPEI-2 

Ca"!1 in User 
VERIFY OpHon FlR or VlR on 

Routines Tape Output 

Chart EB. Initialize Mainline. DSORT402 

282 IBM S/360 DOS Sort/Merge 



• EE-J3 
EF-H3 
EG-H2 
EG-H4 

Restore Starting 
Address of 
Input Area 

'ED-H2 

81 

EO-H3, ERROR 
EO-J4, LAST8LK 
EO-H5, ERRW 

TAPEX 

TAPEI-2 

load Address 
of TAPEI 

C2 

02 

Get CC8 and 
Indi cator for File 
to be Processed 

E2 

NO 

F2 

TEST 

Chart EC. Input Routine, DSORT402 

FIXIPI 83 'EE-J3 

EF-H3 
EG-H2 

Store End-of-Block EG-H4 
Address 

TRI-4 CPIAOO C4 

TRI 

Restore File 
Designation 

Exit 42 

03 

NO 

Get Extent limit!. 
for File and 
Increment Record 
Number 

End­
of-Track 
Indicator 

NO 

04 

Switch to Next 
>-Y:..:E~S __ -4 Track and Switch 

Cylinders if 
Required 

05 

E4 E5 

NO 
Data Conversion 

YES 

G3 

FB, FC, FD, FE 

Upper limit 
Exceeded 

NO 

OKLMTS 

Store New Disk 
Address 

Reduce Address 
by One and 

F4 

G4 

Convert Data 
(One of Four 
Routines) 

Store Seek Address 

'EE-63, COMP43 (FILE D, OM~4) 
EE-63, COMP43 (FILE C, OM~4) 
EE-03, COMP42 (FILE 6, OM~4) 
EE-E3, COMP41 (FILE A, OM~) 
EF-63, COMP32 (FI LE 8, OM~3) 
Ef-03, COMP31 (FILE A, OM~3) 
EG-C2, C0MP21 (FILE A, OM~2) 

YES lost Short 
Block 

Insert EOV 
Indicator 

F5 

G5 

EM,EN 

Get Next Extent 

YES 

FROMOK 

Charts 283 



01 

Set End-of-Track 
Indicator 

El 

TAPEX A2 

E2 

BCERRW ? 
" , 

B3 

" ' "WLR 'YES 
< on Previous 0 

ERR 

',Block /' 
...... ,Ii/" 2 

" " 

NO 

, 
" 

C3 

NO 

03 

E3 

Calculate Number 
of Byte. Rood 

NO " Exit 45 > Locd Data Le"llth 

Insert Ohk EOF 
Indicator 

HI 

Turn Off Branch ta 
EOFOK from Input 
Routine 

NO 
Locd BPASS as 
Return Address in 
Register LINK 

Set End-of-Trock 
Irydicator 

J2 

YES Turn on Branch to >-=-_01 EOFOK from Input 

BEGIN 
(OSORT401) 

Routine 

Chart ED. Er.ror Routine. DSORTlJ02 

284 IBM S/360 DOS Sort/Merge 

, , , " " " 

,," " 
~/ Response is 'Q)YES 

.... IGNORE " 

',,," 3 

NO 

ERROR 

Increment Count 
of Unreodable 
Blocks 

H3 

WLR X B4 

< 
" , " , " , Key 

" ,," , " 
YES 

C4 

Add Key Length to 
Oota Length 

WLR2 04 

E4 

NO 

/' .... , 
,," Fixed-' NO 

< Length 
" Records,/'" 

'y~s 
~ F4 

/ , 
/ , 

;' , YES <, Key , 

" , ;' , 
;' , NO < Fixed Blocking 8 ' / 

',,," 6 

YES 

LASTBLK 

Turn off EOF and 
Turn on BCERRW 

J4 

Turn on EOF and 
Turn off BCERRW 

RESTOR 

Restore Register 
RGI5 

RESTOR+4 E5 

Calculate End-of­
Block Address 

FIXIPI 

LALINK G5 

Load T APEG 1-4 as 
Return Address in 
Register LINK 

J5 
;' , 

,,/'WLR " YES < on Previous ~ 
, Block ,," 
',,, 7 

NO 

TAPEGI-4 



Chart EE. 

LRA 

LRA!LRB!LRC/LRD 

COMP43 B3 

file D YES 

Depicted 

NO 

(3 

HI/EO 

LOW OR ( 
DEPLETED 

D3 

LOW OR B 
DEPLETED 

E3 

LOW OR A 
DEPLETED 

PUT4 F3 

Prepare to Move 
File D.Record to 
Output Area 

OUTFIL 

ZYXWZY 

GET4 

J3 

TR4-4 

File D Compare LOop, DSORT402 

NOTE: Compare dec isions are based on one 
control field (no equal routine) and 
ascending sequence. 

(OMP32 

(OMP21 

PUT I 

Charts 235 



Prepare to Ntove 
File C Record to 
Output Area 

OUTFll 

ZYXWZY 

GET3 

Chart EF. File C Compare .Loop, DSORT402 

286 IBM S/360 DOS sort/Merge 

~ Compare decisions ore based on one 
control field (no equal routine) and 
ascending sequence. 



Chart EG. 

EE-D3, COMP42 
EF-B3, COMP32 
EF-C3 
EC-F3, LRA 

COMP2l C2 

File B 
Depleted 

NO 

Compare B:A 

YES 

D2 

HI/EQ 

LOW OR A 
DEPLETED 

PUT2 

Prepare to Move 
File B Record to 
Output Area 

OUTFIL 

ZYXWZY 

GET2 

E2 

H2 

TR2-4 

File B Compare LOop, DSORT402 

PUTI 

NOTE: Compare decisions are 
based on one control 
field (no equol routine) 
and ascending sequence. 

EE-E3, COMP4l 
EF-D3, COMP3l 

E4 

Prepare to Move 
File A Record to 
Output Area 

EH 
Bl 

OUTFIL 

ZYXWZY 

GETI 

H4 

TRI-4 

Charts 287 



'EE-F3, PUT4 
EF-E3, PUT3 
EG-E2, PUT2 
EG-E4, PUTI 

OUTFll 

SEQERR 

load Registers 
for Sequence 
Error Routine 

SEQ ERR 
(DSORT401) 

RESPONSE 
(DSORT401) 

Reconvert Data 
(One of Four 
Routines) 

HI 

EXIT 

Update Output 
Area Address 

A2' 

D2 

E2 

Restore Output 
Area to Maximum 
Block Size 

'" , '" , 

F2 

G2 

./ Fixed ""- NO < length 
"" Records// , '" 

YES 

H2 

Determi ne Length ... 1 
of Record to Be 
Moved 

FIXMOV J2 

InItialize Registers 
and Move Record to 
Output Area 

0) 
T A3 
" , '" , ,/ Fixed- "- YE < length 

"" Records /',/ , '" 
NO 

WRITEV B3 

Determine Block 
Length and Store 
Data Count 

TAPOV3 

" , /' , 
C3 

" , TAPE < D;skorTape 8 
' " ',,,'" 5 

DISK 

D3 

E3 

Restore Track 
Capacity and 
Set End-of-
Track Indicator 

F3 

H3 

Determi ne Length 
and length-I 
of Record to Be 
Moved 

zyxWZY J3 

Update Count of 
Records Processed 
and Restore LINK 
Register 

• EE-J3 
EF-H3 
EG-H2 
EG-H4 

Chart EH. output Routine, DSORT402 

288 IBM S/360 DOS Sort/Merge 

lWRITE A4 

B4 

'" , 
/'/' "TAPE < Disk or Tape >--------1 , '" " ",/' 

DISK 

CPBPTO C4 

Calculate Next 
Disk Output 
Address 

D4 

NO 

LMTOKO E4 

Store New Oi sk 
Address and Seek 
Addresses 

EOVDSK 

Initiol ize for 
Open/Close 
Routine 

G4 

H4 

EM,EN 

Open Next Volume 
or Get Next 
Extent, if Any 

/' , 
/' , 

J4 

'" , TAPE < Disk or Tape , '" " ,,/' 

cBSK 

'" , " , < "'Disk 0< Tape' DISK 
, " , '" , '" 

TAPE 

Update Output 
Block Count 

E5 

ADJOUT F5 

YES 

Increment 
FllEO to Bypass 
Count Field 

End of 
Volume 

G5 

PH3EJ I H5 

'" , /' , 
</' End of Job 'v YES , '" , '" , , /' INO • EJ-B3, PH3EOJ 

J5 EJ-J3, TAPOUT 

" , 
",""Fixed " NO 

< length "8 
',Record ./ 

J§' · 



Chart. EJ. 

PH3EJI 

PH3EOJ B3 

Insert lost Record 
Indication for User 

Initialize to 
Process lost 
Record 

C3 

D3 

CONVRT EH 

Reconversion and 
User Exit for Last 
Record 

ADDI 

< 

Write last 
Block 

/ " 
F3 

/ "YES 
Key 

" / "1/ NO 

G3 

WRITEV EH 

Write Last Block 

l 
PH3EJ2 ~- H3 

/ " /. k :-... DISK 

G4 

LWRITE EH 

Write Lost Block 

H4 

WRITEV EH 

< 0;, or Tape )----i 
" Output / Write EOF Record 

" / 

TAPOUT J3 

Prepare to Close 
File and Write 
eOJ Messages 

BEGIN 
(DSORT401) 

End of Job Routine, DSORT402 

Charts 289 



ClOSEO 

EOJMES 

load Number of 
Records 
Processed 

Chart EK. End of Job Messages, DSORT401 

290 IBM S/360 DOS Sort/Merge 

C3 



Cha.rt EL. 

COMP 

SEQERR 

Insert File 
Designation in 
Error Messoge 

C3 

NO EXIT 

H3 

NO 
CANCEL 

YES 

Sequence Error Routine, DSORT401 

J4 

Charts 291 



BEGIN B2 OPENA B3 

Store Contents of 
Registers 

YES 

C2 C3 

Store Address of 
CCB fa< FH. A 

YES 

D2 OPENX D3 

Store EOV or EOF 
Indicator 

E3 

OUTPUT F3 

-' 
, -' " -' " ,/ "-

-' 
, 

TAPE ,/ "- DISK 
< Disk or Tape < Disk or Tape , ./ "- -' "- ./ "- -' , 

-' , ,/ 

*H-E3, RESPONSE 
DISK TAPE El-G3 

EN-64, ClOSEI 
G2 G3 EN-J2, NIEFI 

EN-J3, MODIFY 
EN-J4 Get Extent limits 
EN-JS and Address of 

Store 810ck Count 
and Reset to Zero 

H2 OUTDK H3 

Restore Registers 

EOJMES 

Chart EM. Open/Close Routine. DSORT401 

292 IBM S/360 DOS Sort/Merge 

USEREX44 

COMP D4 

NO SEQERR 

INPUT 

OM"O 

NO 

Insert 'V' in 
Ope!1/Close 
Indicator 

/', 
,/ "-

E4 

YES 

G4 

J4 

./ "- TAPE 

GOGO 

Is 'MODIFY' 
Initialized 

NO 

Initialize 
'MODIFY' to 
Open or Close 
Input Files 

GOGOI 

Disk or Tope >-----~ , ./ 
"- ,/ 

dS" 

65 

FS 

YES 

GS 



'EM-G4 
EM-G5 

GOGOI 

Get DTF Table 
Address and File 
Designation 

Cl 

DI D2 

USEREX41 

load File 
Designation and 
label Type 
for User 

B2 

Tape Input 
NO Turn off 'TPDKSW' 

>-----land Store Device 
Type 

YES 

TAPEIN EI 

Turn on 'TPDKSW' 
and Store Device 
Type 

SWITCH2 F I 

Tope OM=O 

YES 

GOG02 GI 

Store Block Count 
and Reset to Zero 

NO 

E2 

Open/Close 
Indicator 

=V 

YES 

NO 

Turn on Unit 

Exception Bit in 
DTF 

F2 

H3 

OFF 
Tope/Disk 

Switch 
(DISK) Get Extent limits 

)":--':"--1 and Logical Unit 
Address 

NIEFI 

ON 
(TAPE) 

J2 

Initialize Rewind 
Option for CLOSE 
Time 

MODIFY J3 

Increment Bronch 
Address in Mainline 
for Return 

Chart EN. Open/Close Routine (Cont'd), DSORT401 

E4 

Last Volume 

YES 

EOFTAPE G4 

T urn On EOF Bit 
in OTF Table 

Increment Branch 

Address in Mainl ine 
for Return 

NO 

D5 

Initialize Branch 01 

FEOVTP and Deere 
ment Volume Count 

/ "­
/ "-

/ "-< Unlabeled File 

E5 

"- / 
"- / 

f· 
/ "-

YES / "-
Standard Labels> , / 

"- / 
"- / to G5 

/ "-
/ "-

YES / Exit 41 "-

/ 

/> 
/ 

Turn Off FEOV 
Bit and Increment 
Mainline Address 

EXIT 

YES 

Cha.rts 293 



FROM MAINLINE 
(See figure 50 in text.) 

Store Address of 
First Track of 
Work Area 

Store Address of 
Second Trock of 
Work Area 

83 

Store Address of 
CEVCHK in RGI5 

H3 

Execute DSORT401 
Functions 

NO 

MREG+30· 
(See figure 50 in text.) 

~hart EP. Checkpoint Routine, DSORT402 

294 IBM S/360 DOS Sort/Merge 



ENTER FROM MAINLINE 
INITIALIZATION VIA LINK REGISTER 

;=:':':":'--'---,.!~ - - - - - - - -
Initialize In Phases 2 and 3 
Move Routine for Fixed-Length 
for foAoinline Records Only 

Not in Phose 2 
Routine 

Move Optional 
Routine to 
New Address 

E3 

F3 

Activate Branch 
and Include Length 
of this Routine 

RlUPDT 

Update Starti ng 
Addr.ss of I/O 
Areas 

RlMDGT 

Update Constants 
for Checking 
Next Rout j ne 

G3 

H3 

RETURN TO MAINLINE 
INITIALIZATION VIA 
LINK REGISTER 

Chart FA.. Relocator Routine, Phases 2, 3, and 4 

EQINIT 64 

More than 
One Control 

Field 

YES 

(4 

Initialize Registers 
and Get Number of 
Control Fields 

D4 

Initialize Com pore 
Set with (.F. 
Displacement and 
length 

E4 

NO 

Is 
Sequence 

Same as First 
C. F. 

NO 

YES 

F4 

Initialize Base 
Registers to 
Compare in Same 
Order 

ANIULT G4 

Modify for 
Next Control Field 

H4 

NO 

ANONE 

Initialize 

Not in Phase 2 

ANICTE 

Initialize Bose 
Registers to 
Compore in 
Opposite Order 

65 

F5 

Charts 295 



SAL FROM MAINLINE 
(PHASES I AND 3 FOR SORT, 
PHASE 4 FOR MERGE-ONl Y) 

FIXPNT 

Get First Acldre$s 
of Equal Rtn Sets 

83 

FIXR2 C3 

Get Number of 
Fields to Convert 

FIXVTA D3 

NO 

Calculate Address 
of CF 

Invert Sign Bit 

"Aodify for 
Next CF 

E3 

F3 

G3 

RETURN TO MAINLINE 
VIA LINK REGISTER 14 

Chart FB. Fixed Point Convert/Reconvert 

296 IBM S/360 DOS Sort/Merge 

~OTE: Convert in 
phases 1 and 4. 
Reconvert in 
phases 3 and 4. 



BAL fROM MAINLINE 
(PHASES I .AND 3 fOR SORT, 
PHASE 4 fOR MERGE-ONLY) 

SIGPK2 

Get First Address 
of Equal Rtn 

SIGKR2 

Get Number of 

Get Address of 
Sign Byte 

CI 

DI 

fl 

CONVERT 

GI 

Store Sign Bits 

YES 

A2 

Test 
Negative 
EBCDIC 

NO 

NO 

Test 
Positive 
EBCDIC 

NO 

Generate a True 
ASCII Plus 
(Hex A) 

B2 

C2 

D2 

PAKLP2 

Shift Two Hex 
Digits a Half Byte 
to Right 

f2 

Minus Sign 

YES 

G2 

Invert Two Hex 
Digit Bits 

PAKCLR H2 

YES 

NO 

C3 

Generate a True 
EBCDIC Plus 
(Hex C) 

Store Sign Bits in 

H3 

Leftmost YES 
Byte of CF r----i ~e:tamn:stR:v~:s~ of 

Sign 

NO 

J2 

tv\odify for Next 
Byte 

2hart FC. Floa ting-Poi nt Conve rt/Reconvert 

NO 

A4 

Restore and Save 
Sign 

B4 

Shift Two Hex 
Digits a Half 

Byte to left 

C4 

Minus Sign 

NO 

D4 

Modify for Next 
Byte 

E4 

Right-
most Byte 

of CF 

YES 

f4 

Store Sign Bits in 
Rightmost 4 Bits 
of Cf 

G4 

Modify for 
Next CF 

H4 

YES 

RETURN TO MAINLINE 
VIA LINK REGISTER 14 

NOTE: Convert in 
phoses 1 and 4. 
Reconvert in 
phases 3 and 4. 

C5 

Invert Two Hex 

Digit Bits 

Charts 297 



BAL FROM MAINLINE 
VIA REGISTER 14 

ROUT! 

Determine Address 
of /lAainline 
Compare 
Instruction 

83 

C3 

Insert Mainline 
Register Contents 
in Compare Set 

IGLCOM D3 

In Phases 2 and 3, 
This Label is 
EQUAL 

Any Fields ')..:N..:,O=-_____ .... 
Unequal 

YES 

IGOUT E3 

Return to Branches 
in Mainline 
Compare 

RETURN TO MAINLINE 
VIA REGISTER 14 

IGDUM 

Adiust link 
Register for 
f.Aainline Return 
Address 

E4 

Chart FD. Packed-Decimal (SIGPAK) Convert/Reconvert 

298 IBM S/360 DOS Sort/Merge 



BAL FROM MAINLINE 
(PHASE I AND 3 FOR SORT 
PHASE 4 FOR MERGE-ONLY) 

YES 

B I 

Get Fint Address 
of Equal Rtn 

Sets 

Get Number of 
Fields to Convert 

Get Address of 
Sign Byte 

Convert or 

Reconvert 

CI 

DI 

EI 

RECONVERT 

CONVERT 

Save Sign and Fi II 
Sign Position 

with Zone Bits 

FI 

GI 

NO 

HI 

Test 
Negative 
ASCII 

NO 

JI 

Test 
Positive 
EBCDIC 

NO 

KI 

Generate a True 
ASCII Plus 
(Hex A) 

YES 

Restore and 

Save Sign 

Restore Leftmost 
CF Zone 

Restore Sign in 
Correct Position 

Generate a True 
EBCDIC Plus 
(Hex C) 

E2 

F2 

G2 

J2 

Insert Sign in 

leftmost CF Zone 

F3 

G3 

Reverse Sign 

D4 

Minus Sign 

YES 

ZONPS2 E4 

NO 

Invert Digit Bits 

F4 

Get Next Left Byte 

Last Byte of 
CF Processed 

YES 

G4 

Z NLST2 H4 

Modify for 

Next CF 

J4 

RETURN TO MAINLINE 
VIA LINK REGISTER 14 

Chart FE. Zoned-Decimal (SIGZON) Convert/Reconvert 

NOTE: Convert in 
phases' and 4. 
Reconvert in 
phases 3 and 4. 

NO 

Charts 299 



BAL FROM MAINLINE 
(PHASES I AND 3 FOR SORT, 
PHASE 4 FOR MERGE-ONLY) 

FLTPNT BI 

Convert or CONVERT 
Reconvert 

RECONVERT 

FLTSW4 CI 

Turn on Switch for 
Reconversion 

DI 

Get First Address 
of Equal Rtn Sets 

Get Number of 
Fields to Convert 

FLTVTA 

E I 

FI 

Calculate Address 
of CF 

NO 

Reconvert 
Switch 

ON 

Minus Sign 

NO 

Invert Sign Bit 

Fl TBCK 

Modify for Next 
CF 

Last CF 
Processed 

YES 

B3 

C3 

D3 

E3 

F3 

G3 

Restore Conversion 
Switch 

OFF 

YES 

RETURN TO MAINLINE 
VIA LINK REGISTER 14 

Chart FF. Equal Routine, Phases 2, 3, and 4 

300 IBM S/360 DOS Sort/Merge 

Minus Sign 

NO 

FLTCMl 

Invert Digit Bits 

NOTE: Convert in 
phases 1 and 4. 
Reconvert in 
phases 3 and 4. 

B4 

04 



APPENDIX A: CONSTANTS AND ABBREVIATIONS 

CONSTANTS 

ASSIGNMENT PHASE CONSTANTS 

ADD1 

ADD34 

ADDLUB 

ADDPUB 

ADD ROT 

ADDROUT 

ADDWD 

ADDWD1 

ADDWD2 

AL3 

1!I.NS1} 
ANS2 
ANS3 

AS AVE 

AVAILC 

B 

B3MAX 

81 

BLANKS 8 

BLK123 

BLKSI'l 

BLKSOZ 

BLKSIZE 

BMAX 

Contents 

starting address of user routines in phase 1 

Starting address of user routines in phase 3 or 4 

Address of logical unit block 

Address of physical unit block 

Message: "ADDROUT=" 

Field definer: "ADDROUT" 

Location of control card in TBLADD 

Length of logical control card in TBLADD 

Code of control ca.rd in TBLADD 

Decinal zero 

Calculated results f.rom TABLEF. using 
TABLE. TABLE2, and TABLE3 
respectively 

Address constant used to locate storage area, SAVE 

Available storage for input, output. and work areas 

computed internal sort blocking factor 

Calculated maximum phase 3 (output) block length 

1. Format code designating use of unsigned binary 

4 

2 

2 

8 

7 

4 

2 

2 

1 

12 

4 

4 

2 

4 

2 

2. Calculated number of .records per input block 4 
from overlay 9 (DSORT009) 

Two full words of blanks (Hex 40) 

Three 4-byte temporary storage areas for calculated 
value of BMAX for phase 1. 2, and 3 respectively 

Input blocksize given by user 

Output blocksize (maximum blocksize for 
var lable-lengthrecords ) • This area is also us ed 
to store L5 during scanning. 

Field definer: "BLKSIZE" 

Computed maximum block length used by all program 
phases 

8 

12 

2 

2 

7 

2 

Appendix A 301 



BO 

BPT 

BPTlIP 

BPT30P 

BYBRLS 

BYPAS 

BYPSSA 

BYTBLK 

BYTECT 

Cl0 

Cll 

C20 

C31 

C41 

CI01 

C401 

CALCAR 

CALCAREA 

CANCEL 

CANCELUP } 
CANCLCAp· 

CCAREA 

CCB1 

CCBRCP 

CCBWCP 

CCDS 

CCEND 

CCSAOD 

CCSAVE 

CCW1 

Contents 

Output blocking factor calculated by overlay 9 
<OSORT009) 

Calculated number of sort blocks per 2311 tra.ck 

Calculated phase 1 input blocks per track for 
fixed-length records 

Phase 3 output blocks per track for fixed-length 
records 

Computed number of bytes per last block 

Field definer: ·BYPASS· 

Message: "BYPASS· 

calculated maximum number of bytes per block, 
including disk gaps. 

Byte count of save area 

Character constant 10 

Character constant 11 

Character constant 20 

Character constant 31 

Character constant 41 

Character constant 101 

Character constant 401 

Message: " CALCAREA" 

Field definer: "CALCAREA" 

Lower case compare constant fo.r n cancel" reply 

Upper case compare constants for 
·CANCEL" reply 

Main storage area containing compressed unsorted 
control cards 

CCB for printing messages on SYSLOG or SYSLST 

CCB for reading checkpoint for RESTART 

CCB for writing checkpoint on disk 

Message: .*.* CONTROL CARDS .** .. 
Address of end of message area 

Address of start of current message 

save area for sorted compressed control cards and 
unprinted messages 

CCW for printing messages on SYSLOG or SYSLST 

302 IBM S/360 DOS Sort/Merge 

2 

2 

2 

6 

6 

2 

4 

2 

2 

2 

2 

2 

3 

3 

8 

8 

6 

6 

736 

16 

16 

16 

24 

4 

4 

736 

8 



CCW1+8 

CDCOUNT 

CF1LCT } 
through 
CFCLNG 

CFlSEQ } 
through 
CFCSEQ 

CFA 

CFB 

Cl"PLl 0 

ClMAGSV 

CKPT 

CLOSE 

CONBKT 

CONHDG 

CONSTANT 

CORESZ 

CORHI,D 

CP2LP8 

CPST 

CTR 

DATE 

DATECONV 

DEVTAB 

DOUBLE 

Contents 

CCW for reading operator reply if SYSLOG is a 1052 

Control card count 

Location of control fields 1 through 12 

collating sequence of control fields 1 through 12 

Save area for control field A computation used to 
check for control field overlap 

Save area for control field B computation used to 
check for control field overlap 

Total length of control fields plus 10 (TLACFD +10) 

Address of next control card save area (when all 
control cards have been read, contains the address 
of the first byte past the save area used) 

Chec kpoi nt dis k address (DDCHHR) 

Field definer: "CLOSE=" 

Indicator for heading printed 

Message: "*** COMPUTED CONSTANTS ***" 

Heading to be printed for printout of calculated 
constants - see program listing 

User given or actual machine size 

Main storage size from system generation time 

Denominator {2(L1>+8] used in calculation of PH1Bl 

Number of cylinders required to accommodate a phase 
1 sequence 

Count of the number of pointers to work area 
initialized 

Current data given by user 

Date convention used at creation time: 
00000000 - MMDDYY 
00000001 - DDMMYY 

A rna ximum of seven 4-byte entries. The first 2 
bytes of each entry contain a device number 
obtained from TABLEB. The second 2 bytes contain 
the total number of available tracks on the device. 

Phase work area for conversion routines 

8 

1 

24 

24 

2 

2 

2 

4 

6 

6 

1 

24 

83 

4 

4 

2 

4 

1 

8 

1 

28 max 

32 

Appendix A 303 



DUPBK 

E03--E06 
E16--E23 
E25--E27I 
E28--E49 
E51--E54 
E57--E61 
E64--E85 
E90--E92 
E3050 

E06BKT 

E68WRK 

END 

ERRBK 

EXl 

EX34 

EXIT 

Fl2 

F512K 

F4096 

Fl6384 

FI 

Contents 

Eight-byte 
codes: 

save area for processed control card 

1 - SORT 
2 - MERGE 
3 - RECORD 
4 - INPFIL 

5 - OUTFIL 
6 - MODS 
7 - OPTION 
8 - END 

Error messages - see program listing 
and Appendix D. 

.Error "7D06I" indicator - see Appendix D. 

Work area used to reinitialize error message E68 
"7D68I" (see Appendix D). 

Statement definer: "END" 

Error indicator: 
OFF - hex 0 
ON - hex D2 

Byte 0 - Phase 1 exit indicators 

I I I I I I EXIT 
13 

EXIT 
12 

EXIT 
11 

Byte 1 - Block type and tape options 

VAR FIXED OPEN OPEN CLOSE CLOSE CroSE 
BLK BLK RWD NORWD - UNLD RWD NORWD 

Phase 3 or 4 en t indicators 

EXIT EXIT EXIT EXIT EXIT 
- - - 45 44 43 42 or 32 41 or 

Constant 12 

31 

Constant 524288 used to determine limit of main 
storage size 

Constant 40.96 used as relocation factor for overlay 
1 (DSORT001) 

Constant 16384 used to test for storage size of 16K 

Format code: FI - fixed point 

304 IBM S/360DOS Sort/Merge 

8 

1 

59 

3 

1 

2 

1 

4 

4 

4 

4 

4 

2 



FIELDS 

FILI::DC 

FILES 

FILE" I 

FILESZ 

FlOCS 

PIXEL 

FL 

H'ATGK 

FNP 

F'OR!V: 

FRI\CT 

G 

GAl 

GA2 

HO } 
throu'lh 
fi12 

H2S 

H80 

Field nefiner: "FIELDS" 

Field definer: "FILES" 

constant allows all disk writes 

Number of input files 'liven by user (see MRGVOL) 

Field 1efincr: "SIZE" 

Number of records to be sorted; given by user 

Time required to execute lOCS; determined by 
machine model 

Field definer: "FIXED" 

Format code: "FL" - floatin~l point 

User qiven format code for PRINT option 

Number of merge passes calcula ted for run time in 
over la y 9 <OSORTO 09) 

Phi1se 1 format time calculated in overlay 9 
<050F<'1'009 ) 

1. f:lyte 0 - 8 bits for format indicators 

I -I -I FL I BI I FI I PO I zo I -I 
FL - floating point 
B1 - unsignerl binary 
1:'1 - fixed point 
PD - packed decimal 
ZD - zoned decimal 

Byte 1 - NOCFLD, number of control fields in 
binary 

6 

S 

1 

4 

4 

4 

5 

2 

2 

4 

4 

2 

2. r'lessage: "FORMAT" used in overlay 9 (DSORT009) 6 

Fraction (or portion) of sort_ to be executed on one 
2311 disk drive used in tinting calculations in 
overlay 9 (DSORT009) 

computed number: of records in a phase 1 sequence 

Available core for sort 

computed number of sort blocks, plus an 8- b'lt e tag 
for each record in the sort block, in G1U 

rIex constants (2 bytes each). 0 through 
10 used for overlay numbers. 

Constant 25 

Constant 80 

4 

4 

4 

2 

26 

2 

2 

Appendix A 105 



H255 

H256 

H300 

HALFTK 

H.EAD 

HL8 } 
through 
HL25X 

HOLDC } 
HOLDCY 

IBC 

IBIC 

lBOC 

IBR 

IGNORE 

IGNOREUP 

INBSV 

IND85 

INP 

INPFIL 

INPUT 

INPUTMRG 

Contents 

Constant 255 

constant 256 

Constant 300 

Half of the user-given work area tracks minus 
checkpoint tracks. 

Heading used for print out of modifications, name, 
address, and exit number. 

Nine half-word literal constants--see 
program listing of assignment phase 
overlay 9 (DSORT009) for specific values. 

Total number of cylinders in TABLEF. 

Sort block size in number of characters (bytes) 
used in run time calculations. 

Input block size in number of characters (bytes) 
used in run time calculations. 

output block size in number of characters (bytes) 
used in run time calculations. 

Number of records in a sort block, used in run time 
calculations. 

Lower case character constant used to check 
operator reply "ignore". 

Upper case character constant used to check 
operator reply "IGNORE". 

Input print heading for: INPUT, BLOCRSIZE, TYPE, 
TAPE OPEN, and CLOSE. 

Error "70851" indicator (see Appendix D). 

Indicator used in run time calculations to 
determine odd or even number of passes. 

Statement definer: "INPFIL" 

Field definer: "INPUT==" 

Byte o - Output file 
Byte 1 - Input FI.LEA 
Byte 2 - Input FILEB 
Byte 3 - Input FILEC 
Byte " - Input FILED 
Byte 5 - INPBR 
Byte 6 - SYSLGBIT 
Byte 7 - SRIPCODE 

306 IBM S/360 DOS Sort/Merge 

2 

2 

2 

2 

50 

18 

4 

" 
4 

" 
" 
4 

6 

6 

67 

1 

4 

5 

6 

8 



INQCCB 

INQCCW 

UlQCCW+8 

INTPPL 

IRL 

IHPT 

JOBNA.!JlE 

Contents 

B t 0 ~Y' e 
DISK 

UNLAB NON STD OUTPUT DISK TAPE -- --
STD OLVP OUTPUT OUTPUT 

Byte 1 through 4 (FILEA throuqh FILED) 

UNLAB NON DISK TAPE 
- -- STD 

STD INPUT INPUT 

Byte 

~~------------~~-------------~ 
TYPE OF INPUT 

Byte 6 (SYSLGBIT) -
Bits 0 through 
Bi t 6: S'lSLOG 
Bit 7: SYSLOG 

5: unused 
SYSLST 

= 1052 

0001 - Tape only 
0110 - Disk only 
0111 - Mixed tape 

and disk 

Byte 7 (SKIPCODE) - DTFCP carriage control byte 

CCB for operator communication write 

CCW for operator communication write 

CCW fo.r reading operator communication reply if 
SYSLOG is a 1052 

Four 2-byte entries for L1,L2, L3, and L4. 

L1 (INTPRL) - input record length (fixed-length 
records) or maximum input record length 
(variable-length records). 

L2 (INTPRL+2=NOTUSE) - not used by sort program. 

L3 (INPRL+4=OTPTRL) - output record length 
(fixed-length records) or maximunl output 
record length (variable-length records). 

L4 <INTPRL+6=MINRCL) - minimum record length 
(variable-length records only). 

Calculated sort record length used in run time 
calculations. 

calculated number of records per 2311 track used in 
run time calculations. 

Job name as it appears in job control statement. 

16 

8 

8 

8 

4 

4 

8 

A.ppendix A 307 



KEY 

KELEN 

KEYRTN 

L2 } through 
L3624X 

L3t"'AX 

L5 

LABBKT 

LABEL 

LBND 

LABSW 

LENl 

LEN34 

T~ENGTH 

LF2 

Contents 

Byte 0 - keylength, Byte 1 - other options. 

Byte 1 

v B P R c 

TAGTYPE: a-tag only, 1-tag plus control data. 

C~CAREA: O-option not specified, l-option 
specified. 

N - NOTPMK option 

v - VERIFY option (disk only) 

B - BYPASS (tape input for sort, tape input or 
output for merge). 

P - PRINT option. 

R - ADDROUT option (disk input only). 

c - RESTAln option (sort only). 

Field definer: "KEYLEN" 

Message: "KEYLEN" 

3 7 full word li tera 1 constants us ed in 
run time calculations--see program 
listing of overla.y 9 (DSORT009) for specif ic 
constant and value. 

computed phase 3 (output) maximum record length. 

Average length of a variable-length record without 
ta.g. (Note: L5 is used only for a sort nm when 
variable-length records with no ADDROUT has been 
specified. ) 

Save area. for label information. 

Field definer: "LABELS" 

Lower pack boundary used in run time calcula tions. 

Retains label information in one byte. 

Bits 0 through 3 - output labels 

Bits 4 through 7 - Input labels 
0001 standard labels 
0100 unlabeled 
0010 non-standard labels 

Length of phase 1 exit routines. 

Length of phase 3 or 4 exit routines. 

Field definer: "LENGTH" 

Hex constant 000000F2 

308 IBM S/360 DOS Sort/Merge 

2 

6 

6 

148 

4 

2 

5 

6 

4 

1 

4 

4 

6 

1 



LGTH 

LLl } 
through 
LL4 

LLS 

LLSITK 

LMAX 

LMAXNO 

LOC 

LOGWKA 

LOWTM 

M 

MANDBK 

MAXBL 

MAXBLl 
MAXBL2 
MAXBL3 

MERGE 

MF 

MFS 

MID 

MODS 

Contents 

Message constant for printing values of Ll through 
L5. 

Assumed disk work area limits for 
calculating run time. 

Line heading for printout of location, length, 
sequence, and format of control fields. 

save area for computed total number of lower limit 
tracks used in run time calculations. 

Calculated maximum record length used by phases 1, 
2, and 3. 

constant "7FFFFFFF" used in run time calculations. 

Location of control fields for print messages. 

Two 2-byte entries containing location of pointers 
indicating sta.rt of each logical area in TABLEB. 

Save area for lowest calculated sort time for trial 
order of merge in run time calculations. 

Value of denominator [6 (Ll/256)] used in phase size 
calculations. 

Eight 1-byte entries for retention of code for each 
logical control card processed. 

S=SORl' 
M=MERGE 
R=RECORD 
I=INPFIL 

O=OUTFIL 
E=MODS 
0= OPT ION 
D=END 

Calculated maximum block length that can be 
processed by phases 1, 2, and 3. 

Calculated maximum block length for 
phases 1, 2, and 3 respectively. 

Statement definer: "MERGE" 

Message: "MERGE FIELD" 

Computed maximum file size (number of records to be 
sorted) for a sort run only and fixed-length or 
ADDROUT records. 

Midpoint of disk work area used in run time 
calculations. 

Statement definer: "MODS· 

50 

16 

47 

4 

4 

4 

16 

4 

4 

2 

8 

4 

12 

5 

11 

2 

4 

4 

Appendix A 309 



MRGVOL 

MS 

MSG01 } 
throU<Jh 
MSG78 

t4SGADD 

MSGI1 

MSGR2 

MSGSM1 

ItLXBYPT 

N 

NOCFLD 

NONE 

NONST 

NOP 

NOPASS 

NOPt>1SG 

NORWD 

NOSEQ 

NOTPMKL 

NP 

NRTHWK 

NRTOUT 

NRTRKS 

OM 

Contents 

Number of volumes and files for sort. 

FILE 

Number of 
volumes per 
file 

ABC D E F G H J 

11111111111 

t 
Total number of files (fVlRGVOL+9) 

Machine size either given by the user or extracted 
from the communications region. 

Print messages; see program listing 
for specific message. 

Main storage address of control card being 
processed. 

Message: "INFIL" 

Message: "RECORD" 

Message: "7D08I" (see Appendix D). 

Calculated maximum number of bytes per 2311 track. 

Number of control fields (NOCFLD) plus 10 used in 
pha se si ze ca leu la ti ons. 

Number of control fields--in binary (equates to 
FORMAT+l) • 

Message: "NONE" 

Message: "NONST" (non-standard labels) 

Hexadecimal 4700 used to prevent execution of a 
branch inst.ruetion. 

Computed number of merge passes in phases 2 and 3 

fvlessage: "OPTIONS SPECIFIED" 

Message: " NORWD" (no rewind) 

Computed number of output sequences from phase 1. 

Field definer: " NOTPJliIK " (tapemark option) 

Computed number of merge (phase 3) passes used in 
run time calculations. 

Number of tracks in half work a rea comput ed by run 
time calculations (DSORT009). 

Number of tracks required for output computed by 
run time calculations (DSORT009) 

Total number of tracks required 
(NRTHWK+NRTIN+NRTOUT) • 

1. computed order of merge for a sort run or 
given order of merge for a merge run--see 
FILES. 

310 IBM S/360 DOS Sort/Merge 

10 

4 

4 

6 

6 

54 

2 

2 

1 

4 

5 

2 

2 

17 

5 

4 

6 

4 

4 

4 

4 

2 



Label Contents 

OMMSG 

OMPLl 

ONE 

OPEN 

OPERRHK 

OPMSG 

OPTION 

OTWKAR 

OUTFIL 

OUTMS 

OUTPUT 

PATCH 

PD 

PH.1B1 

PH1B2 

PHAS1 

PHAS3 

PHAS4 

PHAS34 

PHASE1 

PHS1 } PHS2 
PHS34 
PHS4 

PHS2MIN} 
PHS3MIN 

PHS2MX } 
PHS 34t-1X 

PIOCS 

PRINT2 
PRTMSG 

2. Trial order of merge used in run time 
calculations in overlay 9 (DSORT009). 

Message: "FILES" 

Order of merge plus 1. 

Full word constant 1 used in run time calculation 
(DSORT009). 

Field definer: "OPEN" 

Indicator for operator intervention error (same 
conditions as ERRBK). 

Message: "OPTION" 

statement definer: "OPTION" 

Message: "OUTPUT IN WORKAREA" 

Statement definer: "OUTFIL" 

Message: "OUTPUT BLOCKSIZE XXXXXXX LABEL XXXXXX" 

Field definer: " OUTPUT= " 

1. 44-word patch area in overlay 2 

2. 44-word patch area in overlay 6 

Format code "PDQ-packed decimal. 

Calculated maximum number of records in a phase 1 
sort block. 

Result of alternate calculation of the maximum 
number of records in a phase 1 sort block. 

Field definer: "PH1=" 

Field definer: "PH3=" 

Field definer: "PH4=" 

Symbolic name for phase 3 or 4 exit routines. 

Symbolic name for phase 1 exit routines. 

Minimum sizes for indicated phases of the program. 

Calculated m1n1mum size for phases 
2 and 3 respectively. 

Computed maximum size for phase 2 and 3, 
respectively, for OM 5 to 7 (fixed-length records) 
or 4 to 6 (variable-length records). 

XTENT retrieval area at FILEW open time 

Message: "PRINT" 

4 

5 

2 

4 

5 

1 

30 

6 

18 

6 

30 

7 

176 

176 

2 

2 

2 

4 

4 

4 

8 

8 

8 

4 

72 

5 
5 

Appendix A 311 



Label 

PRNT 

PROCl } 
PROC2 

R3SAVE} R4SAVE 
R5SAVE 
R8SAVE 
R9SAVE 
RASAVE 

R7SAVE 

RAFRTN 

RBBRT 

ROT1 

RDWR23 

READCK 

READIN 

RECORD 

RECTYP 

RESTAT 

RESTRT 

RETRY 

RETRYUP 

RPTBKT 

RT 

Contents 

Field definer: ·PRINT" 

Process time for phases 1 and 2, 
respectively, computed by run time calculations 
(DSORTOOl) • 

Storage a.rea for general registers 
3,4,5,8,9, and 10 respectively. 

Double word storage area for two counter registers 
used in check of control field overlap_ 

Message: "ADDROUT" 

save area for control card codes. 

Computed phase 1 read time. 

Read and write time calculated by DSORT009 for 
phases 2 and 3. 

CCW for reading checkpoint count, key, and data 

Read-in and write-out area for print CCW. 

Statement definer: "RECORD" 

V F OPEN OPEN -RWD NORWD 

v - variable-length records 
F - fixed-length records 
RWD - rewind 
NORWD - no rewind 
UNLD - unload 

Field definer: "RESTART" 

Message: "RESTART" 

CLOSE CLOSE 
UNLD RWD 

CLOSE 
NORWD 

Lower case constant used to check operator reply 
"retry." 

Upper case constant used to check operator reply 
"RETRY" • 

Save area for calculated number of records per 2311 
track. 

Message: "RECORD TYPE" 

312 IBM S/360 DOS Sort/Merge 

Bytes 

5 

8 

24 

8 

7 

2 

4 

4 

8 

100 

6 

1 

7 

7 

5 

5 

2 

11 



RUNCOD 

RWIND 

S 

SAVE 

SAVERA 

SAVERERF 

Contents 

User run code from columns 73-80 of first control 
card (for assignment phase only) 

Message: "RWD" - rewind. 

Size, length and collating sequence of control 
cards for printout. 

Save area for calculated constants computed for 
each internal order of merge of a sort run. Used 
for run time analyses, SAVE contains 6 sets of: 

OM <internal order of merge) - 2 bytes 

B (number of records per inte.rnal sort block) - 2 
bytes 

SBSIZE (internal sort block size in bytes) - 2 
bytes 

BPT (rna ximum number of internal sort blocks per 
2311 track) - 2 bytes 

G (number of records per phase 1 sequence, o.r 
maximum number of records for variable-length 
with no ADDROUT) - 4 bytes 

Gh1 (a valla ble storage for sort) - 4 byt es 

GAREA (number of bytes in a phase 1 sequence, 
excluding tag area, in GAl) - 4 bytes 

GAREAl (number of bytes in a phase 1 sequence, 
includinq tag area, in GAl -- o.r, average 
number of records in a sequence for 
variable-length with no ADDROUT) - 4 bytes 

NOBLKG (number of sort blocks in GAREA) - 2 bytes 

MXBYPT (maximum number of bytes per 2311 track -­
becomes relative time after DSORT009 has been 
processed) - 2 bytes 

AI'1AX (Maximum work area size) - 2 bytes 

NOPASS (number of merge passes in phases 2 and 3) -

2 bytes 

~: The routine beginning at the label PRTEXIT 
in overlay 10 (DSORT010) will print the 
contents of SAVE for diagnostic purposes. 
Refer to the listing comments for an 
explanation of the use of the PRTEXIT 
routine. 

Save area for link register {general register 10}. 

Save area for general registers 14 and 15. 

8 

3 

21 

192 

4 

8 

Appendix h 313 



SAVlMAG 

SAVREGS 

SAVREM 

SAVROM 

SAVRPT 

SBSZPTAG 

SECCTR 

SEQ 

SF 

SHTSR2 

SIZE 

SRLEN 

SRT 

SKT2 

SRT3 

SORMBR 

SORT 

SPDFAC 

STD 

STORAG 

STORED 

Contents 

storage area used to retain control card image (up 
to a maximum of 25 cards) for print. 

Temporary storage used to retain contents of 
miscellaneous registers. 

Save area for the remainder, during a divide 
inetruction, resulting from calculations of LMAX 
and BMAX. 

Pointer to trial order of merge used in run time 
calculations. 

Number of records per 2311 track for trial order of 
merge. 

Denominator: SBSIZE+ [a (SBSIZE/L1) 1, used in the 
calculation of GA2 (number of sort blocks, plus an 
a-byte tag for each record in the sort block, in 
GAl) • 

Numbe.r of sections into which the work area is 
divided. 

Collating sequence of control fields 1 through 12. 

Message: "SORT FIELD" 

Shortest phase 2 seek time computed by run time 
calculations in DSORT009. 

Field definer: "SIZE" 

Calculated length of seek in number of cylinders. 

Calculated time for one seek. 

Tota 1 phase 2 seek time comtxlted by run time 
calculations in DSORT009. 

Total phase 3 seek time computed by run time 
calculations in DSORT009. 

S-character (sort) or M-character (merge) used to 
indicate type of ~ln. 

Statement definer: "SORT" 

speed factor determined by machine model. 

Message: "STD" 

Message: "STORAGE:" 

1. save area for general registers 5 through 10 
in CCERR .routi ne. 

2. Save area for general registers 2 and 3 in 
overlay 7 (DSORT007). 

314 IBM S/360 DOS Sort/Merge 

2004 

20 

2 

4 

4 

2 

1 

12 

10 

4 

4 

4 

4 

4 

4 

1 

4 

4 

3 

8 

24 

8 



STP123 

STRING 

SUBTRC 

SUPER. 

SVBK 

SYSDATE 

SYSTBLE 

TA 

TABLF. ~} TARLE: 
TABLE 

TABLEB 

Contents 

Calculated values of LMAX for phases 1, 2, and 3 
respectively. 

Computed number 0 f output »equence from phase 1. 

Number of bytes, plus 1, in current statement 
definer. 

Actual supervisor program size. 

Current message length. 

System c.reation date. 

Ten 4-byte entries for SYSOOl through SYS010 plus a 
4-byte end-of-table indicator. 

Byte 0 - Channel number 
Byte 1 - Unit number 
Byte 2 - Devic.e type 
Byte 3 - Logical unit (SYSOnn) 

Number of tracks available as given by XTENT cards. 

Three 72-byte tables for the determination 
of ANS1, ANS2, and ANS3, respectively, for 
orders of merge 2 through 7. 

Disk work area limits table. 

LOWER UPPER 
LIMIT LIMIT 

SECT UN# C H H R C H H R 

0000 

OOOC 

0078 

0024 

0030 

0030 

0048 

0000 0000 

12 

4 

4 

4 

4 

6 

41t 

2 

226 

88 

Appendix A 315 



TBLADD 

TIME 

TIACFD 

TR 

TRACK 

TROVER 

TRUNDR 

TYPE 

UCYHl<lK 

ULLBK 

UNLAB 

UNLD 

UULBK 

VALl 

VARBLE 

VERFY 

VOLMG 

VOLUM 

VOLUNE 

WORD 

WRITE 

Contents 

Eight 4-byte entries: 

A=2-byte address of first byte of compressed 
control card in CCSAVE. 

B=total number of bytes in compressed card. 

C=code indicating type of card 

l=SORT, 2=MERGE, 3=RECORD, 4=INPFIL, 

5=OUTFIL, 6=MODS, 7=OPTION, 8=END 

This is an internal record of cards processed. It 
is used to get the control card, if necessary, for 
a message printout and for scanning control cards. 

Total run time computed by trial order of merge. 

Total length of all control fields. 

Number of tracks required in logical work area. 

Total number of tracks in work area, given by user 
extent cards. 

Number of tracks not yet used in building TABLEB 

Total number of tracks still required in building 
TABLEB 

Field definer: "TYPE" 

Number of cylinders used in half work area computed 
by run time calculations DSORT009. 

XTENT lower limit, in tracks. 

Message: "UNLAB" (unlabeled) 

Message: "UNLD" (unload) 

XTENT upper limit, in tracks. 

Save area for first value calculated in TABLEF. 

Message: "VARIABLE" 

Field definer: "VERIFY" 

Message: "INPUT FILEA FILES FILEC FILED FlLEE 
FILEF FILEG FILER FILEI" 

Field definer: "VOLUME" 

Message: "VOLUME=" 

Total number of work-area tracks computed by run 
time calculations in DSORT009. 

CCW for writing checkpoint record 

316 IBM S/360 DOS Sort/Merge 

64 

4 

2 

2 

2 

2 

2 

4 

4 

2 

5 

4 

2 

4 

8 

6 

68 

6 

7 

4 

8 



Label 

WET 

XTADDR 

XTAREA 

XTENT 

ZEROS 

ZD 

contents 

Phase 1 read and write time in excess of phase 1 
read time (ROT1) computed by run time calculations. 

Pointer to current XTENT card location. 

storage area for up to a maximum of 6 converted 
XTENT cards: 

14-Byte Entries for each XTENT: 

A = type - 1 byte 
B = sequence - 1 byte 
C loW'er limit (CCHH) - 4 bytes 
D = uppe.r limit (CCHH) - 4 bytes 
E = class and unit - 2 bytes 
F old hin number - 2 bytes 

XTENT card read-in area. 

Six full words of zeros. 

Format code "ZD" - zoned decimal 

PHASE 1 CONSTANTS 

ADR2 

ADRBKT 

ADS AVE 

ADTAB1 

ALPHA 

ARNYAD 

BLKSZ 

BLKSZl 

BR4SAV 

CBYTE32 

CCB2 

CCBPR 

CCWl 

CMPL10 

Contents 

Location of disk address (DSKI\DR2). 

Disk address in CCHH format. 

starting address of current string. 

Location of address table 1. 

Constant 8. 

starting address of conversion .routine. 

Input block size from assignment phase; given by 
user. 

~4ximum input block size for variable-length 
records. 

Save area for RR format branch. 

DTF byte 32 for CLOSE rewind/no rewind option. 

Output CCB. 

System log CCB. 

System log CCW. 

Complement of 10 (OOOOFFF6). 

4 

4 

84 

12 

24 

2 

4 

4 

4 

4 

2 

4 

2 

2 

4 

1 

16 

16 

24 

4 

Appendix A 317 



CMPADR 

CMPEND 

CMPLT 

CMPOF8 

CMPOF9 

DALIM 

DCCWSI 

DCCWSK 

DEVICE 

DIKEYL 

DINABK 

DINADR 

DINCCX 

DINCCY 

DINSEK 

DINXAD 

DNBTK 

DRCNT 

DSAVE1 

DSAVE2 

DSAVEJ 

DSBRT 

DSEEK 

DSHIFT 

DSKADR1 

Contents 

starting address of compare string in chain. 

End address of compare chain. 

Complement of track number 10 (00FFF600-CHHR); 
to calculate track number of next cylinder. 

Complement of track number (OOFFF800-CHHR). 

Complement of track number 9. 

Disk input area upper limit (CCHH format). 

Loop CCW for read input. 

Seek/search CCW for read input. 

Disk drive address. 

Key length (disk). 

Disk address of search argument of read. 

Address of current input block. 

Read count CCB. 

Read input CCB. 

Disk address in BB CC HH R format. 
BB : bin number (always 00) 
CC = cylinder number 
HH : read/write head 

used 

R = number of the data record on the track 

Address of next input block. 

Seek/search address for 1 block per track. 

Work area for pack/unpack routines. 

Save a.rea for level 2 register 

save area for move registers. 

save area for move constants (base registers G and 
B) • 

starting address of DSHIFT table. 

Output seek CCW. 

output control table used for storing starting disk 
addresses of each sequence in a set. Consists of 
up to 8 sections of 12 bytes each. See output 
routine narrative for detail description (Chart 
BG) • 

Disk address in BB CC HS R D format: 
BB - bin numbe.r (always 00) 
cc - cylinder number (0-199) 
HH - head number (0-9) 
R - record number 
D - unused 

318 IBM S/360 DOS Sort/Merge 

~tes 

4 

4 

4 

4 

4 

4 

16 

16 

2 

4 

5 

8 

16 

16 

8 

8 

8 

8 

8 

12 

12 

4 

8 

96 max. 

8 



DSKADR2 

DSKLIM 

DSKTBL 

DSPLMT 

DSRCH 

DWRITE 

EIGHT 

ENDADDR 

ENDPFG 

EOFADR 

EOFIND 

EXITCW 

FIBKT 

FILES 

FIX2A5 

FLT2A6 

FLTCP2 

l'~SEXC 

HICKY 

IALH' 

IBVA04 

IBVA05 

ISVLVl 

IBVNR4 

I BVNRB 

Contents 

Disk address in BB CC HH R K DL format: 
BB - bin number (always 00) 
CC - cylinder number 
HH - head number 
R - record number (displacement) with track 
K - keylength 
DL - data length 

First 4 bytes - address of input area upper limit. 

Second 4 bytes - address of input area lower limit. 

Disk number table (0 through 7, two bytes each). 

Displacement, in bytes, of current record in input 
block. 

Output search CCW. 

Write output block CCW. 

Constant 8. 

Starting address of EOFADR (end-at-file routine). 

Indicator for end of prog.ram. 

Location of end-of-file routine. 

End-of-file indicator. 

Seek/search checkpoint address CCW. 

Upper main storage address of last record in a 
file. 

File identification (FILEA ) . 
Constant ABCDEFGHI used in FILENAME. 

Save area for general registers 2,3,4 and 5 in 
fixed-point conversion routine. 

Save area for general registers 2,3,4,5 and 6 in 
floa ting-point conversion routine. 

Hexadecimal F's used in floating-point conversion 
routine. 

Message: "7DA31" (see Appendix D). 

Starting address of input area in main storage. 

End add.ress of input area in main storage. 

Loca tion of output area in main storage. 

Loca tion of address table 2. 

8PT (blocks per track) complement. 

Starting address of input area. 

Constant 4. 

Number of sort blocks in "G". 

10 

8 

16 

2 

16 

8 

2 

4 

1 

8 

1 

16 

4 

8 

9 

16 

20 

8 

40 

4 

4 

4 

4 

2 

4 

2 

2 

Appendix A 319 



IBVNRV 

IBVODM 

IBVSET 

IBVTAB 

I BVTOT 

1FORl } 
through 
1FOR7 

1NAREA 

1NLUl 

INMAX 

1NTBYP 

INTMES 

KEYLNG 

L1CXA3 

L1CXA4 

L1CXA5 

L1CXA6 

L1CXA7 

L1CXAB 

LALADR 

J.BLBASE 

LBLCCB 

LBLCK1 

LBLSEK 

LSTH 

MASK10 

MAXFSZ 

MAYDAY 

Contents 

Number of input volumes. 

Order of merge. 

Number of blocks in a set ("set" is defined as the 
number of strings or sequences equal to the order 
of merge). 

Table for storing number of blocks per string in 
last pass. See text for chart BH, end-ot-phase 
routine. for detailed explanation of use. 

Storage area tor total block count. 

Used in checkpoint address for 
conversion routines. 

Starting andress of input area. 

Enn address of input area. 

End of current input area. 

Storage area for number of records bypassed. 

Message: "7DA21" (see Appendix D). 

Save area for key length. 

Current record address (variable-length records). 

Location of address table 1 (variable-length 
records) • 

End address of input area. 

Address of RR format branch. 

Upper limit of current block. 

.Location of current record count. 

Checkpoint seek/search disk address. 

Starting address of phase 1, used to initialize 
base registers. 

Checkpoint seek CCB. 

Internal sort ccw. 

Seek/search CCW. 

Read/write checkpoint CCW. 

Linkage from mainline to move routine. 

Maximum work area size. 

Upper limit of current variable-length block. 

320 IBM S/360 DOS SortIMerge 

2 

2 

2 

16 

4 

48 

4 

4 

4 

4 

42 

2 

4 

4 

4 

4 

4 

4 

B 

4 

16 

8 

16 

8 

4 

1 

4 



MPASS 

NBRVOlS 

NC3BKT 

NCFBKT 

NOBG 

NOUTM 

NR003 

NR02 

NR10 

NRBLM 

NRBLS 

NRDUB 

NRPAS 

NRSEQ 

OBYTE32 

OM2 

ONEXID 

OUTRD 

OUTWT 

OV2BKT 

OV2END 

PlBASE 

PlEND 

PIG 

P2CCB 

P2TBL 

Contents 

Message: "7DA51 MERGE PASSES " 

Number of input volumes and files (equivalent to 
assignment phase MRGVOL): 

Volumes/file 

I I I I I I I I I I I 
File ABC D E F G HIt 

Number of files (NBRVOLS + 9) 

Save area for read or write address in output 
routine. 

Number of input control fields. 

Number of blocks in "G". 

Constant (OOFFFFFF). 

Constant 3. 

Constant 2. 

Constant 10. 

Number of blocks in last order of merge. 

Number of blocks in last sequence. 

Location of number of doublets to be processed for 
level 1 sorting. 

Number of passes for merge phases. 

Number of sequences. 

DTF byte #32 for various OPEN options. 

Alternate OM bucket used in exit routine. 

Relocation factor for variable-address routine. 

save area for compression routine read. 

Save area fo.r compression routine write. 

Save area for general register 5 in end-of-phase 
routine. 

Save area for general register 4 in end-of-phase 
routine. 

Address of start of subroutine for building 
doublets for level 2. 

Start of checkpoint record. 

"G" count (number of records in input area). 

Read/write checkpoint CCB. 

Checkpoint disk address (BB CC HH R). 

19 

10 

4 

2 

4 

4 

2 

2 

2 

4 

4 

4 

2 

4 

1 

2 

2 

8 

12 

4 

4 

4 

8 

4 

16 

8 

Appendix A 321 



P3SVRG 

PAKRG2 

PASNR 

PATCH O} 
through 
PATCH 7 

PB2BKT 

PREND 

PKSGN2 

RAFEND 

RAFlLE 

RCDBKT 

RCDCNT 

RCDLEN 

RCDPR 

RECLNG 

SAVREG 

SAVRG14 

SORTRL 

TAPLUA 

TCCWSK 

TINADR 

TINLST 

TINMUA 

TOTCFL 

UPlI.DDR 

UPLIM 

USEAD2 

Contents 

Save area for general registers 2 and 3 in read 
checkpoint routine. 

Save area for general registers 4 through 9 in 
SIGPlI.K conversion routine. 

Pass number for checkpoint routine. 

Areas reserved for possible pa tch routine. 

Number of blocks in last set. 

Message: "7DlI.61 END PHASE 1". 

Save area for sign in SIGPAK conversion routine. 

Address of current RAF end. 

RAF sta.rt address. 

Number of records processed; used in end-of-phase 
routine. 

Number of records processed. 

Record length. 

Message: "7DA41 RECORDS PROCESSED". 

Original record length. 

First 4 bytes - record address. 

Second 4 bytes - location of block size count. 

Last 4 bytes - location of record displacement. 

save a.rea for general register 14 in initialization 
of multi-volume routine. 

Save area for sort record length. 

Log unit address. 

Work area used in read and convert routines. 

Disk address of current input block. 

Relocation factor of disk-input routine. 

Relocated address of call for a.dditional-volume 
routine. 

Total length of input control fields. 

Location of address table 1. 

Upper limit of file on disk. 

User routine starting address for tape input. 

322 IBM S/360 DOS Sort/Merge 

8 

24 

2 

112 

2 

17 

2 

4 

4 

4 

4 

4 

24 

2 

12 

8 

2 

2 

8 

6 

3 

4 

2 

4 

4 

4 



USERAD 

USADR 

V BART 

VLORST 

VLOSCN 

WKBKT 

WKTAB 

WLHBKT 

WLRCCW 

WLRMES 

WRKBKT 

WRKCCB 

WRKCCW 

ZERO 

ZNPAS 

ZONRG2 

ZONZN2 

ZRCNT 

ZROMSK 

contents 

User routine starting address for disk input. 

Location of user routine. 

Work area used in input-finish. build-address, and 
compute-areas SUbroutines. 

Save area for starting address of output area in 
variable-length output routine. 

First ~ bytes - current address in output area. 

Second ~ bytes - output area upper limit. 

Work area used in exit routine 

Work area limit table obtained from ass ignment 
phase TABLEB through the checkpoint record. 

Record length used for WLR check. 

CCW for Print WLR message. 

Message: "7DA1I" (see Appendix D). 

Work area. 

Work area error print CCB. 

Work area error print CCW. 

Constant o. 

Number of merge passes. 

save area f or general registers 5 through 8 in 
SIGZONroutine. 

Storage area for signs in SIGZON routine. 

Number of record for print routine. 

Zero mask. 

PHASE 2 CONSTANTS 

I\BEGIN } 
through 
GBEGIN 

AEND } 
through 
GEND 

AN8Al0 

ANINV 

Contents 

Starting addresses of input sequence areas A 
through G in main storage. 

End addresses of input sequence areas A through G 
in main storage. 

Storage area for general registers 8, 9, and 10 
during initialization of the equal routine. 

Base register sequence (8, 7) when initializing 
equal routine for sequence opposite to first 
control field. 

~ 

~ 

4 

~ 

8 

8 

88 

2 

8 

15 

~ 

16 

8 

2 

~ 

16 

2 

8 

1~ 

28 

28 

12 

~ 

Appendix A 323 



Label 

ANI SEQ 

ANNML 

ARAOOR} through 
GRAODR 
and 
ORADDR 

CHHR 

Contents 

Temporary storage for control field sequence. Used 
to test for control field sequence variation when 
initializing equal routine. 

2 

Base register sequence (7, 8) when initializing 
equal routine for sequence same as first control 
field. 

Disk addresses for input files A through 

G and for output file (0), as 

illustrated in Figure 52: 

Fixed-length records 

Index 
Value 

Lagical 
Unit 
Address 

ARADDR 

CHHR 

Variable-length records 

Index 
Value 

Lagical 
Unit 
Address 

4 

* 

Sequence 
Block 
Count 

-- - - ------f-- --- r--- -- ---------- -----
4-Way Merge BRADDR 3-Way Merge 

----- ----------- 1------------- - - -- - ----
CRADDR 

1--- ------------
DRADDR 

- --- f----- ----

ERADDR 6-Way, Merge 

f--- - -- -- ---- - -- 1"------------ - -- - ----
7-Way Merge FRADDR 

f--- -- - ---------
GRADDR 

-- ------------- -----

f---------- ---- -- - ------- -- --- - ---- c;: 

---------------
;:;:-

o 
o « 
"" Q. 

r-------------------- :; g ---------------
« .e-

:> "" Q. 1-________ ---------- 0 

--------------

( 4 2 
r- - -- ----------

2 

Dummy bytes for sh i ft i ng; 
...... ___ ...... ___ ...1. ___ ---1 ~ added to output for all cases. 

4 2 2 (bytes) 

Figure 52. Phase 2 Disk Address Table 

*byte count: 7-way fixed = 120(8 bytes per entry) 
4-way fixed = 72 (8 bytes per entry) 
6-way variable = 156 (12 bytes per 
entry) 
3-way variable = 84 (12 bytes per 
entry) 

324 IBM S/360 DOS Sort/Merge 

4 (bytes) 



ASAVE 

BBCCHH 

BCOMP 

BLOCKC 

BPT 

BPTl 

CCBPRT 

CF1LCT. } 
through 
CFCLCT 

CHECKP 

CHHR 

CKPCCB 

CKPCHP } 
through 
RWCKPT 

CPZERO 

EXCESS 

FOUR 

GBLOCK 

HCOMP 

Contents 

This table contains the next disk address for 
all input/output sequences at any point in phase 2. 
It also contains index values (pointers to the work 
area table) for the current XTENT in which any 
given sequence disk add.ress has been computed. The 
third ent.ry in each sUbdivision (each sequence is a 
subdi vision) is the logical unit address pertaining 
to each current or next sequence disk address. 

During a merge within a pass. only one output 
sequence is referred to. At the end of a merge, 
the output portion of the table is shifted up so 
that the next disk address is the address of the 
block of the new output sequence. 

Save area for register 9 in PUTA routine (7 way 
fixed only). 

Seek and search address for input and output. 

256 complement of BPT. 

Current sequence block count. 

Number of sort blocks per track. 

Number of sort blocks per track, from checkpoint 
record. 

CCB for printing the pass number on SYSLOG. 

Information for control fields 1 through 12, from 
checkpoint record (8 bytes each). 

Address of checkpoint track at end of work area. 
This address is loaded in register 3 at the end of 
phase 2 to provide retrieval of the checkpoint 
record by phase 3. 

Current disk interleave address. 

CCB for reading amI writing checkpoint record 

ccw' s for checkpointing every pass. 

Constant 00F6 for converting pass numbers to 
decimal. 

Maximum number of tracks by which an upper limit 
can be exceeded, when computing an interleaved disk 
address. Its only use is in computing the next 
disk address when an upper limi t is exceeded. 

Constant 04 used to set condition code to a 
positive value in equal routine. 

Number of blocks in a sequence from checkpoint 
record (variable-length records only). 

constant 00FFF600 (256 complement of 10); used to 
allow switching to anothe.r cylinder in routine for 
calculating interleave address. 

4 

6 

2 

4 

2 

2 

16 

96 

4 

4 

16 

24 

2 

2 

2 

4 

2 

Appendix A 325 



IG7AB 

IGDOEX 

IGHOLD 

INDEXL 

INPUTG 

INPUTS 

IPTCCB 

LUlITS 

Contents 

save area for registers 7 and 8 in equal routine. 

Constant 18; used in equal routine. 

Save area used in equal routine for the base 
register obtained from mainline compare 
instruction. 

Pointer to the extent within which the current 
address resides; used to "jump" to the next extent 
in the work area when the upper limit is exceeded. 

Block count of input sequence (variable-length 
records only). 

save area for starting address of input areG. The 
address can fluctuate between the value contained 
in ABEGIN-DBEGIN and an adjustment factor equal to 
the maximum record length minus one 
(variable-length records only). 

CCB for all input sequences. Before a "get" (read) 
is issued, the CCB contains the logical unit 
address (LUB table pointer) pertaining to the block 
about to be read in and the location of the channel 
program. 

Table of logical unit addresses and upper and lower 
limits associated with logical and physical 
segments of the work area. Each subdivision within 
the table is a 12-byte entry. There is a minimum 
of two and a maximum of seven subdivis ions within 
the table, depending upon the number of extents the 
user has allotted for the work area. 

As illustrated in Figure 53, each entry 
contains: 

• Lower and upper limits of each physical extent 
(4 bytes each). 

• .Logical unit address associated with each work 
area extent (2 bytes). 

• A hexadecimal factor (multiple of 12) used as a 
pointer or index value to each physical extent 
(2 bytes). 

326 IBM S/360 DOS Sort/Merge 

8 

2 

2 

2 

4 

4 

16 

84 



2 bytes 2 bytes 

Logical 
0000 Unit Address 1 

OOOC Unit Address 2 
0018 Unit Address 3 
0024 Unit Address 4 
0030 Unit Address 5 
003C Unit Address 6 
0048 Unit Address 7 

4 bytes 

Lower Limit 

Lower Limit 
Lower Limit 
Lower Limit 
Lower Limit 
Lower Limit 
Lower Limit 

4 bytes 

Upper Limit 

Upper Limit 
Upper Limit 
Upper Limit 
Upper Limit 
Upper Limit 
Upper Limit 

84 byte 
table in 
hexadecimal 

-- - -EXAMPLE - - --

Index Log Unit 
Value Address 

0000 0101 
OOOC 0103 
0018 0103 
0000 0000 
0000 0000 
0000 0000 
0000 0000 

C-H-H-R 

4-0-1-0 
6-0-0-0 
A-0-7-0 
0-0-0-0 
0-0-0-0 
0-0-0-0 
0-0-0-0 

C-H-H-R 

9-0-5-0 
A-0-7-0 

14-0-8-0 
0-0-0-0 
0-0-0-0 
0-0-0-0 
0-0-0-0 

54 Tracks 
47 Tracks 

101 Tracks 

101 tracks 
in each half 
of wark area 

User's extents for work area 

''''~"" { 
Figure 53. 

LMALSB 

LMBLOK 

LMSTRG 

Symbolic Unit 
Address 

SYSOOI 
SYS003 

CCHH 
Lower Limit 

0-4-0-1 
0-6-0-0 

CCHH 
Upper Limit 

0-9-0-4 
0-21-0-0 

54 Tracks 
151 Tracks 
205 Tracks 
- 3 T rae ks for che ckpoi nt 
202 Tracks available 

Phase 2 Limits Table 

Checkpoint record format: 
Number of passes - 2 bytes 
Number of sequences from phase 1 - 4 bytes 
Number of blocks in last merge, pass 1 - 4 bytes 
Number of blocks in last sequence, pass 1 - 4 bytes 
Number of records processed in phase 1 - 4 bytes 
Number of blocks in G - 4 bytes 

Counter for the number of output blocks written 
during a pass when S :$ Wile This count (at the end 
of a pass) contains the number of blocks that will 
be in the last merge of the next pass. This count 
is moved to LMSTRG which in turn is used in 
calculating when the output interleave factor is to 
be reduced (if at all) during the next pass. 

Cotmter used to determine when (if at all) the 
output interleave technique is to be reduced during 
a phase 2 pass. At the start of a pass, it is 
initialized with a count equal to the number of 
blocks contained in the last merge of a pass; that 
is, the number of input blocks remaining when SSM. 

22 

4 

4 

Appendix A 327 



LOGPHY 

LSTRGl } 
through 
LSTRG6 

M 

MAXFl\C 

Contents 

Whenever S~2. a check is initiated to see if the 
output interleave echnique has to be reduced. The 
reduction is made after the number of blocks 
written to a sequence is 1 greater than the number 
of blocks contained in the last merge (M or less 
input sequences). 

Table of physical work-area limits obtained from 
the checkpoint record; used in LIMITS table. (From 
TABLEB in assignment phase.) 

A ma xi mum of six 4 -byte counters used in computing 

the interleave factors for sequences: 

LSTRGl - A through F (7-way fixed) 
LSTRG6 

LSTRGl - A through C (4-way fixed) 
LSTRG3 

LSTRGl - A through E (6-way variable) 
LSTRG5 

LSTRGl - A and B (3-way variable) 
LSTRG2 

These counters are used when it is determined that 
the interleave factors are to be reduced. 

Note: The input interleave factor for the last 
sequence of a pass is not reduced. In a 
7-way merge, for example, the input 
interleave factor is not reduced for 
sequence G, and a counter is not required. 

Phase 2 order of merge. 

A 2-byte constant which is used in conjunction with 
the interleaving of output sequences during a given 
pass. At the beginning of each pass, this constant 
is initialized with the number of merges which mU3t 
be performed before any attempt is made to reduce 
the factors used in calculating output interleaved 
disk addresses. At the beginning of each merge 
wi thin a pass, this constant is decremented by one. 
When the count reaches zero, the upcoming merge is 
notified that a check is to be undertaken for 
reducing the interleave technique associated with 
each output sequence. The count in .!"IAXFAC cannot 
reach zero until S (number of input sequences) 
reaches a level that is equal to less than the 
order of merge squared <S:5:M2). 

328 IBM S/360 DOS Sort/f-ierge 

88 

24 max. 

24 

12 

20 

8 

2 

2 



MERGEL 

MOVl 

MOV6 

110VIND 

.MOVLN6 

MOVMSK 

NOPASS 

NQUOT 

NRMDR 

Contents 

The number of blocks contained in the last (input) 
sequence of a pass. It is moved to counters ISTRGl 
- LSTRG6 which in turn are used in computing when 
the input interleave factor is to be reduced, if 
necessary. Because the nu~ber of blocks in the 
last merge of a pass becomes the number of blocks 
in the last sequence of the next pass, MERGEL does 
not have to be computed. 

constant 0001; used during initialization of the 
move routine for fixed-length records. 

Constant 0006 used as the instruction length 
multiplier during initialization of the move 
routine for fixed-length record. 

Save area for registers 8, 9, and 10 during 
initialization of the move routine. 

Input record length (Ll) obtained from the 
checkpoint record (SORTRL); used during 
initialization of the move routine. 

Constant 255; used during initialization of the move 
routine. 

Initially contains the number of passes to be 
performed by phases 2 and 3. This counter is 
decremented at the start of every pass. When the 
counter reaches zero, phase 3 will be called in. 
Example: 

NOPASS 2-start of 1st pass, 
1-start of 2nd pass, 
0- fetch pha se 3 

The quotient of M/BPT. It is used in computing the 
head or track number (the value for the second H of 
CHHR) of interleaved disk addresses (also see NRMDR 
and example). 

Remainders obtained when dividing the order of 
merge (M), order of merge minus one (M-1), etc., by 
the number of sort blocks per disk track. Used for 
computing the record numbers (R value in BBCCHHR) 
of each interleaved disk address associated with a 
sequence, both on input and output. 

Example: 

NQUOT 

1 
o 
o 
o 

o 
3 
2 
1 

(M/BPT) 
(M-lIBFT) 
(M-2/BFT) 
eM-3/BFT) 

4 

2 

2 

12 

4 

4 

2 

7 max 

7 max 

Appendix A 329 



NSR 

OBEGIN 

OCCB 

OMERGE 

ONE 

OPTWKA 

ORADDP 

ORADDR 

OUTEND 

OUTPTG 

OUTRLI 

PASSNO 

PH2IOM 

PH2PASS 

PH42PAS 

PH3CST 

POINTI 

POINTL 

Contents 

Output sequence counter used to initialize the 
input sequence counter (SR) at the beginning of 
each pass. NSR is then initialized with the number 
of output sequences which will be created during 
the upcoming pass (this value is derived by 
dividing the number of input sequences by the order 
of merge and rounding high). 

Starting address of output area in main storage. 

CCB for writing merged output on disk or tape. 
FUnctions in the same manner as IPTCCB. 

Equated with PH2IOM; used for end-of-merge 
indicator 

constant 0001; used for incrementing sequence and 
block counters. 

Indicator for sort output in work area; used to 
test for an extra copy pass if the final output is 
to be in the work area. 

Temporary storage area for output address and unit. 

Output disk address table for sequences A through 
G. Same format as input, plus 8 bytes for 
shifting. See phase 2 constant ARADDR for table 
illustration. 

End address of output area in main storage. 

Block count of output sequence. 

Used to extract the length of the current record 
(which may be a split record) about to be moved to 
the output area or to an input overflow area. 

Pass number (in decimal) from key portion of 
checkpoint record; used for restart. 

Phase 2 order of merge. 

See PH42PAS. 

Message: "PHASE 2, PASS 00". 
00 will be replaced by the appropriate pass number 
before message is printed. 

Address of IPTCCB; used to initialize channel 
program (RWCKPT) to write constants for phase 3 on 
checkpoint track. 

Pointers <contained in checkpoint record) to the 
logical halves of the work area; used to initialize 
POINTL. 

Two hexadecimal pointers (plus two bytes for 
shifting) which indicate the starting points of the 
two halves of the work area. At the start of every 
pass, after the initial input addresses have been 
computed, these pointers are reversed (shifted) and 
the initial output addresses are computed. 

330 IBM S/360 DOS Sort/Merge 

4 

4 

16 

2 

2 

2 

12 

84 max 

4 

4 

4 

2 

2 

17 

17 

4 

6 



PPCCB 

PPCHPG } 
through 
RDWTPP 

PRTPH2 

QUOT 

RDCHPG- } 
RDCCW 

REC256 

RLCOND 

RLINDE 

RLINVR} 
RLINVS 

RLISA 

RLNG1 

RLNG2 

RLREC2 

RLSAVE 

RLSVED 

RMDR 

RSTCCB 

SAVE45 

SAVPUT 

SFREG 

SORTL 

Contents 

CCB for writing PASS-PASS routine on the checkpoint 
track. 

CCW for reading and writing pass-pass routine 
on checkpoint track. 

CCW for printing messages on SYSLOG 

Used in computing the next head or track number (H 
value of CHHR) in compute interleave address 
routine. Simi lar in function to RMDR. 

CCW's for reading interleaved disk blocks into 
storage. 

Constant 256: used for moving a record or a split 
record in the variable-length move routine. 

Optional routine indicators. 

Save area for registers 4 through 10 in relocator 
routine. 

Constant OOCO; used to initialize registers in 
relocator routine. 

Address of first byte of main storage following the 
relocated routines and available for the I/O area. 

Original starting and ending addresses of the 
optional routines. 

Modified starting and ending address of required 
optional routines. 

Constant FFFFFFFD: used to round optional routine 
lengths to full word boundary. 

Save area for registers 5, 6, and 7 in .relocator 
routine. 

Area used in conjunction with RLSAVE to store the 
contents of registers in the relocator routine. 

2-byte field initialized each time an input/output 
interleave address is to be computed. When an 
interleaved disk address is computed. this field is 
added to the R value of the last address associated 
wi th an input/output sequence. RMDR is used only 
in computing the record number of the next disk 
address. 

CCB for checkpointing every pass. 

Save area for general registers 4 and 5 
(variable-length records only). 

Current address of the main storage output area 
(variable-length records only). 

Save area for register 15 in routine that computes 
when the input inerleave factor is to be reduced. 

Sort block size obtained from the checkpoint 
record. 

16 

24 

8 

2 

32 

2 

2 

28 

2 each 

4 

8 

8 

4 

12 

4 

2 

16 

8 

4 

4 

2 

Appendix A 331 



SORTRL 

SR 

SYMADR 

TEN 

WTCHPG 
WTCCW 

Contents 

L1, Input record length - 2 bytes 
L2 - 2 bytes (not used by sort program) 
L3. Output record length - 2 bytes 
L4, Minimum record length - 2 bytes 
Output block size - 2 bytes 
Phase 3 or 4 exit indicator - 1 byte 
Record type and output rewind options - 1 byte 
Key length of user record - 1 byte 
Options (VERIFY, BYPASS, ADDROUT, RESTART) - 1 byte 

The number of input sequences within a pass. 
During a pass, SR is decremented by the order of 
merge (M) at the start of every merge. At the 
start of every pass, SR is initialized with the 
number of output sequences created during the 
previous pass. 

Logical unit (LUB) address; used to compute an 
interleaved disk address. Its function is similar 
to that of INDEXL whenever an upper limit is 
exceeded; i.e., the logical unit address of the 
next extent is extracted from the LIMITS table and 
placed in SYMADR which, in turn, is placed in the 
address entry, ARADDR through GRADDR or ORADDR, 
depending upon which sequence address has "jumped" 
to the new extent. 

Constant FFOOOAOO; used to determine the new input 
disk address when a logical upper limit has been 
exceeded. 

CCW's for writing the merged output onto disk. 

PHASE 3 CONSTANTS 

ABEGIN } 
through 
GBEGIN 

AEND } 
through 
GEND 

ANSA10 

ANINV 

ANISEQ 

ANNML 

Contents 

Starting addresses of input sequence 
areas A through G in main storage. 

End addresses of input sequence areas 
A through G in main storage. 

Storage area for general registers 8, 9, and 10 
during initialization of the equal routine. 

Base register sequence (S, 7) when initializing 
equal routine for sequence opposite to first 
control field. 

Temporary storage for control field sequence. Used 
to test for control field sequence variation when 
initializing equal routine. 

Base register sequence (7, 8) when initializing 
equal routine for sequence same as first control 
field. 

332 IBM 3/360 DOS Sort/Merge 

14 

4 

2 

4 

32 

28 

2S 

12 

4 

2 

4 



ARADDR } 
through 
GRADDR 

Contents 

Disk addresss for input files A through G. 
(See Figure 5~.) 

Fixed-length records Variable-length records 

Index Sys 
CHHR Value Unit 

Addr 

Index Sys 
CHHR Value Unit 

Addr 

ARADDR 

---- ..... ----f-----1-----
4-Way Merge BRADDR 3-Way Merge 

1-----~---- ...... ----
CRADDR 

DRADDR 

-----~-----~----
1----'-~-v.:aTrge---

ERADDR 

7-Way Merge FRADDR 

* 

Block 
Count 

1------

"'-----

~----

>-----

GRADDR 4 2 2 4 (bytes) 

4 2 2 (bytes) 

Figure 5~. Phase 3 Disk Input Address Table 

AS AVE 

BAD RE PLY 

BBCCHH 

BCOMP 

BLKOUT 

BLX537 

EPT 

*byte count: 7-way fixed = 56 (8 bytes per entry) 
~-way fixed = 32 (8 bytes per entry) 
6-way variable = 72 (12 bytes per 
entry) 
3-way variable - 36 (12 bytes per 
entry) 

This table contains the next disk address for 
all input sequences at any point in phase 3. It 
also contains index values (pointers to the wo.rk 
area table) for the current XTENT in which any 
given sequence disk address has been computed. The 
third entry in each sUbdivision (each sequence is a 
subdivision) is the logical unit address pertaining 
to each current or next sequence disk address. 

Save area for register 9 in PUT1 routine (7-way 
fixed only). 

CCB for printing message: ·7DC2A INVALID RESPONSE" 
(see Appendix D). 

Seek and search address for disk input and output. 

256 complement of BPT~ 

output block size. 

Value 537 used in computing the area of a 2311 
track that will be used in writing a 
variable-length block (record) onto a track. It 
applies only to disk output. 

Number of blocks per track. 

~ 

16 

6 

2 

2 

2 

2 

Appendix A 333 



BPTO 

CANCEL 

CANSEL 

CCBCKP 

CCBEOJ 

CF1LCT 

CHECKP 

CHHR 

CKPTRD 

COUNTR 

CTDLDL 

DECMAL 

EIGHT 

EOJPRT 

EOJPRT2 

Contents 

Number of blocks per track in phase 3 output. 

upper case compare constant for ·CANCELQ reply. 

Lower case compare constant for "cancel" reply. 

CCB for reading checkpoint record. 

CCB for printing end-of-job message on SYSLOG. 

Checkpoint record data for control fields 1 through 
12 (8 bytes each) • . 

Address of the checkpoint track obtained from 
general register 3 at the start of phase 3, and 
used for: 

• reading the checkpoint record (constants passed 
from phase 2 to phase 3) into main storage. 

• checkpointingthe program for open, close, and 
FEOV conditions; in conjunction with this 
function, CHECKP is used to read in the label 
linkage routine (LLR) and the exit 31 routine. 

Current disk interleave address. 

Data from key portion of checkpoint record: 

• Pass number <in decimal) for restart - 2 bytes 

• Number of passes - 2 bytes 

• Number of sequences from phase 1 - 4 bytes 

• Number of blocks in last merge (pass 1 of phase 
2) - 4 bytes 

• Number of blocks in last sequence (pass 1 of 
phase 2) - 4 bytes 

Contains a decreasing record count during phase 3. 
The initial count is the number of records 
processed in phase 1. EVery time a record is moved 
to the output area, this count is decremented by 
one. Note: Applicable only to 7-way fixed and 
6-way variable. 

Output data length for a disk record. 

Double word used in converting the number of 
records sorted into decimal format for printing 
end-of-job messages. 

Constant 8; used in adjusting to the starting 
location of the output area in storage. It is used 
to "jump" to the location where the first record is 
to be moved to each output block in storage. 

CCW's for printing end-of-job messages on SYSLOG. 

Location of CCW's for printing end-o.f-job messages. 

334 IBM S/360 DOS SOrt/Merge 

2 

6 

6 

16 

16 

96 

4 

4 

16 

4 

2 

8 

2 

16 

4 



Label 

EOV 

EX3231 

EXCESS 

FFFFO 

FLTCP2 

FOR!"iAT 

FOUR 

HCOMP 

IG7A8 

IGDOEX 

IGHOLD 

IGNOH 

IGNORE 

INDEXL 

INVl'.LID 

IOLAB 

IPTCCB 

Contents 

End-of-volume indicator (V-character) for tape 
output only. 

Exi ts 32 and 31 indicators. 

Jvlaximum number of tracks by which an upper limit 
can be exceeded, when computing an input 
interleaved disk address. Its only use is in 
computing the next disk address when an upper limit 
is exceeded. 

Constant used to invert control field digits in 
packed-decimal reconversion routine. 

Constant used to invert control field digits in the 
floating-point reconversion routine. 

Format and number of control fields, obtained from 
the checkpoint record. 

Constant 04: used to set condition code to a 
positive value in equal routine. 

Constant OOFFF600 (256 complement of 10); used to 
allow switching to another cylinder in routine for 
calculating interleave address. 

Save area for registers 7 and 8 in equal routine. 

Constant 18: used in equal routine. 

Save area used in equal routine for the base 
register obtained from mainline compare 
instruction. 

Lower case compare constant for "ignore" reply. 

Upper case compare constant for "IGNORE" reply. 

Pointer to the extent within which the current 
address resides; used to "jump" to the next extent 
in the work area when the upper limit is exceeded. 

CCW for printing message: "7DC2A INVALID RESPONSE" 
(see Appendix D). 

Type of output and type of output labels. 

Byte 1: nl - tape output 
61 - nonstandard or unlabeled 
21 - nonstandard 
41 - unlabeled 

Byte 2: 01 - 1052 is assigned to SYSLOG. 

CCB for all input sequences. Before a "get" (read) 
is issued, the CCB contains the logical unit 
address (LUB table pointer) pertaining to the block 
about to be read in and the location of the channel 
program. 

1 

1 

2 

16 

8 

2 

2 

2 

8 

2 

2 

6 

6 

2 

16 

2 

16 

Appendix A 335 



KEY 

LIMITS 

Contents 

Key length of user record for disk output. 

Table of logical unit addresses and upper and lower 
limits associated with logical and physical 
segments of the work area. Each s ubdi vision wi thin 
the table is a 12-byte entry. There is a minimum 
of two and a maximum of seven subdivisions within 
the table, depending upon the number of extents the 
user has allotted for the work area. 

Each entry contains: 

• Lower and upper limits of each phys ical extent 
(4 bytes each). 

• Logical unit address associated with each work 
area extent (2 bytes). 

• A hexadecimal factor (multiple of 12) used as a 
pointer or index value to each physical extent 
(2 bytes). 

2 bytes 2 bytes 4 bytes II bytes 

0000 Logical Unit Address 1 Lower Limit Upper Limit 

OOOC Logical Unit Address 2 Lower Limit Upper Limit 

0018 Logical Unit Address 3 Lower Limit Upper Limit 

0024 Logical unit Address 4 Lower Limit Upper Limit 

0030 Logical Unit Address 5 Lower Limit Upper Limit 

003C Logical Unit Address 6 Lower Limit Upper Limit 

0048 Logical Unit Address 7 Lower Limit Upper Limit 

84-byte table in hexadecimal 

EXAMPLE 

Index Log Unit C-H-H-R C-H-H-R 
Value Address 

1 

84 

0000 0101 4-0-1-0 9-0-5-0 54 tracks 

OOOC 0103 6-0-0-0 A-0-7-0 47 tracks 

0018 0103 A-0-7-0 14-0-8-0 101 tracks 

0000 0000 0-0-0-0 0-0-0-0 

0000 0000 0-0-0-0 0-0-0-0 

0000 0000 0-0-0-0 0-0-0-0 

0000 0000 0-0-0-0 0-0-0-0 

101 tracks in each half of work area 

336 IBM 8/360 DOS Sort/Me.rge 



LIMITO 

LINKRT 

LOGADR 

LSTRG1 } 
through 
LSTRG6 

MESEOJ 

MESEOJ2 

MNIADR 

MN.LCCB 

MOV1 

MOV6 

MODADDR 

MOVIND 

MOV.LNG 

MOVMSK 

MOVRES 

Contents 

Upper limit of the current disk output extent. If 
the uppe r limi tis exceeded, an OPEN must be issued 
to retrieve the next set of extents. For tape 
output, the constant is used in compiling the block 
count to be inserted in the trailer label. 
(Standard labels only.) 

aD-byte area reserved for IOCS to read the standard 
tape label block into main storage when processing 
standard tape file labels. 

Logic module address in tape DTF. 

4 

80 

4 

A maximum of six 4-byte counters used 
in computing the interleave factors for 
sequences: 

24 max. 

LSTRG1 - A through F (7-way fixed) 24 
LSTRG6 

LSTRG1 - A through C (4-way fixed) 12 
LSTRG3 

LSTRG1 - A through E (6-way variable) 20 
LSTRG5 

LSTRG1 - A and B (3-way variable) 8 
LSTRG2 
(See note following LSTRG1-LSTRG6 in the phase 2 
cons tan ts. ) 

Message: "7DC51 END OF SORT". 

Location of end-of-job message (MESEOJ). 

Address of CCW's for reading and writing the 
label-linkage routine. 

CCB for checkpointing mainline prior to label 
processing. 

Constant 0001; used during initialization of the 
move routine for fixed-length records. 

constant 0006; used as the instruction length 
multiplier during initialization of the move 
routine for fixed-length records. 

Logic module address in disk DTF. 

Save area for registers 8, 9, and 10 during 
initialization of the move routine for fixed-length 
records. 

Input record length (Ll) obtained from the 
checkpoint record (SORTRL); used during 
initialization of the move routine for fixed-length 
records. 

Constant 255; used during initialization of the 
move routine for fixed-length records. 

Save area for the calculated number of moves; used 
during initialization of the m@ve routine for 
fixed-length records. 

17 

4 

4 

16 

2 

2 

4 

12 

4 

4 

2 

Appendix A 337 



NOPB3C 

OBEGIN 

OCCB 

ONE 

OPEN 

ORADDR 

OUTBKL 

OUTEND 

OUTEND1 

OUTRDL 

PDIGITS 

PH34EX 

PH3IOM 

PH3REG 

PKSGN2 

Contents 

Main storage address and the byte count for reading 
in constants being passed from phase 2 to phase 3. 

Starting address of output area in main storage. 

CCB for writing merged output on disk or tape. 
Functions in the same manner as IPTCCB. 

Constant 0001: used for incrementing sequence and 
bloc k counters. 

Indicator for the label-linkage routine that an 
"OPEN" is to be issued to the output file. 

Current 2311 address of the output file on disk. 
At the start of phase 3, it contains a value which 
will force the initial "OPEN" of the output file 
before the first output block is written onto the 
disk output area. 

Output block length (for fixed-length records), or 
maximum output block length (for variable-length 
records) • 

End address of output area in main storage. 

~: This address may be replaced by a lower 
value after an output block has been written 
on disk when processing VLR only. 

OUT.END will contain the original value (OUTENDU 
at least until the first block has been built and 
the amount of track capacity that will remain has 
been calculated. If this amount is less than the 
maximum output block size. the output area is 
truncated to equal the track capacity remaining, 
and the end address of the truncated output area is 
inserted in OUTEND for testing the next record. 

For processi ng va riable-Iength records only, the 
original end address of the main storage output 
area (OUTEND) is stored in OUTEND1,which can then 
be used to restore the truncated output area to its 
original size. 

Output record lengths: 

First 2 bytes - output record length (fixed-length 
records) or maximum output record length 
(variable-length records). 

Save area for shifted control data in 
packed-decimal reconversion routine. 

Na.me of phase 3 user routi nee 

Phase 3 order of me.rge (the number of sequences 
remaining at the beginning of phase 3). 

Same as fi.rst CCW in RDCHPG. 

Temporary storage area for sign bits in the 
packed-decimal reconversion routine. 

338 IBM S/360 DOS Sort/Merge 

7 

4 

16 

2 

1 

4 

2 

4 

4 

2 

16 

4 

2 

4 

2 



QUOT 

RDCHPG 
RDCCW 

RDCKPT 
CKPCCW 

RECMES 

RECMES2 

RECPH1 

REPLY 

REPLY BAD 

REWIND 

RIAORU 

RLCONO 

RLEMG 

RLINDE 

RLINVR} 
RLINVS 

RLIOUT 

RLISA 

RLKOTO 

RLNG1 

RLNG2 

RLREC2 

RLRSVE 

RLSAVE 

RLSVED 

Contents 

Used in computing the next head or track number (H 
value of CHHR) in compute interleave address 
routine. Similar in function to RMDR. 

CCW's for reading interleaved disk blocks 
into storage. 

CCW's for reading in the checkpoint record 
and the record containing applicable constants. 
Used during initialization of phase 3. 

Message: "70C41 RECORDS PROCESSED 0000000". 

Address of message contained in RECMES 

Number of records processed in phase 1, obtained 
from checkpoint record. 

Operator's response (in characters) to messages, if 
SYSLOG is a 1052. 

Message: "7DC2A INVALID RESPONSE" (see Appendix 0). 

Rewind options for tape output: 

10 - RWD (rewind) 
04 - RWD UN.LD (rewind unload) 
01 - NORWD (no rewind) 

starting address of original optional routines in 
phase 3 relocator. 

Area for optional routine indicators. 

Length of compare set. 

Save area for registers 4 through 10 in re1ocator 
routine. 

Constant OOCO; used to initialize 
registers in relocator routine. 

overlays BLOCKC from phase 2. 

Address of first byte of main storage fo110'.-ling the 
relocated routines and available for the I/O areas. 

Constant 16; used to test for last selector. 

Table of origina~ optional routine lengths. 

Table of modified optional routine lengths. 

Constant FFFFFFFO; used to round optional routine 
lengths to full word boundary. 

Save area for zone bits in relocator move routine. 

Save area for registers 5, 6, and 7 in re1ocator 
routine. 

Area used in conjunction with RLSAVE to store the 
content of registers in the relocator routine. 

2 

32 

32 

31 

4 

2 

6 

1 

4 

2 

4 

28 

2 each 
2 

4 

4 

4 

24 

24 

4 

2 

12 

4 

Appendix A 339 



RMDR 

SAVE10 

SEQCCB 

SEQCCW 

SEQMES 

SLINK 

SORTL 

SORTRL 

SYMADR 

TADCON 

TC3633 

TEN 

TKLEFI' 

USADDR 

USERINFO 

.£ontents 

2-byte field initialized each time an input 
interleave address is to be computed. When an 
interleaved disk address is computed, this field is 
added to the R value of the last address associated 
with an input sequence. RMDR is used only in 
computing the record number of the next disk 
address. 

Save area for general register 10 in the record 
count routine (7-way' fixed only). 

CCB for printing sequence-error message and for 
reading reply on SYSLOG. 

ccw's for printing sequence error message and for 
reading reply on SYSLOG. 

Message: "7DC2D SEQ. ERROR" (see Appendix D). 

Save area for the contents of the linkage register 
(14) before entering user exit 32. 

Sort block size, obtained from the checkpoint 
record. 

L1, input record length. 

Logical unit (LUB) address; used to compute an 
interleaved disk address. Its fUnction is similar 
to that of INDEXL whenever an upper limit is 
exceeded; i.e., the logical unit address of the 
next extent is extracted from the LIMITS table and 
placed in SYMADR Which, in turn, is placed in the 
address entry, ARADDR through GRADDR or ORADDR, 
depending upon which sequence address has "jumped" 
to the new extent. 

Address of CCW for writing merged output onto tape 
or disk. 

Constant 3633, the 2311 track capacity in bytes for 
wri ting disk output. The t.rack capacity is 
actually 3625, but the same result is achieved in 
phase 3 by increasing the value eight bytes. 

constant FFOOOAOO; used to determine the new input 
disk address when a logical upper limit has been 
exceeded. 

Counter for computing the remaining area on a 2311 
track. Every time a record is written onto the 
disk file, this counter is adjusted to indicate how 
many bytes remain on a track. 

Main storage address of the user programming (if 
any) in phase 3. It is used to. link the sort 
program. to exit 31 and exit 32. 

• Output record length (L3) - 2 bytes 

• Input record length (Ll for fixed or 
variable-length records, or control field 
length plus 10 for ADD ROUT records) - 2 bytes 

340 IBMS/360 DOS Sort/Merge 

2 

4 

16 

16 

16 

4 

2 

2 

2 

4 

2 

4 

2 

4 

8 



VBPRC 

WRMAIN 

wrcHPG } 
through 
WTCCW 

X31IND 

ZONZN2 

Contents 

• Label type, ADDROUT option, format and record 
type - 1 byte 

• Control field 1 length minus 1 - 1 byte 

• Control field 1 displacement within record - 2 
bytes 

1-1-1- v B P R C 

v - VERIFY option (disk only). 

B - BYPASS (tape input for sort, tape input or 
output for merge). 

P - PRINT option. 

R - ADD ROUT option (disk input only). 

C - RESTART option (sort only). 

For open, FEOV, and close conditions. this channel 
program will checkpoint phase 3, read in the 
label-linkage routine, checkpoint the label-linkage 
routine after the condition has been satisfied, and 
restore phase 3 for further processing (if 
warranted) • 

CCW's for writing the merged output onto 
disk or tape (only WTCCW is used for tape 
output). Also used to verify disk output. 

Open, close, FEOV, or sequence-error indicator 

Temporary storage for sign bit in the zoned-decimal 
reconversion routine. 

PHASE 4 CONSTANTS 

Label 

ABEGIN } 
through 
DBEGIN 

ACCB } 
through 
DCCB 

ADD 2 

ADDRINP * 
ADD ROUT * 

Contents 

Starting addresses of input areas in main 
storage for files A, B, C, and 0, respectively. 

Command Control Blocks for input files A through D. 

Disk address of the checkpoint. 

Address of FILE A CCB. 

Address of output CCB. 

*Appears in DSORT401 only. 

1 

32 

56 

1 

2 

Bytes 

16 

64 

7 

Appendix A 341 



1\END } 
through 
DEND 

ANSA10 

ANINV 

ANISEQ 

ANNML 

ARADDR } 
through 
DRADDR 

BASE11 ** 

BBCCHH 

BCOMPO 

BLKINP 

BLX537 

BP'ro ** 

BYPCCB * 
BYPCCW * 
BYPMES * 

CCBl 

CCBEOJ 

CCBTAB } 
through 
SEARCH+31 

CCOUNT 

Contents 

Ending addresses of input areas in main storage for 

files A, B, C, and D, respectively. 

storage area for general registers 8, 9, and 10 in 
initialization of the equal routine. 

Base register sequence (13, 12) when initializing 
equal routine for sequence opposite to first 
control field. 

Temporary storage for control field sequence. Used 
to test for control field sequence variation in 
equal routine initialization. 

Base register sequence <12, 13) when initializing 
equal routine for sequence same as first control 
field. 

Current disk address and extent upper limit for 
each file (A, Bf C, and D). 

Starting address of phase 4 overlays. 

Part of disk seek address. When combined with 
CHHR, forms the disk seek address for the 2841 
control unit. 

256 complement of the maximum number of output 
blocks per track (BPTO). Used only for disk 
output, fixed length records. 

Input block length of fixed blocks or maximum block 
size of variable blocks. (See INPBKL.) 

Constant 537 used in computing the area of a 2311 
track that will be used in writing variable length 
block {record} onto a track. It applies only to 
r,Usk output. 

Number of blocks per track in phase 4 output. 

Command control block for printing bypass message. 

CCW for printing bypass message. 

Message: "7DD41 PHASE 4 UNREADABLE BLOCKS BYPASSED 
00000". (The zeros are replaced by the number of 
blocks bypassed.) 

CCB for writing initialized open/close routine on 
the second track of the disk work area. 

CCB for printing messages on SYSLOG. 

For reading in the aSSignment phase table. 

Count field for current input block (CCHHRKLDLDL). 
Used for disk input only. 

**Appears in both both DSORT401 and DSORT402. 

342 IBM S/360 DOS Sort/Merge 

16 

2 

4 

2 

4 

32 

4 

3 

2 

2 

2 

2 

16 

8 

46 

16 

16 

56 

8 



CCW1 } 
to 
CCW2 

CF1LCT ** 

CHHR 

CHKCCB 

CHKCCW 

CHKPT 

COUNT ** 

DECMAL * 

DISK1 *t 
DISK2 :J 
DTFADDR * 
EOFDK * 

EOFTP * 

.EOJPRT * 
ERRCT 

FILETYPE * 
FIXDRL 

FORMAT ** 

HCOMP 

IGDOEX 

IGHOLD 

contents 

CCW chain for writing initialized openlclose routine 
on disk. 

Checkpoint record data for control fields 1 through 
12 (B bytes each). 

Computed current 2311 disk address. 

CCB for checkpoint CCW (CHKCCW). 

CCW's for seek, search, read, and write checkpoint 
for open or close conditions. 

Constant: III CHKPT II 

In DSORT401, count for the format of the checkpoint 
record and area for labels processing. 
In DSORT402, count of next record. 

Double word used for converting the number of 
records merged to decimal form when printing bypass 
and end-of-job messages. 

Disk addresses used in seek and search CCW's. 

Address of DTF for OPEN and CLOSE macros. 

Address of CLOSE macro for input file at end-of­
file time for disk: equated to EOFTP. 

Address of macro to close input file at end-of-file 
time for tape. 

CCW's for printing end-of-merge messages. 

Count of unreadable blocks bypassed. 

File information for user du.ring exit 41. 

Input .record length of fixed length records or 
maximum length of variable records. (See SORTRL.) 

Format and number of control fields obtained from 
checkpoint record. 

256 complement of ten. Used for computing next 
output disk address for variable-length records. 

Constant. 18 used in equal routine. 

Save area used in equal routine to hold register 
number of the base register obtained from mainline 
compare instruction. 

32 

96 

4 

16 

32 

12 

80 

8 

8 

4 

4 

4 

4 

4 

16 

2 

4 

2 

2 

4 

2 

2 

Appendix A 3113 



INPBKL 

INOUT 

KEY ** 

LABEL 

LENGTH * 

LIMITO 

LOGUNIT * 
.MASK 

MES1 * 
MES2 * 
MESll * 
MES22 * 
MESEOJ * 

MRGVOL ** 

NOOPR 

ceCB 

OM ** 

OMERGE * 
ONE 

ORADDR 

Contents 

Input block size (maximum input block size for 
variable-length records) from checkpoint record. 

Equivalent to assignment phase INPUTMRG through 
INPUTMRG+4. 

First byte: Key length 

Second byte: 
Bi t 1 - unused. 
Bit 2 - NOTPMK before first tape output record 
Bit 4 - VERIFY option; disk output only 
Bit 4 - BYPASS option; tape input only 

Label type indicator 

Length of initialized open/close routine written on 
disk. 

Upper limit of the current disk output extent. 
Equals ORADDR+4. 

Current logical unit address for work area. 

Constant FFFFFFFC; used to crea te a full word 
boundary for the output area. 

Upper case compare constant for "IGNORE" reply. 

upper case compare constant for ·CANCEL" reply. 

Lower case compare constant for "ignore" reply. 

Lower case compare constant for "cancel" reply. 

Second part of end-of-job message in 
DSORT401: "70061 END OF MERGE". Also see RECMES. 

Number of volumes and files for merge from 
assignment phase checkpoint record: 

FILE A B C 0 
Number of 

1 -I I volumes - -
per file - I -I 

• 

4 

5 

2 

1 

4 

4 

4 

4 

6 

6 

6 

6 

18 

10 

Total number of files (MRGVOL+9) 

4700; used to change branch instructions to no-ops 
during initialization for fixed-length records on 
input. 

Command control block for output file. 

Phase 4 order of merge, from checkpoint record (see 
assignment phase label FILES). 

Phase 4 order of merge. 

Constant 1; used in calculations. 

Current disk address of the output file. 

2 

16 

2 

4 

1 

4 

344 IBMS/360 DOS Sort/Merge 



OUT.BKL .. 

OUTEND 

OUTENDl 

OUTLGN 

OUTOPT ** 

OUTRDL ** 

OUTRLI 

OVF 

PH2IOM 

.PH2MOM 

PH34EX ** 

Contents 

Output block size (maximum output block size for 
variable-length records>. 

End address of output area in main storage. 

Note: This address may be replaced by a lower 
value after an output block has been written 
on disk when processing VLR only. 

OUTEND will contain the original value 
(OUTEND1) at least until the first block has 
been built and the amount of track capacity 
that will remain after it is written has 
been calculated. If this amount is less 
than the maximum outpIt block size, the 
output area is truncated to equal the track 
capacity remaining, and the end address of 
the truncated output area is inserted in 
OUTEND for testing the next record. 

For processing variable-length records only, the 
original end address of the main storage output 
area (OUTEND) is stored in OUTEND1, which can then 
be used to restore the truncated output area to its 
original size. 

Output record length of fixed-length records or 
actual length of variable records. (See OUTRDL.) 

Record type and output label option~ equated to 
TYPREC: 

Bit 0 - Variable-length records 
Bit 1 - Fixed-length records 
Bit 2 - OPEN RWD 
Bit 3 - OPEN NORWD 
Bit 4 - not used 
.Bit 5 - CLOSE UNLOAD 
Bi t 6 - CLOSE RWD 
.Bi t 7 - CLOSE NORWD 

output record lengths: 

First 2 bytes - output record length (fixed-length 
records) or maximum output record length 
(variable-length records). 

Second 2 bytes - minimum variable-length record. 

Length of record to be moved to output area. 

Characters O. V, and F; used to indicate open, end 
of volume, and end of file, respectively. 

Merge status indicator. 

Equa ted to PH2IOM. 

Phase 4 user exit number 

2 

2 

1 

4 

4 

3 

2 

2 

2 

Appendix A 345 



Label 

PH4NA.ME 

PKSGN2 

R1CTHD} 
and 
R2CTHD 

RCOUNT 

RDCCW 

RDCHPG 

READTP 

REC256 

RECMES * 

RLADRU 

RLCOti.'D 

RLEMG 

RLINDE 

RLINVR} 
RLINVS 

RLISA 

RLKOTO 

RLNGl 

RLNG2 

RLREC2 

RLRSVE 

RLSAVE 

RLSVED 

** 

contents 

Symbolic name for phase 4 user routine 

Temporary storage area for sign bits in the packed 
decimal reconversion routine 

Disk address of the assignment phase checkpoint 
record. 

Number of records processed (merged). Does not 
include user insertions or deletions. 

8 

2 

4 

4 

For reading records from a file into the input area 8 
(tape input only). 

Same as RDCCH, except for disk input. 56 

Address of RTCCW; used to initialize input channel 3 
programs ACCB through DCCB to read tape input. 

constant 256; used in calculations for moving 4 
records to the output area. 

First part of end-of-job message in 33 
DSORT401: "7DD5I RECORDS PROCESSED 0000000". (The 
zeros are replaced by the number of records 
processed.) Also see MESEOJ. 

Starting address of original optional routines in 
phase 4 relocator. 

Indicator for .relocatable routines. 

Length of compare sets. 

Sa ve area f or registers 4 through 10 in relocator 
routine. 

Constant OOCO, used 
to initialize registers in relocator routine. 

Address of first byte of main storage following the 
relocated routines and available for the I/O area. 

constant 16; used to test for last selector. 

Table of original optional routine lengths. 

Table of modified optional routine lengths. 

Constant FFFFFFFD; used to round optional routine 
lengths to full word boundary. 

Save area for zone bits in move routine. 

Save area for registers 5, 6, and 7 in relocator 
routine. 

Area used in conjunction with RLSAVE to sto.re the 
content of registe.rs in the reloca tor routine. 

4 

1 

4 

28 

2 each 

4 

4 

24 

2lt 

4 

2 

12 

4 

346 IBM S/360 DOS Sort/Me.rge 



RTCCW 

SIWE45 

SAVEO 

SAVEREG * 
SEEK * 

SEQCC.Bl 1 
through * 
SEQCCB3 

SEQCCWl 
through 
SEQCCW3 

SEQME~Sl 
through 
SEQMES3 

SLINK 

1 
1 

SORTRL ** 

TABCCB • 

TABLEB ** 

TBKLAB ** 

TC3656 

TKLEFT 

TPOM • 

TRACK1 

TRACK2 

contents 

CCW for reading tape. 

storage location for saving the contents of 
registers 4 and 5; used in moving reco.rds to the 
output area. 

storage location for saving the contents of 
register MREG when branching to open/close routine. 

Save area for general registers 10 through 15. 

Seek and search CCW's for reading assignment phase 
checkpoint record. 

CCB's for printing sequence error messages. 

CCW' s for printing sequence error messages. 

Sequence error messages 
7002A and 70020; see Appendix o. 

Storage location for saving the contents of the 
link register. 

L1, Input record length - 2 .byt es 

L2 - 2 bytes (not used by sort program) 

CCB for reading the assignment phase table. 

Oisk work area limits table from checkpoint record. 
TABLEB is read in with the checkpoint but is not 
used in phase 4. 

Type of blocking ( input) and input file options: 
Bit 0 - Variable blocking 
Bit 1 - Fixed blocking 
Bit 2 - OPEN RWD 
Bit 3 - OPEN NORWO 
Bit 4 - not used 
Bit 5 - CLOSE UNLOAD 
Bit 6 - CLOSE RWD 
Bit 7 - CLOSE NORWD 

Constant 3633; the capacity, in bytes, of the 2311 
track. For disk output only. 

Counter for number of bytes remaining on a track. 
Used for computing the available area on a 2311 
track after record has been written on disk. For 
variable-length output only. 

Number of tapes in input. 

Addresses of first and second tracks of work area. 

8 

8 

4 

24 

32 

48 

24 

51 

4 

4 

16 

88 

1 

2 

2 

4 

4 

Appendix A 347 



babel 

TRKl *} 
TRK2 

TYPREC ** 

USADDR ** 
U8ERAD ** 
USINFl 

USINF2 

USINF3 

VRFCCW 

WLRCCB 

WLRCCW 

WLRMES 

WRITETP 

WTCHPG } 
through 
WTCCW+24 

WTPCCW 

XFILE ** 
XTIME 

ZONZN2 

Contents 

Addresses for writing initialized open/close routine 
on disk. 

Type of record (fixed or variable) and output label 
options (type from RECTYP, options from INOUT+l in 
assignment phase). 

Second byte: 
Bit 0 - Variable-length records 
Bit 1 Fixed-length records 
Bit 2 OPEN RWD 
Bi t 3 OPEN NORWD 
Bit 4 not used 
Bi t 5 CLO SE UNLOAD 
Bit 6 CLOSE RWD 
Bit 7 CLOSE NORWD 

Starting address of user routine in phase 4. 

Address of phase 4 user routines (same as USADDR). 

Input block length for user. 

First 2 bytes - output record length (L3) for user. 

Second 2 bytes - Input record length eLl) for user. 

First byte - record type, format. and label type 
for user. 

Second byte - First control field information 
(CF1LCT) for user. 

Thi.rd and fourth bytes - unused. 

CCW for verification of records written on disk. 

4 

2 

4 

4 

4 

4 

4 

8 

Command control block for wrong-length record message. 16 

CCW for printing wrong-length-record messages. 

wrong-length-record message: '7DD11 WLR FILE X' 
(The X is replaced by the file identification.) 
See Appendix D. 

Used to modify WTCCW for tape. 

Fo.r writing merged records f.rom the output area onto 
disk or tape (modified by WTPCCW for tape output). 

CCW used to modify WTCCW program for tape output. 

Current file indicator for input files A through D. 

Indicator for conversion or reconversion of data. 

Temporary storage for sign bit in the zoned-decimal 
reconversion routine. 

8 

16 

3 

48 

8 

1 

1 

2 

348 IBM 8/360 DOS Sort/Merge 



DEFINITIONS OF ABBREVIATIONS 

BAL - Branch-and-link 

BLI - Block length indicator 

BPT - Sort blocks per track 

CCB - Channel command block 

CCW - Channel command word 

CF - Control field 

CHHR - Cylinder, head-head, record number 

EOF - End of file 

EOJ - End of job 

EOV - End of volume 

G - Number of .records per sequence in phase 1 

Hex - Hexadecimal 

LLR - Label linkage routine 

M - Order of merge 

OM - Order of merge 

RAF - Record address file 

RLI - Record length indicator 

RPT - Records per track 

S ..: Number of input sequences remaining at the start of a merge 
within a pass 

TA - Tracks available (assignment phase). Used in calculating 
disk work area 

TC - Track capacity 

TR - Tracks required (aSSignment phase). Used in calculating 
disk work area 

VLR - Variable-length record 

WLR - Wrong-length record 

Appendix A 349 



APPENDIX Bt LABEL REFERENCES 

ASSIGNMENT PHASE 

Label Chart 

ABORT AA 
AGAIN AQ 

B1 AH 
B2 AH 
B118 AP 
B119 AP 
B126 AP 
B135 AP 
B136 AP 
B170 AP 
BEGINl AA 
BEGIN AP 
BLK AG 
BLK2 AG 
BLKHIP A;J 

BLKOK A;J 

BLMAX4 AH 
BRCH AR 
BYPVAR AL 

C AJ 
CA.LC AQ 
CALCSWl AK 
CALCSW2 AL 
CALNOP AM 
CALPH1B2 AK 
CALRPT AL 
CALSWR2 AN 
CA.LSW2V AM 
CBYPTK AI< 
CBYPTKV AM 
CCDESC AR 
CCERR AA 
CCSO AB 
CCS2 AB 
CF256 AG 
CFB3MAX AM 
CFL3l¥'AX AH 
CHKRECBK AL 
CRAMAX AM 
CRBI AH 
CKBMAX AH 
CKBPT AK 
CKBYPTKR AN 
CKDEFS AE 
CKFLDl AD 
CI<FLD4 AD 
CKF.LDM AD 
CKHEAD AR 
CKKEY A;J 

CKLABELS AJ 
CKL3MAX AH 
CKL3MX AJ 
CKLMAX AH 
CKMERGE AJ 
CKPARA AA 

350 IBM 5/360 DOS Sort/Merge 



CKPRINT AR 
CKRECBK AL 
CKRECBKR AN 
CKRPT AN 
CKRPTl AN 
CKRWD AJ 
Cl<SIZ AJ 
CKTYPEIN AJ 
CKVOL AJ 
CLEAR AB,AF 
CLORBV AH 
CLOB AP 
COL16 AA 
COMBPT AK 
COMBPTV AM 
COMP AC,AD,AQ 
COMPG AL 
COMPGR AN 
COMPGV AM 
COM.PM AD 
COMPO AD 
COMPP AE 
CONOOT AR 
CORV.AL AG 
CVB3MAX AH 
CVL3MAX AH 

DETLOWER AH 
DETSMALL AH 
DIvaL AM 
DSORT AA 
DSORTOO2 AB 
DSORTOO3 AC 
DSORTOO4 AD 
DSORTOO5 AF 
DSORTOO6 AH 
DSORTOO7 AJ 
DSORTOO8 AK 
DSORTOO9 AP 
DSORT01O AR 

E1Bl AP 
.E200 AP 
ENDm' AL 
ENDGFR AN 
ENDSCN AE 
EOJ AR 
EOJ3RT AS 
EOJCl AS 
EOJCALC AU 
EOJCSW AS 
EOJZ AR 
ERR 1 AA 
ERR3 AA 
ERR3A AA 
ERR4 All. 
ERRS AA 
ERR 6 All. 
ERR6!+ AA 
EXIT AF 
EXITB AF 

F2SW AS 
F4SW AS 
FETC10 A? 
-FETCH AA 
FETCHl AS 
FETCH 2 AS 

Appendix B 351 



FETCH4 AC,AS 
FETCH5 AE 
FETCH7 AH 
FETCH9 AL,AM 
FETCHEND AE,AH,AM 
FETVAR AS 
FINAL AP 
FIND AQ 
FIRSTED AG 
FIXED AP 

GETEOJ AG 
GETLl AJ 
GETMES AB 

INCSWR AN 
INF AR 
INFl AD 
INFSCN AD 
INITl AF 
INIT2 AF 
INITAl AF 
INITST AA 
INITCSWS AL 

Ll AH 
Ll101ULT AJ 
L3Ll AJ 
LABEXCK AJ 
LENHI AJ 
LENLO AJ 
LOADl AA 
LOAD 2 AB 
LOOP AJ 

1011 AR 
METHl! AF 
MGINIT AF 
MINBLKI AJ 
MODl AD 
MODSCN AD 
101OVECC AB 
MRGCKP AF 
MRGOPN AF 
MRGSCN AC 
MSG91 AS 
MSG91A AS 

NOCALCS AR 
NORAF AJ 
NOVAR AG 

ONETWO AQ 
OPEN AF 
OPERROR AA 
OPFLE AR 
OPTSCl AA 
OPTSC2 AA 
OPTSCN AE 
OPTSCS AA 
OTFSCN AD 
OUT AQ 
OUTFI AR 
OUTPT AL 
OVLPCF AJ 

P1SIZE AG 
P2SIZE AG 

352 IBM S/360 OOS Sort/Merge 



P3SIZE AG 
P4NAM AG 
P4NAMS AG 
P4SIZ AG 
PHZ2 AL 
PRINTE AP 
PRNTCARD AR 
PRTCALCS AR 
PUTCNSWR AN 
PUTC02 AL 
PUTC02R AN 
PUTCON AL 
PUTCONSW AL 
PUTCOV AM 

RAFBI AH 
RAFRTN AN 
RCl AC 
RCDSCN AC 
RDCKPR AS 
RDRTN AA 
REI AR 
READB AA 
READX AF 
READX1 AF 
READXT AF 
REINIT AL 
REINITI AL 
REINTI1R AN 
REINITR AN 
REDUCE AK 
REDUCER .AN 
REDUCEV AM 
REPI AP 
REPB AP 
RESTOR AP 
RETRY AL,AP 
RTI AG 
RUNCODSW AA 

S188 AP 
SAVCKP AF 
SCAN AC 
SEEKTM AQ 
SORTXT AF 
SPADE AP 
SRT1 AC 
SRTSCN AC 
STl-4 AF 
STBO AN 
STDW AG 
STEP AK 
STEPl AK 
STEPlB AK 
STEPlBR AN 
STEPlR AN 
STEPIV AM 
STEP3 AK 
STEP3A AK 
STEP4 AK 
STEP4R AN 
STORE AD 
STOREM AD 
STORP AE 
STVSOM AP 
SVORIG A.M 
SW AA 
SWl AA,AL 

AppendixB 353 



SW1R AN 
SW2V AM 

TA'BLEF AQ 
TAG OUT AP 
TEST AB 
TESTDEV AJ 
TESTOPERR AE 
TSER7 AJ 
TSMERG AR 
TSREST AS 
TSTBLKCD AA 
TSTCALCS AR 
TSTEND AB 
TSTER5 AG 
TSTLGH AB 

UPMOVE AA 
USEORIG AK 
USEORlGR AN 
USESTR AG 

VALIDATE AJ 
VARBl AH 
VAREND AP 
VARRTN AM 
VBl AH 
VLl AH 
VLESSG AP 

WTCKMG AR 
WTCKPS AS 

PHASE 1 

~ ~ 

BLDADR BK 

CHKPT BA 
CHKUSER SA 
CHNCMP BJ 
CHNMVE BK 
CMPCHN BF 
COMPRES BH 
CYLINC BA 

DCLOSE BM 
DlBLRD BD 
DIHERE BD 
DINGET BK 
DlNGUD BK 
DINJCY BD 
DlNLES BK 
DINMVA BD,BK 
DSKINIT BA 

ENDINP BM 
ENDMAC BN 
EOFADDR BN 
EOFINIT BA 
EOVEOF BN 
EXIT BF 
EXITPl BH 
EXITSW BA 

354 IBM S/360 DOS SOrt/Merge 



FECH22 BB 
FEOVBR BN 
FEOVRTN BN 
FETI02 BA 
FETCH BB,BG,GH 
FLMVBC BC 
FLMVGO BC 
FORMAT BB 
FORMGO BB 
FRMBPT BB 
FRMCYB BB 
FRMGWK BB 
FRMSTT BB 
FRMXTC BB 

GETXT BM 

lBVOOl BG 
lBV021 BB 
lBV022 BC 
lBV023 BJ 
IBV024 BH 
IBVAAl BC,BJ 
IBVIF4 BF 
lBVJC2 BF 
IBVMC3 BG 
IBVMH4 BG 
IBVND4 BG 
IBVNE4 BG 
lBVPB2 BG 
I BVVLR BG 
lNEXlT BO,BL 
lNFINI BO,BL 
INIT32 BA 
INITEXll BA 
INMOV.E BO 
INPTIZ BC 
INTAPE BA 
lNTREO BE 
IZTAPE BC 

LBLCHK BL 
LBLINlT BA 
LOCARE BC,BJ 
LSTFLSW BM 
LSTFILSW BN 

MNLDSK BM 
MNLLINK BM 
MNLTAP BM 
MOPSl BG 

NOEOB BK 
NONSTO BA 
NXTFILE BN 
NXTREC BK 

ON EX IT BO,BL 
OPENA BM 
OPENT BM 
OUTIZ BC,BJ 
OV2INW BH 

PlINBG BO,BK 
PILl!.Vl BF 
PADRTN BG 

Appendix B 355 



RDCNT BK 
REDOUT BF 

SAVADR BA 
SAVVOL BN 
STORl'll BF 
STORl'l2 BF 

TAGADR BK 
TAGCHK BJ 
TAGINT BJ 
TAGMNL BK 
TINBG BE 

OSEREXll BM 

VARBLK BK 
VLIl25 BC 
VLINAA BC 
VLINAC BC 
VLRINZ BC,BJ 

WLR BK 

PHASE 2 

~ ~ 

BST.R6 CM,CY 
BYPAS1+4 CD,CR 
BYWCKD CA,CN 

CALADR CM,CY 
CKPTOK CC,CQ 
Co.MPBA CK,CW 
COMPCA CJ,CV 
COMPCB CJ,CV 
COMPDA CH,CO 
COMPDB CH,CO 
COMPDC CH,CO 
COMPEA CG,CT 
COMPEB CG,CT 
COMPEC CG,CT 
COMPED CG,CT 
COMPFA CF,CS 
COMPFB CF,CS 
COMPFC CF,CS 
COMPFD CF,CS 
COMPFE CF,CS 
COMPGA CE 
COMPGB CE 
COMPGC CE 
Co.MPGD CE 
COMPGE CE 
COMPGF CE 
COMPIT CA,CN 
CPIOAS CA,CN 
CPOADR-8 CC 
CPOADR-12 CQ 

DrVAGN CA,CN 

ENDPAS CB,CP 
EXECPP CC,CQ 

356 IBM S/360 DOS SOrt/Merge 



FETCH3 CC,CQ 
FILLA Cn,CR 
FILLB Cn,CR 
FILLC CO,CR 
FILLD CO,CR 
FILLE CO,CR 
FILLF CO,CR 
FILLG CO 

GETA CO,CR 
GETB CO,CR 
GETC CO,CR 
GETD CD,CR 
GETE Cn,CR 
GETF CO,CR 
GETG CO 

ILE1WE-l0 CC,CQ 
INITOM CC,CQ 
INTPH2 CA,CN 
IRMDR Cn,CR 
IRMDRl CD,CR 

LMl CD,CR 
LM1234 CB,CP 
LMO CL,CX 
LMOSW CB,CP 
LMTSOK CM,CY 

MMPP CL,CX 
MMPPl CM,CY 
MMPP2 CB,CP 
MMPPS CB,CP 
MOVMVC CL 

NE'wITL CC,CQ 
NEXTPASS CC,CQ 
NOCHG CB,CP 
NOT LAS CC,CQ 
NOWCKD CA,eN 
NXTAR CK,CW 
NXTBR CK,CW 
NXTCR CJ,CV 
NXTDR CH,CU 
NXTER CG,CT 
NXTFR CF,CS 
NXTGR CE 

OLEAVE Cc,CQ 
ORMOR CL,CX 
ORMDRl CL,CX 
OSPLIT CY 
OUPTOK CA,CN 
OUTFUL CL,CX 

PUTA CK,CW 
PUTB CK,CW 
PUTC CJ,CV 
PUTD CH,CU 
PUT.E CG,CT 
PUTF CF,CS 
PUTG CE 

RCHKPT CA,CN 
RDABCD CD,CR 
RDCPOK CA,CN 
REDUCEI CB,CP 
REDUCEO CB,CP 

Appendix B 3.57 



SFOADR 
SHTPTR 
SPLITA 
SPLITB 
SPLITC 
SPLITD 
SPLITE 
SPLITF 
SPLITI 
SPLITfvl 
SPLITO 
START 

TAKECP 
TMINUS 
TRUADR 

USTOPA 
USTOPB 
USTOPC 
USTOPD 
US TOPE 
USTOPF 
USTOPG 

VARMOV 

WAY4 
WRITE 
WTDATA 

ZYXWZY 

PHAS.E 3 

ADRTRU 

CHKSEQ 
CLOSE 
COMP21 
COMP31 
COMP32 
COMP41 
COMP42 
COMP43 
CO~lPSl 
COMP52 
COMPS3 
COMP54 
COMP61 
COMP62 
COMP63 
COMP64 
COMP65 
COMP71 
COMP72 
COMP73 
COMP74 
COMP7S 
COMP76 
CONVRT 
CPBPTI 
CPBPTO 
CPLINK 

CB,CP 
CC,CQ 
CW 
CW 
CV 
CU 
CT 
CS 
CX 
CX 
CX 
CA,CN 

CC,CQ 
CP 
CY 

CO,CR 
CD,CR 
CD,CR 
CD,CR 
CD, CR. 
CD,CR 
CD 

CX 

CB,CP 
CL,CX 
CL,CX 

CL 

DH,DT 

DJ,DU 
DK,DV 
DG,DS 
DG,DS 
DG,DS 
DF,DR 
DF,DR 
DF,DR 
DE,DQ 
DE,DQ 
DE,DQ 
DE,DQ 
DD,DP 
DD,DP 
DD,DP 
DD,DP 
DD,DP 
DC 
DC 
DC 
DC 
DC 
DC 
DJ,DU 
DH,DT 
DJ,DU 
DA,DM 

358 IBM S/360 DOS Sort/.Merge 



EOJSW DU 
EXIT32 DJ,DU 

FILLl DB,DN 
FILL2 DB,DN 
FILL3 DB,DN 
FILL4 DB,DN 
FILLS DB,DN 
FILL6 DB,DN 
FILL7 DB 
FULOUT DJ,DU 

GETl DB,DN 
GET2 DB,DN 
G.ET3 DB,DN 
GET~ DB,DN 
GETS DB,DN 
GET6 DB,DN 
GET7 DB 

IFl DB,DN 
IF2 DB,DN 
IFJ DB,DN 
IF4 DB,DN 
IF5 DB,DN 
IF6 DB 
INSERT DU 
I NT LEAVE DA,DM 
INTPH3 DA,DM 
IOCSCLOS DL,DW 
IOCSOPEN DL,DW 
ISPLIT DU 
I TCOMP DA,DM 

LABETY DK,DV 
LRMDR DH,DT 
LRMDRl DH, DT 
LWRI'I'E DJ,DU 
LWRITE+~ DJ 

MOVVAR DU 
MSPLIT DU 

NXT1R DG,DS 
NXT2R DG,DS 
NXT3R DG,DS 
NXT~R DF,DR 
NXT5R DE,DQ 
NXT6R DD,DP 
NXT7R DC 
NXTOR .oJ 

OKLMTS DH,DT 
OPENF DK,DV 
OPTION DA,DM 
OUTAPE DA,DN 
OUTDSK DA,DM 

PH3CON DA,DM 
PH3EJl DJ~DU 
PH3EOJ DK,DV 
PH3MRG DA,DM 
PRTEOJ DL,DW 
PUTl DG,DS 
PUT2 DG,DS 
PUTJ DG,DS, 
PUT4 DF,DR 
PUTS DE,DQ 

Appendix B 359 



PUT6 OO,OP 
PUT? OC 

R01234 OB,ON 
RECOROO DA,DM 
RTNEQ DA,DM 
RWLABL OK,DV 

SEQCHK OJ,DU 
SEQERR OJ,DU 
SEQERROR OL,DW 
SPLITl DS 
SPLIT2 DS 
SPLIT3 DS 
SPLIT4 OR 
SPLITS DO 
SPLIT6 DP 
SPLITR DU 
START DA.DM 
START 1 DA,DM 

TAPEO DJ,DU 
TAPLLR DA,DM 
TESTEQ DA.DM 

USRLAB DL,DW 
USTOP1 DB,DN 
USTOP2 OB,DN 
USTOP3 DB,ON 
USTOP4 DB,ON 
USTOPS DB, ON 
USTOP6 DB,DN 
USTOP? DB 

WTLBLK DU 

X31CLS DL,DW 
X31CLS-12 DL,DW 
X31EVT DL,DW 
X31LNK DL,DW 
X3lTSl OL,DW 

ZYXWZY-INSERT OJ 

PHASE 4 

Label Chart 

ADDl EJ 
ADJOUT EH 

BCERRW ED 
BEGIN EM 
BPASS ED 

CEVCHK EP 
CHKPOINT EA 
CLIFOR EB 
CLOSE I EN 
CLOSEQ EM 
COMP EM 
COMP2l EG 
COMP31 EF 
COMP32 EF 
COMP41 EE 

360 IBM s/360 DOS Sort/Merge 



COMP42 EE 
COMP43 EE 
CONVRT EH 
CPBPTO EH 
CPIADD EC 

DISK EA 

EOF ED 
EOFDK ED 
EO FTAP E EN 
EOJMES EK 
EOVDSK EH 
ERR ED 
ERROR ED 
ERRW ED 
EXIT EH,EM 

FETCH EA 
FEOVOUT EM 
FEOVTP EN 
FILLDL EB 
FIXIPl EC 
FIXLGN EB 
FIXMOV EH 
FLDSKO EB 
FLDSKO+14 EB 
FROMDK ED 
FULOUT EH 

GET1 EC 
GETAB EA,.EB 
GOGO EB,EM 
GOGOl EN 
GOG02 EN 

INITl EA,EB 
INIT2 EA,EB 
INIT3 EA,EB 
INIT4 EA 
INIT5 EA 
INPUT EM 
INSERT EH 
ITCOMP EB 

KEYOK EB 

!.ALINK ED 
LASTBLK ED 
LMTOKO EH 
LRA EC 
LWRITE EH 

MEND EN 
MODIFY EN 
MULTPL ED 

NIEFI' EN 
NIEFO EM 
NOUSER EB 

OKLMTS EC 
OPENA EM 
OPENI EN 
OPENO EM 
OPENX EM 
OUTAPE EB 
OUTDK EM 

Appendix B 361 



OUTFIL EH 
OUTPUT EM 

PANeo EA,EB 
PH3EJl EH 
PH3EJ2 EJ 
PH3EOJ EJ 
PH4EOJ EK 
PROCESS ED 
PROS EB 
PUT 1 EG 
PUT2 EG 
PUT3 EF 
PUT4 EE 

RESPONSE EL 
RESTOR ED 
RE.'STOR+4 ED 

SEQBACK EH 
SEQERR EH,EL 
SWITCH2 EN 

TAPE EA 
TAPEl Ee 
TAPEl-2 Ee 
TAPEGl Ee 
TAPEGl-4 Ee 
TAPEIN EN 
TAPEO EEl 
TAPEX ED 
TAP PUT EH 
TAPOFX EB 
TAPOFX+8 EB 
TAPOUT EA,EJ 
TAPOV3 EH 
TEST ED 
TESTEX EB 
TESTON EB 
TMEOF ED 
TPDKSW EN 
TPOUT EB 
TRl Ee 
TRl-4 EC 
TSBPASS EB 
TSTFORM EE 
TSTREC EE 

UPDTO EH 
USERF;X41 EN 
USEREX44 EM 

VARMOV EH 

WLR ED 
WLR2 ED 
WRITEV EH 

ZYXWZY EH 

362 IBM S/360 DOS Sort/Merge 



OPTIONAL ROUTINES 

Label Chart 

ANICTE FA 
ANIULT FA 
ANIVTA FA 
ANONE FA 

EQINIT FA 

FIXPNT FB 
FIXR2 FB 
FIXVTA FB 
FLTBCK FC 
FLTCML FC 
FLTCSG FC 
FLTPNT FC 
FLTSWH FC 
FLTVTA FC 

IGOUM FF 
IGLCOM FF 
lGOUT FF 

PAKCLR FO 
PAKLP2 FO 

RELOCA FA 
RLFWB FA 
RLMDGT FA 
RLRUTR FA 
RLSTRP FA 
RLUPDT FA 
ROUT 1 FF 

SIGCP2 FE 
SIGCP4 FO 
SIGKR2 FO 
SIGPK2 FD 
SIGZN2 FE 

ZNLST2 FE 
ZONPS2 FE 

Appendix B 363 



APPENDIX C: EXPL.ANATION OF FLOWCHART SYMBOLS 

Subroutine 

Program 
Modification 

( Terminal 

qy 
FILINP 

) 

DESCRIPTION 

A group of program instructions 
that perform a processing 
function of the program. 

Description or title of a routine 
that is detailed on another flow'" 
chart, which is identified by the 
letters in the stripe. 

An instruction or group of 
instructions that !=honges 
portions of a routine or initial­
izes a routine for given 
conditions. 

A group of operations not 
detailed in the flowcharts 
for this program, such as 
user·s routines. 

Any function of on input/ 
output device or program. 

Points in the program where 
branches to alternate proces-
sing are made, based upon 
variable conditions, program 
switch settings, and test results. 
Dltted-line decision blocks 
represent pre-set branches (usually 
detennined at initialization time). 

The beginning or end of 
a program. 

On-page connector. An entry 
from, or an exit to, another 
function on the same flowchort. 
The number in the connector 
identifies the corresponding 
entry or exit on the chart. 

Off-poge connector. An entry 
from, or an exit to, a given point 
on another flowchart. The char­
acters in the connector identify the 
chart and block. The corresponding 
label, if any, is placed outside the 
connector. For multiple entries and 
exits, an asterisk appears in the con­
nector CI"Id the characters are listed 
nearby • 

364 IBM S/360 DOS Sort/Merge 

EXAMPLE 

BB-04, INITLI 
BC-B2, OPENX4 
BL-Jl, ENDI't!N 

YES 

BG 

Error Error Routine 

Process the 
Record 

USEX15 

"­
"-

" YES < U .. , Exit 15 >-'-=-''---{ 
" / " / " / " / 

Record 
Altered 

YES 

PRINT 

Modify Print 
Instructions 

Note: Arrowheads are not used on lines 
that indicate normal flow, which 
is downward and to the right on 
page. 



7D011 

7D02I 

7D031 

7D04I 

7D05I 

7D06I 

7D07I 

7D08I 

7D09I 

Message 

COLUMN 1 NOT BLANK. 
CONTROL CARD NUMBER 
XX. 

L3 INVALID FOR 
ADDROUT OPTION. 

STATEMENT DEFINER 
INVALID. XXXXXX 

NO END CARD FOUND 
AFTER READING 25 
CONTROL CARDS. 

CONTINUATION CONTROL 
CARD XX DOES NOT 
START IN COLut4N 16. 

BLANK CONTROL CARD 
DETECTED. 

MANDATORY XXXXXX 
CARD OMITTED. 

TYPE RUN NOT KNOWN -
SORT OR MERGE NOT 
SPECIFIED. 

NO BLANK AFTER 
STATE~£NT DEFINER -
XXXXXXX 

Meaning 

Column 1 of a sort/merge 
Control statement is not 
blank. XX represents the 
number of the control 
statement within the 
sequence of sort/merge 
control sta tements. 

The output record length 
(L3) must be (1) equa 1 to 10 
when ADDROUT=A, (2) at least 
11 when ADDROUT=D, or (3) no 
greater than 10 bytes plus 
the length of all control 
fields if ADDROUT=D and exit 
32 is not specified. 

The statement definer is 
invalid or does not appear 
between columns 2 and 15 in 
the control card. The 
definer is identified by 
XXXXXX. 

More than 25 control 
statements have been read 
without encountering an END 
statement. The maximum 
number of control statements 
permitted is 25. 

A continuation card must 
begin in column 16. XX 
denotes the number of the 
invalid control statement. 

A blank control card has 
been intermixed wi th the 
sort/merge control 
s tatemen ts. 

A mandatory control 
statement has been omitted. 
The statement definer of the 
missing card is identified 
by XXXXXX. 

Nei the.r a SORT nor a 
MERGE control statement 
was included. 

A blank does not separate 
the statement definer from 
the first operand definer. 
The first six ~'s identify 
the statement definer; the 
last X identifies the 
invalId punched character. 

APPENDIX D: ERROR MESSAGES 

AA 

AG 

AA 

AA 

AA 

AA 

AB 

AS 

AC, 
AD 

Appendix D 365 



Number 

70101 

7D11I 

70121 

70131 

70141 

70151 

70161 

7Dl7I 

70191 

70201 

7D21I 

70221 

Message 

FIELD DEFINER 
INVALID - XXXXXXXX. 

VALUES INVALID -
XXXXXX. 

INVALID FORMAT 
CODE GIVEN - XX. 

SORT AND MERGE 
CONTROL CARDS 
SPECIFIED IN SAME 
RUN. 

NO SEQUENCE VALUE 
GIVEN FOR CF XX. 

MORE THAN 12 
CONTROL FIELDS 
SPECIFIED. 

FORMAT ENTRY NOT 
SPECIFIED. 

NO MAJOR CONTROL 
FIELD WAS GIVEN. 

FIXED BLOCKING 
SP.ECIFIED FOR 
VARIABLE LENGTH 
RECORDS. 

CONTROL FIELD XX 
EXTENDS BEYOND 
END OF RECORD. 

TOTAL LENGTH OF 
CONTROL FIELDS 
EXCEEDS 256. 

CONTROL FIELD XX 
GREATER THAN 
MAXIMUM ALLOWED. 

366 IBM S/360 DOS Sort/Merge 

Meaning 

The operand definer 
identified by XXXXXXXX 
is not recognized as a valid 
operand definer. 

The value(s) following an 
operand definer is invalid. 
XXXXXX identifies the 
invalid value{s). 

The format code for the 
input data is punched 
incorrectly. 

Both a SORT and a MERGE 
control statement were 
included. Only one is 
acceptable. 

NO sequence (ascending or 
descending) has been 
specified in the SORT or 
MERGE control statement for 
one or more cont rol data 
fields. 

The maximum number of 
control fields to be used 
in sorting or merging is 12. 

The FORMAT operand definer 
is not specified in either a 
SORT or MERGE control 
statement. 

Control field 1 
specifications are not 
recognizable to the program 
because the FIELDS operand 
definer was not included in 
a SORT or MERGE control 
statement. 

Variable-length records 
on input must be 
specified as being in 
variable-length blocks. 

A control data field 
identified by XX has 
been specified beyond the 
last valid byte of the 
logical record. 

The total length of all 
control data fields is 
limited to a maximum of 256 
bytes. 

The control data field 
identified by XX exceeds 
(1) 16 bytes for a decimal 
field. or (2) 4 or 8 bytes 
for a normalized 
floating-point number. 

AC, 
AD 

AC, 
AD 

AC 

AC 

AC 

AC 

AG 

AG 

AG 

AJ 

AG 



Number 

7D231 

70241 

70251 

7D26I 

7D271 

7D281 

7D291 

70301 

70321 

70331 

Message 

L4 MUST BE LESS 
THAN (Ll) (L5) 

STORAGE SPECIFIED 
GREATER THAN ACTUAL 
MACHINE SIZE. 

(L3) (Ll) MORE THAN 
XXXX BYTES. 

KEYLEN ENTRY INVALID. 

STORAGE SPECIFIED 
MORE THAN 524,288 
BYTES. 

RECORO TYPE NOT 
SPECIFIED. 

FILES ENTRY NOT 
SPECIFIED FOR 
MERGE. 

SIZE ENTRY 
OMITTED IN SORT 
STATEr-lENT. 

USER PROGRAM 
ORIGIN GREATER 
THAN STORAGE 
SIZE. 

L5 IS GREATER 
THAN Ll. 

Meaning 

When sorting variable­
length records, the minimum 
input record length must be 
less than the maximum or 
average input record length. 

The value specified in 
the STORAGE entry is 
greater than the machine 
size specified at IPL time. 

The input or output record 
length exceeds the maximum 
record length acceptable to 
the sort/merge program. 

The KEYLEN operand 
defin~r can only be 
specYfied for fixed-length 
unblocked records (disk 
input only>. 

The maximum main storage 
capacity supported by 
the sort/merge program is 
512K. 

The TYPE operand definer 
used to indicate fixed- or 
va.riable-length records has 
not been specified. 

The number of files to be 
merged has not been 
specified. The FILES entry 
is mandatory for a 
merge-only operation. 

The SIZE operand definer 
is mandatory for a sort 
operation. It is used to 
ref lect the exact or 
approximate number of 
records to be sorted. 

The main storage load point 
or origin address for a 
user program has been 
specified beyond the 
boundaries of the storage 
size. All user programs 
must be loaded below the 
storage size indicated at 
IPL time or in the STORAGE 
entry. 

L5 has been specified 
greater than Ll for 
variable-length records. L5 
must be specified as the 
average logical record 
length, or as a value 
between the average and the 
maximum (Ll). 

AG 

AG 

AG 

AC 

AD 

AG 

AG 

Appendix 0 367 



Number 

70341 

70351 

70361 

70371 

70381 

70391 

70401 

7D41I 

70421 

70431 

Message 

(E32) (E43) NOT 
S PECIFI ED WHEN 
L3 (MORE) (LESS) 
THAN Ll. 

EXIT (31) (44) 
NOT SPECIFIED FOR 
NONSTANDARD LABELS. 

USER GIVEN FILE 
SIZE EXCEEDS 
MAXIMUM. 

INPUT BLOCKSIZ.E 
NOT A MULTIPLE 
OF Ll. 

OUTPUT BLOCKSIZE 
NOT A MULTIPLE 
OF L3. 

A CF STARTS PRIOR 
TO BYTE 5 IN 
VARIABLE-LENGTH 
RECORDS. 

CONTROL FIELDS 
OVERLAP FOR OTHER 
THAN B1 FORMAT. 

RECORD LENGTH NOT 
SPECIFIED. 

BLOCKS1ZE GREATER 
THAN XXXX. 

NOTPMKENTRY 
SPECIFIED WITH 
STANDARD OUTPUT 
LABELS. 

368 IBM S/360 DOS Sort/Merge 

Meaning 

If L3>L1, exit 32 or 
exit 43 must be included 
to accomplish record 
lengthening in phase 3 or 
phase 4. If L3<L1 and 
variable-length records have 
been specified, exit 32 or 
exit 43 must be used to 
update the record length 
field of each truncated 
record. 

When nonstandard output 
tape labels have been 
specified, it.is the user's 
responsibility to create and 
write them. This function 
is performed through exit 31 
or exit 44. 

The specified sort work 
area allocated in the 
F1LEW extent cards is not 
large enough to process the 
file size specified in the 
SIZE entry of the SORT 
control sta tement. 

The number of bytes in an 
input block for fixed-length 
records must be a multiple 
of the number of bytes in 
each input record. 

The number o.f bytes in an 
output block for fixed­
length records must be a 
multiple of the number of 
bytes in each output record. 

The first four bytes of a 
variable-length record 
are the record-length field 
and must not be us ed as a 
control data field. 

Overlapping control data 
fields are valid only with 
the unsigned binary data 
format. 

The operand definer LENGTH 
or its value (Ll) has not 
been specified. 

The input or output block 
length specified is greater 
than the maximum acceptable 
to the program. 

The NOTPMK ent.ry is val id 
only for unlabeled tape 
output files or for tape 
output files with 
nonstandard labels. 

AG, 
AJ 

AJ 

AP 

AJ 

AJ 

AJ 

AG 

AJ 



Number 

70441 

70451 

7D47I 

70491 

70501 

7D51I 

70530 

7055A 

7D64I 

7D67I 

Message 

PHASE (1) (3) (4) 
MODIFICATION 
PROGRAM TOO LARGE. 

NO MEDIUM. SPECIFIED 
FOR (INPUT) (OUTPUT). 

(TAPE) (DISK) 
OPTIONS SPECIFIED 
FOR (DISK) (TAPE) 
(INPUT) (OUTPUT). 

NO BLOCKSIZE GIVEN 
FOR (INPUT) (OUTPUT). 

INSUFFICIENT TRACKS 
GIVEN FOR MERGE. 

ADDROUT OPTION 
SPECIFIED FOR 
MERGE. 

INVALID RESTART. 

INVALID RESTART. 
CHECK DISK PACK 
PLACEMENT. 

DUPLICATE STATEMENT 
DETECTED - XXXXXXXX. 

INVALID LABELS 
SPECIFI ED FOR A 
DISK FILE. 

Meaning 

The size of the user program 
(determined by the Address 
val ue in the MODS sta tement) 
is such that it forces the 
sort block size below the 
required minimum. 

The type of input or output 
medium (tape or disk) has 
been omitted from the INPFIL 
or OUTFIL control statement. 

Tape options such as OPEN 
and CLOSE can only be 
specified for tape files. 
Disk option such as KEYLEN 
and VERIFY pertain only to 
disk files. 

The operand definer BLKSIZE 
has either been incorrectly 
specified or omitted. 

A m1n1mum of 2 adjacent 
disk tracks must be 
allocated for the work area 
in a merge-only operation. 

The ADDROUT option cannot 
be specified for a 
merge-only operation. 

A restart sort run has 
been specified, but the 
original sort was 
interrupted prior to the end 
of phase 1. 

1. The disk pack(s) which 
contai ns the s art work 
area was not placed on a 
drive assigned to the 
identical symbolic unit 
used in the initial run, 
or 

2. The sort data has been 
destroyed since the 
original job. 

Two control statements 
contain identical statement 
definers. 

Disk input or disk output 
has been specified, and 
the labels associated with 
the file(s) have not been 
specified a s standard. All 
disk files must contain 
standard labels. 

AH, 
AK, 
AM, 
AN 

AG 

AJ 

AG 

AF 

AJ 

AS 

AA 

AJ 

Appendix D 369 



Number 

7D68I 

7D69I 

7D70I 

7D79I 

7D81I 

7D82I 

7D83A 

7D84I 

7D85I 

Message 

( INPUT) ( OUTPUT) 
BLOCKSIZE INVALID 
FOR VARIABLE­
LENGTH RECORDS. 

SORT BLOCKSIZE 
MUST BE AT LEAST 
300 BYTES. 

I NPUT OR OUTPUT 
BLOCKSIZE IS 
INVALID. 

BLOCKSIZE FOR TAPE 
INPUT OR OUTPUT IS 
LESS THAN 12. 

EXIT 13 SPECIFIED 
FOR DISK INPUT. 

ADDROUT OPTION 
SPECIFIED WITH 
TlI.PE INPUT. 

INVALID RESPONSE. 

TAPE DEVICE 
ADDRESSES MUST BE 
ASSIGNED TO 
(SYSXXX) (SYSnnn). 

ALL TAPE FILES 
MUST HAVE UNIQUE 
DEVICE ADDRESSES. 

370 IBM S/360 DOS Sort/Merge 

M.eaning 

The input or output block 
size specified is less 
than the maximum input 
record length plus four 
bytes. The input or output 
block size must be equal to 
or greater than L1 + 4. 

The size (total number of 
bytes) of a user program 
in phase 1 or phase 3 has 
forced the assignment phase 
to compute a sort block size 
that is less than 300. bytes. 

The input or output block 
size specified for a 
merge-only run exceeds the 
ma.ximum size allowed. 

The m~n~mum input and 
output block size for 
tape operations is limited 
to 12 bytes. 

Exit 13 can only be 
specified in a sort 
operation when tape input 
has been specified. 

The ADD ROUT option can 
only be specified for a 
sort run when disk input has 
been specified. 

AJ 

AJ 

AH 

AJ 

AJ 

AJ 

An invalid response to AA, 
message 7D53D, 7D55A, AS 
or 7D90A has been received 
from the operator. 

For a sort operation, all AJ 
tape input files must 
reside on SYS002-SYS010. 
depending on the number of 
files to be sorted. For a 
merge-only operation, tape 
FILEA must be on SYS002, 
tape FILEB must be on 
SYS003. etc. For tape 
output, SYS001 must be the 
output unit. The listed 
symbolic units do not have 
tape device addresses 
assigned to them. 

The message can occu.r only 
during a merge-only run. 
At least two tape files 
(input and output) reside on 
symbolic units wit.h an 
identical device address. 



Number 

7D90A 

7D92I 

7DA1I 

7011.21 

Message 

OPERATOR - ATTEMPT 
TO CORRECT ABOVE 
LISTED ERRORS. 

END OF ASSIGNMENT 
PHASE - ERRORS 
DETECTED, CORRECT 
AND RERUN 

WLR - FILEX 

PHASE 1 UNREADABLE 
BLOCKS BYPASSED 
XXXX. 

Meaning 

For tape input and/or 
output, all tape files must 
reside on different tape 
drives. For instance, for a 
2-way tape merge, FLL.EA must 
reside on 8YS002; FILEB must 
reside on SYS003; SYS002 and 
5YS003 must have been 
assigned to different tape 
device addresses. If tape 
output is specified, SY5001 
must be a tape device other 
than SYS002 and SY5003. 

This message occurs at 
the end of the asSignment 
phase when errors have been 
detected and both SYSRDR and 
SYSIPT are card readers. It 
applies to all assignment 
phase diagnostic messages 
except 7D53D, 7D55A, 7D83A, 
and 7D92I. This facility is 
provided to enable the 
sort/merge program to be 
executed when it is only a 
job step within a specific 
job application. If the 
errors can be corrected 
immediately, the operator 
should do so. 

Errors have been detected 
and listed by the assign­
ment phase. SYSRDR and/or 
SYSIPT are not card readers 
or SYSLOG is not a 
pri nter-key board. 

Phase 1 has detected a 
wrong-length record 
(block) during a read 
operation. X indicates the 
fi Ie from WhIch the 
wrong-length record was 
read. This message can 
occur when the records in 
the input file are not the 
same length as those 
specified in the .L1 value of 
the RECORD statement or the 
input BLKSIZE entry was 
specified incorrectly. 

This message is printed 
at the end of phase 1 when 
tape input has been 
specified, and either the 
BYPASS option or exit 13 has 
been specified. The message 
indicates the number of 
input blocks bypassed by the 
sort. 

AA 

AA 

BD, 
BE, 
BK 

BE 

Appendix 0 371 



Number 

7DA31 

7DC2A 

7DC2D 

7DDlI 

7DD2A 

7DD2D 

7DD41 

Message 

WORK AREA TOO SMALL 
FOR ACTUAL FILE 

INVALID RESPONSE. 

SEQ. ERROR. 

WLR FILE X 

INVALID RESPONSE 

SEQ. ERROR FILE X 

PHASE 4 UNREADABL.E 
BLOCKS BYPASSED 
00000. 

372 IBM 8/360 DOS sort/Merge 

Meaning 

The work area specified 
in the FILEW extent card(s) 
is not large enough to 
process the number of 
records contained in the 
input fUe(s). 

An invalid response has 
been received in reply to 
message 7DC2D. 

This message should never 
occur.. However, when it 
does, it is to be 
interpreted as a program 
error. A sequence error has 
been detected during the 
merging process in phase 3. 

Phase 4 has read a wrong­
length record. K represents 
the file from which the 
wrong-length record was 
read. (See 7DAlI for 
further explanation.) 

An invalid response has 
been received in reply to 
message 7DD2D. 

A sequencee.rror has been 
detected in phase 4. ~ 
identifies the file with the 
sequence er ror. This 
message can occur either 
because the file was not 
pre-sequenced or the control 
data information was 
incorrectly specified in the 
MERGE control statement. 

This message indicates the 
number of input blocks 
bypassed du.ring phase 4 when 
either the BYPASS option or 
exit 45 has been specified. 

BH 

DL 

OJ 

ED 

EL 

EH 

ED 



Bucket - A location in main storage used 
for temporary storage of constants or 
values that are to be used again 
later in the program. 

Doublet - A sequence of only two records. 

Formatting - The division of a disk work 
area into portions which are assigned 
for specific purposes. 

Interleave factor - A calculated value, 
based on the order of merge, used to 
determine the gap length in the disk 
work area when interleaving output 
blocks. 

Interleaving - The output of merged blocks 
to a disk work area according to a 
pattern that minimizes seek time 
during succeeding passes. 

No-Op - No-operation inst.ructions. Used as 
a switch to branch to another group 
of instructions, or to another 
routine, when switch is turned on by 
other instructions in the program. 
Usually coded as 'NOP' or 'Be 0, 

GLOSSARY 

operand.' The no-op is made a brancb 
by moving a hexadecimal 'FO' into the 
first operand of the instruction. 

Order of merge - The number of input 
sequences that are merged into one 
output sequence. 

Pass - The processing of an input file from 
its first to its last logical record. 

sequences - A group of records in a 
specified sequential order. Also 
referred to as strings. 

Set - The number of sequences equal to the 
order of merge. 

strings - See sequences. 

Winner - The record that is selected to be 
moved to the output area as the 
result of a comparison or a series of 
compa.risons. The "winning" record is 
the one that is determined to be the 
next one to fit in the sequence 
currently in the output area. 

Glossary 373 



ABORT 29 
ADDI 187 
ADDROUT Run, Initialization 
ADJOUT 186 
Alter Record Length (Phase 
ANIULT 195 
ANIVTA 195 
Assignment Phase (Phase 0) 

Bl 44 
B118 63 
B119 63 
B126 63 
B135 63 
B136 63 
B170 63 
B2 44 
BCERRW 179 
BEGIN (Phase 0) 62 
BEGIN (Phase 4) 189 
BEGINI 25 
BLDADR 83 
BLK2 40 
BLKHIP 48 
BLKOK 48 
BLMAX4 42 
BPASS 179 
BRCH 65 
BSTR6 (FLR) 110 
BSTR6 (VLR) 128 
BYPASl+4 (FLR) 103 
BYPASl+4 (VLR) 120 
BYPVAR 54 
BYWCKD (FLR) 98 
BYWCKD (VLR) 113 

C 48 
CALADR (FLR) 110 
CALADR (VLR) 128 
CALNOP 57 
CALPHIB2 51 
CALRPT 55 
CALSW2V 57 
CBYPTK 53 
CBYPTKV 56 
CCDESC 65 
CCERR 29 
CCSO 30 
CF256 40 
CFB3MAX 45 
CFL3Jl:1AX 43 
Checking Features 20 

81 

4) 174 

12, 23 

Checkpoint, Interrupt, and Restart 
Checkpoint Routine (Phase 4) 192 
CHKPOINT 171 
CHKPT 72 
CHKSEQ (FLR) 144 
CHKSEQ (VLR) 159 
CHNCMP 82 
CHNMVE 83 
CKAMAX 57 
CKBI 44 

374 IBM S/360 DOS Sort/Merge 

20 

CKBMAX 45 
CKBPT 52 
CKBYPTKR 59 
CKDEFS 34 
CKFLDI 34 
CKFLD4 34 
CKKEY 49 
CKL3MAX 43 
CKL3MX 46 
CKLABELS 48 
CKLMAX 43 
CKMERGE 49 
CKPARA 27 
CKPRINT 65 
CKPTOK (FLR) 100 
CKPTOK (VLR) 117 
CKRECBK 55 
CKRECBKR 61 
CKRPT 61 
CKRPTI 61 
CKRWD 48 
CKSIZ 48 
CKTYPEIN 49 
CKVOL 49 
CLEAR (DSORT005) 36 
CLEAR (DSORT008) 51 
CLIFOR 175 
CLORBV 42 
CLOSE (FLRJ 146 
CLOSE (VLR) 164 
CLOSEI 192 
CLOSEO 190 
CLUB 62 
CMPCHN 76 
CMPRES 81 
COL16 26 
COMBPT 52 
COMBPTV 56 
COMP 32 
COMP (Phase 0) 32 
COMP (Phase 4) 189 
COMP21 

Phase 3 (FLR) 141 
Phase 3 (VLR) 156 
Phase 4 182 

COMP32 
Phase 3 (FLRI 141 
Phase 3 (VLR) 156 
Phase 4 181 

COMP43 
Phase 3 (FLR) 139 
Phase 3 (VLR) 156 
Phase 4 181 

COMP54 CFLRI 139 
COMP54 (VLR) 154 
COMP65 (FLRI 139 
COMP65 (VLR) 154 
COMP76 138 
COMPBA CFLRl 108 
COMPBA (VLR) 125 
COMPCB (FLR) 107 
COMPCB (VLR) 124 



COMPDC (FLR) 106 
COMPDC (VLR) 123 
COMPED (FLR) 105 
COMPED (VLR) 121 
COMPFE (FLR) 104 
COMPFE (VLR) 120 
COMPG 53 
COMPGF 103 
COMPGR 60 
COMPGV 56 
COMPIT (FLR) 97 
COMPIT (VLR) 112 
Compute Constants 

ADDROUT Run 58 
FLR 50 
VLR 55 

Compute Maximum I/O Record and Block 
Sizes 42 

CONOUT 66 
Constants (Appendix A) 

Phase 0 301 
Phase 1 317 
Phase 2 323 
Phase 3 332 
Phase 4 341 

Continuation Cards 28 
Control Card Scan Routines 
Control-Data Fields 17 
Convert/Reconvert Routines 

Fixed-Point 196 
Floating-Point 196 
Packed-Decimal 197 
Zoned-Decimal 197 

CONVRT 183 
Phase 3 (FLR) 144 
Phase 3 (VLR) 160 
Phase 4 183 

CO RVAL 39 
CPBPTI (FLR) 143 
CPBPTI (VLR) 157 
CPBPTO (FLR) 145 
CPBPTO (VLR) 163 
CPIADD 177 
CPIOAS (FLR) 97 

. CPIOAS (VLR) 113 
CPLINK (FLR) 135 
CPLINK (VLR) 150 
CPOADR-12 118 
CPOADR-8 100 
CVB3MAX 45 
CVL3MAX 43 

Data Conversion 19 
DCLOSE 85 
Definitions of Abbreviations 
DETLOWER 44 
DETSMALL 43 
DIBLRD 74 
DINGET 83 
DINGUD 83 
DINLES 83 
DINMVA (ADDROUT Run) 83 
DINMVA (Sort Run) 74 
DISK 17l 
Disk Input Routine (Phase 1) 
DIVAGN (FLR) 97 
DIVAGN (VLR) 113 
DSKINIT 7l 

31, 33 

349 

74 

DSORT 25 
DSORT002 30 
DSORT003 31 
DSORT004 33 
DSORT005 36 
DSORT006 42 
DSORT007 45 
DSORT008 51 
DSORT009 61 
DSORT010 65 

E181 63 
E200 64 
ENDGF 54 
ENDGFR 60 
ENDINP 85 
ENDMAC 85 
End of Job Messages (Phase 4) 
End of Job Routine (Phase 4) 
End-of-Phase Routine (Phase 1) 
ENDPAS (FLR) 99 
ENDPAS CVLRl 116 
ENDSCN 34 

85 
178 

7l 
192 

EOF 179 
EOFADDR 
EOFDK 
EOFINIT 
EOFTAPE 
EOJ 66 
EOJ3RT 67 
EOJC1 67 
EOJCALC 66 
EOJMES 187 
EOJSW 160 
EOJZ 66 
EOVDSK 186 
EOVEOF 85 
EQINIT 195 
Equal Routine 
ERR 179 
ERR1 26 
ERR3 28 
ERR3A 28 
ERR4 26 
ERRS 26 
ERR6 26 
ERR64 27 
ERROR 179 

198 

Error Messages (Appendix DJ 
Error Routine (Phase 4) 178 
ERRW 180 
EXECPP (~LRI 100 
EXECPP CVLRI 11 7 
EXIT 

Phase 0 38 
Phase 1 77 
Phase 4 (DSORT401) 
Phase 4 (DSORT40 2 I 

189 
183 

84 

187 
187 

80 

365 

Exit 11 Linkage Routine 
Exit 11 Linkage Routine, 
EXIT32 CFLRl 144 
EXIT32 (VLR) 160 

Initialization 7l 

EXITP1 81 
External Sort or Merge Phase 

(Phase 2) 12, 86 

FEOVBR 85 
FEOVOUT 190 

Index 375 



FEOVRTN 85 
FEOVTP 191 
FETC10 64 
FETCH 

Phase 0 29 
Phase 1 (DSORT102) 72 
Phase 1 (DSORT105) 81 
Phase 4 171 

FETCH1 67 
FETCH2 67 
FETCH4 67 
FETCH7 45 
FETCH9 55, 58 
Fetch Next Phase 64 
File B Compare Loop (Phase 4) 182 
File C Compare Loop (Phase 4) 181 
File D Compare Loop (Phase 4) 180 
FILLA (FLR) 102 
FILLA (VLR) 119 
FILLDL 176 
FINAL 64 
Final Merge Phase (Phase 3) 12, 131 
FIRSTED 39 
FIXED 62 
Fixed-point Convert/Reconvert Routine 
FIXIP1 177 
FIXLGN 174 
FIXMOV 185 
FIXPNT 196 
FIXR2 196 
FIXVTA 196 
FLDSKO 175 
FLDSKO+14 175 
FLMVBC 73 
FLMVGO 73 
Floating-point Convert/Reconvert 

Routine 196 
Flowchart Symbols 364 
FLTBCK 196 
FLTPNT 196 
FLTVTA 196 
FORMAT 72 
Format 
FORMGO 
FROMDK 
FULOUT 

Routine 
72 
179 

72 

Phase 3 (FLR) 144 
Phase 3 (VLR) 161 
Phase 4 185 

GET1 177 
GETA (FLR) 102 
GETA (VLR) 119 
GETAB 
GETL1 
GETXT 
GOGO 
GOG01 
GOG02 

IBV021 
IBV022 
IBV023 
IBV024 
IBVAA1 
I BVAA1 
IBVIF4 
IBVJC2 

169 
45 
85 

173 
190 
191 

72 
73 
82 
81 

(ADDROUT Run) 
(Sort Run) 73 

76 
77 

82 

376 IBM S/360 DOS Sort/Merge 

196 

IBVMC3 79 
IBVMH4 79 
IBVNE4 80 
IBVPB2 79 
IBVVLR 80 
IGLCOM 198 
ILEAVE-10 (FLR) 101 
ILEAVE-10 (VLR) 118 
INEXIT (ADDROUT Run) 84 
INEXIT (Sort Run) 75 
INF 66 
INF1 33 
INFINI (ADDROUT Run) 84 
INFINI (Sort Run) 74 
INFSCN 33 
INIT1 

Phase 0 37 
Phase 4 (DSORT401) 169 
Phase 4 (DSORT4 02) 172 

INIT2 
Phase 0 38 
Phase 4 (DSORT401) 170 
Phase 4 (DSORT402) 172 

INIT3 (DSORT401) 170 
INIT3 (DSORT402) 175 
INIT32 72 
INIT4 170 
INIT5 170 
INITA1 38 
INITEX11 71 
Initialization Routines 

Phase 1, ADDROUT Run 81 
Phase 1, Sort Run 72 
Phase 1, Multi-Volume 71 
Phase 2, FLR 96 
Phase 2, VLR 110 
Phase 3, FLR 133 
Phase 3, VLR 148 
Phase 4, DSORT401 169 
Phase 4, DSORT402 171 

INITOM (FLR) 101 
INITOM (VLR) 118 
INITST 27 
INMOVE 74 
INPTIZ 73 
INPUT 190 
Input Routines 

Phase 1, ADD ROUT Run 82 
Phase 1, Disk or Tape 74 
Phase 1, Tape Only 75 
Phase 2, FLR 101 
Phase 2, VLR 119 
Phase 3, FLR 136 
Phase 3, VLR 151 
Phase 4 176 

INSERT (FLR) 162 
INSERT (VLR) 185 
INTAPE 71 
Interleaved Disk Address Routine 

Phase 2 (FLR) 110 
Phase 2 (VLR) 128 
Phase 3 (FLR) 141 
Phase 3 (VLR) 157 

Interleaved Output Technique 13, 90 
Internal-Sort Phase (Phase 1) 12, 68 
Internal Sort Routine (ADDROUT Run) 84 
Internal Sort Routine (Sort Run) 75 
INTPH2 CFLRI 96 



112 
133 
149 

INTPH2 (VLR) 
INTPH3 (FLR) 
INTPH3 (VLR) 
INTLEAVE (FLR) 
INTLEAVE (VLR) 
Introduction 9 

134 
149 

IOCSCLOS (FLR) 148 
IOCSCLOS (VLR) 165 
IOCSOPEN (FLR) 147 
IOCSOPEN (VLR) 164 
IRMDR (FLR) 103 
IRMDR (VLR) 120 
IRMDRl (FLR) 103 
IRMDRl (VLR) 120 
ISMERG 47 
ISPLIT 161 
I TCOMP 

Phase 3 (FLR) 133 
Phase 3 (VLR) 149 
Phase 4 175 

Job Control Statements 13 

KEYOK 172 

Ll 42 
LIMULT 48 
L3Ll 46 
Label Linkage Routine (FLR) 
Label Linkage Routine (VLR) 
Label Processing 20 
Label References (Appendix B) 

Optional Routines 363 
Phase 0 350 
Phase 1 354 
Phase 2 356 
Phase 3 358 
Phase 4 360 

LABETY (FLR) 146 
LABETY (VLR) 164 
LABEXCK 49 
LALINK 180 
LASTBLK 180 
LBLCHK 84 
LBLINIT 71 
LENHI 46 
LENLO 46 
Level 1 (Internal Sort) 
Level 2 (Internal Sort) 
LMl (FLR) 102 
LMl (VLR) 119 
LM1234 (FLR) 99 
LM1234 (VLR) 115 
LMO (FLR) 109 
LMO (VLR) 128 
LMOSW (FLR) 99 
LMOSW (VLR) 116 
LMTSOK (FLR) 110 
LMTSOK (VLR) 128 
LOADl 29 
LOCARE 82 
LOOP 46 
LRA 177 

·LRMDR (FLR) 
LRMDR (VLR) 
LRMDRl (FLR) 
LRMDRl (VLR) 

143 
157 

143 
157 

75 
75 

147 
164 

LWRITE 186 
Phase 3, FLR 145 
Phase 3, VLR 162 
Phase 4 186 

Machine Requirements 22 
Mainline Compare Routine, 

Phase 3 (FLR) 138 
Mainline Compare Routine, 

Phase 3 (VLR) 153 
MEND 192 
Merge-Merge Routine (FLR) 
Merge-Merge Routine (VLR) 
Merge-Only Phase (Phase 4) 
METHlI 37 

98 
114 

MGINIT 36 
MINBLKI 47 
MMPP (FLR) 
MMPP (VLR) 
MMPPl (FLR) 
MMPPl (VLR) 
MMPP2 (FLR) 
MMPP2 (VLR) 
MMPPS (FLR) 
MMPPS (VLR) 
MNLDSK 84 
MNLLINK 85 
MNLTAP 85 
MODl 34 
MODIFY 191 
MODSCN 34 
MOPSl 79 
MOVECC 30 
MOVMVC 109 
MOWAR 161 
MRGCKP 38 
MRGOPN 37 
MRGSCN 32 
MSG91 67 
MSG91A 67 
MSPLIT 161 

109 
127 

110 
129 
98 
114 
99 
115 

Multi-volume, Exit 11 Linkage 
Mul ti-volume Initialization 
MULTPL 180 

NEWITL (FLR) 
NEWITL (VLR) 
NEXTPASS (FLR) 
NEXTPASS (VLR) 
NIEFI 191 
NIEFO 189 
NOCALCS 65 
NOCHG CFLRI 
NOCHG (VLR) 
NOEOB 84 
NORAF 45 
NOT LAS (FLR) 
NOTLAS (VLRI 
NOUSER 176 
NOVAR 42 
NOWCKD (FLRl 
NOWCKD (VLR) 
NXTAR CFLR) 
NXTAR CVLRI 
NXTBR {FLR} 
NXTBR (VLRI 
NXTCR CFLRI 

101 
118 

101 
118 

99 
117 

101 
118 

98 
114 

108 
126 
108 
125 
107 

12, 167 

84 
71 

Index 377 



NXTCR (VLR) 124 
NXTDR (FLR) 106 
NXTDR (VLR) 123 
NXTER (FLR) 105 
NXTER (VLR) 122 
NXTFILE 85 
NXTFR (FLR) 105 
NXTFR (VLR) 121 
NXTGR 104 
NXTOR 144 
NXTREC 83 

OKLMTS 177 
OLEAVE (FLR) 101 
OLEAVE (VLR) 118 
ONEXIT (ADDROUT Run) 
ONEXIT (Sort Run) 75 
OPEN 36 
OPENA (Phase 1) 84 

84 

OPENA (Phase 4) 189 
Open/Close Routine (Phase 4) 
OPENF (FLR) 146 
OPENF (VLR) 164 
OPENI 190 
OPENT 85 
Open Work Area and Pre-edit 
OPENX 189 
OPERROR 29 
OPFLE 66 
OPTION (FLR) 133 
OPTION (VLR) 149 
Optional Routines 
OPTSCI 28 

194 

OPTSC2 29 
OPTSCN 34 
OPTSCS 28 
ORMDR (FLR) 
ORMDR (VLR) 
ORMDRI (FLR) 
ORMDRI (VLR) 
OSPLIT 129 
OTFSCN 34 
OUPTOK (FLR) 
OUPTOK (VLR) 
OUTAPE 

109 
128 

109 
128 

97 
113 

Phase 3 (FLR) 
Phase 3 (VLR) 
Phase 4 175 

OUTDK 190 
OUTDSK (FLR) 
OUTDSK (VLR) 
OUTF2 66 
OUTFIL 183 

134 
150 

OUTFUL (FLR) 109 

135 
151 

OUTFUL (VLR) 126 
OUTIZ (ADDROUT Run) 
OUTIZ (Sort Run) 73 
OUTPT 55 
OUTPUT 189 
Output Routines 

82 

Phase 1, ADDROUT Run 
Phase 1, Sort Run 77 
Phase 2, FLR 108 
Phase 2, VLR 126 
Phase 3, FLR 143 
Phase 3, VLR 159 
Phase 4 182 

84 

378 IBM 5/360 DOS Sort/Merge 

188 

35, 38 

OV2INW 81 
Overlay Linkage (Phase 4) 193 
OVLPCF 48 

PIINBG (ADDROUT Run) 
PIINBG (Sort Run) 74 
PILEVI 76 
PISIZE 40 
P2SIZE 40 
P3SIZE 40 
P4NAM 40 
P4SIZ 40 

83 

Packed Decimal (SIGPAK) Convert/Reconvert 
Routine 197 

Padding Routine, Phase 1 
PADRTN 75 
PAKLP2 197 

169 

79 

PANCO (DSORT401) 
PANCO (DSORT402) 
Pass-Pass Routine, 

172 
Fixed-length 

Records 100 
Pass-Pass Routine (FLR) 
Pass-Pass Routine (VLR) 
PH3CON (FLRJ 133 
PH3CON CVLR) 149 
PH3EJI 

Phase 3 (FLR) 
Phase 3 CVLRl 
Phase 4 186 

PH3EJ2 187 
PH3EOJ 187 

Phase 3 (FLR) 
Phase 3 (VLRJ 
Phase 4 187 

PH3MRG (~LRI 135 
PH3MRG CVLRI 151 
PH4EOJ 187 
Phase 0 12, 23 
Phase 1 12, 68 
Phase 2 12, 86 
Phase 3 12, 131 
Phase 4 12, 167 
Post-Edit Routine 

146 
163 

146 
163 

45 

100 
117 

Print Control Card and Fetch Next Phase 
PRNTCARD 65 
Program Characteristics 13 
Program Generation 12 
Program Organization 12 
PROS 174 
PRTCALCS 65 
PRTEOJ (FLR) 148 
PRTEOJ (VLRl 165 
PUTI 

Phase 3 (FLR) 141 
Phase 3 (VLR) 156 
Phase 4 182 

PUT2 182 
PUT3 182 
PUT4 181 
PUTA CFLR) 108 
PUTA CVLRl 125 
PUTB (FLRl 108 
PUTB CVLRl 125 
PUTC (FLR) 107 
PUTC (VLRl 124 
PUTCNSWR 60 
PUTC02 55 

64 



PUTC02R 61 SEQBACK 183 
PUTCON 54 SEQCHK (FLR) 144 
PUTCOV 57 SEQCHK (VLR) 159 
PUTD (FLR) 106 SEQERR 
PUTD (VLR) 123 Phase 3 (FLR) 144 
PUTE (FLR) 105 Phase 3 (VLR) 159 
PUTE (VLR) 122 Phase 4 (DSORT401) 188 
PUTF (FLR) 104 Phase 4 (DSORT402) 183 
PUTF (VLR) 121 SEQERROR (FLR) 148 
PUTG 104 SEQERROR (VLR) 166 

Sequence B Compare Loop (FLR) 107 
RAFBI 44 Sequence B Compare Loop (VLR) 125 
RAFRTN 58 Sequence C Compare Loop (FLR) 107 
RCl 32 Sequence C Compare Loop (VLR) 123 
RCDSCN 32 Sequence Checking (Phase 4) 183 
RCHKPT (FLR) 96 Sequence D Compare Loop (FLR) 106 
RCHKPT (VLR) 112 Sequence D Compare Loop (VLR) 122 
RDABCD (FLR) 102 Sequence E Compare Loop (FLR) 105 
RDABCD (VLR) 119 Sequence E Compare Loop (VLR) 121 
RDCPOK (FLR) 96 Sequence Error Routine (Phase 4) 188 
RDCPOK (VLR) 112 Sequence F Compare Loop (FLR) 104 
REl 65 Sequence F Compare Loop (VLR) 120 
Read and Compress Control Cards 25 Sequence G Compare Loop CFLR} 103 
READX 37 SHTPTR (FLR) 101 
READXl 37 SHTPTR (VLR) 118 
READXT 37 SIl-4 37 
Record Format 16 SIGCP2 198 
RECORDO (FLR) 134 SIGCP4 197 
RECORDO (VLR) 149 SIGKR2 197 
REDOUT 77 SIGPK2 197 
REDUCE 52 SIGZN2 198 
REDUCEI (FLR) 99 Sort Compressed Control Cards 30 
REDUCEI (VLR) 115 Sort/Merge Control Statements 14 
REDUCEO (FLR) 99 SORTXT 37 
REDUCEO (VLR) 115 SPADE 62 
REDUCER 59 SPLIT6 156 
REDUCEV 57 SPLITA 126 
REINIT 55 SPLITB 125 
RELOCA 194 SPLITC 125 
Relocator Routine 194 SPLITD 123 
REPl 63 SPLITE 122 
REPB 63 SPLITF 121 
RESPONSE 188 SPLITI 127 
RESTOR (Phase 0) 64 SPLITM 127 
RESTOR (Phase 4) 180 SPLITO 127 
RETRY (DSORT008) 54 SPLITR 162 
RETRY (DSORT009) 62 SRTl 31 
RLFWB 194 SRTSCN 31 
RLMDGT 195 START 97 
RLRUTR 194 Phase 2 (FLR) 97 
RLSTRP 195 Phase 2 (VLR) 113 
RLUPDT 195 Phase 3 CFLR) 135 
ROUT 1 198 Phase 3 (VLR) 150 
RTNEQ (FLR) 135 STARTl CFLR) 135 
RTNEQ (VLR) 150 STARTl (VLR) 151 
RUNCODSW 26 Statement Definers 27 
RWLABL (FLR) 146 STBO 62 
RWLABL (VLR) 164 STDFV 40 

STEP 51 
S188 64 STEPl 51 
SAVCKP 38 STEP1B 51 
SCAN 32 STEP1BR 58 
Scan INPFIL, OUTFIL, MODS, OPTION and STEP1R 58 

END Control Cards 33 STEP1V 55 
Scan Sort, Merge, and Record Control STEP3 52 

Cards 31 STEP3A 52 
SEEKTM 64 STEP4 52 
Select Order of Merge 61 STEP4R 59 

Index 379 



STORMl 76 
STORM2 76 
STVSOM 63 
SVORIG 58 
SW 26 
SWl (DSORT) 27 
SWl (DSORT008) 53 
SW1R 61 
SW2V 58 
SWITCH2 191 
Symbolic Unit Assignments 21 
Symbols for Flowcharts 364 
System Requirements 22 

TABLEF 64 
TAGADR 83 
TAGCHK 82 
TAGINT 82 
TAGMNL 83 
TAGOUT 62 
TAKECP (FLR) 100 
TAKECP (VLR) 117 
TAPE 171 
TAPEl 176 
TAPEl-2 176 
TAPEGl 177 
TAPEIN 191 
Tape Input File Options (Phase 4) 
Tape Input Routine (Phase 1) 75 
TAPEO (FLR) 145 
TAPEO (VLR) 163 
Tape Output File Options (Phase 4) 
TAPEX 178 
~APLLR (FLR) 134 
TAPLLR (VLR) 149 
TAPOFX 174 
TAPOFX+8 174 
TAPOUT (DSORT401) 169 
TAPOUT (DSORT402) 187 
TAPPUT 186 
TEST 178 
TESTDEV 46 
TESTEQ (FLR) 133 
TESTEQ (VLR) 149 
TESTEX 173 
TBSTON 173 
TINBG 75 
TMEOF 178 
TMINUS 115 
TPOUT 175 
TRl 177 
Track Capacity, Use of 

Phase 3 160 
Phase 4 184 

TSBPASS 173 
TSER7 49 
TSMERG 66 
TSREST 66 
TSTBLKCD 26 
TSTCALCS 65 
TSTER5 42 
TSTFORM 172 
TSTREC 174 

UPDTO 
UP MOVE 
USEORIG 
USEORIGR 

184 
28 

52 
59 

380 IBM S/360 DOS Sort/Merge 

171 

170 

USEREX41 191 
USEREX44 189 
User Modification and Exits 19, 20 
USESTR 40 
USRLAB (FLR) 147 
USRLAB (VLR) 165 
USTOPl (FLR) 136 
USTOPl (VLR) 152 
USTOP2 (FLR) 137 
USTOP2 (VLR) 152 
USTOP3 (FLR) 137 
USTOP3 (VLR) 153 
USTOP4 (FLR) 137 
USTOP4 (VLR) 153 
US TOPS (FLR) 137 
USTOP5 (VLR) 153 
USTOP6 (FLR) 138 
USTOP6 (VLR) 153 
USTOP7 138 
USTOPA (FLR) 102 
USTOPA (VLR) 119 

VALIDATE 47 
VARBI 44 
VARBLK 83 
VARMOV 127 
VARRTN 55 
VBl 44 
VLl 43 
VLESSG 64 
VLRINZ (ADDROUT Run) 
VLRINZ (Sort Run) 

WAY 4 (FLR) 99 
WAY 4 (VLR) 115 
WLR 179 
WLR2 179 
WLTBLK 162 
WRITE CFLRI 109 
WRITE (VLR) 127 
WRITEV 185 
WTCKMG 66 
WTCKPS 67 
WTDATA (FLR) 109 
WTDATA CVLRI 127 

73 

X31CLS (FLR) 148 
X31CLS (VLR) 165 
X31CLS-12 (FLR) 148 
X31CLS-12 (VLR) 165 
X31EVT (FLR) 148 
X31EVT (VLR) 165 
X3lLNK CFLRI 14 7 
X3lLNK (VLR) 164 
X31TSl (FLR) 147 
X31TSl (VLR) 165 

ZNLST2 198 
Zoned Decimal (SIGZON) 
Routine 197 

ZONPS2 198 
ZYXWZY (Phase 2) 109 
ZYXWZY (Phase 4) 185 
ZYXWZY-INSERT (Phase 3) 

82 

convert/Reconvert 

145 



READER'S COMMENT FORM 

IBM System/360 
Disk Operating System 
Sort/Merge Y24-5021-0 

• Your comments, accompanied by answers to the following questions, help u.s produce better 
publications for your use. If your answer to a question is "No" or requires "qualification, 
please explain in the space provided below. All comments will be handled on a non-confi­
dential basis. Copies of this and other IBM publications can be obtained through IBM 
Branch Offices. 

Yes No 

• Does this publication meet your needs? c:J CJ 

• Did you find the material: 
Easy to read and understand? c:J CJ 
Organized for convenient use'? c::::J c::J 
Complete? c::::J c::J 
Well illustrated? c:J CJ 
Written for 'your technical level? c:J c:J 

• What is your occupation?~ ___________________________ _ 

• How do you use this publication? 
As an introduction to the subject? c::::J As an instructor in a class? c::::J 
For advanced knowledge of the subject? c::::J As a student in a class? c::::J 
For information about operating procedures? c::::J As a reference manual? c::::J 

Other _________________________________________________________________ ___ 

• Please give specific page and line references with your comments when appropriate. 
If you wish a reply, be sure to include your name and address. 

COMMENTS: 

• Thank you for your cooperation. No postage necessary if mailed in the U. S. A. 



Staple 

Fold Fold 

-------------------------------------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

Attention: Programming Publications, Dept. 157 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P. O. Box 6 

Endicott, N. Y. 13760 

FIRST CLASS 
PERMIT NO. 170 
ENDICOTT, N. Y. 

._------------------------------------------------------------
Fold 

ln~llir . . 
International Business Machines Corporation 

Data Processing Division 

112 East Past Road, White Plains, N. Y. IOGOI 

Fold 

I 
I 
I 
I 
I 
I 
I 
I 

.. c 
::l 

.. 
::0 

U 





Y24-5021-0 

International Business Machines Corporation 

Data Processing Division 

112 East Post Road, White Plains, N. Y. 10601 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384

